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Introduction

This book is a reflection of some of the latest developments in the field of real-
time rendering. Thanks to the flexibility of today’s GPUs, we have witnessed an
explosion in the number of methods and techniques used to sample real-world
phenomenon or to model special effects from our own minds. It is great to see
that almost every new game today holds a number of rendering recipes that gives
it its unique look and feel. But it is even much greater that the makers of those
products actually share their work with the entire community.

The chapters in this book cover a wide selection of topics, from surface ren-
dering to stylization to post-processing to rendering systems.

We start with the chapter, “Quadtree Displacement Mapping with Height
Blending,” by Michal Drobot. This is a complete production-proof surface ren-
dering solution with a multitude of powerful capabilities. The technique provides
an accelerated approach to render displaced surfaces via smart use of a quad-tree
structure during height-field ray tracing. The author covers the details of ren-
dering dynamic displaced surfaces with multiple layers, soft-shadowing, ambient
occlusion, and LOD support. This entire combination is achievable on current-
generation hardware and consoles with a small memory footprint in comparison
to basic normal mapping.

The next chapter is “NPR Effects Using the Geometry Shader,” by Pedro
Hermosilla and Pere-Pau Vazquez. This is a new real-time implementation of non-
photorealistic rendering effects by relying on the geometry shader stage in recent
GPUs. The authors show how to calculate proper textured silhouettes, which
gives the capability to specify stylized outline ink types. A special discussion on
pencil shading is also included.

The chapter, “Alpha Blending as a Post-Process,” by Benjamin Hathaway
introduces a novel and inspiring technique to render correct alpha-blended geom-
etry without the need for depth sorting. It is a multi-pass approach that relies on
a separate buffer for alpha-blending accumulation, which is then combined with
the scene’s render target in a single post-processing step.

The fourth chapter in the book is “Virtual Texture Mapping 101,” written
by Matthéus G. Chajdas, Christian Eisenacher, Marc Stamminger, and Sylvain
Lefebvre. In this introductory chapter, the authors show the basics of a rendering

XV
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Introduction

system that supports rendering with a virtually unlimited set of textures while
still utilizing a fixed amount of texture memory on the graphics card. The system
manages streaming and paging textures into the GPU based on visible scene
contents. The chapter discusses the system’s implementation details, including
texture filtering issues and other important considerations.

The chapter “Pre-Integrated Skin Shading,” by Eric Penner and George Bor-
shukov, presents an interesting and very efficient shading model for rendering
realistic skin. It can be evaluated entirely in a pixel shader and does not require
extra rendering passes for blurring, thus making it a very scalable skin-rendering
technique.

Our next chapter is “Implementing Fur Using Deferred Shading,” by Donald
Revie. The popularity of deferred shading has increased dramatically in recent
years. One of the limitations of working in a deferred-rendering engine is that
techniques involving alpha blending, such as fur rendering, become difficult to
implement. In this chapter we learn a number of tricks that enable fur to be
rendered in a deferred-shading environment.

The chapter “Large-Scale Terrain Rendering for Outdoor Games,” by Ferenc
Pintér, presents a host of production-proven techniques that allow for large, high-
quality terrains to be rendered on resource-constrained platforms such as current-
generation consoles. This chapter provides practical tips for all areas of real-time
terrain rendering, from the content-creation pipeline to final rendering.

The next chapter is “Practical Morphological Antialiasing,” by Jorge Jimenez,
Belen Masia, Jose 1. Echevarria, Fernando Navarro, and Diego Gutierrez. The
authors take a new, high-quality, antialiasing algorithm and demonstrate a highly
optimized GPU implementation. This implementation is so efficient that it com-
petes quite successfully with hardware-based antialiasing schemes in both perfor-
mance and quality. This technique is particularly powerful because it provides a
natural way to add antialiasing to a deferred-shading engine.

Emil Persson’s “Volume Decals” is a practical technique to render surface
decals without the need to generate special geometry for every decal. Instead,
the GPU performs the entire projection operation. The author shows how to
use volume textures to render decals on arbitrary surfaces while avoiding texture
stretching and shearing artifacts.

The chapter “Practical Elliptical Texture Filtering on the GPU,” by Pavlos
Mavridis and Georgios Papaioannou, presents a useful technique for achieving
high-quality, shader-based texture filtering on the GPU. The authors provide a
reference implementation that can easily be integrated into an existing renderer.

The next chapter is “An Approximation to the Chapman Grazing-Incidence
Function for Atmospheric Scattering,” by Christian Schiiler. This chapter de-
scribes an inexpensive approximation to atmospheric scattering and will be of
particular interest to those interested in physically based, fully dynamic, virtual
environments in which both visual realism and computational efficiency are of
high importance.



Introduction

xvii

The next chapter is “Volumetric Real-Time Water and Foam Rendering,” by
Daniel Scherzer, Florian Bagar, and Oliver Mattausch. This chapter presents a
dynamic, multilayered approach for rendering fluids and foam. This technique is
presented in the context of a GPU-based fluid simulation, but it is compatible
with other forms of fluid simulation as well.

The chapter “Inexpensive Antialiasing of Simple Objects,” by Mikkel Gjgl
and Mark Gjgl, explores the use of discontinuity edge overdraw for antialiasing
simple objects on mobile phones. The essence of this technique is to render a
“smooth” line on top of aliasing primitive edges to cover the aliasing edge.

The chapter “Practical Planar Reflections Using Cubemaps and Image Prox-
ies,” by Sébastien Lagarde and Antoine Zanuttini, discusses a very fast and effi-
cient system for approximating dynamic glossy and specular reflections on planar
surfaces. The authors discuss the art tools, strategies, and runtime requirements
for the their system and provide code snippets to help readers integrate a similar
system into their own engine. The authors also provide a video of their techniques
in the accompanying web material.

Our next chapter is “Real-Time Ptex and Vector Displacement,” by Karl
Hillesland. This chapter discusses a technique for overcoming issues introduced
by texture seams particularly in the application of displacement maps where
small texturing errors can result in very noticeable surface artifacts and cracks.
An additional benefit of this system is that it eliminates the need for an explicit
UV space.

In “Decoupled Deferred Shading on the GPU,” Gébor Liktor and Carsten
Dachsbacher describe a technique that leverages a unique G-Buffer structure to
reduce the amount of shading computation and memory footprint of an antialias-
ing deferred renderer that matches the quality of hardware multisample antialias-
ing (MSAA). The authors discuss an implementation that includes a stochastic
rasterization framework.

Our next chapter, “Tiled Forward Shading,” is by Markus Billeter, Ola Ols-
son, and Ulf Assarsson. The authors describe a new and powerful rendering
system that combines the flexibility of forward shading with the efficiency of de-
ferred rendering. In addition to greater flexibility, this system also natively sup-
ports hardware MSA A, transparency, and heterogeneous materials. The authors
provide a detailed description of their implementation (full demo source code
available in the web material) as well as a very thorough performance analysis.

Next is “Forward+: A Step Toward Film-Style Shading in Real Time,” by
Takahiro Harada, Jay McKee, and Jason C. Yang. This chapter builds on the
previous chapter by discussing an advanced tiled forward renderer that was used
in a full production environment. The authors go on to describe many extensions
to tiled forward rendering such as exploiting the latest GPU hardware features,
indirect lighting, advanced tile culling, and hybrid raytraced shadows.

“Progressive Screen-Space Multichannel Surface Voxelization,” by Athanasios
Gaitatzes and Georgios Papaioannou, describes a new technique for computing
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scene voxelizations that can be used for real-time global illumination computa-
tion. The key idea of their chapter is that a voxelization is built incrementally
across frames from geometry present in the depth buffer, combining the perfor-
mance of screen-space approaches with improved volume coverage comparable to
full-scene voxelization.

“Rasterized Voxel-Based Dynamic Global Illumination,” by Hawar Doghra-
machi, presents an approximate global illumination technique, again building on
a voxel representation: the scene is rendered into a 3D read-write buffer using
atomic functions. Next, the illumination of each voxel is computed and it is then
treated as an indirect (virtual) light source. After propagating its contribution
through the grid (similar to light propagation volumes (LDVs)), the scene can be
indirectly lit.

The next chapter is “Per-Pixel Lists for Single Pass A-Buffer,” by Sylvain
Lefebvre, Samuel Hornus, and Anass Lasram. Identifying all the surfaces pro-
jecting into a pixel has many important applications in computer graphics, such
as computing transparency. They often also require ordering of the fragments in
each pixel. This chapter discusses a very fast and efficient approach for recording
and simultaneously sorting of all fragments that fall within a pixel in a single
geometry pass.

Next is “Reducing Texture Memory Usage by 2-Channel Color Encoding,” by
Krzysztof Kluczek. This chapter discusses a technique for compactly encoding
and efficiently decoding color images using only 2-channel textures. The chapter
details the estimation of the respective 2D color space and provides example
shaders ready for use.

“Particle-Based Simulation of Material Aging,” by Tobias Giinther, Kai Roh-
mer, and Thorsten Grosch, describes a GPU-based, interactive simulation of ma-
terial aging processes. Their approach enables artists to interactively control the
aging process and outputs textures encoding surface properties such as precipi-
tate, normals, and height directly usable during content creation.

“Simple Rasterization-Based Liquids,” by Martin Guay, describes a powerful
yet simple way of simulating particle-based liquids on the GPU. These simulations
typically involve sorting the particles into spatial acceleration structures to resolve
inter-particle interactions. In this chapter, the author details how this costly step
can be sidestepped with splatting particles onto textures, i.e., making use of the
rasterization pipeline, instead of sorting them.

In “Next-Generation Rendering in Thief” by Peter Sikachev, Samuel Del-
mont, Uriel Doyon, and Jean-Normand Bucci, a number of advanced render-
ing techniques, specifically designed for the new generation of gaming consoles,
are presented. The authors discuss real-time reflections, contact shadows, and
compute-shader-based postprocessing techniques.

Next is “Grass Rendering and Simulation with LOD” by Dongsoo Han and
Hongwei Li. In this chapter, the authors present a GPU-based system for grass
simulation and rendering. This system is capable of simulating and rendering
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more than 100,000 blades of grass, entirely on the GPU, and is based on earlier
work related to character hair simulation.

“Hybrid Reconstruction Antialiasing” by Michat Drobot provides the reader
with a full framework of antialiasing techniques specially designed to work ef-
ficiently with AMD’s GCN hardware architecture. The author presents both
spatial and temporal antialiasing techniques and weighs the pros and cons of
many different implementation strategies.

Egor Yusov’s “Real-Time Rendering of Physically Based Clouds Using Pre-
computed Scattering” provides a physically based method for rendering highly
realistic and efficient clouds. Cloud rendering is typically very expensive, but here
the author makes clever use of lookup tables and other optimizations to simulate
scattered light within a cloud in real time.

In “Sparse Procedural Volume Rendering” by Doug McNabb, a powerful tech-
nique for volumetric rendering is presented. Hierarchical data structures are used
to efficiently light and render complex volumetric effects in real time. The author
also discusses methods in which artists can control volumetric forms and thus
provide strong direction on the ultimate look of volumetric effects.

The chapter “Adaptive Virtual Textures,” by Ka Chen, presents a technique
for large, open world texturing. This technique is able to achieve very high
resolution textures and also supports dynamically composited decals that help
create unique and complex-looking surfaces.

Next, we have “Deferred Coarse Pixel Shading” by Rahul P. Sathe and Tomasz
Janczak. In this chapter the authors present an optimization technique in which
regions of low visual complexity may be shaded at less than the pixel frequency.
The performance benefits demonstrated by the authors are quite impressive!

Finally, we have “Progressive Rendering Using Multi-frame Sampling” by
Daniel Limberger, Karsten Tausche, Johannes Linke, and Jiirgen Dollner. In
this chapter the authors present a framework for achieving very high quality
rendered results by distributing sampling work across multiple frames. The au-
thors demonstrate their framework in the context of antialiasing, depth of field,
screen-space ambient occlusion, and order-independent transparency.

I would like to thank all our authors for sharing their exciting new work with
the graphics community. We hope that these ideas encourage readers to further
extend the state of the art in real-time rendering, and we look forward to the new
advances that these ideas inspire!
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Web Materials

Example programs and source code to accompany some of the chapters are avail-
able on the CRC Press website: go to https://www.crcpress.com/9780815365501
and click on the “Downloads” tab.

The directory structure follows the book structure by using the chapter num-
bers as the name of the subdirectory.

General System Requirements

The material presented in this book was originally published between 2010 and
2016, and the most recent developments have the following system requirements:

e The DirectX June 2010 SDK (the latest SDK is installed with Visual Studio
2012).

e DirectX 11 or DirectX 12 capable GPUs are required to run the examples.
The chapter will mention the exact requirement.

e The OS should be Microsoft Windows 10, following the requirement of
DirectX 11 or 12 capable GPUs.

e Visual Studio C++ 2012 (some examples might require older versions).
e 2GB RAM or more.
e The latest GPU driver.
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Quadtree Displacement Mapping

with Height Blending
Michat Drobot

1.1 Overview

This article presents an overview and comparison of current surface rendering
techniques, and introduces a novel approach outperforming existing solutions in
terms of performance, memory usage, and multilayer blending. Algorithms and
ideas researched during Two Worlds 2 development are shared, and the article
proposes strategies for tackling problems of realistic terrain, surface and decal
visualization considering limited memory, and computational power on current-
generation consoles. Moreover, problems of functionality, performance, and aes-
thetics are discussed, providing guidelines for choosing the proper technique, con-
tent creation, and authoring pipeline.

We focus on various view and light-dependant visual clues important for cor-
rect surface rendering such as displacement mapping, self-shadowing with approx-
imate penumbra shadows, ambient occlusion, and surface correct texture blend-
ing, while allowing real-time surface changes. Moreover, all presented techniques
are valid for high quality real-time rendering on current generation hardware as
well as consoles (as Xbox 360 was the main target platform during research).

First, existing parallax mapping techniques are compared and contrasted with
real-life demands and possibilities. Then we present a state-of-the-art algorithm
yielding higher accuracy with very good performance, scaling well with large
height fields. It makes use of empty space skipping techniques and utilizes tex-
ture MIP levels for height quadtree storage, which can be prepared at render
time. Second, a soft shadows computation method is proposed, which takes ad-
vantage of the quadtree. We expand upon this to calculate an ambient-occlusion
term. Next, we introduce an LOD technique which allows higher performance and
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Figure 1.1. Normal mapped environment.

Figure 1.2. Fully featured surface rendering using the methods proposed in this article.
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quality for minification. Then we focus on surface blending methods, proposing
a new method that exhibits better resemblance to real life and allows aggressive
optimization during blended height-field displacement mapping. The proposed
methods—depending on combinations and implementation—guarantee fast, scal-
able, and accurate displacement mapping of blended surfaces, including visually
pleasing ambient occlusion and soft penumbra soft shadowing (compare Figures
1.1 and 1.2). Specific attention will be given to the various implementations and
the proper choice of rendering method and asset authoring pipeline.

1.2 Introduction

During the last change of console generation we have seen a dramatic improve-
ment in graphics rendering quality. With modern GPUs pushing millions of
triangles per second, we are looking for more fidelity in areas that are still being
impractical for performance reasons. One of those is surface rendering, which is
one of the most fundamental building blocks of believable virtual world.

Each surface at its geometric level has a number of complex properties such as
volume, depth, and various frequency details that together model further visual
clues like depth parallax, self-shadowing, self-occlusion, and light reactivity. The
topic of light interactions depending on surface microstructure is well researched
and so many widely used solutions are provided (such as Cook-Torrance’s lighting
model and its optimizations). However, correct geometry rendering is still prob-
lematic. The brute force approach of rendering every geometry detail as a triangle
mesh is still impractical because it would have to consist of millions of vertices,
thus requiring too much memory and computations. Moreover, surface blending
such as widely seen on terrain (i.e., sand mixing with rocks) only complicate the
situation in terms of blend quality and additional performance impact. Last but
not least, we would like to manipulate surface geometric properties at render time
(i.e., dynamic water erosion simulation, craters forming after meteor strike).

To sum up, we would like our surface rendering method to support:

e accurate depth at all angles (depth parallax effect);

e self-shadowing;

e ambient occlusion;

e fast blending;

e dynamic geometric properties;

e current-generation hardware (taking console performance into account);

e minimal memory footprint compared to common normal mapping.
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Common normal mapping techniques (those which create the illusion of de-
tailed surface by performing light computation on precalculated normal data set)
fail to meet our demands, as they do not model visual geometry clues. However,
we still find it useful in light interaction calculations, thus complementing more
sophisticated rendering solutions.

The only rendering method class that is able to suit all our needs are height-
field-based ray-tracing algorithms. The idea behind those algorithms is to walk
along a ray that entered the surface volume, finding the correct intersection of
the ray with the surface. They operate on grayscale images representing height
values of surfaces, thus exchanging vertex for pixel transformations, which suits
our hardware better in terms of performance and memory usage. Moreover,
they mix well with existing normal mapping and are performing better as GPUs
become more general processing units. However, none of them are aimed at high
performance surface blending or ambient occlusion calculation.

During our research we were seeking for the best possible rendering method
meeting our demands, being robust, functional and fast as we were aiming for
Xbox360-class hardware. As our scenario involved fully-featured rendering of
outdoor terrain with many objects and indoor cave systems, we were forced to
take special care for an automatic LOD system. Several methods were compared
and evaluated, finally ending with the introduction of a new solution that proved
to be suiting all our needs. We describe our research and the motivation behind it,
going in detail with each building block of the Quadtree Displacement Mapping
with Height Blending technique.

1.3 Overview of Ray-Tracing Algorithms

Every height-field-based ray-tracing algorithm is working with additional dis-
placement data, commonly encoded in height map format (grayscale image scaled
to [0; 1] range). Calculations are done in tangent space to allow computations for
arbitrary surfaces. Correct surface depth is calculated by finding the intersection
between viewing ray and height field. That ensures correct parallax offset for
further color and lighting calculations.

Figure 1.3 illustrates the depth parallax effect and presents the general inter-
section calculation.

General height-field ray-tracing algorithms can be summarized as follows:

1. Calculate tangent-space normalized view vector V per-vertex, and interpo-
late for pixel shader.

2. Ray cast the view ray to compute intersection with the height field, ac-
quiring the texture coordinate offset required for arriving at the correct
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Figure 1.3. Height-field ray-trace scheme.

surface point. We start at texture input T1 coordinates, sampling along
the surface’s profile, finally computing new texture coordinates T2.

3. Compute the normal lighting equation using surface attributes sampled at
the new texture coordinates T2.

The following algorithms implement various methods for intersection computa-
tion, varying in speed, accuracy and use of additional precomputed data.

1.3.1 Online Algorithms

Relief mapping. Relief mapping [Policarpo 2005] performs intersection calculation
by linear search in two-dimensional height-field space followed by binary search.

We want to find the intersection point (p,r). We start by calculating point
(u,v), which is the two-dimensional texture coordinate of the surface point where
the viewing ray reaches a depth = 1.0. The point (u,v) is computed based on
initial texture coordinates (z,y) on the transformed view direction with scaling
factor applied. Then we search for (p,r) by sampling the height field between
(z,y) and (u,v). We check for intersections by comparing ray depth with the
stored depth at the current sampling point. When the latter is smaller, we
have found the intersection and we can refine it using binary search. Figure 1.4
illustrates the process.

Binary search is taking advantage of texture filtering and operates in mini-
mized space around the found intersection point. That ensures fast convergence
and high accuracy. However, using that kind of search utilizes dependant reads
on the GPU, thus vastly affecting performance. While a linear- and binary-search
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Figure 1.4. Relief Mapping. Top left: linear search. Top right: binary search around
point found in linear search. Bottom left: possible miss of linear search. Bottom right:
resulting aliasing artifacts as opposed to correct rendering.

combo is a known and proven solution, its linear part is prone to aliasing due to
under sampling. During the search, when there are not enough search steps (step
length is too big), we might miss important surface features as shown in Fig-
ure 1.4. Increasing search steps potentially minimizes the problem but severely
affects performance, making this algorithm highly unreliable when sampling large
height fields or surfaces exhibiting very large displacement scales. Nonetheless, it
is still very effective in simple scenarios that do not require high sampling count,
as the performance is saved on ALU instructions.

Parallax occlusion mapping. Several researchers tried to optimize this algorithm
by omitting the expensive binary search. Parallax occlusion mapping [Tatarchuk
2006] relies on accurate high-precision intersection calculation (see Figure 1.5).
A normal linear search is performed finding point (p,r) and last step point (k,).
Then the ray is tested against a line made of (p,r) and (k,1), effectively approx-
imating the height profile as a piecewise linear curve. Moreover, solutions for
additional LOD and soft shadows were proposed. POM, while being accurate
enough and faster than relief mapping, is still prone to aliasing and so exhibits
the same negative traits of linear search (Listing 1.1).
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float Size = 1.0 / LinearSearchSteps;
float Depth =
int StepIndex
float CurrD =
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float2 pl =
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>
)

>

o O oo

>

H

o o |
QO r Ol ~»

while (StepIndex < LinearSearchSteps)

{
Depth -= Size; //move the ray
float4 TCoord = float2(p+(v*Depth)); // new sampling pos
CurrD = tex2D(texSMP, TCoord).a; //new height
if (CurrD > Depth) //check for intersection
{
pl = float2(Depth, CurrD);
p2 = float2(Depth + Size, PrevD); //store last step
StepIndex = LinearSearchSteps; //break the loop
}
StepIndex++;
PrevD = CurrD;
}

//Linear approximation using current and last step
//instead of binary search, opposed to relief mapping.
float d2 = p2.x - p2.y;

float d1 = pl.x - pl.y;

return (pl.x * d2 - p2.x * d1) / (d2 - di1);

Listing 1.1. POM code.
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Figure 1.5. POM.
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1.3.2 Algorithms Using Precomputed Data

In response to the arising problem of performance and accuracy, several solutions
were proposed that make use of additional data to ensure skipping of empty space
and prohibit missing surface features. However, additional memory footprint or
preprocessing computation time limits their usefulness.

Per-pixel displacement with distance function. Per-pizel displacement with distance
function [Donelly 2005] uses precalculated three-dimensional texture representa-
tion of the surface’s profile. Each texel represents a sphere whose radius is equal
to the nearest surface point. We are exchanging the well-known linear search for
sphere tracing. With each sample taken we know how far we can march our ray
without missing any possible intersection. Traversing that kind of structure al-
lows skipping large space areas and ensures that we will not miss the intersection
point. Moreover, the intersection search part is very efficient. However, memory
requirements and precomputation time for this method make it impractical for
real-time game environments. As stated in [Donelly 2005], even simple surfaces
may require a three-dimensional texture size of 256 x 256 x 16 with dimensions
rising fast for more complex and accurate rendering. That increase in memory
footprint is unacceptable for the limited memory of current consoles and PC
hardware, not to mention the prohibitive preprocessing time.

Cone step mapping (CSM). CSM [Dummer 2006] is based on a similar idea. It
uses a cone map that associates a circular cone with each texel of the height-
field texture. The cone angle is calculated so that the cone is the largest one
not intersecting the height field (see Figure 1.6). This information allows us

UV Texture Space

Figure 1.6. CSM. Ray traversal by cone radius distance.
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to calculate a safe distance during sampling, as in per-pixel displacement with
distance function. Consequently, the ray may skip empty spaces and never miss
the correct intersection. Due to its conservative nature, the algorithm may require
too many steps to actually converge. For performance reasons, it is required to
set a maximum number of steps, which often results in stopping the ray trace too
early and returning incorrect texture coordinates for further rendering.

Cone step mapping performance varies widely depending on the spatial co-
herency of the height field. Generally, it outperforms linear search algorithms
while guaranteeing less noticeable errors. Its memory footprint is quite bearable
as it requires only one additional 8-bit texture for cone maps. However, its pre-
processing time makes it impossible to alter the height field at render time, as this
would require recompilation of the cone map with every change. The precompu-
tation algorithm is of complexity O(n?), where n denotes number of height-field
texels, making it impractical on current GPUs. Moreover, properties of the cone
map prohibit correct and easy surface blending.

Relaxed cone step mapping (RCSM). RCSM [Policarpo 2007] takes CSM one step
further, making it less conservative. The idea is to use larger cones that intersect
the height field only once. The search is performed the same way as in CSM.
When the intersection is found, the correct point is searched, using binary search
in space restricted by the last cone radius, therefore converging very quickly. The
combination leads to more efficient space leaping, while remaining accurate, due
to final refinement. Furthermore, an LOD scheme is proposed which, while it
lacks accuracy, provides performance gains. In practice, RCSM is currently the
fastest ray-tracing algorithm available, making it very useful in scenarios where
neither long preprocessing times, disability of efficient blending, and dynamic
height-field alteration are irrelevant.

1.4 Quadtree Displacement Mapping

We introduce a GPU-optimized version of the classic [Cohen and Shaked 1993]
hierarchical ray-tracing algorithm for terrain rendering on CPU, using height-field
pyramid, with bounding information stored in mipmap chain. It was presented
on recent hardware by [OH 2006], yielding good accuracy and performance, but
at the same time was less adequate for game scenario use. We describe our
implementation, optimized for current GPUs, with an automatic LOD solution
and accurate filtering. Moreover, we expand it for optimized surface blending,
soft shadowing and ambient occlusion calculation.

QDM uses the mipmap structure for resembling a dense quadtree, storing
maximum heights above the base plane of the height field (it is worth noting
that our implementation is actually using depth maps as 0 value representing
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maximum displacement, as we are storing depth measured under the reference
plane. In consequence, maximum heights are minimum depths, stored in our data
structure). We traverse it to skip empty space and not to miss any detail. During
traversal we are moving the ray from cell boundary to cell boundary, until level 0
is reached—hence valid intersection region. While moving through the hierarchy,
we compute the proper hierarchy level change. Finally, we use refinement search
in the region of intersection to find the accurate solution when needed.

Gf 8800 2562 5122 10247 | 20482
Quad tree | 0.15ms | 0.25ms 1.15ms | 2.09ms
CSM < 2min | < 14min | < 8h /

Table 1.1. Data preprocessing time.

1.4.1 Quadtree Construction

The quadtree is represented by a hierarchical collection of images in a mipmap.
The construction is simple, as it requires generating mipmaps with the min
operator instead of average as during normal mipmapping. As a result, MIP
level 0 (2") represents the original height field with the following levels 1 (2771),
2 (2772), ... containing the minimum value of the four nearest texels from levels
above. The entire process can be run on the GPU. Due to hardware optimization,
quadtree construction is very fast. The timings in Table 1.1 were obtained on a
PC equipped with Intel Core 2 Duo 2.4 GHz and GeForce 8800. For comparison,
timings for RCSM are given. The quadtree was computed on the GPU, while the
cone map was on the CPU due to algorithm requirements.

Figure 1.7. Generated QDM on mipmaps.
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As we can see, quadtree computation time is negligible, even for on-the-fly
generation, whereas cone maps could even be problematic for off-line rendering
during texture authoring (see Figure 1.7).

1.4.2 Quadtree Traversal

The general steps of intersection search are shown by the pseudocode in List-
ing 1.2. We start the computation at the highest mipmap level. The stopping
condition of the main loop is to reach the lowest hierarchy level, which effec-
tively means finding the intersection region where the linear approximation can
be performed. At each step, we determine if we can move the ray further or if
there is a need for further refinement. We algebraically perform the intersection
test between the ray and the cell bounding planes and the minimum depth plane.

In case the ray does not intersect the minimum plane, then the current cell is
blocking our trace. We have to refine the search by descending in the hierarchy
by one level. In the other case, we have to find the first intersection of the ray
with the minimum plane or the cell boundary. When the right intersection is
computed, we move the ray to the newly acquired point. In case we have to
cross the cell boundary, then we choose the next cell via the nearest-neighbor
method, thus minimizing error. At this point, we perform hierarchy level update
for optimization (see the optimization section).

Figure 1.8 presents step-by-step ray traversal in QDM: Step (a) shows a ray
coming from the initial geometry plane and stopping at the maximum level or
minimum plane. Steps (b) and (c) illustrate further refinement while the search
descends to lower hierarchy levels. Step (d) presents where the ray must cross
the cell in order to progress. While the minimum plane of the current cell is not
blocking the way, we have to move the ray to the nearest cell boundary. Steps
(e) and (f) show further ray traversal while refining the search while (g) presents
the main loop’s stopping condition, as the ray has reached level 0. Therefore, we
can proceed to linear interpolation between the nearest texels in Step (h).

While (hierarchy_level > 0)
depth=get_maximum_depth(position, hierarchy level)
If (ray_depth < depth)
move_ray_to_cell_boundry_or_minimum_depth_plane
else
descend_one_hierarchy_level
end
find_intersection_using_linear_interpolation

Listing 1.2. General QDM search steps.
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Figure 1.8. QDM traversal.
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It is important to correctly calculate sampling positions since we are working
with a discrete data structure. For correct results, we should use point-filtering on
the GPU and integer math. However, if we cannot afford an additional sampler for
the same texture using POINT and LINEAR, it is possible to use linear filtering
with enough care taken for correct calculations. As SM 3.0 only emulates integer
operations, we have to account for possible errors in calculations (using SM 4.0
is preferable, due to the presence of real integer math).

Listing 1.3 is heavily commented to explain the algorithm’s steps in detail.

const int MaxLevel = MaxMipLvl;
const int NodeCount = pow (2.0, MaxLevel);
const float HalfTexel = 1.0 / NodeCount / 2.0;

float d;
float3 p2 = p;
int Level = MaxLevel;

//We calculate ray movement vector in inter-cell numbers.
int2 DirSign = sign(v.xy);

//Main loop
while (Level >= 0)
{
//We get current cell minimum plane using tex2Dlod.
d = tex2Dlod (HeightTexture, float4(p2.xy, 0.0 , Level)).w;

//1f we are not blocked by the cell we move the ray.
if (d > p2.z)
{
//We calculate predictive new ray position.
float3 tmpP2 = p + v * d;

//We compute current and predictive position.
//Calculations are performed in cell integer numbers.
int NodeCount = pow(2, (MaxLevel - Level));

int4 NodeID = int4((p2.xy , tmpP2.xy) * NodeCount);

//We test if both positions are still in the same cell.
//1f not, we have to move the ray to nearest cell
//boundary .
if (NodeID.x != NodeID.z || NodeID.y != NodeID.w)
{
//We compute the distance to current cell boundary.
//We perform the calculations in continuous space.
float2 a = (p2.xy - p.xy);
float2 p3 = (NodeID.xy + DirSign) / NodeCount;
float2 b = (p3.xy - p.xy);
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//We are choosing the nearest cell
//by choosing smaller distance.
float2 dNC = abs(p2.z * b / a);

d = min(d, min(dNC.x, dNC.y));

//During cell crossing we ascend in hierarchy.
Level+=2;

//Predictive refinement
tmpP2 = p + v * d;
}

//Final ray movement
p2 = tmpP2;
}

//Default descent in hierarchy
//nullified by ascend in case of cell crossing
Level --;

}

return p2;

Listing 1.3. QDM search steps.

1.4.3 Optimizations

Convergence speed-up. It is worth noting that during traversal, the ray can only
descend in the hierarchy. Therefore, we are not taking full advantage of the
quadtree. The worst-case scenario occurs when the ray descends to lower levels
and passes by an obstacle really close, consequently degenerating further traver-
sal to the linear search. To avoid that problem, we should optimally compute
the correct level higher in the hierarchy during cell crossing. However, current
hardware is not optimized for such dynamic flow. A simple one step up move
in the hierarchy should be enough. For more complicated surfaces which require
many iterations, we discovered that this optimization increases performance by
30% (tested on a case requiring >64 iterations).

Fixed search step count. While the algorithm tends to converge really quickly, it
may considerably slow down at grazing angles on complex high-resolution height
fields. Therefore, an upper bound on iterations speeds up rendering without very
noticeable artifacts. The number of iterations should be exposed to technical
artists to find optimal values.

Linear filtering step. Depending on surface magnification and the need for accurate
results, final refinement may be used. One can utilize the well-know binary
search which would converge quickly (five sampling points is enough for most
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purposes) due to the tight search range. However, we propose linear interpolation
for piecewise surface approximation, similar to the one proposed in POM. This
approach proves to be accurate on par with binary search (considering limited
search range), while being optimal for current hardware.

After finding the correct cell of intersection (at hierarchy level 0), we sam-
ple the height field in direction of the ray cast, one texel before and one texel
after the cell. Then we find the intersection point between the ray and linearly
approximated curve created by sampled points.

LOD scheme. Here we propose a mixed automatic level of detail scheme. First,
we dynamically compute the number of iterations based on the simple observation
that parallax is larger at grazing angles, thus requiring more samples, so we can
express the correct value as a function of the angle between the view vector
and the geometric normal. Notice that the minimum sampling number should
not be less than the total number of hierarchy levels, otherwise the algorithm
will not be able to finish traversal even without any cell crossing. Moreover, we
observed that with diminishing pixel size on screen, parallax depth details become
less visible. Thus, we can stop our quadtree traversal at a fixed hierarchy level
without significant loss of detail. We determine the right level by computing the
mipmap level per pixel scaled by an artist-directed factor. For correct blending
between levels, we linearly interpolate between depth values from the nearest
hierarchy level by the fractional part of the calculated mipmap level. After an
artist-specified distance we blend parallax mapping to normal mapping.

This combined solution guarantees high accuracy via a dynamic sampling rate,
and it guarantees high performance due to quadtree pruning, thus giving a stable
solution overall. For performance and quality comparisons, see the results section.

Storage. For precision reasons, it is required that the stored quadtree is accurate.
A problem arises when we want to store it with textures. Generally, textures com-
pressed with DXT compression result in a significant speedup and memory foot-
print reduction. DXT is a lossy compression scheme; thus it is not recommended
for accurate data storage (as opposed to, e.g., diffuse textures). However, we
noticed that in the general case, storing the quadtree in the alpha channel of a
DXT5-compressed texture results in minor artifacts (it highly depends on the sur-
face’s profile, so it must be done with care). Still, the preferable solution is to take
the memory hit and store the additional data in 1-channel 8-bit lossless textures.

Comparison. Performance tests were conducted on a test machine equipped with
Intel quad core 2.8Ghz CPU and GeForce 260 GTX in full HD, using three various
levels from early beta of TW2. The results can be seen in Tables 1.2, 1.3, and 1.4.

Scenarios contained fully featured levels, using various height fields of reso-
lution 5122 to 10242. Each scene pushed around one million triangles, with the



16 1. Quadtree Displacement Mapping with Height Blending
Depth Scale | POM | QDM
1.0 5ms 5.7Tms
Relief | CSM | QDM 1.5 6.65ms | 6.7ms
Vvn <+/n | logn 5.0 18.9ms | 9ms

Table 1.2. Analytical performance.

parallax displacement method of choice, covering the entire screen. Depth scale
dependence was measured, and iteration count was set for close quality match
between methods. Table 1.4 shows the timing for ultra-high resolution and com-
plexity case of the height field. Figures 1.9 and 1.10 show results for various

Table 1.4. Extreme high detail performance.

Table 1.3. General scenario performance.

POM

QDM

73ms

14ms

implementations of ray- and height-field-intersection algorithms.

Figure 1.9. Convergence comparison.
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Figure 1.10. Quality comparison. Left POM. Right QDM. Depth Scale: 1.0, 1.5, 5.0.
From depth scale 1.5 and above artifacts are visible while using POM.
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As we can see, QDM is converging in a pace similar to RCSM, but results in
worse performance due to higher ALU cost and less efficient texture cache usage
(as many dependant samples, from various MIP levels tend to cause cache misses).
However, it is still comparably fast compared to linear search algorithms, outper-
forming them when the height-field’s complexity, depth, or resolution increases.
After further research we discovered that QDM is a faster solution onwards from
512 x 512 high-complexity textures or for any 1024 x 1024 and larger sizes. More-
over, an additional advantage is visible with depth scale increase. We do not
take into consideration RCSM for resolutions higher than 1024 x 1024 as the
preprocessing time becomes impractical.

1.5 Self-Shadowing
1.5.1 General Self-Shadowing

The general algorithm for self-shadowing [Policarpo 2005] involves ray tracing
along the vector from L (light source) to P (calculated parallax offset position),
then finding its intersection PL with the height field. Then we simply compare
PL with P to determine whether the light is visible from P or not. If not, then
that means we are in shadow. See Figure 1.11 for illustration.

This method generates hard shadows using any intersection search method,
thus suffering from the same disadvantages as the chosen algorithm (i.e., aliasing
with linear search). Moreover, the cost is the same as view and height-field

View Ra Self-shadowing

o0

HIT - paint in shadow

Height

1.0

0.0 LY Texture Space 1.0

Figure 1.11. Shadow test.
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intersection computations. When we are looking for soft shadows, we would
have to perform several ray casts of the light vector, which is impractical for
performance reasons.

A good approximation for soft shadow calculation was proposed in POM.
We can cast a ray towards the light source from point P and perform horizon
visibility queries of the height profile along the light direction. We sample the
height profile at a fixed number of steps to determine the occlusion coefficient
by subtracting sampled depth from original point P depth. This allows us to
determine the penumbra coeflicient by calculating blocker-to-receiver ratio (the
closer the blocker is to the surface, the smaller the resulting penumbra). We
scale each sample’s contribution by the distance from P and use the maximum
value, then we use the visibility coefficient in the lighting equation for smooth
shadow generation. The algorithm makes use of linear sampling and produces
well-behaving soft shadows. However, the alias-free shadow range is limited by
the fixed sampling rate, so real shadows cannot be generated without searching
through the entire height field, which effectively degenerates the algorithm to a
linear search.

1.5.2 Quadtree Soft Shadowing

Fast horizon approximation. We propose a new algorithm based on POM soft
shadowing. This algorithm makes use of the quadtree used in QDM.

First we introduce the algorithm for fast horizon visibility approximation. We
use a method similar to POM by performing horizon visibility queries along a

Light .~
9 P

0.0

. o .
"'----?x_lalocu.r Height

-

Height

1.0
0.0 LW Texture Space 10

Figure 1.12. QDM horizon approximation.
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given direction. The maximum height is taken from the calculated samples and
is subtracted from the initial starting point P, thus giving the horizon visibility
coefficient. See Figure 1.12 for illustration.

We use the observation that small scale details at distance have negligible
impact on the result (especially during any lighting calculations). Thus we can
approximate further lying profile features by using the maximum height data
from higher levels of the quadtree. That way we can calculate the approximated
horizon angle with a minimized number of queries. The full profile can be ob-
tained in logn steps as opposed to n steps in POM, where n is the number of
height-field texels along a given direction D. In all further solutions, we are using
a slightly modified version of this algorithm, which is weighting each sample by
a distance function. That makes it more suitable for penumbra light calculation
as samples far away from P are less important.

QDM shadowing. For shadowing, we use a fast horizon visibility approximation
using the parallax offset point P and the normalized light vector L. Accuracy
and performance is fine-tuned by technical artists setting the plausible number
of iterations (logn is the maximum number, where n is the height-field’s largest
dimension) and light vector scale coefficient as shown in Listing 1.4.

//Light direction
float2 1Dir = (float2(l.x, -1l.y)) * dScale;

//Initial displaced point
float hO = tex2Dlod(heightTexture, float4(P,0,0)).w;
float h = hO;

//Horizon visibility samples
//wl..wb---distance weights

h = min(1,wl * tex2Dlod(height, float4(P + 1.0 * 1Dir,0,3.66)).w);
h = min(h,w2 * tex2Dlod (height, float4(P + 0.8 * 1Dir,0,3.00)).w);
h = min(h,w3 * tex2Dlod(height, float4(P + 0.6 * 1Dir,0,2.33)).w);
h = min(h,w4 * tex2Dlod(height, float4(P + 0.4 * 1Dir,0,1.66)).w);
h = min(h,w5 * tex2Dlod(height, float4(P + 0.2 * 1Dir,0,1.00)).w);

//Visibility approximation
float shadow = 1.0 - saturate((hO - h) * selfShadowStrength);

return shadow;

Listing 1.4. QDM soft shadows, fast, hard-coded solution.

Results. As we can see in Table 1.5, plausible soft shadows using the quadtree are
significantly faster than traditional methods while delivering similar quality (see
Figure 1.13). For further optimization we calculate shadows only when N-L > 0.
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POM Shadows | QDM Shadows
1.6ms 0.5ms

Table 1.5. One light shadows calculation time for the test scene.

Figure 1.13. Soft shadows ON/OFF.
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Figure 1.14. Generated high quality AO.

1.6 Ambient Occlusion

Ambient occlusion is computed by integrating the visibility function over the
hemisphere H with respect to a projected solid angle:

1
A = — SN - w)dw,
0 W;V,( w)dw

where V, , is the visibility function at p, such as V,,, is 0 when occluded in
direction w and 1 otherwise.

Ambient occlusion adds a great deal of lighting detail to rendered images (see
Figure 1.14). Tt is especially useful for large-scale terrain scenarios, where objects
can take the occlusion value from the terrain (i.e., darkening buildings lying in a
valley).

1.6.1 QDM Ambient Occlusion

Dynamically calculating ambient occlusion for surfaces was thought to be im-
practical for performance reasons, as the visibility function and the integration
were too slow to be useful. Now with fast horizon visibility approximation we
can tackle that problem in a better way.

We approximate the true integral by integrating the visibility function in
several fixed directions. We discovered that for performance reasons integration in
four to eight directions lying in the same angle intervals yields acceptable results.
Moreover, we can increase quality by jittering and/or rotating the directions by
a random value for every pixel.
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Accuracy AO

4 directions | 2.1ms
8 directions | 6.3ms
4 jittered 2.6ms

Table 1.6. AO calculation time.

1.6.2 Performance

As we can see from Table 1.6, the algorithm requires substantial processing power,
being even less efficient with randomized directions (as it is hurting GPU paral-
lelism, but it is still faster than integrating more directions). However, it is used
only when the surface height field is changing. Moreover, it can be accumulated
throughout several frames, amortizing the cost.

1.7 Surface Blending
1.7.1 Alpha Blending

Blending is commonly used for surface composites, such as terrain, where several
varied textures have to mix together (e.g., rocky coast with sand).

Typically, surface blends are done using the alpha-blending algorithm given
by the following equation:

Blend = (Y102 0n) - (Wi, wn)
(L,...,1) - (w1,...,wy)
where (w1, ..., w,) is the blend weight vector and (v1,...,v,) denotes the value
vector.

Commonly, the blend vector for a given texel is supplied by vertex interpola-
tion, stored at vertex attributes (thus being low frequency). During pixel shading,
interpolated values are used to perform the blending.

1.7.2 Raytracing Blended Surfaces

Any height-field intersection algorithm can be used in such a scenario. We should
compute the parallax offset for each surface and finally blend them together using
the blend vector. However, it is worth noting that the computational cost for such
blending would be n-times higher than one surface, where n is the total number
of surfaces. Moreover, using vertex-interpolated values results in view-dependant
surfaces floating near blend zones. Figure 1.15 illustrates the problem. However,
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Wertex Blend Artifact

0.0 View 1 '|l Viewz

Height

it} - —

Weight 1 * P.Height |~ Weighta * P.Height

0.0 UV Texture Space 1.0
Figure 1.15. Depth floating artifact using vertex blend.

with enough care taken to minimize depth scale near blend zones, it should not
be too distracting.

One possible solution is to use per-pixel blend weights that would modify the
surface on-the-fly during intersection search. However, this would require sam-
pling an additional weight texture with every iteration, thus doubling the sample
count.

Let us consider four surface blends. Optimally, we can encode up to four blend
weights in one RGBA 32-bit texture, so with each sample we get four weights.
The blend texture can be fairly low-resolution, as generally it should resemble
per-vertex blending (it can be even generated on the fly from vertex weights).
Having a four-scalar blend vector, we can perform the intersection search on the
dynamically modified height field simply by sampling all four height fields with
each step and blending them by the blend vector. Moreover, we can compose all
four height fields into one RGBA 32-bit texture, thus finally optimizing the blend
intersection search.

The pseudocode in Listing 1.5 shows the modification for the intersection
search method of choice.

d = tex2D(HeightTexture ,p.xy) .xyzw;
b = tex2D(BlendTexture ,p.Xy) .Xyzw;
d = dot(d,b);

Listing 1.5. Height profile blend code.
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Modification requires only one additional sample and one dot product. How-
ever, we are sampling four channels twice instead of one channel (as in the single
surface algorithm).

This solution is therefore very fast but lacks robustness, as it would require
us to preprocess height-field composites, creating possibly dozens of new textures
containing all possible height profiles composites. We can of course try sampling
the data without composites, but that would result in additional sampling cost
and cache misses (as four samplers would have to be used simultaneously, which
would most probably result in a bandwidth bottleneck).

Another problem is that we cannot use this method for algorithms using
precomputed distance data, as it would require us to recompute the distance
fields (i.e., cone maps) for blend modified height fields, which effectively prohibits
using advanced ray-casting algorithms.

1.7.3 Height Blending

To overcome the aforementioned problems, we introduce a new method for surface
blending, which seems to fit the task more naturally, and it guarantees faster
convergence.

First, let us consider typical alpha blending for surface mixing. In real life,
surfaces do not blend. What we see is actually the highest material (the material
on the top of the surface).

Therefore, we propose to use height information as an additional blend co-
efficient, thus adding more variety to blend regions and a more natural look as
shown in Listing 1.6.

This method is not computationally expensive, and it can add much more
detail as opposed to vertex-blended surfaces (as can be seen in Figure 1.16).

The most important feature is that we pick the highest surface, so during the
intersection search phase, we need only to find the highest point.

Therefore, the new height field is produced by the new blend equation:

Blend = max(hy,...,hy).

Using this blend equation we are interested only in finding the intersection
point with the highest surface profile modified by its blend weight. That effec-
tively means taking a minimal number of steps, as we will stop the ray cast at

Relief Mapping | POM | POM with HB
3ms 2.5ms 1.25ms

Table 1.7. Surface blend performance comparison.
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Figure 1.16. Vertex blend and height blend comparison.
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float4 FinalH;
float4 f1, f2, £3, f4;

//Get surface sample.
f1 = tex2D(TexOSampler ,TEXUV.xy) .rgba;

//Get height weight.

FinalH.a = 1.0 - f1l.a;

f2 = tex2D(Tex1Sampler ,TEXUV.xy) .rgba;
FinalH.b = 1.0 - f2.a;

£f3 = tex2D(Tex2Sampler ,TEXUV.xy) .rgba;
FinalH.g = 1.0 - £f3.a;

f4 = tex2D(Tex3Sampler ,TEXUV.xy) .rgba;
FinalH.r = 1.0 - f4.a;

//Modify height weights by blend weights.
//Per-vertex blend weights stored in IN.AlphaBlends
FinalH*= IN.AlphaBlends;

//Normalize.
float Blend = dot(FinalH, 1.0) + epsilon;
FinalH /= Blend;

//Get final blend.
FinalTex = FinalH.a * f1 + FinalH.b * f2 + FinalH.g * f3 +
FinalH.r x f4;

Listing 1.6. Surface blend code.

the first intersection with highest blend weight modified height profile, which—by

definition—is the first one to be pierced by the ray.

With each intersection search step, we reconstruct the height-field profile using

the new blend operator as shown in Listing 1.7.

As can be seen in Table 1.7, this method proved to minimize the convergence
rate by 25% on average in our scenario without sacrificing visual quality (see
Figure 1.17, and is more plausible for our new height blend solution. It can be
used with blend textures or vertex blending, as well as every intersection search

algorithm.
d = tex2D(HeightTexture ,p.xy) .xyzw;
b = tex2D(BlendTexture ,p.xy) .Xxyzw;
d *= b;
d = max(d.x,max(d.y,max(d.z,d.w)));}

Listing 1.7. Surface height blend code.
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Figure 1.17. Surface blend quality comparison. Top: relief. Bottom: POM with height
blending.

1.7.4 QDM with Height Blending

We still cannot use the height blend operator directly for algorithms based on
precomputed data. However, QDM is based on depth data, so it is relatively easy
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to obtain new correct data structure. Note that

max (1, o, ..., Ty) - max(wy, wa, ..., wy) >

max([(z1, T, ...,2Tn) - (w1, wa, ..., wy)]).

Thus multiplying one min/max quadtree by another gives us a conservative quad-
tree, and that is exactly what we need for correct surface blending. We can
pack up to four blend quadtrees in one RGBA 32-bit texture with mipmaps
containing blend vector quadtrees. Then in QDM, to reconstruct the blended
surface quadtree, we simply sample and blend it at the correct position and level,
and compute the dot product between it and the height-field vector sampled from
the height-field composite.

The blend texture should map quadtree texels as close as possible. However,
we discovered that while using hardware linear sampling and accepting small
artifacts we can use sizes as small as 322 (while blending 10242 height fields)
when the weight gradients are close to linear. Such blended quadtrees can be
constructed on the fly in negligible time, allowing dynamic surface alterations.

Effectively, we can use QDM with all its benefits while blending surfaces
for artifact-free rendering (see Figure 1.18). Convergence will be slower, due
to the conservative quadtree, and more iterations may be needed depending on
the height-field’s complexity. In practice, the conservative approach needs <10%
more iterations than what should be really used. This method proves to be the
fastest method for dynamic accurate surface rendering of high complexity height
fields.

In our implementation we decided to use vertex blending to avoid high texture
cache misses. However, we were forced to accept small depth-floating artifacts.

As QDM is converging really fast in empty space regions, the algorithm can
make the best use of faster convergence, due to height blending.

1.7.5 Self-Shadowing and Ambient Occlusion for Blended Surfaces

Self shadowing and ambient occlusion can be done while rendering blended sur-
faces. However, a naive approach of calculating shadowing terms for each surface
and blending the results is simply impractical for current generation hardware.
We propose to use QDM and the height blend and perform computations for the
highest modified height profile only. Proper height-field selection requires ad-
ditional dynamic branching, further restricting GPU parallelism. Consequently,
self shadowing and/or ambient occlusion are viable only for high-end hardware.
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Figure 1.18. QDM height blend surface.

1.8 General Advice

In this article we proposed and discussed several battle-proven surface rendering
methods, varying in ALU/Texture sampling performance, accuracy, and flexi-
bility. Most solutions were introduced as general building blocks from which,
depending on requirements, an optimal solution can be built.

1.8.1 Case Study

During Two Worlds 2 production we decided to settle on several solutions used
under specific circumstances. We present a case study of each method used:

General terrain blend. Our terrain exhibits small-scale height features such as
cracks, small rocks, etc. The maximum number of blending surfaces was capped
at four to allow texture packing. We are using linear search with linear piece-
wise approximation, automatic LOD, and height blend optimization. Blending is
done on a per-vertex basis. Depending on texture configuration, parallax can be
switched off for each surface individually. The specular term and normal vectors
are generated on-the-fly due to the Xbox360’s memory restrictions.

Special terrain features. Several extreme detail terrain paths were excluded as
additional decal planes. We are rendering them at ultra-high quality (high res-
olution, high accuracy) and alpha-blending them with existing terrain. Decal
planes may present roads, paths, muddy ponds, and craters, etc. For rendering,
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we are using QDM with automatic LOD and soft shadows. Where needed, QDM
per-pixel height blending is used. Blend-based decals are for PC only.

General object surface. For general surface rendering, we are using linear search
with linear piecewise approximation and automatic LOD. Soft shadows are used
at the artist’s preference. Surfaces with extreme complexity, depth scale, or
resolutions over 10242 are checked, and using QDM is optimal. The same method
is used on Xbox360 and PC.

1.8.2 Surface Rendering Pipeline

During asset finalization, technical artists optimized height-field-based textures,
checking whether high resolution or additional details (such as soft shadows)
are really needed. It is worth noting that low frequency textures tend to con-
verge faster during the intersection search, so blurring height fields when possible
is better for performance and accuracy reasons when using linear search-based
methods.

One important feature of our surface rendering pipeline is the preference for
generation of additional surface properties on-the-fly, as it allows us to save mem-
ory and performance on texture-fetch-hungry shaders.

Texture-heavy locations (such as cities) are using mostly two 24-bit RGB com-
pressed textures per object. The specular term is generated from the diffuse color
and is modified by an artist on a per-material-specified function such as inversion,
power, or scale. The generated coefficient generally exhibits high quality.

Data generation is taken to the extreme during terrain rendering as individual
terrain texture is using only 32-bit RGBA DXTS5 textures, from which per-pixel
normal vectors, specular roughness, and intensities (as the default lighting model
is a simplified Cook-Torrance BRDF') are generated.

1.9 Conclusion

We have discussed and presented various surface rendering techniques with sev-
eral novel improvements for industry proven approaches. Combinations of paral-
lax mapping, soft shadowing, ambient occlusion, and surface blending methods
were proposed to be in specific scenarios aiming for maximum quality /perfor-
mance/memory usage ratio. Furthermore, a novel solution—Quadtree Displace-
ment Mapping with Height Blending—was presented. Our approach proves to be
significantly faster for ultra-high quality surfaces that use complex, high resolu-
tion height fields. Moreover, we proposed solutions for efficient surface blending,
soft shadowing, ambient occlusion, and automatic LOD schemes using the intro-
duced quadtree structures. In practice, our techniques tend to produce higher
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quality results with less iterations and texture samples. This is an advantage,
as we are trading iteration ALU cost for texture fetches, making it more useful
for GPU generations to come, as computation performance scales faster than
bandwidth.

Surface rendering techniques research allowed us to make vast graphic im-
provements in our next-gen engine, thus increasing quality and performance. We
hope to see the techniques described herein being used in more upcoming titles.
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NPR Effects Using the
Geometry Shader

Pedro Hermosilla and Pere-Pau Vazquez

2.1 Introduction

Non-photorrealistic rendering (NPR) techniques [Achorn et al. 03, Gooch and
Gooch 01] have been here for quite a while [Saito and Takahashi 90]. In contrast
to traditional rendering, these techniques deal with geometric entities such as
silhouettes, which makes them not easily amenable to GPU algorithms, although
some papers already address some NPR algorithms in hardware [Dietrich 00,
Mitchell et al. 02, Everitt 02, Card and Mitchell 02]. With the arrival of more
modern graphics hardware that includes the geometry shader stage, some of these
techniques can be implemented in hardware, making them real time in many cases
[McGuire and Hughes 04, Dyken et al. 08, Doss 08]. In this chapter we present a
set of techniques that can be implemented using the GPU by taking advantage of
the geometry shader pipeline stage. Concretely, we show how to make use of the
geometry shader in order to render objects and their silhouettes in a single pass,
and to imitate pencil drawing.

2.2  Previous Work

Silhouette rendering has been studied extensively. Two major groups of algo-
rithms require the extraction of silhouettes in real time: shadow volume-based
approaches and non-photorealistic rendering [Gooch and Gooch 01].

From the literature, we may extract two different approaches: object-space
and image-space algorithms. However, most modern algorithms work in either
image space or hybrid space. For the purposes of this chapter, we are inter-
ested in GPU-based algorithms, and these are the ones we will present. We
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refer the interested reader to the works of [Isenberg et al. 03] and [Hartner
et al. 03] for overviews and deep comparisons on CPU-based silhouette extraction
algorithms.

GPU-assisted algorithms may compute the silhouette either using multiple
rendering passes [Mitchell et al. 02] or in a single pass. Single pass methods
usually use some sort of precomputation in order to store adjacency information
into the vertices [Card and Mitchell 02], or make use of the geometry shader
feature [Doss 08], as this may query adjacency information. These algorithms
generate the silhouette in a single rendering pass, though still a first geometry
pass is required for the object itself.

One of the first attempts to extract silhouettes using hardware is due to
[Raskar 01], where a new stage at the rendering pipeline is introduced: the prim-
itive shader. At this stage, polygons are treated as single primitives, similar to the
way actual geometric shaders do. Raskar’s proposal also requires modification of
the incoming geometry. For instance, extending back faces to render silhouettes,
and adding polygons in order to render ridges and valleys.

[Card and Mitchell 02] pack adjacent normals into the texture coordinates of
vertices and render edges as degenerated quads, which expand if they are detected
to belong to a silhouette edge in the vertex processor. This is a single pass
algorithm that requires rendering extra geometry for the silhouette extraction.
This approach is also used by [Achorn et al. 03]. [McGuire and Hughes 04] extend
this technique to store the four vertices of the two faces adjacent to each edge,
instead of explicit face normals. This allows the authors to construct correct face
normals under animation and add textures to generate artistic strokes.

In [Ashikhmin 04], silhouettes are generated without managing adjacency in-
formation through a multiple rendering passes algorithm that reads back the
frame buffer in order to determine face visibility. More recently, [Dyken et al. 08]
extract silhouettes from a triangle mesh and perform an adaptive tessellation
in order to visualize the silhouette with smooth curvature. However, this system
neither textures the silhouettes nor extrudes the silhouette geometry. [Doss 08] de-
velops an algorithm similar to the one presented here: he extrudes the silhouettes,
but with no guarantee of continuity between the extrusions generated from differ-
ent edges; consequently, gaps are easily noticeable as the silhouette width grows.

A completely different approach is used by [Gooch et al. 99], as they note that
environment maps can be used to darken the contour edges of a model but, as
a result, the rendered lines have uncontrolled variable thickness. The same idea
was refined by [Dietrich 00], who took advantage of the GPU hardware available
at that moment (GeForce 256). [Everitt 02] used MIP-maps to achieve similar
effects. In all of these cases, it is difficult to fine-tune an artistic style because
there is no support geometry underlying the silhouette.
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The approach presented here is conceptually similar to [Raskar 01], but takes
advantage of modern hardware. We also borrow ideas from [Doss 08] and [McGuire
and Hughes 04] for silhouette geometry generation. In contrast to these ap-
proaches, we generate both the silhouette and the object in a single pass, and we
present an algorithm for correct texturing with coherent and continuous texture
coordinates along the entire silhouette.

2.3 Silhouette Rendering

Silhouette rendering is a fundamental element in most NPR effects, as it plays
an important role in object shape understanding. In this section we present a
novel approach for the detection, generation, and texturing of a model in a single
rendering pass. First we will present an overview of our algorithm, and then we
will detail how each of the steps is implemented.

2.3.1 Algorithm Overview

In order to carry out the entire process in a single step, we will take advantage of
some of the modern features of GPUs; concretely, we will make an extensive use
of the geometry shader. This stage permits triangle operations, with knowledge
of adjacent triangles, and the generation of new triangles to the geometry.

Our process for silhouette rendering performs the following steps at the dif-
ferent stages of the pipeline (Figure 2.1):

o Vertex shader. Vertices are transformed in the usual way to camera space.

e Geometry shader. In this stage, edges that belong to the silhouette are
detected by using the information of the current triangle and its adjacency,
and the corresponding geometry is generated.

Vertex Geomeatry 3 Pixel
Shader Shader Shader

—_— | —

Figure 2.1. Pipeline overview: the vertex shader (left) transforms the vertex coordinates
of the incoming geometry; the second step (geometry shader) generates new geometry
for the silhouette of the object. Finally, the fragment shader generates correct texture
coordinates.
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e Pizel shader. For each rasterized fragment, its texture coordinates are
generated and pixels are shaded according to the color obtained from the
texture.

Before we may send a mesh throughout the pipeline, we first perform a special
reordering of the indices of the triangles. This will make the adjacency informa-
tion available at the geometry shader level. In order to access such information,
we send six indices per triangle (instead of the normal three), ordered as depicted
in Figure 2.2. The central triangle, identified by indices 0, 4, and 2 is the one to
be analyzed. The remaining adjacent triangles are needed to show if any of the
edges of the central triangle belong to the silhouette.

Figure 2.2. Index sort. Figure 2.3. Edge geometry.

2.3.2  Silhouette Detection and Geometry Generation

We consider a closed triangle mesh with consistently oriented triangles. The set of
triangles is denoted, T ...Tx. The set of vertices is v; ... v, in ®3, and normals
are given by triangles: n; is the normal of a triangle T; = [v;, v;, vx], using the
notation by [Dyken et al. 08]. This triangle normal is defined as the normalization
of the vector (vj —v;) x (vg — v;). Given an observer at position z € &%, we may
say a triangle is front facing in v if (v—2x)-n < 0, otherwise it is back facing. The
silhouette of a triangle mesh is the set of edges where one of the adjacent triangles
is front facing while the other is back facing. In order to detect a silhouette in
a triangulated mesh we need to process any triangle, together with the triangles
that share an edge with it. This test is performed at the geometry shader level for
each edge of the triangle being processed. In order to avoid duplicate silhouettes
when processing both the front facing and the back facing triangles, we only
generate silhouettes for the front-facing triangles. The code in Listing 2.1 shows
how to detect a silhouette edge at the geometry shader level.

As shown in Figure 2.3, once an edge (indicated by vOv1) has been determined
as a silhouette one, we generate the geometry that will act as the silhouette by
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[maxvertexcount (21)]
void main( triangleadj VERTEXin input[6],

inout TriangleStream<VERTEXout> TriStream )
{

//Calculate the triangle normal and view direction.
float3 normalTrian = getNormal( input [0].Pos.xyz,
input [2] .Pos.xyz, input [4].Pos.xyz );
float3 viewDirect = normalize(-input [0].Pos.xyz
- input [2].Pos.xyz - input [4].Pos.xyz);

//1f the triangle is frontfacing
[branch]if (dot (normalTrian,viewDirect) > 0.0f)

{

[looplfor(uint i = 0; i < 6; i+=2)
{

//Calculate the normal for this triangle.
float auxIndex = (i+2)%6;
float3 auxNormal = getNormal( input[il.Pos.xyz,
input [i+1].Pos.xyz, input[auxIndex].Pos.xyz );
float3 auxDirect = normalize (- input[i].Pos.xyz
- input[i+1] .Pos.xyz - input[auxIndex].Pos.xyz);

//1f the triangle is backfacing
[branch]if (dot (auxNormal ,auxDirect) <= 0.0f)
{

//Here we have a silhouette edge.

applying the algorithm in [McGuire and Hughes 04]. It consists of four triangles.
The central triangles forming the quad are generated by extruding the edges’
vertices using as the extrusion direction of a vector orthogonal to the edge and
view directions. The remaining triangles are generated by extruding the vertices
from the edge in the direction of the vertex normal as projected on screen. The
generation of such geometry can be done either in world space or in screen space.
We usually use screen space because this way is easier to obtain a silhouette
geometry of constant size in screen. The code needed to generate this geometry

Listing 2.1. Geometry shader silhouette detection code.

appears in Listing 2.2.
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//Transform the positions to screen space.

float4 transPosl = mul(input[i].Pos,projMatrix);
transPosl = transPosl/transPosl.w;

float4 transPos2 = mul(input[auxIndex].Pos,projMatrix);
transPos2 = transPos2/transPos2.w;

//Calculate the edge direction in screen space.
float2 edgeDirection = normalize (transPos2.xy - transPosl.xy);

//Calculate the extrude vector in screen space.
float4 extrudeDirection = float4(normalize(
float2(-edgeDirection.y,edgeDirection.x)),0.0f,0.0f);

//Calculate the extrude vector along the vertex
//normal in screen space.

float4 normExtrudel = mul (input[i].Pos + input[i].Normal
,projMatrix);

normExtrudel = normExtrudel / normExtrudel.w;

normExtrudel = normExtrudel - transPosl;

normExtrudel = float4(normalize(normExtrudel.xy),0.0f,0.0f);

float4 normExtrude2 = mul (input[auxIndex].Pos
+ input [auxIndex].Normal ,projMatrix);

normExtrude2 = normExtrude2 / normExtrude2.w;

normExtrude2 = normExtrude2 - transPos2;

normExtrude2 = float4(normalize(normExtrude2.xy),0.0f,0.0f);

//Scale the extrude directions with the edge size.

normExtrudel = normExtrudel * edgeSize;
normExtrude2 = normExtrude2 * edgeSize;
extrudeDirection = extrudeDirection * edgeSize;

//Calculate the extruded vertices.

float4 normVertexl = transPosl + normExtrudel;
float4d extruVertexl = transPosl + extrudeDirection;
float4d normVertex2 = transPos2 + normExtrude2;
float4d extruVertex2 = transPos2 + extrudeDirection;

//Create the output polygons.
VERTEXout outVert;

outVert.Pos = float4 (normVertexl.xyz,1.0f);
TriStream. Append (outVert) ;
outVert.Pos = float4 (extruVertexl.xyz,1.0f);

TriStream. Append (outVert) ;

outVert.Pos = float4(transPosl.xyz,1.0f);
TriStream.Append (outVert) ;

outVert.Pos = float4(extruVertex2.xyz,1.0f);
TriStream. Append (outVert) ;

outVert.Pos = float4 (transPos2.xyz,1.0f);
TriStream.Append (outVert) ;

outVert.Pos = float4 (normVertex2.xyz,1.0f);
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TriStream.Append (outVert) ;

TriStream.RestartStrip ();

Listing 2.2. Geometry shader silhouette generation.

In some cases, this solution may produce an error when the extrusion direction
has a different direction than the projected normal version. There are several ways
to solve this. One of the simplest ones consists of changing the direction of the
projected normal, as commented in [Hermosilla and Vazquez 09]. Some cases
also might require different silhouette geometry (see [McGuire and Hughes 04]
for more details).

2.3.3 Silhouette Texturing

Once the silhouette geometry has been generated, it becomes obvious that tex-
turing this geometry will increase the number of effects that can be achieved. In
order to properly texture the silhouette geometry, we need to generate texture
coordinates. Texture coordinates generation is a bit tricky, as we need to generate
continuous coordinates along the entire silhouette. Therefore we may not simply
assign coordinates from 0 to 1 for each edge, as this would cause irregular coor-
dinate distribution if the edges are not created all with the same length. Instead
we need a global strategy for coordinate generation because each triangle of the
silhouette will not be aware of the neighbor triangles’ coordinates.

From the two texture coordinates v and v, coordinate v can be simply defined,
because it changes from zero to one as long as we go away from the object, as
depicted in Figure 2.4.

Coordinate u has to be generated in such a way that its value is continu-
ous along the silhouette of the object. In order to make sure that two adjacent
edges will generate coherent texture coordinates, we will build a function that
depends on the position of the projection of the vertices on screen. As a conse-
quence, the coordinates will be continuous because neighbor edges share a vertex.

ful, 1] a qul 1}

([Tl [N Kl
R T ) )] 1.1

e e

M fubdy  (uld) .0

Figure 2.4. The v-coordinate has a value of 0 for the edge vertex and 1 for the extruded
vertices.
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Figure 2.5. The u-coordinates are generated from the edge vertex coordinates in screen
space. The first vertex of the edge and the vertex extruded from the first vertex nor-
mal gets the u-coordinate from the coordinates of the first vertex (a) The other edge
endpoint, and the vertex extruded from the second vertex normal gets the u-coordinate
from the coordinates of the second vertex (b) The vertices extruded from the extrusion
vector (el & e2) obtain their u-coordinates by interpolation, as show in Equation (2.1).

This is achieved when the geometry shader sends the x- and y-coordinates of the
generated vertices in screen, together with v-coordinate. The pixel shader will re-
ceive such coordinates as interpolated values, and will generate the corresponding
u value. Figure 2.5 shows how this information is used.

Vertices e receive their coordinates from linear interpolation as shown in the
following equations:

eluz = x4 + (|{b| s« (d*dg)/(da + dy + de)))
el.uy = yq + (ab] * ((d x dy)/(dg + dp + dc)))
elv=20
(2.1)
e2.ux = p + (|qu| s ((d*dg)/(dg + dy + d)))
e2.uy = xp + (|bal * ((d*dy)/(dg + dp + de)))
e2.v =0.

The pixel shader will receive those coordinates interpolated and will use them
to compute the final texture coordinates.

In order to compute the final u component, we will transform components
x and y into polar coordinates. The reference system will be the screen space
position of the center of the bounding box of the object, and the z- and y- axes will
be those of the viewport. Therefore, we will have polar coordinates computed as

e Polar angle: a will be the angle between the z-axis, and the vector with
initial point at the origin of the coordinates system, and final point at (x,y).

e Distance: d is the distance from (z,y) to the origin of the coordinates
system.
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float4 main(PIXELin inPut):SV_Target

{

//Initial texture coordinate.

float2 coord = float2(0.0f,inPut.UV.z);

//Vector from the projected center bounding box to
//the location.
float2 vect = inPut.UV.xy - aabbPos;

//Calculate the polar coordinate.

float angle = atan(vect.y/vect.x);

angle = (vect.x < 0.0f)7angle+PI:
(vect.y < 0.0f)7angle+(2*PI):angle;

//Assign the angle plus distance to the u texture coordinate.
coord.x = ((angle/(2*xPI)) + (length(vect)*lengthPer))*scale;

//Get the texture color.
float4 col = texureDiff.Sample(samLinear,coord);

//Alpha test.
if(col.a < 0.1f)
discard;

//Return color.
return col;

}

Listing 2.3. Silhouette texturing.

Finally, we compute u as indicated in the following equation:

(67

u=( )+ (k= d).

2%

As we may see, the polar angle is divided by 27 in order to transform it
into a value in the [0..1] range. The distance is weighted by a factor k that
may be changed interactively. For objects of a sphere-like shape, k value can be
set to close to 0, but for objects with edges that roughly point to the origin of
coordinates, the value k must be different from 0. Otherwise, texture coordinates
at both ends of those edges would be similar. The code that implements this is
shown in Listing 2.3.

This algorithm may produce small artifacts in edges that are projected on the
screen close to the center of the bounding box. However, these are not visible in
most of the models we tested.
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2.3.4 Single Pass Geometry and Silhouette Rendering

Most silhouette rendering algorithms perform two passes, one for the geometry,
and another one for the silhouettes. This means that the geometry is sent two
times into the rendering pipeline. We can avoid this by taking further advantage
of the geometry shader with little modifications to the original code. This is
achieved by simply rendering the triangle being analyzed by the geometry shader,
even if it does not have any edge belonging to the silhouette. This can be done
thanks to the fact that the geometry shader may output more than a single
triangle.

So far, the pixel shader code deals only with edges and textures them accord-
ingly. In order to render the triangles belonging to the geometry in a single pass,
we must inform the pixel shader of the sort of triangle that originated the raster-
ized fragment: silhouette or geometry. We encode this information in the texture
coordinates. As we are passing three coordinates, we will use one of them—in
this case the v-coordinate—to encode this information. For triangles belonging
to this geometry, we assign the value 2. This way, the pixel shader can easily
distinguish between both kinds of triangles, and shade them accordingly.

2.3.5 Results

We can see some results of our algorithm in Figure 2.6. The algorithm presented
here achieves real-time performance, as can be seen in Table 2.1. These results
were obtained on a 6 GB Quad Core PC equipped with a GeForce 9800 GX2
GPU. The viewport resolution (key for image space algorithms) was 1680 x 1050.
Note that even complex objects (such as the Buddha model), with more than 1M
polygons, achieve interactive framerates.

‘ Models Triangles ‘ FPS ‘
Buddha 1087716 8.50
Armadillo 345944 21.07
Asian Dragon 225588 25.75
Dragon 100000 60.07
Bunny 69666 | 110.78
Atenea 15014 | 337.59

Table 2.1. Framerates obtained with the textured silhouette algorithm on a GeForce
9800 GX2 GPU with a viewport resolution of 1680 x 1050.
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Figure 2.6. Images showing the algorithm in action. Silhouettes have been generated
and textured in real time.

2.4 Pencil Rendering

In this section we will present how to implement pencil rendering in the geometry
shader. This is based on the technique presented by [Lee et al. 06].

2.4.1 Algorithm Overview

The original technique by [Lee et al. 06] works in the following way. First, the
minimal curvature at each vertex is computed. Then, triangles are sent through
the pipeline with this value as a texture coordinate for each vertex. In order to
shade the interior of a triangle, the curvatures at the vertices are used to rotate
a pencil texture in screen space. This texture is rotated three times in screen
space, one for each curvature, and the result is combined with blending. Several
textures with different tones are used at the same time, stored in an array of
textures. The correct one is selected according to illumination.
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Figure 2.7. Pipeline overview: the vertex shader transforms the vertices to screen space;
the geometry shader assigns the vertex curvatures of the triangle to the three vertices.
Finally, the pixel shader generates texture coordinates for the three curvatures and
calculates the final color.

We may implement this algorithm using the GPU pipeline in the following
way (Figure 2.7):

o Vertex shader. Vertices are transformed to screen coordinates. Vertex cur-
vature is transformed too, and only z- and y-components are passed through
as a two-dimensional vector.

o Geometry shader. The curvature values are assigned to each vertex as
texture coordinates.

e Pizxel shader. Final color is computed.

2.4.2 Geometry Shader Optimization

This technique has an important shortcoming: It is necessary to make a copy of
each vertex for each triangle that shares it. This is because each pixel receives the
interpolated curvature by using each vertex, and the three curvatures are required
unchanged. Each duplicated vertex is assigned the three curvatures of the vertices
of the triangle in order to make each fragment get the three exact curvatures.

In order to avoid vertex duplication, we will use the geometry shader. At the
geometry shader level, we receive the three vertices of a triangle, with its corre-
sponding curvatures. These curvatures are assigned as three texture coordinates
to the vertices of the output triangle in the same order. Thus, the fragment shader
will receive the three values without interpolation. The code corresponding to
the geometry shader appears in Listing 2.4.

2.4.3 Pixel Texturing

The final color composition is performed in the following way: the fragment
shader receives the coordinates of the fragment, together with the curvatures.
We will use components = and y of the fragment in screen space as texture
coordinates. These coordinates are scaled to the range [0..1].
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[maxvertexcount (3)]
void main( triangle VERTEXin input [3],
inout TriangleStream<VERTEXout> TriStream )
{
//Assign triangle curvatures to the three vertices.
VERTEXout outVert;

outVert.Pos = input [0].Pos;

outVert.norm = input [0].norm;
outVert.curvl = input [0].curv;
outVert.curv2 = input[1].curv;

outVert.curv3 input [2] . curv;
TriStream. Append (outVert) ;

outVert.Pos = input[1].Pos;

outVert.norm = input[1].norm;
outVert.curvl = input [0].curv;
outVert.curv2 = input[1].curv;
outVert.curv3 = input [2].curv;

TriStream. Append (outVert) ;

outVert.Pos = input [2].Pos;

outVert.norm = input[2].norm;
outVert.curvl = input [0].curv;
outVert.curv2 = input[1].curv;
outVert.curv3 = input[2].curv;

TriStream. Append (outVert) ;

TriStream.RestartStrip () ;

Listing 2.4. Pencil geometry shader.

In order to orient the texture according to the surface curvature, and to avoid
deformations inside large triangles, the paper texture is oriented by using the
three curvatures at the vertices, and blending them with equal weights. The
implementation has three steps: First, the angles between curvatures and the
r-axis are computed. Then, three two-dimensional rotation matrices are built
using these angles. Finally, these matrices are used to transform the texture
coordinates obtained from the fragment coordinates, and this yields three new
texture coordinates. These are the ones used for final texturing.

The model may be shaded by using the dot product between the light direction
and the surface normal in order to access a texture array of different tones. We use
a single texture but modified with a function that changes brightness and contrast
according to the incident illumination at each point. We use the following func-
tion:

p = 1.0 - {max}({dot}(light ,normal) ,0.0)
colorDest = {powl}(colorSrc,p*S + 0).
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Figure 2.8. Pencil rendering results.

The resulting color of texture mapping is powered to a value in the range
[0..S + O]. This value is determined from the dot product between the light and
normal vectors. This will darken dark regions and lighten lighter regions, as can
be seen in Figure 2.8 where we show the comparison using different values of O
and S. The code corresponding to the geometry shader is shown in Listing 2.5.

float4 main(PIXELin inPut):SV_Target
{
float2 xdir = float2(1.0f,0.0f);
float2x2 rotMat;
//Calculate the pixel coordinates.
float2 uv = float2(inPut.Pos.x/width,inPut.Pos.y/height);

//Calculate the rotated coordinates.
float2 uvDir = normalize(inPut.curvil);
float angle = atan(uvDir.y/uvDir.x);
angle = (uvDir.x < 0.0f)7angle+PI:
(uvDir.y < 0.0f)7angle+(2*PI):angle;

float cosVal = cos(angle);
float sinVal = sin(angle);
rotMat [0] [0] = cosVal;
rotMat [1] [0] = -sinVal;

rotMat [0] [1] = sinVal;
rotMat [1][1] = cosVal;
float2 uvl = mul (uv,rotMat);

uvDir = normalize (inPut.curv2);

angle atan (uvDir.y/uvDir.x) ;

angle = (uvDir.x < 0.0f)7angle+PI:
(uvDir.y < 0.0f)?7angle+(2*PI):angle;
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cosVal = cos(angle);

sinVal = sin(angle);
rotMat [0] [0] = cosVal;
rotMat [1][0] = -sinVal;
rotMat [0] [1] sinVal;
rotMat [1][1] = cosVal;
float2 uv2 = mul (uv,rotMat);

uvDir = normalize (inPut.curv3);

angle = atan(uvDir.y/uvDir.x);

angle = (uvDir.x < 0.0f)7angle+PI:
(uvDir.y < 0.0f)7angle+(2*PI):angle;

cosVal = cos(angle);
sinVal = sin(angle);
rotMat [0] [0] = cosVal;
rotMat [1][0] = -sinVal;
rotMat [0] [1] = sinVal;
rotMat [1]1[1] = cosVal;

float2 uv3 = mul (uv,rotMat);

//Calculate the light incident at this pixel.
float percen = 1.0f - max(dot(normalize(inPut.norm),
lightDir) ,0.0);

//Combine the three colors.

float4 color = (texPencil.Sample(samLinear ,uvl)*0.333f)
+(texPencil.Sample (samLinear ,uv2) *0.333f)
+(texPencil.Sample(samLinear ,uv3)*0.333f);

//Calculate the final color.

percen = (percenx*S) + 0;

color.xyz = pow(color.xyz,float3(percen,percen,percen));
return color;

Listing 2.5. Pencil pixel shader.

‘ Models Triangles FPS
Buddha 1087716 87.71
Armadillo 345944 | 117.22
Asian Dragon 225588 | 199.20
Dragon 100000 | 344.28
Bunny 69666 | 422.20
Atenea 15014 | 553.55

Table 2.2. Framerates obtained with our implementation of the pencil rendering al-
gorithm on a GeForce 9800 GX2 GPU graphics card and a viewport resolution of
1680 x 1050.
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2.4.4 Results

Table 2.2 shows the framerates obtained with the pencil rendering technique.
Note that we obtain high framerates because the implementation is relatively
cheap, and that from the numbers we can deduce that the timings depend strongly
on vertex count rather than rasterized fragments count.
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Alpha Blending as a Post-Process

Benjamin Hathaway

3.1 Introduction

In this article we will present a novel alpha-blending technique that was developed
for the off-road racing game Pure (see Figure 3.1). Pure was released in the
summer of 2008 for the Xbox360, PS3, and PC platforms and featured races that
subjected the player to extreme elevations, revealing detailed vistas stretching
out to a distance of over 30 kilometers. With the art direction set on a photo-
realistic look and locations taken from around the globe—some would require a
high degree of foliage cover to be at all believable, or even recognizable.

Figure 3.1. A typical scene from Pure (post tone mapping & bloom effects).
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3. Alpha Blending as a Post-Process

During development it became apparent that we were going to need alpha
blending, and lots of it! Unfortunately, alpha blending is one aspect of computer
graphics that is difficult to get right, and trade-offs between performance and
visual quality are often made; indeed, reluctance to risk performance has led to
some game titles avoiding the use of alpha blending altogether. For a thorough
introduction to the issues posed by alpha blended rendering, the reader is referred
to the [Thibieroz 08] paper on advanced rendering techniques and the seminal
work [Porter and Duff 84].

3.2 The Alternatives

Pure was destined to run on several platforms, each being equipped with at least
one Dx9 class GPU (supporting shader model 3). This immediately presented us
with several (hardware assisted) options for rendering our foliage geometry.

Alpha blending. Alpha blending uses a scalar value output by the pixel shader
(alpha-value) to blend a rendered fragment with the destination pixel data.

When rendering layers of foliage with alpha blending, z-buffering artifacts
are common. This can largely be resolved if the rendered primitives are sorted
to draw furthest from the camera first. Sorting primitives before rendering is
usually a prohibitive CPU cost for game rendering, and in the case of intersecting
primitives there may indeed be no single correct draw order.

Alpha testing. Alpha testing uses a binary value output by the pixel shader to
determine if the output fragment is visible or not. Alpha testing is usually com-
bined with z-buffering techniques, which can either negate the need for geometric
depth sorting or provide fill-rate optimizations (by way of z-rejection) when the
scene is sorted in a front-to-back order.

Alpha testing is one of the most commonly used solutions to date; however
the technique is prone to aliasing at the alpha edges.

Alpha-to-coverage. Alpha-to-coverage converts the alpha value output by the pixel
shader into a coverage mask. This coverage mask is combined with the standard
multisample coverage mask to determine which samples should be updated.

When alpha-to-coverage is combined with alpha testing, softer edges can be
rendered whilst maintaining all the technical benefits afforded by alpha test ren-
dering, i.e., sort independence and z-rejection opportunities. Although this is an
improvement on simple alpha testing, the resulting alpha gradients can be of a
poor quality compared to those obtained in alpha blending. This is particularly
true when using a low number of samples or on hardware that does not support
flexible coverage masks.
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3.3 The Source Artwork

To try and emulate the richness of natural foliage, each tree and bush was con-
structed from a multitude of polygonal planes. The planes were oriented as
randomly as possible, thus increasing the perceived density of foliage.

As can be seen in Figure 3.2, this leads to a great deal of primitive intersection,
which raises two issues:

1. How are we to correctly sort all the intersecting primitives?

2. How are we going to deal with the high degree of depth complexity present
within a single foliage model?

Figure 3.2. Geometric structure of a typical tree model rendered in Pure (shown from
the front and side).
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To correctly depth sort the primitives would require that we split the prim-
itives along all the intersections. However, this would have increased the vertex
count substantially and put a heavy burden on our memory budget, while also
increasing memory bandwidth usage.

These issues are further exacerbated when the foliage is allowed to react to
dynamic influences such as the wind, or physical collisions. Such influences may
even cause neighboring foliage models to overlap rather unpredictably, and would
therefore be impossible to optimize off-line, instead requiring a more costly, real-
time solution.

3.4 Initial Attempts

Due to the high levels of primitive interpenetration within the artwork, we initially
implemented our foliage renderer in the simplest manner possible, by using a
combination of z-buffering and alpha-test techniques. After auditioning a number
of variations of the alpha-reference value, we managed to achieve some reasonable
results, although the overall look of the foliage tended to appear a little harsh,
or synthetic, at times.

The most objectionable effect occurred when the camera performed slow trans-
lational motions from side-to-side (for example, during the pre-race camera se-
quences). As the camera moved, the alpha-channeled holes & edges within the
foliage would begin to sparkle (due to the binary nature of alpha testing) and
would often be exaggerated by the high degree of depth complexity present within
each foliage model.

Next, we turned our attention towards the alpha-to-coverage feature. Alpha-
to-coverage rendering integrates alpha-testing techniques with multi-sample ren-
dering; it produces softer edges while maintaining all the technical benefits of
alpha-test rendering. While initial results were favorable and the sparkling arti-
facts were indeed attenuated, we struggled to reproduce consistent results across
all of our platforms. We also suffered from the increased fill-rate and bandwidth
costs incurred by rendering the foliage at MSAA resolutions.

Neither approach seemed to deliver a high enough visual quality and it seemed
a shame to quantize all those beautiful alpha-textures so heavily. Something new
was needed—and we felt the answer was hiding in the silhouette of the foliage.

3.5 The Screen-Space Alpha Mask

The solution we devised—screen-space alpha masking (SSAM)—is a multi-pass
approach (see the overview in Figure 3.3) implemented with rendering techniques
that negate the need for any depth sorting or geometry splitting. Our solution can
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Pass 1
Render opaque scene and perfiorm
MSAA downsampling.

Pazs 2
Render the foliage silhouette,

Pass 3

Render the foliage color.

Pass 4
Combination,

Figure 3.3. Diagram showing an overview of screen-space alpha masking.

yield results on par with alpha blending while correctly resolving internal overlaps
(and depth intersections) on a per-pixel basis, using alpha-testing techniques.

We effectively performed deferred alpha blending using a full-screen post-
process that resembles frame-buffer blending with the blend-operation set to
ADD; the source and destination arguments are set to SRCALPHA and INVSRCALPHA,
respectively. The inputs to the blend are rendered into three separate render tar-
gets and are then bound to texture samplers, referenced by the final combination
post-process pixel shader (see Listing 3.2 in Section 3.11).

In terms of memory resources, we need at least three screen-resolution render-
targets, two having at least three color channels (rtOpaque & rtFoliage), one
with a minimum of two channels (rtMask), and a single depth buffer (rtDepth).

Note: this is in addition to any MSAA render-target memory requirements.

3.5.1 The Opaque Pass

During the first pass we rendered all our opaque scene elements into the color
render target: rtOpaque (see Figure 3.4); the depth information generated was
also kept and stored in the depth buffer: rtDepth (see Figure 3.5).
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Figure 3.4. The opaque scene (color) written to rtOpaque.

For Pure, we rendered the opaque scene at 2x MSAA resolution and both the
color and depth buffers were down sampled into screen-resolution render targets.
Care had to be taken when down sampling the depth information, as incorrect
samples were obtained when filtering was applied.

Figure 3.5. The opaque scene (depth) written to rtDepth.
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Instead, we read a number of samples from the depth buffer (two, in the case
of 2x MSAA), compared them, and simply retained the sample that was closest
to the observer. For a more complete description of the solution adopted for
Pure, the reader is referred to the work of [lain Cantlay 04].

From this point onwards, we continued to render at non-MSAA resolutions, as
it was observed that MSAA contributed little or nothing towards the quality of
alpha generated edges—only those of a geometric nature. At this point, and de-
pending on platform architecture, it may be necessary to copy the down sampled
images back in to VRAM (repopulation) before further rendering can continue.

Additionally, at this point steps may need to be taken to update any
hierarchical-z (hi-z) information that might be associated with rtDepth, and
potentially optimize any subsequent draw calls that are depth occluded.

Note: Detailed information regarding the repopulation of depth information and
restoration of Hi-Z can be obtained from the platform vendors and is unfortu-
nately outside the scope of this article.

3.5.2 The Mask Generation Pass

In the second pass we generated a silhouette, or mask, of the foliage we wanted
to render (see Figure 3.6). The silhouette image was rendered into our second
render-target, rtFoliage, and we used the previously generated depth buffer,
rtDepth, to correctly resolve any depth occlusions caused by the opaque scene.

Figure 3.6. Additively accumulated foliage alpha mask.
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The mask is a monochromatic image of the alpha-channel values that would
normally be used during regular alpha blending. The alpha-values are additively
blended onto a black background, during which, we enabled depth testing, and
disabled both back-face culling and depth writes.

As the additive blending of two primitives produces the same result regardless
of the draw order, it seemed to be the ideal option for efficient mask generation.
However, some artifacts were evident when the mask was used: as-is, (as the blend
factor) due to the limited bit depth of the render-targets being used, during the
final combination pass, the additively accumulated values would quickly saturate
towards white—even at a modest depth complexity. The saturation was most
evident when foliage close to the observer was expected to possess low-order
opacity, but is rendered in an area of high foliage depth complexity.

To generate as high quality a mask as possible, we needed to obtain as much
detail from our silhouette as we could; we therefore set the alpha-reference render-
state to zero during this pass, to avoid the rejection low opacity alpha-values.

A refinement on additive blending was the use of the max-blending mode. In
this case we built up an image of the single highest alpha-value to have been
written to each pixel, in effect acting as an alpha-z-buffer. As with additive
blending, we set the source and destination blend arguments to D3DBLEND_ONE,
but change the blend operation to D3DBLENDOP_MAX.

As can be seen in Figure 3.7, the max-blended mask contains a higher degree
of structural information (than the additively blended mask) while still retaining
the subtle alpha gradients located towards the outer edges of the foliage.

Figure 3.7. MAX blended foliage alpha mask.
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Despite these attractive qualities, when the max-blended mask was used as
the blend factor during the final combination pass, the foliage took on a wholly
transparent look. We were left feeling that perhaps the solution lay somewhere
in between the two approaches. And it did—quite literally.

The thought was that perhaps some linear combination of both masks would
be the answer. Perhaps the saturation of the additive blending would compensate
for the transparency of the max blending? And correspondingly, would the subtle
alpha-gradients of the max-blended image reduce the saturation evident in the
low-opacity, high-depth-complexity areas of the additive mask?

Fortunately the answer proved to be yes in both cases, and luckily for us all
the platforms we were working with provided a method that could generate both
of our masks in a single pass!

Separate alpha blend enable. Most DX9 class hardware supports the ability to
specify separate blend operations and arguments for both the color and alpha
channels, independently.

By enabling D3DRS_SEPARATEALPHABLENDENABLE and setting the correct
series of operation and arguments, it is possible to simultaneously write the
max-blended mask to the rgb channels (as a monochromatic image), and the
additively-blended mask to the alpha channel (see Table 3.1).

Note: Both masks are combined at a later stage, prior to their use as the blend-
factor in the final composition pass.

In order to send the alpha values to both blending units, we needed to repli-
cate the alpha values across to all the color channels. This required a small
modification to the end of the foliage shaders that resembled

Out.Color.xyzw = Out.Color.wwww;

Render State Value
D3DRS_ALPHABLENDENABLE TRUE
D3DRS_SEPERATEALPHABLENDENABLE TRUE
D3DRS_BLENDOP D3DBLENDOP_MAX
D3DRS_BLENDOPALPHA D3DBLENDOP_ADD
D3DRS_SRCBLEND D3DBLEND_ONE
D3DRS_SRCBLENDALPHA D3DBLEND_ONE
D3DRS_DESTBLEND D3DBLEND_ONE
D3DRS_DESTBLENDALPHA D3DBLEND_ONE

Table 3.1. The blend-related render states used during mask generation.
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The modification not only performed the replication, but also had the added
benefit of optimizing the foliage-alpha rendering shader without us needing any
prior knowledge of how the alpha value was generated. For example: to what
sampler stage the alpha-texture-source was bound, etc.

All of the optimizing shader compilers we tested performed some form of dead-
code stripping, see: [“Dead Code” 09]. This optimization removed any code that
did not directly contribute to the output value, substantially increasing fill-rate
efficiency, in this case, removing all of the color-related lighting equations and
texture-fetch instructions that were not common to the generation of the alpha
value.

HLSL source code for a typical mask rendering shader is provided in Listing 3.1
in Section 3.11.

3.5.3 The Color Pass

For the third rendering pass, we rendered an image of the foliage color into our
final render-target: rtFoliage (see Figure 3.8), and again we use the depth buffer
obtained during the opaque pass, stored in rtDepth (see Figure 3.9).

In order to maintain correct depth ordering (as is necessary in the case of
the color image), we disabled both back-face culling and alpha blending, while
enabling alpha test rendering, depth testing, and depth writes. Enabling depth
writes during this pass also ensured that any subsequently rendered transparen-
cies would be correctly depth sorted with the foliage.

When rendering the foliage color with alpha testing enabled, a suitable alpha
reference value had to be chosen and we exposed the color-pass alpha reference
value to the artists for tweaking.

The final value ended up being a trade-off between two values. First was
a value high enough to produce visually pleasing alpha-test edges—for Pure, a
value of ~128. Second was a value low enough to minimize certain blending
artifacts (that will be covered in Section 3.6), which for Pure, ended up being a
value of ~64.

3.5.4 The Final Composition Pass

In the fourth and final pass, we rendered a full screen post-process that essentially
performed a linear interpolation of our opaque and foliage-color images, using the
mask image as the blend-factor (see Figure 3.10).

The final composition blend equation resembled

finalColor = rtOpaque + (rtFoliage - rtOpaque) * rtMask;

Application of the post-process consisted of the rendering of an orthographi-
cally projected, quadrilateral polygon mapped over the entire screen onto which
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Figure 3.8. The foliage-color image written to rtFoliage.

Figure 3.9. The foliage-depth (alpha-tested) written into rtDepth.
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Figure 3.10. The image produced by the final-combination pixel shader.

we applied a pixel shader to actually perform the blending work. To ensure
that we only sampled one texel per screen pixel, we took the platform’s texture-
sampling center into account and adjusted texture coordinates accordingly.

We now had two mask images to process, the max and additively blended
masks, which needed to be combined in some way into a scalar blend-factor. For
our implementation we chose to combine the masks using linear interpolation (or
in HLSL, the lerp operation).

The final-composition blend equation, with linearly blended masks resembled

mask = rtMask.a + (rtMask.r - rtMask.a) * maskLerp;
rtResult = rtOpaque + (rtFoliage - rtOpaque) * mask;

The interpolation of the two masks introduced the value maskLerp, for which
a value must be selected. Like the alpha-reference value, this is chosen on purely
artistic grounds and was also exposed to the art team for experimentation. The
final value for Pure was 0.85 (which produces a blend-factor composed of: 85%
additive mask and 15% max-blended mask).

With maskLerp equal to 0.85, just enough max-blended mask is brought in
to reduce the saturation artifacts without making the foliage too transparent.

In fact, it should be noted that some degree of transparency was found to
be desirable. The slight transparency of the max contribution revealed distant
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structure (such as trunks and branches) belonging to foliage that would have
otherwise have been completely occluded by near foliage (adding a certain richness
to the forest scenes).

The full HLSL source for the final composition pixel shader is given in List-
ing 3.2 in Section 3.11.

3.6 Alpha Reference Issues

As alpha test rendering was employed during the foliage color pass, an alpha-
reference value was chosen—one that was high enough to stop overlapping edges
from appearing too chunky (as mentioned, for Pure a value was chosen somewhere
between ~64 and ~128). As a consequence, halo-like blending artifacts are some-
times visible where the foliage blended into the opaque image (see Figure 3.11).

3.6.1 The Clear-Screen Color Fix

Due to the alpha-reference value being set to a higher value during the color pass
than that set during the mask-generation pass (for which the alpha-reference value
was actually zero), moving outwards along an alpha gradient (from a value of one
to zero), you can actually run out of foliage-color pixels before the mask-intensity
reaches zero. This would reveal a proportion of the color-pass background color

Figure 3.11. Image showing blending artifacts caused by a non-zero alpha reference
value during the foliage-color pass.
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Figure 3.12. The effect of different clear screen colors (from top to bottom): too dark,
too light, and just right.

in pixels whose mask intensity fell below the color-pass alpha reference value. The
solution employed for Pure was to expose the foliage color passes’ clear screen
color to the artists, the idea being that by adjusting the color, you could lighten
the artifact until it was hardly visible (see Figure 3.12).

The technique worked well but felt less than optimum, especially as the artists
could only choose one color per level. The color also tended to affect the overall
color balance of the scene and would have to work for foliage rendered in both
the lightest and darkest of conditions—very much a compromise.

3.6.2 The Squared Alpha Trick

A small modification made to the last line of the final composition pixel shader
substantially improved the quality of the blending, almost entirely compensating
for the aforementioned alpha-reference artifacts (see Figure 3.13). If the final
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Figure 3.13. A close-up of the just-right clear screen color fix and the squared-alpha
modification applied together.

mask value is numerically squared, the foliage alpha will roll off to black a little
quicker while correctly maintaining areas of solid opacity.

return lerp(opaquePixel, foliagePixel, mask * mask);

It should be noted that while squaring the alpha channel does contract the fo-
liage silhouette a little, a slight reduction in the foliage-color pass alpha-reference
value should compensate for this.

3.7 Rendering Pipeline Integration

Foliage rendering is by no means the final step in rendering a game. There are
many other alpha-blended elements to be integrated into the scene: grass, light
shafts, and particle effects, to name but a few. Integration with these other stages
is actually pretty straightforward, largely due to the fact that depth writing was
enabled during the foliage-color pass.

This ensured that any subsequent depth testing would correctly resolve any
depth-wise occlusions caused by the foliage (and/or opaque) scene elements.

3.8 Conclusion

In this article we have presented a novel (cross-platform) solution to the alpha
blending of foliage, a solution that increases the quality of a wide range of alpha-
test-class renderings, giving them the appearance of true alpha blending.
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The use of SSAM within the game Pure had a profound effect on the overall
perceived quality of the environments. The effect yielded a soft natural look
without sacrificing any of the detail and contrast present in the source artwork.
Below we list a few of the pros & cons to using SSAM:

Pros:
e Foliage edges are blended smoothly with the surrounding environment.

e Internally overlapping and interpenetrating primitives are sorted on a per-
pixel basis using alpha testing techniques.

e The effect is implemented using simple, low-cost rendering techniques that
do not require any geometric sorting or splitting (only consistency in prim-
itive dispatch order is required).

e The final blending operations are performed at a linear cost (once per pixel)
regardless of scene complexity and over-draw.

e The effect integrates well with other alpha-blending stages in the rendering
pipeline (Particles, etc).

e When combined with other optimizations such as moving lighting to the
vertex shader, and optimizing the shaders for each pass, overall performance
can be higher than that of MSAA-based techniques.

Cons:
e The overhead of rendering the extra passes.
e Memory requirements are higher, as we need to store three images.

e The technique cannot be used to sort large collections of semi-transparent,
glass-like surfaces (or soft alpha gradients that span large portions of the
screen) without potentially exhibiting visual artifacts.

3.9 Demo

A RenderMonkey scene, as well as several instructional .PSD files, are available
in the book’s web materials on the CRC Press website.

1There are occasional opacity-related artifacts visible within overlapping alpha-gradients
(when the alpha-foliage-mask is either: > 0 or, < 1). Fortunately, the foliage-color pass always
yields the nearest, and therefore the most visually correct, surface color.
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3.11 Source Code

sampler2D foliageTexture : register(s0);

struct PS_INPUT

{
half2 TexCoord : TEXCOORDO;
g
half4 main(PS_INPUT In) : COLOR
{
return tex2D(foliageTexture, In.TexCoord).wwww;
}

Listing 3.1. HLSL source code for a typical mask rendering pixel shader.

sampler2D rtMask : register (s0);
sampler2D rtOpaque : register(sl);
sampler2D rtFoliage : register(s2);
half maskLerp : register(c0); // 0.85h

half4 main(float2 texCoord: TEXCOORDO) : COLOR

{
half4 maskPixel = tex2D( rtMask, texCoord);
half4 opaquePixel = tex2D( rtOpaque, texCoord);
half4 foliagePixel = tex2D(rtFoliage, texCoord);
half mask = lerp(maskPixel.x, maskPixel.w, maskLerp);
return lerp(opaquePixel, foliagePixel, mask * mask);
}

Listing 3.2. HLSL source code for the final composition pixel shader.
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4.1 Introduction

Modern games and applications use large amounts of texture data; the num-
ber and the resolution of textures also continues to grow quickly. However, the
amount of available graphics memory is not growing at the same pace and, in
addition to textures, GPU memory is also used for complex post-processing ef-
fects and lighting calculations. Virtual texture mapping (VTM) is a technique to
reduce the amount of graphics memory required for textures to a point where it
is only dependent on the screen resolution: for a given viewpoint we only keep
the visible parts of the textures in graphics memory, at the appropriate MIP map
level (see Figure 4.1).

In this chapter, we will investigate how to implement a fully functional VIM
system. Readers already familiar with VIM might want to skip right to Sec-
tion 4.3, which covers several non-obvious implementation aspects. Our tutorial
implementation follows this article very closely, so we encourage you to look at
the relevant code for each section.

4.2 \Virtual Texture Mapping

While early texture management schemes were designed for a single large tex-
ture [Tanner et al. 98], recent VIM systems are more flexible and mimic the
virtual memory management of the OS: textures are divided into small tiles, or
pages [Kraus and Ertl 02, Lefebvre et al. 04]. Those are automatically cached and
loaded onto the GPU as required for rendering the current viewpoint. However,
it is necessary to redirect accesses to missing data to a fallback texture. This
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Figure 4.1. Uniquely textured terrain rendering using a single virtual texture.

prevents “holes” from appearing in the rendering, or blocking and waiting until
the load request finishes.

Our implementation is inspired by the GDC talk of Sean Barrett [Barret 08]
and we suggest watching the video of his presentation while reading this section.
As illustrated in Figure 4.2, we begin each frame by determining which tiles are
visible. We identify the ones not cached and request them from disk. After
the tiles have been uploaded into the tile cache on the GPU, we update an
indirection texture, or page table. Eventually, we render the scene, performing an
initial lookup into the indirection texture to determine where to sample in the tile
cache.

indirection
visible tile IDs updated tile cacha  texturs texturized scane

Figure 4.2. We render tile IDs, then identify and upload newly visible tiles into the tile
cache (red), possibly overwriting ones that are no longer visible (blue). We update the
indirection texture and render the texturized surfaces.
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The indirection texture is a scaled down version of the complete virtual tex-
ture, where each texel points to a tile in the tile cache. In our case, the tile cache
is simply one large texture on the GPU, containing small, square tiles of identi-
cal resolution. This means tiles from different MIP map levels cover differently
sized areas of the virtual texture, but simplifies the management of the tile cache
considerably.

4.2.1 Page Fault Generation

For each frame we determine the visible tiles, identify the ones not yet loaded
onto the GPU, and request them from disk. Future hardware might simplify this
with native page faults [Seiler et al. 08], but we still need to determine visible
tiles, substitute data and redirect memory accesses.

A simple approach is to render the complete scene with a special shader that
translates the virtual texture coordinates into a tile ID. By rendering the actual
geometry of the scene, we trivially handle occlusion. The framebuffer is then
read back and processed on the CPU along with other management tasks. As
tiles typically cover several pixels, it is possible to render tile IDs at a lower
resolution to reduce bandwidth and processing costs. Also, in order to pre-fetch
tiles that will be visible “soon,” the field of view can be slightly increased. The
corresponding shader code can be found in Section 4.5.2.

4.2.2 Page Handler

The page handler loads requested tiles from disk, uploads them onto the GPU,
and updates the indirection texture. Depending on disk latency and camera
movement, loading the tiles might become a bottleneck. To illustrate this we fly
over a large terrain covered by a single virtual texture and graph the time per
frame in Figure 4.3. Given a reasonably large tile cache, very few tiles are re-
quested and on average we need less than ten ms per frame for I/O and rendering.
However, in frame 512 we turn the camera 180 degrees and continue backwards.
This u-turn requests over 100 tiles, taking 350 ms to load.

To ensure smooth rendering we simply limit the number of updated tiles
per frame. For requests not served in the same frame we adjust the indirection
texture and redirect texture access to the finest parent tile available in the tile
cache. The coarsest level is always present, and this distributes load spikes over
several frames. If the update limit is larger than the average number of requested
tiles, we are guaranteed to catch up with the requests eventually. For our example
we request fewer than five tiles in 95% of the frames, and set the upload limit to
a very conservative 20 tiles.
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Figure 4.3. We fly over a terrain with one large virtual texture and record the time
per frame. In frame 512 we turn the camera 180 ° and continue backwards. This turn
is a worst case scenario for VITM: many new tiles—which are no longer in the cache—
become visible and have to be loaded. While sufficiently large caches prevent thrashing,
they help little in this challenging event.

Of course the missing tiles reduce visual quality. Therefore we upload the
requested tiles with all their ancestors, prioritized from coarse to fine. This
increases the total number of cache updates, but as Figure 4.4 shows, image
quality is restored in a more balanced fashion—very similar to progressive JPEG.
As more ancestors are present in the cache, this also improves quality in less
challenging situations and reduces artifacts when rendering tile IDs with a very
low resolution.

Figure 4.4. Half a second after the u-turn. Left: waiting for all tiles provides superior
image quality but stalls for 330 ms. Middle: limiting the uploads per frame and using
coarser MIP map levels as fallback provides smooth frame rates, but MIP levels vary
strongly. Right: using prioritized loading of ancestors improves fallback, and image
quality is much more balanced after the same time.
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4.2.3 Rendering

When texturing the surface we perform a fast unfiltered lookup into the indirec-
tion texture, using the uwwv-coordinate of the fragment in virtual texture space.
This provides the position of the target tile in the cache and the actual resolution
of its MIP map level in the pyramid of the indirection texture. The latter might
be different from the resolution computed from the fragment’s MIP map level
due to our tile upload limit. We add the offset inside the tile to the tile position
and sample from the tile cache. The offset is simply the fractional part of the
uv-coordinate scaled by the actual resolution:

offset := frac(uv x actualResolution) = frac(uv x 2ndTexEntry.z)

Note that storing the actual resolution as log, (actualResolution) allows us to use
8-bit textures. The complete shader code including the computation of correct
texture gradients (see Section 4.3.3) can be found in Section 4.5.3.

4.3 Implementation Details

In this section we will investigate various implementation issues with a strong
emphasis on texture filtering. Again we will follow the processing of one frame,
from page fault generation over page handling to rendering.

4.3.1 Page Fault Generation

MIP map level. To compute the tile ID in the tile shader we need the virtual
texture coordinates and the current MIP map level. The former are directly the
interpolated uvs used for texturing, but on DX 9 and 10 hardware, we have to
compute the latter manually using gradient instructions [Ewins et al. 98, Wu 98]:
let ddx = (g—z, g—;) and ddy = (%’ g—Z) be the uv gradients in z- and y-direction.
Using their maximal length we compute the MIP map level as

MIP = log, (max(|ddz|, |ddy|).

The corresponding shader code can be found in Section 4.5.1.

DX 10.1 provides the HLSL function CalculateLevelOfDetail(). Further
DX 11 gives access to coarse gradients (dd{x|y}-coarse()) which might provide
an even faster alternative to the level of detail function.

4.3.2 Page Handler

Compressed tiles. For efficient rendering it is desirable to have a DXTC com-
pressed tile cache. It requires less memory on the GPU and reduces the upload
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and rendering bandwidth. However, as the compression ratio of DXTC is fixed
and quite low, we store the tiles using JPEG and transcode them to DXTC be-
fore we upload them. This also allows us to reduce quality selectively and e.g.,
compress tiles of inaccessible areas stronger.

Disk 1/O. For our tutorial implementation we store tiles as individual JPEG files
for the sake of simplicity. However, reading many small files requires slow seeks
and wastes bandwidth. Packing the tiles into a single file is thus very important,
especially for slow devices with large sectors like DVDs.

It is possible to cut down the storage requirements by storing only every
second MIP map level and computing two additional MIP maps for each tile: if
an intermediate level is requested, we load the corresponding four pages from the
finer level instead. More ideas about storage and loading can be found in [van
Waveren 08].

Cache saturation. Unused tiles are overwritten with newly requested tiles using an
LRU policy. However, the current working set might still not fit into the cache. In
this case we remove tiles that promise low impact on visual quality. We replace the
tiles with the finest resolution with their lower-resolution ancestors. This plays
nicely with our progressive update strategy and quickly frees the tile cache. Other
good candidates for removal are tiles with low variance or small screen space area.

Tile upload. Uploading the tiles to the GPU should be fast, with minimum
stalling. Using DX 9, we create a managed texture and let the driver handle the
upload to the GPU. Other approaches for DX 9 are described in detail by [Mit-
tring 08]. For DX 10 and 11, we create a set of intermediate textures and update
these in turn. The textures are copied individually into the tile cache [Thi-
bieroz 08]. DX 11 adds the possibility to update the tiles concurrently, which
further increases performance.

Indirection texture update. After the tiles have been uploaded, we update the
indirection texture by recreating it from scratch. We start by initializing the top

Figure 4.5. Creating the indirection texture for a camera looking over a large terrain:
initializing the top level with the lowest resolution tile, we copy parent entries into the
next finer level and add entries for tiles present in the cache.
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of its MIP map pyramid with an entry for the tile with the lowest resolution, so
each fragment has a valid fallback. For each finer level we copy the entries of the
parent texels, but replace the copy with entries for tiles from that level, should
they reside in the cache. We continue this process until the complete indirection
texture pyramid is filled (see Figure 4.5).

If tiles are usually seen at a single resolution, we can upload only the finest
level to the GPU. This reduces the required upload bandwidth, simplifies the
lookup, and improves performance. This is sufficient when every object uses an
unique texture, in particular for terrain rendering.

4.3.3 Rendering

While rendering with a virtual texture is straight forward, correct filtering, es-
pecially at tile edges, is less obvious. Neighboring tiles in texture space are very
likely not adjacent to each other in the tile cache. Filtering is especially challeng-
ing if the hardware filtering units should be used, as those rely on having MIP
maps and correct gradients available. The following paragraphs describe how to
use HW filtering with an anisotropy of up to 4:1 as shown in Figure 4.6. The
corresponding shader code can be found in Section 4.5.3.

Texture gradients. When two adjacent tiles in texture space are not adjacent in
the tile cache, as shown in Figure 4.7, the uv-coordinates for the final texture
lookup will vary a great deal between neighboring fragments. This results in
large texture gradients and the graphics hardware will use a very wide filter for
sampling, producing blurry seams. To address this, we manually compute the
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Figure 4.6. From left to right: Hardware point (1751{ps), bilinear (170 fps), trilinear
(170 fps), and 4:1 anisotropic filtering (165 fps) on an NVIDIA 9700M GT. The transition
between tiles is especially pronounced with trilinear filtering. A single tile has to serve
several MIP map levels in this example, but only one additional MIP map level is
available for filtering per tile. All other methods seem to not use MIP maps at all with
the tested driver version.
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Figure 4.7. Even though the surface has a continuous mapping, the arrangement of
the tiles in the cache causes discontinuities. From left to right: direct visualization
of the lookup position into the tile cache; uv gradients, wrong across tile edges; blurry
seams resulting from too wide filters when sampling. Manually scaled gradients fix this
artifact.

gradients from the original virtual texture coordinates, scale them depending on
the MIP map level of the tile and pass them on to the texture sampler.

Tile borders. Even with correct texture gradients, we still have to filter into neigh-
boring pages, which very likely contain a completely different part of the virtual
texture. To avoid the resulting color bleeding we need to add borders. Depending
on what constraints we want to place on the size of the tile, we can use inner or
outer borders.

We use the latter and surround our 1282 tiles with a four-pixel border, making
them 1362. This keeps the resolution a multiple of four, allowing us to compress
them using DXTC and perform 4:1 anisotropic filtering in hardware.

DXTC border blocks. As Figure 4.8 illustrates, adding a border to tiles might lead
to different DXTC blocks at the edges of tiles. As the different blocks will be
compressed differently, texels that represent the same points in virtual texture
space will not have the same values in both tiles. This leads to color bleeding
across tile edges, despite the border. By using a four-pixel outer border, these
compression related artifacts vanish.

Tiel Tilez Tiles with 1 px border

Figure 4.8. Adding a one-pixel border around a tile creates different DXTC blocks
for neighboring tiles. Depending on the texture they might be compressed differently,
leading to visible seams in the virtual texture despite having borders.



4.4. Conclusion

7

4.4 Conclusion

In this chapter, we described a basic virtual texture mapping system. It is simple
and fast, even on older hardware. We gave a few pointers on how to further
improve performance, should your application or game require it. Even with
newer hardware that might natively support page faults, strategies for loading,
compressing and filtering textures will still be required. We hope this article
and our tutorial implementation will help you to get started with VTM. You can
integrate it into your own application or just play with different parameters and
strategies.

4.5 Shader Code

45.1 MIP Map Calculation

float ComputeMipMaplLevel (float2 UV_pixels, float scale)
{

float2 x_deriv = ddx(UV_pixels);

float2 y_deriv = ddy(UV_pixels);

float d = max(length(x_deriv), length(y_deriv));

return max(log2(d) - log2(scale), 0);

4572 Tile ID Shader

float2 UV_pixels = In.UV * VTMResolution,

float mipLevel = ComputeMipMapLevel (UV_pixels, subSampleFactor);
mipLevel = floor (min (mipLevel, MaxMipMapLevel));

float4 tilelD;

tileID.rg = floor(UV_pixels / (TileRes * exp2(mipLevel)));
tileID.b = mipLevel;

tileID.a = TexturelD;

return tilelD;
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4.5.3 Virtual Texture Lookup

float3 tileEntry = IndTex.Sample(PointSampler, In.UV);
float actualResolution = exp2(tileEntry.z);

float2 offset = frac(In.UV * actualResolution) * TileRes;

float scale = actualResolution * TileRes;
float2 ddx_correct = ddx(In.UV) * scale;
float2 ddy_correct = ddy(In.UV) * scale;

return TileCache.SampleGrad(TextureSampler,
tileEntry.xy + offset,
ddx_correct,
ddy_correct) ;
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Pre-Integrated Skin Shading

Eric Penner and George Borshukov

5.1 Introduction

Rendering realistic skin has always been a challenge in computer graphics. Human
observers are particularly sensitive to the appearance of faces and skin, and skin
exhibits several complex visual characteristics that are difficult to capture with
simple shading models. One of the defining characteristics of skin is the way
light bounces around in the dermis and epidermis layers. When rendering using
a simple diffuse model, the light is assumed to immediately bounce equally in all
directions after striking the surface. While this is very fast to compute, it gives
surfaces a very “thin” and “hard” appearance. In order to make skin look more
“soft” it is necessary to take into account the way light bounces around inside
a surface. This phenomenon is known as subsurface scattering, and substantial
recent effort has been spent on the problem of realistic, real-time rendering with
accurate subsurface scattering.

Current skin-shading techniques usually simulate subsurface scattering during
rendering by either simulating light as it travels through skin, or by gathering
incident light from neighboring locations. In this chapter we discuss a differ-
ent approach to skin shading: rather than gathering neighboring light, we pre-
integrate the effects of scattered light. Pre-integrating allows us to achieve the
nonlocal effects of subsurface scattering using only locally stored information and
a custom shading model. What this means is that our skin shader becomes just
that: a simple pixel shader. No extra passes are required and no blurring is
required, in texture space nor screen space. Therefore, the cost of our algorithm
scales directly with the number of pixels shaded, just like simple shading models
such as Blinn-Phong, and it can be implemented on any hardware, with minimal
programmable shading support.

81
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5.2 Background and Previous Work

Several offline and real-time approaches have been based on an approach, taken
from film, called texture-space diffusion (TSD). TSD stores incoming light in
texture space and uses a blurring step to simulate diffusion. The first use of this
technique was by [Borshukov and Lewis 03,Borshukov and Lewis 05] in the Matriz
sequels. They rendered light into a texture-space map and then used a custom
blur kernel to gather scattered light from all directions. Based on extensive
reference to real skin, they used different blur kernels for the red, green, and blue
color channels, since different wavelengths of light scatter differently through
skin. Since the texture-space diffusion approach used texture-blur operations,
it was a very good fit for graphics hardware and was adopted for use in real-
time rendering [Green 04, Gosselin et al. 04]. While TSD approaches achieved
much more realistic results, the simple blurring operations performed in real
time couldn’t initially achieve the same level of quality of the expensive, original,
nonseparable blurs used in film.

A concept that accurately describes how light diffuses in skin and other
translucent materials is known as the diffusion profile. For a highly scattering
translucent material it is assumed that light scatters equally in all directions as
soon as it hits the surface. A diffusion profile can be thought of as a simple plot
of how much of this diffused light exits the surface as a function of the distance
from the point of entry. Diffusion profiles can be calculated using measured scat-
tering parameters via mathematical models known as dipole [Jensen et al. 01] or
multipole [Donner and Jensen 05] diffusion models. The dipole model works for
simpler materials, while the multipole model can simulate the effect of several
layers, each with different scattering parameters.

The work by [d’Eon and Luebke 07] sets the current high bar in real-time
skin rendering, combining the concept of fast Gaussian texture-space diffusion
with the rigor of physically based diffusion profiles. Their approach uses a sum
of Gaussians to approximate a multipole diffusion profile for skin, allowing a very
large diffusion profile to be simulated using several separable Gaussian blurs.
More recent approaches have achieved marked performance improvements. For
example, [Hable et al. 09] have presented an optimized texture-space blur kernel,
while [Jimenez et al. 09] have applied the technique in screen space.

5.3 Pre-Integrating the Effects of Scattering

We have taken a different approach to the problem of subsurface scattering in
skin and have departed from texture-space diffusion (see Figure 5.1). Instead, we
wished to see how far we could push realistic skin rendering while maintaining the
benefits of a local shading model. Local shading models have the advantage of
not requiring additional rendering passes for each object, and scale linearly with
the number of pixels shaded. Therefore, rather than trying to achieve subsur-
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Figure 5.1. Our pre-integrated skin-shading approach uses the same diffusion profiles
as texture-space diffusion, but uses a local shading model. Note how light bleeds over
lighting boundaries and into shadows. (Mesh and textures courtesy of XYZRGB.)

face scattering by gathering incoming light from nearby locations (performing an
integration during runtime), we instead seek to pre-integrate the effects of sub-
surface scattering in skin. Pre-integration is used in many domains and simply
refers to integrating a function in advance, such that calculations that rely on the
function’s integral can be accelerated later. Image convolution and blurring are
just a form of numerical integration.

The obvious caveat of pre-integration is that in order to pre-integrate a func-
tion, we need to know that it won’t change in the future. Since the incident light
on skin can conceivably be almost arbitrary, it seems as though precomputing this
effect will prove difficult, especially for changing surfaces. However, by focusing
only on skin rather than arbitrary materials, and choosing specifically where and
what to pre-integrate, we found what we believe is a happy medium. In total, we
pre-integrate the effect of scattering in three special steps: on the lighting model,
on small surface details, and on occluded light (shadows). By applying all of
these in tandem, we achieve similar results to texture-space diffusion approaches
in a completely local pixel shader, with few additional constraints.

To understand the reasoning behind our approach, it first helps to picture a
completely flat piece of skin under uniform directional light. In this particular
case, no visible scattering will occur because the incident light is the same ev-
erywhere. The only three things that introduce visible scattering are changes in
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the surrounding mesh curvature, bumps in the normal map, and occluded light
(shadows). We deal with each of these phenomena separately.

5.4 Scattering and Diffuse Light

If we take our previously flat surface with no visible scattering and start to make it
a smooth and curvy surface, like skin (we will keep it smooth for now), scattering
will start to become visible. This occurs due to the changes in incident light
across the surface. The Lambert diffuse-lighting model assumes that diffuse light
scatters equally in all directions, and the amount of incident light is proportional
to the cosine of the angle between the surface normal and light direction (N - L).

Since N - L falloff is a primary cause of changing incident light, and thus
visible scattering, there have been several rendering tricks that attempt to add
the look of scattering by altering the NV - L fall-off itself. This involves making
the falloff wrap around the back of objects, or by letting each wavelength of light
(r, g, and b) fall off differently as N - L approaches zero. What we found to
be the big problem with such approaches is that they aren’t based on physical
measurements of real skin-like diffusion profiles; and if you tune them to look
nice for highly curved surfaces, then there will be a massive falloff for almost-flat
surfaces (and vice versa).

To address both issues, we precompute the effect of diffuse light scattering.
We do this in a fashion similar to measured bidirectional reflectance distribution
functions (BRDFs). Measured BRDFs use physically measured data from real
surfaces to map incoming to outgoing light. This is as opposed to analytical
BRDFs such as Blinn-Phong that are analytical approximations for an assumed
micro-facet structure. Typical measured BRDFs don’t incorporate N - L since
N - L just represents the amount of incoming light and isn’t part of the surface’s
reflectance. We are concerned only with N - L (diffuse light), as this is the light
that contributes to subsurface scattering.

One approach we considered to precompute the effect of scattered light at any
point on a surface, was to simulate lighting from all directions and compress that
data using spherical harmonics. Unfortunately, spherical harmonics can efficiently
represent only very low frequency changes or would require too many coefficients.
Thus, instead of precomputing the effect of scattering at all locations, we chose
to precompute the scattering falloff for a subset of surface shapes and determine
the best falloff during forward rendering. As discussed above, one characteristic
that we can calculate in a shader is surface curvature, which largely determines
the effect of scattering on smooth surfaces.

To measure the effect of surface curvature on scattering, we add curvature
as the second parameter to our measured diffuse falloff. The skin diffusion pro-
files from [d’Eon and Luebke 07] on flat skin can be used to simulate the effect
of scattering on different curvatures. We simply light a spherical surface of a
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given curvature from one direction and measure the accumulated light at each
angle with respect to the light (see Figures 5.2 and 5.3). This results in a two-
dimensional lookup texture that we can use at runtime. More formally, for each
skin curvature and for all angles § between N and L, we perform the integration
in Equation (5.1):

_ [ cos(0 + x) - R(2rsin(z/2))dx

JT R(2sin(x/2))dx (5.1)

D(0,r)

The first thing to note is that we have approximated a spherical integration
with integration on a ring. We found the difference was negligible and the ring
integration fits nicely into a shader that is used to compute the lookup texture.
The variable R() refers to the diffusion profile, for which we used the sum of
Gaussians from [d’Eon and Luebke 07] (see Table 5.1). Rather than performing
an expensive arccos() operation in our shader to calculate the angle, we push
this into the lookup, so our lookup is indexed by N - L directly. This is fine in
our case, as the area where scattering occurs has plenty of space in the lookup.
Figures 5.2 and 5.3 illustrate how to compute and use the diffuse lookup texture.

While this measured skin model can provide some interesting results on its
own, it still has a few major flaws. Primarily, it assumes that all skin resembles
a sphere, when, in fact, skin can have fairly arbitrary topology. Stated another
way, it assumes that scattered light arriving at a given point depends on the
curvature of that point itself. In actuality it depends on the curvature of all of
the surrounding points on the surface. Thus, this approximation will work very
well on smooth surfaces without fast changes in curvature, but breaks down when
curvature changes too quickly. Thankfully, most models of skin are broken up
into two detail levels: smooth surfaces represented using geometry, and surface

Variance

0.0064 0.233 0.455 0.649

0.0484 0.100 0.366 0.344
0.187 0.118 0.198 0.0
0.567 0.113 0.007 0.007
1.99 0.358 0.004 0.0
7.41 0.078 0 0.0

Table 5.1. The weights used by [d’Eon and Luebke 07] for texture-space diffusion.
Although we aren’t limited to the sum of Gaussians approximations, we use the same
profile for comparison.
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Distance(mm)

Figure 5.2. The graph (left) illustrates the diffusion profile of red, green, and blue light
in skin, using the sum of Gaussians from Table 5.1. The diagram (right) illustrates
how we pre-integrate the effect of scattering into a diffuse BRDF lookup. The diffusion
profile for skin (overlaid radially for one angle) is used to blur a simple diffuse BRDF
for all curvatures of skin.

r=2 r=4 r=238 r =16

Figure 5.3. The diagram (top left) illustrates how we calculate curvature while rendering
using two derivatives. The diffuse BRDF lookup, indexed by curvature (sphere radius)
and N - L (top right). Spheres of different sized renderings using the new BRDF lookup
(bottom).
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details represented in a normal map. We take advantage of this and let the
measured diffuse falloff be chosen at the smooth geometry level, while adding
another approach to deal with creases and small bumps in normal maps, which
are responsible for quick changes in curvature.

5.5 Scattering and Normal Maps

We now turn to the effect of scattering on small wrinkles and pores that are usu-
ally represented with a normal map. Since the normal from a small crease always
returns to the dominant surface normal, the reflected scattered light coming from
that crease will look very similar to light reflected from a nonscattering surface
with a physically broader (or blurred-out) crease. Coincidentally, one way of ap-
proximating the look of scattered-over small creases and bumps is to simply blur
the creases and bumps themselves! Most important however, this effect will be
different for each wavelength of light, because of their different diffusion profiles.

Interestingly, the inverse of this phenomenon was noted when capturing nor-
mals from a real subject, using image-based lighting. Ma et al. [Ma et al. 07]
noted that, when captured using spherical gradient lighting, normals become
bent toward the dominant-surface normal, depending on the wavelength of light
used to capture them (red was more bent than green, etc.). They also noted that
a local skin-shading model was improved by using all the normals they captured
instead of only one. In this case the image-based normal capture was physically
integrating all the scattered light when determining the best normal to fit the
data. Since we have only one set of normal maps to begin with, we essentially
work in reverse. We assume that our original normal map is the accurate surface
normal map and blur it several times for each wavelength, resulting in a separate
normal map for each color, and for specular reflection. As mentioned by previous
authors [d’Eon and Luebke 07, Hable et al. 09, Jimenez et al. 09], care should be
taken to make sure the original normal map has not been blurred already in an
attempt to get a smoother look.

While it might seem to make sense to simply blur the normal map using the
diffusion profile of skin, this approach is not completely valid since lighting is not a
linear process with regard to the surface normal. What we really want to have is a
representation of the normal which can be linearly filtered, much in the same way
that shadow maps can be filtered linearly using a technique like variance shadow
mapping. Interestingly, there has been some very recent work in linear normal
map filtering. Linear efficient antialiased normal (LEAN) mapping [Olano and
Baker 10] represents the first and second moments of bumps in surface-tangent
space. Olano and Baker focused primarily on representing specular light but
also suggest a diffuse-filtering approximation from [Kilgard 00] which simply uses
the linearly filtered unnormalized normal and standard diffuse lighting. It is
noteworthy that the unnormalized normal is actually a valid approximation when
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a bump self-shadowing and incident /scattered lighting term is constant over the
normal-map filtering region. In that case,

1 1
ﬁz’?:l(KdiffuseL . N’L’) = KdiffuseL . (ﬁzylez)

The reason this isn’t always the case is that diffuse lighting incorporates a self-
shadowing term max (0, N - L) instead of simply N - L. This means back-facing
bumps will actually contribute negative light when linearly filtered. Nonetheless,
using the unnormalized normal will still be valid when all bumps are unshadowed
or completely shadowed, and provides a better approximation than the normal-
ized normal in all situations, according to [Kilgard 00].

Although we would prefer a completely robust method of pre-integrating nor-
mal maps that supports even changes in incident /scattered light over the filtering
region, we found that blurring, using diffusion profiles, provided surprisingly good
results (whether or not we renormalize). In addition, since using four normals
would require four transformations into tangent space and four times the mem-
ory, we investigated an approximation using only one mipmapped normal map.
When using this optimization, we sample the specular normal as usual, but also
sample a red normal clamped below a tunable miplevel in another sampler. We
then transform those two normals into tangent space and blend between them
to get green and blue normals. The resulting diffuse-lighting calculations must
then be performed three times instead of once. The geometry normal can even
be used in place of the second normal map sample, if the normal map contains
small details exclusively. If larger curves are present, blue/green artifacts will
appear where the normal map and geometry normal deviate, thus the second
mipmapped sample is required.

We found that this approach to handling normal maps complements our cus-
tom diffuse falloff very well. Since the red normal becomes more heavily blurred,
the surface represented by the blurred normal becomes much more smooth, which
is the primary assumption made in our custom diffuse falloff. Unfortunately, there
is one caveat to using these two approaches together. Since we have separate nor-
mals for each color, we need to perform three diffuse lookups resulting in three
texture fetches per light. We discuss a few approaches to optimizing this in
Section 5.7.

5.6 Shadow Scattering

Although we can now represent scattering due to small- and large-scale features,
we are still missing scattering over occluded light boundaries (shadows). The
effect of light scattering into shadows is one of the most noticeable features of
realistically rendered skin. One would think that scattering from shadows is much
more difficult since they are inherently nonlocal to the surface. However, by using
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Figure 5.4. Illustration of pre-integrated scattering falloff from shadows. A typical
shadow falloff from a box-filtered shadow map (left). A smaller penumbra that we
pre-integrate against the diffusion profile of skin (right). The lookup maps the first
penumbra into the second but also stores additional scattered light. The lookup is
parameterized by the original shadow value and the width of the penumbra in world
space (center).

a small trick, we found we could pre-integrate the effect of scattering over shadow
boundaries in the same way we represent scattering in our lighting model.

The trick we use for shadows is to think of the results of our shadow map-
ping algorithm as a falloff function rather than directly as a penumbra. When
the falloff is completely black or white, we know we are completely occluded or
unoccluded, respectively. However, we can choose to reinterpret what happens
between those two values. Specifically, if we ensure the penumbra size created
by our shadow map filter is of adequate width to contain most of the diffusion
profile, we can choose a different (smaller) size for the penumbra and use the
rest of the falloff to represent scattering according to the diffusion profile (see
Figure 5.4).

To calculate an accurate falloff, we begin by using the knowledge of the shape
of our shadow mapping blur kernel to pre-integrate a representative shadow
penumbra against the diffusion profile for skin. We define the representative
shadow penumbra P() as a one-dimensional falloff from filtering a straight shadow
edge (a step function) against the shadow mapping blur kernel. Assuming a mono-
tonically decreasing shadow mapping kernel, the representative shadow falloff is
also a monotonically decreasing function and is thus invertible within the penum-
bra. Thus, for a given shadow value we can find the position within the repre-
sentative penumbra using the inverse P~1(). As an example, for the simple case
of a box filter, the shadow will be a linear ramp, for which the inverse is also a
linear ramp. More complicated filters have more complicated inverses and need
to be derived by hand or by using software like Mathematica. Using the inverse,
we can create a lookup texture that maps the original falloff back to its location
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Figure 5.5. Illustration of pre-integrated scattering falloff from shadows. Controlled
scattering based on increased penumbra width, such as a penumbra cast onto a highly
slanted surface (top). Comparison with and without shadow scattering (bottom).

in the penumbra and then to a completely different falloff. Specifically, we can
make the new shadow falloff smaller and use the remainder to represent subsur-
face scattering from the new penumbra. In the end, we are left with a simple
integration to perform that we can use as a lookup during rendering, exactly like
our diffuse falloff.

We should note at this point that we could run into problems if our as-
sumptions from above are invalidated. We found that a two-dimensional shadow
falloff was not noticeably different from a one-dimensional one, but we have also
assumed that all shadow transitions are sharp. For example, if something like
a screen door were to cast a shadow, it might result in a constant penumbra
value between zero and one. In that case, we would assume there is scattering
from a falloff that isn’t there. Additionally, we have assumed projection onto a
flat surface. If the surface is highly slanted, then the true penumbra size will
be much larger than the one we used during pre-integration. For this reason
we add a second dimension to our shadow falloff texture, which represents the
size of the penumbra in world space. This is similar to the way we pre-integrate
lighting against all sphere sizes. In the end, our two-dimensional shadow-lookup
integration is a simple convolution:

_ [ P(P7Y(s) 4+ z)R(z/w)dz
Ps(s,w) = fzz R(z/w)dx ’
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where P~1() is the inverse of our representative falloff, P’() is the new, smaller
penumbra, R() is the diffusion profile, and s and w are the shadow value and
penumbra width in world space, respectively. Penumbra width can be detected
using either the angle of the surface with respect to the light, or potentially the
derivative of the shadow value itself. Since creating a large penumbra is expensive
using conventional shadow filtering (although, see the Pizel Quad Amortization
chapter), having the penumbra stretched over a slanted surface provides a larger
space for scattering falloff and thus can actually be desirable if the initial shadow
penumbra isn’t wide enough. In this case the lookup can be clamped to insure
that the falloff fits into the space provided.

5.7 Conclusion and Future Work

We have presented a new local skin-shading approach based on pre-integration
that approximates the same effects found in more expensive TSD-based ap-
proaches. Our approach can be implemented by adding our custom diffuse- and
shadow-falloff textures to a typical skin shader (see Figure 5.6).

Although we found that our approach worked on a large variety of models,
there are still a few drawbacks that should be mentioned. When approximating
curvature using pixel shader derivatives, triangle edges may become visible where
curvature changes quickly. Depending on how the model was created we also
found that curvature could change rapidly or unnaturally in some cases. We are
looking into better approaches to approximating curvature in these cases. This is
much more easily done with geometry shaders that can utilize surface topology.

Pre-Integration Texture Space Diffusion

Figure 5.6. Comparison of our approach with texture-space diffusion using an optimized
blur kernel from [Hable et al. 09]. (Mesh and textures courtesy of XYZRGB.)
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We would also like to look at the effect of using more than one principal axis
of curvature. For models where curvature discontinuities occur, we generate a
curvature map that can be blurred and further edited by hand, similar to a
stretch map in TSD.

Another challenge we would like to meet is to efficiently combine our normal
map and diffuse-lighting approaches. When using three diffuse normals, we cur-
rently need three diffuse-texture lookups. We found we could use fewer lookups
depending on the number of lights and the importance of each light. We have also
found it promising to approximate the diffuse and shadow falloffs using analytical
approximations that can be evaluated without texture lookups.

We would also like to apply our technique to environment mapping. It
should be straightforward to support diffuse-environment mapping via an ar-
ray of diffuse-environment maps that are blurred based on curvature, in the same
manner as our diffuse-falloff texture.

5.8 Appendix A: Lookup Textures

float Gaussian (float v, float r)
{

return 1.0/sqrt (2.0%PIx*xv) * exp(-(r*r)/(2*v));
}

float3 Scatter(float r)
{
//Coefficients from GPU Gems 3 - ‘‘Advanced Skin Rendering
3
return Gaussian(0.0064 * 1.414,r) * float3
(0.233,0.455,0.649) +
Gaussian(0.0484 * 1.414,r) * float3
(0.100,0.336,0.344) +
Gaussian(0.1870 * 1.414,r) * float3
(0.118,0.198,0.000) +
Gaussian(0.5670 * 1.414,r) * float3
(0.113,0.007,0.007) +
Gaussian (1.9900 * 1.414,r) * float3
(0.358,0.004,0.000) +
Gaussian(7.4100 * 1.414,r) * float3
(0.078,0.000,0.000) ;
}

float3 integrateShadowScattering(float penumbralocation,
float penumbraWidth)
{
float3 totalWeights 0;

float3 totallLight 0;




5.9. Appendix B: Simplified Skin Shader

93

float a= -PROFILE_WIDTH;

while ( a<=PROFILE_WIDTH )

while ( a<=PROFILE_WIDTH )

{
float light = newPenumbra(penumbralocation + a/

penumbraWidth) ;

float sampleDist = abs(a);
float3 weights = Scatter (sampleDist);
totalWeights += weights;
totallLight += 1light * weights;
a+=inc;

}

return totallLight / totalWeights;
}

float3 integrateDiffuseScatteringOnRing(float cosTheta,float
skinRadius)
{
// Angle from lighting direction.
float theta = acos(cosTheta);
float3 totalWeights = 0;
float3 totallLight = O0;

float a= -(PI/2);
while ( a<=(PI/2) )
while( a<=(PI/2) )
{
float sampleAngle = theta + a;
float diffuse = saturate( cos(sampleAngle) );
float sampleDist = abs(2.0*skinRadius*sin(ax*0.5));
// Distance.
float3 weights = Scatter (sampleDist);
// Profile Weight.
totalWeights += weights;
totallLight += diffuse * weights;
at+=inc;
}
return totallLight / totalWeights;

Listing 5.1. Shader code to precompute skin falloff textures.

5.9 Appendix B: Simplified Skin Shader

float3 SkinDiffuse( float curv, float3 NdotL )
{

float3 lookup = NdotL * 0.5 + 0.5;

float3 diffuse;
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diffuse.r = tex2D(SkinDiffuseSampler, float2(lookup.r, curv

) ).r;
diffuse.g = tex2D(SkinDiffuseSampler, float2(lookup.g, curv
) ).g;
diffuse.b = tex2D(SkinDiffuseSampler, float2(lookup.b, curv
) ).b;
return diffuse;
}
float3 SkinShadow( float shad, float width )
{
return tex2D(SkinShadowSampler, float2(shad, width) ).rgb;
}

//Simple curvature calculation.
float curvature = saturate(length(fwidth(Normal)) /
length (fwidth(WorldPos)) * tuneCurvature ) ;

//Specular/Diffuse Normals.

float4 normMapHigh = tex2D(NormalSamplerHigh, Uv) * 2.0 -
1.0;

float4 normMapLow = tex2D(NormalSamplerLow , Uv) * 2.0 -
1.0;

float3 N_high = mul (normMapHigh.xyz,TangentToWorld);

float3 N_low = mul(normMaplLow.xyz,TangentToWorld) ;

float3 rS = N_high;

float3 rN = lerp(N_high,N_low,tuneNormalBlur.r);
float3 gN lerp(N_high,N_low, tuneNormalBlur.g);
float3 bN = lerp(N_high,N_low,tuneNormalBlur.b);

//Diffuse lighting

float3 NdotL = float3( dot(rN,L), dot(gN,L), dot(bN,L) );

float3 diffuse = SkinDiffuse( curvature, NdotL ) * LightColor x*
SkinShadow ( SampleShadowMap (ShadowUV) ) ;

Listing 5.2. Skin shader example.
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Implementing Fur Using

Deferred Shading
Donald Revie

This chapter is concerned with implementing a visually pleasing approximation of
fur using deferred shading rather than attempting to create an accurate physical
simulation. The techniques presented can also be used to create a number of
materials that are traditionally difficult to render in deferred shading.

6.1 Deferred Rendering

For the purposes of this chapter, the term deferred rendering can be extended
to any one of a group of techniques characterized by the separation of light-
ing calculations from the rendering of light-receiving objects within the scene,
including deferred shading [Valient 07], deferred lighting [Mittring 09], inferred
lighting [Kircher 09], and light-prepass rendering [Engel 09]. The fur-rendering
technique being presented has been implemented in deferred shading but should
be applicable to any rendering solution based on one of these techniques.

This separation of light-receiving objects from light sources is achieved by
storing all relevant information about light-receiving objects in the scene as tex-
ture data, collectively referred to as a geometry buffer or G-buffer because it
represents the geometric scene.

When rendering the lights, we can treat the G-buffer as a screen-aligned
quad with per-pixel lighting information. Rendering the G-buffer discards all
occluded geometry, effectively reducing the three-dimensional scene into a con-
tinuous screen-facing surface (Figure 6.1). By using the two-dimensional screen
position, depth, and normal information, a pixel shader can reconstruct any visi-
ble point in the scene from its corresponding pixel. It is this surface information
that is used to calculate lighting values per pixel rather than the original scene
geometry.
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Figure 6.1. G-buffer surface.

In deferred rendering the format of the G-buffer (Figure 6.2) defines a standard
interface between all light-receiving materials and all light sources. Each object
assigned a light-receiving material writes a uniform set of data into the G-buffer,
which is then interpreted by each light source with no direct information regarding
the original object. One key advantage to maintaining this interface is that
geometric complexity is decoupled from lighting complexity.

This creates a defined pipeline (Figure 6.3) in which we render all geome-
try to the G-buffer, removing the connection between the geometric data and
individual objects, unless we store this information in the G-buffer. We then
calculate lighting from all sources in the scene using this information, creating
a light-accumulation buffer that again discards all information about individual
lights. We can revisit this information in a material pass, rendering individual
meshes again and using the screen-space coordinates to identify the area of the
light-accumulation buffer and G-buffer representing a specific object. This ma-
terial phase is required in deferred lighting, inferred lighting, and light pre-pass
rendering to complete the lighting process since the G-buffer for these techniques
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Figure 6.2. Our G-buffer format.




6.2. Fur

99

[Ohjects) {Lights) (Ohjects)
(ieometry Lighting Material F*.;x-gl.
Phase Phasc Mhase Processing
Lighi i
. 2 Composition )
) Ci-Buffer ) Accumulation ) Buffer

Buffer

Figure 6.3. General deferred rendering pipeline.

does not include surface color. After this, a post-processing phase acts upon the
contents of the composition buffer, again without direct knowledge of individual
lights or objects.

This stratification of the deferred rendering pipeline allows for easy extensi-
bility in the combination of different materials and lights. However, adherence to
the interfaces involved also imposes strict limitations on the types of materials
and lights that can be represented. In particular, deferred rendering solutions
have difficulty representing transparent materials, because information regard-
ing surfaces seen through the material would be discarded. Solutions may also
struggle with materials that reflect light in a nontypical manner, potentially in-
creasing the complexity of all lighting calculations and the amount of information
required within the G-buffer. Choosing the right phases and buffer formats are
key to maximizing the power of deferred rendering solutions.

We describe techniques that address the limitations of rendering such materi-
als while continuing to respect the interfaces imposed by deferred rendering. To
illustrate these techniques and demonstrate ways in which they might be com-
bined to form complex materials, we outline in detail a solution for implementing
fur in deferred shading.

6.2 Fur

Fur has a number of characteristics that make it difficult to represent using the
same information format commonly used to represent geometry in deferred ren-
dering solutions.

Fur is a structured material composed of many fine strands forming a complex
volume rather than a single continuous surface. This structure is far too fine to
describe each strand within the G-buffer on current hardware; the resolution
required would be prohibitive in both video memory and fragment processing.
As this volumetric information cannot be stored in the G-buffer, the fur must
be approximated as a continuous surface when receiving light. We achieve this
by ensuring that the surface exhibits the observed lighting properties that would
normally be created by the structure.
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(a) (b)
Figure 6.4. Fur receiving light from behind (a) without scattering and (b) with scat-
tering approximation.

The diffuse nature of fur causes subsurface scattering; light passing into the
volume of the fur is reflected and partially absorbed before leaving the medium
at a different point. Individual strands are also transparent, allowing light to
pass through them. This is often seen as a halo effect; fur is silhouetted against
a light source that illuminates the fur layer from within, effectively bending light
around the horizon of the surface toward the viewer. This is best seen in fur with
a loose, “fluffy” structure (see Figure 6.4).

The often-uniform, directional nature of fur in combination with the struc-
ture of individual strands creates a natural grain to the surface being lit. The
reflectance properties of the surface are anisotropic, dependent on the grain di-
rection. Anisotropy occurs on surfaces characterized by fine ridges following the
grain of the surface, such as brushed metal, and causes light to reflect according
to the direction of the grain. This anisotropy is most apparent in fur that is
“sleek” with a strong direction and a relatively unbroken surface (see Figure 6.5).

(b)
Figure 6.5. Fur receiving light (a) without anisotropy and (b) with anisotropy approx-
imation.
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6.3 Techniques

We look at each of the characteristics of fur separately so that the solutions dis-
cussed can be reused to represent other materials that share these characteristics
and difficulties when implemented within deferred rendering.
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Figure 6.6. Concentric shells.

6.3.1 Volumetric Fur Rendering Using Concentric Shells

It is common to render volumetric structures in real time by rendering dis-
crete slices of volumetric texture data into the scene and using alpha blend-
ing to combine the results, such as light interacting with dust particles in the
air [Mitchell 04]. Provided enough slices are rendered, the cumulative result
gives the appearance of a continuous volume featuring correct perspective, par-
allax, and occlusion.

The concentric shells method of rendering fur [Lengyel 01] represents the
volumetric layer of fur as a series of concentric shells around the base mesh; each
shell is a slice through the layer of fur parallel to the surface. These shells are
constructed by rendering the base mesh again and pushing the vertices out along
the normal of the vertex by a fraction of the fur layer depth; the structure of the
fur is represented by a volume texture containing a repeating section of fur (see
Figure 6.6). By applying an offset parallel to the mesh surface in addition to the
normal we can comb the fur volume (see Figure 6.7, Listing 6.1).
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Figure 6.7. Combing.
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// Get shell depth as normalized distance between base and
// outer surface.
float shellDepth = shellIndex * (1.f/numShells);

// Get offset direction vector
float3 dir = IN.normal.xyz + (IN.direction.xyz * _shellDepth);
dir.xyz = normalize (dir.xyz);

// Offset vertex position along fur direction.

OUT .position = IN.position;

OUT.position.xyz = (dir.xyz * _ shellDepth * furDepth
* IN.furLength);

0UT.position = mul (worldViewProjection, OUT.position);

Listing 6.1. Vertex offsetting.

This method of fur rendering can be further augmented with the addition of
fins, slices perpendicular to the surface of the mesh, which improve the quality of
silhouette edges. However, fin geometry cannot be generated from the base mesh
as part of a vertex program and is therefore omitted here (details on generating
fin geometry can be found in [Lengyel 01]).

This technique cannot be applied in the geometry phase because the structure
of fur is constructed from a large amount of subpixel detail that cannot be stored
in the G-buffer where each pixel must contain values for a discrete surface point.
Therefore, in deferred shading we must apply the concentric shell method in the
material phase, sampling the lighting and color information for each hair from a
single point in the light-accumulation buffer. The coordinates for this point can
be found by transforming the vertex position of the base mesh into screen space
in the same way it was transformed originally in the geometry phase (Listing 6.2).

// Vertex shader.

// See (Listing 3.1.1) for omitted content.

// Output screen position of base mesh vertex.
0UT.screenPos = mul(worldViewProjection, IN.position);

[ ===c=cscscsosooooososososoos
// Pixel shader.
IN.screenPos /= IN.screenPos.w;

// Bring values into range (0,1) from (-1,1).
float2 screenCoord = (IN.screenPos.xy + 1.f.xx) * 0.5f.xx;

// Sample 1lit mesh color
color = tex2D(lightAccumulationTexture, screenCoord).

Listing 6.2. Sampling lit objects.
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This sampling of lighting values can cause an issue specific to rendering the
fur. As fur pixels are offset from the surface being sampled, it is possible for the
original point to have been occluded by other geometry and thus be missing from
the G-buffer. In this case the occluding geometry, rather than the base mesh,
would contribute to the coloring of the fur leading to visual artifacts in the fur
(Figure 6.8). We explore a solution to this in Sections 6.3.4 and 6.4.4 of this
article.

.-'-‘.

Oceluder

Figure 6.8. Occlusion error.

6.3.2 Subsurface Scattering

Scattering occurs in materials wherein light enters the surface at one point, is
transmitted through the medium beneath the surface being reflected and refracted
by internal structures and is partially absorbed, before exiting the surface at a
different point (Figure 6.9). This light exiting the surface softens the appearance
of lighting on the surface by creating a subtle glow.

Much work has been done on the approximation of subsurface scattering prop-
erties in skin that is constructed of discrete layers, each with unique reflectance
properties. One such solution is to apply a weighted blur to the light accumulated
on the surface [Hable 09, Green 04]. In existing forward shaded solutions, this
blurring is typically applied in texture space.

Incoming Light
Crutgoing Light

Figure 6.9. Simple subsurface scattering.
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Fur Volume

Figure 6.10. Rim glow (N.L < 0) (N“L > 0).

In deferred rendering, this technique can be applied in both the geometry
phase and the material phase. In the geometry phase the scattering can be
approximated by blurring the surface normals written into the G-buffer or by
recalculating the mesh normals as a weighted sum of neighboring vertex normals
[Patro 07].

Blurring can be performed in the material phase, in texture space, by sampling
the accumulated lighting in the same manner as that used for the fur rendering.
The texture coordinates of the mesh would then be used as vertex positions
to write those values into the mesh’s texture space before applying a blur. Once
blurred, these values are written back into the light-accumulation buffer by revers-
ing the process. Alternatively, the material-phase blurring could be performed in
screen space by orienting the blur kernel to the local surface, using the normals
stored in the G-buffer at each pixel.

One issue with this solution is that scattering beneath a surface will also allow
light entering the back faces of an object to be transmitted through the medium
and exit the surface facing the viewer. In materials such as skin and fur, which
form a scattering layer over a more solid structure, this transfer of light appears
most often around the silhouette edges of the object. We can adjust for this by
bending normals at the silhouette edge of the mesh to point away from the viewer
and sample lighting from behind the object (see Figure 6.10 and Listing 6.3). In
doing so, these pixels will no longer receive direct lighting correctly; this must
then be accounted for during the blur phase (see Sections 6.3.4 and 6.4.4 for
details of our solution).

// Get normal based for back face samples.
// Glow strength and falloff are supplied by material values.

half NdotV = saturate(dot(mormal.xyz, -view);

half rimWeight = glowStrenth * pow(1.f - NdotV), glowFalloff);
normal .xyz += view.xyz * rimWeight;

normal.xyz = normalize (normal.xyz);

Listing 6.3. Pushing edge pixels around edges.
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Figure 6.11. Strand normals.

6.3.3 Anisotropy

Anisotropic light reflection occurs on surfaces where the distribution of surface
normals is dependent on the surface direction; such surfaces are often character-
ized by fine ridges running in a uniform direction across the surface, forming a
“grain.” The individual strands in fur and hair can create a surface that exhibits
this type of lighting [Scheuermann 04].

This distinctive lighting is created because in anisotropic surfaces the ridges
or, in this case, the strands are considered to be infinitely fine lines running
parallel to the grain. These lines do not have a defined surface normal but instead
have an infinite number of possible normals radiating out perpendicularly to their
direction (see Figure 6.11). Therefore, the lighting calculation at any point on the
surface must integrate the lighting for all the normals around the strand. This
is not practical in a pixel shader; the best solution is to choose a single normal
that best represents the lighting at this point [Wyatt 07].

In forward shading, anisotropy is often implemented using a different lighting
calculation from those used to describe other surfaces (Listing 6.4) [Heidrich 98].
This algorithm calculates lighting based on the grain direction of the surface
rather than the normal.

Diffuse = sqrt(l1 - (< L,T >)"2)
Specular = sqrt(l - (< L,T >)"2) sqrt(l - (< V, T > )"2)
- <L, T> <V, T>

Listing 6.4. Anisotropic light calculation.

In deferred shading we cannot know in the geometry phase the nature of any
light sources that might contribute to the lighting on the surface and are bound
by the interface of the G-buffer to provide a surface normal. Therefore, we define
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Figure 6.12. Normal as tangent to plane.

the most significant normal as the normal that is coplanar with the grain direction
and the eye vector at that point (see Figure 6.12). We calculate the normal of
this plane as the cross product of the eye vector and the grain direction, the
normal for lighting is then the cross product of the plane’s normal and the grain
direction (see Listing 6.5).

// Generate normal from fur direction.

IN.direction = IN.direction-(dot(IN.direction, normal) * normal);
IN.direction.xyz = normalize (IN.direction.xyz);

half3 binorm = cross(IN.eyeVector, IN.direction);

half3 grainNorm = cross(binorm, IN.direction);

normalize (grainNorm) ;

Listing 6.5. Anisotropic normal calculation.

Viewer

Figure 6.13. (a) Isotropic highlight and (b) anisotropic highlight.

By calculating surface normals in this way we create the effect of curving
the surface around the view position, resulting in the lighting being stretched
perpendicular to the surface grain (Figure 6.13). While this method does not
perfectly emulate the results of the forward-shading solution, it is able to generate
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this characteristic of stretched lighting for all light sources, including image-based
lights.

6.3.4 Stippled Rendering

Stippled rendering is a technique in which only some pixels of an image are
written into the frame buffer, leaving other pixels with their original values. This
technique was originally inspired by the stippled alpha transparencies used in
games before the widespread availability of hardware alpha blending, also referred
to as screen-door transparency [Mulder 98]. The values for the transparent object
are written to only some of the pixels covered by the object so as not to completely
obscure the scene behind it (see Figure 6.14 and Listing 6.6).

(a) (b)
Figure 6.14. Stipple patterns (a) 1 in 2 and (b) 1 in 4.

// Get screen coordinates in range (0, 1).

float2 screenCoord = ((IN.screenPos.xy/IN.screenPos.w)
+ 1.f.xx) * 0.5h.xx;

// Convert coordinates into pixels.

int2 sample = screenCoord.xy * float2(1280.f, 720.f);

// If pixel is not the top left in a 2x2 tile discard it.
int2 tilelIndices = int2(sample.x \% 2, sample.y \% 2);
if ((tileIndices.x != 0) || (tilelIndices.y != 0))

discard;

Listing 6.6. One in four Stipple pattern generation.

In deferred shading, transparent objects are written into the G-buffer using
a stipple pattern. During the material phase, the values of pixels containing
data for the transparent surface are blended with neighboring pixels containing



108

6. Implementing Fur Using Deferred Shading

information on the scene behind. By varying the density of the stipple pattern,
different resolutions of data can be interleaved, allowing for multiple layers of
transparency. This technique is similar to various interlaced rendering methods
for transparent surfaces [Pangerl 09, Kircher 09].

The concept of stippled rendering can be extended further to blend multiple
definitions of a single surface together. By rendering the same mesh multiple
times but writing distinctly different data in alternating pixels, we can assign
multiple lighting values for each point on the object at a reduced resolution.
During the material phase the object is rendered again, and this information
is deinterlaced and combined to allow for more complex lighting models. For
example, a skin material could write separate values for a subsurface scattering
pass and a specular layer, as interleaved samples. The material pass would then
additively blend the specular values over the blurred result of the diffuse lighting
values.

6.4 Fur Implementation Details

Ease of use and speed of implementation were key considerations when developing
the fur solution. We found that to enable artists to easily apply the fur material
to meshes, it was important to provide flexibility through a fine degree of control,
coupled with real-time feedback. We also wished to ensure minimal changes to
existing assets and work methods. It was also important that the technique have
minimal impact on our rendering framework, and that it work well with our
existing asset-creation pipeline.

To this end, the solution has been implemented with minimal code support;
all shader code is implemented within a single effect file with multiple passes for
the geometry and material phases of rendering. Annotations provide the renderer
with information on when and where to render passes. For real-time feedback,
a separate technique is provided within the effect file that renders the fur in a
forward-shaded fashion suitable for use within various asset-creation packages.

6.4.1 Asset Preparation

Combing direction. The fur solution is applicable to any closed mesh with per-
vertex position, normal, tangent, binormal, and a single set of two-dimensional
texture coordinates. This is a fairly standard vertex format for most asset-
creation packages.

In addition, we require an RGBA color per vertex to define the combing direc-
tion and length of fur at a given vertex (see Figure 6.15). The RGB components
encode combing direction as a three-component vector in the object’s local space
compressing a range of [—1, 1] to [0,1]; this vector is also used to describe the
surface direction when generating the anisotropic surface normals. The alpha
channel of the color is used to scale the global fur length locally at each vertex.
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Figure 6.15. Fur length (left) and direction (right) encoded as color.

A color set was chosen to encode this data for a number of reasons. First,
many asset-creation tools allow for easy “painting” of vertex colors while viewing
the shaded mesh in real time. This effectively allows the author to choose a
direction represented as a color and then comb sections of the fur appropriately
using the tool, setting an alpha component to the color trims the length of the fur
locally. Second, the approach of encoding direction as color is already familiar to
most authors through the process of generating world- and tangent-space normal
maps. The process has proven to be quite intuitive and easy to use.

As part of the loading process, we transform the vectors encoded in this
color channel from the local space of the mesh into its tangent space and at the
same time orthonormalize them, making them tangential to the mesh surface.
Thus when the mesh is deformed during animation, the combing direction of the
fur will remain constant in relation to the surface orientation. This is the only
engine side code that was required to fully support the fur-rendering technique
(see Listing 6.7).

// Build local to tangent space matrix.
Matrix tangentSpace;
tangentSpace.LoadIdentity ();
tangentSpace.SetCol (0, tangent);
tangentSpace.SetCol (1, binormal);
tangentSpace.SetCol (2, normal);
tangentSpace.Transpose () ;

// Convert color into vector.
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Vector3 dir(pColour [0], pColour[1], pColour [2]);
dir = (dir * 2.f) - Vector3(1.f);

// Gram Schmidt orthonormalization.
dir = dir - (dot(dir, normal) * normal); dir.Normalise();

// Transform vector into tangent space.
tangentSpace.TransformInPlace (dir) ;

// Convert vector into color.

dir = (dir + Vector3(1.f)) * 0.5;
pColour [0] = dir.getX();
pColour [1] = dir.getY();
pColour [2] = dir.getZ();

Listing 6.7. Processing of fur directions.

Texture data. To provide the G-buffer with the necessary surface information, the
material is assigned an RGB albedo map and a lighting map containing per pixel
normal information and specular intensity and exponent at any given pixel. In
addition to this, a second albedo map is provided to describe the changes applied
to lighting as it passes deeper into the fur; over the length of the strands, the
albedo color that is used is blended from this map to the surface color. This
gives the author a high degree of control over how the ambient occlusion term is
applied to fur across the whole surface, allowing for a greater variation.

To represent the fur volume required for the concentric shell rendering, a
heightfield was chosen as an alternative to generating a volumetric data set.
While this solution restricts the types of volume that can be described, it requires
considerably less texture information to be stored and accessed in order to render
the shells. It is more flexible in that it can be sampled using an arbitrary number
of slices without the need to composite slices when undersampling the volume,
and it is far simpler to generate with general-image authoring tools.

6.4.2 Geometry Phase

The geometry phase is split into two passes for the purpose of this technique. The
first pass renders the base mesh to the G-buffer. In the vertex shader the position,
tangent, and normal are transformed into view space and the combing direction
is brought into local space in the range [-1, 1]. The pixel shader generates a new
normal, which is coplanar to the eye and combing vectors to achieve anisotropic
highlights (Figure 6.16).

The second pass renders the top layer of the fur in a stipple pattern, rendering
to one in every four pixels on screen. The vertex shader is identical to the first
pass, but pushes the vertex positions out along the vertex normals offset by the
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Figure 6.16. Geometry pass 1 (depth/normals/albedo).

global fur length scaled by the vertex color alpha. The pixel shader identifies
likely silhouette edges using the dot product of the view vector and the surface
normals; the normals at these points are adjusted by adding the view vector
scaled by this weight value. The unmodified normals are recalculated to use the
anisotropic normals like those of the first pass (Figure 6.17).

This second pass solves the occlusion issue when constructing concentric fur
shells from the light-accumulation buffer, since both samples are unlikely to be
occluded simultaneously while any part of the strand is still visible. The second
pass allows light calculations to be performed for both the surface of the mesh
and also the back faces where light entering the reverse faces may be visible.

In order to avoid incorrect results from screen-space ambient occlusion (SSAO),
edge detection, and similar techniques that rely on discontinuities in the G-buffer,
these should be calculated before the second pass since the stipple pattern will
create artifacts.

Figure 6.17. Geometry pass 2 (depth/normals/albedo).
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6.4.3 Light Phase

During the light phase both the base and stipple samples within the G-buffer
receive lighting in the same manner as all other values in the G-buffer, adherence
to a common interface allows the fur to receive lighting from a wide range of
sources.

Figure 6.18. Light-accumulation buffer.

6.4.4 Material Phase

The material phase of rendering involves reading the values from the light-
accumulation buffer and interpreting these based on specific qualities of the ma-
terial, in this case by constructing shells of fur. In deferred shading, since the
majority of the lighting values are already correct in the light-accumulation buffer,
a copy of these values is required onto which the material phase of the fur can be
composited (see Figure 6.18).

The stipple values, being distributed on the outermost shell of the fur, will
occlude the layers of fur beneath. To correct this, all fur surfaces must be ren-
dered again using the outermost shell, while sampling color values from the light-
accumulation buffer and depth values from the linear depth stored in the G-buffer
(see Figure 6.19). For most pixels, these color and depth values are written di-
rectly into the composition buffer, however, where a stipple value would be sam-
pled the neighboring pixel is used instead, effectively erasing all stipple values
from the light-accumulation and depth buffers.

The buffer now contains the base mesh of the object only, providing a basis on
which to composite the volumetric layer of fur. Rendering of the fur is performed
by a series of passes, each pass rendering a concentric shell by offsetting the vertex
positions. The pass also constructs positions in screen space, from which both
the sample corresponding to the base mesh and the stipple sample corresponding
to the outermost shell can be obtained.
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Figure 6.19. Stipple obliteration pass.

In the pixel shader these two samples are retrieved from the light-accumulation
buffer, their respective linear depths in the G-buffer are also sampled to compare
against the depth of the sample coordinates and thus correct for occlusion errors.
If both samples are valid, the maximum of the two is chosen to allow for the halo
effect of scattering around the edges of the object without darkening edges where
there is no back lighting. The contribution of the albedo map to the accumulated
light values is removed by division and then reapplied as a linear interpolation
of the base and top albedo maps to account for ambient occlusion by the fur.
The heightfield for the fur volume is sampled at a high frequency by applying
an arbitrary scale to the mesh UVs in the material. The smoothstep function is
used to fade out pixels in the current shell as the interpolation factor equals and
exceeds the values stored in the heightfield, thus individual strands of fur fade
out at different rates, creating the impression of subpixel detail (see Figure 6.20).

Figure 6.20. Shell pass (16 shells).
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e

Figure 6.21. Final image.

6.5 Conclusion

This article has described a series of techniques used to extend the range of
materials that can be presented in a deferred rendering environment, particularly
a combination of these techniques that can be used to render aesthetically pleasing
fur at real-time speeds.
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Large-Scale Terrain Rendering
for Outdoor Games

Ferenc Pintér

7.1 Introduction

Visualizing large scale (above 10 km?) landscapes on current generation consoles
is a challenging task, because of the restricted amount of memory and processing
power compared with high-end PCs. This article describes in detail how we
approach both limitations and deal with the different content creation, rendering,
and performance issues. After a short explanation of the decisions and trade-
offs we made, terrain-content generation and rendering methods will follow. We
conclude by listing the pros and cons of our technique, measured implementation
performance, as well as possible extensions.

Figure 7.1. In-game screenshot of a 10 km? canyon area. (© 2010 Digital Reality.)
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A variety of industry solutions exist for both representing terrain geometry
and texturing its surface. Our choices were made with regard to our requirements,
which were: a small memory footprint (<20 MB), good rendering performance
(<6 ms), easy in-editor (re)painting without UV distortions, and large view dis-
tances (>10km), as in Figure 7.1.

7.1.1 Geometry Choice

We opted for mesh-based terrain, which allows for steep, distortion-free slopes and
vastly different resolution levels, with complete artist control (as compared with
heightfields with vertex-texture fetching, or render to vertex buffer (R2VB) [An-
dersson 07]-heightfields, which, however, can provide in-editor/runtime modifi-
able geometry). We also chose to store the compressed vertex and triangle data
instead of performing on-the-fly mesh construction and the caching, which is
sometimes found in planetary rendering engines [Brebion 08, Kemen 08]. Our
scale is smaller, and once again we opted for greater artist flexibility.

7.1.2 Texturing Choice

Our solution is based on per-pixel splatting from tiling atlas texture elements,
thus it reuses texels over the entire surface of the terrain. This is similar to tech-
niques implemented in other games (Battlestations: Pacific [Eidos 08], Figure 7.2,
and Infinity [Brebion 08]), but instead of using just height- and slope-based rules
with additional noise to determine the terrain type at any given pixel, it also re-
lies on precomputed data. This way our artists can paint over the entire terrain,
even on uniquely modeled mesh objects. Since the terrain’s UVs are unique and
relaxed, no distortion appears, even on vertical or slightly overhanging walls.

This method has two main advantages over streaming ultrahigh resolution
maps [van Waveren 09, Mittring 08, Barrett 08, van Rossen 08]. First, the re-
quired storage space is very low (<15 MB). Second, it does not saturate streaming
or bus transfer bandwidth. Instant switching between cameras located far from
each other is also solved due to the runtime evaluation of shading and texturing.
Another advantage is complete artist control of the texturing, which might be
more difficult when relying only on procedural or fractal-based methods [Bre-
bion 08, Kemen 08, Eidos 08]. On the other hand, not using unique texture data
does result in less variance, though we did not find this to be noticeable.

Extending our asset creation and rendering by using procedural techniques
proved to be invaluable. The techniques helped create the basis for various out-
door art assets (foliage, detail object, and terrain texturing) through subtle pa-
rameter changes, thus saving time. They also cut memory and bandwidth usage
too, emphasizing the fact that GPUs are much faster at doing math than fetching
from memory.
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Figure 7.2. Screenshot from Battlestations: Pacific, released on XBOX 360 and PC.
(© 2008 Square Enix Europe.)

7.2 Content Creation and Editing
7.2.1 Workflow

Our terrain assets originate from multiple DCC tools. Artists create the base
terrain layout and simple mesh objects with which designers can test level func-
tionality. After this first phase is complete, the base terrain model gets greater
morphological and soil-type detail using erosion tools. Artists can iteratively re-
touch the detailed models if needed, and can also bake ambient occlusion (AO)
values to the mesh vertices. Parallel to advancing in geometry, textures repre-
senting different soil-types get authored and used by the terrain shader. The
following steps happen in our in-game editor, after the meshes have been im-
ported from COLLADA format. During this import step, the base terrain gets
split into smaller chunks, and level-of-detail (LOD) levels are generated. We also
use smaller, paintable, and reuseable objects for rock formations, referred to as
mesh objects later on. The next step in content creation is additional manual
painting for both the base terrain and the mesh objects in the game editor. The
finest detail in soil-type information and color tinting is determined in this phase.
Finally, mesh and texture assets go through different compression paths for each
platform. The complete process is illustrated in Figure 7.3.
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Figure 7.3. Terrain content pipeline/art workflow. ((© 2010 Digital Reality.)

7.2.2  Determining Soil Type

Multiple approaches may be used to decide which soil type to apply to a given
region of the terrain. Since this information does not change during gameplay it
may be precomputed and stored offline.

7.2.3  Procedural Rules Stored in a Lookup Table

A lookup table (LUT) may be used to determine which terrain type shall occur
at different terrain slope and height values. The LUT can be stored as a two-
dimensional texture parameterized by terrain slope and height along the u and v
axes. Addressing the table at runtime requires using slope-height pairs, interpo-
lated data coming from the vertex shader [Eidos 08, Brebion 08]. Its advantage
is fast iteration times, and simple implementation, though it has its drawbacks
too. Because the LUT is applied globally to the terrain, it does not allow the
artists to have local control over the terrain’s texturing. Moreover, because the
LUT is completely decoupled from the position of terrain in the game world, we
cannot store local shading or color-tint information such as local soil types in it.
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We found these drawbacks too restricting, and chose to go with the approaches
listed below.

7.2.4 Procedural and Manual Painting Stored in a UV-Space Tilemap

Alternatively, we can use tile-index texture that covers the entire terrain and can
be sampled using the unique, relaxed UV. In our case, we used a 4-channel map,
encoding a color-tint value in three channels (to break repetitive patterns), and
the terrain-type index in the fourth (see Figure 7.4). This method has multiple
advantages over the first: it can be locally controlled by art needs, separate
regions within the map can be edited concurrently by multiple artists, and it can
also use procedural methods as its basis. The only drawback is that is uses a fixed
resolution for terrain-type data, but this never proved to be a problem for us.

Figure 7.4. Alpha channel of the painted 5122 tilemap, containing terrain-type info.
(© 2010 Digital Reality.)
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Figure 7.5. Editor-artist interface for painting the tilemap, red ring indicating brush
position. (© 2010 Digital Reality.)

Creating the tilemap is very intuitive. Its terrain-index part can be based on
either soil-type maps exported from many commercial terrain-generation/erosion
software programs (though you might need to convert the world-space type values
to relaxed UV space), or global terrain height- and slope-based rules, enhanced
by noise.

The base for the color part can again originate from DCC tools, from shadow
maps, or can be simply desaturated color noise. Over this base, artists can
easily paint or modify the chosen terrain-type values using simple brushes, and
temporary layers. Ray casting is used to determine which tilemap texels the
brush touches. The editor interface (see Figure 7.5) can also support multiple
undo-levels (by caching paint commands), soft brushes, or paint limitations (to
allow painting only over regions within desired height/slope limits).

At runtime, hardware bilinear filtering of the tilemap indices automatically
solves type-blending problems present in the LUT method, and different nearby
tile-index values will get smoothly interpolated over the terrain pixels. We can
also compress the tilemap using DXT5 texture compression. Since this format
compresses the three color channels independently from the alpha channel, we
can keep most of the index resolution while shrinking memory usage.

Note: Suppose we have sand encoded as tile-index value 0, grass as 1, and rock
as 2. Now, due to filtering, rock can never be visible near sand, but only through
an intermediate grass area. This can be avoided by duplicating types with
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different neighbors in the atlas, backed by a bit more complex atlas-sampling
math. We did not need this, however.

7.2.5 Procedural and Manual Painting Stored in Mesh Vertices

We can also detach geometry containing holes, overhangs, twists, or other hard-
to-relax regions from the general terrain mesh, or create any geometry and use it
as a paintable terrain-mesh object. Apart from better fitting into the base terrain,
we can spare quite a lot of texture memory by using shared atlases and a slightly
modified terrain shader here too, instead of unique maps. Artists can UV-map
the meshes using arbitrary methods and DCC tools, producing a nonoverlapping
unique UV, with seams and connections moved to less noticeable areas.

DCC tools do not have direct view of relative asset extents and spatial pro-
portions inside the game. To help artists with UV mapping and proper tiling
factors, we multiply the base UV during editor import with a constant value.
This value is determined by the total geometrical surface of the object divided by
its total UV-space surface. This way, tiling matches perfectly on all objects and
the terrain, no matter how much UV space is used inside the 0 ...1 region for
the given object in the DCC tool. Another feature implemented to help artists
is that which allows already-painted mesh objects to reuse their respective paint-
ings if their geometry gets modified again in the DCC tools. This functionality
stores the painting of every object also as a texture that gets saved from the
editor automatically, along with mesh data. It is used only in the editor, and its
texels contain UV and soil-type information, one texel for every vertex. Reapply-
ing paintings is merely finding a UV match between the vertices of the modified
mesh, and the saved texels. If the majority of vertices kept their original UVs
after the DCC mesh modification, most painting information can be reused.

After geometry authoring is done for a mesh, its procedural and manual paint-
ing follows in the editor. Manual painting works similarly to painting the base
terrain (illustrated in Figure 7.6). By using ray casting, we can figure out which
object, thus which shared-mesh vertex buffer to modify, and with a simple vertex-
distance-based spherical three-dimensional brush, artists can encode soil-type in-
formation into the mesh vertices. (This can sometimes be hidden for free in an
unused byte of a compressed vertex, like in the w component of position or normal
data.)

Soil-type continuity where the mesh objects meet the terrain is almost as im-
portant as matching normals near the connection region. Because mesh paintings
are shared between instances of the same object, and terrain painting is unique
due to the tilemap, the latter can be easily retrofitted to match the objects at
the connection region. Also, by using a second pair of diffuse/normal atlases for
the mesh objects, (containing only a few redundant tiles from the main terrain
atlas for connections) greater soil variance can be achieved. Because of complete
UV control, we can use tiles that have dominant directional features too.
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Figure 7.6. Editor-artist interface for painting mesh objects, red sphere indicating brush
volume. ((© 2010 Digital Reality.)

On the base terrain, UV relaxing causes tiles to be mapped in different direc-
tions based on which side of a hill they are on—UYV derivatives change directions
with respect to world-space coordinates—thus tiles with heavy direction depen-
dency might be used properly on only one side of a hill, or by putting multiple
rotated versions in the atlas.

If required, color-tint or luminance information such as AO can also be painted
(or computed in-editor) and baked into mesh vertices.

7.3 Runtime Shading

The base of the runtime rendering solution is texture splatting on a per-pixel
level. Using some per-pixel input data, and a unique, relaxed UV channel, the
shader can sample different tiling-terrain textures, and blend among them.

To reduce the count of textures the shader needs to sample from, these tiling
textures—corresponding to different soil types—can be packed into textures at-
lases (see Figure 7.7), or texture arrays on XBOX 360 and DX10/11 architec-
tures [Brebion 08, Wloka 03]. Care shall be taken when generating miplevels for
the atlas though, as the individual tile-mipmap texels must not get mixed with
their neighbors. Creating the compressed and mipmapped tiles first, and then
packing them to an atlas is one solution. Anisotropic filtering also becomes more
complex when using atlases [van Waveren 09].

If we choose the atlas method, we want the tiling to wrap around in a smaller
UV region (hence this is sometimes referred to as subtiling), say 0 ...0.25 if
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Figure 7.7. A packed 2048 diffuse-texture atlas, containing 16 different terrain types.
(© 2010 Digital Reality.)

we have a 4 x 4 atlas. This also means that we cannot rely on hardware tex-
ture wrapping; this must be performed manually in the shader. As we will see,
this causes problems in hardware miplevel selection (texture arrays do not need
these corrections, however). For this to work correctly, one must know how the
hardware calculates which mip levels to use. GPUs use the first derivatives of
screen-space texture coordinates in any given 2 x 2 pixel block and the dimensions
of the texture itself to determine the pixel-to-texel projection ratio, and thus find
the appropriate miplevel to use. To access a tile from the atlas for any pixel, we
need to emulate the hardware wrapping for the tile. By using the frac() hlsl
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intrinsic, we break the screenspace UV derivative continuity for the pixel quads
at tile borders. Since the derivatives will be very large, the hardware will pick the
largest miplevel from the chain, which in turn results in a one-pixel-wide seam
whenever the subtiling wraps around. Fortunately, we have many options here:
we can balance the GPU load between texture filtering, arithmetic logic unit
(ALU) cost, shader thread counts, texture stalls, and overall artifact visibility.

The safest but slowest option is to calculate the mip level manually in the
shader, right before sampling from the atlas [Wloka 03, Brebion 08]. This pro-
duces the correct result, but the extra ALU cost is high since we need to issue
gradient instructions that require extra GPU cycles, and textures need to be sam-
pled with manually specified mip levels, which reduces the sampling rate on many
architectures. As a side effect, texture stalls begin to appear in the pipeline. We
can use multiple methods to shorten these stalls. Some compilers and platforms
allow for explicitly setting the maximum number of general purpose GPU regis-
ters (GPRs) a compiled shader can use. (They try to optimize the shader code
to meet the specified limit, sometimes by issuing more ALUs to move temporary
shader data around with fewer registers.) If a shader uses fewer GPRs, more
shading cores can run it in parallel, thus the number of simultaneous threads
increases. Using more threads means that stalling all of them is less probable.
On systems using unified shader architectures, one can also increase pixel shader
GPR count by reducing the available GPRs for the vertex shader. Some platforms
also have shader instructions that explicitly return the mip level the hardware
would use at a given pixel, thus saving you from having to compute it yourself in
a shader. Using dynamic branching and regular hardware mipmapping on pixel
quads far from the frac() region as speedup might also prove useful.

Branch performance might degrade for faraway fragments though, where tiling
UV values and derivatives vary fast, and pixels in the same GPU-pixel-processing
vector must take different branches. Branching might be disabled for distant
fragments, since stall problems are also most relevant on up close terrain, which
fills most screen area and uses the first few mip levels.

One option for estimating the correct mip level is to construct a texture that
encodes the mip index in the texture itself (for example, the first mip level encodes
“0” in all its texels, the second mip level encodes “1” in all its texels, etc.). This
texture should have the same dimensions as the atlas tile. You can then use a
normal texture fetch to sample this texture and allow the hardware to choose the
appropriate mip level. The value of the texel that is fetched will indicate which
mip level was chosen by the hardware and then can be used to issue a tex2dlod
instruction on the atlas tile. Dynamic branching is a viable option here too.

We chose to go with a third option, which is the fastest, but does result
in some minor artifacts which we deemed acceptable. We simply sample using
regular tex2D, but we generate only the first four mipmaps of the mip chain. This
means that the GPU has to filter a bit more, but our measurements have shown
that only 7-10% of texels fall into the larger miplevels, thus the performance
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Figure 7.8. Screenshot from the canyon, with 100x UV tiling factor (note the lack of
UV distortions on walls). (© 2010 Digital Reality.)

impact is considered to be minimal compared to using reduced-speed tex2Dlods.
The visual artifacts are minimized because the seam will always use the fourth
mip level, and colors differ much less between the first and last levels. We also
switched to texture atlases of 1 x 16 dimensions instead of 4 x 4, thus we can
use hardware texture wrapping for one direction, halving mip level errors arising
from using frac (), while also using fewer ALU operations to address the atlases.

At this point, we have diffuse and normal atlases ready to be sampled in
the shader. To improve quality, we blend between two nearby tiles—using the
fractional part of the interpolated tile index—by reading twice from the same
atlas, with respective UV offsets. Shading the terrain and the painted meshes is
identical, and is based on simple per-pixel lambertian diffuse, and hemispherical
ambient terms. Shadow contribution is composed of a lookup into a precomputed
and blurred static-shadow map, cross-fading with a cascaded dynamic and blurred
exponential shadow map (ESM), and AO baked into vertices. There are many
ways to experiment with more complex lighting models, however, correctly set
atmospheric settings, fog, high dynamic range (HDR), fake scattering [Quilez 09],
and soil-type maps can provide a solid impression already. See Figure 7.8 for
reference.

For your convenience, the runtime per-pixel, texture-splatting shader code is
listed in Listing 3.1. Note that editor-mode paint layers, brush-ring-overlay paint
functionality, vertex unpacking, shadows, and fog calculations are omitted for
clarity.
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//Runtime terrain shader with tilemap-based per-pixel
//splatting using atlases (tangent-space lighting).

static const float TILEMAP_SIZE= 512.0f;
static const float TILES_IN_ROW= 4.0f;
static const float MAX_TILE_VALUE= TILES_IN_ROW*TILES_IN_ROW-1;

struct sVSInput

{
float4 Position : POSITION;
float3 Normal : NORMAL;
float2 UV : TEXCOORDO;
float3 Tangent : TEXCOORD1;

I8

struct sVSOutput

{
float4 ProjPos : POSITION;
float2 UV : TEXCOORDO;
float3 Normal : TEXCOORD1;
float3 TgLightVec : TEXCOORD2;

i

float4x3 cWorldMatrix;

float4x4 cViewProjMatrix;

float cUVmultiplier; //Terrain-texture tiling factor.
float3 cCameraPos;

float3 cSunDirection;

float3 cSunColor;

//Lighting is in tangent space.
float3x3 MakeWorldToTangent (float3 iTangent, float3 iNormal)

{
float3x3 TangentToLocal=
float3x3(iTangent, cross(iNormal,iTangent), iNormal);
float3x3 TangentToWorld=
mul (TangentToLocal ,(float3x3)cWorldMatrix);
float3x3 WorldToTangent = transpose(TangentToWorld);
return WorldToTangent;
}

sVSOutput vpmain(sVSInput In)
{
sVSOutput Out;

float3 WorldPos= mul(In.Position, cWorldMatrix);
Out.ProjPos= mul (float4(WorldPos,1), cViewProjMatrix);

Out.Normal= mul (In.Normal.xyz, (float3x3)cWorldMatrix);

Out .UV= In.UV * cUVmultiplier;
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float3x3 WorldToTangent=
MakeWorldToTangent (In.Tangent, In.Normal);
Out.TgLightVec= mul (cSunDirection.xyz, WorldToTangent);
return Out;
}

sampler2D DiffAtlas;
sampler2D NormAtlas;
sampler2D TileTable;

float GetMipLevel(float2 iUV, float2 iTextureSize)
{
float2 dx= ddx(iUV * iTextureSize.x);
float2 dy= ddy(iUV * iTextureSize.y);
float d= max( dot(dx, dx), dot(dy, dy) );
return 0.5 * log2(d);
}

float4 fpmain(sVSOutput In) : COLOR

{
float4 TileMapTex= tex2D(TileTable, In.UV/cUVmultiplier);
float3 ColorTint= TileMapTex.xyz;
float TileIndex= TileMapTex.w * MAX_TILE_VALUE;

float MIP= GetMipLevel (In.UV, TILEMAP_SIZE.xx);

float2 fracUV = frac(In.UV);
float2 DiffCorrectUV= fracUV/4.0f;

//Blend types and blend ratio.
float type_A = floor(TileIndex);
float type_B ceil(TileIndex);
float factor = TileIndex - type_A;

float tmp = floor(type_A/4);

float2 UV_A = DiffCorrectUV + float2(type_A-tmp*4,tmp)/4;
tmp = floor (type_B/4);

float2 UV_B = DiffCorrectUV + float2(type_B-tmp*4,tmp)/4;

// 2 Lookups needed, for blending between layers.
float4 colA= tex2Dlod(DiffAtlas, float4 (UV_A,0,MIP));
float4 colB= tex2Dlod(DiffAtlas, float4(UV_B,0,MIP));
float4 DiffuseColor= lerp(colA, colB, factor);

float4 normA= tex2Dlod (NormAtlas, float4 (UV_A,0,MIP));
float4 normB= tex2Dlod (NormAtlas, float4(UV_B,0,MIP));

float4 normtex= lerp(normA, normB, factor);

//Extract normal map.
float3 norm= 2*(normtex.rgb-0.5);
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float3 tgnormal= normalize (norm);

float NdotL=

saturate (dot (tgnormal, normalize (In.TgLightVec)));
float3 SunDiffuseColor= NdotL * cSunColor;
float3 Albedo= DiffuseColor.xyz * ColorTint * 2;
float3 AmbientColor= 0.5;

float3 LitAlbedo= Albedo * (AmbientColor + SunDiffuseColor);
return float4(LitAlbedo ,1);

Listing 7.1. Simplified runtime shaders including manual mipmap computation.

7.4 Performance

The system load for rendering the base terrain mesh spanning a 10 km? area,
and consisting of 600 k triangles is 14 MB memory, and 6 ms frame time, on
XBOX 360. This includes geometry vertex and index data, LODs, diffuse, normal,
shadow, and terrain type maps, while not using any streaming bandwidth. To
reach the desired rendering time and memory footprint, a couple of optimizations
are required.

To allow using 16-bit indices in the triangle list, the terrain had to be sliced
into blocks no larger than 65 k vertices, during COLLADA import. Using blocks
with <1 km? area also helps our static KD-tree based culling. Balancing between
better culling and fewer draw calls can be done by adjusting block count and
block size. LODs are also generated at import time, since they are essential to
reduce vertex load, and also keep the pixel quad efficiency high. If the LODs
are generated by skipping vertices, only index data needs to be extended by
a small amount (say, 33%, if each consecutive level contains a quarter of the
previous version, with regard to triangle count), and each new LOD can refer
to the original, untouched vertex buffer. Keeping silhouettes and vertices at
block boundaries regardless of LOD are important in order to prevent holes from
appearing in places where differed LODs meet. To help pre- and post-transform
vertex and index caches, vertex and index reordering is also done at the import
phase.

Vertex compression is also heavily used to reduce the required amount of
memory and transfer bandwidth. We can store additional information in the
vertices. AO and soil-type indices are valid choices, but color-tint values, shadow
terms, or bent normals for better shading are still possible.

Texture atlases are also compressed. We found atlases of 4 x 4 5122 tiles
to contain enough variation and resolution too. The diffuse atlas can use the
DXT1 format, while the normal atlas can use better, platform-specific 2-channel
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compressed formats where available. The tilemap can also be compressed to
DXT5, keeping most information of the tile indices in the alpha channel, while
heavily compressing color-tint data. The static shadow map can also be com-
pressed to DXT1, or luminance of multiple shadow texels can be packed into one
texel of a two-channel map. (ATTIN (BC4/DXT5A), ATI2N (BC5/3Dc), DXN,
and CTX1 formats are easy choices.) Using floating-point depth buffers and
depth pre-pass for rejecting pixels, and occlusion queries or conditional rendering
to entirely skip draw calls can also prove to be helpful.

7.5 Possible Extensions

Many aspects of the described system can be improved or extended. Some of the
methods listed below are general improvements, some are platform specific, while
some trade flexibility for faster rendering or less resource usage.

Heightmap-based geometry can provide a more compact, though computa-
tionally more expensive representation of the terrain. Representing steep slopes
without texture distortions might be possible if we store three component-position
offsets of vertices of relaxed UV space grid, like mesh textures. More aggres-
sive vertex compression is also still possible, even without using heightmaps.
Using more blocks of terrain with smaller block sizes, or using triplanar map-
ping [Geiss 07] might yield better compression opportunities.

Texturing can be enhanced in multiple ways, though most of them put more
texture fetch and filtering burden on the GPU. Using a large tiling factor can
either result in visible tiling of soil types, or not having the ability to visualize
larger terrain features, originating from the atlas. A solution is to sample the
atlases twice, with two very different tiling factors, and cross fade their color
and normal data. This enhances large details in the far regions, lending unique
character to the terrain, while it provides detail up close where tiling is less visible.
Large details dissolve as the camera moves close, but this is barely noticeable.
Figure 7.9 illustrates the concept.

Another option is reducing the tiling factor, and blending in desaturated detail
textures up close. This allows a choice among different detail maps, based on
the general terrain soil-type. Using noise (defined by interpolated height and
slope data) to perturb the soil-type on per-pixel level in the shader with ALU
instructions is also a possibility to reduce tiling or add up close detail. The
inverse of this method is also viable, and has been the de facto standard for
terrain texturing for many years. We can stream a large, unique, diffuse, and
normal map for far details, and blend in the per-pixel splatting as close-up or
mid-range detail. Transition regions between different soil types can also be
enhanced by using blend maps, which can be efficiently packed into the alpha
channel of the diffuse atlas [Hardy 09]]. Yet another option is to use more soil-
type textures in the atlas to give more variance. Soil-type information can also
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Figure 7.9. Screenshot of a canyon wall, with distance-dependant atlas tiling factor.
(© 2010 Digital Reality.)

drive collision-particle generation, or procedural placement of detail object and
foliage [Andersson 07].

We can use ambient aperture lighting to give bump maps some shadow-
ing [Persson 06], and image-based ambient and diffuse lighting using bent nor-
mals. Specular reflections can also be added where surfaces are wet, for example,
riverbanks [Geiss 07]. Atmospheric scattering with volumetric light/fog (or fak-
ing it [Quilez 09]) is also an option to enhance realism of the rendered terrain.
Enhancing normal mapping by using more complex parallax effects might also be
feasible.

Finally, caching previously computed fragment data (composed albedo or final
normal data), either in screen space, or around the camera in relaxed UV space
can speed up rendering [Herzog et al. 10].
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Practical Morphological
Antialiasing

Jorge Jimenez, Belen Masia, Jose |. Echevarria,
Fernando Navarro, and Diego Gutierrez

The use of antialiasing techniques is crucial when producing high quality graphics.
Up to now, multisampling antialiasing (MSAA) has remained the most advanced
solution, offering superior results in real time. However, there are important
drawbacks to the use of MSAA in certain scenarios. First, the increase in pro-
cessing time it consumes is not negligible at all. Further, limitations of MSAA
include the impossibility, in a wide range of platforms, of activating multisam-
pling when using multiple render targets (MRT), on which fundamental techniques
such as deferred shading [Shishkovtsov 05, Koonce 07] rely. Even on platforms
where MRT and MSAA can be simultaneously activated (i.e., DirectX 10), imple-
mentation of MSAA is neither trivial nor cost free [Thibieroz 09]. Additionally,
MSAA poses a problem for the current generation of consoles. In the case of the
Xbox 360, memory constraints force the use of CPU-based tiling techniques in
case high-resolution frame buffers need to be used in conjunction with MSAA;
whereas on the PS3 multisampling is usually not even applied. Another drawback
of MSAA is its inability to smooth nongeometric edges, such as those resulting
from the use of alpha testing, frequent when rendering vegetation. As a result,
when using MSAA, vegetation can be antialiased only if alpha to coverage is
used. Finally, multisampling requires extra memory, which is always a valuable
resource, especially on consoles.

In response to the limitations described above, a series of techniques have im-
plemented antialiasing solutions in shader units, the vast majority of them being
based on edge detection and blurring. In S.T.A.L.K.E.R. [Shishkovtsov 05], edge
detection is performed by calculating differences in the eight-neighborhood depth
values and the four-neighborhood normal angles; then, edges are blurred using
a cross-shaped sampling pattern. A similar, improved scheme is used in Tabula
Rasa [Koonce 07], where edge detection uses threshold values that are resolution
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independent, and the full eight-neighborhood of the pixel is considered for dif-
ferences in the normal angles. In Crysis [Sousa 07], edges are detected by using
depth values, and rotated triangle samples are used to perform texture lookups
using bilinear filtering. These solutions alleviate the aliasing problem but do not
mitigate it completely. Finally, in Killzone 2, samples are rendered into a double
horizontal resolution G-buffer. Then, in the lighting pass, two samples of the
G-buffer are queried for each pixel of the final buffer. The resulting samples are
then averaged and stored in the final buffer. However, this necessitates executing
the lighting shader twice per final pixel.

In this article we present an alternative technique that avoids most of the prob-
lems described above. The quality of our results lies between 4z and 8x MSAA
at a fraction of the time and memory consumption. It is based on morphological
antialiasing [Reshetov 09], which relies on detecting certain image patterns to
reduce aliasing. However, the original implementation is designed to be run in a
CPU and requires the use of list structures that are not GPU-amenable.

Since our goal is to achieve real-time practicality in games with current main-
stream hardware, our algorithm implements aggressive optimizations that provide
an optimal trade-off between quality and execution times. Reshetov searches for
specific patterns (U-shaped, Z-shaped, and L-shaped patterns), which are then
decomposed into simpler ones, an approach that would be impractical on a GPU.
We realize that the pattern type, and thus the antialiasing to be performed, de-
pends on only four values, which can be obtained for each edge pixel (edgel) with
only two memory accesses. This way, the original algorithm is transformed so
that it uses texture structures instead of lists (see Figure 8.1). Furthermore, this
approach allows handling of all pattern types in a symmetric way, thus avoiding
the need to decompose them into simpler ones. In addition, precomputation of

T [T

Blending weights
texture

Original image Edges texture Antialiased image
Figure 8.1. Starting from an aliased image (left), edges are detected and stored in the
edges texture (center left). The color of each pixel depicts where edges are: green pixels
have an edge at their top boundary, red pixels at their left boundary, and yellow pixels
have edges at both boundaries. The edges texture is then used in conjunction with the
precomputed area texture to produce the blending weights texture (center right) in the
second pass. This texture stores the weights for the pixels at each side of an edgel in the
RGBA channels. In the third pass, blending is performed to obtain the final antialiased
image (right).
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certain values into textures allows for an even faster implementation. Finally,
in order to accelerate calculations, we make extensive use of hardware bilinear
interpolation for smartly fetching multiple values in a single query and provide
means of decoding the fetched values into the original unfiltered values. As a
result, our algorithm can be efficiently executed by a GPU, has a moderate mem-
ory footprint, and can be integrated as part of the standard rendering pipeline of
any game architecture.

Some of the optimizations presented in this work may seem to add complexity
at a conceptual level, but as our results show, their overall contribution makes
them worth including. Our technique yields image quality between 4x and 8z
MSAA, with a typical execution time of 3.79 ms on Xbox 360 and 0.44 ms on a
NVIDIA GeForce 9800 GTX+, for a resolution of 720p. Memory footprint is 2x
the size of the backbuffer on Xbox 360 and 1.5z on the 9800 GTX+. According
to our measurements, 8¢ MSAA takes an average of 5 ms per image on the same
GPU at the same resolution, that is, our algorithm is 11.80x faster.

In order to show the versatility of our algorithm, we have implemented the
shader both for Xbox 360 and PC, using DirectX 9 and 10 respectively. The code
presented in this article is that of the DirectX 10 version.

8.1 Overview

The algorithm searches for patterns in edges which then allow us to reconstruct
the antialiased lines. This can, in general terms, be seen as a revectorization of
edges. In the following we give a brief overview of our algorithm.

First, edge detection is performed using depth values (alternatively, lumi-
nances can be used to detect edges; this will be further discussed in Section 8.2.1).
We then compute, for each pixel belonging to an edge, the distances in pixels from
it to both ends of the edge to which the edgel belongs. These distances define
the position of the pixel with respect to the line. Depending on the location of
the edgel within the line, it will or will not be affected by the antialiasing pro-
cess. In those edges which have to be modified (those which contain yellow or
green areas in Figure 8.2 (left)) a blending operation is performed according to
Equation (8.1):

Cnew = (1 = @) - Cold + @ - Copp, (8.1)

where co1q is the original color of the pixel, copp is the color of the pixel on the
other side of the line, c¢pey is the new color of the pixel, and a is the area shown
in yellow in Figure 8.2 (left). The value of @ is a function of both the pattern
type of the line and the distances to both ends of the line. The pattern type is
defined by the crossing edges of the line, i.e., edges which are perpendicular to
the line and thus define the ends of it (vertical green lines in Figure 8.2). In order
to save processing time, we precompute this area and store it as a two-channel
texture that can be seen in Figure 8.2 (right) (see Section 8.3.3 for details).
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0 1 2 3 4

Figure 8.2. Antialiasing process (left). Color copp bleeds into co1a according to the area
a below the blue line. Texture containing the precomputed areas (right). The texture
uses two channels to store areas at each side of the edge, i.e., for a pixel and its opposite
(pixels (1,1) and (1,2) on the left). Each 9 x 9 subtexture corresponds to a pattern
type. Inside each of these subtextures, (u,v) coordinates encode distances to the left
and to the right, respectively.

The algorithm is implemented in three passes, which are explained in detail
in the following sections. In the first pass, edge detection is performed, yielding
a texture containing edges (see Figure 8.1 (center left)). In the second pass the
corresponding blending weight! (that is, value a) for each pixel adjacent to the
edge being smoothed is obtained (see Figure 8.1 (center right)). To do this, we
first detect the pattern types for each line passing through the north and west
boundaries of the pixel and then calculate the distances of each pixel to the
crossing edges; these are then used to query the precomputed area texture. The
third and final pass involves blending each pixel with its four-neighborhood using
the blending weights texture obtained in the previous pass.

The last two passes are performed separately to spare calculations, taking
advantage of the fact that two adjacent pixels share the same edgel. To do this,
in the second pass, pattern detection and the subsequent area calculation are
performed on a per-edgel basis. Finally, in the third pass, the two adjacent pixels
will fetch the same information.

Additionally, using the stencil buffer allows us to perform the second and third
passes only for the pixels which contain an edge, considerably reducing processing
times.

8.2 Detecting Edges

We perform edge detection using the depth buffer (or luminance values if depth
information is not available). For each pixel, the difference in depth with respect
to the pixel on top and on the left is obtained. We can efficiently store the edges

IThroughout the article blending weight and area will be used interchangeably.
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for all the pixels in the image this way, given the fact that two adjacent pixels
have a common boundary. This difference is thresholded to obtain a binary value,
which indicates whether an edge exists in a pixel boundary. This threshold, which
varies with resolution, can be made resolution independent [Koonce 07]. Then,
the left and top edges are stored, respectively, in the red and green channels of
the edges texture, which will be used as input for the next pass.

Whenever using depth-based edge detection, a problem may arise in places
where two planes at different angles meet: the edge will not be detected because
of samples having the same depth. A common solution to this is the addition of
information from normals. However, in our case we found that the improvement
in quality obtained when using normals was not worth the increase in execution
time it implied.

8.2.1 Using Luminance Values for Edge Detection

An alternative to depth-based edge detection is the use of luminance information
to detect image discontinuities. Luminance values are derived from the CIE XYZ
(color space) standard:

L =0.2126- R+ 0.7152 - G + 0.0722 - B.

Then, for each pixel, the difference in luminance with respect to the pixel on top
and on the left is obtained, the implementation being equivalent to that of depth-
based detection. When thresholding to obtain a binary value, we found 0.1 to be
an adequate threshold for most cases. It is important to note that using either
luminance- or depth-based edge detection does not affect the following passes.

Although qualitywise both methods offer similar results, depth-based detec-
tion is more robust, yielding a more reliable edges texture. And, our technique
takes, on average, 10% less time when using depth than when using luminance
values. Luminance values are useful when depth information cannot be accessed
and thus offer a more universal approach. Further, when depth-based detection
is performed, edges in shading will not be detected, whereas luminance-based
detection allows for antialias shading and specular highlights. In general terms,
one could say that luminance-based detection works in a more perceptual way be-
cause it smoothes visible edges. As an example, when dense vegetation is present,
using luminance values is faster than using depth values (around 12% faster for
the particular case shown in Figure 8.5 (bottom row)), since a greater number of
edges are detected when using depth values. Optimal results in terms of quality,
at the cost of a higher execution time, can be obtained by combining luminance,
depth, and normal values.

Listing 8.1 shows the source code of this pass, using depth-based edge detec-
tion. Figure 8.1 (center left) is the resulting image of the edge-detection pass,
in this particular case, using luminance-based detection, as depth information is
not available.
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float4 EdgeDetectionPS(float4 position: SV_POSITION,
float2 texcoord: TEXCOORDO): SV_TARGET {

float D = depthTex.Samplelevel (PointSampler,
texcoord, 0);
float Dleft = depthTex.SamplelLevel (PointSampler,
texcoord, 0, -int2(1, 0));
float Dtop = depthTex.SamplelLevel (PointSampler,
texcoord, 0, -int2(0, 1));

// We need these for updating the stencil buffer.
float Dright = depthTex.SamplelLevel(PointSampler,

texcoord, 0, int2(1, 0));
float Dbottom = depthTex.SamplelLevel (PointSampler,

texcoord, 0, int2(0, 1));

float4 delta = abs(D.xxxx -
float4 (Dleft, Dtop, Dright, Dbottom));
float4 edges = step(threshold.xxxx, delta);

if (dot(edges, 1.0) == 0.0) {
discard;

}

return edges;

Listing 8.1. Edge detection shader.

8.3 Obtaining Blending Weights

In order to calculate the blending weights we first search for the distances to the
ends of the line the edgel belongs to, using the edges texture obtained in the
previous pass (see Section 8.3.1). Once these distances are known, we can use
them to fetch the crossing edges at both ends of the line (see Section 8.3.2). These
crossing edges indicate the type of pattern we are dealing with. The distances to
the ends of the line and the type of pattern are used to access the precalculated
texture (see Section 8.3.3) in which we store the areas that are used as blending
weights for the final pass.

As mentioned before, to share calculations between adjacent pixels, we take
advantage of the fact that two adjacent pixels share the same boundary, and
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float4 BlendingWeightCalculationPS(
float4 position: SV_POSITION,
float2 texcoord: TEXCOORDO): SV_TARGET {
float4 weights = 0.0;

float2 e = edgesTex.SamplelLevel (PointSampler,
texcoord, 0).rg;

[branch]
if (e.g) { // Edge at north.
float2 d = float2(SearchXLeft (texcoord),
SearchXRight (texcoord));

// Instead of sampling between edges, we sample at -0.25,
// to be able to discern what value each edgel has.
float4 coords = mad(float4(d.x, -0.25, d.y + 1.0, -0.25),
PIXEL_SIZE.xyxy, texcoord.xyxy);

float el = edgesTex.Samplelevel(LinearSampler,

coords.xy, 0).r;
float e2 = edgesTex.SampleLevel(LinearSampler,

coords.zw, 0).r;
weights.rg = Area(abs(d), el, e2);

}

[branch]
if (e.r) { // Edge at west.
float2 d = float2(SearchYUp(texcoord),
SearchYDown (texcoord));

float4 coords = mad(float4(-0.25, d.x, -0.25, d.y + 1.0),
PIXEL_SIZE.xyxy, texcoord.xyxy);
float el = edgesTex.Samplelevel(LinearSampler,
coords.xy, 0).g;
float e2 = edgesTex.Samplelevel(LinearSampler,
coords.zw, 0).g;
weights.ba = Area(abs(d), el, e2);
}

return weights;

}

Listing 8.2. Blending weights calculation shader.
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we perform area calculation on a per-edgel basis. However, even though two
adjacent pixels share the same calculation, the resulting a value is different for
each of them: only one has a blending weight a, whereas for the opposite one, a
equals zero (pixels (1,2) and (1, 1), respectively, in Figure 8.2). The one exception
to this is the case in which the pixel lies at the middle of a line of odd length
(as pixel (2,1) in Figure 8.2); in this case both the actual pixel and its opposite
have a nonzero value for a. As a consequence, the output of this pass is a texture
which, for each pixel, stores the areas at each side of its corresponding edges
(by the areas at each side we refer to those of the actual pixel and its opposite).
This yields two values for north edges and two values for west edges in the final
blending weights texture. Finally, the weights stored in this texture will be used
in the third pass to perform the final blending. Listing 8.2 shows the source code
of this pass; Figure 8.1 (center right) is the resulting image.

8.3.1 Searching for Distances

The search for distances to the ends of the line is performed using an itera-
tive algorithm, which in each iteration checks whether the end of the line has
been reached. To accelerate this search, we leverage the fact that the informa-
tion stored in the edges texture is binary—it simply encodes whether an edgel
exists—and query from positions between pixels using bilinear filtering for fetch-
ing two pixels at a time (see Figure 8.3). The result of the query can be: a)
0.0, which means that neither pixel contains an edgel, b) 1.0, which implies an
edgel exists in both pixels, or ¢) 0.5, which is returned when just one of the two
pixels contains an edgel. We stop the search if the returned value is lower than
one.? By using a simple approach like this, we are introducing two sources of
inaccuracy:

1. We do not stop the search when encountering an edgel perpendicular to the
line we are following, but when the line comes to an end;

2. When the returned value is 0.5 we cannot distinguish which of the two
pixels contains an edgel.

Although an error is introduced in some cases, it is unnoticeable in practice—
the speed-up is considerable since it is possible to jump two pixels per iteration.
Listing 8.3 shows one of the distance search functions.

In order to make the algorithm practical in a game environment, we limit
the search to a certain distance. As expected, the greater the maximum length,
the better the quality of the antialiasing. However, we have found that, for the
majority of cases, distance values between 8 and 12 pixels give a good trade-off
between quality and performance.

2In practice we use 0.9 due to bilinear filtering precision issues.
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Figure 8.3. Hardware bilinear filtering is used when searching for distances from each
pixel to the end of the line. The color of the dot at the center of each pixel represents
the value of that pixel in the edges texture. In the case shown here, distance search of
the left end of the line is performed for the pixel marked with a star. Positions where
the edges texture is accessed, fetching pairs of pixels, are marked with rhombuses. This
allows us to travel twice the distance with the same number of accesses.

In the particular case of the Xbox 360 implementation, we make use of the
tfetch2D assembler instruction, which allows us to specify an offset in pixel
units with respect to the original texture coordinates of the query. This in-
struction is limited to offsets of —8 and 7.5, which constrains the maximum
distance that can be searched. When searching for distances greater than eight
pixels, we cannot use the hardware as efficiently and the performance is affected
negatively.

float SearchXLeft(float2 texcoord) {
texcoord -= float2(1.5, 0.0) * PIXEL_SIZE;
float e = 0.0;
// We offset by 0.5 to sample between edges, thus fetching
// two in a row.
for (int i = 0; i < maxSearchSteps; i++) {
e = edgesTex.Samplelevel (LinearSampler, texcoord, 0).g;
// We compare with 0.9 to prevent bilinear access precision
// problems.
[flatten] if (e < 0.9) break;
texcoord -= float2(2.0, 0.0) * PIXEL_SIZE;
}
// When we exit the loop without finding the end, we return
// -2 * maxSearchSteps.
return max(-2.0 * i - 2.0 * e, -2.0 * maxSearchSteps);

Listing 8.3. Distance search function (search in the left direction case).
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Figure 8.4. Examples of the four possible types of crossing edge and corresponding
value returned by the bilinear query of the edges texture. The color of the dot at
the center of each pixel represents the value of that pixel in the edges texture. The
rhombuses, at a distance of 0.25 from the center of the pixel, indicate the sampling
position, while their color represents the value returned by the bilinear access.

8.3.2 Fetching Crossing Edges

Once the distances to the ends of the line are calculated, they are used to obtain
the crossing edges. A naive approach for fetching the crossing edge of an end of
a line would be to query two edges. A more efficient approach is to use bilinear
filtering for fetching both edges at one time, in a manner similar to the way the
distance search is done. However, in this case we must be able to distinguish
the actual value of each edgel, so we query with an offset of 0.25, allowing us
to distinguish which edgel is equal to 1.0 when only one of the edges is present.
Figure 8.4 shows the crossing edge that corresponds to each of the different values
returned by the bilinear query.

8.3.3 The Precomputed Area Texture

With distance and crossing edges information at hand, we now have all the re-
quired inputs to calculate the area corresponding to the current pixel. As this is
an expensive operation, we opt to precompute it in a four-dimensional table which
is stored in a conventional two-dimensional texture (see Figure 8.2 (right)).> This
texture is divided into subtextures of size 9 x 9, each of them corresponding to a
pattern type (codified by the fetched crossing edges el and e2 at each end of the
line). Inside each of these subtextures, (u,v) coordinates correspond to distances
to the ends of the line, eight being the maximum distance reachable. Resolution
can be increased if a higher maximum distance is required. See Listing 8.4 for
details on how the precomputed area texture is accessed.

To query the texture, we first convert the bilinear filtered values el and e2 to
an integer value in the range 0..4. Value 2 (which would correspond to value 0.5
for el or e2) cannot occur in practice, which is why the corresponding row and
column in the texture are empty. Maintaining those empty spaces in the texture

3The code to generate this texture is available in the web material.
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#define NUM_DISTANCES 9
#define AREA_SIZE (NUM_DISTANCES * 5)

float2 Area(float2 distance, float el, float e2) {
// * By dividing by AREA_SIZE - 1.0 below we are
// implicitely offsetting to always fall inside a pixel.
// * Rounding prevents bilinear access precision problems.
float2 pixcoord = NUM_DISTANCES =

round (4.0 * float2(el, e2)) + distance;

float2 texcoord = pixcoord / (AREA_SIZE - 1.0);
return areaTex.SampleLevel (PointSampler, texcoord, 0).rg;

Listing 8.4. Precomputed area texture access function.

allows for a simpler and faster indexing. The round instruction is used to avoid
possible precision problems caused by the bilinear filtering.

Following the same reasoning (explained at the beginning of the section) by
which we store area values for two adjacent pixels in the same pixel of the final
blending weights texture, the precomputed area texture needs to be built on a
per-edgel basis. Thus, each pixel of the texture stores two a values, one for a
pixel and one for its opposite. (Again, a will be zero for one of them in all cases
with the exception of those pixels centered on lines of odd length.)

8.4 Blending with the Four-Neighborhood

In this last pass, the final color of each pixel is obtained by blending the actual
color with its four neighbors, according to the area values stored in the weights
texture obtained in the previous pass. This is achieved by accessing three posi-
tions of the blending weights texture:

1. the current pixel, which gives us the north and west blending weights;
2. the pixel at the south;
3. the pixel at the east.

Once more, to exploit hardware capabilities, we use four bilinear filtered accesses
to blend the current pixel with each of its four neighbors. Finally, as one pixel can
belong to four different lines, we find an average of the contributing lines. List-
ing 8.5 shows the source code of this pass; Figure 8.1 (right) shows the resulting
image.
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float4 NeighborhoodBlendingPS (
float4 position: SV_POSITION,
float2 texcoord: TEXCOORDO): SV_TARGET {
float4 topLeft = blendTex.SampleLevel (PointSampler,
texcoord, 0);
float right = blendTex.Samplelevel (PointSampler,
texcoord, O,
int2(0, 1)).g;
float bottom = blendTex.Samplelevel (PointSampler,
texcoord, O,
int2(1, 0)).a;
float4 a = float4(toplLeft.r, right, toplLeft.b, bottom);

float sum = dot(a, 1.0);

[branch]

if (sum > 0.0) {
float4 o = a * PIXEL_SIZE.yyxx;
float4 color = 0.0;

color = mad(colorTex.SamplelLevel (LinearSampler,

texcoord + float2( 0.0, -o.r), 0), a.r, color);
color = mad(colorTex.SampleLevel (LinearSampler,

texcoord + float2( 0.0, o.g), 0), a.g, color);
color = mad(colorTex.SamplelLevel (LinearSampler,

texcoord + float2(-o.b, 0.0), 0), a.b, color);
color = mad(colorTex.SamplelLevel (LinearSampler,

texcoord + float2( o.a, 0.0), 0), a.a, color);
return color / sum;
} else {
return colorTex.Samplelevel (LinearSampler, texcoord, 0);

Listing 8.5. Four-neighborhood blending shader.

8.5 Results

Qualitywise, our algorithm lies between 4x and 8x MSAA, requiring a memory
consumption of only 1.5z the size of the backbuffer on a PC and of 22 on Xbox
360.* Figure 8.5 shows a comparison between our algorithm, 8z MSAA, and
no antialiasing at all on images from Unigine Heaven Benchmark. A limitation
of our algorithm with respect to MSAA is the impossibility of recovering subpixel

4The increased memory cost in the Xbox 360 is due to the fact that two-channel render
targets with 8-bit precision cannot be created in the framework we used for that platform,
forcing the usage of a four-channel render target for storing the edges texture.
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Without antialiasing With our algorithm With 8z MSAA

Figure 8.5. Examples of images without antialiasing, processed with our algorithm, and
with 8¢ MSAA. Our algorithm offers similar results to those of 8¢ MSAA. A special
case is the handling of alpha textures (bottom row). Note that in the grass shown
here, alpha to coverage is used when MSAA is activated, which provides additional
detail, hence the different look. As the scene is animated, there might be slight changes
in appearance from one image to another. (Images from Unigine Heaven Benchmark
courtesy of Unigine Corporation.)
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Figure 8.6. Images obtained with our algorithm. Insets show close-ups with no
antialiasing at all (left) and processed with our technique (right). (Images from Fable
1T courtesy of Lionhead Studios.)
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Figure 8.7. More images showing our technique in action. Insets show close-ups with
no antialiasing at all (left) and processed with our technique (right). (Images from Fable
111 courtesy of Lionhead Studios.)
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Xbox 360 GeForce 9800 GTX+
Avg. Std. Dev. Avg. Std. Dev. Speed-up
Assassin’s Creed 4.37 ms 0.61 ms 0.55 ms 0.13 ms 6.31z*
Bioshock 3.44 ms 0.09 ms 0.37 ms 0.00 ms n/a
Crysis 3.92 ms 0.10 ms 0.44 ms 0.02 ms 14.80x
Dead Space 3.65 ms 0.45 ms 0.39 ms 0.03 ms n/a
Devil May Cry 4 3.46 ms 0.34 ms 0.39 ms 0.04 ms 5.75x
GTA IV 4.11 ms 0.23 ms 0.47 ms 0.04 ms n/a
Modern Warfare 2 4.38 ms 0.80 ms 0.57 ms 0.17 ms 2.48x*
NFS Shift 3.54 ms 0.35 ms 0.42 ms 0.04 ms 14.84x
Split/Second 3.85 ms 0.27 ms 0.46 ms 0.05 ms n/a
S.T.A.LK.E.R. 3.18 ms 0.05 ms 0.36 ms 0.01 ms n/a
Grand Average 3.79 ms 0.33 ms 0.44 ms 0.05 ms 11.80x

Table 8.1. Average times and standard deviations for a set of well-known commercial
games. A column showing the speed-up factor of our algorithm with respect to 8z
MSAA is also included for the PC/DirectX 10 implementation. Values marked with *
indicate 4x MSAA, since 8z was not available, and the grand average of these includes
values only for 8¢z MSAA.

features. Further results of our technique, on images from Fable III, are shown
in Figures 8.6 and 8.7. Results of our algorithm in-game are available in the web
material.

As our algorithm works as a post-process, we have run it on a batch of screen-
shots of several commercial games in order to gain insight about its performance
in different scenarios. Given the dependency of the edge detection on image
content, processing times are variable. We have noticed that each game has a
more or less unique “look-and-feel,” so we have taken a representative sample of
five screenshots per game. Screenshots were taken at 1280 x 720 as the typical
case in the current generation of games. We used the slightly more expensive
luminance-based edge detection, since we did not have access to depth informa-
tion. Table 8.1 shows the average time and standard deviation of our algorithm
on different games and platforms (Xbox 360/DirectX 9 and PC/DirectX 10),
as well as the speed-up factor with respect to MSAA. On average, our method
implies a speed-up factor of 11.80x with respect to 8z MSAA.

8.6 Discussion

This section includes a brief compilation of possible alternatives that we tried,
in the hope that it would be useful for programmers employing this algorithm in
the future.

Edges texture compression. This is perhaps the most obvious possible optimiza-
tion, saving memory consumption and bandwidth. We tried two different alterna-
tives: a) using 1 bit per edgel, and b) separating the algorithm into a vertical and
a horizontal pass and storing the edges of four consecutive pixels in the RGBA
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channels of each pixel of the edges texture (vertical and horizontal edges sepa-
rately). This has two advantages: first, the texture uses less memory; second, the
number of texture accesses is lower since several edges are fetched in each query.
However, storing the values and—to a greater extent—querying them later, be-
comes much more complex and time consuming, given that bitwise operations
are not available in all platforms. Nevertheless, the use of bitwise operations in
conjunction with edges texture compression could further optimize our technique
in platforms where they are available, such as DirectX 10.

Storing crossing edges in the edges texture. Instead of storing just the north and
west edges of the actual pixel, we tried storing the crossing edges situated at the
left and at the top of the pixel. The main reason for doing this was that we
could spare one texture access when detecting patterns; but we realized that by
using bilinear filtering we could also spare the access, without the need to store
those additional edges. The other reason for storing the crossing edges was that,
by doing so, when we searched for distances to the ends of the line, we could
stop the search when we encountered a line perpendicular to the one we were
following, which is an inaccuracy of our approach. However, the current solution
yields similar results, requires less memory, and processing time is lower.

Two-pass implementation. As mentioned in Section 8.1, a two-pass implementa-
tion is also possible, joining the last two passes into a single pass. However, this
would be more inefficient because of the repetition of calculations.

Storing distances instead of areas. Our first implementation calculated and stored
only the distances to the ends of the line in the second pass, and they were then
used in the final pass to calculate the corresponding blending weights. However,
directly storing areas in the intermediate pass allows us to spare calculations,
reducing execution time.

8.7 Conclusion

In this chapter, we have presented an algorithm crafted for the computation of
antialiasing. Our method is based on three passes that detect edges, determine
the position of each pixel inside those image features, and produce an antialiased
result that selectively blends the pixel with its neighborhood according to its
relative position within the line it belongs to. We also take advantage of hardware
texture filtering, which allows us to reduce the number of texture fetches by half.

Our technique features execution times that make it usable in actual game
environments, and that are far shorter than those needed for MSAA. The method
presented has a minimal impact on existing rendering pipelines and is entirely
implemented as an image post-process. Resulting images are between 4z and
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8r MSAA in quality, while requiring a fraction of their time and memory con-
sumption. Furthermore, it can antialias transparent textures such as the ones
used in alpha testing for rendering vegetation, whereas MSAA can smooth vege-
tation only when using alpha to coverage. Finally, when using luminance values
to detect edges, our technique can also handle aliasing belonging to shading and
specular highlights.

The method we are presenting solves most of the drawbacks of MSAA, which
is currently the most widely used solution to the problem of aliasing; the pro-
cessing time of our method is one order of magnitude below that of 82 MSAA.
We believe that the quality of the images produced by our algorithm, its speed,
efficiency, and pluggability, make it a good choice for rendering high quality im-
ages in today’s game architectures, including platforms where benefiting from
antialiasing, together with outstanding techniques like deferred shading, was dif-
ficult to achieve. In summary, we present an algorithm which challenges the
current gold standard for solving the aliasing problem in real time.
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Volume Decals

Emil Persson

9.1 Introduction

Decals are often implemented as textured quads that are placed on top of the
scene geometry. While this implementation works well enough in many cases,
it can also provide some challenges. Using decals as textured quads can cause
Z-fighting problems. The underlying geometry may not be flat, causing the decal
to cut into the geometry below it. The decal may also overhang an edge, com-
pletely ruining its effect. Dealing with this problem often involves clipping the
decal to the geometry or discarding it entirely upon detecting the issue. Alterna-
tively, very complex code is needed to properly wrap the decal around arbitrary
meshes, and access to vertex data is required. On a PC this could mean that
system-memory copies of geometry are needed to maintain good performance.
Furthermore, disturbing discontinuities can occur, as in the typical case of shoot-
ing a rocket into a corner and finding that only one of the walls got a decal or
that the decals do not match up across the corner. This article proposes a tech-
nique that overcomes all of these challenges by projecting a decal volume onto
the underlying scene geometry, using the depth buffer.

9.2 Decals as Volumes

9.2.1 Finding the Scene Position

The idea behind this technique is to render the decal as a volume around the
selected area. Any convex volume shape can be used, but typical cases would be
spheres and boxes. The fragment shader computes the position of the underlying
geometry by sampling the depth buffer. This can be accomplished as follows:

// texCoord is the pixel’s normalized screen position
float depth = DepthTex.Sample(Filter, texCoord);
float4 scrPos = float4(texCoord, depth, 1.0f);

float4 wPos = mul(scrPos, ScreenToWorld);

155
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Figure 9.1. Example decal rendering.

float3 pos = wPos.xyz / wPos.w;
// pos now contains pixel position in world space

The ScreenToWorld matrix is a composite matrix of two transformations:
namely the transformation from screen coordinates to clip space and then from
clip space to world space. Transforming from world space to clip space is done
with the regular ViewProjection matrix, so transforming in the other direction
is done with the inverse of this matrix. Clip space ranges from —1 to 1 in x
and y, whereas the provided texture coordinates are in the range of 0 to 1, so
we also need an initial scale-bias operation baked into the matrix. The matrix
construction code could look something like this:

float4 ScaleToWorld = Scale(2, -2, 1) *
Translate(-1, 1, 0) * Inverse(ViewProj);

What we are really interested in, though, is the local position relative to
the decal volume. The local position is used as a texture coordinate used to
sample a volume texture containing a volumetric decal (see Figure 9.1). Since
the decal is a volumetric texture, it properly wraps around nontrivial geometry
with no discontinuities (see Figure 9.2). To give each decal a unique appearance,
a random rotation can also be baked into the matrix for each decal. Since we
do a matrix transformation we do not need to change the shader code other
than to name the matrix more appropriately as ScreenToLocal, which is then
constructed as follows:
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Figure 9.2. Proper decal wrapping around nontrivial geometry.

float4 ScreenTolLocal = Scale(2, -2, 1) *
Translate(-1, 1, 0) * Inverse(ViewProj) *
DecalTranslation * DecalScale * DecalRotation;

The full fragment shader for this technique is listed below and a sample with

full source code is available in the web materials.

Texture2D <float> DepthTex;
SamplerState DepthFilter;

Texture3D <float4> DecalTex;
SamplerState DecalFilter;

cbuffer Constants

{
float4x4 ScreenToLocal;
float2 PixelSize;

g

float4 main(PsIn In) : SV_Target
{

// Compute normalized screen position
float2 texCoord = In.Position.xy * PixelSize;
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// Compute local position of scene geometry

float depth = DepthTex.Sample(DepthFilter, texCoord);
float4 scrPos = float4(texCoord, depth, 1.0f);

float4 wPos = mul(scrPos, ScreenTolLocal);

// Sample decal
float3 coord = wPos.xyz / wPos.w;
return DecalTex.Sample(DecalFilter, coord);

Listing 9.1. The full fragment shader.

9.2.2 Implementation and Issues

In a deferred-rendering system [Thibieroz 04] this technique fits perfectly. The
decals can be applied after the geometry buffer (G-buffer) pass and the relevant
attributes, such as diffuse color and specularity, can simply be updated, and then
lighting can be applied as usual. This technique also works well with a light pre-
pass renderer [Engel 09], in which case lighting information is readily available
for use in the decal pass.

In a forward rendering system the decals will be applied after lighting. In
many cases this is effective also, for instance, for burn marks after explosions,
in which case the decals can simply be modulated with the destination buffer.
With more complicated situations, such as blending with alpha, as is typically
the case for bullet holes, for instance, the decal application may have to take
lighting into account. One solution is to store the overall lighting brightness into
alpha while rendering the scene; the decal can then pre-multiply source color
with alpha in the shader and multiply with destination alpha in the blender to
get reasonable lighting. This will not take light color into account, but may look
reasonable if lighting generally is fairly white. Another solution is to simply go
by the attenuation of the closest light and not take any normal into account.
Alternatively, a normal can be computed from the depth buffer, although this is
typically slow and has issues of robustness [Persson 09].

One issue with this technique is that it applies the decal on everything within
the decal volume. This is not a problem for static objects, but if you have a large
decal volume and dynamic objects move into it they will get the decal smeared
onto them, for instance, if you previously blew a bomb in the middle of the road
and a car is passing through at a later time. This problem can be solved by
drawing dynamic objects after the decal pass. A more elaborate solution is to
render decals and dynamic objects in chronological order so that objects that are
moved after the decal is added to the scene will not be affected by the decal. This
will allow dynamic objects to be affected by decals as well. Another solution is to
use object IDs. The decal can store the IDs of objects that intersected the decal
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volume at the time it was added to the scene and cull for discarded pixels that
do not belong to any of those objects.

9.2.3 Optimizations

On platforms where the depth-bounds test is supported, the depth-bounds test
can be used to improve performance. On other platforms, dynamic branching can
be used to emulate this functionality by comparing the sample depth to the depth
bounds. However, given that the shader is relatively short and typically a fairly
large number of fragments survive the test, it is recommended to benchmark to
verify that it actually improves performance. In some cases it may in fact be
faster to not attempt to cull anything.

9.2.4 Variations

In some cases it is desirable to use a two-dimensional texture instead of a volume
decal. Volume textures are difficult to author and consume more memory. Not
all cases translate well from a two-dimensional case to three dimensions. A bullet
hole decal can be swept around to a spherical shape in the three-dimensional
case and can then be used in any orientation, but this is not possible for many
kinds of decals; an obvious example is a decal containing text, such as a logo or
graffiti tag.

An alternate technique is to sample a two-dimensional texture using just the
x,y components of the final coordinates. The z component can be used for fading.
When a volume texture is used, you can get an automatic fade in all directions
by letting the texture alpha fade to zero toward the edges and using a border
color with an alpha of zero. In the 2D case you will have to handle the z direction
yourself.

Two-dimensional decals are not rotation invariant so when placing them in
the scene they must be oriented such that they are projected sensibly over the un-
derlying geometry. The simplest approach would be to just align the decal plane
with the normal of the geometry at the decal’s center point. Some problematic
cases exist though, such as when wrapping over a corner of a wall. If it is placed
flat against the wall you will get a perpendicular projection on the other side of
the corner with undesirable texture-stretching as a result.

An interesting use of the two-dimensional case is to simulate a blast in a
certain direction. This can be accomplished by using a pyramid or frustum shape
from the point of the blast. When the game hero shoots a monster you place a
frustum from the bullet-impact point on the monster to the wall behind it in the
direction of the bullet and you will get the effect of blood and slime smearing onto
the wall. The projection matrix of this frustum will have to be baked into the
ScreenToLocal matrix to get the proper projection of the texture coordinates.
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The blast technique can also be varied for a cube decal scenario. This would
better simulate the effect of a grenade blast. In this case a cube or sphere would be
rendered around the site of the blast and a cubemap lookup is performed with the
final coordinates. Fading can be effected using the length of the coordinate vector.

To improve the blast effect you can use the normals of underlying geometry
to eliminate the decal on back-facing geometry. For the best results, a shad-
owmapesque technique can be used to make sure only the surfaces closest to the
front get smeared with the decal. This “blast-shadow map” typically has to be
generated only once at the time of the blast and can then be used for the rest
of the life of the decal. Using the blast-shadow map can ensure splatter happens
only in the blast shadow of monsters and other explodable figures, whereas areas
in the blast-shadow map that contain static geometry only get scorched. This
requires storing a tag in the shadow buffer for pixels belonging to monsters, how-
ever. Creative use of the shadow map information also can be used to vary the
blood-splatter intensity over the distance from the blast to the monster and from
the monster to the smeared wall.

9.3 Conclusions

An alternate approach for decal rendering has been shown that suggests solu-
tions to many problems of traditional decal-rendering techniques. Using vol-
umes instead of flat decal geometry allows for continal decals across nontrivial
geometry. It also eliminates potentially expensive buffer locks or the need for
system-memory buffer copies.
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Practical Elliptical Texture
Filtering on the GPU

Pavlos Mavridis and Georgios Papaioannou

10.1 Introduction

Hardware texture filtering, even on state-of-the-art graphics hardware, suffers
from several aliasing artifacts, in both the spatial and temporal domain. These
artifacts are mostly evident in extreme conditions, such as grazing viewing angles,
highly warped texture coordinates, or extreme perspective, and become especially
annoying when animation is involved. Poor texture filtering is evident as excessive
blurring or moiré patterns in the spatial domain and as pixel flickering in the
temporal domain, as can be seen in Figure 10.1 and the accompanying demo
application.

Figure 10.1. A benchmark scene consisting of two infinite planes demonstrating the
improvement of elliptical filtering (left) over the native hardware texture filtering (right).
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In this chapter, we present a series of simple and effective methods to perform
high quality texture filtering on modern GPUs. We base our methods on the the-
ory behind the elliptical weighted average (EWA) filter [Greene and Heckbert 86].
EWA is regarded as one of the highest quality texture filtering algorithms and
is used as a benchmark to test the quality of other algorithms. It is often used
in offline rendering to eliminate texture aliasing in the extreme conditions men-
tioned above, but due to the high computational cost it is not widely adopted in
real-time graphics.

We first present an exact implementation of the EWA filter that smartly
uses the underlying bilinear filtering hardware to gain a significant speedup. We
then proceed with an approximation of the EWA filter that uses the underlying
anisotropic filtering hardware of the GPU to construct a filter that closely matches
the shape and the properties of the EWA filter, offering vast improvements in the
quality of the texture mapping. To further accelerate the method, we also intro-
duce a spatial and temporal sample distribution scheme that reduces the number
of required texture fetches and the memory bandwidth consumption, without re-
ducing the perceived image quality. We believe that those characteristics make
our method practical for use in games and other interactive applications, as well
as applications that require increased fidelity in texture mapping, like GPU ren-
derers and image manipulation programs. We first described these methods at the
2011 Symposium on Interactive 3D Graphics and Games [Mavridis and Papaioan-
nou 11]. This chapter reviews the main ideas of that paper with an emphasis on
small, yet important implementation details.

10.2 Elliptical Filtering

This section provides an overview of the theory behind texture filtering and the
elliptical weighted average (EWA) filter.

In computer graphics the pixels are point samples. The pixels do not have an
actual shape, since they are points, but we often assign an area to them. This
area is the footprint (the nonzero areas) of the filter that is used to reconstruct
the final continuous image from these point samples, according to the sampling
theorem. As discussed in [Smith 95], high quality reconstruction filters, like a
truncated sinc or Gaussian, have a circular footprint, so a high quality texture
filtering method should assume circular overlapping pixels.

The projection of a pixel with circular footprint to texture space is an ellipse
with arbitrary orientation, as illustrated in Figure 10.2. In degenerate cases, like
extreme grazing viewing angles, the projection is actually an arbitrary conic sec-
tion, but for our purposes an elliptical approximation suffices, since, for these
cases, any visible surface detail is lost anyway. A texture filtering algorithm
should return a convolution of the texels (texture point samples) inside the pro-
jected area S of the pixel with the projection of the reconstruction filter H in
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Figure 10.2. The projection of a pixel with circular footprint on a surface covers an
elliptical region.

texture space. In particular, it should compute the following equation:

Cy(s,t) = Z H(u,v)C(u,v),

u,vES

where C(u, v) is the color of the texel at the (u, v) texture coordinates and Cy (s, t)
is the filtered texture color. In the above equation H is normalized.

The EWA algorithm approximates the projected pixel footprint with an ellip-
tical region, defined by the following equation [Heckbert 89]:

d?(u,v) = Au* + Buv + Cv?,

where the center of the pixel is assumed to be at (0,0) in texture space and

A= A,,/F,
B = Bnn/F7
C = Cpn/F,

F = ApnChpn — B2, /4,
Apy = (0v/0z)* + (0v/dy)?,
Bun = =2 % (0u/dz * Ov/dx + Ou/dy * Ov/dy),
Chn = (0u/0z)? 4 (0u/0y)?.

The partial derivatives (Ou/0x,0u/dy,dv/0x,0v/dy) represent the rate of
change of the texture coordinates relative to changes in screen space. The quan-
tity d? denotes the squared distance of the texel (u,v) from the pixel center when
projected back into screen space. The algorithm scans the bounding box of the
elliptical region in texture space and determines which texels reside inside the
ellipse (d? < 1). These samples contribute to the convolution sum, with weights
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// Computes the Elliptical Weighted Average filter
// p are the sampling coordinates
// du/dv are the derivatives of the texture coordinates
vec4 ewaFilter (sampler2D tex, vec2 p, vec2 du, vec2 dv)
{

// compute ellipse coefficients A, B, C, F:

float A,B,C,F;

A = du.t*du.t+dv.t*dv.t+1;

// Compute the ellipse’s bounding box in texture space
int u_min, u_max, v_min, v_max;
u_min = int(floor(p.s - 2. / (-B*B+4.0%CxA)*

sqrt ((-BxB+4.0%C*A)*C*F)));

// Iterate over the ellipse’s bounding box and
// calculate Ax"2+Bxy*Cy~2; when this value
// is less than F, we’re inside the ellipse.

vecd4d color = 0;
float den = 0;
for (int v = v_min; v <= v_max; ++v)
{
float q = A*u*u+B¥xu*xv*xCxvx*v;
for (int u = u_min; u <= u_max; ++u)
if (q < F)
{

float d = q / F;

float weight = Filter(d);

color += weight* texture2D(tex, vec2(u+0.5,v+0.5)/size);
den += weight;

}

return color*(1./den);

}

Listing 10.1. Pseudocode implementation of the EWA filter.

proportional to the distance d. Listing 10.1 outlines this idea. Filter(d) de-
notes the reconstruction filter. [Greene and Heckbert 86] propose the usage of a
Gaussian filter, but in practice any reconstruction filter can be used.

10.2.1 Bounding the Runtime Cost

The runtime of the brute-force algorithm is directly proportional to the area of the
ellipse in texture space and the number of texels it includes. To reduce the number
of the texture samples in this area, a mip-map pyramid is used and sampling is
performed from the mip-map level in which the minor ellipse radius is between
one and three pixels, depending on the required quality and performance. Even
when using mip-maps, the area of a highly eccentric ellipse can be arbitrarily
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Figure 10.3. Comparison of the lod calculation of an Nvidia Fermi card when using
the lowest quality settings in the drivers (left), the highest possible quality settings
(middle), and the optimal lod calculations (right).

high, resulting in unacceptably long running times. To avoid this, the maximum
eccentricity of the ellipse is clamped to a predefined maximum. Taking these two
measures ensures a bounded runtime for the algorithm.

Computing the mip-map level (lod) and clamping ellipses with high eccentric-
ity requires the computation of the minor (Rminor) and major (Rmajor) radius of
the ellipse

r=+/(A-C)7+ B2,

Rmajor =V 2/(A +C— T)7
Rminor = 2/<A + C + T)7
lod = logy ( Rminor /texels-per-pixel.) (10.1)

Instead of computing the lod level based on the minor ellipse radius, we have
investigated the option to use the lod values calculated explicitly by the hardware.
On newer hardware this can be done using the appropriate shading language func-
tion (textureQueryLOD () in GLSL), or in older hardware by fetching a texel from
a texture with color-coded lod levels. Figure 10.3 visualizes the lod selection on
the latest Nvidia graphics cards and compares it with the ideal lod selection based
on the ellipse minor radius. We observe that Nvidia’s hardware, at the highest
quality settings, performs a piecewise approximation of the optimal calculations,
resulting in suboptimal lod selection on pixels depending on their angle and that
the measured deviation (shown in the insets of Figure 10.3) peaks at intervals of
45 degrees. An overestimation of the lod level will result in excessive blurriness,
while underestimation will result in longer runtimes. In practice, we have ob-
served that using the hardware lod calculations does not result in visible quality
degradation, while the performance of the method is increased.

Hardware trilinear filtering interpolates between the closest two lod levels, in
order to avoid discontinuities. We have found that it is much more preferable
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to perform better filtering in the high detail lod level (by using more samples),
than to compute two inferior estimates and interpolate between them. In that
case, discontinuities from the lod selection can only be observed in very extreme
cases, and even then can be dealt with using more projected texels in each pixel
(Equation (10.1)).

10.2.2 Filtering sSRGB Textures

A very important implementation detail that is often omitted, is that all the tex-
ture filtering and antialiasing operations should be done in linear color space. On
the other hand, 8 bits-per-component textures are usually stored in sRGB color
space, in order to better take advantage of the available precision, by taking into
account the characteristics of human vision. Therefore, the texture data should
be first converted to a linear color space before the filtering operations. And, after
the shading operations, colors should be converted back to sSRGB for display in
the output device. Fortunately, the latest graphics hardware can do this conver-
sion using specialized fixed-function hardware, without any additional overhead.
In OpenGL in particular, this can be done by using the GL_EXT_texture_sRGB
and GL_EXT_framebuffer_sRGB extensions, while Direct3D provides similar mech-
anisms. Furthermore, all the prefiltered mip-maps should also be computed in
linear color space. The importance of filtering in the proper color space is demon-
strated in Figure 10.4. (All the images in this chapter were produced with filtering
in linear color space.)
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Figure 10.4. Texture filtering using mip-maps computed in sSRGB color space (top).
Proper filtering in linear color space (bottom). Filtering in nonlinear color space leads
to incorrect darkening when the lowest mip-map levels are used.

10.2.3 GPU Optimizations

A naive direct implementation of the EWA filter on the GPU would read every
texel in the bounding box of the elliptical region, and if it were located inside
the ellipse, it would be weighted and accumulated. A much better approach is to
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use the linear filtering of the graphics hardware to reduce the number of fetches
to one half, by smartly fetching two texels at a time using one bilinear fetch.
For two neighboring texels C; and C;11, with weights w; and w;1, respectively,
the following weighted sum can be replaced by a single bilinear texture fetch
operation at position x between the two texel centers:

w;Ci + wit1Ci41 = Cp(wi + wig1),

. Wi+1
.CE:Z+17+,
W; + Wit
ws
OSLSL
W; + Wig1

The last inequality is always true for reconstruction filters with positive weights,
like the Gaussian one. In our case, the texel weight w; is derived from the recon-
struction filter (Filter(d) in Listing 10.1) and the distance d of the texel to the
filter center, as explained in Section 10.2. The for loop in Listing 10.1 should be
adjusted to process two texels at a time. An important implementation detail is
that when using this technique, we should take into account the exact coordinates
of the texel centers. In the case of OpenGL, texel centers are assumed to be at
the centers of a grid (meaning that texels are located at coordinates integer+0.5).

This technique assumes that the cost of one texture fetch with bilinear filtering
is less than the cost of two fetches with point sampling plus the time to combine
them. Our experiments confirm that this assumption is true. The results from
this method should be identical with the ones from the reference implementation,
but slight deviations may occur due to the difference in the precision in which
operations are performed by the shader units and by the fixed-function bilinear
filtering units.

Extending the same principle in two dimensions, we can replace four weighted
texture fetches with a single fetch from the appropriate position. While it is trivial
to find this position in the case of a box filter, in the case of a Gaussian filter the
weights can only be approximated. In other words, we can calculate the position
that best approximates the Gaussian weights and perform a single texture fetch
from that position. In practice we did not observe any significant performance
gain from this method, while on the other hand it imposes significant constraints
on the nature of the reconstruction filters that can be used.

10.3 Elliptical Footprint Approximation

In the same spirit as the Feline algorithm [McCormack et al. 99], we present a
method that uses simpler shapes to closely match the shape of the ideal elliptical
filter. Instead of using simple trilinear probes like in the Feline algorithm, we
propose the usage of the anisotropic probes provided by the graphics hardware.

We place the probes on a line along the major axis of the ellipse, as shown in
Figure 10.5. The length of the line L and the number of probes Ny obes are given
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Figure 10.5. The basic idea of our method: approximating a highly eccentric ellipse
with many ellipses of low eccentricity. This way we can overcome the limits imposed by
the hardware and better filter elliptical footprints with high degrees of anisotropy.

by the following equations

Nprobes =2x% (Rmajor/(a * Rminor)) -1,
L=2x (Rmajor — Q% Rminor), (102)

where « is the degree of anisotropy of the underlying hardware probes. For a = 1
our algorithm is equivalent to Feline. For simplicity, an odd number of probes is
considered. Similar to Feline, probes are placed around the midpoint (t,, v,,) of
the filter, as follows:

0 =atan(B/(A— ())/2,
du = cos(8) * L/(Nprobes — 1),
dv = sin(0) * L/(Nprobes — 1),
(Uny Vn) = (Um,y V) + /2 % (du,dv), n=0,£2,4+4..., (10.3)

where (uy,v,) is the position of n-th probe. To better match the shape of the
EWA filter, the probes are weighted proportionally to their distance from the
center of the footprint, according to a Gaussian function. The shape of the filter
in texture space compared to an exact EWA filter is shown in Figure 10.6.

1 1
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Figure 10.6. Comparison of the exact EWA filter (left) with our approximation using
three elliptical probes (right).
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We don’t have any strong guarantees about the quality or the shape of those
probes, since the OpenGL specification does not explicitly enforce any particular
method for anisotropic filtering. The only hint given by the hardware imple-
mentation is that the probes approximate an anisotropic area with maximum
anisotropy of N. In the above analysis, we have assumed that the hardware
anisotropic probes are elliptical, but in practice, to compensate for their poten-
tial imperfections in shape and to better cover the area of the elliptical filter,
we just increase the number of probes depending on the desired quality. Using
an adaptive number of probes creates an irregular workload per pixel for the
graphics hardware scheduler, which should be avoided. In practice, setting the
number of probes to a constant number gives better performance. In our tests,
using five probes eliminated all the visible artifacts on the Nvidia hardware (with
high quality texture filtering enabled). For more than five probes, no significant
improvement in image quality could be measured.

If the probes fail to cover the ellipse, then aliasing will occur. On the other
hand, if the probes exceed the extents of the ellipse (e.g., by placing them beyond
half the length of the central line in each direction) then blurring will occur. Our
method always avoids the second case, but the first case can still happen in
extreme cases, since we have clamped the maximum number of probes. Still, our
method always provides an improvement over hardware texture filtering.

10.3.1 Spatial Filter

After some investigation of the benchmark scenes, we have observed that the
regions where the hardware filtering fails are limited. For the majority of a
scene, the quality of the image is free of any aliasing artifacts. As expected, the
problematic regions are regions with high anisotropy, and, in particular, on the

Figure 10.7. Regions in red denote areas with anisotropy greater than 16, the limit
in current hardware implementations. An infinite tunnel benchmark scene (left). A
typical game scene (right).
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Nvidia hardware, regions with anisotropy greater than 16, which is the advertised
maximum anisotropy of the hardware unit. Figure 10.7 highlights the problematic
regions on the benchmark scene and one typical game scene.

After this observation, we perform high-quality filtering only in the regions
highlighted with red, and for the rest of the scene we use hardware filtering. The
anisotropy of a pixel is accurately measured using Equations (10.1). To eliminate
any visible seams between the two regions, areas close to the threshold level use
a blend of hardware and software filtering. This approach creates exactly two
different workloads for the hardware, one high and one low. In the majority of
cases, the two different sampling methods are used in spatially coherent pixel
clusters within a frame. Therefore, compared to a completely adaptive sample
selection, our tests indicate that this case is handled more efficiently by the GPU
hardware scheduler and results in a sizable performance gain.

10.3.2 Temporal Sample Distribution

In order to further improve the runtime performance of our filtering algorithm
in games and other real-time applications that display many rendered images
at high frame rates, we present a temporal sample distribution scheme, where
texture filtering samples are distributed among successive frames.

In particular, the n anisotropic samples (probes) of Equation (10.3) are dis-
tributed in two successive frames. The first frame uses samples 0, 4, +8... and
the next one 0,42, +6... . The sample at the center of the filter (sample 0) is
included in both frames to minimize the variance between the two. When the
frames are displayed in quick succession, the human eye perceives the average of
the two frames.

For this technique to work, the application should maintain a stable and ver-
tical sync-locked frame rate of 60 Hz or more. The usage of vertical sync is
mandatory; otherwise the rate of the rendered frames will not match the rate at
which they are displayed and are perceived by the human eye, and the method
naturally fails. This is a shortcoming, but we should note that in the era of high-
performing graphics hardware, rendering without vertical sync makes little sense,
since it introduces visible tearing. Obviously the method can be extended to dis-
tribute samples in more than two frames when the refresh rate of the application
and the output device is high enough.

Using this method, the quality of texture filtering is enhanced considerably for
static or distant objects, but fast-moving objects receive fewer samples. This is
hardly objectionable, since in that case potential aliasing artifacts are difficult to
notice. In our tests, the usage of temporal sample distribution always improved
the perceived image quality for a given number of samples.

Overall, this temporal method is very simple to implement, does not require
additional memory, and always provides a constant speedup. The obvious short-
coming is that the application should maintain a high frame rate. The success
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of the method is also highly dependent on the ability of the output device to be
synchronized with the graphics hardware. We had great success when using PC
monitors, but some projection equipment might fail in the synchronization with
the graphics hardware.

10.4 Results

Figure 10.8 demonstrates the improvement our method produces in a benchmark
scene consisting of an infinite tunnel with a checkerboard texture. To better as-
sess the extent of the improvement, the reader is highly encouraged to run the
accompanying demo application, since the aliasing artifacts are highly objection-
able in motion. The same figure also shows the resulting filtering from all the
filtering methods we have presented in this chapter.

Figure 10.9 demonstrates the improvement from increasing the maximum de-
grees of anisotropy. A higher maximum degree of anisotropy offers more detail at
grazing angles. We observe that direct convolution filtering with an anisotropic
ratio of 64:1 preserves more detail at the center of the tunnel. An ideal filter-
ing algorithm would show the lines to converge at the center of the left image,
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Figure 10.8. Top: A benchmark scene consisting of an infinite tunnel demonstrating
the improvement of elliptical filtering (left) over the native hardware texture filtering
(right). Close-up comparisons of the various texture filtering methods (bottom). From
left to right: hardware filtering, elliptical, approximated filter, spatial filter, temporal
filter (average of two frames).
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Figure 10.9. Close-ups demonstrating the improved clarity when increasing the maxi-
mum degrees of anisotropy from 16 (up) to 64 (down).

but in practice this is very difficult because an infinite anisotropy level would be
required. Apart from the increased clarity, in practice we also observe that the
elliptical filtering eliminates the occasional pixel flickering (temporal aliasing) of
the hardware implementation.

10.4.1 Performance Measurements

Figure 10.10 presents comprehensive performance and quality measurements for
all the methods presented in this chapter. The spatial and temporal sample dis-
tribution schemes can be used to accelerate both the direct convolution methods
and the ellipse approximation method, but since we are interested in the highest
possible performance, we only present results when distributing the samples of
the ellipse approximation method. The performance of the method was mea-

El
ph]

B H M

EH W
nna

200
[chi}
400 4 III
EHN]
.| - -

[ SppRCamEE saata tecral hrrowsne

Figure 10.10. The performance of the methods presented in this chapter measured in
Mtexes/sec on an Nvidia GTX460.
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sured on the tunnel scene of the accompanying demo application on a middle
range graphics card. We observe that the direct convolution methods (reference,
2-tex, 4-tex) are an order of magnitude slower than the approximating ones,
making their applicability for real-time applications rather limited.

10.4.2 Integration with Game Engines

The proposed texture filtering algorithms can be implemented as a direct re-
placement to the built-in texture lookup functions, making the integration with
game engines trivial. In the accompanying material of this book, we provide our
proof-of-concept implementation in GLSL. In the case of temporal filtering, the
current frame number should be exposed inside the shaders. One integration
option is to globally replace all the texturing function calls with the enhanced
ones, but this method is probably an overkill. Alternatively, at content-creation
time, the enhanced texture filtering could selectively be applied only on certain
problematic surfaces. The second option can lead to better runtime performance,
but at the cost of increased authoring time.

10.5 Conclusions

We have shown that high-quality elliptical filtering is practical on today’s GPUs,
by employing several methods to speed up the reference algorithm. Texture fil-
tering quality is one issue that separates the offline production rendering from the
real-time one, and this work can provide a viable texture filtering improvement
for hardware-accelerated rendering applications.
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An Approximation to the Chapman
Grazing-Incidence Function for
Atmospheric Scattering

Christian Schuler

11.1 Introduction

Atmospheric scattering for computer graphics is the treatment of the atmosphere
as a participating medium, essentially “calculating the color of the sky.” This is
interesting for any application where the time of day, the season, or the proper-
ties of the atmosphere are not known in advance, or the viewpoint may not be
restricted to a point on the earth’s surface. It is a historically difficult effect to
render, especially at planetary scale.

Early attempts at atmospheric scattering can be found in [Klassen 87] and
[Nishita et al. 93]. Recent implementations with an emphasis on real time are
[Hoffmann and Preetham 02], [O’Neil 05], and [Bruneton and Neyret 08]. A
common theme of all these approaches is finding ways to efficiently evaluate or
precompute the Chapman function, Ch(x,y). This is the density integral for a
ray in a spherically symmetric, exponentially decreasing atmosphere.

The Chapman function has been subject to extensive treatment in the physics
literature. Approximations and tabulations have been published, most of it with
a focus on precision. This article explores a different direction for its evaluation:
an approximation so cheap that Ch(x,y) can be considered a commodity, while
still being accurate enough for our graphics needs.

11.2  Atmospheric Scattering

This section is a brief review of atmospheric scattering and a definition of terms.
When light travels through air, it will be partly absorbed and partly scattered
into other directions. This gives rise to the phenomenon of aerial perspective. The
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Figure 11.1. Atmospheric scattering 101. See the text for an explanation of the symbols.

fraction of light that is unimpeded along a path is the transmittance T', and the
amount that is added into the path due to scattering is the in-scatter S (see
Figure 11.1). Thus, the aerial perspective of a distant source of radiance Ly is
seen by an observer as the radiance L:

L = LyT+S.

To arrive at the total in-scatter S, in general one would have to integrate it
along the path. Then, the in-scatter at a particular point S(t) would have to be
calculated from the local irradiance field E over the entire sphere of directions 2
with an atmosphere-dependent phase function f(6):

©n
|

/ S()T(t) dt,

S() / Et) £(6) dO.

The irradiance is usually discretized as a sum of individual contributions.
Especially during the day, the single most important contributor is the sun, which
can be simplified to a directional point source FEg,y, for the irradiance arriving
at the outer atmosphere boundary; Fg,, is attenuated by the transmittance Tg,y
for the path from the atmosphere boundary towards point S(¢):

S(t) = Esun Tsun (t) f(e)

The transmittance itself is an exponentially decreasing function of the airmass
m times an extinction coefficient 5. The latter is a property of the scattering
medium, possibly wavelength dependent. The airmass is an integral of the air
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density p(t) along the path:

T = exp(=pm),

/ p(t)dt.

To complete the calculation, we need a physical model for 8 and f. There
exists Rayleigh theory and Mie theory, which have been discussed in depth in
previous publications, e.g., [Nishita et al. 93] and [Hoffmann and Preetham 02].
It is beyond the scope of this article to provide more detail here.

3
|

11.3 The Chapman Function

In order to reduce the algorithmic complexity, it would be nice to have an efficient
way to calculate transmittances along rays. It turns out that this reduces to an
evaluation of the Chapman function.

Without loss of generality, let’s start a ray at an observer inside the atmo-
sphere and extend it to infinity (see Figure 11.2). The ray can be traced back to
a point of lowest altitude ro. We take the liberty to call this point the periapsis
even though the path is not an orbit. Here we define ¢ = 0, and the altitude for
any point along the ray as follows:

r(t) = /3 +t2

Let’s further assume a spherically symmetric atmosphere with an exponen-
tially decreasing density, characterized by a scale height H. We normalize the

Chiz0) = 1

Figure 11.2. The Chapman function. Relative airmass in an exponentially decreasing
atmosphere with scale height H, normalized observer altitude x and incidence angle x.
The lowest altitude is at ro.
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density to a reference density py at reference altitude R. The density at any
altitude is then

o) = po exp(R;)

Combining these expressions yields an integral for the airmass along the entire
ray. The integration boundary is trigonometrically related to the observer altitude
r and the incidence angle x:

o0
R — ) t2
m = po / exp (éb"’) dt,
T COS X
rg = rsiny.

This integral does not have a simple solution, except when looking straight
upwards into the zenith (x = 0). In this case, the mass along the ray is just
the mass of the air column above the observer. This is, by the definition of the
density distribution, one scale height times the density at the observer. Let’s call
that mass m :

R—r
m) = poHexp< 7 >

Can we possibly have a function that relates m,; to m? We can, for this
is the Chapman function Ch(z, ), named after the physicist who was the first
to formulate this problem [Chapman 31]. We write the Chapman function as
follows:

m = my Ch(z,x),
with
r
xr = —.
H

The arguments are historically named z for normalized altitude and the Greek
letter chi for incidence angle (don’t blame me for that). The function is indepen-
dent of scale and is usually tabulated or approximated numerically. For conve-
nience, an analytic expression is given below. This has been stripped down from
a more general solution found in [Kocifaj 96]:

1

Ch(z,x) = 3 [COS(X)—F

2 2 1
e (25 e (5 (Lot ) 5]
€T
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The above expression is not practical for real-time evaluation, for several rea-
sons: it contains the complementary error function, erfc, which needs a numerical
approximation for itself. It has bad numerical behavior for large x and small y,
where the exp-term becomes very large and the erfc-term virtually zero. We use
this expression, however, as our ground-truth standard, evaluated with arbitrary
precision math software.

11.4 Towards a Real-Time Approximation

To better understand the Chapman function, we will plot a graph of it (see
Figure 11.3) and observe a number of important properties:

The function is even wrt. x; Ch(z, x) = Ch(z, —x).
There is unity at x = 0; Ch(z,0) = 1.

1
There is a limit for large x; lim Ch(z,x) = .
T—00 COs X

These properties are easily explained. The even symmetry follows from the
problem specification. Only the cosine of the incidence angle appears in the
expression. This allows us to reduce the covered range to 0 < x < 180°. Second,
since Ch(z, x) relates m_ to m, its value must approach unity for small incidence
angles. And finally, in the limit of a flat earth, the Chapman function must
approach the secant function.

These properties can be used to engineer our approximation, Ch’. The limit
for large = suggests a rational approximation, as we are going to cope with a
pole. Runtime efficiency demands the lowest possible order. So we are going to

11 THIE] —
= 10 T = 108
e |

: / L0 — |
__;J..f"'/ 10— /

1 _u—l‘_"_“-“."-w-‘:\- 1 Ie= —_'_'_._'_'_'-

L T T 1 - B i T Toee] 1
T 2 B 4 LY TDOHD ) LI R | R | O K | ]

.............. ground truth approximation

Figure 11.3. Graph of the Chapman function. Ch(z, ) is plotted on a logarithmic
scale as a function of incidence angle y, for two extreme cases of . An observer on the
earth’s surface with an atmosphere scale height of 8.4 km would correspond to an x of
r@ /8.4 =~ 760.
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look for a first-order rational function of cos x, approaching unity on the left and
the value of Chj(x) on the right, where Ch(x) is used as a shorthand for the
Chapman function evaluated at y = 90°. There is only one possibility for such a
rational function:

c

! _ o
Ch (C, X) - (C _ 1) COS(X) + 1 |X| < 90 I
with
c = Chy(z).

As it turns out, this low-order function is a pretty good approximation. The
useful range for y is, however, limited to below 90°. Beyond that angle, the
approximation grows hyperbolically to a pole at infinity, while the exact Chapman
function grows exponentially, and always stays finite. We will look for ways to
handle xy > 90°, but we must first turn our attention to the coefficient c.

11.4.1 At the Horizon

If the observer altitude is fixed, we could precalculate a value for c¢. However, for
a moving observer, and in the absence of a Chapman function to fall back on, we
need an approximation for c itself. Let’s take a look at Chy(x):

Chy(z) = (21x+1) \/?

This is already a lot simpler than the full Chapman function, but still requires
a square root and a division. To simplify it further, we assume that x is usually
large and neglect the term 1/2z to get a function that is purely proportional to
vz. Using the value \/77/72 o~ 1.2533 as a coeflicient results in

Chy(z) ~ 12533z |z > 10.

11.4.2 Beyond the Horizon

Consider Figure 11.4. The airmass my, along an entire line is the airmass along
the forward ray plus the airmass along the backward ray:

mp = p [Ch(m, x) + Ch(z,180° — X)}

The above equation must be true for any point along the line. We can move
the observer to the periapsis, where both the forward and the backward ray are
horizontal. Using trigonometry, the altitude at the periapsis is g = xsin x and
density follows as pexp(z — xg). Another way of expressing my, is therefore

mp = 2pexp(xz — o) Chy(xo).
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Figure 11.4. Airmass along an entire line. A virtual observer is placed at the periapsis.

Combining the above equations, it is possible to arrive at an identity that
expresses the Chapman function in terms of itself with a reflected incidence angle:

Ch(z,x) = 2 exp(x— zsinx) Ch)(zsiny) — Ch(z,180° — x).

If the Chapman function is known for 0 < x < 90°, it is therefore known for
all .

11.5 Implementation

See Listing 11.1 for an implementation of the approximate Chapman function
in C. It consists of a branch on the value of y, either applying the identity or
not. The code differs from the mathematical formulae in three aspects, which are
discussed in Sections 11.5.1-11.5.3.

11.5.1 Numeric Range

First, a numeric range problem must be resolved, which happens when z is large
and z( is small. The identity formula contains the exponential exp(z — ),
which overflows. To remedy this situation, we introduce a modified function
Chy (X, h, x):

Chh(X7 ha X) = Ch(X =+ h7X) eXp(_h‘)

This function takes a reference altitude X and the corresponding observer
height h, and includes the factor exp(—h). This factor would have to be applied
anyway to calculate the airmass. By including it in the function, the range
problem cancels out, since exp(z — ) exp(—h) = exp(X — xp).
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float chapman_h( float X, float h, float coschi )
{
// The approximate Chapman function
// Ch(X+h,chi) times exp2(-h)
// X - altitude of unit density
// h - observer altitude relative to X
// coschi - cosine of incidence angle chi
// X and h are given units of the 50%-height
float ¢ = sqrt( X + h );
if( coschi >= 0. )
{
// chi above horizon
return ¢ / ( ¢ * coschi + 1. ) * exp2( -h );
}
else
{
// chi below horizon, must use identity
float x0 = sqrt( 1. - coschi * coschi ) * ( X + h );
float cO = sqrt( x0 );
return
2. * cO *x exp2( X - x0 ) -
¢/ (1. - ¢ * coschi ) * exp2( -h );
}
}

Listing 11.1. The approximate Chapman function in C, with modifications discussed
in the text.

11.5.2 Distance Differences

The second modification relates to the ability of the approximation to stay faithful
to sums and differences of path lengths. Special attention is drawn to the case
of an observer who is close above a reflective surface. Consider Figure 11.5.
Assuming near-horizontal angles, the airmasses m4, mpg, and m¢ for the three
segments can be simplified to

mapg (jh(x7X)a
mp ~ Ch(z,180° — x) — Ch(z’,180° — ),
me  ~  Ch(z',x).

The question is now, does the approximation satisfy ma = mp + mg? This
would be required for an exact color match at the horizon above a water sur-
face. The short answer is that the original approximation does not hold for this
property. The form of the denominator in the rational function, as well as the
factor 1.2533, stand in the way. The approximation must be rigged to enable this
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Figure 11.5. The Chapman function on a reflected ray. Is the approximation going to
stay true to sums and differences of path lengths?

property; this new approximation is even simpler:
c
Ch/(c = —
(e ) ccos(x) +1’
with

c = .

Dropping the factor of 1.2533 hardly makes a difference in the visual result.
The change in the denominator is more severe, causing the approximation to fall
below unity for small incidence angles. However, for typical uses with x well in
the hundreds, the visual impact is again negligible. If needed, the loss can be
compensated by an increase of the S-coeflicients.

11.5.3 Using exp2

The code will make exclusive use of the dual exponential 2% instead of the natural
exponential e*. We will therefore need all scales converted to the dual logarithm.
We need a 50%-height Hyq instead of the scale height H; we need 50%-extinction
coefficients, and so on:

H50 = Hln?,
Bso = Bln2,

The reason for this change is that exp2 is usually the more efficient function
to compute. To optimize even more, an implementation can employ a fast exp2
function for all scattering calculations. An example of such a fast exp2 function
is presented in the appendix (Section 11.8). Tt is a definitive win when the
calculation is CPU-based, especially if it is vectorized with SIMD, calculating
four values at once. On the GPU, there have been assembly instructions for a
fast version (called exp2pp for “partial precision”) or the shader compiler takes it
as a hint if a call to exp2 has both a low-precision argument and a low-precision
result.
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vec3 transmittance( vec3 r, vec3 viewdir )
{
// calculate the transmittance along a ray
// from point r towards infinity
float rsq = dot(r,r);
float invrl = inversesqrt( rsq );
float len = rsq * invrl;
float x = len * invH50;
float h = x - X50;
float coschi = dot( r, viewdir ) * invrl;
return exp2( -betab50 * H50 * chapman_h( X50, h, coschi ) );
}

Listing 11.2. Function for the transmittance along a ray.

11.6 Putting the Chapman Function to Use

Finally, in this section we are going to explore the ways in which we can use our
shiny new tool. You should consult the example code on the website since not
all listings are shown here.

11.6.1 Airmass and Transmittance

The airmass is calculated easily with the modified Chapman function. You need
to know the observer height against some reference altitude (conveniently, this is
the planet radius, or mean sea level), and the scale height of the atmosphere:

m = HOhh<X,h,X).

It is a small step from the airmass to the transmittance, since T' = exp(—£m).
See Listing 11.2 for a function to calculate the transmittance along a straight line
through the atmosphere. The scale height and the extinction coefficients must
be available globally. In the complete fragment program, this function is used to
calculate the local sun color for surface shading.

11.6.2 Aerial Perspective

The full aerial perspective function has two colors as a result: the transmittance
and the in-scatter. The function is too long to be listed here, but is included in
the fragment program on the website. The signature is as follows:

void aerial_perspective( out vec3 T, out vec3 S,
in vec3 r0, in vec3 ril, in bool infinite );
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The function calculates the aerial perspective from point rO to point r1, or
alternatively, from point rO along the ray through r1 to infinity. The resulting
transmittance is written to argument T and the in-scatter is written to argu-
ment S.

Here is a short explanation of the algorithm: In a first step, the function
intersects the ray with the atmosphere boundary to get the integration interval,
which is subdivided into a fixed number of segments. It then iterates over all
segments in reverse order (back to front). For each segment, the Chapman func-
tion is called to calculate airmass, transmittance, and in-scatter. The in-scatter
is then propagated along the ray in a way similar to alpha-blending.

11.6.3 The Example Raytracer

The accompanying online material for this article contains a shader (fragment-
and vertex program) that implements a fully ray-traced, atmospheric single-
scattering solution in real time. See the color images in Figure 11.6. You should
be able to load the shader into a shader authoring tool (RenderMonkey, FX-
Composer) and apply it on a unit sphere. If you are on the Mac, there is a
ShaderBuilder project that you can simply double click.

The code assumes a planet centered at the origin of variable radius, with a
Rayleigh atmosphere. For each pixel that hits the atmosphere, aerial_
perspective is called once to get the in-scatter against the black background
of space. The transmittance is not needed. For each pixel that hits the surface,
the aerial_perspective function is called twice, one time for the view ray, and
a second time for the ocean reflection.

To give a realistic appearance, the f-values were calculated for a situation
similar to Earth. A little bit of orange absorption was added to account for the
effect of atmospheric ozone, which is significant at twilight (see [Nielsen 03]). The
landmass is shaded according to the Lommel-Seeliger law, which is a good model
for rough surfaces, avoiding the typical Lambertian limb darkening. The specular
reflection of the sun in the ocean is shaded with an approximate microfacet model
(see [Schiiler 09]). The final color is then tone mapped with an exponential soft
saturation and 2.2 display gamma.

11.7 Conclusion

This article shows a way to accelerate atmospheric scattering calculations, by
making the Chapman function an efficient commodity. This allows a strength
reduction of the numerical integration, up to the point where the full single-
scattering solution can be run in real time in a shader program.



186 11.  An Approximation to the Chapman Grazing-Incidence Function for Atmospheric Scattering

Figure 11.6. Color images from the example ray tracer. View of the Atlantic
Ocean (top). Sun reflection, which is yellow due to transmittance (middle). Earth
shadow, which is implicit in the solution (bottom).



11.8. Appendix

187

float exp2pp( float x )

{
// partial precision exp2, accurate to 12 bits
const float c[3] = { 5.79525, 12.52461, -2.88611 };
int e = round(x);
float t = x - e;
float m = ( t*t + c[0l*t + c[1] ) / ( c[2]*t + c[1] );
return ldexp( m, e );

}

Listing 11.3. An example of a fast exp2 function.

11.8 Appendix
11.8.1 A Fast exp2 Function

Listing 11.3 shows an example for a fast exp2 function for use in atmospheric-
scattering calculations. It is a low-order rational function in the range —1/2
to +1/2 together with the usual range reduction and scaling. Although it is
an approximation, it does preserve the property that 1 — exp(—=x) is strictly
positive if z > 0, which is important for the scattering calculations. The function
is dependent on an efficient way to assemble a floating point number from a
mantissa and an exponent. For the sake of brevity, this part is expressed here in
terms of the standard C-function 1dexp. The optimal method would be a direct
bit-manipulation, using language-specific constructs.
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Volumetric Real-Time Water and
Foam Rendering

Daniel Scherzer, Florian Bagar, and
Oliver Mattausch

12.1 Introduction

Over the last decade, simulation and rendering of complex natural phenomena
such as fire, smoke, clouds, and fluids have been an active and most diverse
research area in computer graphics. Among these phenomena, water may be
the most fascinating and challenging problem, due to the familiarity that even a

Figure 12.1. The proposed algorithm allows water to be rendered in many ways.
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casual observer has with the phenomenon. Although the visual quality of water
rendering is continually improving, we are still a long way from capturing all the
physical properties of real water, like the forming of foam and droplets and their
interaction with the environment.

In this chapter we present a method for creating a fully dynamic multilayered
real-time water rendering approach. This approach can represent the volumetric
properties of water and the physical formation of volumetric foam, thereby creat-
ing much higher visual fidelity than previous real-time approaches. It is based on
a very fast particle-based fluid simulation that is fully hardware-accelerated using
Nvidia PhysX and rendering in OpenGL, and therefore easily runs at real-time
frame rates. The algorithm has a small memory footprint and is simple to imple-
ment and integrate into existing rendering engines. Additionally, our method is
highly configurable from an artistic point of view, and thus can produce a multi-
plicity of visual appearances to help to create the desired atmosphere for a scene
(see Figure 12.1).

12.2  Simulation

In order to render believable water, we first have to simulate its behavior. The
dynamics of water as an incompressible fluid can be described by a version of
the Navier—Stokes equations, which apply Newton’s second law (conservation of
momentum) and conservation of mass to fluid motion. These equations relate the
body forces (gravity) and the contact forces (pressure and stress) that act on a
fluid. This results in nonlinear partial differential equations that are very hard to
solve (assuming that an exact solution for a given case even exists). As we do not
need an exact solution, but are mainly concerned with speed, we are fine with an
approximate numerical solution. Approximations in this problem domain mainly
use Euler integration. (There are more accurate methods, such as Runge-Kutta
or midpoint, but these take more time to evaluate.)

12.2.1 Smoothed-Particle Hydrodynamics

Smoothed-particle hydrodynamics (SPH) is a robust and fast way for simulat-
ing the behavior of water [Desbrun and Gascuel 96]. The main idea here is to
approximate a fluid by a particle system (a division of the fluid into discrete
elements) to calculate its dynamic behavior. Each particle has a mass and ad-
ditional properties, such as position, density, velocity, and lifetime. In classic
particle systems, each particle is updated based only on its properties, disregard-
ing particle-particle interaction for the sake of speed. For the simulation of fluids
this will not suffice because of the contact forces. Each particle can potentially
affect all other particles, which results in a computational complexity in the order
of O(n?)—too slow for practical purposes if we use tens of thousands of particles.



12.2.  Simulation

191

struct FluidParticle
{
Vector3 position;
float density;
Vector3 velocity;
float lifetime;
unsigned int id; // unique number identifying the particle
float foam;
};

Listing 12.1. Structure representing the properties of a single particle.

In practice, particles influence each other depending on the distance between
them. So it makes sense to define an interaction cut-off distance, inside which
a kernel function is applied to weight the influence of the individual particles
on each other. This effectively reduces calculation complexity to O(n). Note
that this cut-off distance is also called the smoothing length because it gives the
volume over which properties are “smoothed” by the kernel function (hence the
name smoothed-particle hydrodynamics).

All major physics engines already include a solver for SPH. We have used
PhysX [Nvidia 11] because of its hardware acceleration, but any other physics
engine would do as well.

The fluid simulation is created by passing a fluid description structure to the
physics engine, which defines the behavior of the SPH simulation. The simulation
data is a nonsorted 3D point cloud and each of the particles has the properties as
shown in Listing 12.1. Note that for our use the particle structure also includes
a foam parameter that is updated as described in Section 12.2.2. The physics
engine updates and returns this point cloud by applying the SPH simulation.

12.2.2 Foam

We want to be able to simulate not only water particles, but also foam. Foam is a
substance that is formed by trapping air bubbles inside a liquid (see Figure 12.4).
Note that this can be as spray or bubbles above the surface of the fluid, but also
deep inside a fluid, as in the case of a waterfall. The formation of foam can be
described by the Weber number. It is defined as the ratio of the kinetic energy
to the surface energy:

We = &QZ

g

)

where p is the density, v is the relative velocity between the liquid and the sur-
rounding gas, [ is the droplet diameter, and o is the surface tension. If We is
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large, the kinetic energy is greater than the surface energy, which causes water
to mix with the surrounding gas (air), and the result is foam. For our purposes,
we use the particle size as the droplet diameter and use a constant value for the
surface tension. We also assume that the air is not moving, and that therefore
the relative velocity is equal to the velocity of the liquid at this point.

The Weber number for each particle can now be calculated by using each
particle’s p and v from the physics engine. This number is then compared to
a user-defined threshold that describes how easily this fluid forms foam. Thus,
particles can be separated into water particles and foam particles. Thus, foam
(from the viewpoint of the simulation) is not a totally different phenomenon, but
is just a state of water particles [Bagar et al. 10].

With all these simulation parts in place we now have to tackle the problem of
how to render the water.

12.3 Rendering

Rendering water with a scanline renderer in an efficient manner is a twofold
problem: first, a water surface has to be extracted from the simulation data and
second, the shading of this surface has to take into account the volumetric prop-
erties of water. Due to the fact that real-time physics engines are often limited
to 64 K particles, while offline systems, as used in movies, often use hundreds
of millions of particles, our particle sizes will be much larger; we therefore must
take extra care to render believable water surfaces.

Ne
I =
o background

-‘OO\' BEENE

-

A
Z T, (... water particles
foam depth ()... foam particles

- i AR
fillered waler depti-—

PPN WEICTRg LNgwey ¥
wWaler acpin

Figure 12.2. A cross section of our layered water model: the volumetric appearance of
the result is achieved by accounting for water thickness 7%, foam thickness T, and the
thickness of water in front of the foam T\, at each pixel. We also partition foam into two
differently colored layers (1) to achieve more interesting foam. See also Figure 12.5
for renderings of the individual layers.
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12.3.1 Splatting

One method for extracting surfaces from particles is to use a marching cubes
method. This has a number of disadvantages: First, as the surface of the water is
expected to change continually, the surface may exhibit temporal aliasing. Sec-
ond, marching cubes is very computationally expensive, and third, the resulting
geometry will likely be very complex, especially when incorporating foam effects.

A method that avoids these disadvantages and works well on current hardware
is splatting: the idea is to splat each particle by using a certain kernel shape (for
instance, a sphere) into a depth (and thickness) buffer (see Figures 12.2 and 12.6).
By using a 3D kernel, we create volumetric particles. Splatting particles into a
depth buffer (with depth test on) results in a screen-space approximation of the
water surface (see Listing 12.2). While additively splatting (adding up sphere
radii, see Listing 12.3) into a thickness buffer creates an approximation of the
water thickness for each pixel (which we will later use for shading the surface).
Accumulating water thickness this way is an acceptable approximation because
the particles from the physics simulation can be assumed to be largely nonover-

lapping.

1 FragShaderOutput FluidSplattingFP( float2 texCoord : TEXCOORDO,

2 float4 eyeSpace : TEXCOORD1)

3 {

4 FragShaderOutput O0UT;

5 // calculate eye-space normal from texture coordinates

6 float3 n;

7 n.xy = texCoord.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f);
8 float r2 = dot(n.xy, n.xy);

9 // kill pixels outside circle

10 if (r2 > 1.0f) discard;

11 //calculate radius

12 n.z = sqrt(1.0f - r2);

13 // position of this pixel on sphere in eye space

14 float4 eyeSpacePos = float4(eyeSpace.xyz + n*eyeSpace.w, 1.0f);
15 float4 clipSpacePos = mul(glstate.matrix.projection, eyeSpacePos);
16 // output eye-space depth

17 0UT.color = float4(eyeSpacePos.z, 0.0f, 0.0f, 0.0f);

18 0UT.depth = (clipSpacePos.z / clipSpacePos.w) * 0.5f + 0.5f;

19 return 0UT;

20 }

Listing 12.2. Pixel shader for splatting the particle data as spheres into the depth
texture.

// calculate thickness with exponential falloff based on radius
float thickness = n.z * particleSize * 2.0f * exp(-r2 * 2.0f);
0UT.color = float4(thickness, 0.0f, 0.0f, 0.0f);

Listing 12.3. Splatting the particle data into the thickness texture. (Note: This shader
is based on the shader shown in Listing 12.2 and replaces lines 13-18.)
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12.3.2 Adaptive Screen-Space Curvature Flow Filtering

If we use a sphere-shaped kernel to splat the particles, the result of directly
rendering is often unconvincing (see Figure 12.3, upper-left image). The sphere
geometry of the individual particles is clearly visible due to the large particle
size. Making particles smaller and thereby requiring more particles for adequate
simulation of these scenes is not an option because we already operate near the
maximum of 64 K particles, and more particles also make the simulation and the
rendering slower. Another solution is to smooth the depth buffer that contains
the splatted particles in a way that avoids high curvature. This is the idea behind
curvature flow filtering [van der Laan et al. 09]. Here, a surface is shifted along
its normal vector depending on the mean curvature of the surface:

0z

o=
where z is the depth (as found in the depth buffer), ¢ is a smoothing time step,

and H is the mean curvature. For a surface in 3D space, the mean curvature is
defined as follows:

2H =V -, (12.1)

count; 20

Figure 12.3. Directly rendering the particles from the simulation as spheres results in
jelly-like water. Shading of the water can be improved by using the thickness of the
water to attenuate the water color (upper-left). Iteratively smoothing the depth buffer
by applying screen-space curvature flow filtering reduces the curvature of the water and
leads to more convincing results.



12.3. Rendering

195

where 71 is the unit normal of the surface. The normal is calculated by taking the
cross product between the derivatives of the viewspace position P in z- and y-
directions, resulting in a representation of the unit normal [van der Laan et al. 09]:

oz oz
A, y) = &Y _ (CCypi ~Copy Oy (12.2)
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where
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Finite differencing is used to calculate the spatial derivatives, and C, and C)
are the viewpoint parameters in the z- and y-directions, respectively. They are
computed from the field of view and the size of the viewport V, and V, as shown
in Equations (12.3) and (12.4):

(12.3)

= . 12.4
"7Vt (£9) i

The unit normal 7 from Equation (12.2) is substituted into Equation (12.1),
which enables the derivation of H, leading to
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The GLSL shader in Listing 12.4 performs this operation in screen space.

The effect of applying this filter repeatedly is shown in Figure 12.3. Iterative
filtering leads to a greater smoothing effect. If we want to maintain a certain
level of smoothness for water that is at the same time near and distant to the
viewer, the number of iterations has to be adjusted adaptively for each pixel.
We found that the number of iterations is indirectly proportional to the eye-
space distance—water nearby needs more iterations—far-away water needs fewer
iterations. Details regarding this derivation can be found in our paper [Bagar
et al. 10].
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// samples for finite differencing (vsp = view space position)
float depth = texRECT(depthMap, vsp.xy).x;
float depth_d = texRECT(depthMap, vsp.xy + float2( 0.0f,-1.0f)).x;
float depth_1 = texRECT(depthMap, vsp.xy + float2(-1.0f, 0.0f)).x;
+
+

float depth_r texRECT (depthMap, vsp.xy float2( 1.0f, 0.0f)).x;
float depth_u = texRECT(depthMap, vsp.xy float2( 0.0f, 1.0f)).x;
// derivatives (finite differencing)
float dx = (0.5f * (depth_r - depth_1));
float dy = (0.5f * (depth_u - depth_d));
// second derivatives
float dxx = (depth_1 - 2.0f * depth + depth_r);
float dyy = (depth_d - 2.0f * depth + depth_u);
// constants
const float dx2 = dx*dx; const float dy2 = dyx*dy;
const float Cx2 = Cx*Cx; const float Cy2 = Cy*Cy;
// calculate curvature
float D = Cy2*dx2 + Cx2xdy2 + Cx2*Cy2*depth*depth;
float H = Cy*dxx*D - Cyxdx*(Cy2*dx*dxx + Cx2*Cy2*depth*dx)
+ Cx*xdyy*D - Cx*dy*(Cx2*dy*dyy + Cx2xCy2*depthx*dy);
H /= pow(D, 3.0f/2.0f);
// curvature dependent shift
0UT.color = depth + epsilon * H;

Listing 12.4. This pixel shader code performs one step in the iterative process of screen-
space curvature flow filtering.

12.3.3 Foam and Layers

Up to now we have discussed the problem of how to create a surface for our water.
What remains is to provide this surface with realistic shading and to add foam
effects.

Figure 12.4. The three cases of foam formation that are handled by our rendering model:
foam without water (left), foam on water (middle), and foam inside water (right).
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Figure 12.5. The individual layers of our water model: back water layer (upper-left),
foam layer with the two user-defined colors that define the look of the foam as in-
lay (upper-right), front water layer (lower-left), and reflections and specular highlights
(lower-right).

We have investigated the different scenarios where foam occurs and have found
three main cases for a single pixel: foam without water, foam in front with water
behind, and foam inside water (see Figure 12.4). We disregard more complex
scenarios, like multiple layers of foam, because in practice the visual difference
compared with a single foam layer will be negligible. These cases can be cast into
a three-layered model (see Figures 12.2 and 12.5).

12.3.4 Steps of the Algorithm

To put this model into practice, our algorithm separates water and foam particles
and splats them into different buffers. The complete algorithm performs the
following steps in each frame (see Figure 12.6):

Update the physics simulation.

Render the background scene into a depth and color buffer.

Calculate foam depth by splatting foam particles into a depth buffer.

Calculate the front water depth by splatting water particles that are in
front of the foam.

Calculate the filtered front water depth by applying adaptive curvature flow
filtering.
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i
1
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Figure 12.6. Overview of the buffers used in our method. T3, denotes the thickness of
the water in front of the foam, T, denotes the thickness of the water behind the foam,
Ty denotes the foam thickness, and Tys denotes the thickness of the front foam layer.

e (Calculate the thickness of
o the foam T,
o the water in front of the foam Ty,

o the water behind the foam T,

o

the front foam layer T’ y.

e Perform volumetric compositing

We use a sphere kernel for water particles and multiply the sphere kernel with
a Perlin noise texture for foam particles to get more details. Smoothing is only
applied to the front-most water layer, because the surface of water behind a
layer of foam will be obfuscated anyway. The front foam layer thickness Ty is
an artificial construct that accumulates only foam particles within a user-defined
distance behind the foam depth. We found this to create more interesting looking
foam.

We have already discussed the basics behind each of the steps, except for the
final one, volumetric compositing, that builds on top of all the other steps.
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12.3.5 Volumetric Compositing

The difference between the usual compositing of layers and volumetric composit-
ing is that we take the thickness of each layer into account to attenuate a viewing
ray. Compositing along a viewing ray back to front, we have (see Figure 12.2):

Cwb = lel‘p(Cﬁmd, Cbackgroundv wb)7
Cfoam = leI'p(Cfb, Crfs € ~Tas )’
Cf = lerp(cfoan'n wbs € 7Tf)7
Cwy = lerp(cauia, Cp e "),

where cgyiq is the water color and c¢y and cs, are two user-defined colors that
are blended together to create more freedom in designing the look of the foam.

After attenuation, we calculate highlights at the front water surface, as well as
reflection and refraction (including the Fresnel Term). Here, refraction considers
the whole water (front and back water layer) as one volume, so Chackground iS
sampled from the scene background texture perturbed along the normal vector,
scaled using T + oy [van der Laan et al. 09].

Figures 12.5 and 12.7 show the individual steps and colors used in the com-
positing, and Listing 12.5 shows the GLSL pixel shader.

Figure 12.7. User-defined colors (cquia, ¢ff, Cfb), and resulting colors from the com-
positing steps (Chackground, Cuwb, Croam, Cf, Cwy) (left) and final shading results (right).

12.4 Artist Control

We have introduced a number of user-controllable parameters into our algorithm
to allow artists to produce a multiplicity of visual appearances (see Figure 12.1).

The visual appearance of water is controlled by the fluid/water color (cquiq),
which is combined during the composition depending on the different water thick-
nesses (twp,twy) and a user-defined falloff scale. Additionally, the specular color
and specular shininess, as well as the Fresnel bias, scale, and power, which are
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// surface properties (v = view vector, h = half angle vector)
float specular = pow(max(0.0, dot(mormal, h)), fluidShininess);
// bias, scale, and power = user-defined parameters to tune
// the Fresnel Term
float fresnelTerm = bias + scale * pow(1.0 + dot(v, normal), power);
float3 c_reflect = texCUBE(cubeMap, mul ((float3x3)invView,
reflect (-v, normal)));

© 00N oA W N

// attenuation factors (incl. user-defined falloff scales)

float att_wb = saturate(exp(-t_wb * falloffScale));

float att_foam = saturate(exp(-t_f * foamFalloffScale));

float att_ff = saturate(exp(-t_ff * foamScale));

float att_wf = saturate(exp(-t_wf * falloffScale));

// composition (frag = fragment position in screen space

float3 c_background = texRECT (scene, frag.xy+normal.xy*x(t_wb+t_wf));

float3 c_wb = lerp(c_fluid, c_background, att_wb);

float3 c_foam = lerp(c_fb, c_ff, att_£ff);

float3 c_f = lerp(c_foam, c_wb, att_foam);

float3 c_wf = lerp(c_fluid, c_f, att_wf);

// calculate factor to suppress specular highlights if

// foam is the frontmost visual element

float spw = saturate(1.0f - att_wf + att_foam) * (1.0f - att_wf);

// combine with fresnel and specular highlight

float3 surfaceColor = lerp(c_wf, c_reflect, min(fresnelTerm, spw))
+ fluidSpecularColor * specular * spw;

I N O T
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Listing 12.5. Pixel shader for compositing along a viewing ray: lighting (lines 2-7),
thickness dependent attenuation (lines 9-19), and final color (lines 20-25).

used to control the approximation of the Fresnel equations, are exposed to be
used by artists. The approximation of the Fresnel equations is then used to com-
bine the reflection and the thickness-dependent attenuation of our algorithm (see
Listing 12.5).

The reflection itself can be influenced by an artist by modifying or replacing
the cubic environment map (cubeMap) of the corresponding scene. Note that
the cubic environment map has a large influence on the visual appearance of our
algorithm because it is blended directly with the thickness-dependent attenuation
and furthermore, it describes the static illumination of the scene.

The visual appearance of the foam is composed of a foam back color (c¢f;) and
a foam front color (css), which are blended depending on the thickness of the
front foam layer (t7s) (see Figure 12.7) and a user-defined scale factor. Again,
as for the water, a user-defined falloff scale is used to control the overall opacity
of the foam. The final parameter that should be exposed to artists is the Weber
number threshold. As mentioned earlier, this user-defined threshold controls how
easily the simulated fluid forms foam.
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12.5 Conclusion

We have presented a physically based water (fluid) and foam rendering algorithm
that can handle arbitrary dynamic scenes where water is allowed to freely interact
and flow everywhere, but which also allows artists to fine-tune the look of the
result. This algorithm runs easily in real time (on average 16 ms rendering time)
on modern hardware and integrates well with rendering engines (especially with
deferred shading).

For more theoretical details and exhaustive benchmarks for the presented
method, please refer to the paper [Bagar et al. 10] and the thesis [Bagar 10] on
which this work is based.
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Inexpensive Antialiasing of

Simple Objects
Mikkel Gjgl and Mark Gjgl

13.1 Introduction

In the age of mobile devices, every algorithm gets a second chance. This article
explores a use of discontinuity edge overdraw [Sander et al. 01] for antialiasing
simple objects on 3D-capable mobile devices. The essence of this technique is to
render a “smooth” line on top of aliasing primitive edges in order to cover the
aliasing edge.

The method is trivially useful for rendering objects whose outline is geomet-
rically defined or easily derived. This applies to everything from GUI-elements
to 2D objects positioned in 3D, or even simple 3D-objects—anything where the
outline is defined by geometry. For textured 2D-elements, the usual way to deal
with antialiasing is to use textures with a translucent edge, relying on texture-
sampling to produce a smooth transition at the boundary. While this is a good
solution, it requires careful construction of the mip-chain to avoid artifacts during
scaling or when viewed at steep angles.

13.2 Antialiasing via Smoothed Lines

The founding observation of [Sander et al. 01] was that aliasing in 3D scenes
appears mostly at geometric silhouette edges and crease edges, and so only pixels
along these lines require antialiasing. As these boundaries can be described as
lines, and since line smoothing is widely available in hardware, aliasing can be
reduced by rendering smooth lines on top of the aliasing edges. The main contri-
bution of [Sander et al. 01] was an algorithm to find the aliasing edges. For some
applications, the potentially aliasing edges are trivially available, allowing us to
use this method easily. It is worth noting that the resulting algorithm does not
work for translucent objects, and does nothing to improve upon texture-aliasing,
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rendar visibla (opaqua) objecls
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Figure 13.1. Basic rendering setup.

including aliasing when rendering 2D sprites. Hardware texture filtering mostly
solves this issue however, and is available on the majority of modern mobile GPUs.
Applying the algorithm consists of just two steps (see Figure 13.1):

1. Determine the geometric edges that are causing aliasing.
2. Render aliasing edges as smooth lines.

In the general case it is not trivial to determine which edges cause aliasing, and
we refer readers to the exhaustive discussion in [Sander et al. 01]. In summary,
three sets of geometric edges should be considered for any visible object:

e silhouette edges,
e discontinuous edges, e.g., “hard” edges or texture seams,
e intersection-edges between geometric objects.

While discontinuous edges are typically static for a triangle mesh and can
be precomputed, silhouette edges change with the viewer. Dealing with scenes
constructed entirely of triangles, a geometric approach to finding silhouette edges
is to locate all edges where one of the adjacent triangles faces towards the viewer
and the other faces away. Computing exact intersections between geometric ob-
jects is computationally expensive, and a solution was not presented in [Sander
et al. 01].

When rendering lines to cover the detected aliasing edges, “over” alpha-
blending is applied (src_alpha,one_minus_src_alpha), and depth buffering is
used to achieve correct occlusion. While the rendered lines are potentially sub-
ject to z-fighting, the fighting pixels have the same color as the object on which
they are rendered. Since the main contribution of the smooth lines is outside
the aliasing object, z-fighting causes minimal issues. Rendering multiple layers
of alpha-blended pixels necessitates composition in a back-to-front manner. This
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is an issue only at the few pixels where the smooth lines overlap, making the
errors caused by incorrect depth sorting mostly unnoticeable. Doing only an ap-
proximate per-object sort is sufficient for most purposes, and skipping sorting
altogether could be considered.

Shading of the lines should be done identically to the aliasing edges, applying
lighting and texturing as for the underlying object. The same vertex program
and fragment program should similarly be applied during rendering of smoothed
lines (see also Section 1.3.3). Since the aliasing edge is an edge in the rendered
mesh, the original vertex data can be used for the smooth line. For ambiguous
cases where multiple sets of vertex data are associated with an edge, one set must
be selected. Again, we refer to [Sander et al. 01] for treatment of the general case,
but in summary, blending between two versions of the edge data is needed in all
but the trivial case in order to alleviate popping.

13.3 Rendering Lines

Lines and triangles are rasterized fundamentally differently: while triangles gen-
erate fragments where a fragment center is contained within the triangle, lines
generate fragments where they pass through a “diamond” centered around the
fragment center (see Figure 13.2). In the case of triangles, vertex values are lin-
early interpolated to the fragment center, while line-generated fragments always
receive the value at the rasterized point projected onto the center of the line.

OpenGL|ES defines the coverage of a fragment to be the exact area of overlap
between the fragment and the rectangle centered around the line. Rendered lines
thus give perfect coverage values for the affected fragments, making them ideal
for antialiasing purposes. It is worth noting that the specification does allow
variations in the implementation, so the exact outcome may vary.

trianales lines smoath lines

Figure 13.2. Rasterization rules for various primitives.

13.3.1 OpenGLJ|ES 1.x

The OpenGL|ES 1.x specification includes the functionality of rendering smoothed
points and lines, as also available in “regular” OpenGL (see Listing 13.1).
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gl.gllineWidth (1.0f);

gl.glEnable (GL10.GL_LINE_SMOOTH) ;

gl.glBlendFunc (GL10.GL_SRC_ALPHA,GL10.GL_ONE_MINUS_SRC_ALPHA);
gl.glEnable (GL10.GL_BLEND);

Listing 13.1. Enabling line smoothing in OpenGL|ES 1.x.

Implementations are not required to provide line widths beyond one pixel,
however for this method wider lines are not required. While line smoothing
is present on most phones exclusively supporting OpenGL|ES1.x, some phones
supporting OpenGL|ES 1.x, as well as OpenGL|ES 2.x, did not provide line-
smoothing functionality. The emulator for the iPhone provides smoothed lines,
but alas the device itself does not [Flaherty 10].

13.3.2 OpenGL|ES 2.x

For OpenGLI|ES 2.0, point- and line-smoothing were removed from the specifi-
cation, and multisample-antialiasing (MSAA) was introduced, to allow for an-
tialiasing of all primitives.! Not all OpenGL|ES2.x hardware supports MSAA,
but where it is supported, it should be easily implemented and provides a very
flexible solution.

Using multisampling does, however, significantly increase the number of pro-
cessed fragments, while also increasing the memory used by depth and color
buffers to store the multisampled buffers.?2 This overhead might not be accept-
able for all applications, for reasons related to memory and performance, as well
as to battery-life.

13.3.3 General Solution to Smoothed Line Rendering

Rather than rely on specific hardware capabilities, there are several methods avail-
able for manual rendering of antialiased lines [Baerentzen et al. 08, Texture 04].
The following three are of particular interest (see Figure 13.3):

1. Render an extra band of geometry along an edge, setting vertex alpha to 0
along the border.

2. Render with a masking alpha texture to smooth edges (optionally using a
distance-field).

3. Analytically calculate the distance to a line segment in the pixel shader and
use the mapped distance as an alpha-mask.

IMSAA is supported on the iPhone via the extension APPLE_framebuffer multisample, while
on Android EGL_SAMPLE BUFFERS is passed to eglChooseConfig to determine the number of
samples.

2Note that on some architectures, there is no memory overhead [IMG 11].
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Figure 13.3. Vertex-alpha (left), texture-alpha (middle), and analytical distance (right).

For rendering lines with a width of only a few pixels like the ones sought
here, rendering an extra strip of translucent vertices is impractical as it generates
numerous small, thin triangles. First, it is not guaranteed that any fragment
centers are contained within the triangles, requiring wide falloffs to guarantee
smoothness. Second, because hardware often shades pixels in quads of 2 x 2 pix-
els, processing may be wasted on nonvisible fragments. Additionally, the method
does not deal correctly with endpoints. At best, adding an end segment would
produce bi-linearly interpolated areas, causing unsightly artifacts.

Using a simple alpha texture as a mask relies on the texture filtering and
pre-filtered mip-maps to produce a smooth result. Using a texture easily allows
us to specify a custom falloff for the line, allowing increased control over the
smoothness. As the texture can be very small, e.g., a grayscale 32 x 32 pixels,
memory is not a concern. In order to produce properly filtered lines at all scales,
it is important to provide a mip-map for the texture. Applying the alpha texture
can be done using either shaders or register combiners—having the final texture
combiner replace the alpha for the masked texture alpha.

The third option for analytically calculating the distance provides the most
accurate result, but can only be easily implemented using shaders. While the
per-fragment distance calculations require more ALU instructions than using a
texture lookup, it is still a viable option, as only a few fragments are touched
using this shader. If the base shader is bandwidth bound, it may even be the
preferred option. A hybrid of the second and third methods is possible, sampling
a distance texture and mapping it to an alpha value, potentially providing yet
more control over the falloff.

It is worth noting the importance of generating lines with a constant screen-
space antialiasing footprint. Also, the rendered lines should have valid depths to
be useful for depth culling. The following options are available for producing the
needed geometry:
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. Project all points to screen space, extrude line geometry, and project back

to world space.

Directly render collapsed triangles in world space, and do the expansion
after projection within the vertex-shader.

For hardware with geometry-shaders, render line segments and expand ver-
tices in the geometry shader.

Depending on hardware and the specific case, any of these methods could be
preferable. The second method requires access to shaders, and results in only
a small memory overhead to store vertex IDs. Geometry shaders, while not
currently available on mobile hardware, would provide the most flexible solution,
requiring very few changes compared to ordinary line rendering. In order to main-

tain

backwards compatibility, we opted for generating all line geometry directly

in world space, on the CPU. The downside to this is the overhead of creating new
positions and texture coordinates whenever the view changes.

The method for generating line geometry is fairly straight forward, but is
provided here for completeness (see Figure 13.4):

For each aliasing line segment {po, p1}

1.
2.
3.

4.

Project {po,p1} to the near plane {py”,p"}.
Expand {po,p1} to eight vertices v,0—,7 forming lines on the near plane.

Generate plane P from the three points pg, p1, and pg+ 0 X (pg — p1), where
¥ is the view vector in world coordinates.

Project v,0—n7 on to P, thus obtaining world-space vertices.

Recalling that triangle rasterization only affects fragments whose center lies
within the triangle, it is necessary to render lines wider than the targeted width,
in order to affect the same fragments touched by smooth line rendering. The
minimum line width required to affect the same fragments as a 1-pixel antialiased

8 o) |
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Figure 13.4. Generating world-space line geometry in three stages.
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line depends on angle and offset. To cover the worst case, a width of 2¢/2 = 2.8
pixels can be used. If desired, a bias towards a smoother result can be introduced
by artificially increasing the width of the lines.

During rendering, we want the alpha mask texture interpolation to happen in
screen space. In other words, we want to do screen-space linear interpolation of
the texture coordinates. OpenGL|ES does not currently support noperspective
interpolation, but the same result is achievable using shaders, by negating the
perspective transform as follows, see [Beerentzen et al. 08]: in the vertex shader,
multiply the texcoords with the w-component of the clip space vertex position—
then in the fragment shader, multiply the interpolated texture coordinates by the
interpolated 1/w.

Recalling that the lines should be rendered with the same lighting and tex-
tures as the object itself, it is generally sufficient to bind an extra vertex stream
supplying the texture coordinates for the masking texture. If using shaders, spe-
cific variants of the vertex and fragment programs should be created that apply
the extra alpha mask.

13.4 Discussion

Manual rendering of smooth lines was implemented in the Android application
Floating Image. The application renders simple photos in a gallery-type manner.
All potentially aliasing edges are static, and thus this application lends itself well
to this particular method of antialiasing. It is a very simple application, and
several other methods of antialiasing could also have been used—the simplest

Figure 13.5. Floating image with varying widths of smooth lines.
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9 photos(no AA) | 9 photos+AA (36 lines) |AA Cost
HTC Magic (320x480) 56Hz 22Hz 27.59ms
Nexus One (480x800) 52Hz 49Hz 1.17ms
Samsung Galaxy S (480x800) 56Hz 56Hz “Oms”
27 photos (no AA) |27 photos+AA (108 lines) | AA Cost
HTC Magic (480x320) 25Hz 9Hz 71ms
Nexus One (480x800) 34Hz 32Hz 1.8ms
Samsung Galaxy S (480x800) 56Hz 56Hz “Oms”

Table 13.1. Performance timings on various Android devices. MSAA was not supported
on these devices for comparison.

being to introduce a band of one translucent pixel around the edge of every
mip-level in the photo texture. While occlusions could, and normally should, be
handled using the depth buffer, Floating Image does manual compositing via the
painter’s algorithm for device-compatibility reasons, rendering all objects back-
to-front.

The implementation uses an alpha texture to render smooth lines, and slightly
biases towards blurriness by using a texture with a large falloff and oversized lines.
Figure 13.5 shows the result achieved, along with a much over-blurred version.
It is worth noting that the method always slightly expands the silhouette of
objects: whereas a lot of FSAA techniques blend with a background pixel of a
color assumed identical to one of the pixel neighbors, discontinuity edge overdraw
always adds occluding pixels on top.

Due to the choice between generating lines directly in world space and ren-
dering via a texture alpha mask, vertex-buffer data needs to be regenerated per
frame. Opting for performance over compatibility, vertex-shader expansion of the
lines could be used for line expansion, similar to what is often done for billboards.

We have tested the implementation on several devices with varying capabili-
ties. None of the devices were capable of MSAA, and only the Nexus One sup-
ported GL_LINE_SMOOTH. Using the smooth lines method we were able to achieve
antialiasing on all the devices. The performance has only been tested naively, by
varying the number of photos displayed and noting the framerate (see Table 13.1).
Adding smooth edges hardly impacts performance of the Nexus One, while the
HTC is likely CPU-bound due to the line-expansion. The fastest of the devices
remains capped at refresh-rate.

13.5 Conclusion

The main drawback of the algorithm is that it depends on the geometric com-
plexity of the rendered scene. Traversing all geometry very quickly becomes
impractical, thus limiting use of the method to reasonably simple setups. Fur-
thermore, the need to track aliasing lines per frame makes it necessary to keep all
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geometry accessible to the CPU. Even though many modern mobile GPUs use a
shared memory architecture, the APIs make it difficult to get around duplicating
data.

While the algorithm is not complicated to set up, and is arguably trivial if
line smoothing is available in hardware, it is challenging to make it scale with
increasing geometric complexity. Any object where outlines are trivially found,
or as in our example, are entirely static, is an obvious candidate. In general,
2D elements lend themselves well to the technique, whether in screen space or
positioned in a 3D scene. For complex 3D scenes, other solutions will likely yield
better results.
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Practical Planar Reflections Using
Cubemaps and Image Proxies

Sébastien Lagarde and Antoine Zanuttini

14.1 Introduction

Rendering scenes with glossy and specular reflections has always been a challenge
in the field of real-time rendering. Due to their importance in assessing image
quality, many techniques have been developed to simulate reflections. These
techniques can be classified in four categories:

1. Real-time techniques, such as dynamic environment mapping, with all kinds
of parameterization: cubemaps, 2D mirror planes, dual paraboloid. Dy-
namic reflections of this type are accurate but costly because they require
resending the whole scene to the graphics pipeline. Many optimizations
have been devised to speed up the process, such as mesh or shader simpli-
fications, but it still induces a significant overhead.

2. Precomputed techniques, such as static environment mapping with all kinds
of parameterization: cube maps, sphere maps, dual paraboloid, etc. Static
reflections lack the accuracy of dynamic reflection but are far cheaper to
use.

3. Screen-space techniques, such as screen-space local reflection [Tiago et al. 12],
often come at a manageable cost for pleasant localized results, but fail where
on-screen information is missing.

4. Real-time ray-tracing techniques such as the image-based reflections found
in Epic’s Samaritan demo [Mittring and Dudash 11] are promising tech-
niques, but they require support for features not available on older graphics
hardware.
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For our game Remember Me, targeting current generation console hardware (DX9/
PS3/Xbox 360), we tried to find a reflection technique similar in cost to precom-
puted techniques, but with improved accuracy and realism.

This chapter introduces a new algorithm with a set of artist tools that allow
simulating planar glossy/specular reflections. The goal of our method is to replace
the accurate but costly real-time planar reflection with a cheaper approximation
that does not require re-rendering the scene geometry. In our game, we mostly
use these tools for ground reflections.

The principle of the algorithm is to render an approximation of the reflected
scene into a 2D reflection texture, then use this texture during the scene rendering.
In order to build the approximated reflected scene, we provide our artists with
several tools that let them combine the reflected scene with offline-generated
elements: environment maps and image proxies. To increase quality, we parallax-
correct elements of the reflected scene for the current view when they are rendered
in the reflection texture. In order to update the parallax-correction, the reflection
texture is updated for each frame.

We will start the description of our algorithm and tools with the generation
of the reflection texture. We will describe how our algorithm fits within a local
image-based lighting (IBL) strategy, following the work we presented in [Lagarde
and Zanuttini 12]. We will conclude with the processing and usage of this 2D
reflection texture for the scene rendering.

14.2 Generating Reflection Textures

14.2.1 Cubemap Reflection Environment

Our algorithm begins by generating an approximation of the reflected scene. We
are trying to avoid the cost of re-rendering the scene geometry at runtime. In
this case, the common technique for approximating reflections is to create an
environment map, such as a cubemap, that is the parameterization of choice
due to its hardware efficiency. However, the reflection stored in the cubemap is
correct only from a single point in space. Applying a cubemap onto a planar
geometry such as a ground surface creates visual issues in part due to lack of
parallax (Figure 14.3). The graphics literature proposes several algorithms to fix
this problem. All these algorithms share the requirement of a geometry proxy
to represent the reflection environment: simple sphere volumes [Bjorke 04], box
volumes [Czuba 10] or cube depth buffers [Szirmay-Kalos et al. 05]. The reflected
view vector by the surface normal is used to intersect the proxy geometry. A cor-
rected reflected view vector is created from the pixel’s world position, which can
then be used to fetch the right cubemap sample. Cost and quality increase with
the geometry proxy’s complexity. For completeness, we note that other cheap
parallax correction methods without a geometry proxy are available [Geiss 05,
Brennan 02], but they require manual tuning for each object. Our solution to
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Figure 14.1. Cubemap with a box volume (white) and reflection plane (red) matching
a rectangular room environment.

the parallax problem is unique in that we don’t use the scene’s geometry since
we cannot access the pixel’s world position when we render into the 2D reflection
texture. Moreover, we limit ourselves to planar reflections.

We developed tools for our artists to allow placing cubemaps in levels and
associating them with a geometry proxy: a convex volume approximating the
reflection environment. For example, in a rectangular room an artist can place
a cubemap in the center of the room and define a box volume to approximate
the room boundaries. The center of the box volume doesn’t need to match the
position of the cubemap. As we target planar reflections, we also require having
a reflection plane for the cubemap (Figure 14.1). The reflection plane could be
specified as a distance from the cubemap position and oriented by the cubemap’s
up axis or extracted from a game’s entity.

In order to correct for parallax, we make the following observation (see Fig-
ure 14.2):

Consider a scene with a ground surface (hashed line), a reflection environment
(yellow) approximated by a proxy geometry (box volume in green) and a camera.
The camera looks at a position on the ground. The reflected view vector R is
used to get the intersection P with the proxy geometry. P is then used with
the cubemap that was captured at center C' to recover the cubemap’s sample
direction D. If we reflect the camera about the reflection plane, the new view
vector V of the reflected camera matches the previous R vector and intersects the
same point P. From this observation, we deduce that in order to fix the parallax
issue we could simply project the cubemap onto its geometry proxy, and then
render the geometry from the point of view of the reflected camera.
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Figure 14.2. The view vector of the reflected camera equals the reflected view vector of
the camera.

The rendering process is similar to standard real-time planar reflection ren-
dering. We build a ViewProjection matrix by mirroring the View matrix by
the reflection plane and compose it with an oblique near clipping plane matrix
[Lengyel 07]. We then render the back face of the geometry proxy with this View-
Projection matrix. As we reflect the camera, we must inverse the winding order.
C++ pseudocode and shader code are provided in Listing 14.1.

// C++
Matrix
Matrix
Matrix
Matrix

}

}

// Render back face but remember to inverse culling order
SetInverseFrontFaceCulling () ;
DrawConvexVolume () ;

// Shader code
float4x4 LocalToWorld;
float4x4 ViewProjection;

VertexMain () {

float4 PositionWS = mul(LocalToWorld, InPosition0S);
float4 PositionSS = mul(ViewProjection, PositionWS);
OutPosition = PositionSS;

// Current direction sampling direction
OutDirection = PositionWS.xyz - CubeCenterWS.xyz;

PixelMain () {
OutColor = texCUBE (CubeTexture, OutDirection);

pseudocode

Mirror = CreateMirrorMatrix(ReflectionPlaneWS);
ReflectView = Mirror * View;

ClipProjection = NearObliqueMatrix (ReflectionPlaneVS);
ViewProjection = View * ClipProjection;

Listing 14.1. Pseudocode of parallax-corrected cubemap.
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Figure 14.3. Box (top) and convex (bottom) room with a specular ground reflecting the
environment with a cubemap. With parallax issue (left) and with correction (right).

Our algorithm allows for the rendering of accurate reflections for any space
matching the convex volume used as a geometry proxy (Figure 14.3). It is possible
to use concave volumes as geometry proxies but it will result in artifacts because
we don’t use the Z-buffer during the drawing. Additionally, some information will
not be captured in the cubemap. In the next section, we will present a technique
to add information into the 2D reflection texture to complete the cubemap that
can be used to hide these artifacts.

14.2.2 Image Proxies

The previous section described the projection of a parallax-corrected cubemap
onto a 2D reflection texture to approximate the reflected scene. This kind of
rendering has its limits because it can miss or lose information: dynamic elements
may disappear, the 2D texture resolution can be too low, causing flickering or the
disappearance of bright small elements, and concave volumes used as geometry
proxies will occlude details. It is possible to enhance the cubemap’s contribution
to the rendering of the reflected scene with image proxies in the spirit of the light
cards used in the AMD’s Whiteout demo [Wiley and Scheuermann 07] or the
billboards from Epic’s Samaritan demo [Mittring and Dudash 11]. The addition
of image proxies to our algorithm is easy. We use a quad as a geometry proxy
for an image representing a part of the reflected scene, then we render the quad
as in the previous section. A detailed description of the creation, rendering and
usage of image proxies follows.
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Figure 14.4. Editor view showing the link between an image proxy and a cubemap
(left) and the orthogonal frustum for a 2D scene capture (right).

Creating image proxies. An image proxy is a quad textured with an authored
image or a 2D capture from the scene. The quad is used as a geometric approxi-
mation of the reflection environment a.k.a. the geometry proxy.

We developed tools for our artists to allow placing image proxies in levels,
customizing the quad size, customizing the texture resolution and performing 2D
scene captures (Figure 14.4). The 2D capture is done with an orthogonal frustum
set up inside our game editor. The capture considers empty areas (pixels that
have not been touched during rendering) as transparent.

Image proxies are very similar to sprite particles and they can share many
properties. We decided to take a subset of sprite particles functionality. Image
proxies can

e always face the camera, resulting in a spherical billboard;

e define a constraint axis and try to face the camera but rotate along that
axis, resulting in a cylindrical billboard;

e use different blending modes (interpolative, additive).

Note that we restrict ourselves to quad image proxies for efficiency, but other
plane shapes could apply here.

Rendering image proxies. All image proxies are transparent objects (this choice
will be explained later in this section) and thus need to be sorted back to front
before rendering since we do not use a Z-buffer. We use the distance from the
camera to the image proxies as a criterion for sorting. For an accurate rendering,
particularly in the case of overlapping image proxies, we should perform a binary
space partitioning (BSP) of the quads but we found out that using a priority
system to force the rendering order was sufficient in our case. Rendering image
proxies is similar to cubemap rendering. We also allow image proxies to be two
sided. C++ pseudocode and shader code are provided in Listing 14.2.
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// C++ pseudocode

Matrix Mirror = CreateMirrorMatrix(ReflectionPlaneWS);

Matrix ReflectView = Mirror * View;

Matrix ClipProjection = NearObliqueMatrix(ReflectionPlaneVS);
Matrix ViewProjection = View * ClipProjection;

// Image proxy specific

Vector ReflectViewOrigin = Mirror * ViewOrigin;
Matrix InverseReflectView = ReflectView.Inverse();
Vector ViewUp = -InverseReflectView * Vector(0,1,0);

// Following is done for each IP (Image proxy)
// Calc X and Y sprite vector based on option.
Vector YVector = IP ->LocalToWorld * Vector (0, 1, 0);
if (IP->bCameraFacing) {
float ScaleFactor = YVector.Length();
YVector = CameraUp.Normalize() * ScaleFactor;

¥
Vector CameraDirWS = (CameraWS - IP->Location).Normalize();

Vector XVector = IP->LocalToWorld * Vector (i, 0, 0);

if (IP->bCameraFacing || IP->bCameraFacingReflectionAxis) {
float ScaleFactor = XVector.Lenght ();
XVector = CameraDir ~ YVector;
XVector = XVector.Normalize() * ScaleFactor;

// Shader code

float4x4 LocalToWorld;
float4x4 ViewProjection;
float3 IPPosition;

VertexMain () {
float3 VPosition = IPPosition + InPosition.x * XVector -
InPosition.y * YVector;
float4 PositionSS = mul(ViewProjection, float4(VPosition, 1));
OutPosition = PositionSS;
UVOut = UV;
}

float4 IPColor ;
PixelMain () {}

OutColor = IPColor * tex2D(SpriteTexture, InUV);
}

Listing 14.2. Pseudocode for parallax-corrected rendering of image proxies.

A disturbing problem of naively rendering image proxies as presented here is
temporal aliasing. The low resolution of our textures (both 2D reflection textures
and image proxy textures) causes severe aliasing along the edges of image proxies,
especially when the camera moves near the boundaries of the geometry proxy.
To minimize aliasing we set the alpha value of image proxy texture borders to be
fully translucent, forcing us to render the image proxies as transparent objects
(Figure 14.5). It would also be possible to set this value from within the shader.
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Figure 14.5. An image proxy of a door rendered with aliasing (left). The floor is flat
and specular to highlight the aliasing issue. The same with fully transparent texture
borders (right).

It should be noted that the choice of a quad geometry simplifies this step: a more
complex geometry would require more efforts in order to deal with aliasing.

Using image proxies for dynamic reflections. An image proxy is not restricted to a
static quad. By dynamically updating its position (for instance by attaching it to
a game entity), it is possible to handle gameplay events such as an opening door
(Figure 14.6). In this case the cubemap must not contain the scene geometry
represented by the image proxies, i.e., the door must not be present when gen-
erating the cubemap. We provide flags to our artists to specify the scene object
visibility based on the type of rendering (2D capture, cubemap, or scene).

We also use dynamic updates of image proxies to simulate character reflec-
tions. Character image proxies are just image proxies linked to the character’s
main bones with a constraint along each bone’s axis. In this case we use an
authored texture that consists in just a white sphere that can be tinted by char-
acters. During gameplay we update the character’s image proxies based on the
transformation of their attached bones and link them to the current cubemap
(Figure 14.7).
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Figure 14.6. Image proxies can be moved in real-time to match the action.

Best practices. Image proxies are powerful tools, but they require production
time from the artists. There are plenty of creative ways to use them to enhance
reflections and we present some best practices here. Figure 14.8 shows screenshots
of typical use cases with only the cubemap applied and with the contribution of
the image proxies:

Figure 14.7. Character proxies (left), the texture used for the main bones (center), and
the character proxies on a flat mirror, highlighting the coarse approximation (right).
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1. Rendering small light sources inside small resolution cubemap is problem-
atic. They can flicker or completely drop out. Image proxies can compen-
sate for the low resolution.

2. Control the brightness strength of the cubemap: As a cubemap is a single
texture generated in the engine, it is painful to boost the brightness in only
a part of it. Image proxies can control their brightness individually.

3. Enhance lights: in order to emulate a stretch highlight on a wet ground
similar to the Blinn-Phong lighting model, artists can create a cylinder
billboard image proxy with an authored texture instead of a capture of
that part of the scene.

4. Hide undesirable reflections: by placing a 2D scene capture proxy at the
appropriate position, it is possible to hide reflection elements either in the
cubemap or in another image proxy.

5. Handle multiple reflection planes: Standard real-time reflection can only
reflect for one plane at a time. By settings image proxies at different height
with their quad geometries parallel to the reflection plane, we could simulate
multiple plane reflections inside one texture.

6. Hide concave geometry proxy artifacts: if the cubemap captures a corner
corridor, image proxies can be used to hide the missing information caused
by occlusions.

Another useful property of image proxies arises when dealing with multiple
cubemaps at the same time, as will be shown in the next section.

14.2.3 Local Image-Based Lighting

Our game uses a local image-based lighting (IBL) system. Our local IBL provides
accurate environment lighting information that can be used for glossy and/or
specular reflections and has the additional advantage of smooth lighting tran-
sitions between objects. The system has been covered in detail in the authors’
SIGGRAPH 2012 talk [Lagarde and Zanuttini 12] and personal blog [Lagarde 12].
It consists of blending multiple cubemaps in the neighborhood of a point of in-
terest (the camera, the player...) and using the blended cubemap for indirect
lighting on scene objects. The blending weights are authored by artists as in-
fluence regions around a cubemap. We extend the previous work by blending
cubemaps inside a 2D reflection texture instead of a cubemap and by adding im-
age proxies to the mix. The move from a cubemap to a 2D texture is motivated
by performance requirements since we need to handle only one view instead of six.
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Figure 14.8. Examples of best practices. Top to bottom: cases 2, 3, and 4. On the left,
the scene with only the cubemap reflection and the image proxy capture frustum (red
box). on the right, the enhancement resulting from image proxy use.
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Rendering multiple cubemaps and image proxies. In order to render multiple cube-
maps correctly, we should render each cubemap and its linked image proxy sep-
arately and then blend the result. This is because of the reflection plane, the
sorting order and the blending mode of the image proxies. This has both a mem-
ory and a computational cost. As a performance optimization, we chose to first
render all cubemaps sorted by increasing blend weight with additive blending,
then render all sorted image proxies. This can cause trouble when mixing cube-
maps with different reflection planes but we let artists manage this case. Other
artifacts are less noticeable.

Extra care needs to be taken for character image proxies as these are dynami-
cally linked to the cubemaps. In the blending case, they must be linked to all the
gathered cubemaps in order to be fully visible (the sum of their blending weights
will equal 100%). We render them in each cubemap rather than at the end to
get smoother transitions when a cubemap with a different reflection plane comes
into the mix.

Similarly to character proxies, other image proxies may be shared by multiple
cubemaps. If the image proxy uses interpolative blending, this could result in a
final image intensity that is lower than expected because of repeated interpolation.
This can be fixed in the shader by tweaking the alpha value according to the
blending weight.

Image proxy best practices with local IBL. Our local IBL approach provides seam-
less transitions between lighting environments represented by cubemaps. A sim-
ple example of a corridor environment has been presented in our SIGGRAPH
talk. This still applies to our planar reflection. We set up three cubemaps in
the corridor with overlapping influence regions and identical geometry proxies.
For clarity, only the geometry proxies (the box volumes in red, green, and blue)
are shown, with a small scale so that they are all visible. This setup and our
planar reflection technique provide detailed reflections and smooth transitions
(Figure 14.9). There is a video in the web material accompanying this article
showing the result when the camera moves.

Image proxies are of great help in more complex cases. Again, artists must be
creative, and we help by presenting some best practices. Figure 14.9 shows the
setup of geometry proxies and screenshots of typical usage (refer to the video for
better visualization). Purple lines are image proxies; red, green and blue boxes
are geometry proxies of cubemaps:

1. Corner corridor: The set of geometry proxies include a concave volume.
Artists use image proxies to hide the artifacts. The image proxies are
captures of the walls.

2. Two successive rooms, separated by an opening door: The geometry proxies
overlap and include the two rooms. The image proxies are captures of the
separating walls. Walls should not be included in the cubemap generation.
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Figure 14.9. Top view of the scene’s cubemap setup (left) and the resulting rendition
(right). From top to bottom: corridor case from the SIGGRAPH talk, best case 1, and
best case 2.

14.3 Using Reflection Textures
14.3.1 Glossy Material Support

We saw how to generate a 2D reflection texture to approximate a reflected scene.
This texture is better suited for specular materials like perfect mirrors. In order
to support glossy material we store preconvolved versions of the base texture in
the mipmaps (Figure 14.10). This is similar to a preconvolved cubemap [Kautz
et al. 00]. Each mipmap level maps to a different glossiness. A highly glossy re-
flection (more detailed) will look up a lower mipmap level, a less glossy reflection
(more blurred) will look up the average of a large number of pixels. We exper-
imented with two ways of generating the mipmaps: by rendering the reflected
scene for each mipmap, and by successively blurring base mipmaps.

Rendering the reflected scene in each mipmap. We first try to re-render the ap-
proximated reflected scene for each mipmap. For better results, we should use
both preconvolved cubemaps and preconvolved image proxies. At rendering time,
the current mipmap level to render is used to sample the current mipmap level
of the texture applied on the cubemap or image proxies. The difficulty of this
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Figure 14.10. Different mipmap levels matching different roughness strengths.

approach lies in the generation of accurate preconvolved image proxies, which is
impossible because of the lack of information outside of the 2D texture. The low
resolution of the mipmap is also problematic: small image proxies will contribute
too few pixels. Finally, if there are several characters in a scene then the num-
ber of draw calls can increase significantly. Since we know we cannot achieve
sufficient accuracy anyway, we choose a cheaper approach.

Convolving base mipmaps. A simpler approach consists of recursively blurring
mipmap textures. Each mipmap stores the result of convolving the previous
lower mipmap level with a specified blurring kernel. We use a Gaussian blur that
we found to be sufficient for our needs.

Aliasing. Aliasing is an important issue that our method must address. The
reader may notice that in Listing 14.1 a texCUBE instruction is used instead
of texCUBEIlod that would force a fetch from the base cubemap. This reduces
aliasing even if mipmaps are generated in a subsequent step. For completeness,
it should be added that a better way would be to use the texCUBElod instruc-
tion and, at scene rendering time, compute the required hardware mipmap level
and the desired mipmap level based on roughness, then chose the larger of the
two values [Scheuermann and Isidoro 05]. We decided against this approach for
performance reasons.

14.3.2  Applying the 2D Reflection Texture

The preconvolved 2D reflection texture can now be used on any planar objects
lying at the same height as the reflection plane used to generate the texture. The
rendering process for our texture is similar to the mirror surface case. We use
the texture to provide the reflection value by performing a texture lookup with
the actual screen coordinates as the texture coordinates. We approximate rough
surfaces by offsetting the texture coordinates along the XY components of the
surface normal with an artist-controlled parameter for the distortion strength.
We also use the glossiness of the surface to select the right mipmap level to use
(Listing 14.3). It is possible to divide the distortion value by the post-perspective
Z-coordinate. The distortion will vary with distance but we did not find it to
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float2 ScreenUV = ScreenPosition.xy / ScreenPosition.w *
float2(0.5f, -0.5f) + 0.5f;

float2 R = ScreenUV + TangentNormal.xy * DistortionStrenght;
return tex2Dlod ( ReflectionTexture, float4(R, 0.0f, ScaleBias.x *
Glossiness + ScaleBias.y)).rgb;

Listing 14.3. High-level shading language (HLSL) pseudocode to use a 2D reflection
texture.

improve the final quality in our case. Note that for performance reasons, we do not
transform the normal to view-space but keep it in tangent space, implying that
we could not distort in the correct direction. In practice the result is good enough
and the correct result would still be an approximation anyway (Figure 14.11).

14.3.3 Cost

We provide some performance measurements of our implementation with a 128 x
128 x 6 cubemap stored using DXT1 compression, 128 x 128 image proxies using
DXT5, and a 256 x 256 2D reflection texture. Image proxies use DXT5 to support
the alpha pixel border we add for antialiasing. We provide our performance
measurements as ranges since timings vary with the number of cubemaps, image
proxies and pixels clipped by the reflection plane. The typical case includes two
cubemaps and 10 to 15 image proxies. The whole process is in HDR format.

w BOULANGERIE 7 w BOULANGERIE 7

Figure 14.11. The influence of the distortion strength on the reflection.
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On the PlayStation 3, we generate the reflection texture in the RGBA half16
format. The texture generation costs between 0.10 ms and 0.33 ms, with an
average of 0.17 ms. The mipmap generation costs 0.16 ms. The process is render-
output-bound due to the use of RGBA half16.

On the Xbox 360 we use the 10-bit float 7e3 format. The texture generation
costs between 0.06 ms and 0.24 ms with an average of 0.1 ms. The mipmap
generation costs 0.09 ms.

14.4 Conclusion and Future Work

We have presented a good alternative to real-time 2D reflections applied to planar
objects to simulate specular and/or glossy materials. Our approach is fast and
practical and can be used in conjunction with other techniques such as local IBL.
It has been used in production in our game targeting current generation consoles.
A video showing various best practices and use cases of our technique is available
in the accompanying web material.

The technique is satisfying but could be improved in a number of ways:

First, using a cubemap reflection texture instead of a 2D reflection texture
will improve the accuracy of the reflection distortion with rough surfaces at the
cost of doing the process six times and requiring more time to generate mipmap.
It should be highlighted that this still does not provide the correct result because
we are generating the cubemap reflection texture only for normals perpendicular
to the reflection plane. Using it for shifted normals introduces a distortion that
increases with the angle between the normal and the plane normal (Figure 14.12)
[Lagarde and Zanuttini 12]. Another parameterization, more efficient but with
the same benefits, could be a dual paraboloid map [Scherzer et al. 12]. This will
require tessellating our geometry proxies to limit the projection warping artifacts
and rotating the lighting to local space aligned on the reflection plane’s normal.

Figure 14.12. Our cubemap reflection is only valid for pixels with a normal vector
perpendicular to the ground (left). For perturbed normals, the intersection requires
moving the reflected camera’s position (right).
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Second, anisotropic reflections could be emulated by stretching image proxies
based on some physical properties. A more physically based approach could be
developed for the mipmap generation step.

Finally image reflections as used in Epic’s Samaritan demo [Mittring and
Dudash 11] also are an interesting future development.
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Real-Time Ptex and

Vector Displacement
Karl Hillesland

15.1 Introduction

A fundamental texture authoring problem is that it’s difficult to unwrap a mesh
with arbitrary topology onto a continuous 2D rectangular texture domain. Meshes
are broken into pieces that are unwrapped into “charts” and packed into a rect-
angular texture domain as an “atlas” as shown in Figure 15.4(b). Artists spend
time setting up UVs to minimize distortion and wasted space in the texture when
they should ideally be focusing on the actual painting and modeling.

Another problem is that edges of each chart in the atlas introduce seam arti-
facts. This seam problem becomes much worse when the texture is a displacement
map used for hardware tessellation, as any discrepancy manifests as a crack in
the surface.

This chapter describes an implicit texture parametrization system to solve
these problems that we call packed Ptez. It builds on the Ptex method developed
by Disney Animation Studios for production rendering [Burley and Lacewell 08].
Ptex associates a small independent texture map with each face of the mesh.
Each texture map has its own mip chain. In the original Ptex method, adjacency
information is used for filtering across the edge of one face texture and into the
next.

There are two main advantages of Ptex relative to conventional texture atlas-
ing. First, there is no need for explicit UV. Second, there are no seaming issues
arising from unwrapping a complete mesh of arbitrary topology onto a single-
texture domain. These are the two main advantages of the original Ptex method
that we preserve in our adaptation.

The drawbacks of packed Ptex relative to conventional texture atlasing are
additional runtime computation, additional texture filtering expense, and changes
in asset production. The main change in asset production is that our method cur-
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rently targets meshes consisting of quads. There can either be additional memory
cost or savings relative to conventional texture atlasing methods depending on
the particular circumstances.

Although this approach works for many texture types, it works particularly
well for vector displacement mapping. The lack of seam issues is particularly
valuable for this application, while many of the drawbacks of the approach are
irrelevant.

There are two barriers to real-time performance in the original Ptex method.
First, it’s typically not practical to have an individual texture for each primitive.
Second, the indirection required when a filter kernel crosses from one face to
another is costly in performance, and precludes the use of any hardware texture
filtering. The next section describes the offline process to address these issues.
Then we follow up with how to use this at runtime and some details related to
displacement mapping. We finish by discussing the tradeoffs of this method as
well as some possible alternatives.

15.2 Packed Ptex

To reduce the number of textures required, we pack all face textures and their
mip chains into a single texture atlas (Figure 15.1). The atlas is divided into
blocks of the same resolution. Within the block, the face textures are packed one
after another in rows. Because the atlas width generally is not a multiple of the
face-texture width, there will be unused texels at the end of each row. There will
be additional empty space at the end of the last row, because it generally will
not be filled to capacity.

32 % 32 ==

04 % Gl =

128 x 128 =

—

Figure 15.1. This is a portion of a packed Ptex atlas. There are four faces that have
128 x 128 base (level 0) resolution and one with 64 x 64 base resolution. The block of
64 x 64 contains both the one level 0 for the 64 x 64 face texture, and the four level 1
mips from the 128 x 128 face textures.
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Figure 15.2. Faces that are adjacent in model space are not generally adjacent in texture
space. A filter kernel that spills over the edge of a face must pick up texels from the
adjacent face, which will generally be somewhere else in the texture atlas. We copy
border texels from adjacent face textures to handle this case.

Just as in the original Ptex system, each face texture has its own mip chain.
We sort the faces by their base (level 0) resolution to create the packing we de-
scribe here, and for runtime as described in Section 15.3.2. Since we are including
face textures with different base resolutions, a given block will include different
mip levels (Figure 15.1).

15.2.1 Borders for Filtering

Texture filtering hardware assumes that neighbors in texture space are also neigh-
bors in model space. Generally, this is not true either for conventional texture
atlasing methods nor for Ptex. It’s the reason conventional texture atlasing meth-
ods often come with seam artifacts.

For our method, we copy texels from the border of a neighboring face to
solve this problem (Figure 15.2). That way, there will be data available when
the texture filter crosses the edge of the face texture. The padding on each side
will be equal to at least half the filter width. This is a common solution to the
problem, particularly for situations like tile-based textures for terrain. However,
the memory overhead for this solution is generally much higher for Ptex than for
conventional texture atlasing methods. This is one disadvantage in using Ptex;
anisotropic filtering quickly becomes too expensive in terms of memory cost.

15.2.2 Texture Compression

Current GPUs have hardware support for texture compression. The compression
relies on coherency within 4 x 4 texel blocks. For this reason, it is best not to
have a 4 x 4 block span face textures. We have already discussed adding a single-
texel border to support hardware bilinear filtering. To get good results with
compression, we add an additional border to get to a multiple of 4 x 4. Generally,
this means two-texel borders for compressed textures.
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15.3 Runtime Implementation

In the original Ptex system, texture lookups were done by first finding which face
you are in and then finding where you are within the face. The real-time version
essentially starts with the same steps, but with an additional mapping into the
texture atlas space. This section walks through each of these steps in detail. For
trilinear filtered lookups, the basic outline is the following:

1. Select the texture level of detail (LOD) (Section 15.3.1).

2. Compute the location within atlas for each LOD level and perform a hard-
ware, bilinear lookup for each (Section 15.3.2).

3. Lerp in the shader for a final trilinear value.

For nonfiltered lookups, the sequence is easier; all that’s required is to find
the location in the atlas and do a single lookup. We will discuss the first two
steps in detail.

15.3.1 Texture LOD Selection

The first step in a trilinear filtered, packed Ptex lookup is to determine which res-
olution of face texture is desired. In conventional hardware trilinear filtering, this
is done for you automatically by the GPU. However, hardware trilinear filtering
assumes the derivative of texture space with respect to screen space is continuous
everywhere. This is not the case for a texture atlas in general, although it’s often
“good enough” for conventional texture atlasing with some tweaking. However,
tiled textures like real-time Ptex often require manual texture LOD selection.
The code for this is given in Listing 15.1.

15.3.2 Packed Ptex Lookup

Once we know which resolution we want, we clamp it to the maximum resolution
available for that face (i.e., mip level 0). Table 15.1 demonstrates how to look up
the maximum resolution for a face texture without having to resort to any per-
face information. The method uses a sorted ordering according to face texture
resolution and prefix sums.

The next step is to find the location of the resolution block within the atlas.
This is possible by lookup into a table indexed by resolution.

The sorted ordering and prefix sum are used again to find the index of the
face within the block. In general, not all faces will have a representation in the
resolution block, as some face-texture base resolutions will be higher than others.
Again, Table 15.1 describes the procedure.

We can find the face texture origin within the block using the index of the
face within the resolution block. If the texture width is W and the face texture
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float ComputeLOD( float2 vUV, float nMipLevels )
{
float2 vDx = ddx(vUV);
float2 vDy = ddy(vUV);
// Compute du and dv magnitude across quad
float2 vDCoords;
vDCoords = vDx * vDx;
vDCoords += vDy * vDy;
// Standard mip mapping uses max here
float fMaxTexCoordDelta = max(vDCoords.x, vDCoords.y);
float fMipLevelPower;
if (fMaxTexCoordDelta == 0)
fMipLevelPower = nMipLevels -1;
else
{
// 0.5 is for the square root
fMipLevelPower = 0.5 * log2(1.0 / fMaxTexCoordDelta);
}
float mipLevel = clamp(fMipLevelPower, O, nMipLevels -1);
return nMipLevels - 1 - mipLevel;
}

Listing 15.1. Texture LOD Selection. Allowing for nonsquare textures simply requires
a scale by aspect ratio on one of the directions.

width including borders is w, then the number of faces in a row is n = [W/w].
Using ¢ as the index within the block, we can compute the row as [i/n] and the
column as i%n.

Each face has its own implicit UV parametrization. We adopt a convention
with respect to the order of the vertices in the quad. For example, we choose
the first index to be (0,0), the next is (1,0) and the last as (0,1). These can be
assigned in the hull-shader stage. The pixel shader will receive the interpolated
coordinate, which we call the “face UV.” We also need the primitive ID, which is
also defined in the hull-shader stage.

Max Resolution | Face Count | Prefix Sum
16 x 16 5 5
32 x 32 5 10
64 x 64 3 13

Table 15.1. If faces are sorted by resolution, and you have the prefix sum of face count
for each resolution bin, you can look up the resolution for any given face from the index
in the sorting. In this example, a face of index 7 would have a maximum resolution of
32 x 32 because it is greater than 5 and less than 10. If we want the index of that face
within that bin, it is 7 —5 = 2.
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float2 ComputelUV(
uint faceID, // From SV_PrimitiveID
float2 faceUV, // Position within the face
uint nLog2, // Log2 of the resolution we want
int texWidth, // Atlas texture width
int resOffset, // Prefix sum for this resolution
int rowOffset, // Start of resolution block in atlas
int borderSize ) // Texel thickness of border on each face

// Here we assume a square aspect ratio.

// A non-square aspect would simply scale the height
// relative to width accordingly.

float faceWidth = 1 << nlLog2;

float faceHeight = faceWidth;

float borderedFaceWidth = faceWidth + 2*borderSize;
float borderedFaceHeight = borderedFaceWidth;

int nFacesEachRow = (int)texWidth / (int)borderedFaceWidth;
int iFaceWithinBlock = faceID - resOffset;

float2 faceOrigin = float2(
(iFaceWithinBlock % nFacesEachRow) * borderedFaceWidth,
(iFaceWithinBlock / nFacesEachRow) * borderedFaceHeight
+ rowOffset );

// Take face UV into account.

// Still in texel units, but generally not

// an integer value for bilinear filtering purposes.
float2 uv = float2(faceWidth, faceHeight) * faceUV;
uv += float2(nBorderSize, nBorderSize);

uv += faceOrigin;

// Finally scale by texture width and height to get
// value in [0,1].
return float2(uv) / float2(texWidth, texHeight);

Listing 15.2. Go from face UV to atlas UV.

Scale and offsets are applied to get the face UV range of [0,1] mapped into
the atlas UV, including an offset to get to the right resolution block and another
to put the face texture origin (0,0) inside the face border. Listing 15.2 details the
process of computing a UV within the packed Ptex atlas.

The last steps are to do the bilinear filtered lookup for each LOD we need,
and the final trilinear lerp between them.

15.3.3 Resolution Discrepancies

There are discrepancies in resolution that translate to discontinuities when ap-
proaching a polygon edge from either side. This is illustrated in Figure 15.3.
This can happen when the gradient used for mip selection changes as the edge of
a polygon is crossed. However, this is not particular to packed Ptex and is fur-
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Figure 15.3. (a) Resolution discrepency (b) Bilinear lookup into border from view of left
face. (c) Bilinear lookup into border from view of right face. (d) Changing the border
on the left face to resolve resolution discrepancy by downsampling. (e) The solution for
displacement when values must match exactly is to replicate at the lower resolution.

ther mitigated by the final lerp of trilinear filtering. In cases when we have used
packed Ptex with trilinear filtering we have not seen any problems yet; therefore
we have not pursued more sophisticated solutions.

The second cause for resolution discrepancy is capping to different resolu-
tions due to different maximum (mip level 0) resolutions. The problem of max
resolution discrepancy is mitigated by effectively clamping borders to the lower
resolution when padding (Figure 15.3).

15.4 Adding Displacement

Displacement mapping adds geometric detail to a coarser mesh. Each polygon of
the coarse mesh is tessellated further at runtime, and the vertices are displaced
according to values stored in a displacement texture map. Displacement mapping
provides a method of geometric LOD. The model can be rendered without the
displacement for the lowest poly model, and different tessellations can be applied
for higher quality models.

In classical displacement mapping, there is just a single scalar per texel. How-
ever, we have pursued vector displacement, which uses a 3D vector to specify
displacement. This technique is much more expressive, but at greater memory
cost on a per texel basis.

Authoring displacement maps in a conventional texture atlas without cracks
can be quite diffcult. If a shirt, for example, is unwrapped onto a texture, the
edges where the charts meet on the model must match in value at every location.
This is why games typically only apply displacement maps to flat objects like
terrain, and why even Pixar’s RenderMan, which is considered well engineered
for displacement mapping, still performs a messy procedural crack-fill step during
rendering [Apodaca and Gritz 99]. By contrast, you can export Ptex vector
displacement maps from Autodesk Mudbox, and apply them without the need
for manual fixup or runtime crack patching.
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For displacement maps, we treat the borders and corners a little differently
than described in Section 15.2.1. First of all, we do not need an extra border for
filtering, as we use point sampling. However, adjacent faces must have identical
values along their shared border to avoid cracks when using hardware tessellation.
So instead of copying in a border from an adjacent face, we change the original
borders by averaging them as shown in Figure 15.3.

Corners of a face texture correspond to a vertex in the model. Similar to
how we handle borders, we walk the mesh around the vertex, gathering all corner
values and average them. This value is then written back to all corners that share
this vertex so that they are consistent and do not produce cracks. Note that it’s
necessary that this value is exactly the same. If you recompute this average
for each quad, remember you are using floating-point math, and therefore must
accumulate in the same order for each quad.

Displacement mapping is done in object space in the domain shader. In our
implementation, we point sample from the highest resolution displacement map
regardless of tessellation level. Becauseweare not filtering, the filter-related issues
of packed Ptex are not relevant, and there is both less compute and bandwidth
cost than for the typical texture map application in a pixel shader.

15.5 Performance Costs

To give a general idea of the cost difference between packed Ptex and conventional
texturing, we measured the difference between a packed-Ptex and a conventionally
textured version of the character shown in Figure 15.4(a). The AO, specular,
albedo, normal and displacement maps are packed Ptex. GPU render time is 3.6
ms on an AMD Radeon HD 7970. If we change the AO, specular, albedo and
normal maps to conventional texture lookups (all but displacement) we find the
time goes down by an average of 0.6 ms.

The main cost is the search for maximum resolution in this implementation,
for which there are plenty of opportunities for optimization we have not yet ex-
plored. We could, for example, move the computation as far up as the hull
constant shader. There is also a cost due to reduced texture cache efficiency, as
packed Ptex will generally not have as good locality of reference relative to con-
ventional texturing. The entire UV computation was repeated for each texture,
which should also not generally be necessary in practice.

Given the difficulty in authoring a valid displacement map for a model like
the character in Figure 15.4(a) we measured packed Ptex displacement map-
ping against no displacement mapping at all. This model is made from 5,504
quads and tessellated up to 99,072 triangles. The cost of vector displacement
with packed Ptex on this model is 0.14 ms. This is with 16-bit floats for each
component, which is on the high end of what should normally be necessary in
practice.
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(b} Conventional atlas: 37% black.

() Packed Prex atlas: 79 hlack

ia)

Figure 15.4. All textures for the model in (a) are in the packed Ptex format: Albedo,
AOQ, specular, normal, and vector displacement: (b) an example of a conventional texture
map and (c) an equivalent packed Ptex texture map.

We have a second model, shown in Figure 15.5, that uses packed Ptex only
for vector displacement. It has a total of 86,954 quads in the base mesh and
is animated with both skinning and blend shapes. When tessellated up to 1.6
million triangles, the cost of displacement lookup is 2.7 ms out of a total of 14.2 ms
with our current implementation.
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Figure 15.5. Model with vector displacement.

15.6  Memory Costs

Conventional texture atlases are often difficult to author without wasting texture
space between the charts. In Figure 15.4(b) we see a typical example where 37%
of the space is wasted. Ptex, by contrast, is built completely from rectangular
pieces and is therefore much easier to pack into a rectangular domain. We make
no special effort to find the optimal resolution to pack the face textures into, and
yet the waste in our experience has been only around 7% (Figure 15.4(c)).

The greater memory overhead for packed Ptex is in the use of borders. Funda-
mentally, the border cost goes up proportional to the square root of the area. Here
we give some formulas and concrete numbers to give an idea of what the overhead
is. Each face of square resolution 7 and border size np wastes (2ng + r)? — r?
texels. Table 15.2 shows example costs as a percentage of waste due to borders
in packed Ptex. Two items are worth mentioning here. First, we can see more
concretely how high the per-face resolution should be to keep memory overhead
down. Second, we also see why borders beyond a couple texels, as would be
required for anisotropic filtering, is too expensive in memory cost.
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Border Size

Resolution 1 2 4
4 x4 56,/56% 75/75%  89/89%
8x 8 36/41% 56/62%  75/80%
16 x 16 21/24% 36/41%  56/62%
32 x 32 11/13% 21/23%  36/40%
64 x 64 6.0/6.4% 11/12%  21/23%
128 x 128 3.1/3.2% 6.0/6.2% 11/12%

Table 15.2. This table shows memory overhead for borders. The first percentage in
each pair is for a single resolution, and the second is for mip chains down to 4 x 4.
These values should be weighed against the waste inherent in a conventional texture
atlas, such as the 37% illustrated in Figure 15.4(b).

15.7 Alternatives and Future Work

One way to avoid having a separate texture per face is to put each per-face texture
in its own texture array slice [McDonald and Burley 11, McDonald 12]. This
simplifies the texture addressing to some extent. However, there are limitations
in the number of texture array slices, and resolutions cannot be mixed within a
single texture array. Therefore, what would be a single texture in the conventional
or packed Ptex approach would be split into multiple textures, one for each
resolution, with further splitting as required for texture array limits. The amount
of texture data used in the shader does not increase, excepting perhaps due to
alignment or other per-texture costs, but the amount of conditional reads is
significantly higher.

Rather than computing per-face texture information, we could store it in a
resource indexed by face ID, and possibly by mip level [McDonald and Burley 11,
McDonald 12].

Ptex takes the extreme approach of assigning an individual texture map to
each primitive. The paper by B. Purnomo, et al. describes similar solutions
to what is described here, but they group multiple primitives into rectangular
patches in texture space for packing and handling seams [Purnomo et al. 04].
This reduces the overhead for borders, which would make larger filter kernels
feasible. A next step might be to integrate some of the ideas from that paper.

15.8 Conclusion

Packed Ptex enables the main advantages of the original Ptex method while en-
abling real-time use. Authoring effort is saved first by eliminating the need for
explicit UV assignment and second by naturally avoiding seaming issues that nor-
mally arise when trying to unwrap a 3D surface into at 2D rectangular domain.
It does, however, require modeling with quads in its current implementation.



242

15. Real-Time Ptex and Vector Displacement

Packed Ptex also incurs higher runtime cost than conventional texture mapping.
Memory costs can actually be lower relative to conventional texturing, depending
primarily on the per-face texture resolution, filter kernel width, and the savings
relative to the waste inherent with conventional texture atlases. Although packed
Ptex can be applied to many different texture types, the most promising is prob-
ably displacement mapping, where the relative overhead is lower and the benefit
of seamlessness is greatest.
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Decoupled Deferred Shading
on the GPU

Gabor Liktor and Carsten Dachsbacher

Deferred shading provides an efficient solution to reduce the complexity of image
synthesis by separating the shading process itself from the visibility computa-
tions. This technique is widely used in real-time rendering pipelines to evaluate
complex lighting, and recently gained increasing focus of research with the advent
of computational rendering.

The core idea of the technique is to presample visible surfaces into a G-buffer
prior to shading. However, antialiasing is complicated with deferred shading,
as supersampling the G-buffer leads to tremendous growth in memory band-
width and shading cost. There are several post-processing methods that are
mostly based on smoothing discontinuities in the G-buffer [Reshetov 09, Chajdas
et al. 11], but these result in inferior antialiasing quality compared to forward
rendering with multisample antialiasing (MSAA) or do not address the problem
of memory requirements.

16.1 Introduction

In this article we discuss decoupled deferred shading, a technique that uses a
novel G-buffer structure to reduce the number of shading computations while
keeping the antialiasing quality high. Our edge antialiasing is an exact match
of hardware MSAA, while shading is evaluated at a per-pixel (or application-
controlled) frequency, as shown in Figure 16.1.

Our G-buffer implementation stores visibility samples and shading samples
in independent memory locations, where a visibility sample corresponds to a
subsample tested by the rasterizer, while shading samples contain surface infor-
mation, which has been previously stored on a subsample level. Using decoupled
sampling, several visibility samples can refer to a single shading sample. We do
not seek to skip the shading of G-buffer samples in order to reduce shading costs,
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Figure 16.1. In this example our deferred shading method (a) achieves equivalent
antialiasing quality to 8x MSAA, but (c¢) significantly reduces the number of shader
evaluations. (b) To the same antialiasing quality, classic deferred shading needs a super-
sampled G-buffer.

instead we deduplicate the data itself, ensuring that a visible surface is shaded
only once, regardless of the number of subsamples it covers.

This article is based on our recent research paper, presented at the 2012 ACM
Symposium on Interactive 3D Graphics and Games [Liktor and Dachsbacher 12].
We cover the basic theory of decoupled sampling, and then focus on the imple-
mentation details of our new G-buffer in the OpenGL pipeline.

16.2 Decoupled Sampling in a Rasterization Pipeline
16.2.1 The Nature of Aliasing

To understand the motivation of decoupled sampling, let us consider the ren-
dering of a 2D image as a signal-processing problem. Rasterization uses point
sampling to capture visible surfaces that causes problems if the sampled signal is
not band-limited: frequencies higher than the sampling frequency lead to aliasing
in the rendered image. Antialiasing methods can prefilter the signal to eliminate
frequencies above the sampling limit, increase the frequency of sampling, or al-
ternatively apply reconstruction filters to supress aliasing artifacts.

Any rendering method using point sampling must first solve the wvisibility
problem to find the surface points that determine the colors at each sample.
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Discontinuities, such as surface silhouettes, are the primary sources of aliasing.
The second type of aliasing is the possible undersampling of surface shading. Un-
like visibility, shading is often treated as a continuous signal on a given surface,
thus it can be prefiltered (e.g., by using texture mipmaps). It is therefore a tempt-
ing idea to save computations by sampling visibility and shading information at
different granularities.

16.2.2 Decoupled Sampling

In a modern rasterization pipeline this problem is addressed by MSAA. The ras-
terizer invokes a single fragment shader for each covered pixel; however, there are
multiple subsample locations per pixel, which are tested for primitive coverage.
Shading results are then copied into covered locations. This is an elegant solution
for supersampling visibility without increasing the shading cost.

Decoupled sampling [Ragan-Kelley et al. 11] is a generalization of this idea.
Shading and visibility are sampled in separate domains. In rasterization, the
visibility domain is equivalent to subsamples used for coverage testing, while
the shading domain can be any parameterization over the sampled primitive
itself, such as screen-space coordinates, 2D patch-parameters, or even texture
coordinates. A decoupling map assigns each visibility sample to a coordinate in
the shading domain. If this mapping is a many-to-one projection, the shading
can be reused over visibility samples.

Case study: stochastic rasterization. Using stochastic sampling, rasterization can
be extended to accurately render effects such as depth of field and motion blur.
Each coverage sample is augmented with temporal and lens parameters. Defo-
cused or motion blurred triangles are bounded in screen space according to their
maximum circle of confusion and motion vectors. A deeper introduction of this
method is outside the scope of this article, but we would like to refer the in-
terested reader to [McGuire et al. 10] for implementation details. In short, the
geometry shader is used to determine the potentially covered screen region, the
fragment shader then generates a ray corresponding to each stochastic sample,
and intersects the triangle.

We now illustrate decoupled sampling using the example of motion blur: if
the camera samples over a finite shutter interval, a moving surface is visible
at several different locations on the screen. A mnaive rendering algorithm would
first determine the barycentics of each stochastic sample covered by a triangle,
and evaluate the shading accordingly. In many cases, we can assume that the
observed color of a surface does not change significantly over time (even offline
renderers often do this). MSAA or post-processing methods cannot solve this
issue, as corresponding coverage samples might be scattered over several pixels
of the noisy image. We can, however, rasterize a sharp image of the triangle at
a fixed shading time, and we can find corresponding shading for each visibility
sample by projecting them into the pixels of this image.
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Figure 16.2. The idea of the memoization cache. Decoupled sampling uses visibility and
shading samples in separate domains. Assuming constant shading over a short exposure
time, multiple visibility samples can refer to the identical shading sample. Recently
computed shading samples are cached during rasterization, to avoid redundant shader
execution.

Memoization cache. This concept is illustrated in Figure 16.2. Note that the
second rasterization step mentioned above does not actually happen, it is only
used to define a shading grid on the triangle, a discretization of the shading
domain. A shading sample corresponds to one cell of the shading grid, and we
can then assign a linear index to each shading sample. Using this indexing,
Ragan-Kelley et al. augmented the conventional rasterization pipeline with a
memoization cache [Ragan-Kelley et al. 11]. In their extended pipeline, each
visibility sample requests its shading sample from the cache using the decoupling
map, and fragment shaders are only executed on a cache miss. Unfortunately,
this method is not directly applicable to the current hardware architecture.

16.3 Shading Reuse for Deferred Shading

Conventional deferred shading methods couple visibility and surface data in the
G-buffer. After the geometry sampling pass it is no longer trivial to determine
which samples in the G-buffer belong to the same surface. Stochastic rasterization
further increases the complexity of the problem by adding significant noise to
visibility samples, preventing the use of any edge-based reconstruction.

The memory footprint is one of the most severe problems of deferred shad-
ing. As all shading data must be stored for each subsample in the G-buffer,
even if one could save computation by reusing shading among these samples, the
supersampling quality would still be bounded by memory limitations. Current
real-time applications typically limit their deferred multisampling resolution to
2x /4x MSAA, then apply reconstruction filters. It has been demonstrated that
accurate rendering of motion blur or depth of field would require an order of
magnitude larger sample count with stochastic sampling [McGuire et al. 10].
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Figure 16.3. The G-buffer stores shading data at full supersampled resolution before
shading and resolving. We introduce a visibility buffer that references shading data in
compact linear buffers. Due to our shading reuse scheme, the size of the compact buffers
does not scale with the supersampling density.

Compact geometry buffer. Instead of trying to use reconstruction filters or sparse
shading of the supersampled G-buffer, we can avoid any shading and memory
consumption overhead by not storing redundant shading data in the first place.
We address this problem with a novel data structure, the compact G-buffer, a
decoupled storage for deferred shading. It has the same functionality as the G-
buffer, storing the inputs of shaders for delayed evaluation. However, instead of
storing this information in the framebuffer, we collect shading samples in compact
linear buffers. The contents of the framebuffer are purely wvisibility samples, each
sample storing its depth value and a reference to a shading sample in the linear
buffers. We compare this data layout to the conventional G-buffer in Figure 16.3.
Akin to classic deferred shading, our methods can render images in three main
stages.
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Figure 16.4. The outline of decoupled deferred shading in a rasterization pipeline.
Prior to rasterization, each primitive is bound and projected to a shading grid. During
fragment processing, the fragments are mapped to their corresponding cells on the
shading grid. Shading reuse is implemented by referencing the same data from multiple
samples in the render targets.

16.3.1 Algorithm Outline

Sampling stage. We rasterize all surfaces into the compact geometry buffer (CG-
buffer). Figure 16.4 shows the outline of this sampling stage. During rasterization
each fragment is assigned to a shading sample ID (ssID), which is searched in the
cache. If the shading data was found, we only store a pointer to its address in
the memory. In case of a miss, we also need to allocate a new slot in the compact
buffers and store the data in addition to referencing it.

In Section 16.2.2 we have already introduced the concept of a shading grid. In
our pipeline, we use this grid to allocate an ssID range for each primitive. This
virtual address space ensures that shading sample keys of concurrently raster-
ized primitives do not overlap, and the sampler can use these ssIDs to uniquely
reference a cached shading sample entry.

We provide further implementation details in the next section. In fact, we
only made a small modification in the decoupled sampling pipeline. While the
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CG-buffer itself could be directly used as a global memoization cache, it would
be very inefficient to search for shading samples directly in it, especially that a
cached entry is only relevant for the currently rasterized primitives in flight.

Shading and resolving stages. The collected samples in the compact buffers are
then shaded using GPU compute kernels. These kernels only execute for shading
samples that are marked visible (see the next section). Finally each visibility
sample can gather its final color value in a full-screen pass. This method trivially
extends to an arbitrary number of render targets, supporting efficient shading
reuse for multiview rasterization as well.

16.4 Implementation

In this section we focus on how to implement decoupled deferred shading on a
modern GPU. In our examples we provide OpenGL Shading Language (GLSL)
source code snippets. We use global atomics and scatter operations, therefore
a minimum version of OpenGL 4.2 is required for our application. The imple-
mentation could also be done in DirectX 11.1, which supports unordered access
binding to all shader stages.

The primary problem for our example is the lack of hardware support for
decoupled shading reuse, which is an architectural limitation. The hardware
version of the memoization cache, as described in Section 16.2.2, is a fast on-chip
least recently used (LRU) cache assigned to each rasterizer unit. Of course, every
component of the pipeline (ultimately even rasterization) can be implemented in
software, but only with reduced performance compared to dedicated hardware.
From now on we assume that our renderer still uses the hardware rasterizer,
though this technique could be also integrated into a full software implementation,
such as [Laine and Karras 11].

16.4.1 Architectural Considerations

Note that the implementation of decoupled sampling for a forward renderer would
be very inefficient on current GPUs. First, using hardware rasterization, we can
only simulate the caching behavior from fragment shaders. Unfortunately we
cannot prevent the execution of redundant shaders, like the proposed architecture
of [Ragan-Kelley et al. 11] does. The rasterizer will launch fragment shaders for
each covered pixel or subsample and we can only terminate redundant instances
afterwards. This introduces at least one new code path into the shading code,
breaking its coherency.

The second problem is how to avoid redundant shading. Shading reuse can
be regarded as an election problem: shader instances corresponding to the same
shading sample must elect one instance that will evaluate the shading, the others
need to wait for the result. This can only be solved using global synchronization,
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as current hardware does not allow local on-chip memory usage in rasterization
mode, and the execution of fragment shaders is nondeterministic. Furthermore,
waiting for the result would mean a significant delay for a complex shader.

With our modification we can move the shader evaluation into a deferred
stage, which results in a more coherent fragment shader execution. While we
cannot avoid using the global memory to simulate the memoization cache, the
overhead of decoupled sampling is independent from the shading complexity. This
is the key difference that makes our algorithm feasible even for current GPUs:
if the shading computation is “expensive enough,” the constant overhead of our
caching implementation will be less than the performance gain of reduced shading.
Furthermore, we can utilize our CG-buffer to keep the memory footprint of the
shading data minimal.

16.4.2 Decoupling Shading Samples

We now discuss a method that implements the sampling stage of decoupled de-
ferred shading in a single rasterization pass. The first problem we need to solve
is how to assign shading samples to fragments. Prior to rasterization, each prim-
itive needs to be processed to determine its shading domain (see Section 16.3.1

in vec2 in_scrPos[]; // screen-space positions
flat out ivec4 domain; // shading grid of the triangle
flat out uint startID; // ID of the first sample in the sh. grid

uniform float shadingRate;

// global SSID counter array
layout (size1x32) uniform uimageBuffer uCtrSSID;

void main (){
// project screen position to the shading grid

vec2 gridPosO = scrPos[0] * shadingRate; [...]

vec2 minCorner = min(gridPosO, min(gridPosl, gridPos2));
vec2 maxCorner = max(gridPosO, max(gridPosl, gridPos2));

// shading grid: xy-top left corner, zw-grid size

domain .x = int(minCormer.x) - 1;
domain .y = int(minCormner.y) - 1;
domain .z = int((maxCorner.x)) - domain.x + 1;
domain .w = int((maxCorner.y)) - domain.y + 1;

// we allocate the ssID range with an atomic counter.
uint reserved = uint((domain.z) * (domain.w));
startID = imageAtomicAdd (uCtrSSID, O, reserved);

Listing 16.1. The geometry shader generates a shading grid for each triangle, and
ensures globally unique ssIDs using an atomic counter.
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for details). As we only consider triangles, we can conveniently implement this
functionality in a geometry shader.

Listing 16.1 is an extract from the geometry shader code that assigns a shading
grid for each rasterized triangle. In our implementation, the geometry shader
might also set up conservative bounds for stochastically rasterized triangles.

Listing 16.2 shows the pseudocode of the fragment shader, implementing the
remainder of our pipeline. As we described before, the output of this shader
is only a pointer to the corresponding shader data. Note that due to driver
limitations on integer multisampling, we need to store the references in floating
point, using the intBitsToFloat GLSL function. The shading samples are stored
using image buffers.

We omit the details of visibility testing, which might be standard multi-
sampled rasterization, or the implementation of stochastic rasterization, which
casts randomly distributed rays inside the conservative screen space bounds of the
triangles. We only assume that the visibility method returned the barycentrics of
the intersection point. The visibility sample is then assigned to a shading sample,
using the grid provided by the geometry shader.

layout (location = 0, index = 0) out float FragPtr;

// shader inputs: position, normal, texcoords
flat in vec3 vposO...

// packed CG-buffer data
layout (rg32ui) uniform uimageBuffer uColorNormalBuffer;
layout (rgba32f) uniform uimageBuffer uViewPosBuffer;

void main () {
// hw-interpolation or stochastic ray casting...
vec3 baryCoords = getViewSamplePos ();

// get nearest shading sample

uint localID = projectToGrid(baryCoords, shadingRate);
uint globalID = startID + locallD;

bool needStore = false;

int address = getCachedAddress (globalID, needStore);
FragPtr = intBitsToFloat (address);

if (needStore){
// for each texture...
textureGradsInShadingSpace (localID, dx, dy);
vec4 diffuse = textureGrad(texDiffuse, texCoord, dx, dy);

[...]
// pack color, normal, view positions into the CGbuffer
imageStore (uColorNormalBuffer , address, ...);

Listing 16.2. The fragment shader implements the decoupling map and the chaching
mechanism for shading samples.
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uint projectToGrid(vec3 baryCoords, float shadingRate){

vec3 vpos = coords.x * vposO + coords.y * vposl + coords.z * vpos2;

vec2 screenPos = projToScreen(vpos);

ivec2 gridPos = ivec2(screenPos * shadingRate + vec2(0.5f)) - domain
LXY

return uint(domain.z * gridPos.y + gridPos.x);

Listing 16.3. The decoupling map is a simple projection to a regular grid. The density
of this grid is determined by the shading rate.

The method projectToGrid assigns the fragment to a shading sample, as we
show in Listing 16.3. The local index of the shading sample is the linearized index
of the closest shading grid cell to the visibility sample. Later, when the shading
data is interpolated, some shading samples might fall outside the triangle. These
are snapped to the edges (by clamping the barycentrics to 0 or 1, respectively),
otherwise some shading values would be extrapolated.

The computation of the texture mip levels also needs special attention. Nor-
mally, this is done by the hardware, generating texture gradients of 2 x 2 fragment
blocks. Depending on the shading rate, the shading space gradients can be differ-
ent. For example, a shading rate of 0.5 would mean that 2 x 2 fragments might
use the same shading sample, which would be detected (incorrectly) as the most
detailed mip level by the hardware. Therefore we manually compute the mip
level, using the textureGrad function.

In Listing 16.2 we have also tried to minimize the divergence of fragment
shader threads. The method getCachedAddress returns the location of a shading
sample in the global memory. In case of a cache miss, a new slot is reserved
in the CG-buffer (see below), but the shading data is only written later, if the
needStore boolean was set.

16.4.3 Global Shading Cache

For a moment let us consider the cache as a “black box” and focus on the im-
plementation of the CG-buffer. If a shading sample is not found in the cache,
we need to append a new entry to the compact linear buffers, as shown in Fig-
ure 16.4. The CG-buffer linearly grows as more samples are being stored. We can
implement this behavior using an atomic counter that references the last shading
data element:

address = int(atomicCounterIncrement (bufferTail));

The streaming nature of the GPU suggests that even a simple first-in, first-out
(FIFO) cache could be quite efficient as only the recently touched shading samples
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are “interesting” for the fragments. We therefore did not attempt to simulate an
LRU cache, as suggested by Ragan-Kelley et al. On a current GPU there can
be several thousand fragments rasterized in parallel, thus the global cache should
also be able to hold a similar magnitude of samples to achieve a good hit rate.
In a nalve implementation, a thread could query the buffer tail, and check the
last N items in the CG-buffer. Of course the latency of the iterative memory
accesses would be prohibitively high. We now show a cache implementation that
performs cache lookups with only one buffer load and an atomic lock.

The concept of the shading grid already creates indices for shading samples
that are growing approximately linearly with the rasterized fragments. Thus the
FIFO cache could also be implemented by simply storing the last N ssID values.
Consequently, instead of linearly searching in a global buffer, we could introduce
a bucketed hash array. The full implementation of our optimized algorithm is
shown in Listing 16.4.

The hash function (hashSSID) is a simple modulo operation with the number
of buckets. This evenly distributes queries from rasterized fragments over the
buckets, which is important to minimize cache collisions (when threads with
different ssIDs compete for the same bucket). In case of a cache miss, multiple
threads compete for storing the shading samples in the same bucket, therefore
we use a per-bucket locking mechanism (uBucketLocks). Note that we try to
minimize the number of instructions between obtaining and releasing a lock: the
computation of a shading sample does not happen inside the critical section, but
we only set the needStore flag to perform the storage later.

As the execution order of fragments is nondeterministic, there is no guarantee
that all threads obtain the lock in a given number of steps. In practice we
have very rarely experienced cases when the fragment shader execution froze for
starving fragment shaders. While we hope this will change on future architectures,
we have limited the spinlock iterations, and in case of failure the fragment shader
falls back to storing the shading sample without shading reuse. In our experiments
this only happened to a negligible fraction of fragments.

One other interesting observation was that if the number of cache buckets is
high enough, we can really severely limit the bucket size. As the reader can see in
the source code, a bucket stores only a single uvec4 element, which corresponds to
two shading samples: a cache entry is a tuple of an ssID and a memory address.
This is a very important optimization, because instead of searching inside the
cache, we can look up any shading sample with a single load operation using its
hash value.

In our first implementation, each bucket in the cache has been stored as
a linked list of shading sample addresses, similarly to the per-pixel linked list
algorithm of [Yang et al. 10]. When we have made experiments to measure the
necessary length of this list, we have found that in most cases even a single element
per bucket is sufficient, and we did not have any cache misses when we considered
only two elements per bucket. This is why we could discard the expensive linked
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layout (rgba32ui) uniform uimageBuffer uShaderCache;
layout (r32ui) uniform volatile uimageBuffer uBucketLocks;

int getCachedAddress (uint ssID, inout bool needStore){
int hash = hashSSID (ssID);
uvec4 bucket = imageLoad(uShaderCache, hash);
int address = searchBucket (ssID, bucket);

// cache miss
while (address < O && iAttempt++ < MAX_ATTEMPTS){
// this thread is competing for storing a sample
uint lock = imageAtomicCompSwap(uBucketLocks, hash, FREE, LOCKED
);
if (lock == FREE){
address = int(atomicCounterIncrement (bufferTail));

// update the cache

bucket = storeBucket (ssID, hash, bucket);
imageStore (uShaderCache, hash, bucket);
needStore = true;

memoryBarrier (); // release the lock
imageStore (uBucketLocks, hash, FREE);

}
if (lock == LOCKED){
while (lock == LOCKED && lockAttempt++ < MAX_LOCK_ATTEMPTS)
lock = imageLoad (uBucketLocks, hash).x;
// now try to get the address again
bucket = imageLoad(uShaderCache, hash);
address = searchBucket (ssID, bucket);
¥

// if everything failed, store a the data redundantly
if (address < 0){
address = int(atomicCounterIncrement (bufferTail));
needStore = true;

Listing 16.4. Implementation of the global shading cache.

list behavior and pack all buffers in a single vector. However, this optimization
only works if the hash function uniformly distributes cache requests (like ours),
and the number of buckets is high. In our examples we use a bucket count of
32,768.

16.4.4 Shading and Resolving

While the sampling stage described above successfully eliminates all duplicate
shading samples, the resulting CG-buffer might still hold redundant information.
Depending on the rasterization order of triangles, several samples in the compact
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buffers might not belong to any visible surfaces. Even filling up the z-buffer in a
depth prepass might not solve the problem: if early z-testing is disabled a z-culled
fragment can still write data into a uniform image buffer. We therefore execute
another pass that marks visible shading samples, and optionally removes invisible
data from the CG-buffer.

Visibility. Marking visible samples is surprisingly easy. After the sampling stage is
finished, we render a full-screen quad with subsample fragment shader execution,
and each fragment shader stores a visibility flag corresponding to its shading
sample. There is no synchronization needed, as each thread stores the same value.
To evaluate the quality of shading reuse, we used a variant of this technique,
which counts visibility samples per-shading sample. In the diagnostics code we
atomically increment a per-shading sample counter for each subsample in the
framebuffer. The heatmap visualizations in this article were generated using this
method.

Compaction. Because of the rasterization order, there is no explicit bound on
the size of the compact buffers. Using the visibility flags, we can perform a
stream compaction on the shading data before shading. Besides efficient memory
footprint this also increases the execution coherence during the shading process.

In this article we do not provide implementation details for shading, as it is
orthogonal to our decoupling method. The final pixel colors are evaluated by
rendering a full-screen quad and gathering all shaded colors for each visibility
sample. This is the same behavior as the resolve pass of a standard multisampled
framebuffer, except for the location of subsample colors.

16.5 Results

In this section we discuss possible application of our method in deferred rendering.
While current GPU architectures do not have hardware support for decoupled
sampling, the overhead of our global cache management can be amortized by the
reduction of shader evaluations. We focus on stochastic sampling, a rendering
problem especially challenging for deferred shading.

While the software overhead of decoupled sampling makes our method rather
interactive than real time, we demonstrate significant speedup for scenes with
complex shading. All images in this article were rendered at 1280 x 720 pixels on
an Nvidia GTX580 GPU and Intel Core i7 920 CPU.

Adaptive shading. We have computed the average shading rate of these images,
to roughly estimate the shading speedup compared to supersampled deferred
shading. We save further computation by reducing the density of the shading
grid of blurry surfaces. Our adaptive shading rate implementation is only a
proof-of-concept based entirely on empirically chosen factors. For better quality,
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Figure 16.5. Focusing from the background (left column) to a foreground object (right
column), our adaptive method concentrates shading samples on sharp surfaces. The
motivation is to prefilter shading more agressively, as defocus is similar to a low-pass
filter over the image. The middle row visualizes the shading rate. In the bottom row we
show how the same surface shading would appear from a pinhole camera. The texture
filtering matches the shading resolution.

our method could be easily extended with the recent results of [Vaidyanathan et
al. 12], who presented a novel anisotropic sampling algorithm, based on image
space frequency analysis.

Depth of field. Figure 16.5 shows two renderings of the Crytek Sponza Atrium
scene from the same viewing angle, but different focusing distance. In this exam-
ple the most expensive component of rendering is the computation of the single-
bounce global illumination, using 256 virtual point lights (VPLs), generated from
a reflective shadow map (RSM) [Dachsbacher and Stamminger 05].

We do not only avoid supersampling the G-buffer, but also reduce the shading
frequency of surfaces using the minimum circle of confusion inside each primitive.
This approach prefilters shading of defocused triangles, causing slight overblurring
of textures, however, we found this effect even desirable if the number of visibility
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Uniform Shading Rate e i Adaptive Shading Rate
Bendered in 695 ms Bendered in 430 ms
Avp. shading rate 1.3 sspp Avg. shading rate 0.8 sspp

Figure 16.6. A motion blurred character rendered with eight times stochastic supersam-
pling. Deferred shading is computed using 36 ambient occlusion samples per shading
sample. The shading rate stays close to one shading sample per pixel (sspp) despite the
supersampling density (left side). We can save further ~30% of the rendering time by
adaptively reducing sampling of fast-moving surfaces (right side).

samples is small (it effectively reduces the apparent noise of surfaces). The images
were rendered using four times supersampling, the stochastic sampling stage took
90 ms, and the shading with 256 VPLs took 160 ms.

Motion blur. Figure 16.6 presents an animated character, rendered with motion
blur. This example features ray-traced ambient occlusion and image-based light-
ing, using the Nvidia OptiX raytracing engine. When using hardware rasteriza-
tion, high-performance ray tracing is only possible in a deferred computational
shading pass. Here we demonstrate adaptive shading again, by reducing the
shading rate of fast-moving triangles. We scale the shading grid based on the x
and y component of the triangle motion vectors. Our results (and the reduction
of shading) can be significantly improved by using the anisotropic shading grid
of [Vaidyanathan et al. 12].
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Figure 16.7. Storage requirements of the CG-buffer compared to a standard deferred
G-buffer. Only the size of the visibility data grows with supersampling. We rendered
the Sponza scene at 1,280 x 720 pixels.

16.5.1 Memory Consumption

We have analyzed the memory consumption of our method, compared to super-
sampled deferred shading. We save storage by essentially deduplicating shading
data in the G-buffer. However, as a shading sample might not coincide with
any visibility samples on the surface, we cannot reconstruct the surface positions
based on a subpixel depth value. While other solutions are possible, we assume
that we are forced to store the view space position of each shading sample.

We assume that the ground truth deferred method uses 12 bytes per subsample
in the G-buffer: 32 bits for depth-stencil and two RGBAS textures for normals
and material information. In fact, most modern deferred renderers use typically
more bytes per subsample. The memory footprint of our CG-buffer can be divided
into per-visibility and per-shading sample costs. In the former we need to store
an integer pointer besides the 32-bit depth-stencil. We need 16 bytes per shading
sample: the view positions are packed into 8 bytes (16 bits for z — y and 32 bits
for z), and we store the same normal and material information.

If the shading rate is one and there is no multisampling, our method uses twice
as much memory as conventional techniques. However, the number of shading
samples does not scale with the supersampling resolution. At 4x MSAA, our
memory consumption matches the supersampled G-buffer’s, and we save signif-
icant storage above this sample count. Our measurements on the Sponza scene
are summarized in Figure 16.7.

16.5.2 Conclusion

In this chapter we presented a decoupled deferred shading method for high-quality
antialiased rendering. To our knowledge this is the first deferred shading method
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designed for stochastic rasterization. Unfortunately on current GPUs we need
to implement stochastic rasterization and the shading cache using shaders, to
overcome the limitations of the hardware pipeline. We consider our results ben-
eficial for interactive applications, where shading cost dominates the rendering,
however, the overhead of the global cache implementation is generally too high
for real-time rendering.

We expect that the major synchronization bottleneck will disappear in future
rendering architectures. While we cannot predict whether future GPUs would
have a hardware-accelerated version of the memoization cache, some way of lo-
cal synchronization among fragement shaders would already remove most of the
overhead. Using a tile-based rendering architecture instead of sort-last-fragment
would allow us to use a more efficient, per-tile on-chip shading cache.

In our examples we have assumed that the visible color of surfaces remains
constant in a single frame, and shading can be prefiltered. This might cause ar-
tifacts on fast-moving surfaces, therefore we could extend our method to support
interpolation among temporal shading samples. In the future it will be interesting
to separate the frequency content of shading itself: a hard shadow edge in fact
cannot be prefiltered, but there are low-frequency components of shading, e.g.,
diffuse indirect illumination, where sparse shading can bring relevant speedup.
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Tiled Forward Shading

Markus Billeter, Ola Olsson, and UIlf Assarsson

17.1 Introduction

We will explore the tiled forward shading algorithm in this chapter. Tiled forward
shading is an extension or modification of tiled deferred shading [Balestra and
Engstad 08, Swoboda 09, Andersson 09, Lauritzen 10, Olsson and Assarsson 11],
which itself improves upon traditional deferred shading methods [Hargreaves and
Harris 04, Engel 09].

Deferred shading has two main features: decoupling of lighting and shading
from geometry management and minimization of the number of lighting computa-
tions performed [Hargreaves and Harris 04]. The former allows for more efficient
geometry submission and management [Shishkovtsov 05] and simplifies shaders
and management of shader resources. However the latter is becoming less of an
issue on modern GPUs, which allow complex flow control in shaders, and support
uniform buffers and more complex data structures in GPU memory.

Traditional forward pipelines typically render objects one by one and consider
each light for each rasterized fragment. In deferred shading, one would instead
render a representation of the geometry into a screen-sized G-buffer [Saito and
Takahashi 90], which contains shading data for each pixel, such as normal and
depth/position. Then, in a separate pass, the lighting and shading is computed
by, for example, rendering light sources one by one (where each light source is
represented by a bounding volume enclosing the light’s influence region). For
each generated fragment during this pass, data for the corresponding pixel is
fetched from the G-buffer, shading is computed, and the results are blended into
an output buffer. The number of lighting computations performed comes very
close to the optimum of one per light per visible sample (somewhat depending
on the bounding volumes used to represent light sources).

Deferred shading thereby succeeds in reducing the amount of computations
needed for lighting, but at the cost of increased memory requirements (the G-
buffer is much larger than a color buffer) and much higher memory bandwidth
usage. Tiled deferred shading fixes the latter (Section 17.2), but still requires
large G-buffers.
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Figure 17.1. We explore tiled forward shading in this article. (a) While tiled deferred
shading outperforms tiled forward shading in the plain (no transparency, no multisample
antialiasing (MSAA)) case by approximately 25%, (b) tiled forward shading enables use
of transparency. Additionally, (c) we can use hardware supported MSAA, which, when
emulated in deferred shading requires large amounts of memory. Furthermore, at 4x
MSAA, tiled forward shading outperforms deferred with equal quality by 1.5 to 2 times.
The image shows 8x MSAA, which we were unable to emulate for deferred rendering
due to memory constraints. (d) Finally, we discuss custom shaders. As with standard
forward rendering, shaders can be attached to geometry chunks. The scene contains
1,024 randomly placed lights, and the demo is run on an NVIDIA GTX480 GPU.
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Tiled forward shading attempts to combine one of the main advantages of
(tiled) deferred rendering, i.e., the reduced amount of lighting computations done,
with the advantages of forward rendering. Besides reduced memory requirements
(forward rendering does not need a large G-buffer), it also enables transparency
[Kircher and Lawrance 09,Enderton et al. 10] (Section 17.5), enables multisam-
pling schemes [Swoboda 09, Lauritzen 10] (Section 17.6), and does not force the
use of iibershaders if different shading models must be supported (Section 17.7).
See the images in Figure 17.1 for a demonstration of these different aspects.

17.2 Recap: Forward, Deferred, and Tiled Shading

The terms forward, deferred, and tiled shading will be appearing quite frequently
in this chapter. Therefore, let us define what we mean, since usage of these terms
sometimes varies slightly in the community. The definitions we show here are
identical to the ones used by [Olsson and Assarsson 11].

With forward shading, we refer to the process of rendering where lighting
and shading computations are performed in the same pass as the geometry is
rasterized. This corresponds to the standard setup consisting of a vertex shader
that transforms geometry and a fragment shader that computes a resulting color
for each rasterized fragment.

Deferred shading splits this process into two passes. First, geometry is ras-
terized, but, in contrast to forward shading, geometry attributes are output into
a set of geometry buffers (G-buffers). After all geometry has been processed this
way, an additional pass that computes the lighting or full shading is performed
using the data stored in the G-buffers.

In its very simplest form, the second pass (the lighting pass) may look some-
thing like following:

for each G-buffer sample {
sample_attr = load attributes from G-buffer

for each light {
color += shade(sample_attr, light)
}

output pixel color;

}

Sometimes, the order of the loops is reversed. The deferred algorithm de-
scribed in Section 17.1 is an example of this.

The light pass shown above requires O(MNignts - Nsamples) lighting computa-
tions. If we somehow know which lights were affecting what samples, we could
reduce this number significantly [Trebilco 09].
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Tiled deferred shading does this by dividing samples into tiles of N x N sam-
ples. (We have had particularly good successes with N = 32, but this should
be somewhat hardware and application dependent.) Lights are then assigned to
these tiles. We may optionally compute the minimum and maximum Z-bounds
of each tile, which allows us to further reduce the number of lights affecting each
tile (more discussion on this in Section 17.4).

Benefits of tiled deferred shading [Olsson and Assarsson 11] are the following:

e The G-buffers are read only once for each lit sample.
e The framebuffer is written to once.

e Common terms of the rendering equation can be factored out and computed
once instead of recomputing them for each light.

e The work becomes coherent within each tile; i.e., each sample in a tile
requires the same amount of work (iterates over the same lights), which
allows for efficient implementation on SIMD-like architectures (unless, of
course, the shader code contains many branches).

For tiled deferred shading (and most deferred techniques) to be worthwhile, most
lights must have a limited range. If all lights potentially affect all of the scene,
there is obviously no benefit to the tiling (Figure 17.2(a)).

Tiled deferred shading can be generalized into Tiled Shading, which includes
both the deferred and forward variants. The basic tiled shading algorithm looks
like the following:

1. Subdivide screen into tiles.
2. Optional: find minimum and maximum Z-bounds for each tile.
3. Assign lights to each tile.

4. For each sample: process all lights affecting the current sample’s tile.

Step 1 is basically free; if we use regular N x N tiles, the subdivision is implicit.
Finding minimum and maximum Z-bounds for each tile is optional (Step 2).
For instance, a top-down view on a scene with low depth complexity may not
allow for additional culling of lights in the Z-direction. Other cases, however, can
benefit from tighter tile Z-bounds, since fewer lights are found to influence that
tile (Figure 17.2(b)).

In tiled deferred shading, the samples in Step 4 are fetched from the G-buffers.
In tiled forward shading, the samples are generated during rasterization. We will
explore the latter in the rest of the article.

We recently presented an extension to tiled shading, called clustered shad-
ing [Olsson et al. 12b]. Clustered shading is an extension of tiled shading that
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Figure 17.2. (a) The effect of having lights that are too large (bottom image): there is
no gain from the tiling, as all light sources affect all tiles (drawn in yellow), compared
to the top image, where there is one light per tile on average. (b) Comparison of a
top-down view and a first-person view. In the top-down view (top), all lights are close
to the ground, which has only small variations in the Z-direction. In this case, not much
is gained from computing minimum and maximum Z-bounds. In the first-person view
(bottom), the bounds help (three lights in the image affect no tiles at all).

handles complex light and geometry configurations more robustly with respect
to performance. However, tiled forward shading is significantly simpler to im-
plement, and works on a much broader range of hardware. We will discuss the
clustered shading extension and how it interacts with the tiled forward shading
presented here in Section 17.8.
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17.3 Tiled Forward Shading: Why?

The main strength of deferred techniques, including tiled deferred shading, is that
over-shading due to over-draw is eliminated. However, most deferred techniques
suffer from the following weaknesses when compared to forward rendering:

e Transparency/blending is tricky, since traditional G-buffers only allow stor-
age of a single sample at each position in the buffer.

e The memory storage and bandwidth requirements are higher and become
even worse with MSAA and related techniques (Section 17.6).

Forward rendering, on the other hand, has good support for
e transparency via alpha blending,

e MSAA and related techniques through hardware features (much less mem-
ory storage is required).

In addition, forward rendering trivially supports different shaders and materials
for different geometries. Deferred techniques would generally need to fall back to
iibershaders (or perform multiple shading passes).

A special advantage for tiled forward shading is its low requirements on GPU
hardware. It is possible to implement a tiled forward renderer without compute
shaders and other (relatively) recent hardware features. In fact, it is possible
to implement a tiled forward renderer on any hardware that supports depen-
dent texture lookups in the fragment shader. On the other hand, if compute
shaders are available, we can take advantage of this during, say, light assignment
(Section 17.4).

In the following sections, we first present a tiled forward shading renderer
to which we add support for transparency, MSAA and finally experiment with
having a few different shaders for different objects. We compare performance
and resource consumption to a reference tiled deferred shading renderer and show
where the tiled forward renderer wins.

17.4 Basic Tiled Forward Shading

We listed the basic algorithm for all tiled shading variants in Section 17.2. For
clarity, it is repeated here including any specifics for the forward variant.

1. Subdivide screen into tiles

2. Optional: pre-Z pass—render geometry and store depth values for each
sample in the standard Z-buffer.

3. Optional: find minimum and/or maximum Z-bounds for each tile.
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4. Assign lights to each tile.

5. Render geometry and compute shading for each generated fragment.

Subdivision of screen. We use regular N x N pixel tiles (e.g., N = 32). Having
very large tiles creates a worse light assignment; each tile will be affected by
more light sources that affect a smaller subset of samples in the tile. Creating
very small tiles makes the light assignment more expensive and increases the
required memory storage—especially when the tiles are small enough that many
adjacent tiles are found to be affected by the same light sources.

Optional pre-Z pass. An optional pre-Z pass can help in two ways. First, it is
required if we wish to find the Z-bounds for each tile in the next step. Secondly,
in the final rendering pass it can reduce the number of samples that need to be
shaded through early-Z tests and similar hardware features.

The pre-Z pass should, of course, only include opaque geometry. Transparent
geometry is discussed in Section 17.5.

Though a pre-Z pass is scene and view dependent, in our tests we have found
that adding it improves performance significantly. For instance, for the images in
Figure 17.1(a), rendering time is reduced from 22.4 ms (upper view) and 37.9 ms
(lower view) to 15.6 ms and 18.7 ms, respectively.

Optional minimum or maximum Z-bounds. If a depth buffer exists, e.g., from the
pre-Z pass described above, we can use this information to find (reduce) the ex-
tents of each tile in the Z-direction (depth). This yields smaller per-tile bounding
volumes, reducing the number of lights that affect a tile during light assignment.

Depending on the application, finding only either the minimum or the max-
imum bounds can be sufficient (if bounds are required at all). Again, trans-
parency (Section 17.5) interacts with this, as do various multisampling schemes
(Section 17.6).

In conjunction with the pre-Z test above, the minimum or maximum reduction
yields a further significant improvement for the views in Figure 17.1(a). Render-
ing time with both pre-Z and minimum or maximum reduction is 10.9 ms (upper)
and 13.8 ms (lower), respectively—which is quite comparable to the performance
of tiled deferred shading (8.5 ms and 10.9 ms). The reduction itself is imple-
mented using a loop in a fragment shader (for simplicity) and currently takes
about 0.75 ms (for 1,920 x 1,080 resolution).

Light assignment. Next, we must assign lights to tiles. Basically, we want to
efficiently find which lights affect samples in which tiles. This requires a few
choices and considerations.

In tiled shading, where the number of tiles is relatively small (for instance,
a resolution of 1,920 x 1,080 with 32 x 32 tiles yields just about 2,040 tiles), it
can be feasible to do the assignment on the CPU. This is especially true if the
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number of lights is relatively small (e.g., a few thousand). On the CPU, a simple
implementation is to find the screen-space axis-aligned bounding boxes (AABBs)
for each light source and loop over all the tiles that are contained in the 2D region
of the AABB. If we have computed the minimum and maximum depths for each
tile, we need to perform an additional test to discard lights that are outside of
the tile in the Z-direction.

On the GPU, a simple brute-force variant works for moderate amounts of
lights (up to around 10,000 lights). In the brute-force variant, each tile is checked
against all light sources. If each tile gets its own thread group, the implementation
is fairly simple and performs relatively well. Obviously, the brute-force algorithm
does not scale very well. In our clustered shading implementation [Olsson et
al. 12b], we build a simple light hierarchy (a BVH) each frame and test the tiles
(clusters) against this hierarchy. We show that this approach can scale up to at
least one million lights in real time. The same approach is applicable for tiled
shading as well.

Rendering and shading. The final step is to render all geometry. The pipeline for
this looks almost like a standard forward rendering pipeline; different shaders and
related resources may be attached to different chunks of geometry. There are no
changes to the stages other than the fragment shader.

The fragment shader will, for each generated sample, look up which lights
affect that sample by checking what lights are assigned to the sample’s tile (List-
ing 17.1).

17.5 Supporting Transparency

As mentioned in the beginning of this article, deferred techniques have some
difficulty dealing with transparency since traditional G-buffers only can store
attributes from a single sample at each buffer location [Thibieroz and Grin 10].
However, with forward rendering, we never need to store attributes for samples.
Instead we can simply blend the resulting colors using standard alpha-blending.

Note that we are not solving the order-dependent transparency problem.
Rather, we support, unlike many deferred techniques, standard alpha-blending
where each layer is lit correctly. The application must, however, ensure that
transparent objects are drawn in the correct back-to-front order.

We need to make the following changes, compared to the basic tiled forward
shading algorithm (Section 17.4).

Optional minimum or maximum Z-bounds. We need to consider transparent geom-
etry here, as nonoccluded transparent objects will affect a tile’s bounds inasmuch
that it moves a tile’s minimum Z-bound (“near plane”) closer to the camera.
We ended up using two different sets of tiles for opaque and transparent
geometries, rather than extending a single set of tiles to include both opaque and
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// 1D texture holding per-tile light lists
uniform isampleBuffer tex_tileLightLists;

// uniform buffer holding each tile’s light count and
// start offset of the tile’s light list (in
// tex_tilelLightIndices)
uniform TileLightListRanges
{
ivec2 u_lightListRange [MAX_NUM_TILES];
}

void shading_function( inout FragmentData aFragData )
{
//

// find fragment’s tile using gl_FragCoord
ivec2 tileCoord = ivec2(gl_FragCoord.xy)

/ ivec2(TILE_SIZE_X, TILE_SIZE_Y);
int tilelIdx = tileCoord.x

+ tileCoord.y * LIGHT_GRID_SIZE_X;

// fetch tile’s light data start offset (.y) and
// number of lights (.x)
ivec2 lightListRange = u_lightListRange[tileIdx].xy;

// iterate over lights affecting this tile
for( int i = 0; i < lightListRange.x; ++i )
{

int lightIndex = lightListRange.y + ij;

// fetch global light ID
int globalLightId = texelFetch(
tex_tileLightLists, lightIndex ).x;

// get the light’s data (position, colors, ...)
LightData lightData;

light_get_data( lightData, globallLightId );

// compute shading from the light

shade ( aFragData, lightData E

//

Listing 17.1. GLSL pseudocode that demonstrates how lights affecting a given sample
are fetched. First, we find the fragment’s associated tile (tileIdx) based on its position
in the framebuffer. For each tile we store two integers (u_lightListRange array), one
indicating the number of lights affecting the tile, and the other describes the offset
into the global per-tile light list buffer (tex_tileLightLists). The light list buffer stores
a number of integers per tile, each integer identifying a globally unique light that is
affecting the tile.

transparent geometries. The Z-bounds for tiles used with opaque geometry are
computed as described in Section 17.4, which gives a good light assignment for
the opaque geometry (Figure 17.3(a)).
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Near Far

(a)

Figure 17.3. Z-bounds used for (a) opaque and (b) transparent geometries.

For transparent geometry, we would like to find the transparent objects’ min-
imum Z-value and the minimum of the transparent objects’ and opaque objects’
respective maximum Z-values. However, this is somewhat cumbersome, requir-
ing several passes over the transparent geometry; therefore, we simply use the
maximum Z-value from the opaque geometry to cap the tiles in the far direction.
This discards lights that are hidden by opaque geometry. In the near direction,
we extend the tiles to the camera’s near plane, as shown in Figure 17.3(b).

Using separate bounds turned out to be slightly faster than using the same tile
bounds for both opaque and transparent geometry; in Figure 17.1(b), when using
separate bounds, rendering takes 15.1 ms (upper) and 21.9 ms (lower), compared
to 16.1 ms and 23.5 ms when using the extended bounds for both opaque and
transparent geometries.

We would like to note that this is, again, scene dependent. Regardless of
whether we use the approximate variant or the exact one, we can still use the
depth buffer from the opaque geometry during the final render in order to enable
early-Z and similar optimizations. If we do not use the minimum or maximum
reduction to learn a tile’s actual bounds, no modifications are required to support
transparency.

Light assignment. If separate sets of tiles are used, light assignment must be done
twice. In our case, a special optimization is possible: we can first assign lights in
two dimensions and then discard lights that lie behind opaque geometry (use the
maximum Z-bound from the tiles only). This yields the light lists for transparent
geometry. For opaque geometry, we additionally discard lights based on the
minimum Z-bound information (Listing 17.2).
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// assign lights to 2D tiles
tiles2D = build_2d_tiles ();
lightLists2D = assign_lights_to_2d_tiles( tiles2D );

// draw opaque geometry in pre-Z pass and find tiles’
// extents in the Z-direction
depthBuffer = render_preZ_pass();
tileZBounds = reduce_z_bounds( tiles2D, depthBuffer );
// for transparent geometry, prune lights against maximum Z-direction
lightListsTrans

= prune_lights_max( lightLists2D, tileZBounds );

// for opaque geometry additionally prune lights against
// minimum Z-direction
lightListsOpaque

= prune_lights_min( lightListsTrans, tileZBounds );

//
// later: rendering

draw( opaque geometry, lightListsOpaque );
draw( trasparent geometry, lightListsTrans );

Listing 17.2. Pseudocode describing the rendering algorithm used to support trans-
parency, as shown in Figure 17.1(b). We perform the additional optimization where we
first prune lights based on the maximum Z-direction, which gives the light assignment
for transparent geometry. Then, we prune lights in the minimum Z-direction, which
gives us light lists for opaque geometry.

Rendering and shading. No special modifications are required here, other than
using the appropriate set of light lists for opaque and transparent geometries, re-
spectively. First, all opaque geometry should be rendered. Then the transparent
geometry is rendered back to front.?!

17.6  Support for MSAA

Supporting MSAA and similar schemes is very simple with tiled forward shading.
We mainly need to ensure that all render targets are created with MSA A enabled.
Additionally we need to consider all (multi)samples during the optional minimum
or maximum Z-reduction step.

We show the effect of MSAA on render time in Figure 17.4. As we compare to
tiled deferred shading, which does not support transparency, Figure 17.4 includes
timings for tiled forward both with (Figure 17.1(b)) and without (Figure 17.1(a))
transparency. Additionally, we compare memory usage between our forward and
deferred implementations.

1In our demo, we sort on a per-object basis, which obviously causes some artifacts when
transparent objects overlap. This is not a limitation in the technique but rather one in our
implementation.



272

17. Tiled Forward Shading

&

15

10

Retdor Tima {ms)

== Forward [with transparency)
Forward (no transparency)
w=pe= Dhatprred (N0 transparency)

u

Mone 2x 4% Hy
MSAA

(a] Render time

GO0

== Forward
=t Dhefierred

a00

400

Memory Lsage {ME)
sl
[ =]
=

—/

Mone Ix ax Bx
MSAA

(1] Memoery usage

Figure 17.4. (a) Render time and (b) memory usage for tiled forward and tiled deferred
shading with varying MSAA settings. We were unable to allocate the 8x MSAA frame-
buffer for deferred, which is why no timing results are available for that configuration.
Memory usage estimates are based on a G-buffer with 32-bit depth, 32-bit ambient, and
64-bit normal, diffuse, and specular components (using the RGBA16F format).

One interesting note is that our unoptimized Z-reduction scales almost linearly
with the number of samples: from 0.75 ms when using one sample to 5.1 ms with
8x MSAA. At that point, the contribution of the Z-reduction is quite significant
with respect to the total frame time. However, it still provides a speedup in
our tests. It is also likely possible to optimize the Z-reduction step further, for
instance, by using compute shaders instead of a fragment shader.
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17.7 Supporting Different Shaders

Like all forward rendering, we can attach different shaders and resources (tex-
tures, uniforms, etc.) to different chunks of geometry. Of course, if desired, we
can still use the iibershader approach in the forward rendering.

We have implemented three different shader types to test this, as seen in
Figure 17.1(d): a default diffuse-specular shader, a shader emulating two-color
car paint (see transparent bubbles and lion), and a rim-light shader (see large
fabric in the middle of the scene).

The forward renderer uses the different shaders, compiled as different shader
programs, with different chunks of geometry. For comparison, we implemented
this as an iibershader for deferred rendering. An integer identifying which shader
should be used is stored in the G-buffer for each sample. (There were some
unused bits available in the G-buffer, so we did not have to allocate additional
storage.) The deferred shading code selects the appropriate shader at runtime
using runtime branches in GLSL.

Performance degradation for using different shaders seems to be slightly smaller
for the forward renderer; switching from diffuse-specular shading only to using
the different shaders described above caused performance to drop by 1.4 ms on
average. For the deferred shader, the drop was around 2.2 ms. However, the vari-
ations in rendering time for different views are in the same order of magnitude.

17.8 Conclusion and Further Improvements

We have explored tiled forward shading in this chapter. Tiled forward shading
combines advantages from both tiled deferred shading and standard forward ren-
dering. It is quite adaptable to different conditions, by, for instance, omitting
steps in the algorithm made unnecessary by application-specific knowledge. An
example is the optional computation of minimum and/or maximum Z-bounds for
top-down views.

An extension that we have been exploring recently is clustered shading. Tiled
shading (both forward and deferred) mainly considers 2D groupings of samples,
which, while simple, cause performance and robustness issues in some scene and
view configurations. One example of this is in scenes with first-person-like cam-
eras where many discontinuities occur in the Z-direction (Figure 17.5). In clus-
tered shading, we instead consider 3D groupings of samples, which handle this
case much more gracefully.

Clustered shading’s main advantage is a much lower view dependency, deliver-
ing more predictable performance in scenes with high or unpredictable complexity
in the Z-direction. The disadvantages are increased complexity, requirements on
hardware (we rely heavily on compute shaders/CUDA), and several new constant
costs. For instance, with tiled shading, the subdivision of the screen into tiles is
basically free. In clustered shading, this step becomes much more expensive—in



274 17. Tiled Forward Shading

. X o 8

o, N \re=t ) hd
g L

@ /g f/
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Figure 17.5. Comparison between volumes created by (a) the tiling explored in this
article and (b) clustering, as described in [Olsson et al. 12b]. Finding the tiled vol-
umes is relatively simple and can be done in standard fragment shaders. Clustering is
implemented with compute shaders, as is the light assignment to clusters.

fact, in some cases it offsets time won in the shading from the better light-to-
sample mapping offered by clustering (Figure 17.6). We are also further exploring
clustered forward shading [Olsson et al. 12a], which shows good promise on mod-
ern high-end GPUs with compute shader capabilities. Tiled forward shading, on
the other hand, is implementable on a much wider range of hardware.

(a)

Figure 17.6. Comparison between tiled forward shading and clustered forward shad-
ing. (a) In the top-down view, tiled forward outperforms our current clustered forward
implementation (6.6 ms versus 9.3 ms). (b) In the first-person-like view, tiled forward
becomes slightly slower (9.4 ms versus 9.1 ms). While somewhat slower in the first view,
one of the main features of clustered shading is its robust performance. There are 1,024
randomly placed light sources.

(1)
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Forward+: A Step Toward

Film-Style Shading in Real Time
Takahiro Harada, Jay McKee, and Jason C. Yang

18.1 Introduction

Modern GPU hardware along with the feature set provided by the DirectX 11
API provides developers more flexibility to choose among a variety of rendering
pipelines. In order to exploit the performance of modern GPUs, we believe it is
important to choose a pipeline that takes advantage of GPU hardware features,
scales well, and provides flexibility for artists, tech artists, and programmers to
achieve high-quality rendering with unique visuals. The ability to differentiate a
game’s visual look from today’s games, which modern computer-generated (CG)
films are extremely good at doing, likely will be a key for game graphics in the
future. However, the ability to produce high-quality renderings that approach
the styling in CG films will require great flexibility to support arbitrary data
formats and shaders for more sophisticated rendering of surface materials and
special effects.

Our goal was to find a rendering pipeline that would best meet these objec-
tives. We boiled things down to a few specific requirements:

e Materials may need to be both physically and nonphysically based. Tech
artists will want to build large trees of materials made of arbitrary complex-
ity. Material types will likely be similar to those found in offline renderers
such as RenderMan, mental ray, and Maxwell Render shading systems.

e Artists want complete freedom regarding the number of lights that can be
placed in a scene at once.

e Rendering data should be decoupled from the underlying rendering engine.
Artists and programmers should be able to write shaders and new materials
freely at runtime for quick turnaround—going from concept to seeing results
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should be fast and easy. The architecture should be simple and not get in
the way of creative expression.

We have devised a rendering pipeline that we believe meets these objectives well
and is a good match for modern GPU hardware going into the foreseeable future.
We refer to it as the Forward+ rendering pipeline [Harada et al. 11].

18.2 Forward+

The Forward+ rendering pipeline requires three stages:

e / prepass. Z prepass is an option for forward rendering, but it is essential
for Forward+ to reduce the pixel overdraws of the final shading step. This
is especially expensive for Forward+ due to the possible traversal of many
lights per pixel, which we will detail later in this section.

e Light culling. Light culling is a stage that calculates the list of lights affecting
a pixel.

e Final shading. Final shading, which is an extension to the shading pass in
forward rendering, shades the entire surface. A required change is the way
to pass lights to shaders. In Forward+, any lights in a scene have to be
accessible from shaders rather than binding some subset of lights for each
objects as is typical of traditional forward rendering.

18.2.1 Light Culling

The light-culling stage is similar to the light-accumulation step of deferred light-
ing. Instead of calculating lighting components, light culling calculates a list of
light indices overlapping a pixel. The list of lights can be calculated for each
pixel, which is a better choice for final shading.

However, storing a per-pixel light list requires a large memory footprint and
significant computation at the light-culling stage. Instead, the screen is split into
tiles and light indices are calculated on a per-tile basis (Figure 18.1). Although
tiling can add false positives to the list for a pixel in a tile, it reduces the overall
memory footprint and computation time necessary for generating the light lists.
Thus we are making a tradeoff between light-index buffer memory and final shader
efficiency.

By utilizing the computing capability of modern GPUs, light culling can be
implemented entirely on the GPU as detailed in Section 18.3. Therefore, the
whole lighting pipeline can be executed entirely on the GPU.
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{a) B

Figure 18.1. Illustration of light culling in 2D. (a) A camera is placed on the left,
and green lines indicate tile borders. (b) Light culling creates a frustum for each tile
bounded by minimum and maximum depth of pixels in a tile.

18.2.2 Shading

Whereas light culling creates the list of lights overlapping each pixel, final shading
loops through the list of lights and evaluates materials using material parameters
describing the surface properties of the rendered object along with information
stored for each light. With unordered access view (UAV) support, per-material
instance information can be stored and accessed in linear structured buffers passed
to material shaders. Therefore, at least in theory, the full render equation can
be satisfied without limitation because light accumulation and shading happen
simultaneously in one place with complete material and light information.

Use of complex materials and more accurate lighting models to improve visual
quality is not constrained other than by the GPU computational cost, which is
largely determined by the average number of overlapping lights on each pixel
multiplied by the average cost for material calculation.

With this method, high pixel overdraw can kill performance; therefore, a 7
prepass is critical to minimize the cost of final shading.

18.3 Implementation and Optimization
A standard forward rendering pipeline can be converted to a Forward+ ren-

dering pipeline by adding the light-culling stage and modifying existing pixel
shaders to make them implement Forward+’s final shading stage as described



280

18. Forward+: A Step Toward Film-Style Shading in Real Time

in Section 18.2. No modification is necessary for the Z prepass, so we do not
describe its implementation. The light-culling stage can be implemented in sev-
eral ways thanks to the flexibility of current GPUs. Specifically, direct compute
and read-writable structure data buffers or UAVs are the key features to utilizing
Forward+. In this section, we first describe which features of DirectX 11 are
essential to making Forward+ work well on modern GPUs. Then we explain a
light-culling implementation that works well for a scene with thousands of lights.
If there are more lights, we might be better off considering other implementations
such as those described in [Harada et al. 11]. This section concludes by describing
modifications for final shading.

18.3.1 Gather-Based Light Culling

During light culling, the computation is done on a by-tile basis. Therefore, it is
natural to execute a thread group for a tile. A thread group can share data using
thread group shared memory (called shared memory from now on), which can
reduce a lot of redundant computation in a thread group. The computation is
identical for each tile; therefore, we explain the computation for a single tile.

The compute shader for light culling is executed as a two-dimensional (2D)
work group. A thread group is assigned a unique 2D index, and a thread in a
thread group is assigned a unique 2D index in the group.

In the pseudocode in this subsection, the following macros are used for these
variables:

e GET_GROUP_IDX: thread group index in X direction (SV_GroupID);

e GET_GROUP_IDY: thread group index in Y direction (SV_GroupID);

e GET_GLOBAL_IDX: global thread index in X direction (SV_DispatchThreadID);
e GET_GLOBAL_IDY: global thread index in Y direction (SV_DispatchThreadID);
e GET_LOCAL_IDX: local thread index in X direction (SV_GroupThreadID);

e GET_LOCAL_IDY: local thread index in Y direction (SV_GroupThreadID).

The first step is computation of the frustum of a tile in view space. To reconstruct
four side faces, we need to calculate the view-space coordinates of the four corner
points of the tile. With these four points and the origin, four side planes can be
constructed.

float4 frustum [4];

{ // construct frustum
floatd v[4];
v[0]=projToView (8*GET_GROUP_IDX, 8*GET_GROUP_IDY,1.f) );
v[1]=projToView (8% (GET_GROUP_IDX+1), 8*GET_GROUP_IDY,1.f) );
v[2]=projToView (8% (GET_GROUP_IDX+1) ,8*x(GET_GROUP_IDY+1) ,1.£f));
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v[3]=projToView (8*GET_GROUP_IDX, 8*(GET_GROUP_IDY+1) ,1.f) );
float4 o = make_float4(0.f,0.f,0.f,0.f);
for (int i=0; i<4; i++)

frustum[i] = createEquation( o, v[il, v[(i+1)&3] );

projToView() is a function that takes screen-space pixel indices and depth value
and returns coordinates in view space. createEquation() creates a plane equation
from three vertex positions.

The frustum at this point has infinite length in the depth direction; however,
we can clip the frustum by using the maximum and minimum depth values of the
pixels in the tile. To obtain the depth extent, a thread first reads the depth value
of the assigned pixel from the depth buffer, which is created in the depth prepass.
Then it is converted to the coordinate in view space. To select the maximum and
minimum values among threads in a group, we used atomic operations to shared
memory. We cannot use this feature if we do not launch a thread group for
computation of a tile.

float depth = depthIn.Load(
uint3 (GET_GLOBAL_IDX ,GET_GLOBAL_IDY,0) );

float4 viewPos = projToView (GET_GLOBAL_IDX, GET_GLOBAL_IDY,
depth) ;

int 1Idx = GET_LOCAL_IDX + GET_LOCAL_IDY*8;
{// calculate bound
if( 1Idx == 0 )// initialize
{
ldsZMax
1ldsZMin

0;
0 EERRERRRR 3

}
GroupMemoryBarrierWithGroupSync () ;
u32 z = asuint( viewPos.z );
if ( depth != 1.f )
{

AtomMax ( 1ldsZMax, z );

AtomMin( 1dsZMin, z );
}
GroupMemoryBarrierWithGroupSync () ;
maxZ = asfloat( 1ldsZMax );
minZ = asfloat( 1dsZMin );

1dsZMax and 1dsZMin store maximum and minimum z coordinates, which are
bounds of a frustum in the z direction, in shared memory. Once a frustum is
constructed, we are ready to go through all the lights in the scene. Because there
are several threads executed per tile, we can cull several lights at the same time.
We used 8 x 8 for the size of a thread group; thus, 64 lights are processed in
parallel. The code for the test is as follows:
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for(int i=0; i<nBodies; i+=64)
{
int il = 1Idx + i;
if ( il < nBodies )
{
if (overlaps (frustum, gLightGeometryl[ill]))
{
appendLightToList (il);

In overlaps(), a light-geometry overlap is checked against a frustum using the
separating axis theorem [Ericson 04]. If a light is overlapping the frustum, the
light index is stored to the list of the overlapping lights in appendLightToList().
There are several data structures we can use to store the light list. The obvious
way would be to build a linked list using a few atomic operations [Yang et al. 10].

However, this approach is relatively expensive: we need to use a few global
atomic operations to insert a light, and a global memory write is necessary when-
ever an overlapping light is found. Therefore, we took another approach in which
a memory write is performed in two steps. A tile is computed by a thread group,
and so we can use shared memory for the first level storage. Light index storage
and counter for the storage is allocated as follows:

groupshared u32 1dsLightIdx[LIGHT_CAPACITY];
groupshared u32 ldsLightIdxCounter;

In our implementation, we set LIGHT _CAPACITY to 256. The appendLightToList ()
is implemented as follows:

void appendLightToList( int i )

u32 dstIdx = 0;

InterlockedAdd ( ldsLightIdxCounter, 1, dstIdx );

if ( dstIdx < LIGHT_CAPACITY )
ldsLightIdx[dstIdx] = i;

With this implementation, no global memory write is necessary until all the lights
are tested.

After testing all the lights against a frustum, indices of lights overlapping that
frustum are collected in the shared memory. The last step of the kernel is to write
these to the global memory.

For the storage of light indices in the global memory, we allocated two buffers:
glLightIdx, which is a memory pool for the indices, and gLightIdxCounter, which



18.3. Implementation and Optimization

283

is a memory counter for the memory pool. Memory sections for light indices
for a tile are not allocated in advance. Thus, we first need to reserve memory
in glightIdx. This is done by an atomic operation to gLightIdxCounter using a
thread in the thread group.

Once a memory offset is obtained, we just fill the light indices to the assigned
contiguous memory of gLightIdx using all the threads in a thread group. The
code for doing this memory write is as follows:

{ // write back
u32 startOffset = O;
if ( 1Idx == 0 )
{// reserve memory
if ( ldsLightIdxCounter != 0 )
InterlockedAdd ( gLightIdxCounter, ldsLightIdxCounter,
start0ffset );

ptLowerBound [tileIdx] = startOffset;
ldsLightIdxStart = startOffset;
}
GroupMemoryBarrierWithGroupSync () ;
startOffset = ldsLightIdxStart;

for(int i=1Idx; i<ldsLightIdxCounter; i+=64)
{
glightIdx[startOffset+i] = 1ldsLightIdx[il;

This light-culling kernel reads light geometry (for spherical lights, that includes
the location of the light and its radius). There are several options for the structure
of the light buffer. Of course, we can pack light geometry and lighting properties,
such as intensity and falloff, to a single structure. However, this is not a good idea
for our light-culling approach because all the necessary data for the light culling
is padded with light properties, which are not used in the light culling. A GPU
usually reads data by page. Therefore, it is likely to transfer lighting properties
as well as light geometry although they are not read by the kernel when this data
structure is employed for the lights.

A better choice for the data structure is to separate the light geometry and
lighting properties into two separate buffers. The light-culling kernel only touches
the light geometry buffer, increasing the performance because we do not have to
read unnecessary data.

18.3.2 Final Shading

For final shading, all objects in the camera frustum are rendered with their au-
thored materials. This is different than forward rendering because we need to
iterate through the lights overlapping each tile.
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To write a pixel shader, we created “building blocks” of common operations
for different shaders. This design makes it easy to write shaders, as we will show
now. The most important building blocks are the following two, implemented as
macros:

#define LIGHT_LOOP_BEGIN
int tileIndex = GetTileIndex(screenPos);
uint startIndex, endIndex;
GetTileOffsets( tileIndex, startIndex, endIndex );

for ( uint lightListIdx = startldx;
lightListIdx < endIdx;
lightListIdx++ )

int lightIdx = LightIndexBuffer[lightListIdx];
LightParams directLight;
LightParams indirectLight;

if ( isIndirectLight( lightIdx ) )
{
FetchIndirectLight (lightIdx , indirectLight);
}
else
{
FetchDirectLight ( lightIndex, directLight );
}
#define LIGHT_LOOP_END
}

LIGHT_LOOP_BEGIN first calculates the tile index of the pixel using its screen-space
position. Then it opens a loop to iterate all the lights overlapping the tile and
fills light parameters for direct and indirect light. LIGHT_LOOP_END is a macro to
close the loop.

By using these building blocks, an implementation of a pixel shader is simple

and looks almost the same as a pixel shader used in forward rendering. For
example, a shader for a microfacet surface is implemented as follows:

float4 PS ( PSInput i ) : SV_TARGET
{
float3 colorQOut = 0;
#LIGHT_LOOP_BEGIN
colorOut += EvaluateMicrofacet ( directLight, indirectLight );
#LIGHT _LOOP_END
return float4(colorQOut, 1.f );
}

Other shaders can be implemented by just changing the lines between the two
macros. This building block also allows us to change the implementation easily
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based on performance needs. For instance, we can change LIGHT_LOOP_BEGIN to
iterate a few lights on a slower platform.

An optimization we can do for the host side is to sort all render draw calls
by material type and render all triangles that belong to each unique material at
the same time. This reduces GPU state change and makes good use of the cache
because all pixels needing the same data will be rendered together.

18.4 Results

We implemented Forward+ using DirectX 11 and benchmarked using the scene
shown in Figure 18.2 to compare the performance of Forward+ to compute-based
deferred lighting [Andersson 11].

In short, Forward+ was faster on both the AMD Radeon HD 6970 and HD
7970 (Figure 18.3). Once we compare the memory transfer size and the amount of
computing, it makes sense. Three timers are placed in a frame of the benchmark
to measure time for prepass, light processing, and final shading. In Forward+,
these three are depth prepass, light culling, and final shading. In compute-based
deferred, they are geometry pass (or G-pass), which exports geometry information
to full screen buffers, light culling, screen-space light accumulation, and final
shading.

Prepass. Forward+ writes a screen-sized depth buffer while deferred writes a
depth buffer and another float4 buffer that packs the normal vector of the visible
pixel. The specular coefficient can be stored in the W component of the buffer,
too. Therefore, Forward+ writes less than deferred and is faster on prepass.

(&) (L]

Figure 18.2. A scene with 3,072 dynamic lights rendered in 1,280 x 720 resolution.
(a) Using diffuse lighting. (b) Visualization of number of lights overlapping each tile.
Blue, green and red tiles have 0, 25, and 50 lights, respectively. The numbers in between
are shown as interpolated colors. The maximum number is clamped to 50.
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