
GCSE (9-1) Computer Science
Pearson Edexcel Level 1/Level 2 GCSE (9 - 1) in Computer Science (1CP1)

Getting Started 
Guide



 

 

Getting Started: GCSE Computer 
Science 2016 

Contents 

1. Introduction 1 

1.1 Key principles 1 

1.2 Support 1 

2. What’s changed? 3 

2.1 How have GCSEs changed? 3 

What does this mean for Computer Science? 3 

Changes to assessment requirements 3 

Assessment Objectives 4 

2.2 The Edexcel Computer Science specification 4 

Updated content 4 

Additional content 4 

How does the new specification compare with the old one? 5 

How has the assessment changed? 5 

3. Planning 6 

3.1 Planning and delivering a linear course 6 

3.2 Suggested resources 6 

4. Content guidance 7 

4.1 Overview 7 

4.2 Subject content 7 

Topic 1: Problem solving 7 

Topic 2: Programming 8 

Topic 3: Data 8 

Topic 4: Computers 9 

Topic 5: Communication and the internet 9 

Topic 6: The bigger picture 9 

5. Assessment guidance 10 

5.1 Overview 10 

5.2 Examination papers 11 

Paper 1: Principles of Computer Science 11 

Paper 2: Application of Computational Thinking 11 

Computer-related mathematics 12 

5.3 Non-Examined Assessment 12 

Synoptic assessment 13 

Project stages 13 

What evidence is required? 14 



 

 

Carrying out the project 15 

Marking guidance 16 

Moderation process 16 

Teachers’ guide to the NEA 16 

6. Mark schemes and question styles 17 

6.1 Question types 17 

6.2 Command words 17 

6.3 Mark schemes 18 

7. Grading structure 19 

8. Timeline 20 

 



1. Introduction 

© Pearson Education Ltd 2015. 

 

1 

1. Introduction 

This Getting Started Guide provides an overview of the new GCSE Computer 

Science specification. It is designed to help you get to grips with the subject 

content and assessment and to understand what these mean for you and your 

students. 

1.1 Key principles 

Our new GCSE Computer Science specification is intended to develop students’ 

understanding of the principles of computer science and their ability to apply 

computational thinking to problem solving.  

We consulted widely on the proposed content and assessment methodology of the 

specification. Involved in the consultation were: 

● teachers from a number of schools and colleges, with different levels of 

experience of teaching computer science 

● our Expert Stakeholders’ Advisory Group, comprising university academics 

from University of Greenwich, King’s College London and Brighton University 

● and the wider computer science community, including the Computing at 

Schools (CAS) group and the British Computer Society (BCS). 

 

Six key principles underpin our new specification. They are: 

● Clear and coherent structure – making it easy to see what students need 

to know and be able to do 

● Contemporary content – emphasising the real-world relevance of computer 

science and considering the issues and impact of computing technology  

● Focus on computational thinking – developing an effective approach to 

problem solving  

● Clear assessment – assessing theoretical understanding and practical skills 

● Inclusive and accessible – enabling students of all abilities to study 

computer science 

● Continuous progression – building on the knowledge, understanding and 

skills developed through the computing programme of study in Key Stages 1 

to 3 and fostering progression to further study at Key Stage 5 and beyond. 

1.2 Support  

We are providing a comprehensive package of free support to help you plan and 

implement our new GCSE in Computer Science.  

● Planning – An editable course planner and schemes of work that you can 

adapt to suit your department. 

● Teaching materials – Editable outline lesson plans, lesson and homework 

activities with solutions that you can adapt and use to save you time, plus 

additional teacher support material. 

● Mapping – The mapping document highlights key differences between the 

new specification and the previous one, and between different Awarding 

Organisation’s specifications. 

● Understanding the standard – Sample Assessment Materials (SAMs) and 

exemplar student work with commentaries, for both the examined and non-

examined components, help you to get to grips with the format of the papers 

and the level of demand. 



1. Introduction 

© Pearson Education Ltd 2015.  

 

2 

● Tracking learner progress – Our online ResultsPlus service provides 

detailed analysis of students’ examination performance, helping you to 

identify topics and skills where further learning would benefit your students.  

● examWizard – A useful examination preparation tool containing a bank of 

past Edexcel GCSE Computer Science questions, mark schemes and 

examiners’ reports. 

● Advice – Our subject advisor service, led by Tim Brady, is a direct and 

personal source of help and support. Sign up to receive Tim’s e-newsletter1 to 

keep up to date with qualification and service news. 

● Website – The GCSE 2016 Computer Science pages of our website provide a 

one-stop shop for information and resources2.  

● Getting Ready to Teach – Online and Face2Face (F2F) events helping you 

to prepare to teach the new GCSE in Computer Science. 

 

 

                                                 
1 

https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&su=Sign+me+up+for+Co

mputer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign
+me+up+to+receive+regular+Computer+Science+email+updates. 
2 www.qualifications.pearson.com/compsci2016 

https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&su=Sign+me+up+for+Computer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign+me+up+to+receive+regular+Computer+Science+email+updates.
https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&su=Sign+me+up+for+Computer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign+me+up+to+receive+regular+Computer+Science+email+updates.
https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&su=Sign+me+up+for+Computer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign+me+up+to+receive+regular+Computer+Science+email+updates.
http://qualifications.pearson.com/compsci2016


3. Planning 

© Pearson Education Ltd 2015. 3 

2. What’s changed? 

2.1 How have GCSEs changed? 

● Updated content – All GCSEs are being revised, with changes taking place in 

three phases between 2015 and 2017. 

● Linear – In future all GCSEs will have a fully linear structure. This means that 

the content is no longer divided into discrete modules and all assessment 

takes place at the end of the course.  

● Assessment – Written examinations are the default method of assessment, 

except where they cannot provide valid assessment of all the skills required. 

This is the case with Computer Science. Even where coursework is deemed to 

be necessary it must contribute no more than 20% of the total marks 

available and be submitted at the end of the course. 

● Grading – There is a new grading system that uses numbers instead of 

letters to represent grades. The new grades are on a scale 9–1, with 9 

representing the highest grade and 1 the lowest. See page 19 in the 

specification for more information on the grading scale and how the grades 

relate to current GCSE grades. 

● Guided learning hours – The number of guided learning hours (GLH) 

allocated to study of a GCSE qualification remains unchanged at 120 GLH. 

What does this mean for Computer Science? 

For the first time the Department for Education (DfE) has specified subject content 

for GCSE Computer Science.  

Computer Science: GCSE Subject Content (January 2015)3 sets out the knowledge, 

understanding and skills common to all GCSEs in Computer Science. Awarding 

organisations must ensure that their specification provides complete coverage of 

the subject content. Key features include: 

● Knowledge and understanding – includes algorithms, contemporary 

secondary storage, cyber security and network protocol layers, alongside 

more familiar content such as binary representation of numbers, Boolean logic 

and systems architecture. 

● Problem solving – advocates a systematic approach to problem solving 

using decomposition and abstraction. 

● Programming – requires students to use one or more high-level 

programming languages with a textual definition, selected from a list 

approved by the awarding organisation. 

● Computing-related mathematics – specifications must include appropriate 

computing-related mathematics. 

Changes to assessment requirements 

The GCSE Subject Level Conditions and Requirements for Computer Science (May 

2015)4 issued by Ofqual sets out the rules and regulations for GCSEs in Computer 

Science.  

                                                 
3 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_sub

ject_content_for_computer_science.pdf 
 
4 www.gov.uk/government/uploads/system/uploads/attachment_data/file/427399/gcse-subject-

level-conditions-and-requirements-for-computer-science.pdf 
 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/427399/gcse-subject-level-conditions-and-requirements-for-computer-science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/427399/gcse-subject-level-conditions-and-requirements-for-computer-science.pdf


2. What’s changed? 

© Pearson Education Ltd 2015.  

 

4 

It stipulates that assessment by examination must contribute 80 per cent of the 

total marks available, with Non-Examined Assessment (NEA) making up the 

remaining 20 per cent.  

The NEA component must be a single, 20-hour project that requires students to 

design, write, test and refine a program and produce a written report. 

Assessment Objectives 

In the same document Ofqual specifies a set of three Assessment Objectives for 

GCSE qualifications in Computer Science. They are: 

 

AO1 

30% 

Demonstrate knowledge and understanding of the key 

concepts and principles of computer science. 

AO2 

40% 

Apply knowledge and understanding of key concepts and 

principles of computer science. 

AO3 

30% 

Analyse problems in computational terms: 

• to make reasoned judgements; and 

• to design, program, evaluate and refine solutions. 

 

These Assessment Objectives place particular emphasis on application of 

knowledge, understanding and problem solving, reflecting the fact that although 

Computer Science is an academic discipline with a defined body of knowledge, it is 

also a highly practical subject. 

Further information on how to interpret the Assessment Objectives can be found in 

the document GCSE Subject Level Guidance for Computer Science (May 2015)5, 

published by Ofqual. 

2.2 The Edexcel Computer Science specification 

Updated content  

All GCSES are being revised, with changes taking place in three phases between 

2015 and 2017. 

Our legacy GCSE Computer Science (2013) anticipated many of the changes that 

Ofqual has now introduced. Consequently, we have been able to carry forward, 

unaltered, most of the content and approach of the legacy specification into our 

new 2016 specification. This makes for a very smooth transition from old to new. 

That said, it has been necessary to make some changes in order to fully comply 

with the new subject content and assessment requirements.  

Additional content 

In response to feedback we received from our stakeholders, we have included some 

additional topics over and above the mandatory content specified by the DfE. These 

topics are already in our legacy specification. 

● Databases – A ‘must’ given the prevalence of structured data in the world 

today. 

● Input-process-output – The model of computation that permeates all 

aspects of computer science. 

● The internet – A basic knowledge of the internet is a prerequisite for 

studying network protocols, cyber-security and contemporary storage.  

                                                 
5 www.gov.uk/government/publications/gcse-9-to-1-subject-level-guidance-for-computer-science 

https://www.gov.uk/government/publications/gcse-9-to-1-subject-level-guidance-for-computer-science


3. Planning 

© Pearson Education Ltd 2015. 5 

● Text files – Being able to reuse data stored in files is what makes computer 

processing so powerful, which is why we feel that students should have 

hands-on programming experience of reading from and writing to files. 

How does the new specification compare with the old one? 

While the subject content of the two specifications is divided into the same six 

topics, there are some differences between them. Overall, the 2016 specification 

has less content than its predecessor. 

No longer included: 

● Structured English (Topic 1) 

● Cartesian coordinates and user interfaces (Topic 2) 

● SQL (Topic 3) 

● Assembly language (Topic 4) 

● HTML/CSS (Topic 5) 

● Emerging technologies (Topic 6). 

What’s new: 

● Students have to be able to write pseudo-code as well as read it and there’s a 

greater emphasis on abstraction (Topic 1) 

● The record data structure (Topic 2) 

● A new sub-section on network security (Topic 5). 

There is a mapping document comparing the content of the 2013 specification with 

that of the new 2016 specification on the GCSE 2016 Computer Science pages of 

our website6. 

How has the assessment changed? 

The 2016 specification has three assessment components rather than two, and the 

weighting for coursework (see below) has gone down from 25 per cent to 20 per 

cent.  

Two exam papers instead of one 

Instead of having just one written paper covering all six topics, the new 

specification has two papers – one focusing on principles of computer science and 

the other on computational thinking – each with a weighting of 40 per cent.  

Nevertheless, the general approach remains the same: contextualised questions, 

split into a number of parts, papers ‘ramped’ so questions become more difficult as 

students move through the paper and a variety of question styles. 

Non-Examined Assessment replaces controlled assessment 

Non-Examined Assessment (NEA) replaces controlled assessment (CA). Instead of 

tackling three related programming tasks in 15 hours as in the legacy 2013 

specification, students have 20 hours in which to undertake one substantial project.  

In this specification students must analyse a problem and design, implement, test, 

refine and evaluate a solution. NEA must be carried under similar controlled 

conditions to those pertaining to controlled assessment (see page 10 for more 

details of the assessment).  

 

 

                                                 
6 See footnote 2. 



3. Planning 

© Pearson Education Ltd 2015.  

 

6 

3. Planning 

3.1 Planning and delivering a linear course  

The GCSE in Computer Science has a notional time allocation of 120 guided learning 

hours. 

We recommend a minimum of two one-hour lessons a week (or equivalent) to 

adequately cover the content, embed skills such as problem solving and 

programming into your teaching, and to prepare students for the assessments.  

Because this is a linear qualification, teachers have more flexibility in structuring the 

course and more time for teaching in the first year.  

However, when planning delivery, it is important to leave sufficient time for revision 

in the second year, particularly to revisit topics studied in the first year.  

In addition, skills development needs to be ongoing so that students have the 

necessary problem-solving and programming know-how to tackle the NEA, which 

must be completed sometime during the second year of the course. 

We have developed a free, downloadable course planner together with outline 

lesson plans and activities, which you may find useful. You can use the materials as 

given, modify them to suit your students or simply refer to them to get ideas.  

These planning materials can be downloaded from the GCSE 2016 Computer 

Science pages of our website7.  

3.2 Suggested resources 

Generic resources 

There are some fantastic generic resources available online. CAS has a huge bank 

of materials. The Khan Academy has some excellent materials designed for self-

directed study. There are also a number of introductory computer science MOOCs 

provided by HE consortia, such as Coursera, Edx and FutureLearn. Some of these 

may be suitable for students working in self-study mode.  

Specification-specific resources 

Pearson-published resources provide comprehensive support for the new Edexcel 

GCSE Computer Science specification. They consist of: 

● a Student Book and Institutional Activebook to support great computer 

science teaching through a scenario-based approach to problem solving and 

computational thinking.  

● a Revision Guide and Workbook to help students with mock and final exam 

preparation. 

We are also working with a range of other publishers, including Hodder, who are 

seeking endorsement for the resources they are developing for the new 

specification. 

An up-to-date list of suggested resources can be viewed on the GCSE 2016 

Computer Science pages of our website8. 

 

                                                 
7 See footnote 2. 
8 See footnote 2. 

http://qualifications.pearson.com/compsci2016
http://qualifications.pearson.com/compsci2016


4. Content guidance 

© Pearson Education Ltd 2015. 

 

7 

 

4. Content guidance 

4.1 Overview 

The subject content of the specification combines knowledge and understanding of 

the principles of computer science with practical problem solving and programming 

skills.   

4.2 Subject content 

The subject content is divided into six topics:  

1. Problem solving  

2. Programming  

3. Data  

4. Computers  

5. Communication and the internet  

6. The bigger picture 

Each topic is divided into one or more sections and each section consists of a 

number of statements. 

The topics are interlinked. It would not be appropriate to work through the 

specification teaching one topic after another sequentially. This applies particularly 

to Topics 1 and 2, which are intended to be taught together and to form a 

continuous ‘thread’ throughout the course. 

Topic 1: Problem solving 

The introduction to Topic 1 states that students are expected to develop a set of 

computational thinking skills that enable them to understand how computer 

systems work, and design, implement and analyse algorithms for solving problems.   

It should be noted that computational thinking is a core component of the entire 

qualification and is not just confined to Topic 1, which focuses on techniques. 

The topic is divided into two sections. Section 1.1 focuses on algorithms and Section 

1.2 on decomposition and abstraction.  

Students are expected to be able to interpret and express algorithms as written 

descriptions, flowcharts, pseudo-code and program code.  

Any questions in the written examinations that use pseudo-code will use the 

pseudo-code command set provided in Appendix 1 of the specification.  

Please note – students are not obliged to use this pseudo-code. Any valid 

alternative is acceptable. However, familiarity with the given pseudo-code could 

increase confidence when interpreting questions.  

The flowchart symbols students are expected to know and be able to use can be 

found in Appendix 2 of the specification. There are only four simple flowchart 

symbols; students can use flowchart templates during the examination although 

these often contain many more symbols than are needed and may be restrictive in 

the defined space on a question paper. 

Students should be given repeated opportunities throughout the course to tackle 

computational problems of various sorts, including some substantial problem-

solving tasks. 

Statement 1.1.8 lists the standard algorithms students are expected to know. These 

are bubble sort, merge sort, linear searches and binary searches. Students don’t 



5.  Assessment guidance 

© Pearson Education Ltd 2015.  

 

8 

have to use these algorithms in their own programs but they do need to know how 

they work and be able to demonstrate how they operate on a given set of data. 

Statements 1.2.1 and 1.2.2 encapsulate the first stage of problem solving. Students 

will be expected to adopt this approach when undertaking the NEA project. 

Statements 1.2.3 and 1.2.4 cover abstraction; a theme that is revisited in the 

section on subprograms in Topic 2. 

Topic 2: Programming 

Topic 2 focuses on the programming knowledge and skills students need to learn 

and practise. The topic introduction states that they should be competent at 

designing, reading, writing and debugging computer programs and should be given 

repeated opportunities to develop and practise their programming skills throughout 

the course. 

Section 2.1 spells out the approach that students should use when developing and 

testing program code. 

Statement 2.1.3 focuses on the three different types of errors that occur in 

programs.  

Statement 2.1.4 covers test plans and test data and Statement 2.1.5 looks at 

identifying and correcting errors in code. 

Sections 2.2 to 2.6 specify the structural components of programs, the 

programming constructs and the data structures that students are expected to 

understand and use. In some instances this may mean working with the nearest 

equivalent. For example, Python doesn’t have a built-in data type for an array; the 

nearest equivalent is a list, which can be used in much the same way as an array. 

Nor does Python have a dedicated record data type; the built-in dictionary type is 

the nearest equivalent. 

Students are required to use a high-level programming language with a textual 

definition to complete the NEA assignment. They must choose from one of the 

Edexcel-approved languages. These are Python, Java, Visual Basic.NET, Pascal or 

Object Pascal or a C-derived language (C, C++ or C#). 

Students are not required to develop programs that have a graphical interface. 

Simple text (console) mode programs will suffice. 

Topic 3: Data 

This is a wide-ranging topic covering binary representation of data, data 

compression, encryption and relational databases. It provides a useful context for 

developing computing-related maths skills. 

Section 3.1 covers binary representation of numbers, conversion from binary to 

denary and vice versa, binary arithmetic and hexadecimal.  

Section 3.2 deals with how text, images and sound are represented in binary and 

considers the limitations of binary representation.   

Section 3.3 focuses on data storage and compression – lossless and lossy. In 

statement 3.3.1 the terms kilobyte (KB), megabyte (MB), gigabyte (GB) and 

terabyte (TB) refer to binary representation, for example a kilobyte (KB) is 1024 

bytes. Statement 3.3.3 stipulates that students should understand how a lossless 

run-length encoding algorithm works. Question 2 in the Paper 1 SAM assesses 

understanding of compression. Statement 3.3.4 focuses on file storage and states 

that students must be able to calculate file sizes. 

Section 3.4 considers the need for data encryption. Statement 3.4.2 requires 

students to understand how a Caesar cipher algorithm works. 

Section 3.5 focuses on databases – how data can be decomposed and structured in 

a relational database. There is no requirement for students to have any practical 

experience of using structured query language. 



4. Content guidance 

© Pearson Education Ltd 2015. 

 

9 

Topic 4: Computers 

Topic 4 is concerned with the hardware and software components of a computer 

system. Students are expected to recognise that computers take many forms from 

embedded microprocessors to distributed clouds. 

Section 4.1 focuses on the input-process-output model of computation, which 

permeates all aspects of computer science. It describes how computers execute 

programs – by receiving inputs (instructions and data), working out what to do with 

them and then outputting some form of result. It encapsulates the process of 

writing software, a computer program consists of a series of instructions, which 

accept input, carry out some processing and return output, and it underpins the 

design of the Von Neumann architecture in Section 4.2.  

Section 4.2 focuses on the hardware components of a computer system, the role of 

the components of the CPU in the fetch-decode-execute cycle and contemporary 

secondary storage, including the ‘cloud’. Statement 4.2.6 hones in on the need for 

and functions of embedded systems. 

Logic is covered in Section 4.3. Students must be able to construct truth tables and 

produce logic statements for given problems. 

Section 4.4 covers operating systems and utility software. Statement 4.4.3 is 

another ‘take’ on abstraction. Students are expected to understand how software 

can be used to simulate and model aspects of the real world. 

Section 4.5 covers high- and low-level programming languages. Statement 4.5.2 

focuses on different methods of translating high-level languages into machine code, 

including the role of an assembler, a compiler and an interpreter. 

Topic 5: Communication and the internet 

Topic 5 focuses on the key principles behind the organisation of computer networks.  

Section 5.1 covers networks essentials, including types of networks, usage models 

and topologies. Statement 5.1.5 is concerned with the role of and need for network 

protocols. It includes a list of the protocols students are expected to know about. 

Network and cyber-security is the focus of Section 5.2 and is a key new topic in the 

Computer Science: GCSE Subject Content (January 2015)9. Statement 5.2.3 

specifies the forms of cyberattack that students must know about, statement 5.2.4 

covers methods of identifying vulnerabilities and statement 5.2.5 demonstrates how 

to develop resilient software systems that are resistant to cyberattacks.  

Section 5.3 covers the internet and world wide web, focusing on the structure of the 

internet in statement 5.3.1 and the components of the world wide web in statement 

5.3.2. There is no need for students to have any practical experience of using a 

mark-up language. 

Topic 6: The bigger picture 

Topic 6 focuses on an awareness of the influence of computing technology on 

emerging trends, the issues and the impact on today’s world. Statement 6.1.1 is 

concerned with the environmental impact, in particular the issues associated with 

health, energy use and resources. Statement 6.1.2 considers the ethical impact, 

honing in on privacy, inclusion and professionalism. Statement 6.1.3 is designed to 

raise awareness of legal and ownership issues associated with computing 

technology – important considerations for budding computer scientists! 

 

 

 

                                                 
9 See footnote 3. 



5.  Assessment guidance 

© Pearson Education Ltd 2015.  

 

10 

5. Assessment guidance 

5.1 Overview  

The GCSE in Computer Science has three assessment components.  

 

Component Title  Overview Summary of 

assessment 

Component 1  

40% 

1 hour and 40 

minutes 

Principles of 

Computer 

Science 

All topics Examination 

Multiple choice, 

short-open, 

extended-open and 

open response 

questions 

Component 2  

40% 

2 hours 

Application of 

Computational 

Thinking 

Focuses mainly on 

Topics 1 and 2, 

but may also 

draw on content 

from the other 

four topics 

Scenario-based 

examination 

Short, extended 

and open response 

questions 

Component 3  

20% 

20 hours 

Project A program that is 

designed, 

implemented, 

tested, plus a 

written report 

Non-Examined 

Assessment 

A levels-based 

mark scheme, with 

separate grids for 

each of the four 

stages of 

development 

 

The raw marks for Components 1 and 2 in this qualification will be scaled to 

represent the relative weighting of 40 per cent for Component 1 and 40 per cent for 

Component 2.  

This is an awarded qualification. Following the marking of scripts at the end of an 

examination series, an awarding committee will decide where to set the raw mark 

grade boundary for each of the three components. Raw mark grade boundaries can 

vary from series to series.10 A uniform mark scale (UMS) is used to convert 

component raw marks into uniform marks. Uniform mark grade boundaries are 

fixed and do not change from series to series. 

Students must sit both examinations at the end of the course. Their NEA 

assignment marks will be submitted on the date specified by the Joint Council for 

Qualifications (JCQ).  

                                                 
10 You can find out more about how grades are awarded by visiting: 
www.qualifications.pearson.com/en/support/support-topics/results-certification/understanding-
marks-and-grades.html 

http://qualifications.pearson.com/en/support/support-topics/results-certification/understanding-marks-and-grades.html
http://qualifications.pearson.com/en/support/support-topics/results-certification/understanding-marks-and-grades.html


5. Assessment guidance 

© Pearson Education Ltd 2015. 

 

11 

5.2 Examination papers 

There are two written examination papers; both are taken at the end of the course. 

Paper 1: Principles of Computer Science 

Paper 1 targets Assessment Objectives 1 and 2. It assesses content from across the 

specification. 

It is 1 hour and 40 minutes in length, is marked out of 80 and has a weighting of 40 

per cent. 

All questions are compulsory.  

Calculators are not allowed.  

A clean copy of the pseudo-code booklet (available electronically on the Pearson 

website) should be printed and made available to each student. 

The first examination will take place in June 2018. 

The paper assesses students’ understanding of: 

● what algorithms are, what they are used for and how they work  

● the requirements for writing program code 

● binary representation, data representation, data storage and compression, 

encryption and databases 

● components of computer systems 

● computer networks, the internet and the world wide web 

● the influence of computing technology and the impact on society, including 

environmental, ethical, legal and ownership issues 

and their ability to:  

● interpret, amend and create algorithms  

● construct truth tables and produce logic statements. 

Every question has several parts and is set in a context. A variety of question styles 

are used: multiple-choice, short-open response, open response and extended-open 

response. Most questions have some straightforward parts and some more 

challenging ones. See page 17 for more details of the question styles used in the 

written paper. 

The paper is ‘ramped’, meaning that questions become more difficult as you move 

through the paper.  

Although spelling, punctuation and grammar are not directly assessed, students are 

expected to employ good writing skills in their longer answers. For a written 

extended-response question the maximum number of marks will be 6.  

Paper 2: Application of Computational Thinking 

As its title makes clear, the focus of Paper 2 is computational thinking. The paper 

targets all three Assessment Objectives. It draws mainly on Topics 1 and 2, but 

may also touch upon content from the other four topics.  

It is 2 hours in length. This is to ensure that students have sufficient ‘thinking’ time 

for problem solving. Like Paper 1, it is marked out of 80 and has a weighting of 40 

per cent. 

All questions are compulsory. 

Calculators are not allowed.  



5.  Assessment guidance 

© Pearson Education Ltd 2015.  

 

12 

A clean copy of the pseudo-code booklet (pages 23-30 or 71-78 in the Sample 

Assessment Materials11) should be printed and made available to each student. 

The first examination will take place in June 2018. 

The paper assesses students’ understanding of: 

● what algorithms are, what they are used for and how they work  

● how to develop program code, using programming constructs, data types and 

structures, input/output, operators and subprograms 

and their ability to:  

● interpret, amend and create algorithms. 

A real-world context is used throughout the paper. As well as more traditional 

question styles, there are tables to complete and algorithms to interpret, amend, 

trace and design. 

This paper too is ‘ramped’.  

Longer answers in this paper are likely to involve creation of an algorithm 

expressed either in pseudo-code or as flowchart. See page 17 for more details of 

the question styles used in the written paper. 

Computer-related mathematics 

The use of computer-related mathematics is assessed in context in both written 

papers, such as in questions that require students to: 

● convert between binary and denary (3.1.3) 

● perform binary arithmetic (3.1.4) 

● convert between hexadecimal and binary (3.1.5) 

● convert between units of measurement (3.3.1) 

● calculate file sizes (3.3.4)  

● construct expressions that use arithmetic, relational or logical operators 

(2.5.1, 2.5.2, 2.5.3)  

● construct truth tables and logic statements (4.3.1, 4.3.2). 

5.3 Non-Examined Assessment 

The Non-Examined Assessment component targets Assessment Objectives 2 and 3. 

It is marked out of 60 and has a weighting of 20 per cent.  

Students must undertake a single project that requires them to analyse a problem 

and then design, implement, test, refine and evaluate a computer program to solve 

it.  

Students may complete the assignment over multiple sessions, up to a combined 

duration of 20 hours. 

The program must be written in a high-level textual language. The languages 

approved for use by Edexcel are:  

● Python 

● Java 

● Pascal or Object Pascal 

● Visual Basic.NET 

● C-Derived (C, C++ or C#). 

Access to the internet is not allowed. 

                                                 
11 

http://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2016/Specificatio
n%20and%20sample%20assessments/computer-science-sam.pdf 

http://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2016/Specification%20and%20sample%20assessments/computer-science-sam.pdf
http://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2016/Specification%20and%20sample%20assessments/computer-science-sam.pdf


5. Assessment guidance 

© Pearson Education Ltd 2015. 

 

13 

A clean copy of the pseudo-code booklet (available electronically on the Pearson 

website) should be made available to each student. 

A printed or digital syntax guide for the high-level programming language being 

used can also be made available to students. An example is provided in Appendix 3 

of the specification. 

If a data file is required to complete the project, it will be provided by Pearson. 

A new project brief will be published on the Pearson website each September, from 

September 2017.  

There is no choice of project brief. Students must attempt the project that is 

published in the final year of their course.  

First assessment will take place in 2018. 

Students must submit their program along with a report evidencing the 

development process, including an evaluation. 

The NEA assesses students’ ability to: 

● analyse and decompose problems 

● design solutions and create algorithms 

● design and use test plans and test data 

● develop program code, using programming constructs, data types and 

structures, input/output, operators and subprograms 

● evaluate a program and suggest improvements. 

It is the centre’s responsibility to ensure that assignments are valid for the series in 

which they are submitted. 

Synoptic assessment 

Synoptic assessment requires students to work across different parts of a 

qualification and to show their accumulated knowledge and understanding of a topic 

or subject area. Synoptic assessment enables students to show their ability to 

combine their skills, knowledge and understanding with breadth and depth of the 

subject. Synopticity is assessed in the NEA. 

Project stages 

The project is divided into four stages.  

1. Analysis 

2. Design 

– Solution design 

– Test strategy and initial test plan 

3. Implementation 

– Implementing the design 

– Building the solution 

4. Testing, refining and evaluation  

The analysis is worth 6 marks. Students must analyse the given problem and 

produce a list of the requirements; decompose the problem into manageable sub-

problems and produce a brief written description of each; and explain why the 

chosen decomposition is appropriate. They are not expected to produce flowcharts 

or pseudo-code at this stage.  

More information about the analysis stage of the assignment can be found on page 

20 of the specification. 

The design is worth 18 marks – 12 for designing a solution to the problem and 6 

for devising a test strategy and initial test plan.  



5.  Assessment guidance 

© Pearson Education Ltd 2015.  

 

14 

Students must design an algorithm (or algorithms) to meet the requirements of the 

problem. They can use pseudo-code, flowcharts or written descriptions to do so. 

The use of program code at this stage is not permitted. The algorithm should be 

fully decomposed into sub-programs and show the links between sub-programs. 

The test strategy should outline the approach to testing the student intends to take 

and should be reflected in the initial test plan. A test plan template will be provided. 

At this stage only the first four columns should be completed. Where appropriate, 

test data should cover normal, erroneous and boundary values. Further tests can be 

added to the plan at a later stage if required.  

More information about the design stage of the assignment can be found on pages 

22–24 of the specification. 

The implementation is worth 24 marks – 6 for implementing the design and 18 for 

building the solution. 

Students must use a high-level programming language to convert their design into 

executable code. They will have to make decisions about the data types of 

variables, how best to implement data structures and subprograms in their chosen 

language, etc. 

The final program should be fully functional and meet all the identified 

requirements. It should have been fully decomposed into subprograms and be clear 

and easy to understand.  

The marks in this strand are for producing a working solution to the problem. A 

program that demonstrates great coding skills but fails to solve the problem will 

achieve fewer marks. 

The NEA is intended to mirror a ‘real world’ approach to problem solving, where a 

solution is refined as it progresses. Refinements should be added to the design and 

the program code (and commented on). 

More information about the implementation stage of the assignment can be found 

on pages 25–27 of the specification. 

Testing, refining and evaluation is worth 12 marks. Students must carry out the 

test strategy they designed in stage 2 and complete the ‘Final Test Plan’. Additional 

tests can be added here, including refinements. 

Students should correct any errors they encounter during testing and then re-test. 

A record of any additional tests that are carried out should be added to the test 

plan. 

More detail about the testing, refining and evaluation stage of the assignment can 

be found on pages 28–29 of the specification. 

What evidence is required? 

1. An executable version of the program.  

2. A written report documenting the work that has been carried out and including 

an evaluation of the program. This table details what needs to be included in 

the report. 



5. Assessment guidance 

© Pearson Education Ltd 2015. 

 

15 

 

Project stage Report content 

Analysis  A brief introduction to the problem. 

 A list of the problem requirements. 

 Decomposition of the problem into sub-

problems, including: 

– a brief description of the purpose of 

each sub-problem. 

– a short explanation of the reasoning 

behind the decomposition. 

Design – solution 

design 

 The algorithm(s). 

 Any refinements to the design identified 

during implementation, with reasons. 

Design – test 

strategy and initial 

test plan 

 The test strategy. 

 The initial test plan with the first four 

columns completed. 

Implementation  A copy of the program code with any 

refinements noted as comments.  

 One or more screenshots demonstrating 

effective use of debugging skills to correct 

errors. 

Testing, refining 

and evaluation 

 The updated and completed test plan. 

 The evaluation. 

Carrying out the project 

Work on the NEA must be carried out in a supervised environment, such that 

students’ work can be authenticated. This requires centres to: 

● set up secure user accounts for each student, accessible only in the controlled 

environment and only by that student and their supervisor. 

● ensure that no work is taken out of and no reference material or notes are 

brought into the controlled environment. 

● prevent students from accessing the internet or intranet. 

● restrict the software available to students to just the high-level programming 

language they are using and a word processing package. 

Students must be supervised and must not work with others on the project. 

Centres are recommended to install monitoring software do that they can monitor 

students at individual workstations. 

Supervisors may provide support to a student who is not able to carry out sufficient 

work at one stage to enable them to progress to the next stage. Any help given 

should be noted on the centre assessor record sheet (available from our website) 

and marks awarded accordingly.  

Students may use precompiled library units with some provisos and can have 

access to a printed or digital syntax guide. An example is provided in Appendix 3 of 

the specification. 

Further information about carrying out the project can be found on pages 14–17 of 

the specification. 



5.  Assessment guidance 

© Pearson Education Ltd 2015.  

 

16 

Marking guidance 

Teachers should mark students’ finished assignments using the levels-based 

marking grids provided on pages 19–29 of the specification. The same marking 

grids are used to assess every NEA project. 

A two-stage process should be used to mark the NEA. First decide which level best 

describes the student’s response and then decide the ‘best fit’ mark within that 

level. Teachers should be prepared to use the full range of marks available in a 

level.  

Moderation process  

Edexcel will moderate the work. As of December 2015 discussion is ongoing 

between all the Awarding Organisations and Ofqual about moderation procedures 

Further information about marking, standardisation and moderation can be found 

on page 17 of the specification. 

Teachers’ guide to the NEA 

Further information about the NEA can be found in the Teachers’ Guide to the NEA, 

due to be published in Spring 2016 

 



6. Mark schemes and question styles 

© Pearson Education Ltd 2015. 

 

17 

6. Mark schemes and question styles 

6.1 Question types 

A range of question types is used across the two written assessments.  

● Short response and multiple-choice – Usually 1 mark. 

● Open response – Usually 2–4 marks. 

● Extended open response (written) – 6 marks; marked using a levels-

based mark scheme. 

● Extended open response (algorithm) – 6 marks; marked using a levels-

based mark scheme. 

● Calculation – Usually 1–2 marks. 

6.2 Command words 

Amend – Alter a given algorithm so that it performs differently or to correct an 
error. 

Assess – Judge or decide the value, quality or importance of something in a 

particular context.  

For example: ‘Assess how appropriate a 1-dimensional array is as opposed to 

using separate variables when storing this data.’ 

Calculate – Work out a numerical answer, showing relevant stages in the working.  

For example: ‘Calculate how many bits are being transmitted per second for a 

network described as three Mbps.’ 

Compare – Look for the similarities and differences between two (or more) 

items/situations. The answer must relate to both (or all) things mentioned in the 
question and should include at least one similarity and one difference.  

For example:  ‘Compare storing data in the ‘cloud’ with storing data on hard discs 

connected to the school’s servers.’ 

Complete – Fill in/write all the details asked for.  

For example: ‘Complete the flowchart to show this process.’ 

Construct – Display information in a diagrammatic or tabular form.  

For example: ‘Construct test data to meet the requirements set out in the table.’ 

Convert – Express a quantity in alternative units.  

For example: ‘Convert the hexadecimal number 3F to 8-bit binary.’ 

Derive – Use the information provided in the question to work out some new 

information.  

For example: ‘The ASCII code for the character ‘D’ is 68 in denary. Derive the 

ASCII code for the character ‘J’ in denary.’ 

Describe – Give an account of something. Statements in the response are often 

linked.  

For example: ‘Describe how binary digits are used to represent bitmap images.’ 

Discuss – Explore the issue/situation/problem presented in the question. 

Conclusions should be presented clearly and supported by appropriate evidence.   

For example: ‘A student is learning to program. Discuss the suitability of compiled 

and interpreted programming languages for the student.’ 

Draw – Produce an output, either by freehand or using a ruler.  

For example: ‘Draw a flowchart or a diagram of a data structure.’ 



6. Mark schemes and question styles 

© Pearson Education Ltd 2015.  18 

Evaluate – Review information then bring it together to form a conclusion, drawing 

on evidence including strengths, weaknesses, alternative actions, relevant data or 

information. Come to a supported judgement of a subject’s qualities and relation to 

its context.  

For example: ‘Evaluate the use of a ‘divide and conquer’ strategy for sorting and 

searching data.’ 

Explain – An explanation that requires a justification/exemplification of a point. 

The answer must contain some element of reasoning/justification.  

For example: ‘Explain how a run-length encoding algorithm works.’ 

Fill in – Synonymous with ‘Complete’. 

For example: ‘Fill in the table to show an input, a process and an output, using 

the following information:’ 

Give – Recall a piece of information. When used in relation to a context, it is used 

to determine a student’s grasp of the factual information presented.  

For example: ‘Give one reason why programmers use subprograms.’ 

Identify – This requires some key information to be selected from a given 

stimulus/resource.  

For example: ‘Identify two ethical issues associated with the use of computing 

technology.’  

List – Give a sequence of brief answers with no explanation.  

For example: ‘Two fields in a network packet are source and destination. List 

three additional fields found in a network packet.’ 

Name – Synonymous with ‘Give’. 

For example: ‘Name the component that holds instructions and data for programs 

waiting to be run by the CPU.’ 

Select – Select the correct answer from a set of four possible answers to a 

multiple-choice question. 

Show – Give the steps involved in deriving a result.  

For example: ‘Show the result of applying an algorithm to some given data.’ 

State – Synonymous with ‘Give’.  

For example: ‘State what is meant by the term overflow.’ 

Suggest – Propose a solution in written form.  

For example: ‘Sam is concerned about the environmental impact of using 

computers. Suggest one possible action he could take to reduce the 
environmental impact.’ 

Write – Compose an expression, a line of pseudo-code or an algorithm.  

For example: ‘Write an expression to calculate how many different numbers can 

be represented by an 8-bit binary number.’ 

6.3 Mark schemes 

The mark schemes used to assess students’ responses in the written examination 

show a model solution, but alternative and valid solutions will also be rewarded.  

Answers to extended open-response questions are marked using a levels-based 

mark scheme. 

Clear wording makes the expectations clear for teachers and for markers. 

The application of the new mark schemes will be demonstrated with marked 

student answers to the SAMs questions accompanied by examiner commentary. 

These will be available on the GCSE 2016 Computer Science pages of our website. 



7. Grading structure 

© Pearson Education Ltd 2015. 

 

19 

7. Grading structure 

Ofqual has published the following guidance regarding the grading of new GCSEs. 

Broadly the same proportion of students will achieve a grade 4 and above as currently 

achieve a grade C and above.  

Broadly the same proportion of students will achieve a grade 7 and above as currently 

achieve an A and above.  

For each exam, the top 20 per cent of those who get grade 7 or above will get a grade 

9 – the very highest performers.  

The bottom of grade 1 will be aligned with the bottom of grade G.  

Grade 5 will be positioned in the top third of the marks for a current grade C and in the 

bottom third of the marks for a current grade B. This will mean it will be more 

demanding than the present grade C and broadly in line with what the best available 

evidence tells us is the average PISA performance in countries such as Finland, Canada, 

the Netherlands and Switzerland. 12 

 

 

                                                 
12 Ofqual diagram September 2014 



8. Timeline 

© Pearson Education Ltd 2015.  20 

8. Timeline 

 

This diagram shows the timeline for phasing out the current GCSE and replacing it with 

the new one. The last cohort of students taking the old GCSE will finish in summer 2017. 

First teaching of the new GCSE starts in September 2016, with first assessments taking 

place in June 2018. 


	GTG_2016_GCSE_Computer_Science (1)
	GCSE16_COMPSCI_GSG HR

