
Control Program-67/Cambridge Monitor System
(CP-67/CMS) Version 3
Program Number 3600-05.2.005
User's Guide

CP-67/CMS is a general purpose time-sharing system
developed for the IBM System/360. This guide
describes the facilities of CP-67/CMS and pro-
vides detailed information about the user
commands available and their usage.

GH20-0859-O

Type III C lass A Program

First Edition (October 1970)

This Type III Program performs functions that may be fundamental to the operation and maintenance
of a system.

It has not been subjected to formal test by IBM.

Until the program is reclassified, IBM will provide for it: (a) Central Programming Service, including
design error correction and automatic distribution of corrections; and (b) FE Programming Service,
including design error verification, AP AR documentation and submission, and application of Program
Temporary Fixes or development of an emergency bypass when required. IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

You are expected to make the Imal evaluation as to the usefulness of this program in your own
environment.

THE FOREGOING IS IN LIEU OF ALL WARRANTIES EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

This edition applies to Version 3, Modification Level 0, of ControIProgram-67/Cambridge Monitor
System (360D-05.2.005) and to all subsequent versions and modifications until otherwise indicated in
new editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for readers' comments. If this form
has been removed, address comments to: IBM Corporation, Technical Publications Department,
1133 Westchester Avenue, White Plains, New York 10604.

PREFACE

The following documents are referenced in the CP-67/CMS
User's Guide.

Fortran OS/360 Fortran IV Language
GC28-6515

Systew/360 Basic Fortran IV Language
GC28-6629

Syste~/360 Fortran IV Library Subprograms
GC28-6596

OS/360 Fortran IV (G and H) Programmer's Guide
GC28-6817

Scientific SubroutinE Package

PL/I

Assembler-

Scientific Subroutine Package - Version II
Programmer's Manual
GH20-0205

OS/360 PL/I (F) Programmer's Guide
GC2~-6594

OS/360 PL/I Subroutine Library Computational
Subroutines GC28-6590

A PL/I Primer GC28-6808

OS/360 Assembler Language
GC28-6514

OS/360 Assembler (F) Programmer's Guide
GC26-3756

CP-67/CMS Documents - CP-67 Operator·s Guide GH20-0856

CP-67 Program Logic ~anual GY20-0590

ctJ"S Prograrr' Logic Manua 1 GY20-0591

CP-67/CMS Installation Guide GH20-0857

C~S SCRIPT User's Manual GH20-0860

i

SNOBOL

BRUIN

CMS SNOBOL User's Manual, Type III
Documentation, Program 360D-03. 2,. 016, IBM
Corporation, DP Program Information
Department, 40 Saw Mill River Road,
Hawthorne, New York. October, 1910.

CMS BRUIN User's Manual, Type III
Documentation, Program 3600-03.3.013. IBM
Corporation, DP Program Information
Department, 40 Saw Mill River Road,
Hawthorne, New York, October, 1910.

Miscellaneous- System/360 Principles of Operation
GA22-6821

2140/2141 Communications Terminal
Operator's Guide
GA21-3001

OS/360-Supervisor & Data Management
Macro-Instructions GC28-6647

ii

CP-67/CMS User's Guide

CONTENTS

Introduction
Components of the System
System Environment
The Control Program, CP-67
Cambridge Monitor System

CMS Batch Monitor
CP-67/CMS Sample Terminal Session

CP-67 Terminal Usage
2741 Characteristics
2741 Initiation Procedures
1050 Characterisitcs
1050 Initiation Procedures
Type 33 Teletype Characteristics
Type 35 Teletype Characteristics

CP-67/CMS Conventions
Logging Procedures

CP Login
CMS Initialization

CP Logout
Dialing a Multiaccess System

Dialing
Disconnecting

General Typing Conventions
Attention Interrupt
CMS File Conventions

Disk Facilities
File Identifiers
File Sizes
Disk Considerations

Environment Conventions
CP-67/CMS Environment, Commands, and Requests

CMS Commands
File Creation, Maintenance, and Manipulation

ALTER
CEDIT
CLOSIO
COMBINE
EDIT

Operation of the context Editor
Line Pointer
Saving Intermediate Results
Input Environment
Edit Environment
Edit Request
File (Record) Formats

Memo Files

iii

1
1
1
2
4
5
6

16
17
18
18
20
24
25

27
27
27
30
30
32
32
33
34
36
37
37
38
41
41
43
45

46
50
52
54
55
57
59
60
60
60
61
61
62
63
63

SCRIPT Files
Record Lengths
Tab settings
serialization of Records

Special Characters
Logical Tab Character
Logical Backspace Character

BACKSPACE Request
BLANl< Request
BOTTOM Request
BRIEF Request
CHANGE Request
DELETE Request
FILE Request
FIND Request
INPUT Request
INSERT Request
LOCATE Request
NEXT Request
OVERLAY Request
PRINT Request
QUIT Request
REPEAT Request
RETYPE Request
SAVE Request
SERIAL ~eqnest
TABDEF -Request
TABSET Request
TOP Request
UP Request
VERIFY Request
X and Y Request
ZONE Request

ERASE
FILEDEF
FINIS
LISTF
OFFLINE
PRINTF
SCRIPT

Script Control Words
APPEND Control
BOTTOM MARGIN Control
BREAK Control
CENTER Control
COMMENT Control
CONCATENATE Control
CONDITIONAL PAGE Control
DOUBLE SPACE Control
FORMAT Control
HEADING Control
HEADING MARGIN Control
IMBED Control

iv

63
63
64
65
65
65
66
69
11
12
13
14
16
17
79
81
82
84
86
87
89
90
91
92
93
9:4
96
97
99

100
101
102
103
105
107
112
114
118
124
121
131
132
133
134
135
136
137
138
139
140
141
142
143

SPLIT
STATE
UPDATE

INDENT Control
JUSTIFY Control
LINE LENGTH Control
NO CONCATENATE Control
NO FORMAT Control
NO JUSTIFY Control
OFFSET Control
PAGE Control
PAGE LENGTH Control
PAGE NUMBER Control
READ Control
SPACE Control
SINGLE SPACE Control
TAB SETTING Control
TOP MARGIN Control
UNDENT Control

Execution Control
EXEC

Special Features of EXEC
Labels
EXEC Words (&words)

Numeric Variables
Keyword Variables

Exec-Set Keywords
User-Specified Keywords

Exec Control Words
Profile EXEC

GENMOD
GLOBAL
LOAD
LOADMOD
REUSE
START
USE
$

Debugging Facilities
CLROVER
DEBUG

BREAR
CAW
CSW
DEF
DUMP
GO
GPR
IPL
KX
ORIGIN
PSW
RESTART

v

144
145
146
lLJ7
148
149
150
151
152
153
154
155
156
157
158
159
164
167
168
113
115
119
119
179
180
180
180
181
181
188
189
192
196
202
204
206
208
210
212
214
218
221
227
228
229
232
235
238
240
241
242
244
246

RETURN
SET
STORE
TIN
X

SETERR
SETOVER

Language Processors
ASSEMBLE

Assembler Language Programming
Program Naming
Program Entry
Program Exit
Linkage to CMS Commands and Routines

CMS Macros
C1<EOF Macro
CMSREG Macro
CMSYSREF Macro
ERASE Macro
FCB Macro
FINIS Macro
RDBUF Macro
SETUP Macro
STATE Macro
TYPE Macro
TYPIN Macro
WRBUF Macro

OS Macros
OMS Routines (Functions)

ATTN Function
CARDIO Function
CONWAIT Function
CPFUNCTN Function
ERASE Function
FINIS Function
HNDINT Function
HNDSVC Function
POINT Function
PRINTR Function
RDBUF Function
STATE Function
TAPEIO Function
TRAP Function

FORTRAN

TYPE Function
WAIT Function
WAITRD Function
WRBUF Function

FORTRAN Programming
Sequential I/O
Direct Access I/O
Terminal Output
Fortran Files

vi

2q1
2q8
251
254
255
258
261
267
268
213
273
213
213
27q
276
278
219
280
281
282
283
284
286
281
288
290
292
294
291
299
300
301
302
303
304
305
301
308
309
310
311
312
315
316
311
318
319
321
328
328
333
334
335

I/O Format Conversion 336
PLI 338

PL/I Programming 342
Compilation Notes 342
PL/I Library 342
Loading of PL/I Program 342
Executing a PL/I Program 342
Terminal I/O 343
Passing Parameter to a PL/I Proqram 343
I/O Via Files 345
Error Recovery 346
Other Limitations 347
SYSIN/SYSPRINT to User·s Terminal 347
PL/I Subroutines 349

IHECMS--PL/I Initialization Routine 350
IHECLOK--PL/I Clock Routine 351
IHEFILE--PL/I File Access Routine 352

SNOBOL 355
SNOBOL Programming 359

Subroutines 359
Input/Output 359
Subroutine Generation 360
Linkages 361
Debugging Aids 361

BRUIN 363
utilities 364

CNVT26 365
COMPARE 366
CVTFV 368
DISK 370
DUMPD 373
DUMPF 374
DUMPREST 375
ECHO 377
FORMAT 379
MAPPRT 383
MODMAP 386
OSTAPE 387
SORT 389
STAT 392
TAPE 394
TAPEIO 399
TAPRINT 401
TPCOPY 402
WRTAPE 404

Control Commands 406
BLIP 407
CHARDEF 408
CPFUNCTN 410
IPL 411
KO 412
KT 414
KX 415

vii

LINEND
LOGIN
LOGOUT
RELEASE
RT
SYN

Libraries
MACLIB
TXTLIB

Text Libraries
SYSLIB TXTLIB

BLIP Subroutine
NLSTON/NLSTOF Subroutines
CPNMON/CPNMOF Subroutines
DEFINE Subroutine
DSDSET Subroutine
ERASE Subroutine
GETPAR Subroutine
LOGDSR Subrou1:ine
RENAME Subroutine
REREAD Subroutine
TAPSET Subroutine
TRAP Subroutine

CMSLIB (Non-Error-Message FORTRAN Library)
PLILIB--PL/I Library 460
SSPLIB--FORTRAN Scientific Subroutine Library

Macro Libraries
SYSLIB--Systero Macro Library
OS~ACRO--OS MACRO Library

CP-61 CONSOLE FUNCTIONS
Console Function Descriptions
Console Functions

BEGIN
CLOSE
DETACH
DISCONN
DISPLAY
DUMP
EXTERNAL
IPL
IPLSAVE
LINI<
LOGOUT
MSG
PURGE
QUERY
READY
RESET
SET
SLEEP
SPOOL
STORE

viii

416
418
421
423
425
426
429
430
435
440
441
442
443
443
445
448
450
451
452
453
454
455
458
459

461
462
462
462

463
464
465
467
468
470
472
473
418
480
481
483
484
481
488
489
490
493
494
495
498
499
502

XFER
Console Function Applications

CP-67 Messages

Operating Considerations
Offline Procedures
'I'ape Procedures
Library Usage

Macro Libraries
Text Libraries

Recovery Procedures
Errors During CMS Login
Error Specified by the E(xxxxx) Message
Recovering·s From the System Going Down
Reinitializing CMS
File Space Full
General Recovery Procedures

Changing Object Programs
Set Location Counter (SLC) Card
Include Control Section (rCS) Card
Replace (REP) Card
Entry Card
Library Card

CMS Batch Monitor
Sample Batch Jobs
eMS Batch Control Cards

/ / P,SSEMBLE
// COMMAND
// CP
// DATASET
// FORTRAN
// GO
// PRINT
// PUNCH
// TEXT

Running the CMS Batch Monitor
Setup
Using CMS Batch

GLOSSARY

506
508

510

511
511
512
513
513
514
516
516
516
516
511
517
518
519
520
522
523
524
525

526
526
528
530
532
533
534
535
538
540
541
542
543
543
543

545

APPENDIX A: Control Program Console Functions 550
APPENDIX B: CMS Commands 552
APPENDIX C: Debug Requests 557
APPENDIX D: Edit Requests 559
APPENDIX E: Script Control Words 561
APPENDIX F: CMS Functions 564
APPENDIX G: Format of Commands, Requests, and Console Functions 566
APPENDIX H: CP-67 Machine Configuration 584
APPENDIX I: Devices Supported by CMS 588

ix

FIGURES

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

IBM 2741 Keyboard (PTTC/EBCD Configuration)

IBM 2741 Keyboard (Standard Selectric
Configuration)

IBM 1052 Switch Panel

IBM 1052 Keyboard

Filetype implication and characteristics

Output form the LISTF command

Creation and printing of a CMS EXEC file

Two examples of PRINTF commands which
type out an entire file

A PRINTF command which types out a MACRO
definition

A PRINTF command which types out the bottom
of a FORTRAN listing file

Contents of a SCRIPT file

SCRIPT output

Exam~le of an EXEC file to compile, load,
and execute a FORTRAN program

The file FORT EXEC is created, the file CMS
EXEC is typed out, and then an implied EXEC
is issued to nest EXEC·s

Sample offline printout of trace information
recorded by the SETOVER corr~and

Sample procedure for setting breakpoints

Sample output created by a FORTRAN command
in which the LIST and SOURCE options were
specified

Examples of the SET request, using other
requests as appropriate to inspect
contents both before and after SET is
issued

Sample DUMP output from the offline printer

x

22

22

23

23

39

115

116

125

125

126

160

162

177

118

217

226

225

250

234

20

21

22

23

24

25

26

21

28

29

Examples of the GPR request

Examples of the STORE request, using the
X request to inspect the contents both
before and after storing

Examples of the X request

Sample offline printout of trace information
recorded by the SETERR command

Offline printout showing trace information
recorded by the SETOVER command with the
options GPRSB, FPRSA, and NOPARM specified

Offline printout showing trace information
recorded by the SETOVER command with the
options SAMELAST, PARMi, and WAIT2
specified (SAMELAST in this example refers
to the options as set in Figure 24)

Example of eMS Macros

RDBUF error return codes

WRBUF return codes

FORTRAN compilation with errors

30 INTENTIONALLY OMITTED

31

32

33

34

FORTRAN compilation with options

Multiple FORTRAN compilations

Summary of record formats and I/O statements
for sequential FORTRAN files

Files referenced by sequential FORTRAN I/O
statements

35 File referenced by direct access FORTRAN I/O
statements

36

37

38

Samples of the three types of nucleus map
files created by MAPPRT. Only the first few
entries of each are shown

Example of MACLIB LIST command

Printout of the CMSTYPE macro definition
using PRINTF

xi

239

253

251

260

265

266

277

285

293

324

325

326

330

332

334

384

432

433

39 Example of the TXTLIB LIST comroand 437

40 ExaJllple of a normal NAMELIST function 444

41 Example of a freeform NAMELIST function 444

42 output from DUMP console function 479

43 Format of an SLC card 521

44 Format of an ICS card 522

45 Format of a REP card 523

46 Format of an ENTRY card 524

47 Format of the LIBRARY card 525

48 Sample eMS batch stream 527

49 eMS batch control cards 529

xii

INTRODUCTION

COMPONENTS OF THE SYSTE~

The CP-61/CMS time-sharing system consists of two
independent components: the Control Program (CP-67, or CP
for short) and the Cambridge Monitor System (CMS). The
Control Program creates the time-sharing part of the system
to allow many users to access the cowputer simultaneously.
The cambridge Monitor System provides the conversational
part of the system to allow a user to monitor his work from
a remote terminal.

Both components are independent of each other. CP-61 can be
used on an appropriate configuration without CMS, and CMS
can be run on a properly configured System/360 as a
single-user system without CP-67. If CP-61 is used without
CMS, an operating system (or systems) must be chosen to
provide the conversational or production aspect of the
system, as CP provides only the time-sharing capability.

CP-61 is capable of running many System/360 operating
systems concurrently (including CP-61, OS/360, DOS, RAX, and
APL/360) as long as they do not include any timing
dependencies or dynamically-modified channel programs.
Dynamically-modified channel programs are those which are
changed between the time the Start Input/Output (SIO)
instruction is issued and the end of the I/O operation (that
is, changed by the channel program or the CPU). However,
certain types of self-modifying channel programs can be
translated, including those generated by the OS/360 Indexed
Sequential Access Method (ISAM).

CP-61 is also capable of running System/360 operating
systems along with eMS in a multiprogramming mode concurrent
with its usual time-shared. multiaccess operation. If the
System/360 operating system contains telecommunication
facilities or remote job entry/remote job output support, CP
allows that system to control the lines of the 2701. 2702,
or 2103 transmission control unit and allows the user to
dial into that system froID a remote terminal.

SYSTEM ENVIRONMENT

The environment of CP-61 is one of "virtual machines". A
virtual machine is a functional simulation of a real
computer and its associated I/O devices.

CP-61 builds and maintains for each user a virtual
System/360 machine from a predescribed configuration. The
virtual 360 is indistinguishable to the user and his
programs froK: a real System/360, but it is really one of
many that CP-61 is managing. CP allocates the resources of

INTRODUCTION 1

the real machine to each virtual machine in turn for a short
"slice" of time, then moves on to the next virtual
machine--thus time-sharing.

since the virtual machines are simulated, their
configurations may differ from each other and from the real
machine. For instance, the real machine may have 512K and
eight disk drives, and the virtual machine can have 768K and
two disk drives. One virtual machine may have a virtual
2702 and run an OS teleprocessing system, and another
virtual ~achine that does not have a virtual 2702 may run
CMS. One virtual machine may have a remote printer and a
remote card punch, while another virtual 360 may have a
dedicated printer and 2250. Regardless of the
configuration, each user controls his virtual machine from
his remote terminal, which is, in effect, his operator's
console.

Like real machines, virtual machines operate roost
efficiently under an operating system. The Cambridge
Monitor System (CMS) is designed to allow full use of a
system/360 through a simple command language entered at the
console (in the case of a CP-67 virtual machine, at the
remote terminal). CMS gives the user a full range of
capabilities--creating and managing files, compiling and
executing problem programs, and debugging--using only his
remote terminal. Since each user has his own virtual
machine with his own copy of CMS residing "in it", nothing
he does should affect any other user: if he destroys the CMS
nucleus or abends the C~S system, he can reIPL his virtual
machine and continue without disturbing other users. In
addition, since users cannot get "outside" their virtual
machines, CP-67 is protected from any user error.

CMS also provides a batch version intended primarily for
"compile, load, and go" type jobs coming from tape or cards.
The batch rr.onitor can be run from a virtual machine as a
background system with conversational eMS users on other
virtual machines.

THE CONTROL PROGRAM, CP-67

Before a user is authorized to use CP, he must be assigned a
USERID, which identifies him to the system. and a password,
which is checked when he ftlogs inft. Associated with each
USERID is information concerning accounting, privilege
class, options desired, and a table describing the virtual
machine assigned to that user. Whenever he logs in, CP sets
up this virtual 360 machine for him. Although all the
virtual machines may be different, most are set up with the
configuration expected by CMS, the most commonly used
operating system. They include at least 256K of virtual
core storage, a minimum of two disk drives, a console (the

2 Im'RODUCTION

terminal>, a card read punch unit, and a printer. The real
systew usually has a larger number of disk drives, a drum,
tape drives, and perhaps more core storage.

Because there is not room in real core for all users'
virtual core" a technique called "paging" is used by the
system. Virtual core is divided into 4096-byte blocks of
storage called ·pages·. All but ~urrently active pages are
kept by the system on direct access secondary storage: this
direct access space is allocated only on a demand basis: as
active and inactive pages change status they are "paged" in
and out of real core on demand. While the paging operation
is being performed for one virtual machine, another can be
operating. The paging operation, and resultant allocation
of real core to a given user's pages, is transparent to the
user. Special hardware is provided on the System/360 Model
61 that translates, at execution time, the user's (or user
program's) addresses into the current real addresses of the
relocated pages. This is called "dynamic address
translation" and is transparent to the user.

All virtual machine I/O operations are handled by CP, which
must translate them into real machine I/O operations. This
requires two translations, accomplished as follows: CP
intercepts all user I/O when Start I/O (SIO> is issued. It
translates virtual device addresses into real device
addresses, translates virtual core storage addresses into
real core storage addresses, ensures that all necessary
pages are in real core storage, builds a channel command
word (CCW) string for the user, and issues SIO when the
channel is free. The virtual machine is not given control
from the time it issues an SIO until CP issues the real SIO
and delivers the resulting condition code to the virtual
machine. In the meantime, other virtual machines may be
executing. When CP receives an interrupt indicating I/O
completion, it sets an interrupt pending flag in the user's
virtual machine status table; when control is returned to
the virtual machine, the proper I/O interrupt is simulated.

Virtual machine unit record I/O is normally spooled onto
disk by CP. Thus, any card deck to be "read" by a virtual
machine would, in the normal case, have been read by CP
before the user's call for it on his virtual machine. or
transferred to that user from another user's files via the
XFER console function in CP; the physical deck must have
been preceded by a card containing the USERID, so that CP
can know who will read the card-image file. Later, when the
virtual machine has read the card deck, a card reader end of
file is simulated. Card and printer output, similarly
spooled, is not queued for physical output until CP is
notified of end of file in one of three ways: the user logs
off the systerr (end of file is assumed): the CLOSF console
function specifies the (virtual) address of the device to be

INTRODUCTION 3

closed; or CP detects an invalid Ccw addressed to the device
(end of file is assumed). Further output for a closed
device is assuwed to start a new file. So that the system
operator can separate physical output, CP precedes all
printed and punched output files with a record containing
the USERID.

The CP console functions allow the user to control his
virtual machine frow. the terminal wuch as an operator
controls a real machine. To perform an IPL, for instance,
the user types IPL and a device address or the name of a
"named" operating system, such as CMS. The user can stop
his virtual machine at any time by hitting the ATTN key and
can request display of any portion of his storage and
registers. He can modify the contents, if desired, and
restart his machine. CP also recognizes a few special
purpose commands, such as the XFER function mentioned above,
the QUERY function to obtain the number of users on the
system and their USERID's, as well as the number of current
spooled files, the ~SG function to communicate with other
users, the DIAL function to connect the terminal to a
mUltiaccess system, and the ATTACH and DETACH functions to
add or remove I/O devices from a virtual machine
configuration (ATTACH can only be issued by the Operator) ,.

CAMBRIDGE MONITOR SYS-rEM.

The Cambridge Monitor System (CMS) is a single-user,
conversational operating system capable of running on a real
roachine as well as on a virtual machine. It interprets a
simple command language typed in at the operator's console
(underCP-67, at the user's remote terminal).

When running on a real machine, eMS operates in the
supervisor state. When running under CP-61, CMS operates in
the pseudo-supervisor state: that is, CMS "thinks" it is
running in the supervisor state, but CP is actually
intercepting and translating supervisor interrupts.

Whether running on a real machine
virtual machine, ~S expects
configuration:

4 INTRODUCTION

(see note below) or a
the following machine

Device
Number

1052
2311,2314
2311,2314

*2311#2314
*2311,2314
*2311#2314
*2311~2314
1403
2540
2540

*2400
*2400

Virtual
Address

009
190
191**
192**
000**
000**
19C**
OOE
OOC
OOD
180
181

at least 256R bytes

Symbolic
Name Device Type

CON1 console
DSKl system disk (read-only)
DSK2 permanent disk (user files)
DSK3 temporary disk (workspace)
DSK4 A disk (user files)
DSK5 B disk (user files)
DSK6 C disk (user files)
PRNl line printer
RDR1 card reader
PCBI card punch
TAPI tape drive
TAP2 tape drive

of core storage, 360/40 and up

*Optional devices not included in the minimum configuration

**This virtual address may be changed at any time by the
CMS LOGIN command.

Note: For use on a real machine not having this I/O
configuration, the device addresses can be redefined at
load tiroe.

Under CP, of course, these devices are simulated and mapped
to different addresses and/or different devices. For
instance, CMS expects a 1052 Printer-Keyboard o~erator's
console, but roost remote terminals are 2741s: CP handles all
channel prograro modifications necessary for this simulation.

CMS allows the user to add his own programs for I/O devices
not supported by the standard system. CMS also provides for
dynamic specification of SVC routines.

CMS Batch Monitor

As well as being a conversational monitor, CMS provides a
batch facility for running CMS jobs. The CMS batch monitor
accepts a job stream from a tape unit or the card reader and
writes the output on tapes, on the printer, or on the card
punch. The job stream can consist of a System/360 Operating
System SYSIN job stream with FORTRAN (G) and ASSEMBLER (F)
compile, load, and go jobs calling certain cataloged
procedures; or it can consist of CMS commands. along with
control cards and card decks for compile, load, and go jobs
for all the CMS-supported compilers.

Like the conversational CMS, the batch monitor can run
either from a virtual machine or from a real machine. Under
CP, it can be used as a background monitor along with other
conversational eMS users.

INTRODUCTION 5

To eliminate the possibility of one job modifying the CMS
batch monitor·s nucleus in such a way as to affect the next
job, eMS is reIPLwed before each job begins. Files can also
be written onto the batch monitor's permanent disk and then
punched or printed (such as files written by FORTRAN
programs); these files should be of limited size and
considered temporary. as they are erased at the completion
of each job.

CP-67/CMS SAMPLE TERMINAL SESSION

A sample terminal session is described and illustrated
below. User input is in lowercase; typeout from the system
appears in uppercase.

After logging in to CP-67 and initializing CMS, the user,
eSC1, issues a LISTF command to obtain a list of all files
stored on his read-write disks. To allow multiple comroands
to be entered on one line, there is a line-end character.
The LINEND comroand is issued to define the line-end
character as the exclamation point (!) and to allow the
pound sign (n) to be used as the logical tab character in
EDIT. The file MAIN FORTRAN is then created and filed on the
user's per~anent disk. Compilation of the file is terminated
due to prograro errors (indicated by a $ symbol below the
error encountered). The file is then Fodified and edited to
correct the line in error, and the new source file stored on
disk. Again an error is encountered and the file reedited.

After a successful compilation, the $ command is called to
load the file into core and execute it. LOAD and START
perform the saroe function as $ (as shown). Specifying the
XEQ option with the LOAD command also causes execution to
begin after the file is loaded.

LISTF and ERASE commands are used to selectively list and
erase files, and the PRINTF command is used to print all,
and then part, of the contents of a file. KT causes typeout
to be discontinued if entered after the ATTN key is hit
twice.

The OFFLINE command punches or prints the specified file on
offline devices. The ALTER command changes the identifier of
a file. KX, entered after hitting ATTN twice, stops
execution of the current program, reloads a new copy of eMS,
and returns control to CMS.

An EXEC file (consisting of CMS commands) is created and
filed. The file is then executed by issuing the EXEC
command, which causes each of the commands contained in the
file to be executed individually. Operand substitution is
illustrated by modifying and reexecuting the file using

6 INTRODUCTION

ampersand (&) arguments.

Hitting ATTN once transfers control to the Control Program.
where the QUERY console function is issued to determine the
number of users on the system. their names. and the message
of the day from the operator. The BEGIN console function
then returns control to CMS and the user logs out from both
eMS and CP-67.

The sample terroinal session follows.

INTRODUCTION 7

8

it
cp-67 online xd.65 qsyosu

login cscl <-------The user·s id is specified upon logging in.
ENTER PASSWORD::

<----------------------------------The protected password does
CP WILL BE UP 24 HOURS A DAY not print when entered.
READY AT 09.14.49 on 11/27/69
CP

ipl cms
CMS ••• VERSION nn LEVEL rom

listf
FILENA~E FILETYPE ~ODE NO.REC. DATE
INDIAN LISTING Pl 003 8/18
DUMPREST SYSIN Pl 009 8/20
SUPERSCR SYSIN Pl 010 8/22
MY FORTRAN Pl 001 8/26
INDIAN TEXT Pl 002 8/29
FORTCLG EXEC P1 001 8/29
LOAD MAP P5 003 8/30
FIN SCRIPT Pl 001 8/30
TUES SCRIPT Pl 001 8/31
FRST SCRIPT Pl 001 8/31
DUMPREST LISTING Pl 007 9/01
AGENDA SCRIPT Pi 001 9/01
INDIAN FORTRAN Pl 001 9/01
Ri T=0.06/0.21 09.16.12

linend !
Ri T=0.01/0.02 09.16.20

edit main fortran
NEW FILE.
INPUT:
c main program Nov. 21, 1969

write (6,10)
10Jformat (I a = .)
#read (5,20) a
20#format (8.3)
#write (6.25) a,x
#call exit
#end

EDIT:
file

<--------The # is a logical tab character that
inserts blanks and places the following
characters typed on the line into column
1 of the card image in a FORTRAN file.

<--------Carriage return with no data entered
on line (that is, a null line) takes

Ri T=O.08/0.51 09.18.31
user out of Input mode into Edit mode
of the EDIT command.

I Nl'RODUCTI ON

fortran main
0004 20 FORMAT (8.])

$
01) IEY013 I SYNTA,X

IEY022I UNDEFINED LABEL
25

E(00008); T=0.29/0.92 09.1P..42

edit main fortran
EDIT:
print 20

C MAIN PROGRA~ NOV. 27, 1969
WRITE (6,10)

10 FOR~AT (' A = ')
READ (5,20) A

20 FORMAT C8.3)
WRITE (6,25) A,X
CALL EXI1'
END

EOF:
locate /forrrat/
10 FORMAT Ce A = ')
locate /forrr.at/
20 FORMAT CR.])
change /8/f8/
20 FORMAT CF8.3)
up 2
10 FORMAT (' A = ')
change / '/ ?'/
10 FORMAT (' A = ?')
find 20
20 FORMAT CF8.3)
insert #x = a**2

EDIT:
print

<--------Carriage return hit to confirm
environment the user is ine

x = A**2
top
print 20

C ~AIN PROGRA~ ~OV. 27. 1969
WRITE (6,10)

10 FORMAT (' A = ?')
READ

20 FORMAT (Fa.3)
X = A**2

EOF:
file

WRITE: (6,25) A, X
CALL EXIT
END

INTRODUCTION 9

Ri T=0.16/1.08 09.21.34

fortran main
IEY0221

25
E(OOOOS); T=O.30/0.94 09.21.43

edit ~ain fortran
EDIT:
locate /25/

WRITE (6,,25) A,X

UNDEFINED LABEL

insert 25#format C' a = 'f8.3,' x = 20.3)
print
25 FOR~AT (9 A = 'F8.3,' X = 20.3)
change /20/' f20/
25 FORMAT C' A = -F8.3,' X = ' F20.3)
file
Ri T=0.12/0.64 09.23.16

fortran main (list source)
Ri T=0.31/0.97 09.23.35

$ main
EXECUTION BEGINS •••

A = ?
2.5

A = 2.500 X =
Ri T=0.28/0.94 09.24.01

load main
Ri T=0.23/0.78 09.24.14

start
EXECUTION BEGINSo ••

A = ?
3.1

A = 3.100 X =
Ri T=0.04/0.18 09.24.29

load wain (xeq)
EXECUTION BEGINS •••

A = ?
3.2

1\ = 3.200 X =
Ri T=0.26/0.93 09.24.50

6.250

9.610

10.240

load roain!start <------The! allows multiple
Ri T=0.23/0.74 09.25.04 commands per line.

EXECUTION BEGINS •••
A = ?

2.5
A = 2.500 X =

10

6.250

INTRODUCTION

Ri T=0.04/0.13 09.25.15

listf main *
FIL~NAME FILETYPE MODE NO.REC. D~TE

MAIN LISTING P1 003 11/27
MAIN FORTRAN P1 001 11/27
MAIN TEX~ Pl 002 11/27
Ri T=0.02/0.07 09.25.23

listf * listing
FILENAME FILETYPE MODE
INDIAN LISTING P1
MAIN LISTING Pl
DUMPREST LISTING Pl
Ri T=0.02/0.01 09.26.08

NO.REC. DATE
003 8/18
003 11/21
001 8/20

erase * listing
Ri T=0.03/0.10 09.26.30

listf * listing
FILE NOT FOUND
E(00002); T=O.01/0.04 09.21.05

printf main fortran

C MAIN PROGRAM NOV. 27, 1969
WRITE (6 11 10)

10 FORMAT (. A = ? ')
READ (5,20) A

20 FO~AT (FS.3)
X = A**2
WRITE (6,,25) A,X

25 FORMAT (' A = 'FS.3,' X = • F20.3)
CALL EXIT
END

Ri T=0.03/0.09 09.27.23

printf rrain fortran * 3 25

C MAIN PROGRAM NOV. 27
WRITE (6,,10)

10 FORMAT (. A = ? .)

R; T=0.02/0.08 09.30.47

printf main fortran

C MAIN PROGRAM NOV. 27, 1969
WRITE (6,,10)

10 "
CP <------------------------ATTN was hit once to enter CP

<-----------~------------ATTN was hit a second time

INTRODUCTION 11

kt <------------------------to kill typeout
R: T=0.03/0.09 09.31.02

offline punch main texti~SSfortran <--The four a characters delete
R: T=0.03/0.14 09.31.32 the previous four characters.

offline print main fortran
R: T=0.03/0.10 09.31.40

offline print main listing
FILE NOT FOUND
E(00002); T=0.Ol/0.05 09.31.53

listf
FILENAME FILETYPE MODE NO.REC.
DUMPREST SYSIN Pl 009
SUPERSCR SYSIN P1 010
MY FORTRAN P1 001
FORTCLG EXEC P1 001
LOAD MAP P5 003
MAIN FORTRAN Pl 001
FIN SCRIPT P1 001
TUES SCRIPT Pl 001
FRST SCRIPT P1 001
AGENDA SCRIPT P1 001
MAIN TEXT Pl 002
INDIAN FORTRAN P1 001
Ri T=0.05/0.14 09.33.05

DATE
8/20
8/22
8/26
8/27
8/30

11/27
8/30
8/31
8/31
9/1

11/27
9/1

alter main fortran * mainone * *
R: T=0.02/0.12 09.33.28

listf main fortran
FILE NOT FOUND
E(00002): T=O.02/0.05 09.33.35

listf * fortran
FILENAME FILETYPE MODE NO.REC. DATE
MY FORTRAN PI 001 8/21
MAINONE FORTRAN P1 001 11/21
INDIAN FORTRAN P1 001 9/1
R: T=0.01/0.01 09.33.45

$ main
CP <-------------------ATTN was hit once to enter CP

<-------------------ATTN was hit a second time
kx <-------------------to kill execution

CMS •• VERSION n LEVEL m

listf mainonnae * <----- The a deletes one character.
FILENAME FILETYPE MODE NO.REC. DATE
MAINONE FORTRAN P1 002 11/27

12 INTRODUc-rION

R: T=O.03/0.17 09.34.25

edit fortclgo exec
NEW FILE.
INPUT:
fortran 1I1ainone
$~load mainone (xeq)

EDIT:
file
R: T=O.07/0.43 09.35.02

printf fortclgo exec

FORTRAN MAINONE
LOAD ~AINONE (XEQ)

R: T=O.02/0.06 09.35.11

exec fortclgo
09.35.23 FORTRAN ~AINONE
09.35.27 LOAD MAINONE (XEQ)
EXECU~ION BEGINS •••

A = ?
3.4

A = 3.400 X = 11.560
H: T=0.60/1.94 09.35.40

edit fortclgo exec
EDIT:
change /mainonp/ &1/ * G
FORTRAN &1
LOAD &1 (XEQ)
EOF:
file
Hi T=0.10/0.60 09.36.17

exec fortclgo mainone
09.36.53 FORTRAN MAINONE
09.36.59 LOAD MAINONE (XEC)
EXECUTION BEGINS •••

A = ?
5.1

A = 5.100 X =
R: T=0.62/2.00 09.37.10

edit fortclgo exec
EDIT:
insert &set err exit
print 9
&SET ERR EXIT
FORTHAN &1
LOAD &1 (XEC)

26.010

INTRODUCTION 13

EOF:
file
R; T=O.10/0.S1 09.31.39

edit mainone fortran
EDIT:
print 4

C MAIN PROGRA~ NOV. 27, 1969
WRITE (6.10)

10 FORMAT (. A = ?')
blank aa

FORMAT (. A = ?')
next

READ (5,20) A
change /read/red/

RED (5 , 20) P<.
file badone
R: T=O.13/0.71 09.40.15

listf * fortran
FILENAME FILETYPE MODE
MY FORTRAN P1
MAINONE FORTRAN Pl
INDIAN FORTRAN P1
BADONE FORTRAN Pi
R: T=O.03/0.11 09.41.23

exec fortclgo badone
09.41.36 FORTRAN BADCNF

NO .. REC. DATE
001 8/27
001 11/27
001 9/1
001 11/27

0002 FORMAT (' A = ?')

0003

10

$
01) IEY0021 LABEL

RED (5,20) A
$ $

01) IEYOOI1 ILLEGAL TYPE
IEY022I

!!! E(00008) !!!
R: T=0.36/1.02 09.42.03

edit fortclgo exec
EDIT:
change /&1/&1 &2 63 &4 &5/ * 9
FORTRAN &1 ~2 &3 &4 &5
LOAD &1 &2 &3 &4 &5 (XEQ)
EOF:
file
R: T=O.11/0.65 09.43.00

14 INTRODUCTION

02) IEY013I SYNTAX
UNDEFINED LABEL

exec fortclgo mainone
09.43.19 FORTRAN MAINONE
09.43.28 LOAD MAINONE (XEQ)
EXECUTION BEGINS •••

A = ?
1.9

A = 1.900 X = 3.610
R; T=0.64/2.21 09.44.10

CP <-----------ATTN was hit once to enter CP.
query user
14 USERS. 00 DIALED

query user names
LOVE - 044,SEYMOUR-02A,OPERATOR-009,~EYER

ROSATO - 024,NEWSON -040,LEVEY -027,BOYD
DJL - 056,BURR -062,SHIFLDS -051,SCHUPP
EDNA - 043,CSCl -026

query logmsg
CP WI~L BE UP 24 HOURS A DAY

-045,
-028,
-055,

begin
CMS

<----------------- BEGIN returns contrel to CMS.

logout
T=S.49/20.S3 10.24.42
CP ENTERED, REQUEST, PLEASE.
CP

logout
CONNECT= 02.50.17 VIRTCPU= 000.05.49 TOTCPU=OOO.20.54
LOGOFF AT 10.25.06 ON 11/27/69

INTRODUCTION 15

CP-61 TERMINAL USAGE

The conversational input/output device used to access the
CP-67/CMS system is referred to as a "terminal" and is
operated by a ·user" who types information that is
transmitted either by telephone line or by
permanently-connected wiring to a computer, where the
information is receiveo and processed by the system. In
addition to receiving and processing information, the system
may cause information to be typed out at the terminal.
Information typed frorr the terminal keyboard by the user is
called "input": that typed out at the terminal by the system
or by a user prograw is called "output".

Anyone of four terminals may be used to access the
CP-67/C~S systere. These are the IBM 2141 Communication
Terminal, the IBM 1050 Data Communications System Terminal,
the Type 33 Teletype Terminal, and the Type 35 Teletype
Terminal. Any of these terminals may be connected to the
computer by direct wiring or by telephone lineo If the
terminal is not directly wired to the computer, a data-phone
is placed near the terminal keyboard, and must be used to
dial an installation-specified number in order to establish
a connection with the computer. The procedure for using a
data-phone is described under "CP Login" in the "Terminal
Usage-Logging Procedures· section.

Terminals which are equivalent to those explicitly supported
~ay also fUnction satisfactorily. The customer is
responsible for establishing equivalency. IBM assumes no
responsibility for the irrpact that any changes to the
IBM-supplied products or programs way have on such
terminals.

16 Terminal Usage

2741 CHARACTERISTICS

The IBM 2741 Communication Terminal consists of an IBM
Selectric typewriter mounted on a typewriter stand. The
stand includes the electronic controls needed for
communications, a cabinet for mounting a data-phone. a rack
for mounting a roll of paper, and a working surface. For
use with the CP/CMS system, the 2741 should be equipped with
the Transmit Interrupt and the Receive Interrupt features.

The 2741 has two modes of operation: communicate mode and
local mode. The mode of the terminal is controlled by the
terminal mode switch. which is located on the left side of
the typewriter stand. When in local mode. the terminal is
disconnected from the computer. It then functions as a
typewriter only, and no information is transmitted or
received. When in communicate mode. the terminal may be
connected to the communications line to the computer. The
power switch on the right side of the keyboard must be set
to ON before the terminal can operate in either communicate
or local mode. The procedure for establishing connections
with the computer and the terminal switch settings which
should be used are discussed below under "2741 Initiation
Procedures".

Either of two 2741 keyboard configurations may be used in
accessing the CP/CMS system. These are the PTTC/EBCD
configurations (shown in Figure 1) and the standard
Selectric configuration (shown in Figure 2). On either
keyboard. the alphameric and special character keys, the
space bar, power switch,. the SHIFT. LOCK, TAB, tab CLR SET.
and MAR REL keys all operate in the same way as standard
Selectric typewriter keys.

On most 2741 terminals, the space bar. backspace. and
hyphen/underline keys have the typamatic feature. If one of
these keys is operated normally, the corresponding function
occurs only once. If the key is pressed and held, the
function is repeated until the key is released. The RETURN
and ATTN keys have special significance on the 2741
keyboard.

The RETURN key is hit to signal the termination of each
input line. When RETURN is hit. control is transferred
to the system. and the keyboard is locked until the
system is ready to accept another input line.

The ATTN key is used to generate an attention
interrupt. It may be hit at any time (since it is never
locked out) and causes the keyboard to be unlocked to
accept an input line. Refer to "Attention Interrupt"
for a discussion of the transfer between environments
that occurs when an attention interrupt is generated.

Terminal Characteristics 17

The 2741 paper controls (such as the paper release lever,
line-space lever, impression control lever, etc.) are
identical to the corresponding controls on an IBM Selectric
typewriter and operate accordingly.

Any invalid output character (one which cannot be typed by
the terminal and for which no keyboard function, such as tab
or carriage return, exists> appears in terminal output as a
space. For a further discussion of 2741 characteristics,
refer to the 2741 component description manual (GA24-3415).

2741 INITIATION PROCEDURES

The steps for preparing the 2741 for use are described
below. After these steps have been performed, log in.

1. set the terminal mode switch located on the left side of
the typewriter stand to LCL. This ensures that the terminal
is disconnected from the computer.

2. After making sure that the terminal is plugged in, turn
the power on by pressing the ON portion of the terminal
power switch at the right side of the keyboard.

3. Check to see that the margin stops, which are located on
the typing guide just above the keyboard, are set at the
desired positions (normally 0 and 130). If so, proceed to
step 4. To reset a margin stop, push it in, move it to the
desired position, and release it.

4. Check that the tabs are set at the desired intervals by
tabbing an entire line using the TAB key. If the settings
are satisfactory, proceed to step 5. Note that these tab
settings do not govern the internal positioning of input
characters. For a discussion of internal tab settings,
refer to EDIT. If the tabs are to be reset, position I the
typing element to the right margin, press and hold the CLR
portion of the tab control keYi, and hit the RETURN key.
This clears all previous tab settings. New settings may be
made by spacing the typing element to the desired locations
and pressing the SET portion of the tab control key. After
tab stops have been set for the entire line, hit RETURN to
position the typing element at the left margin.

5. set the terminal mode switch on the left side of the
typewriter stand to COM. The terminal is now ready for use.

1050 CHARACTERISTICS

The IBM 1050 terminal is composed of the 1051 Control Unit
and a 1052 Printer-Reyboard. The 1051 Control Unit includes
the power supplies, printer code translator, data channel,

18 Terminal Characteristics

and control circuitry needed for 1050 operation. To be used
with the CP/CMS system, the 1051 should be equipped with the
Time-out suppression and the Transmit Interrupt and Receive
Interrupt special features. The 1052 keyboard is similar in
appearance to the standard IBM typewriter keyboard. Figures
3 and q illustrate the 1050 switch panel and keyboard. The
alphameric and special character keys, the space bar, LOCK,
SHIFT, and TAB keys,. and the paper controls operate in the
same way as those on a standard IBM typewriter. The
following keys are of special significance on the 1052
keyboard:

RETURN. If the Automatic EOB special feature is included on
the terminal being used, and if the EOB switch on the switch
panel is set to AUTO. the RETURN key may be used to
terminate an input line. otherwise, (if the Automatic EOB
special feature is not available on the terminal being used,
or if EOB on the switch panel is set to MANUAL) the
character transmitted when RETURN is hit is considered part
of the input line.

ALTN CODING. This key, when pressed and held while one of
the other keys is hit j, originates a single character code
such as restore, bypass. reader stop, end of block (EOB),
end of address (EOA), prefix, end of transaction (EOT), or
cancel. Note that input lines frow 1050 terminals not
equipped with the automatic EOB special feature must be
terminated by pressing the ALTN CODING key and holding it
down while hitting the 5 key. This procedure causes a
carriage return at the terminal.

RESET LINE. Hitting this key (at the left side of the
keyboard) causes an attention interrupt (provided the
terminal is equipped with the Transmit Interrupt special
feature). The RESET LINE key may be hit at any time, since
it is never locked out" and causes the keyboard to be
unlocked to accept an input line. Refer to -Attention
Interrupt- for a discussion of the transfer between
environments which occurs when an attention interrupt is
generated.

RESEND. This key and its associated light (both located on
the right of the keyboard) are used during block checking.
The light comes on when an end-of-block character is sent by
the terminal; it is turned off when receipt is acknowledged
by the system. If the light remains on, indicating an
error, RESEND may be hit to turn off the light!, and the
previous input line may then be reentered. While the light
is on, no input is accepted from the keyboard.

LINE FEED. This key causes the paper
lines,. according to the setting of
without moving the typing element.

to move up one or two
the line space levert,

Terminal Characteristics 19

DATA CHECK. This key should be hit to turn off the
associated light (to its left), which comes on whenever a
longitudinal or vertical redundancy checking error occurs,
or when power is turned on at the terminal,.

Any invalid output character (one which cannot be typed by
the terminal and for which no keyboard function, such as tab
or carriage return, exists> appears in terminal output as a
space. For further information on the characteristics and
handling of the 1050 terminal, refer to the 1050 reference
digest (GA24-3020).

1050 INITIATION PROCEDURES

The procedure for preparing the 1050 for use are described
below. When these steps have been performed, log in.

1. After making sure that the terminal is plugged in, set
the panel switches (shown in Figure 3) as follows:

switch

SYSTEM
MASTER
PRINTER1
PRINTER 2
KEYBOARD
READER1
READER 2
PUNCH1
PUNCH 2
STOP CODE
AUTO FILL
PUNCH
SYSTEM
EOB
SYSTEM
TEST
SINGLE CY
RDR STOP

Setting

ATTEND
OFF
SEND REC
REC
SEND
OFF
OFF
OFF
OFF
OFF
OFF
NORMAL
PROGRAM
see below
(up)

OFF
OFF
OFF

If an EOB switch appears on the terminal, it may be set to
either AUTO or MANUAL. If it is set to AUTO, the RETURN key
may be used to terminate an input line. If the EOB switch
is set to MANUAL, or if it does not appear on the terminal,
all input lines must be terminated by hitting the 5 key
while the ALTN CODING key is pressed and held down.

2. Check to see that the margin stops--the two blue
indicators invisible in the transparent strip just below the
switch panel--are set as desired (normally at 0 and 130).
If so, proceed to step 3. To change margin settings, set

20 Terminal Characteristics

the PRINTER1 and :KE¥BO}\JID swi tches to HOME. Turn power on
at the terrninaiby s·ett:ing t!he Il'a.inline switch to POWER ON.
Move the typingelemen't. 1tO 1i::he center of the line by spacing
or tabbing. 1)urn pow.e:oc- 'off at the terminal. Lift the top
cover of the lC52 and ,t·li.lt down the hinged portion of the
front panel. Press tb,p blue margin indicators toward the
back of the 1052 and slide theIr to the new locations.
Return the hinged panel to its original position and close
the top cover.

3. Check the tab settings by setting PRINTERl and KEYBOARD
switches to HOME, turning power on at the terminal,
positioning the typing element at the left margin, and
hitting the TAB key repeatedly. If the tab settin~s are
satisfactory, proceed to step 4. Note that terminal tab
settings do not govern internal positioning of input
characters. For a discussion of internal tab settings,
refer to EDIT. If the tabs are to be reset, position the
typing eleroent to the right margin. Lift the tab setting
switch, labeled CLR/SET, and hol~ it while hitting the
RETURN key. This clears all previous tab settings. New
settings way be made by spacing the typing element to the
desired locations ana then pressing down on the tab setting
switch. After tab stops have been set for the entire line.
hit the RETURN key to position the typing element at the
left margin. Turn off power at the terminal.

4. Reset the PRINTERl switch to SEND REC and the KEYBOARD
switch to SEND.

5. Turn the roainlin€ switch to POWER ON and continue with
the Login procedure.

Terminal Characteristics 21

Figure 1. IBM 2741 Keyboard (PTTC/EBCD Configuration)

Note: When this keyboard and associated prinl elements are specified the mechanical changes in the keyboard mechanism
determine the li;le code assignments of the graphic characters. These arrangements are not compatible with the
assignments provided by the use of the PTTC/BCD and PTTC/EBCD keyboards and associated print elements (see Code
Chart, Figure 6).

Figure 2.

22

IBM 2741 Keyboard (Standard Selectric
Configuration)

Terminal Characteristics

SYSTEM MASTER PRINTER 1 PRINTER 2 KEYBOARD READER 1 READER 2 PUNCH 1 PUNCH 2 STOP CODE AUlO Fill PUNCH SYSTEM EOB SYSTEM TEST SINGLE CY RDR STOP

111111111111111111,,111111," ,I"" I" 111,",11"'/"11 1111,1 I:, Ii 1111111"1,, 1,1" "II,,, I"" I"" I,,, ,I,,, Ii,,, ,I II III,,, ,/"" I
~ ~ J '~.~ _~ <

Figure 3. IBM 1052 Switch Panel

D D
om FEED D D

D

D I RESEND I

Figure 4. IBM 1052 Keyboard

Terreinal Characteristics 23

TYPE 33 TELETYPE CHARACTERISTICS

The KSR (Keyboard Send/Receive) model of the Teletype Type
33 terminal is supported by CP-67. The Type 33 KSR includes
a typewriter keyboard, a control panel, a data-phone,
control circuitry for the teletype, and roll paper. The
Type 33 RSR keyboard contains all standard characters in the
conventional arrange~ent. as well as a number of special
symbols. All alphabetic characters are capitals. The SHIFT
key is used only for typing the "uppershift" special
characters. The CTRL key (Control key) is used in
conjunction with other keys to perform special fUnctions.
Neither the SHIFT nor CTRL key is self-locking; each must be
depressed when used.

In addition to the standard keys, the keyboard contains
several non-printinq keys with special functions. These
function keys are as follows:

24

LINE FEED generates a line-feed character and moves the
paper up one line without ~oving the printing
roechanis~. When the terminal is used offline, the LINE
FEED key should be depressed after each line of typing
to avoid overprinting of the next line.

RETURN is the carriage return key and signifies the
physical end of the input line,.

REPT repeats the action of any key depressed.

BREAK generates an attention interrupt and interrupts
program execution. After breaking program execution,
the BRK-RLS button must be depressed to unlock the
keyboard.

CNTRL is used in conjunction with other keys to perform
special functions. The tab character (Control-I) acts
like the tab key on the 2741. Control-H acts like the
backspace key on the 2741. Control-Q and Control-E
produce an attention interrupt like BREAK if the
teletype is in input mode. Control-S (X-OFF) and
Control-M act as RETURN. Control-D (EOT) should not be
used as it may disconnect the terminal. Control-G
(bell), Control-R (tape), Control-T (tape), and all
other Control characters are legitimate characters even
though they have no equivalent on the 27ql.

HERE IS and RUBOUT are ignored by CP-67.

ESC (ALT MODE on soree units) is not used by CP-67, but
generates a legal character.

Terminal Characteristics

The control panel to the right of the keyboard contains six
buttons below the telephone dial, and two lights, a button,
and the NORMAL-RESTORE knob above the dial. The buttons and
lights are as follows:

ORIG {ORIGIN.ATE}. This butt.on obtains a dial tone
before dialing. The volume control on the loudspeaker
(under the keycoard shelf to the right) should be
turned up such that the dial tone is audible. After
connection with the computer has been made, the volume
can be lowered.

CLR (CLEAR). This button, when depressed, turns off
the typewriter.

ANS (Answer). This button is not used by CP-67.

TS~ (TEST). This button is used for testing purposes
only.

LCL (Local). This button turns on the typewriter for
local or offline use.

BUZ-RLS (Buzzer-Release). This button turns off the
buzzer that warns of a low paper supply. The light in
the BUZ-RLS button remains on until the paper has been
replenished.

ERR-RLS (Break-Releas~). This button unlocks the
keyboard after prograw execution has been interrupted
by the BREAK key.

REST. This light is not used by CP-67.

NORMAL-RESTORE. This knob is set to NORMAL, except to
change the ribbon, in which case the knob is twisted to
the OUT-OF-SERV l~ght. The knob is then set to RESTORE
and returned to NORMAL when the operation has been
completed.

OUT-OF-SERV (Out of Service). This light goes on when
the NORMAL-RESTORE knob is pointed to it for ribbon
changing.

Most teletype units have a loudspeaker and a volume control
knob {VOL} located under the keyboard shelf. The knob is
turned clockwise to increase the volume.

TYPE 35 TELETYPE CHARACTERISTICS

The KSR (Keyboard Send/Receive) model of the Teletype Type
35 terminal is supported by CP-67. The Type 35 KSR, like
the Type 33 KSR, includes a typewriter keyboard, a control

Terminal Characteristics 25

panel. a data-phone, control circuitry, as well as roll
paper. The Type 35 has basically the same features as the
Type 33. The additional features of a Type 35 are the
following:

LOC-LF (Local/Line Feed). This button operates as the
LIND FEED button without generating a line-feed
character. It is used along with the LOC-CR.

LOC-CR (Local/Carriage ~eturn). This button returns
the carrier as RETURN does without generating an
end-of-line character. LOC-CR is normally used only to
continue a line of input to the.next line.

LOC-BSP (Logical/Backspace). This button generates a
character but it has no meaning with the KSR model.

BREAK. This button generates an attention interrupt
and interrupts program execution. After execution has
been interrupted, BRK-RLS, and then the K buttons must
be depressed to unlock the keyboard.

K (Keyboard). This button unlocks the keyboard and
sets the terminal for page copy only.

Most Type 35 terminals have a volume control knob (SPKR VOL)
for the loudspeaker located to the right of the keyboard.
Turning the knob clockwise increases the volume.

A column indicator at the uoper right of the keyboard
indicates the coluwn that has just been printed. When the
LOC-CR key is used. no end of line is recorded and the
column indicator does not reset.

A red light to the right of the column indicator warns the
user that the carrier is approachinq the right marginQ

26 Terminal Characteristics

CP-67/CMS CONVENTIONS

LOGGING PROCEDURES

This section describes the procedures which roust be
performed at the terminal to begin and to terminate use of
the CP-67/CMS system. For the procedures of connecting a
user to a multiaccess system such as RAX or APL, refer to
wDialing a Multiaccess Systemw • Before the facilities o£
the CP-67/CMS system are made available to a user, he must
identify himself to the Control Program by giving his userid
and his password (two identifiers which are assigned to hiro
at the time he is authorized to use the system). This
identification procedure is referred to as CP Login. When
CP Login is completed, a console function may be issued to
initialize CMS, as described below.

Note. During the LOGIN procedure CP-67 uses the line
time-out feature when reading the userid and password. If
the user fails to type any character for 28 seconds, the
line will time-out and be disablen.

When the user has co~pleted his use of the system, he
signals this fact by issuing a WlogoutW to the Control
Program. The period between CP Login and CP Logout is
referred to as a terminal session.

CP Login

After the terminal has been prepared for use (as described
under ftTerminal Characteristicsn) the procedure described
below must be performed in order to gain access to the
CP-67/CMS system. (Note that input may be entered in either
uppercase or lowercase. Uppercase is used below to indicate
words which must be typed as they are shown; lowercase
indicates fields whose contents may vary.)

1. A communications line to the computer must be
established. If the terminal is directly wired to the
computer this is automatic, and you may proceed to step 2.
If the terminal is a Teletype 33 or 35, depress the ORIG
button, rr.ake sure the dial tone is audible, and then dial
the installation-specified number and proceed to step 2; the
ORIG button is lighted at this point--if the light goes out
during the terminal session, this CP Login procedure must be
repeated. Otherwise, a data-phone is placed near the
terminal and should be used to establish a communication
line with the computer as follows: After making sure that
the plug from the data-phone is connected to the walljack,
press the button labeled TALK, lift the receiver, and dial
the installation-specified number. When a continuous tone
is heard, press the button labeled DATA and replace the
receiver. The DATA button should now be lighted, and

Logging 21

remains lighted as long as the terminal remains connected to
the computer. If this light qoes out at any point during
the terminal session, the CP Login procedure must be
repeated.

2. The system acknowledges that a communication line has
been established by typing one of the following messages:

CP-67 ONLINE xxxxxxxxxxxx

xxx:xxxxxxxxx CP-67 ONLINE

CP-67 ONLINE

The first message is typed if the terminal is a 1052 or 2741
equipped with an EBeD character set. If the second message
is typed, the 2141 bas a standard Selectric or
correspond'~nce character set. In either case, the
xxxxxxxxxxxx portion of the message consists of meaningless
characters and should be ignored. If the terminal is a
Teletype Type 33 or 35, the third message is typed.

3. At this point the system must be notified that someone
wishes to use the terminal. To do this, hit ATTN once. On
the Teletype 33 or 35, hit BREAK and then BRK-RLS.

4. The system responds by unlocking the keyboard on a 2141
or 1052 or waiting for input on the Teletype 33 or 35.

5. Identify yourself to the system by typing LOGIN userid,
followed by a carriage return, where userid is your user
identification.

Note. The LOGIN and userid cannot be
character-delete or line-delete symbols.

edited using

6. The system responds with one of the following messages:

ENTER PASSWORD:
This message indicates that your user identification has
been accepted. Proceed to step 1.

RESTART
If this roessagei:s ,typed" the word LOGIN has been entered
incorrectly. Return to step 5 and retype the input line ..

LOGGED IN ON DEV xxx
RESTART

This message indi.cat:es ·tha~t another user with the same
userid is log.gedonat the terminal whose address is xxx.
You will not ~e ~ble to log in with the same userid until
the other user has legged off.

28 Logging

USER NOT IN DIRECTORY.
RESTART

If this message is typed, an invalid userid has been
specified. Return to step 5 and log in again.

MAX NO. OF USERS EXCEEDED
LOGGED OUT AT xx.xx.xx ON xx/xx/xx *** BY OPERATOR***

If the keyboard unlocks or CP-67 waits for input, return to
step 5. If the message is typed, the system is already
servicing the maximum number of users and the login
procedure is terminat~d. In this case wait for a few
minutes" and then try again by returning to step 1.

UPDATING DIRECTORY
RESTART

The CP-61 system directory is
wait a few minutes, and then
5.

being updated. In this case,
try again by returning to step

7. Type your password, followed by a carriage return: the
password may be edited. If the 2741 terminal is equipped
with the Print Inhibit feature, the password is not typed at
the terminal as the keys are hit. The Print Inhibit feature
applies only to the typing of a password. If the terminal is
a Teletype 33 or 35, three lines of characters are
overprinted before you are allowed to enter your password.

8. At this time, if there are any cards in the virtual card
reader or output for the printer or punch, the message

FILES:- xx RDR, xx PRT. xx PUN
is typed. If the CP operator has set any log messages for
the day, they are typed also.

9. The system responds with one of the following messages:

READY AT xx.xx.xx ON xx/xx/xx
where xx.xx.xx is the time of day and xx/xx/xx is the date.
This message indicates that the password has been accepted
and the CP log in procedure is completed. The Control
Program environroent has been entered, and any console
function roay be issued. To initialize CMS, proceed to step
11. To initialize any other operating system proceed to
step 10.

PASSWORD INCORRECT.
RESTART

If this message
specified and the
step 5.

is typed, an invalid password has been
log in procedure is repeated. Return to

Logging 29

10~ Any operating system can now be loaded into the virtual
machine. To load in CMS, go to step 11. To load in another
operating system, issue the IPL console function to CP-67,
specifying the device froro which the system is to loaded.
For example, IPL 293 or IPL OOC. If the device that is
IPL'ed contains an operating system (such as OS/360>, your
terminal becomes the operator's console. For information on
running os under CP-61. see WOS/360 in a CP-67 Virtual
Machinew , by C. I. Johnson, IBM Cambridge Scientific Center
Report 320-2035. Cambridge, Massachusetts, March 1969 .•

CMS Initialization

11. To initialize CMS., issue the console function

IPL 190
or

IPL CMS

followed by a carriage return. This causes a copy of the
CMS nucleus to be brought into core from disk.

12. The message

CMS ••• VERSION nn LEVEL rom

where nn is the version level and mm is the modification
level, is typed, and the keyboard is unlocked. The CMS
Command environment has control at this pOint, and any CMS
command may be issued.

CP Logout

When the user has finished using the system and wishes to
end his terminal session, he should do so by logging out
from the Control Program. If the user is not already in the
Control Program environment at the time he wishes to log
out, he may enter this environment by hitting ATTN once.
The keyboard is unlocked and the user types LOGOUT, followed
by a carriage return. The system responds with

CONNECT=hh.rom.ss VIRTCPU=mmm.ss.hs TOTCPU=~mro.ss.hs
LOGOUT AT xx.xx.xx ON xx/xx/xx

and the connection to the computer is lost. The connect
is in hours, minutes, and seconds; the virtual CPU,
total CPU times are in minutes, seconds, and hundredths
second. The logout procedure is then completed, a~d
user may turn power off at the terminal.

time
and

011 a
the

If the user desires
lose the connection
may log in from

to end his terminal session, but not
with the computer so that another user

the terminal, the user types LOGOUT

30 Logging

anything. followed by a carriage return. The "anything"
must be at least one character or any combination of
characters. The connection with the computer is not lost
and the CP-61 ONLINE message is typed out for the next user
to log in. as in step 2.

Logging 31

DIALING A MULTIACCESS SYSTEM

This section describes the procedures which must be
performed to connect a user to a system that provides
multiterminal facilities. such as APL or RAX.. The process
of placing a user into a multiaccess system is referred to
as "dialing". The system to be dialed into must be logged
onto CP-67 (as in the logging procedures writeup) with some
2102 or 2103 lines available and enabled before the
connection can be made.. When the connection is made, dialing
has been completed, and the terminal is under the control of
the system dialed into; consequently, the user is not known
to CP-67 as a regular logged in user but as a dialed user.

When the user has completed his use of the multiaccess
system,. he should log out of that system in the appropriate
manner; when that mUltiaccess system issues a "disable"
command for that terminal, the 'terminal will be free for
another user to login to CP-67/CMS or to dial a multiaccess
system.

Dialing

After the terminal has been readied for use (as described in
"Terminal Characteristics·) i, the procedure described below','
must be performed to gain access to a mUltiaccess system.
(Note that input may be entered in either uppercase or
lowercase. Uppercase is used below to indicate words which
must be typed as they are shown; lowercase indicates fields
whose contents may vary.)

1-4. These steps are, as for ·CP Login", described several
pages earlier.

5. Specify the multiaccess system to which you wish to gain
access by typing

DIAL systeIII

followed by a carriage return. where "system" is the userid
of the mUltiaccess system.

Note. DIAL and system cannot be edited using
character-delete or line-delete symbols.

6. The systero then responds with one of the following
messages

••• connected •••
This message indicates a connection has been made between
the terminal and the multiaccess systerr, and the terminal is
now under control of that system. Further responses will be
those of the multiaccess system, as the user cannot get to

32 Dialing

CP-61 to issue console functions.

system ALL LINES BUSY
RESTART

There are no 2702 or 2703 lines available on system. The
lines way not be available for anyone of the three
follo~ing reasons: 2102 or 2103 lines are not defined in the
virtual machine, the virtual lines are not enabled by
system. or all of the lines are in use.

system NOT AVAILABLE
RESTART

The system being dialed is not logged in to CP-67.

system LINES NOT READY
RESTART

The system has not issued an enable for the 2702 or 2703
lines.

system NO DIAL LINES
RESTART

The system has no 2702 or 2703 lines in its virtual machine
description.

£isconnecting

The dialed terminal remains connected to system until one of
the three following events occur:

(1) system issues a disable for that terminal. This is
usually brought about by logging out of system in the
correct manner.

(2) system issues the CP console function DETACH.
specifying the terminal address.

(3) system logs out of CP-67.

When the terminal is disconnected from system, the following
message is typed out:

CP-67 LOGOUT

The terminal can now be used to log in to CP-67, or to dial
into a mUltiaccess system again.

Dialing 33

GENERAL TYPING CONVENTIONS

The typing conventions described below should be observed
when entering input to the CP-67/CMS system from a 2741,
1050, or a Teletype 33 or 35 terminal.

Input may be entered in either uppercase or lowercase.

When the keyboard is unlocked on the 2741 or 1050. the
terminal is ready to accept input. The keyboard r~mains
unlocked on the teletype, therefore a > (greater than sign)
is typed at the left marqin when the teletype is ready to
accept input. If the user types too soon on the teletype,
an interrupt may occur which will probably cause the user to
go back to CP: if this happens, type BEGIN to return to
where you were previously.

The character-delete symbol (a) may be used to delete the
preceding character in the input line. n character-delete
symbols delete the preceding n characters in the input line
and themselves. Exception: This feature does not apply with
the K-level comroands or the RT command. The
character-delete symbol can be redefined by the CHARDEF
command for use in eMS: it can never be redefined for CP.

The line-delete symbol, which is the ¢ on the 2741 or
1050, and the shift K (left bracket) on the teletype, may be
used to delete all characters in the current input line and
itself. A line-delete symbol (¢l cannot be deleted by a
character-delete symbol (a). Exception: This feature does
not apply with the R-level commands or the RT command. The
line-delete symbol can be redefined by the CHARDEF command
for use in CMS; it can never be redefined for CP.

An input line may be a maximum of 130 characters in length.
Any line longer than 130 characters--including delete
symbols, blanks, and the tab character--is truncated to 130
characters. On the teletype 33, an input line can only
contain a maximum of 72 characters.

An input line from the 2741 or teletype is terminated by
hitting RETURN. To terminate an input line from the 1050,
hit the 5 key while holding down the ALTN CODING key, unless
the 1050 is equipped with the Automatic EOB special feature.
If this special feature is available and the EOB panel
switch is set to AUTO, input lines may be terminated by
hitting RETURN.

Input lines~ can contain a number of logical
which are separated by the. line-end character
call to read a line from the terminal returns
input line. Subsequent calls to read a line
terminal return the logical input line which

34 Typing conventions

input lines
(#). Each
a logical

from the
was typed

following the previous logical input line~ For exarople. the
single input line

FORTRAN ABLE # $ ABLE
causes the file ABLE FORTRAN to be compiled, loaded, and
executed. The single input line to the EDIT environment

T # L /BUFT/ # C /FT/FFER/
causes the characters BUFT to be located and changed to
BUFFER. The line-end character can be changed with the
LINEND command for use in CMS: it cannot be redefined for
CP.

An output line on the 2741 and 1050 can be a maximum of 130
characters. Any line longer than 130 characters causes
overprinting at the right margin. On the teletypes, lines
longer than 72 characters in length are printed as two
lines; the first line cuts off after the 71st character, and
an up arrow is printed at the end of the line to indicate
continuation.

Illegal output characters appear in terminal typeout as
spaces. An illegal output character is one which cannot be
typed and for which no keyboard function, such as a carriage
return or a tab, can be generated.

On the Teletype 33 or 35 terminal, the
underscore (), the backslash translates
and the uparrow to a vertical bar (1).

arrow translates to
to a not sign (~),

One or more blanks are used to delimit the fields of an
input line to the CMS command environment.

Typing Conventions 35

ATTENTION INTERRUPT

After a phone connection with the computer has been made and
the message "CP-61 Online" has been printed, pressing the
attention key causes the CP login procedure to begin, or the
dialing of a multiaccess system to begin.

The user's machine may be interrupted (stopped) an1 the
terminal readied for input at any time by pressing the
attention key (marked ATTN) on a 2141, hitting the RESET
button on a 1050, or the BREAK key on the Teletype 33 or 35.
This causes control to pass to CP provided that the Control
Program was not already in control. CP console functions
can then be issued.

After a previous attention (pressing ATTN) causes control to
pass from CMS to CP, a subsequent attention passes control
back to CMS. If C~S previously had control and was reading
a line from the terminal (that is, the keyboard was
unlocked), the CMS program is restarted and the keyboard is
unlocked again. If CMS previously had control and was not
reading a line from the terminal (that is, the keyboard was
locked), the interruPtion permits a single line of input to
be entered and stacked. Stacked lines of input are used on
successive calls to read a line from the terminal until
there are no more stacked lines. Input is then taken
directly from the terminal. After a line to be stacked is
entered, CMS continues from the environment which was last
interrupted. Any number of lines m~y be input and stacked
in this way.

When entering two attentions to the system to stack input,
ATTN should not be pressed the second time until the
keyboard has been unlocked in response to the first
attention. If the second attention is entered before the
keyboard is unlocked. it is ignored.

36 Attention Interrupt

CMS FILE CONVENTIONS

One of the purposes of C~s is to provide the user with
various file-handling facilities. Files to be use0 under
CMS may be stored on disk, cards, or magnetic tape.
However, most CMS cowmands assume that files are stored on
disk. This rreans that files stored on media other than disk
wust be transferrea to disk before rrany of the CMS commands
can be issued for thew. The commands which deal with
transferring files between disk and other media are
discussed under "File Creation, Maintenance, and
Manipulation".

conventions given in this section apply to disk files only.

Disk Facilities

Disk areas are available to each CMS user for storing
inforwation. A user may have up to five read/write disks and
one read/only (that is, the syste~) disk attached to his CMS
virtual machine at anyone time. These areas are referred to
as the user·s disks although the size of each area seldow
constitutes an entire physical disk. The sizes of a user's
"mini" disks are assigned by the system administrator at the
time he establishes that person as an authorized user of the
CP-61/CMS system. These assigned sizes are based on the
amount of disk space available and the amount which the user
is likely to require. P-ssigned disk sizes may vary among
users.

The logical names of the disks a user may have are P, T, A,
B, S, and C. This order is normally the standard order of
search for C~S files. All users normally have a P (191) and
an S (190) disk. The P disk contains user files retained
between terwinal sessions until the user erases them either
collectively or singly. The S disk (that is, system disk)
contains the C~s nucleus of which each user receives a copy,
and the disk resident portion of CMS which is normally
shared by all users. The system disk is read-only--any
attempt to write on it is denied and causes an error message
to be typed to the user.

The T (192) disk contains information that is retained only
from the time it is created until the user terminates his
terminal session. The A, B, and C disks contain information
that is retained between terminal sessions as does the P
disk.

Before a user can access the P, T, A, B, or C disk for the
first time, he must format each one by issuing the FORMAT
command in c~S. If the disks are not properly formatted,
I/O errors occur.

File Conventions 37

Infor~ntation stored on ~isk is organized into files. Files
on the system disk are referred to as system files.

File Identifiers

Each file must have a unique identifier, which is composed
of a filename, a filetype, and a fileu1ode. This identifier
(or a portion of it) is used by the various CMS cowmands to
access user and systew. files. If a new file is created with
an identifier identical to that of an existing user file,
the original file is erased.

The filename may be any combination of from one to eight
nonblank EBCDIC characters, provided the first character is
not a zero or an asterisk. with system files, the filename
is the name which is issued by the user in calling a
specific command, and it is also the name of the program
whose code constitutes that command. Permanent and
temporary files may be assigned any filename the user
wishes, since filenaroes in themselves do not have any
special implications in eMS.

Filetype may be any combination of from one to eight
nonblank EBCDIC characters, provided the first character is
not a zero or an asterisk. Certain filetypes imply specific
file characteristics to CMS. Fil~types which have specific
implications for user files are given in Figure 5. The user
may assign any of the filetypes in this figure to any file
he wishes, but he should note that the commands which use
these filetypes are not successfully executed if the
contents of the file are in any forro other than that which
the assigned filetype implies.

38 File Conventions

t"Ij
~.

.....
It

(j
o
~
<
<t)
:::1
rt
~.

o
~
en

I.N Figure 5.
\D

Filetypes

AED
ALPHABET
ALPHANUM
ASP360
ASl130
BRUIN
COBOL
COPY
CVTUTl
DATA
DAxx
DIAG
EXEC
FILE

(FILE)

FLOW
FT01FOOl
FT02FOOI
FT03FOOl
FT04FOOI
FTOSFOOI
FT07FOOl
FT08FOOl
FT09FOOI
FT10FOOl
FORTRAN
INTER
LISTING

MACLIB
MAP

MAP
MEMO

MODULE
NUMERIC
PLI
PRINTER
REPS
SCRIPT
SNOBOL
SPLI
SYSIN
SYN
SYSUTI
SYSUT2
SYSUT3
TEMP FILE
TEXT
TXT LIB

.. TYPE ..
UPDATE
UPDLOG
UTILITY

Record Format I Created by
and Length These Commands

For Use by
These Commands*

F 80
F 80
F 80
F 80
F 80
F 80
F 80
F 80

F 80
F
F 132
F 80

V or F

V or F

F 80
F 80
F 80
F 80
F 80
F 80
F 80
F 133
F 140
F 80
F 80
F 80
F 121

F 80
F 72

F 132
F 80

V max:6SK
F 80
F 80
F 132
F 80
V max:i32
F 80
F 80
F 80
F 80
V'
V
V

F 80
F 80

F
F
F

80
80
80

EDIT, OFFLINE
MAPPRT
MAPPRT
OFFLINE, EDIT
OFFLINE, EDIT
BRUIN
OFFLINE, EDIT
EDIT, OFFLINE
CVTFV
EDIT, OFFLINE
FORTRAN
ASSEMBLE
EDIT, OFFLINE, LISTF
EDIT, CEDIT, OFFLINE

COMBINE, DISK, TAPE

EDIT, OFFLINE
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN

MACLIB

MACLIB

EXEC,

EDIT, OFFLINE FORTRAN
UPDATE
ASSEMBLE, FORTRAN, PLI PRINTF, EDIT, OFFLINE

MACLIB
LOAD, USE, REUSE, $

MACLIB, TXTLIB
EDIT, OFFLINE

GENMOD
MAPPRT
EDIT, OFFLINE
EDIT, OFFLINE
EDIT, OFFLINE
EDIT, SCRIPT
EDIT, OFFLINE
SNOBOL
EDIT ,OFFLINE
EDIT
ASSEMBLE, PLI
ASSEMBLE, PLI
ASSEMBLE, PLI
SNOBOL

ASSEMBLE, GLOBAL

LOADMOD, $

PLI
PRINTF

SCRIPT
SNOBOL
SNOBOL
ASSEMBLE, UPDATE
SYN

ASSEMBLE, PLI, FORTRAN I LOAD, USE, REUSE,
TXTLIB GLOBAL,LOAD,USE,

OFFLINE
EDIT, OFFLINE
UPDATE
CNVTFV

REUSE, $

UPDATE

Usage

AED source code
Alpha listing of nucleus load map
Alpha and numeric listing of nucleus load map
Assembler language macros
1130 Assembler source code
Bruin source code
Cobol source code
Assembler source code
Utility file created by CVTFV
User data files
Direct access Fortran files
Assembler diagnostics
CMS and/or EXEC commands
User data files or utility file created
by EDIT and CEDIT
Utility file created by either COMBINE, DISK
or TAPE
Flowchart input data
Fortran input/output file
Fortran input/output file
Fortran input/output file
Fortran input/output file
Fortran output file
Fortran input/output file
Fortran input/output file
Fortran input/output file
Fortran input/output file
Fortran source code
Utility file created by UPDATE
Assembler or compiler output containing source
statements and machine code
Assembler language macro definition library
Map of locations of loaded programs
(Filename is LOAD)

Map of library file
Memorandum file - contains upper and lower
case data
Non-relocatable object code
Numeric listing of nucleus load map
PL/I source code
Printer output and listing files read onto disk
Replace cards for modifying TEXT files
Script input and/or output
SNOBOL source code
SNOBOL object code
Assembler language source code
Synonyms or abbreviations
Utility file created by Assembler or PL/I
Utility 'file created by Assembler or PL/I
Utility file created by Assembler or PL/I
Utility file created by SNOBOL
Relocatable object code
Library of relocatable object code

Utility file created by OFFLINE
Update control and replacement cards
Log of applied updates
Utility file created by CNVTFV

* Other commands may use these filetypes; these are only the pertinent commands.

Filetype implication and characteristics

Several of the CMS commands create files for their own use
and assign specific filename-filetype combinations to these
files. These filename-filetype combinations are listed
below, and should not be assigned by the user

filename filetype creating command

• TEMP BRUIN BRUIN
CMS EXEC LISTF
(INPUT1) FILE EDIT, CEDIT
(INPUT2) FILE CEDIT
(TEMP) (FILE) COMBINE
LOAD MAP LOAD,$,USE,REUSE
SNOBOL TEMPFILE SNOBOL, SPLl
• DUMMY TXTLIB TXTLIB
(DISK) (TFILE) DISK, TAPE
•• NAME •• • • TYPE .•• OFFLINE
BCDEBC UTILITY CNVT26

In addition to the above, note that if a user file is
created whose filenawe and filetype are identical to those
of a file on the disk-resident portions of CMS, the standard
order of search may access one user's file in place of the
system file. Reasons for this are described in "CMS
Commands".

The third portion of the identifier, filemode, consists of
two characters. The first character is a letter indicating
the disk area on which the file resides: S for system disk,
P for perrranent disk, and T for temporary disk, etc. For
system files, the second character is always Y. For user
files, the second character is a number from one to six.
These numbers have the following meanings, although the
restrictions they imply may not currently be implemented in
all cases:

1 or 5--file may be written or read.

2 or 6--file is read-only.

3--file may be written or read, but is erased when the
file is closed.

4--file is read-only, and is erased when the file is
closed.

Files are matched on the three identifiers. If, however,
both filename and filetype are explicitly given, the mode
letter only is checked (that is, the ITode number is ignored
on the match). However, if either the filename or filemode
is implied with a *. the mode number is matched together
with the mode letter.

40 File Conventions

File Sizes

Files stored on disk are formatted into records 829 bytes
long. This formatting is handled internally by CMS. and is
not controlled by the user. The maximum CMS file size
(assuming that the user·s assigned disk area can accommodate
it), is 24.358 million bytes, or 65,533 records. If a file
consists of a source language program .• a size limitation may
be imposed by the language in which that program is written.
and this size may be smaller than the 24.358 million bytes
allowed by CMS. The maximum disk file for user disks is 203
cylinders each. Although there is no inherent limitation to
the number of files a user may create. he is limited
practically by the sizes of his disk areas. When a user has
filled either of these areas. a message to this effect is
typed at his terminal. Refer to "Recovery Procedures" for
steps to be taken in this case.

A file is "accessed" when any portion of it is read or
written. Whenever a file is accessed for the first time by
a CMS command or function, the file is automatically opened.
Opening in this case consists of making an entry into the
user·s active file table. All open files are closed by CMS
after the successful execution of any CMS command. The user
does not need to be concerned with opening and closing
files.

Disk con~iderations:

Read-only disks. There are several ways a user can force a
normally read-write disk (that is, P/,T.A,.B,C) to be
read-only.

If the user LINRs to a disk that is read-only in the CP
directory, then he has read-only access to that disk.

A disk may be logged into CMS as a read-only extension of
the P disk (for example;, LOGIN 196 B,P). This forces the
disk to a read-only status, and concatenates the B disk to
the P disk in the standard order of search.

A disk may be logged into CMS as a forced read-only disk by
making it an extension of itself (for example. LOGIN 195
A.A). A user may thereby protect certain files by forcing
them to be read-only.

On read-only disks it is possible to login a portion of the
files on that disk. See the LOGIN command for details on
how this done.

T-Disk. The T-disk is automatically logged in when the
user IPL·s CMS if 192 is attached and ready, and the label
on that disk is readable and is CMS=T-DISK. If the label is

File Conventions 41

readable but not CMS=T-DISK., the disk is not logged in. If
the label is not readable, an automatic FORMAT T (NOTYPE) is
issued.

C-LISK. The C disk's (19C) special usage lies in its ability
to be a read-only extension of the system disk by means of a
modification to the system at installation time. Thus. if
the S disk is full and additional routines are needed as
part of the system, they may be placed on the C disk. For
example. the C disk could contain an old version of the CMS
system disk. Thus it's routines would be used only if they
were not present on the more recent system disk.

Formatting disks. The very first time a user logs in to CMS,
he should issue a FORMAT command to format his disk areas
into the CMS format. For details on FORMAT, see the CMS
FORMAT command.

42 File Conventions

ENVIRONMENT CONVENTIONS

Each input line which is typed at the terminal by a user is
transmitted to the CP/CMS system, where it is processed
(examined, and accepted or rejected) by a given routine.
The particular routine by which input is processed is
determined by which portion of the system has control at the
time the input line is entered. Each portion of the system
to which input may be entered constitutes a unique
environment, and only a subset of all possible input is
acceptable to any given environment. The following are the
environments of the CP/CMS system:

Control Program environment
CMS Command environment
Debug environment
Edit environment
Input environment
Echo environment

In addition to these six specific environments, input may be
entered to any other executing program which expects
terminal input. These other input-processing programs are
grouped into a seventh, Program environment, in which the
acceptability of an input line is determined by the
executing program.

~ith the exception of the Program environment, the
input-processing routines fall into three main categories:
input is received by either the Control Program (CP
environment), a central CMSservice routine (CMS Command
environment), or a particular CMS command (Debug, Edit,
Input, and Echo environments). Input lines which are
acceptable to the CP environment are referred to as ·console
functions·,. since for the most part they simulate functions
that can be performed at a System/360 console. Input to the
CMS Command environment may be any CMS command. Note that cp
console functions can also be issued from the CMS command
environment (see CPFUNCTN command).

A certain number of the CMS commands cause environments of
their own to be entered. These are the DEBUG, EDIT, and
ECHO commands. Lines acceptable to the environments of
these commands are referred to as ·requests·, or merely
·input-, depending on the particular environment which is
entered when the command is issued. The EDIT command causes
either one of two environments to be entered. If it is
issued for a file which already exists, the editing
environment is entered, allowing the contents of the
existing file to be examined and modified. If an EDIT
command is issued for a file which does not currently exist,
the input environment is entered, allowing the file to be
created. The Input ·environment accepts any input typed at

Environment Conventions 43

the terminal, and this input becomes a part of the file
being created. The Echo environment also accepts any input
line, but repeats that line as output in order to test
terminal transmisssion. Because no check is made to
determine the acceptability of input to these two
environments{, lines which are acceptable are termed merely
input. The Debug and Edit environments, on the other hand,
accept only specific input lines, which are referred to as
requests.

To verify at any time which environ~ent the user is in,
RETURN can be hit.

various actions by the user cause control to pass from one
environment to another. These actions are specified in
detail throughout this guide. Note that ATTN can always be
used to transfer control to the CP environment from any of
the other environments. Hitting ATTN while in the CP
environment causes the keyboard to be unlocked, permitting
one line of input to be entered. If the line entered is a
K-type CMS command (1<T" KX, 1(0) or the RT command, it is
executed immediately and control returns to the environment
from which CP was entered. If the line entered is not a
K-type eMS command or the RT command, the line is stacked to
be used as terminal input and control returns to the
environment from which CP was entered. As many lines as
desired may be stacked in this way to be used in place of
successive lines of terminal input.

44 Environment Conventions

CP-61/CMS Environments. Commands. and Reguests

These are illustrated below.

CP CMS EDIT INPUT DEBUG

LOGIN
Q USERS
IPL 190-> LISTF

(file does not exist)
EDIT-------~-----~--->

(file exists)
EDIT------>

PRINT
NEXT
FIND
LOCATE
DELETE
CHANGE
INPUT-----> xxxx

xxxx
TOP <----- (null line)
RETYPE

FORTRAN<---FILE
PRINTF
LOAD
START
ERASE
DEBUG----------------------------> x

store
dump

CPFUNCTN<------------------------ restart

ECHO

ECHO---> abc
SCRIPT<-------------------------------------- return
OFFLINE

MSG <----(press ATTN key)
BEGIN--->
LOGOUT

Environment Conventions 45

eMS COMMANDS

The CMS commands provide user facilties for file maintenance
and ~anipulation, execution control, debugging, language
processing, and various utility and control operations, and
are described below in alphabetical order under these
general headings.

These comroands may be issued from the terminal or called
from user progra~s. Each command consists of a command name
and its operands, if any. Abbreviations have been
established which allow the user to specify only as many
characters of each command name as uniquely identify that
command. In the case of commands with the same leading
characters" the more commonly used command has been assigned
the shorter abbreviation. For example, A is the
abbreviation for the ASSEMBLE command, and AL for ALTER.
Any number of additional characters beyond the minimum may
be specified in the command name. For this reason, AL, ALT,
ALTE, and ALTER all identify the ALTER command.

The following is a list of the minimum number of characters
required to invoke CMS coromands:

Systero
Commands

ASSEMBLE
ALTER
CLOSIO
CPFUNCTN
DEBUG
EDIT
FORTRAN
GENMOD
LISTF
OFFLINE
PRINTF
SCRIPT
STAT
TAPE
UPDATE

Shortest
Form

A
AL
CL
CP
DE
E
F
G
L
o
P
SC
S
T
U

If the user wants to change the abbreviations or to use
synonyms, the SYN command can be used to create the command
names, (see SYN).

The comuand name and each of its operands must be separated
by one or more blanks. The operands which are valid for each
command are discussed under -Format" in each command
description, and also in Appendix B. Each command must be
specified in a single line of input. The carriage return
signals the end of a typical input line. To stack multiple

46 eMS COFmands

CMS commands on one line of input. use the line-end
character, which is defined as #. The line-end character
can be redefined via the LINEND command. CMS commands cannot
be continued onto additional lines.

Each eMS command has a corresponding comman~ program which
resides in the nucleus, in a transient area. or in the
disk-resident portion of CMS. This program is i~entified by
the command word or its abbreviation. which is issued as the
leftmost input on the cororoand line.

When a command is issued from the terminal, the user's
directories and the system directory are searched in the
standard order for a file with the specified filename and a
filetype of EXEC. The first file found which meets these
requirements has control transferred to it as if "EXEC
filename- had been issued. If the EXEC file is not found, a
check is made for a~breviations rr1 checking for user-defined
synonyms (see SYN) and then standard abbreviations; if a
match is found for a synonym or abbreviation, the typed
command is expanded to the original CMS command name and the
above searching sequence is repeated.

If the EXEC file search is not satisfied from above. the
tables of the transient area cororoands and then the
nucleus-resident coromands are searched for the corresponding
command program. If the program is located in one of the
tables, it is assurred to be in core, and control is
transferred to it directly by a BALR instruction. If not, a
LOADMOD is issued to bring the command program into core. In
attempting to locate this program on disk, the user's
directories and the system directory are searched for a file
with the specified filename (command name) and a filetype of
MODULE, indicating that the file is in core-image form. The
first file found which meets these requirements is loaded
into core and control is transferred to it. If the MODULE
file is not found, a check is made first for abbreviations
by checking for user-defined synonyms (see SYN), and then
for standard system abbreviations; if a match is found for a
synonym or abbreviation, the typed command is internally
expanded to the original CMS command name, and the above
searching sequence is repeated.

This means that the user is able to substitute his own
programs for disk-resident commands by creating a core-image
file of the program and assigning it a filename identical to
that of the command it is to replace. This also means that
any user file in core-image form may be called directly as a
command. by issuing the filename (and any operands or
parameters expected by the program) as an input line to ~he
CMS Command environment.

CMS Commands 41

A brief description of each CMS command is given in Appendix
A. Any invalid command, that is, one whose command program
does not reside in the eMS nucleus or transient-area and for
which an EXEC file or a core-image module cannot be located,
is ignored, and the message INVALID CMS COMMAND is typed at
the terminal. Operand processing is handled by the
individual command programs, and these programs provide all
messages dealing with command format.

The format and usage of each of the CMS commands are
described in detail in the following sections. The general
format for CMS commands follows.

operation

command name

< operands >

one or more operands delimited by spaces
field may be blank

The symbols used to represent command formats in this
document are described below.

UPPERCASE

lowercase

()

/

*

information given in capitals must be
typed exactly as shown, although it may
be entered in either uppercase or
lowercase.

lowercase information designates the
contents of a field, and does not in
itself constitute meaningful input.

parentheses must be typed as shown when
any of the information appearing within
them is specified.

a period designates the beginning of a
Script control word, and must be typed
as shown.

a hyphen must be typed where shown, and
must not be offset by blanks.

a slash denotes any string delimiter,
other than blank, which does not appear
in the string.

an asterisk, specified where shown,
indicates the universality of an item or
items.

The following are logical symbols only, and should not be
typed:

48 CMS Cororoands

< >

< >< >

« »

1
2
3
N

brackets indicate information which may
be omitted.

successive brackets enclose items which,
if specified, may appear in any order.

nested brackets indicate ite~s which, if
specified, must appear in the order
shown.

an ellipsis indicates that the preceding
item(s) may be repeated more than once
in succession.

these suffixes indicate first, second,
third, and Nth items respectively.

underlining indicates the value which is
assu~ed if none is specified. When no
underlined item appears in bracketed < >
information, the default value is ~.

Stacked items not enclosed in anything
indicate that only one item may be
specified.

All parameters for CMS commands are positional unless
otherwise stated in the individual com~and description.

Examples of command usage and each response and error
message which may be issued are also given. A response is
any message typed at the terminal to indicate the cause of
an error return code in register 15. which terminates
command execution.

CMS Commands 49

FILE CREATION, ~AINTENANCE, and MANIPULATION

File Creation. Facilities are available in CMS for the
handling of disk, card, and tape files. Most of the CMS
commands, however, require that the files they access be
stored on disk. This means that card and tape files must be
transferred to disk before many of the commands can be
issued for there.

Disk files can be created from terminal. card, or magnetic
tape input, or frcro other disk files. Issuing the EDIT
command for a disk file which does not currently exist
allows the specified file to be created from terminal input.
To create a disk file from card input, the OFFLINE READ
command can be used. OFFLINE READ accepts card input in any
format.

Card files are created in CMS by requesting that the
contents of disk files be punched. The OFFLINE PUNCH
command punches out any disk file whose records are 80
characters or less in length.

File Maintenance. Several commands provide facilities for
maintaining disk files. UPDATE and EDIT allow any portion of
an existing file to be changed, deleted, or added to.
UPDATE processes the existing file against an update file,
also stored on disk. EDIT allows the contents of an existing
disk file to be changed from the terminal. To change the
identifier of a disk file without changing its contents, the
ALTER command may be used. A file or group of files C3n be
deleted from disk by issuing the ERASE command. CLOSIO is
used to signal the completion of output to the card punch or
printer from a user program.

File Manipulation. eMS file manipulation consists of
copying. combining, reoving, splitting, and listing disk
files. To copy a disk file, the EDIT or COMBINE coromands
can be used. COMBINE also creates a new disk file from the
contents of two or more existing disk files and may be used
to transfer a file between the disk areas. The SPLIT
command creates a new disk file coroposed of the specified
portions of an existing disk file or files.

LISTF and PRINTF cause file information to be typed at the
console. The LISTF command types the identifie~s and sizes
of any or all files stored on the user and system disk
areas. PRINTF types out all or the specified part of a disk
file.

To print the contents of a disk file on the offline printer,
the OFFLINE PRINT, OFFLINE PRINTCC, or OFFLINE PRINTUPC
commands can be issued. OFFLINE PRINT prints the file with
single spacing and CMS headings, the PRINTCC version uses

50 File Creation.Maintenance,Manipulation

the first character of each record as a printer carriage
control character, and the PRINTUPC version prints the file
in uppercase (for MEMO or SCRIPT files when the PN train is
on the printer).

File Creation, Maintenance, Manipulation 51

ALTER

Purpose:

The ALTER command changes the name, type, or mode of the
specified filets).

Format:

ALTER ofn

*
oft

*
ofro

*
nfn

* =

nft

* =

nfm

* =

ofn oft of~ are the original filename, filetype, and
filemode, respectively.

nfn nft nfm are the new filename., filetype, and filemode,
respectively.

*

=
Usage:

An asterisk for ofn means all files with that
name" for oft means all files with that type,
and for ofm means any read-write disk. An
asterisk for nfn, nft, or nfm means no change.

means the same as before. no change.

The name, type, or mode number of files on a user's
read-write disk may be changed with the ALTER command. All
fields of the command must be specified.

Notes:

a. ALTER does not move files between disks. The mode
letter, may not be changed (see the COMBINE command).

h. ALTER may not be used for files on a read-only disk
such as the sytem (SY) disk.

Responses:

ALTER gives no response except the Ready message, or an
error message and code.

Examples:

a. ALTER BEN SYSIN P5 PROG3 SYSIN P2
The file formerly called BEN is now referenced by the
filename PROG3 and is read-only instead of read-write.

52 ALTER

h. ALTER JBS LISTING * JLEVEL3 = =
The LISTING file from an assembly of JBS is now referenced
by the filename JLEVEL3.

c. ALTER * LISTING P5 = = P2
All files with LISTING type and mode of P5 are changed to
mode P2.

Error Messages:

E(OOOOl) OLD SPECIFIED FILE CANNOT BE FOUND
The file to be redesignated is not in the file directory.
Check whether it was specified correctly.

E (00002) NEW SP:ECIFIED FILE ALREADY EXISTS
A file with the ne~ name, type, and rr.ode already exists.
Change one of the fields of the new designation. If
concatenation with ar existing file is wanted, use the
COMBINE command.

E(00003) C~D ~ODE IS ILLEGAL FOR A CHANGE
The original ~ode specified is invalid--it may be for a
read-only disk, or it may not end with a number frow one to
six.

E(00004) NO CH]l,NGES WERE MADE AT AI.L
The new designation specified is the same as the original
designation.

E(00005) CHANGE-CF-MODE IS ILLEGAL
An attempt was made to change the mode letter. ALTER does
not move files between disks (see the COMBINE command).

E(00006) NEW MODE IS ILLEGAL
The new mode specified is not a valid one or the mode nurober
is not between one and six.

E(00007) INCORRECT "ALTER- PARAMETER-LIST
Name, type, and mode were not specified for both files.

E(00008) SPECIFIED FILE IS IN "ACTIVE" FILE TABLE
A fil~ may net be changed while it is active.

ALTER 53

CEDIT

Purpose:

CEDIT creates and makes changes to card image files only.

Format:

I CEDIT I<filename> filetype I

filename is the name of the file to be created or modified

filetype is the type of file being created or modified

Usage:

CEDIT works only with card-image files (fixed-length
SO-character records). If CEDIT is issued for larger
records (for example, LISTING files). each record is
truncated to 80 chlracters. If CEDIT is issued for
variable-length records (for exa~ple. SCRIPT files), they
are made fixed-length.

CEDIT should only be issued for files too large for EDIT.
and then only for card-image files, as EDIT is faster.
CEDIT uses work files during editing, whereas EDIT is an
in-core editor.

The same requests used for EDIT are used for CEDIT, with the
exception of X, Y, and ZONE. The responses are also
baSically the same. (See the EDIT command for all requests,
responses, and error messages).

CEDIT searches all disks for the specified file. If the
file is found its roode is saved and CEDIT writes the
modified file back to the same disk. If the file is not
found~ the P disk is assumed.

54 CEDIT

CLOSIO

Purpose:

CLOSIO notifies the system that I/O operations to an offline
unit record device are complete, or that output to an
offline device is to be collected before it is actually
output to the physical device.

Format:

-----~--------~--------~~--------------,
I
I
I
I

CLOSIO
READER

PRINTER

PUNCH

OFF
ON
OFF
ON

OFF collects files output to the specified device, but does
not output the files to the physical device.

ON notifies the systero that I/O operations to the sgecified
device are complete and output should begin on the
physical device. ON is the default.

Usage:

CLOSIO is normally used as a supervisor-supplied function
within prograros written in assembly language. However, it
may be used as a command in cases where user-written
programs that include unit record I/O routines terminate
abnormally, or do not include a call to CLOSIO, or where
concatenatlon of spooled output is wanted.

CLOSIO either notifies the system of an end-of-file
condition for the devices specified or collects out~ut to
offline devices. Any combination of the three devices may be
specified with the command. Undefined devices are ignored.
When CP-61 detects the end-of-file condition, the disk
spooling area assigned to the user for the specified device
is closed. Printer and card-punch files are queued for
actual output. Card-reader input files are erased.

If it is desired to collect output of punch or printer files
into one spooled output file per device preceded by only one
header record, the CLOSIO command can be issued to the
PRINTER or PUNCH with OFF specified. All succeeding output
to the OFF device is collected until ON is specified with
CLOSIO for that device. at which time the collected files
are queued for the physical device.

CLOSIO 55

Notes:

a. CLOSIO is not used after CMS I/O commands.

b. All unit record devices are closed by CP-67 when the
user logs out.

c. CP-67 interprets any invalid CCW as a CLOSIO for the
device to which it is addressed.

d. If READER, PRINTER, or PUNCH is not specified. all
three devices are closed as if ON were specified.

e. If the 'OFF' option has been specified, the device must
be explicitely turned 'ON' to be reactivated.

Responses:

None.

Examples:

a. CLOSIO PRINTER READER
Spooling areas assigned to the user for the printer and card
reader are closed. The reader area is erased. The printer
file is queued for actual output.

b. CLOSIO PRINTF,R OFF
All further output to the print~r is collected and no
end-of-file condition is generated.

c. CLOSIO PRINTER ON
An end-of-file condition for the printer is generated: thus
the spooling areas assigned to the user for the printer are
closed. The printer file is queued for actual output.

Error Messages:

None.

56 CLOSIO

COMBINE

Purpose:

The COMBINE
single file,
designations.

Format:

command joins
moves files

two or more disk files into a
between disks, and changes file

I COMBINE I nfn nft nfm ofn1 oftl ofm1 ••• ofnN oftN ofmN
-~~-~-~----~~----------~-----------~---~-~~~--~~----~-------

nfn fnt nfm are the filename, filetype, and filemode of the
file to be created.

ofn oft ofm are the filename, filetype, and filemode of
existing file(s} to be included in the new file.

Osage:

The file to be created and each of the included files must
be specified by filename, filetype, and filemode. Input
files must have the same record format (fixed or
variable-length). Input files of fixed-length records must
have the same record length. Any number of input files can
be included in the new file, in the order named" but the
command must not exceed a single input line.

The output file is created on the specified disk, according
to the mode letter of the new file. Input files may be on
any disk.

If the new filename, filetype, and filemode are those of an
existing file, the old file will be erased when the new file
is created. The old file may be among the input files.

Notes:

a. Files may not be copied to the system (SY) disk.

h. As the input files are processed, a temporary work file
is created with the identifiers (TEMP) (FILE) mm, where rom
is the specified mode of the output file. When processing
is completed, this file is given the designation specified
for the output file. If an error occurs such that input
files are destroyed, records can be retrieved from this work
file.

Responses:

None.

COMBINE 51

Examples:

a. COMBINE FILE DAOl P3 TSTl FILE P5 TST2 FILE P5
The file FILE DAOl P3 is created on the P-disk. It contains
all the records of TST1, followed by the records of TST2.
TSTl and TST2 are not changed.

b. COMBINE JOBS EXEC T5 JOBS EXEC PS
A copy of the P-disk fi1e JOBS is made on the T-disk.

c. COMBINE JOBA FORTRAN P5 JOBA FORTRAN P5 SUBRl FORTRAN P5
The file SUBR1 is appended to a copy of JOBA, and the new
file replaces the ori9inal JOBA.

Error Messages:

E(OOOOl) FILE -filename filetype filemode w NOT FOUND.
The file specified in the message was not found. Files
remain as they were before the command.

E(00002) DISR ERROR WHILE READING.
An I/O error occurred. or there is insufficient core space
for buffers.

E(00003) DISR ERROR WHILE WRITING.
An I/O error occurred, or the user's allotted disk space is
filled.

E(OOOOS) ERROR IN NAME, TYPE. OR MODE OF OUTPUT FILE.
Correct the designation of the output file.

E(00010) INCORRECT PARAMETER LIST
The command format was incorrect. Files were not changed.

EC00011) MODE SPECIFIED FOR OUTPUT FILE IS ILLEGAL.
Correct the mode specification of the output file. If the
first input file had mode number 3 or 4, it has been erased.

E(00012) ATTEMPT TO WRITE OUTPUT FILE ON READ-ONLY DISK.
Files may not be written on READ-ONLY disks. Change the mode
of the output file.

E(00013) ATTEMPT TO COMBINE FIXED AND VARIABLE LENGTH
FILES.

The input files must all have the same record format.

58 COMBINE

EDIT

Purpose:

EDIT has three purposes: (1) to create card image and SCRIPT
files, (2) to make changes to existing files, and (3) to
allow context-directed!, online perusal of files.

Format:

EDIT 1 <filename> filetype

filename specifies the filename of the file to be edited or
created

filetype specifies the filetype of the file to be edited or
created

Usage:

If a file with the specified filename and filetype does not
exist, EDIT assumes that the file is being created, the
Input environment is entered, and information typed by the
user thereafter becomes input to that file. If such a file
does exist, the Edit environment is entered, enabling the
user to issue EDIT requests and to modify the specified
file.

EDIT searches all disks for the file. If the file is found,
its mode is saved and EDIT writes the new file back to that
disk. If the file is not found, the newly created file is
put on the P disk.

EDIT 59

OPERATION OF THE CONTEXT EDITOR

The Editor is a program designed to provide facilities for
the creation and modification of card-image and SCRIPT files
from an online terminal. Editing is performed upon a
main-storage-resident copy of the file. This approach
provides for rapid movement both forward and backward
through the file. It does, however, limit files which may
be edited to those wbi,ch may be wholly contained within the
available main storage. It is possible to perform edit
operations upon larger files by using the CEDIT command,
(but the movement within the file may be slower, as CEDIT
works with disk files and not a core copy of the file) or by
issuing SPLIT for the file. to break it up into smaller
files that can be handled by EDIT.

LINE POINTER

Associated with each file is a pointer which refers to a
line in the file considered to be the current line. The
current line is defined as the line that is being created or
edited in the file.

Various Edit requests are provided for moving the current
line pointer. This pointer may be moved (1) to a specific
record (indicated by its record number), (2) to a record
specified by its relative displacement (in number of
records) forward or backward from the current pOSition of
the pointer, or (3) to a record containing a specified
string of ·.:haracters or having a specified label.. The
ability to search for strings allows the user to concern
himself only with the textual context of the desired
movement" relieving him of the concern of keeping track of
record numbers and counts of inserted and deleted records.

Many of the record modification requests also reposition the
current line pointer (for example, LOCATE, FIND, DELETE., or
CHANGE). When a FIND, LOCATE, or CHANGE request is issued,
if the pointer is positioned at the end of file, the pointer
is automatically moved to the TOP of the file before
executing the command.

~hen the environment is changed from Input to Edit, the
pointer is positioned to the last line entered from the
terminal. When it changes from Edit to Input,the pOinter is
positioned such that the lines being entered follow the last
line edited.

When the EDIT command begins in the Edit environment, the
pointer is positioned before the first line in the file.
During the Edit a null line is automatically placed in front
of the first line of the file to permit the insertion of
lines at the beginning of the file. When EDIT begins in the
Edi t environment or when a TOP request" or possibly the UP
request, is issued, the pointer is positioned at this null
line. The null 1ine never gets I written onto disk, nor is it

60 EDIT

ever printed by the terminal. When the pointer is positioned
at the null line, a PRINT request types a blank line.

If a null line is entered in the Input environroent, the Edit
environment is entered. If a null line is entered in the
Edit environwent, the confirming message "EDIT:" is typed
out. To enter the Input environwent from the Edit
environment, issue the INPUT (I) request.

SAVING INTERMFDIATE RESULTS

If extensive input and/or changes are beinq maje to a file,
it is a good time-sharing practice to rrake a few additions
and/or changes at a tirre, issue the S~VE request, and then
continue making additions or changes to the file. The
process should be repeated until all additions and/or
changes are wade. The final copy of a file being edited, or
the first copy of a newly-created file, will not be
permanently written onto disk until the FILE or SAVE request
is issued. This procedu~e will pnsure that a miniroum of work
would be redone in the case of a system failure or a gross
user editing error.

A file rr-ust consist of at least one line to be written
permanently on disk. A file consisting of only a null line
may not be saved.

INPUT ENVIRONMENT

The Input environment is indicated by the message "INPUT:",
a carriage return, an~ the unlocking of the keyboard. The
user may then type successive lines of input to the file as
fast as he wishes. One card image is created from each
input line. To insert a blank line in a file, type at least
one space and hit carriage return. A null line (that is, a
carriage return with no prior blanks or characters> entered
from Input ~ode does not add a blank line to the file.

Entering the Edit Environwent The Edit environment is
enterec froIT the Input environroent by typing a null line
(that is, a carriage return with no prior input on the
line).

EDIT ENVIRONMENT

The Edit envircnroent is in1icated by the message "EDIT:", a
carriage return, ann the unlocking of the keyboard. The
user roay then type requests to the EDIT command. All
changes to the file becowe effective immediately in core,
thus allowing recursive mo1ifications to be made to a file.
Changes are written out on disk with the FILE and SAVE
commands; QUIT keeps the original file as it existed before
any changes were wade.

Response Modes. There
E~it environmpnt may

are two response
operate: "verify·

EDIT

modes in which the
mode and "brief"

61

mode. Verify is the normal mode and causes an automatic
typeout of each line that has been changed or found as the
result of a request. The brief mode does not respond by
retyping the specified lines, and thus the user must issue a
PRINT request to get the typeout if it is wanted.

The messages "EDIT".
always printed even
message mode.

" INPUT", " EO F: " •
if the user has

and "TRUNCATED", are
selected the brief

End of File. If the end of file is reached by an Edit
request, an "FOF:" rressage is typed, and the pointer is
positioned after the last line of the file.

Entering the Input Environment. The Input environment may be
entered by typing thp INPUT request, and a carriage return.

EDIT REQUES'IS

Requests are issued to the EDIT command only when the user
is in the Edit environlTlent. These requests allow theluser
to manipulate and edit files. If requests are issued during
the Input environwent, they becolTle lines of input to the
file.

Request For~ats. Each request is separated from its operand
by one or more spaces unless otherwise specified. These
spaces can be inserted by using the space bar, the tab key,
or the logical tab character, which is discusse~ in a later
section. If the tab key or the logical tab character is
used and the request has "line" as the operand, the "line"
is placed in the card iroage as if the tab key or logical tab
character were the first character in "line".

The tab settings discussed are internal or logical tab
settings, not the external or physical tab settings on the
terminal. Detailed information concerning record for~ats,
serialization, and special character conventions follows.

String Arguments. Several of the Edit requests require
arguments called string arguments. These arguwents either
are matched against strings in the text, or replace a string
in the text. A string argument beqins with a jelimiter and
continues as a sequence of any legal characters until the
initial character (that is. the delimiter) is again
encountered. Neither delimiter character is involved in the
actual ITatching or replaceroent operation. Although, by
convention. the slash (/) is used in the following request
descriptions to denote the string delimiter, any legal
character may be used as the d.elimiter. The delimiter
character is redefined in each new request by its appearance
at the head of a string. If two strings exist in one
request, the same deli~iter character roust be used in each
string. Only one delirroiter may be used to separate two
adjacent string arguments in a request (for exarople, as in
the CHANGE request).

62 EDIT

FILE (RECORD) FORMATS

In general, the editor is used for the preparation of
fixed-length (logical) records of 80-character card images
with uppercase characters. The exceptions are defined
below.

All input to the file being edited is converted from
lowercase to uppercase unless a filetype of MEMO or SCRIPT
has been specified. If a filetype of SCRIPT has been
specified, the file consists of variable-length (logical)
records. If a filetype of ~EMO is specified, the file
consists of 80-character card images.

MEMO Files

A filetype of ME~O is use1 to input 80-character card images
containing both uppercase and lowercase letters.

SCRIPT Files

The EDIT corrmand allows processing of SCRIPT files in a form
compatible with the SCRIPT command. If the filetype is
SCRIPT, all input lines introduced in the Input environment
and strings introduced in the Edit environment through use
of CHANGE, OVERLAY, RETYPE, and INSERT are interpreted
without converting lowercase characters to uppercase. The
character-delete and line-delete symbols have the usual
effect; all other characters are stored without
modification, including the tab key.

For SCRIPT files, the file format is set to V
(variable-length records) so that the SCRIPT command can be
used to edit or print files created by the EDIT command.

Input lines containing a backspace character are converted
into canonical forw, such that only one backspace follows
any character and only one backspace precedes the character
that overprints the character preceding the backspace.

Record Lengths

The truncation colu~ns used for EDIT requests are as
follows:

INPUT and REPLACE: colurr,n 71 for SYSIN, ASP360, UPDATE, COpy
column 72 for FORTRAN, COBOL, and PLI

files
column 132 for SCRIPT, LISTING,

PRINTER files
colurrn 80 for other files

FIND, OVERLAY, and BLANK: column 80

LOCATE and CHANGE: end ZONE column

EDIT 63

PRINT: coluren 12, if serialization is defaulted on, or if
VERIFY column is set after serialization is turned
on: otherwise all 80 columns are printed.

VERIFY: column 72, unless set otherwise.

(See the ZONE cororoand.)

Tab Settings

Internal or logical tab settings indicate a column position
that defines the beginning of a field within a record. The
logical tab settings are automatically assumed according to
the filetype specified. These internal tab settings have no
relation to the external tab settings on the terminal. The
assumed internal tab settings are given below, where the
first of these numbers indicates the column of the record in
which input is to begin.

Filetype Specified
in EDIT Command

AED
ASP360
AS1130
COBOL
COpy
DATA
EXEC
FLOW
FORTRAN
LISTING
MEMO
PLI
PRINTER
REPS
SNOBOL
SPLl
SYSIN
UPDATE
default

Assumed Tab settings

1,10,15.20,25,30.35,QO,QS
1.10,16,31,36,Ql,46,51,56,72
1.21,27,32,35.45,50,55,60
1 0 1,10,15,20,25,30
same as ASP360
default
1,5,8,17,27,31
same as ASP360
1~7,10,15,20,25,30

d·.!fault
default
20 10.15,20,25,30,35,40,45,50,55,60
d,.!fault
7,,, 17 If 31,36
1 0 10.20,25,30 n 35"40 o 45,50,55,60
1"7,17,30,40,50,60
Sij.me as ASP360
saroe as ASP360
1.5,10,15,20,25,30,35,40,45,50

If the specifieo filetype is not one of those listed, the
default setting of every five spaces is assumed. The
assumed tab settings can be redefined by the TAP-SET request
from the Edit environwent.

UPDATE files have the same tab settings as SYSIN files but
are not sequenced.

If a filetype of REPS is EDITed. tab settings are assumed
and a 12-2-9 character is inserted into column 1 if it
appears blank.

64 EDIT

~. COBOL as a filetypeis included to allow COBOL source
decks to be entered under CMS. Note that the COBOL compiler
is not included under CMS.

Serialization of Records

If serialization is assumed for the filetype being edited,
or if it is specified by the SERIAL request, an identifier
is placed in columns 73-80 of each record. The identifier
consists of a three-character identification followed by a
five-digit sequence number. The identification is taken
from the first three characters of the filename. or from the
first parameter of the SERIAL request. The sequence number
begins at 00010 and is incremented by 10. The line
identifier in columns 73-80 can be changed by issuing the
SERIAL request when in the Edit environment.

Serialization is suppressed unless requested by the SERIAL
request. for all filetypes except FORTRAN, COBOL, PLI,
SYSIN, UPDATE, SPL1. COPY, SNOBOL, AED, FLOW, AS1130, and
REPS. If serialization is selected for other filetypes, and
neither ZONE 1 71 nor SERIAL id is issued during subsequent
Edits of the file, serialization characters may be
inadvertently shifted into column 72" or columns 73-80 may
be overwritten.

The placing of the identifier in columns 13-80 can be
eliminated by specifying no serialization in the SERIAL
request; this causes the truncation of input lines at column
80 and no identifier to be assigned to each record. A file
whose filetype is MEMO, SCRIPT, PRINTER, LISTING, or EXEC
should Dot be serialized.

SPECIAL CHARACTERS

Logical Tab Character

There is a character" called the logical tab character. used
in conjunction with the logical tab settings. This character
causes blanks to be inserted into the record from the column
position at which this character is input, until the first
column position of the next field defined by the logical tab
settings,. The next character from the input line after the
logical tab character is inserted as the first character of
the next field. This blank insertion is done for all
filetypes except SCRIPT: for blank insertions in SCRIPT
files, refer to the SCRIPT command.

The standard logical tab character is the pound sign (#).
The logical tab character can be redefined by the TABDEF
request in the Edit environment, or by the CHARDEF command
in the CMS environment to allow the pound sign to be used
as a normal input character. The physical tab key on the
terminal can also be used for blank insertions, as it is
interpreted in the same manner as the logical tab character.
The only difference between the tab key and the logical tab

EDIT 65

character is that the tab key moves the typing element to
the next physical tab stop and does not print, while the
logical tab character prints when the character is depressed
and the typing element does not move to the next physical
tab stop.

Note that the logical line-end character is also defined as
the I and it takes precedence over the logical tab
character.

Logical Backspace

There is also a character~ called the logical backspace
which is used to backspace one column position in the
record. For n logical backspace characters, n column
positions are backspaced in the record, and the n backspaced
positions are overlaid with the n characters which follow
the n logical backspace characters. If no character is
given after a logical backspace character, the previously
entered character is not overlaid. The backspacing is
performed for the column positions o£ a record, and not for
the characters of an input line.

The standard logical backspace character is the ~ character.
It may be redefined by the BACKSPACE request in the Edit
environment or the CBARDEF command in the CMS environment to
allow the I sign to be used as a normal input character.
The logical backspace character has the same effect as the
physical backspace key on the terminal for all filetypes
except SCRIPT. With SCRIPT files l• the physical backspace key
moves the typing element back one position, and generates a
valid input character that takes up one column in the record
for each time the key is depressed; the backspace key does
not print when entered on the terminal, nor does it print on
the offline printer" but it backspaces the typing element
one position per character when the record is printed out at
the terminal. Thus" the backspace key allows underscoring
and overprinting at the terminal for SCRIPT files. The
logical backspace character prints only when entered and
does not take up a column in the record; it logically
backspaces one column in the record for allfiletypes,.

The logical tab character and the logical backspace
character can be used in the following requests in the Edit
environment to insert blanks, and to backspace in the record
respectively: BLANI<, FIND 1, INSERT" OVERLAY, and RETYPE.
The logical tab character and the logical backspace
character can be used as normal input characters in the
string operands of the CHANGE, LOCATE;. and DELETE requests.

Responses:

NEW FILE.
The specified file does not exist, thus the Input
environment is entered. All subsequent input lines will be
accepted as input to the file.

66 EDIT

INPUT:
The Input environment
may be either those
from the filetype.
accepted as input to

is entered. The logical tab settings
defined by the user or those assumed
All subsequent input lines will be

the file.

INVALID REQUEST: XXX ••• XXX
The invalid request xxx ••• xxx was issued to EDIT.

DEFAULT TABS SET
The filetype specified is not recognized by the EDIT
command; thus I' the default settings are taken for the
logical tab settings.

EDIT:
The Edit environment is entered. The logical tab settings
may be either those defined by the user or those assumed
from the filetype. An edit request may now be issued.

NO PRIMARY NAME SPECIFIED
The EDIT command was issued specifying only the fi1etype.
When the file request is issued, a name must be specified.

TRUNCATED
The input line was too long. If the filetype was FORTRAN,
PLI. SPLi, AED, FLOW t• EXEC. ASM1130. or REPS, then the input
line was truncated after 72 columns. If the filetype was
ASP360;. SYSIN, COpy .• or UPDATE, then it was truncated after
column 71. If the filetype was SCRIPT or LISTING, then it
was truncated after 132 columns. Otherwise, it was
truncated after column 80. Continue typing more input.

EOF:
The end of the file has been reached during an EDIT request.
The request has been terminated and the pointer is
positioned after the last line of the file. Another EDIT
request may be issued.

EDIT WORK FILE "(INPUT1) FILE Pl" EXISTS:
IF GOOD, ALTER IT TO APPROPRIATE FILENAME & FILETYPE:
OTHERWISE. ERASE IT.
The EDIT command was issued but the EDrT environment was not
entered since the EDIT workfile" (INPUT1) FILE, exists.. The
workfi1e contains whatever file the user had been editing
during a previous EDIT command that had not terminated (that
is t, if CP has crashed while the user was editing a file and
the READY message had not appeared yet. this file may
contain the updated file). If the contents are good~ alter
its identifiers: otherwise, erase it and then reissue EDIT.

Error Message

E(00002) FILE EMPTY - EXIT TAREN
The user has attempted to save an empty file. The file is
not written on the disk and the EDIT command is terminated.

EDIT 67

SUMMARY OF EDIT REQUESTS

The requests are listed below by functional group

Environment Selection
INPUT (See also SAVE)
(null line) returns to EDIT mode'
QUIT (See also FILE)

Message Mode Selection
VERIFY
BRIEF

Pointer Movement
BOTTOM
FIND
LOCATE
NEXT
TOP
UP

* Requests marked with * in the rest of this list may move
the pointer under certain conditions.

,Modification of Recerds
BLANK
CHANGE (*)
DELETE (*)
INSERT (*>
OVERLAY
REPEAT (*>
RETYPE (*)

File Handling
FILE
SAVE

Information Requests
PRINT (*>

Special Characters and Format conventions
BACKSPACE
SERIAL
TABDEF
TABSET
ZONE

Miscellaneous
REPEAT (*)
X (*)
y (*)

68 EDIT

BACKSPACE Request

Format:

BACKSPACE
BACK

<character>

character is any valid character. The default character is ~
or the character specified by the CMS CHARDEF
command .•

Usage:

The BACKSPACE request defines the character to be used as
the logical backspace character. If the request is not
issued, the default character is assumed. The logical
backspace character causes one column to be backspaced in
the card image for each logical character in the input line.

The backspace character must be redefined to allow the ~
character to be used as a normal input character.

If BACKSPACE is issued without specifying a character, the
logical backspace character is reset to the character
specified by the eMS command CHARDEF, which defaults to the
, character.

The backspace character is very useful for defining
continuation cards in FORTRAN files. If the first logical
tab setting is set to column 1, the tab key or logical tab
character followed by a logical backspace character may be
used to enter a character in column 6 instead of counting
forward the appropriate number of spaces. An example of the
use of the logical backspace character follows:

input line:
card image in file:

column
1 6
i #~5 'page')

5'PAGE')

This places w5-PAGE-)· beginning in column 6 of the card
image,• assuming the first logical tab setting is set to
column 1.

Note:

If the logical backspace character is redefined in the Edit
environment, the BACKSPACE request must be issued each time
a file is edited if it is necessary to use the same
redefined logical backspace character. If the logical
backspace character is redefined by the CMS CHARDEF command,
that character is remembered from one Edit command to the
next.

EDIT - BACKSPACE 69

Responses:

The keyboard is unlocked.

Example:

BACR $
The character $ is defined as the logical backspace
character. The ~ character can now be used as a normal input
character.

70 EDIT - BACRSPACE

BLANR Request

Format:

I
I

BLANK
B

line I
1

Rlinew is any valid input line.

Usage:

The BLANK request places blanks in the current line wherever
nonblank characters occur in wlinew•

Either the tab key or the logical tab character can be used
to generate blanks in the card image.

The wlinew is separated from the request by only one blank.
All other blanks are considered part of wlinew•

Responses:

Verify Mode: The changed line is printed out.
The keyboard is unlocked.

Any mode: EOF:
The end of file was reached by the request. For BLANK to
reach the end of file. the repeat request had to be issued
before BLANR.

Example:

BLANK AAAAAA A

line before request:
request:
line after request:

column
1 6
ABCDFJMNOP
blank aaaaaa a

M OP

Blanks are placed in columns 1-6, and 8 1, of the current line
in the file.

EDIT - BLANK 71

BOTTOM Request

Format:

Usage:

BOTTOM
EO

BOTTOM positions the pointer at the last line of the file.

Example:

BO
The pointer is positioned at the bottom of the file.

72 EDIT - BOTTOM

BRIEF Request

Format:

.-..-~----- - ------

Usage:

BRIEF
BR

The BRIEF request deselects the verify message mode (see the
VERIFY request), and selects the brief message mode in the
Edit environment. In the brief mode, lines that are changed
in the file are not typed out automatically_ The requests
that are affected by BRIEF are BLANK, CHANGE, FIND, LOCATE,
NEXT" OVERLAY, and UP _ If INSERT or REPLACE was issued and
the line was truncated, the line is not verified in the
brief mode.

Example:

BR
This request selects the brief mode.

EDIT - BRIEF 13

CHANGE Request

Format:

CHANGE
C

n I
/stringl/string2/ < * < G » ,

1 * ,
---~~----------~-~~-~-~---~--------~--------

/ is any unique delimiting character that does not
appear in string1 or string2.

string1 is the group of characters to be replaced

string2 is the group of characters to replace string1

n

G

*

Usage:

specifies
string1.

the number of lines to be
The default is one line.

searched for

signifies that the change is to be applied to every
occurrence of string1 in the lines.

is used to mean -to EOF- or -GLOBAL- (G), or both,
in a change request as follows:
C /a/b/ * *

The CHANGE request replaces the occurrence of stringl in n
lines by string2. If G or * is specified, every occurrence
of string1 1n n or * lines is changed; if G is not
specified, only the first occurrence of string1 is changed.
If neither n nor * is specified, only the current line is
searched for string1.

If the occurrence of string1 is not found, the line(s) is
(are) not altered. The pointer remains positioned at the
last line searched for the occurrence of string1.

String1 and string2 can be of different lengths. Each of
the n or * lines is expanded or compressed accordingly.

If an end-of-file condition immediately preceded the CHANGE,
an automatic TOP request is performed before CHANGE begins.

Notes:

a. The n or * is required if G is to be specified~

b. If n is greater than the number of lines to the end of
the filer, every occurrence of string1 from the current line
to the end is changed.

c. That part
occurrence of

74

of each record
string1 is the

which
part

EDIT - CHANGE

is scanned for
defined by the

the
ZONE

request, or it defaults to those columns defined earlier
under -File Record Formats-.

Responses:

Verify Mode: The changed lineCs) is (are) printed out and
the keyboard is unlocked.

Brief Mode: The keyboard is unlocked.

Any mode: EOF:
The end of file was reached by the request. To position the
pointer at the top of the file~ a TOP request must be
issued. When a CHANGE request is issued after the occurrenCe
of an end-of-file condition, a TOP request is automatically
issued before the request begins.

Examples:

a. C /ALPHA/DELTA/

line before request:
request:
line after request:

Column
1 7

ALPHA=ALPHA - BETA
c /alpha/delta/

DELTA=ALPHA - BETA

The first occurrence of ALPHA in the one line is changed to
DELTA.

The above" lowercase. example works for files where
automatic .~apitalization is standard. For other files, such
as SCRIPT or MEMO, where capitalization is not automatic,
characters must be typed as they were input.

b. C *ALPHA*DELTA* 1 G

line before request:
request:
line after request:

Column
1 1

ALPHA=ALPHA - BETA
c *alpha*delta* 1 9

DELTA=DELTA - BETA

Every occurrence of ALPHA in the one line is changed to
DELTA.

c. C .card-image.card-image. * *
Every occurrence of card-image from the current line to the
end of file is changed to itself.

In verify mode, every line containing the string
-card-image- is printed, although this example does not
effectively change the contents of those lines.

EDIT - CHANGE 75

DELETE Request

Format:

1
, DELETE
1 D

I n I
I < 1 > I
t /string/ 1

n specifies the number of lines to be deleted. The
default is 1,.

/string/ specifies the string which, when
terminates the delete operation.

matched,

Usage:

If /string/ is specified. all lines, starting with the
current line and up to (but not including) the first line in
which /stringl is matched, are deleted.

If n is specified, the DELETE request removes n lines from
the file, starting with the line at which the pointer is
currently positioned. Upon completion of this request, the
pointer is positioned after the last deleted line. If n is
0, the current line is deleted.

If n or /string/ is not specified" only the current line is
deleted.

Responses:

EOF:
The end of file was reached by the request.
pointer at the top of the file, a TOP
issued.

Examples:

a. D 5

To position the
request must be

The current line,. plus the next four lines" are deleted.
The current line pointer is then positioned at the fourth
line from the original current line.

h. D -/*-
All lines,. starting with the current line and up to (but not
including) the first record containing a /. sequence" are
deleted.

76 EDIT - DELETE

FILE Request

Format:

FILE <filename>

filename specifies the name to be used as the filename.

Usage:

The FILE request terminates the editing of a file. A
permanent copy of the file is written onto the disk as it
existed after the last pass through the file. If the file
is being permanently stored for the first time, it is
written onto the disk. If the file already exists on the
disk., it is written on the same disk in the same mode as it
previously existed. This latest copy replaces any existing
copy of the file on the disk, and the file directory is
updated.

If "filename" is specified, it is used as the filename of
the file. If -filename" is not specified, the filename used
at the time of the invocation of the EDIT command is used.

After the file has been written onto disk, control is
returned to CMS. A file must consist of at least one line to
be permanently written on disk. A file consisting of a null
line only may not be filed.

Note:

If it is desired to move a partially-edited file to disk as
a precaution against system or user failure, use the SAVE
request. It does not terminate the EDIT session.

Responses:

The EDIT command is terminated and an entry for the file is
made in the appropriate file directory.

FILE EMPTY - EXIT TAREN
The FILE request was issued for an empty file. No file is
saved on the disk and its entry is removed from the file
directory. The error EC00002) is generated, and the EDIT
command terminated.

NO PRIMARY NAME SPECIFIED - RETRY
When EDIT was issued, only the filetype was specified.
Therefore, a filename must be given with the file request.

EDIT - FILE 77

Examples:

a. FILE
request:
response:

file
R; xx.xx/xx.xx hh.mm.ss

This request writes the latest copy of the file onto disk.

b. FILE RECALC

request:
response:

file recalc
R: xx.xx/xx.xx hh.mm.ss

This request writes the latest copy of the file onto disk,
and RECALC is its filename.

18 EDIT - FILE

FIND Request

Format:

FIND
F

line

~-----------~-----~--

line is any valid input line. It may contain blanks and
the logical tab character and/or tab--key .•

Usage:

The FIND request compares the nonblank characters in "line"
with each line in the file. The compare begins on the next
line from where the pointer is currently positioned and
continues down the file until a match occurs or until the
end-of-file is reached. If an end-of-file condition
immediately preceded the FIND request, an automatic TOP
request is performed before FIND begins. If "line" is found,
the pointer is positioned to the record in which "line" is
contained. If -line- is not found, the pointer is
positioned after the last line of the file. The compare is
column-dependent, as the only columns compared in each
record are the ones specified by nonblank characters in
"line". For example, if wlinew contains A C, the search
will be for an A in column 1 and a C in column 3.

"Line" is separated from the request by only one blank. All
other blanks are considered part of "line".

FIND can be used to search for a specific line identifier in
columns 73-80. One technique is to issue FIND, followed by
the appropriate number of tabs to position the specified
identifier to column 73.

Responses:

Verify Mode:

Brief Mode:

The record is typed and the keyboard
is unlocked.
The keyboard is unlocked.

Any MODE: EOF
The end-of-file was reached by the request. To position the
pointer at the top of the file;, a TOP request must be
issued. When a FIND. LOCATE, or CHANGE request is issued
after the occurrence of an end-of-file condition, a TOP
request is automatically issued before the request b~gins.

EDIT - FIND 19

Examples:

a. FIND 90

request:
line found:

Column
1 1
f 90
90 FORMAT (S16)

The FIND request searched for 90 in columns 1 and 2. The
first line found is typed out in the verify mode.

h. FIND $$SUMX
If $ selected as
logical tab char.

request:
line found:

Column
1 10 16
f $$sumx
LOOP A SUMX.X

Assuming that the logical tab settings are set in 1, 10, 16,
the request searches for SUMX in columns 16-19. The first
line found is typed out in the verify reode.

80 EDIT - FIND

INPUT Request

Format:

Usage:

INPUT
I

This request causes the Input environment to be entered from
the Edit environment. All subsequent input lines--including
Edit request--are treated as input to the file. and are
placed after the line at which the pointer is currently
positioned. If the INPUT request is given at the top of the
file~ the lines appear before the first line of the file.

If no lines were entered while in the Input environment and
return is made to the Edit environment, the pointer is
positioned to the line pointed to before the Input
environment was entered. The line after the pointer is the
same line before and after the Input environment was
entered.

To insert a blank linew type
carriage return. If a null line
Edit environment occurs.

Responses:

INPUT:

at least one space and hit
is entered, a return to the

The Input environment is entered.

EDIT - INPUT 81

INSERT Request

Format:

INSERT
I

line

line is the exact input line to be inserted into the
file. It can contain blanks and tabs (logical tab
character and/or tab key).

Usage:

inserts the "line" into the file without
Input environment. The line is inserted
line at which the pointer is currently
the pointer is advanced to point to this
The line is separated from the request by
all other blanks are considered part of

This request
entering the
following the
positioned, and
inserted line.
only one blank:
"line".

The conventions of the Input environroent hold true during
the INSERT request.

A blank line can be inserted in the file by using one or
roore spaces for "line". If "line" is omitted from the INSERT
request, it is interpreted as the INPUT request and the
Input environment is entered.

Responses:

The keyboard is unlocked. Examples:

a. IbABLEbbbbbSbbbbbSUN,X
Column

1 10 12
request:
line after request:

i able
ABLE

s
S

16 18
sum,x

SUM,X

The input line AELEbbbbbSbbbbbSUM.X lis inserted in the file.
The letter b is used here to indicate a single space.

b. I $DO 10 1=1,25
Column
1 7

request: i $do 10 i=1,25
(assuming $ is the logical tab)

line after request: DO 10 1=1,25

Assuming that the logical tab settings are in 1, 7, 10, and
15, this request inserts the FORTRAN statement DO 10 1=1,25
in columns 7-18.

82 EDIT - INSERT

c. INSERT
request:
response:

insert
INPUT:

The Input environment is entered,
specified with the INSERT request.

EDIT - INSERT

as wline w was not

83

LOCATE Request

Format:

/

string

Usage:

LOCATE
L

/string/ I
I

is any unique delimiting character that is not
contained in the string

is any group of characters to be searched for in
the file

LOCATE scans the characters of each record (as defined by
the ZONE request) for the string specified between the two
delimiters. The scan begins on the next line from which the
pointer is currently positioned and continues until the
string is found or until the end-of-file is reached. If an
end of file condition immediately preceded the LOCATE, an
automatic TOP request is performed before LOCATE begins. If
string is located, the pointer is positioned at the line
that contains it. If string is not located, the pointer is
positioned after the last line of the file.

The request is not column-dependent, because all characters
are scanned, as specified by the ZONE request. The logical
tab character and the logical backspace character can be
used as normal input characters in string.

LOCATE can be used to scan for a line identifier in columns
73-80.

Responses:

Verify Mode:

Brief Mode:

The located line is typed and the
keyboard is unlocked.
The keyboard is unlocked.

~ny Mode: EOF
The end of file was reached by the request. To position the
pointer at the top of the file, a TOP request must be
issued. When a FIND or LOCATE request is issued after the
occurrence of an end-of-file condition. a TOP request is
automatically issued before the request begins.

84 EDIT - LOCATE

Examples:

a. L /FORMAT/

request:
line located:

Column
1 1
1 /format/
55 FORMAT (-DAILY AUDIT')

LOCATE searches all characters of each line for FORMAT. In
the verify mode the first line found is typed out.

h. L 61

request:
line located:

Column
1 5 9
1 61
12316XXX61981654321

LOCATE searches for 61 in all columns of each line. In the
verify mode the first line found is typed out.

EDIT - LOCATE 85

NEXT Request

Format:

-------------~---~----
NEXT

N
< n >

1

n is an integer indicating the number of lines by which
the pointer should be advanced. The default is 1.

Usage:

This request advances the pointer in the file by n lines. If
n is 0 or unspecified, a value of 1 is assumed and the
pointer is advanced to the next line in the file. If the
end of file is reached before the pointer is advanced n
lines, the pointer is positioned after the last line.
Specifying a value of n that is greater than the number of
lines to the end of file is one method of reaching the
bottom of the file.

Responses:

Verify Mode: Line typed and keyboard unlocked.

Brief Mode: Keyboard unlocked.

Any Mode: EOF
The end of file was reached by the request.
pointer at the top of the file, a TOP
issued.

Examples:

a. N 5

To pOSition the
request must be

This request advances the pointer five lines.

b. N
This request advances the pointer one line.

86 EDIT - NEXT

OVERLAY Request

Format:

OVERLAY
o

line I
1

line is an input line that replaces parts of the current
line.

Usage:

This request takes the nonblank characters from "line" and
places them in the corresponding position of the current
line. Blank characters in "line" do not re~lace
corresponding positions in the current line. If there is
more than one space after the request, these spaces are
considered as part of "line". The logical tab character,
the tab key, and the logical backspace character can be used
in specifying "line".

Note. The line typed as a result of this command does not
print directly below the corresponding characters resulting
from commands NEXT, PRINT, etc., as the characters 0 or
OVERLAY precede the line entered. Thus, the characters
appear in the column which is n+l characters to the right of
the character being overlaid, where n is the number of
characters typed in the request's name. (See examples
below.)

Responses:

Verify Mode: The changed line is
keyboard is unlocked.

typed out and the

Brief Mode: The keyboard is unlocked.

Any Mode: EOF
The end of file was reached by the request. For OVERLAY to
reach the end of file, the REPEAT request had to be~issued
before the OVERLAY.

Examples:

a. ObbbbbbbbbING

line before request:
request:
line after request:

Column
1 9
PROGRAMMER
o ing
PROGRAMMING

Columns 9-11 in the current line are replaced by the
nonblank characters in "line". The letter b is used here to
indicate a single space.

EDIT - OVERLAY 87

b. Ob5b33b9

line before request:
request:
line after request:

Column
136
ABCDMNOP
o 5 33 9
5B33M90P

Columns 1,3,4, and 6 in the cu~rent line are replaced by the
nonblank characters in the "line". The letter b is used
here to indicate a single space.

c. Ob#~c Column
1 7 13

line before request: FlO. 5,110)
request: 0 #%C
line after request: CF10.5,II0)

Assuming that a logical tab setting is set to column 7, the
logical tab character (#) followed by the logical backspace
character (~) places the next character from the input line
into column 6. The C overlays the blank in column 6 of the
current line. The letter b is used here to indicate a
single space.

88 EDIT - OVERLAY

PRINT Request

Format:

PRINT
P

< n < LlNENO » I
1 L I

n is an integer specifying the number of lines to be
typed out. The default is 1.

L signifies that the line identifiers should be typed
out.

Usage:

PRINT types out n lines from the file. starting with the
current line. Upon completion of this request, the pointer
is positioned at the last line printed unless an end-of-file
condition occurred, in which case the pointer is positioned
after the last line printed. If n is 0 or unspecified, it
is assumed to be 1 and the current line is typed.

If L or LINENO is specified, the line identifier in columns
73-80 is typed out with each line. If L or LINENO is not
specified, only the nonblank characters in column 1-72 of
each line are typed.

The n is required if L or LINENO is to be specified.

Responses:

The line(s) is (are) printed out and the keyboard is
unlocked.

EOF:
The end of file was reached by the request.
pointer at the top of the file, a TOP
issued.

To position the
request must be

Example:

P 5
request:
lines printed:

p 5
WRITE (6,30)

30 FORMAT C' HERE I AM')
CALL SUBl
WRITE (6,10)

10 FORMAT C' BACK AGAIN')

This request types five lines. The line identifier is not
included. The pointer is positioned at the last line ~yped.

EDIT - PRINT 89

QUIT Request

Format:

Usage:

QUIT
Q

QUIT terminates the EDIT command and returns to the eMS
environment without causing a file to be written on the
disk, or making permanent updates to an existing file.

Respense:

The EDIT command is terminated and the file is not written
out or perroanently updated.

Example:

Q
request:
response:

q
R: xx.xx/xx.xx hh.mm.ss

EDIT is terminated and the file is not written on the disk.

90 EDIT - QUIT

REPEAT Request

Format:

REPEAT I < n > I
I ! I

n is an integer specifying the number of times to repeat
the following BLANR or OVERLAY request. The default is
1.

Usage:

This request executes the following BLANK or OVERLAY request
n times. If n is 0 or unspecified. it is assumed to be 1.
If n is greater than the number of lines between the current
line and the end of file. REPEAT is in effect until the end
of the file. Thus. the REPEAT request can provide global
BLANK and OVERLAY requests.

Response:

The keyboard is unlocked.

Example:

REPEAT 25
The following BLANK or OVERLAY request is executed 25 times.

EDIT - REPEAT 91

RETYPE Request

Format:

RETYPE
R

<line>

line is an input line that replaces the current line.

Usage:

This request replaces the current line with "line". The
logical tab character, the tab key, and the logical
backspace character can be used in ·line". "line" is
separated from the request by only one blank; any other
blanks are considered part of "line". If no line is
specified, the current line is deleted and the--INPUT
environment is entered.

The pointer is not advanced by this request unless the INPUT
environment is entered.

Responses:

The keyboard is unlocked.

INPUT:
No line was specified, The current line is deleted, and the
INPUT environment is entered with the keyboard unlocked.

Example:

Rb#IREG = J + R**2

line before request:
request:
line after request:

Colu~ns
1 7 lq

IRE555 = 1 - K
r #ireg = j + k**2

IREG = J + K**2

The "line" specified with the request replaces the current
line. Assuming that the logical tabs are set for a FORTRAN
filetype. the statement IREG = J + K**2 begins in column 7.

92 EDIT - RETYPE

SAVE Request

Format:

SAVE <filename> ,

filename is the name to be given to the file, as the
latest copy is permanently written on disk.

Usage:

The SAVE request writes the latest copy of the file onto the
appropriate disk and returns to the Input environment with
the pointer positioned at the same current line as before
the SAVE was issued. If the file already exists on the
disk/ it is written onto the same disk in the same mode as
it previously existed. This latest copy replaces any
existing copy of the file on the disk. The file directory
is updated.

If "filename- is specified, it is used as the filename of
the file. If wfilenamew is not specified. the filename used
at the time of the invocation of the EDIT command is used.
If "filename" is not specified at any time, a message is
typed out.

Responses:

INPUT:
The latest copy of
Input environment
positioned at the
issued.

the file has been saved on
has been entered. The

same current line as before

FILE EMPTY - EXIT ~AREN

disk and the
pointer is

the SAVE was

The SAVE request was issued for an empty file. The file is
not written on disk and the Input environment is entered,.

NO PRIMARY FILE NAME SPECIFIED - RETRY
When EDIT was issued, only a filetype was given. To save the
file, a filename must be specified with SAVE.

Example:

SAVE MY
request:
response:

save my
INPUT:

SAVE MY was issued to write the latest copy of the file on
disk and to give it the filename of MY. The Input
environment of EDIT is then entered. The current line
pointer is repositioned as in the INPUT request. If a null
line is entered, EDIT environment is entered and the pointer
is positioned as it was when the SAVE request was issued.

EDIT - SAVE 93

SERIAL Request

Format:

SERIAL
SER

id
(NO)

< n >
10

id specifies the three-character identification to be used
in columns 13-75.

(NO) specifies no serialization or identifier is to be
placed in columns 13-80.

n specifies the increment for the line number in columns

Usage:

16-80. This number also becomes the first lin~
number. The default value is 10.

This request allows the user to specify the three
identification characters and the increment of line numbers
to be used as the identifier in columns 13-80 of each card
image. If the SERIAL request is not issued, the standard
identifier is used. The standard identifier is formed from
the first three characters of the filename: the increment
and beginning sequence number is 00010.

If columns 13-80 are to be used for data or if no identifier
is desired, the SERIAL (NO) request should be issued. If a
file is being created, the SERIAL (NO) request should be
issued before any input lines are typed. When the EDIT
command for a new file is issued, the Input environment is
entered. Before any lines are typed in, the user should
immediately enter the Edit environment by typing a null
line, issue the SERIAL (NO) request, and then return to the
Input environment by issuing the INPUT request to enter
lines of input. Eighty character input lines can then be
entered.

If a file already exists with no identifiers, the SERIAL
(NO) request must be given each time the EDIT command is
issued to maintain the data that currently exists in columns
13-80 of the file. If a file already exists with no
identifiers and the SERIAL (NO) request is not issued, the
standard identifier is placed in columns 13-80.

If a file already exists and the SERIAL request is issued
with an id and/or increment, the new identifier replaces the
contents of columns 13-80: the replacement does not occur
until a FILE or SAVE request is issued. The entire file is
then resequenced with the new identifier.

If a file already exists with identifiers. or if input lines
have been entered which were serialized, the SERIAL (NO)

94 EDIT - SERIAL

request has no effect and the identifiers are not changed.
Once serialization has begun. it cannot be nullified.

Note:

For a filetype of ~EMO. SCRIPT, LISTING, or EXEC. the
default option for serialization is SERIAL (NO). That is,
if serialization is wanted" it must be explicitly stated.
(See ·Serialization of Records· under ftFile (Record)
Formats·.)

Response:

The keyboard is unlocked.

Examples:

a. SERIAL REP 20
The request causes REP to be placed in columns 13-15 of each
card image, the first input line to be numbered 00020, and
the line numbers to be incremented by 20.

h. SERIAL (NO)
If the file is being created, this request allows the user
to create SO-character card images from each input line, as
no identifier is placed in colUl'lns 73-80. If the 'Iile
already exists without identifiers. the data in columns
13-80 is maintained. If a file already exists with
identifiers, or if input lines have been entered which were
serialized. the SERIAL (NO) request has no effect until the
current pointer is positioned at the top of the file, after
which no new serialization takes place.

EDIT - SERIAL 95

TABDEF Request

Format:

------~-------~--------------
TABDEF

TABD
< character > I

I

character is any valid character to be used as the logical
tab character. The default character is the #
or the character specified in the eMS CHARDEF
command.

Usage:

TABDEF respecifies the character
logical tab character. If TABDEF
character is assumed. Note that
the logical line-end character.
character, the CMS LINEND command

to be recognized as the
is not issued, the default
the n is also defined as

To use the n as the tab
must be issued.

If the # character is to be used as a valid input character,
the logical tab character and the line-end character must be
redefined.

IF TABDEF is issued without specifying any character, the
logical tab character is reset to the # character or the
character specified by the CHARDEF command.

If the logical tab character is redefined in EDIT, the
TABDEF request must be issued each tiroe the EDIT command is
issued, if the user desires to use the same redefined
logical tab character. If the logical tab character is
redefined by the CMS CHARDEF command, that character is
remembered from EDIT to EDIT.

Response:

The keyboard is unlocked.

Examples:

a. TABD $
This frees the # as a valid input character and defines the
$ as the logical tab character.

b. An example of the use of the logical tab character in a
FORTRAN filetype is shown below

input line:
record in file:

Column
1 7
#x = a + b

X = A + B

If the logical tab setting is set in column 7, the
expression X=A+B begins in column 7 of the record.

96 EDIT - TABDEF

TABSET Request

Format:

n1

TABSET
TABS

<n1 ••• nN>

is the column in the record at which the line is
to begin.

n2 ••• nN are column positions for logical tab settings. If
omitted, the default tab settings are used.

Usage:

This request enables the user to establish his own internal
or logical tab settings for a record,. The tab settings
determine the number of spaces to be inserted in the line
when either the 10gical tab character or the tab key is
used.

The TAB SET request is followed by from one to eleven numbers
that do not exceed the value of 80. The first number
indicates the column in which the record begins" and the
following ten numbers specify the logical tab settings.

If more than eleven numbers are specified, only the first
eleven are used.. Input lines are truncated to 71 or 12
characters, when tabbing indicates a column position above
71. and when serialization is in effect. Otherwise input
lines are truncated to 80 characters, even if a number
greater than 80 is specified.

If the first number, specifying the column in which the
record begins, is not equal to 1, all input to the file will
start at the specified column in the record and all previous
columns are set to blanks. The EDIT requests BLANK, FIND,
and OVERLAY consider each record to begin in column 1,
regardless of the first specified tab value. The EDIT
requests INSERT and RETYPE interpret the beginning column
position and process the specified line in the same manner
as input to the Input environment.

The TABSET request overrides the assumed logical tab
settings, such as for FORTRAN, PLI, and SYSIN filetypes.

The user-defined tab settings apply on1y to the file during
the current EDIT command. If EDIT is issued again for the
same file,• the assumed logical tab settings are in effect
until TABSET is reissued.

If TAB SET is issued without specifying any values, the
logical tab settings are reset to the default settings for
the filetype of the file being edited,.

EDIT - TABSET 97

Logical tab settings. which are redefined by the user for a
file. must be redefined each time the EDIT command is
issued. if the same logical tab settings are desired.

Response:

The keyboard is unlocked.

Examples:

a. TABS 1 1 13 19 25 60
This request sets the logical tab settings in columns 7. 13.
19, 25. and 60. and input starts in column 1.

h. TABS 2 5 10
This request would be used to prevent entry of data into
column 1. and to set the tabs at columns 5 and 10.

98 EDIT - TABSET

TOP Request

Format:

Usage:

TOP
T

~his request repositions the pointer to the top of the file
(that is, to the null line in front of the user's first line
in the file). An aptomatic TOP is performed by the FIND,
LOCATE, and CHANGE requests if an end-of-file file condition
immediately preceded the FIND, LOCATE, or CHANGE request.

Response:

The keyboard is unlocked.

Example:

T
The pointer is positioned at the top of the file,.

EDIT - TOP 99

UP Request

Format:

UP < n >
U 1

n is an integer indicating the number of lines by which
the pointer should be moved back. The default is 1.

Usage:

The UP request repositions the pointer n lines before the
current line. If n is 0 or unspecified, a value of 1 is
assumed, and the pointer is moved up to the previous line in
the file. If n is greater than the number of lines between
the top of the file and the current line, the request
functions as a TOP request,.

Responses:

Verify mode:

Brief mode:

Example:

U 9

The line at which the pointer is repositioned
is printed, and the keyboard is unlocked.

The keyboard is unlocked.

This request repositions the pointer nine lines before the
current line.

100 EDIT - UP

VERIFY Request

Format:

VERIFY t nn
I < >

VER I 12

nn specifies the number of columns· to verify in each card
image. The default is all columns for MEMO and SCRIPT,
12 columns for all others.

Usage:

This request terminates the brief Bode (see the BRIEF
request) fI and selects the verify model' causing the automatic
typeout of lines changed or searched for by other EDIT
requests. If nn is specified, nn columns are verified_ If
nn is not specified,. 12 columns are verified; this is the
normal mode of operation in the Edit environment. If a MEMO
or SCRIPT file is being edited, all columns are
automatically verified.

The requests which are affected by VERIFY are BLANK, CHANGE,
FIND/. LOCATE, NEXT. OVERLAY f and UP.

Response:

The keyboard is unlocked.

Example:

VERIFY 50
The first 50 columns are verified in each card image.

EDIT - VERIFY 101

X and Y Request

Format:

I
I
I

request

n

Usage:

x
y

<request> I
n ,

! 1

is any edit request

is the number of times the saved request is to be
executed. Default is 1.

X and Y allow the user to save a request for later execution
and temporarily name it X or Y. (Thus two requests may be
in a saved status at one time.) This is done with the X
request form.

The X n form allows the user to direct that the request
currently named X be executed n times:. or until end of file.
If the form X with nQ parameter is used, the command
currently named X is executed ~.

Examp1es:

a. Y CHANGE /ABCDE FG//
The change request is saved as Y, allowing the user to
delete the string ABCDE FG each time he types the request,
Y.

b. Y 3
The saved request (as in the above. saved, CHANGE request)
executes 3 times.

102 EDIT - X and Y

ZONE Request

Format:

I
I

ZONE
Z

n1 n2
! truncol

n1 specifies the initial column of the zone of each record
which is to be scanned. The default value is column 1.

n2 specifies the terminal column of the zone of each
record which is to be scanned. If serialization is in
effect!, the default value is 71 for SYSIN,. ASP360,
COpy I' and UPDATE files and 72 for FORTRAN, PLI, SNOBOL,
AED, FLOW, MAD" AS1130, and REPS files. If
serialization is suppressed, the default value is 132
for all SCRIPT and LISTING files, and 80 for all
others, including MEMO, DATA, and EXEC.

Usaqe:

This request causes subsequent LOCATE and CHANGE requests to
apply only to the zone of the records specified by the
integer values for starting and ending columns.

The initial zone column, nl, must
final zone column, n2" and n2 must
the truncation column.

be strictly less than the
be less than or equal to

If serialization is requested by use of SERIAL and the
current zone overlaps columns 73-80, the ending zone column
is res'et to 72.

Notes.

a. If serialization is in effect for SYSIN, ASP360, COPY,
or UPDATE files, the default value of truncol (n2) is 71,
but the ZONE ending column can be set to column 72 to insert
a continuation character in a record.

b. In addition to its obvious uses in searching and
modifying fixed-format card files" the ZONE request has
utility in source program editing for adding comment fields,
adding continuation characters, and searching on the
serialization field, columns 73-80.

c. To change the limits for fixed-column requests, such as
FIND., BLANK!, and OVERLAY,. the TABSET request should be used.
For ,.!xample l• to overlay starting in column 52 of each card,
the request TABSET 1 52 should be used.

EDIT - ZONE 103

Response:

END ZONE RESET TO 12 FOR SERIALIZATION
If serialization is in effect, and the ZONE request
specifies a terminal column (n2) of 13 or greater, the
terminal column is set to 12.

Example:

ZONE 1 12
The initial ZONE column is set to 1 and the terminal ZONE
column is set to 12, independent of whether serialization is
in effect.

104 EDIT - ZONE

ERASE

Purpose:

The ERASE command deletes a file or a related group of files
from a user·s read-write disks.

Format:

---_._-/
ERASE filename filetype < filemode >

* * * p

filename filetype filemode specify the file that is to be
erased.

* specifies all filenames, all filetypes and/or all
filemodes.

Usage:

Filename and filetype must be specified in the ERASE
command, either by name or with an asterisk. If the
fileroode is omitted, the P-disk is assumed. If the filemode
is specified with an asterisk, all read-write disks are
searched.

Those parts of the file identifier not specified by
asterisks are used to search the file directories. Entries
for all files matching the specified identifiers are deleted
from the appropriate directory(s), and disk space occupied
by these files is made available for new files.

ERASE deletes read-only files.

Response:

ERASE gives no response except the Ready message or an error
code ..

Examples:

a. ERASE DLFAC MODULE P5
The file specified is deleted from the file directory, and
its space on the P-disk is freed.

b. ERASE * LISTING
All files with the type LISTING are deleted from the P-disk.

c. ERASE * * *
All user files on read-write disks are deleted, and the
directory is cleared.

ERASE 105

Error Messaqes:

E(00001) INVALID PARAMETER-LIST
The filename or type was omitted, or the filemode was
incorrect. Correct the command.

E(00002) FILE SPECIFIED DOES NOT EXIST
The file specified was not found in the user's file
directory.

E(00003)
An I/O error occurred. Processing may not
completed. It may be necessary to initialize
again. See FORMAT.

106 ERASE

have
the

been
disk

FILEDEF

Purpose:

The FILEDEF command allows the user to specify the
Input/Output devices as well as certain file characteristics
which will be used by a program at execution time: FILEDEF
is also used to modify,. delete l• and list current file
definitions. FILEDEF is not currently used by any of the
languages in CMS.

Format:

~---~----------~------------------~~-----~--~~~---~-~
1 I DDNAME device
IFILEDEF 1< DSRN CLEAR <def1 ••• defN»

DUMMY I I *

DDNAME is the DDNAME of a file in the user's program. The
first letter cannot be numeric or an *.

DSRN is the data set reference number as referred to in the
user·s program. The DSRN can be a one or two digit
number. A DDNAME is created of the form FTxxF001.
where xx is the DSRN (right justified).

* this parameter along with CLEAR deletes all assignments
previously made by the FILEDEF command.

DEVICE is one of the following which specifies the device
for input and/or output of the file being defined.

RDR
PCB
PTR
CON
DSK
CRT

TAPx

Card reader
Card punch
Printer
User·s terminal (see note 3 below)
Disk
Cathode ray tube (not yet
implemented)
~agnetic tape
x is blank or 1-5
(see note on TAP below).

CLEAR deletes the assignments of I/O devices, etc.
associated with the first parameter as previously
defined by the FlLEDEF command. An * in the first
parameter erases all assiqnments made by previous
FILEDEF commands.

DUMMY sets up a dummy I/O device.
accomplished during execution.
program testing or at other
wanted.

No actual I/O is
This can be used for

times when no I/O is

defl .••• defN are file characteristics for disk or tape files.

FILEDEF 101

Usage:

Note that FILEDEF is not currently used by any of the eMS
languages.

The FILEDEF command allows the user to specify the I/O
devices to be used at program execution time. It is similar
to the DO (Data Definition) card in OS/360. Certain file
characteristics, such as logical record size, block size,
and record format can be specified for disk files, as well
as seven-track tape characteristics for tape files.

If no parameters are specified with the FILEDEF command, a
list of all DDNAMES and the devices assigned to them by
previous FILEDEF commands are typed at the console (See
note 1 below). File definitions previously created by
FILEDEF can be deleted~ either individually, or for all file
definitions. A file previously defined by FILEDEF can have
its definition modified by specifying the same DDNAME or
DSRN with new options.

If RDR, PCB, PTR, CON. DUMMY, or CLEAR has been specified,
then def1,., •• defN cannot be specified. RDR, PCB, and CON
input default to fixed unblocked, logical record length 80,
and blocksize 80. CON output d'~faults to fixed unblocked,
logical record length 130, and blocksize 130. PTR defaults
to fixed unblocked logical record length 133 and blocksize
133.

If DSR has been specified, then def1 must specify DSNAME,
and def2 must specify DSTYPE. These become the filename and
filetype of the file on disk. Filemode defaults to P1 at
this time.

The rest of the paraweters (definitions) after DSNAME and
DSTYPE are in pairs. These pairs may appear in any order or
may be omitted, in which case the default value is assigned
for the parameters which are not included. These values are
used only when they have not been defined during compilation
or assembly.

The pairs of parameters are the following:

RECFM ,!. FB" V, VB, or U specifies the record format for the
file

The formats are the following:

Fixed unblocked
Fixed blocked
Variable unblocked
Variable blocked
Undefined

F the default value
FB
V
VB
U

LRECL number specifies the logical record length in bytes.

108 FILEDEF

The default is 80 bytes.

BLKSIZ number specifies the block size in bytes. The default
is 80 bytes.

If a tape device is beinq specified, then the above three
pairs of parameters (RECFM, LRECL and BLKSIZ) may be
specified. Note that DSNAME, DSTYPE, and DSMODE may not be
specified. The following pair of parameters may also be
specified when~seven-track tapes are being used:

MODE number where number is a number from 0 to 15.

The following table shows the number to use for desired
tape characteristics. Note that 1-5 are for 800 BPI, 6-10
are for 556 BPI,and 11-15 are for 200 BPI.

800 556 200
BPI BPI BPI PARITY CONVERTER TRANSLATOR

M 1 6 11 t ODD I ON I OFF
0 I I I
D 2 7 12 I ODD 1 OFF I ON
E I I I

3 8 13 , ODD , OFF I OFF
N , 1 I
u 4 9 14 , EVEN , OFF , ON
M , , I
B 5 10 15 , EVEN I OFF I OFF
E 1 I ,
R I I I

Notes.

a. File definitions are already set up for the console. The
DDNAMES of these are FT05F001 and FT06F001. These names
appear in the list of files whenever FILEDEF is issued
without parameters.

b. TAP:, with no number following, defaults to TAPl. TAPl
and TAP2 are the only legitimate devices at this time. TAP3
through TAPS are provided for future expansion.

c. Console input
editing and blank
uppercase.

Examples:

a. FILEDEF

is always
filling.

uppercase translation with
Console output is always

A list of all DDNAMEs and devices previously defined by
FILEDEF is printed at the user·s console.

b. FILEDEF INFILE RDR
A file definition is created with a DDNAME of INFILE and a
Device Type of Card Reader.

FILEDEF 109

c. FILEDEF OUTFILE PTR
A file definition is created with a DDNAME of OUTFILE and a
device type of PRIN~ER.

d. FILEDEF 12 PCB
A file definition is created with a DDNAME of FT12FOOl and a
device type of PUNCH.

e. FlLEDEF TOM CON
A file definition is created with DDNAME of TOM and a device
type of console.

f. FlLEDEF SYS004 DSR GEORGE DATA RECFM FB BLKSIZ 800
A file description is created with DDNAME of SYS004 and a
device type of disk. The filename of the disk file is
GEORGE and the filetype is DATA. Record format is fixed
blocked. and block size is 800. Logical record length is
defaulted to 80.

g • FlLEDEF JOANNE TAP MODE 1
A file description is created with a DDNAME of JOANNE and
device type TAP1 (defaulted). Mode is 800 BPI, ODD PARITY,
CONVERTER-ON. TRANSLATOR-OFF.

h. FILEDEF INFILE CLEAR
This deletes the file definition which has a DDNAME of
INFILE. This file definition must already have been
defined.

i • FILEDEF * CLEAR
This deletes all file definitions which have been created by
the user. FT05FOOl and FT06FOOl are not deleted.

Error Messages:

E(00001) 1st PARAMETER INVALID
The first parameter is something other than an *, a one or
two-digit number, or a DDNAME.

E(00002) BAD RTN CODE FROM INVOKED PROGRAM
The FILEDEF command got a bad return code from
SVCFREE or SVCFRET. This is a system
correctable by the user. Try the command again.

its call to
problem not

E(00003) PARAMETERS ~ISSING AFTER OPERAND xxxxxxxx
A parameter required by the FILEDEF command has been left
out of the option list by the user. Retype the command with
the proper options.

E(0004) SUPERFLUOUS OR INVALID PARAMETERS AFTER xxxxxxxx
One or more parameters after xxxxxxxx is superfluous or
invalid. Retype the command with the proper option list.

E(OOOOS) LRECL OR BLRSIZ VALUES INVALID
One of the following conditions exists:

110 F1:LEDEF

'Illi ilil' tiP exceeded the maximum allowable size (61,439
'II,." I imal). This is the maximum positive half-word
.iH$~: ••••

,.~,t~('t or BLRSIZ values contained nonnumerics.

11111iI.*il~IiIII~~IIIii!J.IIII!~IIiII.~I!I~I~II!lI~III~iIIiI!U~M~IIII"'I.illi_. 1., t."GAL xxxxx REQUEST
,JI/: 11!, • liN' DUMMY or CLEAR.

"I ,A" REQUEST is generated when a CLEAR request is
,. r ll.~ definition not created by the user. ILLEGAL

I'.", ,'M,I;I",'f Is generated when a DUMMY request is made for
IftJ which has already been defined by FILEDEF.

!III ,,'.r:iNAME AND DSTYPE MUST BE SPECIFIED
Ii' :t<i.II.'I"~I'~ ,:,n' required when DSR is specified. Retype the

li'i~ •• "ItC' with the proper parameters .•

,·tll;I: '1INAME NOT SPECIFIED AFTER FILEDEF
d!j Ii' \1\ left out an *1' DDNAME or DSRN as his first

"f'type the FILEDEF command with the proper

FILEDEF 111

FINIS

Purpose:

Format:

FINIS filename filetype < fi:a, .,.
*. •

'filename is the name of the file to be "'I)'"

* means all filenames.

filetype is the type of file to be clo2':."" ,.""~.,'"
* means all filetypes.

filemode is the mode of the file to be 'l1li1 ',' ,I I'H"'!~""""""
* means all filemodes P,T" and :,'.

Usage:

FINIS closes one or more specified tl:'I"u~.i

Closing a file consists of writing 0 _".'.' '.'111
that file on the disk" updating 't ,:.',, t"~
directory, and removing the entry fo '-:"t."
user's active file table. If the fi1.,''''''''~'''. '1111"'''9'

(delete upon reading), the file is er~:. "."'!II ~"hl" ii

be used for the filename, filetype., .:'1'11,1'"

denote the closing of all opened file f,.'~, t :_""",111 .$,.lIIIIIIIII.II'I •• IIIIII/I:::III,II,I,III,IIII!IIII,1I1111.i11111111 ••• IIIIIIIIIII'";;I;,IIIIIIIII'"II,IIII.~

filenames, f i I etypes fI and/or f i lemodes. ',~'" ",,,.,!IIII_IIUd,,,,,,,,,, ,!,",~"~!'\.~~I"""!liilil"illlilll.lllili6:,!IUUI"J",,, """I .. ,!,I"I"I"I"I!,,£iJIIIM,,illll,,L,,,,I,i,,,,

not given, the first file found with t: .11"" t'~'_lill,":;"'::;,':,(;;:;,I:liillil.1 "i'~llli~,~1iia __
type is closed. The order of sear<"~' "."11 ,

file (s) is (are) the standard order of .~"'II I'" II"~, ,,,',:''

The specified file
closed. If it is
FINIS command.

Note.

must already be '."" 'II' , ~~ '''1'' ,~":,,

not, an error cod.- 'I, ";'41

FINIS should be issued by the user whe r,,"~' •
close the files used during the execu t 'i.",~ 1"'~lli,
Files accessed by CMS commands are CIO!I.II' '1,1"", ~ ... il'.# _____ ---------

Responses:

None.

Examples:

a. FINIS DATAOUT CARDS P5
The file whose identifier is DATAOUT CI\ .• '''.:I'i''~l'~1

112 FINIS

Value exceeded the maximum allowable size (61.,439
decimal). This is the maxiroum positive half-word
size.

LRECL or BLRSIZ values contained nonnumerics.

E(00006) ILLEGAL xxxxx REQUEST
xxxxx is either DUMMY or CLEAR.
ILLEGAL CLEAR REQUEST is generated when a CLEAR request is
made for a file definition not created by the user. ILLEGAL
DUMMY REQUEST is generated when a DUMMY request is made for
DDNAME or DSRN which has already been defined by FILEDEF.

E(00007) DSNAME AND DSTYPE MUST BE SPECIFIED
These items are required when DSR is specified.
FILEDEF command with the proper parameters .•

E(OOOOS) DDNAME NOT SPECIFIED AFTER FILEDEF

Retype the

The user has left out an *1' DDNAME or DSRN as his first
parameter. Retype the FILEDEF command with the proper
parameters.

FILEDEF 111

FINIS

Purpose:

FINIS closes one or more files that are currently open.

Format:

FINIS filename filetype < filemode > I
* • * I

'filename is the name of the file to be closed.
* means all filenames.

filetype is the type of file to be closed.
* means all filetypes.

filemode is the mode of the file to be closed.
* means all filemodes P,T" and S.

Usage:

FINIS closes one or more specified files that are open.
Closing a file consists of writing out the last record of
that file on the disk" updating the appropriate file
directory, and removing the entry for that file from the
user's active file table. If the filemode number is 3 or 4
(delete upon reading>, the file is erased. An asterisk may
be used for the filename, filetype, and/or filemode to
denote the closing of all opened files with the appropriate
filenames, filetypes u and/or filemodes. If the filemode is
not given, the first file found with the specified name and
type is closed. The order of search for the specified
file(s) is (are) the standard order of search.

The specified file
closed. If it is
FINIS command.

Note.

must already be open in order to be
not, an error code is returned by the

FINIS should be issued by the user when his program does not
close the files used during the execution of that program.
Files accessed by OMS commands are closed automatically.

Responses:

None.

Examples:

a. FINIS DATAOUT CARDS P5
The file whose identifier is DATAOUT CARDS PS is closed.

112 FINIS

b. FINIS DATAOUT CARDS
The first file found with a filename filetype of DATAOUT
CARDS is closed. The permanent disk. the temporary disk. and
the system disk are searched in that order for the file.

c. FINIS. FILEt •
All files that are open and have a filetype of FILE1 are
closed.

d. FINIS • * •
All files that are open are closed.

Error Messages:

E(OOOOl)
The specified filename is invalid.
zeros. The file is not closed.

E(00003)

It contains leading

~n error occurred while reading or writing the disk. The
command has terminated.

E(00004)
The first character of the mode is illegal.

E(00006)
The specified file is not open and therefore cannot be
closed. The command has terminated.

FINIS 113

LISTF

Purpose:

LISTF has two purposes: (1) to type at the terminal
name, type, model' size, date-Iast-updated,
time-Iast-updated of specified files or (2) to create a
on the permanent disk containing information similar to
typed at the terminal.

Format:

the
and

file
that

1 LISTF I <name <type <mode «option1 ••• optionN»»>1
I I * * * I

name is the name of the files to be listed.
* denotes all filenames and is the default value.

type is the type of file to be listed.
* denotes all filetypes and is the default value.

mode is the mode of the files to be listed. If omitted, all
read-write disks are searched.

* means all disks.

Note. An asterisk, (*), preceded by any number of
characters for name or type searches for the specified
characters as the leading characters for that identifier.
For example, LISTF ABC* FORTRAN prints the identifiers for
all FORTRAN files with filenames beginning ABC.

Options:

EXEC (E) creates a file on the permanent disk containing a
list of the specified files.

SORT (S) sorts, or groups together, all similar filetypes.

ITEM (I) types the number of logical items instead of the
number of BOO-byte physical records.

NAME (N) produces a list of filenames only.

TYPE (TY) causes the list to contain only filename and
filetype.

MODE (M) truncates the typed line after filemode.

REC (R) prints filename, filetype. filemode, and number of
records.

DATE (D) causes the list to
and date the file was
the default line.

114

contain name, type, mode. size,
last written (mm/dd). This is

LISTF

YEAR (Y) causes the date to include the year (mm/dd/yy).

TIME (Tl causes the time that the file was last updated
(hh/mm) to be added to the defaulted line.

Usage:

LISTF either types out the specified files or creates a file
containing the information. All operands are optional. If
no operand is specified, a complete list of all the files
that exist on the user's read-write disks is typed out. The
list consists of the name, type, mode" number of records,
and date each specified file was last written. The number of
records is the number of SOO-byte records occupied by the
file,. The date is typed as month--date (mm/dd). See Figure
6.

listf
FILENAME FILETYPE MODE NO.REC DATE
FORTCLG EXEC Pi 1 S/29
w LISrrING Pi 2 1/16
UCC1 MODULE P1 17 9/08
TRY TXTLIB P1 3 8/30
LOAD MAP Pi 11 8/13
W TEXT P1 5 1/11
UPDATE MODULE P1 3 8/30
TEST1 FORTRAN Pi 10 9/03
SUBS FORTRAN P1 5 9/02
SUBS TEXT Pi 6 9/02
R: T=0.05/0.14 15.15.04

Figure 6. output from the LISTF command

If a filename, filetype, and/or filemode other than * is
specified~ only the file with that identifier is typed out
along with its size.

If the filemode is not specified, only the read-write disk
directories are examined by LISTF. If a filemode of * is
specified~ all disks are used. Therefore, in order to have
LISTF search read-only disks, a filemode must be specified.

If the (EXEC) parameter is specified, a card-image file is
created on the user's permanent disk and assigned the
identifier CMS EXEC Pl. If a file with the identifier CMS
EXEC Pl already exists, it is erased, and a new file is
created. This file contains a card image for each of the
specified files and the format of each card image is as
follows:

LISTF 115

Columns Contents

2-3 &1
5-6 &2
8-15 filenaroe

17-24 filetype
27-28 fileroode
31-34 number of records
36-40 date
42-48 time

All other columns are blank. For an example of a CMS EXEC
file, see Figure 7, in which the PRINTF command has been
used to typeout the contents of the EXEC file.

listf • fortran (exec)
R; T=0.20/0.31 15.15.15

printf cms exec

&1 &2 W
&1 &2 SUB2
&1 &2 EXAMPLE
&1 &2 DRGB
&1 &2 GBB
&1 &2 SSNSS

R; T=O.23/0.34

FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN

15.18.42

P1
PI
PI
P1
P1
P1

3
12

5
11
10

1

8/12
8/111
7/29
8/30
8/30
8/31

Figure 1. Creation and printing of a C~S EXEC file

The CMS EXEC file is like any
printed offline, edited, added
its main purpose is to be used
Refer to the EXEC writeup for

other user file. It can be
to, changed, and so on, but
with the EXEC or $ commands.

a description of the usage of
a CMS EXEC file.

Responses:

If the (EXEC) option is specified, the file CMS EXEC is
generated on the user's permanent disk, and no response is
typed at the terminal.

If the (EXEC) option is not given, the list of specified
files is typed at the terminal.

As can be seen in
certain quantities
LISTF. Each option
of lower priority.

Examples:

a. LISTF

the description of the options. only
of each specified file can be typed by

has a truncating effect on all options

The name,. type, mode, size and date of each file on the
read-write disks are typed. See Figure 6.

116 LISTF

b. LISTF ABC* FORTRAN (N)
The name of each file that has a filename beginning with the
characters ABC, has a filetype of FORTRAN, and exists on the
read-write disks is typed.

c. LISTF FILE * * (T)
The name. type, mode o size, date, and time of each file that
has a filename of FILE and exists on any disk is typed.

d. LISTF (EXEC)
The file with the identifier CMS EXEC P1 is
permanent disk. This file contains the same
that was typed in the first example above, hut
the list has &1 an~ &2 placed in front of it.

e. LISTF * FORTRAN (EXEC)

created on the
list of files
each entry in

The file with the identifier eMS EXEC P1 is created. This
file contains the same list of files that was typed on the
terminal in the second example above, but each entry in the
list has t1 &2 placed in front of it. See Figure 7.

Error Messages:

E(OOOOl) ERROR IN PARAMETER LIST.
An incorrect form of the command was issued.
if all parameters are valid.

E(00002) NO FILE FOUND.
The specified file does not exist on the disk.

E(00003) * Z (CCU) NOT LOGGED IN **

Check to see

LISTF was issued with Z as the specified mode, but there is
no Z-disk logged in. Either the wrong mode was specified,
or LOGIN Z should be issued.

E(00003) NO R/W DISR LOGGED IN
LISTF was issued with no mode specified. The default is all
read-write disks. and none are logged in.

LISTF 117

OFFLINE

Purpose:

The OFFLINE command controls the unit record input/output
devices. Input files may be entered through the card reader.
Output files may be printed. with or without automatic
carriage control. or punched.

Format:

I OFFLINE I command filename filetype <filemode>
<*, I I

where command is as follows:

READ

PRINT

PRINTCC

specifies a deck is to be read from the card
reader.

causes the specified file to be printed on the
system printer with automatic single spacing.

causes the specified file to be printed with the
first character of each record interpreted as a
carriage control character.

PRINTUPC translates to uppercase, and then prints the
records of the named file.

PRINTVLR causes the specified, variable-length file produced
by an OS/360 language processor to be printed.

PUNCH causes the specified file to be punched onto the
system card punch.

PONCHCC causes an OFFLINE READ filename filetype control
card to be inserted as the first card before
punching the specified file.

PUNCHDT causes an OFFLINE READ filename filetyped filemode
data-last-written time--last-written control card
to be inserted as the first card before punching
the specified file.

filename filetype <filemode> identify the file to be
transferred. If filemode is omitted for a READ, Pl
is assumed.

* specifies that filename, filetype, and filemode
are found in OFFLINE READ control cards in the
input card stream. (Valid only when coromand =
READ)

118 OFFLINE

Usage:

Input

If filename and filetype are specified with the OFFLINE READ
command, only one file is read in. Input records of up to
132 characters are accepted. A file that was transferred
with the XFER E TO userid command should be read in with the
filetype PRINTER. A previously existing file with the same
identifiers is erased. If filemode is omitted, P1 is
assumed.

If the file designations are to be entered in the card
stream. a single asterisk must be specified with the OFFLINE
READ command instead of filename and filetype. The deck
entered through the card reader may contain any number of
files, each immediately preceded by a card containing an
OFFLINE READ control card specifying the filename. filetype,
and optionally. filemode. The command must start in the
first card column. These control cards are typed out at the
terminal as they are encountered, and are interpreted by the
system just as if they had been entered from the terminal.
Any existing file with the same identifiers as those
specified on one of the OFFLINE READ cards is erased. Each
command card ends the file preceding it, and the last file
is ended by the end of the card deck.

If an OFFLINE READ * command is issued. and the first card
of the input stream is not of the form OFFLINE READ filename
filetype, a file identified as •• NAME,.. •• TYPE,.. P1 is
created containing all cards read in until another OFFLINE
READ control card or an end of file is encountered. This
temporary file may now be altered to the desired filename
and filetype.

When operation is on a virtual machine, user card decks must
be read in by CP before an OFFLINE READ command can be
issued. The user need not be logged in at the time the
decks are read in,. Each deck must be entered separately,
and each must be preceded by an identification card with
CP67USERID punched in the first ten columns, and the user·s
identification starting in the 13th column, or the
characters ID punched in columns 1 and 2 and the userid
starting in column 10,. CP saves the deck until the user
logs in and requests it with an OFFLINE READ command. If
more than one deck has been read by CP, they are processed
by successive OFFLINE READ commands in the order in which
they were entered.

Output

For the OFFLINE PRINT,. PRIN'rCC, PRINTUPC. PRINTVLR, PUNCH,
PUNCHDT, and PUNCHCC commands, filename and filetype must be
specified. If the filemode field is blank, the P disk is
assumed. Asterisks are not permitted in the filename or
filetype fields.

OFFLINE 119

The OFFLINE PRINT command prints the specified file with
single spacing and CMS page headings containing the file
identifiers and a page number. Up to 55 lines are printed on
a page. If the file being printed has a filetype of
LISTING, it is printed as if PRINTCC were issued.

The OFFLINE PRINTCC command uses the first character of each
line in the file as a carriage control code. The maximum
line size, including the control character, is 133
characters. A blank (hex'qO-) in the control position
causes the line to be followed by a single space. A zero
(hex -FO-) causes a single space before, and after, the
printed line. A one (hex -Fl') causes a skip to the top of
the next page before the line is printed, and a single space
after the line. Another value in the control byte is
assumed to be a valid channel command code, and is filled
into a CCW. No headings or page numbers are supplied and no
automatic skip is performed at the end of the page.

OFFLINE PRINTUPC performs uppercase translation on all
records of the specified file. For example, if a file of
type SCRIPT or MEMO is to be printed, and the correct
printer character chain is not available g PRINTUPC prints
the file in uppercase, eliminating all print checks and
garbled characters.

OFFLINE PRINTVLR prints variable-length records produced by
an OS access method. The printable data of the record is
preceded by a four-byte control field which contains the
length of the record. This field is discarded, and the
record printed under the PRINTCC format.

The OFFLINE PUNCH command accepts records up to 80
characters in length. Shorter records are padded to 80
characters with blanks at the right.

OFFLINE PUNCHCC inserts as the first card of the specified
file to be punched, an OFFLINE READ ••• control card. The
punched deck can now be read by means of an OFFLINE READ *
command.

OFFLINE PUNCHDT inserts a card with the same information as
OFFLINE PUNCHC, but also includes the filemode and date and
time last written.

Notes:

a. Files handled by the OFFLINE command must
fixed-length records, except for OFFLINE PRINTVLR,
handles variable-length records.

have
which

b. Only the first card of any input deck is checked for
CP67USERID or ID. CP processes as a single file all cards
following it until a physical end of file is reached.

120 OFFLINE

c. Under CP, printer output is preceded by a single line
containing a USERID. PUNCH output is preceded by a card
containing a USERID.

d. OFFLINE READ accepts input records up to 132 characters
in length, such that LISTING files may be XFER·'ed from os to
CMS. The file should be read in with a filetype of FRINTER.

e. If OFFLINE READ was issued, and the file being read in
is 132-byte records, CMS types at the finish of the read,
RECORD LENGTH = 132 BYTES.

Responses:

a. OFFLINE READ filename filetype filemode
~fter the command OFFLINE READ * control cards encountered
in the input card stream are typed at the terminal.

b. READER EMPTY OR NOT READY.
This response and the Ready message follow an OFFLINE READ
command if no card deck has been entered for the user's
USERID.

c. RiT=xX.XX/xx.xx xx.xx.xx
The Ready message indicates the command has completed
without error. It does not mean that physical output has
completed. The output file is held by CP until other users
free the output device.

d. "OFFLINE READ.~.w CONTROL CARD IS MISSING.
THE FOLLOWING ASSUMED:

This response and the assumed control card are typed
whenever an OFFLINE READ * command is issued, and whenever
the first card of the input stream is not an OFFLINE READ
filename filetype <filemode> control card.

e. (NULL FILE)
Attempt to read a file containing no records was made.

f. SYSTEM I/O ERROR
CP ENTERED, REQUEST PLEASE

This roessage indicates that an unrecoverable
occurred on a spooled direct-access device.
issue the OFFLINE coromand again.

Examples:

a. OFFLINE READ SEC23 SYSIN

I/O error has
ReIPL CMS, and

Any previous file with the filename and filetype SEC23 SYSIN
is erased. All cards following the CP67 identification card
are placed in a file on the permanent disk identified as
SEC23 SYSIN Pl ..

b. OFFLINE READ *
Assume the following deck has been entered by the operator:

OFFLINE 121

/ /1
/ /

/d-a-t-a--c-a-r-d~s-----------------------,

___ 1 __________________________ __
/OFFLINE READ FILE DA02 P5

--1-----------------------------/ /
/ /
----------~--------------------~ /source cards 1

--1------------------------------/OFFLINE READ SORTJ FORTRAN i
--I~----------------------------~ /CP67USERID JAYBEE

I

Any previous files with the identifiers SORTJ FORTRAN or
FILE DA02 are erased. The card records are placed in files
on the permanent disk under the identifications SORTJ
FORTRAN Pi and FILE DA02 P5. The following response is
typed:

OFFLINE READ SORTJ FORTRAN
OFFLINE READ FILE DA02 P5

c. OFFLINE PRINT FILE DA02
A search is made for FILE DA02, on all three disks, if
necessary. When it is located, it is printed out with
single spacing and ~S-supplied page headings. The first
page of the printout contains only the USERID. The second
page starts with the following heading:

FILE:FILE DA02 P5 CAMBRIDGE MONITOR SYSTEM PAGEOOl

The heading is followed by a blank line and 55 lines of the
file. The heading of the second and subsequent pages is the
same" except for the page number.

Error Messages:

E(OOOOl) INVALID OFFLINE FUNCTION OR PARAMETER LIST
There are three possible causes of this message:

a. The .operation specified with the command was
invalid r it must be one of these: READ, PRINT, PRINTCC.
PRINTUPC, PRINTVLR. PUNCH, or PUNCHCC.
h. A filename (or * under the special READ mode) was
not specified.
c. Filetype was specified as an *. which is not
permitted.

EC00002) FILE NOT FOUND.
The file specified for output does not exist.
spelling of the filename and filetype.

ECOOOOS)

Check

An attempt has been made to read a variable length file. See

122 OFFLINE

the DISK command to be able to read and punch variable
length files.

E(00006) PRINT (max=133) or PUNCH (rnax=SO) RECORD
EXCEEDS MAXIMUM LENGTH

The record length of an output file is greater than 132
characters for PRINT. or 133 characters for PRINTCC. This
is longer than a printer line. The OFFLINE PUNCH command
accepts records of 80 characters or less.

E(OOOO?) PRINT or PUNCH ERROR
System hardware failure has occurred. Retry the operation
on the specific unit record device.

E(OOOOS) READ or WRITE DISK ERROR
A disk I/O error has occurred. If reading disk, an illegal
mode may have been specified. an attempt may have been made
to output an empty file. or there may not be enough core
space for the output buffers. If writing disk, the
specified mode on the READ command roight be illegal, or no
more disk space is available.

OFFLINE 123

PRINTF

Purpose:

The PRINTF command types all, or part, of a specified file
at the terminal.

Format:

~--------------~-------~----~----------------
IPRINTFI filena~e filetype < n1
I I *

n2 < n3 »
*

filenawe filetype specify the file to be typed.

nl is the line number of the first line to be typed.

n2 is the line number of the last line to be typed.

n3 is the maximum number of characters to be typed on a
line, if the records are to be truncated.

Usage:

The filenaIre and filetype must be specified.
line number and last line number are omitted,
with asterisks, ,the entire file is typed. An
the first line or end line fields specifies the
the end of the file, respectively.

If the first
or specified
asterisk in

beginning or

Typed lines are truncated to the specified limit, if any, or
to 113 characters for LISTING files, 120 for SCRIPT files,
80 for MEMO fi1es, or to 72 for all other filetypes. If a
limit is specified, the first line number and last line
number fields must be filled, either explicitly, or with
asterisks.

The standard order of search is used to find the file. In
the case of files with duplicate filename and filetype, only
the first file found is typed.

Notes:

a. The first line number and last line number must be less
than 9999, and may not contain imbedded commas.

h. The first character of each line in a LISTING file is
not typed. This is a printer carriage-control character.

c. The KT coromand overrides any specified last line number
or line length.

Examples:

These are given in Figures 8, 9, and 10~

124 PRINTF

printf go exec

LOAD il
START

R: T=O.27/0.S3 10.40.16

printf go exec * * so

LOAD &1 GO 00010
START GO 00020

R: T=0.27/0.55 10.46.32

Figure 8. Two examples of PRINTF commands that type out an entire file

printf syslib maclib 157 171 72

&LABEL
MACRO
MADDPL iCOMM=*.&NAME=*.&TYPE=*,&MODE=Pl,&ITNO=O.

&BUFF=*.&SIX ZE=80,&FV=F,&NOIT=1
&LABEL DS
&LABEL.COMM DC
&LABEL.NAME DC
&LABEL.TYPE DC
&LABEL.MODE DC
&LABEL.ITNO DC
&LABEL.BUFF DC
&LABEL.SIZE DC
&LABEL.FV DC
&LABEL.NOIT DC
&LABEL.NORD DC

MEND

00
CLS'&COMM'
CLS'&NAME'
CLS'iTYPE'
CL2'&MODE.
H'&ITNO'
A (&BUFF)
A(&SIZE)
CL2'&FV'
H'&NOIT'
F'O'

R: T=O.SO/0.72 10.56.18

COM~..AND

FILE-NAME
FILE-TYPE
FILE-MODE
ITEM NUMBER
BUFFER AREA
BUFFER SIZE
FIXED/VARIABLE FLAG
NUMBER OF ITEMS
NUMBER OF BYTES ACTUALLY READ

Figure 9. A PRINTF command that types out a macro definition

PRINTF 125

printf fortj listing 33 • 72

FORMAT STATEMENT MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION

5 38C 20 392 8 398

TOTAL MEMORY REQUIR~ENTS 00057E BYTES

R; T=O.33/0.47 10.59.42

Figure 10. A PRINTF command that types out the bottom
of a FORTRAN LISTING file

Error ~essages:

E(OOOOl) CORRECT FOF~ IS: ·PRINTF' FILENAME
FILETYPE STARTLINE ENDLINE LINE-LIMIT,
WHERE 'STARTLINE', -ENDLINE', AND
'LINE-LIMIT- ARE OPTIONAL.

The filename or filetype was omitted, or one of the optional
fields was not valid.

E(00002) DISK ERROR.
An I/O error occurred. It may be necessary to initialize
the disk again (see FOR~AT).

E(00003) FILE NOT FOUND.
No file with the specified filename and filetype exists.

126 PRINTF

SCRIPT

Purpose:

The SCRIPT command outputs to a printer." file, or terminal a
file of variable-length records in a format specified by
included control words.

Format:

SCRIPT filename (optionl •.•• optionN) 1

filename specifies a file with a filetype of SCRIPT.

Options:

CENTER (CE) causes offline output to be centered on the
printer paper.

FILE (FI) prints the edited and formatted output of SCRIPT
into a file named -.filenaroe", instead of at the
terminal or offline printer.

NOWAIT (NO) starts SCRIPT output immediately without waiting
for the first page to be adjusted.

NUMBER (NU) prints in the
and line number
printed output.

left margin the
corresponding to

SCRIPT filename
each line of

OFFLINE (OF) prints the edited and formatted output of
SCRIPT on the offline printer, instead of at the
terminal.

PAGE xxx causes printout to start at page xxx.

SINGLE (SI) terminates printing after one page, usually used
in conjunction with the PAGExxx option.

STOP (ST) causes a pause at the botto« of each page during
SCRIPT.

TRANSLATE (TR) translates lowercase letters to uppercase in
printout.

UNFORMATTED (UN) prints the inputted SCRIPT file along with
the control words: the control words being ignored
with no formatting of the output.

Usage:

Filename must be specified with the SCRIPT command. The
filetype SCRIPT is assumed.

SCRIPT 127

When the SCRIPT command is issued, the specified SCRIPT file
is typed either at the user's terminal, on the offline
printer, or into a file. Execution is controlled hy format
control words included in the specified SCRIPT file. When
the file is located, and typing is ready to hegin, a
response is typed, and execution pauses until a carriage
return is entered at the terminal, unless the NOWAIT,
OFFLINE, or FILE option has been specified. This pause
allows the user to position the output paper at the top of a
page. If STOP is specified with the command, the pause is
repeated at the bottom of each page, allowing the user to
change paper if noncontinuous forms are being used. If STOP
is used. the paper should be positioned to the first line to
be printed (the heading) rather than to the physical top of
the page. Typing resumes when a carriage return is typed.

The TRANSLATE option is needed if output is to be directed
to an offline printer that is not equipped with the
uppercase and lowercase letters (TN-chain). In conjunction
with the UNFORMATTED option, TRANSLATE provides a means of
printing the original SCRIPT file on a printer that does not
have the TN-chain (this can also be done by the CMS command
OFFLINE PRINTUPC).

The PAGExxx option, in conjunction with the SINGLE option,
provides a means for selectively formatting and printing
portions of a manuscript. The xxx represents a three-digit
page number and must include leading zeros (for example,
page 12 only should be requested by SINGLE PAGE0121. Another
means of selectively manipulating a formatted manuscript is
to use the FILE option to generate the entire or relevant
portion of a manuscript into a file and then use the CMS
facilities of EDIT and/or PRINTF to process it.

The FILE option produces an output file in either typewriter
format (backspace characters and carriage return characters
are used) or printer format (printer control codes are
used). The default format is typewriter. The printer format
can be specified by the combination of both the FILE and
OFFLINE options. A printer format file may be later printed
by the CMS command OFFLINE PRINTCC.

Each line read from the disk file by SCRIPT is inspected for
a first character of ft.ft. which identifies a format control
word. Format control words are not typed, but are
interpreted to specify changes in the output format.
Control words may be entered in uppercase or lowercase and
should be separated from their operands (if any) by one or
more blanks.

Control words may appear at the beginning of any line in the
file, with changes effective below the points at which they
occur. No input data should be included on lines containing
control words, since this data could, in some cases, be lost
or interpreted as an operand of the control word.

128 SCRIPT

Note.

The TAB key generates an acceptable character in a SCRIPT
file. and is transmitted by SCRIPT. The number of spaces
actually skipped on print output is dependent on the logical
tab setting specified by the .TB command. For indentations,
the .IN or .OF control words should be used instead of the
TAB key.

References:

For more detailed information
SCRIPT User's Manual.

Response:

LOAD PAPER: HIT RETURN

on SCRIPT, see CMS

This response is given whenever the SCRIPT command is
issued without specifying the NOWAIT option. The carriage
return must be hit in order for SCRIPT processing to
continue. The paper should be adjusted first.

Example:

An example of SCRIPT input and output is given in Figures 11
and 12, which follow the descriptions of SCRIPT control
words.

Error Messages:

EC00004) INCORRECT PARAMETER LIST
An invalid parameter has been specified for a SCRIPT
control word, or a required parameter has been omitted. The
SCRIPT command has been terminated.

ECOOOOS) FILE xxxxxxxx NOT FOUND.
No SCRIPT version of filename xxxxxxxx was found. The
SCRIPT command has been terminated.

£(00012) DISR ERROR WHILE READING
A disk error was incurred by SCRIPT. The SCRIPT command
has been terminated, and the disk file being printed remains
unchanged.

EC00016) ILLEGAL CONTROL CARD ENCOUNTERED.
An unrecognizable control word was encountered
printing a SCRIPT file. The SCRIPT command has
terminated.

while
been

For all of the error messages from SCRIPT, the following
message is printed:

ERROR OCCURRED AFTER READING XXXX LINES.
This usually assists in finding the error in the SCRIPT
file.

SCRIPT 129

E(OOOOO) *** A TERMINAL ERROR HAS OCCURRED WHILE
PROCESSING ON OR AROUND LINE xxxxxxxx
*** , ETC.

This message indicates a system error. The appropriate
personnel should be informed of the circumstances. Usually
this condition can be bypassed by diagnosing the cause of
the error and changing the SCRIPT file.

130 SCRIPT

SCRIPT Control Words

SCRIPT control words are interpreted by the SCRIPT command
to govern format control as the file is being printed out.

The SCRIPT control words are listed below.

Control Word

.AP

.BM

.BR

.CE

.CM

.CO

.CP

.DS

.FI

.FO

.HE

.HM

.IM

.IN

.JU

.LL

.NC

.NJ

.OF

.PA

.PL

.PN

.RD

.SP

.SS

.TB

.TM

.UN

Meaning

Append
Bottom margin
Break
Center
comment
Concatenate mode
Conditional page
Double space mode
Format (old form)
Format mode
Heading
Heading margin
Imbed
Indent
Justification mode
Line length
No concatenate mode
No justification mode
Offset
Page eject
Page length
Page numbering mode
Read from terminal
Space lines
Single space mode
Tab settings
Top margin
Undent

SCRIPT 131

APPEND Control

Purpose:

The APPEND control word allows an additional SCRIPT file to
be appended to the file just printed.

Format:

.AP filename

filename specifies the name of the SCRIPT file to be
appended to the file which has just been printed.

Usage:

When the .AP control word is encountered, the current file
is closed, and the specified SCRIPT file is printed as a
continuation of the SCRIPT output from the previous file.

Note.

The .AP control word only allows files to be appended to the
end of the current file. 1£ it is desired to insert file
contents into the printout of the current file, use the .1M
control word.

Example:

.AP ABC
The contents of SCRIPT file ABC are
following the last line of the current
the ,.AP request.

132 SCRIPT -.AP

typed immediately
file which precedes

BOTTOM MARGIN Control

Purpose:

The BOTTOM MARGIN control word specifies the number of lines
to be skipped at the bottom of output pages, overriding the
standard value of three.

Format:

.BM I n
-----~~--------

n specifies the number of lines to be skipped at the
bottom of output pages. If omitted. 3 is assumed.

Usage:

This control overrides the standard bottom margin size of
three lines. and need not be included in the file if that
value is satisfactory. It may be included anywhere in the
file, and the most recent value set applies on any page.

Note.

The BOTTOM MARGIN control word also acts as a BREAK.

Example:

.BM 10
Ten lines are left blank at the bottom of the current page
Cif possible), and on all subsequent pages.

SCRIPT - .BM 133

BREAK Control

Purpose:

When CONCATENATE
line to be typed
line.

Format:

.ER

Usage:

is in effect, BREAR causes the previous
without filling in words from the next

BREAK is used to prevent concatenation of lines, such as
paragraph beadings or the last line·of a paragraph. It
causes the preceding line to be typed as a short line, if it
is shorter than the current line length.

Notes:

a. Many of the other control words have the effect of a
BREAK. No BREAK is necessary when one of these is present.

h. A leading blank or tab on a line has the effect of a
BREAK.

Example:

Heading:
.br
First line of paragraph • • •

This part of a file is printed by SCRIPT as

Heading:
First line of the paragraph

If the BREAK control word were not included, it would be
typed

Heading: First line of the paragraph • • •

134 SCRIPT - .BR

CENTER Control.

Purpose:

The line following the CENTER control word is centered
between the margins.

Format:

.ce

Usage:

The line to be centered is entered on the line following the
CENTER control word. It starts at the left margin, and
leading or trailing blanks are considered part of its
length.

Notes:

a. The CENTER control acts as a BREAK.

h. If the line to be centered exceeds the current line
length value. it is truncated.

Example:

.CE
Other Methods

When this line of the file is typed. the characters "Other
Methods· are centered between the margins.

SCRIPT - .CE 135

COMMENT Control

Purpose:

The COMMENT control word causes the rewainder of the line to
be ignored, allowing comments to be stored within the SCRIPT
file.

Format:

.CM comments

Usage:

The .eM control word allows comments to
SCRIPT file for future reference. These
seen when editing the file, or printing
UNFORMAT mode.

be stored in the
comments can be
the file under

The comments may also be used to store unique
identifications that can be useful when attempting to locate
a specific region of the file during editing.

Example:

.CM Remember to change the date.
The line above is seen when examining an unformatted listing
of the SCRIPT file, and it reminds the user to update the
date used in the text.

136 SCRIPI' - .CM

CONCATENATE Control

Purpose:

CONCATENATE cancels a previous NO CONCATENATE control word,
causing output lines to be formed by concatenating input
lines and truncating at the nearest word to the specified
line length.

Format:

.CO

Usage:

The CONCATENATE control specifies that output lines are to
be formed by shifting words to or from the next input line.
The resulting line is as close to the specified line length
as possible without exceeding it or splitting a word; this
resembles normal typist output or the MT/ST. This is the
normal mode of operation for the SCRIPT command, CONCATENATE
is only included to cancel a previous NO CONCATENATE control
word.

Note:

This control acts as a BREAK.

Example:

.CO
output from this point on in the file is formed to approach
the right margin without exceeding it.

SCRIPT - .co 131

CONDITIONAL PAGE Control

Purpose:

The CONDITIONAL PAGE control word causes a page eject to
occur, if less than the specified number of lines remain on
the current page.

Format:

.CP n

n specifies the number of lines that must remain on the
current page for additional lines to be printed on it.

Usage:

The .CP control word causes a page eject to occur if n lines
do not remain on the current page. This request is
especially meaningful (1) before an .SP control word to
guarantee that sufficient space remains on the current page
for the number of spaces requested along with any titles,
and (2) preceding a section heading to eliminate the
possibility of a heading occurring as the last line of a
page.

Note:

If no operand is specified with the .CP request, the request
is ignored.

Example:

.CP 10
If less than ten lines remain on the current page, an eject
is issued before printout continues. If ten or more lines
remain, printout continues on the current page.

138 SCRIPT - .CP

--- --------------

DOUBLE SPACE Control

Purpose:

The DOUBLE SPACE control word causes a line to be skipped
between each line of typed output.

Format:

.DS

Usage:

DOUBLE SPACE may be included anywhere in the file to force
double spaced output.

Note:

This control word has the effect of a BREAK.

Example:

.DS
Blank lines are inserted between output lines below this
point in the file.

SCRI PI' - • OS 139

FORMAT Control

Purpose:

The FORMAT control word cancels a previous NO FORMAT control
word (or NO CONCATENATE and/or NO JUSTIFY control word),
causing concatenation and right justification of output
lines to resume.

Format:

.FI or .FO

Usage:

The FORMAT control word is a shorthand way to specify the
two control words: CONCATENATE and JUSTIFY. This control
specifies that lines are to be formed by shifting words to
or froID the next line (concatenate) and padded with extra
blanks to produce an even right margin (justify). Since
this is the normal mode of operation for the SCRIPT command,
FORMAT is only included to cancel a previous NO FORMAT
control word.

Notes:

a. This control acts as a BREAK.

b. If a line without any blanks exceeds the current line
length, it is truncated.

c. The .FI form of the control word is provided for
compatibility with old SCRIPT file and should not be used in
new files.

Example:

.FO
Output from this point on in the file is padded to produce
an even right margin on the output page.

140 SCRIPT - .FI/.FO

HEADING Control

Purpose:

The HEADING control word specifies a heading line to be
typed at the top of subsequent output pages.

Format:

.BE line

line specifies the heading to be printed at the top of
subsequent pages~

Usage:

All of the line following the first blank after the HEADING
control word is printed at the top of pages starting after
the control word is encountered. No heading is typed on the
first page of an output file. The heading is typed at the
left margin. Its length must be at least ten less than the
output line length, to allow for a page number at the right
margin. Leading blanks may be used to center the heading.
The heading is typed in the 1ine specified by the heading
margin and top margin control words. Additional.HE control
words may be included at any point in the file to change the
heading on subsequent pages.

Note:

If a new heading is to be placed on a page forced with the
PAGE control word. the HEADING control must precede the PAGE
control .•

Examples:

a. • HE CAMBRIDGE MONITOR SYSTEM
The characters CAMBRIDGE MONITOR SYSTEM are typed at the
left in the second-last line of the top margin on all pages
started after this point in the file:

CAMBRIDGE MONITOR SYSTEM PAGE 7

b. .he CMS
The leading blanks are considered. part of the heading:. so
the characters CMS are centered in the heading line

CMS PAGE 8

SCRIPT - .HE 141

HEADING MARGIN Control

Purpose:

The HEADING MARGIN control word specifies the number of
lines to be ski~ped between the heading and the first line
of text excluding forced space (TOP MARGIN), overriding the
standard value of 1.

Format:

.HM n

n specifies the number of lines to be skipped after the
heading line.

Usage:

The heading line is placed a specified number of lines above
the top margin. If no HEADING MARGIN control word is
included in the file. the default value is 1.

The HEADING MARGIN specified must always be less than the
current TOP MARGIN.

Note:

This control word acts as a BREAK.

Examples:

a. .HM 3
Three lines are left between the beading line and the first
line of text. If default top margin of 5 is in effect. the
heading occurs one line from the top of paper, followed by
three more blank lines (the heading margin), and then the
text.

b. ..HM 1
The standard heading margin of 1 is set.

142 SCRIPT - .HM

IMBED Control

Purpose:

The IMBED control word is used to insert the contents of a
specified file into the printout of another SCRIPT file.

Format:

---~-~---------~---------
.IM filename

filename specifies the
the printout.

file to be currently formatted into
A filetype of SCRIPT is assumed.

Usage:

The .IM and .AP control words perform similar functions, but
.IM allows the contents of a second file to be inserted into
the printout of an existing file" rather than appended to
the end of it_ Imbedding may be us,.!d to insert standard sets
of control words at desired spots in a file, as well as for
many other purposes.

Example:

.IM CBAP4
The contents
inserted in
the end of
current file

of the SCRIPT file whose filename is CHAP4 are
the printout of the current SCRIPT file: when
the CHAP4 file is reached, printout of the
resumes.

SCRIPI' - .IM 143

INDENT Control

Purpose:

The INDENT control word allows the left side of the SCRIPT
printout to be indented.

Format:

.IN n

n specifies the number of spaces to be indented. If
omitted, indentation reverts to the original margin.

Usage:

The .IN control word causes SCRIPT printout to be indented n
spaces from the current left margin setting. This
indentation remains in effect for all following lines
(including new paragraph and pages), until another .IN
control word is encountered. ·.IN O· cancels the
indentation, and printout continues at the original left
margin setting.

Notes:

a. The .IN request acts as a BREAK.

h. The .IN request resets the effective left margin,
causing any .OF setting to be cleared. The .OF request may
be used alone, or in conjunction with .IN. When the latter
is the case, .IN settings take precedence.

Examples:

a. .IN 5
All lines printed after this request are
spaces from the current left margin
indentation continues until another '. IN
encountered.

h. .IN 0

indented five
setting,. This

control word is

The effect of any current indentation is canceled. and
printout continues at the original left margin setting.

144 SCRIPT - .IN

JUSTIFY Control

Purpose:

The JUS~IFY control word cancels a previous NO JUSTIFY
control word (or part of a NO FORMAT control word), causing
right justification of output lines to resume.

Format:

,.JU

Usage:

This control word specifies that lines are to be justified
by padding with extra blanks. If concatenate mode is in
effect, the concatenation process occurs before
justification. Since this is the normal mode of operation
for the SCRIPT command, JUSTIFY is only included to cancel a
previous NO JUSTIFY control word, or the NO JUSTIFY part of
a NO FORMAT control word.

Notes:

a. This control acts as a BREAK.

h. If a line
CONCATENATE mode
is.

exceeds the current line length, and
is not in effect, the line is printed as

c. This control word is seldom
mode, therefore r, FORMAT should be
CONCATENATE mode.

Example:

.JU

used without CONCATENATE
used to enter JUSTIFY and

output from this point on in the file is padded to produce
an even right margin on the output page, as long as the
input lines do not exceed the line length.

SCRIPT - .JU 145

LINE LENGTH Control

Purpose:

The LINE LENGTH control word specifies a line length that is
to override the standard line length of 60 characters.

Format:

.LL n

n specifies output line length not greater than 120
characters.

Usage:

The LINE LENGTH control sets the length for output lines
until the next LINE LENGTH control word is encountered. If
no LINE LENGTH control is included in a file, the standard
line length of 60 characters is used.

In the JUSTIFY/NO CONCATENATE mode, lines shorter than line
length are justified to length by blank padding.

In the CONCATENA~E mode, lines longer than line length are
spilled into the following line; lines shorter get words
from previous, or following lines, to approach line length.

Note:

This control acts as a BREAK.

Example:

.LL 50
Succeeding lines are no more than 50 characters in length.

146 SCRIPT - .LL

NO CONCATENATE Control

Purpose:

The NO CONCATENATE control stops words from shifting to or
from the next line.

Format:

.NC

Usage:

The NO CONCATENATE control word stops words from shifting to
and from the next line. There is a one-to-one
correspondence between the words on the input and output
lines. This control word is useful for sections of files
containing tabular information, or other special formats.

Note:

This control acts as a BREAK.

Example:

.NC
Concatenation is completed for the preceding line or lines,
but following lines are typed without moving words to and
from lines.

SCRIPT - .NC 147

NO FORMAT Control

purpose:

The NO FORMAT control stops the CONCATENATE and JUSTIFY
mode, causing lines to be typed iust as they appear in the
file~

Format:

I .NF

Usage:

The NO FORMAT control is a shorthand way to specify the two
control words: NO CONCATENATE and NO JUSTIFY. This stops
line justification and concatenation until a FORMAT,
JUSTIFY, or CONCATENATE control word is encountered. This
control is useful for sections of files containing tabular
information or other special formats.

Note:

This control acts as a ~REAK.

Example:

.NF
Justification and concatenation are completed for the
preceding line or lines, but following lines typed exactly
as they appear in the file.

148 , SCRIPT - .NF

NO JUSTIFY Control

Purpose:

The NO JUSTIFY control stops padding lines to cause right
justification of output lines.

Format:

.NJ I

Osage:

The NO JUSTIFY control word stops the padding of lines with
additional blanks. rf CONCATENATE mode is in effect, lines
are formed that approach the current line length but are not
forced to the exact length. The resulting lines resemble
the output usually produced by a typist or an MT/ST
(Magnetic Tape/selectric Typewriter).

Note:

This control acts as a BREAK.

Example:

.NJ
Justification is completed for the preceding line or lines,
but following lines are typed without inserting additional
blanks to pad the line.

SCRIPT - .NJ 149

OFFSET Control

Purpose:

The OFFSET control word provides a technique for indenting
all but the first line of a section.

Format:

.OF n

n specifies the number of spaces to be indented after the
next line is printed. If omitted. indentation reverts to
the original margin setting.

Usage:

The .OF control word may be used to indent the left side of
the printout. Its effect does not take place until after
the next line is printed. and the indentation remains in
effect until an indent or another offset control word is
encountered.

The .OF control may be used within a section which is also
indented with the .IN control. Note that .IN settings take
precedence over .OF. however. and any .IN request causes a
previous offset to be cleared.

If it is desired to start a new section with the same offset
as the previous section. it is necessary to repeat the .OF n
request.

Notes:

a. This control acts as a BREAR.

h. Two OFFSET control words without an intervening text
line constitute an error condition.

Examples:

a. .OF 10
The line immediately following the .OF control word is
printed at the current left margin. All lines thereafter
(until the next indent or offset request) are indented ten
spaces from the current margin setting.

h. .OF
The effect of any previous .OF request is canceled, and all
printout after the next line continues at the current left
margin setting.

150 SCRIPT - .. OF

PAGE Control

Purpose:

PAGE causes the output form to be advanced to the next page.

Format:

.PA n

n specifies the page number of the next page. If n is not.
specified, sequential page numbering is assumed.

Usage:

Whenever a PAGE control word is encountered, the rest of the
current page is skipped. The paper is advanced to the next
page. the heading and page number are typed, and output
resumes with the line following the PAGE control word. If
STOP was specified with the SCRIPT command, a carriage
return must be entered when the bottom of the page is
reached .•

Notes:

a. This control acts as a BREAK.

b. If the heading, line length, or other format parameters
are to be different on the new page, the appropriate control
words must appear before the PAGE control word.

Examples:

a. .PA
The rest of the current page
page number are typed in the
and output resumes.

is skipped. The
top margin of the

heading and
next page,

b. .PA 5
Regardless
that page
typed in
resumes.

of the number of the current page, the rest of
is skipped, the heading and page number 5 are
the top margin of the next page, and output

SCRIPT - .PA 151

PAGE LENGTH Control

Purpose:

The PAGE LENGTH control word specifies the length of output
pages in lines. The value specified overrides the standard
page length of 66 lines.

Format:

.PL n

n specifies the length of output pages in lines.

Usage:

The PAGE LENGTH control word allows varying paper sizes to
be used for output. If no PAGE LENGTH control word is
included in a file, 66 is the default value. This is the
correct size of standard typewriter· paper for terminals
typing eight lines per inch. Page length may be changed
anywhere in a file, with the change effective on the first
page started after the control word is encountered.

Note:

This control word acts as a BREAK.

Example:

.PL 51
Page length is set to 51 lines. This is the correct size
for a terminal typing six lines per inch.

152 SCRIPT - .PL

PAGE NUMBER Control

Purpose:

The PAGE NUMBER control word allows the user to control both
external and internal page numbering of the file being
printed.

Format:

I I
I • PN 1
I I

OFF
OFFNO
ON

OFF suppresses external page numbering, although internal
page numbering continues.

OFFNO suppresses both external and internal page numbering.

ON causes external page numbering to be resumed.

Usage:

.PN is used to control the page-numbering feature of the
system. If the OFF operand is specified, page numbering is
discontinued on the printout, although the page numbers
continue to be incremented internally. The OFFNO operand
discontinues page nurr'bering on the printout and stops the
internal incrementation of page numbers. When the ON operand
is specified, page numbering resumes from the last internal
page number.

Examples:

a. .pn off
No further page numbers will appear on SCRIPT output,
although the internal page count continues to be incremented
for each page printed.

b. .PN OFFNO
No page numbers will appear on SCRIPT output, and the
internal page count remains at its current setting without
further incrementation.

c. .PN ON
Page numbering on SCRIPT output resuroes using the current
internal page count; this count is incremented for each page
printed.

SCRIPT - .PN 153

READ Control

Purpose:

The READ Control word allows the user to enter a line from
the terminal during SCRIPT output.

Format:

.RD n

n specifies the number of lines to be read at the terminal.
If omitted, 1 is assumed.

Usage:

When the .RD control word is encountered during SCRIPT
output to the terminal, it acts as a BREAK, spins the type
head several times, and unlocks the keyboard for a line of
input. The line entered is ignored by the program, and no
formatting occurs on it. This facility is useful for adding
headings to form letters, etc.

As many .RD·S may be used as wanted; each results in a
separate line accepted at the terminal.

Note:

This control word acts as a BREAK.

Example:

.RD
When this control word is encountered during SCRIPT output,
the type head rotates and the keyboard is unlocked to allow
one line to be typed at the terminal.

154 SCRIPT - .RD

SPACE Control

Purpose:

The SPACE control word generates a specified number of blank
lines before the next typed line.

Format:

.SP n

n specifies the number of blank lines to be inserted in the
output. If omitted. 1 is assumed.

Usage:

The SPACE control word may be used anywhere in the file to
generate blank lines. If page end is reached during a SPACE
operation, remaining blank lines are inserted after the
heading on the following page. If DOUBLE SPACE is in
effect. twice as many blank lines are generated as
specified.

Note:

This control acts as a BREAK.

Examples:

a. .SP 3
Three blank lines are inserted in the output before the next
typed line.

h. .sp
A single blank line is inserted in the output.

SCRIPI' - • SP 155

SINGLE SPACE Control

Purpose:

The SINGLE SPACE control word cancels a previous DOUBLE
SPACE control word, and causes output to be singlespaced.

Format:

.SS

Usage:

Output following the SINGLE SPACE control word is
singlespaced. Since this is the normal output format, SINGLE
SPACE is included in a file only to cancel a previous DOUBLE
SPACE control word.

Note:

This control word acts as a BREAK.

Example:

.ss
Singlespacing resumes below this point in the file.

156 SCRIPT - .SS

TAB SETTING Control

Purpose:

The TAB SETTING control word specifies the tab stops to be
assumed for the following lines when converting the TAB
character generated by the TAB key into the appropriate
number of spaces.

Format:

.TB nCl) n(2) n(3) n(4) neS) I

neil specifies the column location of the (i)th tab stop:
the sequence must consist of increasing positive
values separated by one or more spaces.

Usage:

TAB characters generated by the TAB key entered into the
file during EDIT file creation are expanded by SCRIPT into
one or more blanks to simulate the effect of a logical tab
stop. The TAB SETTING control word specifies the locations
of the logical tab stops, this overrides the default tab
stops of 5, 10, 15, 20, 2S i, 30. 35, 40, 45, 50, 55" 60, 65,
10, 75.

A TAB SETTING control word without any tab stops specified,
results in reversion to the default tab settings. This
control word is useful for indenting the beginning of a
paragraph (remember a TAB causes a paragraph BREAK), or for
tabular information and diagrams.

Notes:

a. This control word acts as a BREAR.

b. The tab settings must be monotonically increasing,. Tab
settings that are not so ordered result in unpredictable
behavior.

Examples:

a. .TB 10 20 30 40
Tab stops are interpreted as columns 10, 20" and 30.

b. .TB
Tab stops revert to default values of 5, 10, 15, etc.

SCRIPT - .TB 157

TOP MARGIN (

Purpose:

The TOP MAR(
be skipped
standard va]

Format:

.TM

n specifief
output pc

Usage:

The specifj
succeeding (
page number
margin. If
file, the dE
always be gl

Note:

This control

Example:

.TM 3
Three lines
current pagE
second line

158

.trn 10

.ce
SCRIPT Example
.sp 2
.ds
This example will demonstrate some of the capabilitie
of the SCRIPT command. This file was created by
issuing:
.br
EDIT EXAMPLE SCRIPT
.br
Since the file did not previously exist, the terminal
was placed directly into the input environment. This
paragraph was double-spaced with the .OS control.
.5S
.sp
No BREAK was needed here, since the .SS (SINGLE­
SPACE) control acts as a break. Although this is
in FORMAT mode, tabular information can be included:
.sp

.sp

SPACE
SINGLE SPACE
DOUBLE SPACE

.SP

.S5
,.DS

.sp

.ss

.ds

The leading blanks caused each line to be handled
separately.
.sp
Use of the LINE LENGTH control allows space
to be left within a page for figures or drawings.
Naturally, it may take some experimentation for
finding how n;any paragraphs will fit next to a
figure •
• 11 30
.sp
The new line length must take affect
at a paragraph, since it acts as a BREAK. The
switch back to standard line length, usually 60,
also is a BREAK, and must end a paragraph. This
works only in FORMAT mode •
• 11 60
.nf
By switching out of FORMAT mode CAPTION
and doing some justification
by eye" fancier effects can be obtained. This also
takes some practice and experimentation •
• fi
.cp 5

Figure 11. Contents of a SCRIPT file

160 SCRIPT

PARAGRAPHS:
.br
If no space follows a paragraph heading., and if the
paragraphs are not indented, a BREAK is necessary in
FORMAT mode, to keep the heading line from being justified.

A few leading blanks are the easiest way to force
a BREAK and separate paragraphs. A line with only a blank
will also force a BREAK and a blank line, if the following
line also begins with a blank, as follows:

The CENTER control is handy for small figures
included in the text. A .CE in front of each line of
the figure is necessary" and note that leading or trailing
blanks count for figuring the length to be centered:
.sp
.ce

.ce
FORMAT

.ce

.ce

.ce
Figure EX.A
.sp

EXAMPLE n

E

To offset the caption it would be necessary to leave
trailing or leading blanks, which are counted as part
of its length:
.sp
.ce

.ce
Figure EX.A
.sp
The above caption has 14 trailing blanks, which move
it to the left. Leading blanks would move it to the right.

Figure 11 (cont.) Contents of a SCRIPT file ...

SCRIPT 161

SCRIPT Example

This example will demonstrate some of the capabilities of

the SCRIPT command. This file was created by issuing:

EDIT EXAMPLE SCRIPT

Since the file did not previously exist, the terminal was

placed directly into the input environment. This paragraph

was'double-spaced with the .DS control.

No BREAK was needed here, since the .S5 (SINGLE- SPACE)
control acts as a break. Although this is in FORMAT mode,
tabular information can be included:

SPACE .SP .sp
SINGLE SPACE .SS .ss
DOUBLE SPACE .DS .ds

The leading blanks caused each line to be handled
separately.

Use of the LINE LENGTH control allows space to be left
within a page for figures or drawings. Naturally, it may
take some experimentation for finding how many paragraphs
will fit next to a figure.

The new line length must take
affect at a paragraph, since
it acts as a BREAK. The
switch back to standard line
length, usually 60, also is a
BREAK, and must end a
paragraph. This works only in
FORMAT mode.
By switching out of FORMAT mode CAPTION
and doing some justification
by eye, fancier effects can be obtained. This also
takes some practice and experimentation.

Figure 12. SCRIPT output

162 SCRIPT

PARAGRAPHS:
If no space follows a paragraph heading, and if the
paragraphs are not indented. a BREAK is necessary in FORMAT
mode, to keep the heading line from being justified.

A few leading blanks are the easiest way to force a
BREAK and separate paragraphs. A line with only a blank
will also force a BREAK and a blank line, if the following
line also begins with a blank, as follows:

The CENTER control is handy for small figures
included in the text. A .CE in front of each line of the
figure is necessary~ and note that leading or trailing
blanks count for figuring the length to be centered:

FORMAT EXAMPLE n
E

Figure EX.A

To offset the caption it would be necessary to leave
trailing or leading blanks, which are counted as part Of its
length:

Figure EX.A

The above caption has 14 trailing blanks, which move it to
the left. Leading blanks would move it to the right.

Figure 12 (cont.) SCRIPT output

SCRIPT 163

SPLIT

Purpose:

The SPLIT command copies a specified portion of a given file
and appends it to a second file or creates a new file.

Format:

I I
I SPLIT I fnamel ftypel fname2 ftype2

labell label2
n1 < n2 >

eof

1 ,
1 I ,
fnamel ftype1 specifies the file from which a portion is

copied

fname2 ftype2 specifies the name of the file to which file1
is added

label1

label2

n1

n2

Usage:

an eight-byte alphameric label with the first
character nonnumeric, specifying the first
record to be copied

an eight-byte alphameric label with the first
character nonnumeric. specifying the item
after the last item to be copied

a decimal number specifying the item number of
the first item to be copied

a decimal number specifying the number of
items to be copied

The SPLIT command enables the user to copy a portion of
filel and to append it to file2. Filel and file2 cannot be
the same file. If file2 does not exist. it is created. The
files may have fixed-length or variable-length length
records. If file2 exists. and is a fixed-length record file.
file1 must also be a fixed-length record file.

Copying begins at either the first record containing the
alphameric string (labell), in the first eight bytes of a
record (label field) ,. or at the specified item number if the
parameter consists o~ all numeric characters.

If the last parameter is not provided, copying continues to
the end of file. If the last parameter is specified as an
alphameric label,. copying, once initiated, terminates
immediately before the first item having the alphameric
string, labe12, in the label field of a record. The extent
of copying may alternatively be specified by an integer
count of the number of items to be copied.

164 SPLIT

No copying is done if (1) labels are used for both starting
and stopping the copying and these two labels are identical,
(2) the initial label or item number cannot be found, or
(3) the number of items is specified as zero.

SPLIT searches all disks for the file. The new file is
placed on the same disk as the original file.

Responses:

~RONG NUMBER OF PARAMETERS
The specified number of parameters given is not five or six.

INVALID LIMIT
One of the limit
character numeric,
nonnumeric,.

EOF REACHED

fields
and

is
one

specified
of the

with
other

the first
characters

The end of filel has been reached with or without copying
being initiated.

FILE NOT CHANGED
The command has been completed without any writing of files.

FILE MODIFIED
The command has been successfully completed, and at least
one item has been copied.

Any error encountered in the reading of filel terminates the
command after printing one of the following responses:
TYPE NOT FOUND
DISK ERROR
ILLEGAL MODE
NONSTANDARD FILE
OPEN FOR WRITING
OPEN FILE LIMIT

Any error encountered in the writing of file2 terminates the
command after printing one of the following responses:
BAD OUTPUT TYPE
ERROR ON DISK
OPEN FOR READ
TOO MANY FILES
DISK FULL
READ ONLY
FILE TYPES INCOMPATIBLE .••• FILES NOT CHANGED

Examples:

a. SPLIT FILE DATA Fl DATA q5 12
The twelve items beginning with the 45th item are extracted
from the FILE DATA file. If the Fl DATA file eXists, they
are appended to it.. If the Fl DATA file does not exist, it
is created and they become its contents.

SPLIT 165

b~ SPLIT ABLE SYSIN ABLEl SYSIN BEG 20
The 20 items beginning with the item which has a label field
containing BEG are extracted from the file ABLE SYSIN and
appended to the file ABLEl SYSIN if it exists, or become the
contents of the file ABLE1 SYSIN if it doesn't exist and
must be created.

c. SPLIT PROG SYSIN PROGEND SYSIN END
If PROGEND SYSIN does not exist, items beginning with the
item with END in the label until the end of file PROG SYSIN
are used to create a new file called PROGEND SYSIN: if
PROGEND SYSIN does exist. those items are appended to it.

Error Messages:

The SPLIT command diagnoses all errors which occur and
prints a response message indicating the nature of the
error. A11 returns from SPLIT are with general register 15
equal 0, indicating no error.

166 SPLIT

STATE

Purpose:

The STATE command tests whether a file exists.

Format:

STATE I filename filetype <filemode>I

Usage:

When STATE is issued for a file which exists, the command
returns with a code of zero. If the file does not exist, a
nonzero error code is returned.

Error Codes:

E(OOOOl)
File specified does not exist.

E(00004)
First character of filemode illegal.

STATE 167

UPDATE

Purpose:

The UPDATE command makes changes in a snecified file
according to control cards in a second file.

Format:

---~------------------~-------------------------------.-------~----~
,UPDATEI filenamel <filetypel <filenaroe2 <filetype2»> « options »1

filenamel is the name of the file to be changed.

filetypel is the type of the file to be changed. If
omitted, SYSIN is assumed.

filename2 is the filename of the file containing the UPDATE
control cards. If omitted, filename1 is assumed.

filetype2 is the filetype of the file containing the UPDATE
control cards. If omitted, UPDATE is assumed.

Options:

P

SEQ8

INC

specifies that the file incorporating the changes
is to replace the original file. If omitted, the
old file is retained unchanged, and the new file
receives a filename consisting of a period (.l,
followed by the first seven characters of the
original filename.

specifies that sequencing is to be done on all
eight characters in columns 73 to 80.

specifies that the sequence numbers in columns 73
to 80 of the UPDATE deck are to be placed in the
new SYSIN deck.

Control Cards:

Changes are made in the original file according to the
UPDATE control cards in the UPDATE file. The format of
these cards is shown below:

1./ S segnol increment label I

S

segnol

168

specifies that the new file is to be sequenced in
columns 76-80. If this card is included in the
UPDATE file" it must be the first card.

specifies the starting sequence number.

UPDATE

increment specifies the increment to be added to the
sequence number for each item.

label is a three-character label to be placed in
columns 13-15.

I ./ D segno1 segno2 I

D

segno1

segno2

specifies that cards are to be deleted from the
original file,.

is the (original) sequence number of the first
card to be deleted.

is the sequence number of the last card to be
deleted. If omitted, only one card is deleted.

I ./ I segno1 I

I

segnol

specifies that cards are to be inserted in the
original file. The inserted cards must follow
this./ I card immediately in the UPDATE file.
All cards, until the next control card, are
inserted.

specifies the sequence number of the item after
which the cards are to be inserted.

I ./ R segnol segno2
----------~-------~------

R

segnol

segno2

Usage:

specifies that cards are to be inserted in the
original file in place of cards now there.

specifies the first card to be replaced.

specifies the last card to be replaced. The cards
to be inserted in place of those deleted (not
necessarily the same number) must follow the ./ R
card immediately in the UPDATE file.

UPDATE modifies the specified file according to control
cards in a second file. The filetype SYSIN is assumed for
the file to be modified, if no other is specified,. The
control-card file normally has the same name as the file to
be modified, and has the filetype UPDATE. It is referred to
as the UPDATE file, with the understanding that both a
different filename and filetype may be specified with the
UPDATE command. Note that if different identifiers are

UPDATE 169

specified, the filetype of the file to be modified must also
be included. The options must always be the last arguments
specified if they are to be included.

UPDATE generates two files during execution: "filename
UPDLOG PS" and "filename INTER PS" where filename is that of
the original file in both cases. The UPDLOG file contains a
record of the control cards in the UPDATE file, items added
to and deleted from the original file, and error messages.
A new UPDLOG file is generated on each execution, replacing
any existing UPDLOG file with the same filename.

The INTER file receives the records of the original file as
changes are made. At the end of execution, the identifiers
of the INTER file are changed to one of two formats. If (P)
is specified, the original file is erased, and the INTER
file receives its filename and filetype. If (P) is not
specified, the original file remains unchanged on the
permanent disk. new file receives the same filetype and
filemode, and a filename composed of a period (.) plus the
first seven characters of the original filename.

The control cards of the UPDATE file always refer to the
items of the original file by the sequence numbers existing
before any changes in columns 16-80. If no sequence numbers
exist, issue a pr~liminary UPDATE command with only the ./ S
control card in the UPDATE file. If the SEQ8 option is
specified, the sequence numbers referred to are in columns
13 to 80. Sequence numbers will be assigned. The control
cards must always be identified by a ./ in columns 1 and 2,
but any number of blanks may separate the other fields.
Sequence numbers may be expressed with up to five digits,
unless SEQ8 is specified. Leading zeros are not necessary.
Any sequence numbers in cards to be inserted in the file are
ignored unless INC is specified" in which case this number
is placed in the new SYSIN. If the ./ S control card is
omitted from the UPDATE file, and INC is not specified,
asterisks are placed in columns 13-80 of all cards in the
new file which were added or replaced, to indicate where
changes were wade.

Changes are made in order in a single pass through the file.
If control cards specify changes that are not in order., an
error is recorded, and no changes are made.

Responses:

INTERMEDIATE FILE EXISTS.
The file "filename INTER PS" already exists for the filename
specified. ERASE or ALTER this file, and issue the UPDATE
command again.

FATAL ERROR 1
A control card was detected in the UPDATE file whose second
field was not the character R, II' D, or S.

170 UPDATE

FATAL ERROR 2
The file to be changed is not on-the permanent disk.

READ ERROR or WRITE ERROR
An error occurrerl while reading or writing to the permanent
disk.

PARAMETER ERROR
No parameters were entered with the command.

filename filetype NOT FOUND
The file identified in the response was not found in the
user's file directory.

ERRORS ENCOUNTERED. SYSIN REMAINS
This response is issued for
conditions. It indicates control
CMS command environment, and that
to the files.

Example:

UPDATE RET

UNCHANGED.
all of the above error
is about to return to the
no changes have been made

Assume that the file RET SYSIN P5 contains these items:

RET CSECT RETOOO10
BALR 12,0 RETOOO20
USING *,12 RETOOO30
SR 15(,15 RETOOO40
END RETOOO50

Assume that the file RET UPDATE P5 contains

./ S 100 25 RTN

./ I 10
ENTRY RETCODE

./ R 40
L 15,RETCODE
BR 14

RE'l'CODE DS F

As the command is executed, the file RET INTER P5 is
created. As items are placed into it, RTN is placed in
columns 73-75, and sequence numbers, beginning with 00100
and incrementing by 25, are placed in columns 16-80.. On
completion, the file becomes .RET SYSIN P5, and contains

RET CSECT
ENTRY RETCODE
BALR 12,0
USING *1,12
L 15,RETCODE
BR 14

RE'l'CODE DS· F
END

UPDATE

RTN00100
RTN00125
RTN00150
RTN00175
RTN00200
RTN00225
RTN00250
RTN00275

171

RET UPDLOG P5 is also created, containing the control cards.
and all items added or deleted.

Error Messages:

E(00002) FATAL ERROR 3
An error occurred while attempting to change the
identification of the INTER file. Enter the command

ALTER fn1 INTER * fn1 filetype *
where fn1 is the filename of the file changed, and filetype
is the desired filetype. If another error occurs" reenter
the UPDATE command.

172 UPDATE

EXECUTION CONTROL

Several commands are available to the user for execution
control (that is j , the loading and running of programs).
Files (or programs) which are to be loaded and run under CMS
must reside on disk and must be either in relocatable object
code form or in core-image form. A program in relocatable
object code form is one whose address references can be
modified to compensate for the relocation occurring when the
program is loaded into core. A program in core-image form is
one which represents a copy of the contents of core which
would be executable. All of its address references have
been resolved and it can no longer be relocated.

output from the assembler and all compilers supported under
CMS is relocatable object code. Unless an option to the
contrary is specified by the user i, this output is created as
a file on the user's permanent disk and assigned a filetype
of TEXT. All files, whose filetype is TEXT, are assumed to
consist of relocatable object code and are processed
accordingly. To load such files into core, either the LOAD,
USE., or REUSE commands may be used. The LOAD command reads
the specified file(s) from disk and loads them into core,
relocating the programs and establishing the proper linkages
between program segments. Several options may be specified
in the LOAD command r, which allow the user to specify text
libraries to be searched for missing subroutines, to request
that execution of the loaded program(s) begin, etc. USE
and/or REUSE should be issued only after a LOAD command has
been issued. The purpose of the USE command is to load the
specified TEXT file(s) into core, and to establish linkages
between these programs and previously loaded programs. The
REUSE command performs the same function as the USE command,
but has the additional effect of changing the default entry
point of these programs to that of the first filename
specified in the REUSE command.

A core-image copy of any information currently residing in
core may be created by issuing the GENMOD command,. This
command creates a file on the user's permanent disk that is
a copy of the contents of core between the specified
locations, and assigns a filetype of MODULE to this file.
All files whose filetype is MODULE are assumed to be in
core-image form, and are processed accordingly. To load
such files into core, the LOADMOD command is used. Since
address references do not have to be resolved, the LOADMOD
process is faster than the LOAD process for a given program.

After files have been loaded into core by the LOAD,. USE,
REUSE, or LOADMOD commands, execution may be begun by
issuing the START command. Execution may also be initiated
by specifying the XEQ option with LOAD.

The $ command is used to load and start a specified file,
depending on its filetype, as follows: (1) if a filetype of
EXEC is found, the file is assumed to consist of one or more

Execution Control 113

CMS commands, and the EXEC command is called to execute
these commands; (2) if a filetype of MODULE is found, the
LOADMOD command is called to load the file into corel' and
then the START command is called to begin execution; or (3)
if a TEXT filetype is found, the file is loaded into core by
a LOAD command, and START is called to begin execution.

The function of the GLOBAL command is to specify two types
of libraries: libraries containing TEXT files which are to
be searched by the LOAD, USE., or REUSE commands for missing
subroutines and undefined names; and libraries containing
macro definitions, which are to be searched by the assembler
for resolving undefined macros. If the GLOBAL command is
used" it should be issued before the LOAD, USE, REUSE, or
ASSEMBLE commands to which it refers.

114 Execution Control

EXEC

Purpose:

EXEC executes one or more CMS commands contained
specified file. allowing a sequence of commands
executed by issuing a single command.

Format:

EXEC filename <arg1 ••• argN>1

in a
to be

filename specifies the filename of a file containing one or
more CMS command to be executed. The filetype must
be EXEC.

argI, •• '. argN are the arguments to replace the numeric
variables in the file wfilename EXECft •

Usage:

EXEC executes the sequence of commands that are specified in
the file ftfilename EXEC w• This file must be in card-image
form, and must consist of one CMS command per card image in
the same format as the command is entered at the terminal.
The filetype for the specified file must be EXEC. EXEC
files can be created by the EDIT or LISTF commands, or by a
user·s program.

Each CMS command in the EXEC file can have from one to
thirty numeric variables. A numeric variable is made up of
an ampersand (&) followed by an integer ranging from one to
thirty. (that is, &1&2 ••• &30). Before the command is
executed" each variable is temporarily replaced by an
argument specified when the EXEC comroand was issued. For
example, each time an &1 appears as a variable in an EXEC
line. t:le first argument specified with the EXEC command
temporarily replaces the &1, the second argument specified
with the EXEC command replaces &2. and so on, to argument N
of the EXEC command.

If the double quotation mark (ft) is used in place of an
argument,. the corresponding variable (&N) is ignored in all
the commands which reference that variable. If the
specified EXEC file contains more variables than arguments
given with the EXEC command, the higher numbered variables
are assumed to be missing, and are ignored when the commands
are executed.

Arguments can be concatenated to the right side of any word
in an EXEC line. For example, the EXEC line LISTF ABC&1
FORTRAN&2 would result in LISTF ABCXYZ FORTRAN, if arg1 is
XYZ and arg2 is unspecified. Use of the double quote (W)
for arg1 would cause the variable to be ignored leaving

EXEC 175

LISTF ABC FORTRAN. If the single quotation mark (t) is used
in place of an argument, the entire concatenated form is
deleted. For example, in the above EXEC line if arg1 is
specified with a double quote ("), and arg2 is specified
with a single quote (.), the line would be just LISTF ABC.

The EXEC command is completely recursive (that is, an EXEC
file can contain other EXEC commands in its sequence of
commands). The recursiveness is limited by core size--each
level of recursion requiring about 1200 bytes of free
storage for data. This limits the depth of recursion to
approximately 16.

Notes:

a. Errors resulting from issued commands are not fatal and
do not cause the sequence of commands to be terminated.
This behavior may be modified by the EXEC control word
&ERROR (see "Special Features of EXEC" below).

b. Each EXEC file may contain a maximum of 4095 EXEC lines.

c. This version of the EXEC command is completely
compatible with EXEC files created for use with the previous
version of the EXEC command, except that in this version
only one command is allowed per line. This compatibility
may be removed in a later version to save space in the CMS
nucleus.

d. If the EXEC command is issued from an EXEC file, EXEC
must be ~pecified explicitly, as the search for commands
does not include the EXEC filetype.

Response:

As each CMS command in the EXEC file is processed,. it is
typed at the terminal along with the time" unless the
&TYPEOUT OFF control word has been specified (see "Special
Features of EXEC" below).

Examples:

a. In Figure 13, the command
LLHS is a file whose filetype
the &1 in all CMS commands in
FORTRAN is compiled, and the
executed. Note that each CMS
executed.

EXEC FORTCLG LLHS is issued.
is FORTRAN, and LLHS replaces
the EXEC file·. The file LLHS

file LLHS TEXT is loaded and
command is typed before it is

116 EXEC

printf fortclg exec

FORTRAN &1 &2
LOAD &1 &2 (XEQ)

Ri T=O.45/1.23 01.24.45

fortclg llhs
01.29.50 FORTRAN LLHS
01.29.55 LOAD LLHS (XEQ)
EXECUTION BEGINS.
APRIL 1968 DATA 5.320
Ri T=O.55/1.44 01.30.45

1.920 5.600

Figure 13. Example of an EXEC file to compile, load, and
execute a FORTRAN program

b. In Figure 14, the FORT EXEC is created by EDIT. The
only command placj~d in the file is FORTRAN &1 (PRINT). The
file CMS EXEC was created earlier with the LISTF command
(see LISTF), and contains the sequence of FORTRAN files to
be compiled. The file CMS EXEC is typed by issuing the
PRINTF command. The EXEC command is issued specifying the
filename CMS and the two arguments EXEC and FORT. Each file
identifier in eMS EXEC is preceded by two symbolic
arguments, &1 and &2. The ~1 is replaced by the first
argument specified with the EXEC command. which is EXEC" and
the &2 is replaced by the second argument specified, which
is FORT. The sequence of CMS commands generated in core by
EXEC from the file CMS EXEC are then executed, the first of
which is

EXEC FORT w FORTRAN P5 001.

This command executes the sequence of commands in the file
FORT EXEC, and temporarily replaces the numeric variable &1
from FORT EXEC with the argument W. The arguments FORTRAN,
PS, and 001 are ignored because there are no variables &2,
&3, and &4 for them to replace. As soon as the sequence of
commands in FORT EXEC are completed. the next command in the
file CMS EXEC is executed. This sequence continues until
all commands are executed in the CMS EXEC file.

EXEC 177

edit fort exec
INPUT:
fortran &1 (print)

EDIT:
file
R; T=0.55/1.43 01.30.50

listf * fortran (exec)
R; T=0.40/0.50 01.31.00

printf cms exec

&1 &2 W
&1 &2 SUB2
&1 &2 A
&1 &2 SUBB

FORTRAN
FORTRAN
FORTRAN
FORTRAN

R; T=O.55/3.21 01.32.15

ems exec fort
01.32.58 EXEC FORT
01.33.00 FORTRAN W
01.33.10 EXEC FORT
01.33.12 FORTRAN SUB2
01.33.15 EXEC FORT
01.33.17 FORTRAN A
01.33.19 EXEC FORT
01.33.23 FORTRAN SUBB
Ri T=1.50/1.80 01.33.27

P5
P5
P5
P5

W

SUB2

A

SUBB

001
001
001
001

FORTRAN
(PRINT)
FORTRAN

(PRINT)
FORTRAN

(PRINT)
FORTRAN

(PRINT)

P5 001

P5 001

P5 001

P5 001

Figure 14. The file FORT EXEC is created, the file c~s E¥~C
is typed out_ and then an implied EXEC is issued to nest EXECs

178 EXEC

Error Messages:

E(OOOOl) FILE DOES NOT EXIST
The EXEC file does not exist. The EXEC command has
terminated. Check to see if the filename specified has a
filetype of EXEC.

E(00003) FILE HAS WRONG RECORD SIZE
The specified EXEC file does not contain 80-character
records. The command is terminated.

E(00006) WAITRD OR RDBUF ERR
This error would result if an EXEC file was erased after the
EXEC command had been successfully begun. For Example, with
the procedure shown below the file ABCD EXEC would be
erased, and the attempt to read the EXEC line containing
PRINTF would result in the error. The EXEC command is
terminated.

printf abcd exec
ERASE ABCD EXEC
PRINTF XYZ&2
R=0.02/0.13 03.45.14

exec abcd
ERASE ABCD EXEC
~AITRD OR RDBUF ERR
E(00006) T=O.05/0 .• 08 03.46.10

I I I E (xxxxx) I"
The error code xxxxx was generated by the CMS command issued
from the EXEC file. If E(-0003) occurs, the issued command
was invalid.

SPECIAL FEATURES OF EXEC

A line of an EXEC file is either a CMS command or an EXEC
control line. EXEC control lines control the sequence of
commands to be executed, specify what is to be typed on the
console during the execution of the EXEC command, or provide
input to other command programs, or to the EXEC command
itself.

LABELS

EXEC lines, containing either a CMS command or an EXEC
control, may be identified with a label,. All EXEC labels
have a dash as the first character. If the first word of an
EXEC line begins with a dash (-) that word is assumed to be
a label.. Labels are used to control the sequence of EXEC
lines executed (see "EXEC Control Words", &GOTO and &LOOP).

EXEC WORDS (&WORDS)

EXEC lines may contain words which begin with an ampersand

EXEC 119

(&). A word beginning with an ampersand may be a numeric
variable, a keyword (that is, a symbolic variable), or a
control word. A numeric variable consists of an ampersand
followed by an integer or an asterisk C*). A keyword word
consists of an ampersand followed by a string of not more
than seven characters, at least one of which is not an
integer. Control words have the same form as keywords and
are defined under wEXEC Control Words w• Numeric variables
and keywords are substituted before the EXEC line is
interpreted.

Numeric Variab1es

Numeric variables are substituted for any arguments which
are to be specified when the EXEC command is issued,. The
numeric variable &0 is replaced by the filename of the
current EXEC file. The numeric variable &n is ignored when
n is negative or greater thatn 30. or when n is greater than
the number of arguments supplied when the EXEC command. is
issued.. The variable &* is interpreted to mean all
arguments specified~ When it is included in a CMS command,
the command is executed once for each argument specified.
For example. the command line ERASE &* * would cause the
erasing of all files whose filename is the same as one of
the specified arguments. The variable &* may also be used
in an &IF or &LooP condition (see WEXEC Control Words W).

Keyword Var~ables

The value substituted for a keyword may be one of two types:
specified in an EXEC line by the user;, or implied if the
keyword is a special keyword,.

EXEC-Set Keywords

A number of keywords have been defined to have special
meaning and have their values set in a special way,. These
words and their values are described below .•

&LINENUM has the value of the current EXEC line number plus
one.

&INDEX1 ••• &INDEX9 are used as indices and initially have the
value +1. Indices 1-9 may be reset or incremented
by an EXEC line. These indices may be set to an
integer value in the same way as the value of any
keyword is set. An index may be incremented or
decremented by specifying the index and the
increment in an EXEC line. For example:

180

&INDEX5 = 30915 sets &INDEX5 to 30915.
&INDEX1 -50 adds -50 to the value of &INDEX1 .•

Indices are
recursion.

local to

EXEC

the current level of

&INDEXO has as its value the return code number in register
15 from the previous CMS command,.

&INDEX has as its value the number of arguments given when
the EXEC command was issued,.

&GLOBALO ••• &GLOBAL9 are used for communication between
levels of EXEC recursion and are set and
incremented in the same way as &INDEX1 ••• &rNDEX9.

&GLOBAL has as its value the level of recursion.

user-Specified Keywords

The value of a keyword may be specified by an EXEC line of
the form

&KEYWORD = VALUE
&ABLE = 12345

which defines the keyword &KEYWORD to have the value VALUE
and &ABLE to have the value 12345,.

Keywords can be redefined as often as desired.

EXEC Control Words

The EXEC contro1 words described below can be used to
provide a versatile and flexible facility for controlling
the execution of commands and for defining a user-oriented
command environment. EXEC control words appear in EXEC
lines. which can be interspersed with CMS commands.

I &ERROR t
I I

action I
&CON-rINUE ,

where action is any EXEC line without a statement label.
Action is executed immediately upon an error return from a
subsequent C~S command. If action is not given, &CONTINUE
(see below) is asswned. An error in execution of action,. if
action is a CMS command. results in an exit from this level
of EXEC with error code of 11.

EXEC 181

I &IF I condition action

where -condition consists of the three parameters shown below

&*
S$
anything

EO
NE
GT
LT
GE
LE

S*
&$
anything

and where action is any EXEC line without a label. If the
condition is satisfied!, the action is executed.. The
comparison specified by the second argument of condition is
made between the first and third arguments. &$ is
interpreted as wany of the symbolic arguments·. Thus, the
EXEC line

SIF &$ EO XYZ &PRINT HI

would cause -HI- to be typed if at least one of the
arguments specified when the EXEC command was issued was
XYZ. Similarly, &* is interpreted as Wall of the supplied
arguments w • (See below for a description of &PRINT,.)

A numerical comparison is made only if both the operands are
numeric. For example. the EXEC line

SIF 017 EQ 17 'PRINT HI

would cause the typing of wHIw. Otherwise, the comparison
in a condition is a logical comparison.

An &IF can have another &IF as its action; these may be
nested to level 3.

I &EXIT In'

&EXIT causes an EXI~ to the next lower level of recursion
with an error code of n.. If n is not given, a normal exit
with a code of 0 results. If n is negative and if EXEC was
called from the CMS command level, the absolute value of n
is returned. If this EXEC command was called from a
previous EXEC command, a negative value of n is returned as
the error code in register 15.

182 EXEC

'QUIT I n I
I ON I
I OFF I

'QUIT n is similar to &EXIT n. except that &QUIT n returns
to level O. the CMS command level. regardless of the level
of recursion of EXEC commands.

&QUIT ON sets the return level for a subsequent &QUIT
control to a level of recursion one higher. Thus" if &QUIT
ON is issued twice and if the current level of recursion is
5, an &QUIT n would cause a return to level 2 with an error
code of n.

'QUIT OFF resets :he return level to level 0, the CMS
command level.

I &SKIP ~ 1
I I n

&SKIP causes n lines in the file to be skipped.
next EXEC line to be executed will be n lines
current line. If n>O. the next EXEC line to
will be n+l lines after the current line.

I I
I &GOTO f
I I

TOP I
label I
EXIT I

If n<O, the
before the

be executed

&GOTO controls the point from which execution will continue.
&GOTOTOP causes sequential execution of EXEC lines to be
continued at the beginning of the EXEC file.

&GOTO EXIT is identical to &EXI-r 0 and causes a return from
the current leve.l of EXEC.

&GOTO label searches the EXEC file, starting from the
present EXEC line to the end of the file" then going to the
beginning of the file. and finally going back to the present
line lo~ation, looking for the first EXEC line beginning
with the specified label. (See label description under
·Special Features of EXEC·.)

I &LooP I
I ,

label
nl

condition
n2

, ,
&LOOP causes looping either to and including the labeled

EXEC 183

line,. or through the number of lines specified by nl.
beginning with the next line.

Looping continues either until the condition is satisfied
or for n2 times.. Condition is specified the same way as
wi th the &IF control word and is tested before looping .•

Loops may be nested to a depth of 4. The numbers nl and n2
must be less than 4096.

I &COm'INUE I

&CONTINUE as an EXEC line is ignored. It may be useful with
'GOTO or &LOOP and is the default action for &ERROR ..

where:

&TYPEOUT I
I
I
I
I

ALL TIME
ON NOTlME
ERROR
OFF
NOEXEC

PACK I
NOPACl{ I

I
I
1

ALL types all eMS command lines and EXEC control lines.

ON types all CMS command lines but suppresses the typing of
EXEC control lines.

ERROR types only CMS command lines which result in an error;
EXEC control lines are not typed .•

OFF suppresses the typing of all EXEC lines.

NOEXEC is the same as OFF and is included for compatibility
with EXEC files created with the previous version of
the EXEC command.

TIME causes time of day to precede each CMS command line
typed.

NOTIME suppresses the typing of the time of day with each
CMS command line.

PACK removes excess blanks from typed lines,.

NOPACK suppresses the removal of excess blanks from typed
lines.

184 EXEC

&TIME TYPE
ON
OFF

&TIME TYPE types the time since the previously typed time.

&TIME ON types the time message after typing each CMS
command.

&TIME OFF suppresses the typing of the time after each CMS
command.

I 'SPACE I
I I

1 I
n t

&SPACE types n carriage returns at the console.

I &PRINT I line I

&PRINT prints line on the typewriter console. All keywords,
symbolic arguments, etc., are substituted into the line, •. Any
word or words that exceed eight (8) characters are left
justified and truncated on the right.

I &COMMENT , line I

&COMMENT is used to annotate the EXEC file.
during execution.

I &ARGS I<argl ••• argN>

It is ignored

&ARGS is used to redefine the numeric variables &1 .. I •• &n with
the values specified by argl., •• argN. &INDEX is redefined
with. the value of the current number of arguments.

&READ I 1 I
I n I
I argsl

&READ causes a read to the typewriter console.

If n is specified, the next n EXEC lines are read from the
console and executed immediately. These lines must be
entered as commandsas if they were included in the EXEC

EXEC 185

file,. since they are executed in the same way. Reading
stops and the next EXEC line is obtained from the EXEC file
either when n lines have been read, or when &GOTO. &SKIP.
&LOOP. &EXIT, or &QUIT are typed. Reading may be reset by
entering &READ.

If ARGS is specified, one line is read from the console.
This line will be scanned and used to redefine the numeric
variables. iINDEX is redefined to the number of arguments
read. This is the only way to read without entering a
command.

Only the first 72 characters on a line are read.

, iSTACR I .Ell:Q
I I LIFO

line ,
I

&STACK stacks line in the input buffer" substituting for
keywords and variables. Subsequent &READ obtains lines which
were stacked in this way.

&STACK can be used to specify input or EDIT requests to
EDIT, or DEBUG requests to the Debug environment when it is
entered on purpose (that is. by a breakpoint or the DEBUG
command). iSTACK with a blank line is executed as a null
line.

FIFO specifies that the lines
First-In-First-Out order. LIFO specifies
stacked in a Last-In-First-Out order.

I &BEGSTACI< I ~IFO 1
I I LIFO I

line 1
line 2
line N
&END STACK

are stacked in
that the lines are

&BEGSTACK stacks line 1 through line N, literally without
truncation and without substituting for numeric variables or
keywords,.

This sequence may also be used to specify input or EDIT
requests to the EXEC command" where a line of "#file" causes
the Edit environment of EDIT to be entered from the Input
environment and writes the file on disk. THis sequence may
also be used to specify DEBUG requests to the DEBUG
environment when that environment has been entered on
purpose (that is, via a breakpoint or the DEBUG command).

186 EXEC

FIFO and LIFO are as explained under &STACK.

I &SET I action I

&SET has been included for compatibility with old EXEC files
that used the control words ERR and TYPEOUT or actions .•
&SET may later be removed as an EXEC control word.

Notes on EXEC Control Words

a. All numeric variables,. keywords. EXEC control settings.
and limitations (for example. maximum depth of loop nesting)
are local to the current level of EXEC, unless otherwise
noted.

b. Any EXEC control word may be abbreviated by a sufficient
number of characters to distinguish it from other control
words. The following precedence order is observed: ERROR;.
EXIT. SKIP,. SPACE;, STACK I' SET, TYPEOUT, TIME, other control
words, oth~r keywords. Keywords cannot be abbreviated .•

c. An error from a eMS command does not cause an exit from
the level of EXEC.

d. When EXEC is entered~ the assumed state of the controls
are &ERROR, &CONTINUE,. &TIME OFF, and &TYPEOUT ON TIME PACK.

e. If an EXEC line specifies an
error code of E(-0003) is returned.
terminated.

invalid CMS command,; an
The EXEC command is not

Errors from EXEC Control Words

E(OOOOl)

E(00002)

E(00003)

E(OOOOIl)

E(00005)

E(00006)

E(OOOOS)

E(OOOlO)

E(00011)

File does not exist .•

&SKIP or &GOTO error.

File has wrong record size.

Keyword or argument error.

Exceeded maximum depth of loop nesting.

Wai trd or Rdbuf error .•

Illegal form of condition.

Error in &GLOBAL or &INDEX usage.

Error occurred in attempt to execute &ERROR's
action ..

EXEC 187

PROFILE EXEC

The PROFILE EXEC feature allows a user to set up his own
operating environment within CMS.. When eMS is IPL' ed and
the first CMS command is entered,. an automatic search is
made for a file with a filename and filetype of PROFILE
EXEC. If such a file exists, it is automatically executed
before the first CMS command entered is executed--thereby
saving the user from entering any repetitious commands he
may be entering each time he uses CMS.

PROFILE EXEC is a standard EXEC file as described in the
preceding sections and,. as such.. may contain any valid
EXEC-type statements. Its only difference is in its name,
which has a special meaning that causes this automatic
execution.

Examples

a. A PL/I user would have to use the GLOBAL T PLILIB
statement each time he was on the system so that the PL/I
library would be used rather than the FORTRAN libraries.
This PROFILE might be created as follows:

edit profile exec
NEW FILE.
INPUT:
global t plilib

EDIT:
file

b. A user
characters'
EXEC:

who wanted to redefine
each time might set up

his LINEND and BLIP
the following PROFILE

edit profile exec
NEW FILE.
INPUT:
&typeout off
linend !
blip *
EDIT:­
file

Note. This automatic execution
LOGIN NOPROFas the very first
wControl Commands·).

188 EXEC

may be avoided by issuing
CMS command (see LOGIN under

GENMOD

Purpose:

The GENMOD command is used to generate non-relocatable
core-image files.

Format:

GENMOD I entry1 <entry2> (optionl .••• optionN) 1

entry1 specifies an entry point or a control section name
indicating the starting core location from which the
core-image copy is to be generated. It is also the
filename assigned to the newly generated file.

entry2 specifies an entry point or a control section name
indicating the ending core location from which the
core-image copy is to be generated.

Options:

NOMAP specifies that a load map is not to be contained in
the core-image file,.

P2 specifies that the MODULE file is to have a mode of P2.

Usage:

The GENMOD command causes a file to be created which is a
copy of the contents of a specified portion of core.. The
LOAD, USE, or REUSE commands will have been issued prior to
the GEMMOD command to load into core the file or files of
which a non-relocatable core-image copy is to be created.
The newly created file is placed on the user's permanent
disk and is assigned a filename of the first operand
specified in the GENMOD command, a filetype of MODULE, and a
filemode of Pl unless the option P2 was specified, in which
case the filemode is P2~

This file is in core-image form and is a copy of the
contents of core from the first entry point to the second
entry point specified in the GENMOD command. If only one
entry point is specified, the core-image file consists of a
copy of the contents of core from the first entry point
specified to the next available load location. (The next
available load location is indicated by a pointer which is
updated after each LOAD, LOADMOD, USE, or REUSE command is
issued.)

Before the core-image file is written, undefined symbols'are
defined to location zero and common is initialized. The
undefined symbols are not retained in the MODULE file as
being unresolved; therefore, once the MODULE is generated,

GENMOD 189

those references can not be resolved.

Notes:

a. Any f.iles existing on the permanent disk with a
filetype of MODULE and the same filename as that specified
in the GENMOD command will be erased before the new file is
created.

h. To load into core any files which have been created by
the GENMOD command, the LOADMOD command should be used. If
the MODULE file is to be loaded into core and executed and
that MODULE file was generated with the (NOMAP) option,
LOADMOD can not be used; instead, the MODULE's filename must
be issued as a command.

c. The MODULE file contains a load reap of the core-image
unless (NOMAP) is specified.

d. A MODULE file without a load map requires less disk
space.

Responses:

None.

Examples:

a. GENMOD FIRS~
Assuming that a file which containing an entry point FIRST
has been loaded into core prior to issuing this command, the
above example causes a core-image file to be created on the
user's permanent disk. This file consists of the contents of
core from entry point FIRST to the next available load
lQcation and a load map. It has an identifier of FIRST
MODULE Pl.

b. GENMOD ABC DEF (NOMAP)
This example creates a file on the user's permanent disk
with a filename of ABC~ a filetype of MODULE, and a filemode
of Pl. The file is a copy of the contents of core from entry
point ABC to entry point DEF. A load map is not included in
the MODULE file.

Error Messages:

E(OOOOl) NO -entryl- ~ODULE
This message indicates that the entry point(s) specified
cannot be located in core. Check to see that these entry
points exist and reis~ue the command.

E(00002) DISK ERROR
An address has been generated outside the bounds of core
storage assigned to the user. Reissue the command.

190 GENMOn

E(00003) DISK ERROR
A disk malfunction has occurred. Reissue the GENMOD
command. If the message persists, there is probably a disk
hardware problem.

E(00004) DISK ERROR
An attempt to close the file after writing it out has not
been successful. Issue FINIS and then reissue the GENMOD
command.

E(OOOOS) DISK ERROR
An illegal second character has been encountered for
filemode. Reissue the GENMOD command .•

E(00006) DISK ERROR
The system has attempted to close the file prior to opening
it. Reissue the GENMOD command.

E(00013) DISK ERROR
The user's disk is full" and the core-image file cannot be
created. Erase one or more of the unneeded files and
reissue the GENMOD command.

GENMOD 191

GLOBAL

purpose:

GLOBAL specifies either macro definition libraries to 'be
searched during the ASSEMBLE command. or text libraries to
be searched when loading files containing relocatable object
code.

Format:

I
I

ASSEMBLER MACLIB
M

I
I

1 GLOBAL <libnamel ••• 1ibnameN>1
I
I
I

ASSEMBLER MACLIB
M

LOADER TXTLIB
T

LOADER TXTLIB
T
PRINT

specifies the library files that
are to be searched for macro
definitions during subsequent
assemblies.

specifies the library files that
are to be searched for missing sub­
routines during subsequent LOAD,.
USEt, or REUSE operations.

libname1 ••• 1ibnameN specifies the library files whose
filetype is either ~ACLIB or
TXTLIB.

PRINT

usage:

specifies that a list of libraries
currently in use is to be typed at
the terminal.

I
I
1

GLOBAL has three forms--the ASSEMBLER form, the LOADER form,
and the PRINT form.

ASSEMBLER Forro. The ASSEMBLER form of the GLOBAL command
allows the user to specify the macro libraries that are to
be used during the execution of the ASSEMBLE command. One
to five macro libraries may be specified. These macro
libraries are sea.rched for macro definitions in the order in
which they are named. If the CMS macro library ~YSLIB
MACLIB and the OS macro library OS MACRO MACLIB are to be
searched along with the use,:- s macro libraries;, SYSLIB and
OSMACRO must be specified as two of the five libraries.

Each macro library specified must have a filetype of MACLIB.
For a description of MACLIB files and how to generate them,
see the MACLIB command under "Libraries".

192 GLOBAL

If no previous GLOBAL command has been issued, the ASSEMBLE
command searches the two macro libraries SYSLIB MACLIB and
OSMACRO MACLIB in that order. Both files reside on the CMS
system disk; SYSLIB MACLIB contains all of the CMS macros,
and OS MACRO MACLIB contains the OS macros. If the user has
created a file named SYSLIB MACLIB or OSMACRO MACLIB that
resides on a disk which precedes the system disk in the
standard order of search, it is used in place of the system
file. To terminate the searching of all macro libraries,
including SYSLIB MACLIB and OSMACRO ~ACLIB, the GLOBAL
ASSEMBLER command can be issued with no libnames specified.

~

Once the ASSEMBLER form of the GLOBAL command has been
issued" the specified macro libraries are searched for macro
definitions during each assembly until either a GLOBAL
ASSEMBLER command is reissued, the CMS nucleus is
reinitialized, or the user logs out from CP.

For a further discussion of macro libraries, refer to
Library Usage under ·Operating Considerations·.

PRINT Form. The PRINT form of the GLOBAL command types at
the terminal a list of the current macro and text libraries
that are being searched for that user.

LOADER Form. The LOADER form of the GLOBAL command allows
the user to specify text libraries to be searched for
missing subroutines and filenames whenev~r the LOAD, USE,. or
REUSE commands are issued. One to eight text libraries may
be specified. These text libraries are searched in the
order in which they are named. If the system text libraries
SYSLIB TXTLIB and CMSLIB TXTLIB are to be searched along
with the user·s text libraries, SYSLIB and CMSLIB must be
specified as two of the eight libraries.

Each text library specified must have a filetypeof TXTLIB.
For a description of TXTLIB files and how to generate them,
see the TXTLIB command under "Libraries".

If no GLOBAL has been issued. the LOADf. USE, and REUSE
commands search the text library SYSLIB TXTLIB. This file
resides on the CMS system disk; SYSLIB TXTLIB contains the
Fortran library. If the user has created a file with the
identifier SYSLIB TXTLIB that resides on a disk that
precedes the system disk in the standard order of search, it
is used in place of the system file.

If the GLOBAL LOADER command has been issued and the user
wishes to eliminate the searching of the previously
specified text libraries;. GLOBAL LOADER TXTLIB can be issued
specifying no libnames.This terminates all library
searching for missing ·subroutines when files are loaded by
LOAD,. USE" or REUSE.

Once the LOADER form of the GLOBAL command has been issued.

GLOBAL 193

the specified TXTLIB files are automatically searched for
missing subroutines or filenames not found during each LOAD.
USE;, or REUSE until either a GLOBAL LOADER command is
reissued:. the option LIBE or SLIBE is specified with LOAD
which overrides the GLOBAL LOADER command for the duration
of that LOAD and any USE or REUSE commands which follow that
LOAD;~' the CMS nucleus is reinitialized. or the user logs out
of CP.

For further discussion on text libraries,. refer to Library
Usage under ·operating Considerations·.

Notes:

a. If the GLOBAL ASSEMBLER command
macro libraries ~ay be specified
filetype of MACLIB.

is issued, one to five
and each must have a

h. If the GLOBAL LOADER command is issued, one
text libraries may be specified and each must
filetype of TXTLIB,.

to eight
have a

c. GLOBAL will verify the existence of the libraries. If
a library does not exist,. an error message is generated.

d. ASSEMBLER MACLIB and LOADER TXTLIB may be abbreviated
by M and T,. respectivelYte

Responses:

THE CURRENT MACRO LIBRARIES (MACLIB) ARE:
xxxxxxxx xxxxxxxx
THE 'CURRENT TEXT LIBRARIES (TXTLIB) ARE:
yyyyyyyy yyyyyyyy
This is typed in response to the GLOBAL PRINT command where
xxxxxxxx and yyyyyyyy are the names of the libraries,.

Examples:

a. GLOBAL ASSEMBLER MACLIB NEWLIB MYMAC
The libraries NEwLIB MACLIB and MYMAC MACLIB are searched
for macro definitions during the ASSEMBLE command. The
order of search for macro definitions is NEWLIB MACLIB" then
MYMAC MACLIB. The OMS macro librarySYSLIB MACLIB and the
OS macro library OSMACRO MACLIB are not searched.

h. GLOBAL ASSEMBLER MACLIB
This example cancels the effect of
ASSEMBLER form of the GLOBAL command
to be searched for macro definitions
ASSEMBLE command.

any previously issued
and causes no libraries
during execution of the

c. GLOBAL LOADER TXTLIB SCOOP OPS SYSLIB
The libraries SCOOP TXTLIB. OPS TXTLIB are searched for
missing subroutines during the LOADI• USE. and REUSE
commands. The order of search for missing subroutines is

194 GLOBAL

SCOOP TXTLIB1, OPS TXTLIBi, and SYSLIB TXTLIB.

d. GLOBAL LOADER TXTLIB
This example cancels the effect of any previously issued
GLOBAL LOADER command and causes no libraries to be searched
for missing subroutines or undefined filenames by subsequent
LOAD" USE, or REUSE commands.

Error Messages:

E(00001)
An invalid form of the GLOBAL command has been issued.
Reissue the command in its correct format .•

E(00002) TOO MANY TXTLIBS (MAX=8) OR MACLIBS (MAX=S)
SPECIFIED

Reissue the GLOBAL command reducing the number of libraries
specified.

E(00003) -libnamew LIBRARY DOES NOT EXIST
Existence of -libnamew MACLIB or -libnamew TXTLIB has not
been verified: wlibname- has been omitted from the active
l,ist of libraries ..

GLOBAL 195

LOAD

Purpose:

LOAD reads from disk one or more TEXT· files containing
relocatable object code and loads them into core,
establishing the proper linkages between the files,. If the­
specified TEXT files are not found.. the appropriate TXTLIB-­
files are searched. Corrections or additions can ~e made at
load tilll~ and the user can specify libraries to be searched
for missing subroutines. The user can also specify that
execution should begin upon successful completion of
loading.

Format:

,LOAD I fnamel ••• fnameN < (optl ••• optN) <libnamel, ••• libnameN» I

fnamel •• ,. fnameN specify the names of TEXT files
to be loaded into core.

optl ••• 0ptN specify the options to be in
effect during loading,.

libname1 ... ,.libnameN specify the names of up to 8 TXTLIB
fi~esto be searched for missing
subroutines during loading.

Options:

CLEAR
NO CLEAR

SLCxxxxx

SLC12000

NOMAP
MAP

TYPE
NOTYPE

SINV

PINV

SREP

PREP

196

zero the load area before loading
do not zero the load area before loading

begin loading the program at hexadecimal
location xxxxx
begin 10ading the program at hexadecimal
lo.cation 12000

do not create the file LOAD MAP
create the file LOAD MAP

type the LOAD MAP file online
do not type the LOAD MAP- file online

suppress the printing of invalid card
images in the LOAD MAP file
print invalid card images in the
LOAD MAP file

suppress the print of Replace card
iroagesin the LOAD MAP file
print Replace card images in the
LOAD MAP file

LOAD

LIBE

SLIBE

SAUTO
AUTO

XEQ
NOXEQ

usage:

search only the specified TXTLIB files
for missing subroutines
do not search any TXTLIB files for un­
resolved references

suppress automatic searching for TEXT files
search the P, T,. and S disks for TEXT files
to resolve undefined references
(AUTO is the default and can not be specified
as an option)

execute the loaded files
do not execute the loaded files

The TEXT files specified in the LOAD command must consist of
relocatable object code, such as that produced by the
ASSEMBLEr, FORTRAN. or PLI commands. When LOAD, USE·, or REUSE
is issued, the standard order of search is used to locate
the specified TEXT files. Then, if any unresolved references
exist, the search is used again to locate TEXT files
corresponding to the unresolved names. If there are still
unresolved references" the appropriate TXTLIB files are
searched.. To suppress the automatic searching of TEXT files
for undefined names, specify the SAUTO option. To suppress
the library search for unresolved references, specify the
SLIBE option ..

LOAD assumes the NOCLEAR option as a default, therefore the
files that are being loaded are not placed in zeroed core.
To zero core before the files are loaded" the option CLEAR
must be specified.

LOAD automatically begins loading the specified files into
core at hexadecimal location 12000. This load point may be
changed by specifying the option SLCxxxxx. where xxxxx is
the hexadecimal location at which loading is to begin. The
SLCxxxxx option may not appear as the first option in a
string unless it is preceded by one or more blanks .•

Unless the NOMAP option is specifiedl• a load map is created
on the perma~ent disk each time .the LOAD command is issued.
A load map 1S a file that contains the location of control
sections and entry points of files loaded into core. It may
also contain certain messages and card images of any invalid
cards or Replace cards that exist in the loaded files.. This
load map is normally created as a·file with the identifier
LOAD MAP P5. Only ~ne SUch file may exist on the permanent
disk. Each time LOAD is issued" a new LOAD MAP replaces any
previous LOAD MAP file. To prevent a LOAD MAP file from
being c'reated, the option NOMAP must be specified.

Since LOAD assumes a default of NOTYPE, the LOAD MAP file is
not automatically typed. To· type this). the option TYPE is
specified. The LOAD MAP file may also be printed by PRINTF

LOAD 191

or OFFLINE PRINT,.

If invalid card images exist in the file or files that are
being loaded t, they are listed wi th the message INVALID CARD
in the LOAD MAP file.. To suppress this listing in the LOAD
MAP the SINV option must be specified.

load w (type)
~ AT 12000
W AT 12000
IBCFCOMH AT 12148
SAVAREA AT 1314C
IBCOM AT 12148
FOIOCS AT 12204
IBCFCVTB AT 13198
ADCON AT 13198
FCVEO AT 13BBA
FCVLO AT 13412
FCVIO AT 13720
FCVCO AT 13DB4
FCVAO AT 1338A
FCVZO AT 132E4
IHCFIOSH AT 14188
Floes AT 14188
IBCUATBL AT 14070
THE FOLLOWING NAMES ARE UNDEFINED:

SUB1
E(00004); T=O.05/0.20 14.21.33

Typeout of the LOAD MAP file during the LOAD command.

If Replace CREP) card images exist inthe files being
loaded, they are included in the LOAD MAP. To suppress this
listin9 of REP card images the SREP option must be
specified. For an explanation of REP card 1mages see
Changing Object Programs under' ·Operating Considerations

Unless the GLOBAL LOADER command has been issued, LOAD
searches only the system text library SYSLIB TXTLIB for
subroutines that are missing from the files being loaded.
Using GLOBAL" the user can specify from one to eight text
libraries to be searched.. See the description of GLOBAL for
specific details.

If a file exists on a disk preceding the system disk in the
standard order of search with the identifier SYSLIB TXTLIB,
it is used in place of the ~ystem text library.

~o prevent LOAD from searching the system text library and
the files specified by. GLOBAL, the LIBE or SLIBE option can
be specified. 'LIBE terminates the searching. of all text
libraries except those specified with the LOAD command. If
SYSLIB TXTLIB is to be searched along with the specified
libnames!, SYSLIB must be included as one of the libnames,.

198 LOAD

The order of search of the specified lihnames is the order
in which they are named. The maximum number of libraries
that can be searched is eight. If LIBE is issued and no
TXTLIB files are specified, none are searched for missing
subroutines. If SLIBE is specified with LOAD, no TXTLIB
files are searched. For a discussion of text library usage,
refer to Library Usage under ·Operating Considerations",.

LOAD assumes NOXEQ as a default option, therefore, LOAD does
not normally begin execution of the loaded files. To begin
execution immediately upon successful completion of loading,
XEQ. can be specified. LOAD then transfers control to the
default entry point 'in the program. The default entry point
is either the address specified in the operand field of the
first END card containing a non-blank operand field or the
beginning of the first file loaded if all END card images in
the TEXT files contain blank operand fields. In the case of
TEXT files that are created by FORTRAN, control is· passed to
the first main program loaded. If XEQ is not specified,
START command must be issued to begin program execution.

Duplicate CSECT·s (Control Sections) are bypassed by the
loader. Only the first CSECT encountered is physically
loaded. The duplicates are not loaded and a warning message
is included in the LOAD MAP.

LOAD allows the user to include the following card images in
the TEXT fi1es along with the relocatable object code: the
Set Location Counter (SLC) card image, the Replace (REP)
card image" the Include Control Section (IeS) card image,
and the Entry and Library statements. SLC specifies the
hexadecimal location at which files are to be loaded. REP
speci'fies corrections to be made to the relocatable object
code. ICS specifies additions to be made to the TEXT file.
The Entry statement specifies entry points and the Library
statement specifies the never-call function. For a
description of these card images and their use and placement
in a TEXT file, refer to Changing Object Programs under
·Operating Considerations·.

Notes:

a. To terminate the searching of all text libraries,
including SYSLIB, specify LIBE with no libnames, or specify
SLIBE.

b. If TEXT files do not exist for the names specified with
LOAD, either the specified or default TXTLIB files are
searched for the missing TEXT file.

c. If unresolved names occur. the standard order of search
is used to locate the TEXT files; if the names are still
unresolved" the appropriate TXTLIB files are searched,.

LOAD 199

Responses:

EXECUTION BEGINS •••
XEQ has been specified with LOAD
begun execution. Any further
program.

and the loaded program has
responses are from the

INVALID CARD - xxx, ••• xxx
PINV has been specified with LOAD and an invalid card has
been found,. The message and the contents of the invalid card
(xxx ••• xxx) are listed in the file LOAD MAP. The invalid
card is ignored and loading continues.

CONTROL CARD - •••
A loader or library-search control
encountered, (that is, ENTRY or LIBRARY) '.

card has been

If TYPE is specified with LOAD" the LOAD MAP file is typed.

Examples:

a. LOAD MAIN SQ3 CALCU
The files MAIN TErr., SQ3 TEXT. and CALCU TEXT are loaded
into core and the linkages resolved,. If any subroutines are
missing.. the loader searches for the corresponding TEXT
file. If any references are still unresolved, and neither
the SLIBE option nor the GLOBAL LOADER command has been
previously issued, the file SYSLIB TXTLIB is searched. If
the GLOBAL LOADER command has been previously issued, the
libnames specified in that command are searched,. The
followin9 default options are set: NOCLEAR, NOTYPE,
SLC12000,. PINV, PREP. MAP I, AUTO, and NOXEQ.

b. LOAD MPS67 HOOK (XEQ TYPE CLEAR)
The files MPS61 TEXT and HOOK TEXT are loaded
the linkages resolved. Core is zeroed before
place. The LOAD MAP file is typed. Upon
loading MPS61 and HOOK" execution begins.

into core and
loading takes
successfully

c. LOAD MASS WHATZIT (LIBEl SSP MYLIB SYSLIB
The files MASS TEXT and WHATZIT TEXT are loaded into core
and the linkages resolved. If any subroutines are missing,
the following libnames will be searched in the order in
which they are specified: SSP TXTLIB, MYLIB TXTLIB

"
and

SYSLIB TXTLIB,. The remaining options are set to default.

d. LOAD MASSPEC (LIBE)
The file MASSPEC TEXT is loaded into core and the linkages
resolved. Since LIBE has been specified without any
libnames~ no text libraries are searched for missing
subroutines. If there are any missing subroutines, an error
code is returned.

200 LOAD

Error Messages:

E(OOOOl) DEFINED MORE THAN ONCE-xxxxxxxx
The name xxxxxxxx has been defined more than once. Check
the files that have been loaded for duplicate entry point
names or duplicate control section naroes. Loading has been
completed. Duplicate names are not loaded.

E(00002) OVERLAY ERROR
The files being loaded have run out of core. Specify fewer
files or reduce the size of the files. Loading has been
completed.

E(00003) REFERENCE TABLE OVERFLOW
There are too many entries for entry points or control
section names in the reference table built during loading.
Loading has been completed. Reduce the number of entry
points and/or control sections in the files.

E(00004) THE FOLLOWING NAMES ARE UNDEFINED-xxxxxxxx
The names xxxxxxxx are referenced in a file and are never
defined. If the names are defined in a file with a
different name, issue USE for that file. Loading has been
completed.

Dynamic Loading

During program execution~ another relocatable object deck
may be brought into core, external references resolved, and
control given to it--that is, dynamic loading. The desired
routine must exist on the user's files with a filetype of
TEXT, or exist in one of the designated libraries with
filetype TXTLIB. The routine may cause other TEXT or
library routines to be loaded into core.

The following CMS/OS macros support dynamic loading:

LOAD (SVC 8)

LINK (SVC 6)

XCTL (SVC 7)

RETURN (SVC 3)

causes the object deck containing the
specified entry point to be brought into
core and the entry point address to be
returned in register zero (0).

calls in and transfers control to the
specified entry point.

deletes the calling routine, then brings
the specified routine in and gives control
to it.

deletes the called routine
control back to the caller.

LOAD

and gives

201

LOADMOD

Purpose:

LOADMOD loads into core any single file in nonrelocatable
core image form.

Format:

LOAD MOD filename <filemode>,

filename is the name of the file to be loaded into core.
The filetype must be MODULE.

filemode is the mode of the MODULE file to be loaded,.

Usage:

LOADMOD is used to load a file which has been created by the
GENMOD command. The filename of the file to be loaded is
specified as the operand of the LOADMOD command" and its
filetype must be MODULE. If the MODULE file was generated
without a load map and the MODULE file is to be read into
core and executed" LOAD MOD can not be issued; instead, the
MODULE's filename must be issued as if it were a command.

When LOAD MOD is issued without specifying a filemode, the
standard order of search is used to locate a file with the
specified filename and a filetype of MODULE. If a filemode
is given, only that disk is searched for the MODULE file.
If such a file is found, it is assumed to be in
non-relocatable core-image form, and is loaded into core.

Responses:

N'one.

Example:

LOAD MOD FILE1
The file FILEl MODULE is loaded
exists. an error message is
process does not take place.

Error Messages:

E(OOOOl) FILE DOES NOT EXIST
DISK ERROR

into core. If no such file
returned!, and the loading

Either of the above messages indicates that a file with the
specified filename and a filetype of MODULE cannot be
located. Check to see that such a file exists and that the
filename specified in the LOADMOD command is identical to
the filename of the file to be loaded,.

202 LOADMOD

E(00002) DISI{ ERROR
An address has been generated outside the bounds of core
storage assigned to the user. Reissue the command.

E(00003) DISI{ ERROR
A disk malfunction has occurred. Reissue the LOADMOD
command. If the message persists l, a disk hardware problem
has probably been encountered.

E(00004) FILE DOES NOT EXIST
DISI{ ERROR

Either of the above messages indicates that the filemode of
the specified file is invalid. Change the filemode to a
valid one and reissue the command.

E(00006) DISI{ ERROR
Core space assigned to the user is not large enough for
loading the specified file or the system has attempted to
close the file prior to opening it. Reissue the LOADMOD
command.

E(00007) DISK ERROR
The specified fi1e cannot be read from disk. Reissue the
LOADMOD command. If this message persists, the file should
be recreated using the GENMOD command.

E(00009) DISK ERROR
The specified file is open for writing and cannot be read;.
Reissue the LOADMOD command.

LOADMOD 203

REUSE

Purpose:

REUSE reads from disk one or more TEXT files containing
relocatable object code and loads them into core,
establishing linkages with previously loaded files, and
changing the default entry point of these files to that of
the first file specified in the REUSE command. If the TEXT
files do not exist. the appropriate TXTLIB files are
searched,.

Format:

I REUSE I fname1. ,w ,. fnameN (opt1. w • optN) <libname1 •.•• libnameN> I

fnamel ••• fnameN

optl ••• optN

. libname1, 1ibnameN

Options:

specify the names of TEXT files to be
loaded into core.

specify the options to be in effect
during loading •

specify the names of up to 8 TXTLIB
files to be searched for missing
routines during loading.

The options that may be specified with REUSE are the same as
those with LOAD.

Usage:

REUSE does not overlay any file that has been previously
loaded by a LOAD, USE" or REUSE command.. It loads the
specified files into higher core from the point at which the
previous LOAD, USE, or REUSE command terminated loading.
REUSE performs the same fUnction as USE except that REUSE
changes the default entry point to that of the first file
specified with the REUSE command.

The specified files must have filetypes of TEXT and contain
relocatable object code.

If options have been specified with the previous LOAD. USE,
or REUSE command, these options rema1n set unless
respecified. The LOAD MAP file is automatically updated to
reflect the files loaded by REUSE. Refer to LOAD for a
description of the LOAD options; the LOAD MAP file, and how
LOAD operates.

204 REUSE

Responses:

INVALID CARD - xxx ••• xxx
PINV has been specified and an invalid card has been found.
The message and the contents of 'the invalid card (xxx ... ,.xxx)
are listed in the file LOAD MAP. The invalid card is ignored
and loading continues.

CONTROL CARD
A loader or
encountered.

library-search control
Normal loading resumes.

card has been

If TYPE has been specified with REUSE or bas not been reset
from the previous LOAD~ USE, or REUSE command, the updated
portion of the LOAD MAP file is typed prior to the
completion of the REUSE command.

Example:

REUSE READIT GAMMA
The TEXT files READ IT and GAMMA are loaded into core,
linkages resolved with-the files previously loaded, and the
default entry point is changed to the first entry point in
READIT.

Error Messages:

E(00001) DEFINED ~ORE THAN ONCE - xxxxxxxx
The name xxxxxxxx has been defined more than once. Check
the files that have been loaded for duplicate entry point
names or duplicate control section names. Loading has been
completed. Duplicate names are not loaded.

E(00002) OVERLAY ERROR
The files being loaded have run out of core. Specify fewer
files or reduce the size of the files.. Loading has- been
completed.

E(00003) REFERENCE TABLE OVERLAY
There are too many entries for entry points or control
section names in the reference table built during loading.
Loading has been completed. Reduce the number of entry
points or control sections in the files.

E(00004) THE FOLLO~ING NAMES ARE UNDEFINED - xxxxxxxx
The names xxxxxxxx are referenced in a file and are never
d-efined. If the names are defined in another file" issue
the USE command for that file. Loading has been completed.

EC00005) NAME IS UNDEFINED - xxxxxxxx
The name xxxxxxxx specified as an entry point does not
exist. Loadinq has been completed. Check the name and see
if an entry point or a control section exists by that name
in the loaded files.

REOSE 205

START

Purpose:

S~ART begins ·execution
passes the address of
program.

of programs
a string of

previously loaded and
user arguments to that

Format:

START I<entry <arqument1 ••• argumentN»1

I • I
------~------------------------------------

entry

*

specifies the name of a control
section or entry point to which
control is passed at execution time.

specifies that control is to be
passed to the default entry pOint.

argument1 ••• argumentN specify information to be passed to
the started program.

Usage:

START begins execution at one of two entry points. If the
entry operand is specified;, execution begins at that point
in the program.. If * or nothing is specified execution
begins at the default entry point. The default entry point
is either the address specified in the operand field of the
first END card containing a non-blank operand field or the
beginning of the first file loaded if all END cards in the
TEXT files contain blank operand fields. The default entry
point can be changed by issuing the REUSE command to
continue loading additional files.

Any undefined names or references specified in the files
loaded into core are defined to location zero. Thus, if
there is a call or branch to a subroutine from a main
program and the subroutine has never been loaded, the call
or branch transfers control to location zero at execution
time.

If arguU!ents are specified with START., they are passed to
the program via general-purpose register 1. The entry
operand and any arguments are set up as a string of words,
one argument per double word, and the address of the
parameter is placed in general-purpose register 1. The
arguments are accessed with displacements of 8/, 16. 24,
etc., from the address contained in register 1 when
execution of the specified program begins.

206 START

Notes:

a. Entry must be a contro1 section name or an entry point
name. It may be a filename only if the filename is identical
to a control section name or an entry point name.

b. If user arguments are specified, entry
specified; otherwise~ the first argument is
entry point.

Responses:

EXECUTION BEGINS •••

or * must be
taken as the

The program previously loaded into core has begun execution.
Further responses are from the executing program.

Examples:

a. START INITIL
The program already loaded into core begins execution at
entry point INITIL.

h. START MEGOP 13 ALL 109439
The program already loaded into core hegins execution at
entry point MEGOP. The three arguments may be accessed in
the program by displacements of 8:. 16(, and 2q from the
address in general-purpose register 1.

Error Messages:

E(00004)
The contents at STADDR in NUCON are either 0 or a location
that does' not contain executable code. Issue LOADMOD and
START a9ain.

E(OOOOS) NAME IS UNDEFINED - xxxxxxxx
The name xxxxxxxx specified as the 'point at which execution
is to begin does not exist as an entry point name or a
control section name. Execution has not be9un. Check the
name xxxxxxxx and make sure it is a valid entry point or
control section name.

START 207

USE

Purpose:

USE reads one or more TEXT files containing relocatable
object code from disk and loads them into core, establishing
linkages with previously loaded files. If the TEXT files do
not exist. the appropriate TXTLIB files are searched.

Format:

1 USE 1 fnamel ••• fnameN < (opt1, ••• optN) <libname1 ... _libnameN» ,

fnamel ••• fnameN

optl ••• optN

specify the names of TEXT files to be
loaded into core.

specify the options to be in effect
during loading_

libnamel ••• libnameN specify the names of up to eight TXTLIB
files to be searched for missing routines
during loading.

Options:

The options that may be specified with USE are the same as
those that may be specified for LOAD,.

Usage:

USE does not overlay any file previously loaded by a LOAD,
USE" or REUSE command. It loads the specified file(s) into
hig:ler core from the point at which the previous LOAD, USE,
or REUSE command terminated loading. The files spe!~ified
with USE have filetypes of TEXT and contain relocatable
object code.

USE should be preceded by LOAD: it is issued to resolve
undefined names when LOAD gives the following error message:

E(00004) - THE FOLLOWING NAMES ARE UNDEFINED: xxxxxxxx.

USE may be issued repeatedly to resolve linkages and to
continue loading more TEXT files. It does not change the
default entry point established in a previous LOAD command.

If options are specified with the previous LOAD.. USE" or
REUSE command" the options remain set unless respeci'fied
when USE is issued. The LOAD MAP file is automatically
updated to reflect the files loaded by USE. Refer to LOAD
for a description of the LOAD options" the LOAD MAP file,
and the operation of LOAD.

208 USE

Responses:

INVALID CARD - xxx ••• xxx
PINV has been specified with the previous LOAD command and
an invalid card has been found. The message and the
contents of the invalid card (xxx ••• xxx) are listed in the
file LOAD MAP. The invalid card is ignored and loading
continues.

If TYPE has been specified with USE or has not been reset
from the previous LOAD. USE. or REUSE command. the updated
portion of the LOAD MAP file is typed prior to the
completion of the USE command.

Example:

USE MYTEXTl CALCA WRITE6
MYTEXTl TEXT. CALCA TEXT. and WRITE6 TEXT are loaded into
core. Linkages are resolved between these three files and
the fil~ previously loaded into core.

Error Messages:

E(OOOOl) DEFINED MORE THAN ONCE - xxxxxxxx
The name xxxxxxxx has been defined more than once. Check
the files that have been loaded for duplicate entry pOint
names or duplicate control section names. Loading has been
completed. The duplicates are loaded.

E(00002) OVERLAY ERROR
The files being loaded have run out of core. Specify fewer
files or reduce the size of the files. Loading has been
completed.

E(00003) REFERENCE TABLE OVERFLOW
There are too many entries for entry points or control
section names in the reference table built during loading~
Loading has been completed. Reduce the number of entry
points or control sections in the files.

E(00004) THE FOLLOWING NAMES ARE UNDEFINED - xxxxxxxx
The names xxxxxxxx are referenced in a file and are never
defined. If the names are defined in another file. issue the
USE command for that file. Loading has been completed.

USE 209

$

Purpose:

$ loads and starts the specified file, provided its filetype
is EXEC. MODULE, or TEXT~

Format:

$,filename <arg1 ••• argN>

filename is the name of a file whose filetype is EXEC,
I'JODULE, or TEXT.

arg1 .••• argN are one or more user arguments.

Usage:

-rhe $ command is used to load and start a program.. The
program exists as a file on one of the user's disks, and its
filename must be specified as the first operand of the $
command. The standard order of search is used to locate a
file with the specified filename and a filetype of EXEC,
MODULE, or TEXT, in that order.

If an EXEC filetype is found for the filename. the file is
assumedto contain one or more CMS commands .. and EXEC is
called to execute this file. If no EXEC filetype exists,
but a filetype of MODULE is found" LOADMOD is called by $ to
load the program into cor~ and START is called to begin
execution of the program. When only a TEXT filetype exists
LOAD is called followed by START.

The user may specify ·as many arguments in the $ command as
he wishes,. provided they all fit on the same input line.
The arguments are set up as a string of double words" one
argument per double word. The address of this string is
passed to the specified file. Each argument is
left-justified, and any argument more than eight characters
in length is truncated on the right. ~ith an EXEC file~ any
arguments specified in the $ command repla.ce the
corresponding &n operands in the individual commands of the
EXEC f.ile (see EXEC under -Execution Control" for a full
explanation of this operand-substitution technique),.

with a file whose filetype is MODULE or TEXT, the arguments
are placed in a string as described above.. The address of
the string may be obtained by adding 8 to the address
contained in general-purpose register 1 at the time
execution of the specified program begins.. Additional
arguments may be referenced by displacements of 16" 24/, 32.
etc." from the address thus obtained.

210 $

Note:

When a file with a filetype of MODULE or TEXT is used/I there
must be an entry point in the file that is identical to the
filename specified in the $ command. After the file has
been loaded,. execution begins at this entry point.. such an
entry point is created by the Fortran compiler using the
filename specified in the FORTRAN cOFmand. With Assembler
language files, the user should create as an entry point or
assign as the name of a control section,. the filename by
which he wishes to reference the TEXT or MODULE version of
that file.

Responses:

For files with filetype EXEC, each command in the EXEC file
is typed at the user's terminal prior to its execution
unless the &TYPE option is used to suppress the printout.

EXECUTION BEGINS,. ' ••
This message is typed when a file of filetype MODULE or TEXT
has been loaded into core and is about to be started. Output
appearing after this message is from the user's program or
from a part of eMS called by that program.

DEFINED MORE THAN ONCE - xxxxxxxx
This message is generated by LOAD and indicates that
duplicate entry points or control section names (xxxxxxxxl
have been found in the TEXT file being loaded. $ is
terminated with an error code of 3.

OVERLAY ERROR
Th'ere is not enough room in core to hold the TEXT file for
which a LOAD has been issued. $ is terminated with an error
code of 3.

REFERENCE TABLE OVERFLOW
There are too many entry points or control section names in
the TEXT file being loaded. $ is terminated with an error
code of 3.

THE FOLLOWING NA~ES ARE UNDEFINED - xxxxxxxx
The specified names referenced in the TEXT file being loaded
are never defined. $ is terminated with an errQr code of ,3.

DISK ERROR
An error has .occurred while reading or closing a file with
filetype MODULE. This message is generated by LOADMOD, and
terminates with an error code of 3.

Examples:

a~ $ MYFILE
The standard order of search is used to locate a file with a
filename of MYFILE and a filetype of EXEC, MODULE t• or TEXT.
If a file exists with filename MYFILE and filetype EXEC, the

$ 211

commands contained in it are executed. Each command is
typed at the user·s terminal before it is executed. If
filetypes MODULE and TEXT or of MODULE only exist for
filename MYFlLE, the file with filetype MODULE is loaded
into core by LOADMOD and started by START at entry point
MYFILE. If only a TEXT filetype exists for filename MYFILE,
LOAD is issued to bring MYFILE into core. and START is
issued using entry point MYFILE.

b.$ OTHER SAME 1.436 5 A
If filetype EXEC is found for filename OTHERt• execution of
the EXEC file begins with the argument SAME replacing &1
wherever it appears in the EXEC file, 1,.436 replacing &2, 5
replacing '3. and A replacing '4.. If no EXEC filetype exists
for filename OTHER but a filetype of MODULE or TEXT is found
the file is loaded into core and started at entry point
OTHER. The four user arguments can be accessed by
displacements of 8, 161• 24, and 32, respectively!, from the
address contained in general-purpose register 1 at the time
program OTHER is started~

212 $

DEBUGGING FACILI~IES

A debugging tool is provided with eMS in the form of the
DEBUG command. This command allows the user. while at his
terminal!. to examine and change the contents of core
locations i• program status words, general-purpose registers,
the chann~l status word l• and the channel address word; to
dump portions of core on the offline printer; and to. stop
and restart programs at any specified point or points.
Methods for using these DEBUG facilities are described in
this section.

In addition to DEBUG. there are two commands that allow the
user to trace supervisor calls (SVC instructions) and
therefore. .the internal branches which are issued to the
various CMS commands and functions. These two
commands--SETOVER and SETERR--set certain overrides, or
flags, which are checked whenever an SVC instruction is
executed and a return is issued from an SVC-called program.
Two types of overrides .may be set: normal and error.
Normal overrides are those which cause trace information to
be recorded for SVC-called programs executed without
encountering any error conditions. Error overrides are
those which record information for SVC-called programs which
return with an error code in general-purpose register 15.
The S-ETOVER command sets both types of overrides. The SETERR
command sets error overrides only.

To clear overrides which have been set by the SETOVER and/or
SETERR commands. the CLROVER command may be issued. In
addition to terminating the recording of trace information,
CLROVER causes all information recorded up to that pOint to
be printed on the offline printer.

If the user wishes to terminate the recording of trace
information during the execution of one of his own programs
or of a CMS command (that is, -at a point when the CLROVER
command cannot be issued) he may do so by hitting ATTN twice
(pausing each time for the keyboard to unlock) and typing
the letters KO followed by a carriage return. Processing
continues as before, but no further information is recorded
for SVC's executed. KO terminates overrides and causes
recorded trace information to be printed on the offlin~
printer.

If the user bas set overrides by issuing either or both the
SETOVER and SETERR commands and has. failed to clear these
overrides l , they are cleared automatically and the recorded
information is printed on the offline printer when the user
logs out from the Control Program or when he issues a
RESTART request in the Debug environment.

Debugging Facilities 213

CLROVER

Purpose:

CLROVER clears overrides set by either or both the.SETOVER
and SETERR commands,. It also cause~ all trace information
recorded up to that point to be printed on the offline
printer.

Format:

CLROVER

Usage:

This command terminates the recording of trace information
set by the SETOVER and/or SETERR commands and causes that
information to be printed on the offline printer.. If
CLROVER is not issued. the user may clear all currently
active overrides by issuing a KO command. Any overrides
which have been set but not cleared at the time the user
issues a REST~ request in the Debug environment or ends
his terminal session by logging out from the Control Program
are cleared automatically and the trace information is
printed o,ffline.

CLROVER cancels the effect of all SETOVER and SETERR
commands issued since the last'KO or CLROVER command was
issued, or since the user's last CMS login if neither a KO
nor a CLROVER has been issued durin9 the terminal session.
Once CLROVER is issued" no further trace information is
recorded until the user issues another SETOVER or SETERR
command.

A sample of the format in which trace information is printed
offline is given in Figure 15. A fixed amount of trace
information is printed for all error overrides; the amount
for normal overrides varies depending on the options
specified with the SETOVER command. An explanation of all
possible fields which can appear in the printout is given
under ·Output- in this section.

Notes:

a. If a CLROVER command is issued when no overrides are
currently activel, it has no effect other than printing
the following 1ine on the offline printer:

****NOTE--NORMAL- AND ERROR-OVERRIDES HAVE NOW BEEN CLEARED****

b. Any operands given with CLROVER are ignored.

214 CLROVER

Responses:

None.

output:

An explanation of each field appearing in the printout of
trace information is given below.

SETTING ERROR-OVERRIDE TO PROVIDE A DYNAMIC TRACE OF CMS
(AND aS) SVC-CALLS., ••
This message appears whenever SETERR is issued.

SETTING NORMAL- AND ERROR-OVERRIDES TO PROVIDE A DYNAMIC
TRACE OF CMS (AND OS) SVC-CALLS, •••
This message appears whenever SETOVER is issued.

• •••• ERROR-OVERRIDE.
This message identifies the first line for each SVC-called
program which returns with an error code in general-purpose
register 15.

NORMAL-OVERRIDE:,
This message identifies the first line for each SVC-called
program which issues a normal return.

CALLER = xxxxxxxx
This information appears in the first .line for each
SVC-calle~ program. It indicates the hexadecimal core
location (xxxxxxxx) of the SVC instruction whose execution
caused that program to be called.

CALLEE = 'xxxxxxxx
This information appears in the first line for each
SVC-called program. xxxxxxxx is the name of the called
program (if a CMS SVc is issued) or the number of the SVC
(if an 0$ svc is issued).

SVC~OLD-PSW = xxxxxxxxxxxxxxxx
This information, given in the first line for each
SVC-called program, gives the contents of the SVC old
program status word. For an explanation of the SVC old
program status words and its use, see the IBM manual. ~
System/360 Principles of Operation.

NRMRET = xxxxxxxx
This information, given in the first line for each
SVC-ca~led program, gives the hexadecimal core location
(xxxxxxxx) to which the program returns under normal
conditions (that is, when no error code is generated) I.
ERRET = xxxxxxxx
This information, appearing at the rignt margin of the first
line for each SVC-called program, gives the hexadecimal core
location (xxxxxxxx) to which the program returns if an error
code is generated during its execution.

CLROVER 215

GPRS BEFORE = xxxxxxxx, ••• xxxxxxxx
Two lines of information appear with this message. The
first line consists of the contents of general-purpose
registers 0-7: the second line gives the contents of
registers 8-15 as they existed when control was passed to
the SVC-called program,.

FPRS BEFORE = xxxxxxxx~_.xxxxxxxx
This line of information gives the contents of the four
floating-point registers as they existed at the time control
was transferred to the SVC-called program.

GPRS AFTER = xxxxxxxx ••• xxxxxxxx
Two lines of information appear with this message. The
first line gives the contents of general-purpose registers
0-1; tbe second line gives the contents of registers 8-15 as
they existed when a return was issued by the SVC-called
program.

FPRS AF-rER = xxxxxxxx .• _ • xxxxxxxx
This line of information gives the contents of the four
floating-point registers as they existed when a return was
issued by the SVC-called program.

PARM.-LIST = xxxxxxxx •.•• xxxxxxxx
This message is followed by one or two lines of the
parameter list which existed at the time the SVC was
executed. See SETOVER under ·Debugging Facilities· for a
discussion of parameter lists and their use.

****NOTE--NORMAL- AND ERROR-OVERRIDES HAVE NOW BEEN
CLEARED****
This message appears whenever a CLROVER command is issued.

Example:

CLROVER
This clears all currently active overrides and cause any
trace information recorded up to that point to be printed on
the offline printer. See Figure 15 for a sample of the type
of information printed.

Error Messages:

None.

216 CLROVER

SETTING HORIIlL- UID ERIIOR-OYEIIRIDES TO PROYIDE A DYJABIC TRACE OF CIIS (AID OS) SYC-C.lLI.S •••

NOBBAL-OVERRIDE, CALLEB=00009514
PAS.-LIST = --SETO-- --YEB --

FFFFFPFF FFFFFFFF

*****ERBOR-OYERRIDE. CALLER=000057F2
GPRS BEfORE = E2C5E3D6 0000139C

00009386 00012000
'PBS BEfOBE 00000000 00000000
GPJiS AFTER E2C5E3D6 0000139C

00000004 00000100
FPRS AFTEB 00000000 00000000
PAliB. -LIST = --FIIII-- --S

FFFFOOOO 00000000

HOBaAL-OVERRIDE, CALLER=0000955A
PAB8.-LIST = --TIPL-- --IN--

--0.50-- 4BP1F315

NORBAL-OVERRIDE, CALLER=00009608
PARa.-LIST = --iAIT-- --RD--

--TIPL-- --IN--

*****EBROR-OVERRIDE. CALLER=00009514
GPBS BEFCH E2E3C1E3 00009B10

00009386 00012000
FPBS BEFORE 00000000 00000000
GPBS AFTER E2E3C1E3 00009B10

00000004 00000100
PPIiS AFTEB 00000000 00000000
FARI!.-LIST = --STAT-- --E

FFFFFPFF FFFFFFFF

**** *E IiRCR-OV BRRItE, CALL);8=00005712
GPRS BEFORI! = E2E3C1E3 0000139C

00009386 00012000
FPBS BEFOBE = 00000000 00000000
GPRS AFTER E2E3C 1E3 0000139C

00000004 00000100
FPES AFTEB = 00000000 00000000
PARB.-LIST = --FIHI-- --S

FFFPOOOO 00000000

lIOli/IAL-OVERRIDE, CALLER=0000972E
PARI!.-LIST = --TIPL-- --IN-­

--YSIII--

!'OlfIlAL-CVEBRItE, CALLER=00009608
PARB.- LIST = --WAIT-- --RD--

--TIPL-- --IN

*****E6ROR-OVEBRIDE, CALLER=00009514
GPRS BEFOBE E2E3C1E3 00009B10

00009386 00012000
FPRS BEFCRE 00000000 00000000
GPRS AFTER E2E3C1E3 00009Bl0

00000004 00000100
FPRS AFTER 00000000 00000000
FAR!!.-LIST --STAT-- --E

FFFFF1FF HFFFFFF

*****ERROR-OVERRIOE, CALLER=000057F 2
GPBS BEFCRE = E2E301E3 0000139C

00009386 00012000
FPRS BEfORE 00000000 00000000
GP6S AFTER E2E3C1E3 0000139C

C0000004 00000100
FPBS AFTER 00000000 00000000
PAR~.-LIST = --FIN1-- --5

FPFFOOOO 00000000

"OF I'JAl-CVEBIiI n, CALL fR=0000972 E
PARlI.-LIST = --TYPL-- --IN

-- FOR-- --TR1N--

bOF!!Al-CVERlnr:f, CALLfR=00009608
FARI'l.-LIST = --WAIT-- --RD--

--TIPL-- --IN--

NORKAL-OVERRIDE. CALLER=00009514
PARlI.-LIST = --STAT-- --E

FFFFFFFF FFFFFFFF

**** $EBROR-OVERRIDE. CALLER=000057F 2
GPliS BEl'1JRI! = E2E3C1E3 0000139C

00009386 00012000
FPFS BEPORE COOOOOOO 00000000
GPliS AFTER E2E3C1E3 0000139C

00000004 00000100
FPliS AFTER 00000000 00000000
PARrI.-LIST = --FINI-- --5

FFFFOOOO 00000000

hOF Hl-CVEEEHE, CALL ER=0000955 A
FAFlI.-LIST = --TIPL-- --IN--

--0.50-- 4BF4F815

IiOli8AL-OVEBRI DE, CALL ER=OOO 096D8
PAS8.-LIST = --IIAIT-- --RO

--TIPL-- --IN

CALLEE=SETOYE8 SVC-OLD-PSII=000400CA60009516
FFFFFFFF fFFFFFFF FF"FFFFF! FlFFFFFP
FF'FPFFPF PFF'FFFFF FPFFFFFP FlFFPFFF

CALLEE=FU IS SVC-OLD- PSII=000400cA400057P4
00000000 00005816 00009B10 E2C5E3D6
00009508 00000001 400057E8 00001180
00000000 00000000 00000000 00000000
0000139C 00000000 00000718 000C29DC
C6C9D5C9 E2404040 000040A8 ooooouO
00000000 00000000 00000000 00000000
-*
00000000 00000000

--*
00000000 --OYEJr--

CALLEE=TYPLIB SYC-OLD-PSI/=000400CA6000955C
0100960C C200001A D95E40B3 7EFOQBFO
17174040 40401517 17C54DD5

CALLEE=iAITRD SYC-OLD-PSII=000400CA400096DA
01009774 E4000010 --T!PL-- --IN--
0100960C C2000011 D95E40E3 1EF04El'O

CALLEE=ST1TE SVC-OLD-PSi=000400CA60009516
00000000 00000000 00009B10 E2E3C1E3
00009508 00000001 40009318 800094CO
00000000 00000000 00000000 00000000
00009B 1 0 00000000 00000778 00002A84
E2E3C1E3 C5404040 00002BDO OOooono
00000000 00000000 00000000 00000000
--TEST-- --SISI-- --I
FFFFFFFF FFlFFFFF FPFFFFl! P"FPFPP

CALLEE=FIBIS SYC-OLD-PSI=000400CA400C57F4
00000000 00005816 00009Bl0 E2!3C1E3
00009508 00000001 4000571:8 000(11BO
00000000 00000000 00000000 OCOOOOOO
00001390 00000000 00000778 000029DC
c6C9D5C9 E2404040 00004018 000COA10
00000000 00000000 00000000 00000000
--*
00000000. 00000000

--*
00000000 --OVEB-

CALLEE=TYPLIN 5 VC-OLD- PSII=OOO 400CA 600(; 9730
01009631 C2C00021 00000010 --STlT--

CALLEE=IIAITRD SVC-OLD-PSI =000 400C14000 .,I:DA
01009174 E4000014 --TYl'L-- --li--
0100960C C2000011 D95E40E3 7EFC4EFO

CALLEE=STATE SVC-OLD- PSI=000400CA60CC 9516
00000000 00000000 00009810 E2E3Cl!3
00009508 00000001 4000937E SOOC94C0
00000000 00000000 00000000 00000000
00009Bl0 00000000 00000778 00002184
E2E3C1E3 C5404040 00002BDO COOC01AO
00000000 00000000 00000000 00000000
--SAI!E-- --LE -- --FORT-- --R.lN --
FFFFFFFF FFFFFFFP FFFFFFFF FFFFFFFF

CALLEE=PIIiIS SVC-OLD-PSII=000400CA400057F4
00000000 00005816 00009Bl0 E2E1C1E3
000095C8 OCOOOOOl 400057E8 000011BO
00000000 00000000 OOOOOOOC OOCOOOOO
0000139C 00000000 00000778 000029DC
C6c9D5C9 E2404040 00004018 OOOOOno
00000000 00000000 00000000 OOOCOOOO

00000000 00000000 00000000 --OYEJr--

CALLEE=TIPLIH SYC-OLD-PSV=000400CA60CC9130
01009631 C2000021 00000014 --STAT-

CALLEE=V AIT BD SYC-OLD-PSV=OOO 400C140CC 91i0A
01009714 E4000013 --T!PL-- --11--
0100960C C2000011 D95E40£3 7EPC4BFO

CALLEE=STAT E SVC-OLD-PSII=00040OC160CC9!:16
--FIGo-- --RE -- --SCRI-- --(7--
EFFEFFFF l'FFFFPFF fFFFFPFF HUFFPF

CALLEE=FI US SVC-OLD-PSII=OOO 400C14CCC57F4
00000000 00005816 00009810 E2E~C1E3
C0009508CC000001 400057E8 000011BO
00000000 00000000 00000000 OOCCOOOO
0000139C 00000000 00000778 000029D<:
c6C9D5C9 E2404040 00004018 OOOOOUO
00000000 00000000 OOOOOOOC oeccoooo

--*
00000000 00000000 00000000 --F lGU--

CALLEE=TIPLI~ SYC-OLD-PSII=000400CA60CC9!:5c
0100960C C200001A D95E40E3 7EPC4BFO
17174040 40401517 17054 tPO

CALLEE=VAITRD SYC-0LD-PSII=000400C1400096DA
01009774 E4000007 --TlPL-- --IK-
010091:0C c200001l D95E40E3 71!FCUFO

****liOTE--NORrlAL- AIiO ERROR-OVERRIDES HAVE HOW BEEII CLE1RED**.*

BaBaBT=0000951A EBRET=0000951A
PFFFFlFF 'PPFFFFF
FFFPPFlP FlFFlPlP

NB!BBT=000057P8 EBBBT=0000S1p8
00005018 0003E8B8
40009540 000011BO
00000000 00000000
00000120 00000048
000026C£ 00000006
00000000 00000000
5C40FlFP F.FEPIFD
--BIDE-- --!ODO--

HRBBET=00009560 EiRET=0000954A
P461F04B --14 2-
--08BR-- 5D5£40£3

HRBIIET=000096DE ERBET=000096DE
01009386 D2000020
F461F04Jl --14 2-

NB8RBT=00009511 EBRET=00e09S1A
000050A8 0003E8B8
60009580 00000001
OOOOOOOC 00000000
00000120 00000048
000026CE 00000001
00000000 00000000
FFFIIFFP 'FlIPI!1
PFFFPFFF FFPFFFFP

NB8RE'l:000057F8 EBlIET=000057 pa
000050A8 0003E8E8
40009540 000011BO
00000000 00000000
00000120 00000048
000026CE 00000006
00000000 00000000
5C40PFFF FPFEPFPD
-llIDE-- --80Do--

NR!BET=00009734 ERBET=0000972E
--E T £-- --ST 5-

NB!RET=000096DE ERBET=000096DE
01009386 02000020
F461F04B --11 2--

NB!BET=0000951A ERRET=0000951A
00005018 0003E8E8
60C09580 00000001
00000000 00000000
00000A20 00000048
000026C1 00000001
00000000 00000000
FFFFFPFF FFPFFFIF
FFFlPFF. Fl'FUPFF

NB8BET=000057F8 EaRET=000057F8
000050A8 0003E8B8
40009540 000011£0
00000000 00000000
00000120 00000048
000026CE 000000C6
00000000 00000000
5C40FFFF FFF£FPfD
--BIDE-- --80DO--

HB!BET=00009734 EiBET=0000972E
--E 51-- --8PLi--

IIB!RE'l=0000960E EiRE'l=000096DE
01009386 D2000020
F561F04B --11 2--

HB!RBT=0000951A BBBET=0000951A
FFUFIFF 000013IiO
FFFPPFFF FFFFPlFF

IIRBBET=000057F8 EBBET=000057F8
000050A8 0003E8B8
40009540 000011JlO
00000000 00000000
00000 A20 00000048
000026CE 00000006
00000000 00000000
5C40FPlF '!PIPfFD
--BE -- --SCBI--

HR!8E'l=00009560 E8BBT=00009541
F 361F 04B --08 2--
--0001-- 5D5E40!3

BBBRET=000096DE £BBET=000096DE
01009386 02000020
F361F04E --08 2-

Figure 15. Sample offline printout of trace information
recorded by the SETOVER command

CLROVER 217

DEBUG

Purpose:

The purpose of the DEBUG command is to provide the user with
online facilities for debugging programs and to provide an
entry in CMS for handling external and program interrupts
and unrecoverable errors.

Format:

I DEBUG ,

Usage:

The facilites of DEBUG are made available to the user when
the DEBUG command is issued,. an external interrupt occurs, a
program interrupt occurs l , a breakpoint is encountered during
program execution, or an unrecoverable e~ror occurs. Once
DEBUG has been entered due to any of the above
circumstances, tne user is said to be in the Debug
environment. The only valid input in this environment is
the group of DEBUG requests discussed in this sectio~. Five
of the requests--GO, IPL/, 1{X, RETURN. and RESTART--cause the
user to leave the Debu-:J environment. Which of these five
requests should be issued depends on the circumstances under
which DEBUG is entered. Refer to the section dealing with
each request for a further discussion of its use.

When the Debug environment is entered. the -contents of all
general-purpose registers:, the channel status word

i
• and the

channel address word are saved so they may be examined and
changed prior to being restored when leaving the Debug
environment. If DEBUG is entered via an interrupt" the old
program status word for that interrupt is also saved. The
reque~ts which may be issued in the Debug environment allow
the user to examine and change the contents of these control
words and registers as well as portions of the user's
virtual core. Each of these requests is described
individually in the following sections.

Notes:

a. KT and KO are not recogniz~d in the Debug environment.

b. The floating-point registers may not currently be
examined or changed in the Debug environment. To access the
floating-point registers!, the CP console functions DISPLAY
Yreg and STORE Yreg may be used.

Responses:

DEBUG ENTERED •••
This message indicates that DEBUG bas been entered in

218 DEBUG

------- --------

response to the DEBUG command or due to an unrecoverable
error encountered during execution. Any DEBUG request may
be issued as soon as the keyboard is unlocked.

DEBUG ENTERED, EXTERNAL INT.
This message indicates that an external interrupt has caused
DEBUG to be entered and that the external old program status
word is saved. Any DEBUG request may be issued as soon as
the keyboard is unlocked.

DEBUG ENTERED PROGRAM INT. PSW = xxxxxxxxxxxxxxxx
This message indicates that a program interrupt bas .caused
DEBUG to be entered. The program old PSW is save~, and its
contents typed in hexadecimal representation as indicated by
xxxxxxxxxxxxxxxx above. Any DEBUG request may be issued as
soon as the keyboard is unlocked.

DEBUG ENTERED BREAKPOINT xx AT xxxxxx
This message is typed when DEBUG is entered due· to
encountering a breakpoint during the execution of a program.
The breakpoint is identified by the number assigned to it
(xx) and by the hexadecimal core location (xxxxxx) at which
it is encountered. Any DEBUG request may be issued as soon
as the keyboard is unlocked.

INVALID DEBUG REQUEST
The user has' specified a request which is
Debug environment or which includes the
operands. On.ly the requests discussed in
valid.

Requests:

not valid in the
wrong number of

this section are

inienever the keyboard is unlocked in the Debug environment,
any DEBUG- request may be issued. The following rules apply
when issuing DEBUG requests;

(1) The parameters,. or operands i• of each request must be
separated by one or more blanks.

(2) The character-delete symbol" all may be used to delete
individual characters in an input line and n
character-delete symbols delete the preceding n characters
in the line.

(3) The line-delete symbol;, ~,' may be used to delete itself
and all preceding characters in an input line. A
line-delete symbol cannot be deleted by a character-delete
symbol.

(4) All operands longer than eight characters are
left-justified and truncated on the right.

(5) All entries in the DEBUG symbol table are created by
the DEF request .•

DEBUG 219

(6) The DEBUG requests can be abbreviated by
minimum of two characters, except for X,

-:{ ~RESTART •

specifying a
RETURN" and

Below is a list of all valid DEBUG requests and their
minimum abbreviation.

~:~ 220

REQUESTS

BREAK
CAW
CS~

DEF
DUMP
GO
GPR
IPL
KX
ORIGIN
PS~

RESTART
RETURN
SET
STORE
TIN
X

Minimum Abbreviation

DEBUG

BR
CA
CS
DE
DU
GO
GP
IP
KX
OR
PS
REST
RET
SE
ST
TI
X

BREAK

Format:

I I
I BREAK I
I I

symbol
id

hexloc

id is any decimal number between 0 and 15 inclusive

symbol is a name which has been assigned (using the DEF
request) to the core address at which a breakpoint
is to be set

hexloc is the hexadecimal core location (relative to the
current origin) at which a breakpoint is to be set

Usage:

This request enables the user to stop execution of a program
at specific instruction location called breakpoints.
Issuing the BREAK request causes only one breakpoint to be
set. separate BREAK requests must be issued for each
breakpoint desired. A maximum of sixteen breakpoints may be
in effect at any given time, and any attempt to set more
than sixteen is rejected .•

The first operand of the BREAK request specifies the
identification number assigned to the breakpoint being set.
It must be a decimal number between 0 and 15 inclusive. If
an identification number is specified which is the same as a
currently set breakpoint l• the previous breakpoint is cleared
and the new one is set.

The second operand of the BREAK request indicates the core
address at which the breakpoint is to be set. If this
operand contains any non-numeric characters, the DEBUG
symbol table is searched for a matching symbol entry. If a
match is found, the breakpoint is set at the core address to
which the symbol name is assigned provided that address is
on an even (halfword) boundary. If no match 1S found in the
DEBUG symbol table" or if the second operand contains only',
numeric characters, the current origin as established by
the ORIGIN request is added to the specified operand and the
breakpoint is set at the resulting core address provided
that address is on a halfword boundary.

The DEBUG program sets a breakpoint by saving the contents
of the byte located at the core address specified by the
second operand of the BREAK request,. This byte is replaced
by the byte EX where x is the hexadecimal equivalent of the
breakpoint identifier specified in the first operand. For
the breakpoint setting to have meaning, the core address
indicated by the second operand must be the location of an

DEBUG - BREAK 221'"

operation code. Thus;, when the location is encountered
during proqram execution/I a program interrupt occurs because
all.values EO through -EF are invalid operation codes and
control is transferred to the Debug environment. In DEBUG
the invalid operation cQde is recognized as a breakpoint,
the original operation code is replaced, and a message is
typed ident'ifying the breakpoint encountered.

Figure 16 gives the procedure normally used for setting
breakpoints. The program is loaded into core and DEBUG is
issued to transfer control to the Debug environment so
breakpoints may be set prior to execution. After the
desired breakpoint have been set" RETURN should be issued to
return control to the CMS Command environment. Issuing the
START command causes program execution to·begin. Whenever a
breakpoint is encountered, a message to that effect is
typed, control, is returned to the Debug environment, and the
keyboard is unlocked to accept any DEBUG request except
RE~URN. Issuing the GO request causes program execution to
continue from a specified location or the location at which
the _breakpoint had been set .•

Notes:

a. A breakpoint is cleared when it is encountered during
program execution~

b. To obtain the core addresses of instructions at which
breakpoints are to be set"a listing of the program(s) in
assembler language mnemonics should be used together with a
load map. Assembler language mnemonics ar.e obtained in
Fortran listings by specifying the LIST option when the
FORTRAN command is issued; see Figure 17,. To obtain a load
map. the TYPE option is specified in the LOAD command as
shown in Figure 15.

c. If the address specified for a breakpoint setting is on
a halfword boundary" the byte at that address may not
contain an operation code. It is up to the user to make
sure that breakpoints are set only at .operation code
locations. Otherwise{, the breakpoint is not recognized
during execution and may generate other errors by overlaying
data or some part of an instruction other than the operation
code.

d. No breakpoints should be set below hexadecimal core
location 100 since this area is reserved for hardware'
control words, and does not contain executable code .•

e. If BREAK specifies a core address at which a breakpoint
is currently active,. the second breakpoint is set at that
same location. When encountered during execution., the
identification number of the most recently set breakpoint is
typed. The second time this core location is reached during
program execution, the identifier of the second-most
recently set breakpoint is typed" and so on,. When DEBUG' has

222 DEBUG - BREAK

been entered due to a breakpointi, issuing the GO request
without an operand causes execution to begin at the location
at which the breakpoint was encountered. If more than one
breakpoint has been set at this location;, the addi tional
breakpoint (s·) causes DEBUG to be re-entered,.

Responses:

If the BREAK request is correctly issued, the keyboard is
unlocked following a carriage return, and the system is
ready to accept another DEBUG request.

INVALID DEBUG REQUES~
This response indicates that some number other than two
operands have been specified.

INVALID ARGUMENT
This message indicates that the breakpoint identification
number specified in the first operand is not a decimal
number between 0 and 15 inclusive,. or the second operand
cannot be located in the DEBUG symbol table and is not a
valid hexadecimal number.. If the second operand is intended
to be a symbol, a DEF. request must have been previously
issued for that symbol; if not, the operand must specify a
valid hexadecimal core location.

INVALID CORE-ADDRESS
The core location indicated by the second operand is uneven
(not on a halfword boundary) or the sum of the second
operand and the current origin value is greater than the
user's virtual core size. If the current origin value is
unknown, it may be reset to the desired value by issuing the
ORIGIN request.

REPLACES OLD BREAKPOINT xx AT xxxxxx
This response indicates that the BREAK request just issued
specifies a breakpoint identifier (xx) which is aSSigned to
a currently active breakpoint. The old breakpoint ·(at core
location xxxxxx) is cleared and the new breakpoint is set.

DEBUG ENTERED
BREAKPOINT xx AT xxx xxx
This message is given when a breakpoint is encountered
during program execution. xx is the breakpoint identifier
andxxxxxx is the core address of the breakpoint. After the
message' is typed., the keyboard is unlocked to accept any
DEBUG request exc1.!pt RETORN .•

Examples:

a. BREAR 1 leC
The current origin value is added to 18C and the byte at the
resulting core. address is saved and replaced by the byte
'El'. Refer to Figure 16 where the origin is set to 12000,
and the instruction at breakpoint 1 is set is the second
from the· last instruction shown in Figure 17. Note that the

DEBUG - BREAK 223

load map indicates that program PRIME is loaded -at 12000.
Setting the origin to 12000" therefore, means that the
statement locations shown in the listing of program PRIME
may be used in setting breakpoints. When breakpoint 1 is
encountered during program execution;, the message

DEBUG ENTERED
BREAKPOINT 01 AT 01218C

is typed.

b. BREAK 3 AM
The byte at the address assigned to symbol AAA is saved and
replaced by the eE3·. In Figure 16 a DEF request is issued
which assigns symbol AAA to location 1A4 relative to the
current origin of 12000. Breakpoint 3 therefore sets at core
address 121A4. as indicated by the message

DEBUG ENTERED
BREAKPOINT 03 AT 0121A4

which is typed when the breakpoint is encountered during
program execution.

224 DEBUG - BREAK

printf prime listing
FORTRAN IV G LEVEL 0

"
MOD 0

FILE PRIME
PRIME

CAMBRIDGE
PRIME NUMBER PROBLEM

DATE = 67080
MONITOR SYSTEM

0001
0002

0003
0004
0005
0006
0001
0008
0009
0010
0011
0012
0013
0014
0015
0016
0011
0018
0019
0020

FORTRAN IV G
FILE PRIME

FORTRAN IV G
FILE PRIME

LOCATION
000000
000004
000008
OOOOOC
000010
000014
000016
00001A
00001E
000022
000024
000028
00002C
00016C
000170
000174
000178
00011C
00011E
000182
000184
000186

C
100 WRITE (6.8)

8 FORMAT (27B PRIME NUMBERS
50/2X,.IH1/2X. IB2/2X.,lH3)

101 1=5
3 A=l

102 A=SQRT(A)
103 J=A
104 00 1 R=3"J;,2
105 L=I/K
106 IF (L*R-I) 1,.2.,4

1 CONTINUE
107 WRITE (6,,5)1

5 FORMAT (I3)
2 1=1+2

108 IF (50-I}7~4,3
4 WRrrE (6,9)
9 FORMAT (14H PROGRAM ERROR)
1 WRITE (6,6)
6 FORMAT (4H END)

109 STOP

FROM 1 TO

END
LEVEL 0,. MOD 0 PRIME DATE = 67080

LEVEL O. MOD 0

STA NUM LABEL

A36

A20

OP
BC
DC
DC
STM
LM
LR
L
ST
STM
BCR
DC
DC
DC
L
L
LM
MVI
BCR
L
LR
LR
BAL

CAMBRIDGE MONITOR SYSTEM
PRIME DATE = 67080

CAMBRIDGE MONITOR SYSTEM
OPERAND BCD OPERAND
15,12(0,1"5)
06D7D9C9
D4C54040
14,121,12 (13)
2,.3.40 (15)
4,13
13,36(0,15)
13,8(0,4)
3,,4 .• 0(13)
15,2
00000000
00000000
00000000
13,4(0,13)
14,12(0,13)
2,12,,28 (13)
12(13),255
15,14
15.160(0,13)
12,13
13,4
111.64(0,.15)

A4
A20
A36

IBCOM#

Figure 11. Sample output created by a FORTRAN command in which
the LIST and SOURCE options are specified.

DEBUG - BREAR 225

load prime (type)
PRIME# AT 12000
PRIME AT 12000
IHCFCOMH AT 122A8
SAVAREA AT 13210
VFIOCS AT 13110
IBCOM# AT 122A8
FDIOCS# AT 12364
IBCSSQRT AT 132EO
SQRT AT 132E0
IBCFCVTH AT 13390
ADCON# AT 13390
INT6SW AT 143F1
FCVEO AT 13E3A
FCVLO AT 13612
FCVIO AT 13948
FCVCO AT 1403C
FCVAO AT 13582
FCVZO AT 134DC
IHCFIOSH AT 14410
FIOCS' AT 14410
IBCTRCB AT 14FA8
IHCUATBL AT 15220

R;T=0.39/0.60

debug
DEBUG ENTERED •••

ori9in 12000

break 1 18c

def aaa 1a4

break 3 aaa

return
R;T=O.02

start
EXECUTION BEGINS •••
DEBUG ENTERED
BREARPOINT 01 AT 01218C

90

PRIME NUMBERS FROM 1 TO 50
1
2
3

DEBUG ENTERED
BREARPOINT 03 AT 0121A4

Fi9ure 16. Sample procedure for setting breakpoints

226 DEBUG - BREAK

CAW

Format:

CAW

Usage:

This request causes the contents of the channel address word
which existed at the time DEBUG was entered to be typed at
the terminal. The CAW. specifies the storage protection key
and the core address of the first channel command word
associated with the next or most recent START I/O,. The CAW
located in hexadecimal core location 48, is saved at the
time DEBUG is entered. It has the following format:

Bits Contents

0-3 Protection key which is matched with a key in storage
whenever reference is made to main storage.

4-7 Not implemented; currently set to zeros.

8-31 Command address:, indicating the hexadecimal core
location of the ~irst channel command word associated
with the next or the most recent START I/O.

For a further discussion of the channel address word:, refer
to the IBM manual, IBM System/360 Principles of Operation.

Responses:

If the request is issued correctly" the contents of the
channel address word are typed in hexadecimal representation
at the terminal and" following a carriage return, the
keyboard is unlocked to accept another DEBUG request.. See
Figure 18 for an example of· response to the CAW request,.

INVALID DEBUG REQUEST
This response to the CAW request indicates that one or more
operands have been specified. Reissue the request in its
correct format.

DEBUG - CAW 227

CSW

Format:

I CSW

Usage:

This request causes the contents of the channel status word
which existed at the time DEBUG was entered to be typed at
the terminal. The CSW indicates the status of a channel or
an input/output device l, or the conditions under which an I/O
op~ration has been terminated. The CS~ is formed in the
channel and stored in hexadecimal core location 40 when an
I/O interruption occurs. If I/O interruptions have been
suppressed, the csw is stored when the next START 1/01• TEST
1/01, or HALT I/O instruction is executed. The CSW is saved
when DEBUG is entered and has the following format:

0-3

4-1

8-31

32-47

48-63

contents

Protection key moved from
indicate the protection key
started.

the CAW and used to
under which I/O was

Not implemented; currently set to zeros.

Next command address--a pointer to the core location
eight bytes greater than the address of the last
channel command word executed.

Status bits indicating the conditions in the device
or the channel that caused the CSW to be stored.

Residual count indicating the difference in the
number of bytes specified in the last executed
channel command word and the number of bytes which
were actually transferred.

Responses:

If the request is issued correctly, the contents of the CSW
are typed at the terminal in hexadecimal representation. A
carriage return is then issued and the keyboard is unlocked
to accept another DEBUG request. For an example of response
to the csw request see Figure 18~

INVALID DEBUG REQUEST
This response to the csw request indicates that one or more
operands have been specified. Reissue the request in its
proper format.

228 DEBUG - CSW

DEF

Fornlat:

DEF symbol hexloc < bytecount > I
4 I

symbol is the name to be assigned to the core address
derived from the second operand. hexloc

hexloc is the hexadecimal core location. relative to the
current origin" to which the name specified in the
first operand ~s to be assigned

bytecount is a decimal number between 1 and 56 inclusive
which specifies the length attribute (in bytes) of
the symbol specified in the first operand.

usage:

The DEF request allows the user to assign a symbolic name to
a specific core address and to refer to that address in
other DEBUG requests by the assigned name. The symbol name
is specified as the first operand of the DEF request. It
may be from one to eight characters in length, must contain
at least one non-numeric character. and the first character
of the symbol name should not be an asterisk. Any name
longer than eight characters wi11 be left-justified and
truncated on the right.

The second operand specifies a hexadecimal number which is
added to tne current origin as established by the ORIGIN
request. The sum of these two values is the core address to
which the symbol name is assigned.

The third operand is optional and. if given, must specify a
decima.l number between 1 and 56 inclusive.. This number is
the length attribute in bytes of the symbol name. If the
third operand is omitted" a default attribute of four bytes
is assigned.

When DEF is issued,. an entry is made in the DEBUG symbol
table indicating the symbol name, the core address to which
it is assigned, and the length attribute of the symbol.
Symbols remain defined until a new DEF request is issued for
them or until the user obtains a new copy of CMS by issuing
an IPL request in the Debug environment or in the control
Program environment.

If DEF is issued spe~ifying a symbol that has been
previously defined. the previous core address is replaced by
the more recent core address for that symbol in the DEBUG
symbol table. DEF requests specifying additional symbol
names for core locations to which a symbol name has already

DEBUG - DEF 229

been assigned cause additional entries in the DEBUG symbol
table so that multiple symbols may be assigned to the same
core address.

Notes:

a. Only sixteen symbols may be defined in the Debug
environment at any given time.

b. Issuing a new ORIGIN request does not affect core
addresses to which previously defined symbols are assigned.

c. Symbols assigned using DEF are defined for use only in
the Debug environment.

Responses:

If DEF is issued correctly. a carriage return is given and
the keyboard is unlocked to accept another DEBUG request .•

INVALID DEBUG .REQUEST
This response to DEF indicates that less than two or more
than three operands have been specified~ Reissue the
request in its correct format.

INVALID ARGUMENT
This message indicates that the name specified in the first
operand contains all numeric characters. the second operand
is not a valid hexadecimal number,. or the third operand is
not a decimal number between 1 and 56 inclusive.

INVALID CORE-ADDRESS
This response is given when the sum of the second operand
and the current origin is greater than the user·s virtual
core size. If the current origin value is unknown., reset it
to the desired value by issuing the ORIGIN request and
reissue the DEF request.

16 SYMBOLS ALREADY DEFTNED
If this message is given, the DEBUG symbol table has been
filled and no new symbols may be defined until the current
definitions ~re cleared by obtaining a new copy of eMS.
However;, existing symbol may be assigned to a new core
lopation by issuing another DEF request for that symbol.

Examples:

a. DEFINE IN1 12F5A
The current origin value is added to 12F5A and the symbol
IN1 is assigned to the resulting hexadecimal core address.
The default length attribute of 4 is assigned to symbol IN1,
and an entry for IN1 is made in the DEBUG symbol table.

b. DEFINE K 13 l2
The currently defined or1g1n is added
value 13, and the resulting address is

230 DEBUG - DEF

to the hexadecimal
assigned the symbol

K. An entry for R is made in the DEBUG symbol table. and
its length attribute is 12 bytes.

DEBUG - DEF 231

DUMP

Format:

DUMP
symbol 1

ident < hexloc 1
o

symbol 2
hexloc 2>

*
3

I ,
I
I

ident indicates the name by which the printout is identified

symbo11 is a name assigned (using DEF) to the core address
at which the dump is to begin

hexlocl is the hexadecimal core location., relative to the
current origin,. at which the dump is to begin

symbol2 is a name assigned (using DEF) to the core address
at which the dump is to end

hexloc2 is the hexadecimal core location,. relative to the
current origin~ at which the dump is to end

* indicates that the dump is to end at the last address of
the user·s virtual core

Usage:

This request
the user's
information
where ident
of the DUMP

is used to dump the contents of all or part of
virtual core on the offline printer. The

has the heading ·ident FROM symbol1 TO symbol2"
is the identifier specified as the first operand
request.

The second and third operands specify the portion of core
which is to be dumped, and are optional. If omitted, the
core address specified in the most recent DUMP request is
used or, if no previous DUMP request has been issued, one
word (four bytes) of core is dumped starting at location o.

If the second and third operands are specified, the core
addresses to which they refer are determined in the
following way. If the second operand contains any
non-numeric character, the DEBUG symbol table is searched
for a matching symbol entry. If a match is found l, the core
address to which that symbol name is assigned is used as the
address at which the dump is to begin. If no match is found,
or if the operand contains only numeric characters, the
current origin as established by the ORIGIN request is added
to the specified operand. The resulting core address is
used as the beginning address of the dump, provided it is
not greater than the user's virtual core size. The core
address at which the dump is to end is given by the third
operand of the DUMP request. If an asterisk is specified

232 DEBUG - DUMP

for this operand. all of core from the starting address to
the end of core is dumped. If an asterisk is not specified
as the third operand. the same procedure is used to
determine the ending address of the dump as that described
above for the starting address. Both addresses must be
within the address range of the user's virtual core, and the
address specified in the third operand must be greater than­
that specified in the second.

The first three lines of output from the DUMP request give
the contents of general-purpose registers 0-7 and 8-15, and
the floating-point registers 0-6. Thereafter, the contents
of the specified portion of core are given, 32 bytes per
line. The core address of the first byte in the line is
given in the left-most column of the dump and is always an
even doubleword boundary,.

The alphameric interpretation for the 32 bytes is pri,nted to
the right of the specified hexadecimal locations.

Responses:

A carriage return is issued and the keyboard is unlocked to
accept another DEBUG request. The requested information is
printed offline as soon as the printer is available,.

INVALID DEBUG REQUEST
No. two" or more than three operands have been specified in
the DUMP request. Reissue the request,. specifying one or
three operands.

INVALID ARGUMENT
This message is given if the address specified by the third
operand is less than that specified by the second operand or
the second and/or third operands cannot be located in the
DEBUG symbol table and are not valid hexadecimal numbers.
If either operand is intended to be a symbol, a DEF request
must previously have been issued for that symbol: if not.
the operand must specify a valid hexadecimal core location.

INVALID CORE-ADDRESS
The hexadecimal number specified in the second or third
operand" when added to the current origin. is greater than
the user's virtual core size. If the current origin value
is unknown i, reset it to the desired value by issuing ORIGIN
and reissue the DUMP request.

Example:

DUMP NEUC 0000 05FO
The contents of core from locations 0000 to 05FO(each plus
the current origin) are printed on the offline printer and
identified by the heading NEUC. See Figure 19 for a sample
of this output, where the origin value is o.

DEBUG - DUMP 233

SEOC: PROII 000 TO 05FO

GR C-7 ClIC5C2E4 00009610 00009B10 00000000 00000778 000029AC 000001:<0 000(0048
Gli 8-F' 00000004 00000100 C4C5C2E4 C74C4040 OCOOA3BO 00000l.l0 000026C! 000013BO
PPREGS OOOOOOCC 00000000 00000000 00000000 00000000 00000000 00000000 00000000

o CO 00 0 800094CO 60009580 C 0000002 60000050 020n810 000013BO PFOtOCee 8003F29S * •........••...••........•..... ~ . •
000020 000400CA 60009516 OOCOOO 05 6COODOC2 00000000 00000000 FF040009 0000223E *
oece4e 00OOO2ce DC 000000 0000A048 00000000 000 1f69E 00000000 00000000 OOOOBDOO *•........ 6 *
000060 00040000 00002288 00C40000 OOOOBBOO 00000000 0000BC2C 0004CO(C OOCC05.1 C *•
o CO 08 0 OOOODOO\) 00000000 00000000 OOOOOOOC ClIC5C2E4 c14C4040 00016D1E 00000000 * DEBUG•
oeOCA 0 ooooocec 00000000 00000000 00000000 00000000 00000000 OOOOOOOC 00000000 * ..
o OOOCO 00003000 00000000 00000000 00000000 CCOOOOOO 00000000 00000000 00000000 * .. *
OCOCEC OOOOOOOC 00000000 00000000 0000CFA2 010058CO 00EC07FC 00000000 00000000 * *
0001CC 000001FC 000110000 00012000 00012000 00000000 00040000 OOOCCCCC CCO()OOCA 0 ..
000120 40001561 OO()O A56A 0000A238 C4C5C2E4 OCOCA76C 00009B10 00000000 00000778 * ••••••••••• LEBO •••••••••••••••• *
OC0140 00OC29AC 00000120 OCOOOO09 0000A3S0 00000009 900015611 C74CQCQC 000CA438 * •••••••••••••••••••••••• G -
000160 00003 AAO 000026CE OOCOOOOC OOOOOOCO C00400CA 400051P4 000057f8 000051 P8 *•• •• 11 ••• 5 ••• 8*
OC0180 c 3D 30906 0OOO1J9C 00000000 00005816 00()09 E10 C3D3D9D6 000C5CA8 0003E8B8 *CLRO •••••••••••••••• CLBO •••••• Y.*
0001 AO 00009386 00012000 00(09508 OCOOOOO 1 4COO57E8 000011BO 400C9511C OCOCOO06 * •• r •••• *
o CO 1C C oooooooe 0003POOO 00000000 00000000 OGOOOOOO 00000000 0003EOOO 00012000 * •••••• 0 ••••••••••••••••••••••••• *
0(01EO 0000019C 0OOOO1E5 00020000 C3D6D5E2 00000000 00000000 OAooe • .:£ 6CCCOC82 * .•.••.. V •••• COIiS •••••••••••••••••
000200 03000000 20000001 £6C1C9£3 '104C4C4C C3D6DSF1 00000000 C3D&ISf1 00000000 * •••••••• liAIT COR1 •••• COR1 •••• *
0(0.20 CCOO0238 000500CO 00000000 OJOOOOOO 00J0023C 000026CE ooocecce OA82CIIE4 *•...••.......•......•....• DU·
o C0240 0407110 D5 C5EIIC340 FOPOf040 POf5C6FO 00000000 00000000 OOOCCCCC enccoeoc *IIP BEOC 000 05fO •••••••••••••••• *
000260 00000000 :>0000000 00000000 00000000 OCOCOOOC OCOOOOOO 00000000 00000000 •................................ *

*** DUPL.ICATE ceRE LOCATICNS ***
0002CO OOOOJ2C4 g:i1At95E 40 E37EPO 4BPOf161 F04BFOF2 40F2P04B P5P04ff5 F3151117 * ••• D •• B. T.0.01.0.02 20.50.53 ••• *
OC02EO F04BF 3FE 15171700 00000000 00000000 00000000 00000000 00000000 00000000 *0.3& •••••••••••••••••••••••••••• *
00030.0 00000000 OOOOOOCO 00000000 00000000 00000000 OOOOOOOC oooocecc ccccocea *

*** DUPLICATE CORE LOCATION S • **
o Co 3E C OOOOOOCC' 00000000 00000000 OJOOOOOO 00000000 000003PII 0000C3F9 OC040000 * ••••••••••••••••••••••• 4 ••• S •••• *
00040.0 00091)000 C3 D6 D5F 1 0000C2EO C 19CGCC8 C4E2D2F 1 00001050 0191CCC6 C4f<I:2F2 * •••• COIl1 •• B ••••• DSK1 •••••••• DSK2*
oe042e oe001 e5C 01920000 C4E2D2P3 OCOC1C50 OCOCOOOO D9C4 D9 F1 00000000 000 [0000 * •••••••• DSK3 •••••••• RDR1 •••••••• *
OC0440 C7C)C8F1 I)OOCOOC(OOOEOOOO 0709 D5 P1 00000000 o 180000C E3C1DiF1 OOC C 0000 *PCH1 •••••••• PBN1 •••••••• IIP1 •••••
000 .. 60 01810000 E3c1C7F2 OOOOCOOC oeoooooo C4E2D2FII OC001050 00000000 C4!2£2F5 * •••• IAP~ •••••••• DSK4 •••••••• D SK5*
0(0480 00001C50 019COOO8 C4 E2D2P6 00001050 01060000 C3D91l3f1 ccocecec 00000000 * •••••••• DSK6 •••••••• CR!1 •••••••• *
0004AO OCuO()OOO C3 &6D5F1 0OO011EO 00009774 00000&10 00000400 OOOO;;C1S OOCC9ECO * •••• COIl1 •••••••••••••••••••••••• *
OG04CO ooeo HF8 00002C98 OOGOBBBC OCG019CO CCOC19C0 00009EF6 000014CO 000034C8 * ••• 8 ••••••••••••••••••• 6 ••••••• H*
o C 0 4E 0 000C9828 00010408 00001A28 00000&00 00OO049C 00001A9C 000CC4F9 OOCCOOOO * ••••••• C ••••••••••••••••••• 9 •••• •
o C050 0 00003504 oaaot! [;[0 00001EAO OCoeOE3c CC0031FO 000032P8 0000SES8 000C051D * •....••..•....•.••• 0 ••• 8 •••••••••
o CO 52 0 OOOC19FO 00000525 OOCO 93Ab 00001(i60 CC00237C 0000011e 00000£10 0000053D * ..• u •••••••••••••••••••••••••••• *
J CO ~ II 0 OeO(0778 00000545 000057cA OCJ010FF8 00000000 00000000 COOCCCCC 000CAC78 * ••••••••••••••• 8 •••••••••••••••••
J CO 560 0000CC88 00009810 0000C569 0OO09DFC eCFFFFFI' 00003810 00003880 00000571) *•..•...•. 0 •••••••••••••••• *
o co ~ 8 C 0000 1A 58 00000585 OOOOBAEC 0000 BAFII 00000& AS 00000000 0000EAC8 OCCCOOOO •••••••••••••••• 4 •••••••• e

o
_ •••••••

0005 AO SOCOOOO(i 05c0900 F C162D203 C1920000 98030038 41EOCO&O 98I1BCCF:< 1QQC12S9 * •••••••• A.I.& •••••••••••••• 2 • • • *
o CO ~c 0 4180C02C 41FOC05c 49409000 078F87SA ce22111 FO C08!l4190 C0409180 50020789 * ••••• 0 ••• •• •••••• • 0 ••••• •.•.•. *
0CO':EO 494C50ce 0701'8756 CJ34585J CuFb4940 5000078.F 8756c04S QOIlOCC':A Q7FCCCEA *. ••••••••••• 6. ••• 0 •• *

Figure 19'. Sample DUMP output from the offline printer

234 DEBUG - DUMP

GO

Format:

GO < symbol>
hexloc

symbol is a name that has been assigned by the DEF request
to the core address at which execution is to begin

hexloc is the hexadecimal core location, relative to the
current origin~ at which execution is to begin

Usage:

The GO request causes the user to leave the Debug
environment and begin execution at a user-specified address
or at the address contained in bits 40-63 of the old PSW for
the interrupt which caused DEBUG to be entered. This PSW is
saved when DEBUG is entered,. and is loaded as the current
PSW when GO is issued,. If an operand is specified in the GO
requestr, the instruction address portion of the PSW is
altered to contain the address indicated by that operand
before the PSW is loaded.

The core address indicated by the GO operand is determined
in the following way. If the operand contains any
non-numeric characters. the DEBUG symbol table is searched
for a matching symbol I.!ntry. If a match is found" the core
address to which that symbol name is assigned is used as the
location at which execution is to begin. and is moved to the
saved old PSW. If no match is found in the DEBUG symbol
table, or if the operand contains only numeric characters,
the current origin (as established by the ORIGIN request) is
added to the specified operand and the resulting address
moved to the PSW1, provided it is not greater than the user's
virtual core sizl.!.

Prior to loading the PSW. the general-purpose registers,
channel address word, and channel status word are restored
to their contents as they existed when DEBUG was entered,
or, if they have been modified by the user in the Debug
environment, to their modified contents. The saved old PSW
is then loaded to become the current PSW, and execution
begins at the specified instruction address.

Notes:

a. GO should not be issued without
Debug environment has been entered
external" or program interrupt.

an operand unless the
due to a . breakpoint,

h. lihen
time in

an operand is specified, GO may be issued at any
the Debug environment, except when DEBUG has been

DEBUG - GO 235

entered to set breakpoints in a program prior to starting
it.

c. If an operand is specified in the GO request, the address
to which it refers must be the core location of an operation
code.

Responses:

If GO is issued successfully, there is a carriage return and
execution coninues from the address contained in the loaded
psw.

INVALID DEBUG REQUEST
This response ~9:ndicates that more than one operand has been
specified in the ',GO request. Reissue the GO request in its
correct format.

INVALID ARGUMENT
An operand specifaed in the GO request cannot be located in
,the DEBUG symbol table and is not a valid hexadecimal

"number. If the operand is intended to be a symbol. a DEF
request must have been previously issued for that symbol: if
not!. the operand must specify a valid hexadecimal core
location.

INVALID CORE-ADDRESS
The address at which execution is to begin is not on a
halfword boundary (indicating that an operation code is not
located at that address) or the sum of the GO operand and
the current origin value is greater than the user's virtual
core size. If the current origin value is unknown, it may
be reset to the desired value by issuing the ORIGIN request.

INCORRECT DEBUG EXIT
The GO request has been issued without an operand when DEBUG

dhad not been entered due to a breakpoint, external" or
program interrupt. The IPL,• KX, or RESTART requests may be
issued, GO may be issued with an operand, or RETURN may be
issued if DEBUG had been entered via the DEBUG command.

Examples:

a. GO
The old PSW for the interrupt that caused DEBUG to be
entered is loaded as the current PSW, and execution begins
at the address specified in bits 40-63 of that PSW,.

b. GO INN
The DEBUG symbol table is searched for symbol INN and the

~;address to which that symbol is assigned is loaded into bits
t.l,{~·O:-63 of the old PSW prior to loading it as the current psw •
. , Control passes from the Debug environment and execution
begins at the core address to which symbol INN refers.

236 DEBUG - GO

c. GO 12345
The current or1g1n is added to location 12345 and the
resulting address placed in bits 40-63 of the old PSW prior
to loading it as the current psw. Control is transferred
from the Debug environment and execution begins at the
specified address.

DEBUG - GO 237

GPR

Format:

GPR reg1 < regN > I

reg1 is a decimal number from 0-15 inclusive, indicating the
first or only general-purpose register whose contents
are to be typed.

regN is a decimal number from 0-15 inclusive, indicating the
last general-purpose register whose contents are to be
typed.

Usage:

The GPR request is used to inspect the contents of one or
more general-purpose registers as they existed when DEBUG
was entered. If only one operand is given, the conten~s of
the specified register are typed at the terminal.. If two
operands are given, the contents of the registers specified
by the first throuqh the second operand, inclusive, are
typed.

The first and second operands must be decimal numbers from
0-15, and the second operand must be greater than the first.

Responses:

If the request is issued correctly~ the contents ,of the
register (s) specified are typed at the terminal{, one per
line. Following a carriage return, the keyboard is unlocked
to accept another DEBUG request.

INVALID DEBUG REQUEST
This message indicates
have been specified.
format.

that none or more than two operands
Reissue the request in its proper

INVALID ARGUMENT
This response is given if the operand(s)
decimal numbers between 0 and lSi, or if
is less than the first.

Examplep:

a. GPR 8

specified are not
the second operand

The contents of general-purpose register 8 as it existed
when DEBUG was entered are typed at the terminal. See
Figure 20.

b. GPR 5 15
The contents of general-purpose registers 5 through 15,
inclusive, are typed as they existed when DEBUG was entered,.

238 DEBUG - GPR

See Figure 20.

gpr 8
002AIA88

gpr 5 15
000A5DD8
002AIA88
00009B38
002AIA88
00000100
80009670
B0009FBA
600095C2
000llD40
0000550C
000095B8

Figure 20. Examples of the GPR request

DEBUG - GPR 239

IPL

Format:

IPL

Usage:

The IPL request causes control to transfer from the Debug
environment to the eMS Command environment. IPL may be
issued any time the keyboard is unlocked in the Debug
environment regardless of the- circumstances by which DEBUG
is entered.

Responses:

CMS ••• VERSION nn LEVEL mm
This indicates that IPL has successfully executed and
control has passed from the Debug environment to the CMS
Command environment. The keyboard is unlocked to accept any
CMS command.

INVALID DEBUG REQUEST
This indicates that one or more operands have been specified
in the IPL request. Reissue the request in its correct
format.

240 DEBUG - IPL

KX

Format:

KX

Usage:

The KX request closes all open
updates the user·s file directory,
request may be issued whenever the
the Debug environment:. regardless
which DEBUG is entered,.

Responses:

KILLING CMS EXECUTION • • •
CMS ••• VERSION nn LEVEL mm

files and I/O devices.
and reIPL's CMS.. This

keyboard is unlocked in
of the circumstances by

This indicates that RX has executed,. eMS has reIPL' ed. and
and control has passed to the CMS command environment. The
keyboard is unlocked to accept any CMS command.

INVALID DEBUG REQUEST
This indicates that one or more operands have been specified
in the KX request. Reissue the request in its correct
format.

DEBUG - KX 241

ORIGIN

Format:

ORIGIN I symbol 1
I hexloc 1

symbol is any name that has been assigned to a core address
by the DEF request

hexloc is any hexadecimal core location between 0 and the
end of the user·s virtual core

Usage:

This request allows the user to specify an origin, or base
address. which is added to the hexadecimal locations
specified in other DEBUG requests. For example, the ORIGIN
request enables users to specify instruction addresses
relative to program load points, rather than to 0, while
operating in the Debug environment. If the ORIGIN request
is not issued, all hexadecimal locations specified in DEBUG
requests are assumed to be relative to 0,.

lihen ORIGIN is issued!. the origin setting is determined in
the following way. If the ORIGIN operand contains any
non-numeric characters!. the DEBUG symbol table is searched
for a matching symbol entry. If a match is found, the core
address to which that symbol name is assigned becomes the
new origin setting. If no match is found in the DEBUG
symbol table, or if the operand contains only numeric
characters j , the address specified in the operand becomes the
origin setting.

Any origin set by an ORIGIN request remains in effect until
another ORIGIN request or a RESTART request. is issued, or
until the user obtains a new copy of eMS. Whenever a new
ORIGIN request is issued, the value specified in that
request overlays the previous origin setting. If the user
obtains a new copy of eMS or issues a RESTART request, the
origin is set to 0 until a new ORIGIN request is issued,.

Responses:

If the request is issued
return and the keyboard is
request.

INVALID DEBUG REQUEST

correctly, there is a carriage
unlocked to accept another DEBUG

This response indicates that the wrong number of operands
have been specified. One and only Qne op~rand must be
specified.

242 DEBUG - ORIGIN

INVALID ARGUMENT
The operand specified in the ORIGIN request cannot be
located in the DEBUG symbol table and is not a valid
hexadecimal number. If the operand is intended to be a
symbol. a DEF request must have been previously issued for
that symbol: if nott• the operand must specify a valid
hexadecimal core location.

INVALID CORE-ADDRESS
The address specified by the ORIGIN operand is greater than
the user·s virtual core size.

Examples:

a. ORIGIN 12000
The origin is set to the hexadecimal value of 12000. 12000
is added to all hexadecimal locations specified in other
DEBUG requests and the resulting core address is referenced.

b. ORIGIN XYZ5
The absolute address assigned to symbol XYZ5 (provided an
entry for XYZ5 exists in the DEBUG symbol table) becomes the
new origin setting. This setting is added to all
hexadecimal locations specified in other DEBUG requests:. and
the resulting core address is referenced.

DEBUG - ORIGIN 243

PSW

Format:

PSW

Usage:

This request types the contents of the old program status
word for the interrupt that caused DEBUG to be entered. If
DEBUG was entered due to an external interrupt" the PSW
request causes the contents of the external old PSW to be
typed at the terminal. If a program interrupt caused DEBUG
to be entered, the contents of the program old PSW are
typed. If DEBUG was entered for any other reason, the
following is typed in response to the PSW request:

01000000xxxxxxxx
where the 1 in the first byte means that external interrupts
are allowed and xxxxxxxx is the hexadecimal core address of
the DEBUG program.

The fields of the PS~ follow.

Bits contents

0-1 System mask, indicating the sources which are allowed to
interrupt the cPU.

8-11 Protection key, used to determine if a given core
location may be written into.

12 ASCII flag, indicating whether ASCII-8 or EBCDIC code
is to be used.

13 Machine check flag, which is set to 1 whenever a
machine check occurs.

14 Wait state flag, which is set to 1 when the CPU is in
the wait state.

15 Problem state flag, set to
operating in the problem
supervisor state.

1 when the machine
state rather than

is
the

16-31 Interrupt code, showing the source of the interrupt
for external interrupts or the cause of the interrupt
for program interrupts.

32-33 Instruction length code., indicating the length;, in
halfwords, of the instruction being executed when a
program interrupt occurred (unpredictable for external
interrupts).

34-35 Condition code, which reflects the result of a

244 DEBUG - PSW

previous arithmetic. logical, or I/O operation.

36-39 Program mask, indicating whether or not
program exceptions are allowed to cause
interrupts.

various
program

40-63 Instruction address, giving the location of the next
instruction to be executed for program interrupts' or of
the instruction last executed for external interrupts.

For a further discussion of program status
use., refer to the IBM manual/.
Principles of Operation.

Responses:

words and their
IBM System/360

If the request is issued correctly., the contents of the
appropriate PSW are typed in hexadecimal representation at
the terminal, followed by a carriage return and an unlocked
keyboard. See Figure 18 for an example of response to the
PSW request.

INVALID DEBUG REQUES~
This response indicates that the user has specified one or
more operands in the PSW request. Reissue the request in
its correct format.

DEBUG - PSW 245

RESTART

Format:

RESTART

Usage:

~he RES~ART request is equivalent to the IPL request.
RESTART causes control to transfer from the Debug
environment to the CMS Command environment. RESTART may be
issued any time the keyboard is unlocked in the Debug
environment, regardless of the circumstances by which DEBUG
has been entered.

Issuing RESTART causes a new copy of the CMS nucleus to be
brought into core from the system disk. This new copy
overlays the user·s former copy of the nucleus. causing all
symbols which had been previously defined by DEF requests to
be cleared from the DEBUG symbol table.

Responses:

CMS ••• VERSION nn LEVEL mm
This response indicates that
executed and control has passed
to the CMS Command environment.
accept any CMS command.

INVALID DEBUG REQUEST

RESTART has successfully
from the Debug environment
The-keyboard is unlocked to

One or more operands have been specified in the RESTART
request. Reissue the request in its correct format.

246 DEBUG - RESTART

RETURN

Format:

RETURN

Usage:

-rhis request
environment to
used only when
command.

is a means of exitting from the Debug
the CMS Command environment. It should be
DEBUG has been entered by issuing the DEBUG

When RETURN is issued" the general-purpose registers are
restored with the information they contained at the time
DEBUG was entered or, if the user has specified a change to
this information while in the Debug environment, with the
changed information. In either case, register 15, the error
code register, is set to zero. A branch is then made to the
address contained in register 14, the normal CMS return
register. If DEBUG is entered by issuing the DEBUG command,
register 14 contains the address of a central CMS service
routine and control transfers directly to the CMS Command
environment ..

Responses:

R;T=xx.xx/XX.XX
The Ready message followed by a carriage return and an
unlocked keyboard indicates that the RETURN request has
successfully executed and control has transferred from the
Debug environment to the CMS Commend environment. After this
message is typed, the keyboard is unlocked to accept any eMS
command.

INVALID DEBUG REQUEST
This message is given if one or more operands have been
specified in the RETURN request. Reissue the request in its
correct format.

INCORRECT DEBUG EXIT
If DEBUG is entered due to a program or external interrupt,
a breakpoint, or an unrecoverable error, this message is
typed in response to the RETURN request. To exit from the
Debug environment under the above circumstances, issue GO
with an operand, IPL" or RESTART. The GO request may be
issued with no operand if DEBUG has not been entered due to
an unrecoverable error.

DEBUG - RETURN 241

SET

Format:

SET

I CAW
I CSW
I PSW
I GPR

hexinfo
hexinfo
hexinfo
reg

<hexinfo>
<hex info>
hexinfo <hexinfo>

CAW the specified information is to be stored in the
channel address word that existed at the time DEBUG
was entered.

csw the specified information, is to be stored in the

PSW

channel status word that existed at the time DEBUG
was entered.

the specified information is to
program status word for the
DEBUG to be entered.

be stored in the old
interrupt that caused

GPR the specified information is to be stored in the
general-purpose register given as the second op~rand.

usage:

The SET request is used to change the contents of control
and general-purpose registers which are moved from their
normal locations when the DEBUG environment is entered. The
contents of these registers are restored when control
transfers from DEBUG to another environment. If register
contents have been modified in DEBUG t, the changed contents
are restored.

The register that is to be modified is specified as the
first operand of the SET request" and the information to be
inserted in this register is given in hexadecimal format in
the hexinfo operand(s). Each hexinfo operand should be from
one to four bytes (that is, two to eight hexadecimal digits)
in length. If an operand is less than four bytes and
contalns an uneven number of hexadecimal digits
(representing half-byte information) the information is
right-justified and the left half of the uneven byte is set
to 0;, as shown in Example b. If more than eight hexadecimal
digits are specified in a single operand. the information is
left-justified and truncated on the right, as shown in
Example d.

The number of bytes that can be stored. using the SET request
varies depending on the form of the request. With the CAW
form, up to four bytes of information may be stored.. With
the CSW" GPR, and PSW forms, up to eight bytes of
information may be stored, but these must be represented in
two operands of four bytes each. When two operands of

248 DEBUG - SET

information are specified, the information is stored in
consecutive locations" even if one or both operands contain
less than four bytes of information, as shown in Example b.

The contents of registers that have been changed using the
SET request are not typed after the request has been issued.
To inspect the contents of these registers, the CAW" CSW.
PSW, or GPR requests are issued as needed. Figure i7
contains examples of issuing these requests both before and
after SET has been issued.

Responses:

If the request is issued correctly" a carriage return is
issued and the keyboard is unlocked to accept another DEBUG
request.

INVALID DEBUG REQUEST
This response indicates that the wrong number of operands
have been specified. If the CAW is set, two operands must be
given. To set the CSW or the PSW, two or three operands are
required. TO set a GPR. three or four operands must be
given.

INVALID ARGUMENT
the first operand is not
operand is GPR and the

number between 0 and 15
hexinfo operands does not

This message indicates that either
CAW, CSW, PSW or GPR. the first
second operand is not a decimal
inclusive, or one or more of the
contain hexadecimal information.

Examples:

a. SET CAW 1100
This example causes the two-bytes 1100 to be placed in the
first, two bytes of the channel address word that existed
when DEBUG was entered. See Figure 18. This new channel
address word is restored when an exit is made from the DEBUG
environment.

h. SET CSW 001 00FF81
Since an uneven number of bytes is specified in the second
operand, a zero is placed in the left-frost half-byte" giving
0001. These two by test, together with the three bytes given
in the third operand are placed as a single five-byte field
into the csw that existed when DEBUG was entered. See
Figure 18. This new channel status word is restored when
leaving the DEBUG environment.

c. SET PSW 01000000 00012036
The contents of the entire program status word for the
interrupt that caused DEBUG to be entered are replaced by
these eight bytes of information. See Figure 18. This PSW
becomes the current psw when an exit is made from the DEBUG
environment.

DEBUG - SET 249

d. SET GPR 5 000012345
The contents of general-purpose register 5 are replaced with
the information given in the ,third operand. Since this
information is greater than eight hexadecimal digits. it is
left-justified and 'truncated on, the right. giving 000.012311.
See Figure 18. General-purpose register 5 contains this new
information when the general~purpose registers are restored
prior to leaving the DEBUG environment.

caw
00010FE8

set caw 1100

caw
11000FF8

csw
00010FF8OC000005

set csw 001 00ff8l

csw
000100FF81000005

psw
01000000000095B8

set psw 01000000 00012036

psw
0100000000012036

gpr 5
00007F68

set gpr 5 0000123Q5

gpr 5
00001184

Figure 18. Examples of the SET request, using other
requests as appropriate to inspect contents both before and
after SET is issued

250 DEBUG - SET

STORE

Format:

syrobol
STORE

I
hexinfo <hexinfo <hexinfo» ,

hexloc I

symbol is a name assigned by the DEF request to
address at which the first byte of
information is to be stored

the core
specified

hexloc is the hexadecimal location relative to the current
origin where the first byte of information is to
be stored

hexinfo is any hexadecimal information, four bytes
in length, that is to be stored starting
address specified by the first operand

Usage:

or less
at the

This request allows the user to store information in any
virtual core location. The location at which the information
is to be stored is specified by the first operand and is
determined in the following way. If the first operand
contains any non-numeric characters, the DEBUG symbol table
is searched for a matching symbol entry. If a match is
found, the core address to which that symbol name is
assigned is used as the address at which information is to
be stored. If no match is found in the DEBUG symbol table,
or if the first operand contains only numeric characters,
the current origin is added to the specified operand and the
resulting core address is used, provided it is not greater
than the user·s virtual core size.

The information to be stored is given in hexadecimal format
and is specified in the second through the fourth operands.
Each of these operands is from one to four bytes (that is,
two to eight hexadecimal digits) in length. If an operand
is less than four bytes in length and contains an uneven
number of hexadecimal digits (representing half-byte
information), the information is right-justified and the
left half of the uneven byte is set to 0 as shown in Example
b. If more than eight hexadecimal digits are specified in a
single operand, the information is left-justified and
truncated on the right as shown in Example b.

A maximum of 12 bytes may be stored at one time using the
STORE request. This is done by specifying three operands
after the location operand, each of which contains four
bytes of information. If less than four bytes are specified
in any or all of the operands, the information given is
arranged into a string of consecutive bytes, and that string

DEBUG - STORE 251

is stored starting at the location given in the first
operand. Stored information is not typed at the terminal.
To inspect the changed contents of core after a STORE
request, issue an X request as shown in Figure 21.

Responses:

If the request is issued correctly,
given and the keyboard unlocked to
request.

INVALID DEBUG REQUEST

a carriage return is
accept another DEBUG

This response to STORE indicates that less than two or more
than four operands have been specified. Reissue the request
in its correct format.

INVALID ARGUMENT
This message is given if the first operand cannot be located
in the DEBUG symbol table and is not a valid hexadecimal
number. or information specified in the second, third,
and/or fourth operands is not in hexadecimal format. If the
first operand is intended to be a symbol. a DEF request must
have been previously issued for that symbol: if not, the
operand must specify a valid hexadecimal core location.

INVALID CORE-ADDRESS
~ 'Ihe current origin value, when

number specified as the first
greater than the user·s virtual
value is unknown, reset it to the
and reissue the STORE request.

Examples:

a. STORE 1202Q OACA

added to the hexadecimal
operand, gives an address
core s~ze,.. If the orl..gl.n
desired value using ORIGIN

This causes the two bytes of information OACA to be stored
at the core address obtained by adding the current origin to
location 1202Q. See Figure 21.

b. STORE XYZ 134123Q567890 5CA14 B
Since the second operand in this example contains more than
eight digits. it is truncated on the right. giving 134123q5.
The third and fourth operands. containing an uneven number
of digits. become 05CA14 and OB respectively. This
eight-byte string is then stored in the core address
indicated by symbol XYZ. See Figure 21.

c. STORE F12 FF.FFFFF'F FFFFFFFF FOF1F2F3
This example causes 'the maximum number of bytes, 12,. to be

. st.ored at location "F12. If F12 is a previously-defined
symbol, the information is stored starting at the address to
which that symbol refers. If no symbol F12 is defined, the
current origin is added to the hexadecimal number F12, and
the resulting address is used as the starting address into

252 DEBUG - STORE

which the information is stored. See Figure 21.

x 12024
E3D640C6

store 12024 Oaca

x 12024
OACA40C6

x xyz 15
C2D8506300044120C2E04800C2E812

store xyz 1341234567890 5ca14 b

x xyz 15
1341234505CA140BC2E04800C2E812

x f12 13
F1EC4310A00141AOA002910FFO

store f12 ffffffff ffffffff fOf1f2f3

x f12 13
FFFFFFFFFFFFFFFFFOF1F2F3FO

Figure 21.
request to
storing

Examples of the STORE request, using the X
inspect the contents both before and after

DEBUG - STORE 253

TIN

Format:

TIN CMS
DEB

Usage:

The TIN request determines how DEBUG is to handle I/O in the
Debug environment, either by the normal eMS I/O routines or
by DEBUG itself,.

TIN CMS allows CMS to handle the I/O for the Debug
environment when that environment is entered either by
typing DEBUG or by encountering a breakpoint (that is, when
the Debug environment is entered on purpose). This permits
input to be entered as normally in CMS, including the
ability to have input lines stacked in an EXEC file~ TIN CMS
is the default mode of I/O operation in the Debug
environment.

TIN DEB accepts input to the Debug environment only from the
terminal as it allows Debug to handle its own I/O. This is
the method used in previous versions of CMS.

Responses:

There are no responses to this request other than the
unlocking of the keyboard.

254 DEBUG - TIN

x

Format:

~---~--~---~---------~-~---~-

1 symbol < n >
I length
f X

I hexloc < n >
I q

symbol is a name assigned by using the DEF request to the
core address of the first byte to be examined

hexloc is the hexadecimal core location relative to
currently defined origin of the first byte to
examined

the
be

n is a decimal number from 1 to 56 inclusive, that specifies
the number of bytes to be examined

length is the length attribute of the syrobol specified as
the first operand

Usage:

This request is used to examine the contents of specific
locations in the user's virtual core, and causes contents to
be typed at the terminal in hexad·.!cimal form. The first
operand of the request specifies the beginning address of
the portion of core to be examined. This address is
determined in the following way. If the operand contains
any non-numeric characters. the DEBUG symbol table is
searched for a matching symbol entry. If a match is found,
the core address to which that symbol refers is used as the
location of .the first byte to be examined. If no match is
found, or if the first operand contains only numeric
characters, the current origin as established by the ORIGIN
request is added to the specified operand and the resulting
core address is used as the location of the first byte to be
examined. provided that address is not greater than the
user's virtual core size.

The second operand of X is optional. If specified, it
indicates the number of bytes--up to a maximum of 56--whose
contents are to be typed. If the second operand is omitted.
a default value of 4 bytes is assumed unless the first
operand is a symbol; if it is, the length attribute which is
assigned to that symbol in the DEBUG symbol table is used as
the number of bytes to be typed.

Responses:

If the
typed

X request is correctly issued,. the information is
and, following a carriage return, the keyboard is

DEBUG - X 255

unlocked to accept another DEBUG request.

INVALID DEBUG REQUEST
This response indicates that no or more than two operands
have been specified in the X request. Reissue the request
in its correct format.

INVALID ARGUMENT
This message is given when the first operand cannot be
located in the DEBUG symbol table and does not constitute a
valid hexadecimal number or the second operand is not a
decimal number between 1 and 56 inclusive. If the first
operand is intended to be a symbol. it must have been
defined in a previous DEF request; otherwise, the operand
must specify a valid hexadecimal number.

INVALID CORE-ADDRESS
The hexadecimal number specified in the first operand, when
added to the current origin, is greater than the cor~ size
of the machine being used. If the current origin value is
unknown, reset it to the desired value by issuing ORIGIN and
reissue the X request.

Examples:

a. X XYZ
The contents of core starting
XYZ is assigned are typed at
bytes typed is determined by
XYZ as established in the DEF
Figure 22.

b. X OTHER 12

at the address to which symbol
the terminal. The number of

the length attribute of symbol
request for that symbol. See

Twelve bytes of core are typed beginning
address to which symbol OTHER has been
previous DEF request. See Figure 22.

with the
assigned

core
in a

c. X 123
Since no byte count is specified, four bytes of core are
typed starting at the core address that is the sum of the
current origin value and the hexadecimal number 123. See
Figure 22.

d. X 123 32
Thirty-two bytes of core are typed, starting at the address
that is the sum of the current origin value and the
hexadecimal number 123. See Figure 22.

256 DEBUG - X

x xyz
00CCD501

def other 120

x other 12
0670897000031A7150170004

x 123
7000031A

x 123 32
7000031A715017000492EE7004D2037000C3Ic5910C35447BOCOE25010C35458

Figure 22. Examples of the X request

DEBUG - X 257

SETERR

Purpose:

The SE~ERR command is used to trace transfers to and from
all SVC-called programs in which error conditions occur.

Format:

SE'l'ERR

Usage:-

The SETERR command sets error overrides that cause trace
information to be recorded for all SVC-called programs that
return ~ith an error code in general-purpose register 15.
The following information is recorded.

(1) A basic line consisting of the core locations of the
SVC instruction and of the program which it called, the
contents of the SVC old program status word, and the core
locations to which the SVC-called program would return under
both normal and error conditions.

(2) The contents of all general-purpose registers, both
before the SVC-called program is given control and after it
issues a return.

(3) The contents of all floating-point registers both
before the SVC-called program is given control and after it
issues a return.

(4) Two lines--16 words--of the parameter list which exists
at the time the SVC is executed. See Figure 23 for a sample
of the type of information recorded by the SETERR command,
and the format in which this information is printed on the
offline printer.

The SETERR command causes the above trace information to be
recorded for all SVC-called programs that return error
codes. This information is not printed until the user
issues a CLROVER or a ~O command, a RESTART request in the
Debug environment, or logs out from the Control Program.

Traces initiated by the SETERR command may be terminated by
issuing a CLROVER or a KO command,. Both CLROVER and KO
cause the trace information recorded up to the time they are
issued to be printed on the offline printer.

Notes:

a. Issuing one or more SETERR commands when a SETOVER
command is active has no effect, since error as well as
normal overrides are set by SETOVER,.

258 SETERR

h. Issuing more than one SETERR command has no additional
effect other than causing the heading given under Output to
appear in the trace information printout each time a SET ERR
is issued.

c. Any operands given in the SETERR co~roand are ignored.

Responses:

None.

Output:

SETTING ERROR-OVERRIDE TO PROVIDE A DYNAMIC
TRACE OF CMS (AND OS) SVC-CALLS • • •
This message appears in the offline printout of
information at all points where SETERR commands
issued.

Example:

SETERR

the trace
have been

This causes information such as that given in Figure 23 to
be recorded for all SVC-called programs which return an
error code in general-purpose register 15.

Error Messages:

None.

SETERR 259

SETTING ERROR-OVERRIDE TO PROYIDE A DINARIC TRACE OF CBS (AID OS) SVC-CALLS •••

••••• ERROR-OVERRIDE, CALLER=000057F2
GPRS BEFORE = E2C5E3C5 0000139C

00009386 00012000
FPfiS BEFORE = 00000000 00000000
GPRS AFTER E2C5E3C5 0000139C

00000004 00000100
FPfiS AFTER 00000000 00000000
PARK.-LIST --FINI-- --S

FFFFOOOO 00000000

••••• EfiROR-OYERRIOE, CALLER=000057F2
GPRS BEFORE = E2E3C1E3 0000139C

00009386 00012000
HRS BEFORE = 00000000 00000000
GPRS AFTER = E2E3C1E3 0000139C

00000004 00000100
FPBS AFTER = 00000000 00000000
PARK.-LIST = --FINI-- --S

FFFFOOOO 00000000

••••• ERBOR-OVERRIDE. CALLER=00009514
GPIiS BEFORE = E2E3C11!3 00009B10

00009386 00012000
FPRS BEFORE 00000000 00000000
GPIiS AFTER = E2E3C1E3 00009B10

00000004 00000100
!!PBS AFTEB = 00000000 00000000
PAR!I.-LIST = --STAT-- --E

FFFFFFFF FFFFFFFF

••••• EFBCR-CVEBBltE. CALLEB=000057F2
GPBS BEFORE = E21!3C1E3 0000139C

00009386 00012000
FPES BEFOFE = 00000000 00000000
GPRS APTER E2E3C 1E3 0000139C

00000004 00000100
FPRS AFTER 00000000 00000000
PARK.-LIST --FINI-- --S

FFFFOOOO 00000000

••••• EIiRCR-OVEBRICE, CALLER=000025C2
GPRS BEFORE 00000000 000C09EO

00000004 00000100
FPRS BEFORE 00000000 00000000
GPRS AFTER 00000000 0000091'4

00000004 00000100
FPRS AFTER 00000000 00000000
PARM.-LIST --LOAO-- --f'!CD --

00000000 00000000

••••• ERROR-OVERRIDE, CALLER=00009514
GPFS BEFCRE 00000000 00009B10

0000~386 00012000
FPRS BEFORE 00000000 00000000
GPBS AFTER I:3C9E2E3 000115E8

0000F138 00001BA8
FPES AFTER 00000000 00000000
PAR fl. - LIST --L

PPFPFPPF FFPFFFFP

••••• E 6RCR-CVERRltE, CALL ER=000057 F2
GPRS BEPORE 00000000 0000139C

00009386 00012000
FPES BEFCF! 00000000 00000000
GPES AFTER 00000000 0000139C

C0000004 00000100
FPES AFTER 00000000 00000000
PARfl.-LIST --FINI-- --S

!FFFOOOO 00000000

CALLEE=FINIS SYC-OLD-PSW=000400CA400057F4
00000000 00005816 00009B10 E~C5B3C5
00009508 00000001 400057E8 00001180
00000000 00000000 00000000 00000000
0000139C 00000000 00000778 000029DC
C6C9D5C9 E2404040 000040A8 OOOOOAlO
00000000 OOCOOOOO 00000000 00000000 --. --.
00000000 00000000 00000000 --OYEB--

CALLEE=FIHlS SVC-OLD-PSW=000400CA400057F4
00000000 00005816 00009B10 E2E3(lB3
00009508 00000001 400051£8 oooe 11BO
00000000 00000000 00000000 00000000
0000139C 00000000 00000718 OCOC29DC
C6C9D5C9 E2404040 000040A8 00000110
00000000 00000000 00000000 00000000 --.
00000000 00000000

--.
00000000 --TEST--

CALLEE=STATE SVC-OLD-PSW=000400CA60009516
00000000 00000000 00009B10 E2!3C1E3
C0009508 CC000001 40009378 800094CO
00000000 00000000 00000000 00000000
00009810 COOOOOOO 00000778 00002A84
E2 E3C1 E3 (5404040 00002BDO ooooono
00000000 00000000 00000000 OOOCOCOO
--TEST-- --SYSI-- --Ii
FFFFFFFF fFFFFFFF FFFFFFFF FFFFFlFF

CALLEE=FINIS SYC-OLD-PSV=000400CI.40Ce57F4
00000000 OC005816 00009B10 B2£3(lE3
00009508 00000001 400057f8 000C11BO
00000000 00000000 00000000 OCOOOOOO
0000139C OCCOOOOO 00000718 000029DC
C6c9D5C9 E2404040 000040A8 CcceCAlO
00000000 00000000 00000000 00000000 --.
00000000 00000000

--.
00000000 --TEST--

CALLEE=LOADftOD 5VC-OLD-PSW=000400CA400C25(4
00009B10 COOOOOOO 00000778 000009E8
D3404040 40404040 40009378 4cce2~8E

oooooooc COOOOOOO 00000000 00000000
00005838 00000000 00000778 00002100
00001180 000026CE 00002FOC 00CCOE7C
COOOOOOO OCCOOOOO 00000000 00000000
--L fFOOOOOC --CPFU--
OOOOOCOO CCC400CA 5000E692 00000000

CALLEE=L
00000000
COC09508
00000(,00
00011000
D3C9 E2 E3
00000000
--TEST-­
PFPFFPFf

SYC-OLD-PSIi=000400CA50009516
00000000 0000981C D3~(4C40

CCOOOOOl 40009378 800094CO
00000000 00000000 OCC(OOOO
OOCOOOOO 00000028 000002F8
00011470 000011E0 00000002
00000000 00000000 C(CCCOOC

--SISI-- --Ii
FFFFFlFF FFFFFFF! fFFEFFFF

CALLEE=FINIS SV C-OLD-PSW=OOO 40CCA 40 C (5 7F 4
(OOOCOOC 00005816 00009B10 D3404040
00009508 00000001 400057E8 000C11BO
00000000 OJOOOOOO 00000000 OCOCOOOO
0000139C OCCOOOOO 0000077 8 000029tc
(6 C9 D5 C9 E240ij040 000040U OOOCCUO
00000000 COOOOOOO 00000000 OOC(OOOO --.
00000000 OOOOOO(lO

--.
OOOOOOOC --LISt--

.* •• tiOTE--NCE~AL- AND ERROR-OVERRIDES EAVE NOW BEEN CLEARED ••••

IB!BBT=o000057P8 018'1=0000511"8
00005018 0003B8B8
40009540 00001110
00000000 00000000
00000120 00000048
000026CE 00000006
00000000 00000000
5C40FPPP .FFEIIID
--IIDB-- --BODD--

HRBIET=000057P8 EBRE~000057~
000050A8 0003E888
40009540 000011&0
00000000 00000000
00000120 00000048
000026CE 00000006
00000000 00000000
5C40Fl"FP l'l'l'BFl"FD

--FOBT--

HIBBET=0000951A EBBET=0000951A
000050A8 0003E8B8
60009580 00000001
00000000 00000000
00000A20 00000048
000026CE 00000001
00000000 00000000
FFllFPl1 lFFIIllF
FFl"FFFFF FFl"l"FFFF

BB!lBE'f=000057F8 BBRET=000057F8
000050A8 0003E858
40009540 000011BO
00000000 00000000
00000120 00000048
000026CE 00000006
00000000 00000000
5C40FFFF FFFEFFFD

-FOB~-

BBBBET=000025C8 EBBET=000025F8
00000A20 00000048
000007B 8 00000000
00000000 00000000
OOOOOAFO 00000044
000026CE 00000001
00000000 00000000
-- BC T1t-- 00011000
0000EE58 0800!~68

HBBRE'l'=00009511 EBBE'f=0000951A
00005018 0003E888
40009500 00000001
00000000 00000000
00000000 00000000
000026CE OOOOOOO~
OOCOOOOO 00000000
FFEIFfF! IPIFIIIP
FFPFFFFF FFFFFFFF

HBBBET=000057F8 EllRET=000057F8
0000501.8 000318£8
40009540 00001180
OOCOOOOC 00000000
00000120 00000048
000026CE 00000006
OOOOOOOC 00000000
5C40FIPF IflElllD
--F -BODD--

Figure 23. Sample offline printout of trace information
recorded by the SETERR command

260 SETERR

SETOVER

Purpose:

The SETOVER command is used to trace transfers to and from
sVC-called programs which are executed normally as well as
those in which error conditions are encountered.

Format:

ISETOVERj <SAMEL~ST> <option1 .. ' •• optionN> I

SAMELAST leaves all options as set by the user's last
SETOVER command provided a CLROVER has not been
issued. If SAMELAST is not speci'fied or if CLROVER
has been issued. options are reset to their
default settings. Any options specified after
SAMELAST replace these settings.

optionl ••• optionN are one or more of the options given
below.

options:

GPRS record the contents of the general-purpose
registers both before the SVC-called program is
given control and after a return from that program

GPRSB record the contents of the general-purpose
registers only as they exist before the SVC-called
program is given control

GPRSA record the contents of the general-purpose
registers only as they exist after a return from
the SVC-called program

The default option is that no general-purpose register
information is recorded .•

FPRS record the contents of the floating-point
registers both before the SVC-called program is
given control and after a return from that
program.

FPRSB record the contents of the floating~point
registers only as they exist before the SVC-called
program is given control

FPRSA record the contents of the floating-point
registers as they exist after a return from the
SVC-called prograro

The default option is that no floating-point register
information is recorded.

NOPARM

PARM1

no parameter list information is to be recorded
when a program is called by an SVC instruction

record one line (8 words) of parameter list
information when a program is called by an svc
instruction

SETOVER 261

The default option is two lines (16 words) of the parameter
list recorded when a program is called by an SVC instruction

NOWAIT no information is to be recorded when WAIT is
called by an SVC

WAITSAME record the same information for GPR·s, FPR·s, and
uarameter lists when WAIT is called as that
recorded for all other SVC-called programs

WAIT1 record one line (8 words) of the parameter list
when WAIT is called

~AIT2 record two lines of the parameter list when WAIT
is called

The default option is that no GPR, FPR, or parameter list
information recorded when WAIT is called

DEFAULT

Usage:

cancel a1l current settings and reset the options
to their default settings

The SETOVER command traces all internal branches which take
place due to SVC, or supervisor call, instructions. The
effect of the SETOVER command is to set overrides which
cause information to be recorded at the appropriate times.
Both normal and error overrides are set by the SETOVER
command.

The information recorded will vary:. depending on the type of
override. For both normal and error overrides, the core
location of the calling SVC instruction and the name of'the
called program or routine are recorded, as well as the
contents of the SVC old program status word (that is, that
which was stored when the SVC was issued) and the core
locations of the normal and error returns from the called
program. In addition to this basic line, error overrides
record the contents of the general-purpose and
floating-point registers before branching to the SVC-called
program and returning from it, and 16 words of the parameter
list which existed when the SVC was issued. For normal
overrides, the additional information recorded depends upon
the options specified by the user in the SETOVER command.
If no options are specified, the default options are used:
no general-purpose or floating-point register information,
and 16 words of the pararoeter list are recorded for all
routines except WAIT. For WAIT only the basic 'line of
information, common to both normal and error overrides" is
recorded. When the user does specify options, the default
settings are assumed initially. and options specified by the
user replace the appropriate default settings. If the user
specifies SAMELAST as his first option, the options remain
as they were set by the last SETOVER command issued provided
no CLROVER command has been issued, and any further options
given in the SETOVER comroand replace these previously set
options.

It is possible to issue two or more SETOVER commands before

262 SETOVER

issuing a KO or a CLROVER command. When additional SETOVER
commands are issued, the option settings are adjusted to
reflect those specified in the most recent SETOVER command.
If SAMELAST is not specified as the first option in these
additional commands, the options are reset to their default
settings, and only those options specified by the user in
the new SETOVER command replace the default settings.

""
To terminate overrides set by the SETOVER command, the user
may issue a KO or a CLROVER command. Both CLROVER and KO
cause all trace information recorded up to the point they
are issued to be printed on the offline printer. CLROVER
can be issued only when the keyboard is unlocked to accept
input to the CMS Command environment,. To clear overrides at
any other point in system processing, KO must be issued. If
a user issues a RESTART request to the Debug environment or
logs" out from the Control PrograF prior to clearing
overrides set by SETOVER and/or SETERR. the overrides are
cleared automatcially and all recorded trace information is
printed on the offline printer.

Notes:

a. If SAMELAST is specified, it must be the first option
given and there must be no intervening CLROVER between the
two SETOVER commands.

b. If mutually exclusive options are specified, such as
NOPARM and PARM1, the last such option appearing in the
SETOVER command is used. For options which are not mutually
exclusive--GPRS and GPRSA, for example--the logical
combination of the options is used. In this case, the
option set by GPRS would be used since it includes the GPRSA
option.

c. The number of lines of parameter list information
recorded for calls to the WAIT routine cannot exceed that
recorded for other routines, (that is, the" PARM setting
governs the WAIT setting when the latter specifies the
greater number of lines to be recorded.

Responses:

None.

output:

SETTING NORMAL - AND ERROR-OVERRIDES TO PROVIDE
A DYNAMIC TRACE OF CMS (AND OS> SVC-CALLS... • •
This message appears in the offline printout of trace
information at all points where SETOVER commands are issued.

Examples:

a. SETOVER
In addition to the basic information recorded for both

SETOVER 263

normal and error overrides, this example causes the default
information (no general-purpose or floating-point register
information and two lines of the parameter list) to be
recorded for all normal overrides. For error overrides, the
contents of all general-purpose and floating-point registers
are recorded both before branching to the SVC-called program
and after returning from it. as are two lines of the
parameter list information. A sample of the type of
information which is recorded is given in Figure 15.

h. SETOVER GPRSB FPRSA NOPARM
In addition to the basic information, this example causes
the contents of the general-purpose registers to be recorded
before the SVC-called program is given control, and the
contents of the floating-point registers to be recorded
after a return is issued by that program for all normal
overrides. No parameter list information is recorded. For
calls to the WAIT routine, only the basic line of
information is recorded. The same information is recorded
for error overrides as that given in Example a. See Figure
24 for a sample of the type of information which is recorded
for this example and the format in which it is printed.

c. SETOVER SAMELAST PARMi WAIT2
Assume Example b had been issued prior to this example and
no CLROVER had been issued between them. Since SAMELAST is
specified as the first option" the settings for Example b
would be assumed initially. The NOPARM setting, however, is
replaced by the PARMI option specified above. WAIT2 would
normally replace the default option of recording no
parameter list information for calls to the WAIT routine.
but since PARM1 has been specified, only one line of the
parameter list for calls to WAIT is recorded. The same
information is recorded for error overrides as that given in
Example a. Refer to Figure 25 for a sample of the type of
information which is recorded by this example and the format
in which it is printed.

Error Messages:

E (00001)
The user has specified one or more invalid options,. Reissue
the SETOVER command making sure that all options are spelled
correctly and that SAMELAST. if specified, is the first
option given.

264 SETOVER

SETTING NORIIAL- AIiD ERROR-OVERRItES TO PROVIDE A DINAIHC TRACE OF ClIS (AID OS) SYC-CALlS •••

hORMAL-OVERRIDE, CALLER=00009514
GPRS BEFONE = E2C5E3D6 00009B10

00009386 00012000
fPRS AFTER = 00000000 00000000
PARII.-LIST = --SETO-- --VER --

*****EEBOR-CVERRItE, CALLER=000051P2
GPB5 BEFOBE E2C5E3D6 0000139C

00009386 00012000
FPBS BEPORE 00000000 OOOCOOOO
GPRS AFTER E2C5E3D6 0000139C

COC00004 00000100
FPB5 AFTER 00000000 00000000
PAR~.-LIST --FINI-- --5

FFFFOOOO OOCOOOOO

hOBMAL-CVERRII:E, CALLER=C000955A
GPRS BEFORE = 00000004 000095FC

00009386 00012000
FPRS AFTEB = 00000000 00000000
PARI'I.-LIST = -- TYPL-- --I N

NORMAL-OVERRIDE, CALLErl=0000CB4E
GPRS BEFOEE = 00000000 0000C858

C00001F8 00000009
FPRS AFTER = 00000000 OOOOOOOv
FARM.-LIST = --ATTN--

NORMAL-OVERRIDE, CALLER=000096D8
GPRS BEFORE = GCOOOOOO 000095DC

00009386 00012000
FPRS AFTER = CCOOOOOO 00000000
EARII.-LIST = --WAIT-- --RD

~CHAL-CVEIiBHE, CALLER=00009514
GPBS BEFCRE = E2E3C1E3 00009B10

00C09386 00C12000
FPRS AFTER = 00000000 00000000
PAtlM.-LIST = --STAT-- --E

*****EBROR-OVERRIDE, CALLER=000051F2
GPbS BEFORE E2E3C1E3 0000139C

00009Jdb 00012000
FPRS BEFORE 00000000 00000000
GPIiS AFTER E2E3C1 n 0000139C

00000004 00000100
FPBS AFTER eoccoooo OOCOOOOO
FAEI'i.-LIST --FINI-­

FFFFOOOO
--S
COOOOOOO

NORMAL-OVERRIDE, CALLER:0000955A
GPJiS BEFCBF = 00000004 000095FC

00009386 00012000
FPES AFTER = COCOOOOO 00000000
FAB~.-LIST = --TYFL-- --IN

~ORMAL-CVJ::RBIl:E, CALLER=OOOOCB4E
GPRS BEFORE = eC000011 0000CB5d

00000007 C0000009
FPRS AFTER = 00000000 OOOOOOO~
PARM.-LIST = --ATTN--

~CJi P.Al-(V EEl EILE, CALL E!1=OOO "9bDS
GPES BEFCr,E = 00000000 000095DC

OCC09386 00012000
FFiS AFTER = 00000000 OOOOOOOC
PAR~.-LIST = --WAIT-- --liD--

*****EBROR-OVERRIDE, CALLER=OOO09514
GPRS BEFORE E2E3C1E3 00009B10

i) ,)('0 9 386 000120;)0
FPIiS b EFOIlr; C(OOGGOO COOOOOOO
GPIiS AFTUi E2E3c lE3 00009810

00OOJOO4 CCOO0100
FPR S AfTER coeooooo 000COOOO
fAH. -LIST --5T AT-- --f

FFFFFFFF r'FFFFFFF

CALLEE=SETO YER S YC-OLD- PSIi=000400CA60009516
00000000 00000000 00009B10 E2C5E3D6
00009508 00000001 40009378 SCCe94CO
00000000 COOOOOOO 00000000 00000000
--5A!E-- --LAST-- --PARft-- --1

CALLEE=FINIS SVC-OLD-PSII=000400CA400e51F4
00000000 oe005S16 00009B10 E2C5E3D6
00009508 00000001 400057ES OeOC11BO
00000000 OOOOOOuO 00000000 OOCCOOOO
0000139C 00000000 00000718 0000291)C
C6c9D5c9 E2404040 000040A8 cceCCAAO
00000000 OOCOOOOO 00000000 OCCCOOOO
--*
00000000 00000 000

--*
OOOOOOOC --5TA'I--

CALLEE=TVPLIIi SVC-OLD-P5W=000QOOCA60CC955C
OOGOOOCO COOOOOOO 00009B10 E2c5E3I:6
00009508 00000001 40009376 6ceC954E
00000000 COCOOOOO 00000000 00000000
0100960C C200001A D95E40E3 7EFC4EFO

CALLEE= ATT N
OC000013
000095DC
00000000
--LIFO--

5VC-OLD-PSW=000400CA6CCCCB5e
01C(9774 C000023£ 00000012
000001f8 0000C658 0000C658
00000000 OOOOOOOC ceccceoo
12000251 --NOLL--

CALLEE=liAITRD SV(;- OLD- PSW=000400CA400096DA
00000000 00000000 00009456 oec(CCOO
(G009508 (CCOOOOl 40009378 800094CO
OOOCOOCO OOCOOOOO 00000000 00000000
01009774 f4000012 --TYPL-- --Ili--

CALLEE=5TATE 5YC-OLD-PSII=000400CA6CCC9516
OOCOOOO(oecooooo 00009B10 E2E3C1E3
00009508 00000001 40009318 800094CO
00000000 00000000 oooooooe oececcoo
--TE51-- --FORT-- --~1~ --

CALLEE=FIN IS SYC-OLD-PSII=000400CA400057F4
00000000 00005816 00009B1C E~E2C1E3
COC095CS CCCOOOOl 400057E8 000011BO
00000000 00000000 OOOOOOOC 00000000
0000139C 00000000 00000778 OOCC~SDC
C6C905C9 E2404040 000040A8 OOOOOIAO
00000000 00000000 aooooocc OCCCO(OO

00000000 CCCOOOO(, 00000000 --'IES'I--

CAlLEE:TYFLI~ SVC-OLD-P5W=000400CA6C00955C
00(00000 00000000 00009B10 E~E3C1E3
0(;009508 (CCOOOOl 40009378 8000954E
00000000 00000000 OOOOOOOC occeccoc
01009COC C2C0001A D95E40E3 1EP04fFO

CALL EE =A TTN
OOO()0002
000095DC
OOOOOCCO
--LIFC--

S VC-OLD- PSW:000400C A6 000CE50
01009174 00000231 00000010
oooao lE8 0000C65f OCCCC65E
COOOOOOO 00000000 00000000
01000241' --NULL--

CALLEE=W AIT RI: SY C-OLD-PSW =OOO~OOCA 4CCC HDA
00 000 00 C CCC00000 00009458 00000000
0U009508 00000001 4000937E eCCC94CO
00000000 OJOOJOOO 0000000C OCCCCCOO
01009/74 E4CJ0010 --TVPL-- --1.--
CALLEE=S'IATE SYC-OLD-P5W=000400CA60009516
00(00000 00000000 0000913 1C E:a3c lE3
COO095C8 CCCOOOOl 40009378 800094CO
00000000 COCOOOOO 00000000 00000000
000091310 OJOOOOOO 0000071 E OCCCa84
E2E3C 11::3 C5404040 00002 BOO COOOO lAO
00000000 00000000 OOOOOOOC COOOOOOO
--TE5T-- --SY5I-- --Ii
FFFFFFFF FFFFF FFF PFFFFFFF PPfHH'F

IIRUET=0000951A lRRB'l=OO 00951.&
000050A8 0003EBB8
60009580 00000001
00000000 00000000
-lIAIT-- --2

HB!RET=000057P8 BBBET=000057P8
000050A8 0003ES58
40009540 000011BO
00(00000 00000000
00000.&20 00000048
00C026CE 00000006
00000000 00000000
5C40FFFF "FEIIED

--I!CDO--

NRlIRET=00009560 EBBET=0000954A
000050A8 0003E8ES
1I0C096C2 0000960F
00000000 00000000
P461FC4B --11 2--

NR!RE'I=OCOOCB50 EFRET=0000A238
00000251 00000231
00000001 OOOOOOCO
COCOOOOC 00000000
000001E8 000004CO

NB!BET=000096DE EBBET=COCC5tDE
C00050A S 0003E8ES
OOeOCEEO 00003218
00000000 00000000
01009366 D2000020

NR!RE7=0000951A EBRET=0000951A
000050AS 0003E85S
60009580 00000001
cecocooc 00000000
IFillFFI 000013£0

NR!RET=OC0057F8 EBRET=0000~7F8
COC050A8 0003E8B8
40009540 000011BO
00000000 00000000
COOOOA20 00000048
000026Cl 00000006
coooeooo 00000000
5C401FFF FFFEFFFD

--108T--

NR!RBT=00009560 ~BBET=0000954A
00C05CA 8 0003E8B8
400096C2 0000960F
oocooeoc 00000000
F461F04E --09 2--

NBeBET=0000CB50 BBBET=0000A238
0000024F 00000048
oeC00001 000032F8
00000000 00000000
COCOC1E8 00000400

NReRE7=OC0096DE E6BET=000096DE
000050A8 0003F8S8
COOOCEEO 000032F8
00000000 00000000
01009386 1)200CO~0

NRI!BET=0000951A ~BRET=0000951A
OOC050&S 0003E8B8
60009580 00000001
00000000 00000000
COCOOA2C 00000048
000026CF 00000C01
00000000 00000000
PFFFFFFF FFFPFFPP
FFFiPFPi p,.rlFFP

Figure 24. Offline printout showing trace
recorded by the SETOVER command with

information
the

specified options GPRSB, FPRSA, and NOPARM

SET OVER 265

SETTING NOR!!AL- AND ERROR-OVERRIDES TC PROYIDE A DYNAIIIC TRACE OF CIIS (ANI: OS) SVC-CALLS •••

bOJiIlAL-CVERRIJ:E, CALL ER=000C9514
GPRS BEFCBE E2C5E3D6 00009B10

00009386 00012000
FPBS AFTER = 00000000 00000000

*****EEhOR-CYERRICE, CALLER=000057F2
GPRS BEFORE E2C5E3D6 0000139c

00009386 00012000
FPRS BEFCRE 00000000 00000000
GPRS AFTEIi E2c5E3D6 0000139C

00000004 00000100
FPRS AFTER 00000000 00000000
FAIHI.-LIST = --FINI-- --S

FFFFOOOO 00000000

NORM AL-O VERR IDE, CA LLEIl=0000955 A
GPES BEFCBE 00000004 000C95FC

00009336 00012000
<PRS AFTER = COOOOOOO 00000000

~o E/';AL -0 YER HI!:E, CA LL ER=OOO 096D8
GPFS BEFORE 00000000 000095DC

00009386 00012000
FPBS AFTER = 00000000 OOOCOOOO

hO B~A L-CYER H DE, CALL ER= 000 09514
GPHS BEFORE E2E3C1E3 00009B10

0000'1386 C0012000
FPES AFTER = 00000000 00000000

*****ERROB-OVERHIDE, CALLEB=OC0057F2
GPRS BEFORE E2E3C1E3 0000139C

0000J386 00012000
FPRS BEFORE CCOOOOCO 00000000
GPFS APTEE E2E3C1E3 GGJG139C

0000000ij 00000100
FPRS AFTER COOOOOOO COOG0000
FAHM.-LIST --FINI-- --S

FFFFOOOO 000COOOO

NORMAL-OYERRIDE, CALLEB=0000955A
GPFS BEFCFE 000000J4 COOC95fC

J0009386 00012000
FP ES AFTER = CCOCOOCO OCJOOOOO

bC HiA 1-(YE R BILE, CALL ER=000096 D8
GP6S BEFC~E 00000000 000095DC

CC009386 00012000
FPFS AFTER = 00000000 acoroooo

*****EEHCH-OYEBRIDE, CALLER=00009514
GPRS BEFO~E E2E3C1E3 OOOC9Hl0

00C09386 00012000
FP6S BEfCEE 00000000 OCOCOOOC
GP BS AFTER E2E3C 1 E 3 0G009Bl0

00000004 C0000100
tPRS AfTER OOCOJCJD COOOOOOO
PAhM.-LIST --STAT-- --E

FFFFFFfF rFfFFFFF

*****EBROH-OVERRIDE, CALLEd=C00057F~
GPRS BEFORE E2E3C1E3 GJJ0139C

000093d6 OC012000
FP6S BEFOhE 0000)000 OOOGOOOO
~PRS AFTER E2F3C1E3 COOC139C

(C000004 00000100
FP6S AFTER 00000000 OOOOGOOO
PARII.-LIST --FINI-- --S

FFFFooeD 00000000

CALLEE=SETOYE R SYC-OLO-P5W=0001i00CA 6CCC 9516
00000000 COOOOOOO 00009S10 E2C5E3D6
00009508 00000001 4000937€ 8eCC911CO
OOOGOOOO CCCOOOOO oooooooe oeccecoo

CALLEE=FINIS SVC-OLD-PSW=000400CA400057F4
OOOOOOOC OC005816 00009810 E2C5E306
00009508 00000001 400057EE OCe(11S0
COOCOOOO GOCOOOOO 00000000 00000000
0000139C 00000000 0000077E OOCC2SDC
C6C905C9 E2404040 OOOOIlOlS cocceAlO
00000000 (DCOOOOO 00000000 00000000

00000000 00000000
--*
00000000 --CVHi--

CALLEE=TYflIfi SYC-OLD-PSW=000400CA6000955C
00000000 00000000 00009H1C E~C~E3D6
C00095C8 CCOOOOOl 40009378 8000954£
JOOOOOOO 00000000 OOOOOOOC OCCCOCOC

CALLEE= Ii AlT RD SYC-OLD-PSli =000400Cl 4C CC 9 fOl
COOCOCOC COCOOOvO 00009458 00000000
00009508 00000001 4000937E 8(CC94CO
COCOOOOO OOOJOOOO OOOOOOOC ooocoooe

CALLEE=STATE SVC-OLD-PSW=00040OCA6CCC5516
00000000 eooooooo 00009810 E2E3C1E3
00009508 000'>0001 40009378 eeCC94C0
cooooooe (OCOOOOO OOOOCOOO 00000000

CALLEE=F IN IS SVC-OLD-l?SIi=000400CA400057F4
00000000 00005816 00009B10 £~E3C1E3
COC0950E (CC00001 400057E8 00001180
00000000 00000000 00000000 00000000
v000139C 00000000 0000077E occe~5DC
CbC9D5CS E2404040 00004018 000001AO
OJOOOOOu OOOJOOOO OOOOOOOC oeeeocoo

00000000 (JOOJOOOO 00000000 --TEST--

CALLEE=T~PLIN SVC-OLD-PSli=000400CA6CC(S~5C
OOOCOCJC OOOJJOOO 00009810 E2£;C1E3
C00095Cb (CCOOOOl 40009378 8000954£
00000000 00000000 OOOOOOOC ecceoooo

CALLEE= iI AIT RD SVC-OLD-!'SW=OOO 1I00CA 4CCC StDl
OOOOOOOC ooeooooo 00009458 00000000
00009508 00000001 4000937E ECC(94CO
00000000 00000000 0000000C accccooc

CALLEE=STATE SVC-OLD-PS.=OOCqOOCA6CC(5~lE
aocooeoc 00000000 00009810 E2E3C1E3
OGOJ9508 00000001 4000937E SCCCSQC'
coococec COC00000 00000000 00000000
00009ill0 OiJOiJJOOO 000007713 OCCC2A84
E2E3clE3 C5404040 00002BDO CCC(CAAO
cooooooc coeooooo cooooooo 00000000
--TEST-- --SYSI-- --N
FFFFFFFF FFFFFFFF FFFFFFFF FfFFfFFf

CALLEE=FINIS SYC-OLD-PSW=000400CA400057F4
00000000 00005816 00009a1C E~E2C1E3
(OCOS506 ((000001 400057E8 000011BO
00000000 00000000 OOOOOOOC OCCCCCOO
e00013SC eccoooOO 00000778 000029DC
CbC9t5C9 £2404040 000040AE CCCCC1AO
cooooooo O~OOOOOO OOOOOOOC oeceecoo

00000000 ~OO()"OO
--*
OOOOOOOC

NRIIRE'I=00009511 EBBET=0000951A
00005018 000318£8
60009580 00000001
OOCOOOOC 00000000

N6I1BET=0 0005718 .EBRET=000057 F8
00005018 0003E8£8
1I0C0954C 00001180
00000000 00000000
COOOOA2e 00000048
000026CE 00000006
00000000 ooooeooo
5C40FFFF FFFEFFFD
--RIDE-- --1I0[U--

NBIIBET=00009560 EBRET=00ee954A
00e05018 0003E888
400096C2 00009601
OOeOOOO(00000000

NRIIRE'I=OC0096DE EBBET=000096DE
00005018 0003E8Ee
COOOCEZO 000C32F8
accooooe 00000000

liBIIBE'I=0000951A UBU=0000951 A
000050A8 0003£8B8
6000958e 00000001
00000000 OOOCOOOO

HBIIBET=Q00057f8 EBBE'I=eOOC57F6
eDCC5CA8 0003E8B8
40C09540 000011 EO
00000000 00000000
CO C0012 C 00000048
000026CI 00000006
ecoooooe OOOCOOOO
5C40F1FF IFFElfie

--FOBT--

NBIIHE'I=00009560 EiBET=00COS54A
00005e18 0003E8B8
400096C2 000096Cf
OOCOOOOO 00000000

NRIIBET=000096DE EBBE'I=0000960E
00005018 0003E8E8
COOOCE&O 00003a'8
OOCOOOOO 00000000

N IiIlRE'I=0000951A EIiBET=00009511
000050A8 0003E8ee
60C0958(; 00000001
00000000 00000000
COOOOA20 00000048
00C026CE 00000001
OOOOOO~O 00000000
FFFFFFFF FFFFFFFF
FFFFHH UfUUF

NBIIBET=000057F8 ERBET=00e057F8
CCC05CAS 0003E81!8
4000954C 000011EO
Oocoocce 00000000
00000 120 000COGII8
000026CE 00000006
OOCOOCOO 00000000
5C40ftff FPlfJtft

--P(,!'I--

Figure 25. Offline printout showing trace information
recorded by the SETOVER command with the
options SAMELAST, PARMI, and WAIT2
specified (SAMELAST in this example refers
to the options as set in Figure 24)

266 SETOVER

LANGUAGE PROCESSORS

The language processors supported in eMS are the same ones
used under Operating System/360 (OS): these include
Assembler (F), Fortran IV (G) I' and PL/I (F).

The language processors in CMS and OS are compatible at the
source language level as long as the macros and SVC's used
in an Assembler program are supported by CMS. The object
modules (text decks) that are output from the above
Operating System compilers may be executed under either CMS
or OS as long as the previous restrictions are adhered to.

There are two additional processors available as Type III
programs from the IBM Program Information Department: they
are SNOBOL, a string processing language, and BRUIN, an
interpretive language. BRUIN, Brown University Interpreter,
was adapted from the OS version of BRUIN developed at Brown
University, Providence;, Rhode Island. BRUIN provides two
modes of operation: a desk calculator mode and a stored
program mode.

Language Processors 267

ASSEMBLE

Purpose:

The ASSEMBLE command creates relocatable object programs
from programs written in System/360 Assembler Language.

Format:

I ASSEMBLE lfilename1 <* •• filenameN>«option1 ••• optionN» I
1 A I I

filename

option

Options:

DECK

NODECK

LIST
NOLIST

XREF

NOXREF

NODIAG

LTAPn

LDISK
PRINT

RENT
NORENT

Usage:

specifies
Additional
assemblies.

a SYSIN file to be
filenames specify

assembled.
additional

is one or more of the assembler options listed
below .•

creates a TEXT file of the relocatable object
program

suppresses the TEXT file

creates a LISTING file of the assembled program
suppresses the LISTING file and online

diagnostics

includes a cross-reference symbol table in the
LISTING file
suppresses the cross-reference symbol table

types source statements containing errors at the
terminal, along with diagnostic and error
messages
suppresses typing of errors.

writes the LISTING file on the tape whose
symbolic address is TAPn
writes the LISTING file on the permanent disk
writes the LISTING file on the offline printer

checks the program for reentrance
suppresses the reentrance check

The filetype SYSIN is assumed for all input files to the
have fixed-length,

one assembly may be
filenames, separated by

ASSEMBLE command. The file must
SO-character records. More than
performed by specifying additional
blanks. Any number of files may
command must not exceed a single

268 ASSEMBLE

be specified, but the
input line. Each file

named is assembled separately in the order named.

~ssembler output is controlled by a set of options.. The
list of options selected, enclosed in a set of parentheses,
follows the last" or only, filename specified with the
command. One set of options governs all assemblies
performed by one ASSEMBLE command. The options, specified
in any order, are separated by at least one blank. A
default value is supplied for any option not included. The
default option values are:

DEeR LIST XREF DIAG NORENT LDISR

Any combination of option values may be specified, but if
NOLIST is included" XREF" DIAG, LDISR, PRINT, and LTAPn are
ignored.

During an assembly, three work files are created, with the
filetypes SYSUT1, SYSUT2, and SYSUT3. Their filenames are
the same as the SYSIN file being assembled. According to
the options specified;, files with filetypes LISTING and TEXT
may also be created" with the same filename,. At the
beginning of each assembly, any pre-existing files with any
of the above filetypes and the current filename are deleted,
even if the set of options specified means they are not to
be replaced by the current assembly. To save old copies of
LISTING and TEXT files" use ALTER to change their filenames
or the filename of the SYSIN file before assembly.
Insufficient space on the permanent disk for any of the
assembler files causes termination with an I/O error
message.

filename TEXT P1 is the file of machine-language code
created by the assembler. This file can be loaded for
execution with the LOAD or $ commands, or punched in object
deck form on the cardpunch with the OFFLINE PUNCH command.
If NODECR is specified, this file is not created.

filename LISTING Pl is the file of source statements and
assembled machine code produced by the assembler. This file
is not created if NOLIST is specified. An external symbol
directory and a cross-reference symbol table are included,
unless NOXREF is specified. Diagnostics and error messages
appear at the bottom of the LISTING filet, and, unless NODIAG
is specified;, are typed at the terminal.

If PRINT is specified!, the LISTING file is printed on the
offline printer. If LTAPn is specified, the LISTING file is
written on the tape whose symbolic addr,.!ss is TAPn in blocks
of ten 121-character records. If LDISK is specified, or no
value is specified, the LISTING file is written on the
permanent disk.

The SYSUT1" SYSUT2, and SYSUT3 files created by the
assembler and used as work files are deleted at the end of
each assembly. If they are not deleted because of an
abnormal termination, they may be deleted with the ERASE

ASSEMBLE 269

command, or by reissuing the ASSEMBLE command.

The assembler searches the system macro libraries (SYSLIB
MACLIB SY and OSMACEO MACLIB SY) for macro definitions.
Names of macros in these libraries may be obtained with the
MACLIB LIST command. Additional macro libraries may be
created on the permanent disk with the MACLIB GEN command,
and up to five of these additional libraries may be included
in the assembler search list at one time with the GLOBAL
ASSEMBLER MACLIB command. The assembler accepts the first
definition for a macro it finds, allOWing-the user to
override system macro definitions. If the user has a file
called SYSLIB MACLIB or OSMACRO MACLIB on a disk that
precedes the system disk in the order of search. that
library is searched in place of the system library. See
GLOBAL under -Execution Control- and MACLIB under
"Libraries" for further information.

ASSEMBLE uses the standard order of search to locate the
SYSIN files.

Reponses:

a. ASSEMBLING: filename
This response is typed for the
assemblies performed by a single
diagnostics for the assemblies.

b. SYMBOLIC TAPE ADDRESS INCORRECT

second and
command. It

subsequent
separates

LISTING FILE WILL BE WRITTEN ON DISK. WRITING
ON TAPE IS CANCELLED.

The option LTAPn was specified, and TAPn was not a valid
symbolic tape address. The LISTING file is written on the
permanent disk.

c. OUTPUT TAPE FULL. CHANGE IT AND HIT CARRIAGE RETURN.
An end of reel condition was detected on the tape unit for
the LISTING file. The tape has been rewound. Press ATTN to
enter the CP environment, and ask the operator to mount a
new tape. When the operator replies that a new tape is
mounted, return to CMS with ATTN, and issue a carriage
return. The assembly resumes where it was interrupted.

d. READY THE TAPE UNIT AND HIT CARRIAGE RETURN.
The tape unit specified by LTAPn signalled not ready. Go to
CP with ATTN and ask the operator to ready the unit,. When
he replies that the unit is ready, return to CMS with ATTN,
and issue a carriage return. The assembly begins or
resumes.

e. PERMANENT I/O ERROR ON TAPE
LISTING FILE WILL BE WRITTEN ON DISK~ WRITING

ON TAPE IS CANCELLED.
Allor part of the assembly listing is being written on disk
as filename LISTING P5. If any of the records were
successfully written on the specified tape before the error,

210 ASSE~BLE

they are missing from the disk LISTING file.

f • PLEASE READY THE PRINTER
This response should never occur under CP.
responsible system programmer.

Notify the

g. PERMANENT I/O ERROR ON ~HE- PRINTER, LISTING FILE
WILL BE WRITTEN ON DISK.

This response should never occur under CP. Notify the
responsible system programmer.

h. PERMANENT I/O ERROR ON DISK, ASSEMBLY CONTINUES
WITHOUT WRITING LISTING FILE ON DISK.

The assembly is completing without any LISTING file,. If a
listing is necessary" execution may be cancelled with the KX
command. The error may have resulted from insufficient
space on the permanent disk. Use the ERASE command to
create more free space and try the assembly again,. If the
error recurs, notify the operator.

Note:

The error completion code returned on completion of the
ASSEMBLE command is the highest severity code returned by
the assembler for any of the assemblies performed by that
command.

References:

The System/360 instruction set is described in System/360
Principles of Operation. The assembler instructions and
macro language are described in IBM System/360 Operating
System Assembler Language. Additional information on
assembler execution and messages may be found in IBM
System/360 operating System Assembler (F) Programmer's
Guide. Note that the execution options in the Programmer's
Guide are different than those supported by eMS.

Examples:

a. ASSEMBLE RETURN
The file RETURN SYSIN Pi is assembled.
specified. the default options govern
following files are created:

RETURN LISTING Pi
RETURN TEXT Pi

Since no options are
the assemble. The

See Figure 24 for an example showing the on-line diagnostics
generated by the assembler.

b. ASSEMBLE RETURN JOBA TESTi (RENT NOXREF NODIAG)
The file RETURN SYSIN Pi is assembled, and the resulting
object code is checked for reenterability. The listing file
is printed;, and is not saved on disk. The listing does not
contain a cross-reference symbol table. On-line diagnostics
are suppressed. RETURN TEXT Pi is created on the permanent

ASSEMBLE 271

disk. When the assembly is complete, the same operations
are performed for JOBA SYSIN P5. and then for TESTl SYSIN
P5.

Error Messages!

E(OOOOl) FILE(S) TO ASSEMBLE UNDEFINED.
No filenames were specified with the ASSEMBLE command.

E(OOOOl) AT LEAST ONE OF THE FILES TO ASSEMBLE DOESN'T
EXIST OR DOESN-T HAVE A CORRECT -TYPE- NAME.
Assemblies were started.

E(OOOOl) AT LEAST ONE OF THE FILES TO ASSEMBLE HAS
INCORRECT RECORD LENGTH.
Sysin files must have fixed-length. SO-character records.

E(00004)
Minor errors were detected during the assembly. but
successful execution of the program is still probable.

E(OOOOS)
Errors were detected in the assembled program, but execution
may still be possible.

E(00012)
Serious errors were detected in the assembled program.
Successful execution is not probable.

E(00016)
Very serious errors were detected in the assembled program.
Execution is impossible.

E(00020) PERMANENT I/O ERROR WHILE READING SYSIN FILE
filename UNABLE TO ASSEMBLE ALL THE FILE.
Files specified before t'he one named in the message have
been assembled. The file named and subsequent ones have not
been assembled. The file in which the error occurred must
be reentered before assembling it.

E(00020)
The assembler detected a catastrophic error such that it
could not continue processing. This may be an I/O error,
caused by insufficient free space on the permanent disk.
Free some space with the ERASE command, and retry the
assembly. If the error recurs, notify the operator.

212 ASSEMBLE

~SSEMBLER LANGUAGE PROGRAMMING

PROGRAM NAMING

The normal entry point name of a program should be the same
as the filename of the TEXT file. The program may then be
executed by the command

$ filename

If the filename and entry point name are different, the
following sequence must be used:

PROGRAM ENTRY

LOAD filename
START entryname

When control is received by a user program, the address of
the entry point is in register 15, which may be used for
immediate addressability.. Register 14 contains a return
address into the CMS nucleus, and must be saved. Register
13 contains the address of an lS-word save area. Register 1
paints to a parameter list!, which contains any parameters
passed to the program by $ or START. The parameter list is
aligned on a double word boundary, and each entry is found
in the high-order bytes of successive double words. All
data is in EBCDIC. The first entry is always the entry
point name of the program being executed. The following
entries are the parameters passed to the program. For
instance, after the command

$ JOB10 5/7/68 21.37
register 1 points to a parameter list in the following
format.

PLIST DS
DC
DC
DC
DC

OD
CLS'JOB10'
CLa'S/7/68'
CLS'21.37'
SX'FF'

The last entry is always a double word with all bits set to
one which- serves as a delimiter. Any parameters longer than
eight characters are truncated to the eight high-order
characters.

PROGRAM EXIT

Return should always be to the address received in register
14. This gives control to eMS service routines which close
files, update the user's disk file directory, and calculate
and type the time used in execution. CMS also inspects
register 15 for an error code. If none is found, the
completion message has the form "R; T=n.nn/x.xx xx/xx/xx".
If there is a value in register 15. the message is
"E(nnnnn); T=n.nn/x.xx xx/xx/xx" where nnnnn is the error
code returned in register 15 and n.nn is the CMS CPU time in
seconds used for execution. x.xx is the CP and CMS CPU time"

Assembler Language Programming 273

and xx/xx/xx is the time of day in hours/minutes/seconds.

LINKAGE TO CMS COMMANDS AND ROUTINES

with few exeptions, all CMS linkages are made with one
supervisor call: SVC X'CA·. The address of a parameter list
is placed in register 1 before the call:, and the first entry
of the list always specifies the CMS command or function
being called. All registers are saved and restored by the
SVC-handling service routine, except register 15, which is
used as an error return register..

The parameter list is always aligned on a double word
boundary. If a command is called!, the same parameters that
would be typed to call the command are placed in successive
double words. For instance, a parameter list for ERASE
might appear as

PLIST DS OD
DC CLB'ERASE'
DC CLS'.'
DC CLS·WORKFILE'

In this case all files with the filetype WORKFILE are erased
during execution of the program by the sequence

LA 1,PLIST
SVC X'CA-

After the files are deleted, CMS returns control to the next
instruction after the SVC. Register 15 is set to zero to
indicate that no error occurred. Should an error occur, a
response is typed and control passes to DEBUG. Parameter
lists for eMS routines. which are not commands, such as RDBUF
or WRBUF, are not uniform. complete explanations of these
parameter lists are found in ·CMS Nucleus Routines" later in
this' section and in the CMS Program Logic Manual.

To avoid going to DEBUG when an error occurs in a called
program. the programmer may specify an error return address
with each SVC. The address is placed in the four bytes
iBJInediately after the SVC.. Control goes to the address
specified on any error in the called program. For example

LA 1, PIST
SVC X'CA-
nc AL4(ERROUT)
LH 3,26(1)

Note that the address constant must include a length
specification to prevent alignment by the assembler. In
this example, if the called program completes normally,
control is returned at the LH instruction. If any error
occurs, control goes to ERROOT. Errors are ignored by the
sequence

274 Assembler Language Programming

SVC X·CA·
pc AL4(*+4)

Linkage Notes:

a. Commands that are not resident in the CMS nucleus may
also be called by the CMS SVC. but they are loaded at
hexadecimal location 12000. This is also the default load
point for user programs. Therefore, a higher load point
must be specified when the user's program is loaded. A
complete list of disk resident commands may be obtained with
a LISTF * MODULE SY" which also gi ves a rough idea of the
command size, expressed in SOO-byte records.

b. A few CMS routines may be executed only by branching.
The addresses of these programs are listed in a nucleus
module under the entry point SYSREF. SYSREF is resolved as
an EXTRN in any user program. The displacement from SYSREF
to the desired address is obtained with the CMSYSRFF macro
instruction, which generates a series of EQU statements.
The name of each nucleus routine, with a D prefixed to it,
is equated to its displacement from SYSREF in the address
list. The following example shows how to get to the SCAN
routine in the nucleus,.

USERJOB CSECT
EXTRN SYSREF

L
L
BALR
LTR
BNZ

3!,=A(SYSREF)
15.DSCAN(3)
14,15
15,15
ERR $

CMSYSREF

In the expansion of CMSYSREF, DSCAN is equated to the
displacement of the SCAN address in the SYSREF list. The
address is loaded into register 15 for the BALR. SCAN is a
routine to break up terminal line images in core into a
standard CMS parameter list. For further information on
SCAN" see the CMS Program Logic Manual.

Assembler Language Programming 215

CMS MACROS

The macro definitions that are used by the Cambridge Monitor
System are contained in the files SYSLIB MACLIB and OS MACRO
MACLIB which reside on the system disk. SYSLIB MACLIB
contains the CMS macros which provide linkages to the CMS
I/O routines, and OS MACRO MACLIB contains the System/360
Operating System macros which have been changed to interface
with eMS. Only the CMS macros are discussed in this
section. For a discussion of the OS macros supported, see
·OS ~acros". To obtain a list of the names, size, and
location of macro definitions in libname MACLIB, the command
MACLIB LIST libname may be issued. To print out the actual
macro definitions, refer to the procedure described in
MACLIB under "Libraries".

The CMS macros described in this section deal primarily with
linkage to the CMS disk and terminal handling routines.
TYPE and TYPIN handle terminal I/O, and FCB, STATE, SETUP,
RDBUF. WRBUF. CKEOF, ERASE and FINIS handle I/O to the
permanent disk. The offline unit record devices may be
accessed from an assembler language program by calling the
OFFLINE command, as explained previously under "Linkage to
CMS Commands and Routines".

The TYPE and TYPIN macros each set up a parameter list in
line and issue a CMS supervisor call. For disk I/O, the
parameter list is set up in a constant area by the FCB (File
Control Block) macro, and the label of that macro is used
as a parameter of the WRBUF, RDBUF, SETUP and STATE macros
which issue CMS SVC instructions for linkage. If an
existing file is to be read, STATE and SETUP must be
executed before the first RDBUF to initialize the first File
Control Block. Figure 26 shows a typical sequence of macros
for writing and reading disk files.

Notes:

a. The TYPE and TYPIN macros generate parameter lists in
line with executing code. If either macro is to be used
repeatedly,. it may be more efficient to set up a single
parameter list and 1ssue CMS SVc·s to call the routines
directly. See "Linkage to CMS Commands and Routines·.

b. CMS closes user files on program completion.

c. The CMS macros d~scussed in this section are in
alphabetical order.

276 CMS Macros

STMT SOURCE STATEMENT
1 BEGIN CSECT
2 PRINT NOGEN
3 BALR 12,0 ESTABLISH ADDRESS ABILITY
4 USING *.12
5 STATE SINPUT " ERR1 INITIALIZE INPUT
9 SETUP INPUT FILE CONTROL BLOCK

15 RD RDBUF INPUT.ERROR=EOF READ A RECORD
20 WRBUF OUTPUT I, ERROR=ERR2 WRITE SAME
25 B RD REPEAT TO END
26 EOF C1<EOF ERR3 REALLY EOF?
29 SR 15.15 YES.CLEAR ERROR RETURN
30 DONE BR 14 RETURN TO CMS
31 ERRl TYPE 'FILE NOT FOUND'
45 ERRET LA 15,.1 INDICATE ERROR RETURN
46 B DONE
47 ERR2 TYPE tERROR WRITING'
61 B ERRET
62 ERR3 TYPE 'ERROR READING'
76 E ERRET
77 INPUT FCB (FILE1" DCL) , BUFF1
95 OUTPUT FCB (FILE2,DCL);BUFF1

113 BUFFl DS CL80
114 END BEGIN
115 =CLStRDBUF'
116 =CLS'WRBUP'
117 =F'12t

Figure 26

An example of CMS I/O macros in an assembler language
program. This program copies the file FILE1 DCL PSI' and
ass1gns the new copy the identifiers FILE2 DCL P5. The
STATE and SETUP macros are executed for the existing file to
initialize the File Control Block. These are not needed for
the output file., since it is being created. The program
then alternates reading and writing records, until the RDBUF
at Statement 15 returns the end of file error code. Control
then goes to the CKEOF at Statement 26, which tests whether
end of file or some other error has occurred. If it is end
of file" the error return register is cleared, and control
returned to CMS via Register ill. If an error occurs;, an
appropriate response is typed. and a value is placed in
Register 15 to indicate to CMS that an error condition
exists. In any case, CMS closes both files when the program
is completed.

CMS Macros 211

CKEOF Macro

Purpose:

The CREOF macro checks the return code from RDBUF for the
end of file indication. Any other value is considered an
error.

Format:

label CKEOF erlabel 1

label specifies a statement label.

erlabel specifies an error-handling routine.

Usage:

The label of the CREOF macro is normally the ERROR=
parameter of the RDBUF macro. CKEOF checks for a value of
12 in register 15. indicating end of file'. If any other
value is present (including zero). CREOF branches to the
specified error routine.

ExamEle:

RDBUF A17.ERROR=DONE

DONE CREOF ERRR
CONT ..
ERRR TYPE -ERROR READING 1\17'

BR 14

This sequence of instructions gives control to CKEOF
whenever register 15 is non-zero on return from RDBUF. If
the error return indicates end of file. execution continues
with CONT. If some other error has occurred. CKEOF branches
to ERRR. where a response is typed and control returned to
CMS. Note that the value in register 15 is typed by CMS only
if it is saved and restored around the TYPE macro. If this
is done ~egister 15 is displayed in the error completion
response:

E(nnnnn)i T=n.nn/nn.nn hh.mm.ss

278 CREOF Macro

CMSREG Macro

Purpose:

The CMSREG macro equates symbolic names to general-purpose
registers and floating-point registers.

Format:

CMSREG

Usage:

The CMSREG macro-instruction equates the following symbolic
names to the corresponding general-purpose and
floating-point registers. This allows the symbolic names to
be used in place of the register designations.

General-Purpose Registers

RO EQU 0
R1 EQU 1
R2 EQO 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQO 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
Rl0 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

Floating-Point Registers

FRO EQU 0
FR2 EQU 2
FR4 EQU II
FR6 EQU 6

C~SREG flJacro 219

CMSYSREF Macro

Purpose:

The CMSYSREF macro allows users to branch to routines in the
CMS nucleus which cannot be called by eMS SVC's.

Format:

CMSYSREF

Usage:

The CMSYSREF macro instruction generates a series of EQU
statements which provide the addresses of various CMS
nucleus routines not available via a supervisor call. The
addresses of these routines are listed in a nucleus module
whose entry point is SYSREF. The name of each nucleus
routine;. with a D prefixed to it. is equated to its
displacement from SYSREF in the macro expansion.

Note:

In all programs in which the CMSYSREF macro is called,
SYSREF must be declared in an EXTRN statement.

Example:

The following example shows how to call the SETCLK function.

SAMPROG CSECT
EXTRN

L
L
BALR
LTR
BNZ

CMSYSREF

SYSREF

5. = A (SYSREF)
15, DSETCLK (5)
14.15
15.,15
ERRET

In the expansion of CMSYSREF., DSETCLK is equated to the
displacement of the SETCLK routine in the SYSREF list. The
address is loaded into register 15 for the BALRj , and
register 15 is checked for an error code after control
returns to SAMPROG. SETCLK is a routine that saves the
current value of the timer for subsequent use. as described
in the CMS Program Logic Manual.

280 CMSYSREF Macro

ERASE Macro

Purpose:

The ERASE macro provides linkage to the ERASE command. which
erases the specified file from the user's permanent disk.

Forroat:

<label> ERASE fcb

label is an optional statement label.

fcb is the label of the FCB which identifies the file
to be erased.

Usage:

The ERASE macro allows the user to erase any file on his
permanent disk.

Note:

To erase a disk file with a filemode other than P~ the user
may set up a parameter list and call the ERASE command
directly. as explained under "Linkage to CMS Commands and
Routines".

Example:

ERASE INPUT
The permanent disk file identified by the FeB labeled INPUT
is erased. For example. if the macro

INPUT FCB (INFILE.DATA). BUFF
has been issued. file INFILE DATA Pn is erased.

ERASE Macro 281

FCB Macro

Purpose:

The FeB macro generates a
serves as a parameter list
for the eMS I/O routines.

eMS File Control Block, which
naming and describing disk files

Format:

label I FCB I (filename, filet ype) "area I

label is a statement label of seven or less
characters.

(filename,filetype) specify the name and type of the file.

area

Usage:

Mode * is assumed.

is the label of the input or output area
in the program.

A File Control Block is needed for each disk file referenced
in a program. The label assigned to the FCB macro is a
parameter of the SETUP, RDBUF" and WRBUF macros. The FCB
label with an S prefixed is a parameter of the STATE macro.

Before the FCB can be used for input files, the STATE and
SETUP macros must be executed. No initialization is needed
for output files being created.

Included in the parameter list generated by FCB is an item
number field. This specifies the record of the file being
referenced. If unchanged, records are read sequentially
from first to last, and written in the same order.. Records
are added to the end of existing files. However, if a
number is specified in the itero number field, the item
specified is read or written. The field is a half word at
LABEL+26, where LABEL is the FeB state~ent label.

Example:

INPUT FCB (INFILE,DATA),BUFF
Expansion of this macro generates a parameter list
referencing INFILE DATA. Before a RDBUF macro can use this
FCB for input, the following sequence must be executed:

STATE SINPUT,ERROR
SETUP INPUT

No initialization is needed for output. Data is read into
the area labelled BUFF unless a different area is specified
with RDBUF .•

282 FCB Macro

FINIS Macro

purpose:

The FINIS macro provides linkage to the FINIS command" which
closes the specified user file by clearing its entry from
the active file table.

Format:

< label > FINIS fcb

label is an optional statement label

fcb is the label of the FCB naming the file to be
closed

Usage:

The FINIS macro closes the permanent disk file identified by
the FeB whose label is given as an operand of the macro..

Note:

eMS closes files automatically at program completion.

Example:

FINIS INPUT
The permanent disk file identified by the FeB labeled INPUT
is closed. For example. if the macro

INPUT FCB (INFILE/.DATA) ,BUFF
is issued, file INFILE DATA Pn is closed.

FINIS Macro 283

RDBUF Macro

Purpose:

RDBUF reads a record from a disk file.

Format:

I <label> I RDBUF I fcb <,AREA=alabel><,ERROR=elabel> I

label

fcb

alabel

elabel

Usage:

is an optional statement label

is the lahel of the FCB naming the file to be read

is the label of an input buffer. If omitted, the
area specified in the FeB is used

is the entry of
omitted, errors,
ignored.

an error-handling routine.
including end of file,

If
are

RDBUF returns one item each time it is executed. The item
returned is specified by the item number field of the File
Control Block at FCB+26. This number is incremented each
time RDBUF is executed. It may be set to any value,
allowing direct access to files.

The file read may have fixed or variable length records i• but
the buffer named AREA= must be large enough for the longest
record in the file. The buffer named with RDBUF overrides
that specified in FCB if it is different.

Each time RDBUF is executed, it links via a CMS SVC
instruction to a routine that returns control when the
record requested bas been read in. If no error occurs,
register 15 is set to zero on return. If an error or end of
file occurs, register 15 contains a code indicating the type
of error,. See Figure 21 for a list of RDBUF error returns.
If ERROR1 is supplied, control goes to that point on an
error. If no label is supplied, control returns immediately
following RDBUF. regardless of error.. Note that end of file
is always consid'ered an error. An error handling routine
should start with the CREOF macro, to detect end of file ..

284 RDBUF Macro

COLE
o
1
2
3
4
5
6
1
8
9

11
12
13

MEANING
no error
file type not found
buffer area not in core
disk error
illegal mode letter
item nurober is 0
no core available
file not in correct format
buffer too small (truncated item)
file open for writing
incorrect number of items
end of file
mode number invalid

Figure 27. RDBUF error return codes
(returned in register 15)

Example:

READA RDBUF INFIL,AREA=BUF,ERROR=EOF
NEXT

B READA
EOF CREOF ERREAD

BUF DS CL80
INFIL FCB (ELIPR, DATA) " BUF

Assuming that the RDBUF macro is preceded by a STATE SINFIL
and a SETUP INFIL. this sequence reads successive items from
the file ELIPR DATA Pn. Items are placed in BUF" and
control returned at NEXT. When end of file is reached,
control goes to EOF where CKEOF checks for a 12 in register
15. If any other value is in register 15, control goes to
ERREAD.

RDBUF Macro 285

SETUP Macro

Purpose:

SETUP initializes the FCB with information from the user's
permanent file directory.

Format:

label SETUP fcb

label is an optional statement label

fcb is the label of the FCB to be initialized

Usage:

SETUP is executed following STATE to initialize the FCB.
Record length and record format (fixed or variable length)
are filled in. SETUP should not be executed if STATE
returns with an error code in Register 15 indicating the
file was not found in the directory.

Example:

SETUP A17
This initializes the File Control Block which has been
generated by the macro:

A17 FCB (NAME.TYPE) I •. BUFFER

286 SFrUP Macro

STATE Macro

Purpose-:

The STATE macro provides linkage to a CMS ,routine which
searches the user·s permanent disk directory for a specified
file.

Format:

I <label> I STATE 1 Sfcblabel,error I

label

Sfcblabel

error

Usage:

is an optional statement label

is the label of the FCB being referenced with an
S prefixed to it

is the label of a routine to handle an error
return

STATE should be executed before any existing file is
referenced for input or output-. STATE places the directory
address of the specified file in the FeB. From this entry,
SETUP initializes the FeB.

If the file specified
directory, STATE returns
the second parameter.

Note:

is not found in the user·s file
control at the point specified by

STATE is not needed for files being created.

Example:

ENTER STATE SA11.ERROUT
This causes a search of the permanent file directory for the
file described by the FCB macro with the label A17. If it
is found. the address is filled in the FeB: if not. control
goes to ERROUT.

STATE Macro 287

TYPE Macro

Purpose:

TYPE generates a parameter list and issues a CMS supervisor
call to type a line of terminal output.

Format:

I I' 'message- (r) I
I <label> I TYPE I I

n I
length I

I I I msglabel
I I I

label

'message'

msglabel

(r)

n

length

Usage:

an optional statement label

the message to be typed

the label of an area where the message to be
typed is located

a register containing the length of the
message area

is a self-defining term giving the length of
the message area.

the label of a full or half word constant
containing the length of the message area

The maximum message length is 130 characters. If the actual
message is specified in single quote marks with the macro,
the length parameter is not used. If the label of an output
area is specified instead of the message itself, the length
must be included. Length may be specified as a
self-defining term (a decimal number or an equated symbol),
or as the label of a full or half word constant containing
the length. If length is not known until execution time,. a
register containing the length may be specified in
parentheses.

Notes:

a. Issuing a TYPE macro specifying the message to be typed
in single quotes is equivalent to issuing a CMSTYPE macro
specifying the same message.

h. The
the TYPE
program.

288

GEN macro is included in SYSLIB MACLIB for
macro" and is not meaningful for use in

TYPE Macro

use by
a user

Examples:

a. ERR1 TYPE 'ERROR WHILE READING'
The message ERROR WHILE READING is typed at the terminal.

b. TYPE MSG.LTH
MSG DC C' EXECUTION BEGINS,. ' •• •
LTH EQU *-MSG

The message EXECUTION BEGINS ••• is typed.

TYPE Macro 289

TYPIN Macro

Purpose:

TYPIN reads a line of input from the terminal.

Format:

I <label> I TYPIN I area <.lenqth><.ED=c>

label

area

length

c

an optional statement label

the label of a 130-character input buffer

an optional label to be assigned to a
three-byte field of the parameter list where
the number of characters read is placed

a one-character code specifying the editing
of the input line to be performed by eMS
before returning control. If omitted. U is
assumed.

Editing Codes

U interpret delete characters,. translate to upper
case. pad with blanks to 130 characters.

v interpret delete characters, translate to
upper case ..

S interpret delete charactersr, pad with blanks
to 130 characters.

T interpret delete characters.

X do, not edit the line.

Usage:

TYPIN generates a parameter list and issues a eMS supervisor
call to read a line from the terminal. The input area
specified must be 130 characters long. The number of
characters read is filled into a thre~byte area in the
parameter list. This number may be accessed b¥ specifying a
label as the second parameter of the macro. This number is
always the number of characters read, whether or not the
record has been padded to 130 characters with blanks.

~he ED=parameter allows the user to select which of the eMS
editing functions are to be performed on the line. The
delete characters (8 and e) have their normal eMS meaning
if U, V, S, or T is specified_ Alphabetic data is
translated to upper case if U or V is specified. The buffer

290 TYPIN Macro

area following the characters read is set to blanks (hex
'40') if U or S is specified. The X option returns the line
exactly as typed. U is the default option.

Note:

The number of bytes read field is in the low-order three
bytes of a full word. For example" if the label specified
is LAB. the number may be obtained by a LOAD HALF
instruction from LAB+1.

Examples:

a. RD TYPIN BUFF1. LNGTH
NEXT LH 2"LNGTH+1

BUFF1 DS CL130
This sequence reads a line from the terminal into BUFFl.
Since no ED= option is specified, U is assumed. Delete
characters are interpreted, the length adjusted, lowercase
letters translated to uppercase!, and the buffer behind the
line set to blanks before control is returned at NEXT,. The
LB instruction places the number of characters read into
Register 2.

b. GET TYPIN B,ED=X

B DS 33F
This macro reads a terminal line into B. The X option
indicates that no editing is to be performed on the line.

TYPIN Macro 291

WRBUF Macro

Purpose:

The waBOF macro creates, updates, or expands disk files.

Format:

l<label>I~RBUF' fcb <,AREA=alabel><,ERROR=elabel> ,

label

fcb

alabel

elabel

Usage:

an optional statement label

a label referencing the FCB describing the
output file

the label of an area from which data is to be
written

the label of an error-handling routine

~BUF normally is used to create, a new sequential file or to
add to the end of an existing file. However, any record of
an existing fixed-length record file may be replaced by
adjusting the item number field at FCB+26.

~he AREA= parameter may be omitted with WRBUF if specified
in the FCB. If specified in both places;, WRBUF takes
precedence .•

Control is normally returned with register 15 set to zero,
indicating error-free completion. If an error occurs,
register 15 contains a code indicating the nature of the
error. and control is returned wherever specifi..ed by the
ERROR= parameter. If no ERROR= is included, errors are
ignored. See Figure 28 for a list of WRBUF error returns.

Example:

WRBOF 17.AREA=ITEM,ERROR=QOIT
•

QUIT BR 14
ITEM DS CL80
A17 FCB (INTR,.JBH) ,ITEM

This sequence writes successive items
an error control goes to QUIT" which
error code is printed in the CMS error

292 WRBUF Macro

into INTR JBH Pn,. On
returns to CMS. The
completion response.

Code

o
1
2
3
4
5
6
7
8
9

11
12
13
14
15
16
17
18
19

Meaning

no errors
filename missing
buffer area not in core
disk error
illegal mode letter
illegal mode number
no core available
skipping variable item
length not specif~ed
file open for reading
fixed or variable not set
mode SY illegal
disk is full
read-only file
item wrong length
F-V changed
65K length limit on item
no .• items more than 1 for V-format
no.. i terns equal zero

Figure 28. WRBUF return codes returned in register 15

WRBOF Macro 293

OS MACROS

The OS macros that are used by the cambridge Monitor System
are contained in the file OSMACRO MACLIB SY, which resides
on the system disk.

'1'0 obtain a list of the names, sizer, and location of the
macro definitions in OSMACRO MACLIB, the command MACLIB LIST
OSMACRO may be issued. To print the macro definitions,
refer to MACLIB under wLibraries·.

The OS macros supported under CMS are listed below.

Note that only the forms of the following macros used by the
os language processors are supported under CMS. Programs
using os macros not listed or using. unsupported forms of the
following macros wi11 not run correctly under CMS.

294

ABEND
ANALYZ
ASGNBFR
ASM'l'R'l'AB
ATTACH
A'I'TNINQ
BLDL
BREAKOFF
BSP
BUFFER
BUFINO
BUILD
CALL
CAMLS'I'
CANCELM
CATALOG
CHAP
CHECK
CHGN'I'RY
CHKPT
CHNGP
CHNGT
CIRE
CKREQ
CLOSE
CLOSEMC
CNTRL
COpyp
COPYQ
COPY'!'
COUN'I'ER
DAR
DATES'fMP
DCB
DELETE
DEQ
DETACH
DEVTYPE

OS Macros

DFTRMLST
DIRECT
DLIST
DOM
DUMP
ENDRCU
ENDREADY
ENDSEND
ENQ
EOA
EOB
EOBLC
EOV
ERRMSG
ESETL
EXCP
EXTRACT
FEOV
FIND
FREEBUF
FREEDBUF
FREE MAIN
FREE POOL
GET
GETBUF
GETMAIN
GET POOL
IDENTIFY
IECTDECB
IHBERMAC
IHBGAMl
IHBGAM2
IHBGAM3
IHBINNRA
IHBINNRB
IHBOPLST
IHBRDWRD
IHBRDWRK
IHBRDWRS
IHBRDWRT
IHB01
IHB02
INDEX
INTERCPT
IOHALT
LABEL
LERB
LERPRT
LINK
LOAD
LOCATE
LOGSEG
LOPEN
LPSTART
MODE
MSGTYPE

OS Macros

NOTE
OACB
OBTAIN
ONLIST
OPCTL
OPEN
OPTION
PAUSE
POINT
POLL
POLLIMIT
POST
POSTRCV
POSTSEND
PROCESS
PRTOV
PUT
PUTX
RCVE ITA 2
RCVEZSC3
RCVHDR
RCVSEG
RDJFCB
READ
RELBUF
RELEASEfJJ
RELEX
RELSE
RENAME
REQBUF
REROUTE
RESERVE
RESETPL
RETRIEVE
RETURN
RJELINE
RJETABL
RJETERM
RJEUSER
RLSEBFR
ROUTE
SAEC
SAVE
SCRATCH
SEGLD
SEG'WT
SENDHDR
SENDITA2
SENDSEG
SENDZSC3
SEQIN
SEQOUT
SET
SETL
SETPRT
SRIP

295

SMFWTM
SNAP
SOURCE
SP1\R
SPIE
STAE
STARTLN
STIMER
STOPLN
STOW
SYNADAR
SYNADRLS
TERM
TERMTBL
TEST
TI~E

TIMESTMP
TRACE
TRUNC
TTIf.~ER

TWAIT
WAIT
WAITR
WRITE
WRU
WTL
WTO
wrOR
XCTL
XDAP

The following os macros are defined in CMS but do not
perform a function as in OS. They are essentially no-ops
(that is. they have no meaning in CMS and return an error
code when the SVC is issued).

ATTACH
CBKPT
DETACH
DEQ
DELETE
EXTRACT
ENQ
IDENTIFY
STlfr1ER

For a discussion of the os macros themselves, refer to IBM
manual" C28-6647 IBM System/360 operating system supervisor
and ~ Management Macro Instructions. For a description of
the use of the OS macros in CMS refer to the
CMS Program Logic Manual.

296 Os Macros

CMS ROUTINES (FUNCTIONS)

Routines that can be called with the SVC X'CA' are called
functions. These routines serve as the basic interface
between programs and the CMS nucleus.

The calling sequence for all routines is similar. There are
two parts of each calling sequence; the code to transfer
control to the eMS routine, and the parameter list. The
inline code always has the following form

LA
SVC
DC

l,PLIST
X'CA'
AL4(ERR)

put address of para~eter list into GRPl
transfer control to subroutine
address of error return if desired

normal return

Register 15 is the only register that is modified when
control is returned to the calling program. On a normal
return, register 15 contains zero q on an error return, it
contains an error code. The error codes are described in
the write-up of each routine. If an error return is
specified, the byte after the SVC instruction is zero and
the following three bytes are assumed to contain the address
of the error return. If the error return address is
specified, the normal return is to four bytes after the SVC
instruction; otherwise, it is to the location after the SVC
instruction. If no error handling is to be ?rovided. it is
recommended that DC AL4(*+q) be used. otherwise an error
causes DEBUG to be entered.

The PLIST differs for each routine and is described in
subsequent sections for each routine. All functions can be
called directly as eMS commands although many functions
require a parameter list specified in hexadecimal and thus
should only be called from an assembly language program.
The following OMS commands directly call the equivalent CMS
functions and are described under the sections on eMS
commands:

ALTER, CLOSIO~ ERASE, FINIS, GENMOD, GLOBAL, LOAD,
LOADMOD, REUSE, OSE, START, $, DEBUG, EXEC,
LOGOUT, IPL. BLIP, LINEND

See -Assembly Language Programming- for PLIST format.

The commands ALTER, ERASE, BLIP, and LINEND should be called
from an assembly language program as functions if it is
desirable to specify a character that cannot be typed from a
keyboard.

The functions STATE and TAPEIO are useful as commands as
well as functions. When called as a function, ST~TE returns
the address of a copy of the file status table that can be
used in further processing. When called as a function,

eMS Routines (Functions) 297

TAPE10 reads or writes a tape record. The use of the
functions as commands is described under the section on CMS
commands. The PLIST for the functions below are described in
the following section.

298

ATTN
CARDIO
CONWAIT
CPFUNCTN
ERASE
FINIS
HNDINT
HNDSVC
POINT
PRINTR
RDBUF
STATE
TAPE 10
TRAP
TYPE
WAIT
liAITRD
WRBUF

stacks a line for terminal input
Reads and/or punches cards
Waits for terminal I/O to finish
Issues CP-67 console functions from CMS
Erases filets)
Closes file(s)
Sets or clears I/O interrupt return addresses
Sets or clears SVC handling addresses
Sets read or write pointer
Prints line
Reads item(s) from disk
Queries file status
Handles tape I/O
Sets external interrupt address
Writes to terminal without carriage return
Waits for interrupt
Reads terminal
Writes item(s) on disk

C~S Routines (Functions)

ATTN Function

Purpose:

The ATTN function stacks a line into the input buffer.

Calling Sequence:

PLIST

BUFF
LBUFF

Usage:

DS
DC
DC
DC
DC

DC
EQU

OD
CLStATTN t

CL4 t ordere

ALl (LBUFF)
AL3(BUFF)

Ctline t

* - BUFF

LIFO or FIFO

The line that is stacked is unstacked and used
to WAITRD is made to read a line from the
console. Any number of lines may be stacked for
use as terminal input. When the input stack is
keyboard is unlocked to receive typewriter input.

ATTN Function

when a call
typewriter
subsequent
empty. the

299

CARDIO Function

Purpose:

~he CARDIO function punches a card from the specified 80
byte area,. or reads a card (or prints a line) into the
specified 80 (or 132) byte area.

Calling Sequence:

PLIST DC
DC

CLS­
X'flag'

DC AL3(buffer)

CARDRD or CARDPH
X'OO-: standard reader
X'80': non-standard reader or
extended PLIST

DC H'no. bytes to be read'
DC H'O' no. of bytes read

Error Codes:

E(OOOOl)
E(00002)
E(00003)
E(00004)

300

End of file
Unit Check
Unknown error
Not operational

CARDIO Function

CONWAIT Function

Purpose:

The CONWAIT function ~aits for all stacked reads and writes
to finish from the console typewriter.

Calling Sequence:

PLIST

Usage:

DS
DC
DC

OD
CLS·CONWAIT·
CL4-CON1-

CONWAIT is called as a standard CMS function. The device id
'CON1' corresponds to the console typewriter.

Error Returns:

None.

CONWAIT Function 301

CPFUNCTN Function

Purpose:

The CPFUNCTN function transmits console functions to CP-67
without leaving the virtual machine mooe.

Calling Sequence:

PLIST DS
DC
DC
DC
DC

OF
CLS - CPFUNCTN'-
CLS-NOMSG e This parameter may be omitted
CLn·CP command string-
X-FF e fence

Error Codes:

E(OOOOl) No CP command string present

E(00004) INVALID CP REQUEST

E(OOOOS) BAD ARGUMENT

E(xxxxx) Any other error codes are from the
CP console function specified.

302 CPFUNCTN Function

ERASE Function

Purpose:

The ERASE function erases the specified file(s).

Calling Sequence:

PLIST DS OF
DC CLS'ERASE' called routine
DC
DC
DC

Error Codes:

E (00001)
E(00002)
EC00004)

CLS' • filename or
CLS' • filetype or
CI.2' • mode or *

First character of mode illegal
File not found
Disk error

ERASE Function

*
*

303

FINIS Function

Purpose:

The FINIS function closes the specified file(s).

Calling Sequence:

PLIST DS OD
DC CLS'FINIS' called routine
DC CLS' ,

filename or *
DC CLS' , filetype or
DC CI..2' • mode letter

Note:

FINIS does not update the directory on the disk.

Error Codes:

E(OOOOl)
E(00002)
E (00003)
E(OOOOlJ)
E(00006)

304

Invalid filename
Invalid filetype
Disk error
Invalid mode
File not open

FINIS Function

*
or *

HNDINT Function

Purpose:

The HNDINT function sets the CMS I/O interrupt handling
routines to transfer control to a given location for an I/O
device other than those normally handled by CMS. or clears
such transfer requests.

Calling Sequence:

PLIST
DS
DC
DC
IODEV

DC

Macro IODEV:

OF
CLS'HNDINT,t
CL4'SET' or CL4'CLR'
NAME, NUMBER. ADDRESS,

called routine
function

ASAP/WAIT-FLAG,KEEP/CLEAR-FLAG

X" FFFFFFFF' end of list

The IODEV macro sets up the following information in a
12-byte field:

NAME = Symbolic device name (1st 4 letters)
NUMBER = Hexadecimal device address
ADDRESS = Symbolic address of interrupt-handler to

be invoked. If address = 0, interrupts
are ignored when received.

ASAP/WAIT-FLAG:
ASAP = Invoke interrupt-handler iwmediately
WAIT = Invoke interrupt-handler only when

WAIT is called
KEEP/CLEAR-FLAG:

REEP = Retain interrupt-handling between CMS
commands

CLEAR = Clear interrupt-handling after each
CMS command. CLEAR is the default.

Example:

IODEV NEWD. 381;, MYCODE" ASAP,. KEEP

Usage:

When an interrupt is received and processed by' 10INT' " it
passes control to the interrupt-handler as follows:

Register 0,,1
2,3
4
14
15

I/O OLD PSW
CSW
Device address
Ret-.urn address to IOINT
Address of interrupt-handler

HNDINT Function 305

When processinq
return to IOINT
follows:

is complete. the
via register 14,.

interrupt-handler must
with Register 15 as

R15 =
R15

o means SUCCESSFUL HANDLING
Nonzero means ANOTHER INTERRUPT EXPECTED .•

The general procedures for CMS I/O handling using HNDINT
follow.

1. The program must initialize handling to be done via
HNDINT SET.

2. ~hen I/O to the appropriate device is to be done" the
system-mask must be set OFF by SSM instruction and the
appropriate SIO given.

3. When SIO is performed satisfactorily, the system-mask
can be set to allow all interrupts.

4a. If ASAP is specified~
as soon as the interrupt
interrupt-handler returns
program.

the interrupt-handler is invoked
is fielded by CMS IOINT. The

to IOINT which returns to users

4b. If ASAP is not specified. IOINT retains needed
information until the CMS WAIT function is called.

5. 'When the program needs the int"errupt to have been
received. the CMS WAIT function is called.. If the interrupt
has not yet been received. CMS goes into the WAIT state
until IOINT fields and processes the interrupt in the normal
way.

If the interrupt has been received
example. on ASAP). WAIT returns to
necessary internal flags cleared.

and
the

processed
caller with

(for
the

If the interrupt has been received but not yet processed as
under the WAIT option rather than ASAP, CMS WAIT calls IOINT
to invoke the desired interrupt-handler. clears the
necessary flags, and returns to the caller.

6. ~hen finished. the user program should clear the
interrupt-handling scheme through the HNDINT CLR call. If
the KEEP option is used. the interrupt-handler remains
intact in core.

Error Code:

E(OOOOl) Incorrect parameter list

306 HNDINT Function

HNDSVC Function

Purpose:

The HNDSVC function initializes the SVC-interrupt handler to
transfer control to a given location for a specific SVC
number--other than X'CA w or 202--or clears such previous
handling.

CallinQ Sequence:

PLIST

usage:

DS
DC
DC
DC

•
DC

OF
CLS·HNDSVC· called routine
CL4·SET· or CL4'CLR' function
AL1(SVC-number).AL3(SVC-handler)

X'FFFFFFFF' end of list

At entry to a non-CMS
conditions exist:

SVC-handling routine the following

Registers

0-11 and 15 as they were at SVC tirre
12 address of SVC-handler routine
13 address of SVC save area
14 return address to SVCINT

The SVC save area has the following fonnat:

Eytes

0-63
64-71
72-95
96-175
*FPR 0

Notes:

Contents

caller·s registers 0-15
SVc-old-PSW
floating-point registers 2~4.6*
80 bytes for use by SVC-handler

is saved elsewhere by CMS.

a. For CLR the address fields are irrelevant.

h. Individual SVC-numbers may be added or cleared at
different times but should all be cleared before termination
of the command.

Error Codes:

EC00001)
EC00002)
E (00003)

Incorrect PLIST
SVC-number replaced another of the same number
SVC-number cleared was not set

HNDSVC Function 301

POINT Func.tion

Purpose:

The POINT function sets the read pointer and/or the write
pointer at a specified item number.

Calling Sequence:

PLIST OS OD
DC CLS'POINT' called routine
DC CLS- , filename
DC CLS' , filetype
DC CL2' • mode or *
DC H' • write pointer
DC H' , read painter

Usage:

This routine sets the read or write pointer in the file
status table to a value provided by the caller. Zero leaves
the pointer unchanged; a value of H'-1' (X'FFFF') sets the
write pointer to the last item number plus one.

Error Codes:

E(OOOOl)
E(00002)

308

File specified does not exist
First character of mode illegal

POINT Function

PRINTR Function

Purpose:

The PRINTR function writes a line of text on the offline
printer.

Calling Sequence:

PLIST

Notes:

DS
DC
DC
DC

00
CLS·PRINTR·
A(bufsiz)
F· •

buffer area
buffer size

a. The first byte of the
control and is not printed.

buffer is used for carriage
The carriage controls are:

CL1- •
CLl·O·
CLl'l·
CL1·_·
CLl'.­
CL1,e n -

single space
double space
page eject
triple space
write, no space
skip to channel n

b. Machine CCW OP code carriage controls as used by the
assembler are also accepted.

c. The buffer size should not exceed 133 bytes. If the
buffer size is 1. only the carriage control function will
occur.

Error Codes:

Ee00001)
E(00002)
EC00003)
E(00004)
E(OOOOS)

Printer unit check
Illegal carriage control
Incorrect parameter list
Not operational
Unknown printer error

PRINTR Function 309

RDBUF Function

Purpose:

The RDBUF function reads an item of information from a disk
file.

Calling sequence:

PLIST DS OD
DC CLS ' RDBUF'· called routine
DC CLS' • filename
DC CLS' • filetype
DC CL2' , mode or * DC H' , item number
DC A (userarea) pointer to input buffer
DC F' , number of bytes in buffer
DC CL2'F' fixed-variable flag (F or V)

DC H' , number of items to read
DC F' • number of bytes actually read

Notes:

a. All errors except error 8 cause the function call to be
aborted. On error code 8 that portion of the item that fits
in core is read.

b. The number of bytes in the user area divided by the
number of items (that is. the same logical record length)
must be constant for a fixed-length-record file.

Error Codes:

E(OOOOl)
E(00002)
E(00003)
E (00005)
E(00007)

E(OOOOS)
E(00009)

E(00011)

E(00012)
E(00013)

310

File not found
User's memory address is illegal
Disk malfunction has occurred
Number of items equal zero
File not written with WRBUF therefore it
cannot be read
User's memory area too small for item
File open for writing and therefore
cannot be read
Number of items greater than 1 for variable­
length file
Item number specified does not exist (EOF)
Variable file has invalid displacement in
Active File Table

RDBUF Function

STATE Function

Purpose:

The STATE function provides a copy of the FST (file status
table) block for the' file specified in the parameter list .•

Calling Sequence:

PLIST DS OD
DC CLS'STATF e called routine
DC CLS' • filenatre
DC CLS· , filetype
DC eL2' e mode letter or *
DC CL2' t unused

PRETN DC A(*) address of copy of FST
block returned

Notes:

a. PRETN is set to the location of a copy of the file
status table entry if the file is found.

b. Mode * means that the £irst file found with name and
type specified is used. The standard order of search is
used.

Error Cedes:

E(00001)
E(00004)

File specified doesnet exist
First character of mode illegal

STATE Function 311

TAPEIO Function

Purpose:

The TAPEIO function reads or writes a tape record or
positions a tape.

Calling Sequence:

PLIST DS
DC
DC
DC
DC
DC
DC
DS

00
CLS'TAPEIO"
CLS'function'
CLq'deviceid'
XL1'modeset'
AL3(buffer)
F'size'

Symbolic tape address
7~track mode set
Buffer address
Buffer size

COUNT

Functions are:

BSF
BSR
FSF
FSR
READ
REWIND
RUN
WRITE
'WRITEOF
WTM
ERG

Device ID's are:

F Number of bytes read

backspace one file
backspace one record
forward space one file
forward space one record
read one record
rewind the tape to load point
rewind and unload the tape
write one record
write a tape mark
write a tape mark
erase a gap

TAP1 or TAP2 corresponding to 180 or 181

The modeset code is one byte of the form

DD~MM011 with the following interpretation

DD 7 track density
00 I 200
01 I 556
1,0 I 800
11 I SOO

MMM I Function
000 I not used
001 I not used
010 1 set density,
011 I not used
100 I even parity,
101 I set density,
110 t set density,
111 I set density,,,

312

odd parity" converter on!. translator off

converter off,,, translator off
even parity, converter off, translator on
odd parity" co~verter off, translator off
odd parity. converter off" translator on

TAPEIO Function

Usage:

The function TAPEIO is used to read, write or move magnetic
tape~ If the WRITE function is used, the number of bytes
indicated is written.. If the READ function is used.,
information is moved into the buffer and the number of bytes
read is stored into COUNT. If a tape mark is read" the
function returns with error code 2.

Notes:

a. A mode set of X·OO· causes the default mode bit of X·B3·
to be used.

b. A rnode set of X·B3' indicates density 800, parity odd,
converter off, and translator off.

c. A mode of X·93' indicates density 800, parity odd,
converter on, and translator off.

Responses:

TAPn NOT READY YET
The tape has been attached but it is not in a ready status.

(OK - READY NOW)
The tape is now ready for use.

Error Codes:

E(OOOOl) INVALID ·TAPEIO READ' PARAMETER-LIST
An invalid parameter list was specified for reading tape .•

E(OOOOl) INVALID 'TAPEIO WRITE' PARAMETER-LIST
An invalid parameter list was specified for writing tape.

E(00002)
An end of file or end of tape has occurred.

E(00003)
A permanent I/O error has occurred while reading or writing.

E(00004)
An illegal symbolic device id was specified.

E(OOOOS) TAPn NOT ATTACHED
The tape unit has not been attached to the virtual machine .•
Refer to ·Operating Considerations - Tape Procedures·.

E·(00006) TAPn IS FILE PROTECTED
The tape contains a file-protect ring. Therefore it can not
be written on.

TAPEIO FUnction 313

E(00001) TAPn - SERIOUS TAPE ERROR ATTEMPTING function
An unrecoverable tape error has occurred while attempting
the specified function.

314 TAPEIO Function

TRAP Function

Purpose:

The TRAP function sets a user·s return
interrupt. This return overrides the call
external interrupt.

Calling Sequence:

PLIST DS
DC
DC

on
CLSeTRAp·
ACtrapsubr)

for an externa1
to DEBUG on an

where trapsuhr is the location transferred to on an external
interrupt. If the parameter trapsubr is a zero, the return
is reset to go to DEBUG on an external interrupt.

Usage:

The user·s interrupt routine should set a flag which should
be examined by the main line program. After the flag is
setl• this routine should return to the location specified in
GPR14 on entry. All other general registers can be used as
desired. The main line program should periodically examine
the trap flag to determine whether an external interrupt has
occurred.

Error Returns:

None.

TRAP Function 315

~YPE Function

Purpose:

tt'he TYPE function types an output message on the console.
Terminal blanks (if any) are not deleted t• and no carriage
return is added.

Calling sequence:

PLIST

MSG

EMSG

DS
DC
DC
DC
DC
DC

DC

EQU

OF
CLS-TYPE­
AL1(1)
AL3(MSG)
C·code-
AL3 (EMSG-MSG)

terminal number
address of output message
code B or K (see below)
mess~ge length (in bytes)

C- message to be typed without carriage
return-

*
where the write codes are:

Note:

B = move line to free storage before typing
K = type line from the specified location

The output message must be from 1-130 bytes in length.

Error Codes:

E-t-O.OQ.Ol)

E(00002)
bytes

316

Invalid terminal number

Length of output message not between 1 and 130

TYPE Function

WAIT Function

Purpose:

The ~AIT function awaits an interrupt from one of the
specified devices.

Calling sequence:

PLIST

INTDEV

DS
DC
DC

DC
DS

OF
CL8·~AIT·
CL4·deviceid·

where the deviceid is CON1, DS1<1, PCHl, RDRl,
PRN1. TAP1" or TAP2

Usage:

When one of the specified devices causes an interrupt, the
deviceid is stored in the word INTDEV and control returns to
the calling program.

Error Returns:

E(OOOOl) Invalid deviceid specified

WAIT Function 317

'WAITRD Function

Purpose:

The WAITRD function reads an input message up
in length into a qiven buffer from a console
completion of the input message.

to 130 bytes
and waits for

Calling Sequence:

PLIST

INPBUF

DS
DC
DC
DC

DC

DC

DS

OF
CLS·WAITRD·
AL1(l)
AL3(INPBUF)

C ·code'

CL130

terminal number
address of 130-byte
input buffer

U, v~ S~ T, or X
(sef~ D~low)

byte count of input
message is stored
here

130 bytes (or more)
input buffer

An input line can be edited as f01lows: Use the 'at sign' a
to delete the previous character, or the 'cent sign' ¢ to
delete an entire line up to and.including the cent sign.

Conventions for U# V~ S, T, or X are:

U performs editing. upper-case translation and
blank filling

v'performs editing and upper case translation
S performs editing and blank filling
T performs editing only
X leaves input line exactly as is

Notes:

a. If the user has stacked input
the first stacked input message
specified buffer.

con.mands, WAITRD accepts
and moves it to the

b. The input buffer is zero-filled before
initialized, and must be at least 130 bytes long.

Error Codes:

E(OOOOl)
E(00002)

318

Invalid terminal number
Read-type invalid (not U~ V., SI, T, or X)

WAITRD Function

read is

WRBUF Function

Purpose:

The WRBUF function writes one item of information into the
file whose name is specified by the filename and filetype
parameters. If the file does not exist when this function
is first called. a new file is opened and assigned the given
name and type. WRBUF automatically packs fixed-length items
into an SOO byte buffer and writes this 800 byte buffer onto
the disk when required.

Calling Sequence:

PLIST DC CLS-WRBUF e

DC CLS- e filename
DC CLS' , filetype
DC CL2'

, mode must be specified
not *

DC H' • item number (0 if next item)
DC A() user's buffer address
DC F' , number of bytes
DC CL2' , fixed-variable flag, F or V
DC H' e number of items to write

(0 treated as 1 item)

Note:

The number of bytes in the user area divided by the number
of items (that is, the same logical record length) must be
constant for a fixed-length-record file.

Error Codes:

E(00001)
E(00002)
EC00003)
E(OOOOIl)
EtOOo-05)
E(00006)

E(OOOO?)

E(OOOOS}
EC000091
E(OOOlO)
E(OOOll)
E(00012)
E(00013)

E(00014)
E(00015)
E(OOOl6)

E(OOOl1)

File name or file type not specified
User memory address not in user area
Disk error. The disk might be read-only.
First character of mode illegal
Second character of mode illegal
Attempted to write item whose number
exceeds 65533
Attempt to skip over unwritten variable­
length item
Number of bytes not specified
File already active for reading
Maximum number of CMS files (3500) reached
F-V flag not F or V
Mode S (system) is illegal
Disk already full
Goes to KILLEXF instead of returning to
caller
Attempt to write a not yet formatted disk
Length of this item not same as previous
Characteristic (P-V Flag) not same as
previous
Variable length item greater than 65K bytes

WRBUF FUnction 319

E(00018)

E{00019)

320

Number of items greater than 1 for variable­
length file
Maximum number of data blocks per file
(16060) reached.

WRBUF Function

FORTRAN

Purpose:

The FORTRAN command compiles programs
into machine code, and provides
diagnostics.

written in FORTRAN IV
program listings and

Format:

IFORTRAN I filenamel ••• filenameN «optionl ••• optionN»1
I F I I

filename is the name of a FORTRAN file to be compiled. Up
to 32 separate compilations may be performed by
adding filenames separated by blanks.

option is one or more of the eight compiler options.

options:

MAP includes tables of FORTRAN variables, NAMELIST. and
FORMAT statements in the LISTING file.

NOMAP suppresses the tables of variables.

DECK generates the TEXT file of object code.
NODECK suppresses the TEXT file.

LIST includes a listing of object code in assembler language
mnemonics in the LISTING file.

NOLIST suppresses the object code listing.

SOURCE includes the source program in the LISTING file.
NOSOURCE suppresses the listing of the source program.

BCD is used if the source program is punched in Binary Coded
Decimal.

EBCDIC is used if the source program is punched in Extended
Binary Coded Decimal Interchange Code.

GO forces compiler processing to completion despite source
statement errors.

NOGO terminates compiler processing when serious errors are
detected.

PRINT prints the LISTING file on the offline printer, and
deletes it.

NOPRINT suppresses printing of the LISTING file.

DIAG types source program errors at the terminal.
NOD lAG suppresses typing of source program errors.

FORTRAN 321

usage:

The FORTRAN command compiles files of FORTRAN source
language into machine-language object code. Input files
must have a filetype of FORTRAN and a record length of 80
characters. Up to 32 files may be compiled by one command
by listing the filenames. and each file may contain any
number of routines. each delimited by an END statement.
Each file processed generates one object deck and one
listing.. replacing any previous output files for the same
program.

FORTRAN uses the standard order of search for locating the
source files.

The options governing compiler operation and output are
specified in any order in a set of parentheses following the
last filename. One set of options governs all compilations
performed by one command. Each of the eight options has a
default value which is selected when none is specified. The
default values are

NOGO DIAG EBCDIC DECK NOSOURCE NOMAP NOLIST NOPRINT

Any combination of options is valid. but the result of
specifying more than one value for a single option is
unpredictable. Unsupported or misspelled options are
ignored~ If no options are specified. the parentheses are
not necessary. No filenames l• options,. or comments should be
placed following the closing parenthesis.

Diagnostic and error messages produced by the compiler are
placed in the LISTING file (see -output-) I, and" unless the
NODIAG option is speci£ied~ are typed out at the terminal.
The compiler, error messages have two formats, depending on
when the error is detected (see Figure 29). Statements in
which an error is detected during the statement scan, such
as a syntax error. are typed out immediately. followed by a
line with a $ beneath each point at which an error was
detected. The pointer line is followed by the error codes
and explanations, numbered from left to right. If an error.
such as an undefined label. is not detected until statement
scanning is completed. the error message is typed" followed
by a list of the labels or variables in error.

If source statement errors are detected. CMS terminates the
compilation with a message and an error code of 32. If the
GO option is specified,. eMS does not terminate processing,
although for some conditions the compiler terminates itself.
When processing is completed under the GO option. any error
completion code is the greatest error severity code assigned
by the compiler (see -Error Messages·).

Source files read through the offline card reader for
compilation may be punched in either Binary Coded Decimal
(BCD)" or Extended Binary Coded Decimal Interchange Code

322 FORTRAN

(EBCDIC). If BCD is used, the BCD option must be specified.

FORTRAN Options

The FORTRAN command does not produce a listing file, unless
requested. All diagnostics are printed on the console,
unless suppressed by the option NODIAG,. To obtain a FORTRAN
listing file, the options SOURCE, MAP, or LIST must be
specified, and only those options requested are included in
the listing file. If a listing file is produced, the
diagnostics are included. If only the option NODIAG is
specified, a listing file is produced containing only the
FORTRAN diagnostics. The PRINT option directs the listing
to the printer and prints only those parts of the listing
requested by SOURCE, MAP, or LIST. If PRINT is the only
option specified;. only the diagnostics are printed.

TEXT Identification

The characters appearing in columns 13-16 of TEXT files
generated by FORTRAN are as shown below. They are followed
by a sequence number in columns 77-80:

a. for a subroutine--the first four letters
subroutine name

of the

b. for a main program--the first four letters of the
filename if it is physically the first deck in the file:
otherwise. the letters -MAIN.

The letters used for columns 73-76 of a TEXT file also
appear in the middle of the first line of each LISTING page.
In addition. the name of the file appears at the beginning
of the second line of each page in the LISTING file.

Output

Files with the designation wfilename TEXT P5" and "filename
LISTING P5-, where wfil.enamew is the name of' the FORTRAN
input file, are produced for each file compiled. If NODECK
is specified, the TEXT file is suppressed.

The object program in the TEXT file is identical to that
produced by a compiler under the Operating System. and
object decks may be loaded and executed under eMS or OS.
The entry point for the first main program in the file is
the Same as the filename. Subsequent main programs in the
same file all have the entry point MAIN. Subroutines have
the entry point specified in the SUBROUTINE statement,
regardless of their position in the file.

Under the default options (NOSOURCE NOMAP NOLIST) the
LISTING file contains diagnostic messages. and a statement
of object program size in bytes (see Figure 30). Statements
in which errors were detected are always included, with
error messages in the same format as they are typed at the

FORTRAN 323

terminal.

If MAP is specified. a table of addresses is generated for
each of seven classifications of variables used in the
source program. The classifications are COMMON. EQUIVALENCE,
NAMELISTi' FORMAT, scalar and array variables, and called
subprogram names.

If LIST is specified. a listing of the object program is
generated. with relative addresses" and instructions
translated into assembler language.

The PRINT option causes the LISTING file to be printed on
the offline printer, and then deleted. If NOPRINT, the
default option, is specified, the LISITING file is saved on
the pe:t:'Dlanent disk l, and may be printed with the OFFLINE
PRINTCC command or typed out at the terminal with the PRINTF
command.

Notes

a. Previous LISTING and TEXT files with the same filename
as the current FORTRAN input file are deleted, although in
some cases they may not be replaced because of different
options or an error termination.

b. If multiple files or a file with multiple routines are
being compiled, the GO option should be specified to prevent
an error termination of one compilation deleting all
compilations requested.

Refer~ftces:

The FORTRAN command executes the System/360 Operating System
FORTRAN IV (G) compiler. For information on the FORTRAN IV
language, see IBM System/360 FORTRAN IV Language (C28-6515)
and IEM System/360 Operating System FORTRAN IV Library:
Mathematical and Service Subprograms (C28-6810). For
information on compiler operation and messages, see
IBM System/360 operating System FORTRAN IV (G and H)

Programmer-s Guide (C28-6817), information in this guide on
Operating System job control language and data management is
not applicable under CMS; the LOAD, NAME=, and LINECNT=
options are not supported.

Responses:

Source statement errors and compiler messages are typed at
the terminal unless NOD lAG was specified. If GO was
specified, or if no errors were detected, there is no
response. except the Ready message or an error completion
code. The following responses should not occur:

324 FORTRAN

READY THE PRINTER.

I/O ERROR ON PRINTER. • PRINT' OPTION CANCELLED.
A 'LISTING'· DISI< FILE WILL BE CREATED.

If either appears at the terminal" notify_ the responsible
system programmer.

Examples:

a. see Figure 29
A file. FAC FORTRAN P5, is to be compiled. No options are
specified, so the set of default options govern the
compilation. At statement OOQ1 the compiler detects three
errors at the points indicated by the $'s in the succeeding
line. Error 01) refers to the left $, error 02) to the $ in
the center, error 03) to the $ under the 5. (The number in
the 'On)' being the ordinal occurance of the error).
Explanations of the error codes are found in the rEM
System/360 Operating system FORTRAN IV (G and H)

Proqrammer·s Guide. CMS cancels the cowpilation and supplies
the error code E(OOOOS).

fortran fac

0041 READE (5,177) ANS(I)
$ $ $

01) IEY0021 LABEL 02) IEY0041 COMMA 03)
IEY0221 UNDEFINED LABEL

771
E(OOOOS); T=5.42/5.98 11.40.56

Figure 29. FORTRAN compilation with errors

h. see Figure 31
The same file as in the above example is to be compiled, but
the SOURCE. MAP,. and NOLIST options are specified.. Assume
that the errors flaqged above have been corrected. The file
compiles correctly this time.

fortran fac (source map nolist)
Ri T=5.75/6.27 11.44.57

Figure 31. FORTRAN compilation with options

c. see Figure 32
Three files are to be compiled: FAC FORTRAN P5, TEST FORTRAN
P5, and PRACTICE FORTRAN P5. No errors are detected during
any of the compilations. Maps of variables are included in
each of the three LISTING files, which are automatically
printed offline. and erased from the disk.

FORTRAN 325

fortran fac test practice
COMPILING: TES-r
COMPILING: PRACTICE

R; T=5.90/6.69 11.44.06

Figure 32. Multiple FORTRAN compilations

Error Messages:

F(OOOOl) TOO MANY LEFT PARENTHESIS.
More than one left parenthesis was found in the command. No
compilation was started.

E(OOOOl) LEFT PARENTHESIS MISSING.
An unbalanced right parenthesis
compilation was started.

was

E(OOOOl) NO FILE TO BE COMPILED IS DEFINED.

detected. NO

No filename was specified in the command. No compilation
was started.

E(OOOOl) UNABLE TO COMPILE MORE TH1\N 32 FILES
IN ONE RUN. PLEASE SPLIT YOUR REQUEST.

More than 32 filenames were specified in the command,. Enter
in groups of less than 32 in two or more commands,. No
compilation was started.

E(OOOOl) AT LEAST ONE OF THE FILES TO BE COMPILED
DOESNeT EXIST OR DOESN'T HAVE A 'FORTRAN'
TYPE NAME.

"filename FORTRAN *" was not found in the file directory.

E(OOOOl) AT LEAST ONE OF THE FILES TO BE COMPILED HAS
LOGICAL RECORD LENGTH DIFFERENT OF 80 BYTES.

Recreate the file with SO-byte records.. The EDIT command
truncates overlength records to 80 bytes. No compilation was
started.

E(00004)
Possible errors were detected in the source program" but
successful execution is possible.

ECOOOOS)
Errors were detected in the source program.
fail.

E(00012)

Execution may

Serious errors were detected in the source program.
Execution is impossible.

E(00016)
Terminal errors were detected in the source prog~am.
Compilation was terminated,.

E(00016) ERROR WHEN LOADING THE IEYFORT MODULE.

326 FOR'l'RAN

Loadin9 of the compiler failed; no compilation was started.
Retry the command.

E(00032) COMPILATION CANCELLED DUE TO SOURCE
PROGRAM ERROR(S).

CMS canceled processing. Correct the source program, or
specify the GO option.

FORTRAN 327

FORTRAN PROGRAMMING

'~SEQOElfi'IAL I/O

","A"llsequential files used or created by FORTRAN programs
nave file identifiers in the following format:

1 Filename
1
I-F~I-L-E~--

1 _____ _

Filetype I
-"""'-----, FTxxFyyy t ______ 1

xx is the data set reference number, from 01-14.

yyy is a sequence number, beginning
distinguish multiple files under
reference number.

with
the

If a file is being created by a FORTRAN
filemode is Pl. For input to a FORTRAN
filemode of P is accepted.

001 used
same data

programl,

program,

to
set

the
any

with the exception of terminal input and output, all files
are kept on the permanent disk or on tape. Existing input
files must conform to the record formats described below.
Output files are created by the FORTRAN program, and need
not be defined before execution. If output files already
exist, the new output is appended to the existing file.

Data set reference number 5 is reserved for terminal input
records of SO characters or less. Number 6 is reserved for
terminal output records of 120 characters or less. The
terminal is also addressed by statements of the form "READ
b,list" and "PRINT b,list" where b is a FORMAT statement
number. The FORMAT for a PRINT statement must allow a
leading space for a carriage-control character, or the first
character of the record is lost. The carriage-control
character does not have to be filled in. however. Output
records generated by a statement of the form "PUNCH b;,list"
are placed in a file on the permanent disk under the
identifiers FILE FT07F001 Pl. Actual punching out of cards
may be performed later with the OFFLINE PUNCH command.

Data set reference numbers 11 and 12 are reserved for tape
I/O. Number 11 corresponds to TAPl at virtual address lS0,
and number 12 corresponds to TAP2 at virtual address 181.
Before number 11 and/or 12 are used, virtual 180 and/or 181
must be attached to the user's virtual machine
configuration, or I/O errors occur.

With the exception of data set reference numbers 6,.8 1,12. and
14, which allow 133-character records, and data set
reference number 9. which allows 140-character records. a1l
files must contain SO-character fixed-length records. The
implied record format and device for each data set reference

328 FORTRAN Programming

number is shown in Figure 33.

The sequence field of the filetype is always 001 unless
multiple files are referenced under the same data set
number. There is no limit to the number of files which may
be created or referenced under the same number, but only one
may be referenced at a time. The first used must have the
filetype FTxxF001" the second FTxxF002" etc. The END FILE
statement closes the file currently in use, and the next
READ or WRITE specifying the same data set reference number
refers to a file with a reference number one larger. The
REWIND statement -repositions· the files to the first one
used in that program under that data set reference number
(see Figure 34). The BACKSPACE statement is supported under
eMS for tape data sets only.

A facility for defining a correspondence between a CMS file
with unique identifiers and a FORTRAN data set reference
number has been provided in the DEFINE subroutine. Refer to
the description in SYSLIB TXTLIB.

FORTRAN Programming 329

Figure 33. Summary of record formats and I/O statements for
sequential FORTRAN files

330 FORTRAN Programming

Notes to Figure 33

a. The file identifiers for each of the files are

FILE FTxxFyyy

where xx is the data set reference number, and yyy is the
sequence number.

b. The sequence number is 001, except when multiple files
are referenced under the same data set reference number.

c. No file identifiers are shown for reading data set
reference number 5 or writing number 6. since these numbers
address the termina1 for input and output, respectively~ No
file identifiers are shown for data set reference numbers
11, 12, 13. and 14, as these numbers address virtual tapes
180-183. respectively.

* Data set reference numbers 13 and 14 should not currently
be used, as there are no definitions in eMS for tapes 182
and 183.

FORTRAN Programming 331

~~-~~-~~-~---~~~~--------~-----~--~-~~~-~~-----~--~-----

I FORTRAN FILE , STATEMENT NAME TYPE MODE
I
I
I REAL*8(S)
I 100 FORMAT (S (G10 .. 8/. 6X»
I S DO 20 I=1 t• 4S
I 10 READ (1$;.100) B FILE FT04F001 Pl
I •
I
I 20 WRITE (3,100) B FILE FT03FOOl PI
r 30 END FILE 3 FILE FT03FOO1 PI

40 READ (q.100.END=50) B FILE Fr04FOOl P1

1J4 WRITE (3,100) B FILE FT03F002 PI
GO TO 40

50 END FILE 3 FILE Fl'03F002 P1
52 REWIND 3

75 READ (3,.100) B FILE FT03FOOI PI
•

82 PRINT 200, B (terminal output)

STOP

Figure 34. Files referenced by sequential FORTRAN I/O
statements

Notes to Figure 34

Statement 10 reads the first 45 records of the existing file
FILE FT04F001 Pl. At statement 20, these records are placed
in a new file FILE F'r03FOOl Pl,. This file is closed by the
END FILE statement at 30, and the next time data set
reference nurober 3 is used, at statement 44, a second new
file ~s created: FILE FT03F002. After the REWIND statement,
data set reference number 3 is again associated with the
first file created: FILE FT03F001. Note that the PRIN'r
statement requires a different FORMAT statement, which
allows for a carriage-control character.

332 FORTRAN Programming

DIRECT ACCESS I/O

All direct-access files used or created by FORTRAN programs
have file identi'fiers in the following format:

I Filename I Filetype ,
1------------1------------1 I FILE 1 DAxx ,
I I I

xx is the data set reference number, from 01 through 08,.

If the file is being created by a
filemode is Pl. For input to a
filemode of P is acceptable.

FORTRAN program,
FORTRAN program"

the
any

Direct access refers only to those files which are used with
the FORTRAN lanq,uaq.e DEFINE FILE statement. (Note the
distinction between the CMS library DEFINE subroutine in
SYSLIB. TXTLIB wllich is referenced by a CALL DEFINE
statement, and the FORTRAN language statement DEFINE FILE.)
Files used sequentially are not considered direct-access
files,. even though they reside on disk.

Unlike the sequential data set reference numbers, the
direct-access number does not imply any record length. This
information is supplied by the DEFINE FILE s·tatement within
the FORTRAN program. All files are on the permanent disk.
The same data set reference number may not be used for both
a sequential and a direct-access file in the same program,
nor may a single file be referenced by both methods in the
same program. Different access methods may be used for the
same file by different programs, provided the file
identifiers are changed.

The number of records specified in the DEFINE FILE statement
should be realistic. If a new file is being created, the
specified number of records are blanked out on the permanent
disk before the first record is written.. Specifying an
unnecessarily larqe number of records wastes disk space,.

Although the FIND statement is supported, there is no need
to use it in a time-sharing environment,. I/O overlap is
achieved through sharing of CPU time among the virtual
machines. Use of the FIND statement actually slows down
execution of the FORTRAN program slightly. since two
operations must be carried out instead of one.

An example of direct-access I/O is shown in Figure 35.

FORTRAN Programming 333

I FORTRAN (FILE- t
I STATEMENT 1 NAME TYPE MODE ,
f I
I 100 FORMAT (16, 2X,A20,. 4G13. 6) I
I DEFINE FILE 1 (200, 80 ,E i,R3l ,
I • I
1 I
I 5 READ (1·J ,100) MNNO •• NAME,TOTS I
I FILE DAOl P1 ,
I 30 WRITE (l·J!, 100) MNNO" NAME, NWl'OTS 1
I I
I STOP 1
I ,
Figure 35. File referenced by direct-access FORTRAN I/O
statements

Note to Figure 35

The DEFINE FILE statement describes a file of 200
80-character records. If this file had not existed before
program execution, 200 records of 80 blanks would have been
written on the permanent disk. Statements 5 and 30 read and
wri te the Jth record,. where J has been assigned an integer
value less than 201.

TERMINAL OUTPUT

Terminal output can be produced in either of two ways in
FORTRAN programs:

(1) WRITE (6,FS) A~B,C
(2) PRINT FS,ABC

where FS is a format statement number.

In versions of CMS, up to 1.58 alphameric information
printed at the terminal by using either the A-format or the
Hollerith format had the first character of each line
blanked out. This has now been modified, and the first
character is used as a format control character in a manner
analogous to that used in OFFLINE PRINTCC. This control
character has the following meaning:

character

• •
• + •
to'

Action

line, carriage return
line
carriage return!. line,
carriage return

Note. Lines not followed by a carriage return have the line
that follows them typed immediately behind them. if blanks
are required, nonprinting characters should be included.

334 FORTRAN Programming

FORTRAN FILES

The defined FORTRAN logical files are as follows:

Logical file

1-4
5
6
7
8

Record description

BO-character records
80-character sysin records

130-character sysout records
80-character records

133-character records with
carriage control

(To print logical unit file B" the OFFLINE
PRINTCC command must be issued.)

The subroutine DSDSET can be called to allow a user to
change the record format and the logical record length for
FORTRAN ·disk files~ Thus, a user is no longer confined to
records of 80, 13~, or 133 bytes in length (see the DSDSET
Subroutine for a description of DSDSET in SYSLIB TXTLIB).

A facility has been added to change the identifier FILE
FTxxFyyy required for FORTRAN disk file reads and writes. A
call to the DEFINE subroutine is required to change the
correspondence between a eMS file and a FORTRAN data set
reference number. Refer to the writeup on the DEFINE
routine.

FORTRAN write statements can be used to create disk files
with a name of FILE FTOxFOOy, where x is the logical unit
number and y is the logical file number. The first time a
write is issued to logical unit x, logical file 1 is
written. After an ENDFILE to logical unit x, subsequent
writes to logical unit x before a REWIND will write into
file FTOxF002. This file is a separate disk file from file
FTOxF001. Additional logical files can be written by
issuing an END . FILE to the previous logical file;, and then
continuing to write onto logical unit x.. If a file already
exists when the write statement is issued, the lines written
are appended to the existing file. To append information to
an existing logical file 2, first

write onto logical file1 and issue an END FILE x, or

read the file until the end file condition is reached,

then write into logical file2, which appends to the
data on the end of the existing file.

After a rewind to a logical unit, subsequent writes
overwrite the existing file. Only logical file 1 (that is,
file FTOxF001) can be overwritten. There is no way to
overwrite into logical file 2, etc. An overwrite does not
shorten the file length: thus. information in a file which
is not overwritten remains in the file.. Writing over an

FORTRAN Programming 335

existing file can lengthen the file. and thus eliminate all
the original information in the file. To write a completely
new file. an existing file must first be erased. either by
issuing the ERASE command or by calling the ERASE routine.

A tape facility for FORTRAN programs is available
logical units 11-14 are the standard logical tape
These units correspond to symbolic devices TAP1-TAP4.
virtual devices 180-1a3. A tape file can be written
of the following five tape formats:

The

type
type
type
type
type

1:
2:
3:
II:
5:

fixed-record size, unblocked
fixed-record size. blocked
variable-record size,. unblocked
variabl~record size. blocked
undefined-record size, no blocking

default settings are as follows:

where
units.
and to
in one

Virtual Symbolic Logical Block Format Logical Record
Device Device Uni,t Size Type Length

180 TAPl 11 80 I 80
1lJl TAP2 12 133 I 133
182 TAP 3 13 800 2 80
183 TAP4 14 1330 2 133

Unless otherwise set by a call to TAPSET, the mode setting
for 7-track tapes is for 800 bpi, odd parity, converter on,
and translator off. For 9-track tapes. the mode setting is
ignored. Refer to TAP SET Subroutine.

Note. TAP 3 and TAP4 are not currently defined in CMS/,
therefore do not use logical units 13 and 14.

I/O FORMAT CONVERSION

A FORTRAN reread facility is available to perform a core I/O
format conversion. To use this facility, a call to the
REREAD routine must be made to specify the logical unit
number. The logical unit may be any unit from 1 to 99
except unit 5, 6, or 7. A WRITE statement must be issued
before the READ statement for rereading the specified
logical unit number. The FORTRAN statement

CALL REREAD (n)

sets the reread unit to logical unit n with a default record
size of 140 bytes. This may be changed by specifying the
record size ,as a second parameter in the call to REREAD" for
example, CALL REREAD (99,80). Refer to the subroutine
description in the REREAD Subroutine writeup. To read the
record from the reread unit a second or subsequent time, a
REWIND n statement must be executed before the READ
statement. If a reread is issued without executing a REWIND
statement. an END OF FILE condition results. Any

336 FORTRAN Programming

input/output statements for other logical units can be
issued between a write and a read on the reread unit.. The
reread unit or the blocksize can be changed by another call
to the REREAD routine.

Notes:

a. Each FORTRAN file can contain any number of routines to
be computed.

b. A eMS narnelist facility is available for obtaining input
to a FORTRAN program in free format without specifying
variable names. Refer to the writeup on NLSTON/NLSTOF for a
more detailed description of this namelist facility.

c. The supported data set
assignments, or record formats
may vary from those described.
system programmer.

reference numbers, device
at a particular installation
Check with the responsible

d. Since different FORTRAN programs using the same data set
reference number reference the same CMS file identifiers,
files should not be left on the permanent disk under FORTRAN
format identifiers. If a FORTRAN program is to be executed
repeatedly, it is advisable to create an EXEC file renaming
execution-time files both before and after execution. An
example of such a file might be MYSTRUP EXEC Pl, containing

ALTER MSTR LIST P1 FILE DA02 P1
ALTER CHANGES LIST P1 FILE FT04R001 P1
$ FORTMSTR
ALTER FILE FT04FOOl P1 CHANGES DONE P1
ALTER FILE DA02 P1 MSTR LIST P1

The command $ MYSTRUP then renaroes the files, executes the
FORTRAN program, and changes the identifiers again on
completion.

e. The FORTRAN subroutines are found in SYSLIB TXTLIB.
Descriptions of the subroutines can be found in the' section
called SYSLIB TXTLIB. The extended error messages in SYSLIB
TXTLIB give the user a traceback with registers 14.,15,,0, and
1 and the entry point. A standard fixup is taken and
execution attempts to continue. At program completion a
summary of errors is typed to the terminal. The nonerror
message subroutines can be found in CMSLIB TXTLIB. These
roessages give the error number and a brief description. To
use this, rather than the standard error-message
subroutines. GLOBAL T CMSLIB SYSLIB must be issued.

FORTRAN Programming 331

PLI

Purpose:

The PLI comma
language into
and diagnostic

Format:

PLI

fnamel ••• fname

option l ..• opt

Option$:

SIZE nnnR s
SIZE 128R C

I

LC nn 1
LC 50

0 nn]

0 00 s

SM cci,cc E
SM 01 1 72 s

2 includeE
NS suppress

L includes
mnemonj

NL suppress

A includef
NA suppresf

E include~
-file.

NE suppref
Dictior

X includE
file.

NX suppresf

338

The following options relate to the eMS control of
output. Abbreviation for each option appears in pari

PUNCH (PU)

PRINT (P)

outputs the TEXT file onto the offli:
option D must be in effect.

outputs the LISTING file onto the
printer. A copy of the LISTING fi1
placed onto the user's disk.

NOPRINT (NP) no LISTING file is produced.

NODIAG (NDG) compiler diagnostics are not tvped
user·s terminal.

If neither P nor NP i-s specified" the LISTING file
onto the user·s permanent disk.

Usage:

The PLI command compiles files of PL/I source lang
machine-language object code. Input files must
filetype of PLI and a record length of SO character

The options governing compiler operation and ou
specified in any order in a set of parentheses foIl
last filename. Any combination of options is val
conflicting options are specified, the last specifi
is used. Unsupported or misspelled options are
One set of options governs all compilations perform
command. Each of the options has a default value
selected when none is specified. These defa
underlined in ·Options· above.

For a complete discussion of PL/I usage, refe~
System/360 operating System PL/I(F) Programmex
(C28-6594) and IEM System/360 Operating Syst
Subroutine Library computatienal Subroutines (C28-
introduction to PL/I is provided in Manual C28-680
Primer.

Responses:

None

Error Messages:

E (0004)
Warning messages have been included in the LIST]
Successful execution is probable.

E(OOOS}
Error messages have been included in the LISTING j
compilation was completed with errors, and exec\
fail.

340 PLI

E(00012)
Severe error messages have been included in the LISTING
file. Successful execution is improbable.

E(00016)
Compilation terminated abnormally. Successful execution is
impossible.

E(00026) FILE TO BE COMPILED. UNDEFINED,.
No file with the specified filename and filetype of PLI can
be located on disk. Check to see that such a file exists
and then reissue the PLI command.

E(00026) FILE(S) TO BE COMPILED. NOT SPECIFIED.
No filenameCs) was (were) specified in the PLI command.
Reissue the command in its proper format.

E(00026) FILE BAS INCORRECT RECORD LENGTH.
The source code to be compiled is not in 80-byt~ record
format and cannot be processed.

E(00026) SYNTAX ERROR IN OPTION LIST.
Verify format of option list in COMMAND line.

E-C00027) Cf!lJ5 NUCLEUS ERROR.
ReIPL the CMS system disk.

E(00028)
An error was encountered in attempting to punch the TEXT
file for the program being compiled.

PLI 341

PL/I PROGRAMMING

COMPILATION NOTES:

a. The main procedure must be
OPTIONS(MAIN) option stated.

compiled with the

b. Compiler diagnostics
not attempt to execute
successfully.

must be examined carefully -- do
a program that has not compiled

c. Conversion subroutines are noted as "warnings" in the
compiler diagnostics. This does not indicate an error and
should not affect the execution of the procedure; it merely
notifies the user of costly conversions.. The warnings may be
suppressed by the FE option.

d. The compiler produces a file "name TEXT Pi" from the
input file "name PLI Pi", except in the event of "terminal"
compiler errors.

PL/I LIBRARY

CMS uses the PL/I Version 4 Subroutine Library. The PL/I
library is called PLILIB TXTLIB. Three additional
subroutines have been added to the library: IHECMS, lHECLOK,
and IHEFILE.

LOADING A PL/I PROGRAM

Before loading a PL/I program, it is necessary to designate
that the PL/I library is to be used (the default library is
the FORTRAN library called SYSLIB). This may be done
immediately before loading. or automatically at login via
the PROFILE EXEC, by the following eMS command:

GLOBAL TXTLIB PLILIB

warning: If the loader indicates that
IBExyz are undefined. the PL/I library
designated.

EXECUTING A PL/I PROGRAM

names of the form
was not correctly

A PL/I program may be loaded and executed in a similar
manner to all the other language processors. The only
restriction is that the START entryname, if used!, must be
IHECMS which is a special initialization routine that
transfers control to the user·s main program. This routine
is automatically invoked under all other circumstances,.

The three common techniques are

342

LOAD progl <prog2 ... ,.> (XEQ)

LOAD prog1 <prog2 ••• >
START

PL/I Programming

LOAD progl <prog2 ••• >
GERMOD progl

•
progl

PASSING PARAMETERS TO A PL/I PROGRAM

The CMS Command Processor automatically converts all
parameters on a command line into a series of 8 character
fields (left-justified and padded with blanks, or truncated
as necessary). These parameters may be passed to the PL/I
main procedure that is illustrated in the form below.

progl: PROCEDURE (PARMS) OPTIONS (MAIN);
DECLARE PAR~S CHAR(*) VARYING;

When using parameter passing, only the
techniques described below may be used.

LOAD prog1 <prog2 ••• >
START IHECMS parm1 parm2 parm3 •••

LOAD progl <prog2 ••• >
GENMOD prog1
•

progl parm1 parm2 parro3 • ' ••

Note. The varying character
concatenation of the specified
always a multiple of eight (or
specified).

TERMINAL I/O

string PARMS
parameters .•
null, if no

two loading

contains the
Its length is
parameters are

Terminal input/output can best be performed by using the
PL/I DISPLAY or DISPLAY/REPLY cOIrmands. Though the
DISPLAY/REPLY facilities deal only with character strings.
all possible uses can be accomplished by the following
techniques:

1. Character I/O
For simple character strings, the
facilities are convenient to use.

a. Output message only:
DISPLAY (message);

Example: DISPLAY (-HELLO THERE-);

b. Output message followed by response:
DISPLAY (message) REPLY (response);

DISPLAY/REPLY

Example: DISPLAY (-ENTER YOUR NAME') REPLY (INPUT):

PL/I Programming 343

where INPUT is declared to be a character variable.

c. Input only:
DISPLAY (.. .) REPLY (response):

Example: DISPLAY (e .) REPLY (input):

where INPUT is declared to be a character variable.

2. NonformatSimple I/O
For input/output tbat is not a simple character string.
the PL/I conversions often work adequately.

Examples:

a. DISPLAY (VARIABLE);
Where VARIABLE can be any simple variable (that
isi• integer. floating-point, character
string~etc.). it is converted to a character
string by the default format. and printed.

b. DISPLAY ("THE VALUE OF N IS' II N):
The value of N is converted to a character string.
concatenated with the message -THE VALUE OF N IS·.
and printed.

c. DISPLAY ('ENTER VALUE OF N') REPLY (INPUT):
N = INPUT:
The number entered is accepted as a character
string and converted to a nUmber by the N=INPUT
statement. If INPUT contains an illegal
representation for a number. a CONVERSION error
results.

3. Full PL/I Format Capabilities
The full PL/I format capabilities can be used by
creating formatted strings using the GET STRING and PUT
STRING commands. Regular PL/I input/output utilizes
the LIST or EDIT mode format control.

a. A typical output statement might be
PUT FILE(SYSPRINT) EDIT (A, B, C) (F(8.0), F(S,O), F(1,.2»:

To accomplish the same function to the terminal
PUT STRING(OUTPUT) EDIT (Ai. B. C) (F(8,O), F(8,O). F(7.2»:
DISPLAY (OUTPUT);

where OUTPUT is declared to be a sufficiently long
character string.

b. A typical input statement might be
GET·FILE(SYSIN) EDI-r (A. B t• C) (F(S,O). F(8,O) .• F(7(,2»:

To accomplish t~~ same function to the terminal:
DISPLAY (' .) REPLY (INPUT):
GET STRING (INPUT) EDIT (A. .B, C) (F (8 • 0), F (8 • 0), F (7 • 2)) :

where INPUT is declared to be a sufficiently long
character string.

344 PL/I Programming

I/O VIA FILES

Extensive input/output file capabilities are available in
PL/I. At present. CMS has very limited support for PL/I file
I/O. Those capabilities are briefly described here.

1. File Names

A reference to a file in PL/I requires the use of a
filename. A filename of DATA in PL/I corresponds to a
CMS file named FILE DATA. Thus. the. standard PL/I
files SYSPRINT and SYSIN correspond to the CMS files
FILE SYSPRINT and FILE SYSIN. respectively.

2. File Declarations

ALL files must be declared. since PL/I learns the
characteristics o~files under OS/360 from either PL/I
declarations or DD cards, and CMS does not use DD
cards. The general form for a declaration is .

DECLARE filename FILE <STREAM/RECORD> <EXTERNAL/INTERNAL>
<PRINT> ENVIRONMENT (F(n»;

where n is the length of each record in the file.

Recommended declarations for SYSPRINT and SYSIN are
DECLARE SYSPRINT FILE STREAM PRINT ENVIRONMENT (F(121»);
DECLARE SYSIN FILE STREAM ENVIRONMENT (F(aO»:

Since SYSPRINT is used by PL/I to record execution
errors, it is necessary that this file be declared even
if it is not explicitly used in the program. To insure
that this condition is satisfied, the following default
declaration is used if there is no user declaration for
SYSPRINT:

DECLARE SYSPRINT FILE STREAM PRINT ENV (F(80»:

3. File Operations

At present only SEQUENTIAL files can be processed under
eMS, though either the STREAM or RECORD form can be
used. The following commands may be used:

a. OPEN
There is no real need for using OPEN, as the first
GET/PUT or READ/WRITE to a file causes it to
automatically open. Since the OPEN routine is
dynamically loaded, there is usually a noticeable
pause when an OPEN occurs.

h. GET/PUT
All forms of GET/PUT can be used-- of course, the
file must have been declared as STREAM.

c. READ/WRITE
Only the SEQUENTIAL forms of READ/WRITE can be

PL/I Programming 345

used--the file must have been declared as RECORD.

d. CLOSE
Before a file is switched from GET to PUT, PUT to
GET, READ to WRI-rE, or WRITE to READ, it must be
CLOSED.

Note. Files are not automatically erased: therefore writing
into an already existing file results in appending records
to the end of the original file or rewriting the records
depending upon the position of the· file's Write Pointer as a
result of the file's previous usage. The PL/I CLOSE
statement resets the W.rite Pointer to the beginning of the
f'ile so that later PUT or WRITE statements will overwrite
the previous records. Most eMS commands, such as EDIT,
leave the Write Pointer at the end of the file so that later
PL/I PUT or WRITE statements will cause records to be
appended to the end of the file. There is one exception--the
file SYSPRINT is automatically erased at the beginning of
execution.

warning. Although the OPEN statement is not needed, due to
the significant overhead associated with implicit OPENs
(caused by GET" PUT, READ, WRITE). it is recommended that
all files be OPEN'ed explicitly. at the beginning, by a
single OPEN statement. The form of the OPEN statement is

OPEN FILE(filel), FILE(file2). FILE(file3), ••• ;

Of course, it is not necessary nor advisable. to OPEN any
files that are not used in the program!. including SYSIN and
SYSPRINT.

ERROR RECOVERY

PL/I attempts to catch all execution errors such as invalid
conversion, program interrupts, and input/output errors" and
prints an appropriate message on SYSPRINT,. The message that
is placed into the FILE SYSPRINT is also transferred to the
user's terminal.

Occasionally the message Interrupt in Error Handler occurs.
This means that PL/I has been unable to recover from an
error condition. There, are three main causes for that
phenomenon: (1) the compiler .has generated incorrect code or
there is a malfunction of a library routine--that is, system
error, (2) a subscript has exceeded its bounds and destroyed
some arbitrary area of memory--usually a part of the
program, or (3) parameters have been passed incorrectly
(that is~ scalar instead of array) causing incorrect
addresses to be uS.ed. The second problem can be avoided by
enabling the SUBSCRIPTRANGE check by making the first
statement of each subroutine

(SUBSCRIPTRANGE):

346 PL/I Programming

PL/I catches all program interrupts, including the
breakpoints set by the DEBUG routine. Therefore" if you
wish to set breakpoints in a PL/I environment" it is
necessary to disable the SPIE that PL/I uses to trap all
interrupts. The SPIE can be disabled by using the special
CMS library function IHESPOF (SPIE off). and enabled by the
function IHESPON (SPIE on). Breakpoints should be placed so
that they are triggered after the SPIE has been disabled.

OTHER LIMITATIONS

At present several PL/I system-dependent capabilities
malfunction under CMS--the TIME and DATE built-in functions
and certain types of ON-conditions do not operate correctly.
There may be other similar temporary limitations. The user
should try to avoid using these facilities.

SYSIN/SYSPRINT TO USER'S TERMINAL

Occasionally. it is desirable to use the full PL/I GET/PUT
LIST, EDI'!', and DATA facilities wi th the user's terminal.
Furt:lermore. it is often desirable to have programs that can
use the terminal for testing with small quantities of data,
but later use files for large-scale runs. A facility has
been added to CMS-PL/I to specify that the SYSIN/SYSPRINT be
directed to the user's terminal rather than files. It is
still necessary for the user to declare the SYSIN and
SYSPRINT files. whether he is using files or the terminal.

There are two mechanisms available for activating this mode
of operation.

1. If the first parameter passed to a PL/I program is
(TYPE). it is trapped by the interface routine and
removed from the parameter list. and the typewriter
SYSIN/SYSPRINT mode is turned on. The remaining
parameters, if any, are passe~ to the PL/I main
procedure.

Examples:

LOAD prog ••• ,.
START IHECMS (TYPE)

or
prog (TYPE)

~here prog is a MODULE created by GENMOD.

2. It may be desirable to selectively switch
SYSIN/SYSPRINT from files and terminal. The CMS-PL/I
library routine IHEONNL (online) causes all future
SYSIN/SYSPRINT requests to refer to the user's console;
the routine IHEOFFL (offline) causes all future
SYSIN/SYSPRINT requests to refer to the files FILE
SYSIN and FILE SYSPRINT. The most recent IHEONNL or
IHEOFFL negates the effect of any previous mode.

PL/I programming 341

Note that the normal precautions concerning GET/PUT apply.
In particular, if both SYSIN and SYSPRINT are to be used, it
is recommended that they be opened simultaneously by the
statement

OPEN FILE(SYSIN), FILE(SYSPRINT):

Notes:

a. SYSIN and SYSPRINT are STREAM input/output files: as a
result;. they do not always respond to the terminal as the
user m~ght expect. In particular, a PUT statement merely
places information into an output buffer: the buffer is not
actually printed until the buffer becomes full, or, until a
PUT with the SKIP option is encountered.. Therefore, the
sequence

PUT LIST ('READY'):
PUT SKIP LIST ('ENTER ARGS·):
GET LIST (A,B,C):
PUT SKIP LIST ('THANK YOU'):

prints 'READY' and then request AI,B, and C input before
printing 'ENTER ARGS' (which is still in the current print
buffer). The 'ENTER ARGS' message is not printed until
after reading the arguments!

Ways to overcome this problem are use DISPLAY and
DISPLAY/REPLY instead of GET/PUT, or place a PUT SKIP: after
each PUT statement.

h. If an explicit OPEN is used for SYSIN, the stream input
mechanism of PL/I will request the first input line
immediately even though a GET statement has not been
encountered yet. That input line is saved and used for
later GET statements. This is not usually a serious program
but can be confusing if output was expected prior to
entering input. Therefore the sequence:

OPEN FILE (SYSIN), FILE (SYSPRINT):
PUT LIST ('ENTER ARGS');
PUT SKIP:
GET LIST (A,B,C):

would unlock the keyboard to accept an input line before
printing -ENTER ARGS' even though the PUT SKIP was used (see
Note 1). This is due to the explicit OPEN for SYSIN.

For very similar reasons, the CALL IIlEONNL statement, if
used, must precede the OPEN FILE (SYSIN), otherwise the
syst'~m will attempt to read the first line from FILE SYSIN.

There are several ways to overcome this problem: (1) use
DISPLAY and DISPLAY/REPLY instead of GET/PUT. or (2) do not
explicitly open SYSIN but let first GET statement cause

348 PL/I Programming

implicit open.

PL/I SUBROU'IINES

Three subroutines have been added to the PL/-I library for
use under CMS. Two of these--IHECLOK and IHEFILE---were
written to assist users attempting to write monitor-type
programs in PL/I.

PL/I Programming 349

IHECMS--PL/I Initialization Routine

Purpose:

IHECMS performs the CMS-dependent initialization and passes
parameters to the primary PL/I initialization subroutine,
IHESAP.

Calling Sequence:

IHECMS is automatically loaded with the PL/I initialization
subroutines.

Internal Entries:

The following CMS PL/I library functions are entries within
the IHECMS subroutine.

350

IHESPOF turns PL/I SPIE off
IHESPON turns PL/I SPIE on

IHEONNL SYSIN/SYSPRINT to terminal
IHEOFFL SYSIN/SYSPRINT to file

IHEDBUG transfer control to CMS DEBUG

PL/I Programming

IHECLOR--PL/I Clock Routine

Purpose:

IHECLOK reads the CP virtual chronolog clock and returns the
date-, time of day, elapsed virtual and total time.

Calling Sequence:

CALL IHECLOR (CLOCK):

where CLOCK is a PL/I structure in the form illustrated
below.

DECLARE 1 CLOCK,
2 DATE CHAR(S)!, /* date in form 01/21/69 */
2 TIME CHAR (8) I' /* time of day in form 21.14.34 */
2 VIRTUAL TIME FIXED BIN(31,O).

- /* elapsed v:rtual time in timer units */
2 TOTAL TIME FIXED BIN(31,0):

/* elapsed total cpu time in timer units */

DATE and TIME contain actual slashes (/) and periods (.•) as
illustrated in the examples above. The PL/I SUBSTR function
can be used to rearrange the DATE and TIME and/or remove the
punctuation.

VIRTUAL TIME and TOTAL TIME are bina,ry integers. They
represent elapsed time charged for cpu usage running under
problem state (virtual time) and elapsed time charged for
total cpu usage (total time). To convert from timer units
to hundredths of seconds, divide by 768 or X'300. Both
times are increasing numbers: the normal 360 timer
decreases.

Example:

TESTCLK: PROCEDURE OPTIONS (MAIN): TES00010

TESTCLK: PROCEDURE OPTIONS (MAIN);

LOOP:

END:

DECLARE IHECLOR ENTRY (1~ 2 CHAR(S), 2 CHAR(8),
2 FIXED BIN (31,0). 2 FIXED BIN (31,,0»:

DECLARE 1 CLOCK STATIC,.
2 DATE CHAR(S).
2 TIME OF DAY CHAR (8) I,
2 VIRTUAL-TIME FIXED BIN (31,0),
2 TOTAL CPU_TIME FIXED BIN (31,0):

DISPLAY (-BEFORE CLOCK.-):
CALL IHECLOK (CLOCR):
DISPLAY (. AFTER 'CLOCK.. -) :
DISPLAY (DATE);DISPLAY (TIME OF DAY):
DISPLAY (VIRTUAL_CPU_TIME);DISPLAY(TOTAL_CPU_TIME):
GO TO LOOP:

PL/I Programming 351

IHEFILE--PL/I File Access Routine

Purpose:

IHEFILE converts
corresponding CMS
WRBUF.

PL/I file access requests
commands S-rATE. ERASE" FINIS,

into the
RDBUF" and

The user should be familiar with the operations of the
above-named CMS file system routines. and the error codes
produced by them.

Calling Sequence

CALL IHEFILE (FCB) ;

where FeB (File Control Block) is a PL/I structure in the
form illustrated below.

DECLARE 1 FCB,

2 COMMAND CHAR (9) i, /*CMS command desired */
2 FILENAME CHAR(S) /* CMS filename */
2 FILETYPE CHARCS) /* CMS filetype */
2 CARD NUMBER FIXED BIN (31,0).

/* record number - RDBlJF/WRBUF only
2 STATUS FIXED BIN(31.0),

/* CMS r,.!turn code - o means OK */
2 CARD BUFFER CHAR(80);

*/

/* 80 byte record to be read or written

The SO-byte record need not necessarily be a single
character string. The next 80 bytes of the structure (after
STATUS) are used, whatever they may be. Therefore, binary
integers, character strings, floating-point numbers. etc.
can be used in the following ways:

(1) adding them to structure in place of CARD_BUFFER,

(2) defining another structure positioned on top of
CARD_BUFFER/, or

(3) converting all information into a concatenated
character string and separating out on input by
SOBSTR.

CARD NUMBER must be set for RDBUF/wRBUFusage; it is ignored
for STATE" ERASE, and FINIS. If sequential writing or
reading is to be done, the PL/I program must increment the
CARD NUMBER or set it to zero. During writing. if the card
already exists, it is replaced by the new card. If the card
does not exist (that is, the file is being expanded), the
position of the end-of-file is moved and the new card added
to the file.

STATUS is the CMS return code for the last IHEFILE issued

352 PL/I Programming

*/

using that FeB. For example, return code 12 from RDBU~
indicates an attempt to read beyond the current position of
the end-of-file (see example that follows).

Example

The example below does the following:

a. Erases the file TEST1 DATA if it already existed.

b. Creates a file TEST1 DATA consisting of 25 records:
each record contains a character string representing
the square of the card number (that is, the third card
in the file contains the number 9).

c. The file is closed via FINIS.

d. Assuming the number of cards in the file is unknown,
the program attempts to read through the file until the
status indicates that the end-of-file was reached.

e. The file is then read backwards (that is, starting at
the last card, then next to last" etc ..).

f. The file is closed.

PL/I Programming 353

printf testfil p1i

TESTFIL: PROCEDURE OPTIONS(MAIN)j

DECLARE 1 FeB STA-rIC.~
2 COMMAND CHAR (81.
2 FILENAME CHAR(S) INITIAL ('TEST1') r,
2 FILETYPE CHARCS) INITIAL('DATA').
2 CARD NUMBER FIXED BINC31,., 0),
2 STATUS FIXED BINC31:,O)I'
2 CARD_BUFFER CHAR(SOJ;

COMMAND='ERASE';
CALL IHEFILE(FCB):
COMMAND = 'WRBUF';

DO J = 1 TO 25;
CARD_BUFFER = J*J;
CARD NUMBER = J;
CALL-IHEFILE(FCB);
DISPLAY (J I "' J*J) :

END;

COMMAND = 'FINIS'; CALL IHEFILE(FCB):
COMMAND = 'RDBUF-:

00 J = 1 BY 1;

END:

CARD NUMBER = J:
CALL-IHEFILE(FCB):
IF STATUS ,= 0 THEN GOTO END_OF_FILE;
DISPLAYCCARD_BUFFER);

END OF FILE:
- - DISPLAYC'STATUS = '11STATUS);

JMAX=J-l;

00 J = JMAX TO 1 BY -1;
CARD NUMBER = 1:

END;

CALL-IHEFILE(FCB);
DISPLAY(CARD_BUFFER);

COMMAND = 'FINIS'; CALL IHEFILE(FCB)j
DISPLAY('THATS ALL.'):

END;

Ri T=0.08/0.38 20.04.10

35fJ PL/I Programming

SNOBOL **
Purpose:

The SNOBOL command compiles source programs written in
SNOBOL into SPL/l, and executes SPL/1 programs.

Format:

I SNOBOL I filename «option1_ •• optionN»

filename specifies a files with the filetype
SNOBOL to be compiled. or with the
filetype SPL1 to be executed.

option1 ••• optionN are one or more of the compiler options
described below.

Options:

OFFLINE

ONLINE

NOLIST

SPL1

specifies that information normally placed in the
LISTING file is also to be printed offline.

specifies that information normally placed in the
LISTING file is to be typed out at the terminal.

suppresses the LISTING file, but does not affect
either of the above options.

specifies that the file named with the command is
an SPL1 file to be executed, and not a SNOBOL file
to be compiled .•

In addition to the options above, execution is also
controlled by control cards within the source file. These
cards must begin with a hyphen in column 1, and appear as
shown below.

-LIST ON resumes the listing of the SNOBOL source program
in the LISTING file.

-LIST OFF suppresses the listing of
program in the LISTING file.

the SNOBOL source

-SEQUENCE causes columns 13-80 of the source file records to
be ignored by the compiler,. allowing card sequence
numbers.

-EJECT

-DECK

inserts a carriage-control character
LISTING file to skip to a new page.

in the

generates a file filename PUNCH P1 containing the
SPL/l output in a special abbreviated format.

SNOBOL 355

-NOGO suppresses execution of the compiled program.

-MEMBER=name identifies the following cards as an SPL/l
routine.

-DATA marks the end of input to the compiler. This card
·must be present l• whether any data cards follow or
not.

-ASSEMBLY OFF suppresses listing of
LISTING file as they are
This is the default value.

SPL/l programs in the
loaded for execution.

-ASSEMBLY ON includes the listing of SPL/l programs in the
LISTING file as they are loaded for execution .•

-TRACE

Usage:

causes all strings referenced by the user's
program to be listed in the LISTING file.

The SNOBOL command uses two separate programs to compile and
execute SNOBOL programs. The SNOBOL compiler is itself a
SNO~OL program that translates SNOBOL into SPL/l1, a more
basic string-processing language,. The SPL/l
assembler-interpreter executes SPL/l proqrams interpretively
(performing the requested operations for the user's proqram,
rather than translating his program into machine language).
The compiler and assembler-interpreter use several files,
described below. In each case, ftfilename ft is the filename
specified with the SNOBOL command.

ftfilename SNOBOL Plft is the input to the SNOBOL compiler.
It may consist of a SNOBOL program or program and
subroutines t, a mixture of SNOBOL and SPL/l programs., or
entirely of SPL/l programs which have already been compiled.
SNOBOL subroutines must begin with a SUBROUTINE statement
and end with an END card.SPL/l programs must be preceded
by a -MEMBER= statement to be handled by the compiler. A
-DATA card must close input to the compiler, whether data
cards follow or not. The SNOBOL file may also contain the
other control cards listed above.

-filename SPLl Pl- is the output from the SNOBOL compiler,
and is input to the SPL/l assembler-interpreter. If
subroutines are included in the SNOBOL compiler input, each
generates a separate SPLl file, with the subroutine name
used as a filename. An SPL1 file may be executed without
compilation by specifying the SPLl option..

-filename LISTING Pl- is a listing file cr~ated by both the
compiler and the assembler-interpreter,. According to the
options specified and the control cards included, it may
contain any, or alIi, of the following information:

A listing of the SNOBOL source program. including

356 SNOBOL

diagnostic messages immediately following any errors
detected

A listing of the SPL/1 program as it was loaded for
execution.

Any output generated by a SNOBOL PRINT statement in the
program.

A message explaining any error completion.

Output generated by the TRACE subroutine,. if the
program requested it.

"filenaroe PUNCH Pl- is created if a -DECR control card is
encountered in the program. This file is similar to the
SPLl file,. except that comment cards are deleted and a
special abbreviated format is used. It is generally about
one-third the size of the SPLl file for the same program.

"filename anyname Pl- is the general identifier used for
files referenced by name from a SNOBOL program. "filename"
is the name of the program, and anyname is the name used for
the file within the program, (see "Input/Output" under
"SNOBOL Programming·).

If the compiler detects an error" a diagnostic message is
placed in the LISTING file, and a HALT instruction is
inserted in the SPLl file. Compilation continues to the
-DATA card, but execution is terminated at the HALT
instruction.

Notes:

a. CMS SNOBOL differs in some significant ways from other
SNOBOL implementations. -SNOBOL Programming" describes
briefly the I/O subroutines of CMS SNOBOL" but does not
attempt to define the language,. The user should be familiar
with the manual listed under -References",.

h. SNOBOL accepts any of the 256 EBCDIC bit patterns as
data, but names and labels are restricted to letters and
numb~rs, and several installation-dependent special
charact'~rs •

Responses:

The SNOBOL command gives no responses, unless the ONLINE
option is specified. In this case" information normally
placed in the LISTING file is also typed out at the
terminal.

References:

CMS SNOBOL users should have a copy of
CMS SNOBOL User's Manual.

SNOBOL 357

Examples:

a. SNOBOL SORT4
The file SORT4 SNOBOL PI is compiled into SPL/I. A listing
is created as SORT4 LISTING Pl. and the SPL/l program is
saved as SORT4 SPLI Pl. As soon as compilation is complete,
the SPL/I assembler-interpreter receives control to execute
the program.

b. SNOBOL SORT4 (SPLl ONLINE NOLIST)
This command executes the file SORT4 SPLI PI, created in the
previous example. ONLINE causes any output normally placed
in the LISTING file to be typed out. NOLIST suppresses the
placing of the same output in the LISTING file.

Error Messages:

E(OOOOB)
This is a general error code returned by the
assembler-interpreter for most errors. An explanatory
message is found in the LISTING file.

E(OOOl6)
There was insufficient room in core storage for an SPLl file
during loading. or more than three levels of subroutine
nesting were attempted •

• * SNOBOL is a Type III program available from the IBM
Program Information Department.

358 SNOBOL

SNOEOL PROGR~~ING

SUBROtrl'INES

CMS SNOBOL includes a subroutine feature. which may be used
in two ways. System subroutines are providedi• and are called
by using the name of the subroutine as a SNOBOL statement.
User-written subroutines are created and called by the
SUBROUTINE,. CALLI. and RETURN system subroutines. The
general format for using system subroutines is shown below.

label subname(argl ••••• argN) «where»

label is an optional statement label.

subname is the name of the subroutine.

argl, •••• i.argN are string names or literals passed to the
subroutine.

where is an optional statement label specifying the
subroutine statement at which execution is to
begin.

No blanks may separate the subroutine name and the left
parenthesis. The system subroutines are described below.
grouped according to usage.

INPUT/OUTPUT

PRINT (string) writes the string specified on the LISTING
file. A literal of fewer than 63 characters may be
specified instead of a string name.

READ(string) reads successive items from the SNOBOL input
file into the string specified,. These items followed
the -DATA card in the input stream.

PUNCH (string) writes the string specified into -filename
PUNCH Pl-. where filename 1S the name of the program.
The string specified must be 80 characters or less in
length. A literal of fewer than 63 characters may also
be specified.

GET (stringl.string2)
PUT (stringl.string2)
CLOSE (stringl)
EJECT (stringl)

are used to access files on disk or the user's
terminal. The filename of the file referenced is always
the same as the name of the program being executed,.
-stringl- specifies the filetype of the file
referenced. This operand may also be expressed as a
literal. For example. if TESTl is a SNOBOL program

SNOBOL Programming 359

being executed, and the string DATA contains SAMPL,
either of the following statements would read an item
from the file TEST1 SAMPL PI:

LABL GET(DATA~NUMS)

LABL GET (• SAMPL' , NUMS)
GET and PUT both open files automatically, if
necessary, but if the same file is to be written and
read" a CLOSE must be issued between the operations.
(This does not apply to the terminal.)

Except for the terminal and the LISTING file. record
size is always 80 characters. The LISTING file has
120-character records, plus a carriage control
character. Size of a terminal record is always the
number of characters written or read. A literal of
fewer than 63 characters may replace string2in a PUT
statement.

The terminal is accessed by specifying a filetype
consisting of blanks. This may be done in three ways:
by specifying a string containing from one to eight
blanks" by specifying a literal blank, or byomitting
tbe first operand. The following three statements all
read one record from the terminal into the string IN:

LAB GET (TERMINAL. IN)
GET (• ./# IN)
GET(,IN)

The first assumes that the string TERMINAL contains
only a series of blanks. The CMS delete characters
have their usual effect, and all input is translated to
uppercase. A line consisting of only a carriage return
causes an I/O error and program termination. If a
whole line is deleted by t ,• another read is issued.

The EJECT statement causes a carriage-control character
to be placed in a file. forcing a page eject when the
file is printed,. EJECT (LISTING) forces the LISTING file
to skip to the top of a page. Any file for which an
EJECT is the first statement issued has a
carriage-control character prefixed to each item as it
is written out. This character is returned as the
first character of strings read back in from such a
file.

SUBROUTINE GENERATION

SUBROUTINE(arg1, •••• argN) must be the first statement of
user-written subroutines. An END card must conclude
the subroutine. The name by which the subroutine is
called must be placed in the label field of the
SUBROUTINE statement. This name is also used for the
filename of the SPLl file generated by the compiler for

360 SNOBOL Programming

the subroutine. The SUBROUTINE statement may
include an unconditional branch. An example
SUBROUTINE statement is

SORT SOBROUTINE(STRING~FIELD,NUM) /(PROCESS)

also
of a

This statement caUses the SNOBOL compiler to generate a
file SORT SPLl Pl, which is loaded whenever this
subroutine is called by the name SORT. On receiving
control, execution would begin at the statement labeled
PROCESS. If the transfer had been omitted, execution
begins at the first statement of the subroutine.
STRING, FIELD, and NOM are the strings received as
arguments by the subroutine.

RETURN (dummy) is used to return control from a subroutine
to the calling program. If RETURN is executed in a main
program, all files are closed, and control is returned
to the eMS Command evironment. • dummy· is a dummy
string name which roust be included.

LINKAGES

CALL (string, argl, ••• , argN) is used to call ,a subroutine
generated by the SUBROUTINE statement. ·stringW

specifies a string containing the name of the called
subroutine, or may be a literal specifying the callee.
wargl, •••• ,argNW are the strings passed to the
subroutine. Their names are independent of those used
in the SUBROUTINE statement, and matching is done
positionally. A CALL statement may also 'include a
statement label,. and an unconditional transfer
specifying a return point. A call to the SORT routine,
described above, might appear as

The strings TEXTl"CHARl, and LENGTH are passed to the
subroutines as STRING, FIELD, and NOM, respectively.
On return, control goes to the statement labeled SEM.
Only three levels of nested CALLS are permitted, but up
to that depthl' CALLs may be recursive.

XCTL(name) overlays the currently
with the specified SPLl file,
new program. ·name· specifies
name of the called SPLl file,
No arguments may be passed.

DEBUGGING AIDS

TR~CE_ON(dummy)
TRACE_OFF (dummy)

executing SPL/l program
and starts executing the

a string containing the
or it may be a literal.

are used to turn the TRACE option on and off. The
TRACE option may also be enabled by the -TRACE control
card. wdummy· is a dummy string name which must be

SNOBOL Programming 361

present. When the TRACE option is in effect,. the
contents of each string are placed in the LISTING file
each time it is referenced. The assembler-interpreter
location counter value is included with each string.
The counter value refers to statement numbers in the
assembler-interpreter listing obtained when the
-ASSEMBLY ON control card is used.

TIME (name)

362

returns the current timer value in hundredths of a
second in the strinq specified. Under CP. the timer
value is elapsed virtual CPU time since LOGON. It is
useful for comparative timings of programs.

SNOBOL Programming

BRUIN **
Purpose:

The BRUIN command initiates the Brown University
Interpreter.

Format:

BRUIN

Usage:

The BRUIN environment is entered. When the character >
(greater than) is printed and the keyboard unlocks. the
interpreter is ready to accept a command. A BRUIN command
should then be entered immediately following the >
character.

To leave BRUIN and return to the CMS command environment,
issue the BRUIN command

CANCEL

References:

BRUIN was developed at Brown University. Providence, Rhode
Island. For information on BRUIN and its commands~ refer to
the document CMS BRUIN User·s Manual.

Responses:

BRUIN
As the result of a null line being entered, the interpreter
is confirming that the user is in the BRUIN environment .•

BRUIN READY
The BRUIN environment has been entered,. and it is ready to
accept commands.

RiT=xx.xx/XX.XX hh.mm.ss.xx
The CMS command environment has been entered, where the
first xx.xx is the CMS CPU time used in seconds!. and the
second xx.xx is the total CPU time used.

For other responses:. refer to the references above.

Error Messages:

None.

** BRUIN is a Type III program available from the IBM
Program Information Department.

BRUIN 363

UTILITIES

This section contains those CMS commands which are
utilitarian in function. They include SORT, which sorts a
disk file: COMPARE, which compares two disk files. record by
record; TPOOPY, which copies a tape; MODMAP, which types out
the load map of an existing MODULE file: CNVT26, which
converts 026 code to 029: and CVTFV, to convert fixed
records to variable.

To dump files to tape or cards from disk, TAPE DUMP or DISK
DUMP can be used, respectively~ To load tape files
selectively, issue TAPE SLOAD: otherwise issue TAPE LOAD to
load through n tapemarks. To load card images from a tape
created by 05/360,. use OSTAPE.

To test terminal
out disk files
respectively.

364

transmission" use ECHO.
in hexadecimal. use

Utilities

To print or type
DUMPD or DUMPF

CNVT26

Purpose:

The CNVT26 command converts a BCDle (026) card-image file to
EBCDIC (029), using the scientific character set.

Format:

CNV'l'26 filename filetype I

filename filetype is the file to be converted.

Usage:

The specified file is searched for by the standard order of
search. It is converted using the scientific character set,
the old file 1S erased,. and the new file is given the
original name, type, and mode.

CNVT26 creates the work file BCDEBC UTILITY with the same
filemode as the file being converted. If a file with the
identifier BCDEBC UTILITY already exists, it is erased.

Example:

CNVT26 EASY FORTRAN
The file EASY FORTRAN is converted fro1l' BCDIC to EBCDIC;, the
old file is erased, and the new file is given the orl~inal
name.

Error Messages:

E(OOOOl) FILE NOT FOUND
The specified file does not exist.

E(00002) FILENAME(S) MISSING
Either the filename and/or the filetype were not specified
with the command. Reissue the command correctly.

CNVT26 365

COMPARE

Purpose

The COMPAB

Format:

, COMPAR

Osage:

If the fil
correspond
from the f
the second
the end of

The maximl
characters,

Responses:

EOF FILE n
The end oj

either 1 0]

NOT EOF FI]
This messc
reached on

FILES HAVE
'!'he files 1
size or thE

PARAMETER 1:
Insufficier

RECORDS AlU
The record~
cannot be (

Error Messa

E(OOOOl) ,

E(xxxxx) ,

Examples:

a. compare
The files 1:J
FORTRAN fi
variable; t

366

CVTFV

Purpose:

The CVTFV command converts a file with fixed-length x
to variable-length records.

Format:

CV'l'FV 1 filename filetype «T» I

filename filetype is the file to be converted.

(T) specifies that all trailing blanks are to be de
Blanks and data in columns 73 to 80 are to be dele

usage:

CVTFV is particularly useful for incorporation of care
into SCRIPT files. If (T) is specified and the file co
of SO-character records (a normal card file) II bytes 13
each card image are deleted;, regardless of COl'!

Therefore, to convert card files without loss of info:r
in columns 73-80, do not use the (T) option.

The standard order of search is used to locate the fil
old file is erased, and the new file is given the o:r
name l• type,• and mode.

CVTFV creates a work file with a filetype of CVT~ a
filename and mode of the specified file. If a file a
exists with the same identifier as the work file,
erased.

Example:

CVTFV USERGUID MEMO (T)
The file USERGOID MEMO is converted from fixed­
records to variable-length records. If the file c(
80-character records,. columns 73-80 are deleted.

Error Messages:

E(OOOOl) FILE NOT FOUND
The specified file does not exist.

E(00002) INCORRECT FORMAT
A T was not specified between the parentheses.

E(00003) INCORRECT FORMAT
Either a filename and/or a filetype was not specifiE
the command. Reissue the command correctly.

368 CVTFV

E(00004) FILE IS ALREADY VARIABLE
The specified file contains variable
therefore it cannot be converted.

CVTFV

length records.

369

DISI{

Purpose:

The DISR command punches specified disk files on cards in a
special format. and can reload these card files onto disk
storage.

Format:

I DISI{ I DUMP filename filetype <filemode> I
I 1 LOAD I

DUMP specifies that a file is to be punched out.

filename filetype <filemode> specify the file to be punched.

LOAD specifies that one or more card files are to be read
and saved on the user's permanent disk.

The DISK card format is

Usage:

I Columns I Content 1
~~~--~~~--~-~-~---~----~----~----

1 
2-4 

5 
6-55 

56-51 
58-16 
77-80 

a 12-2-9 punch 
CMS 
blank. or N for 
file data 
blank 

I 
I 

EOF 1 
I 
I 

filename"type,.mode I 
sequence number 1 

For a DISK DUMP operation. filename, filetype" and 
optionally filemode are specified. If the filemode is 
omitted!. all disks are searched. Only one file is punched 
out by a command. The file may have either fixed or 
variable-length records. After all data is transferred. an 
end-of-file card is punched with an N in column 5. This card 
contains directory information, and must remain in the deck. 
The original disk file is retained, unless the mode is 
delete-after-reading. 

The DISK LOAD operation reads any number of decks punched by 
DISI{ DUMP. File designations are obtained from the card 
stream. and may not be specified with the command. Any 
existing file with the same designation as one of these in 
the card stream is erased and replaced. DISK LOAD loads 
files only onto the P disk. 

Files to be loaded by a DISK LOAD command must be read by 

310 DISI{ 



CP-61 as a single deck before the command is issued.. An 
identification card with CP-61USERID in columns 1-10 and the 
user·s identification starting in coluren 13 must precede the 
deck. 

Notes: 

a. Data is punched in Extended BCD Card Code. 

b. Each file punched out is preceded by 
identification card containing the USERID. 

a CP-61 

Responses: 

DISK DUMP gives no response except the Ready message. 

filename filetype filemode 
DISK LOAD gives this response for each file encountered in 
the input deck. The Ready message is typed after transfer is 
completed. 

SYSTEM I/O ERROR 
CP ENTERED, REQUEST PLEASE 
This message indicates that an unrecoverable I/O error has 
occurred on a spooled direct-access device. ReIPL CMS and 
issue the DISK command again. 

Examples: 

a. DISK DUMP PROeS TXTLTB P5 
The specified file is punched 
in columns 2-4, file data 
characters PROCS TXTLIB P5 in 
sequenced 0001, 0002, etc. in 
contains an N in column 5. 

b. DISI< LOAD 

out. Each card contains CMS 
in columns 6-55, and the 

columns 58-76. The cards are 
columns 11-80. The last card 

If the deck produced in the previous example has been read 
by CP-67. the disk file PROCS TXTLIB P5 is erased. A new 
file is created with the data on the cards;, and receives the 
designation PROCS TXTLIB P5. The following response is 
typed: 

PROCS TXTLIB P5 
The Ready message is then issued to indicate completion. 

Error Messages: 

E(OOOOl) CORRECT FORM IS: 
-DISK DUMp· FILENAME FILETYPE FlLEMODE 
OR -DISI< LOAD-

The format of the command was incorrect. No cards were 
punched or read. Issue the command again. 

E(00002) FATAL PUNCH ERROR. 
Indicates an I/O error on the card punch. This message 
should never occur under CP-67. Notify the responsible 

DISK 371 



systero programmer. 

E(00003) 
AN I/O 
may be 
operator 
command. 

FATAL DISK ERROR. 
error on the disk occurred. A DISK DUMP operation 
retried. For a DISK LOAD operation, notify the 
to enter the card deck again before retrying the 
If the error recurs, notify the operator. 

E(00004) FATAL READER ERROR. 
Indicates an I/O error on the card reader or an empty 
reader. If the reader was not empty. notify the responsible 
system programmer. 

E(00005) ILLEGAL CARD IN DISK LOAD DECK. 
A card was encountered in the input to DISK LOAD that was 
not punched by DISK DUMP. A CP-67 output identification 
card may have been left in the deck. or the wrong deck may 
have been read. The deck being read at the time of the error 
has been flushed. and will have to be reread before retrying 
the command. No permanent file has been created. 

E(00006) END CARD ~ISSING FROM DISK LOAD DECK. 
Physical end of data for a DISK LOAD was encountered without 
reading the end-of-file card eN in column 5). The file 
created on disk does not have the correct designation. It 
may be accessed under (DISK) (TFILE) P3. Note that the mode 
is delete-after-reading. so an ALTER or COMBINE must be 
issued before inspecting the file. 

312 DISK 



DUMPD 

Purpose: 

The DUMPD command prints the contents of one direct-access 
record. specified by a CCHHRR address~ in hexadecimal on the 
printer. 

Format: 

I . UMPD I ,ccu cc <hh <rr» , 

ceu is the device address, 

cc hh rr is the cylinder~ track. and record number to be 
printed 

Usage: 

The contents of the specified record is printed in 
hexadecimal on the printer. If cc hh rr is not specified, 
or if one record has been printed, DOMPD requests another 
record address. To terminate DUMPD, issue a carriage return 
with no characters on the line. 

Responses: 

CC HH RR 
Specify another cylinder, track (head), and record number. 
If another record is not desired" issue a carriage return. 

CORRECT FORM IS: DUMPD UUU CC HH RR 
OR: DUMPD UUU WITH THE CCHHRR ENTERED ON REQUEST 
No parameters were specified with DUMPD. 

I/O ERROR ON DISR UNIT XXX, 
CSW = xxx .••• XXXI' SENSE = xxx ••• xxx 
An I/O error occurred~ Check to see if the record address 
is outside the file boundaries. 

SIO CONDITION CODE 1 
510 ERROR ON DISK UNIT xxx, 

CSW = xxx ••• xxx,, SENSE = xxx .••• xxx. 
An invalid device address was specified. 

DUMPD 313 



OUMPF 

Purpose: 

The DUMPF command types the contents of all or part of a 
specified file in hexadecimal. 

Format: 

----------~--~-----~-----------~-------~-----~-~-
IDUMPF I filename filetype <nl n2 <n3» 

* 80 I I • 

filename filetype specify the file to be typed 

n1 is the record number of the first record to be typed. 

n2 is the record number of the last record to be typed. 

n3 is the maximum number of characters of a record to be 
typed, if the records are to be truncated. 

Usage: 

The filenaroe and filetype must be specified. If the first 
record number and last record number are omitted. or 
specified with asterisks, the entire file is typed out. An 
asterisk in the first record or end record fields specifies 
the beginning or the end of the file. respectively. 

The number of bytes specified 
of bytes is not specified. the 
byte count is specified, the 
record number fields must be 
with asterisks). 

is printed or, if the number 
full record is printed. If a 

first record number and last 
filled (either explicitly or 

The standard order of search is used to locate the file. In 
the case of files with duplicate filename and filetype. only 
the first file found is typed out. 

Error Messages: 

E(OOOOl) CORRECT FORM IS: 'DUMPF' FILENAME FILETYPE STARTLINE 
ENDLINE LINE-LIMIT, 
WHERE 'STARTLINE', 'ENDLINE', AND 'LINE-LIMIT' ARE 
OPTIONAL .• 

E(00002) DISK ERROR 

E(00003) FILE NOT FOUND 

374 DUMPF 



DUMP REST 

Purpose: 

DUMPREST dumps the contents of the user·s permanent disk 
onto tape, and can reload a disk from such a tape. 

Format: 

DUMPREST 

A message is typed. requesting one of the following replies: 

DUMP .(D) specifies that the contents of the permanent 
disk are to be copied on tape. 

RESTORE (R) specifies that the permanent disk is is to be 
formatted. and contents of the mounted tape are 
to be copied onto it. 

Usage: 

The user's tape must be mounted at virtual device address 
181 before the command is issued. The disk address is 
always virtual 191. For both DUMP and RESTORE operations, 
the command positions the tape at the load point with a 
REWIND. 

'In the DUMP operation;, data on the permanent disk is copied 
to the tape one track at a time. including all directories 
and pointers. A RESTORE operation copies these records back 
to a disk in exactly the same locations. The disk is 
automatically set to eMS format, so a new or different disk 
pack may be used. 

Note: 

RESTORE may not be valid if 
virtual disk 191 has been 
operation. 

Responses: 

SPECIFY -DUMp· OR 'RESTORE : 

the location of the user's 
redefined since the DUMP 

This Irlessage is typed. without a carriage return, as soon as 
the command is issued. When the keyboard unlocks, enter 
DUMP or RESTORE, or just D or R, to specify the operation. 
A reply error causes the response to be repeated. 

DUMP/RESTORE MOVED nnn CYLINDERS. 
THERE WERE nnn RECOVERABLE TAPE ERRORS. 
This message is typed at the completion of the requested 
transfer. If the number of cylinders specified is not equal 
to the size of the virtual disk, an irrecoverable I/O error 

DUMPREST 375 



caused early termination. 

Examples: 

a. DUMPREST 
SPECIFY 'DUMP' OR 'RESTORE': D 
DUMP/RESTORE MOVED 005 CYLINDERS. 
THERE WERE 000 RECOVERABLE TAPE ERRORS. 

The contents of the user's permanent disk have been dumped 
to tape. No errors occurred. 

h. DUMPREST 
SPECIFY 'DUMP' OR 'RESTORE': restore 
DUMP/RESTORE MOVED 005 CYLINDERS. 
THERE WERE 000 RECOVERABLE TAPE ERRORS. 

The contents of the user's permanent disk have been replaced 
by the contents of the dump tape. No errors occurred. 

Error Messages: 

None. I/O errors are retried ten times. If no recovery is 
made. the second response shown above is typed. 

376 DUMPREST 



ECHO 

Purpose: 

The ECHO command tests terminal transmission by retyping 
entered lines. 

Format: 

I I 1J 
I ECHO I <S 
, I X 

1 I 
<nn»1 , 

U The delete characters (ai, t) are interpretedt, and any 
lowercase letters are changed to uppercase. 

S Delete characters are interpreted but no lowercase to 
uppercase translation is made. 

X No change is made in the line. 

nn Number of times line is retyped. The default value is 
1. 

Usage: 

When the ECHO command is issued, the Echo 
entered and each line typed by the user is 
terminal the specified number of times. 

environment is 
repeated by the 

If no options, or an invalid option, are specified, U and 1 
are assumed. An entered line is interpreted according to 
the option specified, if any, and then typed out n number of 
times. The keyboard is then unlocked to accept another line. 

Control is returned to the CMS command environment by typing 
RETURN as the first word of a line with no leading blanks. 

Notes: 

a. If the X option is in effect, RETURN must be entered 
without error to be recognized (delete characters and linend 
are not interpreted). 

b. The Ready message t• following the RETURN request, 
indicates that the user has left the Echo environment and 
entered the eMS command environment. 

Responses: 

START CONSOLE TEST 
The first line may be entered when the keyboard unlocks 
after this message is typed. 

ECHO 377 



END CONSOLE TEST 
The RETURN to OMS has been requested and accepted. 

Examples: 

a. 

h. 

c. 

echo u 2 
START CONSOLE TEST 
echo retypes any entered lines .• 
ECHO RETYPES ANY ENTERED LINES, 
ECHO RETYPES ANY ENTERED LINES, 
return 
END CONSOLE TEST 
R: T=O.15/0.32 10~14.40 

echo s 
START CONSOLE TEST 
incgtIncluding Deletionssl. Backspaces, & special charac1 
Including Deletions, Backspaces, & special characters, 
Return 
END CONSOLE TEST 
R: T=O.3S/0.5B 10.11.36 

echo x 3 
START CONSOLE TEST 
Except in the X modet 
Except in the X mode¢ 
Except in the X mode¢ 
Except in the X modet 
returrGln 
returran 
returran 
returrin 
return 
END CONSOLE TEST 
R; T=O.S7/1.02 10~20.30 

Error Messages: 

None. 

318 ECHO 



FORMAT 

Purpose: 

The FORMAT command is used to initialize a disk area in the 
CMS format,. to count the number of cylinders on a disk, or 
to write ~ label in the first 6 bytes of record 3 of the 
disk. 

Format: 

I 
I 

m 

I FORMAT 

<ALL 
C 
L 
R 

> < (NOTYPE)>1 
I 
I 

I 
I 

m 

<SYS> I 
nn I 

specifies the logical mode letter of the user's 
disk area that is to be initialized. Any files on 
this disk are erased. 

ALL specifies that all tracks of the specified disk 
area are to be initialized. If omitted. the first 
three records of Cylinder 0, Track 0 are skipped. 

C specifies that the command is a check only" and 
cylinders are to be counted, but not erased. 

L specifies that a label only is to be written on 
the disk. No formatting is to take place. 

nn 

R 

specifies that only the first nn cylinders are to 
be formatted. 

is the same as C, but expands 
bit-mask (PQMSK) to recompute 
cylinders actually on the disk. 

or reduces the 
the number of 

SYS is used with FORMAT P R SYS to truncate disk 
counts to leave room for the CMS nucleus as 
written by IPLDISK (on either 54 cylinder 2314 or 
203 cylinder 2311). 

(NOTYPE) specifies that the format is to continue without 
requesting any responses from the terminal. 

Osage: 

The disk mode must be specified. According to the option 
selected!. the user's disk area is initialized by writing a 
new home address and four records on each 2311 track, or 
fifteen records on each two 2314 tracks. Any previous data 
on the disk is erased. 

FORMAT 379 



Unless ALL is specified, the first three records of Cylinder 
0, Track 0 are skipped. The ALL operand should be specified 
in the FORMAT command whenever an unformatted disk area is 
accessed for the first time, and is not normally needed 
thereafter,. 1\ 6-byte label may be written in record 3 of the 
disk. 

If C is specified, data on the disk is not erased, and files 
are preserved. 

If L is specified, a '6-byte label may be written on cylinder 
0, track 0, record 3 of the disk, preceded by eMS=. For the 
T-disk, th~ label CMS=TDISK is always used. 

A read-after-write check is made as the disk is formatted. 

If nn is specified, only the first nn cylinders are 
formatted. 

If R is specified, the number of cylinders are recomputed 
and the PQMSK expanded or reduced accordingly. If SYS is 
specified with the R. there is room left for the eMS nucleus 
written by IPLDISK. 

If (NOTYPE) is specified, there is no pause for YES or NO to 
continue formatting (see -Responses·). 

Note: 

If FORMAT is the first command issued after IPL, user files 
are destroyed, regardless of the options specified. Enter 
the LOGIN UFD command, or just hit RETURN before entering 
FORMAT. 

Responses: 

m(ccu): nnn CYL 
The number of cylinders formatted is typed out, indicating 
which disk was initialized. 

** FORMAT WILL ERASE ALL YOUR M-DISK (ccu) FILES ** 
** DO YOU WISH TO CONTINUE? ENTER ·YES· OR -NO·: 
This is typed out so the user can verify that the command 
was issued correctly. If so, YES causes the FORMAT to 
begin; if not, NO causes a return to CMS without altering 
the contents of the disk. If (NOTYPE) is specified, this 
response is not made. 

FORMATTING M-DISK (ccu) ••• 
This is typed after a YES is entered to inform the user that 
formatiing is taking place. 

m (ccu): n FILES, n REC IN USE, n LEFl' (of n), FULL (n eYL) 
This is typed at the completion of a FORMAT M C to indicate 
the counts returned frore the check. 

380 FORMAT 



Examp1e: 

format p 
P-DISR: 010 CYL. 
The permanent disk is initialized by writing home addresses 
and four blank CMS records on every track. Any files are 
destroyed. The response indicates that the user's permanent 
disk under CP consists of ten cylinders. 

Error Messages: 

E(OOOOl) PLEASE SPECIFY DISK: PERMANENT (P) OR TEMPORARY (T) 
The first parameter specified was not P or T. 

E(00002) CONDITION-CODE 1 ON SIO IN FORMATTING DISK (BAD) 
The condition code after Start I/O was issued indicates the 
operation was not accepted. Notify the operator. 

E(00002) CONDITION-CODE 2 ON SIO IN FORMATTING DISK (BAD) 
The condition code ·after Start I/O was issued indicates the 
channel was busy. This should not occur under CP. Notify 
the system operator. 

E(00002) CONDITION-CODE 3 ON SIO IN FORMATTING DISK (BAD) 
The condition code after Start I/O was issued indicates the 
device addressed is not operational. Notify the operator. 

E(00003) UNEXPECTED UNIT-CHECR IN FORMATTING DISK 
A unit check occurred. Notify the operator •. 

E(00004) CE and DE NOT FOUND TOGETHER (VERY STRANGE) 
Channel end and device end did not occur correctly. Notify 
the operator. 

E(OOOOS) 
Same as E(00002), except that C was specifies with the 
command. 

E(00006) CE and DE NOT TOGETHER CHECKING NO. CYLINDERS 
Same as E (00004) ,. except that c was specified with -the 
command. 

E(00007) UNEXPECTED UNIT-CHECR NO. CYLINDERS 
Same as E(00003), except that C was specified with the 
command. 

E(OOOOS) NO T-DISK AVAILABLE. 
The T parameter was specified, but the user does not have a 
T-disk attached to hiro. 

E(OOQ09) UNRECOGNIZABLE DASD DEVICE 
~he device to be formatted is not either a 2311 or a 2314. 

E.( 00010) DISK. READ-ONLY 
The disk is read-only, and therefore cannot be formatted. 

FORMAT 381 



E(OOOll) 
YES was not typed in as the response to the *FORMAT WILL 
ERASE ••• response. 

E(00012) DISR NOT ATTACHED 
The disk specified is not attached to the user. 

E(00013) FORMAT P R FAILURE 
Data-loss would result if the command executed. The counts 
are unchanged. 

E(00014) FORMAT P R SYS FAILURE 
The disk is smaller than that required for use of the SYS 
option. The counts are unchanged, and the user's data is 
preserved. 

382 FORMAT 



MAPPRT 

Purpose: 

MAPPRT creates, and optionally prints, a file containing a 
map of entry points in the CMS nucleus. 

Format: 

MAPPRT 
I A 
I<N 
I £ 

ON 
<OFF» 

NO 

A creates the file CMS-NUC ALPHABET Pi, containing the 
nucleus entry points listed in alphabetic order. 

N creates the file CMS-NUC NUMERIC Pi" containing the 
nucleus entry points listed in numerical order. 

C creates the file CMS-NUC ALPHANUM Pl, containing both 
the A and N orderings. 

ON types the file at the terminal. 

OFF prints the file on the offline printer. 

NO specifies that no output is requested,. 

Usage: 

The MAPPRT command creates a file on the user's permanent 
disk containing' a list of entry points and their addresses 
in core,. In conjunction with a listing of the CMS routines, 
this information allows the system programmer to examine or 
temporarily modify the nucleus in storage. 

The first option specifies the format of the list,. The 
entry points are listed in alphabetic order if A is 
specified. If N is specified, they are listed in the order 
in which they appear in core,. If no option, or C, is 
specified,. both types of list are combined in a single file. 
The fileIll.lme of the file created is always CMS-NUC. The 
filetype is ALPHABET" NUMERIC, or ALPHANUM" depending on the 
option specified. See Figure 36 for examples of the three 
types of format. 

MAPPRT 383 



printf ems-nue alphabet 

ABEND 
ACTTAB 
ACTTAl 
ALTER 
ASMADDR 
BATCH 
BATSWT 
BCKSPACE 
BDEBUG 
BUFFER 
CARD PH 

AT ODSB8 
AT 01208 
AT 01210 
A-r 000'00 
AT OOB30 
AT 00000 
AT OB5DC 
AT OnSB8 
AT OD4E4 
AT OB8FO 
AT On808 

printf ems-nue numeric 

ALTER AT 00000 
BATCH AT 00000 
ERASE AT 00000 
OFFLINE AT 00000 
SYSCTL AT 00000 
TAPEIO AT 00000 
NUCON AT 00100 
USFL AT 00108 
STADDR AT 00110 
TBLNG AT 00118 
LSTADR AT 001C4 
LOCCNT AT 001ea 

printf ems-nue alphanum 

ABEND AT OnSB8 
ACTTAB AT 01208 
ACTTAl AT 01210 
ALTER AT 00000 
ASMADDR AT 00B30 
BATCH AT 00000 
BATSWI AT OBSDC 
BCKSPACE AT OnSBS 
BDEBUG AT OD4E4 
aUFFER AT 0~8FO 
CARDPH AT 00808 

ALTER AT 00000 
BATCH AT 00000 
ERASE AT 00000 
OFFLINE AT 00000 
SYSCTL AT 00000 
TAPEIO AT 00000 
NUCON AT 00100 
USFL AT 00108 
STADDR AT 00110 
TBLNG AT 00118 
LSTADR AT 001C4 

Figure 36. Samples of the three types of nucleus map 
files created by MAPPRT. Only the first few entries of each 
are shown 

384 MAPPRT 



The second option specifies whether or not the file is to be 
typed or printed. ON specifies output on the terminalr, and 
OFF specifies output on the offline printer.. If no second 
option,. or NO. is specifiedt, no output occurs. The file is 
always left on the permanent disk, whether or not output is 
r~quested. 

Notes: 

a. If only one or two addresses are needed, the N option 
avoids the CPU time needed for an alphabetic sort of the 
entry points. Any address can be obtained by using the 
LOCATE request in the EDIT environment. 

b. MAPPRT should 
initialized by IPL 
the nucleus loader. 

Responses: 

only be issued after CMS 
ccu, since MAPPRT uses tables 

has been 
set up by 

None. except under the ON option when the file is typed out. 

Examples: 

a. MAPPRT 
With no options specified, both the default options are 
taken. The file CMS-NUC ALPHANUM P1 is created, containing 
both an alphabetic and a numeric listing of the nucleus 
entry points. 

b. MAPPRT C OFF 
The same action is taken as in the above example;. and the 
file is printed on the offline printer. 

Error Message: 

None. 

MAPPR'r 385 



MODMAP 

Purpose: 

The MODMAP command types the load map associated with the 
specified MODULE file on the console typewriter. 

Format: 

MOD MAP filename I 

filename is the filename of a file whose filetype is MODULE 

Usage: 

The loader 
was issued 
typewriter. 

Notes: 

table;, which was in use at the time 
to create the MODULE, is typed on 

the GENMOD 
the console 

a. Transient area module load maps cannot be printed. 

b. Any MODULE files created with the GENMOD (NOMAP) command 
do not contain a load map. 

Responses: 

LOAD MAP UNAVAILABLE 
The MODULE file was created with the (NOMAP) option of 
GENMOD, or is a transient area module. 

FILE NOT FOUND 
The module file cannot be found. 

386 MODMAP 



OSTAPE 

Purpose: 

OSTAPE creates CMS files from 
other than CMS---for example. 
utility .. 

tapes 
by 

produced by 
the 05/360 

systems 
IEBPTPCH 

Format: 

JOSTAPEI <filetype <filename» (optionl ••• optionN I 
1 I I SYSIN 05TAPE 

filetype 
SYSIN 

Filetype of the newly created files. 
The default filetype. 

filename Name of the newly created file. Has meaning only 
for NPDS files .. 

OSTAPE The default filename,. 

PDS 

NPD5 

COLl 

NeOLl 

TAPx 
TAP2 

END 

MAXTEN 

NMAXTEN 

Usage: 

Indicates that the tape contains many members of a 
partitioned data set, each preceped by wmember 
name xx-. 
Indicates that the tape does not contain many 
members of a partitioned data set;, each preceded 
by -member name xx-. 

Indicates that column 1 contains data. Data is 
taken from columns 1-80. 
Indicates that column 1 contains carriage control 
information. Data is taken from columns 2-81. 

The x indicates the tape unit number. 
Tape 2 is the default tape unit number. 

Indicates that the END card means end of the 
member .. 
Indicates that 'the END card does not mean the end 
of the member. 

Indicates that a maximum 
read at one time. This 
sets. 

of ten files is to be 
is useful for long data 

Indicates that ten is not to be the maximum number 
of files to be read at one time. 

OSTAPE creates eMS files from tapes produced by systems' 
other than eMS. The tape must be 1n unblocked card image 
format. It may be unlabeled,. or may have a standard OS/360 
label. 

A tape produced by the 05/360 IEBPTPCB utility may be used. 

OSTAPE 387 



OSTAPE assumes the file is going to the P disk. 

Responses: 

FILE filename filetype COPIED 

TEN FILES PROCESSED 
MAXTEN has been specified and ten files have been copied. 

Examples: 

a. OSTAPE (PDS TAP1 MAXTEN 
This reads a tape from drive 180 that was produced by 
IEBPTPCH of a PDS source file. ten members at a time. 

b. OSTAPE DATA PAYROLL (COLl 
This reads an unblocked card image tape from drive 181 and 
creates a single file called PAYROLL DATA. 

Error Messages! 

E(00002) TWO ADJACENT TAPE MARKS ENCOUNTERED 

E(00003) TAPE ERROR 
Warning that a parity error ha occurred; the record is 
processed anyway. 

388 OSTAPE 



SORT 

purpose: 

SORT arranges the records from file 1 into file 2 in 
ascending order according to specifi~d sort fields. 

Format: 

I SORT filename1 filetypel filename2 filetype2 I 

filenamel filetypel is the input file to be sorted .. 

filename2 filetype2 is the output file that contains the 
sorted records. 

Usage: 

The records-are sorted in EBCDIC order from filel to file2. 
If duplicate records are found, they are written onto file2 
in the order in which they are encountered in file1. All 
records must be of fixed length to be sorted. 

Filel and file2 must have unique identifiers, as SORT cannot 
write the output back into the input file (file1). If the 
output file already exists;. the old file can be erased;, the 
sort can be terminated. the existing file can be appended 
with the output, or a new output file can be specified,. 

Once the SORT command is issued, it asks for the sort fields 
to be defined via the following message: 

*ENTER SORT FIELD DEFINlTIONS 

The sort fields are defined by typing pairs of numbers. 
separated by blanks, where each pair is the starting and 
ending character position of a sort field within each input 
record and the leftmost pair is the major sort field. The 
total number of pairs of sort field definitions that can be 
entered is limited only by the maximu~ number of characters 
that can be typed on one line and by the maximum number of 
characters in the defined sort fields. 

The total number of characters on which the records are to 
be sorted must not exceed 254 characters .• 

The sorting operation takes place with two passes of the 
input file. Pass one creates an ordered pointer table in 
core storage. Pass two uses the pointer table to read the 
input file in a random manner and write the output file. 
Therefore. the size of c'ore storage and the size of the sort 
field is the limiting factor on the number of records that 
can be sorted at anyone time. An estimate of the maximum 
number of records that can be sorted can be made by using 
the following formula: 

SORT 389 



NR= 
160000 
14 + NC 

where NR is the maximum number of input records and NC is 
the total number of characters in the defined sort field.-

SORT uses the standard order of search to find the file. The 
sorted 'file is placed on the same disk from which the file 
to be sorted was obtained. 

Responses: 

* ENTER SORT FIELD DEFINITIONS 
Define the character positions on which the records are to 
be sorted. Type pairs of numbers., separated by blanks, 
where each pair is the starting and ending character 
position of a sort field within each input record. 

*OUTPUT FILE ALREADY EXISTS, TO APPEND ITt, HIT RETURN .. 
*TO ERASE OLD FILE, TYPE • ERASE' • *TO QUIT, TYPE'·QUIT' , 
ELSE ENTER NEW FILNAM/FILTYP. 
File2 already exists. Erase the old file" terminate the 
sort" or specify a new output file. 

XXXX RECORDS READ ON PASS1. 
The total number of records read from the input file is 
xxxx. 

Example: 

SORT CLASS MEMO ALPHCLAS MEMO 
*ENTER SORT FIELD DEFINITIONS 
1 10 25 28 

66 RECORDS READ ON PASS1. 
R; T=O.30/1.06 15.06.47 

The 66 records in file CLASS MEMO are sorted on positions 
1-10 and 25-28. The sorted output is written into the newly 
created file ALPHCLAS MEMO. 

Error Messages: 

E(OOOOl) *INPUT FILENAME/FILETYPE NOT DEFINED. 
Both the filename and filetype were not specified for file1. 

E(00002) *OUTPUT FILENAME/FILETYPE NOT DEFINED. 
Both the filename and filetype were not specified for file 
2. 

E(00003) 
An ending 
field. 

*INCOMPLETE SORT FIELD PAIR DEFINITION. 
character position was not specified for 

E(00005) *INPUT FILE DOES NOT EXIST. 
The file specified as filet does not exist. 

390 SORT 

a sort 



E(00006) *INPUT FILE IS NOT FIXED LENGTH FORMAT. 
The records in filel are not fixed length. therefore~ they 
cannot be sorted. 

E(00010) CANNOT ERASE INPUT FILE 
The identifiers for file1 and file2 are the same--they must 
be unique. as the input file cannot be erased .• 

SORT 391 



STAT 

Purpose: 

The STAT command is used to (1) type out statistics on how 
many records of the user's disk areas are currently in use, 
(2) execute a routine to compact information in the disk 
management tables, (3) indicate whether the disk is a 2311 
or 2314~ or (4) indicate whether the disk is read-write or 
read-only. 

Format: 

I STAT 

1 
I 

1 <mode 
I * 
I ? 

<?» , , 
.1 

mode specifies that only statistics for the disk with the 
specified mode are to be typed out. 

* specifies that statistics on all disks are to be typed 
out (read-only and read-writel. 

If no operand is specified, statistics on all read-write 
disks are typed out. 

? specifies that additional information for the requested 

Usage: 

disks is desired: that is, whether it is a 2311 or 
2314 and whether it is read-write or read-only. As the 
first operand, specifies that a . brief status of all 
logged-in disks is desired. 

The STAT Command gives a count of the records in use on the 
specified user- s disks" the number of free records 
remaining" the percentagt.! of assigned records in use, and 
the number of cylinders assigned to the user. Disk records 
are always 800 bytes long. 

If a ? is specified, the device type (2311 or 2314) and the 
disk status (read-only or read-write) is typed along with 
the above information. 

If a -? is specified as the only parameter, a brief status 
of all logged in disks is typed: ie., ceu l, mode, R/O or R/w. 

Responses: 

X-DISK (CeU): nnnn RECORDS IN USE" nnnn LEFT (of nnnn), n 
FULL (nnn CYL.) 
This response is given for the disk specified. 

392 STArr 



ccu x status 
This response is given for each logged in disk when "the 
brief mode is requested. The x is the disk model, and the 
status is either R/Ot, or blank for R/w. 

Example: 

stat 
P-DISK (191): 0111 RECORDS 
FULL (025 CYL.) 
T-DISK (192): 0000 RECORDS 
FULL (001 CYL.) 
Since no options are 
read-write disks are typed 

stat ? 
191 P 
193 A"P R/O 
196 B,P R/O 
19A S R/O 

IN USE" 0229 LEFT (of 1000);, 111 

IN USE;. 0040 LEFT (of 0040) ;, 00' 

specified., statistics for all 
out. 

The brief statistics are typed showing the status of all 
currently logged in disks. 

Error Messages: 

E(OOOOl) INCORRECT ·STAT· PARAMETER-LIST 
The command was entered in the incorrect format. Issue it 
again. 

E(00002) ** Z-DISK (ccu) NOT CURRENTLY LOGGED IN ** 
The device specified is not part of your machine 
configuration. Issue the console function LINK or the CMS 
LOGIN Z ccu. 

E(00003) ** NO READ-WRITE DISK(S) CURRENTLY LOGGED IN ** 
The STAT-was isssued with no parameters. but no READ~WRITE 
disks are currently logged in. 

STAT 393 



TAPE 

Purpose: 

The TAPE command copies files from disk to taper, recopies 
such tapes to the permanent disk, writes tape marks, 
positions the tape, and scans the tape for file !dentifiers. 

Format: 

DUMP filename filetype <filemode> I 
LOAD < n > I 

TAPE I 
REWIND , 

< TAPn > I 
SCAN < n > TAP2 , 
SKIP < n > I 
SLOAn filename filetype < n > I 
WRITEOF <n> I 

DUMP specifies that a disk file is to be written onto the 
mounted tape. 

filename- filetype <filemode> specify the file to be written. 

* means all filenamer, all filetypes, or all files of the 
specified mode. 

LOAD n 

REWIND 

SCAN n 

SRIP n 

specifies all files on the mounted tape before the 
next n tapemarks are to be copied on to the 
permanent disk. n defaults to 1. 

positions the tape at the load point. 

types out the identifiers of the files that exist 
on the tape in a tape-dump format until the next n 
tapemarksare encountered. n defaults to 1~ 

positions the tape after the next n tapemarks. n 
defaults to 1. 

SLOAD n scans the tape between the next n tapemarks for 
the specified a·filename filetypea and loads it onto 
the permanent disk. n defaults to 1. 

WRITEOF n writes n tapemarks at 
currently positioned. 

the point where the tape is 
n defaults to 1. 

TAPn specifies the symbolic tape unit of the tape to be 
written, loaded. or positioned. TAP2 is the 
default, which corresponds to tape address 181. 

394 TAPE 



Usage: 

Filename and type" or asterisk. must be specified for a TAPE 
DUMP command. Files may contain fixed or variable-length 
records. The specified file is first copied on to a disk 
utility file, then to the tape moUnted at virtual device 
address 181. TWo end-of-file marks are written after the 
date transfer for safety, but the tape is backspaced over 
them for subsequent DUMP operations. ~he last record of the 
tape file is flagged and contains directory information for 
TAPE LOAD. 

The TAPE LOAD command copies any number of files from the 
tape to the permanent disk. The filenames and filetypes are 
obtained from the tape'l and may not be specified with the 
command. The filemode of all files is Pl. Any existing 
file on the permanent disk with the same designation as one 
of the tape files is erased and replaced. Whenever a flagged 
directory record is encountered on the tape, the file being 
written on disk is closed, and a new file is started. 
Reading continues to the n tapemark written by TAPE WRITEOF. 

The TAPE REWIND command positions the tape reel at the load 
point. 

The TAPE SCAN command reads through n tapemarks and types 
out the identifier of the files on the tape. If two 
adjacent tapemarks are encountered. TAPE SCAN terminates,. 

The TAPE SKIP command positions the tape after the 
tapemarks encountered,. skipping the file at the 
position. Use of the TAPE WRITEOF and TAPE SKIP 
access to individual files or groups of files. 

next n 
current 
allows 

The TAPE SLOAn co~mand scans the tape 
tapemarks for the specified file and 
permanent disk with mode Pl. 

between the next n 
loads it onto the 

The TAPE ~RITEOF command writes n tapemarks wherever the 
tape is currently positioned. The tapemark is recognized by 
TAPE LOAD as end of file. 

Responses: 

filename filetyp~ P1 LOADED. 
TAPE LOAD gives this response as each file copied from tape 
is completed. This response is followed by the Ready message 
after the last file. 

DUMPING ••• 
Disk files are being dumped to tape and their identifiers 
are typed out as they are dumped. 

TAPn NOT READY YET 
The tape is attached. but not physical1y~ in a ready status. 

TAPE 395 



(OK - READY NOW) 
The attached tape has been readied and can now be used. 

Notes; 

a. The TAPE command can be used with a 7-track tape, 
density 800 BPI, converter on, ano translator off. 

b. The {EXEC) form of the LISTF command is useful for 
copying all files, or groups of related files. 

c. The TAPE command does not handle Irultivolume files. 

d. TAPE DUMP and 
location of the 
commands. 

TAPE LOAD are valid even if 
virtual disk is redefined 

the size or 
between the 

e. Tape records written by ~APE DUMP are 805 bytes long. 
The first character is a binary 2 (hex '02'), followed by 
the characters CMS and a blank (hex '40'), followed by 800 
bytes of file data packed without regard for logical record 
length. In the final record. the character N replaces the 
blank after OMS. and the data area contains directory 
information (see program logic manual). 

f. Under CP-67, all tape units must be attached to the CMS 
user before any tape I~O can occur. Refer to WOperating 
Considerations--Tape Procedures w for information on the 
attachment of tapes. 

Examples: 

a. TAPE REWIND 
TAPE DUMP FILEA TEXT P5 
TAPE DUMP FILEB TEXT P5 
TAPE ~ITEOF 
TAPE REWIND 
This series of commands copies two user files to tape. (In 
this and the following examples. the Ready message following 
each command is omitted-.) The initial TAPE REWIND positions 
the tape at the load point. FILEA is then copied,. followed 
by the fla9ged directory record. The next record is the 
first of FILEB. TAPE WRITEOF places a tapemark after the 
directory record of FILEB. and the final command repositions 
the tape to the load point again. 

b. TAPE SKIP 
TAPE DUMP SYSLIB MACLIB SY 
TAPE WRITEOF 
TAPE REWIND 

Asswning the same tape is mounted as in the previous 
example, this series of commands copies SYSLIB MACLIB onto 
the tape after the tapemark following FILEB. A tapemark is 
written following the directory record of SYSLIB, and the 
tape is rewound to t-he load pOint. 

396 TAPE 



c. TAPE LOAD 
Again using the same tape, this command erases FILEA from 
the disk, and rep1ace it with the tape copy. When the 
directory record is processed. the following response is 
typed: 

FILEA TEXT P1 LOADED. 
Note that the mode is now P1. Because there is no tapemark 
following FILEA" FILEB is read and replaces the disk copy of 
FILEB. The response 

FILEB TEXT P1 LOADED. 
is followed by the Ready message when the tap ema rk is 
encountered. 

Another TAPE LOAD command would now copy SYSLIB MACLIB onto 
the permanent disk as SYSLIB MACLIB P1. SYSLIB MACLIB SY on 
the system disk would not be erased. 

Error Messages: 

E(00001) INVALID TAPE COMMAND FUNCTION OR PARAMETER LIST. 
The format of the command was incorrect, or the operation 
specified was unknown. Retry the command. No operation was 
performed. 

E(00001) FILE NOT FOUND. 
The file specified with TAPE DUMP 
operation was performed. Check the 
retry the command. 

was not found. 
file designation 

No 
and 

E(00002) FATAL TAPE ERROR WHILE WRITING. 
An I/O error occurred which could not be corrected by ten 
retries. Notify the operator to replace the tape. This 
message is also issued for errors during tape control 
operations (REWIND, WRITEOF, SRIP). If TAPE SKIP was issued 
at a point beyond which no tapemarks existed, the tape went 
to end of reel. A subsequent DUMP, SKIP, or WRITEOF results 
in this message. 

E(00002) TAPn IS FILE PROTECTED 
FATAL TAPE ERROR WHILE WRITING. 

The ring is not in the tape, therefore writing cannot occur. 

E(00002) TAPn NOT ATTACHED 
FATAL TAPE ERROR WHILE WRITING. 

The tape is not attached, therefore it 
Refer to ·Operating Considerations--Tape 
information on tapes. 

E(00002) DISK ERROR WHILE READING. 

cannot be used. 
Procedures" for 

An I/O error occurred while the file was being transferred 
to or from the disk utility file. Retry the command. If 
the error recurs. notify the operator. If the file was 
delete-after-reading;. see note 2 under COMBINE. 

E(00003) FATAL DISK ERROR. 
An I/O error occurred, or, for a DISK LOAD, the disk may be 

TAPE 391 



filled. To retry the command. reposition the tape with a 
TAPE REWIND and the necessary number of TAPE SKIP commands. 
If the error recurs, notify the operator. 

E(00003) DISK ERROR WHILE WRITING. 
An I/O error occu·rred during transfer of the file to or from 
the disk utility file l, or the us.er's disk is full. Retry 
the command. If the error recurs, notify the operator. If 
the filemode was delete-while-reading, see note 2 under 
COMBINE,. Note b. 

E(00004) FATAL TAPE ERROR WHILE READING. 
An I/O error occurred. A tapemark may not be at the end of 
the tape. Reposition the tape and retry the command. If the 
error recurs" and the file has not been loaded, part of the 
file may be recoverable under the designation (DISK) (TEMP). 
See E(00006). 

E(OOOOS) TAPE IS NOT IN -TAPE LOAD- FORMAT. 
A tape record was read which was not written by TAPE DUMP .• 
The wrong tape is mounted, or reading has continued past the 
end of TAPE DUMP output because no tapemark was read. 

E(00006) ENDING RECORD OF FILE MISSING. 
A tapemark or end of reel was encountered before the flagged 
directory record of the current file. Part of the file may 
be recoverable under the designation (DISK) (TFlLE) P3. 
Note that the mode is delete-after-reading, so an ALTER or 
COMBINE command must be issued before inspecting this file. 

398 TAPE 



TAPEIO 

Purpose: 

The TAPEIO command executes appropriate tape I/O commands. 

Format: 

I , <TAP1> 
I TAPEIO I function 
I I 

TAPl corresponds to device 180. 

TAP2 corresponds to device 181. TAP2 is assumed if no tape 
is specified. 

Functions are as follows: 

BSF 
BSR 
ERG 
FSF 
FSR 
REWIND 
RUN 
WRITEOF 
WTM 

Usage: 

to backspace one file 
to backspace one record 
to erase a gap 
to forwardspace one file 
to forwardspace one record 
to rewind the tape to load point 
to rewind and unload the tape 
to write a tape mark 
to write a tape mark 

The tape on the specified device is moved a single record or 
file, is rewound and/or unloaded, a tape mark (end of file) 
is written~ or a gap is erased. 

J 

Notes: 

a. The modeset is set to X·FF', therefore, 9-track tapes 
with density 800, odd parity, and converter ~ off can be 
manipulated with the TAPEIO command. If other'modes of tapes 
are to be used, TAPEIO should be called as a function from 
an Assembly Language program (see ·eMS Nucleus 
Routines--TAPEIO-). 

b. The R~IND and RUN functions indicate completion before 
the physical operation is completed. Thus a subsequent 
operation to the same physical ,device may encouter a ·device 
busy· situation. 

c. The TAPEIO command is identical to the TAPEIO function 
except that TAPEIO READ and TAPEIO WRITE cannot be executed 
from the command level at a terminal. If either of these is 
attempted, an appropriate error and error code are given 
(see below). 

TAPE I 0 399 



Responses: 

TAPn NOT READY YET. 
The specified tape has been attached but it is not ready 
yet. The following message is received when the tape drive 
is in a ready status. 

(OK - READY NOW) 
The attached tape is now ready for use. 

Error Messages: 

E(00001) 
An invalid function was specified. 

E(00002) 
An end of file or end of tape has been reached. 

E(00003) 
A permanent I/O error has occurred while reading or writing 
the tape. 

E(00004) 
An invalid symbolic tape unit was specified. 

ECOOOOS) TAPn NOT ATTACHED. 
The specified tape is not attached, therefore the function 
cannot occur. 

E(OOOOS) 
Same as prev'ious message i• but the message only prints the 
first time this error occurs. 

E(00006) TAPn IS FILE PROTECTED. 
The specified tape contains no file-protect ring, therefore 
the tape cannot be erased or written on. 

E(00001) TAPn - SERIOUS TAPE ERROR ATTEMPTING function 
An unrecoverable tape error has occurred on the tape while 
attempting the specified function. 

400 TAPEIO 



TAPRINT 

Purpose: 

TAPRINT copies files from a specified tape to the offline 
printer. The files must be LISTING files created by the 
WRTAPE or ASSEMBLE commands. 

Format: 

I TAPRINT I <TAPn> I 
-~-~--~~----~~-----

TAPn is either TAP1 or TAP2. specifying which tape is to be 
copied. If omitted:. TAP2 is assumed .• 

UsagE;: 

TAPRINT prints tape files in the special format 
the LTAPn option of the ASSEMBLE 'command and by 
command. Printing starts wherever the tape is 
when the command is issued~ and continues 
consecutive end of file marks are encountered. 

written by 
the WRTAPE 
positioned 
until two 
Single end 

of file marks are ignored, except for a 
completion, the tape is rewound. 

message.. On 

Responses: 

EOF READ ON TAPE 
A single end of file was read on the tape. 
continue. 

Printing will 

PLEASE READY THE PRINTER 
This message should not occur under CP. 

END OF TAPE 
Two consecutive end-af-file marks 
tape is being rewound, and control 
Command environment. 

PERMANENT I/O ERROR ON TAPE. 

were encountered. 
is passed to the 

An I/O error occurred. The command is terminated. 

Example: 

TAPRINT TAP1 

The 
CMS 

All the files up to the first two consecutive end-of-file 
marks on the tape mounted on TAPl (at .180) are assumed to be 
LISTING files and are printed on the offline printer. 

Error Messages: 

E (00001) SD1BOLIC TAPE ADDRESS INCORRECT-. 
The symbolic tape address specified was not TAPl or TAP2. No 
action was performed. 

TAPRINT 401 



TPCOPY 

Purpose: 

The command TPCOPY is used to copy tape files. 

Format: 

TPCOPY YES TAP! 
<TAP1 

TAPo 
<TAP 2 

n 
< 1 < no »» 

• • • * 

TAPi is the input sy-.nbolic tape unit 

TAPo is the output symbolic tape unit 

I 
I 
I 

n is the number of files to be copied and ranges from 1-9. 

YES types out a summary of each file copied. If YES is not 
specified. no summary is assumed • 

• specifies the- default is to be taken for each parameter. 

Usage: 

1-track tapes are read and written at 800 bpi, odd parity, 
converter on, translator off. 

If TAPi and TAPo are not specified. TAPl and TAP2 are 
assumed, which correspond to 180 and 181 respectively. 

If n is not specified. the default is one file to be copied. 

The maximum record size is 4096 characters. 

Note: 

If TAPE DUMP was issued to write files from disk to tape and 
that tape is to be copied l• the input tape unit is tape 181 
or TAP2. Therefore TAP2 should be specified as the first 
operand with TPCOPY. 

Responses: 

SUMMARY OF COPY 
The YES parameter was specified with TPCOPY,. therefore a 
summary of the copy of each file is typed out. 

FILE xxx 
The xxx _is the sequence number of the file being copied on 
the tape. 

xxxxxxxx RECORDS, LENGTH = xxxxx BYTES 
The number of records on TAPi and the maximum length of each 

402 TPCOPY 



are specifi·ed. 

xxxxxxxx,RECORDS COPIED 
The xxxxxxxx is the number of records copied from TAPi to 
TAPo. 

SUMMARY COMPLETE 
Tbe summary typeout has terminated. 

TAPE READ ERROR; BYPASS? (YES/NO) 
An error has been encountered whi1e reading 
keyboard is unlocked for either a YES or NO 
YES is entered, TPCOPY skips the error record, 
reading_ If NO is entered. error code 1 is 
TPCOPY terminates. 

SUMMARY TABLE OVERFLOW; SUMMARY CANCELLED 
The summary has been canceled. 

Error Messages: 

E(OOOOl) TAPE WRITE ERROR: TERMINATING. 

E(OOOOl) ILLEGAL FILE COUNT FIELD: 

the tape.. The 
response,. If 
and cont.inues 
returned and 

The number of files specified to be copied was less than one 
or more than nine. 

E(00003) SAME UNIT REQUESTED FOR INPl1I' AND OUTPUT: 

TPCOPY 403 



WRTAPE 

Purpose: 

WRTAPE copies fixed-length format files from disk to tape·. 
If the filetype is LISTING, assembler and compiler 
carriage-control codes are translated to machine cod.es. 

Format: 

IWRTAPEI fname ftype 

fname ftype specifies the file to be copied. 

Usage: 

WRTAPE copies files from any disk to TAP1. Records are 
blocked in groups of ten" and the record format must be of 
fixed length less than 256 bytes. No end of file is written 
on the tape, and the tape is not rewound when the command 
completes. 

Although WRTAPE handles any file of the format described 
above. it is specially designed for LISTING files created by 
the ASSEMBLE and FORTRAN commands. These files contain a 
carriage control code for the offline printer as the first 
byte of each record. WRTAPE translates the code into a 
machine code for the printer. Files are written on the tape 
in the same format as if the ASSEMBLE command had been 
specified with the (LTAPn) option. This format is 
acceptable to the TAPRINT command. 

Notes: 

a. WRTAPE does not write an end of file on the tape on 
completion, nor does it position the tape past any existing 
files. Use the facilities of the TAPE command for 
positioning. To mark an end of file for TAPRINT, write two 
end-of-file marks .• 

h. Under CP. the tape must be attached by the operator. 
WRTAPE expects TAP1,. addressed at 180, which should be 
specified when you request the operator to attach the tape. 

c. Tape files written with WRTAPE are not suitable for 
rereading with TAPE LOAD. 

Responses: 

None. 

404 WRTAPE 



Exampie: 

WRTAPE PROG LISTING 
The file PROG LISTING P5 is copied to tape l• with 
carriage-control codes translated to machine codes, and 
records blocked in groups of ten. If this is to serve as 
input to the TAPRINT command, the following commands should 
be issued: 

TAPE WRITEOF 
TAPE WRITEOF 
TAPE REWIND 

Error Messages: 

E(00002) PARAMETER ERROR 
Two parameters (filename and filetype) were not specified. 

E(00003) VARIABLE LENGTH FILE 
WRTAPE does not handle files with variable record length. 

E(00004) FILE NOT FOUND 
No file with the specified filename and filetype was found. 

E(OOOOS) FA~AL ERROR 
An error occurred while reading the file from disk. 

E(xxxxx) TAPE ERROR 
A tape error occurred which could not be recovered. The 
error code is unpredictable. 

WRTAPE 405 



CONTROL COMMANDS 

This section contains eMS commands that are used to control 
the user·s environment at the console. 

The BLIP command changes the character used to notify the 
user of every two CPU seconds of execution time. The 
CHARDEF command allows the user to redefine the logical 
characters, such as the character delete, line delete, 
logical backspace, and logical tab characters. LINEND 
redefines the logical carriage return or line-end character. 
SYN allows a user to define his own synonyms for commands. 
CPFUNCTN allows CP console functions to be issued from CMS. 

IPL loads a new copy of CMS into memory. KO, KT, and KX are 
used to kill overrides, typing, and execution respectively. 
RT restores typing once it has been terminated by KT. LOGIN 
sets up the user's permanent files for this terminal 
session; LOGOUT updates the files on the P-disk and removes 
the user from CMS; and RELEASE frees a disk when the user 
has finished with it. 

406 Control Commands 



BLIP 

Purpose: 

The BLIP command causes a string of from one to eight 
characters to be typed periodically during CMS operation. 
The BLIP characters are typed out after every two seconds of 
CPU execution and give the user an indication of the 
execution time of his program. 

Format: 

BLIP chars 
(OFF) 

<count> 
1 

chars is the character to be typed out, and 

count is a digit from one to eight. indicating the number of 
BLIP characters. 

(OFF) sets BLIP to nothing so that there is no indication 
after each two seconds of CPU execution. 

Usage: 

The default setting of the BLIP characters is a sequence of 
nonprinting characters--uppercase shift,. lowercase. If it 
is is desired to have a printed recording of the execution 
of a program, the BLIP characters should be changed to 
printing characters (for example. a single dot). 

Notes: 

a. If the count parameter is defaulted. a count of 1 is 
assumed. 

h. If the first parameter is zero or if both parameters are 
defaulted l• the BLIP characters are reset to their 
nonprinting default setting .• 

c. If noncharacter codes are desired. the eight bytes for 
the BLIP characters can be specified in hexadecimal in an 
Assembly Lang~age Program. 

Error Returns: 

None. 

BLIP 407 



CHARDEF 

Purpose: 

CHARDEF redefines the logical characters in CMS that 
correspond to hardware functions. 

Format: 

.1 
I 

CHARDEF I function 
I code 

<replacement character> 1 
I 

function code: 
B signifies the EDIT logical backspace character. 

C signifies the character-delete symbol. 

L denotes the line-delete symbol. 

T signifies the EDIT logical tab character. 

replacement character is the character to be used for the 
specified function. If a replacement 
character is not specified, there is 
no symbol for that function. 

Usage: 

The predefined characters in CMS for the character-delete 
symbol and the line-delete symbol are the a and ~ 

respectively. If a character is not specified with either 
CHARDEF C or CHARDEF L. there is no delete symbol for a 
character or a line. 

The predefined logical tab character and backspace character 
in EDIT are the I and the ~ respectively. If B or T is 
specified, EDIT and CEDIT commands cause reference to be 
made to the redefined symbols each time either editor is 
invoked. 

The function symbols that are redefined remain in effect 
until (1) eMS is reIPLeed, or (2) another CHARDEF command is 
issued. or (3) the user logs out of CP. 

Note: 

CHARDEF does not redefine the logical characters for CP-61. 

Examples: 

a • CHARDEF C ? 
The character-delete symbol is now defined as? 
can be used as a normal character. 

408 CHARDEF 

The a 



b. CBARDEF L 
The line-delete symbol no longer exists. 
used as a normal character. 

Error Message: 

E(OOOOl) 
Illegal function code was specified. 

CHARDEF 

The t can be 

Q09 



CPFUNCTN 

Purpose: 

The CPFUNCTN command transmits console fUnction commands to 
CP-61 without leaving the virtual mode of operation. 

Format: 

CPFUNCTN 
CP 

<NOMSG> string 

NOMSG is an optional argument to turn off typing of BAD 
ARGUMENT and INVALID CP REQUEST messages. 

string is a CP-61 console function. 

Usage: 

CPFUNCTN is provided to allow CP-67 console fUnctions to be 
issued from CMS and to be incorporated in EXEC files. 

Examples: 

a. CPFUNCTN XFER OOD to CSCl 
Executes an· XFER console function. 

b. CP NO~SG DETACH OOE 
Executes a DETACH command. If OOE is not a valid address. 
the BAD ARGUMENT message is not typed .• 

Error Messages: 

E(OOOOl) FUNCTION MISSING 
No string was specified with the command. 

E(00004) INVALID CP REQUEST 
string is not a proper CP-67 console function. 

E(OOOOB) BAD ARGUMENT 
The arguments supplied are not proper for 
the specified console function. 

E(xxxxx) 
Any other error codes are dependent on the 
particular console function designated. 

410 CPFUNCTN 



IPL 

Purpose: 

IPL causes a new copy of the 
initial-program loaded. 

Format: 

, IPL I <devadd> I 

CMS nucleus to be 

devadd is the address of the disk device that is to be 
IPL'ed. 

Usage: 

This command performs the same action as the IPL console 
function. If a devadd is specified, CMS gives the IPL to 
CP, which IPL's the specified device. 

If no operand is included in the IPL command, IPLDEV in the 
nucleus is checked to see what copy of CMS the user had been 
using (that is, if CMS had been IPL'ed by name or device). 
This same copy of CMS is then brought back into core, and 
the user receives a new copy of the version of CMS he had 
been using. 

Response: 

CMS ••• VERSION nn ,LEVEL rom 
This response indicates that a new copy of the nucleus has 
been loaded and that control has transferred to the CMS 
Command environment. 

Example: 

ipl 
CMS ••• VERSION nn LEVEL rom 
A new copy of the CMS nucleus has been initial-program 
loaded and the keyboard is unlocked to accept any CMS 
command. If the user IPL'ed 190 originally, that copy of CMS 
has been brought back in: if he IPL'ed eMS by name, the 
·saved ft system has been reloaded. 

Error Messages: 

None. 

IPL 411 



1(0 

Purpose: 

The 1(0 command 
command or user 
information. 

Forroat: 

KO 

Usage: 

may be issued during the execution of a 
program to stop the recording of trace 

The KO command causes recording of trace information, 
initiated by the SETOVER orSETERR commands, to be halted. 
KO differs from the CLROVER command in that it may be used 
to clear overrides during the execution of a program. In 
order for the KO command to be recognized, it must be 
entered after interrupting program execution by hitting ATTN 
once to transfer to the CP environment, and a second time to 
transfer control to eMS. Typing 1(0 then causes all 
overrides to be cleared, and no further trace information is 
recorded. Program execution continues to its normal 
completion, and all recorded trace information is printed on 
the offline printer. 

Notes: 

a. Entering KO as a normal eMS command has no effect. KO 
has meaning only after two attention interrupts have been 
generated during command or program execution. 

b. If the keyboard does not unlock following the second 
attention interrupt, internal processing is probably taking 
place which does not allow interrupts from the multiplexer 
channel. As soon as this processing is conpleted. the 
keyboard is unlocked and KO may be entered. 

c. The character-delete symbol and line-delete symbol are 
not valid when issuing the KO command. 

d. Issuing the KO command has no effect unless a SETERR or 
SETOVER command has been issued previously. 

Example: 

KO 
Assuming that ATTN had been hit twice before typing KO" eMS 
stops recording trace information, and, at the completion of 
the currently executing program, all recorded trace 
information would be recorded on the offline printer. 

412 KO 



Error Messages: 

None. 

KO 413 



KT 

Purpose: 

The KT command causes all terminal output generated by the 
CMS command or user program in progress to be suppressed. 

Format: 

I<T 

Usage: 

The KT command is used to stop terminal typeout from an 
executing CMS command or user program. In order to enter 
the KT command meaningfully. ATTN must be hit once to 
interrupt execution and transfer control to the CP 
environment. and then a second time to transfer control to 
CMS. Program execution continues but the keyboard is 
unlocked to accept user input. Typing KT at this point 
causes all further terminal output from the executing 
command or user program to be intercepted and suppressed. 
Execution continues to normal program completion, when the 
Ready message is typed out and normal terminal output 
resumes. 

Notes: 

a. Entering KT as a normal eMS command has no effect. KT 
has meaning only after two attention interrupts have been 
generated during program execution. 

b. If the keyboard does not unlock following the second 
attention interrupt. internal processing is probably taking 
place which does not allow interrupts from the multiplexer 
channel. As soon as this processing is completed, the 
keyboard is unlocked and KT may be entered. 

c. The character-delete symbol (a) and line-delete symbol 
(t) are not valid when issuing a KT command. 

Example: 

KT 
Assuming that ATTN had been hit twice before typing KT:, eMS 
would intercept and suppress any terminal output generated 
by the program in progress. 

Error Messages: 

None. 

414 KT 



KX 

Purpose: 

The XX command causes the execution of any CMS command or 
user program to stop, closes any open files and I/O devices" 
reIPL's CMS, and returns the user to the CMS command 
environment. 

Format: 

RX 

Usage: 

In order for the xx command to be recognized, it must be 
issued after interrupting program execution by hitting ATTN 
once to transfer to the CP environment, and a second time to 
transfer control to OMS. Issuing the RX command then closes 
any open use~ files and signals CP that the user has no more 
I/O for offline devices. After updating the user's file 
directory, KX reIPL's eMS from the same device as it was 
ini tially IPL· ed" and the user is returned to the CMS 
command environment. 

Notes: 

a. Entering RX as a normal CMS command has no effect. KX 
has meaning only after two attention interrupts have been 
generated during program execution. 

h. If the keyboard does not unlock following the second 
attention interrupt, internal processing is probably taking 
place which does not allow interrupts from the multiplexer 
channel. As soon as this processing is completed the 
keyboard is unlocked and KX may be entered. 

c. The character-delete symbol (a) and line-delete symbol 
(t) are not valid when issuing a KX command. 

Response: 

CMS ••• VERSION nn LEVEL mm 
This response is typed whenever KX is interpreted, as eMS is 
reIPL' ed. The CMS command environment is then entered,. 

Error Messages: 

None. 

KX 415 



LINEND 

purpose: 

The LlNEND command defines the logical line-end character to 
be used~ in addition to the carriage return (new line). 

Format: 

I LINEND I <c> 

c is the redefined logical line-end character,. If c is not 
specified;. there is no line-end character defined, and the 
carriage return is the only line delimiter. 

Usage: 

The logical line-end character permits a number of logical 
input lines (each separated by the line-end character) to be 
typed on a single physical input line. The physical input 
line is terminated by a carriage return. Logical input 
lines are terminated by the line-end character or by the 
carriage return. Each call to read a line from the terminal 
returns the logical input line. Subsequent calls to read a 
line from the terminal returns the logical input line which 
was given following the previous logical input· line. The 
line-end character can be used to input logical lines 
whenever a physical line is input from the typewriter, 
whether to eMS or to a program. In addition, logical lines 
can be input and stacked by use of attention to CMS (double 
attention if from CMS and running under CPl. See ~erminal 
Usage--Attention Interrupt-. 

Notes: 

a. The defined line-end character is the I, unless the 
LINEND command has been issued to redefine the character. 

b. If the command LINEND is issued without any parameters, 
only the carriage return is used as the line delimiter. 

c. When a physical input line is read, it is scanned and 
processed according to the specifications in WAITRD. If 
lowercase to uppercase conversion is specified, the complete 
physical input line is translated. Thus, all logical input 
lines are translated according to the initial specification. 

d. The redefined line-end character stays in effect until 
either CMS is IPL'ed again or LlNEND is reissued. 

e. LINEND does not redefine the logical line-end character 
for CP-67. 

f. The pound sign (#, is also the logical tab character. 

416 LINEND 



LINEND takes precedence over the logical tab character .• 

Examples: 

a. LINEND! 
The. line-end character is set to the exclamation mark (!). 

b. LINEND 
There is no longer a defined line-end character, therefore, 
only the carriage return is used as a line delimiter in eMS. 

Error Messages: 

None. 

LINEND 417 



LOGIN 

Purpose: 

LOGIN causes the user·s files on a specified disk to be 
either saved or deleted. as specified, or bypasses the 
execution of the PROFILE EXEC file. 

Format: 

1 LOGIN 
I 
I 
I 
I 
I 
I 
I 

I NOPROF 
I UFO 
I <No-UFD> 
I NO_UFD 
I ccu 
I 
I 
I 

< UFD > 
NO UFO 
Z <,Y <fn <ft <fm»> 
P 

UFD indicates that the user's 
existing disk files) 
default parameter .• ) 

file directory <and hence all 
are to be saved. (This is the 

NO UFD indicates that the user's file directory is not to be 
'saved" effectively clearing his disk area and all 
files stored on it. 

NO-UFD has the same effect as NO UFD. 

NOPROF indicates that the user's PROFILE EXEC file is not to 
be executed. 

ccu indicates the address of the disk that is to be used. 
ccu must be a nonzero, hexadecimal number not to 
exceed 6FF. 

Z indicates the mode of the disk (that is!, P,T,A,etc.) • 

• Y indicates the disk for which this disk is to be a 
read-only extension. 

fn <ft <fm» indicates on a read-only disk the files whose 
directories are to be brought into core. 

Usage: 

The LOGIN command may be issued at any time from the CMS 
Command environment. If an operand is specified with LOGIN, 
it must be either UID, NO UFO;, NO-UFD, NOPROF, or ccu. If 
UFD is specified" the user's file directory, and hence all 
of his P-disk files, are maintained as they presently exist. 
If NO_UFD or No-UFD is specified, the user file directory is 
cleared and all P-disk files are, in effect, erased.. If 
NOPROF is specified r• the execution of the PROFILE EXEC 

418 LOGIN 



feature is inhibited. In particular, NOPROF is used if the 
PROFILE EXEC is to be bypassed or contains errors. If no 
operand is specified, either 191 or the last disk that was 
used as the P~disk is logged in as if LOGIN ccu were 
specified. If tbe LOGIN command is not issued as the first 
CMS . command after IPL· ing,. LOGIN UFD is assumed and all 
existing P disk files saved. 

LOGIN ccu allows the user to specify the device that he 
wishes to use. Z, if specified, is the mode of the disk--the 
default mode is Pi if Z is specified, Y may be specified to 
describe this disk as a read-only extension of the Z-disk. 
The user may also specify fn and, optionally, ft and fro to 
allow his use of only that specific file. 

Notes: 

a. If a user links to another Z-Disk and he already has a 
Z-Disk. he must either reIPL eMS to read in the new file 
directory, or issue LOGIN ccu. Otherwise,. the old file 
directory exists in core and the file directory of the new 
disk is overwritten. 

h. LOGIN NO UFO or No-UFD performs the same functions as 
FORMAT P, that is, it obtains a "clean" file directory; 
however~ it does not physically format the disk. Therefore, 
if the disk is already formatted correctly, this is a faster 
method of clearing the file directory. 

c'. If LOGIN ccu is issued as the first command and ccu is 
not 191;. the normal 191 P-disk is not logged in. Therefore, 
if 191 and ccu are both needed, LOGIN 191 first, then issue 
LOGIN ccu. 

d. If a user wishes to login a disk which is normally 
READ-WRITE in a READ-ONLY status;. he can do so by making the 
disk a READ-ONLY extension of itself (for example, LOGIN 191 
P,P). 

Responses: 

** Z (eeU) IS READ-ONLY ** 
The device specified as ceu is a read-only disk, therefore 
writing is not allowed on the device. This response is only 
a warning. 

** CCU REPLACES Z (CeO) ** 
This response is typed following a LOGIN ccu command. It 
indicates that the device specified by the first ccu has 
replaced that specified by the second ccu. 

** ceu ALSO = Z-DISK ** 
This response informs the user that the device ccu for which 
he has just issued a LOGIN. is also defined as his Z-Disk. 
This response is only a warning. 

LOGIN 419 



Examples: 

a. LOGIN 
The user's file directory for 191 is rEad into core. 

b. LOGIN NOPROF 
The user's 191 file directory is read into core: however" 
the file PROFILE EXEC is not automatically executed. 

c. LOGIN 195 A,P 
Disk 195 is ,logged in as A-disk" and this is, defined as a 
READ-ONLY extension of the user·s P-disk. 

d. LOGIN 197 
Disk 191 is logged in as the user's P-disk--it replaces the 
disk previously defined as the P-disk. 

Error Messages: 

E(OOOOl) **z (CCU) FILE DIRECTORY UNREADABLE .* 
Check that the correct disk is mounted. If so, issue the 
FORMAT P command. 

EC00002) **z (CCO) NOT ATTACHED ** 
No Z-disk is attached to the user's virtual machine. Notify 
system operator. 

E(00003) ** Z '(ceu) NOT -RECOGNIZABLE DEVICE-TYPE •• 
The attached ccu device is not a 2311" 2314, or 2303. 
contact system operator. 

E(00004) ** LOGIN NO UFO FAILED BECAUSE Z (CCU) IS READ-ONLY *. 
A LOGIN NO_UFD erases files" therefore it may not be issued 
for a READ-ONLY disk. 

E(OOOOS) •• Z(CCU) OLD (1961 ERA) 2311 DEVICE ADDRESSES •• 
The disk specified is of the pre-1967 type that is 
no longer supported by CMS. 

E(00001) **CCU ALREADY ACCESSED AS Z-DISR (READ-WRITE).* 
•• -RELEASE CCU Z- IF DESIRED , RETRY •• 

The disk that you have just logged in as ccu is already 
attached to you as a Z-disk. These two descriptions are 
incompatible • 

• * LOGIN NO OFD FAILED; TRY -FORMATZ ALL- •• 
This message may appear as a second line to errors 1,2,,3, or 
5. The disk needs to be formatted. 

420 LOGIN 



LOGOUT 

Purpose: 

The LOGOUT command compacts the user·s file directory, 
executes any CMS command specified as an operandi, and logs 
out of CMS" transferring control to the CP environment .. 

Format: 

LOGOUT 1 <anycom> 1 

anycom is any CMS command 

Usage: 

The LOGOUT command is not. required when use of OMS has been 
completed. If issued. however, it causes a compacting 
routine (identical to that which is called when the STAT C 
command is issued) to be called. This routine reorganizes 
the user·s file directory. eliminating blank entries 
resulting from files which have been erased during the 
current terminal session.. In addi tion, LOGOUT executes any 
eMS command specified as its operand (LISTF. for example, to 
obtain a ·list of the newly organized file directory)~ 

Finally-. the Ready message is typed.. indicating in seconds 
the CPU time used during this terminal session for CMS 
execution as well as C~S and CP execution. The revised 
user-file directory is written out to disk, and control is 
transferred to the CP environment. 

Notes: 

a. Given the fact that the user-file directory is updated 
on disk after the completion of each CMS command. it is not 
necessary to LOGOUT from CMS to ensure that the user·sfiles 
be saved. 

b·. In order to log out from the CP-67/CMS system without 
using the LOGOUT command,. ·hit ATTN once to transfer control 
to CP and type LOGOUT to log out from the Control Program. 

c. Even if the LOGOUT command is issued in eMS, it is also 
necessary to log out from the Control Program. The CMS 
LOGOUT command can be bypassed, but the CP logout command 
must be issued to log off the system and disconnect the 
.telephone line. 

Responses: 

Ri T=xx.xx/xx.xx hh.mm.ss 
CP ENTERED, REQUEST. PLEASE. 
This message is typed whenever the LOGOUT command is issued 

LOGOUT 421 



in the eMS Command environment. The first xx.xx is the 
total CPU time in seconds for CMS execution. The second 
xx.xx represents the total CPU time in seconds for CMS and 
CP. These times are total times for- the terminal session. 
The keyboard is then unlocked to accept any CP console 
function. 

Examples: 

a. logout 
R; T=18.32/43.21 12.15.28 
CP ENTERED, REQUEST~ PLEASE. 

The compacting routine is called, the indicated message is 
typed at the terminal. and control transfers to the CP 
environment, where the keyboard is unlocked to accept any CP 
console function. 

b. logout listf 
The compacting routine is called. the LISTF command types 
out the contents of the reorganized user-file directory/, the 
logout message is typed,. and control transfers to the CP 
environment. where the keyboard is unlocked to accept any 
console function. 

Error Messages: 

None. 

422 LOGOUT 



RELEASE 

Purpose: 

The RELEASE command frees an active disk when the user no 
longer needs it. 

Format: 

I RELEASE I ccu mode «DETACH» 

ccu is the device address of the disk that is to be 
released. 

mode is the mode of the disk to be released. 

(DETACH) means that the released disk is also to be DETACHED 
from user's virtual machine (the equivalent of the 
console function DETACH). 

The RELEASE command allows a user to release an active disk 
when he no longer needs it. By specifying the (DETACH) 
option" the disk may also be removed from the user's virtual 
machine configuration in the same way as by the console 
function DETACH. 

RELEASE is useful in conjunction with the console function 
LINK and the CMS command LOGIN,. when multiple disks are used 
and/or users share disks on a ~D-ONLY basis. 

Responses: 

None. 

Examples: 

a~ RELEASE 195 T 
This command causes T-Disk 195 to be released by the user. 

b. RELEASE 191 P (DETACH) 
This command causes the P-Disk 197 to be released by the 
user. It also detaches it from the user·s virtual machine 
configuration so that it is no longer available to him. 

Error Messages: 

E(00001) INVALID -RELEASE- PARAMETER-LIST 
The command was entered in incorrect form. 
command format and reenter it. 

Check the 

E(00002) NO ACTIVE-DISK-TABLE FOUND FOR GIVEN MODE 
The disk mode specified is incorrect. Reissue the command 

RELEASE 423 



with the correct mode. 

E(00003) GIVEN DISR-NUMBER DOESN'T MATCH DEVICE-TABLE 
The disk specified is incorrect. Reissue the command. 

424 RELEASE 



RT 

Purpose: 

The RT command restores the typeout at 
previously suppressed by the KT command. 

Format: 

RT 

Usage: 

the console 

The RT command restores console typeout from an executing 
CMS command or user program that was previously suppressed 
by the KT command. In order to enter the RT command 
meaningfully. ATTN must be hit once to interrupt execution 
and transfer control to the CP environment, and then hit a 
second time to transfer control to CMS. Program execution 
continues but the keyboard is unlocked to accept user input. 
Typing RT at this point causes all further console output 
from the executing command or user program to be typed out. 
Execution continues to normal program completion. 

Notes: 

a. Entering RT as a normal CMS command has no effect. RT 
has meaning only after two attention interrupts have been 
generated during program execution. 

b. If the keyboard does not unlock following the second 
attention interrupt. internal processing is probably taking 
place which does not allow interrupts from the multiplexer 
channel. As soon as this processing is complete~. the 
keyboard is unlocked and RT may be entered. 

c. The character-delete symbol (8) and line-delete symbol 
(,) are not valid when issuing an RT command. 

Example: 

RT 
Assmning that ATTN had been hit twice before typing RT i• eMS 
restores any console output generated by the program in 
progress. 

Error Messages: 

None. 

RT 425 



SYN 

Purpose: 

The SYN command allows the user to specify 
names to be used with or in place of the 
command names. 

his own command 
standard system 

Format: 

I SYN ,<filename <filetype <filemode»<Coptionl ••• optionN»> 
I I SYN * 

filename" filetype, and filemode are the identification of 
the file containing the 
user-defined synonyms to be 
used by CMS. 

Options: 

P 

PUSER 

STD 

NOSTD 

MIN 

EXACT 

CLEAR 

Usage: 

Prints the standard system abbreviations and 
user synonyms currently defined. 
Prints only the user 'synonyms currently 

defined,. 

Stanaard system abbreviations are to be used. 
This is the default value. 
Standard system abbreviations are not to be 
used. 

Use minimum number of characters specified to 
identify commands. The default value. 
Use exact number of characters specified to 
identify commands. 

Clears any previously defined synonym table 
set up by SYN. 

The SYN cOBmand permits user-defined names to be used either 
alone, or in conjunction with the standard eMS system 
abbreviations--that is. it permits the user to modify the 
command names acceptable to his own environment. 

User-defined synonyms are located in a file identified as 
"filename filetype filemode" ,in the format shown in note 2 
and the first example below. If filetype is omitted. a 
filetype of SYN is assumed; if filemode is omitted, a mode 
of * is assumed. meaning any disk. If no file is specified, 
no user-defined synonyms are set up. and the system 
abbreviations are used in the manner defined by the 
specified options. 

426 SYN 



All options are specified between a pair of parentheses. The 
default options are STD (use standard abbreviations) and MIN 
(allow a minimum number of characters to represent a 
command). NOSTD f1a9s the standard system abbreviations as 
unusable; MIN accepts abbreviations as long as the minimum 
number of characters specified in the abbreviation table are 
present; EXACT accepts only the entry as specified .• 

SYN can also be used to print out the list of synonyms and 
abbreviations currently acceptable. 

Notes: 

a. SYN with no additional parameter is the same as SYN (P), 
that is. it types a listing of system and user abbreviations 
currently in effect. 

b. The user synonym file -filename filetype filemodew 

consists of SO-byte fixed-length records in freeform format 
with columns 13-80 i9nored. The format for each record is 

1 I I 
, system-command 1 user-synonym 'count 
1 ______________ 1 1 ____ _ 

where count is the number of characters necessary for the 
synonym to be accepted. If omitted/• the entire synonym must 
be entered (see the first example below). SYN builds a table 
from the contents of this file to use for command synonyms. 

Responses: 

SYSTEM ABBREVIA~IONS FLAGGED -NOT IN USE-
A request has been made to print the system abbreviations 
while a previous NOSTO is in effect. 

NO USER SYNONYM TABLE CURRENTLY IN USE 
A request has been made to print the user-defined synonym 
table while no such table has been defined by a SYN command. 

Examples: 

a. edit abb syn 
NEW FILE 
INPUT: 
erase delete 3 
combine copy 

EDIT: 
file 

This creates a file ABB SYN which is a synonym table. In the 
first record of the file the count field is 3. This means 
that DEL. DELE. DELET. or DELETE are acceptable as the ERASE 
command. However, with no count specified in the next line, 
'only COpy is acceptable as the COMBINE command. 

SYN 421 



b. SYN 
Types a list of the system abbreviations and user synonyms 
currently in effect. 

c. SYN ABB (P) 
sets the synonym list found in file ABB SYN as 
standard system abbreviations as acceptable-­
these at the console. 

d. SYN (PUSER) 

well as the 
and prints 

Prints the contents of the user synonym table currently 
acceptable to CMS. 

e. SYN ABB (NOSTD) 
Allows the synonyms in file ABB 
system, and flags the standard 
unacceptable. 

f. SYN ABB (NOSTD MIN) 

SYN to be accepted by the 
system abbreviations as 

Only the synonyms specified in ABB SYN are acceptable. 
However. a DELE is valid for ERASE as the minimum DEL is 
present. 

g. SYN ABB (NOSTD EXACT) 
Only the synonyms specified in ABB SYN are acceptable. 
However, DELETE must be entered to be accepted as ERASE. 

Error Messages: 

E(OOOOl) INCORRECT 'SYN' PARAMETER-LIST 
Invalid or mutually exclusive options were specifiedr• (that 
is. P and PUSER. MIN and EXACT. STD and NOSTD). 

E(00002) NO "ABBREV·IATIONS AT ALL (ABBREV NOT IN NUCLEUS) 
The system being used does not support synonyms. 

E(00003) GIVEN USER SYNONYM FILE NOT FOUND 
File "filename filetype filemode" was not found. 

E (00004) USER SYNONYM FILE BAD (MUST BE BO-BYTE FIXED RECORDS) 

E (00005) FAULTY DATA IN USER SYNONYM FILE 

E(xxxxx) DISK ERROR READING USER SYNONYM FILE The error 
code from RDBUF is returned as xxxxx. 

42B SYN 



LIBRARIES 

CMS provides two types of libraries--macro and text 
(subroutine). Macro libraries are searched for missing 
macros durin9 assemblies. The system macro libraries are 
called SYSLIB MACLIB SY and OSMACRO MACLIB SY. SYSLIB 
MACLIB contains the CMS macros, and OSMACRO MACLIB contains 
the os macros (from SYS1.~~CLIB, ReI. 15/16). 

Text libraries are searched for missing subroutines or 
undefined filenames during the LOAD. USE. or REUSE command. 
The system text libraries are called SYSLIB TXTLIB SY, 
CMSLIB TXTLIB SY. PLILIB TXTLIB SY. and SSPLIB TXTLIB SY. 
SYSLIB TXTLIB contains the FORTRAN library, CMSLIB TXTLIB 
contains the non error wessage FORTRAN subroutines, PLILIB 
TXTLIB contains the PLl library and PL1 subroutines, and 
SSPLIB TXTLIB contains the FORTRAN Scientific Subroutine 
Package. TXTLIB allows up to 1000 entries per library. 

To generate. add to, delete. or replace in macro or text 
libraries .. use MACLIB or TXrrLIB respectively. To specify 
that certain libraries are to be used in addition to or in 
place of the system libraries, use GLOBAL, which allows up 
to ei9ht TXTLIBs to be specified. 

Libraries 429 



MACLIB 

Purpose: 

The MACLIB command (1) generates a macro library, (2) adds, 
deletes. or replaces macros in an existing library, () 
lists the name, size. and location of macro definitions in a 
macro library, or (4) compacts a macro library. 

Format: 

1 
IMACLIB 
I 
I 
I 
I 
1 

GEN libname filenamel, •• '. filenameN 
ADD libname filenamel ••• filenameN 
REP libname filename1 ••• filenameN 
DEL libname macronamel ••• macronameN 
COMP libname 
PRINT libname 
LIST libname 

GEN generates the macro library ftlibname ft from the 
macro definitions in the specified file(s),. 

ADD adds the macro definitions from the specified 
file(s) to the existing macro library ftlibname ft • 

REP deletes the existing macro and adds the new copy 

DEL 

COMP 

PRINT 

LIST 

libnaroe 

deletes the specified 
dictionary. 

macro entry from the 

compacts the macro library and removes the macros 
that have been deleted. 

creates a file called ·libname MAP Pl ft containing 
the name, size, and location of the macros in 
-libname-, and offline prints the MAP file. 

types out the dictionary of the macro library 
specified by ftlibname ft • 

specifies the filename of a macro library. 

filename1 •.•• filenameN specify the macro definition files to 
be used in generating. adding" or replacing in the 
macro library -libnameft • The~r filetype must be 
ASP360 or COpy,. Replace requires the filename to 
be identical to the macro in the library. 

macronamel,. ' •• macronameN specify the macros to be DELeted. 

Usage: 

A macro library is a file that has a filetype of MACLIB and 
that contains macro defini'tions and a dictionary. A macro 

lI30 MACLIB 



definition is a group of 05/360 assembler language 
statements identified by a unique name and used as an 
expansion for a source statement in an 05/360 assembler 
language program. The dictionary is generated by the MACLIB 
command and is made up of macro definition names, the 
indexes or locations of the macro definitions within the 
library. and the size or number of card images in each macro 
definition. 

To be accessible to the MACLIB command, a macro definition 
must first exist on disk in a macro definition file.. A 
macro definition file is a file that contains card images of 
macro definitions written in the System/360 Assembler 
language, according to the rules for defining macros. A 
macro definition file must have a filetype of ASP360. 

The MACLIB Command functions are: GEN, ADD, LIST, DELr, REP, 
PRINT, and COMP. 

The GEN form of the MACLIB command creates a macro library 
and assigns the identifier wlibname MACLIB Pl- to it. This 
macro library is generated from the macro definitions in the 
specified macro definition file(s) having a filetype of 
ASP360 or COPY. 

The ADD form of the MACLIB command appends the macro 
definitions from the specified macro definition files to the 
end of the existing macro library. As in the GEN form, the 
specified macro definition files must have a filetype of 
ASP360 or COPY, and the specified libname must have a 
filetype of MACLIB. 

The LIST form of the MACLIB command types out the name, 
index, and the size of each macro definition in the 
specified library. For an example of the output from the 
MACLIB LIST command see Figure 31, which lists the CMS 
system macro library SYSLIB MACLIB. 

MACLIB 431 



mac lib list syslib 

M~CRO INDEX SIZE 

CMSTYPE 2 10 
CMSAVE 12 42 
CMSREG 54 29 
MADCALL 83 21 
~ADDPL 104 15 
MADTYPE 119 11 

-rSTPA 812 11 
CMS 823 17 
CMLST 840 14 
DJCB 854 23 
BRETURN 811 14 
BCLOSE 891 7 
$ EXECSwr 898 10 
SYSOUT 908 19 
R; T=O.08/0.59 11.23.41 

Figure 31. Example of MACLIB List command 

The DEL function removes from the MACRO library directory 
the name of the specified macro. 

The COMP function removes any previously deleted macros from 
the library. 

The PRINT function creates the file "libname MAP P1" from 
the specified library and prints it on the offline printer. 

The REP function replaces the existing code of the specified 
macro,. with the new code from the ASP360 or COpy file of the 
same name. 

Notes: 

a. The MACLIB command does not check the macro definitions 
for errors: it assumes that the definitions are correct and 
that the card images conform to the assembler language input 
format. 

b. Each specified ASP360 file may contain one or more macro 
definitions. 

c. If a MACLIB file is being generated and a macro library 
already exists with the same identifier ("libname" MACLIB 
P1), it is erased and replaced by the library generated with 
the MACLIB GEN command. 

d. No checking for duplicate macro names between the ASP360 
files and the existing MACLIB file is performed. The ASP360 

432 MACLIB 



files are added to the end of the existing MACLIB file. 

e. To print the contents of a macro definition. use the 
PRINTF command and specify the index number as the starting 
location and (index+size-l) as the ending location of the 
macro definition. For an example of PRINTF that prints the 
CMSTYPE macro definition,. see Figure 38. 

printf syslib maclib 73 86 

MACRO 
~LABEL CMSTYPE &MESSAGE 
&LABEL LA 1,TYP&SYSNDX SET PARAMETER LIST 

SVC X·CA- ISSUE CALL TO TYPLIN 
BC 15.TRA&SYSNDX BRANCH AROUND PARAMETER LIST 
DS OF (ALIGNMENT) 

TYP&SYSNDX DC CL8-TYPLI-N· COMMAND NAME 
DC ALl(1) CONSOLE NO. 
DC AL3(MES&SYSNDX) LOC. OF MESSAGE 
DC c·n· RED INK.FIXED-LOCATION-MESSAGE 
DC AL3(L·MES&SYSNDX) LENGTH OF MESSAGE 

MES&SYSNDX DC C&MESSAGE ACTUAL MESSAGE 
TRA&SYSNDX DS 08 

MEND 

R: T=O.05/0.48 11.30.52 

Figure 38. Printout of the CMSTYPE macro definition using PRINTF 

f. A macro can be replaced by -filename ASP360". where 
filename is the same as the macro name being replaced. The 
replacement can also contain one or more macros none of 
which have the same narne as the macro being replaced. 

Responses: 

None. 

Examples: 

a. MACLIB GEN LSLIB MACl MAC 2 
The macro library LSLIB MACLIB is generated from the macro 
definitions in the MAC1 ASP360 and MAC2 ASP360 files. If 
the file LSLIB MACLIB P1 already exists, it is erased and 
the new file is generated. 

b. MACLIB ADD LSLIB IOSUB 
The macro definitions in the file IOSUB ASP3~O are added to 
the end of the existing macro library LSLIB MACLIB. 

c. MACLIB LIST SYSLIB 
The names of the macro definitions in SYSLIB MACLIB are 
printed out along with each IDacro definition's index and 
size (see Figure 31)~ 

MACLIB 433 



Errbr Messages: 

E(OOOOl) INVALID MACLIB COMMAND FUNCTION OR PARAMETER LIST. 
An incorrect form of the MACLIB command was given, or, the 
parameter list is invalid. Reissue the command with the 
correct format. 

E(00002) ERROR WHILE WRITING 
An error occurred while writing the library on disk. The 
library is closed and the command terminated. All of the 
input card images that were processed before the error 
occurred are included in the file "libname" MACLIB. 

E(00003) ERROR WHILE READING 
An error occurred while reading the disk.. The library is 
closed and the command terminated. If the GEN. or ADD form 
of MACLIB had been issued, all of the input card images that 
were processed before the error occurred are included in the 
file wlibname~ MACLIB. 

E(00004) INPQT FILE NOT IN CORRECT MACRO FORMAT. 
The ASP360 file is not in correct macro format--the card 
images are out of order, the macro name is longer than eight 
characters, there is a blank in column 10, or a MEND card is 
missing from a macro definition. The library is closed and 
the command terminated. All of the input card images that 
were processed before the error occurred are included in the 
file wlibnaroe· MACLIB. 

E(OOOOS) xxxxxxxx DOES NOT EXIST. IGNORED. 
An ASP360 or COpy input file does not exist. Check to see 
that the specified file has a filetype of ASP360 or COPY. 

E(00006) MACLIB FILE SPECIFIED DOES NOT EXIST. 
The specified library file does not exist--check to see that 
the specified libname has a filetype of MACLIB. 

E(00001) MACLIB FILE SPECIFIED NOT IN CORRECT FORM. 
The specified libname is not a valid MACLIB file as created 
by the MACLIB command. 

E(00009) xxxxxxxx NOT FOUND IN DICTIONARY. 
The macro xxxxxxxx does not exist in the specified macro 
library. The MACLIB command is terminated. The macros in 
the ASP360 files that were in front of the macro xxxxxxxx 
have been replaced in the macro library. 

E(00010) REPLACEMENT FILE NOT FOUND. 
The specified filename does not exist with a filetype of 
ASP360 or COPY. 

E(OOOll) MACRO ALREADY EXISTS IN MACLIB 
The specified macro already exists in the macro library, it 
is not added again. 

434 MACLIB 



TXTLIB 

Purpose: 

The TXTLIB command (1) generates a text library, (2) adds to 
an existing text library:, (3) deletes from an existing text 
library, or (4' lists. the entry points and control section 
names, the location, and the size of the TEXT files included 
in tb~ text library. 

Format: 

TXTLIB 

GENERATE 
G 

ADD 
A 

DELETE 
D 

PRINT 
P 

LIST 
L 

libname 

GENERATE 
G libname filename1. I •• filenameN 

ADD 
A libname filename1 ••• filenameN 

DELETE 
D 

PRINT 
P 

LIST 
L 

libname csectname1, ••• csectnameN 

libname 

libname 

creates the text library "libnamew 

from the specified file(s). 

adds the contents of the specified file(s) 
to the existing text library "libnamew• 

deletes from the text library "libname" 
the specified control sections (csects). 

creates the file wlibname MAP Pi" containing 
a list of the entry points and control section 
names of the TEXT files in the library. their 
location. and the size of the TEXT file. 

provides the same information as PRINT, but the 
information is typed out at the terminal instead 
of being generated into a MAP file. 

is the name of the text library to be generated. 
added to. printed. or listed. The filetype of 
of libname must be TXTLIB. 

filenamel.,.,.filenameN specify the file(s) to be used in 
either generating or adding to a TXTLIB file. 
Their filetype must be TEXT. 

csectnamel I ••• csectnameN specify the csectfs) to be deleted 

TXTLIB 435 



Usage: 

from a TXTLIB ·file. Entry points which are not 
csectnames are ignored. 

A text library is a file that has a filetype of TXTLIB and 
that contains a dictionary and the relocatable object code 
from TEXT files. The dictionary is created by the TXTLIB/ 
command which contains the entry points and control. section 
namps, their location, and the size of each TEXT file 
included in the text library. The relocatable object code 
in T~XT files can be created by the Assembler, FORTRAN, or 
PLI compiler. 

There are five forms of the TXTLIB corrmand: GENERATE, ADD, 
DELETE, PRINT, and LIST. 

The GENERATE form of the TXTLIB comroand generates a text 
library from the specified file(s) and assigns to that 
library the identifier wlibname TXTLIB Plw. If a file 
already exists with the identifier "libname TXTLIB Pi", the 
existing file is erased. and the new file is created. 

The ADD form 
the specified 
library. 

of the TXTLIB command appends the contents of 
TEXT files to the end of the existing text 

The DELETE forro of the TXTLIB command removes the specified 
control sections frore the file "libname TXTLIB"~ If a 
TXTLIB file has two control sections with the same name, 
only the first one is deleted (unless the csectname is given 
twice in the argument list). The order of the csectnames 
given in the command argument is immaterial. 

The PRINT form of the TXTLIB command generates the file 
-libname MAP Pl- on the permanent disk. If a file already 
exists with the same identifier, it is erased and the new 
file created. The wlibname MApw file contains the same 
information as that in the dictionary of the specified text 
library and is in the format of a list of entry points and 
control section names that reside in the text library. their 
location or index in the file, and their size in number of 
card iIPages. 

The LIST form of the TXTLIB command types out the contents 
of the dictionary at the terminal and does not generate the 
file wlibnawe MAP Pl-. For an exarople of the TXTLIB LIST 
command, see wLibraries w• The pound sign (I) indicates the 
first control section name in the file. 

Both the PRINT and LIST forms of TXTLIB type out a statement 
indicating the total number of entry points and control 
section names that currently exist in the TXTLIB file. 

For the usage of text libraries, see the GLOBAL command and 
"Operating Considerations--Library Usage-. 

436 TXTLIB 



Notes: 

a. Each TEXT file that is to be included in the TXTLIB file 
must consist of one or more control sections with an END 
card image following each control section. This format is 
automatically generated by the ASSEMBLE, PL/I, and FORTRAN 
commands. 

h. With the TXTLIB ADD command, the TEXT files are added to 
the end of the existing TXTLIB file, and no checking for 
duplicate entry points or control section names is 
performed. 

c. The total number of control section names and entry 
points in the TXTLIB file cannot exceed 1000. When this 
maximum number is reached, an error message is typed out. 
The text library created includes all the text files entered 
up to (but not inciuding) the one that caused the overflow. 

Responses: 

xxx ENTRYS IN LIBE 
When TXTLIB is issued, the contents of the dictionary of the 
specified text library are typed out (see Figure 39). The 
number of entries xxx in the text library are typed out when 
either TXTLIB LIST or TXTLIB PRINT is issued. 

txtlib list a 
ENTRY INDEX SIZE 

LLHS# 2 21 
LLHS 
SUBD# 23 24 
SUBD 
SUB1 
W# 47 11 
w 

1 ENTRYS IN LIBE 
R~ T=O.28/0~41 14.13.12 

Figure 39. Example of the TXTLIB LIST command 

Examples: 

a. TXTLIB G SSP MEGOP MEG OPS 
The file SSP TXTLIB P1 is generated from the files MEGOP 
TEXT, MEG TEXT, and OPS TEXT. If SSP TXTLIB P1 already 
exists, it is erased and the new file created. 

b. TXTLIB ADD SSP MYROUT 
The contents of the file MYROUT TEXT are added to the 
existing file SSP TXTLIB. No checking for duplicate entries 
is performed. 

c. TXTLIB DEL A SUBD-
The control section SUBn' in text library A is deleted. 

TXTLIB 431 



TEXT LIBRARIES 

This section covers the libraries 
missing subroutines or undefined 
execution of LOAD. USE, or REUSE. 

that are searched 
filenames during 

The libraries and their contents are outlined below. 

TXTLIB CONTENTS 

SYSLIB FORTRAN library 

CMSLIB Nonerror message FORTRAN subroutines 

PLILIB PL/I library and subroutines 

SSPLIE FORTRAN scientific subroutines 

440 Text Libraries 

for 
the 



SYSLIB 'I'XTLIB 

The library SYSLIB TXTLIB contains the FORTRAN Library as 
well as a number of CMS library subroutines. Refer to Form 
C28-6596,. OS/360 FORTRAN IV Library Subprograms - for a 
description of the routines from the FORTRAN library,. This 
section contains the descriptions of the subroutines written 
for use under CMS. 

The subroutines described are: 

Entry Point 

BLIP 

TRAP 

NLSTON/NLSTOF 
CPNMON/CPNMOF 

DEFINE 

DSDSET 

GETPAR 

ERASE 

LOGDSK 

RENAME 

TAP SET 

REREAD 
REREADV 

Description 

Notifies user of executing program 

sets a user's return from an external 
interrupt 

Allows free format I/O with NAMELIST 

Equates a data set reference number with a 
CMS file and allows that file to be accessed 
at random 

Changes record format and length for FORTRAN 
disk files 

Obtains parameters from eMS commands 

Removes a specified file from the disk 

Closes all open files and updates the P-disk 

Changes the identifiers of disk files 

Changes default settings of FORTRAN logical 
tape units 

Rereads a record with different formats 

This library provides extended error messages. These 
include a traceback with registers 15,14,0, and 1 and the 
entry point location. A standard fixup is taken, and a 
summary of errors is typed at prograro coropletion. 

SYSLIB TXTLI~ 441 



BLIP Subroutine 

Purpose: 

The BLIP subroutine causes a string of from one to eight 
characters to be typed on the console periodically during 
eMS operation. The BLIP characters are typed out after 
every two seconds of CPU execution and give the user an 
indication of the execution time of his program. 

Calling Sequence: 

CALL BLIP (·character-, count) 
The count parameter roust be an integer from one to eight 
indicating the number of BLIP characters .• 

CALL BLIP (ee) 

If the count is defaulted, a count of one is assumed. 

CALL BLIP (0) 
If the first parameter is a zero, the BLIP characters are 
reset to their nonprinting default setting (a space followed 
by a backspace). 

CALL BLIP (OFF) 
If the first parameter is (OFF). the BLIP function is turned 
off--that is" there is no indication every two seconds of 
CPU execution. 

Usage: 

The default setting of the BLIP characters is a sequence of 
nonprinting characters. If it is desired to have a printed 
recording of the execution of a program, the BLIP characters 
should be changed to printing characters (for example, a 
single dot). 

Error Messages: 

None. 

442 BLIP 



NLSTON/NLSTOF Subroutines 
CPNMON/CPNMOF Subroutines 

Purpose: 

The NLSTON/NLSTOF subroutines allow a user to input 
variables to a FORTRAN program in a free format mode without 
specifying the variable names, as is required with the 
normal NAMELIST feature of FORTRAN. 

Calling Sequence: 

CALL NLSTON 
To set the namelist feature to the free format mode. 

CALL NLSTOF 
To set the namelist feature to the norroal FORTRAN mode. 

Usage: 

Under the normal namelist mode, the variable name and an 
equal sign must be specified with the value for each 
variable. In addition, the name of the list preceded by an 
ampersand (&) must be specified before the values for the 
variables are specified, and the terminating marker &END 
must be specified after the values for the variables are 
specified (see Figure 40). 

Under the free format namelist mode., each variable is 
specified in the same order as indio~ted in the namelist 
statement. where each variable is deliroited by a comma or a 
tab (see Figure 41). 

To use this namelist feature, the routine NLSTON must be 
called. This causes the free format mode to be in effect. 
Read-and-write statements are then issued in the standard 
way. 

To return to the normal mode, a call to NLSTOF should be 
made. Thus, one can go from one to the other as desired. 

Note: 

CPNMON/CPNMOF are equivalent to NLSTON/NLSTOF. 

Examples: 

&name a=l., b=2., c=3. 
&end 
Data specified under the standard name list mode. 

1., 2., 3. 
Data specified under the free format namelist mode. 

NLSTON/NLSTOF 443 



printf normal fortran * * 12 

REAL*4A 
INTEGER B 
DIMENSION C(3) 
NAMELIST/LIST1/A,B,C 
READ (S,LIST1) 
WRITE(6.LIST1) 
STOP 
END 
R; T=0.OS/0.1S 10.02.33 

$ normal 

EXECUTION BEGINS ••• 

&listl 
a=l., 
b=2., c=3., 4., 
~ 
&end 
&LISTl 
A= 1.0000000 ,B= 2,C= 3.0000000 ,4.0000000 ,S.OOOO 
&END 
R; T=0.32/1.02 10.10.4Q 

Figure ·40. Example of a normal NAMELIST function 

printf freefrm fortran * * 12 

REAL*4A 
INTEGER B 
DIMENSION C(3) 
NAMELIST /LIST1/ A,B,C 
CALL NLSTON 
READ(S,LIST1) 
WRITE(6,LIST1) 
STOP 
END 
R; T=0.03/0.48 10.11.56 

$ freefrm 
EXECUTION BEGINS ••• 
1,2,3,4,S 
&LISTl 
&END 
A=1.000000 ,B= 2,C=3.0000000 ,4.0000000 ,5.0000 
R; T=O.28/0.58 10.12.22 

Figure 41. Example of a free form NAMELIST function 

444 NLSTON/NLSTOF 



DEFINE Subroutine 

Purpose: 

The DEFINE subroutine defines Fortran disk files that may be 
accessed randomly and makes a correspondence between a eMS 
file and a Fortran logical unit number. 

Calling Sequence: 

CALL DEFINE (dsrn, name;, type, recno, recsiz, <&n» 
where 

dsrn is the FORTRAN data set reference number 
associated with the defined CMS file. 
parameter must be a four-byte integer or 
variable. 

name is the filenaroe of the CMS file and it 
eight-bytes in length. 

type is the filetype of the eMS file and it 
eight-bytes in length. 

to be 
This 

int~ger 

must be 

must be 

recno must be a four-byte integer variable. Each file 
defined should use a different variable for recno. 
This parameter indicates which record of the file is 
to be read or written. 

recsiz is a four-byte integer or integer variable that 
contains the record length. All records must be the 
same length. If the file already exists, the value 
of this parameter is reset by the DEFINE routine. 
The maximum recsiz is 256K. 

Usage: 

DEFINE is used to make a correspondence between a CMS file 
and a FORTRAN data set reference number, such that the 
identifiers FILE FTxxFyyy are not required for FORTRAN disk 
file reads and writes. Records may then be read or written 
using a standard FORTRAN statement. Records can be accessed 
either sequentially or randomly using the sequential I/O 
statements. Before each READ or WRITE statement the record 
number must be set to the record wanted. After the execution 
of the READ or WRITE statement, the record number is 
automatically increroented to point to the next record in the 
file. Thus, to READ or WRITE a file sequentially, the 
variable for recno must be initially set to one before any 
READ or WRITE statement is executed. All c.ontrol operations 
are ignored; however, resetting the variable for recno to 
one is equivalent to rewinding the file, and setting the 
variable for recno to recno+l is equivalent to skipping one 
record. 

Records may be read and written without closing the file. 

DEFINE 445 



Thus updating in place is easily accomplished. 

For accessing FOR~RAN di$k files randomly. the normal 
FORTRAN IV direct access 1'/0 statements should be used 
instead of the DEFINE subroutine. 

Notes: 

a. The user should remember that each READ or WRITE 
statement increments the record number by at least one. If 
the format statement indicates several records to be read or 
written. the record number is incremented accordingly. 

h. Unformatted READ or WRITE statements may read or write 
only one record per statement. 

c. Each different file should use a different variable for 
recno. 

d. A second call to DEFINE with the same dsrn undefines the 
old data set and associates the dsrn with the new data set. 

e. A maximum of 20 files may be defined for random access. 

f. Programs using DEFINE should not use the unformatted 
PUNCH, PRINT, or READ statements. 

Error Messages from the CALL to DEFINE: 

ILLEGAL DSRN SPECIFIED FOR DEFINE 
This means that dsrn is specified as 0, 5, 6, 7, or greater 
than 99. 

ILLEGAL PARAMETER FOR DEFINE 
This means that name or type was not specified, or, that the 
first byte of this filename is X~OO·. 

TOO MANY DEFINE FILES 
Maximum number of different files is 20. 

DATASET DOES NOT HAVE FIXED LENGTH RECORDS 

Error Messages during program execution: 

DIRECT ACCESS RECORD NO.=O 
This means that the record number variable for recno was set 
to zero. 

FATAL ERROR DURING DIRECT ACCESS READ (WRITE) 
A fatal disk error occurred during the reading or writing of 
a defined file and no ERR exit was specified in the user's 
program. 

EOF DURING DIRECT ACCESS READ 
The record pointer variable for recno was set to a number 
larger than the number of records in the file, and no END 

446 DEFINE 



exit was specified in the user's program .• 

Example: 

The program below uses CALL DEFINE to 
sequentially and DSRN4 directly. 

access DSRN2 

10 

NUM=l 
J=l 
CALL DEFINE(2,·X 
CALL DEFINE(q,·ABC 
READ(4,10) K 
WRITE(6,10) K 
WRITE(2,10) K 
FORMAT(1H ,1Q) 
NUM=3 
J=2 
READ (4,10) K 
WRITE (6,10) R 
WRITE (2 .. 10) K 
NUM=2 
READ(4,10) K 
J=3 
WRITE(6,10) 1< 
WRITE (2,10) 1< 
STOP 
END 

DEFINE 

','Y ',J,80) 
','DEFGHIJK',NUM,80) 

441 



DSDSET Subroutine 

Purpose: 

The DSDSET subroutine enables a user to change the record 
fo~at and logical record length for FORTRAN disk files. 

Calling sequence: 

CALL DSDSET (dsrn# blksize, recfm, lrecl) 

where 

dsrn is the FORTRAN data set reference number that is used 
to reference the specified logical unit. This 
number must be from 1-14 with exception of 5;, 6, 
and 7. 

blksize is the byte count for the maximum size of 
physical records to be read or written on 
specified unit. 

the 
the 

recfm is a type number from 1-5 ind1cating the record 
format. The type numbers are: 
1) fixed record size, unblocked 
2) fixed record size, blocked 
3) variable record size, unblocked 
q) variable record size, blocked 
5) undefined record size, no blocking 

lrecl is the byte count of the logical record to be read or 
written. It is used for record format types 1-4. 
For type 2 records, blksize must be an integral 
mUltiple of lrecl; refer to IBM System/360 
Operating System FORTRAN IV (G and H) Programmer's 
Guide (C28-6817) for a discussion of lrecl and 
blksize for variable type records. 

Usage: 

A call to DSDSET is made to change the default settings for 
data reference numbers 1-14 with the exception of 51, '6, and 
7. If it is not required to change the association of a 
data set reference number with a symbolic tape unit, a call 
to DSDSET can be made instead of a call to TAPSET.. The 
default settings for FORTRAN disk files are as follows: 

q48 DSDSET 



Data Set Block Format Logical Record 
Reference Number Size Type Length 

1 80 1 80 
2 80 1 80 
3 80 1 80 
4 80 1 80 
8 133 1 133 
9 80 1 80 

10 80 1 80 

Notes: 

The default settings for FORTRAN logical units 5. 6. and 7 
cannot be changed. Logical unit 5 is the sysin device to 
read from the terminal. and logical unit 6 is the sysout 
device to write on the terminal. The default settings are 
as follows.: 

Data Set Block Format Logical Record 
Reference Number Size Type Length 

5 80 1 80 
6 120 1 120 
7 80 1 80 

DSDSET 449 



ERASE Subroutine 

PUrpose: 

The ERASE subroutine removes a file from the user's file 
directory. 

Calling Sequence: 

CALL ERASE (fname. ftype!, <fmode» 
where 

fname is the filename of the file to be erased. 

ftype is the filetype of the file to be erased. 

fmode is the filemode of the file to be erased. 

Usage: 

ERASE is used to erase a file (that is, to remove it from 
the file directory). 

Examples: 

a. CALL ERASE (., ABC e I, e DEF ' ) 
CALL EXIT 
END 

This sequence causes the reference to ABC DEF to be removed 
from the file directory. 

b. REAL*8 NAME,TYPE 
DATA NAME/'ABC '/,TYPE/eDEF '/ 
CALL ERASE (NAME,~YPE) 

CALL ·EXIT 
END 

This sequence causes the file ABC DEF to be erased from the 
file directory. 

450 ERASE 



GETPAR Subroutine 

Purpose-: 

The GETPAR subroutine obtains the. parameters specified when 
the command or program was called from eMS. 

Calling Sequence: 

CALL GETPAR (name, nurober <., -RITE- > <,&last» 

where 

name is the variable (real*8) that is to take the value of 
the parameter indicated by the argument "number". 

number is the parameter number (inter*4) in the initial 
parameter list of the parameter desired: it may be 
any nonnegative value, with zero indicating the 
command or program name on initial entry. If number 
exceeds the number of parameters in the string. no 
parameter is passed, and control passes to statement 
-last- if &last is specified. 

-RITE' is an optional literal which causes the current 
parameter to be right-justified in its doubleword 
field, with leading blanks supplied. This is useful 
in reading numeric parameters. 

&last is an optional statement label to which control is 
passed if "numberw exceeds the number of parameters 
specified. 

Usage: 

If GETPAR is called with item number equal to zeror, the 
command name or program entry is returned. If the error 
return is not specified and the parameter corresponding to 
the item number was not specified, the routine returns 
without storing any parameter. Note that blanks are not 
returned for an unspecified parameter. 

Example: 

CALL GETPAR (PARAM (I)~ I, '100) 
Parameter I is stored in the array PARAM if it was 
specified: otherwise, control passes to statement 100. 

GETPAR 451 



LOGDSK Subroutine 

Purpose: 

The LOGDSK subroutine closes all open files and writes the 
file directory onto the permanent disk. 

Calling Sequence: 

CALL LOGDSK 

Usage: 

The user should call LOGDSK during the execution of his 
program if he wants to cause new or modified files to be 
permanently written onto the permanent disk before the 
completion of the program and the return to the eMS command 
environment. 

Error Exit: 

If the directory cannot be written out, the virtual machine 
is put in disabled wait state and control is passed to CP. 

452 LOGDSR 



RENAME Subroutine 

Purpose: 

The RENAME subroutine allows a file identifier to be changed 
from within a FORTRAN program. 

Calling Sequence: 

CALL RENAME (aldfn, oldft, newfn, newft) 
where 

oldfn is the filename of the file to be 

oldft is the filetype of the file to be 

newfn is the filename to be given to the 

newft is the filetype to be given to the 

Usage: 

changed. 

changed. 

file. 

file. 

RENAME is used to change the file identifiers of a file from 
within a FORTRAN program. 

ExamEles: 

a. CALL RENAME (-ABC , 
, 'DEF 

, 
, 'NEW 

, 
, 'DEF ' ) 

CALL EXIT 
END 

This program takes the file ABC DEF and changes its 
identifiers to NEW DEF .• 

b. REAL*8 NAME, TYPE" NNAflJE" NTYPE 
DATA NAME/' ABC '/ ,TYPE/'DEF '/ 
DATA NNAME/'NEW '/,.NTYPE/'DEF '/ 
CALL RENAME (NAME,TYPE,NNAME,NTYPE) 
CALL EXIT 
END 

This program also changes file ABC DEF to NEW DEF. 

RENAME 453 



REREAD Subroutine 

Purpose: 

The REREAD subroutine provides a facility for rereading a 
record with different format statements without performing 
any input/output operations. 

Calling Sequence: 

CALL REREAD (dsrn, <blksize» 

where 

dsrn specifies any data set reference number from 1 to 99. 
except unit 5~ 6, or 7. 

blksize specifies the 
the blocksize 
bytes. 

Usage: 

blocksize for the reread record. 
is omitted. it is defaulted to 

If 
140 

A call to REREAD is made when it is desired to specify a 
reread unit or to change the data set reference number or 
the blocksize. To read a record from the reread unit a 
second or subsequent time, a REWIND n statement must be 
executed before the READ statement: if a subsequent reread 
is issued w~thout executing a REWIND statement, an END OF 
FILE condition results. Any input/output statements can be 
issued between a write and a read on the reread unit. 

Error Returns: 

None .• 

454 REREAD 



TAPSET Subroutine 

Purpose: 

The TAP SET subroutine changes the default settings for the 
FORTRAN logical tape units. 

Calling Sequence: 

CALL TAPSET (tapno, dsrn, <blksize>,. <trodeset>, 
<recfm>. <lr-Jcl» 

where 

tapno is an integer from 1-4 indicating the virtual tape 
unit TAP1, TAP2, TAP3, or TAP4 corresponding to device 
address 180, 181, 182. or 183. 

dsrn is the FORTRAN data set reference number that is used 
to reference the specified tape unit. This nuwber must 
be from 1-14 with the exceptions of 5, 6. and 7. 

blksize is the byte count for the maximum size of the 
physical records to be read or written on the defined 
unit. 

modeset is a code number for setting the mode mask for 
7-track operations. The mask is ignored on all 9-track 
operations. 

The code numbers range from 1-15 in groups of 5. Codes 
1-5 are for 800 bpi:, 6-10 for 556 bpi. and 11-15 for 
200 bpi. Within each group of 5, the mode setting is 
as follows: 

1) odd parity, converter on, translator off 
2) odd parity. converter off. translator on 
3) odd parity, converter off, translator off 
4) even parity, converter off, translator on 
5) even parity, converter off, translator off 

recfm is a type number from 1-5 indicating the record 
format. The type numbers are: 

1) fixed-record size, unblocked 
2) fixed-record size l • blocked 
3) variable record s~ze, unblocked 
4) variable record size, blocked 
5) undefined record size, no blocking 

lrecl is the byte count of the logical record to be read or 
written. It is used for record format types 1-4. For 
type 2 records, blksize must be an integral multiple of 
lrecl; refer to IBM System/360 Operating System 
FORTRAN IV (G and H) Programmer's Guide (C28-6817) for 
a discussion of lrecl and blksize for variable type 

TAP SET 455 



records. 

If the parameter blksize, modeset, recfm, or lrecl is zero 
or omitted, the parameter is defaulted to that which was 
previously-set, or defaulted for the tape unit. 

Usage: 

FORTRAN data set reference numbers 
logical tape units. These units 
devices TAP1-TAP4. and to virtual 
default settings are as follows: 

Vir 
Dev 

180 
181 
182 
183 

Sym 
Dev 

TAP1 
TAP2 
TAP3 
TAP4 

Data Set 
Ref 

11 
12 
13 
14 

Blk 
Size 

80 
133 
800 

1330 

Modeset 
Code 

1 
1 
1 
1 

11-14 are the standard 
correspond to symbolic 
devices 180-183~ The 

1 
1 
2 
2 

lrecl 

80 
133 

80 
133 

The parameters blksize, modeset, recfm, and lrecl are 
associated with the dsrn.. If a call to tapset is made with 
these settings defaulted" the settings previously associated 
with the dsrn will still be in effect. If a call to TAP SET 
associates a tape unit with a dsrn which is ,already 
associated with a tape, the tape previously associated with 
that dsrn will not be associated with any logical unit. If 
a call to 'TAPSET associates a tape unit with a dsrn 
different from that with which it was previously associated, 
the previous dsrn will be associated with disk files. If a 
call to TAPSET associates a tape unit with a dsrn which was 
previously associated with a disk file, a read or write to 
that dsrn will be directed to the tape unit. 

If the blocksize is defaulted, the following message is 
typed at the terminal or on sysout. 

TAPSET-BLKSIZE IS ZERO OR NEGATIVE; DEFAULT USED. 

If the logical record length parameter is defaulted, the 
following message is typed at the terminal or on sysout: 

TAPSET-LRL IS ZERO OR NEGATIVE: DEFAULT USED. 

Note: 

In the current eMS, TAP3 and TAPq are not defined, therefore 
data set reference nurobers 13 and 14 should not be used. 

Return Message: 

TAPSE~-ONLY ONE ARGUMENT; CALL IGNORED. 
The tape number, tapno. and the data set reference number, 
dsrn, are required parameters. If a call to TAPSET is made 

456 TAPSET 



with only one argument, the routine returns without altering 
the settings for FORTRAN logical tape units. 

Error Exits: (program terminates) 

ABEND 1 TAPESET-INVALID TAPE NUMBER: TERMINATING. 
Only tape numbers 1-4 are legal paraweters. 

ABEND 2 TAPSET-DSRN IS GREATER THAN 14: TERMINATING. 

ABEND 3 TAPSET-DSRN OF ZERO IS ILLEGAL: TERMINATING. 

ABEND 4 TAPSET-MODESET CODE IS GREATER THAN 15; TERMINATING. 
Only the modeset codes from 1-15 are legal .• 

ABEND 5 TAPSET-RECFM CODE IS GREATER THAN 5: TERMINATING. 
Only the record format type numbers from 1-5 are legal. 

ABEND 6 TAPSET--DSRN5, 6 1, AND 7 ARE ILLEGAL FOR TAPE UNITS. 

TAP SET 457 



TRAP Subroutine 

Purpose: 

The TRAP subroutine sets a user's return for an external 
interrupt. This return overrides the call to DEBUG on an 
external interrupt. 

Calling Sequence: 

CALL TRAP (extrap) 
where extrap is the name of an external routine which is 
transferred to on an external interrupt. 

CALL TRAP (0') 

If the argument to TRAP is zero, the external interrupt 
return is reset to go to DEBUG. 

Usage: 

The interrupt routine should set a flag which should be 
examined by tne main line program. After the flag is set, 
the interrupt routine should issue a RETURN to the executing 
program. The main line program should periodically examine 
the trap flag to determine whether an external interrupt has 
occurred. 

Example: 

The following sample program illustrates the use of the TRAP 
procedure, using a FORTRAN pseudo sense switch as the flag 
for communicating between the interrupt routine and the main 
line program. 

EXTEFNAL EXT RAP 
CALL TRAP (EXTRAP) fortran testtrao 
CALL SLITE (0) T=2.23 15:26:58 
DO 10 K=1,10000 
CALL SLITET(2.1) $ testtrap 
IF (1. EQ.1) GOTC 20 EXECUTION BEGINS. ' •• 
IF (1.NE.2) GOTO 30 50 TIMES 
IF (~OD(R,50) .EQO)WRITE(6.100)K 100 TIMES 

10 CONTINUE 150 TIMES 
20 WRITE (6,200) 200 TIMES 

STOP 250 TIMES 
30 WRITE (6,300) 300 TIMES 

STOP e 
100 FORMAT(lX,11S-,TIMES·). END OF RUN 
200 FORMAT(" END OF :RUN') IHC0021 STOP 0 
300 FORMAT (\. SENSE LITE ERROR'-) 

END 

458 

SUBROUTINE EXTRAP 
CALL SLITE(2) 
RETURN 
END 

TRAP 



CMSLIB (Non-Error-Message FORTRAN Library) 

The library CMSLIB TXTLIB contains the non-error message 
FORTRAN subroutines. To specify that these subroutines are 
to be used, issue the command 

GLOBAL T CMSLIB SYSLIB 

The routines contained in CMSLIB TXTLIB are listed below. 

IHCFCOMH 
IBCOM# 
FDIOCSI 
INTS~iTCH 

IHCCOMH2 
SEQDASD 
IHCDIOSE 
DIOCS' 
IHDFIOSH 
FIOCS# 
IHCFINTH 
ARITH# 
ADJSwrCH 
IHCTRCB 
IHCERRM 
DEFINE 
REREAD 
REREADV 
IXCCMS 
CMSFORTR 

The entries DEFINE, REREAD, REREADV, IXCCMS, and CMSFORTR 
are included in both SYSLIB TXTLIB and CMSLIB TXTLIB:, since 
they are dependent on whether the extended error message or 
non-error message subroutines are used. 

CMSLIB 459 



PLILIB--PL/I Library 

The library needed for PL/I execution is PLILIB. It resides 
on the system disk. To specify that this library is to be 
used, issue the command 

GLOBAL TXTLIB PLILIB 

460 PLILIB 



SSPLIB--FORTRAN Scientific Subroutine Library 

SSPLIB is a text library residing on the system disk that 
contains Version 2 of the FORTRAN scientific Subroutine 
Package. For further information on these subroutines, refer 
to System/360 scientific Subroutine Package--Application 
Description (H20-0205). 

SSPLIB 461 



MACRO LIBRARIES 

SYSLIB--System Macro Library 

The system macro library of CMS is called SYSLIB 
MACLIB and it resides on tbe system disk,. This 
macro library is used by the ASSEMBLE command to 
expand undefined macros. 

For a discussion of the eMS macros in SYSLIB 
MACLIB, refer to ftASSEMBLE--CMS Macros-. 

OSMACRO--OS Macro Library 

OSMACRO MACLIB contains 
discussion of these, 
Macros,ft • 

the OS macros. For a 
refer to -ASSEMBLE--OS 

To generate additional macro 1ibraries and modify them. see 
the MACLIB command. To specify that only certain macro 
libraries are to be used during ASSEMBLE, see the GLOBAL 
command. 

462 Macro Libraries 



CP-61 CONSOLE FUNCTIONS 

To communicate with the Control Program (CP) and to simulate 
the computer conso1e l , the user can issue CP console 
functions. These console functions allow the user to 
perform such operations as: initially loading the desired 
system (that is, CMS>, dumping core selectively, closing out 
files on unit record devices, displaying core and machine 
conditions, communicating with the operator in the computer 
room, as well as with other users, querying the number of 
users on the system as well as other parameters, controlling 
messages typed on his terminal, and beginning program 
execution at a certain core location. The user also has the 
ability to simulate the System/360 console system reset key, 
to cause the Control Program to simulate an external 
interrupt, to replace specified parts of core, to ready 
specified I/O devices, and to release the virtual machine. 
Additional I/O devices can also be added to a specific 
virtual machine and then be released for use by another 
virtual machine. The user can direct his spooled output to a 
particular device, he can purge spooled input and output 
files" and he can place his terminal in a dormant state, so 
as to receive messages when he is not actively using the 
terminal .• 

The Control Program environment is entered on the completion 
of the login procedure (see "Terminal Usage-Logging 
Procedures") • After the message READY AT xx. xx'. xx ON 
xx/xx/xx is typed at the user·s terminal, where xx,.xx.xx is 
the time of day and xx/xx/xx is the date, the keyboard is 
unlocked and the Control Program is then ready to accept 
console fUnctions. By typing IPL CMS or IPL 190, the user 
loads the Cambridge Monitor System and he can begin issuing 
CMS commands. To load other operating systems, type IPL 
xxx, where xxx is the address of that operating system's 
systems residence device: the terminal then becomes the 
operator·s console for that operating system. 

To reenter the Control Program from CMS, or other system 
environment, the user must hit ATTN once. This causes the 
keyboard to unlock on the 21lJl. 1050, and TTY 33 or 35, and 
permits the Control Program to ~ccept console functions. If 
ATTN is hit again while in the Control Program, the keyboard 
unlocks for an input line to be entered, such as a CMS 
command or a line of data for the program being loaded and 
executed: control is then transferred to the environment 
from which the control program was entered. For instance, 
if the CMS command ASSEMBLE LOOPX had been issued, then ATTN 
was hit twice and PRINTF LOOPX LISTING entered, the assembly 
would continue, and as soon as it terminated, the LISTING 
file would be typed out. If there is no desire to enter an 
input line once the keyboard has unlocked, hit carriage 
return and then control is transferred (as above), to the 
environment from which the Control Program was entered.. The 
console function BEGIN is also used to leave the Control 
Program: it causes control to transfer either to the 

Console Functions 463 



environment from which CP was entered, or to a specific core 
location. if one is specified,. See the CP BEGIN command for 
more details. 

CONSOLE FUNCTION DESCRIPTIONS 

CP console functions are issued in the Control Program 
environment. Input can be entered in either uppercase or 
lowercase. Enterinq input in lowercase enables the user to 
distinguish the input from the output. since all output is 
typed in uppercase. 

The Control Program has a character-delete symbol and a 
line-delete symbol, both of which are the same as the 
default characters in CMS. The AT character (2) deletes 
the immediately-preceding character from the input line and 
itself. It may be used repetitively to delete a strinq of 
characters. The cent character (¢) or shift K (left bracket) 
on the teletype, deletes all preceding characters in the 
line and itself. A character-delete symbol Ca) cannot be 
used to delete a line-delete symbol ce). Note that if the 
character-delete and line-delete symbols are redefined in 
CMS, they are not redefined in CP. 

The Control Program also has a logical carriage return or 
line-end character to allow,multiple console functions to be 
typed on one line. The logical line-end character is the # 
and it cannot be changed. If the logical line-end character 
is redefined in eMS via the LINEND command, it does not 
redefine it for CP-67. ---

One or more blanks must be used to delimit operands or 
arguments specified with the console functions. 

A console function is accepted and executed if a carriage 
return occurs and the keyboard is unlocked, unless the 
console function caused control to pass to another 
environment, in which case the response is that of the new 
environment. If a console function is rejected, the message 
INVALID CP REQUEST is typed. If invalid operands are 
specified with a console function, the roessage BAD ARGUMENT 
xx is typed, where ~x is the argument number. If only one 
operand is specified and it is invalid, the console function 
is not executed. If multiple operands are specified, and 
part of them are invalid, the valid operands specified 
before the first invalid operand are executed properly. If 
a null line is entered to CP (that is, a carriage return 
with no previous characters in the line) the confirming 
message CP is typed. 

The console functions that are available for the user are 
listed below. 

464 Console Functions 



CONSOLE FUNCTIONS 

BEGIN 

CLOSE 

DETACH 

DISCONN 

initiates execution at either a specified core 
location or at the location specified on the 
current PSW (which is normally the location from 
which the Control Program was last entered) 

releases the spooling areas 
multiplexer devices, and the 
is performed for any output 

from the specified 
actual I/O operation 

removes the attached device whose address is 
specified frow. the virtual machine configuration 

causes the terminal 
virtual machine, 
continues to run 

to be 
while 

disconnected from the 
the virtual machine 

DISPLAY types out in hexadecimal the contents of the 
virtual machine·s core storage, general-purpose 
registers, floating-point registers, and/or PSW 

DUMP prints in hexadecimal on the virtual printer the 
contents of core storage, general-purpose 
registers, floating-point registers, and/or the 
PSW 

EXTERNAL simulates an external interrupt on the virtual 
machine and returns control to that machine 

IPL causes the Control Program to simulate 
Program Load sequence on a specified 
clears all virtual storage to zeros. 

an Initial 
device, and 

IPLSAVE causes the Control Program to simulate an Initial 
Program Load sequence on a specified device 
without first zeroing core. 

LINK attaches the specified device to the requester's 
virtual machine, based on information contained in 
the CP-61 User Directory 

LOGOUT removes the user from the system by releasing the 
virtual machine and any attached devices, by 
clearing the temporary disk area, and by closing 
the spooling areas 

MSG sends a specified message to a specific user 

PURGE allows the user to delete all spooled files (not 

QUERY 

currently processed for output) from his virtual 
printer or punch, or to delete all his spooled 
input for his virtual card readers without reading 
the data 

types out the number of users logged on or dialed, 

Console Functions 465 



READY 

RESET 

SET 

SLEEP 

SPOOL 

STORE 

XFER 

466 

the identification and terroinal address of the 
users loqged on, the terminal address of a 
specific logged-on user (or a message that he is 
not logged on), the log roessage sent by the 
operator, the number of spooled input and output 
files currently held by CP for the user, or the 
amount of connect, virtual CPU, and total CPU 
times used since login. 

simulates a device end for the specified virtual 
address 

simulates the system reset key on the system 
control panel 

allows the user to save the card file in his 
virtual card reader, to control the messages and 
warnings typed at his terminal, and to control his 
running status 

allows the user to place his terminal in a dormant 
CP mode such that he may receive messages without 
hitting carriage return 

allows the user to direct his spooled output to a 
specific unit record device at the computing 
facility and to control the nature of reading 
spooled input files 

replaces the contents of specified locations in 
core storaqe, general-purpose registers, 
floating-point registers, and the PSW 

controls the passing of files between users 

Console Functions 



BEGIN 

Purpose: 

BEGIN initiates execution at either a specified core 
location or at the location specified in the current PSW 
<which is normally the location from which the Control 
Program was last entered). 

Format: 

I BEGIN 
I B 

<hexloc> 

hexloc is the hexadecimal core location at which execution 
is to be9in. 

Usage: 

BEGIN transfers control to the specified hexadecimal core 
location. If a hexadecimal core location is not specified, 
execution resumes from the location contained in the current 
program status word (PSW)--this is normally from the 
1ocation at which the Control Program was last entered, 
unless the PSW was previously changed. For example. if the 
Console Program had been entered from CMS by hitting ATTN. 
and BEGIN is issued without specifying a core location" eMS 
is entered at the location from which it was left. 

Responses: 

BAD ARGUMENT xx 
An invalid hexadecimal core location was specified in 
argument number xx. Correct the request and issue again. 

Any other response will be that of the new environment. 

Examples: 

a. b 
Execution resumes at the location from which CP was last 
entered. 

h. b 15000 
Control is transferred to hexadecimal core location 15000. 

BEGIN 467 



CLOSE 

Purpose: 

CLOSE releases the spooling 
multiplexer devices. and the 
performed for any output. 

Format: 

CLOSE 
C 

devadd 

areas f'rom 
actual I/O 

the specified 
operation is 

devadd is the device address of the virtual card reader, 
card punch, and printer. which are normally OOC, 
OOD. and OOE, respectively, for CMS. 

Usage: 

In releasing the spooling areas for the virtual card punch 
or printer, CLOSE punches or prints the contents of the 
spooling area on the real device when that device becomes 
available. The printed output is preceded by one page which 
contains the user·s identification, the date, and the time 
of day. 

The punched output is preceded by one card which contains 
the user's identification. the date. and the time of day, in 
the following format: 

columns 
columns 
columns 
columns 
columns 

1-10 
13-20 
25-32 
37-44 
49-80 

CP67USERID 
user·s id, left-justified 
date hnm/dd/yyl 
time (hh.mm.ss) 
asterisks (*) 

This punched ID card is in the 
the input identification card 
card reader input for users. 

correct format to be used as 
required by CP for spooled 

In releasing the spooling area for the virtual card reader, 
CLOSE assuroes that the user has read all the cards he wants 
from the current card deck and frees the spooling area. If 
another command to read a card is then executed, CP returns 
either the first card of the next deck it has read for that 
user (if any), or reader-not-ready. 

Notes: 

a. CLOSE OOE must be given after the DUMP console function 
has been issued. 

h. Logging out from CP automatically issues a CLOSE for 
the virtual card reader. printer, and punch and releases all 

468 CLOSE 



spooling areas. 

Responses: 

BAD ARGUMENT xx 
An invalid device was specified in argument number xx. 

Examples: 

c e 
The spooling area for the virtual printer is printed and 
released,. 

CLOSE 469 



DETACH 

Purpose: 

DETACH removes the specified attached device from the 
virtual machine configuration. 

Format: 

DETACH I devaddr 
DE 1 

devaddr specifies the address of a device that had 
previously been attached to the virtual machine. 

Usage: 

DETACH removes the specified device from the user's virtual 
machine configuration for the current session. DETACH is 
also used in conjunction with the console function ATTACH, 
which can only be issued by the CP operator. Once a device 
has been ATTACU'ed to a virtual machine (see "Console 
Function Applications" for a discussion of attaching I10 
devices), the responsibility is left to the user to remove 
or detach the specified device from his configuration.. As 
long as the device is attached to him" it is unavailable for 
use by any· other user. 

DETACH removes the specified device from the configuration. 
As soon as the device is detached, the message DEV devadd 
DETACHED is typed out at the terminal and the device is free 
for use by other users. Also, a message is automatically 
typed out to the CP operator specifying the device that is 
free. If the device address detached is that of a tape 
dri ve,. the tape is rewound and unloaded. 

Responses: 

a. BAD ARGUMENT xx 
An invalid argument was specified. 

b. DEV devadd DETACHED 
The specified device address is no longer usable. The 
device must be attached again for further use. 

c. NONEXlsTENT UNIT 
The specified unit does 
configuration. Either it 
attached. 

410 

not exist in the virtual machine 
has been detached or it never was 

DETACH 



Examples: 

a. DETACH 181 
console function: detach 181 
response: DEV 181 DETACHED 

Unit 181 is detached from the virtual machine configuration. 

h. DET OOC 
The spool reader OOC is removed from the users virtual 
machine. 

DETACH 471 



DISCONN 

purpose: 

DISCONN causes the terminal to be disconnected from the 
virtual machine, and the virtual machine continues to run. 

Format: 

DISCONN 1 <anything> I 

anything is any nonblank character string that signifies the 
phone line is not to be hung up upon 
DISCONN-ecting 

Usage: 

nISCONN causes the terminal to be disconnected from the 
virtual machine. The virtual machine continues to run as 
though the user had issued BEGIN. Any "writes" to the 
terminal (virtual console) are ignored. The virtual machine 
is automatically logged out if a "readft is attempted from 
the terminal, or if the virtual machine goes into the 
disabled wait state. The DISCONN'ected virtual machine runs 
with low priority in Q2 of the dispatcher. 

If the <anything> option is selected, the line is not 
disabled. The terminal can then be used to LOGIN with 
another userid, or to DIAL into a mUltiaccess system. 

At a later time, a user can ftreconnect" with his 
DISCONN·ected machine simply by following the normal login 
procedure. This reconnection can be made from any terminal. 
The message: 

RECONNECT AT xx/xx/xx ON xx/xx/xx 

is printed upon reconnect ion and the terminal is placed in 
console function mode,. To continue running the virtual 
machine, a BEGIN is required,. 

472 DISCONN 



DISPLAY 

Purpose: 

DISPLAY types in hexadecimal the contents of the virtua1 
machine's core storage" general~purpose registers. 
floating-point registers" i:lnd/or program status word. For 
virtual 360/67 on1y. DISPLAY also types the contents of the 
control registers. 

Format: 

I DISPLAY I <hexloc> <hexloc1-hexloc2> <Lhexloc> 
I D 1 <Lhexloc1-hexloc2> <Greg> <Greg1-reg2> 
1 I <Yreg> <Yreg1-reg2> 
I I <Xreg> <Xreg1-reg2> 
, I <PSW> 

hexloc is interpreted the same as Lhexloc. 

hexlocl-hexloc2 is interpreted the same as Lhexloc1-hexloc2. 

Lhexloc displays in hexadecimal the contents of 
specified hexadecimal location hexloc. 

Lhexloc1-hexloc2 displays in hexadecimal the contents of the 

Greg 

Greg1-reg2 

Yreg 

Yreg1-reg2 

specified hexadecimal locations 
hexloc1-hexloc2. 

displays in hexadecimal the 
general-purpose register reg, 
an integer ranging from 0-15. 

contents of 
where reg is 

displays in hexadecimal the- contents of 
genreal-purpose registers regl-reg~, where 
reg1 must be less than reg2, and each reg 
must be an integer ranging from 0-15. 

disp1ays the contents of-the floating-point 
register reg, where reg is an integer 
rang~ng from 0-7. If reg is odd, it is 
adjusted to the preceding even integer. 
The contents are displayed in hexadecimal 
in two forms: the internal format and the E 
format. 

disp1ays the contents of the floating-point 
registers regl-reg2. where reg1 must be 
less than reg2 and each reg must be an 
integer ranging from 0-7. If reg1 and~of 
reg2 is an odd integer. each is adjusted to 
the preceding even integer.. The contents 
are displayed in hexadecimal in two forms: 
the internal format and the E format,. 

DISPLAY 473 



Xreg 

Xreg-reg2 

PSW 

Usage: 

displays in hexadecimal 
control register reg, 
integer ranging from 
virtual 360/61 only. 

the contents of the 
where reg is an 

0-15. Applies to 

displays in hexadecimal the contents of 
control registers reg1-reg2, where reg1 
must be less than reg2, and each reg must 
be an integer ranging from -0-15. Applies 
to virtual 360/61 only. 

displays as two hexadecimal words the 
contents of the program status word (PSW). 

Before the sp~cified contents of core storage is displayed, 
alignment is made to the nearest fullword boundary. The 
output is typed in multiples of a fullword (eight 
hexadecimal characters) and all information is displayed in 
hexadecimal. 

When DISPLAY is issued" the arguments can be combined in any 
order desired, separated by one or more blanks, and up to 
one input line in length. If neither G, Y, X, nor L precedes 
the -specified number" - L is assumed. If an invalid argument 
is specified, a m'~ssage is typed out and the console 
function terminates. If any valid arguments were specified 
before the invalid one, they are executed properly. 

Notes: 

a. The contents of core, the registers:. and the PSW are not 
altered by issuing DISPLAY. 

b. No imbedded blanks are permitted within an argument .• 

c. Xreg or Xreg1-reg2 is an invalid argument if the virtual 
machine is not a System 360/Model 61. 

Responses: 

The specified information is typed out. 

BAD ARGUMENT xx 
An invalid argument was specified. If valid arguments were 
specified before the first invalid one

" 
they were executed 

properly. 

Examples: 

a. display 112402 
L 12400 = 9208F11E 

The core storage location 12403 is adjusted to the nearest 
fullword boundaryt' 12400" and one fullword is displayed in 

414 DISPLAY 



hexadecimal. 

h. display 12000-12010 
L 12000 = 05C050EO C7EE5830 CBB65833 00385030 CBOE1821 

The contents of hexadecimal location 12000-12010 is 
displayed in hexadecimal in multiples of fullwords. 

c. d~splay 91 
G 1 = 00011C98 

The contents of general-purpose register 1 is displayed in 
hexadecimal. 

d. d 91-5 
G 1 = 00011eg8 00008990 00008B40 00000082 00000400 

The contents of qenreal-purpose registers 1-5 are displayed 
in hexadecimal. 

e. d xO 
X 0=00016C80 

The contents fo control register 
hexadecimal. 

o are displayed in 

f. d x4-6 
X 4 FFOOOOOO 00000000 F08000FF 

The contents fo control registers 4-6 are displayed in 
hexadecimal. 

g. d x2 
BAD ARGUMENT 01 

The virtual machine is not a 360/67, therefore it has no 
control registers. 

h. d y2 
Y 2 = 0004560000000000 

The contents of floating-point 
hexadecimal in two forms: the 
format. 

.14627299646232350 E-78 
register 2 are displayed in 
internal format and the E 

i. d y1-6 
Y 0 = 1230000000000000 .76468411134357709 E-56 
Y 2 = 0004560000000000 .14627299646232350 E-78 
Y 4 = 000000AB11100000 .88057543452313567 E-82 
Y 6 = 0099999999990000 .51817011330519540 E-71 

The contents of floating-point registers 0, 2, 3, 6 are 
displayed in hexadecimal in two forms: the internal format 
and E format, after the specified register 1 is adjusted to 
the preceding even integer o. 

j. d psw 
PSW = 00000000 80001374 The contents of the program 

status word (PSW) are displayed in hexadecimal. 

k. d g1-4 140-50 y4 psw x2-4 
G 1 = 00011C98 00008990 00008B40 00000082 
L 40 = 00011CeO OCOOOOOO 00011CBO FFFFFFFF 7FFFDCCE 
Y 4 = 0000000000000000 .00000000000000000 E 00 

DISPLAY 475 



PSW = 00000000 80001374 
X 2 = 0003AC28 00000000 FFOOOOOO 

The contents of general-purpose registers 1-4, hexadecimal 
locations 40-50, floating-point register 4, the program 
status word, and control registers 2-4 are all displayed in 
hexadecimal with one console function. 

476 DISPLAY 



DUMP 

Purpose: 

DUMP prints in hexadecimal on the virtual printer the 
contents of core storage. general-purpose registers. 
floating-point registers, and/or the program status word. 
For virtual 360/61 only, DUMP also prints the contents of 
the control registers. 

Format: 

hexloc 

DUMP 
DU 

I <hexloc> <hexloc1-hexloc2> <Lhexloc> 
1 <Lhexlocl-hexloc2> <Greg> <Greg1-reg2> 
, <Yreg> <Yreg1-reg2> 
I <Xreg> <Xreg1-reg2> 
I <psw> 

is interpreted the same as Lhexloc. 

hexloc1-hexloc2 is interpreted the same as Lhexloc1-hexloc2. 

Lhexloc 

Greg 

Greg1-reg2 

Yreg 

Yreg1-reg2 

Xreg 

dumps in hexadecimal the contents of the 
hexadecimal location hexloc. 

dumps in hexadecimal the contents of the 
general-purpose register reg, where reg is 
an integer ranging from 0-15. 

dumps in hexadecimal the contents of the 
general-purpose registers reg1-reg2" where 
reg1 must be less than reg2, and e:.lch reg 
must be an integer ranging from 0-15. 

dumps the contents of the floating-point 
register reg. where reg is an integer 
ranging from 0-7. If reg is odd. it is 
adjusted to the preceding even integer. 
~he contents are dumped in hexadecimal in 
two forms: the internal format and the E 
format. 

dumps the contents of the floating-point 
registers regl-reg2. where reg1 roust be 
less than reg2" and each reg must be an 
integer ranging from 0-7. If reg1 and/or 
reg2 is an odd integer. each is adjusted to 
the preceding even integer. The contents 
are dumped in hexadecimal in two forms: 
the internal format and the E format. 

dumps in 
control 
integer 

hexadecimal the contents of 
register reg. where reg is 
ranging frolTl 0-15. Applies 

DUMP 

the 
an 
to 

477 

I 
I 
I 
1 
1 



Xregl-reg2 

PSW 

Usage: 

virtual 61 only. 

dumps in hexadecimal the contents of the 
control registers reg1-reg2, where reg1 
must be less than reg2, and each reg must 
be an integer ranging from 0-15. Applies to 
virtual 61 only. 

'dumps as two hexadecimal words the contents 
of the program status word (PSW). 

Before the specified contents of core storage is dumped, 
alignment is made to the nearest fullword boundary. The 
output is printed in multiples of a fullword (eight 
hexadecimal characters) and all information is dumped in 
hexadecimal. 

DUMP prints the specified information on the virtual 
printer,. In order for cp to close the virtual printer (to 
release the spooling area) and print the dumped information 
on the real printer, the console function CLOSE OOE must be 
issued. CLOSE need only be issued once for the printer 
after all the variations of DUM.P have been given. 

When DUMP is issued, the arguments can be combined in any 
order desired" separated by' one or more blanks, and up to 
one input line in length. If an invalid argument is 
specified!. a message is typed out and the console function 
terminates,. If any valid arguments were specified before 
the invalid one. they are executed properly. 

Notes: 

a. The contents of core storage" the registers, and the PSW 
are not altered by issuing any form of DUMP. 

b. No imbedded blanks are permitted within an argument.;. 

c. Xreg or Xregl-reg2 is an invalid argument if the virtual 
machine is not allowed to run in Model 61 mode. 

Responses: 

After the completion of valid DUMP console functions" the 
keyboard is unlocked. 

BAD ARGUMENT xx 
An invalid argument was specified. If valid arguments were 
specified before the invalid one l, they were executed 
properly. 

418 DUMP 



Examples: 

a. dump 
dump 
dUlllp 

g1-15 
yO-6 
0-80 

dump psw 
close OOe 

General-purpose registers 1-15. floating-point 
2, 4,. and 6, core storage locations 0-80, and 
status word are dumped on the virtual printer. 
virtual printer and print on 'the real device, 
was issued. The dump output is shown in Figure 

h. dump xO-1S 
BAD ARGUMENT 01 

registers O. 
the program 

To close the 
·close OOe· 

42 .• 

The virtual machine is not a System 360/Model 61; therefore 
it has no control registers • 

•••••••••• * •••••••• ****.* ................. ~~~ ........ **i ...... i** ••• •••••••••••••••••••••••••••••••••••••••••••••• ** •••• ................................................. .................................................................................. . 
••••• •••••••••••••••••••••••••• ** •••••••••••••••••••••••••••••••••••••••••••••••• 11 •••••••••••••••••••••••••••••••••••••••••••••••• 

.. ••••• •••••••••••••••••• •••• ••• ••••••••••• ................. • ** ...................................................................... . 
...... •••••••••• ••• ••••••••••••••••••••• ••• •••••• ** ••• * ............................................ * ................................ . 

CP610SERID BOYD 21.04.42 

G o = 00000000 00000218 CJD6n5F1 0000C1'18 00000000 lluOOOOOO o ceooo 1e CCOOOOOO 
G 8 = 000001114 000001100 OOOOOOOc 000001190 COOOC658 1l000C65E II 000(142 40002114 
Y C = 0000000000000000 .00000000000000000 E 00 
Y 2 = 0000000000000000 .OOOCOOOOOOOOOOOOO E 00 
Y 4 = OOOOOCOOOOOOOOOO .000ilOJOOOOOOOOOOO E 00 
Y I> = 0000000000000000 .OOOOOOOOCOOOOOOOC E 00 

C = 0000C658 OOOOCEE 0 000032F8 60000050 020JFB10 00001380 nOOOGec 80031'296 * .• F •••••••• 8- •• £ •••••• :1: ••••••• 2e. 
20 = 000400Cl 400096Dl 00000005 boeODoe2 (OOoeooo 00000000 FF040009 00002231< •.... • 0 ••••• - ..................... 
'Ie = 00000208 ocoooooo 000001FS 00000000 COOOED1 C 00000000 00000000 OOOOBooO * ........... 8 •••••••••••••••••••• * 
6C = 00·040001l 00002288 00040000 ()()~OB800 00000000 0000llC2C 00040CCC 000C051 C * .••..•. H ••••••••••••••••••••••••• 
8e = OOOCOOOO 00002288 00040000 00008BOO 00000000 00008C2C 00040000 00000510 ••••• ••••••••• ••• ~DLE •• 0 •••••• 

PSli = FFO 60000 0000223E 

Figure 42. Output £rom DUMP console function 

DUMP 419 



EXTERNAL 

Purpose: 

EXTERNAL simulates an external interrupt on the virtual 
machine and returns control to that machine. 

Format: 

Usage: 

EXTERNAL 
E 

On a real machine. an external interrupt is a means by which 
the central processing unit responds to signals from the 
interrupt key on the computer console. EXTERNAL simulates 
this external interrupti, which is then reflected to the 
virtual machine. and control is returned to that machine. 
If the user had previously IPL'ed CMS, the Debug environment 
of eMS is entered from the Control Program,. 

Responses: 

DEBUG ENTERED, EXTERNAL INT. 
eMS was previously IPL'ed,. When the external interrupt 
occurred. the Debug environment was entered. 

lISO EXTERNAL 



IPL 

Purpose: 

IPL causes the Control Program to simulate an Initial 
Program Load (IPL) sequence on a specified device .• Core is 
zeroed before the IPL, and all pages of the virtual machine 
are freed. 

Format: 

IPL 
I 

CMS 
devadd 

CMS specifies that a saved copy of the Cambridge Monitor 
System is to be brought into core. 

devadd specifies the address of the device to be IPL'ed. 

Usage: 

IPL simulates the IPL button on the computer console by 
zeroing core on the virtual machine and causing a record to 
be read from the specified I/O device and executed. 

During the login procedure of CP when the message 

READY AT xx.xx.xx ON xx/xx/xx 

is typed out, where xx.xx.xx is the time of day and xx/xx/xx 
is the date, CP is ready to accept any console function. By 
iSsuing IPL CMS or IPL 190 r, the Cambridge Monitor System 
(eMS> is loaded, and the CMS command environment is entered. 

The IPL 190 console function loads in a copy of the nucleus 
which resides on disk 190. Periodically, a copy of this 
nucleus is saved by a CP utility called SAVESYS. This saves 
the nucleus at a point at the end of the IPL sequence, 
thereby allowing shared pages of the nucleus and faster 
response time. The IPL CMS console function loads in this 
saved copy of the CMS nucleus. This means that if the 
nucleus on 190 has been modified s'ince the last copy was 
saved, the versions referenced by IPL 190 and IPL CMS are 
different. 

Responses: 

BAD ARGUMENT xx 
An invalid device address was specified. 

ERROR DURING IPL SIO 
CP is unable to· load from the specified device. If the card 
reader had been specified, check to see that cards had been 
read into the virtual card reader by the computer operator. 

IPL 481 



UNABLE TO IPL SPECIFIED UNIT TYPE 
The specified unit could not be IPLeed. Check to see if the 
specified-device address is included in the virtual machine 
configuration. 

Any other responses are those of the new environment that is 
being loaded. 

482 IPL 



IPLSAVE 

Purpose: 

Same as IPL except the existing core is not cleared. See 
the console function IPL for further information. 

Format: 

I IPLSAVE Iccut 

Usage: 

IPLSAVE is used to perform an Initial Program Load sequence 
without clearing core. For example. it would be used to 
bring a program such as a stand-alone dump into high core 
without disturbing the current contents of core. 

Note: 

For examples on IPLSAVE. see IPL. 

IPLSAVE 483 



LINK 

Purpose: 

LINK attaches the specified device to the requestor's 
virtual reachine. based on information contained in the CP-67 
User Directory. 

Format: 

I LINK luserid xxx yyy <W.!!> «NOPASS» I 
PASS= password I I I * 

userid 

xxx 

yyy 

W 

R 

The name of the user ·owning· the device xxx. An 
* denotes that you are linking to yourself,. 

The ·owner's· virtual device address in 
hexadecimal 

~he hexadecimal address to be assigned in the 
requestor·s virtual machine 

Write access mode is requested. 

Read access mode only is requested. This is the 
default value. 

(NOPASS> Used only if 
the desired 
device). 

no special password is 
access mode (that is, 

required for 
a "public" 

PASS= 

usage: 

password this 
executed by 
from CMS>. 

form can only be use when LINK is 
a virtual console function (that is. 

The password is not print suppressed. 

LINK allows attachment of directory-defined virtual disks to 
the requestor·s virtual machine. The device must be 
described in the CP-67 User Directory under the name and 
device address (userid.xxx) specified. 

If the userid is that of the requestor, no password is 
required. and rules governing access are the same as prevail 
at LOGIN tirre. If you are linking to yourself, the default 
access is read-write: if you are linking to another user, 
the default access is read-only. 

If the LINK is to some other userid. a password for the 
desired access must be provided (see Responses). 

In general. any number of users can link simultaneously to a 
device in read-only l11ode.. Only one user can have access to a 
device if the first link has write access. If a read-only 

484 LINK 



link exists. and a write request is issued, the link is made 
in read-only mode. 

Note: 

If a user links to another disk as ccu and he already has a 
disk ccu, he must either reIPL CMS to read in the new file 
directory. or issue LOGIN ccu. Otherwise. the old file 
directory exists in core and the new disk is clobbered. 

Responses: 

ENTER PASSWORD: 
Type the required password. By convention. devices specified 
as public have the password ALL. A null line defaults to 
ALL. 

BAD ARGUMENT 
Missing or invalid arguments. Error code is 08. 

SET TO READ ONLY 
The user has requested and been granted read-only access. 
Error code is 00. 

SET TO WRITE 
The user has requested and been granted read-write access. 
Error code is OQ,. 

FORCED READ ONLY 
The user has requested write access but because read-only 
links exist, read-only access is forced. Error code is 36. 

NONEXISTENT UNIT 
Device xxx not found in the specified directory. Error code 
is 12. 

ALREADY ATTACHED 
Requestor already has a device yyy. Error code is 16. 

BAD PASSWORD 
The supplied password is not valid. or the device is not 
sharable. Error code is 20. 

USER LOGGING IN 
userid is in process of logging in. Try again later,. Error 
code is 24. 

DEVICE IN USE 
A write link exists. LINK denied. Error code is 28. 

UNIT NOT READY 
The required physical volume is not mounted. Notify system 
operator. Error code is 32. 

UNIT NOT DASDI 
Device xxx must be a DASDI device for LINK. Error code is 

LINK 485 



44. 

USER NOT ON SYSTEM 
userid is not in the directory. Error code is 40. 

UPDATING DIRECT 
The system DIRECTORY is being modified: attempt a LINK again 
when the DIRECTORY is completed. Error code is 48. 

Example: 

CP LINK USERA 195 196 R PASS= READPASS 
The user links to USERA·s 195 .disk as his own 196 in a 
read-only mode. The password is given on the same line, so 
it is not print suppressed. 

486 LINK 



LOGOUT 

Purpose: 

LOGOUT removes the user from the system by releasing the 
virtual machine and any attached devices, clearing the 
temporary disk area, and closing the spooling areas. 

Format: 

LOGOUT 
LOG 

<anything> I 
I 

anything If any nonblank character string is specified with 
LOGOUT, the telephone line is not hung up and the 
terroinal reroains connected to CP for another user 
to login or dial in. 

Usage: 

LOGOUT logs the user off the system. The temporary disk 
area is cleared and all spooling areas are closed. If there 
is output in the spooling areas, it is printed or punched on 
a real device when that device becomes available, as in 
CLOSE. 

Because of the finality of 
abbreviation accepted is LOG. 

this command, the only 

If -anything- is specified, a LOGOUT occurs in the normal 
manner but the communication line is not disabled. Upon 
completion of the LOGOUT procedure, the ·CP-61 online· 
message indicates that another login or dial can proceed. 

Responses: 

LOGOUT AT xx.xx.xx ON xx/xx/xx 
The user is removed from the system. The xx.xx.xx is the 
time of day and the xx/xx/xx is the date. 

CP-67 ONLINE xxxxxxxxxxxx 
xxxxxxxxxxxx CP-61 ONLINE 
CP-61 ONLINE 
If one of the above roessages is typed out after the LOGOUT 
message. a nonblank character string was specified with 
LOGOUT; therefore the terminal remains connected to CP for 
another user. 

LOGOUT 487 



MSG 

Purpose: 

MSG sends a specified message to a specific user. 

Format: 

I 
1 

MSG 
M 

userid 
CP 

line 1 
I 

userid 
CP 

specifies to whom the message should be sent. 
specifies that the message is sent to the systems 
operator whatever his useri1 might be. For this 
reason no user should have the id of CP; CPxxxxxx 
is acceptable though. 

line is the message to be sent to the specified user. 

Usage: 

MSG allows the users to communicate with the CP operator in 
the computer room as well as with other users. The 
specified user must be logged on the system before a message 
can be sent to hiro. If a specified user is not logged on~ 
the message USER NOT ON SYSTEM is typed out but is not held 
until he logs on. 

A message that is sent by MSG is in this format 

FROM userid: line 

The message is typed out at the specified 
when the terminal is not ready for input. 
is waiting for input. the message is held 
return occurs. 

Responses: 

userid NOT RECEIVING 

user's terminal 
If the terminal 

until a carriage 

The user has suppressed his receiving of messages (see 
Console Function SET). 

USER NOT ON SYSTEM 
The specified user was not logged on the system so the 
roessage was not sent to him. The message is not saved. 

Example: 

msg CP please attach a tape drive to 181 
The message ftplease attach a tape drive to 181ft is typed out 
at the system operator·s terminal. 

488 MSG 



PURGE 

Purpose: 

PURGE allows the user to delete all spooled files still in 
the spooling area from his vi~tual printer or punch. or to 
delete all his spooled input for his virtual card readers 
without reading the data. 

Format: 

I READER 1 
1 R I 

PURGE I PRINTER I 
P I P I 

I PUNCH , , PO I 

Usage: 

If the user determines that he does not require either his 
spooled print output or his punch output, or if he wishes to 
purge all his input reader files, the PURGE command can be 
issued. 

Responses: 

BAD ARGUMENT xx 
An invalid device type was specified. 

xx FILES PURGED 
This is the nOrIl}al response" where xx is the number of files 
actually purged or the word NO. if there were none to purge. 

Examples: 

a. purge pun 
NO FILES PURGED 

There were no punch files awaiting spooled output for the 
user. 

h. purge r 
02 FILE PURGED 

The two spooled input files for the user have been deleted. 

PURGE 489 



QUERY 

Purpose: 

QUERY types out the number of users logged on or dialing, 
the identification and terminal address of the users logged 
on, the terminal address of a specific logged on user (or a 
message that he is not logged on), the' log messages set by 
the CP operator, the number of spooled input and output 
files currently held by CP for the user, or the amount of 
connect, virtual CPU, ~nd total CPU time used since login. 

Format: 

QUERY 
Q 

FILE (F) 

LOGMSG (L) 

NAMES (N) 

USER (U) 

use rid 

TIME 

Usage: 

t 
1 
I 
I 
I 
I 

FILES 
LOGMSG 
NAfIlES 
USER 
use rid 
TD1E 

1 
I 
I 
I 
I 
I 

types the number of spooled input and output 
files currently held by CP for the user,. 

types out the message of the day set by the 
operator .. 

types out the userid and terminal addre~s of 
all users on CP. 

types out the number of virtual machine 
users I, and the number of users attached to 
virtual machines using the CP-67 DIAL 
facility .. 

types out the userid and the terminal address 
where the user is logged in;, or gi ves USER 
NOT ON SYSTEM. 

types out the CONNECT,VIRTCPU, and TOTCPU 
time used so far in this terminal session for 
this user .. 

QUERY is used to determine the number of users logged on or 
dialingr, who they are" and what thei~ terminal address is, 
'what the log message, is l, the number of current spooled f,iles 
for this user, and the amount of time (connect and CPU) that 
has elapsed for this user since login.. This informatiol') 
gives an idea of the system load. as well as any pertinent 
information about the system. The log message is normally 
the message that types out once the user has logged on under 
CP. 

490 QUERY 



Responses: 

BAD ARGUMENT xx 
An invalid argument was specified. 

nnUSERS; rom DIALED 
If the USER argument was specified., this 
that nn virtual machines are logged in 
have dialed other virtual machines. 

userid - xxx, userid - xxx • 

message indicates 
and that mm users 

If the NAMES argument was specified, current users are 
displayed four to a line,. 

userid - xxx 
This.is the response to wQ 
on. 

userid·" if that user is logged 

USER NOT ON SYSTEM 
This is the response to wQ userid w , if that user is not 
logged on to CP-61. 

FILES: xx RDR. xx PRT., xx PUN 
The number of spooled files for this user is printed. 

xxxxx • '. ,. xxxxx 
This is the log message obtained as a result of specifying 
the LOGMSG argument. 

Examples: 

a. query user 
04 USERS; 06 DIALED 

Four users are logged on the system. Six users have DIALED 
other virtual machines. 

h. q names 
OPERATOR - 009, APL - 023, CJOHNSON - 024 

A list of current users logged on the system is typed out on 
the terminal. 

c. q logmsg 
TS DOWN AT 12 SHARP 

The log roessage TS DOWN AT 12 SHARP, set by the operator, is 
typed out. 

d. q files 
FILES: 01 RDR, 06 PRT, NO PUN 

The number of separate spooled files for the user is shown-. 
It is a total for all virtual card reader, printers or 
punches. 

QUERY 491 



e. q temp21 
TEMP21 - 032 

q temp 4 
OSER NOT ON SYSTEM 

11'92 'QUERY 



READY 

Purpose: 

READY simulates a device end for the specified virtual 
address. 

Format: 

READY devadd 

devadd specifies a virtual device address. such as 191. 

Usage: 

On a real machine a device end is caused by the completion 
of an I/O operation ata device or, on some devices,. by 
manually changing the device from the not-ready to ready 
state. A device end normally indicates that the I/O device 
has become available for another operation. READY simulates 
this device end without having to complete an I/O operation 
or without making a device not-ready. 

Responses: 

BAD ARGUMENT xx 
An invalid device address was specified. 

NONEXISTENT UNIT 
The specified unit does not exist in the virtual machine 
configuration. 

Example: 

READY 191 
A device end is simulated for the device whose address is 
191. 

READY 493 



RESET 

Purpose: 

RESET simulates the system reset key on the system ,control 
panel. 

Format: 

1 RESET 
1 RE 

Usage: 

RESET places the virtual machine in a stopped state and 
resets all pending I/O interrupts. All error conditions are 
reset. The system is automatically reset by IPL. 

Responses: 

None. 

494 RESET 



SET 

Purpose: 

SET allows the user to save the card file in his virtual 
card reader, to control the messages and warnings typed at 
his terminal and to control his running status. 

Format: 

CARDSAVE ON 
CARDSAVE OFF 

MSG OFF 
ON 

SET 
RUN ON 

OFF 

WNG ON 
OFF 

CARDSAVE ON saves the card file in the virtual card reader 
so that it can be reread. 

CARDSAVE OFF erases the card file in the virtua'l card reader 
once the reader has been closed. 

MSG OFF specifies that no messages are to be typed at the 
terminal. 

MSG ON specifies that all message are to be typed at the 
terminal. 

RUN ON allows the user to activate the ATTN button causing a 
read of a CP console function without 
stopping his virtual machine. When the CP 
function is typed in, it is immediately 
executed and the virtual machine resumes 
execution. 

RUN OFF places the user in the normal CP environment 
such that when ATTN is hit, the virtual 
machine stops. 

WNG ON specifies that all warnings are to be typed at the 
terminal. 

WNG OFF specifies that no warnings or messages are to be 
typed at the terminal. 

Usage,: 

SET CARDSAVE ON does not erase the cards in the virtual card 
reader once the reader has been closed. Therefore, the SET 
CARDSAVEON allows the same virtual card input to be read 
repeatedly from the beginning of the file. The operation is 
effective for all the user·s virtual card readers. 

SET 495 



SET CARDSAVE OFF is the normal mode of operation for the 
card reader. Once a virtual input file has been closed, it 
is lost. To reread the file, it must be physically read 
into CP-67 again by the operator or via XFER. 

The normal mode of operation for messages and warnings typed 
at the terminal is MSG ON and WNG ON, respectively.. Any 
messages directed to a user or broadcast by the operator are 
typed at the terminal whenever the terminal is not ready for 
input. A warning s.ent by the CP operator prints 
immediately, regardless of what is occurring at the 
terminal. If MSG OFF is specified. only warnings from the 
operator type at the terminal. and any messages sent by 
another user or the operator are lost. 

If either a MSG OFF or WNG OFF has been specified, and the 
user wishes to resume receiving either messages or warnings, 
the MSG ON and/or WNG ON command must be issued. 

If WNG OFF is specified, no warnings or messages will ever 
type on the terminal. If WNG OFF and MSG ON are both set, 
only messages will type on the terminal. SET WNG OFF should 
be used with discretion. 

The normal mode of operation for running is RUN OFF. When 
ATTN is hit, the virtual machin·e stops running" and the 
terminal waits for a CP console function. In a multiaccess 
virtual machine, this is an unacceptable method of 
operation; there~ore SET RUN ON can be issued to CP to allow 
the virtual machine to continue running when ATTN is hit. 
When RUN OFF is issued after RUN ON had been previously set, 
the virtual machine continues to run until ATTN is hit: ,this 
causes the machine to stop for input. The SET RUN OFF mode 
is automatically set if the user gets an -idle- virtual 
machine, that is, with the message 

CP ENTERED. REQUEST., PLEASE. 

Responses: 

BAD ARGUMENT xx 
An invalid argument was specified. 

Examples: 

a. SET CARDSAVE ON 
The virtual input file is saved and not erased, once the 
reader is closed. 

b • SET MSG OFF 
No messages will type at the terminal, only warnings from 
the operator. 

c. SET RUN ON 
The virtual machine iF-mediately continues execution. If the 

496 SET 



user now activates the ATTN key. a CP read occurs, but his 
virtual machine continues to run. 

S~ "7 



SLEEP 

Purpose: 

SLEEP allows the user to place his terminal in a dormant Cp 
mode such that he may receive messages without hitting 
carriage return. 

Format: 

SLEEP 

Usage: 

If the user does not expect to be using the terminal for a 
while, the SLEEP console function places the terminal in a 
state to receive messages. The user's virtual machine is 
not run, but he is still accounted for connect time. The 
terminal can be -awakened- by activating the ATTN key which 
returns the user to CP for more input. 

Responses: 

None. 

Examples: 

sleep 
The terminal is placed in a dormant state to receive 
messages. ·Warnings- set by the operator are not affected. 
If the user has done a SET MSGOFF he does not, of course, 
receive messages, only warnings, if they are issued. 

498 SLEEP 



SPOOL 

Purpose: 

The SPOOL console function allows the user to direct his 
spooled output to a specific unit record device at the 
computing facility and to control the nature of reading 
spooled input files. 

Format: 

SPOOL 
SP 

xxx <ON yyy> 
<OFF> 

ccc <CONT> 
<OFF> 

xxx is the virtual device address from which output is to be 
directed to the specific real device" yyy. 

yyy is the real device address of the desired output unit. 
It can only be a printer or punch address. 

ccc is the virtual device address of the card reader that is 
to have continuous spooled input. 

Usage: 

When printing or punching files from virtual devices, the 
output is written to disk or ·spooled"" until the physical 
device is available for use. If there are multiple printers 
or punches, the first available device is used for the 
output. To control the spooled output direction, SPOOL can 
be issued specifying the virtual device address and the real 
device to which the output should go.. The virtual and real 
device types must be the same; in other words the virtual 
punch cannot be directed to the real printer. 

To discontinue the directed spooling and return to normal 
spooling, issue SPOOL, specifying the virtual device address 
and OFF. 

SPOOL also controls the virtual card reading 
characteristics. When multiple physical card decks have 
been spooled onto dis_k by CP, a user must close each file 
before the next file can be read. For continuous virtual 
card reader input such that the card reader does not have to 
be closed between each file, the SPOOL command can be issued 
specifying the virtual card reader address and CONT,. The 
virtual machine receives an end-of-file indication only 
after the last card of the last spooled input file has been 
read. 

To terminate the continuous reading of files, issue SPOOL, 

SPOOL 499 



specifying the virtual card reader address and OFF. 

Notes: 

a. continuous reading of input files should not be in 
effect with SET CARDSAVE ON, as an unending ·wrap-around· 
input file will exist. 

h. Directed output is useful--and necessary if, for 
instance, an installation has two printers. one with a PN 
train and another with a TN train. If the user has script 
output to produce,. he may specify the desired output 
printer, perform his printing, and then return his printer 
to normal spooling. 

Reponses: 

BAD ARGUMENT xx 
This indicates that an error in specification has been made, 
such as invalid virtual address, invalid real address:. or 
conflicting device types. 

Examples: 

a. spool e on 30 
be9in 
CMS 
script report (offline center) 
RiT=05.21/06.03 12.22.13 

<-----ATTN key hit 
cp <-----confirmation of environment 
sp e off 

The SPOOL console function is issued to CP to direct the 
virtual printer OOE output to the real printer 030. BEGIN 
returns control to CMS, where REPORT SCRIPT is formatted 
offline. ATTN is hit to go to CP,. and the directed output 
of printer OOE is terminated. Normal spooling now occurs on 
OOE. 

h. spool c cant 
begin 
CMS 
offline read * * 
OFFLINE READ A FORTRAN 
OFFLINE READ B FORTRAN 
OFFLINE READ CALC FORTRAN 
RiT=02.01/02.78 12.34.56 

<-----ATTN key hit 
cp 
query files 
FILE: - NO RDR, 
spool c off 

The SPOOL command is 
files as if they were 
eMS by BEGIN. and the 
hit to return to CP 

500 

00 PRT, NO PCB 

issued to read multiple spooled input 
continuous. Control is transferred to 
spooled input files are read.. ATTN is 

and the spooled files are queried. 

SPOOL 



Input spooling is then returned to normal for noncontinuous 
reading. 

SPOOL 501 



STORE 

Purpose: 

STORE replaces the contents of specified locations in core 
storage, general-purpose registers, floating-point 
registers, and the program status word, and for virtual 
360/61, in control registers 0~2,4,and 6. 

Format·: 

STORE 
ST 

<Lhexloc hexinfol ••• hexinfoN> 
<Greg hexinfol ••• hexinfoN> 
<Yreg hexinfol, ••• hexinfoN> 
<Xreg hexinfol. ' •• hexinfoN> 
<PSW<hexinfol> hexinfo2> 

Lhexloc hexinfol ••• hexinfoN stores the hexadecimal values 
hexinfol.... hexinfoN in 
successive fullword locations 
starting at hexadecimal 
location hexloc. 

Greg hexinfol ••• hexinfN stores the hexadecimal values 
hexinfol... hexinfoN in 
successive general-purpose 
registers. starting at the 
register specified by r~g. 
The parameter reg must be an 
integer ranging from 0-15, and 
successive values of reg 
cannot exceed 15. 

Yreg hexinfol ••• hexinfoN stores the hexadecimal values 
hexinfol... hexinfoN in 
sucessive floating-point 
registers, starting at the' 
register specified by reg. 
The parameter reg must be an 
integer between 0 and 6, and 
successive values of reg 
cannot exceed 6. If reg is an 
odd integer, it is adjusted to 
the preceding even integer. 

Xreg hexinfol. ,. ,.hexinfoN stores the hexadecimal values 
hexinfol •• ,It hexinfoN in 
successive control registers 
starting at the register 
specified by reg. The 
parameter reg must be an 
integer ranging from 0-15, and 
successive values of reg 
cannot exceed 15. Only control 

502 STORE 



registers 0-2-4-6 can be 
modified by STORE; all the 
other control registers are 
supposed to have a zero value. 
Applies to virtual 360/61 
only. 

PSW <hexinfo1> hexinfo2 stores the hexadecimal values 
hexinfo1 and hexinfo2 in the 
first and second words of the 
program status word. If only 
hexinfo2 is specified, it is 
stored in the second word of 
the PSW. The interrupt code 
is set to zero. The hexinfo1 
andhexinfo2 must be separated 
by one or more blanks,. 

Usage: 

The smallest group of hexadecimal values that can be stored 
is one full word and alignment is made to the nearest 
fullword boundary. If the hexadecimal value being stored is 
less than a fullword (eight hexadecimal characters), it is 
right-adjusted in that word and filled in with high order 
zeros. 

The options can be combined in any order wanted, separated 
by one or more blanks, up to one full line in length, and 
issued in a single STORE console function. L. G, or Y must 
be specified or the options are invalid. 

If invalid arguments are specified, a message is typed out 
and the console function terminates. If there are any valid 
arguments before the invalid one, they are executed 
properly. 

Responses: 

BAD ARGU~ENT xx 
An invalid argument was specified. If there were any valid 
arguments before the invalid one, they were executed 
properly. The console function terminated on the invalid 
argument. 

ILLEGAL CREG 0 
An attempt to load control register 0, with bits 26-31 
nonzero, the register is not loaded. 

ILLEGAL PSW 
An attempt to load the PSW with bits 0-4 nonzero,. when the 
virtual machine is a System 360/Model 61 running in extended 
PSW mode (bit 8 of control register 6 set to 1). This 
message is just a warning: the PSW is modified and a program 
interrupt occurs with ·specification exception- on the 
execution of the next instruction. 

STORE 503 



Examples: 

a. d 12011 
L 12010 = 4110DOIC 

st 112011 519 

d 12011 
L 12010= 00000579 

A full word at core storage location 12011 is displayed 
after alignment is made to the nearest fullword boundary 
12010. The hexadecimal number 519 is right-justified. 
filled in with zerOS;f and then stored in a full word. 
beginning at location- 12010. That word is displayed again 
to reflect the changed value. 

b. d g5-8 
G 5=00000400 OOOOOOOC 0000049C 00000004 

st g5 123 456 aa 

d 95-8 
G 5=00000123 00000456 OOOOOOAA 00000004 

The contents of general-purpose registers 5-8 are displayed. 
The hexadecimal numbers 1231f 456, and AA are right-justified 
in separate words, filled in with zeros and then stored in 
general-purpose registers 5, 6, and 7. The contents of 
registers 5-8 are then displayed- to show their stored 
contents. 

c. d psw 
PSW = 00000000 

st psw 55555 

d psw 

80001374 

PSW = 00000000 00055555 
The contents of the PSW are displayed. The hexadecimal 
number 55555 is right-justified, filled with leading zeros, 
then stored in the second word of the PSW;, and the interrupt 
code is set to zero. The Psw is displayed to reflect the 
change. 

d. d psw 
PSW = 00000000 

st psw 111111 12000 

d psw 

80001314 

PSW = 00111111 00012000 
The contents of the PSW are displayed. The hexadecimal 
numbers 111111 and 12000 are stored right-justified in the 
first and second words of the PSW, and the interrupt code in 
the first word is set to zero. The PSW is then displayed to 
reflect the change. 

504 STORE 



e. d xO 
X o = 00016C80 

st xO 123456 
ILLEGAL CREG 0 

d xO 
X 0 = 00016C80 

The contents of control register 
is made to store a wronq value 
register are not modified. 

f. d psw x6 
PSW = 03060000 00000000 
X 6 = F08000FF 

st psw 12345678 12345618 
ILLEGAL PSW 

d psw 
PSW = 12345618 12345618 

o are displayed: an attempt 
in it; the contents of the 

The contents of the PSW and control register 6 are 
displayed, the hexadecimal numbers 12345618 12345618 are 
stored in the PSW. and since the virtual machine is in 
extended mode. the warning ILLEGAL PSW is issued. 

g. st psw 3060000 0 
st x6 fOOOOOff 

d psw x6 
PSW = 03060000 00000000 
X 6 = FOOOOOFF 

st psw 12345618 12345618 

d psw 
PSW = 12340000 12345618 

Now the virtual machine is not in extended mode, therefore, 
the psw is modified without warning. 

h. d xO 
BAD ARGUMENT 01 

The virtual machine is not a System 360/Model 61. 

STORE 505 



XFER 

Purpose: 

XFER controls the passing of files between users. 

Format: 

I 
I 
1 XFER 
I X 

devadd 

TO userid 

* 
OFF 

devadd specifies the address of the device from which all 
succeeding output is to be either transferred or 
normally written out. A virtual punch or 
printer output may be XFER'ed. 

To userid turns on the transfer mode. Userid is the 
eight-character user identification of the user 
that is to receive the transferred file. 

TO * specifies that the recipient of the transfer is the 
user issuing the command. 

OFF terminates the transferring of all further output to 
userid. 

Usage: 

XFER controls the passing of files between users. When the 
transfer mode is turned on by specifying TO userid, any 
succeeding output written to devadd is placed in the card 
reader of userid. For userid to receive the transferred 
files on his disk, userid must read them onto his files. 
that is, by issuing commands 'such as OFFLINE READ filename 
filetype" OFFLINE READ *. or DISK LOAD. 

To turn the transfer mode off, the option OFF must be 
specified. Any succeeding output to the devadd is written 
onto disk as in normal spooling, and put on the real device 
when that device is free. 

A second XFER command issued 
turns off the XFER to the 
userid is invalid. 

to change userid automatically 
previous userid, even if the 

If the user XFER'ed to is currently logged on to CP-61, he 
receives the following message: 

** CARDS XFERED BY userid ** 
where userid is the transferring user. 

The user XFER'ing the file receives the message: 
** CARDS XFER'D TO userid ** 

506 XFER 



where userid is the receiving user. 

Notes: 

A user may do an XFER to himself to allow him to read a card 
file he created. (using OFFLINE PUNCH or DISK DUMP) without 
requiring opeD~tor intervention and with a considerable 
saving in card handling. 

Responses: 

BAD ARGUMENT xx 
An invalid argument was specified. 

NONEXISTENT UNIT 
The specified device does not exist and is invalid. 

DEVICE BUSY 
Spooled output is in operation for the punch. A close 
should be issued to clear the status. 

UPDATING DIREc-r 
The system DIRECTORY is 
after the DIRECTORY is 
been accepted. 

being modified: attempt the XFER 
created. The XFER command has not 

Examples: 

a. xfer d to userl 
The transfer mode is turned on. Any succeeding output to 
device OOD is placed in the card reader of USERI. 

b. xfer doff 
The transfer mode is turned off. Any succeeding output to 
virtual OOD is written on the real device. 

c. xfer d to userA4 
USERALJ NOT IN DIRECTORY 

USERA4 does not exist; therefore cards are not transferred 
to him. Any active transfer mode is turned off. 

d. CP <-----environment confirmation 
x d to user20 
begin 
CMS 
disk dump document script 
R;T=02,.19 
** CARDS XFEReD BY USER4 ** 
offline read prog2 datain 

Output device OOD is transferred to USER20. Control is 
returned to eMS by issuing BEGIN to CP, and the file 
DOCUMENT SCRIPT is transferred to the card reader of USER20 
in disk dump format. Meanwhi1e, cards were XFER'ed to this 
user by USER4, and he reads them onto his disk. 

XFER 507 



CONSOLE FUNCTION APPLICATIONS 

':.- _,Console functions give the facilities of a computer console 
r:.c.t:o each virtual machine,. and they should be used 
~accordin9Iy. It is through these functions that a virtual 
machine is loaded. displayed,. dumped. altered,. and 
controlled by the user. 

Console functions have various uses. Some of the 
application areas are described below. such as debugging. 
initializing CMS. and attaching/detaching additional I/O 
devices. 

Debugging. Console functions are very useful for debugging 
purposes. The CP environment can be entered at any time and 
the, contents of core storage,. the registers. and the PSW 

,j displayed. dumped. or alterel.. Execution can be started 
again by issuing BEGIN. with or without a specified 
hexadecimal location. 

If the CP environment has been entered from CMS and the user 
desires to enter the Debug environment of CMS. he can issue 
EXTERNAL,. The EXTERNAL console function generates an 
external interrupt and causes DEBUG to be entered 
immediately. 

Initializing eMS. If at any time the user destroys his copy 
of CMS. a new copy can be loaded 'again by issuing IPL'CMS or 
IPL 190. All pending interrupts are reset and CMS is 
started anew. 

If I/O errors occur on the disk when logging in to eMS. the 
file directory from the permanent disk has probably been 
read into core incorrectly. 00 NOT LOG OUT. Enter CP by 
hitting ATTN once and issue IPL C~S or IPL 190 to initialize 
CMS. 

'Attaching/Detaching Additional I/O Devices. If an I/O device 
such as a tape drive, is needed that does not belong to the 
virtual machine configuration. the user must communicate 
with the CP operator that he wants a.device attached with a 
specified address. such as 181. As soon as the device is 
attached by the operator. the message DEV devadd READY is 
typed out at the terminal. The specified device address can 
now be used. 

The user can continue using the terminal while he is waiting 
for a device to be attached r• as long as he does not address 
that device. Once the device is attached and the 
appropriate message is typed out. the specified device is 
dedicated to the one user. 

There is no tape-label checking performed by CP. 
to the operator to mount the correct tape. 

It is up 

The responsibility is left to the user to detach or remove 

508 Console Function Applications 



the specified device from his configuration. As long as the 
device is attached to him. it is unavailable for use by any 
other user. By issuing DETACH devadd,. the device is removed 
from the virtual machine configuration and the message 

DEV devadd DETACHED 
is typed out at the terminal. A message is automatically 
typed out to the operator specifying the device that is 
free. If the detached device address is that of a tape 
drive. the tape is rewound and unloaded. 

Transferring Files. Any files up to 132 characters in 
length. -fixed or variable, can be transferred between users 
by issuing the XFER console function. output written to the 
XFER'ed device is placed in the card reader of the specified 
user. CMS commands i• such as OFFLINE PUNCH for card-image 
records, OFFLINE PRINT for printer files, and DISK DUMP for 
variable-length records. can be used to write output to the 
XFERted device. 

Controlling Spooled Input/Output. Spooled input and output 
remain on the disk until the user reads or closes the input_ 
filet. or until the physical device is available for output. 
To r'~move all spooling areas for a particular device. issue 
the PURGE console function. To determine how. many spooled 
files currently exist. issue--QUERY FILE. To direct spooled 
output to a particular device rather than the first 
avai'lable one. issue SPOOL.. To concatenate spooled input 
files so that many physical decks can be read continuously 
as if they were one, issue the SPOOL console function. 
specifying CONT for the card reader. 

Console Function Applications 509 



CP-61 MESSAGES 

The following CP-61 messages are directed to a user in 
response to a machine malfunction or operator intervention. 

When the operator attaches a device to a user, the message: 
DEV XXX A~ACHED 

is typed at the user·s terminal. 

If the user has placed the terminal in sleep state the 
message is typed immediately, otherwise it is typed 
following the next carriage return. 

Should the operator detach a device, the message 
DEV XXX DETACHED 

is similarly typed. 

Should a machine check occur and the user's machine is 
enabled for machine checks, the message 

*.MACHlNE CHEeR** - CP ENTERED, REQUEST PLEASE 
is printed at the user·s terminal and the user's machine is 
placed in console function mode. One must reIPL should this 
occur. 

If the user's machine is not en~bled for interrupts, the 
message: 

.* MACHINE CHECR *. 
is printed at the user's terminal and the user's machine 
remains unaltered. 

If an error is encountered on a system disk, such as a 
T-disk, the message: 

**SYSTEM IOERROR*. CP ENTERED, REQUEST PLEASE 
is typed at the user's .terminal and the user's machine is 
placed in console function mode. 

The message 
CONNECT=xx.xx.xx VIRTCPU=xxx.xx.xx TOTCPU=xxx.xx.xx 

is typed at the user's terminal if the operator does an ACNT 
CP console function. No change occurs in the user's machine 
status except that connect, virtual, and total times are 
reset to zero. 

510 CP Messages 



OPERATING CONSIDERATIONS 

OFFLINE PROCEDURES 

To read cards into a user's file. the 
is used. The first card in a deck to 
control card 

OFFLINE READ command 
be read must be the 

CP61USERID userid 
where the user's ID is punched beginning in column 13 (that 
is, two spaces between CP61USERID and the user's ID). 

Cards are read by the OFFLINE READ command in CMS and a file 
is formed ~hich is referred to by its, filename and filetype. 
The control card 

OFFLINE READ name type mode 
specifying the filename and filetype;, should be placed 
before each set of cards which is to form a file where 
"name" is the filename. "type'" is the filetype, and "mode" 
is the filemode. If the "mode" is not specified, each file 
is entere~ into the user's file directory with mode Pl. 

When a user wishes to have a deck of cards read in offline, 
he should give the deck to the CP operator and request that 
his deck be read into CP. If the user was logged in before 
the deck was read by CP. the following message is typed at 
the console: 

**CARDS HAVE BEEN READ*. 
If the deck was read.by CP before the' user logged 

-following message is typed at the console, as soon 
user logs on: 

FILES: - xx RDR. xx PRT/• xx PCB 

in, the 
as the 

When the deck has been read by CP. the user should issue the 
CMS command 

OFFLINE READ • 
to cause eMS to re~d the cards and form the desired files. 
If the deck is read by CPt but, the CMS command OFFLINE READ 
is not issued, the files are not written onto the user's 
disk. 

Offline Procedures 511 



TAPE PROCEDURES 

A facility is available for attaching magnetic tapes to a 
virtual machine. The selection of a physical tape drive is 
made by the CP operator, and the virtual device address is 
chosen by the terminal user. The eMS TAPE command requires 
that the tape have a,ddress 181. The TAPEIO function and the 
TPCOPY command associate the device names TAPl and TAP2 with 
the device addresses 180 and 181, respectively. 

To have a tape attached to your 
message to the CP operator asking 
you as a specified device address. 
and ready for use. the system 
message 

virtual machine, send a 
him to mount a tape for 
When the tape is mounted 

automatically types the 

DEVICE xxx ATTACHED 

Since there are only a limited number of tape drives 
available for use by CMS users# a user should not keep a 
tape attached to his machine any longer than he is using it. 
To release a tape from a virtual machine, enter the CP 
environment and type the CP console function 

DETACH devadd 

When a user logs out of CP, all attached devices are 
automatically detached. 

512 Tape Procedures 



LIBRARY USAGE 

eMS has two types of libraries--macro libraries and text 
libraries. 

Macro Libraries. 

A macro; library is created by the MACLIB command: it is a 
file that has a filetype of MACLIB and that contains macro 
definitions and a dictionary. A macro definition is a group 
of assembler-language statements identified by a unique name' 
and used as an expansion of a source statement in· an 
assembler~languaqe program. The dictionary generated by the 
MACLIB command is made up of macro definition names, indices 
or locations of the macro definitions within the library, 
and the size in number of card iJllages in each macro 
definition .. 

Both the user and the system may have macro libraries.. eMS 
provides two macro libraries that reside on the systems 
disk: SYSLIB MACLIB and OSMACRO MACLIB. SYSLIB MACLIB 
contains the CMS macros, and OSMACRO MACLIB contains the OS 
macros supported under CMS. The user can generate his own 
libraries on his permanent disk by issuing the MACLIB 
command. 

Macro libraries are searched during the ASSEMBLE command for 
missing macro definitions.. Normally the only macro 
libraries searched are SYSLIB MACLIB and OSMACRO MACLIB. in 
that order. Once macro libraries have been generated by1·the 
user. there are two methods by which the userfs MACLIB files 
can be searched for missing macro definitions. 

The first method is by issuing the GLOBAL 'ASSEMBLER command. 
This command names from one to five ~ACLIB files that are to 
be searched for missing macro definitions. If the files 
SYSLIB MACLIB and OSMACRO MACLIB are to be searched in 
addition to the user·s MACLIB files, SYSLIB and OSMACRO must 
be specified as two of the five libnames in the GLOBAL 
ASSEMBLER command.. The MACLIB files are searched in the 
order in which they are named. The GLOBAL macro libraries 
remain in effect until another GLOBAL ASSEMBLER command is 
issued" or the CMS nucleus is reinitialized,. or the user 
logs out of CP. 

The second method is by generating a SYSLIB MACLIB file or 
an OSMACRO MACLIB fi1e on a disk that precedes the systems. 
disk in the standard order of search. The ASSEMBLE. command 
normally searches for the file SYSLIB MACLIB and OSMACRO 
MACLIB for missing macro definitions. 

TO terminate the searching of all MACLIB files, including 
SYSLIB MACLIB and OSMACRO MACLIB, the GLOBAL ASSEMBLER 
command can be issued with no libnames specified. 

Library Usage 513 



Text Libraries 

A text library" created by the TXTLIE command" is a file 
that has a filetype of TXTLIB and that contains a dictionary 
and the relocatable object code from TEXT files~ The 
dictionary is created by the TXTLIB command and contains 
control section names. the entry points. their location, and 
the size of each TEXT file inc1uded in the text library. 

Both the user and the system may have text libraries. eMS 
provides four text libraries which reside on the systems 
disk; they are SYSLIB TXTLIB, CMSLIB TXTLIB,PLILIB TXTLIB. 
and SSPLIB TXTLIB. SYSLIB TXTLIB contains the standard IBM 
OS/360 FORTRAN G library routines: CMSLIB TXTLIB contains 
the nonerror message FORTRAN subroutines; PLILIB TXTLIB 
contains the standard PL/I library; and SSPLIB TXTLIB 
contains the Scientific Subroutine Package. The user can 
generate his own text libraries by issuing the TXTLIB 
command,. 

Text libraries are searched by the LOAD, USE, and REUSE 
commands to find missing subroutines, undefined names,. and 
TEXT files not found_ Normally the only text library 
searched is SY,SLIB TXTLIB.. To search either CMSLIB TXTLIB, 
PLILIB TXTLIB. or SSPLIB TXTLIB. the GLOBAL command should 
.be issued. If text libraries have been generated by the 
user. there are three methods by ·which the user's text 
libraries can be searched during the·LOAD, USE, and REUSE 
commands .• 

The first method is by issuing the GLOBAL LOADER command. 
This command names from one to eight TXTLIB files that are 
to be searched for missing subroutines. If the file SYSLIB 
TXTLIB is to be searched in addition to the user's TXTLIB 
files. SYSLIB must be specified as one of the eight libnames 
in the GLOBAL LOADER command. The TXT LIB files are searched 
in the order in which they are named. If the GLOBAL LOADER 
command has been issued and the user wishes to terminate the 
use of his TXTLIB files, the GLOBAL LOADER command can be 
issued specifying SYSLIB. To terminate the searching of all 
TXTLIB files. issue GLOBAL without specifying any TXTLIB 
files. The GLOBAL text libraries remain in effect until 
another GLOBAL LOADER command is issued, the LOAD command is 
issued with the LIBE or SLIBE option, the CMS nucleus is 
reinitialized, or the user logs out ofCP. 

The second method is by issuing the LOAD command with the 
LIBE option and specifyi'ng the text libraries to be used. If 
the file SYSLIB TXTLIB is to be searched along with the 
user's text libraries;. SYSLIB must be specified as one of 
the libnames. The LIBE option with the LOAD command 
overrides the effect of the GLOBAL LOADER command for that 
LOAD and any following USE or REUSE cOll11l1ands,. 

The third method is by generating a SYSLIB TXTLIB file on a 
disk that precedes the systems disk in the s·tandard order of 

514 Library Usage 



search. LOAD, USE, and REUSE normally search for the file 
SYSLIB TXTLIB for missing subroutines or TEXT files not 
found. If a user file has the identifier SYSLIB TXTLIB it 
is used in place of the system text library. 

Library Usage 515 



RECOVERY PROCEDURES 

The recovery procedures discussed here deal with error 
recovery as well as general recovery from user problems. 
The recovery procedures are as follows: errors during 
LOGIN, errors specified by the E(xxxxxl message, recovering 
from the system going down,. reinitializing CMS, file space 
full, and general recovery procedures. 

Errors during CMS Login 

CMS LOGIN is defined as reading into core the 
user-file-directory from the specified disk. Login is 
initiated after the CMS- startup message by: 1) entering a 
null line, 2) issuing the eMS command LOGIN, 3) invoking any 
valid CMS command or function. Errors that might occur 
during the lbgin procedure are~ a) P-disk not 
attached--contact CP systems operator; b) file-directory 
unreadable--total catastrophe, issue FORMAT P ALL: c) 
i~valid device type--only 2311 or 2314 devices are allowed; 
d) hardware I/O error attempting to read the 
file-directory--real hardware problems. 

If I/O errors occur during the CMS LOGIN NO UFD command, 
issue FORMAT P to reinitialize the p~rmanent disk. If 
errors occur during FORMAT P, issue FORMAT PALL. 

Errors Specified by the E(xxxxx) Message 

Any error conditions that occur during a CMS command are 
typed out with an E(xxxxx) message when the command is 
terminated. The xxxxx is the error code number and it is 
explained in that command's description. If files were 
permanently written out or updated before the error 
condition occurred, the most current files are reflected in 
the user-file-directory, when the time (T=xx.xx) is typed 
out;. unless otherwise stated by that command's description. 

Recovering from the system's Going Down 

If the system goes down while using CMS, the files on the 
temporary disk are lost. and the files on the permanent disk 
are as current as they were when the last Ready message 
(R;T=xx.xx) or error message (E(xxxxx);T=xx.xx) was typed 
out,. with one exception. If an EXEC command had been 
issued. the files used by the CMS commands that had finished 
execution before the system went down are reflected in the 
current user-file-directory,. even though no time (T=xx.xx) 
was specified between the commands. Except in the case of 
EXEC. the user-file-directory is always updated on disk 
when.!ver the time ('I'=xx.xx) is typed at the terminal. 

If a file is being edited or created by EDIT or CEDIT when 
the system goes down, it may not be completely lost. Issue 
a LISTF, and see if the EDIT or CEDIT work files (INPUT1) 
FILE or (INPUT2) FILE exist. If they both exist,. take the 

516 Recovery Procedures 



longer of the two if you are creating or adding to the file, 
or take the shorter file if you are deleting many -lines, and 
then proceed as below: if they both exist and are the same 
length. issue a.PRINTF or OFFLINE PRINT for both work files 
to see which work file has the latest copy of the file being 
edited. and then proceed as below: if only one work file 
exists then proceed as below. Note that EDIT only uses one 
work file--(INPUT1) FILE. 

ALTER the filename and/or filetype of the appropriate work 
file. Then issue EDIT for the ALTER'ed file and begin 
editing., as this file contains the latest copy of the file 
that wap being edited when the system went down. 

If no work file exists, all input and changes made since the 
last FILE or SAVE request have been lost. To prevent the 
updated or new file from being lost;, issue the FILE or SAVE 
request frequently. 

Reinitializing CMS 

If DEBUG is entered l, CMS can be reinitialized as follows: 
(1) the CMS IPL command can be issued from the DEBUG 
environment or the CMS command environment;. (2) ATTN can be 
hit. and IPL eMS or IPL 190 issued to CP. (3) RESTART can be 
issued from the DEBUG environment to reIPL the CMS nucleus, 
or (4) KX issued in DEBUG" which updates the user directory 
and IPL's the CMS nucleus.. Issuing KX to DEBUG is the only 
way among the previous three methods of reinitializing CMS 
to permanently update files that have been modified or 
created since the last T=xx.xx message. 

If CMS does not work as it should., it could be that the copy 
of CMS in the virtual machine has been destroyed by the user 
(no user can get to or alter another user's virtual machine 
or core storage). The user should either (1) enter the 
Control Program by hitting ATTN and issue IPL CMS to reload 
CMS" or (2) issue IPL to the CMS command environment. 

The command IPL. LOGIN1• and FORMAT can be - issued at any time 
in the CMS comm~nd envlroment and not just at the beginning. 

File Space Full 

If 99~ of the user·s filespace is full. an error message is 
typed out and the user is logged out of eMS. Issue IPL CMS 
to CP and" if at all possible, erase some files. If there_ 
is still not sufficient space available on the disk, dump 
all or part of the files onto tape with the eMS commands 
TAPE DUMP, and then erase those files on disk. Whenever the 
files on tape are needed, the commands TAPE LOAD (if TAPE 
DUMP'created the tape) could read them back onto disk. If 
t~e user still needs more filespace" he should contact the 
system administrator for more disk space. 

Recovery Procedures 517 



General Recovery Procedures 

If it is not clear which environment has been entered(, hit 
carriage return and the response confirms which environment 
has been entered. 

To kill execution of a command or program in CMS,. ATTN 
should be hit twice and KX entered. To kill a type out in 
eMS. ATTN should be hit twice and RT entered. To kill 
overrides in eMS. ATTN should be hit twice and KO entered. 

If all of the files on the permanent disk are to be erased. 
the command LOGIN NO UFO should be issued instead of ERASE * 
*. 

If errors persist in an executing program, use the DEBUG 
command or. if the program is written in FORTRAN, use the 
FORTRAN G Debug package (see IEM system/360: 
FORTRAN IV Language, C28-6515). 

If transmission errors occur. issue the ECHO command, using 
each of the options U, S, and X to test the transmission of 
data between the terminal and the computer. 

518 Recovery Procedures 



CHANGING OBJECT PROGRAMS 

Files which contain relocatable object code and have a 
filetype of TEXT can be read into core storage and have 
linkages resolved by the LOAD, USEI' and REUSE commands. 

Five types of cards can be added to a TEXT file. These are 
the Set Location counter (SLC), the Include Control Section 
(ICS), the Replace (REP)" the ENTRY, and the LIBRARY cards. 
These are used to set the core location where LOAD begins 
placing the file in core, to make corrections and additions 
to the relocatable object code in core once the file is 
loaded, to specify entry points, and to specify references 
that are not to be resolved. These cards can be added to 
the TEXT file(s) which have been OFFLINE PUNCH'ed and can 
then be read back in, or they can be added using the SPLIT 
and COMBINE commands or the EDIT command. 

The filetype 
column 1 and 
the file. 

REPS automatically places a 12-2-9 punch in 
begins placing the user·s data in column 1 of 

Changing Object Programs 519 



Set Location counter (SLC) Card 

The Set Location counter Card "sets the location counter used 
with the loader. The file loaded in after the SLC card is 
placed in core beginning at the address set by this SLC 
card. The SLC card has the format shown in Figure 43. It 
sets the location counter in one of three ways: 

a. With the absolute address specified as a hexadecimal 
number in columns 7-12. 

b. With the symbolic address already defined as a program 
name or entry point. This is specified by a symbolic name 
punched in columns 17-22. 

c. If both a hexadecimal address and a symbolic name are 
specified, the absolute address is converted to binary and 
added to the address assigned to the symbolic name; the 
resulting sum is the address to which the loader's location 
counter is set. For example, if OOOOF8 was specified in 
columns 7-12 of the SLC card image and GAMMA was specified 
in": columns 17-21, where GAMMA has an assigned address of 
006100 (hexadecimal), the absolute address in columns 7-12 
is added to the address assigned to GAMMA giving a total of 
0061F8. Thus, the location counter would be set to 0061F8. 

If there are blanks in both columns 7-12 and 17-22, or the 
symbolic name has not yet been defined, the response INVALID 
CARD xxx •• ,.xxx is typed out--or", depending on whether the 
LOAD option SINV or PINV was specified, is written in the 
file LOAD MAP. If only the symbolic aduress is to be used, 
columns 7-12 must be left blank or all zeros. If only the 
absolute address is to be used, columns 11-22 must be left 
blank. 

520 Changing Object Programs 



I COLUMN I CONTENTS I 
~~~~-~~~~-~~-~~---~-~-~~~-~---~~-------------~-~----~-----~---~--

I 1 I Load card identification (12-2-9). Identifies I
I "' this as a card acceptable to the loader. ,
I I 1
f 2-4 I SLC Identifies the type of load card. I
I I I
I 5-6 , BLANR I
I I I
I 7-12 I HEXADECIMAL ADDRESS to be added to the value I
, I of the symbol, if ~ny. in columns 17-22. Must I
I be right-justified in these columns, with unused 1
I leading columns filled in with zeros. I
I I,
I 13-16 BLANK
I
1 11-22
I
I
I
I
I
I

23

I 24-72
I
1 73-80
1
1

SYMBOLIC NAME whose assigned location is used
by the loader. Must be left-justified in these
columns. If blank. the address in the absolute
field is used.

BLANR

May be used for comments or left blank.

Not used by the loader. The user may leave these
blank or insert program identification for his own
convenience.

Figure 43. Format of an SLC card

Changing Object Programs 521

Include Control Section (ICS) Card

The ICS card changes the length of a specified control
section or defines a new control section. It should be used
only when REPLACE cards cause a control section to be
increased in length. The format of an ICS card is shown in
Figure 44. An ICS card must be placed at the front of the
card deck or TEXT file.

~~~~~--~-~----~--------------------~-----------------~-----------
I COLUMN CONTENTS 
-----~------~----------------------------------------~-~---~-----
I 
I 
I 
I 
I , 
I 
1 

1 

2-4 

5-16 

17-22 

23 

24 

25-28 

29 

30-12 

13-80 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Load card identification (12-2-9). Identifies 
this as a card acceptable to the loader. 

ICS Identifies the type of load card. 

BLANK 

CONTROL SECTION NAME--Ieft-justified in these 
columns. 

BLANK 

• (comma) 

HEXADECIMAL LENGTH IN BYTES of the control 
section. This must not be less than the actual 
length of the previously specified control 
section. Must be right-justified in these 
columns with unused leading columns filled in 
with zeros .. 

BLANK 

May be used for comments or left blank. 

Not used by the loader. The user may leave these 
blank or insert program identification for his 
own convenience. 

Figure 44.. Format of an ICS card 

522 Changing Object Programs 



Replace (REP) Card 

A REPLACE card allows instructions and constants to be 
changed and/or additions made. The REP card must be punched 
in hexadecimal code. The format of a REP card is shown in 
Figure 45. The data in columns 11-10 (excluding the commas) 
replaces what has already been loaded into core, beginning 
at the address specified in columns 1-12. REP cards are 
placed in the card deck either (1) immediately preceding the 
last card (END card) if the text deck does not contain 
relocatable data su~h as address constants, or (2) 
immediately precedi'ng the first RLD (relocatable dictionary) 
card if there is relocatable data in the text deck. If 
additions made by REP cards increase the length of a control 
section, anICS card, which defines the total length of the 
control section, must be placed at the front of the deck. 

I COLUMN CONTENTS 

-------------------------------~---------------------------------
I 
I 
I 
I 
I 
t 
I 
I 

1 
I 

1 

5-6 

1-12 

13-14 t 

15-16 

11-72 

73-80 

Load card identification (12-2-9). Identifies 
this as a card acceptable to the loader,. 

REP Identifies the type of load card. 

I , 
I 
I 
I 

BLANK , , 
HEXADECIMAL STARTING ADDRESS of the area to be 
replaced as assigned by the assembler. Must be 
right-justified in these columns with unused 
leading columns filled in with zeros. 

BLANK 

ESID --EXTERNAL SYMBOL IDENTIFICATION·- the 
hexadecimal number assigned to the control 
section in which replacement is to be made. The 
LISTING file produced by the compiler indicates 
this number. 

A maximum of 11 four-digit hexadecimal fields, 
separated by commas., each replacing one previously 
loaded halfword (two bytes). The last field 
must not be followed by a comma. 

BLANK 

Not used by the loader. The user may leave these 
blank or insert program identification for his 
own convenience. 

I 
I 
I 
I 
I 
I 
1 

Figure 45. Format of a REP card 

Changing Object Programs 523 



Entry Card 

"'~'r'l'he ENTRY statement specifies the first instruction to ,be 
executed. It can be placed before, between, or after object 
modules or other control statements. The format of the ENTRY 
statement can be seen in Figure 46. The Wexternalnamew is 
the name of a control section or an entry name in the input 
deck. It must be the name of an instruction, not of data. 

ENTRY externalname 

Figure 46. Format of an ENTRY card 

The loader selects the entry point for the loaded program in 
the following ways: 

a. From the paramter list on the START command. 

b. From the last ENTRY statement in the input. 

e c. From the first assembler- or 
~ statement that specifies an entry 

statement is in the input. 

compiler-produced END 
point if no ENTRY 

d. From the first byte of the first control section of the 
loaded program if no ENTRY statement and there is no 
assembler- or compiler-produced END statement specifying an 
entry point. 

Example: 

ENTRY GO 
~where GO is defined as the external name of the first 
ie'instruction to be executed when the program is loaded. 

The address of the instruction, indicated by the symbolic 
name GO, is specified by the loader as the starting point of 
the program when it is executed. 

J):524 Changing Object Progra~s 



Library Card 

The LIBRARY statement -can be used to specify the never-call 
function. The never-call specifies those external 
references that are not to be resolved by the automatic 
library call during any loader step. It is negated when a 
deck containing the external name referred to is part of the 
input-to the loader. The format of the-LIBRARY card can be 
seen in Figure 41. The -.- specifies the never-call 
function: the -external reference- ~efers to an external 
reference that may be unresolved after input processing. It 
is not to be resolved. Any additional external references 
within the subscript must be preceded by a comma. The 
LIBRARY statement can be placed before, between, or after 
object decks or other control statements. 

LIBRARY • (external reference) 

Figure 41. Format of the LIBRARY card 

Example: 

LIBRARY • (SINE) 
• specifies the never-call function. 
SINE is an external reference in the output. 

As a result, if SINE is unresolved after input processing, 
no automatic library call is made. 

Changing Object Programs 



CMS BATCH MONITOR 

The Batch Monitor can be run from a terminal like 
conversational CMS. The Batch Monitor permits use of the 
FORTRAN (G), ASSEMBLER (F). and PL/I (F) compilers. 
Temporary work files, referred to as FORTRAN logical files, 
are stored on disk and should be of limited size. The Batch 
Monitor's permanent disk is erased and CMS is re 9 IPLed 
whenever a JOB card i's processed. 

SAMPLE BATCH JOB 

Source, object" or data cards included in the job stream are 
stored as separate CMS files. Each file is identified by a 
filename and filetype. FORTRAN, ASSEMBLE, and TEXT control 
cards indicate the filetypes FORTRAN, SYSIN, and TEXT. 
respectively. If unspecified, the filename is chosen by the 
system,. 

When a FORTRAN file is compiled or a SYSIN file is 
assembled, an object module is generated as a file with a 
filetype of TEXT and the same filename as the source file. 

Data files to be read as a FORTRAN logical unit must be 
identified as FILE FTOnFOOl where n is 1, 2, 3, 4, or 8. 
Files created by writing on one of the above FORTRAN logical 
units are identified, in the same way. These files may be 
PRINT'ed or PUNCHeed using the appropriate control card and 
specifying the filename and filetype,. 

Execution of object modules (TEXT files) is initiated by the 
GO control card. The control card causes all TEXT files to 
be loaded into core. Execution begins at the entry point 
specified in the GO control card or at the first program 
encountered in the job stream. If a program interruption 
occurs during program execution, the programmer gets a 
complete core dump and the job is terminated. Data cards 
following the GO control card can be read as FORTRAN logical 
unit 5 (sysin). Any data cards following the GO control 
card which are not read are ignored. An example of a CMS 
Batch job deck is shown in Figure 48. 

526 CMS Batch Monitor 



//jobname JOB 
// userid acctno. 
// FORTRAN 

• 
• 

Fortran Program 1 Source Code 

Fortran END card 

Fortran Program 2 Source Code 

'Fortran END card 
// ASSEMBLE ABLE 

Assemble Program 1 Source Code 

Assembler END card 

Assembly Program 2 Source Code 

Assembler END card 
// PUNCH ABLE SYSIN 
// TEXT 

Object Module 

// GO 

Data Cards 

// PRINT FILE FT01FOOl 
// ASSEMBLE ABLE (NOLIST) 

Second Version o£ Assembly Program ABLE 

Assembler END card 
// GO ABLE 

Figure 48. Sample CMS Batch stream 

CMS Batch Monitor 

Standard Job Card 

527 



CMS BATCH CONTROL CARDS 

A deck to be submitted for CMS Batch must have an OS/360 
standard job card., The second card must be ~ / userid 
acctno.. The control cards for eMS Batch specify a procedure 
name together with optional parameters. Control cards must 
have // in columns 1 and 2, and column 3 must be blank. 
Procedure names and parameters are each separated by one or 
more spaces. ~he CMS Batch control cards are described in 
·subsequent sections. 

To simplify the transition from an 05/360 job to a eMS Batch 
job, selected OS/360 control cards are translated into eMS 
Batch control cards to perform the corresponding functions. 
The OS/360 procedure names which are recognized, and the CMS 
Batch control cards they are equivalent to. are specified 
below. 

Notes: 

OS Procedure Name 

FORTRAN 
LARGFORT 
LINKEDIT 
LINKOBJ 
LINKSRC 
EXECUTE 
DI5KEXEC 
ASSEMBLE 
A SEMLINI< 
PUNCH 
TPPCHOBJ 

Batch Control Card 

// FORTRAN 
// FORTRAN 
// TEXT 
// TEXT 
// TEXT 
// GO 
// GO 
// ASSEMBLE 
// ASSEMBLE 
// PUNCH 
// PUNCH 

a. The only OS/360 // EXEC cards that are 
eMS Batch are the ones specified above: all 
contro1 cards are ignored. 

recognized by 
other OS/360 

b. Only one job step per procedure call is allowed. 

c. A list of CMS Batch control cards can be found in 
"igure 49 (see following sections for specific formats). 

528 eMS Batch Monitor 



// ASSEMBLE 

// COMMAND 

// CP 

// DATASET 

// FORTRAN 

// GO 

// PRINT 

// PUNCH 

// TEXT 

Figure 49. CMS Batch control cards 

eMS Batch Monitor 529 



// ASSEMBLE 

Format: 

I // ASSEMBLE 1 <filename>«optionl ••• optionN» I 
I I· I 

filename specifies the name of the file which contains the 
cards following the // ASSEMBLE control card up to 
the next control card. The filetype is SYSIN. 

• If no parameters are specified. a 
chosen by the system and the default 
taken. 

Options: 

LIST creates the LISTING file. 
NOLIST suppresses creation of the LISTING file. 

XREF creates the cross-reference symbol table 
LISTING file. 

NOXREF suppresses the creation of the symbol 
option is ignored if the NOLIST 
specified. 

filename is 
options are 

within the 

table. This 
option was 

RENT causes the assembler to generate messages in the 
LISTING file if nonreentrant coding is found in the 
assembled program. 

NORENT suppresses the generation of messages in the LISTING 
file if nonreentrant coding is found in the 
assembled program. 

Usage: 

All cards following the // ASSEMBLE control card up to the 
next control card are assumed to be Assembly Language source 
cards. These cards are read and stored as a file and 
translated using the F-level Assembler and the specified 
options. The source cards may contain any number of 
routines, each delimited by an END statement. If a filename 
is specified, the source cards are stored as a file with 
this filename and the filetype of SYSIN. If filename is not 
specified, the system chooses a unique name. The options 
specified govern the translation of the source cards. Any 
combination of options may be specified in any order. 

An assembly generates a LISTING and a TEXT file.. The 
LISTING is automatically written out on sysout. The TEXT 
file (that is, object module) can be punched using a // 
PUNCH control card. The filename of the TEXT file is the 
same as the filename of the Assembly Language source file. 

Object modules are loaded into core and executed when the // 

530 CMS Batch Monitor 



GO control card is specified. 

output: 

LIST provides a listing of the 
code,. together with the source 
symbol directory. 

assembled machine-language 
statements and an external 

XREF includes a cross-reference symbol table with the 
listing. 

RENT includes messages in the listing for nonreentrant 
coding found in the assembled program. 

Diagnostic and error messages appear at the end of the 
listing. 

Note: 

The assembler searches the eMS macro lib~aries. SYSLIB 
MACLIB and OSMACRO MACLIB, for macro definitions. Additional 
macros may be included with the source program. 

References: 

For information on the Assembly Language. see IBM 08/360 
Assembler Language (C28-6514) and Assembler ! Proqrammer·s 
Guide (C26-3156) .. For information on the System/360 machine. 
see IBM Systero/360 Principles of Operation (A22-6821). 

CMS Batch Monitor' 531 



// COMMAND 

Format: 

I // COMMAND I anycmscommandl 

anycmscommand any valid CMS command ~ay be executed except 
CPFUNC'I'N. 

Usage: 

The // COMMAND enables any CMS command to be entered and 
processed within the BATCH job stream. thereby enabling the 
user to perform operations not directly possible under 
Batch. For example, he could create EXEC files and execute 
them l, or use· the other eMS language processors in addi tioD 
to FORTRAN and ASSEMBLER,. 

Examples: 

a. / / COMMAND PLI PROGA 
This causes the compilation of the file PROGA PLI by the 
PL/l (F) compiler. 

h. //COMMAND EXEC FORTCLG TEST1. 
This causes the file FORTCLG EXEC to be executed. and would 
pass the argument TEST1 to it. The file, FORTCLG EXEC would 
have been previously entered via the // DATASET FORTCLG EXEC 
card. 

Note: 

The CPFUNCTN command cannot be issued. 

532 eMS Batch Monitor 



// CP 

Format: 

Usage: 

~~~~----------~-----------------~ 
I I
I // CPI
I I

MSG userid line
XFER Doff

to use rid

I
I
I

The // CP card enables the user either to send messages or
to transfer his punched output. If Batch is running in a
disconnect mode, the user may send decks to be processed,
and, via the // CP XFER, he may receive his punched decks
back at his own virtual machine.

Examples:

a. // CP XFER D TO MINE
This causes all subsequent punched output to be sent to the
user MINE.

h. // CP MSG CP YOU MAY DISCARD MY OUTPUT
The message YOU MAY DISCARD MY OUTPUT is typed on the
operator·s console.

eMS Batch Monitor 533

// DATASET

Format:

I // DATASET filename filetypel

filename filetype specifies the identifier to be given to
the file which contains the cards
following the // DATASET control card to
the next control card.

Usage:

The cards following the // DA~ASET control card up to the
next control card are read and stored as a file. If the
file identifier is of the fQrm FILE FTOnF001, the file can
be read as a FORTRAN logical unit.

Examples:

a. // DATASE~ FILE FT01FOOl

b. // DATASET QUIET EXEC

534 eMS Batch Monitor

// FORTRAN

Format:

I // FORTRAN
I

l<filename>«optionl ••• optionNl> I
1*'

~---------------------------------~-------------~-

filename

*

Options:

specifies the name of the
contains the cards following the
control card up to the next control
filetype is FORTRAN.

file which
// FORTRAN
card. The

If no parameters are specified, a filename is
chosen by the system and the default options are
taken.

MAP includes tables of addresses of FORTRAN variables in the
--- LISTING file.
NOMAP suppresses the tables of variables.

LIST includes a listing of object code in Assembly language
mnemonics 1n the LISTING file.

NOLIST suppresses the object code listing.

BCD causes the source program to be interpreted using the
Binary Coded Decimal code.

EBCDIC causes the source program to be interpreted using the
Extended Binary Coded Interchange Code.

Usage:

All cards following the // FORTRAN control card up to the
next control card are assumed to be FORTRAN source code.
These cards are read and stored as a file and compiled using
the FORTRAN-G compiler under the specified options. The
source cards may contain any number of routines!. each
delimited by an END statement. If a filename is specified,
the source cards are stored as a file with this filename and
a filetype of FORTRAN. If filename is not specified, the
system chooses a unique name. Any combination of options
may be specified in any order.

A compilation generates a LISTING and a TEXT file. The
LISTING file is automatically written on sysout. The TEXT
file can be punched using a // PUNCH control card. The
filename of the TEXT file is the same as the filename of the
FORTRAN source file.

TEXT files are loaded into core and executed when the // GO
control card is specified.

eMS Batch Monitor 535

output:

MAP produces a table of addresses for each of the
classifications of variables in the source program
COMMON, EQUIVALENCE!, NAMELIST, FORMAT, scalar variables, and
called sUbprogram names.

LIST provides a listing of the object program with relative
addresses and instructions translated into assembly
language.

Diagnostic and error messages produced by the compiler are
placed in the LISTING file and printed on sysout.

Notes:

a. Source cards can be punched in either Binary Coded
Decimal (BCD) or Extended Binary Coded Decimal Interchange
Code (EBCDIC). If BCD code is used, the BCD option must be
specified for the compilation.

b. The entry point for the first main program is the same
as the filename. Subsequent main programs have the entry
point MAIN. The entry point for subroutines are specified
in the SUBROUTINE statement.

c. Data can be read from sysin using FORTRAN logical unit
5 and written onto sysout using FORTRAN logical unit 6.

d. Only FORTRAN logical units 1-6 and 8 may be used. The
FORTRAN logical files are defined as follows:

Logical File

1-4
5
6
8

Record Length

80-character records
SO-character sysin records

130-character sysout records
133-character records with

carriage control

e. An ID is punched in columns 73-80 of object decks. For
subroutines, the first four letters of the subroutine name
are used in columns 13-76. For main programs the first four
letters of the filename are used if it is the first deck in
the file, otherwise MAIN is used. Columns 71-80 contain a
sequence number.

f. Information in the IBM system/360 Operating System Job
Control Language is not applicable under CMS. The LOAD,
NAME=, and LINECNT= options are not supported.

References:

For information on
System/360 FORTRAN

536

the
IV

FORTRAN
Language

IV language, see
(C28-6515), and

eMS Batch Monitor

IBM
IBM

System/360 Operating System FORTRAN IV Library: Mathematical
and S~rvice Subprograms. For information· on compiler
operation and messaqes, see IBM system/360 Operating System
FORTRAN IV (G and H) Programmer·s Guide. .

eMS Batch Monitor 537

// GO

Format:

I // GO

I
I < entry point > I
I default entry point I

entry point specifies the name of a control section or entry
point to which control is passed at execution
time.

default entry point is the beginning of the first program
encountered in the job stream.

Usage:

// GO causes all TEXT files to be loaded into core. together
with the required modules from SYSLIB TXTLIB. and proper
linkages to be established between the program modules.
Programs are loaded at X'12000· and may extend to X·3DOOO'.

A load map containing the location of control sections and
entry points of programs loaded is created and printed on
sysout. After loading. execution is begun by transferring
control to the entry point.

Data cards following the // GO control card can be read from
FORTRAN programs using logical unit 5. Data cards not read
are ignored. output written onto FORTRAN logical unit 6 is
written onto sysout and printed.

Note:

An entry point must be either a control section name or an
entry point name. It may not be a filename unless the
filename is identical to a control section name or an entry
point name.

Examples:

a. // GO

h. // GO ENTRY1

Error Messages:

EC00001) DEFINED MORE THAN ONCE -xxxxxxxx

EC00002) OVERLAY ERROR
The files being loaded have run out of core.

E(00003) REFERENCE TABLE OVERFLOW
There are too many entries for the entry points or control
section names in the reference table.

538 eMS Batch Monitor

E(00004) THE FOLLOWING NAMES ARE UNDEFINED -xxxxxxxx
The names xxxxxxxx are referred to and have never been
defined.

EC00005J NAME IS UNDEFINED - xxxxxxxx
The name xxxxxxxx specified as an entry point does not
exist.

eMS Batch Monitor

// PRINT

. Format:

I // PRINT I filename filetype ,

filename filetype specifies the name of the file to be
printed on sysout.

Usage:

Each line of the specified file is truncated to 130
characters and printed on sysout. The first character of
each line of a LISTING file is used as a printer carriage
control character.

'These carriage
follows:

CHARACTER

" .
"0·

"1"

Example:

control characters are interpreted as

EBCDIC ACTION

print line .and srplaee 1

FO space 1, priDt line~ space 1

Fl skip to new page, print line, space 1

xx any character other than the above is
used as a CCW

// PRINT FILE FT01F001

Error Message:

E(00003} FILE NOT FOUND

540 eMS Batch Monitor

// PUNCH

Format:

I j/ PUNCH I filename filetype I

filename filetype the identifier of the file to be punched

Usage:

Files with records up to SO characters in length are punched
into an aO-column card.

Examples:

a. / / PUNCH PROG1 'rEXT
The file PROGl TEx-I' is punched.

h. // PUNCH FILE FT01FTOOl
The FORTRAN logical file 1 is punched.

Error Message:

E(00002) FILE NOT FOUND

eMS Batch Monitor 541

// TEXT

Format:

// TEXT

Usage:

The cards following the // TEXT control card up to the next
control card are read and stored as a file. A unique
filename is chosen by the system and the filetype is TEXT.

Example:

// TEXT

542 eMS Batch Monitor

RUNNING THE eMS BATCH MONITOR

Setup

CMS Batch accepts an input stream from either the card
reader or from tape. The punched output can go to tape or
to cards and the printed output can go to tape or to the
printer. The tape assignments are as follows:

Symbolic
Address

TAPS

Tap6

TAP7

Virtual
Address

185

186

187

contents Track

SYSIN 9

SYSOUT 9

PUNCH 9

If the SYSIN tape is not attached to the BATCH machine, the
system assumes that the input stream comes from the card
reader. If the PUNCH tape is not attached, the system
writes the PUNCHeed output to the online punch. If the
SYSOUT tape is not attached, the printer is used.

Unlabeled tapes are used. The SYSIN tape consists of
unblocked card images. The PUNCH tape consists of unblocked
card images, but each job is a separate file where the first
record contains the job number and the programmer's name.
The SYSOUT print tape consists of unblocked 133-character
records.

Each job is limited in number of minutes of execution time
and number of lines of printed output. These limits may be
reset by the system programmer. The default settings are
five minutes and 5000 lines.

Using CMS BATCH

To run the eMS BATCH stream,

a. LOGIN to CP as the BATCH user.

h. IPL the Batch Monitor·s Nu-cleus"

c. Issue the START command.

d. Optionally, ATTN may be hit to enter CP" and DISCONN
may be entered to run BATCH in the disconnect mode.

When a job is canceled l , a message is writ.ten on SYSOUT
indicating this to the prog·rammer, along with an explanation
as to why this was done. The following messages may be
printed:

a. TIME LIMIT EXCEEDED
The running time of the job exceederl the allowable execution

eMS Batch Monitor 543

time.

b • OUTPtn' LIMI-r EXCEEDED
The number of output lines exceeded the allowable length of
output,.

Notes:

a. Each job is limited to minutes of execution time and
lines of printed output. If either of these limits is.
exceeded. the job ~s canceled. These limits may be set by
the system programmer at your installation.

b. When an end of file is encountered on the input device.
the message END OF INPUT STREAM is typed on the console. An
enabled-WAIT PSW is loaded" and, a DEVICE END interrupt on
the input device reinitiates batch operations. Thus, a job
may be XFEReed to BATCH, and BA-rCH processes it.

c. An accounting card is punched for every job that Batch
runs. This card is spooled to the virtual machine whose
userid is OPERATOR. and is punched out in the CP account
card format.

Example:

The login procedure for using the Batch Monitor is

cp-67 online xd.65 qsyosu
1 cmsbatch
ENTER PASSliiORD:

READY AT 13.32.38 ON 09/08/69
CP
ipl ccu
READY
start

where ccu is the address of the disk containing an IPL'able
copy of the BATCH nucleus.

Optionally, the ATTN key may be hit once to enter CPr and
DISCONN may be typed in. The terminal is then free for use
by another virtual user~ while BATCH continues to process
its job stream. or waits for a stream to be XFER'ed to it.

544 CMS Batch Monitor

GLOSSARY

Terms with specific meanings in CP and CMS are described
below in alphabetical order.

ACTIVE DISK TABLE. A table residing in the user's copy of
the CMS nucleus which contains an entry for each of the
six d~sks that the user may access with CMS.

ACTIVE FILE TABLE. A table residing in the user·scopy of
the CMS nucleus which contains an entry for each of
that user's currently opened files.

ARGUMENT. Any alphameric information, not exceeding eight
bytes in length, the address of which is to be passed
to a program at the time it begins executing or to a
CMS command.

ATTENTION INTERRUPT. A signal to the system which· effects a
transfer of control between the Control Program and
other environments. The terminal keyboard is unlocked,
regardless of current processing. and the input line is
processed by the environment in control.

ATTENTION KEY. A key on the terminal which, when hit,
causes an attention interrupt. This key is labeled
ATTN on the 2141. and RESET LINE on the 1050.

CARD IMAGE. An 80-character logical record in which each
character corresponds positionally to the columns of a
punched card.

CARRIAGE RETURN. The signal which indicates to the system
the termination of a line of input from the terminal.
This signai is transmitted on the 2141 by hitting the
key labeled RETURN: on the 1050, it is transmitted
either by holding down the ALTN CODING key while
hitting the 5 key" or (if the 1050 is equi.ppedwith the
Automatic EOB special feature) by hitting the RETURN
key.

CHARACTER-DELETE SYMBOL. A character appearing on the
terminal keyboard which, when hit n times, deletes the
preceding n characters and itself from the input line.
Currently defined as the Q character, but can be
redefined in ~S by the CHARDEF command.

CMS FUNCTION. A routine available to the CMS command
programs for the handling of internal processing. such
as accessing and updating disk file directories or
handling disk and terminal I/O.

eMS NUCLEUS. The core-resident portion of CMS of which each
user receives a copy at the time he issues an IPL 190
or IPL CMS console function.

GLOSSARY 545

CONSOLE FUNCTION. A software facility whereby the user, at
his terminal. can simulate a function he would normally
be able to perform at a 360 console. The command
facilities of the Control Program are referred to
collectively as CP console functions.

CONTROL SECTION. A block of coding that can be relocated,
independent of other coding, without altering or
imparing the operating logic of the other coding.

CP/CMS SYSTEM. A time-sharing systero in which the Cambridge
Monitor System (eMS) runs as the operating system of a
virtual machine created by the Control Program (CP) '.

CPU TIME. The period of tiroe during which the central
processing unit of the computer is actively engaged in
the processing of instructions.

DEFAULT ENTRY POINT. The core location at which execution
begins if no starting location is specified; either
that given in the first nonblank operand of an END card
image or, ifal! END operands are blank, the beginning
of the first labeled control section of the loaded
program(s).

ENTRY POINT. Any symbol in a control section which can be
used by other control sections to effect a branch
operation or a data reference.

ENVIRONMENT. That
control at the
the terminal,
determine its
possible input

portion of the CP/CMS system which has
time an input line is transmitted from

and which processes that input line to
acceptability. Only a subset of all
is acceptable in any given environment.

ERROR MESSAGE. The message WE(xxxxxl;T=xx.xx/xx.xx
hh.mm.ss·, where xxxxx is the error code returned in
general-purpose register 15, the first xx.xx is the
virtual CPU time in seconds, and the second xx.xx is
the total CPU time in seconds used since the last Ready
or Error message. Any information typed at the
terminal which explains the meaning of the error code
may also be considered part of the error message.

FILE DIRECTORY. A table for each disk file storage area
which indicates the file identifier" file size, and
location of each file stored in that area. For
example, the system file directory contains information
for each file stored on the system disk.

FILE IDENTIFIER. A three-part designation which uniquely
identifies each file stored on disk,. This identifier
consists of a filename (any descriptive t.erm), a
filetype (indicating file contents) " and a filemode
(indicating file location).

546 GLOSSARY

INPUT LINE. All information, up to a maximum of 130
characters in length., typed by a user between the time
the typing element of his terminal comes to rest
following a carriage return until another carriage
return is issued.

LINE-DELETE SYMBOL. A character appearing on the terminal
keyboard which" when hit, deletes all preceding
characters in the input line and itself. currently
defined as the ¢ character,. but can be redefined by the
CHARDEF command in CMS.

LINE-END CHARACTER. A character appearing on the terminal
keyboard which. when hit" causes a logical end of the
input line so that information typed before and after
this character is interpreted as if entered on separate
lines (that is, a logical carriage return). Currently
defined as the # character, but can be redefined by the
LINEND command.

LINKAGE. The resolving of external references between
control sections at load time.

LOAD MAP. A file containing the core locations of control
sections and entry points of programs loaded into core.

MACRO LIBRARY. A disk file (whose filetype is MACLIB)
containing macro definitions in assembler language
source code and a dictionary of the name, size" and
location of each macro definition within the file.

NULL LINE. An input line consisting of a carriage return
issued as the first and only information after the
typing element of the terminal has come to rest
following a previous carriage return.

OFFLINE DEVICE. A device whose I/O is temporarily stored in
a spooling area by the Control Program; namely,. the
card reader, printer. and card punch.

ONLINE. Any operation performed at a terminal which is
actively connected to the computer.

OPERAND. Any field, delimited by one or more blanks r, which
may be specified in a command t• request, or console
function. The operands are distinct from the command.
request, or console functi'on name.. which is always the
first field specified.

OUTPUT. Any message or information typed by the system (as
opposed to the user) at the terminal. This term is also
used to refer to information punched onto cards.
printed on the printer. or written out on magnetic
tape.

OVERRIDE. A flag set internally to indicate whether or not

GLOSSARY 547

the user has requested
information.

the recording of trace

PAGING AREA.
assigned
by the
portions
order to

A secondary storage area on disk which is
to a particular virtual machine. and is used
Control Program for temporary storage of
of core belonging to that virtual, machine. in
allocate main storage dynamically among the

various users.

PARAMETER LIST. A string of doublewords used whenever a CMS
command or function is called by
The format of the parameter list
the command or function being
contains the name and operands
function.

an SVC instruction.
varies depending on
called, but always
of that command or

PERMANENT DISR. A disk area allocated to each user (at the
time he is authorized to use the CP/CMS system) on
which stored files are retained until the user requests
that they be deleted.

READ-ONLY. An indication that the user may have access to
the contents of a disk, but may perform no WRITE
operations to that area (that is, he may only READ it).

READY MESSAGE. The message wR:T=xx.xx/xx.xx hh.mm.ss· which
is typed as a response indicating the successful
completion of a CMS command and a return to the CMS
command environment. The first xx.xx is the virtual CPU
time and the second xx.xx is the total CPU time in
seconds used since the last ready or error message.

REQUEST. Input acceptable only to an environment which is
unique to a specific CMS command.

RESPONSE. Any nonerror message typed out by the system at
the terminal.

SPOOLING AREA. Any disk area used by the Control Program to
temporarily hold input from the offline card reader or
output to the offline card punch or printer.

SYSTEM DISK. A disk area containing the CMS nucleus" of
which each user receives his own copy, and the
disk-resident portion of CMS, which is shared by all
users.

SYSTEM FILE. Any file residing on the system disk as
opposed to the user·s permanent or temporary disks.

TEMPORARY DISK. A disk area allocated to the user at the
time he logs into the Control Program, on which stored
files are retained only for the duration of the
terminal session.

548 GLOSSARY

TERMINAL SESSION. The period between a user's completed
login to CP until he logs out from CP. (Note that new
copies of the CMS nucleus may be obtained during a
terminal session.)

TEXT LIBRARY. A user or system file. whose filetype is
TXTLIB, which is composed of TEXT files containing
relocatable object code and a dictionary indicating the
location and size of each of these TEXT files within
the library.

TOTAL CPU TIME. The time required to execute
machine's instructions plus the overhead
running that virtual machine.

the virtual
of CP for

TRACE INFORMATION,. Data (such as the contents of various
registers and parameter lists) recorded by the system
to enable the user to trace transfers to and from
SVC-called programs.

UNIT RECORD DEVICE. A card-reader, card punch, or printer.

USER FILE. A file residing on the user's permanent or
temporary disk as opposed to the system disk.

USERID. Any combination of from one to eight characters
which uniquely identifies a user to the Control
Program.

VIRTUAL CPU TIME. The time required to execute the virtual
machine's instructions,. This time includes no overhead
of CP.

VIRTUAL MACHINE. A functional simulation of a computer and
its associated devices. The Control Program, by
creating several virtual machines and allocating the
hardware facilities of a single computer among them,
creates an atmosphere in which the users of the virtual
machines may each function independently and with
different operating systems.

VIRTUAL MEMORY. The amount of core that the virtual machine
has--this need not be the same as the memory of the
real machine or the memory of any or all other virtual
machines.

GLOSSARY 549

APPENDIX A: CONTROL PROGRAM CONSOLE FUNCTIONS

Each of the CP-67 console functions that can be issued by
the terminal user is described below.

BEGIN

CLOSE

DETACH

DIAL

DISCONN

DISPLAY

DUMP

EXTERNAL

IPL

IPLSAVE

LINK

LOGOUT

MSG

PURGE

QUERY

550

begins execution at the specified address or., if
no address is given. at the location at w~ich
execution was interrupted.

releases the spooling areas containing input
from the card reader or output to the printer or
card punch.

removes the specified device from the user's
virtual machine configuration.

is used
terminal
operating
system.

in place of LOGIN to connect a user's
with a virtual telecommunications

system or a virtual time-sharing

allows a user to disable the terminal and leave
his virtual machine running.

types at the terminal
specified register(s)~
program status word.

the- contents of
core location(s),

the
or

prints the contents of the specified
register (s) " core location (5) " or 'program status
word on the offline printer.

simulates an external interrupt to
~achine, causing control to pass
DEBUG' command.

simulates the Initial Program Load
the specified unit.

the virtual
to the CMS

sequence on

simulates the
the specified
first.

Initial Program Load sequence on
unit, but does not zero core

attaches virtual disks dynamically.

releases the user's virtual machine. including
his temporary disk area, and closes any spooling
areas which have not been released.

types the specified message at the ter~inal of
the person whose USERID is specified.

erases spooled input or output files by device.

types out either the
dialed users;, the names

Appendix A

number of logged-in and
of logged-in users;, the

READY

RESET

SET

SLEEP

SPOOL

STORE

XFER

number of
files. or
used.

current spooled
the current clock

input and output
time and CPU time

simulates a device end for the specified unit.

si·mulates the system reset key on the 360
console by resetting any pending I/O interrupts.

controls the saving of virtual card reader
files. the operation of the virtual machine even
when in the CP environment. and the typing of
messages at the terminal.

places the terminal in a dormant state to
receive messages.

directs spooled output and controls the reading
of spooled input.

replaces the contents of the specified
register(s). core location(s). or program atus
word with the specified information.

controls the passing of files between users.

Appendix· A 551

APPENDIX B: CMS Commands ---
The commands that can be issued by a user to CMS are
described below.

ALTER

ASSEMBLE

BLIP

BRUIN

CHARDEF

CLOSIO

CLROVER

COMBINE

COMPARE

CPFUNC'l'N

CNVT26

CVTFV

DEBUG

552

changes all or part of the identifier (filename,
filetype. and filemode) of a file stored on the
user·s permanent or temporary disk without
altering the contents of the file.

converts assembler language source code into
relocatable object code using the 05/360 F level
assembler.

causes a specified string
typed at the console every
execution.

of characters
two seconds

to be
of CPU

invokes the Brown University .Interpreter, in
which the user has a desk-calculator mode and a
stored-program mode. BRUIN is available as a
Type III program.

redefines the character-delete symbol, the
line-delete symbol" the logical tab character,
and the logical backspace character~ which
default to the i. ¢, I, and I respectively.

signals the Contr.ol Program that I/O to offline
unit record equipment has been completed and
that the spooling areas for this I/O may be
processed. CLOSIO is generally issued
automatically by the commands which access unit
record equipment.

clears overrides set by
SETOVER commands, and causes
information to be printed
printer.

the SETERR and/or
all recorded trace

on the offline

copies the specified file(s), concatenating them
in the order given, into a new file, which is
placed on the user's permanent or temporary disk
and assigned the specified identifier.

compares two disk files.

issues CP console functions without leaving CMS.

converts BCDIC files to EBCDIC.

converts files of fixed-length
variable-length records.

records to

allows the user to stop
specified points. and to

and restart programs at
inspect and change the

APPENDIX B

DISK

DUMPD

DUMPF

DUMPREST

ECHO

EDIT

ERASE

EXEC

FILEDEF

FINIS

FORMAT

FORTRAN

GENMOD.

contents of registers, core locations, and
hardware control words online.

causes a CMS disk file to he punched out or read
in from cards which are in CMS card format.

prints the contents of a direct-access record,
specified by a CCHHRR address, in hexadecimal on
the printer.

types the contents of all, or part i, of a
specifie.d file in hexadecimal on the console.

dumps the contents of an entire disk to magnetic
tape, or restores the contents of an entire disk
from magnetic tape,.

tests terminal line transmission by repeating as
typeout whatever is typed in by the user.

allows the user to create files on disk, to
make changes to existing files from his
terminal, and to peruse the contents of files.

deletes the entry for a specified file (or
files) from the appropriate directory, rendering
the file inaccessible to the user, and freeing
the disk area containing that file~

executes a file containing one or more eMS
commands, allowing a sequence of commands to be
executed by issuing a single command.

allows the user to specify the I/O devices which
are used by his program. This command is not
currently supported by the CMS language
processors.

closes the specified file (or files) by writing
the last record of that file on disk, updating
the user-file-directory and removing the entry
for that file from the user·s table of active
files.

prepares the user·s permanent or temporary disk
area for eMS use by writing blank records over
the currently stored infor~ation.

converts FORTRAN language source code into
reiocatable object code using the OS/360 FORTRAN
G compiler.

creates a nonrelocatable core-image file on the
user·s permanent disk, which is a copy of the
contents of core between two given locations.

APPENDIX B 553

GLOBAL

KO

KT

KX

LINEND

LISTF

LOAD

LOADMOD

LOGIN

LOGOUT

MACLIB

MAPPRT

554

specifies macro definition libraries to ·be
searched during the assembly process or text
libraries to be searched when loading files
containing relocatable object code.

clears overrides previously set by the SETOVER
or SETERR commands. and causes all trace
information recorded by these commands to be
printed on the offline printer.

stops typeout at the terminal for the duration
of the currently executing command or user
program.

terminates the currently executing program,
updates the user-file-directory, reIPL's CMS and
returns control to the CMS command environment.

redefines the logical line-end character which
allows multiple commands to be entered on one
line. The default is the #.

either types out at the terminal the identifier.
size and creation date or change date of the
specified disk file(s). or creates a file on the
user·s permanent disk containing information for
use by the EXEC and/or $ commands.

reads the specified TEXT file(s)-~containing
relocatable object code--from disk or a library,
loads them into core. and establishes the proper
linkages.

reads a MODULE file--which is in nonrelocatable
core-image form--from disk, and loads it into
core.

causes
either
allows a
P-disk.
saved.

the user·s
saved or
specified
If LOGIN

permanent disk files to be
deleted, as specified. and
disk to be logged-in as the

is not issued, the files are

compacts the user-file-directory, executes any
CMS command specified as an operand, and logs
out of CMS, transferring control to the Control
Program.

generates, adds to, replaces, deletes, or
compacts macros in a specified macro library, or
types out the contents of the dictionary of that
library.

types or creates a file containing the load map
associated with the eMS nucleus.

APPENDIX B

MODMAP

OFFLINE

OSTAPE

PLI

PRINTF

RELEASE

REUSE

RT

SCRIPT

SETERR

SETOVER

SNOBOL

SORT

SPLIT

types the load map associated with a core-image
MODULE file on the console.

creates disk files from card input, prints a
disk file on the offline printer, or punches a
disk file on cards.

creates disk files from card images on tape.

converts PL/I language source code into
relocatable object code, using the OS/360 PL/I F
compiler.

types at the terminal the contents of all, or
part~ of a specified disk file.

releases a disk from a user's virtual machine
when he has finished using it.

reads the specified TEXT fileCs)--containing
relocatable object code--from disk, and loads
them into core, establishing linkages with
previously loaded files and changing the default
entry point of these files to that of the first
file specified in the REUSE command.

restores typing at the terminal
previously suppressed by KT,.

that was

types or prints out the contents of the
specified file, formatting it, as indicated, by
control words contained in the text.

sets error overrides which
information to be recorded for
program which returns with an
general-purpose register 15.

cause trace
each SVC-called
error code in

sets normal and error overrides which cause
trace information to be recorded for all
SVC-called programs--both those which are
executed normally. and those which return an
error code in general-purpose register 15 .•

converts a card-image file in Snobol source
language into SPL/l interpreter language and
executes SPL/1 programs. SNOBOL is available as
a Type III program.

arranges
order and
file.

records of a disk
writes the sorted

file in ascending
output into a new

copies the specified portion of a card-image
file" and either creates a new file or appends
it to a second s.pecified card-image file.

APPENDIX B 555

START

STAT

STATE

SYN

TAPE

TAPEIO

TAPRINT

TPCOPY

TXTLIB

UPDATE

USE

WRTAPE

$

556

begins execution of the loaded program(s) at the
specified or default entry point and passes the
address of a string of user arguments to the
program(s).

types statistics regarding the amount of
permanent and/or temporary disk space used, or
compacts the user-file-directory.

tests whether a file exists.

allows the user to specify his own command
abbreviations to be used with, or in place of,
the standard system abbreviations.

writes the contents of C~S disk files of any
type or size onto magnetic tape, or restores
these files by writing them from tape onto disk.

writes a tape mark on magnetic tape, erases a
gap on the tape" or moves the tape.

copies LISTING files from tape to printer.

copies tape files.

generates, adds to, or deletes modules in a
specified text library, types out the contents
of the dictionary for that library, or creates a
file containing a list of entry pOints and
control section names contained in that library.

with a file
each control

information
be resequenced,

updates the specified disk file
containing control cards, where
card indicates whether the
immediately following it is to
inserted" replaced!. or deleted.

reads the specified TEXT file(s)--containing
relocatable object code--from disk and loads
them into core, establishing linkages with
previously loaded files,.

copies files of fixed-length records from disk
to tape.

executes a file containing one or wore CMS
commands" or loads into core a file which is in
either core-image form or relocatable object
code and begins execution of that file.

APPENDIX B

~PPENDIX C: DEBUG REQUESTS

BREAK

CAW

CSW

DEF

DUMP

GO

GPR

IPL

RX

ORIGIN

PSW

RESTART

RETURN

SET

STORE

specifies a core location at which a
currently loaded into core is to be
during its execution.

program -
stopped

types out the contents of the channel address
word as it existed when DEBUG was entered,.

types ou~ the contents of the channel status
word as it existed when DEBUG was entered,.

enters the specified symbol in the DEBUG symbol
table, allowing it to be used thereafter in
other DEBUG requests to refer to a specific core
location.

prints out the contents of the specified portion
of core on the offline printer.

begins execution either at a specified location
or at the point where execution was interrupted
when the DEBUG environment was entered,.

types out the contents
general-purpose register(s)
the time DEBUG was entered.

of the
as they

specified
existed at

performs an initial program load sequence on the
version of the CMS nucleus which has been saved
by CP.

terminates the currently-executing program: and
logs out froID CMS, transferring control to the
CP environment.

establishes a -base- address which is
all hexadecimal locations specified
DEBUG requests.

added to
in other

types out the contents of the old program status
word which was saved at the time DEBUG was
entered.

reinitializes the CMS system, leaving the user
in the CMS Command environment .•

returns the user from the DEBUG environment to
the OMS Command environment.

changes the contents of the specified
general-purpose register, channel address word.
channel status word, or program status word by
replacing them with the specified information.

changes the contents of the specified core

APPENDIX C 557

TIN

x

558

location by
information.

replacing them with specified

Selects which environment is to handle terminal
I/O, CMS or DEBUG.

types at the terminal the contents of a
specified or assumed number of bytes of core,
starting at the specified location.

APPENDIX C

APPENDIX D: EDIT REQUESTS

The EDIT requests are described below in alphabetical order.
These are the only valid input to the Edit environment,
although some of the requests affect the format of the input
to the Input environment.

BACKSPACE

BLANK

BOTTOM

BRIEF

CHANGE

DELETE

FILE

FIND

INPUT

INSERT

LOCATE

NEXT

OVERLAY

defines a logical backspace character for use in
both the Edit and Input -environments.. The
default character is %.

places blanks in the indicated columns of the
line at which the internal pointer is currently
positioned.

positions the pointer after the last line of the
file.

causes the brief mode of the Edit environment to
be entered, in which lines found or altered by
Edit requests are not autoroaticalily typed out.

replaces a specified
currently in the file
string of information.

string of information
with another specified

deletes the specified number of lines from the
file, starting with the line at which the
pointer is currently positioned.

writes the edited file on the user·s permanent
disk and transfers from the-Edit environment to
the CMS Command environment .•

scans each line of the file, starting at the
line immediately following the one at which the
pointer is currently positioned, for a
column-dependent match with the specified
information.

transfers the user from the Edit environment to
the Input environment.

inserts the specified line of information into
the file immediately after the line at which the
pointer is currently positioned.

scans the contents of the file, starting at the
line immediately following the one at which the
pointer is currently positioned, for the
specified string of information.

moves the pointer forward in the file for the
number of lines specified.

replaces characters in the line at which the

APPENDIX D 559

PRINT

QUIT

REPEAT

RETYPE

SAVE

SERIAL

TABDEF

TAB SET

TOP

UP

VERIFY

ZONE

560

pointer is currently positioned with the
nonblank character(s) specified.

types out the contents of a specified number of
lines, starting with the line at which the
pointer is currently positioned.

transfers from the Edit environment to
Command environment without saving the
file.

the CMS
edited

repeats the following BLANK or OVERLAY request
the specified number of tiRes.

replaces the contents of the line at which the
pointer is currently positioned with the line of
specified information.

writes the edited file on the user·s permanent
or temporary disk and returns to the Input
environment.

establishes whether identification information
is to be placed in each line of the file and, if
so, specifies that identification information.

defines a character which is to 'be recognized as
the logical tab character in the Edit and Input
environments. The default character is #.

establishes the internal or logical tab settings
which are to be used in both the Edit and Input
environments.

positions the pointer
precedes the first line
beginning of the file.

to a null line
of information

which
at the

repositions the pointer the specified number of
lines above the current line.

causes the verify mode of the Edit environment
to be entered, in which the contents of lines
found or altered by Edit requests are
automatically typed out.

specifies the columns to be scanned by LOCATE
and CHANGE ..

APPENDIX D

APPENDIX E: SCRIPT CONTROL WORDS

Page Layout

.BM n

.HM n

.PL n

.T~ n

Page Control

.CP n

specifies the number of lines
the bottom margin of each
value is' 3) ,.

to be allowed for
page (the default

specifies the· numb~r of lines to be skipped
between the heading and the first line of text,
excluding the forced space (.TM), (the default
value is 1).

specifies the number of lines to be typed on a
page, (the default value is 66).

specifies the number of lines, including the
header line i , to be allowed for the top margin of
each page, (the default value is 5).

causes a page eject to occur if less than the
specified number of lines remain on the current
page •

• HE heading causes the next line to be used
line, and to be typed at the
subsequent page.

as a header
top of each

.PA n

.PN

Spacing

• DS

.SP n

• S8

starts the next line on a new pagel, with n as
the page number. If n is omitted, sequential
numbering of pages is assumed.

controls both external and internal
numbering of the file being printed.

page

douhlespaces the infQrmation being typed out •

inserts the specified number of carriage returns
before typing the next line~

singlespaces the information being typed out •

Paragraph Layout

.IN n

.LL n

.OF n

indents the left side of the p'rintout n number
of spaces.

specifies the line length in characters!. (the
default value is 60).

indents the following lines
left margin, except for the

Appendix E

n spaces from the
first line which

561

.TB

.UN n

follows this command.

specifies the tab stops to be assumed for the
following lines when converting the TAB
character into the appropriate number of spaces.
(The default values are 5, 10, 15" 20, 25, 30.
35, 40, 45, 50, 55~ 60, 65, 70, 75.)

forces the immediately following line to start n
spaces further left than the position currently
set by .IN.

Formatting Modes

.BR

.CE

.co

.FI

• FO

.JU

.NC

.NF

.NJ

causes a break, meaning
appearing before and after
typed on separate lines.

that
the .BR

information
request is

centers the next line between the left and right
margins .•

cancels a previous .NC. causing output lines to
be formed by concatenating input lines and
truncating at the nearest word to the specified
line length. It does this by shifting words ,to
or from the next input line. The resulting line
is as close to ,.LL as possible without exceeding
it.

cancels a previous • NF (or • NC and/or '. NJ) ,
causing concatenation and right justification of
output lines •

same as .FI

cancels a previous .NJ (or part of a .NF)
causing right justification of output lines. It
does this by padding lines with extra blanks to
have an even right margin.

stops words from shifting to or from the next
line,.

causes lines to be typed exactly as they appear
in the file. It is the same as issuing both .• NC
and .NJ.

stops padding lines with blanks to cause right
justification.

Special Features

.CM

562

causes the remainder of the line to be ignored,
allowing comments to be stored within the SCRIPT
file.

Appendix E

.RD n issues the specified number of reads to the
terminal to allow user input to be inserted in
the printout.

Manuscript Layout

.AP name

.IM name

appends the contents of the specified SCRIPT
file to the file just printed.

inserts the contents of the specified SCRIPT
file into the printout of another SCRIPT file,.

Appendik E 563

APPENDIX F: CMS FUNCTIONS

ATTN

CARDIO

CONWAIT

CPFUNCTN

ERASE

FINIS

BNDINT

HNDSVC

POINT

PRINTR

RDBUF

STATE

TAPEIO

TRAP

TYPE

WAIT

WAITRD

WRBUF

564

stacks a line into the input buffer.

reads or punches a card into or from the
specified 80-byte area.

waits for all stacked reads and writes to
wfinishw from the console typewriter.

transmits console functions to CP-67 without
leaving the virtual machine mode.

erases the specified file(s) '.

closes one or more specified files.

sets the CMS I/O interrupt handling routines to
transfer control to a given location for an I/O
device other than those normally handled by CMS,
or clears such transfer requests.

initializes the SVC interrupt handler to
transfer control to a given location for a
specific SVC number (other than X·CA' or 202),
or clears such previous handling.

sets the read pointer and/or the write pointer
at a specified item number.

outputs lines on a printer.

reads an item of information from a disk file

provides a copy of the FST (file status table)
entry for the file specified.

reads. writes. or moves magnetic tape.

sets a user's return for an external interrupt.
This return overrides the call to DEBUG on an
external interrupt.

types an output message
Terminal blanks (if any) are
carriage return is added.

on the console.
not deleted and no

wait state is entered to await an interrupt from
one of the devices specified.

reads an input message up to 130 bytes in length
into a given buffer from a console and waits for
completion of the input message .•

writes one item of information into the file
specified. If the file does not exist, a new

Appendix F

file is opened and given the specified
identifier. It automatically packs fixed-length
items into an 800-byte buffer and writes this
800-byte block onto the disk.

Appendix F 565

APPENDIX Ql FORMAT OF COMMANDS" REQUESTS. AND CONSOLE
FUNCTIONS

Below is a key to the symbols used to represent command
formats in this appendix:

UPPERCASE

lowercase

()

/

*

information given in capitals must be
typed exactly as shown" although it may
be entered in either uppercase or
lowercase.

lowercase information designates the
contents of a field" and does not in
itself constitute meaningful input.

parentheses must be typed as shown when
any of the information appearing within
them is specified

a period designates the beginning of a
Script Print control word" and must be
typed as shown

a hyphen must be typed where shown,,, and
must not be offset by blanks

a slash denotes any string delimiter"
which does not appear in the string"
other than blank.

an asterisk. specified where shown"
indicates the universality of an item or
items

The following are l09ical symbols only, and should not be
typed:

< >

< >< >

« »

1
2
3
N

566

brackets indicate information which may
be omitted

successive brackets enclose items which"
if specified, may appear in any order

nested brackets indicate items which. if
specified" must appear in the order
shown

an ellipsis indicates that t.he preceding
item(s) may be repeated more than once
in succession

these suffixes indicate first" second"
third" and Nth items respectively

Appendix G

underlining indicates the value which is
assumed if none is specified. When no
underlined item appears in bracketed < >
information. ·the default value is ~.

stacked items!. not enclosed in anything,
indicate that only one item may be
specified.

All lowercase symbcls used in this appendix are described in
alphabetical order below.

anycom
arg
c

ceu
defent
defset
editfn
entry
eof
first
fm
fn
ft
hex info
hexloc
id
intloe

lastset

length
libname
line
n
name
nolineno
norec
newfm
newfn
newft
nextloc
oldfm
oldfn
oldft.
option
reg
seq
setmar
string
symbol

syslib

any eMS command
any user argument to be passed to a program

any text character appearing on the 2741
keyboard
device address
default entry point
default option settings
filename specified in EDIT command
an entry point or control section name
end of file
first occurrence of the specified item found
filemode
t"ilenaroe
filetype
a fullword or less of hexadecimal information
hexadecimal core location
an aiphameric identifier
core location at which processing was

interrupted
core location specified in last DUMP request
in the Debug environment
inherent length attribute
the filename of a library
a group of position-dependent 2741 characters
a decimal number
saved system name
line number not typed
no formatting of first three disk records
new filemode
new filename
new filetype
next available load location
old fileroode
old filename
old filetype
an option of· the indicated command
the number of a register (in decimal)
sequential page numbering
original margin or tab settings
any group of 2741 characters

a name for which a DEF request has been
issued in the Debug environment

system text library, unless otherwise

Appendix G 567

typeout
userid

specified by an option or previous command
type out informatdon at the terminal
identifier-'by which; user logs in to CP

Note. For abbreviations/• see -CMS Commands· ..

** BRUIN and SNOBOL are available as Type III programs.

568 Appendix G

CMS COMMANDS

ALTER

ASSEMBLE

BLIP

BRUIN

**

CEDIT

CHARDEF

CLOSIO

CLROVER

CNVT26

COMBINE

COMPARE

CPFUNCTN

CVTFV

oldfn oldft oldfm newfn newft newfm
• • * * *

fnt ••• fnN «option1 ••• optionNl>

<char> <n>
1

«OFF»

<fn> ft

E
C <Char>
L
T

READER
RDR
PRINTER
PR'l'
PUNCH
PU

fn ft

< OFF >
ON

*

newfn newft newfm oldfn1 oldftl oldfml
oldfnN oldftN oldfmN

fn1 ftl fn2 ft2

<NOMSG> cpcommand

fn ft «T»

Appendix G 569

DEBUG

DISK DUMP fn ft fro
LOAD

DUMPD ccu cc <hh <rr»

nl n2
DUMPF fn ft « * * n3 »

beg end 80

DUMPREST

S
ECHO < X > < nn >

U 1

EDIT <fn> ft

ERASE fn ft < fm >
* • • -

EXEC fn <argl ... argN>

ddname device
FILEDEF < dsrn CLEAR <def1 ••• defN»

* DUMMY

FINIS fn ft fro
• • < * >

first

P ALL < (NOTYPE) >
FORMAT T < C >

L
nn
R <SYS>

FORTRAN fnl ••• fnN < (option1 ... optionN) >

510 Appendix G

GENMOD

GLOBAL

IPL

KO

KT

KX

LISTF

LOAD

LOAD MOD

LOGIN

LOGOUT

entry 1 «entry2 > <NOMAP»>
. nextloc 1m!

ASSEMBLER MACLIB
(m) <libnamel ••• libnameN>

LOADER'TXTLIB SYSLIB
(T)

PRINT

< fm »> «fn ft

* * * «optioni ••• optionN) >

fni ••• fnN

fn <fro>

NOPROF
< .!!E!! >

NO OFO
NO-OFD

p

T

< (option1 optionN)

<libname1 libnameN»
syslib

ccu < UFD >

< any com>

NO OFD
Z <,Y <fn <ft <fm »>
p

Appendix G 571

MACLIB

MAPPRT

MODMAP

OFFLINE

OSTAPE

PRINTF

RELEASE

REUSE

RT

SCRIPT

SETERR

572

GEN libname fn1 fnN
ADD libname fn1 fnN
LIST libname
REP libname fn1 fnN
DEL libname macroname1
COMPACT libname

.. " macronameN

PRINT libname

ON A
< N

C
<OFF »

NO

fn

PUNCH
PUNCHCC
PUNCHDT
PRINT
PRINTCC
PRINTUPC
PRINTVLR
PRINTPLI
READ

< filetype
SYSIN

fn ft < n1

* -

ccu fmode <

fn ft

fn ft

*

<filename»
OS'l'APE

n2 >
* -

(DETACH) >

fn1 ••• fnN «option1

<fro>
first

< fm >
Pi

(option1

< n3 >
length

...

optionN)

<libname1 ••• libnameN»

fn «option1 ••• optionN»

Appendix G

optionN)

SETOVER

SNOBOL

SORT

SPLIT

START

STAT

STATE

SYN

TAPE

TAPEIO

<SAMELAS-r <option1 ••• optionN»
defset

fn «option1 optionN)>

fn1 ftl fn2 ft2

fn1 ftl fn2 ft2 id1 <id2 >

<entry

* defent

P
< T >

C
P and T

fn ft

n1 n2

<arg1 ••• argN»

< fro >
P

eof

< fn ft fro > < (option1 ••• optionN) >
•

DUMP fn ft <fm>
* * P1 - -LOAD <n>

1
REWIND
SCAN <n>
SRIP <n>
SWAD fn ft <n>
WRITEOF <n>

BSF
BSR
ERG
FSF
FSR
REWIND
RUN
WRITEOF
WTM

< TAPl >
TAP2

Appendix G

< TAPn >
TAP 2

573

TAPRINT <TAPl >
TAP 2

TPCOPY < TAPi > <-r'APo > < n > < YES >
TAPl TAP 2 1 NO

* * *

TXTLIB GENERATE libname fn1 fnN
G

ADD libname fn1 fnN
A

PRINT libname
p

LIST libname
L

DELETE libname CSect 1 ... CSectN
D

UPDATE fn1 « ftl < fn2 < ft2 »> (P) >
SYSIN fn1 UPDATE .fn1

USE fn1 ... fnN < (option1 optionN)

<libnartle1 .. e·- libnameN»

~RTAPE fn ft

$ fn <argl argN>

574 Appendix G

DEBUG REQUESTS

BREAK

CAW

CSW

DEF

DUMP

GO

GPR

IPL

KX

.oRIGIN

PSW

RESTART

RETURN

SET

n symbol
hexloc

symbol hexloc

symbol1
id < hexloc1.

0

symbol
< hexloc >

intloc

regl <reg N>

symbol
hexloc

CliW
CSW
PSW
GPR

hexinfo
hexinfo
hexinfo
reg

< n >
4

symbol 2
hexloc2

* 3

<hexinfo>
<hexinfo>

>

hexinfo <hexinfo>

Appendix G 575

5"l'ORE symbol
hexinfo <hexinfo <hexinfo»

hexloc

TIN < CMS >
DEB

x symbol < n >
length

hexloc < n > ..

576 Appendix G

EDIT REQUESTS

BACR

BACKUP
UP
U

BLANK
B

BOTTOM
BO

BRIEF
BR

CHANGE
C

DELETE
D

FILE

FIND
F

INPUT
I

INSERT
I

LOCATE
L

NEXT
N

< c >
~

<N>
1

1ine

/stringl/string2/ * < n
1

n
< /string/ >

1

< fn. >
editfn

line

line

/string/

< n >
!

Appendix G

* G »
first

577

OVERLAY line
0

PRINT n LlNENO
P < 1 < L »

nolineJlo

QUIT
Q

REPEAT < N >
!

RETYPE line
R

SAVE < fn >
editfn

SERIAL id < n >
SER (NO) 10

TABDEF < c >
TABD #

TABS~ < nl ... nN >
TABS setmar

TOP
T

UP
U < n >
BACKUP !

VERIFY < n >
VER 12

ZONE nl n2
Z 1 truncal

578 Appendix G

CONTROL PROGRAM CONSOLE FUNCTIONS

BEGIN
B

CLOSE
C

DETACH
DE

DIAL
D

DISCONN

DISPLAY
D

DUMP
DU

EXTERNAL
E

IPL
I

IPLSAVE

<hexloc>
intloc

ccu

ccu

System

<anychar>

<hexloc><hexlocl-hexloc2><Lhexloc>

<Lhexlocl-hexloc2><Greg><Gregl-reg2>

<Xreg><Xregl-reg2>

<Yreg><Yreql-reg2><PSW>

<hexloc><hexlocl-hexloc2><Lhexloc>

<Lhexlocl-hexloc2><Greg><Gregl-reg2>

<Xreg><Xregl-reg2>

<Yreg><Yregl-reg2><PSW>

name
ccu

name
ccu

Appendix G 579

LIN}{ userid xxx yyy W < (NOPASS) >
LI • R

LOGOUT <anyehar>
LOG

MSG userid line
M CP

PURGE READER
P R

PRINTER
P
PUNCH
PU

QUERY FILES
Q F

LOGMSG
L
NAMES
N
TIME
T
USERS <userid>
U
userid

READY ceu
R

RESET
RE

SET CARDSAVE <ON>
OFF

MSG OFF
MSG ON

RUN ON
RON OFF

SLEEP

580 Appendix"G

SPOOL

SP

STORE
ST

XFER
X

xxx <ON yyy>
OFF

ccc <CONT>
OFF

<Lhexloc hexinfo1 ••• hexinfoN>

<Greg hexinfo1 hexinfoN>

<Xreg hexinfo1 hexinfoN>

<Yreg hexinfol hexinfoN>

<PS~ hexinfo1 hexinfo2>

ccu TO userid

* ccu OFF

Appendix G 581

SCRIPT CONTROL WORDS

.AP

.BM

.BR

.CE

.CM

.co

.cp

.DS

.FI

.FO

.HE

.8M

.IM

fn

<n>
1

line

n

line

n

fn

appends file fn

bottom margin set to n

causes a break

centers following line

-line- is a comment

concatenates lines

new page if n lines are not left
on current page

doublespacing

concatenates and right-justifies
<each line

same as ~FI

-line- becomes the heading on
subsequent pages

heading margin set to n

imbeds file fn in the file at point
specified

.IN <n > indents lines n spaces starting in

.JU

.LL

582

setmar the following line

<n >
60

causes right justification of lines

line length set to n

Appendix G

.NC

.NF

.NJ

turns off concatenation

turns off concatenation and right
justification

turns off right justification

.OF <n > offsets lines n spaces. to the right

.PA

.PL

.PN

.RD

.sp

.S5

.TB

.TM

.UN

setmar starting with second line following

<n >
seq

<n>
66

ON
OFF
OFFNO

<n>
1

<n>
!

<n, ••• nN
5, 10, 15

<n>
5

n

page eject with n as next page number

sets length of output pages to n

determines if external and/or interna1
page numbering is to occur

allows n lines to be input from
the terminal during output

causes n carriage returns

singlespacing

>
75

sets physical tabs that
correspond to logical tabs

top marqin set to n

starts fol1owing line n spaces to the
left of current margin

Appendix G 583

APPENDIX H: CP-61 MACHINE CONFIGURATION

CP-67 is structured to run on an IBM System/360 Model 67.

CP-67 MINIMUM CONFIGURATION

2067-1 or 2067-2 Processing Unit

Recommended feature:

#4434 Floating Storage Addressing (Model 1 only>

2365 Processor storage

2860 Selector Channel

2810 Multiplexer Channel

1052 Printer-Reyboard

1403 Printer

2540 Card Read Punch

Three 2311 Disk Storage Drives or 2314 Direct Access Storage Facility

(2 Disk Storage Modules minimum)

2400 Nine-Track Magnetic Tape Unit, 800 or 1600 bpi

2702 or 2703 Transmission Control or

2101 Data Adapter Unit

584 Appendix H

TERMINALS SUPPORTED BY CP-67 AS OPERATOR·s CONSOLE

1051/1052 Model 2 Data Communication System
Features and Specifications:
Data Set Attachment (#9114)
IBM Line Adapter (#11-647)
Receive Interrupt (#6100 or RPQ E27428) required
Transmit Interrupt (17900 or RPQ E26903) required
Text Time-out suppression ('9698) required

1056 Card Reader

2741 (-1.-2) communication Terminals
Features and Specifications:
Data Set Attachment (#9114)
Data Set -Attachment (#9115)
IBM Line Adapter (#4635. '4647)
Dial-Up (13255)
Receive Interrupt (#4708) required
Transmit Interrupt (17900) or Transmit

Interrupt Control (RPQ E40681) required
Print Inhibit (#5501) desirable

Line control for teletypewriter terminals. compatible with
the IBM Telegraph Terminal Control Type II Adapter (8~level
ASCII code at 110 bps).

• The customer is responsible for terminal compatibility
with this program. IBM assumes no responsibility for the
impact that any changes to the IBM supplied products or
programs may have on terminals provided by others.

Appendix B· 585

TRANSMISSION CONTROL UNITS SUPPORTED BY CP~61

2101 Data Adapter Unit

Terminals

8-level ASCII r•

110 bps •

2101 Adapter

7885

• The customer is responsible for terminal compatibility with this program .•
IBM assumes no responsibility for the impact that any changes to the IBM
supplied products or programs may have on termdnals provided by others.

2102 Tr~nsmission Control

Terminals

8-level ASCII
110 bps.

Terminal
Control Base

9696 or 7935

9691 or 7935

Terminal
Control

4615, 9684, 8200**

1912

Line
Adapter

3233

3233

** Feature 8200 on the 2102 is equivalent to the 2141 Break feature
#8055 and the Type 1 Break RPQ E46765 on the 2102.

2103 Transmission Control

Line Speed Line Terminal Line
Terminals Option Set Control Bases

2141s,. 1050 4818 3205/6 4619, '4696, 8200*** 1505

8-level ASCII, 4811 3205/6 1905, 1912 1505
110 bps.

*** Feature 8200 on the 2703 is equivalent to the 2141 Break feature
#8055 and the Type I Break RPQ E53115 on the 2703.

586 Appendix H

OTHER DEVICES SUPPORTED BY CP-67

Additional Devices Utilized by CP-67

2301 Drum Storage
2303 Drum Storage

2870 Multiplexer Channel with 16990, .6991, #6992
.1(, 2. 3 Selector Subchannels

DEVICES USED ONLY BY AN OPERATING SYSTEM IN A VIRTUAL
MACHINE AND NOT. BY CP-67

2321 Data Cell Drive

2400 Magnetic Tape Units

2250 Display Unit
2260 Display Station

2860 Selector Channel with
.1850 Channe1-to-Channel Adapter

2780 Data Transmission Terminal
1130 Computing System

Appendix H 587

APPENDIX I: DEVICES SUPPORTED BY eMS

Core size: Minimum 256K or up in multiples of ax (up to 16M virtual)

1052 Printer-KeybOard

Six 2311 Disk Storage Drives or

2314 Direct Access Storage Facility

(2 disk storage modules minimum)

2540 Card Reader/Punch

1403 Printer

Two 2QOO series tape drives. nine or seven track

200~ 556, 800 or 1600 bpi

(one nine track" 80.0 ·or 1600 bpi required for installation)

588 Appendix I

INDEX

$ •••• ' ••• 210
Abbrevi·ations ••••••• 46.47;.426,427,428
Abend ••• _ ••• 294.384,457
Active 'disk table •••••.•• 423
Administrator ••••••• 37
ALTER ••••••• 6,1.2,46/,50 1.52.53.67,110,1.72

269~297,337.372.384~398.438
Ampersand 7,175,179.i80,443
ApI 27 f, 32. 491
Asp360 , •• 63 j, 64,67 .1.03 f• 430.431., 432

433,,43q
Assemble, 46,1.74,,192, 193,194,,197

268~269, 270.271, 272.401, 404,431
462 f, 463,513

Assembler •••••••• 5.173.174, 192,.193 f,194
211,222, 267.268, 269.270, 211,212
273~274, 275,276, 277,309, 321,324
404~431~432,436~513

Assembler conventions 273-275
Attaching devices 470,484.508
Attn 4.6~7,11.12~15, 17~28~30~36

44~45~213,270,298~ 299.412.414,Q15
421~425, 463.467, 495.496. 497,Q98
500.,508

BACKSPACE 69
Batch ••••• _.2,5.6.384
Batch control cards 528
Batch operation ••••• ' •• 5q.3
Batch setup ••••••• ·543
BEGIN 467
Begstack ••••••• 186
BLANK •• I 71.
Blip~ 18S.297,406#407~441.4q.2
Blocksize ••••••• 108,337~454~q.56
BOTTOM ••••••• 72
BREAK ••••••• 221
Breakpoint ••.•••.••• 186, 218,219. 221.222

213~224,226~235~236~247,254
BRIEF ••• , •••• 73
Bruin 40.267,363
Carriage control 120
CAW 227
csw ••• ' 228
C Disk 37.42
Cedit ••••• ~.40.54,60~408.516
CHANGE 74
Changing object programs, 519
Channel programs ••••••• 1.
Character delete •••• ' •••• 28 f• 32,34.,63, 219

408~412~414.415~Q25~Q64
Chardef ... ~ •••• ~34,6S~ 66#69#96~ 406,408

409
CLOCK routine ••••••• 3S1

INDEX 589

CLOSE ••••••• 468
Closio ••••••• 46,50,55.56~297
CLROVER, ••• ' ••••• 213,214 1.215. 216,217, 258

261~262,263,264,412

CMS Bate:l Moni tor •••••• '. 526
CMS Commands ••••••• 552
CMS Functions ••••••• 297-298,564
CMS Login~ •••••• 30-31
CMS Login errors •••••• ,.516
CMS Macros ••••••• 216~271
CMS Routines ••••••• 297-298
Cmslib 193,337.429,.440,459,514
CMSLIB TXTLIB ••••• , •• 459
Cmsnuc ••••••• 383,384,385
Cmsysref.~~._ •• 215,280
Cnvt26 40~364.365
Cobol ••••••• 63,64.65
Column dependent •••• ' ••• 19,84
COMBINE ••• ~ ••• 57
Comma •• ' •••.•• 325,,443
Command abbreviations •••• , ••• 46
Command conventions ••• , •••• 48,49,62.566
COMPARE ••• '. I ••• 366
Compilers ••••••• 5.173,267
Configuration ••••••• 1.2, 4.5,17,328,393

423.465,470,471.482,493,508,509
Console functions ••••••• 461-507,550
Console fUnction applications ••••.••• 508
Console functions descriptions ••••••••

462
context editor ••••••• 60-66
Control commands. '" •••• '. 406
Conventions ••••••• 27~34, 35~37,38~39,40

41 , 42" 4 3 , 4 4 • 4 5 , 6 2 , 6 8 " 82 • 318
Conversational 1~2.4,5.16
Core image 47 t, 48,173,,189,190,191

202
CP Login 27-30
CP Messages ••••••• 510
CP-61 Configuration ••••••• 584
Cpfunctn ••••••• 43.45.46.298,302.406.410
Cpnmon7cpnmof ••• , 441,443
Cp67userid ••••••• 119.120.371.468,511
Cvtfv ••••••• 364.368
Cvtutl ••••••• 368
Dataphone. ' •••••• 16,17,24:.26,,27
Dataset 446
Ddname ••••••• l07.108,109.110.111
DEBUG ••••• ' •• 218
Debug requests ••••••• 557
Debugging facilities ••••••• 213
DEF ••••••• 229
DELETE ••••.••• 76
Delimiter ••••••• 48,62,273.416,417
Density J12,313,396.399
Desk calculator 363

590 INDEX

Detach ••••• _ •• 4~33,294.296. 410.423,465
470~471.508~509~510.512

Devices supported by CMS ••••••• 588
Diagnostic ••••••• 268 i• 322i, 323. 339.357
bial •••••••• 1.4.16,25.27~32~ 33.472.487

490
Dialing ••••••• 25,27,32~33.36.490
Dictionary •••••••• 338. 339~430. 431,434

436~437.438.513.514
Direct access 1/0 ••••••• 333
Disconn __ ••••• 465.472
Disconnect ••••••• 24.421
Disconnecting ••••••• 33.472
DISK, ••• '. ' 370
Disk area,full ••••••• 517
Disk modes ••••••• 37
DISPLAY •• ' ••••• 473
Dsdset •••••.•• 335,441.448,,449
Dsname ••••••• l08.109~111
DUMP 232.478
Dump/restore 375,.376
Dumpd 364,,373
Dumpf. , ... , 364,374
Dumprest ••••••• 8~11~12~375.376
Echo 43.44.45.364~377.318
EDIT •••• ' 59
Edit requests •••• ~ •• 559
Editor ... _ •••• 54~60~63~408
Environments 17!.19, 43,. 44" 45
Environment conventions. ' ••• , ••• 113-45.61
Erase •••••••• 6.11~45~50.67. 105,106~170

179
Error overrides ••••••• 214.215.216.263
EXEC ,.175
EXEC control w~rds ... _ •••• 181-187
EXEC features ••••••• 179-181.188
Extended error message subroutines

(FORTRAN) ••••••• 4111
EXTERNAL, •• ' ••••• 480
FILE ••••••• 11
File access routine., ••• , ••• 352
File conventions ••••••• 37-42
File creation ••••••• 50
File identifiers ••••••• 38 i• 39.40
File 1/0 ••••••• 345
File maintenance ••••••• 50
File manipulation ' •• 50,51
File modes ••••••• 40
File sizes 41
Filedef 101.108 1.109,,110.111
FIND 79
FINIS. ' 112
FORMAT. ' 319
FORTRAN , •••• 321
Fortran conventions •••• ' 328-337;,441

459

INDEX 591

Fortran files ••••••• 335
Fortran Scientific Subroutine Library ••

• • Ie •• ' • • 461
Genmod ••••••• 46,173.189.190.191.202.203

297,343. 3Q..1,. 386
Get/put ••••••• 345,347~348
Getbuf I •••• 295
Getmain.~ ••• 4.295
Getpar ••••• ~.441,451
Getpool ••••••• 295
Global •• ~ •••• 14~91, 174,181.181,188,192

193,194" 195,.198, 200.210, 297,337
342,429,436,459.460~462.513.514

GO. ' ••••• ,. 235
GPR , •• 238
Hndirtt 298,305.306
Hndsvc 298,301
Initialization routine, ••.• ' •••• 350
INPUT ••• ' •• , •• 81
INSERT, •• I •••• ,.82
Interpreter ••••• ~.267~363
I pI,. , 4, 8 , 30 , 45. 21 a!. 220 , 229 , 236, 240

246~241~ 291.380, 385,406. 411,463
465,,481,.482,483,.494,,508

Ip~disk 319,380
Iplsave 483
Isam .• ' •• I. Ie •• 1
Keyword •.• ' 180,181,181
Ko 44~213.214,218,258,263.406,412

413
Kt •••• , ••• 6~12,44,124.218,406.414,425
K~ 6~12, 44,218~220,236, 241,271

406,415
Language processors ••••••• 267
Libraries~~ ••••• 173,114.1B8.192,193.194

195~196~ 198.199~ 200,201~ 210,276
294;429,436.440,462~513,514

Libraries. macro ••••••• 429.513
Library usage •• I." ••• 192-194,196-199,429

513
Line delete., ••••••• 2B.32;,34. 63.219,408

409,412,414,415.425~464
Line end ••••••• 6,34,35y41.66,96~406,416

4171,464
Linend •••• ~.4.6,8~35.47,96~ 188,291,317

406,,416,417.464
Line pointer ' •• __ •••• 60
LINK I. ,e ' •• 484
Listf •••••••• 6.8.11" 12~14.40,45~ 46~50

114,,115, 116"117,, 115:.116, 117,178
275,396,421,422.516

'LOAD ••• '. ,. ' •• 196
Loader ~ •• 192, 193.194,195. 198,199

200~205,342~385.3861514
Loadmod ••• ~ ••• ~41, 113.114,189, 190,202

203.201,210,211,212,297

592 INDEX

LOCATE.; ••• , ••• 84
Login ••••••• 5,8116.21.21.28~29.32.36.41

45,117.188.214,342.380~393,406,418
419~420, 423~463. 466~472, 481~484
485 .. 487,,490,516

Logging procedures ' •• , ••••• 27-31
Logical backspace •••••• \. 66
Logical linend ••••• ~.41fi
Logical tab ••••••• 65
LOGIN ••••••• 418
Logrosg. ' ' ••• 15,490,491
Logout. ' •• \ •••• 15',.27 , 30,33,,45,,297.406,421

422,465,487
Machine configuration ••••••• 5
Maclib •••••••• 125, 192~193,194, 195.210

276.288. 294,396, 397,429, 430.431
432.433,434,462,513

Macro 1.l1:>raries ••••••• 430.462,513
Map •••••••• 8~12,40,115.126, 189.190,196

191.198. 199,200. 202,204. 205.208
209~222, 224.321, 323.324. 325,364
383,384,386,430.432.435,436.438

Ma pprt •••• ' •• e 383 • 384 , 385
Memo, •••••••• 51,63. 64.65,75,95. 101.103

120,.124,368,390
Messages: Machine malfunction or

operator intervention. ,e ••••• 510
Mini disks ••••••• 37
Modeset ••••••• 312.399.455~456~457
Modmap •••• I ••• 364,386
Module •••••• ~47,48, 105,115.113.114,189

190,202~ 210,211, 212.215. 280,326
347,364.386

Msg ••••••• 4,45,289,316.465,488,495,496
Multiaccess •••••••• l,4,27.32, 33~36,412

496
Multiaccess systems ••••••• 32.33
Nlston/nlstof ••••••• 331,443,444
Normaloverride ••••••• 215
Nucleus •••••••• 2,6,30,37~47. 48,176,193

194,246. 213,274, 215,280, 291,341
379,380, 383,384, 385,399, 411,428
481,513,514

Nucon ••••••• 207,384
OFFLINE ••••••• 118
Offline procedures •• ~ •••• 511
Operand substitution ••••••• 210
ORIGIN ••••••• 242
OS Macros ••••••• 294-296
OSMACRO MACLIB ••••••• 462
Osmacro •••••••• 192,193.194, 270,276.294

429,462,513
Ostape ••••••• 364,387,388
OVERLAY ••••••• 87
Overrides ••••••• 97, 124,133,152,151,194

213,214, 216,258, 262,263, 264,284

INDEX 593

315,406.412,458
PL/I ••••••• 188.261. 338.340.342.343.344

345,346. 341.348. 349,350, 351.352
353,354.437.440.460.514

Pli •••••••• 63.64. 65.67.91.103,191,338
339.340,341,342.354,436

PL/I conventions ••••••• 342-354.460
Plilib ••••••• 188~342.429.440.460.514
PLILIB TXTLIB •• ~ •••• 460
Plist ••••••• 213,214.297.298.299.300.301

302.303,304-319.316 i 317.318,319
Pqmsk ••••••• 319.380
PRINT· ••••••• 89
Printcc •••••••• 50, 118.119,120. 122,123

128,324,334,335
Printf •••••••• 6,11,13.45.46, 50.116,124

125,126; 128.177. 178.119. 197.225
324,354,384,433.444,463

Priority ••••••• 116,472
Privilege class ••••••• 2
PROFILE EXEC •••.•••• 188,342.418.419,420
Program execution ••••••• 173-114
Pseudo chronolog device ••••••• 351
PSW" •••••• 244
Purge ••••••• 463,465,489.509
Query ••••••• 4,1,15,465.490.491~492.500
QUIT ••••••• 90
Q2 ••••••• 412
Rax ••••••• 1.27,32
Rdbuf ••••• _.119.181,274,216.211.278.282

284,285,298.310.352.353,354.428
Read/only ••••• .;.37
Read only,disks ••••••• 41
Read/write ••••••• 37,345
READY ••••••• 493
Reconnect ••••••• 412
Recordformats ••••••• 63.64
Recovery procedures ••••••• 516
Reinitializing.Cl-1S ••••••• 511-
RELEASE ••••••• 423
Relocatable •••••••• 173.192,196. 197.199

201.204.208.268~436,514
REPEAT ••••••• 91
Reps ••••••• 64~65.67,103
RESTART ••••••• 246
RETURN ••••••• 241
RETYPE ••••••• 92
RESET ••••••• 494
Restrictions ••••••• 40.261
Reuse.~ ••••• 40.173. 174.189,192,193.194

195.191, 204,205. 206,208. 209,291
429,440.514,515

RT ••••••• 425
SAVE ••••••• 93
Savesys ••••••• 481
Script ••••••• 8,12,45. 46,48.51.54.59,60

594 INDEX

63.65.66.67.75. 95.101.103,120.124
121.128. 129.130. 131.132. 133,134
135.136. 131,138. 139,140, 141.142
143.144. 145.146. 147.148, 149.150
151,152. 153,154. 155,156. 157.158
159,160. 161.162. 163,366, 368.500
501

Script control words ••••••• 131-159.561
Search for commands ••••••• 47,37
Sequential 1/0 ••••••• 328
SERIAL ••••••• 94
SET ••••••• 248,495
SETERR ••••••• 258
Setover •••••••• 213,214.215, 216,258,261

262,263.264,265,266,412
Sleep ••• ~ ••• 466,498.510
Snobol •••••••• 40,64,65,103, 267,355,356

351.358.359,360,361,362
SNOBOL conventions ••••••• 359-362
Sort ••••••• 114.361,364.385,389.390.391
Spl/l ••••••• 355,356,357.358.361
Split ••••••• 50,60.~64,165.166,326
Spl1 ••••••• 40.65.67,355,356,357.358,360

361
Spool ••••••• 466,411,499,SOO,501,509
Spooling areas ••••••• 509,468,490.499
SSPLIB TXTLIB ••••••• 461
START ••••••• 206
Stat ••••••• 46,392.393,421
STATE 206
Statistics ••••••• 392,393
STORE ••••••• 251,502
stow ••••••• 295
String processing ••••••• 356
Subscript ••••••• 346
SVC ••••••• 5,201,213,215.216,258.261,262

274.275, 276.284, 296.297. 298,307
433

SVC override.tracing ••••••• 258,261.214
Svcfree ••••••• l10
Svcfret ••••••• 110
SVC handling ••••••• 214.307
SYN ••••••• 426
Synonyms ••••••• 46.47.406,426,421.428
Sysin •••••••• 5.8.12, 52.63,64,65, 67,97

103,121, 166,168, 169,110, 111,268
269,270, 211,212, 335,344, 345,346
347.348,387.449

Syslib •••••••• 125, 192.193,194. 195.198
199,200, 210.276, 288,329, 333,335
337,342, 396.391. 429,431. 432.433
440,441,459.462.513.514,515

SYSLIB MACL1B 462
SYSL1B TXTLIB ••••••• 441
Sysout ••••••• 335.432.449,456
Sysprint ••••••• 344,345.346,347.348

INDEX 595

Sysref ••••••• 275,280
System failure ••••••• 516
Tabbing ••••••• 18,21,97
Tabdef ••••••• 65,68,96
Tabs ••••••• 18,21,67,79,82,92,97,98
TABSET ••••••• 97
TAPE ••••••• 394
Tape procedures ••••••• 512
Tapeio •••••••• 297, 298,312,313, 314,384

399.400.512
TAPRINT ••••••• QOl
Tapset ••••••• 336,441,448,455,456,451
Tdisk ••••••• 37,41,42,58,380,381,393,423

510
Teletype usage ••••••• 24-26,35
Terminal I/O ••••••• 343
Terminal session ••••••• 6,7,15
Terminal usage ••••••• 16
Teminals supported as consoles ••••••••

S8S
Text libraries ••••••• 440,514
Timesharing ••••••• 1,2,61,333
Tin ••••••• 220,254
TOP ••••••• 99
Totcpu ••••••• 15,30,490,510
Tpcopy ••••••• 364,402,403,512
Transferring files." •••••••• 509, 506,310

118
Txtlib ••••••• 40,115.192,193,194,195,196

191,198, 199,200, 201,204, 208,329
333,335, 331,342, 311,429, 435,436
431,438, 439,440, 441,459, 460,514
515

Typing conventions ••••••• 34,35,65
UP ••••••• 100
UPDATE ••••••• 168
Updating,files ••••••• 168-112
Updlog ••••••• l10,172
USE ••••••• 208
Userid ••••••• 2,3,4, 27,28,29,32,119,121

122,371, 412,484, 485,486, 488,490
491,506,501,511

User synonym ••••••• 421
VERIFY ••••••• l0l
Virtual core ••••••• 3.
Virtual machines ••••••• l,2,3,410
Virtcpu ••••••• 15,30,490,510
Wng ••••••• 495,496
Wrtape ••••••• 401,404,405
X ••••••• 255
X and Y •••••••• I02
Xfer ••••••• 3,4, 119,410,466,496,506,501

509
ZONE ••••••• I03
1052 usage ••••••• 18,19,20,21,35
2141 usage ••••••• 11,18,35

596 INDEX

GH20-0859-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, Naw York 10017
(International]

s:
o
:::l
;::to

Q
en
-<
it
3

c
C>

READER'S COMMENT FORM

Control Program-67/Camhridge Monitor System
User's Guide

GH20-0859-0

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation ;\;0 J)(l~tage necessary jf mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND !\1AIL.

GH20-0859-0

YOUR COMMENTS PLEASE .••

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold
..

Attention: Technical Publications

BUSINESS REPLY MAil
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •.•

IBM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

.. :

fold

llIIDOO
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

