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1. Introduction 

 

This toolbox provides an array of MATLAB (Mathworks, Natick, MA) functions for 

evaluating the causal connectivity in the dynamics of a set of variables, for calculating 

various statistical descriptors of causal connectivity, and for displaying the results in 

graphical form. It is a substantially upgraded version of a previous MATLAB toolbox 

first released in 2005 (Seth, 2005). The primary reference for the present toolbox is  

 

Seth, A.K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. 

Journal of Neuroscience Methods 186:262-273 

 

which should be cited whenever this toolbox is used.   

 

The toolbox is based on ‘Granger-causality’ (G-causality) which implements a statistical 

interpretation of causality in which A ‘Granger causes’ B if knowing the past of A can 

help predict B, better than knowing the past of B alone (Ding, Chen, & Bressler, 2006; 

Granger, 1969; Seth, 2007a).  The standard implementation of G-causality is via vector 

autoregressive (MVAR) modeling, in which a set of time series are modeled as weighted 

sums of past values.  This is the implementation underlying the present toolbox. 

 

The main objective of the toolbox is to provide exploratory tools for general purpose G-

causality analysis which can be assimilated and deployed quickly, with minimal self-

training, by any reasonably competent MATLAB programmer.  There is no graphical 

user interface.  

 

Comments, bug-fixes, and proposed enhancements are always welcome. There is a ‘wiki’ 

site for sharing experiences with the toolbox, which you are encouraged to read and 

contribute to, at http://ccatoolbox.pbwiki.com/. The toolbox is free – use it at your own 

risk. The toolbox is offered under the GNU general public license (version 3, see 

www.gnu.org).  

 

1.1 The toolbox 

 

The toolbox consists of seven types of utilities: 

 

 Data validation and preprocessing 

 Multivariate autoregression (MVAR) modelling and G-causality analysis 

 Statistical tools for assessing significance and model validity etc. 

 Causal connectivity statistics, operating on significant interactions 

 Graphical display  

 Utility tools for e.g., removal of specific frequency components 

 Demonstration functions 

 

To cut to the chase, before doing anything else, run ccaStartup which adds various 

MATLAB paths.  This function will throw an error if (i) certain files are not found (in 

http://ccatoolbox.pbwiki.com/
http://www.gnu.org/
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which case instructions are given to find them), or (ii) a support ‘mex’ file is not 

compiled properly (in which case instructions will be given on how to compile the file). 

 

Assuming all is OK, given a matrix M of the form variables (rows) by observations (cols), 

the corresponding G-causalities can be computed by: 

 
[ret] = cca_granger_regress(M,nlags);  

 

where nlags is the ‘model order’ (the number of lagged observations to include in the 

multivariate regression model).  Typically 2<=nlags<=10, though this depends on the 

data.  This will return a structure ret which has several fields.  These fields include 

ret.prb which gives the p-value for the variable j (the column variable) ‘G-causing’ 

the variable i (the row variable).  A low p-value (~0) indicates a significant causal 

interaction.   The field ret.gc gives the magnitude of the corresponding interactions, 

for both significant and non-significant interactions. 

 

To display the results in graphical form, do the following: 

 
[PR] = cca_findsignificance(ret,0.01,1); 

GC = GC.*PR; 

cca_plotcausality(GC); 

 

To get a better idea of what’s going on, let’s walk through the function  
cca_demo(). 
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2. Demonstration 

 

A simple demonstration of the toolbox is provided by 

 
cca_demo(N); 

 

where N determines the data set used.  There are two options: 

 

 N=1; data from (Baccala & Sameshima, 2001). 

 N=2; data from (Schelter et al., 2006). 

 

Let’s explore the data set from (Baccala & Sameshima, 2001).  In this data set, the actual 

(structural) connectivities are illustrated below: 

 

 
 

2.1 Time-domain G-causality 

 

Now let’s see what happens, step by step, as the demo runs: 

 

>> cca_demo(1) 

 

detrending and demeaning data 

 

- this step subtracts the best fitting line and removes the mean from each time 

series. 

 
checking for covariance stationarity ... 

WARNING, data is NOT covariance stationary by ADF 

unit roots found in variables: 1 

 

- this step checks that all variables are covariance stationary using the ADF test. In 

this case there is a warning since variable 1 is highly auto-correlated.  Note that 

this is not always a problem (see Section 3). 

 
cca_kpss: using default covariance lags = 44 

OK, data is covariance stationary by KPSS 

 

- this step checks that all variables are covariance stationary using the KPSS test. 

This test is complementary to the ADF test and can go in a different direction. 
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finding best model order ... 

VAR order 2, BIC = 0.31881, AIC = 0.17879 

VAR order 3, BIC = 0.3268, AIC = 0.11677 

VAR order 4, BIC = 0.40786, AIC = 0.12782 

VAR order 5, BIC = 0.49422, AIC = 0.14416 

VAR order 6, BIC = 0.5723, AIC = 0.15223 

VAR order 7, BIC = 0.65611, AIC = 0.16603 

VAR order 8, BIC = 0.73797, AIC = 0.17788 

best model order by Bayesian Information Criterion = 2 

best model order by Akaike Information Criterion = 3 

 

- this step identifies the best ‘model order’ to use, i.e. the number of past 

observations to incorporate into the regression model.  Either the Akaike criterion 

(AIC) or the Bayesian/Schwartz criterion (BIC) can be used. Alternatively the 

model order can be set on the basis of a priori knowledge of the system.  In this 

case we will use the AIC which specifies a model order of 3.  (Note: for bandpass 

filtered data large model orders may be best, see Section 6). 

 
finding conditional Granger causalities ... 

 

- this key step runs the time-domain G-causality analysis code. 

 
All residuals are white by corrected Durbin-Watson test 

Model consistency is OK, value=89.9704 

Adjusted r-square is OK: >0.3 of variance is accounted for 

by model 

 

- here we check that the regression model accounts for a sufficient amount of the 

variance in the data (i.e., to ensure that the model can be trusted). The Durbin-

Watson test assesses whether the residuals are uncorrelated (which they should 

be).  The model consistency assesses the proportion of the correlation structure 

that is shared by the real data and ‘simulated’ data generated from the MVAR 

model.  The final check shows the adjusted sum-square-error.  The latter two 

conditions have no significant/critical values, but low/high values can be taken as 

a rule of thumb to be 80 (consistency) and (0.3) adjusted r-square respectively. 

 
testing significance at P < 0.01, corrected P-val = 0.0005 

 

- here we check which interactions are statistically significant.  Various corrections 

can be selected; here we use the Bonferroni. 
 

calculating causal connectivity statistics 

time-domain causal density = 0.25 

time-domain causal density (weighted) = 0.073279 

 

- this step computes the causal density and causal flow values for the causal 

connectivity network. 
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The above steps complete the time-domain element of the demonstration.  G-causality in 

the time-domain has the advantage that its statistical properties are known, permitting 

straightforward significance tests. The frequency-dependent version (below) provides 

more information but at the expense of requiring surrogate data methods to assess 

significance (see Section 7).   

 

 

The graphical output produced by the time-domain analysis looks like this: 

 

 
 

Figure 1.  Output of time-domain G-causality analysis for the data set from (Baccala & 

Sameshima, 2001).  This figure shows the raw data (top left), the G-causality networks in 

matrix form (middle, column causes row) and network form (right), and, along the 

bottom, causal flow and causal density by variable (node).  The bar charts show 

unweighted causal density/flow, and the lines show density/flow weighted by magnitude 

of causal interaction.  The G-causality network accurately recovers the underlying 

connectivity.  Node 1 is correctly identified as a causal source and nodes 2-4 as causal 

sinks.  Nodes 1 and 4 are causal hubs because of their high degree of causal interactivity 

with the rest of the network. 
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2.2 Frequency-domain G-causality 

 

The demonstration function continues as follow (text and figure outputs): 

 
finding pairwise frequency-domain Granger causalities ... 

calculating causal connectivity statistics 

freq-domain causal density (weighted) = 44.4897 thresh=0.2 

 

- this step computes the G-causalities in the frequency domain.  Here, we have a 

separate causal network for each frequency (1-100 Hz).  Causal densities and 

causal flows are also calculated by frequency. 

 

 

 
 

Figure 2.  The top row shows the power spectrum for each variable (node), assuming a 

sampling rate of 500 Hz.  The middle and bottom rows show the by-variable causal 

density and causal flow, following a spectral G-causality analysis.  Note that peaks in the 

causal density spectra coincide with peaks in the power spectra.  Note also that y-axes 

have different scales. 
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Figure 3.  This is the average spectral causal density taken across all variables.  Note 

again the peak at ~60 Hz.   

 

 
 

Figure 4.  Here we have the pairwise G-causalities broken-down by frequency (column 

causes row).  Again, it is clear that variable 1 ‘causes’ the other variables at ~ 60 Hz.   
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Figure 5.  Finally, for comparison, here are the coherence spectra, which are returned 

along with the frequency-dependent G-causalities.  The matrix is symmetric along the 

diagonal, and the diagonal spectra (in red) give the power spectra again.   
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3. Data suitability, validation, and preprocessing 

 

Appropriate data consists of sets of time series, each of which represents many 

observations of a particular variable over time.  The variables must be recorded in 

parallel, so that t = tn in time series one corresponds to t = tn in all other series. It is 

helpful if the number of observations significantly exceeds the number of variables. As 

the number of variables increases, the number of parameters that need to be estimated per 

variable increases as np (for n variables and a model order p).   

 

In this section, we focus on establishing covariance stationarity, a necessary requirement 

for G-causality.  The more complicated issues surrounding filtering are left for Section 6.  

In what follows, assume we have a data matrix X of the form variables/nodes (nvar 

rows) by observations (T cols). 

 

3.1 Covariance stationarity 

 

Application of G-causality requires that each time series is ‘covariance stationary’ (CS), 

i.e., that its mean and variance do not change over time.  CS can be assessed in a rule-of-

thumb way by examining the auto-correlation function.  A non-CS time series will have 

an autocorrelation function that falls off slowly (Figure 6, left); a CS time series will have 

a sharply declining autocorrelation function (Figure 6, right).  The autocorrelation 

function of a time series x can be plotted using: 

 

- cca_sacf(x,nlags,1); 

 

where nlags should be quite large (>10).  

 

 

Figure 6.  
Demonstration of 

autocorrelation. A. 

A time series with 

high autocorrelation 

(a random walk). 

The series has a unit 

root. B. The same 

series following 1st 

order differencing.  

The autocorrelation 

is much reduced at 

all lags, and there is 

no unit root.   
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A more formal test for CS is the ADF (Augmented Dickey Fuller) test.  The ADF tests 

whether ‘unit roots’ are present in the data (Hamilton, 1994).  If they are, the time series 

is not CS.  The ADF test can be applied using: 

 

- uroot = cca_check_cov_stat(X,nlags); 

 

This function will return a vector (1 x nvar) in which 0 means ‘no unit root’ and 1 mean 

‘unit root present’. nlags  determines how many previous observations to take into 

account – a good rule of thumb is to try a few different values. In the example shown in 

Figure 6, the random walk time series has a unit root, but the differenced time series does 

not. 

 

A second formal test for stationarity is the KPSS test (Kwiatkowski, Phillips, Schmidt, & 

Shin, 1992) which is complementary to the ADF test. Whereas the ADF test uses the null 

hypothesis that there is a unit root, the KPSS test uses the null hypothesis of no unit root.  

It is possible for the tests to diverge, meaning that there is no clear evidence that either 

way. 

 

- [H,ks] = cca_kpss(X,nlags,pval); 

 

Each output is a vector (1 x nvar).  For H, 0 means ‘reject null hypothesis’ and 1 mean 

‘do not reject null hypothesis; ks give the corresponding KPSS test statistic values.  

Thus, in contrast to the ADF test, outputs of 0 imply unit root and 1 imply no unit root. 

nlags represents the number of autocovariance lags used by the Newey-West estimator 

in the KPSS test and, as a rule of thumb (and default) is of the order sqrt(T) where T 

is the number of observations in the data. pval cannot be arbitrary – choose from 0.01 

(default), 0.05, and 0.10. 

 

Both the ADF test and the KPSS test can be applied to multi-trial data (see Section 4.2) 

using the functions cca_check_cov_stat_mtrial() and 

cca_kpss_mtrial() respectively. 

 

3.2 Detrending and demeaning 
 

Two preprocessing steps should be applied as a matter of course.  The first is to subtract 

the best-fitting line from each time series.  This can be done using: 

 

- x = cca_detrend(x); 

 

The second is to remove the temporal mean from each observation of the time series, to 

provide a ‘zero-mean’ situation (Ding, Bressler, Yang, & Liang, 2000). Temporal means 

can be removed using the function: 

 

- [X,m,e] = cca_rm_temporalmean(X,FLAG); 
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where FLAG determines whether to divide as well by the temporal standard deviation, 

i.e., to standardize the series (1 = yes, 0 (default) = no); m returns a vector of temporal 

means, and e (optional) returns a vector of temporal standard deviations. 

 

For multi-realization data (see Section 4.2) one should subtract the ensemble mean (Ding, 

et al., 2000). The ensemble mean is determined by averaging the values for each variable 

at each time point across trials. Ensemble means can be removed using: 

 

- [X,M,E] = cca_rm_ensemblemean(X,Nr,Nl,FLAG); 

 

where Nr is the number of realizations (trials) and Nl is the length of each realization 

(see Section 4.2), FLAG is as before. Regarding outputs, M is a matrix of ensemble 

means (nvar by Nl), and E is an (optional) matrix of ensemble standard deviations 

(nvar by Nl). 

 

Detrending and ensemble demeaning are useful for removing nonstationarity in the mean, 

i.e. nonstationarity that is reflected in variance, over time, of the time series mean.   The 

standardization step can be used to remove nonstationarity in the standard deviation.  It 

should also be noted that zero-mean time series are required for MVAR model fitting, 

independently of their stationarity. 
 

3.3 Differencing 

 

If the data is non-CS, a widely used strategy is to ‘difference’ each time-series (see 

Figure 6B).  While this increases the chances that the time series will be covariance 

stationary, it may complicate the interpretation, since what is being assessed is now 

causal connectivity among changes in each time-series.  First-order differencing (for a 

whole matrix, or a single time series) can be carried out using: 

 

- X = cca_diff(X); 

 

This procedure can be iterated as required, though the interpretation becomes trickier 

each time.   Multi-trial data can also be differenced using cca_diff_mtrial(). 

 

Note that differencing may be problematic for analysis of frequency-dependent G-

causality, because it can change the spectral properties of the time series (acting as a kind 

of high-pass filter).  If differencing is needed, be sure to compare the frequency spectra of 

the original and non-differenced time series. For example, Figure 7 shows Fourier spectra 

for non-differenced (top) and differenced (bottom) time series for variable 2 of (Baccala 

& Sameshima, 2001). 
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Figure 7.  Fourier spectra for original (top) and differenced (bottom) time-series. In this 

case, the power spectrum is mostly preserved, but it is not identical.  In other examples, 

the post-differencing power spectrum can appear grossly distorted, especially if prior to 

differencing the bulk of power was in the lower frequency range. 

 

 

Even if the Fourier spectra are mainly preserved, there can still be subtle differences in 

the frequency profiles of the causal interactions.  For example, compare Figure 8 below 

with Figure 4.  There are subtle differences in the spectra shape around 50 Hz, which are 

brought about by the interaction between the differencing process and the sampling 

frequency.  Nonetheless, the results are still mostly similar for both differenced and non-

differenced data. 
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Figure 8.  Pairwise G-causalities broken-down by frequency, after first-order 

differencing.  The results are broadly comparable to the non-differenced data (Figure 4) 

though with some subtle differences in spectral shape. 

 

3.4 Windowing 

 

If a time series is non-CS, a useful approach is to take successive windows (usually 

overlapping), each of which by itself might be CS (the shorter the series, the more likely 

it is to be CS).  Of course, the ability to do this depends on having sufficient data. On the 

other hand, an advantage is that the windowing method naturally exposes time-varying 

causal interactions.  For this reason, windowing can be a valuable method even for series 

that are already CS.  Note that there are no dedicated windowing functions in the toolbox. 

 

3.5 Selecting the model order 
 

A key parameter choice for G-causality analysis is the model order, i.e., the number of 

previous observations to take into account when estimating the autoregressive model.  

Different model orders can sometimes lead to different results, even for the same data.  If 

the chosen model order is too low, the regression model is unlikely sufficiently to capture 

dynamic relations in the data.   

 

The model order can be chosen based on a priori knowledge, for example if you know 

that the maximum time lag for a causal effect is p observations.  Alternatively, one can 

automatically select the model order according to either the Akaike or Bayesian 

information criteria (Akaike, 1974; Schwartz, 1978), which, at their minimum values, 
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represent optimal trade-offs of accuracy against number of parameters.  It is good 

practice to ensure your results are robust to variations in the model order.   

 

To determine the model order automatically, use: 

 

- [bic,aic] = cca_find_model_order(X,minp,maxp); 

 

where (minp,maxp) are the minimum and maximum model orders to consider, 

respectively, and (bic,aic) are the optimal model orders for the Bayesian and Akaike 

information criteria respectively.  If the information criteria are monotonically decreasing 

(i.e., they never reach a minimum value over the range considered, indicated by 

bic/aic = maxp for many maxp) then it is worth eyeballing the data to ensure there 

are no peculiar artifacts.  If there aren’t, proceed by trying a few a priori plausible model 

orders.  

 

Note: For multiple realization data (see Section 4.2), use the following function. 

 
[bic,aic] = cca_find_model_order_mtrial(X,Nr,Nl,MINP,MAXP). 

 

For data that is bandpass filterered, it may be advisable to use rather high model orders so 

that the regression does not fit the filter convolution window (see Section 6).
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4. G-causality analysis 

 

Having completed preprocessing, we are now ready to analyze the data for causal 

networks. This section will cover the various functions available for such an analysis, 

including conditional G-causality, spectral G-causality, partial G-causality, Granger 

autonomy, and analysis of multiple-realization data. 

 

4.1 Conditional G-causality 

 

The most general purpose function, given below, applies a conditional G-causality 

analysis to the data.  The theory behind G-causality is described in (Seth, 2007a) , and 

will not be repeated here [see also (Granger, 1969), as well as (Hamilton, 1994; Wei, 

2006) for general background on time series analysis].  To assess the G-causalities among 

variables, use: 

 
[ret] = cca_granger_regress(X,nlags); 

 

The output has several fields: 

 

ret.gc - a matrix (nvar x nvar) of magnitudes of G-causality interactions, assessed 

by the log ratio of prediction errors, with the column variable causing the row variable. 

Higher numbers mean greater causal influence.  These values are not subject to any test 

of statistical significance. 

 

ret.prb - a matrix (nvar x nvar) of significance values; where each entry is the 

significance of the column variable G-causing the row variable. 

 

ret.fs - a matrix of the F-statistics corresponding to the above significance values. 

Another way of estimating the magnitude of a significant G-causality interaction is by the 

logarithm of the corresponding F-statistic. 

 

ret.cov – covariance matrix for the residuals of the unrestricted regression. 

 

ret.covr-covariance matrix for the residuals of each restricted regression. 

 

ret.rss – residual sum squares for each variable (see below). 

 

ret.rss_adj – adjusted residual sum squares for each variable (see below). 

 

ret.waut – significance values for the Durbin-Watson test for autocorrelated residuals 

(see Section 4.6). 

 

ret.cons – model consistency, i.e., the percentage of the (linear) correlation structure 

of the data accounted for by the model (see Section 4.6). 

 



 19 

ret.rss_adj – adjusted residual sum squares for each variable (see below). 

 

ret.doi –  ‘difference of influence’ terms, which correspond to causality in one 

direction (ret.gc) minus causality in the other.  This is useful for fMRI data, or other 

data subject to smoothing (Roebroeck, Formisano, & Goebel, 2005).  Note though that 

statistical significance needs to be established by surrogate data methods and not via 

filtering through ret.prb. (See Section 7).  Also, note that this term only makes sense 

for pairwise analyses. 

 

The simplest output of the function is ret.gc  which gives estimates of causal 

influence, without worrying about statistical significance. Note that ret.rss, 

ret.waut,and ret.cons should be examined to ensure that the regression model 

has sufficiently described the data (see Section 4.6).  If it does not, possible strategies 

include trying a different model order, differencing the data, including extra observations, 

or decreasing the number of analyzed variables.   

 

There is a possible warning that this function may produce:  

 

Warning: Rank deficient, rank = xxx  tol =   xxx. 

 

Rank deficiency indicates that the least squares solution to the multivariate regression is 

not unique.  This may happen if (some of) the variables are linearly dependent (i.e., one 

variable may be a scalar combination of others). The resulting ret.gc, ret.prb,  

and ret.fs may therefore also be non-unique.  Note that rank deficiency does not 

imply that the corresponding causality values are necessarily non-unique: it is quite 

possible that the family of regression solutions all have the same G-causality structure.  

To avoid rank deficiency, one strategy is to add a small amount of noise to each variable. 

 

Having applied this function to return the structure ret, the statistically significant set of 

G-causality interactions can be recovered by using: 

 
[PR,q] = cca_findsignificance(ret,pval,CFLAG); 

 

Here, pval is the desired significance threshold and CFLAG sets the correction required, 

from the choices below: 

 

CFLAG = 0: No correction, pval applied to each comparison independently. 

CFLAG = 1: Bonferonni correction, applied threshold is pval/(N(N-1)) to control 

for multiple comparisons. 

CFLAG = 2: Applied threshold is set to control the ‘false discovery rate’ (FDR) at 

pval, i.e. the expected proportion of incorrectly rejected null hypotheses (type I errors) 

(Benjamini & Hochberg, 1995).  Typically, the FDR offers greater power than the 

Bonferroni while still controlling for multiple comparisons. 

CFLAG = 3: The applied threshold is set at a rough approximation of the FDR. 
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The function returns PR, which is mask with 1’s for significant interactions and 0’s 

elsewhere; q is the applied threshold following the selected correction. 

 

4.2  Multiple realization G-causality 

 

If your data consists of multiple trials, each of a fixed length, then rather than estimating 

separate regression models for each trial, or concatenating the trials into a single long 

time series matrix, you can estimate a single model directly from the multitrial data.  The 

logic is that each trial can be considered as a separate realization of a single underlying 

stochastic process (Ding, et al., 2006). Use the following function: 

 
ret = cca_granger_regress_mtrial(X,Nr,Nl,nlags,STATFLAG) 

 

where Nr is the number of realizations (trials) and Nl is the length of each realization.  

For computational reasons, the function only returns the log ratio magnitude (ret.gc) 

unless STATFLAG is set, in which case ret.fs, ret.prb, ret.waut and 

ret.cons are returned as in cca_granger_regress.  Significance can be 

recovered as in Section 4.1.  Model order can be selected using  

 
[bic,aic] = cca_find_model_order_mtrial(X,Nr,Nl,MINP,MAXP). 

 

Note that this approach is useful for stationary multi-realization data.  If each trial has a 

non-stationary component (e.g., an event-related potential in M/EEG) it may be tempting 

to subtract the ensemble average from each trial in order to regain an ensemble of 

(stationary) induced responses.  However, this approach may in practice not work very 

well due to variability in the ERP across trials (Wang, Chen, & Ding, 2008) 

 

4.3  Spectral G-causality 

 

The coefficients that comprise the multivariate autoregressive model can be interpreted in 

the frequency domain, allowing causal interactions to be analyzed by frequency (Ding, et 

al., 2006; Geweke, 1982).  This analysis is particularly useful for neurophysiological data 

in which frequency bands have distinctive functional interpretations.  A disadvantage of 

the ‘spectral’ G-causality is that statistical significance has to be estimated empirically, 

by constructing surrogate data (Efron & Tibshirani, 1994).  

 

To perform spectral G-causality analysis, use: 

 
[GW,COH,pp,waut,cons]=cca_pwcausal(X,Nr,Nl,nlags,Fs,freq, 

STATFLAG) 

 

X, Nr, Nl, and nlags are as above, Fs is the sampling frequency and freq is a vector 

containing the frequencies to be analyzed (e.g., [1:1:100]).  Note that this function is 

naturally multitrial.  For single trial, long time series data, set Nr=1 and Nl = number of 

observations.   
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GW is a 3 dimensional matrix of log-ratio G-causalities (nvar by nvar by frequency), 

COH is an equivalent matrix of coherence values, and pp is the power spectrum (which 

also appears along the diagonal of COH).  As noted, there is no standard significance test 

for spectral G-causality; use instead bootstrapping and/or random permutation methods 

(see Section 7).  Note that the present spectral measures compute pairwise interactions 

only.  If STATFLAG is set to 1 the function will also return values for waut and cons 

(see Section 4.5), which are otherwise set to a default of -1. 

 

The function cca_pwcausal() function is a wrapper function for the function  

pwcausal() which is part of the BSMART toolbox (Cui, Xu, Bressler, Ding, & Liang, 

2008). 

 

4.4 Partial G-causality 

 

Most functional connectivity methods, including G-causality, are sensitive to the 

influence of unmeasured variables (‘exogenous’ or ‘latent’ influences).  Partial G-

causality is a technique which offers some robustness to this influence.  The logic is that 

exogenous/latent influences will be reflected in correlations among the residuals, and can 

partly be factored out by analogy with partial coherence (Guo, Seth, Kendrick, Zhou, & 

Feng, 2008).  As with spectral G-causality, surrogate data methods are needed in order to 

establish statistical significances. 

 

To perform partial G-causality, use: 

 
ret = cca_partialgc(X,nlags,STATFLAG) 

 

The output has three fields: ret.gc gives the standard conditional G-causality, ret.fg 

gives the partial G-causality, and ret.doifg gives the partial ‘difference-of-

influence’ terms. If STATFLAG is set to 1 the function will also return values for waut 

and cons (see Section 4.5), which are otherwise set to a default of -1. 

 

There is also a multiple-realization version of partial G-causality: 

 
ret = cca_partialgc_mtrial(X,Nr,Nl,nlags,STATFLAG) 

 

4.5 Granger autonomy 

 

The framework of G-causality can be used to provide a measure of the statistical 

‘autonomy’ of a variable.  The logic is that a variable is ‘Granger autonomous’, or ‘G-

autonomous’, to the extent that (i) its own past helps predict its future, and (ii) these 

predictions are not accounted for by external variables (Seth, 2010a) 

 

To perform a G-autonomy analysis, use: 

 
[ret] = cca_autonomy_regress(X,nlags) 
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The output fields of ret are all 1*nvar in dimension.  prb gives the probability with 

which each variable is G-autonomous with respect to the others in the set, gaut gives 

the corresponding magnitudes of the autonomies, and fs gives the corresponding F-

statistics.  The function also returns significance values for the Durbin Watson test 

(ret.waut) and the model consistency (ret.cons). Statistically significant G-

autonomous variables can be identified using: 

 
[PR,q] = cca_findsignificance_autonomy(X,pval,CFLAG); 

 

Where inputs and outputs are as in cca_findsignificance(). A demonstration of 

G-autonomy is given by the function cca_autonomy_demo() in the test/ 

directory. 

 

As an aside, by combining G-autonomy with G-causality it is possible to define an 

operational measure of ‘emergence’ as the extent to which a macro-variable is 

simultaneously (i) autonomous from its micro-level constituents, and (ii) causally 

dependent on them.  For details see (Seth, 2010b). 
 

4.6 Model validity 

 

Having conducted a G-causality analysis it is important to verify that the underlying 

MVAR adequately captures the data.  The toolbox includes three methods for achieving 

this.  

 

 The Durbin-Watson test (Durbin & Watson, 1950) assesses whether the MVAR 

residuals (i.e., the errors) are serially uncorrelated, as they should be if the model 

satisfactorily represents the data.  The result of this test is given as a significance 

value for rejecting the null hypothesis of no serial correlation. That is, values of 

<0.05 (or <0.01) give cause for concern; values of close to 1 are desirable.  The 

significance value is returned as the field waut in various functions. These values 

should be corrected for multiple comparisons. 

 

 The consistency test (Ding, et al., 2000) assesses the portion of the data captured 

by the MVAR model, expressed as a percentage.  The percentage is calculated 

across all autocorrelations and cross-correlations in the real data and in a 

simulated data set generated by the MVAR model.  A consistency value of <80% 

gives cause for concern.  This value is returned as the field cons in various 

functions. 

 

 Finally, one can examine the (adjusted) ‘sum square error’ of the regression.  This 

is returned as the field rss_adj in various functions.  A value of <0.3 may give 

cause for concern. 
 

If the model fails any of the above validity tests, then conclusions regarding causal 

connectivity should be regarded cautiously.  Strategies to enhance model validity include 

increasing the model order, incorporating additional variables into the analysis, and/or 
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using nonlinear approaches (see Section 9).  Alternatively, if there is good reason to 

believe that the system is influenced by exogenous/latent variables, then partial G-

causality can be used. 
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5. Causal network statistics and visualization 
 

This section describes functions for characterizing and visualizing causal networks.  In 

network-theory terminology, variables correspond to network nodes, and causal 

interactions correspond to directed edges. The functions offered here represent only a 

small sample of the wide variety of graph-theoretic and network-theoretic tools that could 

be applied to causal networks.   

 

5.1 Causal density 

 

Causal density measures the total amount of causal interactivity sustained by a network.  

It is a useful measure of dynamical complexity because high causal density reflects 

simultaneous integration and differentiation in network dynamics (Seth, 2008; Seth, 

Dienes, Cleeremans, Overgaard, & Pessoa, 2008).  High causal density indicates that 

elements within a system are both globally coordinated in their activity (in order to be 

useful for predicting each other’s activity) and at the same time dynamically distinct (so 

that different elements contribute in different ways to these predictions). 

 

The causal density of a network’s dynamics can be calculated using: 

 

- [ret] = cca_causaldensity(GC,PR); 

 

The function returns several fields:  ret.cd gives the fraction of statistically significant 

causal connections (bounded 0:1); ret.cdw gives an unbounded, weighted value for 

causal density.  ret.ucd supplies a vector with causal densities per node (‘unit’ causal 

density), and ret.ucdw supplies a weighted version of the same.  The significance 

matrix PR is optional; if it is omitted then ret.cd and ret.ucd will be set to -1.  

Nodes with high unit causal density can be thought of as ‘hubs’ in a causal network. 

 

For spectral G-causality, one can calculate frequency-specific causal density: 

 

- [ret] = cca_causaldensity_spectral(GW,thresh); 

 

The function returns ret.scdw which is a vector of causal densities by frequency. 

ret.sucdw is a matrix with causal densities by node and by frequency.   If the input 

thresh is a scalar, then these values will be computed only for causal interactions that 

exceed the scalar threshold.  If the input thresh is a binary matrix (nvar*nvar*nfreq) 

showing significances (calculated by bootstrap or permutation resampling, see Section 7), 

then these thresholds will be used instead, and the function will also return additional 

outputs ret.scd and ret.sucd, corresponding to unweighted causal density and unit 

causal density in the time-domain case. 
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5.2 Causal flow 

 

The causal flow of a node in a G-causality network is defined as the difference between 

its out-degree (number of outgoing connections) and its in-degree (number of incoming 

connections).  Causal flow can identify nodes that have distinctive causal effects on 

network dynamics: A node with a highly positive flow is a causal ‘source’, a node with a 

highly negative flow is a causal ‘sink’. 

 

- [ret] = cca_causalflow(GC,PR); 

 

This function returns several fields: 

 

ret.indeg:      only incoming causal influences (1*nvar)                         

ret.outdeg:     only outgoing causal influences                        

ret.flow:       outdeg minus indeg  

ret.windeg:     as above but weighted                        

ret.woutdeg:    as above but weighted                       

ret.wflow:      as above but weighted   

 

Note that the PR input is optional, as with cca_causaldensity(). 

 

There is also a spectral version of causal flow, with the above quantities defined on a per-

frequency basis: 

 

- [ret] = cca_causalflow_spectral(GW,thresh); 

 

As with cca_causaldensity_spectral, the threshold can either be a scalar value 

or a binary three-dimensional significance matrix derived from bootstrap or permutation 

resampling tests.  The output fields are as above but prefaced with ‘s’ indicating 

‘spectral’. 

 

5.3 Plotting causal networks 

 

Causal networks generated via time-domain G-causality analyses can be graphically 

represented using the function  

 
cca_plotcausality(M,nodenames,sfac); 

 

where M is a matrix of (weighted or unweighted) G-causality interactions, nodenames 

is an optional vector of labels for the variables in M, and sfac is a scaling factor applied 

to the line widths, which can be adjusted as needed to optimize appearance.  In the 

resulting network, unidirectional connections are shown in green with arrowheads, 

bidirectional connections are shown in red, and the width of each line represents causal 

magnitude (for bidirectional interactions the largest magnitude is used). 
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In the frequency domain, causal networks are plotted as a matrix of ‘sub-plots’ with each 

‘sub-plot’ showing a causality-by-frequency graph: 
cca_plotcausality_spectral(M,freqs,c1,c2) 

 

The inputs M and freqs are essential.  M is as before, and freqs is the vector of 

frequency values to be shown (e.g., 1:100).  The remaining optional inputs refer to 

confidence intervals for permutation and bootstrap resampling procedures, if these have 

been carried out.  For permutation resampling, c1 should be set to the output field 

ret.st from cca_pwcausal_permute() and no input for c2 should be given.  

The significance threshold for each interaction will then be shown in red, and values 

exceeding this threshold will be marked by a yellow background.  For bootstrap 

resampling, both c1 and c2 should be set, respectively, to the outputs ret.ll and 

ret.ul from cca_pwcausal_bstrap(), which correspond to the lower and upper 

confidence limits.  Significant values are shown as before.  Note the function will 

determine which if any statistical procedure has been used by the number of inputs given. 

 

Time-domain causal networks can be transformed into a format allowing display by the 

Pajek network software (http://vlado.fmf.uni-lj.si/pub/networks/pajek/), which is highly 

recommended for carrying out advanced graphical and statistical analyses of networks: 

 
cca_pajek(PR,GC,fname,nodenames); 

 

The input PR is an nvar*nvar matrix of causally significant interactions, GC should 

contain the corresponding weights (magnitudes).  The optional input fname specifies a 

filename (the saved file will be fname.net, the default is demo.net), and 

nodenames is an optional vector of labels for the nodes.  Figure 9 shows a 

demonstration of a network plotted using Pajek. 

 

 
 

Figure 9. Causal connectivity for a demonstration, plotted using the Pajek program.  

Network arrangement is determined using the Kamada-Kawai energy minimization 

algorithm such that highly interconnected nodes tend to bunch together. 

 

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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5.5 Plotting multitrial data 

 

It is useful to be able to plot ensemble properties of multi-trial data.  This facility is 

provided by the function 

 
cca_plotevent(X,Nr,Nl); 

 

which outputs separate subplots for each variable, with each subplot showing both the 

individual trials (thin grey lines) and the ensemble average (thick blue line). 
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6. Filtering 
 

This section discusses various approaches to filtering, which has to be undertaken with 

care when used in combination with G-causality analysis. Filtering is a current area of 

interest regarding G-causality (Florin, Gross, Pfeifer, Fink, & Timmermann, 2010) (see 

also Barnett and Seth, in preparation). 

 

6.1 Bandpass filtering 

 

For many data sources, bandpass filtering is often used prior to frequency analysis, in 

order to remove artifacts and/or to focus on frequency bands of a priori interest.  

Although it has long been established (Geweke, 1982) that G-causality is in principle 

invariant to the application of invertible filters, in practice filtering can still be 

problematic (Barnett and Seth, in preparation).  In brief, filtering (notch or bandpass) can 

be useful in order to render nonstationary data stationary, but should not be used in order 

to restrict a time-domain analysis to a frequency range of interest. 

 

For example, the figure below shows a 50-80 Hz bandpass filter applied forward and then 

backward using the eegfilt routine from the EEGLAB toolbox (Delorme & Makeig, 

2004), applied to the dataset from (Baccala & Sameshima, 2001).  Clearly, the inferred 

causalities are highly disrupted despite retaining within the filter the frequencies of 

interest (~60 Hz). 

 

 
Figure 10.  Artifacts induced by bandpass filtering.  Left columns show unfiltered data 

(causal network, Fourier spectrum for variable 1).  Right columns show same for filtered 
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data, between 50 – 80 Hz, using EEGLAB software.  Similar artifacts were induced by 

wideband filtering (1 – 100 Hz). 

 

Artifacts are also observable in the spectral G-causality, again within the frequency range 

of interest (Figure 11): 

 

 
Figure 11.  Artifacts induced by bandpass filtering.  Left column shows spectral G-

causality for unfiltered data (causal outflow from variable 1 only).  Right column shows 

same for bandpass filtered data, between 50 – 80 Hz, using EEGLAB software.   
 

 

6.2 Multi-taper and notch filtering 

 

Some data sources, for example EEG, exhibit sharp ‘line noise’ peaks due to mains 

electricity, usually at 60 Hz (USA) or 50 Hz (Europe).  Typically, a narrow bandstop 

‘notch filter’ is used to remove this peak, but as shown above, such filters can induce 

artifacts. A suitable alternative is provided by ‘multitaper filtering’ (Mitra & Bokil, 2008) 

in which a sinusoid oscillation is fit to the noise and then subtracted.  Because the 

amplitude of the line noise may vary over time, this procedure is best applied across 

windows.   
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Below is an example of how line-noise at 45 Hz can induce artifacts in a time-domain G-

causality analysis, and how these artifacts are removed by multitaper filtering: 

 
Figure 12.  Multitaper filtering for line noise removal.  Left column shows erroneous G-

causality interactions due to an imposed line-noise source at 45 Hz (see Fourier spectrum 

at bottom, for variable 1).  Right column shows how multitaper filtering removes the line 

noise and allows the true causal pattern to be recovered. 

 

To apply multitaper filtering, use the following function: 

 

- x = cca_multitaper(x,Fs,Fnoise,WSIZE); 

 

where Fs is the sampling rate, Fnoise is the line noise to remove (a single frequency), 

and WSIZE is the size of the window to use.  You may have to adjust this parameter in 

order to get good results, depending on how variable the amplitude of the line noise 

signal is.  Within the function there are other user adjustable parameters as well, 

including the Fourier padding (pad), the taper half-bandwidth (NW) and the number of 

tapers (K).    

 

 If you are using differencing, it is best to do so after applying the multitaper filter. 

 

 Multitaper filtering is not guaranteed to be successful. Always check the Fourier 

spectra before and after application, to ensure that the line noise has been 

removed.  Multitaper filtering works best when the sampling frequency is an 

integer multiple of the line noise.  

 

Finally, note that spectral G-causality can be quite robust to noise (including line noise) 

that resides at frequencies beyond the frequency range of interest.  The figure below 
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shows the pairwise spectral G-causalities for both the raw data with line noise added at 

30 Hz (Figure 13A) and the multi-tapered data (Figure 13B), with confidence intervals 

provided by bootstrap resampling (see Section 7).  The results are very similar.  By 

contrast, as shown above, the time-domain G-causality is highly disrupted when line-

noise is added and multi-taper filtering is not applied. 
 

  
 

Figure 13.  Left (A): Pairwise spectral G-causality with line noise at 30 Hz and no 

filtering.  Right (B). Same, after applying multitaper filtering.  Bootstrap confidence 

intervals are shown in yellow.  The two causal patterns are much the same. 

 

6.3 Filtering and model order 
 

Work is ongoing to clarify the interaction between G-causality and filtering operations.  

In the meantime, numerical experiments suggest that a useful workaround solution is to 

use large model orders.  Figure 14 shows how a model order of 75 leads to a reduction, 

but not elimination, of filter-induced artifacts. 

 
 

Figure 14.  Artifacts induced by bandpass filtering at 1-100 Hz (middle) can be removed 

by substantially extending the model order (right).  
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7. Bootstrapping and permutation resampling 
 

Some of the quantities calculated by the functions in this toolbox have distributions that 

are not analytically known. Testing for statistical significance is therefore best carried out 

by the computationally intensive but rigorous procedures of bootstrapping and 

permutation tests (Efron & Tibshirani, 1994).  Functions for carrying out these tests are 

included for spectral G-causality, partial G-causality, and the ‘difference-of-influence’ 

terms useful for analysis of fMRI (or other temporally smoothed) data.  Permutation tests 

are useful for assessing whether a value is different from zero.  Bootstrapping tests are 

useful for placing confidence intervals around a value, which can either be used to 

distinguish that value from zero, or to compare apparently different values. Both 

permutation and bootstrapping can be applied to either single-trial or multi-trial data.   

 

7.1 Bootstrap resampling 

 

The premise of bootstrap resampling is that a single observation can stand in for a 

distribution if it is resampled with replacement (Efron & Tibshirani, 1994).  In the 

context of vector autoregressive models, this means that a data matrix is subdivided into a 

number of windows which are repeatedly sampled with replacement to generate surrogate 

data matrices.  Importantly, the causal relations within each window are not disturbed.  

Confidence intervals on the sample value are then generated by examining the empirical 

quantiles of the bootstrap distribution. 

 

Bootstrap confidence intervals can be estimated for partial G-causality with the following 

function: 

 
[ret] = cca_partialgc_doi_bstrap(X,Nr,Nl,nlags,nBoot,nBwin, 

        pval,CORRTYPE,DOIFLAG) 

 

This function takes many inputs.  The first four are as in cca_partialgc.  nBoot is 

the number of bootstrap resamples to carry out. The more the better; for rigorous tests, 

thousands of resamples are recommended.  nBwin is the window size from which to 

generate bootstrap resamples; this should be set so that there are at least 10 windows in 

the data, but it should not be set to less than nlags.  pval and CORRTYPE are as in 

cca_granger_regress, and DOIFLAG determines whether bootstrap confidence 

intervals are given for difference-of-influence terms (=1), or for partial difference-of-

influence terms (=2) or not for at all for these terms (=0).   

 

This function is compatible with multi-realization data.  If there are many realizations, set 

nBwin=Nl. Otherwise, set nBwin to a smaller value which is an integer fraction of Nl. 

 

The output fields are:  

 

ret.fg - partial G-causality  

ret.gc – log ratio magnitude of conditional G-causality 

ret.pr - significance of partial G-causality interactions 
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ret.ll - lower confidence limit on partial G-causality 

ret.ul - upper confidence limit on partial G-causality 

ret.ci - post-correction confidence intervals (upper/lower) 
 

ret.doi  - difference of influence terms 

ret.waut – significance value for Durbin Watson test for autocorrelated residuals 

ret.cons - model consistency 

ret.lld  - lower confidence limit for doi (if DOIFLAG = 1 or 2) 

ret.uld  - upper confidence limit for doi (if DOIFLAG = 1 or 2) 

ret.prd  - significance of DOIs (if DOIFLAG = 1 or 2) 

 

For spectral G-causality, use the function: 

 
[ret] = cca_pwcausal_bstrap(X,Nr,Nl,nlags,nBoot,nBwin,     

     Fs,freq,pval,CORRTYPE) 

 

where the inputs are as above, apart from Fs and freq which take the sampling 

frequency and the vector of frequencies to analyze, respectively. 

 

7.2 Permutation resampling 

 

A permutation test is a test in which a reference distribution is obtained by calculating 

many values of the test statistic under rearrangements of the labels on the observed data 

points.  In other words, permutation tests involve resampling consistent with the 

assumption that the null hypothesis is true. In the context of vector autoregressive 

models, this means that a data matrix is subdivided into a number of windows and then 

surrogate data matrices are selected by rearranging the windows for each variable 

separately. (This is in contrast to the bootstrap procedure.)  The distribution of G-

causalities over these resamples then gives the expected distributions assuming a null 

hypothesis of no causal connectivity.  Significance thresholds for the observed values can 

then be derived by examining the empirical quantiles of this distribution.  

 

Permutation significance thresholds can be estimated for partial G-causality with the 

following function: 

 
[ret] = cca_partialgc_doi_permute(X,Nr,Nl,nlags,nBoot, 

nBwin,pval,CORRTYPE,DOIFLAG) 

 

The input arguments are as for cca_partialgc_doi_bstrap. The output fields are:  

 

ret.fg - partial G-causality  

ret.gc – log ratio magnitude of conditional G-causality 

ret.pr - significance of partial G-causality interactions 

ret.ll - limit on partial G-causality of permuted series 

ret.md – median value of permuted series 

http://en.wikipedia.org/wiki/Test_statistic
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ret.ci - post-correction confidence intervals (upper/lower) 

ret.doi  - difference of influence terms 

ret.waut – significance value for Durbin Watson test for autocorrelated residuals 

ret.cons - model consistency 

ret.lld  - limit of permuted series (if DOIFLAG = 1 or 2) 

ret.mdd  – median value of permuted series (if DOIFLAG = 1 or 2) 

ret.prd  - significance of DOIs (if DOIFLAG = 1 or 2) 

 

For spectral G-causality, use the function: 

 
[ret] = cca_pwcausal_permute(X,Nr,Nl,nlags,nBoot,nBwin,     

     Fs,freq,pval,CORRTYPE). 

 

7.3 Demonstration 

 

A function illustrating both permutation and bootstrap resampling is provided in the 

/test/ directory.  It is: 

 
cca_permutebstrap_demo(GENFLAG); 

 

where GENFLAG takes 1 for generation of new test data (from cca_testData()), or 0 

for use of previously generated test data (from a previous run of the demo.) 

 

8. Additional resources 
 

As well as the primary reference for this toolbox (Seth, 2010a),  causal connectivity 

statistics have been utilized by the author in (Krichmar, Seth, Nitz, Fleischer, & Edelman, 

2005; Seth, 2005, 2007b; Seth & Edelman, 2007; Seth, Izhikevich, Reeke, & Edelman, 

2006).  A tutorial introduction to G-causality is provided at (Seth, 2007a).   Related 

useful toolboxes include EEGLAB (Delorme & Makeig, 2004) and BSMART (Cui, et al., 

2008). 

 

9. Limitations 
 

The present toolbox does not include cover several current areas of development: 

 

 Nonlinear G-causality.  All methods presented here rely on linear models of 

continuous time series.  Nonlinear extensions have been developed and will be 

included in future revisions (Ancona, Marinazzo, & Stramaglia, 2004; Chen, 

Rangarajan, Feng, & Ding, 2004) see also . A simple nonlinear extension is to 

estimate autoregressive components to polynomials, as in a Taylor expansion.  

This can give useful results (Seth, 2010a) but may not be stable for large numbers 

of variables. Having said this, we have recently shown that, for Gaussian 

variables, G-causality is fully equivalent to (nonparametric) transfer entropy, so 

that there for such data there is nothing additional to be gained by nonlinear 
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measures (Barnett, Barrett, & Seth, 2009). 

 

 Multivariate G-causality (MVGC).  Recently, we have described properties of 

the MVGC measures which assesses G-causality between multivariate sets of 

variables, rather than between univariate variables.  MVGC is based on 

comparing the determinant (the generalized variance) of the residual covariance 

matrices, rather than simply the residual variances as can be done in univariate 

situations.  See (Barrett, Barnett, & Seth, 2010). 

 

 Multivariate spectral G-causality.  There remains debate over the best method 

to use to compute spectral G-causality in a fully multivariate/conditional manner.  

Candidate methods include partial directed coherence (Baccala & Sameshima, 

2001), the directed transfer function (Kaminski, Ding, Truccolo, & Bressler, 

2001), and a recent nonparametric method which remains faithful to Geweke’s 

spectral representation of the G-causality equations (Dhamala, Rangarajan, & 

Ding, 2008).  This method will hopefully be included in future toolbox releases. 

 

 Point-process G-causality.  The routines in the present toolbox are designed for 

continuous time series sampled at discrete intervals.  To fit multivariate models to 

point processes (e.g., spike trains), a simple fix is to convolve the point process 

with a half-Gaussian (spreading into the future).  Recent work by Rangarajan, 

Ding, and colleagues suggests, however, that it is possible to directly derive 

spectral G-causality from multivariate point process data (Nedungadi, Rangarajan, 

Jain, & Ding, 2009).  This will be a useful method to incorporate into future 

toolbox versions. 

 

 fMRI and hemodynamics.  For application to fMRI, users should be aware of 

the potential confounds caused by variations in hemodynamic response shape and 

latency among brain regions, as well as by scanner downsampling.  These issues 

are discussed in detail in (Bressler & Seth, 2010; David et al., 2008; Deshpande, 

Sathian, & Hu, 2010; Friston, 2009; Roebroeck, Formisano, & Goebel, 2009; 

Ryali, Supekar, Chen, & Menon, 2011; Smith et al., 2011).  This area of research 

is currently very active. 
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Appendix A. Modifications from v1.x 
 

Substantial new features in v2 include: 

 

 Spectral (frequency dependent) G-causality. 

 Computation of ‘Granger-autonomy’ (Seth, 2007b). 

 Estimating multivariate models from multiple realizations (multi-trial data) (Ding, 

et al., 2006). 

 Detrending and demeaning functions for preprocessing. 

 Model validity checking via Durbin-Watson test and consistency. 

 Partial G-causality (Guo, et al., 2008). 

 Enhanced significance testing using ‘false discovery rate’ (Benjamini & 

Hochberg, 1995) and bootstrap/permutation resampling methods. 

 fMRI ‘difference of influence’ computation (Roebroeck, et al., 2005). 

 Multitaper filtering for removal of line-noise measurement artifacts. 

 General bug-fixing and improved efficiency of core algorithms. 

 

 

V2.7 updates (nov 02, 2009) 

 Fixed bugs in cca_adf.m and cca_findsignificance.m that caused failures for short 

time series.  Corrected referencing in manual.  Added function cca_normrnd.m to 

utilities. 

 

V2.8 updates (dec 26, 2009) 

 Added new functions to apply ADF stationarity test to multi-trial data 

(cca_check_cov_stat_mtrial.m) and to difference multi-trial data 

(cca_diff_mtrial.m) 

 Added a new graphical function (cca_plotevent.m) for multitrial data showing the 

ensemble average superimposed on individual trials, lined up by the start of each 

trial. 

 Added new functions to implement the KPSS stationarity test, both for single trial 

(cca_kpss.m) and multi-trial (cca_kpss_mtrial.m) data.  

 

 

http://www.brain-smart.org/
http://www.spatial-econometrics.com/
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V2.9 updates (jan 07, 2010) 

 

 Add precompiled mex64 file for 64-bit windows. 

 Minor bug fixes throughout. 

 Minor revision of manual. 
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