Systems Reference Library

IBM System/360 Operating System:

Time Sharing Option
Command Language Reference

0S Release 21.7

GC28-6732~4
File No. S360-36

Fifth Edition (April, 1973)

This is a major revision of, and obsoletes, GC28-6732~3 and
GC28-6732-2 with Technical Newsletters GN28-2521 and
GN28-2531. See the Summary of Amendments following the
Contents. Changes or additions to the text and illustrations
are indicated by a vertical bar to the left of the change.

This edition applies to release 21.7, of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and Systems/370 Bibliography, GA22-6822, for the editions that
are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie,

N. Y. 12602. Comments become the property of IBM.

© Copyright Internatiomal Business Machines Corporation 1970,1971,1972,1973

S

This publication describes the commands and
operands of the TSO Command Language. It
is intended for use at a terminal. The
level of knowledge required for this
publication depends upon the command being
used. Most commands require little
knowledge of TSO and of the Operating
System; however, some commands require a
greater knowledge of the system. As a
general rule, the description of each
command requires an understanding of those
elements being manipulated by the command.

The prerequisite publication, IBM
System/ 360 Operating System: Time Sharing
Option, Terminal User's Guide, GC28-6763
describes what commands are used to perform
the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use Command Procedures.
Control a system with TSO.

Once a user is familiar with the
Terminal User's Guide, she can use this
publication to code the TSO Commands.

The publication, IBM System/360
Operating System: Time Sharing Option,
Terminals, GC28-6762 describes how to use
the terminals supported by TSO.

Preface

The major divisions in this book are:

e Introduction

e What You Must Know to Code the Commands
s The Commands

e Command Procedure Statements

e Index

The Introduction describes what the
command language is. The section entitled
"What You Must Know to Code the Commands”
contains general information necessary for
the use of every command.

The section entitled "The Commands"
contains a description of each command, its
operands and its subcommands. Examples are
included.

The commands are presented in
alphabetical order. Subcommands are
presented in alphabetical order following
the command to which they apply. A
boldface heading on each page identifies
the information contained on the page. The
boldface headings and alphabetical
organization allow you to locate particular
commands as you would locate a subject in a
dictionary or encyclopedia. The larger
boldface headings identify the first pages
of the descriptions of commands.

"Command Procedure Statements" describes
the statements designed for use in command
procedures.

The "Index" contains the location (page
number) where terms and subjects are
discussed in the text.

4 TSO Command Language Reference (Release 21.7)

SUMMARY OF AMENDMENTS FOR GC28-6732-U
OS RELEASE 21.7 « v ¢ @ o o o o o = =

SUMMARY OF AMENDMENTS FOR GC28-6732-2
AS UPDATED BY GN28-2521 AND GN28-2531
COMPONENT RELEASE 360S-0S-586

SUMMARY OF AMENDMENTS FOR GC28-6732-2
OS RELEASE 21 . 4 o 4 o ¢ o o o o o « =

INTRODUCTION . v 4 « o « 2 o = = s o« o« =

WHAT YOU MUST KNOW TO CODE THE COMMANDS
The Syntax of a Command « . .
Positional Operands .« « « o« « = « «
Keyword Operands . - . . . « e e
Abbreviating Keyword Operands “ - e
DelimitersS .« o« < o o o = o o o = » =
Syntax Notation Conventions . - . .
Subcommands . < ¢ @ « o o o o * o «
How to Enter a Command .« . « « « o « = &
Data Set Naming Conventions . . - . . .
Data Set Names in General
TSO Data Set Names .« - <« « o =« « . =
How to Enter Data Set Names
Specifying Data Set Passwords . . .
System-Provided AidS . o o o o o o = o
The Attention Interruption
The HELP Command . « « « « o « o « =
Message TYPES o o« = o o « o =« o« « «

THE COMMANDS . 2 v o o = o = o o =« = = =«

ACCOUNT COMMAND e o @ @ » & @
Subcommands of ACCOUNT e e e m m e e

ADD SUBCOMMAND OF ACCOUNT 2 « « =« = « «
CHANGE SUBCOMMAND OF ACCOUNT
DELETE SUBCOMMAND OF ACCOUNT . . « « . «
END SUBCOMMAND OF ACCOUNT &« « o« « = = =
HELP SUBCOMMAND OF ACCOUNT « o« « « o « «
LIST SUBCOMMAND OF ACCOUNT . « - < « . .
LISTIDS SUBCOMMAND OF ACCOUNT
ALLOCATE COMMAND & ¢ o o v o « « = « = =
ATTRIB COMMAND 4 o 2 o« o o o = = = = o =

CALL COMMAND . o & o o o o = = = @ = = =

27

29
29

32
37
40
4y
45
47
49
51
55

61

CANCEL COMMAND . & & <« « o o « =
DELETE COMMAND < o @« « @« = = «

EDIT COMMAND <« o o « o « o 2 o =
Modes of Operation . . . « « < .

Input Mode . o « o « o « w o .

Edit Mode ‘v o « & « =

Contents

« « 176

Changing From One Mode to Another . 78

Data Set Disposition
Tabulation Characters . « « <« .
Executing User Written Programs
Terminating the Edit Command . .
Subcommands for Edit

BOTTOM SUBCOMMAND OF EDIT . . .
CHANGE SUBCOMMAND OF EDIT . . .

Quoted String Notation . . .
Combinations of Operands .

Examples Using Quoted Strlngs

DELETE SUBCOMMAND OF EDIT . . .
DOWN SUBCOMMAND OF EDIT . « . =
END SUBCOMMAND OF EDIT « « « = =
FIND SUBCOMMAND OF EDIT . . « =
HELP SUBCOMMAND OF EDIT
INPUT SUBCOMMAND OF EDIT . . - .

INSERT SUBCOMMAND OF EDIT . . .

-

. . 98

INSERT/REPLACE/DELETE FUNCTION OF EDIT .100

LIST SUBCOMMAND OF EDIT + =« « =
PROFILE SUBCOMMAND OF EDIT . . .
RENUM SUBCOMMAND OF EDIT«
RUN SUBCOMMAND OF EDIT . -« . =« =«
SAVE SUBCOMMAND OF EDIT « « « =
SCAN SUBCOMMAND OF EDIT
TABSET SUBCOMMAND OF EDIT . . .

TOP SUBCOMMAND OF EDIT . + « « «

.- .102
. 104
. 107
. 109
. <112
- +113
-« +115

. <117

UP SUBCOMMAND OF EDIT . . - «
VERIFY SUBCOMMAND OF EDIT . -
EXEC COMMAND . « o & o o 2 « =
FREE COMMAND « o o 2 « = « « =
HELP COMMAND o 4 5 o = = = «
LINK COMMAND v 2 o o = o « « =
LISTALC COMMAND . 2 o« = « « -
LISTBC COMMAND o« « o o o « o «
LISTCAT COMMAND o o o = o « «
LISTDS COMMAND o = - = 2 = - .
LOADGO COMMAND « « 2 o o o o =
LOGOFF COMMAND . - o 2 = « « -
LOGON COMMAND + < o w = o « &
OPERATOR COMMAND . . ,
The OPERATOR Command « « « « =«

FOrmat « o« o o o «o o = o o =

SYNtAX ¢ o o o o o o o = o =
CANCEL SUBCOMMAND OF OPERATOR
DISPLAY SUBCOMMAND OF OPERATOR
END SUBCOMMAND OF OPERATOR . .
HELP SUBCOMMAND OF OPERATOR .
MODIFY SUBCOMMAND OF OPERATOR
MONITOR SUBCOMMAND OF OPERATOR
SEND SUBCOMMAND OF OPERATOR .
STOPMN SUBCOMMAND OF OPERATOR
OUTPUT COMMAND 2 o w o w « « «
CONTINUE SUBCOMMAND OF OUTPUT
END SUBCOMMAND OF OUTPUT - . .
HELP SUBCOMMAND OF OUTPUT . .

SAVE SUBCOMMAND OF OUTPUT . .

PROFILE COMMAND . . < & « o «

PROTECT COMMAND . o o o o « =

.118
-119
.121
.123
.125
-129
«137
-139
L3141
.145
-147
-151
-153
-155
-155
.156
.156
-158
.160
.163
164
-166
.168
.170
-173
.175
179
-.181
.182
-184
-185

-.189

Passwords . « o o o -
Types of Access . . .
Password Data Set . . .
RENAME COMMAND w ¢ o @« o = =
RUN COMMAND &+« 2 « o o = =« =«
SEND COMMAND o o =« « o o =
STATUS COMMAND w @« « w o « =
SUBMIT COMMAND & o © = « « =«
TERMINAL COMMAND o+ @« o « < =

TEST COMMAND 2 w o o« o o =

ASSIGNMENT OF VALUES FUNCTION OF

AT SUBCOMMAND OF TEST . . =«
CALL SUBCOMMAND OF TEST . .
COPY SUBCOMMAND OF TEST . .
DELETE SUBCOMMAND OF TEST .
DROP SUBCOMMAND OF TEST . -
END SUBCOMMAND. OF TEST . . =
EQUATE SUBCOMMAND OF TEST .
FREEMAIN SUBCOMMAND OF TEST
GETMAIN SUBCOMMAND OF TEST .
GO SUBCOMMAND OF TEST . « «
HELP SUBCOMMAND OF TEST . .
LIST SUBCOMMAND OF TEST . =
LISTDCB SUBCOMMAND OF TEST .
LISTDEB SUBCOMMAND OF TEST .
LISTMAP SUBCOMMAND OF TEST .
LISTPSW SUBCOMMAND OF TEST .
LISTTCB SUBCOMMAND OF TEST .
LOAD SUBCOMMAND OF TEST . -
OFF SUBCOMMAND OF TEST . . -
QUALIFY SUBCOMMAND OF TEST .

RUN SUBCOMMAND OF TEST . .

6 TSO command Language Reference (Release 21.7)

-

-

- . .

.189
.189
.191
.193
.195
.199
.201
.203
.205
.209
-.215
.217
.220
.222
.225
.226
.227
.228
.230
.231
.232
.233
.235
.239
.241
242
.243
.244
.246
.247
.248

.250

WHERE SUBCOMMAND OF TEST =« « « « « = =
TIME COMMAND w o o 2 o o o « = « « = «
COMMAND PROCEDURE STATEMENTS « « « o« .
END STATEMENT OF COMMAND PROCEDURES .
PROC STATEMENT OF COMMAND PROCEDURES .
WHEN STATEMENT OF COMMAND PROCEDURES .
APPENDIX A: PROGRAM PRODUCT COMMANDS

ASM COMMANA « = =« = o« « = o o = = = =
CALC Command « « o = « o s « = =« = « =

Figure 1. Entering Commands From a
Terminal “ @ s e w e s e e e e e ow
Figure 2. Functions of the TSO
Commands and Subcommands (Part 1 of 2)
Figure 3. Descriptive Qualifiers .

Figure 4. Descriptive Qualifiers
Supplied by Default - .
Figure 5. Organlzatlon of the UADS
Data Set . o o 4 e e e e e .

Figure 6. The Simplest Structure

That an Entry in the UADS Can Have . .
Figure 7. A Complex Structure For an
Fntry in the UADS . . 4w o 4 o o o =

-251
.253
.255
.256
.257
.260
.261

.261
.261

13

- 31

COBOL Command « « « « « =« = =« « = =
CONVERT Command « « o o =« = o « o w»
COPY Command . . . - o e e
FORMAT Subcommand of EDIT c e & e
MERGE Subcommand of EDIT . «
FORMAT Command « « « o « o = s o o o
FORT Command o« « « « « s = = o o« = o =
GOFORT Command « = « = « o o « « = « =
LIST Command « « « « o o = = 2 « « =
MERGE Command . « « « « = © « « « o«
PLI Command « « « o = @« 2 « 2 o » o =
PLIC COMMANA o o o o o « o = o o o =
TESTCOB Command « « « o « « @ =« = = =
TESTFORT COomMmand « « =« o« = « « « o « =

.« .261
. +261
. .262
.- .262
.263
.263
.263
.264
.264
.264
.264
.265
.265
.265

GLOSSARY @« o o o = o o s o o o o o « o« 267

INDEX =« o o o o o o = = « = » = = « » 2269

Figures

Figure 8. Default Values for LINE

and BLOCK Operands e o e o = o = e o« o 13
Figure 9. Values of the Line pointer
Referred to by an Asterisk (%) . - . 77
Figure 10. Subcommands Used With the

Edit Command “ o . e o e o = o o 81
Figure 11. Default Tab Settings - - 2115
Figure 12. Information Available
Through the HELP Command c e e e e e
Figure 13. Relationships Between the
TSO OPERATOR Subcomrmands and the MVT
(non-TSO) Operator Commands (Part 1 of

)

.127

.156

8 TSO Command Language Reference (Release 21.7)

Summary of Amendments
for GC28-6732-4

0S Release 21.7

TCAM LEVEL 4
References to the 3270 Display Station
were added.

PROGRAM PRODUCTS
Appendix A (Program Product
information) was removed.
Appendix C (Program Product commands)
was renamed Appendix A. GOFORT, PLI,
PLIC, TESTCOB, and TESTFORT commands
were added to the Program Product
commands.
Minor corrections to Program Product
names were made throughout the book.

Summary of Amendments

TEST_COMMAND
Appendix B was removed and its text
moved to TEST command.

JOB NAMES
Explanations of job name assignment for
CANCEL, OUTPUT, STATUS, and SUBMIT were

corrected.

TECHNICAL AND EDITORIAL CHANGES
Technical errors were corrected and
editorial changes were made throughout
the book.

Summary of Amendments

9

Summary of Amendments

for GC28-6732-2

as Updated by GN28-2521 and GN28-2531
- Component Release 360S-0S-586

DYNAMIC SPECIFICATION OF DATA SET
ATTRIBUTES (DCB Parameters)

e A new command, ATTRIB, was added.
using this command, a TSO user can
build and store a list of data set
attributes. These attributes can
subsequently be assigned to a data set
allocated dynamically.

¢ A new operand, USING
(attribute-list-name),
ALLOCATE command.

By

was added to the

Summary of Amendments
for GC28-6732-2
OS Release 21

STATUS DISPLAY
The SQA operand has been added to the
DISPLAY subcommand of OPERATOR.

QUOTED STRING NOTATION
The ability to use single quotes as
delimiters for a character string has
been added to the CHANGE and FIND
subcommands of EDIT.

TECHN ICAL CORRECTIONS
Technical corrections have been made
throughout this publication, as
indicated by a vertical line to the
left of each change. Editorial
corrections and clarifications have
been made as required.

10 TSO Command Language Reference (Release

e A new operand, ATTRLIST
(attribute-list-names), was added to
the FREE command.

e Changes were made to the introductory
information and index where applicable.

MISCELLANEQUS CHANGES
e Typographical and syntactical errors
are corrected in the ATTRIB and FREE
commands.

GLOSSARY
Terms that were duplicated in the IBM
Data Processing Glossary, GC20-1699,
have been removed.

WHAT YOU MUST KNOW TO CODE THE COMMANDS
Removed the list of TSO informational
messages. They are documented in the
publication: IBM System/360 Operating
System: Messages and Codes, GC28-6631.

PROGRAM PRODUCT COMMANDS
Moved the Program Product Commands into
Appendix C. Added references to new
Program Product Publications to
Appendix A.

21.7)

IBM
SYSTEM/360

You request work by typing
commands at your terminal.
The commands are entered
into the system when
you press the carrier
return key.

em responds to your
in a conversational
i, prompting you for

ed input and sending

Figure 1. Entexring Commands From a Terminal

11

Introduction

TSO is the Time Sharing Option of the System/360 Operating System. TSO
allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The méssages tell you such things as what the
status of the system is with regard to your work and what input is
needed to allow the work to be done.

A command, then, is a request for work. By using different commands,
you can have different kinds of work performed. You can store data in
the system, change the data, and retrieve it at your convenience. You
can create programs, test them, have them executed, and obtain the
results at your terminal. The commands make the full capability of the
system available at your - -terminal.

When you use a command to request work, the command establishes the
scope of the work to the system. To provide flexibility and greater
ease of use, the scope of some commands' work encompasses several
operations that are identified separately. After entering the command,
you may specify one of the separately identified operations by typing a
subcommand. A subcommand, like a command, is a request for work;
however, the work requested by a subcommand is a particular operation
within the scope of work established by a command.

The commands and subcommands recognized by TSO form the TSO command
language. The command language is designed to be easy to use. The
command names and subcommand names are typically familiar English woxds,
usually verbs, that describe the work to be done. The number of command
names and subcommand names that you must learn has been kept to a
minimum. The information that you must provide is defined by operands
(words or numbers that accompany the command names and subcommand
names). Most of the operands have default values that are used by the
system if you choose to omit the operand from the command or subcommand.
In addition, you can abbreviate many of the command names, subcommand
names and operands. Together, the defaults and abbreviations decrease
the amount of typing required.

This reference manual describes what each command can do and how to
enter, or type in, a command at your terminal. Figure 2 shows you the
kinds of work you can accomplish by using the command language, and
identifies most of the commands and subcommands that you can use to
request each kind of work. A complete list of the commands,
subcommands, and their abbreviations is located on the divider page that
precedes the descriptions of the commands. The rules for abbreviating
operands are in the section, "What You Must Know to Code the Commands."

Additional commands and subcommands are available for a license fee
as optional Program Products. Appendix A lists the Program Product
commands and subcommands.

12 TSO Command Language Reference (Release 21.7)

~——

Introduction

FUNCTION COMMAND SUBCOMMAND
CONTROL identify yourself to the system.......... LOGON
YOUR define your operational characteristics..|TERMINAL
TERMINAL PROFILE
SESSION EDIT......| PROFILE
display messages (notices and mail)......|LISTBC
Ssend MeSSAgEeS.cueeneecnosancnses crencons .| SEND
obtain help from the system..............|HELP
OPERATOR. .| HELP
ACCOUNT.. .| HELP
EDIT......| HELP
OUTPUT....| HELP
TEST......| HELP
end your terminal sessSion.........ceceees LOGOFF
display session time used................|TIME
ENTER, create a data s€t...ieeeeveatsieasaacesss | EDIT
MODIFY, enter data into a data sett.............. EDIT...... INPUT
STORE, EDIT......| INSERT
AND change data in a data sett...cveevieennns EDIT......| CHANGE
RETRIEVE place data into columns..............|EDIT......| TABSET
DATA change position of current line........ ..|EDIT...... UP
EDIT......| DOWN
EDIT.. ..| TOP
EDIT...... BOTTOM
EDIT......|FIND
display referenced lines........... ..|EDIT......|VERIFY
renumber lines of data....... Cesescene e EDIT...... RENUM
check the syntax of input statements.....|EDIT......|SCAN
delete lines of data from a data sett....|EDIT......|DELETE
delete an entire data set.......vvvees....|{DELETE
allocate . a data set...ivieeiei ittt eeenns ALLOCATE
specify attributes for a data set........ ATTRIB
free an allocated data set or attributes.|FREE
copy a data set...iiiiiiiiiiiiiiiiiiiine., COPY*
format a data set..ciiieiieeen. ceeseene FORMAT*
EDIT......| FORMAT*
merge two data setsS....ceiiiiiiiianens «...|MERGE*
EDIT......| MERGE*
list the contents of a data set.......... LIST*
’ EDIT...... LIST
list the names of allocated data sets....|LISTALC
list the names of cataloged data sets....|LISTCAT
list information about your data sets....|LISTDS
store a data set........ sececssseasanses .|EDIT......|SAVE
rename a data Set...ceeeanns e «es.e..| RENAME
establish passwords for a data set...... .| PROTECT
end the EDIT functions..... Cr e et cce e .|EDIT......|END

* optional Program Products,

+ Insert/replace/delete function o
operations.

available for a license fee

f EDIT can be used for single line

Figure 2. Functions of the TSO Commands and Subcommands (Part 1 of 2)

13

Introduction

FUNCTION COMMAND SUBCOMMAND

DEVELOP create a program; enter it in a data set.|EDIT
PROGRAMS convert PL/1,BASIC, and FORTRAN

AND statements..... . iiiiiiiiiiettiieeeees .| CONVERT
PROCESS compile and execute a program............|RUN
DATA EDIT......| RUN
invoke a standard compiler....... «eee....|CALL
invoke the assembler prompter............|ASM*

invoke the PL/I prompter and
PL/I Optimizing Compiler...esesveseeessss|PLI*
invoke the PL/I prompter and

PL/I Checkout Compile€r....ieeessceesesss| PLIC*
invoke the COBOL prompte€r................|COBOL¥
invoke the FORTRAN prompter..............|FORT*
linkage edit a compiled program..........|[LINK
load and execute a load module...........|CALL
LOADGO
load and execute an object module........|LOADGO
submit a job for batch processing........|SUBMIT
cancel a batch job.....vevvieeeeeessess. | CANCEL
display the status of a batch job........]STATUS
OUTPUT
execute a procedure consisting of
COMMANAS s e e et eveseesansscsssssssasvessss|EXEC
TEST initiate testing.....ccccviieeeeeeenen...| TEST
AND load a load module for execution.........|TEST......|LOAD
DEBUG A set.breakpoints for inspection...........|TEST......|AT
PROGRAM remove breakpoints........icveviieeeeees .| TEST......| OFF
'~ establish base location for addresses....|TEST......| QUALIFY
display absolute addresseS........ece....|TEST......| WHERE
add symbols to symbol table..............|TEST......| EQUATE
initialize registers and start execution.|TEST......|CALL
copy data in main storage or in register
locatioNnS..cvveeeeneesseeeesesesensssses | TEST......| COPY
start or restart program execution.......|TEST......|GO
get additional main storag€........ec....|TEST......| GETMAIN
release main storage...........eeeevee...|TEST......| FREEMAIN
display contents of main storage.........|TEST......|LIST
display contents of registers............|TEST......|LIST
display a Data Control Block......+.eeve..|TEST......| LISTDCB
display a Data Extent Block......¢.evese...|TEST......| LISTDEB
display a storage Map......eoeseeseeveses|TEST......| LISTMAP
display the Program Status Word..........|TEST......] LISTPSW
display a Task Control Block.............|TEST......| LISTTCB
delete the program with no more testing..|TEST......|RUN
end testing....veeeeeeseesserscncsassecaes TEST......|END
display CPU tiM€...eeveenreesenneosnssness| TIME
CONTROL modify TSO optionsS........cceeeeeeeeeese..| OPERATOR. .| MODIFY
THE display system status....................|OPERATOR..|DISPLAY
SYSTEM cancel a terminal user........eeeeee.....|OPERATOR. .| CANCEL
monitor terminal and job activities......|OPERATOR..| MONITOR
send messages to users.......«..ccee.....|OPERATOR. .| SEND
stop monitoring........cccicveeeeseecs...|OPERATOR. .| STOPMN
maintain the user attribute data set..... ACCOUNT...
add new user attributes..................|ACCOUNT...|ADD
delete user attributes...................|/ACCOUNT...|DELETE
change user attributes...................|ACCOUNT.. .| CHANGE
display user attributes..................|[|ACCOUNT...|{LIST
list user identifications................|ACCOUNT...|LISTIDS

* optional Program Products, available for a license fee.

Figure 2. Functions of the TSO Commands and Subcommands (Part 2 of 2)

14 TSO Command Language Reference (Release 21.7)

What You Must Know To Code The Commands

To use the TSO command language you should know:
s The syntax of a command.
e The way to enter a command.
e The data set naming conventions.
In addition, you should be aware of the aids available to you:
e The attention interruption.
e The HELP command.
e The messages that you receive from the system.

Note: 1In this manual, all references to terminal keyboards and keys
apply specifically to the IBM 2741 Communications Terminal. For
information concerning the use of other terminals refer to IBM
System/360 Operating System: Time Sharing Option, Terminals,
GC28-6762-0. Terminals which are equivalent to those explicitly
supported may also function satisfactorily. The customer is responsible
for establishing equivalency. IBM assumes no responsibility for the
impact that any changes to the IBM-supplied products or programs may
"have on such terminals.

THE SYNTAX OF A COMMAND

A command consists of a command name followed, usually, by one or more
operands. A command name is typically a familiar English word, usually
a verb, that describes the function of the command. For instance, the
RENAME command changes the name of a data set. Operands provide the
specific information required for the command to perform the requested
operation. For instance, operands for the RENAME command identify the
data set to be renamed and specify the new name:

RENAME NEWBUY INSTOCK

command name operand operand
(old data-set-name) {new name for data set)

Two types of operands are used with the commands: positional and
keyword. Positional operands follow the command name and precede
keywords.

Positional Operands

Positional operands are values that follow the command name in a
prescribed sequence. The value may be one or more names, symbols, or
integers. In the command descriptions within this manual, the
positional operands are shown in lower case characters. A typical
positional operand is:

data-set-name

15

What You Must Know To Code The Commands

You must replace "data-set-name" with an actual data set name when you
enter the command.

When you want to enter a positional operand that is a list of several
names or values, the list must be enclosed within parentheses. The
names or values must not include unmatched right parentheses.

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the
positional operands. In the command descriptions within this book,
keywords are shown in upper case characters. A typical keyword is:

TEXT
In some cases you may specify values with a keyword. The value is
entered within parentheses following the keyword. The way a typical
keyword with a value appears in this book is:
LINESIZE (integer)
Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for the
"integer" when you enter the operand:
LINESIZE (80)

Abbreviating Keyword Operands

You must enter keywords spelled exactly as they are shown or you may use.
an acceptable aobreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of the
keyword as is necessary to distingquish it from the other keywords of the
command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL NOTICES
NOMAIL NONOTICES

‘The abbreviations are:
M for MAIL (also MA and MAI)
NOM for NOMAIL (also NOMA and NOMAI)
NOT for NOTICES (also NOTI, NOTIC, and NOTICE)
NON for NONOTICES (al so NONO, NONOT, NONOTI, NONOTIC, and NONOTICE)
Delimiters
When you type a command, you should separate the command name from the
first operand by one or more blanks. You should separate operands by
one or more blanks or a comma. For instance, you can type the LISTBC
command like this:
LISTBC NOMAIL NONOTICES
or like this:
LISTBC NOMAIL,NONOTICES

or like this: LISTBC NOMAIL ., NOTICES

16 TSO Command Language Reference (Release 21.7)

What You Must Know To Code The Commands

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard. You can also use the TAB key to enter one or more blanks.

Note: A keyword with a value is a single operand and must not contain
delimiters; for instance, do not separate the keyword from the
parentheses that enclose the value.

The system will stop scanning for operands at the end of a logical

line (carriage return), or at a semicolon. Characters entered on a line
after a semicolon will be ignored. No warning message will be issued.

Syntax Notation Conventions

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the format but
you should never type them in the actual statement.

hyphen -
underscore _
braces {1
brackets []
ellipsis “es

The special uses of these symbols are explained in paragraphs 5-9.

2. You should type upper-case letters and words, numbers, and the set
of symbols listed below in an actual command exactly as shown in
the statement definition.

apostrophe !
asterisk *
comma v
equal sign =
parentheses)
period -

3. Lower-case letters, words, and symbols appearing in a command
definition represent variables for which you should substitute
specific information in the actual command.

Example: If name appears in a command definition, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

4. sStacked items represent alternatives. You should select only one
such alternative.

Example: The representation
A
B
C

indicates that either A or B or C is to be selected.

17

What You Must Know To Code The Commands

5. Hyphens join lower-case letters, words, and symools to form a
single variable.

Example: If member-name appears in a command definition, you
should substitute a specific value (for example, BETA) for the
variable in the actual command.

6. An underscore indicates a default option. If you select an
underscored alternative, you need not type it when you enter the
command.

Example: The representation

A

B

C
indicates that you are to select either A or B or C;’however, if
you select B, you need not type it, because it is the default
option.

7. Braces group related items, such as alternatives.

Example: The representation
A
ALPHA=(B%,D)
C
indicates that you must choose one of the items enclosed within the
braces. 1If you select A, the result is ALPHA= (A,D).

8. Brackets also group related items; however, everything within the

brackets is optional and may be omitted.
Example: The representation

A

ALPHA=(|B|{,D)

C
indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets.
If you select B, the result can be either ALPHA=(,D) or
ALPHA=(B, D).

9. An ellipsis indicates that the preceding item or group of items can

be repeated more than once in succession.
Example:
ALPHA[,BETA...]
indicates that ALPHA can appear alone or can be followed by ,BETA
any number of times in succession.
Subcommands

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand.
To request one of the individual operations, you must first enter the

18 TSSO Command Language Reference (Release 21.7)

What You Must Know To Code The Commands

command. You can then enter a subcommand to specify the particular
operation that you want performed. You can continue entering
subcommands until you enter the END subcommand.

The commands that have subcommands are ACCOUNT, CALC (a Program
Product), EDIT, OPERATOR, OUTPUT and TEST. When you enter the ACCOUNT
command you can then enter the subcommands for ACCOUNT. Likewise, when
you enter the CALC, EDIT, OPERATOR, OUTPUT, or TEST commands you can
enter appropriate subcommands.

The syntax of a subcommand is the same as that of a command. A
subcommand consists of a subcommand name followed, usually, by one or
more operands. The discussions of operands and delimiters apply to
subcommands as well as commands.

HOW TO ENTER A COMMAND

A terminal session is designed to be an uncomplicated process: you
jdentify yourself to the system by entering the LOGON command and then
request work from the system by entering other commands. To enter a
command or subcommand:

1. Type the command or subcommand name and any operands that you
select.
2. Press the carrier return key.

You can begin typing at any position on a line; you do not have to start
at the lefthand margin. You can type command names and operands in
either uppercase or lowercase characters. You may prefer to type your
input in lowercase characters so that you can distinguish your input
from the system's messages on your listing (the system prints in
uppercase characters).

You can continue a line by placing a hyphen as the last character on
the line that is to be continued. For a discussion of data continuation
under EDIT, see the topic, Modes of Operation under the EDIT command.

Use of the PROFILE command allows you to define your own
character-deletion and line-deletion characters for correcting typing
errors, Or you can accept the characters that the system uses by default
(if you do not specify your own). The default characters for the IBM
2741 Communications Terminal are:

e The BACKSPACE key-to delete the preceding character on the line.
e The ATTN key-to delete the entire line (including continued lines).

For other defaults and for information concerning the use of other
terminals refer to IBM System/360 Operating System: Time Sharing
Option, Terminals, GC28-6762.

DATA SET NAMING CONVENTIONS

A data set is a collection of data. Each data set stored in the system
is identified by a unique data set name. The data set name allows the
data to be retrieved and helps protect the data from unauthorized use.

19

What You Must Know To Code The Commands

The data set naming conventions for TSO simplify the use of data set
names. When a data set name conforms to the conventions, you can refer
to the data set by its fully qualified name or by an abbreviated version
of the name. The following paragraphs:

1. Describe data set names in general.

2. Define the names that conform to the naming conventions for TSO.

3. Tell you how to enter a complete data set name, and how to enter
the abbreviated version of a name that conforms to the TSO data set
naming conventions.

Data Set Names in General

A data set name consists of one or more fields. Fach field consists of
one through eight alphameric characters and must begin with an
alphabetic {(or national) character. The National Characters §, a, and #
are accepted as the first character in a data set name.

A simple data set name with only one field may be:
PARTS

A data set name that consists of more than one field is a "qualified"
data set name. The fields in a qualified data set name are separated by
periods. A qualified data set name may be:

PARTS.OBJ
or
PARTS.DATA

Partitioned Data Sets: A partitioned data set is simply a data set with
the data divided into one or more independent groups called members.
Each member is identified by a member name and can be referred to
separately. The member name is enclosed within parentheses and appended
to the end of the data set name:

PARTS.DATA {(PART14)
member name

TSO Data Set Names

A data set name must be qualified in order to conform to the TSO data
set naming conventions. The qualified name must consist of at least the
two required fields of the following three:

1. Your user identification (required).

2. A user-supplied name (optional for a partitioned data set).

3. A descriptive qualifier (required).

Normally all three names are used.

The total length of the data set name must not exceed U4 characters,
including periods. A typical TSO data set name is:

ENGBW.PARTS.DATA
N A A
| | |
identification qualifier-————— 4]]
user supplied name —_—— i |
descriptive qualifier--——-——-——-cee— J

20 TSO Command Language Reference (Release 21.7)

What You Must Know To Code The Commands

The TSO data set naming conventions also apply to partitioned data sets.

A typical TSO name for a member of a partitioned data set is:
ENGBW.PARTS.DATA (PART14)

Identification Qualifier: The identification qualifier is always the
leftmost qualifier of the full data set name. For TSO, this qualifier
is the user identification assigned to you by your installation.

User-supplied Name: You choose a name for the data sets that you want

to identify. It can be a simple name or several simple names separated

by periods.

Descriptive Qualifier: The descriptive qualifier is always the
rightmost qualifier of the full data set name. To conform to the data
set naming conventions, this qualifier must be one of the qualifiers
listed in Figure 3.

r k)

|Descriptive Qualifier | Data Set Contents

t { ---
| AsSM | Assembler (F) input

| BASIC |] ITF:BASIC statements

| CLIST | TSO commands

| = CNTL | JCL and SYSIN for SUBMIT command

| COBOL | American National Standaxd COBOL statements
| DATA | Uppercase text

| FORT | FORTRAN (Code and Go, E, G, Gl1, H)
| | statements

| IPLI | ITF:PL/I statements

| LINKLIST | Output listing from linkage editor
| LIST | Listings

| LOAD | Load module

| LOADLIST | Output listing from loader

| OBJ | Object module

] OUTLIST | ©Output listing from OUTPUT command
| PLI | PL/I(F), PL/I Checkout, or PL/I Optimizing
| | Compiler statements.

| STEX | STATIC external data from ITF:PLI

| TESTLIST | Output listing from TEST command

| TEXT | Uppercase and lowercase text

L L

e e e o e e e e e e e e e e g e o}

Figure 3. Descriptive Qualifiers

How to Enter Data Set Names

The data set naming conventions simplify the use of data set names. I

£

the data set name conforms to the conventions, you need specify only the
user-supplied name field (in most cases) when you refer to the data set.
The system will add the necessary qualifiers to the beginning and to the

end of the name that you specify. 1In some cases, however, the system
will prompt you for a descriptive qualifier. Until you learn to
anticipate these exceptions to the naming conventions, you may wish to
specify both the user-supplied name and the descriptive qualifier when
referring to a data set. When you are using the LINK command for
example, the system will add both the user identification and the
descriptive qualifier, allowing you to specify only the user-supplied
name. For instance, you may refer to the data set named
USERID.PARTS.OBJ by specifying only PARTS (when you are using LINK) or
by specifying PARTS.OBJ (when you are using other commands). You may

21

What You Must Know To Code The Commands

refer to a member of a partitioned data set USERID.PARTS.OBJ(PART14) by
specifying PARTS(PART14) when you are using LINK or by specifying
PARTS.OBJ (PART14) when you are using other commands.

When you specify an entire fully qualified data set name, as you must
do if the name does not conform to the TSO data set naming conventions,
you must enclose the entire name within apostrophes; as follows:

*JOED58. PROG.LIST' where JOED58 is not your user identification
or
'JOED58. PROG.FIRST' where FIRST is not a valid descriptive
» gualifier.

The system will not append qualifiers to any name enclosed in
parentheses.

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and, whenever possible, a
descriptive qualifier. The system attempts to derive the descriptive
qualifier from available information. For instance, if you specified
ASM as an operand for the EDIT command, the system will assign ASM as
the descriptive qualifier. If the information is insufficient, the
system will issue a message at your terminal requesting the required
information. If you specify the name of a partitioned data set and do
not include a required member name, the system will use TEMPNAME as the
default member name. (If you are creating a new member, the member name
will become TEMPNAME; if you are modifying an existing partitioned data
set, the system will search for a member named TEMPNAME.) The following
example illustrates the default names supplied by the system.

r - =T - T T T T T T T T T T T T T T T 1
| If you specify: | The input data |The output data set |
| | set name is: |name will be: |
i — } 1

| EDIT PARTS ASM | UID. PARTS.ASM |UID.PARTS. ASM |
|LINK PARTS or | |]
LINK (PARTS)	UID. PARTS.OBJ	UID.PARTS. LOAD(TEMPNAME)
CALL, PARTS	UID. PARTS.I1OAD (TEMPNAME)	-~-
EDIT PARTS(JAN) ASM	UID.PARTS.ASM(JAN)	UID. PARTS. ASM{JAN)
LINK PARTS(JAN) or		
LINK (PARTS{(JAN))	UID. PARTS.OBJ (JAN)]UID. PARTS. LOAD(JAN)	
CALL PARTS{ JAN)	UID. PARTS. LOAD (JAN) }---	

{EDIT (PARTS) ASM { UID.ASM(PARTS) |UID.ASM{PARTS)]
|LINK ((PARTS)) | UID. OBJ(PARTS) |UID.LOAD (PARTS) |
| CALL (PARTS) | UID. LOAD (PARTS) === |
l, ___________________ L L - ,,
|Note: In these examples, UID stands for your user identification. |
| TEMPNAME is the membername supplied by the system. |
L e e e e e e et e e e e o e e e 7 e e e e e e e e e e e e e 1

Note: Member names must be enclosed in parentheses to distinguish them
from data set names. Figure U presents a list of command names and the
default descriptive qualifiers associated with each command.

22 TsO Command lLanguage Reference (Release 21.7)

What You Must Know To Code The Commands

r -
| T DESCRIPTIVE QUALIFIERS

| Cormmand | Input Output Listing
¢ -4

| AsM | ASM OBJ LIST

| cALC I STEX STEX -

| CALL I LOAD -—- -—

| COBOL | COBOL OBJ LIST

| CONVERT | IPLI PLI -

[| FORT FORT -—-

| EXEC | CLIST -—- -—-

| FORMAT | TEXT - LIST

| FORT | FORT OBJ LIST

| LINK | OBJ LOAD LINKLIST
| | LOAD --- -

| LOADGO | OBJ —-——- LOADLIST
| | LOAD -—- -
|OUTPUT I -— -—- OUTLIST

| RUN | ASM -—- -—

| | FORT -— -—-

| | BASIC ~— -

| | COBOL -—- -—-

I | IPLI --- -

| SUBMIT | CNTL -—- -

| TEST] OBJ -—- TESTLIST
| | LOAD -—- -—

L AL

s e e e i i et S A i (. et i St e S e e s, e e et) et . e

Figure 4.

Specifying Data Set Passwords

Descriptive Qualifiers Supplied by Default

When referencing password protected data sets, you may specify the
password as part of the data set name (you will be prompted for it

otherwise).

(/) and optionally,

the PROTECT command.

The password is separated from the data set name by a slash
by one or more standard delimeters (tab, blank, or
comma). See the discussion on “"Password Data set" that appears under

23

What You Must Know To Code The Commands

SYSTEM-PROVIDED AIDS

Several aids are available for your use at the terminal:

e The attention interruption allows you to interrupt processing so
that you can enter a command.

e The HELP command provides you with information about the commands.
e The conversational messages guide you in your work at the terminal.

The Attention Interruption

The attention interruption allows you to interrupt processing at any
time so that you can enter a command or subcommand. For instance, if
you are executing a program and the program gets in a loop, you can use
the attention interruption to halt execution. As another example, when
you are having the data listed at your terminal and the data that you
need has been listed, you may use the attention interruption to stop the
listing operation instead of waiting until the entire data set has been
listed.

1f, after causing an attention interruption, you want to continue
with the operation that you interrupted, you can do so by pressing the
return key before typing anything else; however, input data that was
being typed or output data that was being printed at the time of the
attention interruption may be lost. You can also request an attention
interruption while at the command level, enter the TIME command, and
then resume with the interrupted operation by pressing the return key.

If your terminal has an interruption facility, you can request an
attention interruption by pressing the appropriate key (the ATTN Kkey on
IBM 2741 Communications Terminals). Whether or not your terminal has a
key for attention interruptions, you can use the TERMINAL cormmrand to
specify particular operating conditions that the system is to interpret
as a request for an attention interruption. More specifically, you can
specify a sequence of characters that the system is to interpret as a
request for an attention interruption. In addition, you can request the
system to pause after a certain number of seconds of processing time has
elapsed or after a certain number of lines of output has been displayed
at your terminal. When the system pauses, you can enter the sequence of
characters that you define as a reguest for an attention interruption.

Note: If you are using the attention key as a line-delete indicator,
pressing the attention key (after entering charactexrs in a line, and
before pressing the carriage return,) will cause the line you entered to
be ignored by the system. Another depression of the attention key is
required to cause an interruption.

The HELP Command

The HELP command provides you with information about the use, function,
syntax, and operands of commands and subcommands. When you enter HELP,
the system displays at your terminal a list of commands and a brief
description of the function of each. By specifying a command name as an
operand for the HELP command, you can get a list of operands and a
description of the function and syntax of the comrmand.

. HELP is also a subcommand for all of the commands that have
subcommands. By specifying a subcommand name as an operand for the HELP

24 TSO Command Language Reference (Release 21.7)

What You Must Know To Code The Commands

subcommand, you can get a list of operands and a description of the
function and syntax of the subcommand.

Message Types

You receive three types of messages at your terminal:

Mode messages.
Prompting messages.
Informational messages.

A mode message tells you the system is ready to accept new input -- a
command, a subcommand, or data. When the system is waiting for you to
enter a command, the mode message displayed at your terminal is:

READY

Other mode messages may be displayed, when appropriate, to tell you that
the system is waiting for you to enter a subcommand or data. In these
cases, the mode message is the name of the current command or
subcommand :

ACCOUNT
EDIT
INPUT
OPERATOR
OouTPUT
TEST
etc.

These mode messages are displayed when the mode changes.

A prompting message tells you that required information is missing
and that you must take an explicitly described action in response. For
instance, prompting messages prompt you to supply missing operands and
to correct operands that you specified incorrectly. A typical prompting
message is:

ENTER DATA SET NAME-

The system expects an immediate response to messages that end with a
hyphen. Use the PROMPT or NOPROMPT operand of the PROFILE command to
specify whether or not you want to receive prompting messages. You can
stop a prompting sequence by requesting an attention interruption.

An informational message tells you about the status of the system and
your terminal session. For instance, an informational message may tell
you when program execution has terminated, or how much time you have
used. Informational messages do not require a response.

In some cases, anh informational message may serve as a mode message;
for instance, an informational message that tells of the comwpletion of a
subcommand's operation also implies that you can enter another
subcommand .

Levels of Messages: Prompting messages and informational messages may
have additional messages associated with them. The additional messages
explain the initial message more fully.

Prompting messages may have any number of additional messages;
informational messages may have only one additional message. When an

25

What You Must Know To Code The Commands

additional informational message is available, the message at your
terminal will end with a plus sign (+); prompting messages do not end
with a plus sign, even though an additional message may be available.

The Question Mark: To receive an additional message, you must enter a
question mark (?) and a carrier return. When you enter a question
mark, it must be placed in the first position on the line. You can
continue entering question marks until no other message is available.
When no other message exists, the system will display:

NO INFORMATION AVAILABLE
For example, a listing at your terminal may look like:

INVALID LINE NUMBER ENCOUNTERED+
2 .

USE EDIT WITH NONUM OPERAND
?

NO INFORMATION AVAIIABLE

26 TSO Command Language Reference (Release 21.7)

This section contains descriptions of the TSO commands.
are presented in alphabetical order.

The Commands

alphabetical order following the command to which they apply.

The commands
Subcommands are presented in

COMMAND (Abbreviation)
SUBCOMMAND (abbreviation)

-
COMMAND (Abbreviation)

SUBCOMMAND (Abbreviation)

ACCOUNT
ADD (A)
CHANGE (C)
DELETE (D)
END
HELP (H)
LIST (L)
LISTIDS (LISTI)
ALLOCATE (ALLOC)
* ASM
ATTRIB (ATTR)
*CALC
CALL
CANCEL
*COBOL (COB)
* CONVERT (CON)
* COPY
DELETE (D)
EDIT (E)
BOTTOM (B)
CHANGE. (C)
DELETE (D)
DOWN
END
FIND (F)
*FORMAT (FORM)
HELP (H)
INPUT (1)
INSERT (IN)
Insert/Replace/Delete ()
LIST (L)
*MERGE (M)
PROFILE (PROF)
RENUM (REN)
RUN (R)
SAVE (S)
SCAN (SCQ)
TABSET (TAB)
TOP
up
VERIFY (V)
EXEC (EX)
* FORMAT (FORM)
* FORT
FREE
HELP (H)
LINK
*LIST (L)
LISTALC (LISTA)
LISTBC (LISTB)
LISTCAT (LISTC)
LISTDS (LISTD)
LOADGO (LOAD)
LOGOFF

LOGON

* MERGE

OPERATOR (OPER)
CANCEL (C)
DISPLAY (D)
END
HELP (H)
MODIFY (F)
MONITOR (MN)
SEND

STOPMN (PM)
OUTPUT (OUT)

CONTINUE (CONT)

END

HELP (H)

SAVE (S)

|

|

|

|

|

|

|

|

I

|

I

]

|

|

|

|

|

| *PLIC

| PROFILE (PROF)
| PROTECT (PROT)
| RENAME (REN)
| RUN (R)

| SEND (SE)

| STATUS (ST)
| SUBMIT (SUB)
| TERMINAL (TERM)
| TEST

| Assignment of Values ()
| AT

| CALL

| COPY (C)

i DELETE (D)

| DROP

| END

| EQUATE (EQ)

| FREEMAIN (FREE)

| GETMAIN (GET)

| GO

| HELP (H)

| LIST (L)

| LISTDCB

| LISTDEB

| LISTMAP

| LISTPSW

| LISTTCB

| LOAD

| OFF

| QUALIFY (Q)

] RUN (R)

} WHERE (W)

| TIME

| %% PROC
| #**WHEN
1

.
[
|
t
I
I
|
|
|
I
|
|
!
|
|
I
!
I
I
I
|
I
|
|
|
I
[
|
|
I
|
|
|
|
I
!
I
I
|
I
I
I
|
I
!
|
|
|
|
I
|
I
|
|
I
|
|
|
b
|
|
L

*Optional Program Product commands available for a license fee (Appendix A).
**For use in command procedures.

e e P] o o o M e e A e e . B o S — e S S e s e o e Bt o B i B S —— o S S e St S o M S e S v, S e e S, B, Wi . s e Sy Wt s o

27

The Commands

28 TSO Command Language Reference (Release 21.7)

N

= ey

ACCOUNT Command

Use the ACCOUNT command and subcommands to create and to update the
entries in the User Attribute Data Set (UADS) and, simultaneously, the
Broadcast Data Set. (You can use this command only if your installation
has given you the authority to do so.) Basically, the UADS is a list of
terminal users who are authorized to use TSO. The UADS contains
information about each of the users. The information in the UADS is
used to regulate access to the system.

- T - b

COMMAND OPERANDS |

ACCOUNT

F— =~
|
|
|
I
[
i
I
I
|
|
|
i
i
i
|
i
|
I
I
-t

— ——— —_—d

Subcommands of ACCOUNT

You cannot accomplish any work with the ACCOUNT command until you use a
subcommand to define the operation that you want to perform. The
subcommands and the operations that they define are:

ADD Add new entries to the UADS; add new data to existing
entries.

CHANGE Change data in specific fields of UADS entries.

DELETE Delete entries or parts of entries from the UADS.

END Terminate the ACCOUNT command.

HELP Obtain help from the system.

LIST Display the contents of an entry in the UADS.

LISTIDS Display the user identifications for all entries.

The subcommands cannot be used until you have entered the ACCOUNT
command. Each subcommand is discussed separately following the format
of the ACCOUNT command.

There is an entry in the UADS for each terminal user. Each entry
consists of the following information:

1. A user identification.

2. One or more passwords, or a single null field, associated with the
user jdentification.

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a procedure that is invoked when the
user begins a terminal session by entering the LOGON cormand.

5. The region size requirements for each procedure.

6. The name of the group of devices that the user will be permitted to

use for a procedure. Data sets allocated via the catalog are an
exception. See the ALLOCATE command.

29

ACCOUNT Command

7. The authority to use or a restriction against using the ACCOUNT
command .

8. The authority to use or a restriction against using the OPERATOR
command.

9. The authority to use or restriction against using the SUBMIT,
STATUS, CANCEL, and OUTPUT commands.

10. Maximum region size allowed.

The organization of the information contained in the UADS is shown in
Figure 5. Figure 6 shows the simplest structure that an entry in the
UADS can have, and Figure 7 shows a more complex structure.

The index points to each entry in the data set.

The user identification identifies the entry and user
attributes, and points to the password fields.

Each password field points to the account number fields
that are associated with the password.

Each account number field points to the procedure names
that are associated with the account number.

Associated with each procedure are region size
requirements and device group.

Figure 5. Organization of the UADS Data Set

30 TSO Command Language Reference (Release 21.7)

Figure 6.

ACCOUNT Command

UADS
data set

|

user
identification

|

a null field

|

a null field

Procedure name

other
attributes

The Simplest Structure That an Entry

in the

UADS Can Have

UADS

data set

user

identification

.

password password
account account account
number number number
procedure procedure procedure procedure procedure
name name name name name
other other other other other
attributes attributes attributes attributes attributes

Figure 7.

A Complex Structure For an Entry in the UADS

31

ADD Subcommand of ACCOUNT

Use the ADD subcommand to create new userids for prospective users of
TSO. As you create a new userid, a corresponding entry is created in
the User Attribute Data Set (UADS) for that user (see Figures 5, 6, and
7). For each new userid that you create, the system builds a "typical"
user profile in the User Profile Table (UPT) for that user. This
"typical"™ user profile is discussed under the PROFILE command in this
publication.

You can also use ADD to add additional data to an existing entry in
the UADS. Do not use ADD to change any existing data in a UADS entry;
use the CHANGE subcommand instead.

When adding a new entry to the UADS, you can also select the
following options for the new user:

e The region size that he can request at LOGON

e The authority to use the ACCOUNT command.

e The authority to use the OPERATOR command.

e The authority to use the SUBMIT, STATUS, CANCEL, and OUTPUT

commands.

- - T - - 1
| SUBCOMMAND | OPERANDS |
- e - :
| {ADD} | ({user—identity}[password [account [procedureq]) |
| | * L= * |
| | |
| | [DATA ({ [passwordslaccounts]procedures)]]
| | I
| i [SIZE(integer)] |
| | l
| | [UNIT(name)] |
I I !
| | MAXSIZE (integer) |
| | NOLIM |
I | I
| | ACCT OPER JCL |
| | NOACCT NOOPER] [NOJCL] |
b 1 __ _ _— 1

user identity
specifies a user identification that identifies the UADS entry.
The user identification is composed of 1-7 alphameric characters
that begin with an alphabetic or national character. The entry
that this field identifies may be:

e An existing entry to which new data is to be added.
e A new entry that is to be added to the UADS.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand. When you are creating a new entry, the asterisk
indicates a null field.

32 TsO Command Language Reference (Release 21.7)

ADD Subcommand of ACCOUNT

password
specifies a word that the user must enter before he can use the
system. The word must be composed of 1-8 alphameric characters.
The password helps indicate the structure in the UADS to which data
is being added, or, when you are adding an entire new entry, the
password is part of the data being added.

account
specifies an account number used for administrative purposes. The
account number helps indicate the structure in the UADS to which
data is being added, or, when you are adding an entire new entry,
the account number is part of the data being added.

For TSO, an account number must not exceed 40 characters, and must
not contain a blank, tab, quotation mark, apostrophe, comma,
semicolon, or line-control character. A right parenthesis is
permissible only when a left parenthesis precedes it somewhere in
the account number.

procedure
specifies the name of a procedure that is invoked when the user
enters the LOGON command. The procedure name is composed of 1-8
alphameric characters that begin with an alphabetic character. You
should not specify this field for the first positional operand
unless you are adding an entire new entry to the UADS.

DATA (passwords and/or accounts and/or procedures)
specifies that data is to be added to an existing entry. The data
to be added is enclosed within parentheses following the DATA
keyword. The system adds the data specified with this keyword to
the structure identified by the positional operand. The data is
added to the next lower level in the existing structure. The
complexity of the positional operand "user identity" determines how
many levels of structure exist.

passwords
specifies a password or a list of passwords to be added to the
existing entry at the location indicated by the positional operand.
When you specify a list of passwords, the list must be enclosed
within a separate set of parentheses embedded within the set of
parentheses required for the DATA keyword. Each password must be
composed of 1-8 alphameric characters.

accounts
specifies an account number or a list of account numbers to be
added to the existing entry. When you specify a list of account
numbers, the list must be enclosed within a separate set of
parentheses embedded within the set of parentheses required for the
DATA keyword. An account number must not exceed 40 characters and
must not contain a blank, tab, quotation mark, semicolon, or line
control character; a right parenthesis is permissible only when a
left parenthesis balances it somewhere in the account number. No
more than 255 identical account numbers may exist under ocne user
entry.

procedures
specifies a procedure name or a list of procedure names to be added
to the existing entry. Each procedure name is composed of 1-8
alphameric characters that begin with an alphabetic character.
When you specify a list of procedure names, in addition to one or
more other fields, the list must be enclosed within a separate set

33

ADD Subcommand of ACCOUNT

SIZE(

UNIT(

of parentheses embedded within the set of parentheses required for
the DATA keyword. You should specify the region size requirements
for each procedure by using the SIZE keyword. No more than 255
identical procedure names may exist under one user entry.

integer)

specifies the minimum region size, in 1024 byte units, that the
user will have assigned to him if he does not specify a size
himself. The integer specified must not exceed 65,534. If you
omit the SIZE keyword or if you specify SIZE(0), the default value
is the minimum region size available.

name)

specifies the name of the group of devices that the user
(identified by the positional operand) will use. Data sets
allocated via the catalog are an exception. See the ALLOCATE
command. You can specify a UNIT attribute for each unique
combination of password, account, and procedure in the entry.

MAXSIZE (integer)

NOL IM

ACCT

specifies the maximum region size, in 1024 byte units, that the
user (identified by the first operand) can request at LOGON. The
integer must not exceed 65,534. If you omit the MAXSIZE keyword or
if you specify MAXSIZE(0), the default of NOLIM is assumwed. Use
this operand only when you add a complete entry to the UADS.

If NOLIM is specified, no maximum region size limit is enforced.
This is the default when neither MAXSIZE nor NOLIM is specified.
Use this operand only when you add a complete entry to the UADS.

specifies that the user (identified by the first operand) can use
the ACCOUNT command, thereby controlling access to the time sharing
system. Use this operand only when you add a complete entry to the
UADS.

NOACCT

OPER

specifies that the user (identified by the first operand) cannot
use the ACCOUNT command. This is the default when neither ACCT nor
NOACCT is specified. Use this operand only when you add a complete
entry to the UADS.

specifies that the user (identified by the first operand) can use
the OPERATOR command. Use this operand only when you add a
complete entry to the UADS.

NOOPER

JCL

specifies that the user (identified by the first operand) cannot
use the OPERATOR command. This is the default when neither OPER
nor NOOPER is specified. Use this operand only when you add a
complete entry to the UADS.

specifies that the user (identified by the first operand) can use
the SUBMIT, STATUS, CANCEL, and OUTPUT commands. Use this operand
only when you add a complete entry to the UADs.

34 TSO Command Language Reference (Release 21.7)

ADD Subcommand of ACCOUNT

NOJ CL
specifies that the user (identified by the first operand) cannot
use the SUBMIT, STATUS, CANCEL, and OUTPUT commands. This is the
default when neither JCL nor NOJCL is specified. Use this operand
only when you add a complete entry to the UADS.

Example 1
Operation: Add a new entry to the UADS.

Known: The user identificationN....cccecccaccccccannnases KALTPT
The paSSWOYdeeeeeeeococosnenansssncnnnacanssnsnsse XAYBZC
The aCCOUNt NUMDEY. . e s oo ssaceansassacnssnasnneess 32058
The proceduUre NAME....cemeccecccncascccansascsasss MYLOG
The user cannot use the ACCOUNT command .
The user cannot use the OPERATOR command .
The user can use the SUBMIT command.
The user's maximum allowable region sSiz€...e.s... 153,600 bytes
The region size requirements for the procedure... 81,920 bytes
The name of the group of devices alloweQaeasassesee. SYSDA

r _ -
|ADD (KALTPT XAYBZC 32058 MYLOG) NOACCT NOOPER JCL -
|MAXSIZE(150) SIZE(80) UNIT{(SYSDA)

L

o ——

Example 2

Operation: Add a new password, account number, and procedure name to an
existing entry in the UADS. Also include the region size
requirements for the procedure.

Known: The user identification for the entry..e.eeeces... SLAT2
The New pasSSWOrQ..ec.scecesccecsscncscncnansenccneas MZ3TIT
The new account NUMbDEY ... ccieceecencncecansancannas 7116166
The new procedUIre NAME. . caecesecccaanccnsansnoasss AMABALA
The region size requirements for the procedure... 92,160 bytes

r : -
|ADD (SLAT2) DATA(MZ3TII 7116166 AMABALA) SIZE(90)
L

[|

Example 3

Operation: Continuing example 2, add a new account number, 288104, to
an existing entry in the UADS.

Known: The user identification for the entrye..eeeeaee... SLAT2
The password for the entry.ec.eeececececnencenanass MZ3TII
The new account NUMDET..sceiecccenncccncsncencesss 288104
The new procedUre NAME. cececmesnccescsnnnasesceness MYLOG
The region size requirements for the procedure... 116,736 bytes
The device group tO be USE€d.ceecccencncncscmnasas SYSDA

r _——
|ADD (SLAT2 MZ3TII) DATA (288104 MYLOG) SIZE(114) UNIT (SYSDA)
L

—_— —_— —_— p— |

35

ADD Subcommand of ACCOUNT

Example 4

Operation: Add a new procedure name, and the region size requirements

for it, to all entries in the UADS..

Known: The new procedure NaME...cecescesesccscscncsccsasocas
The region size requirements for itaeeeccececece-.

MYLOG
74,752 bytes

r ———
|ADD (* * *) DATA{MYLOG) SIZE(73)
L

Example 5

Operation: Add a new account number and new procedure name to all
structures under an existing entry in the UADS.

Known: The user identification for the entry.ceececececca...
The new account NUMDET ..e ceccscccacccncnscccscncns
The nNew procedUIre NAME..ceemecsccocssncscnsanascn
The region size requirementS.ececccecscecccccennsen

WMROEL
5707471
LOGPROC
102,400 bytes

r .
|ADD (WMROEL #) DATA(5707471 LOGPROC) SIZE(100)
L

36 TSO Command Language Reference (Release 21.7)

o e

p——

CHANGE Subcommand of ACCOUNT

Use the CHANGE subcommand to change existing fields of data within
entries in the UADS.

| SUBCOMMa nd

OPERAND

{CHANEE}

({user—identity}[password [account [procedure]]])
C * *

* *
DATA{| user-identity2])
password2
account2
procedure2
" [SIZE(integer)]
[UNIT(name)]

[MAXSIZE(integer)
NOLIM

ACCT OPER JCL
NOACCT NOOPER NOJCL

o —— s . e A i . W S . S S s, e, e . e]
e e e et e i e e o i o o e et e e e g ——

I
I
I
|
I
|
|
!
|
I
I
|
|
|
I
I
|
L

user-identity
specifies the existing user identification that identifies the UADS
entry that is to be changed.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password
specifies an existing password that a user must enter before he can
use the system. The password helps locate the data being changed,
and, when you are changing a password, identifies the password
being changed. A password must consist of from 1 to 8 alphameric
characters.

account
specifies an existing account number. The account number helps
locate the data being changed, and, when you are changing an
account number, identifies the account number being changed.

procedure
specifies an existing name of a procedure. The procedure name,
when specified, is the data being changed.

DATA (user identity2 or password2 or account2 or procedure2)
specifies the replacement data. The data enclosed within
parentheses following the DATA keyword is used by the system to
replace the data identified by the last field of the first operand.

37

CHANGE Subcommand of ACCOUNT

user identity?2
specifies a user identification to replace the existing user
identity. The user identification is composed of 1-7 alphameric
characters that begin with an alphabetic or national character.

password2 ;
specifies a password to replace the existing password. The
password must be composed of 1-8 alphameric characters.

account 2
specifies an account number to replace the existing account number.
The account number is composed of 1-40 characters and must not
contain a blank, tab, quotation mark, semicolon, apostrophe, comma,
or line control character. A right parenthesis is permissible only
when a left parenthesis balances it somewhere in the account ’
number.

procedure?2
specifies a procedure name to replace the existing procedure name.
The procedure name is composed of 1-8 alphameric characters and
must begin with an alphabetic character.

SIZE (integer)
specifies the region size, in 1024 byte units, that is specified on
the JCL EXEC statement of the procedure whose name is being added
to the UADS. The integer must not exceed 65,534. If you specify
SIZE(0), the minimum region size is assumed.

UNIT (name)
specifies the name of the group of devices that the user
{(identified by the first operand) will use. Data sets allocated
via the catalog are an exception. See the ALLOCATE cormand.

MAXSIZE (integer)
specifies the maximum region size, in 1024 byte units, that the
user may request at LOGON. The integer must not exceed 65,534. If
you specify MAXSIZE(0), the default of NOLIM is assumed.

NOL IM
specifies that the user is not restricted to a maximum region size.

ACCT
specifies that the user can use the ACCOUNT command thereby
controlling access to the time sharing system.

NOACCT
specifies that the user cannot use the ACCOUNT command.

OPER
specifies that the user can use the OPERATOR command.

NOOPER .
specifies that the user cannot use the OPERATOR command.

JCL
specifies that the user can use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

NOJCL

specifies that the user cannot use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

38 TSO Command Language Reference (Release 21.7)

CHANGE Subcommand of ACCOUNT

Example 1

Operation: Change an account number for an entry in the UADS and
authorize the user to issue the ACCOUNT and OPERATOR
commands.

Known: The user identification for the entry..eeeesece.... TOC23
The pPasSSWOXA..e:eeeeecenacecasacnenncsnnsnaacneasss AOX3P
The 01d acCcoUnNt NUMDEY . .casecsecoscncccacennnaness 2E29705
The new account NUMDEr...cccescscncecccncaccccansss 2E26705

r - - 1
| CHANGE (TOC23 AOX3P 2E29705) DATA(2E26705) ACCT OPER |
L

- —_—1

Example 2

Operation: Authorize all users to issue the SUBMIT command.

- -7

r
| CHANGE (%) JCL I
L 4

The asterisk in the first positional operand position specifies that all
user identities are considered valid for the operation of this
subcommand .

Example 3

Operation: Change the user identification for an entry in the UADS.

Known: The existing user identificatioONea.c..cceccescaasene. SWECORP
The new user identificatiONe.cccecncecaccnccssassss SWECPOL

r
| CHANGE (SWECORP) DATA (SWECPO01)
L

Example 4

Operation: Change the name of a procedure for an entry that consists of
a user identification, a procedure name, and attributes (no
password or account number).

Known: The user identificatioN.ecccecesccacccanncasacasnes WSNCD
The 0ld procedUre NAME..sececceaccescancsnccacnsnse TTURM
The new procedure NaME...a.scessccacsmssasasssesnse TML

r
| CHANGE (WSNCD #* * TTURM) DATA (TML)
L

[|

39

DELETE Subcommand of ACCOUNT

Use the DELETE subcommand to delete data from the User Attribute Data
Set (UADS). Each terminal user has an entry in the UADS. Each entry
contains several items of data. The data that you want to delete may be
a part of an existing entry, or it may be an entire existing entry.

--------- T~ - = 1
| SUBCOMMAND | OPERANDS |
t——————————- t—- — - 1
{ JDELETE | (user~identity}[password account]]) |
| | * * * I
| ! I
| | DATA ((passwords)) |
| i accounts]
|] procedures |
| L —_

user-identity

specifies a user identification which identifies the UADS entry
that is to be deleted. The user identification is composed of 1-7
alphameric characters that begin with an alphabetic or national
character.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password

specifies a word that a user must enter before he can use the
system. The word must be composed of 1-8 alphameric characters.
The password helps indicate the particular existing structure from
which data is being deleted, or, when you are deleting a password,
the password is the data being deleted.

account

specifies an account number used for administrative purposes. The
account number helps indicate the structure from which data is
being deleted, or, when you are deleting an account number, the
account number is the data being deleted.

For TSO, an account number must not exceed 40 characters, and must
not contain a blank, tab, quotation mark, semicolon, apostrophe,
comma, or line control character. A right parenthesis is
permissible only when a left parenthesis precedes it somewhere in
the account number.

DATA (passwords or accounts or procedures)

specifies the data that is to be deleted from an existing entry.
The data to be deleted is enclosed within parentheses following the
DATA keyword.

passwords

40

specifies a password or a list of passwords to be deleted from the
existing entry at the location indicated by the first positional
operand. Each password must be composed of 1-8 alphameric
characters.

TSO Command Language Reference (Release 21.7)

DELETE Subcommand of ACCOUNT

accounts
specifies an account number or a list of account numbers to be
deleted from the existing entry. An account number must not exceed
40 characters, and must not contain a blank, tab, quotation mark,
apostrophe, comma, semicolon, or line control character. A right
parenthesis is permissible only when a left parenthesis balances it
somewhere in the account number.

procedures
specifies a procedure name or a list of procedure names to be
deleted from the existing entry. Each procedure name is composed
of 1-8 alphameric characters and must begin with an alphabetic
character.

In an existing entry in the UADS, the fields for user identification,
passwords, account numbers, and procedure names can be deleted
individually using the DELETE subcommand. The other fields cannot be
deleted unless the entire entry is deleted. (To change existing fields
of data within an entry, use the CHANGE subcommand.)

Deleting an Entire Entry: To delete an entire entry from the UADS, you
only need to know the user identification for the entry. You must
specify the user identification as the first and only field of the first
positional operand.

Deleting Data from an Existing Entry: >To use the DELETE subcommand to
delete data from an existing entry, you must identify:

a. The location within the entry.
b. The data that you want to delete.

Example 1

Operation: Delete an entire entry from the UADS.

Known: The user identification for the entry..e.ecceass.... VASHTAR

r
| DELETE (VASHTAR)
L

41

DELETE Subcommand of ACCOUNT

Example 2

Operation: Delete a procedure name from an entry in the UADS having the
following index structure.

SCHRDNY
/ N\
TG2A7 EGCLON
/ N\
842244124 3707656
/ / AN
LOGC ‘ LOGA LOGB

Known: The user identificationN.cecececcesccsncecaanccnsasaess SCHRDNY
The passSWOrdeeeeceeeecees cenene ececenseansssnseenss EGCLON
The account number....... cescsesmscanemanscanaasae . 3707656
The procedure name to be deletede..eesceeecsseanaseess LOGB

r
| DELETE (SCHRDNY EGCLON 3707656) DATA (LOGB)
L

[

The resultant index structure is:

SCHRDNY
[\
TG2A7 EGCLON
/ \
842244124 | 3707656
[/
LOGC LOGA

42 TSO Command Language Reference (Release 21.7)

Example 3

Operation:

Known:

DELETE Subcommand of ACCOUNT

Delete an account number from an entry in the UADS having
the following index structure.

ALPHA2
[\
EINNA DRAHCIR
/ \
92339 32757
ANV
PROCA PROCB LOGA PROCD

The user identificatioN.eccccccecececccsccccscnaancens
The pPaSSWOXAeaaceccecsccncescacssaanasscasancsacancns
The account number to be deletedeceececceanceccacnanna

r
|DELETE (ALPHA2 DRAHCIR) DATA(32757)
L

[P

The resultant index structure is:

ALPHA2

o

EINNA

/

92339

/

~N

PROCA

PROCB

43

END Subcommand of ACCOUNT

Use the END subcommand to terminate operation of the ACCOUNT command.
After entering the END subcommand, you may enter new commands.

r—————7"7=""7""= T h
| SUBCOMMAND | OPERANDS |
- - - » 1
| END I I
L — L o s e —_—

44 TSO Command Language Reference (Release 21.7)

HELP Subcommand of ACCOUNT

Use the HELP subcommand to find out how to use ACCOUNT and the ACCOUNT
subcommands. When you enter the HELP subcommand, the system responds by
printing out explanatory information at your terminal. You may request:

e A list of available subcommands.
e An explanation of the function, syntax, and operands of a specific
subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

- e e o e e S e e e e e T S e i e T S i o . e 2 e o 1

r -
{ SUBCOMMAND| OPERANDS

t + —
| {HELP} |[subcommand—name [FUNCTION] [SYNTAX] [OPERANDS[(list)]]]
| (ALL)

- —_ ———— - —— —_— E]

subcommand -name
specifies the subcommand that you want to have clarified. .If you
omit this operand, the system will display a list of ACCOUNT
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand 's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS(1list)
specifies that you want an explanation of the operand applicable to
the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default if no operand is specified.

45

HELP Subcommand of ACCOUNT

Example 1
Operation: Have a list of available subcommands displayed at your
terminal.
I b
| HELP I
L _—
Example 2
Operation: Obtain all available information about a particular
subc ommand.

Knbwn: The subcommand NaAME. . csceccencensnnasccnmcsannenancnsanesasss ADD

|
| H ADD |
L]

o — —

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand NaAME..ccssscnsceccsnacsnccnnnasascsensecscssss LIST

.71

r
|h list operands |
L 1

46 TSO Command Language Reference (Release 21.7)

LIST Subcommand of ACCOUNT

Use the LIST subcommand to display entries in the User Attribute Data

Set (UADS) or to display fields of data from within particular entries.

----------- T———=—== - -1
| SUBCOMMAND | OPERANDS |
TP oo 1
| LIST) | JC user-identity} password [account [procedure)]
| L | * * * * I
L L —_— e e et e A o e e e i . . S e e . S e e e . e e e e e 1

user-identity
specifies a user identification that identifies the UADS entry.
The user identification is composed of 1-7 alphameric characters
that begin with an alphabetic or national character.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password
specifies a word that a user must enter before he can use the
system. The word must be composed of 1-8 alphameric characters.
The password helps indicate the structure to be displayed.

account

specifies an account number used for administrative purposes. The

account number helps indicate the structure to be displayed. For

TSO, an account number must not exceed 40 characters, and must not
contain a blank, tab, quotation mark, apostrophe, comma, semicolon,
or line control character. A right parenthesis is permissable only

when a left parenthesis precedes it somewhere in the account
number.

procedure
specifies the name of a procedure that is invoked when the user

enters the LOGON command. The procedure name helps indicate the

particular structure to be displayed. The procedure name is
composed of 1-8 alphameric characters and must begin with an
alphabetic character.

47

LIST Subcommand of ACCOUNT

Example 1
Operation: List the contents of the UADS.

—_— - 1

r
|LIST (%)
L

Example 2
Operation: List all of a particular entry in the UADS.

Known: The user identificCatiON...eeesscceccecaccncasnesss JOTSOP

r
|LIST (JOTSOP)

L - —_——

s e

Example 3

Operation: List all of the account numbers under a specific password
for a particular entry.

Known: The user identifcatiONe.scceccenscscnscnssenasaanss EVOTS
The pPaSSWOXUeeceeeeoscacssasccscansanaccannenssasess ROOLF

r
|LIST (EVOTS ROOLF %)
L 4

48 TSO Command Language Reference (Release 21.7)

LISTIDS Subcommand of ACCOUNT

Use the LISTIDS subcommand to have a list of the user identifications in
the User Attribute Data Set (UADS) displayed at your terminal.

SUBCOMMAND

OPERANDS

{LISTIDS}
LISTI

p—— —o
5
i e e ey e

[e e ——

Example 1

Operation: List all user identifications in the UADS.

- - 1

r -
| LISTIDS i

49

LISTIDS Subcommand of ACCOUNT

50 TSO Command Language Reference (Release 21.7)

ALLOCATE Command

Use the ALLOCATE command to allocate, dynamically, the data sets
required by a program that you intend to execute.

[SsPACE(quantity [increment]) BLOCK(block-length)]
[DiR(integer)]

[UsiNG (attribute-list-name)]

r - T -
i COMMAND | OPERANDS

L L

r - I -

| ALLOCATE) | DATASET({ * }) [FILE (name)]
| ALLOC | data-set-name

| |

| | FILE (name) [DATASET({* })]
| | data-set-name

| |

| | OLD

| | SHR

| | MOD

| | NEW

| | SYSOUT

| | ,

|] [VOLUME(serlalﬂ

| |

| |

| |

| |

| |

L L

s e e ot i o e e e o e e e o et s . i e ey e)

DATASET (data-set-name, data-set-name/password, or #*)
specifies the name of the data set that is to be allocated. The
data set name must include the descriptive (rightmost) qualifier
and may contain a member name in parentheses. (See the data set
naming conventions.)

If you specify a password, you will not be prompted for it when you
open the data set. Any other user, however, must supply the
password in order to refer to the data set.

You may substitute an asterisk (%) for the data set name to
indicate that you want to have your terminal allocated for input
and output. If you use an asterisk (*), only the FILE operand is
recognized by the system. All other operands are ignored.

In general, you may specify either or both the DATASET and FILE
keywords; however, the data set name must be specified if the
status of the data set is OID or SHR, or if it is MOD and the data

set currently exists.

MOD data set if you omit the SPACE operand, indicating that the
data set currently exists. The SPACE operand must be specified
when the data set is NEW. '

The system generates names for SYSOUT data sets; therefore, you
should not specify a data set name when you allocate a SYSOUT data

set.

If you do, the system ignores it.

You will be prompted to supply the name of a

51

ALLOCATE Command

FILE (name)

OLD

SHR

MOD

NEW

specifies the name to be associated with the data set. It may
contain no more than eight characters. (This name corresponds to
the Data Definition (DD) name in 0S/360 Job Control Language and
must match the DD name in the Data Control Block (DCB) that is
associated with the data set.) For PL/I, this name is the file
name in a DECILARE statement and has the form "DCL filename FILE";
for instance, DCL MASTER FI1LE. For COBOL, this name is the
external-name used in the ASSIGN TO clause. For FORTRAN, this name
is the data set reference number that identifies a data set and has
the form "FTxxFyyy:" for instance, FT06F002,

If you omit this operand, the system assigns an available file name
(ddname) from a data definition statement in the procedure that is
invoked when you enter the LOGON command.

indicates that the data set currently exists and that you require
exclusive use of the data set. The data set should be cataloged.
If it is not, you must specify the VOLUME operand. OLD data sets
are retained by the system when you free them from allocation.

indicates that the data set currently exists but that you do not
require exclusive use of the data set. Other tasks may use it
concurrently. SHR data sets are retained by the system when you
free them.

indicates that you want to append data to the end of the data set.
If the data set is actually new, you must also specify the SPACE
operand. MOD data sets are retained by the system when you free
them if you specify a data set name; they are deleted if you do not
specify a data set name.

indicates that the data set does not exist and that it is to be
created. You must specify the SPACE and BLOCK operands for NEW
data sets. For new partitioned data sets you must also specify the
DIR operand. NEW data sets are kept and cataloged if you specify a
data set name. They are deleted if you do not specify a data set
name.

SYsSoUT

indicates that the data set is to be a system output data set.
Output data will be initially written on a direct access device and
later transcribed from the direct access device to the final output
device. The final output device may be a unit record device (such
as a printer or a terminal) or a magnetic tape device. The output
class to which this data set is assigned 1is that of the message
class. (See also the publication IBM System/360 Operating System,
Supervisor and Data Management Services, GC28-6646.) After
transcription by an output writer, SYSOUT data sets are deleted.
You may specify space values with the SPACE operand; if you do not,
default space values are provided by the system.

Note: If you do not specify OLD, SHR, MOD, NEW, or SYSOUT, the
system assigns a default value depending on the BLOCK, SPACE, and
DIR operands. If you specify the BLOCK and SPACE operands (for a
sequential data set), or the BLOCK, SPACE and DIR operands (for a
partitioned data set), the status defaults to NEW; otherwise, it
defaults to OLD.

To change the output class refer to the FREE command and to the
OUTPUT command.

52 TsSO Command Language Reference (Release 21.7)

ALLOCATE Command

VOLUME (serial)
specifies the serial number of the direct access volume on which a
new data set is to reside or on which an old data set is located.
If a volume is specified with an old data set, the data set must be
on the volume or no allocation will take place. If you do not
specify a serial number, new data sets are allocated to any
eligible direct access volume, as determined by the UNIT
information in your user entry in the UADS. If you do specify a
volume serial number, eligibility is still determined by the UNIT
information.

BLOCK {(block-1length)
specifies the average block length (in bytes) of the records that
are to be written to the data set. The BLOCK operand is required
for new data sets. You must specify the SPACE operand when you
specify this operand. You may also specify BLOCK for SYSOUT data
sets if the default values are not acceptable.

Note: The value Supplled for BLOCK also becomes the value for
BLKSIZE and is recorded in the DSCB for the data set unless you
specify the USING operand. When you specify the USING operand, the
BLKSIZE is taken from the attribute list.

SPACE (quantity, increment)
specifies the amount of space to be reserved for the new data set.
The amount of space is determined by multiplying the "block length"
(specified by the BLOCK(block-length) keyword) by the "quantity"
value of the SPACE(quantity,increment) keyword. SPACE is required
for new data sets and may be specified for SYSOUT data sets. You
must specify the BLOCK operand when you specify this operand.

quantity
specifies the primary number of blocks to be allocated for the data
set.

increment
specifies a secondary number of blocks to be allocated for the data
set each time the previously allocated space has been exhausted. A
maximam of 15 secondary blocks may be allocated.

DIR (integer)
specifies the number of 256 byte records that are to be allocated
for the directory of a new partitioned data set. This operand must
be specified if you are allocating a new partitioned data set. You
must also specify the BLOCK and SPACE operands.

USING (attribute- 1list-name)
specifies the name of a list of attributes that you want to have
assigned to the data set that you are allocating. The attributes
in the list correspond to, and will be used for, data control block
(DCB) parameters. (Note to user's familiar with conventional batch
processing: these DCB parameters are the same as those normally
specified by JCL and data management macro instructions.)

An attribute list must be stored in the system before you use this
operand. You can build and name an attribute list by using the
ATTRIB command. The name that you specify for the list when you
use the ATTRIB command is the name that you must specify for this
USING (attribute-list-name) operand.

53

ALLOCATE Command

Example 1

Operation: Allocate an existing cataloged data set containing input
' data for a program. The data set name conforms to the data
set naming conventions, and you need exclusive use of the
data.

Known: The name of the data S€teceecececsceccsscccesseses REB35.INPUT.DATA

r
| ALLOCATE DATASET(INPUT.DATA) OID
L

Example 2

Operation: Allocate a new data set to contain the output from a
program.

Known: The name that you want to give the data set... REB35.0UTPUT.DATA
The block lengtheecesecececccecansnensannensenes 1056 bytes
The number of blocks expected to be used...... 50
DCB parameters are in an attribute list named. ATTR.

r - - 1
| ALLOCATE DATASET(OUTPUT.DATA) NEW SPACE(50,10) BLOCK(1056) USING(ATTR) |
L

p—— ———

Example 3

Operation: Allocate your terminal as a temporary input data set.

v - 1
|ALLOCATE DATASET(*) FILE(FTO01F001)
L

Example 4

Operation: Allocate an existing data set that is not cataloged and
whose name does not conform to the data set naming
conventions.

Known: The data St NAMEC...c.ccccccscsncsnmencssannesnse SYSl.PTIMAC.AM
The volume serial NUMDEr..c«.eeeeasccsasenense BIIRS2
The DD NANCe cccascscccscscnassesansssnenncnnnan SISLIB

]
Jalloc dataset('sysl.ptimac.am') file(syslib) volume(b99rs2) shr
L —

s e

Example 5

Operation: Allocate a new partitioned data set.

Known: The data Set NaMECe.c.cccsacccocnoncccsneseen JOHNS. OVERHEAD. TEXT
The bDlock lengtheccec e cnnenceaneaceasansanaa 256 bytes
The number Of blOCKS..caneseccsccnasmenasnnnes 500
The number of directory recordSececenceaseecss 50

—d

r
| ALLOC DATASET(OVERHEAD.TEXT) NEW BLOCK(256) SPACE(500) DIR(50)
L

54 TSO Command Language Reference (Release 21.7)

~—

ATTRIB Command

Use the ATTRIB command to build a list of attributes for data sets that
you intend to allocate dynamically. During the remainder of your
terminal session you can have the system refer to this list for data set
attributes when you enter the ALLOCATE command. The ALLOCATE command
will convert the attributes into DCB parameters for data sets being
allocated. ’

Note: Before using this command, you should be familiar with DCB
parameters as discussed in Job Control Lanquage and Data Management
Services.

:
:

OPERAND

{ATTRIB} attr-1list-name [BLKSIZE (block-size)])

ATTR
[BUFL(buffer-length)l
[BUFNO(number-of-buffers)]
[KEYIEN(key-length)]

[LRECL({1ogical—record-1ength)]}
X

[NCP5number-of~-channel-programs)]
[1 NPUT]
OUTPUT,

EXPDT (year-day)
RETPD(number-of—dast

I F
[BFALN(}Df)

{oprcp(C,T,W and/or Q)]

i ACC

EROPT ({ SKP ;)
ABE

{ s
E

BFTEK(|A)
R

,.____"____"_.__“_.__._“_.____“_____.___.__"__._____“______"___,P__ﬁ
S S Sy——

[RECFM(A,B,F,M,S,T,U, and/oxr V)]

ey et et . et ot e Mo e St A i St e St e S S S BN i S b S S e e S, S . Mot e e, it s s, gy e

attr-list-name
specifies the name for the attribute list. This name can be
specified later as a parameter of the ALLOCATE command. The name
must consist of one through eight alphameric and/or national
characters, must begin with an alphabetic or national character,
and must be different from all other attr-list-names and ddnames
that are in existence for your terminal session.

55

ATTRIB Command

BLKSIZE (block-size)
specifies the blocksize for the data sets. The block size must be
a decimal number and must not exceed 32,760 bytes.

The block size that you specify must be consistent with the
requirements of the RECFM operand. If you specify:

e RECFM(F), then the block size must be equal to or greater than
the logical record length.

e RECFM(F B), then the block size must be an integral multiple of
the logical record length.

¢ RECFM(V), then the block size must be equal to or greater than
the largest block in the data set. (Note: For unblocked
variable-length records, the size of the largest block must allow
space for the U-byte block descriptor word in addition to the
largest logical record length. The logical record length must
allow space for a U4-byte record descriptor word. (See the
publication IBM System/360 Operating System: Data Management
Services, GC26-3746, for additional information.

¢ RECFM(V B), then the block size must be equal to or greater than
the largest block in the data set. (Note: For blocked variable
length records, the size of the largest block must allow space
for the 4-byte block descriptor word in addition to the sum of
the logical record lengths that will go into the block. Each
logical record length must allow space for a 4-byte record
descriptor word. Since the number of logical records can vary,
you must estimate the optimum block size (and the average number
of records for each block) based on your knowledge of the
application that requires the I/0. (See the Data Management
Services, publication for additional information.)

BUFL (buffer-length)
specifies the length, in bytes, of each buffer in the buffer pool.
Substitute a decimal number for buffer-length. The number must not
exceed 32, 760.

If you omit this operand and the system acquires buffers
automatically, the BLKSIZE and KEYLEN operands will be used to
supply the information needed to establish buffer length.

BUFNO (number-of-buffers)
specifies the number of buffers to be assigned for data control
blocks. Substitute a decimal number for number-of-buffers. The
number must never exceed 255, and you may be limited to a smaller
number of buffers depending on the limit established when the
operating system was generated. The following table shows the
condition that requires you to include this operand.

56 TSO Command Language Reference (Release 21.7)

~

ATTRIB Command

0
When you use one of the following |

methods of obtaining the buffer pool... then:
1

(1) BUILD macro instruction (1) you must specify

BUFNO.

(2) GETPOOL macro instruction

(2) the system uses
the number that you
specify for GETPOOL.

(3) Automatically with BPAM or BSAM (3) you must specify

BUFNO.

(4) Automatically with QSAM (4) you may omit BUFNO
and accept two

buffers.

e e . T

e e e e e e it e e e e e — s]
S e s e iy e i g s e e gy e e gy e e)

KEYLEN (key-length)
specifies the length, in bytes, of each of the keys used to locate
blocks of records in the data set when the data set resides on a
direct access device.

The key-length must not exceed 255 bytes. If an existing data set
has standard labels, you can omit this operand and let the system
retrieve the key length from the standard label. If a key length
is not supplied by any source before you issue an OPEN macro
instruction, a length of zero (no keys) is assumed.

LRECL (logical-record-length)
specifies the length, in bytes, of the largest logical record in
the data set. You must specify this operand for data sets that
consist of either fixed length or variable length records.

Omit this operand if the data set contains undefined-length
records.

The logical record length must be consistent with the requirements
of the RECFM operand and must not exceed the block size (BLKSIZE
operand) except for variable length spanned records. If you
specify:

e RECFM(V) or RECFM(V B), then the logical record length is the sum
of the length of the actual data fields plus 4 bytes for a record
descriptor word.

e RECFM(F) or RECFM(F B), then the logical record length is the
length of the actual data fields.

e RECFM(U), then you should omit the LRECL operand.

Note: For variable length spanned records (V S or V B S) processed
by QsAM (locate mode) or BSAM, specify LRECL (X) when the logical
record exceeds 32756 bytes.

NCP (number-of-channel-programs)
specifies the maximum number of READ or WRITE macro instructions
allowed before a CHECK macro instruction is issued. The waximum
number must not exceed 99 and must be less than 99 if a lower limit
was established when the operating system was generated. If you
are using chained scheduling, you must specify an NCP value greater
than 1. If you omit the NCP operand, the default value is 1.

57

ATTRIB Command

INPUT
specifies that the data set will be used only as input to a
processing program.

‘

OUTPUT
specifies that the data set will be used only to contain output
from a processing program.

EXPDT (year-day)
specifies the data set expiration date. You must specify the year
and day in the form "yyddd", where "yy" is a two digit decimal
number for the year and "ddd" is a three digit decimal mumber for
the day of the year. For example, January 1, 1974 is 74001 and
December 31, 1975 is 75365.

RETPD (number-of-days)
specifies the data set retention period in days. The value must be
a one through four digit decimal number.

BFALN({F})
D
specifies the boundary alignment of each buffer as follows:
F -- each buffer starts on a fullword boundary that is not a
doubleword boundary.
D -- each buffer starts on a doubleword boundary.

If you do not specify this operand and it is not available from any
other source, data management routines assign a doubleword
boundary.

OPTCD(C,T,Q and/or W)
specifies the following optional services that you want the system
to perform.

C -- You want to use chain scheduling.

T -- You want to use the user totaling facility.

W -- You want the system to perform a validity check when data is
written on a direct access device.

Q -- You want to translate a magnetic tape from ASCII to EBCDIC or

from EBCDIC to ASCII.

(You can request any or all of the services by combining the values
for this operand. You may combine the characters in any sequence,
being sure to separate them with blanks or commas).

SKP

ABE
specifies the option that you want executed if an error occurs when
a record is read or written. The options are:
ACC -- accept the block of records in which the error was found.
SKP —-- skip the block of records in which the error was found.
ABE -- end the task abnormally.

EROPT({ACC})

BFTEK ([S}))
E
A
R
specifies the type of buffering that you want the system to use.
The types that you can specify are:

58 TSSO Command Language Reference (Release 21.7)

ATTRIB Command

-- simple buffering.

-- exchange buffering.

automatic record area buffering.
-- record buffering.

o pEn
1
1

RECFM(A,B, F, M, S, T,U, and/or V)
specifies the format and characteristics of the records in the data
set. The format and characteristics must be completely described
by one source only. If they are not available from any source, the
default will be an undefined length record.

Use the following values with the RECFM operand.

A -- indicates that the record contains ASA printer control
characters.

B -- indicates that the records are blocked.

F -- indicates that the records are of fixed length.

M -- indicates that the records contain machine code control

characters.

indicates that, for fixed-length records, the records are

written as standard blocks (there must be no truncated blocks

or unfilled tracks except for the last block or track). For
variable length records, a record may span more than one
block. Exhange buffering -BFTEK(E)- must not be used.

T -- indicates that the records may be written onto overflow tracks
if required. Exchange buffering -BFTEK(E)- or chained
scheduling -OPTCD(C)- cannot be used.

U -- indicates that the records are of undefined length.

V -~ indicates that the records are of variable length.

[47]
|
[}

You may specify one or more values for this operand (at least one
is required). See the Job Control language publication for a
rigorous discussion of all possible valid combinations of values.
The values must be separated by blanks or commas.

Example 1

Operation: Create a list of attributes to be assigned to a data set
when the data set is allocated.

Known: The following attributes correspond to the DCB parameters that
you want assigned to a data set.
Optional services: chain scheduling, user totaling.
Expiration date: Dec. 31, 1977.
Record format: variable length spanned records.
Error option: ABEND when READ or WRITE error occurs.
Buffering: simple buffering.
Boundary alignment: doubleword boundary. .
L.ogical record length: records may be larger than 32,765 bytes.
The name for this attribute list is DCBPARMS.

r _——

|ATTR DCBPARMS OPTCD(C T) EXPDT(77365) RECFM(V S) -
| EROPT (ABE) BFTEK(S) BFALN(D) LRECL(X)
L

[

59

ATTRIB Command

Example 2

Operation:

This example shows how to create an attribute list, how to

use the list when allocating two data sets, and how to
delete the list so that it cannot be used again.

The
The

Known: name for the attribute list.....

AttribUteSecaceescsencsccacancosssn

The
The

name for the first data set.....
name of the second data set..ae..

DSATTRS

EXPDT (99365) BLKSIZE(24000)
BFTEK (A)

FORMAT . INPUT

TRAJECT . INPUT

r
Jattrib dsattrs expdt(99365)
I

jallocate dataset(format.input)
jvolume (111111) using(dsattrs)
|

|alloc da (traject.input)

I
|free attrlist(dsattrs)
L

old bl (80)

blksize(24000)

new block(80)

volume(111111)

bf tek(a)

space(1,1) -

using (dsattrs)

OV N |

60 TSO Command Language Reference (Release 21.7)

-7

CALL Command

Use the CALL command to load and execute a program that exists in
executable (load module) form. The program may be user-written, or it
may be a system module such as a compiler, sort, or utility program.

You must specify the name of the program (load module) to be
processed. It must be a member of a partitioned data set.

You may specify a list of parameters to be passed to the specified
program. The system formats this data so that when the program receives
control, register one contains the address of a fullword. The three low
order bytes of this fullword contain the address of a halfword field.
This halfword field is the count of the number of bytes of information
contained in the parameter list. The parameters immediately follow the
halfword field.

If the program terminates abnormally, you are notified of the
condition and may enter a TEST command to examine the failing program.

T - - 1
| COMMAND | OPERANDS |
pr e o -- s
| CALL | part-data-set-name [(membername)] [' parameter-string'] |
| | (TEMPNAME) |
L L 1

part-data-set-name
specifies the name of the member of a partitioned data set that
contains the program to be executed. You must enclose the member
name within parentheses. When the name of the partitioned data set
conforms to the data set naming conventions, the systew will add
the necessary qualifiers to make the name fully qualified. The
system will supply .LOAD as a default for the descriptive qualifier
and (TEMPNAME) as the default for a member name. If the name of
the partitioned data set does not conform to the data set naming
conventions, it must be included with the member name in the
following manner:

data-set-name (membername)

If you specify a fully qualified name, enclose it in apostrophes
(single quotes) in the following manner:

* USERID.MYPROGS.LOADMOD (A)'
*SYS1. LINKLIB (IEUASM) '
parameter string
specifies up to 100 characters of information that you want to pass
to the program as a parameter list. When passing parameters to a
program, you should use the standard linkage conventions.

61

CALL Command

Example 1

Operation: Execute a load module.

Known: The name of the load modul€....<.<.. BARBO1l.PEARL.LOAD(TEMPNAME)
ParameterSeeccenneccnnconacncnccnnee 10,18,23

r - q
| CALL PEARL '10,18,23"'
L

Example 2

Operation: Execute a load module.

Known: The name of the load module€..sceas.. SHEP.MYLIB. LOAD(COS1)

[CALL MYLIB(COsS1) 1
Example 3

Operation: Execute a load module.

Known: The name of the load modul€.cececevevncesenass BCMDI3.LOAD(SINI1)
r— —-= - 1
[CALL (SIN1) -__l

62 TSO Command Language Reference (Release 21.7)

CANCEL Command

Use the CANCEL command to halt processing of conventional batch jobs
that you have submitted from your terminal. If sewveral jobs have the
same jobname, the system cancels only the first one it finds with that
name. A message will be displayed at your terminal to advise you of the
action taken by the system. A message will also be displayed at the
system operator's console when a job is canceled.

The installation management must authorize users of this command.
This command is generally used in conjunction with the SUBMIT, STATUS,
and OUTPUT commands.

COMMAND OPERANDS

[P S ——)

CANCEL (job-name-list)

= o — -
- — - —

(job-name-1list)
specifies the names of the jobs that you want to cancel. The name
of a job that you submit from your terminal should consist of your
user identification plus one or more characters. A jobname
consists of at most 8 alphameric or national characters; the first
character must be alphabetic or national (See Data Set Naming
Conventions). Unless your installation specifies otherwise, you
can only cancel a job whose name consists of your user
identification plus one or more characters.

Note: When you specify a list of several job names, you must

separate the jobnames with standard delimiters and you must enclose
the entire list within parentheses.

Example 1

Operation: Cancel a conventional batch job.

Known: The name Of the jOb.iuw..cecnaeiacnaneannnncsasaneses JEO2UAL

-

r
| CANCEL, JEO24A1 i
L

Example 2

Operation: Cancel several conventional batch jobs.

Known: The names Of the JjObS.eceweuscaansnsscnasccaansessees D58BOBTA
D58 BOBTB

D58BOBTC

.
| CANCEL (D58BOBTA D58BOBTB DS58BOBTC)
L

63

CANCEL Command

64 TSO Command Language Reference (Release 21.7)

DELETE Command

Use the DELETE command to delete one or more data sets or one Or more
members of a partitioned data set.

If the data set is cataloged, the system removes the catalog entry.
The catalog entry for a partitioned data set is removed only when the
entire partitioned data set is deleted. The system deletes a member of
a partitioned data set by removing the member name from the directory of
the partitioned data set.

Members of a partitioned data set and aliases for any members must
each be deleted explicitly. That is, when you delete a member, the
system does not remove any alias names of the member; likewise, when you
delete an alias name, the member itself is not deleted.

After you delete a protected data set, you should use the PROTECT
command to update the password data set to reflect the change. This
will prevent your having insufficient space for future entries.

r - T——————== 1
[COMMAND I OPERANDS [
b~ et S :
| DELETE | (data-set-1ist) [PURGE |
| D | NOPURGE |
L — A e e e e e e e]

data-set-list
specifies the name of a data set or a member of a partitioned data
set, or a list of names of data sets and/or members (see data set
naming conventions). If you specify a list, it must be enclosed
within parentheses.

If you want to delete several data sets having similar names, you
may insert an asterisk into the data set name at the point of

- dissimilarity. That is, all data sets whose names match except at
the position where the asterisk is placed will be deleted.
However, you may use only one asterisk per data set name, and you
must not place it in the first position.

For instance, suppose that you have several data sets named:
ROGERA.SOURCE. PLI
ROGERA.SOURCE2. PLI
ROGERA.SOURCE2. TEXT
ROGERA.SOURCE2.DATA
If you specify:
DELETE SOURCEZ2. *

the only data set remaining will be

ROGERA.SOURCE. PLI

65

DELETE Command

PURGE
specifies that the data set is to be deleted even if its expiration
date has not elapsed. This operand is ignored by the system if you
are deleting a member of a partitioned data set. The PURGE keyword
applies to all data sets specified in a list.

NOPURGE
specifies that you want the system to check the expiration date for
the data set. Only if the expiration date has elapsed will the
data set be deleted. The NOPURGE keyword applies to all data sets
specified in a list. This is the default if neither PURGE nor
NOPURGE is specified.

Example 1

Operation: Delete a member of a partitioned data set.

Known: The data set name and member nameaa.... BAN0OO.INCREASE. FORT (HOOF)

r 1

{DELETE INCREASE.FORT (HOOF) |

L _— 1

Example 2

Operation: Delete several data sets.

Known: The name of the data setS.ceceacecennccencess JWSD58.CMDS.TEXT
JWSD58.UT ILS.OBJ
JWSD58. BUDGET . ASM

r -~ 1

| DELETE (CMDS.TEXT UTILS.OBJ BUDGET.ASM) |

L —_ 4

Example 3

Operation: Delete a data set even if its expiration date has not

expired.

Known: The name of the data set .eeeeecececesss REBL.SCHEDULE.OBJ

r - 1

| D SCHEDULE.OBJ PURGE |

L —_ 1

66 TSO Command Language Reference (Release 21.7)

' EDIT Command

The EDIT command is the primary facility for entering data into the
system. Therefore, almost every application involves some use of EDIT.
With EDIT and its subcommands, you can create, modify, store, and
retrieve data sets with sequential or partitioned data set organization.

These data sets may contain:

e Source programs composed of programming language statements (PL/I,
COBOL, FORTRAN, etc.)

Data used as input to a program.

Text used for information storage and retrieval.

Commands, subcommands, and/or data (Command Procedure).

Job Control (JCL) statements for background jobs.

The EDIT command will only support data sets that have one of the
following record formats:

F - fixed length records

FB - fixed length, blocked records

V - variable length records

VB - variable length, blocked records

See Figure 8, note U4 for a complete list of the data set attributes
that are supported by EDIT.

67

EDIT Command

[) .
| COMMAND

[—— ——— — — —— — f— — s . {— —— — . I, St e . S S Uit . . o e o o e, U

OPERANDS

SCAN
NOSCAN

[LLUM

data-set-name[NEW]
OLD _
PLI :
PLIF[([integerl [integerz CHAR60 1)
2 2] [Gares]]
ASM
COBOL,
GOFORT[(FREE)
(FIXED)]'
FORTE '
FORTG
FORTGI
FORTH
TEXT
DATA
CLIST
CNTL
BASIC
IPLI CHAR60]
[CHARus

][(integerl linteger21)1
NONUM

[BLOCK(integer)] [LINE (integer)]

CAPS
ASIs

68 TSO Command language Reference (Release 21.7)

EDIT Command

data-set-name

PLI

PLIF

specifies the name of the data set that you want to create or edit.
(see data set naming conventions.)

Note: Any user-defined data set type (specified at system
generation) is also a valid data set type keyword and may have
subfield parametexrs defined by the user's installation (see Figure
8, note W).

specifies that the data set identified by the first operand is for

PL/I statements that are to held as V-format records with a maximum
length of 104 bytes. The statements may be for the PL/I Optimizing
Compiler or the PL/I Checkout Compiler.

specifies that the data set identified by the first operand is for
PL/I statements that are to be held as F-format records, 80 bytes
long. The statements may be for the PL/I(F) Compiler, the PL/I
Optimizing Compiler, or the PL/I Checkout Compiler.

integerl and integer2

the optional values contained within the parentheses are applicable
only when you request syntax checking of a data set for which the
PLIF operand has been specified. The integerl and integer2 values
define the column boundaries for your input statements. The
position of the first character of a line, as determined by the
left margin adjustment on your terminal, is column 1. The value
for integerl specifies the column where each input statement is to
begin. The statement can extend from the column specified by
integerl up to and including the column specified as a value for
integer2. If you omit integerl you must omit integer2, and the
default values are columns 2 and 72; however, you can omit integer2
without omitting integerl.

CHARU48 or CHARG60

CHARUS8 specifies that the PL/I source statements are written using

the character set that consists of 48 characters. CHAR60 specifies
that the source statements are written using the character set that
consists of 60 characters. If you omit both CHAR48 and CHAR60, the
default value is CHARG6O.

IPLI(CHARU48 or CHARG60)

specifies that the data set identified by the first operand is for
PL/I statements that may be processed by the ITF:PLI Program
Product. CHAR48 or CHAR60 are used as described in the PLI operand
description.

BASIC

ASM

specifies that the data set identified by the first operand is for
BASIC statements that may be processed by the ITF:BASIC Program
Product.

specifies that the data set identified by the first operand is for
assembler language statements.

COBOL

specifies that the data set identified by the first operand is for
COBOL statements.

69

EDIT Command

CLIST
specifies that the data set identified by the first operand is for
a command procedure and will contain TSO commands and subcommands
as statements or records in the data set.

CNTL :
specifies that the data set identified by the first operand is for
Job Control Language {(JCL) statements and SYSIN data to be used
with the SUBMIT command.

TEXT
specifies that the data set identified by the first operand is for
text that may consist of both uppercase and lowercase characters.

DATA
specifies that the data set identified by the first operand is for
data that may be subseguently retrieved or used as input data for
processing by an application program.

FORTE
specifies that the data set identified by the first operand is for
FORTRAN (E) statements.

FORTG
specifies that the data set identified by the first operand is for
FORTRAN (G) statements.

FORTGI
specifies that the data set identified by the first operand is for
FORTRAN (G1l) statements.

FORTH
specifies that the data set identified by the first operand is for
FORTRAN (H) statements.

GOFORT (FREE or FIXED)
specifies that the data set identified by the first operand is for
statements that are suitable for processing hy the Code and Go
FORTRAN Program Product.

FREE specifies that the statements are of variable lengths and do
not conform to set column requirements. This is the default value
if neither FREE nor FIXED is specified. FIXED specifies that
statements adhere to standard FORTRAN column requirements and are
80 bytes long.

Note: The ASM, BASIC, CLIST, CNTL, COBOL, DATA, FORTE, FORTG, FORTGI,
| FORTH, GOFORT, IPLI, PLI, PLIF, and TEXT operands specify the type of
data set you want to edit or create.. You must specify one of these
whenever:

e The data-set-name operand does not follow data set naming
conventions (i.e., it is enclosed in quotes).

® The data-set-name operand is a member name only (i.e., it is
enclosed in parentheses).

e The data-set-name operand does not include a descriptive qualifier;
or the descriptive qualifier is such that EDIT cannot determine the
data set type. (See Figure 3 for a list of valid descriptive
qualifiers.)

70 TsSO Command Language Reference (Release 21.7)

EDIT Command

The system prompts the user for data set type whenever the type cannot
be determined from the descriptive qualifier (as in the 3 cases above),
or whenever the user forgets to specify a descriptive qualifier on the
EDIT command.

Note: When the descriptive qualifier FORT is entered with no data set
type, the data set type default is GOFORT (FREE). If PLI is the
descriptive qualifier, the data set type default is PLI. To use data
set types GOFORT(FIXED), FORTGI, FORTG, FORTE, FORTH or PLIF, you must
enter the data set type keyword.

NEW
specifies that the data set named by the first operand does not
exist. If an existing cataloged data set already has the data set
name that you specified, the system notifies you when you try to
save it; otherwise, the system allocates your data set when you
save it.

If you specify NEW without specifying a member name, the system
allocates a sequential data set for you when you save it. If you
specify NEW and include a member name the system allocates a
partitioned data set and creates the indicated member when you try
to save it.

OLD
specifies that the data set named on the EDIT command already
exists. When you specify OLD and the system is unable to locate
the data set, you will be notified and you will have to reenter the
EDIT command.

If you specify OLD without specifying a member name, the system
will assume that your data set is sequential: if the data set is
in fact a partitioned data set, the system will assume that the
member name is TEMPNAME. If you specify OLD and include a member
name, the system will notify you if your data set is not
partitioned.

If you do not specify OID or NEW, the system uses a tentative
default of OLD. If the data set name or member name that you
specified, cannot be located, you will be prompted to enter NEW or
OLD. If you enter NEW, EDIT processing will continue. = If you
enter OLD, the system will notify you why the data set or member
could not be located. You can then enter EDIT or another command.

SCAN
specifies that each line of data you enter in Input mode is to be
checked statement by statement for proper syntax. If you specify
the BASIC or IPLI data set type keyword, all modifications made in
Edit mode and each line of data entered in Input mode will be
checked for proper syntax. Syntax checking is available only for
statements written in GOFORT, FORTE, FORTGI, FORTG, FORTH, BASIC,
IPLI, or PLIF. PLIF data sets are checked according to the syntax
rules of the PL/I(F) Compiler. Statements that are valid for the
PL/I Optimizing Compiler or the PL/I Checkout Compiler, but are
invalid for the PL/I(F) Compiler, will be considered as errors.

Note: User-defined data set types can also use this keyword if a
syntax checker name was specified at system generation time.

NOSCAN

specifies that syntax checking is not to be performed. This is the
default value if neither SCAN nor NOSCAN is specified.

71

EDIT Command

NUM (integerl integer?2)
specifies that the lines of the data set records are numbered. You
may specify integerl and integer2 for ASM type data sets only.
Integerl specifies, in decimal, the starting column (73-80) of the
line number. Integer2 specifies, in decimal, the length (8 or
less) of the line number. Integerl plus integer2 cannot exceed 81.
If integerl and integer2 are not specified, the line numbers will
default according to the type of data set being created or edited

(see Figure 8). NUM is the default value if you omit both NUM and
NONUM.

NONUM

specifies that your data set records do not contain line numbers.
Do not specify this keyword for the BASIC, IPLI, GOFORT, and CLIST
data set types, since theyv must always have line numbers. The
default is NUM.

CAPS
specifies that all input data is to be converted to uppercase
characters. If you omit both CAPS and ASIS, then CAPS is the
default except when the data set type is TEXT.

ASIs

specifies that input is to retain the same form (upper and lower
case) as entered. ASIS is the default for TEXT only.

BLOCK (integer)
specifies the maximum length, in bytes, for blocks of records of a
new data set. Specify this operand only when creating a new data
set or using an old data set that is empty. You cannot change the
block size of an existing data set unless the data set is empty.
If you omit this operand, it will default according to the type of
data set being created. Default block sizes are described in Table
4. If different defaults are established at system generation
(SYSGEN) time, Figure 8 values may not be applicable. The blocksize:
(BLOCK) for data sets that contain fixed length records must be a
multiple of the record length (LINE); for variable length records,
the blocksize must be a multiple of the record length plus 4.

LINE (integer)
specifies the length of the records to be created for a new data
set. Specify this operand only when creating a new data set or
using an old data set that is empty. The new data set will be
composed of fixed length records with a logical record length equal
to the specified integer. You cannot change the logical record
size of an existing data set unless the data set is empty. If you
specify this operand and the data set type is ASM, FORTE, FORTG,
FORTGI, FORTH, GOFORT(FIXED), COBOL or CNTL the integer must be 80.
If this operand is omitted, the line size defaults according to the
type of data set being created. Default line sizes for each data
set type may be found in Figure 8. This operand is used in
conjunction with the BLOCK operand.

72 TSO Command Language Reference (Release 21.7)

EDIT Command

f T T T - T 1
| DATA SET |DSORG]| LRECL | BLOCK SIZE | LINE NUMBERS | |
|TYPE | b-—- . + + 1
| | | LINE(n) {Notel) BLOCK (n) | NUM (n,m) | CAPS/ASIS

| | i s - + + 1 1
| | |default|{specif. |default|specif. |default (n,m) spec. |default}allowed |
t + + + 1 + + + + 1
AsM	Ps/PO	80	=80	1680	<default	last 8 73<n<80	CAPS	CAPS only
BASIC	PS/PO	120	[(Note 2)	1680	sdefault]	(Note 3)	CAPS	CAPS only
CLIST	PS/PO	255	(Note 2)	1680	[<default](Note 3)	CAPS	CAPS only	
CNTL	PS/PO	80	=80	1680	<default	Last 8	CAPS	CAPS only
COBOL	PS/PO	80	=80	400	<default	First 6	CAPS	CAPS only
DATA	PS/PO	80	<255	1680	<default	(Note 3)	CAPS	CAPS or

| FORTE, | | | | | | | | AsIs

| FORTG, | | | | | | | |

| FORTGI, | | | [| | | |

| FORTH, | | | | | 1]]

|GOFORT | | I 1 |] |

| (FIXED) |PS/PO| 80 | =80 | 400 |<default|Last 8 | caps |cCaPs only
| GOFORT | | | |] | i

| (FREE) |Ps/PO| 255 | | 1680 |<default|First 8 | CAPS |CAPS or

[| [| I | | | | AsIs

| IPLI |PS/PO| 120 |(Note 2)| 1680]|<default|(Note 3) | caPs |CAPS only
| lor user supplied data set type -- See Note 4) | |

|PLI {PS/PO| 104 | <100 | 500 |<default|(Note 3) | CAPS |CAPS or

| | [| | | | | AsIs
|PLIF |Ps/po | 80 | <100 | 400 |<default|last 8 | caPsS |CAPS only
| TEXT |PS/PO| 255 |[(Note 2)| 1680 |<default|{Note 3) | ASIS |CAPS or

! | | I | | | | | AasIs

‘_ 4. 1 L L L A A, i

|Note 1:

| The default or
|Note 2:

specified value
default.
Note 3:

Note U4:

the publication

Record formats-
Logical Record
Block Sizes-
Sequence Nos.-

|
|
|
|Note 3
|
|
|Note 4
|
[
|
i
|
|
|
|
|
|
|
i
|
|
|
|
!
|
L

maximum allowable block size may be specified at SYSGEN time.

System Generation,

Specifying a LINE value results in fixed length records with a LRECL equal to the
. The specified value must always be equal to or less than the
If the LINE keyword is omitted, variable length records will ke created.

" The line numbers will be contained in the last eight bytes of all fixed length
records and in the first eight bytes of all variable length records.

A user can have additional data set types recognized by the EDIT command processor.
These user-defined data set types, along with any of the data set types shown above,
can be defined at system generation time by using the EDIT macro.
causes a table of constants to be built which describes the data set attributes. For
more information on how to specify the EDIT macro at system generation time, refer to
, IBM System/360 Operating System:

The EDIT macro

Data Set Organization- Must be either sequential or partitioned

Fixed or Variable

Size-

V type:
F type:

Less than or equal to 255 characters

User specified -- must be less than or equal to track length
First 8 characters
Last 8 characters

When a user wants to edit a data set type that he has defined himself, the data set
type is used as the descriptor (rightmost) qualifier.
data set types that have been defined by IBM.
support data sets that have the following attributes:

The user cannot override any
The EDIT command processor will

GC28-6554.

S T T S R Iy ——

Figure 8.

Default Values for LINE and BLOCK Operands

13

EDIT Command

You can also use the EDIT command to:
e Compile, load, and execute a source program.
These operations are defined and controlled by using the EDIT operands

and subcommands.

MODES OF OPERATION

The EDIT command has two modes of operation: input mode and edit mode.
You enter data into a data set when you are in input mode. You enter
subcommands and their operands when you are in edit mode.

You must specify a data set name when you enter the EDIT command. If
you specify the NEW keyword, the system places you in the Input mode.
If you do not specify the NEW keyword, you are placed in the Edit mode
if your specified data set is not empty; if the data set is empty, you
will be placed in Input mode.

Input Mode

In input mode, you type a line of data and then enter it into the data
set by pressing your terminal's carrier return key. You can enter lines
of data as long as you are in input mode. One typed line of input
becomes one record in the data set.

CAUTION: If you enter a command or subcommand while you are in input
mode, the system will add it to the data set as input data. Enter a
null-line to return to EDIT mode before entering any subcommands.

Line Numbers: Unless you specify otherwise, the system assigns a line
number to each line as it is entered. Line numbers make editing much
easier, since you can refer to each line by its own number.

Each line number consists of not more than eight digits, with the
significant digits justified on the right and preceded by zeros. Line
numbers are placed at the beginning of variable length records and at
the end of fixed length records (exception: 1line numbers for COBOL
fixed length records are placed in the first six positions at the
beginning of the record). When you are working with a data set that has
line numbers, you can have the new line number listed at the start of
each new input line. If you are creating a data set without line
numbers, you can request that a prompting character be displayed at the
terminal before each line is entered. Otherwise, none will be issued.

Record Format: Record formats and sizes may vary according to the type
of data set. In all cases, the length of your records must not exceed
255 characters, and the record format cannot be other than fixed (F),
fixed blocked (FB), variable (V), or variable blocked (VB).

Note: Edit does not allow a user to edit data sets with record formats
of either FBA or FBM.

74 TSO Command Language Reference (Release 21.7)

EDIT Command

All input records will be converted to upper case characters, excerpt
when you specify the ASIS or TEXT operand. The TEXT operand also
specifies that character-deleting indicators will be recognized, but all
other characters will be added to the data set unchanged. More specific
considerations are:

All Assembler source data sets must consist of fixed length records
80 characters in length. These records may or may not have line
numbers. If the records are line-numbered, the number can be
located anywhere within columns 73 to 80 of the stored record (the
printed line number always appears at the left margin).

IPLI and BASIC data sets may consist of either fixed length or
variable length records. All records must contain line numbers.
Fixed-length records may be specified up to 120 characters in
length. The default is variable-length records with the 1line
number contained in the €first eight characters.

You can create a variety of FORTRAN data sets: FORTE; FORTG;
FORTGI; FORTH; and GOFORT. You can enter GOFORT input statements
in "free form," that is, there are no specific columns into which
your statements must go. Free-form FORTRAN statements will be
stored as variable length records.

Syntax Checking: You can have each line of input checked for proper
syntax. The system will check the syntax of statements for data sets
having FORT, IPLI, and BASIC descriptive qualifiers. Input lines will
be collected within the system until a complete statement is available
for checking.

When an error is found during syntax checking, an appropriate error
message is issued and edit mode is entered. You can then take
corrective action, using the subcommands. When you wish to resume input
operations, press your terminal's carrier return key without typing any
input. Input mode is then entered and you can continue where you left
off. Whenever statements are being checked for syntax during input
mode, the system will prompt you for each line to be entered unless you
specify the NOPROMPT operand for the INPUT subcommand.

Continuation of a ILine in Input Mode: 1In input mode there are three
independent situations that require you to indicate the continuation of
a line - by ending it with a hyphen - (i.e., a hyphen followed
immediately by a carriage return). The situations are:

1. The syntax checking facility is being used.
2. The data set type is GOFORT(FREE).
3. The data set type is CLIST (variable length records).

If none of these situations apply, avoid ending a line with a hyphen
(minus sign) since it will be removed by the system before storing the
line in your data set.

You must use the hyphen when the syntax checking facility is active
to indicate that the logical line to be syntax checked consists of
multiple input lines. The editor will then collect these lines
(removing the hyphens) and pass them as one logical line to the syntax
scanner. However, each individual input line (with its hyphen removed)
is also stored separately in your data set.

You must use the hyphen to indicate logical line continuation in a
GOFORT (FREE) data set, whether or not syntax checking is active. Since

75

EDIT Command

the Code and Go FORTRAN free-form input format requires a hyphen to
indicate continuation to its syntax checker and compiler, the hyphen is
not removed from the input line by EDIT, but becomes part of the stored
line in your data set. '

The hyphen is also used to indicate logical line continuation in
command procedures (CLIST data sets). If the CLIST is in variable
length record format (the default), the hyphen is not removed by EDIT
but becomes part of the stored line in your data set and will be
recognized when executed by the EXEC command processor. If the CLIST is
in fixed length record format, a hyphen, placed eight character
positions before the end of the record and followed by a blank, will be
recognized as a continuation when executed by the EXEC command
processor. (This assumes that the line number field is defined to
occupy the last eight positions of the stored record.) For example, if
the parameter LINE(80) was specified on the EDIT command when defining
the CLIST data set, the hyphen must be placed in data position 72 of the
input 1line followed immediately by a blank. (Location of a particular
input data column is described under the TABSET subcommand of EDIT.)

Note that these rules apply only when entering data in Input Mode.
When you use a subcommand (e.g., CHANGE, INSERT) to enter data, a hyphen
at the end of the line indicates subcommand continuation; the system
will append the continuation data to the subcommand.

To insert a line of data ending in a hyphen in situations where the
system would remove the hyphen (i.e., while in subcommand mode or in
input mode for other than CLIST or GOFORT data sets), enter a hyphen in
the next-to-last column, a blank in the last column, and an immediate
carriage return.

Edit Mode

You can enter subcommands to edit data sets when you are in Edit Mode.
You can edit data sets that have line numbers by referring to the number
of the line that you want to edit. This is called line-number editing.
You can also edit data by referring to specific items of text within the
lines. This is called context editing. A data set having no line
numbers may be edited only by context. Context editing is performed by
using subcommands that refer to the current line value or a character
combination, such as with the FIND or CHANGE subcommands. There is a
pointer within the system that points to a line within the data set.
Upon initial entry into EDIT for an old data set, the current line
pointer points to the last line of the data set. Otherwise, this
pointer points to the last line that you referred to. You can use
subcommands to change the pointer so that it points to any line of data
that you choose. You may then refer to the line that it points to by
specifying an asterisk (#*) instead of a line number. Figure 9 shows
where the pointer points at completion of each subcommand.

Note: A current-line pointer value of zero refers to the position
before the first record, if the data set does not contain a record zero.

When you edit data sets with line numbers, the line number field will
not be involved in any modifications made to the record except during
renumbering. Also, the only editing operations that will be performed
across record boundaries will be the CHANGE and FIND subcommands, when
the TEXT and NONUM operands have been specified for the EDIT command.

In CHANGE and FIND an editing operation will be performed across only
one record boundary at a time.

76 TSO Command Language Reference (Release 21.7)

EDIT Command

r
|Edit Subcommands

T
| Value of the Pointer at Completion of Subcommand
4

t + -
| BOTTOM {Last line (or zero for empty data sets)
I |
| CHANGE |Last line changed
| I
| DELETE |Line preceding deleted line (or zero if the
| |first line of the data set has been deleted)
I
DOWN |Line n relative lines below the last line
| referred to, where n is the value of the "count"
| parameter, or bottom of the data set (or line
| zexo for empty data sets)
|
END | No change
I .
FIND |Line containing specified string, if any; else,

INSERT

IsT

=

ROFILE

FORMAT (a program
product)

Insert/Replace/Delete|Inserted line or replaced line or line preceding

ERGE(a program
product)

|no change
!
|No change
I
|

| No change

|Last line entered

[Last line entered

jthe deleted line if any (or zero, if no
| preceding line exists)
I

|Last line listed

|

|]Last line of data set.
!

I

| No change

I

| Same relative line

|

| No change

I

| No change

l

|Last line scanned, if any

| No change

| Zero value

|Line n relative lines above the last line
| referred to, where n is the value of the "count"
| parameter, (or line zero for empty data sets).

| No change
1

o o e s ot ot S S A — — — T (— S T— S — o — T— —— S S— . S— T——) S ———— St il e S St R S M VU e, e, et et Sttt e e S ot et et st i, s gy e]

Figure 9.

Values of the Line pointer Referred to by an Asterisk (%)

77

EDIT Command

Changing From One Mode to Another

If you specify an existing data set name as an operand for the EDIT
command, you begin processing in edit mode. If you specify a new data
set name or an old data set with no records, as an operand for the EDIT
command, you will begin processing in input mode. You will change from
edit mode to input mode when:

1. You press the carriage return key without typing anything first.

Note: If this is the first time during your current usage of EDIT that
Input mode is entered, input will begin at the line after the last line
of the data set (for data sets which are not empty) or at the first line
of the data set (for empty data sets). If this is not the first time
during your current usage of EDIT that Input mode is entered, input will
begin at the point following the data entered when last in input mode.

2. You enter the INPUT subcommand.
Note: If you use ;he INPUT subcommand without the R keyword and the
line is null (that is, it contains no data), input begins at the
specified line; if the specified line contains data, input begins at the
first increment past that line. If you use the INPUT subcommand with
the R keyword, input begins at the specified line, replacing existing
data, if any.
3. You enter the INSERT subcommand with no operands.
You will switch from input mode to edit mode when:
1. You press the carriage return key without typing anything first.
2. You cause an attention interruption.

3. There is no more space for records to be inserted into the data set
and resequencing is not allowed.

4. When an error is discovered by the syntax checker.

Data Set Disposition-

The system assumes a disposition of (NEW,CATLG) for new data sets and
(OLD,KEEP) for existing data sets.

TABULATION CHARACTERS

When you enter the EDIT command into the system, the system establishes
a list of tab setting values for you, depending on the data set type.
These are logical tab setting values and may or may not represent the
actual tab setting on your terminal. You can establish your own tab
settings for input by using the TABSET subcommand. A list of the
default tab setting values for each data set type is presented in the
TABSET subcommand description. The system will scan each input line for
tabulation characters (the characters produced by pressing the TAB key
on the terminal). The system will replace each tabulation character by
as many blanks as are necessary to position the next character at the
appropriate logical tab setting.

78 TSO Command Language Reference (Release 21.7)

EDIT Command

When tab settings are not in use, each tabulation character
encountered in all input data will be replaced by a single blank. You
can also use the tabulation character to separate subcommands from their
operands.

EXECUTING USER_WRITTEN PROGRAMS

You can compile and execute the source statements contained in certain
data set types py using the RUN subcommand. The RUN subcommand makes
use of optional Program Products; the specific requirements are
discussed in the description of the RUN subcommand.

TERMINATING THE EDIT COMMAND

You can terminate the EDIT operation at any time by switching to edit
mode (if you are not already in edit mode) and entering the END
subcommand. Before terminating the EDIT command, you should be sure to
store all data that you want to save. You can use the SAVE subcommand
for this purpose.

Example 1
Operation: Create a data set to contain a COBOL program.
Known: The user-supplied name for the new data set. PARTS

The fully qualified name will b€.....ce..... BOBD58.PARTS.COBOL
Line numbers are to be assigned.

r
| EDIT PARTS NEW COBOL
L

=~ d

Example 2

Operation: Create a data set to contain a program written in FORTRAN to
be processed by the FORTRAN (Gl) compiler.

Known: The user-suprlied name for the new data set..... HYDRLICS
The fully qualified name will beé.......... DEPT90.HYDRLICS.FORT
The input statements are not to be numbered.
Syntax checking is desired.
BlOCK SiZ€uucneconceascnonocncnnnnnnnsncacasnense 400
Line length musSt DEuicccecescossnncannsnccasesass 80
The data is to be changed to all upper case.

r 1

| EDIT HYDRLICS NEW FORTGI NONUM SCAN |

L - 3
or

r - - 1

|e hydrlics new fortgi scan nonum |

L 3

79

EDIT Command

Example 3

Operation: Add data to an existing data set containing input data for a
program.

Known: The name of the data Set...ececeewacecensess. FHETD58.MANHRS.DATA
BlOCK SiZ€eceevsnacccnecnncsannssnnnnsnnasese 1680
Line lengtheisececseanceccccnnocncnnccncncanses 80
Line numbers are desired.
The data is to be upper case.
Syntax checking is not applicable.

o e b

r
|e manhrs.data
L

Example 4

Operation: Create a data set for a Command Procedure.

Known: The user supplied name for the data sete.ecemesceeass.... CMDPROC

[|

r
| E CMDPROC NEW CLIST
L

Example 5
Operation: Create a data set to contain a PLI PROGRAM.

Known: The user-supplied name for the data set........... WEATHER
The column requirements for input records
left MAYGIiNe cenenecancccncacnsnanscssncnnsenecanees COlumn 1
Yight MAXgiNeeecanececcensneccancccncnsannmansensess COlumn 68
The allowed character Set..ccceesecnencansemnassecs. U8 characters
Line numbers are desired.
Each statement is to be checked for proper syntax.
The default BLOCK and LINE value are acceptable.

r
edit weather new pli(l 68 char48) scan
b 4

80 TSO Command Language Reference (Release 21.7)

SUBCOMMANDS FOR _EDIT

EDIT Command

Use the subcommands while in edit mode to edit and manipulate data.
format of each subcommand is similar to the format of all the commands.
Each subcommand, therefore, is presented and explained in a manner

Figure 10 contains a brief summary of

similar to that for a command.
each subcommand's function.

The

r _— -
| BOTTOM Moves the pointer to the last 1line.
| CHANGE Modifies text of a line, or range of
| lines.

| DELETE Removes records.

| DOWN Moves the pointer toward the end of
| the data.

| END Terminates the EDIT command.

| FIND Iocates a character string.

| FORMAT (available as an Formats and lists data.

| optional

| Program Product) -

| HELP Explains available subcommands.

| INPUT Prepares the system for data input.

| INSERT Inserts records.

| Insert/Replace/Delete
|LIsT

|MERGE (available as an
| optional

| ‘Program Product)
| PROFILE

|

| RENUM

| RUN

| SAVE

| SCAN

| TABSET
| ToP

| up

| VERIFY

[——— —

T
|
|
|
|
|
|
I
|
|
I
|
|
|
I
|
|
|
|
!
I
|
!
|
I
I
|
|
I
I
|
|
|
I
I
L

Inserts,replaces, or deletes a line.
Prints out specific lines of data.
Combines all or parts of data sets.

Specifies your selected 'delete"
indicators.

Numbers or renumbers lines of data.
Causes compilation and execution of
data set.

Retains the data set.

Controls syntax checking.

Sets the Tabs-.

Sets the pointer to zero value.

Moves the pointer toward the start of

data set.

Causes current line to be listed
whenever the current line pointer
changes or the text of the current
line is modified.

LD e e et e e ot S e i S St ki . Vi Sl ot S S Bt it Sl S Bt S S S P, e, St o S st e e]

Figure 10.

Subcommands Used With the Edit Command

81

BOTTOM Subcommand of EDIT

Use the BOTTOM subcommand to change the current line pointer so that it
points to the last line of the data set being edited or so that it
contains a zero value, if the data set is empty. This subcommand may be
useful when subsequent subcommands such as INPUT or MERGE must begin at
the end of the data set.

| T - 1
| SUBCOMMAND | OPERANDS |
t " -~ !
1 {BOTTOM} | I
| \B | I
L 1 — PR |

82 TSO Command Language Reference (Release 21.7)

CHANGE Subcommand of EDIT

Use the CHANGE subcommand to modify a sequence of characters (a
character-string) in a line or in a range of lines. Either the first
occurrence or all occurrences of the sequence can be modified.

--------- T ————— Bl
| SUBCOMMAND | OPERANDS I
et pomm oo R -1
| {CHANGE} | * |
| ¢ } line-number-1 [line-number-2] |
| | *[count 1]]
I I I
| | {stringl [string2 [special—delimiter[ALL]]]} |
| | count2 |
L o e e e o o ot e et e e e e e S o e 2 e A o e e e e e e e e e 3

line-number-1
specifies the number of a line you want to change. When used with
line-number-2, it specifies the first line of a range of lines.

line-number-2
specifies the last line of a range of lines that you want to
change. The specified lines are scanned for occurrences of the
sequence of characters specified for stringl. If you specify the
ALL operand, each occurrence of stringl in the range of lines is
replaced by the sequence of characters that you specify for
string2. If you do not specify the ALL operand, only the first
occurrence of stringl will be replaced by string2.

specifies that the line pointed to by the line pointer in the
system is to be used. If you do not specify a line number or an
asterisk, the current line will be the default value.

countl
specifies the number of lines that you want to change, starting at
the position indicated by the asterisk (*).

stringl
specifies a sequence of characters (a character string) that you
want to change. The segquence must be (1) enclosed within single
quotes, or (2) preceded by an extra character which serves as a
special delimiter. The extra character may be any printable
character other than a single quote (apostrophe), number, blank,
tab, comma, semicolon, parenthesis, or asterisk. The hyphen (-)
can be used but should be avoided due to possible confusion with
its use in continuation. The extra character must not appear in
the character string. Do not put a standard delimiter between the
extra character and the string of characters unless you intend for
the delimiter to be treated as a character in the character string.

If stringl is specified and string2 is not, the specified
characters are displayed at your terminal up to (but not including)
the sequence of characters that you specified for stringl. You can
then edit the sequence of characters as you please.

83

CHANGE Subcommand of EDIT

string2
specifies a sequence of characters that you want to use as a
replacement for stringl. Like stringl, string2 must be (1)
enclosed within single quotes, or (2) preceded by a special
delimiter. This delimeter must be the same as the extra character
used for stringl.

specifies that every occurrence of stringl within the specified
line or range of lines will be replaced by string2. If this
operand is omitted, only the first occurrence of stringl will be
replaced with string2.

Note: If the special delimeter form is used, string2 must be
terminated by the delimeter before typing the ALL operand.

count 2

specifies a number of characters to be displayed at your terminal,
starting at the beginning of each specified line.

ouoted String Notation

As indicated above, instead of using special delimiters to indicate a
character string, you can use paired single quotes (apostrophes) to
accomplish the same function with the CHANGE subcommand. The use of
single quotes as delimiters for a character string is called
quoted-string notation. Following are the rules for quoted-string
notation for the stringl and string2 operands:

1. You cannot use both special-delimiter and quoted-string notation in
the same subcommand.

2. Each string must be enclosed within single quotes, e.g., 'This is
stringl' 'This is string2.'

3. A single quote within a character string is represented by two
single quotes, e.g., 'pilgrim'®'s progress'.

4. A null string is represented by two single quotes, e.g., "".

You can specify quoted string notation in place of special
delimiter-notation to accomplish any of the functions of the CHANGE
subcommand as follows:

*Special Delimiter Quoted String

Function Notation Notation
Replace +ab+cde+ 'ab® 'cde’
Delete +ab++ *ab' ‘'t
Print up to +ab 'ab"

Place in

front of ++cde + 't *cde’

* the special delimiter is +.

Note: It is recommended that you choose the form that best suits you
(either special delimeter or quoted string) and use it consistently. It
will expedite your use of this powerful subcommand.

Combinations of Operands

You can enter several different combinations of these operands. The
system interprets the operands that you enter according to the following
rules:

84 TSO Command Language Reference (Release 21.7)

CHANGE Subcommand of EDIT

e When you enter a single number and no other operands, the system
assumes that you are accepting the default value of the asterisk (%)
and that the number is a value for the count2 operand.

e When you enter two numbers and no other operands, the system assumes
that they are line-number-1 and count2 respectively.

e When you enter two operands and the first is a number and the second
begins with a character that is not a number, the system assumes
that they are line-number-1 and stringl.

e When you enter three operands and they are all numbers, the system
assumes that they are line-number-1, line-number-2 and count2.

e When you enter three operands and the first two are numbers but the
last begins with a character that is not a number, the system
assumes that they are line-number-1, line-number-2 and stringl.

Example 1

Operation: Change a sequence of characters in a particular line of a
line numbered data set.

Known: The 1iNE NUMDEYew..ceccencenccnancnsncnonnccnemeninsames 37
The 01ld sequence Of characterS..ececcecenceccacecsensss. parameter
The new sequence Of characterS.acencencncccscacncenss.e Operand

r
| CHANGE 57 XparameterXoperand
L

f ——d

Examgle 2

Operation: Change a sequence of characters wherever it appears in
sevexral lines of a line numbered data set.

Known: The starting line nuUmber...ccececececncanacceancnccnnnsnasces 24
The ending 1ine NUMDEr...cec.e.cecccannnnenancanscnacnnnenases 82
The 014 sequence O0f CharacterSeuaceccecnccecncnccacnccnenens 1e€,
The new sequence of charactersS....cecenccccccnccencncnnnnns €.G.

r - v 1
lchange 24 82 !i.e. le.g. !all |

- ——

The blanks following the stringl and string2 examples (i.e. and e.g.)
are treated as characters.

Example 3

Operation: Change part of a line in a line numbered data set.

Known: The 1ine NUMDET....eoceccencacsomccanncoecncasmscensneneeeessas LU3
The number of characters in the line preceding the
characters to be changed. ..cccaueannceccanccasnsaccaancnsecscncens 18

r —
| CHANGE 143 18
L

85

CHANGE Subcommand of EDIT

This form of the subcommand causes the first 18 characters of line
number 143 to be listed at your terminal. You complete the line by
typing the new information and enter the line by pressing the RETURN
key. All of your changes will be incorporated into the data set.

Example 4

Operation: Change part of a particular line of a line numbered data
set.

Known: The line NUMDEY.ewceewsconccansnssnannansassaans 103
A string of characters to be changede.eeeesew.. 315 h.p. at 2400

r
|CHANGE 103 M315 h.p. at 2400
L

g e

This form of the subcommand causes line number 103 to be searched until
the characters "315 h.p. at 2400" are found. The line is displayed at
your terminal up to the string of characters. You can then complete the
line and enter the new version into the data set.

Example 5
Operation: Change the values in a table.
Known: The line number of the first line in the tabl€...ececcencess. 387

The line number of the last line in the tabl€...ccecacececa.. U406
The number of the column containing the valueS...ccccecceaceas. 53

r
| CHANGE 387 406 52
L

Each line in the table is displayed at your terminal up to the column
containing the value. As each line is displayed, you can type in the
new value. The next line will not be displayed until you complete the
current line and enter it into the data set.

Example 6

Operationi Add a sequence of characters to the front of the line that
is currently referred to by the pointer within the system.

Known: The sequence of characterS....eceeecewwsesesc=--. In the beginning

r 1

| CHANGE * //In the beginning ‘ |

L]

Example 7

Operation: Delete a sequence of characters from a line-numbered data
set.

Known: The line number containing the string of characterSe....-.... 15
The sequence of characters to be deletedu..c.cncn.c.. .eeees Weekly

=

r f
| CHANGE 15 /WEEKLY// | or |CHANGE 15 /WEEKLY/
L J L

e s

86 TSO Command Language Reference (Release 21.7)

Examples Usi

CHANGE Subcommand of EDIT

ng Quoted Strings

Example 1A
Operation:
Known: The

The
The

Change a sequence of characters in a particular line of a
line numbered data set.

line NUMDEYeenececnonanecsecncrsmanaanccnnncannene D7
0ld sequence Of CharaCter Sececacccenccnccecnannnanes parameter
new sequence Of characterS.ca.caceccccneacncnsnsss Operand

L)
| CHANGE 57 °*
L

- 1
parameter' 'operand' |

Example 6A

Operation:

Known: The

Add a sequence of characters to the front of the line that
is currently referred to by the pointer within the system.

sequence oOf characterS...cmnesssnsesevseecnees 1IN the beginning

T
| CHANGE # *°*
L

1
'‘In the beginning' |

—_———— 3

Example 7A

Operation:

Known: The

Delete a sequence of characters from a line-numbered data
set.

line number containing the

String Of CharacterS..ccececcccacccnnncacccncnsmenccscees 15

The

sequence of characters

tO be deletedeeeeniceicnncnnnsanncencannnncncnsnencenssns WeEkly

c
| CHANGE 15 °
L

|

weekly"*' "° L

87

DELETE Subcommand of EDIT

Use the DELETE Subcommand to remove one or more records from the data
set being edited.

Upon completion of the delete operation, the current-line pointer
will point to the line that preceded the deleted line. If the first
line of the data has been deleted, the current line pointer will be set
to zero.

r - T 1
| SUBCOMMAND | OPERANDS I
¢ + - :
i { DELETE | * |
| \D | line-number-1 [line-number-21] |
I J *[countl] l
L I _— 1

line-number-1
specifies the line to be deleted; or the first line of a range of
lines to be deleted.

line-number-2
specifies the last line of a range of lines to be deleted.

*
specifies that the first line to be deleted is the line indicated
by the current line pointer in the system. This is the default if
no line is specified.

count
specifies the number of lines to be deleted, starting at the
location indicated by the preceding operand.

Example 1

Operation: Delete the line being referred to by the current-line

pointer.

r

| DELETE *

L o e
or

T

| DELETE

L —_—
or

r

ID *

L -—
or

r _ -

|D

L
or

]

| *

L

88 TSO Command Language Reference (Release 21.7)

[

s e

e o

s e id

DELETE Subcommand of EDIT

Any of the preceding command combinations or abbreviations will cause
the deletion of the line referred to currently. The last instance is
actually a use of the insert/replace/delete function, not the DELETE
subcommand.

Example 2

Operation: Delete a particular line from the data set.

Known: The 1line NUMDEY..wiscenscannasnnscsansacnmasvsnsncnencnenecess OU

r
| DELETE 4 I
L

Leading zeroes are not required.

Example 3

Operation: Delete several consecutive lines from the data set.

Known: The number oOf the first linNCu.sceccecnssccancncssncsnmcncosnsacs 18
The number of the last liN€e..csuwwecascecvncncnsnancsccsmacss 36

. -
| DELETE 18 36
L

-—— ————

[EE e

Example 4

Operation: Delete several lines from a data set with no line numbers.
The current line pointer in the system points to the first
line to be deleted.

Known: The number oOf 1ines tO De d€leted..eeeecacecnncnencncocnsaseas 18

r
| DELETE * 18
L

o o o

Example 5

Operation: Delete all the lines in a data set.

Known: The data set contains less than 100
lines and is not line-numbered.

;
| TOP

[|

89

DOWN Subcommand of EDIT

Use the DOWN subcommand to change the current-line pointer so that it
points to a line that is closer to the end of the data set.

SUBCOMMAND OPERANDS

DOWN

r
|
i
| [(countl]
L

[S |

——

count :
specifies the number of lines toward the end of the data set that
you want to move the current-line pointer. If you omit this
operand, the default is one.

Example 1

Operation: Change the pointer so that it points to the next 1line.

| DOWN
L

o ad

Example 2

Operation: Change the pointer so that you can refer to a line that is
located closer to the end of the data set than the line
currently pointed to.

Known: The number of lines from the present position to
the nNew pPOSitiONeiececcccncccncnnancnncnncananaracssnnnanneasse 18

r
|DOWN 18
|}

s =

90 TSO Command Language Reference (Release 21.7)

END Subcommand of EDIT

Use the END subcommand to terminate operation of the EDIT command.
After entering the END subcommand, you may enter new commands. If you
have modified your data set and have not entered the SAVE subcommand,
the system will ask you if you want to save the modified data set. 1If
so, you can then enter the SAVE subcommand. If you do not want to save
the data set, re-enter the END subcommand.

- T - - 1
| SUBCOMMAND | OPERANDS |
t -t 1
| END | |
L — 4 —— ——— |

921

FIND Subcommand of EDIT

Use the FIND subcommand to locate a specified sequence of characters.
The system begins the search at the line referred to by the current line
pointer in the system, and continues until the character string is found
or the end of the data set is reached.

r ———==7 1
| SUBCOMMAND | OPERANDS I
% —+ . — f
| {FIND} | string [position] |
i F | I
L R ——
string

specifies the sequence of characters (the character string) that
you want to locate. This sequence of characters must be preceded
by an extra character that serves as a special delimiter. The
extra character may be any printable character other than a number,
apostrophe, semicolon, blank, tab, comma, parenthesis, or asterisk.
You must not use the extra character in the character string. Do
not put a delimiter between the extra character and the string of
characters.

Instead of using special delimiters to indicate a character string,
you can use paired single quotes (apostrophes) to accomplish the
same function with the FIND subcommand. The use of single quoctes
as delimiters for a character string is called quoted-string
notation. Following are the rules for quoted-string notation for
the string operand:

1. A string must be enclosed within single quotes, e.g., 'string
character"'. :

2. A single quote within a character string is represented by two
single quotes, €.g., 'pilgrims''s progress®.

3. A null string is represented by two single quotes, e.g., ''.

If you do not specify any operands, the operands you specified the
last time you used FIND during this current usage of EDIT are used.
The search for the specified string will begin at the 1line
following the current line. Successive use of the FIND subcommand
without operands allows you to search a data set, line by line.

position
specifies the column within each line at which you want the
comparison for the string to be made. This operand specifies the
starting column of the field to which the string is compared in
each line.

If you want to consider a string starting in column 6, you must
specify the digit 6 for the positional operand. When you use this
operand with the special delimiter form of notation for "string",
you must separate it from the string operand with the same special
delimiter as the one preceding the string operand.

92 TSSO Command Language Reference (Release 21.7)

FIND Subcommand of EDIT

Example 1

Operation: Locate a sequence of characters in a data set.

Known: The sequence of characterS....sceceecaeae=<.... ELSE GO TO COUNTER

r
| FIND XELSE GO TO COUNTER
L

[Tap———"Y

Example 2

Operation: Locate a particular instruction in a data set containing an
assembler language program.

Known: The sequence Of characCterSe.cc.ececscesceaccaceanncasees LA 3,BREAK
The instruction begins in column 10.

r
| FIND "LA 3,BREAK ' 10
L

= —t

93

HELP Subcommand of EDIT

Use the HELP subcommand to find out how to use EDIT subcommands. When
you enter the HELP subcommand, the system responds by printing out
explanatory information at your terminal. You may request:

e A list of available subcommands. _
e An explanation of the function, syntax, and operands of a specific
subcommand. ‘

The HELP subcommand actually causes the system to execute a function of
‘the HELP command; therefore, you may consult the discussion of the HELP
command if you desire more detailed information.

r T 1
| SUBCOMMAND | OPERANDS |

_——— e e e e {
| HELP | |subcommand-name [FUNCTION] ([SYNTAX] [OPERANDSI[(1ist)11]] |
| H | [ALL] |
L 4 J

subcommand -name :
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of EDIT
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS(1list)
specifies that you want an explanation of the operands applicable
to the referenced subcommand. The list of operands specifies the
particular keywords that you want to have explained. If you do not
specify any keywords, all keywords and positional operands will be
included.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default if no operand is specified with the subcommand name.

94 TSO Command Language Reference (Release 21.7)

N

HELP Subcommand of EDIT

Example 1
Operation: Have a list of available subcommands displayed at your
terminal.
r 1
| HELP]
L - 1
Example 2
Operation: Obtain all available information about a particular
subcommand.
Known: The subcommand NaME€e. .ccceceensccencncncecccccnnnsonccnscessces FIND
r -—= 1
|H FIND |
L y]
Example 3
Operation: Have a description of each operand for a particular
subcommand displayed at your terminal.
LIST

Known: The subcommand NAME. e cceeseccscnansccanannsonscsacsnsssecesss

r——
|h list operands

95

INPUT Subcommand of EDIT

Use the INPUT subcommand to put the system in input mode so that you can
add or replace data in the data set being edited.

T - T - h

| SUBCOMMAND | OPERANDS I

— + _—]
r

| {INPUT} | line-number {incrementl| [R]| [PROMPT |

| \z [* 1| |NoPROMPT |

L —_—] ——d

line-number :
specifies the line number and location for the first new line of
input. If no operands are specified, input data will be added to
the end of the data set.

increment
specifies the amount that you want each succeeding line number to
be increased. If you omit this operand, the default is the last
increment specified with the INPUT or RENUM subcommand. If neither
of these subcommands has been specified with an increment operand,
an increment of 10 will be used.

specifies that the next new line of input will either.replace or
follow the line pointed to by the current-line pointer, depending
on whether you specify the R or I operand. If an increment is
specified with this operand, it is ignored.

specifies that you want to replace existing lines of data and
insert new lines into the data set. This operand is ignored if you
fail to specify either a line number or an asterisk. If the
specified line already exists, the old line will be replaced by the
new line. If the specified line is vacant, the new line will be
inserted at that location. Note that all old lines between the new
lines of input will be deleted.

specifies that you want to insert new lines into the data set
without altering existing lines of data. This operand is ignored
if you fail to specify either a line number or an asterisk.

PROMPT
specifies that you want the system to display either a line number
or, if the data set is not line-numbered, a prompting character
before each new input line. If you omit this operand, the default
is:

a. The value (eithexr PROMPT or NOPROMPT) that was established the
last time you used input mode.

b. PROMPT, if this is the first use of input mode and the data set
has line numbers.

c. NOPROMPT, if this is the first use of input mode and the data
set does not have line numbers.

NOPROMPT
specifies that you do not want to be prompted.

96 TSO Command Language Reference (Release 21.7)

INPUT Subcommand of EDIT

Example 1

Operation: Add and replace data in an o0ld data set.

Known: The data set is to contain 1line numbers.
Prompting is desired.
The ability to replace lines is desired.
The first 1line NUMDEr.iscececccnccoanennsnccnnacnncsscsancsaee 2
The increment value for 1lin€e NUMbErS.eceseccececencenecannccnnnces 2

r -
| INPUT 2 2 R PROMPT
L

e e

The listing at your terminal will resemble the following sample listing
with your input in lower case and the computers response in upper case.

edit query cobol old

EDIT

input 2 2 r prompt

INPUT

00002 identification division

00004 programid.query
00006

Example 2

Operation: Insert data in an existing data set.

Known: The data set contains text for a report.
The data set does not have line numbers.
The ability to replace lines is not necessary.
The first input data is "New research and development activities
will" which is to be placed at the end of the data set.

|

r
| INPUT |
L P |

The listing at your terminal will resemble the following sample listing:

edit forecast.text o0ld text nonum asis

EDIT

input

INPUT

New research and development activities will

97

INSERT Subcommand of EDIT

Use the INSERT subcommand to insert one or more new lines of data into
the data set. Input data is inserted following the location pointed to
by the line pointer in the system. (If no operands are specified, input
data will be placed in the data set line following the current line.)
You may change the position pointed to by the line pointer by using the
BOTTOM, DOWN, TOP, UP, FIND and LIST subcommands.

r - T I -7
| SUBCOMMANDS | OPERANDS |
L L

[["
| {INSERT} | [insert-datal |
| UIN | |
L i ki |

insert-data ~
specifies the complete sequence of characters that you wish to
insert into the data set at the location indicated by the line
pointer. When the first character of the inserted data is a tab,
no delimiter is required between the command and the data. Only a
single delimiter is recognized by the system. If you enter more
than one delimiter, all except the first are considered to be input
data.

Example 1
Operation: Insert a single line into a data set.
Known: The line to be inserted is:

"UCBFLG DS ALl CONTROL FLAGS"

The location for the insertion follows the 71st line in the data
set.

The current line pointer points to the 74th line in the data
set.

The user is operating in EDIT mode.

Before entering the INSERT subcommand, the current 1line pointer must be
moved up 3 lines to the location where the new data will be inserted.

- ——
S
w

(S ™ |

| -

O —_— 1

The listing at your terminal will be similar to the following sample
listing.

up 3
insert ucbflg ds all control flags

98 TSO Command Language Reference (Release 21.7)

INSERT Subcommand of EDIT

Example 2

Operation: Insert several lines into a data set.

Known: The data set contains line numbers.
The inserted lines are to follow line numbexr 00280.
The current line pointer points to line number 00040.
The user is operating in EDIT mode.
The lines to be inserted are:
"J.W.HOUSE 13-244831 24.73"
"T.N.HOWARD 24-782095 3.05"
"B.H.IRELAND 04-007830 104.56"

Before entering the INSERT subcommand the current line pointer must be
moved down 24 lines to the location where the new data will be inserted.

r - - 1
| DOWN 24 |
L 3
The INSERT subcommand is now entered.

r— 1
| INSERT |
L 3

The system will respond with
INPUT
The lines to be inserted are now entered.

J.W. House 13-244831 24.73
T.N. Howard 24-782095 3.05
B.H. Ireland 04-007830 104.56

The listing at your terminal will be similar to the following sample
listing:

down 24

insert

INPUT

00281 j.w.house 13-244831 24.73
00282 t.n.howard 24-782095 3.05
00283 b.h.ireland 04-007830 104.56

New line numbers are generated in sequence beginning with the number one
greater than the one pointed to by the current line pointer. When no
line can be inserted, you will be notified. No resequencing will be
done.

99

Insert/Replace/Delete Function of EDIT

The INSERT/REPLACE/DELETE function lets you insert, replace, or delete a
line of data without specifying a subcommand name. To insert or replace
a line, all you need to do is indicate the location and the new data.

To delete a line, all you need to do is indicate the location. You can
indicate the location by specifying a line number or an asterisk. The
asterisk means that the location to be used is pointed to by the line
pointer within the system. You can change the line pointer by using the
UP, DOWN, TOP, BOTTOM, and FIND subcommands so that the proper line is
referred to.

| SUBCOMMAND OPERANDS

I. _— ————
I

I

L

{line-number} {stringl
*

e = —

[L]

line-number
specifies the number of the line you want to insert, replace, or
delete.

specifies that you want to replace or delete the line at the
location pointed to by the line pointer in the system. You can use
the TOP, BOTTOM, UP, DOWN, and FIND subcommands to change the line
pointer without modifying the data set you are editing.

string
specifies the sequence of characters that you want to either insert
into the data set or to replace an existing line. If this operand
is omitted and a line exists at the specified location, the
existing line is deleted. When the first character of "string" is
a tab, no delimiter is required between this operand and the
preceding operand. Only a single delimiter is recognized by the
system. If you enter more than one delimiter, all except the first
are considered to be input data.

How the System Interprets the Operands: When you specify only a line
number or an asterisk, the system deletes a line of data. When you
specify a line number or asterisk followed by a sequence of characters,
the system will replace the existing line with the specified sequence of
characters orxr, if there is no existing data at the location, the system
will insert the sequence of characters into the data set at the
specified location. '

100 'TsO Command Language Reference (Release 21.7)

Insert/Replace /Delete Function of EDIT

Example 1

Operation: Insert a line into a data set.

Known: The number to be assigned to the new linf..ceacececencenceass 62
The datd@cececcseccecsccsccncnnscseannsasas "OPEN INPUT PARTS-FILE"

r =
| 62 OPEN INPUT PARTS-FILE |

— - _— I |

Example 2
Operation: Replace an existing line in a data set.

Known: The number of the line that is to be replaceda.ceacecececsas 287
The replacement data@..eeceeccececnccscnacecnenvnas "GO TO HOURCOUNT; "

r -
| 287 GO TO HOURCOUNT;

Example 3

Operation: Replace an existing line in a data set that does not have
line numbers.

Known: The line pointer in the system points to the line that is to be
replaced.
The replacement data iSeceeeceecceccaces "58 PRINT USING 120,S"

r 1

| *# 58 PRINT USING 120,S]

L - 1

Example 4

Operation: Delete an entire line.

Known: The number Of the line..caceecececaacancsccanacssccancssascseas 98

The current line pointer in the system points to line 98.

r b

198 |

L _— y]
or -

r 1

| * |

L 3

101

LIST

Subcommand of EDIT

Use the LIST subcommand to display one or more lines of your data set at

your terminal.

T - T - - 1
| SUBCOMMAND | OPERANDS |
¢ b - :
| {LIST} N line-number~-1 [line-number-21] [
| L | * [count] |
! 1 I
I | NUM |
I | SNUM I
L L 1

line-number-1

specifies the number of the line that you want to be displayed at
your terminal.

line-number-2

specifies the number of the last line that you want displayed.
When you specify this operand, all the lines from line number 1
through line number 2 are displayed.

specifies that the line referred to by the line pointer in the
system is to be displayed at your terminal. You can change the
line pointer by using the UP, DOWN, TOP, BOTTOM, and FIND
subcommands without modifying the data set you are editing.

count

NUM

SNUM

102

specifies the number of lines that you want to have displayed,
starting at the location referred to by the line pointer.

Note: If you do not specify any operand with LIST, the entire data
set will be displayed.

specifies that line numbers are to be displayed with the text.

This is the default value if both NUM and SNUM are omitted. If
your data set does not have line numbers, this operand will be

ignored by the system.

specifies that line numbers are to be suppressed, i.e., not printed
on the listing.

TSO Command Language Reference (Release 21.7)

LIST Subcommand of EDIT

Example 1

Operation: List an entire data set.

—
|LIST
L —_—

Example 2
Operation: List part of a data set that has line numbers.
Known: The line number of the first line to be displayede.ccececess.

The line number of the last line to be displayedec.ecceemececa.
Line numbers are to be included in the list.

27
4y

r
|LIST 27 44
L

(SR]

Example 3
Operation: List part of a data set that does not have line numbers.
Known: The line pointer in the system points to the first line to be

listed.
The section to be listed consists of 17 lines.

r
|LIST * 17
L

103

PROFILE Subcommand of EDIT

Use the PROFILE subcommand to specify the character-deletion and/or
line-deletion indicators that you want to use at your terminal.

Initially, a user profile is prepared for you when arrangements are
made for you to use the system. You change the characteristics of your
usexr profile by using the PROFILE subcommand with the appropriate
operands. Only the characteristics that you specify by operands will
change; other characteristics remain unchanged. You must specify at
least one operand or the subcommand will be ignored by the system. (See
the PROFILE command.)

r - T 1
| SUBCOMMAND | OPERANDS |
L 1

f + i
I{PROFILE} | rCHAR({character}) LINE ((ATTN) |
| \PROF | BS . character]
| | CTLX |
|] | NOCHAR NOLINE [
| 1 _ I
	PROMPT INTERCOM
	NOPROMPT NOINTERCOM
	-
i	[rause MSGID
	NOPAUSE NOMSGID
L — 1	

CHAR (BS or character)
specifies the character or terminal keyboard key that you want to
use at your terminal to delete a character from a line.

BS specifies that the backspace key is to be your
character-deletion indicator. (This is the initial value that is
in effect until changed specifically.)

Character specifies the particular character that you want to use
as your character~-deletion indicator. You should not specify a
blank, comma, tab, asterisk, parenthesis, colon, apostrophe or any
of the characters in the subcommand name (profile) or in any of its
operands.

Note: Do not use an alphabetic character as either a character delete,
or a line delete, character. If you do, you run the risk of not being
able to enter certain commands without accidentally deleting characters
or lines of data. For instance; if you specify R as a character delete
character, each time you tried to enter a PROFILE subcommand the R in
PROFILE would delete the P that precedes it. Thus it would be
impossible to enter the PROFIIE subcommand as long as R was the
character delete control character.

NOCHAR

specifies that you do not want to use the character-deleting
indicator.

104 TSO Command Language Reference (Release 21.7)

PROFILE Subcommand of EDIT

LINE(ATTN, character, or CTLX)
specifies the character or key that you want to use at your
terminal to delete an entire line. You should not specify a blank,
comma, tab, asterisk, parenthesis, colon, or apostrophe.

ATIN specifies that an attention interruption is to delete a line.
(This is the initial value that is in effect until changed
specifically.)

Character specifies the particular character or key that you want
to use as your line deletion indicator.

CTLX specifies that for a teletype terminal the X and CTRL keys are
to be interpreted as a line-deletion character.

NOLINE
specifies that you do not want to use the line-deletion indicator.

2
PROMPT
specifies that you want the system to prompt you for missing
information. This is the default value set when your user profile
was created.

NOPROMPT
specifies that no prompting is to occur.

INTERCOM
specifies that you are willing to receive messages from other
terminal users. This is the default value set when your user
profile was created.

NOINTERCOM
specifies that you do not want to receive messages from other
terminals.

PAUSE
specifies that you want the opportunity to obtain additional
information when a message is issued at your terminal while a
command procedure (see the EXEC command) is executing. After a
message that has additional levels of information is issued, the
system will display the word PAUSE and wait for you to enter a
question mark (?) or a carrier return.

NOPAUSE
specifies that you do not want prompting for a question mark or
carriage return. This is the default value set when your user
profile was created.

MSGID
specifies that diagnostic messages are to include message
identifiers.

NOMSGID
specifies that diagnostic messages are not to include message
identifiers. This is the default value set when your user profile
was created.

105

PROFILE Subcommand of EDIT

Example 1

Operation: Specify that the backspace key is used for deleting a
character and that the ATTN key is used for deleting a line.

r 1
| PROFILE CHAR(BS) LINE(ATTN) |
L 3

Example 2

Operation: Specify that an exclamation mark is used for deleting a
character and that a pound sign is used for deleting a line.

r 1
|[PR CHAR(!) LINE(#) |
L 4

106 TsO command Language Reference (Release 21.7)

RENUM Subcommand of EDIT

Use the RENUM subcommand to:

e Assign a line number to each record of a data set that does not have
line numbers.
e Renumber each record in a data set that has line numbers.

New line numbers are placed in the last eight character positions of
fixed length records (except for COBOL), or in the first eight character
positions of variable length records. Line numbers for COBOL data sets
are placed in the first six positions. The default line number position
for ASM data sets is from column 73 through 80. However, by specifying
the NUM operand, you can position the line number anywhere within this
field. If variable length records were not numbered previously, the
records will be lengthened so that the eight-character fields can be
prefixed to each record. If the record cannot be extended eight
characters, you are notified. Any information in the last positions of
fixed length records (or the first 6 positions of COBOL data records) is
replaced by the line numbers.

In all cases the specified (or default) increment value becomes the
line increment for the data set.

[Too oo e - 1
| SUBCOMMAND | OPERANDS I
b t - :
| {RENUM} | fnew-line-number [increment [old-line-numberl]] |
| \REN | I
L 1 1

new line number
specifies the first line number to be assigned to the data set. If
this operand is omitted, the first line number will be 10.

increment
specifies the amount by which each succeeding line number is to be
incremented. (The default wvalue is 10.) You cannot use this
operand unless you specify a new line number.

old-line-number
specifies the location within the data set where renumbering will
begin. If this operand is omitted, renumbering will staxt at the
beginning of the data set. You cannot use this operand unless you
specify a value for the increment operand or when you are initially
numbering a NONUM data set.

107

RENUM Subcommand of EDIT

Example 1

Operation: Renumber an entire data set.

f
| RENUM
L

e

Example 2

Operation: Renumber part of a data set.

Known: The 0ld line NUMDEYr...veeccceccscccccsanssosacscncsnoncsscccasasan 17
The new 1ine NUMDEY...eccececaccecscncannaacannscscasscsncsasanses 21
The Iincrement..ceccecscaanceadaseanasnoncancssnansnncssnsssasncsse L

r
|IREN 21 1 17 |
L

Example 3

Operation: Renumber part of a data set from which lines have been
deleted.

Known: Before deletion of the lines, the data set contained lines 10,
20, 30, 40, and 50.
Lines 20 and 30 were deleted.
Lines 40 and 50 are to be renumbered with an increment of 10.

r
|[REN 20 10 40

| I

.
l
3

Note: The lowest acceptable value for a new line number in this example
is 11.

108 TSO Command Language Reference (Release 21.7)

RUN Subcommand of EDIT

Use the RUN subcommand to compile, load, and execute the source
statements in the data set that you are editing. The RUN subcommand is
designed specifically for use with certain program products; it selects
and invokes the particular program product needed to process your source
statements. The following table shows which program product is selected
to process each type of source statement.

Note: Any data sets required by your problem program should be
allocated before you enter EDIT mode.

Programs containing statements suitable for the following language
processors can be compiled and executed by using the CALL command.

ASM(F), PL/I(F), FORTRAN(E), FORTRAN(G), or FORTRAN (H)

r T

| If your program or data set | Then the following Program Product is
|contains statements of this | needed:

|type (see EDIT): |

i i

r T

}AsM | TSO ASM Prompter

L L ——— -
[} T

| BASIC | ITF:BASIC

| | (Shared Ianguage Component and

|] BASIC Processor)

L 1 .

r T

| COBOL | TSO COBOL Prompter and OS Full American
| | National Standard COBOL Version 3 or

| | Version 4

t t

| FORTGI | TSO FORTRAN Prompter and FORTRAN IV(G1)
i L

L) T

| GOFORT | Code and Go FORTRAN

L L

r - T

| IPLI | ITF:PL/I

| | (shared Language Component and PL/I
| | Processor)

¢ ¢

|PLI | PL/I Checkout Compiler or

| | PL/I Optimizing Compiler.

} Lo —_— -
r

|

|

!

|

|

|You can use the CONVERT command to convert ITF:PL/I and Code and Go
| FORTRAN free-form statements to a form suitable for the PL/I and
| FORTRAN compilers, respectively.

|When the descriptive qualifier for your data set name is .FORT, the
|Code and Go FORTRAN compiler is invoked unless you specify ancther
|compiler with the EDIT command.

I

[Note: TUser-defined data set types can be executed under the RUN
|subcommand of EDIT if a prompter name was specified at system
lgeneration time. The RUN command will not recognize these same data

|sets.
|

et o o e s e oo e s e . T TS s e . S e el et e, ey . . e el s el e iy e e S gy e e . ey e el e s e]

109

RUN Subcommand of EDIT

r T - 1
| SUBCOMMAND | OPERANDS |
L e e e e e e e e e e e e e e e e 4’
1] L]
| {RUN} | [*parameters'] |
I 1R | - !
| | TEST CHECK |
| | NOTEST OPT |
| | - I
	LMSG	
		SMSG
	_	
I	LPREC]	
{ SPREC]		
b 1____ X —_— r]
fparameters'
specifies a string of up to 100 characters that is passed to the
program that is to be executed. You may specify this operand only
for programs which can accept parameters. Observe the standard
Operating System conventions as described in IBM System/360
Operating System Supervisor Services and Macro Instructions,
GC28-66U46.
TEST
specifies that testing will be performed during execution. This
operand is valid for ITF:PL/I and ITF:BASIC Program Product
programs only.
NOTEST
specifies that no testing will be done. If you omit both TEST and
NOTEST, the default value is NOTEST.
LMSG
specifies that you want to receive complete diagnostic messages.
This operand is valid for the optional ITF:PLI, ITF:BASIC, and Code
and Go FORTRAN Program Products only.
Note: The default value for the LMSG/SMSG operand pair depends on
the Program Product being used, as follows:
Program Product Default Operand
Code and Go SMSG
ITF:BASIC LMSG
ITF:PL/I LMSG
SMSG
specifies that you want to receive the short, concise diagnostic
messages.
LPREC
specifies that you want long precision arithmetic calculations
(valid only for the ITF:BASIC Program Product).
SPREC
specifies that you want short precision arithmetic calculations
(valid only for the ITF:BASIC Program Product). If you omit both
LPREC and SPREC, the default value is SPREC.
110 TSO Command Language Reference (Release 21.7)

RUN Subcommand of EDIT

CHECK
specifies the PL/I Checkout Compiler. This operand is valid for
the PL/I Program Product only. If you omit this operand, the OPT
operand is the default value for data sets having the PLI data set

type.

OPT
specifies the PL/I Optimizing Compiler. This operand is valid for
the PL/I Program Product only. This is the default value for data
sets having the PLI data set type if both CHECK and OPT are

omitted.
Example 1
Operation: Compile and execute the data being edited by the EDIT
command.

Known: The EDIT command is being used currently.
The data set contains statements prepared for the optlonal
ITF:BASIC Program Product compiler.
The system contains the optional ITF:BASIC
Program Product.
Default values for the RUN subcommand are suitable.

i e id

r
| RUN
L

Example 2

Operation: Execute an assembler language program contained in the data
set referred to by the EDIT command.

Known: The parameters to be passed to the program are: *'1024,PAYROLL"

r
|RUN '1024,PAYROLL'
L

o

111

SAVE

Subcommand of EDIT

Use the SAVE subcommand to have your data set retained as a permanent

data
your
data

set. If you use SAVE without an operand, the updated version of
data set replaces the original version. When you specify a new
set name as an operand, both the original version and the updated

version of the data set are available for further use.

SUBCOMMAND

OPERANDS

S

e e

{SAVE}

[data-set-namel

P R—

S S —|

data-set-name

specifies a data set name that will be assigned to your edited data
set. The new name may be different from the current name. (See
the data set naming conventions.) TIf this operand is omitted, the
name entered with the EDIT command will be used.

If you specify the name of an existing data set or a member of a
partitioned data set, that data set or member is replaced by the
edited data set. (Before replacement occurs, you will be given the
option of specifying a new data set name or member name.)

If you do not specify the name of an existing data set or
partitioned data set member, a new data set (the edited data set)
will be created with the name you specified. If you specified a
member name for a sequentially-organized data set, no replacement
of the data set will take place. If you do not specify a member
name for an existing partitioned data set, the edited data set is
assigned a member name of TEMPNAME.

Example 1
Operation: Save the data set that has just been edited by the EDIT

command.

Known: The system is in edit mode.

The user supplied name that you want to give the data set is
INDEX.

r
|SAVE INDEX |
L

-/

112

TSO Command Language Reference (Release 21.7)

SCAN Subcommand of EDIT

Use the SCAN subcommand to request syntax checking services for
statements that will be processed by the PL/I(F), FORTRAN(E),

FORTRAN (G), or FORTRAN(H) compiler or by the Code and Go FORTRAN,
FORTRAN IV (G1), ITF:BASIC or ITF:PL/I Program Products. You can have
each statement checked as you enter it in Input mode, or any or all
existing statements checked. Except for statements entered in ITF:BASIC
or ITF:PL/I, you must explicitly request a check of the syntax of
statements that you are adding, replacing, or modifying, via the CHANGE
subcommand, the INSERT subcommand with the insert-data operand, or the
insert/replaces/delete function.

r T I =
| SUBCOMMAND | OPERANDS]
t R - 1
] SCAN} | line-number-1 [line-number-21] 1
| sC i * [count] |
I | |
| | ON |
| | OFF I
L —_— L - —_—d

line-number-1
specifies the number of a line to be checked for proper syntax.

line-number-2
specifies that all lines between line number 1 and line number 2
are to be checked for proper syntax.

specifies that the line at the location indicated by the line
pointer in the system is to be checked for proper syntax. The line
pointer can be changed by the TOP, BOTTOM, UP, DOWN, and FIND
subcommands.

.count
specifies the number of lines, beginning with the current 1line,
that you want checked for proper syntax.

ON
specifies that each line is to be checked for proper syntax as it
is entered in Input mode.

OFF
specifies that each line is not to be checked as it is entered in
Input mode.

NOTE: If no operands are specified, all existing statements will be
checked for proper syntax.

113

SCAN Subcommand of EDIT

Example 1

Operation: Have each line of a FORTRAN program checked for proper
syntax as it is entered.

- — d

r
| SCAN ON
L

Example 2

Operation: Have all the statements in a data set checked for proper
syntax.

£
| scan
L

[}

Example 3

Operation: Have several statements checked for proper syntax.

Known: The number of the first line to be checkediaeeaaececnanaacnaee 62
The number of the last line to be check€du.eceeenceacececsnnaas 69

r 1
|SCAN 62 69 |
L 1
Example 4

Operation: Check several statements for proper syntax.

Known: The line pointer points to the first line to be checked. A

The number of lines to be checkeQuieeeeeuceenenanencnccnnnnnaa 7

r 1
|SCAN * 7 i
L 1

114 TSO Command Language Reference (Release 21.7)

TABSET Subcommand of EDIT

Use the TABSET subcommand to:

e Establish or change the logical tabulation settings.
e Void any existing tabulation settings.

The basic form of the subcommand causes each strike of the tab key to
be translated into blanks corresponding to the column requirements for
the data set type. For instance, if the name of the data set being
edited has FORT as a descriptive qualifier, the first tabulation setting
will be in column 7. The values in Figure 11 will be in effect when you
first enter the EDIT command.

r - T 1
|Data Set Name Descriptive Qualifier |Default Tab Settings Columns |
t 4 }
| AsM {10,16,31,72 |
| BASIC(ITF:BASIC Program Product) {10,20,30,40,50,60 |
| CLIST {10,20,30,40,50,60 |
| CNTL |10,20,30,40,50,60 |
| COBOL |18,12,72]
| DATA ' |r0,20,30,40,50,60 |
| FORT (FORTRAN(E), FORTRAN(G), 17,72 |
FORTRAN(H) compilers, FORTRAN IV (Gl)	
and Code and Go FORTRAN Program	
Product data set types.)	
IPLI(ITF:PL/I Program Product)	5,10,15,20,25,30,35,40,45,50]
PLI (PLI(F), and PL/I Checkout and	5,10,15,20,25,30,35,40,45,50]
PL/I Optimizing Compiler data set	
types).	
TEXT	5,10,15,20,30,L40
User-defined	10,20,30,40,50,60
L 4 1

Figure 11. Default Tab Settings

You may find it convenient to have the mechanical tab settings coincide
with the logical tab settings. This can be accomplished by realizing
that, except for line-numbered COBOL data sets, the logical tab columns
apply only to the data that you actually enter. Since a printed line
number prompt is not logically part of the data you are entering, the
logical tab positions are calculated beginning at the next position
after the prompt. Thus, if you are receiving five-digit line number
prompts and have set a logical tab in column 10, the mechanical tab
should be set 15 columns to the right of the margin. If you are not
receiving line number prompts, the mechanical tab should be set 10
columns to the right of the margin.

In COBOL data sets the sequence number (iine number) is considered to
be a logical (as well as physical) part of each record that you enter.
For instance, if you specify the NONUM operand on the EDIT command,
while editing a COBOL data set, the system assumes that column 1 is at
the left margin and that you are entering the required sequence numbers
in the first six columns; thus, logical tabs are calculated from the
left margin (column 1). In line-numbered COBOL data sets (the NONUM
operand was not specified), the column following a line number prompt is
considered to be column 7 of your data - the first 6 columns being
occupied by the system-supplied sequence number (line number).

115

TABSET Subcommand of EDIT |

r T 1
| SUBCOMMAND | OPERANDS]
’ t ——- !
| §TABSET] ON [{integer-list)]]
| \TAB" I OFF I
| | IMAGE |
L e e ————————————— e 3

ON (integer-1list)

OFF

specifies that tab settings are to be translated into blanks by the
system. If you specify ON without an integer list, the existing or
default tab settings are used. You can establish new values for
tab settings by specifying the numbers of the tab columns as values
for the integer list. A maximum of ten values is allowed. If you
omit both ON and OFF the default value is ON.

specifies that there is to be no translation of tabulation
characters. Each strike of the tab key will produce a single blank
in the data.

IMAGE

specifies that the next input line will define new tabulation
settings. The next line that you type should consist of "t"s,
indicating the column positions of the tab settings, and blanks or
any other characters except "t". 10 settings is the maximum number
of tabs allowable. Do not use the tab key to produce the new image
line. A good practice is to use a sequence of digits between the
"t"s so you can easily determine which columns the tabs are set to.
(See example 3.)

Example 1

Operation: Re-establish standard tab settings for your data set.

Known: Tab settings are not in effect.

.
| TAB
L

[pS—}

Example 2

Operation: Establish tabs for columns 2, 18, and 72.

. -
|TAB ON(2 18 72) |
L

- -7

Example 3

Operation: Establish tabs at every 10th column.

T

| TAB IMAGE
[123456789t12345789¢123. ..
L \

e e e o

116

TSO Command Language Reference (Release 21.7)

TOP Subcommand of EDIT

Use the TOP subcommand to change the line pointer in the system to zero.
That is, the pointer will point to the position preceding the first line
of an unnumbered data set or of a numbered data set which does not have

a line number of zero. The pointer will point to line number zero of a

data set that has one.

This subcommand is useful in setting the line pointer to the proper
position for subsequent subcommands that need to start their operations
at the beginning of the data set.

In the event that the data set is empty you will be notified but the
current line pointer still takes on a zero value.

- T 1
| SUBCOMMAND | OPERANDS |
b t - {
| ToP | |
I, Lo —_ - 3
Exanmple 1

Operation: Find 1st occurrence of "message" in data set.

Known: Line pointer is now pointing to middle of data set.

r

[top

|£find "message'
L

o — —

117

UP Subcommand of EDIT

Use the UP subcommand to change the line pointer in the system so that
it points to a record nearer the beginning of your data set. If the use
of this subcommand causes the line pointer to point to the first record
of your data set, you will be notified.

r T : 1
| SUBCOMMAND | OPERANDS |
t e !

| uvp | [{count]]

L L d

count

specifies the number of lines toward the beginning of the data set
that you want to move the current line pointer. If count is
omitted, the pointer will be moved only one line.

Example 1

‘Operation: Change the pointer so that it refers to the preceding line.

! - 1
| UP I
L J
Example 2

Operation: Change the pointer so that it refers to a line located 17

lines before the location currently referred to.

r 1
|uop 17 |
L — b

118 TSO Command Language Reference (Release 21.7)

VERIFY Subcommand of EDIT

Use the VERIFY subcommand to display the line that is currently pointed
to by the line pointer in the system; whenever the current line pointer
has been moved, or whenever a line has been modified by use of the
CHANGE subcommand. Until you enter VERIFY, you will have no
verification of changes in the position of the curxent line pointer.

r - T -—==1
| SUBCOMMAND | OPERANDS |
¢ o - !
| {VERIFY} | [on |
| v | OFF |
L i - J
ON

specifies that you want to have the line that is referred to by the
line pointer displayed at your terminal each time the line pointer

changes or each time the line is changed by the CHANGE subcommand.

This is the default if you omit both ON and OFF.

OFF
specifies that you want to discontinue this service.

Example 1

Operation: Have the line that is referred to by the line pointer
displayed at your terminal each time the line pointer
changes.

r
| VERIFY
L

ox

r
| VERIFY ON
L

b e d

Example 2

Operation: Terminate the operations of the VERIFY subcommand.

r
| VERIFY OFF
L

[]

119

VERIFY Subcommand of EDIT

120 TSO Command Language Reference (Release 21.7)

EXEC Command

Use the EXEC command to execute a command procedure (see section
entitled "Command Procedure Statements").

You can specify the EXEC command in two ways:

1. The explicit form, where you enter EXEC followed by the name of the
data set that contains the command procedure.

2. The implicit form, where you do not enter EXEC but only enter the
name of the member of the command procedure library (a partitioned
data set) that contains the command procedure.

Some of the commands in a command procedure may have symbolic values
for operands. When you specify the EXEC command, you may supply actual
values for the system to use in place of the symbolic values.

r - T |
| COMMAND | OPERANDS |
t ——1 —1
| {EXEC} | data-set-name ['value-list'] NOLIST |
| EX | v LIST |
t t 1
| { procedure-name [value-list] |
L L - — ———— J

data-set-name
specifies the name of the data set containing the command procedure
to be executed. If the descriptive qualifier for the data set is
not CLIST (as in BOB.FORTCOMP.CLIST) you must enclose the fully
qualified name within apostrophes. (See the data set naming
conventions.)

procedure-name
specifies a member of a command procedure library that is invoked
when you enter the LOGON command. The library must previously have
been defined in the SYSPROC DD statement of the logon procedure or
with the ALLOCATE command.

value-list
specifies the actual values that are to be substituted for the
symbolic values in the command procedure. The symbolic values are
defined by the operands of the PROC statement in the command
procedure. The actual values that are to replace the symbolic
values defined by positional operands in the PROC statement must be
in the same sequence as the positional operands. The actual values
that are to replace the symbolic values defined by keywords in the
PROC statement must follow the positional values, but may be in any
sequence. When you use the explicit form of the command, the value
list must be enclosed in apostrophes. If apostrophes appear within
the 1list, then you must provide two apostrophes in order to print
one.

NOL IST
specifies that the commands and subcommands will not be listed at
the terminal. The system assumes NOLIST for implicit and explicit
EXEC commands.

121

EXEC Command

LIST
specifies that commands and subcommands will be listed at the
terminal as they are executed. This operand is valid only for the
explicit form of EXEC.

Example 1

Operation: Execute a command procedure to invoke the PL/I compiler.

Known: The name of the data set that contains the command procedure is
RBJ2I.PLIR.CLIST.

The command procedure consists of:

PROC 1 NAME

ALLOCATE DATASET(&NAME. .PLI) FILE (SYSIN)

ALLOCATE DATASET(&NAME..LIST) FILE(SYSPRINT) BLOCK(80) SPACE(300,100)
ALLOCATE DATASET(&NAME..OBJ) FILE (SYSLIN) BLOCK(80) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)

ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)

CALL "SYS1.LINKLIB(IEMAA)* 'LIST,ATR,XREF,STMI'

FREE FILE(SYsSUT1, SYSUT3,SYSIN,SYSPRINT)

The name of your program is 'EXP'.
You want to have the names of the commands in the command procedure
displayed at your terminal as they are executed.

r

| EXEC PLIR 'EXP' LIST
L

[T)

The listing at your terminal will be similar to:
exec plir ‘exp' list

ALLOCATE DATASET(EXP.PLI) FILE(SYSIN)

ALLOCATE DATASET(EXP.LIST) FILE (SYSPRINT) BLOCK(80) SPACE(300,100)
ALLOCATE DATASET(EXP.OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)

ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)

CALL 'SYS1.LINKLIB(IEMAA) ' °‘LIST,ATR,XREF,STMI'

FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)

READY

Example 2

Operation: Suppose that the command procedure in Example 1 was stored
in a command procedure library. Execute the command
procedure using the implicit form of EXEC.

Known: The name of the member of the partitioned data set that contains
the command procedure is PLIR

r
|plir exp
L

o

122 TSO Command Language Reference (Release 21.7)

FREE Command

Use the FREE command to release ("de-allocate") previously allocated
data sets that you no longer need. You can also use this command to
change the output class of SYSOUT data sets and to delete attribute
lists.

The maximum number of data sets that may be allocated to you at any
one time depends on the number of Data Definition (DD) statements in the
procedure that is invoked when you LOGON. The allowable number must be
large enough to accomodate:

e Data sets allocated via the LOGON and ALLOCATE commands.
e Data sets allocated dynamically, and later freed automatically, by
the system's command processors.

The data sets allocated by the LOGON and ALLOCATE commands are not freed
automatically. To avoid the possibility of reaching your limit and
being denied necessary resources, you should use the FREE cormand to
release these data sets when they are no longer needed.

When you free SYSOUT data sets, you may change their output class to
make them available for processing by an output writer.

When you enter the LOGOFF command, all data sets allocated to you and
attribute lists created during the terminal session are freed by the
system.

COMMAND OPERANDS

(DATASET (1ist-data-set-names) [FILE(list-file-names)]
[ATTRLIST(list-attr-list-names)]

FREE

FILE(list-file-names) [DATASET(list-data-set-names)]
[ATTRLIST(list-attr-list-names)]

ATTRLIST(list-attr-list-names)
[DATASET(list~data-set-names)] [FILE(list—file—names)]J

-
[SYSOUT(class)]

e e

T
|

+
I
|
|
!
|
|
I
I
I
I

i

V
et e e e e e e e e o ey e o}

DATASET (1list-data-set-names)
specifies one or more data set names that identify the data sets
that you want to free. The data set name must include the
descriptive (rightmost) qualifier and may contain a member name in
parentheses. (See the data set naming conventions.) If you omit
this operand, you must specify either the FILE or the ATTRLIST
operand.

FILE(list-of-file-names)
specifies one or more file names that identify the data sets to be
freed. If you amit this operand, you must specify either the
DATASET or the ATTRLIST operand.

ATTRLIST(list-attr-list-names)
specifies the names of one or more attribute lists that you want to
delete. If you omit this operand, you must specify eitherxr the
DATASET or the FILE operand.

123

FREE Command

SYSOUT (class)
specifies an output class which is represented by a single
character. All of the system output (SYSOUT) data sets specified
in the DATASET and FILE operands will be assigned to this class and
placed in the output queue for processing by an output writer (see
IBM System/360 Operating System: Supervisor Services and Macro
Instructions, GC28-6646, and Data Management Services, GC26-3746.
In order to free a file to SYSOUT, the file must have previously
been allocated to SYSOUT.

Example 1

Operation: Free a data set by specifying its data set name.

Known: The data St NAME..c.cvcenccscccscsnsacansssnsses TOCIO3.PROGA.LOAD

r -
| FREE DATASET(PROGA.LOAD)
L

Example 2

Operation: Free three data sets by specifying their data set names.

Known: The data sSset NAMES..cccccescscencenassansnasss LIRPA.PBI99CY.ASM
LIRPA.FIRSTQTR. DATA
LIRPA.LOOF.MSG

o

r
| FREE DATASET(PB99CY.ASM,FIRSTQTR.DATA, ' LIRPA. LOOF.MSG"')
L

Example 3

Operation: Free five data sets by specifying data set names or data
definition names. Change the output class for any SYSOUT
data sets being freed.

Known: The name of a data S€t..ecevcicevccancanancnnesss DNIW. HCRAM. FORT
The filenames (data definition names) of
4 data SetSeccavccscnsncmccannnsnncnssnnnncaswes SYSUTL
SYSUT3
SYSIN
SYSPRINT

The new OutpuUt ClaSS.eceemecevcesccaccnvancencncs B

r - , 1
| FREE DATASET(HCRAM.FORT) FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT) SYSOUT(B) |
L 1

Example 4

Operation: Delete two attribute lists.

Known: The names Of the 1iStS.ieaccaccenccacsnnmnssenssses DCBPARMS
ATTRIBUT

e —=od

r
| FREE ATTRLIST(DCBPARMS ATTRIBUT)
L

124 TsO Command Language Reference (Release 21.7)

HELP Command

Use the HELP command to obtain information about the function, syntax,
and operands of commands and subcommands. This reference information is
contained within the system and is displayed at your terminal in
response to your request for help.

COMMAND OPERANDS

)

[command-name [FUNCTION] [SYNTAX] [OPERANDSI (list)1]
[ALL]

[o ——— ——
e

command -name
specifies the name of the command that you want to know more about.
If you omit this operand, the system will display a 1list of all
commands.

FUNCTION
specifies that you want to know more about the purpose and
operation of the command.

SYNTAX
specifies that you want to know more about the syntax required to
use the command properly.

OPERANDS(1list)
specifies that you want to see explanations of the operands for the
command. When you specify the keyword OPERANDS and omit any
values, all operands will be described. You can specify particular
keyword operands that you want to have described by including them
as values within parenthesis following the keyword. If you specify
a list of more than one operand, the operands in the list must be
separated by commas or blanks.

specifies that you want to see all information available concerning
the command or subcommand. This is the default value if no other
KEYWORD operand is specified.

HELP Information: The scope of available information ranges from
general to specific. The HELP command with no operands produces a list
of valid commands and their basic functions. From the list you can
select the command most applicable to your needs. If you need more
information about the selected command, you may use the HELP command
again, specifying the selected command name as an operand. You will
then receive:

1. A brief description of the function of the command.
2. The format and syntax for the command.
3. A description of each operand.

You can obtain information about a command only when the system is ready
to accept a command.

125

HELP Command

- If you do not want to have all of the detailed information, YOu may
request only the portion that you need.

The information about the commands is contained in a cataloged
partitioned data set named SYS1.HELP. Information for each command is
kept in a member of the partitioned data set. The HELP command causes
the system to select the appropriate member and display its contents at
your terminal.

Figure 12 shows the hierarchy of the sets of information available

with the HELP command. Figure 12 also shows the form of the command
necessary to produce any particular set.

Example 1

Operation: Obtain a list of all available commands.

r
| HELP
L

Example 2

Operation: Obtain all the information available for the ALLOCATE
command.

r
| HELP ALLOCATE
L

Example 3

Operation: Have a description of the XREF, MAP, COBLIB, and OVLY
operands for the LINK command displayed at your terminal.

r
|H LINK OPERANDS(XREF,MAP,COBLIB,OVLY)
L

Example 4

Operation: Have a description of the function and syntax of the LISTBC
command displayed at your terminal.

I
|h listbc function syntax
L

126 TSO Command Language Reference (Release 21.7)

[]

o —

[

When the system is READY
to accept a command, you
may request:

HELP Command

When the system is ready
accept a subcommand, you

may request:

to

1) LIST OF COMMANDS |

I(2) LisT oF suBcommanDs

—(3) comMaNp FUNCTION

| —(7) suscomManD FUNCTION |

_'{@ COMMAND SYNTAX

I —(8) SUBCOMMAND SYNTAX

|

—(5) LIST OF OPERANDS

I -l@ LIST OF OPERANDS

@ EACH OPERAND

| (L0 EACH OPERAND

this form of the command....ceeeeeeeeeroseeeseseanessas.produces:
(HELP @®
HELP commandname (:)(:)(:)
0]
g HELP commandname ALL (:)(:)(:)
g
> ¢ HELP commandname FUNCTION (:)
fa
<
ﬁ HELP commandname SYNTAX (:)
HELP commandname OPERANDS (:)
HELP commandname OPERANDS (list of keyword operands)(:)
.
~ 4
g HELP @
1))
E% HELP subcommandname @@
M g
a £ HELP subcommandname ALL @@
~ I
BB 4 HELP subcommandname FUNCTION (:)
Ao
& | HELP subcommandname SYNTAX
B -
£5 | HELP subcommandname OPERANDS @
O
O H
%8 HELP subcommandname OPERANDS (list of keyword
\ operands)

Figure 12. Information Available Through the HELP Command

127

HELP Command

128 TSO Command Language Reference (Release 21.7)

LINK Command

Use the LINK command to invoke the linkage editor service program.
Basically, the linkage editor converts one or more object modules (the
output modules from compilers) into a load module that is suitable for
execution. In doing this, the linkage editor changes all symbolic
addresses in the object modules into relative addresses. You can find a
complete description of the functions of the linkage editor in the
publication IBM_ System/360 Operating System: Linkage Editor and Loader,
GC28-6538.

The linkage editor provides a great deal of information to help you
test and debug a program. This information includes a cross-reference
table and a map of the module that identifies the location of control
sections, entry points, and addresses. You can have this information
listed at your terminal orxr saved in a data set on some device.

You can specify all the linkage editor options explicitly or you can
accept the default values. The default values are satisfactory for most
uses. By accepting the default values, you simplify the use of the LINK
command.

If the module that you want to process has a simple structure (that
is, it is self contained and does not pass control to other modules) and
you do not require the extensive listings produced by the linkage editor
and you do not want a load module, you may want to use the LOADGO
command as an alternative to the LINK command.

129

LINK Command

L] T 1
| COMMAND | OPERANDS |
I 4

|) T "
| LINK | (data-set-list) |
| | |
] | LoAD[(data-set-name)]l]]
	[PRINT({ * })
	data-set-name
[L NOPRINT
I	I
	[LiIB(data-set-l1list)]
I	
	[PLILIB]
	[PLICMIX]
I	I
	[PLIBASE] i
I	I
[(FORTLIBI
	I
	[COBLIB]
(I v	
[
	NOMAP NONCAL
	1
	(&REF REUS REFR SCTR OVLY
	NOXREF NOREUS NOREFR NOSCTR NOOVLY]
	:
	RENT [SIZE(integerl integer2)]
	I
	HIAR TEST TERM I
	NOOL NODC NOHIAR NOTEST NOTERM
It ‘	
	[DCBS(blocksize)l
L L 4

(data-set-1list)

130

specifies the names of one or more data sets containing your object
modules and/or linkage editor control statements. (See the data
set naming conventions). The specified data sets will be
concatenated within the output load module in the sequence that
they are included in this operand. If there is only a single name
in the data-set-list, parentheses are not required unless the
single name is a member name of a partitioned data set; then, two
pairs of parentheses are required, as in:

LINK{((PARTS))

You may substitute an asterisk (*) for a data set name to indicate
that you will enter control statements from your terminal. The
system will prompt you to enter the control statements. A null
line indicates the end of your control statements. The publication
IBM System/360 Operating System: Linkage Editor and Loader,
GC28-6538, contains a description of the control statements.

TSO Command Language Reference (Release 21.7)

LINK Command

LOAD (data-set-name)
specifies the name of the partitioned data set that will contain
the load module after processing by the linkage editor (see the
data set naming conventions). If you omit this operand, the system
will generate a name according to the data set naming conventions.

PRINT (data-set-name or *)
specifies that linkage editor listings are to be produced and
placed in the specified data set. When you omit the data set name,
the data set that is generated is named according to the data set
naming conventions. This is the default value if you specify the
LIST, MAP, or XREF operand. You may substitute an asterisk (*) for
the data set name if you want to have the listings displayed at
your terminal.

NOPRINT .
specifies that no linkage editor listings are to be produced. This
operand causes the MAP, XREF, and LIST options to become invalid.
This is the default value if both PRINT and NOPRINT are omitted,
and you do not use the LIST, MAP, or XREF operand.

LIB(data-set-1list)
specifies one or more names of library data sets to be searched by
the linkage editor to locate load modules referred to by the module
being processed (that is, to resolve external references). (See
the data set naming conventions.) When you specify more than one
name, the names must be separated by a valid delimiter.

PLILIB
specifies that the partitioned data set named SYS1.PL1LIB is to be
searched by the linkage editor to locate load modules that are
referred to by the module being processed.

PLIBASE
specifies that the partitioned data set named SY¥S1l.PLIBASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX
specifies that the partitioned data set named SY¥S1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

FORTLIB
specifies that the partitioned data set named@ SYS1.FORTLIB is to be
searched by the linkage editor to locate load modules referred to
by the module being processed.

COBLIB
specifies that the partitioned data set named SY¥S1.COBLIB is to be
searched by the linkage editor to locate load modules referred to
by the module being processed.

MAP
specifies that the PRINT data set is to contain a map of the output
module consisting of the control sections, the entry names, and
(for overlay structures) the segment number.

NOMAP

specifies that a map of the output module is not to be listed.
This is the default value if both MAP and NOMAP are omitted.

131

LINK Command

NCAL .
specifies that the automatic library call mechanism is not to be
invoked to locate the modules that are referred to by the module
being processed when the object module refers to other load
modules.

NONCAL
specifies that the modules referred to by the module being
processed are to be located by the automatic library call mechanism
when the object module refers to other load modules. This is the
default value if both NCAL and NONCAL are omitted.

LIST
specifies that a list of all linkage editor control statements is
to be placed in the PRINT data set.

NOLIST
specifies that a listing of linkage editor control statements is
not to be produced. This is the default value if both LIST and
NOLIST are omitted.

LET
specifies that the output module is permitted to be marked as
executable even though a severity 2 error is found (a severity 2
error indicates that execution of the output module may be
impossible).

NOLET
specifies that the output module be marked non-executable when a
severity 2 error is found. This is the default value if both LET
and NOLET are omitted.

XCAL
specifies that the output module is permitted to be marked as
executable even though an exclusive call has been made between
segments of an overlay structure. Because the segment issuing an
exclusive call is overlaid, a return from the requested segment can
be made only by another exclusive call or a branch.

NOXCAL
specifies that both valid and invalid exclusive calls will be
marked as errors. This is the default value if both XCAL and
NOXCAL are omitted. ’

XREF
specifies that a cross-reference table is to be placed on the PRINT
data set. The table includes the module map and a list of all
address constants referring to other control sections. Since the
XREF operand includes a module map, both XREF and MAP cannot be
specified for a particular LINK command.

NOXREF
specifies that a cross-reference listing is not to be produced.
This is the default value if both XREF and NOXREF are omitted.

REUS .
specifies that the load module is to be marked serially reusable if
the input load module was reenterable or serially reusable. The
RENT and REUS operand are mutually exclusive. The REUS operand
must not be specified if the OVLY or TEST operands are specified.

132 TSSO Command Language Reference (Release 21.7)

~— T

P

LINK Command

NOREUS
specifies that the load module is not to be marked reusable. This
the default value if both REUS and NOREUS are omitted.

REFR
specifies that the load module is to be marked refreshable if the
input load module was refreshable and the OVLY operand was not
specified.

NOREFR
specifies that the load module is not to be marked refreshable.
This is the default value if both REFR and NOREFR are omitted.

SCTR
specifies that the load module created by the linkage editor can be
either scatter loaded or block loaded. If you specify SCTR, do not
specify OVLY.

NOSCTR
specifies that scatter loading is not permitted. This is the
default value if both SCTR and NOSCTR are omitted. :

OVLY
specifies that the load module is an overlay structure and is
therefore suitable for block loading only. If you specify OVLY, do
not specify SCTR.

NOOVLY
specifies that the load module is not an overlay structure. This
is the default value if both OVLY and NOOVLY are omitted.

RENT
specifies that the load module is marked reenterable provided the
input load module was reenterable and that the OVLY operand was not
specified. _

NORENT
specifies that the load module is not marked reenterable. This is
the default value if both RENT and NORENT are omitted.

SIZE (integerl,integer2)
specifies the amount of main storage to be used by the linkage
editor. The first integer (integerl) indicates the maximum
allowable number of bytes. . Integer2 indicates the number of bytes
to be used as the load module buffer, which is the main storage
area used to contain input and output data. If this operand is
omitted, SIZE defaults to the size specified at system generation

(SYSGEN).

NE
specifies that the output load module cannot be processed again by
the linkage editor or loader. The linkage editor will not create
an external symbol dictionary. If you specify either MAP or XREF,
this operand is invalid.

NONE

specifies that the output load module can be processed again by the
linkage editor and loader and that an external symbol dictionary is
present. This is the default value if both NE and NONE are
omitted.

133

LINK Command

OL
specifies that the output load module can be brought into main
storage only by the LOAD macro instruction.

NOOL
specifies that the load module is not restricted to the use of the
LOAD macro instruction for loading into main storage. This is the
default value if both OL and NOOL are omitted.

DC
specifies that the output module can be reprocessed by the linkage
editor (E).

NODC ‘
specifies that the load module cannot be reprocessed by the linkage
editor (E). This is the default value if both DC and NODC are
omitted.

HIAR
specifies that the control sections within the output module are to
be marked for loading into either processor storage or IBM 2361
core storage. The linkage editor control statement HIARCHY assigns
the appropriate hierarchy to the control sections. When you
specify HIAR, the load module is marked suitable for scatter
loading.

NOHIAR
specifies that no hierarchy assignments are to be made to the
output load module. This is the default value if both HIAR and
NOHIAR are omitted.

TEST
specifies that the symbol tables created by the assembler and
contained in the input modules are to be placed into the output
module.

NOTEST
specifies that no symbol table is to be retained in the output load
module. This is the default value if both TEST and NOTEST are
omitted.

TERM
specifies that you want error messages directed to your terminal as
well as to the PRINT data set. This is the default value if both
TERM and NOTERM are omitted.

NOTERM
specifies that you want error messages directed only to the PRINT
data set and not to your terminal.

DCBs(blocksize)

specifies the blocksize of the records contained in the output load
module "blocksize" must be an integer.

134 TSO Command Language Reference (Release 21.7)

LINK Command

Example 1

Operation: Combine three object modules into a single load wodule.

Known: The names of the object modules in the sequence
that the modules must be iNececececeseceewes... DEPTO3.GSALESA.OBJ
DEPTO03.GSALESB.OBJ
DEPTO03.NSALES.OBJ

You want all of the linkage editor listings to be produced and
directed to your terminal.

The name for the output load module...... DEPT03.SALESRPT.LOAD (TEMPNAME)

I

[LINK (GSALESA,GSALESB,NSALES) LOAD (SALESRPT) PRINT (#*)
|XREF LIST

L

[R—

Example 2

Operation: Create a load module from an object module, an existing load
module, and a standard processor 1library.

Known: The name of the object module€.c.ececceeeeees.e XRDIJA3.M33THRUS.OBJ
The name of the existing load module. XRDJA3.M33PAYLD.LOAD(MOD1)

The name of the standard processor library used for resolving
external references in the object module.e.iceceeee. SYS1.PLILIB

The name of the output load module... XRDJA3.M33PERFO.LOAD(MODZ2)

r q
|1link (m33thrus, *) load(m33perfo(mod2)) print(*¥) plilib map list |
L

Choosing 1d2 as a filename to be associated with the existing load
module, the listing at your terminal will be:

allocate dataset(m33payld.load) file(1d2)
link (m33thrus,*) load(m33perfo(mod2)) print(*) plilib map list
IKJ76080A ENTER CONTROL STATEMENTS
include 1d2(mod1)
(null line)
IKJ76111T END OF CONTROL STATEMENTS

135

LINK Command

136 TSO Command Language Reference (Release 21.7)

LISTALC Command

Use the LISTALC command to obtain a list containing both the names of
the data sets allocated by you and the names of the data sets
temporarily allocated by previous TSO command processors. Also, this
command specifies the number of data sets that the system will allow to
be allocated to you dynamically. Included in the number of data sets
that the system will allow a user to allocate dynamically, are data sets
that had been previously allocated for temporary use by a command
processor.

r - —_—
| COMMAND |T OPERANDS .|'
t fommm oo 1
| {LISTALC} | {STATUS] [HISTORY] [MEMBERS] [SYSNAMES] |
| \LISTA i |
L L e o o o e e . < e o e o e e e S i R A e 0 e < <t o 0 o e e O S S o R e . e S e PO e e S e e e e 31
STATUS
specifies that you want information about the status of each data
set. This operand provides you with:
e The data definition name (DDNAME) for the data set.
e The scheduled and conditional dispositions of the data set.
The keywords denoting the dispositions are CATLG, DELETE, KEEP
and UNCATLG. The scheduled disposition is the normal
disposition and precedes the conditional disposition when
listed. The conditional disposition takes effect if an
abnormal termination occurs. CATLG means that the data set is
retained and its name is in the system catalog. DELETE means
that references to the data set are to be removed from the
system and the space occupied by the data set is to be
released. KEEP means that the data set is to be retained.
UNCATLG means that the data set name is removed from the
catalog but the data set is retained.
HISTORY
specifies that you want to obtain information about the history of
each data set. This operand provides you with:
e The creation date.
e The expiration date.
Note: All data sets created by dynamic allocation will have
creation and expiration dates of 00/00/00.
e An indication as to whether or not the data set has password
protection.
e The data set organization (DSORG). The listing will contain:
PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access
** for unspecified
?? for any other specification
MEMBERS

specifies that you want to obtain the library member names of each
partitioned data set having your user's identification as the
leftmost qualifier of the data set name. Aliases will be included.

137

LISTALC Command

SYSNAMES
specifies that you want to obtain the fully qualified names of data-
sets having system-generated names.

Examgle 1

Operation: Obtain a list of the names of all the data sets allocated to
you.

.
| LISTALC
L

[SO}

Example 2

Operation: Obtain a list of the names of all the data sets allocated to
you. At the same time obtain the creation date, the
expiration date, password protection, and data set
organization for each data set allocated to you.

r
|LISTA HISTORY
L -

[|

Example 3

Operation: Obtain all available information about the data sets
allocated to you.

r
|lista members history status sysnames
L

—_— b}

The output at your -terminal will be similar to the following listing:
listalc mem status sysnames history

=~DSORG--CREATED--EXPIRES---SECURITY---DDNAME~-~--DISP

RRED95.ASM
PsS 0000700 00/00/00 WRITE EDTDUMY1 KEEP

RRED95. EXAMPLE
PO 0070000 0000700 PROTECTED EDTDUMY2 KEEP,KEEP

~-MEMBERS~~

MEMBER1

MEMBER 2
SYs70140.T174803.RV000. TSOSPEDT.R0000001

** 00700700 00/00/00 NONE SYSUT1 DELETE
3 DATA SETS CAN BE ALLOCATED DYNAMICALLY

EDTDUMY3

SYSIN

SYSPRINT

READY

138 TsO Command Language Reference (Release 21.7)

LISTBC Command

Use the LISTBC command to obtain a listing of the contents of the
SYS1.BRODCAST data set. The SYS1.BRODCAST data set contains messages of
general interest (NOTICES) that are sent from the system to all
terminals and messages directed to a particular user (MAIL). The system
deletes MAIL messages from the data set after they have been sent.
NOTICES must be deleted explicitly by the operator.

r T == - 1
| COMMAND | OPERANDS |
¢ o - 1
| LISTBC i MAIL NOTICES |
| LISTB | NOMAIL NONOTICES |
L — L —— 1
MAIL
specifies that you want to receive the messages from the broadcast
data set that are intended specifically for you. This is the
default value if both MAIL and NOMAIL are omitted.
NOMAIL :
specifies that you do not want to receive messages intended
specifically for you.
NOTICES
specifies that you want to receive the messages from the broadcast
data set that are intended for all users. This is the default
value if both NOTICES and NONOTICES are omitted.
NONOTICES
specifies that you do not want to receive the messages that are
intended for all users.
Example 1

Operation: Specify that you want receive all messages.

r
|LISTBC
L

Example 2

Operation: Specify that you want to receive only the messages intended
for all terminal users.

r
|1listbc nomail
L

b oud

139

LISTBC Command

140 TSO Command Language Reference (Release 21.7)

LISTCAT Command

Use the LISTCAT command to obtain a list of the names of your cataloged
data sets.

The system catalog is a data set that contains the location of cther
data sets. The catalog is organized into levels of indexes that connect
the data set names to corresponding locations (volumes and data set
sequence numbers). Each qualifier in the data set name (see the data
set naming conventions) corresponds to one of the indexes in the
catalog. For instance, suppose that a data set named D58JCD.GSCORE.DATA
is cataloged. The catalog has a master index that contains D58JCD as an
entry. This entry includes the location of an index named D58JCD. The
index named D58JCD contains GSCORE as an entry that includes the
location of an index named GSCORE. The index named GSCORE contains DATA
as an entry that includes the location of the data set.

The LISTCAT command, when entered with no operands, produces a list
of all cataloged data sets that have your user identification as the
leftmost qualifier. You can request a partial, more specific list by
identifying the index level that you want to have listed. You can
specify any index level in the catalog.

COMMAND OPERANDS

[HISTORY] [MEMBERS] [VOLUMES] [LEVEL(index)]

e m——
P o e e e

LISTCAT)
LISTC |

[S |

HISTORY
specifies that you want information about the history of each data
set. This operand provides you with:

e The creation date.

e The expiration date.
Note: All data sets created by dynamic allocation will have
creation and expiration dates of 00/00/00.

e An indication as to whether or not the data set has password
protection.

e The data set organization (DSORG).

The listing will contain:

PS for sequential

PO for partitioned

Is for indexed sequential

DA for direct access

** for unspecified

?? for any other specification

MEMBERS
specifies that you want a list of names for the members of each
partitioned data set. Alias names will be included.

VOLUMES
specifies that you want the volume identification (VOLID) for each
volume on which the data sets reside. A volume may be a reel of
tape, a disk pack, a bin in a data cell, or a drum.

141

LISTCAT Command

LEVEL (index)

specifies that you want the names of only a portion of the
cataloged data sets. You indicate an index level by including one
or more data set name qualifiers for 'index'. All data sets at an
index level that is lower than the one that you indicate will be
listed. For instance, if you have an index structure such as:

BCCORP\\\\\\\\\

PROGA PROGB

e

ASM OBJ LOAD CLIST DATA TEXT

and you specify LEVEL(BCCORP.PROGA), you will receive:

ASM (meaning BCCORP.PROGA.ASM)
OBJ (meaning BCCORP.PROGA.OBJ)
LOAD (meaning BCCORP.PROGA.LOAD)

The specified index must begin with the highest level of

~qualification (for example, your user identification, or SYsSil).

You may also include one asterisk in your specified index
qualification. The asterisk indicates that all qualifiers
corresponding to the position of the asterisk are to be considered
as if each was specified explicitly. The asterisk must not be
placed at the highest or lowest level.

Example 1

Opera

tion: List the names of all of your cataloged data sets.

r
|LIST
L

- 1
CAT

Example 2

Opera

tion: List the names of all of your cataloged data sets; include
their history and the volumes that they reside on.

¥
|LIST
L

CAT HISTORY VOLUMES

Th

e listing produced at your terminal will appear similar to the

following simulated listing.

READY

listc

142

at history volumes

TSO Command Language Reference (Release 21.7)

LISTCAT Command

--DSORG~-CREATED-~--EXPIRES---SECURITY

CLIST.FLOWCHRT
PS 07/11/766 09/14/70 NONE

--VOLUMES--
D58LIB

XERPT. TEXT
PsS 00700700 00/00/00 NONE

—-VOLUMES--
D58LIB

READY

Example 3

Operation: List the names, history and volumes of a particular
selection of your cataloged data sets.

The names of your data setS....c.ceceeca.. eeeees RCHD58.FLOW1l.FORT
RCHDS58. FLOW2. FORT

RCHD58. FLOW3. FORT

r - 1
|LISTCAT LEVEL(RCHDS58. *.FORT) HISTORY VOLUMES |
L

The listing produced at your terminal will appear similar to the
following simulated listing.

READY
listcat level(xrchd58.#*.fort) volumes history
--DSORG--CREATED~--EXPIRES---SECURITY

RCHD58.FLOW1.FORT
PsS 00/00/00 00700700 NONE

--VOLUMES—--
D58CAT

RCHD58. FLOW2. FORT
PS 00700/00 00/00/00 PROTECTED

--VOLUMES--
D58CAT

RCHD58. FLOW3. FORT
Ps 00700700 00/00/700 WRITE

--VOLUMES-~
D58CAT

READY

143

LISTCAT Command

144 TSO Command Language Reference (Releade 21.7)

LISTDS Command

Use the LISTDS command to have the attributes of specific data sets
displayed at your terminal. You can obtain:

The volume identification (VOLID) of the volume on which the data
set resides. A volume may be a disk pack, a bin in a data cell, or
a drum.

The record format (RECFM), the logical record length (LRECL), and
the blocksize (BLKSIZE) of the data set.

The data set organization (DSORG).
The data set organization is indicated as follows:

Ps for sequential

PO for partitioned

IS for indexed sequential

DA for direct access

** for unspecified

?? for any other specification

Directory information for members of partitioned data sets if you
specify the data set name in the form data set name (membername).

Creation date, expiration date, and security attributes
File name and disposition.

Data set control blocks (DSCB).

[o s S —

COMMAND OPERANDS

{

LISTDS} (data-set-1list) [STATUS] [HISTORY] [MEMBERS] [LABEL]

LISTD

p—— - —

i o e gy e o

(data-set-list) |

specifies one or more data set names (see the data set naming
conventions). This operand identifies the data sets that you want
to know more about. Each data set specified must be currently
allocated or available from the catalog, and must reside on a
currently active volume.

STATUS

specifies that you want the following additional information:

o The data definition (DD) name DDNAME currently associated with
the data set.

e The currently scheduled data set disposition and the conditional
disposition. The keywords denoting the dispositions are CATLG,
DELETE, KEEP, and UNCATIG. The scheduled disposition is the
normal disposition and precedes the conditional disposition when
listed. The conditional disposition takes effect if an abnormal

145

LISTDS Command

termination occurs. CATLG means that the data set is cataloged. DELETE
means that the data set is to be removed. KEEP means that the data set
is to be retained. UNCATLG means that the name is removed from the
catalog but the data set is retained.

HISTORY
specifies that you want to obtain the creation and expiration dates
for the specified data sets (all data set created by dynamic
allocation will have creation and expiration dates of 00,/00/00),
and to find out whether or not the data sets are password
protected.

MEMBERS
specifies that you want a list of all the members of a partitioned
data set including any aliases. }

LABEL
specifies that you want to have the entire data set control block
(DSCB) listed at your terminal. This operand is applicable only to
direct access data sets. The listing will be in hexadecimal
notation.

Example 1

Operation: List the basic attributes of a particular data set.

Known: The data St NaMee.ceccescencesnnccncsecnnenanneesaes RCHD9S.CIR.OBJ

.
|LISTDS CIR
L

The listing produced at your terminal will be similar to the listing
shown below.

READY

listds cir

RCHD95.CIR.0OBJ

-—RECFM-LRECL-BLKSIZE-DSORG
FB 8 80 PsS

--VOLUMES--
D95LIB

READY

Example 2

Operation: IList the basic attributes and the DSCBs for a particular
data set.

Known: The data set name......ceceececnaareananncs. RCHDI5. IKJEHDS1.LOAD

r 1
|1istd ikjehds1l label |
L 1

146 TSO Command Language Reference (Release 21.7)

LOADGO Command

Use the LOADGO command to load a compiled or assembled program into main
storage and begin execution.

The LOADGO command will load object modules produced by a compiler or
assembler, and load modules produced by the linkage editor. (If you
want to load and execute a single load module, the CALL command is more
efficient.) The LOADGO command will also search a call library (SYSLIB)
or a resident link pack area, or both, to resolve external references.

The LOADGO command invokes the system loader to accomplish this
function. The locader combines basic editing and loading services of the
linkage editor and program fetch in one job step (see the publication
IBM System/360 Operating System: linkage Editor and Loader, GC28-6538).
Therefore, the load function is equivalent to the link edit and go
function.

The LOADGO command does not produce load modules for'program
libraries, and it does not process linkage editor control statements
such as INCLUDE, NAME, OVERIAY, etc.

COMMAND OPERANDS

(data-set-1list) ['parameters']

PRINT ((*)
NOPRINT |data-set-name

[LIB(data-set-1list)]

(i e e e o e S — — —— ——— ——— — . gy]

LOADGO}
LOAD

{PLILIB] [PLIBASE] [PLICMIX] [FORTLIB] {(COBLIBI]
TERM RES MAP CALL LET
NOTERM NORES NOMAP NOCALL NOLET

[SIZE(integer)]

[EP (entry-name)]

F__________________,_q
b——

[NAME (program-name)]

(data-set-1list)
specifies the names of one or more object modules and/or load
modules to be loaded and executed. The names may be data set
names, names of members of partitioned data sets, or both (see the
data set maming conventions). When you specify more than one name,
the names must be enclosed within parentheses and separated from
each other by a standard delimiter (blank or comma).

'parameters’

specifies any parameters that you want to pass to the program to be
executed.

147

LOADGO Command

PRINT (Jata-set-name or ¥*)
specifies the name of the data set that is to contain the listings
produced by the LOADGO command. If you omit the data set name, the
generated data set will be named according to the data set naming
conventions. You may substitute an asterisk (*) for the data set
name if you want to have the listings displayed at your terminal.
This is the default if you specify the MAP operand.

NOPRINT
specifies that no listings are to be produced. This operand
negates the MAP operand. This is the default value if both PRINT
and NOPRINT are omitted, and you do not use the MAP operand.

TERM
specifies that you want any error messages directed to your
terminal as well as the PRINT data set. This is the default value
if both TERM and NOTERM are omitted.

NOTERM

specifies that you want any error messages directed only to the
PRINT data set.

LIB(data set 1list) ,
specifies the names of one or more library data sets that are to be
searched to find modules referred to by the module being processed
(that is, to resolve external references).

PLILIB
specifies that the partitioned data set named SYS1.PL1LIB is to be
searched to locate load modules referred to by the module being
processed.

PLIBASE
specifies that the partitioned data set named SYS1l.PLIBASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX
specifies that the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

COBLIB
specifies that the partitioned data set named SYS1.COBLIB is to be
searched to locate load modules referred to by the module being
processed.

FORTLIB
specifies that the partitioned data set named SYS1.FORTLIB is to be
searched to locate load modules referred to by the module being
processed.

RES
specifies that the link pack area is to be searched for load
modules (referred to by the module being processed) before the
specified libraries are searched. This is the default value if
both RES and NORES are omitted. If you specify the NOCALL operand
the RES operand is invalid.

148 TSO Command Language Reference (Release 21.7)

LOADGO Command

NORES
specifies that the link pack area is not to be searched to locate
modules referred to by the module being processed.

MAP
specifies that a list of external names and their absolute storage
addresses are to be placed on the PRINT data set. This operand is
ignored when NOPRINT is specified.

NOMAP
specifies that external names and addresses are not to be contained
in the PRINT data set. This is the default value if both MAP and
NOMAP are omitted. :

CALL
specifies that the data set specified in the LIB operand is to be
searched to locate load modules referred to by the module being
processed. This is the default value if both CALL and NOCALL are
omitted.

NOCALL
specifies that the data set specified by the LIB operand will noct
be searched to locate modules that are referred to by the module
being processed. The RES operand is invalid when you specify this
operand.

LET
specifies that execution is to be attempted even if a severity 2
error should occur. (A severity 2 error indicates that execution
may be impossible.)

NOLET
specifies that execution is not to be attempted if a severity 2
error should occur. This is the default value if both LET and
NOLET are omitted.

SIZE (integer)

specifies the size, in bytes, of dynamic main storage that can be
used by the loader. If this operand is not specified, then the
size defaults to the size specified at System Generation (SYSGEN).

EP (entry-name)
specifies the external name for the entry point to the loaded
program. You must specify this operand if the entry point of the
loaded program is in a load module.

NAME (program-name)
specifies the name that you want assigned to the loaded program.

149

LOADGO Command

Example 1

Operation: Load and execute an object module.

Known: The name of the data set........... wessssesessa SHEPD58.CSINE.OBJ
[LOADGO CSINE PRINT(*)]

Example 2

Operation: Combine an object module and a load module, and then load
and execute them.

Known: The name of the data set
containing the object modul€...eceveee.. LARK:HINDSITE.OBJ
The name of the data set
containing the load modul€..eewewesswe-e LARK.THERMOS.LOAD(COLD)

-/

r
|LOAD (HINDSITE THERMOS(COLD)) PRINT(*) LIB('SYS1.SORTLIB') |
|NORES MAP SIZE(U44K) EP(START23) NAME (THERMSIT) |
L 3

150 TsSO Command Language Reference (Release 21.7)

LOGOFF Command

Use the LOGOFF command to terminate your terminal session.

Before you enter the LOGOFF command, you should use the EDIT
command's SAVE subcommand to store the data sets that you want to save.
When you enter the LOGOFF command, the system frees all the data sets
allocated to you; data remaining in main storage will be lost.

Note: If you intend to enter the LOGON command immediately and continue
processing against a different account number you do not enter LOGOFF.
Instead, you can just enter the LOGON command as you would enter any
other command.

r T ———- 1
| COMMAND | OPERAND |
t-~ e S — i
| LOGOFF | |
L 4 —_—
Example 1

Operation: Terminate your terminal session.

r
| Logof £ |

—_—

151

LOGOFF Command

152 TSSO Command Language Reference (Release 21.7)

N

\

LOGON Command

Use the LOGON command to initiate a terminal session. Before you can
use the LOGON command, your installation must provide you with certain
basic information.

o Your user identification (1-7 characters) and, if required by your
installation, a password (1-8 alphameric characters).

e An account number (may or may not be required for your
installation).

e A procedure name (may or may not be required for your installation).

You must supply this information to the system by using the LOGON
command and operands. The information that you enter is used by the
system to start and control your time sharing terminal session.

You can also use the operands to specify whether or not you want to
receive messages from the system or other users.

COMMAND OPERANDS

LOGON user-identityl/passwordl
[ACCT(account)]

[PROC (procedure)]
[SIZE(integer)]

NOTICES
NONOTICES

MAIL
NOMAIL

o —— e
pr e e e e e s e e e e e e

+ e e ottt s e e s v e i e e S ey s)

user-identity and password
specifies your user identification and, if required, a valid
password. You user identification must be separated from the
password by a slash (/) and, optionally, one or more standard
delimiters (tab, blank, or comma). Your identification and
password must match the identification contained in the system's
User Attribute Data Set (UADS). If you omit any part of this
operand, the system will prompt you to complete the operand.
(Printing is suppressed for some types of terminals when you
respond to a prompt for a password.)

ACCT (account)
specifies the account number required by your installation. If the
UADS contains only one account number for the password that you
specify, this operand is not required. If the account number is
required and you omit it, the system will prompt you for it.

For TSO, an account number must not exceed 40 characters, and must
not contain a blank, tab, quotation mark, apostrophe, semicolon,
comma, or line control character. Right parentheses are
permissible only when left parentheses balance them somewhere in
the account number. ‘

153

LOGON Command

PROC (procedure-name)
specifies the name of a cataloged procedure containing the Job
Control Language (JCL) needed to initiate your session.

SIZE (integer)
specifies the size of the main storage region, in units of 1024
“bytes, that you want allocated to your job. The UADS contains a
default value for your region size if you omit this operand. The
UADS also contains a value for the maximum region size that you
will be allowed. This operand will be rejected if you specify a
region size exceeding the maximum region size allowed by the UADS
(in this case, the UADS value MAXSIZE will be used).

NOTICES
specifies that messages intended for all terminal users are to be
listed at your terminal during LOGON processing. This is the
default value if both NOTICES and NONOTICES are omitted.

NONOTICES _
specifies that you do not want to receive the messages intended for

all users.
MAIL
specifies that you want messages intended specifically for you to

be displayed at your terminal. This is the default value if both
MAIL and NOMAIL are omitted.

NOMAIL
specifies that you do not want to receive messages intended
specifically for you.

Example 1

Operation: Initiate a terminal session.

Known: Your user identification and password..<e.seee... AJKD58/23XAS$MBT
Your installation does not require an account number or
procedure name for LOGON.

f 1
|LOGON AJKD58/23XA$MBT :
L

Example 2

Operation: Initiate a terminal session.

Known: Your user identification and passworde.....eee..... HEUS951/MOa
Your account NUMDbEr...csnccceccccccnscnncnencnsesse 288104
The name of a cataloged procedur€..cecececeececeaecea.n. TS951
You do not want to receive messages.
Your main storage space requirement..eeececece=s.... 90K bytes

r 1
| LOGON HEUS951/MOa ACCT(288104) PROC (TS951) SIZE(90) NONOTICES NOMAIL |
L , B

154 TsO Command Language Reference (Release 21.7)

OPERATOR Command

Use the OPERATOR command (along with its subcommands) to requlate and
maintain TSO from a terminal.

The OPERATOR command is fully supported only for terminals which have
the transmit interruption capability, that is, this command is supported
only for those terminals for which the BREAK operand of the TERMINAL
command is valid.

This command may be used only by personnel who have been given the
authority to do so by the installation management. The authority to use
OPERATOR is normally given to personnel responsible for system
operation, and is recorded in the User Attribute Data Set (see the
ACCOUNT command) .

| COMMAND

OPERANDS |

| {OPERATOR
| 1OPER
L

o — g —
i
I
I
I
|
]
—

THE OPERATOR COMMAND

The OPERATOR command, through the use of its eight subcommands, allows
the terminal user to control TSO as follows:

Subcommand Function Performed

CANCEL Cancel a termminal session or a background job submitted
through TSO.

DISPLAY Display the number of users in a region, the number of
batch jobs submitted via the SUBMIT command, the TSO job
messages that are awaiting a reply from the system
operator, and the number of active terminals.

END Terminate operation of the OPERATOR command (thereby
removing the user's terminal from OPERATOR mode) .

HELP Get a list of the subcommands of the OPERATOR command,
along with the function, syntax, and operands of the
subcommands.

MODIFY Modify TSO options that were specified when the system was
generated or when time-sharing was initiated.

MON ITOR Monitor both terminal and background job activities within
the system. Informational messages will be displayed.

SEND Send or receive a message to or from other terminal users.

STOPMN Terminate the monitoring operations of the MONITOR

subcommand; the display of status information at the
user's terminal will be stopped.

155

OPERATOR Command

FORMAT

The OPERATOR command and its eight subcommands have a format that is
compatible with the MVT system operator commands of the System/360
Operating System. The similarities between the TSO OPERATOR commands
and the MVT system operator commands are shown in Figure 13. The MVT
commands are documented in: IBM System/360 Operating System:
Operator's Reference, GC28-6691.

SYNTAX
When using the OPERATOR subcommands the following should be noted:

e Blanks are the only valid characters allowed between a subcommand
and its operand.

® One comma is the only valid character allowed between operands.

e Operand length, including delimiters, is limited to 124 characters.

= e e . B S e e T . e e i, e B S, o e S S, S B o S s S SV . S e)

TSO Command Language MVT Command Language (Without TSO)
T —_—
Terminal User OPERATOR | System Operator
— 4
Subcommand | Operands | Command | Operands
4] 4
T T T
CANCEL | | CANCEL |
| jobname | | jobname
| DUMP | | DuMP
|ALL | |ALL
| IN=class | | IN=class
|joUT=class i | OUT=c lass
|unit-address | |UNITADDR
jidentifier | |identifier
| U=userid | |
4] 1
al L} T
DISPLAY | | DISPLAY |
| jobname | | jobname
[a | |A
T | |T
IN | IN
I | 1o
|1list | |list
IR | IR
| USER [=NMBR] | |
| | |u
| | |C.,K
| | | CONSOLES
|Q= | | o=
IN= l |N=
[sQA | |soa
——de —_— L L ———
Figure 13. Relationships Between the TSO OPERATOR Subcommands and the

MVT (non-TSO) Operator Commands (Part 1 of 2)

156 TSO Command Language Reference (Release 21.7)

.
I
.'
I
.’
I
I
|
|
I
|
I
|
I
.’
I
I
!
I
I
I
I
|
I
I
|
|
I
|
|
i

TSO Command Language

OPERATOR Command

MVT Command Language (Without TSO)

e s el e o e e e e g e o e . e . s . e S e et e, e S, e e, Sepl) o e S . s, S . S P . e i et S S e, S S, . e, e s gy s sty e el

T
Terminal User OPERATOR | System Operator
L
T R} T
| Subcommand | Operands | Command | Operands
+ + +
MODIFY | | MODIFY |
| procedure.identification | | procname.identifier
| | USERS=nmbr | |
| | SUBMIT=Queuesize] i
	REGSIZE (n) =(nnnnnkK, xxxxxK)	}
	DRIVER=(parameters) i	
	BOLD=(region-1list)	
	SMF=	
i {	CLASS=c lass names	
	i	PAUS E=FORMS
i I	PAUS E=DATASET	
	[JOBCLASS= 33
I -— - - $ t		
MONITOR		MONITOR
	A (same as DISPIAY A)]
	SEsslI, T] { IT	
	STATUS	
[JOBNAMES, T]	
	SPACE	
	DSNAME i	DSNAME
t 1 t +		
STOPMN		STOPMN
	JOBNAMES	
	SPACE	
I	DSNAME	
i	STATUS	
	SESS [
t 1 t 1+		
SEND		None
	"text’ i	
	USER=(userid list)	
	ALL	I
	NOW	
i] LOGON		
	message number,DELETE	
	message number, LIST i	
	LIST	
t 4 t + - -—=		
HELP	{ None	
	subc ommand-name	
	FUNCTION	
	SYNTAX	
i	OPERANDS	I
	ALL [
L —_t 4 4 ————		
L T T L]		
END		None i
L o | L L1
Figure 13. Relationships Between the TSO OPERATOR Subcommands and the

MVT (non-TSO) Operator Commands (Part 2 of 2)

157

CANCEL Subcommand of OPERATOR

Use the CANCEL subcommand to terminate the current activities of a
terminal user or a job submitted for conventional batch processing.

When you use the CANCEL command to terminate a terminal session,
accounting information will be presented to the user. The syntax for
this subcommand is the same as the syntax for the MVT operator commands.

r T~ 1

| SUBCOMMAND | OPERANDS J

i - - }

| {CANCEL} | jobname [,DUMP[,ALL] |

| C | (IN[=classl]

| i ,OUT[=classl] |

| | unit-address]

|] identifier |

|] U=user-identificationl[,DUMP] |

L —_ L — —_ — 4

jobname
is the name of the job that you want to cancel.

DUMP
specifies that an abnormal-end-of-job storage dump will be taken if
a step of the job is being executed when you enter the command.
The dump will be printed on the system output device.

ALL
specifies that all the input and output for the job is to be
canceled.

IN=class
specifies that the system is to search for the job on the input
queue indicated by "class". TIf you omit "class", all input queues
will be searched.

OUT=class
specifies that the system is to search for the job on the output
queue indicated by "class". If you omit "class", all output queues
will be searched.
Note: If neither the IN or OUT parameter is used the system will
search all the input queues and the hold queue for the job.

unit address
specifies the address of an I/0 device. The system will stop the
output currently being written on the device.

identifier
specifies the identifier of a system task to be terminated during
allocation. You cannot cancel a system task that is not associated
with a unit (device). :
This operand can be the identifier used in a START command issued
by the system's console operator or it can be a unit type (such as
1403 or 2311) associated with a unit address or a procedure used in
a START command.

158 TSO Command Language Reference (Release 21.7)

CANCEL Subcommand of OPERATOR

=user identification
specifies the user identification for a user whose terminal session
is to be terminated by the CANCEL command.

Note: Use the 'CANCEL U=userid' format for canceling time sharing
jobs only and the 'CANCEL jobname' format for canceling
conventional batch jobs only.

Example 1

Operation: Terminate a user's terminal session.

Known: The user's identificatiON...cccecececsannsacanassseseaaaass RCHTD36

-1

T
|C U=RCHTD36 I
L J

Examplé 2

Operation: Cancel a job that has been submitted from a terminal for
conventional batch processing and have a dump printed.

Known: The name of the jOD....ececeeecanccaancecanccasaceasssas PAYROLL

r N .
lcancel payroll, dump |

Example 3

Operation: Cancel the output from a job that has been submitted from a
terminal for conventional batch processing.

Known: The name Of the JOb...eieieietenneccncnannasccncacncsacsasss SUEG
The OUtPUt ClaSS.eceeecececsecnenncnnansocssnsncannsccsnnscnscss U

I
| CANCEL SUEG,O0UT=J
1 :

e oo

159

DISPLAY Subcommand of OPERATOR

Use the DISPLAY subcommand to obtain a listing of:

The number of teminal users for each time sharing region.

e The number of conventional batch jobs awaiting execution that were
submitted from a terminal by the SUBMIT command.

e The messages from time sharing jobs that are awaiting replies from
an operator.

® The message indicating the status of the system queue area (SQA).

e The number of active terminals, the identification of each user, and
the time sharing region being used by each user. The operands
' jobname*, *A', 'N', 'Q', 'T*' and °*R* are also operands of the
DISPLAY command of the System/360 Operating System. They are
described in detail in the publication IBM System/360 Operating
System: Operator's Reference. The syntax for this subcommand is
the same as the syntax for the MVT operator commands.

r T - : 1
| SUBCOMMAND | OPERANDS . |
t t -1
| {DISPLAY} | jobname |
| | A I
| | T I
| | N[=list] |
| i Ql=list] |
| | R , |
| | SOA |
| | USER[=NMBR] [
I | T I
L Lo __ -1
Jjobname
specifies the name of the job for which the following status
information is to be displayed: job name; class; job priority;
type of queue the job is in (JOB Q, HOLD Q, SOUT Q (SYSOUT queue),
or BRDR): and the job's position in the queue.
The maximum length of a job name is eight characters. If your
jobname is JOBNAMES, STATUS, T, A, R, Q, N, SPACE, DSNAME, SESS,
USER, U, M, or CONSOLES it must be enclosed in parentheses.
A

specifies that you want the system to display information about all
jobs and jobsteps that are recognized by the system as tasks (that
is, those jobs and job steps that have one or more task control
block (TCB)).

The information displayed for jobs in background regions includes
the names of the job and job step associated with each task, the
number of subordinate tasks operating within the same region of
main storage, the beginning and end addresses of the region, and
the amount of supervisor queue space used for system control blocks
related to the main task. If rollout is included in the system,
the display will indicate whether the region is borrowed or rolled
out. :

160 TSO Command Langquage Reference (Release 21.7)

DISPLAY Subcommand of OPERATOR

The information displayed for time-sharing regions includes TIME
SHARING as the job name, the number of users for each region, the
region number, the beginning and end addresses of the region, and
the amount of local supervisor queue space used for system control
blocks by the user's tasks.

N
specifies that you want a list of job names on the input, hold,
output, BRDR, and ASB reader batching queues.
Q
specifies that you want a list of the number of entries on the
input, hold, output, BRDR, and ASB reader batching queues.
list
specifies that you want information about specific queues. You can
specify up to four of the following queues:
e Specific input work queue name (job class A through 0).
e SOUT (system output queues collectively).
e HOLD (system hold queue).
e BRDR (background reader queue).
R
specifies that you want a listing of messages that are awaiting a
response from an operator.
SQA
specifies that you want information on the system queue area {(SQA).
You will receive a message at your terminal indicating the low and
high boundaries of the SQA and the amount of free storage between
them.
T

specifies that you want the time of day and the date.

USER [=NMBR1
indicates you want specific information about time sharing users.
If you do not specify =NMBR, the number of active terminals, the
identification of each user and the corresponding region number of
each user will be displayed at your terminal. If you do specify
=NMBR, only the number of active terminals will be displayed.

161

DISPLAY Subcommand of OPERATOR

Example 1

Operation: Have the number of time sharing regions and the number of
users for each region displayed at your terminal.

r 9

|DISPLAY A |

L —_—1

Example 2

Operation: Have the status of a particular job displayed at your
terminal.

Known: The name Of the JOD 1Siceccecsccaccsscaccsaacnsnccnasnans RBTATT

r - : 1

|display rbtatt |

L 1

Example 3

Operation: Obtain the user identification for each active terminal
user.

r - 1

|d user |

L 3

162 TSO Command Language Reference (Release 21.7)

END Subcommand of OPERATOR

Use the END subcommand to terminate operation of the OPERATOR command.
After entering the END subcommand, you may enter new commands.

__________ T - b
| SUBCOMMAND | OPERANDS |
t e E 1
| END | |
L L - — 3

163

HELP Subcommand of OPERATOR

Use the HELP subcommand to find out how to use OPERATOR and the OPERATOR
subcommands. When you enter the HELP subcommand, the system responds by
printing out explanatory information at your terminal. You may request:

e A list of available subcommands.
e An explanation of the fucntion, syntax, and operands of a specific
subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

- - - - -1
|

SUBCOMMAND OPERANDS

I
“

[subcommand-name [FUNCTION] [SYNTAX] [OPERANDS[(liSt)]]]
[ALL)

o e

subcommand-name
specifies the subcommand that you want to have clarified. 1If you
omit this operand, the system will display a list of OPERATOR
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand 's function.

SYNTAX .
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (1list)
specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default value if no operands are specified.

164 TsSO Command Language Reference (Release 21.7)

HELP Subcommand of OPERATOR

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r
| HELP
L

Example 2

Operation: Obtain all available information about a particular
subc ommand.

Known: The subcommand NAMEe . ccecessscenccnccancnarcsnansnassinsaaess MODIFY

r
| H MODIFY
L

[p——)

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand NaMEe e cesecencancscsasnsescs sncsnssncssocsee DISPLAY

r
|h DISPLAY operands
L _ 3

165

MODIFY Subcommand of OPERATOR

Use the MODIFY subcommand to modify the time sharing options that were
specified when the system was generated or when time sharing was
initiated. The syntax used for this subcommand is the same as the
syntax used for MVT operator commands.

L T - B |
| SUBCOMMAND | OPERANDS ’ |
|8 3
I fommm - —
| MODIFY | [procedure.lidentification |
| F | l
} | [,USERS=number] |
i | [,SUBMIT={(queuesize)] |
]] [,REGSIZE{(n)={(nnnnnlK],xxxxx[K])]1... |
| | [,DRIVER=(parameters)] |
| | [,HOLD=(region-1list)]]
I | +SMF={ (OFF LEXT=YES]) |
| | OPT={1} « EXT=NO |
I | 2 I
L L e e e e e e e e 3
procedure
specifies the name of the time sharing procedure that you want to
modify. This name must be the same as the one that was used when
the procedure was started with a START command issued by the
console operator.
identification

specifies the identification of the system task used when the task
was defined by a START command issued by the console operator.

USERS=number
()
indicates the number of users allowed for time sharing. The
maximum number is determined at START time and cannot be exceeded
by the MODIFY command.

SUBMIT=Queuesize
(SUBM)
indicates the maximum number of logical tracks to be used for the
queue for conventional batch jobs submitted by the SUBMIT command.

REGSIZE (n) =(nnnnnlK1, xxxxx[K1)
(REGS)
indicates the number and size of each time sharing region. 'n' is
the region number (included on the informational messages from the
DISPLAY command). You specify the size of the region in the form
nnnnnK. If the size equals zero the region will be freed. You
specify the local supervisor queue area (LSQA) to be added to the
region in the form xxxxxK. The LSQA size must be smaller than the
region size, but greater than zero. "nnnnn" and "xxxxx" are the
number of contiguous 1024 byte areas you want. These numbers may
range from one to five digits, but the sum cannot exceed 16382.
The numbers should be specified as even numbers. (If you specify
an odd number, the system treats it as the next higher even
number). LSQA size must be smaller than the region size, but
greater than zero. Anytime you use the REGSIZE operand, any users
of that region will be logged off. :

166 TSO Command Language Reference (Release 21.7)

MODIFY Subcommand of OPERATOR

DRIVER= (parameters)
specifies a parameter list to be passed to the time sharing driver
(a component of TSO). For instance, BACKGROUND=value is the only
keyword that can be passed to the IBM supplied driver -- it
indicates the percentage of system resource time quaranteed for
conventional batch processing; however, different parameters may be
supplied for user-written drivers.

HOLD= (region-1list)
specifies that the time-sharing regions specified in "region-list"
are not to be allocated for any new users. If you specify more
than one region, then you must separate the regions specified with
commas. If you specify only one region, the parentheses are not
needed.

You may not specify HOLD and REGSIZE(n) for the same region in one
MODIFY command. If you do, the system will request that you: specify
the option you prefer, indicate that both keywords are to be ignored for
this region, or cancel the MODIFY command.

SMF=(OFF or OPT=1 or OPT=2, EXT=YES or NO)
indicates which option of the System Management Function (SMF) is
to be used for time sharing operations. OFF indicates that SMF is
not to be used for time sharing operations. OPT=1 or 2 indicates
an option of SMF that is to be used for time sharing operations.
EXT indicates that exits to the installation routines are active.

Note: If duplicate keywords are entered in a MODIFY command, the
right-most (last entered) keyword and parameters will determine
system action. (n) is part of the REGSIZE(n) keyword; therefore,
REGSIZE(1) and REGSIZE(2) are not considered duplicate keywords.

Example 1

Operation: - Change the number of terminals allowed for time sharing
operations.

Known: The existing allowable number...cecieceseccencncncacnnencensas 32
ThEe NEeW NUMDEY.ectcoenencacascnencnncsnmsconacccsnnacnsancanss 20

- I

r i
|MODIFY TSO, USERS=26 |
L —_ 4

Example 2

Operation: Change the maximum size of time sharing region number 3 from
70K to 100K, with 10K reserved for local supervisor queue
area (LsQA).

T
|£f tso,regsize(3)=(100K, 10K)
L

i e

Example 3
Operation: Change the guaranteed background pexrcentage of time to 60%.

[oup——'

r
| F TSO,DRIVER=(BACKGROUND=60)
L

167

MONITOR Subcommand of OPERATOR

Use the MONITOR subcommand to monitor terminal activities and job
activities within the system. Informational messages will be displayed.
The content of the messages will pertain to the type of information
indicated by the operand included with the MONITOR subcommand. The
system will continue to issue these informational messages until halted

by a STOPMN subcommand or until you terminate the OPERATOR conrmand.

r ——— B J ittt 1
| SUBCOMMAND | OPERANDS |
t : -~ - :
{MONITOR}	A
MN	SEss[, Tl
	STATUS
[] JOBNAMESI[,T]	
	SPACE
	DSNAME
[, L _——— 3
A ,

SESS

168

specifies that you want the system to display information about all
of the jobs and jobsteps that are recognized by the system as
tasks. (Under the TSO OPERATOR command function, the MONITOR A
subcommand produces the same results as the DISPLAY A subcommand.
Time-interval updating of the display is not supported under TSO.)

indicates that you are to be notified whenever any terminal session
is initiated or terminated. The user's identification will be
displayed at your terminal. If the session terminates abnormally,
the user identification will appear in the diagnostic message; the
message "user LOGGED OFF" will not appear if the session was
canceled.

If you specify the T operand, the system displays the time of day

in addition to the users identification. The format of the time
output is shown under the T operand description.

specifies that you want the time of day to be displayed in the
following format:
hh.mm. ss
The variables in this format are:
hh - Hours (00-23)
mm - Minutes (00-59)
ss - Seconds (00-59)
whenever one TSO user specifies this operand, all subsequent users

of the MONITOR command will also receive the time at their
terminals.

TSO Command Language Reference (Release 21.7)

MONITOR Subcommand of OPERATOR

STATUS
specifies that you want the data set names and volume serial
numbers of data sets with dispositions of KEEP, CATLG, or UNCATLG
to be displayed whenever the data sets are freed.

JOBNAMES
specifies that you want the name of each job to be displayed both
when the job starts and when it terminates, and that you want unit
record allocation to be displayed when the job step starts. If a
job terminates abnormally, the jobname will appear in the
diagnostic message; the message 'jobname ENDED' will not appear.

If you specify the T operand with the JOBNAMES operand, the system
displays the time of the day in addition to the jobnames. The
format of the output is shown under the T operand description.

SPACE
specifies that you want the system to display, in demount messages,
the available space on a direct access device.

DSNAME
specifies that you want the system to display, within the mount and
K (keep) type demount messages, the name of the first non-temporary
data set allocated to the volume to which the messages refer.

Example 1

Operation: Have the system notify you whenever a terminal session
begins or ends.

- -

r
|[MONITOR SESS (
L

Example 2

Operation: Have displayed at your terminal the name of each job when
the job starts and when it terminates. Also have the time
displayed with the jobname.

¢ -
|MN JOBNAMES, T
L

—-—d

169

SEND Subcommand of OPERATOR

Use the SEND subcommand to send a message to any or all terminal users.
A message may be sent to one or more terminal users by indicating the
user identification of each recipient, or to all terminal users by not
indicating specific user identifications. If the intended recipient is
not logged on, the message can be retained within the system and
presented automatically when the recipient logs on. You will be
notified when the recipient of an immediate message is not logged on:
the message will be deleted by the system.

Note: The maximum length of the SEND subcommand operands, including
delimiters, is 124 characters.

The syntax for this subcommand is the same as the syntax for MVT
operator commands.

r T 1
| SUBCOMMAND | OPERANDS |
t - 1
| {SEND} | 'text’' ,USER=(user—identification—list%)[,NOW |
| 1sE I ,ALL ,LoGcoN][|
|] message-number (,DELETE |
I | +LIST |
! IL LIST _||
'text"

specifies the message that you want to send. You must enclose the
text of the message within apostrophes (single quotes). The
maximum length of a message is 115 characters including blanks.

The message must be contained on one line (you cannot continue a
message. on a second line). If you want a quotation mark printed in
the message, you must enter two quotation marks.

USER= (user identification list)
specifies the user indentification of one or more terminal users
who are to receive the message.

specifies that all terminal users are to receive the message.
Terminal users who are currently using the system will receive the
message immediately. This is the default value if both USER=(user
identification list) and ALL are omitted.

NOW
specifies that the message is to be sent immediately. If the
recipient is not logged on, you will be notified and the message
will be deleted. This is the default value if NOW and LOGON are
omitted.

LOGON
specifies that the message is to be sent immediately if the
recipients are logged on and receiving messages. Otherwise, the
message is to be retained in the SYS1.BRODCAST data set if:
a. You specify a user identification the message is retained in
the "mail" section of the SYS1.BRODCAST data set and deleted by
the system after it is sent to the intended user.

170 TsO Command Language Reference (Release 21.7)

SEND Subcommand of OPERATOR

b. You specify "ALL", the message will be stored in the "notices"
section of the SYS1.BRODCAST data set and retained there until
the operator deletes it.

message number,DELETE
specifies the number of a notice in the SYS1.BRODCAST data set that
you want to delete.

message number,LIST
specifies the number of a notice in the SYS1.BRODCAST data set that
you want to have displayed at your terminal. Anytime you specify a
message number without either the LIST or DELETE operand, the
system assumes the default value and deletes the message.

LIST
specifies that you want to receive a listing of all the SEND
notices retained in the system. The listing will be produced at
your terminal. Each message will be preceded by a system-assigned
number.

Example 1
Operation: Send a message to all terminal users currently logged on.

Known: The message:
TSO TO SHUT DOWN AT 9:55 P.M. EST 9/14/70

r
|SEND 'TSO TO SHUT DOWN AT 9:55 P.M. EST 9/1i4/70' ,ALL
L _ :

Pp——

Example 2

Operation: Send a message to two particular terminal users currently
logged on.

Known: The user identificatioOnNS.eceessccecssensncnssaccnsanasanes T24
OTO

The message:
YOUR ACCT NO. INVALID AFTER THIS SESSION

- |

r - -
| SEND *'YOUR ACCT NO. INVALID AFTER THIS SESSION' ,USER=(T24,0TO) |
L

— I |

171

SEND Subcommand of OPERATOR

Example 3

Operatidn: Delete a message.

Known: The NMeSSage NUMDEY..e.eecccccnncousonncnnannancsnsancsans

8

T
| SEND 8
L

Example 4

Operation: Have all messages displayed at your terminal.

L}
| SEND LIST
L

172 TSO Command Language Reference (Release 21.7)

o d

STOPMN Subcommand of OPERATOR

Use the STOPMN subcommand to terminate the monitoring operations of the
MONITOR subcommand. This subcommand will halt the display of status
information at your terminal.

r T 1
| SUBCOMMAND | OPERANDS |
b —— -1
| {STOPMN} | JOBNAMES |
| \pM | SPACE |
1 | DSNAME I
| | [sEss |
| | STATUS |
b Lo —
JOBNAMES
specifies that the operations provided by the JOBNAMES operand of
the MONITOR subcommand are to be stopped. (The system will stop
displaying the names of jobs as they start and end.)
SPACE
specifies that the operations provided by the SPACE operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the available space on direct access devices.)
DSNAME
specifies that the operations provided by the DSNAME operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the name of the first non-temporary data set allocated
to the volume to which the mount and K type demount messages
refer.)
SESS
specifies that the operations provided by the SESS operand of the
MONITOR subcommand are to be stopped. (The system will stop
notifying the operator whenever a terminal session is initiated or
terminated.) ‘
STATUS

specifies that the operations provided by the STATUS operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the names and volume serial numbers of data sets with
dispositions of KEEP, CATIG, or UNCATIG at job step end and job
end.)

173

STOPMN Subcommand of OPERATOR

Example 1

Operation: Stop the display of the names of jobs as they begin
execution and terminate.

r
| STOPMN JOBNAMES
L

Example 2

Operation: Stop the display of available space on direct access
devices.

r
| stopmn space
L

174 TsSO Command Language Reference (Release 21.7)

[)

o e add

OUTPUT Command

Use the OUTPUT command to:
e Direct the output from a conventional batch job to your terminal.
The output includes the job's Job Control Language statements (JCL),
system messages, and system output (SYSOUT) data sets.

e Direct the output from a conventional batch job to a specific data
Set.

e Change the output class for a conventional batch job.

e Delete the output (SYSOUT) data sets or the system messages for
conventional batch jobs.

COMMAND OPERANDS
{OUTPUT} (job-name-1list)
ouT [CLASS(class-name-1list)]

o o m— — e —— i T -
e e — — e —

PRINT| * NEXT PAUSE
data~-set-name HERE NOPAUSE
] N

NOPRINTI[(class-name) BEGI

[ST SV S

(job-name-1list)
specifies one or more names of jobs that have been submitted for
conventional batch processing. Unless your installation specifies
otherwise, you can use OUTPUT only for jobs whose name consists of
your user identification plus one or more characters. A jobname
consists of at most 8 alphameric or national characters; the first
character must be alphabetic or national (see Data Set Naming
Conventions). The system will process the output from the jobs
identified by the job-name-list.

CLASS(class-name-1list)
specifies the names of the output classes to be searched for output
from the jobs identified in the jobname list. If you do not
specify the name of an output class, the system's default class
will be searched for the jobs output. A class name is a single
character or digit (A-Z or 0-9). See the publication IBM
System/360 Operating System: Supervisor Services and Macro
Instructions, GC28-6646, for additional information.

PRINT(data-set-name or ¥*)
is the name of the data set to which the output is to be directed.
You may substitute an asterisk for the data set name to indicate
that the output is to be directed to your terminal. If you omit
both the data set name and the asterisk, the default value is the
asterisk. Print is the default value if you omit both PRINT and
NOPRINT.

NOPRINT (class-name)
indicates that the output is to be removed from the class specified
in the CLASS operand, and placed in the class specified in NOPRINT.
If you specify NOPRINT without including a class name, the output
is deleted from the system.

175

OUTPUT Command

Note: Do not specify the following characters as the character in
the class-name; the system will try to interpret them as a
class—-name and thus cause you to lose your data.

comma

tab

blank space
asterisk
semicolon

slash

right parenthesis

NEXT
indicates that output operations of a job that has been interrupted
are to be resumed with the next SYSOUT data set or group of system
messages.

HERE
indicates that output operations of a job that has been interrupted
are to be resumed at a point approximately ten lines before the
point of interruption (that is, approximately ten lines will be
repeated). This is the default value if you omit HERE, BEGIN, and
NEXT.

BEGIN
indicates that output operations of a job that has been interrupted
are to be resumed from the beginning of the data set being
processed, or from the first message if a block of system messages
is being processed.

PAUSE
indicates that output operations are to pause after each SYSOUT
data set is listed to allow you to enter a SAVE or CONTINUE
subcommand. (A carrier return entered after the pause will cause
normal processing to continue.) This operand can be overridden by
the NOPAUSE operand of the CONTINUE subcommand.

NOPAUSE
indicates that output operations are not to be interrupted. This
operand can be overridden by the PAUSE operand of the CONTINUE
subcommand. '

Considerations: The OUTPUT command applies to all conventional batch
jobs whose job names begin with your user identification. Access to
jobs whose job names do not begin with a valid user identification must
be provided by a user-written routine. The SUBMIT, STATUS, and CANCEL
commands also apply to conventional batch jobs. You must have special
permission to use these commands.

Note: You can simplify the use of the OUTPUT command by including the
NOTIFY keyword for the SUBMIT command when you submit a job for
conventional batch processing. The system will notify you when the job
terminates, giving you an opportunity to use the OUTPUT command. SYSOUT
data sets should be assigned to SYSOUT classes that do not have
conventional output writers operating.

176 TSSO Command Language Reference (Release 21.7)

OUTPUT Command

Output Sequence: Output will be produced according to the sequence of
the classes that you specify for the CLASS operand. For example, assume
that you want to retrieve the output of the following jobs:

//3WsSD581 JOB 91435, MSGCLASS=X

/77 EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=Y

//5YSUT1 DD DSNAME=PDS ,UNIT=2311,V0Ol~SER=111112,LABEL~(,SUL), X
/7 DISP=(OLD,KEEP) ,DCB=(RECFM=U, BLKSIZE=3625)

//SYSUT2 DD SYSOUT=2Z

//SYSIN DD *

PRINT TYPORG=PS, TOTCONV=XE
LABELS DATA=NOC

VA

//JWSD582 JOB 91435, MSGCLASS=X

Vo4 EXEC PGM=IEHPROGM

//SYSPRINT DD SYSOUT=Y

//DD2 DD UNIT=2311,VOL=SER=231100,DISP=0OLD
//SYSIN DD *

Va4 SCRATCH VTOC, VOL=2311=231100

7%

To retrieve the output, you enter:
OUTPUT (JWSDS81 JWSD582) CIASS (X Y 2)
Your output will be listed in the following order:
1. Output of class X (JCL and messages for both jobs).

2. Output of class Y (SYSPRINT data for job JWsD581 followed by
SYSPRINT data for job JWSD582).

3. Output of class Z (SYSUT2 data for job JWSD581).

Because of this, you should avoid unnecessary division of data sets
among classes. If a job uses several classes, you should retrieve the
output for that job alone rather than specifying a list of jobnames. By
retrieving the job alone, all its output will be together physically.

Subcommands: Subcommands for the OUTPUT command are: CONTINUE, END,
and SAVE. When output has been interrupted, you can use the CONTINUE
subcommand to resume output operations.

Interruptions occur when:

e Processing of a sysout data set completes and the PAUSE operand was
specified with the OUTPUT command.

e Processing of a sysout data set terminates because of an error
condition.

e You press the attention key. This action purges the input/output
buffers for the terminal. Data and system messages in the buffers
at this time may be lost. Using the CONTINUE subcommand will cause
output operations to resume.

e The END subcommand is entered before completion of the job that is
being processed.

177

OUTPUT Command

You can use the SAVE subcommand to rename and catalog a SYSOUT data set
for retrieval by a different method. Use the END subcommand to
terminate OUTPUT. The remaining portion of a job that has been
interrupted will be returned to the output queue.

Example 1

Operation: Direct the output from a conventional batch job to your

Known:

terminal.

The name Of the joObeeeeeeicennneenccanaes SMITH2

The job is in the system output class.... SYSOUT=X

Output operations are to be resumed with the next SYSOUT data
set or group of system messages.

You want the system to pause after processing each block of
output data.

r 1

|OUTPUT SMITH2 CILASS(X) PRINT (%) NEXT PAUSE |

L 3

Example 2

Operation: Direct the output from two conventional batch jobs to a data
: set so that it can be saved and processed at a later date.

Known: The names of the jobS.ecececessnneceannecess JANA

JANB
The name for the output data set...e.a..... JAN.AUGPP.OUTLIST

r -
|CUTPUT (JANA,JANB) CLASS(R,S,T) PRINT(AUGPP.OUTLIST)
L

Example 3

Operation: Change the output class.

Known:

The name of the job....aceenceaceannneenas KEANL
The existing output ClaSS..cecevceceweanseea SYSOUT=S
The new output ClasSS..eeececccecnncsccnocnew T

r
|OUTPUT KEAN1 CLASS(S) NOPRINT(T)
L

Example 4

Operation:

3).

r
|OUT KEAN1 CLASS(S) NOPRINT
L

178 TSO Command Language Reference (Release 21.7)

o e ol

. —d

Delete the output instead of changing the class (see Example

ap =

CONTINUE Subcommand of OUTPUT

Use the CONTINUE subcommand to resume output operations that have been
interrupted.

Interruptions occur when:

e An output operation completes and the PAUSE operand was specified

with the OUTPUT command.
e An output operation terminates because of an error condition.

e You press the attention key.

If other TSO commands have been entered during the interruption, the
OUTPUT command must be reentered.

r T

| SUBCOMMAND | OPERANDS |

¢ i e {

| CONTINUE | NEXT PAUSE |

| | HERE NOPAUSE |

| | BEGIN |

1 — L e e e e e 3

NEXT
specifies that output operations are to be resumed with the next
data set being processed or with the next message if a block of
system messages is being processed. This is the default value if
NEXT, HERE, and BEGIN are omitted.

HERE
indicates that output operations are to be resumed at a point
approximately ten lines before the point of interruption (that is,
approximately ten lines will be repeated).

BEGIN |
indicates that output operations are to be resumed fron the
beginning of the data set being processed or from the first message
if a block of system messages is being processed.

PAUSE
indicates that output operations are to pause after each data set
is processed to allow you to enter a SAVE subcommand. (A carrier
return entered after the pause will cause normal processing to
continue.) You can use this operand to override a previous NOPAUSE
condition for output.

NOPAUSE

indicates that output operations are not to be interrupted. You
can use this operand to override a previous PAUSE condition for

output.

179

CONTINUE Subcommand of OUTPUT

Example 1

Operation: Continue output operations with the next SYSOUT data set or
group of messages.

r 1
| CONTINUE |
L _— 1
Example 2

Operation: Start output operations over again.

r ‘ ——= - 1
| CONTINUE BEGIN |

L

——

180 TSO Command Language Reference (Release 21.7)

END Subcommand of OUTPUT

Use the END subcommand to terminate the operations of the OUTPUT
command.

r T 1
| SUBCOMMAND | OPERANDS |
i + - -—- - - !
| END] |
b e— i - ——— e ——d

181

HELP Subcommand of OUTPUT

Use the HELP subcdmmand to find out how to use the OUTPUT subcommands.
When you enter the HELP subcommand, the system responds by printing out
explanatory information at your terminal. You may request:

e A list of available subcommands.
e An explanation of the function, syntax, and operands of a specific
subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

T
| SUBCOMMAND| OPERANDS
N - -

| {HELP} | [subcommand-name [FUNCTION] [SYNTAX] [OPERANDS[(liSt)]]]
[i [ALL]

L 1 P

7]

[S

subcommand -name
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of OUTPUT
subcommands. :

FUNCTION
specifies that you want a description of the referenced
subcommand*'s function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (1list)
specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default value if no operands are specified.

182 TSO Command Language Reference (Release 21.7)

HELP Subcommand of OUTPUT

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r - 1

| HELP I

L _ _ _ J

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name........ csecnns emescwvecscusncacnessssas SAVE

r -= - - 1

|H SAVE |

L - 3

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand NAME...eccsssccecveennscsanncenncnsansnseses CONTINUE

r - 1

|h continue operands |

L - 3

183

SAVE Subcommand of OUTPUT

Use the SAVE subcommand to rename and catalog a SYSOUT data set for
retrieval by some method other than the OUTPUT command. To use SAVE,
you should have specified the PAUSE keyword on the OUTPUT command.

SUBCOMMAND OPERANDS

SAVE
S

data-set-name

o —— e o
o e e e

[S SR |

data-set-name
specifies the new data set name to be given to the SYSOUT data set
(see the data set naming conventions). The renamed data set will
be cataloged by the new name.

Example 1

Operation: Save an output data set.

Known: The name of the data S€t.ececececssansecansss ADT023.NEWOUT.OUTLIST

ag e

. _—
| SAVE NEWOUT
L

184 TsO Command Language Reference (Release 21.7)

PROFILE Command

Use the PROFILE command to establish your user profile; that is, to tell
the system how you want to use your terminal. You can:

e Define a character-deletion or line-deletion control character.
e Specify whether or not prompting is to occur.

e Specify whether or not you will accept messages from other
terminals.

e Specify whether or not you want the opportunity to obtain additional
information about messages from a command procedure.

e Specify whether or not you want message numbers for diagnostic
messages that may be displayed at your terminal.

Initially, a user profile is prepared for you when arrangements are made
for you to use the system. The authorized system programmer uses the
ACCOUNT command to create your userid and your user profile. Under the
ACCOUNT command, the system programmer is restricted to defining the
same user profile for every userid that he creates. This "typical" user
profile is defined when a User Profile Table (UPT) is initialized to
hexadecimal zeroes for any new userid. Thus, your initial user profile
is made up of the default values of the operands discussed under this
command. The system defaults provided for the character-delete and the
line-delete control characters depend upon what type of terminal is
involved:

Character-Delete Line-Delete

TSO Terminal Control Character Control Character

r T T 1
|IBM 2741 Communication Terminal |BS (backspace) |ATTN (attention) |
L 4 [l

r - T + {
|IBM 1052 Printer-Keyboard |BS (backspace) | ** |
1 i -

+ } + y
| IBM 2260 Display Station | None | None |
L }

r - - 1 -"—___ "
| IBM 2265 Display Station | None |None |
In + 1

r t + I
|Teletype* Model 33 |*f | ** |
E t S {
| Teletype* Model 35 | ¥* | **]
I -t —mm e !
|* Trademark of Teletype Corporation. |
|** Refer to the publication, IBM System/360 Operating System: Time |
| Sharing Option, Terminals, GC28-6762. |
L _— _— 1

CAUTION: Although highly unlikely, it is possible for the system
programmer who created your userid (and therefore your user profile) to
have then logged on under it and by using the PROFILE command to have
created a unique user profile (different from the "typical" user profile
created under the ACCOUNT command) for you. In case of doubt, have the
system programmer use the LIST subcommand of ACCOUNT to list your
current user profile.

185

PROFILE Command

You change the characteristics of your user profile by using the
PROFILE command with the appropriate operands. Only the characteristics
that you specify explicitly by operands will change; other
characteristics remain unchanged. The new characteristics will remain
valid from session to session. You must specify at least one operand or
the system will ignore the command.

r T - 1
| COMMAND i OPERANDS I
T e :
{PROFILE	CHAR(fcharacter)) LINE ((ATTN)
PROF	BS character
	CTLX
	NOCHAR NOLINE
i	PROMPT INTERCOM [
	NOPROMPT NOI NTERCOM
	[PAUSE] [MSGID
	NOPAUSE NOMSGID
L R 4 K
CHAR (character)

specifies the character that you want to use to tell the system to
delete the previous character entered. You should not specify a
blank, tab, comma, asterisk, or parenthesis because these
characters are used to enter commands.

Note: Do not use an alphabetic character as either a character-delete
or a line-delete character. For if you do, you run the risk of not
being able to enter certain commands without accidentally deleting
characters or lines of data. For instance: if you specify R as a
character-delete character, each time you tried to enter a PROFILE
command the R in PROFILE would delete the P that precedes it. Thus it
would be impossible to enter the PROFILE command as long as R was the
character-delete control character.

CHAR (BS)
specifies that a backspace signals that the previous character
entered should be deleted. This is the default value set when your
user profile was created.

NOCHAR
specifies that no control character is to be used for character
deletion.

LINE (character)
specifies a control character that you want to use to tell the
system to delete the current line.

LINE (ATTN)
specifies that an attention interruption is to be interpreted as a
line-deletion control character. This is the default value set
when your user profile was created.

186 TSO Command Language Reference (Release 21.7)

PROFILE Command

LINE (CTLX)
specifies that the X and CTRL keys (depressed together) on a
Teletype terminal are to be interpreted as a line-deletion control
character. This is the default value set when your user profile
was created, if you are operating a Teletype terminal.

NOLINE
specifies that no line-deletion control character (including ATTN)
is recognized.

PROMPT
specifies that you want the system to prompt you for missing
information. This is the default value set when your user profile
was created.

NOPROMPT
specifies that no prompting is to occur.

INTERCOM
specifies that you are willing to receive messages from other
terminal users. This is the default value set when your user
profile was created.

NOINTERCOM
specifies that you do not want to receive messages from other
terminals.

PAUSE
specifies that you want the opportunity to obtain additional
information when a message is issued at your terminal while a
command procedure (see the EXEC command) is executing. After a
message that has additional levels of information is issued, the
system will display the word PAUSE and wait for you to enter a
question mark (?) or a carrier return.

NOPAUSE
specifies that you do not want prompting for a question mark or
carriage return. This is the default value set when your user
profile was created.

MSGID
specifies that diagnostic messages are to include message
‘identifiers.

NOMSGID
specifies that diagnostic messages are not to include message
identifiers. This is the default value set when your user profile
was created.

187

PROFILE Command

Example 1

Operation: Establish a complete user profile

Known: 'The character that you want to use to tell the system to delete
the previous CharaCter....cccecsccansssscnsncnncsanasassns Ha
The indicator that you want to use to tell the system to delete
the current linE.c.ecccecescsccenanccccscnnccsnsncescnanensees ATTN.
You want to be prompted.
You do not want to receive messages from other terminals.
You want to be able to get second level messages while a command
procedure is executing. ,
You do not want diagnostic message identifiers.

T _— 1

|PROFILE CHAR(#) LINE(ATTN) PROMPT NOINTERCOM PAUSE NOMSGID |

L 3

Example 2

Operation: Suppose that you have established the user profile in
Example 1. The terminal that you are using now does not
have a key to cause an attention interrupt. You want to
change the line delete control character from ATTN to @
without changing any other characteristics.

I 1

| PROF LINE () |

L 1

Example 3

Operation: Establish and use a line~deletion character and a
character-deletion character.

Known: The 1ine-deletion CharaCter...eceeeeeeaseceesessscsessncnccaseee &

The character-deletion characCtereveceecccasecessnsensossssoccae !

r 1

| PROFILE LINE(§&) CHAR(!) |

L 4

Now, if you type:
NOW IS THE TIEAC!BCG!.
and press the carriér return key, you will actually enter:

ABC.

188 TSO Command Language Reference (Release 21.7)

PROTECT Command

Use the PROTECT command to prevent unauthorized access to your data set.
This command establishes or changes:

e The passwords that must be specified to gain access to your data
set.
e The type of access allowed.

Data sets that have been allocated (either during a LOGON procedure or
via the ALLOCATE command) cannot be protected by specifying the PROTECT
command. To password-protect an allocated data set, you would have to
de-allocate it via the FREE command before you could protect it via the
PROTECT command.

Passwords
You may assign one or more passwords to a data set. Once assigned, the
password for a data set must be specified in order to access the data

set. A password consists of one through eight alphameric characters.
You are allowed two attempts to supply a correct password.

Types of Access

Four operands determine the type of access allowed for your data set.
They are, PWREAD, PWWRITE, NOPWREAD, NOWRITE.

Each operand, when used alone, defaults to one of the preceding types
of access. The default values for each operand used alone are:

DEFAULT VALUE

I
-1'_
PWREAD I PWREAD PWWRITE
I
I
l
|
I
I

NOPWREAD NOPWREAD PWWRITE
PWWRITE NOPWREAD PWWRITE
NOWRITE PWREAD NOWRITE

A combination of NOPWREAD and NOWRITE is not supported and will default
to NOPWREAD and PWWRITE.

If you specify a password but do not specify a type of access, the
default is:

e NOPWREAD PWWRITE if the data set does not have any existing access
restrictions.

e The existing type of access if a type of access has already been
established.

When you specify the REPIACE function of the PROTECT command the default
type of access is that of the entry being replaced.

189

PROTECT Command

[PWREAD] [PWWRITE]

NOPWREAD NOWRITE

[DATA('string*)]

r - T B - 1
| COMMAND | OPERANDS |
3 t

i {PROTECT} i data-set-name T
| PROT |]
| | ADD (password2) |
| | REPIACE (passwordl password2) |
| | DELETE {passwordl)]
|] LIST(passwordl) i
L i J

data-set-name
specifies the name of the data set that will be subject to the
functions of this command (see the data set naming conventions).

ADD (password 2)
specifies that a new password is to be required for access to the
named data set. This is the default value if ADD, REPLACE, DELETE,
and LIST are omitted.

If the data set exists and is not already protected by a password,
its security counter will be set and the password being assigned
will be flagged as the control password for the data set. The
security counter is not affected when additional passwords are
entered.

REPLACE (passwordl, passwordz2)
specifies that you want to replace an existing password, access
type, or optional security information. The first value
(passwordl) is the existing password; the second value (password?2)
is the new password.

DELETE (password1)
specifies that you want to delete an existing password, access
type, or optional security information.

If the entry being removed is the control entry (see the discussion
following these operand descriptions), all other entries for the
data set will also be removed.

LIST(passwordl) :
specifies that you want the security counter, the access type, and
any optional security information in the Password Data Set entry to
be displayed at your terminal.

passwordl '
specifies the existing password that you want to replace, delete,
or have its security information listed.

password2

specifies the new password that you want to add or to replace an
existing password,

190 TSO Command Language Reference (Release 21.7)

PROTECT Command

PWREAD
specifies that the password must be given before the data set can
be read.

NOPWREAD
specifies that the data set can be read without using a password.

PWWRITE
specifies that the password must be given before the data set can
be written upon.

NOWRITE
specifies that the data set cannot be written upon.

DATA('string')
specifies optional security information to be retained in the
system. The value that you supply for ’'string' specifies the
optional security information that is to be included in the
Password Data Set entry (up to 77 bytes).

Password Data Set

Before you can use the PROTECT command, a Password Data Set must reside
on the system residence volume. The Password Data Set contains
passwords and security information for protected data sets. You can use
the PROTECT command to display this information about your data sets at
your terminal.

The Password Data Set contains a security counter for each protected
data set. This counter keeps a record of the number of times an entry
has been referred to. The counter is set to 'zero' at the time an entry
is placed into the data set, and is incremented each time the entry is
accessed.

Each password is stored as part of an entry in the Password Data Set.
The first entry in the Password Data Set for each protected data set is
called the control entry. The password from the control entry must be
specified for each access of the data set via the PROTECT command, with
one exception: the LIST operand of the PROTECT command does not require
the password from the control entry.

If you omit a required password when using the PROTECT command, the
system will prompt you for it; and if your terminal is equipped with the
‘print-inhibit' feature, the system will disengage the printing
mechanism at your terminal while you enter the password in response.
However, the 'print-inhibit' feature is not used if the prompting is for
a new password.

Example 1

Operation: Establish a password for a new data set.

Known: The name of the data Set...ceccececececeaccansess LEOBTG.SALES.DATA
The pasSSWOrA..eeeeeecceoncnaccccnncnannsanseses LE2GRIFN
The type of access allowe€d....swwseeeweesensss PWREAD PWWRITE
The 1ogon i WaSeeeseecesccascsancecasnaanssnss LEOBTG

r
| PROTECT SALES.DATA PWREAD ADD (L82GRIFN)
L

[|

191

PROTECT Command

Example 2

Operation: Replace an existing password without changing the existing
access type.

Known: The name of the data S€t..ceeeeeeeeese-. TCOSALES.NETSALES.DATA
The existing passWOrd.c.cceaceeececesssses MIGAAOP
The NeWw pPaSSWOXAee.eeceseescacennaesnweaese PAOSTMG
The control passSWOYrd..eeeceeeseeceaeeesees ELHAVJ
The 1logon 1d WaSee:.escecescencsasesesanes TCOSALES

r
| PROT NETSALES.DATA/ELHAVJ REPIACE (MTG@AOP,PAOSTMG)
L

[}

Example 3
Operation: Delete one of several passwords.

Known: The name of the data set...ceaceccecacecacens.. MITGGO.NETGROSS.ASM
The pPasSSWOXde..cececeecesacsnceanscsnnancnnsseees LETGO
The control pasSWOXdeececeecececcncccesesnsneses APPLE
The 10gon id WaSece.eecececsccsonancenannnesws MLGGO

PROT NETGROSS.ASM/APPLE DELETE (LETGO)

= ——
e

Example 4

Operation: Obtain a listing of the security information for a protected
data set.
Known: The name oOf the data S€te.ceccncccccccncancns LTGZQ.BILLS.CNTRLA
The password required..ccccccececevcseassaseeas DHIPJAM

LB .
{protect "ltg24.bills.cntrla' list(d#jpjam) |
L

pp— |

Example 5
Operation: Change the type of access allowed for a data set.

Known: The name of the data sete..eecceccceaceensa.. GIPD23A.PROJCTN.LOAD
The new type Of aCCeSSeecceerecensvaseasees NOPWNREAD PWWRITE
The existing passwWOrd...eceececeeseacesesssee DDAY6/6
The contrOl pasSSWOXdeeaneesewceacessaseesses EEYORE
The 10gON id WaASesececsccscsnsnnacsscnnnaness GIJPD23A

. —
| PROTECT PROJCTN.LOAD/EEYORE REPLACE (DDAY6/6,DDAY6/6) -
| NOPWREAD PWWRITE

L

[|

192 TSO Command Language Reference (Release 21.7)

RENAME Command

Use the RENAME command to:

e Change the name of a cataloged data set.
e Change the name of a member of a partitioned data set.
e Create an alias for a member of a partitioned data set.

O ——= - 9
| COMMAND | OPERANDS |
IR Il
t t 1
| {RENAME} | old-name new-name [ALIAS]]
| \REN | I
L i i
old-name
specifies the name that you want to change. The name that you
specify may be the name of an existing data set or the uname of an
existing member of a partitioned data set. (See the data set
naming conventions.)
new-name
specifies the new name to be assigned to the existing data set or
member. If you are renaming or assigning an alias to a member, you
may supply only the member name and omit all other levels of
qualification. (See data set naming conventions).
ALIAS

specifies that the member name supplied for new name operand is to
become an alias for the member identified by the o0ld name operand.

You can rename several data sets by substituting an asterisk for a
qualifier in the old name and new name operands. The system will change
all data set names that match the old name except for the qualifier
corresponding to the asterisk's position. The RENAME command cannot be
used to assign an alias to a load module created by the linkage editor.
The LINK command provides this service. .

193

RENAME Command

Example 1

Operation: you have several data sets named:
USERID.MYDATA.DATA
USERID. YOURDATA.DATA
USER ID. WORKDATA. DATA-

that you want to rename:
USERID.MYDATA.TEXT
USER ID. YOURDATA. TEXT
USERID.WORKDATA.TEXT

you must specify either:

-
|RENAME 'USERID. *.DATA', "USERID. *.TEXT'
L

orx

r
| RENAME *.DATA, *.TEXT
L

Example 2

Operation: Assign an alias "SUZIE" to the partitioned data set member
named "ELIZBETH(LIZ)". ‘

; ,
|REN ‘*ELIZBETH(LIZ) ' (SUZIE) ALIAS
L

194 TSO Command Language Reference (Release 21.7)

e

(S

[Tp——]

~. =

RUN Command

Use the RUN command to compile, load, and execute the source statements
in a data set. The RUN command is designed specifically for use with
certain program products; it selects and invokes the particular program
product needed to process the source statements in the data set that you
specify. The following table shows which program product is selected to
process each type of source statement.

r T 1
| If your program or data set | Then the following Program Product |
|contains statements of this | is needed: |
itype (see EDIT): J }
T
| ASM | TSO ASM Prompter |
L L
t -~ t 1
| BASIC | ITF:BASIC]
| | (shared ILanguage Component and |
| | BASIC Processor) |
L 4
! t 1
COBOL	TSO COBOL Prompter and OS Full American
	National standard COBOL Version 3 or
	Version 4 Compiler
IR 1	
r - T *	
FORT	TSO FORTRAN Prompter and FORTRAN IV
	(GI) Compiler
i 4+	
r T "	
GOFORT	Code and Go FORTRAN
t t {	
IPLI	ITF:PL/I
	(shared Language Component and PL/I
	Processor)
¢ e t v {	
PLI	PL/I Checkout Compiler or
	PL/I Optimizing Compiler
¢ - ———-L !	
Programs containing statements suitable for the following language	
processors can be compiled and executed by using the CALL command:	
ASM(F),PL/I(F),FORTRAN(E) ,FORTRAN(G), oxr FORTRAN (H)	
I I	
You can use the CONVERT command to convert ITF:PL/I and Code and Go]	
FORTRAN statements to a form suitable for the PL/I and FORTRAN	
{compilers, respectively. 1

The RUN command and the RUN subcommand of EDIT perform the same basic
function.

195

RUN Command

COMMAND

OPERANDS

D Ll Py P —

data-set-name ['parameters']

[ASM 7

COBOL

FORT

IPLI [TEST 1|[LMSG
[NOTEST__SMSG]

NOTEST || SMSG || SPREC

GOFORT[FIXED] [LMSG
FREE ||SMsG

PLI[CHECK
OPT

ol

|

|

i

!

|

|

:

I BASIC[TEST 7[LMSG]{LPREC
| [J{sznze]
I

I

I

|

I

!

4

data-set-name ‘parameters’

AsSM

‘COBOL

FORT

IPLI

196

specifies the name of the data set containing the source program.
(See the data set naming conventions.) A string of up to 100
characters can be passed to the program via the "parameters"”
operand {(valid only for data sets which accept. parameters).

specifies that the TSO Assembler Prompter Program Product and the
Assembler (F) compiler are to be invoked to process the source
program. If the rightmost qualifier of the data set name is ASM,
this operand is not required.

specifies that the TSO COBOL Prompter and the 0S Full American
National Standard COBOL (Version 3 or Version 4) Program Products
are to be invoked to process the source program. If the rightmost
qualifier of the data set name is COBOL, this operand is not
required.

specifies that the TSO FORTRAN Prompter and the FORTRAN IV (G1)
Program Products are to be invoked to process the source program.
If the rightmost qualifier of the data set name is FORT, the Code
and Go FORTRAN compiler will be invoked. Specify this operand if
the TSO FORTRAN Prompter and the FORTRAN IV (Gl) Compiler are to be
invoked instead.

specifies that the ITF:PL/I Program Product is to be invoked to
process the source program. If the rightmost qualifier of the data
set name is IPLI, this operand is not required.

TSO Command Language Reference (Release 21.7)

RUN Command

BASIC
specifies that the ITF:BASIC Program Product is to be invoked to
process the source program. If the rightmost qualifier of the data
set name is BASIC, this operand is not required.

GOFORT
specifies that the Code and Go FORTRAN Program Product is to be
invoked for interactive processing of ‘the source program.

TEST
specifies that testing of the program is to be performed. This
operand is valid only for the ITF:PL/I and BASIC Program Product.

NOTEST
specifies that the TEST function is not desired. This is the
default value if both TEST and NOTEST are omitted.

LMSG
specifies that the long form of the diagnostic messages are to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC,
and Code and Go FORTRAN Program Products only. The default value
for the LMSG/SMSG operand pair depends on the Program Product being
used, as follows:

Program Product Default Operand

Code and Go SMSG
ITF:BASIC LMSG
ITF:PL/X LMSG

SMSG
specifies that the short form of the diagnostic messages is to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC,
and Code and Go FORTRAN Program Products only.

LPREC
specifies that long precision arithmetic calculations are required
by the program. This operand is valid only for the ITF:BASIC
Program Product.

SPREC
specifies that short precision arithmetic calculations are adequate
for the program. This operand is valid only for the ITF:BASIC
Program Product. This is the default value if both LPREC and SPREC
are omitted.

FIXED
specifies the format of the source statements to be processed by
the Code and Go FORTRAN Program Product. The statements must be in
standard format when this operand is specified. If you omit this
operand, the FREE operand is the default value.

FREE
specifies that the source program consists of free form statements
applicable only to the Code and Go FORTRAN Program Product.

PLI
specifies that the PL/I Prompter and either the PL/I Optimizing
Compiler or the PL/I Checkout compiler are to be invoked to process
the source program. If the rightmost qualifier of the data set
name is PLI, this operand is not required.

197

RUN Command

CHECK
specifies the PL/I Checkout Compiler. This operand is valid for
the PL/I Program Product only. If you omit this operand, the OPT
operand is the default value. '

OPT .
specifies the PL/I Optimizing Compiler. This operand is valid for
the PL/I Program Product only. This is the default value if both
CHECK and OPT are omitted.

Determining Compiler Type: The system uses two sources of information
to determine which compiler will be used. The first source of
information is the optional operand (ASM, COBOL, FORT, IPLI, BASIC,
GOFORT, or PLI) that you may specify for the RUN command. If you omit
this operand, the system checks the descriptive qualifier of the data
set name that is to be executed (see the data set naming conventions for
a list of descriptive qualifiers). If the system cannot determine the
compiler type from the descriptive qualifier, you will be prompted.

Example - 1

Operation: Compile, load, and execute a source program composed of
BASIC statements.

Known: The name of the data set containing
the source program.....cecececesececcseceeceeseses DDG39T.MANHRS.BASIC

- 1

r
| RUN MANHRS.BASIC
L —_— 3

Example 2

Operation: Compile, load and execute a Code and Go FORTRAN source
program contained in a data set that does not conform to the
data set naming conventions.

Known: The data Set NAMEeccccceccccccconccesnnenassas TRATECT.MISSILE
For FORTRAN statements that conform to the standard format.
Complete diagnostic messages are needed.

Parameters to be passed to the program are... 50 144 5000

r
|RUN ' TRAJECT.MISSILE' '50 144 5000' GOFORT FIXED LMSG |
L

198 TSO Command Language Reference (Release 21.7)

SEND Command

Use the SEND command to send a message to another terminal user or to
the system operator. A message may be sent to more than one terminal
user. If the intended recipient of a message is not logged on, the
message can be retained within the system and presented automatically
when he logs on. You will be notified when the recipient is not logged
on and the message is deferred.

This command should be used by terminal users; system operators
should use the SEND subcommand of the OPERATOR command.

r = T 1
| COMMAND | OPERAND |
frmmmmm - — e 1
| SEND] ‘'text’ USER(identifications) [NOW |
| SE I LOGON |
| | OPERATORI (integer)] i
L 1 d
"text'

specifies the message to be sent. You must enclose the text of the
message within apostrophes (single quotes). The message must not
exceed 115 characters including blanks. If no other operands are
used, the message goes to the console operator. If you want
apostrophes to be printed you must enter two in order to get one.

USER (identifications)
specifies the user identification of one or more terminal users who
are to receive the message. A maximum of 20 identifications can be
used.

NOW
specifies that you want the message to be sent immediately. If the
recipient is not logged on, you will be notified and the message
will be deleted. This is the default value if both NOW and LOGON
are omitted.

LOGON

‘ specifies that you want the message retained in the SYS1.BRODCAST
data set if the recipient is not logged on or is not receiving
messages. When the recipient logs on, the message will be removed
from the data set and directed to his terminal. If the recipient
is currently using the system and receiving messages, the message
will be sent immediately.

OPERATOR (integer) ;

specifies that you want the message sent to the operator indicated
by the integer. If you omit the integer, the default is two (2);
that is, the message goes to the master console operator. This is
the default value if both USER (identifications) and OPERATOR are
omitted. The integer corresponds to routing codes for the WTO
macro as described in the publication, IBM System/360 Operating
System: Supervisor Services and Macro Instructions, GC28-66u46.

199

SEND Command

Example 1

Operation: Send a message to the master console operator.

Known: The message:
WHAT IS THE WEEKEND SCHEDULE?

f
| SEND *WHAT IS THE WEEKEND SCHEDUIE?'
L

p—

Example 2
Operation: Send a message to two other terminal users.

Known: The message:
ACCOUNT NUMBER 401288 MUST NOT BE USED ANY MORE.
CHANGE TO ACCOUNT NUMBER 530266.
The user identification for the terminal use€rS...<.<.... BMCORP6

AMCORP7
r 1
| SEND 'ACCOUNT NUMBER 401288 MUST NOT BE USED ANY- I
|MORE. CHANGE TO ACCOUNT NUMBER 530266."'- |
| USER (AMCORP 6, AMCORP7) NOW |
L : 3

Example 3

Operation: Send a message that is to be delivered to "JONES" when he
begins his terminal session or now if he is currently logged
on.

Known: The recipient's user identificationeeeeecececaceccscscssss. JONES
The message:
IS YOUR VERSION OF THE SIMULATOR READY?

H Sy
|SEND 'IS YOUR VERSION OF THE SIMULATOR READY?' USER(JONES) LOGON |
L

200 TsSO Command Language Reference (Release 21.7)

STATUS Command

Use the STATUS command to have the status of conventional batch jobs
displayed at your terminal. You can obtain the status of all batch
jobs, of several specific batch jobs, or of a single batch job. The
information that you receive for each job will tell you whether . it is
awaiting execution, is currently executing, or has completed execution.

This command may be used only by personnel who have been given the
authority to do so by the installation management.

r] - 1
| COMMAND | OPERANDS |
t t 1
| {STATUS} | [(jobname-list)] |
i ST | |
P, L__ - - 1

(jobname-1ist)
specifies the names of the conventional batch jobs that you want to
know the status of. If two or more jobs have the same jobname, the
system will only display the status of the first one encountered.
When more than one jobname is included in the list, the list must
be enclosed within parentheses. If you do not specify any
jobnames, you will receive the status of all batch jobs in the
system whose jobnames consist of your userid plus a single
identifying character (alphameric or national).

Example 1
Operation: Have the status of two batch jobs displayed at your
terminal.

Known: The JObNameS...ccceveceeenccacnensnceacnanscsananescessnee ABI325A2
‘ ABJ325A3

r : I

| STATUS (ABJ325A2,ABJ325A3) |

L 1

201

STATUS Command

202 TSO Command Language Reference (Release 21.7)

SUBMIT Command

Use the SUBMIT command to submit one or more batch jobs for conventional
processing. The SUBMIT command allows a foreground (TSO) user to submit
a job(s) for interpretation and execution in the background (MVT). Each
job (s) submitted must reside in either a sequential, direct-access data
set or in a member of a partitioned data set. Either of these data sets
can contain one or more jobs that can be executed via a single entry of
SUBMIT. Each job(s) must comprise an input job stream (JCL plus data).
The data set type should be CNTL for best system performance. submitted
data sets must have a fixed record length of 80 bytes and must not
contain lower case characters.

Job cards are required only if your installation says you must
specify accounting information. Any job name you provide should consist
of your userid plus a single identifying character. Otherwise, you
cannot refer to that job with the IBM-supplied CANCEL and OUTPUT
commands, and you will have to include the job name on the STATUS
command. Your userid itself is the job name for your terminal session;
do not use it as a jobname. If you do, SUBMIT will add a character to
the job name on your job card if there is room or generate a new job
card.

If you do not supply a job card, SUBMIT will prompt you for an
identifying character. Your job name is your userid plus this
character. For more information on how to submit a background job,
refer to the publication: IBM System/360 Operating System: Time
Sharing Option, Terminal User's Guide, GC28-6763.

Note: If either of the above types of data sets containing 2 or more
jobs is submitted for processing, the following applies:

¢ The SUBMIT command processor will build a job card for the first job
step in the first data set, if necessary, but will not build job
cards for any other steps or data sets.

e If the SUBMIT Processor determines that a job cannot execute
properly, the remaining job(s) following it in the data set will not
be executed.

e Once the SUBMIT Processor submits a job for processing, errors
occurring in the execution of that job have no effect on the
submission of any remaining job(s) in that data set.

e Once SUBMIT has successfully submitted a job for conventional
background processing, the job's JCL will be interpreted by the TSO
Background Reader, using the MVT Initiator/Terminator as a standard
MVT job.

This command may be used only by personnel who have been given the
authority to do so by the installation management.

203

SUBMIT Command

r T

| COMMAND | OPERANDS ;
t +--—- -

| SUBMIT | (data-set-1list) [NO‘I‘IFY ” |
| SUB | NONOTIFY |
L—— L - —_ K]

(data-set-1list)
specifies one or more data set names or names of members of
partitioned data sets (see the data set naming conventions) that
define an input stream (JCL plus data). If you specify more than
one data set name, enclose them in parentheses.

NOTIFY .
specifies that you are to be notified when your job terminates in
the background. If you have elected not to receive messages, the
message will be placed in the Broadcast data set. You must then
enter LISTBC to receive the message. You may obtain this message
by issuing LISTBC or LOGON. This is the default value if both
NOTIFY and NONOTIFY are omitted and SUBMIT generated a job card.
If you supply your own job card, use the NOTIFY=userid keyword on
the job card; do not use this operand on SUBMIT.

NONOTIFY
specifies that no message will be placed in the broadcast data set.

This operand is only recognized when no job card has been provided
with the job that you are processing.

Example 1

Operation: Submit two jobs for conventional batch processing.
Known: The names of the data sets that contain the jobs:

ABTJQ.STRESS.CNTL
ABTJQ.STRAIN.CNTL

You want to be notified as each job terminates.

r —_
| SUBMIT (STRESS STRAIN) |
L

204 TSO Command Language Reference (Release 21.7)

TERMINAL Command

Use the TERMINAL command to define the operating characteristics that
depend primarily upon the type of terminal that you are using. You can
specify the ways that you want to request an attention interruption and
you can identify hardware features and capabilities. The TERMINAL
command allows you to request an attention interruption whether or not
your terminal has a key for the purpose.

The terminal characteristics that you have defined will remain in
effect until you enter the LOGOFF command. If you terminate a session
and begin a new one by entering a LOGON command (instead of a LOGOFF
command followed by a LOGON command), the terminal characteristics
defined in the earlier session will be in effect during the subsequent
session.

Refer to IBM System/360 Operating System: Time Sharing Option,
Terminals, GC28-6762 for a description of the TERMINAL command's
characteristics as they apply to the various terminals available with
TSO and for an explanation of how to use the simulated attention
facility.

[} T —_— 1
| COMMAND | OPERANDS |
L 1
f p——- -1
{TERMINAL	LINES(integer) SECONDS (integer)		INPUT (stxring)
TERM		NOLINES NOSECONDS NOINPUT	
	BREAK TIMEOUT [LINESIZE (integer)]		
]	NOBREAK NOTIMEOUT		
	_ .		
}	CLEAR(string)	[SCREEN{(rows,length)l	
		NOCLEAR	
L L —_— —— —— 4
LINES (integer)

specifies an integer from 1 to 255 that indicates you want the

opportunity to request an attention interruption after that number

of lines of continuous output has been directed to your terminal.
NOL INES

specifies that output line count is not to be used for controlling

an attention interruption. This is the default condition.
SECONDS (integer)

specifies an integer from 10 to 2550 (in multiples of 10) to
indicate that you want the opportunity to request an attention
interruption after that number of seconds has elapsed during which
the terminal has been locked and inactive. If you specify an
integer that is not a multiple of 10, it will be changed to the
next largest multiple of 10.

NOSECONDS
specifies that elapsed time is not to be used for controlling an
attention interruption. This is the default condition.

INPUT (string)
specifies the character string that, if entered as input, will
cause an attention interruption. The string must be the only input
entered and cannot exceed four characters in length.

205

TERMINAL Command

‘NOINPUT
specifies that no character string will cause an attention
interruption. This is the default condition.

BREAK
specifies that your terminal keyboard will be unlocked to allow you
to enter input whenever you are not receiving output from the
system; the system can interrupt your input with high-priority
messages. Since use of BREAK with a terminal type which cannot
support it can result in loss of output or error, check with your
installation system manager before specifying this operand.

NOBREAK ,
specifies that your terminal keyboard will be unlocked only when
your program or a command you have used requests input.

Note: The default for the BREAK/NOBREAK operand is determined when your
installation defines the terminal features.

TIMEOUT
specifies that your terminal's keyboard will lock up automatically
after approximately nine to 18 seconds of no input. (Applicable
only to the IBM 1052 Printer-Keyboard without the text timeout
suppression feature).

NOTIMEOUT
specifies that your terminal's keyboard will not lockup
automatically after approximately nine to 18 seconds of no input.
(Applicable only to the IBM 1052 Printer-Keyboard with the text
timeout suppression feature.)

Note: The default for the TIMEOUT/NOTIMEOUT operand is deterwined when
your installation defines the terminal features.

LINESIZE (integer)
specifies the length of the line (the number of characters) that
can be printed at your terminal. (Not applicable to the IBM 2260,
2265, and 3270 Display Stations.) Default values are as follows:

IBM 2741 Communication Terminal - 120 characters
IBM 1052 Printer-Keyboard - 120 characters
Teletype 33/35 - 72 characters

The integer must not exceed 255.

CLEAR (string))
specifies a character string that, if entered as input, will cause
the screen of an IBM 2260, IBM 2265, or IBM 3270 Display Station to
be erased. The 'string' must be’ the only input entered and cannot
exceed four characters in length.

NOCLEAR
specifies that you do not want to use a sequence of characters to
erase the screen of an IBM 2260, IBM 2265, or IBM 3270 Display
Station. This is the default condition.

SCRSIZE(rows lenath)
specifies the screen dimensions of an IBM 2260, IBM 2265, or IBM
3270 Display Station.
'rows' specifies the maximum number of lines of data that can
appear on the screen.

206 TSO Command Language Reference (Release 21.7)

TERMINAL Command

'length' specifies the maximum number of characters in a line of
data displayed on the screen.

Valid screen sizes are:

rows, length

6,40

12,40

12,80

15,64

24,80

Note: The default values for the SCREEN operand are determined when
your installation defines the terminal features.

Example 1

Operation: Modify the characteristics of an IBM 2741 Communication
Terminal to allow operation in unlocked-keyboard mode.

Known: Your terminal supports the break facility. The installation has
defined a default of NOBREAK for your terminal.

i

. _—
| TERMINAL BREAK
L

Example 2

Operation: Modify the characteristics of an IBM 1052 Printer-Keyboard
whose attention key cannot be used to interrupt output and
whose output line size is greater than 80 characters.

Known: You want an opportunity to request an attention interruption
after ten consecutive lines of output.
You want to limit the output line length to 80 characters.

r
| TERMINAL LINES(10) LINESIZE(80)
L

e e d

Exanple 3

Operation: Establish the characteristics of an IBM 2260 Display Station
to allow for attention interruption and screen erasure
requests.

Known: You want an opportunity to request an attention interruption if
neither input is requested nor output sent for one minute.
You want a $§ to stand for an attention interruption request
during a regular input operation.
You want a % to stand for a screen erasure request.

r - ;
| TERMINAL SECONDS(60) INPUT(3) CLEAR(%) , |
L -

———— -]

207

TERMINAL Command

208 TSO Command Language Reference (Release 21.7)

TEST Command

Use the TEST command to "debug" a program, that is to test a program for
proper execution and to locate any programming errors. To use the TEST
command and subcommands, you should be familiar with the basic assembler
language. For best results, the program to be tested should be written
in basic assembler language. Also, in order to use the symbolic names
feature of TEST, the program should have been assembled and link-edited
with the TEST operands. For more detail on how to specify the TEST
operands, refer to the ASM and/or to the LINK commands in this
publication.

Uses _of the TEST Command: Before execution begins you can:

e Supply initial values (test data) that you want to pass to the
program.

e Establish breakpoints (after instructions) where execution will be
interrupted so that you can examine interim results. (Breakpoints
should not be inserted into TSO service routines or into any of the
TEST load modules.)

You can then execute the program. When you use the TEST command to
load and execute a program, the program must be an object module or a
load module suitable for processing. If the program that you want to
test is already executing, you can begin testing by interrupting the
program with an attention interruption followed by the TEST command with
no operands. You can also begin testing after an abnormal ending
(ABEND) if the program is still in main storage.

Note: If you enter the TEST command without operands, you can test the
in-storage copy of your program. If you enter the TEST command with
operands, a fresh copy of your program will be brought in for you to
test.

Prior to and during execution you can:

e Display the contents of registers and main storage (as when
execution is interrupted at a breakpoint).

Modify the contents of your registers and main storage.

Display the Program Status Word (PSW).

List the contents of control blocks.

"step through" sections of the program, checking each instruction
for proper execution.

Addressing Conventions Used With TEST: An address used as an operand
for a subcommand of TEST may be a symbolic address, a relative address,
an absolute address, or a register which may contain an address.

A symbolic address consists of one through eight alphameric
characters, the first of which is an alphabetic character. The symbolic
address must correspond to a symbol in the program that is being tested.
Symbols cannot be used if the program being tested is a member of a
partitioned data set that is part of a LINK library list unless the
partitioned data set is named SYS1.LINKLIB or is the first one in the
list, or unless the program is brought into main storage by TEST as an
operand of the TEST command or a subsequent load command. A relative
address is a hexadecimal number preceded by a plus sign (+). An
absolute address is a hexadecimal number followed by a period.

209

TEST Command

Address Modifiers: An expression consisting of one of the above address
types followed by a plus or a minus displacement value is also a valid
address. The plus or minus displacement value can be expressed in
either decimal or hexadecimal notation, as follows:

address +14n specifies the location that is 14 bytes past that
designated by "address."

address +14 specifies the location that is 20 bytes past that
designated by "address."

Note: Decimal displacement (either plus or minus) is indicated by
the n following the numerical offset.

Qualified Addresses: You can gualify symbolic and relative addresses to
indicate that they apply to a particular control section (CSECT). To do
this, you precede the address by either the name of the load module and
the name of csect or just the name of csect. The qualified address must
be in the form:

.csectname.address
or
loadname.csectname. address

For instance, if the user supplied name of the lcad module is OUTPUT,
the name of the csect is CTSTART, and the symbolic address is TAXRTN you
would specify:

« CTSTART. TAXRTN
or
OUTPUT.CTSTART. TAXRTN

If you do not include qualifiers, the system assumes that the address
applies to the current control section.

General Registers: You can refer to a general register using the LIST
or Assignment of Values subcommands by specifying a decimal integer
followed by an R. The decimal integer indicates the number of the
register and must be in the range zero through 15. The contents of the -
registers are hexadecimal characters. Other references to the general
registers imply indirect addressing. The term indirect general register
is used to refer to the general registers when they are used for
indirect addressing.

Floating-Point Registers: You can refer to a floating-point register
using the LIST or Assignment of Values subcommand by specifying a
decimal integer followed by an E or a D. An E indicates a
floating-point register with single precision. A D indicates a
floating-point register with double precision. The decimal integer
indicates the number of the register and must be a zero, two, four, or
six. You must not use floating-point reqisters for indirect addressing;
expressions composed of references to floating-point registers followed
by a plus or minus displacement value or a percent sign are invalid.

Indirect Addresses: An indirect address is an address of a location or
general register that contains another address. An indirect address
must be followed by a percent sign (the percent sign indicates that the

210 TSO Command Language Reference (Release 21.7)

TEST Command

address is indirect). For instance, if you want to refer to some data
and the address of the data is located at address A, you can specify:

A%

Graphically, this expression indicates:

Location A

address B

Location B

data

You can indicate several levels of indirect addresses (256 levels are
permitted) by following the initial indirect address with a
corresponding number of percent signs. You can also include plus or
minus displacement values. For instance, you may specify:

S5RE%+ 4%
Graphically, this expression indicates:

Register 5

00000A24]

Location A24

000001cC2 = Location 1C2

00000A40
+41 00000922 7

Location 922
data

Restriction on Symbol Use:

You can refer to external symbols in a Load
Module if:

e A composite external symbol dictionary (CESD), record exists.

e The TEST operand of the Link command was specified.

e The program was brought into main storage by the TEST cormand or one
of its subtasks.

You can refer to external symbols in an Object Module if there is

room in main storage for a CESD to be built.

You can refer to most internal symbols if you specify the TEST

operand when you assemble and link edit your program. Exceptions are:

e Names on equate statements.
e Names on ORG, LTORG, and CNOP statements.

e Symbols more than eight bytes long.

211

TEST Command

COMMAND

OPERANDS

TEST

[s e oy e 2oy
o e —

[program-namel] ['parameters"®] [LOAD CcP
OBJECT NOCP

lon = e gy e

program-name
specifies the name of the data set containing the program to be
tested. (See the data set naming conventions.) The program must
be in object module form or load module form. The name of the
program cannot be TEST; also, the first five characters of the name
cannot be IKJEF or IKJEG.

parameters
~specifies a list of parameters to be passed to the named program.
The list must not exceed 100 characters including delimiters.

LOAD .
specifies that the named program is a load module that has been
processed by the linkage editor and is a member of a partitioned
data set. This is the default value if both LOAD and OBJECT are
omitted.

OBJECT
specifies that the named program is an object module that has not
been processed by the linkage editor. The program can be contained
in a sequential data set or a member of a partitioned data set.

CP
specifies that the named program is a command processor.

NOCP
specifies that the named program is not a command processor. This
is the default value if both CP and NOCP are omitted.

Subcommands: The subcommands of the TEST command are:

ASSIGNMENT OF VALUES(=)
modifies values in main storage and in registers.

AT
establishes breakpoints at specified locations.

CALL
initializes registers and initiates processing of the program at a
specified address.

COPY
moves data or addresses.

DELETE
deletes a load module.

DROP

removes symbols established by the EQUATE command from the symbol
table of the module being tested.

212 TSO Command Language Reference (Release 21.7)

TEST Command

END
terminates all operations of the TEST command and the program being
tested.

EQUATE
adds a symbol to the symbol table and assigns attributes and a
location to that symbol.

FREEMAIN
frees a specified number of bytes of main storage.

GETMAIN
acquires a specified number of bytes of main storage for use by the
program being processed.

GO
restarts the program at the point of interruption or at a specified
address.

HELP
lists the subcommands of TEST and explains their function, syntax,
and operands.

LIST
displays the contents of main storage area or registers.

LISTDCB
lists the contents of a Data Control Block (DCB) (you must specify
the address of the DCB).

LISTDEB
lists the contents of a Data Extent Block (DEB) (you must specify
the address of the DEB).

LISTMAP
displays a storage map.

LISTPSW
displays the Program Status Word (PSW).

LISTTCB
lists the contents of the Task Control Block (TCB) (you may specify
the address of another TCB). :

LOAD
loads a program into main storage for execution.

OFF
removes breakpoints.

QUALIFY
establishes the starting or base location for relative addresses;
resolves identical external symbols within a load module.

RUN
terminates TEST and completes execution of the program.

WHERE

displays the absolute address of a symbol or entrypoint or the
address of the next executable instruction.

213

TEST Command

Example 1

Operation: Enter TEST mode after experiencing either an abnormal
termination of your program or an interruption.

Known: Either you have received a message saying that your foreground
program has terminated abnormally, or, you have struck the
attention key while your program was executing. In either case,
you would like to begin "debugging" your program.

e e d

r
| TEST
L

Example 2

Operation: Invoke a program for testing.

Known: The name of the data set that
contains the program.....<e.seeeees«-- ABSELF.PAYER.LOAD(THRUST)

The program is a load module and is not a command processor.
The parameters to be passed.......... 2048,80

r -
| TEST PAYER(THRUST) '2048,80' |
L -

pp—— |

Example 3

Operation: Invoke a program for testinge.

Known: The name of the data set that
contains the program....e.sceeeeaesess DECKCO.PAYLOAD.OBJ
The program is an object module and is not a command processor.

- - 1

r S
|TEST PAYLOAD OBJECT
L

Example &4

Operation: Test a command processor.

Known: The name of the data set containing
the command pPrOCESSOYeeewewwesnsnsesaess DCOOIL.CMDS.LOAD(OUTPUT)

o

L)
| TEST CMDS(OUTPUT) CP
L

214 TSO Command Language Reference (Release 21.7)

Assignment of Values Function of TEST

When processing is halted at a breakpoint, you can modify values in main
storage and in registers. This function is implicit; that is, you do
not enter a subcommand name. The system performs the function in
response to operands that you enter.

T
SUBCOMMAND | OPERANDS
.....‘. _____

| address=data-type'value'
—_— 4

pm — o
[el |

address
specifies the location that you want to contain a new value. The
address may be a symbolic address, a relative address, an absolute
address, or a register. (See Appendix B for more information about
addresses.)

data-type ‘value'
specifies the type of data and the value that you want to place in
the specified location. You indicate the type of data by one of
the following codes:

Code Type of Data Maximum Length (Bytes)
C Character one line of input?
X Hexadecimal 64
B Binary 64
H Fixed point binary (halfword) 6
F Fixed point binary (fullword) 11
E Floating point (single precision) 9
D Floating point (double precision) 18
L Extended floating point 16
P Packed decimal 32
Z Zoned decimal 17
A Address constant 10
S Address (base + displacement) 8
Y Address constant (halfword) 5

iContinued lines are permitted.

You include your data following the code. Your data must be
enclosed within apostrophes. Any single apostrophes within your
data must be coded as two single apostrophes. Character data will
be entered as is; all other data types will be translated into
upper case (if necessary). A list of data may be specified by
enclosing the list in parentheses. The data in the list will be
stored in contiguous storage beginning at the location specified by
the address operand. ’

215

‘Assignment of Values Function of TEST

Example 1

Operation: Insert a character string at a particular location in main
storage.

Known: The address is a symbOl.e.cacccacsnsceccanscasss INPOINT
The Qat@eeceecsscescsssasessencacanancnanssavnasness JANUARY 1, 1970

r -
| INPOINT=C 'JANUARY 1, 1970°
L

i e o

Example 2

Operation: Insert a binary number into a register.

Known: The number of the register.ec..ececececewceceas-e.-.. Register 6
The datAeccccecncccescccancnssancnsasnsseasa 0000 0001 0110 0011

r
| 6R=B'0000000101100011"
L -—

[p——'}

216 TsSO Command Language Reference (Release 21.7)

AT Subcommand of TEST

Use the AT subcommand to establish breakpoints before the command where
processing is to be temporarily halted so that you can examine the
results of execution up to the point of interruption. '

r ————-T 1 x
| SUBCOMMAND | OPERANDS [
L _— I —_— {
r T

| AT | address[:address]} [(list~of ~subcommands)] |
| | (address-1list)]
| | |
i | [COUNT(integer)] [NODEFER [NOTIFY] |
I I DEFER NONOT IFY |
L —— L -
address

specifies a location that is to contain a breakpoint. The address
may be a symbolic address, a relative address, an absolute address,
or a general register containing an address. The address must be
on a halfword boundary and contain a valid op code. (See Appendix
B for more information about addresses.)

address :address

specifies a range of addresses that are to contain breakpoints.
Each address may be a symbolic address, a relative address, an
absolute address, or a general register containing an address.
Each address must be on a halfword boundary. A breakpoint will be
established at each instruction between the two addresses. (See
Appendix B for more information about addresses.)

address-1list

specifies several addresses that are to contain breakpoints. Each
address may be a symbolic address, a relative address, an absolute
address, or a general register containing an address. The first
address must be on a halfword boundary. The list must be enclosed
within parentheses, and the addresses in the list must be separated
by standard delimiters (one or more blanks or a comma). A
breakpoint will be established at each eddress. (See Appendix B
for more information about addresses.)

list-of-subcommands

specifies one or more subcommands to be executed when the procgram
is interrupted at the indicated location. If you specify more than
one subcommand, the subcommands must be separated by semicolons
(for instance, LISTTCB PRINT (TCBS); LISTPSW;GO CALCULAT). The list
cannot be longer than 255 characters.

COUNT (integer)

specifies that processing will not be halted at the breakpoint
until it has been encountered a number of times. This operand is
directly applicable to program loop situations, where an
instruction is executed several times. The breakpoint will be
observed each time it has been encountered the number of times
specified for the 'integer' operand. The integer specified cannot
exceed 32,767.

217

-AT Subcommand of TEST

DEFER '
specifies that the breakpoint is to be established in a program
that is not yet in storage. The program to contain the breakpoint
will be brought in as a result of a LINK, LOAD, ATTACH, or XCTL
macro instruction by the program being tested. You must qualify
the address of the breakpoint (either LOADNAME.CSECTNAME.RELATIVE
or LOADNAME.CSECTNAME.SYMBOL) when you specify this operand. All
breakpoint addresses listed in an AT subcommand with the DEFER
operand must refer to the same load module.

NODEFER
specifies that the breakpoint is to be inserted into the program
now in main storage. This is the default value if both DEFER and
NODEFER are omitted.

NOTIFY
specifies that when it is encountered the breakpoint will be
identified at the terminal. This is the default value if both
NOTIFY and NONOTIFY are omitted.

NONOTIFY

specifies that when it is encountered the breakpoint will not be
identified at the terminal.

218 TSO Command Language Reference (Release 21.7)

AT Subcommand of TEST

Example 1

Operation: Establish breakpoints at each instruction in a section of
the program that is being tested.

Known: The addresses of the first and last instructions of
that section that is to be tested......cveveeeceecae.. LOOPA
EXITA
The subcommands to be executed are......vveeeeeeees.. LISTPSW,GO

r 1
IAT LOOPA:EXITA (LISTPSW;GO) I
L - |

Example 2

Operation: Establish breakpoints at several locations in a program.

Known: The addresses for the breakpointsS......cceceeesecenesccses +8A
LOOPB

EXITB

r —_
|AT (+8A LOOPB EXITB)
L -

Example 3

Operation: Establish a breakpoint at a location in a loop. The address
of the location is contained in register 15. You only want
to have an interruption every tenth cycle through the loop.

Known: The address for the breakpoint.........cccveeeeecesececes. 15R%

o e

. —
|AT 15R% COUNT(10)

Example 4

Operation: Establish a breakpoint for a program other than the one
presently in main storage.

Known: The CSECt NaAC:ccccteeecsccccssecscscnescsoscesssssssecsss YLREVEB
The name of the load module.....ccicievieeeeeceececrenssasss KCIW
The symbolic address for the breakpoint.................... PROG

r - - 1
| AT KCIW.YLREVEB.PROG DEFER |
L J

219

CALL Subcommand of TEST

Use the CALL subcommand to initiate processing at a specified address.
You can pass parameters to the program that is to be tested.

CAUTION: The contents of registers 1, 14, and 15 are changed by the use
of the CALL subcommand. To save the contents of these registers, use
the COPY subcommand of TEST (see examples 2 and 3 under the COPY
subcommand) .

r - T == -1
| SUBCOMMAND | OPERANDS I
t e - !
| CALL | address |
I | I
| i (PARM(address-list)]]
! | I
| | (vl |
I | I
| | [RETURN(address)] |
L —_— L - —_— ——— —d
address

specifies the address where processing is to begin. The address
may be a symbolic address, a relative address, an absolute address,
or a register containing an address. Register 15 contains this
address when the program under test begins execution. (See
Appendix B for more information about addresses.)

PARM (address-1list)
specifies one or more addresses that point to data to be used by
the program being tested. The list of addresses will be expanded
to fullwords and placed into contiguous storage. Register 1 will
contain the address of the start of the list. If PARM is omitted,
register 1 will point to a fullword that contains the address of a
halfword of zeroes.

VL
specifies that the high order bit of the last fullword of the list
of addresses pointed to by general register one is to be set to
one.

RETURN (address)

specifies that register 14 is to contain the address that you
supply as the value for this keyword. After the program executes,
the system will return control to the point indicated by register
14. If RETURN is omitted, register 14 will contain the address of
a breakpoint instruction.

220 TSO Command Language Reference (Release 21.7)

CALL Subcommand of TEST

Example 1

Operation: Initiate execution of the program being tested at a
particular location.

Known: The starting addresSS...cceceesenencaccceasnaccanscscassnsaas +0A
The addresses of data to be passedeececcaccenaccacccaecss CTCOUNTR
LOOPCNT

TAX

[]

r
| CALL +0A PARM(CTCOUNTR LOOPCNT TAX)
L

Example 2
Operation: Initiate execution at a particular location.

Known: The starting addreSS.ecccccecssacnccavecncnnmncnsenssnsees STARTBD
BDFLAGS

The addresses of data to be passedeececeaccecencccccacnsan
PRFTTBL

COSTTBL

ERREXIT

Set the high order bit of the last address parameter to one so

that the program can tell the end of the list.
After execution, control is to be returned tOueeececeeca.. +24A

r
| CALL, STARTBD PARM(BDFLAGS PRFTTBL COSTTBL ERREXIT)-
| V. RETURN (+24A7)

L

[

221

COPY Subcommand of TEST

Use the COPY subcommand to transfer data or addresses from one main
storage address to another, from one general register to ancther, from a
register to main storage, or from main storage to a register.

The COPY subcommand can be used to:
e Save or restore the contents of the general registers.
_® Propagate the value of a byte throughout a field.
e Move an entire data field from one location to another.

SUBCOMMAND

{gOPY}

addressl
specifies a location that contains data to be copied. The address
may be a symbolic address, a relative address, an absolute address,
an indirect address, or a qualified address. (See Appendix B for
more information about address types.)

OPERANDS

addressl address2 [LENGTH finteger\] |POINTER
4 NOPOINT

r
|
t
|
|
L

e e e e

[DS Wp——— |

address 2
specifies a location that will receive the data after it is copied.
The address may be a symbolic address, a relative address, an
absolute address, an indirect address, or a qualified address.
(see Appendix B for more information about address types.)

LENGTH (integer)
specifies the length, in decimal, of the field to be copied. If an
integer is not specified, LENGTH will default to 4 bytes. The
LENGTH keyword can also be entered in the shorter form, L(integer).

POINTER
specifies that addressl will be validity checked to see that it
does not exceed maximum core size and will then be treated as an
immediate operand (hexadecimal literal) with a maximum length of &4
bytes (that is, an address will be converted to its hexadecimal
equivalent) and will be transferred into the location specified by
address2. When using the POINTER keyword, do not specify a general
register as addressl. The POINTER keyword can also be entered in
the shorter form, P.

NOPOINT

specifies that addressl will be treated as an address. NOPOINT is
the default for POINTER.

Note:

1. The COPY subcommand treats the 16 general registers (R0O-R15) as
contiguous fields, that is, if you have specified that 8 bytes
be moved from RO to another location for example, COPY RO
80060. LENGTH(8), the COPY subcommand will move the 4 bytes of
register 0 and the 4 bytes of register 1 to main storage
beginning at location 80060. When a register is specified as
addressl, the maximum length of data that will be transferred
is the total length of the general registers, or 64 bytes.

2. When the value of address2 is one .greater than addressl,
propagation of the data in addressl will occur; when the value
of address2 is more than one greater than the value of
addressl, no propagation will occur.

222 TS0 Command Language Reference (Release 21.7)

COPY Subcommand of TEST

Example 1

Operation: Transfer 2 full words of data from one main storage location
to another.

Known: The starting address of the datl.eeccceecceccccesceccncasass. 80680
The starting address of where the data is to bee.e.c...... 80685

b e

r
|COPY 80680. 80685. LENGTH(8)
L

Example 2

Operation: Copy the contents of one register into another register.

Known: The register which contains the data to be copiedc.ceecaceeceas 10
The register which will contain the data...ceeececececscscacacess 5

-/

r
|COPY 10R SR |
L J

Example 3

Operation: Save the contents of the general registers.

Known: The first register to be savedieeceaaana. memeasscesuacaaee 0
The starting address Of the SAVe @rEaeeew.ceacvsvsnecewsees A0200

i e

r
|C OR A0200. L(64)
L

Example 4

Operation: Propagate the value in the first byte of a buffer throughout
the buffer.

Known: The starting address of the buffer...ceececccnecceaasas 80680
The length Of the buffer....ccccecuccecannscasnensasaasss 80 bytes

1

r - —
|C 80680. 80681. L(79) |
L 4

Example 5

Operation: Insert a hexadecimal value into the high-order byte of a
register.

Known: The desired ValU€...ecceecessenaaasncanacsenasasascecansans X'80'
The register.ece.cceeccacasa ceecamccemuasamnnsans [P, eemwne 1

[|

r
jCOPY 80. 1R L(1) POINTER
L

223

COPY Subcommand of TEST

Example 6

Operation:

- Known: The
The

Insert the entry point of a routine into a storage location.

module name and the entry point name........ IEFBR14.IEFBR14
desired storage locatiONeeececececwdecesnanwess B0200

r
{C IEFBR14.IEFBR14 B0200 P
L

i e

Example 7

Operation:

Known: The
the
The
The

Copy the contents of an area pointed to by a register into
another area.

register which points to the area that contains

data to be moved. iceeevencioncennn cesnenamosnmem ceee 14
main storage location which is to contain the data.. 80680
length of the data to be moved.ec.cacaeeecceaceeana.. 8 bytes

r 1
|]C 14R% 80680. L(8) NOPOINT |
1 J

224 TSO Command Language Reference (Release 21.7)

DELETE Subcommand of TEST

Use the DELETE subcommand to delete a load module awaiting execution.

SUBCOMMAND OPERAND

{DELETE} load-name

b ——

s o e gy —

load name
specifies the name of the load module to be deleted. The load name
is the name by which the program is known to the system when it is
in main storage. The name must not exceed eight characters.

Example 1

Operation: The program being tested has called a subroutine that is in
load module form. Before executing the subroutine, a
breakpoint is encountered. You do not want to execute the
subroutine because you intend to pass test data to the

program instead. You now want to delete the subroutine
since it will not be used.

Known: The name of the subroutine (load module)........ TOTAL

r
| DELETE TOTAL
L

[|

ox

T
|D TOTAL
L

[|

225

DROP Subcommand of TEST

Use the DROP subcommand to remove symbols from the symbol table of the
module being tested. You can only remove symbols that you established
with the EQUATE subcommand; you cannot remove symbols that were
established by the linkage editor.

SUBCOMMAND OPERAND

(symbol-list)

DROP

(- — o — =y

- — =t —

(symbol-1ist)
specifies one or more symbols that you want to remove from the
symbol table created by the EQUATE subcommand. When you specify
only one symbol, you do not have to enclose that symbol within
parentheses; however, if you specify more than one symbol you must
enclose them within parentheses. If you do not specify any
symbols, the entire table of symbols will be removed.

Example 1

Operation: Remove all symbols that you have established with the EQUATE
command.

r
| DROP
1

o e b

Example 2
Operation: Remove several symbols from the symbol table.

Known: The names Of the SymboOlS..cacceenccncnacencnancesenness STARTADD
TOTAL
WRITESUM

r
|DROP (STARTADD TOTAL WRITESUM)
]

o = od

226 TsSO Command Language Reference (Release 21.7)

END Subcommand of TEST

Use the END subcommand tO0 terminate all functions of the TEST command
and the program being tested.

SUBCOMMAND OPERANDS |

END

o ——

b — =
|
i
I
—ho

227

EQUATE Subcommand of TEST

Use the EQUATE subcommand to add a symbol to the symbol table of the
module being tested. This subcommand allows you to establish a new
symbol that you can use to refer to an address or to override an
existing symbol to reflect a new address or new attributes. If no
symbol table exists, one is created and the specified name is added to
it. You can also modify the data attributes (type, length, and
maltiplicity). The DROP subcommand removes symbols added by the EQUATE
subcommand. Symbols established via the EQUATE command are defined for
the duration of the TEST session, only. ’

SUBCOMMAND

{EQUATE}
EQ

OPERANDS

symbol address - data-type [LENGTH(integer)]
(MULT IPLE (integer)]

o o e By e 2y
o e

o = e gy m—

symbol ‘
specifies the symbol (name) that you want to have added to the
symbol table so that you can refer to an address symbolically. The
symbol must consist of one through eight alphameric characters, the
first of which is an alphabetic character.

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
that you specify will be equated to the symbol that you specify.
(Ssee Appendix B for more information about addresses.)

data-type
specifies either the type of data that you want moved into the
location specified via the "address" operand, or the
characteristics you wish to attribute to the data at the location
given by "address." These may or may not be the same as the
original characteristics. You indicate the type of data by one of
the following codes:

Code Type of Data Maximum Length (Bytes)
C Character ' 256
X Hexadecimal 256
B Binary 256
I Assembler instruction 256
H Fixed point binary (halfword) 8
F Fixed point binary (fullword) 8
E Floating point (single precision) 8
D Floating point (double precision) 8
L Extended floating point 16
P Packed decimal 16
Z Zoned decimal 16
A Address constant 4
S Address (base + displacement) . 2
Y Address constant (halfword) 2

228 TSO Command Language Reference (Release 21.7)

EQUATE Subcommand of TEST

LENGTH (integer)
specifies the length of the data. The maximum value of the integer
is 256. If you do not specify the length, the following default
values will apply:

Type of Data Default Length (Bytes)
Cc,B,P, 2 1

H,S, Y 2

F,E,A, X 4

D 8

I variable

L 16

MULTIPLE (integer)

specifies a multiplicity factor. The multiplicity factor means
that one element of the data appears several times in succession;
the number of repetitions is indicated by the number specified for
"integer". The maximum value of the integer is 256.

Note: If you do not specify any keywords, the defaults are:

type - X
multiplicity - 1
length - 4

Example 1

Operation: Add a symbolic address to the symbol table of the module
that you are testing.

Known: The sSymboOl....ieeeescacssssssecsoccccnccs ceescsscsscsses EXITRTN
The ad8YeSS...iieieirsseossssocssosassosassesscsassssasssess TOTAL+U

r 1
| EQUATE EXITRTN TOTAL+4 |
L J
Example 2
Operation: Change the address and attributes for an existing symbol.
Known: The SYMDOl.. ...t eeieeeteccocannssscssscssassans v éeeesiises CONSTANT
The new addresSsS.....cieeeeeeevoseiosessscaassocassnnna .. 1FAAOQ.
The new attributes: type€....ceiceeerecenn cececoceceen eees C
length......... ceceecccenanense ceses LI(8)
multiplicity..iveeeecerooecccaces . e M(2)
: 1
EQ CONSTANT 1FAAO0. C M(2) L(8) |
— 3

229

FREEMAIN Subcommand of TEST

Use the FREEMAIN subcommand to free a specified number of bytes of main
storage.

T 1
| SUBCOMMAND | OPERANDS |
e - - . - 1
| {FREEMAIN | integer address [SPfinteger |
| \FREE | 0 1
L — 1 —— —_——— — ——d
integer

specifies the number of bytes of main storage to be released.
address

specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. This address
is the location of the space to be freed and must be a multiple of
8 bytes. <(See Appendix B for more information about address.)

The LISTMAP subcommand may be used to help locate previously
acquired main storage.

SP (integer)
specifies the number of the subpool that contains the space to be
freed. If you omit this operand, the default value is subpool
zero. The integer must be in the range zero through 127.

Example 1

Operation: Free space in main storage that was acquired previously by a
GETMAIN subcommand or by a GETMAIN macro instruction in the
module being tested.

Known: The size of the space, in byteS.eecececicaiaceceencnencaeas 500
The absolute address of the SpacCEecec.eccncecncecacnveesess 054A20
The number of the subpool that the
space was acquired froMeu.censeicenceacancecennmencncocnnan 3

r
|FREE 500 054A20. SP(3)

- — —_—

e e

230 TSO Command Language Reference (Release 21.7)

GETMAIN Subcommand of TEST

Use the GETMAIN subcommand to obtain a specified number of bytes of main
storage.

r T - - 1
| SUBCOMMAND | OPERANDS |
S — - - 1
| {GETMAIN} | integer [SPfinteger [EQUATE (name)] |
| \GET | 9 |
[Lo - 3
EQUATE (name)

specifies that the address of acquired storage is to be equated to
the symbol specified by "name".

integer
specifies the number of bytes of main storage to be obtained.

SP (integer) .
specifies the number of a subpool that contains the bytes of main
storage that you want to obtain. If you omit this operand, the
default value is subpool zero. The integer must be in the range
zero through 127.

Example 1

Operation: Get 500 bytes of main storage from subpool 3 and equate
starting address to symbolic name AREA.

D |

T
|GET 500 SP(3) EQUATE(AREA) |
L

231

GO Subcommand of TEST

Use the GO subcommand to start or restart program execution from a
particular address. If the program was interrupted for a breakpoint and
-you want to continue from the breakpoint, there is no need to specify
the address. However, you may start execution at any point by
specifying the address.

r _
| SUBCOMMAND T OPERANDS ?
¢ + -~ !
| GO | [address] i
L 1 _ a
address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Execution
will begin at the address that you specify. (See Appendix B for
more information about addresses.)
Example 1

Operation: Begin execution of a program at the point where the last
interruption occurred.

r 1
| Go |
L _— 1
Example 2

Operation: Begin execution at a particular address.

Known: The addreSSe.ccececcasannscancacsannnnsnacsnsncsscsesaees CALCULAT

[3
|GO CALCULAT
L —_ 4

232 TSO Command Language Reference (Release 21.7)

HELP Subcommand of TEST

Use the HELP subcommand to find out how to use the TEST subcommands.
When you enter the HELP subcommand, the system responds by printing out
explanatory information at your terminal. You may request:

e A list of available subcommands.
e An explanation of the function, syntax, and operands of a specific
subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

i

| OPERANDS

e +—- -

| {HELP} I[subcommand-name [FUNCTION] [SYNTAX] [OPERANDS[(list)]]]
|
i

[ALL]

b e o=

subcommand -name
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of TEST
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand 's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)
specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default value if no operands are specified.

233

HELP Subcommand of TEST

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r 1

| HELP I

L L)

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name€...... eececsseeemaacsmsncnancancanonme QUALIFY

r T 1

|H QUALIFY |

L 1

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand Namee..... teecemecsemoancenes wsacececsasswsas LIST

[- 1
|h list operands , |
L

g

234 TSSO Command Language Reference (Release 21.7)

LIST Subcommand of TEST

Use the LIST subcommand to have the contents of a specified area of main
storage, or the contents of registers, displayed at your terminal or

placed into a data set.

r - 1
| SUBCOMMAND | OPERANDS |
b — e - —1
| {LIST I{address[:address] data-type [LENGTH(integer)] |
| L | l(address-1ist) } [MULTIPLE(integer)]]
| | [PRINT (data-set-name)] |}
L 1

address
specifies the location of data that you want displayed at your
terminal or placed into a data set. The address may be a symbolic
address, a relative address, an absolute address, or a general or
floating-point register. (See Appendix B for more information
about addresses.)

address :address
specifies that you want the data located between the specified
addresses displayed at your terminal or placed into a data set.
Each address may be a symbolic address, a relative address, an
absolute address, or a general or floating point register. (See
Appendix B for more information about addresses.)

(address-1list)
specifies several addresses of data that you want displayed at your
terminal or placed into a data set. The data at each location will
be retrieved. Each address may be a symbolic address, a relative
address, an absolute address, or a general or floating-point
register. The list of addresses must be enclosed within
parentheses, and the addresses must be separated by standard
delimiters (one or more blanks or a comma). (See Appendix B for
more information about addresses.)

data-type
' specifies the type of data that is in the specified location. You
indicate the type of data by one of the following codes:

Code Type of Data Maximum Length (Bytes)
C Character 256
X Hexadecimal 256
B Binary 256
I Assembler instruction 256
H Fixed point binary (halfword) 8
F Fixed point binary (fullword) 8
E Floating point (single precision) 8
D Floating point (double precision) 8
L Extended floating point 16
P Packed decimal 16
Z Zoned decimal 16
A Address constant 4
S Address (base + displacement) 2
XY Address constant (halfword) 2

235

LIST Subcommand of TEST

LENGTH (integer)

indicates the length, in bytes of the data that is to be listed.
The maximum value for the integer is 256. If you use a symbolic
address and do not specify length, the value for the length
parameter will be retrieved from the symbol table residing in the
user's region. Otherwise, the following default values will apply:

Type of Data Default Length (Bytes)
Cc,B,P, 2 1

H,S,Y 2

F,E,A, X 4

D 8

I variable

L 16

When the data type is I, either length or multiple may be
specified, but not both. If both are specified, the multiple
parameter is ignored but no error message is printed.

MULTIPLE (integer)

Used in conjunction with the length operand. Gives the user the
following options:

e The ability to format the data to be listed (see example 3,
below) ’

e A way of printing more than 256 bytes at a time. (The value
supplied for "integer" determines how many "lengths" or multiples
of data-type the user wants listed.) The value supplied for
integer cannot exceed 256.

For I type data, the value supplied for MULTIPLE defines the number
of instructions to be listed. If you use a symbolic address and do
not specify MULTIPLE, the value for the MULTIPLE parameter will be
retrieved from the symbol table residing in the user's region.

PRINT (data-set-name)

Note:

236

specifies the name of a sequential data set to which the data is
directed (see data set naming conventions). If you omit this
operand, the data will go to your terminal.

The data format is blocked variable length records. 014 data sets
with the standard record format and block size are treated as NEW
if being opened for the first time, otherwise, they are treated as
MOD data sets.

The LIST subcommands of TEST perform the following functions on
each data set they process.

r T T I
If your record format	Fixed, Fixed	Variable or
was:	Blocked, or	Variable Blocked
	Undefined	
1 4 L {
I Ll T b B

|Then it is changed to |Recordsize|Blocksize |Recordsize|Blocksize]|
|variable blocked with | + + 4= 2
the following | 125 | 1629 | 125 | 129 |
|attributes | |] | |
L i 4 1 —_— L -J

Record and block sizes greater than above will be unchanged.

TSO Command Language Reference (Release 21.7)

LIST Subcommand of TEST

The specified data set is kept open until:
1. The TEST session is ended by a RUN or END subcommand or

2. A LIST subcommand is entered specifying a different PRINT data
set. In this case, the previous data set is closed and the

current one opened.

Example 1
Operation: List the contents of an area of main storage.

Known: The area to be displayed is betweeN..ec.eceecceeveevesse-. COUNTERA
DTABLE

The attributes of the dataees.eccec. wemeemeacscsacnscacasaas C
L(130)

M(1)

The name for a data set to contain
the listed datAeccecaccceacccsncaconsnscncnccanancccssssss DCDUMP

r
|LIST COUNTERA:DTABLE C L(130) M(1) PRINT(DCDUMP)
L

Example 2

Operation: List the contents of main storage at several addresses

Known: The addreSSeSeceecccccceccesnccnnecnsanscsenansssnnsencesees TOTALL
TOTAL2
TOTAL3
ALLTOTAL

The attributes of the dataiececeivecanccccesaaccenccsnenes F

L(3)
M(3)

[]

r
L (TOTAL1l TOTAL2 TOTAL3 ALLTOTAL) F L(3) M(3)
L

237

LIST Subcommand of TEST

Example 3

Operation: List the first six fullwords in the Communications Vector
Table (CVT).

Known: The absolute address Of the CVlececeencavaccancnonsncnmeses 10.
The user is operating in TEST modea.
The attributes of the dataAeeeieecccesccccvacenancevanncnscsns X

L(4)
M(6)
Note: TFirst use the QUALIFY subcommand of TEST to establish the
beginning of the CVT as a base location for displacement values.
r 1
|QUALIFY 10. |
1 1

TEST e e eeeasnceecssssssancasseassesansnsencssacenees The system response

r h
|LIST +0 L(4) M(6) |
L J

The listing at your terminal will resemble the following sample listing:

+0 00000000
+4 00012A34
+8 00000B2C
+C 00000000
+10 001A0408
+14 00004430

238 TSO Command Language Reference (Release 21.7)

LISTDCB Subcommand of TEST

Use the LISTDCB subcommand to list the contents of a data control block
(DCB). You must provide the address of the beginning of the DCB. The
forty-nine or fifty-two bytes of data following the address will be
formatted according to the names of the fields as presented in the
publication System/360 Operating System: System Control Blocks,
GC28-6628. ’

If you wish, you can have only selected fields displayed. The field
identification is based on the sequential access method DCB for direct
access. Fifty-two bytes of data are displayed if the data set is
closed; forty-nine bytes of data are displayed if the data set is
opened.

r T - 1
| SUBCOMMAND | OPERANDS |
———————————— p——- :
| LISTDCB | address [FIELD(names)] [PRINT (data-set-name)] |
L L _ e e J
address

specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The
specified address is the address of the DCB that you want
displayed. The address must be on a fullword boundary. (See
Appendix B for more information about addresses.)

FIELD (names)
specifies one or more names of the particular fields in the DCB
that you want to have displayed at your terminal. The segment name
will not be printed when you use this operand. If you omit this
operand, the entire DCB will be displayed.

PRINT(data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. ©01ld data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise they are
treated as MOD data sets.

The specified data set is kept open until:
1. The TEST session is ended by a RUN or END subcommand, or
2. A LIST subcommand is entered that specifies a different PRINT

data set. In this case, the former data set is closed and the
current one opened.

239

LISTDCB Subcommand of TEST

Example 1
Operation: List the RECFM field of a DCB for the program that is being
tested.

Known: The DCB begins at locatioN.c.ceieciccceceencacescnssnceecas.s DCBIN
T T T e e e e 8]
|LISTDCB DCBIN FIELD (DCBRECFM) |
L 3
Example 2

~ Operation: List on entire DPEBs
Known: The absolute address Of the DCBeeecescsccssccnscanccnscese 33BU
r - 1
|LISTDCB 33BU4. v |
L 1

240 TSO Command Language Reference (Release 21.7)

LISTDEB Subcommand of TEST

Use the LISTDEB subcommand to list the contents of a data extent block
(DEB). You must provide the address of the DEB. The 32 bytes of data
following the address will be formatted according tc the names of the
fields as presented in the publication System/360 Operating System:
System Control Blocks, GC28-6628.

In addition to the 32 byte basic section, you may receive up to 16
direct access device dependent sections of 16 bytes each until the full
length has been displayed. If you wish, you can have only selected
fields displayed.

r - T - - -= 3
| SUBCOMMAND | OPERANDS |
¢ ———f -—- {
| LISTDEB i address [FIELD(names)] [PRINT (data-set-name)]]
L —_ L —_— . —_—
address

specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
is the beginning of the DEB, and must be on a fullword boundary.
(See Appendix B for more information about addresses.)

FIELD (names)
specifies one or more names of the particular fields in the DEB
that you want to have displayed at your terminal. If you omit this
operand, the entire DEB will be listed.

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. ©01ld data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcammand is entered that specifies a different PRINT

data set. 1In this case, the former data set is closed and the
current one opened.

Example 1
Operation: List the entire DEB for the DCB that is named DCBIN.

Known: The address of the DEB.ceeeeavees eemmwevsennencnceewas DCBIN+2C%

r
|LISTDEB DCBIN+2C%
L

[

241

LISTMAP Subcommand of TEST

Use the LISTMAP subcammand to display a storage map at your terminal.
The map identifies the location and assignment of any storage assigned
to the program.

All storage assigned to the problem program and its subtasks as a
result of GETMAIN requests is located and identified by subpool (0-127).
All programs assigned to the problem program and its subtasks are
jdentified by name, size, location, and attribute. Storage assignment
and program assignment are displayed by task. When the assignments for
the problem program and all its subtasks tasks have been displayed, a
map of 'all unassigned storage within the region is displayed.

SUBCOMMAND OPERANDS

[PRINT(data-set-name)]

LISTMAP

___~"_q
b — =t —

[|

PRINT(data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. 01d data sets

with the standard record format and blocksize are treated as NEW if

they are being opened for the first item; otherwise, they are

treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: Display a map of main storage at your terminal.

S
| LISTMAP
L

= d

Example 2

Operation: Direct a map of main storage to a data set.

Known: The name for the data set.....ccececceceanc.. ACDQP.MAP.TESTLIST

r
|LISTMAP PRINT(MAP)
L

ow =

242 TSO Command Language Reference (Release 21.7)

LISTPSW Subcommand of TEST

Use the LISTPSW subcommand to display a Program Status Word (PSW) at
your terminal.

OPERANDS

SUBCOMMAND

.
|
t - -
| LISTPSW {ADDR(address)] [PRINT {(data-set-name)]
L

o —

ADDR (address)
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
identifies a particular PSW. If you do not specify an address, you
will receive the current PSW for the program that is executing.
(See Appendix B for more information about addresses.)

PRINT(data-set-name)

specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. 01ld data sets

with the standard record format and blocksize are treated as NEW if

they are being opened for the first time; otherwise, they are

treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened. '

Example 1

Operation: Display the current PSW at your terminal.

r
|LISTPSW
i

[

Example 2
Operation: Copy the Inputs/Output old PSW onto a data set.

Known: The address of the PSW (in hexadecimal)..... 38.
The name for the data S€teeaveecccecacscesnas SKI23.PSWS.TESTLIST

r
|LISTPSW ADDR(38.) PRINT(PSWS)
L

o S

243

LISTTCB Subcommand of TEST

Use the LISTTCB subcommand to display the contents of a task control
block (TCB). You may provide the address of the beginning of the TCB.
The data following the address will be formatted according to the names
of the fields as presented in the publication: System/360 Operating
System: System Control Blocks, GC28-6628.

If you wish, you can have only selected fields displayed.

r T -1
| SUBCOMMAND | OPERANDS |
¢ e !
| LISTTCB { [ADDR(address)] [FIELD{(names)] [PRINT (data-set-name)] |
L o TR S p— ‘ - e -— 4
ADDR (address)
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
must be on a fullword boundary. The address identifies the
particular TCB that you want to display. If you omit an address,
the TCB for the current task is displayed. (See Appendix B for
more information about addresses.)
FIELD (names)

specifies one or more names of the particular fields in the TCB
that you want to have displayed. If you omit this operand, the
entire TCB will be displayed.

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed. If you omit this operand, the data will be displayed
at your terminal.

The data format is blocked variable length records. 0©01d data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise, they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT

data set. In this case, the former data set is closed and the
current one opened.

244 TsSO Command Language Reference (Release 21.7)

LISTTCB Subcommand of TEST

Example 1

Operation: Save a copy of the TCB for the current task on a data set.

Known: The name for the data set.v...accaaceeccenas GCAMP.TCBS.TESTLIST

r h
|LISTTCB PRINT(TCBS) |
L J

Example 2

Operation: Save a copy of some £ields of a task's control block that is
not active in a data set for future information.

Known: The symbolic address Of the TCBuiuweescocscsamensscosenesss MYTCB2
The fields that are being requestede..weecsccemsnccaceceacaes TCBTIO

TCBCMP

TCBGRS

The name for the data Seticececececnccwcceeneneces SCOTT.TESTLIST

|PRINT (' SCOTT. TESTLIST")
L

r 1
|LISTTCB ADDR(MYTCB2) FIEID(TCBTIO,TCBCMP,TCBGRS)~ |
[
4

245

LOAD Subcommand of TEST

Use the LOAD subcommand to load a program into main storage for
execution.

r T - - - 1
| SUBCOMMAND | OPERANDS |

———————————— - :
! LOAD 1 program-name j

program name
specifies the name of a member of a partitioned data set that
contains the load module to be tested. (See the data set naming
conventions.)

Example 1
Operation: Load a program named ATX03.LOAD(GSCORES)

e o e e e o e e e e e e o e

r
|LOAD (GSCORES)
L

246 TSO Command Language Reference (Release 21.7)

OFF Subcommand of TEST

Use the OFF subcommand to remove breakpoints from a program.

r —————=7

| SUBCOMMAND | OPERAND |
¢ ————t -- -1
| OFF | addressl: address] |
| | | (address-1list) |
L i I 3
address

specifies the location of a breakpoint that you want to remove.

The address may be a symbolic address, a relative address, an
absolute address, or a general register containing an address. The
address must be on a halfword boundary. (See Appendix B for more
information about addresses.)

address :address
specifies a range of addresses. Each address may be a symbolic
address, a relative address, an absolute address, or a general
register containing an address. Each address must be on a halfword
boundary. All breakpoints in the range of addresses will be
removed. (See Appendix B for more information about addresses.)

(address-1list) .
specifies the location of several breakpoints that you want to

remove.

Each address may be a symbolic address, a relative

address, an absolute address, or a general register containing an
address. Each address must be on a halfword boundary. (See
Appendix B for more information about addresses.)

Example 1

Operation:

Known: The

Remove all breakpoints in a section of the program.

beginning and ending addresses of the section......... LOOPC
EXITC

r
|OFF LOOPC:
L

1

EXITC !
J

Example 2

Operation:

Known: The

Remove several breakpoints located at different positions.

addresses of the breakpointSeeciewececesccscsnsnensesess COUNTRA
COUNTRB
EXITA

r
|OFF (COUNTRA COUNTRB EXITA)
L

[-

Example 3

Operation:

Remove all breakpoints in a program.

¥
|OFF
L

f —

247

QUALIFY Subcommand of TEST

Use the QUALIFY subcammand to qualify symbolic and relative addresses;
that is, to establish the starting or base location to which
displacements are added so that an absolute address is obtained. The
QUALIFY subcommand allows you to specify uniquely which program and
which CSECT within that program you intend to test using symwbolic and
relative addresses.

You can specify an address to be used as the base location for
subsequent relative addresses. Each time you use the QUALIFY
subcommand, previous qualifications are voided.

Symbols that were established by the EQUATE subcommand before you ‘
enter QUALIFY are not-affected by +the QUALIFY subcommand. :

r j T - -
| SUBCOMMAND | OPERANDS]
¢ o e {
| fQUALIFY | address |
1 @ | load-module-name[.entryname],[TCB(address)]} |
L L —_— J
address
specifies an absolute, relative or symbolic address.
load
specifies the name by which a load module is known. The load name
~may be a member name of a partitioned data set or an alias.
load.entry ‘
specifies the name by which a load module is known, and an external
name within the load module. This operand changes the base for
both symbolic and relative addresses. The two names are separated
by a period. The load module name may be a member name of a
partitioned data set or an alias. The entry name is the name that
is duplicated in another module of the load module.
-~entry
specifies an external name within a previously specified load
module that you are now testing.
TCB (address)

spec1f1es the address of a task control block (TCB). This operand
is necessary when programs of the same name are assigned to two or
more subtasks and you must establish uniquely which one is to be
qualified, or when the load module request block is not in the TCB
chain.

248 TSO Command Language Reference (Release 21.7)

QUALIFY Subcommand of TEST

Examgle 1

Operation: Establish a base location for relative addresses to a symbol
) within the currently qualified program.

Known: The base adAreSScceecesccacnncncscscnssacsnsancsnannscessess QSTART

I N
|QUALIFY QSTART
L

Example 2

Operation: Change the base location for symbolic and relative addresses
to a different CSECT in the program.

Known: The module NAME....cavcceanscncssnnanccscncscnasnansanssess PROFITS
The entry nName (CSECT) e c.ecnacnancncenencccusncnnsseenses SALES
The TCB AdAYeESSecssmcsvccseansnacennnannsasannncacacncnseaa +120%

r
[QUALIFY PROFITS.SALES TCB(+124%)
L

Example 3

Operation: Change the base location for relative addresses to an
absolute address.

Known: The absolute address of the new base€.uce.ie.cecaiacananaa.. 5F820

r
|QUALIFY S5F820.
| R,

[|

249

RUN Subcommand of TEST

Use the RUN subcommand to cause the program that is being tested to
execute to termination without recognizing any breakpoints. When you
specify this subcommand, TEST is terminated. When the program
completes, you can enter another command. Overlay programs are not
supported by the RUN subcommand. Use the GO subcommand to execute
overlay programs.

r - T ———- 1

| SUBCOMMAND | OPERANDS |

I R !

| {RUN} | [address]]

I R I [

1 4 - 3

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Execution
will begin at the specified address. If you do not specify an
address, execution begins at the last point of interruption or from
the entry point if the RUN subcommand was not previously specified.
(see Appendix B for more information about addresses.)

Example 1

Operation: Execute the program to termination from the last point of

interruption.

r I

|RUN |

L 1

Example 2

Operation: Execute a program to termination from a specific address}

Known: The addreSSecceacesuncncscencccsnccannsnsnassnancsncassassacsess FAS

r
|[RUN +A8
L

i o

250 TsO Command Language Reference (Release 21.7)

WHERE Subcommand of TEST

Use the WHERE subcommand to obtain the absolute address serving as the
starting or base location for the symbolic and relative addresses in the
program. Alternately, you can obtain the absolute address of an
entrypoint in a particular module or control section (CSECT). If you do
not specify any operands for the WHERE subcommand, you will receive the
address of the next executable instruction.

| SUBCOMMAND OPLERANDS |

|
fr———m o T - -1
| {WHERE | address]
| W | load-module-namel.entryname] |
I —— 1 - ——— —1

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. When you
specify an address as the operand for the WHERE subcommand, you
will receive the name of the load module containing the address.
(See Appendix B for more information about addresses.)

load-module-name.entry-name
specifies the name by which a load module is known, and an
externally referable name within the load module. The two names
are separated by a period. The load module name may be the name or
an alias of a member of a partitioned data set. The entry name is
the symbolic address of an entry point into the specified module.
The entry name may be omitted, in which case the first entry point
into the specified module will be supplied. When you specify this
operand for WHERE, you will receive the main storage address of the
load module. :

Example 1
Operation: Obtain the absolute address of the module named CSTART.

- -7

r
| WHERE CSTART
L

— -]

Example 2

Operation: Obtain the absolute address of the CSECT named JULY in the
module named NETSALES.

- I |

r
| WHERE NETSALES.JULY) |
L

251

WHERE Subcommand of TEST

Example 3

Operation: Determine in which program an absolute address is located.

Known: The absolute addresSS.ececcecccccsenceacncscncacnscsssscscseasss 3IE2BS

r a 1

| VHERE 3E2BS. |

L - _ -1

Note: You will also get the TCB address and the relative address.

Example 4

Operation: Determine the absolute address of the next executable
instruction.

r 1

| WHERE I

L 4

252 TsSO Command Language Reference (Release 21.7)

TIME Command

Use the TIME command to find out how much execution time or how much
session time you have used during the current session.

Program execution time is displayed when you enter the TIME command.
(To enter the command while a program is executing, you must first cause
an attention interruption.) Program execution time is measured from the
time that the program last received input from your terminal. The TIME
command has no effect upon the executing program.

Your current session time is displayed in all other instances.

COMMAND

OPERANDS

|
1 _— —
}
|
L

TIME

[—— o

[T - |

253

TIME Command

254 TsO Command Language Reference (Release 21.7)

Command Procedure Statements

A command procedure is a prearranged sequence of TSO commands and,
optionally, subcommands and data. A command procedure is a convenient
method for executing a repeatedly-used sequence of commands. The
procedure is stored in either a data set that has CLIST as the
descriptive qualifier (see the EDIT command) or in a member of a command
procedure library (a pre-defined partitioned data set).

Ensure that your command specifications are complete as you will not
be prompted for information while your commands are executing in a
command procedure.

When using continuation characters in a command procedure, ensure
that they are placed in the last usable record position. When using
fixed-record format, a series of delimiters can be used to pad a record
to the final position which contains the continuation character. See
the paragraph entitled "Continuation of a Line in Input Mode" that
appears under the EDIT command for more information on how to use the
continuation character on statements in command procedures.

The statements contained in this section are designed especially for
use in command procedures. They are:

e The END statement.
e The PROC statement.

e The WHEN statement.

255

END Statement of Command Procedures

Use the END statement to end a command procedure. When the system
encounters an END statement in a command procedure, execution of the
command procedure is halted and the system becomes ready to accept
another command from the terminal.

STATEMENT OPERANDS

END

= — o)
b il

256 TSO Command Language Reference (Release 21.7)

PROC Statement of Command Procedures

The PROC statement defines those operands in a command procedure that
are to be considered as symbolic values. The user of the comrmand
procedure then supplies his own values as operands on the EXEC command.
(See the discussion on the "EXEC command" for more detail on how to
supply actual values for symbolic values in a command procedure.) For
more information on how to assign symbolic values, refer to the
publication; IBM System/360 Operating System: Time Sharing Option,
Terminal User's Guide, GC28-6763.

- - T - 1
| STATEMENT | OPERANDS |
—————————————— fm e 1
i PROC number [positional-operands]l [keywords] |
L i P 4
number

specifies the number of positional operands that follow. The
number mast be a decimal digit. If none of the operands are
positional, you must specify a zero.

positional operands
specifies one or more positional operands.

keywords
specifies one or more keyword operands.

A PROC statement can be continued by putting a hyphen in the last
data position. Remember that the last eight columns of fixed blocked
records are reserved for sequence numbers. In this case, place the
hyphen in the column before the sequence number field. Positional or
keyword operands must not be broken by a hyphen.

If a symbolic value within a command procedure is immediately
followed by a special character (such as a right parenthesis,
apostrophe, or period), the symbolic value must end with a period. For
example, if PROG replaces §NAME within a command procedure:

DATASET(&NAME. .ASM) becomes DATASET (PROG.ASM)
DATASET(ENAME.) becomes DATASET (PROG)
'¢§NAME. ' becomes 'PROG'

The period after &NAME tells the system to link the substituted value
(PROG) to the string of characters that follows.

257

PROC Statement of Command Procedures

Example 1

Operation: Use a PROC statement to identify five symbolic operands in a
command procedure.

Known: Three positional operands to defin€..ceceececaccncceaess ENAME

ENUMBER

§TIME

Two keyword operands to defin€icceceececcccccncnccssaess EXREF

EMAP
r - 1
|PROC 3 NAME NUMBER TIME XREF MAP |
L 1

258 TSO Command Language Reference (Release 21.7)

PROC Statement of Command Procedures

Example 2

Operation: Use all three types of operands for a PROC statement.

Known: You are creating a command procedure that will use two existing
programs named USERJWS.LOAD (SALESRPT) and INVENTRY.A to produce
a sales report and to update the inventory. The name of the
command procedure is REPORTS. You want to use different data
sets as input to the procedure. The output of the first program
SALESRPT will be the input for INVENTRY. You want to be able to
have the output displayed at your terminal or directed to a data
set so that it can be retrieved at some later date. The
commands in the procedure are:

ALLOCATE DATASET(ELASTOUT.) NEW BLOCK(80) SPACE(500 10)
ALLOCATE DATASET(&INPUT.) OLD

ALLOCATE DATASET(EOUTIN.) &NEW BLOCK(80) SPACE(500 10)
CALL (SALESRPT) ‘'&INPUT &OUTIN.'

WHEN SYSRC(GT 4) END

CALL 'INVENTRY.A' *'&OUTIN &IASTOUT.'

END

The PROC statement that will precede the first ALLOCATE command is:
PROC 2 INPUT OUTIN ILASTOUT(#*) NEW

The EXEC command to execute this procedure and have the output displayed
at your terminal will be:

EXEC REPORTS 'FEBSALES FEBRUARY NEW'

when the input data set is named FEBSALES and you want to name the
output from the SALESRPT program FEBRUARY. If you want to direct the
output from the procedure to a data set named FEBRPT instead of to your
terminal, you would enter:

EXEC REPORTS 'FEBSALES FEBRUARY NEW LASTOUT (FEBRPT)*

In this case, the symbolic values in the command procedure will be
changed to: ‘

ALLOCATE DATASET(FEBRPT) NEW BLOCK(80) SPACE (500 10)
ALLOCATE DATASET(FEBSALES) OILD

ALLOCATE DATASET(FEBRUARY) NEW BLOCK(80) SPACE(500 10)
CALL (SALESRPT) 'FEBSALES FEBRUARY'

WHEN SYSRC(GT 4) END

CALL ‘'INVENTRY.A' 'FEBRUARY FEBRPT'

END

259

WHEN Statement of Command Procedures

'

Use the WHEN statement to test return codes from programs invoked via an
immediately preceding CALL or LOADGO command, and to take a prescribed
action if the return code meets a certain specified condition.

COMMAND | OPERAND

(SYSRC(operator integer)]

|
|
| END :
i command-name
L

WHEN

o o m——— m— - m——
S S

SYSRC
specifies that the return code from the previous function (the
previous command in the command procedure) is to be tested
according to the values specified for operator and integer.

operator .
specifies one of the following operators:

EQ or = means equal to

NE or 1= means not equal to

GT or > means greater than

LT or < means less than

GE or >= means greater than or equal to
NG or 1> means not greater than

LE or <= means less than or equal to

NL or ;< means not less than

integer
specifies the four digit constant that the return code is to be
compared to. ‘

END _
specifies that processing is to be terminated if the comparison is
true. This is the default if you do not specify a command.

command :
specifies any command name and appropriate operands. The command
will be processed if the comparison is true.

CALL and LOADGO are the only commands for which a user normally tests
the return code. The other commands set a return code, but most of them
also terminate the command procedure if they fail. A WHEN statement
following a failing command would not be executed. The two commands,
FREE and DELETE, do not terminate the procedure if they fail (that is,
if FREE finds the data set already allocated or if DELETE finds no data
set).

Note that a command prbcedure ends after executing a true WHEN

statement. The system will not resume with the command following the
WHEN statement.

260 TSO Command Language Reference (Release 21.7)

Appendix A: Program Product Commands

For IBM Program Product information, refer to the following
publications:

IBM System/370 Program Products: Lanquage and Sort Processors: OS,
Dos, WM/370-CMsS, GC28-8200.

IBM System/370 Program Products: TSO Data Utilities: COPY, FORMAT,
LIST, MERGE, Program Product Specifications, GC28-6768.

ASM COMMAND

The ASM command is provided as part of the optional TSO ASM Prompter
program product which is available for a license fee.

Use the ASM command to process assembler language data sets and

produce object modules. The prompter requests required information and
enables you to correct your errors at the terminal.

CALC COMMAND

The CALC command is provided as part of the optional ITF:PL/I program
product which is available for a license fee.

Use the CALC command to execute ITF:PL/I statements in desk

calculator mode; that is, to have statements interpreted and executed as
you enter them.

COBOL COMMAND

The COBOL command is provided as part of the optional COBOL Prompter
program product which is available for a license fee.:

Use the COBOL command to compile American National Standard (ANS)
COBOL programs. This command reads and interprets parameters for the 0S
Full American National Standard COBOL (version 3 and version 4) compiler
and prompts you for any information that you have omitted or entered
incorrectly. It also allocates required data sets and passes parameters
to the compiler.

CONVERT COMMAND

The CONVERT command is provided as part of the optional ITF:PL/I and
BASIC program product or the Code and Go FORTRAN program product which
is available for a license fee.

Use the CONVERT command to convert language statements contained in
data sets to a form suitable for a compiler other than the one for which
they were originally intended. The conversions that can be accomplished
with this command are:

261

Appendix A: Program Product Commands

FROM

TO

Statements suitable for
TSO ITF:PL/I (a Program Product)

iStatements suitable for the
|PL/I (F) compiler or for the
|0S PL/I Checkout and Optimizing
|Compilers

L

Free-form statements suitable for
the Code and Go FORTRAN compiler
(a Program Product)

}
|Fixed format statements suitable

| for the FORTRAN (G1l) compiler and
|all the FORTRAN compilers provided
|with the Operating System

4

Fixed-form statements suitable for
the FORTRAN (G1l) compiler or the
Code and GO FORTRAN compiler

+ .
|Free format statements suitable
| for the Code and Go FORTRAN
|compiler (a Program Product)

1

Statements in an ITF/0S collection

+ -
|A form acceptable by TSO ITF
| (PL/I or BASIC)

L

COPY COMMAND

The COPY command is provided as part of the optional TSO Data Utilities:

COPY, FORMAT,
license fee.

LIST,

MERGE program product which is available for a

Use the COPY command to copy sequential or partitioned data sets.

You can also use this command to:

e Add members to or merge partitioned data sets.

® Resequence line numbers of copied records.

e Change the record length, the block size, and the record format when
copying into a sequential data set.

FORMAT SUBCOMMAND OF EDIT

The FORMAT subcommand is provided as part of the optional TSO Data

Utilities:
for a license fee.

Use the FORMAT subcommand to format textual output.

provides the facilities to:

e Print a heading on each page.

COPY, FORMAT, LIST, MERGE program product which is available

This subcommand

e Center lines of text between margins.

Control the amount of space for all four margins.

e Justify left and right margins of text.

e Number pages of output consecutively.

Halt printing when desired.

262

TSO Command Language Reference (Release 21.7)

Appendix A: Program Product Commands

e Print multiple copies of selected pages.

e Control line and page length.

e Control paragraph indentation.

MERGE_SUBCOMMAND OF EDIT

The MERGE subcommand is provided as part of the optional TSO Data
Utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee.

Use the MERGE subcommand to:

e Merge, into the data set being edited, all or part of itself.

e Merge, into the data set being edited, all or part of another data
set.

FORMAT COMMAND

The FORMAT command is provided as part of the optional TSO Data
Utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee.

Use the FORMAT command to format textual output. This command
provides the facilities to:

Print a heading on each page.

Center lines of text between margins.

Control the amount of space for all four margins.
Justify left and right margins of text.

Number pages of output consecutively.

Halt printing when desired.

Print multiple copies of selected pages.

Control line and page length.

Control paragraph indentation.

Store a data set that has already been formatted.
Print all or part of a sequential or partitioned data set.

FORT COMMAND

The FORT command is provided as part of the optional TSO FORTRAN
Prompter program product which is available for a license fee.

Use the FORT command to compile a FORTRAN IV (Gl) program. You will
be prompted for any information that you have omitted or entered
incorrectly. It also allocates required data sets and passes parameters
to the FORTRAN IV (G1l) compiler.

263

Appendix A: Program Product Commands

GOFORT COMMAND

The GOFORT command is provided as part of the optional TSO Code and Go
FORTRAN processor. It may be used to compile, locad, and execute a
source program that has previously been saved. The GOFORT command
permits the execution of programs initially coded using the BCD
character set; neither the RUN command nor the RUN subcommand of EDIT
provides this capability.

LIST COMMAND

The LIST command is provided as part of the optional TSO Data Utilities:
COPY, FORMAT, LIST, MERGE program product which is available for a
license fee.

Use the LIST command to display a sequential data set or a member of
a partitioned data set. You can arrange fields within records for
output; you can include or suppress record numbers; you can list all or
part of a particular line of data, and you can list a single line of
data, a group of lines, or a whole data set.

MERGE_ COMMAND

The MERGE command is provided as part of the optional TSO Data
Utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee.

Use the MERGE command to:

e MERGE a complete or part of a sequential or member of a partitioned
data set into a sequential or member of a partitioned data set.

e Copy a complete or part of a sequential or member of a partitioned
data set into a new or (pre-allocated) empty sequential data set.

» Copy a complete or part of a sequential or member of a partitioned
data set into a new member of an existing partitioned data set.

e Copy a complete or part of a sequential or member of a partitioned
data set into a new or (pre-allocated) empty partitioned data set.

PLI COMMAND

The PLI command is provided as part of the optional PL/I Optimizing
Compiler program product, which is available for a license fee. The
program product includes the PL/I Prompter.

Use the PLI command to invoke the PL/I Optimizing Compiler. The
Prompter will allocate required data sets and prompt you for any
information that you have omitted or entered incorrectly, then it will
pass control to the compiler.

264 TSO Command Language Reference (Release 21.7)

Appendix A: Program Product Commands

PLIC COMMAND

The PLIC command is provided as part of the optional PL/I Checkout
Compiler program product, which is available for a license fee. The
program product includes the PL/I Prompter.

Use the PLIC command to invoke the PL/I Checkout Compiler. The
Prompter will allocate required data sets and prompt you for any
information that you have omitted or entered incorrectly, then it will
pass control to the compiler.

Subcommands of the PLIC command are provided to aid the testing of

the PL/I program. These allow the programmer to intexrvene during
execution of the program and temporarily modify it.

TESTCOB COMMAND

The TESTCOB command is provided as part of the optional COBOL
Interactive Debug program product. Used in conjunction with Full
American National Standard COBOL Version 4, COBOL Interactive Debug
provides comprehensive capabilities for program monitoring and checkout.

TESTFORT COMMAND

The TESTFORT command is provided as part of the optional FORTRAN
Interactive Debug program product. Used in conjunction with Code and Go
FORTRAN or FORTRAN IV(G1l), FORTRAN Interactive Debug provides
comprehensive capabilities for program monitoring and checkout.

265

Appendix A: Program Product Commands

266 TSO Command Language Reference (Release 21.7)

s abbreviated glossary is a supplement
the publication: IBM Data Processing
ssary, GC20-1699. The following entries
definitions of terms used herein that
not included in the IBM Data Processing
ssarye.

2 name: A name of a collection of data
2 file name corresponds to the data
inition name).

DJFF: The TSO command that terminates a
r's terminal session.

ODN: The TSO command that a user must
ar to initiate a terminal session.

DN procedure: A cataloged procedure
t is executed as a result of a user
2ring the LOGON command.

Glossary

National characters:
and ad.

The characters #, §,

Storage dump: A recording of the contents
of main or auxiliary storage so that it can
be examined by a programmer or operator.
(See also "dump.")

User identification: A one-to-seven
character symbol identifying each TSO user.

User profile: A set of characteristics
that define a TSO user to the system. Each
user profile is kept in the user profile
table (UPT) which in turn is stored in the
user attribute data set (UADS).

Glossary 267

268 TSO Command Language Reference (Release 21.7)

adexes to systems reference library

anuals are-consol idated in the publication
3M System/360 Operating System: Systems
>ference Library Master Index, GC28-664L.
>r additional information about any

ibject listed below, refer to other
1blications listed for the same subject in
1e Master Index.

operand, DISPLAY subcommand 160
sbreviations, command names and subcommand
1ames 27
scess (read/write protection)
COUNT command 14,29

ADD subcommand 14,32

CHANGE subcommand 14,37

DELETE subcommand 14,40

END subcommand 14,44

HELP supcommand 13,45

LIST subcommand 14,47

LISTIDS subcommand 14, 49
rcount mode 25
:count numbers, syntax 32
CT operand, ADD subcommand 33
)D subcommand 14, 32
)D operand (PROTECT) 190
ldress, indirect 210,211
ldress list operand, (TEST)

LIST subcommand 235

OFF subcommand 247
idress operand, (TEST)

AT subcommand 217

FREEMAIN subcommand 230
ldress :address operand, AT subcommand 217
ldresses, (TEST)

equating symbols to 209

establish base location 210
ldress list operand, AT subcommand 217
ds 24
Jas, deletion-of 193
ias operand (RENAME)
LOCATE command 51
location, data set 51,70-71
location, dynamic 51
L operand, SEND subcommand 170
IS operand (EDIT) 68,72
M (see descriptive qualifier)
‘M command 27,261
M operand,

EDIT 69

RUN 196
sembly, program 14,61
signment of values function (TEST)
© subcommand (TEST) 217

189

193

215

Index

attention interruptions 24
attention key 24,185

(see also PROFILE subcommand (EDIT);
TERMINAL command)
ATTN operani,
PROFILE 185
PROFILE subcommand (EDIT) 104

ATTRIB command 55

attributes of users (ACCOUNT) 29
attributes of users (PROFILE) 104,185
attributes of data sets (ATTRIB) 55
ATTRLIST operand (FREE) 124

BASIC (see descriptive qualifier)
BASIC operand,
EDIT 68,69
RUN 195-197
batch processing 203
BEGIN operand (OUTPUT),
CONTINUE subcommand 179
OUTPUT 176
BFTEK operand (ATTRIB) - 55
BLKSIZE operand (ATTRIB) 55
BLOCK(integer) operand,
EDIT 72
BLOCK(block length) operand,
ALLOCATE 53
EDIT 72
blocksize 73,55
BOTTOM subcommand (EDIT) 82
BREAK operand (TERMINAL) 205-206
breakpoints,

how to establish (TEST) 209,217
removal of (TESTY 209,247
broadcast data set 139,170
BS operand,
PROFILE 186
PROFILE subcommand 104
BFALN operand (ATTRIB) 55
BUFL operand (ATTRIB) 55
BUFNO operand (ATTRIB) 55
CALC command 27,261
CALL command 61
CALL subcommand (TEST) 220
CALL operand (LOADGO) 149
CANCEL command 63
CANCEL subcommand (OPERATOR) 158

cancellation,

batch job 63

terminal user 158
capabilities, Command Language 13
CAPS operand (EDIT) 72

Index

269

Index

CHANGE subcommand (ACCOUNT) 37 DATA (password account procedure) operand
CHANGE subcommand (EDIT) 83 ADD subcommand 32
change, Data Control Block 239
user attributes in UADS 37 parameters 55
modes (EDIT) 74,96 data definition (DD) name,
region size (OPERATOR) 166 how to display 137
registers and main storage 235 (see also STATUS operand (LISTDS)
CHAR operand, how to specify 52
PROFILE 186 (see also FILE operand (ALLOCATE)
PROFILE subcommand (EDIT) 104 number of, in LOGON procedure 123
character-deletion characters 19,185 data entry, storage modification 67-68,9
CLASS operand, CANCEL subcommand 158 Data Extent Block 241
CLASS(class name list) operand) DATA operand,
(oUTPUT) 175 "EDIT 70
CLEAR operand (TERMINAL) 206 PROTECT 191
CLIST operand (EDIT) 70 data set,
CNTL operand (EDIT) 70 access, read/write 189
COBLIB operand (LINK) 131 allocation 51
COBOL command 14,261 attributes 55
COBOL operand, blocksize 73
EDIT 69 conversion (see CONVERT command)
RUN 196 creation
columns, data 13,115 ‘BASIC 68,75
Command Procedure 255 FORTRAN 68,75
(see also EXEC command) PL/I 68,75
command procedure statements, SYsSouT 51,68
END 256 default names 21,22
PROC 257-259 how to specify 21
WHEN 260 naming conventions 19-20
commands, organization 137,141
definition of 12 . (see also LISTDS command)
how to enter 19 record length 73
list of 27 record format 73
compilers, execution of, storing of 112
program products 109,195 type 70-71,73
standard 61,109,195 data-set-list operand,
compilers, how to use 61 LINK 130
CONTINUE subcommand (OUTPUT) 179 LISTDS 145
control blocks, display of (TEST), LOADGO 147
Data Control Block 239 SUBMIT 204
Data Extent Block 241 data-set-name operand
Program Status Word 243 : (CALL) 61
Task Control Block 244 SAVE subcommand 112
control fields, UADS 29 DATASET operand (ALLOCATE) 51
control, system 155 DC operand (LINK) 134
control, terminal session 13 DCB 239
conventions, naming, data set 19-20 DCB parameters 55
conversion, data set (see CONVERT command) DDNAME (see data definition (DD) name)
CONVERT command 27,261 DEB 241
COPY command 27,262 debugging (TEST) 209
COPY subcommand (TEST) 222 DECLARE statement 52
COUNT (integer) operand, AT subcommand 217 defaults,
CP operand (TEST) 212 commands and subcommands 12
CPU, time used by 253 data set names 21,22
creating, deletion characters 19
a data set 51,67-68 DEFER operand, AT subcommand 218
a command procedure 255 definitions, of terms 267
a program 67-68 DELETE command 65
current line pointer 76-77 DELETE operand,

PROTECT 190
SEND subcommand (OPERATOR) 171

270 TsSO Command Language Reference (Release 21.7)

)

JELETE subcommand,

ACCOUNT 40

EDIT 88

TEST 225
leletion,

alias 193

character 104

data in the UADS 40

. data set 65

data set member 65

lines of data 88

module under TEST 225

output data 175
lelimiters 16
lescriptive qualifier 20-23
)IR(integer) operand (ALLOCATE) 53
lisplay,

CPU time 253

main storage 235

messages 139,153

registers 235

session time 253

storage map 242
JISPLAY subcommand (OPERATOR) 160
IOWN subcommand (EDIT) 90
JRIVER operand, MODIFY subcommand 166
)ROP subcommand (TEST) 226
)ISNAME operand,

MONITOR subcommand 168

STOPMN subcommand 173
'SORG (see data set, organization)
ﬁmp 242
JUMP operand, CANCEL supcommand 158
lynamic allocation 51

DIT command, 67,68
BOTTOM subcommand 82
CHANGE subcommand 83
DELETE subcommand 88
DOWN subcommand 90
END subcommand 91
FIND subcommand 92
FORMAT subcommand 14,263
HELP subcommand 94
INPUT subcommand 96
INSERT subcommand 98
Insert/ReplacesDelete function 100
LIST subcommand 102
MERGE 14,264
PROFILE subcommand 104
RENUM subcommand 107
RUN subcommand 109
SAVE subcommand 112
SCAN subcommand 113
TABSET subcommand 115
TOP subcommand 117
UP subcommand 118
VERIFY subcommand 119
subcommands 81

Index

edit mode 76
END statement (Command Procedures) 256
END subcommand,
ACCOUNT 44
EDIT 91
OPERATOR 163
OUTPUT 181
TEST 227
EP (entry name) operand (LOADGO) 149
EQUATE operand, GETMAIN subcommand 231
EQUATE subcommand 228
EROPT operand (ATTRIB) 55
examples (see appropriate command or
subcomma nd)
EXEC command 121
execution, program
command procedure 121
load module 61,147
overlay 232
to stop TEST 250
EXPDT operand (ATTRIB) 55
EXT operand, MODIFY subcommand 167

feature, print-inhibit, for passwords 189
FIELD operand, LISTDCB subcommand 239
FILE operand (ALLOCATE) 52
FIND subcommand (EDIT) 92
FIXED operand,
CONVERT 27,261
RUN 197
FORMAT command 27,263
FORMAT subcommand (EDIT) 27,262
FORT command 263
FORT operand (RUN) 196
FORTx operand (EDIT) 68,70
FORTLIB operand (LINK) 131
FORTRAN 75
FREE command 123
FREE operand (RUN) 197
FREEMAIN subcommand (TEST) 230
functions, command and subcommand 13

GETMAIN subcommand (TEST) 231
glossary 267
GO subcommand (TEST) 231
GOFORT command 264
GOFORT operand (RUN) 197
group name, device 34,38

(see also UNIT(name) operand)

HELP command 125
HELP subcommand,
ACCOUNT 45
EDIT 94
OPERATOR . 164
OUTPUT 182
TEST 233
HERE operand,
CONTINUE subcommand 179
OUTPUT 176)
HIAR operand (LINK) 134

-Index 271

Index

HISTORY operand (LISTALC) 137

hyphen,

as a continuation character 69,75,76
messages ending with 25)
I operand, INPUT subcommand 96
identification, user 32,153
IDENTIFIER operand, CANCEL subcommand 158
identification qualifier 21
IMAGE operand, TABSET subcommand - 116
IN operand, CANCEL subcommand 158
increment operand, INPUT subcommand 96
indirect address 210,211
informational messages 25
INPUT ('string') operand (TERMINAL) @205
INPUT operand (ATTRIB) 55
input mode 74,96
INPUT supcommand (EDIT) 96
insert-data operand, INSERT subcommand 98
INSERT subcommand (EDIT) 98
Insert/ReplacesDelete function (EDIT) 100
integer operand, FREEMAIN subcommand - 230
INTERCOM operand,

PROFILE 187 ,

PROFILE subcommand (EDIT) 105
interruption, attention 24
IPLI operand (RUN) 196

JCL, conventional batch jobs 203
. JCL operand (ACCOUNT),
ADD subcommand 34
CHANGE subcommand 38
job-name-list operand,
CANCEL 63
ouTPUT 175
STATUS 201
jobname operand,
CANCEL subcommand 158
DISPIAY subcommand 160
jobnames 203
JOBNAMES operand,
MONITOR subcommand 169
STOPMN subcommand 173

KEYLEN operand, ATTRIB command 55

IABEL operand (LISTDS) 145
language processors,
how to compile and execute 109,187,195
how to load into main storage 147
1ET operand,
LINK 132
LOADGO 149
LEVEL (index) operand (LISTCAT) 142
levels, message 25
LIB operand (LINK) 131
LINE (ATTN) operand (PROFILE) 186
LINE(character) operand (PROFILE) 186
LINE (integer) operand (EDIT) 72

line numbers, data set
assignment of 107
creation of 72
display of 102
system defaults 74
verification of 119
LINE operand,
EDIT 72
PROFILE subcommand 105
line pointer, current 77,82
line-delete characters 104,185
line deletetion 19
LINES(integer) operand (TERMINAL) 205
LINESIZE (integer) operand (TERMINAL) 206
LINK command 129
Linkage Editor 129
LIST command 14,264
list of attributes 55
1i st~-of —~subc ommands operand AT
subcommand 217
LIST operand,
EXEC 122
PROTECT 190
SEND subcommand 171
LIST subcommand,
ACCOUNT 47
EDIT 102
TEST 235
listing, output
data set contents 102
data set names 133,137,141
UADS data set U47,49
LISTALC command 137
LISTBC command 139
LISTCAT command 141
LISTDCB subcommand (TEST) 239
LISTDEB subcommand (TEST) 241
LISTDS command 145
LISTIDS subcommand (ACCOUNT) 49
LISTMAP subcommand (TEST) 242
LISTPSW subcommand (TEST) 243
LISTTCB subcommand (TEST) 244
LMSG operand,
RUN 197
RUN subcommand (EDIT) 110
load module,
link-edit of 129
load and execute 61,147
member of a partitioned data set 246
LOAD operand,
LINK 131
TEST 212
LOAD subcommand (TEST) 246
LOADGO command 147
LOGOFF command 151
LOGON command 153
LOGON operand,
SEND 199 :
SEND subcommand (OPERATOR) 170
LOGON procedures 153

272 TsO Command Language Reference (Release 21.7)

LPREC operand,

RUN 197

RUN subcommand (EDIT) 110
LRECL operand (ATTRIB) 55

VAIL operand,

LISTBC 139

LOGON 154
VAP operand,

LINK 131

LOADGO 149
1AXSIZE(integer) operand, ADD
subcommand 34 '
nember names, partitioned data sets
VEMBERS operand (LISTALC) 137
1ERGE command 14, 264
MERGE subcommand (EDIT) 14,263
nessage levels 25
iessage number operand, SEND
subcommand 171
1essages,

how to request 26

informational 25

mail 139,153

mode 25

notices 139,153

prompting 25

second-level 25, 26

sending of 199
10D operand (ALLOCATE) 52
i1ode, message 25
‘odes of operation (EDIT) 74
ODIFY subcommand (OPERATOR) 166
IONITOR subcommand (OPERATOR) 168
onitor, terminal and job activities
iISGID operand,

PROFILE 187

PROFILE subcommand (EDIT) 105
ultiple jobs, submission of 203

" operand, DISPIAY subcommand 161
ame qualifier, user supplied 20,21
AME operand (LOADGO) 149
aming conventions, data set 19,20
CAL operand (LINK) 132
CP operand (ATTRIB) 55
E operand (LINK) 133
ew-line-number operand, RENUM
subcommand 107
ew-name operand (RENAME) 193
EW operand (ALLOCATE) 52
EXT operand,
CONTINUE subcommand (OUTPUT) 179
OUTPUT 176
O operand, MODIFY subcommand 166
OACCT operand, ADD subcommand 34
OBREAK operand (TERMINAL) 206
OCALL operand (LOADGO) 149
OCHAR operand,
PROFILE 186
PROFILE subcommand (EDIT) 104

NOCLEAR operand (TERMINAL) 206
NOCP operand (TEST) 212
NODC operand (LINK) 154
NODEFER operand, AT subcommand 218
NOHIAR operand (LINK) 134
NOINPUT operand (TERMINAL) 206
NOINTERCOM operand,

PROFILE 187

PROFILE subcommand (EDIT) 105
NOJCL operand, ADD subcommand 35
NOLET operand,

LINK 132

LOADGO 149
NOLIM operand, ADD subcommand 34
NOLINE operand,

PROFILE 187

PROFILE subcommand 105
NOLINES operand (TERMINAL) 205
NOLIST operand (EXEC) 121
NOMAIL operand,

LISTBC 139

LOGON 154
NOMAP operand,

LINK 131

LOADGO 149
NOMSGID operand,

PROFILE 187

PROFILE subcommand (EDIT) 105
NONCAL operand (LINK) 132
NONE operand (LINK) 133
NONOTICES operand,

LISTBC 139

LOGON 154
NONOTIFY operand (SUBMIT) 204
NONUM operand (EDIT) 72
NOOL operand (LINK) 134
NOOPER operand, ADD subcommand 34
NOOVLY operand (LINK) 133
NOPAUSE operand,

CONTINUE subcommand 179

OUTPUT 176

PROFILE 187

PROFILE subcommand (EDIT) 105
NOPRINT operand,

LINK 131

OUTPUT 175
NOPROMPT operand,

INPUT subcommand 96

PROFILE 187

PROFILE subcommand (EDIT) 105
NOPURGE operand (DELETE) 66
NOREFR operand (LINK) 133
NORENT operand (LINK) 133
NOREUS operand (LINK) 133
NOSCAN operand (EDIT 71
NOSCTR operand (LINK) 133
NOSECONDS operand (TERMINAL) 205
NOTEST operand,

LINK 134

RUN 197

RUN subcommand 110

Index

Index

273

Index

NOTERM operand, PARM(address-list) operand, CALL
LINK 134 subcommand 220
LOADGO 148 partitioned data sets 20
NOTICES operand, password,
LISTBC 139 for a data set 189
LOGON 154 for EDIT 74
NOTIFY operand (SUBMIT) 204 for LOGON 153
NOTIMEOUT operand (TERMINAL) 206 password data set 191
NOW operand, password operand,
SEND 199 ADD subcommand 33
SEND subcommand 1790 CHANGE subcommand 37
NOWRITE operand (PROTECT) 191 passwordl operand (PROTECT) 190
NOXCAL operand (LINK) 132 password2 operand (PROTECT) 190
NOXREF operand (LINK) 132 PAUSE operand,
NUM operand, CONTINUE subcommand 179
EDIT 72 OUTPUT 176
LIST subcommand (EDIT) 102 PROFILE 187
PROFILE subcommand (EDIT) 105
object module, PL/I, testing facilities of 110,197,198
debugging of 209 | PLI command 264
load into main storage 147 PLI operand (RUN) 197
OBJECT operand (TEST) 212 | PLIC command 265
OFF operand, TABSET subcommand 116 PLILIB operand (LINK) 131
OFF subcommand (TEST) 247 positional operands 15
OL operand (LINK) 134 PRINT(data-set-name) operand, LISTDCB
old-line-number operand, RENUM subcommand 239
subcommand 107 print-inhibit, for passwords 189
old-name operand (RENAME) 193 PRINT operand,
OLD operand (ALLOCATE) 52 LINK 131
ON operand, TABSET subcommand 116 OUTPUT 175
OPER operand, ADD subcommand 34 PROC operand (LOGON) 153
operands (see individual operand name) PROC statement 257
operands, positional 15 procedure,
operation, system 155 LOGON 153
operational characteristics 205 names 33
OPERATOR command 155 resident in UADS 29,36
CANCEL subcommand 158 procedure operand, ADD subcommand 33
DISPLAY subcommand 160 PROFILE command 185
END subcommand 163 PROFILE subcommand (EDIT) 104
HELP subcommand 164 program, user's,
MODIFY subcommand 166 load module 61,147
MONITOR subcommand 168 overlay 232
SEND subcommand. 170 stop TEST 250
STOPMN subcommand 173 Program Status Word 243
operator mode 25,155 PROMPT operand,
OPT operand, MODIFY subcommand 167 INPUT subcommand 96
OPTCD operand (ATTRIB) 55 PROFILE 187
OUT operand, CANCEL subcommand 158 PROFILE subcommand (EDIT) 105
OUTPUT command, 175 prompting messages 25
CONTINUE subcommand 179 : PROTECT command 189
END subcommand 181 protection, data set 189
HELP subcommand 182 PSW 243
SAVE subcommand 184 purge, data set 66
output, batch jobs 175 PURGE operand (DELETE) 66
OUTPUT operand (ATTRIB) 55 PWREAD operand (PROTECT) 189
OVLY operand (LINK) 133 PWWRITE operand (PROTECT) 189
parameter string operand (CALL) 61 Q operand, DISPLAY subcommand 160
parameters, passing of 61 qualifiers, descriptive 20-23
paramet exrs operand, RUN subcommand 110 QUALIFY subcommand (TEST) 248

274 TSSO Command Language Reference (Release 21.7)

\
’

operand,

DISPLAY subcommand 161
INPUT subcommand 96

CFM operand (ATTRIB) 55
cord format, data set 55,74
FR operand (LINK) 133

gion size,

for users 34

how to specify 166

gister,

initialization under TEST 222
notation used with TEST 209
GSIZE operand, MODIFY subcommand 166
lative address 209

leasing,

allocated data set 123
main storage 247

NAME command 193

naming, data set 193

NT operand (LINK) 133

PLACE operand (PROTECT) 190
S5 operand (LOADGO) 148
start, test program 232

I'PD operand, ATTRIB command 55
trieval, data 102

T'URN (address) operand, CALL
abcommand 220

Js operand (LINK) 132

N command 195

¥ subcommand,

JEDIT 109

TEST 250

7E subcommand,

EDIT 112

OUTPUT 184

AN operand (EDIT) 71

AN subcommand (EDIT) 113

inning, syntax, language
-atements 75,113

RSIZE operand (TERMINAL) 206

R operand (LINK) 133

ZONDs operand (TERMINAL) 205

{D command 199

D subcommand 170

35S operand,

MONITOR subcommand 168

STOPMN subcommand 173

;sion, user

control of 13

time used 253

R operand (ALLOCATE) 52
JE(integer) operand, ADD subcommand 34
E operand (LINK) 133

" operand, MODIFY subcommand 167
3G operand,

RUN 197

RUN subcommand (EDIT) 110

JM operand, LIST subcommand (EDIT) 102

SP (integer) operand,
FREEMAIN subcommand 230
GETMAIN subcommand 231
SPACE(quantity, increment) operand
(ALLOCATE) 53
SPACE operand,
MONITOR subcommand 169
STOPMN subcommand 173
SPREC operand,

RUN 197
RUN subcomrmand (EDIT) 110
start,

execution of a test program 209
terminal session 153
STATUS command 201
STATUS operand,
LISTALC 137
LISTDS 145
MONITOR subcommand 169
STOPMN subcommand 173
STOPMN subcommand 173
storage map 242
STRING operand,
PROTECT 191
Insert/Replace/Delete function 100
structure, command 15
subcommand,
definition of 18
ADD (ACCOUNT) 32
Assignment of Values Function
(TEST) 215
AT (TEST) 217
BOTTOM (EDIT) 82
CALL (TEST) 220
CANCEL (OPERATOR) 158
CHANGE (ACCOUNT) 37
CHANGE (EDIT) 83
CONTINUE (QUTPUT) 179
COPY (TEST) 222
DELETE (ACCOUNT) 40
DELETE (EDIT) 88
DELETE (TEST) 225
DISPLAY (OPERATOR) 160
DOWN (EDIT) 90
DROP (TEST) 226
END (ACCOUNT) 44
END (EDIT) 91
END (OPERATOR) 163
END (OUTPUT) 181
END (TEST) 227
EQUATE (TEST) 228
FIND (EDIT) 92
FORMAT (EDIT) 14,261
FREEMAIN (TEST) 230
GETMAIN (TEST) 231
GO (TEST) 232
HELP (ACCOUNT) 45
HELP (EDIT) 94
HELP (OPERATOR) 164
HELP (OUTPUT) 182
HELP (TEST) 233

Index

Index

275

Index

INPUT (EDIT) 96
INSERT (EDIT) 98
Insert/Replace/Delete Function
(EDIT) 100
LIST (ACCOUNT) 47
LIST (EDIT) 102
LIST (TEST) 235
LISTDCB (TEST) 239
LISTDEB (TEST) 241
LISTIDS (ACCOUNT) 49
LISTMAP (TEST) 242
LISTPSW (TEST) 243
LISTTCB (TEST) 244
LOAD (TEST) 246
MERGE (EDIT) 14, 264
MODIFY (OPERATOR) 166
MONITOR (OPERATOR) 168
OFF (TEST) 247
PROFILE (EDIT)
QUALIFY (TEST)
RENUM (EDIT)
RUN (EDIT)
RUN (TEST)
SAVE (EDIT)
SAVE (OUTPUT) 184
SCAN (EDIT) 113
SEND (OPERATOR)
STOPMN (OPERATOR)
TABSET (EDIT) 115
TOP (EDIT) 117
UP (EDIT) 118
VERIFY (EDIT) 119
WHERE (TEST) 251
SUBMIT command 203
SUBMIT operand, MODIFY subcommand 166
symbol operand (EQUATE) 228
symbol-list operand, DROP subcommand 226
symbol table 228, 253
symbolic address 209
symbolic values, command procedures
symbols, equating addresses to
(TEST) 228,231
syntax, command language 15
syntax checking 75, 131
(see also SCAN operand (EDIT))
SYNTAX operand, HELP subcommand (see
subcommand, HELP)
SYSNAMES operand (LISTALC)
SYSOUT (class operand (FREE)
SYSOUT data set,
deleting 123,175
type 52
SYSOUT operand (ALLOCATE) 52
SYSRC operand, WHEN statement
system,
control of 155
status of 201
SYS1.BRODCAST (see broadcast data set)

104
248
107
109
250
112

170
172

257

138
123

260

276

T operand,
DISPLAY subcommand 161
MONITOR subcommand 168
tab settings 78,115
TABSET subcommand 115
tabulation characters 78
Task Control Block (TCB)
TERMINAL command 205
terminal session,
beginning 153
ending 151
TERM operand,
LINK 134
LOADGO 148
terminal characteristics
TEST command 209
Assignment of Values function
AT subcommand 217
CALL subcommand 220
COPY subcommand 222
DELETE subcommand 225
DROP subcommand 226
END subcommand 227
EQUATE subcommand 228
FREEMAIN subcommand 230
GETMAIN subcommand 231
GO subcommand 232
HELP subcommand 233
LIST subcommand 235
LISTDCB subcommand 239
LISTDEB subcommand 241
LISTMAP subcommand 242
LISTPSW subcommand 243
LISTTCB subcommand 244
LOAD subcommand 246
OFF subcommand 247
QUALIFY subcommand 248
RUN subcommand 250
WHERE subcommand 251
test mode 25,209
TEST operand,
LINK 132
RUN 197
RUN subcommand (EDIT)
TESTCOB command 265
TESTFORT command 265
TEXT operand,
SEND subcommand 170
EDIT 70
TIME command 253
TIMEOUT operand (TERMINAL)
TOP subcommand (EDIT) 207

244

205

110

206

215

U=user identification operand, CANCEL

subcommand 159
UADS 29,41

unit address operand, CANCEL subcommand

159
UNIT (name) operand (ACCOUNT),
ADD subcommand 34
CHANGE subcommand 38

TSO Command Language Reference (Release 21.7)

\

i

it type 37

subcommand (EDIT) 118
er attribute data set 29,41
er identification 20, 32
er identify operand, ADD subcommand 32
er profile 104,185
ER(user identification list) operand,
END subcommand 170
ER=NMBR operand, DISPLAY subcommand 161
ING. operand (ALLOCATE) 53

lue-list operand (EXEC) 121

RIFY subcommand (EDIT) 119
operand, CALL subcommand 220

lume allocation 53

LUME(serial) operand (ALLOCATE) 53

LUMES operand (LISTCAT) 141

EN statement 260
ERE subcommand (TEST) 251

AL operand (LINK) 132
EF operand (LINK) 132

S operand, MODIFY subcommand 167

Index

Index 277

GC28-6732-4

1BV

International Business Machines Corporation

Data Processing Division '

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

lan AAAM aanaiaiau aBnnfilint NUDUILAGA ACT e noc /walsAc

~amarnes

samem 220

~——

—_—_———-—————— e —_— . —— — — — — — — — N BuolyPIod O — — — —— — ———— —— e — — — —

IBM System/360 Operating System:
TSO Command Language Reference

GC28-6732-4

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?
Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an

IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

GC28-6732-4

Your comments, please . . .

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

— —— — — aur Buoly pIod 10 Y — ——- — —

First Class
Permit 81
Poughkeepsie
New York

Business Reply Mail
No postage stamp necessary if mailed in the U.S,A.

Postage will be paid by:

International Business Machines Corporation
Department D58, Building 706-2

PO Box 390

Poughkeepsie, New York 12602

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only) '

IBM World Trade Corporation
821 United Nations Plaza,New York, New York 10017
(International)

|
|
|
I
|
l
|
|
BN :
I
|
|
l
l
I
|

¢ ARuARiime mumiiam At A Aae Alaisde

P N

