 GC33-4021-4
File No. $370-21 (OS/VS, VM/370)

0OS/VS-VM/370 Assembler
Systems | Programmer’s Guide

Fifth Edition (September 1982)

This is a reprint of 633~4021-3 incorporating changes released
in the following technical newsletters: GN33-8205 (dated 15
February, 1976), GN33-8236 (dated 31 October, 1978), and
GN20-9373 (dated 28 Decé&mber, 1981).

This edition applies to Release 5 of IBM 05/VS1, Release 3 of IBM
0S/VS2, and Release 3 of IBM VM/370, and to any subsequent
releases of these systems until otherwise indicated in new
editions or technical newsletters.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below; requests
for IBM publications should be made to vour IBM representative or
to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, P.0. Box 50020,
Prograwmming Publishing, San Jose, California, U.S.A. 95150. IBM
may use.or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to vou. -

© Copyright International Business Machines Corporation 1972, 1973, 1974, 1975

; |
- -vj
7

/\‘
w s

Read This First

This Manual and Who It 1s For

This manual is for programmers who code in the assembler language. It
is intended to help you assemble, link edit, and execute your program;
to choose and specify the assembler options you need; and to interpret
the listing and the diagnostic messages issued by the assembler.

This manual also serves as a guide to information contained in other
publications which is of importance to you as an assembler-language
programmer. To use this manual you should have a basic understanding of
the operating system as described in Introduction to 0S, GC28-6534 and
VM/370 Introduction, GC20-1800. You should also have a good
understanding of the assembler language as described in

0S/VS - DOS/VSE - VM/370 Assembler Language, GC33-4010.

OTHER MANUALS YOU WILL NEED

In addition to 0S/VS - DOS/VSE - VM/370 Assembler Language, you should
have the following publications available when using this manual:

IBM System/370 Principles of Operation, GA22-7000

IBM 4300 Processors Principles of Operation for ECPS:VSE
Mode, GA22-7070

VS1 JCL Reference, GC24-5099

VS2 JCL Reference, GC28-0692

VS JCL Reference, GC28-0618 '

0S/VS Linkage Editor and Loader, GC26-3813

0S/VS1 Storage Estimates, GC24-5094

How This Manual Is Organized

This manual has six main sections and seven appendixes:

Introduction describes the purpose of the assembler, its relationship to
the operating system, and its input and output. It also describes how
the operating system processes your program and reviews the concepts of
job, job step, job control language, and cataloged procedures.

Job Control Statements for Assembler Jobs shows you how to invoke the
assembler for simple jobs (using cataloged procedures); describes the
assembler options and how to specify them; lists the job control

statements that make up the four assembler cataloged procedures; and

gives examples of how to use the cataloged procedures for more complex
jobs.

The Assembler Listing tells you how to interpret the printed listing
produced by the assembler.

Programming Considerations serves as a guide to information contained in
other programming manuals which you will find useful as an
assembler-language programmer. Among the topics discussed are:

Designing your program

Specifying the entry point

Linking with modules written in other languages
Linking with processing programs

o o 0 0

Adding Macro Definitions to a Library tells you how to catalog macro
definitions in the system macro library or in a private library.

Assembler Language Programming under CMS (Conversional Monitor System)
1s for programmers using the CMS operating system. Where 0S information
differs from CMS information (for example, the SYSTERM listing), a
separate version of the information is located in the section for CMS
users. Two manuals will provide useful when you are using CMS, VM/370:
Command Language Guide for General Users, GC20-1804, and VM/370: Edit
Guide, GC20-1805. .

Six of the following seven appendixes, apply to both 0S/VS and VM/370.
Appendix F applies only to 0S/VS. The SYSTERM listing for VM/370 is
discussed in 'Assembler Language Programming under the CMS'.

Appendix A gives definitions of terms used in this manual.

Appendix B gives the listing of the assembler sample program.
Appendix C shows the detailed format of the object deck.

Appendix D tells you how to invoke the assembler dynamically from a
problem program.

Appendix E describes the data sets used by the assembler and the
assembler's storage requirements.

Appendix F describes the SYSTERM listing for OS,/VS.

Appendix G explains the diagnostic ‘messages issued by the assembler.

INTRODUCTION . . . « e o o o

Purpose of the Assembler e o o o o o e o @ o a « @
Relationship of the Assembler to the Operating System
INPUEt ¢ ¢ o o o o o o o o o o o o o o o o o o .
OULtPUL & & ¢ 2 ¢ o o ¢ o o o o o o o o o = o o
Compatibility « ¢ o o ¢ o ¢ ¢ o o o o « o = «

How the Operating System Handles Your Program
Assembler . « « ¢ ¢ ¢ o o o o o o @
Linkage Editor . . « <« ¢ ¢ o « o« .
Execution of Your Program . « « « o« o« « o
Loader . « ¢ o o« o o o o =« « o

Job Control Language and Cataloged Procedures
Jobs and Job Steps .+ ¢ ¢ ¢ ¢ ¢ 4 o 4 o o .
Job Control Language « e« « o « o o o o o o

e e o

s 8 0 0 o 8 o 2 0 s 0 N e
L I Y Y I Y A B

JOB CONTROL STATEMENTS FOR ASSEMBLER JOBS
Simple Assembly and Execution . . .
Assembly .« « ¢ o ¢ ¢ o o o o o o
Assembly and Execution
Assembler Options c o o o
What Assembler Options Are « o o
How to Specify Assembler Options
The Assembler Cataloged Procedures .
Assembly (ASMFC) e o o o o o o o
Assembly and Link Editing (ASMFCL) .
Assembly, Link Editing, and Execution
Assembly and Loader-Execution (ASMFCG)
EXampleS =« ¢ « o« o ¢ o o o o o o o o

¢ & o 9o & s o @
. . [. . . [
. . e . . . [[]

]
¢ 2 [Ne o o 0 & o 0 s 0 0
¢ & o 0 s 0 0 0 s e 0 0

& 8 ¢ 8 o 0 & & 8 s s 8

[] . %l [L] [] L]
« go ¢« & o & 0 ¢ o s 0
&+ Y™ e s 0 s s s 0 s s

THE ASSEMBLER LISTING . . . e o o o o @
External Symbol Dictionary (ESD) c o e o o
The Source and Machine Language Statements

Source Statement Fields . .
Relocation Dictionary (RLD) .
Symbol Cross Reference

* o e o o

Literal Cross Reference . .
Diagnostics and Statistics .

¢ o & o o & s &
. . [. ¢ @ *
[* o @ . . L] .
s & o o & o s

¢ o o 0
[. L
¢ o o o
¢ » o
. ¢« &

PROGRAMMING CONSIDERATIONS &« 2 2 « o o o o o « s = o o
Designing Your Program . . « « « v o o o o o o o « o «
Specifying Your Entry Point into Your Program .

Linking with Modules Produced by Other Language Translators

Linking with IBM-Supplied Processing Programs
ADDING MACRO DEFINITIONS TO A LIBRARY . . ¢ « o « o =

ASSEMBLER LANGUAGE PROGRAMMING UNDER CMS . . . « . . &
Introduction e o o o o e o .
Creating an Assembler Language Program: The CMS Edltor
Overriding CMS File Defaults
Assembling Your Program: The Assemble Command .
ASSEMBLE Command FOrmat . « « « o o« « o « o
Using SYSPARM Under CMS . ¢ ¢ & ¢ o ¢ o o o o« &
CMS Management of Your Assembly
Loading and Executing Your Assembler Program . .
CMS Register Usage During Execution of Your Program

-
-
-
-
-
-

.

. . L] ¢ o 0 L[] [] e o * B .

L] . (] [¢ & o (] LI 1 L] .

¢ 0 2 8 s o s 3 0 s

Passing Parameters to Your Assembler Language Program

Assembler Macros Supported by CMS . . . ¢ ¢ ¢ o o « =«
Creating a Module of Your Program . « « « « o « « « =«

¢ o & & o @ s

. . e o o @ . [] ¢ o & e 0 L]

. [s o ¢ & o [. L] . [[]

-

@ o 6 6 o o s & & o 0 & &

[[] [} [LI 1 []

. . L e« o O [[] . . . []

e o o o s s o o

¢ ¢ o & ¢ o o * o s s b e

L L . ¢ ° .

e & & 6 ¢ ¢ & 8 s & s o

s o L (] [L] . e« o o o o o

. . s [} . .] L] *» 0 .

¢ 0 . . .

Contents

Programming

Assembler Data Sets and Storage Requirements

Aids .

.

The CMS SYSTERM Listing .
Diagnostic Messages Written by CMS . . .
Command Error MesSages . . « « «

Assemble
APPENDIX A:
APPENDIX B:
APPENDIX C:

~ESD Card

TXT Card

RLD Card

END Card

SYM Card
APPENDIX D:

APPENDIX E:

Assembler Data Sets

GLOSSARY

. * e e e e e

- e e o - e e

ASSEMBLER SAMPLE PROGRAM

OBJECT
Format
Format
Format
Format
Format

DECK OUTPUT

-

.

.

.

.

DYNAMIC INVOCATION

OF THE ASSEMBLER

ASSEMBLER DATA SETS AND STORAGE REQUIREMENTS

.

. e e e o o o

Assembler Virtual Storage Requirements .

APPENDIX F:

F‘APPENDIX G: ASSEMBLER DIAGNOSTIC ERROR MESSAGES

THE SYSTERM LISTING FOR 0S/VS .

How to Use this Section .

Recurring Errors

INDEX . . .

o

.

.

- e & * o o

. e e o e o o

-

3

60
60
61
63
63
67
73
81
81
82
82
83
83
86
88
89
91
94
96

159

AN
/ .

"/

»

Figures

Figure 1. How the Operating System Handles Your Program . . « . « . 11
Figure 2. Jobs and JOb StEPS <« o o o o o o o o « o s o o o o o =« « 12
Figure 3. The Cataloged Procedure Concept . « « « « « ¢ « « « « « « 13
Figure 4. The Assembler Options (Part 1 of 5) . . . « ¢« ¢« « ¢« &« « « 19
Figure 5. Cataloged Procedure for Assembly (ASMFC) . « « « « « « « 25
Figure 6. Cataloged Procedure for Assembly and Link

Editing (ASMFCL) e o o o o o o o o e a e e o e o o s o o e o o o « 27
Figure 7. Cataloged Procedure for Assembly, Link Editing, and

Execution (ASMFCLG) « « o o o o o o o o o o o a o o o o a o o o o« « 29
Fiqure 8. Cataloged Procedure for Assembly and Loader-Execution

(ABSMFCG) « o o « o o o o o o o a o o o o o o o s a s s o o o s o o 31
Figure 9. Assembler Listing . « « « o« o o o« o o o o« o « o« « « o« « &« 35
Figure 10. External Symbol Dictionary .« « « « « o o o o o o o o « o 37
Figure 11. Source and Machine Language Statements 39
Figure 12. Relocation Dictionary . « « ¢ o ¢ o ¢ o o o ¢ o o« o « « « U0
Figure 13. Symbol Cross ReferenCe . . « o « o = s o s o = o « o « o U2
Figure 14. Literal CroSs REferenCe . « « « « « o o« o« =« o o « o « » o U3
Figure 15. Diagnostics and Statistics . ¢ ¢« ¢ ¢ ¢ ¢ ¢ o ¢ ¢« « « « « U5
Figure 16. Minimum Requirements for a Simple Program . . . « « « « .« 47
Figure 17. Files Created During ASSembDlY « « « « « o « « o o« « « « « 58
Figure 18. SYSTERM Listing « « ¢« ¢ ¢ ¢ o « o« « & e o e o o o o o o 62
Figure 19. Assembler Sample Program (Part 1 of 11) e o o o o o o o o 13
Figure 20. SYM Card FOrmat « « « o« « o o o o« =« o o o = « o« « o« o« « « 85
Figure 21. Assembler Data Set Characteristics e « o « o« « 90
Figqure 22. SYSPRINT Listing of the Source Statements Used to Show
SYSTERM Output e o o . 92
Figure 23. SYSTERM Llstlng Produced for the Source Statements

Shown in Figure 22 . . . ¢ & o ¢ o o o o« o o o o a s o« o s o o« o« &« 93

Introduction

This section describes the purpose of the VS Assembler, its relationship
to the operating system, and its input and output. It also tells you
how the operating system processes your assembler-language program and
reviews the concepts of job, job step, job control.language, and
cataloged procedure.

Purpose of the Assembler

The purpose of the VS Assembler is to translate programs written in the
assembler language into object modules, that is, code suitable as input
to the linkage editor or loader.

Relationship of the Assembler to the Operating System

The VS Assembler is supplied with the 0S/VS control program package. In
the same way as the linkage editor or locader, it is executed under
control of the 0S control program. For a complete description of the
relationship between a processing program and the various components of
the control program, refer to Introduction to OS.

Input

As input the assembler accepts a program written in the Assembler
language as defined in_Assembler Lanquage. This program is referred to
as a source module. Some statements in the source module {macro or COPY
instructions) may cause additional input to be obtained from a macro
library.

Output

The output from the assembler consists of an object module and program
listing. The object module can either be punched, or included in a data
set residing on a direct-access device or a magnetic tape. From that
data set the object module can be read into the computer and processed
by the linkage editor or loader. The format of the object module is
described in Appendix C.

The program listing lists all the statements in the module, both in
source and machine language format, and gives other important
information about the assembly (such as error messages). The listing is
described in detail in the section "The Assembler Listing®.

Introduction 9

Compatibility

The language supported by the VS Assembler is compatible with the
language supported by the 0S Assembler F. All programs which assemble
error-free under Assembler F will also assemble error-free under the VS
Assembler. However, the resulting object code may in odd cases be
different because of the extended features of the language supported by
the VS Assembler (the extended attribute reference and SETC facilities).

How the Operating System Handles Your Program

Once you have coded and punched your program, it must be processed by
the assembler and the linkage editor or loader before it can be
executed. (See Figure 1.)

ASSEMELER

The assembler translates your source module into an object module, the
machine language equivalent of the source module. The object module,
however, is not ready for execution; it must first be processed by the
linkage editor or loader. '

LINKAGE EDITOR

The linkage editor prepares your progralh for execution. The output of
the linkage editor is called a load module and can be executed by the
computer. The linkage editor can combine your program with other object
modules and load modules to produce a single load module. The linkage
editor stores your program in a load module library, a collection of
data sets on a direct-access device. These load modules can be read

- into the computer and and given control. The load module library may be
either permanent, so that you can execute your program in later jobs, or
temporary, so that the program is deleted at the end of your job.

EXECUTION OF YOUR PROGRAM

Once you have included your program in a permanent load module library,
you can execute it any number of times without assembly and linkage
editing. However, if you need to change your program, you must assemble
and linkage edit it again. Therefore, you should not store your program
in a permanent load module library until it has been tested properly.

To save time during test runs, you can use a program that combines the
basic functions of the linkage editor with the execution of your
program. That program is the loader. '

10

C

LOADER

The loader performs most of the functions of the linkage editor; in
addition, it loads your program into the computer and passes control to
your program. The loader cannot, however, include your program in a
load module library. For a full description of the linkage editor and

loader, refer to Linkdge Editor and Loader.

The source program is read in

§ifor processing by the assembler. COMPUTER

ASSEMBLER

I The output of the assemble
g3l the object module, is placed
on auxiliary stora

OBJECT
MODULE

s

Lhaae
The object module is read

1editor or the loader for pro-
cessing.

LOADER

After processing your program,

the loader gives control to it. LINKAGE

EDITOR

giThe linkage editor output, the
load module, is placed on a
load modute library.

LOAD
MODULE

Your program, in load module
format, is read into the com-
puter for execution.

e e

YOUR
PROGRAM

Figure 1. How the Operating System Handles Your Program

Introduction 11

Job Control Language and Cataloged Procedures

JOBS AND JOB STEPS

Each time you request a service from the operating ' system, you are
A job may consist of several steps, each of
which usually involves the execution of one processing program under the
For example, if you submit a job to
the computer calling for assembly and linkage editing of a program, that
The concepts of jobs and job steps are

asking it to perform a job.
control of the VS control program.

job will be a two-step job.

illustrated in Figure 2.

Job
Assembly

d
T%k <

Editing

Figure 2.

12

Job Step
Assembly

Job Step
Link
Editing

\

SOURCE
MODULE

ASSEMBLER

OBJECT
MODULE

LINKAGE
EDITOR

Jobs and Job Steps

AN

'

A

L

JOB CONTROL LANGUAGE

|

‘:j” The job control language is your way of communicating to the operating
system control program what services you want performed and what
auxiliary devices you want used. Job control language (JCL) statements
are usually punched into cards and supplied in the job stream together
with your source module and other data needed by the job.

For a detailed discussion of job control language statements, see
JCL Reference.

To save time and trouble, you can use predefined sets of JCL
statements that reside in a library. Such a set of statements, called a
cataloged procedure, can be included in your job by means of a single
JCL statement naming the set. Figure 3 illustrates the concept of a
cataloged procedure.

There are several cataloged procedures available for assembler jobs.
They are described in the section "Job Control Statements for Assembler

Jobs".

Procedure

Library
Input
Stream >

— —~“*1PRCD
- - -
-
—
el
-
-
-— - -
—

Resulting Job Stream

XX Job control

XX statements

XX from cataloged
procedure PRCD

Figure 3. The Cataloged‘Procedure Concept
C

Introduction 13

Job Control Statements for Assembler Jobs

The purpose of this section is to:

. Show you how to invoke the assembler for simple jobs (using
cataloged procedures) .

o Describe the assembler options and how to request them.

] List the job control statements that make up the four assembler
cataloged procedures. ,

. Give examples of how to use the cataloged procedures for more
complex jobs.

Simple Assembly and Execution

This section gives you the minimum JCL statements needed for two simple
assembler jobs:

. Assembly of your program to produce a listing and an object deck.
. Assembly and execution of your program.

Both jobs use cataloged procedures to call the assembler.

ASSEMBLY

To assemble your program, use the following job control language (JCL)
statements:

Identifies the beginning of your job to the operating system.

3 ‘jobname’ is the name you assign to the job.

& ‘accountno’ specifies the account to which your job is charged,

//jobname JOB accountno,progrname,MSGLEVEL=lgj | ™ 'Programe’ the name of the programmer responsible for
/ EXEC ASMF i1 the job, 'MSGLEVEL=1" specifies that the job control

//SYSIN DD * & statements connected with this job are to be listed.

(your source program)

33

7 S A R G
@ | Calls the cataloged procedure ASMFC. As the re:
% | are included in the job from the procedure library. ASMFC is described under "“The

% Asse rocedures’’ ’

ot

T

Specifies that the assembier |

anguage source program foli

ows immediately after this statement.
R SR

14

These statements cause the assembler to assemble your program and to
produce a listing (described in the section "The Assembler Listing®) and

an object module punched on cards (described in Appendix C).

If you do not want any object module carxrds to be punched during the
job, use the following statements:

//jobname JOB accountno,progrname,MSGLEVEL=1
EXEC ASMFC,PARM.ASM=NODECK

//ASM.SYSIN DD *

The second parameter (PARM) specifies the assembler option NODECK, |
telling the assembler not to praduce any punched object module. For |
a full discussion of the assembler options, see "“Assembler Options’

(your source program)

ASSEMELY AND EXECUTION

To run a job that both assembles and executes your program, code the
following statements:

// jobname JOB accountno, progrname ,MSGLEVEL=
EXEC ASMFCG......
//ASM,SYSIN DD #_

, containing job rol statements for
exegution of the assembler (In procedure step ASM) and the loader in

(your source program)

Siﬁes w\a e input for pfoeeduie M (assembly) follows
immediately after this statéement.

//GO.SYSIN DD | Specifies that the mput for step GO (exocunon of you prognm unde :

(data, if any, for your program)

The first step of the ASMFCG procedure executes the assembler. The
assembler produces a listing, a punched object module on cards, and an
object module on a direct access device. The second step causes the
‘loader to be executed. The loader transforms the object module, which
was written on a direct access device by the assembler, into a load
module. In addition, the loader causes the load module (that is, your

program) to be executed.

Job Control Statements for Assembler Jobs 15

if you do not want the assembler to punch an object deck in thlS
example, supply the follow1ng statements instead: ‘

//jobname JOB accountno, progrname ,MSGLEVEL=1
/7 EXEC ASMFCG,PARM,ASM=(0BJ,NODECK)
//ASM.SYSIN DD *

The PARM parameter specifies the assembler options OBJ (telling bthe fff
assembler‘to produce an object module on the partitioned data set uscdz
as input by the loader) and NODECK for step ASM (assembly) of the |

o
procedure,

(your source program)

|

//GO.SYSIN DD *

(data for your program)

Assembler Options

WHAT ASSEMBLER OPTIONS ARE

Assembler options are functions of the assembler that you, as an
assembler language programmer, can select. For example, you can use
assembler options to specify whether or not you want the assembler to
produce an object deck; whether or not you want it to print certain
items in the listing; and whether or not you want it to check your
program for reenterability.

The assembler options can be divided into four categories:

. Listing‘control options, which determine the information to be
included in the program listing.

. Qutput control options, which specify the device on which the
assembler object module is to be written and the contents of the
module. :

. SYSTERM options, which determine the information to be included in
the listing produced on the SYSTERM data set. This data set is
primarily for use by the Time Sharing Option (TSO) of VsS2.

] Other assembler options, which specify miscellaneous functions and
values for the assembler.

Figure 4 lists all the assembler options. Thebunderlined values are the

. standard or default values. These values are used by the assembler for
options that you do not specify.

As you can see from the figure, the options fall into two format<types:

U Simple pairs of keywords: a positive form (for example, DECK) that
requests a function, and an alternative negative form (for example,
NODECK) that rejects the function.

. Keywords that permit you to assign a value to a function (for,
example, LINECOUNT (40)) .

16

N
Oy

HOW TO SPECIFY ASSEMBLER OPTIONS

You use the PARM field of the EXEC JCL statement calling the assembler
to specify the assembler options. Code PARM= followed by a list of
options that you have selected. For example,

//STEPA EXEC PGM=IFOX00,PARM='NODECK,FLAG (5) ,NORLD"'

IFOX00 is the name of the assembler; three options are specified for the
execution of it. Default values are used for the other options.

When you use cataloged procedures, you will notice that most of then
contain an option specification in the EXEC statement for the assembly.
To override such a specification, include a PARM field with your options
in the EXEC statement calling the procedure. If the cataloged procedure
contains more than one step, you must add the procedure step name as a
qualifier to the PARM operand. For example,

//STEP1 EXEC ASMFCG,PARM.ASM="'0BJ,NODECK'

The .ASM is necessary to indicate the assembly step. As you can see in
the section "The Assembler Cataloged Procedures", the stepname for
assembly is always ASM. You must also remember that when you override
the PARM field in a procedure, the entire PARM field is overridden. The
PARM field specification in the cataloged procedure ASMFCG is PARM=OBJ,
and the OBJ option must be repeated when you override the PARM field.
Otherwise the assembler default value NOOBJ will be used. (For a more
detailed description of overriding operands on EXEC statements in
cataloged procedures, refer to JCIL_ Reference.

The PARM field is coded according to the following rules:

. Single quotes or parentheses must surround the entire PARM value if
you specify two or more options.

. The options must be separated by commas. You may specify as many
options as you wish, and in any order. However, the length of the
option list must not exceed 100 characters, including separating
commas .

° The BUFSIZE, FLAG, LINECOUNT, WORKSIZE, or SYSPARM options must
appear within single quotes.

. If you need to continue the PARM field onto another card, the entire
PARM field must be enclosed in parentheses. However, any part of
the PARM field enclosed in quotes must not be continued on another
card.

Job Control Statements for Assembler Jobs 17

The following examples illustrate these rules:

+ PARM . ASM=DECK

,PARM.ASM="'LINECOUNT (40) '

+PARM.ASM= (DECK, NOOBJECT)
or
,PARM,ASM="'DECK, NOOBJECT"

+PARM.ASM="DECK, NOLIST, SYSPARM (PARAM) '
) or
+PARM.ASM= (DECK, NOLIST, 'SYSPARM (PARAM) ')
‘ oxr
+PARM,ASM= (DECK, 'NOLIST, SYSPARM (PARAM) ')

+PARM.ASM= (DECK, NOLIST, 'LINECOUNT (35) ',
NOALIGN,MCALL, 'BUFFSIZE (MIN) ', NORLD)

18

Only one option specified.

LINECOUNT, BUFSIZE, FLAG,
WORKSIZE, and SYSPARM must
be surrounded by quotes.

More than one option
specified. None of them
requires quotes. '

More than one option
specified. SYSPARM must

"appear within quotes.

The whole field must be
enclosed by parentheses,
because it is continued
onto another card. The
LINECOUNT and BUFSIZE
options must be within
quotes, and the portions
of the field that are en-
closed within quotes
cannot be continued onto
another card.

r

Listing Control Options

L
r Ll
{ALOGIC |Conditional assembly statements processed in
| |open code are listed.
| |
| NOALOGIC |The ALOGIC option is suppressed.
l |
|ESD |The external symbol dictionary (ESD) is listed. (Refer
| | to *The Assembler Listing®' for further information on
| | the ESD.)
| |
|NOESD |No ESD listing is printed.
| |
| (nnn) | _
| FLAG |Diagnostic messages and MNOTE messages below
] (0) | severity code nnn will not appear in the listing.
{ |Diagnostic messages can have severity codes of 4,
| 18, 12, 16, or 20 (20 is the most severe), and
| |MNOTE severity codes can be between 0 and 255.
| |For example, FLAG (8) suppresses diagnostic
| |messages with a severity code of 4 and MNOTE
| |messages with severity codes of 0 through 7.
| | 4
|YFLAG |Diagnostic message IF0205 and its severity code
| {will appear in the listing. ,
|
|NOYFLAG | The YFLAG option is suppressed.
(nnn) }{ |
|LINECOUNT |nnn specifies the number of lines to be printed
| (55) || between headings in the listing.
LIST |An assembler listing is produced.
] |
|NOLIST |No assembler listing is produced. This option
| |overrides ESD, RLD, and XREF.
| : : ‘
MCALL]Inner macro instructions encountered during macro
| |generation are listed following their respective
| |outer macro instructions. The assembler assigns
| | statement numbers to these instructions. The MCALL
foption is implied by the MLOGIC option; NOMCALL
|has no effect if MLOGIC is specified.
I |
|NOMCALL | The MCALL option is suppressed.
l A -
MLOGIC |All statements of a macro definition processed during
| |macro generation are listed after the macro instruc-
{ |tion. The assembler assigns statement numbers to them.
|
|NOMLOGIC | The MLOGIC option is suppressed.
I ————d -

Figure 4. The Assembler Options.
(Part 1 of 5)

i s s iy it s e e e S S S G S G—— S — — S G— — —_ — G— —— — — T o S—— — T = G M — — — — — — — T— — — —— ttt, S et Bonten S o)

Job Control Statements for Assembler Jobs 19

Listing Control

Options (continued)

NORLD

LIBMAC

NOLIBMAC
XREF (FULL)

XREF (SHORT)

NOXREF

The assembler produces the relocation dictionary as
part of the listing. (Refer to "The Assembler Listing"
for further information on the relocation dictionary.)

The RLD is not printed.

The macro definitions read from the macro libraries
and any assembler statements following the logical
END statement are listed after the logical END
statement. The logical END statement is the first
END statement processed during macro generation.

It may appear in a macro or in open code; it may
even be created by substitution. The assembler
assigns statement numbers to the statements that
follow the logical END statement.

The LIBMAC option is suppressed.

The assembler listing will contain a cross reference table
of all symbols used in the assembly. This includes symbols
that are defined but never referenced. The assembler
listing will also contain a cross reference table of
literals used in the assembly.

The assembler listing will contain a cross reference
table of all symbols that are referenced in the assembly.
Any symbols defined but not referenced are not included
in the table. The assembler listing will also contain

a cross reference table of literals used in the assembly.

No cross reference tables are printed.

Figure 4. The Assembler Options
‘ (Part 2 of 5) :

20

Output Control Options

DECK The object module is written on the device specified
in the SYSPUNCH DD statement. If this option is
specified together with the OBJECT option, the object
module will be written both on SYSPUNCH and on SYSGO.

NODECK The DECK option is suppressed.

OBJECT The‘object module is written on the device specified

or OBRJ ‘in the SYSGO DD statement. If this option is
specified together with the DECK option, the object
module will be written both on SYSGO and on SYSPUNCH.

NOOBJECT The OBJECT option is suppressed.

or NOOBJ

TEST The special source symbol table (SYM cards) is
included in the object module. (See Appendix C
for details.)

NOTEST No SYM cards are produced.

Figure 4. The Assembler Options

(Part 3 of 5)

SYSTERM Options

NUMBER orxr
NUM

NONUMBER or
NONUM

STMT

NOSTMT

TERMINAL or
TERM

NOTERMINAL or
NOTERM

The line number field (columns 73-80 of the input
cards) is written in the SYSTERM listing for state-
ments for which diagnostic information is given. This
option is valid only if TERMINAL is specified.

The NUMBER option is suppressed.

The statement number assigned by the assembler is
written in the SYSTERM listing for statements for which
diagnostic information is given. This option is valid
only if TERMINAL is also specified.

The STMT option is suppressed.

The assembler writes diagnostic 1nformatlon on the
SYSTERM data set. The diagnostic information, described
in detail in Appendix F, consists of the diagnosed state—
ment followed by the error message issued.

The TERMINAL option is suppressed.

Figure 4.
. (Part

' The Assembler Options

4 of 5)

Job Control Statements for Assembler Jobs 21

—
{Other Assembler Options o ‘ o oL o

ALIGN

BUFSIZE (STD)

BUFSIZE (MAX)

NORENT

(string)

o

8SYSP

|The assembler uses the minimum buffer® sizé (790 bytes) for each

(nnnnnk) ||

'WORKSIZE option has no effect; unless the region or partition

T

| ‘ -

|All data is aligned on the proper boundary in the object module;
| for example, an F-type constant is aligned on a fullword
|bouridary. In addition, the assembler checks storage addresses
|used in machine instructions for alignment wviolations.

|The assembler does not align data areas other.than those

|specified in CCW instructions. The assembler. does not skip bytes

]to align constants on proper boundaries. Allgnment violations
|in machine instructions are not diagnosed.

|of the utility data sets (SYSUT1, SYSUT2, and SYSUT3) . Storage
|normally used for buffers is allocated to work space. Because
|more work space is available, more complex programs can be
|assembled in a given region, but the speed of the assembly is
|substantially reduced.

|The buffer size that gives optimum performance is chosen. The
|buffer size depends on the size of the region or partition.

|Of the assembler worklng storage in excess of minimum
|requirements, 37% is allocated to the utility data set buffers,
|]and the rest to macro generation dictionaries.

I o .

| The assembler uses up to 15 save areas for input records and

| saves them according to their frequericy of use, to optimize

| the macro generation phase. This option is useful when large
|and/or many macros are used in the assembly. This option has
|no effect unless a big enough reglon or partltlon is available.
|The number of allocated save areas is printed in the statistics
|page of the assembler listing.

|Refer to Appendix E for a more complete descrlptlon of the .
|effects of BUFSIZE. .

’Thls option allows the user to delimit the use of region space.
The value specified does not include the space for modules and
system areas. Allowed range is 32K to 10240K bytes. The

specified for the assembler step in JCL is bigger.

|The assembler checks your program for a possible violation of
program reentrability. Code that makes your program
non-reentrant is identified by an error message, but it cannot
be an exhaustive check, as the assembler cannot check the logic
of the code. Therefore, it is possible to have
=non-reentrant code not flagged.

|The RENT option is suppressed.v'
|

|'string' is the value assigned to the system variable symbol
| esYSPARM (explained in Assembler Language). Because of JCL
restrictions, the length of the SYSPARM value is limited, as
explained in the Note following this figure. Two quotes are -
needed to represent a single quote, and two ampersands to
represent a single ampersand For example,

IPARM—'OBJECT,SYSPARM((GEAM,"BO).FY

!
|assigns the following value to. §SYSPARM:-:

|
| (6AM,*BO) .FY
|

|Any parentheses inside the string must be paired. If you call
|the assembler from a problem program (@ynamic 1nvocatlon), ’
ISYSPARM can be up to 255 characters long. .

e e e e s e D G o T s o Tl S e S GG ke e s el S Bt AR e i} e S A e S S s S S S D ST S YD S Sl S . G S . A S T —— — A S oy e . et S . e o S .

Figure 4. The Assembler Options
(Part 5 of 95)

/W‘/ N
&

TN

L g

,/< \‘
\ng

Note: The restrictions imposed upon the PARM field limit the maximum
length of the SYSPARM value to 56 characters unless you use symbolic
procedure parameters to substitute the value or the value contains
commas that can be used as breaking points between cards. Consider the
following example:

// EXEC ASMFC,PARM.ASM= (OBJECT,NODECK,
// "SYSPARM (ABCD.vescecceccecsceanccsccansscsccsascnnccnncsca) ')

\. /
— < ™ \/ ©
- ~ e
o o 56 bytes
O O ~ ~
[o) (e}
0 6]

Since SYSPARM uses parentheses, it must be surrounded by quotes. Thus,
it cannot be continued onto a continuation card. The leftmost column
that can be used is column 4 on a continue card. A gquote and the
keyword must appear on that line as well as the closing quotes. 1In
addition, either a right parenthesis, indicating the end of the PARM
field, or a comma, indicating that the PARM field is continued on the
next card, must be coded before or in the last column of the statement
field (column 71).

The Assembler Cataloged Procedures

This section describes the four assembler cataloged procedures and tells
you how to use them. They are:

. ASMFC (assembly)

e ASMFCL (assembly and linkage editing)

° ASMFCG (assémbly and loader-execution)

e ASMFCLG (assembly, linkage editing, and execution)

The procedure you choose on each occasion will depend on the type of job
you want to run. First, you may want to run an assembly to correct your
coding and keypunching errors. For this, you would use the ASMFC
procedure with the option NODECK specified. - In the next run you may
want to assemble and execute your program, in which case you can use
ASMFCG (or possibly ASMFCIG, if you use linkage editor features not
supported by the loader). When you have debugged your program, you may
want to include it in a load module library using ASMFCL.

The examples given in this section assume that the cataloged
procedures you are using are identical to the cataloged procedures
delivered by IBM. Therefore, you should first make sure that your
installation has not modified the procedures after they were delivered.

Job Control Statements for Assembler Jobs 23

ASSEMBLY (ASMFCQ)

The ASMFC procedure contains only one job step: assembly. You
use the name ASFMC to call this procedure. The result of execution
is an object module, in punched card form, and an assembler listing.

To call the procedure use the following statements:

//jobname JOB parameters -

//stepname EXEC {ASMFC }
PROC=ASMFC

//ASM.SYSIN DD *

source module

The statements of the ASMFC procedure shown in Figure 5 are read from
the procedure library and merged into your input stream. The SYSIN
statement specifies that the input to the assembler (that is, your
source program) follows immediately after the statement.

24

@ //ASMFC PROC MAC='SYS1.MACLIB',MAC1='SYS1.MACLIB*
//ASM EXEC PGM=IFOX00,REGION=128K
@ //SYSLIB DD DSN=£EMAC, DISP=SHR
V4 DD DSN=§MAC1, DISP=SHR
@ //sYsuTr1 DD DSN=£€SYSUT1, UNIT=SYSSQ,SPACE= (1700, (600, 100)) ,
// SEP= (SYSLIB) _
//S¥SUT2 LD DSN=£8§SYSUT2, UNIT=SYSSQ,SPACE= (1700, (300,50)) ,
/7 SEP= (SYSL1B,SYSUT1)
//SYSUT3 DD DSN=§£€SYSUT3, UNIT=SYSSQ,SPACE= (1700, (300,50))
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1089
@ //SYSPUNCH DD SYSOUT=B

[l This statement names the procedure and gives default values to
the symbolic parameters MAC and MACI.

This statement specifies that the program to be executed is
IFOX00, which is the name of the assembler.
The REGION parameter specifies the virtual storage region that
gives best performance. It is possible to run the assembler in
64K, in which case you must change the region size parameter.
You can also add COND and PARM parameters. ’

B] This statement identifies the macro library data set. The
succeeding statement concatenates another macro library with it.
The default values for the DSN parameters of both data sets
are SYS1.MACLIB, the system macro library. You can change either
or both of the data sets in the EXEC statement calling the
procedure. For example, to concatenate your own macro library
with SYS1.MACLIB, code your EXEC statement as follows:

// EXEC ASMFC,MAC1=MYMACS

DISP=SHR indicates that the data set can be used simultaneously
by other jobs in the system.

@) sYsuTl, SYSUT2, and SYSUT3 specify the assembler work data sets.
The device classname SYSSQ represents either a direct access
device or a tape drive. The I/O units assigned to the class-
names are specified by your installation during system genera-
tion. Instead of a classname you can specify a unit name, such
as 2314. The DSN parameters guarantee dedicated work data sets,
if this is supported by your installation. The SEP and SPACE
parameters are effective only if SYSSQ is a direct access
device. The space required depends on the source program.

This statement defines the standard system output class as the
destination of the assembler listing. You can specify any
blocksize that is a multiple of 121.

This statement describes the data set that will receive the
punched object module. . '

Figure 5. Cataloged Procedure for Assembly (ASMFC)

Job Control Statements for Assembler Jobs 25

ASSEMBLY AND LINK EDITING (ASMFCL)

The ASMFCL procedure consists of two job steps: assembly and link
edltlng. It produces an assembler llstlng, a linkage editor listing,
and a load module.

SYSGO ‘contains the output from the assembly step and the input to the
‘linkage editor step. It can be concatenated with additional input to
the linkage editor. This additional input can be llnkage editor control
statements or other object modules.

To call the procedure, use the following statements:

//jobname JOB
//stepname EXEC ASMFCL
//ASM.SYSIN DD *

sour’ce program statements

/* N\
//LKED.SYSIN DD *

object module or necessary only if linkage

linkage editor ’ editor is to combine modules
control statements or read linkage editor control
. ‘information from the job stream
/%) /

Figure 6 shows the statements that make up the ASMFCL procedure. Only
those statements not previously discussed are explained.

26

<

>
)
e

(:im
oy
%

//SYSL1B CD

/7 . LD
//SYSUT1 LD

7/
//SYSUT2 LD

//

//SYSUT3 LD

//SYSPRINT LD

//SYSPUNCH LD
M //SYSGO DD

//

N

7/
//SYSLIN ©D

/7 CD
B) //SYSLMOD DD

S]]

//
//SYSUT1 LD

[7) //SYSPRINT LD

CATLG.

editor.

//ASMFCL PROC MAC='S$YS1.MACLIB®,MAC1='SYS1.MACLIB®
"/ /ASM EXEC PGM=IFOX00,PARM=OBJ,REGION=128K

DSN=6MAC, DISP=SHR

DSN=§MAC1,DISP=SHR
DSN=§6SYSUT1,UNIT=SYSSQ,SPACE= (1700, (600, 100)) ,
SEP= (SYSLIB)

DSN=§ESYSUT2 ,UNIT=SYSSQ,SPACE= (1700, (300,50)) ,
SEP= (SYSLIB,SYSUT1)
DSN=§&SYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50))
SYSOUT=A,DCB=BLKSIZE=1089

SYSOUT=B

DSN=§ §OBJSET, UNIT=SYSSQ, SPACE= (80, (200,50)) ,
DISpP= (MOD,PASS)

//LKED EXEC PGM=1EWL,PARM= (XREF,LET,LIST,NCAL) ,REGION=128K,

COND= (8 ,LT ,ASM)
DSN=§ §0BJSET , D1SP= (OLD, DELETE)
DDNAME=SYSIN

DSN=§ §GOSET (GO) ,UNIT=SYSDA,SPACE= (1024, (50,20,1)) ,

D1ISP= (MOD,PASS)

DSN=§ £§SYSUT1,UNIT= (SYSDA,SEP= (SYSLIN, SYSLMOD)) ,
SPACE= (1024, (50,20))

' SYSOUT=A

[The SYSGO DD statement describes a temporary data set-~the
object module--which i1s to be passed to the linkage editor.

This statement initiates linkage editor execution. The
linkage editor options in the PARM= field cause the linkage
editor to produce a cross-reference table, module map, and a
list of all control statements processed by the linkage editor.
The NCAL option suppresses the automatic library call function
of the linkage editor.

(3 This statement identifies the linkage editor input data set
as the same one produced as output by the assembler.

g]This'gtatement‘is used to concatenate any input to the linkage
editor from the input stream with the input from the assembler.

Bl This statement specifies the linkage editor output data set
(the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain
the load module, the DSN parameter must be respecified and a
DISP parameter added. 1If the output of the linkage editor is
to be retained, the DSN parameter must specify a library name
and member name designating where the load module is to be
placed. The DISP parameter must specify either KEEP or

[6] This statement specifies the utility data set for the linkage

{71 This statement identifies the standétd output class as the
destination for the linkage editor listing.

Figure 6. Cataloged Procedure for Assembly and Link Editing (ASMFCL)

Jok Control Statewents fcr Assenbler Jcbs

27

ASSEMBLY, LINK EDITING AND EXECUTION (ASMFCLG)

The ASMFCLG consists of three job steps: assembly, link editing and
execution. An assembler listing, an object deck, and a linkage editor
listing are produced. o :

The statements entered in the input stream to use this procedure are:

//jobname JOB ~
//stepname EXEC ASMFCLG
//ASM.SYSIN DD *

' source program statements

/¥ . N
//LKED.SYSIN DD *
object module or necessary only if linkage
linkage editor > editor is to combine modules
control statements or read linkage editor control
. information from the job stream
/* s \
//G0.ddname DD parameters
//G0.ddname DD parameters
//G0.ddname DD * only
. >if ,
. necessary
problem program input’ '

/*) S

Figure 7 shows the statements that make up the ASMFCLG procedure. Only
those statements not previously discussed are explained in the figure.

28

7N

s

AN

a

AN
N

//ASMFCLG PROC MAC='SYS1.MACLIB',MAC1='SYS1.MACLIB'

‘:ﬁ\ '/ /ASM EXEC PGM=IFOX00,PARM=OBJ,REGION=128K
/ "//SYSLIB TD DSN=EMAC,DISP=SHR
i/ DD DSN=§MAC1,DISP=SHR

//SYSUT1 LD DSN=§&SYSUT1,UNIT=SYSSQ,SPACE= (1700, (600, 100)) ,
// . SEP= (SYSLIB)
//SYSUT2 LD DSN=§&SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50)) ,
7/ SEP= (SYSLIB, SYSUT1)
//SYSUT3 CD DSN=§&SYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50))
//SYSPRINT LD SYSOUT=A,DCB=BLKSIZE=1089
//SYSPUNCH DD SYSOUT=B
//SYSGO DD DSN=§§O0BJSET,UNIT=SYSSQ,SPACE= (80, (200,50)),
// DISP= (MOD,PASS)

@ //LKED EXEC PGM=IEWL,PARM= (XREF,LET,LIST,NCAL) ,REGION=128K,
// COND= (8 ,LT ,ASM)
//SYSLIN DD DSN=§&OBJSET,DISP= (OLD,DELETE)
// CD DDNAME=SYSIN

@ //SYSLMOD DD DSN=&§GOSET (GO) ,UNIT=SYSDA,SPACE= (1024, (50,20,1)) ,
/7 DISP= (MOD,PASS) ,
//SYSUT1 D DSN=§&SYSUT1,UNIT= (SYSDA,SEP= (SYSLIN,SYSLMOD)) ,

SPACE= (1024, (50,20))

//SYSPRINT CD SYSOUT=A

& //60 EXEC PGM=+.LKED.SYSLMOD,COND= ((8,LT,ASM) , (4,LT,LKED))

[l The LET linkage editor option specified in this statement
causes the linkage editor to mark the load module as
executable even though errors were encountered during pro-

cessing.
- @ The output of the linkage editor is specified as a member
‘:ﬂf of a temporary data set, residing on a direct-access device,

and 1s to be passed to a succeeding job step.

B This statement initiates execution of the assembled and
linkage edited program. The notation #.LKED.SYSLMOD identifies
the program to be executed as being in the data set described
in job step LKED by the DD statement named SYSLMOD.

Figure 7. Cataloged Procedure for Assembly, Link Editing, and Execution
(ASMFCLG)

Job Control Statements for Assemkler Joks 29

ASSEMELY AND LOADER-EXECUTION (ASMFCG)

The ASMFCG procedure contains two jobvéteps: ‘assembly and

loader-execution.

the program for execution.

Both assembler and a loader
is not included in a library.

The loader link-edits, loads, and passes control to

listing are produced, but the load module

3 . Fo '
To call the procedure use the following statements:

//Jjobname
//stepname
//ASM.SYSIN

source program

/*
//GO.ddname
//G0O.ddname
//GO.ddname

problem

/*

JOB
EXEC

DD

DD
DD
DD

program input

-

ASMFCG
*

parametersw
parameters
*

only
if
>necessary

/

. Figure 8 shows the statements that make up the ASMFCG procedure. Only
those statements not previously discussed are explained in the figure.

30

//ASMFCG PROC MAC='SYS1.MACLIB',MAC1="SYS1.MACLIB®
//ASM EXEC PGM=IFOX00,PARM=0BJ,REGION=128K
//SYSLIB DD DSN=EMAC,DISP=SHR
7/ CD DSN=€EMAC1,DISP=SHR
//SYSUT1 DD DSN=§&SYSUT1,UNIT=SYSSQ,SPACE= (1700, (600, 100)) ,
7/ : SEP= (SYSL1B) ,
//SYSUT2 DD DSN=§&SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50)),
// SEP= (SYSLIB, SYSUT1)
//SYSUT3 DD DSN=§§SYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50))
//SYSPRINT TCD SYSOUT=A,DCB=BLKSIZE=1089
//SYSPUNCH DD SYSOUT=B
// SYSGO DD DSN=§§OBJSET,UNIT=SYSSQ,SPACE= (80, (200,50)),
// DISP= (MOD,PASS)
@ //Go EXEC PGM=LOADER,PARM='MAP,PRINT,NOCALL,LET",
// COND= (8,LT,ASM)
//SYSLIN LD DSN=§§OBJSET,DISP= (OLD,DELETE)
@ //SYSLOUT [LCD SYSOUT=A

O

[l This statement initiates the loader-execution. The loader
options in the PARM= field cause the loader to produce a
map and print the map and diagnostics. The NOCALL option

. is the same as NCAL for linkage editor and the LET option is
the same as for linkage editor. ‘

@ This statement defines the loader input data set as the same
one produced as output by the assembler.

Bl This statement identifies the standard output class as the
destination for the loader listing.

[< Figure 8. Cataloged Procedure for Assembly and Loader-Execution (ASMFCG)

Job Contrcl Statements for Assembler Joks 31

EXAMPLES

The following examples demonstrate the use of the “assembler. cataloged
procedures. Normally, you will want to change or add parameters to the
procedures you use. The examples illustrate how you use the EXEC
statement calling the procedure to change or add parameters to EXEC
statements in the procedure; - and' how you add DD statements after the
EXEC statement calling the procedure to change or add DD statement
parameters.. The rules for overrldlng parts of cataloged procedures for
the duration of a job are explained in JCL Reference.

Example 1:

In the procedure ASMFC, the punched object deck can be suppressed and
the UNIT and SPACE parameters of data set SYSUT1 can be respecified by
coding the following statements:

//stepname EXEC ASMFC, PARM.ASM=NODECK
//SYSUT1 DD UNIT=2311,SPACE=(200, (300,40))
//ASM.SYSIN DD * :

source statements

/*

Example 2:

In the procedure ASMFCLG, the assembler listing can be suppressed and
the COND parameter, which sets conditions for execution of the llnkage
editor, can be changed by the following statements:

'//stepname EXEC ' ASMFCLG,PARM.ASM= (NOLIST, OBJECT),

// COND . LKED= (8 ,LT , PREVSTEP . ASM)
//BASM.SYSIN DD *

source statements

/*

Here PREVSTEP is the name of a previous exec statement calling an
assembler procedure in the same job. :

Note: You cannot override individual options in the PARM field. The
whole PARM field is always overridden. Therefore, you must repeat
OBJECT in the example above.

Example 3:

The following example shows the use of the procedure ASMFCL to:

. Read input from a unlabeled nine-track tape on tape drive 282. The
tape has a blocking factor of ten.

L Put the output listing on a tape labeled VOLID=TAPE10, with a data

set name of PROG1 and a blocking factor of five (605 divided by 121,

the record size for the assembler listing).

o Block the SYSGO output of the assembler and use it as input to the
linkage editor with a blocking factor of five.

32

AT
i

A
Ly

o Link-edit the module only if there are no errors in the assembly
(COND=0) . '

e Link-edit the module onto a previously allocated and cataloged data
set, USER.LIBRARY with a member name of PROG.

// EXEC ASMFCL,COND.LKED= (0,NE,ASM)
//ASM.SYSPRINT DD DSN=PROGR1,UNIT=TAPE,DISP= (NEW,KEEP) ,

// VOL~=SER=TAPE 10 ,DCB=BLKSIZE=605
//ASM.SYSGO DD DCB=BLKSIZE=400

//ASM.SYSIN DD UNIT=282,LABEL= (,NL) ,DISP=0OLD,
// DCB= (RECFM=FSB ,BLKSIZE=800)

//LKED.SYSLMOD DD DSN=USER.LIBRARY (PROG) ,DISP=OLD

Note: The order in which the overriding DD statements are specified
corresponds to the order of DD statements in the procedure. For
example, SYSPRINT precedes SYSGO in step ASM. The DD name ASM.SYSIN is
placed last among the overriding statements for step ASM, because SYSIN
does not exist in step ASM of the procedure.

Example 4:

The following example shows assembly of two programs, link editing of
the two object modules into one load module, and execution of the load
module:

//STEP1 EXEC ASMFC , PARM.ASM=0BJ
//ASM.SYSGO DD DSN=& EOBJISET ,UNIT=SYSSQ, SPACE= (80, (200,50)) ,
// DISP= (MOD,PASS) ,DCB=BLKSIZE=400

//ASM.SYSIN DD *

source module 1

/*
//STEP2 EXEC ASMFCLG
//ASM.SYSGO DD DCB=BLKSIZE=400,DISP= (MOD,PASS)
//ASM.SYSIN DD *
source module 2
/+ ’
//LKED.SYSIN DD *
ENTRY PROG
Vi
//GO.ddname DD
/7 . (dd cards for GO step)

The LKED.SYSIN statement indicates that input to the linkage editor
follows. 1In this case it is a linkage editor control statement. ENTRY,
which identifies PROG, an external symbol in one of the two modules, as
the entry point into the load module. When the load module is executed,
that point in the module gets control first.

JCL Reference provides additional information on overriding techniques.

Job Control Statements for Assembler Jobs 33

The Assembler Listing

This section tells you how to interpret the printed listing produced by
the assembler. The listing is obtained only if the option LIST is in
effect. Parts of the listing can be suppressed by using other options;
for information on the listing options, refer to "Assembler Options"
The six parts of the assembler listing are:

e External symbol dictiohary (ESD)

e Source and objeér program

. Relocatlon dictionary (RLD)

e Symbol cross reference

e Literal cross reference

e Diagnostics and statistics

Figure 9 shows the different parts of the listing. The function and

purpose of each of them, as well as the individual details, are
explained in the following text and illustrations.

34

O

EXAM
SYMBOL TYPE 1D

SEARCH L

EXTERNAL SYMBOL DICTIONARY

J

ADDR LENGTH LDID

PC 0001 000000 0001CO
0 4 0001

0002

PAGE 1

ASM 0100 09.46 01/05/72

EXAM

LOC OBJECT COLE

SAMPLE PROGRAM

STMT SOURCE STATEMENT
ACDR1 ADDR2

PAGE 3

ASM 0100 09.46 01/05/72

G2 FXXXRFXFEEREEAXRRBRAETENARRRRRCRRERE SRR RN AR RE 4044204040040 08400004 SAMPL 050

53 * MAIN ROUTINE + SAMPLO0S 1
Sl **RXERXER AR EKEARRERE A G SR ARRARRAAE AR R ER bbb brb kbt rtt bt b beadbtsstnes SAMPLOS2
55 CSECT SAMPL053
000000 56 ENTRY SEARCH ‘ : SAMPLOS4
57 BEGIN BALR R12,0 ESTABLISH ACCRESSABILITY OF PROGRAM SAMPL0S5S
000000 05CO 58 USING *,R12 AND TELL THE ASSEMBLER SAMPLO56
. 00002 59 LM R5,R7,=A (LISTAREA, 16 ,LISTEND) LOAD LIST AREA PARAMS SAMPLOS7
000002 9857 C1a6 001a8 60 USING LIST,RS REGISTER 5 POINTS TO THE LIST SAMPLOS8
00000 61 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE SAMPL059
000006 4SE0 CO22 00024 62 T™ SWITCH, NONE CHECK TO SEF IF NAME WAS FOUNC SAMPL060
00000A 9180 C020 00022 63 B8O NOTTHERE BRANCH IF NOT ' SAMPLO6 1
00000E 4710 C018 0001A 64 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPL062
: 00000 65 MOVE TSWITCH,LSWLTCH MOVE - FUNCTIONS SAMPL063
#%% ERROR #*#* 66+ 1, IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED
67 MOUE TNUMBER, LNUMBER FROM LIST ENTRY SAMPL066
*+4% EFRROR #¥¢ 68 MOVE TADDRESS,LADDRESS TO TABLE ENTRY SAMPLO069
69+%* NEXT ‘WO STATEMENTS GENERATED FOR MOVE MACRO SAMPLO28
70+ L 2,LADDRESS SAMPL(029
000012 5820 500C 0000C 714 ST 2, TACCRESS SAMPL030
000016 5020 1004 00004 72 NOTTHERE OI LSWITCH, NONE TURN ON SWITCH IN LIST ENTRY SANMPLOTS
00001A 9680 5008 00008 73 BXLE RS,R6,MORE LOOP THROUGH THE LIST SAMPL076
00001E 8756 COO4 00006 74 EOJ ENC OF PROGRAM, USER LIBRARY MACRO SAMPLO77
EXAM RELOCATION DICTIONARY PAGE 6
POS.ID REL.ID FLAGS ADDRESS ASM 0100 09.46 01,05/72
0001 0001 oc 000154
0001 0001 oc 000164
0001 0001 oc 000174
0001 0001 oc 0001a8
0001 0001 oc 000180
EXAM CROSS~REFERENCE PAGE 7
SYMBOL. LEN VALUE DEFN REFERENCES ASM 0100 09.46 01/05/72
BEGIN 00002 00000000 00057 00135 00143 00183
HIGHER 00002 0000004A 00090 00085
LADDRESS 00004 0000000C 00174 00070
LIST 00001 00000000 00170 00060
LISTAREA 00008 00000148 00132 00184
LISTEND 00008 00000198 00152 00184
LNAME 00008 00000000 00171 00084
LNUMBER 00003 00000009 00173
100P 00004 00000030 00083 00088 00091 00139
EXAM L1TERAL CROSS-REFERENCE PAGE 8
SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 09.46 01,05/72
=A (LISTAREA, 16 ,LISTEND)
00004 000001A8 00184 00059
=F'128,4,128"
00004 000001B4 00185 00081
EXAM ASSEMBLER DIAGNOSTICS AND STATISTICS PAGE 9
STMT ERROR CODE MESSAGE ASM 0100 09.46 01,05/72

0 1IF0076 SEQUENCE SYMBOL .TYPECGK 1S UNDEFINED IN MACRO MOVE
36 1PO016 ILLEGAL OR INVALID NAME FIELD
65 1F0090 UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING CONDITIONAL ASSEMBLY
66 IF0197 #+% MNOTE #%#
Figure 9. Assembler Listing

The Assemkler Listing 35

External Symbol Dictionary (ESD)

The external symbol dictionary (ESD) describes the:contents of the ESD

records included in the object module produced by the assembler. It

. describes to the linkage editor or loader the control sections and
external symbols defined in the module. ,

This section helps you find references between modules in a
multi-module program. The ESD may be particularly helpful in debugging
the execution of large programs constructed from several modules.

The ESD is explained in detail in Figure 10. For a full
understanding of the terms and concepts used in the figure, refer to
“Section E: Program Sectioning®™ and "Section F: Addressing" in

Assembler Langquage.

36

\\
~

o

N

The type designator for the entry. The various type designators are:

Common control section. A control section defined by a

COM instruction

ER Strong extemal reference. A symbol that appears in the
operand field of an EXTRN instruction, or is defined as
a V-type address eonstant.

LD External name (label definition). A symbol that appears in
the operand field of an ENTRY instruction.

PC Unnamed control section (private code). An unnamed
control section is generated as the result of an unnamed
START or CSECT instruction or the appearance of an
instruction affecting the location counter before the first
START or CSECT instruction.

SD Named control section. A control section identified by
a START or CSECT instruction with a label in the name
field.

1 WX Weak extemal reference. A symbol that appears in the namell¥

field of a WXTRN instruction.

1 XD External dummy section (pseudo register). A symbol that

appears in the name field of a DXD instruction, or appears

both in the name field of a DSECT instruction and the

operand field of a Q-type address constant.

The time and §
date when the |

The version §
of the
@ assembler

The deck identification
obtained from the name

field of the first named run is made

1| The name of the symbol §
described by the entry.
(Only for types CM, ER, |
8 LD, SD, WX, and XD). [

EXAM EXTERNAL SYMBOL DICTIONARY

3 sYvBOL J 1YPE /ID ADDR LENGTH LDID ASM 0100 09.46 01/05/72
s

/ PC 0001 000000 0001CO
SEARCH LC ;. 000024 w0001

The length in bytes
(hexadecimal notation),
[of the assembled con-
trol section. {Only for

[types CM, PC, SD, and
g XD).

§ The address in the
2| module where the
item described by

the entry is defined.

g (Only for types CM,

§ LD, PC, SD, and XD).

The ESDID assigned to
the control section in
which this symbol is

8 defined. (Only for
type LD).

The external symbol dictionary identification
number (ESDID). This number is a unique

four - digit hexadecimal number identifying

the entry. It is used to cross reference be-

tween the external symbol dictionary and the
relocation dictionary. It is also used by entries
of type LD to identify the control section in]
E which the external name is defined. (Only for
 types CM, ER, PC, SD, WX, and XD).

Figure 10. External Symbol Dictionary

C

The Assembler Listing 37

The Source and Machine Language Statements

-
-7

The second section of the listing contains a copy of the source
statements of the module together with a copy of the object code
produced by the assembler for each of the source statements.

This section is the most useful part of the listing because it gives
you a copy of all the statements in your source program (except listing
control statements) exactly as they are entered into the machine. You
can use it to find simple punching errors, and together with the
diagnostics and statistics, to locate and correct errors detected by the
assembler. By using this section together with the cross reference
section, you can check that your branches and data references are in
order. The location counter values and the object code listed for each
statement help you locate any errors in a storage dump. Finally, you
can use this part of the listing to check that your macro instructions
have been expanded properly.

The source and machine language statements section is described in
detail in Figure 11. For terms that you are unfamiliar with, refer to
Assembler Language.

SOURCE STATEMENT FIELDS

The contents of the source statement fields in the listing (see Figure
11) are as follows:

o All source statements except listing control statements are listed, /M”\\
including statements generated from macros and inserted by COPY WLJV
instructions. =~

. The definitions of library macros that are called by the program are
listed only if the LIBMAC option has been specified.’

. The statements generated as the result of a macro instruction are
listed after the macro instruction in the listing unless PRINT NOGEN
is in effect.

. Unless the NOALOGIC option has been specified, assembler and machine
instructions with variable symbols in open code are listed both as
they appear in the input to the assembler and with values
substituted for the variable symbols.

. When the assembler detects an error, it normally inserts an error
indicator in the listing after the statement in error, and prints an
error message in the diagnostics and statistics section. Using the
FLAG option you can suppress error messages below a severity code
that you choose.

. MNOTE messages appear inline where they are generated. MNOTE

messages can be suppressed in the same way as error messages using
the FLAG option.

®

o Literals that have not been assigned locations by LTORG 1nstruct10ns
appear after the END instruction.

. A generated statement has the same format as the statement from

which it was generated, unless a substituted value is longer than -
the variable symbol used in the model statement. @L}@

38

‘:3

o Any statement in which the assembler finds an error is listed, even
if it would not otherwise be listed. (For example, an AIF statement
in a called library macro definition) .

. For a statement generated from a macro definition, columns 73-80
contain the columns from the model statement from which it was
generated.

The location counter value (address in hexadecimal notation) of the

assembled code. Exceptions are the following values:

o For END with an operand: the address.of the symbol in the operand.

o For ORG: the location counter value before the ORG operation,

o For COM, CSECT, or DSECT: the current address of the control
section.

o For ENTRY, EXTRN, WXTRN, or DXD: blank.

For LTORG: the address assigned to the literal pool.

The title defined in
the operand field of
the TITLE statement

Columns 1 - 80 of the
source statements
records, as explained
¢ under “Source Statement

Fields".

EXAM SAM%LE PROGRAM PAGE 3
LOC OBJECT CODE, i ADDR2 STMT SOURCE STATEMENT ASM 0100 09.46 01/05/72
52 ;:tQOttocaotbtt.ttOttt‘t.0..toon.oo.c.onooétoottt.ttotoo.ctoo“‘tco‘oo SAMPLO0S0
53 ¢ MAIN ROUTINE * SAMPLOS1
< Sl SEESARRERPRRAERERRRRCERRERSRARRREERRRENERIRRELRERARA4840004 04040050 SAMPLOS2
000000 55 CSECY SAMPLOS3
56 ENTRY SEARCH SAMPLOS4
000000 05CoO 57 BEGIN BALR R12,0 ESTABLISH ACCRESSABILITY OF PRCGRAM SAMPL0OSS
00002 58 USING *,R12 AND TELL THE ASSEMBLER SAMPLOS6
000002 9857 C1A6 001a8 59 LM R5,R7,=A (LISTAREA, 16 ,LISTEND) LOAD L1ST AREA PARAMS SAMPL0S?
00000 60 USING LIST,RS REGISTER 5 POINTS TO THE LIST SAMPLOSS8
000006 4SEOQ C022 00024 61 MORE BAL R14, SEARCH FIND L1ST ENTRY IN TABLE SAMPLOS9
000002 9180 €020 00022 62 ™ SWITCH, NONF CHECK TO SEF IF NAMF WAS FOUNC SAMPL060
00000E 4710 CO18 0001A 63 BO NOTTHERE BRANCH IF NOT SAMPL061
00000 64 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPL062
65 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPL063
#4+ ERROR ¢+

66+ 1, INPROPER OPERAND TYPES, NO STATEMENTS GENERATED

67 MOUE TNUMBER, LNUMBER FROM L1ST ENTRY SAMPLO66
#%+ FRROR $*¢
68 * MOVE TADDRESS,LADDRESS TO TABLE ENTRY SAMPLO069
69+ NEXT 'IAC STATEMENTS GENERATED FOR MOVE MACRO SAMPLQ28
000012 5820 S00C 0000C 70+ L 2,LADCRESS SAMPLO29
000016 5020 ,1004 00004 11+ ST 2,TADCRESS . SAMPLO30
P S ————— -
The source statement number {(wraps

around to zero after 65.535 state-
ments). Used to cross reference

between this section and the cross
reference and diagnostics section,

The effective address (resuit of adding together a base
register value and a displacement value) for:
First column: the first eperand of an 31 or SS type
instruction. -
Second Column: the second operand of an RS, RX, |
or SS type machine instruction.
This column also contains:
For ORG: the location counter value after the
ORG operation,
For USING: the first operand value.
For EQU: the value of the symbol,
Both fields contain six-digits; however, if the high
order digit is zero, it is not printed

The machine language code produced from the source
statement on the same line. The entries are left-justified.
Machine instructions are printed in full, with a blank
inserted after every four digits. Assembler instructions
are printed in full only if the PRINT instruction option
DATA is in effect. For instructions that do not generate
any object code this field is blank.

Figure 11. Source and Machine Language Statements

The Assembler Listing 39

Relocation Dictionary (RLD)

The relocation dictionary (RLD) describes the contents of the RLD records W
passed to the linkage editor or loader in the object module. The

entries describe those address constants in the module that are affected

by program relocation.

The section helps you find the relocatable comstants in your program.

The RLD section is described in detail in Figure 12. For a
description of the different address constants mentioned in the figure,

refer to the section "G3 -- Defining Data", in Assembler Language.
u
EXAM RELOCATION DICTIONARY PAGE 6
POS.ID REL.ID FLAGS ADDRESS ASM 0100 09.46 01,05/72
0001 0001 oC 000154
0001 0001 ocC 000164
0001 0001 oc 000174
0001 0001 ocC 0001A8
0001 0001 oc 000180 -

: The address where the constant is stored
(the location counter value assigned to
ion of the constant).

This two-digit hexadecimal number is interpretsd as follows:
First digit: 1dentifies the type of entry:
0 = A- or Y- type address constant
1 = V- type address constant
2-= Q- type address constant
3 = CXD entry
~ Second digit: The first three bits indicate the length of
the constant and whether the base should be added or
subtracted:
Bits O and 1 Bit 2 Bit 3
00 = 1 byte 0=+ Always O
01 = 2 bytes 1=-
10 = 3 bytes
The ESDID assigned to the ESD
The external symbo! dictionary entry for the control section in g
identification number (ESDID) which the referenced symbol is %
assigned to the ESD entry for defined, or to the ESD entry []
the control section in which the identifying it as an external g
address constant is used as an reference.
opersnd.
Figure 12. Relocation Dictionary
AN
4

40

O

Symbol Cross Reference

The symbol cross reference section of the listing lists the symbols used
in the module, indicating both where they are defined and where they are
referenced. This is a useful tool in checking the logic of your program;
it helps you see if your data references and branches are in order.

The symbol cross referenceé section contains all symbols in the
module, except those appearing in the operand field of V-type address
constants. Thus, symbols that are not listed in the source and machine
language statements section because of a PRINT OFF or PRINT NOGEN
instruction will appear in the cross reference table. (For a description
of V-type address constants and the PRINT instruction, refer to

Assembler Language.)

Symbols that are undefined but referenced will also be listed, and
identified as undefined. Duplicate definitions will also be identified
in the table.

Figure 13 describes in detail the items of the cross reference table.
Note: The cross reference entry for a symbol used in a literal refers

to the assembled literal in the literal pool. Look up the literal cross
reference table to find where the symbol is used.

The Assembler Listing 41

EXAM CROSS-REFERENCE

SYMBOL LEN VALUE DEFN REFERENCES

00002 00000000 00057 00135 00143 00183
HIGHER 00002 0000004A 00090 00085
LADDRESS 00004 0000000C 00174 00070
LIST 00001 00000000 00170 00060
LISTAREA 00008 00000148 00132 00184
LISTEND 00008 00000198 00152 00184

LNAME 00008 00000000 00171 00084
LNUMBER 00003 00000009300173

100P 00004 00000030° 00083 00088 00091 00139

LSWITCH 00001 00000008 00172 00072

MORE 00004 00000006 00061 00073

MORE 00004 00000042 00088 &+¢+#DUPLICATES*+¢

NONE 00001 00000080 00076 00062 00072 00080 00092 -
NOTFOUND 00004 00000050 00092 00089 R
NOTTHERE 00004 0000001A 00072 00063

R 00001 00000001 00159 00064 00081 00082 00082 00087 00090
R12 00001 0000000C 00165 00057 00058

R14 00001 0000000E 00166 00061 00086 00093

R2 00001 00000002 00160 00088 00091

R3 00001 00000003 00161 00081 00083 00087 00090

RS 00001 00000005 00162 00059 00060 00073

R6 0000t 00000006 00163 00073

R7 00001 00000007 00164 00053

SEARCH 00004 00000024 00080 00056 00061
SWITCH 00001 00000022 00075 00062 00080 00092
TABLAREA 00008 00000058 00099 00082
TABLE 00001 00000000 00178 00064
TADDRESS 00004 00000004 00181 00071
TNAME 00008 00000008 00182 00084
00003 00000000 00179

00001 00000003 00180

is defined.

The statement numbers of the
statements in which the symbol
rs in the operand field.

The statement number of the
statement in which the symbol

Either the address represented
by the symbol, or the value to
which it is equated.

The length (decimal notation),
in bytes, of the field occupied by
the value of the bol

The Symbol

Figure 13. Symbol Cross Reference

42

PAGE 7

ASM 0100 09.46 01/05/72

Literal Cross Reference

The literal cross reference section lists all the literals that are used

in the program.

Figure 14 gives a detailed explanation of the items of the literal
cross reference table.

PAGE

LITERAL CROSS-REFERENCE

EXAM

SYMBOL LEN VALUE DEFN REFERENCES
=A (LISTAREA, 16,LISTEND)

00004 000001A8 00184 00059
=pF*128,4,128°

00004 000001B4 00185 00081

in which the literal is used in the source
code input.

R R

The statement number assigned to the
literal. Statement numbers for literals
are assigned after LTORG instructions
or after the END instructi

S i

—

The address represented by the
literal (the address at whioch the |
fi is assembled). ;

The length {decimal notation),
in bytes, of the field occupied by
the lite

The literal

Figure 14. Literal Cross Reference

The Assembler Listing

1 The statement numbers of the statements §

ASM 0100 09.46 01,05/72

43

Diagnostics and Statistics _ i

Figure 15 gives a detailed explanation of the diagnostics and statistics
section of the listing. The following information may also be helpful
in interpreting this section.

The diagnostic messages issued by the assembler are fully documented
in Appendix G of this manual.

Error messages with the text IFO197 #***MNOTE**#* indicate that an
MNOTE message has been written in the source statement section of the
listing. The MNOTE message is given a statement number which is
indicated together with this diagnostic message.

Errors encountered during the processing of library macro definitions
reference the END statement. (This is because library macros are read
in by the assembler after the source code.) However, if you specify the
LIBMAC assembler option, all system macro definitions will be listed
after the END statement; an error will then reference the statement
within the macro definition that caused the error.

To suppress error messages and MNOTE messages below a specified
severity level, you can use the FLAG option.

AN

44

Thie statement number of the statement flagged.
For certain types of errors found in library the three characters |FO and three numeric The total number of
macros, the statament number given is that of characters giving a unique number to the statements for which
the END statement. For certain other types of message. . error messages were
errors the statament number given is zero, because - issued.

the assembler cannot locate the statement in error.

The message identifier. It consists of

| The text of the message. Many messages
include a segment of the ervor in the

st or 8 poi to the vicinity of
the error.

PAGE 9

ASSEMBLER DIAGNOSTICS AN

STMT ERROR CODE HBSSAGB ASM 0100 09.46 01/05/72

0 1r0076 SEQUENCE SYMBOL .TYPECGK 1S UNDEFINED IN MACRO v
36 1r0016 1LLEGAL OR INVALID NAME FIELD
65 1r00%90 UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING JFONDITIONAL ASSEMBLY
66 1P0197 ¢s0 MNOTE *ee '
67 1ro078 UNDEFINED OP CODE
7% 1r0078 UNDEPINED OP CODE
88 1r0196 MORE HAS BEEN PREVIOUSLY DEFPINED '
189 1r0236 ILLEGAL CHARACTER IN EXPRESSION NEAR #PERAND COLUMN 3
MUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = 8’
BIGHEST SEVERITY WAS 8

OPTIONS FOR THIS ASSEMELY
ALIGN, ALOGIC, BUPSIZE (STD), NODECK, ESD, FLAG (
NOMLOGIC, NONUMBER, NOOBJECT, NORENT, RLD, llOSTHT.

0
WORK FILE BUFFER SIZE = 7246/ 1

55) , L1ST, NOMCALL, YFLAG, WORKSIZE(2097152)
WRJIERMINAL, NOTEST, XREF (SHORT)

TOTAL RECORDS READ FROM SYSTEM INPUT 180

TOTAL RECORCS READ FROM SYSTEM LIBRARY 0 -] -

TOTAL RECORLS PUNCHED 0 . " p
The highest severity code encountered

TOTAL RECORDS PRINTED 275

during the assembly. Each message is
assigned a severity code indicating the
relative severity of the error. The

highest severity code encountered is
passed to the control program as the
return code of the assembly.

A list indicating the
& options in effect
§ during the assembly.

Statistical information
relsting to input to snd
output from the assembler. &

Figure 15. Diagnostics and Statistics

The Assembler Listing 45

Programming Considerations

S
The purpose of this section is to serve as a bridge between Assembler
Lanquage and other manuals that you will use frequently when programming
in the assembler language. Among the topics discussed are: .
%, N & }
] Designing your program
. Specifying the entry point into your program.
. Linking with modules written in other programming languages.
o Zinking with processing programs.
Designing Your Program
When you design your program to run under VS, you must make sure that it
-follows the conventions required by that operating system. The minimum
requirements for a very simple program are given in Figure 16.
However, you will hardly ever write such a simple program and will
therefore want to refer to the section "Program Design® in 0S/VS
Supervisor Services and Macro Instructions. Among the topics covered .
there are: , ‘ O
N

. The linkage registers that the operating system uses in passing
control between various components of the control program, and
between the control program and your problem program. You should
use the same registers when calling your own programs.

. Acquiring the information in the PARM field of the EXEC statement.
In the same way as the assembler checks the options you specify for
it in the PARM field, you can have your own program check the
contents of that field.

. Saving the calling program's registers, so that they are not
modified by the called program.

) Establishing a base register.

. Providing a save area, so that any programs called by your program
can save the contents of your registers and restore the contents
upon return. Note that certain system macro instructions (such as
GET or PUT) call subroutines that assume that your program has
provided a save area.

. Virtual storage considerations.

. Task creation.

46

The following coding shows the minimum number of instructions you
need for a simple program. The program will be less than 4096
bytes long and will consist of only one control section. It will
not call any subroutines or use any other IBM-supplied macros
than SAVE and RETURN.

CsSa SAVE (14,12) Save registers for calling routine
USING CSsa, 15 The control program passes control
. to the routine using register 15;
use that register as a base
ST 13,SAVE13 Store address of calling routine's
: save area '
(your program)

L 13,SAVE13 Reload address of save area
RETURN (14, 12) Return to calling routine in AOS

SAVE13 DS F Space to save address of calling
. routine's save area

(your constants and data areas)

END

Figure 16. Minimum Requirements for a Simple Program

Specifying the Entry Point into Your Program

When your object module is link edited, either alone, or together with
other modules, the entry point into the load module produced is
determined by the linkage editor. (The entry point is the address in
the load module to which control is given by the control program, when
the load module is to be executed.)

You can use the assembler END instruction or the linkage editor
ENTRY control statement to specify the entry point to the linkage

editor, as explained under "Output From The Linkage Editor" in Linkage
Editor and Loader.

Linking with Modules Produced by other Language Translators

The modules produced by the assembler can be combined with other modules
by the linkage editor. These modules can be object modules or load
modules, and may have been originally written in any of the languages
supported by the operating system. This makes it possible for you to
use different programming languages for different parts of your program,
allowing each part to be written in the language best suited for it.

However, when linking between modules produced by different language
translators you must make sure that each module conforms to the data
formats and linkage conventions required. If input/output operations
are performed, you must also make sure that the appropriate DD
statements are supplied for the data sets used in the different modules.
For information on the requirements for linking between modules written
in the assembler language and the problem-oriented languages, refer to
the programmer's guide for the particular compiler you are using.

Note: The name &§&OBJSET in the standard ASM cataloged procedures is
incompatible with the procedures of most other processors.

Programming Considerations 47

Linking with IBM-Supplied Procpssing Programs

You usually use the EXEC job control statement to load and give control
to a processing program of the operating system. However, you can also
- load and give control to a sort program, a utility program, or even a

compiler "dynamically", that is, by using a system macro instruction
(LINK, XCTL, CALL, or ATTACH) in your own program. When calling a
program dynamically, make sure you follow the 0S/VS linking conventions
described under "Program Design" in 0S/VS Supervisor Services and Macro
Instructions. You must also pass certain parameters to the processing
program. These parameters give the same information to the program as
you would supply in job control statements, if you called the program
with an EXEC statement. Appendix D describes how to call the assembler
dynamically. Dynamic invocation of each of the other IBM-supplied
processing programs is covered in one of the manuals describing that
program. . .

48

S

3

N

®

Adding Macro Definitions to a Library

You can include your own macro definitions or other sections of
often-used source code in the system macro library or in a private
library that you concatenate with the system macro -library. A macro
library can consist of both macro definitions and sections of code to be
inserted by the COPY assembler instruction.

You use the IEBUPDTE program to add members to a macro library. For
further information on IEBUPDTE and the utility control statements
needed, refer to 0S/VS Utilities, Order No. GC35-0005. The following
example shows how a new macro definition, NEWMAC, is added to the system
macro library (SYS1.MACLIB) .

//CATMAC JOB 12345,BROWN.JR, ...

//STEP1 EXEC PGM=IEBUPDTE , PARM=MOD

//SYSUT1 DD DSN=SYS1.MACLIB,DISP=0LD

//SYSUT2 DD DSN=SYS1.MACLIB,DISP=0LD

//SYSPRINT DD SYSOUT=A

//SYSIN DD DATA

-/ ADD LIST=ALL,NAME=NEWMAC,LEVEL=01, SOURCE=0
MACRO

NEWMAC &OP1,E0P2
LCLA §PAR1,E§PAR2

MEND
-/ ENDUP
/t

The SYSUT1 and SYSUT2 DD statements indicate that SYS1.MACLIB, an
existing program library, is to be updated. Output from the IEBUPDTE
program is printed on the Class A output device (specified by SYSPRINT) .
The utility control statement ./ ADD and the macro definition follow the
SYSIN statement. The ./ ADD statement specifies that the statements
following it are to be added to the macro library under the name NEWMAC.
When you include macro definitions in the library, the name specified in
the NAME parameter of the ./ ADD statement must be the same as the
operation code of the macro definition.

Adding Macro Definitions to a Library 49

Assembler Language Programming under CMS

This section of the manual is for programmers who code in the assembler
language under CMS (Conversational Monitor System). It is intended to
help you assemble and execute your program, to choose and specify the
options you need and to interpret the listing and the diagnostic
messages issued by the Assembler. To use this section effectively, you
should be familiar with the Assembler language described in QS/VS -
DOS/VS - VM/370 Assembler Language.

*Creating Your Assembler Language Program Using CMS' describes how
you create an assembler language program using the CMS Editor, this
section also describes how to define an OS data set as a CMS file.

*Assembling Your Program' describes the format of the CMS ASSEMBLE
command, how you use the assembler options with CMS, and how CMS manages
the assembly process.

'Executing Your Assembled Program' describes the commands for
execution and for executing more than one module in an assembly. This
section also describes CMS register usage during program execution and
how parameters are passed to the program. Finally this section tells you
how to create a module of your program, so that it will execute when you
invoke its filename.

'*Programming Aids' describes the assembler data sets and storage
requirements of the assembler, and the diagnostics produced by CMS.

Introduction

This section describes the purpose of the assembler, the relationship of
the assembler to CMS, and the input for and the output of the assembler.

Purpose of the Assembler

The purpose of the 0S/VS - VM/370 assembler is to translate programs
written in the assembler language into object code, that is, suitable
for execution on an IBM System/370 machine.

Relationship of the Assembler to CMS

The 0S/VS - VM/370 assembler program is a part of VM/370; it is executed
under control of the Conversational Monitor System (CMS). This assembler
program is the same as that supplied with the 0S/VS System. When you
are using CMS, the VM/370: Command Language Guide for General Users, and
the VM/370: EDIT Guide should be used for more detailed information
about CMS.

Input

As input, the assembler accepts a program written in the assembler
language as defined in the publication 0S/VS - DOS/VS - VM/370 Assemblex
Language. This program is referred to as a source module.

50

L W

U’

®

Output

The output from the assembler consists of an object module and program
listing. The object module is stored on your virtual disk in a TEXT
file. You can bring it into your virtual storage and execute it by
using the CMS LOAD and START commands. The program listing lists all the
statements in the module, both in source and machine language format,
and gives other important information about the assembly (such as error
messages) . The listing is described in detail in the section 'The
Assembler Listing'.

Creating an Assembler Language Program: The CMS Editor

To create an assembler language program using CMS, you can use the CMS
EDIT command. The EDIT command invokes the CMS Editor, which provides
an interactive environment for program creation, including subcommands
that allow you to perform such functions as inserting and deleting lines
and automatic tab setting. When you create an assembler language
program under CMS, the EDIT command is entered in the following form:

EDIT filename ASSEMBLE

where filename is the name of your file. You must ensurée that you enter
a filetype of ASSEMBLE, thus specifying to the Editor (and CMS) that you
are creating an assembler language program. You can find a complete
description of the Editor and its facilities in the publication VM/370:
EDIT Guide. :

When you have created your assembler language program, you use the
CMS ASSEMBLE command to invoke the assembler program to assemble your
program file.

OVERRIDING CMS FILE DEFAULTS

When you issue the ASSEMBLE command, there are default FILEDEF's issued
for Assembler data sets. You may want to override these with explicit
FILEDEF's. The ddnames most likely to be overridden are:

ASSEMBLE (SYSIN input to the assembler)
TEXT ‘ (SYSLIN output of the assembler)
LISTING (SYSPRINT output of the assembler)
PUNCH (SYSPUNCH output of the assembler)
CMSLIB- (SYSLIB input to the assembler)

The default FILEDEF's issued by the assembler for the ddnames are:
FILEDEF ASSEMBLE DISK fn ASSEMBLE fm

(RECFM FB LRECL 80 Block 800
FILEDEF TEXT DISK fn TEXT fm
FILEDEF LISTING DISK fn LISTING fm

Assembler Language Programming Under CMS 51

(RECFM FBA Block 1210
FILEDEF PUNCH PUNCH

FILEDEF CMSLIB DISK CMSLIB MACLIB *

(RECFM FB LRECL 80 Block 800
A FILEDEF, issued to any of the above ddnames prior to invoking the
assembler processor, will override the default FILEDEF issued by the
assembler. Let's assume that there is an assembler source file in card
deck form which you want to assemble. If you have this card deck read
into your virtual machine reader, you must issue an overriding FILEDEF
prior to assembling, i.e., FILEDEF ASSEMBLE READER. Now we can invoke
the assembler as follows:

ASSEMBLE SAMPLE (options o
The name "SAMPLE" will be used by the assembler as the filename for any
TEXT or LISTING files produced by the assembler, provided a file SAMPLE
ASSEMBLE does not éxist on any accessed disk, in which case, an error
message will be issued.

Similarly, if you have a tape containing an assembler input file
which you want to assemble, you must issue the following commands:

FILEDEF ASSEMBLE TAPn (RECFM F LRECL 80 Block 80 or,
if the file is blocked,

FILEDEF ASSEMBLE TAPn (RECFM FB LRECL 80 Block 80*N
followed by

ASSEMBLE SAMPLE (options

You can use 0S data sets on CMS files by defining those data sets with
the FILEDEF command. For example,

FILEDEF ASSEMBLE DISK HAPPY ASSEMBLE B4 DSN=0S.DATASET
where:
B4 is the mode of the 0S disk to be accessed.
DSN=0OS.DATASET is the name of the 0S data set to be used for input.
To assemble this, issue: |
ASSEMBLE HAPPY
The same examples used here for input files can be applied to other
ddnames. Care should be taken that any attributes specified for the file

conform to the assembler expected attributes or to the defined attributes
for the device, i.e., PUNCH LRECL 80 BLOCK. 80, TERMINAL 132.

52

/Kvi.\m\

Assembling Your Program: The Assemble Command

Once you have created or defined a source program, you assemble the
program using the CMS ASSEMBLE command. This command invokes the
Assembler Program. This section describes how you use ASSEMBLE.

ASSEMBLE COMMAND FORMAT

You use the ASSEMBLE command to create an object file from a source
file. The source program can be created by the CMS Editor or it can be
created externally and defined for use under CMS by the FILEDEF command.
ASSEMBLE takes the following form:

ASSEMBLE Filename (options [)]

where filename is the name of the file you are assembling and options is
a series of keywords used to specify functions associated with the
assembler.

The Filename Entry

When your file has been created by the CMS Editor, you use the filename
associated with the file when you issue the ASSEMBLE command. If your
file has been defined for use under CMS by the FILEDEF command, you use
a dummy or unique filename to be used by the assembler to define the
LISTING and TEXT files the assembler produces. You need not enter the
standard CMS filetype field, since the default filetype is ASSEMBLE.

Assemble Options for CMS

Assembler options are functions of the assembler that you, as an
assembler language programmer, can select. For example, you can use
assembler options to specify whether or not you want the assembler to
produce an object deck; whether or not you want it to print certain
items in the listing; and whether or not you want it to check your
program for reenterability. In CMS, the assembler options can be
divided into four categories:

] Listing control options, which determine the information to be
included in the program listing.

. Output control options, which specify the device on which the
assembler" object module is to be written and the contents of the
module.

. SYSTERM options, which determine the information to be included in
the listing produced on the SYSTERM data set. This data set is
primarily for use by the Time Sharing Option (TSO) of VS2.

. Other assembler options, which specify miscellaneous functions and
values for the assembler.

You will notlce that in the discussion that follows, the options fall
into two types:

. Simple pairs of keywords: a positive form (for example, DECK) that
requests a function, and an alternative negative form (for example,
NODECK) that rejects the function.

o Keywords that permit you to assign a value to a function, for
example, LINECOUNT (40) .

Assembler Language Programming Under CMS 53

You use the option field of the ASSEMBLE command line to enter the
assembler options. The list of options must be preceded by a left
parenthesis. Each option must be separated from the next by a blank
space. The closing parenthesis of the option field is optional.

THE LISTING CONTROL OPTIONS: The list below describes the assembler

options you can use to control the assembler listing. The default values
are underscored.

ALOGIC

NOALOGIC
ESD
NOESD'
LIST

NOLIST

MCALL

NOMCALL

MLOGIC

NOMLOGIC

LIBMAC

NOLIEMAC
RLD

NORLD

XREF (FULL)

54

Conditional assembly statements processed in open code

are listed.

The ALOGIC option is suppressed.

The external symbol dictionary (ESD) is listed.

No. ESD listing is printed.

An assembler listing is produced.

No assembler listing is produced. This option overrides
ESD, RLD, and XREF.

Inner macro instructions encountered during macro
generation are listed following their respective outer

macro instruction.

The assembler assigns statement

numbers to these instructions. The MCALL option is
implied by the MLOGIC option; NOMCALL has no effect if

MLOGIC is specified.

The MCALL option is surpressed.

All statements of a macro definition processed during
macro generation are listed after the macro

instruction. The Assembler assigns statement numbers to

them.

The MLOGIC option is supressed.

The macro definitions read from the macro libraries and

any assembler statements following the logical END
statement are listed after the logical END statement.
The logical END statement is the first END statement
processed during macro generation. It may appear in a
macro or in open code: it may even be created by
substitution. The assembler assigns statement numbers

to the statements that follow the logical END statement.

The LIBMAC is suppressed.

The assembler produces the relocation dictionary as

part of the listing.

The RLD is not printed.

The assembler listing will contain a cross réference
table of all symbols used in the assembly. This

includes symbols that are defined but never referenced.

The assembler listing will also contain a cross
reference table of literals used in the assembly.

O

XREF (SHORT)

NOXREF
PRINT

NOPRINT

DISK

(nnn)
FLAG

(0)

YFLAG

NOYFLAG

(nnn)
LINECOUNT
(55)

The assembler listing will contain a cross reference
table of all symbols that are referenced in the
assembly. Any symbols defined but not referenced are
not included in the table. The assembler listing will
also contain a cross reference table of literals used
in the assembly.

No cross reference tables are printed.
PRINT writes the LISTING file to the printer.

You should select this option if you do not want the
assembler to produce a LISTING file.

DISK is the default value and places the LISTING file
on a minidisk.

Diagnostic messages and MNOTE messages below severity
code nnn will not appear in the listing. Diagnostic
messages can have severity codes of 4, 8, 12, 16, or 20
(20 is the most severe), and MNOTE severity codes can
be between 0 and 255. For example, FLAG (8) suppresses
diagnostic messages with severity codes of 0 through 7.

Diagnostic message IF0205 and its severity code
will appear in the listing.

" The YFLAG option is suppressed.

nnn specifies the number of lines to be listed
between headings in the listing.

THE OUTPUT CONTROL OPTIONS: are used to control the object module output

of the assembler.

DECK

NODECK.

OBJECT or OBJ

NOOBJECT or
NOOBJ

TEST

NOTEST

The object module is written on the device specified
for the PUNCH file. If this option is specified
together with the OBJECT option, the object module will
be written both on the PUNCH and TEXT files.

The DECK option is suppressed.

The object module is written on the device specified in
the TEXT DD statement. If this option is specified
together with the DECK option, the object module will
be written both on the TEXT and on PUNCH files.

The OBJECT is suppressed.

The special source symbol table (SYM cards) is included
in the object module.

No SYM cards are produced.

THE SYSTEM OPTIONS: Are used to control the SYSTERM file associated with

your assembly.

TERMINAL or
TERM

The assembler writes diagnostic information on the
SYSTERM data set. The diagnostic information, described
in detail in the section Assembler Data Sets and
Storage Requirements, consists of the diagnosed
statement followed by the error message issued.

Assembler Language Programming Under CMS 55

NOT ERM The terminal option is suppressed.

« : ; -
NUMBER or The line number field (columns 73-80 of the inpuc o
NUM o records is written in the SYSTERM listing for e

statements for which diagnostic information is given.
This option is valid only if TERMINAL is specified.

NONUMBER or The number option is suppressed.
NONUM
STMT The statement number assigned by the assembler is

written in the SYSTERM listing for statements for which
diagnostic information is given. This option is valid
only if TERMINAL is specified.

NOSTMT The STMT option is suppressed.

OTHER ASSEMBLER OPTIONS: The options below allow you to specify various
functions and values for the assembler.

RENT The assembler checks your program for a possible
violation of program reenterability. Code that makes
your program non-reentrant is identified by an error

message.
NORENT The RENT option is suppressed.
ALIGN All data is aligned on the proper boundary in the

object module for example, an F-type constant is
aligned on a fullword boundary. In addition, the
assembler checks storage addresses used in machine
instructions for alignment violations. w7

NOALIGN - The assembler does not align data areas other than
specified in CCW instructions. The assembler does not
skip bytes to align constants on proper boundaries.
Alignment violations in machine instructions are not
diagnosed.

BUFSIZE (MIN) The assembler uses the minimum buffer size (790 bytes)
for each of the utility data sets (SYSUT1, SYSUT2, and
SYSUT3) . Storage normally used for buffers is
allocated to work space. Because more work space is
available, more complex programs can be assembled in a
given region; but the speed of the assembly is
substantially reduced.

N
s

56

O

BUFSIZE

(STD)

BUFSIZE (MAX)

WORKSIZE)
[2048K)

SYSPARM;

(nnnnnk)

(string)
(?)

(null
string)

The buffer size that gives the optimum performance is
chosen. The buffer size depends on the size of the
virtual machine. Of the assembler working storage in
excess of minimum requirements, 37% is allocated to the
utility data set buffers, and the rest to macro
generation dictionaries.

The assembler uses up to 15 save areas for input
records and saves them, according to their frequency of
use, to optimize the macro generation phase. This
option is useful when large and/or many macros are used
in the assembly. This option has no effect unless a
region big enough is available. The number of allocated

save areas is printed in the statistics page of the
assembler listing.

Refer to the section Assembler Data Sets and Storage

Requirements for a more complete description of the
effects of BUFSIZE.

This option allows user to delimit the use of region
space. The value specified does not include the space

for modules and system areas. Allowed range is 32K to
10240K. WORKSIZE - option has no effect, unless specified
for the assembler step in JCL is bigger.

'string' is the value assigned to the system variable

symbol SYSPARM (explained in Assembler Language,
GC33-4010) . '

56.1

Using SYSPARM under CMS

In its parsing of the command line, CMS breaks the line into
eight-character tokens. Therefore, the SYSPARM field under CMS is limited
to an eight-character entry. However, you can enter larger items using
the special question mark symbol (?) in the option field. When CMS
encounters this symbol in the command line, it will prompt you with the
message

ENTER SYSPARM:

You may then enter as many characters as you want up to the option limit
of 100 characters.

To use parentheses or embedded blanks in your SYSPARM field, you
must also use the question mark.

The following code is an example of how to use the question mark in
the SYSPARM field:

assemble test (load deck sysparm(?)
ENTER SYSPARM:

EEam, 'bo) .fy

R;
Overriding the SYSPARM Question Mark Entry

If you enter the guestion mark in the SYSPARM field and attempt to
override it with a subsequent SYSPARM entry, that SYSPARM entry
overrides the question mark symbol, just as it is supposed to.

However, once CMS encounters the question mark symbol you are
prompted whether or not you override it.

Therefore, if you have overridden the question mark you must press

the Enter Key when CMS prompts you with ENTER SYSPARM.

CMS Management of Your Assémbly

When you assemble a program under CMS, permanent and temporary files are
created and CMS performs certain processing steps. This section describes
how CMS manages this processing.

Files Created During Assembly

During the assembly of your program, files are created by CMS. Some
files are permanent, others temporary. The permanent files are:

o An ASSEMBLE File, which is the source code used as input by the
assembler.

. The LISTING File, which contains the listing produced by the
assembler, describing the results of the assembly.

o The TEXT File, which contains the object code created during the
~assembly.

Assembler Language Programming Under CMS 57

Temporary files created during assembly are the SYSUT1, SYSUT2, and
SYSUT3 files, which are used as work files during assembly of your
program.

INPUT TO ASSEMBLER ASSEMBLER OUTPUT

MYFILE

ASSEMBLE
Assembler

Program

Figure 17. Files Created During Assembly
The utility files are placed on the Read/Write disk with the most
available write space.

The TEXT and LISTING files are placed on one of three possible
disks, if they are available.

1. The disk on which the source file resides. *
2. The parent disk of the above disk (if it exists).
3. The primary disk.

If all three attempts fail to place the information on a Read/erte
disk, the assembly will terminate with an error message.

File Processing by the Assembler

When assembling under CMS, there are two new files created, each.with

the filename of the source ASSEMBLE file, but with filetypes of TEXT and

LISTING. . During assembly, any files residing on the virtual disk being

processed, with the filename of the file you are processing and

filetypes of TEXT or LISTING will be erased. The new TEXT and LISTING

files created during assembly take their place on your processing disk

unless you specify otherwise. These files are erased even if you specify

via NOOBJ and NOLIST that there will be no new files to replace them.

CMS also defines the utility files for your assembly, thus eliminating B
the need for you to define them. At the end of assembly, all of the “‘“y
utility files are erased. ’

58

Loading and Executing Your Assembled Program

Once you have assembled your program file, you can load and execute the
resulting TEXT file (containing object code) using the CMS LOAD and
START commands. The LOAD command causes your TEXT file to be loaded into
storage in your virtual machine and the START command begins execution
of the program. If you are assembling more than one file, use the CMS
INCLUDE command to bring the additional files into storage. These
commands and the options associated with them are described in VM/370:
Command Language Guide for General Users.

CMS REGISTER USAGE DURING EXECUTION OF YOUR PROGRAM

CMS reserves four registers for its own use during the execution of an
assembler language program. When control is received from the user
program, the entry point address for the program is placed in register
15. Register 1 contains the address of a parameter list, which contains
any parameters passed to the program. Register 13 contains the address
of the save area. Register 14 contains the section address to return
control to the control program.

PASSING PARAMETERS TO YOUR ASSEMBLER LANGUAGE PROGRAM

CMS provides you with the ability to pass parameters to an assembler
language program by means of the START command. The statement below
shows how to pass parameters to your program using the CMS START command:

START MYJOB PARM1 PARM2

The parameters must be no longer than eight characters and must be
separated by blanks.

CMS creates a list of the parameters for use during execution. The
parameter list for the command above would look like:

PLIST DS OD
DC CL8'MYJOB'
DC CL8'PARM1'
DC CL8'PARM2'
DC B8X'FF'

where the list is delimited by the hexadecimal fence of FF's.

Assembler Macros Supported by CMS

There are several macros you can use in assembler programs. . Among the
services provided by these macros are the ability to write a record to
disk, to read a record from disk, to write lines to a virtual printer
ete, etc. All of the CMS Assembler Macros are described in VM/370:
Command Langquage Guide for General Users.

Assembler Language Programming Under CMS 59

Creating a Module of Your Program

When you are sure that your program executes properly, you may want to
create a module of it, so that you" can execute it by 31mp1y invoking its
filename on the command line. '

To create a module, you use the LOAD, GENMOD, and, in some cases,
the LOADMOD: commands. See the section‘on creating a module in VM/370:
Command Language Guide for General Users for more 1nformat10n.

Programming Aids

This section gives you reference information about the assembler. It
describes the data sets used by the assembler, assembler storage:
requirements, information about the assembler listing -and: SYSTERM
listing, and about the diagnostic messages generated:by CMS.

ASSEMBLER DATA SETS AND STORAGE REQUIREMENTS

This section describes the data set used by the assembler. It also
describes the main storage and auxiliary storage requirements of the
assembler. This description is intended for programmers who want to alter
the assembler‘'s region or partltlon size or data set parameters (such as
buffer size). ;

Assembler Data Sets for CMS Users

This section describes the data sets used by the assembler to assemble
your program under CMS; these data sets are referred to as files.

DDname SYSUT1, SYSUT2, and SYSUT3: The assembler uses the utility data
sets as intermediate external storage devices when processing the source
program. These data sets must be organized sequentially, and the devices
assigned to them must be direct access devices, magnetic tape units, or
a combination of both. The assembler does not support mutivolume utility
data sets.

DDname ASSEMBLE: This data set contains the input to the assembler -- the
source statements to be processed. The input device assigned to this

data set may be DISK, RDR, or TAPE, or another sequential input device
that you have designated. The FILEDEF command describing this data set
appears in the input stream.

DDname CMSLIB: From this data set whose filetype must be MACLIB the
assembler obtains macro definitions and assembler language statements
that can be called by the COPY or a macro assembler instruction. It is a
partitioned data set: each macro definition or sequence of assembler
language statements is a separate member, with the member name being the
macro instruction mnemonic or COPY code name. The data set may be
MSLIB or a private macro library. OSMACRO contains macro definitions:
for the IBM-supplied macro instructions supported by CMS. Private
libraries and CMSLIB can be concatenated with each other in any order by
the GLOBAL command. . A :

60

DDname LISTING: This data set is used by the assembler to produce a

listing. Output may be directed to a printer, magnetic tape, or
direct-access storage device. The default device is DISK. The assembler
uses the ANSI carriage-control characters for this data set. The
smallest blocksize recommended is 1089 (blocking factor of 9).

DDname PUNCH: The assembler uses this data set to producé a punched copy
of the object module. The output unit assigned to this data set may be
either a card punch or an intermediate storage device capable of
sequential access.

DDname TEXT: This is a direct-access storage device or magnetic tape
data set used by the assembler. It contains the same output text (©bject
module) as SYSPUNCH. It is used as input for the CMS LOADER.

DDname SYSTERM: This data set is used by the assembler to produce

diagnostic information. The output may be directed to a remote terminal,
a printer, a magnetic tape, or a direct-access storage device. The
assembler uses the ANSI carriage control characters for this data set.
The smallest blocksize recommended is 1089 (blocking factor of 9).

Assembler Virtual Storage Requirements

The minimum size virtual machine required by the assembler is 256K
bytes. However, better performance is generally achieved if the
assembler is run in 320K bytes of virtual storage. This size is
recommended for medium and large assemblies.

If more virtual storage is allocated to the assembler, the size of
buffers and work space can be increased. The amount of storage allocated
to buffers and work space determines assembler speed and capacity.
Generally, as more storage is allocated to work space, larger and more
complex macro definitions can be handled.

You can control the buffer sizes for the assembler utility data sets
(SYSUT1, SYSUT2, and SYSUT3) and the size of the work space used during
macro processing, by specifying the BUFSIZE assembler option. Of the
storage given, the assembler first allocates storage for the ASSEMBLE
and CMSLIB buffers according to the specifications in the DD statements
supplied by the FILEDEF for the data sets. It then allocates storage
for the modules of the assembler. The remainder of the virtual machine
is allocated to utility data set buffers and macro generation
dictionaries according to the BUFSIZE option specified:

BUFSIZE (STD) : 37% is allocated to buffers, and 63% to work space.
This is the default chosen, if you do not specify any
BUFSIZE option.

BUFSIZE (MIN) : Each utility data set is allocated a single 790-byte
buffer. The remaining storage is allocated to work
space. This allows relatively complex macro definitions
to be processed in a given virtual machine size, but
the speed of the assembley is substantially reduced.

THE CMS SYSTERM LISTING

The SYSTERM data set gives you rapid access to the diagnostic messages
issued during an assembly. The data set can also be directed to a
printer, a magnetic tape, or a direct-access device.

You use the assembler option TERMINAL to specify that you want a
SYSTERM listing to be produced.

Assembler Language Programming Under CMS 61

Each diagnosed statement in the assembly listing printed in the
SYSTERM listing immediately followed by the messages that are issued for
the statement. To help identify the position of the statement in your
program, two additional assembler options are available:

e NUMBER, which prints the line number (s) of the diagnosed statement.

. STMT, which prints the statement number assigned to the diagnosed
statement by the assembler.

The format of the flagged statement as it appears in the listing is:

Line No.(s) Statement No. Source record(s)
{option NUM) | (option STMT) |(Columns 1-72 of
the source

statement lines)

If a statement contains continuation lines, it will occupy several lines
in the listing, each identified by a line number (if option NUMBER is
used) . If a statement in error is discovered during the expansion of a
macro, or of any inner macro called by an outer macro, the first line of
the outer macro instruction is listed before the flagged statement. If
a statement is flagged during variable symbol substitution in open code,
the first line of the model statement is listed as well as the generated
statement.

Figure 18 shows the SYSTERM listing produced during the same
assembly. The example illustrates the rules given above. Options
TERMINAL, NUMBER, and STMT were in effect during the assembly.

The SYSTERM listing starts with the statement ASSEMBLER DONE. At
the end of the listing the number of statements flagged in the assembly
is generated:

NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = nn
(Indicates the total number of source statements in error)

ASSEMBLER (XF) DONE
17

, L R2,END END OF AREA
IFO188 END 1S AN UNDEFINED SYMBOL :
18 IA R3,A THIS 1S A .
DUMMY COMMENT .

TO SHOW
IFO188 A 1S AN UNDEFINED SYMBOL . ’
IFO069 EXCESSIVE CONTINUATION CARDS, TWO ALLOWED

A STATEMENT CONTAINING .
TOO MANY CONTINUATION CARDS

25 SR 80,80 OPEN CODE MODEL STATEMENT .
WITH CONTINUATION CARD

26+ SR B,B OPEN CODE MODEL STATEMENT *

+ WITH CONTINUATION CARD
IFO188 B IS AN UNDEFINED SYMBOL
IFO188 B 1S AN UNDEFINED SYMBOL '
35 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD *
36+1234 DC F*234°
IFPO125 INVALID NAME- ILLEGAL EMBEDDED CHARACTER OR NON-ALPHABETIC FIRST CHARACTER
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY =

- —

Figure 18. SYSTERM listing

62

‘,4" TN

s

O

DIAGNOSTIC MESSAGES WRITTEN BY CMS

If an error occurs during execution of the ASSEMBLE command, a message
may be typed at the terminal, and, at completion of the command, register .
15 contains a nonzero return code. The messages are in two parts; a
message code and the message text. The message code is in the form
*DMSASMnnnt', where DMSASM indicates that the message was generated by
the ASSEMBLE command program, nnn is the number of the message, and t is

the type of the message. The message text describes the error condition.

The actual message typed may not be complete. By using the CP SET
(EMSG) command, the user can specify that the entire error message be
typed, or only the error code, or only the text, or neither code nor
text. The VM/370: Command Language Guide for General Users contains a
description of the CP SET command.

Diagnostic and error messages originating in the assembler are typed
at the terminal ‘in the form IFOnnn text, unless NOTERM is specified.
Errors detected by the ASSEMBLE command program, which terminate the
command before the system assembler is called, result in error messages

{type E) .

For addftional information about the text, format, or codes
regarding the messages for ASSEMBLE see VM/370 System Messages, Order
No. GC20-1808.

ASSEMELE COMMAND ERROR MESSAGES

DSMASMOO1E NO FILENAME SPECIFIED

Explanation: You have not included a filename in the
ASSEMBLE command.

Assemblexr Action: RC = 24
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Reissue the ASSEMBLE command and
specify a filename.

DMSASMOO02E FILE 'filename' ASSEMBLE NOT FOUND

Explanation: The filename that you included in the ASSEMBLE
command does not correspond to the names of any of the
files on your disks.

Supplemental Information: The variable filename in the text
of the message indicates the name of the file that could
not be found. .

Assembler Action: RC = 28
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Reissue the ASSEMBLE with an
appropriate filename.

Assembler Language Programming Under CMS 63

DMSASMOO03E

DMSASMOO6E

DMSASMOO7E

DMSASMO38E

64

INVALID OPTION ‘option®

i
~

Explanation: you have included an invalid option with your
ASSEMBLE command. :

Supplemental Information: The variable option'in the text
of the message indicated the invalid option.

Assembler Action: RC = 24
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: check the format of the ASSEMBLE
command and reissue the command with the correct option.

NO READ/WRITE DISK ACCESSED

Explanation: Your virtual machine configuration does not
include a read/write disk for this terminal session or you
failed to specify a read/write disk.

Assembler Action: RC = 36
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Issue an ACCESS command specifying a
read/write disk.

FILE 'filename' ASSEMBLE IS NOT FIXED, 80 CHAR RECORDS

Assembler Action: The ASSEMBLE source file that you %h)
specified in the ASSEMBLE command does not contain fixed J
length records of 80 characters. The command cannot be

executed.

Supplemental Information: The variable filename in the text
of the message indicates the name of the file that is in
error.

Programmer Response: You must reformat your file into the
correct record length. CMS EDIT or COPYFILE can be used to
reformat the file.

FILE ID CONFLICT FOR DDNAME "ASSEMBLE"

Explanation: You issued a FILEDEF command that conflicts
with an existing FILEDEF for the ddname specified.

Supplemental Information: The variable ddname in the text
of the message indicates the ddname in error.

Assemblexr Action: RC = 40
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Reissue the FILEDEF command with an
appropriate ddname. .

DMSASMOS52E MORE THAN 100 CHARS, OPTIONS SPECIFIED

j Explanation: The string of options that you specified with
’ your ASSEMBLE command exceeded 100 characters in length.

Assembler Actioen: RC = 24
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Reissue your ASSEMBLE command with
fewer options specified. ’
DMSASMO70E INVALID PARAMETER 'parameter’

Explanation: You specified an invalid parameter for an
option in the ASSEMBLE command.

Supplemental Information: The variable parameter in the
text of the message indicates the invalid parameter.

Assemblexr Action: RC = 24
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Check the format of the option with
its appropriate parameters and reissue the command with the
correct parameter.

DMSASMOT74E ERROR)SETTING AUXILIARY DIRECTORY
O RESETTING
/ Explanation: There are two conditions which could cause the
message to be generated:
1. The disk containing the assembler modules (that
is, the disk specified at Auxi¥iary Directory
» generation via the GENDIRT mode field) has not

been accessed.

2. An attempt to reset the File Status Table has
failed, thereby removing the Auxiliary Directory
from the search chain. Either/the Auxiliary
Directory was not included in [the File Status
Table chain, or a processing error has caused the
disk containing the assembler modules to appear
to be not accessed.

Assembler Action: RC = 40
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Verify that the disk containing the .
assembler modules has been accessed using the proper mode
specification (that is, the mode specified via GENDIRT when
the Auxiliary Directory was generated). If the error -
occurred resetting the Auxiliary Directory, contact
installation maintenance personnel.

Assembler Language Programming Under CMS 65

DMSASMO75E

66

DEVICE device name ILLEGAL FOR INPUT

Explanation: The device specified in your FILEDEF command
cannot be used for the input operation that is requsted in
your program. For example, you have tried to read data
from the printer.

Supplemental Information: The variable device name in the
text of the message indicates the incorrect device that was
specified.

Assemblexr Action: RC = 40
Execution of the command terminates. The system remains in
the same status as before the command was entered.

Programmer Response: Reissue your FILEDEF command specifying
an appropriate device for the desired input operation.

™

O

1
|
O)

D

Appendix A: Glossary

" The following terms are defined as they are used in this manual. If you
do not find the term you are looking for, refer to the Index or to the

IBM Data Processing Glossary, Order No. GC20-1699.

The terms are of three different kinds:

o Definitions made by the American National Standards Institute
(ANSI) . Such definitions are marked by an asterisk (*).

° Definitions valid for 0S. Such definitions are marked by an O.

] Definitions of terms that are used in describing the logic of the OS
Assembler. They are included here only because they are used in the
assembler diagnostic messages. For further information on these
terms, refer to 0S/VS - VM/370 Assembler Logic, GY33-8041. Such
definitions are marked by an A.

IBM is grateful to the American National Standards Institute
(ANSI) for permission to reprint its definitions from the
American National Standard Vocabulary for Information
Processing, which was prepared by Subcommittee X3K5 on
Terminology and Glossary gﬁ American National Standards
Committee X3.

This glossary does not explain terms pertaining to the assembler
language. Such terms are covered in the glossary of Assembler Lanquage.

Oassemble. To prepare a machine language program from a symbolic language
program by substituting machine operation codes for symbolic operation
codes and absolute or relocatable addresses for symbolic addresses.

xassembler. A computer program that assembles.
Oassembler instruction. An assembler language source statement that

causes the assembler to perform a specific operation. Assembler
instructions are not translated into machine instructions.

Oassembler language. A source language that includes symbolic machine
language statements in which there is a one-to-one correspondence with
the instruction formats and data formats of the computer. The assembler
language also contains statements that represent assembler instructions
and macro instructions.

QOassembler option. A function of the assembler requested for a particular
job step.

Qauxiliary storage. Online storage other than main storage; for example
storage on magnetic tapes or on direct access devices.

Ocataloged procedure. A set of job control statements that has been
placed in a partitioned data set called the procedure library, and can
be retrieved by naming it in an execute (EXEC) statement or started by
the START command.

Oconcatenated data sets. A group of logically connected data sets that are
treated as one data set for the duration of a job step.

Appendix A: Glossary 67

control program. A program that is designed to schedule and supervise
the performance of data processing work by a computing system.

Ocontrol section. That part of a program specified by the programmer to
be a relocatable unit, all elements of which are to be loaded into
adjoining main storage locations. \

Odata set. The major unit of data storage and retrieval in the operating
system, consisting of a collection of data in one of several prescribed
arrangements and described by control information to which the system
has access.

xdiagnostic. Pertaining to the detection and isolation of a malfunction or
mistake.

Aedited text. Source statements modified by the assembler for internal
use.. The initial processing of the assembler is referred to as editing.

xentry point. A location in a module to which control can be passed from
another module or from the control program.

ESD. (See external symbol dictionary)
Oexecute (EXEC) statement. A job control language (JCL) statement that

marks the beginning of a job step and identifies the program to be
executed or the cataloged or in-stream procedure to be used.

Oexternal symbol dictionary (ESD) . Control information associated with an
object or load module which identifies the external symbols in the
module.

Aglobal dictionary. An internal table used by the assembler during macro
generation to contain the current values of all unique global SETA,
SETB, and SETC variables from all text segments.

Aglobal vector table. A table of pointers in the skeleton dictionary of
each text segment showing where the global variables are located in the
global dictionary.

Oinput stream. The sequence of job control statements and data submitted
to an operating system on an input unit especially activated for this
purpose by the operator.

instruction.
* 1. A statement that specifies an operation and the values and
locations of its operands.
2. (See assembler instruction, machine instruction, and macro
instruction)

JCL.. (See job control language)

xjob. A specified group of tasks prescribed as a unit of work for a
computer. By extension, a job usually includes all necessary computer
programs, linkages, files, and instructions to the operating system.

Ojob _control language (JCL). A language used to code job control
statements.

xjob control statement. A statement in a job that is used in identifying
the job or describing its requirements to the operating system.

68

U

N
AW

* 1. The execution of a computer program explicitly identified by a
job control statement. A job may specify that several job steps
be executed.

0] 2. A unit of work associated with one processing program or one
cataloged procedure and related data. A job consists of one or
more job steps.

Ojobname. The name assigned to the JOB statement; it identifies the job
to the system.
language. A set of representations, conventions, and rules used to
convey information.

*language translator. A general term for any assembler, compiler, or
other routine that accepts statements in one language and produces
equivalent statements in another language.

Olibrary. (See partitioned data set)

Olibrary macro definition. A macro definition that is stored in a macro
library. The IBM-supplied supervisor and data management macro
definitions are examples of library macro definitions.

Olinkage editor. A processing program that prepares the output of
language translators for execution. It combines separately produced
object or load modules; resolves symbolic cross references among them;
replaces, deletes, and adds control sections; and generates overlay
structures on request; and produces executable code (a load module) that
is ready to be fetched into main storage and executed.

Olinking conventions. A set of conventions for passing control between
different routines of the operating system.

Oload module. The output of a single linkage editor execution. A load
module is in a format suitable for loading into virtual storage for
execution.

0Oload module library. A partitioned data set that is used to store and
retrieve load modules.

Oloader. A processing program that performs the basic editing functions
of the linkage editor, and also fetches and gives control to the '
processed program, all in one job step. It accepts object modules and
load modules created by the linkage editor and generates executable code
directly in storage. The loader does not produce load modules for
program libraries.

Alocal dictionary. An internal table used by the assembler during macro
generation to contain the current values of all local SET symbols.
There is one local dictionary for open code, and one for each macro
definition.

Olocation counter. A counter whose value indicates the assembled address
of a machine instruction or a constant or the address of an area of
reserved storage, relative to the beginning of the control section.

xmachine instruction. An instruction that a machine can recognize and
execute.

*

xmachine language. A language that is used directly by the machine.

macro. (See macro instruction and macro definition)

Appendix A: Glossary 69

macro call. (See macro instruction)

of, and conditions for generating a sequence of assembler language
statements from a single source statement. This statement is a macro
instruction that calls the definition. (See also library macro
definition and source macro definition)

Omacro definition. A set of statements that defines the name of, format {jwh
|

macro expansion. {See macro generation)

Omacro generation (macro expansion) . An operation in which the assembler
generates a sequence of assembler language statements from a.single
macro instruction, under conditions described by a macro definition.

Omacro instruction (macro call). An assembler language statement that
causes

Omacro library. A library containing macro definitions. The supervisor
and data management macro definitions supplied by IBM (GET, LINK, etc.)
are contained in the system macro library. Private macro libraries can
be concatenated with the system macro library.

Omain storage. All program addressable storage from which instructions
may be executed and from which data can be loaded directly into
registers.

Omodule. (see load module} object module, and source module)

Oobject module. The machine-language output of a single execution of an
assembler or a compiler. An object module is used as input to the
linkage editor or loader.

; . . A
xonline storage. Storage under the control of the central processing unit. {)

Oopen code. The portion of a source module that lies outside of and after
any source macro definitions that may be specified.

xoperating system. Software which controls the execution of computer
programs and which may provide scheduling, debugging, input/output
control, accountlng, compilation, storage a851gnment, data management,
and related services.

Aordinary symbol attribute reference dictionary. A dictionary used by the
assembler. The assembler puts an entry in it for each ordinary symbol
encountered in the name field of a statement. The entry contains the
attributes (type, length, etc.) of the symbol.

Ooption. (See assembler option)

Opartitioned data set (library). A data set in direct access storage that
is divided into partitions, called members, each of which can contain a
program or a part of a program. Each partitioned data set contains a
directory (or index) that the control program can use to locate a
program in the partitioned data set.

Oprocedure step. A unit of work associated with one processing program
and related data within a cataloged procedure. A cataloged procedure
consists of one or more procedure steps.

Oprocessing program.

.

1. A general term for any program that is not a control program.

(;)

70

C

2. Any program capable of operating in the problem program state.
This includes IBM-distributed language translators, application
programs, service programs, and user-written programs.

Oprogram.

1. A general term for any combination of statements that can be
interpreted by a computer or language translator, and that
serves to perform a specific function.

2. To write a program.

programmer macro definition. (See source macro definition)

Oreal storage. The storage of a System/370 computer from which the
central processing unit can directly obtain instructions and data and to
which it can directly return results.

«relocation dictionary. The part of an object or load module that
identifies all addresses that must be adjusted when a relocation occurs.

Oreturn code. A value placed in the return code register at the
completion of a program. The value is established by the user and may
be used to influence the execution of succeeding programs or, in the
case of an abnormal end of task, may simply be printed for programmer
analysis.

Osequential data set. A data set whose records are organized on the basis
of their successive physical positions such as on magnetic tape.

Oseverity code. A code assigned by the assembler to each error detected
in the source code. The highest code encountered during assembly becomes
the return code of the assembly step.

Askeleton dictionary. A dictionary built by the assembler for each text
segment. It contains the global vector, the sequence symbol reference
dictionary, and the local dictionary.

Osource macro definition. A macro definition included in a source module,
either physically or as the result of a COPY instruction.

Osource module. The source statements that constitute the input to a
language translator for a particular translation.

‘Osource statement. A statement written in symbols of a programming

language.

xstatement. A meaningful expression or generalized instruction in a
source language.

step. (See job step and procedure step)

Ostepname. The name assigned to an execute (EXEC) statement. It
identifies a job step within a job.

Osymbolic parameter.

1. In JCL, a symbol preceded by an ampersand that appears in a
cataloged procedure. Values are assigned to symbolic parameters
when the procedure in which they appear is called.

2. In assembler programming, a variable symbol declared in the
prototype statement of a macro definition.

Appendix A: Glossary 71

Asymbol file. A data set used by the assembler for symbol definitions and
references and literals.

Osystem macro definition. Loosely, an IBM-supplied library macro
definition which provides access to operating system facilities.

*terminal. A point in a system or communication network at which data can
either enter or leave or both.

Atext segment. The range over which a local dictionary has meaning. The
source module is divided into text segments with a segment for open code
and one for each macro definition.

xtransform. To change the foronf data according to specific rules.

xtranslate. To transform statements from one language into another
without significantly changing the meaning.

Ovirtual storage. Address space appearing to the user as real storage
from which instructions and data are mapped into real storage locations.
The size of virtual storage is limited by the addressing scheme of the
computing system and by the amount of auxiliary storage available,
rather than by the actual number of real storage locations.

72

N

L%

O

Appendix B: Assembler Sample Program

The sample program shown in Figure 17 can be used as a test of the
functioning of the assembler after your system has been generated (see
0S/VS1 System Generation Reference, Order No. GC26-3791). It also
sexrves as a good example of assembler language coding and of the
listing produced by the assembler.

The program illustrates the definition and use of user-written macro
instructions, use of IBM-supplied macro instructions, use of dummy
control sections, and the method of saving and restoring registers upon
entry to and exit from a program.

The data to be processed is assembled as part of the program. It
consists of a table and a list of entries that are compared with the
table. Each item in the table contains an argument name (such as ALPHA)
tnd space in which information concerning the name is to be placed.

Each entry in the list contains an argument name and function values.
The formats of the table entries and the list entries are different, and
both formats are described in dummy sections.

The program searches the table for an argqument name in the list. If
a match is found, the function values are reformatted and moved to the
appropriate table entry. If an argument name in the list cannot be
found in the table, a switch is set in the list entry. After all the
list entries have been processed, the list area and the table area are
compared with a table and a list containing the predefined results. If
the tables and lists are equal, the routine executed properly, and a
message written on the operator's console to indicate this.

| IFOSAMP EXTERNAL SYMBOL DICTIONARY PAGE 1

SYMBOL TYPE ID ADDR LENGTH LDID ASM 0100 15.00 01/03/72

SAMPLR SD 0001 000000 0003CO

-

Figure 19. Assembler Sample Program
(Part 1 of 11)

Appendix B: Assembler Sample Program 73

IFOSAMP - SAMPLE PROGRAM ! PAGE 2

LOC OBJECT CODE _ ADDR1 ADDR2 STMT SOURCE STATEMENT ASM. 0100 15.00 01/03/72
2 PRINT DATA SAMPL002
3. : SAMPL003
4 THIS 1S THE MACRO DEFINITION SAMPLOOG
5 » SAMPL005
6 MACRO SAMPLO06
7 MOVE &§TO, §FROM SAMPLO07
8 .+ " SAMPLO0S
9 . DEFINE SETC SYMBOL SAMPL00Y
10 .+ o SAMPLO10
1 LCLC &TYPE . SAMPLO11
12 e) SAMPLO12
13 .o CHECK NUMBER OF OPERANDS . SAMPLO13
14 e : SAMPLO 14
15 AIF (N'6SYSLIST NE 2) .ERROR1 : SAMPLO1S

16 .» . SAMPLO16
17 .e CHECK TYPE ATTRIBUTES OF OPERANDS SAMPLO017
18 .+ . SAMPLO18
19 AIF (T'$TO NE T'&FROM) .ERROR2 SAMPLO19
20 AIF (T'S$TO EQ ‘C' OR T'&TO EQ 'G' OR T'§TO EQ #K') .TYPECGK SAMPL020
21 AIF (T*6TO EQ "D OR T'4TO EQ 'E' OR T'4TO FQ 'H') .TYPEDER SAMPLO21
22 AIF (T'STO EQ °F') .MOVE SAMPL022
23 AGO - .ERROR3 SAMPLO23
26 .TYPEDEH ANOP SAMPL024
25 .+ SAMPLO2S
26 .¢ ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL SAMPL026
27 .+ SAMPL027
28 §TYPE SETC T'6TO SAMPL028
29 .MOVE ANOP i SAMEE029
308 * NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO SAMPL030
31 LETYPE 2, 4FROM SAMPLO31
32 STETYPE 2, 6TO SAMPLO32
33 MEXIT SAMPLO033
34 . SAMPLO34
35 . CHECK LENGTH ATTRIBUTES OF OPERANDS . SAMPLO3S
36 .+ SAMPLO036
37 .TYPECGK AIF (L°6TO NE L'GFROM OR L*6TO GT 256) .ERRORY SAMPL037
38 ¢ NEXT STATEMENT GENERATED FOR MOVE MACRO SAMPLO38
39 MVC §TO, $¥ROM SAMPL039
40 MEXIT SAMPLO4O
41 .. SAMPLO& 1
42 e ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS SAMPLO42
43 .o SAMPLO43
44 .ERROR1 MNOTE 1,'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED' SAMPLOU4S
45 MEXIT SAMPLO4S
46 .ERROR2 MNOTE 1,°OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED' SAMPLOG6
47 MEXIT SAMPLOGT
48 .ERROR3 MNOTE 1, *IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED' SAMPL048S
49 MEXIT SAMPLO49
50 .ERROR4 MNOTE 1, *IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED' SAMPLO050
51 MEND SAMPL0S51
52 ¢ SAMPLO0S2
53 « MAIN ROUTINE SAMPLO53
54 o SAMPLOS4
000000 S5 SAMPLR CSECT SAMPLOSS

56 BEGIN SAVE (14,12),,* - : SAMPL0S6

Figure 19. Assembler Sample Program
(Part 2 of 11)

74

IFOSAMP - SAMPLE PROGRAM
LOC OBJECT CODE ADDR1 ADDR2

000000 47F0 FOOA 0000A
000004 05
000005 C2C5C7CID5
00000A 90EC DOOC 0000C
00000E 05CO

00010
000010 S0D0 COCO 000D0
000014 9857 C398 003A8

00000
000018 45SE0 COC6 000D6
00001C 9180 CoOCu 000D4
000020 4710 COB6 000C6

00000
000024 D200 1003 5008 00003 00008
00002A D202 1000 5009 00000 00009
000030 5820 S00C 0000C
000034 5020 1004 00004
000038 8756 C008 00018
00003C DSEF C2u8 COP8 00258 00108
000042 4770 CO080 00090
000046 DSSF C338 CIES 00348 001rs
00004C 4770 C080 00090
000050
000050 4510 CO6E 0007e
000054 0025
000056 8000
000058 ®2C1D4D7D3C540D7
000060 DIDECTDICIDULOCI
000068 C6D6E2C1DUDTUO0E2
000070 E4C3C3CSE2E2C6E4
000078 D3

00079
000079 0000
000078 4020
00007E
00007E OA23
000080 58D0 COCO 00000
000084 98EC DOOC 0000C
000088 41F0 0000 00000
00008C O7FE
00008E 0700
|000090 4510 COBO 000C0
000094 0027
000096 8000
000098 E2C1D4DTDICSUODT
’,————-__________—f—’———-_f

PAGE 3

STMT SOURCE STATEMENT ASN 0100 15.00

STeBEGIN B 10 (0, 15) BRANCH AROUND 1D
58+ DC -AL1(5) '

59+ DC CLS'BEGIN' IDENTIFIER

60+ S™M 14,12,12 (13) SAVE REGISTERS

61 BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM

62 DSING *,R12 AND TELL TEE ASSEMELER WHAT BASE TO USE
63 ST 13,SAVE13

64 LM RS5,R7,=A (LISTAREA,16,LISTEND) LOAD LIST AREA PARAMETERS
65 - USING LIST,RS REGISTER 5.POINTS TO THE LIST :
66 MORE BAL R14,SEARCE FIND LIST ENTRY IN TABLE

67 T SWITCH,NONE CHECK TO SEE IF NAME WAS POUND

68 BO NOTTHERE BRANCH IF NOT

69 USING TABLE,R? REGISTER 1 NOW POINTS TO TABLE ENTRY

70 MOVE TSWITCH,LSWITCH MOVE PUNCTLONS

Tiee NEXT STATEMENT GENERATED FOR MOVE MACRO

72¢ MVC TSWITCH,LSWITCH

73 MOVE TNUMBER, LNUMBER FROM LIST ENTRY

T4ee NEXT STATEMENT GENERATED FOR MOVE MACRO

75+ MVC TNUMBER, LNUMBER

76 MOVE TADDRESS,LADIRESS 10 TABLE ENTRY
77ee NEXT THO STATEMENTS GENERATED FOR MOVE MACRO

78+ L 2,LADDRESS

79¢ ST 2,TADDRESS

80 LISTLOOP BXLE RS,R6,MORE LOOP THROUGH THE L1ST

81 CLC TESTTABL (240) , TABLAREA

82 BNE NOTRIGHT

83 CLC TESTLIST (96) ,LISTAREA

84 BNE NOTRIGHT

85 WIO 'SAMPLE PROGRAM IFOSAMP SUCCESSFUL®,ROUTCDE= (2,11)
86+ cNOP 0,4

87+ BAL 1,IHBO0OSA BRANCH AROUNC MESSAGE
88+ DC ° AL2 (IHB000S-%) MESSAGE LENGTH

89+ DC B*1000000000000000° MCSFLAGS FIELL

90+ DC C'SAMPLE PROGRAM IFOSAMP SUCCESSFUL® MESSAGE
914IHBO0O0S EQU ¢

92¢ pC B*0000000000000000° DESCRIPTOR COTES

93¢ DC B'0100000000100000° ROUTING CODES

94+IHBO0OSA DS OH

95+ svc 3§ ISSUE SVC

96 EXIT L R13, SAVE13 :

97 RETURN (14,12) ,RC=0

98+ M 14,12,12(13) RESTORE THE REGISTERS
99+ A 15,0(0,0) - LOAT RETURN CODE
100+ BR 14 * RETURN

101+
102 NOTRIGHT WIO 'SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL',ROUTCDE= (2,11)
103+ CNOP 0,4

104 +NOTRIGHT BAL 1,IHBO0OTA BRANCH AROUND MESSAGE
105+ DC AL2 (IHBO007-%) MESSAGE LENGTH .

106+ DC B*1000000000000000* MCSFLAGS FIELL

107+ DC C*SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL' MESSAGE

Figure 19. Assembler Sample Program
(Part 3 of 11)

Appendix B: Assembler Sample Program

01/03/72

00860000
00880000
00900000
01180000
SAMPLOS7
SAMPLOSS
SAMPLOS9
SAMPL060
SAMPLO6 1
SAMPLO62
SAMPL063
SAMPLO64
SAMPL06S
SAMPLO66
SAMPLO38
SAMPL039
SAMPL067
SAMPL038
SAMPLO39
SAMPLO068
SAMPLO30
SAMPLO31
SAMPL032
SAMPL069
SAMPLO70
SAMPLO71
SAMPL072
SAMPL073
SAMPLO74
00480000
00500000
00428018
00428818
00429618

00430418
00432018
00432818
00560000
00600000
SAMPLO7S
SAMPLO76
00260000
00700000
00800000
SAMPL077
SAMPLO78
00480000
00500000
00428018
00428818
00429618

75

D2C1D7D7C1404040

IPOSAMP - SAMPLE PROGRAM PAGE []
LOC OBJECT CODE ADDRY ADDR2 STMT SOURCE STATEMENT ASN 0100 15.00 01/03/72
0000A0 D9ID6CTDICIDULOCY
0000A8 C6D6E2CID4DTHOEY ¢ ‘
0000B0 DSE2E4C3C3CSE2E2
0000B8 C6E4D3
000BB 108+IHBO007 XQU ¢ 00430418
0000BB 0000 . 109+ pC B*0000000000000000°* DESCRIPTOR COLES 008432018
0000BD 4020 110+ DC B*0100000000100000°* ROUTING CODES 00432818
0000C0 111¢IHBO00TA DS] 00560000
0000C0 0A23 112+ svc 35 ISSUE SVC 00600000
{oo0oc2 4770 CO70 00080 113 B EXIT SAMPZ,079
0000C6 9680 5008 00008 118 NOTTHERE OI LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY SAMPL080
0000CA 47P0 C028 00038 118 B LISTLOOP GO BACK AND LOOP SAMPLO81
0000CE 0000
000000 00000000 116 SAVE13 DC ro’ SAMPL082
0000D4 00 117 SWITCH DC X*00°* SAMPL083
00080 118 NONE EQU X*80° SAMPLO8A
119 » SAMPLO8S
120 * BINARY SEARCH ROUTINE SAMPLO86
121 + SAMPL087
0000D5 00
0000D6 947P COCY 000D4% 122 SEARCH NI SWITCH,255-NONE TURN OFF NOT FOUND SWITCH) SAMPLOSS
0000DA 9813 C3A4 003B4 123 LM R1,R3,=r*128,4,128° LOAD TAELE PARAMETERS SAMPL089
0000DE 4111 COE8 00ors 124 A R1,TABLAREA-16 (R1) GET ADDRESS OF MILDLE ENTRY SAMPL090
0000E2 8830 0001 00001 125 LOOP SRL R3,1 DIVIDE INCREMENT BY 2 SAMPLO9 1
0000E6 D507 5000 1008 00000 00008 126 CLC LNAME, TNAME COMPARE LIST ENTRY WITH TABLE ENTRY SAMPL092
0000EC 4720 COEC 000rC 127 BH HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE SAMPL093
0000F0 O78E 128 BCR 8,R14 EXIT IF FOUND SAMPL 094
000072 1B13 129 SR R1,R3 OTHERNISE IT IS LOWER IN THE TABLE XSAMPL095
SO SUBTRACT INCREMENT SAMPL096
0000F4 4620 COD2 000B2 130 BCT R2,100P LOOP & TIMES SAMPLO097
0000F8 47F0 COF2 00102 131 B NOTPOUND ARGUMENT IS NOT IN THE TABLE SAMPL098
0000FC 1A13 132 HIGHER AR R1,R3 ADD INCREMENT SAMPL099
0000FPE 4620 COD2 000E2 133 BCT R2,LOOP LOOP 4 TIMES SAMPL100
000102 9680 COCY 000D4 134 NOTFOUND OI SWITCH, NONE TURN ON NOT POUND SWITCH SAMPL101
00106 07FE 135 BR R14 EXIT SAMPL102
136 * SAMPL103
137 THIS IS THE TABLE SAMPL104
138 ¢ SAMPL 105
00108 139 DS oD SAMPL106
000108 0000000000000000 140 TABLAREA DC XL8°0°,CL8*ALPHA® SAMPL107
00110 C1D3D7CBC1404040
00118 0000000000000000 141 DC XL8*0*,CL8 *BETA’ SAMPL108
000120 C2CSE3C140404040)
00128 0000000000000000 142 oC XL8°0*,CL8 ‘DELTA® SAMPL 109
000130 C4CSD3E3C1404040
00138 0000000000000000 w3 DC XL8*0*,CL8 *EPSILON® SAMPL110
000140 CSD7E2C9D3D6D540
00148 0000000000000000 144 DC XL8°0°,CL8*ETA® SAMPL 111
000150 CSE3C14040404040
00158 0000000000000000 [nC XL8*0°,CL8*GAMMA® SAMPL112
000160 C7C1DUD4CI404040
00168 0000000000000000 146 nC XL8*0°,CL8*IOTA’ SAMPL 113
000170 CID6E3C140404040
00178 0000000000000000 147 DC XL8'0*,CL8 ' KAPPA' SAMPL 114

Figure 19. Assembler Sample Program
(Part 4 of 11)

76

™
'

IFOSAMP - SAMPLE PROGRAM

LOC OBJECT CODE

000188 0000000000000000
000190 D3C1D4C2CUC14040
000198 0000000000000000
0001A0 DUE44O4040404040
0001A8 0000000000000000
0001B0 DSE4404040404040
000188 0000000000000000
0001C0 DEDUCICIDID6DSUO
0001C8 0000000000000000
0001D0 D7CBCI4040404040
0001D8 0000000000000000
0001E0 E2C9C7D4C1404040
0001E8 0000000000000000
0001F0 E9CSE3C140404040

0001F8 D3C1D4C2C4C14040
000200 0A00001D00000000
000208 E9CSE3C140404040
000210 05000005000000E2
000218 ‘E3C8CSE3C1404040
000220 0200002D00000000
000228 E3CTE44040404040
00230 0000000000000001
00238 D3CIE2E340404040
00240 1F0001D100000000
00248 C1D3D7C8C1404040
00250 000000010000007B

00258 -000001000000007B
00260 C1D3C7C8C1404040
00268 0000000000000000
00270 C2CSE3C140404040
00278 0000000000000000
00280 CU4CSD3E3C1404040
00288 0000000000000000
00290 CS5D7E2C9D3D6DS540
00298 0000000000000000
002A0 CSE3C14040404040
00228 0000000000000000
002B0 C7C1D4DUCI404040
002B8 0000000000000000
002C0 CID6E3C140404040
002C8 0000000000000000
002D0 D2C1D7C7C1404040
00208 00001D0A00000000
002E0 D3C1C4C2C4C14040
002E8 0000000000000000
002F0 DUEULOUO4040L40LO
002F8 0000000000000000
DSE4404040404040

ADDR1 ADDR2 STMT

148
149

150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177

SOURCE STATEMENT

DC XL8°0*,CLS*LAMBDA
DC XL8°0",CL8'MU’
DC XL8'0*,CL8'NU’
DC XL8'0°,CL8*OMICRON'
DC XL8'0',CL8'PHI’
DC XL8'0*,CL8'SIGMA®
DC XL8'0',CL8'ZETA®
*
* TH1IS 1S THE LIST
;ISTAREA DC CL8'LAMBDA® ,X*OA* ,FL3*29° ,A (BEGIN)
DC CL8'ZETA',X'05',FL3'S5',A (LOOP)
o o CL8*THETA® ,X*02',FL3'45"* ,A (BEGIN)
DC CLB'TAU*,X*00°,FL3'0',A (1)
nc CL8'LIST®,X* 1P* ,FL3'465° ,A (0)
LISTENDC DC CL8'ALPHA’,X'00°,FL3'1%,A (123)
*
* THIS 1S THE CONTROL TABLE
*)
TESTTABL DC FL3'1*,X*00°,A (123) ,CL8*ALPHA*
DC XL8'0*,CL8'BETA®
DC XL8'0°,CL8'DELTA®
DC XL8'0*,CL8'EPSILON'
DC XL8'0',CL8*ETA®
DC XL8'0',CL8'GAMMA®
DC XL8'0*,CL8°IOTA®
DC XL8'0*,CL8'KAPPA®
DC FL3'29°,X*0A" ,A (BEGIN) ,CL8"'LAMBDA"
DC XL8'0*,CL8°'MU*
DC XL8'0°,CL8'NU’

Figure 19. Assembler Sample Program

(Paxrt 5 of 11)

PAGE 5

ASM 0100 15.00 01/03/72

SAMPL11S
SAMPL 116
SAMPL117
SAMPL118
SAMPL119
SAMPL 120
SAMPL121
SAMPL122
SAMPL123
SAMPL124
SAMPL 125
SAMPL 126
SAMPL127
SAMPL 128
SAMPL 129
SAMPL 130
SAMPL131
SAMPL132
SAMPL 133
SAMPL134
SAMPL135
SAMPL 136
SAMPL137
SAMPL 138
SAMPL139
SAMPL 140
SAMPL 141
SAMPL 142
SAMPL 143
SAMPL 144

SAMPL 145

Appendix B: Assembler Sample Program 77

LoC

000308
000310
000318
000320
000328
000330
000338
000340

000348
000350
000358
000360
000368
000370
000378
000380
000388
000390
000398
000320

000000
000000
000008
000009
00000C

000000
000000
000003
000004
000008
000000
000328

IFPOSAMP

-~ SAMPLE PROGRAM

OBJECT CODE - ADDR1 ADDR2 STMT

0000000000000000
D6D4CICIDID6L540
0000000000000000
D7C8CI4040404040
0000000000000000
E2C9C7DUC1404040
00000505000000E2
E9CSE3C140404040

D3C1C4C2CUC14040
020000 1000000000
E9CSE3C140404040
05000005000000E2
E3C8CSE3C1404040
8200002000000000
E3C1E44040404040
80000000000000G 1

D3C9E2E340404040

9F0001D0100000000
C1D3D7C8C1404040
000000010000007B

000001F800000010

00000
00001
00002
00003
00005
00006
00007
0000C
0000D
0000E
0000F

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197

198

199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223

SOURCE STATEMENT

*
*
*

TESTLIST

RO
R1
R2

RS
R6

RrR12
R13
R14
R15

LIST
LNAME
LSWITCH
LNUMBER
LADDRESS
*

*

.

TABLE
TNUMBER
TSWITCH
TADDRESS
TNAME

Y
DC
DC
nC

XL8*0*,CL8 *OMICRON®
XL8'0*,CL8"PHI’
XL8°0*,CL8*SIGMA*
FL3°'5°,X'05°',A (LOOP) ,CL8° ZETA®

THIS IS THE CONTROL LiST

DC
bl
DC
DC
DC

THIS IS THE FORMAT DEFINITION OF ‘LIST ENTRYS

DSECT
DS
DS
DS
o

THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPL182

DSECT
DS

DS
DS

DS
END

Figure 19. Assembler Sample Program

78

(Part 6 of 11)

CL8°*LAMBDA® ,X'0A',FL3*29"' A (BEGIN)
CLB'ZETA',x'os',rL3'5',A(Loo§)
CL8°THETA® ,X*82*,FL3°45" ,A (BEGIN)
CL8*TAU® ,X°80",FL3'0* ,A (1)
CL8*LIST®,X"9F",FL3'465° ,A (0)
CL8°ALPHA' ,X*00° ,FL3'1* A (123)

ARE THE SYMBOLIC REGISTERS

CL8
C
FL3
F

FL3

C

F

CL8

BEGIN

=A (LISTAREA, 16 ,LISTEND)

ASM 0100 15.00 01,03/72

PAGE 6

SAMPL146
SAMPL147
SAMPL148
SAMPL149

SAMPL150
SAMPL151
SAMPL152
SAMPL153

SAMPL1S4
SAMPL1S5
SAMPL1S6
SAMPL1S7
SAMPL158

SAMPL 159
SAMPL 160
SAMPL161
SAMPL162
SAMPL163
SAMPL164
SAMPL 165
SAMPL166
SAMPL 167
SAMPL168
SAMPL 169
SANPL170
SAMPL171
SAMPL172
SAMPL 173
SAMPL174
SAMPL17S
SAMPL176
SAMPL 177
SAMPL178
SAMPL 179
SAMPL 180
SAMPL 181

SAMPL 183
SAMPL184
SAMPL 185
SAMPL186
SAMPL 187
SAMPL 188
SAMPL 189

V_v/w

@

IFOSAMP ~ SAMPLE PROGRAM PAGE 7

LOC OBJECT CODE ACDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01/03/72

0003B0 00000248
0003B4 0000008000000004 224 =F*128,4,128"
0003BC 00000080

Figure 19. Assembler Sample Program
(Part 7 of 11)

LFOSAMP RELOCATION DICTIONARY PAGE 8
POS.IC REL.ID FLAGS ADDRESS ASM 0100 15.00 01,03/72
0001 0001 ocC 000204

0001 0001 ocC 000214

0001 0001 ocC 000224

0001 0001 oc 0002DC
0001 0001] 00033C
0001 0001 oc 000354
0001 0001 (] 000364
0001 0001 oC 000374

0001 0001 [0003a8
0001 0001 0C 0003B0

Figure 19. Assembler Sample Program
(Part 8 of 11)

TFOS AMP CROSS-REFERENCE PAGE 9

SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 15.00 01/03/72

BEGIN 00004 00000000 00057 00158 00160 00176 00186 00188 00222
EXIT 00004 00000080 00096 00113
HIGHER 00002 000000FC 00132 00127
IHBO00S 0000t 00000079 00091 00088
IHBO0OSA 00002 0000007E 00094 00087
IHB0007 00001 000000BB 00108 00105
IHBOOO7A 00002 000C00CO 00111 00104
LADDRESS 00004 0000000C 00213 00078

LIST 00001 00000000 00209 00065
LISTAREA 00008 000001F8 00158 00083 00223
LISTEND 00008 00000248 00163 00223
LISTLOOP 00004 00000038 00080 00115
LNAME 00008 00000000 00210 00126
LNUMBER 00003 00000009 00212 00075

LOOP 00004 000000E2 00125 00130 00133 00159 00182 00187
LSWITCH 00001 00000008 00211 00072 00114

MORE 00004 00000018 00066 00080

NONE 00001 00000080 00118 00067 00114 00122 00134

NOTFOUND 00004 00000102 00134 00131
NOTRIGHT 00004 00000090 00104 00082 00084
NOTTHERE 00004 000000C6 00114 00068

RO 00001 00000000 00195

R1 00001 00000001 00196 00069 00123 00124 00124 00129 00132
R12 00001 0000000C 00202 00061 00062

R13 00001 0000000C 00203 00096

R14 00001 0000000E 00204 00066 00128 00135

R15 00001 0000000F 00205

R2 00001 00000002 00197 00130 00133

R3 00001 00000003 00198 00123 00125 00129 00132
RS 00001 00000005 00199 00064 00065 00080

R6 00001 00000006 00200 00080

R7 00001 00000007 00201 00064

SAMPLR 00001 00000000 00055
SAVE13 00004 000000D0 00116 00063 00096
SEARCH 00004 00000006 00122 00066

SWITCH 00001 000000D4 00117 00067 00122 00134
TABLAREA 00008 00000108 00140 00081 00124
TABLE 00001 00000000 00217 00069
TADDRESS 00004 00000004 00220 00079
TESTLIST 00008 00000348 00186 00083
ITESTTABL 00003 00000258 00168 00081
TNAME 00008 00000008 00221 00126
TNUMBER 00003 00000000 00218 00075
TSWITCH 00001 00000003 00219 00072

L—""

Figure 19. Assembler Sample Program
(Part 9 of 11)

Appendix B: Assembler Sample Program 79

1FOSAMP

SYMBOL LEN VALUE - DEFN REFERENCES

=A (LISTARERA, 16 , LI STEND)

00004 000003A8 00223 00064
=F*128,4,128°

00004 000003B4 00224 00123

LITERAL CROSS-REFERENCE

PAGE

10

ASM 0100 15.00 01,03/72

/

Figure 19. Assembler Sample Program
(part 10 of 11)

IFOSAMP

NO STATEMENTS FLAGGED IN TH1S ASSEMBLY
HIGHEST SEVERITY WAS 0
JOPTIONS FOR THIS ASSEMBLY

SYSPARM ()
WORK FILE BUFFER SIZE = 7246/ 1
TOTAL RECORDS READ FROM SYSTEM INPUT 189
TOTAL RECORLCS READ FROM SYSTEM LIBRARY 833
TOTAL RECORLS PUNCHED 0

TOTAL RECORDS PRINTED 373

ASSEMBLER DIAGNOSTICS AND STATISTICS

ASM 0100 15.00 01/03/72

Figure 19. Assembler Sample Program

(Part 11 of 11)

80

PAGE

1

ALIGN, ALOGIC, BUFSIZE(STD), NODECK, ESD, FLAG(0), LINECOUNT (55), LIST, NOMCALL, YFLAG, WORKSIZE(2097152)
NOMLOGIC, NONUMBER, NOOBJECT, NORENT, RLD, NOSTMT, NOLIBMAC, NOTERMINAL, NOTEST, XREF (SHORT)

A

Appendix C: Object Deck Output

ESD CARD FORMAT

Columns Contents
1 12-2-9 punch
2-4 ESD
5-10 Blank
11-12 Variable field count -- number of bytes
of information in variable field (columns 17-64)
13-14 Blank
15-16 ESDID of first SD, XD, CM, PC, ER, or WX
in variable field
17-64 Variable field. One to three 16-byte

items of the following format: .

8 bytes -- Name, padded with blanks

1 byte -- ESD type code
The HEX value is:

00 SD
01 1D
02 ER
04 PC
05 CM
06 XD (PR)
0A WX

3 bytes -- Address
1 byte -- Alignment if XD; otherwise blank
3 bytes -- Length, LDID, or blank

65-72 Blank

73-80 Deck ID and/or sequence number --
The deck ID is the name from the first named TITLE
statement. The name can be one to eight alpha-
meric characters long. If the name is less than
eight characters long or if there is no name, the
remaining columns contain a card sequence number.
(Coulmns 73-80 of cards produced by PUNCH or REPRO
statements do not contain a deck ID or a sequence
number.)

Appendix C: Object Deck Output 81

TXT CARD FORMAT

Columns Contents

1 12-2-9 punch

2-4 TXT

5 Blank

6-8 Relative address of first instruction on card

9-10 Blank

11-12 Byte count -- number of bytes in information
, field (columns 17-72)

13-14 Blank

15-16 ESDID _

17-72 56-byte information field

73-80 Deck ID and/or sequence number --

The deck ID is the name from the first named TITLE
statement. The name can be one to eight alphameric
characters long. If the name is less than eight
characters long or if there is no name, the re-
maining columns contain a card sequence number.
(Columns 73-80 of cards produced by PUNCH or REPRO
statements do not contain a deck ID or a sequence

number.)
{
RLD CARD FORMAT
Columns ‘ Contents
1 12-2-9 punch
2-4 RLD
5-10 Blank
11-12 Data field count -- number of bytes of
information in data field (columns 17-72)
13-16 Blank
17-72 Data field
17-18 . Relocation ESDID
19-20 Position ESDID
21 Flag byte
22-24 _ Absolute address to be relocated
25-72 Remaining RLD entries
73-80 Deck ID and/or sequence number --

The deck ID is the name from the first named TITLE
statement. The name can be one to eight alphameric
characters long. If the name is less than eight
characters long or if there is no name, the re-
maining columns contain a card sequence number.
(Columns 73~80 of cards produced by PUNCH or REPRO
statements do not contain a deck ID or a sequence
number.)

If the rightmost bit of the flag byte is set, the following RLD entry
has the same relocation ESDID and position ESDID, and this information
will not be repeated; if the rightmost bit of the flag byte is not set,
the next RLD entry has a different relocation ESDID and/or p051t10n
ESDID, and both ESDIDs will be recorded.

82

O
7

o

For example, if the RLD Entries 1, 2, and 3 of the program listing
contain the following information:

Position Relocation

ESDID ESDID Flag Address
Entry 1 02 ou ocC 000100
Entry 2 02 ou ocC 000104
Entry 3 03 o4 oC 000800
Entry 1 » Entry 2 Entry 3

Column: {17 18 19 20 21 22 23 2425 26 27 2829 30 31 32 33 34 35 36|37—=72

0o[04]00]02]op]oo]01]00]oc|0o] a1]04oo|o1 |00 o3| oc|oo| 08} 00 |
__~___J? (UG by T W, Ry B e D
ESD iDs Address Address Esd 1Ds Address blanks
Flag Flag Flag
(set) (not (not

END CARD FORMAT

SYM CARD FORMAT

set) set)

Contents:

12-2-9 punch

END

Blank

Entry address from operand of END card in

source deck (blank if no operand)

Blank

ESDID of entry point (blank if no operand)

Blank

1 or 2

Order number of the assembler: 5741SC103

Version level of the assembler

Modification level of the assembler

Last two digits of the year in which the assembly

was run

Day of the year (counted sequentially: Jan 3 = 3,

Feb 3 = 34, etc) in which the assembly was run

Normally not used

Deck ID and/or sequence number.

The deck ID is the name field from the first named TITLE
statement. The name can be one to eight alphameric
characters long. If there is no name or the name is less
than eight characters long, the remaining columns contain
a card seguence number. (Columns 73-80 of cards produced
by PUNCH or REPRO statements do not contain a deck ID or
a sequence number.)

If you specify the TEST assembler option, the assembler punches out
symbolic information concerning the assembled program. This output
appears ahead of the object module. The format of the card images for
SYM output is as follows:

Appendix C: Object Deck Output 83

Columns Contents

1 12-2-9 punch @:;@
2-4 SYM

5-10 Blank

11-12 Variable field count -- number of bytes of
text in variable field (columns 17-72)

13-16 Blank

17-72 Variable field (see below)

73-80 Deck ID and/or sequence number --

The deck ID is the name from the first named TITLE
statement. The name can be one to eight alphameric
characters long. If the name is less than eight
characters long or if there is no name, the re-
maining columns contain a card sequence number.
(Columns 73-80 of cards produced by PUNCH or REPRO
statements do not contain a deck ID or a sequence
number.)

The variable field (columns 17-72) contains up to fifty-six bytes of S¥YM
text. The items making up the text are packed together; consequently,
only the last card may contain less than fifty-six bytes of text in the
variable fiel'd. The formats of a text card and an individual text item
are shown in Figure 20. The contents of the fields within an individual
entry are as follows:

1. Organization (one byte)

Bit O:
non-data type
data type

0
1

q

Bits 1-3 (if non-data type) :

000 = space

001 = control section

010 = dummy control section

011 = common v

100 = machine instruction : '
101 = CCW ’ .
110 = Simply relocatable EQU, named LTORG, named CNOP,

or named ORG

Bit 1 (if data type):
0 = no multiplicity
1 = multiplicity (indicates presence of M field)

Bit 2 (if data type):
0 independent (not a packed or zoned decimal constant)
1 cluster (packed or zoned decimal constant) - :

Bit 3 (if data type):
0 no scaling

1 scaling (indicates presence of S field)
Bit U4:
0 = name present
1 = name not present
Bits 5-7: :
Length of name minus 1 @:]D
2. Address (three bytes) -- displacement from base of control section

*

84

3. Symbol Name (zero to eight bytes) -- symbolic name of particular

O item

‘ Note: The following fields are present only for data-type items. If the
entry is non-data type and space, an extra byte is present which
contains the number of bytes that have been skipped.

4. Data Type (one byte) —-- contents in hexadecimal
00 = C-type data
04 = X-type data
08 = B-type data
10 = F-type data
14 = H-type data
18 = E-type data
1C = D-type data
20 = A-type or Q-type data
24 = Y-type data
28 = S-type data
2C = V-type data
30 = P-type data
34 = Z-type data
38 = L-type data

5. Length (two bytes for character, hexadecimal , or binary items;
one byte for other types) -- length of data item minus 1

6. 'Multiplicity - M field (three bytes) -- equals 1 if not present

7. Scale - signed integer - S field (two bytes) -- present only for
F, H, E, D, L, P and Z type data, and only if scale is non-zero.

"
G’ t 2 45 10 111213 16 17 72 73 80

No,
12 of Deck Sequence
2| sym blank [byted blank SYM text — packed entries ec eq '
iD number
9 of
text
1 3 6 2 4 56 . 8
Entry) . Entry
(complete or N compgte entries (complete or
end portion) N=1 head portion)
Variable size entries
Org. | Address Symboi narne Dataly ongn| Mult. Scale |Org,[Symbol
type factor name
1 3 08 1 1.2 3 2

Figure 20. SYM Card Format

Appendix C: Object Deck Output 85

Appendix D: Dynamic Invocation of the Assembler

You can invoke the assembler from your problem program when it is
executed, by using the CALL, LINK, XCTL, or ATTACH macro instruction.
If you use the XCTL instruction, you cannot specify any assembler
options. The assembler will use the standard or default options. If
you use CALL, LINK, or ATTACH, you can specify both the assembler
options and DD names of the data sets to be used by the assembler. The
formats of these macros are:

Name Operation Operand

[symbol] CALL IFOXO00, (optionlist

[.ddnamelist]), VL
LINK EP=IFOX00,
ATTACH PARAM=(optionlist -

[.ddnamelist]), VL=1

EP -- specifies the symbolic name of the assembler (IFOX00).

PARAM -- specifies, as a sublist, address parameters to be passed from
the problem program to the assembler. The first word in the address
parameter list contains the address of the option list. The second word
contains the address of the ddname list.

optionlist -- specifies the address of a variable length list containing
the options. This address must be written even if no option list is
provided. -

The option list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list. If
no options are specified, the count must be zero. The option list is
free form with each field separated from the next by a comma. No blanks
or zexos should appear in the list.

ddnamelist -- specifies the address of a variable length list contalning
alternate DDnames for the data sets used during assembler proce551ng.
If standard DDnames are used, this operand can be omitted.

The DDname list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list.
Each name of less than eight bytes must be left-justified and padded
with blanks. If an alternate DDname is omitted, the standard name will
be assumed. If the name is omitted within the list, the eight-byte
entry must contain binary zeros. Names can be omitted from the end
merely by shortening the list. The sequence of the eight-byte entries
in the DDname list is as follows:

86

Standard Name

2
ﬁ
]

O

not applicable
not applicable
not applicable
SYSLIB

SYSIN

SYSPRINT
SYSPUNCH
SYSUT1

SYSUT2

SYSUT3

SYSGO

SYSTERM

-
CUVWONOUEWN=

- -
N -

VL -- specifies that the high-order bit is to be set to 1 in the last
word of the list of address parameters in the macro expansion.
The assembler checks this bit to find out if a DDname list is
specified or not.

Note: If you invoke the assembler more than once from the same program,
make sure that RECFM=S is not specified for the SYSPRINT data set.

Appendix D: Dynamic Invocation of the Assembler 87

Appendix E: Assembler Data Sets and Storage
Requirements |

This appendix describes the data sets used by the assembler (see Figure
21). ‘It also describes the main storage and auxiliary storage
requirements of the assembler. This description is intended for
programmers who want to alter the assembler's region or partition size
or data set parameters (such as buffer size). A more detailed
description of assembler storage requirements appears in 0S/VS1 Storage
Estimates.

ASSEMELER DATA SETS

DDname SYSUT1, SYSUT2, and SYSUT3

The assembler uses the utility data sets as intermediate external
storage devices when processing the source program. These data sets must
be organized sequentially, and the devices assigned to them must be
direct access devices, magnetic tape units, or a combination of both.
The assembler does not support multivolume utility data sets. For
optimum performance, SYSUT1 should be on a direct access device.

DDname SYSIN

This data set contains the input to the assembler -- the source
statements to be processed. The input/output device assigned to this
data set may be either the device transmitting the input stream, or
another sequential input device that you have designated. The DD
statement describing this data set appears in the input stream. The
IBM-supplied procedures do not contain this statement.

DDname SYSLIB

From this data set the assembler obtains macro definitions and assembler
language statements that can be called by the COPY assembler
instruction. It is a partitioned data set: each macro definition or
sequence of assembler language statements is a separate member, with the
member name being the macro instruction mnemonic or COPY code name.

The data set may be SYS1.MACLIB or a private macro library.
SYS1.MACLIB contains macro definitions for the IBM-supplied macro
instructions. Private libraries and SYS1.MACLIB can be concatenated
with each other in any order. Concatenated libraries must have the same
record length, but the blocking factors may be different. However, a
library with a high blocking factor must always come before a library
with a low blocking factor.

DDname_SYSPRINT

This data set is used by the assembler to produce a listing. Output may
be directed to a printer, magnetic tape, or direct-access storage
device. The assembler uses the ANSI carriage-control characters for
this data set. The smallest blocksize recommended is 1089 (blocking
factor of 9).

88

..

™

Y

DDname SYSPUNCH

The assembler uses this data set to produce the object module. The
input/output unit assigned to this data set may be either a card punch
or an intermediate storage device capable of sequential access. This
output can be used as input to the linkage editor.

DDname SYSGO

This is a direct-access storage device or magnetic tape data set used by
the assembler. It contains the same output text (object module) as
SYSPUNCH. It is used as input for the linkage editor.

DDname SYSTERM

This data set is used by the assembler to produce diagnostic
information. The output may be directed to a remote terminal, a
printer, a magnetic tape, or a direct-access storage device. The
assembler uses the ANSI carriage control characters for this data set.
The smallest blocksize recommended is 1089 (blocking factor of 9).

ASSEMBLER VIRTUAL STORAGE REQUIREMENTS

The minimum virtual storage partition or region required by the
assembler is 64K bytes. However, better performance is generally
achieved if the assembler is run in 128K bytes of virtual storage. This
region size is recommended and is specified in the assembler cataloged
procedures. .

If more storage is allccated to the assembler, the size of buffers
and work space can be increased. The amount of storage allocated to
buffers and work space determines assembler speed and capacity.
Gererally, as more storage is allocated to buffers, a given assembly
will run faster; as more storage is allocated to work space, larger and
more complex macro definitions can be handled.

You can control the buffer sizes of SYSIN, SYSLIB, SYSPRINT,
SYSPUNCH, and SYSGO by specifying the blocksize (BLKSIZE) and number of
buffers (BUFNO) as shown in Figure 21.

You: can control the buffer sizes for the assembler utility data sets
(SYSUT1, SYSUT2, and SYSUT3) and the size of the work space used during
macro processing, by specifying the BUFSIZE assembler option. Of the
storage given to the assembler, the assembler first allocates storage
for the SYSIN and SYSLIB buffers according to the specifications in the
DD statements or the labels of the data sets. It then allocates storage
for the modules of the assembler. The remainder of the partition or
region is allocated to utility data set buffers and macro generation
dictionaries according to the BUFSIZE option specified:

BUFSIZE(STD) : 37% is allocated to buffers, and 63% to work space.
This is the default chosen, if you do not specify any
BUFSIZE ogption.

BUFSIZE (MIN) : Each utility data set is allocated a single 790-byte
buffer. The remaining storage is allocated to work
space. This allows relatively complex macro definitions
to be processed in a given region or partition size, but
the speed of the assembly is substantially reduced.

Appendix E: Assembler Data Sets and Storage Requirements 89

BUFSIZE (MAX) : The largest possible buffer size is used. The limit is

set by the track capacity of the direct access work
device and the amount of main storage allocated to
buffers, whichever is smaller. If there is room for
more than one buffer, as many as possible up to 15
buffers are allocated. 37% is set aside for buffer
usage.

The WORKSIZE option is another way to (indirectly) control the buffer

size for SYSUT-files, and number of SYSUT-buffers; when BUFSIZE (MAX) is

specified.

By using the WORKSIZE option you can limit the amount of

virtual storage occupied by assembler.

It depends on practices in each installation, which is more suitable to

use; JCL-parameter REGION or assembler-option WORKSIZE. Default value
is WORKSIZE (2048K) .)

90

&

SYSuUT1

SYsi 18 SYSIN SYSUT2
——ee—» Assembler
Macro and
COPY Calls
SYSUT3
SYSTERM
ﬁ@ SYSPRINT svseo SYSPUNCH
E § [5‘[(0!»«:! mwulu)£
SYSUT1
SYSIN SYSLIB SYSPRINT SYSPUNCH SYSGO SysuT2
SYSTERM SYSUT3
LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed at 80 N/A
RECFM You must specify | You must specify | F and A set by F set-by assembler,|F set by bler, [Set by bl
@ inLABEL or DD | in LABEL or DD | assembler. B set |you may specify B |you may specify B |[to U
card card by assembler and/or T in label }and/or T in label
except when F is |or DD card or DD card
F,FS,FBS,FB, F,FS,FBS,FB, specified and
FBST, FBT FBST,FBT BLKSIZE is not
specified. You
may add Sor T
FA,FAB,FASFAT | F,FB,FT, F,FB,FT,
FABS,FABT FBT FBT

BLKSIZE

®

You must specify
in LABEL or DD
card, must be a

You must specify
in LABEL or DD
card, must be a

Optional, but must
be a multiple of
LRECL; if omitted

Optional, but must
be a multiple of
LRECL,; if omitted

Optiohal, but must
be a multiple
LRECL; if omitted

for unit record and
2 for other devices

for unit record and
2 for other devices

multiple of multiple of BLKSIZE=LRECL | BLKSIZE=LRECL |BLKSIZE=LRECL
LRECL LRECL

BUFNO Optional; if Set by assembler | Optional; if Optional, if Optional; if Must not be
omitted 2 is used | to 1 omitted 2 is used |omitted 3is used Jomitted 3 is used |specified

©

U = undefined, F = fixed length records, B= blocked records, S= standard blocks,
T = track overflow, A = ASCII code carriage control

Blocking is not allowed on unit record devices. -Blocking on other direct access ean not

be greater than the track size unless T is specified on RECFM. If the BLKSIZE specified
is not a multiple of LRECL, the assembler truncates it to a multiple. For example, if
LRECL = 80, a BLKSIZE of 850 is truncated to 800.

If BUFSIZE(MIN]) is in effect, 790 is chosen.

If BUFSIZE(MAX) is in effect, a value between 790 and the track capacity

on the used disk is chosen.

Figure 21.

If BUFSIZE(STD) is in effect, a value between 790 and 8192 is chosen.

/

Assembler Data Set Characteristics

Appendix E: Assembler Data Sets and Storage Requirements

Appendix F: The SYSTERM Listing for OS/VS

The SYSTERM data set, which gives you rapid access to the diagnostic
messages issued during an assembly, is primarily designed for the user
of the Time Sharing Option (TSO) of VS2. However, the data set can also
be directed to a printer, a magnetic tape, or a direct-access device.

You use the assembler option TERMINAL to specify that you want a
SYSTERM listing to be produced. Of course, you must also make sure that
a DD statement describing the data set is included. ’

Each diagnosed statement in the assembly listing printed in the
SYSTERM listing immediately followed by the messages that are issued for
the statement. To help identify the position of the statement in your
program, two additional assembler options are available:

U NUMBER, which prints the line number (s) of the diagnosed statement.

. STMT, which prints the statement number assigned to the diagnosed
statement by the assembler.

The format of the flagged statement as it appears in the listing is:

Line No.(s) Statement No. Source record(s)
{option NUM) | (option STMT) |{Columns 1-72 of
the source

statement lines)

If a statement contains continuation lines, it will occupy several lines
in the listing, each identified by a line numbexr (if option NUMBER is
used) . If a statement in error is discovered during the expansion of a
macro, or of any inner macro called by an outer macro, the first line of
the outer macro instruction is listed before the flagged statement. If
a statement is flagged during variable symbol substitution in open code,
the first line of the model statement is listed as well as the generated
statement.

Figures 22 and 23 illustrate the content and format of SYSTERM
output. Figure 22 shows the source statement section of a SYSPRINT
listing, and Figure 23 shows the SYSTERM listing produced during the same
assembly. The example illustrates the rules given above. Options
TERMINAL, NUMBER, and STMT were in effect during the assembly.

The SYSTERM listing starts with the statement ASSEMBLER DONE. At
the end of the listing the following diagnostic information is given:

o NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = nn

(Indicates the total number of source statements in error)
L HIGHEST SEVERITY CODE WAS nn

(Indicates the maximum severity code encountered)

o OPTIONS FOR THIS ASSEMBLY .
(Indicates the options in effect for this assembly)

Appendix F: The SYSTERM Listing for 0S/VS 91

LOC OBJECT CODE

000000

000000
000000 90EC DOOC
000004 05CO

000006 0000 0000
¢4¢ FRROR *¢¢
00000A 0000 0000

¢$4 ERROR #¢¢

00000E 5840 C022
000012 5043 0000
000016 4130 3004
00001A 1923

00001C 4770 COOC

000020 0000
#4¢ ERROR *¢¢
000022 98EC DOOC

000026 07FE

000028 00000000

00002C 000000EA
#8¢ ERROR $4¢

PAGE 2

ADDRY ADDR2 STMT SOURCE STATEMENT ASM 0100 14.59 01/03/72

0000C

00000
00000

00028
00000
00004

00012

0000C

00006

00002
00003
00004
0000C

MACRO
GENF &P, L
LCLA 6K
.LOOP ANOP
§K SETA K¢t
$PEL(SK) DC P'SL (6K *
AIF = (6K LT N°'SL).LOOP
.DONE MEND

P e L

GELC §Q
SAMPL2 CSECT
1" SAVE (14,12) ALL REGS ARE SAVED IN SUPERVISOR SAVEAREA
DS H 00660000
sT™M 18,12,12(13) SAVE REGISTERS 01180000
BALR R12,0
USING *,R12 SET UP BASE REGISTER
) SETC ‘B’
L R2,END END OF AREA
18 LA R3A THIS IS A .
DUMMY COMMENT .
TO SHOW .
A STATEMENT CONTAINING .
TOO MANY CONTINUATION CARDS
19 L R4, FO ZERO CONSTANT FOR RESETTING AREA
20 LoOP ST R&4,0 ®3)
21 IA R3,8(,R3) RESET AREA A
22 CR R2,R3
23 BNE LooP
28 AIF (*A' EQ *$Q').GO
25 SR §Q,8Q OPEN CODF MODEL STATEMENT .
WITH CONTINUATION. CARD
26+ SR B,B OPEN CODE MODEL STATEMENT *
* WITH CONTINUATION CARD
27 .60 RETURN (14,12) EXIT FROM RTN
28+ M 18,12,12(13) RESTORE THE REGISTERS 00260000
29¢ BR 18 RETURN 00800000
30 ¢
31 ¢ CONSTANTS AND AREA ARE DELETED ON PURPOSE
32
33 GENF F,0 GENERATION OF CONSTANTS
34470 pC P'O*
3s GENF 1,234 EXAMPLE OF MORE THAN ONE CARD .
IN A MACRO INSTRUCTION
3641238 pC Pr23e’
37 R2 U 2
38 R3 EQU 3
39 R4 QU &
40 R12 EQU 12
41 D

Figure 22. SYSPRINT Listing of the Source Statements Used to Show
‘ SYSTERM Output

92

ASSEMBLER (XF) l1Jf’)NE

L R2,END END OF AREA
IFO188 END 1S AN UNDEFINED SYMBOL
C\ 18 LA R3,A THIS 1S A *
DUMMY COMMENT .
TO SHOW L]

IFO188 A IS AN UNDEFINED SYMBOL
IFO069 EXCESSIVE CONTINUATION CARDS, TWO ALLOWED

A STATEMENT CONTAINING *
TOO MANY CONTINUATION CARDS
25 SR §0,8Q OPEN CODE MODEL STATEMENT *
WITH CONTINUATION CARD
26+ SR B,B OPEN CODE MODEL STATEMENT *
+ WITH CONTINUATION CARD
IFO188 B 1S AN UNDEFINED SYMBOL
IFO188 B 1S AN UNDEFINED SYMBOL
35 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD *

36+1234 DC F*234°

IFO125 INVALID NAME- ILLEGAL EMBEDDED CHARACTER OR NON-ALPHABETIC FIRST CHARACTER
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY =

HIGHEST SEVERITY WAS 8

OPTIONS FOR TH1S ASSEMBLY

ALIGN, ALOGIC, BUFSIZE (STD), NODECK, ESD, FLAG (0) , LINECOUNT (55) , LIST, NOMCALL
NOMLOGIC, NUMBER, NOOBJECT, NORENT, RLD, STMT, NOLIBMAC, TERMINAL, NOTEST, XREF
SYSPARM ()

Figure 23. SYSTERM Listing Produced for the Source Statements Shown in
Figure 22.

Appendix F: The SYSTERM Listing for 0S/VsS 93

Appendix G: Assembler Diagnostic Error Méssages

RN
N
This appendix lists all the diagnostic messages issued by the VS
Assembler. The messages are listed sequentially by statement number.
HOW TO USE THIS SECTION
Once you have found an error message in the diagnostics section of your
listing that you are not sure you understand fully, look up the entry
for the message in this appendix. The entry for the message will give
you the following items:
. The message number and the text of the message.
. Explanation of the message.
L Assembler action in response to the message.
L Programmer response to correct the error.
. Operator response to correct the error (only for certain messages) .
. Severity code assigned to the message.
The following paragraphs describe the messages as they appear in your
listing and explain in detail the various items of each entry in this
appendix.
//< \\
The Message Itself
N

In the diagnostics section of your assembler listing you will f£ind the
following items for each message:

. The number of the statement in error.
° The message identification number.
. The text of the message.

STATEMENT NUMBER: For certain messages the statement number given is
always 0, either because the assembler cannot identify the number of the
statement in which the error occurs when it finds the error, or because
the error cannot be associated with a specific statement. For some of
these messages, the text of the message identifies the macro in which the
error is found.)

For errors found during the editing of a library macro, the
statement number given is that of the last numbered statement in the
source module, unless the LIBMAC and MLOGIC assembler options are in
effect, as described below under “Explanation®.

MESSAGE NUMBER: The message identification number is a unique number
consisting of the letters IF0 followed by a three digit number.

TEXT: The text of the message is not always printed out in full in the
diagnostics section of the listing. However, the corresponding text in
this appendix is always fully printed out.

Certain messages include information in the message text to help you)
localize the error within the statement. In the message text as it I
appears in this section, 'nn' denotes a number and *xxxxxxxx' a Wy
character string. The number identifies a column in the operand of the

9y

statement in error that is close to the column where the error is found.
The character string may represent a symbol or the word MACRO. It is
limited to eight characters, so if the string containing the error is
longer, it is truncated. '

Explanation

This item gives the probable cause or causes of the error message. An
error message is issued at the point where the assembler can no longer
make sense of the text, not necessarily at the point where the real
error occurred. For example, if you want to code the following
instructions 1R 3,5, and leave out the R in the operation code, the
assembler will treat the instruction as a storage-to-register
instruction, and give an error message for the second operand (unless
NOALIGN is specified) .

If errors occur during the editing or expansion of a library macro and
the assembler options specified cause the logic of the macro expansions
not to be printed, error messages for the library macro will be logged
against the last numbered statement in the program. However, if you use
the LIBMAC and MLOGIC assembler options, errors in library macros will
be logged against the statements in error. See the section "Assembler
Options" for a discussion of these options.

Assembler Action

This item tells you how the assembler reacts to the error. A machine
instruction usually causes zeros to be generated in its place in the
object module if a major error occurs anywhere in that instruction. An
assembler instruction is usually printed out but not processed
("processed as a comment®™). Some machine and assembler instructions,
however, are partially processed or processed with a default value. 1In
some cases the assembler terminates the whole assembly.

Programmer Response

This item tells you how to correct the statement in error. It is
assumed that you will detect certain errors when an error message draws
your attention to the statement. Thus, the programmer response for each
message does not tell you to check for keypunching errors or to check
the use of the flagged statement.

Operator Response

This item tells the operator how to correct certain errors. The
operator response is only given for messages that are printed on the
operator's console. The operator will not change your source deck. He
may, however, do such things as change partition or region size, or
correct certain job control errors.

Appendix G: Assembler Diagnostic Error Messages 95

Severity Code

The severity code indicates the seriousness of the error.
codes used by the VS Assembler and their meanings are shown in the
following table.

The severity

Severity Explanation
Code v
4 Minor error; successful program execution is
probable
8 Significant error; unsuccessful program
execution is possible
12 Serious error; unsuccessful program execution
is probable
16 Critical error; normal execution is
impossible
20 Critical error; further assembly impossible,
assembly terminated

The severity code is the return code issued by the assembler when it

returns control to the operating system.

The IBM-supplied cataloged

procedures include a COND parameter on the linkage edit and execution

steps.

return code from the assembler is greater than 8.

RECURRING ERRORS

The COND parameter prevents execution of these steps if the

If an error message recurs after the error situation has been corrected
and there seems to be nothing wrong with the statement, there may be an

error in the assembler.

still persists, do the following before calling IBM:

96

If you suspect that this is the case, make sure

the program is correct and reassemble if necessary. If the problem

If problem is inside a macro, reassemble with option MLOGIC. Use

PRINT assembler instruction to avoid printing of unimportant parts of

the listing, so as to limit the amount of assembler printout.

Have your source program, macro definitions, and associated listings

available.

If a COPY statement was used, execute the IEBPTPCH utility to obtain
a copy of the partitioned data set member specified in the COPY

statement.

Make sure that MSGLEVEL= (1,1) was specified in the JOB statement.

o

C

If IBM central program surport is needed, note that the purpose of the
material to be submitted with an APAR (Authorized Program Analysis
Report) 1is to give the program support team possibility to reproduce the
failure. Since assembler normally processes a lot of statements that
are not visible on a listing, both the source and all macros called by
the source (except standard IBM-supplied supervisor and data management
macros) , and possible COPY-code, should be included in machine-readable

format.

96.1

W

O

e

IFO000

IF0001

IF0002

IFO003

UNDEFINED ERROR CODE IFOxxx

Explanation: An error code has been generated by the assembler
for which no message has been defined. This is caused by a
logical error in the assembler.

Assembler Action: Assembly continues.

Programmer Response: Perform the actionhs described under
"Recurring Errors®™ above before calling IBM.

Severity Code: 16

SYSTEM VARIABLE SYMBOL xxxxxxxx USED AS SYMBOLIC PARAMETER IN
MACRO PROTOTYPE

Explanation: A variable symbol used as a symbolic parameter on
a macro prototype statement has the same characters as a system
variable symbol. The system variable symbols are:

§SYSECT ESYSPARM
§SYSLIST ESYSTIME
§SYSNDX §SYSDATE

Assemblexr Action: Editing of the macro definition is terminated.
All statements in the macro definition are processed as
comments. :

Programmer Response: Redefine the parameter with a variable
symbol other than &€SYSPARM, &SYSDATE, &§SYSTIME, &SYSLIST,
ESYSECT, or &SYSNDX.

Severity Code: 8

SYMBOLIC PARAMETER xxxxxxxx IS DUPLICATED 'IN SAME MACRO
PROTOTYPE

Explanation: Two identical symbolic parameters have been
specified in the same macro prototype statement.

Assembler Action: Editing of the macro definition is terminated.
All statements in the macro definition are processed as
comments. :

Programmer Response: Redefine one of the symbolic parameters
with a variable symbol that is unique to that particular macro
definition.

Severity Code: 8

SYSTEM VARIABLE SYMBOL xxxxxxxx USED IN OPERAND OF GLOBAL OR
LOCAL DECLARATION

Explanation: A system variable symbol has been used in the

operand of a global or local declaration. The system variable
symbols are:

Appendix G: Assembler Diagnostic Error Messages 97

E§SYSECT §SYSPARM

ESYSLIST §SYSTIME s

£SYSNDX §SYSDATE : _ SN
N

Assemblexr Action: The declaration conflicting with the system

variable symbol is ignored. All subsequent references to the

variable symbol in error are treated as references to the

system variable symbol.

Programmer Response: Redefine the variable symbol using
character combinations other than those listed above in the
explanation.

Severity Code: 8

IFO004 GLOBAL OR LOCAL VARIABLE xxxxxxxx DUPLICATES A SYMBOLIC
: PARAMETER IN SAME MACRO DEFINITION

Explanation: A variable symbol that appears in the operand
field of a global or local declaration is identical to a
symbolic parameter defined on the macro prototype earlier in
the macro definition.

Assembler Action: The declaration conflicting with the symbolic
parameter is ignored. All subsequent references to it are
treated as references to the symbolic parameter that it
duplicates.

Programmer Response: Redefine the global or local variable with 2N,
a variable symbol that is unique to the macro definition. wk)w

Severity Code: 8

IF0005 GLOBAL OR LOCAL VARIABLE SYMBOL xxXxxxxx DUPLICATES PREVIOUS
DECLARATION '

Explanation: A global or local variable symbol was declared
twice in the same macro definition or in open code.

Assembler Action: The second declaration of the variable symbol
is ignored. All subsequent references to it are treated as
references to the first declaration.

Programmer Response: If the second declaration is LCLx,

" redeclare it using a variable symbol unique to the macro
definition or to open code. If the second declaration is GBLx,
redeclare it as for ILCLx, but be sure that all declarations of
that global variable elsewhere in the program are identical.

Severity Code: 8

IFO006 UNDEFINED VARIABLE SYMBOL XXXXXXXX

Explanation: A variable symbol has been referenced in this ﬂ/xﬁ
statement that is not a system variable symbol; has not been LY

defined within the macro definition as a symbolic parameter, a

98

i

IF0007

IFO008

local variable, or a global variable; or has not been defined
in open code as a local or global variable.

Assembler Action: The statement is processed as a comment,
unless the error has occurred in a macro instruction parameter.
If the macro instruction parameter contains an undefined
variable symbol, the parameter is assigned the value of a null
string.

Programmer Response: Define the variable symbol as a symbolic
parameter, a local variable, or a global variable; or, if
desired, reference a previously-defined variable symbol of the
appropriate type. This message may be issued if an ampersand
erroneously appears as the first character of an ordinary
symbol, and thus creates an unintended variable symbol.

Severity Code: 8

USAGE OF xXxxxxxxXX IS INCONSISTENT WITH ITS DECLARATION

Explanation: A global or local variable symbol was defined as
dimensioned but was used without a subscript, or a global or
local variable symbol was defined as undimensioned but was used
with a subscript.

Assembler Action: Editing of the statement that contains the

inconsistent usage is terminated, and the statement is processed
as a comment,

Programmer Response: Make the usage of the SET symbol
consistent with its global or local declaration, or make the
declaration of the SET symbol consistent with its usage.

Severxity Code: 8

CIRCULAR OPSYN STATEMENTS

Explanation: The assignment of a synonym in the operand field
of an OPSYN statement to the established mnemonic in the name
field results in the mnemonic being its own synonym. For
example:

ADD OPSYN A

PLUS OPSYN ADD
XYZ OPSYN PLUS

ADD OPSYN XYZ

The final OPSYN statement in the :above sequence is flagged.

Assembler Action: The flagged OPSYN statement is processed as a
comment.

Programmer Response: Remove any OPSYN statement that results in
a circular definition, or alter such an OPSYN statement by
respecifying the synonym or the mnemonic.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 99

IFO009 EDIT DICTIONARY SPACE EXHAUSTED -
Explanation: The work space available is not sufficient to R
contain the dictionaries that are required to edit the macro

definition or open code.

Assembler Action: If a macro definition is being edited, the
remaining statements up to the MEND statement are processed as
comments, and editing resumes. If open code is being edited,
the remaining statements up to the end-of-file are processed
as comments.

Progranmer Response: Increase the size of the region or

partition that is allocated to assembly, or allocate more

dictionary space via the BUFSIZE and/or the WORKSIZE assembler

option. See Appendix E of this manual. .

Severity Code: 12

IFO010 PROGRAMMER MACRO xxxxxxxx HAS BEEN PREVIOUSLY DEFINED

Explanation: The mnemonic on the macro instruction prototype
of a source (programmer) macro duplicates a mnemonic already
defined as a source macro.

Assembler Action: All statements in this macro definition are

processed as corments. All subsequent references to the

mnemonic are treated as references to the first definition e

associated with that op code. {
N

Programmex Response: Provide a unique mnemonic op code for the
flagged macro prototype.

Severity Code: 8

IFO012 ICTL OR OPSYN STATEMENT APPEARS TOO LATE IN THE PROGRAM

Explanation:

e The ICTL statement does not precede all other statements in
the sour ce mwodule; or

e The OPSYN statement does not appear before source macro
definitions and open code statements. The only statements
that can precede an OPSYN statement are: ICTL, ISEQ, TITLE,
PRINT, EJECT, SPACE, OPSYN, COPY (unless the member copied
contains any other than the statements listed here), and
comments statements. :

Assembler Action: The ICTL or OPSYN statement is processed as
a comment.

Programmer Respcnse: Place the ICTL or OPSYN statement at the
beginning of your program as described in the explanation
above.

N
Severity Code: & W

100

IFO013

IFO0 14

IFO016

OPSYN NAME FIELD NOT ORDINARY SYMBOL, OR OPSYN OPERAND FIELD
NOT ORDINARY SYMBOL OR BLANK

Explanation: The name or operand field of an OPSYN instruction
contains more than 8 alphanumeric characters or does not begin
with an alphabetic character.

Assemblexr Action: The OPSYN statement is processed as a comment.

Programmer Response: Correct the invalid name field or operand
field.

Severity Code: 8

INVALID OPCODE IN OPSYN OPERAND OR NAME FIELD

Explanation:

. The name field of an OPSYN instruction with a blank operand
field does not specify a machine instruction operation code,
an extended machine instruction operation code, or an
assembler operation code; or

o The operand field of an OPSYN instruction does not specify
a machine instruction operation code, an extended machine
instruction operation code, or an assembler operation code.

Assembler Action: The OPSYN statement is treated a comment.

Programmer Response: Make sure that the name field contains a
valid operation code, or supply a valid operation code in the
operand. '

Severity Code: 8

JLLEGAL OR INVALID NAME FIELD

Explanation: One of the following errors was detected.

. No name was found where one is required.

. A name was supplied where none is allowed.

e ' An invalid character was found in the name field.
Assembler Action: The statement is processed as.a comment,
unless the error has occurred in the name field of a macro

instruction. If the macro name field parameter contains an
error, the parameter is assigned the value of a null string.

Programmer Response: Supply a name if one is required, omit the
name if one is not allowed, or correct the invalid character.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 101

IFO017

IF0018

IF0019

102

* COMMENTS STATEMENT IS ILLEGAL OUTSIDE MACRO DEFINITION

Explanation: An internal macro comments statement (.¥) appears
outside macro definitions (in open code) .

¢

Assembler Action: The statement is printed.

Programmer Response: Remove the .* comments statement. If you
want a comment, put an * in the begin column and follow it by
the comment.

Severity Code: 4

"MORE THAN 5 ERRORS IN THIS STATEMENT, ERROR ANALYS OF THE

STATEMENT IS TERMINATED

Explanation: The maximum number of error messages issued during
editing to each statement is 5. The sixth error causes this
message. '

Assemblexr Action: Error analysis for this statement is
terminated.

Programmer Response: Correct the indicated errors and ,
reassemble. Any additional errors on this statement will be
detected in the next assembly.

Severity Code: &4

C

INVALID OPERAND IN ICTL OR ISEQ STATEMENT

- Explanation:

(1) The value of one or more operands in an ICTL statement is
incorrect. The begin column must be within columns 1 to 40;
the end column must be within columns 41 to 80 and at least S
columns away from the begin column; and the continue column
must be within columns 2 to 40.

(2) One of the following errors has occurred in an ISEQ
statement:

o The operand has an illegal range; the operand value
cannot fall between the begin and end columns, and the
second operand must not be less than the first.

] The operand field is invalid. The operand field must
contain two valid decimal self-defining terms,
separated by a comma or be blank.

Assembler Action: If a program contains an ICTL error, the
whole program is processed as comments. If one of the ISEQ
errors has occurred, no sequence checking is performed.

Programmer Response: Supply valid operand (s) .

Severity Code: 8

o

C
|

IF0021

IF0022

IF0023

IFO024

INVALID TERM IN OPERAND

Explanation: An invalid term has been used in an expression of
the operand.

Assembler Action: The statement is processed as a comment.

Programmer Response: Make sure the operand is a character
relation, an arithmetic relation, a logical relation, a SETx
symbol, a symbolic parameter, or a decimal self-defining term.

Severity Code: 8

ICTL. STATEMENT IS ILLEGAL IN COPY CODE

Explanation: An ICTL statement appears in code that is inserted
in the program by a COPY instruction.

Assembler Action: The ICTL statement is processed as a comment.

Programmer Response: Make sure the ICTL instruction is not in
code inserted by the COPY instruction. If used, the ICTL
instruction must always be the first instruction in your source
module.

Severity Code: 8

ILLEGAL MACRO, MEND, OR MEXIT STATEMENT - MAY APPEAR ONLY WITHIN
MACRO DEFINITIONS

Explanation: MACRO, MEND, or MEXIT statements are not allowed
in open code. They can be used only in macro definitions.

This message will be issued if an instruction other than ICTL,
ISEQ, OPSYN, TITLE, PRINT, EJECT, SPACE, or COPY appears before
any macro definitions in your program. Of course, any such COPY
instruction cannot copy any other statements than ISEQ, OPSYN,
TITLE, PRINT, EJECT, or SPACE. This message will also be
issued, if an undefined operation code appears before your
macro definitions.

Assembler Action: The illegal MACRO, MEND, or MEXIT statement
is processed as a comment.

Programmer Response: Remove the statement from open code on
place it within a macro definition. Make sure that all your
macro definitions are placed at the beginning, before open code.

Severity Code: 8

UNPAIRED PARENS, OR BLANK FOUND INSIDE PAIRED PARENS
Explanation:

o Unpaired parentheses appear in the operand field; or

o A blank appears inside paired parentheses in the operand

field of a macro instruction. This may be an error in
sublist structure; or

Appendix G: Assembler Diagnostic Error Messages 103

IF0025

IF0026

IF0027

04

o A blank appears inside parentheses of an arithmetic
expression; or

. A term is missing in a logical expression.

Assembler Action: The operand in error is ignored.

Programmer Response: If unpaired parentheses appear, be sure
that there is a right parenthesis for every left parenthesis.
Remove illegal blanks inside paired parentheses.

Severity Code: 8

STATEMENT OUT OF SEQUENCE

Explanation: The input sequence checking specified by the ISEQ
instruction has determined that the flagged statement is out of
sequence.

Assembler Action: The statement is flagged and assembled,
however, the sequence number of the following statements will be
checked relative to this statement and not relative to the
sequence of previous statements.

Programmer Response: Put the statement in the proper sequence.

Severity Code: U

CHARACTERS APPEAR BETWEEN THE BEGIN AND CONTINUE COLUMNS ON
CONTINUATION CARD

Explanation: On a continuation card, the begin column and all
columns between the begin column and the continue column
(usually column 16) must be blank.

Assembler Action: Characters that appear between the begin
column and the continue column are ignored.

Programmer Response: Determine whether the operand started in
the wrong continue column or whether the preceding card
contained an erroneous continue punch in column 72.

Severity Code: U

ICTL, ISEQ, MACRO, OR OPSYN STATEMENT APPEARS IN MACRO
DEFINITION

Explanation: One of the specified operations is used within a
macro definition, which is illegal.

Assemblexr Action: The illegal operation is ignored and the
statement is processed as a comment.

O

IF0028

IF0029

IF0030

Programmer Response: Remove all ICTL, ISEQ, MACRO, and OPSYN
statements from within macro definitions. Make sure your ICTL
and OPSYN instructions precede your macro definitions, and that
each macro definition ends with a MEND statement.

Severity Code: 8

ILLEGAL PROTOTYPE KEYWORD PARAMETER DEFAULT VALUE

Explanation: A variable symbol is used as the default value of
a keyword parameter.

Assembler Action: The statement is ignored.

Programmer Response: Supply a valid default value for the
keyword parameter.

Severity Code: 8

xxxxxxxx IS AN ILLEGAL OPERAND IN A GLOBAL OR LOCAL DECLARATION

Explanation: In a global (GBLx) orxr local (LCLx) SET symbol
declaration, the indicated operand does not consist of one or
more variable symbols that are separated by commas and
terminated with a blank.

Assembler Action: The attempted global or local SET symbol
declaration is processed as a comment. Recovery is made in
certain circumstances and some valid variable symbols in the
declaration are recognized and defined correctly.

Programmer Response: Supply the operand with valid variable
symbols and delimiters. Check all global and local
declarations. '

Severity Code: 8

DECLARED DIMENSION OF xxxxxxxx IS ILLEGAL

Explanation: The declared dimension, which appears in the error
message, must be a nonzero, unsigned decimal integer, not
greater than 32,767, and enclosed in parentheses.

Assembler Action: If the declared dimension was a decimal
self-defining term greater than 32,767, a default dimension of
32,767 is assigned to the variable- symbol. In all other cases,
the variable symbol declaration is ignored.

Programmer Response: Supply a valid dimension.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 105

IF0031

IF0032

IF0033

IF0035

106

SET STATEMENT NAME NOT A VARIABLE SYMBOL, OR SET STATEMENT NAME
INCONSISTENT WITH DECLARED TYPE '

Explanation: (1) The name field of a SET statement does not
consist of an ampersand followed by from 1 to 7 alphameric
characters, the first of which is alphabetic.

(2) The symbol does not match its previously declared type.

For instance, the symbol might have been previously defined as
LCLA, but the flagged statement may have tried to assign a SETC
character string to it. ;

(3) A system variable symbol appears in the name field of a
SETx instruction. The system variable symbols are &SYSECT,
§SYSLIST, &SYSNDX, ESYSPARM, ESYSDATE, and &§SYSTIME.

Assembler Action: The flagged statement is processed as a
comment.

Programmer Response: Assign a valid variable symbol to the name
field of the SET statement (the symbol must be previously
defined as a global or local variable) , or be sure that the
usage of the symbol corresponds to its previously declared type.

Severity Code: 8

Xxxxxxxx APPEARS IMPROPERLY IN THE OPERAND OF THIS STATEMENT
Explanation: The specified operand part is invalid.

Assembler Action: The statement is processed as a comment.

Programmer Response: Check the syntax required for the operand
field of this statement, and supply a valid operand.

Severity Code: 8

xxxxxxxx IS AN INVALID LOGICAL OPERATOR

Explanation: The specified character string was found where a
logical operator (AND or OR) was expected.

Assemblex Action: The statement is processed as a comment.

Programmer Response: Use eithexr AND or OR, as appropriate, for
the logical operator.

Severity Code: 8

QUOTES NOT PAIRED, OR ILLEGAL TERMINATION OF QUOTE STRING

Explanation: The quotes in the operand field of this statement
are unpaired, or the string is illegally terminated.

Assembler Action: The statement is processed as a comment.

‘/ RN
N

N

w4

IF0036

IF0037

IFO038

Programmer Response: Supply any missing quotes.

&

Severity Code: 8

ATTRIBUTE REFERENCE FOR xxxxxxxx IS INVALID

Explanation: The flagged statement has attempted to reference a
symbol that is not a valid ordinary or variable symbol. The
attributes referenced were one or more of the following: type
(T*) , length (L'), scaling (S*'), integer (I'), count (K'), and
number (N') .

Assembler Action: The attribute referenced is ignored, and/or
the statement is ignored, and/or default values for type,
length, and scaling attributes are supplied.

Programmer Response: Determine if a clerical error was made in
coding either the reference or the definition of the symbol that
appears in the message text; or supply a valid ordinary or
variable symbol where necessary.

Severitv Code: 8

xxxxxxxx IS AN ILLEGAL SUBSCRIPT

Explanation: The subscript that appears in the message text
either is not enclosed by paired parentheses, or is an illegal
subscript.

Assembler Action: The statement that contains the illegal
subscript is processed as a comment.

Programmer Response: Be sure the parentheses are paired, and
that a valid subscript appears inside them.

Severity Code: 8

xxxxxxxx IS AN INVALID SELF-DEFINING TERM

Explanation: The characters specified in the message are
invalid in the operand field of a binary (type B), character
(type C) , decimal, or hexadecimal (type X) self-defining ternm.

Assembler Action: The statement that contains the invalid
self-defining term is processed as a comment.

Programmer Response: Make sure that the characters used for a
self-defining term are consistent with the type of term.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 107

IF0039

IFO042

IFOO0U43

108

xxxxxxxx IS AN INVALID VARIABLE SYMEOL

Explanation: The specified symbol does not consist of an
ampersand followed by from 1 to 7 alphameric characters, the
first of which is alphabetic.

Assembler Acticn: The statement that contains the invalid
variable symbol is processed as a comment. If the statement is a
macro prototype statement, all statements in the macro definition
are treated as comments.

Programmer Respcnse: Supply a valid variable symbol, or check
that a single ampersand is not used where a double ampersand is
needed.

Severity Code: 8

PARAMETER IN MACRO' PROTOTYPE OR MACRO INSTRUCTION EXCEEDS 255
CHARACTERS '

Explanation: A parameter value that appears in the operand field
of either a macro prototype or a macro instruction exceeds 255
characters in length.

Assembler Action:

e If the pertinent parameter is a sublist, assembler tries to
process the statement in its entirety.

e If the parameter is a suboperand, or any other independent
parameter, it is truncated to 255 characters and the rest of
the statement is processed as comments.

Programmer Response: Limit the parameter to 255 characters or
separate it into two or more parameters.

Severity Code: &

MACRO INSTRUCTION PROTOTYPE STATEMENT HAS INVALID OP CODE

Explanation:

e The operation code of a macro prctotype statement is
previously defined as the operation code of a machine,
assembler, or macro instruction; or

e The operation code of a macro prototype statement is not a
valid ordinary symbol; that is, it does not consist of a
letter, followed by 0 to 7 letters or digits or both.

Assembler Action: The entire macro definition is processed as
comments.

Programmer Respcnse: Supply a valid ordinary symbol that does not
conflict with any machine, assembler, or macro instruction
operation code.

Severity Code: 8

TN

NV

IFO046

IFOOU47

STATEMENT COMPLEXITY EXCEEDED

Explanation: The expression evaluation work area has overflowed

‘because the expression is too complex. The complexity of an

expression is determined by the number of nested operators and
levels of parentheses. Up to 35 operators and levels of
parentheses are allowed. For logical expressions, this total
allows 18 unary and binary operators, and 17 levels of
parentheses. For arithmetic expressions in conditional
assembly, the total allows 24 unary and binary operators, and
11 levels of parentheses. '

Assembler Action: The statement is processed as a comment.

Programmer Response: Simplify the expression to the limits

described in the explanation.

Severity Code: 8

UNEXPECTED END OF FILE ON SYSTEM INPUT (SYSIN)

Explanation:

. A continuation record was expected when an end-of-file
occurred on SYSIN (the source program ended); or

U] End-of-file immediately follows a REPRO statement; or
. End-of-file occurs before an END card has been read.

Assembler Action: An END statement is generated and assembly
continues.

Programmer Response: Determine if any statements were omitted
from the source program.

Severity Code: 4

108.1

-y,

IFOO0us8

IFO0U9

ICTL STATEMENT HAS NO OPERAND

Explanation: The ICTL statement requires an operand, but none
is present.

Assembler Action: The entire source module is processed as
comments.

Programmer Response: Supply from 1 to 3 decimal self-defining
terms to indicate respectively the begin, end, and continue
columns. If the ICTL statement is omitted, columns 1, 71, and
16, respectively, are the default values.

Severity Code: 8

COPY STATEMENT OPéRAND NOT A VALID ORDINARY SYMBOL

Explanation: The operand of a COPY statement is not a symbol of
1 to 8 alphameric characters, the first of which is alphabetic.

Assembler Action: The COPY request is processed as a comment.

Programmer Response: Supply a valid ordinary symbol in the
operand field.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 109

IF0050

IFO051

IF0052

IFO053

110

COPY STATEMENT DOES NOT HAVE AN OPERAND.
Explanation: No operand found on this COPY statement.

Assemblex Action: The statement is processed as a comment.

Programmexr Response: Place the name of a member to be copied in
the operand field, or remove the COPY statement.

Severity Code: 8

UNEXPECTED END OF DATA ON SYSTEM LIBRARY (SYSLIB)

Exprlanation: An end-of-file occurred on the input from a system
library before a MEND statement terminating a macro definition
was encountered.

Assembler Action: The missing MEND statement is generated.

Programmer Response: Determine if the MEND statement was
omitted from the library macro, or if the library contains an
otherwise incomplete macro definition, or if a macro call has
been made to a non-macro definition.

Severity Code: U

UNARY OPERATOR NOT A PLUS OR MINUS SIGN

Explanation: An operator other than a plus or minus sign
appears as a unary operator. Except for unary operators, which
are limited to plus and minus signs, only one operator can
appear between two terms.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply the missing term or a correct
operator.

Severity Code: 8

'OP CODE NOT FOUND ON FIRST OR ONLY CARD

Explanation: The complete statement name (if one is used) and
the operation code, each followed by a blank, do not appear
before the continuation indicator column on the first card of a
continued statement.

Assembler Action: The entire statement is processed as a
comment .

Programmer Response: Make sure that both the name and operation
code of the statement appear on the first card. Check for
syntactic errors.

Severity Code: 8

P Y

\JJ

O

IFO054

IFO055

IF0057

IFO058

INVALID OPERATION CODE

Explanation:

e The operation code specified is not a valid ordinary symbol;

or ,
. A variable symbol in the operation field is invalid; or

. The resulting operation code after substitution with or
without concatenation is not a valid ordinary symbol.

Assembler Action: The statement is processed as a comment.

Programmer Response: Make sure that ordinary or variable
symbols used in the operation field are valid. If you use
variable symbols with or without concatenation, make sure the
resulting symbol is a valid ordinary symbol.

Severity Code: 8

MEND STATEMENT GENERATED

Explanation: An end-of-file occurred on the input from the
system input device (SYSIN) or the system library (SYSLIB)

before a MEND statement terminating a macro definition was
encountered.

Assembler Action: A MEND statement is generated.

Programmer Response: Supply a MEND statement to terminate the
macro definition.

Severxrity Code: 8

DUPLICATION FACTOR xxxxxxxx IN SETC EXPRESSION NOT TERMINATED
BY A RIGHT PARENTHESIS

~ Explanation: A SETC operand begins with a left parenthesis, but

a comma, a period, or a blank appears before the closing right
parenthesis.

Assemblexr Action: The statement is processed as a comment.

Programmer Response: Supply a right parenthesis.

Severity Code: 8

NO ENDING QUOTE ON SETC EXPRESSION

Explanation: The character expression in the operand field of a
SETC statement must be enclosed in quotes. The statement ends
before a delimiting quote.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply any missing quotes.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 111

IFO059

IF0060

IF0061

IF0062

112

INVALID TERM IN LOGICAL EXPRESSION

Explanation: One of the terms in the logical expression is
invalid in the context.

Assembler Action: The statement is processed as a comment.

Programmer Response: Make sure that the terms in the logical
expression are valid.

Severity Code: 8

END STATEMENT GENERATED
Explanation: One of two errors occurred.

(1) End-of-file occurred on the system input device (SYSIN)
before an END card was read.

(2) The ACTR limit was exceeded in open code.

Assembler Action: An END statement is generated.

Programmer Response:
(1) Supply a valid END statement; or
(2) Either correct the conditional assembly loop in open
code so that the ACTR limit is not exceeded, or set the
ACTR limit in open code to a higher value.

Severity Code: 4

COPY NEST GREATER THAN FIVE

Explanation: The maximum limit of five nested levels of COPY
statements is exceeded.

Assembler Action: COPY processing terminates.

Programmex Response: Eliminate excessive levels of COPY
statements.

Severity Code: 8

REQUIRED OPERAND FIELD MISSING

Explanation: This statement requires an operand in the operand
field and none is present.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply the missing operand.

Severity Code: 8

~.

\%t“ y

PR

",

IFO064

IFO065

IFO066

INTERLUDE DICTIONARY SPACE EXHAUSTED

Explanation: The work space available is not sufficient to
contain the dictionaries required to build either

(1) The skeleton dictionary for a macro definition or all of
open code, or

(2) The ordinary symbol reference dictionary.
This message is always logged against statement number 0.

Assembler Action: If a macro is being processed, building of the
skeleton dictionary for that macro definition is terminated and
the macro will not be expanded. If open code is being
processed, the building of the open code skeleton dictionary is
terminated and the program is processed as comments. If space
for the ordinary symbol attribute reference dictionary is
exhausted, the building of it is abandoned.

Programmer Response: Within the partition, increase the size of
the region that is allocated to assembly, or allocate more of
the partition to dictionary space via the BUFSIZE and/or the
WORKSIZE assembler option (see Appendix E).

Severity Code: 12

EXPRESSION 2 OF EQU SYMBOL xxxxxxxx NOT IN RANGE 0-65535
Explanation: The value of the expression specified in the second
operand of the EQU instruction where this symbol is defined is
not in the range 0-65535.

This message is always logged against statement number O.
Assembler Action: The length attribute of the symbol is set to 1
Programmer Response: Make sure the value of the second operand

of the EQU instruction is in the range 0-65535, or delete the
second operand.

Severity Code: 8

EXPRESSION 3 OF EQU SYMBOL xxxxxxxx NOT IN RANGE 0-255
Explanation: The value of the expression specified in the third
operand of the EQU instruction where this symbol is defined is
not in the range 0-255.

This message is always logged against statement number 0.

Assembler Action: The type attribute of the symbol is set to U.

Programmer Response: Make sure the value of the third operand of
the EQU instruction is in the range 0-255, or delete the third
operand.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 113

IF0067

IFO068

IFO069

IFO070

DECLARED DIMENSION FOR GLOBAL VARIABLE XXXXXXXX IN XXXXXXXX
XXXxxxxx IS INCONSISTENT o

Explanation: The declared dimension of a global variable e
defined in a macro definition or in open code is not consistent
with the declared dimension of the same global variable in

another macro definition or in open code.

This message is always logged against statement number 0. The
message text identifies the macro (or open code) where the
error is found.

Assembler Action: All references to the globalyvariable in the
macro definition or in open code where the inconsistency was
detected result in a null (zero) value.

Programmer Response: Be sure that all definitions of a given
global variable have the same declared dimension.

Severity Code: 4

COPY MEMBER xxxxxxxx NOT FOUND IN LIBRARY

Explanation: The COPY member shown in the message text was not
found in the library.

Assembler Action: The COPY statement is processed as a comment.

Programmer Response: Determine whether the library member name

is misspelled or whether an incorrect member name was .
referenced. Make sure the proper macro library is assigned in |]
your JCIL statements. N

Severity Code: 8

TOO MANY CONTINUATION CARDS, TWO ALLOWED

Explanation: Only two continuation cards are allowed for each
statement, except for macro definition prototype and macro call
statements.

Assembler Action: Excess continuation cards are processed as
comments.

Programmer Response: Restructure the statement so that it can
be contained on a total of three cards. Extensive remarks may
be recorded as comment statements by coding an asterisk in
column 1 and eliminating the continuation indicators.

Severity Code: 4

SUBSTRING NOTATION IS NOT DELIMITED BY COMMA OR RIGHT

 PARENTHESIS

Explanation: Two SETA expressions used in substring notation
are not separated by a comma or enclosed in parentheses. 4/\\

Assembler Action: The statement is processed as a comment.

IFO073

IFOO074

IFO076

Programmer Response: Supply the missing delimiter, or check for
other syntax errors that make this appear as substring notation.

Severity Code: 8

AGO OR AIF OPERAND NOT A SEQUENCE SYMBOL

Explanation: The symbol in the operand field of an AIF or AGO
statement is not a period (.) followed by from 1 to 7
alphameric characters, the first of which is alphabetic.

Assembler Action: The statement is processed as a comment.

Programmexr Response: Supply a valid sequence symbol.

Severity Code: 8

SEQUENCE SYMBOL XXXXxXxxX IS MULTIPLY DEFINED IN XXXXXXXX
XXXXXXXX

Explanation: The sequence symbol in the name field has been
used in the name field of a previous statement within the same
macro definition or open code.

This message is always logged against statement number 0. The
message text identifies the macro (or open code) where the
error is found.

Assembler Action: All definitions of the sequence symbol after
the first one are ignored. All references to the sequence
symbol are treated as references to the first definition.

Programmer Response: Provide unique sequence symbols for the
macro definition or open code.

Severity Code: 4

SEQUENCE SYMBOL xxxxxxxX IS UNDEFINED IN XXXXXXXX XXXXXXXX

Explanation: A sequence symbol appears in the operand of an AIF
or AGO statement, but does not appear in the name field of
another statement in the same macro definition or open code.

This message is always logged against statement number 0. The
message text identifies the macro (or open code) where the
error is found.

Assemblexr Action: All statements which reference the undefined
sequence symbol are processed as comments.

Programmer Response: Define the sequence symbol at the
appropriate point, or reference a sequence symbol that is
already defined.

Severity Code: 4

Appendix G: Assembler Diagnostic Error Messages 115

IFO078

IFO080

IFO081

116

UNDEFINED OP CODE

Explanation: The mnemonic operation code of this statement does
not correspond to any of the following: -

o a machine instruction operation code

an extended machine instruction operation code

an assembler instruction operation code

a macro instruction operation code

an operation code that has been defined

by an OPSYN instruction.

This message is also issued for operation codes that have been
deleted by OPSYN instructions.

e o 0 O

Assembler Action: The statement is treated as a comment. If
the statement appears before open code, all statements
following it are considered to belong to open code. This means
that any macro definitions following the error are treated as
errors.

Programmer Response: Either make sure you use a valid mnemonic
operation code, or make sure that the proper OPSYN instructions
are included in your program.

Severity Code: 8

ATTRIBUTE REFERENCE TO UNDEFINED SYMBOL

Explanation: The symbol specified in a length (L'), scaling
(S') , or integer (I') attribute reference is either an
undefined symbol or a symbolic parameter (or a §SYSLIST -~
specification) representing an undefined symbol.

Assembler Action:

e The length attribute, if specified, is set to 1.

. The integer or scaling attribute, if specified, is set to 0.

Programmer Response: Make sure the symbol is defined.

Severity Code: 4

DECLARED TYPE FOR GLOBAL VARIABLE XXxxXXXXX IN XXXXXXXX XXXXXXXX
IS INCONSISTENT

Explanation: The type (GBLA, GBLB, or GBLC) of a global
variable declared in a macro definition or in open code is not
consistent with the type of the same global variable declared
in another macro definition or in open code.

This message is always logged against statement number 0. The
message text identifies the macro (or open code) where the
error is found ,

Assembler Action: All references to the global variable in the
macro definition or in open code where the 1ncon31stency was
detected result in a null (zero) value.

Programmer Response: Make all declarations of the same global
variable consistent. B

IFO085

IF0087

IFO088

IF0089

Severity Code: 4

MACRO HEADER MISSING, MACRO NOT EXPANDABLE

Explanation: The first statement of a library macro definition
was not a MACRO statement, and the search for the macro
definition is terminated.

Assembler Action: The macro call is processed as a comment.

Programmer Response: Be sure that the library macro definition
begins with a MACRO statement. Rerun the macrocall with
assembler option LIBMAC on to get a complete diagnostic display
of the macro definition.

Severity Code: 8

INVALID MACRO DEFINITION PROTOTYPE, MACRO NOT EXPANDABLE

Explanation: A comment statement appears immediately after a
macro header (MACRO statement) .

Assembler Action: All the statements of the macro definition
are processed as comments.

Programmer Response: Make sure that the statement immediately
following the macro header is a macro prototype statement. No
comments or any other statements are permitted between the macro
header and the prototype of a macro definition. Rerun the
macrocall with assembler option LIBMAC on to get a complete
diagnostic display of the macro definition.)

Severity Code: 8

LIBRARY MACRO PROTOTYPE DOES NOT MATCH MEMBER NAME, MACRO NOT
EXPANDABLE.

Explanation: The mnemonic operation code in the macro prototype
in a library macro definition does not match the entry in the
macro library.

Assemblexr Action: The macro instruction is processed as a
comment.

Programmer Response: Enter the macro definition in the library
under the same name as the mnemonic op code that appears on the
macro prototype.

Severity Code: 8

GENERATION-TIME DICTIONARY SPACE EXHAUSTED

Explanation: The workspace available is not sufficient to
contain the dictionaries required to expand the macro, to extend
a SETC variable, or to contain the basic global dictionaries.

Assembler Action: If the global dictionary workspace is
insufficient, the text is processed as comments. If there is

Appendix G: Assembler Diagnostic Error Messages 117

IFO090

IFO091

IFO092

insufficient space to extend the SEIC variable, expansion of
the macro that contains the variable is terminated. If the
space for macro definition dictionaries is insufficient, calls
to those macros are not expanded.

Progranmer Response: Within the partition, increase the size
of the region that is allocated to assembly, or allocate more
of the partition to dictionary space via the BUFSIZE and/or
the WORKSIZE assembler option (see Appendix E).

Severity Code: 12

UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING CONDITIONAL
ASSEMBLY '

Explanation: A sequence symbol referenced in the operand field
of this statement is undefined in the macro definition or open
code. This statement has been encountered during conditional
assembly.

Assembler Action: The statement is processed as a comment.

Programmer Response: Define the sequence symbol at an
appropriate point, or reference a sequence symbol that is
already defined.

Severity Code: &

KEYWORD PARAMETER xxxxxxxx IS DUPLICATED ON SAME MACRO CALL

Explan tion: A keyword parameter has appeared more than once
on the same macro instruction.

Assembler Action: The last value assigned to the parameter is
used, the other value (s) are ignored.

Programmer Resgponse: Define only one value for each parameter.

Severity Code: 8

KEYWORD PARAMETER xxxxxxxx UNDEFINED IN MACRO DEFINITION

Explanation: A keyword parameter has been used on the macro
instruction that is not a keyword parameter on the macro
prototype, or an equal sign not surrounded by quotes is found
in a positional parameter. .

Assemblex Action: The extra keyword parameter on the macro
instruction is ignored.

Programmer Respcnse:

1. Delete the keyword parameter and its value from the macro
instruction; or : ,

2. make the keyword parameter on the macro call correspond to
one of the keyword parameters on the macro prototype; or

)
_J

AN

LW

O

IFO100

IFO101

IFO102

3. define the keyword parameter in the operand field of the
macro prototype; or

4. if you want to include an equal sign in a positional
parameter, enclose the parameter within single quotes.

Severity Code: 8

DICTIONARY SPACE EXHAUSTED, NO SKELETON DICTIONARY BUILT

Explanation:

e If the message is given for a macro definition or for open
code: no available space is left to build the skeleton
dictionary, after space has been used for the definition of
global symbols, sequence symbols, or referenced ordinary
symbols.

e If the message is given for a macro instruction: dictionary
space was exhausted during the editing of a library macro.

Assembler Action: The macro is not considered defined, and any
calls to it are processed as comments. If the error occurs in
open code, the entire assembly is processed as comments.

Programmer Respcnse: Within the partition, increase the size
of the region that is allocated to assembly, or allocate more
of the partition to dictionary space via the BUFSIZE and/or
the WORKSIZE assembler option (see Appendix E).

Severity Code: §

GENERATED OP CODE INVALID OR UNDEFINED

Explanation: The operation code created by substitution is not
a valid ordinary symbol or is not a valid machine, assembler,
or macro instruction, or defined by an OPSYN instruction.

Assembler Action: The generated statement is treated as a
comment.

Programmer Response: Be sure that substitution results in a
valid ordinary symbol that consists of from 1 to 8
alphanumeric characters, the first of which is alphabetic, and
that the resulting symbol is a defined operation code.

Severity Code: &

GENERATED OP CODE IS BLANK

Explanation: The op code created by substitution contains no
characters, or from 1 to 8 blank characters.

Assembler Action: The generated statement is processed as a
comment.

Appendix G. Assembler Diagnostic Error Messages 119

IFO104

IFO105

IFO107

120

Programmer Response: Be sure that substitution results in a
valid ordinary symbol that consists of from 1 to 8 alphameric
characters, the first of which is alphabetic. -

Severity Code: 8

MORE THAN ONE TITLE STATEMENT NAMED

Explanation: This is at least the second TITLE statement that
contains something other than a sequence symbol or blanks in
the name field.

Assembler Action: The name field is ignored.

Programmer Response: Be sure that the name fields of all but
one TITLE statement contain only sequence symbols or blanks.

Severity Code: 4

GENERATED FIELD EXCEEDS 255 CHARACTERS

Explanation: As a result of substitution, a character string
that is longer than 255 characters has been generated.

Assembler Action: The first 255 characters are used.

Programmer Response: Limit the generation of any character
string to 255 characters, minus the number of non-substituted NV
characters. (Limit substitution in the name and operation

fields to 8 characters, in the operand field to 255 characters.)

Severity Code: 8

CHARACTER STRING USED AS AN ARITHMETIC TERM EXCEEDS 10
CHARACTERS

Explanation: A character string used in a SETA expression or in
an arithmetic relation in a SETB expression is longer than 10
characters. Ten is the maximum number of characters permitted
in a decimal self-defining term.

Assembler Action: The character string is replaced by an
arithmetic value of zero.

Programmer Response: Be sure that all character strings used as
described in the explanation are from 1 to 10 decimal digits
with a value in a range of 0 to 2,147,483,647. Also be sure
that the values of all variables that contribute to the
generation of the character string are valid for their type.

Severity Code: 8

N
Ny

IFO108 CHARACTER STRING USED AS AN ARITHMETIC TERM CONTAINS NON-DECIMAL
CHARACTERS

Explanation: A character string used in a SETA expression or in
an arithmetic relation in a SETB expression contains characters
other than 0 through 9.

Assemblexr Action: The character string is replaced by an
arithmetic value of zero.

Programmer Response: Be sure that all character strings used in
a SETA expression or as an arithmetic relation in a SETB
expression contain from 1 to 10 decimal digits with a value in
the range of 0 to 2,147,483,647. Also be sure that the values
of all variables that contribute to the generation of the
character string are valid for their type.

Severity Code: 8

IFO109 CHARACTER STRING USED AS ARITHMETIC TERM IS A NULL STRING

Explanation: A character string used in a SETA expression or in
an arithmetic relation in a SETB expre551on is zero characters
in length.

Assembler Action: The character string is replaced by an
arithmetic value of zero.

Programmer Response: Be sure that all character strings used in
an arithmetic context are from 1 to 10 decimal digits with a
value in a range of 0 to 2,147,483,647. Also make sure that
the values of all variables that contribute to the generation
of the character string are valid.

Severity Code: 8

IFO110 ARITHMETIC OVERFLOW IN INTERMEDIATE RESULT OF SETA EXPRESSION

Explanation: During the evaluation of a SETA expression, an
intermediate value was produced that was outside the range of
-231 to 231-1.

Assembler Action: The intermediate result is replaced by an
arithmetic value of zero.

Programmer Response: Be sure that the values of all variables
that contribute to the intermediate result are valid. No
expression should ever attempt a value outside the range of
-231 to 231-1. Overflow may be avoided if you adjust the
sequence of expression evaluation, or if you separate
components of the expression and evaluate them individually
{(perhaps by additional SET statements) before combining them.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 121

IFO111

IFO112

IFO113

IFO114

122

SUBSCRIPT EXPRESSION HAS A ZERO OR NEGATIVE VALUE

Explanation: A term or a SETA expression used as the subscript
on a dimensioned global or local variable symbol results in a
zero or negative value. ' '

O

Assembler Action: Any such reference to ‘the dimensioned
variable results in a null (zero) value.

Programmer Response: Be sure that the values of all the
variables that contribute to the subscript are valid.
Expressions that are used as subscripts must have a value in
the range of 1 through the declared dimension of the global or
local variable. .A zero subscript is allowed only on the system
variable &SYSLIST. : :

Severity Code: 8

SUBSCRIPT EXPRESSION EXCEEDS MAXIMUM DIMENSION

Explanation: A term or a SETA expression used as the subscript
on a dimensioned global or local variable results in a value
greater than the declared dimension of the variable.

Assemblexr Action: Any such reference results in a null (zero)
value.

Programmer Response: Be sure that all terms and variables that
contribute to the subscript have valid values. Be sure that a
term or a SETA expression used as a subscript has a value in A”“S
the range of 1 through the declared dimension of the global or W@y

“local variable.

Severity Code: 8

ILLEGAL REFERENCE MADE TO A PARAMETER THAT IS A SUBLIST

Explanation: A reference has been made in a SETA or SETB
expression (i.e., in an arithmetic context) to a parameter that
is a sublist.

Assemblexr Action: The reference to the parameter results in an
arithmetic value of zero.

Programmer Response: Check to see that the proper parameter is
being referenced. Be sure that an appropriate value is
assigned to a parameter that is referenced in a SETA or SETB
expression. Check for a missing subscript.

Severity Code: 8

NEGATIVE DUPLICATION FACTOR IN CHARACTER STRING

Explanation: A term or a SETA expression that is used as the
duplication factor in a SETC operand results in a negative

value. @;ﬁ“
Assembler Action: The duplication factor is set to an V
arithmetic value of zero.

e

IFO115

IFO116

IF0117

Programmer Response: Be sure that any term or expression used
as a duplication factor has a positive value, and that the
values of all variables that contribute to the duplication
factor are valiad.

Severity Code: 8

FIRST EXPRESSION IN SUBSTRING NOTATION HAS ZERO OR NEGATIVE
VALUE

Explanation: A term or SETA expression that is used to specify
the starting character for a substring operation has a zero or
negative value.

Assemblexr Action: The assembler assigns the value of null to
the substring.

Programmer Response: A term, a SETA expression, or a
combination of variables used to produce the first expression
in a substring notation must result in a positive, nonzero
value, not exceeding the length of the character string.

Severity Code: 8

SECOND EXPRESSION IN SUBSTRING NOTATION HAS NEGATIVE VALUE

Explanation: A term or SETA expression that is used to specify
the number of characters affected by a substring operation has
a negative value.

Assggbler Action: The value of the second expression of the
substring notation is set to 0, that is, the assembler assigns
a value of null to the substring.

Programmer Response: A term, a SETA expression, or a
combination of variables used to produce the second expression
in a substring notation must result in a non-negative value.

Severity Code: U

FIRST EXPRESSION IN SUBSTRING NOTATION EXCEEDS THE LENGTH OF
THE STRING

Explanation: A term or SETA expreésion that specifies the
starting character for a substring operation specifies a
character beyond the end of the string.

Assembler Action: The assembler assigns the value of null to
the substring. :

Programmer Response: Make sure the term, SETA expression, or
combination of variables used to produce the first expression
in a substring notation results in a value in the range of 1
through the length of the character string.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 123

IFO118

IFO119

IF0120

124

ACTR LIMIT HAS BEEN EXCEEDED

Explanation: The number of AIF and AGO branches within the text
segment exceeds the value specified in the ACTR instruction or
the conditional assembly loop counter default value.

Assembler Action: If a macro is being expanded, the expansion
is terminated. If open code is processed, all remalnlng
statements are processed as comments.

.Programmer Response: Correct the conditional assembly loop that

caused the ACTR limit to be exceeded, or set the ACTR value to
a higher number.

Severity Code: 8

ILLEGAL TYPE ATTRIBUTE REFERENCE

Explanation: A type attribute reference is made to a symbol
defined by an EQU instruction with an invalid third operand.

Assembler Action: The type attribute value is set to U.

Programmer Response: Correct the third operand on the EQU

‘instruction. It must be a self-defining term in the range

0-255.

Severity Code: 4

ILLEGAL LENGTH ATTRIBUTE REFERENCE

Explanation:
. A length attribute reference specifies a SETx symbol; or

o A length attribute reference specifies a symbolic parameter
" (or a ESYSLIST representation) that does not represent an
ordinary symbol; or

° The ordinary symbol referenced by a length or integer
attribute reference is defined by an EQU instruction, and
the value of the second operand of that instruction is not
in the range 0-65535; or

L4 The ordinary symbol referenced by a length or integer
reference has a type attribute of U; or

o The ordinary symbol referenced by a length or ‘integer
attribute reference is defined in a DC or DS instruction,
and the instruction contains a length modifier that is not
a self-defining term.

Assembler Action: The length attribute is set to 1.

Programmer Response: Review the use of the length attribute and
recode.

Severity Code: 4

IFO123

IFO124

IFO125

ILLEGAL SCALE ATTRIBUTE REFERENCE

Explanation:
. A scaling attribute reference specifies a SETx symbol; or

. A scaling attribute reference specifies a symbolic
parameter (or a §SYSLIST representation) that does not
represent an ordinary symbol; or

o A scaling attribute reference is made to an ordinary symbol
" whose type attribute is not H, ¥, G, E, D, L, X, P, or Z; or

o The ordinary symbol referenced by a scaling or integer
attribute reference is defined in a DC or DS instruction
containing a scaling modifier that is not a self-defining
term.

Assembler Action: The scale attribute is set to 0.

Programmer Response: Review the use of the scale attribute and
recode.

Severity Code: U

ILLEGAL INTEGER ATTRIBUTE REFERENCE

Explanation:

. An integer attribute reference specifies a SETx symbol; or

. An integer attribute reference specifies a symbolic
parameter (or a &§SYSLIST representation) that does not

represent an ordinary symbol; or

. An integer attribute reference is made to an ordinary symbol
* whose type attribute is not H, F, G, E, D, L, K, P, or Z.

Assembler Action: The integer attribute is set to 0.

Programmer Response: Review the use of the integer attribute
and recode.

Severity Code: &4

INVALID NAME - ILLEGAL EMBEDDED CHARACTER OR NON-ALPHABETIC

- FIRST CHARACTER

Explanation:

e The symbol generated in the name field does not begin with
an alphabetic character or it contains a special character
or an embedded blank after substitution; or

. for the TITLE instruction: the name field contains a
special character. '

Assembler Action: The name field is ignored.

Programmer Response: Be sure that the symbol generated in the
name field conforms to the rules for forming valid ordinary

Appendix G: Assembler Diagnostic Error Messages 125

IFO126

IF0127

IFO128

126

symbols, or is a valid TITLE name field entry. Also check to
make sure that the values of all variables that contribute to
the generation of the symbol in the name field are valid.

Severity Code: "8

MORE THAN 5 ERRORS IN THIS STATEMENT, PROCESSING OF THE
STATEMENT IS TERMINATED

Explanation: Six or more errors were detected in processing
this statement. The maximum number of error messages issued by
the processor to each statement is five.

Assembler Action: The sixth error causes this message to be
issued, and messages are not issued for any further errors in
this statement.

Programmer Response: Correct the indicated errors and check
carefully for errors beyond the point indicated by the fifth
error message. Assemble again. Any additional errors will be
located in the next assembly.

Severity Code: 8

VALUE OF CHARACTER STRING USED IN ARITHMETIC CONTEXT EXCEEDS
2,147,483,647

Explanation: A character string used in a SETA expression or in
an arithmetic relation in a SETB expression exceeds a value of
2,147,483,647, which is the maximum value allowed for a decimal
self-defining term. :

Assembler Action: The character string is replaced by an

arithmetic value of zero.

Programmer Response: Be sure that all character strings used in
an arithmetic context are from 1 to 10 decimal digits and have
a value in the range of 0 to 2,147,483,647. Be sure that the
values of all variables that contribute to the generation of
the character string are valid. ‘

Severity Code: 8

GENERATED OP CODE EXCEEDS 8 CHARACTERS

Explanation: The syntax for mnemonic operation codes must
follow the same rules as ordinary symbols; that is, they must
be from 1 to 8 alphanumeric characters long and the first
character must be alphabetic. ‘

Assembler Action: The statement that contains the illegal op
code is processed as a comment. Only the first 8 characters of
the generated op code appear in the printed statement.

Programmer Response: Be sure that the values of all variables
that contribute to the generation of the op code are valid, and
be sure that no attempt is made to generate an op code of more
than 8 characters.

Severity Code: 8

IFO129

IFO130

IFO131

IFO132

GENERATED SYMBOL IN NAME FIELD EXCEEDS 8 CHARACTERS

Explanation: A generated symbol that appears in the name field
exceeds 8 characters. It should be from 1 to 8 alphanumeric
characters in length, and the first character should be
alphabetic.

Assembler Action: The name field is ignored. Only the first
eight characters of the generated symbol appear in the printed
statement.

Programmer Response: Be sure that the values of all variables
that contribute to the generation of the symbol in the name
field are valid. Be sure that no attempt is made to generate a
symbol of more than 8 characters.

Severity Code: 8

FIRST SUBSCRIPT OF §&SYSLIST REFERENCE IS NEGATIVE

Explanation: A term or an arithmetic (SETA) expression that is
used as the first subscript of a §SYSLIST reference has
resulted in a negative value.

Assembler Action: The parameter reference is treated as a
reference to an omitted operand.

Programmer Response: Be sure that the values of all variables
that contribute to the generation of the' first subscript are
valid.

Severity Code: 8

INCONSISTENT GLOBAL VARIABLE DECLARATION| SETx INSTRUCTION

- IGNORED

Explanation: Global variable declaration inconsistent with a
previous definition of the variable in another macro definition
or in open code.

Assembler Action: The value of the global variable remains the
same and the SETx instruction is ignored.

Programmexr Response: Correct all inconsistencies between global
variable declarations regarding dimension and type.

Severity Code: 8

REFERENCE TO INCONSISTENTLY DECLARED GLOBAL VARIABLE RESULTS IN
ZERO VALUE ‘ :

Explanation: An attempt to obtain a value from a global
variable has been ignored because the declaration of the global
variable was inconsistent with a previous declaration of the
same variable in another macro definition or in open code.
Either the dimension or the type does not agree.

Appendix G: Assembler Diagnostic Error Messages 127

IFO133

IFO157

IFO158

128

Assembler Action: The reference to the global variable is
replaced by a null or zero value.

Programmer Response: Correct all inconsistencies among
declarations of the same global wvariable.

Severity Code: 8

NO OPEN CODE SKELETON DICTIONARY, ENTIRE ASSEMBLY FLUSHED

Explanation: The allotted dictionary work space is insufficient
to build the skeleton dictionary for open code. Since the
generation process requires the open code dictionary,
generation is not attempted. :

Assembler Action: The entire assembly is processed as comments.

Programmer Response: Within the partition, increase the size of
the region that is allocated to assembly, or allocate more of
the partition to dictionary space via the BUFSIZE assembler
option (see Appendix E) .

Severity Code: 12

DC OPERAND VALUE TOO - LONG

Explanation: The spécified value of an operand in a DC
instruction is too long. The maximum length of a DC operand is
16,777,215 bytes.

Assembler ActionThe specified value is ignored.

Programmer Response: Make the constant shorter, or break it up
into two constants.

Severity Code: 8

NAME OF STATEMENT IN DSECT USED IN RELOCATABLE ADDRESS CONSTANT

Explanation: A non-paired relocatable term used in an A-type or
Y-type address constant is defined in a dummy section.

Assemblexr Action: The constant is ignored.

Programmer Response:

L Make sure the relocatable term is not defined in a dummy
section; or

o Make sure the term defined in the dummy section is paired
with another term (with the opposite sign) from the same
dummy section. e :

Severity Code: 8 -

N

W

IFO159

IFO161

IFO162

IFO163

- RELOCATABLE EXPRESSION AS EXPLICIT DISPLACEMENT IN S-TYPE

CONSTANT

Explanation: The displacement used in an explicit S-type
address constant specification is a- relocatable expression.

Assembler Action: The value of the operand is set to zero and
no entry is made in the relocation dictionary.

Programmer Response: Make sure the displacement is specified as
an absolute expression, or specify an implicit address.

Severity Code: 8

INVALID LITERAL NEAR OPERAND COLUMN nn

Exgianation: An invalidly constructed literal appears near the
specified operand column.

Assembler Action: The value of any reference to the invalid
literal is set to 0.

Programmer Response: A literal should be constructed like a DC
or DS constant with the following exceptions:

o The literal is preceded by a equal sign.
° The duplication factor must not be 0. .

Severity Code: 8

VALUE ERROR - SHOULD BE BETWEEN 0 AND 9 NEAR OPERAND COLUMN nn

Explanation: A value is negative or is not in the range of 0 to
9, which is required by this instruction.

Assembler Action: The entire machine instruction is set to 0.

Programmer Response: Be sure the operand field has a positive
value in the range of 0 to 9. '

Severity Code: 8

MISSING OR INVALID SYMBOL.IN NAME FIELD

Explanation: One of two errors has occurred:

L A symbol is missing in the name field where one is required.
o The symbol in the name field is invalid.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply a valid name.

Severity Code: &4

Appendix G: Assembler Diagnostic Error Messages 129

IFO164

IFO165

IFO167

130

INVALID OR ILLEGAL START STATEMENT

Explanation: The START statement did not start the first
control section in the assembly, or the operand. on ‘the START
statement was not an absolute value.

Assembler Action: The START statement is treated as a CSECT
statement. .

Programmer Response: Be sure that the START statement has an
absolute operand and that it begins the first control section
in the assembly.

Severity Code: U

NULL PUNCH OPERAND OR PUNCH OPERAND EXCEEDS 80 CHARACTERS
Explanation: The operand of a PUNCH instruction either
specifies only a null string surrounded by quotes, or is more
than 80 characters long. '

Assembler Action: The PUNCH statement is processed as a comment.

Programmer Response: Be sure that the operand of a PUNCH
statement consists of from 1 to 80 characters surrounded by
quotes.

Severity Code: 4

SYMBOL FILE OUT OF SYNC

Explanation: The symbol file, which is an internal data file,
has got out of step with the rest of the assembly process
beécause of error recovery on a user error.

Assembler Action: A soft recovery is attempted by continuing
the assembly. Assembly results' subsequent to the point of
error may not be valid.

Programmer Response: This message will always be accompanied by
user errors. Correct them and reassemble the program.

If the problem recurs, do the following before calling IBM:

. Have your source program, macro definitions, and associated
listings available.

o If a COPY statement was used, execute the IEBPTPCH utility
to obtain a copy of the partitioned data set member
specified in the COPY statement.

] Make sure that MSGLEVEL= (1,1) was specified in the JOB
statement.

Severity Code: 16

\/FJ/

IFO168

IFO169

IFO170

AN ARITHMETIC EXPRESSION NOT USED IN CONDITIONAL ASSEMBLY
CONTAINS MORE THAN 20 TERMS

Explanation: An arithmetic expression used in a macro
definition or in open code, but not in a conditional assembly
statement, contains more than 19 unary and binary operators and
6 levels of parentheses. The maximum number of terms this
combination allows is 20.

Assemblexr Action: The value of the expression is set to 0.

Programmer Response: Be sure that this arithmetic expression
does not contain more than 19 operators (unary and binary) and
6 levels of parentheses. If greater complexity is necessary,
use EQU statements to evaluate intermediate results.

Severity Code: 8

INVALID SELF-DEFINING TERM NEAR OPERAND COLUMN nn
Explanation: A self-defining term was invalidly specified.

Assembler Action: The value of the term is set to zero.

Programmer Response: Check the syntax and correct the error.

Severity Code: 8

TWO ADJACENT BINARY OPERATORS, OR BINARY OPERATOR EXPECTED BUT
NOT FOUND NEAR OPERAND COLUMN nn -

Explanation: One of two errors has occurred.

(1) Two binary operators appear consecutively near the column
specified in the message text. This applies only to "#"
(multiply) and "/" (divide).

(2) A binary operator was expected near the column specified in
the message text, but none was found. A single binary operator
must occur between all terms of an expression.

Assemblexr Action: The expression that contains the absent or
illegal operator is set to zero.

Programmer Response:

(1) Eliminate one of the binary operators.

(2) Provideka binary operator.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 131

IFO171

IFO0172

IFO173

IFO174

132

TITLE STATEMENT OPERAND EXCEEDS 100 CHARACTERS

Explanation: The operand of a TITLE instruction contains more
than 100 characters.

Assembler Action: The character string in the operand is
truncated to 100 characters. .

Programmer Response: Be sure that the length of the character
string in the operand of a TITLE statement does not exceed 100
characters.

Severity Code: 4

VALUE OF ORG OPERAND IS LESS THAN THE CONTROL SECTION STARTING
ADDRESS

Explanation: The operand of an ORG statement results in a value
less than the starting address of the control section.

Assembler Action: The ORG statement is proceSsed as a comment
and has no effect on the value of the location counter.

Programmer Response: Be sure that the operand of the ORG
statement is a positive relocatable expression, greater than
the starting address of the control section, or blank.

Severity Code: 8

ONE OR MORE SYMBOLS IN AN ORG OPERAND DO NOT BELONG TO THE
CURRENT CSECT, DSECT, OR COM

Explanation: One or more of the symbols used in the operand of
an ORG statement are not defined in the current control section
(dummy, common or ordinary) .

Assembler Action: The ORG statement is processed as a comment
and the value of the location counter remains unchanged.

Programmer Response: Be sure that all symbols used in the
operand field of an ORG statement belong to (are defined by
appearing in the name field of a statement within) the current
control section.

Severity Code: 8

ORG OPERAND IS ABSOLUTE, MUST BE RELOCATABLE

Explanation: An absolute term or expression used in the operand
*of an ORG statement must be a relocatable term, a relocatable
expression, or a blank.

Assembler Action: The ORG instruction is processed as a comment
and the value of the location counter remains unchanged.

o
C::

IFO175

IFO176

IF0177

Programmer Response: Be sure that the operand of an ORG

statement is a relocatable term, a relocatable expression, or a
hlank. An ORG to an absolute address is not possible because
the assembler assumes that all location references are
relocatable. A common error is an ORG to 0. Since the start
of the program is not absolute machine location 0 but
relocatable 0, replace the 0 with a symbol or expression that
makes reference to the labeled program start.

Severity Code: 8

OPERAND SHOULD BEGIN WITH A QUOTE

Explanation: A quote was expected to begin a character string
in the operand field, but was not found.

Assembler Action: The invalid character string is ignored.

Programmer Response: Supply the missing leading quote in the
character string of the operand.

Severity Code: 8

UNPAIRED AMPERSAND NEAR OPERAND COLUMN nn

Explanation: A single ampersand followed by a blank was found
in a quoted character string. If an ampersand is desired as a
character in a quoted character string, two ampersands must be
coded. Ampersands must be either paired or part of a valid
variable symbol.

Assembler Action: The character string that contains the
illegal ampersand is ignored.

Programmer Response: Determine whether the ampersand is desired
as a character in a quoted character string or whether the
ampersand is intended as the beginning of a valid variable
symbol, and correct the error.

Severity Code: 8

MISSING OPERAND

Explanation: This statement requires an operand, but none is
found. v

Assembler Action: The statement which lacks the operand is
processed as a comment. '

Programmer Response: Supply a valid operand.

Severity Code: 12

Appendix G: Assembler Diagnostic Error Messages 133

IFO178

IFO179

IFO180

IFO181

134

SYNTAX ERROR NEAR OPERAND COLUMN nn

Explanation: A syntax error has occurred in the operand of this «;;b
statement. !

Assembler Action: The statement which contains the invalid
operand is processed as a comment.

Programmer Response: Correct the syntax of the operand. There

are a large number of syntactic errors that can produce .this
diagnostic. All of them require careful checking of the syntax
of the specific type of statement being processed. The error
is logged at the point where the syntax becomes ambiguous or
unrecognizable, not necessarily at the point where the actual
error occurs.

Severity Code: 8

OPERAND SUBFIELD NEAR OPERAND COLUMN nn MUST BE ABSOLUTE

Explanation: All terms and expressions used in the operand
field of this statement must result in an absolute value.

Assembler Action: The operand is processed as a comment.

Programmer Response: Be sure that each term or expression used
in the operand field of this statement has an absolute value.
No relocatable expressions are allowed.

. Severity Code: 8 , WKJV

OPERAND 2 OF CNOP MUST BE EITHER 4 OR 8

" Explanation: The second operand of a CNOP statement must be

either 4 or 8.

Assemblexr Action: The CNOP statement is processed as a comment
and no alignment is performed.

Programmer Response: Be sure that the second operand of a CNOP
statement is either a 4 or an 8.

Severity Code: 12

OPERAND 1 OF CNOP MUST BE 0, 2, 4, OR 6

Explanation: The first operand of a CNOP statement must be 0,
2, 4, or 6.

Assembler Action: The CNOP statement is ignored and no
alignment is performed.

Programmer Response: Be sure that the first operand of a CNOP ‘
statement is a 0, 2, 4, or 6. @;:D

Severity Code: 12

IFO0182

IFO183

IFO184

IF0185

OPERAND 1 OF CNOP IS NOT LESS THAN OPERAND 2

Explanation: The value of the first operand of a CNOP statement
must be less than the value of the second operand.

Assembler Action: The CNOP statement is processed as a comment
and no alignment is performed.

Programmer Response: Check the validity of each operand of the

- CNOP statement to be sure that the value of the second operand

is greater than the value of the first operand.

Severity Code: 12

MNOTE/CCW OPERAND EXCEEDS 255

Explanation: The value of an operand used as an MNOTE severity
code or as the first operand in a channel command word (CCW)
exceeds 255.

Assembler Action: The MNOTE is processed as a comment. Space

- is allocated for the CCW, but the value for the flagged operand

is set to 0. '
Programmer Response: Check the validity of the operand.

Severity Code: 12

INVALID RANGE ON CCW NEAR OPERAND COLUMN nn, 65535 IS MAXIMUM
VALUE

Exglanation: The value of the fourth operand of a channel
command . word has exceeded X'FFFF' (65535).

Assembler Action: Spaée is allocated for the CCW, but the value
of the flagged operand is set to O.

Programmer Response: Check the validity of the fourth operand
of the channel command word.

Severity Code: 12

BLANK EXPECTED AS A DELIMITER NEAR OPERAND COLUMN nn

Explanation: A blank was expected as a delimiter but none was
found. Subsequent characters have no syntactic meaning, and
the statement is ambiguous.

Assembler Action: The statement that contains the invalid
delimiter is processed as a comment.

Programmer Response: Supply a blank delimiter.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 135

IFO186

IFO187

IFO188.

IFO189

136

INVALID SYMBOL NEAR OPERAND COLUMN nn OF ENTRY,: EXTRN, OR WXTRN

Explanation: An improperly constructed symbol was found in the
operand field of an ENTRY, EXTRN, or WXTRN statement.

Assembler Action:: The statement that contalns the invalid
symbol is processed as a comment. ~

Programmer Response: Be sure that the symbol in the operand
field of EXTRN, WXTRN, or ENTRY statements contain from 1 to 8
alphanumeric characters, the first of which is alphabetic.

Severity dee: 8

SYMBOL LONGER THAN 8 CHARACTERS NEAR OPERAND COLUMN NN

Explanation: A symbol that is more than 8 characters in length
has appeared in the operand field of this statement.

Assembler Action: The invalid symbol in the operand field is
replaced by a zero.

Programmer Response: Be sure that symbols do not exceed 8
characters in-length. A missing or misplaced delimiter or
operator may cause a symbol to appear longer than intended.

Severity Code: 8

XxXXxxxxx IS AN UNDEFINED SYMBOL

Explanation: The symbol that appears in the message text has
not appeared in the name field of another statement, or as an
operand of an EXTRN or WXTRN statement.

Assembler Action: Reference to the undefined symbol results in
a zero value.

Programmer Response: Define the symbol in the program.

Severity Code: 8

INVALID ENTRY OPERAND, LINKAGE CANNOT BE PERFORMED

Exglanation~ The symbol in the operand field of an ENTRY
statement is invalid because 1t is either undeflned or
improperly defined. -

Assembler Action: The invalid symbol in the operand field is
processed as a comment, and no 11nkage is prov1ded if another
program references it.

Programmer Response: Define the symbol at an appropriate place
in this program, or correct it. A valid symbol consists of from
1 to 8 alphameric characters, the first of whlch must be an
alphabetic character.

Severity Code: 8

N

AN

Y

IFO190

IFO191

IFO0192

IFO193

OPERAND OF PUSH STATEMENT IS NOT USING OR PRINT NEAR OPERAND
COLUMN nn

Explanation: The only symbols allowed in the operand field of a
PUSH or POP statement are PRINT and USING, in any order,
separated by commas.

Assembler Action: The PUSH instruction is processed as a
comment.

Programmer Response: Be sure the operand of the PUSH statement
is either PRINT or USING or both.

Severity Code: 4

PUSH LEVELS EXCEED 4 NEAR OPERAND COLUMN nn

Explanation: More than 4 levels of PUSH and POP statements were
attempted for either PRINT or USING-

Assembler Action: The PUSH instruction is processed as a
comment.

Programmer Response: Rework the program logic to require no
more than 4 levels of PUSH and POP for USING and 4 for PRINT-

Severity Code: 8

OPERAND OF POP STATEMENT IS NOT USING OR PRINT NEAR OPERAND
COLUMN nn

Explanation: The only symbols allowed in the operand of a PUSH
or POP statement are USING and PRINT, in any order, separated
by commas.

Assembler Action: The POP instruction is processed as a comment.

Programmer Response: Be sure the operand of the POP statement
is either PRINT or USING or both.

Severity Code: 4

POP REQUEST NOT BALANCED BY PREVIOUS PUSH

Explanation: No PUSH request was issued prior to this POP
request, or more POP statements have been issued than PUSH
statements. A POP statement restores the USING or PRINT status
saved by the most recent PUSH statement, on a one for one basis.

Assembler Action: The POP instruction is processed as a comment.

Appendix G: Assembler Diagnostic Error Messages 137

Programmer Response: Check for errors in balancing PUSH and POP
statements, or rework the program logic to request balanced PUSH

and POP statements. Repetition of a given operand (i.e., USING (‘f
or PRINT) on a single PUSH or POP statement is treated as L
multiple statements, and could cause unbalanced PUSH and POP
statements. :
Severity Code: 8
IFO194 INVALID OPTION IN PRINT STATEMENT NEAR OPERAND COLUMN nn
Explanation: An option appears in the operand field of a PRINT
statement that is not one of the following: ON, OFF, GEN,
NOGEN, DATA, and NODATA.
Assembler Action: The invalid operand is ignored.
Programmer Response: Be sure that only the options listed in
the explanation above appeaxr in the operand field of a PRINT
statement.
Severity Code: 4
IFO195 INVALID USING OR DROP STATEMENT NEAR OPERAND COLUMN nn
Explanation: One of three errors has occurred: SN
S
(1) register 0 is specified for other than the second operand -
of a USING statement, or
(2) a register number outside the range of 0 to 15 has been
used, or
(3) a DROP statement has been issued for a register that was
never assigned for use by a USING statement.
Assembler Action: The invalid register specification is set to
zero.
Programmer Response: The second and following operands of a
USING or DROP instruction must be decimal terms 0 to 15.
Register 0 may only be specified as the second operand of a
USING statement.
Severity Code: 12
IFO196 xxxxxxxx HAS BEEN PREVIOUSLY DEFINED
Explanation: The specified symbol has previously appeared in
the name field of a statement or in the operand field of an
EXTRN or WXTRN instruction.
Assembler Action: All references to the symbol are interpreted P
as references to the first definition of the symbol. ¢¥)
b

138

IF0197

IFO198

IFO199

Programmer Response: A given symbol must be defined only once.
Determine which occurrence of the symbol you want to use, and
change all others.

Severity Code: 8

*%% MNOTE **#

Explanation: An MNOTE statement has been encountered during the
generation of a macro or open code. The text of the MNOTE
message appears in-line in the listing at the point where it is
encountered. (Refer to 0S/VS - DOS/VS - VM/370 Assembler
Language for a description of the MNOTE instruction.)

Assembler Action: None.

Programmer Response: Investigate the reason for the MNOTE.
Errors flagged by MNOTE will often cause unsuccessful execution
of the program, depending upon the severity code.

Severity Code: An MNOTE is assigned a severlty code of 0 to 255
by the writer of the MNOTE statement.

INVALID TYPE DECIARED ON DC/DS/DXD CONSTANT NEAR OPERAND COLUMN
nn

Explanation: Operand subfield 2 is not a valid type for a DC,
DS, or DXD statement. Valid types are the following: A, B, C,
b, E, F, H, L, P, Q, S, V, X, ¥, and Z.

Assembler Action: The statement that contains the 1nvalld type
declaration is processed as a comment.

Programmer Response: Supply a valid type in operand subfield 2.

Severity Code: 8

INVALID LENGTH MODIFIER NEAR OPERAND COLUMN nn

Explanation: The length modifier in operand subfield 3 of this
statement is invalid. The length attribute of a symbol is not
allowed as a term in the length modifier expression for the
first operand of the DC, DS, or DXD statement in which the
symbol is defined. For example, SYM DC CL (L'SYM) "AA* is
invalid.

Assembler Action: The statement that contains the invalid
length modifier is processed as a comment.

Programmer Response: Supply a validblength mbdifier, or
eliminate the explicit length modifier.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 139

IF0200

IF0201

IF0202

IF0203

140

INVALID SCALE MODIFIER NEAR OPERAND COLUMN nn

Explanation: The scale modifier in operand subfield 3 of a DC,
DS, or DXD statement is invalid. The scale modifier should be
either a decimal value or an absolute expression enclosed in
parentheses.

Assembler Action: The statement that contains the invalid scale
modifier is processed as a comment.

Programmer Response: Supply a valid scale modifier for the type
of constant used.

Severity Code: 8

ILLEGAL OR INVALID EXPONENT MODIFIER IN DC/DS/DXD CONSTANT NEAR
OPERAND COLUMN nn

Explanation: An exponent modifier used in a DC, DS, or DXD
constant is not a decimal self-defining term, an absolute
expression enclosed in parentheses, or produces a value outside
the range allowed for that constant type.

Assemblexr Action: The invalid or illegal operand is ignored.

Programmer Response: Be sure that the exponent modifier used
conforms to the rules for exponent modifiers for each type of
DC, DS, or DXD constant.

Severity Code: 8

ARITHMETIC PRECISION OF FLOATING-POINT CONSTANT LOST NEAR
OPERAND COLUMN nn

Explanation: Low order digits were lost during the construction
of an L-, D-, or E-type constant, because the designated field
was too small to contain the whole constant.

Assemblexr Action: The value of the constant is set to zero.

Programmer Response: Check the length, scale, and exponent
modifier of the flagged constant.

Severity Code: 8

-, b-, E-, F-, H-, OR Y-TYPE CONSTANT TRUNCATED, HIGH ORDER
DIGITS LOST NEAR OPERAND COLUMN nn

Explanation: The high order digits of an L-, D-, E-, F-, H-, oOr
Y-type constant were lost because the designated field was too
small to contain.the whole constant.

Assembler Action: Processing continues using the truncated
constant.

IFO204

IFO205

IF0206

Programmer Response: Modify the explicit or implicit length of
the constant, so that the value may be contained within the
area designated for it.

Severity Code: 8

RELOCATABLE EXPRESSION NOT ALLOWED IN A- OR Y-TYPE ADDRESS
CONSTANT WITH THE SPECIFIED LENGTH

Explanation: The value specified for an address constant of an
A or Y-type was relocatable and either:

a) the length modifier specified bit length, or

b) the length was not 3 or 4 bytes for a A-type constant, or
c) the length was not 2 bytes for a Y-type constant.

Note that if the length for a Y-type is 2 bytes and the constant
is relocatable, another error message is given.

Assembler Action: The value of the operand is set to 0 and no
entry for this constant is made in the relocation dictionary.

Programmexr Respcnse: Convert the operand to an absolute
expression, or use a length of 3 or 4 bytes for A-type or 2
bytes for Y-typre constants.

Severity Code: 8

RELOCATABLE Y-TYPE CONSTANT, VALUE TRUNCATED TO RIGHTMOST 2
BYTES

Explanation: A relocatable Y-type constant has been declared.
This is a warning only. All relocatable Y-type constants are
diagnosed in this manner because the assembler must provide an
entry in the Relocation Dictionary for each one. If the
actual address is contained within the rightmost 2 bytes and
the coding is otherwise correct, when the program is loaded
and relocation is considered the constant will be resolved.

If the address cannot be contained in the rightmost two bytes,
it is likely that further relocatability errors will result.

Assemblexr Action: The value of the constant is truncated to
the rightmost 2 bytes.

Programmexr Respcnse: Be sure that the value of the Y-type
constant will not exceed 2 bytes when the program has been
loaded and the relocation factor has been considered.

Severity Code: 4

DUPLICATION FACTOR ERROR

Explanation: The duplication factor in a DC, DS, or DXD
statement is negative.

Assembler Action: No storage is reserved for the operand, but
alignment is performed as required by the type of constant
used.

Programmer Respcnse: Supply a non-negative duplication factor.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 141

IF0207

IF0208

1IF0209

IF0210

142

OPERAND OF Q-TYPE CONSTANT DOES NOT NAME A DSECT OR DXD

Explanation: The symbol in the operand field of a Q-type
constant must have been previously defined as the name of a
DSECT or DXD section.

Assembler Action: The value of the constant is set to 0.

Programmer Response: Define the symbol as the name of a DSECT
or DXD section. The symbol must be defined before being used
in the constant.

Severity Code: 8

DISPLACEMENT GREATER THAN X'FFF'

Explanation: The displacement of this statement or the address
referenced by this statement is greater than X'FFF' (decimal
4095) . The displacement field in the machine instruction must
contain a value of from 0 to 4095.

Assembler Action: The base and displacement fields of the
machine instruction are set to 0.

Programmer Response: Correct the displacement term or
expression or provide another base register with a USING
statement.

Severity Code: 8

ADDRESSABILITY ERROR - BASE AND DISPLACEMENT CANNOT BE RESOLVED
AND ARE SET-TO 0

Explanation: The assembler cannot resolve the address of this
statement or the address referenced by this statement for one
of the following reasons:

. Current USING registers produce a displacement of less than
0 or greater than 4095,

] No USING registers are available.

Assembler Action: The base and displacement fields of the
machine instruction are set to 0.

Programmer Response: Make sure you have correctly set up base
registers with the USING instruction. Be sure the referenced
address can be specified by the value in a USING register plus
a displacement in the range of 0 through 4095,

Severity Code: 8

TOO . FEW OPERANDS

Explanation: More operands are required for this statement, but
they were not found.

A%

3

~

™3,

N/

Y

IFO211

IFO0212

IFO213

Assembler Action: The value of any missing operand is set to 0.

Programmer Response: Supply the necessary operands. Refer to
Principles of Operation for details on the operands required
for this instruction.

Severity Code: 12

TOO MANY OPERANDS

Explanation:

o More than 255 operands on a DC, DS, or DXD instruction; or

. Too many operands on a machine instruction.

Assembler Action: The extra operands are ignored.

Programmer Response: Delete the extra operands. Refer to
Principles of Operation for details on operands required for
individual machine instructions.

Severity Code: 12

PREMATURE END OF OPERAND NEAR OPERAND COLUMN nn

Explanation: A term or an expression used as an operand is
incomplete.

Assembler Action: The value of the operand is set to 0.

Programmer Response: Supply the characters necessary to
terminate the operand.

Severity Code: 8

COMPLEXLY RELOCATABLE EXPRESSION NEAR OPERAND COLUMN nn

Explanation: The indicated operand contains a complexly
relocatable expression. The expression should be absolute or
simply relocatable.

Assemblexr Action: The value of the complexly relocatable
expression is set to 0.

Programmer Response: Be sure that only absolute and simply
relocatable expressions are used in the operand field of this
statement.

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 143

IFO214

IF0215

IF0216

IF0217

144

ILLEGAL USE OF LITERAL NEAR OPERAND COLUMN nn

Explanation: A literal is used in an assembler instruction, in
another literal, or in a field of a machine instruction where
it is not allowed.))

Assembler Action: The value of the operand where the literal is
used is set to 0.

Programmer Response: Use a valid relocatable term or expression
in place of the literal. 1If applicable, replace the literal
with the name of a DC statement which defines the same constant
as the literal.

Severity Code: 12

ILLEGAL DELIMITER, RIGHT PARENTHESIS EXPECTED NEAR OPERAND
COLUMN nn

Explanation: A right parenthesis was expected as a delimiter,
but none was found.

Assembler Action: The value of the operand that is lacking a
right parenthesis is set to C.

Programmer Response: Supply a right parenthesis.

Severity Code: 8

ILLEGAL OPERAND FORMAT NEAR OPERAND COLUMN nn

Explanation: The operand of this statement is illegally
constructed.

Assembler Action: The value of the operand is set to 0.

Programmer Response: Refer to Principles of Operation for
details on the operand structure of this statement, and supply
a valid operand.

Severity Code: 12

RELOCATABILITY ERROR NEAR OPERAND COLUMN nn

Explanation: One of the following fields contains a relocatable
value. All values in these fields must be absolute.

. Immediate field in an SI instruction
. Mask field
. Register specification

. Length modifier

AN
S

N

IF0218

IF0219

IF0220

Assembler Action: If any of the above fields contains a
relocatable value, the value of the field is set to 0.

Proqrammer Response: Be sure that the field contains an
absolute value.

Severity Code: 12

INVALID REGISTER SPECIFICATION - EVEN-NUMBERED REGISTER REQUIRED

Explanation: An odd-numbered register was specified in a
context that requires an even-numbered register.

Assembler Action: The invalid operand is set to 0.

Programmer Response: Specify an available even-numbered
register. Refer to the Principles of Operation for details on
the register requirements of this instruction.

Severity Code: 12

REGISTER OR IMMEDIATE FIELD OVERFLOW NEAR OPERAND COLUMN nn

Explanation:

° The value of the immediate field used in an SI instruction
is greater than 255; or

o A register number was specified that was greater than 15.

Assembler Action: The value of the field where the overflow
occurred is set to 0.

Programmer Response: Be sure the value of an immediate field
does not exceed 255 and that no register number greater than 15
is specified. :

Severity Code: 8

ALIGNMENT ERROR NEAR OPERAND COLUMN nn

Explanation: The operand of this instruction refers to a main
storage location that is not on the boundary required by the
instruction.

Assembler Action: The faulty alignment is unchanged.

Programmer Response: Align the main storage location referenced
in the operand field. Refer to the Principles of Operation for
details on the boundary requirements of this instruction. For
machines that do not require data to be aligned to certain
boundaries, specify NOALIGN as an assembly option and no error
will occur.

Severity Code: U4

Appendix G: Assembler Diagnostic Error Messages 145

IF0221

IF0222

IF0223

IFO224

146

ILLEGAL INDEX REGISTER OR LENGTH MODIFIER NEAR OPERAND COLUMN nn

Explanation: An index register or a length field was specified
for a machine instruction where none is expected.

Assembler Action: The invalid specification is ignored.

Programmer Response: Correct the index register or length field
specification.

Severity Code: 12

INVALID INDEX REGISTER SPECIFIED NEAR OPERAND COLUMN nn

Explanation: A register number not in the range 0 - 15 has been
specified as an index register.

Assembler Action: A default value of 0 (to indicate that no
indexing is used) replaces the invalid index register
specification in the machine instruction. ‘

Programmer Response: Specify an available register in the range
of 0 to 15 as an index register.

Severity Code: 12

RELOCATABLE INDEX REGISTER SPECIFIED NEAR OPERAND COLUMN nn

Explanation: A relocatable value has been specified as an index
register.

Assemblexr Action: A default value of 0 (to indicate that no
indexing is used) replaces the invalid index register
specification in the machine instruction.

Programmexr Response: Specify an absolute value in the range of
0 to 15 as an index register.

Severity Code: 12

LENGTH ERROR NEAR OPERAND COLUMN nn

Explanation:

. The length modifier of a constant is illegal or invalid for
that type of constant; or

. A constant of type C, X, B, Z, or P is too long; or
. A relocatable address constant has an illegal length.
Assembler Action: The operand in error and any following
operands of the DC, DS, or DXD statement are processed as

comments. An address constant with an illegal length is
truncated.

0

IF0225

IF0226

IF0228

IF0229

Programmexr Response: Supply a valid length modifier or decrease
the length of the operand.

Severity Code: 8

RELOCATABLE LENGTH FIELD IN MACHINE INSTRUCTION NEAR OPERAND
COLUMN nn

Explanation: The length field of this machine instruction is
specified as relocatable; an absolute term or expression is
required.

Assembler Action: The length field in error is assembled to 0.

Programmer Response: Use an absolute term or expression to
specify the length field.

Severity Code: 4

BASE REGISTER OF MACHINE INSTRUCTION NOT ABSOLUTE NEAR OPERAND
COLUMN nn

Explanation: An explicit base register has been specified as a
relocatable value; an absolute term or expression is required.

Assembler Action: The operand in error (base and displacement)
is assembled to 0.

Programmex Response: Use an absolute term or expre531on to
specify the base register.

Severity Code: 12

RELOCATABLE DISPLACEMENT IN MACHINE INSTRUCTION NEAR OPERAND
COLUMN nn

Explanation: In a machine instruction that has an explicit base
reglster specification, the specification for the displacement
field is relocatable. As this would imply a second base
register, the combination is invalid.

Assembler Action: The displacement field of the machine
instruction is assembled to 0.

Programmer Response: Either specify the displacement as an
absolute term or expression, or delete the explicit base
register.

Severity Code: 8

POSSIBLE REENTERABILITY ERROR NEAR OPERAND COLUMN nn

Explanation: This machine instruction could store data into a
control section or common area that is not dynamically acquired.

Appendix G: Assembler Diagnostic Error Messages 147

IF0230

IF0231

IF0233

148

This message is produced only when the RENT assembler option is
specified in the PARM field of the EXEC statement.

Assembler Action: The statement is assembled as written.

Programmer Response: If you want reentrant code, correct the
instruction so that it references a DSECT or other dynamically
acquired space. Otherwise you can suppress reentrant checking
by specifying the NORENT .assembler option.

Note: Absence of this message does not guarantee reentrant
code, as the assembler has no control over addresses actually
loaded into base and index registers at program execution time.

Severity Code: U

BASE REGISTER NUMBER GREATER THAN 15 NEAR OPERAND COLUMN nn

Explanation: An explicit base register in a machine instruction
or S-type address constant is greater than 15.

Assembler Action: The base register field of the machine
instruction is assembled to 0.

Programmer Response: Specify the base register in the range of
0 to 15.

Severity Code: 12

SYMBOL NOT PREVIQUSLY DEFINED - XXXXXXXX

Explanation: A symbol in this statement is used in a way that
requires previous definition, but it has not been previously
defined. For example, a symbol in a duplication factor
expression or modifier expression of a DC statement must be

previously defined.

Assembler Action: The value of the symbol or the expression
that contains it is set to 0.

‘Programmer Response: Define the symbol earlier in the program.

Add a defining statement if it does not exist, or place the
existing defining statement ahead of the statement that
references it.

Severity Code: 8

MORE THAN 6 LEVELS OF PARENTHESES NEAR OPERAND COLUMN NN

Explanation: An expression in this statement contains more than
6 nested levels of parentheses.

Assembler Action: The value of the expression is set to 0.

N

Programmer Response: Rewrite the expression to reduce the
‘::\ number of levels of parentheses, or use a preliminary statement
Al

(such as an EQU) to partially evaluate the expression.

Severity Code: 8

IF0234 PREMATURE END OF EXPRESSION NEAR OPERAND COLUMN nn

Explanation: An expression in this statement ended prematurely
due to one of the following errors:

Unpaired parenthesis

Illegal character

Illegal operator

Operator not followed by a term

Assembler Action: The value of the expression is set to 0.

Programmer Response: Check the expression for omitted or
mispunched characters or terms.

Severity Code: 8

IF0235 ARITHMETIC OVERFLOW NEAR OPERAND COLUMN nn

‘Explanation: The intermediate value of a term Oor an expression
is not in the range -23' through 23%-1.

Assemblexr Action: The value of the expression is set to 0.

Programmer Response: Rewrite the expression or term. The
assembler computes all values using fixed-point full-word
arithmetic. Or, perform arithmetic operations in a different
sequence to avoid overflow.

Severity Code: 8

IF0236 JILLEGAL CHARACTER IN EXPRESSION NEAR OPERAND COLUMN nn
Explanation: Syntax error. A character in an expression has no
syntactic meaning in the context used; the assembler cannot
determine if it is a symbol, an operator, or a delimiter.

Assembler Action: The value of the expression is set to 0.

Programmexr Response: Check the expression for unpaired
parentheses, invalid delimiter, invalid operator, or a character
(possibly unprintable) that is not recognized by the assembler.
The 51 characters recognized ‘by the assembler are:

Letters: A throuch Z and $ # a
Digits: O through 9
Special Characters: + - , = . * () ' / &

C:“\) Blank

Severity Code: 8

Appendix G: Assembler Diagnostic Error Messages 149

IF0237

IFO238

IF0239

IFO240

150

CIRCULAR DEFINITION

Explanation: The value of the first expression in the operand :
field of an EQU statement is dependent upon the value of the M
symbol being defined in the name field.

Assembler Action: The value of the expression defaults to the
current location counter value.

Programmer Response: Remove circularity in the definition.

Severity Code: 8

ILLEGAL AMPERSAND IN SELF-DEFINING TERM NEAR OPERAND COLUMN nn

Explanation: An ampersand in akself—defining term is unpaired
and/or not part of a quoted character string.

Assembler Action: The value of the expression containing the
self-defining term is set to 0.

Programmer Response: Check that all ampersands in the term are
paired and part of a quoted character string. (The only valid
use of a single ampersand is as the first character of a
variable symbol.) Note that ampersands produced by substitution
must also be paired.

Severity Code: 8>

INVALID FLOATING. POINT CHARACTERISTIC

Explanation: A converted floating-point constant is too large
or too small for the field assigned to it. The allowable range
is 7.2x1075 to 5.3x10-77.

Assembler Action: The floating-point constant is assembled to 0.

Programmer Response: Check the characteristic (exponent),
exponent modifier, scale modifier, and mantissa (fraction) for
validity. Remember that a floating-point constant is rounded,
not truncated, after conversion.

Severity Code: 8

CHARACTER STRING OR SELFDEFINING TERM TERMINATED BEFORE ENDING
QUOTE FOUND :

Explanation: The assembler has found what appears to be a
quoted character string or a self-defining term, but the
closing quote is missing, or an illegal character is found
before the closing quote.

Assembler Action: The term or expression is ignored.

Programmer Response: Supply the m1551ng quote or check for —
other syntax errors.

o~
¢

Severity Code: 8

4

"y,

C

IFO2u1

IFO242

IFO243

IFO244

IFO246

SECOND OPERAND OF CCW NOT BETWEEN 0 and X'FFFFFF'

Explanation: The second operand of a CCW instruction, which
specifies the data address, is outside the range of 0 to
X'FFFFFF'.

'Assembler Action: The low-order three bytes of the operand are

used.

Programmer Response: Supply a correct term or expression for
the second operand.

Severity Code: 8

SPACE OPERAND NOT A SINGLE POSITIVE DECIMAL SELFDEFINING TERM

Explanation: The operand of a SPACE instruction is not a zero
or positive decimal self-defining term.

Assembler Action: The SPACE statement is processed as a comment.

Programmer Response: Use a single decimal self-defining term
with a zero or positive value.

Severity Code: 4

FIRST CCW OPERAND CANNOT BE NEGATIVE

Explanation: The first operand (command‘code) of a CCW
instruction is negative. The value of the operand must be in
the range 0-255.

Assembler Action: The CCW is processed as a comment.

Programmer Response: Supply an operand with a value in the
range of 0-255.

Severity Code: 8

BITS 38 AND 39 OF CCW OPERAND NOT ZERO

Explanation: The bits specified as bits 38 and 39 of a CCW
instruction are not zero.

Assembler Action: The bits are set as specified.

Programmer Response: Correct the third operand of the CCW
instruction.

Severity Code: 8

LOCATION COUNTER OVERFLOW

Explanation: The location counter is greater than X'FFFFFF'
(224-1) , the largest address that can be contained in 3 bytes.

Appendix G: Assembler Diagnostic Error Messages 151

Assembler Action: The location counter is 4 bytes long (only 3

bytes appear in the listing and the object deck) . The overflow .
is carried into. the high-order byte and the assembly continues. (N
However, the resulting code will probably not execute correctly. Ne p

Programmer Response: The probable cause of the error is a high
ORG statement value or a high START statement value. Correct
the value or split up the control section.

Severity Code: 8

IFO254 JLLEGAL FORMAT OF SECOND OPERAND OF END STATEMENT

Explanation: Second operand of END instruction is inconsistent
with the format required.

Assembler Action: Second operand ignored.

Programmer Response: Correct the operand according to the
specifications given in 0S,/VS - VM/370 Assembler Logic.

Severity Code: 8

IF0255 FIXED OR FLOATING POINT EXPRESSION ERROR NEAR OPERAND COLUMN nn

Explanation: An error occurred during conversion of a decimal
number into a fixed-point or flocating-point number. PEaR

Assembler Action: The value of the operand is set to zero. A

Programmer Response: Check the scale and exponent modifier of
the number for validity.

Severity Code: U

IF0256 SYSGO DD CARD MISSING -- NOOBJECT OPTION USED

Explanation: A DD statement for the SYSGO data set is not
included in the JCL for this assembly. The SYSGO data set
normally receives the object module output of the assembler
when it is to be used as input to the linkage editor or loader,
executed in the same job.

Assembler Action: The program is assembled using the NOOBJECT
option. No output is written on SYSGO. If the DECK option is
specified, the object module will be written on the device
specified in the SYSPUNCH DD statement.

Programmer Response: Optional. If the assembly is error free
and the object module has been produced on SYSPUNCH, you can
execute it without reassembling. Otherwise, reassemble the
program and include a SYSGO DD statement in the JCL or use a
cataloged procedure that includes it. (See the section
"Assembler Cataloged Procedures" in this manual.)

f ‘
Severity Code: = 16 . imjv

152

IF0257

IFO0258

IF0260

SYSPUNCH DD CARD MISSING -- NODECK OPTION USED

Explanation: A DD statement for the SYSPUNCH data set is not
included in the JCL for this assembly. The SYSPUNCH data set
is normally used when the object module of the assembly is
directed to the card punch.

Assembler Action: The program is assembled using the NODECK
option. No deck is punched on SYSPUNCH. 1If the OBJECT option
has been specified, the object module will be written on the
device spec¢ified in the SYSGO DD statement.

Programmexr Response: Optional. The object module can be link
edited and executed from SYSGO instead of SYSPUNCH by adjusting
JCL. Otherwise, if you want a punch data set, reassemble the
program with a SYSPUNCH DD statement.

Severity Code: 16

INVALID ASSEMBLER OPTION ON EXEC CARD -- OPTION IGNORED

Explanation: One or more of the assembler options specified in
the PARM field of the EXEC statement are invalid. The error
may be caused by use of the wrong option, a misspelled option,
or syntax errors in coding the options.

Assembler Action: Invalid options are ignored. The assembly is
performed using the valid options.

Programmer Response: Check the spelling of the options, the
length of the option list (100 characters maximum) , and the
syntax of the option list. The options must be separated by
commas, and parentheses in the option list (including SYSPARM)
must be paired. Two quotes or ampersands are needed to
represent a single quote or ampersand in a SYSPARM character
string. The section “"Assembler Options" in this manual
describes the assembler options and how to code them.

Severity Code: 16

ASSEMBLY TERMINATED -- DD CARD MISSING FOR SYSxxx

Explanation: This assembler job step cannot be executed because
a DD statement is missing for one of the following assembler
data sets: SYSUT1, SYSUT2, SYSUT3, or SYSIN. The missing DD
statement is indicated in the message text.

Assembler Action: The assembly is terminated before any
statements are assembled. No assembler listing is produced, so
this message is printed on the system output unit following the
job control language statements for the assembly job step and
on the operator's console.

Programmer Response: Supply the missing DD statement and
reassemble the program-~ The cataloged procedures supplied by
IBM contain all the required DD statements. They are described
in the section "Assembler Cataloged Procedures®™ in this manual.

Appendix G: Assembler Diagnostic Error Messages 153

154

If the problem recurs, do the following before calling IBM:

e Have your source program, macro definitions, and associated
listings available.

e If a COPY statement was used, execute the IEBPTPCH utility to
obtain a copy of the partitioned data set member specified in
the COPY statement.

e Make sure that MSGLEVEL=(1,1) was specified in the JOB
statement.

Operator Response: If possible, supply the missing DD statement
in the JCL statements for the assembly and run the job again.

Severity Code: 20

AN
¢! 1
‘«'m\j

W

C

IF0261

ASSEMBLY TERMINATED -~ PERM I/O ERROR| jobname, stepname, unit
address, device type, ddname, operation attempted, error
description

Explanation: A permanent I/0 error occurred on the assembler
data set indicated in the message text. This message, produced
by a SYNADAF macro instruction, also contains more detailed
information about the cause of the error and where it occurred.

Note: If assembler was executed under VM/370-CMS, consult
IBM Virtual Machine Facility/370: System Messages, GC20-1808,
for explanation of message DMSxxx120S.

Assembler Action: The assembly is terminated. Depending on
where the error occurred, the assembly listing up to the point
of the I/0 error may be produced. If the listing is produced,
this message appears on it. If the listing is not produced,
this message appears on the operator®'s console and on the system
output unit following the job control language statements for
the assembler job step.

Programmer Response: If the I/0 error is on SYSIN or SYSLIB, you
may have concatenated the input or library data sets
incorrectly. Make sure the DD statement for the data set with
the largest blocksize (BLKSIZE) is placed in the JCL before the
DD statements of the data sets concatenated to it. Also, make
sure that all input or library data sets have the same device
class (all DASD or all tape).

In any case, reassemble the program: it may assemble correctly.
If the problem recurs, do the following before calling IBM:

e Have your source program, macro definitions, and associated
listings available.

e If a COPY statement was used, execute the IEBPTPCH utility to
obtain a copy ¢f the partitioned data set member specified in
the COPY statement.

e Make sure that MSGLEVEL= (1,1) was specified in the JOB
statement.

Operator Response: If the I/0 error is on SYSUT1, SYSUT2, or
SYSUT3, allocate the data set to a different volume and rerun
the job. If the I/0 error is on tape, check the tape for
errors.

Severity Code: 20

154 .1

IF0262

IF0263

ASSEMBLY TERMINATED -- INSUFFICIENT MAIN STORAGE

Explanation: The assembler was unable to get at least 32K bytes
of main storage for working storage, utility file buffers, and
assembler tables and constants.

Assembler Action: The assembly is terminated before any
statements are assembled. No assembler listing is produced, so
this message is printed on the system-output device following
the JCL statements for the assembler job step and on the
operatoxr's console.

Programmer Response: Increase the size of the regiomn or
partition allocated to the assembler. Reassemble the program.
If the problem recurs, do the following before calling IBM:

o Have your source program, macro definitions, and associated
listings available.

o Make sure that MSGLEVEL= (1,1) was specified in the JOB
statement.

Operator Response:

o Increase the size of the region allocated on the JOB card
or on the EXEC card for the assembler job step and rerun
the job; or

o Run the job in a larger partition.

Severity Code: 20

ASSEMBLY TERMINATED -- PROGRAM LOGIC ERROR

Explanation: The assembly has been abnormally terminated
because of a logic error within the assembler, or inconsistent
input to the assembler.

Examples:
. €A (3.5) as an opcode or

. Assembler input ends with a macrocall with a non-blank
character in the column after end column.

Assembler Action: Abnormal termination. No assembler listing
is produced; the assembler prints this message on the system

output device following the JCL statements for the assembler

job step. '

Programmer Response: Do the following before calling IBM:

. Have your source program, macro definitions, and associated
listings available.

. If a COPY statement was used, execute the IEBPTPCH utility
program to obtain a copy of the partitioned data set member
specified in the operand field of the COPY statement.

. Make sure that MSGLEVEL= (1,1) was specified on the JOB
statement.

Severity Code: 20

Appendix G: Assembler Diagnostic Error Messages 155

IFO264

IF0265

IF0266

156

TOO MANY ESD ENTRIES |

Explanation: More than 399 entries have been made in the
External Symbol Dictionary. Entries in the External Symbol
Dictionary are made for the following: control sections, dummy
sections, external references (EXTRN and WXTRN) , ENTRY symbols,
and external dummy sections.

Assembler Action: Entries over the 399 limit are not added to
the dictionary and linkage is not provided for them.

Programmer Response: Subdivide your program and reassemble each
section individually. Be sure that there are not more than 399
ESD entries in each assembly.

Severity Code: 16

SYMBOL RESOLUTION DATA AREA HAS BEEN EXHAUSTED

Explanation:

. Too many literals have been encountered since a LTORG
statement was encountered, and the assembler has filled
available work space with literals; or

. The assembler has filled available work space with ESD
entries.

Assembler Action: No assembly is performed.

Programmer Response:

. Insert more LTORG statements in the source deck or allocate
more working storage to the assembler; or

. If there are more than 399 ESD entries in your source
module, segment it into several modules.

Severity Code: 16

LAST ASSEMBLER PHASE LOADED WAS XXXXXXXX

Explanation: This message is issued by the abort routine when
the assembly is abnormally terminated.

Assembler Action: Abnormal termination.

Programmer Response: Correct problems indicated by other error
messages and reassemble.

Severity Code: 4

AN

O

IF0267

IF0268

IF0269

SYSPRINT DD CARD MISSING -- NOLIST OPTION USED

Explanation: The LIST option is specified, but the DD statement
for the SYSPRINT data set is not included in the JCL for this
assembly. The SYSPRINT data set holds the object module output
of the assembly normally directed to the printer.

Assemblex Action: The program is assembled using the NOLIST
option. The message is printed on the system output device
following the JCL statements for the assembler job step and on
the operator's console.

Programmer Response: If you want a listing, reassemble the
program with a SYSPRINT DD statement. Otherwise, do not
specify the LIST option.

Ooperator Response: Supply, if possible, a SYSPRINT DD card for
the assembler job step and rerun the job.

Severity Code: 16

SYSTERM DD CARD MISSING - NOTERMINAL OPTION USED

Explanation: The TERMINAL option is specified, but the DD
statement for the SYSTERM data set is not included in the JCL
statements for this assembly. The SYSTERM data set contains
diagnostic information output of the assembly, normally
directed to a remote terminal.

Programmer Response: If you want a SYSTERM listing, reassemble
the program with a SYSTERM DD statement. Otherwise, do not
specify the TERMINAL option.

Operator Response: Supply, if possible, a SYSTERM DD card for
the assembly step and rerun the job.

Severity Code: 16

SYSLIB DD CARD MISSING
Explanation:

. A COPY instruction appears in the assembly, but no SYSLIB
DD statement is included in the JCL statements; or

. An operation code that is not a machine, assembler, or
source macro instruction operation code appears in the
assembly, but no SYSLIB DD statement is included in the JCL
statements. The assembler assumed the operation code to be
a library macro operation code.

Assemblexr Action:

. The COPY instruction is ignored; or

] The operation code is treated as an undefined operation
code.

Programmer Response: Supply the missing DD statement or correct
the invalid operation code.

Severity Code: 16

Appendix G: Assembler Diagnostic Error Messages 157

w_p

,/‘

‘{ :‘\,_
A

|

adding macro definitions to a library 49
ALGN option 22
ALIGN option 23
under CMS 56
alignment of instructions and data (see
ALIGN option)
ALOGIC cption 19
under CMS 54
ASMFC
description 24-25

example of use 14-15,32,33
ASMFCG

description 30-31

example of use 15-16
ASMFCL

description 26-27

example of use 33
ASMFCLG

description 28-29

example of use 32,33

ASSEMBLE command, CMS 53
format of 53
filename entry 53
ASSEMBLE ddname 51,60
ASSEMBLE file,
created by assembly 57
assembler
dynamic invocation of 86,22
name of 17
purpose 9
assembler cataloged procedures
assembler data sets 88-89
assembler data sets (CMS) 60
Assembler F, compatibility 10
assembler language 9
assembler listing 34-45
cross reference 41-43
diagnostics H44-45
external symbol dictionary
literal cross reference 43
relocation dictionary 40
source and machine language
statements 38-39
statistics 4u4-45
symbol cross reference 41-42
assembler macros under CMS 59
assembler options
description 16-23
how to specify 17-18
assembler options under CMS,
listing control options
other options 53,56
output control options 53,55
SYSTERM options 53,55-56
assembler sample program 73-80
assembler speed and capacity 89
assembler storage requirements 89-90
assembler storage requirements (CMS) 60

23-33

36-37

53-56
53,54

Index

assembler work space 22,89

assembling a CMS program 53

assembly, JCL for (see ASMFC)

assembly and execution, JCL for (see
ASMFCG; ASMFCLG)

assembly and link editing, JCL for (see
ASMFCL)

assembly, link editing and execution, JCL
for (see ASMFCLG)

assembly and loader-execution, JCL for
(see ASMFCG)

ATTACH macro 86

base register, establishing 6
BLKSIZE for assembler data sets 89
blocking and buffering information 89
buffer size
of SYSIN, SYSLIB, SYSPRINT, SYSGO, and
SYSPUNCH 89
of SYSUT1, SYSUT2, and SYSUT3 89
(see also BUFSIZE option)
BUFNO for assembler data sets 90
BUFSIZE option 20, 89
under CMS 56

CALL macro 86
cataloged procedures
description 12
assembler 23-33
(see also ASMFC, ASMFCG, ASMFCL, ASMFCLG)

overriding parts of 32-33
changing parts of
cataloged procedures 32-33

CMS editor program 51

CMS, relationship to assembler 50

CMSLIB ddname 51,60

COBOL (see problem-oriented languages)

compatibility with Assembler F 10

COND parameter 96

conditional assembly statements in listing
(see ALOGIC option, MLOGIC option)

conventions for linking 49

COPY instruction 50

creating a CMS object file 53

creating a module (CMS) 60

cross reference listing U41-43

Index 159

data sets, assembler 88-90

SYSGO 89,90

SYSIN 88,90

SYSLIB 88,90

SYSPRINT 87,88,90

SYSPUNCH 89,90

SYSTERM 89,90

sysuT1, SyYsur2, Sysur3 89,90
data set characteristics, assembler 90
DD statements, overriding 32-33
DECK option 21

under CMS 55 i
default values for assembler options 16
diagnostic messages

CMS 63-66

explanations 94-157

in listing 44-45

special data set for (see SYSTERM

listing)

suppressing (see FLAG option)

on terminal (see SYSTERM listing)
diagnostics 44-45
DISK option

under CMS 55
DOS option 23
dynamic invocation of assembler 86,22
dynamic invocation of IBM-supplied
program 48

EDIT command (CMS) 52
effective address 39
END card, object module 83
END instruction to specify entry point 47
entry point 47

error messages (see diagnostic messages)
ESD (see external symbol dictionary)
ESD card 81

ESD option 19

under CMS 54

ESDID (external symbol dictionary identifi-
cation number) 37,41 '
example of assembler language

program 73-80

examples of cataloged

procedures 14-16,32-34

EXEC statement, overriding parts of 32
execution of user program 10

external symbol dictionary 36-37

file defaults (CMS), overriding 51
file definitions for CMS ddname, defaults
for 51-52
FILEDEF in (CMS) 51-52
default for 51-52
file processed by assembler under CMS 58

160

FLAG option 19 P
under CMS 55 {)
FORTRAN (see problem-oriented languages) L7

o

High-level language (see problem-oriented
languages)

IEBUPDTE utility program 49
INCLUDE command,

to execute more than one file 59
input to the assembler, CMS 50
inner macro instructions, listing of (see
.MCALL option; MLOGIC option)
input to the assembler 9

JCL (job control language) 12
job 12)
job control language 12 ,
job control statements for assembler
jobs 14-33
job step 12 N

W

LIBMAC option 20,94
under CMS 54
library macro definitions
adding to library 50
errors in 44-45
(see also LIBMAC option)
listing of (see LIBMAC option)
library maintenance, macro 49
LINECNT option 23
LINECOUNT option 19
undexr CMS 55
LINK macro 70
linkage conventions 46
linkage editor
choosing entry point 47
examples 32,33
purpose 10
linkage registers U6
linking with modules produced by other
language translators 47
linking with IBM-supplied programs 48
LIST option 19
under CMS 54
listing control options 19-20
listing control options (CMS) ~ 53,54
LISTING ddname 51,61
LISTING file, ;
created by assembler 57 / ‘
literal cross reference listing 43 QWJ’
literals in listing 38,43

LOAD command (CMS) 51 NOTERMINAL option 21,91

C: to load text file 59 under CMS 55
/' load module 10 NOTEST option 21
load module modification - entry point NOXREF option 20
restatement 47 under CMS 55
LOAD option 23 NOYFLAG option 19
loader under CMS 55
example of use 15-16 NUM option 21
purpose 10 NUMBER option 21,91
location counter in listing 39 under CMS 55

LRECL for assembler data sets 90

m OBJ option 21

machine language code in listing 39 object code in listing 39
macro definitions, library (see library object deck output 81-85
macro definitions) END 83
macro instructions in listing, inner (see ESD 81
MCALL option; MLOGIC option) RLD 82-83
macro library 49 SYM 83-85
(see also SYSLIB) TXT 82
MCALL option 19 object module
under CMS 5S4 definition 9
messages (see diagnostic messages, records of 81-85
statistics) object module, CMS 51
messages indentifier number 45,94 object module linkage 47
message text 45,94 OBJECT option 21
MLOGIC option 19,95 under CMS 55
under CMS 54 options, assembler (see assembler options)
MNOTE message 19 options in listing 45
-~ MNOTE option output control options 21
C: under CMS 55 output control options (CMS) 53,55
g output from assembler 9

output from assembler, CMS 51

overriding parts of cataloged
procedures 32-33

Name of assembler 17

NOALIGN option 22
under CMS 56 ﬂ
NOALOGIC option 19
under CMS 54 page size, assembler listing (see LINECOUNT
NODECK option 21 option)
under CMS 55 passing parameters to your program
NOESD option 19 (CMS) 59
under CMS 54 PARM field
NOLIBMAC option 20 (see also assembler options)
under CMS 54 acquiring information in 48
NOLIST option 19 coding rules 17-18
under CMS 54 overriding in cataloged
NOMCALL option 19 procedures 17,32
under CMS 54 performance, influencing (see assembler
NOMLOGIC option 19 speed and capacity)
under CMS 54 PL/I (see problem-oriented languages)
NONUMBER option 21 PRINT instruction 38,39
under CMS 56 PRINT option
NOOBJECT option 21 under CMS 55
under CMS 55 problem-oriented languages, linking
NOPRINT option (CMS) 55 with 47
NORENT option 22 procedures, cataloged (see cataloged
under CMS 56 procedures)
NORLD option 20 program design 46
under CMS 54 program listing (see assembler listing)
0 NOSTMT option 21,91 PUNCH ddname 51,61
! under CMS 56

Index 161

RECFM for assembler data sets 90
recurring errors 96
reenterability check 22
register usage under CMS 59
relocatable constants 40
relocation dictionary 40
RENT option 22

under CMS 56
return code 96
RLD (see relocation dictionary)
RLD card 82-83
RLD option 20

under CMS 54

Sample program 73-80
Save area U6

Saving registers U6
Severity code 96,45

source and machine language statements in

listing 38-39
source module 9
source statement in listing 38-39
START command (CMS) 51
to begin execution under CMS 59
statement number 39,45,94
statistics listing 4u4-45
step 12
storage requirements, virtual 89
STMT option 21,91
under CMS 56
sSYy card 83-85
symbol cross reference listing #2-43
SYS1.MACLIB 49,88
SYSGO data set 99,90
SYSIN data set 88,90
SYSLIB data set - 88,90
SYSPARM option
under CMS '56-57
SYSPRINT data set 87,98,90
SYSPUNCH data set 89,90
SYSTERM data set 89,90
SYSTERM ddname 61
SYSTERM listing 91-93
SYSTERM options 21
SYSTERM options (CMS) 53,55-56
SYsSUT1, SYSUT2, SYSUT3 data set 88,90

162

TERM option 21
TERMINAL option 21,91

under CMS 55
terminal output (see SYSTERM listing)
TEST option 21

under CMS 55
TEXT ddname 51,61
TEXT file (CMS) 51

created by assembly 57
Time Sharing Option 91
TSO (see Time Sharing Option)
TXT card 82

use of assembler cataloged
procedures 13-15,32-33
using SYSPARM under CMS 56-57
atility data sets 88,90

(see also BUFSIZE option)

virtual storage requirements 89
virtual storage requirements under CMS

work space, assembler 22,89
WORKSIZE option 20

XCTL macro 86

XREF option 20
under CMS 55

YFLAG option 19
under CMS 55

s

GC33-4021-4

TN
VAR
J

0S/VS - VM/370 Assembler Programmer’s Guide (File No. $370-27 (0S/VS, VM/370))

Printed in U.S.A. GC33-4021-4

____:=®
___:__

