
Systems Reference Library

IBM System/360 Operating System:

MVT Guide

OS Release 21.7

This publication describes the MVT (multiprogramming with a
variable number of tasks) configuration of the operating system
control program. It contains a description of the MVT control
program, options available with MVT, information on optimizing
performance, information on modifying the system, and a
description of the internal logic of the MVT configuration.
General descriptions are provided of the operating environment
of the control program, of the initial program loading procedure,
and of the job management, task management, data
management, volume management and recovery management
functions.

The MVT configuration of the control program is designed for
use with System/360 Models 40, 50, 65, 75, 85, 91, 95, and
195; with the System/360 Model 65 Multiprocessing System;
and with System/370 Models 145, 155, 165, and 195. The
minimum main storage is 262,144 (256K) bytes, or 524,288
(512K) bytes in the case of the Model 65 Multiprocessing
system.

File No. S360-36
Order No. GC28-6720-5 OS

Sixth Edition (August, 1974)

This is a reprint of GC28-6720-4 incorporating changes released in the following Technical
Newsletter:

GN28-2553 (dated April 16, 1973)

This edition applies to release 21.7 oflBM System/360 Operating System. Information
in this publication is subject to change. Before using this publication, be sure you have
the latest edition and any Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1970, 1971, 1972

This guide explains how to use the MVT
(multiprogramming with a variable number of
tasks) control program. The MVT control program
performs system functions, such as input/output
operations and supervision of jobs, and processes
up to 15 jobs concurrently.

This guide is intended for new users as well as
users familiar with the MVT control program. It
presents material in an introduction, five sections,
and six appendices.

There is a Task Directory at the end of each
section. The Task Directory contains a list of topics
discussed in the section along with headings under
which the topics can be found. Users with a
specific topic in mind who cannot find the topic in
the Table of Contents should look in the Task
Directory.

The Introduction explains the scheduling, main
storage organization, system generation, and uses
of an MVT system.

Section I describes the MVT control program to
new users or to those who wish to review MVT.
This section describes storage organization,
supervis.or state and program state, initial program
loading and nucleus initialization programs, and the
five major functions of the control program.
Experienced users do not need to read this section.

Section II describes briefly the options available
for MVT. Planning and managerial personnel can
use this information when expanding their system
with the MVT options.

Section III explains device requirements, system
generation macro instructions, and planning aids.
Application programmers will find this information
helpful to run their programs quickly and
efficiently. Planning personnel can use this
information to optimize system performance
according to the demands of their installation.

Section IV lists the standard IBM cataloged
procedures for readers, writers, and initiators, and
explains how to modify the control program.
Planning personnel need this information to tailor
cataloged procedures to their installation's
requirements.

Preface

Section V explains in detail the five major
routines of the MVT control program. A new user
should fully understand the first four sections of
this guide before reading this section. An
experienced user could go directly to this section.

Appendix A explains how to use certain system
macro instructions.

Appendix B describes the control character
transformations for the standard output writer.

Appendix C explains how to use the RESERVE
macro instruction with the Shared DASD (Direct
Access Storage Device) option.

Appendix D lists and states the full names of
common acronyms found in this guide.

Appendix E names the program logic manuals
that discuss the MVT control program. This
appendix includes a short abstract of each manual.

Appendix F explains the different SVC routines
and lists them by number.

As a prerequisite, users must have read

IBM System/360 Operating System: Introduction,
GC28-6534.

A basic knowledge of the job control language is
assumed throughout this manual; for job control
language information, see the publication IBM
System/360 Operating System: Job Control Language
Reference, GC28-6704.

Additionally, the following publications provide
related information:

IBM System/360 Operating System:

Basic Telecommunications Access Method,
GC30-2004

Data Management Services, GC26-37 46

Data Management for System Programmers,
GC28-6550

Graphic Programming Services for IBM 2250
Display Unit, GC27 -6909

Preface 3

Graphic Programming Services for IBM 2260
Display Station (Local Attachment), GC27-6912

Introduction to Main Storage Hierarchy Support for
IBM 2361 Models 1 and 2, GC27 -6942

Operator's Procedures, GC28-6692

Operator's Reference, GC28-6691

Principles of Operation, GA22-6821

Storage Estimates, GC28-6551

Supervisor Services and Macro Instructions,
GC28-6646

System Generation, GC28-6554

System Management Facilities, GC28-6712

Time Sharing Option Guide, GC28-6698

User's Guide for Job Control from the IBM 2250
Display Unit, GC27-6933

Utilities, GC28-6586

4 MVT Guide (Release 21.7)

This publication also refers to the following
program logic manuals (PLMs):

IBM System/360 Operating System:

Initial Prog~am Loading/Nucleus Initialization
Program Program Logic Manual, GY28-6661

Input/Output Supervisor Program Logic Manual,
GY28-6616' .

Machine Check Handler for IBM System/360
Model 65 Program Logic Manual, GY27-7155

Machine Check Handler for IBM System/360
Model 85 Program Logic Mariual, GY27-7184

Machine Check ~andler for IBM System/370
Model .45 Program Logic Manual, GY27-7237

Machine Check Handler for IBM System/370
Models 155 and 165 Program Logic Manual,
GY27~7198

MVT Job Management Program Logic Manual,
GY28-6660

MVT Supervisor Program Logic Manual,
GY28-6659

Time Sharing Option (TSO) Control Program
Program Logic Manual, GY27-7199

Summary of Amendments

Introduction

How Does the MVT Control Program Work?

Main Storage Areas in MVT

Major Components of the MVT Control Program

How is an MVT System Generated?

Section I: The MVT Control Program

Operating Environment

Routines in Supervisor State

Resident Routines. . . .

Nonresident Routines . .

Routines in the Problem State

Organization of Main Storage

Fixed Area

SCV Transient Areas .

I/O Supervisor Transient Area

System Queue Area

Link Pack Area. .

Dynamic Area . .

Generalized Trace Facility

Generalized Trace Function

Trace Edit Function

Loading and Initializing the Control Program

Loading the Nucleus

Initializing the Nucleus

System Restart

Nucleus Initialization in a MUltiprocessing Environment

Job Management

Task Management ..

Data Management . .

Volume Management.

Recovery Management

Task Directory for Section I: The MVT Control Program

Section II: MVT Options

Additional Pairs of Transient Areas

Alternate Path Retry

BLDL Table Made Resident .

Channel-Check Handler (CCH)

Checkpoint/Restart Facility

Consoles-Alternate and Composite Console Option .

Consoles-Multiple Console Support (MCS)

Conversational Remote Job Entry (CRJE) Facility

Decimal Simulation Option for Model 91

Direct Access Volume Serial Number Verification

Dynamic Device Reconfiguration (DDR)

Graphic Programming Servi~es

Indexed Sequential Access Method (ISAM)

Contents

14.1

19

19

22
23
25

27

27

27

27

28
28
28
29
29
30
30
30
31

32
32
33
33

33
33
34

34

35

35

36

36

37

38

39
39
39
39
39
40

41

41

42

43

43

44

45

45

Contents 5

Job Step Timing

Main Storage Hierarchy Support .

Program Controlled Interrupt (PCI)

Reenterable Load Modules Made Resident

Remote Job Entry (RJE) Facility

Rollout/Rollin Option

The Shared Direct-Access Device Option

System Management Facilities (SMF)

Telecommunications Access Method

The Time Sharing Option

The Time Slicing Facility

Timing Options.

Trace Option

Type 3 and 4 SVC Routines Made Resident

User-Added SVC Routines

Volume Statistics Facility

Task Directory for Section II: MVT Options

Section III: Planning for MVT

MVT Requirements

Configuration Requirements

Storage Requirements

System Generation Requirements

CTRLPROG Macro Instruction

SCHEDULR Macro Instruction

Planning Aids .

Job Classes. . .

Job Priority

SYSOUT Classes

System Output Writers

Direct System Output Writers

Region Size

Additional Transient Areas

Avoiding Main Storage Fragmentation

Placing System Libraries on Direct Access Devices

System Restart

Task Directory for Section III: Planning for MVT

Section IV: Modifying the System . .

Standard IBM Cataloged Procedures .

Reader Procedures

The EXEC Statement

DD Statement for the Input Stream

DD Statement for the Procedure Library

DD Statement for the Spooling Data Set

Automatic Sysin Batching (ASB)

Initiator Procedures

The EXEC Statement

Mounting Control Volumes

Initiator Action

DD Statement Formats .

Dedicated Data Sets.

How to Dedicate a Data Set .

How to Use a Dedicated Data Set

6 MVT Guide (Release 21.7)

45

45

46
46
46
47

47

49

49

49

52

53
53
53
54

54

56

57
57
57
57
57
58

59

61

61

62

63

64
64
65

66

66

67

67
69

71

71

71

73

77

78

78

79
82
82
83

84

84
. 84.1

85

86

Procedure IN lTD

The EXEC Statement

DD Statement for the Dedicated Utility Data Set

DD Statement for the Loadset Data Set

Use of Dedicated Data Sets by Processor Programs for Utility Data Sets

System Library Data Sets as Dedicated Data Sets

Disposition of Temporary Data Sets

System Output Writers

The EXEC Statement

DD Statement for the Output Data Set

Command Chaining. . .

Direct SYSOUT writers

The EXEC Statement

The DD Statement. .

Choosing Direct SYSOUT Writers

SYSIN and SYSOUT Data Blocking .

Catalog Procedure Examples for a Complete Installation

RA - Automatic SYSIN Batch Reader Procedure .

RB - Reader for Blocked SYSIN Data

RU - Reader Procedure for Unblocked SYSIN

WC - Writer with Command Chaining

WU - Writer for Special Chains

Initiator Catalog Procedures

Using the Link Pack Area

Procedure for Using the Link Pack Area

Initialization

Creating Parameter Library Lists

Operational Characteristics . . .

The Resident BLDL Table Option .

Selecting Entries for the Resident BLDL Table

List IEABLDOO

Suggested Starter List for MVT

Suggested Starter List for Time Sharing .

The Resident Access Method Modules Option

Considerations for Use

List IEAIGGOO

The Resident SVC Routines Option

List IEARSVOO

The Resident Error Recovery Procedure Option

Programming Notes.

Example of Link Pack Area Specification

The Link Library List

Job Queue Format.

Logical Track Size - JOBQFMT

Reserving Initiator Queue Records - JOBQLMT .

Number of Generation Data Groups.

Number of Passed Data Sets

Number of I/O Devices for Passed Data Sets .

Number of Volumes

Number of System Messages

Use of Automatic Restart.

Reserving Write-to-Programmer Queue Records - JOBQWTP .

Reserving Queue Records for Cancellation - JOBQTMT

Number of Devices

87

87

88

89
89
89
90
91

91

92
94
94
94
95

96
97

100

100

101
101
101
102
102
106
106
106
106
108
109
109

110
110
111
111

111

113

114
115

115

116

116
118

119

120
120
121
121
121
121
121
122
123
123
124

Contents 7

Number of Jobs

Output Separation

Characteristics of an Output Separator

Programming Conventions.

Output from the Separator

Using the Block Charater Routine .

Writing an Output Separator Program

Parameter List.

Writing System Output Writer Routines

Characteristics of the Output Writer

Programming Conventions.

Writing an Output Writer

Adding SVC Routines to the Control Program

Characteristics of SVC Routines
Programming Conventions for SVC Routines

Writing SVC Routines

Adding SVC Routines Into the Control Program

Specifying SVC Routines

Inserting SVC Routines During the System Generation Process .

Message Routing Exit Routines

Characteristics of MCS

Programming Conventions For WTO/WTOR Routines.

Messages Not Using Routing Codes

Writing a WTO/WTOR Exit Routine

Adding a WTO/WTOR Exit Routine to the Control Program

Inserting the WTO/WTOR Exit Routine

Handling Accounting Routines

Programming Conventions for Accounting Routines
Input Available to Accounting Routines.

Adding an Accounting Routine. . .

Insertion at System Generation .

Insertion after System Generation
. MVT Configurations

Output From Accounting Routines .

Adding the Accounting Data Set Writer

Linkage

Input

Specifying the SYS I.ACCT Data Set

Output

Use of ENQ/DEQ

Writing Rollout/Rollin Installation Appendages

Characteristics of Rollout/Rollin Installation Appendages .
Linkage to User Appendages.

Appendage I: IEAQAPG 1 .

Appendage II: IEAQ~PG2

Appendage III: IEAQAPG3

Appendage IV: IEAQAPG4

Sample Coding of Appendages

General Flow of Rollout Processing

Source Statement

The Must Complete Function

Characteristics of the Must Complete Function

Levels of Use of the Must Complete Function

Requesting the Must Complete Function

8 MVT Guide (Release 21.0)

124

125

125

126

127

127

128

128

129

129

129

131

135

135

135

139

139

139
139

140

140

141

143

143

144

144

145
145

145

147

147

147
147

148

149

149

149

150

150

150

151

151

151

IS2

152

152
153

153

153

155

156

156

156

157

Programming Notes
Terminating the Must Complete Function

The PRESRES Volume Characteristic List .
Characteristics of the PRESRES Volume Characteristics List
Writing the PRESRES Entry Format

Adding the List.
Task Directory for Section IV: Modifying the System

Section V: Logic Summary .

Job Management Routines
Command Processing

Reading the Command
Console Communications Task
Reading Tasks

Scheduling the Command
Executing the Command

Job' Processing

Reading Tasks
Input Work Queues
Contents of a Work Queue Entry

Commands and Data Sets
Termination of a Reading Task .

Initiating Tasks.
Preparing of Job Step for Execution
Terminating a Job Step.

Restarting a Job Step
Writing Tasks

Job Management in a Multiprocessing Environment.
Task Management Routines
Interruption Supervision . . .
Task Supervision

Task Control Block Queue .
Request Block Queue . . .
Passing Control to a Program of a Task

Dispatcher Routine
Time Slicing.

Main-Storage Supervision
Storage Allocation in the Dynamic Area

Storage Allocation in a Region

Rollout/Rollin.'. .
Determining Available Storage
Subpools '.

Storage Allocation in the System Queue Area
Contents Supervision

Contents Directory

Load List
Timer Supervision

Pseudo-Clocks
Timer Queue .
Time-of-Day Clock

Task Management in a Multiprocessing Environment
Data Management Routines
Assigning Space on Volumes
Maintaining the Catalog . .

157
158
159
159
160
161
162

165
165
165
165
165
167
168
168
169
171
171
172
173
173
173
173
176
177
178
178
179
179
180
180
181
183
183
183
184
184
184
184
184
185
187
189
189
192
192
192
193
193
193
195
195
196

Contents 9

Support Processing for I/O Operations

Open Processing

Insuring Proper Volume Mounting.

Constructing Control Blocks

Loading Access Method Routines

Close Processing

End-of-Volume Processing.

Processing I/O Operations .

Starting an I/O Operation

Access Methods . . .

EXCP Routine

Terminating an I/O Operation.

Sharing Direct Access Devices .

Data Protection

Control of Access Arm Movement

Data Management in a Multiprocessing Environment

Volume Management Routines . . .

Error Statistics by Volume (ESV)

Error Volume Analysis (EVA)

Recovery Management Routines

CPU Recovery Facilities

System Environment Recording, Option 0 (SERO)

System Environment Recording, Option 1 (SER 1)

Machine-Check Handler (MCH)

MCH for Model 65 and Model 65 Multiprocessor

MCH for Models 85, 145, 155, 165, and 195

Input/Output Recovery Facilities . .
Channel-Check Handler (CCH)

Error Recovery Procedures (ERPs)

Alternate Path Retry (APR) . . .

Dynamic Device Reconfiguration (DDR)

Recovery Management in a Multiprocessing Environment

Task Directory for Section V: Logic Summary

Appendix A: System Macro Instructions

CIRB - Create IRB for Asynchronous Exit Processing

SYNCH - Synchronous Exits to Processing Program

SYNCH Macro Definition

ST AE - Specify Task Asynchronous Exit

Execute and Standard Form of ST AE

List Form of ST AE

Programming Notes

Scheduling of ST AE and ST AI Exit and Retry Routines

ATTACH - Create a New Task

1M GLIB - Open or Close SYS1.IMAGELIB .. .

Inter-Partition POST - Post a Nonresident Routine

QEDIT - Linkage to SVC 34

WTO/WTOR - Write-to-Operator and Write-to-Programmer with Reply

Appendix B: Control Character Transfonnations .

Card Punch Unit

Printer Unit

10 MVT Guide (Release 21.7)

196

196

196

197

199

199

199

199

200

201

201

202

202

202

202

203

205

205

206

207

207

207

207

208

208

209

209

209

210

210

211

212

213

215

215

216

216

216

217

218

219

221

223

225

225

227

228

229

229

230

Appendix C: RESERVE Macro Instruction Used with the Shared UASU Option

The RESERVE Macro Instruction

The EXTRACT Macro Instruction
Releasing Devices. .
Preventing Interlocks
Volume Assignment .

Program Libraries
Finding the UCB Address

Providing the Unit Control Block Address to RESERVE.
Procedures for Finding the UCB Address of a Reserved Device
RES and DEQ Subroutines

Appendix D: List of Acronyms and Abbreviations

Appendix E: MVT Control Program Logic Manuals

Appendix F: SVC Routines .

Index

233
233
234
234

235
235
235

235
236
236
238

241

243

249

253

Contents 11

Figures

Figure 1.
Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.
Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.

Figure 12.

Figure 13.
Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.
Figure 21.

Figure 22.

Figure 23.

Figure 24.
Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

The MVT Control Program Reads a Stream of Jobs to an Input Work Queue

Job Classes and Job Priorities •

Jobs Stored on SYS1.SYSJOBQE and Then Processed

System Output Written to an Output Data Set

Main Storage Areas••.

MVT Control Program Routines. • . •

Areas and Contents of Main Storage

Upper Main Storage After IPL

Parameter List Referred to by Register 1 .

General Logic of Standard Output Writer

Programming Conventions for SVC Routines. .

Programming Conventions for WTO/WTOR Exit Routines.

Accounting Information Available to User

General Flow of Rollout/Rollin Processing. . . . • . . • .

Relationship Between Tasks and Phases of Command Processing

Flow of Control When a Command is Issued Via a Console

Processing to Create a Task for START Command . . . • • • • .

Example of Processing of Input Work Queues ••....•.....•••

Information Flow Between Control Statements and Blocks of a Reading Task

Relationship of Block of Initiating Task to Blocks of Reading Task

Concept of the TCB Queue • • . • • . • . . . • • . • . . .

Example of the Modification of the RB Queue During a Task

Initial Format of a Region

Example of Main Storage Allocation. . . . • • . • . •
Example of the Modification of Contents Directory During a Task

Flow of Information During the Merges of the Open Routine

Relationship Between a Processing Program, an Access Method, and the I/O Supervisor

Flow of Control for an I/O Operation •

Flow of CPU Control When Using a Shared Device

ESV Record Format for Tape Volumes

Control Character Translation for Punch Unit Output

Symbolic Representation of Record Formats

Control Character Translation for Printer Unit Output

12 MVT Guide (Release 21.7)

19

20

21

22

22

24

29

30

130

133

136

141

146

154

166

167

170

172

173

175

· 181
182

185

188

191

198

200

• 200
• 204

• 206
229

• 231
232

/'

,/

I

Introduction ~ •
Section I: The MVT Control Program ~ •
Section II: MVT Options ~ •
Section III: Planning for MVT ~ •
Section IV: Modifying the System ~ •
Section V: Logic Summary ~ •
Appendix A: System Macro Instructions ~ •
Appendix B: Control Character Transformations ~ •
Appendix C: RESERVE Macro Instructions Used with the Shared DASD Option ~ •
Appendix D: List of Acronyms and Abbreviations ~ •
Appendix E: MVT Control Program Logic Manuals ~ •
Appendix F: SVC Routines ~ •

'''----_. Index ~ •
Contents 13

/'

14 MVT Guide (Release 21.0)

Job Step Timing

Describes the correct method for determining CPU time.

Additional Transient Areas

Recommends additional transient areas for the extensive
use of nonresident SVC routines.

EXEC Statement

Describes the default parameter from the initiator to the
reader.

Mounting Control Volumes

Describes the catalog procedure for the MOUNT
command.

Summary of Amendments
for GC28-6720-4

as Updated by GN28-2553
OS Release 21.7

SYSIN and SYSOUT Data Blocking

Lists a new blocking factor for PL/IF on SYSPRINT.

Output from Accounting Routines

Specifies a 36 (rather than a 32) word save area for the
system output.

Inter-Partition POST -- Post a Nonresident
Routine

Introduces this TSO macro and tells how to use it to
post routines in swapped-out time sharing tasks.

Summary of Amendments 14.1

14.2 MVT Guide (Release 21.7)

Alternate Path Retry (APR)

APR includes the V AR Y PATH function as standard for
both MVT and M65MP.

GENERALIZED Trace Facility (GTF)

Describes the tracing and editing abilities of GTF.

Changed list IEARSVOO to support
Open/ Close/EOV

Modules in the list IEARSVOO changed.

Disposition of Temporary Dedicated Data Sets

Clarification of submitting separate jobs instead of job
steps in a job when using temporary dedicated data sets.

MVT Options List

Lists the options available for the MVT user.

System Programmer's Guide Chapters

Section II contains the following System Programmer's
Guide chapters:

The Shared Direct Access Device Option
The Time Slicing Feature

Section IV contains the following System Programmer's
Guide chapters:

Using the Link Pack Area
Job Queue Format
Output Separation
Writing System Output Writer Routines
Adding SVC Routines to the Control Program
Message Routing Exit Routines
Handling Accounting Routines
Writing Rollout/Rollin Installation Appendages
The Must Complete Function
The PRESRES Volume Characteristic List

Appendix A contains the following System
Programmer's Guide chapter:

System Macro Instructions

Appendix B contains the following System
Programmer's Guide chapter:

Control Character Transformations (from Writing
System Output Writer Routines)

Summary of Amendmeats
for GC28-'728-4

OS Release 21

. Appendix C contains the following System
Programmer's Guide chapter:

RESERVE Macro Instruction Used with the Shared
DASD Option (from The Shared Direct Access Device
Option)

System/370 Model 195

The Model 195 can also function as a System/370 CPU.

Channel Check Handler (CCH) for Model 65
Multiproccessing and System/370 Model 145

CCH must be specified for M65MP; CCH standard with
System/370 Model 145.

3420 and 3803 Support

3420 and 3803 support changes the operation of Error
Volume Analysis (EVA) routines. This support increases
the number of output writers for DSO. Cataloged
procedures include the new devices in their parameters.

TSO Multiprocessing

TSO operates with M65MP.

Status Display Support

Bit 0, Byte 1 of the UCMDESCD field has assigned a
descriptor code of 9.

Elimination of IEFSD165

IEFSD 165 no longer used in the list IEFSD061.

Reserving Initiator Queue Records

Adds additional considerations for reserving initiaor
queue records.

Model 65 Multiprocessing Use of the Shared
DASD Option

M65MP can use the Shared DASD Option.

Summary of Amendments 15

Summary of Amendments
for GC28-6720-3
OS Release 20.1

Time Sharing Option (TSO)

Adds documentation of the Time sharing Option.

SYSOUT Data Blocding for FORTRAN G

Changes the record format for the SYSPRINT data set
from RECFM=FBA to RECFM=FSBA Nstandard
blocks).

New CPU Support

Adds references to System/370 Model 145.

16MVT Guide (Release 21.0)

New Device Support

Adds references to the IBM 2305 Fixed Head Storage
Facility, IBM 2319 Direct Access Storage Facility, IBM
2319 Direct Access Storage Facility, IBM 3211 Printer,
and IBM 3330 Disk Storage Drive.

Resident BLDL Table

Can contain directory entries from SYS I.SVCLIB as well
as SYS I.LINKLIB.

Recovery Management

Revises the discussion of recovery management to
include information formerly contained in the
publication in the publication IBM System/360
Operating System: Concepts and Facilities,
GC28-6535.

Model Dependency for Models ISS and 16S

Documents IBM System/370 Models 155 and 165 CPUs.

Models ISS and 16S Recovery Management
Support

Adds Models 155 and 165 information for Machine
Check Handler (MCH) facility.

Channel Check Handler with Model ISS and
2880 channels

Adds Model 155 and 2880 channels for Channel Check
Handler (CCH) facility.

Time of Day

Summary of Amendment~
for GC28-6720-2

OS Release 20

Adds documentation on the Time of Day (TOO) support
under System/370.

MVT Redocumentation

This edition of MVT Guide obsoletes MVT Control
Program Logic Summary, Prigram Logic Manual,
GY28-6658: all information in the specified Program
Logic Manual is now contained herein.

Summary of Amendments 17

18 MVT Guide (Release 21.0)

Introduction

The multiprogramming with a variable number of tasks (MVT) control program reads one or
more job streams. This allows the CPU (central processing unit) to process several jobs
concurrently. Long-running jobs can be processed along with short-running jobs. Batch jobs
can be processed concurrently more quickly than if each job were run sequentially. Foreground
jobs can be run along with background jobs.

The control program schedules jobs by priority, and supervises the concurrent processing of
as many as 15 jobs. A job is the major unit of work that the computing system processes.
Users define jobs to the system by using Job Control Language (JCL). The control program
processes tasks, which are the major units of work processed by the CPU. Jobs can be further
sub-divided into job steps. Users define job steps with JCL. The control program processes
each job step as a separate task.

How Does the MVT Control Program Work?

The MVT control program reads in a stream of jobs, but instead of processing them
immediateiy, it schedules, or queues them on a direct access storage device, as illustrated by
Figure 1.

To Job Queue access
storage
device.

SYS1.SYSJOBQE

Figure 1. The MVT Control Program Reads a Stream of Jobs to the Input Work Queue

Each job in the job stream has a priority between 0-13. These priorities can be user-specified
by means of JCL parameters. Jobs in the job stream belong to one of 15 job classes, identified
with the alphabetic characters A through 0, where each job class contains jobs in order of
priority. Figure 2 illustrates job priorities.

Introduction 19

•

CLASS=O
PRTY=7

CLASS=L
PRTY=4

CLASS =1
PRTY=9 ,--......L. __

CLASS =F
PRTY=1

CLASS=M
PRTY=l1

,--.......... _-
CLASS=H
PRTY=8

CLASS=K
PRr.'= 10 --wuwwwuwwwwuwu~u

CLASS=N
PRTY=6

CLASS =1
PRTY=3

CLASS=B
PRTY=l1

ABC 0 F G H J K L MN a

Job classes are ordered alphabetically.
Priorities are ordered numerically from 0-13.

Figure 2: Job Classes and Job Priorities

The actual queueing process is complex The operator starts a reader/interpreter with a
START READER command. The reader/interpreter -- a routine in job management -- begins
reading and interpreting JCL, and queueing jobs. It reads the JCL, determining from it classes
and priorities for the job. The reader/interpreter then queues jobs from the job stream into
work queues. Figure 3 illustrates jobs being read into an input data set and being processed.
The initiator/terminator, in response to a START command, allocates necessary resources to
the job using the information provided by the JCL. Resources allocated include data sets and
main storage needed for control blocks. At this time, data management routines assign
necessary space for output d~ta sets needed when the job terminates. However, if the system
does not have sufficient resources, the job will wait for the resources to become available, or,
if the job waits too long, the operator may cancel it.

Since the system has a finite amount of resources, and each job competes for those
resources, the MVT control program must resolve the demands for system resources. The
control program uses priority to resolve demands for system resources; it also uses
interruptions.

20 MVT Guide (Release 21.0)

',,-

SYS 1. SYSJOBQE

CPU

Jobs processed
in the CPU. Up
to 15 jobs
processed
concurrent Iy.

Figure 3. Jobs are Stored on SYSl.SYSJOBQE and then Processed

The initiator/terminator uses a macro instruction, A TT ACH, to logically connect the job to
the control program. At this point, the control program recognizes the job as a task (or as
several tasks, depending on the processing involved). A control block, the task control block
(TCB) represents the task to the control program. These TCBs go onto the TCB queue. Tasks
ready to be processed are dispatchable and the TCBs representing them in the TCB queue
indicate that they are dispatchable. Conversely, tasks not ready for processing are
non-dispatchable and the TCBs representing them in the TCB queue indicate this. Following
an interruption, the Supervisor gains control of the CPU from the task being processed. There
are five kinds of interruptions:

• Supervisor Call interruptions
• Timer/external interruptions
• I/O interruptions
• Program interruptions

Machine Check interruptions

The Supervisor handles each interruption and then checks the TCB queue for the highest
priority dispatchable task. This highest priority task mayor may not be a different task than
the one that lost control.

The output can be written during program execution by a direct system output writer, or the
output from each task can go to an output data set on an intermediate direct access storage
device. Figure 4 illustrates this. After the task finishes processing, the Supervisor removes the
TCB from the TCB queues, and the initiator/terminator deallocates the resources that the task
used. Control blocks in the output work queue point to the intermediate output data. These
control blocks have the same priority and class as the jobs they represent. MVT supports up to
36 output classes, designated A through Z and 0 through 9. The operator controls output by
starting an output writer for a specified class. The output writer writes the jobs from the
output data set to a user-specified device.

Introduction 21

•

CPU
1----------1 Job 1

System Output
goes to an
intermediate data
set while the CPU
processes jobs.

~ ~

Output Data
Set

Figure 4. Processed Jobs Written to an Output Data Set

Main Storage Areas in MVT

Main storage in the MVT environment consists of four areas, as illustrated in Figure 5:

• Fixed area
• System queue area (SQA)
• Dynamic area
• Link pack area (LP A)

I I

I I

System I I
Link

Nucleus Queue Region n I Region 2 I Region 1 Pack
Area I I Area

I I

I I

-------v------~--~~'----------~y~----------~
Fixed Area System Queue Area Dynamic Area Link Pack Area

Figure 5. Main Storage Areas.

The Fixed Area: The fixed area contains the nucleus and the SVC and I/O Supervisor transient
areas. This fixed area cannot be altered.

The System Queue Area: The system queue area contains the control blocks and tables needed
by the control program.

The Dynamic Area: The dynamic area consists of regions; the areas where the CPU processes
jobs. The regions in the dynamic area have no fixed size; they vary in size to accommodate
the job that occupies them. A job's size can be described with parameters in the JCL, or a
default value can be used for job size. The control program will assign a region of the proper
size. The dynamic· area can contain up to 15 jobs, one in each region, if the space exists. Thus,
an installation operating under an Mvr control program can process several jobs of various
sizes concurrently.

The Link Pack Area: The link pack area contains routines frequently used by the control
program, such as error recovery routines and selected SVC routines.

22 MVT Guide (Release 21.0)

/'

I"

" I

~

Major Components of the MVT Control Program

The MVT control program consists of five functions performed by five major groups of
routines:

1) Job management routines direct and control the flow of jobs. Job Management also
directs the use of the CPU, programming resources, and main storage.

2) Task management routines supervise the execution of all work done in the system. They
also control the allocation of system resources on a priority basis.

3) Data management routines move information .between main storage and auxilliary
storage. They direct the usage of auxilliary storage devices and control input/output
operations.

4) Volume management routines determine the operational quality of tape devices
containing data used by the control program.

5) Recovery management routines record data and attempt retry operations after machine
malfunctions.

Figure 6 illustrates the five functions of the control program and shows their relationship to
each other.

These five routines reside in either the fixed area or the dynamic area of main storage; not all
the routines reside in main storage at one time. The routines that reside in the nucleus provide
supervisory functions; they can bring other non-resident portions of the control program into
main storage. A protection key of 0 protects these routines.

The non-resident routines usually operate in the problem state in various locations in main
storage. These routines mayor may not be protected from alteration.

Introduction 23

INTRO

IV
~

s::
<,
o
c:
~
~

~
~

Ii"
Pl en
~

N

8

\

UO

Data Management :
Routines handle I
data for I
processing. I

I
I
I
I
I

/"-

----,
\
I
I

"

("
I
I

I ...

Figure 6: MVT Control Program Routines

Task Management
Routines schedule
jobs on a priority
basis, and supervise
the processing of
jobs in the CPU.

\

Legend

---.. Pointers

c::=:::::> Data Flow

....... Control Program Flow .. Beginning Point

u

How is an MVT System Generated?

The process of constructing, or generating, an MVT system is called system generation. The
two-part process of preparing a system for actual work is called initial program loading and
nucleus initialization. System generation only occurs for one of three reasons:

• To add new devices to a system
• To add a new or different nucleus to an existing system
• To initiate a new system

Initital program loading and nucleus inititalization occur every time the system is restarted after
being shut down.

The system generation (SYSGEN) process combines separate IBM-supplied modules into a
cohesive system after the user determines device and programming requirements. A special
group of macro instructions compiles these modules into a system.

The initial program loading (lPL) routines load the control program into main storage. The
nucleus initialization program (NIP) prepares main storage for processing jobs.

Introduction 2S

INTRO

26 MVT Guide (Release 21.0)

Section I: The MVT Control Program

This section provides a general description of MVT; it explains the MVT control program and
how it works. The major components of the control program and their functions are described.
Section V: Logic Summary, describes the internal logic of the MVT control program. Detailed
descriptions of the implementation of the control program functions are in the program logic
manuals listed in Appendix E.

Operating Environment

The control program routines operate in the supervisor state or the problem state. Therefore,
the use of certain control and I/O instructions is restricted to certain routines. Secondly,
organization and assignment of main storage in the operating system is based on the protection
feature of System/360. The protection feature allows sections of main storage to be reserved
for use only by certain routines. The operating states and the protection feature are described
in the Principles of Operation publication. This chapter describes:

• Routines in the supervisor state
• Routines in the problem state
• Orgainization of main storage

Routines in Supervisor State

Certain routines of the control program operate in supervisor state. These routines have
exclusive control over the privileged functions. They can execute a special group of instructions
called privileged instructions, which perform functions such as starting I/O operations, enabling
and disabling interruptions, and changing storage protection keys. In other words, control
program routines in the supervisor state perform both supervisory and service functions. Some
routines in the supervisor state are resident, some are nonresident. Thus, the control program
has exclusive control over privileged functions, and it can insure the integrity of all the
program and data in a multiprogramming environment.

Resident Routines

The resident routines of the control program (the nucleus) are loaded into main storage during
the initial program loading (IPL) procedure, and are never overlaid by another part of the
operating system. The nucleus contains all the task management routines (except for some
nonresident SVC routines), one job management routine, the I/O supervisor and BLDL
routine of data management and the resident recovery management routines. The routines in
the nucleus operate under program status words (PSWs) with protection keys set to zero. The
nucleus is one load module that is a member of the NUCLEUS partitioned data set
(SYS1.NUCLEUS).

The routines in the nucleus perform primarily supervisory functions. The service routines of
the nucleus are the resident SV C routines.

SVC routines are entered as a result of SVC interruptions, and perform control program
services. There are four types of SVC routines, and two are resident and two are non-resident:

Section I: The MVT Control Program 27

SEC I

• Type 1 SVC routines, which are part of the nucleus and are disabled (masked) for all
interruptions except machine-check interruptions.

• Type 2 SVC routines, which are part of the nucleus but may be enabled (interruptable) for
part of their operation.

Nonresident Routines

The nonresident control program routines that operate in supervisor state are types 3 and 4
SVC routines, I/O error-handling routines, and parts of one recovery management routine.

The non-resident SVC routines are:

• Type 3 SVC routines, which may be enabled, and are not larger than 1024 bytes.

• Type 4 SVC routines, which may be enabled, and are larger than 1024 bytes. They are
brought into main storage in segments of 1024 bytes or less.

The nonresident SVC routines reside in the SVCLIB partitioned data set (SYS1.SVCLIB),
and operate either from areas defined in the nucleus called SVC transient areas or from the
link pack area. Like the resident routines, nonresident SVC routines operate under PSWs with
protection keys of zero.

As long as an SVC routine (or a module of an SVC routine) is in a transient area, that
copy is used as many times as it is requested.

The I/O error-handling routines reside on SYSl.SVCLIB and operate either from the I/O
supervisor transient area or from the link pack area. They are 'called by the I/O supervisor,
and either correct an error that occurred during an I/O operation, or post a code for an access
method routine.

The machine-check handler (MCH) routine of recovery management is partially
nonresident. Its nonresident modules reside in SYS1.SVCLIB, and operate from its own
transient area in the nucleus. The MCH routine attempts to recover from a machine check
interruption so that processing can continue.

The dynamic device reconfiguration (DDR) routine of recovery management is mainly
nonresident; however, a portion of the DDR routine is resident (DDR SYSRES).

Routines in the Problem State

The control program routines that operate in the problem state are job management routines
and the access method routines. These routines operate from the dynamic and link pack areas.
Job management routines operate under PSWs having protection keys of zero because these
routines store data in the nucleus and system queue area. Access method routines operate
under the same PSWs as their callers. The job management routines reside on SYS 1.LINKLIB,
the access method routines on SYS1.SVCLIB.

Organization of Main Storage

The relative positions of the four areas of main storage, and the program or data that occupies
these areas is shown in Figure 7.

28 MVT Guide (Release 21.0)

Main Storage

LINK PACK AREA
(Loaded During IPL)

DYNAMIC AREA

REGION
(Loaded During Processing)

SYSTEM QUEUE AREA
(Used Duri ng Processi n9)

SVC

Figure 7. Areas and Contents of Main Storage

Fixed Area

SYS1.LlNKLIB
(Not Necessarily
on SYSRES)

SYS 1.SVCLI B

SYS1.NUCLEUS

The fixed area is that part of main storage into which the nucleus is loaded at IPL time. The
storage protection keys of the fixed area are zero so that its contents can be modified by the
control program only. The fixed area also contains small areas called transient areas into which
certain nonresident routines are loaded when needed.

Transient areas are defined in the nucleus, and embedded in the fixed area. There are two
types of transient areas: SVC transient areas and the I/O Supervisor transient area; these
areas are used by nonresident SVC routines and nonresident I/O error-handling routines,
respectively. Like the rest of the routines in the fixed area, the transient area routines operate
with protection keys of zero. All routines that operate from transient areas reside on
SYS 1.SVCLIB.

SV C Transient Areas

An SVC transient area is 1024 bytes in length and is reserved for nonresident SVC routines.
In the MVT configuration, the number of SVC transient areas is specified at system
generation. The minimum number is two. When a nonresident SVC routine (or a module of a
nonresident SVC routine) is required and is not already in the link pack area or one of the
SVC transient areas, the routine or module is read into an available transient area. If no SVC
transient area is available, and if none can be made available, the task for which the SVC
routine was called is put in the wait state until an area becomes available. A transient area is

Section I: The MVT Control Program 29

SEC I

available when it is empty or when the SVC routine that occupies it has completed its
operation.

If no SVC transient area is available for an SVC routine,a transient area currently being
used can be appropriated. An area is appropriated when the task requiring the area has a
higher priority than all the tasks that are currently using the area. When several transient areas
fall into this category, the area appropriated is the one having the lowest priority user. The
appropriated transient area is loaded with the SVC routine for the higher priority task. The
SVC routine that is overlaid because of this higher-priority requirement is later reloaded so
that it can complete its operation.

I/O Supervisor Transient Area

There is one I/O supervisor transient area. It is 1024 bytes in length and is reserved for
nonresident I/O error-handling routines that are brought into main storage for the I/O
supervisor.

System Queue Area

The system queue area is adjacent to the fixed area and provides the main storage space
required for tables and queues built by the control program. The nucleus initialization program
(NIP) sets up the system queue area. Its storage-protection key is zero so that it can be
modified by control program routines only. The data in the system queue area indicates the
status of all the tasks and many of the resources in the system.

Link Pack Area

The link pack area contains reenterable routines that reside on SYS 1.LINKLIB and
SYSl.SVCLIB, track addresses of other routines on these two libraries, and serially-reusable
I/O error recovery routines that reside on SYS1.SVCLIB. The routines in the link pack area
are used for all the tasks that require them, and need not be loaded into the various regions of
main storage. The list of track addresses (the BLDL list) reduces the time required to find the
listed routines on SYS 1.LINKLIB and SYS 1.SVCLIB. These routines are loaded into the
region of the task that requires them. Types 3 and 4 SVC routines and I/O error recovery
routines in the link pack area operate in supervisor state. The others generally operate in the
same state as the routines that called them. The organization of the list and routines in the link
pack area is shown in Figure 8.

BLD L list

Reenterable routines from
SYS1.SVCLlB and SYS1.LlNKLIB

(Except for SVC modu les)

Modules of Types 3 and 4 SVC routines

I/o Error Recovery routines

Master Scheduler Region

Dynamic Area

Figure 8. Upper Main Storage After IPL

30 MVT Guide (Release 21.0)

I J

Link
Pack
Area

'"

You select the routines that you want in the link pack area by creating lists of the desired
routine names. At IPL time, the NIP program loads the indicated routines starting at the
highest part of main storage and working downward. After nucleus initialization, the contents
of the link pack area cannot be modified unless the IPL procedure is repeated. If IBM 2361
Core Storage and main storage hierarchy support are included in the system, a secondary link
pack area may be created in hierarchy 1 to contain other nonresident SVC and reenterable
modules. These will also be loaded by the nucleus initialization program at IPL time.

In addition to user-specified routines, several system-specified job management and access
method routines also reside in this area.

Dynamic Area

The dynamic area fulfills the main storage requirements of job steps and system tasks. This
area is all the main storage between the link pack area and the system queue area. As job
steps and system tasks are initiated, storage from the dynamic area is allocated to them in
blocks called regions.

The dynamic area may be expanded by the inclusion of IBM 2361 Core Storage, an
extension of IBM 2950, 2065, or 2075 Processor Storage. Main Storage hierarchy support for
laM 2361 Models 1 and 2 is a control program option that permits selective access to either
the processor storage (identified as hierarchy 0) or IBM 2361 Core Storage (identified as
hierarchy 1) portions of main storage. When the main storage hierarchy support option is
selected, a region may be defined to consist of two parts: the first located in hierarchy 0 and
the second located in hierarchy 1. If IBM 2361 Core Storage is not included in the system and
a region is defined to exist in two hierarchies, a two-part region is established within processor
storage. The two parts are not necessarily contiguous.

Normally, all storage requested by programs of a given step or task is assigned from its
region, although the rollout/rollin feature does provide the capability of acquiring temporary
additional storage.

Regions are assigned from the highest available block of dynamic area storage that is large
enough to fill the request. A region is assigned when the step or system task is initiated, and,
remains assigned for the life span of the step or task. Any released region becomes part of the
free storage in the dynamic area and is again available for allocation to a job step or system
task.

The region for the master scheduler task is assigned at IPL time by the nucleus initialization
program. This region is adjacent to the link pack area (see Figure 8), and remains assigned for
as long as the control program is in storage.

A region assigned to a job step has a protection key value from 1 to 15 associated with it.
As 2K blocks of storage within this region are assigned for the step, the protection key of each
block is set to the associated value. (Storage assigned to subpool 252 is an exception; its key
remains set to zero.) Unassigned blocks of storage within a job step region have their
protection keys set to zero.

Regions assigned to system tasks have protection keys of O. Protection keys of dynamic area
storage that is not part of any region are also set to O.

Section I: The MVT Control Program 31

Generalized Trace Facility

The Generalized Trace Facility (GTF) program service assists problem determination and
analysis by tracing system events, user events, or both. GTF records and formats trace data on
tape, direct access storage, or internally in the GTF region. GTF can trace:

• I/O interruptions (including program controlled interruptions), both for event classes or for
an individual device

• SIO operations, both for event classes or for an individual device
• SVC interruptions, both for event classes or by individual SVC numbers
• Program interrruptions, both for event classes or for an individual interrupt code
• External interruptions
• Task switches by the system dispatcher
• User events

GTF performs a wider variety of tracing operations than the OS trace option, as well as the
same operations. Unlike the OS trace option, GTF is part of the MVT control program,
occupying less than 1000 bytes when inactive and the specfied region size when active. The
OS trace option can be included in a system with GTF; but starting GTF suspends the
operation of the trace option.

GTF has a macro to simulate the System/370 monitor call (MC) instruction. This allows
GTF to be used with System/360 CPUs, and on System/370 CPUs without the monitor call
instruction.

GTF comprises two major functions:

• Generalized trace function
• Trace edit function

Generalized Trace Function

An operator-issued START command initiates the Generalized Trace function as a system task
in a region (which must be in hierarchy 0 if the installation uses main storage hierarchy
support). The operator can specify in the START command the:

• Tracing in main storage or for an external device
• Suspension of ABDUMP formatting of trace buffers
• Timestamping -- or recording the time of the occurence of an interrupt -- for every logical

trace record

Once the operator starts the trace task, he replies to the message "SPECIFY TRACE
OPTIONS", requesting the:

• Tracing of event classes
• Tracing of single events
• Immediate termination of GTF on error condition in GTF
• Tracing of user-oriented data events

Parameters for the TRACE keyword can be listed in the SYS I.P ARMLIB data set, making it
unnecessary for the operator to issue parameters after starting the generalized trace function.

32 MVT Guide (Release 21.0)

GTF traces an event after receiving control from the interrupt handler. GTF gathers
information about the interruption, and records it on the trace data set or maintains it
internally.

Trace Edit Function

IMDPRDMP formats GTF trace data sets with the EDIT control verb, using either the trace
data set or core image dumps generated by IMDSADMP or by the System Dump Facility as
input. To aid in problem determination, keywords in the EDIT control verb allow the user to
select material from the GTF trace data set, such as jobnames, TCB addresses, and single or
multiple events in an event class rather than using than the entire trace data set.

The Service Aids SRL describes both the generalized trace function and the Edit function in
detail.

Loading and Initializing the Control Program

Before the operating system can be used, the nucleus must be loaded from the system
residence volume into main storage, and initialized. These functions are performed by the
initial program loading (IPL) program, and the nucleus initialization program (NIP)
respectively. These programs are described in the Initial Program Loader and Nucleus
Initialization Program PLM.

Loading the Nucleus

Part of the initialization procedure for the system residence volume was the placing of two IPL
records at track 0, cylinder 0 preceding the standard volume label.

To load the nucleus, you specify the system residence volume and press the LOAD button
on the console. This action causes the first of the IPL records to be read into location 0 of
main storage and to be given CPU control. This record reads the second IPL record which, in
turn, reads the IPL program into main storage.

The IPL program clears and determines the size of main storage, and sets all the storage
protection keys to zero. If IBM 2361 Core Storage is part of an MVT system that includes
main storage hierarchy support, the IPL program determines the boundary between the
processor storage (hierarchy 0) and IBM 2361 Core Storage (hierarchyl) portions of main
storage. The IPL program then relocates itself into the upper portion of main storage, clears its
old location, and loads the nucleus into the lower portion of main storage. After completing
the operation, the IPL program passes control to the nucleus initialization program.

Initializing the Nucleus

The nucleus initialization program (NIP) is a control section included with the nucleus when
the system is generated. NIP initializes tables in the nucleus, determines addresses and storage
boundaries of routines and tables in the nucleus, and checks and sets the interval timer. NIP
~onverts any time-slice intervals to timer units, obtains a primary/master console, determines
the hard copy log requirements and obtains a hard copy log if required. Nip defines the
boundaries of the system queue area, loads the link pack area, and assigns the region of the
master scheduler task. NIP also initializes the SYS I.DUMP data set that is used by the damage
assessment routine (DAR) to write a core image dump when a system failure occurs. NIP then
passes control to a routine of the master scheduler task.

Section I: The MVT Control Program 33

SEC I

The initializing routines of the master scheduler task initialize the input and output work
queues, open the SYS1.LOGREC data set, initialize the system log and the remaining consoles
in the system and execute any automatic commands specified during IPL. If system
environment recording (SER) routines were specified, the initializing routines select the
appropriate SER routine for the model and load it into the nucleus. If system management
facilities (SMF) are included with the system, the initializing routines also create an SMF task,
place it into a wait state, and open the SYS I.MAN data set. After the master scheduler has
completed its initializing functions, it is placed in the wait state. If the automatic commands
did not result in any tasks that can now be performed, the system is placed in the wait state.

System Restart

If during later processing a system failure requires that the IPL procedure be repeated, the
operator can preserve at least part of the contents of the input and output work queues. This
preservation of queues allows the system to be restarted after the IPL procedure is complete
without rereading all the jobs that were in the system when the failure occurred. During the
new IPL procedure, the system restart routines purge the queues of unprocessable entries. The
queue entries that are preserved are:

• Those representing jobs that are enqueued but not yet started.
• Those representing started jobs that can be restarted.
• Those representing system messages and SYSOUT data sets.

The remaining queue entries for jobs being processed when the failure occurred are purged
from the queues, and a message is issued to the operator indicating that these jobs must be
resubmitted. Any temporary data sets of these jobs are purged, but system messages and
SYSOUT data sets that are complete are written.

System restart routines are described in the MVT Job Management PLM.

Nucleus Initialization in a Multiprocessing Environment

The initial program loading (IPL) process is unchanged for MVT with Model 6S
multiprocessing, but the nucleus initialization program (NIP) has some additional functions.

The NIP program begins by determining if the system is to be operated in a two-CPU
mode, a one-CPU mode, or a partitioned mode.

If the system is to be operated in a two-CPU multisystem mode, during the first of two
phases NIP initializes the first CPU, loads a PSW into location zero of the second CPU, and
them issues an IPL signal for the second CPU. During the second phase, initialization is similar
to that for the first CPU, except that the interval timer for the second CPU is given a very
high value. This timer is not used, but is reset with the same high value every time the timer
for the first CPU is reset. This ensures that the second timer will cause no interruptions. After
the second CPU is initialized, NIP passes control to a routine of the master scheduler task.
After master scheduler routines have performed their initialization functions, the system is
ready to begin processing jobs.

34 MVT Guide (Release 21.0)

/'

Job Management

Job management routines process communications from the programmer and the operator to
the control program. This processing falls into two categories: command processing and job
processing.

Command processing is the reading, scheduling, and executing of operator commands issued
via either a console device or an input job stream. Job processing is the reading and
interpreting of control statements, the initiating of job steps defined in these statements, and
the writing of system messages and system output (SYSOUT) data sets from the intermediate
volumes on which they were originally placed.

Job management routines perform several tasks to accomplish command processing and job
processing. The job management tasks are referred to as system tasks to distinguish them from
the user tasks that are performed by processing programs. The job management tasks and the
routines that perform them are described in the MVT Job Management PLM.

When a system task is created, it is assigned a region of main storage. The routines for this
task that are not in the link pack area are loaded into and operate from the region. Regions of
system tasks have storage protection keys of zero. Routines that perform system tasks (unlike
those that perform user tasks) operate under a PSW with a protection key of zero so that they
can write not only in their regions but also in the system queue area.

Task Management

Task management routines control the allocation and use of CPU, main storage. and
programming resources. The task management functions are:

• Interruption supervision. The analysis of interruptions to determine what supervisor
processing is required.

• Task supervision. The recording of what tasks are currently in the system, their status,
priorities, the programs they require, and the order in which these tasks are to be
performed.

• Main storage supervision. The allocating and freeing of main storage, and recording of what
use is being made of any portion of main storage.

• Contents supervision. The loading of programs into storage, the recording of what programs
are currently in main storage, and what characteristics these programs possess.

• Timer supervision. The setting and maintaining of the interval timer from information
provided in timer macro instructions.

Except for some nonresident SVC routines, the task management routines are part of the
nucleus. All task management routines operate in the supervisor state under a PSW with a
protection key of zero.

The task management routines are described in the MVT Supervisor PLM.

Section I: The MVT Control Program 35

SEC I

Data Management

Data management routines:

• Assign and release space on direct access volumes.
• Maintain the catalog.
• Perform the I/O support (open, close, end-of-volume) processing.
• Process I/O operations.

The first three of these functions are performed by type 3 and 4 data management SVC
routines; they reside on SYS1.SVCLIB and operate from either the link pack area or the SVC
transient areas. These routines are invoked via SVC instructions that are either coded directly
or generated as part of macro instruction expansions in the calling program. When the SVC
instruction is executed, the resulting SVC interruption causes control to pass to the SVC
interruption handler. The desired SVC routine is brought into an SVC transient area (unless a
copy is already in one of the areas or the link pack area), a request block for the SVC routine
is built and enqueued to the appropriate TCB, and the SVC routine is given control. Upon
completion, the SVC routine returns control to the supervisor.

The fourth function, processing of I/O operations, is performed by access method routines
and the I/O supervisor. The access method routines reside on SYS1.SVCLIB and operate from
either the link pack area, or the region of their associated task. These routines are loaded by
the open SVC routine, and are entered via a branch instruction that is part of the expansion of
the macro instruction for that access method.

The I/O supervisor is part of the nucleus. The portion of the I/O supervisor that processes
I/O operations is a type 1 SVC routine invoked by an EXCP macro instruction normally
issued by an access method routine.

Volume Management

One of the major factors affecting an operating system is the condition of volumes stored on a
medium subject to deterioration with use. Magnetic tape is such a medium. During use, it is
stretched, flexed, and rubbed, causing its oxide coating to crack or to be eroded. Eroded
particles of oxide, fingerprints, and dust contaminate its surface, multiplying erosion, and
breaking contact between the tape and the read/write station. In time, there will be failures in
the read and write processes.

A rapidly rising rate of read and write errors, if detected, would signal the probability of a
deteriorating tape. If the failure rate could be monitored, it would be possible to judge the
condition of the volume and rescue its contents, either by reconditioning, by transfer to a
different volume, or by a combination of both processes, before system performance could be
seriously affected.

Read and write errors for a given volume can be monitored by a facility called OS Volume
Statistics which supports tape volumes. This facility has two options, error statistics by volume
(ESV), and error volume analysis (EVA). Both options can be specified at the same time.

36 MVT Guide (Release 21.0)

Recovery Management

When a machine malfunction occurs, recovery management routines record critical.machine
and program data, and (in some cases) attempt to recover from the error. Depending on the
specific routine and type of error, recovery takes place at one of four levels:

1. Functional recovery -- resumption of the task at the point where the error occurred.
Machine or recovery management facilities correct storage errors, retry unsuccessful
instructions and I/O operations.

2. System recovery -- termination of the task affected by the error, permitting system
operation to continue.

3. System-supported restart -- re-IPL using system job and data queues preserved by system
restart facilities.

4. System repair -- total system halt for manual repairs, aided by recovery management
records.

Recovery management records are written in SYS I.LOGREC, a dedicated data set on the
system residence volume. They can be edited and printed by use of the IFCEREPO service aid
program, described in the Service Aids publication.

Section I: The MVT Control Program 37

•

Task Directory for Section I: The MVT Control Program

For. information about:

• Main storage organization, see
Fixed Area
System Queue Area
Link Pack Area
Dynamic Area

• Operating in the supervisor state, see
Resident Routines
Nonresident Routines

• Tracing events in the control program, see
Generalized Trace Facility

• Nucleus loading, see
Loading the Nucleus

• Nucleus initialization, see
Initializing the Nucleus
Nucleus Initialization in a Multiprocessing Environment
System Restart

38 MVT Guide (Release 21.0)

Section II: MVT Options

This section discusses in general terms, the options available with MVT that provide user
services and help optimize performance; the discussions are not intended to be comprehensive,
and you will need to refer to other publications. The System Generation publication explains
how to include these options into the control program.

Additional. Pairs of Transient Areas

One pair of supervisor (SVC) transient areas is always provided in an MVT system; optionally,
additional pairs may be added. When a non-resident SVC routine is required during job
execution, it is loaded into an available transient area. If no transient areas are available, then
the task requiring the routine is placed in a wait state until one becomes available.

Alternate Path Retry (APR) -- Standard with M65MP

The alternate path retry (APR) option allows an I/O operation that has developed an error on
one channel path to a device to be retried on another channel path to the same device. This
can be done only if another channel path has been assigned to the device performing the I/O
operation. APR also provides the capability to vary a path to a device online or offline by use
of the VARY command.

APR can handle:

• Up to four paths to one device
• Two paths to a CPU for a multiprocessing system

While it is not module dependent, APR only performs it function usefully in a system that has
the channel check handler (CCH) and alternate paths to one or more I/O devices.

The operation of the selective retry function of APR, done in conjunction with the I/O
supervisor, is automatic. The VARY path function can be initiated by entering the VARY
PATH command in the input stream or at the console.

BLDL Table Made Resident

Any or all of the SYS 1.LINKLIB directory entries can be made resident in fixed main storage.
The user can modify this list to fit his requirements. If he creates a list of his own, the
operator communication option in the SUPRVSOR macro instruction must be specified so that
he can have his list brought in during system initialization.

The standard list of SYS 1.LINKLIB directory entries, IEABLDOO, can be made resident.
This BLDL list has nine entries. To use the BLDL list, the operator communication option
must be specified at system generation time in the OPTIONS parameter of the SUPRVSOR
macro instruction. This will cause the "SPECIFY SYSTEM PARAMETERS" message
(IEAIOIA) to specify a different BLDL list to be used during the loading of the nucleus.

Channel-Check Handler (CCH)

CCH intercepts channel-check conditions, performs an analysis of the environment, and
facilitates recovery from channel-check conditions by scheduling device-dependent error
recovery procedures by the input/output supervisor, which will determine whether the failing

Section II: MVT Options 39

SEC II

channel operation can be retried. If CCH is not present in the system, one of the other
recovery management facilities receives control and writes an error record for the channel
failure. In this case, the error causes system termination.

This feature is oPtional in the System/360 Models 65, 75, and 91 if the models are
specified in the CENPROCS macro instruction.

It is automatically included in the System/360 Models M65MP, 85, and 195 and
System/370 Models 145, 155, 165, and 195 if the models are specified in the CENPROCS
macro instruction.

Checkpoint/Restart Facility

The checkpoint/restart facility expands the use of the restart capabilities that are provided by
the RD parameter that can be specified in either the JOB or EXEC statements. The RD
parameter permits execution of jobs to be automatically restarted at a job step after abnormal
termination occurs.

The checkpoint/restart facility enables the user to write checkpoint macro instructions
(CHKPT) at various points in his program in order to record job status information. Then,
when an ABEND occurs, his program can be automatically restarted at the last of these points.
Or, restart can be deferred until a later time, when the job can be resubmitted and the
REST ART parameter in the JOB statement is used. The RD parameter can also be used to
suppress partially or totally the checkpoint/restart facility.

The following restrictions apply to the establishment of a checkpoint when using the
CHKPT macro instruction.

• When the checkpoint is established, the job step must comprise a single task. The job step
task must be the only task when the job step is restarted.

• A checkpoint cannot be established by an exit routine that returns control to the control
program.

• If a STIMER or WTOR macro instruction has been issued, a checkpoint cannot be
established before the time interval is completed or the operator's reply is received.

In order to use the checkpoint/restart facility, the user must indicate that he plans to use it
at system generation time in the RESIDNT parameter of the SUPRVSOR macro instruction.
The basic modules required from the SVC library (SYS1.SVCLIB) for the checkpoint/restart
facility will then be loaded automatically at NIP time. In the programs that contain CHKPT
macro instructions, a checkpoint data set and work area must be defined. The
checkpoint/restart cataloged procedure (IEFREINT) must be in SYS1.PROCLIB either before
or after system generation.

Additional modules from the SVC library will be required if chained scheduling or track
overflow are going to be used. The u~er obtains the additional modules by constructing his
own access method option list (IEAIGGxx) and includes this in the parameter library
(SYS1.PARMLIB). In order to use his own access method list the operator communication
option must be specified at system generation time in the OPTIONS parameter of the
SUPRVSOR macro instruction. This will cause the "SPECIFY SYSTEM PARAMETERS"
message (IEAI0IA) to be printed during NIP and provides the operator with the opportunity
to specify a different access method option list to be used during the loading of the nucleus.

40 MVT Guide (Release 21.7)

Consoles--Altemate and Composite Console Options

One primary console must always be specified for any operating system except the M65MP
system. M65MP must have two primary consoles specified except when the multiple console
option (MCS) is specified. (See the description in "Consoles - Multiple Console Support
(MCS)".) One alternate console can be specified, or two for the M65MP system, when MCS
is not selected. A composite console (e.g., a card reader and a printer) can be specified as a
primary or an alternate console. The composite console is considered as one console even
though it may be two different hardware devices.

The following guidelines must be used when MCS is not selected:

• A primary console must be specified in the SCHEDULR macro instruction.
• A composite console can be used as a primary or an alternate console.
• For M65MP, no more than two of the total number of consoles specified can be composite

consoles.
• When a graphic device is going to be active as a console, a device that produces printed

output must be specified.

Consoles--Multiple Consoles Support (MCS)

The user must specify the multiple console support (MCS) option to have two or more
consoles active during execution time. For M65MP systems, if you want to direct messages to
or receive commands from more than one console, you must specify MCS.

The following guidelines must be followed with MCS:

• One console must be specified in the SCHEDULR macro instruction and is called the
"master" console.

• An alternate console for the master console must be specified in the AL TCONS parameter
of the SCHEDULR macro instruction.

• A SECONSLE macro instruction must be coded defining the alternate as a secondary
console.

•. Additional secondary consoles can be defined with SECONSLE macro instructions -- up to
a maximum of 31 secondary consoles.

• For all consoles for which no alternate console is specified, the master console is
automatically assigned as the alternate.

A hard copy log can be specified either at system generation time or by the operator during
system initialization or execution time. A hard copy log is required when there is more than
one active console during initialization or execution time, or when there is an active display
console. The hard copy log can be the system log that is contained on SYSl.SYSVLOGX and
SYSl.SYSVLOGY or it can be a console with output capability. If the log is required, the
system records the operator commands, the system commands and responses, and the messages
with the routing codes of 1, 2, 3, 4, 7, 8, and 10 on the hard copy log. Additional messages
can be recorded if desired.

Routing codes and descriptor codes are required for all messages handled by a system using
MCS. Messages that already exist can be assigned routing codes at system generation time, or,
by default, they will be sent to the master console.

Section II: MVT Options 41

SEC II

Routing codes are assigned to all new operator messages (WTO and WTOR). They
designate what function the message is connected with and determine where a message will be
sent. A system generation parameter provides the ability to supply routing codes to all operator
messages that already exist and do not have a routing code.

Each console is assigned one or more routing codes. The routing codes assigned to a
console are matched to the routing codes assigned to a WTO or WTOR message.· If there is a
match, the message is sent to the console. There are some messages that are not routed by the
routing code, e.g., a message that is broadcast to all active consoles.

Descriptor codes must be specified for all new operator messages. They are specified in the
WTO or WTOR macro instructions. They designate how a message is to be printed or
displayed.

All commands have been arranged by function into four command code groups:
informational, system control, I/O control, and console control.

An exit is provided, just before the routing codes of a message are checked, to enable the
user to supply his own routine to add, delete, or change routing and descriptor codes.

The following guidelines must be used:

• If HARDCOPY=SYSLOG is specified in the SCHEDULR macro instruction during system
generation, then at IPL time the operator must change the.HARDCPY parameter to refer to
the address of an operator console that has output capability. The device should not be the
master console. The HARDCPY specification can be changed back after the message
IEE1411 has been received. (For detailed operating instructions see the Operator's Reference
publication.)

• A master console must be specified in the CONSOLE keyword parameter of the
SCHEDULR macro instruction.

• An alternate console must be specified in the AL TCONS keyword parameter SCHEDULR
macro instruction.

• The alternate must be defined in the CONSOLE parameter of a SECONSLE macro
instruction.

• A console with at least printed output capability must be specified as the hard copy log. Although
the system log is not a console it can be used even though it does not directly produce
printed output.

• A record of the operator commands, the system commands and responses, and routing
codes 1,2,3,4,7,8, and 10 should be maintained.

• Up to 31 secondary consoles can be specified with SECONSLE macro instructions. They
can all have alternate consoles specified. If no alternate is defined, then the master console
automatically becomes the alternate.

• A 2250 Display Unit can be specified as a master, secondary, or alternate console.
• Any number of consoles can be composite consoles.
• Routing and descriptor codes are assigned to all new opera.tor messages that are written.

Conversational Remote Job Entry (CRJE) Facility

The conversational remote job entry (CRJE) facility provides remote access to the operating
system from printer-keyboard terminals. Authorized terminaltisers can conversationally
prepare and update programs and data, submit them for OS background processing, and
receive the output either at the central installation or at. the remote terminal.

42 MVT Guide (Release 21.0)

Conversational remote job entry (CRJE) requires the basic telecommunication access
method (BT AM) routines. Background execution of CRJE-submitted jobs is accomplished
concurrently with normal batch processing under the supervision of the OS job management
routines. The valid CRJE terminal user is one that has been defined in the system at CRJE
assembly time in the CRJEUSER macro instruction or has been added to the system by the
central operator using the USERID central command.

The terminal user can insert, replace, delete, or change information to be submitted in jobs
by using the CRJE data set updating facilities. He can have PL/I or FORTRAN source
statements checked for syntax errors before submitting the job. The syntax checking
program(s) are included at system generation time by the CHECKER macro instruction.

The terminal user can inquire about the status of the system or remotely submitted jobs. There
is also a message facility fOf. two-way communication between terminal users, and between
terminal users and the central operator.

CRJE is specified at system generation time in order to have the necessary modules
included in the system. After generation, create the specific CRJE system required for the
installation. There are three macro instructions available for this job -- CRJELINE,
CRJETABL, and CRJEUSER. Set up a job that includes the CRJE macro instructions
necessary to specify the system; users may include their own routines. The assembler translates
these macro instructions and creates the required modules. The linkage editor incorporates the
modules into the operating system.

SYS I.MACLIB must be in the operating system so that the assembler can expand the
macro instructions. SYS 1. TELCMLIB must be in the system to hold some of the CRJE load
modules as well as the telecommunication subroutines. Enough system queue space must be
specified in the CTRLPROG macro instruction during system generation to handle the
necessary CRJE space requirements.

Decimal Similation Option for Model 91

The decimal simulation option provides the Model 91 with the ability to handle decimal
arithmetic instructions; the Model 91 is not equipped with decimal arithmetic instruction
circuitry. This option requires both a long execution time and that the CPU not be operational
during the simulation. The universal instruction set, which is standard for the Model 91,
includes only the EDIT and EDMK decimal instructions; any other decimal instruction is
simulated. This option should be specified if COBOL, PLI 1, or RPG is to be included in the
system, or if decimal arithmetic instructions are to be used in assembler language.

Direct Access Volume Serial Number Verification

The user can add direct access volume serial number verification to his new systelll. If he does,
the volume serial number of a direct access device is checked after an unsolicited device end
interrupt condition has been corrected and the volume has been put back on line again.

When an unsolicited device end interrupt is received from a direct access device, the 1/0
supervisor (lOS) will insure that the volume serial number of the mounted volume agrees with
the volume serial in the unit control block (UCB).

The coding to do the checking will be included at system generation time unless NODAV is
specified in the OPTIONS keyword parameter of the SUPRVSOR macro instruction.

Section II: MYT Options 43

SEC II

Dynamic Device Reconfiguration (DDR) -- Standard for M65MP

The dynamic device reconfiguration option allows a demountable volume to be moved from
one device to another and repositioned if necessary, without abnormally terminating the job or
redoing IPL. A request to move a volume may be initiated by either the system or the operator
and the volume may be a system residence volume or any other volume.

The system transfers control to the DDR routines when a permanent I/O error occurs. These
routines then determine if another device of the same type is available to which the volume
can be moved. When another device is available the system requests a volume swap by issuing
a message to the operator. The operator must answer this message by entering a SWAP
command.

Sometimes the operator will determine that a volume needs to be swapped. He can initiate
this action by entering a SWAP command.

The DDR routines will be used if:

• DDR, DDRSYS, or DDRNSL have been specified in the OPTIONS keyword parameter of
the SUPRVSOR macro instruction during system generation.

• The device that has a permanent I/O error is a 2311, 2314, 2321, 3330, any 2400 series or
3400 series magnetic tape drive, a card reader, a printer, or a card punch. No teleprocessing
devices are supported. Any device for which shared DASD has been specified can only be
demounted and remounted on the same device. The DDR routines can be used for the unit
record devices only if the operator issues the request by means of the SWAP command.

• The type of permanent I/O error is supported. The ones that are NOT supported are:
wrong length record, no record found, unit exception, program check, protection check, lOB
intercept condition, backing to load point, or when the permanent I/O error is caused by
the channel program.

Notes:

• The user should not code specific unit addresses in programs that will be processed on a
system that has DDR.

• The direct access serial number verification routines must be in the system that has the
DDR routines.

For FETCH: When I/O errors occur while the FETCH routines are addressing the SVCLIB,
the DDR system residence routines receives control, and, if possible, requests a swap. In order
for this to occur, OPTIONS=DDRSYS must have been specified in the SUPRVSOR macro
instruction and the conditions listed above must exist.

For DDR System Residence Routines: When these routines are specified in the OPTIONS
keyword parameter of the SUPRVSOR macro instruction, another keyword parameter,
AL TSYS, must also be specified.

If high availability is important to the installation, a duplicate system residence volume
would be advisable. However, in order to use such a volume, writing on the system residence
volume would have to be prohibited except to the SYS I.LOGREC data set.

The system residence device specified during system generation can be changed at IPL time
by the operator. OPTIONS=COMM must be specified in the SUPRVSOR macro instruction
during system generation in order to be able to make this change.

For Nonstandard Labels: If the user desires DDR and has nonstandard magnetic tape labels,
O~TIONS=DDRNSL must be specified. A nonstandard label routine must be given the name

44 MVT Guide (Release 21.0)

NSLREPOS. This routine can either be added during system generation using the SVCLIB
macro instruction, or it can be linkage edited into SVCLIB after the system generation process
is completed.

For DDR When EXCP is Used: When the EXPC macro instruction is used to address magnetic
tape drives in a program that will run under a system with DDR, REPOS= Y or N must be
coded in the DCB macro instruction to indicate whether an accurate block count is being
maintained.

Graphic Programming Services

The graphic programming services handle graphic input and output and a set of
problem-oriented routines that are used as building blocks in the construction of graphic
processing programs. In addition, the graphic subroutine package (GSP) allows the FORTRAN
IV or PL/I F pro gammer to use the graphic programming services.

The problem oriented routines are generalized routines that generate graphic instruction for
displaying various images and alphameric information on the IBM 2250 Display Unit. These
routines function as part of the problem program and are reached by a CALL or LINK macro
instruction.

Indexed Sequential Access Method (ISAM)

The indexed sequential access method can be included in the new system so that tasks can use
the basic indexed sequential access method (BISAM) or the queued indexed sequential access
method (QISAM). If the user plans to use the SVC 2B (CIRB) in his programs, then BDAM,
ISAM, or BTAM must be specified. (The MACLIB macro instruction must also be specified if
CIRB is included.)

Job Step Timing

The operating system can time each job step and enforce limits on the time it may run. In
systems that include job step timing, the control program passes a parameter called "CPU
time" to the user accounting routine or to the SMF routines. CPU time represents the elapsed
time of step execution minus the unoverlapped wait time.

Subsequent runs of the same job may have different CPU times for the following reasons:

• The frequency with which the task gets interrupted.

• The amount of code executed for each interruption before a time limit inhibits the
interrupted task.

The varying execution times for the SVCs that the job issues.

In addition, the job step timing option includes the following: the data plus the time of day;
changing the time at midnight; and being able to request, check, and cancel intervals of time.
(See the description of "Timing Options" later in this section.)

Main Storage Hierarchy Support

Main storage hierarchy support provides selective access to either processor storage or IBM
2361 core storage.

Section II: MVT Options 45

SEC II

Main storage is divided into two blocks known as hierarchies; hierarchy 0 is assigned to
processor storage and heirarchy 1 to the 2361. Program controlled interrupt (PCI) must always
be specified. (See the description of "Program Controlled Interrupt (PCI)" later in this
section.)

For MVT systems, the hierarchy structures is maintained even though there may not be a
2316 Core Storage Unit on the system.

Program Controlled lnte"upt (PCl)

The program controlled interrupt (PCI) facility permits the program to cause an I/O interrupt
during execution of an 1/ 0 operation. PCI provides a means of altering the program of the
progress of chaining during an I/O operation. It also permits programmed dynamic
main-storage allocation.

A routine, PCI fetch is able to bring a program into main storage with only one seek of the
disk if:

• A buffer is always available for relocation dictionaries.
• No errors occur during the I/O operation.
• No cylinders are crossed while bringing in the program.
• The speed of the central processing unit allows PCI to modify the channel command word

before it reaches the channel.

An additional WAIT and seek are required each time a buffer is not available. A seek
required each time an error occurs or a cylinder is crossed. If the speed of the central
processing unit does not allow PCI to perform its function in time, the number of seeks
needed by the standard fetch are required.

Reenterable Load Modules Made Resident

Reenterable load modules from the SYSl.LINKLIB and SYSl.SVCLIB can be made resident.
MVT or M6SMP systems can have modules from either or both libraries made resident in the
link pack area.

There are standard lists that are used during IPL time to place the load modules from the
libraries into the fixed portion of main storage; IEAIGGOO for SYSl.LINKLIB and
IEARSVOO for SYS l.SVCLIB. If the user desires to create his own list, then the operator
communication option (OPTIONS=COMM) must be specified in the SUPRVSOR macro
instruction. This will cause the message (IEA101A) to print out "SPECIFY SYSTEM
PARAMETERS". Then the operator will provide the unique identification for the list. The
reenterable load modules pointed to by the list will be loaded into main storage at IPL time.

Remote Job Entry (RJE) Facility

The remote job entry (RJE) facility provides a method of entering jobs from remote work
stations into the job stream. Once the jobs have been entered execution proceeds under the
supervision of the operating system. Any output data sets created by a remotely submitted job
that the user wants returned are placed in a separate output class and then sent to the remote
user.

46 MVT Guide (Release 21.7)

1,,-

The RJE facility operates on a computer-based telecommunications system that has the
System/360 Operating System and requires the basic telecommunications access method
(BT AM) routines. RJE is specified at system generation time in order to have the necessary
modules included in the system.

After generation the user must create the specific RJE system required for his installation.
There are four macro instructions available for this job -- RJETERM, RJELINE, RJEUSER,
and RJET ABL. The user sets up a job that includes the RJE macro instruction necessary to
specify his system and may include user-written routines. The assembler translates these macro
instructions and creates the required modules. The linkage editor incorporates the modules into
the operating system. SYS I.MACLIB must be in the operating system so that the assembler
can expand the macro instructions. SYSl.TELCMLIB must be present in the operating system
also to hold some of the RJE load modules as well as the telecommunication subroutines.

Enough system write-to-operator (WTO) buffers must be specified in the WTOBFRS
parameter of the SCHEDULR macro instruction during system generation so that an RJE task
will not have to wait to display a message. If a wait occurs, a work station time-out could
result. A recommended value for the number of buffers is twice the number of
telecommunication lines in the system.

Rollout/Rollin Option

A job can temporiarily expand its specified region. A job step's region size can be based on a
minimum actual requirement, rather than a maximum.

When a job step needs more main storage, an attempt is made to obtain unassigned storage;
if none is available, another job step is rolled out -- that is, its entire region is transferred to
secondary storage -- and its storage is made available to the first job step. When released by
the first job step, the additional storage is again available as unassigned storage, if that was its
source, or to receive the rolled-out job step, which is transferred back into main storage
(rolled-in). Through job control you specify jobs eligible to be rolled out or to cause rollout.
Exits are provided at key decision points where installation-written routines can be added to
expand, redirect, or limit the feature's operation.

The data set SYS I.ROLLOUT must be cataloged in the new system before IPL.

The Shared Direct-Access Device Option

The Shared DASD option allows computing systems to share direct access storage devices.
Systems can share common data and consolidate data when necessary; no change to existing
records, data sets, or volumes is necessary to use the facility. However, reorganization of
volumes may be desirable to achieve better performance.

The following control units and devices are supported by the Shared DASD option:

1. IBM 2841 Storage Control Unit equipped with two-channel switch -- IBM 2311 Disk
Storage Drive, 2303 Drum Storage, and 2321 Data Cell.

2. IBM 2314 Direct Access Storage Facility equipped with the two-channel switch -- IBM
2314 disk Storage Module.

Section II: MVT Options 47

SEC II

3. IBM 2314 Direct Access Storage Facility combined with the IBM 2844 Auxilliary Storage
Control -- IBM Disk Storage Module. Device reservation and release are supported by this
combination with or without the presence of the two-channel switch. Two channels -one
from System A and one from System B -- may be connected to the combination. In
addition, the two-channel switch may be installed in either or both of the control units, thus
permitting as many as four systems to share the devices.

4. IBM 2820 Control Unit with two-channel switch -- IBM 2301 Drum Storage.

5. IBM 2835 Storage Control Unit with two-channel switch -- IBM 2305 Fixed Head Storage
Facility.

6. IBM 3830 Storage Control Unit with four-channel switch -- IBM 3330 Disk Storage Drive.

Alternate channels to a device from anyone system may only be specified for the IBM 2314
Direct Access Storage Facility, or the IBM 3330 Storage Unit.

The Shared DASD option requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. One of the following combinations
must be in effect for a volume of device:

System A

1. Permanently resident

2. Reserved

3. Removable

4. Offline

Systems A, B, C

Permanently resident

Reserved

Offline

Removable or reserved

If a volume/device is marked removable on anyone system, the device must be in offline
status on all other systems. The mount characteristic of a volume and/or device status may be
change on one system as long as the resulting combination is valid for other systems sharing
the device. No other combination of volume characteristics and device status is supported or
detected if present.

The RESERVE macro instruction is issued by a task to reserve a device for use by a
particular system. The RESERVE macro instruction protects the issuing task from interference
by other tasks in the system. Each task issuing the RESERVE macro instructions must also use
the DEQ macro instruction to release the device.

The RESERVE instructions for the same resource without an intervening DEQ will result in
an abnormal termination unless the second one specifies the keyword parameter RET =.
Termination routines in all operating system confiruartions will release devices reserved by a
terminating task.

Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 Auxilliary Control unit. The user must also observe certain restrictions about the data
sets that are shared. The following data sets cannot be shared:

SYS1.SVCLIB
SYS1.NUCLEUS
SYS1.LOGREC
SYS1.SYSVLOGX
SYS1.SYSVLOGY
SYS1.MANX
SYS1.DUMP

SYS 1.SYSJOBQE
PASSWORD data set
SYSCTLG (on system residence volume)
SYS1.ROLLOUT
SYS1.ACCT
SYS1.MANY

SYS 1.LINKLIB (can only be shared when the 2 systems are same type)

48 MVT Guide (Release 21.7)

Volume handling on the Shared DASD option must be clearly defined since operator actions
on the sharing system must be performed in parallel. You should make sure that following
rules are in effect when using the Shared DASD option:

1. Operators should initiate all shared volume mounting and dismounting operations. The
system will dynamically allocate devices unless they are in reserved or permanently resident
status and Only the former can be changed by the operator.

2. Mounting and dismounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be effected on all systems before a device may be dismounted.

3. Valid combinations of volume mount characteristics and device status for all sharing systems
must be maintained. To IPL a system, a valid combination must be established before
device allocation can proceed. This valid combination is established either by:

a. Specifying mount characteristics of shared devices in PRESRES.
b. Varying all sharable devices off line prior to issuing START commands and then

following parallel mount procedures described in the chapter "How to use the Shared
DASD Option" in the Operator's Guide.

I Section II: MVT Options 48.1

•

48.2 MVT Guide (Release 21.7)

Note: The Set-Must-Complete (SMC) parameter available with the ENQ macro instruction
may also be used with RESERVE.

Note: If a restart occurs when a RESERVE is in effect for devices, the system will not restore
the RESERVE; the user's program must.reissue the RESERVE.

System Management Facilities (SMF)

The System Management Facilities (SMF) are a group of routines that collect and record data
about how the system and the I/O devices were used by the jobs and the job steps. For the
M65MP systems these routines collect and record data about the use of CPUs, channels, and
storage, as well as I/O devices. The data that is collected by the SMF routines is put on one
or two data sets (SYS 1.MANX and SYS 1.MANY) -- one if magnetic tape is used, or two if
direct access devices are used. Six exits are provided so that the user can supply his own exit
routines to supplement the SMF option. The data collected by the user can be recorded on his
own or the SMF data sets.

In order to use SMF, the user must specify the ACCTRTN parameter in the SCHEDULR
macro instruction and the TIMER parameter in the SUPRVSOR macro instruction at system
generation time. A definition list (SMFDEFLT) should be placed in the parameter library
(SYSl.PARMLIB) before the first IPL. (This list can be put in either before or after system
generation.) The definitions in the list provide the factors that determine which functions SMF
will perform and whether any of the six exits (IEFUJV, IEFUJI, IEFUSI, IEFACTRT,
IEFUTL, IEFUSO) are going to be used. If the user has written one or more routines to
supplement SMF, they may be placed in SYSl.CI505 before system generation is started.

The SMF macro instruction (SMFWTM) and the SMF dump routine (IF ASMFDP). are
included automatically at system generation time as part of the SMF routines. The macro
instruction is used to write the user's data records onto the SMF from the SMF I/O buffer. The
dump routine should be used, if the data sets are on direct access devices, to dump the
contents to magnetic tape. A sample program (TESTEXIT) to test the SMF routines and any
user written routines is provided in the sample library (SYSl.SAMPLIB) of the starter
operating system.

Telecommunications Access Method (BTAM, QTAM, and TeAM Optional)

The telecommunications access method can be included in the newsystem in the new system so
that tasks can use the basic telecommunications access method (BT AM) or the queued
telecommunications access method (QTAM). BTAM may be used with any control program;
QTAM can be used with MVT or M65MP systems. If CIRB (SVC 2B) is desired in the new
system, BDAM, ISAM, or BTAM must be specified.

The Time Sharing Option (TSO)

The IBM System/360 Operating System Time Sharing Option (TSO) adds general purpose
time sharing to the facilities already available through the MVT configuration of the control
program. As a result, the system provides a number of new capabilities:

• It gives users access to the system through a command language which is entered at remote
terminals -- typewriter-like keyboard-printer or keyboard-screen devices connected through
telephone or other communication lines to the computer.

• It gives those who may not be programmers the use of data entry, editing, and retrieval
facilities.

Section II: MVT Options 49

• It makes the facilities of the operating system available to programmers at remote terminals
to develop, test, and execute programs conveniently, without the job turnaround delays
typical of batch processing. Both terminal-oriented and batch programs can be developed at
terminals.

• It allows the management of an installation to dynamically control the use of the system's
resources from a terminal.

• It creates a time-sharing environment for terminal-oriented applications. Some applications,
such as problem-solving languages, terminal-oriented compilers, and text-editing facilities,
are available as IBM Program Products. Installations can add others suited to their particular
needs.

As far as the user is concerned, the distinctive feature of a time-sharing system is the way
in which it "converses" or interacts on a step-by-step basis with him as he does his work. He
is prompted for information the system needs to execute his job, he receives responses to his
requests for action, and he is notified of errors the system detects, so that he can take
corrective action.

A major consideration in the design of TSO is ease of use. The way in which a user
communicates with the system is simplified to encourage people who may not be programmers
to take advantage of the speed and versatility of a computing system to solve their problems.
There are four ways in which TSO achieves this goal:

• The physical medium is familiar and easy to use.
• A terminal user defines his work in a language that is uncomplicated and natural to him.
• If a user does not know how to define his work to the system, he can typ'e HELP and

receive information pertinent to the type of operation he is trying to perform.
• The system keeps the terminal user aware of what is happening, so he knows what to do

next.

For the data processing center, TSO is compatible with operating system standard formats
and services, while providing the facilities needed for various time sharing and terminal-based
applications.

A time sharing system reduces delays in receiving results. A larger number of jobs share
resources of the system concurrently, and the execution of each is controlled primarily by a
remote terminal user. Thus time sharing can be defined as the shared, conversational, and
concurrent use of a computing system by a number of users at remote terminals.

The system resources shared by the time sharing jobs (foreground jobs) entered from the
terminal are also shared by batch jobs (background jobs) that are being processed at the same
time.

Because time sharing is carried out within the framework of MVT job and task
management, the foreground and background environments are compatible. TSO uses the same
data formats, programming conventions, and access methods as the rest of the operating
system. The programming languages and service programs available with TSO are compatible
with their background counterparts.

Certain facilities are unavailable to foreground jobs, although they remain available to
background jobs. These include:

• The basic telecommunications access method (BT AM).
• The graphic access method (GAM).
• The EXCP equivalents of the BTAM, QTAM, and GAM access methods.

50 MVT Guide (Release 21.0)

/'

• Main storage requests for hierarchy 1 (all foreground requests for main storage are allocated
in hierarchy 0).

• Use of job control language in the foreground for other than single-step jobs (the TSO
command language is used to provide the equivalent of multi-step jobs).

• Checkpoint/Restart facilities (foreground requests for checkpoint are ignored).
• Rollout/Rollin option.

The TSO command language is also generally compatible with the Conversational Remote
Job Entry (CRJE) command language. Programs can be developed in the foreground and
stored in background libraries. These programs are compatible with other operating system
programs. Most problem programs can be executed in either' the background or the foreground
without revision or recompilation.

TSO is not necessarily intended to be used as a dedicated time-sharing system, that is, a
system on which only time-sharing operations take place. TSO augments the facilities already
available with the operating system: batch processing, teleprocessing, and other data processing
activities can take place concurrently on the same system.

TSO is an extension of the MVT configuration of the control program on System/360
Models SO through 195, or System/370 Models 145, ISS, and 165. The minimum machine
configuration for System/360 models must include 384K of .main storage, the required I/O
devices for MVT, plus at least one each of the following:

• A terminal (IBM 1050,2260,2741, or AT & T Teletype (trademark of Teletype
Corporation, Skokie, Illinois) Model 33 or 35 KSR).

• A transmission control unit (IBM 2701, 2702, or 2703).

• Sufficient direct access storage space (IBM 2301, 2303, 2305, 2314, 2319, or 3330) for
swap data sets, command libraries, and system data sets.

In a System/360 with 384K of main storage, TSO is a "dedicated" time sharing system. In
other words, with 384K the system can run as a time sharing system or as a batch job
processing system, but not both at the same time. To run both time sharing and batch jobs
concurrently or to execut~ on System/370 models, at least 512K of main storage is required.
(At least 128K of main storage is required for system generation.)

The TSO control program, which is an extension of the MVT control program, consists of
many routines, each of which performs functions to support time-sharing operations. These
routines have been grouped, by function, into seven basic TSO control program components:

• Time Sharing Control Task (TSC).
• Terminal Input/Output Coordinator (TIOC).
• Region Control Task (RCT).
• Logon/Logoff Scheduler.
• Time Sharing Dispatcher.
• Time Sharing Driver (TSD).
• Time Sharing Interface Program (TSIP).

Detailed information on the concepts, features, and capabilities of TSO is provided in the
Time Sharing Option Guide; detailed information on the control program is provided in the Time
Sharing Option (TSO) Control Program PLM.

Section II: MVT Options 51

SEC II

The Time Slicing Facility

The user can establish a group of tasks (called the time-slice group) that share the use of the
CPU, each for the same, fixed interval of time. All member tasks are given an equal slice of
CPU time, and no task within the group can monopolize the CPU.

The time slicing option is included in the system to provide a method of controlling response
time of a task. However, since it is being implemented in a priority dispatcher, any task of a
higher priority than that of the time-slice group will be dispatched first, if it is ready. Time-slicing
applies only to the problem program priorities, 0-13. Priorities 14 and 15 are reserved for the
system and cannot be time sliced. Therefore, the response time of a time-slice task can be
affected by the processing of system tasks, such as readers, writers, master scheduler, etc.,
which will always run at a higher priority than the time-slice group. To guarentee response
time, the time-slice group should be defined in the high dispatching priority.

Time-slicing operates within the structure of the current dispather. A priority is assigned to
a group of tasks that are to be time sliced. The time slicing occurs among the tasks in the
group only when the priority level of the group is the highest priority level that has a ready
task. Each task in the group is dispatched for the specified time slice. The time slicing
continues until all tasks are waiting, or a task of higher priority than that of the group becomes
ready.

The dispatcher will recognize that a priority level being time sliced; it will determine which
task within the group is to be dispatched and then dispatch that task for the maximun time
interval. If the time slice task loses control prior to the expiration of its interval (because an
implicit or explicit wait is issued, or because a higher priority task becomes ready), the
remainder of the time is not saved. That is, when control returns to the time-slice group, the
next ready task in the group is given control, not the interrupted task.

The time slicing facility is especially useful in a graphics environment or in any application
of a conversational nature where concurrent tasks may involve conversation between the user
and the problem program through a terminal. Establishing a time-slice group within this
environment enables those tasks to be performed with a uniform response time.

The group of tasks to be time-sliced and the lenght of the time slice are specified by the
installation at system generation time. This can be modified at system initialization time with
the TMSL parameter in response to the system message "SPECIFY SYSTEM
PARAMETERS". The modifications are limited by the number of groups specified during
system generation. Any task in the system that is not defined within the time-slice group is
dispatched under the current priority structure; that is, the task is dispatched only when it is
the highest priority ready task on the TCB queue.

A single time-slice group can be defined by associating the time-slice group with job
dispatching priorities, either in the system generation statements or in an operator reply at IPL
time. However, if a step dispatching priority is stated in the EXEC statement of a step (the
DPRTY =entry) , then the value of that priority determines whether of not the step is a
member of the time-slice group.

Time slicing is invoked in the PRTY parameter of the JOB statement. New tasks can
become associated with the time-slice group by using the ATTACH or the CHAP macro
instructions. Tasks created with the ATTACH macro instruction have the same characteristics
for time-slicing as the tasks which created them. Tasks can be changed into or out of
time-slicing groups with the CHAP macro instruction.

Note: Where job priorities differ by 1, dispatching priorities differ by 16. Jobs changes by the
CHAP macro instruction from one priority time-slicing group to another group must have thier
dispatching priority changed by 16, and not 1. The publication Supervisor Services and Macro

52 MVT Guide (Release 21.0)

Instructions describes task priorites and the formulas used to derive the dispatching priority
from the job priority.

Timing Options

The INTERVAL Option

The JOBSTEP Option

INTERVAL and JOBSTEP Required

These options may be selected when an interval timer is included in the central processing unit. There
are two levels of interval timer support that may be specified:

• Internal Timing (INTERVAL) provides the ability to request, check, and cancel time
intervals with the STIMER and TTIMER macro instructions, plus the ability to change the
time at midnight. This level of support also includes the facilities provided by the TIME
macro instructions .

• Job Step Timing (JOBSTEP) provides the ability to time each job step and enforce the time
limits. This level of support also includes the facilities provided by the TIME, STIMER, and
TTIMER macro instruction. (See "Job Step Timing Option" in this section.)

If no timing options are specified, then just the time of day is available.

If SMF(System Management Facilities) is to be included, TIMER=JOBSTEP must be
specified in the SUPRVSOR macro instruction.

For MVT or M65MP systems INTERVAL or JOB STEP must be specified. The storage
required is included in the basic fixed requirement.

Trace Option

A tracing routine that aids in debugging and maintenance can be added to the system. The
tracing routine stores information pertaining to start I/O (SIO) instruction execution,
supervisor (SVC) interruptions, external interruptions, program check interruptions, and I/O
interruptions in the trace table. When the table has been completely filled, the next new entry
in the table will overlay the first entry, the next one overlays the second entry, etc.

During system generation, only the size of the table is specified. However, when this system
generation parameter is specified, the trace program routines are also included as part of the
control program.

Type 3 and 4 SVC Routines Made Resident

Modules of type 3 and 4 supervisor (SVC) routines can be made permanently resident in the
fixed area of storage.

Type 3 and 4 SVC modules are loaded and. made resident at IPL time. When this option is
specified, the t.ransient SVC table option must also be specified. The SVC table is a table
containing the relative track address of all transient SVCs. This table is also stored in the
resident portion of the control program.

The names and sizes of the type 3 and 4 SVC routine modules are given in the appendix of
Storage Estimates. (See also the preceding description "Transient SVC Table Made Resident".)

Section II: MVT Options 53

During a nucleus generation this option can be added or deleted from the options specified
during a complete system generation. But the transient SVC table option will have to be
specified the same way it was specified in the last complete generation.

User-Added SVC Routines

User-written supervisor (SVC) routines can be added to the control program.

All of the SVC routines, whether they are to be transient or resident, must be listed in the
operand of the SVCT ABLE system generation macro instruction.

Any resident SVC routines that are to be added must be specified in the system generation
RESMODS macro instruction. The fixed storage requirement is increased by the total of the
sizes of the routines that are going to be added plus the size of the control information.

Any transient SVC routines that are to be added must be specified in the SVCLIB system
generation macro instruction in the operand. In this case, only the size of the control
information is added to the fixed storage requirements.

Non-standard error routines can be one of the types of routines that are added. User-written
routines must have a value from 220 to 229. This value is the suffix of the name IGEOO by

which the error routine is contained in SYSl.SVCLIB ..

Volume Statistics Facility

The volume statistics facility is used only for magnetic tape volumes with or without labels and
provides two functions. Either one or both functions can be specified at system generation
time in the SCHEDULR macro instruction. One function is error statistics by volume (ESV)
and is intended primarily to be used with labeled volumes. It will handle unlabeled volumes if
the serial number is given to the operating system. Statistics about the number of read or write
errors and the system and unit on which it is located are recorded.

The other function is error volume analysis (EVA) and is intended primarily to be used for
unlabeled or non-standard labeled volumes. It monitors the number of read or write errors·
based on the limits the user provides at system generation time.

The error statistics by volume (ESV) routines collect a set of statistics for each labeled tape
volume during any interval that the volume is open. An unlabeled tape volume can be handled
if the serial number has been supplied to the operating system.

If ESV =SMF is specified at system generation time, the statisitcs are accummulated on the
system management facility (SMF) data sets, SYSl.MANX or SYSl.MANY. ACCTRTN=SMF
should be specified in the SCHEDULR macro instruction, but if it is not coded it is assumed. If
any subparameter for ACCTRTN other than SMF is specified, it is ignored and SMF is
assumed. The TIMER keyword parameter is also required in the SUPRVSOR macro
instruction. The IFHST ATR utility program is used to print the ESV records, record 21, from
an SMF data set that is on magnetic tape. If SYS I.MANX is on tape, no transfer is required. But
if the SMF data sets are on a direct access device, the user must dump them onto tape in
order to be able to extract the ESV records. The SMF dump program, IF ASMFDP, is used to
transfer the data from SYSl.MANX and SYSl.MANY to tape.

If ESV =CON is specified or if ESV is not coded, an abridged version of the statistics is
printed on the console. This occurs at end-of -volume or when the tape is closed.

54 MVT Guide (Release 21.0)

The user can provide his own recording routine. ESV=CON must be specified or the
keyword parameter can be omitted since the default is CON. The UCBs, in the proper format,
will be constructed at system generation time. He can provide his own method, using SVC 91,
specify his own record format, and select his own recording data set. If he uses the SMF
record 21 format instead of his own, he can use the IFHSTATR utility to print the statistics.

The error volume analysis (EVA) routines monitor the number of read and write errors for
unlabeled or non-standard labeled tape volumes. The user provides the maximum limits for
read errors and/or write errors and, if the maximum is reached or exceeded, a message,
IEA620I, is printed on the console.

Section II: MVT Options 55

•

Task Directory for Section II: MVT 'Options

For information about:

• Increasing system response, see
Additional Pairs of Transient Areas
BLDL Table Made Resident
Main Storage Hierarchy Support
Reenterable Load Modules Made Resident
The Time Slicing Facility
Type 3 and 4 SVC Routines Made Resident
User-Added SVC Routines

• Recovering from machine malfunctions, see
Alternate Path Retry
Channel-Check Handler
Checkpoint/Restart Facility
Direct Access Volume Serial Number Verification
Dynamic Device Reconfiguration
Volume Management Facilities

• Increasing user convenience, see
Consoles -- Alternate and Composite Console Option
Consoles -- Multiple Console Support
Conversational Remote Job Entry
Decimal Simulation Option
Graphic Program Services
Remote Job Entry (RJE) Facility
Rollout/Rollin Option
The Shared Direct-Access Device Option
The Time Sharing Option

• Checking system activities, ~ee
Job Step Timing
System Management Facilities (SMF)
Trace Option
Timing Options

• Using access methods, see
Indexed Sequential Access Method (ISAM)
Telecommunications Options

56 MVT Guide (Release 21.0)

\
\,

Section III: Planning For MVT

This section contains information that will help you optimize MVT performance; when
planning a new MVT configuration, be familiar with most of the section.

The sections on job classes, output classes, and priorities are planning aids; much of the
performance of an MVT configuration depends on how well users plan these.

MVT Requirements

The MVT configuration of the control program is designed for use with the IBM System/360
Models 40,50,65,75, 85, 91, 95, and 195, the System/370 Models 145, 155, 165, and 195,
or the Model 65 Multiprocessing System (M65MP).

Configuration Requirements

The minimum hardware configuration requirements are:

• 256K bytes of main storage (512K with Model 65 Multiprocessing).

• Two direct-access storage devices (not including 2302 Storage Unit).

• One IBM 1052 Printer-Keyboard, for Models 40, 50, 65, 75, 85, 91, or 195. On Models
50, 65, 75, 85, 91, and 195 a 2250 Display Unit Model 1, a 2250 Display Unit Model 3, or
a 2260 Display Station may be substituted for the 1052 Printer-Keyboard. The Model 85
may also have its own console, the IBM 5450.

• One IBM 3210 or 3215 Printer-Keyboard, for Model 145 or 155.

• One IBM 3066 System Console, for Model 165.

• One card reader or tape device.

• One card punch or tape device.

• One printer or tape device.

Storage Requirements

The Storage Estimates publication contains the actual figures needed to calculate the storage
requirements of the installation.

System Generation Requirements

Generating an MVT control program is the same process essentially as generating MFT; you
may use an existing MVT configuration as the generating system or the IBM-supplied starter
system. When you plan your system generation you should review carefully the section
"Preparation for System Generation" in the System Generation publication and the section
"Storage Requirements."

Section III: Planning for MVT 57

•

The CTRLPROG and SCHEDULR sysgen macro instructions are used at system generation
to specify an MVT control program. The following tables show the parameters that may be
specified with these macros.

CTRLPROG Macro Instruction

MACRO
INSTRUCTION

PARAMETER REQUIRED SPECIFIES

CTRLPROG TYPE Yes Names type of control program

MAXIO Yes Number of I/O operations that can be processed
at one time

QSPACE No Size of the system queue area in 2K blocks
(value of 10 is default)

ADDTRAN No Number of additional pairs of transient areas

OPTIONS No Rollout/ rollin

TMSLICE No Time slicing for all jobs at certain priority

or priorities

HIARCHY No Storage hierarchies for the system

OVERLAY No Asynchronous overlay supervisor (assumed for MVT)

FETCH No PCI fetch (assumed for MVT)

The following example shows how the CTRLPROG macro instruction might be used to specify
MVT.

CTRLPROG

MAXIO=30

TYPE=MVT,MAXIO=30,QSPACE=15,ADDTRAN=2,TMSLICE=(10,
SLC-512,7,SLC-256)

The maximum number of I/O operations that can be handled simultaneously is 30.

QSPACE=15
Fifteen 2K blocks are specified for the system area.

ADDTRAN=2
There will be a total of six transient areas: the original pair plus two more pairs.

TMSLICE=(10,SLC-512,7,SLC-256)
All tasks with a priority of 10 can have control of the CPU for a maximum of 512
milliseconds at a time; those with a priority of 7 can have control for 256 milliseconds at a
time.

The rollout/rollin function is not specified; the asynchronous overlay supervisor and PCI fetch
are assumed.

58 MVT Guide (Release 21.0)

SCHED ULR Macro Instruction

MACRO

INSTRUCTION

PARAMETER REQUIRED SPECIFIES

SCHEDULR TYPE

CONSOLE

ALTCONS

OPTIONS

STARTR

STARTW

ACCTRTN

VLMOUNT

TAVR

STARTI

WTOBFRS

REPLY

PROCRES

JOBQRES

JOBQFMT

JOBQLMT

JOBQTMT

JOBQWTP

WTLCLSS

WTLBFRS

INITQBF

MINPART

CONOPTS

ROUTCDE

OLDWTOR

HARDCPY

EVA

ESV

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Type of control program

Address of primary console

Address of alternate console

System log, and inclusion of remote job entry and

conversational remote job entry

Automatic START reader command after IPL

Automatic START writer command after IPL

User-supplied accounting routine or system

management facility

Automatic volume recognition

Standard density for magnetic tapes used with

automatic volume recognition

Automatic START initiator command after IPL

Number of buffers to be used by WTO routines

Number of reply queue elements to be used by WTOR

routines

Address of the device on which SYS 1.PROCLIB resides

Address of the device on which SYS l.SYSJOBQE

resides

Size of each logical track for SYS 1.SYSJOBQE

Number of 176-byte records in SYS 1.SYSJOBQE to be

reserved for each initiator started

Number of 176-byte records in SYS1.SYSJOBQE to be

reserved for the termination of jobs that require more

records for initiator than specified in JOBQLMT

Number of records in SYS l.SYSJOBQE to be reserved

for Write-to-Programmer messages for a job

Default classname for SYSOUT for Write-to-Iog

messages.

Size of buffer area used as temporary storage for

WTL messages

Size of initiator queue buffer

Minimum region size to initiate a job

Multiple console support

Routing codes master console is authorized to

receive

Routine codes for WTO and WTOR messages with no

routing codes assigned
Hard copy log

Use of and threshold values for error volume

analysis facility

Destination of volume error statistics records

SCHEDULR TYPE=MVT,CONSOLE=01A,ALTCONS=(I-OOC,O-OOD),STARTR=A-OOE,
STARTW=A,OOF,WTOBFRS=75"REPLY=75,STARTI=AUTO,
WTLBFRS=20,JOBQFMT=20,JOBQLMT=80,JOBQTMT=80,
INITQBF=15,MINPART=67

Section III: Planning for MVT 59

-"WI

SEC III

The following example illustrates the use of the SCHEDULR macro instruction to specify the
MVT job scheduler.

CONSOLE=OlA
Specifies that the address of the primary console is 01A.

ALTCONS= (I-OOC,O-OOD)
A composite console is used as the alternate console; its input address is OOC and its output
address is OOD.

STARTR=A-OOE
The START READER command will be executed automatically after IPL on the device at
address OOE.

STARTW=A-OOF
The START WRITER command will be executed automatically after IPL on the device at
address OOF.

WTOBFRS=75
The maximum number of buffers used by the WTO routines is 75.

REPLY = 75
The maximum number of reply queue elements used by the WTOR routines is 75.

STARTI = AUTO
The START INITIATOR command will be issued automatically after IPL.

WTLBFRS=20
The maximum number of buffers for the WTL messages is 20.

JOBQFMT=20
There will be 20 176-byte records for each logical track in the job queue.

JOBQLMT=80
Eighty 176-byte records will be reserved for each initiator started.

JOBQTMT=80
Eighty 176-byte records will be reserved for the termination of jobs that require more than
80 records for initiation.

INITQBF=15
The initiator will use a 15K area to keep the most frequently used job queue records in its
main storage. (The MINPART specification that follows must include provision for this
area.)

MINPART=67
Sixty-seven 1024-byte blocks are required to process a job (15K is for the job queue
buffers and 52K is for the initiator itself).

The classname for WTL messages is L (the default). SYSl.SYSJOBQE and SYSl.PROCLIB
are located on the system residence device (default).

60 MVT Guide (Release 21.7)

\
'-

Planning Aids

A key to optimizing performance in MVT is avoiding wasteful contention for resources; jobs
that require the same resources (main storage, I/O devices, data sets) should not be run
concurrently, or one job will wait in main storage without executing until the other job frees
the required resource.

Job Classes

In MVT you can control not only the priority of jobs but the actual mix of jobs in the
computer; this is done by assigning jobs to job classes. You specify the job class on the JOB
statement (CLASS=jobclass), and when an initiator that can handle that particular class is
started, the jobs will be processed in priority order.

There are no absolute rules for assigning job classes and some experimentation is necessary. Generally,
jobs of similar characteristics should be assigned to the same class; for example, if you have
several jobs that require large blocks of storage, you would not want to tie up all of main
storage by having these jobs running concurrently. You might assign them all to class B (or C
or D -- whatever you choose -- class names have no inherent meaning); then if you start only
one initiator that can handle class B jobs, you will never have more than one of these large
jobs in main storage at once. This way you may leave sections of storage free to process other
jobs; for example, at the same time you might have a small, short-running job and an I/O
bound job in main storage. You might assign jobs that require less than one minute to class C;
jobs with high I/O might be assigned to class D.

Class B = jobs with large main storage requirements.

Class C = jobs of less than one minute running time.

Class D = jobs with high I/O requirements.

With these assignments the operator might issue these commands:

START INIT",BCD

START INIT",CDB

START INIT",DCB

If the three initiators are processing jobs with the same priority and all necessary resources
(I/O devices, data sets, etc.) are available, then three jobs, one from each of the three
different classes, would run concurrently. If a job from one of the classes has higher priority
than the others, it will be initiated first, assuming all necessary resources are available.

When the operator starts an initiator, he indicates what class or classes it can handle
(START INIT",A); an initiator can handle up to eight job classes, and as many as fifteen
initiators can be running at once (this means that you can have a maximum of 15
user-program regions operating concurrently in addition to system tasks). You might have
initiators dedicated to I/O bound jobs, CPU jobs, long running jobs, etc. You may wish to
simplify the operator's job by having mnemonically named catalog procedures for these
initiators as explained in Section IV.

Section III: Planning for MVT 61

SEC III

If your system uses automatic volume recognition (AVR), you can improve efficiency by
assigning jobs that require non-resident volumes to the same class. With A VR, if volumes
required by a job are not mounted at allocation time (and the DEFER subparameter is not
specified), no other jobs can be initiated until the required volumes are mounted by the
operator. Thus, if you assign jobs that will require non-resident volumes to the same class, only
one initiator will be issuing mount messages and it will be easier for operators to anticipate
which volumes to mount. Also, you can effect performance improvements by assigning these
jobs the same priority (see the topic "Job Priorities"). If they run at the same priority, they
will probably be initiated on a first-in-first-out basis, and the operator can anticipate which
volumes to mount next.

The job class is specified as a parameter on the JOB statement. Its format is:

//jobname JOB CLASS=jobclass

Jobclass may be any single letter from A-a. If no job class is specified, the default will be
class A. (You can ignore job class altogether by not using the CLASS parameter, and all jobs
will run as class A jobs.)

Always try to have an initiator running that can handle all job classes in the system. If a job
is submitted and there is no initiator running for the job class, it will remain in the input
queues indefinitely or until the operator checks the input queues and discovers the job (by
means of the "DISPLAY N" command).

Job Priority

While job classes control which jobs are to be initiated, job priorities control the order of the
jobs in each class. Priorities can range from 0-13 (13 being highest). You assign the priority as
a parameter on the JOB statement as follows:

//jobname JOB PRTY=priority

where priority can be any decimal integer from 0-13. If no priority is specified, the default
priority is assumed; you set the default priority in your reader catalog procedure (see the topic
"Reader Procedures" in Section IV). There are no absolute rules for assigning job priorities;
this will depend on the job mixes that you run and which jobs require fastest turnaround.

The actual value used by the supervisor to determine which task receives control of the
CPU next is dispatching priority. It may be calculated from the job priority stated on the JOB
statement, or you may state dispatching priority explicitly on the EXEC statement using the
DPRTY parameter. (See the Job Control Language Reference publication for details on how to
use this parameter.) Dispatching priorities should be assigned with the assumption that tasks of
higher priority will be given control when competing with tasks of lower priority. Tasks with a
large number of input/output operations should be assigned higher dispatching priorities than
tasks with little input/output since the higher priority I/O tasks will be in a wait state more
often and during those times lower priority tasks can have control of the CPU. Also, if a
subtask (a task attached by another task) must complete before the originating task can
complete, the subtask should be assigned a priority which will eliminate as nearly as possible a
long wait time for the originating task.

62 MVT Guide (Release 21.0)

SYSOUT Classes

Output from problem programs is assigned to an output class which will be processed by
output writers. You may use a maximum of 36 SYSOUT classes named with single letters
(A-Z) or digits (0-9) for output class names. The names have no inherent meaning but are
simply used to group output of similar characteristics. Writers are assigned to process only
certain classes of output; you may assign these classes in your output writer cataloged
procedure, or the operator may assign them as parameters in the START command. (See the
section "Writer Procedures" for information on controlling the characteristics of output
writers.)

Careful planning of output classes can improve throughput at an installation. By assigning
jobs to carefully planned output classes and making sure that operators know which writers to
run at all times, you can make sure that all output devices are used constantly and that there is
no wasteful contention for these devices. It is essential that if output is assigned to a class for
which no writer is started, it will remain indefinitely in the output queue occupying direct
access space that might be needed by another program.

In planning your SYSOUT classes you should consider the following:

1. A special output class might be reserved for very high priority jobs. For instance, only jobs
requiring turnaround time of less than an hour might be assigned a class of A.

2. If your system has a universal character set printer that will be used as an output device,
you might assign a separate output class to each character set image stored in the system
library. This will minimize the changing of printer chains and trains.

3. If your system has a printer with a forms control buffer (FCB), you might assign a separate
output class to each FCB image. This will minimize the changing of printer forms.

4. Although a writer may handle as many as eight different output classes, it can only write
output on one device. For example:

START WTR,OOE"ABCDEF

The writer started would handle six different classes, but all these classes would be written
on the printer at the specified address OOE. If one of the classes is to be written on tape, it
could not be handled by this writer. Direct system output can handle only one output class
per device.

5. The standard IBM-supplied writer can write output to the following: 1403, 1442, 1443,
2400, 2400-1, 2400-2, 2400-3, 2400-4, 2520, 2540, 3211, 3400-2, 3400-3, or 3400-4.

You specify the output class as a parameter on the DD statement defining your output data
set; its format is SYSOUT=x where x is any single letter (A-Z) or digit (0-9); however, you
should avoid using the digits whenever possible as they are reserved for future system use.

System messages that are generated during the execution of a program must also be routed
to all' output device; since you will want messages to appear with their program output, you
should assign messages to the same message class as the output.

Section III: Planning for MVT 63

I

• I

The message class is assigned as a parameter of the job statement; its format is

MSGCLASS=x

where x is any single letter (A-Z) or digit (0-9).

If no message class is specified, the default class specified in the RDR procedure is used.

System Output Writers

A writer may handle as many as eight different output classes and will process the classes on a
priority basis, always first handling the highest priority job of the first job class named in
either the START command or in the cataloged procedure. The following commands might be
used to start output writers:

START WTR",A
ST ART WTR",B
ST ART WTR",ABC

In this case you would be starting three writers. The first writer would handle only job class A,
the second only job class B, and the third would handle job classes A, B, or C. The third
writer will always select an output class A job if one is available and if not, a class B job, and
if neither A nor B is available, then a class C job. After a writer selects a job class for
processing, if there are jobs ready for writing in that particular class, it writes them in priority
order. After writing of a particular job output begins, no other work can be processed by the
writer until that output is finished. If no output is ready for writing, the writer will remain in
storage until it is stopped by a command from the operator, or until output is available for
processing. Detailed format requirements for the START command are given in the Operator's
Reference publication.

Following are some examples of output classes:

Class Destination

B Printer 1 (online)

C Printer 2 (online)

D Printer 3 (offline)

E,F,G Tape

Writer Name

WTB

WTC

WTD

WTEFG

In the preceding example, four writers are used: WTB will write class B output on a printer,
WTC will write class C output on a printer, WTD will write class D output on tape (for
eventual offline printing), and WTEFG will write classes E, F, or G output on tape. One or all
of these writers might be operating concurrently in the system depending on what jobs are
being processed and what I/O devices are available. If there is no work for a writer, one
should not be started, since it will occupy space that another program might use.

Direct System Output Writers

Direct system output writers write problem program and system messages, produced by the
initiator, directly to system output devices. Valid output devices are: printer, punch, and
magnetic tape.

64 MVT Guide (Release 21.0)

Direct system output writers are started by the operator. Selection of the various direct
system output writers is made when the initiator first selects a job from the input queue. The
selected writers for the job remain in effect for the duration of that job. They are used
whenever a job step has a SYSOUT class equal to the OUTCLASS assigned to a selected
direct system output writer. SYSOUT classes not qualifying for direct system output (DSO)
will be spooled in the normal fashion.

When the problem program writes its output, the output will go directly to the output device
assigned to the direct system output writer. System output writers can handle as many as eight
different job classes; each of the job classes must be specified in the START command. For
example, if the operator enters the command,

ST ART DSO,283,,(JOBCLASS=ABC,OUTCLASS=B)

any job running with a jobclass of A, B, or C and an output class of B will have its ouput
written directly to tape device 283, if the device was selected for the job.

The job class and output class of a direct system output writer can be changed with the
MODIFY command. For example, if the operator enters the command,

MODIFY 283,JOBCLASS=DE,OUTCLASS=A

any direct system output writer writing to output device 283 will process jobs with a jobclass
of D or E, and an output class of A.

Direct system output writers can be stopped by a STOP command. A STOP or MODIFY
command for DSO will be queued, and will gain control when the respective device is available
for selection. When the command gains control, all initiators are blocked from DSO selection,
and will wait until the completed processing of that request.

A user-supplied DSO procedure may be used, but it must execute the IBM-supplied direct
system output writer.

Region Size

You may specify through a job control language parameter the region size to be used by a job
or job step. By providing careful guidelines to programmers for specifying region size, you can
increase the number of jobs running in your system at one time (this, of course, requires that
you have planned the job classes and initiators to run these jobs). You specify the region size
to be used by a job (and all the job steps within that job) by using the REGION parameter on
the JOB statement. If you use the REGION parameter on the EXECUTE statement, the size
that you specify will be used only by the job step. If you specify a region size on both the
JOB statement and the EXECUTE statement, the JOB statement size will override the
EXECUTE specification. If you omit the REGION parameter from both, then the default
value specified in the input reader cataloged procedure (see the section "Readers") will be
used.

You specify the region size thus:

REGION=nnnnnK

nnnnn is the number of l024-byte areas to be allocated to the job or job step.

In choosing region sizes for jobs, you should be careful not to make regions wastefully
large; a region is allocated for the duration of a job or job step, and if there is unused storage
within the region, it cannot be used by another job until termination. The "Dynamic Storage
Requirements" section contains information on estimating region size.

Section III: Planning for MVT 65

•

The smallest region that you use in MVT is 52K, the minimum initiator region size. If you
include the terminator modules of the initiator in your link pack area, however, these modules
will only require work area within problem program regions. To improve system performance
and reduce the dynamic storage required by the initiator, it is also recommended that you place
the device name table and device mask table in the link pack area. You may then specify
regions as small as 12K.

Inadequate region size specification for your job or job step results in an abnormal
termination.

The Job Control Language Reference publication contains further detail about the use of the
REGION parameter. .

Additional Transient Areas

There is one pair of transient areas embedded in the nucleus. These areas are used for
nonresident SVC routines as they are needed; they are loaded into the transient areas, used by
the tasks that require them, and left in main storage until the transient area they occupy is
needed for other nonresident routines. They can be overlaid if the transient area they occupy
is needed for non-resident SVC routines called by a higher priority task. If a task calls a
non-resident SVC routine and no transient area is available or none can be made available, the
task is put in a wait state until an area is available.

You can increase the number of pairs of transient areas in the nucleus (each pair occupies
2,990 bytes) at system generation time if you need to reduce access time on direct access
devices. The transient areas, in effect, extend the link pack area but give added flexibility,
since routines are moved in and out of transient areas as necessary.

Additional transient areas are recommended for systems that make extensive use of facilities
provided by nonresident (type 3 and 4) SVC routines. For example, the multiple-line WTO
facility, which consists of nonresident SVCs used by the system to write status displays to the
operator, requires adequate transient area support to ensure prompt response to operator
requests.

A voiding Main Storage Fragmentation

The order in which operators start readers, writers, and initiators often affects the amount of
main storage available. Tasks are assigned main storage beginning at the high end of the
dynamic area and each task receives the highest available contiguous block of storage. If a
contiguous block of storage is not available and none can be made available for a task , then
the task must wait. Therefore, it is important that main storage not be broken into many small
fragments of space too small for any task.

Long-running jobs should be started first so that they occupy the high end of storage;
otherwise they might occupy large blocks of middle storage with small blocks of unused space
existing at the high and low ends of storage.

Generally writers, which are long running tasks, should be started before readers and
initiators, which run intermittently. If you are running graphics or telecommunications
applications, however, these jobs should be started first since they are likely to be
long-running, continuous jobs.

66 MVT Guide (Release 21.7)

Placing System Libraries on Direct Access Devices

Several factors must be considered when putting system libraries (SVCLIB, MACLIB,
LINKLIB, PROCLIB, PARMLIB, and SYSJOBQE) on direct access storage devices. If you
put all six libraries on the same device, throughput will be decreased because of excessive arm
interference. You should balance libraries on devices and balance devices on channels. Ideally,
each library would be on a different device and each device on a different channel. In
installations with smaller systems, you should put SYSJOBQE and LINKLIB on the same
direct access device on channel 1, and SVCLIB, PROCLIB, PARMLIB, and MACLIB on
another device on channel 2.

When you put more than one library on a 2311, 2314, 2319, or 3330 direct access device,
you can reduce arm movement by placing the volume table of contents (VTOC) approximately
midway between the first and last cylinder being used. The libraries, starting with the most
frequently referenced, can then be alternately placed on both sides of the VTOC with the least
frequently referenced libraries furthest from the VTOC.

System Restart

When it is necessary to shut down the system (end-of-shift, end-of-day, normal maintenance,
or system malfunction), system restart allows the system to resume operation without your
having to reenter jobs that have been enqueued. Information concerning jobs on the input,
hold, and output queues, and jobs in interpretation, initiation, execution, or termination is
preserved for use when the system is reloaded. When the system is restarted, the operator
receives messages describing the status of each job in the system. If a job was being
interpreted, its jobname is written out at the console. If a job was under control of an initiator,
its jobname and stepname are given. In addition, the operator is informed of whether
allocation was being performed for the job or whether the job was being executed or
terminated.

When the system must be restarted, jobs that were being interpreted are run out and must
be reentered in the input stream. All jobs that were enqueued on their appropriate job class,
hold, or output class queues, remain there for subsequent processing when the system is
restarted. No operator action is required.

Jobs that were de queued from an input queue may under some circumstances be
successfully completed; otherwise, the partial output of the job is routed to the output queue.
The circumstances under which the job may be completed are:

• If the entire job (not job step) was being terminated, system restart completes the
termination.

• Any job that was in step termination at the time of restart will be executed starting at the
next step of the job after system restart is complete.

• Any job which can be restarted will be restarted (after completion of system restart) at the
current step if the following conditions are met:

a. The step had completed the allocation phase.
b. The system restart abnormal termination code of FF3 is designated as a restartable code.
c. The step is designated as restartable by the programmer.
d. The operator replies yes to the verification request to restart the job.

Output jobs that were being processed by an output writer are reenqueued for reprocessing of
data sets which had not been written completely at the time the system was shut down. No

Section III: Planning for MVT 67

operator action is required. All system messages and data sets that had not been processed are
written by the first eligible output writer started.

Information on restarting the system is given in the Operator's Procedures publication.

68 MVT Guide (Release 21.0)

\

"-

Task Directory for Section III: Planning For MVT

For information about:

• Requirements for using MVT, see
MVT Requirements
Configuration Requirements

• Requirements for generating an MVT system, see
CTRLPROG Macro Instruction
SCHEDULR Macro Instruction

• Using output writers, see
SYSOUT Classes
System Output Writers
Direct System Ouptut Writers

• Using job classes and priorities, see
Job Classes
Job Priorities

• Using main storage, see
Storage Requirements
Region Size
Additional Transient Areas
Avoiding Main Storage Fragmentation

• Using direct access storage devices, see
Configuration Requirements
Placing System Libraries on Direct Acess Storage Devices

Section III: Planning for MVT 69

SEC III

70 MVT Guide (Release 21.0)

Section IV: Modifying the System

This section describes how the user can modify an MVT system to suit the needs of his
installation. The topics covered in this section are:

• Standard IBM cataloged procedures
• Using the link pack area
• Job queue format
• Output separation
• Writing system output writer routines
• Adding SVC routines to the control program
• Message routing exit routines
• Handling accounting routines
• Writing rollout/rollin installation appendages
• The must complete function
• The PRESRES volume characteristic list

Standard mM Cataloged Procedures

After you plan your job classes and output classes and have some idea of what job mixes you
will try to run concurrently, you can plan your catalog procedures for readers, writers, and
initiators. You can simplify the operator's job and save time by having several procedures for
each of these and naming them so that operators, can tell what they do by their names. For
instance, a reader that reads from tape with a blocking size of 3200 could be named RT32. An
output writer that writes class A output to a printer could be WT A. An initiator cataloged
procedure that processes class A FORTRAN jobs might be IFRTA. By thus naming
procedures, when one of the system tasks stops or is waiting for work, the operator will know
what task is involved by its name.

Generally, in your cataloged procedure you should be as specific as possible in providing
parameters so the operator need only type the ST ART command and the name of the
procedure. If you wish to change parameters (for instance the blocksize in a reader procedure),
you should use symbolic parameters. The operator can type in the changed parameter, and it
will override the one in the procedure. The START command can also start problem programs,
but SMF (System Management Facilities) will not be recorded, nor will Checkpoint/Restart be
done for these jobs.

In choosing blocking factors for your readers and writers, you should refer to the topic
"SYSIN and SYSOUT Data Blocking" to see what blocksizes are acceptable to certain
processors and utilities. Where several blocksizes are available, you should let the amount of
storage available determine the blocksize. In general, larger blocksizes mean more efficient
processing; however, as blocksize increases, available storage for other jobs decreases, and the
job mixes that you want may become a controlling factor. Region size specifications for jobs
must reflect increases in blocksize.

Reader Procedures

IBM supplies three cataloged procedures for readers. You can use these procedures, modify
them by overriding parameters, or you can write your own procedures. A cataloged procedure
for readers requires four job control statements:

Section IV: Modifying the System 71

-SEC IV
--.,.,..,.,.. 0, , ~,~ r.. ~ __

• An EXEC statement where the stepname IEFPROC specifies the reader.

• A DD statement named IEFRDER to provide the reader with a description of the input
stream.

• A DD statement named IEFPDSI to describe the procedure library.

• A DD statement IEFDAT A to define the spooling, or concurrent peripheral operation
(CPO), data set that is used for intermediate storage of input stream data. (The attributes
of the spooling data set must not be changed for a checkpoint restart if the data set was
open and not completely read. The extents and number of extents do not have to remain
the same.)

The three readers provided by IBM are essentially the same except for different blocking
factors. They are shown in the following examples.

, ,

The standard reader procedure supplied by IBM is named RDR. It specifies a block size of 80
bytes for the concurrent peripheral operation data set.

IIIEFPROC
II
IIIEFRDER
II
II
II
IIIEFPDSI
IIIEFDATA
II
II
II

EXEC

DD

DD
DD

PGM=IEFIRC,REGION=48K,
PARM='80103005001024905010SYSDAbbbE00001A'
UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,
DISP=OLD,
DCB=(BLKSIZE=80,BUFL=80,
BUFNO=1,RECFM=F)
DSNAME=SYS1.PROCLIB,DISP=SHR
UNIT=SYSDA,
SPACE=(80,(500,500),RLSE,CONTIG),
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=2,RECFM=F,DSORG=RD)

X

X
X
X

X
X
X

The two other cataloged procedures for readers supplied by IBM provide blocking for spooling,
or concurrent peripheral operation, data sets of 400 (RDR400) and 3200 (RDR3200).

IIIEFPROC
II
IIIEFRDER
II
II
II
IIIEFPDSI
IIIEFDATA
II
II
II

IIIEFPROC
II
IIIEFRDER
II
II
II
IIIEFPDSI
IIIEFDATA
II
II
II

EXEC

DD

DD
DD

EXEC

DD

DD
DD

PGM=IEFIRC,REGION=50K,
PARM='80103005001024905010SYSDAbbbE00001A'
UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,
DISP=OLD,
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=1,RECFM=F)
DSNAME=SYS1.PROCLIB,DISP=SHR
UNIT=SYSDA,
SPACE=(80,(500,100),RLSE,CONTIG),
DCB=(BLKSIZE=400,LRECL=80,BUFL=400,
BUFNO=2,RECFM=FB,DSORG=PS)

PGM=IEFIRC,REGION=52K,
PARM='80103005001024905010SYSDAbbbE00001A'
UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,
DISP=OLD,
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=1,RECFM=F)
DSNAME=SYS1.PROCLIB,DISP=SHR
UNIT=SYSDA,
SPACE=(80,(500,12),RLSE,CONTIG),
DCB=(BLKSIZE=3200,LRECL=80,BUFL=3200,
BUFNO=1,RECFM=FB,DSORG=PS)

To create your own reader procedure, you can use the IBM-supplied procedures as
examples. The statement requirements are explained in the following paragraphs.

72 MVT Guide (Release 21.0)

X

X
X
X

X
X
X

X

X
X
X

X
X
X

The EXEC Statement

The EXEC statement specifies the reader and its region size. It also passes a set of parameters
to the reader. Its format is:

//IEFPROC EXEC PGM=IEFIRC, REGION=nnnnnK,
PARM='bpptttooommmiiicccrlssssssssaaaaefh'

X

The step name must be IEFPROC as shown. The parameter requirements are

PGM=IEFIRC
specifies the reader. Its name is IEFIR C.

REGION =nnnnnK
specifies the region size for the reader. The value nnnnn represents a number from one to
five digits that is multiplied by K (1024 bytes) to designate the region size. The region
requirement depends on the size of the buffers and the reader modules (if any) in the link
pack area. An insufficient size specification will result in an abnormal termination. If you
have a blocked procedure library, the region size will have to be increased by the block size
rounded off to the next highest multiple of 2K. This allows for the increase in buffer size. If
double buffering is used, the region size must be increased by twice the block size, rounded
to the next highest multiple of 2K.

PARM= 'bpptttooommmiiicccrlssssssssaaaaefh '

b

is a set of parameters for the reader. This parameter field must consist of 35 characters.
Their meanings are:

any character from 0 through 9 or A through F that indicates whether the job step can be
rolled out (see the section "Rollout/Rollin") by another job step, whether it can cause
rollout of another job step, whether an account number is required, and whether a
programmer name is required. The following chart shows the meaning of each possible
character.

Section IV: Modifying the System 73

SEC IV

Can Step Can Step Accn' Pgmr Name

Character Be RoUed Cause RoUout? Info Required

Out Required?

0 no no no no
1 no no no yes
2 no no yes no
3 no no yes yes
4 no yes no no
5 no yes no yes
6 no yes yes no
7 no yes yes yes
8 yes no no no
9 yes no no yes
A yes no yes no
B yes no yes yes
C yes yes no no
D yes yes no yes
E

F

pp

ttt

yes yes yes no
yes yes yes yes

two numeric characters from 00 to 14 indicating the default priority for jobs read from
this input stream. Priority 14 should be avoided because it is used by the system to
expedite the processing of certain jobs. When no priority is specified in the JOB
statement, this default priority is assigned to the job.

three numeric characters indicating the default for the maximum time (in minutes) that
each job step may run.

000

three numeric characters indicating the default for the primary number. of tracks assigned
for SYSOUT data sets. This primary allocation should meet most of your needs, so that
secondary allocation will not usually be needed.

mmm

iii

three numeric characters indicating the default for the secondary number of tracks
assigned for SYSOUT data sets.

three numeric characters under 255 indicating the dispatching priority of this reader while
it is processing J CL statements.

ccc
three numeric characters indicating the default for the region size (specified as a number
of 1024 byte blocks) assigned to job steps read from this input stream.

74 MVT Guide (Release 21.0)

(

'"
r

a numeric character from 0 to 3 that specifies the disposition of commands read from the
input stream. The reader, if r is:

o - passes the command to the command scheduling routine to be executed.

1 - displays the command (via a WTO macro instruction), and passes it to the
command scheduling routine to be executed.

2 - displays the command (via a WTO macro instruction), asks the operator whether
the command should be executed (via a WTOR macro instruction), and passes the
command to the command scheduling routine if the operator replies yes.

3 - ignores the command (treated as a no operation).

The WTO and WTOR macro instructions issued by the reader are sent to the primary
console in systems without the multiple console support option and to the MCS master console
in systems with the MCS option.

a numeric character 0 or 1 which specifies the bypass label processing option. 0 signifies
that the bypass label processing parameter in the label field of a DD statement is to be
ignored. The label parameter is processed as no label. 1 signifies that the bypass label
processing is not to be ignored. The label parameter is processed as it appears.

ssssssss
eight alphameric characters specifying the default de~ice for SYSOUT. This becomes the
UNIT subparameter in the DD statement defining SYSOUT (if the UNIT field is omitted
from the DD statement). If the designation is fewer than eight characters, the ssssssss
field must be padded to the right with blanks.

This default device can be specified by its address, group, or type. However, the
UNIT=type form may cause all units of that type to be used for system output, since the
device allocation program spreads the data sets among all candidate devices. To reserve
some devices for private volumes, you should define a UNIT group which is a subset of
the available direct access devices. You may specify the name SYSOUT as the default
unit name for the system output data sets if it was specified at system generation; when
this default is used, a unit count of 1 is implied. (UNITNAME SYSOUT is fully
explained in the System Generation pUblication.)

aaaa
four hexadecimal numbers from 0000 to EOOO indicating which operator command
groups are to be executed if read from this input stream. This parameter is valid only for
systems with the multiple console support option. In MVT systems without the mUltiple
console support option, this parameter is set to 'EOOO' permitting all commands except
HALT, MODE, and SW AP to be entered into the input stream. In systems with the
multiple console support option four blanks default to 'EOOO'.

The following table shows the operator commands that are affected by the aaaa parameter
with MCS. The commands are grouped by function. If the command is in a group authorized
by the aaaa parameter, it is processed. If the command is not authorized by the aaaa
parameter, it is ignored and an error message is sent to the master console.

Note: Informational commands (Group 0) are always valid when entered into the input
stream.

Section IV: Modifying the System 75

Bit settings for the aaaa parameter are
Bit

Byte Bits Settings Meaning

0 0 1 Group 1 commands executed

(aa) 1 Group 2 command executed

2 1 Group 3 commands executed

3-7 00000 Reserved

(aa) 0-7 00000000 Reserved

Example: If you wish to authorize commands from command groups 2 and 3 to be executed
when entered into the input stream, code the aaaa parameter: "6000"

ef

Command

Group Function Commands

0 Informational BRDCST LOG REPLY

DISPLAY MSG SHOW

System Control CANCEL MODIFY SET

CENOUT QUIESCE START
HALT RELEASE STOP

HOLD RESET USERID

MODE WRITELOG

2 I/O Control MOUNT UNLOAD VARY *
SWAP

3 Console Control VARY *
1,2,3 Master Console All commands are valid, plus

VARY MSTCONS

VARY HARDCPY

VARY CPU

VARY STOR

VARY CH

Note: VARY (Group 2) is accepted only to VARY a non-console
device online or offline. VARY (Group 3) provides only for console switching and
console reconfiguration or secondary consoles.

MSGLEVEL value in absence of a value in the JOB statement. If there is no
MSGLEVEL= parameter in the JOB statement, job control statements and
allocation/termination messages are recorded in the system output data set according to
the value of the ef parameter. The values and their effects are

e

f

Kinds of job control statements recorded.

o - JOB statement only.
1 - Input statements, cataloged procedure statements, and symbolic parameter

substitution values.
2 - Input statements only.

A blank defaults to a value of O.

Kinds of allocation/termination messages recorded.

76 MVT Guide (Release 21.0)

h

o - None, except in the case of an abnormal termination. (In that event, all
messages are recorded.)

1 - All.

A blank defaults to a value of 1.

MSGCLASS Default Value (A-Z, 0-9). If there is no MSGCLASS keyword parameter in
the JOB statement, job control statements and allocation/termination messages are
recorded according to the message class specified by this character. If the character is
blank or absent, A is the default class.

For either a system task or a problem program started from the operator's console, the reader
receives the following default parameter:

PARM='8110100050012550 01SYSDA EOOOOOA'

This default provides for a primary space allocation of five tracks, and a secondary
allocation of one track, on the SYSOUT data set.

If TSO is in the system, this default parameter provides also for the initiation of a terminal
user's work session.

Note that the generation of the system must have included the definition of "SYSDA" for
this default parameter to work properly. If the system generation omitted the definition,
console started tasks that require a SYSOUT data set will fail with a JCL error, unless you
provide a SYSOUT DD statement with unit information to replace the missing SYSDA
definition.

DD Statement for the Input Stream

Your procedure for the reader must include a DD statement that describes the input stream.
The format for this statement is:

IIIEFRDER
II

DD UNIT=device,LABEL=(type),VOLUME=SER=SYSIN,
DCB=(list of attributes) ,DSNAME=name,
DISP=OLD

x
X

II

This DD name must be IEFRDER as shown. The IEFRDER statement can be overridden
with a START command. The parameter requirements are as follows:

UNIT = device
specifies the device from which the input stream is to be read. This can be any device
supported by the queued sequential access method (QSAM). The device can be specified by
its address, type, or group.

LABEL = (,type)
describes the data set label (needed only for tape data sets). If this parameter is omitted, a
standard label is assumed.

VOLUME=SER=SYSIN
specifies the volume containing the input stream. This parameter is required for magnetic
tape or direct access volumes. The serial SYSIN is recommended for identification of this
volume, but other serials can be used.

Section IV: Modifying the System 77

DCB=(list of attributes)
specifies the characteristics of the input stream and the buffers. If the BLKSIZE, LRECL,
and BUFL subparameters are not specified, an 80-byte value is assigned to each. Other
subparameter fields may be specified as needed; otherwise, the QSAM default attributes are
assigned, as follows:

BUFNO - two buffers
RECFM - U-format, with no control characters
TRTCH - odd parity, no data conversion, and no translation
DEN - lowest density

The time required for I/O operations is reduced by using chained scheduling; with this
technique several I/O operations are chained together and a series of separate read or write
operations is issued as one continuous operation. Chained scheduling can be used only with
simple buffering. Each data set for which chained scheduling is specified must be assigned at
least two, and preferably three, buffers. Chained scheduling is discussed in the Data
Management Services publication.

DSNAME=name
specifies the name of the input stream data set to be read, this keyword should be used only
with direct access or tape input stream. .

DISP=OLD
specifies that the input stream is an existing data set.

DD Statement for the Procedure Library

Your procedure for the reader must include a DD statement that defines the procedure library.
This statement must follow the IEFRDER statement which describes the input stream. The
format for this statement is:

//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR

This DD name must be IEFPDSI as shown. The parameter requirements are as follows:

DSNAME=SYSl.PROCLIB
identifies the procedure library. To concatenate other data sets with the system library, you
may follow the IEFPDSI DD statement with other unnamed DD statements, thus expanding
the system procedure library.

DISP=SHR
specifies that the procedure library is an existing data set and can be shared with other
tasks.

Statement for the Spooling Data Set

Your procedure for the reader/interpreter must include a DD statement that defines the
spooling, or CPO (concurrent peripheral operation) data set. Two DCB parameters (BLKSIZE,
and buffer number) may be overridden by parameters in the input stream on DD * and DD
DAT A statements. The CPO data set is used for intermediate storage of input stream data.

78 MVT Guide (Release 21.7)

The format for this statement is:

IIIEFDATA
II

DO UNIT=device,
SPACE=(units,(quantities) ,RLSE,CONTIG),
VOLUME=SER=volser,DISP=(status,disp),
DCB=(list of attributes),DSORG=PS

x
X
X II

II

This DD name must be IEFDATA as shown. The parameter requirements are as follows:

UNIT=device
specifies one or more direct access devices on which data sets from the input stream will be
written. If more than one device is provided, the different data sets are not necessarily
written in a continuous manner from device to device. Instead, the different data sets might
be spread among the available devices according to a reader algorithm based on priorities
and optimum access. If you want all the input stream data sets written on the same device,
use the VOLUME parameter (described below) in this DD statement to identify the specific
volume. The DEFER option must not be used.

Section IV: Modifying the System 78.1 .

SEC IV

78.2 MVT Guide (Release 21.7)

\

CAUTION: Do not use UNIT group names unless the request is for no more than one
device, or the group is defined to have devices of only one type.

SPACE=(units,(quantities),RLSE,CONTIG)
specifies space allocation for the direct access volume. The optional RLSE subparameter
releases all unused space to the system when the data set is closed. The optional CONTIG
subparameter ensures that space is allocated in contiguous tracks or cylinders.

VOLUME = SER= volser
identifies a specific direct access volume. This parameter is not required, but you can use it
to cause all input stream data sets to be written on the same volume. You should also use
this parameter if you specify the DISP parameter.

DISP= (status,disp)
specifies the status and disposition of the CPO data set. This parameter is not required, but
can be used to bypass the first space allocation (as explained above). To do this, specify the
parameter as DISP=OLD. The system then assumes that the data set exists, and does not
allocate space for the reader/interpreter program. Subsequently, the reader/interpreter
forces a DISP=(NEW,PASS) status for the CPO data set so that space is allocated on it for
recording the input stream data sets.

DCB=(list of attributes)
specifies the characteristics of the spooling data set and the buffers to be used by the data
set. The RECFM and the LRECL subparameters cannot be overridden and should not be
specified. The values for these subparamaters are RECFM=FB and LRECL=80. The
BLKSIZE and BUFL sybparameters must be specified in the IEFDATA DD statement. The"
BLKSIZE and BUFNO values may be overridden by specifying them on a DO * or DD
DATA statement in the reader input stream. However, the BLKSIZE and BUFNO values
on the IEFDA T A statement are always used as upper limits. Thus, if the overriding
statements exceed these limits, the IEFDAT A values are used. (For a more detailed
explanation of how to override these parameters, see the Job Control Language publication.) The
BUFNO and RECFM subparameters, if not specified, assume the QSAM default attributes
of two buffers.

BUFNO -- two buffers.
RECFM -- U-format, with no control characters.

DSORG=PS
must be coded as shown.

Automatic SYSIN Batching (ASB)

Readers read and interpret job control language statements and place SYSIN data sets on
direct access devices for later processing. The interpreting of job control language statements
often requires only a small proportion of the total time used by the reader but the reader
remains resident even when inactive. You may therefore save space by separating the
interpreting of job control statements from the storing of SYSIN data sets. If the two functions
are separated, the interpreter portion of the reader does not have to be resident at all times
and will be called into storage only after a certain number of job control language statements
have been collected. Separating the two functions of the reader is called automatic SYSIN
batching (ASH).

Section IV: Modifying the System 79

SEC IV

IBM supplies a cataloged procedure that provides automatic SYSIN batching; this procedure
is named RDRA and is invoked by a START command. The procedure is shown and described
in the following text; by using it as a model, you may write your own procedure, coding the
parameters suited to your installation.

IIIEFPROC EXEC PGM=IEFVMA,REGION=16K,
II PARM='80103005001024905030SYSDAbbbE00001A,

1101207004EOOOSYSDAbbbERDRH'
IIIEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,
II DCB=BLKSIZE=80,RECFM=F,BUFL=80,BUFNO=10)
IIIEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR
IIIEFDATA DD UNIT=SYSDA,SPACE=(3200,(15,15),RLSE,CONTIG),
II DCB=(BLKSIZE=3200,BUFNO=2,RECFM=FB,BUFL=3200)

The EXEC statement for the SYSIN batcher is similar to the EXEC statement for the
standard reader/interpreter. It specifies the SYSIN batcher program, the MVT region size and
passes a set of parameters to the program. The format is as follows:

IIIEFPROC EXEC PGM=IEFVMA,REGION=nnnnnK,
II PARM=('bpptttooommmiiicccrlssssssssaaaaefh',
II 'ejjaarratabaaaddddddddgk')

The step name must be IEFPROC, as shown. The parameters are as follows:

PGM=IEFVMA
specifies the automatic SYSIN batcher program. It must be IEFVMA as shown.

REGION=nnnnnK
specifies the region size for the automatic SYSIN batch reader. The value nnnnn represents
a number from one to five digits that is multiplied by K (K= 1024 bytes) to designate the
region size. The region requirement depends on the size and number of input buffers and
ASB reader modules (if any) in the link pack area. The algorithm for estimating the
required region is in the nEstimating the Dynamic Main Storage Requirement" section of
the Storage Estimates publication. An insufficient size specification will result in abnormal
termination.

P ARM = ('bpptttooommmiiicccrlssssssssaaaaefh',
these parameters are the same as those used in the' ordinary (non-batching) procedure. See
the preceding description for an explanation of these parameters.

e

jj

a numeric character from 0 to 3 that ordinarily specifies the disposition of commands
read from this input stream. The SYSIN batcher, if e is:

.0 -- executes the command.
1 -- displays the command (via a WTO macro instruction), and executes it.
2 -- displays the command (via a WTOR macro instruction),but does

not execute it until advised by the operator.
3 -- ignores the command (treated as no operation).

two numeric characters which indicate the number of jobs to be read by the automatic
SYSIN batch reader before interpreting the job control language and putting the jobs
onto the job input queue for execution.

80 MVT Guide (Release 21.0)

aa

rra

ta

the number of logical tracks on SYS 1.SYSJOBQE which can be used by the automatic
SYSIN batch reader for later interpretation. The Storage Estimates publication contains
information on estimating SYS 1.SYSJOBQE work space.

three decimal numbers. The size of the region, in K bytes (1024 bytes), the Automatic
SYSIN batch reader routine is to obtain for the reader. The reader uses the region to
read in tracks of job control statements that the ASB reader has written in the
SYS 1.SYSJOBQE data set. The size of the region should complement the number
specified for the next parameter, the ta parameter. The Storage Estimates publication
describes how large a region is required for the interpreter routine.

two decimal numbers. Number of logical tracks of job control statements that are to be
read in from the SYS 1.SYSJOBQE data set into the region defined by the previous
parameter, the rra parameter. The reader interprets one at a time, the statements blocked
by the automatic SYSIN batch reader. The Storage Estimates publication describes how to
determine the number of tracks of SYS 1.SYSJOBQE data to be kept ready in main
storage.

baaa
this parameter is the same as the aaaa parameter in the non-batching procedure.

dddddddd

g

k

the unit type or name of the direct access device where the SYSIN batcher is to
temporarily store all SYSIN data. This must be the same as that indicated in the
IEFDA T A UNIT parameter.

the numeric character 0 or 1, where 1 is specified only if the SYSIN data set is to
contain binary data as input to a 709/7090/7094/7094 II integrated emulator job.

main storage hierarchy to be used in loading the interpreter subroutine of the ASB
reader.

& RDRH -- A value may be assigned in the operator START command. If none is given
there, the default value in the PROC statement of this procedure is used. The
default value may be changed by supplying a PROC statement with another
value.

o -- Use hierarchy 0 main storage.
1 -- Use hierarchy 1 main storage.

The DD statements are the same as those described for the standard reader, with the following
exceptions:

IEFRDER (DD statement for the input stream)
The parameter requirements are the same as those for the reader/interpreter, except for the
DCB parameter. This parameter specifies the characteristics of the input stream and the
buffers.

Section IV: Modifying the System 81

If the BLKSIZE and BUFL subparameters are not specified, an 80-byte value is assigned to
each. LRECL need not be specified because fixed length 80-byte records are the only input
accepted by the ASB reader. Other subparameter fields may be specified as needed;
otherwise, the QSAM default attributes are assigned as for the reader/interpreter.

IEFDATA (DD statement for the CPO data set)
If the BLKSIZE and BUFL subparameters are not specified, an 80-byte value is assigned to
each. LRECL need not be specified because fixed length 80-byte records are the only input
accepted by the ASB reader. The BLKSIZE and BUFNO parameters may be overridden by
specifying them on a DD * or DD DATA statement in the reader input stream. However,
the BLKSIZE and BUFNO values on the IEFDAT A statement are always used as upper
limits. Thus, if the overriding statements exceed these limits, the IEFDAT A values are used.
In addition, the ASB reader always uses one buffer for IEFDA T A. Therefore, the BUFNO
value specified applies only as a default.

Initiator Procedures

You may write different initiator cataloged procedures for the different types of jobs that
initiators will handle. You might have a FORTRAN initiator (an initiator to handle the job
classes to which FORTRAN jobs are assigned), a COBOL initiator, an I/O bound job
initiator, or a CPU bound initiator.

A cataloged procedure for an initiator requires only one job control statement: an EXEC
statement. Additional DD statements may be optionally added so that specific control volumes
will be mounted when an initiator is started.

An EXEC statement with the step name IEFPROC specifies the initiator program and any
job classes to be associated with the initiator if the START command does not specify job
classes. Optional DD statements specify control volumes to be allocated to the initiator task.

The standard initiator cataloged procedure supplied by IBM is named INIT. The procedure
is:

//IEFPROC EXEC PGM=IEFIIC,PARM='A,LIMIT=13,

If you write your own initiator procedure you must follow the format for the standard
procedure. The statement requirements are explained in the following paragraphs.

The EXEC Statement

The EXEC statement specifies the initiator program and passes a set of parameters to it. The
format for the EXEC statement is:

//IEFPROC EXEC PGM=IEFIIC,PARM='x[(n)][,x2 [(n)] ... [,LIMIT=K]

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PGM=IEFIIC
specifies the initiator program. The name of the program must be IEFIIC, as shown.

PARM='x[(n)][,xt[(n1)]···[,LIMIT=K]] ,

82 MVT Guide (Release 21.0)

x - Job class. (Letter A - 0.) (One to eight job classes may be

named.)

n - (0 - 15), a force value priority at which all jobs from the preceding class will be run.

K - (0 - 15) The priority above which no jobs will be run by this initiator.

If the START command for an initiator includes any job class references, all definitions in the
cataloged procedure are voided.

The LIMIT= entry in the cataloged procedure means that no job may be run at a priority
higher than the value indicated by K. The force value in (n above) is used for a job unless it is
greater than the limit value (K above). You may not always specify a force value (n) priority.
If you do not, priority is determined by the following order as long as the limit value, K, is not
exceeded:

• The EXEC statement
• The JOB statement
• The cataloged reader procedure

If a job class is assigned a force priority, it overrides the priority indicated in any of the above
three sources.

DD statements for control volumes are optional. The standard procedure INIT does not
include a DD statement for a control volume. This optional facility is discussed next.

Mounting Control Volumes

The operator can mount a control volume that provides reference information during a catalog
search before the search begins. The DD statements for these control volumes may be in the
initiator procedures residing in the procedure library (SYSl.PROCLIB). Such DD statements
allocate space for and elicit a message for the operator to mount direct access volumes for the
life of the initiator. These capabilities are particularly useful when control volumes are
necessary for departmental job batches.

Using a DD statement to describe a control volume to the initiator ensures that the control
volume is in place prior to a catalog search that requires the volume. This convenience
facilitates those catalog searches that begin on the system residence volume, but which must
migrate to the control volume in order to find the catalog entry for the specified data set.

If you fail to include control volume (CVOL) DD statements with the initiator procedures,
the operator will receive requests to mount control volumes for those catalog searches that
cannot complete without migrating, during the allocation for a job step. In addition to the
inefficiency of such interrupted catalog searches, a control volume mounted this way is eligible
for demounting as soon as the catalog search is complete. Hence the operator may well have
to demount a volume that may be necessary later in the life of the same job or step.

You can avoid the possiblity of these time-consuming inconveniences by including the
CVOL DD statements with your cataloged initiator procedures.

Cataloged Procedure for the MOUNT Command

To invoke the cataloged procedure for the MOUNT command, use the name IEEVMPCR.

Section IV: Modifying the System 83

If you fail to code the "USE=XXXXXX" for the command, the default information will
come from the PARM field of the EXEC statement. (Refer to the "The EXEC Statement"
part of this section for a description of the PARM field.)

If you wish to allow more than one active MOUNT command, you may change the DISP
field of the IEFRDR statement to "DISP=(SHR,KEEP)" . Note that the operator must now
make sure that the active MOUNT commands do not result in volume selections that conflict
with each other.

Initiator Action

By starting an initiator that includes a DD statement for a control volume, mounting is
requested before the initiator is allowed to start initiating jobs. If the volume is already
mounted, the initiator proceeds with initiation.

When a STOP command is issued for the started initiator and the volume is demountable
and PRIV ATE, it will be demounted if no other job steps or initiators are allocated to the
volume. The volume then would stay mounted until the last job step using it terminates or the
initiators using it are stopped, at which time the volume would be demounted.

DD Statement Formats

As many volumes may be defined by DD statements in the initiator procedure as the user finds
useful. The format follows the specifications contained in the Job Control Language Reference
publication. The following is an example of a DD statement that could be included in an
initiator procedure for a control volume:

//ddname DD VOLUME=(PRIVATE,SER=ser#),UNIT=

VOLUME = (PRIV ATE,SER=ser#),

address
TYPE
group

,DISP=OLD

specifies the volume serial of the control volume. PRIVATE ensures that this volume will
not be used to satisfy job step data set requests unless requested by the specific volume
serial number. Also, unless already mounted and permanently resident or reserved, the
volume will be demounted when the initiator is stopped, when last used by job steps being
processed by other initiators, or when other initiators allocated to the volume are stopped.

address
UNIT= type'

group
specifies the unit address, unit type, or group on which the control volume is to be
mounted.

DISP=OLD
specifies that a temporary data set will not be allocated to the volume. A dsname will be
generated [or this data set and when the initiator is stopped, a message will be written on
the system output data set that this data set (generated name) has been kept. This message
can be ignored as no action needs to be taken.

84 MVT Guide (Release 21.7)

/'

\
"'-.

Dedicated Data Sets

Dedicated data sets save the time taken repeatedly to allocate (and deallocate) space used only
temporarily during a job step. A dedicated data set is allocated space when the initiator is
started and belongs to the initiator. Every job step running under that initiator can use the
dedicated data set as a temporary data set. If you use dedicated data sets for temporary data
sets, the checkpoint/restart facility is internally suppressed. To dedicate any data set quickly to
successive jobs or job steps, you add a DD statement to the initiator procedure. An initiator
procedure (lNITD) for use of dedicated data sets with processor programs has been added to
the system. To save repeated catalog searches, you may also dedicate system library data sets.

The dedicated data sets feature has been implemented by adding code to the allocation
routine that, before allocating space for a temporary data set, attempts to relate a request for a
temporary data set with a dedicated data set. If the space required for the temporary data set
fits within the dedicated data set, the dedicated data set space is used. If not, normal allocation
takes place. The same criterion will be used with presently coded requests for temporary data
sets. That is, if the space requested is within the range of the dedicated data set, it will be
used.

I Section IV: Modifying the System 84.1

SEC IV

./

84.2 MVT Guide (Release 21.7)

How to Dedicate a Data Set

You dedicate a data set by adding a DD statement (for each data set to be dedicated) to the
initiator procedure. The unit must be a DASD; the space may be for a sequential or
partitioned data set. (See the publication Storage Estimates, the chapter "Job Step Initiation
Requirement," for details on the number of DD statements per initiator.) Each DD statement
~ust be of the form:

//ddname

ddname

DD UNIT=unitparms,VOL=volparms,
SPACE=(kind,(amount,increment,dirblks)),
DISP=(new,delete)

A user-supplied ddname must be given to identify the DD statement. The ddname is used
(in the form DSNAME= & ddname) in the DD statement of the problem program job step
which is to make use of the dedicated data set.

unitparms
Parameters that describe the unit to be used for the dedicated data set. The unit must be a
DASD. The AFF= and DEFER unit parameters may not be used. The unit parameters
specified here override those of the job step DD statement for which the dedicated data set
is used.

volparms
Volume parameters. A volume may be specified for each unit specified in the preceding unit
parameter entry. The volume parameters specified here override those of the job step DD
statement for which the dedicated data set is used.

(kind,(amount, increment,dirblks»
Type and size of space (in terms of CYL, TRK, avgbl, or ABSTR) to be allocated to the
data set. If ,dirblks is omitted, the data set request implies sequential organization. If"dirblks
is used, the data set request implies partitioned organization. If the q,edicated data set is
going to reside on an IBM 2301, or 2303 Drum Storage device, do not request space in
cylinders.
When a dedicated data set with partitioned organization reaches an EOV condition, the

initiator must be restarted. The DD statement in the problem program job step that is to use a
dedicated data set must describe a problem program data set of the same organization as the
dedicated one. Increments, once allocated, remain allocated until the initiator stops.

new,delete
These disposition parameters may either be coded explicitly or may take effect by default, if
the DISP~ entry is ommitted.

The effect of new is that the data set is freshly allocated from any available space on the
volume, each time a START initiator operator command is used or the system is restarted.

The effect of delete is that the data set is not kept when the initiator is stopped and the
space is available for reallocation to other jobs.

Section IV: Modifying the System 85

SEC IV

DSNAME
The allocation procedure for an initiator pre-allocated data set is the same as for any
temporary data set. This procedure is simplest with no dsname= entry in the DD statement. That
results in a system assigned data set name of the form:

SYSnumber.Rnumber.procname.RVnumber.

You may also code DSNAME= & name, DSNAME= & & name, or DSNAME=name. These
names will override those used in the job step DD statement for which the dedicated data
set is used.

DCB parameters:

DCB parameters specified here have no effect.

How to Use a Dedicated Data Set

If you want a dedicated data set to be used temporarily in a job step, define the temporary
data set in a DD statement of the form:

Iiddname
II

DD DSNAME=&ddname,
SPACE=(avgbl,(amount,increment,dirblks)),
UNIT=unitparms,DISP=(new,delete),DCB=dcbparms II

& ddname
name of the DD statement for the dedicated data set, preceded by an & sign.

(avgbl,{number,increment,dirblks»
Space request, in terms of average block length only, needed for this temporary data set.

An attempt to allocate the dedicated data set will be replaced by the normal allocation
procedure if one of the following conditions is encountered:

If the total space (primary and increments) requested here exceeds the total space (primary
and increments) available to the dedicated data set.

• If the use of ,dirblks (presence or absence) differs from that in the DD statement of the
dedicated data set, (or if ISAM is specified).

If the use of ,dirblks requested here exceeds the space for ,dirblks specified in the
dedicated data set.

• If the space request is shown in other than average block length.

• Although the total space (primary and increments) requested here is compared to the total
space (primary and increments) available to the dedicated data set, the primary quantity in
the DD statement of the initiator procedure will be allocated to the data set, and not the
primary quantity requested here. If a secondary quantity is specified, it will override the
secondary quantity specified in the initiator procedure's DD statement.

unitparms
Unit parameters describe the unit to be used for the temporary data set, if the dedicated
data set is not used. Here, the unit may be a magnetic tape unit, as well as a DASD.

86 MVT Guide (Release 21.0)

(new,delete)
These disposition parameters must either be coded explicitly or may take effect through
default.

dcbparms
DCB parameters required for the temporary data set. Unless specified, you may find that a
previous user has left the dedicated data set with undesired DCB parameters.
If a secondary increment is coded in the SPACE parameter, the DCB subparameter
BLKSIZE should be coded since the system will use it to calculate the number of tracks
required to fulfull the secondary quantity request.

Procedure INITD

Language processor programs, such as FORTRAN compilers, make much use of temporary
data sets. To permit ready use of the dedicated data set feature with IBM-supplied processor
procedures, IBM supplies the initiator procedure INITD. It becomes part of the system by
inclusion in the SYS 1.PROCLIB at system generation time.

INITD is an initiator procedure that dedicates five utility data sets commonly used with
IBM-supplied processor procedures. To use the dedicated data set facility with these
procedures, start the INITD inititator.

Before including the INITD procedure in the system, review the space allocations, unit
specifications, and ddnames used in the procedure against the system's requirements. If they
are significantly different, code your own.

Presently existing procedures can be used under the INITD initiator without changes.
Procedures designed for the dedicated data set feature remain in operation without the
presence of the dedicated data set feature. In short, the procedure will run under any initiator
regardless of whether that initiator has dedicated data sets.

The INITD procedure is:

//IEFPROC
//SYSUT1
//SYSUT2

//SYSUT3

//SYSUT4

//LOADSET

Procedure: INITD
EXEC PGM=IEFIIC,PARM='A,LIMIT=13,
DD DSNAME=&UT1,SPACE=(1700,(200,100)"CONTIG),UNIT=SYSDA
DD DSNAME=&UT2,SPACE=(1700,(200,100)),

UNIT=(SYSDA,SEP=SYSUT1)
DD DSNAME=&UT3,SPACE=(1700,(200,100)),

UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2))
DD DSNAME=&UT4,SPACE=(460,(700,100)),

UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2,SYSUT3))
DD DSNAME=&LOADSET,UNIT=(SYSDA,SEP=SYSUT1),

SPACE=(3600,(100,10))

Each statement of the INITD procedure is explained in detail in the following. In addition
to describing the reason for or effect of the use of a prarmeter, the description distinguishes
between those parameters that must be coded as shown and those that you may override or
substitute for.

The EXEC Statement

The EXEC statement for the procedure is:

//IEFPROC EXEC PGM=IEFIIC,PARM='A,LIMIT=13,

Section IV: Modifying the System 87

SEC IV

IEFPROC
The step name. Must be coded as shown.

EXEC
The job control statement name. Must be coded as shown. Defines the beginning of a job
step.

PGM=IEFIIC
The program to be executed in this job step. IEFSD060 is the name of the initiator
program. Must be coded as shown. Whether dedicated data sets are used depends on the
DD statements that follow, not on the name of the program.

PARM='A,LIMIT=13'
Parameter list for the initiator porgram. A is the class of jobs to be processed, LIMIT= 13 is
the dispatching priority limit for this initiator. Both of these values can be overridden by
values used with the START command for the initiator.

DD Statement for the Dedicated Utility Data Sets

There are four DD statements in the INITD procedure that allocate space to four commonly
used utility (or scratch) data sets. The statements are:

//SYSUT1
//SYSUT2

//SYSUT3

//SYSUT4

DSNAME

DD DSNAME=&UT1,SPACE=(1700,(200,100)"CONTIG),UNIT=SYSDA
DD DSNAME=&UT2,SPACE=(1700,(200,100),

UNIT=(SYSDA,SEP=SYSUT1)
DD DSNAME=&UT3,SPACE=(1700,(200,100)),

UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2))
DD DSNAME=&UT4,SPACE=(460,(700,100)),

UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2,SYSUT3))

The leading & sign marks the name as that of a temporary data set.

SPACE=
The first three data sets will be assigned space that can accomodate 200 blocks of 1700
bytes. When that space is exhausted, additional space will be allocated for 100 blocks at a
time. Additionally, for the first data set, SYSUT1, all the primary space is to be allocated
space for 700 blocks of 460 bytes initially. When exhausted, space is to be allocated for
100 blocks at a time.

UNIT =
Space is to be allocated from direct access storage devices. If possible, each data set is to be
on a separate device from every other data set to avoid contention for the device.

DD Statement for the LOADSET Data Set

In the INITD procedure, the dedicated data set for the object module -- the LOADSET data
set -- is defined as follows:

//LOADSET

LOADSET

DD DSNAME=&LOADSET,SPACE=(3600,(100,10)),
UNIT=(SYSDA,SEP=SYSUT1)

DSName of the dedicated data set.

88 MVT Guide (Release 21.7)

DD
Data definition statement.

DSNAME= & LOAD SET
A temporary data set.

SPACE=(3600,(100, 10))
Space allocation commonly used in compilers.

UNIT=
Space is to be allocated on a DASD but not the same one as the SYSUT1 data set.

Use of Dedicated Data Sets by Processing Programs for Utility Data Sets

Presently, processor programs show the temporary nature of the utility data sets by omitting a
DSNAME= entry. If these DD statements are revised with the addition of a DSNAME= &
name entry, the system will attempt to use dedicated data sets of the INITD program for job
steps processed under that initiator. To illustrate the necessary change, let us look at a present
DD statement and the change required. The following is a DD statement from the COBECLG
procedure for which a temporary data set will be allocated:

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,65))

The temporary character of this data set is shown by the absence of a DSNAME= entry. To
force consideration of the dedicated data set, assuming that the step is running under the
INITD procedure, add a DSNAME= & name (or & & name) entry referring to the dedicated
data set to be considered for use:

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,65)),DSNAME=&SYSUT1

With the addition of the dedicated data set feature, the allocation program now first searches
the DD statements in the initiator procedure for an already existing data set with a DD name
like that following the & sign (the symbolic name). If the allocation program finds such a data
set, it next determines whether the organization (sequential, partitioned) of the dedicated data
set is the same as that of the temporary data set and whether the total space requirements
(primary and increments) of the temporary data set fall within the total space allocation of the
dedicated data set. If there is no dedicated data set with the symbolic name, the orgainizations
are not the same, or the temporary space does not fit within the dedicated space, the initiator
will attempt normal allcoation. It is for the latter event that unit parameters should be present.

System Library Data Sets as Dedicated Data Sets

System library data sets, such as the COBOL library, may be referred to repeatedly in a batch
of jobs. To save allocating the system data set in each job and step, the system data set can be
dedicated in an initiator procedure. Caution must be exercised when dedicating system libraries
or other non-temporary data sets. The DD statement in the initiator procedure must have the
disposition specified as old or share and keep to prevent the deletion of the data set when the
initiator is stopped. In the same manner, the disposition on the job step DD statement
referring to the dedicated library must also be old or share and keep or pass to allow the
dedication to take place without a space comparison. The example data set references are as
follows.

Section IV: Modifying the System 89

•

The following is the DD statement in the COBECLG procedure that results in the
allocation of the COBOL library to the job step calling the procedure:

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=(SHR,KEEP)

The explicit data set reference (OSNAME=SYS 1.COBLIB) requires a search of the catalog in
each job step using the procedure. To save the repeated catalog search, move the DO
statement to the initiator procedure and replace it in the COBECLG procedure with a OD
statement in which the DSNAME= & name entry refers to the ddname of the dedicated data
set. Allocation treats this as a dedication request, dedicated if so found. The new DO
statement in the COBECLG procedure, after adding the present one to the initiator, is:

//SYSLIB DD DSNAME=&SYSLIB,DISP=(SHR,KEEP)

The result is one catalog search per initiator start instead of one catalog search every job step.
However, keep in mind that this COBECLG procedure requires the initiator with the
dedicated data set. Using this modified procedure with an unmodified initiator will result in
failure to allocate.

Disposition of Temporary Dedicated Data Sets

Allocation/ termination routines do not delete temporary dedicated data sets at the end of each
. job step, but, instead, keep them until the initiator stops; this occures even if there is a
specification of DISP=(NEW,DELETE) or OISP=(MOO,DELETE) on the DD statement for
the data set. Therefore, if you attempt to use such a data set a second time in the same job, it
will contain data from the previous use. This can be a problem if you are using cataloged
procedures and run the same procedure twice within the same job. For example: assume that
you use the procedure PLILFCLG twice within the same job and it uses a dedicated data set
with a disposition of (MOD,PASS) for the compile step and (OLD,DELETE) for the linkage
edit step. When the procedure is entered for the second time, the object module produced by
the second compile step will be placed in back of the object module produced by the first
compile step. Since both object modules are assigned identical names by the compiler, only the
first will be linkage edited.

You can avoid this problem by not using dedicated data sets for jobs that run the same
cataloged procedure twice. Alternatively, using DISP=(NEW,DELETE), you could submit
each cataloged procedure as separate jobs instead of submitting them as separate job steps
within the same job.

Use the following chart to determine the disposition, by allocation/termination, of
temporary data sets.

If you code

DISP=

NEW

OLD/SHR
MOD
,DELETE
,PASS

,KEEP

Allocation/tennination treats it as:

OLD

OLD

MOD
KEEP
PASS

KEEP

90 MVT Guide (Release 21.7)

System Output Writers

A cataloged procedure for output writers requires two job control statements: an EXEC
statement and a DD statement.

An EXEC statement with the step name IEFPROC specifies the output writer program.

A DD statement named IEFRDER defines the output data set. The standard output writer
procedure supplied by IBM is named WTR; it is shown in the following sequence:

IIIEFPROC
II
IIIEFRDER

EXEC

DD

PGM=IEFSD080,REGION=20K,
PARM='PA'
UNIT=1403,VOLUME=(",35),
DSNAME=SYSOUT,DISP=(NEW,KEEP),
DCB=(BLKSIZE=133,LRECL=133,BUFL=133,
BUFNO=2,RECFM=FM)

X

X
X
X

II
II
II

When creating your own output writer procedure, you must conform to the procedure
format and the statement requirements. Use the IBM-supplied procedure as an example. The
statement requirements are explained individually in the following paragraphs.

The EXEC Statement

The EXEC statement specifies the output writer program and its region size. It also passes a
set of parameters to the output writer program. The format for the EXEC statement is:

IIIEFPROC
II

EXEC PGM=IEFSD080,REGION=nnnnnK,
PARM='cxxxxxxxx,seprname'

X

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PGM=IEFSD080
specifies the output writer program. The name of the program must be IEFSD080, as
shown.

REGION =nnnnnK
specifies the region size for the output writer. The value nnnnii represents a number from
one to five digits that is multiplied by K (K= 1024 bytes) to designate the region size. The
region requirement depends on the size of the buffers, the data set writer used, and which
modules of the output writer (if any) are in the link pack area. The complete algorithm for
estimating the required region is contained in the "Estimating the Dynamic Main Storage
Requirement" section of the Storage Estimates publication. An insufficient size specification
will result in an abnormal termination.

P ARM = 'cxxxxxxxx,seprname'
is a set of parameters for the output writer program. The first part of this paramet~r field
can contain from two to nine characters. The second part of this parameter field, if
specified, is separated from the first part by a comma, and contains a program name from
one to eight characters. Both parts of this parameter field are explained below.

c
an alphabetic character, either P (for printer) or C (for' punch), that specifies the type of
control characters for the output of the writer.

Section IV: Modifying the System 91

•

xxxxxxxx
from one to eight (no padding required) single-character class names for system output.
These specify the type of output that the writer can process, and also establish the
Pt1-0rity of the output classes, with the highest priority on the left. If class name
parameters are included in the START command, they override this entire set of class
names in the cataloged procedure.

seprname
the name of the program (up to eight characters) that provides job separation in the
output data set. The named program must reside in the link library (SYSl.LINKLIB).
You can specify the name IEFSD094 to use the output separator supplied by IBM, or
you can specify the name of your own program. This subparameter may be omitted, in
which case no output separator is used.

DD Statement for the Output Data Set

Your procedure for the output writer must include a DD statement that defines the output data
set. The format for this statement is:

IIIEFRDER
II

DD UNIT=device,LABEL=(,type)
VOLUME=(",volcount),
DSNAME=anyname,DISP=(NEW,KEEP)
DCB=(list of attributes),
UCS=(code[,FOLD] [,VERIFY]),
FCB=(image-id [,ALIGN])

x
X
X
X
X

II
II
II
II

,VERIFY

This DD name must be IEFRDER as shown. The parameter requirements are as follows:

UNIT = device
specifies the printer, magnetic tape, or card punch device on which the output data set will
be written. The devices that can be used are: 1403, 1442, 1443, 2400, 2400-1, 2400-2,
2400-3,2400-4, 2520, 2540, 3211,3400-2, 3400-3, or 3400-4.

LABEL = (,type)
describes the data set label (needed only for tape data sets). If this parameter is omitted, a
standard label is assumed.

VOLUME = (",volcount)
limits the number of tape volumes that can be used by this writer during its entire operation
(from the time it is started to the time it is stopped). This parameter is not required for
printer or card punch devices.

DSNAME=anyname
specifies a name for the output data set (tape only, for label purposes), so that it can be
referred to by subsequent job steps. This name is also necessary for specification of the
KEEP subparameter in the DISP field.

DISP=(NEW,KEEP)
specifies the KEEP subparameter to prevent deletion of the output data set (tape only) at
the conclusion of the job step.

92 MVT Guide (Release 21.0)

DCB=(list of attributes)
specifies the characteristics of the output data set and the buffers. The BLKSIZE and
LRECL subparameter fields must be specified in all cases. The BUFL subparameter field, if
not specified, is calculated on the basis of the BLKSIZE value. Other subparameter fields
may be specified as needed; otherwise, they will assume the QSAM default attributes which
are

BUFNO --three buffers for the 2540 device, two buffers for all other devices.
RECFM --U-format, with no control characters.
TRTCH --odd parity, no data conversion, and no translatIon.
DEN -- lowest density.

UCS= (code[,FOLD][,VERIFY])
specifies the code for a universal character set (UCS) image that will be loaded into the
UCS buffer. FOLD causes bits 0 and 1 to be ignored when comparing characters between
the UCS buffer and the print line buffer. This option allows lowercase alphabetic characters
to be printed in uppercase by an uppercase print chain or train. VERIFY causes the
specified UCS image to be printed for verification by the operator. The UCS parameter is
optional, and is valid only when the output device is a 1403 or 3211.

FCB=(image-id[,ALIGN J)
VERIFY

causes the forms control buffer (FCB) image with the specified image-id to be loaded into
the FCB. One of two optional parameters, ALIGN or VERIFY, can be coded. Either
parameter allows the operator to align forms. In addition, VERIFY causes the specified
FCB image to be printed for visual verificatjon. The FCB parameter is valid only when the
output device is a 3211.

For the processing of output jobs that require special chains for printing, you should have
specific classes for each different chain. You can specify the desired chain in your writer
procedure, and when that writer is started the chain will be loaded automatically. (Printers
used with special chains should be named with esoteric device names as defined at system
generation time.)

The following sequence is an example of a writer cataloged procedure for the Pll chain.

IIIEFPROC
II
IIIEFRlJER
II
II
II

EXEC

DD

PGM=IEFSD080,REGION=20K,
PARM='PDEG,IEFSD&94'
UNIT=SYSPR,DSNAME=SYSOUT,FCB=(STD2,ALIGN),
UCS=P11,
DISP=(,KEEP),DCB=(BLKSIZE=133,BUFL=133,
LRECL=133,BUFNO=2,RECFM=FM)

X

X
X
X

If the output device is a 3211, a UCS or FCB image can be loaded dynamically between
the printing of data sets. Therefore, a mixture of data sets using different images in a single
output class is allowed; however, this may require mounting trains and changing forms, and
may not be desirable. When the output device is a 1403, the UCS image is specified at
ST ART WTR time and cannot be changed until the writer is stopped; all data sets within an
output class must be printed using the same train. This parameter cannot be overridden for a
specific data set when using the (asynchronous) Sysout Writer. The -FCB image is ignored
when the 1403 is specified.

Section IV: Modifying the System 93

•

Command Chaining

By using command chaining you may reduce the amount of CPU time used by a writer; this is
done by having the SYSOUT writer intercept PUT instructions and execute an EXCP only
when all of a chain of buffers are full. This command chaining is provided if the writer
procedure specifies all of the following conditions:

1. It uses more than three buffers.
2. It uses machine control characters in writing to the output print or punch device.
3. It does not use PCI.
4. The output device is a printer or punch.

Direct SYSOUT Writers

The direct SYSOUT writer is an option that results in writing output directly from
(synchronously with the execution of) the problem program. It requires two job control
statements: an EXEC statement and a DD statement .

• The EXEC statement is named IEFPROC.
• The DD statement is named IEFRDER and describes the ultimate output data set.

The procedure supplied by IBM is named DSO and is described in the following. If you wish
to create your own procedure, follow its format.

//IEFPROC
//IEFRDER

EXEC
DD

Procedure: DSO
PGM=IEFDSO,REGION=8K,PARM=(PA"A)
UNIT=2400,DSN=SYSOUT,DISP=(NEW,KEEP),
LABEL=(,SL),VOL=(",OS),DCB=(BUFNO=3)

The statement requirements are explained individually in the following paragraphs.

The EXEC Statement

The EXEC statement specifies the direct SYSOUT writer and the space it requires to start in
MVT. It is also used to give the writer program necessary operating information.

//IEFPROG

IEFPROC

EXEC PGM=IEFDSO,REGION=8K,
PARM=(cx,seprname,jjjjjjjj)

Name of the EXEC statement.
Required as shown.

IEFDSO
Name of the writer program.

lffiGION =8K
Space required by IEFDSO to start in MVT.

PARM=
Information for the IEFDSO program.

94 MVT Guide (Release 21.0)

c
A letter, P for printer or C for card punch, that describes the ultimate hard-copy
medium. Must be given.

x
The SYSOUT class to be processed. If stated here, and in the START command, the
latter rules. If not stated here, must be given in the START command.

,seprname
Output separation program name. May be omitted, but comma must be written if other
items follow. IEFSD094 - Name of the IBM-supplied separator program.

,jjjjjjjj
Jobclasses to be processed. From zero to eight letters (A.- 0) showing the job classes to be
processed.

If any job classes are named in the START command, they overrule all stated here. If none
are named here they must be given in the START command.

The nn Statement

This DD statement describes the kind of volume to be used and the format of the data set.

//IEFRDER DD UNIT=name,DSN=anyname,DISP=(NEW,KEEP),LABEL=(,SL),
VOL=(",volcount),DCB=(list),UCS=(code[,FOLD][VERIFY]

[
,ALIGN]

FCB=(IMAGE-ID ,VERIFY)

IEFRDER
Name of the DD statement.
Required as shown for IEFDSO.

name
Any form of unit identification may be used, for example, OOE, 2400, or TAPE.
Multiple parallel units (UNIT=2400,2) cannot be used.

DSN =anyname
Name of a non-temporary data set.
A name must be given.
If stated here and in the ST ART command also, the latter rules.
The name is used in the disposition messages at step termination, and must be used to
identify the data set if it is to be printed later from tape.

DISP=(NEW,KEEP)
Required disposition.

LABEL = (,SL)
If DSO is being used to write to magnetic tape, standard label tapes are required. The label
description may be stated explicitly or may be omitted, in which case SL is assumed.

Section IV: Modifying the System 95

SEC IV

'" volcount
1 - 225.
The maximum number of volumes a data set to be processed by this writer will have.
Determines the amount of job queue space allocated to each SYSOUT data set processed by
this writer. After the first 5 volumes, each subsequent 15 require another job queue record.
If omitted, 1 is assumed.
If stated here and also in the START command, the latter rules. This value cannot be given
in a DD statement of a job to be processed.

list
The following DCB parameters gain control only if they are not also given in the SYSOUT
DD statement or in the DCB macro instruction (that is, default values can be stated in this
procedure) :

BFALN, BFTEK, BUFL, BUFNO, BLKSIZE, LRECL, .RECFM, NCP, HIARCHY, UCS.

The following DCB parameters, if stated here, override all except those given in a Start
command:

CODE, DEN, MODE, OPTCD, PRTSP, STACK, TRTCH.

The FUNC parameter, when coded here, pertains only to system messages, not data set
output. Punch (P) and interpret (I) are the only valid subparameters for system message
processing.

UCS= (code[,FOLD][, VERIFY])
A UCS image can be specfied if the device is a UCS printer. the specified code is a one to
four character name that identifies the UCS image ..

Fold and VERIFY are optional. If the UCS parameter is specified in the START command,
that specification will be used instead of the specification in this procedure.

FCB= (image-[,ALIGN][,VERIFY]
An FCB image load can be specified if the output device is a 3211 printer. The specified
image-id is a one to four character name that identifies the FCB image.
ALIGN or VERIFY is optional, but only one can be coded. If the FCB parameter is
specified in the START command, that specification will be used instead of the specification
in this procedure.

Note: UCS and FCB images established in the DSO procedure or in the START command are
maintained from job to job until one or both are overridden by a subsequent DD statement
or SETPRT macro instruction. If this happens and the new image is a default image, it is
maintained until another image is specified. If the C' l lITent image is not a default, the original
image established in the START command or the lJSO procedure will be used.

Choosing Direct SYSOUT Writers

Since you have a choice' between direct system output writers and system output writers, the
following factors should be considered when deciding which type of writer to use:

• A direct system output writer does not require its own region. This can be an advantage to
the user that has a 256K system.

96 MVT Guide (Release 21.0)

• Each direct system output writer can process only one output class and needs one I/O
device assigned to it. In a system with several active initiators, there will probably not be
enough I/O devices to run direct system output writers for all output classes. In this case, it
is possible to have jobs running with more than one output class. A direct system output
writer could handle one output class and system output writers could handle the others.

• Direct system output cannot handle output from system tasks, jobs canceled while on the
input or hold queue, and jobs failed by the reader. It is necessary to start a system output
writer to handle these types of output.

• System output writers and direct system output writers could be used together. If the output
queue is filled, direct system output writers could be started. This would allow the system
output writers to clear the output queue, without stopping work in the problem program
regions.

The installation should assign specific output classes and devices to be handled by direct
system output writers. In addition to better control over the installation, the following
considerations also apply:

• The system output writer attempts to correct certain error conditions (for example, invalid
control characters); the direct system output writer does not have this facility. Therefore, a
job that runs successfully under the system output writer might abnormally terminate when
using the direct system output writer.

• If a direct system output writer was active at checkpoint time, it must be active and
allocated to the same device type when a restart is attempted. If certain devices are not
reserved for direct system output, the opetator will have to stop any writer going to the
needed device and start the necessary direct system output writer. He will then have to
restore the prevIous configuration when the restart job is completed.

• Output from the direct system output writer cannot be stopped without canceling the entire
job. Therefore, for example, it would be desirable to assign dumps or punched output that
might not be needed to classes being handled by the regular system output writer.

Also, it is strongly recommended that job separators be used with qirect system output writers;
otherwise, output from more than one job may run together on a page.

SYSIN and SYSOUT Data Blocking

Blocking input stream records reduces the time required to access and process them. If the
records are blocked, auxiliary storage space is conserved since more records can occupy the
same amount of space. There are two types of blocking for the input reader:

• input to the reader from the job stream
• output from the reader (input to the processing program)

If the input is to be blocked, you specify the number of buffers and their sizes on the
IEFRDER statement in a reader cataloged procedure. This is dependent on the type of input
device used. These can be overridden by specifying the new buffer sizes and number in the
START command for the reader.

The output from the reader (the input stream data that is transferred from the input stream
to a direct access device) can be blocked. You indicate the block size in the IEFDAT A
statement in the reader cataloged procedure.

Section IV: Modifying the System 97

Blocking system output will improve performance since it also reduces disk arm interference;
of course, at the same time it requires additional main storage allocation for the problem
program region and the output writer. The additional space required in each case is equal to
the logical record length times the blocking factor plus the input buffer space. You specify this
blocking in' the program which writes the output data set on a direct access device (for later
writing by the writer), and you should consider it when specifying region size in the writer
procedure.

In planning your blocking for the reader you can determine the block sizes accepted by the
various processors and utilities. by using the following chart.

98 MVT Guide (Release 21.0)

Data Blocking LRECL
Accepted by Pro- RECFM
cessors under MVT BLKSIZE

SYSIN SYSLIN
Processor SYSPRINT SYSPUNCH (IEFDATA) (~3200)

American National 121 80 80 80
Standard COBOL FBA FB FB FB

FT FT FT FT

Assembler F 121 80 80 80
FBM FB FB FB
FT FT FT FT

FORTRAN E 121 80 80 80
(with PRFRM option) FM F FB FB

121 80 FT FT

FORTRAN G 120 80 80 80
FBSA FB FB FB
FT FT FT FT

SEC IV
FORTRAN H 137 80 80 80

VBA FB FB FB
FT FT FT FT

PL/I F 125 80 <100 80
VBA FB FB FB
4+N*125 FT FT FT

Linkage Editor 121 80
FM F,FS

E 15,E 18 121 80
Linkage Editor 121 80
F44 FM,FBM F,FS,FB,FBS

605 400

Linkage Editor 121 80
F88,F128 FM,FBM F,FS,FB,FBS

FT~4840 3200

Sort 80
U FB
120 FT

RPG 121 80 80 80
FA F FB F
121 80 FT 80

Utilities 121 80
FBA NA FB
FT FT

F=Fixed; FA=Fixed, USASI control characters; FB=Fixed blocked; FBA=Fixed blocked, USASI control
characters; FBSA=Fixed blocked, standard blocks, USASI control characters; FBM=Fixed blocked, machine
control characters; VB=Variable blocked; VBA=Variable blocked, USASI control characters; FT=Full track;
U=Undefined

Section IV: Modifying the System 99

Cataloged Procedure Examples for a Complete Installation

The following examples show how an installation may design and use catalog procedures to
increase throughput and simplify the job of the MVT operator. The procedures were written
for an installation which does batch job processing primarily. Its job mix is approximately:

FORTRAN, PL/I 50%
COBOL 25%
RPG 15%
other 10%

The majority of the jobs will accept blocked SYSIN data. The FORTRAN and PL/I jobs
require small amounts of main storage for the go phase and have a short execution time. Most
of the COBOL and RPG jobs require extended execute time and large amounts of main
storage.

The sample procedures include:

READER:
RA - Automatic SYSIN Batch Reader
RB - Reader for blocked SYSIN with chained scheduling
RU - Reader for unblocked SYSIN with chained scheduling

WRITERS:
WC - Writer with command chaining capability
WU - Writer for special chains

INITIATORS:
ICR - Initiator to initiate COBOL and RPG jobs (alias IRC)
IFP - Initiator to initiate FORTRAN and PL/I jobs (alias IPF)

There are also compile-link edit-execute procedures for each of the two initiator procedures.

RA - Automatic S YSIN Batch Reader Procedure

IIASB PROC BKS=3200,SS="20,20",REG=16K
IIIEFPROC EXEC PGM=IEFVMA,REGION=®, x
II PARM='80103005001024905030SYSDA E00001,1101210004EOOOSYSDA 0'
IIIEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, x
II DCB=(BLKSIZE=80,RECFM=F,BUFNO=10,BUFL=80)
IIIEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=OLD
IIIEFDATA DD UNIT=SYSDA,SPACE=(&BKS,(&SS)), x
II DCB=(BLKSIZE=&BKS,BUFNO=2,RECFM=FB,BUFL=&BKS)

RA- ASB Reader Procedure

RA, the cataloged procedure for the automatic SYSIN batch reader requests space for the
SYSIN data without the CONTIG or RLSE parameters; this may require more direct access
space but will improve overall performance. The symbolic parameters allow the space allocated
and number of blocks allocated for SYSIN and the size of the blocks to be varied at START
time by the operator. The procedure specified twenty blocks of 3200 bytes for primary and
secondary allocation. Programs which use these SYSIN data sets should allocate a region size
large enough to accomodate the buffer lengths.

toO MVT Guide (Release 21.7)

RB - Reader for Blocked SYSIN Data

II PROC REG=60K,BKS=3600,SS=' 15,15'
IIIEFPROC EXEC PGM=IEFIRC,REGION=®, X
II PARM='80103005001024905010SYSDA E00001'
IIIEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, X
II DCB=(BLKSIZE=80,RECFM=FB,BUFL=80,BUFNO=5,OPTCD=C)
IIIEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=OLD
IIIEFDATA DD UNIT=SYSDA,SPACE=(&BKSI(&SS)), x
II DCB=(BLKSIZE=&BKS,LRECL=80,RECFM=FB. x
II BUFL=&BKS,BUFNO=2)

RB - Reader Procedure for Blocked SYSIN

The procedure RB reads jobs with blocked SYSIN data; the operator can change the size and
number of blocks allocated for SYSIN. The procedure requests a primary space allocation of
fifteen 3600-byte blocks. The region parameter may also be changed to accommodate different
SYSIN buffer and block sizes. The chained scheduling option is used to improve performance
in the same manner as command chaining is used with the writer.

RU - Reader Procedure for Unblocked SYSIN

IIIEFPROC EXEC PGM=IEFIRC,REGION=50K, X
II PARM='80103005001024905010SYSDA E00001'
IIIEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, X
II DCB=(BLKSIZE=80,BUFL=80,RECFM=F,BUFNO=10,OPTCD=C)
IIIEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=OLD
IIIEFDATA DD UNIT=SYSDA,SPACE=(80,(500,500),RLSE,CONTIG), X
II DCB=(BLKSIZE=80,BUFL=80,BUFNO=2,RECFM=FB,LRECL=80)

RU - Reader Procedure for Unblocked SYSIN

This procedure is for a reader which handles jobs with unblocked SYSIN. Chained scheduling
is used in the procedure.

WC - Writer with Command Chaining

The writer procedure WC uses command chaining which provides better performance by
obtaining a full chain of buffers before writing to the device. Additionally, symbolic parameters
in the procedure allow the operator to specify in the START command that output is to be
routed to a printer, tape, or punch (command chaining will function only with punch or
printer). When punch output is routed to a tape (as an intermediate device), the PARM field
of the procedure must contain a C instead of a P to specify card punch control characters.

/Iv-JC
IIIEFPROC
II
IIIEFRDER
II
II
II

PROC
EXEC

DD

REG=22K,BN=5,PC=P
PGM=IEFSD080,REGION=®,
PARM='&PC.AEFG'
UNIT=1403,DSNAME=SYSOUT,DISP=(,KEEP),
VOLUME=(",20),LABEL=(,NL),
DCB=(BLKSIZE=133,BUFL=133,LRECL=133,
RECFM=FM,BUFNO=&BN)

X

X
X
X

WC - Writer Procedure with Command Chaining

Section IV: Modifying the System 101

WU - Writer for Special Chains

The writer procedure WU is only for printer output requiring special UCS print chains; the
print chain specified in the procedure is the PN chain (which will be the default chain if the
operator's START command does not specify a chain). The UCS chain and a unit name (e.g.,
SOUT) must have been defined at system generation time to identify the devices that can
handle UCS chains. The writer will write output classes J, K, and L which have been
previously defined by the installation to contain all output requiring special chains. The
symbolic parameters in the procedure allow the operator to specify any special print chains in
his START command.

The WU catalog procedure could be duplicated (without the symbolic parameters) for each
UCS chain to be used in which case it should be named with the name of the chain; for
example, the following procedure could be named WPN.

IIWU
IIIEFPROC
II
IIIEFRDER
II
II
II

PROC
EXEC

DD

REG=20K,CHN=PN
PGM=IEFSD080,REGION=®,
PARM='PJKL,IEFSD094'
DSNAME=SYSOUT,DISP=(,KEEP),
UNIT=SOUT,UCS=&CHN,
DCB=(BLKSIZE=133,LRECL=133,BUFL=133,
RECFM=FM,BUFNO=2)

WU - Writer Procedure for Special Chains

Initiator Catalog Procedures

X

X
X
X

The following two initiator procedures use dedicated data sets; the necessary work files for the
compilers are alloc~ted at START time and remain allocated as long as the initiators are active.
The two procedures are for:

1. An initiator to handle job classes D and E which will include ANS COBOL and RPG
compile-link edit-execute jobs.

2. An initiator for job classes F and G which will include FORTRAN Hand PL/I
compile-link edit-execute jobs.

The following initiator procedure for classes D (primary) and E (secondary is named ICR
(!nitiator for f.OBOL and ~PG) and may be stored under the alias IRC.

IIIEFPROC
IISYSABEND
IILOADSET
IISYSUT4
II
IISYSUT3
IISYSUT2
II

EXEC
DD
DD
DD

DD
DD

PGM=IEFIIC,PARM='DE,LIMIT=8'
SYSOUT=A,SPACE=(TRK,(1,10»
UNIT=SYSDA,SPACE=(80,(500,100»
SPACE=(4601(700,100»,
UNIT=(SYSDA,SEP=(LOADSET»
UNIT=SYSDA,SPACE=(460,(700,100»
SPACE=(460,(700,100»,
UNIT=(SYSDA,SEP=(SYSUT2,SYSUT3»

ICR - Initiator Procedure for COBOL and RPG

102 MVT Guide (Release 21.0)

X

X

The following examples are compile-link edit-execute procedures for American National
Standard COBOL and RPG; these procedures may be used for jobs initiated by ,any initiator.
For ease of programming, the procedures are named the same as the IBM-supplied procedures,
but are actually modified to handle the dedicated data sets.

IICOB
IISYSPRINT
IISYSUT1
IISYSUT2
IISYSUT3
IISYSUT4
IISYSLIN
II
IILKED
II
IISYSLIB
IISYSUT1
IISYSPRINT
IISYSLMOD
II
IISYSLIN
II
IIGO

EXEC
DD
DD
DD
DD
DD
DD

EXEC

DD
DD
DD
DD

DD
DD
EXEC

PGM=IKFCBLOO,REGION=86K,PARM=SUPMAP
SYSOUT=A
DSNAME=&SYSUT1,UNIT=SYSDA,SPACE=(460,(700,100))
DSNAME=&SYSUT2,UNIT=SYSDA,SPACE=(460,(700,100))
DSNAME=&SYSUT3,UNIT=SYSDA,SPACE=(460,(700,100))
DSNAME=&SYSUT4,UNIT=SYSDA,SPACE=(460,(700,100))
DSNAME=&LOADSET,UNIT=(SYSDA,SEP=SYSUT1), X
DISP=(MOD,PASS),SPACE=(80,(500,100))
PGM=IEWL,REGION=96K,PARM='LIST,XREF,LET', X
COND=(5,LT,COB)
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=&SYSUT1,UNIT=SYSDA,SPACE=(1024,(50,20))
SYSOUT=A
DSNAME=&GOSET(RUN),DISP=(,PASS),UNIT= X
(SYSDA,SEP=SYSUT1),SPACE=(1024,(50,20,1))
DSNAME=&LOADSET,DISP=(OLD,DELETE)
DDNAME=SYSIN
PGM=*.LKED.SYSLMOD,COND=«5,LT,COB),(5,LT,LKED))

COBUCLG - Compile-Link Edit-Execute Procedure for ANS COBOL

IIRPG EXEC PGM=IESRPG,REGION=52K,PARM='NODECK,LOAD,LIST'
IISYSPRINT DD SYSOUT=A
IISYSPUNCH DD SYSOUT=B
IISYSUT3 DD DSNAME=&SYSUT3,UNIT=SYSDA,SPACE=(600,(100,20))
IISYSUT2 DD DSNAME=&SYSUT2,UNIT=SYSDA,SPACE=(600,(100,20))
IISYSUT1 DD DSNAME=&SYSUT1,SPACE=(600,(100,20)), X
II UNIT=(SYSDA,SEP=(SYSUT2,SYSUT3))
IISYSGO DD DSNAME=&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS), ·X

II SPACE=(80,(200,50))
IILKED EXEC PGM=IEWL,REGION=96K,PARM='XREF,LIST,LET', X
II COND=(9,LT,RPG)
IISYSPRINT DD SYSOUT=A
IISYSLMOD DD DSNAME=&GOSET(RPG),UNIT=SYSDA, X
II DISP=(,PASS,DELETE),SPACE=(1024,(50,20,1))
IISYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)
II DD DDNAME=SYSIN
IISYSUT1 DD DSNAME=&SYSUT4,SPACE=(1024,(50,20)), X
II UNIT=(SYSDA,SEP~(SYSLMOD,SYSLIN))

IIGO EXEC PGM=*.LKED.SYSLMOD,COND=«9,LT,RPG),(5,LT,LKED))

RPG - Compile-Link Edit-Execute Procedure for RPG

Section IV: Modifying the System 103

The initiator procedure for job classes F (primary) and G (secondary) is for FORTRAN H
and PL/I jobs. The procedure allocates the necessary data sets for both FORTRAN
(SYSl.FORTLIB) and PL/I (SYSl.PLILIB). By allocating these data sets at initiation time
(with the SHR parameter), the procedure saves the time required for a catalog search for these
data sets during job execution. This time saving can be significant when running many short,
fast compile-link edit-execute jobs. The procedure is named IFP and may be stored under the
alias IPF.

IIIFP
II:::EFPROC
IISYSABEND
IISYSLIBF
IISYSLIBP
IILOADSET
IISYSUTl
II
IISYSUT3
II

PROC
EXEC
DD
DD
DD
DD
DD

DD

CLS=A
PGM=IEFIIC,PARM='FG,LIMIT=12"
SYSOUT=&CLSI SPACE=(TRK,(1,10»
DSNAME=SYS1.FORTLIB,DISP=(SHRIKEEP)
DSNAME=SYS1.PL1LIB,DISP=(SHR,KEEP)
UNIT=SYSDA~SPACE=(400,(200,50»

UNIT=SYSDA,SPACE=(1024,(200,20»,
SEP=(SYSLIBP,LOADSET),
UNIT=SYSDA,SPACE=(80,(250,250»,
SEP=SYSUTl

X

X

IFP - Initiator Procedure for FORTRAN and PL/l

The following compile-link edit-execute procedures for FORTRAN Hand PL/I will execute
correctly only when they are run under an initiator which has the library data sets allocated to
it. Otherwise, the load step will fail since a new temporary data set will be allocated to the
SYSLIB DD card for DSNAME= & SYSLIBF or DSNAME= & SYSLIBP and the library data
set will not exist. In the GO steps for both procedures SYSOUT data is blocked. The caller of
the procedure can override the specified blocksize by specifying his own LRECL; blocksize
will then be adjusted at OPEN time to the next lowest multiple or LRECL. This will occur
with direct access SYSOUT data sets in BSAM, or with fixed length QSAM records. For ease
of programming, the procedures are named the same as the IBM-supplied procedures, but are
actually modified to handle the dedicated data sets.

IIFORT
IISYSPRINT
IISYSPUNCH.
IISYSLIN
II
IILKED
II
IISYSLIB
IISYSPRINT
IISYSLMOD
II
IISYSUTl
II
IISYSLIN
II
IIGO
IIFT05FOOl
IIFT06FOOl
IIFT07FOOl

EXEC
DD
DD
DD

EXEC

DD
DD
DD

DD

DD
Db
EXEC
DD
DD
DD

PGM=IEKAAOO,REGION=228K
SYSOUT=A
SYSOUT=B
DSNAME=&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS), X
SPACE=(400,(200,50),RLSE)
PGM=IEWL,REGION=96K,PARM=(MAP,LET,LIST), X
COND=(4,LT,FORT)
DSNAME=&SYSLIBF,DISP=SHR
DSNAME=&SYSOUT=A
DSNAME=&GOSET(MAIN),UNIT=SYSDA,PISP=(,PASS), X
SPACE=(30721(30,10,1),RLSE)
UNIT=SYSDA, DSN.?\ME= &SYSUT 1 , SEP=SYSLMOD X
SPACE=(1024,(200,20»
DSNAME=&LOADSET,DISP=(OLD,DELETE)
DDNAME=SYSIN
PGM=*.LKED.SYSLMODICOND=((4,LT,FORT)(4,LT,LKED»
DDNAME=SYSIN
SYSOUT=A,DCB=(BLKSIZE=2660,LRECL=133)
SYSOUT=B,DCB=(BLKSIZE=2600,LRECL=80)

FORTHCLG - Compile-Link Edit-Execute Procedure' for FORTRAN H

104 MVT Guide (Release 21.0)

IIpL1L EXEC PGM=IEMAA, REGION=52K,PARM= , LOAD, NODECK'
IISYSPRINT DD SYSOUT=A

\. IISYSLIN DD DSNAME=&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, X
II SPACE=(80,(250,100))
IISYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSDA,SEP=SYSLIN, X
II SPACE=(1024,(60,60)"CONTIG),DCB=BLKSIZE=1024
IISYSUT3 DD DSNAME=&SYSUT3,UNIT=SYSDA,SEP=SYSUT1, X
II SPACE=(80,(250,250)),DCB=BLKSIZE=80
IILKED EXEC PGM=IEWL,REGION=96K,PARM='XREF,LIST' , X
II COND=(9,LT,PL1L)
IISYSLIB DD DSNAME=&SYSLIBP,DISP=SHR
IISYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSDA,SEP=SYSLIB X
II SPACE=(1024,(200,20)),DCB=BLKSIZE=1024
IISYSLMOD DD DSNAME=&GOSET(GO),UNIT=SYSDAIDISP=(MOD,PASS),X
II SPACE=(1024,(50,20,1),RLSE),SEP=SYSUT1
IISYSPRINT DD SYSOUT=A
IISYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)
II DD DDNAME=SYSIN
IIGO EXEC PGM=*.LKED.SYSLMOD,COND=((9,LT,PL1L), X
II (9 , L'r, LKED))
IISYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=2660,LRECL=133) SEC IV

PLILFCLG - Compile-Link Edit-Execute Procedure for PL/I

Section IV: Modifying the System 105

Using the Link Pack Area (MVT)

The link pack area is always present in main storage, and, as a minimum, always contains a
group of system-specified load modules concerned with job management processing. The link
pack area can be extended to contain:

• Load modules of nonresident SVC routines
• Load modules of nonresident error recovery procedures
• Other reenterable load modules from the system linkage library (SYS 1.LINKLIB) and SVC

library (SYS1.SVCLIB)
• (SYSl.LINKLIB) and SVC library (SYS1.SVCLIB)
• A table (the BLDL table) containing directory entries of load modules in the linkage library

(SYS1.LINKLIB) and SVC library (SYS1.SVCLIB)

Essentially, the link pack area in MVT configurations is the counterpart of the MFT
configuration residency options. If the system includes IBM 2361 Core Storage and main
storage hierarchy support, a secondary link pack area can be created in hierarchy 1 that will
contain nonresident SVC load modules and/or other reenterable load modules from the SVC
library.

Select the load modules to be made resident and the linkage library load modules whose
directory entries are to appear in the BLDL table. Indicate your choices to the system through
lists of the load module names placed in the system parameter library (SYS1.PARMLIB). Standard
(default) and alternative lists may be made up for each category.

During the initial program loading (IPL) process the nucleus initialization program places
the specified load modules in the link pack area and constructs the BLDL table. The load
modules and BLDL table remain, unchanged, in the link pack area until the next IPL
procedure is performed. The resident access method routines, the resident SVC routines, and
the resident BLDL table entries can be used by all tasks; the resident error recovery
procedures are used by the I/O supervisor.

Procedure for Using the Link Pack Area

The following material provides guidelines for the use of the link pack area.

Initialization

When the system is generated, indicate whether to extend the link pack area to include
nonresident SVC routines, nonresident error recovery proceudres, other reenterable load
modules, the BLDL table, or any combination of these. The System Generation publication
describes the procedure (the SUPRVSOR macro instruction).

To exercise full control over the content of the link pack area (except for the mandatory
modules which are always loaded) include the operator communication facility at system
generation. The System Generation publication describes the procedure (the SUPRVSOR macro
instruction). The operator communication facility enables you to respecify the content of the
link pack area at each IPL.

Creating Parameter Library Lists

The IEBUPDTE utility program places load module name lists in the parameter library. To
avoid the duplicate loading into either the link pack area or dynamic main storage of modules

106 MVT Guide (Release 21.0)

already resident in the link pack area, the ADD utility control statement must show all the
ALIAS names of the load module being placed in the link pack area.

Updating the system data set SYS1.PARMLIB should not be attempted while other jobs are
operative. The recommended procedure is described in the Operator's Reference publication.

The nucleus initialization program (NIP) will search the system catalog to locate the
SYS 1.P ARMLIB data set. If it is not found in the catalog, SYS 1.P ARMLIB is assumed to
reside on the IPL volume. If no VTOC entry can be found, the operator will receive message
IEA2111 "OBTAIN FAILED FOR SYSl.PARMLIB DATA SET". Message IEA20SI "fff
FUNCTION INOPERATIVE" will follow either of these messages. The fff parameter -RAM,
BLDL, RSVC, or RERP -- shows which of the functions cannot be implemented. Processing
will continue; however, any resident functions dependent on parameter lists contained in the
parameter library will be omitted from the system nuclues.

Except for LNKLSTOO, the input format (to IEBUPDTE) for the lists is the same for all
three options, consisting of library identification followed by the load module names. Use
eighty character records, with the initial or only record containing the library idenitification.
Continuation is indicated by placing a comma after the last name in a record and a nonblank
character in column 72. Subsequent records must start in cloumn 16.

The initial record format, with continuation, is:

72

[b ...]
SYS.LINKLIB
SYS1.SVCLIB b ... name1, name2,name3, ... x

The topic "The Link Library List" explains the input format for LNKLSTOO.

List Specification

The names and content of the parameter library lists are:

List Name List Content

IEARSVOO - standard list Names of type 3 and 4 SVC
IEARSVxx1 - alternative list(s) routine load modules.

lEAl G EOO - standard list
IEAIGExx1 - alternate list

N ames of error recovery procedure
load modules specified after

system generation via IEBUPDTE

IEAIGGOO - standard list Names of reenterable load modules
IEAIGGxx1 - alternative list(s) in the SVC and Link libraries.

IEABLDOO - standard list N ames of Link library load
IEABLDxxl - alternative list(s) modules whose directory entries

LNKLSTOO - standard list

are to be entered in the BLDL table.

SYS1.LINKLIB - Additional data sets
may be concatenated after system
generation via IEBUPDTE.

lXX can be any two alphameric characters.

Section IV: Modifying the System 107

•

SVC Load Module Lists: Only one standard SVC load module list -- IEARSVOO -- may be
present in the paramter library. As many alternative lists can be created as needed. To use
alternative lists, specify the operator communication facility at system generation. The standard
list is the only list referred to by the nucleus initializaiton program at IPL time if the the
operator communication facility is not installed in the system. A suggested standard list,
supplied by IBM is shown under the resident SVC routines option description in this section.
The Storage Estimates publication provides a list (with storage requirements) of IBM originated
type 3 and 4 SVC load modules that are eligible for inclusion in the link pack area.

Error Recovery Procedure Load Module Lists: Only one standard list of error recovery
procedures -- IEAIGEOO -- may be present in the paramter lisbrary. As many alternative lists
can be created as needed. The standard and/or alternative lists is used as discussed under SVC
Load Module Lists. The standard list supplied by IBM has no error recovery procedure entries;
so you must supply these via IEBUPDTE after system generation. The Storage Estimates
pUblication provides a list (with storage requirements) of IBM error recovery procedures that
are eligible for inclusion in the link pack area.

Reenterable Load Module Lists: Only one standard list of reenterable load modules -
IEAIGGOO may be present in the paramter library. As many alternative lists can be created as
needed. Load modules from the SVC library and the linkage library cannot be incorporated in
one list. Use of the Standard and/or alternative lists is as discussed under SVC LOAD
MODULE LISTS. A suggested standard list, supplied by IBM, is shown under the resident
access method modules operation description in section 1 of this chapter. The Storage Estimates
pUblication provides a list (with storage requirements) of IBM originated reenterable load
modules (other than SVC modules) that are eligible for inclusion in the link pack area.

BLDL Table Lists: Only one standard list of SVC library or linkage library modules -
IEABLDOO -may be present in the parameter library. You may create as many alternative lists
as your needs require. Use of the standard and/or alternate lists is as discussed under the topic
SVC Load Module Lists. An initial list for the linkage library is shown under the BLDL table
description in this section. For the linkage library, 56 bytes per entry are required. For the SVC
library, 32 bytes per entry are required. To determine the storage requirements for a list, multiply the
number of modules in the list by the length of an entry.

Note: Library load modules names must be arranged in lists(s) in the same order as they
appear in the library directory. All load modules in the linkage or SVC libraries are eligible to
have their directory entries placed in the BLDL table.

Operational Characteristics

Specifications at system generation time determine the types of load modules that are placed in
the link pack area and whether a BLDL table is constructed in the link pack area. In response
to specifications, the nucleus initialization program (at IPL time) refers to the parameter
library lists to determine the specific load modules to be placed in the link pack area and/or
the specific library directory entries to be placed in the BLDL tables. In the absence of the
operator communication facility only the standard lists are referred to. If the operator
communication facility is present the operator must specify the list or lists to be used. The
operator may:

• Specify use of the standard list for each category, i.e., SVC load modules, other reenterable
load modules, the BLDL table content.

• Specify alternative lists for each category, or a combination of the standard list and
alternative lists. Up to four lists may be specified for each load module category.

108 MVT Guide (Release 21.7)

In MVT, two lists may be specified; one for SYS1.SVCLIB and one for SYS1.LINLKIB.

• Specify that (for the current IPL) the loading of modules and/or construction of a BLDL
table be suppressed. Each category is treated independently.

At each IPL, operator communication can specify the content of the link pack area
extension. The number and type of load modules selected for inclusion in the link pack area,
and the content of the BLDL table, can thus be altered to refiect the type of workload to be
presented to the system after the IPL. If the system includes 2361 Core Storage and main
storage hierarchy support, a secondary link pack area for hierarchy 1 may be created and its
contents specified at this time.

The Messages and Code publication describes the operator message and responses associated
with use of the link pack area.

The Resident BLDL Table Option

When the system issues ATTACH, LINK, LOAD, or XCTL macro instructions requesting
load modules from partitioned data sets, the BLDL table operation searches the data set
directory for the location of the requested module and fetches the module. The resident BLDL
table option eliminates the directory search required during execution of these macro
instructions when a load module (whose directory entry is resident) is requested from the
linkage or SVC libraries.

This option builds lists of directory entries for use by ATTACH, LINK, LOAD, or XCTL
macro instructions when they request linkage or SVC library load modules. The BLDL
operation in the macro instruction routines searches the library directory only when the
directory entry for the requested load module is not present in the resident BLDL table.

List, in a member of SYSl.PARMLIB, the names either of linkage or SVC library load
modules whose directory entries are to be made resident. The member name for the standard
list is IEABLDOO. The load module names must be listed in the same order as they appear in
the directory; that is, they must be in ascending collating sequence. Creation of parameter
library lists is discussed later in this chapter. The next section provides guidelines for choosing
the content of the list.

Note: Directory entries in the resident table are not updated as a result of updating the load
module in the library. The old version of the load module is used until an IPL operation takes
place and the new directory entry for the module is made resident.

Selecting Entries for the Resident BLDL Table

Any load module in the linkage or SVC library may have its directory entry placed in the
resident BLDL table. Other items to consider are:

1. Table Size.
Linkage library - Each entry requires 56 bytes.
SVC library - Each entry requires 32 bytes.

2. Frequency of use of the load module.

Section IV: Modifying the System 109

•

Table Size: The resident BLDL table is incorporated in the link pack area. The additional
storage required is governed by the number of table entries and is acquired by reducing the
amount of dynamic storage area available; therefore, the system nucleus expands. Each
installation using the resident BLDL table option must determine the amount of storage it can
afford for the resident BLDL table.

Frequency of Use: Since resident routines reduce the amount of main storage available to
problem programs, select modules used frequently. Your installation's workload should be
considered.

For Link Library Lists: The scheduler, linkage editor, and language processor(s) are possible
selections for link library lists.

For SVC Library Lists: In general, use any module from the SVC library you would consider for
residence (RAM option). Do not create libraries for the following since they are not necessary:

• Load 1 of type 3 and 4 SVCs (i.e. IGCOOXXX)
• Modules selected for RAM, RERP, RSVC usage

Recommended modules should be chosen from access methods and ERPs. Always avoid
placing the following modules in the BLDL list because they have internal BLDL tables and
internal directory entries: OPEN, CLOSE, TCLOSE, EOV, SCRATCH, ALLOCATE,
IEHATLAS, SETPRT, STOW, machine-check handler modules.

The SVC library list can be put in SYSl.PARMLIB using the member name IEABLDnn. This
nn will be picked up when the operator specifies the system parameters with the response
BLDL=xx,nn.

List lEABLDOO

The. IBM-supplied standard list IEABLDOO is:

SYS1.LINKLIB IEBCOMPR,IEBGENER,IEBPTPCH,IEBUPDTE,IEHLIST,IEHMOVE, X
IEHPROGRM, LINKEDIT, SORT

Suggested Starter List for MVT

The following SVC library list includes selected modules for BDAM, BPAM, RLSE,
CATALOG, and OPEN.

SYS1.SVCLIB IGGOCLC1,IGGOCLC2,IGGOCLC3,IGGOCLC4,IGGOCLC5,IGGOCLC6,
IGGOCLC7,
IGG019AV,
IGG019BH,IGG019BI,IGG019BK,IGG019BM,
IGG019CG,IGG019C3,
IGG019KA,IGG019KE,IGG019KK,IGG019KQ,IGG019KU,IGG019LI,
IGG020D1,IGG020P1,IGG020P2,IGG020P3

110 MVT Guide (Release 21.0)

X
X
X
X
X
X

Suggested Starter List for Time Sharing

The following list is recommended for improved system accesses to SVCLIB with the time
sharing option. It includes the started list for MVT plus modules of SVC 99.

SYS1.SVCLIB IGC0109I,IGC0209I,IGC0309I,IGC0409I,IGC0509I,IGC0609I,
IGC0709I,IGC0809I,IGC0909I,IGC1009I,IGC1109I,IGC1209I,
IGC1309I,
IGC1409I,IGC1509I,IGC1609I,IGC1709I,IGC1809I,IGC1909I,
IGC2009I,IGC2109I,IGC2309I,IGC2509I,IGC2609I,
IGC2709I,IGC2809I,IGC2909I,IGC3509I,
IGGOCLC1,IGGOCLC2,IGGOCLC3,IGGOCLC4,IGGOCLC5,IGGOCLC6,
IGGOCLC7,
IGG019AV,
IGG019BH,IGG019BI,IGG019BK,IGG019BM,
IGG019CG,IGG019C3,
IGG019KA,IGG019KE,IGG019KK,IGG019KQ,IGG019KU,IGG019LI,
IGG019TX,IGG019T4,IGG019T8,
IGG020D1,IGG020P1,IGG020P2,IGG020P3

The Resident Access Method Modules Option

x
X
X
X
X
X
X
X
X
X
X
X
X

This option places access method load modules in the link pack area, and creates a resident list
of these modules. If the system includes IBM 2361 Core Storage and main storage hierarchy
support, modules may also be placed in the secondary link pack area in hierarchy 1 using the
"HRAM=" reply to "SPECIFY SYSTEM PARAMETERS." A LOAD macro instruction
requesting any access method module first scans the resident list. If the module is listed, no
fetch operation is required.

List, in a member of SYS l.P ARMLIB, the load module names of access method load
modules to be made resident. The member name for the standard list is IEAIGGOO. A
standard list of most frequently used access method modules is supplied by IBM, and is in
SYS 1.P ARMLIB of the starter system under the standard member name. The content of the
list is tabulated at the end of this description.

The creation of parameter library lists is discussed in this section. The following paragraphs
discuss some considerations pertaining to the use of the access method option.

Considerations for Use

The storage space required for each access method module consists of the byte requirements of
the module and its associated load request block (LRB). The Storage Estimates publication
provides the byte requirements for access method modules eligible to be made resident. The
byte requirement of the code supporting the option is also provided.

All access method modules placed in the system nucleus are "only load able ". A IT ACH,
LINK, and XCTL macro instructions cannot refer to the resident modules.

Alter the standard access method list (or create alternative lists) to include access method
modules supporting program controlled interrupt scheduling (PCI), exchange buffering, track
overflow, and the UPDAT function of the OPEN macro instruction.

Section IV: Modifying the System 111

•
\

For example, if checkpoint/restart is used, the following access method routines must be
main storage resident, whether the checkpoint data set is on tape or on DASD (direct access
storage device):

IGG019BA, IGG019BB, IGG019CC

If the checkpoint data set is on DASD these additional modules must be resident:

IGG019CD, IGG019CH, IGG019BC

If chained scheduling is used to write the checkpoint data set,

IGG019CU and IGG019CW

also must be resident. If the data set is on DASD and chained scheduling is used,

IGG019CV and IGG019CZ

must be resident together with the earlier two routines. If track overflow is used to write the
data set,

IGG019Cl, IGG019C2, and IGG019C3

must be resident.

When a composite console is used, an alternative list should include BSAM modules for
card readers and printers.

If you specify either the 3330 or the 2305 I/O devices in your system, add the following
modules to the standard RAM list (IEAIGGOO):

IGG019C4, IGG019FN, IGG019FP, and IGG019EK

IGG019CO must also be resident and is on the standard RAM list.

When using the SAM "search direct" option, it is advisable to make IGG019FN, IGG019FP,
and IGG019C4 resident through the standard list. Performance is improved and required
region size is decreased if these modules are resident.

To be eligible for use with the resident access method option, access method load modules
must be reenterable. The module name must be of the form IGG019xx, where xx can be any
two alphameric characters.

112 MVT Guide (Release 21.7)

List lEAIGGOO

The content of the IBM-supplied standard list IEAIGGOO is:

Module Name Access Method Function

IGG019AV QSAM(SB) PUT Locate for Dummy Data Set

IGG019AN QSAM(SB) Backward Move - Format F, FB, U Records

IGG019AM QSAM(SB) Backward Locate - Format F, FB, U Records

IGG019BE BSAM Magnetic Tape Forward Space or Backspace

IGG019AG QSAM(SB) GET Move with CNTL - Format V Records (Card Reader)

IGG019CB SAM Space or Skip Printer

IGG019CA SAM Stacker Select (Card Reader)

IGG019AK QSAM(SB) PUT Move, Format F, FB, U Records

IGG019AJ QSAM(SB) PUT Locate, Format V, VB Records

IGG019AI QSAM(SB) PUT Locate, Format F, FB, U Records

IGG019AC QSAM(SB) GET Move, Format F, FB, U Records

IGG019AB QSAM(SB) GET Locate, Format V, VB Records
SEC IV

IGG019AA QSAM(SB) GET Locate, Format F, FB, U Records

IGG019AR QSAM(SB) PUT Synchronization Routine

IGG019AQ QSAM(SB) GET Synchronization Routine

IGG019AL QSAM(SB) PUT Move, Format V, VB Records

IGG019AD QSAM(SB) GET Move, Format V, VB Records

IGG019BD BSAM NOTE/POINT Tape

IGG019BC BSAM NOTE/POINT Disk

IGG019BB BSAM CHECK (all devices)

IGG019BA BSAM READ/WRITE (all devices)

IGG019CK SAM SYSIN Delimiter Check (Appendage)

IGG019CJ SAM Read Length Check, Format V Records (Appendage)

IGG019CI SAM Length Check, Format FB Records (Appendage)

IGG019CH SAM End-of-Extent Check (Data Extent Block) (Appendage)

IGG019CL SAM Printer Test Channels 9,12 (Appendage)

IGG019CF SAM ASA Character to Command Code (Printer-Punch)

IGG019CE SAM End-of-Block (Printer-Punch)

IGG019CD SAM Schedules I/O for Direct Access Output

IGG019CC SAM Schedules I/O for Tape, Direct Access

Input, Card Reader, Paper Tape Reader

IGG019CO SAM Channel end (Format U).

IGG019C4 SAM Search Direct (SD) or Rotational Position

Sensing. (RPS) Fixed Standard

End-of-Extent Appendage.

IGG019FN SAM Checks RPS values (PO). Start I/O for Search Direct (SD).

IGG019FP SAM Channel end apnendage for Search Direct (SD).

SB=simple buffering

SAM=common sequential access method routines

Section IV: Modifying the System 113

Note: If the system generation statements specify the use of both MCS and of an mM 2740
Communications Terminal as an operator's console, the RAM option list (module IEAIGGOO)
is effectively extended by the following character constants in the nucleus initiation program
module IEAANIP:

DC C' IGGO 19MA '
DC C'IGG019MB'
DC C'IGG019MO'

BTAM read/write module
BTAM Appendage
BTAM 2740 module

The effect of these DCs is that the named modules are loaded whether or not the RAM option
is specified in the system generation statements. In MVT, the modules are always loaded into
the link pack area.

The Resident SVC Routines Option

This option places any of the type 3 and 4 SVC routine load modules in the link pack area. If
the system includes IBM 2361 Core Storage and main storage hierarchy support, modules may
also be placed in the secondary link pack area in hierarchy 1 using the "HSVC=" reply to
"SPECIFY SYSTEM PARAMETERS." Some, or all, of the modules associated with a SVC
service routine may be made resident. Placing the most frequently used SVC load modules of a
system service routine, such as OPEN, in main storage improves system performance. For type
3 SVC load modules and initial type 4 SVC load modules, the SVC table entries associated
with these modules are adjusted to reflect an entry point address rather than a relative track
address. A resident SVC load list is used by the XCTL macro instruction for transfer of
control between resident type 4 SVC load modules.

List in a member of SYS 1.P ARMLIB, the type 3 and 4 SVC load modules to be made
resident. The member name for the standard list is IEARSVOO. Such a standard list (shown
below) is provided by IBM in SYS1.PARMLIB of the starter system. The creation of
parameter library lists is discussed later in this chapter.

If the system includes the multiple console support (MCS) function, to improve MCS
performance add to the standard list (or include in a list of your own) IGC0007B, the name of
the first load module of the SVC 72 routine.

The Storage Estimates publication provides the byte requirements of type 3 and 4 SVC
routines eligible to be made resident. The byte requirement of the code supporting the option
is also provided.

114 MVT Guide (Release 21.0)

List lEARSVOO

The content of the IBM-supplied standard list IEARSVOO is:

Module Name Function

Open - Volume Serial Function

Open - Unit Selection and DSCB Read

Open - DSCB and JFCB Merge

Open - DSCB to JFCB Merge

Open - JFCB to DCB Merge

Open - Merge and DCB Exit Routine

Open - Merge DCB to JFCB

Open - Access Method Determination

Open - Access Method Executor

Open - Rewrite JFCB and Final Load

Close - Initialization and Read JFCB and DSCB

Close - Access Method Interface

Close - Access Method Interface and Write JFCB

Close - Write File Mark

Close - Restore System Function
Close - Restore User Function

Close - Final Load

EOV - Synad Executor

Purge Routine

Open - Initial Load

Close - Initial Load

IEG0193A

IEG0194E

IEG0195A

IFG0195J

IFG0196J

IFG0196L
IFG0196M

IFG0196V

IFG0196W

IFG0198N
IFG0200V

IFG0200W

IFG0200Y

IFG0202E

IFG0202J
IFG0202K

IFG0202L

IFG0551B

IGCOOOIF

IGCOOOll

IGCOOO2_ *
IGCOOO2B

IGCOOO5E

IGG0191A

IGG0191B

IGG0191D

IGG01910

IGG01911

IGG01917

IGG0196A

IGG0196B

IGG0201Y

IGG0201Z

Open/Close Type=J - Alternate Initial Load for Open

EOV - Initial Load

Open - DEB Construction (First Load)

Open - Main Executor (First Load)

Open - Direct Access Executor

Open - Load Executor (First Load)

Open - lOB and Buffer Construction

Open - Load Executor (Second Load)
Open - DEB Construction (Second Load)

Open - Main Executor (Second Load)

Close - Release Work Areas and Buffers

Close - SAM Executor

*The last (eighth) character is a 12 and 0 punch. This character has no assigned graphic in
EBCDIC. In BCD, the graphic is ? (the question mark).

The Resident E"or Recovery Procedure Option

This option places error recovery procedures in main storage. Some, or all, of the modules
associated with the handling of an I/O error may be made resident. If an I/O device
frequently requires ERP processing, system performance improves if the error recovery
procedures are made resident. The list of those error recovery procedures that may be made
resident in main storage is contained in the Storage Estimates publication. An I/O supervisor
request for an error recovery procedure will result in a search of the resident error recovery
procedure list. If the error recovery procedure is resident, no fetch operation is required.

Section IV: Modifying the System 115

List in a member of SYS 1.P ARMLIB, the module names of error recovery procedures to be
made resident. The member name for the standard list is IEAIGEOO. After system generation,
there remains the option of indicating which error recovery procedures are to be made
resident. The error recovery procedures should be listed by expected frequency of use; the
least used module is first in the list. Note: The format of the IBM-supplied IEAIGEOO list
contains the required library name, SYS 1.SVCLIB, and no error recovery procedure names. After
system generation, IEAIGEOO can be updated to indicate which error recovery procedures are

to be made resident or an alternate list can be created. Until this update is performed, no error
recovery procedures will be made resident during the IPL process. The creation of parameter
library lists is discussed later in this chapter.

The Storage Estimates publication provides the byte requirements of error recovery procedures
that may be made resident. The byte requirement of the code supporting the option is also
provided.

Programming Notes

A list of the load modules always placed in the link pack area by the system is contained in the
Storage Estimates publication. The main storage space requirements of these modules determines
the basic (minimum) size of the link pack area. The area is extended by the number of storage
bytes needed to accommodate the load modules and BLDL table content specified at IPL time.

Placing the initiator / terminater load module IEFSD06l in the link pack area enables the
system to make more efficient use of the dynamic area of storage. The operating system
allocates to each job a part of a region not less than the size required to accommodate the
initiator-termi~ator. This allocation is from processor storage (hierarchy 0) and occurs even
when the REGION parameter requests less than the required space or no space. After·
initiation, the part of the region in heirarchy 0 is reduced by as many as 40,000 bytes when
the job terminator is resident in the link pack area.

Example of Link Pack Area Specification

The following example illustrates the extension of the link pack area to contain SVC load
modules, other reenterable load modules, and a BLDL table. The RESIDNT field of the
system generation SUPRVSOR macro instruction would look like:

SUPRVSOR RESIDNT=TRSVC,RENTCODE,BLDLTAB ...

When altering the content of the link pack area, specify: OPTIONS=COMM, ... in the
SUPRVSOR macro instr:uction.

Five possibles lists that can be placed on SYS 1.P ARMLIB are:

1. IEARSVOO, which contains names of modules of the Open SVC routine used for direct
access devices.

2. IEARSV20, which contains names of modules of the Close SVC-routine.
3. IEAIGG01, which contains names of modules of the basic sequential access method

(BSAM).

116 MVT Guide (Release 21.0)

4. IEABLDOO, which contains names of modules of the initiator portion of the job scheduler.
5. IEABLDFO, which contains names of modules of both the FORTRAN compiler and the

initiator.

Note that there is no standard list for reenterable modules from the linkage or SVC library
(IEAIGGOO). This implies that you don't want modules of this type loaded unless a list is
explicitly specified.

To place these lists in SYS 1.PARMLIB, use the IEBUPDTE utility program as shown:

//ADDLISTS
//STEP
//SYSPRINT
//SYSUT2
//SYSIN
./
./
SYS1.SVCLIB

./

./
SYS1.SVCLIB

./

./
SYS1.SVCLIB

./

./
SYS1.LINKLIB

./

./
SYS1.LINKLIB

/
/*

JOB 61938,R.L.WILSON
EXEC PGI1=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYS1.PARMLIB,DISP=OLD
DD DATA
ADD NAME=IEARSVOO,LIST=ALL
NUI1BER NEW1=Ol,INCR=02
IGG0190I,IGG0190L,IGG0190M,

IGG0190S,IGG0190Z
ADD N~~E=IEARSV20,LIST=ALL

NUI1BER NEW1=Ol,INCR=02
IGC00020,IGG0200A,IGG0200B,IGG0200C,IGG0200F,

IGG0200G,IGG0200Y
ADD NAME=IEAIGG01,LIST=ALL
NUMBER NEW1=Ol,INCR=02
IGG019BA,IGG019BB,IGG019BC,IGG019BD,

IGG019BE,IGG019BF,IGG019BG,
IGG019BH,IGG019BI,IGG019BK,IGG019BL

ADD Nfu~E=IEABLDOO,LIST=ALL

NUI1BER NEW1=Ol,INCR=02
IEFSD061,IEFSD062,IEFSD064,IEFSD104,

IEFVM1,IEFWCOOO,IEFWDOOO,
IEFW21SD,IEFW41SD,IEFW42SD,IEFXJOOO

ADD NAME=IEABLDFO,LIST=ALL
NUMBER NEW1=Ol,INCR=02
IEFSD061,IEFSD062,IEFSD064,IEFSD104,

ENDUP

IEFVM1,IEFWCOOO,IEFWDOOO,IEFW21SD,
IEFW41SD,IEFW42SD,IEFXJOOO,IEJAAAO,
IEJEAAO,IEJFAAO,IEJGAAO,IEJJAAO,
IEJLAAO,IEJNAAO,IEJPAAO,IEJRAAO,
IEJVAAO,IEJXAAO, C
IEFWDOOO,IEFW41SD C

C

C

C
C

C
C

C
C
C
C
C

Without operator communicaton only the standard lists IEARSVOO and IEABLDOO would
be referred to at IPL time. With operator communication use of all the lists or any
combination could be specified at IPL time.

To extensively use the FORTRAN compiler after a given IPL and BSAM with direct access
devices, it is possible to use all of these lists -except IEABLDOO -- to specify the content of
the extended link pack area. To do this, the operator would specify the following in response
to the SPECIFY SYSTEM PARAMETERS operator's message:

REPLY id, 'RSVC=OO,20,RAM=Ol,BLDL=FO'

Section IV: Modifying the System 117

-SEC IV
___ _~_, ~ ." _N _ ..

To perform general processing without extensive use of any particular compiler or access
method after an IPL it is possible to put just the linkage library directory entries of initiator
modules in a BLDL table. In this case, the operator's reply at IPL would be:

REPLY id, 'R5VC=,RAM=,'

Since the list of initiator modules is the standard list, it need not be specified. "RSVC=,"
must be specified to prevent the use of the standard list of SVC modules. Although there is no
standard list of reenterable modules, "RAM=," should be specified to prevent NIP from
performing unnecessary processing.

The Link Library List

The link library list (LNKLSTOO) enables concatenating up to 16 data sets, on multiple
volumes, to form SYS1.LINKLIB. LNKLSTOO is included in the system when it is generated
as a required member of SYS1.PARMLIB. If SYS1.PARMLIB does not include the member
LNKLSTOO, SYS 1.LINKLIB will be used as the system link library and a warning message will
be provided. Note: The amount of space required for SYS 1.P ARMLIB is discussed in the
Storage Estimates publications.

LNKLSTOO contains one member, SYS1.LINKLIB. After system generation there is the
option of adding members via the IEBUPDTE utility program. Each member may have up to
16 extents. After making additions to SYS1.SVCLIB, SYS1.LINKLIB, or data sets
concatenated to LINKLIB via LNKLSTOO, and before using the additions, IPL should be
performed to update the description of the link and/or SVC library in main storage.

The input format (to IEBUPDTE) consists of eighty-character records. Continuation is
indicated by placing a comma after the last name in a record and a nonblank character in
column 72. Subsequent records must start in column 16. The initial format is:

[b ...] SYS1.LINKLIB

To add member names to LNKLSTOO, replace the initial record with:

[b ...] SYS1.LINKLIB, name1,name2,name3, ...

The Messages and Codes publication describes the NIP messages associated with LNKLSTOO.

118 MVT Guide (Release 21.7)

I"

Job Queue Format

The job queue format is specified when the system is generated and may be altered during
subsequent system start procedures. Formatting consists of specifying the number of queue
records in a job queue logical track, reserving queue records for initiators, the
write-to-programmer routine, and reader/interpreters, and reserving queue records for job
cancellation.

The basic element of the system job queue (the data set SYSl.SYSJOBQE) is a 176-byte
record -- the queue record. The total number of queue records available is fixed by the space
allocated to the SYSl.SYSJOBQE data set. Queue records contain the tables, control blocks,
and system messages developed by the reader/interpreter, write-to-programmer, and initiator
control program routines -- the information used to run a job.

Lack of queue records to work with is not critical for a reader/interpreter routine. Processing
of the input job stream assigned to a reader/interpreter is suspended until queue records
become available, at which time processing is resumed. An initiator, however, must have sufficient
queue records available to complete the initiation and running of a job or the job is canceled. Because
one or more reader/interpreter and one or more initiators may be concurrently active, steps
must be taken to ensure that queue records are available to each initiator started, so that it
may complete its operations. In addition queue records must be reserved for use by initiators
in the event job cancellation does take place. The main function of job queue formatting is to
reserve queue records for initiator use.

To format the job queue:

1. Designate the number of queue records to be contained in a job queue logical track. A
logical track consists of a header record (20 bytes) plus the designated number of queue
records. Reader/interpreters and initiators are assigned queue records in terms of logical
tracks.

2. Designate the number of queue records to be reserved for use by an initiator. Each initiator
is allocated this number of records. If the allocation is insufficient for the job currently
being processed by the. initiator, the job is canceled in MVT.

3. Designate the number of queue records to be reserved for use in case of job cancellation. All
initiators that cancel use these queue records. If the allocation. is insufficient, the initiator is
placed in a WAIT state and a message issued.

4. Designate the number of queue records to be reserved for write-to-programmer routine use
for each job that may be started by an initiator.

The balance of the queue (total queue records less the reservations in items 2, 3, and 4) is
available for use by the reader/interpreters.

Specify initial values for logical track size, queue record reservation for initators, and queue
record reservation for job cancellation, in the SCHEDULR macro instruction parameters
JOBQFMT, JOBQLMT, JOBQTMT, and JOBQWTP respectively. The System Generation
publication describes the procedure.

The service aids program IMCJQDMP provides a formatted dump of the entire job queue,
or selected portions of it. The formatted dump includes the master queue control record
(QCR) which contains the physical parameters of the job queue. For a complete description of
IMCJQDMP, see the publication Service Aids.

Section IV: Modifying the System 119

There are no comprehensive, foolproof formulas for calculating values of JOBQFMT,
JOBQLMT, JOBQTMT, and JOBQWTP. The values to be estimated are dependent upon the
requirements and structure of the jobs to be presented to the system, the number of job steps,
the number of I/O devices required, the number and type of data sets, the number of volumes,
and most upredictable, the number of system messages issued during the initiation and running
of a job. The rest of this topic provides some basic guidelines for your use in determining
these values.

Logical Track Size -- JOBQFMT

Logical track size -- the number of queue records in a logical track -- affects the efficient use
of queue records. Reader/interpreters and initiators are allocated queue records in terms of
logical tracks. Unused queue records in a logical track are not available for use by other
reader/interpreters or initiators. Therefore, an over-generous logical track size specification
results in wasted queue records and reduction of job queue capacity, i.e., the unused queue
records, if available, could contain the required information for another job.

Logical track size affects performance to some extent. Specification of a logical track size of
10 queue records or less can result in excessive execution of the track assignment routines,
etc., i.e., the "overhead" required to use very small logical track sizes impairs performance.

As a starting point, use the default value for JOBQFMT (12 queue records).

Logical track size (or multiples of it) may correspond to the physical track capacity of the
device on which the job queue is resident. For example, if the IBM 2301 Drum Storage unit is
to be used, 66 queue records may be contained in one physical track. Specify, in this case, a
logical track size of 22 queue records, thereby allocating 3 logical tracks to one physical track
(3 x 22 = 66 queue records). The 3 logical track header records (20 bytes each) use up the
remaining record.

Logical tracks can contain the same number of queue records as are reserved for initiator
use.

Reserving Initiator Queue Records -- JOBQLMT

The value specified for JOBQLMT must be large enough for the queue entries of any job that
enters the system. The following list shows the factors that affect the value of JOBQLMT:

• Number of entire generation data groups in a job
• Number of passed data sets in a job
• Number of devices required for passed data sets
• Number of volumes containing the data sets in a step
• Number of system messages issued during initiation of a step
• Use of automatic restart

The sum of the queue records required for each of these items provides a JOBQLMT value.

When a START initiator command is issued, a check is made to see if. enough free logical
tracks are available to provide the required number of queue records for the initiator. If not,
the command is rejected.

120 MVT Guide (Release 21.0)

Each time an initiator is started, the number of records reserved for an intiator is added to
the total number of records reserved for active initiators. For example, if the number of
records reserved for each initiator is 60, the number of records reserved for termination is 40,
and 4 initiators have been started, then the number of records reserved is 340. This total
includes 60 records reserved for each initiator, 40 records reserved for termination, and 60
records reserved as a basic threshold.

Number of Generation Data Groups

Each entire generation data group (GDG) used during a job increases the number of queue
records needed by an initiator. Two queue records should be reserved for every generation in
excess of the first in a GDG. One queue record should be reserved for every four GDGs used
in a job.

Thus, if a job uses two entire GDGs, one having 5 data sets (generations), and the other
having 24 data sets, 55 queue records must be reserved -- (4+23)x2+ 1.

Number of Passed Data Sets

Two queue records are needed by an initiator for every three data sets passed during a job. If
the number of data sets passed is not a multiple of three, queue records must be allocated as if
the number of data sets passed was a multiple of three. Thus if one, two, or three data sets are
passed, two queue records are allocated; if four, five, or six data sets are passed, 4 queue
records are allocated, and so on.

Number of I/O Devices for Passed Data Sets

When a data set being passed requires more than ten I/O devices, one queue record is
required by an initiator. This queue record accommodates 43 devices. If the number of
required devices exceeds 53, a second queue record is needed. Separate calculations must be
made for each data set.

Number of Volumes

An initiator requires queue records for each data set that occupies more than five volumes, and
is located by a search of the catalog. (If a data set's location is specified in a DD statement,
the reader routines acquire the necessary records.) One queue record is needed if the data set
occupies between 6 and 20 volumes; two queue records if 21 to 35 volumes; three if 36 to 50
volumes; and so on. Separate calculations must be made for each data set.

Number of System Messages

An initiator requires queue records for system messages it issues. If you assume that each
message is 80 characters in length, each queue record holds two messages. Messages from
initiators are primarily device allocation, allocation recovery, data set disposition, SMF or
accounting messages, and the keep messages for tapes used in each step.

To cover most device allocation messages, allow one queue record for every three DD
statements. To cover data set dispo.sitio.n messages, allow one queue record for each DD
statement. As part o.f the data set disposition messages, count the SMF or accounting messages
as two lines per queue record. Also. count two lines per queue record for tape messages.

Section IV: Modifying the System 121

•

Allocation recovery messages apply to devices that are offline. To cover most situations,
allocate queue records as follows:

• Determine the largest number of devices of a given class that will be offline at any given
time.

• Divide by seven.
• Add two.

Since this calculation is for a job step, mUltiply the result by the number of steps in a large
job.

System .messages are the least predictable of all the variables used in calculating initiator
queue record needs. The number of messages depends on the number of devices offline, the
number not available, and the number required at any given time.

The initiator needs queue space for a TIOT (task input/output table) for each step. The
space needed can be approximated by:

• Determining the number of DD statements in the largest step in a job
• Multipling the number of DD statements by 20
• Adding 24
• Dividing by 172 and rounding the dividend Up
• Adding 1

This gives the largest amount of queue records required for a job.

Under certain conditions, the initiator may need additional space. Two specific conditions
are:

• VOLT (volume table) -- The initiator builds a VOLT, if one does not exist, for all
non-specific device requests. One queue record will hold 28 volume serial numbers.

• Mount CVOL (control volume) -- Five records will be created for each CVOL not
mounted. The initiator builds a JCT (job control table), a SCT (step control table), a SlOT
(step input/output table), a JFCB (job file control block) and a VOLT if a CVOL is not
mounted. The initiator writes these queue records into the jobqueue.

Use of Automatic Restart

To use automatic restart in the system, the number or records specified for the JOBQLMT
parameter must be substantially increased. In general, this is due to the fact that, while the
first job is going through the restart process, a second job is initiated, and that before the
system can restart the first job, it must reread and reinterpret the job deck and then reinitiate
the job. More specifically:

• The initiator needs its normal set of queue records (described by the JOBQLMT parameter)
to initiate the job for the first time; it needs an additional set of records to start a second
job while the first job is going through the restart process.

• Since the restart process involves rereading, reinterpreting, and reinitiating the first job, an
additional set of reader/interpreter records is needed, together with a third set of initiator
records.

122 MVT Guide (Release 21.0)

Finally, when checkpoint restart is being performed, a set or two of restart housekeeping
records are needed. Altogether, the number of records to be specified for JOBQLMT when
automatic restart is being used is:

JOBQLMT + (3 x L) + R + (a x 12)

L - Number of records normally specified for JOBQLMT (that is, when automatic restart
is not being used).

R - Number of records normally needed by the reader/interpreter. (See the Storage
Estimates publication for guidance on how this number is established.)

a= 1 - If jobs may be automatically restarted only once.

a=2 - If jobs may be automatically restarted more than once.

12 - Number of records needed for restart housekeeping.

If jobs· with automatic restart may be held for operator restart, the initiator queue record
requirement is further increased, because the system must keep both the queue records for the
held jobs and their associated housekeeping records until the job is restarted. The formula then
becomes:

JOBQLMT = (3 x L) + R + (a x 12) + H (L + (a x12))

H - Number of jobs that may be held.

Other terms

As explained previously.

Reserving Write-To-Programmer Queue Records - JOBQWTP

Unless specified otherwise, the system allocates two job queue records to the
write-to-programmer (WTP) function. Out of the 176 bytes in each of these records, 161 are
available for WTP messages. A record can hold as many messages as will fit into the available
space, each message occupying 1 byte per character plus 1 byte per message for an initiator
assigned serial number.

To change the number of records availabl((for this function, specify the number either with
the JOBQWTP operand· of the SCHEDULR macro instruction in the system generation
statements or during initialization in reply to message IEA101A (but only if you used Q-F
with your set command). However, since both system and application tasks contend for the
space available to an initiator in the system job queue, and since WTP message may be created
faster than the writer may be writing them out, caution should be exercised in raising the
JOBQWTP value above 2.

Reserving Queue Records for Cancellation -- JOBQTMT

If an intiator's queue record requirements exceed the number of queue records reserved for it,
the job associated with that initiator is canceled. Queue records must be reserved for this
purpose. Enough queue records must be reserved to accommodate two (or more) initiators that
may be cancelling concurrently. The JOBQTMT value (like the value JOBQLMT) is
unpredictable because of factors such as the installation's configuration, the size of the job
being canceled, and the number of jobs that can be mUltiprogrammed.

Section IV: Modifying the System 123

SEC IV

The following guidelines should be used in calculating JOBQTMT:

• Number of devices used during a job.

• Number of jobs that might be concurrently canceled because of insufficient initiator queue
records.

• For any system task to be started, combined JCL from its associated catalogued procedure
and the START command must first be interpreted. This requires queue records, and the
system allows assignment of records for this purpose whenever any logical track are
available. During normal use of the queues, this space is always available. However, in order
to insure availability of queue records for system tasks when the reserves approach the
critical state, the value of JOBQTMT should be increased over the above amount by the
number of records necessary to get tasks started. (This is especially true for writer and
initiator tasks, since they return queue records to the system.) This amount may be
estimated in a manner similar to calculating JOBQLMT, taking into consideration that each
valid START command generates one input and one output queue entry. Formulas for
estimating queue entry sizes are given in the Storage Estimates publications.

Number of Devices

The devices currently assigned to a job are released when the job is canceled. Since messages
are issued when devices are released, you should reserve a number of queue records equal to
the largest number of devices assigned at anyone time to a job, multiplied by two. Thus if the
largest job (in terms of devices) has 'three steps requiring 4, 11, and 8 devices respectively, 22
queue records should be reserved.

Number of Jobs

The number of queue records reserved for cancellation must be large enough to fill the
requirements of all jobs being canceled at anyone time because of insufficient initiator queue

. records. If your estimate of initiator queue records was accurate, it is unlikely that you will
have more than one job (if any) cancelling at anyone time. .

An initiator that runs out of queue records for cancellation is placed in the wait state and
an operator message -- IEF426I QUEUE CRITICAL -- is issued. This can result in the
interlocking of all reader/interpreters, initiators, and sysout writers functioning at the moment.

124 MVT Guide (Release 21.0)

Output Separation

The system output writer can use the output separator facility to write separation records prior
to writing the output of each job. These separation records make it easy to identify and
separate the various job outputs that are' written contiguously on the same printer or card
punch device.

Characteristics of an Output Separator

Both the system output writer and the direct SYSOUT (DSO) writer may be used by a
problem program to channel its output eventually to a printer or punch. When this is done,
however, the system output stream goes uninterruptedly from one job to another, making it
difficult to separate the output of one job from that of another, unless output separation is
provided for.

The output separator facility of the operating system provides a means of identifying and
separating the output of various jobs processed by the same output unit. To do this, the
separator writes separation records to the system output data set prior to the writing of each
job's output.

The IBM output separator or your own output separator can be used.

The output separator function operates under control of both the system output writer and
the direct SYSOUT writer. The separator program must reside in the link library
(SYSl.LINKLIB). Its name, IEFSD094, must be included as a parameter in either of the
output writer procedures -- the second part of the P ARM field in the EXEC statement -- to
separate job output. (Cataloged procedures for both writers are fully described in this section).
The type of separation provided by the separator depends on whether the output is
punch-destined ,or printer-destined.

Punch-Destined Output: The IBM-supplied separator provides three specially punched cards
(deposited in stacker 1) prior to the punch card output of each job. Each of these separator
cards is punched in the following format:

Columns 1 to 35 -- blanks
Columns 36 to 43 -- jobname
Columns 44 to 45 -- blanks
Column 46 -- output classname
Columns 47 to 80 -- blanks

Printer-destined Output: The IBM -supplied separator provides three specially printed pages prior
to printing the output of each job. Each of these three separator pages is printed in the
following format:

• Beginning at the channel 1 location (normally near the top of the page), the jobname is
printed in block character format over 12 consecutive lines. The first block character of the
8-character jobname begins in column 11. Each block character is separated by 2 blank
columns.

• The next 2 lines are blank.

• The output classname is printed in block character format covering the next 12 lines. This is
a I-character name, and the block character begins in column 55.

Section IV: Modifying the System 125

SEC IV

• The remaining lines to the bottom of the page are blank.

In addition to the above, a full line of asterisks(*) is printed twice (overprinted) across the
folds of the paper. These lines are printed on the fold preceding each of the three separator
pages, and on the fold following the third page. This feature provides easy separation of job
output in a stack of printed pages.

For printer-destined output with the IBM-supplied separator, include a channel 9 punch in
addition to the channell punch on the carriage control tape or in the forms control buffer (FCB). The
channel 9 punch controls the location of the line of asterisks and should correspond to the
bottom of the page. To print the line of asterisks on the fold of the pages, offset the printer
registration.

Programming Conventions

When using the (asynchronous) system output writer, the separator program, if specified in the
output writer cataloged procedure, is brought in by a LINK macro instruction issued from
module IEFSD078 of the output writer. The separator program can be any size, but a program
over 8K may affect the region requirement of the output writer. If the job falls into a job call
using the (synchronous) direct SYSOUT writer, the separator program (if specified in the
procedure) is brought into main storage by use of a LOAD macro instruction. After
performing separation on all devices required for the SYSOUT data sets in that step the
program is released by means of a DELETE macro instruction.

Caution: Since the separator program operates with the supervisor protection key, but in the
program mode, your separator program must insure data protection during its execution.

When writing a separator program, you must observe the following programming
conventions:

• The program must conform to the standard linkage coventions. This includes saving and
restoring the contents of registers 0 through 12, and 14. These registers can be preserved
with the SA VE and RETURN macro instructions. When the program receives control, the
address of a standard save area is in register 13.

• The program must use the PUT macro instruction in the locate mode to write separation
records on the output data set. (This method is required by the QSAM DCB that is open
for the output data set.)

• The program must establish its own synchronous error exit routine, and the address of this
routine must be placed into the DCBSYNAD field of the output DCB. This gives control to
the error exit routine in case an uncorrectable 110 error occurs while writing your program's
output.

• The program should use the RETURN macro instruction to return control to the output
writer. Before returning, the program must free any main storage it obtained during its
operation, and the program must place a return code (binary) in register 15. The return
codes signify:

o -- Successful operation.

8 -- Unrecoverable output error (should be set if your error exit routine is entered).

126 MVT Guide (Release 21.0)

Output From the Separator Program

The separator program can write any kind of separation identification. The jobname and the
output class name for each job are available through the parameter list for inclusion in the
output, if desired. You can use an IBM-supplied routine that constructs block characters
(explained later). As many separator cards can be punched or as many separator pages can be
printed as necessary.

The output from the separator program must conform to the attributes of the output data
set. These attributes, which can be determined from the open output DCB pointed to by the
parameter list, are:

• Record format (fixed, variable, or undefined length).
• Record length.
• Type of carriage control characters (machine, USASI, or none).

For printer-destined output, begin your separation records on the same page as the previous
job output, or skip to any subsequent page. However, the separator program should skip at
least one line before writing any records, because in some cases the printer is still positioned
on the line last printed.

After completing the output of the separation records, the separator program should write
sufficient blank records to force out the last separation record. This also allows the error exit
routine to obtain control if an uncorrectable output error occurs while writing the last record. The
requirements are:

• One blank record for printer-destined output.
• Three blank records for punch-destined output.

Using the Block Character Routine

For printer-destined output, the separator program can use an IBM-supplied routine to
construct separation records in a block character format. This routine is a reenterable module
named IEFSD095, and resides in the module library (SYSl.CI505).

The block character routine constructs block letters (A to Z), block numbers (0 to 9), and a
blank. The program furnishes the desired character string and the construction area. The block
characters are constructed one line position at a time. Each complete character is contained in
12 lines and 12 columns; therefore, a block character area consists of 144 print positions. For
each position, the routine provides either a space or the character itself.

The routine spaces 2 columns between each block character in the string. However, the
routine does not enter blanks between or within the block characters. The program must
prepare the construction area with blanks or other desired background before entering the
block character routine.

To use the IBM-supplied block character routine, the separator program executes the CALL
macro instruction with the entry point name of IEFSD095. Since the block characters are
constructed one line position at a time, complete construction of a block character string
requires 12 entries to the routine. Each time, provide the address of a 4-word parameter list in
register 1. The parameter list must contain the following:

Bytes 0-3 -- This word is the address of a field containing the desired character string in
EBCDIC format.

Section IV: Modifying the System 127

Bytes 4-7 -- This word is the address of a full word field containing the line count as a
binary integer from 1 to 12. This represents the line position to be constructed
on this call.

Bytes 8-11 -- This word is the address of a construction area in main storage where the
routine will construct a line of the block character string. The required length
in bytes of this construction area is 14n-2, where n represents the number of
characters in the string.

Bytes 12-1 5 --This word is the address of a fullword field containing, in binary, the number
of characters in the string.

Writing an Output Separator Program

Write the output separator program by using the information provided by either output writer
and by conforming to the requirements explained below. The separator program, when added
to the link library (SYSl.LINKLIB), is invoked by specifying its name as a parameter in the
EXEC statement of the output writer cataloged procedure.

Parameter List

Either output writer provides the separator program with a 4-word parameter list of needed
information. When the program receives control, register 1 contains the address of a 4-word
parameter list, and the parameter list contains the following:

Bytes 0-3-- In this word, byte a contains switches that indicate the type of output unit,
and bytes 1-3 are reserved for future use.

Bytes 4-7-- This word is the address of the output DCB (data control block).

Bytes 8-11-- This word is the address of an 8-character field containing the jobname.

Bytes 12-15--This word is the address of a I-character field containing the output
classname.

In the parameter list, the three high-order bits of byte a are switches that your separator
program uses to determine the type of output unit. The first bit to the left is set to 1 if the
output unit is a 1442 punch device. The second bit is set to 1 if the output unit is a punch
device or a tape device with punch-destined output. The third bit is set to 1 if the output unit
is a printer or punch device. The resulting bit combinations indicate the following:

111.
011.
001.
010
000

1442 punch device
2520 or 2540 punch device
1403, 1404, 1443, or 3211 printer device
tape device with punch-destined output
tape device with printer-destined output

The parameter list also points to the DCB for the output data set. This DCB is established
for the queued sequential access method (QSAM), and is already open when the separator
program receives control.

The address of the jobname and the address of the output class name are provided in the
parameter list so that this information may be used in the separation records written by the
separator program.

128 MVT Guide (Release 21.0)

Writing System Output Writer Routines

When a job is executing, system messages and data sets specifying the SYSOUT parameter
(e.g., in the DD statement) are recorded on direct access devices, unless the job falls into a job
class assigned to a direct SYSOUT writer. In that case, both messages and data addressed to a
SYSOUT data set are written directly to the device for the direct SYSOUT writer for that job
class. (Messages for jobs canceled on the input queue and jobs failed by the
reader /interpreter, and data produced by system tasks cannot be processed by direct system
output writers.)

When the job completes (assuming it does not use a direct SYSOUT writer), entries are
made in system output class queues that represent the data sets and messages directed to the
output classes. Later system output writers remove these entries from the queues and process
the data they represent. Processing consists of writing system messages to the output device
and calling a data set writer routine for each data set encountered. The data set writer routine
used for a data set may be specified by name in a DD statement, otherwise, a standard
IBM -supplied writer routine is used. The standard routine transcribes the data set to the
specified output device, making only those data format and control character transformation
required to conform to the attributes specified for the output data set.

The following material describes how to write a nonstandard data set writer routine.

Characteristics of the Output Writer

Before writing or modifying an output writer routine, be familiar with the functions performed
by the standard data set writer for Operating System/360. (For the remainder of this chapter,
the Operating System/360 data set writer is referred to as the standard writer.) In general,
these functions include opening the data set (referred to as an input data set) that contains the
processed information, obtaining the records of the data set, making any necessary
transformations in record format or control character attributes, and placing these (possibly
transformed) records in the output data set, which appears on a specified output device. The
standard writer also must close the input data set and restore system conditions to the state
they were in before the writer routine was invoked.

Programming Conventions

To use the output writer routine, specify the name of the routine as a parameter in the
SYSOUT operand of a DD statement (see the Job Control Language publication). (This
parameter is ignored if the job falls into a jobclass assigned to a direct SYSOUT writer.) The
routine must be in the system library (SYS1.LINKLIB). A writer routine is not limited in size
except that size may influence the region requirements of the system output writer (see the
Storage Estimates publication).

In MVT, the routine is attached (via the ATTACH macro instruction) when a data set
requiring the routine is to be processed. The standard linkage conventions for attaching are
used. Any storage required for work areas and tables should be obtained by the GETMAIN
macro instruction and released by the FREEMAIN macro instruction. The output writer
routines must be reenterable.

When the routine is finished, it must return control to the standard writer by using the
RETURN macro instruction.

After job management routines perform initialization requirements and open the output data
set into which the writer routine will put records, control is given to the routine via the

Section IV: Modifying the System 129

'SEC IV

A TT ACH macro instruction. At this time, general registers 1 and 13 contain information that
the program must use. Register 1 contains the storage address of a 12-byte list. Figure 9
describes the information in this parameter list.

Byte 0

Bytes 1-3

Bytes 4-7

Bytes 8-11

Output Device

Bit 0

Bit 1

Bit 2

Bits 3-7

Indicator.

(High-order bit): If this bit is on (set to 1), the output unit is a

1442 punch.

If this bit is on, the output unit is either a punch or a tape with a

punch as the final destination.

If this bit is on, the output unit is either a printer or a punch.

No significant information.

Not used, but must be present

This word contains the address of the data control block (DCB) for the opened output
data set to be referred to by the writer.

This word contains the DCB address for the input data set from which your writer will

obtain logical records. (At the time this 12-byte parameter list is given to your

writer, the input data set is not open.)

Figure 9. Parameter List Referred to by Register 1

The switches indicated by the three high-order bit settings in byte 0 should be' used to
translate control character information from the input data set records to the form required by
the output data set records. Based on the indications given in Figure 9, the high-order three
bits of byte 0 signify the type of output device as follows:

111
OIL
001.

010
000

1442 punch unit
2520 punch unit or 2540 punch unit
1403 printer, 1404 printer, 1443 printer, or 3211
printer unit
tape unit with final punch destination
tape unit with final printer destination

When the writer gets control, it must preserve the contents of register 0 through 12, and 14. Register
13 contains the address of a standard register save area that saves the contents of these
registers. Save the contents of register 13 by using the SAVE macro instruction.

An output writer routine must issue an OPEN macro instruction to open the desired input
data set residing on a direct access device as a result of the previous execution of a processing
program. (Note: The output data set used by a writer is opened by a job management routine
before control is given to the writer. This output data set must be given records by a PUT
macro instruction operating in the "locate" mode. The Data Management Macro Instructions
publication describes this macro instruction.)

If the processing program that produces a given data set (to be used as an input data set by
a writer) did not open the data set, the data set contains no records, and the DCBBLKSI and
DCBBUFL fields of the input DCB contains zero. The DCBBLKSI field may also be zero
even if the data set does contain records -- if the processing program did not put the block
size value for the input data set in the DCB. If both these DCB fields are zero, a value (the
standard writer uses the decimal value 18) is inserted in the DCBBLKSI field to permit the
open routine to continue. The standard writer does this via a routine pointed to by an entry in
the EXLIST parameter of the DCB. Since there is no data set, nothing is put on the output
device. The data set writer must provide a SYN AD routine to process errors associated with
the output as well as the input data set.

130 MVT Guide (Release 21.0)

The Standard Data Set Writer also includes accounting support for the SMF Output Writer
Record (record type 6). If you require SYSOUT accounting information, refer to the
publication System Management Facilities, for details.

Before the OPEN macro instruction is issued, the DCBD macro instruction can be used to
symbolically define the fields of the DCB, and the EXLIST and/or SYNAD routine addresses
can be inserted. Other than SYNAD, no modifications can be made to the output DCB.

After the routine finishes writing the output data set, it must close the input data set and
return using the RETURN macro instruction. A return code must be placed in register 15. This
code should indicate that an unrecoverable output error either has occurred (code of 8) or has
not occurred (code of 0).

3525 Note -- Interpret Punch: The programming support for the 3525 includes an INTERPRET
PUNCH feature which is supported by BSAM and QSAM. The support for this feature
includes the punching and printing of graphically printable punched characters on print lines
one and three of the card. Line one includes the first 64 characters and line three includes the
last 16 characters (right justified). Extraneous characters are printed for non-graphic eight-bit
codes.

If the INTREPRET PUNCH function is designated via the new FUNC parameter in either
a DCB or DD statement, an existing output data set will be interpreted as well as punched.

Note : The output must be 80 bytes, or 81 bytes if first character control is being used.

Writing an Output Writer

This provides a general description of the procedures followed by the standard writer. (See
Figure 10.) When writing a writer routine, you may wish to delete, modify, or add items to
some of these procedures, depending on the characterisitics of the data set(s). However, the
procedures must be consistent with operating system conventions.

Saving Register Contents: Upon entering the writer program, the program must save the contents
of the general registers, as previously discussed.

Obtaining Main Storage for Work Areas: In this work area, switches are established, record
lengths and control characters are saved, and space is reserved for other uses. Obtain storage
by a GETMAIN macro instruction.

Processing Input Data Set(s): To process a data set, the writer must get each record individually
from the input data set, transform (if necessary) the record format and the control characters
associated with the the record in accordance with the output data set requirements, and put the
record in the output data set. Data set processing by the standard writer can be considered in
three aspects. .

1. The first consideration is what must be done before actually obtaining records from an input
data set. If the output device is a printer, provision must be made to handle the two forms
of record control character that may accompany a record in an output data set. The printer
is designed so that if the output data set records contain machine control characters, a
record (line) is printed before the effect of its control character is considered. However, if
USASI control characters are used in the output data set records, the control character
effect is considered before the printer prints a record. See Appendix B.

Thus, if all the input data sets do not have the same type of control characters, it may be
desirable to avoid overprinting of the last line of one data set with the first line of the
following data set. If the records of the input data set have machine control characters

Section IV: Modifying the System 131

SEC IV

(mcc) and the output data set records are to have USASI control characters (acc), the
standard writer produces a control character that indicates one line should be skipped before
printing the first line of output data.

If the input data set records have acc and the output data set records are to be written with
mcc, the standard writer prints a line of blanks before printing the first actual output data
set record. Following this line of blanks, a one-line space is generated before the first output
record is printed. The preceding "printer initialization" procedure (or a similar one based on
the characteristics of your data sets) is recommeded.

2. After an input data set is properly opened and any necessary printer initialization
completed, the writer obtains records from the input data set. The locate mode of the GET
macro instruction is used. As each record is obtained, its format and control character must
be adjusted, if necessary, to agree with that required for output.

Note: Check the MACRF field of the input data set DCB to see if GET in locate mode can
be used. If not the MACRF field must be overridden.

Since the output data set is previously opened by another routine (job management), a
writer routine must adhere to the established conventions. The data set is opened to receive
records from the PUT macro instruction operating in the locate mode. For fixed-length
record output, the length of the records in the output data set is obtained from the
DCBLRECL field of the DCB. If an. input record length is greater than the length specified
for the records of the output data set, the standard writer truncates the necessary right-hand
bytes of the input record. If the input record length is smaller than the output record length,
the standard writer left-justifies the input record and adds blanks on the right end to give
the correct length.

When the output record length is variable and the input record length is fixed, the standard
writer constructs each output record by adding control character information (if necessary)
and variable record control information to the output record. The record control information
is four bytes long and the control character information is one byte long. Both additions are
made to the left end of the record. If the output record is not at least 18 bytes long, it is
further modified by padding bytes (blanks) added to the right end of the record. If the
output record length does not agrees with the length of the output buffer, the standard
writer makes the proper adjustment.

3. The third aspect is an end-of-input data set routine. The standard writer handles output to
either a card punch unit or a printer unit, as required. Output to an intermediate device such
as a tape unit is considered in light of the ultimate destination (e.g., punch or printer). If
proper consideration is not given, all records from a given data set may not be available on
the output device until the output of records from the next data set is started or until the
output data set is closed. When the output data set is closed, the standard writer
automatically puts out the last record of its last input data set.

132 MVT Guide (Release 21.0)

Entry From
Control Program
Module IEFSD070

Modify Input Record
Length For Control

Character

Translate Control
Character For Output

If Required

Set Message If Invalid
Control Char

Figure 10. General Logic of Standard Output Writer

No

If Printer, Adjust
Control Character

Attachment

Buffering For End Of
Input Data Set (Put
Out Last Record)

Section IV: Modifying the System 133

SEC IV

Punch Output: Normally, when the standard writer is using a card punch as the output device,
the last three output records are not in the collection pockets of the punch when the input
data set is closed. To put out these three records with the rest of the data set and with no
intervening pauses, the writer provides for three blank records following the actual data set
records.

Printer Output: When the standard writer uses a printer as an output device, the last record of
the input data set is not normally put in the output data set when the input data is closed. To
force out this last record, the writer generates a blank record that follows the last record of the
actual data set.

The problem of overprinting the last line of one data set by the first line of the following
data set must also be considered. Depending on the combination of input record control
character and required output record control character, a line of blanks and a spacing control
character may be used either individually or in combination to preclude overprinting. (Note: If
overprinting is desired for some reason, control characters in the data set records themselves
may be used to override the effect (but not the action) of the previously described solutions to
overprinting.)

Closing Input Data Set(s): After the standard writer finishes putting out the records of an input
data set, it closes the data set before returning control to the system output writer. All input
data sets must be closed.

Releasing Main Storage: The storage and buffer areas obtained for the writer must be released
to the system before the writer relinquishes control. The FREEMAIN macro instruction should
be used for this.

Restoring Register Contents: The original contents of general registers 0 through 12, and 14
must be restored. The RETURN macro instruction is used for this. To inform the operating
system of the results of the processing done by the writer, a return code is placed in general
register 15 before control is returned. If the writer routine terminates because of an
unrecoverable error on the output data set, the return code is 8; otherwise, the return code is
O. Unrecoverable input errors must be handled by the data set writer.

134 MVT Guide (Release 21.0)

Adding SVC Routines to the Control Program

This chapter provides detailed information on how to write an SVC routine and insert it into
the control program portion of the System/360 Operating System.

Characteristics of SVC Routines

All SVC routines operate in the supervisor state. Keep the following characteristics in mind
when deciding what type of SVC routine to write:

• Location of the routine - The SVC routine can be either in main storage at all times as part
of the resident control program, or on a direct access device as part of the SVC library. Type
1 and 2 SVC routines are part of the resident control program, and types 3 and 4 are in the
SVC library.

• Size of the routine - Types 1, 2, and 4 SVC routines are not limited in size. However, a type
4 SVC routine must be divided into load modules of 1024 bytes or less. The size of a type
3 SVC routine must not exceed 1024 bytes.

• Design of the routine - Type 1 SVC routines must be reenterable or serially reusable; all
other types must be reenterable. To aid system facilities in recovering from machine
malfunctions, the SVC routines should be refreshable.

• Interruption of the routine - When the SVC routine receives control, the CPU is masked for
all maskable interruptions but the machine check interruption. All type 1 SVC routines must
execute in this masked state. To allow interruptions to occur during the execution of a type
2, 3, or 4 SVC routine, change the appropriate masks. When a type 2, 3, or 4 SVC routine
will run for an extended period of time, it is recommended to allow interruptions to be
processed where possible.

Programming Conventions for SVC Routines

The programming conventions for the four types of SVC routines are summarized in Figure
11. Details about many of the conventions are in the reference notes that follow the table. The
notes are referred to by the numbers in the last column of the table. If a reference -note for a
convention does not pertain to all types of SVC routines, and asterisk indicates the types to
which the note refers.

Section IV: Modifying the System 135

SEC IV

Conventions

Part of resident
control program

Size of routine

Reenterable
routine

May allow
interruptions

Entry point

Number of routine

Name of routine

,Register contents
at entry time

May contain
relocatable data

Can supervisor
request block
(SVRB) be extended

May issue WAIT
macro instruction

May issue XCTL
macro instruction

May pass control
to what other types
of SVC routines

Type of linkage
with other SVC
routines

Exit from SVC
Routine,

Method of
abnormal
termination

Type 1

Yes

Any

Optional,
but must
be serially
reusable

No

Type 2

Yes

Any

Yes

Yes

Type 3

No

$ 1024
bytes

Yes

Yes

Type 4

No

Each
load
module
$ 1024
bytes

Yes

Yes

Must be the first byte of the routine or
load module, and must be on a doubleword
boundary

Numbers assigned to your SVC routines
should be in descending order from
255 through 200

IGCnnn IGCnnn IGCOOnnn IGCssnnn

Registers 3, 4, 5, and 14 contain
communication pointers; registers 0, 1,
and 15 are parameter registers

Yes

Not
applicable

No

No

None

Not
applicable

Yes No* No*

Yes* Yes* Yes*

Yes* Yes* Yes*

No No Yes*

Any Any Any

Issue supervisor call (SVC)
instruction

Branch using return register 14

Use resident
abnormal
termination
routine

Use ABEND macro instruction or
resident termination routine

Figure 11. Programming Conventions for SVC Routines

136 MVT Guide (Release 21.0)

Reference
Code

1

2

3

5

6

7

8

9

\

'-

Reference

Code

2

3

4

SVC Routine Reference Notes

Types

all If the SVC routine is to be reenterable, macro instructions whose expansions store

information into an inline parameter list cannot be used.

all

all

all

Write SVC routines so that program interruptions cannot occur. If a program

interruption does occur during execution of an SVC routine, the routine loses control

and the task that called the routine terminates.

If a program interruption occurs and you are modifying a serially reusable SVC

routine, a system queue, control blocks, etc., the modification will never complete;

the next time the partially modified code is used, the results will be unpredictable.

Follow these conventions when naming SVC routines:

• Types 1 and 2 must be named IGCnnn; nnn is the decimal number of the SVC

routine. You must specify this name in an ENTRY, CSECT, or START

instruction.

• Type 3 must be named IGCOOnnn; nnn is the signed decimal number of the SVC

routine. This name must be the name of a member of a partitioned data set.

• Type 4 must be named IGCssnnn; nnn is the signed decimal number of the SVC

routine, and ss is the number of the load module minus one, e.g., ss is 01 for the

second load module of the routine. This name must be the name of a member of

a partitioned data set.

Before the SVC routine receives control, the contents of all registers are saved. For

type 4 routines, this applies only to the first load module of the routine.

In general, the location of the register save area is unknown to the routine that is

called. When the SVC routine receives control, the status of the registers is as

follows:

• Register 0 and 1 contain the same information as when the SVC routine was

called.

• Register 2 contains unpredictable information.

• Register 3 contains the starting address of the communication vector table.

• Register 4 contains the address of the task control block (TCB) of the task that

called the SVC routine.

• Register 5 contains the address of the supervisor request block (SVRB), if a type

2, 3, or 4 SVC routine is in control. If a type 1 SVC routine is in control, register

5 contains the address of the last active request block.

• Register 6 through 12 contain unpredictable information.

• Register 13 contains the same information as when the SVC routine was called.

• Register 14 contains the return address.

• Register 15 contains the same information as when the SVC routine was called.

Section IV: Modifying the System 137

5

6

7

8

9

Use registers 0, 1, and 15 to pass information to the calling program. The contents of

registers 2 through 14 are restored when control is returned to the calling program.

3,4 Because relocatable address constants are not relocated when a type 3 or 4 SVC

routine is loaded into main storage, do not use them in coding these routines. Do not

use macro instructions whose expansions contain relocatable address constants. Types

1 and 2 are not affected by this restriction since they are part of the resident control

program.

2,3,4 Users can extend the SVRB, in 8-byte increments, from 96 bytes up to 144 bytes. The

extended area is available as a work area during execution of the routine only by

specifying the extension during the system generation process. When the SVC routine

receives control, register 5 contains the address of the SVRB to which the extended

save area is appended.

2,3,4 Do not issue the WAIT macro instruction unless you have changed the system mask

to allow I/O and external interruptions. If you have allowed these interruptions, you

can issue WAIT macro instructions that await either single or multiple events. The

event control block (ECB) for single-event waits or the ECB list and ECBs for

multiple-event waits must be in dynamic main storage.

4

all

When you issue an XCTL macro instruction in a routine under control of a type 4

SVRB, the new load module is brought into a transient area.

Then contents of registers 2 through 13 are unchanged wh,,~n control is passed to the

load module; register 15 contains the entry point of the called load module.

Type 1 SVC routines must use the resident abnormal termination routine to

terminate any task. The entry point to the abnormal termination routine is in the
communication vector table (CVT). The symbolic name of the entry point is

CVTBTERM.

Type 2, 3, and 4 SVC routine must use the ABEND macro instruction to terminate

the current task, and must use the resident abnormal termination routine to
terminate a task other than the current task.

Before the resident abnormal termination routine is entered, the CPU must be

masked for all maskable interruptions but the machine check interruption, and

registers 0, 1, and 14 must contain the following:

• Register 0 contains the address of the TCB of the task to be terminated.

• Register 1 contains the following information:

Bit ° is a 1 if you want a dump taken.

Bit 1 is a 1 if you want to terminate a job step.

Bits 2-7 are zero.

Bits 8-19 are zero.

Bits 20-31 contain the error code.

• Register 14 contains the return address. The resident abnormal termination
routine exits by branching to the address contained in register 14.

The contents of register 15 are destroyed by the abnormal termination routine.

138 MVT Guide (Release 21.7)

Writing SVC Routines

Because the SVC routine will be a part of the control program, follow the same programming
conventions used in SVC routines supplied with System/360 Operating System.

Four types of SVC routines are supplied with System/360 Operating System, and the
programming conventions for each type differ. The general characteristics of the four types
were described in the preceding text, and the programming conventions for all types were
shown in tabular form.

Adding SVC Routines Into the Control Program

Insert SVC routines into the control program during the system generation process.

Before the SVC routine can be inserted into the control program, the routine must be a
member of a cataloged partitioned data set. Name this data set SYS1.name .

The following text gives a description of the necessary information for the system
generation process. The publication System Generation, describes the system generation macro
instruction.

Specifying SV C Routines

Use the SVCTABLE macro instruction to specify the SVC number, the type of SVC routine,
and, for type 2, 3, or 4 routines, the number of double words in the extended save area.

Inserting SV C Routines During the System Generation Process

To insert a type 1 or 2 SVC routine into the resident control program, you use the RESMODS
macro instruction. Specify the name of the partitioned data set and the names of the members
to be inserted into the control program. Each member can contain more than one SVC
routine.

To insert a type 3 or 4 SVC routine into the SVC library, you use the SVCLIB macro
instruction. Specify the name of the partitioned data set and the names of members to be
included in the SVC library. The member names must conform to the conventions for naming
type 3 and 4 routines, i.e., IGCOOnnn and IGCssnnn.

Section IV: Modifying the System 139

•

Message Routing Exit Routines

This topic provides detailed information on how to write user exit routines that modify the
routing and descriptor codes of WTO or WTOR messages for any MVT operating system that
has the Multiple Console Support Option (MCS). Information is provided on inserting this exit
routine into the resident portion of the control program. In add~tion, a description of the
characteristics and configuration of MCS is supplied.

Characteristics of MCS

The multiple console support (MCS) option of the IBM System/360 Operating System routes
messages to different functional areas according to the type of information that the message
contains. In MCS, a functional area is defined as one or more operator's consoles that are
doing the same type of work. (Some examples of functional areas are: (1) the tape pool area,
(2) thedisk pool area, and (3) the unit record pool area.) Each WTO and WTOR macro
instructio~ is assigned one or more routing codes which are used to determine the destination
9f the message. There are sixteen routing codes that can be used. When the message is ready
to be routed, the routing codes assigned to the message are compared to the routing cod~s
assigned to each console. If any of the routing codes match, the message is sent to that
console. (For descriptions and definitions of the routing codes, see the publi~~tion Supervisor
Servic~s and Macro Instructions.) ,

If the standard routing codes provided on application and system messages do not cover
special situation at an installation, the routing ,:odes used on the message can be modified by
coding a user exit routine. The exit routine receives control prior to the routing of message so
users can examine the message text and modify the message's routing and descriptor codes. The
system will use the modified routing codes toroute the message. Descriptor codes provide a
mechanism for message presentation and deletion and are explained later in this chapter.

Automatic console switching occurs when permanent hardware errors are detected. Command
initiated console switching is provided to permit restructuring of the system console
configuration and the hard copy log by system operators. Consoles can be moved into or out
of functional areas at any time during system operation.

A hard copy log option records messages, operator and system commands, and operator and
system responses to commands. The hard copy log can be a console device or it can be the
system log (SYSLOG). The number and type of messages recorded on the log is also optional. The
installation may wish to record a selected group of messages, or it may wish to record all
messages. If commands are recorded, the system automatically r:ecords command responses.

140 MVT Guide (Release 21.0)

Programming Conventions For WTO/WTOR Routines

The programming conventions for the WTO/WTOR exit routine are summarized in Figure 12. Details
about many of the conventions are in the reference notes that follow that table. The notes are
referred to by the numbers in the last column of the table.

Conventions

Part of resident

control program

Size of routine

Reenterable routine

May allow interrup

tions

Name of routine

Disposition of

general registers

Format of text

and codes

May issue WAIT,

XCTL, WTO or WTOR

macro instructi~ns

Method of abnormal

termination

Exit from routine

Requirements

Yes

Any size

Optional, but must be serially

reusable

Y$!S

Must be IEECVXIT

Registers must be saved at entry

and restored prior to returning

Provided through the DSECT

IEECUCM

No

None

RETURN macro instruction

Figure 12. Programming Conventions for WTO/WTOR Exit Routine

Reference

Code

2

3

4

Section IV: Modifying the System 141

Reference Reference Notes

Code

If the exit routine is to be reenterable, do not use macro instructions whose expansions store
information into an inline parameter list.

2 Write the exit routine so that program interruptions cannot occur. If a program interruption
occurs during execution of the exit routiine, the routine loses control and the communications task
is terminated.

3 DSECT IEECUCM provides the format of the message text, routing codes and descriptor codes. The
pointer in register 1 points to the first word of the message text, UCMMSTXT. The format is:

UCMMSTXT

UCMROUTC

UCMDESCD

Message Text (128 Characters-padded with blanks)

Routing codes (4 bytes)

Descriptor codes (4 bytes)

DSECT IEECUCM is contained in SYSl.MODGEN

System messages have a message code as the first seven characters of the
message text. This code may be examined to aid in identifying system messages, but
it must not be modified.

The UCMROUTC field contains the routing codes. A bit setting of "1" indicates
that the WTO or WTOR was assigned that particular routing code. Bit assignments
and their meanings are:

Bit Assignment Meaning

Byte 0
Bit 0 Routing code 1 Master Console
Bit 1 Routing code 2 Master Console Informational
Bit 2 Routing code 3 Tape Pool
Bit 3 Routing code 4 Direct Access Pool
Bit 4 Routing code 5 Tape Library
Bit 5 Routing code 6 Disk Library
Bit 6 Routing code 7 Unit Record Pool
Bit 7 Routing code 8 Teleprocessing Control

Byte 1
Bit 0 Routing code 9 System Security
Bit 1 Routing code 10 System Error/Maintenance
Bit 2 Routing code 11 Programmer Information
Bit 3 Routing code 12 Emulator Program (under aS)
Bit 4 Routing ·code 13 Available for Customer Usage
Bit 5 Routing code 14 Available for Customer Usage
Bit 6 Routing code 15 Available for Customer Usage
Bit 7 Routing code 16 Reserved

Byte 2 Reserved

Byte 3 Reserved

142 MVT Guide (Release 21.0)

3 The UCMDESCD field contains the descriptor codes. A bit
setting of 11 1" indicates that the WTO or WTOR was
assigned that particular descriptor code. Bit
assignments and their meanings are:

Bit Assignment
Byte 0
Bit 0 Descriptor code 1
Bit 1 Descriptor code 2
Bit 2 Descriptor code 3
Bit 3 Descriptor code 4
Bit 4 Descriptor code 5
Bit 5 Descriptor code 6
Bit 6 Descriptor code 7
Bit 7 Descriptor code 8

Byte 1
Bit 0 Descriptor code 9

Descriptor codes
10 through 16

Byte 2

Byte 3

Meaning

System Failure
Immediate Action Required
Eventual Action Required
System Status
Immediate Command Response
Job Status
Application Program/Processor
Out-of-line Message

DISPLA Y or MONITOR command response

Reserved

Reserved

Reserved

4 The exit routine is part of the communications task. Abnormal termination of the exit routine causes
the operating system to terminate abnormally (code of F03).

Messages Not Using Routing Codes

There are certain messages that the exit routine does not see. These are messages that have the
MSGTYP operand in the WTO or WTOR macro instruction coded with the JOBNAMES,
STATUS, ACTIVE or Y parameter, multiple-line WTOs (inculding status displays) and
messages that are being returned to the requesting console, i.e., a response to a DISPLAY A
command. Routing of these messages is on criteria other than the routing codes, therefore, the
system bypasses the exit routine.

Writing a WTO/WTOR Exit Routine

To modify the standard routing codes and descriptor codes write a WTO/WTOR Exit Routine.
This routine will be part of the control program. If a message's routing code field is used by
the operating system to route the message, the routine will receive control prior to the routing
of the message. When the routine receives control, register 1 contains a pointer to the first
word of the message text. The message text field is 128 bytes long; followed by a four-byte
routing code field and a four-byte descriptor code field. The exit routine may examine but not
modify the message text.

A message will be sent to only those locations specified in the modified routing codes. All
messages with modified routing codes are sent to the hard copy log when the log is included in
the operating system. When the log is not included, the exit routine must not suppress
messages that contain a routing code of 1,2,3,4,7, 8, or 10 since messages with these codes
are necessary for system maintenance. Message suppression is turning off all routing codes of a
message, causing the message to be discarded. WTO messages can be suppressed. If a WTOR
message is suppressed, it will be sent to the master console by the operating system.

Section IV: Modifying the System 143

SEC IV

Adding a WTO/WTOR Exit Routine to the Control Program

A system generation option is available to enable you to include a resident, user-written exit
routine into the communications task. .

The CONOPTS operand of the SCHEDULR system generation macro instruction controls
the inclusion of the exit routine. A description of SCHEDULR is found in the publication
System Generation.

Task supervision must be performed for the exit routine when the routine is requested at
system generation. This supervision is performed every time a message is routed by its routing
codes, even if the exit routine is not present. To maintain optimum throughput, the exit routine
should not be specified at system generation unless it will be used.

Inserting the WTO /WTOR Exit Routine

To enter the exit routine into the control program before system generation, use the Linkage
Editor to replace the dummy WTO /WTOR exit routine IEECVCTE in SYS 1. CISOS with the
WTO /WOTR exit routine.

To enter the exit routine into the control program after system generation, use the Linkage
Editor to replace the dummy WTO/WTOR exit routine IEECVCTE in the SYSl.NUCLEUS
with your WTO /WTOR exit routine.

144 MVT Guide (Release 21.7)

Handling Accounting Routines

Accounting routines can be added to the control progarm. This topic describes the input
available to an accounting routine; the characteristics and requirements of an IBM-supplied
data set writer that may be used to log accounting information generated by an accounting
routine; and how to insert an accounting routine into the control program. Conventions to be
followed in preparing an accounting routine are also noted.

Programming Conventions for Accounting Routines

User-written accounting routines can consist of more than one control section.

Attributes: A user-written accounting routines must be reenterable.

CSECT Name and Entry Point: The control section containing the entry point of the accounting
routine, and the entry point, must be named IEFACTRT.

Register Saving and Restoring: The content of registers 0 through 14 must be saved upon entry
to the accounting routine and restored prior to exiting.

Entrances: Control is given to the accounting routine at the following times:

• Step Initiation
• Step Termination
• Job Termination

Exit: The RETURN macro instruction restores the content of the general registers and returns
control to the operating system.

Input Available to Accounting Routines

Register 0 contains an entrance code, indicating the time that the accounting routine gained
control.

Register 0 = 8: Step Initiation

= 12: Step Termination

= 16: Job Termination

Register 1 contains the starting address of a list of pointer to items of accounting
information. Each pointer is on a fullword boundary. The sequence of pointers in the list and
the items of information provided are described in the following diagram.

User accounting routines should only use pointers that are in the list addressed by register
1. Other pointers are subject to change in subsequent releases.

Section IV: Modifying the System 145

-

Byte

I 0 I Job Name Pointer

Byte

Programmer
f',lame Pointer

116 1 Job Accounting
Data Fields Pointer

Byte

or

Step Running
Time Pointer

Pointer + 3

24 Step Accounting
Data Fields Pointer

~J----------,

Job Name 8 Bytes I

Programmer
Name 20 Bytes

00

I
Byte I

Count I
I

I

Data

Byte

Step Name
Pointer

Job Running
Time Pointer

Pointer + :3

I
Byte I
Count I

I

Step Name 8 Bytes

Job Running Time
3 Bytes (MVT, MFT)

Entry Count 1 Byte

The step name pointer is zero at job termi
nation.

A right justified binary number represents
job running rime in hundredths (0.01) of a
second.

If a programmer deferred restart occurs, the
time used during the original execution is
omitted from the job time passed to a user
routine.

The entry count byte contains the number of
job accounting entries picked up from the
JOB statement. Commas used to denote
omitted entries are counted.

A byte of zeros indicates that the JOB stotement
did not contain accounting information.

i Byte
Data ..

Count n
I Datan 00

!
These data fields contain the accounting information that was specified in the JOB statement. The first byte of each
field contains the number of bytes of data that follow. The last data field is followed by a byte of zeros.

A data field -consisting only of the first, or count byte, is developed for an omitted accounting entry. The byte
contains zeros, indicating that no data is present for that field. In this case:

When (a, b" d) appears in the JOB statement

I I : Byte I Byte Byte
I Data I Datab 00 I Datad 00

Count a Countb I Countd I a
I I I

Note: Use the entry-count byte (job running time pointer + 3) to determine if you have processed all the accounting
data fields.

Step Running Time
3 Bytes (MVT, MFT)

Entry Count 1 Byte

This pointer is zero
at job termin'ltion

The step running time pointer is zero at job t€rminotion.

The step running time is not on a full word boundary. A binary numer, right justified,
represents step running time in hundredths (0.01) of a second.

If an automatic restart occurs, the system gives control to 0 user routine prior to restarting; step
time passed is the time used by the step. Upon successful completion of a step that was
automatically restarted, the step time pos~ed to a user routine does not include the time used
by the step during its original execution. if a programmer deferred restart occurs, the time
used during the original execution is not included in the step time passed to a user routine.

Number of step accounting entries picked up frorr. the EXEC statement. Commas used to denote
omitted entries are counted.

Byte

/

28 1 "Flags" and Step
1 Number Pointer

The step accounting data
fie Ids conform to the same
specifications as the job
accounting data fields.

Painter + 1

"Flags" Byte I

Step Number Byte I

Setting bit 7 of this byte to 1 effects job
cancellation. -

This byte contains the number of the job
step currently being processed. The first
step in the job is 1.

Note: You can use the flag byte to cancel the execution of a E whose accounting informarion does not conform to your installation's
standards. You can equate step initiation for the first step in a job to job initiation, i.e., the step number byte contains 1.

Figure 13. Accounting Information Available to User

146 MVT Guide (Release 21.7)

Adding An Accounting Routine

Accounting routines can be added to the control program in two ways. First, by placing the
routine on the SYS1.CISOS data set used in system generation. Second, by placing the routine
in the appropriate load module of the control program after system generation. The effect of
either is to replace the dummy accounting routine with the user-written routine.

At system generation, specify that an accounting routine is to be supplied. This is done
through the ACCTRTN=paramenter of the system generation SCHEDULR macro instruction.
This specification causes the linkage to the accounting routine to be installed in the scheduler
component of the system being generated, and makes usable the accounting data set writer
routine. When not installing accounting routines until after the system is generated, a dummy
accounting routine, named IEFACTRT, is placed in the system at this time.

Add the size of the IEFACTRT routine to the estimate of the minimum amount of storage
required to initiate a job. This storage requirement should be specified in the MINP ART
parameter of the SCHEDULR macro instruction.

Insertion at System Generation Time

To insert the accounting routine into the control program during system generation, use the
linkage editor to place the routine in the SYS1.CISOS data set prior to the start of the system
generation. The SYS l.CISOS data set (furnished with the starter operating system) contains
load modules which are combined during the system generation process to form the load
modules composing the control program. In response to the specification made in the system
generation SCHEDULR macro instruction, the accounting routine is incorporated in the
apporproate load modules for the system being generated.

Place the accounting routine in the SYS1.CI505 data set under the name IEFACTRT. This
replaces the dummy accounting routine -- also named IEFACTRT.

Insertion after System Generation

To insert the accounting routine into the control program after system generation, place the
routine in load modules of the scheduler component of the generated control program, using
the linkage editor. The scheduler load modules are in the linkage library (SYS1.LINKLIB data set)
of the generated system. The affected load modules of the MVT scheduler follows:

MVT Configuration

MVT Scheduler:

• load module IEFSD061 -- step and job termination
• load module IEFW21 SD -- step initiation

Section IV: Modifying the System 147

-

An example of the input for a linkage editor to insert the accounting routine into any of the
job schedulers follows:

//jobname
//stepname
//SYSPRINT
//SYSUT1
//SYSLMOD
//SYSLIN

JOB (parameters)
ECEC PGM=IEWL, (parameters)
DD SYSOUT=A
DD UNIT=SYSDA,SPACE=(parameters)
DD DSNAME=SYS1.LINKLIB,DSIP=OLD
DD *

(object code)

This sequence must be repeated
for each scheduler load module
which contains an inserted
accounting routine.

INCLUDE
ALAIS
ENTRY
NAME

SYSLMOD(load module name)
alias names
entry point name
load module name (R)

In this example, "load module name" represents the appropriate scheduler load module as
identified in the preceding text. To ensure accuracy in identifying the correct alias names and
entry point names for the load modules, obtain these names from the system generation listing
produced during generation of the system. These names are specified in the system generation
Stage II linkage editor output execution that produced the load module.

Output From Accounting Routines

Output can be written in three ways:

• By issuing console messages
• By using standard system output writers
• By using an IBM-supplied accounting data set writer

Console Messages: Use the Write to Operator (WTO) or Writer to Operator with Reply
(WTRO) macro instruction. Write-to programmer (WTO with a routing code of 11) must not
be issued from accounting routines.

System Output: Assemble the following calling sequence in the accounting routine. The
contents of register 12 must be the same as when the accounting routine was entered, and
register 13 must contain the address of an area of 36 fullwords.

When writing an accounting routine for inclusion in the job scheduler, be aware that register
saving conventions within the control program are different from those for problem programs.
In the job scheduler, registers are saved in the sequence 0-14 in a IS-word save area. There is
no place provided to save register 13; it can be saved in another register or in another save
area not known to the control program. This can be done by adding a word to the end of the
save area that is provided and is addressed as SAVE + 60.

148 MVT Guide (Release 21.7)

Name Operation
MVC
MVC
L
BALR

Operand
36(4,12),MSGADDR
42(2,12) , MSGLEN
REG15,VCONYS
REG14,REG15

A(MSG)
C'text of message'

MOVE MESSAGE ADDRESS AND
LENGTH TO SYSTEM TABLE
BRANCH AND LINK TO MESSAGE
ROUTINE

MSGADDR DC
MSG DC
MSGLEN DC
VCONYS DC

H'two character lingth of message'
V(IEFYS)

Accounting Data Set writer: This writer places accounting records in the accounting routine in a
data set named SYS l.ACCT. The data set must reside on a permanently resident direct access
device. The accounting routine must provide linkage to the writer. Pass the beginning address
of the record to be written to the writer.

A sample accounting routine, showing the use of console messages, output to the system
output writer, and the data set writer is stored under the name SAMACTRT in the
SYS I.SAMPLIB data set furnished with the starter operating system.

Adding the Accounting Data Set Writer

The accounting data set writer (module IEFWAD) is generated in the appropriate scheduler
load modules during system generation after specifing the accounting routine in the
SCHEDULR macro. These are the same modules that contain the user-written accounting
routine. Scheduler storage requirements are increased by the amount of storage needed by the
accounting routine plus 2600 bytes. The writer places accounting records developed by the
routine in a data set named SYSl.ACCT.

Linkage

The accounting routines link to the writer via the following code:

L R15,VCON
BALR 14,15

VCON DC V(IEFWAD)

Input

The accounting routine passes in register 1 the address of the accounting record to be written.

The record format is:

DS3 H -- space used by the data set writer

DC ' __ ' -- contains the number of bytes of data being passed. This number cannot
exceed the capacity of 1 track on the direct access volume being written on.

DC the data to be written in SYSl.ACCT.

Registers 13,14, and 15 are used as specified by operating system conventions (14 and 15
are used for linkage as above; 13 must point to an I8-word save area).

Section IV: Modifying the System 149

•

Specifying the SYS1.ACCT Data Set

The SYSl.ACCT data set must be pre-allocated on a direct access volume that will be
permanently resident. The data set must by named SYSl.ACCT, have no secondary extents,
and be allocated contiguous space. Do not catalog the data set.

If the installation has two permamently resident volumes available for accounting routines,
create two SYS 1.ACCT data sets and utilize the console messages and replies to notify the
system as to which data set is to be written to.

Output

If the IEFW AD routine successfully writes the record in the SYS 1.ACCT data set, the routine
returns control to the accounting routine immediately. If the routine fails to write the record, it
uses message IEF507D to bring the error condition to the attention of the operator. (See the
Messages and Codes publication (GC28-6631) for the text of, and answers to, the message.) Depending
upon the answer, the routine may try again to write your record in the SYSl.ACCT data set.

In any case, a code is returned to the routine indicating either that the record was written
successfully, or, if it was not written successfully, the cause of the failure. The return codes are
described in the follwing table.

Contents Type· Meaning

Register 15

0 D The record was written to the data set.

4 D The record was not written to the data set because the

record exceeds the length of one track.

8 D The record was not written to the data set because there

is no more space in the data set.

12 D The record was not written to the data set because no

space had been allocated to the data set.

16 D The record was not written to the data set because a

permanent I/O error was encountered while trying to

write it.

20 D The record was not written to the data set because the

previously last record could not be found.

24 D Operator gave invalid device address.

Register 0

n B Number of tracks still available in: the data set.
(Valid only if register 15 is zero.)

*Type - Type of number. D - Decimal, B - Binary

Use of ENQ/DEQ

IEFWAD enqueues on the major Q name SYSIEFAR arid the minor Q name WD.

150 MVT Guide (Release 21.0)

Writing Rollout/Rollin Installation Appendages

This topic explains how to write rollout/rollin appendages for MVT configurations of the
operating system and how to insert them into the operating system before or after system
generation. The four exits to user-written appendages and their functions are explained. The
chapter also presents sample coding for an appendage.

Characteristics of Rollout/Rollin Installation Appendages

The rollout/rollin feature of IBM System/360 Operating System is used with MVT
configurations as an aid to main storage management. Rollout/rollin allows the temporary,
dynamic expansion of the job step beyond its originally specified region. When the job step
needs more space, rollout/rollin attempts to obtain unassigned storage for its use. If there is no
such unassigned storage, another job step is rolled out -- transferred to auxiliary storage (IBM
2301, 2311, 2314 or 2321 -- so that its region may be used by your job step. When released
by the job step, this additional storage is again available, either as unassigned storage, if that
was its source, or to receive the job step to be transferred back into main storage (rolled in). (Note:
Teleprocessing jobs which use the Autopoll option should not be marked eligible for rollout. A
rolled-out job which is using the Autopoll option cannot be restarted properly.)

During the course of normal rollout processing, exits are taken to installation-written
routines, so users can dynamically control various aspects of the rollout function. The routines
must be serially reusable; they will reside as part of the resident nucleus and will be entered by
a branch entry. IBM has supplied a dummy module which resolves the appendage exits during
system generation.

To replace the dummy module before system generation, the object module which results
from the assembly of the updated appendage routine should be link edited into the
SYSl.CI535 data set. To replace the assembled dummy appendage module after system
generation, you should link edit the new appendage module as a CSECT replacement in
IEANUCOI.

It may be necessary for the appendages to address the jobname; however, unless the job
has issued an A TT ACH, SYSINIT will appear in the jobname, and the actual jobname will
appear in the stepname. Therefore, an appendage checking for a specific jobname should also
check for SYSINIT; if it is encountered, the appendage should further check the stepname for
the actual jobname.

There are four installation exits; their functions and the linkage to them are discussed in the
following paragraphs.

Linkage to User Appendages

Follow these conventions for user-appendages:

1. Register 15 contains the base address of the routine.

2. Register 14 contains the return address.

3. Register 13 contains the address of an 18-word save area in which you must save any
registers that you will use. The registers must be restored before exiting.

Section IV: Modifying the System 151

4. Register 1 contains the address of the TCB for-the task that invoked rollout. (Exception: on
entry to Appendage IV, register 1 contains the address of the PQE for the region selected
for rollout.)

5. Register 0 contains the address of a three-fullword area. The first two bytes of the: first
word contain the number of rollouts now in effect. The third and fourth bytes of the first
word contain the number of requestors 1,l0W queued for rollout. The rollout queue is ordered
according to dispatching priority. The second word contains the address of the queue origin
for queued rollout (IEAROQUE). The third word is the address of the parameter list for
the task that invoked rollout. The first word of the two-word parameter list contains the
address of the TCB for the task that invoked rollout, and the second word contains a
hexadecimal number which represents the length, in bytes, of the originally requested main
storage area.

Appendage I: lEAQAPGl

The exit to Appendage I is taken when the current request for additional storage has tried to
cause rollout, and at least one other job step has already invoked rollout. Users can determine,
using their own criteria, whether to override the normal rollout procedure of allowing only one
job step to invoke rollout at any given time. If users allow mUltiple (successive) rollouts, they
are responsible for preventing system interlocks such as occur if each of two job steps needed
two-thirds of main storage at the same time. (The obvious escape from this situation would be
to arbitrarily cancel one of the steps.) If multiple rollouts are not allowed, the requesting task
is placed upon the queue of tasks and are waiting for rollout. From the linkage information
passed in the registers, decide whether or not to make an immediate attempt at rollout for the
requesting step. If you desire an immediate attempt at rollout, return the TCB address passed
in register 1 without change. If you do not desire an immediate attempt at rollout, return the
address of the requesting task in complement form. When using the IBM-supplied Appendage
I, the request will be queued and no mUltiple rollout will occur.

Appendage II: lEAQAPG2

The Appendage II exit is taken when there is not enough free space or there is no rolloutable
job step of lower dispatching priority than the job step that invoked rollout. No attempt is
made to find a higher dispatching priority step to roll out. Users have the option of requesting
that the rollout function attempt to find a job step of higher dispatching priority that can be
rolled out.

Users who do not want to look for a higher dispatching priority step to roll out should
return the address of the requesting task without change. Users who do desire the higher
dispatching pass should return the address in complement form.

Appendage III: lEAQAPG3

The exit to Appendage III is taken after the rollout function has determined, through the use
of both its own and (optionally) criteria, that a job step suitable for rollout does not exist. Through
this appendage users can select either the step which requested the unavailable storage or any
other job step in the system for abnormal termination (ABEND). A job step not selected for
ABEND (or if the IBM-supplied Appendage III is used), the requestor is placed on the rollout
queue. If a job step other than the requestor is selected by the appendage, ABEND of the
selected job step is initialized, and the requestor is queued for rollout.

Users who do not desire to initiate an ABEND should set register 1 to zero before exiting. The
requestor is then queued for rollout. Users who do desire an ABEND must return in register 1

152 MVT Guide (Release 21.0)

the address of the job step TCB to ABEND the task. (The address returned will be checked to
ensure that it is a job step TCB. If it is not, it is ignored and the requestor is queued for
rollout.) If the address is valid and is not the address of the requesting step, ABEND is
initiated and the requestor is queued for rollout. If it is the address of the requesting step,
ABEND is initiated and the requestor's IOE is returned to the available queue. If the
IBM -supplied Appendage III is used, no ABEND occurs.

Appendage IV: lEAQAPG4

The Appendage IV exit is taken each time a job step has been selected as a candidate for
rollout. This appendage gives you the opportunity to apply your criteria to each job step that
the rollout function has found to be eligible for rollout. Job steps are considered for rollout
eligibility beginning with the job step of lowest dispatching priority, and continuing upward
until all eligible job steps with a lower dispatching priority (than that of the requesting job
step) have been presented to your appendage. If you have supplied an appendage which
permits job steps of higher dispatching priority to be eligible for rollout, these will also be
presented to your appendage beginning with the job step of next highest dispatching priority
(than that of the requesting step), and continuing upward until all eligible job steps with a
higher dispatching priority have been presented.

The process of presenting job steps to your appendage for approval continues either until a
job step is approved for rollout by the appendage, or until all eligible job steps have been
examined and disapproved by the appendage.

Sample Coding of Appendages

The following pages contain sample coding illustrating the linkage to the appendage. In the
example given, an Appendage II which approves the rollout of job steps with a higher priority
that the requesting job step is used to illustrate appendage coding.

General Flow of Rollout Processing

The flowchart in F~gure 14 depicts the overall flow of control through the various user
appendages and the rollout module.

Section IV: Modifying the System 153

Set TCB Scan to Start
at Top of TCB Queue
and Stop at Requestor's
JSTCB

Figure 14. General' Flow of Rollout/Rollin Processing

154 MVT Guide (Release 21.0)

A Request for Rollout from
Top of the Rollout Queue

Yes

IEAQAPG4

Criterion Selection
Appendage

Successful
Rallout
Performed

Exit RO/R I Module
via Task Switch

Source Statement

IEAPAPG2 CSECT
THIS ROUTINE WILL APPROVE THE ROLLOUT OF JOBSTEPS WITH A HIGHER
PRIORITY THAN THE REQUESTING JOBSTEP. IT IS ENTERED FROM USER
APPENDAGE - IEAQAPG2 - WHICH IS RESIDENT IN THE NUCLEUS AS PART OF
THE ROLLOUT/ROLLIN CODE.
IT WILL WRITE TO THE OPERATOR INDICATING THE FOLLOWING:

• ROLLOUT STATUS (NUMBER OF ROLLOUTS IN EFFECT AND THE NUMBER OF
ROLLOUT REQUESTS QUEUED.)

•
•

THE NAME OF THE JOB REQUESTING ROLLOUT.
APPROVAL OF THE REQUEST.

R1
R2
R3
R4
RS
R8
R12
R13
R14

EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 8
EQU 12
EQU 13
EQU 14
STM R14,R12,12,(R13)
BALR R12,O
USING *,R12
LR R14,R13
ST R13,SAVEAREA+4
LA R13,SAVEAREA
ST R13,8(R14)
LR R2,O
LR R3,R1
USING TCB,R3
L R4,TIOTA
USING TIOT,R4

GET ADDRESS OF TASK I/O TABLE

MVC WTLENTER+27(8),JOBNAME
WTLENTER WTO 'IEAQAPG2 ENTERED REQUESTS ROLLOUT'

USING ROSTATUS,R2
LH R8,INEFFECT GET NBR OF ROLLOUTS IN EFFECT
CVD R8,WORK
UNPK WTLEXIT+29(2),WORK
LH R8,QUEUED GET NBR OF ROLLOUT REQUESTS QUEUED
CVD R8,WORK
UNPK WTLEXIT+S1(2),WORK
MVC WTLEXIT+74(3),YES

WTLEXIT WTO 'ROLLOUTS IN EFFECT -

L
LM
LCR
BR
DS

SAVEAREA DS
WORK DS
YES
ROSTATUS
INEFFECT
QUEUED

DC
DSECT
DS
DS
DSECT
ORG

TCB

TIOTA
TIOT
JOBNAME

DS
DSECT
DS
END

APPROVED -
R13,SAVEAREA+4
R14,R12, 12(R13)
R 1 ,R 1
R14
OD
18F
FL8
C'YES'

H
H

*+12
F

FL8

ROLLOUTS QUEUED - REQUEST

Section IV: Modifying the System 155

•

The Must Complete Function

System routines (routines operating under a storage key of zero) often engage in updating
and/ or manipulation of system resources such as system data sets, control blocks, queues, etc. These
resources contain information critical to continued operation of the system and they must
complete their operations on the resource. Otherwise, the resource may be left incomplete or
may contain erroneous information -- either condition leads to unpredictable results.

The ENQ service routine provides the must complete function and ensures that a routine
queued on a critical resource(s) can complete processing of the resource(s) without
interruptions leading to termination. The must complete function places other routines (tasks)
in a wait state until the requesting task -- the task (routine) issuing a ENQ macro instruction
with the set-must-complete (SMC) operand -- has completed its operations on the resource. The
requesting task releases the resource and terminates the must complete condition through
issuance of a DEQ macro instruction with the reset-must-complete (RMC) operand.

Realize that, for the time it is in effect, the must complete function serializes operations to
some extent in the computing system. Therefore, its use should be minimized -- use the
function only in a routine that processes system data whose validity must be ensured.

As an example, in multitask environments, the integrity of the volume table of contents
(VTOC) must be preserved during an updating process so that all future users may have
access to the latest, correct, version of the. VTOC. Thus, in this case, enqueue on the VTOC
and use the must complete function (to suspend processing of other tasks) when updating a
VTOC.

Just as the ENQ function serializes use of a resource requested by many different tasks, the
must complete function serialize execution of tasks.

Characteristics of the Must Complete Function

When the must complete function is requested the requesting task is marked as being in the
must complete mode and all asynchronous exits from the requesting task are deferred. Other
tasks in the system (except the allowed tasks at the system level) or associated with the
requesting task in a job step (step level) are placed in a wait state. Thus, tasks external to the
requesting task are prevented from initiating procedures that will cause termination of the
requesting task. Other external events, such as a CANCEL command issued by an operator, or
a job step timer expiration are also prevented from terminating the requesting task.

The must complete mode of operation is not entered until the resource(s) queued upon are
available.

At the system or step level, the requesting task can cause its own abnormal termination. If
the requesting task does come to an abnormal termination before a reset condition has been
effected, the operating system is stopped at the point of error to permit investigation of the
trouble. It is then necessary to restart the system with the initial-program-Ioad (IPL)
procedure.

Levels of Use of the Must Complete Function

The must complete function can be ~pplied at two levels:

The System Lev'ei: Only the requesting task, and system tasks included during system
generation, are allowed to execute. All other tasks in the system are placed in a wait state.

156 MVT Guide (Release 21.0)

The Step Level: In a partition, only the requesting task is allowed to execute. All other tasks in
the partition, including the initiator task, are placed in a wait state.

CAUTION: Use of the must complete function at the system level should not be attempted
until all aternatives have been exhausted. Except for extremely unusual conditions the system
level of must complete should never be used.

Requesting the Must Complete Function

Request the must complete function by coding the set-must-complete (SMC) operand in an
ENQ macro insturction. The format is:

Name Operation Operand
[symbol] ENQ ... ,SMC= SYSTEM

STEP

Two parameters, SYSTEM and STEP, indicate the level to which the must complete
function is to apply. The Supervisor Services and Macro Instructions publication describes the
other operands of the ENQ macro.

Be'cause of the properties of the TEST and USE parameters of the RET operand of the
ENQ macro insturction, the SMC operand should be used only if the RET operand is to use
the parameters HAVE, or NONE (in the E-form of ENQ), or if the RET operand is not used
at all.

Request the must complete function only in routines operating under a protection key of
zero. If the protect key is not zero, the task using the routine requesting "must complete" is
abnormally ended.

Programming Notes

1. All data used by a routine that is to operate in the must complete mode should be checked
for validity to ensure against a program-check interruption.

2. A routine that is already in the must complete mode should avoid calling another routine
which also operates in the must complete mode. However, one level of nesting is permitted,
when necessary, with the following cautions:

a. A task may set the must complete mode for both the system and the step. If multiple
settings are made for either the system or the step, only the first setting of each is
effective -- the others are treated as no operation.

b. The same is true for reset-must-complete. The first RMC for the system will reset the
status of the system, the first RMC for the step will reset the status of the step, and all
others will be treated as no operation.

3. Interlock conditions that can arise with the use of the ENQ function are discussed in the
Supervisor Services and Macro Instructions publication.

Additionally, an interlock may occur if a routine issues an ENQ macro instruction while in
the must complete mode. The wanted resource may already be queued on by a task placed
in the wait state due to the must complete request already made. Since the resource cannot
be released, all tasks wait.

Section IV: Modifying the System 157

•

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, unless
extreme care is taken, by a routine operating in the must complete mode. An interlock
condition will result if a serially-reusable routine requested by one of these macro
instructions has been requested by one of the tasks made non-dispatchable by the use of the
SMC operand or was requested by another task and has been only partially fetched.

For example, suppose routine "b" in task B has requested and is using subroutine "c".
Subsequently routine "a" in task A (of a higher priority than task B) receives control of the
processing before routine "b" finishes with subroutine "c". If routine "a" issues an ENQ
macro instruction with the SMC operand and puts task B (and, thus, routine "b") in a
non-dispatchable condition, subroutine "c" remains assigned to routine "b". Now, if routine
"a" issues a request (via a LINK, LOAD, etc. macro instruction) for subroutine" c", an
interlock will occur between tasks A and B: task A cannot continue since subroutine "c" is
still assigned to task B, and task B cannot continue (and thus release subroutine "c")
because task A in the must complete mode has made task B nondispatchable.

5. The time a routine is in the must complete mode should be kept as short as possible -- enter
at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s»

b. ENQ (on same resource(s»,RET=HA VE,SMC= SYSTEM

STEP
Item a gets the resource(s) without putting the routine into the must complete mode.

Later, when appropriate, issue the ENQ with the must complete request (Item b). Issue a
DEQ macro instruction to terminate the must complete mode as soon as processing is
finished.

Ter!!,inating the Must Complete Function.

Terminate the must complete function and release the resource queued upon by coding the
reset-must-complete (RMC) operand in a DEQ macro instruction. The format is:

Name Operation Operand
[symbol] DEQ ... ,RMC= SYSTEM

STEP

The parameter (SYSTEM or STEP) must agree with the parameter specified in the SMC
operand of the corresponding ENQ macro instruction.

Tasks placed in the wait state by the corresponding ENQ macro instruction are made
dispatchable and asynchronous exits from the requesting task are enabled.

158 MVT Guide (Release 21.7)

The PRESRES Volume Characteristics List

This chapter describes the creation and use of a direct access volume characteristics list that is
placed in the system parameter library under the member name PRESRES (permanently
resident and reserved).

Characteristics of the PRESRES Volume Characteristics List

The PRESRES volume characteristics list defines the mount and allocation characteristics of
direct access device volumes used at an installation. Using the list predefines mount
characteristics (permanently resident, reserved) and allocation characteristics (storage, public,
private) for any, or all, direct access device volumes used by the installation. The Job Control
Language publication describes volume characteristcs and the operating system's response to the
various designations.

The scheduler compares the volume serial numbers in the PRESRES characteristics list with
those of currently mounted direct access volumes after receiving control from the nucleus
initialization program (NIP). Each equal comparison results in the assignment to the mounted
volume of the characteristics noted in the PRESRES entry. (Fields in the unit control block for
the device on which the volume is mounted are set to reflect the desired characteristics.) If the
volume is: the IPL volume; the volume containing the data sets SYSl.LINKLIB,
SYSl.PROCLIB, SYSl.SYSJOBQE; or a physically nondemountable volume (such as.a 2301
Drum Storage Unit) the mount characteristic (permanently resident) has already been assigned
and only the allocation characteristic is set.

A mounting list is issued for the volum~s in the PRESRES characteristics list that are not
currently mounted (except those for which mounting messages have been suppressed) and the
operator is given the option of mounting none, some, or all of the volumes listed. The mount
and allocation characterisitics for the volumes mounted by the operator are set according to
the PRESRES list entry for the volume. The operator mounts the unit on the volume he
selects.

The Messages and Codes publication describes the operator messages and responses
associated with the use of the PRESRES volume characteristics list.

After the scheduler has finished PRESRES processing, reading of the job Input stream
begins, and the PRESRES list is not referred to again until the next IPL.

Note:

1. A PRESRES entry identifying a physically nondemountable volume will appear in the mount
list issued to the operator if the volume (device) is OFFLINE or is not present in the
system.

2. Use of the PRESRES list can only be suppressed by deleting the member from the
parameter library (SYSl.PARMLIB).

3. Only the first 102 volumes on the PRESRES list can be placed on the mount list.

Users can use a PRESRES characteristic list entry or refer to the volume in the input stream
to assign an allocation characteristic other than "public" to volumes whose mount
characteristic is "permanently resident".

Section IV: Modifying the System 159

•

Selection of the volumes for which PRESRES entries are to be created should be done so
that critical volumes are protected. Since the combination of mount and allocation
characteristics assigned to a specific volume determine the types of data sets that can be placed
on the volume and its usage, you can exercise effective control over the volume through a
PRESRES list entry.

Writing the PRESRES Entry Format

Ea~h PRESRES entry is an 80-byte record, consisting of a 6-byte volume serial number field,
a I-byte mount characteristic field, a I-byte allocation characteristics field, a 4-byte device
type field, a I-byte mount-priority field, and an optional information field. Commas are used
to delimit the fields, except the optional information field is always preceded by a blank. All
character representation is EBCDIC. This format is shown below.

Volume Serial
Number 6 Bytes

, ,Device Type, Optional

L L4 Bytes Lt Info~~:~~~~1 Byte

Mount Priority--1 Byte
Allocation Characteristic--1 Byte

Mount Characteristic--1 Byte

The volume serial number consists of up to six characters, left justified.

Mount characteristics are defined by:

o to denote permanently resident

1 to denote reserved

The default characteristic is "permanently resident" and is assigned if any character other than
o or 1 is present in the field.

Allocation characteristics are defined by:

o to denote storage

1 to denote public

2 to denote private

The default characteristics is "public" and is assigned if any character other than 0, 1, or 2 is
present in the field.

The device type is defined by: A four-digit number designating the type of direct access device
on which the volume resides, e.g. the IBM 2311 Disk Storage Drive is indicated by the
notation 2311. Note that is field only indicates the basic device type for the associated volume. Advise
the operator if the device requires special features (such as track overflow) to process the data on the
designated volume.

The mount priority field is used to suppress mount messages at IPL time for a volume; the
alphabetic character N should be inserted in this field to suppress the mount message. This
field allows the user to list seldom used volumes in the PRESRES list without having a mount
message issued at each IPL. When these volumes are required, they may be mounted and
attributes will be set from the PRESRES list entry. If the user does not wish to have the
mount message suppressed, he may omit the mount priority field and the preceding comma.

160 MVT Guide (Release 21.0)

The optional information field contains: Any descriptive information about the volume. This
information is not used by the system, but will be available to the user on a printout of the
list. If necessary, comments may start in the second byte after the mount priority field or if the
mount priority field is omitted, in the second byte following the comma after the device type
field.

Embedded blanks are not permitted in the volume serial, mount, allocation, or device type
fields.

Adding the List

The IEBUPDTE utility program places the list (under the member name PRESRES) in the
system parameter library, SYS l.P ARMLIB. This utility is also used to maintain the list.

The following pages contain sample coding illustrating the linkage to the appendage. In the
example given, an Appendage II which approves the rollout of job steps with a higher priority
that the requesting job step is used to illustrate appendage coding.

Section IV: Modifying the System 161

SEC IV

Task Directory for Section IV: Modifying the System

For information about:

• Reader cataloged procedures, see
Reader Procedures
RA - Automatic SYSIN Batch Reader Procedure
RB - Reader for Blocked SYSIN data
RU - Reader Procedure for Unblocked SYSIN

• Writer cataolged procedures, see
System Output Writer Procedures
Command Chaining
Direct SYSOUT Writer Procedures
Choosing Direct SYSOUT Writers
WC - Writer with Command Chaining
WU - Writer for Special Chains

• Initiator cataloged procedures, see
Initiator Procedures
Mounting Control Volumes
Initiator Cataloged Procedures

• Dedicated data set cataloged procedures, see
Procedure INITD

• Using dedicated data sets, see
How to Dedicate a Data Set
How to Use a Dedicated Data Set
Use of Dedicated Data Sets by Processor Programs for Utility Data Sets
System Library Data Sets as Dedicated Data Sets
Disposition of Temporary Data Sets

• Writing JCL for user-written reader cataloged procedures, see
The EXEC Statement
DO Statement for the Input Stream
DO Statement for the Procedure Library
DO Statement for the Spooling Data Set

• Writing JCL for user-written initiator procedures, see
The EXEC Statement
DO Statement Formats

• Writing JCL for dedicated data sets, see
INITD Procedure Statements
The EXEC Statement
DO Statement for the Dedicated Utility Data Set
DO Statement for the Loadset Data Set

• Writing JCL for user-written system output cataloged procedures, see
The EXEC Statement
DO Statement for the Output Data Set

162 MVT Guide (Release 21.0)

• Writing JCL for user-written direct SYSOUT cataloged procedures, see
The EXEC Statement
The DD Statement

• Writing SVC routines, see
The Resident SVC Routines Option
Characteristics of SV C Routines
Programming Conventions for SVC Routines
Writing SVC Routines
Adding SVC Routines Into the Control Program
Specifying SVC Routines
Inserting SVC Routines During the System Generation Process

• Communicating with the control program, see
Programming Conventions for WTO /WTOR Routines
Writing a WTO/WTOR Routine

• Increasing system response, see
Procedures for Using the Link Pack Area
The Resident BLDL Table Option
Selecting Entries for the Resident BLDL Table
The Resident Access Method Modules Option
The Resident SVC Routines Iption
The Resident Error Recovery Procedure Option
Characteristics of SVC Routines

• -Increasing user convenience, see
Characteristics of an Output Separator
Writing an output Separator Program
Characteristics of the Output Writer
Writing an Output Writer
Characteristics of Rollout/Rollin Installation Appendages
Characteristics of the Must Complete Function
Levels of Use of the Must Complete Function
Requesting the Must Complete Function
Terminating the Must Complete Function

• Using library lists, see
Procedure for Using the Link Pack Area
List IEABLDOO
List IEAIGGOO
List IEARSVOO
Example of Link Pack Area Specification
The Link Library List
Characteristics of the PRESRES Volume Characteristic List
Writing the PRESRES Entry Format
Adding the List

• Increasing system efficiency, see
Logical Track Size -- JOBQFMT
Reserving Initiator Queue Records -- JOBQLMT
Number of Generation Data Groups
Number of Passed Data Sets
Number of I/O Devices for Passed Data Sets
Number of Volumes

Section IV: Modifying the System 163

Number of System Messages
Use of Automatic Restart
Reserving Write-to-Programmer Queue Records -- JOBQWTP
Reserving Queue Records for Cancellation -- JOBQTMT
Number of Devices .
Number of Jobs

• Writing accounting routines and gathering accounting information, see
Programming Conventions for Accounting Routines
Input Available to Accounting Routines
Adding an Accounting Routine
Output Prom Accounting Routines
Adding the Accounting Data Set Writer

164 MVT Guide (Release 21.0)

Section V: Logic Summary

This section contains detailed descriptions of the five major routines of the MVT control
program. The five routines described are:

• Job management
• Task management
• Data management
• Volume management
• Recovery management

Job Management Routines

This topic describes the command processing and the job processing routines of job
management.

Command Processing

Processing of commands has three phases:

• Reading the command
• Scheduling the command
• Executing the command

These three phases are performed under various system tasks. For some commands, all three
phases are performed as part of one task. However, processing of most commands requires
several system tasks. Figure 15 shows the relationship between the system tasks and phases of
command processing.

Reading the Command

Operator commands are entered into the system through either a console device or an input
job stream. Reading of commands entered v.ia a console device is performed by routines
operating under the console communications task; reading of commands entered via an input
job stream is performed by routines operating under the reading task associated with that input
job stream.

Console Communications Task

The console communications task is created at system generation (SYSGEN) time when its
task control block (TCB) is assembled. The console communications task does not have a r

region of its own, its storage requirements are filled from the. region of another command
processing task -- the master scheduler task.

Section V: Logic Summary 165

SEC V

Commands issued via an
Input Job Stream

~}

Read and
Analyze

Reading Task Console Communications Task

Command
Read

--I--
Does Command
Require a Task

be Attached ~

Schedule No ~
Post

Master Scheduler Task

Attach Task to
Complete Processing
of Command

----- -- - -- -- ------
Execute

Complete
Processing of
Command

J ___________ _
Continue Reading
the Input Job
Stream

Attach

Command Execution Task

Execute
Command

Figure 15. Relationship Between Tasks and Phases of Command Processing

Post

Commands Issued
via a Console

Read and
Analyze

_:mc __
Does Command
Require a Task

Yes be Attached

No

Complete
Processing of
Command

Wait

Figure 16 shows the flow of control when a command is issued via a console device. The
operator pushes the II Attention II' button or readies that device, causing an I/O interruption to
occur; CPU control is passed first to the supervisor and then to the I/O supervisor. After the
I/O Supervisor determines the cause of this interruption, it passes control to an attention
routine which issues a POST macro instruction for an event control block (ECB) being
awaited by the console communications task. The supervisor's processing of this "posting"
includes readying the console communications task, and passing CPU control to a routine of
this task.

The console wait routine resides in the nucleus, and is the controlling routine in the console
communications task. It is the first routine that receives control for this task, and is the routine
that issues the WAIT macro instruction to return the task to the wait state when it is complete.
The console wait routine receives CPU control from the supervisor, and passes control to the
appropriate processing routine.

There is a console I/O routine (device support routine) for each type of device used as a
console. Each routine performs the same function, but one routine varies slightly from another
because each type of device operates differently. The routine requests' main storage to receive
the command and issues an EXCP macro instruction that enables the operator to transmit the
command. When the command has been transmitted, the command scheduling routine
schedules commands that require another system task, and executes commands that do not.

166 MVT Guide (Release 21.0)

Operator Readies
the Device

"-I/o Interruption

Fixed Area

SUPERVISOR

Analyze Interruption

Analyze Interruption

~
Ready the Console
Communications Task

Analyze Interruption

+ Load the Console
I/o Routine

5VC Interruption

Analyze Interruption ---,-__ --..::...:.-=.~~~~ __

t

I/o Supervisor

Attention
Routine

POST ECB

Console
,Wait Routine .

In SVC
Transient Area
(or Li nk Pack

Allow Operator to --I---=~---r }....-_____ --i'M
Area)

Shaded Routines Operate
Under the Console
Communications Task

Transmit Command

Analyze Interruption

l
Load the Command
Scheduling Routine

Note: While Command is being transmitted, other processing is performed.
Control returns to the Console I/o routine after the command is transmitted.

Figure 16. Flow of Control When a Command is Issued via a Console

Reading Tasks

In SVC
Transient Area
(or Link Pack
Area)

When a command is issued via an input job stream, the initial processing and analysis of the
command is part of the reading task associated with that input job stream (see Figure 15). The
interpreter control routine of the reading task detects the command and invokes the command
scheduling routine. This routine analyzes and schedules the command for the reading task in
the same way as it does for the console communications task. After completing its operation
for a reading task, the command scheduling routine returns CPU control to the interpreter
control routine which continues reading the input job stream.

Section v: Logic Summary 167

SECV
"

Scheduling the Command

Scheduling a command is the storing of the command, and the readying of another system task
to continue the command's processing. The command scheduling routine (a type 4 SVC
routine) operates under either the console communications task (when the command was
issued via a console device), or a reading task (when the command was issued via an input job
stream).

If execution of the command does not require additional tasks, the command scheduling
routine executes the command, and returns control to the routine that called it. In the console
communications task, a console 110 routine receives control and it passes control to the
console wait routine; the console wait routine places the task in the wait state. In the reading
task, control is returned to the interpreter control routine which continues reading the input
job stream.

However, processing of the command usually requires additional system tasks for execution.
If the task for executing the command does not yet exist, the command scheduling routine
schedules execution of a command by creating a command scheduling control block (CSCB),
placing the CSCB in the CSCB queue, and posting an event control block (ECB) being
awaited by the master scheduler task. The routines of the master scheduler task attach the task
needed for executing the command.

If the system task for executing the command is already in the system, an ECB in the
CSCB for that task is posted.

The CSCB queue contains a CSCB for each command that has a task created for its
execution. Command processing routines use this queue to associate commands with the tasks
or functions that the commands affect. When creation of a new task is required, a CSCB is
created, and an indicator is set in it (i.e., the CSCB is made pending.)

The routines of the master scheduler task check the CSCB queue and attach a task for each
CSCB that is pending. The attach routine of the master scheduler task scans the CSCB queue
until it finds a pending CSCB. When one is found, the attach routine removes it from pending
status, and attaches the appropriate task. The attach routine then continues scanning the
CSCB queue, attaching a task for each pending CSCB. When no more pending CSCBs are
found, the wait routine of the master scheduler task causes the task to be placed in the wait
state.

Executing the Command

A given command is executed under a system task that is in one of three categories:

• The task is the same task under which the command was read (i.e., the console
communications task or a reading task).

• The task is already in the system and has functions other than execution of the command.
• The task is created especially for execution of this command.

A discussion of which commands are in each of the three categories, and the tasks required
for processing of these commands is given in the MVT Job Management PLM. Relatively few
commands are executed under the task that read them. When the command scheduling routine
detects such a command, it performs all the required processing and returns control to the
routine that called it.

168 MVT Guide (Release 21.0)

Some tasks can include the processing of more than one type of command. For example, the
routines that process a MODIFY command can operate under control of a task created in
response to an earlier START command.

The job processing tasks (Le., reading, writing and initiating tasks) are created especially for
execution of a given command. Each time a ST ART command is issued, a new job processing
tasks is created for the requested function.

Job Processing

Job processing is made up of three types of tasks:

• Reading tasks, which control the reading of input job streams and the interpreting of the
control statements in these input streams.

• Initiating tasks, which control the initiating of job steps whose control statements have been
read and interpreted. Termination procedures are also part of initiating tasks.

• Writing tasks, which control the transferring of system messages and user data sets from
direct access volumes on which they were initially written to some other external storage
medium (usually a tape, printer, or punch).

When system management facilities are included in the system, another type of task, the
system management facilities (SMF) task, is created and placed into a wait state during master
scheduler initialization. Then, while tasks are being performed, system management data is
accumulated in a buffer. Every time the buffer becomes filled, the ECB for the SMF task is
posted and SMF routines write the contents of the buffer into the system management data
set.

Reading, initiating, and writing tasks are created in response to START commands for
readers, initiators, and writers, respectively. Figure 17 shows the processing performed to
attach a job processing task for a START command.

Whenever a START command is issued, the resultant command processing includes the
attaching of a "START-command" task by a routine of the master scheduler task. A routine
(the system task control routine) of the START-command task determines what is to be
started, and then attaches either a reading, a writing, or an initiating task.

When the START-command task was attached, it was assigned a region large enough for
the requirements of the system task control routine. This region is released by a system task
control routine module in the link pack area unless the reading, writing, or initiating task to be
attached is also going to use this region (instead of being assigned a new region by the
supervisor). This module in the link pack area then places the ST ART -command task in the
wait state.

When its associated reading, writing, or initiating task is terminated, a module of the
START -command task detached the terminated task, and performs some termination
processing. The system task control routine then passes control to the supervisor which
terminates the START -command task.

Section V: Logic Summary 169

•

Writer

1
START IRle.a?er I (Issued Via)

nltlator a console

Read

Console Communications Task

Read and Analyze
Command

- - -1- - t-- --- --- ---
_1

Does Command Yes
Require a Task

be Attached

Schedule

t,
(See Figure 3)

Master Scheduler Task

START - Command Task

Execute

Figure 17. Processing to Create a Task for START Command

170 MVT Guide (Release 21.0)

PO ST

Command Task

ATTACH

J
Identify Operand of
the START Command

j
If it is unneeded, Release
Region of the START -
Command Task, and get a
new region

j
Attach Reading, Writing
or Initiating Task

I
ATTACH

J
Reading, Writing, or

Initiating Task

There may be more than one of each of the job processing (reading, writing, initiating)
tasks. You may have input job streams read from several input devices by issuing a START
reader command for each input stream. Each command results in a reading task being attached
for the associated device. You may have system messages or data sets being written on several
output devices by issuing a START writer or DSO command for each device; a writing task
results from each command. An initiating task is created in response to a START initiator
command. Up to 15 initiating tasks (in addition to other system tasks) can exist concurrently.

The routines that perform the three job processing functions are sometimes called the job
scheduler.

Reading Tasks

The major functions of a reading task are the reading of an input job stream, and the building
of control blocks and tables from the job contrql statements in that job stream. These blocks
and tables contain information required during the performance of the initiating tasks in the
system. Routines of reading tasks also process commands and store data encountered in the
input streams.

The primary routine of a reading task -- the interpreter control routine -- reads the input
stream, builds the blocks and tables in the region of its reading task, and invokes a queue
manager routine to write these blocks and tables on the SYSl.SYSJOBQE data set. This
routine resides on SYSl.LINKLIB and operates from the region of its reading task unless it
(the routine) is already in the link pack area.

If system management facilities are, included with the system, the interpreter control routine
can invoke a user-written routine before processing each job control statement. The
user-written routine can check and change the contents of the job control statements and can
also indicate whether or not the job should be canceled.

When construction of the control blocks and tables for a given job is complete, the
interpreter control routine invokes a queue manager routine which enqueues them in an input
work queue. The enqueued blocks and tables of a given job are referred to as a work queue
entry. Figure 18 shows an example of the relationship between the input work queues and the
contents of input job streams.

Input Work Queues

The input work queues are made up of control blocks and tables containing information
needed to initiate job steps. The blocks and tables of a given queue are records chained
together in the work queue data set (SYSl.SYSJOBQE).

There are 15 input work queues -- one for each of the job classes that can be specified in
the JOB statement. These queues are identified by the 15 alphabetic characters -- "A" through
"0". The interpreter control routine has, a given work queue entry placed in the queue that
corresponds to the CLASS parameter in the JOB statement of that entry. Work queue entries
in a given queue are ordered according to the priorities of the jobs and the times of submission
to the system. They remain in the queue until they are dequeued by an initiator routine that is
seeking a new job to initiate.

Section V: Logic Summary 171

SEC V

(0

CD
CD

I nput Job Stream I

JOB 2 CLASS =A

JOB I CLASS =C

Input Job Stream 2

JOB 3 CLASS =C
JOB 2 CLASS =0

JOB I (No Class
Specified)

Input Work
Queue Entry
for Job 2

Readi ng Task
for Input Job

Stream I

Input Work
Queue Entry
for Job I

c0
Reading Task
for Input Job

Stream 2

IOPU'WO,k/
Queue Entry
for Job 2

The queue for class A is used because no class
was specified in the JOB statement.

Entries in the same input work queue are enqueued
according to priority.

This task is in the wait state if there are not entries
in the queue for class B.

Figure 18. Example of Processing of Input Work Queues

Contents of a Work Queue Entry

CD
Input Work

Queue C lass A
(Default Queue)

Input Work
Queue Class B

Input Work
Queue Class C

Input Work
Queue Entry
for Job 3

Input Work
Queues

Classes D-N

Input Work
Queue Class a

Highest Priority
Job on Queue

Initiating Task
for Jobs in

Class A

Highest
Priority Job
on Queue

Highest
Priority Job
on Queue

Initiating Task
for Jobs in

Class B

Initiating Task
for Jobs in

Classes D and A

Initiating Task
for Jobs in

Classes C and a

Queue for class D is checked for entries before
queue for class A.

CD

CD
o Entries in queue for class C are always processed first

regardless of priorities of entries in queue for class O.

The major control blocks and tables in a work queue entry are:

• Job control table (JCT), which is built for each job from information in the JOB statement.
This table contains job and job step attributes.

172 MVT Guide (Release 21.0)

I

\

• Step control table (SCT), which is built from information in the EXEC statement. This
table contains job step attributes.

• Step input/output table (SlOT), which is built for each DD statement and contains
information needed to assign devices to the data set defined in the statement.

• Job file control block (JFCB), which is built for each DD statement and contains data set
attributes. Construction of a JFCB is completed when its associated data control block is
opened.

Figure 19 shows the flow of information between the control statements and these blocks and
tables.

JCT

Job
Control
Table

SCT

Step
Control
Table

SlOT

Step
Input/Output

Table

Job File
Control
Block

Figure 19. Information Flow Between Control Statements and Blocks of a Reading Task

Commands and Data Sets

When the interpreter control routine encounters a command in an input job stream, it invokes
the command scheduling routine, and processing of this command becomes part of the reading
task associated with the input device (see Figure 15). When a data set is encountered in an
input job stream, it is written on a direct access volume.

Termination of a Reading Task

A reading task is terminated either by a STOP reader command, or when an end-of-data
condition is detected on the associated reader device.

Initiating Tasks

An initiating task has two parts, the preparing of job steps for execution, and the performing
of termination processing when job steps are complete.

Preparing of Job Step for Execution

Preparing a job step for execution consists of:

• Acquiring a region of main storage
• Locating data sets that are input to the job step

Section V: Logic Summary 173

SECV

• Assigning I/O devices required for the job step
• Reserving auxiliary storage for data sets created during the step
• Attaching a task for the job step.

An initiator routine invokes a queue manager routine to dequeue the first entry on one of
the input work queues. (This is the entry of the highest priority job on that queue that is not
already being initiated under some other initiating task.) Figure 18 shows an example of
relationships between the input work queues and initiators.

Each initiating task is assigned to one or more job classes via the parameter field of the
associated ST ART initiator command. The classes specified determine the queues from which
this initiating task selects jobs. When an initiating task is assigned to more than one job class,
the order in which the queues were specified in the START command determines the order in
which the queues are checked.

Once a work queue entry (i.e., a job) has been assigned to an initiating task, initiation,
execution, and termination of the steps of that job are performed sequentially under control of
that initiating task. Multiprogramming is obtained when several initiating tasks are concurrently
controlling the initiation, execution, and termination of the steps of different jobs.

In a multiprogramming environment, one data set may be required for two or more jobs
that are operating concurrently. Before starting to initiate the first step of the job, the initiator
invokes the ENQ/DEQ routine of the supervisor to determine if any of the data sets required
during this job are currently being used in another job, and cannot be shared. If a data set
required by any step in the job is not currently available, initiation of the first job step is
suspended until the data set becomes available. Multiple use of a data set is allowed only when
all users have specified that the data set can be shared.

If system management facilities are included with the system, the initiator can invoke and
provide information to a user-written routine before starting to initiate a job or any of its
steps. When it returns control to the initiator, the user-written routine can indicate whether or
not the job should be canceled.

Acquiring a Region: The initiator does not obtain a region for a step until the main storage
requirements of that step are determined. When an initiator is first started, its initial main
storage requirements are filled from the region assigned when this initiating task was attached.
After an initiator has processed at least one job step, it uses the region of the last step
terminated until the current step's requirements are determined from the SCT.

After the SCT is read, the initiator determines the main storage requirements of the step,
releases the region currently being used, and requests a new region that meets th~ storage
requirement of either the job step or the initiating task -- whichever is larger. If there is not
enough contiguous storage in the dynamic area to fill the request for the region, or if there is
not enough space in the supervisor queue area for the tables and queues needed for the job,
the initiating task is put in the wait state until enough storage is available. The device
allocation routine is then· brought into the region to continue initiating the step.

Locating Input Data Sets: The device allocation routine determines which volumes contain input
data sets from either the DD statement, or a search of the catalog. (A catalog management
SVC routine is invoked to perform this search.) Once the volumes that contain the data sets
are determined, the device allocation routine determines if any I/O devices are available for
these volumes.

Assigning Input/Output Devices: A job step cannot be initiated unless there are enough I/O
devices to fill its needs. The device allocation routine determines whether the required devices
are available. If there are sufficient devices available, they are assigned to the step; if there are

174 MVT Guide (Release 21.0)

not, a message is issued to the operator. If the operator cannot make the required number of
devices available, he may have the initiating task put in the wait state until sufficient devices
are available, or he may cancel the j~b.

After devices are allocated, the device allocation routine builds a task input/output table
(TIOT) from information in the JCT, SCT, and SlOTs of the job step. The TIOT has one
entry for each data set used 'during the job step; this entry contains pointers to other control
blocks needed in the processing of the data set. The TIOT is in the system queue area, and
exists for the life of the job step. Figure 20 shows the relationship of the TIOT to other job
processing control blocks. The shaded portion of the figure shows the major blocks and tables
built during a reading task (see Figure 19). The nonshaded portion of Figure 20 shows the
major blocks and tables created during initiating tasks.

JCT

Job
Control
Table

SCT

Step
Control
Table

Step
Input/
Output
Table

Job File
Control
Block

For "New" Data Sets

Task
Input/
Output
Table

DSCB

Data Set
Control
Block

Direct Access
Volume Assigned
to the Data Set

Figure 20. Relationship of Block of Initiating Task to Blocks of Reading Task

Reserving Auxiliary Storage Space: Any direct access volume space required by the output data
sets of a job step, if not being written by DSO, is acquired at the request of the device
allocation routine by a direct access device space management (DADSM) routine of data
management. If the volumes specified by the device allocation routine do not have the required
space, the DADSM routine returns control to the device allocation routine which issues an

Section V: Logic Summary 175

SECV

operator message. The operator must then either make a new volume available, cancel the job,
or indicate that the initiating task be put into the wait state until space becomes available.

When direct access volume space is being assigned, a DADSM routine partially builds a data
set control block (DSCB) for the output data set that will occupy the space. The DSCB is the
label for that data set and contains data set characteristics obtained from t~e JFCB, and the
track addresses assigned to the data set. Construction of DSCBs for output data sets i~
completed when the associated data control block (DCB) is opened. '

Attaching a Task for the Job Step: The final operation in the initiation of a job step is the
creating (attaching) of a task for that job step. At this point, if the requested region is less
than MINP ART and the termination modules were loaded in the link pack area at IPL time,
then the system may reduce the current initiator region size by as much as 40K bytes for
problem program execution to conserve main storage. The· step attach routine issues an
ATTACH macro instruction causing CPU control to be given to the attach SVC routine. This
routine builds a task control block (TCB) which the control program uses to control the job
step processing; this TCB is the job step TCB. It is placed in the TCB queue according to the
priority of the related job.

Since initiation of the step is complete, the initiating task is placed in the wait state until the
step is to be terminated.

Terminating a Job Step

A job step is terminated either when it is complete, when a specified time interval expires,
when an error prevents any more processing, or when the job is canceled by the operator. Any
of these conditions cause the supervisor to make ready the initiating task that controlled
initiation of that step. Termination processing for the step is performed under control of this
initiating task.

The termination routine of job management is brought into the region assigned to the step.
This routine disposes of data sets created or used during the job step, and releases the I/O
devices assigned to the job step. The initiator routine issues a DETACH macro instruction to
remove the job step TCB from the system.

If system management facilities are included with the system, the termination routine can
invoke and supply information to user-written routines during step and job termination. During
step termination, the user-written routine may indicate whether or not the job should be
canceled.

After terminating the last step of a job, the initiator routine perf~rms some additional
processing. It deletes the work queue entry for the job from the SYS l.SYSJOBQE data set,
and makes entries in output work queues for system messages and SYSOUT data sets.

The output work queues reside in SYS1.SYSJOBQE. They are used by writing tasks to
indicate the SYSOUT data sets and system messages that are to be written. There are 36
output work queues, one for each SYSOUT class. A SYSOUT class is an alphabetic or numeric
designation by which the user can group his messages and SYSOUT data sets.

An output work queue is made up of entries containing data set blocks (DSBs) and system
message blocks (SMBs) for data sets and system messages in a given class. During step
termination, the initiator routine builds a DSB for each SYSOUT data set created during that
step. 5MBs are created for system messages as they are generated. Messages are' blocked so
one 5MB can contain several messages.

176 MVT Guide (Release 21.0)

All the DSBs and 5MBs in a given class for a given job are referred to as an output work
queue entry for that class. After the last step of a job is terminated, the initiator routine
invokes a queue manager routine to enqueue the output work queue entries from that job into
the appropriate output work queues.

Restarting a Job Step

If a job step is terminated before successful completion, checkpoint/restart routines can make
it possible to resume execution from the beginning of the step or from a place within the step.
Either way, the restart can be made to occur after resubmissions of the job by the programmer
or it can be made to occur automatically when the failure occurs.

Checkpoint/restart routines include a checkpoint routine and several restart routines.

The checkpoint routine is an SVC routine that is invoked when an SVC 63 instruction is
encountered in a processing program. It gathers and records on a checkpoint data set enough
information about the status of the job step and its related control blocks to allow a restart to
be made from the place where the checkpoint is taken. If a failure occurs, the checkpoint data
set is used by restart routines to return the job step to main storage so that execution can be
resumed.

The restart routines can be invoked when a job step is resubmitted for restart, or they can
be invoked automatically when a failure occurs. The functions performed by restart routines
depend upon the type of restart that is requested.

If the restart is to be made from the beginnjng of a job step, there is no need for a
checkpoint data set and one is not used. Also, unless the step is to be restarted automatically,
no restart functions are performed until the step is resubmitted. At that time, the RESTART
parameter of the JOB statement contains the name of the step to be restarted, and routines of
the reading task simply bypass preceding steps and begin processing with the named step.

If a step is to be restarted from the beginning, automatically, then restart processing begins
during step termination. The step termination routine of job management invokes restart
preparation and activation routines, which verify that a restart can be performed and request
the operator to authorize the restart. These routines also dispose of data sets created during
execution of the step, and cause the master scheduler to create a restart reader task. Routines
of the restart reader task reinterpret the job (job control statements are found in 5MBs), and
create a new work queue entry for the step to be restarted. The step is then selected and
initiated via normal initiator processing.

If a step is to be restarted from a place where a checkpoint was taken and the job is
resubmitted, the REST ART parameter of the JOB statement will identify the step, while a
SYSCHK DD statement will describe the checkpoint data set. When routines of the reading
task encounter the SYSCHK DD statement, they create a job step to be initiated before the
one that is to be restarted. The purpose of this step is to ensure that I/O device allocation for
the restarting step will be equivalent to that which existed at the time the checkpoint was
taken. It also causes the restart SVC routine to be invoked. The restart SVC routine opens the
checkpoint data set, returns the restarting job step and its related control blocks to main
storage, and ensures that volumes needed by the step have been mounted and repositioned.
Then, to cause a restart, it places a pointer to the instruction at which execution is to begin
into the RB of the restarting step.

If a step is to be restarted automatically from a place where a checkpoint was taken, the
processing is as follows:

Section v: Logic Summary 177

SEC V

• The step termination routine invokes the restart preparation and activation routines and
ensures that all data sets for the step are kept.

• The master scheduler creates a restart reader task.
• The job is reinterpreted.
• Compatible allocation is performed.
• The restart SVC routine restores the job step to main storage.

Writing Tasks

A writing task controls the writing of system messages and SYSOUT data sets in a specified
class (or classes) from the direct access volume on which they were initially placed to a
specified SYSOUT device. A writing task is created as a result of a START writer command
that specifies a class or classes of messages and data sets to be processed. When all
outstanding SYSOUT data sets and messages in that class are written, the writing task is
placed in the wait state, until more data of that class becomes available or until a STOP writer
command is issued.

The writer routines indicate to the queue manager routines which message class is to be
written. The queue manager routine passes the first output work queue entry from the
appropriate output work queue to the writer routines which write the associated messages and
data sets. After all messages and data sets from this queue entry are written, the writer routine
requests the next entry from the queue, and upon receiving it, writes the messages and data
sets. When all the messages and data sets in all the classes associated with this writing task are
written, the writing task is placed in the wait state. A writing task is again made ready when
an output work queue entry is placed it) one of the queues associated with this task.

Job Management in a Multiprocessing Environment

Basic job management functions are essentially unchanged from MVT in a multiprocessing
environment. In response to an extended V AR Y command, command processing routines can
logically place offline or online a CPU, an area of storage, or channels. With the Model 65
multiprocessing System, the operator uses the V AR Y command to logically reconfigure the
system. In response to a QUIESCE command, processing routines can allow activity on I/O
devices to be completed to permit the physical removal of an element from the system. Job
processing routines continue to maintain a single SYSl.SYSJOBQE data set. Those special
functions that are performed by job management routines for a multiprocessing system are
described in the MVT Job Management PLM.

178 MVT Guide (Release 21.0)

Task Management Routines

This chapter describes the five routines used by Task Management. These routines are:

• Interruption Supervision
• Task Supervision
• Main Storage Supervision
• Contents Supervision
• Timer Supervision

Interruption Supervision

CPU control is passed to the supervisor via an interruption. The supervisor analyzes the
interruption to determine which control program routine is to process it. An interruption can
occur either because the interrupted program has requested some control program service, or
because some event requires supervisory processing. There are five types of interruptions:

• SVC interruption, which occurs when an SVC instruction is executed.

• Input/output interruption, which occurs when an I/O operation terminates, or an I/O
device is readied.

• Timer-external interruption, which occurs when an event (e.g., a timer or external signal)
indicates the need for control program processing.

• Program interruption, which occurs when either a program attempts an invalid operation
(e.g., execution of a privileged instruction by a program in the problem state), or a data
error (e.g., overflow) is detected.

• Machine-check interruption, which occurs when the CPU detects a hardware malfunction.

Any interruption except a machine-check interruption causes CPU control to be taken from
the interrupted program and given to an interruption handling routine of the supervisor. There
are four interruption handling routines, one for each type of interruption except
machine-check. A machine-check interruption causes control to be passed directly to a
recovery management routine (either SERO, SERl, or MCH), if one is in the operating
system. If none of these recovery management routines are provided, the system is placed in
the wait state.

The interruption handler does not process the interruption, but analyzes it and passes
control to the proper interruption processing routine. The SVC interruption handler loaq.s (if
necessary) the SVC routine indicated in the SVC instruction and passes control to it. The I/O
interruption handler passes control to the I/O supervisor. The timer/external interruption
handler determines what caused the particular interruption and passes control to the
appropriate routine. The program "interruption handler determines whether the user has
provided a routine to process this particular type of program interruption. If such a routine is
provided, it is given control; if not, the task being performed by the interrupted program is
terminated. If the interrupted program is in supervisor state (e.g., an SVC routine), the
associated task is always terminated.

On the Model 91, a program interruption occurs whenever a decimal arithmetic instruction
is encountered during job step execution. If the optional decimal simulator routine is included
in the system, the program interruption handler gives control to it; otherwise, the program
interruption handler performs the same functions it performs following other types of program
interruptions.

Section V: Logic Summary 179

SECV

The interruption handlers are disabled for all interruptions except machine-check so that
they are not interrupted before they can save critical information about the interrupted
program. This critical information comprises the registers' contents and PSW information
necessary to return control to the interrupted program after the interruption is processed.

Task Supervision

Task supervision routines enter tasks into the system, supervise· their performance, perform
task termination processing, and pass control to programs performing tasks after supervisory
processing is complete. Tasks are represented to the control program by task control blocks
(TCBs); task supervision consists primarily of modifying the TCB queue.

When the initiation of a job step is complete, an initiating routine issues an ATTACH
macro instruction causing the supervisor to create a task for the step. The supervisor uses this
job step task, its TCB, and other associated control blocks and tables to control the processing
originally specified as the job step.

Expansion of an A TT ACH macro instruction includes an SVC instruction which causes an
SVC interruption. CPU control is passed through the SVC interruption handler to the attach
SVC routine. This routine builds a TCB for the task, and a request block (RB) for the first
program of that task. These blocks are placed in the TCB and RB queues respectively.

Task Control Block Queue

Whenever the control program needs any information about tasks, its starting point is the TCB
queue. There is one TeB for each task currently scheduled in the system. A TCB indicates the
status· and characteristics of the task it represents. A major part of this status information is
pointers to other control blocks and queues, and control information about resources needed
during the task. Figure 21 shows the concept of the TCB queue and queues that originate
from a TCB.

A TCB is placed in the queue according to the priority of its task, and is pointed to by the
next higher TCB in the queue. The first TCB is pointed to by the communications vector table
(CVT), which is part of the nucleus. . .

Request Block Queue

The supervisor builds a request block (RB) for each program()f a task that is entered via a
supervisor-assisted linkage (LINK, XCTL, or ATTACH), and for types 2,3, and 4 SVC
routines invoked by programs of a task. The RB is placed in the. RB queue which originates at
the associated TCB. The RB queue indicates, to the supervisor; the programs that perform a
given task. . .

180 MVT Guide (Release 21.0)

SPQE
RB
CDE
DEB
TQE

TCB for
Task A

TCB for
Task B

-- Element of a queue used in main storage supervision
-- Element of a queue used in ~ontents ~upervision
-- Element of a queue used ip. contents supervision
-- Element of ·a queue used in ~at'l management
-- Element of a queue used in timer supervision

figure 21. C~ncept of the TCB Queue

During ~ task, the addition of RJ3s to the queue as new programs are hlvoked, and the
deletion of RBs as these programs are completed, allow the supervisor to determine which
program (for'a particular task) is to r~ceive control at any given time. When a: program
terminates, the RB queue indicates whether the associated task has been completed, or
whethe~ t?xecution of another progra~ is required. If the RB for th<;! terminated program is the
only one on the RB queue,· the task is complete. If other RBs are "on the queue, the programs
represented by' ~hese ~s must be performed before the task is comp!ete.

" .

Figure 22 shows how the RB queue is modified during a task that is performed by three
progra~s .. T!te first (p~ogram A) was specified· in the A TT ACH macro instruction. The second
(program B) was invoked by program A via a LINK macro instruction. The third (program C)
was given control py program B yia an XCTL macro instruction. When program A is
exe~uting, the:RB q~eue for the associated task is shown in Figure 22A. After program B is
invoked, the RB queue is shown in Figure 22B. After program C has received control via the
XCTL macro'inst~ction, the RB queue is as shown in Figure 22C. Whep. program C

Section V: Logic Summary 181

SEC V

completes and issues a RETURN macro instruction, its RB is deleted, and the RB queue is
again as shown in Figure 22A.

Request
Block
For
Program
A

Task
Control
Block

0

Request
Block
For
Program
A

Request
Block
For
Program Task
B Control

Block

0

Request
Block
For
Program
A

Request
Block
For
Program Task
C Control

Block

@

Figure 22. Example of the Modification of the RB Queue During. a Task

When the last program of a task has completed, the task supervision routines usually delete
the TCB from the TCB queue. If, however, the completed task had an ECB or ETXR
parameter specified when it was attached, the TCB is not deleted from the TCB queue. The
ECB parameter indicates that the attaching task needs information in the TCB of the
completed task. The ETXR parameter indicates that an End-of-task Exit routine (ETXR) is to
be executed. The ETXR routine has an RB enqueued to the TCB of the completed task.

If the completed task is a job step task, its associated initiating task is made ready. When
this initiating task is dispatched, its routines complete termination processing for the job step.

182 MVT Guide (Release 21.0)

Passing Control to a Program of a Task

Once the supervisor has completed its interruption processing it passes CPU control to a
program operating under control of a TCB. If the program to receive control is the program
last interrupted, CPU control is passed directly to it. (This occurs when certain type 1 SVC
routines processed the interruption.) If, however, it is possible that another program (other
than the one last interrupted) is to receive control, control is passed to the dispatcher routine.

Dispatcher Routine

The dispatcher routine checks the TCB queue for the highest priority ready task, and passes
CPU control to the program currently indicated to perform that task. This passing of control is
referred to as dispatching a task.

The task that is dispatched, therefore is not necessarily the same task that was last
interrupted. The interruption processing could have created or made ready several tasks of
higher priority. Any such tasks are dispatched before the task that was last interrupted.

Normally, when several tasks of the same priority are ready, the tasks that are lower on the
TCB queue are not dispatched until the higher tasks are completed or waiting. CPU control
can be more equitably distributed among such tasks by using the time-slicing feature.

Time Slicing

Time slicing is a feature that causes each of the tasks of a specified priority (a time-slice
group) to relinquish control of the CPU after a specified time interval, if that task had not
already relinquished control for some other reason. Normally a task retains control either until
it is complete, until a higher-priority task becomes ready, or until it must wait for some event
(such as an I/O operation). A time-sliced task keeps control until one of these three
conditions occurs or until its time-slicing interval expires. If the interval expires, a timer
interruption occurs, and control is given to the next ready task in this time-slice group. Control
is passed to each ready task in the group for the specified interval according to the positions of
the TCBs on the TCB queue.

When a higher-priority task becomes ready, or when all the tasks in the time-slice group are
complete or waiting, time slicing ceases (unless the next task dispatched is part of another
time-slice group).

When a time-sliced task loses control prior to the expiration of its interval (either because it
must wait or because a higher-priority task becomes ready), the remainder of the interval is
not saved. When control is returned to this group the next task is dispatched, not the task that
lost control.

At system generation, you specify the priorities to be time sliced, and the associated
intervals. When the nucleus is initialized, a time-slice control element (TSCE) for each group is
intialized in the nucleus. A TSCE contains the timer interval for the group, and pointers to the
first, last, and next-to-be-dispatched TCB.

The TCB indicates whether a given task is a member of a time-slice group. When the
highest-priority ready task belongs to a time-slice group, the dispatcher checks the TSCE to
determine the next task of the group to be dispatched.

Section V: Logic Summary 183

SECV

Main Storage Supervision

Main storage supervision routines control and allocate main storage in the dynamic and system
queue areas. Storage in the dynamic area is assigned to job steps and system tasks. Storage in
the system queue area is assigned to contain control blocks that must have a supervisor storage
protection key.

Storage Allocation in the Dynamic Area

Initially, the dynamic area is a large number of unassigned, contiguous blocks of main storage,
each 2048 (2K) bytes in length. As a system task or job step is initiated, an initiating routine
requests the main storage required for the task or step. A main storage supervision routine (the
GETMAIN routine) assigns enough contiguous 2K blocks to this step or task from the higher
end of the dynamic area. this group or 2K blocks is a region. If there is insufficient free,
contiguous storage for the step or task, the initiating task is put in the wait state until
sufficient storage becomes available.

Storage Allocation in a Region

Storage within a region is assigned in response to requests from programs performing the step
or system associated with that region. Storage from a region is required not only for work
areas, but also for programs not already in the link pack area.

Rollout/Rollin

Normally all storage requested by programs of a given step or task is assigned from its region.
However, if the rollout/rollin feature has been included in the system, an additional region (or
regions) may be temporarily assigned to a job step to meet storage requirements that cannot
be filled from the step's region.

When such additional storage is required, the rollout/rollin routines try to assign a new
region to a step from unassigned storage in the dynamic area. If there is not enough
unassigned storage, the contents of a region already assigned to another job step is written on
a direct access volume (rolled-out), and that region is used by the step requiring the additional
space. Later when the additional region is no longer required, the step that was rolled out is
read back into the region (rolled-in) and allowed to continue its operation.

You indicate which steps can cause rollout, and which steps can be rolled out. In any given
instance, the relative priorities of these steps determines whether or not rollout will occur, and
if so, the order in which steps are rolled out.

Determining Available Storage

Main storage supervision routines determine what storage in a region is available via control
blocks called the partition queue element (PQE) and free block queue elements (FBQEs). The
PQE of a given region is created when the region is assigned, resides in the system queue area,
and is pointed to by the TCBs of all the tasks associated with that region. The PQE is, in turn,
the origin of a queue made up of FBQEs. Each FBQE points to a group of contiguous,
available 2K blocks of storage within the region, and resides in the lower end of the lowest 2K
block of the group.

184 MVT Guide (Release 21.7)

\.

When all the storage in a region is available, or when all the available storage is contiguous,
only one FBQE exists. As storage is assigned, used, and subsequently released, unassigned
sections of the region become interspersed with the assigned sections. As this fragmentation
occurs, an FBQE is created and enqueued for each unassigned section. When the releasing of
storage in a region causes a larger available section to be formed from several smaller sections,
FBQEs are deleted from the queue so that this new section has only one FBQE.

When storage is requested, the FBQEs are scanned for an available section large enough to
fill the request. If none is available and rollout is not used, the task is terminated. If the
request can be filled, a sufficient number of 2K blocks from the unassigned storage is made a
part of a subpool. The subpool to which this storage is assigned depends on how the storage is
to be used.

Subpools

A subpool is, generally, all the 2K blocks of main storage allocated for a particular task under
one label called the subpool number. (The exceptions to this definition are shared subpools
and subpools in the system queue area.) Initially all storage in a region is unassigned, is not
part of any subpool, and has a storage protection key of zero (see Figure 23). When storage
within a region is required, unassigned storage in that region is made part of a subpool. The
request for this storage specifies (either explicitly or by default) the subpool number of the
subpool to which the storage is to be assigned.

o 0 0 0

o----~----~----~----

Storage }~ 0 ----+0-- ---+0---- -+0----
Protection Keys ---... 0 - -- - -+0 - - ---+0-- - - _+0 ----

2K Block of
Main Storage

O----~----_+O----_+O----

o - - - - +0 - - - - -+0 - - - - ~ - - - - Region

-----+0-----+0-----+0----
-----+o-----+o----~----

o----~----~----~----

Low 0 -----+0------+0---.----+0----
Storage

Figure 23. Initial Format of a Region

When storage is requested in a subpool that does not exist (i.e., this is the first request
specifying that subpool for a particular task), the subpool is created by allocating a sufficient
number of contiguous 2K blocks from the unassigned storage in the region. When the specified
subpool already exists (Le., there were previous requests), the storage currently part of that
subpool is checked to determine if a contiguous area, large enough to fill the request, is
available. If such an area is available, it is used to fill the request; if not, a sufficient number
of contiguous 2K blocks are assigned to the subpool from the remaining free storage in the
region. Insufficient free storage in the region results in termination of the task, unless
rollout/rollin can occur.

Storage made part of a subpool for anyone request must be contiguous. The storage that
makes up a complete subpool (i.e., for all requests specifying that subpool) can be
noncontiguous.

Section V: Logic Summary 185

•

Requests for storage in subpools of a region are made either by programs performing the
task (for working storage), or by the control program (for storage to load a program or for
working storage). The subpool specified in a given request depends on what the storage is to
be used for, and on what type of routine made the request.

Assigning Storage to Subpools: Subpools are usually assigned to a specific task. When one region
is being used for several tasks (i.e., a job step task has one or more subtasks), each task can
have separate subpools between 0 and 127, or the tasks can share subpools between 0 and
127. In anyone region, there is only one subpool 251 and one subpool 252.

When a control program routine in supervisor state needs storage in a region, it usually
requests this storage in subpool 251 or 252. Subpool 252 is specified either for storage needed
to contain reenterable routines from SYS1.SVCLIB or SYS1.LINKLIB, or for storage to
contain control program data that must be protected. Storage assigned to subpool 252 is given
a storage protection key of zero to prevent programs of the job step from writing in the
subpool. Storage is assigned to subpool 252 from the highest available storage in the region.

Subpool 251 is specified for storage needed to contain all serially reusable and nonreusable
programs, and reenterable programs from private libraries. Storage in subpool 251 is assigned
from the lowest available storage in the region. It has the same storage protection key as the
programs using the region, and therefore its contents can be modified by these programs.
Subpools 251 and 252 of a given region are sometimes collectively referred to as the job pack
area.

Subpool Queue: Each time a new subpool· is created for a task, a subpoC'l queue element
(SPQE) for that subpool is placed in the subpool queue of that task. The subpool queue
originates at the TCB of the task, and is made up of a series of SPQEs -- one for each
subpool of the task. The main storage supervision routines use the subpool queue to determine
what subpools are being used in the task, and what storage is assigned to each of the subpools.

Each SPQE has, in turn, a queue of elements that indicates what storage in the region is
assigned to that subpool. These queues are called descriptor queues. Each element in a
descriptor queue represents one group of contiguous 2K blocks assigned to the subpool.

Figure 24 is an example showing ~ow the main storage supervision routines modify the
region, the subpool queue, and the descriptor queues of a task to obtain storage for the three
programs previously discussed in the "Task Supervision" section and illustrated in Figure 22.
The shaded portions on the left side of Figure 24 show the request block queue as the three
programs are used (see Figure 22). The unshaded portions show how the region, and the
subpool queue is modified as storage is assigned for the programs. This example assumes that
the programs are not initially in storage; programs A and Bare reenterable and reside on
SYS1.LINKLIB, and program C is not reusable.

Figure 24A shows how the region and the subpool queue are set up for program A. When
the task was first dispatched, the Link routine of the supervisor, not program A (which is not
yet in storage), receives control. The link routine requests storage for program A from subpool
252. If we assume that program A requires 3.5K bytes of storage, the main storage supervision
routines assign three 2K blocks of storage from the highest available part of the region to
subpool 252, builds an SPQE, and enqueues it to the TCB. The first 2K block is a work area
for Program Fetch (only one per region is required). The other two 2K blocks are for program
A. A descriptor queue element (DQE) is built and enqueued to the SPQE. The single DQE
indicates that, at the moment, subpool 252 is made up of only one contiguous area of storage.

186 MVT Guide (Release 21.0)

If program A issues a GETMAIN macro instruction for 2K bytes of working storage in
subpool 3, the region and subpool queue are modified as shown in Figure 24B. Since there is
no sub pool 3, the highest available 2K block of storage in the region is assigned to subpool 3,
and the SPQE and DQE are placed in the subpool queue (assume that the storage protection
key for this job step is 5).

After the LINK macro instruction for program B is issued, the Link routine requests storage
from subpool 252 for program B. If subpool 252 currently has a free section large enough for
program B, this program is brought into that area and the subpool queue remains as shown in
Figure 24B. If however, subpool 252 must be enlarged for program B (assume that program B
is 4000 bytes long), the main storage supervision routines assign two 2K blocks from the
highest available part of the region. Since this addition to subpool 252 is not contiguous to the
already-existing part of subpool 252, a new DQE is added to the queue. After program B
receives control, the queues are as shown in Figure 24C.

Figure 24D shows the region, and the subpool and RB queues after program C receives
control. When the XCTL macro instruction for program C is issued, the XCTL routine
requests storage (assume 6000 bytes) for program C from subpool 251. Since there is no
subpool 251, three 2K blocks of storage from the lowest available part of the region is
assigned to subpool 251 and the SPQE and DQE are placed in the subpool queue.

Storage Allocation in the System Queue Area

Storage in the system queue area is used to build control blocks that can be modified by only
the control program. The system queue area has storage protection keys of zero, and only
programs that operate under a protection key of zero can write into it.

Space in the system queue area is allocated to six subpools, sub pools 243, 244, 245, 253,
254, and 255. Subpools 243, 244, and 245 are used in requests for system queue area space
from a swapped region; subpools 253, 254, 255 are used in requests for system queue area
space for nonswapped regions. System queue space assigned to subpool 245 or 255 is released
only when the program that requested it issues a FREEMAIN macro instruction. Subpool 244
or 254 is used for system queue space that must be retained until a step is completed. Space in
subpool 244 or 254 can be released by the requestor, or is released by the supervisor (exit or
ABEND routine) when the associated job step is terminated. Subpool 243 or 253 is used for
space that must be retained until a task is completed. Space in subpool 243 or 253 can be
released by the requestor or is released by the supervisor when the associated task is
terminated.

Subpools 243, 244, 253, and 254 are used to ensure that system queue space is released,
when a job step or task is terminated before the requestor of that space can release it. (This
situation frequently occurs when ABEND is invoked.)

Unlike the subpools in the regions, sub pools 243, 244, 245, 253, 254, and 255 can share a
2K block of storage. A request for storage for any of these six sub pools will be filled from the
highest available area of sufficient size even if this area is in a 2K block that is partially
assigned to 3;nother subpool.

Section v: Logic Summary 187

li;~;";,:ji
f,; '-....---'
l··.·.'·, r--.......... - r
L~_,.

Requ~.·
·'&Iock.··'

fClr ' '-'--
,P!'OQroirl
B.', .

f:
I'

t ,,'. e,', ,
"',t··,

SPQE
252

SPQE
3

SPQE
251

Figure 24. Example of Main Storage Allocation

188 MVT Guide (Release 21.0)

If the request for system queue space cannot be filled, the system queue area can be
expanded by assigning to it 2K blocks of adjacent free dynamic area storage. Before such an
expansion is attempted however, the control program attempts to release enough system queue
space by purging routines that are currently in the regions but are not being used (e.g.,
reenterable or serially-reusable routines that have completed their operation). This purge
results in the deletion of contents supervision control blocks from the system queue area. If
this deletion of control blocks releases enough system queue space to fill the pending request,
the system queue area is not expanded.

Once expanded, the system queue area will not be reduced to its original size until the IPL
procedure is repeated. If the portion of the dynamic area, adjacent to the system queue area, is
already assigned as a region, any attempt to expand the system queue area results in the
system's being placed in the wait state.

If a request for space in subpool 253, 254, or 255 is made for a swapped region, space is
allocated from an area known as the Local System Queue Area. This space is swapped and is
located adjacent to the requesting region. A request for storage in the Local System Queue
Area that cannot be fulfilled causes the issuing task to be abnormally terminated.

Contents Supervision

Contents supervision routines bring non-resident routines into main storage, and record what
routines are in the dynamic and link pack areas. Routines are brought in as a result of a LINK,
ATT ACH, XCTL, or LOAD macro instruction, if a usable copy of the desired routine is not
already in main storage. If main storage hierarchy support is included in the system, these
macro instructions may be used to bring non-resident routines into specified hierarchies of
main storage.

The characteristics of a called routine, and its location in main storage determine whether
that routine is usable to the calling routine. Routines in the link pack area (all of which are
reenterable) can be used by any routine that calls them, and, in fact, the one copy in that area
can be used concurrently by several calling routines. Reenterable and serially-reusable routines
in sub pools 252 and 251 of a given region can be used only by other routines performing the
task or tasks associated with that region.

Contents supervision routines determine whether a routine is in main storage· by checking
the contents directory. Each time a routine is brought into main storage, an entry tor it is
made into the contents directory. If the routine is brought in via a LOAD macro instruction,
an entry is also made to a load list.

Contents Directory

The contents directory is a group of queues indicating the routines in the link pack and
dynamic areas.

There are two contents directory queues, one for the link pack area, and one for sub pools
251 and 252 of each region. The contents directory resides in the system queue area. The
pointer to the contents directory queues for the link pack area is in the communications vector
table. The pointer to the contents directory queue for a region is in the first TCB created for
that region (job step TCB).

Section v: Logic Summary 189

SECV

A contents directory queue contains a contents directory entry (CDE) for each program in
the region to which it applies (or to the link pack area). When a reenterable or serially
reusable program has completed its operation, the copy of that routine remains in the region,
and its CDE remains on the queue. When a nonreusable program has completed its operation,
its CDE is deleted from the queue. (The storage in subpool 251 occupied by the program is
made available; sometimes this storage remains as part of subpool 251, sometimes it is released
from subpool 251 for assignment to any subpool of the region.)

Figure 25 shows how a contents directory queue is affected for the programs discussed in
the sections "Task Supervision" and "Main Storage Supervision" and shown in Figures 22 and
24. We assumed that none of the programs were already in main storage. During the
processing of the A IT ACH macro instruction that specified program A (which was previously
defined as reenterable), the contents supervision routines determine that a copy is neither in
the associated region, nor (since it is reenterable) in the link pack area. After main storage is
assigned, program A is brought into subpool 252 and the contents directory queue for that
region is as shown in Figure 25A. If program A was already in the region a new copy is not
brought in.

During the processing of the LINK macro instruction that invokes program B, the contents
supervision routine determines that this program is neither in the region, nor in the link pack
area. Main storage is requested and assigned in sub pool 252, and program B is brought in. A
contents directory entry is constructed and enqueued as shown in Figure 25B.

The XCTL macro instruction involving program C results in a copy of that program being
brought into subpool 251 of the regi9n, and a contents directory entry is added as shown in
Figure 25C. When program C terminates and passes control to the supervisor, the contents
directory entry from program C is deleted, and the contents directory is again as shown in
Figure 25B. (This deletion o~curs because program C is not reusable.)

190 MVT Guide (Release 21.0)

~; '. ' -'

i,:?,',~·;: '
,,;:':::":"::'
~:,~,::J:;,,:'

f~~~:,~ A<
, ~:,?

:}<',,';-

'l-~"';:<.~_~

fi2::2~~::~;:~,~~(~~;> <" ~,,;~ ,}", ,1

o

Contents
Directory
Entry for
Program A

Contents
Directory
Entry for
Program C

" ~" "

:.
, . ~

~,~:~,;::~ ~:~';, .. :::r

Figure 25. Example of the Modification of Contents Directory During a Task

Contents
Directory
Entry for
Program A

Contents
Directory
Entry for
Program B

Contents
Directory
Entry for
Program A

Section V: Logic Summary 191

Load List

A load list is a queue of elements for routines in either the link pack area or a given region,
that were invoked via a LOAD macro instruction. Each load list element corresponds to a
loaded routine, and points to the contents directory entry for that routine. Each load list
element contains a count of the number of times a LOAD macro instruction is issued for the
associated routine during a given task. This co~nt is decremented each time a DELETE macro
instruction is issued for the routine to reflect the number of current users of the routine.

Timer Supervision

Timer supervision routines process both timer interruptions and requests for timing services.
The operating system provides the capability of obtaining the date and time of day, measuring
periods of time, and scheduling certain processing for a specific time.

You specify these functions by the timer macro instructions, TIME, TIMER, and STIMER.
The expansion of each of these macro instructions includes an SVC instruction which causes
CPU control to be passed through the SVC interruption handler to the appropriate timer
supervision SVC routine.

When the value in the interval timer goes from positive to negative (indicating the
expiration of some interval), a timer/external interruption occurs. After determining that this
interruption is a timer interruption, the timer/external interruption handler passes control to a
timer supervision routine (the timer second-level interruption handler). This routine performs
any processing specified for the completion of this particular interval, and places a new interval
in the timer.

An expired time interval (JOB CPU, STEP CPU, or WAIT) can be extended if system
management facilities (SMF) are included with the system. With SMF, the timer second-level
interruption handler can schedule an SMF asynchronous routine that passes control to a
user-written routine that may indicate how much additional time is desired.

Even if you do not specify any timer intervals of your own, the timer supervision routines
set the internal timer so that a timer/external interruption occurs every 6 hours; the first such
interruption occurs 6 hO).lrs after initial program loading (IPL). The timer supervision routines
also cause a timer interruption to occur every midnight. The midnight interruption allows timer
supervision routines to increment the date in the CVT. The 6-hour interruptions allow timer
supervision routines to update two of three main storage locations called pseudo-clocks.

Each CPU in the Model 65 Multiprocessing System has an interval timer. However, one
timer is active, and only its associated CPU receives timer interruptions. Both CPUs have
access to the active timer. If it becomes necessary for the inactive (backup) timer to be made
the active timer (as when the active CPU is removed from the system), the conversion is
performed by the control program. The timer has the same uses under MVT with Model 65
multiprocessing as it does under MVT.

Pseudo-Clocks

There are three pseudo-clocks, the local time pseudo-clock (LTPC), the 24-hour pseudo-clock
(T4PC), and the 6-hour pseudo-clock (SHPC). The LTPC contains the time of day specified
in the SET command when IPL was performed. The T4PC is incremented by 6 each time a
6-hour timer interruption occurs, unless its value is already 18. The 6-hour interruption that
occurs when the T4PC contains 18 causes the T4PC to be set to zero. The 6-hour

192 MVT Guide (Release 21.0)

pseudo-clock (SHPC) contains the value of the next interval that will expire; this value is
never greater than 6 hours.

In addition to the periodic timer interruption, other timer interruptions are required for
program-requested timing of intervals. The timer supervision routines use the timer queue to
record the lengths of intervals and the order in which these intervals expire.

Timer Queue

The timer queue is a series of elements in the system queue area. Each timer queue element
refers to a particular timer interval, and indicates both the length of the interval and the
processing to be performed when the interval ends. Whenever a request to set the timer is
issued, a timer queue element is placed in the queue. The elements are queued in the order in
which the intervals expire. Thus when a timer interruption occurs, the first element in the timer
queue is the one associated with the expired interval. After the interruption is processed, this
element is removed from the queue, and the next interval to be timed is obtained from the
element that is now first in the queue. Timer queue elements of intervals associated with
particular tasks (as opposed to intervals being timed regardless of what task is being
performed) have pointers to and from their respective TCBs. A task can have only one interval
being timed at any given time.

An interval may be of three types: TASK, REAL, or WAIT. A TASK interval is dequeued
each time the task loses control of the CPU and is reestablished when the task is again
dispatched, thus timing the task only when it is active. The REAL or WAIT intervals remain
enqueued throughout the interval, thus effectively providing an elapsed time interval
measurement.

Time-of -Day Clock

If the MVT configuration is generated for a System/370, the timer supervision routines use the
Time-of-Day (TOD) Clock, a standard feature of System/370 CPUs. The TOD Clock has
timing resolution to one microsecond, and provides increased accuracy in timing intervals
greater than one hour. The TOD Clock runs continuously while power is on; it is not affected
by system wait conditions.

The timer second-level interruption handler and the processing routines for the TIME,
STIMER, and TTIMER macro instructions use the TOD Clock in addition to the interval
timer. Details of the logic for TOD Clock processing are described in the MVT Supervisor
PLM.

Task Management in a Multiprocessing Environment

Most basic functions performed by task management routines are unchanged for a
multiprocessing environment. There continues to be a single task control block queue, and
other work queues are also unchanged. The major difference is that task managment routines
additionally coordinate the acitvities of the CPUs. There are two ways in which the
coordination is achieved. A technique called "lockout" is used to prevent access to critical data
by both CPUs at the same time, and a technique called "shoulder-tap" makes use of the
WRITE DIRECT instruction (Model 65 Multisystem Feature) for communication between the
.two CPUs.

Section V: Logic Summary 193

A lockout function is needed because when interruptions are disabled on one of the two
CPUs, they are not disabled on the other. Therefore, vital table and queue manipulation
operations could be interrupted, and the partially manipulated data could be used or altered by
a routine being executed on the other CPU. To achieve lockout, a programmed switch called a
lock byte is tested and set wherever interruptions are disabled (all first-level interruption
handlers) and released where interruptions are again enabled (the dispatcher and the type 1
exit routines). When the lock byte is on, the affected routines may be executed only on the
CPU which executed instructions that turned on the lock byte.

Shoulder-tap processing is performed by two routines -- a WRITE DIRECT routine and a
shoulder tap receiving routine, both of which are resident. The WRITE DIRECT routine is
used by supervisor routines when there is a need for one CPU to communicate with the other. It
uses the WRITE DIRECT instruction and places a unique code into main storage to identify
the reason for the shoulder tap. The shoulder tap receiving routine examines the code and
passes control to an appropriate processing routine.

All functions performed by task management routines in a multiprocessing environment are
described in the MVT Supervisor PLM.

194 MVT Guide (Release 21.0)

Data Management Routines

This chapter describes the four routines used by Data Management. These routines are:

• Assigning Space on Volumes
• Maintaining the Catalog
• Support Processing for I/O Operations
• Processing I/O Operations

Assigning Space on Volumes

Assigning of tracks and cylinders on direct access volumes is performed by the direct access
device space management (DADSM) SVC routines of data management. These routines are
used primarily by job management routines during the initiating of a job step to get space for
output data sets. The DADSM routines are also used by other data management routines to
increase the space already assigned to a data set, and to release space no longer needed. The
DADSM routines are described in the Direct Access Device Space Management PLM.

The DADSM routine controls allocation of space on direct access volumes through the
volume table of contents (VTOC) of that volume. The VTOC is built when the volume is
initialized by the direct access storage device initialization (DASDI) utility program. The
VTOC indicates the current usage of the space on the volume.

The VTOC is a collection of data set control blocks (DSCBs). Each DSCB corresponds
either to a data set currently residing on the volume, or to contiguous, unassigned tracks on
the volume. DSCBs for data sets are the data set labels, which contain characteristics of the
data set and the tracks on which it resides. DSCBs for unassigned tracks indicate the locations
of unassigned, contiguous tracks.

When space is needed on a volume, the DADSM routines check the VTOC for enough
contiguous, available tracks to satisfy the request. If there are not enough contiguous tracks,
the request is filled using up to five noncontiguous groups of free tracks. The appropriate
DSCBs are modified to reflect the assignment of the tracks.

When space is released, the DADSM routines delete the DSCB of the deleted data set from
the VTOC. A DSCB is built or modified to indicate that the tracks containing the deleted data
set can be reallocated.

If system management facilities (SMF) are included, the system uses SMF to collect and
record the following information on the SMF data set:

• Space information about user data sets, such as the number of extents or the amount of
space released.

• Information about any change in the status of a data set (e.g., the opening, closing,
scratching, or renaming of a data set).

41 Information about unused space on a direct access volume (e.g., the amount of unused
space and whether the space is fragmented, the number of extents, if the volume table of
contents (VTOC) is filled).

Section V: Logic Summary 195

Maintaining the Catalog

The catalog is a collection of data sets that indicates the volumes on which cataloged data sets
reside. The catalog management routines of data management maintain the catalog, and locate
cataloged data sets.

To maintain the catalog, catalog management routines create and delete indexes, and catalog
and uncatalog data sets. To locate a data set, catalog management routines search through the
indexes, specified in the qualified name of the data set, for the index entry containing the last
part of the qualified name. This index entry contains the serial number (or numbers) and
device type of the volume (or volumes) on which the data set resides. The catalog management
routines are described in the Catalog Management PLM.

The catalog management routines are used primarily by job management routines and the
IEHPROGM utility program. Job management routines may invoke the catalog management
routines during the initiation and termination of a job step. During initiation, a catalog
management routine locates cataloged data sets. During termination, a catalog management
routine may catalog or uncatalog data sets referred to during the job step and specified for the
catalog. The IEHPROGM utility program invokes catalog management routines to perform any
of their functions except locating a data set. Processing programs can also invoke the catalog
management routines via the CATALOG, INDEX, and LOCATE macro instructions.

Support Processing for I/O Operations

Support processing for I/O operations has three subdivisions:

• Open processing which is required before I/O opeIations can be performed.
• Close processing which is required after I/O operations have been completed.
• End-of-volume (EOV) processing which is required when space for a sequential data set on

either a direct or sequential access volume is exhausted during an I/O operation.

The routines that perform these functions are the I/O support routines, (open, close, and
EOV). Their operation is discussed in the Input/Output Support (OPEN/CLOSE/EOV) PLM.

Open Processing

Before any information can be read from or written into a data set, initialization must be
performed. This initialization is referred to as "opening" the data control block of the data set,
and basically consists of:

• Ensuring that the volumes required for reading or writing~ the data set are mounted.
• Constructing control blocks required by the I/O supervisor to initiate the I/O operations.
• Loading the access method routines that are to process the 110 operations on the data set.

Insuring Proper Volume Mounting

The open routine determines whether the volumes required for the data set are mounted on
devices assigned to the job step. If the volumes are not mounted, the open routine issues a
mounting message to the operator and, after mounting has been performed, checks the volume
labels to verify that the proper volumes have been mounted.

196 MVT Guide (Release 21.0)

The open routine then locates the data set (or the space to receive the data set) on the
volume. For tape, the volume is positioned; for direct access volumes, the DSCB is read into
main storage.

Constructing Control Blocks

The open routine constructs (or completes construction of) control blocks that are used when
the data set is to be read or written. These are the data control block (DCB), job file control
block (JFCB), header labels or data set control block (DSCB), and the data extent block
(DEB).

Completing the DCB, JFCB, and DSCB: The DCB, JFCB, and DSCB are in various stages of
completion before the DCB is opened. The open routine completes them by merging
information from one block to another. There are two distinct merge operations, the forward
merge and the reverse merge.

The forward merge is the passing of information first from the DSCB (or standard tape
label) to the JFCB, and then from the JFCB to the DCB. Information is passed only when the
field of the block receiving the information is empty. The forward merge does not change any
fields that already contain information.

The reverse merge is the passing of information from the DCB back to the JFCB, and then
to the DSCB (or header label). This merge occurs after the Open routine has given control to
any user-written DCB-exit routines. When the associated data set is for output, the reverse
merge not only fills empty fields in the JFCB and DSCB; but also overrides existing fields
except the DSORG field. When the data set is for input, the DCB to JFCB merge fills only
empty fields; no JFCB to DSCB merge is performed. Figure 26, which is an expansion of
Figures 19 and 20, shows the flow of information in the forward and reverse merges. The
numbers indicate the sequence in which the flow occurs.

Constructing the DEB: A data extent block (DEB) is built for each DCB being opened. The
DEB contains the volume location (or locations) of its associated data set, and the names of
the access method routines that are to be used on this data set. The DEB is used by the I/O
Supervisor in starting an I/O operation. The relationship of the DEB to other control blocks is
shown in Figure 26.

Section V: Logic Summary 197

•

JeT

Direct Acce~$
Volume Assigned
to a Data Set

Figure 26. Flow of Information During the Mer,ges of the Open Routine

Data
Control
Block

Unit Control
Block (One
per Device)

The DEB is built from information in the DCB, JFCB, DSCB, and UCBs (unit control
blocks) of the devices associated with the data set. A UCB exists for each device in the
system. UCBs are built when the system is generated, and contain characteristics of the
devices that they represent. I

DEBs are built in the system queue area so that their contents cannot be changed by
processing programs. All DEBs for a given task are placed in a queue originating at the TCB
of that task.

The DEB is built by' an access method executor module. These modules operate as part of
the open routine but perform processing unique to the access method to which they apply. The
. operation of the access method executors is described in the various access method program
logic manuals.

198 MVT Guide (Release 21.0)

Loading Access Method Routines

The open routine uses the DCB to determine which access· method is to be used on the
associated data set. The executor of that access method then determines which routines of the
access method are required to operate on the data set. These routines are then loaded into the
appropriate region unless they are already in the link pack area.

Close Processing

After I/O operations on a data set are complete, the DCB of that data set should be closed.
The close routine restores the DCB fields that were filled by the forward merge during open,
processes labels, determines volume disposition, and deletes the unneeded access method
routines.

Label processing includes the building of trailer labels for output data sets on tape, and the
updating of DSCBs of data sets with OUTPUT, OUTIN, or IN OUT dispositions.

Volume disposition includes not only dismounting instructions to the operator, but also the
writing of tape marks and the positioning of tape reels.

If the access method routines associated with this close operation are not in the link pack
area and are not required for any more I/O operations in the region, the storage that these
routines occupy is released.

End-of-Volume Processing

End-of-volume (EOV) processing is performed when end-of-data set or end-of-volume
conditions occur during an I/O operation on a sequentially organized data set. When a routine
of a sequential access method encounters a tape or file mark or an end-of -volume condition,
the routine issues an SVC instruction to pass control to the EOV routine.

EOV processing consists primarily of verifying and constructing labels. If the data set for
which the condition occurred is continued on another volume, the EOV routine issues
mounting instructions for the next volume and checks the mounting.

If the EOV condition occurred because direct access volume space assigned to an output
data set is used, the EOV routine invokes a DADSM routine to obtain more space for the data
set.

Processing 110 Operations

The processing of I/O operations is performed in two distinct parts: processing required to
start the operation, and processing required when the operation is terminated.

Section V: Logic Summary 199

•

Starting an I/O Operation

• Access method routines, which organize the information required to initiate the I/O
operation.

• The EXCP routine of the I/O supervisor, which initiates and supervises the I/O operation.

Figure 27 shows the relationship that exists between a processing program, an access
method, and the I/O supervisor.

Processing Program Access Method I/o Supervisor

GET
PUT
READ Organize

Specify an I/o WRITE Information for EXCP Start the I/o
Operation the I/o Operation

Supervisor

Figure 27. Relationship Between a Processing Program, an Access Method, and the I/O Supervisor

The expansion of an I/O macro instruction specified in the processing program results in a
branch to the access method routine. This routine gathers information used to initiate the I/O
operation and places this information in control blocks. The routine then issues an EXCP
macro instruction causing an SVC interruption. The SVC interruption handler gives CPU
control to the I/O supervisor, which either starts or queues the I/O operation.

After the EXCP routine has completed its operation, it passes control to the Type 1 SVC
exit routine which returns control to the access method routine. This routine finishes its
processing before passing control to the processing program that issued the I/O macro
instruction. Figure 28 shows the flow of control for an I/O operation.

Processing
ProJ!.fCm

=
= =

Region in Main Storage

Access
Method
Routine

Fixed Area in Main Storage

EXCP SVC Routine
SVC of I/o Supervisor

Interruption
Handler -=

-=
-=~~ SVC Interruption

510
READ DCB =

Type 1 =
SVC Exit =
Routine i~r

Figure 28. Flow of Control for an I/O Operation

200 MVT Guide (Release 21.0)

Access Methods

Access method routines prepare information required by the I/O supervisor to start an I/O
operation. Routines of certain access methods also perform services that are not directly
associated with the actual I/O operation. These services include allocating and controlling
buffer areas, moving data to and from the buffer areas, and blocking and deblocking records.
When you assemble your program, you indicate an access method in the DCB of the data set.
When the DCB is opened, the access method routines to be used on the data set are brought
into the appropriate region, unless these routines are already there or in the link pack area.

Routines of every access method construct a number of input/output blocks (lOBs) and
channel programs for the I/O supervisor. The number of lOBs and channel programs built for
a given data set depends on the number of main storage areas used by the data set, and the
number of I/O operations to be performed on the data set.

An lOB contains information required by the I/O supervisor to start an I/O operation.
Each lOB points to a channel program that is to be executed. When the operations for that
channel program terminate, the channel status word (CSW) is stored in the lOB associated
with the channel program.

A channel program is a group of one or more channel command words (CCWs) that specify
I/O operations, and indicate the main storage areas for the data involved in these operatio~.
The CCW and CSW formats are described in the Principles of Operation publication.

For some access methods, the lOBs and CCWs are partially built by the open executor
routine of that access method when the DCB is opened; these lOBs and CCWs are completed
by the access method routine, when the I/O operation is being processed. For other access
methods, the lOBs and CCWs are completely built during the processing of the I/O operation.

EXCP Routine

The EXCP SVC routine is the portion of the I/O supervisor that initiates I/O operations. This
routine receives control from the SVC interruption handler and builds a request element for
the requested I/O operations.

Whenever an I/O operation is in process, the UCB for the device points to the request
element for that operation. When an operation cannot be started, the request element for that
operation is placed in a queue for the device. This queue is the request element table.

The EXCP routine determines whether the I/O device associated with the operation is free,
and if so, whether any channel associated with the device is free.

When both the device and an associated channel are free, the EXCP routine issues a
ST ART I/O (SIO) instruction to initiate the operation. If the device or all associated channels
are busy, the request element is placed in the queue for that device. The elements that make
up this queue are contained in the request element table.

The EXCP routine is described in the Input/Output Supervisor PLM.

After the I/O operation is started, an indicator is set in the UCB to show that the device is
now busy, and a pointer to the request element is placed in the UCB. When an I/O
interruption occurs, the I/O supervisor uses the request element in the UCB to determine the
request that has been executed.

Section V: Logic Summary 201

Terminating an I/O Operation

I/O operations terminate either normally because the operation is completed, or abnormally
because an error is detected. When an I/O operation terminates, an I/O interruption occurs,
causing CPU control to be passed first to the I/O interruption handler and then to the I/O
interruption supervisor portion of the I/O supervisor to process the interruption.

The I/O interruption supervisor posts the completion of the I/O operation, schedules error
routines (i.e., places a request block for the routine in the request block queue) when the
operation terminated abnormally, and, if possible, starts another I/O operation on the channel.
The I/O interruption supervisor returns CPU control to the interruption handler. The I/O
interruption supervisor is described in the Input/Output Supervisor PLM.

Sharing Direct Access Devices

One or more 2301, 2303, 2305, 2311, 2314, 2321, or 3330 direct access devices can be
shared among two or more CPUs when the drives are connected to a control unit which has a
path to each CPU. This feature allows access to the devices through separate channels
connected to separate CPUs.

The I/O supervisor and ENQ/DEQ routine of the control program control the use of a
shared device so that data being used in one CPU is protected from modification by a program
in another CPU, and so that access-arm contention between CPUs is minimized. Figure 29
shows the flow of CPU control when either the catalog management or DADSM routines use
a shared direct access device. These routines are the con~rol program routines that must
reserve a shared device before using it; all other reserves are user-initiated.

Data Protection

If a user of a shared device requires data protection while he works on that data, he must issue
a RESERVE macro instruction. This macro instruction expands into an SVC instruction which,
when executed, causes CPU control to be passed through the SVC interruption handler to the
ENQ/DEQ routine (see Figure 29). This routine increments a counter in the UeB of the
device. The I/O supervisor performs the actual reserving of the device later when the I/O
operation is started. The UCB counter tells the I/O supervisor whether to release the device
after the I/O operation has completed. The device is not released until the user has
decremented the counter to zero by issuing a DEQ macro instruction for each RESERVE
macro instruction. Thus a user can read, modify, and write multiple records from a shared
device without fear that a program in another CPU has had access to his data between his
own -I/O operations.

Control of Access Ann Movement

When the user of the shared device executes his I/O macro instruction, CPU control is passed
through the SVC interruption handler to the EXCP routine of the I/O supervisor. This routine
performs a "seek" to position the arm for the data transfer. The seek channel program
contains a Reserve command (not to be confused with the RESERVE macro instruction)
which reserves the device. This reservation is necessary (even if the user did not specify a
RESERVE macro instruction) to ensure that the arm is not ~oved by a channel program in
another CPU between the seek and the actual data transfer.

202 MVT Guide (Release 21.0)

Before the EXCP routine starts the data transfer, it checks the UCB counter. If the counter
is zero, the EXCP routine places a Release command in the channel program for the data
transfer. This, in effect, causes the device to be released after the data transfer is complete. If
the counter is not zero (indicating that a user of the device wants it held), the Release
command is not issued.

When the user no longer needs the shared device, he issues a DEQ macro instruction. The
DEQ routine decrements the UCB counter and if it is zero, issues an EXCP macro instruction.
The EXCP routine starts a channel program that releases the device, and returns control to the
DEQ routine which, in turn, passes control to the user routine.

When a task is terminated with outstanding device reservations, the termination is abnormal.
The ABEND routine invokes the DEQ purge routine to cancel the device reservations.

The ENQ/DEQ routines and the EXCP routine are described in the MVT Supervisor PLM
and the Input/Output Supervisor PLM respectively.

Data Management in a Multiprocessing Environment

Except for I/O supervisor functions, data management in a multiprocessing environment is the
same as it is in a single-CPU environment. With two CPUs, the I/O supervisor routines may
have to keep track of up to twice the maximum number of channels available with one CPU.

Each CPU has a channel table, located in its prefixed storage area (PSA), which continually
reflects the availablility of each channel on that CPU (either CPU may refer to the other
CPU's channel availability table). Also, extensions to the UCBs identify whether a CPU has a
path through a control unit to a device.

When a CPU executes a request for an I/O operation and the requested device is
unavailable because the channel or control unit is busy, an I/O supervisor routine scans the
other CPU's channel availability table and UCBs to determine if a path from the other CPU to
the device is open. If it is, a shoulder tap is used and the I/O operation is started via the other
CPU.

The role of the I/O supervisor in a multiprocessing environment is described on the
Input/Output Supervisor PLM.

Section V: Logic Summary 203

•

= =

ENQ/DEQ

:: Sets counter
= in UCB (see
~note).

EXCP
throU9h SVC I

nterrupr
Ion Handler

Perform desired
modifications and
data transfers on the
data on the shared device.

ENQ/DEQ
DEQ through SVC Routine

Interruption Handle~ - D t UCB = = ecremen s
::counter. If zero, issues

= :: EXCP to release access arm.

=
= = = =

Note: Setting of counter by ENQ/DEQ routine
does not mean that device is now reserved.
Device could be in use by another program.
Ownership of device is not assured unti I

"seek" is started by the I/O Supervisor.,

1
~eserve Channel Program
~IO (seek)

Prevents access arm from be ing
used by another CPU between
seek and data transfer.

EXCP Routine of
I/O Supervisor-

SIO (data
1!ansfer)

=

Issues Release command to make
device avai lable for other systems.

Since UCB counter is set, do
not put a Release command in
the data transfer channel
program.

Figure 29. Flow of CPU Control When Using a Shared Device

204 MVT Guide (Release 21.7)

Volume Management Routines

This topic describes the error statistics by volume (ESV) and the error volume analysis (EVA)
routines used by Volume Management.

Error Statistics by Volume (ESV)

ESV routines can cause the system to collect the following set of statistics for each tape
volume during any interval that the volume is open (an abridged set of these statistics is
collected if the ESV records are to be printed at the console rather than on a line printer):

• The volume serial number.
• The CPU serial number.
• The system model number.
• The date that this set of statistics was collected.
• The time of day that this set of statistics was collected.
• The address of the unit on which this volume was mounted, and the channel through which

it was operating.
• The number of temporary read errors that occurred.
• The number of temporary write errors that occurred.
• The number of permanent read errors that occurred.
• The number of permanent write errors that occurred.
• The number of noise blocks encountered.
• The number of erase gaps written while trying to correct write errors.
• The number of Start 110 operations encountered.
• The bit density of the volume (in bits per inch).
• The physical record length of the volume (for fixed length records; the length is forced to

zero for undefined or for variable length records and when EXCP access method is used).

The· EVA option requires the system operator to specify two minimum values, one for the
number of temporary read errors and one for the number of temporary write errors. If the
number of read or write errors for a volume currently being accessed exceeds the values
specified by the system operator, the system will immediately type a message to this effect at
the console. EVA can be used for both labeled and unlabeled volumes (if SER parameter is
used in the DD card for the volume), but its primary purpose is to monitor errors on unlabeled
volumes, inasmuch as the ESV option can only provide data for labeled volumes.

An 110 error calls an error recovery procedure (ERP) which accumulates statistical
information and records an entry in a table called the volume statistics table. This table is
located by a pointer in the device unit control block (UCB). When end of volume is reached,
or when the volume is closed, tht? VOLST AT routine collects the ESV records if ESV is
specified; if SMF is also specified, the VOLST AT routine constructs the records in the
extended save area of the supervisor request block (SVRB) and transfers the records to data
sets SYS I.MANX and SYS I.MANY (disk) or to data set SYS 1.MANX only (tape) as shown,
depending on an option selected at system generation. If the records are written to disk, they
will be written first to SYSl.MANX. When this data set is full, a warning message will be
printed at the console and records will be diverted to SYS I.MANY until it becomes full, after
which records are again written to SYS I.MANX.

It is possible to specify that the ESV records be printed out at the console. In that case they
will be printed when the volume is demounted and will not be written to either of the
SYSI.MAN data sets.

Section v: Logic Summary 205

•

If the ESV records collected by the VOLST AT routine are written to disk, the operator can
dump the records to tape by running an SMF dump utility called IEBSMFDP. This will be
unnecessary if the records are already written to tape instead of to disk. The operator may
then run the IFHSTATR utility, which will format and print the volume statistics report.

The error recovery procedures, the volume statistics table, and the counter update routines
are described in the Input/Output Supervisor PLM. The format of the records as they appear on
the ESV tape is shown in Figure 30. These records are called type 21 records.

En-or Volume Analysis (EVA)

If EVA is specified, and the threshold values for read or write errors are greater than zero,
the tape ERP will compare the threshold values with the temporary read and write error
counters every time it updates the counters. If either of the threshold values is equal to its
corresponding read or write error value, the tape ERP prepares a message and issues a
write-to-operator (WTO) macro instruction to print the message at the console. A message is
printed only when the read or write error count and its threshold are equal. Thus, during the
time that the tape volume is open, there can be no more than two messages, one for attaining
the read error threshold, and one of attaining the write error threshold. When the volume is
demounted the temporary read and write error counters are zeroed.

T ota I Record Length
'QQ'

Record Type Time Of Day

Time Of Day (continued) Current Date

Current Date (continued) CPU ID

Model No. Data Length

Volume Serial No.

Channel/Unit Address

UCB Type

Temporary Read Errors Temporary Write Errors Start I/Os

Permanent Read Errors Permanent Write Errors Noise Blocks Erase Gaps

Erase Gaps (continued) Cleaner Actions Tape Density

Block Size

Figure 30. ESV Record Format for Tape Volumes

206 MVT Guide (Release 21.0)

\

Recovery Management Routines

This topic describes the error recovery routines used by Recovery management.

Recovery management facilities fall into two general categories: facilities for CPU error
recovery, and facilities for I/O error recovery.

CPU Recovery Facilities

Three facilities provide recovery from CPU and main storage errors:

• System Environment Recording, Option 0 (SERO)
• System Environment Recording, Option 1 (SER 1)
• Machine-Check Handler (MCH)

These facilities are model-dependent and mutually exclusive. One of them, and only one, must
be included in every operating system with MVT.

System Environment Recording, Option 0 (SERO)

SERO is the least complex of the CPU recovery management facilities. When a machine check
occurs, SERO determines the type of malfunction, collects data about the error, and writes. the
data as a record in SYS1.LOGREC.

Model-dependent versions of SERO are provided for System/360 Models 40, 50, 65, and
75. One or more versions of SERO can be included in SYS 1.LINKLIB during system
generation. During nucleus initialization, resident routines of the appropriate version are loaded
as part of the nucleus.

When a machine check occurs, resident SERO routines save machine and program data, and
halt all I/O operations. They then load other SERO routines into the dynamic area of main
storage. These routines save additional data, and write all saved data as a record in
SYSl.LOGREC. SERO then asks the operator to reload the operating system, and places the
computing system in. the wait state.

If I/O errors prevent the writing of a record in SYSl.LOGREC, SERO asks tl1e operator to
run SEREP (the stand-alone system environment recording, editing, and printing program). It
then places the system in the wait state. After running SEREP, the operator must run the IPL
program to reload the system.

SERO is described in more detail in the MVT Supervisor PLM.

System Environment Recording, Option 1 (SERl)

SER1 performs the same data collection functions as SERO. In addition, it analyzes each
machine error, and permits system operation to continue when the error affects only a single
noncritical task.

Model-dependent versions of SER1 are provided for System/360 Models 40, 50, 65, 75,
91,95, and 195, and the System/370 Model 195. One or more versions can be included in
SYS 1.LINKLIB during system generation. During nucleus initialization, the appropriate version
is loaded as part of the nucleus.

Section V: Logic Summary 207

•

When a machine check occurs, SER 1 determines the type of malfunction, collects data
about the error, and writes the data as a record in SYSl.LOGREC. If only one task is
affected, that task is abnormally terminated, and system operation is allowed to contjnue. If
more than one task is affected, SER1 asks the operator to reload the operating system, then
places the computing system in the wait state.

If I/O errors prevent the writing of a record in SYSl.LOGREC, SER1 asks the operator to
run SEREP; it then pfaces the computing system in the wait state. After running SEREP, the
operator must run the IPL program to reload the operating system.

SER1 is described in more detail in the MVT Supervisor PLM.

Machine-Check Handler (MCH)

MCR is the most complex of the CPU recovery management facilities. The goal of MCR is
total recovery from machine errors: when it achieves this goal, MCR permits a program
interrupted by a machine-check to continue processing. When total recovery is not possible,
MCR performs essentially the same functions as SERl.

Model-dependent versions of MCR are provided for System/360 Model 65, Model 65
Multiprocessor, and Model 85, and for System/370 Models 145, 155, and 165.

Men for Model 65 and Model 65 Multiprocessor

When a machine check occurs, MCR determines the type of malfunction, collects data about
the error, and writes the data as a record in SYSl.LOGREC. MCR retries the interrupted
instruction (that is, tries to re-execute the instructiorr), provided the error has not made retry
impossible. Retry normally is impossible if the error involves damage to the interrupted
program; however, if the program is refreshable, MCH tries to repair the damage by loading a
fresh copy of the program.

When instruction retry is successful, MCR permits the interrupted program to continue
processing. When retry is not successful (or not possible), MCH analyzes the error and tries to
associate it with a specific task. If the error affects a problem program task or noncritical
system task, that task is abnormally terminated and system operation is allowed to continue. If
the error affects a critical component of the control program, MCR informs the operator and
places the computing system in the wait state.

A permanent storage failure normally requires a halt for system repair. In a Model 65
Multiprocessing system, however, 2048-byte blocks of main storage can be logically removed
from the system through storage reconfiguration. When the failure does not affect a critical
task, critical storage, or a TSO task, the block where the failure occurred can be removed from
the system, permitting system operation to continue.

MCR is described in more detail in the Machine-Check Handler for System/360 Model 65
PLM.

208 MVT Guide (Release 21.0)

/

Men for Models 85, 145, 155, and 165

MCH programs for Models 85, 145, 155, and 165 differ from MCH for Model 65 in that
machine recovery facilities handle instruction retry. If the interrupted instruction is retried
successfully, MCH is entered only to collect and analyze data about the error, and to write the
data as a record in SYSl.LOGREC.

If the instruction is not retried successfully, MCH performs essentially the same functions as
in the case of the Model 65: error identification and analysis, program repair or task
termination, and error recording in SYSl.LOGREC. (Exception: For Model 145, MCH does
not attempt to repair program damage; the task is always terminated. For Models 155 and
165, MCH repairs damage to the control program only; in most cases, it does this by a
checksumming technique rather than by loading a fresh copy of a load module.)

Through the MODE command, the operator can control the method of error recording and
certain other aspects of recovery management. The exact function of the MODE command
depends on the CPU model, and is described in the Operator's Reference publication.

MCH is described in more detail in the following program logic manuals:

• Machine-Check Handler for System/360 Model 85 PLM
• Machine-Check Handler for System/370 Model 145 PLM
• Machine-Check Handler for System/370 Models 155 and 165 PLM

Input/ OUtput Recovery Facilities

Four facilities aid recovery from I/O errors:

• Channel-Check Handler (CCH)
• Error Recovery Procedures (ERPs)
• Alternate Path Retry (APR)
• Dynamic Device Reconfiguration (DDR)

Any or all of these facilities can be included in the same system. ERPs are required for all
systems, while CCH, APR, and DDR are required or optional, depending on the CPU model.

When a system does not include CCH, channel checks are handled by the system's CPU
recovery management routine (SERO, SERl, or MCH). This routine writes an error record in
SYSl.LOGREC, informs the operator of the error, and places the computing system in the
wait state.

Channel-Check Handler (CCH)

When a channel-check occurs, CCH prepares for a retry of the unsuccessful I/O operation by
an error recovery procedure (ERP). It also collects data about the error, and places this data
in a record to be written in SYSl.LOGREC.

CCH supports IBM 2860, 2870, and 2880 channels, and the integrated channels of
System/370 Models 145 and 155. CCH is required for Model 65 Multiprocessing, for
System/360 Models 85 and 195, and for System/370 Models 145, 155, 165, and 195. It is
optional for System/360 Models 65, 75, 91, and 95; however, if the operating system includes
APR, it must also include CCH for APR to function properly.

Section V: Logic Summary 209

SEC V

CCH consists of a central module that is channel-independent, and separate error-analysis
modules for the IBM 2860, 2870, 2880, Model 145, and Model 155 channels. During nucleus
initialization, the central module is made part of the nucleus, along with the error analysis
modules for all online channels.

When a channel-check occurs, CCH receives control from the I/O supervisor. It collects
information about the error, and formats a record for SYSl.LOGREC. If the error does not
impair system integrity, CCH constructs an error recovery procedure interface block (ERPIB),
and returns control to the I/O supervisor.

The I/O supervisor writes the channel error record into SYSl.LOGREC, and informs the
operator that an error has occurred. It then passes the ERPIB to the appropriate error
recovery procedure (device-dependent ERP), which uses the ERPIB to retry the unsuccessful
I/O operation. (Exception: CCH does not produce an ERPIB for a channel data check: the
ERP is able to retry the operation without it.)

If CCH finds that a channel error affects system integrity, it passes control to the system's
CPU recovery management routine (SERO, SERl, or MCH). This routine informs the operator
of the error, and places the computing system in the wait state. If the routine is MCH, it also
writes the channel error record in SYS I.LOGREC.

For a more detailed description of CCH, refer to the Input/Output Supervisor PLM.

Error Recovery Procedures (ERPs)

ERPs are standard procedures performed by routines that attempt recovery from errors on 1.0
devices. They ensure that the routines, which are device-dependent, provide a uniform type
and quality of information. For convenience, the routines themselves are generally referred to
as ERPs.

When an error occurs during a read, write, or control operation, the appropriate ERP
determines the type of error, and (when possible) retries the unsuccessful operation. The
routine also determines the number of retries to be performed before the error is considered
permanent. At completion of error processing, the routine causes termination of the I/O
request, and notifies the user of completion (successful or unsuccessful).

IBM supplies ERPs for all IBM devices. At system generation, the user selects (or provides
his own) ERPs for devices included in his system. The selected ERPs are placed in
SYSl.SVCLIB; they are loaded into main storage when they are needed, except for a portion
of the direct access ERP, which is permanently resident in main storage. The resident direct
access ERP handles errors on the system residence device, and exceptional conditions such as
end-of-cylinder, head-switching, and alternate track procedures.

For a more detailed description of ERPs, -refer to the Input/Output Supervisor PLM.

Altemate Path Retry (APR)

When an I/O operation is to be retried because of a channel check, APR ensures that an
alternate path (channel or selector subchannel) is used whenever possible. In addition, APR
enables the operator to vary a path online or offline.

APR is required for Model 65 Multiprocessing, optional for other systems. For APR to be
effective, CCH must be included in the same system; CCH is not available for System/360

210 MVT Guide (Release 21.0)

Models 40 and 50. APR consists of two routines: the selective retry routine (part of the I/O
supervisor) and the vary path processor (part of SVC 34). The selective retry function 9f APR
is optional and the V AR Y PATH function of APR is standard.

Selective Retry Routine: After a channel-check, the unsuccessful I/O operation is retried by an
error recovery procedure (ERP). The ERP retries the I/O operation some standard number of
times before the error is considered permanent. Before each retry, APR ensures the use of an
alternate path to the device by marking the previously used path offline. When only one path
remains, APR restores all of the original paths, and the process is repeated until the I/O
operation is successful or the standard number of retries is performed. (The standard number
of retries is determined by the ERP, which is provided either by IBM or by the installation.)

By placing failing paths offline, APR ensures the use of an alternate path whenever one is
available. The chance of a successful retry is thereby increased. When retry succeeds, APR
restores all of the original channel paths, and normal system operation is resumed.

Vary Path Processor: The vary path processor enables the operator to vary a channel path
online or offline. For example, the operator can vary a path offline when intermittent channel
errors begin to degrade system performance.

For a more detailed description of APR, refer to the Input/Output Supervisor PLM .

Dynamic Device Reconfiguration (DDR)

DDR enables the operator to swap I/O devices that are allocated and in use. The operator can
substitute one device for another, or simply interrupt processing on a device to carry out
cleaning procedures. A device swap can be requested by the system (after a permanent I/O
error) or by the operator (through the SWAP command).

In its basic form, DDR supports unit record devices, magnetic tape units (for standard-label
or no-label tapes), and direct access devices with demountable storage volumes (except devices
used for system residence). Options of DDR support tapes with nonstandard labels and direct
access devices used for system residence .

. The basic DDR facility is required for Model 65 Multiprocessing, optional for other systems.
DDR consists of the SWAP command processor, which is part of SVC 34, and other routines,
which are part of the I/O supervisor. Basic DDR is partly resident in main storage, while DDR
with the system residence option is entirely resident (except for the command processor).

System-Requested DDR: When a permanent I/O error occurs on a device with a demountable
storage volume (tape or direct access), the system requests a device swap to permit retry of
the unsuccessful I/O operation. The operator can demount the volume and move it to another
device (which may be on a different channel), or he can carry out cleaning procedures and
remount the volume on the same device. (If the device is a shared DASD, the volume must be
remounted on the same device.) If the volume is a tape reel, DDR repositions the volume after
it has been remounted.

For system residence devices, DDR receives control from transient error fetch, the error
fetch sequence, or the resident DASD error recovery procedure. For other devices (tape and
direct access), DDR receives control from the outboard recorder (OBR) routine of the I/O
supervisor.

Section V: Logic Summary 211

•

Operator-Requested DDR: The operator can. request a device swap ~at any time by entering a
SWAP command at the console. Before entering the SWAP command, however, the operator
must complete (or cancel) any swap requested by the system. As an example, the operator can
request a device swap when a unit record device requires intervention, but cannot be made
ready due to a permanent error condition. (The system does not request a device swap after an
error on a unit record device.)

For a more detailed description of DOR, refer to the Input/Output Supervisor PLM.

Recovery Management in a Multiprocessing Environment

All functions performed by the machine.;.chack handler (MCH) routine, the channel-check
handler (CCH) routine, the alternate path retry (APR) routine, and the dynamic device
reconfiguration (OOR) routine for a single-CPU environment are performed in the
multiprocessing environment. .When a failure occurs, the non-failing CPU is place~ into a
timed wait loop pending succussful completion of recovery management operations.

An additional feature of the MCH routine in the multiprogramming environment may permit
system operation to continue even though machine failures have occurred that would otherwise
cause system operation to stop. When normal retry and repair procedures are unsuccessful but
damage is confimed to a~ area of main. storage in which there are no critical system routines,
(e.g., master scheduler, SQS; link pack area, nuclues), the MCH rou~ine automatically prevents
further usage of the failing area. (System operation can then be resumed in the remaining
operative main storage areas.) Where possible, the MCH routine also frees for reassignment
the resources assigned to the routines contained in the failing area.

MCH, CCH, APR, and DOR are automatically included in every Model 65 Multiprocessing
System (except OOR options that support system residence devices and nonstandard label
tape). MCH is described in the Machine-Check Handler for System/360 Model 65 PLM; CCH,
APR, and OOR are described in the Input/Output Supervisor PLM.

212 MVT Guide (Release 21.0)

Task Directory for Section V: Logic Summary

For information about:

• Processing operator commands, see
Reading the Command
Scheduling the Command
Executing the Command

• Commands entered through the console, see
Console Communications Task

• Commands entered through the input stream, see
Reading Tasks
Commands and Data Sets

• The job stream, see
Reading Tasks
Initiating Tasks
Writing Tasks

• Work Queues, see
Input Work Queues
Contents of a Work Queue Entry
Task Control Block Queue
Request Block Queue
Storage Allocation in the System Queue Area
Timer Queue

• Processing of job steps, see
Preparing of Job Step for Execution
Terminating a Job Step
Restarting a Job Step

• Processing of tasks, see
Reading Tasks
Initiating Tasks
Writing Tasks
Task control Block Queue
Passing Control to a Program of a Task
Dispatcher Routine
Time Slicing

• Allocating storage, see
Storage Allocation in the Dynamic Area
Storage Allocation in a Region
Rollout/Rollin
Determining Available Storage
Subpools
Storage Allocation in the System Queue Area
Contents Directory
Load List

Section v: Logic Summary 213

• Timing, see
Time Slicing
Pseudo-Clocks
Timer Queue
Time-of-Day Clock

• Preparing data before processing, see
Open Processing
Insuring Proper Volume Mounting
Constructing Control Blocks
Loading Access Method Routines

• Transferring data during processing, see
Starting an 110 Operation
Access Methods
EXCP Routine
Terminating an 110 Operation

• Closing data sets after processing, see
Close Processing
End-of -Volume Processing

• Using shared direct access storage devices, see
Sharing Direct Access Devices
Data Protection
Control of Access Arm Movement

• Recovering from CPU malfunctions, see
System Environment Recording, Option 0 (SERO)
System Environment Recording, Option 1 (SER 1)
Machine-Check Handler (MCH)
MCH for Model 65 and Model 65 Multiprocessor
MCH for Models 85, 145, 155, 165, and 195

• Recovering from channel malfunctions, see
Channel-Check Handler (CCH)
Error Recovery Procedures (ERPs)
Alternate Path Retry (APR)
Dynamic Device Reconfiguration (DDR)

214 MVT Guide (Release 21.0)

Appendix A: System Macro Instructions

This appendix contains the description and formats of macro instructions that allow users to
modify or to obtain information from control blocks.

CIRB - Create IRB for Asynchronous Exit Processing

The CIRB macro instruction is included in SYS 1.MACLIB and must be included in a system
at system generation time to be used. The issuing of this macro instruction causes a supervisor
routine (called the exit effector routine) to create an interruption request block ORB). In
addition, other operands of this macro instruction may specify the building of a register save
area and/or a work area to contain interruption queue elements, which are used by supervisor
routines in the scheduling of the execution of user exit routines.

Name
[symbol]

EP

Operation Operand
CIRB {EP=addrx}, KEY={PP t, MODE=jPP },

SUPRf lSUPR

{
SVAREA= NO I, [WKAREA=value]

YES {

specifies the entry point address of the user's _ asynchronous exit routine.

KEY

[STAB=code,]

specifies whether the user's asynchronous routine will operate with a CPU protection key
established by the supervisory program (SUPR) or with a protection key obtained from the
task control block of the task for which the macro instruction is issued (PP).

MODE
specifies whether the user asynchronous routine will be executed in the problem program
(PP) state or in a supervisory (SUPR) state.

STAB
indicates the status condition of the interruption request block. The "code" parameter may
be either of the following:

(RE) to indicate that the IRB is reusable in it current form.

(DYN) to indicate that the storage area assigned to the IRB is to be made available (i.e.,
freed) for other uses when the asynchronous exit routine is completed.

SVAREA
specifies whether a register save area (of 72 bytes) is to be obtained from the main storage
assigned to the problem program. If it is, the address of this save area is placed in the IRB. The
asynchronous exit routine then follows the system register saving convention of using the
SAVE and RETURN macro instructions. In this manner, a generalized subroutine can be
used as an asynchronous exit routine.

WKAREA
specifies the number of doublewords (given as a decimal value) required for an area in
which the routine issuing the macro instruction can construct interruption queue elements.

Appendix A: System Macro Instruction 215

- -
APPA

SYNCH - Synchronous Exits to Processing Program

The SYNCH macro instruction is a system macro instruction that permits control program
supervisor call (SVC) routines to make synchronous exits to a processing program.

Name Operation Operand
[symbol] SYNCH jentry-pointl

1 (15) f

entry-point
specifies the address of the entry point for the processing program that is to be given
control.
If (15) is specified, the entry-point address of the processing program must have been
pre-loaded into parameter register 15 before execution of this macro instruction.

SYNC" Macro Definition

MACRO
&NAME SYNCH &EP

AIF ('&EP' EQ "). E1
AIF (, &EP' (1 , 1) EQ '(').REG

&NAME LA 15,&EP LOAD ENTRY POINT ADDRESS.
AGO .SVC

. REG AIF ('&EP' EQ ' (15'). NAMEIT
&NAME LR 15, &EP(1) LOAD ENTRY POINT ADDRESS.
.SVC SVC 12 ISSUE SYNCH SVC

MEXIT
.NAMEIT ANOP
&NAME SVC 12 ISSUE SYNCH SVC

MEXIT
. E1 IHBERMAC 27,405

MEND

Programming Notes: In general, use the SYNCH macro instruction when a control program in
the supervisor state is to give temporary control to a processing program routine, and when
expecting the processing program to return control to the supervisor state. The program to
which control is given must be in main storage when the macro instruction is issued. The use
of this macro instruction is similar to that of the BALR instruction in that register 15 is used
for the entry point address. When the processing program returns control, the supervisor state
bit, the storage protection key bits, the system mask bits and the program mask bits of the
program status word are restored to the settings they had before execution of the SYNCH
macro instruction.

Example: As a result of an OPEN macro instruction, label processing may be carried out to a
point at which a user's processing program indicates that private processing is desired (or
necessary). The control program's open routine then will issue a SYNCH macro instruction
giving the entry point of the subroutine required for the user's private label processing.

ST AE - Specify Task Asynchronous Exit

The ST AE macro instruction permits control to be returned to a user exit routine when a task
is scheduled for ABEND. When issuing the ST AE macro instruction, a ST AE control blQCk
(SCB) is created and initialized with the address of your exit routine. When issuing multiple

216 MVT Guide (Release 21.0)

ST AE requests within the same program, the SCB associated with the last issued ST AE
becomes the active SCB: it will be the first to gain control when an ABEND is scheduled. If
the active SCB is canceled, the preceding SCB, if there is one, will become the active SCB.

Notes:

• Do not cancel or overlay an SCB not created by a user program .

• The execution of a LINK macro instruction does not cancel the active SCB for the program
in control.

Execute and Standard Form 01 STAE

Name Operation Operand

[symbol] STAE 1exit address~ 5 0 ~ , {OCVT} ,PARAM=list address

exit address

[

PURGE= {QUIESCEt] [,ASYNCH= 5NO ~]
HALT J 1 YES ~
NONE

,MF=(E, remote list address)
(1)

specifies the address of a ST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the last SCB created is canceled and the
previously created SCB becomes current. The address may be loaded into one of the general
registers (r1) 2 through 12.

Note: If you use the Execute form of the macro and specify a zero, the exit address in the
parameter list will be zeroed.

OV
indicates that the parameters passed in this ST AE macro instruction are to overlay the data
currently in the SCB.

CT
indicates the creation of a new active SCB.

PARAM=
specifies the address of a parameter list containing data to be used by the ST AE exit
routine when it is scheduled for execution. The address may be loaded into one of the
general registers (r2) 2 through 12.

XCTL=YES
indicates that the STAE macro instruction will not be canceled if an XCTL macro
instruction is issued.

XCTL=NO
indicates that the ST AE macro instruction will be canceled if an XCTL is issued.

Appendix A: System Macro Instruction 217

PURGE=QUIESCE
indicates that all active input/output operations will be purged with the quiesce option. If
this fails, active input/output operations will be purged with the halt option.

Note: If you use the execute form of the STAE macro instruction and omit the PURGE
parameter, QUIESCE will not be the default; the option specified for the preceding use of
ST AE will be used.

PURGE = HALT
indicates that all active input/output operation will be purged with the halt option.

PURGE=NONE
indicates that all active input/output operations will not be purged.

ASYNCH=NO
indicates that asynchronous exit processing will be prohibited while ST AE exit processing is
being done.

ASYNCH=YES
indicates that asynchronous exit processing will be allowed while ST AE exit processing is
being done.

MF=(E,[remote list adress][(l)])
Indicates the execute from of the ST AE macro instruction using a remote parameter list.
The address of the remote parameter list can be loaded into register 1, in which case
MF=(E,(1)) should be coded.

Note: When using the Execute form of the ST AE macro instruction and omitting the
ASYNCH parameter, the option specified for the preceding use of ST AE will be used.

List Form of STAE

Use the List form of the ST AE macro instruction to construct program parameter lists. The
description of the Standard and Execute forms describes the List form with the following
exceptions:

Name Operation Operand
[symbol] STAE exit address ,PARAM=list address

,PURGE= QUIESCE ,ASYNCH= NO
HALT YES
NONE

,MF=L

exit address
any address that may be written in an A-type address constant.

MF=L
indicates the List form of the ST AE macro instruction.

There are several conditions that you should be aware of when you use the PURGE and
ASYNCH parameters of the ST AE macro instruction.

• If the user exit routine requests a supervisor service that requires asynchronous interruptions
to complete its normal processing, you must specify ASYNCH= YES.

218 MVT Guide (Release 21.7)

• Specify ASYNCH= YES if you use an access method that requires asynchronous
interruptions to complete its normal processing and you have specified PURGE=QUIESCE.

• When using the Indexed Sequential Access Method (ISAM) and specifying
PURGE = HALT, only the I/O event for which the PURGE is done will be posted.
Subsequent ECBs will not be posted; this causes the ISAM CHECK routine to treat purged
input/ output operations as waiting input/output operations and you will never get past the
CHECK in your program.

• Specify ASYNCH= YES when you have the following combination of conditions: an access
method that requires asynchronous interruptions to complete its normal processing, a
specifications of PURGE=NONE, and a request of CHECK in your user exit routine.

• When specifying PURGE=HALT and an ISAM data set is being updated when a failure
occurs, part of the data set may be destroyed.

• If quiesced input/output operations are not restored when using ISAM, the ISAM CHECK
routine will treat purged input/output operations as waiting input/output operations and
part of the ISAM data set may be destroyed if it is being updated when a failure occurs.

• If input/output operations are allowed to complete while the exit routine is in progress and
there is a failure in the I/O processing, an ABEND recursion will be encountered when the
I/O interrupt occurs. This can be misleading because it will appear that your exit routine
failed while the actual cause of the failure was in the I/O processing.

Programming Notes

When control is returned to the user after the ST AE macro instruction has been issued,
register 15 contains one of the following return codes:

Code Meaning

00 An SCB is successfully created, overlaid, or cancelled.

04 Storage for an SCB is not available.

08 The user is attempting to cancel or overlay a non-existent SCB, or is issuing a ST AE in his
ST AE exit routine.

OC The exit routine or parameter list address is invalid.

10 The user is att-empting to cancel or overlay an SCB not associated with his level of control.

When a program with an active STAB environment encounters and ABEND situation,
control is returned to the user through the ABEND/STAB interface routine at the STAB exit
routine address. The register contents are as follows:

• Register 0:

Code Indication

o Active I/O at time of ABEND was quiesced and is restorable.

4 Active I/O at time of ABEND was halted and is not restorable.

8 No I/O was active at the time of the ABEND.

12 No work area was obtained.

16 No I/O processing was requested.

Appendix A: System Macro Instruction 219

APPA

• Register 1: Address of a 104-byte work area:

0

8

16

24

88

96

88

96

ST AE exit routine parameter I list addr or 0

PSW at time of ABEND

Last P /P PSW before ABEND

Registers 0-15 at time of ABEND (64 bytes)

If problem program issued ST AE:

Name of ABENDing program or 0

Entry point addr of
ABENDing program

If supervisor program issued ST AE:

Request Block addr of
ABENDing program

o

I

I

• Register 2-12: Unpredictable.

ABEND completion code

o

o

• Register 13:
• Register 14:

Address of a supervisor-provided register save area.
Address of an SVC 3 instruction.

• Register 15: Address of the ST AE exit routine.

Register 13 and 14, if used by the ST AE exit routine, must be saved and restored prior to
returning to the calling program. Standard subroutine conventions are employed.

If storage was not available for the work area, the register contents upon entry to the ST AE
exit routine are as follows:

• Register 0:
• Register 1:
• Register 2:
• Register 3-13:
• Register 14:
• Register 15:

12 (decimal).
Flags and completion code.
Address of ST AE exit parameter list.
Unpredictable.
Return address.
Exit routine address.

The ST AE exit routine may contain an ABEND, but must not contain either a ST AE or an
A TT ACH macro instruction. At the time the ABEND is scheduled, the ST AE exit routine
must be resident as part of the program issuing ST AE, or brought into storage via the LOAD
macro instruction.

220 MVT Guide (Release 21.7)

I",

Scheduling of ST AE and ST AI Exit and Retry Routines

Each STAE exit routine is represented by one or more STAE control blocks (SCBs). Each
STAE control block is queued in a last-in, first-out order to the TCB (TCBNSTAE field) of
the task within which they were created. ST AI control blocks also represent exit routines, but
are created when the ST AI operand is specified in an ATTACH macro instruction. ST AI
control blocks are always placed at the top of the queue (ahead of the STAE control blocks)
in a last-in, first-out order and are propagated (a duplicate STAI control block is created and
queued) to all lower-level subtasks of the subtask created with the ST AI operand. Thus, if task
A attached subtask B specifying the ST AI operand, and subtask B attached subtask C which,
in turn, attached subtask D, a ST AI control block would be created and queued to the TCB
for subtask B, and could be propagated to the queues originating at the TCBs for sub task C
and subtask D. If a STAI control block were created for sub task C (the ATTACH macro
instruction issued by sub task B specified the STAI operand), this STAI control block would be
placed at the top of subtask C's SCB queue ahead of the ST AI control block created for
subtask B. In this case, both ST AI control blocks would be propagated to the TCB for subtask
D. All STAI control blocks precede all ST AE control blocks on the SCB queue.

If a task is scheduled for abnormal termination, the exit routine specified by the most
recently issued ST AE macro instruction (represented by the highest ST AE control block on the
queue) is given control and executes under a program request block created by the SYNCH
service routine. The STAE exit routine must specify, by a return code in register 15, whether a
retry routine is to be scheduled. If no retry routine is to be scheduled (return code=O) and this
is a subtask with a ST AI control block on the SCB queue, the exit routine specified in the
ST AI control block is given control. If there is no ST AI control block on the queue, abnormal
termination continues.

If the ST AE exit routine indicates that a retry routine has been provided (return code = 4),
register 0 must contain the address of the retry routine and register 1 must contain the address
of the same work area passed to the exit routine. (The first word of the work area may be
modified by the exit routine to point to another parameter list in his region.) The STAE
control block is freed and the request block terminated up to, but not including, the RB of the
program that issued the ST AE macro instruction. This is done by placing an SV C 3 instruction
in the old PSW field of each RB to be purged. In addition, open DCBs which can be
associated with the purged RBs are closed and queued I/O requests associated with these
DCBs being closed are deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed programs that are at
a lower level in the program hierarchy than the program under which the retry will occur.
However, certain effects on the system will not be canceled by this RB purge. Examples of
these effects are as follows:

• Sub tasks created by a program to be purged.
• Resources allocated by the ENQ macro instructions.
• DCBs that exist in dynamically acquired main storage.

When your ST AE exit routine gains control, it can examine the code in register 0 to
determine if there were active input/output operations at the time of the ABEND and if the
input/ output operations are restorable. If there are quiesced restorable input/output
operations, you can restore them, in the ST AE retry routine, by using word 26 in the work
area. Word 26 contains the link field passed as a parameter to SVC Restore. SVC Restore is
used to have the system restore all I/O requests on the I/O restore chain.

Appendix A: System Macro Instruction 221

-;. - ---~

APPA

Users can selectively restore specific I/O requests on the I/O restore chain by using word 2
in the work area. Word 2 contains the address the first I/O block on the I/O restore chain.
This address can be used as a starting point for issuing EXCP for the I/O requests that you
want to restore.

In supervisor mode, users may want the failing task to remain in its present status and not
be reestablished. A retry routine may be scheduled without a purge of the RB chain by
returning to the ABEND/STAE interface routine with an 8 in register 15, and registers 0 and
1 initialized as described above. If the ST AE retry routine is scheduled, the system
automatically cancels the active SCB and the preceding SCB, if there is one, will become the
active SCB. Users wanting to maintain within the retry routine must reestablish an active SCB
within the retry routine, or must issue mUltiple ST AE requests prior to the time that the retry
routine gains control. Also, if a ST AI had been issued for this task, it must be reissued by the
retry routine to be made effective again.

A ST AI exit routine, if specified in a previous A TT ACH macro instruction, will receive
control if a ST AE exit routine is not specified, if a ST AE exit routine is specified but indicates
that a retry routine is not provided, if a ST AE exit routine terminates abnormally, or if a
ST AE or a ST AI retry routine abnormally terminates. The ST AI exit routine must specify by a
return code in register 15 one of the following:

Return Code

o

16

4 or 12

8

Action to be Taken

No retry provided. The next ST AI exit routine is to be given control or, if there is

not another ST AI exit routine, abnormal termination is to continue.

No further ST AI processing is to occur. Abnormal termination processing is to continue.

A retry routine is to be scheduled and the request block queue is to be purged.

A retry routine is to be scheduled but the request block queue is not to be purged (if the

user is not in supervisor mode, this return code will be ignored and abnormal

termination processing continues).

When the RB queue is not to be purged, a new PRB is created for the retry routine and
placed on the RB queue immediately after the SVRB for the ABEND routine, so that when
the ABEND routine returns via an SVC 3 instruction the retry routine will receive control.

If the RB queue is to be purged, the STAI retry routine is executed under the PRB for the
last STAE or STAI exit routine or, if no PRB for an exit routine exists on the queue, under
the most recently created PRB that is pointed to by the oldest (first created) non-PRB on the
queue (the oldest non-PRB will be the last RB purged).

Like the STAE/STAI exit routine, the STAE/STAI retry routine must be in storage when
the exit routine determines that retry is to be attempted. If not already resident within your
program, the retry routine may be brought into storage via the LOAD macro instruction by
either the user's program or exit routine.

222 MVT Guide (Release 21.7)

Upon entry to the ST AE/ST AI retry routine, register contents are as follows:

• Register 0:

• Register 1:

• Register 2-13:

• Register 14:

• Register 15:

o

Address of the work area, as previously described, except that word 2 now
contains the address of the first I/O Block and word 26 now contains the
address of the I/O restore chain.

Unpredictable.

Address of an SVC 3 instruction.

Address of the ST AE/ST AI retry routine.

The retry routine should use the FREEMAIN macro instruction to free the 104 bytes of
storage occupied by the work area when the storage is no longer needed. This storage should
be freed from subpool 0 which is the defualt subpool for the FREEMAIN macro instruction.

Again, if the ABEND/ST AE interface routine was not able to obtain storage for the work
area, register 0 contains a 12; register 1, the ABEND completion code upon entry to the
STAE retry routine; and register 2, the address of the first I/O Block on the restore chain, or
o if I/O is not restorable.

Note: If the program using the STAE macro instruction terminates via the EXIT macro
instruction, the EXIT routine cancels all SCBs related to the terminating program. If the
program terminates via the XCTL macro instruction, the EXIT routine cancels all SCBs
related to the terminating program except those SCBs that were created with the XCTL= YES
option. If the program terminates by any other means, the terminating program must reinstate
the previous SCB by cancelling all SCBs related to the terminating program.

ATTACH--Create a New Task

This explicit form of ATTACH permits greater flexibility in both the use and the result of use
of the ATTACH macro instruction. This form of the macro instruction differs from the implicit
form by the addition of six keyword parameters to those described for the implicit form in the
Supervisor Services and Macro Instructions publication. Only the added six parameters are shown
and explained in this description.

These six parameters can be used only with tasks whose protection key is zero. If they are
used with other tasks, the default values are used.

Name Operation
[symbol] ATTACH ,SVAREA= l~;S}

,JSCB=jscbaddr

For ordinary A IT ACH macro instruction parameters, see the description in the Supervisor
Services and Macro Instructions publication.

Appendix A: System Macro Instruction 223

JSTCB
Address to be placed in the TCBJSTCB field of the TCB of the newly created task. The
address determines whether the attached task is a new job step or a task in the present job
step. A new job step is required if the ownership of programs is to pass from the attaching
to the attached task, that is, if you are coding GIVEJPQ= YES in the macro instruction. (Also,
see note below.)

YES - Address of the TCB of the newly created task, that is, this TCB points to itself,
thus creating a new job step. A new job step is required if ownership ot programs is
being transferred from the attaching to the attached task, that is, if you are coding
GIVEJPQ= YES in the macro instruction.

NO- Address of the TCB of the task using the ATTACH, that is, the attached task is
to be a task in the present job step.

,SM
Operating state of the machine when executing the attached task.

SUPV -Supervisor mode.

PROB -Problem program mode.

,SVAREA
Need for save area.

YES - A save area is needed for the attaching task. The ATTACH routine will obtain a
72 byte save area. If both attaching and attached task share subpool zero, the save
area is obtained there, otherwise it is obtained from a new 2K byte block.

NO- No save area is needed.

,KEY
Protection/Key of the newly created (attached) task.

ZERO - Zero.

PROP - Copy the key from the TCBPKF field of the TCB for the task using the
ATTACH.

,GIVEJPQ
Ownership of programs used by the attaching task. If ownership is to pass to the attached
task, the attached task must be a new job step, that is, you must use JSTCB= YES. (Also
see note below.)

YES- Pass ownership to the newly created task. On completion of the new task all
programs, both those passed to the new task by the old and those acquired by it,
are freed.

NO- Ownership of programs used by -the attaching task remain with that task; programs
acquired by the attached task remain with it. The attached task shares use of the
programs of the attaching task during their common existence. At the conclusion
of the attached task, the programs it acquired are freed; when the attaching task
terminates, its programs are freed.

224 MVT Guide (Release 21.0)

,JSCB
Job step control block address.
If specified, that job step control block is used for the new task. If not specified, the job
step control block of the attaching task is also used for the new task.

Note: If the task to be attached is to be a separate step (JSTCB= YES), ownership of programs
may be passed (GIVEJPQ= YES) or retained (GIVEJPQ=NO). If the newly attached task is
not to be a separate step (JSTCB=NO), ownership of programs cannot be passed but must be
retained (GIVEJPQ=NO). The following table summarizes these combinations.

GIVEPJQ= YES

NO

YES

Valid

Valid

JSTCB=

NO

Invalid

Valid

1M GLIB -- Open or Close SYSl.IMAGELIB

The IMGLIB macro instruction is used to open or close SYS l.IMAGELIB. When issued to open
the Image Library, it is usually followed by a BLDL macro instruction and a LOAD macro
instruction which, respectively, search the library for the image and load it into storage.

Name Operation Operand

[symbol] IMGLIB

OPEN

rOPEN J deb addr
LCLOSE

specifies that SYS l.1MAGELIB is to be opened and the address of the DCB returned in
register one.

CLOSE
specifies that IMAGELIB is to be closed.

dcb addr
is either the address of the IMAGELIB DCB or is a register containing the IMAGE LIB
DCB address.

Inter-Partition POST -- Post a Nonresident Routine

In a system with the time sharing option (TSO), a program in main storage may issue a POST
request for a task already swapped out of main storage. This is called an inter-partition POST
request. The terminal job identification (THD) operand in the inter-partition POST macro
instruction allows POST requests for time sharing tasks swapped out of main storage. (The
THD is a halfword that identifies a time sharing task.) MVT systems without TSO ignore the
THD and task control block (TCB) operands.

In systems without TSO, the post routine simply gets the post code from the program that
issued the POST macro and places it in the event control block specified by the waiting task.
In systems with TSO, however, the post routine must first additionally check to see whether
the waiting task is currently in or out of main storage. When the waiting task is resident,
posting its ECB proceeds normally, as stated above. If, however, the waiting task is swapped
out, the post routine requests that is be swapped back in, then posts its ECB normally.
Additional information about the post routine is in MVT Supervisor PLM.

Appendix A: System Macro Instruction 225

- .

APPA

Standard Form of the Inter-Partition POST Macro Instruction

The standard form of the inter-partition POST Macro instruction constructs a parameter list in
the issuing program. The parameter list can also be indicated by registers. The Supervisor
Services and Macro Instructions manual explains how to use the standard, list, and execute forms
of macro instructions.

Name Operation Operand

[symbol] POST

TJID=

[

,TJID=address]
,TJID=address,TCB=O
,TJID=address,TCB=address

specifies the address of the halfword (on a halfword boundary) that contains the TJID of
the waiting task. You must code TJID if you code TCB=; you may load the TJID address
into any of the general register, 2-12.

TCB=address
specifies the address of the waiting task. You may load the address into any of the general
registers,2-12.

TCB=O
Specify 0 if the TCB is unkown.

Note: TCB=O is the fault value if you do not code the TCB = operand.

List Form of the Inter-Partition POST Macro Instruction

The list form of the inter-partition POST macro instruction constructs a parameter list that can
be passed to the control program.

Name Operation Operand

[symbol] POST [ecb address] [,TJID=address]
I, TCB=O]
lTCB=address ,MF=L

ecb address
The address of the ECB representing the event to be posted.

MF=L
Indicates the list form of this macro instruction.

Note: This list form is valid only for inter-partition POST requests; also, you must use a-type
address constants for all address operands that you specify.

Execute Form 0/ the Inter-Partition POST Macro Instruction

The execute form of the inter-partition POST macro instruction allows the user to issue
inter-partition POST macro instructions for a nonresident control program routine by using a
parameter list. The list form of the macro constructs the parameter list.

226 MVT Guide (Release 21.7)

Name Operation Operand

[symbol] POST

[

,TJID=address]
,TJID=address,TCB=O
,TJID=address,TCB=address

[
,MF=(E,control program list addreSS)]
, MF=(E, (1))

MF=(E,control program list address)
Indicates the execute form of the macro instruction, and specifies the address of the remote
parameter list specified for the control program by the list form of the inter-partition POST
macro instruction. You may load this address into any of the general registers, 2-12.

MF=(E,(1))
Indicates the execute form of the macro instruction, and specifies that register 1 must
contain the address of the paramter list.

Note: The execute form of the inter-partition macro instruction is valid only for inter-partition
POST requests.

QEDIT -- Linkage to SVC 34

The QEDIT macro instruction generates the required entry parameters and the linkage to SVC
34 for the following uses:

• Dechaining and freeing of a CIB (command input buffer) from the CIB chain for a task.
• Setting a limit for the number of CIBs that may be simultaneously chained for a task.

The format of the QEDIT macro instruction and an explanation of the operands are as
follows:

Name Operation Operand
[symbol] QEDIT ORIGIN=address [,BLOCK=address]

[, CIBCTR=number]

ORIGIN
. The address of the pointer to the first CIB on the CIB chain for the task. This address is

obtained using the EXTRACT macro instruction. If ORIGIN is the only parameter
specified, the entire CIB chain will be freed.

,BLOCK
The address of the CIB that is to be freed from the CIB chain for a task.

,CIBCTR
An integer (from 0 to 255) to be used as a limit for the number of CIBs to be chained at
any time for a task.

address
Any address valid in an RX instruction or one of the general registers (2-12) previously
loaded with the indicated address. The register must be designated by a number or symbol
added within the parentheses.

Appendix A: System Macro Instruction 227

APPA

WTO/WTOR -- Write-to-Operator and Write-to-Operator with Reply

The write-to-operator (WTO) and write-to-operator with reply (WTOR) macro instructions
have two special operands, MSGTYP and MCSFLAG. Only operators familiar with the
multiple console support (MCS) communications task shoulduse these operands, since using
them improperly could impede the entire message routing scheme. These operands set flags to
indicate that certain system functions must be performed, or that a certain type of information
is being presented by the WTO or WTOR macro instruction.

The MSGTYP and MCSFLAG operands may be specified in either the standard or list form
of the WTO and WTOR macro instruction. The standard form of the WTO macro instruction
is shown below.

Name Operation Operand
[symbol] WTO 'message' [,ROUTCDE=(number [number], ...)]

[, DESC=number]

'message'

[, MSGTYP= {~OBNAMES}
STATUS

[,MCSFLAG=(name [, name] , ...)]

specifies that the message text is to be placed between the first and second apostrophes.

ROUTCODE=
specifies routing codes assigned to the message.

DESC=
specifies the descriptor codes assigned to the message.

MSGTYPE = JOBNAMES or MSGTYP = STATUS
specifes routing the message to the console which issued the DISPLAY JOBNAMES or
DISPLAY STATUS command, respecitvely. When the operating system identifies the
message type, the message will be routed only to those consoles that requested the
information. If ommitted, messages routed as specified in the ROUTCDE parameter.

MSGTYP=Y or MSGTYP=N
specifies that two bytes are to be reserved in the WTO or WTOR macro expansion so flags
can be set to describe the MSGTYP functions desired. Y specifies that two bytes of zeros
are to included in the macro expansion at displacement WTO+4 plus the total length of the
message text, descriptor code, and routing code fields. N, or ommission of the MSGTYP
parameter, specifies that the two bytes are not needed, and that the message is to be routed
as specified in the ROUTCDE parameter. If an invalid MSGTYP value is encountered, a
value of N is assumed, and a diagnostic message is produced with a severity code of 8.

The bit definitions for MSGTYP=Y follow:

Bit 0: DISPLAY JOBNAMES

Bit 1 : DISPLAY STATUS

Bits 2-15: Reserved for future system use. Must be zeros.

228 MVT Guide (Release 21.7)

When specifying MSGTYP= Y, set the appropriate message identifier bit in the MSGTYP
field of the macro expansion. Prior to executing the WTO or WTOR SVC (SVC35), also
set byte 0 of the MSGFLAG field in the macro expansion to hexadecimal 10. This value
indicates that the message routing criteria will use the MSGTYP field. When the system
identifies the message type, the message will be routed to all the consoles that requested
that particular type of information. Routing codes, if present, will be ignored.

MCSFLAG
specifies that the macro instruction should set bits in the MSCFLAG filed as indicated by
each name coded.

I Appendix A: System Macro Instruction 228.1

-

APPA

228.2 MVT Guide (Release 21.7)

Appendix B: Control Character Transformations

To help determine what can be done with a writer routine, this appendix describes the control
character transformation features of the standard writer.

Effectively there are nine control character combinations that can occur betweep. input data
set records and output data set records. Both data sets may have records whose control
characters are either USASI type (acc) or machine type (mcc), or the records may not contain
any control characters. However, within any given data set, the records all must contain the
same form of control character. The standard writer has procedures to handle control character
transformations for both an output to a card punch unit and an output to a printer unit.

Card PIlIICh Unit

If an input data set record does not have a control character, the standard writer produces one
that indicates output into pocket 1 of the punch. If the output unit is a tape unit and the
ultimate destination is a punch unit, the standard writer assumes that the punch unit is either a
2540, 3525, or a 2520 unit and sets a control character accordingly. The standard writer
translation of punch-type control characters is given in Figure 31. In this table, the first three
columns of figures are machine control character codes, and the right hand column of figures
represent USASI control character codes. Each record that requires a control character has one
of these 8-bit codes attached to it. Input records whose control characters are mcc and are
shown in horizontal rows 1, 2, 5, and 6 are given the acc code of "V" if they are placed in. an
output data set that has acc. An mcc given in rows 3 or 4 is changed to an acc code of "w" However,
if translation is from an acc input to an mcc output, the standard writer translates the control
character into the appropriate mcc on the same horizontal row.

Machine Control Characters

3525/ USASI
Stacker Unit 2540 Punch 2520 Punch 1442 Punch Control Characters

1. PI 00000001 00000001 10000001 11100101 (V)

2. PI 00100001 00100001 10100001
Column Binary

3. P2 01000001 01000001 11000001 11100110 (W)

4. P2 01100001 01100001 11100001
Column Binary

5. RP3 10000001

6. RP3 10100001

Column Binary

Figure 31. Control Character Translation for Punch Unit Output

Appendix B: Control Character Transformations 229

APPB

Prillter Ullit

When the output unit is a printer, the standard writer prevents overprinting between data sets. If
the successive data sets contain records with the same type of control character, there is no
overprinting problem. If the control characters vary from one data set to the next, the standard
writer solutions are applications of the technique illustrated by Figure 32. In this figure, the
possible forms of the input record control characters are given in the left hand column. The
three right hand columns (containing cases 1-9) represent the possible forms of the output
record control characters. Within each of the 12 main sections of the figure is shown a
symbolic representation of a data set whose records possess the indicated form of control
character. Each record consists of a print line representation and a control character
representation (where appropriate). For records with acc, the control character is shown
preceding the print line, since the effect of the control character occurs before the line is
printed. For records with mcc, the converse is shown. An input record with no control
character is treated as if it had an acc. Because of this variance in the printer's mechanical
action, whenever there is a control character transformation, the standard writer places a
transformed control character with an output data set record other than the record to which
the character was attached in the input data set.

In Figure 32, case 1 and 5 represent situations in which there is the same type of control
character in the output as there is in the input. Thus, for records 1 through n, there is no
change in the record format. However, there is a provision to allow for the possibility that two
consecutive input data sets may have different control characters. In this case, a minimum
separation between the data sets as they appear in the output data set is provided as indicated
by the printing of blanks and suppressing the spacing of the printer to allow another control
character to take effect. The 'extra' record (S B or B S) provides the more important function
of forcing out the last record of the current data set before the writer's processing of that data
set is done.

In cases 2 and 4 of Figure 33, the output data sets records have different control characters
than the input data set records. Case 2 shows that the standard writer generates a I-line space
control character to precede the first print line of the output. When the output is written, each
control character of an input record is then attached to the next record. The last input record
control character (Cn) is attached to a line of blanks (B). In case 4, the first input record
control character is attached to a line of blanks, and each of the other control characters is
attached to a preceding record, as indicated. The last input record (P n) has a writer-generated
space I-line control character attached to it before the buffering and forcing record (B S)
generated by the writer is put out.

Cases 7 and 8 show that the standard writer first generates a, 'skip to channell' control
character and then generates '1 line space' and then generates '1 line space ' control characters
for all but the last control character. The last control character is the space suppression
character shown as part of the buffering or forcing record generated.

Cases 3, 6, and 9 show that if no control characters are required in the output data set, the
records are printed consecutively and a line of blanks generated by the writer is printed after
the final record in a data set. Any control character appearing in the input data set are
dropped in the output data set.

Notice that in all cases involving control characters in the output data set, the standard
writer allows for (1) an output record to force the printing of the last record of an input data
set and (2) a means of minimum buffering between data sets by using generated control
characters and print lines in conjunction with the actual data set control characters.

230 MVT Guide (Release 21.0)

/

INPUT DATA SET OUTPUT DATA SET RECORD FORMATS
RECORD FORMATS

Machine

Machine 8 Ci) ./ ./

I P1C11 P2C21 I PnCnl I P1C11 P2C21 I PnCn I BaSc I I S1 P1 I C1P21

ASA 0 CD '1 I ./ I

I C1 P1 I C2P21 I CnPnl I Boc11 P1C21 I Pn-1 Cn I PnS1 I BoSc I I C I P I I C2P21

No Control Choracter* ~./ CD I ./ ./ I I ~ I

I SI P1 I sIP21 I SIP n I I BoSn I PI S1 I I Pn- 1 SI I P nS I I BaS c I I SnPI ISIP2 1

Writer generated.
No control character on input causes the star.darN ""dter to generate an ASA
control character as indicated.

Bo

CI-~

P1-P n

S 1

S c

Sn

A print line of blanks.

Control characters of records l-N of a given data set.

Print lines of a given data set.

A control character causing a 1-line space.

A control character causing spacing to be suppressed.

A control character causing a skip to channel I.

Figure 32. Symbolic Representation of Record Formats

ASA

./
CD

I Cn-1 Pn I CnBol I P1

I I 0
I CnPn I ScBo I I P1

I I ./ G
I S1 Pn I ScBo I I PI

No Control Character

I P2 I I Pn I

I P2 I I P n I

I P2 I I P n I

Appendix B: Control Character Transformations 231

./

Bo I

./

Bo I

./
Bo I

The standard writer translation of printer-type control characters is given in Figure 33. In
this figure, the type of action indicated is given in the left-hand column. The middle column
and the right-hand column show, respectively, the bit settings of the control character byte for
machine type and USASI type control characters corresponding to the entries in the left-hand
column. A control character transformation is effected by changing the bit-configuration of the
control character byte as indicated in the figure.

Machine Type Control

(1403, 1404, 1443, 3211 USASI

Action Desired Printers) Type Control

Write space 0 00000001 01001110
Write space 1 00001001 01000000

Write space 2 00010001 11110000

Write space 3 00011001 01100000

Write skip to channel 1 10001001 11110001
Write skip to channel 2 10010001 11110010

Write skip to channel 3 10011001 11110011

Write skip to channel 4 10100001 11110100

Write skip to channel 5 10101001 11110101

Write skip to channel 6 10110001 11110110
Write skip to channel 7 10111001 11110111

Write skip to channel 8 11000001 11111000

Write skip to channel 9 11001001 11111001

Write skip to channel 10 11010001 11000001

Write skip to channel 11 11011001 11000010
Write skip to channel 12 11100001 11000011

Figure 33. Control Character Translation for Printer Unit Output

When machine control characters are used which indicate spacing or skipping without
writing (bit 6 set to 1, e.g., write and space 0-00000011) the standard writer generates the
indicated USASI control character and also generates. a blank record of the proper type and
length.

232 MVT Guide (Release 21.0)

Appendix C: RESERVE Macro Instruction
Used With Shared DASD Option

The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The RESERVE macro instruction
protects the issuing task from interference by other tasks in the system. Each task issuing the
RESERVE macro instruction must also use the DEQ macro instruction to release the device;
two RESERVE instructions for the same resource without an intervening DEQ will result in an
abnormal termination unless the second one specifies the keyword parameter RET =. (If a
restart occurs when a RESERVE is in effect for devices, the system will not restore the
RESERVE; the user's program must reissue the RESERVE.) Even if a DEQ is not issued for
a particular device, termination routines will release devices reserved by a terminating task.

RESERVE Macro Instruction

The use of the RESERVE macro instruction is explained below:

Name Operation Operand

[symbol] RESERVE (qname address,rname address'[~J

[rname length] ,SYSTEMS) [RET=l~!~:fJ,ucB=pointer address

qname
the address in main storage of an eight-character name. Every task (within the system)
issuing RESERVE against the same resource (data and device) must use the same
qname-rname combination to represent the resource. The qname should not start with SYS.

rname address
the address in main storage of a name used in conjunction with the qname to represent the
resource. The rname can be qualified, and may be 1 to 255 bytes in length.

[E or S]
specify either exclusive control of the resource (E); or shared control with other tasks in the
system (S). Default to E.

rname length
the length, in bytes, of rname. If omitted, the assembled length of rname is used. If zero (0)
specified, the length of rname must be contained in the first byte of the field designated by
the rname address.

SYSTEMS
specifies that the resource represented by qname-rname is known across systems as well as
within the system whose task is issuing RESERVE, i. e., the resource is shared between
systems.

Appendix C: RESERVE Macro Instruction Used with the Shared DASD Option 233

APPC

RET
specifies a conditional request for all of the resources named in the RESERVE macro
instruction. If the operand is omitted, the request is unconditional. The types of conditional
requests are as follows:

TEST -- tests the availability status of the resources but does not request control of the
resources.

USE -- specifies that control of the resources be assigned to the active task only if the
resources are immediately available. If any of the resources are not avialable, the active
task is not placed in a wait condition.

HAVE -- specifies that control of the resources is requested only if a request has not
been made previously for the same task.

Return codes are provided by the control program only is RET = TEST, RET = USE, or
RET=HAVE is designated; otherwise, return of the task to the active condition indicates that
control of the resource has been assigned to the task. Return codes are identical to those
supplied by the ENQ macro instruction (see the Data Management Macro Instructions
publication) .

UCB=pointer address
the keyword specifies either:

1. The address of a fullword that contains the address of the unit control block (UCB) for
the device to be reserved.

2. A general register (2-12) that points to a fullword containing the address of the unit
contol block for the device to be reserved.

To use the Shared DASD option in higher level languages, write an assembler language
subroutine to issue the RESERVE macro instruction. Pass the following information to this
routine: ddname, qname address, rname address, rname length, and RET parameter.

The EXTRACT Macro Instruction

The EXTRACT macro instruction is used to obtain the address of the task input/output table
(TIOT) from which the UCB address can be obtained. The topic "Finding the UCB Address"
explains this procedure.

Releasing Devices

The DEQ macro instruction is used in conjunction with RESERVE just as it is used with
ENQ. It must describe the same resource and its scope must be stated as SYSTEMS; however,
the UCB=pointer address parameter is not required. If the DEQ macro instruction is not
issued by a task which has previously reserved a device, the system will free the device when
the task is terminated.

234 MVT Guide (Release 21.7)

/

Preventing Interlocks

Certain precautions must be taken to avoid system interlocks when the RESERVE macro
instruction is used. The more often device reservations occur in each sharing system, the
greater the chance of interlocks occurring. Allowing each task to reserve only one device
minimizes the exposure to interlock. The system cannot detect interlocks caused by program
use of the RESERVE macro instruction and enabled wait states will occur on the system or
systems.

Volume Assignment

Since exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems -
processing four different data sets on two shared volumes -- to become interlocked. For
example, data sets A and B reside on device C, and data sets D and E reside on device F. Task
X in system X reserves device C in order to use data set A; task Y in system Y tries to
reserve device F in order to use data set D. Now task X in system X tries to reserve device F
in order to use data set E and task Y in system Y tries to reserve device C in order to use
data set B. Neither can ever regain control, and neither will complete normally. In MVT
without job step timing, the job or jobs, will be canceled. When the system has job step time
limits, the task, or tasks, in the interlock would be abnormally terminated when the time limit
expires. Moreover, an interlock could mushroom, encompassing new tasks as these tasks try to
reserve the devices involved in the existing interlock.

Program Libraries

When assigning program libraries to shared volumes, precaution must be taken to avoid
interlock. For example, SVCLIB for system A resides on volume X, while SVCLIB for system
B resides on volume Y. Task A in system A invokes a direct access device space management
function for volume Y, resulting in that device being reserved. Task B in system B invokes a
similar function for volume X. reserving that device. However, since the DADSM functions are
transient SVCs, each load module transfers to another load module via XCTL. Since the
SVCLIB for each system resides on a volume reserved by the other system, the XCTL marco
instruction cannot complete the operation, therefore an interlock occurs in this particular case,
since no access to SVCLIB is possible, both systems will eventually enter an enabled wait
state.

Finding the UCB Address

This explains procedures for finding the UCB address for use the RESERVE macro
instruction; it also shows a sample assembler language subroutine which issues the RESERVE
"and DEQ macro instructions and can be called by higher level languages.

Appendix C: RESERVE Macro Instruction Used with the Shared DASD Option 235

•

Providing the Unit Control Block Address to RESERVE

The EXTRACT macro instruction is used to obtain information from the Task Control Block
(TCB). The address of the TIOT can be obtained from the TCB in response to an
EXTRACT. Prior to issuing an EXTRACT macro instruction, the user sets up an answer area
in main storage which is to receive the requested information. One full word is required for
each item to be provided by the control program. If the user wishes to obtain the TIOT
address, he must issue the following form of the macro instruction:

EXTRACT answer-area address, FIELDS=TIOT

The address of the TIOT is then returned by the control program, right adjusted, in the full
work answer area.

The TIOT is constructed by job management routines and resides in main storage during
step execution. The TIOT consists of one or more DD entries, each of which represents a data
set defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the UCB address of the associated device. In order to find the UCB
address, the user must locate the DD entry in the TIOT corresponding to the DD name of the
data set for which he intends to issue the RESERVE macro instruction.

The UCB address can be obtained via the DEB and the DCB. The Data Control Block
(DCB) is the block within which data pertinent to the current use of the data set is stored. The
address of the Data Extent Block (DEB) is contained at offset 44 decimal after the DCB has
been opened. The DEB contains an extension of the information in the DCB. Each DEB is
associated with a DCB, and the two point to each other.

The DEB contains information concerning the physical characteristics of the data set and
other information that is used by the control program. A device dependent section for each
extent is included as part of the DEB. Each such extent entry contains the UCB address of the
device to which that portion of the data set has been allocated. In order to find the UCB
address, the user must locate the extent entry in the DEB for which he intends to issue the
RESERVE macro instruction. (In disk addresses of the form MBBCCHHR, the M indicates
the extent number starting with 0).

Procedures for Finding the UCB Address of a Reserved Device

If the data set is a multivolume sequential data set, it must be assumed that all jobs will
process that data set in a sequential manner starting with the first volume of the data set. In
this case, by issuing a RESERVE for the first volume only, the user effectively reserves all the
volumes of the data set.

For data sets using the queued access methods in the update mode or for unopened data
sets:

1. Extract the TIOT from the TCB.
2. Search the TIOT for the DD name associated with the shared data set.
3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the

UCB address obtained in step the TIOT.
4. Issue the RESERVE macro specifying the address obtained in step 3 as the operand of the

UCB keyword.

236 MVT Guide (Release 21.0)

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.
2. Load the address of the the field labeled DEBDVMOD in the DEB obtained in step 1. The

result is a pointer to the UCB address in the DEB.
3. Issue the RESERVE macro specifying the address obtained in step 2 as the operand of the
UCB keyword.

For BDAM data sets the user may reserve the device at any point in the processing in the
following manner:

1. Open the data set successfully.
2. Convert the block address used in the READ /WRITE macro to an actual device address of

the form MBBCCHHR. The publication Data Management for System Programmers shows
how to convert addresses to the form MBBCCHHR.

3. Load the DEB address from the DCB field labeled DCBDEBAD.
4. Load the address of the field labeled DEBDVMOD in the DEB.
5. Multiply the "M" of the direct access address by 16.
6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the next

READ/WRITE operation. The sum is also a pointer to the UCB address for this extent.
7. Issue the RESERVE macro specifying the address obtained in step 6 as the operand of the

UCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should by used only at system
update time. Further, if it is a multivolume ISAM data set, it must be assumed that all jobs will
access the data set through the highest level index. The indexes should never reside in main
storage when the data set is being shared. In this case, by issuing a RESERVE macro for the
volume on which the highest level index resides, the user effectively reserves the volumes on
which the prime data and independent overflow areas reside. The following procedures can by
used to achieve this:

1. Open the data set successfully.
2. Locate the actual device address (MBBCCHHR) of the highest level index. This address

can be obtained from the DCB.
3. Load the DEB address from the DCB field labeled DCBDEBAD .
4. Load the address of the field labeled DEBDVMOD in the DEB.
5. Multiply the "M" of the actual device address located in step 2 by 16.
6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the next

READ/WRITE operation. The sum is also a pointer to the UCB address for this extent.
7. Issue the RESERVE macro specifying the address obtained in step 6 as the operand of the

UCB keyword.

Appendix C: RESERVE Macro Instruction Used with the Shared DASD Option 237

•

RES and DEQ Subroutines

The following assembler language subroutine can be used by FORTRAN, COBOL, or
assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must by passed to the RESDEQ routine, if the RESERVE macro instruction is to be
issued, are:

DDNAME - the eight character name of the DDCARD for the device to be reserved.

QNAME - an eight character name.

RNAME LENGTH - one byte (a binary integer) that contains the RNAME length value.

RNAME - a name from 1 to 255 charcters in length.

The DEQ macro instruction does not require the UCB=pointer address as a parameter. If the
DEQ macro is to be issued, a fullword of binary zeros must be placed in the DDNAME field
before control is passed.

238 MVT Guide (Release 21.7)

RESDEQ CSECT
SAVE (1 4 , 1 2) , T
BALR 2, °
USING *,2
ST 13,SAVE+4
LA 11,SAVE
ST 11 , 8(13)
LR 13, 11
LR 9,1
L 3,0(9)
CLC 0(4,3),=F'0'
BE WANTDEQ

SAVE REGISTERS
SET UP ADDRESSABILITY

ADDRESS OF MY SAVE AREA IS STORED
IN THIRD WORD OF CALLER'S SAVE AREA
ADDRESS OF MY SAVE AREA
ADDRESS OF PARAMETER LIST
DDNAME PARAMETER OR WORD OF ZEROS
WORD OF ZEROS IF DEQ IS REQUESTED

*PROCESS FOR DETERMINING THE UCB ADDRESS USING THE TIOT

NEXTDD

XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE
LA 7,24(7) ADDRESS OF FIRST DD ENTRY
CLC 0(8,3),4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7) LENGTH OF DD ENTRy
LA 7,0(7,11) ADDRESS OF NEXT DD ENTRY
CLC 0(4,7),=F'0' CHECK FOR END OF TIOT
BNE NEXTDD
ABEND 200,DUMP

FINDUCB LA 8,16(7)
DDNAME IS NOT IN TIOT, ERROR
ADDRESS OF WORD IN TIOT THAT
CONTAINS ADDRESS OF UCB *

*PROCESS
. WANTDEQ

*PROCESS

*
*

ISSUEDEQ
RETURN

MOVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

FOR DETERMINING THE QNAME REQUESTED
L 7,4(9) ADDRESS OF QNAME LENGTH
MVC QNAME(8),0(7) MOVE IN QNAME
FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME
L 7 , 8 (9) ADDRESS OF' RNAME LENGTH
MVC RNLEN+3(1),0(7) MOVE BYTE CONTAINING LENGTH
L 7,RNLEN
STC 7,RNAME

L 6,12(9)
BCTR 7,0
EX 7,MOVERNAM
CLC 0(4,3),=F'0'
BE ISSUEDEQ

STORE LENGTH OF RNAME IN THE
FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS
ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH
MOVE IN RNAME

RESERVE (QNAME,RNAME,E,0,SYSTEMS),UCB=(8)
B RETURN
DEQ (QNAME,RNAME,O,SYSTEMS)
L 13,SAVE+4 RESTORE REGISTERS AND RETURN
RETURN (1 4 , 1 2) , T
BCR 15,14
MVC RNAME+1(0),0(6)
DC F'O'
DS 18F
DS 2F
DS CL256
DC F'O'
END

Appendix C: RESERVE Macro Instruction Used with the Shared DASD Option 239

APPC

240 MVT Guide (Release 21.0)

Appendix D: List of Acronyms and Abbreviations

,-

This list contains the names associated with the acronyms used in this publication:

Acronym Name Acronym Name

APR alternate path retry INIT initiator

CCH channel-check handler I/O input/output

CCW channel command word lOB input/output block

CDE contents directory entry IPL initial program loading

CPU central processing unit JCT job control table

CSCB command scheduling control block JFCB job file control block

CSW channel status word LTPC local time pseudo-clock

CVT communications vector table MCH machine-check handler

DADSM direct access device space MCS multiple console support
management

DASDI direct access storage device MVT multiprogramming with a
initialization variable number of tasks

DCB data cpntrol block M65MP Model 65 Multiprocessing

DD data definition NIP nucleus initialization program

DDR dynamic device reconfiguration OBR outboard recorder

DEB data extent block OLTEP online test executive program

DEQ dequeue PQE partition queue element

DQE descriptor queue element PSA prefixed storage area

DSB data set block PSW program status word

PSCB data set control block RB request block

ECB event control block RDR reader

ENQ enqueue RMS recovery management support

EOV end-of-volume SCT step control table

ERP error recovery procedure SDR statistical data recorder APPD

ETXR end-of-task exit routine SER system environment recording

EXCP execute channel program SHPC six hour pseudo-clock

EXEC execute SIO start I/O

FBQE free block queue element SlOT step input/output table

FCB forms control buffer 5MB system message block

Appendix D: List of Acronyms and Abbreviations 241

Acronym Name Acronym Name

SMF system management facilities TSCE time-slice control element

SPQE subpool queue element TSO time sharing option

SVC supervisor call T4PC twenty-four hour pseudo-clock

SYSGEN system generation UCB unit control block

SYSOUT system output UCS universal character set

SYSRES system residence volume

TCB task control block VTOC volume table of contents

TIOT task input/output table WTR writer

TQE timer queue element XCTL transfer control

,/

242 MVT Guide (Release 21.0)

Appendix E: MVT Control Program Logic Manuals

The following list contains the names and abstracts of control program logic manuals that
discuss the MVT configuration.

Basic Direct Access Method GY28-6771

This publication describes the internal logic of the IBM System/360 Operating System basic
direct access method.

Basic Telecommunications Access Method GY28-6617

This publication explains the method and logic of the channel program generation for the basic
telecommunications access method (BT AM).

Catalog Management GY28-6606

This manual provides detailed information on catalog management routines. These routines
record identification of volumes used by data sets by maintaining information in logical records
called indexes. The functions and structures of the routines are described, as are their
relationships to other portions of IBM System/360 Operating System. This manual also
describes the structure of catalog data sets that contain the indexes processed by catalog
management routines.

Direct Access Device Space Management GY28-6607

This manual provides detailed information on direct access device space management
(DADSM) routines. These routines control the user of external direct access storage by
maintaining the informat~on in data set control blocks. The functions and structures of the
routines are described, as are their relationships to other portions of IBM System/360
Operating System. This manual also describes the structure of volume tables of contents which
are processed by DADSM routines.

Graphic Access Method GY27-7113

This publication describes the operation of the graphics access method (GAM) for the IBM
2250 Display Unit, Models 1, 2, and 3, the IBM 2260 Display station (Local Attachment),
and the IBM 2280/82 File Units.

Graphic Job Processor Support GY27-7159

This publication describes the internal logic of the graphic job processor (GJP) and the
graphics interface task (GFX), which are features of the IBM System/360 Operating System
that permits jobs to be defined and initiated by responding to frames displayed on an ibm
2250 Display.

Appendix E: MVT Control Program Logic Manuals 243

• I

Indexed Sequential Access Methods GY28-6618

This publication describes the program logic of the two indexed sequential access methods: the
queued indexed sequential access method (QISAM) and the basic indexed sequential access
method (BISAM). It also discusses the relationship of indexed sequential access method
routines to other parts of the control program.

Initial Program Loading/Nucleus Initialization Program GY28-6661

This publication describes the internal logic of the initial program loader (IPL) program and
the nucleus initialization program (NIP). The initial program loader prepares main storage to
receive the nucleus and then loads the nucleus. The nucleus initialization program initializes the
resident part of the control program and prepares main storage for control program operation.

Input/Output Supervisor GY28-6616

This publication describes the operation of the I/O supervisor within the IBM System/360
Operating System control program. The I/O supervisor's components, the EXCP supervisor
and the I/O interruption supervisor, are discussed in detail to show the internal structure and
logic involved in the control of I/O devices and channels.

Input/Output Support (OPEN/CLOSE/EOV) GY28-6609

This publication describes the internal logic of IBM System/360 Operating System
input/ output support. The discussion includes the relation of I/O support routines to other
portions of the control program. Detailed descriptions of the open, close, and EOV routines
provide the basis for the discussions of the other I/O support routines openJ, RDJFCB,
Tclose, and FEOV.

Machine-Check Handler for IBM System/360 Model 65 GY27-7155

The machine-check handler is designed to reduce the number, and minimize the impact of
unscheduled system interruptions reSUlting from machine-check interruptions in
mUltiprogramming environments of the IBM System/360 Operating System. The program is
designed for use with the IBM System/360 Model 65 only. This publication describes the
program logic associated with the machine-check handler error recovery procedures.

Machine-Check Handler for IBM/System 360 Model 85 GY27-7184

This publication describes the internal logic of one of the recovery management programs for
the Model 85, the machine-check handler (MCH/85). The MCH/85 program identifies and
analyzes machine malfunction, attempts to repair damage or retries failing instructions, and, if
successful, either terminates the affected task or puts the system into the disabled wait state.
MCH/85 also records error statistics which assist the user in machine maintenance.

244 MVT Guide (Release 21.0)

Machine-Check Handler for IBM System/370 Model 145
Machine-Check Handler for IBM System/370 Models 155 and 165

GY27-7237
GY27-7198

These publications describe the machine-check handler programs for the Models 145, 155, and
165, and what they do to prevent or minimize down time. The machine-check handler is an
IBM System/360 Operating System recovery management facility which (1) reduces the
number of times that system processing is halted because of machine-check interruptions, and
(2) minimizes the impact of machine malfunctions and the resulting down time from
machine-check interruptions when system processing cannot be continued. The program also
records error statistics on the SYS1.LOGREC data set to assist the user in machine
maintenance.

MVT Job Management GY28-6660

This publication describes the internal logic of the job management routines for the MVT
control program of the IBM System/360 Operating System. Included are discussions of input
stream processing, work queue management, job initiation and termination, I/O device
allocation, system output processing, and the scheduling and execution of operator commands.

MVT Supervisor GY28-6659

This publication describes the internal logic of the MVT supervisor. The MVT supervisor is
one part of the control program of the IBM System/360 Operating System. The supervisor
controls the basic computing system and programming resources needed to perform several
data processing tasks concurrently. Specifically, it was designed to:

• Handle interruptions
• Supervise tasks
• Control programs in main storage
• Control main storage itself
• Supervise the timer
• Supervise console communications and the system
• Supervisor exiting procedures
• Supervise termination procedures

Online Test Execute Program GY28-6651

The online test executive program (OL TEP) functions as an interface between the IBM
System/360 Operating System and unit test programs performing online testing of
input/ output devices. This publication describes the internal logic of the program, including its
theory and organization.

Queued Telecommunications Access Method GY30-2002

This publication describes the internal logic of the queued telecommunications access method
(QT AM). It includes discussions on the physical and logical organization of QT AM and the
function of BT AM within QT AM. It also contains a summary of the internal logic at the
routine level and flowcharts of each routine.

Appendix E: MVT Control Program Logic Manuals 245

APP E

Sequential Access Methods GY28-6604

This publication describes the internal logic of the routines of the queued sequential access
method, the basic sequential access method, and the basic partitioned access method of IBM
System/360 Operating System.

Time Sharing Option Command Processors

Volume 1: ACCOUNT, ACCOUNT ADD, ACCOUNT CHANGE, ACCOUNT DELETE,
ACCOUNT LIST, ACCOUNT BROADCAST,
ACCOUNT SUBROUTINES GY28-6771

Volume 2: ALLOCATE, CALL, CANCEL/STATUS, DELETE GY28-6772

Volume 3: EDIT GY28-6773

Volume 4: EXEC, FREE, HELP, LINK, LISTALC, LISTBC GY28-6774

Volume 5: LISTCAT, LISTDS, LOADGO, OPERATOR, OUTPUT GY28-6775

Volume 6: PROFILE, PROTECT, RENAME, RUN, SEND, SUBMIT, TERMINAL,
TIME, WHEN/END GY28-6776

Volume 7: TEST GY28-6777

This series of publications describes the internal logic of TSO command processors. Command
processors are programs invoked by the TSO Terminal Monitor Program in response to
commands entered at the terminal.

Time Sharing Option (TSO) Control Program GY27-7199

This publication describes the internal logic of the System/360 Operating System Time Sharing
Option (TSO). The main body of the manual describes the three main components of the
control program -- the supervisory program, the Terminal Input/Output Coordinator (TIOC),
and the Logon/Logoff Scheduler. Described in separate appendixes are the TSO Trace Writer
and TSO Trace Data Set Processor, the TSO Background Reader, and the TSO /RMS
Interface.

246 MVT Guide (Release 21.0)

Utilities GY28-6614

This publication describes the internal logic of the utility programs provided for the IBM
System/360 Operating System. Included are discussions of: .

• System utilities, which are executed under the operating system to manipulate system data
sets such as catalogs, and to dump, restore, and initialize direct access volumes.

• Data set utilities, which are executed under the operating system to work with data sets
at the logical-record level.

• Independent utilities, which are executed outside of the operating system to dump,
restore, and recover data, and to initilize and assign alternate tracks on direct access
devices.

Appendix E: MVT Control Program Logic Manuals 247

•

248 MVT Guide (Release 21.0)

Appendix F: SVC Routines

This appendix contains a list of the names of SVC routines, arranged in order of SVC number.
Included with each name are the hexadecimal form of the SVC number, the name of the
macro instruction (or instructions) by which the routine is invoked, the type of the routine,
and the name of the PLM containing additional information about the routine. The 'TYPE'
field indicates which type of SVC routine the routine is:

• Type 1 SVC routines, which are part of the nucleus and are disabled for I/O and
external interruptions. These routines do not issue SVC instructions because they cannot
be restarted following interruption.

• Type 2 SVC routines, which are part of the nucleus but may be enabled for I/O and
external interruptions during part of their operation. These routines may issue SVC
instructions.

• Type 3 SVC routines, which are nonresident (reside in SYSl.SVCLIB), may be enabled
for I/O and external interruptions, and are not larger than 1024 bytes. These routines
may issue SVC instructions .

• Type 4 SVC routines, which are nonresident (reside in SYSl.SVCLIB), may be enabled
for I/O and external interruptions, and are larger than 1024 bytes. They are brought into
a transient area in storage, one load module at a time. Each load module is 1024 bytes or
less. These routines may issue SVC instructions.

Appendix F: SVC Routines 249

•

SVC
Number

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

HEX SVC
Number

00

01

02

03

04

05

06

07

08

09

OA

OB

O~

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

lA

IB

lC

ID

IE

IF

20

21

22

23

Macro Instruction

EXCP/XDAP

WAIT/WAITR/PRTOV

POST

-none-

GETMAIN

FREEMAIN

LINK

XCTL

LOAD

DELETE

GETMAIN/
FREEMAIN/FREEPOOL

TIME

SYNCH

ABEND

SPIE

-none-

PURGE

RESTORE

BLDL/FIND

OPEN

CLOSE

STOW

OPEN

CLOSE

DEVTYPE

-none-

CATALOG/
INDEX/LOCATE

OBTAIN

-none-

SCRATCH

RENAME

FEOV

-none-

IOHALT

MGCR

WTO/WTOR

250 MVT Guide (Release 21.0)

Routine Name

EXCP Supervisor

Wait

Post

Exit

GETMAIN

FREEMAIN

Link

XCTL

Load

Delete

GETMAIN/FREEMAIN

Time

SYNCH

ABEND

SPIE

Error EXCP

Purge

Restore

BLDL/Find

Open

Close

Stow

OPENJ

TCLOSE

DEVTYPE

Track Balance

Catalog

Obtain

CVOL

Scratch

Rename

FEOV

Allocate

IOHALT

Command Scheduling

Write to Operator

Routine
Type

1

1

1

1

1

1

2

2

2

2

1

1

2

1

2

4

4

4

4

PLM

Input/Output Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

Input/Output Supervisor

Input/Output Supervisor

Input/Output Supervisor

Sequential Access Methods

Input/Output Support
(OPEN/CLOSE/EOV)

Input/Output Support
(OPEN/CLOSE/EOV)

Sequential Access Methods

Input/Output Support
(OPEN/CLOSE/EOV)

Input/Output Support
(OPEN/CLOSE/EOV)

Input/Output Supervisor

Sequential Access Methods

Catalog Management

Direct Access Device Space
Management

Catalog Management

Direct Access Device Space
Management

Direct Access Device Space
Management

Input/Output Support
(OPEN/CLOSE/EOV)

Direct Access Device Space
Management

Input/Output Supervisor

MVT Job Management

MVT Supervisor

SVC
Number

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

HEX SVC
Number

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

Macro Instruction

WTL

SEGLD/SEGWT

-none-

LABEL

EXTRACT

IDENTIFY

ATTACH

CIRB

CHAP

-none-

TTIMER

STIMER

DEQ

TEST

Unassi'::Jned

SNAP

-none-

RELEX

-none-

EOV

ENQ/RESERVE

FREEDBUF

REQBUF/RELBUF

-none-

STAE

-none-

DETACH

CHKPT

RDJFCB

-none-

-none-

END READY

SYNADAF/SYNADRLS

BSP

GSERV

ASGNBFR/RLSEBFR/
BUFINQ

Routine Name

Write to Log

Overlay Supervisor

Resident SVC

Label

Extract

Identify

Attach

Stage 1 Exit
Effector

CHAP

Overlay Supervisor

TTIMER

STIMER

Dequeue

TTOPEN

ABDUMP

Restart

RELEX

Disable

EOV

Enqueue

Dynamic Buffer

REQBUF

OLTEP

STAE

Save; SVC 61

Detach

Checkpoint

RDJFCB

QWAIT

BTAM Terminal Test

QPOST

SYSNADAF

Backspace

Graphic Attention
Service

Buffer Management

Routine
Type

2

2

3

1

2

2

2

1

1

2

3

4

3

2

3

1

3

3

2

3

2

2

4

3

2

3

PLM

MVT Supervisor

MVT Supervisor

TESTRAN

Utilities

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

MVT Supervisor

TESTRAN

MVT Supervisor

MVT Supervisor

Basic Direct Access Method

Indexed Sequential Access
Methods

Input/Output Support
(OPEN/CLOSE/EOV)

MVT Supervisor

Basic Direct Access Method

Basic Telecommunications
Access Method

Online Test Executive
Program

MVT Supervisor

TESTRAN; TSO Command
Processor, Volume VII, TEST

MVT Supervisor

MVT Supervisor

Input/Output Support
(OPEN/CLOSE/EOV)

Queued Telecommunications
Access Method

Basic Telecommunications
Access Method

Queued Telecommunications
Access Method

Sequential Access Methods

Graphics Access Method

Graphics Access Method

Appendix F: SVC Routines 251

APP F

SVC
Number

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

105

200-
255

HEX SVC
Number

48

49

4A

4B

4C

40

4E

4F

50

51

52

53

54

55

56

57

58

59

SA

5B

5C

50

5E

SF

60

61

62

63

64

65

66

69

Macro Instruction

-none-

SPAR

DAR

-none-

-none-

-none-

-none-

STATUS

-none-

SETPRT

-none-

SMFWTM

-none-

-none-

ATLAS

DOM

MOD88

EMSRV

XQMNGR

VOLSTAT

-none-

TGET/TPUT

Terminal Status

TSEVENT

STAX

-none-

PROTECT

-none-

FIB

QTIP

AQCTL

IMGLIB

Routine Name

Communications
Task Router

Specify Attention

Delete Attention

Dequeue

Statistics Update

QTAM Terminal Test

L-Space

Set Status

GJP SVC

SETPRT

Alternate Track
Assignment

SMF Buffer

Restart Address

Dynamic Device
Reconfiguration

IEHATLAS

Delete Operator
Message

MOD88

EMSRV

XQMNGR

VOLSTAT

TCB EXCP

TGET/TPUT

Terminal Status

TSIP

STAX

TEST Command
Processor

Password Data Set
Maintenance

Dynamic Allocation

Foreground
Initiated
Background

QTIP Main Control

TCAM
Interpartition
Communications

Image Library
DEB/DCB Controller

Routine
Type

3

3

3

4

4

3

1

3

4

4

4

1

4

3,4

3

3

3

4

3

1

4

4

1

3

3

4

4

3

1

1

3

PLM

MVT Supervisor

Graphics Access Method

Graphics Access Method

Graphics Access Method

Input/Output Supervisor

Queued Telecommunications
Access Method

Direct Access Device Space
Management

MVT Supervisor

Graphic Job Processor
Support

Sequential Access Methods

Utilities

MVT Job Management

Graphics Access Method

I/O Supervisor

utilities

MVT Supervisor

Emulator Program

Emulator Program

Job Management

I/O Supervisor

Input/Output Supervisor

TSO Control Program

TSO Control Program

TSO Control Program

TSO Control Program

TSO Command Processor,
Volume VII, TEST

Direct Access Device
Space Management

MVT Job Management

TSO Command Processor,
Volume VI, SUBMIT

TSO Control Program

Telecommunications
Access Method

Sequential Access Methods

Available for assignment to user-written SVC routines. Until a number is
assigned, its use in a processing program causes abnormal termination.

252 MVT Guide (Release 21.0)

Indexes to systems reference library manuals are
consolidated in the publication IBM System/360
Operating System: Systems Reference Library Master
Index, GC28-6644. For additional information
about any subject listed below, refer to other
publications listed for the same subject in the
Master Index.

When more than one page reference is given,
the major reference is first.

abbreviations 241-242
abnormal termination 66, 73
access method executor 201
access method modules

included in link pack area 111
included in region 199

Accounting information
available to user 147
how to process 145-150

acronyms 241-242
adding SVC routines 135-139
ALIGN parameter 93,96
allocation

device 160
in PRESRES characteristics list 159
storage 184-192

alternate path retry (APR)
automatic inclusion in M65MP 212
description 39, 210-211
devices supported 39
selective retry 211
V ARY command 39
VARY PATH command 39

Appendages in Rollout/Rollin 151-155
arm movement 67, 202-203
AS~ (Automatic SYSIN Batching)

additional parameter field entry 80
cataloged procedure 80
IEFVMA ASB reader program 80
job control statements 80
MCS commands control (baaa parameter)
SYSIN procedure for 80

ASB reader (see ASB)
asynchronous exit processing

CIRB system macro instruction
ST AE system macro instruction

A TT ACH macro instruction
optional parameters 223-225
use in time slicing 52

attach routine
initiator 176
master scheduler 169
supervisor 180

attributes for cataloged procedures
automatic command 34
automatic SYSIN batching 100

216
216-218

71-105

81

automatic volume recognition (A VR) 62
A VR (automatic volume recognition) 62

batching, SYSIN 79-82
BLDL list

feature of resident routines option 109-110, 39
IEABLDOO 39
link pack area 30
parameter list 107
nucleus resident link library entries 108
resident BLDL table 39
resident in SYS I.LINKLIB 39
SVC resident library directory entries 109-110

BLDL routine 27
BLDL table operation 109
block characters, as output separators 127
blocking

of data for processors 99
of Procedure library 99

bpptttooommmiiicccrlssssssssaaaaef
reader procedure 73-76
SYSIN reader procedure 80

bypass label processing option 75

card punch 57
card reader 57
catalog

maintaining 19
procedure

examples 100-105
for automatic SYSIN batching 100
for direct SYSOUT writers 94-96
for initiators 82-84
for MOUNT command 83
for readers 71-82
for system output writers 91-96

catalog management routines 196
chained scheduling 77-78
channel availability table 203
channel check handler (CCH)

analysis of environment 39
automatic inclusion in M65MP 40
description 209-210, 39-40
device dependent error routines 40
devices supported 209
error record 40
error recovery procedure 210
MCH 210
recovery management facilities 210
SERO 210
SERI 210
system termination 40
used with APR 209

channel command word (CCW) 201
channel program 201
channel status word (CSW) 201
CHAP macro instruction 52

Index

Index 253

INDEX

characteristics of volumes
PRESRES list 159
shared DASD 48

checkpoint/ restart
ABEND 40
chained scheduling 40
checkpoint data set 40
CHKPT macro instruction 40
consideration for initiator queue 111-112
consideration for RAM list 112
definition of 40
IEFREINT cataloged procedure 40
operator message 40
RD parameter 40
records (JOBQLMT) 120
restart a job 177
REST ART parameter of JOB statement 40
restrictions 40
SUPRVSOR macro instruction 40
SVC 63 177

CIRB system macro instruction 215
CLASS parameter 61-62
close processing 199
command chaining 94
command processing 165
command scheduling control block (CSCB) 168
command scheduling routine 168,169
commands 168
communications vector table (CYT) 180
compile-link edit-execute procedures 102
composite console 112
concurrent peripheral operation (CPO) (see spooling)
configuration requirements 57
console - alternate and composite

description 41
SCHEDULR macro instruction 41
used with M65MP 41

console communications task 165
console I/O routine 166
console options (see consoles - alternate and composite and

MCS)
console wait routine 166
co.ntents directory 189-190
contents directory entry (CDE) 189-190
contents supervision 189-192
control characters

printer 231
punch 229

control program 27
control program manuals 243-247
control volume 83
conversational remote job entry

access methods 43
description 42-43

CPU recovery management facilities 207-209
CTRLPROG macro instruction

system generation 58
time slice option 52

damage assessment routine (DAR) 33
data blocking 99
data control block (DCB) 197-199

254 MVT Guide (Release 21.7)

data extent block (DEB) 197-198
data event 32
data management 195-203
data protection 202
data set block (DSB) 176-177
data set control block (DSCB) 176,197
data set, dedicated 84-90, 102
DD statement

for control volumes 83
for spooling data set 78-79, 82
for direct system output data set 95-97
for initiator 84
for input stream 77-78, 81
for procedure library 78
for output data set 63, 92-93

decimal simulator routine 179
decimal simulation option 43
dedicated data sets 84-90, 102

dedication of library data sets 89
disposition by allocation/termination 90
dedicating a data set in initiator procedures 86-87
pre-formatted (cataloged) procedure INITD used with

processors 88
processor use of dedicated data sets 89
using dedicated data set in job step 86-87

default
for job class 62
for job priority 62
for message class 64

DEQ macro instruction 238, 158
descriptor queue element (DQE) 187
device allocation routine 174-175
device codes

control characters 229, 231
used by SYSOUT writer 130
used in PRES RES volume characteristics list 159

device swap 211
direct access devices

required for MVT 57
system libraries on 67

direct access device space management (DADSM)
description 176, 195
use by EOV routine 199
use of shared DASD 202

direct access storage device initialization (DASDI) program
195

direct access volume serial number verification 44-45
direct system output (DSO) writer 94,97, 98, 125

(see also DSO)
dispatcher routine 183
dispatching priority 62
DISPLAY command 62
display unit 57
DSO

differences from system output writer 96-97
effect on separator 125
job separation 97
procedure 94
restrictions 97,98

dynamic area
allocation of
contents of

184
31

dynamic device reconfiguration (DDR)
automatic inclusion in M65MP 211
DCB macro instruction 44
description 211, 44-45
devices supported 44
EXCP macro instruction 44
label types 45
residence 28, 211
SUPRVSOR macro instruction 44
SW AP command 44
writing on volumes 45

EDIT control verb 33
emulation

ASB reader parameter 80
examples 100

end-of-data condition 173
end-of-task exit routine (EXTR) 182
end-of-volume (EOV) processing 199
ENQ macro instruction 157
ENQ, DEQ macro instructions

must complete function (SMC, RMC) 157-158
use by IEFW AD accounting data set writer 150
used with shared DASD 238

(ERPIB) error recovery procedure interface block 210
error handling routines 30
error recovery procedure (ERP)

description 209
resident in link pack area 30
resident in SYS l.SVCLIB 28, 210
resident routines option 115-116

error recovery procedure interface block (ERPIB) 210
error statistics by volume (ESV) 205-206
error volume analysis (EVA) 206
event control block (ECB) 166,168
EXCP routine 201
EXEC statement

for initiators 82-84
for readers 73-77, 80-81
for writers 91-92, 94-96
specifying region size 65-66
starting problem programs 77
starting system tasks 77

executor routines 198-199
exit effector routines 215
EXTRACT macro instruction 234

FBQE (see free block queue element)
fixed area 29
forms control buffer (FCB) 63, 93, 96
forward merge 197
fragmentation of main storage 66
free block queue element (FBQE) 184
functional recovery 37
generalized trace facility

data event 32
EDIT control verb 33
IMDPRDMP 33
IMDSADMP 33
operations performed 32
operator action 32
starting 32
TRACE function 32

generation data set 121
graphic programming services 45
hardware requirements 57
hierarchy 31

IBM 2305 fixed head storage facility
shared direct access storage device 202
swap device (TSO) 51

IBM 2319 direct access facility
swap device (TSO) 51
system libraries 67

IBM 3211 printer 63, 92
IBM 3330 disk storage drive

shared direct access storage device 205
swap device (TSO) 51
system libraries 67

IEABLDOO (resident BLDL list) 110, 108
IEAIGEOO 115
IEAIGGOO

RAM list 111, 113
RERP list 111, 113

IEAQAPG (rollout appendages) 152-153
IEARSVOO 115, 108
IEARSVC (RSVC list) 114
IEBCOMPR 108
IEBGENER 108
IEBPTPCH 108
IEBUPDTE 107
IEECUCM (message routing DSECT) 142
IEECVCTE (message routine exit routine) 144
IEECVXIT (WTO, WTOR message routing exit routine)

141
IEFACTRT (accounting routine) 147
IEFPDSI DD statement

ASB procedure 80
reader procedure 73

IEFPROC EXEC statement
ASB procedure 80
initiator procedure 82
reader procedure 73

IEFRDER DD statement
ASB procedure 80
reader procedure 78
SYSOUT procedure 91

IEFSD095 127
IEFVMA 80
IEFW AD (accounting data set writer) 150
IEHPROGM utility program 196
IFCEREPO service program 37
IMDPRDMP 33
IMDSADMP 33
image library 225
index 196
INIT 82
initial program loading (IPL) 33-34
initiating task 173-178,169
initiator 82-84

actions taken by initiator 83
cataloged procedure examples 102-105
controlling 61
functions of 173-178
size 65

input data sets 174 •
Index 255

I

I

input work queue 171
input/output block (lOB) 201
input/ output error-handling routines 28, 202
input/output operations 196-203
input/output recovery management facilities 209-212
input/output supervisor

alternate path retry (APR) 210-211
channel check handler (CCH) 209-210
dynamic device reconfiguration (DDR) 211-212
error recovery procedure (ERP) 210
resident in main storage 27
sharing direct access storage devices 203
starting an I/O operation 200-201
terminating an I/O operation 202
transient area 30

instruction retry 208
inter-partition POST macro instruction 225-227
interpreter 79
interpreter control routine 167, 171
interruption handling routines 179

relation to data management 195
use for I/O operations 200-203
use for timer supervision 192

interruption supervision 179
interval timer 192
INITD (pre-allocation (dedicated) initiator procedure) 87
initiator

control volumes DD statement 87
IN IT procedure 82
INITD procedure 87
job force priority 83
job priority limit 83
job queue records 120-123
pre-allocation <dedication) of data sets 84-90
terminator job queue records 123-124

IRB (CIRB macro instruction) 215

job class
assigning 61-62
AVR 62
default 62
input work queue 171-172
system output for 64,65

job control table (JCT) 172, 175
job file control block (JFCB)

completed during open 197,173
description 173
used by DADSM 176

job management 165-178
job pack area 186
job processing 165, 169-178
job queue format

initiator queue records (JOBQLMT) 120
logical track size (JOBQFMT) 120
SYS1.SYSJOBQE data set 119-124
terminator queue records (JOBQTMT) 123
write-to-programmer queue records (JOBQWTP) 123

job queue logical track (see job queue format)
job queue WTP records 123
job scheduler 171, 61
job statement

specifying job priority 61-62
specifying region size 65-66

256 MVT Guide (Release 21.7)

job step region
assigning of 31, 174
termination of 176

job step task
completion of 183
creation of 180
use of sub pools 184-186

job step termination 176
data management operations 202

job step timing 45

label processing
at end-of-volume 199
by DADSM 176
during open 197

libraries, system 67
link library

concatenation with other data sets (LNKLST) 118
directory entries in nucleus (BLDL feature) 109-111
list of concatenated data sets (LNKLSTOO) 118
nucleus resident directory entries (BLDL
feature) 109-111

link pack area
contents directory 189-190
contents of 30-31
extending 106-118
link library list 118
LNKLSTOO 118
loading of 31

. operator message 117
relation to job management 35
relation to job processing tasks 169
relation to regions 30, 184
resident modules 109-116
SUPRVSOR macro instruction 116
use in initiating tasks 174

LINKLIB (see SYSl.LINKLIB)
LNKLSTOO 118
load list 192
LOAD macro instruction 192
long-running jobs 66
machine check handler (MCH)

automatic inclusion in M65MP 208
channel checks handled by 210
description 208-209
residence 28

machine malfunction 207
main storage

avoiding fragmentation of 66
dynamic area 31
fixed area 29
hierarchy support 45
link pack area 30
organization of 28-31
supervision of 184-189
system queue area 30

main storage hierarchy support
description 45
dynamic area 30
IPL program 33
link pack area 30

master scheduler task 165-169
MCS (see Multiple Console Support)

merge (see forward merge, reverse merge)
message class 178

(see also MSGCLASS)
message routing user routines 140-144
model numbers for MVT 57
MODE command 209
Model 65 Multiprocessing system 192
MODIFY command 65
mount characteristic in PRESRES list 159
MOUNT command

requests for 83
cataloged procedure for 83

MSGCLASS
default value 77
output classes 64
writing task 178

MSGLEVEL default value 76
multiple console support (MCS)

characteristics 140
consideration for RSVC list 114
message routing exit routines 140
SYSIN control of commands 75

multiprogramming 160
. job management 178

task management 193
data management 203
recovery management 212

must complete
function of ENQ, DEQ macro instructions 158
function of ENQ macro instruction 158
RMC operand of DEQ 158
SMC operand of ENQ 157

MVT control program logic manuals 243-247
M65MP (see multiprogramming)

nonresident routines 28
nucleus

contents of 27-28
initializing 33
loading 33
transient areas 66

nucleus initialization program (NIP) 33

outboard recorder 211
operator commands (see commands)
output class 63-64, 97
output separation 125-128
output separator 91-90, 94
output work queue 176-177

parameter field of SYSIN reader procedure (see SYSIN)
partition queue element (PQE) 184
PCI (see program controlled interruption)
PQE (see partition queue element)
pre-allocated data sets 84-90 (see also dedicated data sets)
prefixed storage area (PSA) 203
PRESRES

allocation characteristic 159-161
default value 160
effect of OFFLINE 159

member of SYS I.PARMLIB 159
mount characteristic 160
volume characteristic 160

printer-keyboard 57
priority

dispatching 62
job 62

privileged instructions 27
problem state 28
procedures (cataloged procedures) 71-105
processors, data blocking for 99
program fetch 186
program controlled interruption (PCI) 45-46
program status word (PSW) 28
protection key

initializing of 33
of fixed area 29
of job management routines 28
of nonresident supervisory routines 28
of regions 31
of resident routines 27
of subpools 186
of system queue area 30, 187
of transient areas 29

pseudo-clock 192-193
PSA (see prefixed storage element)
PSW (see program status word)
PURGE parameter in STAE macro instruction 218

QEDIT macro instruction 225
queue manager

used when initializing tasks 173-174
used when reading tasks 159
used when writing tasks 178

queue records (see job queue format)
QUIESCE parameter in STAE macro instruction 218

RAM list (see resident routines)
RDR 71-72
RDR, RDR400, RDR3200 procedures 69-70
reader 71-82

cataloged procedure examples 100-105
functions of 171
terminating 173

reader/interpreter (see reader)
reading task

command processing 165
job processing 171, 169

recovery management
automatic inclusion in M65MP 211-212
description 207-209

reenterable modules
placed in link pack area 106-118
resident option 46

refreshable program 208
region

acquiring
allocation in
contents of

174
184-189

189-191
for console communications task 165
for job processing tasks 169
for job steps 174

Index 257

INDEX

for master scheduler task 31
for START-command task 169
size 65-66
use during termination 170

remote job entry 41
RENT option (see link pack area)
request block (RB) 180
request block queue 180, 182
request element table 201
RERP (resident error recovery procedure)

MVT 116-118
example of list 117
IEAIGEOO 115

RESDEQ
subroutine 238

RESERVE macro instruction 233
use to share DASD 233-249

reserving queue records 120-121
(see also job queue format)

reset-must-complete (RMC) 159
(see also must complete)

resident access method routines option 111-112
resident BLDL table 109-111
resident error recovery procedure (ERP) option
resident link library directory (BLDL TAB) option
resident reenterable load module (RENT) option
resident routines

access method modules 111-112
error processing routines 115-116
link library modules 117
link list option (LNKLSTOO) 118

115-116
106-118

108

nucleus resident link library directory entries (BLDL
feature) 109-111

SVC library modules (see RSVC list)
resident SVC routine option 114-115
restart

checkpoint restart 177
step restart 177, 67
system restart 67

after machine malfunction 208
for initiator 67
for reader/interpreter 67
resuming operations 67
restrictions 67
for writer 67

restart reader task 177
reverse merge 197
(RMC) reset-must-complete 158

(see also must complete)
rollout/ rollin

appendages 151-155
description 151-155, 47
linkage to appendages 155
storage allocation 184

scheduler, job 171
scheduling, chained 77-78
SCHEDULR macro instruction 59
separator, output 91-92, 94-95
selective retry routine 211
set-must-complete (SMC) (see must complete)
shared data sets 174

258 MVT Guide (Release 21.7)

shared direct access storage device option 202-203
DEQ macro instruction 238
devices supported 47
EXTRACT macro instruction 236
operator action 48
releasing devices 234
restrictions 48
UCB 236
volume characteristics 47-48

shoulder tap 193
SMC (set must complete) (see must complete)
special chains 93, 102
spooling 78-79
SPQE (see subpool queue element)
ST AE system macro instruction

execute form 217-218
exit routines 221-223
list form 218
retry routines
standard form

STAI 221
START command

221-223
217-218

symbolic parameters 71-72
with initiators 61-62, 171
with readers 169-171
with writers 63-64, 171

START-command task 169
step attach routine 176
step control table (SCT) 173-174
step input/output table (SlOT) 173,175
storage allocation

in dynamic area 184-187
in region 184
in system queue area 187-189

storage protection key (see protection key)
storage reconfiguration, Model 65 multiprocessing
subpool

allocation 185-187
FBQE 184
requests 185
subpool 251 186
subpool 252 186
subpool queue element (SPQE) 186

subpool queue element (SPQE) 186
supervisor state 27
SVC routine

EXCP 201
in command scheduling 168
in console communications task 166
in initiating tasks 173-178
loading of 179
location of 27-28
nonresident 28, 66
resident 27
resident SVC routines 114-115
timer supervision 192
user-added 54

SVC transient area 30, 36
SVCLIB (see SYS1.SVCLIB)
SWAP command 211
SYNCH macro instructions 216
synchronous exit processing 216
SYSIEF AR 150

208

SYSIN
batching reader 79-82
blocking of data for processors 99
bypass label processing 75
bpptttooommmiiicccrlssssssssaaaaef parameters 73-76
cataloged procedures 71-105
command processing 75
dispatch priority of reader program 75
EXEC statement 73
job default priority 74
job step default region size 75
job step default time 74
MCS commands control 75-76
MSGLEVEL default value 76
RDR, RDR400, RDR3200 71-72
rollout flag 73
SYSOUT default device 75
SYSOUT tracks default allocation

primary 75
secondary 75

SYSJOBQE (see SYS l.SYSJOBQE)
SYSOUT

blocking of data for processors 99
class 63-64, 178
control characters

printer 232
punch 229

messages 63-64
output separator 229-232
record format translation 229
translation control 229, 232
user writer routines 129-134

system environment recording (SER)
option 0 (SERO)

description 207
handling of channel checks 210

option 1 (SER 1)
description 207 -208
handling of channel checks 210

recording, editing, and printing program 208
system generation (SYSGEN)

requirements for 57-60
definition of SYSDA 77

system initiator (see initiator)
system libraries 67
system management facilities (SMF)

initializing routines 174
interpreter control routine 171-172
task 169
termination 176
timer supervision 192

system message block (SMB) 176-177
system messages

message class 63-64
system output 178

direct system output 65
system restart 67
work queue entries 176

system output class 63-64
system output writer (see writer)
system queue area (SQA)

contents of 30
initializing of 33
storage allocation in 187-189

system recovery 207
system repair 207
system residence volume (SYSRES) 33
system restart

after machine malfunction 208
procedure 67

system task 165
system task control routine 169
SYSDA, system generation definition of 77
SYS1.ACCT accounting data set 150
SYS1.1MAGELIB 225
SYS1.LINKLIB

link pack area 30
residence

for interpreter control routine 171
for job management routines 28
for SERO 207
for SERI 207
standard list 118

SYS1.LOGREC 207-210
SYS I.MANX 205
SYS1.MANY 205
SYS1.SAMPLIB sample accounting routines 149
SYS1.SVCLIB

link pack area 30
residence for transient routines 30

access method routines 28, 195
I/O error recovery routines 28, 210
job management routines 27-28
SVC routines, data management 195
SVC routines, general 27-28

SYS1.SYSJOBQE 171, 176

tape device 57
task

attaching of 180
control of 180
dispatching of 183
dispatching priorities 62
initiating 173-178, 169
job management 165, 35
reading

command processing 168, 165
job processing 171-172, 169
termination 173

storage allocation to 184
termination of 176
writing 178, 169

task control block (TCB)
for console communications task 165, 35
for job step task 176
for time slicing 183
queue 180
request block queue 180-182

task control block queue 180
task input/output table (TIOT) 175
task management 179-183
task supervision 180-183
TCB (see task control block)
TCB, TIOT, UCB referenced by the EXTRACT macro

instruction 237
telecommunications option 49

Index 259

INDEX

termination
job step 176

during system restart 67
reading task 173

time-of-day (TOO) clock 193
time sharing (see time sharing option)
time sharing option (TSO)

description 49-51
sub pools in system queue area 187

time slice option
description 52-53, 183
job, step priority 52
M65MP 52
use of ATTACH and CHAP 52

timer queue 193
timer queue element (TQE) 193
timer supervision 192-193
TRACE function 32
transient area 30, 66
TSO (see time sharing option)

UCB (Unit Control Block) (see also unit control block)
in RESERVE macro instruction 235
referenced in TIOT with EXTRACT macro
instruction 236-237

UCS (see universal character set)
unit control ,block (UCB)

counter 203
description 198
request element 201

universal character set (UCS)
,image 93
output class 63
UCS parameter 93
writer procedure (WU) 102

260 MVT Guide (Release 21.7)

user-written SVC routines 54

V ARY command
used in M65MP 178
used with APR 39

vary path processor 211
VARY PATH command 39
volume

mounting of 196
space on 195

volume characteristics 160
(see also PRESRES)

volume disposition 199
volume management 205-206
volume statistics facility 54-55
volume table of contents (VTOC) 67, 195

wait state 175
work files 94
work queue (see input work queue, output work queue)
work queue entry 174, 176-178, 172-173
writer

cataloged procedure examples 101-102
direct system output 91-94
functions of 178
output classes 64
system output 91-97

. writing task 178, 169
WTR (writer command abbreviation) 91
WTO, WTOR macro instructions

description 228-228.1
use in processing accounting information 148-149
user exit routine in message routing 141-143

WTP (Write to programmer) record requirements in job
queue 123

/

\

(")

So
g
-rr o
c:
l>
0"
:l
OQ

r-:;.
(I)

IBM System/360 Operating System:
MVT Guide

GC28-6720-5

Your views about this publication may help improve its usefulness,· this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional pUblications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

GC28-6720-5

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

I
Fold Fold

- - - ----- - - - ---- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81

I
I
I

Poughkeepsie I
New York

--- ---- ---- --.----------~
Fold

TIrn~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OJ
s:
en
-< en
.-t
co
3 -w
en
o
o
en
s:
< -;
G>
c
c.:
co

en
w
en o
tv
~

\

o
So
~
." o
c::
l>
0'
::s
OQ

r-
5·
(1)

IBM System/360 Operating System:
MVT Guide

GC28·6720·5

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional pUblications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

GC28-6720-5

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

I
Fold Fold

- - ----- - - - - --- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department D58, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81

I
I
I

Poughkeepsie I
New York

I
I
I
I
I

ttl
~
C/)
-<
VI
.-+
CD

3 -eN
en
o
o
C/)

~
<
--I
G>
c:
c:
CD

I ~
o I w

I ~
I

-----------------------~
Fold

lrrnoo
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

GC28·6720·5

ilrn~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

