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Introduction 

1.1. GVDB Voxels Overview  

NVIDIA® GVDB Voxels is a framework for large scale data storage, 
computation, simulation and rendering of  sparse volumetric data on GPUs. 
Inspired by the award-winning open source OpenVDB data structure, GVDB 
Voxels uses a sparse hierarchy of  grids to efficiently represent large data 
volumes. Taking advantage of  CUDA for GPU computation enables developers 
to create massively parallel simulations and rendering engines that scale with 
future NVIDIA hardware.  
 
GVDB Voxels envisions sparse structures and voxel data as a fundamental unit 
for data computation and thus has widespread applicability to motion pictures, 
3D printing, scientific simulation and data visualization. GVDB Voxels is based 
on computation at its core with the only dependency being CUDA. With this 
premise, GVDB Voxels introduces two distinct programming APIs for compute 
and rendering. The Compute API allows for sparse computation, simulaton and 
analysis without any dependency on a graphics APIs. When efficient rendering 
or visualization is desired, the Raytracing API provides both a native CUDA 
raycasting engine and integration with NVIDIA OptiX for high quality 
raytracing. This focus on computation allows GVDB Voxels to be easily ported 
to headless graphics systems such as the Tesla architecture for massive 
supercomputing applications, or to devices such as the Jetson TX1/TX2 with 
Tegra for embedded applications. An emphasis on computation allows the 
application developer to decide when and how to visualize results. 

 
GVDB Voxels was designed with the idea that sparse 3D computation can be 
broadly applied while the underlying data type is flexible. Therefore, while voxels 
are the most common data type, GVDB can be used in other applications where 
sparse acceleration is needed. For example, entity tracking as applied to crowd 
simulation may track people moving in a three dimensional space as points 
moving on a sparse grid, making use of  topology acceleration without the need 
for voxels. Other applications, such as 3D printing may involve transforming 
between different geometry primitives such as polygons and voxels.  
 
Overall, the design of  NVIDIA® GVDB Voxels meets an increasing demand 
for efficient storage, simulation and rendering of  very large data stored on grid 
structures. 
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1.1.1. Motivation  
Increasing demands for large scale data representations can be found in many 
applications areas. In the motion pictures industry, the need for high quality 
fluid and smoke simulations motivates efficient computation with massive 
volumetric data. In additive manufacturing there is an growing need for part 
analysis and model processing, in addition to rendering, which motivates the 
need for flexible large-scale computation. In scientific visualization, modern 
instruments enable the collection of  extremely large, out-of-core data sets that 
are difficult to manipulate, analyze and render with classical techniques. 
 
The goal of  NVIDIA® GVDB Voxels is to enable a range of  applications in 
multiple disciplines where there is a need for large scale computation with the 
greatest flexibility at the point of  computation. 

1.1.2. Design for Computation 
 

The desire to create a broad framework for computation influenced several 
design choices for NVIDIA® GVDB Voxels. Some of  the most important 
among these factors are: 

- Core computation on sparse 3D grids 

- Minimal external dependencies 

- Easy to build and deploy on many architectures 

- Flexible and easy authoring of  compute kernels,  
without sacrificing performance 

- Customization at level of  both the library and user level 

- No strict dependency on graphics (while still providing it) 

 

Core Computation 

The core of  NVIDIA® GVDB Voxels consists of  a CUDA-based engine which 
maintains a sparse topology and multiple atlases of  data.  

 

Figure 1.1. The VDB topology is an acceleration structure that indexes into 
voxel data stored in an atlas. A group of  voxels in an atlas is a brick. 
 
The topology represents a 3D spatial layout of  potentially very large data sets, 
and the sparse quality implies this data is stored only near interesting features. 



 

 
   
NVIDIA® GVDB Voxels - Programming Guide  3 

Although GVDB Voxels is ideally suited to strongly sparse data, it still provides 
several benefits in accelerating dense data (see Chapter 3.2).  
 
An atlas represents voxel data as a set of  bricks, where each brick is a small unit 
of  data – often 163 or 323 voxels – whose size is choosen to balance 
performance and memory. A voxel atlas, similar to a texture atlas, is a collection 
of  bricks packed into 3D texture memory for easy access.  

 

Figure 1.2. Multiple atlases are used to store channels of  data, or per-voxel 
attributes. A brick has the same index in each channel. 
 
Multiple atlases are used to implement voxel data channels. Each data channel 
has a specific type, such as a float, unsigned char, or float3 (vector). Together, 
these multiple channels provide an arbitrary set of  per-voxel attributes over the 
entire volume. With this flexibility, it is possible to author complex fluid 
simulations, generative computations, and many other applications. 

1.1.2.1. Computing with Virtual Neighbors 
Performing massively parallel computations is the premise of  GVDB Voxels. 
While the benefit of  sparse volumes is greater efficiency and lower memory 
footprint, a common criticism is that this increases complexity for the developer.  
 

 
Figure 1.3. Dense computation gives easy access to neighbors (left), but performs 
too many calculations. Sparse computation is efficient but makes neighbor 
lookup across brick boundaries more difficult (right). 
 
GVDB Voxels eliminates kernel code complex by allowing developers to write 

voxel-based computations as if they were on a dense grid. We refer to this as 

computing with virtual neighbors, a method which internally optimizes 
neighbor lookups so you don’t have to and presents kernels with fast access to 
neighbors even at brick boundaries. This frees the developer to focus on the 
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details of  computation and write kernels with simple neighbor stencil operators 
without conditions. This is accomplished with apron voxels and a generic 
method for apron updates interspersed with user kernels.  
 
Virtual neighbors is a key feature in the development of  optimized simulations 
as one can write stencil kernels that make implicit use of  shared memory, 
equalize the occupancy of  interior and brick-boundary voxels, and create 
balanced, branch-free threads – all with simple finite difference style kernels. 
Addition details on the implementation of  virtual neighbors computing can be 
found in Chapter 5, Compute API. 
 

Customization 

To provide the greatest flexibility, NVIDIA® GVDB Voxels is released as open 
source software. This gives developers significant freedom in modifying GVDB 
Voxels to suit the needs of  any given application.  
 
For complex applications, it may be necessary to taylor the GVDB structures to 
suit a particular problem. Influenced by the pioneering work of  OpenVDB we 
anticipated that as a general computing framework GVDB could not support 
multiple disciplines without being open source since the number of  algorithms 
and their variations grows rapidly. Therefore, GVDB can be modified at every 
level so that developers can meet their particular needs. 
 
For simpler applications, one should not have to modify deep structures within 
GVDB in order to achieve customization of  functionality. Therefore, we 
designed GVDB Voxels with several layers. First, GVDB Voxels is implemented 
as a library, and the simplest applications make API calls to perform build-in 
functions such as smoothing or rendering.  
 
At the next level, users can implement custom kernels for either computation 
or rendering. These CUDA kernels are written and compiled in the application 
code but launched from special GVDB functions (named ComputeKernel and 
RenderKernel). This allows the user-code to reside outside the library, while the 
GVDB library still has the ability to perform acceleration and boundary-free 
computing. The gRenderKernel sample shows how to implement a custom 
kernel for rendering. Beyond the use of  custom kernels, application developers 
can call lower level functions, such as changing topology to perform GVDB 
operations without modifying the library.  
 
At deeper layers, the GVDB Library can be modified as needed. The simplest 
of  these changes is to modify or write new algorithms over the data structures 
already provided by GVDB. For example, one might write a raytracing algorithm 
that uses two channels simulatenously - one for density, another for material ID. 
The most extreme changes to GVDB involve modifying the underlying 
representation of  topology, or nodes, of  the tree. Multiple channels can achieve 
most goals where voxel attributes are needed, but it could be necessary to 
modify nodes themselves when implementing complex features such as out-of-
core rendering (e.g. to track brick residency). As open source software, all of  
these levels of  GVDB are available to the developer. 
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1.1.2.2. Computational Geometry 

Many applications require complex interoperation between different types of  
geometry. For example, rigid body and fluid simulations in Motion Pictures 
often utilize both point clouds and voxel grids to perform efficient, and 
accurate, simulations. 3D Printing often involves a conversion from a polygonal 
mesh to a voxel grid. One of  the most challenging aspects of  general GPU-
computing is that each combination of  geometry and data suggests a very 
specific parallel algorithm.  
 
NVIDIA® GVDB Voxels helps to alleviate this difficult problem by observing 
that each geometry – points, polygons, or voxels – lends itself  to a particular 
GPU representation that aids in issues such as coherency and locality. For 
example, a common pattern established for dynamic point clouds (such as SPH 

fluids) is to perform a binning and sorting operation that reduces the problem 

size for neighbor search. For voxels, the division of  space into bricks helps to 

localize computation for the GPU while eliminating unnecessary calculations 
when the data is sparse. Naturally it is not possible address every combination 
of  geometry and acceleration structure, therefore we present a generic approach 
that can be specialized as needed. 
 

 
 
Figure 1.4. Computation is accelerated with auxiliary buffers. For example, 
directly inserting a point cloud into a volume is inefficient. Parallel computation 
suggests pre-sorting by brick for coherence. Multiple auxiliary buffers are used 
for pre-processing, and points are inserted from these.  
 
GVDB Voxels introduces auxiliary buffers to help accelerate any computation 
performed with geometry other than voxels, or in relation to voxels. Auxiliary 
buffers provide memory management and CPU-GPU transfer for arbitrary 
types of  data. They have a wide variety of  uses, from point cloud insertion to 
polygonal conversion. GVDB natively implements several API functions for 
computational geometry. These include: 

- Polygon-to-Voxel conversion 

- Point Cloud insertion and lookup 

- Point Cloud-to-Voxel scattering and gathering 

- Tracing of  Rays with arbitrary origin & direction 

Each technique may utilize several auxiliary buffers to achieve high GPU 
performance. For example, Point Cloud insertion utilizes one aux buffer to 
insert points into a grid, then another to perform a prefix scan for data locality, 
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and a third aux buffer as a deep copy for data coherence. This principle is 

applied throughout GVDB Voxels, where scan and reduction on auxiliary 

buffers are performed as needed to accelerate a wide variety of  geometric types 
in a relatively uniform way. 
 

1.1.2.3. Memory Management 

Memory management in GVDB Voxels was designed to eliminate many of  the 
common issues often associated with GPU-computing, while also providing 
flexibility to advanced developers seeking greater control over peformance.  
 
Among the most difficult challenges for new projects is management of  both 
CPU and GPU memory. With CUDA 6, NVIDIA introduced Unified Memory, 
or managed memory, to provide a single memory space so that applications no 
longer concern themselves with the CPU-GPU memory barrier. The latest 
Pascal Architecture, with CUDA 8, provides way to optimize the locality of  data 
and provide hints to improve performance. 
 

 

Figure 1.5. Typical memory usage in GVDB Voxels. The CPU and GPU both 
store the entire topology, with a typical size around 5-10 MB. Only the  
GPU stores the atlas data, which can occupy several gigabytes.  
 
NVIDIA® GVDB Voxels uses an explicit memory allocation layer that results in 
identical data on both the CPU and GPU, and does not make use of  Unified 
Memory. The topology of  GVDB uses indices so that transfers are easy and 
transparent to the user. The atlas data is selectively transferred to the GPU, and 
often has no backing store on the CPU to conserve memory. Brick transfers, 
which can occur often in out-of-core applications, are more easily accomplished 
if  the data representation can reside on both CPU or GPU without translation.  
 
GVDB Voxels provides an explicit, seamless, memory allocator with API 
functions to allow the developer to decide exactly when to perform transfers 
without having to examine or modify the data. 

1.1.2.4. Distributed Computing 

NVIDIA® GVDB Voxels is well suited as a core engine for distributed 
computing, but does provide any explicitly features in this area. The focus of  
GVDB Voxels is to provide the best performance and scaling on single-GPUs 
so that distributed applications that wish to use GVDB will scale accordingly.  
 
Several design decisions make GVDB Voxels a good choice as the core 
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framework for distributed applications. First, GVDB depends only on CUDA, 
make it suitable for Tesla, GRID and supercomputing architectures without 
graphics output. Second, voxel operations scale naturally in GVDB with better 
per-node hardware. Finally, the structure of  a VDB grid naturally partitions 
space which requires only minimal transfer of  data between nodes in distrubted 
computing environments.  
 
In the future NVIDIA® GVDB Voxels may provide addition features to 
facilitate brick-level transfers between GPUs, transfer of  node boundaries 
between GPUs, or other features that enable distributed computing. In this 
current release, GVDB Voxels focuses on single-GPU scaling and performance. 

1.1.2.5. Flexible Architecture 

The current version of  NVIDIA® GVDB Voxels implements a VDB topology 
over 3D texture-based atlases. Due to the connection between topology and 
data, it should be relatively easy (compared to other frameworks) for developers 
to drop in a different topology, or different data storage.  
 
The current atlases are stored using 3D textures with CUDA bindless texture 
objects, allowing multiple channels to be accessed simultaneously from a single 
kernel. However, it may be useful to experiment with linear memory, or sparse 
hardware textures, as the atlas storage type. Currently, GVDB can already switch 
between OpenGL generated 3D textures and textures created as CUarrays 
(cuArrayCreate3D). As the code is available, developers are welcome to 
experiment with other storage methods.  
 
The topology is the most central aspect of  GVDB Voxels. However, the API 
was designed to facilitate operations that would be applicable to many different 
topologies. The VDB grid itself  is already capable of  imitating several different 
layouts such as octrees, N-ary trees and tilemaps. However, it may be desirable 
to drop in specific alternatives such as optimized hash tables (tilemaps) or 
explicit octrees. The GVDB Voxels API abstracts such operations a spatial 
coverage (ActivateSpace), topology completion (FinishTopology) and atlas 
updates. We recommend that developers pursuing alternative methods follow 
these API patterns as they lend themselves to sweep-based parallel computation. 

1.1.3. Design for Rendering 
 
The motivation of  NVIDIA® GVDB Voxels for rendering is to provide basic 

high quality, accelerated raytracing of  voxel data essentially for free, with the 

ability to extend to more complex rendering as desired. In scientific computing 
the primary effort is often the simulation, where one often wishes to visualize 
the result without fuss (for “free”) but with sufficiently high quality to resolve 
details. To that end, the GVDB Voxels provides native CUDA and OptiX 
rendering pathways with previsualization or high quality rendering. 
 
In many applications the goal may be to improve on rendering quality. Thus, in 
addition to the native pathways, GVDB Voxels provides a custom rendering 
pathway which enables the developer to author kernels that seamlessly integrate 
with GVDB sparse acceleration. 
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1.1.3.1. CUDA & OptiX Rendering 

GVDB Voxels provides two pathways for rendering volumes. The first is a 
CUDA-only raycasting renderer that gives previsualization quality with high 
performance. The second is an OptiX-integrated raytracer that allows for high 
quality multiple scattering at interactive rates. Both rendering engines are capable 
of  switch modes to render with volumetric deep sampling (ray-sampling), 
rendering isosurfaces with on-the-fly trilinear or tricubic filtering, rendering level 
sets, and rendering voxel previews (tiny cubes).  
 
GVDB Voxels is primarily written in CUDA, with the same raytracing kernels 
being used for OptiX since the latter is also based on CUDA. The only addition 
in GVDB Voxels to support OptiX is an alternative pathway for declaring and 
accessing variables which is handled via header files. The code pathways are 
otherwise identical. For the sake of  simplicity, GVDB Voxels itself  does not link 
to OptiX or contain any host code for OptiX. Instead we have included a 
sample, gInteractiveOptiX, which contains an integration OptixScene class that 
handles the communication between OptiX and GVDB.  

1.1.3.2. Customization 

Developers who wish to explore new methods in rendering have several options 
for customization. The most basic customization is to provide a Custom Render 
Kernel (see Chapter 6.4) that shades a return hit point, allowing GVDB to 
perform the raycast. At the next level, users can write kernels to modify the way 
points are sampled within a deep volume. A more complex customization would 
access multiple channels of  data to mix additional per-voxel attributes such as 
color or material ID. Finally, the GVDB ray tracing technique is open source so 
that developers can modify the tree traversal itself, typically to return or pass 
new information between leves. These customizations are described in  
Chapters 5.4 and 6.4. 

1.1.3.3. Interaction with OpenGL 

For greatest flexibility, GVDB Voxels uses multiple CUDA buffers for output 
results. These are maintained by the API with render buffers that are requested 
before hand. We have provided an interop mechanism that allows applications 
to return render buffers an OpenGL textures. This gives a simple way to 
integrate CUDA or OptiX rendering into interactive applications. For example, 
several demos render GVDB volumes to a full screen texture and then overlay 
additional OpenGL GUI widgets in the sample. 
 
For proper integration of  volumes into OpenGL scenes, it is necessary to return 
a depth buffer so that OpenGL objects can be mixed with volumes based on 
depth. GVDB Voxels provides a mechanism to use depth as input during 
volume rendering, and to return depth buffers as output. 
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Chapter 2. 
Programming  

Overview 

The GVDB API is designed as a C++ class interface with built-in functions for 
common operations. More advanced users can access the host and GPU device 
API separately with custom compute and rendering kernels.  

2.1. Topology & Data 
 

 

Figure 2.1. The GVDB paradigm separates the topology from the data to provide 
several benefits in flexibility. Data is maintained in multiple channels, stored in 
memory with 3D textures called atlases. 
 

NVIDIA® GVDB Voxels makes a separation between the topology and atlas 
of  sparse voxel data. The topology must still refer to data in the atlas via some 
mechanism and, unlike tree implementations using pointers, GVDB Voxels uses 
indices both for tree nodes and atlas indexing.  

2.1.1. Topology 
The topology, as used in GVDB Voxels, describes an acceleration structure 
over a spatial domain. For example, a BVH, an octree, and an n-ary tree are all 
acceleration structures with different properties, splitting conditions and 
branching factors. The topology implemented by GVDB is a hierarchy of  grids 
based on [Hoetzlein 2016] and [Museth 2013], which has advantages over other 
structures for dynamic changes. A unique feature of  a VDB topology is that it 
generalizes many other structures, including octress and n-ary trees. In this 
document the topology typically refers to the GVDB hierarchy of  grids unless 
otherwise noted. 
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A topology is composed of  multiple nodes, and the lowest level of  the tree 
consists of  nodes which refer to bricks, and which have no children. For any 
given level, all the nodes at that level will have the same resolution.  

 

2.1.2. VDB Configuration 
 

The key feature of  a VDB topology is its configuration, which specifies in 
shorthand the resolution of  the nodes at each layer of  hierarchy of  grids. The 
configuration is a vector which gives the log2-dimension of  each level. 
 

 

Figure 2.2. Configuration of  a <2, 4, 3> tree. Each component is the log2dim of  
that level. For example, the interior (middle) level has logdim = 4, resulting in 
(24)3 or 163 node resolution. All bricks at that level will be 163 voxel.  
 
In GVDB Voxels, the configuration can be specified at run-time. The maximum 
number of  levels defaults to 5, although most scenarios will use fewer levels. 
Unused levels contain 1 or 0 nodes. Nearly all use cases can be covered with five 
level trees, as the maximum addressable space is (10^12)3 voxels using  
an <8,8,8,8,8> tree.  

The only scenario in which more levels are needed is when using a very large 
domain with very small bricks. For example, an octree quickly requires more 
than 5 levels. To increase the maximum beyond five, the GVDB Library can be 
rebuilt with a higher limit. 
 
The maxmum resolution of  a VDB grid can be found by multiplying the node 
resolutions at each level. For the example in Figure 2.2. 
 
     Maximum Res  = [ (2^2)*(2^4)*(2^3) ]3 
   =        [4  *  16  * 8] 3 

   =              5123 
Thus, the <2,4,3> tree is equivalent to a 5123  volume. 
 
The VDB configuration can be specified with Configure(): 
 
gvdb.Configure ( 3, 3, 3, 3, 5 ); 
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A recommended VDB grid configuration for most scenarios is the <3,3,3,3,5> 
grid. This is based on research by Hoetzlein [2016], which shows that smaller 
upper levels, and larger bricks, are more efficient for raytracing traversal. This 
configuration has a maximum resolution of  131,0723 

2.1.3. Atlas Data 
The atlas data refers to the actual storage of  voxels or other entities. The atlas 
is composed of  a number of  bricks which are dynamically allocated at run-
time. Each brick is a small, cubic sub-domain of  voxels for a single attribute. A 
common size for bricks is 163, 323 or 643 
 
The key feature of  an atlas is its type and size. An atlas is allocated in GVDB as 
a 3D texture (or CUarray) of  a specific data type. The overall size of  the atlas 
determines the maximum number of  bricks it can contain.  

 

Figure 2.3. Atlas structure with bricks allocated along X, then Y, then Z. When 
more bricks are needed, the atlas will be dynamically resized along the Z-axis. 
The atlas also contains apron voxels (not shown) for neighbor lookups. 

 
An atlases stores bricks in arbitrary order with no correlation to world space. 
GVDB assigns bricks along the X and Y axes, and then continues to stack them 
upward in Z. To allow for dynamic topology, the atlas may be reallocated with a 
higher Z-height in order to accommodate more bricks.  

Maintaining data in atlases, distinct from the topology, enables a number of  
unique benefits. First, multiple atlases can be introduced to store different types 
of  data at each spatial location, called channels in GVDB. Second, since the data 
is typically much larger than the topology, it is possible to move large amounts 
of  data for manipulation, computation, or I/O, without touching the topology. 
Third, as the topology is somewhat independent of  the data, it is possible to 
experiment with the performance of  different topology configurations without 
altering the data. These benefits and others motivate the distinction between 
topology and atlas data. 
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2.1.4. Implementation 

Figure 2.4. Internal representation of  a GVDB grid uses multiple node pools; 
one per level (e.g. blue, green, red). Each level is divided into two groups. Group 
P0 contains node data & bitmasks, group P1 contains child lists. Each leaf  node 
indexes into a brick in a data atlas. [Hoetzein 2016]. 

 
Internally, the topology of  GVDB is implemented using a set of  memory pools 
as described in [Hoetzlein 2016]. This design significantly improves 
performance for dynamic brick allocation and simplifies data transfers between 
CPU and GPU. 

2.2. Basic API Design 

NVIDIA GVDB is designed as a simple, command-based API for common 
functional tasks. These tasks operate on the topology and data of  a sparse 
volume. Every GVDB application makes use of  the basic API to prepare, 
populate and manipulate data whether using built-in or custom kernels. 
 
The main API categories are:  

▪ Initialization – Functions that start or prepare GVDB 

▪ Data Preparation – Functions, including file I/O and compute operations,  
that load, manipulate, or process volumetric data.  

▪ Scene Settings – Functions that initialize common settings for volume 
rendering such as lights and cameras.  

▪ Render Buffers – Functions that maintain one or more render buffers used 
for rendered output, depth buffers, or depth inputs. 

▪ Raytracing – Functions that perform built-in or custom raytracing of  
volumetric data with different styles.  

▪ Points & Polygons – Functions that convert to or from point clouds, 
polygons and voxels, with algorithms for transforming between them. 

▪ Dynamic API –  Functions that rebuild a topology or allow for dynamic 
topology changes over time.  

▪ Accessor API – Functions for low-level manipulation of  the GVDB 
topology and data values available on both the host and device. 

These API categories are covered in increasing complexity in this Programming 
Guide. This chapter addresses the most basic API use of  common built-in 
functions to perform simple tasks. 
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2.3. Initialization 

Initialization of  GVDB is achieved by linking your application to the GVDB 
Library and declaring a VolumeGVDB object. The primary interface for GVDB 
is the VolumeGVDB class, which can be initialized as follows: 
 

#include “gvdb.h” 

using namespace nvdb; 

 

VolumeGVDB   gvdb; 

The VolumeGVDB object resides in the nvdb namespace, so it is common to 
use this namespace to access the object.  
 
 
 
 
 
 
Once created, the VolumeGVDB object is used to initialize GVDB as follows: 

int devid = -1; 

gvdb.SetVerbose ( true ); 

gvdb.SetProfile ( false ); 

gvdb.SetCudaDevice ( devid ); 

gvdb.Initialize (); 

SetVerbose turns on or off  verbose output from GVDB, including 
measurement of  the performance statistics discussed in section 3.3. 

SetProfile turns on or off  profiling, which enabled nvtx performance markers 
for GPU Profiling with NVIDIA NSight, and also CPU Profiling with high 
performance counters output to a console window. 

SetCudaDevice specifies which CUDA Device should be used by GVDB. A 
value of  -1 indicates that GVDB is free to initialize the first CUDA Device it 
finds. Other values can be specified after enumerating devices. 

The Initialize function starts GVDB itself  and prepares all necessary internal 
structures, but does not create a topology or atlas data.  
 
StartRasterGL is used to initialize OpenGL with GVDB, and is only needed 
when using functionality that requires an OpenGL context. This should be 
called after the application creates an OpenGL context. Such functions, like 
PolyToVoxelsGL are suffixed by GL. An example of  these function in use can 
be found in the g3DPrint sample.  
 
 

2.4. Data Preparation 

Data preparation refers to several different methods available to build a GVDB 
topology and populate atlases with data. Several key concepts are involved in 
preparing a GVDB with data for rendering or further processing. These steps 

Limitation: In this release, only a single VolumeGVDB object may 
be created per program as a singleton. 
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usually occur in order, although some many be repeated when working with 
dynamic data. 

• Configuration – Specifying the structure and shape of  a topology, 
without creating any nodes. 

• Adding Channels – Specifying the data format and number of  data 
channels, without adding any data 

• Activating Space – Requesting GVDB to add topology nodes to 
define the sparse regions of  the spatial domain to be covered. 

• Update Atlas – Requesting GVDB to expand or restructure the atlas 
channels to support the changes in topology. 

• Adding Data – Steps to create, generate, or import actual data into 
channels. 

• Output/Rendering – Making output data or creating rendered images 
of  the stored data. 

Every application with perform these steps in some way, although often several 
of  these steps will be hidden inside simpler built-in functions. For example, 
LoadVBX performs all steps above except rendering. A few different use cases 
for data preparation are worth nothing.  

 
Case 1. Load existing Topology and Data 
 
The simplest method of  data preparation is to read volumetric data from disk 
using a load function. These are described in detail in chapter 10, and include 
support for VBX, RAW and OpenVDB files formats. 
 
The native format of  GVDB is the VBX format, which can be loaded with 
LoadVBX. 

gvdb.LoadVBX ( “data.vbx” ); 

Loading a data file from VBX or OpenVDB automatically reads the 
configuration, atlas definition, node layout and atlas data, thereby making a 
scene ready for rendering.  
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Case 2. User Configuration, Generated Nodes and Data 

In many applications, the user will configure the topology and voxel size to 
achieve a specific performance or quality goal. Then, the application might call 
GVDB functions that will generate nodes and atlas data automatically. A good 
example, shown here, is the SolidVoxelize function for converting a polygonal 
mesh to voxels. 
 
The first steps are to configure the tree, add data channels, and set  
the voxel size (or resolution): 

gvdb.Configure ( 3, 3, 3, 3, 5 ); 

 

gvdb.AddChannel ( 0, T_UCHAR, 1 ); 

 

gvdb.SetVoxelSize ( 0.4, 0.4, 0.4 ); 

The Configure function defines the shape of  the topology and initializes it to an 
empty tree with no nodes. See section 3.1 for details on topology configuration. 
For many applications, the <3,3,3,3,5> configuration is suitable. 
 
The AddChannel function defines the data type for a given channel, and 
initializes these with empty atlases containing no data. This can be called 
multiple times to create additional channels. See section 3.2 for details on atlas 
definition.  
 
The SetVoxelSize function defines the size of  a voxel in world units. This 
allows for direct control over the voxel resolution, and defines the smallest size 
of  a voxel. A corresponding function SetVoxelRes can be used instead, if  it is 
more natural to specify the overall effective resolution of  the world domain. See 
section 3.3 for details on resolution. 
 
Once the tree is configured, and channels are specified, it is possible to call 
functions such as SolidVoxelize to generate nodes and data. Note that with 
automatically perform the steps of  activating space, updating the atlas, and 
adding data, but leaves the earlier configuration steps to the user. 

Model* m = gvdb.getScene()->getModel(0); 

gvdb.SolidVoxelize ( 0, m, &xform ); 

This function takes the polygonal mesh (m) applies the transform (xform), and 
voxelizes the model into the atlas channel #0. Notice the function does not take 
the resolution as input, but relies on the earlier setup to determine the rasterized 
resolution of  the model.  
 

Case 3. User-Specified Configuration, Topology and Data 
 
The most generic use case is when the configuration, activation of  sparse 
regions of  space, and data creation are all performed by the developer. A good 
example of  this is the authoring of  a novel fluid simulation technique where the 
developer requires explicit control over the sparse dynamics and multiple 
channels of  data. Another example is authoring a custom data format for 
import into GVDB.
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gvdb.Configure ( 3, 3, 3, 3, 5, Vector3DF(1,1,1), 1); 

gvdb.AddChannel ( 0, T_FLOAT, 1 ); 

gvdb.SetVoxelSize ( 0.4, 0.4, 0.4 ); 

 

gvdb.ClearTopology (); 

for (int n=0; n < num_pnts; n++ ) { 

     gvdb.ActivateSpace ( pnt[n] ); 

} 

gvdb.FinishTopology (); 

 

gvdb.UpdateAtlas (); 

gvdb.ClearAtlas (); 

The functions for ClearTopology, ActivateSpace, and FinishTopology request 
that spatial domains are added to the topology of  the tree. ActivateSpace will 
generate all the nodes in the GVDB tree required to ensure that the incoming 
world point is covered by brick data. See Chapter 8.2 on Topology Rebuild. 
  
The functions UpdateAtlas, ClearAtlas ensure that the atlas channels provide 
data storage for the nodes, creating bricks as need, and clearing those bricks by 
zeroing them out. See Chapter 8.3 on Atlas Rebuild. 
  
 

Summary 

 
NVIDIA® GVDB Voxels allows the steps for data preparation to be performed 
at any stage in the application for the greatest flexibility. Simple applications can 
make use of  built-in functions, such as load/save, which perform many of  these 
steps internally. More complex applications are able to generate their own 
topological coverage, update data stored in atlases, dynamically change 
resolution, or even add and remove data channels at run-time.  
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Chapter 3.Scene Settings 

Scene settings are required to perform native GVDB rendering. Once a VDB 
configuration is specific, and data is prepared, scene settings provide minimal 
information on lights, cameras and transfer functions for rendering. 
 
When using built-in rendering fuctionality, settings for lights and cameras are 
needed to setup a scene. Unlike NVIDIA OptiX, whose goal is to provide a 
scene graph hierarchy with a complete set of  objects, transformations, and 
multiple cameras and light sources, the scene structure of  NVIDIA GVDB is a 
simple fixed list of  cameras and lights. GVDB Voxels was not designed as a 
scene graph system, but rather as a basic primitive to fit into other scene systems 
(including OptiX itself). The scene lights and cameras in GVDB are only used 
by the built-in CUDA rendering functionality, which provides a limited range of  
shading choices.  
 
For complete flexibility in rendering, see section 4.3 on Custom Rendering 
Kernels, which allows the user to write arbitrarily complex CUDA kernels or 
OptiX programs to achieve any desired look. The definition of  complex 
cameras, lights and other scene objects is left to the application developer to 
pass into these custom render kernels.  

 

3.1. Scene 

 
Scenes are accessed using the nvdb::Scene object, which can be retrieved from 
the GVDB object. 

using namespace nvdb; 

 

Scene* scn = gvdb.getScene(); 

There is only one scene object per GVDB object. 
The scene object provides access to: 

• Cameras 

• Lights 

• Polygonal Models (for polygon-to-voxel conversion, etc) 

• Transfer Functions 

• Volume Raycast Settings 
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3.2. Camera 

 
Cameras are allocated and managed by the caller. The current camera to be used 
for GVDB rendering is specified with SetCamera(). 

using namespace nvdb; 

 

Scene* scn = gvdb.getScene(); 

Camera3D* cam = new Camera3D; 

cam->setFov ( 30.0 ); 

cam->setOrbit( Vector3DF(50,30,0), Vector3DF(150,70,150), 

                       400, 1.0 ); 

scn->SetCamera ( cam ); 

This specifies an orbiting-style camera with orbit angles of  (50,30,0) (angle, tilt, 
pitch), a target loction at (150,70,150), with a orbit distance of  400.0  
and dolly of  1.0. For a complete list of  the Camera3D functions, see the file 
gvdb_camera.h in \source\gvdb_library. 

The function scn->SetCamera( cam ) indicates that this camera is to be used 
during GVDB rendering. Since the caller maintains cameras, it is possible to 
create several cameras and switch between them to perform multiple renderings, 
for example when implementing multiple views.  
 
Interactive rendering is possible by updating the camera parameters and 
performing a GVDB rendering on each frame, as demonstrated in the 
gInteractiveGL sample. 
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3.3. Lights 

 
Lights are also allocated and managed by the caller.  
 

Scene* scn = gvdb.getScene(); 

Light* lgt = new Light; 

lgt->setOrbit( Vector3DF(0,40,0),    

        Vector3DF(250,250,250), 500, 1.0 ); 

scn->SetLight ( 0, lgt ); 

The function scn->SetLight( index, Light* ) assigns a light to the given index 
number. This allows multiple light sources to be specified. 
 
Lights are used for shadowing and simple shading when using  
built-in CUDA-based rendering functions via gvdb.Render. 

3.4. Polygonal Models 

 
Models are used to provide polygonal geometry for poly-to-voxel and solid 
voxelization functions in GVDB.  

Scene* scn = gvdb.getScene(); 

scn->AddModel ( “lucy.obj”, scale, tx, ty, tz ); 

scn->CommitGeometry ( 0 ); 

The AddModel function loads an .OBJ formatted polygonal model file from 
disk a saves it into the next available model slot. The ‘scale’ is pre-computation 
that scales the model vertices, and ‘tx/ty/tz’ are pre-computed translation 
applied directly to the incoming vertices during load. Multiple models can be 
loaded into the indexed list by calling AddModel repeatedly.  
 
The CommitGeometry function transfers the polygonal model into an 
OpenGL vertex buffer object (VBO) for using the on the GPU. The argument 
indicates which model slot to commit, base 0. Since polygonal models are 
accelerated with OpenGL VBOs, the StartRasterGL function must be called 
during initialization to provide an OpenGL context. 
 
Models in GVDB are not a suitable location for storing models used in mixed 
polygon rendering, or as a means to store data for generic scene graphs. Rather, 
models should be viewed as a temporary holding location for polygon-voxel 
operations. 
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3.5. Transfer Functions 

 

A transfer function is a common way to describe how a volumetric model with 

various densities should be rendered on screen. Transfer functions are often 
using in medical and scientific imaging to highlight specific features in 
volumetric data. Whispy smoke may have a white color with a very low opacity 
over all density ranges, while a rolling fire might have red, yellow and black 
colors with high opacity. The purpose of  the transfer function is to map, or 
transfer, the incoming data to a visibile color scheme. 

Transfer functions are defined in GVDB Voxels via the Scene object. 
 

              LinearTransferFunc ( t-start, t-end, color-start, color-end ); 
 
For generality, a LinearTransferFunc call is used to specify a piecewise-linear 
section of  a transfer function. This can be invoked multiple times to define the 
complete transfer function in small sections with arbitrary detail over the 
domain range from 0.0 to 1.0.  
 
scn->LinearTransferFunc ( 0.0, 1.0,                

         Vector4DF(0,0,0,0), Vector4DF(1,1,1,0.5) 

 
The simplest transfer function specifies a single linear change over  
the entire range from 0 to 1. Notice the start and end are 0 and 1.0 respectively. 
The left-most color is black, no opacity (transparent), and the right-most color is 
white with half  opacity. 
 

 
Figure 3.1. Linear transfer function from black to white over the range [0,1] 
 
Values outside the range of  0.0 to 1.0 are ignored by the transfer function. 
However, the volume data may contain densities or values outside this range. 
The SetVolumeRange function is used to map the actual data value to a 
transfer function value in the range of  0 to 1, which then determines the color 
and opacity. 
 

              SetVolumeRange ( iso-value, min-value, max-value) 
  
scn->SetVolumeRange ( 0.1, -1.0, 2.0 ); 

 

This indicates the density channel contains values from -1.0 to 2.0, and will 
remap these to [0,1] before transfer. The value 0.1 gives an isovalue used as a 
threshold when doing surface rendering.  

 

 

 



 

 
   
NVIDIA® GVDB Voxels - Programming Guide  21 

Several linear functions can be combined to create arbitrarily complex transfer 
functions. 
 

scn->LinearTransferFunc ( 0.00f, 0.25f,  
           Vector4DF(1,1,1,0), Vector4DF(1,0,0,0.1f) );   
 
scn->LinearTransferFunc ( 0.25f, 0.50f,  
           Vector4DF(1,0,0,.1f), Vector4DF(1,1,0,0.2f) );   
 
scn->LinearTransferFunc ( 0.50f, 0.75f,  
           Vector4DF(1,1,0,.1f), Vector4DF(0,1,0,0.3f) );   
 
scn->LinearTransferFunc ( 0.75f, 1.00f,  
           Vector4DF(0,1,0,.3f), Vector4DF(0,0,1,0.5f) );   
 
gvdb.CommitTransferFunc (); 

 

 

Figure 3.2. Transfer function created from linear piecewise sections using the 
code above. Notice the t-values can be shifted to compress portions function or 
make discontinuities, and the alpha channel can be modified with the color. 

 
For an example of  using transfer functions in practice see the gRenderToFile or 
gInteractiveGL samples.  
 
Commit Transfer Function 

After specifying a transfer function, it is necessary to commit the function to 
GPU so that it can be used for raytracing. This is accomplished with 
CommitTransferFunc(). 
 
gvdb.CommitTransferFunc(); 

 

To rewrite the transfer function, overwrite the values with new calls to 
LinearTransferFunc over the domain [0,1] and call CommitTransferFunc again.  
 
For information on using transfer functions in OptiX, see Chapter 6.2  
on OptiX Raytracing.  
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Chapter 4. 
Data Structures 

4.1. Spatial Layout 

Voxels exist in a world space, which are represented in GVDB using a topology 
of  nodes that have a location in index space. Together these define the 
position of  voxels in a 3D world. As mentioned in Chapter 2, the actual storage 
of  voxels is resides in an atlas composed of  bricks. Two additional spaces helps 
to acceleration calculation: atlas space and bricks space. The motivation for 
these spaces, and transformations between them are describe here. 

4.1.1. World & Index Space 

 

Figure 4.1. World and Index Space 
 
A voxel has a real 3D position in world space. This position a real number 
where the distance from voxel to voxel is the voxel size. 
 
The index space of  a voxel is an integer index which is found by dividing world 
space by voxel size. 
   Ivox = Wvox/ voxelsize 

The position of  all nodes in GVDB Voxels are stored using index space, since 
this allows for precise sub-division of  the world into a hierarchy of  grids. Notice 
that both Wvox and Ivox can be negative in order to cover the negative domain. 

 

 

 

 

 

 

 
 

Limitation: The transformation between world and index space is 
ideally an arbitrary 4x4 matrix. In this release, world and index 
space are related by the 3D scaling vector voxel size.  



 

 
   
NVIDIA® GVDB Voxels - Programming Guide  23 

 

4.1.2. Atlas Space 

 

Figure 4.2. Atlas Space. The is the space defined by the texture atlas storing  
voxel bricks. 

Atlas space referes to points or voxels referenced in the data atlas. 
  
The primary purpose of  atlas space is to perform efficient calculations on the 
entire sparse volume. Consider the goal of  adding noise to each voxel by adding 
a random value. An inefficient, non-sparse way would be to scan over the entire 
world space, then find each voxel as stored in the atlas space, and add a 
random number to it. A better, but still inefficient way, would be to launch a 
kernel for each brick in the atlas, and add a random value to each voxel in the 
brick.  
 

The most efficient way is to modify only sparse voxels, ignoring the rest of  the 

world. This is exactly what is stored in the data atlas. To perform efficient sparse 

calculations over an entire volume, GVDB Voxels launches a kernel over atlas 
space voxels.  
 
Operations performed using gvdb.Compute all work in this way. There is a 
single kernel launch over all voxels in the atlas. Voxel operators such as 
smoothing or noise begin by identifying the atlas space voxel for the current 
thread. This is common enough that a device macro, GVDB_VOX, is provided 
to give the atlas space voxel. (See cuda_gvdb_operators.cuh) 
 

 

GVDB_VOX: 
 

uint3 vox = blockIdx * blockDim + threadIdx +make_uint3(1,1,1); 

if ( vox.x >= res.x|| vox.y >= res.y || vox.z >= res.z )    

        return; 
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For many operations, like adding noise, the world position of  the  
voxel is not needed. One only needs to read and write the voxel values: 

__global___ gvdbOpNoise ( int3 res, uchar chan ) 

{ 

    GVDB_VOX 

  
   float v = tex3D<float> ( volIn[chan], vox.x, vox.y, vox.z ); 
   v += noise(); 

 

   surf3Dwrite ( v, volOut[chan], vox.x*sizeof(float), vox.y, 

vox.z); 

} 

This simple kernel adds noise to the entire sparse volume. The GVDB_VOX 
macro sets the ‘vox’ variable for the atlas space voxel in this thread. 
 
Atlas-to-World Space 

Often while performing a full volume calculation it is necessary to have the 
world position of  a voxel. Again it is more efficient to launch kernels over the 
atlas space and then compute their world space than to go the other way. An 
example is computing the per-voxel distance for each voxel to a world-space 
object like a sphere. 
 
The device function getAtlasToWorld transforms from atlas to world space. 
 

__global___ gvdbOpDistToSphere ( int3 res, uchar chan ) 

{ 

    GVDB_VOX 

 
    float3 wpos; 

    if ( !getAtlasToWorld ( vox, wpos )) return; 

    float v = wpos – sphere.pos;     // distance to sphere 

    surf3Dwrite ( v, volOut[chan], vox.x*sizeof(float), vox.y, 

vox.z); 

} 

getAtlasToWorld returns true if  the world point exists, and false if  the atlas 
voxel does not currently map to a brick in the world. The value of  ‘wpos’ is set 
upon return to the world space position of  the atlas voxel. 
 
Additional device functions help to perform tasks in atlas space: 

-  getAtlasToWorld return the world position from an atlas position 
-  getAtlasToWorldID returns the brick ID at an atlas position 
-  getAtlasNode returns a brick map from an atlas position 
-  getNodeAtPoint return the VDB Node at a world position 
See Chapter 5, Compute API, for more details. 
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4.1.3. Brick Space 
 

 

Figure 4.2. Brick Space is a local coordinate system relative to a specific brick. 
 
Brick space referes to a local coordinate inside a specific brick. Recall that a 
brick is a small, cubic subset of  voxels stored in the atlas.  
 
Brick space is used primarily during raytracing. Whereas atlas space is useful 
when one wishes to perform calculations over all the voxels in a sparse volume, 
during raytracing one may only know the entry and exit locations for a brick, 
leaving the rest of  the raytracing up to the rendering engine.  

Raytracing is more efficient on bricks because one can quickly access and test 
the data atlas with a brick coordinate. GVDB Voxels uses brick functions to 
perform these calculations, which are internal or customized functions that 
return the results for a given ray inside a brick. See Chapter 6, Raytracing API, 
for further details on efficient raytracing with bricks.  
 
World-to-Brick Space 
 
The raytracer will enter a brick function with a starting ‘t’ value (parametric 
coordinate along the ray) along a specific ray, requesting a hit or sample value, as 
in Figure 4.2. The ‘t’ value gives the starting world coordinate of  the entry point. 
 
To march through brick space one first converts the ‘t’ value of  a world 
coordinate, and then transforms from world-to-brick space with the following: 

P = (W – Bworld) / vdel 

The point in the brick is denoted as P. (Figure 4.2). The range of  P is  0 ≤ P < 
Bres. Thus the brick coordinate P has no meaning outside the resolution of  the 
brick, which may include apron voxels. 
 
The world coordinate of  the point is W, the world coordinate of  the bottom 
corner of  the brick is Bworld, and vdel is the voxel size at node level 0. 

Recall that the purpose is to very quickly scan through a brick during raytracing. 

The inner loop should therefore do very few calculations.  
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Here is a simplfieid example from the rayDeepBrick function which does 
sample-based volumetric raytracing: 
 

__device__ void rayDeepBrick ( char shade, int nodeid, float3 

t, float3 rpos, float3 rdir, float3& pstep, float3& hit, 

float3& norm, float4& clr ) 

{ 

   VDBNode* node = getNode ( 0, nodeid, &vmin ); 

   float3 W = rpos + t.x * rdir;  // world space 

   float3 p = (W-vmin) / gvdb.vdel[0]; // brick space 

   float3 o = make_float3( node->mValue );  

   float val = 0; 

 

   for (iter=0; iter < MAX_ITER && inBounds(p); iter++) 

   { 

       val += tex3D(volTexIn, p.x+o.x, p.y+o.y, p.z+o.z); 

       p += SCN_PSTEP * rdir;  

   } 

} 

The value (‘val’) is the desired accumulated sampling along the ray. 
 
First, the starting position in world space (W) is computed from the ray position 
(rpos), the ray direction (rdir) and the ‘t’ value. Next, the starting brick space  
coordinate (P) is found using the world-to-brick transformation. Finally, the 
inner loop scan in PSTEPS (dP) along the ray direction, sampling the data atlas 
at each sample using the brick coordinates. The offset ‘o’ is the location of  the 
brick in the atlas, and (P+o) gives the coordinate of  the current sample in atlas 
space for direct texture lookup using tex3D. 
 
This technique is common in GVDB Voxels and results in very efficient 
raytracing as the inner loop is greatly simplified. GVDB takes care of  the sparse 
processing of  rays as they traverse the hierarchy and travel in and out of  bricks, 
allowing the developer to write concise, efficient brick functions. 
 
Brick-to-World Space 

At times it is necessary to convet from brick space back to world space. This 
may occur when a ray hits a point and one wishes to return the world hit 
location. The inverse transformation is: 

W = Bworld + P * vdel 

An example of  this can be found in the raySurfaceTrilinearBrick function, which 
is a brick function that returns the first hit isosurface in a brick of  voxels.  

__device__ void raySurfaceTrilinearBrick ( … ) 

{ 

   .. 

   for (iter=0; iter < MAX_ITER && inbounds(P); iter++ ) { 

     // check if voxel is above is isoval, if so..  

     if tex3D(volTexIn, p.x+o.x, p.y+o.y, p.z+o.z ) > thresh)  

     {  

          hit = p * gvdb.vdel[0] + vmin; // compute world hit 

          return;     // (vmin = Bworld) 

     } 

     p += SCN_PSTEP*dir;   // next sample 

   } 

} 
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4.1.4. Extents and Effective Resolution 
 
Working with actual volume data in GVDB Voxels will cover a finite, sparse 3D 
volume of  the world. A common bound on this data is the bounding box, 
which defines the minimum and maximum extents of  the active data in world 
space. GVDB Voxels uses extents to refers to the same bounding box in index 
space for a given volume.  

 
When using dense 3D textures for voxel data, the texture has a a maximum 
resolution. However, sparse volumes do not have a maximum since they can 
expand to cover more space as needed. Instead, a useful description of  a sparse 
data set is its effective resolution, which is the number of  active voxels along  
each axis. This can be computed as the size of  the extents: 

Effective Resolution  = Emax - Emin 

Since the extents E are related to the bounding box by voxel size, we notice that 
the effective resolution is also equal to: 
 

Effective Resolution  = (Bmax – Bmin) / voxelsize 

 
This gives a very useful relationship between the resolution (detail) of  a data 
set, its bounding box in the 3D world, and the voxel size.  
 
This calculation comes up frequently in 3D Printing, for example. Let’s assume 
the voxel size is set to the layer thickness of  0.1 mm (10 microns) of  a 3D 
Printer, e.g. voxelsize = <0.1, 0.1, 0.1mm>. Now, the user has requested that the 
model be printed with a height of  100mm (about 4 inches). This means we can 
compute the effective resolution, or detail, of  the data set required for printing 
using this equation: 

 Effective Resolution (Z) = (100mm – 0mm) / 0.1mm = 1000 voxels 
 
Thus, the given parameters result in a volume 1000 voxels high, which can be 
related to memory footprint and output quality. 
 

4.2. Topology Structures 

4.2.1. Nodes 
The GVDB Voxels topology is stored as a set of  nodes residing in memory 
pools. The same node struct is used at every level of  the hierarchy to simplify 
the design with uniform computation. 
 
For the most part, developers do to not need to understand nodes in order to 
make use of  GVDB. The compute API givers direct access to voxels for 
computation, and the raytracing API provides user-customizable brick functions 
to traverse rays through brick and atlas space. An understanding of  nodes is 
helpful when dealing with dynamic topology, for raytracing customization, or 
when extending GVDB with new functionality. 
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The GVDB Node structure is: 
 

struct ALIGN(16) GVDB_API Node { 
public:        
 uchar  mLev;  // Tree Level   1 byte 
 uchar  mFlags;  // Flags   1 byte  
 uchar  mPriority; // Priority   1 byte 
 uchar  pad;  // Padding   1 byte 
 Vector3DI mPos;  // Pos in Index-space   12 byte 
 Vector3DI mValue;  // Value in Atlas   12 byte 
 Vector3DF mVRange; // Value min, max, ave  12 byte 
 ulong  mParent; // Parent ID   8 byte 
 ulong  mChildList; // Child List   8 byte
 uint64  mMask;  // Start of BITMASK bytes 
} 

The node header, not including the mask bytes, is 56 bytes.  
With 16-byte alignment the actual node header size is 64 bytes. 
Note that a Node struct is never allocated outright, but always preallocated with 
additional bytes for the bitmask at the end of  the node.  
See VolumeGVDB::Configure for examples of  how PoolCreate is used to 
allocate actual nodes. 
 
Node variables have the following meaning: 

RESERVED = For future use. 

 
mLev  Level of  the node in the tree. Level 0 is the brick.  
 
mFlags  [RESERVED] Flags for residency, etc. 
mPriority [RESERVED] Priority for ray-guided rendering or out- 
                          of-core residency swap calculations 
pad  [RESERVED] Padding byte for future functionality 
 
mPos  Position of  bottom corner of  the node in index space. 

mValue  The ‘value’ of  the node as an an atlas space position. 

mVRange [RESERVED] The minimum, maximum and average range of 
   values for a node. To be recalculated as needed for a given  
   channel ID 
 
 mParent  Index of  the parent node (into pool group 0) 

mChildList Index of  the child list (into pool group 1) 

mMask  Starting byte of  the node bitmask. Not actually stored. 
 

Location, Size & Extent 

The range, or index-space size, of  a node is determined by the node level:  
  Nrange = gvdb.getRange ( node.mLev ); 

The cover, or world-space size, of  a node is determined with the voxel size:
 Ncover = gvdb.getCover ( node.mLev ); 
 
The mPos expresses the index-space bottom corner of  a node. The opposite 
top corner index-space is given by: 
             Nimax = node.mPos + Nrange 



 

 
   
NVIDIA® GVDB Voxels - Programming Guide  29 

The world space bounding box of  a node can be found by transforming the 
node from index-to-world. 

 Nwmin = node.mPos * voxelsize = getWorldMin ( node ); 

 Nwmax = (node.mPos + Nrange)*voxelsize = getWorldMax ( node ); 
 
Bricks and Values 
 
The value of  a node relates the topology to a data brick in the atlas. Presently, 
every node in the GVDB hierarchy has a value variable, but only those at level 0 
are utilized. This is to allow for future growth in the area of  level-of-detail 
where data bricks might exist at different levels of  the hierarchy.  

A value of  -1 indicates a node has not yet been assigned a brick in the atlas, but 
is a leaf  node residing in world space. That is the topology covers a 3D space 
with a node but does not yet contain data. 

When non-negative, the value is an atlas-space position of  the brick containing 
data in the atlas. This position skips the outer apron and refers to the bottom 
corner of  the first actual data voxel.  

 
Parent Node 

The parent variable (mParent) is a reference to the parent of  the current node. 
References are encoded as a pool group, level and index, packed into a 64-bit 
value. 
 ref   = Elem ( group, level, index ) 
        = uint64(group) | (unit64(lev) << 8) | (uint64(index) << 16) 

The parent of  a node always resides in group=0.  
The null, or undefined reference value is: 

        #define ID_UNDEFL 0xFFFFFFFF 
 
This null value is found for the parent of  the root node, and in other contexts. 
 

Children List & Bitmask 
 
The children variable is a reference to a list-of-children found in pool group 1. 
 
The list-of-children is decoded using the bitmask located in the memory space 
at the end of  the current node. Within the subdivided space of  the node, the 
bitmask indicates which child nodes are active. Those with active bits will have a 
child present in the list-of-children.  
 
The size of  the node bitmask is the number of  potential nodes is contains, which 
is given by the log2-dimension of  the VDB configuration. For example, with a 
<2, 4, 3> configuration, all nodes at level 1 have a log2dim=4, which means that 
all nodes at this level are subdivided with (24)3 = 163 voxels = 4096 voxels. This 
is the number of  bits which can be active or inactive. The bitmask will 
therefore contain 4096 bits = 512 bytes.  
 
GVDB Voxels has a number of  functions to access and traverse children.  
See Chapter 8, Host & Device Access, for details.  
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4.2.2. Memory Pools 
 
The GVDB Voxels topology is stored in two memory pool groups as  
described in [Hoetzlein 2016]. Each group is a set of  separately allocated 
memory pools residing on both the CPU and GPU, with one allocation for each 
level of  the tree. The following is for reference on the current implementation: 
 
Pool Group 0 – Nodes & Masks 
 
Pool 0 stores the nodes and bitmasks for each level of  the topology.  
A single pool is allocated per level of  the hierarchy, and multiple nodes reside 
within each level. Since, by VDB definition all the nodes at a given level have the 
same dimensions, the bitmask size at a specific level will be constant (per level). 
Therefore, it is possible to allocate a pool group with a fixed width and height as 
follows: 
 
P0 ( group, level ) = width * height   

                            = (NodeHeader(level) + BitmaskSize(level)) *                     
                                           maximum_nodes_at_level 
 
The maximum number of  nodes at each level (pool height) is initialized to a 
small value, typically 4. When more nodes are needed the pools will dynamically 
expand by powers-of-two to contain additional nodes.  

 
Pool Group 1 – Children Lists 
 
Pool 1 stores the lists-of-children for each node in Pool 0.  
Since this list may change size itself, a separate pool group is used.  
A list-of-children pool is allocated for each level of  the hierarchy. Each child 
entry is a 64-bit reference back into Pool 0 at the next lower level.  
The maximum number of  references in the list-of-children is equal to the 
number of  bits (voxels) in the bitmask for that level.  

 

 
 

Limitation:  
Consistent with OpenVDB, the original intent of Pool Group 1 was 
to minimize the extra space needed for children by compacting 
them and using bit counting. However, compaction introduces 
runtime overhead and the added space of storing complete child 
lists is not significantly different than compacted lists. Additionally, 
non-compacted lists would eliminate the need for the bitmask 
entirely and improve performance by removing bit counting. 
Currently, Pool Group 1 is compacted (children stored next to one 
another in order) but with maximum width. 
 
Future versions of GVDB may eliminate Pool Group 1 entirely and 
merge the children lists with the bitmask. We welcome analysis 
and feedback on this topic. 
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4.3. Atlas Structures 

Voxel data is contains in multiple atlases, where an atlas is stored in device 
memory as a 3D Texture allocated as either a a CUarray, or less typically as an 
OpenGL 3D Texture. Allocation of  atlases with OpenGL is required when 
using OptiX, and CUDA-GL interop is performed to acquire a CUarray in that 
case.  

4.3.1. Channels 
 
A channel is the concept of  a per-voxel attribute, and is central to computation 
using GVDB Voxels.  The need for many voxel attributes arises in many 
situations. In fluid simulation, it may be necessary to store density, color, velocity 
and pressure at each voxel cell. These are attributes defined as channels. 
 
Each channel is implemented as another atlas. There is a one-to-one mapping 
from a channel to an atlas. However, the atlas is a more generic concept which 
can be applied to other problem as well. For example, three atlases may be used 

for a density, color and velocity channel. Five additional atlas might be used to 

express the level-of-detail data for just density. Atlas is thus a more generic 
concept for a “store of  voxels”, whatever its usage, while channel is the concept 
of  “per-voxel attributes”. Currently the only use of  atlases in GVDB is 
channels, but this is expected to change in future versions. 
 
Channels can be allocated or destroyed at runtime: 

      gvdb.AddChannel ( channel ID, data type, apron ) 
 
gvdb.DestroyChannels(); 

gvdb.AddChannel ( 0, T_FLOAT, 1 ); // density 

gvdb.AddChannel ( 1, T_UCHAR4, 1 ); // color         

 

DestroyChannels() removes all previous channels and associated data. 
 
AddChannel() takes the new channel ID, requested data type, and the number 
of  apron voxels (one sided). 

Channels can be cleared to a value using FillChannel(): 
 
gvdb.FillChannel ( 0, Vector4DF(0,0,0,0));         

For flexibility, the second argument to FillChannel is a Vec4F. In single-value 
channels of  type T_FLOAT or T_UCHAR, only the first element is used.  

Color Channels 

The native rendering in GVDB Voxels uses one channel by default, a density 
channel at location #0. Colored volume rendering, where each voxel has a 
unique color, is also supported by indicating the color channel with 
SetColorChannel. 
 

gvdb.SetColorChannel ( 1 );   // channel ID 
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When SetColorChannel is used, that channel must be added as a T_UCHAR4 
type to be interpreted as RGBA values.  

 
 
 
 

 
 

4.3.2. Voxel Size 
The global voxel size is specified with SetVoxelSize().  
The default is (1,1,1). 
 
gvdb.SetVoxelSize ( 0.1, 0.1, 0.1) 

4.3.3. Atlas Size 
 
An atlas is resized to contain resident bricks. 
 
As described in Chapter 2.1, the dimensions of  an atlas determine the maximum 
number of  bricks it can contain. As the number of  bricks increases (more data), 
the atlas will dynamically resize along the Z-axis to accommodate more bricks. 
 
The maximum texture size of  a given GPU device determines the limits of  the 
atlas size. This can be found by querying cuDevuceGetAttribute with the 
following CUdevice attributes: 
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH 
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT 
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH 

Keep in mind the width, height and depth refer to the number of  voxels along 

each axis, not the number of  bricks. 
 
For an atlas with width/height/depth in voxels, the maximum number of  
supported bricks can be calculated as: 
 
Maximum bricks = width*height*depth / (brickres+apron*2)3  

 
When UpdateAtlas() is called, GVDB Voxels will reallocate the atlas, increasing 
height until the required number of  bricks can be met. If  the maximum texture 
height is reached, the call may fail. Additionally, it can fail when GPU memory is 
exceeded. To maintain some control over the failure due to dimensions, GVD 
provides a function, SetChannelDefaults to indicate the desired base 
dimensions of  the atlas in bricks. 

gvdb.SetChannelDefaults ( 16, 16, 16 ); 

Sets the default allocation to 16x16x16 bricks. This is suitable for larger data sets 
where the number of  bricks would meet or exceed 163. Since the brick 
dimensions are known, it is possible to calculate good defaults using the GPU 
device limits queried above. 

 

Limitation: The native rendering pathways currently require that 
density is present in channel #0. In the future, this limitation will be 
removed so that any channel can be specified as primary. (See 
SetupAtlasAccess) 
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Chapter 5. 
Compute API 

The Compute API for GVDB Voxels implements a workflow to enable sparse 
calculations to be performed as if  they were on a dense grid. Developers can 
make use of  the built-in compute operations, or more commonly, author 
custom kernels.  

5.1. Built-In Compute 

Performing simple calculations such as smoothing or additive noise can be done 
using built-in compute functions. A single API function, gvdb.Compute(), 
launches built-in functions with enums to select the function. 
 

    Compute (  func_id,  channel,  iteratons,  Vec3DF params,  update );  
 
The arguments are: 
- func_id The enum ID of  the function to be called. 
- channel The voxel channel ID to preform the computation on. 
- iterations Number of  times to repeat the calculation 
- params Vector3DF with three parameters specific to the function 
- update  A boolean indicating whether to update the apron  
   after each iteration 

The currently available built-in functions are: 
 
FUNC_SMOOTH  Smoothing with a 7-point stencil kernel 
FUNC_NOISE   Add noise to a float channel 
FUNC_GROW   Increase a level-set function by adding 
    to all non-zero voxels. 
FUNC_CLR_EXPAND  Expand a color channel (UCHAR4) outward 
     while preserving existing colors. 
FUNC_EXPANDC  Expand a single-byte (UCHAR) channel  
    outward with another value 

The list of  built-in functions is intentionally short as we expect that most 
developers will choose to author their own compute kernels. The built-in 
functions are intended to grow, through open source sharing, as a set of  
compute kernels for common operations. They also offer examples of  how to 
write simple kernels for these sparse compute tasks.  

The meaning of  the 3-vector parameters vary with each function. Due to virtual 
neighbors, most kernels are no longer than 10 lines. The easiest way is to 
examine these is by looking at the gvdbOp{..} functions found in 
\source\cuda_gvdb_operators.cuh 
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5.2. Design Goals 

Several goals motivate the solution for sparse computation in GVD Voxels. 
These are: 

- Efficient access to neighbor voxels 

- Efficient kernel launches (one for the entire volume) 

- Equalize workload of  interior and border voxels of  a brick 

- High thread occupancy  

It is instructive to examine these goals to understand how computation is 
performed by GVDB Voxels. This will later help to describe the workflow. 
 

 
 
Figure 5.1. A key challenge in sparse computation is to compute stencil 
operations (neighbor lookup) at all active voxels. In world space (left) these are 
physically adjacent voxels. When stored in a data atlas (right), neighbor voxels 
may not be nearby in memory. In this example the right-side neighbor lies in 
another brick (point ‘a’) and must be accessed differently.  
 
The benefit of  sparse computation is that no calculations are perform on 
unoccupied space. However, neighbor lookups are more difficult (see Figure 5.1) 
as the neighbors of  boundary voxels reside elsewhere in the data atlas, within 
other bricks. 

    
Figure 5.2. Trivial (inefficient) solution to neighbor lookups on sparse grids. 
Boundary voxels, highlighted, could directly locate the adjacent voxels in other 
bricks through indirection. Yet this leaves interior voxels mostly idle.  
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A trivial solution is to perform extra operations at the boundary voxels to search 
the atlas for their values. However this introduces GPU inefficiency. 
The search for neighbors at boundary voxels, highlighted in Figure 5.2, can 
require multiple indirections and conditional checks to find the correct voxel. 
This search is not necessary for interior voxels which are able to access 
neighbors directly, and introduces an imbalance in GPU thread occupancy as 
interior voxels will complete their work before boundary voxels. Since there are 
many more interior voxels, most threads will remain idle while the boundary 
voxels search for neighbors. Thus the GPU will be idle most of  the time. 
 
GVDB Voxels uses a common, improved solution called apron voxels, where 
neighbors are directly accessible via additional atlas storage.  

5.3. Apron Voxels 

 

 
Figure 5.3. The ideal solution is each voxel has direct access to its neighbors. To 
enable this, apron voxels are stored with each brick. The apron voxels are 
correct world space neighbors at the brick boundaries.  

Ideal GPU computations perform the same amount of  work on every voxel, 
which is the work desired by the user. To accomplish this each voxel must have 
direct access to its neighbors. This is solved with apron voxels, shown in Figure 
5.3. From the perspective of  the target voxel (left), the neighbors are two green, 
one red and one blue voxel. The green ones are already accessible. The correct 
values for red and blue are at points a and b in the atlas (right). These are copied 

into the locations a’ and b’ so they are directly adjacent to the target voxel. 

Apron voxels allow all voxels to directly access neighbors. 

 
Kernel launches for compute are be performed over atlas space instead of  
world space. This assigns a GPU thread to each voxel in the atlas. User kernels 
can then perform calculations with direct neighbor lookups.  
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5.3.1. Apron Width 
The width of  the apron determines the size of  stencil operations that can be 
peformed efficiently. More apron voxels support bigger stencils but at the cost 
of  memory overhead. For example, a 1-width apron (on each side) can support 
all 3x3 stencil kernels, and a 2-width apron supports 5x5 stencil kernels. To 
implement a 5x5 kernel with only a 1-width apron requires the slower direct-
lookup technique at boundaries, which is also available in GVDB Voxels. 
 
Apron voxels require extra space in the data atlas. The ratio of  brick voxels to 
apron voxels determines this overhead. Here is a quick summary of  apron 
overheads for different brick sizes. 
 
 Brick Size Apron Width Apron Voxels Memory Overhead 

83  1       392   76% 
 163  1    1,544   37% 

 323  1    6,152   18% 

 643  1  24,584     9% 
   83  2       832  162% 
 163  2    3,136    76% 

 323  2  12,352    37% 

 643  2  49,216    18% 

Figure 5.4. Effect of  brick size and apron width on memory overhead. Larger 
bricks require more apron voxels, but significantly reduce overhead because the 
number of  interior voxels grows as n3 while the number of  apron voxels grows 
as n2. Less memory is used overall with larger bricks. 

 
Keep in mind that apron voxels are duplicates of  other voxels in the atlas, and  
present solely for the purpose of  efficient computation. Thus we want to 
minimize the number of  apron voxels required. We can change this overhead 
with careful selection of  brick size and apron width. Figure 5.4 shows the 
memory overhead for common settings.  

The apron width is specified when adding a channel. 
 
gvdb.AddChannel ( channel, data_type, apron_width ); 
 

5.3.2. Apron Updates 
Apron voxels must typically be updated after every compute operation, before 
performing a new calculation. When voxel values change due to a computation 
their neighbors also change. Since the apron voxels are duplicates of  neighbors 
at boundary voxel they must be updated to reflect any changes.  
 
Two compute API functions quickly update apron voxels: 
  
UpdateApron( channel ) Updates apron voxels in a specific channel 
UpdateApron()      Updates apron voxels in all channels 
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5.4. Custom Kernels 

The most common way to perform computations for motion pictures, 3D 
volume processing, or scientific simulation in GVDB Voxels is with custom 
kernels in the Compute API. Custom kernels allow one to author and compile 
a kernel in user code which is then launched by the GVDB library.  
 
The typical workflow with custom kernels is as follows: 
 

- Kernel Authoring Kernels are written and compiled with CUDA  
    on the application side. 

- Kernel Loading Kernels are loaded in the application with  
     common CUDA functions such as cuModuleLoad, 
   cuModuleGetFunction and cuModuleGetGlobal 

 
- GVDB Configuration GVDB is initialized and configured with the  
    desired topology and voxel size. 

- Channels (Aprons)  Add channels for voxel attributes. Specify the  
   apron width to be applied to that channel. 
 
- Compute kernels The custom kernels defined in steps above  
   are launched with gvdb.ComputeKernel ( .. ) 
   by passing a CUfunction pointer to GVDB. 
 
- Update Aprons Apron voxels are updated by calling 
   gvdb.UpdateApron.  

 
Additional compute operations are performed with repeated calls to 
ComputeKernel followed by UpdateApron as needed. Many compute kernels 
can be defined in a single application-side .cu file and loaded together with 
cuModuelGetFunciton. As long as these kernels conform to GVDB 
requirements, they can be passed as custom kernels to the gvdb.ComputeKernel 
function which will launch the kernel over every voxel in the sparse volume. 

5.4.1. Voxel Kernels 
 
GVDB voxel compute kernels are CUDA kernels with just a few minor 
differences and constraints. Voxel kernels must take only two arguments, an int3 
for the atlas resolution, and a uchar for the channel they operate on. Any other 
function variables can be accessed with global device variables in the user 
CUDA code that are read by the kernel. There are no other restrictions in the 
style of  CUDA code. Structures, classes, share memory and calling other device 
functions are all permitted in voxel compute kernels.  
 
One must remember that voxel kernels are launched over all voxels  
in atlas space. Some computations, such as adding noise or 3x3 stencils, do not 
require knowledge of  world space. Therefore calculations can be performed 
entire with atlas space voxels and neighbors. 
 
The following example reads a voxel, adds noise to it, and writes the voxel: 
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__global___ gvdbOpNoise ( int3 res, uchar chan ) 

{ 

    GVDB_VOX 
  
   float v = tex3D<float> ( volIn[chan], vox.x, vox.y, vox.z ); 
   v += noise(); 

 

   surf3Dwrite ( v, volOut[chan], vox.x*sizeof(float), vox.y, 

vox.z); 

} 

In other calculations it may be necessary to have the world position of  a voxel. 
An example is computing the per-voxel distance for each voxel to a world-space 
object like a sphere. 
 
The device function getAtlasToWorld transforms from atlas to world space. 
Here is an example that gets the world position of  the current voxel, determines 
the distance to a user-defined sphere (global structure), and writes that value: 
 

__device__ Sphere  sphere; 

 

__global___ gvdbOpDistToSphere ( int3 res, uchar chan ) 

{ 

    GVDB_VOX 
 
    float3 wpos; 

    if ( !getAtlasToWorld ( vox, wpos )) return; 

    float v = wpos – sphere.pos;     // distance to sphere 

    surf3Dwrite ( v, volOut[chan], vox.x*sizeof(float), vox.y, 

vox.z); 

} 

As described in Chapter 4.1.2 (Atlas Space), the macro GVDB_VOX is 
shorthand for setting the 'vox' variable for the voxel assigned to the current 
thread. 

5.4.2. Neighbor Access 
 
Kernel macros are provided to facilitate writing efficient voxel kernels. 
These are included with the cuda_gvdb_operators.cuh header file.  
 
The following kernel macros are available: 
 
GVDB_VOX   Sets the 'vox' variable for the atlas voxel of  the  
    current thread 

GVDB_COPY_SMEM_F Sets up a 'vox', and also 'svox' shared memory  
    variable for lookup of  the voxel neighbors. 
 
GVDB_COPY_SMEM_UC/4 Sets up a 'vox' and 'svox' similar to _SMEM_F,
    but for UCHAR and UCHAR4 channel types. 

 
These macros arrange fast access to neighbors by creating a shared memory 
array 'svox' that contains the neighbors for the current thread block.  
 
Thread blocks in GVDB Voxels are fixed at 8x8x8 and for efficiency they do 
not correspond to brick sizes. The distinction between thread blocks and 
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GVDB blocks is described further in the Implementation section below.  
 
The shared memory array 'svox' gives access to neighbors: 
 

__global__ void gvdbOpSmooth ( int3 res, uchar chan, float p1, 

  float p2, float p3 ) 

{ 

 GVDB_COPY_SMEM_F 

 

 float v = p1 * svox[ndx.x][ndx.y][ndx.z]; 

 v += svox[ndx.x-1][ndx.y][ndx.z]; 

 v += svox[ndx.x+1][ndx.y][ndx.z]; 

 v += svox[ndx.x][ndx.y-1][ndx.z]; 

 v += svox[ndx.x][ndx.y+1][ndx.z]; 

 v += svox[ndx.x][ndx.y][ndx.z-1]; 

 v += svox[ndx.x][ndx.y][ndx.z+1]; 

 v = v / (p1 + 6.0) + p2; 

 

 surf3Dwrite ( v, volOut[chan], vox.x*sizeof(float),  

                             vox.y, vox.z ); 

} 

This is the entire kernel for a 7-point smoothing function. The first line, 
GVDB_COPY_SMEM_F sets up the variable 'svox', 'ndx' and 'vox': 
 
svox  A shared memory table for the neighbors of  the current voxel 
ndx  A variable for offset access to the 'svox' neighbor values 
vox  A variable for the voxel coordinates in atlas space 
wpos  Computed by calling getAtlasToWorld, gives the world space 
  position of  'vox' 
 
The variable 'vox' is used when performing read/write into the target atlas 
texture with tex3D or surf3Dwrite.  
The variable 'ndx' is used when accessing the +/- axis neighbor voxels values of  
the current voxel. 
The variable 'wpos' is used when the world position of  the voxel is needed.
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5.4.3. Channel Read/Write 
 
The primary channel (#0) can be read/written using the global access variables 
volTexIn and volTexOut. These are texture and surface references (texref, 
surfref) for accessing 3D textures in CUDA.  
 

float v = tex3D( volTexIn, vox.x, vox.y, vox.z ); 

surf3Dwrite( v, volTexOut, vox.x*sizeof(float), vox.y, vox.z);

   

The variables volTexIn and volTexOut are texture references and surface 
references (see the CUDA Texture Reference API, 3.2.11.1.2). The texture atlas 
is bound to these references automatically by GVDB Voxels. However, an 
important limitation of  texture references is that their type must be defined at 
compile time. Since the 3D texture atlas is owned by GVDB, this greatly 
restricts their usefulness. Thus only the primary channel, when it is used as a 
float channel, can be accessed in this way. The texture/surface reference access 
to GVDB textures was maintained for compatibility. A more generic solution is 
texture objects. 
 
All channels can be read/written with global access arrays volIn and volOut. 
These variables are texture objects (see the CUDA Texture Object API, 
3.2.11.1.1). Texture objects correspond to bindless textures as they do not need 
to be bound to a specific type. This implies they can be used for access to voxels 
channels with different types defined at run-time.  
 

float v = tex3D<float> ( volIn[chan], vox.x, vox.y, vox.z ); 

surf3Dwrite( v, volOut[chan], vox.x*sizeof(float),vox.y,vox.z);  

 

Notice how the tex3D function for Texture Objects differs from the above. It 
accepts a template type <float>, and the texture is specified with the channel ID 
given by 'chan'. Thus a voxel kernels can read voxel attributes from any channel, 
which can be of  arbitrary type.  
 
The surf3Dwrite function is also flexible since its type is baked into the width as 
a stride multiplier, sizeof(float). Write operations can take either texture 
references or texture objects, so there is no type templating like tex3D.  
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5.4.4. Kernel Loading 
 
Custom voxel kernels are compiled with CUDA and loaded by the application at 
any time using cuModuleLoad, cuModuleGetFunction and 
cuModuleGetGlobal.  The following complete example shows how to generate 
a density functions with a customer kernel. 

 
HOST CODE 

CUmodule cuGenerateModule;  // app module 

CUfunction cuGenerateDensity;  // app function 

CUdeviceptr cuDensity;   // app global var 
 

cuModuleLoad ( &cuGenerateModule, "generate.ptx" ); 

cuModuleGetFunction ( &cuGenerateDensity, cuGenerateModule, 

    "myDensityFunc" ); 

cuModuleGetGlobal ( &cuDensity, &sz, cuGenerateModule,  

    "gDensity"); 

 

gvdb.Initialize (); 

gvdb.AddChannel ( 0, T_FLOAT, 1 ); // voxel density  

gvdb.AddChannel ( 1, T_UCHAR, 1 ); // voxel status 

 

float density = 0.25; 

cuMemcpyHtoD ( cuDensity, &density, sizeof(float) ); 

gvdb.ComputeKernel ( cuGenerateModule, cuGenerateDensity,  

    1, true ); 

The host code for loading a voxel kernel declares a module for the application, 
and CUfunction variables for each kernel function. Additional global variables 
used in the kernel are declare by the host as CUdeviceptr. 
 
The .cu kernel source is compiled to a .ptx by CUDA (nvcc), which is then 
loaded by cuModuleLoad. The custom voxel kernel is called "myDensityFunc", 
and is loaded into a variable with cuModuleGetFunction. This follows typical 
patterns from the CUDA Device API for loading modules and functions. 
 
After creating channels used by the voxel kernel, we send any global variables to 
the kernel using cuMemcpyHtoD for each variable or structure. 
 
Finally, gvdb.ComputeKernel is called with the application module and the 
custom voxel kernel. Two additional arguments specify the primary channel to 
operate on, and whether an apron update should be performed. 
 
ComputeKernel ( CUmodule, CUfunction, int channel, bool update_apron); 

 
  The custom voxel kernel is launched over all the voxels in atlas space. 
 
  Notice that the code for loading modules, kernels and variables follows  
  basic CUDA patterns without restriction. GVDB Voxels accepts the module  
  and function, and a primary channel. Any other specialized variables used by the  
  kernel are left to the application and set with cuMemcpyHtoD. 
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  DEVICE CODE 

 
//-------------------------------- GVDB Includes 

#define CUDA_PATHWAY 

#include "cuda_gvdb_scene.cuh"  // GVDB Scene 

#include "cuda_gvdb_nodes.cuh"  // GVDB Node structure 

#include "cuda_gvdb_geom.cuh"  // GVDB Geom helpers 

#include "cuda_gvdb_operators.cuh"  // GVDB Operator macros 

//-------------------------------- 

 

__device__ float gDensity; 

 

__global__ void myDensityFunc ( int3 res, uchar chan ) 

{ 

 GVDB_COPY_SMEM_UC  // macro to setup neighbors 

 

 uchar v = tex3D<uchar>( volIn[chan], vox.x,vox.y,vox.z); 

 if ( v==0 ) return;  // return if  

 

 surf3Dwrite ( gDensity, volOut[0],  

                    vox.x*sizeof(float), vox.y, vox.z); 

} 

Let's examine the device code for the above example. The GVDB Includes give 
access to the GVDB data structures, helpers, and macros for neighbor lookups. 
 
gDensity is an application (user-side) variable specific to this example, and is set 
prior to calling gvdb.ComputeKernel. The voxel kernel must take an int3 for 
atlas resolution, and a uchar for the primary channel, with no return value. 
 
The macro GVDB_COPY_SMEM_UC sets up the local variables 'vox', 'ndx', and 
'svox' for access to the current voxel, and the neighbor tables. The channel 
'chan' must correspond to the input channel type for the neighbor macro. 
 
The next line, tex3D<uchar>, reads a voxel from the input channel (1), at the 
current thread's voxel location (vox), as an unsigned char. This voxel attribute is 
being used as the status of  the voxel, so that a voxel status = 0 indicates an 
inactive voxels -- resulting in a return. Other values may have different meaning, 
but this kernel only cares that the voxel is active (non-zero status). 
 
The last line takes the user-specified global density and, if  the voxel is active, 
sets it using the volOut texture for the output channel 0, which in this case is a 
float channel for voxel density.  
 
Two channels are present, one for voxel density (float), another for voxel status 
(uchar). Since we are using texture objects, volIn and volOut, we can read/write 
to either of  these from the kernel. However, only one is passed in as the primary 
input (chan) to prepare neighbor macros.  
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5.4.5. Compute Kernel 
Custom voxel kernels are launched with gvdb.ComputeKernel: 
 
ComputeKernel ( CUmodule, CUfunction, int channel, bool update_apron); 

 
- CUmodule   Indicates the application module for the kernel 
 
- CUfunction  Indicates the CUDA function which follows the 
   guidelines for a GVDB Voxel's custom kernel 
 
- Channel  The primary channel for input. This channel 
   will be used to prepare neighbor voxels arrays. 
 
- Update Apron  A boolean indicating whether an UpdateApron 
   should be performed after the kernel finishes. 
 
The 'channel' passed to ComputeKernel is for simple kernels that typically 
read/write to only one channel. For voxel kernels that wish to access or modify 
multiple channels, the application and user device code should track additional 
input/output channels with global device variables. In this case, the channel 
variable is used to indicate the input channel for shared neighbor voxels. 
 
The ComputeKernel function always launches with one thread per sparse voxel 
in the atlas. It is thus suitable for calculations that might touch (read or write) all 
sparse voxels.  
 
If  you wish to launch a thread over some custom object (thread-per-polygon, or 
thead-per-point), or if  you wish to process a small subset of  the volume, you 
may want to directly launch the kernel as describe in the next section on 
Modules.  

5.5. Modules 

The GVDB Library and user Application reside in different module spaces 
according to CUDA. This is how custom functions are pass to a precompiled 
and linked GVDB library. Therefore, the GVDB module for built-in compute 
functions is different than the module for application kernels. Yet both desire 
access to the same GVDB volume data. 
 
The Compute API of  GVDB Voxels has functions for switching the GVDB 
and application modules.  
 
gvdb.SetModule ();       

 
The SetModule function, without arguments, returns GVDB to the default 
GVDB Library module. With this module set GVDB can perform built-in 
compute tasks, apron updates and CUDA raytracing. Any kernel function that is 
part of  the GVDB Library itself  requires the default module. As this is the 
default setting, normally this is transparent to the user of  GVDB Voxels when 
no other application kernels/modules are defined. 
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gvdb.SetModule ( CUmodule ); 

When an argument is provided, SetModule sets the GVDB module to the 
Application module given. Now each time a custom voxel kernel is launched 
with ComputeKernel, GVDB Voxels will first set the module to the application, 

and then assign the GVDB topology data to it. In this way, both the user 

Application and GVDB Library have access to the GVDB topology and data on 
the GPU across the library boundary. 

Note that gvdb.SetModule is specific to GVDB Voxels. You can still launch 
arbitrary CUDA kernels on the application without calling SetModule each time. 
Typically, you would call SetModule when you want to guarantee that GVDB is 
delivering GVDB topology & data to a specific kernel. 
 
Directly Launched Kernels 

 
Figure 5.5. A complex task between a user data structure, a polygonal mesh on 
GPU, and a sparse volume in GVDB Voxels. Step 1 gives the application access 
to the GVDB topology & data which is typically owned by the GVDB Library. 
Step 2 prepares the current GVDB data, which may have changed by other calls 
to GVDB, for the user kernel. Finally the kernel is launched with cuLaunch, 
since only the application knows how to assign threads per triangle. 

 
The only time to call SetModule explicitly is when launching user kernels that 
are directly launched by your application, as in Figure 5.5. For example, 
perhaps you wish to perform a novel calculation over a different data structure 
such as a polygonal surface -- but using data from GVDB Voxels. In this case, 
you would not call ComputeKernel, because it is only for computations where 
the input/output is the voxel volume. Threads of  ComputeKernel correspond 
to all sparse voxels.  
 
Your custom kernel has threads which correspond to polygons, not voxels. In 
this case, you call gvdb.SetModule(..) with your application module, and call 
gvdb.PrepareVDB(). Then you can launch the kernel yourself  with cuLaunch. 
Your kernel will still have accces to the GVDB Voxel data structures even 
though it operates on voxels. The kernel could, for example, get the world 
position of  the polygon's vertices, and then perform a GVDB atlas lookup to 
get the voxel color. In this way, you would 'paint' the volume onto a polygonal 
model. This process for direct launch is not needed with ComputeKernels, 
since that function internally sets the module for you, prepares GVDB data, and 
launches your custom kernel over all sparse voxels.   
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Chapter 6. 
Raytracing API 

Rendering with NVIDIA® GVDB Voxels is accomplished with either the pure 
CUDA Raytracing pathway or with OptiX integrated Raytracing. In both cases, 
custom raytracing kernels can be authored to create a specific look. Native 
pathways support raytracing of  isosurfaces with trilinear or tricubic filtering, 
volumetric sampling with transfer functions, level set raytracing, and voxel 
rendering mode.  

6.1. Render Buffers 

Rendering outputs and inputs are placed into render buffers. These are two 
dimensional linear buffers (not textures) that typically contain RGBA values. 
Multiple render buffers may be used for additional depth buffers or for 
intermediate shading outputs, e.g. diffuse, etc. 
 
Render buffers are created during initialization with AddRenderBuf(): 
 

        AddRenderBuf ( render_chan, width, height, bytes_per_pixel ); 
 
The following example creates a primary render buffer for color output: 
 
gvdb.AddRenderBuf ( 0, 1920, 1080, 4 ); // 32-bit color (RGBA) 

 
During viewport resize, it may be necessary to resize a render buffer.  
 
gvdb.ResizeRenderBuf ( 0, width, height, 4 );    
 
To return the results of  a render buffer from GPU to CPU as linear memory, 
use the following: 
 

        ReadRenderBuf ( render_chan, uchar* bytes ); 
 
One must pre-allocate the destination data before calling ReadRenderBuf: 
 
uchar* dat = (uchar*) malloc ( width*height*4 );   

gvdb.ReadRenderBuf ( 0, dat );      

  // use dat here        

free ( dat );         

 
The render channel is not the same thing as a GVDB Atlas channel. Atlas 
channels contain per-voxel attributes stored in 3D textures. Render channels are 
list of  2D buffers in linear GPU memory.  
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Another use for render buffers is to store additional image results from other 
views. For example, the g3DPrint sample uses one render buffer for the primary 
3D rendering, and a second one to generate the 2D cross-section slices that are 
sent to a 3D printer. 
 
ReadRenderBuf  can be used to retrieve the output data. The sample utilities 
(\sample_utils) contains an image helper class which can write out PNG images: 
 

nvImg img; 

img.Create ( res_x, res_y, IMG_RGBA); 

uchar* dat = img.getData(); // get pixel pointer 

 

gvdb.ReadRenderBuf ( 1, dat ); // get render buffer #1 

 

char sname[1024]; 

sprintf ( sname, "slice_%d.png", y ); 

img.FlipY (); 

img.SavePng ( sname );  // save as png 

Render buffers may also be used as inputs. For example, a depth buffer may be 
written by OpenGL and then used by GVDB Voxels to perform depth-based 
volumetric compositing. 

6.1.1. OpenGL Readback 
 
For interactive applications, it is desirable to place the GVDB Voxel rendering 
output into a 2D OpenGL texture for on-screen display. All GVDB render 
buffers are allocated with CUDA linear memory. However, utility functions are 
provided to transfer this into OpenGL textures. 
 
Typically, the application generates an OpenGL texture of  the same size as the 
render buffer. Then one uses ReadRenderTexGL to transfer the GVDB Voxel 
results into it. 

 
gvdb.AddRenderBuf ( 0, width, height, 4 ); 
 
GLuint output_glid; 
glGenTextures ( 1, &output_glid ); 
glBindTexture ( GL_TEXTURE_2D, output_glid ); 
glTexImage2D ( GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, 
GL_UNSIGNED_BYTE, 0 ); 
 
gvdb.ReadRenderTexGL ( 0, output_glid ); // return render chan 0 

 

After ReadRenderTexGL the application can use the OpenGL texture for on-
screen display or other purposes. Each time a new gvdb.Render() is performed, 
the render buffers will change. So, although one generates the 2D texture once, 
it is necessary to call ReadRenderTexGL after each render to update the 
OpenGL texture. 
 
One can also write OpenGL textures to GVDB render buffers for use as inputs.  
 
gvdb.WriteRenderTexGL ( 0, input_glid ); // send render chan 0     

Render buffer inputs must be read using custom render kernels since the native 
volume rendering pathways do not make use of  this. 
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6.1.2. Depth Buffers 
Special render buffers are used as depth buffers for reading and writing depth 
maps. These buffers reside in the same slot locations as render buffers 
(technically, they are also render buffers, but with special allocation). 
 
A set of  functions is provided, similar to render buffers, for creating, reading 
and writing depth buffers. 
 

AddDepthBuf ( int render_chan, int w, int h ); // Add a depth 

buffer 

ResizeDepthBuf ( int render_chan, int w, int h ); // Resize a depth 

buffer 

WriteDepthTexGL ( int render_chan, int glid ); // Write depth from 

GL 
 
Depth buffers are special, handled differently from other render buffers, 
because they create OpenGL Depth textures automatically, in addition to linear 
CUDA memory. Since CUDA-GL interop requires that depth textures are 
always created in OpenGL and mapped to CUDA linear memory (interop 
cannot be performed in the other direction), this would require multiple interop 
calls and an extra transfer. For performance reasons, GVDB depth buffer 
generate OpenGL Depth textures first and perform the interop once. Both the 
OpenGL texture and the CUDA memory are owned by GVDB. 
 
WriteDepthTexGL uses framebuffer objects (FBOs) to efficiently transfer depth 
buffer data from the input GL texture to the GVDB depth buffer with  
a GPU-to-GPU copy. 

6.1.3. Writing to Buffers 
The primary render buffer is passed by argument to native rendering kernels. 
 
Output color is written directly to the rendering buffer. 
 

__global__ void gvdbRaytrace ( uchar4* outBuf ) 

{ 

 // get pixel for this thread 

 int x = blockIdx.x * blockDim.x + threadIdx.x; 

 int y = blockIdx.y * blockDim.y + threadIdx.y; 

 if ( x >= scn.width || y >= scn.height ) return; 

 float4 clr = make_float4(1,1,1,1); 

 

 // .. perform raytracing ..  

  

 outBuf[ y*scn.width + x ] =  

     make_uchar4(clr.x*255, clr.y*255, clr.z*255, clr.w*255); 

} 

Since the type of  outBuf  is a pointer to uchar4 the pixel stride is already 
included. The width of  the render buffer is given in CUDA render kernels  
by scn.width, scn.height. 
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6.2. CUDA Raytracing 

The GVDB Raytracing API is primarily a CUDA pathway for native and custom 
rendering of  sparse volumes. GVDB Voxels distinguishes between surface 
rendering, which occurs at a hit point, and volume rendering, in which voxels 
are sampled and shaded at many points along the ray. 
 

 
Figure 6.1. Surface rendering a sparse volume consists of  a) empty skipping, b) 
brick traversal, and c) surface shading at the hit point. 
 
The basics of  surface rendering for sparse voxels are showin Figure 6.1. In 
this type of  rendering the voxel data is treated as an isosurface or level set 
surface. The camera ray travels through the volume, skipping empty space in the 
VDB tree, and arriving at a brick. At the brick, sample testing rejects individual 
voxels until a hit surface is detected. At the hit point (P), the normal is 
computed and the surface point is shaded. 
 

 
 
Figure 6.2. Volume rendering a sparse volume consists of  a) empty skipping, b) 
brick sampling/shading, and c) post-shading. Unlike surface rendering, volume 
rendering may sample and shade many points in the volume. 
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The basics of  volume rendering are showin Figure 621. This style of  rendering 
treats the volume as a density field with differing opacity at each voxel. Example 
of  such volumes are smoke, fire and gases. Camera rays travel through the 
volume skipping empty space. At the brick, the ray continues and each voxel 
sample contributes some accumulated shading to final output color. Finally, the 
background is blended in to give the pixel color. 
 
GVDB Voxels was designed to support both surface and volume rendering in 
a consistent way. We notice that empty skipping is identical in both, whereas 
brick traversal and shader are different. Therefore, GVDB consists of  the 
following components: 
 
- Empty skipping Efficient traversal of  the GVDB hierarchy 
 
- Brick functions Brick-level functions for rendering different types 
   of  volumetric data. (isosurface, deep, level sets) 
 
- Native shading  Built-in examples of  specific shading kernels 
   and styles 
    
- Helper functions Perform useful operations for  
   custom brick functions. 
 
Empty skipping is highly optimized for GVDB hierarchy traversal on the GPU, 
and is provided as a generic starting-point for a ray. Brick functions are specific 
to the style and type of  voxel data, such as level sets or semi-opaque volumes. 
Native shading functions provide built-in examples of  shading styles which may 
be customized with custom render kernels.  
 

Figure 6.3. Overview of  CUDA raytracing in GVDB Voxels. The Raytracing and 
Compute APIs are the outward facing functions called by applications. The 
internal design of  the CUDA raytracing pathway is shown here. 
 
An overview of  the CUDA Raytracing pathway is shown in Figure 6.3. 
Rendering begins in shading kernels, which initiates a ray and then calls the 
rayCast function, pass it a CUfunction pointer to a brick function. The rayCast 
function performs empty space skipping in a generic way, and then calls into the 
provided brick function for traversal and sampling. Results are returned to the 
shading kernel for final shading.  
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To render volume data with GVDB, one first prepares a light, camera and 
transfer function as described in Chapter 3. Additionally, at least one render 
buffer is needed for output, as described in Chapter 6.1 (Render Buffers). 
 
Once volume data is loaded or created, native rendering is done  
with the Render function: 
 

 Render ( render_chan, style, filtering, frame,  

  sample, max_sample, shadow_amt, depth_chan ); 
 

- render_chan The render buffer ID for output 
 
- style  Style of  rendering desired. Can be one of: 
   SHADE_VOXEL  
   SHADE_SECTION2D 
   SHADE_SECTION3D 
   SHADE_EMPTYSKIP 
   SHADE_TRILINEAR 
   SHADE_TRICUBIC 
   SHADE_LEVELSET 
   SHADE_VOLUME 
   SHADE_OFF 
 
- filtering Filtering mode/amount.   [unused in native render] 
- frame  Current render frame.   [unused in native render] 
- sample Current accumulated sample. [unused in native render] 
- max_sample Maximum number of  samples.  [unused in native render] 
- shadow_amt Shadow darkness, 0 to 1 
- depth_chan Option render buffer ID for a depth channel. 
 
The render_chan ID must be an RGBA (4 byte) output when using the  
native render function. The Render function produces a specific look based on a 
single light source, with Phong shading for surfaces, and a piecewise Transfer 
function for deep volumes. For different looks, see Custom Render Kernels 
(Chapter 6.4). Notice the arguments for filtering, frame, sample and 
max_sample have no effect on native rendering, but can be read when used in 
custom kernels. When shadow_amt is 0, no shadow rays are cast, otherwise 
there is an additional ray cost for the shadow.  
 
Upon completion, it is common to retrieve the output either as a CPU buffer or 
into an OpenGL texture for display. 
 

gvdb.Render ( 0, SHADE_VOXEL, 0, 0, 1, 1, 1.0 );   

gvdb.ReadRenderTexGL ( 0, output_glid );    
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6.2.1. Native Shading Kernels 
All rays are initiated in a shading kernel, which generates the ray, casts it into a 
volume, and performs shading. Native shading kernels are built in to GVDB 
Voxels to provide sample styles based on a single light source. Custom shading 
kernels are build by the user to achieve a specific look. 
 
A native shading kernels is selected with the 'style' argument to  
the Render function. The following styles are available: 
 
SHADE_VOXEL  Function: gvdbRaySurfaceVoxel 

 Voxel style with each voxel rendered as a cube. 
 Single light source with Phong shading and shadows. 
 
SHADE_SECTION2D  Function: gvdbSection2D 
 
 Renders a cross-section of  the volume directly into the 2D render 
 buffer. The transfer function is applied, and the cross-section plane is 
 defined with gvdb.SetCrossSection. 
 
SHADE_SECTION3D  Function: gvdbSection3D 
 
 Renders the scene in 3D similar to SHADE_TRILINEAR, but  
 with a 2D cross-section cutting the model. Single light source, 
 trilinear surface shading is used on the model, and the transfer function 
 is applied to the cross-section. 
 
 SHADE_EMPTYSKIP  Function: gvdbRayEmptySkip 
 
 Renders the scene up to the GVDB bricks, but does not traverse  
 into the brick. Bricks are colored by world position. This mode is  
 useful for profiling empty skipping. 
 
SHADE_TRILINEAR  Function: gvdbRaySurfaceTrilinear 
 
 Renders the volume data as an isosurface with trilinear smoothing  
 and normals, Phong shading, and one light source. The isovalue is  
 set using scene SetVolumeRange ( iso, vmin, vmax).  
 
SHADE_TRICUBIC  Function: gvdbRaySurfaceTricubic 
 
 Renders the volume data as an isosurface with tricubic smoothing. 
 Note that the voxel data must be prepared using AddChannel with  
 an apron=2 for this to work, since tricubic sampling requires  
 a 5x5 neighborhood. 
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SHADE_LEVELSET  Function: gvdbRayLevelSet 
 
 Renders the volume as a level set surface. Outside values are +1,  
 and inside values are -1. Displays with Phong shading, one light source. 
 
SHADE_DEEP   Function: gvdbRayDeep 
 
 Renders the data as a semi-transparent volume with deep,  
 accumulated sampling. The transfer function is applied to  
 each sample point. Use scene.SetSteps(..) to set the voxel-to-voxel 
 sample spacing for render quality, use scene.SetCutoff() to define  
 the minimum contributing voxel value and the alpha cutoff  value,  
 and use scene.SetExtinct(..) to set the extinction and albedo  
 for accumulation. Use scene.SetBackgroundClr(..) to set the  
 background color value for semi-transparent rays. 
 
The functions listed above which implement these styles are found in 
cuda_gvdb_module.cu. When authoring custom kernels these often serve as a 
useful reference. 
 

6.3. OptiX Raytracing 

 

 
Figure 6.4. Overview of  the relationships between the GVDB Library, the OptiX 
Library, and the gInteractiveOptiX sample. 

 
NVIDIA® GVDB Voxels has an OptiX raytracing pathway for rendering 
volumes with high quality, multi-scattering via communication with NVIDIA® 
OptiX. An overview of  the components of  GVDB-OptiX raytracing are shown 
in Figure 6.4. Notice that GVDB does not contain OptiX code, and nor does 
OptiX contain GVDB code. This was done to simplify and maintain 
independence of  both SDKs. Instead, the gInteractiveOptiX sample which 
comes with GVDB Voxels includes a generic OptiX Scene Helper which 
connects GVDB to OptiX. This generic class can be used in any applications 
that wish to render GVDB sparse volumes with OptiX. 
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Since both NVIDIA® OptiX and NVIDIA® GVDB Voxels are built on 
CUDA, the core GVDB raytracing functions for empty skipping and brick 
traversal are the same in both pathways. The only functions that must be 
handled differently are the shading kernels, which must be implemented as 
OptiX shadering programs. 
 
From the perspective of  OptiX, the GVDB volume is handled with a new 
custom intersector program that is able to traverse and hit voxels. This can be 
found in optix_vol_interactive.cu file in the gInteractiveOptiX sample. The 
intersector program calls the primary rayCast function of  GVDB.  
 
Since OptiX performs shading, the native shading kernels of  GVDB Voxels are 
not used. Instead, OptiX launches rays, performs intersections with the GVDB 
custom intersector, and does shading with a custom OptiX shading program.  
 
OptiX requires that 3D textures are provided by OpenGL and declared using 
rtTextureSampler<float, 3> (this is found in cuda_gvdb_nodes.cuh). Therefore, 
the GVDB Voxels atlas data must be created using OpenGL by calling the 
UseOpenGLAtlas() function during initialization. 
 
gvdb.UseOpenGLAtlas ( true );     

6.3.1. OptiX Scene Helper 
The OptiX Scene class, found in the gInteractiveOptix sample, contains generic 
functions for adding GVDB Voxels to an OptiX scene graph. The following 
shows the sequence of  steps performed by RebuildOptixGraph in this sample, 
which makes use of  the OptixScene class. 
 
OptixScene optx;  // declare the OptiX Scene helper 
 
optx.InitializeOptix (w, h); // Initialize OptiX with width, height. 
 
optx.ClearGraph();  // Clear the OptiX scene graph 
 
optx.AddMaterial ( .. );  // Adds a material based on a custom  
    // OptiX shading program. 
 
optx.AddVolume (..);  // Adds a GVDB volume to the OptiX graph 
 
optx.AddPolygons (..);  // Adds a polygonal model to OptiX graph 
 
optx.SetTransferFunc (..); // Sets the GVDB transfer functions for  
    // use by OptiX 
 
optx.ValidateGraph (..);  // Validates the OptiX graph 
 
optx.AssignGVDB (..);  // Assigns the GVDB data to OptiX 
  
See main_interactive_optix.cpp in gInteractiveOptiX sample for details. 
See optix_scene.cpp in gInteractiveOptiX for the implementation. 
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The function AddVolume creates a simple sub-graph in which GVDB Voxels is 
a geometric bounding box in the OptiX acceleration BVH. The GVDB volume 
sub-graph consists of  the following: 
 
- Transform  A transformation applied to the entire volume 
- GeometryGroup A group with only one child, the GeometryInstance, 
   and an SBVH acceleration structure.  
- GeometryInstance The geometry instance holds the OptiX materal ID 
   for the GVDB volume. Other OptiX objects, 
   such as polygonal models, will have different IDs 
- Geometry  The geometry node contains a simple bounding box 
   for the GVDB volume. The OptiX intersector  
   program is set based on whether the volume is an  
   isosurface, a level set, or semi-transparent data. 
 
OptiX will cast rays throughout the scene. When the Geometry node for the 
GVDB volume is found, it will test the bounding box of  the volume. If  a hit is 
found, then the GVDB custom intersector program will takeover traversal of  
the sparse voxels. Rays may also start inside the bounding box, which is also 
handled by the GVDB intersector. 
 
The final step of  optx.AddVolume is to create an OptiX Texture Sample so 
that the GVDB atlas data is available to OptiX programs as a 3D texture. The 
OptiX context function createTextureSamplerFromGLImage is called with 
the OpenGL ID of  the 3D texture for the atlas. The GVDB Raytracing 
functions will then use this atlas data as the "volTexIn" OptiX variable. 
 
 
 
 
 

 

 

 

6.3.2. GVDB Intersectors 
 
A GVDB Intersector is a custom OptiX intersection program for tracing into 
sparse volumes. These functions, vol_intersect, vol_deep and vol_levelset, can 
be found in optix_vol_intersect.cu in the gInteractiveOptix sample. 
 
Surface Intersector 
 
Intersection programs are expected to return and report potential intersections. 
For isosurfaces, this is naturally accomplished using the GVDB rayCast 
function with a surface brick function.  
 
 

Limitation:  
The OptixScene class currently creates only one Texture Sampler. 
Therefore, multiple channels are not supported by GVDB Voxel 
raytracing with OptiX. The only voxel attribute read is the primary 
channel (#0) for density. Color is achieved via surface materials and 
transfer functions.  
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The surface intersector program is: 
 

RT_PROGRAM void vol_intersect( int primIdx ) 
{ 
 float3 hit = make_float3(NOHIT,NOHIT,NOHIT);  
 float3 norm = make_float3(0,0,0); 
 float4 clr = make_float4(0,0,0,0);  
 float t; 
 
 // GVDB raycasting 
 float4 hclr; 
 rayCast ( SCN_SHADE, gvdb.top_lev, 0, ray.origin,       
             ray.direction, hit, norm, hclr, raySurfaceBrick ); 
 if ( hit.z == NOHIT) return;  
 t = length ( hit - ray.origin ); 
 
 // Report intersection to optix 
 if ( rtPotentialIntersection( t ) ) {  
 
  shading_normal = norm;   
  geometric_normal = norm; 
  front_hit_point = hit + shading_normal*gvdb.voxelsize; 
  back_hit_point= hit - shading_normal*gvdb.voxelsize*5; 
  deep_color = make_float4(1,1,1,1); 
  if ( prd_radiance.rtype == SHADOW_RAY ) deep_color.w = 
                         (hit.x==NOHIT) ? 1 : 0; 
 
  rtReportIntersection( mat_id ); 
 } 
} 
 
 

Notice this intersection program calls GVDB rayCast to perform empty 
skipping and brick intersection on voxel data. The result is a hit point and 
surface normal for the volume isosurface, which are reported as an intersection 
to OptiX. 
 
Deep Intersector 
 
For volume rendering of  semi-transparent voxels there is no hit surface to 
return to OptiX. However, OptiX raytracing performance (with polygonal 
models) is based on the notion of  skip-hit-shade, in which rays quickly traverse 
empty space with BVH acceleration, and then perform shading at surface hit 
points which may spawn additional rays.  
 
Adopting this paradigm to volumetric sampling would imply a per-voxel shading 
program with the capability to spawn new rays at each voxel. However, this 

breaks the performance advantage of  skip-hit-shade since every voxel sample in 

the volume could potentially cast N new rays. Therefore the approach taken by 
the deep intersection program in GVDB Voxels is to return the first voxel above 
a threshold as the "hit" point, but to also return a deeply sampled color which is 
the accumulated sample along the volume ray.  
 
For secondary scattering in semi-transparent volumes with OptiX, developers 
are encouraged to pursue a wavefront based approach with GVDB Voxels 
rather than per-sample spawning of  rays. This technique may be explored in 
future releases of  GVDB Voxels. 
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6.3.3. Mixed Polygon-Voxel Raytracing 
Mixed raytracing in this context refers to rendering scenes which contain both 
polygonal and voxel models toegether. 
 

 
 
Figure 6.5. Mixed polygon-voxel rendering in the gInteractiveOptix sample. 
Notice the blue reflections and shadows in the polygonal model caused by 
reflections of  the illuminated semi-transparent volume. 
 
An OptiX shading program is agnostic with respect to the type of  object that is 
hit, so long as intersector programs are able to return hit points and normals (or 
deep colors). Therefore it is possible to build OptiX graphs that contain both 
traditional polygonal models and GVDB sparse volumes. OptiX will 
automatically test the mesh-intersector to hit triangles, and test the GVDB-
intersectors to hit volumetric data.  
 
Rendering with mixed polygon-voxel raytracing results in interesting effects. 
Volumes can cast shadows on polygons, and polygons can show diffuse 
reflections of  volumes. These mixed object interactions are visible in the 
gInteractiveOptix sample, Figure 6.5. In addition to AddVolume, the OptixScene 
class has an AddPolygons function to add polygonal meshes to the scene. 
  

6.4. Custom Shading Kernels 

Shading kernels define the look and appearance of  surface rendering by 
specifying how to perform shading at the hit point of  isosurfaces or level sets 
defined by sparse voxels. 
 
Brick functions define the look and appearance of  volume rendering by 
specifying how to perform shading at each sample voxel within a semi-
transparent volume.  
 
Users can provide custom shading or brick kernels to create a specific look 
or style. Similar to the compute API, custom shading kernels are compiled on 
the application side and passed to GVDB Voxels as CUfunctions for rendering.  
Custom shading kernels will typically call the generic rayCast function to allow 
GVDB to handle hierarchy traversal for empty skipping, greatly simplifying 
shading kernels.  
 
Custom shading kernels are launched using gvdb.RenderKernel(). 
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 RenderKernel ( render_chan, CUfunction, shading, 

   filtering, frame, samples, max_samples, shadow 

); 
 
The CUfunction is an application-side CUDA function loaded using 
cuModuleGetFunction. The same rules for modules apply to the Rendering API 
and they do for the Compute API. See chapter 5.5 (Modules) for details. 
 
The remaining arguments can be specified at each rendering launch and read by 
the custom kernel using the 'scn' device variable. 
  - shading scn.shading 
  - filtering scn.filtering 
  - frame scn.frame 
  - samples scn.samples 
  - shadow scn.shadow_amt 
These variables can have whatever meaning is desired by the kernel.  
 
Additional user data for the custom shading kernel is managed using standard 
CUDA global device variables and set with cuMemcpyHtoD.  
 
Running a custom kernel requires loading the module, getting the kernel 
function, setting the module, and calling RenderKernel. 
 

 

CUmodule  cuCustom;  // App module 
CUfunction cuMyRaycast;  // App kernel 
 
cuModuleLoad ( &cuCustom, "render_custom.ptx" ); 
cuModuleGetFunction ( &cuMyRaycast, cuCustom, "my_raycast" ); 
 
gvdb.getScene()->SetSteps ( 0.2, 16, 0.2 );    // Set render vars 
gvdb.getScene()->SetVolumeRange ( 0.1, 0.0, 1.0 );  
 
gvdb.SetModule ( cuCustom );  // Set GVDB to custom module  
gvdb.RenderKernel ( 0, cuMyRaycast, SHADE_TRILINEAR,  
   0, 0, 1, 1, 1 );   // Call MyRaycast 

The argument SHADE_TRILINEAR set the global scn.shading, and may be 
optionally used by custom shading kernels. 
 
Notice that SetModule must be called explicitly by the application before 
RenderKernel. This is for performance reasons since switching the CUDA 
module incurs an overhead cost and it may be desireable to call RenderKernel 
multiple times for each frame. Thus one would call SetModule once and 
RenderKernel many times so long as other GVDB functions are not called in 
between. If  other GVDB compute/raytrace functions are called, then the 
application should call SetModule() (no arguments) before them to reset the 
module to GVDB. 
 
An example of  custom shader kernel loading and device code can be found in 
the gRenderKernel sample. 
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Raytracing Device Code 
 

 

//-------------------------------- GVDB Headers 
#define CUDA_PATHWAY 

#include "cuda_gvdb_scene.cuh" // GVDB Scene 
#include "cuda_gvdb_nodes.cuh" // GVDB Node structure 
#include "cuda_gvdb_geom.cuh" // GVDB Geom helpers 
#include "cuda_gvdb_dda.cuh" // GVDB DDA  
#include "cuda_gvdb_raycast.cuh" // GVDB Raycasting 
//-------------------------------- 
 

__global__ void MyShadingKernel ( uchar4* outBuf ) 

{ 

  // Get pixel x,y 
  int x = blockIdx.x * blockDim.x + threadIdx.x; 

  int y = blockIdx.y * blockDim.y + threadIdx.y; 

  if ( x >= scn.width || y >= scn.height ) return; 

  

  float3 hit = make_float3(NOHIT,NOHIT,NOHIT);  

  float4 clr = make_float4(1,1,1,1); 

  float3 norm; 

 

  // Generate view ray 
  float3 rdir = normalize ( getViewRay ( 

(float(x)+0.5)/scn.width, (float(y)+0.5)/scn.height ) );  

 

  // Ask GVDB to perform empty skipping 
  rayCast ( SCN_SHADE, gvdb.top_lev, 0, scn.campos, rdir, hit, 

norm, clr, raySurfaceTrilinearBrick ); 

 

  if ( hit.z != NOHIT) {   

 float3 lightdir = normalize ( scn.light_pos - hit ); 

 float3 eyedir = normalize ( scn.campos - hit );   

 float3 R = normalize ( reflect3 ( eyedir, norm ) ); 

 float diffuse = max(0.0f, dot( norm, lightdir )); 

 float refl = min(1.0f, max(0.0f, R.y ));   

 clr = diffuse*0.6 + refl * make_float4(0,0.3,0.7, 1.0); 

  } else { 

   clr = make_float4 ( 0.0, 0.0, 0.1, 1.0 ); 

  }  

  outBuf [ y*scn.width + x ] =  

     make_uchar4( clr.x*255, clr.y*255, clr.z*255, 255 );  

} 

Custom GVDB shading kernels follow a few guidelines. An example is shown in 
the code above. First, like compute kernels, all GVDB kernels must contain the 
GVDB header block. Custom shading functions must have only one argument 
(uchar4) for the output buffer and no return value.  
 
Each thread is expected to handle a single pixel in the output. Therefore the 
beginning of  the shading kernel should compute the pixel x,y as shown. Next 
the kernel typically generates a view ray from the pixel. This is not strictly 
required as kernels can do whatever they like with the pixel, but is common.   
 
The rayCast function can be called to perform empty skipping in GVDB with a 
specific brick function. Here, raySurfaceTrilinearBrick is used to get a surface hit 
and normal for an isosurface. One can also author and send customize brick 
functions into rayCast, and would usually write them just above the shading 
kernel (in the same .cu file). This gives a great deal of  flexibility in handling 
brick-level sampling while still allowing GVDB Voxels to perform efficient 
sparse traversal.  
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Custom shading can be as complex as desired. This example generates a 
reflection vector and uses it to give a metallic like appearance to the volume 
isosurface. Another shading effect might be to implement multiple light sources. 
 
The last step in custom shading should be to write the color value to the 
provided output buffer using outBuf, a linear array of  type UCHAR4. 

6.5. Explicit Raytracing 

Typical GVDB rendering with CUDA or OptiX launches a kernel over a render 
buffer with a thread for each pixel. Explicit raytracing allows an application to 
launch a kernel over the rays themselves. This distinction lets the user cast rays 
from arbitrary locations (not pixels), and in arbitrary directions, into a sparse 
volume.  
 
One use of  explicit raytracing might be to implement monte-carlo path 
tracing with GVDB Voxels. Path tracing is a physically realistic rendering 
technique were rays are randomly cast from either a light source or a camera and 
with additional rays building multiple light paths through a scene. Path tracing 
could be implemented with explicit raytracing as a set of  wavefronts where each 
bundle of  rays adds another segment to all light paths.  
 
Another use of  explicit raytracing is provided in the gSprayDeposit sample, 
which simulates the spray deposition of  a particulate material onto a CAD part. 
Here, rays are generated randomly from a source to emulate molecules being 
ejected from a wand which then strike and stick to a 3D model. The angle and 
occlusion of  the particle rays determine how the spray surface builds up. 
Applications can perform many kinds of  tasks on sparse voxels with explicit 
raytracing, and are not limited to rendering only. 

6.5.1. Defining Rays 
To perform explicit raytracing the rays must be individually defined. 
 
The GVDB API functions for AllocData, getDataPtr and CommitData are used 
to create, retrieve, and send ray data to the GPU. For details on data functions, 
see Chapter 9 (Host & Device Access). 
 
A public structure, ScnRay, is given by GVDB Voxels to specify a ray.  
This data structure is: 

struct ALIGN(16) ScnRay { 

  float3 hit;  // hit point 
  float3 normal; // hit normal 
  float3 orig;  // ray origin 
  float3 dir;  // ray direction 

  uint  clr;  // ray color 
  uint  pnode;  // internal  
  uint  pndx;  // internal  
}; 
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The first step is to allocate memory for the rays: 

DataPtr m_rays; 

m_numrays = 1000; 

gvdb.AllocData ( m_rays, m_numrays, sizeof(ScnRay) ); 

GVDB is used for allocation as the data can reside on CPU, GPU or both. 
A basic application will retrieve a CPU pointer to set ray origins and directions: 
 

// get CPU pointer to first ray 

ScnRay* ray = (ScnRay*) gvdb.getDataPtr( 0, m_rays );  

 

for (int n=0; n < m_numrays; n++ ) { 

 // ray origin at 0 

 ray->orig = Vector3DF(0,0,0);   

 // random direction 

 ray->dir.Random ( -1,1, -1,1, -1,1 ); 

 ray->dir.Normalize (); 

 ray++;    // next ray 

} 

 

Ray data created on the CPU must be committed to the GPU: 

gvdb.CommitData ( m_rays );  

Ideally, for performance, rays might be initialized using CUDA kernels that write 
ray data directly to GPU memory.  

6.5.2. Tracing Rays 
 
Once the application has defined ray origins and directions, and made this 
available in GPU memory, then the gvdb.Raytrace function is called: 
 

 Raytrace ( DataPtr rays, float bias ); 
 
All rays given by the 'rays' dataptr will be traced in parallel.  
The bias will shift resulting hit points back along the ray direction by a small 
constant amount. 
 
After rays have been traced, each ray 'hit' and 'normal' will be set. These results 
can be used directly on the GPU in other CUDA kernels, or they can be 
retrieved back to the CPU for other uses: 

gvdb.RetrieveData ( m_rays );  
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Chapter 7. 
Point Clouds & 

Meshes 

A useful operation is to voxelize a point cloud or a polygonal model to a sparse 
volume. Voxelization (voxel rasterization) is the process of  identifying all the 
voxels touched by a set of  points or polygons. GVDB Voxels supports both 
point cloud and polygon voxelization with efficient GPU acceleration. 

7.1. Point Cloud Voxelization 

 

Figure 7.1. Point cloud voxelization may be performed as either a scatter, from 
points to voxels, or as a gather from voxels to points. 

 
Point cloud voxelization identifies or shades all the voxels touched by a set of  
points within a given radius. The size of  the problem depends on both the voxel 
grid resolution and on the number of  points. Two techniques for point 
voxelization are shown in Figure 7.1. Point scattering begins with each points 
and identifies all the neighboring voxels touched by it. Point gathering begins 
with each voxel and finds all the neighboring points touched by it. Each method 
has certain advantages and disadvantages while both are supported by GVDB 
Voxels. 

7.1.1. Defining Point Data 
Points are defined using the Data access API by calling AllocData, getDataPtr 
and CommitData.. See Chapter 9 for details. When loading point clouds from 
disk, points typically reside in CPU memory first. They are transferred to GPU 
with the CommitData function.  
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// Allocate GPU and GPU memory 

int numpnts; 

DataPtr pntpos, pntclr; 

gvdb.AllocData ( pntpos, numpnts, sizeof(Vector3DF), true); 

gvdb.AllocData ( pntclr, numpnts, sizeof(uint), true ); 

 

// Get CPU pointers 

Vector3DF* pos =  (Vector3DF*) gvdb.getDataPtr( 0, pntpos ); 

uint* clr =   (uint*)  gvdb.getDataPtr( 0, pntclr ); 

// .. load points into CPU here .. 

 

// Commit point data to GPU 

gvdb.CommitData ( pntpos, m_numpnts, (char*) m_pntpos.cpu,  

   0, sizeof(Vector3DF) ); 

gvdb.CommitData ( pntclr, m_numpnts, (char*) m_pntclr.cpu,  

   0, sizeof(uint) ); 

AllocData has the following arguments: 
 

 AllocData ( DataPtr, int count, int stride, bool bAlsoCPU ); 
 
The last argument to AllocData indicates that we want point buffers to reside on 
both the CPU and GPU. For point voxelization the point data must be loaded 
into separate buffers for position and color, where the stride of  the point 
locations is Vector3DF and the stride of  the point color is uint (RGBA). 
 
Since the data must reside on the GPU for point voxelization we call 
CommitData to perform the transfer. 
 
The last step in defining point clouds for GVDB Voxels is to inform GVDB 
which data buffers will be used for subsequence voxelization steps. 
 

 SetPoints ( DataPtr pos, DataPtr clr ); 
 
SetPoints takes two DataPtr buffers as input: point positions and colors. The 
number of  points is defined during AllocData or reallocation. The DataPtrs 
contain all the information necessary for voxelization. 
 
Direct-from-GPU Data 
 
In many cases, such as during a simulation, the point cloud data may already 
reside on the GPU. In this case we want to avoid the bidirectional GPU-CPU 
transfer since CPU buffers are not needed.  
 
GVDB Voxels supports user-defined data buffers where the DataPtr becomes a 
handle rather than an owner of  the point data. The functions SetDataCPU and 
SetDataGPU are used to initialize a DataPtr with an explicit source. 
 

 SetDataCPU ( DataPtr, int count, char* cpuptr, int offset, int 

stride ); 

 SetDataGPU ( DataPtr, int count, CUdeviceptr gpu, offset, 

stride ); 

Notice that SetDataCPU takes a CPU pointer, and SetDataGPU takes a GPU 
pointer for the source data. The returned DataPtr is a handle, and points to the 
original data which is still owned by the application.  
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DataPtr pntpos, pntclr; 

 

gvdb.SetDataGPU ( pntpos, numpnts, my_gpu_points,  

                        0, sizeof(Vector3DF) );  

gvdb.SetDataGPU ( pntclr, numpnts, my_gpu_colors, 

                        0, sizeof(uint) ); 

In this example two separate, existing GPU pointers are given from the 
application as input for the point positions and colors. The stride of  each is the 
size of  a single element in the array. 
 
The offset argument is useful when the application point data resides in 
structures rather than separate arrays: 
 

struct TPnt { 

  Vector3DF  pos; 

  Vector3DF  velocity; 

  uint  clr;   

} MyPnt; 

 

DataPtr pntpos, pntclr; 

 

gvdb.SetDataGPU ( pntpos, numpnts, my_gpu_points,  

                        0, sizeof(MyPnt) );  

gvdb.SetDataGPU ( pntclr, numpnts, my_gpu_colors, 

                        24, sizeof(MyPnt) ); 

Here the offset is used to indicate where in the structure the position and color 
values reside. The stride of  each is the size of  the entire structure. 

7.1.2. Point Insertion 
 

 

Figure 7.2. Pre-processing point clouds for efficient voxelization with point 
insertion. Auxiliary buffers are used to improve performance. 
 
Efficient parallel voxelization is possible when the points are pre-sorted into 
GVDB bricks. This pre-processing step is performed by InsertPoints(). The 
details of  InsertPoints can be seen in Figure 7.2. Each point is assigned to a brick 
(pnode), and its index within the brick is recorded (pndx). With this 
information, it is possible to count the total points-per-brick (gricnt) and 
optionally the grid offsets (as a prefix scan). The technique is fully described in 
the GTC 2014 talk "Fast Fixed-Radius Nearest Neighbors" [Hoetzlein 2014]. 
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An application performs point insertion by simply called InsertPoints.  
 

 InsertPoints ( int count, Vector3DF translate, bool prefix ); 
It is necessary to call this function before an point voxelization and is often the 
first step in other operations using point clouds. 
 
- count  Indiates the number of  points to insert 
- translate A world translation factor applied to all points.  
  This is useful, when needed, to ensure that the points 
  all reside in the positive domain. 
- prefix  A boolean indicating whether a brick prefix scan should 
  be performed. This is required for some point cloud 
  operations. 

7.1.3. Point Scatter and Gather 
 
Scatter Voxelization 
 
The scattering method for point voxelization is accomplished with the function:   
 

ScatterPointDensity ( int count, float radius, float amp, Vector3DF 

translate, 

   bool expand, bool averageColor ); 
 
ScatterPointDensity uses the scattering method for voxelization. With this 
method points are not able to identify target voxels across brick boundaries, but 
can write to apron voxels, therefore the maximum radius supported by 
ScatterPointDensity is 3.0. Larger values are also possible but may introduce 
boundary clipping. 
 
gvdb.InsertPoints ( numpnts, translate, false );   

gvdb.ScatterPointDensity ( numpnts, 3.0, 1.0, translate );  

 
The 'false' argument in InsertPoints indicates that no prefix scan is needed 
before calling ScatterPointDensity. The 'amp' sets the peak value written to a 
voxel which is centered on a point, with linear falloff. ScatterPointDensity 
typically writes to the primary channel, but will also write to a color channel 
when the SetColorChannel function (to indicate which channel will hold per-
voxel color output attributes), and when gvdb.SetPoints indicates both position 
and color data (which holds the input per-point color attributes). 

 

 
 
 
 
 

 

 

 

 

Limitation:  
ScatterPointDensity is a suitable technique when the support 
radius is small. For radii above 2 voxels, the parallel scatter method 
implies that many points will attempt to write to the same voxel. 
Since this operation is not atomic on 3D textures some writes may 
be skipped. ScatterPointDensity should not be used when the 
accumulated values must be an exact sum. This method is best 
suited for fast, point cloud pre-visualization. Often a smoothing 
step is performed afterward for hole filling. 
 
 
 
 
 
pported by GVDB Voxel raytracing with OptiX. The only voxel 
attribute read is the primary channel (#0) for density. Color is 
achieved via surface materials and transfer functions.  
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Gather Voxelization 
 
The gathering method of  point voxelization is accomplished with: 
 

 GatherPointDensity ( int count, float raidus, int channel ); 
 
GatherPointDensity is used to perform point voxelization with larger radii, and 
to compute exact sums at voxel locations. For example, this method is ideal for 
FLIP-type fluid simulations where point density must be projected onto a sparse 
voxel grid. Unlike ScatterPointDensity, this technique does require a prefix scan 
during insertion.  
 
gvdb.InsertPoints ( numpnts, translate, true );   

gvdb.GatherPointDensity ( numpnts, 5.0, 0 );    
 
 

 
 
Figure 7.3. Examples of  the scatter (left) and gather (right) techniques for point 
cloud voxelization from the gFluidSurface sample.  

 
An example of  scatter and gather point voxelization can be found in  
the gFluidSurface sample, which performs an SPH (Smoothed Particle 
Hydrodynamics) particle simulation and then voxelizes the points to create a 
rendered surface.

Limitation:  
GatherPointDensity is still experimental in GVDB SDK release 1.0, 
with improvements expected into future releases.  
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7.2. Mesh Voxelization 

 
GVDB Voxels introduces a novel technique for efficient, hieararchical solid 
mesh voxelization to determine the voxels touched by a triangle mesh. The 
output for each voxel may be one of  three values: inside, outside, or surface.  
 
Surface voxelization sets all the voxels which intersect a polygonal mesh, thus 
creating a voxel surface with an empty interior. Solid voxelization fills the 
interior voxels of  a watertight polygonal mesh. The SolidVoxelize() function of  
GVDB Voxels generates both results at the same time. 
 
The technique used for mesh voxelization was designed with several  
goals and features: 
 
- Interior & Surface Voxelizes both the surface and interior voxels  
   simultaneously 
- Exact Result  Solid voxelization in GVDB is exact. Unlike graphics 
   raster methods which may produce a voxelization 
   with holes, or might be overly conservative, this 
   technique generates the exact set of  voxels which are 
   touched by any part of  a triangle.  
- Out-of-Core   Sweep-based methods of  mesh voxelization depend 
   on the results of  neighboring bricks. The technique in 
   GVDB Voxels is out-of-core friendly, where the 
   results of  any sub-volume in space can be  
   computed independently.  
- Hierarchical  For performance the voxelization is hierarchical. 
   Empty space will not be voxelized at the brick level. 
- GPU Efficient  Mesh voxelization should be efficient for 
   large models and high resolution volumes.  
   This is achieved with GPU polygon binning and sort. 
 
Polygonal voxelization is performed with the function: 
 

  SolidVoxelize( chan, Model*, Matrix4F xform, surface_value 

,inside_value ); 
 
The arguments are: 
 
- channel  This must be a UCHAR channel which will 
  receive the results of  voxelization. 
- Model* A pointer to the polygonal model, typically loaded  
  using scene.AddModel().  
- xform  A transformation applied to the model. This allows 
  for arbitrary scaling and orientation of  the model 
  with respect to the voxel grid. 
- surface_val Value to be set in the channel when the voxel  
  is a surface voxel (any part touches a polygon). 
- inside_val Value to be set in the channel when the voxel 
  is an interior voxel (fully inside the watertight mesh). 
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7.2.1. Voxelization Channel 

 
 
Figure 7.4. Solid voxelization writes to a voxelization channel to give the most 
flexibility to applications. Surface voxels are tagged ('S') separately from interior 
voxels ('I'). In this example, multiplying the voxelization channel by a 3D 
procedural function results in an 3D sparse voxel model with a procedurally 
defined interior density defined. 
 
The output of  solid voxelization is written to a voxelization channel which 
must be added as a UCHAR channel. Rather than writing density directly, this 
design gives applications the greatest flexibility in utilizing the result. The 
voxelization channel may be manipulated directly, or it can be multiplied by 
other 3D volumes to produce density which is only defined on the interior of  a 
mesh. An example is the generation of  complex in-filling for 3D printing where 
the model has a solid surface with a custom interior (see Figure 7.4). Typically, 
applications will write custom compute kernels that take advantage of  the 
voxelization channel to produce additional results. 
 

gvdb.Configure ( 3, 3, 3, 3, 5 ); 

gvdb.AddChannel ( 0, T_FLOAT, 1 ); // density 

gvdb.AddChannel ( 1, T_UCHAR, 1 ); // mesh voxelization 

 

// Solid Voxelize 

Matrix4F xform; 

Model* m = gvdb.getScene()->getModel(0); 

gvdb.SolidVoxelize ( 1, m, &xform, 1, 128 ); 

 

// Expand surface border by 1 voxel 

gvdb.Compute ( FUNC_EXPANDC, 1, 1,  

   Vector3DF(1, 255, 0), true ); 

This code example has two channels, density and the mesh voxelization result. 
The SolidVoxelize function indicates that surface voxels should be 1, and 
interior voxels have the value 128. The native operation FUNC_EXPANDC is 
called using the Compute API to perform a voxel expansion (grow outward) by 
one voxel. This function takes two parameters, which are the existing value ('1'), 
and the expanded voxel value ('255'). Since the value 1 represents surface voxels, 
the result is an extra layer of  voxels surrounding the surface of  the model that 
will have the new value '255'. 
 
Another use of  the voxelization channel is to cache results using 
Load/SaveVBX to store channels independently. 
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7.2.2. Implementation 

 
Figure 7.5. Algorithm used by SolidVoxelize. Triangles are sorted and inserted 
into stacked XY bins along the Z-axis. A thread-per-voxel kernel is launched 
over all sparse voxels which then examine the bins to test a subset of  triangles. 
 
The implementation details of  solid voxelization are given here for reference. 
The steps in the algorithm are: 
 
1) Triangle sorting - Triangles in the input mesh are sorted and inserted into 
horizontal bins that are stacked along the Z-axis. Any triangle that crosses a bin 
is inserted into both of  them. Auxiliary buffers are used to maintain the sorted 
triangles.  
 
2) Hierarchical activation - Voxelization is performed hierarchically with upper 
nodes of  the VDB tree processed first. This produces a solid/interior result that 
indicates which children nodes should be activated. Nodes are processed at each 
level (breadth first) until all relevant voxel bricks have been identified. 
 
3) Per-Voxel computation - A primary voxelization kernel is launched over all 
sparse voxels in the data atlas. This avoids processing voxels in empty space. 
Each voxel first checks if  it is a surface voxel with the Schwarz-Seidel test or the 
Akenine-Moller test. These are exact tests to determine if  a polygon touches a 
voxel. If  the test fails, the voxel performs an Inside-Outside test to determine if  
it is an interior voxel. The resulting value is placed into the output channel. 
 
To accelerate voxel testing only the polygons in the sorted bin corresponding to 
a given brick are checked. The parity test requires that all polygons along a ray 
extending from the voxel are included in its odd-even count, which is met since 
bins contain triangles that cross multiple bins but avoid those which are 
completely outside. 
 
Since all tests are performed on the original polygonal data the result is an exact 
voxelization which is locally complete. This permits the same voxelization 
algorithm to be applied to different levels of  the VDB hierarchy, or to additional 
bricks anywhere in space which may be stored on disk incrementally.  
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Chapter 8. 
Dynamic 
Topology 

There are many scenarios in which a 3D volume varies over time. Simulations 
performed on sparse grids will activate new space as the fluid or smoke 
advances. Medical and scientific data might consist of  a 3D volumetric time 
series, in which case the active space could vary from frame-to-frame. Dynamic 
topology refers to any application where the activate space changes over time, 
which requires that the GVDB topology updates.  
 
Currently, dynamic topology in GVDB SDK release 1.0 is implemented  
on CPU only. Since the GVDB uses indexing, and the topology typically has a 
low footprint (<10 MB), transferring to new topology to the GPU is quick and 
efficient. 

8.1. Overview 

The dynamic topology API is separated into phases to improve application 
design and performance. The sequence of  stages as typically appear in an 
application are as follows: 
 
1. Topology rebuilding  Updating a topology without affecting 
    the data atlases 
 1a. Clear  Clear the entire topology (optional) 
 1b. AcitvateSpace Activate new space to be covered 
 1c. FinishTopology Finalize topology changes prior to 
    updating the atlas. 
2. Atlas rebuilding  Updating the data atlases 
    without affecting topology 
 2a. UpdateAtlas  Allocate additiona bricks if  needed 
 2b. ClearAtlas  Clear all voxel data (optional) 

 
The concept of  activating space is a request to GVDB Voxels to generate the 
covering nodes of  a point in space from the root down to the brick. After 
activating space additional leaf  nodes are guaranteed to cover the requested 
points. However, prior to atlas rebuilding these nodes specify bricks which do 
not yet exist in the data atlas. This intermediate leaf  node state allows changes to 
the GVDB topology to be completed prior to any changes in voxel allocation.  
 
Once the atlas update is performed, any new leaf  nodes will be allocated a new 
place in the data atlas. Thus the topology stage guarantees that new world space 
is covered (but without voxel data), and the atlas stage guarantees that new voxel 
data is allocated for covering nodes. 
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8.2. Topology Building 

8.2.1. Activate Space 
To change the VDB topology, the ActivateSpace function is called with a 3D 
world position to be covered (by a brick).  
 

 ActivateSpace ( Vector3DF pos ); 
 
In SDK release 1.0 this is a CPU-only function, and should be called repeatedly 
to activate space over multiple points. Future releases may introduce a GPU 
version that activates a list of  points simultaneously.  
 
An example of  activating space can be found in the gFluidSurface sample, 
where a set of  points moves over time based on an SPH simulation. As the 
points move, the VDB topology must dynamically reconfigure to cover them. 
On each frame, the VDB grid is cleared and reconfigured with ActivateSpace. 
 
ActivateSpace will generate new interior and leaf  nodes, and may create a new 
root or increased the tree depth if  needed to cover the point(s). Space can be 
covered out to the maximum addressable extents of  the volume (see Chapter  
2.1.2). 
 
Although the input to ActivateSpace is a point, this does not imply that only 
point clouds can activate space. When performing a grid-based fluid simulation 
new space might be activated as fluid voxels advect to touch brick boundaries. 
An application could detect when a boundry is touched by examining changes in 
apron voxels and recording neighboring inactive bricks. These bricks indicate 
3D positions which can be activated by calling ActivateSpace with any point 
inside the brick space. 

8.2.2. Finish Topology 
Finish topology should be called after all new space has been activated. 
 

 FinishToplogy (); 
 
This function performs a few important tasks for topology maintainence. 
These are: 
 
- Recompute bounding box The bounding box of  the GVDB Volume 
    is recomputed from the new topology. 
- Commit topology to GPU The new topology is transferred to the GPU 
    for access by other tasks. 
- Update request   Internally, a flag is set indicating that 
    new VDB data is available during compute 
    and rendering.  

Notice that FinishTopology does not modify the data atlas, which remains in its 
previous state. At this point some leaf  nodes (level 0) may indicate new bricks 
that are not yet allocated. These nodes will have a mValue attribute of  -1, which 
is a request to allocate new voxel data. 
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8.3. Atlas Rebuild 

8.3.1. Update Atlas 
Once the topology has been updated, atlas rebuild will allocate new voxels in 
the data atlas. Two versions of  UpdateAtlas are provided, one which updates a 
specific channel, and another which updates all channels. 
 

 UpdateAtlas(); 

 UpdateAtlas( channel ); 
 
Typically all channels must be updated since GVDB does not track bricks 
separately by channel.  
 
UpdateAtlas performs several steps to ensure that new voxels are allocated to all 
leaf  nodes in the space: 
 
- Resize atlas  All data atlases are dynamically resized to  
   accommodate new leaf  nodes. This resize step 
   preserves previous data by expanding the atlas 
   along the Z-axis. See chapter 2.1.3 for details. 

- Assign bricks  New nodes are assigned to bricks in the atlas. 
   Whereas a node is an abstract entity covering space, 
   a brick contains the voxel data.  
 
- Atlas map update The atlas map is used internally in GVDB to 
   provide reverse mapping from atlas-space to 
   world-space. This data structure is updated on GPU. 
 
- Commit to GPU The new topology, with assigned brick values,  
   are sent to GPU. In addition, the atlas accessors  
   volIn/volOut are update to give kernels access 
   to the data atlases in case their location in memory 
   has changed. 
 
Following UpdateAtlas all leaf  nodes covering a space must have a valid mValue 
referring to a brick location in the atlas, since GVDB Voxels release 1.0 does not 
yet support non-resident (out-of-core) bricks. 

8.3.2. Clear Channels 
During each frame it may be necessary to clear previous voxel data. This should 
be done after UpdateAtlas has reallocated bricks. To clear a specific channel use 
the function FillChannel; 
 

 FillChannel ( uchar channel, Vector4DF value ); 
 
The value is a Vector4F to cover all possible channel types. Single component 
channels (T_FLOAT, T_UCHAR) will read value.x. Multi-component  
channels (T_FLOAT4, T_UCHAR4) will use all components of  value. 
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To clear voxel data in all channels, one calls ClearAtlas (); 
 

 ClearAtlas (); 
 

8.3.3. Rebuilding Channels 
 
GVDB Voxels allows applications to destroy and rebuild voxel attribute 
channels at run-time. The function DestroyChannels removes all channels 
from memory and their associated atlases. Afterward, the application should 
rebuild the channels with AddChannel.  
 
DestroyChannels should be called infrequently, since it incurs the overhead of  
tearing down and rebuilding all atlases. The only time to rebuild channels is 
when per-voxel attributes must be added or removed.  
 
In a dynamic simulation the voxel attributes are typically fixed ahead of  time - 
e.g. position, velocity, density. Thus changes in topology can be achieved with 
topology and atlas updates without adding, removing or destroying channels. 
This will be more efficient since GVDB will dynamically reallocate atlases to 
preserve prior data. 

8.4. Limitations 

 
Dynamic topology has several limitations in GVDB SDK release 1.0 which may 
be addressed in future releases. These are: 
 
1. CPU only  ActivateSpace is currently CPU-only. However, 
   transfer of  the new topology to GPU is efficient. 
2. Full residence  All leaf  nodes must be resident in data atlases 
   following UpdateAtlas. This limitation may be  
   removed in the future to allow for non-resident bricks  
   and out-of-core techniques. 
3. DeactivateSpace Deletion of  bricks, or removal of  space, is not yet 
   supported. Currently applications may need to clear 
   and reactivate all points. (See gFluidSurface example) 
4. DeleteChannel Deletion of  channels at run-time is not yet 
   supported. Applications can call DestroyChannels to  
   remove all channels and rebuild the with AddChannel. 
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Chapter 9.  
Data 

Management 

Data management is a generic API for handling CPU and GPU data provided to 
GVDB Voxels. Data may be used for point clouds (Chapter 7.1), triangle 
meshes (Chapter 7.2), rays (Chapter 6.5) or other entities that are inputs or 
outputs to GVDB. These functions implement smart points for memory 
management. 

9.1. Allocation 

Generic data is allocated on the GPU, and optionally on CPU, with AllocData. 
 

 AllocData ( DataPtr ptr, int count, int stride, bool onCPU ); 

The arguments are: 
- DataPtr  The DataPtr handle that will be setup by this call.   
- count  The number of  elements to pre-allocate 
- stride  The stride of  each element. Typically sizeof(some struct) 
- onCPU A boolean indicating if  CPU memory should also be allocated. 
   
AllocData always allocates GPU linear memory.  
 
When making repeated calls to AllocData with the same DataPtr object, any 
memory previously associated with either the CPU or the GPU are freed before 
new memory is allocated. The resulting DataPtr records the stride, count and 
CPU and GPU pointers for the requested memory.  

9.2. Data Transfers 

Data is transferred to/from the GPU with RetrieveData and CommitData. 
 

 RetrieveData ( DataPtr ptr ); 
RetrieveData transfers data from the GPU to the CPU for the given DataPtr. 
Note this implies that the DataPtr must have been allocated with onCPU true. 
The total amount of  memory transferred is count*stride. 

 CommitData ( DataPtr ptr ); 

CommitData transfers data from the CPU to the GPU for the given DataPtr. 
Note this implies that the DataPtr must have been allocated with onCPU true, 
and the CPU data is owned by this DataPtr.  
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 CommitData ( DataPtr ptr, cnt, cpu_ptr, offs, stride) 

An alterate version of  CommitData transfers arbitrary CPU data to GPU. 
The target GPU memory is given by the DataPtr. 
The source CPU memory is given by the CPU pointer argument. The caller 
must specify the count, starting offset, and stride of  the source memory. 
This function does not require the DataPtr has been allocated with onCPU true. 
 

9.3. Data Handles 

The typical usage of  data management is to create DataPtr objects by  
calling AllocData with the number and stride of  new elements to allocate. In 

this case, the DataPtr owns the data which is allocated. 

 
DataPtr structs can also be used as data handles. In this usage, a DataPtr 
represents a handle, or reference, to memory which is allocated and owned by 
the application itself. The purpose of  data handles is to provide GVDB Voxels  
with lists of  points, rays or triangles that are managed by the application. 
 
DataPtr handles are created using SetDataCPU and SetDataGPU. 

 

 SetDataCPU ( DataPtr, int count, char* cpuptr, int offset, int 

stride ); 

 SetDataGPU ( DataPtr, int count, CUdeviceptr gpu, offset, 

stride ); 

The given DataPtr should not be previously used for anything else. 
Notice that SetDataCPU takes a CPU pointer, and SetDataGPU takes a GPU 
pointer for the source data. The returned DataPtr references (points to) the 
original data which is still owned by the application.  
 
For flexibility, data handles support application data which is given either as a 
structure-of-arrays or as an array-of-structures. 
 
Structure-of-Arrays 
 

Vector3DF* pos;   // list of positions 

Vector3DF* vel;   // list of velocities 

uint*      clr;   // list of colors 

 

LoadData ( pos, vel, clr ); // application allocated 

 

DataPtr p1, p2, p3;   // new handles 

 

gvdb.SetDataCPU ( p1, num, pos, 0, sizeof(Vector3DF) );  

gvdb.SetDataCPU ( p2, num, vel, 0, sizeof(Vector3DF) );  

gvdb.SetDataCPU ( p3, num, clr, 0, sizeof(uint) ); 

  

When using DataPtr handles for a structure-of-arrays, the offsets are typically all 
zero, and the strides match the stride of  each individual input array.  
Notice that no data is allocated or freed. Also, since the DataPtr was not created 
with AllocData, there is no GPU pointer. The primary use of  data handles is to 
present the data to GVDB Voxels function. 
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Array-of-Structures 

An array-of-structures is a list of  elements with attributes located together and 
grouped by a structure. 

struct Pnt { 

   Vector3DF* pos;   // position 

   Vector3DF* vel;   // velocity 

   uint*      clr;   // color 

} 

Pnt* pnts;    // list of points 

 

LoadData ( pnts );   // application allocated 

 

DataPtr p1, p2, p3;   // new handles 

 

gvdb.SetDataCPU ( p1, num, pnts,  0, sizeof(Pnt) );  

gvdb.SetDataCPU ( p2, num, pnts, 12, sizeof(Pnt) );  

gvdb.SetDataCPU ( p3, num, pnts, 24, sizeof(Pnt) ); 

  

When making DataPtr handles from an array-of-structures, the offsets refer to 
the starting byte of  each variable, and the strides are all set to the width of  the 
containing structure. 
 
 
GPU Handles 
 
Applications that allocate their own GPU memory with CUDA functions 
cuMemAlloc and cuMemFree can make data handles using SetDataGPU. 

CUdeviceptr posGPU;   // position data  

CUdeviceptr velGPU;   // velocity data  

int num = 2000; 

 

// application allocates GPU data  

cuMemAlloc ( &pos, sizeof(Vector3DF)*num );  

cuMemAlloc ( &vel, sizeof(Vector3DF)*num );  

 

// application creates data 

LoadData ( pos, vel );  

 

DataPtr p1, p2, p3;   // new handles 

gvdb.SetDataGPU ( p1, num, posGPU,  0, sizeof(Vector3DF) );  

gvdb.SetDataGPU ( p2, num, velGPU,  0, sizeof(Vector3DF) ); 

 

Remember that a data handle does not own the memory it refers to. Therefore 
applications should not call AllocData, RetrieveData or CommitData on data 
handles. 
 
For an example usage of  data handles, see Chapter 7.1.1 (Point Cloud 
Voxelization). 
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9.4. DataPtr Struct 

The DataPtr struct is a smart handle to memory which resides on both  
the GPU and CPU. Additionally, it contains members to keep track of  the count 
and maximum of  a number of  elements with a given stride. This makes it 
suitable for managing simple data such as a fixed array of  points or triangles. 
 
A DataPtr is: 

struct DataPtr { 

  char type;  // Data type (T_UCHAR, T_FLOAT, etc) 

  char apron;  // Apron size (Used by atlases) 

  uint64 num;  // Number of elements 

  uint64 max;  // Maximum element count 

  uint64 size; // Total amount of memory in bytes 

  uint64 stride; // Stride of the data 

  Vec3DI subdim; // Sub-dimensions of the data.  

     (Used by atlases) 

  Allocator* alloc; // Pointer to the Pool allocator which 

      owns this memory heap. 

  char* cpu;  // CPU Pointer to data 

  int glid;  // GPU OpenGL ID to data as 3D texture 

  CUgraphicsResource grsc;  // GPU Graphics Resource (CUDA) 

  CUarray garray; // GPU CUarray (CUDA) to data on GPU 

  CUdeviceptr gpu;  // GPU Linear memory (CUDA) pointer 

} 

The DataPtr is also used internally by GVDB Voxels to maintain both data 
atlases and node memory pools, with member variables to handle CUDA 
interop, OpenGL 3D textures, and to record atlas dimensions and type. Many 
of  these variables are not used when creating simple linear memory  
with AllocData. 
 
A DataPtr is a public struct, so applications that call AllocData can directly 
access the CPU memory via data.cpu, or read/write the number of  elements 
with data.num. Care must be taken when directly modifying a DataPtr object. 
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Chapter 10. 
Host & Device 

Access API 

The Access API is a set of  functions, on host and device, that allow an 
application to query and traverse the GVDB Topology and Data. This API is 
useful for authoring custom compute and custom render kernels. 

10.1. Host Access 

The Host access functions are: 
 
* See gvdb_volume_gvdb.h for function arguments 

 

getNearestAbsVox Gets the nearest voxel in index-space 

getLD Gets the node log2dim for the given level 

getRes Gets the node resolution for the given level 

getVoxCnt Gets the total voxel count for a node at given level 

getMaskSize Gets the bitmask size, in bytes, for a node at level 

getBitPos 
Gets the bit position for a point in local index-space 
for node at level 

getPosFromBit Gets the local index-space position from a bit 

getCover 
Gets the world-space covering size of  
a node at the given level 

getRange 
Gets the index-space covering size of  
a node at the given level 

getRes3DI Gets the resolution of a node as a Vec3I 

getVolMin/Max 
Gets the min/max bounding box of  
the entire sparse volume 

getTransferPtr Gets the transfer function as a DataPtr 

getTransferFuncGPU Gets the transfer function as a CUDA CUdeviceptr 

getScene Gets the GVDB scene object 

getNumNodes Gets number of nodes at a given level 

getNode Gets a Node struct from a group, level and index 

getNode ( nodeid) Gets the Node struct from a node reference 

getNodeAtlLevel Gets the Node struct at a specific level and index 
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isLeaf Returns true if the node is at level=0 

getChildNode 
Gets the child node reference at the specific bit 
position of the given parent node 

getChildOffset 
Gets the bit position of the given child node within 
the given parent node 

getPosInNode 
Returns true if the index-space position is inside the 
given node (and its bit), or false if outside 

getVDBSize Gets the size of the VDBInfo struct 

getVDBInfo Gets a pointer to the current VDBInfo struct 

getWorldMin 
Gets the world space bounding box min of the given 
node 

getWorldMax 
Gets the world space bounding box max of the given 
node 

getVoxelSize Gets the current global voxel size 

 

10.2. Device Access 

The Device access functions are: 

* See cuda_gvdb_nodes.cuh for function arguments 

 

numBitsOn Counts the number of bits on in a 64-bit word 

countOn 
Counts the number of bits on in the given VDB 
node up to bit 'n' 

isBitOn 
Returns true if child bit 'n' is set (active) in  
the given VDB node 

getAtlasNode (brickpos) 
Gets a VDBAtlasNode* for the given  
brick-space position 

getAtlasNodeFromIndex Gets a VDBAtlasNode* for the given brick ID 

getAtlasToWorld 

Gets the world-space position from the atlas-
space voxel. False if the atlas-space voxel is an 
unused brick (invalid). 

getAtlasToWorldID 
Gets the same results as getAtlasToWorld, but 
also gives the level-0 node ID for the point. 

getChild 
Gets the child index for the VDB node for the 
given bit count 'b' 

getAtlasPos 
Gets the atlas-space bottom corner ('value') for 
the given brick ID. 

getBitPos 
Gets the bit position for a point in local index-
space for node at level 

getNode (lev, n, vmin) 
Gets a Node at the given level and index. Also 
returns the world-space position of the node. 

getNodeAtPoint 
Gets a brick Node covering the  
given world-position. (recursive) 

getTricubic 
Gets a tricubic interpolated value for the given 
local index-space in a node 
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getTrilinear 
Gets a trilinear interpolated atlas value for the 
given local index-space in a node 

getVolSampleC 
Gets a uchar value for a T_UCHAR channel at 
the given world position. 

getVolSampleF 
Gets a float value for a T_FLOAT channel at  
the given world position. 

getGradient 
Gets the trilinear gradient at the given  
atlas-space point 

getGradientLevelSet 
Gets a level set gradient at the given  
local index-space point. 

getGradientTricubic 
Gets a tricubic gradient at the given  
local index-space point. 

rayTricubic 
Casts a fine-stepping ray for a tricubic surface 
inside the given node starting from the local point. 

rayTrilinear 
Casts a fine-stepping ray for a trilinear surface 
inside the given node starting from the local point 

rayLevelSet 
Casts a fine-stepping ray for a level set surface 
inside the given node starting from the local point 

getColor 
Gets a uchar4 value for a T_UCHAR4 color 
channel at the given atlas-space point 

getColorF 
Gets a float4 value (by casting) for a T_UCHAR4 
color channel at the given atlas-space point 

getLinearDepth 
Gets the linear depth from an OpenGL depth 
buffer value 
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Appendix A.   


