
OS SAM Logic

Release 21

Program Number 360S-DM-50B

This manual contains a general description of the Get, Put, Read,
Write, and associated modules for QSAM, BSAM, and BP AM.
SAM executors and appendages are also described.

File Number S360·30
Order Number GY28-6604·5

Program Logic

The manual is intended for use by persons involved in programming
maintenance and system programmers who are altering the program
design.

The SAM routines used for optical character readers, magnetic
character readers, and optical reader sorters are discussed in
separate publications. They are indexed in tbe IBM System/360
and System/370 Bibliography, GA22-6622.

Sixth Edition (February 1972)

This manual corresponds to OS Release 21. Changes to the information in this book
may be made at any time. They will be reported in subsequent editions or technical
newsletters. Before using this book in conjunction with the operation of IBM systems,
consult the latest SRL Newsletter, GN20-0360, for the editions that are applicable
and current.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

Changes are indicated by a vertical line to the left of the change.

Forms for reader's comments appear at the back of this publication. They may be
mailed directly to IBM. Address any additional comments concerning this publication
to the IBM Corporation, Programming Publications, Department D78, San Jose,
California 95114.

© Copyright International Business Machines Corporation 1966, 1969, 1970, 1971, 1972

PREFACE

The information in this manual is intended for programming-support customer
engineers and programmers who require specific information about queued sequential
access method (QSAM), basic sequential access method (BSAM), and basic partitioned
access method (BP AM) routines.

The manual is organized into six sections. With the exception of the diagrams in
Section 5, which are identified in an alphabetic sequence, all illustrations are
consecutively numbered throughout the manual.

Figure numbers appear as marginal tabs in Section 2. The marginal tabs identify
figures that list functionally related groups of modules, appendages, or executors.

"Section 1: Introduction." This section contains a brief description of the sequential
access method (SAM) routines and a reference to Diagram A, Sequential Access
Method - Overview in Section 5. This diagram lists the macro statements used with
SAM programming techniques and directs the reader to appropriate diagrams and
figures in other parts of the manual.

"Section 2: Method of Operation." The SAM routines are described in five categories.
They are:

1. Queued sequential access method (QSAM) routines that cause storage and
retrieval of data records arranged in sequential order.

2. Basic sequential access method (BSAM) routines that cause storage and retrieval
of data blocks arranged in sequential order.

3. Basic partitioned access method (BPAM) routines that cause storage and retrieval
of data blocks in a member of a partitioned data set. They can also construct
entries and search for entries in the directory of a partitioned data set.

4. Executors that operate with input/output support routines.

5. Buffer-pool management routines that furnish buffer space in main storage.

"Section 3: Directory." The directory lists the names of the sequential access method
modules in alphabetical order. Each entry contain!, the module name, type, CSECT
name, SVC entry (if any), and references to figures and appendixes in other parts of
the manual that contain information about the module.

"Section 4: Data Areas." This section shows how various control blocks are used in
QSAM and BSAM. The access method save area for user totaling is also described.
This section does not describe in detail all fields of the system control blocks referred
to in this manual. For information about system control blocks, see the OS System
Control Blocks manual.

"Section 5: Program Organization and Flow of Control." This section contains
diagrams that describe the organization and flow of control of the SAM routines.
Diagrams A, B, C, and D describe some of the general characteristics of the
access-method routines and contains references to other diagrams and figures in the
manual. The remaining diagrams contain flow of control information for the QSAM
and BSAM/BPAM routines.

"Section 6: Appendixes." This section describes code conversion routines,
BSAM/ QSAM channel programs, update channel programs, chained scheduling

iii

channel programs, BSAM channel programs, and contains the ABEND codes
cross-reference table.

Prerequisite Reading

Related Reading

For general information about the operating system:

OS MVT Guide, GC28-6720

OS MFT Guide, GC27-6939

For information about processing sequential and partitioned data sets:

OS Data Management Services Guide, GC26-3746

For specific information about the macro instructions required to process sequential
and partitioned data sets:

OS Data Management Macro Instructions, GC26-3794.

For specific information about Open, Close, and End-of-Volume routines:

OS Open/Close/EO V Logic, GY28-6609

For information on the sequential access method routines used by the IBM 1285, 1287,
and 1288 optical character readers:

OS IBM 1285, 1287, and 1288 Optical Character Reader Logic, GY21-0013

For information on the sequential access method routines used by the IBM 1419
Magnetic Character Reader and IBM 1275 Optical Reader Sorter:

OS IBM 1419 Magnetic Character Reader, 1275 Optical Reader/Sorter Logic,
GY21-0012

For information about system control blocks referred to in this manual:

OS System Control Blocks, GC28-6628

For information about the resident access method modules option:

OS Data Management for System Programmers, GC28-6550

iv

CONTENTS

iii Preface

ix Summary of Changes for Release 21

1 Section 1: Introduction

3 Section 2: Method of Operation
3 Queued Sequential Access Method Routines
3 Get Routines

29 Put Routines
46 End-of-Block Routines
70 Synchronizing-and-Error-Processing Routines
80 Appendages

100 QSAM Control Routines
103 Basic Sequential Access Method Routines
103 Read and Write Routines
111 Check Routines
115 BSAM Control Routines
124 Basic Partitioned Access Method Routines
124 BP AM Routines
129 Sequential Access Method Executors
130 Open Executors
162 Close Executors
167 SYNAD/FEOV /EOV Executors
170 Operation for Output under QSAM
174 SETPRT Executors
177 Buffer Pool Management

183 Section 3: Directory

189 Section 4: Data Area
189 QSAM Control Blocks
190 BSAM Control Blocks
192 Access Method Save Area for User Totaling

193 Section 5: Program Organization and Flow of Control
193 Diagram A: Sequential Access Methods - Overview
195 Diagram B: QSAM Get and Put Routines
197 Diagram C: BSAM/BPAM Read/Write and Check Routines
199 Diagram D: Sequential Access Method Open Executors
201 Diagram E: SAM Flow of Control for Open Executors
202 Diagram F: QSAM Flow of Control
204 Diagram G: BSAM/BPAM Flow of Control
207 Diagram H: QSAM Flow of Control for SYNAD/EOV Executors
209 Diagram I: BSAM Flow of Control for SYNAD/EOV Executor
211 Diagram J: QSAM Operation of FEOV Executor

v

213 Section 6: Appendixes
215 Appendix A: Code Conversion Routines
217 Appendix B: BSAM/QSAM Channel Programs
231 Appendix C: Update Channel Programs
235 Appendix D: Chained Scheduling Channel Programs
243 Appendix E: BSAM (BDAM Create) Channel Programs
249 Appendix F: ABEND Codes Cross-Reference Table

vi

ILLUSTRATIONS

Figures

5 Figure 1. Module Selector - Simple-Buffering Get Modules
11 Figure 2. Order of Records Using Get Routines for Data Sets Opened

for ROBACK (IGG019AM, IGG019AN)
19 Figure 3. Module Selector - Exchange-Buffering Get Modules
23 Figure 4. The Two Parts of an Update Channel Program (Empty,

Refill)
24 Figure 5. Relation of Seek Addresses in Three Successive QSAM Update

Channel Programs
25 Figure 6. Module Selector - Update-Mode Get Modules
32 Figure 7. Module Selector - Simple-Buffering Put Modules
42 Figure 8. Module Selector - Exchange-Buffering Put Modules
47 Figure 9. Module Selector - Ordinary End-of-Block Modules
57 Figure 10. lOB SAM Prefixes for Normal and for Chained Scheduling
58 Figure 11. Module Selector - Chained Channel-Program Scheduling,

End-of-Block Modules
60 Figure 12. Comparison of the lOB SAM Prefixes for Normal and for

Chained Scheduling
67 Figure 13. Track-Overflow Records
68 Figure 14. Module Selector - Track-Overflow, End-of-Block Modules
72 Figure 15. Module Selector - Synchronizing-and-Error-Processing

Modules
78 Figure 16. Module Selector - Track Overflow /3211 Printer
82 Figure 17. Module Selector - Appendages

100 Figure 18. Module Selector - Control Modules
101 Figure 19. Control Routines that Are Macro Expansions
104 Figure 20. Module Selector - Read and Write Modules
112 Figure 21. Module Selector - Check Modules
115 Figure 22. Module Selector - Control Modules Selected and

Loaded by the Open Executor
116 Figure 23. Control Modules Loaded at Execution Time
116 Figure 24. Control Routines that Are Macro Expansions
124 Figure 25. BP AM Routines Residence
129 Figure 26. Sequential Access Method Executors - Control Sequence
131 Figure 27. Open Executor Selector - Stage 1
141 Figure 28. Open Executor Selector - Stage 2
155 Figure 29. Open Executor Selector - Stage 3
163 Figure 30. Close Executor Selector
167 Figure 31. SAM EOV, FEOV, and Error-Processing Executors
174 Figure 32. SETPRT Executor Selector
177 Figure 33. Buffer-Pool Management Routines
178 Figure 34. Buffer-Pool Control Block
178 Figure 35. GETPOOL Buffer-Pool Structures
179 Figure 36. Build Buffer-Structuring Table
180 Figure 37. Build Buffer-Pool Structure
181 Figure 38. Buffer-Pool Control Block
181 Figure 39. Record Area

vii

Diagrams

189 Figure 40. QSAM Control Blocks
191 Figure 41. BSAM Control Blocks
192 Figure 42. Access Save Area for User Totaling

193
195
197
199
201
202
204
207
209
211

Diagram A:
Diagram B:
Diagram C:
Diagram D:
Diagram E:
Diagram F:
Diagram G:
Diagram H:
Diagram I:
Diagram J:

Sequential Access Methods - Overview
QSAM Get and Put Routines
BSAM/BPAM Read/Write and Check Routines
Sequential Access Method Open Executors
SAM Flow of Control for Open Executors
QSAM Flow of Control
BSAM/BPAM Flow of Control
QSAM Flow of Control for SYNAD/EOV Executors
BSAM Flow of Control for SYNAD/EOV Executor
QSAM Operation of FEOV Executor

viii

SUMMARY OF CHANGES FOR RELEASE 21

Item Description Areas Affected

3505/3525 Device Associated Data Set Processing Section 2. End-of-
Support New EOB Modules Block Routines

IGG019FK
IGG019FQ
IFF019FU

Channel-end and Abnormal-end Section 2.
Processing Appendages
New Appendage

IGG019C6

Line Control Functions for Section 2. QSAM
3525 Control Routines
New Control Module and BSAM Control

IGG019FA Routines

Open Executor Processing Section 2. Open
New Stage 1 Executors Executors

IGG0197L
IGG0197M

New Stage 2 Executors
IGG0197N
IGG0197P
IGG0197Q

Close Executor Processing Section 2. Close
New Close Executors Executors

IGG201P
IGG201R

OS/DOS Tape Provisions for handling DOS Section 2. Get
Compatibility embedded checkpoint records routines, Synchro-
(OS/DOS Interchange) nizing-and-Error-

Processing Routines,
BSAM Control
Routines.

Channel-end and Abnormal-end Section 2.
Processing Appendages
New Appendages

IGG019EI
IGG019EJ

PLM Reorganization Organization described in Preface All

ix

SECTION 1: INTRODUCTION

Sequential access methods (SAM) are programming techniques for transferring data
arranged in sequential order between main storage and an input/output device. This
manual describes five groups of sequential access method routines. They are:

Queued sequential access method (QSAM) routines

Basic sequential access method (BSAM) routines

• Basic partitioned access method (BP AM) routines

• Sequential access method executors

Buffer-pool management routines

A processing program using QSAM routines works with records. For input, QSAM
routines turn the blocks of data of the channel programs into a stream of input records
for the processing program; for output, QSAM routines collect the successive output
records of the processing program into blocks of data to be written by channel
programs. See Diagram F (Section 5) for information about the flow of control for
QSAM routines.

A processing program using BSAM routines works with blocks of data. For input,
BSAM routines cause a channel program to read a block of data for the processing
program; for output, BSAM routines cause a channel program to write a block of data
for the processing program. BSAM routines are also used to read and write blocks of
data for members of a partitioned data set. See Diagram G (Section 5) for flow of
control information about BSAM routines.

A processing program using BPAM routines also works with blocks of data. For
output, BPAM routines construct and cause writing of entries in the directory; for
input, BPAM routines search for and read entries in the directory. To read and write
the blocks of the members, a processing program uses the BSAM routines. Flow of
control for the BPAM routines is shown in Diagram G.

Sequential access method executors are modules that operate with the Open, Close, and
end-of-volume (O/C/EOV) routines. When a data control block is opened, an
executor constructs control blocks and loads the access method routines, unless the
resident access method (RAM) option is used. For additional information about the
resident access method modules option, see as Data Management for System
Programmers, GC28-6550. If the RAM option is used, the selected QSAM or BSAM
routines are permanently resident. When the end of a data set or volume is reached, an
executor processes the pending input/output blocks. The executors described are:

• Open executors

Close executors

• SYNAD/FEOV /EOV executors

SETPRT executors

Buffer-pool management routines form buffers in main storage and return
main-storage space (for buffers no longer needed) to available status. A buffer-pool
management routine is entered when a GETPOOL, BUILD, GETBUF, FREEBUF, or
FREEPOOL macro instruction is encountered in a program.

Section 1: Introduction 1

2 OS SAM Logic

The GETPOOL and Build routines both form a pool of buffers in main storage.
However, the GETPOOL routine also obtains the main-storage space for the buffer
pool. Main-storage space must be provided by the processing program when the Build
routine is used.

The GETBUF and FREEBUF routines handle individual buffers. GETBUF obtains a
buffer from a buffer pool and FREEBUF returns a buffer to a buffer pool.

The FREEPOOL routine returns the main-storage space used for a buffer pool.

Diagram A (see Section 5) lists the macro statements that are used with sequential
access method programming techniques. The chart also refers to figures in other
portions of the manual that describe the SAM routines, appendages, and executors
associated with each macro statement.

SECTION 2: METHOD OF OPERATION

Queued Sequential Access Method Routines

Get Routines

Queued sequential access method (QSAM) routines cause storage and retrieval of
records and furnish buffering and blocking facilities. There are six types of QSAM
routines:

Get routines

• Put routines
• End-of-block routines
• Synchronizing-and-error-processing routines (including the

track-overflow-asynchronous-error-processing routine)

• Appendage routines

• Control routines

Diagram F, QSAM Flow of Control (see Section 5) shows the relationship of QSAM
routines to other portions of the operating system and the processing program.

The manner in which a Get routine performs its processing depends on the buffering
mode. Simple buffering Get routines determine the address of the next record by
referring to the DCB. Exchange buffering Get routines determine the address of the
next record by referring to the channel program.

The update mode Get routine determines the address of the next input record by
referring to the DCB. The next output record is the last input record.

If the American National Standard Code for Information Interchange (ASCII) is used,
the Get routine (providing it is specified in the DCB) will accept a record with a block
prefix. The Get routines do not present the block prefix to the processing program.
The block prefix is specified by the BUFOFF option in the DCB. For more
information on block prefix and record formats for ASCII, see OS Data Management
Services Guide, GC26-3746.

The Get routine descriptions that follow are accordingly grouped as:

Simple-Buffering Get Routines

• Exchange-Buffering Get Routines
Update-Mode Get Routine

Simple-Buffering Get Routines

Simple-buffering Get routines use buffers whose beginning and ending addresses are in
the data control block (DCB). The beginning address is in the DCBRECAD field
(address of the next record); the ending address is in the DCBEOBAD field (address
of the end of the buffer). In each pass through a routine, it determines:

• The address of the next record

Whether an input buffer is empty and ready to be scheduled for refilling

Whether a new full input buffer is needed

Section 2: Method of Operation 3

4 OS SAM Logic

If the records are unblocked, the address of the neAt record is always that of the next
buffer.

If the records are blocked, a Get routine determines the address of the next record by
adding the length of the last record to the address of the last record. The address of
the last record is in the DCBRECAD field of the data control block (DCB). If the
records are fixed-length blocked records, the length of each record is in the
DCBLRECL field. If the records are variable-length blocked records, the length of
each record is in the length field of the record itself.

A Get routine determines whether a buffer is empty and ready for refilling and whether
a new full buffer is needed by testing for an end-of-block (EOB) condition.

When a buffer is empty, a Get routine passes control to an end-of-block routine to
refill the buffer. The buffers are filled for the first time by Open executor IGG01911.
Thus, the buffers are primed for the first entry into a Get routine.

When a new full buffer is needed, a Get routine obtains it by passing control to the
input-synchronizing-and-error-processing routine, module IGG019AQ. The
synchronizing routine updates the DCBIOBA field, thus pointing to the new buffer,
and returns control to the Get routine. A Get routine updates the DCBRECAD field
by inserting in it the starting address of the buffer from the channel program associated
with the new lOB. To update the DCBEOBAD field, a Get routine adds the actual
length of the block read to the buffer starting address. These two fields, DCBRECAD
and DCBEOBAD, define the available buffer.

For unblocked records, an EOB condition exists after every entry into the Get routine.
For blocked records, an EOB condition exists when the values in the DCBRECAD and
DCBEOBAD fields are equal. In the move operating mode, the buffer can be
scheduled for refilling as soon as the last record is moved out; thus, an EOB test is
made after moving each record, so that the buffer can be scheduled for refilling as soon
as possible. Another EOB test is made on the next entry to the routine to determine'
whether a new full buffer is needed. In the locate mode, the empty buffer is scheduled
when the routine is entered, if the last record was presented in the preceding entry;
thus, an EOB test is made on entry into the routine to determine whether a buffer is
empty and ready for refilling and also whether a new full buffer is needed.

When the processing program determines that the balance of the present buffer is to be
ignored and the first record of the next buffer is desired, the processing program issues
a RELSE macro instruction. Control passes to a RELSE routine which sets an EOB
condition. When records are spanned, one or more blocks can be skipped to find the
first record in a new block.

The Open executor primes (that is, schedules for filling) the buffers if QSAM is used
with a DCB opened for input, update, or readback. For the locate mode, all buffers
except one are primed; for the move mode, all buffers are primed. The Open executor
also sets an end-of-block condition; the first time that a Get routine gains control, it
processes this condition in the usual way.

Upon return from the synchronizing-and-error-processing routine, the Get routines,
which may be loaded for tape data sets, tests to determine if the buffer contains a DOS
checkpoint record. If a DOS checkpoint record is indicated, ECB posted X'50', the
Get routine branches to the end-of-block routine to reschedule the buffer for refilling
and then branches back to the synchronizing routine to test the next buffer.

Figure 1

Figure 1 lists the simple buffering Get routines and the conditions that cause a
particular routine to be used. The Open executor selects one of the routines, loads it,
and puts its address into the DCBGET field. Figure 1 shows, for example, that when
the Open parameter list specifies input and the DCB specifies the GET macro
instruction, simple buffering, the locate mode, and the fixed-length record format,
routine IGG019AA is selected and loaded.

Selections Access Method Options

Input, Get, Simple Buffering

RDBACK, Get, Simple Buffering

X X X X X X X X X X X X X

locate operating mode

Move operating mode

Data operating mode

Fixed-length record format

Undefined-length record format

Variable-length or record format-D

Spanned records

Card reader, only a single, buffer
CNTRl

Character conversion for paper tape

logical record interface

Get modules

IGG019AA

IGG019AB

IGG019AC

IGG019AD

IGG019AG

IGG019AM

IGG019AN

IGG019AT'

IGG019BO

IGG019FB

IGG019FD

IGG019FF

x X X

X

X

X

AA AA

AB

X X X X

X X

X X X X X X X X

X X X X

X X X X

X

X X

X

AC AC

AD

AG AG

AM AM

AN AN

AT

1 This module also Includes the character-converslon and synchronlzmg-and-error-processlng rout me for paper-tape devices.

Figure 1. Module Selector - Simple Buffering Get Modules

X X

X

X

X X X X

X X X X

X

BO

FB

FD

FF

Get Module IGG019AA: Module IGG019AA presents the processing program with the
address of the next fixed-length or undefined-length record. The Open executor
selects and loads this module if the Open parameter list specifies:

Input

Section 2: Method of Operation 5

6 OS SAM Logic

and the DCB specifies:

Get

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or undefined-length
record format

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• It tests for an EOB condition to determine whether a buffer is empty and ready
for refilling and if a new buffer is needed. When the Open executor primes the
buffers, it schedules all buffers except one and sets an EOB condition.

• If no EOB condition exists, the Get routine determines the address of the next
record, and then presents the address to the processing program and returns
control to the processing program.

• If an EOB condition exists, the Get routine issues a BALR instruction to pass the
present buffer to the end-of-block routine to be scheduled for refilling. The Get
routine issues another BALR instruction to obtain a new full buffer through the
input-synchronizing-and-error-processing routine, module IGG019AQ. The Get
routine then presents the address of the first record of the new buffer to the
processing program and returns control to the processing program.

The RELSE routine causes an EOB condition by setting the DCBRECAD and
DCBEOBAD fields so that they are equal; it then returns control to the processing
program.

Get Module IGG019AB: Module IGG019AB presents the processing program with the
address of the next variable-length or format-D record. The Open executor selects
and loads this module if the Open parameter list specifies:

Input

and the DCB specifies:

Get

Simple buffering

Locate operating mode

Variable-length or record format-D (unblocked or blocked), unspanned

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• It determines the address of the next record and tests for an EOB condition to
determine whether a buffer is empty and ready for refilling and if a new buffer is

Figure 1

needed. When the Open executor primes the buffers, it schedules all buffers
except one and sets an EOB condition.

• If no EOB condition exists, it presents the address of the next record to the
processing program and returns control to the processing program.

If an EOB condition exists, it issues a BALR instruction to pass the present
buffer to the end-of-block routine to be scheduled for refilling. The Get routine
issues another BALR instruction to obtain a new buffer through the
input-synchronizing-and-error-processing routine, module IGG019AQ. The Get
routine then presents the address of the first record of the new buffer to the
processing program and returns control to the processing program.

The RELSE routine causes an EOB condition by setting the DCBRECAD and
DCBEOBAD fields so that they are equal; it then returns control to the processing
program.

Get Module IGG019AC: Module IGG019AC moves the next fixed-length or
undefined-length record to the work area. The Open executor selects and loads this
module if the Open parameter list specifies:

Input

and the DCB specifies:

Get

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or undefined-length
record format

The DCB does not, however, specify the CNTRL macro instruction. The module
consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

It receives control when a GET macro instruction is encountered in a processing
program.

• It tests for an EOB condition to determine whether a new full buffer is needed.
When the Open executor primes the buffers, it sets this EOB condition for the
first GET macro instruction.

If no EOB condition exists, the routine moves the next record to the work area.

If an EOB condition exists, the routine issues a BALR instruction to obtain a new
buffer through the input-synchronizing-and-error-processing routine, module
IGG019AQ, and moves the first record of the new buffer to the work area.

• It tests for a new EOB condition to determine whether a buffer is empty and
ready for refilling. For unblocked records, this condition exists at every entry into
the routine.

• If no new EOB condition exists, the routine returns control to the processing
program.

Section 2: Method of Operation 7

8 OS SAM Logic

If a new EOB condition exists, the routine issues a BALR instruction to pass the
present buffer to the end-of-block routine to be scheduled for refilling and
returns control to the processing program.

The RELSE routine sets a bit in the DCB so that the Get routine passes the buffer for
refilling and obtains a new full buffer the next time the routine is entered.

Get Module IGG019AD: Module IGG019AD moves the next variable-length or
format-D record to the work area. The Open executor selects and loads this module if
the Open parameter list specifies:

Input

and the DCB specifies:

Get

Simple buffering

Move operating mode

Variable-length or record format-D (unblocked or blocked), unspanned

The DCB does not, however, specify the CNTRL macro instruction. The module
consists of a Get and a RELSE routine.

Get

Simple buffering

Move operating mode

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

It tests for an EOB condition to determine whether a new full buffer is needed.
When the Open executor primes the buffers, it also sets an end-of -block
condition for the first GET macro instruction.

• If an EOB condition exists, the routine issues a BALR instruction to obtain a new
buffer through the input-synchronizing-and-error-processing routine, module
IGG019AQ, and moves the first record to the work area.

• If no EOB condition exists, the routine moves the next record to the work area.

• It tests for a new EOB condition to determine whether a buffer is empty and
ready for refilling. For unblocked records, the condition exists after every entry
to this routine.

• If no new EOB condition exists, the routine returns control to the processing
program.

• If a new EOB condition exists, the routine issues a BALR instruction to pass the
present buffer to the end-of-block routine to be scheduled for refilling and
returns control to the processing program.

The RELSE routine sets a bit in the DCB so that the Get routine passes the buffer for
refilling and obtains a new full buffer the next time the routine is entered.

Figure 1

Get Module IGG019AG (CNTRL - Card Reader): Module IGG019AG moves the
next fixed-length or undefined-length record to the work area without scheduling the
buffer for refilling. To refill the buffer, the processing program issues a CNTRL macro
instruction. The Open executor selects and loads this module if the Open parameter
list specifies:

Input

and the DGB specifies:

Get

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or undefined-length
record format

CNTRL (card reader)

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• If an EOB condition exists, it resets the DCBRECAD and DCBEOBAD fields for
the new buffer, issues a BALR to the input-synchronizing-and-error-processing
routine, module IGG019AQ, and then tests for blocked records.

If no EOB condition exists, it tests immediately for blocked records.

• For blocked records, it updates the DCBRECAD field, moves the present record
to the work area, and returns control to the processing program.

• For unblocked records, it sets the DCBRECAD and DCBEOBAD fields so that
they are equal, moves the present record to the work area, and returns control to
the processing program.

The RELSE routine sets the value of the DCBEOBAD field equal to that of the
DCBRECAD field to establish an EOB condition. Control then returns to the
processing program.

Get Module IGG019AM (RDBACK): Module IGG019AM presents the processing
program with the address of the next record when the data set is opened for backward
reading. The Open executor selects and loads this module if the Open parameter list
specifies:

RDBACK

and the DCB specifies:

Get

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or undefined-length
record format

Section 2: Method of Operation 9

10 OS SAM Logic

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

It tests for an EOB condition.

• If no EOB condition exists, it determines the address of the next record by
subtracting the DCBLRECL value from the DCBRECAD value. The routine
presents the result to the processing program, and returns control to the
processing program.

• If an EOB condition exists, it issues a BALR instruction to pass the present
buffet to the end-of-block routine. The Get routine issues another BALR
instruction to obtain a new buffer through the input-synchronizing-and
error-processing routine, module IGG019AQ. The Get routine then presents the
address of the last record of the new buffer to the processing program, and
returns control to the processing program.

The RELSE routine causes an EOB condition by setting the DCBRECAD and
DCBEOBAD fields so that they are equal; it then returns control to the processing
program.

Figure 2 illustrates the ordering of records using this module. When reading backwards
under QSAM, each block is read from the tape from the end of the block to the
beginning, each buffer is filled from the end of the buffer to the beginning, and the
records are presented to the processing program in order of the record in the last
segment of the buffer first, and the record in the first one last. In this manner of
reading, buffering, and presenting, each record follows in backward sequence, from the
record presented last out of one buffer to the record presented first out of the next
buffer.

Get Module IGG019AN (RDBACK): Module IGG019AN moves the next record to the
work area when the data set is opened for backward reading. The Open executor
selects and loads this module if the Open parameter list specifies:

RDBACK

and the DCB specifies:

Get

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or undefined-length
record format

~ Direction of Tape
When Reading Backward

Last GET for th is block
addresses th is segment

First GET for this block
addresses this segment

Last GET for this block
addresses this segment

First GET for this block
addresses th is segment

Last GET for this block
addresses th is segment

First GET for this block
addresses this segment

Direction of Tape~
When Writing

First channel program
fills this buffer

~ beginning here

Next channel program
fills this buffer

~ beginning here

Next channel program
fills this buffer

~ beginning here

Figure 1

Figure 2. Order of Records Using Get Routines for Data Sets Opened for RDBACK
(IGGOI9AM, IGGOI9AN)

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

It receives control when a GET macro instruction is encountered in a processing
program.

It tests for an EOB condition.

If no EOB condition exists, it moves the next record to the work area, and
updates the DCBRECAD field by reducing it by the value of the DCBLRECL
field.

If an EOB condition exists, it issues a BALR instruction to obtain a new buffer
through the input-synchronizing-and-error-processing routine, module
IGGOI9AQ. The Get routine then moves the last record of the new buffer to the
work area.

• It tests for a new EOB condition.

Section 2: Method of Operation 11

12 OS SAM Logic

• If no new EOB condition exists, it returns control to the processing program.

• If a new EOB condition exists, it issues a BALR instruction to pass the present
buffer to the end-of-block routine and then returns control to the processing
program.

The RELSE routine issues a BALR instruction to pass the present buffer to the
end-of-block routine and then returns control to the processing program.

Figure 2, described for Get module IGG019AM, also illustrates the ordering of records
using this module.

Get Module IGG019AT (Paper Tape): Module IGG019AT converts paper tape
characters into EBCDIC characters and moves them to the work area. The Open
executor selects and loads this module and one of the code conversion modules (see
"Appendix A: Code Conversion Routines" in Section 6) if the Open parameter list
specifies:

Input

and the DCB specifies:

Get

Simple buffering

Move operating mode

Paper-tape-character-conversion

The module consists of a Get routine and a character-conversion and
synchronizing-and-error-processing routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• It converts the next character and moves it to the work area.

• It continues converting and moving until one of the following conditions is met,
resulting in stated effect:

The number of characters specified in the DCBBLKSI field of the DCB have
been moved: The routine returns control to the processing program.

An EOB condition is encountered: The routine passes control to the
end-of-block routine to refill the buffer, and then enters the
character-conversion and synchronizing-and-error-processing routine to obtain a
new buffer.

An end-of-record character is encountered (undefined-length records only): The
routine returns control to the processing program.

The tape is exhausted: The routine returns control to the processing program.

A paper tape reader-detected error character is encountered: The routine moves
the character to the work area without conversion and enters the
character-conversion and synchronizing-and-error-processing routine.

Figure 1

If one of the characters in the buffer is an undefined character, the module
converts it to the hexadecimal character FF, moves it to the work area, and
continues conversion. When one of the previous conditions is met, control passes
to the character-conversion and synchronizing-and-error-processing routine.

The character-conversion and synchronizing-and-error-processing routine operates as
follows:

• For an EOB condition, the routine finds the next buffer and returns control to the
Get routine to resume converting and moving.

For a reader-detected error character and for an undefined character, the routine
passes control to the processing program's SYNAD routine. When control returns
from the SYNAD routine, or if there is no SYNAD routine present, one of the
error options is implemented.

• For the Accept-error option, the routine returns control to the processing
program.

• For the Skip-error option, the routine fills the work area again.

For the ABE-error option, or if no error option is specified, the routine issues the
ABEND macro instruction.

The modules containing the tables used for code conversion are listed in Appendix A
under "Code Conversion Routines."

Get Module IGG019BO: Module IGG019BO presents the processing program with the
address of the next variable-length record. The Open executor selects and loads this
module if the Open parameter list specifies:

Input

and the DCB specifies:

Get

Simple buffering

Locate operating mode

Variable-length spanned (unblocked or blocked) record format

Logical record interface

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

It receives control when a GET macro instruction is encountered in the processing
program.

It determines the address of the next record and tests for an EOB condition to
determine whether a buffer is empty and ready for refilling and if new buffer is
needed. When the Open executor primes the buffers, it schedules all buffers
except one and sets an EOB condition.

• If no EOB condition exists, it tests whether the next record segment contains a
complete record.

Section 2: Method of Operation 13

14 OS SAM Logic

• If it is a complete record, the routine presents the address of the next record to
the processing program and returns control to the processing program.

• If it is the first segment of a spanned record, the routine moves the segment to
the record area with the proper alignment, sets the EOB condition, and
determines the address of the next record and whether a buffer is ready for
refilling.

• If it is a segment that follows another segment of a spanned record, the routine
moves the segment (without the segment descriptor word) next to the previous
segment in the record area, and updates the count in the record area. This step
continues until the entire logical record has been assembled in the record area. If
an EOB condition occurs during this process, the routine determines the address
of the next record and whether a buffer is ready for refilling. When the entire
logical record is assembled, the routine sets the spanned record flag in the lOB,
presents the address of the assembled record, and returns control to the
processing program.

• If an EOB condition exists, it issues a BALR instruction to pass the present
buffer to the EOB routine to be scheduled for refilling. The Get routine issues
another BALR instruction to obtain a new buffer through the input
synchronizing-and-error-processing routine (module IGG019AO). The routine
then obtains and interrogates the first record segment of the new buffer. If it is a
complete record, the routine presents the address of the next record to the
processing program and returns control to the processing program.

The RELSE routine operates as follows:

• It receives control when a RELSE macro instruction is encountered in the
processing program.

• It sets an EOB condition.

• It sets a release bit in the DCBRECAD of the DCB.

• It returns control to the processing program.

The RELSE routine sets a release bit in the DCB so that the Get routine passes the
buffer for refilling and obtains a new full buffer the next time the routine is entered.
After obtaining the new buffer as a result of RELSE, the Get routine interrogates the
SDW of the first segment to determine if it is the first segment of a record (bit 6 in
third byte of SDW must be 0); if not, the routine skips to the next SDW and checks it.
This continues until an acceptable segment is found. The routine then processes the
Get request in the usual way. The procedure may result in one or more additional
blocks being passed.

Get Module IGG019FB: Module IGG019FB presents the processing program with the
address of the next variable-length record. The Open executor selects and loads this
module if the Open parameter list specifies:

Input

and the DCB specifies:

Get
Simple buffering
Locate operating mode
Variable-length format (unblocked or blocked) record, spanned

Figure 1

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when the processing program issues a GET macro instruction.

• It determines the address of the next record segment and tests for an EOB
condition to determine whether a buffer is ready for refilling and also whether a
new buffer is needed. When the Open executor primes the buffers, the executor
schedules all buffers except one and sets an EOB condition.

• If no EOB condition exists, the routine presents the address of the next record
segment to the processing program.

• If an EOB condition exists or if a DOS-type null segment (where the high-order
bit of the record descriptor word is on) is encountered, the routine issues a BALR
instruction to pass the current buffer to the EOB routine. The EOB routine
schedules the buffer for refilling. The Get routine issues another BALR
instruction to obtain a new buffer through the
input-synchronizing-and-error-processing routine, module IGG019AQ. The Get
routine then determines if the EOB routine was entered because of a RELSE
macro instruction. If so, the Get routine checks the first record segment to
determine if it is a member of a previous logical record. If it is, the Get routine
continues to look for a record segment that is not a member of a previous record.
Such a segment is considered the first record of the new buffer. (Note, however,
that this could cause reentry into the EOB routine and result in one or more
entire blocks being skipped.) The Get routine then presents the address of the
first record segment of the new buffer to the processing program and returns
control to the processing program.

The RELSE routine causes an EOB condition by setting the DCBRECAD and
DCBEOBAD fields so that they are equal. It then sets the high-order 4 bits of
DCBRECAD to 1s and returns control to the processing program.

Get Module IGG019FD: Module IGG019FD moves the next variable-length record to
the work area. The Open executor selects and loads this module if the Open parameter
list specifies:

Input

and the DCB specifies:

Get
Simple buffering

Move operating mode

Variable-length (unblocked or blocked) record format, spanned

The DCB does not, however, specify the CNTRL macro instruction. The module
consists of a Get and a RELSE routine.

The Get routine operates as follows:

• It receives control when the processing program issues a GET macro instruction.

• It tests for an EOB condition to determine whether a new full buffer is needed.
When the Open executor primes the buffers, the executor also sets an EOB
condition for the first GET macro instruction.

Section 2: Method of Operation 15

16 OS SAM Logic

• If an EOB condition exists, the routine issues a BALR instruction to obtain a new
buffer through the input-synchronizing-and-error-processing routine, module
IGGOI9AQ, and moves the first record segment to the user's work area.

• If no EOB condition exists, the routine moves the first record segment to the
user's work area.

• If a DOS-type null segment (where the high-order bit of the record descriptor
word is on) is encountered, that buffer is rescheduled by passing control to the
EOB routine. Processing continues as if an EOB condition exists as described
above.

• If more record segments are required, the routine moves them, without the
segment descriptor words, to the part of the user's work area that is contiguous
with the previous record segment. The routine also updates the DCBLRECL
field and the logical-record-Iength field in the record descriptor word (RDW) in
the user's work area. These fields then reflect the total logical-record length after
additional record segments have been moved. This procedure continues until the
routine has moved the entire logical record. An EOB condition can occur during
this procedure.

• The routine tests for a new EOB condition to determine whether a buffer is
empty and ready for refilling. For unblocked records, the EOB condition exists
after every entry to the Get routine.

• If no new EOB condition exists, the routine returns control to the processing
program.

• If a new EOB condition exists, the routine issues a BALR instruction to pass the
present buffer to the EOB routine. The EOB routine then schedules the buffer
for refilling and returns control to the processing program.

The RELSE routine sets the high-order 4 bits in the DCBRECAD field to Is so that
the Get routine passes the buffer for refilling and so that the next time the Get routine
is entered, it obtains a new full buffer. After obtaining the new buffer, the Get routine
interrogates the segment descriptor word (SDW) of the first record segment. The
routine thus determines if the segment is the first segment of a record. If it is, bit 6 of
the third byte of the SDW will be O. If not, the Get routine skips to the next SDW and
checks it. This procedure continues until an acceptable segment is found. Then the
Get routine processes the GET macro instruction in the usual way. The procedure can
result in one or more additional blocks being passed.

Get Module IGG019FF: Module IGG019FF moves the data portion of the next
variable-length record to the work area. The Open executor selects and loads this
module if the Open parameter list specifies:

Input

and the DCB specifies:

Get

Simple buffering

Data operating mode

Variable-length (unblocked or blocked) record format, spanned

Figure 1

The DCB does not, however, specify the CNTRL macro instruction. The module
consists of Get and RELSE routines.

The Get routine operates as follows:

• It receives control when the processing program issues a GET macro instruction.

• It tests for an EOB condition to determine whether a new full buffer is needed.
When the Open executor primes the buffers, the executor also sets an EOB
condition for the first GET macro instruction.

• If an EOB condition exists, the routine issues a BALR instruction to obtain a new
buffer through the input-synchronizing-and-error-processing routine, module
IGGOI9AQ, and moves the data portion of the first record segment to the work
area.

• If no EOB condition exists, the routine moves the data portion of the first record
segment to the user's work area.

• If more segments are required, the routine moves them, without the segment
descriptor word, to the part of the user's work area that is contiguous with the
previous record segment. The routine also updates the DCBLRECL field to
reflect the current total logical record length. This procedure continues until the
routine has moved the entire logical record. An EOB condition can occur during
this procedure.

• The routine tests for a new EOB condition to determine whether a buffer is ready
for refilling. For unblocked records, the condition exists after every entry to this
routine.

• If no new EOB condition exists, the routine returns control to the processing
program.

• If a new EOB condition exists, the routine issues a BALR instruction to pass the
present buffer to the EOB routine. The EOB routine then schedules the buffer
for refilling and returns control to the processing program..

The RELSE routine sets the high-order 4 bits in the DCBRECAD field to Is so that
the Get routine passes the buffer for refilling and so that the next time the Get routine
is entered, it obtains a new full buffer. After obtaining the new buffer, the Get routine
interrogates the segment descriptor word (SDW) of the first record segment. The
routine thus determines if the segment is the first segment of a record. If it is, bit 6 of
the third byte of the SDW will be o. If not, the Get routine skips to the next SDW and
checks it. This procedure continues until an acceptable segment is found. Then the
Get routine processes the GET macro instruction in the usual manner. The procedure
can result in one or more additional blocks being passed.

Exchange Buffering Get Routines

Exchange buffering Get routines use buffers whose addresses and lengths are stated in
the channel program. For unblocked records, the buffer address and length are in one
channel command word (CCW). For blocked records, the addresses of the buffer
segments are in successive CCWs (though the segments themselves are not necessarily

Section 2: Method of Operation 17

18 OS SAM Logic

located next to one another). In each pass through an exchange buffering Get routine,
it determines:

The address of the next record

• Whether an input buffer is empty and ready to be scheduled for refilling

• Whether a new full input buffer is needed

If the records are unblocked, a Get routine finds the address of the next record in the
Read CCW for the next input buffer.

If the records are blocked, a Get routine finds the address of the next record in the
next Read CCW for the same buffer. The next CCW is found by adding 8 to the
address of the previously current CCW (the value stated in the DCBCCCW field in the
DCB).

If an input buffer is empty and ready to be scheduled for refilling, a Get routine passes
control to an end-of-block routine. The end-of-block routine passes control to the
I/O supervisor to have it schedule the buffer. After scheduling, the I/O supervisor
returns control to the end-of-block routine, and it returns control to the Get routine.

If a new full buffer is needed, a Get routine passes control to a synchronizing-and
error-processing routine. The synchronizing routine enters the address of the
input/output block (lOB) that points to that channel program into the DCBIOBA field
in the DCB.

If an end-of-block condition exists, either an input buffer is empty and ready to be
scheduled for refilling, or a new buffer is needed. An end-of-block condition exists
for unblocked records during each pass through a routine; for blocked records it exists
if the values in the DCBCCCW (the address of the current CCW) and DCBLCCW
(the address of the last CCW) fields are equal.

In the locate operating mode, the empty buffer is scheduled when the routine is entered
if the last record was presented in the preceding entry; accordingly, a test for an
end-of-block condition is made on entry to the routine to determine both whether a
buffer is empty and if a new buffer is needed.

In the substitute operating mode, the buffer can be scheduled for refilling as soon as a
work area has been substituted for the last buffer segment. An end-of-block test is
made before leaving the routine to determine whether the buffer is empty, and another
end-of-block test is made on entry to the routine to determine if a new buffer is
needed.

A RELSE routine sets an end-of-block condition. This end-of-block condition is
processed so that, when the Get routine is entered next, it operates as usual.

The Open executor primes (that is, schedules for filling) the buffers if QSAM is used
with a DCB opened for Input. For the locate mode, all buffers except one are primed;
for the substitute mode, all buffers are primed. The Open executor also sets an
end-of-block condition; the first time that a Get routine gains control, it processes this
condition in the usual way.

There are four exchange buffering Get routines. Figure 3 lists the available routines
and the conditions that cause a particular routine to be used. The Open executor
selects one of the routines, loads it, and places its address into the DCBGET field. The
table shows, for example, that if input, Get, exchange buffering, locate mode, and
fixed-length blocked record format are specified, module IGG019EA is selected.

Figure 3

Access Method Options Selections

Get. Input. Exchange X X X X X X X

Locate X X X X

Substitute X X X

Fixed-length X X X X

Variable-length X

Undefined-length X X

Unblocked X X X X X

Blocked X X

Get Modules

IGG019EA EA

IGG019EB EB EB EB

IGG019EC EC EC

IGG019ED ED

Figure 3. Module Selector - Exchange-Buffering Get Modules

Get Module IGG019EA: Module IGG019EA uses the locate mode to present the
processing program with the address of the next fixed-length blocked record. The
Open executor selects and, loads this module if the Open parameter list specifies:

Input

and the DeB specifies:

Get

Exchange buffering

Locate operating mode

Fixed-length blocked record format

The module checks the channel program for a rotational position sensing (RPS)
channel program and, if one is found, decreases the last eew pointer to account for
the Read-sector eew at the end of the channel program.

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• It tests for an end-of-block condition to determine whether a buffer is empty and
ready for refilling and if a new full buffer is needed. When the Open executor
primes the buffers, it schedules all buffers except one and sets an end-of-block
condition.

• If no end-of-block condition exists, it presents the address of the next record
(found in the next eeW) and returns control to the processing program.

Section 2: Method of Operation 19

20 OS SAM Logic

• If an end-of-block condition exists, the routine passes control to the
end-of-block routine to cause scheduling of the buffer for refilling. On return of
control, the Get routine passes control to the input-synchronizing-and
error-processing routine, module IGG019AQ, to obtain a new full buffer. On
return of control, the Get routine then presents the address of the first record and
returns control to the processing program.

The RELSE routine causes an end-of-block condition by setting the DCBCCCW and
DCBLCCW fields equal and returns control to the processing program.

Note: If an input DCB using this module is paired with an output DCB using module
IGG019EF (Output, Put, Exchange), a PUTX macro instruction addressed to the
output DCB causes an exchange of the addresses of the current buffer segments of
each DCB. These are found in the CCWs pointed to by the input and output DCBs.

Get Module IGG019EB: Module IGG019EB uses the locate mode to present the
processing program with the address of the next unblocked record. The Open executor
selects and loads this module if the Open parameter list specifies:

Input

and the DeB specifies:

Get

Exchange buffering

Locate operating mode

Unblocked record format (fixed- , variable- , or undefined-length)

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• It passes control to the end-of-block routine to cause scheduling of the previous
buffer for refilling.

• It passes control to the input-synchronizing-and-error-processing routine,
module IGG019AQ, to obtain the next full buffer. When the Open executor
primes the buffers, it schedules all buffers except one.

• It presents the address of the record and returns control to the processing
program. For variable-length or undefined-length records, the routine also
presents the record length.

The RELSE routine returns control without performing any processing.

Note: If an input DCB using this module is paired with an output DCB using module
IGG019EE (Output, Put, Exchange), a PUTX macro instruction addressed to the
output DCB causes an exchange of the addresses of the current buffer segments of
each DCB. These addresses are found in the CCWs pointed to by the DCBCCCW
fields in the input and output DCBs.

Figure 3

Get Module IGG019EC: Module IGG019EC uses the substitute mode.to present the
processing program with the address of the next unblocked record. The Open executor
selects and loads this module if the Open parameter list specifies:

Input

and the DCB specifies:

Get

Exchange buffering

Substitute operating mode

Unblocked record format (fixed- or undefined-length)

The module consists of a Get routine and a RELSE routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• It passes control to the synchronizing routine to obtain the next full buffer.

• It exchanges the address of the work area and the address of the buffer.

• It passes control to the end-of-block routine to cause the work area offered by
the processing program to be scheduled for filling.

• It presents the address of the new record and returns control to the processing
program. (When the Open executor primes the buffers, it schedules all buffers.)

• When undefined-length records are specified, the routine also presents the record
length.

The RELSE routine returns control without performing any processing.

Get Module IGG019ED: Module IGG019ED uses the substitute mode to present the
processing program with the address of the next fixed-length blocked record. The
Open executor selects and loads this module if the Open parameter list specifies:

Input

and the DCB specifies:

Get

Exchange buffering

Substitute operating mode

Fixed-length blocked record format

The module checks the channel program for a rotational position sensing (RPS)
channel program and, if one is found, decrements the last CCW pointer to account for
the Read Sector CCW at the end of the channel program.

The module consists of a Get routine and a RELSE routine.

Section 2: Method of Operation 21

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing .
program.

• It tests for an end-of-block condition to determine if a new full buffer is needed.
When the Open executor primes the buffers, it schedules all buffers and sets an
end-of -block condition.

• If no end-of-block condition exists, it exchanges the address of the work area for
the address stated in the current CCW. The current CCW is found by adding 8
to the value of the DCBCCCW field.

• If an initial end-of-block condition exists, it passes control to the
input-synchronizing-and-error-processing routine, module IGG019AQ, to obtain
the next full buffer. It then exchanges the address of the work area for the
address stated in the first Read CCW of the channel program.

• It tests for a new end-of-block condition to determine if a buffer is empty and
ready for refilling.

• If no new end-of -block condition exists, it presents the address of the next
record and returns control to the processing program.

• If a new end-of-block condition exists, it passes control to the end-of-block
routine to cause scheduling of the empty buffer for refilling. It then presents the
address of the next record and returns control to the processing program.

The RELSE routine sets an end-of-block condition and passes control to the
end-of-block routine to cause scheduling of the buffer for refilling. It then returns
control to the processing program.

Update Mode Get Routine

22 OS SAM Logic

The update mode Get routine differs from other Get routines in that it shares its
buffers, as well as the DCB and the lOBs, with the update mode Put routine. The
QSAM update mode of access uses simple buffering in which the buffer is defined by
the start and end addresses of the buffer.

If a PUTX macro instruction addresses a record in a block, the update mode Get
routine determines, when the end of the block is reached, that that buffer is to be
emptied (that is, that the block is to be updated) before being filled with a new block
of data. If no PUTX macro instruction addresses a record in a block, the update mode
Get routine determines, when the end of the block is reached, that the buffer is to be
refilled only; that is, that the last block need not be updated and the buffer can be
filled with a new block of data. These characteristics of the buffer - simple buffering,
sharing the buffer with the Put routine, and emptying the buffer before refilling -
influence the manner in which the update mode Get routine determines:

• The address of the next record.

• Whether the buffer can be scheduled.

• Whether a new buffer is needed.
• Whether to schedule the buffer for empty-and-refill or for refill-only.
The first three of these determinations are made at every pass through the routine. The
last determination is made after the routine establishes that the buffer can be
scheduled.

If the records are unblocked, the address of the next record is the address of the next
buffer.

If the records are blocked, the address of the next record is found by adding the record
length, found in the DCBLRECL field, to the value in the DCBRECAD field.

Whether the buffer can be scheduled and whether a new buffer is needed is determined
by whether an end-of-block condition exists. In the update mode, one determination
that l!n end-of-block condition exists causes both the last buffer to be scheduled and a
new buffer to be sought. An end-of-block condition exists for unblocked records at
every pass through the routine; for blocked records it exists if the values in the
DCBRECAD (the address of the current record) and the DCBEOBAD (the address of
the end of the block) fields are equal. To cause scheduling of the buffer, the Get
routine passes control to the end-of-block routine. To obtain a new buffer, the Get
routine passes control to the update-synchronizing-and-error-processing routine,
module IGG019AF.

A
C

r----
r+-

B
~

+-I--

y

L-..j

Legend:

Channel Program

MBBCCHHR

SEARCH

TIC

WRITE (Data)

SEEK

SEARCH

TIC

READ (Count)

READ (Data)

MBBCCHHR

Buffer

lOB

CPAD

\

The Empty portion of an
Update Channel Program

The Refi II portion of an
Update Channel Program

A - Address of channel program (CPAD) used to empty and refill the buffer.
(A PUTX macro instruction was addressed to a record in this buffer.)

B - Address of channel program (CPAD) used only to refill the buffer.
(No PUTX macro instruction was addressed to any record in this buffer.)

Figure 4. The Two Parts of an Update Channel Program (Empty, Refill)

To cause scheduling of the buffer for either empty-and-refill or refill-only, the update
mode Get routine sets the lOB to point to the beginning of either one of two parts
(empty and refill) of the QSAM update channel program. Empty writes out of the

Section 2: Method of Operation 23

buffer and reads into that same buffer (see Figure 4). If execution of a QSAM update
channel program begins with the empty part, execution of the refill part always follows.
Each part of the QSAM update channel program addresses a different location in
auxiliary storage: the empty part addresses the location from which the block to be
updated was read; the refill part addresses the location from which the last block was
read. Addressing the last known block and skipping over its data field leads to the
beginning of the next block, regardless of its address. This method of addressing a
Search command to the block read previously to address a Read (count, key, and data)
command to the next block is known as the search-previous technique. It makes the
count field of the present block being read the Seek address of the refill portion of the
next channel program. When a buffer is to be emptied (back to the original location of
the block in auxiliary storage), the update mode Get routine obtains the block address
from the Seek address of the refill part of the next channel program. It copies the
address so that it becomes the Seek address for the empty part of the present channel
program (see Figure 5). For a description of the processing for a refill-only QSAM
update channel program, refer to the description of the update SIO appendage.

Channel Program for the Buffer
Scheduled to be Emptied and Refilled

B

Channel Program for the Buffer
To be Processed Next

0

Channel Program for the Buffer
Just Emptied and Refilled

0

L 1-1 L 1-3 C ...=----, L 1-2 C ~-----,
I

SEARCH SEARCH SEARCH
r

I WRITE (Data) r--- WRITE (Data) --I WRITE (Data) f---,
I

I
r

~
I

I ,--- SEARCH r--- SEARCH

I
,--- SEARCH

I

I I
I

READ (Count)
A

READ (Count)
A ,

READ (Count) A I -- h
! I i~

I
,

~ L __ (Data)

I L __ <-:--
(Data) f-- L __ (Data) -

1+1 1-1 I

+ ~ y
Data of Block 1-1 J Data of Block I j Data of Block 1+ 1 ~

Buffer Contents Buffer Contents Buffer Contents

Legend:
A - The Refill portion reads the count field of the block being read into the search argument of the next Refill portion.

B - To empty the buffer, the search argument of the next Refill portion is used as the search argument of this Empty portion.

C - To empty the buffer, the search argument of the next Refill portion was copied before the last time this buffer was scheduled.

o - To empty the buffer, the search argument of the next Refill portion will be copied before the next time this buffer is scheduled.

---- Present entries ----- Future entries

Figure 5. Relation of Seek Addresses in Three Successive QSAM Channel Programs

24 OS SAM Logic

Whether to schedule the buffer for empty-and-refill or for refill-only depends on
whether the block is to be updated. If the block is to be updated, the PUTX routine
will have set the update flag on in the lOB; otherwise, the flag is off. To schedule the
buffer for empty-and-refill, the Get routine sets the lOB to point to the empty portion
of the channel program and obtains the Seek address of the block to be updated from
the refill portion of the next channel program. To schedule the buffer for refill-only,

I
I

~

Figure 6

the Get routine sets the lOB to point to the refill portion of the channel program. The
end-of-block condition which triggers this processing also causes control to pass to the
end-of-block routine, module IGG019CC, for issuing the EXCP macro instruction and
to the update-synchronizing-and-error-processing routine, module IGG019AF, for
obtaining the next buffer.

The PUTX routine sets the update flag in the lOB and returns control to the processing
program. The RELSE routine sets an end-of-block condition and returns control to
the processing program.

The Open executor primes (that is, schedules for filling) all the buffers except one if
QSAM is used with a DCB opened for update. The Open executor also sets an
end-of-block condition; the first time that the update mode Get routine gains control,
it processes this condition in its normal manner.

Figure 6 shows the update mode Get routines and the access conditions that must be
specified in the DCB to select a particular routine. The Open executor loads the
selected routine and places its address into the DCBGET field of the DCB.

Access Method Options Selections

Update. Get X X X X X X X

Fixed-length record "X X
format

Variable-length record X X X X
format

Undefined-length record X
format

Blocked record format X X X

Unblocked record format X X X X

Locate operating mode X X

Logical record X X
interface

Get Modules

IGG019AE' AE AE AE AE AE

IGG019BN BN BN

, ThiS module also carnes the Update-Mode PUTX routine.

Figure 6. Module Selector - Update-Mode Get Modules

Get Module IGG019AE: Module IGG019AE presents the processing program with the
next input record, flags the lOB if the block is to be updated (emptied and refilled),
and sets the lOB to address a QSAM update channel program for either
empty-and-refill or refill-only. The Open executor selects and loads this module if the
Open parameter list specifies:

Update

and the DCB specifies:

Get

Section 2: Method of Operation 25

26 OS SAM Logic

With the rotational position sensing (RPS) feature, the new CCWs are bypassed when
necessary.

The module consists of a Get routine, a RELSE routine, and a PUTX routine.

The Get routine operates as follows:

•

•

•

•

•

•

•

It receives control when a GET macro instruction is encountered in a processing
program.

It tests for an end-of-block condition to determine whether the buffer can be
scheduled and if a new buffer is needed. When the Open executor primes the
buffers, it schedules all buffers except one and sets an end-of-block condition.

If no end-of-block condition exists, it presents the address of the next record,
and returns control to the processing program. For variable-length, format-D,
and undefined-length records, it also determines the length of the record and
places it in the DCBLRECL field in the DCB.

If an end-of-block condition exists, it tests whether the buffer is to be emptied
and refilled or is to be refilled only.

If it is to be refilled only, it sets the lOB to point to the start of the Read portion
of the update channel program and passes control to the end-of-block routine to
cause scheduling of the buffer.

If it is to be emptied and refilled, it sets the lOB to point to the start of the
update channel program. The routine obtains the auxiliary storage address to be
used by the Write portion of the channel program by copying the address used by
the Read portion of the channel program associated with the next lOB. The
routine then passes control to the end-of-block routine to cause scheduling of the
buffer.

On return of control from the end-of-block routine, the Get routine passes
control to the update-synchronizing-and-error-processing routine, module
IGG019AF, to obtain a new full buffer.

On return of control from the synchronizing routine, the Get routine updates the
DCBLRECL field, presents the address of the next record, and returns control to
the processing program.

The RELSE routine operates as follows:

It receives control when a RELSE macro instruction is encountered in the
processing program.

• It sets an end-of-block condition.

• It returns control to the processing program.

The PUTX routine operates as follows:

It receives control when a PUTX macro instruction is encountered in the
processing program.

• It sets the update flag in the lOB to show that the buffer is to be emptied before
being refilled.

It returns control to the processing program.

Figure 6

Get Update Module IGG019BN: Module IGG019BN presents the processing program
with the next input record, flags the lOB if the block or a spanned record is to be
updated (that is, emptied and refilled), and sets the lOB to address a QSAM update
channel program for either empty-and-refill or refill-only. The Open executor selects
and loads this module if the Open parameter list specifies:

Update

and the DCB specifies:

Get

Locate operating mode

Variable-length spanned (blocked or unblocked) record format

Logical record interface

The module consists of a Get routine, a RELSE routine, and a Put routine.

The Get routine operates as follows:

• It receives control when a GET macro instruction is encountered in a processing
program.

• It tests whether EOV has occurred while processing a spanned record.

• If the record is not to be updated, it sets a bit in the DCBIOBAD field of the
DCB to indicate that the old DEB, whose address was saved by the EOV routine,
can be freed. It then issues an FEOV macro instruction to free the main storage
assigned to this DEB.

• If the record is to be updated, it restores the address to read back the block that
contains the beginning segment of the record. The current lOB is modified to
function as if only one lOB exists. It then issues an FEOV macro instruction to
cause the previous volume to be mounted and the data management count to be
reset.

• On return of control from the FEOV routines, it operates as if no EOV has
occurred.

• If EOV has not occurred, it continues on to the next step.

• It tests whether a spanned record is to be updated.

• If it is not to be updated, it obtains the length of the previous record segment
from the DCBLRECL field in the DCB or the SDW if it was a spanned record.

• It determines the address of the next record segment and tests for an EOB
condition to determine whether the buffer can be scheduled and if a new buffer is
needed. (When the Open executor primes the buffers, it schedules all buffers
except one and sets an EOB condition.)

• If no EOB condition exists, it tests the next record segment for a complete record.

• If it is a complete record, the routine presents the address of the next record,
determines the length of the record, places it in the DCBLRECL field, and
returns control to the processing program.

Section 2: Method of Operation 27

28 OS SAM Logic

• If it is the first segment of a spanned record, the routine saves the track address
of the block that contains this segment, the position of the segment in the block,
and the alignment of the segment in the record area. The routine obtains the
track address of the block by copying the address used by the Read portion of the
channel program associated with the next lOB, the position of the segment by
subtracting the buffer address from the current record address, and the alignment
of the segment by using the low-order byte of the current record address. The
routine then moves the first segment to the record area and sets the EOB
condition. It determines the address of the next record, whether a new buffer can
be scheduled, and if a new buffer is needed.

• If it is a segment that follows another segment of a spanned record, the routine
combines the segment (without the SDW) contiguous with the previous segment
in the record area. The count in the record descriptor word (RDW) in the record
area is updated to include the total count. This process continues until the entire
logical record has been assembled. An EOB condition may occur during this
process, in which case the routine determines the address of the next record,
whether a new buffer can be scheduled, and if a new buffer is needed. When the
entire logical record has been assembled, the routine sets the spanned-record flag
in the lOB, presents the address of the assembled record in the record area,
places the length of the record (which is obtained from the RDW in the record
area) in the DCBLRECL field, and returns control to the processing program.

• If an EOB condition exists, it tests whether the buffer is to be emptied and
refilled or is to be refilled only.

• If it is to be refilled only, it sets the lOB to point to the start of the read portion
of the update channel program and passes control to the EOB routine to cause
scheduling of the buffer.

• If it is to be emptied and refilled, it sets the lOB to point to the start of the
update channel program. The routine obtains the auxiliary storage address to be
used by the Write portion of the channel program by copying the address used by
the Read portion of the channel program associated with the next lOB. The
routine then passes control to the EOB routine to cause scheduling of the buffer.

• On return of control from the EOB routine, the routine passes control to the
update-synchronizing-and-error-processing routine, module IGGO 19BQ, to
obtain a new full buffer.

• On return of control from the synchronizing routine, the routine interrogates the
next record segment and saves the track address of the block that contains the
record, the position of the segment in the block, and the alignment of the segment
in the record area. The routine then moves the first segment to the record area
and sets the EOB condition.

• If a spanned record is to be updated, the routine restores the track address to
read back the block that contains the beginning segment of the record. The
current lOB is modified to function as if only one lOB exists.

• It sets the lOB to point to the start of the read portion of the update channel
program and passes control to the EOB routine to cause scheduling of the buffer.

• On return of control from the EOB routine, the routine passes control to the
update-synchronizing-and-error-processing routine, module IGG019BQ, to
obtain a new full buffer.

Put Routines

Figure 6

• On return of control from the synchronizing routine, the routine repositions the
pointers to the beginning segment of the record and moves that portion of the
record from the record area to the segment in the buffer. (A count is kept of the
number of bytes of data moved.)

• If more segments are to be updated, the routine moves that portion of the record
from the record area to the succeeding segments in the buffer. (The total count
of the data moved is updated with each move.) This process continues until the
entire logical record has been segmented. If an EOB condition occurs during this
process, the routine tests whether a spanned record is to be updated. When the
entire logical record has been segmented, the routine turns off the spanned-record
flag in the lOB, restores the link field in the lOB, obtains the address of the next
record segment, and determines whether a new buffer can be scheduled and is
needed.

The RELSE routine operates as follows:

• It receives control when a RELSE macro instruction is encountered in the
processing program.

It sets an EOB condition.

It sets a release bit in the DCBRECAD field of the DCB.

• It returns control to the processing program.

The RELSE routine sets a release bit in the DCB so that the Get routine passes the
buffer for refilling and obtains a new full buffer the next time the routine is entered.
After obtaining the new buffer as a result of RELSE, the Get routine interrogates the
SDW of the first segment to determine if it is the first segment of a record (bit 6 in the
third byte of the SDW must be 0); if not, the routine skips to the next SDW and
checks it. This continues until an acceptable segment is found. The routine then
processes the Get in the usual way. This procedure may result in one or more
additional blocks being passed.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is encountered in the
processing program.

It sets the update flag in the lOB to show that the buffer is to be emptied before
being refilled.

• It returns control to the processing program.

Note: When a RELSE macro instruction is issued after a spanned record is written
with a PUTX macro instruction, this routine branches to the Get routine to write the
last record (the spanned record) and then releases the block that contains the last
segment of that spanned record.

Some of the general characteristics of the Put routines are described in Diagram B,
QSAM Get and Put Routines, in Section 5. A specific Put routine is selected for each
data set on the basis of access method options specified by the processing program.
The options examined are in the Open statement parameter list and the data set
attributes described in the DCB.

Section 2: Method of Operation 29

The Open executors (see Diagram D, SAM Open Executors, in Section 5) select and
load the modules that are required for a particular data set.

The access method options that determine which Put modules are selected when Simple
buffering is used are described in Figure 7. The options that determine which Put
modules are selected when exchange buffering is used are described in Figure 8. For
update mode, the PUTX routine resides in the Get module for update mode. See
Figure 6 (under "Update Mode Get Routine") for information about the update mode
PUTX routine.

For information about the flow of control through the QSAM routines, see Diagram F,
QSAM Flow of Control, in Section 5.

Simple Buffering Put Routines

30 OS SAM Logic

Simple buffering Put routines use buffers whose ending address and the address of the
next or current record is pointed to by the DCB. The address of the next record is in
the DCBRECAD field (address of the next record); the ending address is in the
DCBEOBAD field (address of the end of the buffer). In each pass through a routine,
it determines:

The address of the next buffer segment

• Whether an output buffer is to be scheduled for emptying

Whether a new empty buffer is needed

These three determinations are made at every pass through a Put routine.

If the records are unblocked, the address of the next available buffer segment is always
that of the next buffer.

If the records are blocked, a Put routine determines the address of the next available
buffer segment by adding the length of the last record to the address of the last buffer
segment. The address of the last buffer segment is in the DCBRECAD field of the
data control block (DCB). If the records are fixed-length blocked records, the length
of each record is in the DCBLRECL field. If the records are variable-length blocked
records, the length of each record is in the length field of the record itself.

A Put routine determines that a buffer is ready for emptying and a new empty buffer is
needed by establishing that an end-of-block (EOB) condition exists.

If an output buffer is to be scheduled for emptying, a Put routine passes control to an
end-of-block routine, to cause the present buffer to be scheduled for output.

If a new empty buffer is needed, a Put routine obtains a new buffer by passing control
to the output-synchronizing-and-error-processing routine, module IGG019AR. For a
buffer that was emptied without error, the synchronizing routine updates the
DCBIOBA field (thus pointing to the new buffer) and returns control to the Put
routine. The Put routine updates the DCBRECAD field by inserting the starting
address of the buffer from the channel program associated with the new lOB. To
update the DCBEOBAD field, the routine adds the length of the block stated in the
DCBBLKSI field to the buffer starting address. These two fields, DCBRECAD and
DCBEOBAD, define the available buffer.

An EOB condition is established by different criteria for different record formats and
operating modes.

For unblocked records, an EOB condition exists after each record is placed in the
buffer. If the move operating mode is used, a Put routine establishes that an EOB
condition exists for the present buffer after the routine has moved the record into the
buffer. If the locate operating mode is used, a Put routine establishes that an EOB
condition exists for the present buffer on the next entry to the routine, after the
processing program has moved the record into the buffer.

For blocked records, the time that an EOB condition occurs depends on the record
format.

For fixed-length blocked records, an EOB condition occurs when the DCBRECAD
field equals the DCBEOBAD field. The DCBRECAD field shows the address of the
segment for the next record. The DCBEOBAD field shows a value equal to one more
than the address of the end of the buffer. If the move operating mode is used, the Put
routine moves the last fixed-length record into the buffer, updates the DCBRECAD
field, and establishes that an EOB condition exists for the present buffer. If the locate
operating mode is used, the processing program moves the last fixed-length record into
the buffer. On the next entry to the Put routine, the routine updates the DCBRECAD
field and establishes that an EOB condition exists for the present buffer.

For variable-length blocked records, unspanned, an EOB condition occurs when the
length of the next record exceeds the buffer balance; that is, when the record length
exceeds the space remaining in the buffer. If the user has specified move mode for
unspanned records, the Put routine establishes that an EOB condition exists when the
record length stated in the first word of the record exceeds the buffer balance. If the
user has specified locate mode for unspanned records, the Put routine establishes that
an EOB condition exists when the value stated in the DCBLRECL field exceeds the
buffer balance.

For variable-length blocked records, spanned, the next record is segmented. The first
record segment is used to fill the buffer when five or more bytes remain in the buffer.
When fewer than five bytes remain in the buffer, an EOB condition occurs.

A TRUNC routine sets an end-of-block condition to empty the buffer. This
end-of -block condition is processed so that the next entry to the Put routine permits it
to operate as usual. Successive entries to a TRUNC routine without intervening entries
to a Put routine cause the TRUNC routine to return control without performing any
processing.

To permit a Put routine to operate normally when it is entered for the first time, the
Open executor initializes the DCB fields DCBRECAD and DCBEOBAD. For an
output data set using QSAM and simple buffering, the values entered in these fields
depend on the operating mode. For locate mode routines, it sets them to show the
beginning and end of the first buffer; for move mode routines, it sets an end-of-block
condition.

Figure 7 lists the Put routines and the conditions that cause a particular routine to be
read. The Open executor selects one of the routines, loads it, and places its address
into the DCBPUT fields.

Section 2: Method of Operation 31

32 OS SAM Logic

Put Module IGG019AI: Module IGG019AI presents the processing program with the
address of the next available buffer segment for a fixed-length or undefined-length
record. The Open executor selects and loads this module if the Open parameter list
specifies:

Output

and the DeB specifies:

Put

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked or blocked standard) or undefined-length
record format

Access Method Options

Output, Put/ PUTX,
Simple buffering

Locate operating mode

Move operating mode

Data operating mode

Fixed-length record
format

Undefined-length
record format

Variable-length or
record format-D

Spanned records

Logical record
interface

Put Modules

IGG019AI

IGG019AJ

IGG019AK

IGG019AL

IGG019BP

IGG019FG

IGG019FJ

IGG019FL

Selections

x x

x x

x

x

AI AI

x x x

x
x x

x

x

x

AJ

AK AK

x

x

x

AL

x

x

x

x

X

BP

Figure 7. Module Selector - Simple Buffering Put Modules

x x x

x

x x

x x x

x x x

FG

FJ

FL

Figure 7

The module consists of a Put routine and a TRUNC routine.

The Put routine operates as follows:

• It receives control when a PUT macro instruction is encountered in a processing
program.

It determines the address of the next buffer segment using the value in the
DCBLRECL field.

It tests for an EOB condition to determine whether a buffer is full and ready for
emptying and if a new empty buffer is needed.

• If no EOB condition exists, it presents the address of the next buffer segment to
the processing program and returns control to the processing program.

• If an EOB condition exists, it issues a BALR instruction to pass the present
buffer to the end-of-block routine. The Put routine issues another BALR
instruction to obtain a new buffer through the output-synchronizing-and
error-processing routine, module IGG019AR, and determines the address of
the first segment of the new buffer. The Put routine then presents this address
and returns control to the processing program.

The TRUNC routine causes an EOB condition by setting the DCBRECAD and
DCBEODAD fields so that they are equal; it then returns control to the processing
program.

Put Module IGG019AJ: Module IGG019AJ presents the processing program with the
address of the next available buffer segment for a variable-length or format-D record.
The Open executor selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Locate operating mode

Variable-length or record format D (unblocked or blocked), unspanned

The module consists of a Put routine and a TRUNC routine.

The Put routine operates as follows:

It receives control when a PUT macro instruction is encountered in a processing
program.

• It determines the address of the next buffer segment using the length field of the
record moved by the processing program into the buffer segment located last.

• It tests for an EOB condition to determine whether a buffer is ready for emptying
and if a new empty buffer is needed, by using the value placed into the
DCBLRECL field by the processing program.

• If no EOB condition exists, it tests for blocked records.

If blocked records are specified, it presents the address of the next buffer segment
to the processing program and returns control to the processing program.

Section 2: Method of Operation 33

34 OS SAM Logic

If an EOB condition exists or if unblocked records are specified, it issues a BALR
instruction to pass the present buffer to the end-<>f-block routine. The Put
routine issues another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGGO 19 AR, and
determines the address of the first segment of the new buffer. The Put routine
then presents this address to the processing program and returns control to the
processing program.

The TRUNC routine causes an EOB condition by setting the DCBRECAD and
DCBEOBAD fields so that they are equal; it then returns control to the processing
program.

Put Module IGG019AK: Module IGG019AK moves the present fixed-length or
undefined-length record into the next available buffer segment. The Open executor
selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, blocked standard) or undefined-length record
format

The module consists of a Put routine, a PUTX routine, and a TRUNC routine.

The Put routine operates as follows:

It receives control when a PUT macro instruction is encountered in a processing
program.

If an EOB condition exists, it issues a BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing routine, module
IGGOI9AR, and then moves the record from the work area into the first buffer
segment.

If no EOB condition exists, it moves the record from the work area into the next
buffer segment.

It tests for blocked records.

If blocked records are specified, it determines the address of the next segment and
tests for a new EOB condition.

• If unblocked records are specified or if a new EOB condition exists, it issues a
BALR instruction to pass the present buffer to the end-<>f-block routine and then
returns control to the processing program.

If no new EOB condition exists, it returns control to the processing program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is encountered in a processing
program.

Figure 7

• It obtains the DCBRECAD value of the input DCB, which points to the present
record in the input buffer.

• It enters the Put routine at the start. The Put routine then uses the input
DCBRECAD value in place of the work area address.

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro instruction is encountered in a
processing program.

• It simulates an EOB condition.

• It issues a BALR instruction to pass the present buffer to the end-of-block
routine.

On return of control from the end-of-block routine it returns control to the
processing program.

Put Module IGG019AL: Module IGG019AL moves the present variable-length or
format-D record into the next available buffer segment. The Open executor selects
and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Move operating mode

Variable-length or record format-D (unblocked or blocked), unspanned

The module consists of a Put routine, a PUTX routine, and a TRUNC routine.

The Put routine operates as follows:

It receives control when a PUT macro instruction is encountered in a processing
program.

It determines the address of the next buffer segment and compares the length of
the next record with the remaining buffer capacity.

• If the record fits into the buffer, it moves the record, updates the length field of
the block, and tests for blocked records.

• If blocked records are specified, it returns control to the processing program.

If the record does not fit into the buffer or if unblocked records are specified, it
issues a BALR instruction to pass the present buffer to the end-of-block routine.
It issues another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGGO 19 AR. The
Put routine then moves the record from the work area to the buffer, updates the
block-length field, and returns control to the processing program.

Section 2: Method of Operation 35

36 OS SAM Logic

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is encountered in a processing
program.

• It obtains the DCBRECAD value of the input DCB, which points to the present
record in the input buffer.

• It enters the Put routine at the start. The Put routine then uses the input
DCBRECAD value instead of the work area address.

The TRUNe routine operates as follows:

It receives control when a TRUNC macro instruction is encountered in a
processing program.

• It issues a BALR instruction to pass control of the present buffer to the
end-of-block routine.

• It issues another BALR instruction to obtain a new buffer through the
output-synchronzing-and-error-processing routine, module IGG019AR.

• It determines the address of the first segment of the new buffer and then returns
control to the processing program.

Put Module IGG019BP: Module IGG019BP presents the processing program with the
address of the next available buffer segment for a variable-length record. The Open
executor selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Locate operating mode

Variable-length spanned (unblocked or blocked) record format

Logical record interface

The module consists of a Put routine and a TRUNC routine.

The Put routine operates as follows:

• It receives control when a PUT macro instruction is encountered in a processing
program.

It tests whether a spanned record was to have been written.

If the last record written was not a spanned record, it determines the address of
the next buffer segment using the length field of the last record segment moved
by the processing program.

• It checks the value placed into the DCBLRECL field to determine if a buffer is
ready for emptying and if a new empty buffer is needed.

• If no EOB condition exists, it tests for blocked records.

Figure 7

• If blocked records are specified, it presents the address of the next buffer segment
to the processing program and returns control to the processing program.

If unblocked records are specified, it issues a BALR instruction to pass the
present buffer to the EOB routine. The Put routine issues another BALR
instruction to obtain a new buffer through the output-synchronizing
and-error-processing routine, module IGG019AR, and determines the address of
the first segment of the new buffer. The Put routine tests whether the present
record to be written can fit entirely in the new buffer.

• If the record fits, the Put routine then presents this address to the processing
program and returns control to the processing program.

• If the record does not fit, the routine saves the record address in the record area,
obtains the address within the record area with the proper alignment, sets the
spanned-record flag in the lOB, presents the address in the record area to the
processing program, and returns control to the processing program.

• If an EOB condition exists, it tests whether a minimum record segment (at least 5
bytes) can fit in the present buffer.

• If it fits, the routine saves the record address, obtains the address within the
record area, sets the spanned-record flag in the lOB, presents the address to the
processing program, and returns control to the processing program.

If it does not fit, the routine issues a BALR instruction to pass the present buffer
to the EOB routine. The routine then issues another BALR instruction to obtain
a new buffer through the output-synchronizing-and-error-processing routine,
IGG019AR, and determines the address of the first segment of the new buffer.
The routine tests whether the present record can fit entirely in the new buffer.

If a spanned record was to be written out, it restores the record address,
determines the length of the segment that can fit in this buffer, moves the
segment from the record area to the buffer, and sets the proper flags for the
segment.

• If more segments are required, the routine issues a BALR instruction to pass the
present buffer to the EOB routine. The Put routine issues another BALR
instruction to obtain a new buffer through the output-synchronizing-and
error-processing routine, module IGG019AR, and determines the address of the
first segment of the new buffer. It moves the remaining bytes of data from the
record area to the buffer and sets the proper flags for the segment. This step
continues until the entire spanned record has been segmented. The routine then
turns off the spanned-record flag and determines the address of the next buffer
segment.

The TRUNC routine causes an EOB condition by setting the DCBRECAD and
DCBEOBAD fields so that they are equal. It then returns control to the processing
program.

When a TRUNC macro instruction is issued after a spanned record was written, this
routine branches to the Put routine to write out the last record (the spanned record)
and then truncates the block that contains the last segment of that spanned record.

Section 2: Method of Operation 37

38 OS SAM Logic

Put Module IGG019FG: Module IGGOl9FG moves the data portion of the
variable-length record into the next available buffer segment. The Open executor
selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Data operating mode

Variable-length (unblocked or blocked) record fonnat, spanned

The module consists of a Put routine and a TRUNC routine.

The Put routine operates as follows:

• It receives control when the processing program issues a PUT macro instruction.

• It determines the possible location of the next buffer segment by adding the
length of the previous record or record segment to the previous buffer segment
address. This address is in the DCBRECAD field.

• It then compares the length of the next record with the remaining buffer capacity.

• If the record will fit, the routine moves the record, updates the length field of the
block descriptor word (BDW), and checks for blocked records.

• If blocked records are specified, the routine returns control to the processing
program. If unblocked records are specified, the routine issues a BALR
instruction to pass the current buffer to the EOB routine. The Put routine issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGGOI9AR. The
Put routine then builds a new block descriptor word (BDW) and returns control
to the processing program.

• If the record will not fit, the routine determines whether there are 5 or more
unused bytes remaining in the buffer. If there are, the Put routine breaks the
current record so that the first segment fills the buffer. The remaining segment
will be placed in subsequent buffers. The length field in the segment descriptor
word (SDW) of the first segment is updated to reflect the length of the segment.
The third byte of this SDW is set to X'OI' to indicate that this segment is the first
of a multisegment record. After writing the buffer, the Put routine does not
return control to the processing program until the entire record has been
processed. The routine forms the remainder of the current record into a new
segment. The new segment is constructed in a new buffer; the third byte of the
SDW of the newly created segment is set to X'02' if this segment is the last of a
multisegment record. If there are other segments, the third byte is set to X'03' to
indicate that this segment is neither the first nor the last of a multisegment record.
Newly created segments are processed as any other record.

The TRUNC routine operates as follows:

It receives control when a TRUNC macro instruction is encountered in a
processing program.

It issues a BALR instruction to pass control of the present buffer to the
end-of-block routine.

It issues another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR.

Figure 7

• It determines the address of the first segment of the new buffer and then returns
control to the processing program.

Put Module IGG019FJ: Module IGG019FJ presents the processing program with the
address of the next available buffer segment for a variable-length record. The Open
executor selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Locate operating mode

Variable-length (unblocked or blocked) record format, spanned

The module consists of a Put routine and a TRUNC routine.

The Put routine operates as follows:

It receives control when the processing program issues a PUT macro instruction.

• It determines the address of the next buffer segment by adding the address of the
last record or record segment moved to the buffer and the length of that record or
record segment. The length of the record segment is in the SDW.

• It checks the buffer to see if there are five or more unused bytes.

If there are 5 or more unused bytes remaining in the buffer, the Put routine
places their address into register 1 for the processing program. The Put routine
places the exact number of bytes left in the buffer into register 0 for the
processing program. The Put routine then returns control to the processing
program.

If the buffer contains fewer than 5 unused bytes, the routine issues a BALR to
the EOB routine. The Put routine issues another BALR instruction to obtain a
new buffer through the output-synchronizing-and-error-processing routine,
module IGG019AR, and determines the address of the first segment of the new
buffer. The Put routine then builds a new block descriptor word (BDW) and
returns control to the processing program.

The TRUNC routine causes an EOB condition by setting the DCBRECAD and
DCBEOBAD fields so that they are equal. It then returns control to the processing
program.

Section 2: Method of Operation 39

40 OS SAM Logic

Put Module IGG019FL: Module IGGOl9FL moves the current variable-length record
into the next available buffer segment. The Open executor selects and loads this
module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

Simple buffering

Move operating mode

Variable-length (unblocked or blocked) record format, spanned

The module consists of a Put routine and a TRUNC routine.

The Put routine operates as follows:

It receives control when the processing program issues a PUT macro instruction.

It determines the possible location of the next buffer segment by adding the
length of the previous record or record segment to the previous buffer segment
address. This address is in the DCBRECAD field.

It then compares the length of the next record with the remaining buffer capacity.

If the record will fit, the routine moves the record, updates the length field of the
block descriptor word (BDW), and checks for blocked records.

If blocked records are specified, the routine returns control to the processing
program. If unblocked records are specified, the routine issues a BALR
instruction to pass the current buffer to the EOB routine. The Put routine issues
another BALR instruction to obtain a new buffer through the output
synchronizing-and-error-processing routine, module IGGOl9AR. The Put
routine then builds a new block descriptor word (BDW) and returns control to
the processing program.

• If the record will not fit, the routine determines whether there are five or more
unused bytes remaining in the buffer. If there are, the Put routine breaks the
current record so that the first segment fills the buffer. The remaining segment is
placed in subsequent buffers. The length field in the segment descriptor word
(SDW) of the first segment is updated to reflect the length of the segment. The
third byte of this SDW is set to X'Ol' to indicate that this segment is the first of a
multisegment record. After writing the buffer, the Put routine does not return
control to the processing program until the entire record has been processed. The
routine forms the remainder of the current record into a new segment, which is
constructed in a new buffer. The third byte of the SDW of the newly created
segment is set to X'02' if this segment is the last of a multisegment record. If
there are other segments, the third byte is set to X'03' to indicate that this
segment is neither the first nor the last of a multisegment record. Newly created
segments are processed as any other record.

The TRUNC routine operates as follows:

It receives control when a TRUNC macro instruction is encountered in a
processing program.

It issues a BALR instruction to pass control of the present buffer to the
end-of-block routine.

• It issues another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module IGG019AR.

Figure 7

• It determines the address of the first segment of the new buffer and then returns
control to the processing program.

Exchange Buffering Put Routines

Exchange buffering Put routines use buffers whose addresses and lengths are in the
channel program. For unblocked records, a buffer address and length are in one
channel command word (CCW). For blocked records, addresses of buffer segments
are in successive CCWs (though the segments themselves are not necessarily located
next to one another). In each pass through an exchange buffering Get routine, it
determines:

The address of the next buffer segment.

Whether an output buffer is to be scheduled for emptying.

• Whether a new empty buffer is needed.

These three determinations are made at every pass through a Put routine.

If the records are unblocked, a Put routine finds the address of the next buffer in the
Write CCW for the next buffer.

If the records are blocked, a Put routine finds the address of the next buffer segment in
the next Write CCW. The next CCW is found by adding 8 to the address of the
previous CCW, the value in the DCB field DCBCCCW.

If an output buffer is to be scheduled for emptying, a Put routine passes control to an
end-of-block routine to cause scheduling of the buffer. An end-of-block routine
passes control to the I/O supervisor to have it schedule the buffer. After scheduling,
the I/O supervisor returns control to the end-of-block routine, and it returns control
to the Put routine.

If a new empty buffer is needed, a Put routine passes control to the
output-synchronizing-and-error-processing routine. If the channel program for the
next buffer has been executed without error, the synchronizing routine enters the
address of the input/output block (lOB) that points to that channel program into the
DCBIOBA field in the DCB.

An output buffer is to be scheduled for emptying and a new buffer is needed if an
end-of-block condition exists. When using exchange buffering with an output data set,
the buffer can be scheduled for emptying when the address of the last record has been
placed in the last CCW or a record has been moved into the last segment.
Accordingly, an end-of-block test is made before leaving the routine. This test
determines whether the buffer is to be scheduled. Another test is made on entry to.
determine whether a new buffer is needed. An end-of-block condition exists for
unblocked records each time the routine is entered; for blocked records, it exists if the

Section 2: Method of Operation 41

42 OS SAM Logic

address of the current CCW (in DCBCCCW field) and the address of the last CCW
(in DCBLCCW field) are the same.

A TRUNC routine sets an end-of-block condition to empty the buffer. This
end-of-block condition is processed so that the next entry to the Put routine permits it
to operate as usual. Successive entries to a TRUNC routine without intervening entries
to a Put routine cause the TRUNC routine to return control without performing any
processing.

The processing performed by the Open executor for an output data set using QSAM
and exchange buffering includes setting an end-of-block condition. On the first entry
to an exchange buffering Put routine, it processes this condition as usual.

There are two exchange buffering Put routines. Figure 8 lists both of these routines
and the conditions that cause either routine to be used. The Open executor selects one
of the routines, loads it, and places its address into the DCBPUT field. The table
shows, for example, that if output, Put, exchange, move, and unblocked record format
are specified, module IGG019EE is selected for use as the Put routine.

Access Method Options Selections

Output, Put/ PUTX, Exchange X X X X X X X

Move mode X X X X

Substitute mode X X X

Unblocked record format X X X X X

Blocked record format X X

Fixed-length
record format X X X X

Variable-length or
record format-D X

Undefined-length
record format X X

Put Modules

IGG019EE EE EE EE EE EE

IGG019EF EF EF

Figure 8. Module Selector - Exchange Buffering Put Modules

Put Module IGG019EE: Module IGG019EE puts an unblocked record into the next
buffer. The Open executor selects and loads this module if the Open parameter list
specifies:

Output

and the DCB specifies:

Put, PUTX

Exchange buffering

Unblocked record format

Figure 8

Move operating mode and fixed-length, format-D, variable-length, or
undefined-length record format; or substitute operating mode and fixed- or
undefined-length record format

The module consists of a Put routine, a PUTX routine, and a TRUNC routine.

The Put routine operates as follows for the move mode:

• It receives control if a PUT macro instruction is encountered in the processing
program.

• It passes control to the output-synchronizing-and-error-processing routine,
module IGG019AR, to obtain the next buffer.

It determines the address of the Write-Data CCW, enters the length in the CCW,
and finds the buffer address.

It moves the record from the work area into the buffer.

It passes control to the end-of-block routine to cause scheduling of the buffer.

It returns control to the processing program.

The Put routine operates as follows for the substitute mode:

It receives control when a PUT macro instruction is encountered in a processing
program.

• It passes control to the output-synchronizing-and-error-processing routine,
module IGG019AR, to obtain the next buffer.

• It determines the address of the Write-Data CCW, enters the length in the CCW,
and finds the buffer address.

• It exchanges the address of the work area for the address of the buffer area.

• It passes control to the end-of-block routine to cause scheduling of the buffer for
output.

• It returns control and the address of the buffer to the processing program.

The PUTX routine operates as follows if the input DCB specifies simple buffering:

• It receives control when a PUTX macro instruction is encountered in a processing
program.

It passes control to the output-synchronizing-and-error-processing routine,
module IGG019AR, to obtain the next buffer.

It finds the address of the input buffer in the DCBRECAD field of the input
DCB and the input buffer length in the DCBLRECL field.

• It moves the record from the input buffer to the output buffer and enters the
length in the Write-Data CCW.

• It passes control to the end-of-block routine to cause scheduling of the buffer for
output.

• It returns control to the processing program.

The PUTX routine operates as follows if the input DCB specifies exchange buffering:

• It receives control when a PUTX macro instruction is encountered in a processing
program.

• It passes control to the output-synchronizing-and-error-processing routine,
module IGG019AR, to obtain the next buffer.

Section 2: Method of Operation 43

44 OS SAM Logic

• It finds the address of the Read CCW and the length of the buffer in the
DCBCCCW and DCBLRECL fields of the input DCB. It also finds the address
of the Write CCW in the DCBCCCW field of the output DCB.

• It exchanges the buffer addresses and enters the length into the Write CCW.

• It passes control to the end-of-block routine to cause scheduling of the buffer for
output.

• It returns control to the processing program.

The TRUNC routine receives control when a TRUNC macro instruction is encountered
in a processing program; it returns control to the processing program without
performing any processing.

Put Module IGG019EF: Module IGG019EF puts a blocked record into the next buffer
segment. The Open executor selects and loads this module if the Open parameter list
specifies:

Output

and the DCB specifies:

Put, PUTX

Exchange buffering

Move or substitute operating mode

Fixed-length blocked record format

The module consists of a Put routine, a PUTX routine, and a TRUNC routine.

The Put routine operates as follows:

• It receives control when a PUT macro instruction is encountered in the processing
program.

• If there is an end-of-block condition on entry to the routine, it passes control to
the output-synchronizing-and-error-processing routine, module IGG019AR, to
obtain the next buffer.

• If the move mode is used and either there is no end-of -block condition or control
has returned from the synchronizing routine, the Put routine moves the record
from the work area into the next buffer segment.

• If the substitute mode is used and either there is no end-of-block condition or
control has returned from the synchronizing routine, the Put routine exchanges
the current buffer segment address of the output DCB for either the current
buffer segment address of the input DCB or the address of a work area.

• It tests for another end-of-block condition to determine if the buffer is to be
scheduled for output.

• If there is no end-of -block condition, it returns control to the processing
program.

• If there is an end-of-block condition, it passes control to the end-of-block
routine to cause scheduling of the buffer. On return of control to the Put routine,
it returns control to the processing program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is encountered in the
processing program.

Figure 8

• If there is an end-of-block condition on entry to the routine, it passes control to
the output-synchronizing-and-error-pprocessing routine, module IGGO 19 AR, to
obtain the next buffer.

• If the input DCB uses simple buffering, and either there is no end-of-block
condition or control has returned from the synchronizing routine, the PUTX
routine moves the record from the input buffer segment into the next output
buffer segment.

• If the input DCB uses exchange buffering, and either there is no end-of -block
condition or control has returned from the synchronizing routine, the PUTX
routine exchanges the buffer segment addresses of the current output and input
CCWs.

• It tests for another end-of-block condition to determine if the buffer is to be
scheduled for output.

• If there is no end-of-block condition, it returns control to the processing
program.

• If there is an end-of-block condition, it passes control to the end-of-block
routine to cause scheduling of the buffer for output. On return of control to the
PUTX routine, it then returns control to the processing program.

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro instruction is encountered in a
processing program.

• It returns control to the processing program without any further processing if the
buffer was scheduled for output on the preceding entry into the Put or PUTX
routine.

• It turns off the chain-data bit in the CCW used in the preceding pass through the
Put or PUTX routine. (The chain-data bit is set on in every CCW in the normal
course of operation of the Put or PUTX routine to offset any possible prior
truncation.)

• It passes control to the end-of-block routine to cause scheduling of the buffer for
output. On return of control, the TRUNC routine then returns control to the
processing program.

Update Mode PUTX Routine

The update mode PUTX routine differs from other Put routines in that it shares its
buffers (as well as the DCB and the lOBs) with the update mode Get routine. It is the
update mode Get routine that determines the address of the segment, when the end of
the buffer is reached and a new buffer is needed. Thus, all that remains for the PUTX
routine is to flag the block for output.

There is one update mode Put routine; it is part of module IGG019AE, which is
described under "Update Mode Get Routine" (see Figure 6).

Section 2: Method of Operation 45

End-of-Block Routines

The end-of-block routines are selected for use with a particular data set on the basis
of the access conditions specified by the processing program for that data set.

Unless INOUT or OUTIN is specified in the Open parameter list, one end-Qf-block
routine is selected. If INOUT or OUTIN are specified, two end-of-block routines may
be required. When user-totaling is specified, a special user-totaling routine is executed
in conjunction with one of the end-Qf-block routines.

An end-Qf-block routine receives control from a Get or a Put routine (when using
QSAM), or from a Read or Write routine (when using BSAM).

Flow of control for QSAM end-of-block routines is shown in Diagram F, QSAM Flow
of Control, in Section 5.

Control passes from an end-Qf-block routine to the I/O supervisor, except when a
channel program is chained to another one not yet executed. End-Qf-block routines
provide device-Qriented entries for the channel program, such as control characters and
auxiliary storage addresses.

If the American National Standard Code for Information Interchange (ASCII) is used,
routines IGG019CC and IGG019CW issue an XLATE macro instruction which
translates the entire buffer from EBCDIC to ASCII before writing the buffer. If
format-D records are specified, the record descriptor words are converted from binary
form to decimal form prior to translation.

End-Qf-block routine descriptions are grouped as follows:

• Ordinary end-Qf-block routines. These routines perform device-Qriented
processing when normal channel-program scheduling is used, except when it is
used with an output data set with track overflow.

• Chained channel-program scheduling end-of-block routines. These routines
perform device-oriented processing and attempt to chain channel programs when
chained channel-program scheduling is used.

• Track-overflow, end-Qf-block routine. This routine performs device-Qriented
processing. It computes segment lengths and constructs count fields when track
overflow, which uses normal channel-program scheduling, is used with an output
data set.

• User-totaling routine. This routine moves 'the contents of the user's totaling area
to the user-totaling save area pointed to by the DEB.

Ordinary End-of-Block Routines

46 OS SAM Logic

Ordinary end-Qf-block routines process channel programs for all devices. This
processing is independent of the progress of a previous channel program and causes
access to proceed one channel program at a time. In the case of output data sets on
direct-access devices, the routines limit the size of the block to the track capacity. For
direct-access devices, an ordinary end-Qf-block routine computes auxiliary storage
addresses for output data sets and input data sets with fixed-length standard record
format to avoid end-of-track interruptions. For unit-record devices, these routines
process control characters and PRTOV macro instructions. For an input data set with
track overflow, progression from track to track is controlled by the track-overflow bit
in the overflowing segment, not by computation of the end-of-block routine nor by an
entry in the channel program.

I

I

I

I

Figure 9

Access Method Options Selections

Normal cha.,nel program X
scheduling

Input, or X X X X X X X X

Update X X

Output, or X X

INOUT, OUTIN X X X X X X X

Card reader or paper X X X
tape reader

Printer or Card Punch X X X X X

Print (3525) X X

Interpret Punch (3525) X

Data ProtectIon I mage X
(3525)

Magnetic tape X X

Direct-access storage X X X X X X

Track Overflow X X

Record format not X X
fIxed-length standard

Record format IS X X
fixed-length standard

No control character X

Machone control X
character

ANSI control character X

PRTOV-No user eXIt X X X

label = (,,,IN) or
LABEL = L,OUT)
on DD card 1 X

User totaling faCIlity X X X X X X X

AssocIated Data Set X X X X X
(3525)

End of Block Modules

IGG019AX2 AX AX AX AX AX AX AX

IGG019CC CC CC CC CC CC CC

IGG019CD CD CD

IIGG019CE CE CE CE

IGG019CF CF CF

IGG019CT3 CT

IGG019FK FK

IGG019FQ FQ Fa

IGG019FU FU

IGG019TC TC TC TC TC TC

IGG019TD TD TD

'When either of these LABEL subparameters IS specified and the dataset IS opened for INOUr or QUTlN, the OPEN eKecutor calls module IGG019CT, In addition to one of the other end-af-block routines

2Thls module IS described later In thiS section under' TraCK Overflow and User Totaling Save Routines"

Figure 9. Module Selector - Ordinary End-of-Block Modules

Section 2: Method of Operation 47

48 OS SAM Logic

Figure 9 lists the routines available and the conditions that cause a particular routine to
be used. For QSAM, the Open executor selects one of the routines, loads it and places
its address into the DCBEOB field. For BSAM and BPAM, the Open executor selects
one of the routines, loads it, and places its address into both the DCBEOBR and
DCBEOBW fields. If INOUT or OUTIN is specified, a second end-of-block routine
may be selected and loaded. Its address replaces one of the duplicate addresses in the
DCB. Figure 9, for example, shows that when normal channel-program scheduling is
used and the device type is magnetic tape, routine IGG019CC is selected and loaded
for use as the end-of-block routine for that DCB.

End-of-Block Module IGG019CC: Module IGG019CC causes a channel program to
be scheduled.

If ASCn coding is used, the entire output buffer is translated from EBCDIC to ASCn.

The Open executor selects and loads this module if one of the following conditions
exists:

The DCB specifies normal channel-program scheduling and magnetic tape, card
reader, or paper tape as the device type.

The data set is opened for Input, and the DCB specifies normal channel-program
scheduling, direct-access storage device, and a record format other than
fixed-length standard.

The data set is opened for INOUT or OUTIN, and the DCB specifies normal
channel-program scheduling, direct-access storage device and a record format
other than fixed-length standard. The address of this module is placed in the
DCBEOBR field.

The data set is opened for Update.

I An associated data set is being used during a 3525 operation.

The module operates as follows:

• It receives control when a Get or Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Read or Write
routine.

• If the device type is magnetic tape, record format is variable, control is received
from a Put or Write routine, and a check is made to see if at least 18 bytes are to
be written. If not, the record is padded with binary zeros up to 18 bytes or
blocksize, whichever is less; however, with the ASCn feature, format-D records
are pad~d with the ASCn padding character, X'5F', instead of the zeros. An
EXCP macro instruction is issued and control is returned to the Put or Write
routine.

• If the device type is magnetic tape and either the record format is not variable or
control is not gained from a Put or Write routine, an EXCP macro instruction is
issued and control is returned to the Get, Put, Read, or Write routine.

• If the device type is direct access and more than one lOB is associated with the
DCB, the module issues an EXCP macro instruction and returns control to the
Get or Read routine.

Figure 9

If a 3525 associated data set is being used, a test is made to determine the status
of the Read-sequence flag.

a. If the Read-sequence flag (DCBQSWS field) is on and the associated data
set is not Read and Print, a WTP message is issued, which indicates that
either the Get or Read sequence is invalid. An ABEND (003) is issued with
a return code of 01. If the Read-sequence flag is off, the macro sequence is
assumed to be valid and the Read-sequence flag is turned on.

b. Tests are made to determine if the associated data set is either Read, Punch,
and Print, or Read and Punch.

c. If either Read, Punch, and Print, or Read and Punch is specified in the
FUNC parameter, a test is made to determine the status of the
Punch-sequence flag. If the Punch-sequence flag (DCBQSWS field) is on,
it is turned off. (This indicates to modules IGG019CE and IGG019CF that
their calling routine is in the proper sequence.)

d. If the associated data set is not Read, Punch, and Print, or Read and Punch,
it is assumed that Read and Print is being used.

e. A test is made to determine the status of the Print-sequence 'flag
(DCBQSWS).

f. If the Print-sequence flag is on, it is assumed that the Print command has
been issued. It is turned off so that proper sequencing may continue. If the
Print-sequence flag is off, it is assumed that the Print command has not
been issued.

If the device type is direct access and only one lOB is associated with the DCB,
the module copies the DCBFDAD field in the DCB into the IOBSEEK field in
the lOB, issues an EXCP macro instruction, and returns control to the Get or
Read routine.

End-of-Block Module IGG019CD: Module IGG019CD schedules a channel program
after determining that the next block fits on a track within the allocated extents.

The Open executor selects and loads this module if one of the following conditions
exists:

The data set is opened for output and the DCB specifies normal channel-program
scheduling, no track-overflow, and direct-access storage as the device type.

The data set is opened for input and the DCB specifies normal channel-program
scheduling with direct-access storage as the device type.

The data set is opened for INOUT or OUTIN and the DCB specifies
direct-access device storage. If the record format (also specified in the DCB) is
other than fixed-length standard, the address of this module is placed in the
DCBEOBW field. If the record format is fixed-length standard, the address of
this module is placed in both the DCBEOBR and DCBEOBW fields.

The module operates as follows:

• It receives control when a Get or Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Read or Write
routine.

Section 2: Method of Operation 49

50 OS SAM Logic

It calculates the block length using the overhead value for the last record. (This
value is found in the resident I/O device table. The address of the table is in the
DCBDVTBL field.) It compares the calculated block length with the value in the
DCBTRBAL field of the DCB.

If the block length is equal to or less than the DCBTRBAL field value, the
module determines that the block fits on the track.

• If the block length exceeds the DCBTRBAL field value, the module finds the
next track as follows:

It converts the full device address (MBBCCHHR) of the present track into
a relative address (TTR) by passing control to the IECPRLTV routine.

It adds 1 to the value of TT.

It passes control to the IECPCNVT routine, which converts the relative
address of the next track into the full device address.

• If there is another track in the allocated extents, its full address has been entered
in the DCBFDAD field and the block fits on the track.

• If there is no other track in the allocated extents (as shown by the error return
code from IECPCNVT routine), an EOV condition exists. The module sets the
DCBCINDI field in the DCB and the CSW field in the lOB to show this, and
returns control to the Get, Put, Read, or Write routine without issuing an EXCP
macro instruction. The EOV condition is eventually recognized and processed in
QSAM by the synchronizing routine and in BSAM by the Check routine.

When the module determines that the block fits on the track, the module
calculates the actual block length, using the overhead value for other than the last
record. (This value is found in the resident I/O device table.) It adjusts the
value in the DCBTRBAL field by this amount and updates the DCBFDAD field
and the ID field of the count area of the block which is located immediately after
the channel program. It then issues an EXCP macro instruction and returns
control to the Get, Put, Read, or Write module.

End-of-Block Module IGG019CE: Module IGG019CE, if necessary, modifies channel
programs for unit record output devices when ANSI control characters are not used.
The module then causes scheduling of the channel program, whether it was modified or
not. The Open executor selects and loads this module if the DCB specifies:

Normal channel-program scheduling

Punch, or printer

Machine control character, or no control character

The module operates as follows:

• It receives control when a Put routine finds that a buffer is ready to be scheduled,
or at the conclusion of the processing performed by a Write routine.

• It adjusts, in the channel program, the length and starting address either for the
length field of variable-length records or for a control character. If there are
variable-length records and a control character, the module adjusts for both.

If a control character is present, it inserts it as the command byte of the Write
channel command word (CCW).

\

Figure 9

• It tests the DCB field at location DCBDEVT + 1 for a PRTOV mask. If a
PRTOV mask is present, the module temporarily inserts it into the length field of
the Nap CCW and sets the first bit in the lOB. The PRTOV appendage
IGG019CL tests for the presence of the lOB bit and the CCW mask.

• If an associated data set is being used, a test is made to determine the status of
the Punch-sequence flag.

a. If the Punch-sequence flag (DCBQSWS) is on and the associated data set is
not Punch and Print, a WTP message is issued which indicates that either
the Put or Write sequence is invalid. An ABEND (003) is issued with a
return code of 02. If the Punch-sequence flag is off, the macro sequence is
assumed to be valid and the Punch-sequence flag is turned on.

b. A test is made to determine if the associated data set is Read, Punch, and
Print. If Read, Punch, and Print is specified in the FUNC parameter, a test
is made to determine the status of the Read-sequence flag.

c. If the Read-sequence flag is on, it is turned off. This allows proper
sequencing to continue. If the Read-sequence flag is off, an ABEND is
issued.

d. A test is made to determine the status of the Print-sequence flag.

e. If the Print-sequence flag is on, proper sequencing continues. If it is off,
modules IGG019CE and IGG019CF continue with their normal functions.

f. If the associated data set is Punch and Print, the status of the
Print-sequence flag is determined as previously explained for module
IGGOI9CC.

• It issues an EXCP macro instruction and returns control to the Put or Write
routine.

End-of-Block Module IGG019CF: Module IGG019CF modifies channel programs for
unit record output devices when an American National Standards Institute (ANSI)
control character is present. The module then causes scheduling of the channel
program, whether it was modified or not. The Open executor selects and loads this
module if the DCB specifies:

Normal channel-program scheduling

Punch or printer

ANSI control character

The module operates as follows:

• It receives control when a Put routine finds that a buffer is ready to be scheduled,
or at the conclusion of the processing performed by a Write routine.

• It adjusts, in the channel program, the length and starting address for the control
character, and for the length field of variable-length records.

• It translates the control character and inserts it as the command byte of the
control channel command word (CCW) which precedes the Write CCW.

Section 2: Method of Operation 51

52 OS SAM Logic

• It tests the DCB field at location DCBDEVT + 1 for a PRTOV mask. If a
PRTOV mask is present, the module inserts it into the length field of the control
CCW and sets the first bit in the lOB. The PRTOV appendage IGG019CL tests
for the presence of the lOB bit and the CCW mask.

• If an associated data set is being used, a test is made to determine the status of
the Punch-sequence flag.

a. If the Punch-sequence flag (DCBQSWS) is on and the associated data set is
not Punch and Print, a WTP message is issued which indicates that either
the Put or Write sequence is invalid. An ABEND (003) is issued with a
return code of 02. If the Punch-sequence flag is off, the macro sequence is
assumed to be valid and the Punch-sequence flag is turned on.

b. A test is made to determine if the associated data set is Read, Punch, and
Print. If Read, Punch, and Print is specified in the FUNC parameter, a test
is made to determine the status of the Read-sequence flag.

c. If the Read-sequence flag (DCBQSWS) is on, it is turned off. This allows
proper sequencing to continue. If the Read-sequence flag is off, an
ABEND is issued.

d. A test is made to determine the status of the Print-sequence flag
(DCBQSWS).

e. If the Print-sequence flag is on, proper sequencing continues. If it is off,
modules IGG019CE and IGG019CF continue with their normal functions.

f. If the associated data set is Punch and Print, the status of the
Print-sequence flag is determined, as previously explained for module
IGG019CC.

• It issues an EXCP macro instruction and returns control to the Put or Write
routine.

End-of-Block Module IGG019CT: Module IGG019CT sets error indicators in the
user's DCB and lOB. The Open executor selects and loads this module if the following
conditions exist:

The data set is opened for INOUT and the DD card specifies LABEL = (",IN)

or

The data set is opened for OUTIN and the DD card specified LABEL=(",OUT)

The module operates as follows:

It receives control and sets error indicators in the user's DCB and lOB when
either of the following conditions exists:

The DD card specifies LABEL=(",IN), the data set is opened for INOUT,
and a WRITE macro instruction is issued,

The DD card specifies LABEL=(",OUT), the data set is opened for
OUTIN, and a READ macro instruction is issued.

Figure 9

End-of-Block Module IGG019FK: Module IGG019FK causes a channel program to be
scheduled. The Open executor selects and loads this module, if the following
conditions are described in the DCB:

Data protection image (DPI) is specified for the 3525 with a Read and Punch, or
Read, Punch, and Print file with normal channel-program scheduling.

The module operates as follows:

• It receives control when a Put routine finds that a buffer is ready to be scheduled,
or at the conclusion of the processing performed by a Write routine.

• If the Read associated data set has been opened, a test is made to determine the
status of the Read-sequence flag.

• If the Read associated data set has not been opened, or if the Read-sequence flag
is off, a WTP message is issued which indicates that the sequence is invalid. An
ABEND (003) is then issued with a return code of 02. If the Read-sequence flag
is on (indicating proper sequencing), it is turned off.

• A test is then made to determine the status of the Punch-sequence flag
(DCBQSWS field). If the Punch-sequence flag is on, a WTP message is issued,
followed by an ABEND (003). If the Punch-sequence flag is off, it is turned on
so that proper sequencing may continue.

• It then establishes the buffer area (for the punch operation) according to the
format of the data protection image. If a byte in the DPI is blank (X'40'), the
module blanks out the corresponding byte in the output punch buffer. If the byte
is not blank, the output buffer is not altered. Both areas are 80 bytes in length.

• It returns control to either the Put or Write routine that called it.

End-of-Block Module IGG019FQ: Module IGG019FQ causes a channel program to
be scheduled to the 3525 Printer. The Open executor selects and loads this module, if
the following conditions exist:

A Print; Read, Punch, and Print; Read and Print; or Punch and Print file is
specified for the 3525 with either a machine control character, an ANSI control
character, or no control character at all with normal channel-program scheduling.

The module operates as follows:

• It receives control when a Put routine finds that a buffer is ready to be scheduled,
or at the conclusion of the processing performed by a Write routine.

• If either a Read, Punch, and Print or Punch and Print associated data set has been
specified, a test is made to determine the status of the Print sequence flag. If the
Print-sequence flag is on, the CCW pointer is modified to point to the Print
CCW.

• If both the Print- and Punch-sequence flags are off, a WTP message is issued
which indicates that the sequence is invalid. An ABEND (003) is then issued
with a return code of 03.

Section 2: Method of Operation 53

54 OS SAM Logic

• If the Print-sequence flag is off, but the Punch-sequence flag is on, the module
locates the Punch DCB and turns off the Punch-sequence flag. The CCW
pointer is then modified to point to the Print CCW and the Print-sequence flag is
turned on.

If a Read and Print associated data set is specified and the Print-sequence flag is
on, the CCW pointer is modified to point to the Print CCW.

• If the Print-sequence flag is off, but the Read-sequence flag is on, the Read DCB
is located and the Read-sequence flag is turned off. The CCW pointer is then
modified to point to the Print CCW and the Print-sequence flag is turned on.

• After sequence checking is completed, the module tests for ANSI and machine
control characters. If ANSI is specified, the control character is analyzed to
determine which line the data is to be printed on. An OR operation is then
performed on that line number and the Print CCW.

If ANSI control characters are not specified, the module tests for record format
and machine control characters. If machine control characters are specified, they
are inserted into the CCW and the buffer address is increased by one.

• If no control character is specified, and two-line printing is specified in the
FUNC parameter, the module tests to determine line positioning on the card.
This is reflected in the operation code of the Print CCW.

• If no control character is specified, and multiline printing is specified, tests are
again made to determine line positioning. (Output lines are printed on successive
lines.)

If no control characters are specified, or if they are specified and have been
processed, or if either two-line or multiline positioning is complete, the module
establishes the Write CCW and stores the Start address of the CCW for the
input! output supervisor (lOS).

If the PRTOV macro instruction is specified, a check is made for either channel 9
or 12 (depending on which channel is specified in the PRTOV macro instruction).

• The channel program is then executed and a Wait command is issued. It returns
control (via register 14) to either the Put or Write routine that called it.

End-of-Block Module IGG019FU: Module IGG019FU causes a channel program to
be scheduled. The Open executor selects and loads this module if one of the following
conditions exists:

INTERPRET PUNCH is specified for the 3525 with normal channel-program
scheduling.

INTERPRET PUNCH is specified for the 3525 with first control character for
stacker selection or with no control character at all.

The module operates as follows:

• It retrieves the data address from the Write CCW.

• It tests for record format to determine if machine control characters or ANSI
control characters are being used.

Figure 9

• If either machine or ANSI control characters are being used, the data address is
increased by one and the control character is inserted into the command byte of
the Write CCW.

• If machine control characters are not specified, the data address remains
unchanged.

• The module blanks out a print buffer. (The print buffer is a 64-byte area located
64 bytes past the beginning of the lOB). It then moves the final 16 characters of
the output punch buffer into the last 16 bytes of the print -buffer.

• The channel program start address is stored in the lOB.

• The channel program is then scheduled for execution.

• It returns control (via register 14) to either the Put or Write routine that called it.

End-of-Block Module IGG019TC: The Open executor selects and loads this module if
the user specified the user-totaling facility (that is, if bit 6 is 1 in DCBOPTCD) for his
data set and if one of the following conditions exists:

The DCB specifies normal channel-program scheduling and magnetic tape, card
reader, or paper tape as the device type.

The data set is opened for Input, and the DCB specifies normal channel-program
scheduling, direct-access storage device, and a record format other than
fixed-length standard.

The data set is opened for INOUT or aUTIN, and the DCB specifies normal
channel-program scheduling, direct-access storage device and a record format
other than fixed-length standard. The address of this module is placed in the
DCBEOBR field.

The data set is opened for Update.

The module operates as follows:

• It receives control when a Get or a Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Read or Write
routine.

• If the device type is magnetic tape, paper tape, or card reader, the module issues
an EXCP macro instruction and returns control to the Get, Put, Read, or Write
routine.

• It issues a BALR instruction to the user-totaling save routine, IGG019AX, to
place the user's total in the user-totaling save area, which is pointed to by the
DEB.

• If the device type is direct access and more than one lOB is associated with the
DCB, the module issues an EXCP macro instruction, and returns control to the
Get or Read routine.

• If the device type is direct access and only one lOB is associated with the DCB,
the module copies the DCBFDAD field in the DCB into the IOBSEEK field in
the lOB, issues an EXCP macro instruction, and returns control to the Get or
Read routine.

Section 2: Method of Operation 55

56 OS SAM Logic

End-of-Block Module IGG019TD: Module IGG019TD schedules a channel program
after determining that the next block fits on a track within the allocated extents.

The Open executor selects and loads this module if the user specified the user totaling
facility (that is, if bit 6 is 1 in DCBOPTCD) for his data set and if one of the following
conditions exists:

The data set is opened for Output, and the DCB specifies normal
channel-program scheduling, no track-overflow, and direct-access storage as the
device type.

The data set is opened for Input, and the DCB specifies normal channel-program
scheduling with direct-access storage as the device type.

The data set is opened for INOUT or OUTIN, and the DCB specifies
direct-access storage device. If the record format (also specified in the DCB) is
other than fixed-length standard, the address of this module is placed in the
DCBEOBW field. If the record format is fixed-length standard, the address of
this module is placed in both the DCBEOBR and the DCBEOBW fields.

The module operates as follows:

It receives control when a Get or a Put routine finds that a buffer is ready to be
scheduled, or at the conclusion of the processing performed by a Read or Write
routine.

• It issues a BALR instruction to the user-totaling save routine, IGG019AX, to
place the user's total in the user-totaling save area, which is pointed to by the
DEB.

• It calculates the block length using the overhead value for the last record. (This
value is found in the resident I/O device table. The address of the table is in the
DCBDVTBL field.) It compares the calculated block length with the value in the
DCBTRBAL field of the DCB.

• If the block length is equal to or less than the DCBTRBAL field value, the
module determines that the block fits on the track.

• If the block length exceeds the DCBTRBAL field value, the module finds the
next track as follows:

It converts the full device address (MBBCCHHR) of the present track into
a relative address (TTR) by passing control to the IECPRL TV routine.

It adds 1 to the value of TT.

It passes control to the IECPCNVT routine, which converts the relative
address of the next track into the full device address.

If there is another track in the allocated extents, its full address has been entered
in the field DCBFDAD and the block fits on the track.

If there is no other track in the allocated extents (as shown by the error return
code from routine IECPCNVT), an EOV condition exists. The module sets the
DCBCINDI field in the DCB and the CSW field in the lOB to show this, and

Figure 9

returns control to the Get, Put, Read, or Write routine without issuing an EXCP macro
instruction. The EOV condition is eventually recognized and processed - in QSAM
by the synchronizing routine and in BSAM by the Check routine.

• When the module determines that the block fits on the track, the module
calculates the actual block length, using the overhead value for other than the last
record. (This value is found in the resident I/O device table.) It adjusts the
value in the DCBTRBAL field by this amount, and updates the DCBFDAD field
and the ID field of the count area of the block (located immediately after the
channel program). It then issues an EXCP macro instruction and returns control
to the Get, Put, Read, or Write module.

Chained Channel-Program Scheduling End-of-Block Routines

Chained channel-program scheduling consists of joining the channel programs before
execution and disconnecting and posting the channel programs after execution. Joining
is performed by the end-of-block routines and mainly uses the input/output block
(lOB); disconnecting and posting is performed by appendages and uses the interruption
control block (ICB). (For a description of the disconnecting process, refer to the
program controlled interruption (PCI) appendages.) The lOB constructed by the Open
executor when chained channel-program scheduling is used differs from the lOB used
in normal channel-program scheduling. These differences are illustrated in Figure 10
and tabulated in Figure 12.

(a)
SAM Prefix to lOB when
normal channe I-program
scheduling is used

Next lOB I Event Contro I Block

Standard lOB

I EC B Add ress *

.... 1------2 Words -----.~

* When QSAM is used, the address
is that of the EC B in the
SAM prefix; when BSAM is used
the address is that of the ECB
in the data event control block
(DECB) .

(b)
SAM Prefix to lOB when
chained channel-program
scheduling is used

F logs I Offsets Event Control Block

First ICB Last Nap CCW

Standard lOB

ECB Address **

.... ----- 2 Words ------. ..

** Always shows the address of
the EC Bin the SAM prefix,
irrespective of whether QSAM
or BSAM is used.

Figure 10. lOB SAM Prefixes for Normal and for Chained Scheduling

Section 2: Method of Operation 57

58 OS SAM Logic

These routines join channel programs so that the channel executes successive channel
programs without interruption as if they were one continuous channel program. To
join the present channel program to one already scheduled, the end-of-block routine
finds the last CCW of the preceding channel program by referring to the lOB and
changes that CCW from a NOP command to a TIC command. If this joining is
performed before the channel attempts to execute (more precisely, before it fetches)
that CCW, the joining process is successful. If the execution of the preceding channel
program is completed while the routine is operating, the joining is unsuccessful. The

Access Method Options Selections

Chained channel program scheduling X X X X X X X X X x X

Input. or X X X x

Output X x X X X X X

Card reader x
Printer or card punch x x x

Magnetic tape X X X

Direct-access storage X X X

No control character X

Machine control character X

ANSI control character X

User-totaling facility X X X

End-of-Block Modules

IGG019AX' AX AX AX

IGG019CV CV

IGG019CW CW CW CW CW

IGG019CX CX CX

IGG019CY CY

IGG019TV TV

IGG019TW TW TW

1 This module IS described later In this section under Track Overflow and User-Totaling Save Routines.

Figure 11. Module Selector - Chained Channel-Program Scheduling End-of -Block
Modules

Figure 11

routine tests the success or failure of the joining by testing whether the lOB has been
posted as completed. If the lOB is not posted as completed, control is returned to the
calling program. If the lOB is posted, the routine tests the ICB for the current channel
program. If completed, control returns to the calling program; if not completed, the
routine resets the lOB for the EXCP macro instruction and passes control to the I/O
supervisor.

The chained scheduling end-of-block routines, like the ordinary end-of-block routines,
provide device-oriented entries for channel programs. For direct-access devices they
compute auxiliary storage addresses; for unit-record devices they process control
characters. (No processing is performed for the PRTOV macro instruction since it and
chained scheduling are mutually exclusive.) There are six chained scheduling
end-of-block routines, each of which performs joining and channel program entry
processing for a different set of access condition options. Figure 11 lists the available
routines and the conditions that cause a particular routine to be used.

For QSAM, the Open executor selects one of the routines, loads it, and places its
address into the DCBEOB field. For BSAM and BP AM, the Open executor selects
one of the routines, loads it, and places its address into both the DCBEOBR and

DCBEOBW fields. If INOUT or OUTIN is specified, a second end-of-block routine
may be selected and loaded. Its address replaces one of the duplicate addresses in the
DCB.

Figure 11 shows that when chained scheduling is used, the open mode is Input, the
device type is magnetic tape, and routine IGG019CW is selected and loaded for use as
the end-of-block routine for the DCB.

End-of-Block Module IGG019CV: Module IGG019CV computes from the track
balance (and from further allocated extents on this volume, if necessary) a valid storage
address for a channel program for an output data set on a direct-access device and
attempts to join the channel program to the preceding one. The Open executor selects
and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Chained channel-program scheduling

Direct-access storage

The module operates as follows:

• It receives control from a Put routine when that routine finds that a buffer is
ready to be scheduled, or from a Write routine at the conclusion of its processing.

• It calculates the block length using the overhead value for a last block on a track.
(This value is found in the resident I/O device table. The address of the table is
in the DCBDVTBL field.) It compares the calculated block length with the value
in the DCBTRBAL field of the DCB.

Section 2: Method of Operation 59

60 OS SAM Logic

Prefix Parameter Normal Scheduling Chained Scheduling

Number of lOBs As many as there are Only 1 (there are as
buffers or channel many ICBs as there are
programs buffers or channel programs)

Size of SAM prefix 2 words 4 words

Contents of link Address of the next Flags
address field lOB Offsets

Use of ECB field Used in QSAM to post Used in QSAM and BSAM to
channel program post a channel program
execution (in BSAM, execution that is
the ECB in the DECB terminated by channel-end
is used) interruption (that is,

channel program chaining
has been broken)

Contents of Field does not exist Address of the first ICB
10BFICB field

Contents of Field does not exist Address of NOP CCW of last
10BLNOP field scheduled channel program

Figure 12. Comparison of the lOB SAM Prefixes for Normal and for Chained
Scheduling

If the block is equal to or less than the DCBTRBAL field value, the module
determines that the block fits on the track.

• If the block length exceeds the DCBTRBAL field value, the module calculates the
next sequential track address and compares it with the end address of the current
extent shown in the data extent block (DEB).

If no end-of-extent condition exists, it determines that the block fits on the track.

If an end-of-extent condition exists, it seeks a new extent in the DEB.

If a new extent exists, it updates the DCBFDAD and DCBTRBAL fields and
determines that the block fits on the track.

If there is no further extent, an EOV condition exists. The module sets the
DCBCIND1 field in the DCB and the CSW field in the lOB to show
end-of-volume, and returns control to the Get, Put, Read, or Write routine
without issuing an EXCP macro instruction. The EOV condition is eventually
recognized and processed - in QSAM by the synchronizing routine, and in
BSAM by the Check routine.

Figure 11

• If the module determines that the block fits on the track, the module calculates
the actual block length using the overhead value for a block that is not the last on
a track. (This value is found in the resident 1/0 device table.) It adjusts the
value in the DCBTRBAL field by this amount and updates the DCBFDAD field
and the ID field of the count area of the block located immediately after the
channel program.

• If the block fits on the track, the module next attempts to join the channel
program for the current buffer to the preceding channel program (that is, chain
schedule) by:

Setting the ICB to not-complete.

Inserting the address of either the Write or the Search CCW of this channel
program into the NOP CCW of the preceding channel program. The
address of the Write CCW is inserted if the present and the preceding
channel programs address the same track. The address of the Search CCW
is inserted if the present and the preceding channel programs address
different tracks. In this case, the Search CCW addresses record zero of the
next track.

Changing the NOP CCW in the preceding channel Program to a TIC CCW.

Updating the SAM lOB prefix block to point to the end of the current
channel program.

It determines whether the joining was successful by testing the ECB (pointed to
by the lOB) to see if the I/O supervisor has posted the I/O event as completed.

If the 1/0 supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

If the 1/0 supervisor did post the event as completed, the routine tests the ICB
for the present channel program to find whether the joining was successful or not.

If the present ICB remains unposted, the present channel program was not joined
to the preceding one. The routine prepares to cause restart of the channel by
copying the Seek address and the channel program start address from the current
ICB into the lOB and uses the EXCP macro instruction to schedule the channel
program. It then returns control to the calling routine.

• If the present ICB is posted as completed, the present channel program was
joined successfully. (The routine was interrupted long enough, between the
joining and the testing, for the channel program to be executed and for the
channel-end appendage to post the ICB.) The routine returns control to the
calling routine.

End-of-Block Module IGG019CW: Module IGG019CW attempts to join the present
channel program to the last one in the chain of scheduled channel programs. If ASCII
is used, the entire output buffer is translated from EBCDIC to ASCII. The Open
executor selects and loads this module if one of the following conditions exists:

The Open parameter list specifies Input and the DCB specifies chained
channel-program scheduling and any device.

Section 2: Method of Operation 61

62 OS SAM Logic

The Open parameter list specifies Output and the DCB specifies chained channel
program scheduling and magnetic tape.

The module operates as follows:

• It receives control from a Get or Put routine when the routine finds that a buffer
is ready to be scheduled, or from a Read or Write routine at the conclusion of its
processing.

• If the device type is magnetic tape, the routine determines the increment value
and stores it in the ICB.

If the device is magnetic tape, the record format is variable, and control is
received from a Put or Write routine, a check is made to see if at least 18 bytes
are to be written. If not, the record is padded with binary zeros up to 18 bytes or
blocksize, whichever is less; however, with the ASCII feature, format-D records
are padded with the ASCII padding character, X'SF', instead of zeros.

• The module attempts to join the channel program for the current buffer to the
preceding channel program (that is, chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP CCW of
the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC CCW.

Updating the SAM lOB prefix block to point to the end of the current
channel program.

It determines whether the joining was successful by testing the ECB (pointed to
by the lOB) for a completion posting by the I/O supervisor.

• If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

• If the I/O supervisor did post the event as completed, the routine tests the ICB
for the present channel program to find whether the joining was successful or not.

• If the present ICB remains unposted, the present channel program was not joined
to the preceding one. The routine prepares to cause restart of the channel by
copying the channel program Start address (and the Seek address, if direct-access
storage) from the current ICB into the lOB, and uses the EXCP macro
instruction to cause scheduling of the channel program. It then returns control to
the calling routine.

If the present ICB is posted as completed, the present channel program was
joined successfully. (The routine was interrupted long enough, between the
joining and the testing, for the channel program to be executed and for the
channel-end appendage to post the ICB.) The routine returns control to the
calling routine.

Figure 11

End-of-Block Module IGG019CX: Module IGG019CX, if necessary, modifies channel
programs for unit-record output devices when ANSI control characters are not used.
The module then attempts to join the current channel program to the preceding one.
The Open executor selects and loads this module if the DCB specifies:

Chained channel-program scheduling

Printer or card punch

No control character, machine control character

The module operates as follows:

• It receives control from a Put routine when the routine finds that a buffer is ready
for scheduling, or from a Write routine at the conclusion of its processing.

It adjusts the length entry and the start address entry in the channel program for
either a control character or a variable-length block length field or for both, if
both are present.

It inserts the control character, if present, as the command byte of the Write
channel command word (CCW).

It attempts to join the channel program for the current buffer to the preceding
channel program (that is, chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP CCW of
the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC CCW.

Updating the SAM lOB prefix block to point to the end of the current
channel program.

It determines whether the joining was successful by testing the ECB (pointed to
by the lOB) to see if the I/O supervisor has posted the I/O event as completed.

If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

If the I/O supervisor did post the event as completed, the routine tests the ICB
for the present channel program to find whether the joining was successful or not.

If the present ICB remains unposted, the present channel program was not joined
to the preceding one. The routine prepares to cause restart of the channel by
copying the channel program Start address from the current ICB into the lOB,
and uses the EXCP macro instruction to cause scheduling of the channel program.
It then returns control to the calling routine.

End-of-Block Module IGG019CY: Module IGG019CY modifies channel programs for
unit record output devices when ANSI control characters are used. The module then
attempts to join the current channel program to the preceding one. The Open executor
selects and loads this module if the DCB specifies:

Chained channel-program scheduling

Printer or card punch

ANSI control character

Section 2: Method of Operation 63

64 OS SAM Logic

The module operates as follows:

• It receives control from a Put routine that finds a buffer is to be scheduled, or
from a Write routine at the conclusion of its processing.

• It adjusts the length entry and the Start-address entry in the channel program for
either the control character or a variable-length block length field or for both, if
both are present.

• It translates the control character and inserts it as the command byte of the
Control CCW (which precedes the Write CCW).

• It attempts to join the current channel program to the preceding one (that is,
chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP CCW of
the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC CCW.

Updating the SAM lOB prefix block to point to the end of the current
channel program.

• It determines whether the joining was successful by testing the ECB (pointed to
by the lOB) to see if the I/O supervisor has posted the I/O event as completed.

• If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

• If the I/O supervisor did post the event as completed, the routine tests the ICB
for the present channel program to find whether the joining was successful or not.

• If the present ICB remains unposted, the present channel program was not joined
to the preceding one. The routine prepares to cause restart of the channel by
copying the channel program Start address from the current ICB into the lOB,
and uses the EXCP macro instruction to cause scheduling of the channel program.
It then returns control to the calling routine.

• If the present ICB is posted as completed, the present channel program was
joined successfully. (The routine was interrupted long enough, between the
joining and the testing, for the channel program to be executed and for the
channel-end appendage to post the ICB.) The routine returns control to the
calling routine.

End-of-Block Module IGG019TV: Module IGG019TV computes from the track
balance (and from further allocated extents on this volume, if necessary) a valid storage
address for a channel program for an output data set on a direct-access device and
attempts to join the channel program to the preceding one. The Open executor selects
and loads this module if the user specified the user-totaling option (that is, if bit 6 is 1
in DCBOPTCD) for his data set and if the Open parameter list specifies:

Output

and the DCB specifies:

Chained channel-program scheduling

Direct-access storage

Figure 11

The module operates as follows:

It receives control from a Put routine that finds a buffer is ready to be scheduled,
or from a Write routine at the conclusion of its processing.

It issues a BALR instruction to the user-totaling save routine, IGG019AX, to
place the user's total in the user-totaling save area, which is pointed to by the
DEB.

It calculates the block length using the overhead value for a last block on a track.
(This value is found in the resident I/O device table. The address of the table is
in the DCBDVTBL field.) It compares the calculated block length with the value
in the DCBTRBAL field of the DCB.

If the block length is equal to or less than the DCBTRBAL field value, the
module determines that the block fits on the track.

If the block length exceeds the DCBTRBAL field value, the module calculates the
next sequential track address and compares it with the end address of the current
extent shown in the data extent block (DEB).

• If no end-of-extent condition exists, it determines that the block fits on the track.

If an end-of-extent condition exists, it seeks a new extent in the DEB.

• If a new extent exists, it updates the DCBFDAD and the DCBTRBAL fields and
determines that the block fits on the track.

• If there is no further extent, an EOV condition exists. The module sets the
DCBCINDI field in the DCB and the CSW field in the lOB to show
end-of-volume, and returns control to the Get, Put, Read, or Write routine
without issuing an EXCP macro instruction. The EOV condition is eventually
recognized and processed - in QSAM by the synchronizing routine and in
BSAM by the Check routine.

• If the module determines that the block fits on the track, the module calculates
the actual block length using the overhead value for a block that is not the last on
a track. (This value is found in the resident I/O device table.) It adjusts the
value in the DCBTRBAL field by this amount and updates the DCBFDAD field
and the ID field of the count area of the block located immediately after the
channel program.

If the block fits on the track, the module next attempts to join the channel
program for the current buffer to the preceding channel program (that is, chain
schedule) by:

Setting the ICB to not-complete.

Inserting the address of either the Write or the Search CCW of this channel
program into the NOP CCW of the preceding channel program. The
address of the Write CCW is inserted if the present and the preceding
channel programs address the same track. The address of the Search CCW
is inserted if the present and the preceding channel programs address
different tracks. In this case, the Search CCW addresses record zero of the
next track.

Changing the NOP CCW in the preceding channel program to a TIC CCW.

Updating the SAM lOB prefix block to point to the end of the current
channel program.

Section 2: Method of Operation 65

66 OS SAM Logic

• It determines whether the joining was successful by testing the ECB (pointed to
by the lOB) to see if the I/O supervisor posted the I/O event as completed.

If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

• If the I/O supervisor did post the event as completed, the routine tests the ICB
for the present channel program to find whether the joining was successful or not.

• If the present ICB remains unposted, the present channel program was not joined
to the preceding one. The routine prepares to cause restart of the channel by
copying the Seek address and the channel program Start address from the current
ICB into the lOB, and uses the EXCP macro instruction to schedule the channel
program. It then returns control to the calling routine.

If the present ICB is posted as completed, the present channel program was
joined successfully. (The routine was interrupted long enough, between the
joining and the testing, for the channel program to be executed and for the
channel-end appendage to post the ICB.) The routine returns control to the
calling routine.

End-of-Block Module IGG019TW: Module IGG019TW attempts to join the present
channel program to the last one in the chain of scheduled channel programs. The Open
executor selects and loads this module if the user specifies the user-totaling option
(that is, if bit 6 is 1 in DCBOPTCD) for his data set and if either of the following
conditions exists:

The Open parameter list specifies Input and the DCB specifies chained
channel-program scheduling and any device.

The Open parameter list specifies Output and the DCB specifies chained channel
program scheduling and magnetic tape.

The module operates as follows:

It receives control from a Get or a Put routine when the routine finds that a
buffer is ready to be scheduled, or from a Read or Write routine at the conclusion
of its processing.

• It issues a BALR instruction to the user-totaling save routine, IGG019AX, to
place the user's total in the user-totaling save area, which is pointed to by the
DEB.

If the device type is magnetic tape, the routine determines the increment value
and stores it in the ICB.

The module attempts to join the channel program for the current buffer to the
preceding channel program (that is, chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program into the NOP CCW of
the preceding channel program.

Changing the NOP CCW in the preceding channel program to a TIC CCW.

Updating the SAM lOB prefix block to point to the end of the current
channel program.

Figure 11

It determines whether the joining was successful by testing the ECB (pointed to
by the lOB) to see if the I/O supervisor posted the I/O event as completed.

• If the I/O supervisor did not post the event as completed, the joining was
successful and the routine returns control to the calling routine.

If the I/O supervisor did post the event as completed, the routine tests the ICB
for the present channel program to find whether the joining was successful or not.

a - Block Length is Less Thon Track Balance
(No Overflowing Segment)

Data

b - Block Length is Greater Than Track Balance
(First Segment Overflows Track)

Data (Continued)

c - Block Length is Greater Than Track Capacity
(Several Overflowing Segments)

Data (Continued)

Data (Continued)

Data (Continued)

IData (Cont i nued) I

Figure 13. Track-Overflow Records

Data

If the present ICB remains unposted, the present channel program was not joined
to the preceding one. The routine prepares to cause restart of the channel by
copying the channel program Start address (and the Seek address, if direct-access
storage) from the current ICB into the lOB and uses the EXCP macro instruction
to cause scheduling of the channel program. It then returns control to the calling
routine.

• If the present ICB is posted as completed, the present channel program was
joined successfully. (The routine was interrupted long enough, between the
joining and the testing, for the channel program to be executed and for the
channel-end appendage to post the ICB.) The routine returns control to the
calling routine.

Section 2: Method of Operation 67

Track-Overflow and User-Totaling Save Routines

68 OS SAM Logic

The track-overflow, end-of-block routine processes channel programs for output data
sets whose blocks may overflow from one track onto another (see Figure 13). Such a
block is written by a channel program consisting of a channel program segment for
each track to be occupied by a segment of the block. The track-overflow,
end-of-block routine computes the address of each track written on; to progress from
track to track (to continue writing successive segments of one block), the channel
program uses the Search command with the multiple-track (MIT) mode.

There are two track-overflow, end-of-block routines, modules IGG019C2 and
IGGOI9T2; they are used with output data sets if the access conditions shown in
Figure 14 are specified for a DCB. The Open executor selects one of these routines,
loads it, and places its address into the DCBEOB or DCBEOBW field. (For an input
data set with track-overflow, end-of-block module IGG019CC is used.)

The user-totaling save module is also shown in Figure 14. This module saves an image
of the user's totaling area in the sequential access method totaling save area.

Access Method Options

Output, INOUT, OUTIN

Track Overflow

User-Totaling Facility

End-of-Block Modules

IGG019AX

IGG019C2

IGG019T2

Selections

x

X

C2

X

X

X

AX

T2

Figure 14. Module Selector - Track-Overflow, End-of-Block
Modules

User-Totaling Save Module IGG019AX: Module IGG019AX saves an image of the
user's totaling area in the sequential access method totaling save area. This save area is
described in Figure 42 (see Section 4).

The Open executor selects and loads this module if the user-totaling option is specified
in the DCB (that is, if bit 6 is 1 in the DCBOPTCD field).

The module operates as follows:

It receives control from one of the end-of-block routines - IGGOI9TC,
IGGOI9TD, IGGOI9TV, IGGOI9TW, or IGGOI9T2.

It retrieves the address of the sequential access method totaling save area from
the access method portion of the DEB.

The sequential access method totaling save area contains a pointer to the user's
totaling area. An image of the user's total is saved in the next available segment
of the sequential access method totaling save area. Then the save area control
block is updated so that the pointer identifies the current entry.

• It returns control to the end-of-block routine that called it.

Figure 14

End-of-Block Module IGG019C2: Module IGG019C2 performs device-oriented
processing when track overflow is permitted with an output data set. The Open
executor selects and loads this module if the Open parameter list specifies:

Output, INOUT, or OUTIN

and the DCB specifies:

Track overflow

• If the entire block fits on this track, the module completes a channel program
(consisting of one channel program segment) for writing the block, updates the
track balance, and passes control to the I/O supervisor.

• If at least a 1-byte data field fits on this track, the module completes a channel
program segment for the segment of the block that fits on the track (by entering
the Seek address, main storage address, and count field for the channel program
segment) and tests if there is another track in the same extent.

• If the next track is in this extent, it compares the remaining block length with the
track capacity.

• If the remainder of the block exceeds the track capacity, the module proceeds as
it does when at least one byte fits on the track.

• If the remainder of the block is less than the track capacity, the module completes
the final channel program segment for the final segment of the block, updates the
track balance, and passes control to the I/O supervisor.

• If the next track is not in this extent, the module passes control to the track
balance routine using an SVC 25 instruction. That routine erases all tracks in the
current extent that were found insufficient for the block to be written. On return
of control from the track balance routine, the module tests for another extent.

• If there is another allocated extent on this volume, the module reconstructs the
channel program by proceeding as it does when at least one byte fits on a track.

• If there is no other allocated extent on this volume, an end-of-volume condition
exists. The module sets the DCBCIND 1 field in the DCB and the CSW field in
the lOB to show end-of-volume, and returns control to the Put or Write routine
without issuing an EXCP macro instruction. The EOV condition is eventually
recognized and processed in QSAM by the synchronizing routine, and in BSAM
by the Check routine.

End-of-Block Module IGG019T2: Module IGG019T2 performs device-oriented
processing when track overflow is permitted with an output data set. The Open
executor selects and loads this module if the user specifies the user-totaling option
(that is, if bit 6 in DCBOPTCD is 1) for his data set and if the Open parameter list
specifies:

Output, INOUT, or OUTIN

and the DCB specifies:

Track overflow

The module operates as follows:

• It receives control from a Put routine when the routine finds that a buffer is to be
scheduled, or from a Write routine at the conclusion of its processing.

Section 2: Method of Operation 69

• It issues a BALR instruction to the user-totaling save routine, IGGOI9AX, to
place the user's total in the user-totaling save area, which is pointed to by the
DEB.

• It compares the block length with the space remaining on the track last written
on.

• If the entire block fits on this track, the module completes a channel program
(consisting of one channel program segment) for writing the block, updates the
track balance, and passes control to the I/O supervisor.

• If at least a I-byte data field fits on this track, the module completes a channel
program segment for the segment of the block that fits on the track (by entering
the Seek address, main storage address, and count field for the channel program
segment) and tests for another track in the same extent.

• If the next track is in this extent, the module compares the remaining block length
with the track capacity.

• If the remainder of the block exceeds the track capacity, the module proceeds as
it does when at least one byte fits on the track.

If the remainder of the block is less than the track capacity, the module completes
the final channel program segment for the final segment of the block, updates the
track balance, and passes control to the I/O supervisor.

• If the next track is not in this extent, the module passes control to the track
balance routine using an SVC 25 instruction. That routine erases all tracks in the
current extent that were found insufficient for the block to be written. On return
of control from the track balance routine, the module tests for another extent.

• If there is another allocated extent on this volume, the module reconstructs the
channel program by proceeding as it does when at least one byte fits on a track.

• If there is no other allocated extent on this volume, an end-of-volume condition
exists. The module sets the DCBCIND 1 field in the DCB and the CSW field in
the lOB to show end-of-volume, and returns control to the Put or the Write
routine without issuing an EXCP macro instruction. The EOV condition is
eventually recognized and processed - in QSAM by the synchronizing routine,
and in BSAM by the Check routine.

Synchronizing-and-Error-Processing Routines

70 as SAM Logic

A synchronizing-and-error-processing routine synchronizes execution of the processing
program with execution of the channel programs, and performs error-processing to
permit continued access to the data set after an error was encountered during the
execution of a channel program.

There are six synchronizing-and-error-processing routines. Four of the six routines:

Are unique to QSAM

Both synchronize and process errors

Receive control from a Get or a Put routine

Are pointed to by an address in the DCB

The track-overflow and 3211 Printer Retry asynchronous-error-processing routines:

Are shared between QSAM and BSAM

Only process errors

Receive control by being scheduled by an abnormal-end appendage

To synchronize, the QSAM input and output synchronizing-and-error-processing
routines, modules IGG019AQ and IGG019AR, return control to the Get or Put routine
immediately if the channel program completed processing without error, or use the
WAIT macro instruction if the channel program has not yet completed processing. To
process errors, these routines pass control to the SYNAD/EOV executor (using an
SVC SS instruction) to distinguish between the processing necessary for unit check
(that is, a permanent error) and unit exception (that is, an end-of-volume condition).

For a unit check, the executor returns control to the synchronizing routine, which in
turn passes control to the SYNAD routine. On return of control from the SYNAD
routine, the synchronizing routine again passes control to the executor to implement the
error options. For the Accept and Skip options, control returns once more to the
synchronizing routine. It now operates as when it is first entered.

For a unit exception, the executor causes end-of-volume processing by the
end-of-volume routine of I/O support. That routine passes control to the EOV /new
volume executor. The executor returns control to the synchronizing routine. It now
operates as it did when first entered.

To synchronize, the paper-tape-character-conversion-synchronizing routine (contained
in the paper tape Get module IGG019AT) returns control to the Get routine
immediately if the channel program executed without error, or uses the WAIT macro
instruction if the channel program has not yet executed. To process errors, the routine
passes control to the SYNAD routine. When control returns from the SYNAD routine
to the synchronizing routine, the latter implements the error option. (The equivalent of
an end-of-volume condition is handled by the paper tape Get routine.)

To synchronize, the update-synchronizing-and-error-processing routine, module
IGG019AF, returns control to the Get routine immediately if the channel program
executed without error, or uses the WAIT macro instruction if the channel program has
not yet executed. To process an end-of-volume condition, the routine suspends
volume-switching until processing on the old volume is finished. To process permanent
errors, the routine interprets the error option to ensure that neither a buffer nor a block
is skipped,

If the American Standard Code for Information Interchange (ASCII) is used,
synchronizing Module IGG019AQ will issue an XLATE macro instruction which
converts the entire buffer from ASCII to EBCDIC when the input buffer is full. If
format-D records are specified, the record descriptor words are converted from decimal
to binary code.

The error processing performed by the track-overflow, asynchronous-error-processing
routine, module IGG019C1, distinguishes two kinds of errors-those in the block being
read and those in the block being skipped over to read the next one. For errors in the
block being read, the routine sets the channel program to permit the processing
program to continue reading the segments and blocks beyond the one in error. For
errors in the block being skipped, the routine resets the channel program and uses the
EXCP macro instruction, so that the processing program is unaware of the error.

Section 2: Method of Operation 71

72 OS SAM Logic

For an error whose character and occurrence the processing program must know about
(errors in segments of the block being read into the buffer), the track-overflow routine
addresses the lOB to the next track and its channel program and causes control to
return to the processing program using the TCB queue. For errors whose correction
does not affect the processing program (errors in segments of the block being skipped
over), the module uses the EXCP macro instruction to skip around the defective
segment to present the processing program with the block it expects to obtain. This
latter condition only holds if an error occurs on a Read-data CCW with the Skip bit on
for a segment that is not the last or only segment on an alternate track. In that case,
control returns to the processing program when the desired block is in the buffer in its
entirety. For errors that do not permit reading the entire block in one pass without
error, control returns to the processing program with the lOB set to a track and
channel program that permits reading the segments following the defective one. The
defective segment and the preceding good segments of the block are in the buffer at
the time control is returned to the processing program.

Five of the six routines described here (those enumerated in Figure 15) are unique to
QSAM. One of these routines gains control when a Get or a Put routine finds that it
needs a new buffer. Figure 15 lists the routines available and the conditions that cause
a particular routine to be used. The Open executor selects one of the routines, loads it,
and puts its address into the DCBGERR/PERR field.

The fifth routine (identified in Figure 16) is shared between QSAM and BSAM. It
gains control by being scheduled for eventual execution by track-overflow
abnormal-end appendage IGGOI9C3. The Open executor loads it and enters its
address in an interruption request block (IRB); the address of the IRB is in the DEB.
(If QSAM is used, module IGG019AQ is also used.)

Access Method Options Selections

Get X X X X

Put X

Input. Readback X

Output X

Update X X

Paper-tape X
character conversion

Variable-length X
record format

Spanned records X

Locate operating mode X

Modules

IGG019AF AF

IGG019AO AO

IGG019AR AR

IGG019AT' AT

IGG019BO BO

1 ThiS module mcludes both the paper-tape-synchronlzmg-and- error-proceSSing routme and the paper tape Get routine. Both
routines are deSCribed In "Simple Buffering Get Routines" (see Figure 1).

Figure 15. Module Selector - Synchronizing and Error-Processing Modules

Figure 15

Synchronizing Module IGG019AF (Update): Module IGG019AF finds the next buffer
and ensures that it has been refilled. If a unit status prevented refilling the buffer, the
module processes the pending channel programs according to whether they are
empty-and-refill or refill-only channel programs. The Open executor selects and loads
this module if the Open parameter list specifies:

Update

and the DCB specifies:

Get

The module operates as follows if no error occurred:

• It receives control when the update Get routine finds that a new buffer is needed.
It also receives control after the FEOV (force-end-of-volume) macro instruction
is encountered in a processing program, once from the update Get routine (when
the FEOV executor schedules the last buffer) and once directly from the FEOV
executor (when it awaits execution of the scheduled buffers.)

If the next buffer has been refilled, the module returns control to the update Get
routine.

If the channel program for the next buffer has not yet completed processing, the
module issues aWAIT macro instruction.

The module operates as follows if an end-of-volume condition is encountered:

It receives control when the update Get routine finds that a new buffer is needed
or when the FEOV executor awaits execution of the scheduled buffers.

• If the channel program for the next buffer encountered an end-of-volume
condition, or if this module has control due to an FEOV macro instruction, the
module finds the lOBs flagged for output. It then turns off the command-chain
flag at the end of the empty portion of the channel program, and schedules the
empty channel programs for execution by means of an EXCP macro instruction.

If all empty channel programs have been executed, or if none are pending, the
module passes control to the SYNAD/EOV executor by way of an SVC 55
instruction. If this module has control due to an FEOV macro instruction, control
returns to the routine that passed control.

If a permanent error is encountered during execution of empty channel programs
for an end-of-volume condition or for an FEOV macro instruction, control
passes to the SYNAD routine, if one is present. The SYNAD routine returns
control to this module.

• The module then processes the error option as follows:

Accept or Skip option: The pending empty channel programs are
rescheduled for execution using an EXCP macro instructions.

Terminate option: Control passes to the EOV routine to request an ABEND
macro instruction.

Section 2: Method of Operation 73

74 OS SAM Logic

The module operates as follows if a permanent error was encountered:

It receives control when the Update Get routine finds a new buffer is needed.

If the channel program for the next buffer encountered a permanent error and a
SYNAD routine is present, the module passes control to the SYNAD routine.

If control returns from the SYNAD routine, or if there is no SYNAD routine, the
module processes the error option in the following manner:

Accept Option: If the error occurred in the empty portion of a channel program,
the module resets the lOB to point to the refill portion of the channel program
and issues an EXCP macro instruction for it and all following lOBs.

If the error occurred in the refill portion of a channel program, the module posts
the current lOB as complete without error and issues an EXCP macro instruction
for all the lOBs except the present one.

The module ensures refilling of the buffer associated with the first lOB and then
returns control to the update Get routine.

Skip Option: If the error occurred in the empty portion of a channel program,
the module operates as it does for the Accept option.

If the error occurred in the refill portion of a channel program, the module issues
an EXCP macro instruction for all lOBs.

The module ensures refilling of the buffer associated with the first lOB and then
returns control to the update Get routine.

Terminate Option: If the error occurred in the empty portion of a channel
program, the module passes control to the ABEND routine.

If the error occurred in the refill portion of a channel program, the module finds
the end of the empty portion of any pending empty-and-refill channel programs,
turns off the commmand-chain flag, and issues an eXCP macro instruction for
these empty channel programs. On execution of all the channel programs, the
module passes control to the EOV routine to request an ABEND.

Synchronizing Module IGG019AQ (Input): Module IGG019AQ finds the next input
buffer, determines its status, and passes a full buffer to the Get routine. If ASCII is
used, the entire input buffer is translated from ASCII to EBCDIC. The Open executor
selects and loads this module if the Open parameter list specifies:

Input, Readback

and the DCB specifies:

Get

The module operates as follows:

It receives control when a Get routine determines that a new buffer is needed.

It finds the next lOB and tests the status of the channel program associated with
that lOB.

•

•

r
•

Figure 15

If the channel program has not yet completed processing, the module issues a
WAIT macro instruction.

If the channel program has been executed normally, the module updates the
DCBIOBA field to point to this lOB and returns control to the Get routine.

If the channel program has been completed normally, and if the buffer contains a
DOS checkpoint record, tape files only, the module returns control to the Get
routine.

If an error occurred during the execution of the channel program, the module
issues an SVC 55 instruction to pass control to the SYNAD/EOV executor,
module IGC0005E. For an EOV condition, control eventually passes to the
end-of-volume routine of I/O support and returns after the next volume has
been found and the purged channel programs have been rescheduled. For a
description of the flow of control from the SYNAD/EOV executor for a
permanent error condition, refer to SYNAD/EOV Executors in Figure 31.

Synchronizing Module IGG019AR (Output): Module IGG019AR finds the next output
buffer, determines its status, and passes an empty buffer to the Put routine. The Open
executor selects and loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Put

The module operates as follows:

It receives control when a Put routine determines that a new buffer is needed.

• It finds the next lOB and tests the status of the channel program associated with
that lOB.

If the channel program is not yet executed, the module issues a WAIT macro
instruction.

If the channel program has been executed normally, the module updates the
DCBIOBA field to point to this lOB and returns control to the Put routine.

If the output device is a 3211 Printer and three or more buffers are being used,
the synchronizing module waits for two channel programs to be completed before
updating the DCBIOBA field.

If an error occurred during the execution of the channel program, the module
issues an SVC 55 instruction to pass control to the SYNAD/EOV executor,
module IGC0005E. For an EOV condition, control eventually passes to the
end-of-volume routine of I/O support and returns after a new volume or more
space has been found and the purged channel programs have been rescheduled.
For a description of the flow of control from the SYNAD/EOV executor for a
permanent error condition, refer to SYNAD/EOV Executors in Figure 31.

Synchronizing Module IGG019BQ (Update): Module IGG019BQ finds the next buffer
and ensures that it has been refilled. If a unit status prevented refilling of the buffer,
the module processes the pending channel programs according to whether they are

Section 2: Method of Operation 75

76 OS SAM Logic

empty-and-refill or refill only channel programs. The Open executor selects and loads
this module if the Open parameter list specifies:

Update

Locate operating mode

and the DeB specifies:

Get

Variable-length spanned (blocked or unblocked) record format

The module operates as follows if no error occurred:

• It receives control when the update Get routine finds that a new buffer is needed.
It also receives control after an FEOV macro instruction is encountered in a
processing program, once from the update Get routine (when the FEOV executor
schedules the last buffer) and once directly from the FEOV executor (when it
awaits execution of the scheduled buffers).

If the next buffer has been refilled, the module returns control to the update Get
routine.

If the channel program for the next buffer has not yet executed, the module
awaits its execution.

The module operates as follows if an EOV condition is encountered:

• It receives control when the update Get routine finds that a new buffer is needed
or when the FEOV executor awaits execution of the scheduled buffers.

If the channel program for the next buffer encountered an EOV condition, the
module tests whether assembling or updating of a spanned record is in process.

• If updating is in process, the module delays the normal EOV processing by
turning off the error flags in the DCB and then returns control to the update Get
routine.

If assembling is in process, the module sets the spanned record flag in the lOB
and continues to the next step.

• If assembling is in process or if this module has control due to an FEOV macro
instruction, the module finds the lOBs flagged for output. It then resets the
command-chain flag at the end of the empty portion of the channel program and
schedules the empty channel programs for execution by means of an EXCP
macro instruction.

• If all empty channel programs have been executed, or if none are pending, the
module passes control to the SYNAD/EOV executor using an SVC 55
instruction. If this module has control due to an FEOV macro instruction, control
returns to the routine that passed control.

If a permanent error is encountered during execution of empty channel programs
for an EOV condition or for an FEOV macro instruction, control passes to a
SYNAD routine if one is present. The SYNAD routine returns control to this
module.

Figure 16

• The module then processes the error option as follows:

Accept or Skip: The pending empty channel programs are rescheduled for
execution using EXCP macro instructions.

Terminate: Control passes to the ABEND routine.

• On return of control from the SYNAD/EOV executor, the module tests whether
assembling of a spanned record is in process. If it is being processed, the module
turns off the spanned spanned-record flag in the lOB and returns control to the
update Get routine.

The module operates as follows if a permanent error is encountered:

It receives control when the update Get routine finds that a new buffer is needed.

• If the channel program for the next buffer encountered a permanent error and a
"SYNAD routine is present, the module passes control to the SYNAD routine.

• If control returns from the SYNAD routine, or if there is no SYNAD routine, the
module processes the error option in the following manner:

Accept: If the error occurred in the empty portion of a channel program, the
module resets the lOB to point to the refill portion of the channel program and
issues an EXCP macro instruction for it and all following lOBs.

If the error occurred in the refill portion of a channel program, the module posts
the current lOB as complete without error and issues an EXCP macro instruction
for all the lOBs except the present one.

The module ensures refilling of the buffer associated with the first lOB and then
returns control to the update Get routine.

Skip: If the error occurred in the empty portion of a channel program, the
module operates as it does for the Accept option.

If the error occurred in the refill portion of a channel program, the module treats
this as a RELSE condition and issues an EXCP macro instruction for all lOBs.

The module ensures refilling of the buffer associated with the first lOB and then
returns control to the update Get routine.

Terminate: If the error option occurred in the empty portion of a channel
program, the module passes control to the ABEND routine.

If the error occurred in the refill portion of a channel program, the module finds
the end of the empty portion of any pending empty-and-refill channel programs,
resets the command-chain flag, and issues an EXCP macro instruction for these
empty channel programs. On the execution of all the channel programs, the
module passes control to the ABEND routine.

Track-Overflow, Asynchronous-Error-Processing Module IGG019Cl: IGG019Cl, used
in both QSAM and BSAM, processes error conditions that are encountered in the
execution of a channel program for an input data set with track overflow. It processes
error conditions asynchronously with the execution of the channel program, the II a
supervisor, or the processing program. It receives control by being scheduled for
execution by the track-overflow abnormal-end appendage IGG019C3. It passes
control to the processing program through the supervisor. The module determines the

Section 2: Method of Operation 77

78 as SAM Logic

Access Method Options Selections

Get X

Read X

Input, INOUT, OUTIN X X

Track Overflow X X

3211 Printer X

Modules

IGG019C1 C1 C1

IGG019FS FS

Figure 16. Module Selector - Track Overflow/3211 Printer

Seek address for reading the segments and blocks beyond the segment in error and
inserts it in the lOB SEEK field. If the error occurred in a segment of the block being
read into the buffer, the segment following the segment in error is read, if the
processing program chooses the Accept option in the SYNAD routine. If the error
occurred in a segment in the block preceding the block to be read into the buffer (that
is, the error occurred in the block being skipped over to find the block to be read into
the buffer), the desired block is in the buffer when the processing program obtains the
buffer.

The Open executor selects and loads this module and places its address into an IRB
pointed to in the DEB if the Open parameter list specifies:

Input, INOUT, or OUTIN

and the DCB specifies:

Track overflow

Get or Read

The module operates as follows if the error occurred in a CCW other than a Read-data
CCW:

• It receives control from the supervisor.

It increases the track address in the lOB by 1, posts the ECB with the error code,
and causes control to return to the processing program.

The module operates as follows if the error occurred in a Read-data CCW without a
Skip bit on:

• It receives control from the supervisor.

If the segment in error is the last or only segment of the block, the module posts
the ECB with the error code and causes control to return to the processing
program.

• If the segment in error is not the last segment and it is not on an alternate track,
the module sets the lOB to address the track following the track in error, posts
the ECB with the error code, and causes control to return to the processing
program.

Figure 16

If the segment in error is not the last segment and it is on an alternate track, the
module increases the track address in the lOB by 1, posts the ECB with the error
code, and causes control to return to the processing program.

The module operates as follows if the error occurred in a Read-data CCW with the
Skip bit on:

• It receives control from the supervisor.

• If the segment in error is the final or only segment of a block and it is not on an
alternate track, the module sets the lOB to address the track in error, changes the
Read-data command to a NOP command and issues an EXCP macro instruction
for the changed channel program.

• If the segment in error is the final or only segment of a block and it is on an
alternate track, the module sets the lOB to address the track following the one
originally addressed, posts the ECB with the error code, and causes control to
return to the processing program. (In the case of an error in a final or only
segment on an alternate track, the remaining segment or blocks on that track are
not read.)

• If the segment in error is not the last one and it is not on an alternate track, the
module sets the lOB to address the track following the one in error and issues an
EXCP macro instruction for the readdressed channel program.

• If the segment in error is not the last one and it is on an alternate track, the
module successively increases the track address in the lOB by 1 and issues an
EXCP macro instruction for the readdressed channel program.

• When control returns from the I/O supervisor, this module awaits execution of
the channel program by using aWAIT macro instruction. On channel program
execution, the module restores the purged lOBs (and the Read-Skip command, if
it was changed to a NOP command) and causes control to return to the
processing program.

3211 Printer Asynchronous-Error-Processing Module IGG019FS (Print Line Buffer
Error - Retry): Module IGG019FS is device-dependent and scheduled
asynchronously by the 3211 abnormal-end appendage (IGG019FR). The module
retries operations that result in print line buffer parity errors or UCS buffer parity
errors whenever possible. When an operation cannot be retried, the printer is reset and
control is returned to the calling program.

The module operates as follows:

It initializes registers to point to the DCB, ECB, and lOB. It then examines the
sense bytes in the lOB to check whether one of the error conditions for which a
retry is possible has occurred.

• If a UCS buffer parity error is indicated (ECB posted in error with an X'41' or
X'44' and the command retry bit on in sense byte 1), the UCS image ID is
obtained from the UCB, located in SYSl.IMAGELIB, and loaded into main
storage. (Failure to locate the UCS image in SYSl.IMAGELIB causes a skip to
channel 0 command to be issued. This resets the printer and the module returns
to the calling program.) An lOB and channel program to load the UCS image
into the UCS buffer on the 3211 are constructed and executed. If a permanent
I/O error occurs during an attempt to load the UCS buffer, a skip to channel 0

Section 2: Method of Operation 79

Appendages

80 OS SAM Logic

command is issued to reset the printer. The UCS field in the UCB is also set to 0 and
control is returned to the calling program. If the UCS buffer is loaded successfully, a
check is made to determine the access method (BSAM or QSAM) is being used.

• When QSAM is being used, a check is made to see whether three or more buffers
were specified in the BUFNO field of the DCB macro instruction. (This is a
condition necessary to retry a print line.) After either UCS buffer parity errors or
print line buffer parity errors, the type of scheduling is determined. For normal
scheduling, the lOB associated with the failing print line is located and the
channel program for that lOB is reissued once. If the channel program is now
successful, the next lOB is rescheduled if necessary, and control is returned to the
problem program as though no error had occurred. If the channel program is
unsuccessful, a skip to channel 0 command is issued to reset the control unit and
the module returns to the calling program. For chained channel scheduling, the
portion of the channel program associated with the failing print line is reissued. If
it is successful, a check is made to see whether another chain needs to be
restarted before the return to the problem program. If the retry was unsuccessful,
a skip to channel 0 command is issued and the module returns to the calling
program.

For BSAM, or QSAM with fewer than three buffers specified, a skip to channel 0
command is issued and the module returns to the calling program.

Appendages are access method routines that receive control from and return control to
the I/O supervisor. They operate in the supervisor state. The same appendages are
used in QSAM as in BSAM.

An appendage receives control from the I/O supervisor and tests and may alter the
channel status word (CSW). The I/O supervisor uses the CSW to post the event
control block (ECB). If the SIO appendage receives control from the I/O supervisor
before the latter starts execution of the channel program, it may alter channel
commands just before channel program execution. The relationship of the I/O
supervisor and the appendages are shown in Diagram F in Section 5.

The I/O supervisor permits an appendage to gain control at certain exit points. At that
time the I/O supervisor refers to the entry associated with that exit in the appendage
vector table, whose address is in the data extent block (DEB). If an entry contains the
address of an appendage, control passes to it; otherwise, control remains with the I/O
supervisor. The five I/O supervisor exits where appendages receive control are:

• End-of-extent

• SIO
Channel end
PCI
Abnormal end

Appendages differ from other sequential access method routines that are loaded by the
Open executor into processing program main storage. They differ because they operate
with the CPU disabled for interruptions in the supervisor state and asynchronously with
the processing program. The events that cause appendages to gain control depend on
the progress of the channel program, not on the progress of the processing program.

Figure 17

The Open executor selects and loads all the appendages to be used with a DCB. No
appendage, one appendage, or several appendages may be used with one DCB. The
Open executor places the addresses of the required appendages into the various fields
of the appendage vector table. Figure 17 lists the appendages and the conditions that
cause the different appendages to be used. The appendages are grouped according to
the condition detected by the I/O supervisor before control is passed to the appendage.
Note that some appendages have entry points for more than one of the conditions
checked by the I/O supervisor.

End-of-Extent Appendages

End-of-extent appendages gain control of the central processing unit (CPU) if the
EXCP supervisor finds an end-of-extent condition. This condition exists if the
direct-access device storage address associated with a channel program is outside of the
extent currently pointed to in the data extent block (DEB).

Five end-of-extent appendages are provided for use with sequential access method
routines:

• IGG019AW processes an end-of-extent condition for QSAM update mode
channel programs.

• IGG019BM processes an end-of-extent condition for BSAM update mode
channel programs.

• IGG019CH processes an end-of-extent condition when neither the update mode
nor chained channel-program scheduling is specified.

• IGG019CZ processes end-of-extent conditions when chained channel-program
scheduling is used.

• IGG019C4 is loaded in for standard format-F records and verifies whether an
extent violation is valid. It is also the end-of-extent appendage for the
search-direct option.

Appendage IGG019AW (End-of-Extent - Update - QSAM): Appendage
IGG019AW readdresses the refill portions of all QSAM update channel programs to a
new extent. The Open executor selects and loads this module for use as the
end-of-extent appendage if the Open parameter list specifies:

Update

and the DCB specifies:

Get

The appendage operates as follows:

• When using the rotational position sensing (RPS) feature and when the Seek
address is updated to reflect the beginning of the next extent, the Set-sector byte
is reset to O. A test is made to determine whether the record-ready feature is
present and the correct offset is used.

• It receives control from the EXCP supervisor under one of the following
conditions:

A refill portion of QSAM update channel program attempts to read the first
block beyond the present extent.

Section 2: Method of Operation 81

Access Method Options Selections

Input, INOUT, aUTIN X X X

Readback X

Update X X X

SYSIN X

Get X

Read X

Offset Read (BDAM) X

Record format IS fixed-length X

Record format IS fixed-length
blocked X

Record format IS vanable-length X

Record format IS vanable-Iength
spanned X X

Record format IS not fixed-length
standard X

Create-BDAM spanned record X

Direct-access storage X X X X

Pnnter X

Paper tape X

Chained scheduhng X X

Track-overflow X

3211 printer X X

Magnetic Tape (OPTeD = HJ X

3525 Associated Data Sets X

Search Direct (OPTeD'"" Z) X X X

Appendag .. entered from End-of-Extent EXit

IGG019AW AW

IGG019BM BM

IGG019CH CH

IGG019CZ CZ

IGG019C4 C4

Appendages entered from SIO EXit

IGG019CG CG

IGG019CL CL

IGG019FN FN

Appendages entered from Channel-End Exit

IGG019BT BT

IGG019BV BV

IGG019CI CI

IGG019CJ CJ

IGG019CK CK

IGG019CS CS

IGG019CU' CU

I IGG019C6 C6

IGG019EI EI

IGG019EJ EJ

IGG019FP FP

Appendages entered from PCI EXit

IGG019CU CU

IGG019C3' C3

Appendages entered from Abnormal End exit

IGG019CU' CU

IGG019C3 C3

IGG019HJ EI

IGG019EJ' EJ I
IGG019FR FR

1 Module has multiple entry POints DeecriptlOl'l eppears In Program Controlled Interruption Appendeges

2 Module has multiple entry POints DescriptIOn eppeara In Abnormal--end Appendeges

3 Module has multiple entry po,nts Desct,ptlOn sppeara In Channei-end Appendages

Figure 17. Module Selector - Appendages

82 OS SAM Logic

Figure 17

The remaining channel programs attempt to refjll their buffers from the new
extent.

• If there is no other extent, the appendage sets error indications in the lOB and
the DCB (to show an end-of-volume condition) and returns control to the EXCP
supervisor. The EXCP supervisor then issues a PURGE macro instruction for
that channel program. The update synchronizing routine ensures writing out of
the empty portions of pending channel programs.

If the interruption occurred in a Read-count CCW and there is a new extent, the
appendage builds a Seek address for the new extent using the starting address
from the DEB. It then copies this new Seek address into the lOB and UCB (unit
control block) and updates the M value in the refill portion of each channel
program.

• If the interruption occurred in a Seek CCW, the appendage copies the Seek
address from the refill portion of the present channel program into the lOB and
UCB.

• It resets the lOB and UCB to address ~he next track and its channel program and
returns control to the I/O supervisor.

Appendage IGG019BM (End-of-Extent - Update - BSAM): Appendage
IGG019BM readdresses channel programs to a new extent for a DCB opened for
Update and using BSAM. The Open executor selects and loads this appendage for use
as the end-of-extent appendage if the Open parameter list specifies:

Update

and the DCB specifies:

Read

The appendage operates as follows:

• When the Seek address is updated to reflect the beginning of the next extent and
the rotational position sensing (RPS) feature has been specified, the Set-sector
byte is reset to zero. A test is made to determine whether the record-ready
feature is present and the correct offset is used.

• It receives control from the EXCP supervisor when a channel program to refill a
buffer attempts to read the first block beyond the present extent.

• If there is no other extent for a Refill channel program, the appendage sets error
indications in the lOB and the DCB to show an end-of-volume condition and
returns control to the EXCP supervisor.

• If there is a new extent for a Refill channel program, the appendage adds 1 to the
value of M in the DCBFDAD field and in the Seek address of each refill channel
program for the DCB. It places the new Seek address into the current lOB and
into the UCB and returns control to the EXCP supervisor. The supervisor
restarts the channel program.

Section 2: Method of Operation 83

84 OS SAM Logic

Appendage IGG019CH (End-of-Extent - Ordinary): Appendage IGG019CH finds a
new extent when the EXCP supervisor finds an end-of-extent condition. The Open
executor selects and loads this appendage for use as the end-of-extent appendage if
the Open parameter list specifies:

Input, INOUT, or OUTIN

and the DCB specifies:

Direct-access storage device

Record format other than fixed-length standard

Normal channel-program scheduling

The appendage operates as follows:

• It receives control when a channel program attempts to read a block beyond the
present extent.

• The appendage examines the DEB for another extent.

• If there is another extent, the appendage enters the new full device address in the
DCB, the unit control block (UCB), the lOBs, and returns control to the EXCP
supervisor. The EXCP supervisor restarts the channel program.

• If there is no other extent, the appendage sets error indications in the lOB and
the DCB to show an end-of-volume condition and returns control to the EXCP
supervisor. The EXCP supervisor then issues a PURGE macro instruction for
that channel program.

Appendage IGG019CZ (End-of-Extent - Chained Channel-Program Scheduling):
Appendage IGG019CZ readdresses the chain of channel programs to a new extent
when the EXCP supervisor finds an end-of-extent condition. The Open executor
selects and loads this appendage for use as the end-of-extent appendage if the DCB
specifies:

Chained channel-program scheduling

Direct-access storage device

The appendage operates as follows:

• It receives control when an end-of-track condition interrupts the chained
scheduling and the I/O superyisor finds that the next track is not in the current
extent.

• If there is another extent, the appendage enters the new Seek address in the DCB,
lOB, unit control block (UCB), updates the Seek addresses of the remaining
ICBs, and returns control to the I/O supervisor to reschedule the channel
program for execution.

• If there is no other extent, the appendage sets a volume-full indication in the
DCB, lOB, and ICB and returns control to the I/O supervisor to skip further
scheduling for this DCB.

Figure 17

Appendage IGG019C4 (End-of-Extent): Appendage IGG019C4 finds a new extent
when the EXCP supervisor finds an end-of-extent condition. The Open executor
selects and loads this appendage for use as the end-of-extent appendage if the Open
parameter list specifies:

Input, INOUT, or OUTIN

and the DCB specifies:

Direct-access storage device

Record format other than fixed-length standard

Normal channel-program scheduling

The appendage operates as follows:

• It receives control when a channel program attempts to read a block beyond the
present extent.

• If another extent is not available, it tests the 10BSEEK field to see whether the
Seek is on cylinder FFxx. If it is, the appendage tests to see whether the M/T
Read-count following the Read-data is causing a Seek beyond the current extent.
If so and the unit check is not on, it clears all error and status flags in the lOB,
sets CHAN and DEV END, sets 7F in the lOB completion code, clears the DCB
flags, and sets an X'FF' in the HI cylinder byte of the next lOB SEEK field (for
multiple lOBs) or the DCBFDAD field (for one lOB).

• For an error on any other command causing a Seek beyond the current extent if
an X'FF' is found, it sets the volume-full bit in the DCBCINDl, sets the
unit-exception bit in the CSW, and turns off the unit check.

Start I/O (SIO) Appendages

Start I/O (SIO) appendages, if present, gain CPU control when the start I/O
subroutine of the EXCP supervisor reaches the start I/O appendage exit. The
following appendages set channel program entries:

• IGG019CG. This appendage makes the Seek address accessible to the I/O
supervisor for QSAM and BSAM update channel programs that refill buffers.
(This is necessary because the Seek address for such a channel program is read by
the preceding channel program into a location unknown to the I/O supervisor.)

• IGG019CL. This appendage causes the next line to print at the top of a new
page if a printer overflow condition was encountered in the execution of the last
channel program.

• IGG019FN. This appendage checks the search argument for a record value of
zero and sets the sector value to zero when one is found.

Appendage IGG019CG (SIO - Update): Appendage IGG019CG resets the lOB to
the Seek address and channel program for refilling for a refill-only update channel
program. The Open executor selects and loads this appendage for use as the SIO
appendage if the Open parameter list specifies:

Update

Section 2: Method of Operation 85

86 OS SAM Logic

The appendage operates as follows:

• It receives control whenever the EXCP supervisor reaches the SIO appendage
exit.

• It tests the lOB to determine whether the buffer is to be emptied and refilled or
to be refilled only.

• If the buffer is to be emptied and refilled, the module turns on the PCI flag in the
Read-data CCW and returns control to the EXCP supervisor.

• If the buffer is to be refilled only, the module resets the lOB to the refill portion
of the channel program and its Seek address, resets the PCI flag in the Read-data
CCW and returns control to the EXCP supervisor.

• With the rotational position sensing (RPS) feature, the offset to the special
FDAD from the Read CCW is not the same for record-ready. A test is made for
record-ready and the correct offset used. When the special FDAD has been
partially or completely destroyed, the channel program Start address is set to
point to a TIC so the lOB will ultimately be marked in error. The offset of the
TIC is different for record-ready.

Appendage IGG019CL (SIO - PRTOV): Appendage IGG019CL causes a skip to the
top of a new page with the first channel program following a printer overflow
condition. The Open executor selects and loads this appendage for use as the SIO
appendage if the DCB specifies:

Printer

The appendage operates as follows:

• The appendage tests the lOB to determine whether a PRTOV macro instruction
was issued with this PUT or WRITE macro instruction.

• If a PRTOV macro instruction was not issued, the appendage returns control to
the EXCP supervisor immediately.

• If the PRTOV macro instruction was issued, the appendage resets the PRTOV bit
in the lOB and tests the DCBIFLGS field to determine whether a
printer-overflow condition has occurred.

• If printer-overflow has not occurred, the appendage returns control to the EXCP
supervisor.

• If printer-overflow has occurred, the appendage resets the DCBIFLGS field,
inserts the "skip-to-l" command byte into the channel program, updates the lOB
channel program start-address field and the channel address word (location 72),
and returns control to the EXCP supervisor.

Appendage IGG019FN (SIO - Rotational Position Sensing): Appendage IGG019FN
checks the search argument for a record value of zero if the rotational position sensing
(RPS) feature is specified.

The appendage operates as follows:

• For seeks on nonzero records, control is immediately returned to the supervisor.

• For RPS, the sector value pointed to by the Set-sector is initialized to zero.

Figure 17

• For seeks on record zero, the second TIC in the channel program is changed to
an MIT Read-count. If search-direct has been implemented, the count is read
into an 8-byte location that is 8 bytes beyond the last byte of the last CCW in
the Read portion of the channel program.

Channel-End Appendages

Channel-end appendages, if present, gain CPU control when the I/O interruption
supervisor reaches the channel-end appendage exit. For a SYSIN data set, the SYSIN
appendage recognizes the delimiter characters. For other data sets, other appendages
distinguish between valid and invalid block lengths by computation.

When the rotational position sensing (RPS) function is implemented in the channel
programs, the Read-sector follows the Read-data command and wipes out the Residual
count for the Read. The implementation of RPS Requires reading in the full 8 bytes of
the count field of the record to use the DLDL plus the K of the count for checking the
number of bytes read. The count is read into an 8-byte area following the channel
program. In the channel-end appendages, it is necessary to move the CCHHR into the
next search argument or DCBFDAD+3 depending on the number of lOBs.

Two sector bytes are needed for each opened DCB. The first byte is used to
Set-sector and the other to Read-sector. The 2 bytes are necessary because the error
recovery procedures require that no channel program modify itself.

In the channel-end appendages, the sector value from the last Read-sector is moved to
the byte for the Set-sector command.

The channel-end appendages are:

• IGG019BT. This appendage schedules the writing of successive blocks when a
record has to be segmented.

• IGG019BV. This appendage distinguishes between valid wrong-length blocks
and variable-length blocks.

• IGG019CI. This appendage distinguishes between wrong-length and truncated
blocks when fixed-length blocked records are being read using normal channel
program scheduling.

IGG019CJ. This appendage distinguishes between wrong-length and
variable-length blocks when variable-length records are being read using normal
channel program scheduling.

• IGG019CK. This appendage recognizes SYSIN delimiter characters.

• IGG019CS. This appendage distinguishes between valid and invalid
wrong-length indications when paper tape is being read.

• IGG019CU. This appendage, which also appears at the PCI and abnormal-end
exits, disconnects executed channel programs that were scheduled by chaining,
and posts the completions. For channel-end channel status, this appendage
distinguishes between wrong-length and truncated blocks when fixed-length
blocked records are being read using chained channel-program scheduling.

Section 2: Method of Operation 87

88 OS SAM Logic

Refer to the section on the PCI appendage for a discussion of separation of chained
channel-programs and a description of appendage IGG019CU.

• IGG019FP. This appendage does length checking for all formats supported by
the search-direct feature.

• IGG019C6. This module receives control when any combination of Read, Punch,
and Print is specified for the 3525 for either BSAM or QSAM.

• IGG019EI. This appendage distinguishes between fixed, fixed-l?locked, and
undefined user blocks and embedded DOS checkpoint records. In the case of
fixed-length blocked records it also distinguishes between wrong-length and
truncated blocks.

• IGG019EJ. This appendage distinguishes between wrong-length and
variable-length blocks and embedded DOS checkpoint records.

Appendage IGG019BT (Channel End - Create BDAM): Module IGG019BT schedules
the writing of successive blocks when a record has to be segmented. The Open
executor selects and loads this module if the DCB specifies:

Write (Load)

Variable-length spanned record

The module operates as follows:

• It receives control when the I/O supervisor arrives at the channel-end exit.

• It determines whether the WRITE was WRITE-SZ. If it was WRITE-SZ, the
routine returns control to the I/O supervisor.

When the WRITE-SF is issued, it determines whether the block was spanned
record. If not, the routine returns control to the I/O supervisor.

When a spanned record is being processed, the routine determines whether the
entire record has been written. If the record has been written, the routine returns
control to the I/O supervisor. When the entire record has not been written, the
routine schedules the asynchronous exit routine. The asynchronous exit routine
will schedule an EXCP to write a middle segment or the last segment of the
record.

Channel-end Appendage IGG019BV (Offset Read): Appendage IGG019BV
distinguishes between valid wrong-length blocks and variable-length blocks. It also
performs an offset read function when necessitated by spanned records. The Open
executor selects and loads this appendage and the associated Read module
(IGG019BU), if the Open parameter list specifies:

Input

and the DCB specifies:

BFTEK=R
Variable-length spanned record format

(Under these conditions, the SLI flag is off in the Read CCW.)

Figure 17

The appendage operates as follows:

• It receives control from the I/O supervisor at the channel-end exit.

• If the appendage finds a unit exception bit on in the CSW, it returns to the I/O
supervisor immediately.

• If the unit check bit is on, the Abnormal routine is branched too. The abnormal
channel-end appendage returns to the I/O supervisor immediately if it finds a
cylinder-end or file-protect condition. Otherwise, the current channel program is
changed back to Read-key-and-data, and control is returned to the I/O
supervisor.

If a key was not read (Read-data CCW), the command is changed back to
Read-key and data.

• If a key was expected (Read-key-and-data CCW) and there was no key to read
(key length=O in count just read), then the Read CCW must be rescheduled with
an offset.

• The appendage calculates the length of the block and compares it to the block
length field.

• If the lengths are equal, it resets error indicators in the ECB.

• If the lengths are unequal and the current channel program is changed to
Read-key-and-data, control is returned to the I/O supervisor. The I/O
supervisor then sets the ECB to show that the channel program executed with an
error condition.

• The appendage checks the SDW to see if another segment is to follow. If there
is, the next channel program is changed to Read-data.

Appendage IGG019CI (Channel End - Fixed-Length Blocked Record Format):
Appendage IGG019CI distinguishes between valid wrong-length blocks and truncated
blocks. The Open executor selects and loads this appendage if the Open parameter list
specifies:

Input, Readback, INOUT, or OUTIN

and the DCB specifies:

Fixed-length blocked records

The appendage operates as follows:

• It performs length checking for fixed-length records. If the record format is fixed
standard or the track-overflow feature is used with record-ready, the SILl bit is
left off in the Read-data CCW. If a wrong length record is read, the command
chaining bit is turned off and the CSW reflects channel end and wrong length
indication. The channel-end appendage determines whether the record is a valid
short block. For standard format-F records with a valid short block, the module
turns on the EOV bit in the DCB and ECB.

• For nonstandard format-F records with the track-overflow feature, a short block
is treated as a valid record and the sector value for this last record is used for the
next READ.

Length checking for nonstandard format-F records without the track-overflow
feature is performed in the following manner.

Section 2: Method of Operation 89

90 as SAM Logic

The module searches the channel program for a Read-count command, picks up the
address of the count to locate the data length and key length, and adds them together.
The appendage then compares this value to the block size to determine whether a short
block was read. (The SILl bit is on so the channel program will not be terminated with
the Read-data CCW.) If a short block has been read, the appendage divides the data
length plus key length by the LRECL to determine whether the record is a multiple of
the LRECL. If it is, the appendage continues processing using code common to
non-RPS. If the DD is not a multiple of the LRECL, the incorrect length bit in the
CSW is turned on and processing continues with code common to both RPS and
non-RPS.

• For record-ready channel programs, the sector value that was read upon the
execution of the preceding channel program is moved to the address of the
Set-sector command.

• For record-ready, if there is only one lOB, the CCHHR of the count is moved
into the DCBFDAD+3. If there is more than one lOB, the CCHHR of the count
is moved into the IOBSEEK+3 of the next lOB or, in the case of update, into the
next special FDAD+3.

Appendage IGG019CJ (Channel End - Variable-Length Record Format): Appendage
IGG019CJ distinguishes between valid wrong-length blocks and variable-length
blocks. The Open executor selects and loads this appendage if the Open parameter list
specifies:

Input, INOUT, OUTIN

and the DCB specifies:

Variable-length records

(Under these conditions, the SLI flag is off in the Read CCW.)

The module performs length checking for variable-length records. When the
track-overflow option is used with rotational position sensing (RPS), no length
checking is performed because the count that would be read in is the count of the first
segment only. When the record-ready feature is used without track-overflow, all 8
bytes of the count of the record are read into main storage. The DLDL plus the K of
the count is compared with the LL of the record. If they are equal, the module
branches via the return register. If they are not equal, it turns on the wrong-length
indicator, dummies up the residual count, and continues processing with code common
to both RPS and non-RPS.

For record-ready, if there is only one lOB, the CCHHR of the count is moved into the
DCBFDAD+3. If there is more than one lOB, the CCHHR of the count is moved into
the IOBSEEK+3 of the next lOB or, in the case of update, into the next special
FDAD+3.

To save the sector value for the write for update channel program, the first sector value
is moved from the Set-sector byte for the Write channel programs. To prepare for
executing the next channel program, the contents of the Read-sector byte are moved to
the Set Sector byte of the Read channel program.

The appendage operates as follows:

• It receives control when the I/O interruption supervisor arrives at the
channel-end exit.

Figure 17

• If the appendage finds a unit-exception bit on in the channel status word, it
returns control to the I/O interruption supervisor immediately.

• The appendage calculates the length of the block and compares it to that in the
block length field.

• If the lengths are equal, the appendage turns off error indications in the ECB and
DCB and returns control to I/O interruption supervisor.

• If ,the lengths are not equal and the device is magnetic tape, a check is made to
see if the block has been padded up to 18 bytes or blocksize, whichever is less. If
so, the appendage turns off the error indicators in the ECB and DCB and returns
control to the I/O supervisor. If the device is not magnetic tape or the block is
not padded, control is returned to the I/O interruption supervisor immediately.
The I/O interruption supervisor then sets the ECB to show that the channel
program executed with an error condition.

Appendage IGG019CK (Channel End - SYSIN): Appendage IGG019CK translates
the delimiter character for a SYSIN data set into an end-of-data-set indication for the
access method routine. The Open executor selects and loads this appendage if the
device assigned to this DCB is SYSIN.

The appendage operates as follows:

• It receives control when the I/O interruption supervisor arrives at the
channel-end exit.

• The appendage tests the buffer for the SYSIN delimiter characters /*.
• If the characters read are not delimiter characters, the appendage returns control

to the I/O supervisor.

• If the characters read are delimiter characters, the appendage turns on the
unit-exception bit in the channel status word (CSW) and the error flag in bits 0
and 1 of the DCBIFLGS field of the DCB, indicating an end-of-data set
condition. The appendage clears bit 6 of byte 187 (CVTSTUSA) of the control
vector table (CVT) and returns control to the I/O supervisor. This bit indicates
whether the /* delimiter is expected.

Appendage IGG019CS (Channel End - Paper Tape): Appendage IGG019CS
distinguishes between valid wrong-length blocks and the wrong-length indication
characteristic when paper tape is being read. The Open executor selects and loads this
appendage if the DCB specifies:

Fixed-length record format

Paper tape

The appendage operates as follows:

• It receives control when the I/O interruption supervisor arrives at the
channel-end exit.

• If the channel status word (CSW) residual count is zero, the appendage turns off
error indications in the lOB and the DCB and then returns control to the I/O
supervisor.

• If the channel status word (CSW) residual count is not zero, the appendage
returns control to the I/O supervisor immediately.

Section 2: Method of Operation 91

92 OS SAM Logic

Appendage IGG019CU. (Channel End - Chained Channel-Program Scheduling): This
appendage is entered for all three I/O interruption supervisor exits. Refer to "Program
Controlled Interruption Appendage" for a description of appendage IGG019CU and a
discussion of disconnecting chained channel-programs.

Appendage IGG019C6 (Channel End, Abnormal End - 3525 Associated Data Set):
This module is loaded when any combination of Read, Punch, and Print is specified for
the 3525 for either BSAM or QSAM.

The module operates as follows:

• DCBQADFLl (Bit 3 at X'50') is used to indicate whether entry was via a
channel end or an abnormal-end interrupt.

DCBIFLGS (Bit 1 at X'2C') is used to indicate that error correction is in
progress.

Control is transferred via register 14.

Appendage IGG019EI (Channel End, Abnormal End - Fixed-length or Undefined-length
Record Format): Appendage IGG019EI distinguishes between fixed, fixed-blocked,
and undefined user blocks and embedded DOS checkpoint records. In the case of
fixed-length blocked records it also distinguishes between wrong-length and truncated
blocks. The Open executor selects and loads this appendage if the Open parameter list
specifies:

Input, Readback

and the DCB specifies:

OPTCD=H (specified in JCL)

Magnetic tape

Fixed, fixed-blocked, or undefined-length blocks

The appendage operates as follows:

• It receives control from the I/O interruption supervisor when the I/O interruption
supervisor arrives at the channel-end and abnormal-end appendage exits.

• Upon encountering a checkpoint header record, bit 0 in the DEBTFLGS field of
the DEB is turned on. It is turned off when the checkpoint trailer record is
encountered. This provides the means to differentiate between the user's data
records and the embedded checkpoint records.

• In the channel-end entry into this appendage the number of bytes read is tested.
If 20 bytes were not read and the bypass-flag bit in the DEBTFLGS field is off,
the appendage takes the normal exit to the I/O interruption supervisor for
fixed-length and undefined-length formats and performs the necessary record
length check for fixed-block records. If 20 bytes were read, the record is tested
to determine if it is a checkpoint header record. If it is not a checkpoint header
record, the normal exit to the I/O interruption supervisor is taken for
fixed-length and undefined-length formats, and record length checking for
fixed-block formats is performed.

Figure 17

When a checkpoint header record is encountered, the bypass-flag bit in the
DEBTFLGS field is turned on, the DCBBLKCT field is decremented by the value
in the 10BINCAM field, the "Flags 1-3" fields of the lOB are reinitialized, and
the 10BERRCT field is set to zero. For QSAM, the lOB completion code is set
to X'50' and the normal exit is taken to the I/O interruption supervisor. The
bypassing of the checkpoint records is performed in the QSAM routines. For
BSAM, the re-EXCP exit is taken to the I/O interruption supervisor.

The appendage is reentered when the reexecuted channel program ends for
BSAM or when the rescheduled channel program ends for QSAM and, finding the
bypass flag on, tests for the checkpoint trailer record. If the record read is not
the trailer record, the DCBBLKCT field is decreased, the lOB-flag fields
reinitialized, and the 10BERRCT field is set to zero. For BSAM, the re-EXCP
exit is taken to the I/O interruption supervisor. For QSAM, the lOB completion
code is set to X'50', and the normal exit is taken to the I/O interruption
supervisor. This process continues until the trailer record is read. When the
trailer record is read, the bypass flag is turned off, and the above procedure is
followed. The next entry to this channel-end appendage follows the reading of
the record immediately following the embedded checkpoint records.

• The appendage is entered in the event of an abnormal condition arising. If this
entry is the result of any condition other than a data error, control is returned to
the I/O interruption supervisor by way of the normal exit.

If it is a data error, a test is then performed to determine if a checkpoint
header/trailer reco"rd was read. This test is comprised of an initial 12 byte
comparison of the record's first 12 bytes with the checkpoint identifier

/ / / CHKPT / /

Should this comparison fail, a byte-by-byte comparison is performed. If 10 or
more bytes compare successfully, it is then assumed that a header or trailer record
has been encountered and the appendage returns control to the I/O interruption
supervisor.

Appendage IGC019EJ (Channel End, Abnonnal End - Variable-length Record Fonnat):
Appendage IGG019EJ distinguishes between variable-length and wrong-length blocks
and embedded DOS checkpoint records. The Open executor selects and loads this
appendage if the Open parameter list specifies:

Input

and the DCB specifies:

OPTCD=H (via JCL)

Magnetic Tape

Variable-length blocks

The appendage operates as follows:

It receives control from the I/O interruption supervisor when the I/O interruption
supervisor arrives at the channel-end and abnormal-end appendage exits.

• ~ Upon encountering a checkpoint header record, bit 0 in the DEBTFLGS field of
the DEB is turned on. It is turned off when the checkpoint trailer record is

Section 2: Method of Operation 93

94 OS SAM Logic

encountered. This provides the means to differentiate between the user's data records
and the embedded checkpoint records.

• In the channel-end entry into this appendage the first two bytes of the record are
tested to determine if it is a valid block. (The first two bytes of a variable-length
physical record specify the block length and are used in performing
length-checking.) The first 12 bytes of a checkpoint header or trailer record
(which are identical and 20 bytes in length) identify it as a header/trailer record.
These 12 bytes are

/// CHKPT //

The first two bytes of the checkpoint header record do not satisfy the length
check as a variable-length record. If the first two bytes do satisfy the length
check, the appendage takes the normal exit to the I/O interruption supervisor for
variable-length records. If the first two bytes do not satisfy the length check for
a variable-length record, the number of bytes read is computed. If 20 bytes were
not read and the bypass-flag bit in the DEBTFLGS field is off, the appendage
returns to the I/O interruption supervisor. If 20 bytes are read, the record is
tested to determine if it is a checkpoint header record. If it is not a checkpoint
header record, the normal exit to the I/O interruption supervisor is taken for
variable-length formats.

When a checkpoint header record is encountered, the bypass-flag bit in the
DEBTFLGS field is turned on, the DCBBLKCT field is decremented by the value
in the 10BINCAM field of the lOB, the "Flags 1-3" fields of the lOB
reinitialized, and the IOBERRCT field set to zero. For QSAM, the lOB
completion code is set to X'50' and the normal exit is taken to the I/O
interruption supervisor. The bypassing of the checkpoint records is performed in
the QSAM routines. For BSAM, the re-EXCP exit is taken to the I/O
interruption supervisor.

The appendage is reentered when the reexecuted channel program ends for
BSAM or when the rescheduled channel program ends for QSAM and, finding the
bypass flag on, tests for the checkpoint trailer record. If the record read is not
the trailer record, the DCBBLKCT field is decremented, the lOB flag fields
re-initialized, and the 10BERRCT field is set to zero. For BSAM, the re-EXCP
exit is taken to the I/O interruption supervisor. For QSAM, the lOB completion
code is set to X'50', and the normal exit is taken to the I/O interruption
supervisor. This process continues until the trailer record is read. When the
trailer record is read, the bypass-flag is turned off and the above procedure
followed. The next entry to this channel-end appendage follows the reading of
the record immediately following the embedded checkpoint records.

• The appendage is also entered in the event that an abnormal condition arises. If
this entry is the result of any condition other than a data error, control is returned
to the I/O interruption supervisor by way of the normal exit.

If it is a data error, a test is then performed to determine if a checkpoint
header/trailer record was read. This test is comprised of an initial 12-byte
comparison of the record's first 12 bytes with the checkpoint identifier

/ / / CHKPT / /

I
Figure 17

Should this comparison fail, a byte by byte comparison is performed. If 10 or
more bytes compare successfully, it is then assumed that a header or trailer record
has been encountered, and the appendage returns control to the I/O interruption
supervisor.

Appendage IGG019FP (Channel End - Search-direct): Appendage IGG019FP
receives control at channel-end time or if an incorrect length has been given.

The appendage operates as follows:

• For the search-direct feature, the SILl bit is on for all Read CCWs. The
appendage does length checking for all formats supported by the search-direct
feature.

• If the rotational position sensing (RPS) feature is present, the appendage moves
the sector value from the Read-sector address to the Set-sector address.

• If the second TIC in the channel program is a multitrack Read--count CCW, the
appendage moves the 2-byte data length of the count field, pointed to by the
address of the multitrack Read--count CCW, to the right half of the second TIC
location.

• For format-V records, it compares the data length to the record descriptor word
that is pointed to by the Read-data command.

For format-U records, no length checking is provided.

• It finds the multitrack Read-count CCW following the Read-data and moves the
data length of the count field, pointed to by the Read-count CCW, to the right
half of the second TIC of the next lOB (or to that of the same lOB, if only one
lOB exists).

It moves the CCHHR portion of the count, pointed to by the multitrack
Read-count CCW following the Read-data CCW, to the next 10BSEEK field
(for multiple lOBs) or to the DCBFDAD (for one lOB).

It changes the multitrack Read-count CCW, preceding the Read-data CCW to a
TIC CCW to the Read-data CCW.

For exchange buffering, the value in the DCBBLKSI field is used instead of the
data length specified in the Read-data command.

Program ControUed Interruption (PCI) Appendage (Execution of Channel Programs Scheduled by Chaining)

There is one program controlled interruption (PCI) appendage. If chained
channel-program scheduling is used, its address is placed into the appendage vector
table for all three I/O interruption supervisor exits: PCI, channel end, and abnormal
end.

A program controlled interruption (PCI), in the sequential access methods, signals the
normal execution of a channel program that was scheduled by chaining. The
interruption occurs when control of the channel has passed to the next channel
program. If the only channel status is PCI, the I/O supervisor performs no processing;
if other channel conditions are also present, the I/O supervisor processes these in the
usual way after it regains CPU control from the PCI appendage.

Section 2: Method of Operation 95

96 as SAM Logic

This appendage performs the following three functions:

• It performs the channel status analysis usually done by the I/O interruption
supervisor. The interruption is caused by a condition in the logic of the channel
program rather than a condition in the channel or the device. The condition is
meaningful only to the processing program (in this case, the access method
routines, or, more specifically, the appendage) and has no meaning to the I/O
supervisor.

• It repeats this process for preceding channel programs whose PCls were lost.
PCls are not stacked. If a channel remains masked from the time of one PCI
until after another PCI, only one PCI occurs.

It performs processing normally necessary for other interruptions (for example,
channel end). Interruptions other than PCls may terminate execution of chained
channel programs.

Accordingly, a PCI appendage not only does the processing implicit for the logical
condition that the interruption signals (namely, that the preceding channel program
executed normally), but also extends this processing back to any preceding channel
programs whose PCI may have been masked and, finally, takes CPU control at other
I/ a interruption supervisor appendage exits if chained channel-program scheduling is
used.

Appendage IGG019CU (PCI, Channel End, Abnormal End - Chained Channel-Program
Scheduling): Appendage IGG019CU disconnects (parts) chained channel programs
that have executed and posts their completion; in addition, it performs normal
channel-end and abnormal-end appendage processing. (For a description of the
joining process of chained channel-program scheduling, refer to the chained
channel-program scheduling end-of-block routines.) The Open executor selects and
loads this appendage for use as the channel end, PCI, and abnormal-end appendage if
the DCB specifies:

Chained channel-program scheduling

The appendage operates as follows:

• It receives control from the I/O interruption supervisor when the latter arrives at
the PCI, channel end, and abnormal-end appendage exits.

• It checks the channel program for a rotational position sensing (RPS) program
and, if one is found, moves the ICB's channel program address to the main lOB's
TIC, which has been offset by the Set Sector CCW, and updates the sector values
(that is, moves the previously read sector to the Set Sector address).

• It tests to determine if the CSW and the "First ICB" field in the lOB, point to
the same channel program.

• If they do, the appendage returns control to the I/O supervisor, unless a
channel-end condition exists.

• If they do not, the appendage disconnects (parts) the channel program (pointed to
by the ICB) from the next channel program in the chain as follows:

For input, the appendage tests the lOB for an end-of-volume condition. If it
exists, the appendage continues as it would for a channel-end interruption with a
permanent error.

Figure 17

For output, or for input without an associated end-of-volume condition, the
appendage resets the command in the last CCW from TIC to NOP and the
address to the beginning of the next channel program.

If the device is magnetic tape, it updates the DCBBLKCT field in the DCB.

If aWAIT macro instruction was addressed to this channel program, the
appendage causes the Post routine to perform its processing and to return control
to the appendage.

It posts the ICB with the completion code and with channel end and updates the
lOB SAM prefix to point to the next ICB.

It repeats this disconnecting process until the lOB and the CSW point to the same
channel program.

The appendage continues as follows if channel-end processing occurred without an
error:

• It sets the lOB and the ICB to show that the channel program completed without
an error, and resets the lOB to point to the next channel program and ICB.

If there are more channel programs to be executed, the appendage resets the lOB
to not-complete and passes control to the EXCP supervisor to schedule these
channel programs.

If there are no more channel programs to be executed, the appendage returns
control to the I/O supervisor.

The appendage continues as follows if the channel-end interruption occurred with a
wrong-length indication:

• It determines whether a truncated block has been read.

If a truncated block has been read in a data set with fixed-length blocked
standard record format, it sets:

The DCB to show an end-of-volume condition

The current ICB to complete-without-error

The next ICB to complete-with-error

The CSW in the next ICB to show channel end and unit exception

It returns control to the I/O interruption supervisor.

• If a truncated block has been read in a data set with fixed-length blocked record
format, the appendage sets the ICB to complete-without-error and resets the lOB
to point to the next ICB and its channel program. The appendage causes control
to pass to the EXCP supervisor to restart the channel.

If a block with wrong-length data has been read, the appendage continues as it
would for permanent errors.

Section 2: Method of Operation 97

The appendage continues as follows if channel-end processing occurred with an error:

• It isolates the channel program in error by disconnecting it from the next one.

• It sets the lOB to point to the channel program in error.

• It sets the DCB to show that the channel program is being retried.

• It returns control to the I/O interruption supervisor. That routine then processes
the channel program in the error-retry procedure.

The appendage continues as follows if channel end occurred with a permanent error:

• It receives control after the I/O supervisor error-retry procedure is found
unsuccessful in correcting the error.

• For a 3211 printer, it tests to see whether further retry is necessary. If the ECB
is posted in error with an X'41' or X'44' and the command-retry bit in sense byte
1 is on, then it schedules the asynchronous-error-processing module, IGG0197H,
and exits.

• It posts the ICB to show that the channel program was completed in error.

• It disconnects the channel program in error from the following one.

• It resets the lOB to point to the channel program after the one in error.

• It returns control to the I/O interruption supervisor.

Appendage IGG019C3 (PCI - QSAM Update): This appendage is described in the
section "Abnormal-End Appendages."

Abnormal-End Appendages

98 OS SAM Logic

Abnormal-end appendages receive control from the I/O interruption supervisor when
the latter finds a unit check condition in the channel status word (CSW). The
appendages for this exit are a track-overflow appendage and a chained
channel-program execution appendage shared with the channel-end and PCI exits.
The shared appendage is described under the PCI appendage.

A unit check status in a channel addressing an input data set with track overflow may
indicate a permanent error in one segment of a block. If there are further good
segments, or if the segment in error is being skipped over to find the next block, the
sequential access methods attempt to continue access beyond the segment in error.
The processing necessary to accomplish this is performed by the track-overflow
asynchronous-error-processing routine, (module IGG019C1, described in
"Synchronizing and Error-Processing-Routines"), rather than by the appendage. To
permit other I/O operations to continue, the appendage suspends further processing of
the condition by the I/O supervisor, schedules the asynchronous error-processing
routine and returns control to the I/O supervisor.

Appendage IGG019CU (Abnormal End - Chained Channel-Program Scheduling): This
appendage is entered for all three I/O interruption supervisor exits. Refer to Program
Controlled Interruption Appendages for a description of appendage IGG019CU and a
discussion of disconnecting chained channel-programs.

Figure 17

Appendage IGG019C3 (Abnormal End - Track Overflow, PCI-QSAM Update):
Appendage IGG019C3 schedules the track-overflow-asynchronous-error-processing
routine if a permanent error occurs in a channel program for an input data set with
track overflow. The Open executor selects and loads this appendage for use as the
abnormal-end appendage if the Open parameter list specifies:

Input, INOUT, or OUTIN

and the DCB specifies:

Track overflow

or if the Open parameter list specifies:

UPDAT

and the DCB specifies:

QSAM

The abnormal end appendage operates as follows:

It receives control from the II 0 interruption supervisor when the latter reaches
the abnormal-end appendage exit.

If the CSW that caused this appendage to gain control addresses a Read-Data
CCW (without a Skip bit) and shows a unit-exception channel status, the
appendage returns control to the I/O interruption supervisor without further
processing. After control returns to the processing program, the synchronizing or
Check routine processes this channel status as an end-of-volume condition.

If the CSW that caused this appendage to gain control addresses a Read-Data
CCW (with a Skip bit on) and shows a unit exception or a unit check channel
status, the appendage passes control to the exit-effector routine together with the
entry point address of II 0 supervisor that causes the II 0 supervisor not to post
the ECB and to retain the request element for the channel program. The
exit-effector routine schedules the track-overflow,
asynchronous-error-processing routine for eventual execution and passes control
to the given entry point.

The PCI appendage operates as follows:

• Updates the 10BSTART address of the update lOB to point to the refill portion
of the channel program

• Returns to the II 0 supervisor

Appendage IGG019FR (Abnonnal End - 3211 Printer): Appendage IGG019FR
schedules the asynchronous error-processing routine IGG019FS when a print line
buffer (PLB) parity error or a UCS buffer parity error occurs.

The appendage operates as follows:

The module receives control before and after the error recovery procedure (ERP).

The first time the abnormal-end appendage is entered, it is returned to the 1/0
supervisor to schedule the 3211 ERP.

Section 2: Method of Operation 99

• The second time the appendage is entered, a return to the I/O supervisor is made
when any of the following occurs:

Command retry bit in sense byte 1 is off.

Error persists after the print line operation was retried.

Otherwise, the abnormal-end appendage obtains the address of the interruption
request block (IRB) from the DEB and the address of the interruption queue
element (IQE) from the IRB. The IOE address is placed in register 1 in
complement form. The address of the stage 2 exit effector is obtained from the
communications vector table (CVT) and a branch is taken to that address. The
stage 2 exit effector schedules the asynchronous routine, which retries the print
line. It is then returned to the I/O supervisor.

QSAM Control Routines

These control routines, shared by QSAM and BSAM, consist of both modules loaded
by the Open executor and macro expansions. The selection and loading of one of the
modules is performed by the Open executor and depend on the access conditions; the
presence of macro expansions depends solely on the use of the corresponding macro
instruction in the processing program and is independent of the presence or absence of
modules.

If a CNTRL macro instruction is encountered in a processing program using OSAM or
BSAM, control passes to a control routine. The PRTOV macro expansions place the
code to be executed inline in the processing program. CNTRL routines pass control to
the I/O supervisor; the macro expansions return control to the processing program.
The CNTRL routine for the card reader causes execution of a channel program that
stacks the card just read into the selected stacker. The CNTRL routine for the printer
causes execution of a channel program with a command to space or to skip. The
printer overflow macro expansions cause testing for the printer-overflow condition.

Access Method Options Selections

CNTRL X X X

Printer X

Card Reader, X
Single Buffer

I 3525 Printer X

Modules

IGG019CA CA

IGG019CB CB

IIGG019FA FA

Figure 18. Module Selector - Control Modules

100 OS SAM Logic

There are two CNTRL routines in QSAM; they are load modules. Figure 18 lists the
routines available and the conditions that cause a particular routine to be used. The
Open executor selects one of the modules, loads it, and puts its address into the
DCBCNTRL field.

Figure 18-19

There are two PRTOV routines, which are macro expansions. Whenever the assembler
encounters either of the two macro instructions shown in Figure 19, it substitutes the
corresponding macro expansion in the processing program object module.

Macro Instruction

PRTOV - User exit

PRTOV - No user exit

Number of
Macro
Expansions

Figure 19. Control Routines that Are Macro Expansions

Control Module IGG019CA (CNTRL - Select Stacker - Card Reader): Module
IGG019CA permits stacker selection on the card reader. The Open executor selects
and loads this module if the DCB specifies:

CNTRL

Card reader

One buffer

The module operates as follows:

It receives control when the CNTRL macro instruction is encountered in a
processing program.

• For QSAM, the module schedules a channel program that stacks the card just
read, reads the next card into the buffer, forces an EOB condition to be
recognized by the Get routine, and returns control to the processing program.
(Card reader Get module IGG019AG depends on the use of this routine to refill
empty buffers.)

• For BSAM, the module schedules a channel program that stacks the card just read
and then returns control to the processing program. The Read/Write module
IGG019BA causes a channel program to be scheduled that reads the next card
into the buffer.

• If the 3505 or 3525 is specified, processing continues for stacker 1 or 2
(whichever is specified in the CNTRL macro instruction of the user's program).

A test is made to determine if either OMR or RCE is being used.

If either OMR or RCE is specified, the OMR/RCE bit is turned on in the
operation codes of the CCWs.

Section 2: Method of Operation 101

102 as SAM Logic

Control Module IGG019CB (CNTRL - Space, Skip - Printer): Module IGG019CB
causes printer spacing and skipping by use of macro instructions; the spacing or
skipping to be performed are specified as operands of the macro instruction. The Open
executor selects and loads this module if the DCB specifies:

CNTRL

Printer

The module constructs a channel program to control the device, issues an EXCP macro
instruction and then returns control to the processing program.

Control Module IGG019FA: This module performs line control functions if:

The 3525 is specified.

A print file is specified.

CNTRL is specified.

The module operates as follows:

• The line counter total (DCBLNP) in the DCB is increased, according to the
specifications in the CNTRL instruction.

• I/O macro sequencing is performed when using this module and a 3525
associated data set. If an error is detected, an ABEND (003) is issued with a
return code of 03.

If a skip to a channel on the next card is issued by the user, this module issues an
EXCP to feed the next card, issues a WAIT, and returns control to the user's
program by way of register 14.

Printer-Overflow Macro Expansions: The PRTOV macro expansions permit processing
program response to printer-overflow conditions.

The following macro expansions are created as inline coding during the expansion of
the macro instruction.

PRTOV - User Exit: The coding operates as follows:

• A WAIT macro instruction is issued for the lOB pointed to by the DCBIOBA
field.

The DCBIFLGS field of the DCB is tested for an overflow condition.

• If an overflow condition exists, a BALR instruction is issued to pass control to
the user's routine.

• If no overflow condition exists, control passes to the next instruction.

PRTOV - No User Exit: The coding creates a test mask in the DCB field located at
DCBDEVT + 1 and returns control to the processing program.

Note: The printer end-of-block routine temporarily stores the mask in the Nap
channel command word (CCW) preceding the Write CCW, turns on a bit in the first
byte of the lOB and resets the mask. The PRTOV appendage tests the lOB bit to
determine whether to respond to or ignore an overflow condition and resets the bit.

Figure 20

Basic Sequential Access Method Routines

Basic sequential access method (BSAM) routines cause storage and retrieval of blocks
of data. BSAM routines furnish device control, but do not provide blocking. There are
six types of BSAM routines:

• Read routines

Write routines

End-of-block routines

Check routines

Appendage routines

Control routines

Diagram G, BSAM/BP AM Flow of Control, in Section 5 shows the relationship of the
BSAM routines to other portions of the operating system and to the processing
program.

Control routines (not shown in Diagram G) permit the processing program to control
the positioning of auxiliary storage devices. They receive control when the CNTRL
(printer, tape, card reader), PRTOV, NOTE, POINT or BSP macro instructions are
encountered in a processing program. The track balance routine receives control from
a Write routine or the track-overflow, end-of-block routine.

The BSAM control routines are described later in this section of the manual. See
Figures 22, 23, and 24 for information about control modules.

Read and Write Routines

A Read or Write routine receives control when the processing program issues a READ
or a WRITE macro instruction. The Read and Write routines used with data sets
organized for the sequential or partitioned access methods pass control to the
end-of-block routines, which in turn pass control to the I/O supervisor. The Write
routines, used to create data sets organized for later access by basic direct access
method (BDAM) routines, include the end-of-block function within themselves, and so
pass control to the I/O supervisor directly. A Read or Write routine processes
parameters set by the processing program in the DECB to permit scheduling of the
next channel program.

There are six Read/Write modules. Figure 20 lists the modules available and the
conditions that cause a particular module to be used. The Open executor selects one of
these routines, loads it, and puts its address into the DCBREAD /WRITE field. The
figure shows, for example, that module IGG019BH is selected and loaded if update and
the READ macro instruction are specified.

Read/Write Module IGG019BA: Module IGG019BA completes the channel program
to be scheduled next, and relates control blocks used by the I/O supervisor to the
channel program. The Open executor selects and loads this module if the Open
parameter list specifies:

Input, Output, IN OUT , or OUTIN

and the DCB specifies:

Read or Write

Section 2: Method of Operation 103

104 as SAM Logic

Access Method Options

Input

Output

INOUT, OUTIN

Update

Read

Offset Read

Write

Write (Load mode)
(Create-BDAM)

Paper-tape character
conversion

Fixed-length record
format

Undefined-length record
format

Variable-length record
format

Spanned records

Track overflow

Read/Write
Modules

IGG019BA

IGG019BF

IGG019BH

IGG019BR

IGG019BU

IGG019DA

IGG019DB

IGG019DD

Selections

X

X

X

X

X

X

BA BA

X X

X

X x

X

X X

X

X

X

X

BF BF

BR

Figure 20. Module Selector - Read and Write Modules

The module operates as follows:

X

X

X

BU

x
X

BH

X

X

X

DA

X X

X X

X

X

X

X

DB

DD

It receives control when a READ or WRITE macro instruction is encountered in
a processing program.

• It enters the address of the lOB into the DECB to permit the Check routine to
later test execution of the channel program.

• It completes the channel program by inserting the buffer address from the DECB,
and the length from either the DECB (for undefined-length records), the DCB
(for fixed-length records, and for input of variable-length records), or the record
itself (for output of variable-length records).

Figure 20

• If a block is to be written on a direct-access storage device, the module tests the
DCBOFLGS field in the DCB to establish the validity of the value in the
DCBTRBAL field.

• If the DCBTRBAL value is valid, or if a block is to be written on a device other
than direct-access storage, or if a block is to be read from any device, the module
passes control to an end-of-block routine.

• If the DCBTRBAL value is not valid (that is, the preceding operation was a
Read, Point, or Open for MOD), the module issues an SVC 25 instruction to pass
control to BSAM control module IGC0002E to obtain a valid track balance.
When control returns to this module, it passes control to an end-of-block routine.

Read Module IGG019BF (Paper-Tape Character Conversion): Module IGG019BF
completes a channel program to read paper tape, awaits its execution, and converts the
paper tape characters into EBCDIC characters. The Open executor selects and loads
this module and one of the code-conversion modules listed in Appendix A, Section 6 if
the DCB specifies:

Read

Fixed-length or undefined-length record format

Paper tape

The module operates as follows:

• It receives control when a READ macro instruction is encountered in a processing
program.

• It enters the address of the lOB into the DECB to permit the Check routine to
test execution of the channel program.

• It completes the channel program by inserting the buffer address from the DECB,
and the length value from the DCBBLKSI field (for fixed-length record format)
or the DECB (for undefined-length record format).

• It passes control to the end-of-block routine.

• When control returns from the end-of-block routine, the module issues aWAIT
macro instruction to await execution of the channel program.

• It converts each character in the buffer until one of the following conditions is
met, with the stated effect:

Conversion has provided the number of characters specified in the length value:
The module returns control to the processing program.

All the characters read have been converted, but into a smaller number of
characters. Some input character codes have no corresponding EBCDIC
translation in a specific code-conversion module. Therefore, after conversion of
all characters in the buffer, the number of converted characters may be less than
the length value: The module completes a channel program for the number of
additional characters needed to fill the buffer, passes control to the end-of-block
routine, which issues the EXCP macro instruction to schedule the channel
program, and issues aWAIT macro instruction for the channel program. When
control returns, the module resumes converting characters.

Section 2: Method of Operation 105

106 as SAM Logic

An end-of-record character is encountered (undefined-length record format
only): The module returns control to the processing program.

The tape is exhausted: The module returns control to the processing program.

A paper tape reader-detected error character is encountered: If necessary
because of compression, the module moves the character to the left, without
conversion, and returns control to the processing program.

• If one of the characters in the buffer is an undefined character, the module
converts the character to the hexadecimal character FF, sets an indication of this
condition in the lOB for the paper-tape Check routine, and continues conversion
until one of the other conditions is met.

The tables used for code conversion are listed along with the code conversion routines
in Appendix A, Section 6.

Read/Write Module IGG019BH (Update): Module IGG019BH ascertains whether a
buffer supplied by the processing program is to be written from or read into, and
causes a corresponding BSAM update channel program to be executed. The Open
executor selects and loads this module if the Open parameter list specifies:

Update

and the DCB specifies:

Read

With the rotational position sensing (RPS) feature, this module bypasses the new
CCWs when necessary.

The module operates as follows:

It gains control when the processing program uses a READ or WRITE macro
instruction.

If data is to be read into a buffer, the module flags the lOB for a Read operation,
sets it to point to the Read channel program, and copies the length and buffer
address from the DECB or the DCB into the Read CCW.

If data is to be written from a buffer, the module flags the lOB for a Write
operation, sets it to point to the Write channel program, copies the auxiliary
storage address from the DCBFDAD field into the IOBSEEK field, and completes
the length and buffer address entries in the Write CCW.

The module passes control to end-of-block module IGG019CC. On return of
control from that module, it returns control to the processing program.

Write Module IGG019BR (Create BDAM/VRE): Module IGG019BR writes
variable-length spanned blocks and record-zero blocks for a data set that will later be
processed by BDAM. The Open executor selects and loads this module if the DCB
specifies:

Write (Load mode)

Variable-length spanned record

BFTEK=R

The module consists of three routines: one to write data blocks, one to write
record-zero blocks, and an asynchronous exit routine.

Figure 20

To write a data block for BDAM, the routine operates as follows:

It receives control from the processing program when it encounters a WRITE-SF
macro instruction and from the EOV I new volume executor (to write the block
not written into the previous volume) after the EOV routine of 110 Support has
obtained another extent.

It determines whether this block fits on the current track. If it does, the routine
determines whether the new track balance is greater than 8 bytes. If the new
track balance is equal to or less than 8 bytes, the routine adds
Write-capacity-record CCWs to the Write-count-key-and-data CCWs. It then
issues an EXCP.

• If the block does not fit on the current track, the routine determines whether the
block fits on the current volume. If it does, this module constructs a channel
program to write the first segment from a segment area associated with this lOB
and to write the capacity record of this track. It then issues an EXCP. The
asynchronous exit routine writes the successive segments. The DCBFDAD field
has the address of the highest track on which the last segment of this record is
written.

If the block does not fit on the track or within the current volume, this routine
constructs a channel program to write the capacity record of the track. It then
issues an EXCP. The asynchronous exit routine will write the capacity records of
all the tracks on this volume. The EOV executor (IGG0551A) will reschedule
the Write request on the same volume spanning the extents, if the secondary
allocation is on the same volume. When the secondary allocation is on a different
volume, the Write request will be written on the new volume.

To write a record-zero block for BDAM, the routine operates as follows:

• It receives control when a WRITE-SZ macro instruction is encountered in the
processing program or after the EOV routine has obtained another extent.

• It updates the record-zero area and the channel program to write the record-zero
block and issues as EXCP macro instruction. The routine returns control to the
processing program or to the EOV routine.

If there are no data blocks on the track, the module modifies the channel program
to clear the track after writing the record-zero block.

The asynchronous exit routine operates as follows:

It receives control from the channel-end appendage through the exit effector
when a spanned record is to be processed.

• If the record is a spanned record, it constructs a segment from the remaining part
of the record and issues an EXCP macro instruction to write the segment.

If the record is a spanned volume record, it issues an EXCP macro instruction to
write capacity records up to the end of the extent.

Read Module IGG019BU: This module completes the channel program to read a direct
data set, and relates the control blocks used by the II 0 supervisor to the channel
program. The Open executor selects and loads this module along with an associated
channel-end appendage (IGG019BV) if the Open parameter list specifies:

Input

Section 2: Method of Operation 107

108 OS SAM Logic

and the DCB specifies:

BFTEK=R

Variable-length spanned record format

The module operates as follows:

• It receives control when a READ macro instruction is encountered in the
processing program.

• It enters the address of the lOB into the DECB to permit the Check routine to
later test execution of the channel program.

• It completes the channel program by inserting the buffer address and the record
length. The buffer address is obtained from the DECB. If there is no key with
this segment (this is not the first segment), the buffer address is offset by the key
length. This determination is made by checking to see if the CCW has been
changed by module IGG019BV to Read-data. The record length is obtained
from the DEB and modified by the key length if appropriate.

• The module then issues an EXCP macro instruction.

Write Module IGG019DA (Create-BDAM): Module IGG019DA writes fixed-length
data blocks, fixed-length dummy blocks, and record-zero blocks for a data set to be
processed later by BDAM. The Open executor selects and loads this module if the
DCB specifies:

Write (Load mode)

Fixed-length record format

With the rotational position sensing (RPS) feature, this module tests the first CCW of a
channel program created by IGG0199L. It tests for a Set-sector command to
determine whether it should take any RPS CCWs into account when making
modifications to the channel program.

The module operates as follows:

• It receives control from the processing program when it encounters a WRITE
macro instruction and also from the EOV /new volume executor after the
end-of-volume routine of O/C/EOV has obtained another extent.

• It connects the next available lOB to the DCB and the DECB.

• It determines, in the same manner as end-of-block routine IGG019CD, whether
this block fits on the current track and updates the DCBTRBAL field.

• If this is neither the first nor the last block of a track, the module updates the full
device address (FDAD) in the DCB and the lOB and issues an EXCP macro
instruction. It then returns control to the processing program or the EOV /new
volume executor from which it received control.

• If this is the last block of a track (that is, no other block fits on the track except
the present block), the module updates the full device address (FDAD) in the
DCB and the lOB, expands the channel program to write the record-zero block
for that track as well as the last data block, and issues an EXCP macro
instruction. The module then returns control to the routine from which it
received control.

•

Figure 20

If this is the first block of a new track and there is another track in the allocated
extent, the module finds the next track in the allocated extent, updates the full
device address (FDAD) in the DCB and the lOB, and issues an EXCP macro
instruction. It then returns control to the routine from which it received control.

• If this is the first block of a new track and there is no other track in the allocated
extent, the module sets an EOV condition indication and returns control to the
processing program.

Write Module IGG019DB (Create-BDAM): Module IGG019DB writes variable-length
and undefined-length blocks and record-zero blocks for a data set to be processed
later by BDAM. The Open executor select and loads this module if the DCB specifies:

Write (Load mode)

Variable-length or undefined-length record format

The module consists of two routines: one to write data blocks and one to write
record-zero blocks.

With the rotational position sensing (RPS) feature, the module tests for a Set-sector
command in the first CCW of a channel program created by IGG0199L. If it is an
RPS channel program, the module makes the necessary modifications to the channel
program.

To write a data block for BDAM, the routine operates as follows:

It receives control from the processing program when it encounters a WRITE-SF
macro instruction and from the EOV / new volume executor (to write the block
not written into the previous volume) after the end-of-volume routine of
O/C/EOV has obtained another extent.

It determines whether this block fits on the current track in the same manner as
end-of-block routine IGG019CD and updates the DCBTRBAL field.

If one of the following conditions exists, it returns control without any further
processing to the processing program or to the EOV /new volume executor from
which it received control:

A block other than the first block on a track is to be written, but it does not
fit on the balance of the track.

The first block is to be written on a track, but the allocated extents are
exhausted. For this condition, the module sets an EOV condition indication
before it returns control.

If either of the following conditions exists, the module updates the full device
address (FDAD) in the DCB, the lOB, and the channel program, issues an EXCP
macro instruction and then returns control to the routine from which control was
received:

A block other than the first block on the track is to be written and it fits on
the balance of the track.

The first block is to be written on a track and there is another track in the
allocated extents.

• It returns control to the processing program or the end-of-volume routine.

Section 2: Method of Operation 109

110 OS SAM Logic

To write a record-zero block for BDAM, the routine operates as follows:

• It receives control when a WRITE-SZ macro instruction is encountered in the
processing program, or after the end-of-volume routine has obtained another
extent.

• It updates the record-zero area and the channel program to write the record-zero
block and issues an EXCP macro instruction. The routine returns control to the
processing program or to the end-of-volume routine.

• If there are no data blocks on the track, the module modifies the channel program
to clear the track after writing the record-zero block.

Write Module IGG019DD (Create-BDAM - Track Overflow): Module IGG019DD
creates data sets (with track overflow) of fixed-length data and fixed-length dummy
blocks that are subsequently to be processed by BDAM. The module segments the
block, enters the segment lengths and buffer segment addresses in the channel program,
updates storage addresses for the channel program, and updates count fields for the
block to be written and for records-zero of the tracks. The Open executor selects and
loads this module if the Open parameter list specifies:

Output

and the DCB specifies:

Write (Load mode)

Fixed-length record format

Track overflow

With the rotational position sensing (RPS) feature, the first CCW of a channel program
created by IGG0191M is tested by this module for a Set-sector command code. If the
code is present, alterations to the channel program are made accordingly.

The module operates as follows:

It receives control from the processing program when the program issues a
WRITE macro instruction, or from the end-of-volume routine of I/O support
after that routine has obtained a new volume to write out any pending channel
programs. (The end-of -volume routine receives control from the Check routine
when that routine finds that a channel program did not execute because of an
end-of-volume condition.)

• If no lOB is available, it returns control to the processing program.

If an lOB is available, it stores its address in the DCB and the DECB.

• If the block last written was the last one for this extent, the module erases the
balance of the extent.

If the block last written filled the last track used, the module obtains the address
of the next track.

• It sets the lOB and its channel program to write the block onto the next available
track.

• If the block does not fill the track, the module completes the count field for this
record and issues an EXCP macro instruction.

Check Routines

Figure 21

• If the block fills the track, the module sets the track-full indicator, completes
record zero for this track, links the channel program that writes record zero to the
channel program that writes the data record, and issues an EXCP macro
instruction.

• If the block overflows the track, the module completes record zero for this track
and completes a channel program to write record zero, completes the count field
and channel program for the segment that fits on the track, and constructs the
identification for record one of the next track.

It repeats the preceding until a segment is left that does not overflow a track. For
the final segment, the module operates as it would for a block that fits on the
track.

On return of control from the I/O supervisor, the module returns control to the
routine from which it was received.

A Check routine synchronizes the execution of channel programs with that of the
processing program. When the processing program issues a READ or WRITE macro
instruction, control returns to the processing program from the Read or Write routine.
This occurs when the channel program has been scheduled for execution or, if reading
paper tape, when the buffer has been filled and the data converted. To determine the
state of execution of the channel program, the processing program issues a CHECK
macro instruction; control returns to the processing program from the Check routine if
the channel program was executed successfully, or if it was executed successfully after
the Check routine caused volume-switching. For permanent errors, control passes to
the processing program's SYNAD routine. Reading or writing under BSAM, the
SYNAD routine may continue processing the data set by returning control to the
Check routine; writing in the create-BDAM mode, processing cannot be resumed.

If the American National Standard Code for Information Interchange (ASCII) is used
and input is specified, the check module issues an XLATE macro instruction which
translates the entire input buffer from ASCII form to EBCDIC form. If format-D
records are specified, the record descriptor words are form converted from decimal to
binary. For format-D records when BUFOFF #:- F, the length of the record read is
calculated and placed in the DCB LRECL field.

Figure 21 lists the available Check routines and the conditions that cause a particular
module to be used. The Open executor selects one of the four routines, loads it, and
places its address into the DCBCHECK field. For example, Figure 21 shows that
module IGG019BG is selected and loaded if Read and paper-tape character conversion
are specified.

Check Module IGG019BB: Module IGG019BB synchronizes the execution of the
channel program to that of the processing program, and responds to any exceptional
condition remaining after the I/O supervisor has posted execution of the channel
program in the lOB. If ASCII coding is used, the entire input buffer is translated from
ASCII to EBCDIC. The Open executor selects and loads this module of the Open
parameter list specifies:

Input, Output, INOUT, or OUTIN

and the DCB specifies:

Read or Write

Section 2: Method of Operation 111

112 OS SAM Logic

Access Method Options Selections

Input X X

Output X X

INOUT, OUTIN X X

Update X

Read X X

Write X

Write (Load) X X
(Create-BDAM)

Paper-tape X
character-conversion

Variable-length spanned X
record format

Check Modules

IGG019BB BB BB

IGG019BG BG

IGG019BI BI

IGG019BS BS

IGG019DC DC

Figure 21. Module Selector - Check Modules

The module operates as follows:

• It receives control when a CHECK macro instruction is encountered in a
processing program.

• It tests the DECB for successful execution of the channel program.

If the channel program was executed normally, the module returns control to the
processing program.

• If the channel program is not yet executed, the module issues aWAIT macro
instruction.

If the channel program encountered an error condition in its execution, the
module issues an SVC 55 instruction to pass control to the SYNAD/EOV
executor IGC0005E. Two types of returns from the executor are possible:

If the executor determines t~e error condition to be an EOV condition, the
executor passes control to the end-of-volume routine of O/C/EOV for volume
switching. That routine passes control to the EOV Inew volume executor which
reschedules the purged channel programs, this executor then returns control to the
Check module.

If the executor determines the error condition to be a permanent error, the
executor returns control to the Check module immediately. Control is then
passed to the processing program's SYNAD routine. If the SYNAD routine
returns control to the Check routine, the routine issues a second SVC 55

Figure 21

instruction to pass control to the SYNAD/EOV executor IGC0005E again. The
executor treats this as an ACCEPT error option, implements it, and returns
control to the routine, which then returns control to the processing program.

Check Module IGG019BG (Paper-Tape Character-Conversion): Module IGG019BG
processes error conditions detected by Read module IGG019BF.

This module is loaded if the DCB specifies the READ macro instruction and
paper-tape character-conversion.

The module operates as follows:

• It receives control when a CHECK macro instruction is encountered in a
processing program.

• If the Read routine filled the buffer with valid characters, the Check module
returns control to the processing program.

• If the Read routine stopped converting because of a reader-detected error
character, or if the Read routine encountered an undefined character, the Check
module passes control to the processing program's SYNAD routine.

If control returns from the SYNAD routine, the Check module returns control to
the processing program.

• If the channel program encountered an EOV condition, the Check module issues
an SVC 55 instruction. Control passes to the SYNAD/EOV executor,
IGC0005E, then to the end-of-volume routine of O/C/EOV, and finally to the
processing program's EODAD routine.

Check Module IGG019BI (Update): Module IGG019BI synchronizes the execution of
a BSAM update channel program to the progress of the processing program. A BSAM
update channel program either writes data from a buffer or reads data into a buffer.
The module also processes permanent errors and end-of-volume conditions. The Open
executor selects and loads this module if the Open parameter list specifies:

Update

and the DCB specifies:

Read

The module operates as follows:

• It receives control when the processing program uses the CHECK macro
instruction.

• It tests the ECB in the DECB for successful execution of the channel program
associated with that DECB.

• If the channel program has not yet completed processing, the module issues a
WAIT macro instruction.

• If the channel program has been executed normally, the module returns control to
the processing program.

• If the channel program encountered an error condition in its execution, the
module tests to determine if the error is an EOV condition.

Section 2: Method of Operation 113

114 OS SAM Logic

• If the error is an EOV condition, the module sets an indicator to show that this
entry is from the Check module and passes control to the processing program's
EODAD routine.

• If the error is not an EOV condition the module issues an SVC 55 instruction to
pass control to the SYNAD/EOV executor, module IGC0005E.

• On return of control from the SYNAD/EOV executor, the Check module passes
control to the processing program's SYNAD routine. If the SYNAD routine
returns control to the Check routine, the routine issues a second SVC 55
instruction to pass control to the SYNAD/EOV executor (IGC0005E) again.
The executor treats this as an Accept-error option, implements it, and returns
control to this routine, which then returns control to the processing program.

Check Module IGG019BS (Create BDAM): Module IGG019BS synchronizes the
execution of the channel program (to write a block for a BDAM data set) to the
progress of the processing program, and responds to exceptional conditions encountered
in the execution of the channel program. The Open executor selects and loads this
module if the DCB specifies:

Write (Load mode)

Variable-length spanned record

BFTEK=R

The module operates as follows:

• It receives control when the processing program uses the CHECK macro
instruction.

• If the channel program is not yet executed, the module issues aWAIT macro
instruction.

• If a user specifies WRITE-SFR, the next record address (TTR) is supplied in the
next address field of the DECB.

• If the execution of the channel program encounters a permanent error condition,
the module passes control to the processing program's SYNAD routine. If control
is returned from the SYNAD routine, or if there is no SYNAD routine, the
module issues an ABEND macro instruction.

• If the Write routine encounters an EOV condition and therefore does not request
scheduling of the channel program for execution, this module passes control to the
SYNAD/EOV executor (IGC0005E) by issuing an SVC 55 instruction. On
return of control, this module tests for completion of the channel program.

Check Module IGG019DC (Create-BDAM): Module IGG019DC synchronizes the
execution of the channel program to write a block for a BDAM data set to the progress
of the processing program, and responds to exceptional conditions encountered in the
execution of the channel program. The Open executor selects and loads this module if
the DCB specifies:

Write (Load mode)

The module operates as follows:

• It receives control when the processing program uses the CHECK macro
instruction.

Figure 22

• If the channel program is not yet executed, the module issues aWAIT macro
instruction.

If the channel program executed without error, the module returns control to the
processing program.

If the execution of the channel program encountered a permanent error condition,
the module passes control to the processing program's SYNAD routine. If control
is returned from the SYNAD routine, or if there is no SYNAD routine, the
module issues an ABEND macro instruction.

• If the Write routine encountered an EOV condition and therefore did not request
scheduling of the channel program for execution, this module passes control to the
SYNAD/EOV executor (IGG0005E) by issuing an SVC 55 instruction. On
return of control this module tests for completion of the channel program.

BSAM Control Routines

A control routine receives control when a control macro instruction (for example,
CNTRL, NOTE, POINT, BSP) is used in a processing program or in another control
routine. BSAM control routines (which include those available in QSAM) pass control

Access Method Options

Note/Point

Update. Track Overflow

Chained Scheduling

CNTRL

Direct-Access Storage

Magnetic Tape

Card Reader

Printer

3525 Printer

Control Modules

IGG019BC

IGG019BD

IGG019BE

IGG019BK

IGG019BL

IGG019CA1

IGG019CB1

IIGG019FA1

Selection

x x

X

X

BC

BD

x

X

BE

x
X

X

X

BK

X

X

X

BL

x X X

x
X

X

CA

CB

FA

1 These routines are also used In aSAM; see Figure 18 for description of these routines.

Figure 22. Module Selector - Control Modules Selected and Loaded by the Open
Executor

Section 2: Method of Operation 115

116 OS SAM Logic

to the I/O supervisor, another control routine, or return control to the processing
program directly. BSAM control routines cause the physical or logical positioning of
auxiliary storage devices.

There are three types of BSAM control routines:

• Routines that are loaded into processing program main storage by the Open
executor (CNTRL, Note/Point).

• Routines that are loaded into supervisory transient area main storage by an SVC
instruction in a processing program macro expansion or in another control routine
(BSP, track balance).

• Routines that are inline macro expansions in the processing program (PRTOV).

Routines that are loaded by the Open executor are mutually exclusive; that is, only one
of them can be used with one DCB. The PRTOV macro expansions result in
instructions that set or test bits that cause branching in either the processing program
or in an appendage.

Figures 22, 23, and 24 list the various kinds of control routines and the conditions that
cause them to gain control. Figure 22 shows the access condition options that cause
the Open executor to load a control routine for use with a DCB.

Figure 23 lists the SVC instructions that cause a control routine to be loaded at
execution time. Figure 24 lists the different macro expansions constructed by the
assembler.

SVC Macro
Number Instruction Function

25 (none) Establish valid track balance.
Erase balance of extent for
track overflow.

69 BSP Device Independent
Backspace (tape direct-access).

Figure 23. Control Modules Loaded at Execution Time

Macro Instruction

PRTOV - User exit

PRTOV - No user exit

Number of
Macro
Expansions

Figure 24. Control Routines that Are Macro Expansions 1,2

lThese routines are also used In QSAM; see the QSAM section for a deSCription of the routines.

2Thls table duplicates Figure 19; It IS repeated here to Identify all control routines available In BSAM.

Module
Number

IGCOOO2E

IGCOOO61

Figure 22-23-24

Control Module IGG019BC (Note/Point - Direct Access): The Open executor selects
and loads this module if the DCB specifies:

Point

Direct-access storage device

The module consists of two routines: Note and Point.

Note Routine: The Note routine in module IGG019BC converts the full direct-access
device address (FDAD) for the last block read or written to a relative address of the
form TTR, and presents that value to the processing program.

If the records are standard format without the track-overflow feature, the record
number is passed to the resident sector routine to compute the sector value. If the
record format is not standard F or if the track-overflow feature is used, the value
X'FF' is placed in the byte used by the Set-sector CCW.

The Note routine operates as follows:

• It receives control when a NOTE macro instruction is encountered in a processing
program.

• It obtains the FDAD value used by the channel program last executed. The
address is found in either the lOB or the DCB depending on which macro
instruction the last channel program implemented:

If the macro instruction is READ and more than one buffer is used, the channel
program last executed places the FDAD value into the IOBSEEK field in the
lOB.

If the macro instruction is READ and a single buffer is used, the channel program
last executed places the FDAD value into the DCBFDAD field of the DCB.

If the macro instruction is WRITE, the end-of-block routine places the FDAD
value into the DCBFDAD field.

• It issues a BALR instruction to pass control to the IECPRL TV routine, which
converts full addresses into relative addresses.

It returns the address and control to the processing program.

Point Routine: The Point routine in module IGG019BC converts a relative address
(of the form TTRZ) to the full direct-access device address (FDAD) used by the next
channel program to read or write the block noted.

The Point routine operates as follows:

• It receives control when a POINT macro instruction is encountered in a
processing program.

• It issues a BALR instruction to pass control to the IECPCNVT routine which
converts the relative address to the full address and returns control to the Point
routine. If the processing program passed an invalid relative address, the routine
sets the DCBIFLGS and IOBECBCC fields to show that an addressing error
occurred before returning control. (The Check routine finds the error and
processes accordingly.)

Section 2: Method of Operation 117

118 OS SAM Logic

• It establishes the actual value to be used by the next channel program by testing
the fourth byte of the relative address TTRZ. If the value of Z is zero, the full
address is decreased by one; if Z is one, the address calculated by the
IECPCNVT routine is left unchanged. For an explanation of how the value of Z
is set, refer to the description of the POINT macro instruction in the publication
OS Data Management Macro Instructions, GC26-3794.

• It inserts the value in the DCBFDAD and 10BSEEK fields, sets the DCBOFLGS
field to show that the contents of the DCBTRBAL field are no longer valid, and
returns control to the processing program.

Control Module IGG019BD (Note/Point - Magnetic Tape): The Open executor
selects and loads this module if the DCB specifies:

Point

Magnetic tape

This module consists of two routines: Note and Point.

Note Routine: The Note routine in module IGG019BD presents the contents of the
DCBBLKCT field of the DCB to the processing program and returns control to the
processing program.

Point Routine: The Point routine in module IGG019BD positions the tape at the
block for which the NOTE macro instruction was issued.

The Point routine operates as follows:

• It receives control when a POINT macro instruction is encountered in a
processing program.

• It constructs a channel program to read forward or backward one block.

• It tests for the bypassing embedded DOS checkpoint records option by testing bit
3 of the DCBOPTCD field. If the option is found to have been specified, the
routine issues a GETMAIN to obtain 20 bytes and modifies the CCW to read the
first 20 bytes of each block into the obtained main storage while performing
recording positioning. The suppress-incorrect-Iength-indication bit is set in the
CCW. The actual bypassing of any embedded DOS checkpoint records is
performed by either channel-end appendage IGG019EI or IGG019EJ. Module
IGG019BD uses the FREEMAIN macro instruction to obtain main storage prior
to returning to the user.

• It passes the channel program for execution the number of times required to
position the tape at the desired block.

• It follows the last Read channel program by a NOP channel program to obtain
device end information for the last spacing operation.

• It returns control to the processing program, unless a tapemark, load point, or
permanent error is encountered in one of the executions of the Read channel
program. In that case, the routine sets the DCBIFLGS field to indicate a
permanent error, before returning control to the processing program. (Subsequent
processing by the Read or Write routine to cause scheduling of channel programs
for execution results in their not being scheduled. On the next entry into the
Check routine, it detects and processes the error condition.)

Figure 22

Control Module IGG019BE (CNTRL: Space to Tapemark, Space Tape Records):
Module IGG019BE positions magnetic tape at a point within the data set specified by
the CNTRL macro instruction. The Open executor selects and loads this module if the
DCB specifies:

CNTRL

Magnetic tape

The module consists essentially of two routines: One for spacing forward or backward
to the tapemark (the FSM/BSM routine), and one for spacing forward or backward a
number of tape records (the FSR/BSR routine).

The FSM/BSM routine operates as follows:

It receives control when a CNTRL macro instruction is encountered in a
processing program.

• It constructs a channel program to space to the tapemark in the desired direction.

It issues an EXCP macro instruction for the FSM or BSM channel program.
Control returns to the routine at channel end for the FSM/BSM channel
program.

• It issues an EXCP macro instruction for a NOP channel program to obtain
device-end information from the FSM/BSM channel program.

It issues an EXCP macro instruction for a BSR or FSR channel program to
position the tape within the data set after the FSM/BSM channel program
encounters a tapemark.

• It issues an EXCP macro instruction for a NOP channel program again to obtain
device-end information from the BSR/FSR channel program. The routine then
returns control to the processing program.

The FSR/BSR routine operates as follows:

• It receives control when a CNTRL macro instruction is encountered in a
processing program.

It constructs a channel program to space one record in the desired direction.

It tests bit 3 of the DCBOPTCD field for the bypassing embedded DOS
checkpoint records option. If the option is found to have been specified, the
routine issues a GETMAIN to obtain 20 bytes and modifies the CCW to read the
first 20 bytes of each block into the obtained main storage while performing
record positioning. The suppress-incorrect-Iength indication bit is set in the
CCW. The actual bypassing of any embedded DOS checkpoint records is
performed by either channel-end appendage IGG019EI or IGG019EJ. Module
IGG019BE uses the FREEMAIN macro instruction to obtain main storage prior
to returning to the user.

It reduces the count passed by the control macro instruction and issues an EXCP
macro instruction for the FSR or BSR channel program.

When the count is zero, it issues an EXCP macro instruction for a NOP channel
program to obtain the device-end information from the last FSR/BSR channel
program. The routine then returns control to the processing program.

Section 2: Method of Operation 119

120 OS SAM Logic

• If a load point is encountered during spacing, the routine returns control to the
processing program.

• If a tapemark is encountered during spacing, the routine repositions the tape to a
point within the data set by reverse spacing one block and returns control to the
processing program.

If a permanent error is encountered during spacing, the routine issues a BALR
instruction to pass control to the SYNAD routine, if one is present; if not, it
issues an ABEND macro instruction.

Control Module IGG019BK (Note/Point - Direct Access - Special): This module
contains the Note and Point routines for the special access conditions of chained
scheduling, track overflow, and update. The Open executor selects and loads this
module if the DCB specifies:

Point

Direct-access storage

Chained scheduling, track overflow, or the Open parameter is update.

Note Routine: The Note routine in module IGG019BK finds the full direct-access
device address (FDAD) for the last block read or written, converts it to a relative
address of the form TTR, and presents that value to the processing program.

If the records are standard F without the track-overflow feature, the record number is
passed to the resident sector routine to compute the sector value. If the record format
is not standard F or if the track-overflow feature is used, the value 255 is placed in the
byte used by the Set-sector CCW.

The Note routine operates as follows:

• It receives control when a NOTE macro instruction is encountered in a processing
program.

• It obtains the FDAD value used by the channel program last executed. The
location of this address depends on which macro instruction the last channel
program implemented:

• If the macro instruction is READ and more than one buffer is used, the channel
program last executed places the FDAD value into the lOB SEEK field in the lOB
if track-overflow or update is being used, and into the ICBSEEK field if chained
scheduling is used.

If the macro instruction is READ and only a single buffer is used, the channel
program last executed places the FDAD value into the DCBFDAD field of the
DCB.

• If the macro instruction is WRITE, the end-of-block routine places the FDAD
value into the DCBFDAD field.

It issues a BALR instruction to pass control to the IECPRLTV routine, which
converts full addresses into relative addresses.

It returns the address and control to the processing program.

Figure 22

Point Routine: The Point routine in module IGG019BK establishes the full
direct-access device address (FDAD) used by the channel program to read or write the
block noted.

The Point routine operates as follows:

• It receives control when a POINT macro instruction is encountered in a
processing program.

• It issues a BALR instruction to pass control to the IECPCNVT routine which
converts the relative address to the full address and returns control to the Point
routine. If the processing program passed an invalid relative address, the executor
sets the DCBIFLGS and the IOBECBCC fields to show that an addressing error
occurred, before returning control. The Check routine finds the error and
processes accordingly.

It establishes the actual value to be used by the next channel program by testing
the fourth byte of the relative address TTRZ. If the value of Z is zero, the full
address is decreased by one; if Z is one, the address calculated by the convert
routine is left unchanged. For an explanation of how the value of Z is set, refer
to the description of the POINT macro instruction in the as Data Management
Macro Instructions, GC26-3794.

It inserts the value into the DCBFDAD and IOBSEEK fields if track overflow or
update is being used, and also into the ICBSEEK field if chained scheduling is
used. It sets the DCBOFLGS field to show that the contents of the DCBTRBAL
field are no longer valid and returns control to the processing program.

Control Module IGG019BL (Note/Point - Magnetic Tape - Chained Scheduling):
Module IGG019BL is selected and loaded by the Open executor if the DCB specifies:

Point
Magnetic tape

Chained scheduling

The module consists of two routines: Note and Point.

Note Routine: The Note routine in module IGG019BL presents the contents of the
DCBBLKCT field of the DCB to the processing program and returns control to the
processing program.

Point Routine: The Point routine in module IGG019BL positions the tape at the
block for which NOTE was issued. It operates as follows:

• It receives control when a POINT macro instruction is encountered in a
processing program.

• A channel program is constructed to read forward or backward one block.

• The channel program is passed for execution the number of times required to
position the tape at the desired block.

Section 2: Method of Operation 121

• The last spacing channel program is followed by a NOP channel program to
obtain device-end information for the last spacing operation.

• Control is returned to the processing program, unless a tapemark, load point, or
permanent error is encountered in the execution of one of the channel programs.
In that case, the routine sets the DCBIFLGS field to indicate a permanent error
before returning control to the processing program. (Subsequent attempts by the
Read or Write routine to cause scheduling of channel programs for execution
results in their not being scheduled. On the next entry into the Check routine,
the condition is detected and handled.)

Control Module IGC0002E (SVC 25 - Track Balance, Track Overflow Erase): Module
IGC0002E consists of two routines that erase either a part of one track or several
tracks. The track balance routine determines the available space by erasing the
remainder of the track; the track-overflow erase routine erases tracks at the end of
each extent on which there are no data fields for blocks of the data set to which the
extent belongs. The routine is used when a block in a data set with track-overflow
record format would span extents.

This module is loaded at execution time into supervisor transient area main storage if
either Read/Write module IGG019BA or end-of-block module IGG019C2 issues an
SVC 25 instruction.

Track Balance Routine

The track balance routine establishes a valid value for the DCBTRBAL field of a DCB
opened for output to a direct-access device, when the field value has been invalidated
by a preceding READ, POINT, or OPEN macro instruction.

The routine operates as follows:

It constructs and issues an EXCP macro instruction for a channel program with
the Erase command and a count exceeding the track capacity. The erase
operation begins following the block just read or on the block pointed to.

It determines the actual track balance by subtracting the residual count in the
channel status word (CSW) from the count used in the channel program and
inserts the difference in the DCBTRBAL field of the DCB.

If standard format is specified and the DCB blocksize is equal to the blocksize
saved at Open time, the track balance will be computed arithmetically (rather
than taking the approximation from the ERASE operation) and stored in the
DCBTRBAL field.

Track-Overflow Erase Routine

122 OS SAM Logic

The track-overflow erase routine erases the space on a direct-access storage device
that lies between the last block to be written into the current extent and the end of that
extent. If the track-overflow end-of-block routine IGG019C2 finds that the next
segment of a block falls on a track beyond the present extent, that end-of-block
routine uses the SVC 25 instruction to pass control and the channel program to this
routine.

Figure 23-24

The routine operates as follows:

It receives control when it is loaded.

It substitutes Erase commands for the Write commands in the channel program
associated with the present lOB.

It issues an EXCP macro instruction to cause execution of the channel program
and aWAIT macro instruction for its completion.

• It returns control to the track-overflow end-of-block routine, irrespective of any
errors in the execution of the channel program.

Control Module IGC0006I (SVC 69 - BSP): Module IGC00061 backspaces the data
set one block whether the data set is on a magnetic-tape or direct-access device.

The expansion of the macro instruction BSP includes an SVC 69 instruction which
causes the module to be loaded and entered. The module essentially consists of two
parts, one for magnetic tape and one for direct-access devices.

For magnetic tape, the module operates as follows:

• It receives control after it is loaded.

It constructs and issues an EXCP macro instruction for a channel program to
backspace one block.

It constructs and issues an EXCP macro instruction for a NOP channel program
to obtain device-end information from the backspace channel program.

If the backspace channel program executed normally, the module sets register 15
to zero and returns control to the processing program.

• If the channel program executed with an error other than unit exception, the
module sets the DCBIFLGS field to indicate a permanent error. The CHECK
macro instruction, following the next READ or WRITE macro instruction, causes
the Check routine to pass control to the processing program's SYNAD routine.

• If the backspace channel program executed with a unit exception, the module
constructs and issues an EXCP macro instruction for a channel program to
forward space the tape one block. It next constructs and issues a NOP channel
program to obtain device-end information from the forward space channel
program. When channel end for the NOP channel program occurs, the module
returns control to the processing program with register 15 set to an error code.

For direct-access devices, the module operates as follows:

• It receives control after it is loaded.

It decreases the DCBFDAD field in the DCB to the preceding block address
across tracks, cylinders, or extents.

• It sets the DCBOFLGS field to show that the DCBTRBAL field value is invalid.

• If a valid preceding DCBFDAD value has been established, the module returns
control to the processing program with register 15 set to zero.

If there is no valid preceding DCBFDAD value because the processing program
has attempted to backspace beyond the first block, the module returns control to
the processing program with register 15 set to an error code.

Section 2: Method of Operation 123

• If a permanent error is encountered when reading the count fields (to establish
the preceding DCBFDAD field value), the DCBIFLGS field value is set to
indicate a permanent error. The Check routine, following the next READ or
WRITE macro instruction, causes control to pass to the processing program's
SYNAD routine.

Basic Partitioned Access Method Routines

BPAM Routines

BPAM Routines

STOW
STOW (C, D option)
FIND (C option)
FIND (D option)
BlDl
Convert TTR
Convert MBBCCHRR

A partitioned data set has a directory and members. The directory is read and written
using BP AM routines, whereas the members are read and written using BSAM routines.
(Refer to the BSAM portion of this publication.) A processing program using BP AM
routines for input from the directory is presented with the address of a member in a
channel program or in a table; for a processing program using BPAM for output to a
directory, the routines determine the address of the member and record that address in
the directory.

BP AM routines store and retrieve entries in the directory and convert auxiliary storage
addresses from relative to absolute. Directory entries are entered and found by
constructing channel programs that search the directory for appropriate entry blocks
and by locating an equal, or higher, entry within the block. Address converting
routines refer to the data extent block (DEB) to determine the address value
complementary to the given value.

BPAM routines (see Figure 25) differ from BSAM and QSAM routines in that BPAM
routines are not loaded at Open time; the Stow routine is loaded at execution time, all
the coding for Find (C option) is a macro expansion, and the Find (D option) /BLDL
routine and the converting routines are in resident main storage. Figure 25 shows how
these routines gain control.

Module Number

IGC0002A
IGG0210A
(Macro Expansion)
IECPFIND, IECPFND1
IECPFIND, IECPFND1
IECPFIND, IECPFND1
IECPFIND, IECPFND1

Residence

Supervisory Transient Area
Supervisory Transient Area
Processing Program Area
Supervisory Resident Area
Supervisory Resident Area
Supervisory Resident Area
Supervisory Resident Area

Instruction Passing
Control

SVC 21
XCTl from W3C0002A
FIND (C option)
SVC 18
SVC 18 or BAl I ECPBlDl
BAllECPCNVT
BAllECPRlTV

Figure 25. BP AM Routines Residence

STOW Modules

124 OS SAM Logic

STOW Module IGC0002A (SVC 21): Module IGC0002A finds entries in BPAM
directory entry blocks and left-justifies directory entries whenever any are inserted or
deleted.

Figure 25

The expansion of the STOW macro instruction includes an SVC 21 instruction that
causes this module to be loaded and to gain control. The STOW macro instruction is
issued in one of two ways:

Explicitly by a processing program using BP AM for output.

Implicitly by a processing program using BSAM, QSAM, or BPAM for output,
when issuing a CLOSE macro instruction to a DCB opened for a member of a
partitioned data set

The module operates as follows:

• It receives control when it is loaded.

• If either the delete (D) or the change (C) option is specified, the module transfers
control to module IGG0210A using in XCTL macro instruction.

For any option, the module searches the directory for an entry block with a key
equal to or higher than the member name, and reads that entry block into the
input buffer.

The module compares the entries in the entry block to the member name in the
instruction operand. Entries whose value is lower than that of the member name
are moved to the output buffer.

For entries that equal the member name, the module checks to determine whether
the replace (R), the change (C), or the delete (D) option is specified.

If the REPLACE option is specified, the module moves the new entry from the
work area to the output buffer, skips the present entry, and moves the remaining
entries to the output buffer. It issues an EXCP macro instruction to write the
updated entry block into the directory.

For entries that are higher than the member name, the module checks to
determine whether the add (A) option is specified.

If the add (A) option is specified, the module moves the new entry from the work
area to the output buffer before moving the high entry and those following it.
The module then shifts to the right all entries following the added entry by
constructing the channel programs necessary alternately to write and read entry
blocks. The module writes the full block, moves ·the remaining entries to the
output buffer, reads another entry block, and then completes and writes the
output buffer.

• If an add (Not ALIAS) or a replace (Not ALIAS) operation is successfully
completed, the module writes an end-of-data set mark (zero-length data block)
at the end of the member. The module then stores, for use at the next entry into
the Stow module, the relative address of the next block to be written, in the
DCBRELAD field of the DCB. The Open routine determines the first relative
address for the first entry to this module.

On completion of all channel programs necessary for the specified option, the
routine returns control to either the processing program, or the Close routine.

STOW Module IGG0210A: Module IGG0210A finds entries in BPAM directory entry
blocks and left-justifies directory entries whenever any are inserted or deleted.

Section 2: Method of Operation 125

Module IGG0210A is loaded and receives control through an XCTL macro instruction
issued by module IGC0002A if it determines that either the delete or the change option
is specified.

The module operates as follows:

It receives control when it is loaded.

For any option, the module searches the directory for an entry block with a key
equal to or higher than the member name, and reads that entry block into the
input buffer.

The module compares the entries in the entry block to the member name in the
instruction operand. Entries whose value is lower than that of the member name
are moved to the output buffer.

If the change option is specified, the module moves the present entry, less the
present name, to the new entry work area. To enter the new entry in its proper
entry block, the routine continues as though the add option were specified.

• If the delete option is specified, the module skips the present entry and moves the
remaining entries to the output buffer. The module now shifts the balance of the
entries in the directory to the left by constructing the necessary channel programs.
It reads a block, shifts entries into the remaining space of the preceding block,
writes the completed entry block, and starts the next block.

• On completion of all channel programs necessary for the specified option, the
routine returns control to either the processing program or the Close routine.

FIND (C Option) Macro Expansion

I The macro expansion moves the relative address (TTRK) from the BLDL list in main
storage to the DCBRELAD field in the requester's DCB. The FIND macro instruciton
then does a branch-and-link to the Point routine.

Resident Module IECPFIND

126 OS SAM Logic

Unless BLDLTAB is specified for the RESIDNT option of the SUPRVSR macro
instruction in the system generation program, this module is link-edited at system
generation with other modules to make up the resident nucleus. (If BLDLTAB is
specified, module IECPFND 1 is used.)

The routines in this module gain control through an SVC 18 instruction in a processing
program or a BALR instruction in a control program. A FIND (D Option) or BLDL
macro instruction expansion generates an SVC 18 instruction which causes control to
pass to CSECT IGCOI8, the entry point for the Find (D Option) and BLDL routines.
Control programs may use a BALR instruction and the address found in the
communications vector table (CVT) for entry points IECPBLDL, IECPCNVT, and
IECPRL TV to pass control to the respective routines.

Find (D Option) Routine - Entry Point and CSECT Name: IGC018 (SVC 18): The
Find (D Option) routine finds the relative address of the member named in the macro
instruction. It then causes the relative address to be converted into the full device
address (FDAD) and to be loaded into the DCBFDAD and lOB SEEK fields. The
routine operates as follows:

It searches the directory for an entry block with a key equal to or higher than the
given member name.

Figure 25

• It reads that entry block into main storage and searches the entry block for the
matching entry.

• It enters the relative address stated in the entry into the DCBRELAD field in the
DCB and issues a BAL instruction to pass control to the Point routine. Control
returns to the processing program.

BLDL Routine - Entry Points: IECPBLDL, IGC018 (SVC 18): The BLDL routine
completes a BLDL table with the directory entry for each of the members named in the
BLDL table. The routine operates as follows:

• It searches the directory for an entry block with a key equal to or higher than the
given member name.

• It reads that block into main storage and searches the entry block for the
matching entry.

It moves the entry into the processing program's BLDL table, obtains the next
name to be matched, and returns to the beginning of the routine.

• When the BLDL table has been completed, the routine returns control to the
processing program.

Convert Reiative-to-Full Address Routine - Entry Point: IECPCNVT: Converting
routine IECPCNVT accepts, in register 0, a relative address of the form TTR for
direct-access devices and presents the corresponding full device address of the form
MBBCCHHR at the location shown by register 2.

The routine operates as follows:

For each extent, the module reduces the amount TT by the number of tracks in
the extent. When the balance is negative, the proper extent has been reached.

It determines the full device address for the specified relative value.

Convert Full-to-Relative Address Routine - Entry Point: IECPRL TV: Converting
routine IECPRLTV accepts, from the location shown by register 2, a full device
address of the form MBBCCHHR for direct-access devices and presents the
corresponding relative address of the form TTR in register O.

The module totals the number of tracks per extent for the (M - 1) extents. For extent
M, it adds the number of tracks entered into the extent.

Resident Module IECPFND 1

If BLDLTAB is specified for the RESIDNT parameter of the SUPRVSOR macro
instruction when the system is generated, this module is link-edited at system
generation with other modules to make up the resident nucleus. (If BLDLT AB is not
specified, module IECPFIND is used.) At initial program loading (IPL) time, the
nucleus initialization program (NIP) constructs a resident BLDL table from
SYS l.LINKLIB directory entries. That table is the one referred to by the Find and
BLDL routines in this module.

The routines comprising the module gain control through an SVC 18 instruction in a
processing program or a BALR instruction in a control program. A FIND (D Option)
or BLDL macro instruction expansion generates an SVC 18 instruction which causes
control to pass to CSECT IGCOI8, the entry point for the Find (D Option) and BLDL
routines. Control programs may use a BALR instruction and the address found in the
communications vector table (CVT) for entry points IECPBLDL, IECPCNVT, and
IECPRL TV to pass control to the respective routines.

Section 2: Method of Operation 127

128 OS SAM Logic

Find (D Option) Routine - Entry Point and CSECT Name: IGC018 (SVC 18): The
Find (D Option) routine finds the relative address of the member named in the macro
instruction. It then causes the relative address to be converted into the full
direct-access device address (FDAD) and to be loaded into the DCBFDAD and
IOBSEEK fields. The routine operates as follows:

• If SYSl.LINKLIB is the referenced library, it scans the resident BLDL table for
an entry that matches the given member name.

• If SYSl.LINKLIB is not the referenced library, or if the name is not in the table,
it searches the directory for an entry block with a key equal to or- higher than the
given member name. It reads that entry block into main storage and searches the
entry block for the matching entry.

• If the name is in the table, or after finding the matching entry in an entry block
read in, it enters the relative address stated in the entry into the DCBRELAD
field in the DCB.

• It issues a BAL instruction to pass control to the Point routine.

• It returns control to the processing program.

BLDL Routine - Entry Points: IECPBLDL, IGC018 (SVC 18): The BLDL routine
completes a BLDL table with the directory entry for each of the members named in the
BLDL table. The routine operates as follows:

• If SYSl.LINKLIB is the referenced library, it scans the resident BLDL table for
an entry that matches the given member name.

• If SYSl.LINKLIB is not the referenced library, or if the name is not in the table,
it searches the directory for an entry block with a key equal to or higher than the
given member name. It reads that block into main storage and searches the entry
block for the matching entry.

• If the name is in the table, or after finding the matching entry in an entry block
read in, it moves the entry into the processing program's BLDL table, obtains the
next name to be matched, and returns to the beginning of the routine.

• When the BLDL table has been completed, the routine returns control to the
processing program.

Convert Reiative-to-Full Address Routine - Entry Point: IECPCNVT: Converting
routine IECPCNVT accepts, in register 0, relative addresses of the form TTR for
direct-access devices and presents the corresponding full device addresses of the form
MBBCCHHR at the location shown by register 2.

The routine operates as follows:

• For each extent, the routine reduces the amount TT by the number of tracks in
the extent. When the balance is negative, the proper extent has been reached.

• It determines the full device address for the specified relative value.

Convert Full-to-Relative Address Routine - Entry Point: IECPRLTV: Converting
routine IECPRL TV accepts, from the location shown by register 2, a full device
address of the form MBBCCHHR for direct-access devices and presents the
corresponding relative address of the form TTR in register O.

The routine totals the number of tracks per extent for the (M-1) extents. For extent
M, it adds the number of tracks entered into the extent.

Sequential Access Method Executors

Sequential access method executors are routines that receive control from, pass control
to, or return control to I/O support routines. For a description of I/O support routines
refer to the publication OS Open/Close/EOV Logic, GY28-6609. Figure 26 shows
the sequence of control between executors and other routines. Executors perform
processing unique to an access method when a data control block is being opened or
closed, or an end-of-volume condition is being processed. These executors, used for
QSAM, BSAM, and BPAM, are of six types:

Open executor

• Close executor

SYNAD/EOVexecutor

FEOV executor

EOV /new volume executor

SETPRT executor

Executors differ from other access method routines in that they are executed from the
supervisory transient area. It is the Open executor that loads the access method
routines into the processing program area for later use during processing program
execution.

The Open executor is entered from the Open routine of I/O support, and returns
control to that routine. It constructs the data extent block (DEB), the input/output
blocks (lOB), the channel programs, and, if chained channel-program scheduling is
used, interruption control blocks (ICB). It selects and loads the access method routines
to be used with the data control block (DCB) being opened.

Executor

OPEN

CLOSE

SYNAD/EOV

FEOV

EOV /new volume

SETPRT

Number

See Figures
27,28, & 29

IGG0201A
IGG02018
IGG0201Z
IGG0201X
IGG0201Y

IGC0005E
IFG05518

IGC0003A

IFG0551 L
IFG0551 N

IGC0008A
IGG08101
IGG08102

Receives Control Via
From

See Diagram E
in Section 5

Close Routine

Synchronizing,
Check Routines

Processing
Program

EOV Routine

Processing
Program

XCTL (WTG
Table)

XCTL (WTG
Table)

SVC 55

FEOV Macro
Instruction
(SVC 31)

XCTL

SVC81

Passes Control
To

See Diagram E in
Section 5

Close Routine
See Figure 30

See Executor
Description
Figure 31

EOV Routine
Figure 31

See Executor
Description
Figure 31

See Executor
Description
Figure 32

Figure 26. Sequential Access Method Executors - Control Sequence

Section 2: Method of Operation 129

Open Executors

The Close executor is entered from the Close routine of I/O support, and returns
control to it. The executor handles any pending channel programs and releases the
main storage used by the lOBs, ICBs, and channel programs.

The SYNAD/EOV executor is entered when a synchronizing or Check routine finds
that a permanent I/O error or end-of-volume (EOV) condition was encountered
during the execution of a channel program. The executor passes control to the
end-of-volume routine of I/O support, or executes the error options specified by the
processing program. The executor provides a work area in main storage for the
end-of-volume routine.

The FEOV (force-end-of volume) executor is entered when an FEOV macro
instruction is encountered in a processing program. The executor handles any pending
channel programs, provides a work area in main storage for the end-of-volume routine,
and passes control to the end-of-volume routine of I/O support.

The EOV /new volume executor receives control from the end-of-volume routine of
I/ 0 support. The executor causes th~ I/ 0 supervisor to reschedule any channel
programs not executed because of the EOV conditions.

The SETPRT (set printer) executor is entered when a SETPRT macro instruction is
issued by a processing program. The executor loads the UCS image in the UCS buffer
and prints verification lines if required.

The Open executors are grouped into three stages. Those in the first stage receive
control from the Open routine of I/O support. These executors pass control to one of
the stage 2 executors, or return control to the Open routine. The stage 2 executors in
turn, pass control to the stage 3 executors, or return control to the Open routine. Stage
3 executors return control to the Open routine. Before relinquishing control, each
executor specifies the next executor to be called for the data set being opened, and also
examines the where-to-go (WTG) table to determine whether other data sets being
opened at the same time need its services. For a description of the WTG table, refer to
OS Open/Close/EOV Logic, GY28-6609.

When a multivolume data set is opened, the direct-access storage devices with the
rotational position sensing (RPS) feature incorporate this feature into the channel
program only if all of the devices allocated have the record-ready feature.

Diagram E (Section 5) shows the flow of control between the three stages of Open
Executors.

Stage 1 Open Executors

130 OS SAM Logic

Stage 1 Open executors construct data extent blocks (DEBs) and buffer pools. If a
printer with the universal character set (UCS) feature and/or a forms control buffer is
specified, the executors load the UCS/FCB image specified in the job control
statement.

The Open routines determine which executor is required to begin processing of each
DCB specified in the Open parameter list. For SAM processing, the entry placed in
the WTG table is IGG0191A for an actual data set and IGG0191C for a dummy data
set.

Figure 27

The executor for the first entry in the WTG table is loaded into the transient area by
the Open routines and control is passed to the executor by means of an XCTL macro
instruction.

As each stage 1 executor completes its processing, the name of the next executor (for
the DCB being processed) is placed in the WTG table. Then a check is made to
determine, for each entry in the Open parameter list, if another DCB requires the use

Access Method Options Selections

Actual Data Set X X X X X X X X X

Dummy Data Set X

3505 (OMR/RCE) or 3525 X

Direct Access Device X X X X

Printer with UCS Feature
(1403 or 3211) X

Printer with forms control
buffer (3211 or 2245) X

Buffer Pool Required X X X X

User Totaling Specified X X X X

Executors

IGG019AV AV

IGG0191A 1A 1A 1A 1A 1A 1A 1A lA 1A 1A

IGG0191 B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B

IGG0191C 1C

IGG01911 11 11 11 11

IGG0191 N IN 1N 1N 1N 1N

IGG0191T 1T 1T

IGG0191U 1U

IGG0191V 1V

IGG0191Y 1Y 1Y 1Y 1Y

I IGG01931 31 31 31 31

IGG0196A 6A 6A 6A 6A 6A 6A 6A 6A 6A 6A

IGG0196B 6B 6B 6B 6B 6B 6B 6B 6B 6B 6B

IGG01961 61 61 61 61 61 61 61 61 61 61

IGG0197E 7E

IGG0197F 7F

IGG0197L 7L

IGG0197M 7M

IGG0197U 7U

Figure 27. Open Executor Selector - Stage 1

Section 2: Method of Operation 131

132 OS SAM Logic

of the executor now in control. If so, the executor is reentered as many times as
necessary to process all of the entries in the WTG table requiring this executor. If no
other DCBs require this executor, control is passed to the next executor that is
specified in the WTG table (starting from the top of the list) for a DCB that has not
completed its processing. For a particular DCB, all of the stage 1 executors are
executed before control is passed to a stage 2 executor.

Figure 27 lists the access method conditions that cause different stage 1 executors to be
selected, loaded, and to receive control after loading. The executors are described in
the text that follows. The order of presentation is the same as that shown in Figure 27
under Executors.

In Figure 27, an X in a column represents a condition that must be satisfied for the
executor marked in that column. A blank in the upper portion of the table indicates
that either the condition is not required for selection or not examined at this time. The
table should be used in conjunction with the flow of control information in Diagram E,
SAM Flow of Control for Open Executors, Section 5.

Dummy Data Set Module IGG019AV: Dummy data set module IGG019AV operates as
follows:

It receives control when a sequential access method macro instruction refers to a
dummy data set. For a dummy input data set, the module passes control to the user's
EODAD routine; for a dummy output data set, the module returns control to the
processing program immediately without scheduling any I/O operation.

Stage 1 Open Executor IGG0191A: Executor IGG0191A receives control from the
Open routine unless the DD statement is DUMMY. (If the DD statement is DUMMY,
executor IGG0191C receives control from the Open routine.)

The executor operates as follows:

• It tests the OPEN macro option against the DCBMACRF field. It issues an 013
ABEND if any of the conditions listed are found. The conditions are:

For QSAM:

that buffer length is not smaller than blocksize if the buffer length is
specified

that the blocksize is not at least 4 bytes larger than logical-record length for
variable-length records

that logical-record length (if specified) is not equal to blocksize for
fixed-length unblocked data sets

For BSAM and QSAM:

that blocksize is not an even multiple of logical record length for
fixed-length blocked data sets

• It performs a test to determine if the blocksize is an integral multiple of the
logical record length (LRECL) for QSAM with fixed blocked records or BSAM
data sets. If the blocksize is not an integral multiple of LRECL, the blocksize is
reduced to the nearest integral multiple of LRECL for SYSOUT data sets on
direct access where the blocksize is specified in the DD statement. If the data set
is not SYSOUT or on direct access, or if the blocksize is not specified in the DD
statement, BSAM data sets are allowed to continue without adjustment to the
blocksize; QSAM data sets are abnormally terminated with an ABEND (013).

•

Figure 27

If search-direct has been requested (OPTCD=Z in the DCB), the executor
evaluates the request and sets the bit in JFCBMASK±6 to X'08' if the request
can be honored.

The executor specifies in the WTG table that module IGG01961 is the next
module required for this DCB.

It searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191B: Executor IGG0191B is loaded after executor
IGG0196A, IGG0191N or IGG0191Y has completed processing all entries in the
WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If the DCB is not a TSO DCB, this routine fills in the DCBDEVT field with the
device type and number from the UCB. If unit record equipment is indicated, the
routine sets the DR bit in the DCBDEVT field.

• It stores DCBLRECL in the DEB.

• It sets DCBCNTRL to O.

• If the device type is direct-access storage, the address of the device table is stored
in the DCB. From the device table, the key overhead (or 0 if there are no keys)
and track balance are stored in the DCB.

• If the JFCB indicates a partitioned data set, the DSCB and the DSORG field of
the DCB are checked to be sure they specify partitioned organization. If not, an
ABEND is issued.

• If partitioned organization is specified:

a. For direct-access OUTPUT or OUTIN, the track balance of the last Write,
from the DSCB, is stored in the DCBTRBAL.

b. For direct-access input, the member name from the JFCB is stored in the
DEB. The routine then issues a BLDL macro instruction to find the extent.

The executor issues a BALR to the convert routine at CVTPCNVT to convert the TTR
to MBBCCHHR and stores it in DCBFDAD.

• If the data set is not partitioned, DCBFDAD is set to DEBBINUM. If a dummy
extent is indicated, the DCBFDAD+3 is set to X'FF' to indicate an illegal FDAD.

If unit record equipment is specified, for input only and Note/Point is requested,
DCBCNTRL+ 1 is set with ID of the dummy routine.

• If LRECL is not specified, DCBLRECL is set equal to DCBBLKSI.

• It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191C: Executor IGG0191C operates as follows:

It receives control from the Open routine if the DD statement is DUMMY, and loads
module IGG019AV. Dummy data sets require only this executor; if no other data sets
are being opened, control returns to the Open routine.

Section 2: Method of Operation 133

134 OS SAM Logic

Stage 1 Open Executor IGG0191I: Executor IGGOI911 is loaded after IGG0191B,
IGG0191T, IGGOI91U, or IGG0191V if the Open executor must build buffer pools.

The executor operates as follows:

• It receives control after it is loaded.

• If a buffer pool has already been built, the executor gets main storage for the
record area.

If the values in both the DCBBUFL and DCBBLKSI fields are zero, the executor
passes control to the ABEND routine.

• If the value in either the DCBBUFL or DCBBLKSI field is not zero, the executor
uses that value to establish the size of the buffer. The value in the field
DCBBUFNO determines the number of buffers constructed.

• If logical record interface is required for variable-length spanned records
processed in locate mode, the executor adds a length of 32 bytes plus the
maximum logical-record length, which is specified in the DCBLRECL field for a
record area to the size of main storage required. Four more bytes are added to
the buffer control block to store the address of the record area. A flag is set to
indicate extended buffer control block.

• It stores the length of the entire record area in the first word of the record area.

• It specifies the Stage 2 executor required for this DCB in the WTG table. It then
searches the WTG table to pass control to another executor.

• If the time sharing option (TSO) is specified with BSAM and DCBBUFL and the
length of the buffer to terminal line length. When QSAM is specified and
DCBBUFL and DCBBLKSI field are zero, it sets the length of the buffer to logic
record length. If DCBLRECL field is also zero, it sets the length of the buffer to
terminal line length. It transfers control to IGGO 1965, (see OS TSO Control
Program Logic, GY27-7199).

Stage 1 Open Executor IGG0191N: Executor IGG0191N receives control after
executor IGG0191A. It supplements executor IGG0191A by building the
device-dependent portion of the DEB for direct-access devices.

The user label extent is not inserted in the DEB. This executor specifies either
IGG0191B or IGG0191Y as the next entry in the WTG table for processing the DCB.

It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191T: Executor IGG0191T is entered after Open
executor IGG0196A or IGG0196B if a printer with the UCS feature is specified.

The executor operates as follows:

It uses the EXCP macro instruction to execute block data check or reset block
data check according to the specification in this DCB.

e It examines the UCB and JFCB to determine whether the FCB image or the UCS
image is to be loaded.

• When the specified UCS image has not been loaded by a previous job step, the
executor specifies in the WTG table that executor IGGO 191 U is the next executor
required for this DCB.

Figure 27

• When no UCS image is specified in the JFCB and the UCB has no UCS image
ID, or the UCS image ID in the UCB is not a default UCS image, the executor
requests an operator to specify a UCS image to be used for the DCB. Then it
specifies in the WTG table that executor IGG0191U is the next executor required
for this DCB.

When the specified UCS image has been loaded by a previous job step or no UCS
image is specified in the JFCB but UCS image ID in the UCB is a default UCS
image ID, the currently loaded UCS image is used for this DCB.

If no FCB image is named in the JFCB and the UCB has no FCB image ID, or
the FCB image ID in the UCB is not a default image, the executor issues a
console message requesting that an image be specified.

• If there is no UCS activity and the form control buffer must be loaded or FCB
verification is requested, IGG0197E is the next executor to receive control.

If the printer is a 3211 and no FCB or UCS activity is required, control is passed
to IGG0197F to obtain 570 bytes for the ERP work area.

If the printer is a 1403 and no UCS activity is required, the executor searches the
WTG table and passes control to IGG0191I, or a stage 2 executor, or the final
module of the Open routine.

It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191U: Executor IGG0191U is entered after executor
IGG0191T when the specified UCS image is to be loaded from SYSl.IMAGELIB.

The executor operates as follows:

• It requests the operator to mount a chain/train cartridge only if a UCS image is
specified in the DD statement.

• It uses the BLDL macro instruction to locate the UCS image in the
SYS1.1MAGELIB.

If the image is not found in the library, the executor requests the operator to
specify an alternate UCS image to be used.

If the printer is a 1403, the executor specifies in the WTG table that IGGO 191 V
is the next executor required for this DCB if the UCS image is to be loaded or
verified.

When the UCS image is neither to be loaded nor to be displayed, it specifies in
the WTG table that executor IGG0191I, or a stage 2 executor, or the final
module of Open routine of O/C/EOV is the next executor required for this
DCB. It then searches the WTG table to pass control to another executor.

If the printer is a 3211, control is always passed to IGG0191V which determines
whether UCS and/or FCB image(s) must be loaded into main storage and/or into
the buffer(s).

Stage 1 Open Executor IGG0191V: Executor IGG0191V is entered after executor
IGG0191U to load the UCS image into main storage and subsequently into the UCS
buffer. It can also issue a message requesting the operator to specify an FCB image.

Section 2: Method of Operation 135

136 OS SAM Logic

The executor operates as follows:

It uses the LOAD macro instruction to retrieve the DCS image from
SYS1.1MAGELIB.

It uses the EXCP macro instruction to load the DCS image into the DCS buffer.

When all the following conditions are met, it requests the operator to specify
which FCB image is to be loaded:

The printer is a 3211.

The current FCB image is not a default.

An FCB image was not specified in the DD statement.

The DCS image does not have to be verified or loaded. (If retrieval of a
DCS image from SYSl.IMAGELIB is required, IGG0191T issues the FCB
image request.)

• The executor updates the entry in the WTG table with one of the following:

IGG0197D if the DCS image must be verified.

IGG0197E if an FCB load and/or verification is required, and DCS load
and/ or verification is not required.

IGG0197F if neither a DCS nor an FCB image has to be loaded into main
storage.

IGGOI911 if the printer is a 1403 and the buffer control block is specified.

IGG0191G if the printer is a 1403 and normal scheduling is specified.

IGG0191Q if the printer is a 1403 and chained scheduling is specified.

It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0191Y: Executor IGG0191Y receives control after
executor IGG0196A or executor IGG0191N when the user-totaling option has been
specified in the DCB, that is, when bit 6 of DCBOPTCD is 1.

This executor operates as follows:

• It checks to see if the DCB exit list contains an entry for user-totaling. If not,
the executor turns bit 6 of DCBOFLGS on (0) so this DCB will not be opened.

• It calculates the size of the area required to save the user's totaling areas and
issues a GETMAIN to obtain the space. If there is insufficient free main storage
to satisfy the GETMAIN, an ABEND occurs.

It constructs control blocks for the work area and places the address of the save
area in the access method portion of the DEB. Figure 42, Section 4, describes
the access method save area)

It loads the resident save routine IGG019AX and places the ID of the save
routine in the DEB and the address in the user-totaling save area.

It specifies in the WTG table that executor IGG0191B is the next executor
required. It then searches the WTG table to determine the next executor to
receive control.

Figure 27

Stage 1 Open Executor IGG0193I: This executor receives control from IGG0191I.

The executor specifies which stage 2 executor is specified in the WTG table. The
module selector table for stage 2 executors, Figure 28, should be used to determine
which stage two executor is required for this DCB.

It then searches the WTG table to determine which executor receives control. The
XCTL macro instruction is used to pass control to the next executor.

Stage 1 Open Executor IGG0196A: Executor IGG0196A receives control from and
supplements IGG0196I.

• The executor specifies in the WTG table which module is the next one required
for this DCB, as follows:

For direct access - executor IGG0191N.

If the device type is a printer with UCS feature and EXCP is specified -
executor IGG019IT.

If the device type is other than a printer with UCS feature and EXCP is specified
- the final module of the Open routine, IGG0190S.

If the device type is tape and the user-totaling facility is specified - executor
IGG0191Y.

If the device type is other than a printer with UCS feature or direct access,
BSAM or QSAM is specified, and the user-totaling facility is not specified -
executor IGG0191B.

It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0196B: Executor IGG0196B receives control from and
supplements IGG019lB.

The executor operates as follows:

DCBDINDl is set if exchange buffering is indicated.

For QSAM, DCBBUFNO is set to two (three for 2520 or 2540) if not previously
specified.

Executor issues ABEND macro instruction (calls problem determination module)
if the buffer length is less than blocksize or if data set is for a printer and
something other than output (only) is specified.

Determines the next executor to receive control. The module selector table for
stage 2 executors, Figure 28, should be used to determine which stage 2 executors
are required. Some additional considerations for selecting the next executor are:

a. For a time sharing option (TSO) task, control is transferred to IGG0196S
(see OS TSO Control Program Logic, GY27-7199), unless buffers are
wanted. The Open routine then transfers control to IGG0191I.

b. A test is made to determine if either the 3505 (without OMR or RCE) or
3525 is being used, just prior to the XCTL subroutine. If either device is
being used, control is passed to module IGG0197L; otherwise, normal
processing continues.

Section 2: Method of Operation 137

138 OS SAM Logic

Stage 1 Open Executor IGG0196I: Executor IGG0196I receives control from and
supplements IGGOI91A.

The executor operates as follows:

• It computes the main-storage requirement for the DEB and obtains the space.
The space does not include the user label extent, as it is reflected in the first
extent field of a format-l DSCB for a physical sequential or direct data set. If
no primary extent has been requested for an output data set, as shown by the
contents of the DSINOEPV field of the DSCB, the executor sets the DCBCINDI
field to show a volume-full condition.

It specifies in the WTG table that executor IGG0196A is the next executor
required for this DCB.

• It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0197E: Executor IGG0197E locates the FCB image and,
if required, loads the FCB buffer. It is entered from IGGOI9IT, IGGOI91V, or
IGGOI97D.

The executor operates as follows:

• It checks the DCB exit list to see whether the specified FCB image is defined in
the problem program.

It uses the BLDL macro instruction to locate the FCB image in SYS I.1MAGELIB
if the image was not defined in the problem program.

• If the image is not found in the library, the executor requests the operator to
specify an alternate FCB image.

The FCB image is loaded into the FCB buffer, if required.

It specifies in the WTG table that IGG0197F is the next executor required for
this DCB.

It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0197F: Executor IGG0197F prints a verification of the
FCB image, issues an "align forms and verify" message to the operator and obtains
570 bytes for an ERP work area. It is entered from IGGOI91T, IGG0191V,
IGGOI97E, or IGGOI97U.

The executor operates as follows:

• It checks to see wither an align-forms-only or a verify-only switch is set.

• If VERIFY is specified, a verification message is sent to the printer.

If VERIFY or ALIGN is specified, the operator is instructed to align the forms.

• It obtains 570 bytes of main storage for an ERP work area.

The executor specifies in the WTG table the next module required for this DCB, as
follows:

IGGOI911 if the buffer control block is specified.

IGG0191G if normal scheduling is specified.

IGGO 1910 if chained scheduling is specified.

The last load of Open if the DCB is EXCP.

It then searches the WTG table to pass control to another executor.

Figure 27

Stage 1 Open Executor IGG0197L: Executor IGG0197L receives control from
IGG0196B whenever the 3505 or 3525 is specified.

The executor operates as follows:

It initiates registers with the addresses of the DCB, UCB, ECB, and CVT.

A test is made to determine if either OMR or RCE is being used.

• If OMR is specified, a test is made to determine if the device is a 3525. If the
device is a 3525, control is transferred to IGG0197M.

• If either OMR or RCE is specified, the format descriptor record is loaded and
decoded.

After the Read-only has been executed and the format card has been translated,
an OMR or RCE CCW is constructed and executed (writes the format of the
device).

• It specifies in the WTG table that IGGO 197M is the next executor required for
this DCB. It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0197M: IGG0197M receives control from IGG0197L.

The executor operates as follows:

If an OMR or RCE format card is invalid, or if an invalid device is specified for
OMR, this module issues a WTP message and an ABEND (004) with a return
code of OS.

If no invalid condition exists, the executor specifies in the WTG table the next
module required for this DCB, as follows:

IGG01911 if QSAM is specified and no buffer pool control block exists.

IGG0197N if either BSAM or QSAM is specified and the user has specified
a buffer-pool control block.

IGG01911 if BSAM is specified and the user has specified a buffer number
but not a buffer buffer-pool control block.

It then searches the WTG table to pass control to another executor.

Stage 1 Open Executor IGG0197U: Executor IGG0197U is entered from IGG0191V
to verify a UCS image. It can also issue a message requesting the operator to specify
an FCB image.

The executor operates as follows:

• It prints a message verifying a UCS image load.

• It asks the operator to specify the FCB image to load, only if all of the following
conditions exist:

The printer is a 3211.

The current FCB image is not a default.

An FCB image was not specified in the DD statement.

Verification of the UCS image was requested. '

Section 2: Method of Operation 139

• The executor specifies in the WTG table the next module required for this DeB,
as follows:

IGG0197E if an FCB load and/or VERIFY is required.

IGG0197F if the DD statement requests an FCB image which is already in
the buffer and VERIFY is not specified. It is also called when FCB
parameters are not in the DD statement and the buffer contains a default
image.

IGGOI911 if the printer is a 1403 and the buffer control block is specified.

IGG0191G if the printer is a 1403 and normal scheduling is specified.

IGG0191Q if the printer is a 1403 and chained scheduling is specified.

It then searches the WTG table to pass control to another executor.

Stage 2 Open Executors

140 OS SAM Logic

A stage 2 Open executor establishes device-oriented information for the processing
described by a DCB, and completes device-oriented control blocks or fields. One of
the stage 2 executors receives control for each DCB being opened; the WTG table
identifies the executor required for each DCB. On conclusion of an executor's
processing it enters in the WTG table the identification of the stage 3 executor
required. Figure 28 lists the access conditions that cause the different stage 2
executors to be loaded and to receive control.

The device-oriented processing performed by a stage 2 executor primarily consists of
the construction of input/output blocks (lOB), their associated channel programs, and
the identification of the end-of-block routine required for the processing described by
the DCB. For chained channel-program scheduling, executors also construct
interruption control blocks (ICB).

Figure 28 lists the access conditions that cause the different stage 2 executors to be
loaded and to receive control. The executors are described in the text that follows and
are in the same sequence as the list in Figure 28 under Executors.

In this figure an X in a column represents a condition that must be met for the
executor to be selected. A No in a column indicates that the condition must not be
specified for the executor to be selected. A blank in the upper portion of the table
indicates that either the condition is not required for selection or not examined at this
time. The table should be used in conjunction with the flow of control information in
Diagram E, SAM Flow of Control for Open Executors, Section 5.

Stage 2 Open Executor IGG0191D: Executor IGG0191D receives control after
executor IGG0196B or IGGOI911 if the Open parameter list specifies:

Input or Output

and the DCB specifies:

Direct-access storage device

BSAM or QSAM and simple buffering

However update, track overflow, and chained channel-program scheduling are not
specified. It may also receive control after executors IGGOI91E, IGGOI91F, or
IGGOI91K.

Figure 28

Access Method Options Selections

BSAM or X

QSAM X

Input or X X X X X X X X X

Output X X X X X X

Inout,Outln X X X X

Update No No No No No X X X No

Unit Record or X X X X X X X

Magnetic Tape or X X X X X X X

Paper Tape X X

Direct-Access Storage X X X X X X X X X X X X X

Write-Load (Create-
BDAM) X X

Simple Buffering X

Exchange Buffenng X X

Track Overflow No No No No No No X X X X No

Chained Scheduling No No No No X X X X X No

Search Direct X X X

3505 X X

3525 X X

OMR or X

RCE or X X

Print only and
Associated Files X

Executors

IGG0191D 10

IGG0191E 1E

IGG0191F 1F

IGG0191G 1G 1G

IGG0191H 1H

IGG0191J 1J

IGG0191K 1K

IGG0191L 1L

IGG0191M 1M

IGG0191D 10

IGG0191P 1P 1 P

IGG0191Q 1Q

IGG0191R 1R

IGG0191S 15

IGG0191W 1W

IGG0191X 1X

IGG0191Z 1Z

IGG0196J 6J

IGG0196K 6K

IGG0196L 6L

IGG0196P 6P 6P

IGG0197N 7N 7N 7N 7N

IGG0197P 7P 7P

IGG0197Q 7Q 7Q

IGG0199K 9K

IGG0199L 9L

IGG01990 90

Figure 28. Open Executor Selector - Stage 2

Section 2: Method of Operation 141

The executor operates as follows:

• If input is specified with search direct (OPTCD=Z), control is passed to
IGG01990 where the channel program is constructed.

• If input is specified without search-direct, control is passed to IGG01910 where
the channel program is constructed.

• For output data sets, the executor constructs lOBs and writes channel programs.
The address of the first lOB is placed in the DCB. See Appendix B for the
format of the channel program constructed by this executor.

A test of the non-rotational position sensing (RPS) indicator bit is made to see
whether the channel programs utilize the RPS feature. If the bit is on (1), standard
channel programs are built. If, however, the bit is not on, additional main storage is
acquired to employ the RPS feature's two CCWs (Set-sector and Read-sector) in the
channel programs. The two commands are incorporated where appropriate.

• If variable-length records are specified, IGG01915 is the next executor required
for this DCB. Otherwise IGG01910 is specified in the WTG table as the next
executor required for this DCB. It then searches the WTG table to pass control
to another executor.

Stage 2 Open Executor IGG0191E: Executor IGG0191E receives control after
I executor IGG0196B or IGG01931 if the Open parameter list specifies:

142 OS SAM Logic

Input

and the DCB specifies:

Exchange buffering

Magnetic-tape or direct-access storage

(but not track overflow). The executor is loaded and gains control when its
identification in the WTG table is found by another executor.

After the module determines that the executor has been entered for direct access, a test
of the rotational position sensing (RPS) indicator is made to determine whether the
RPS feature is to be utilized. If it is to be utilized, additional space for the channel
program is acquired.

The executor operates as follows:

• If the operating mode is move, or the record format is variable-length or
format-D blocked, or the record format is variable-length or format-D and the
operating mode is substitute, simple buffering is substituted for exchange
buffering. Therefore, it identifies in the WTG table executor IGG0191D if the
device type is direct-access storage, or executor IGG0191G if the device-type is
unit record, as the executor required next for this DCB. It then searches the
WTG table to pass control to another executor.

If exchange buffering can be supported, the module then calculates the amount of
main storage needed to build the lOBs and issues a GETMAIN for this area. It
then sets this area of main storage to zeros and puts the ID of executor
IGG0196J into the WTG table as the next executor for this DCB.

It then searches the WTG table to pass control to another executor.

Figure 28

Stage 2 Open Executor IGG0191F: Executor IGG0191F receives control after
executor IGG0191I if the Open parameter list specifies:

Output

and the DCB specifies:

Exchange buffering

Magnetic-tape or direct-access storage

(but not track overflow). The executor is loaded and gains control when its
identification in the WTG table is found by another executor.

After the module determines that the executor has been entered for direct access, a test
of the rotational position sensing (RPS) indicator is made to determine whether the
RPS feature is to be utilized. If it is to be utilized, additional space for the channel
program is acquired.

The executor operates as follows:

If the operating mode is move, or the record format is variable-length or
format-D blocked, or the record format is variable-length or format-D and the
operating mode is substitute, simple buffering is substituted for exchange
buffering. Therefore, it identifies in the WTG table executor IGG0191D if the
device type is direct-access storage, or IGG0191G if the device type is unit
record or magnetic tape, as the executor required next for this DCB. It then
searches the WTG table to pass control to another executor.

• If search-direct has been requested (OPTCD=Z in the DCB), the executor
creates the desired channel programs.

• It identifies the end-of -block routine to be used in the processing specified by the
DCB, obtains space for and constructs lOBs and channel programs, and links
them.

It specifies in the WTG table that executor IGG01914 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0191G: Executor IGG0191G receives control after
executors IGG0196B, IGG01931, IGG0191T, IGG0191U, IGG0191V under normal
conditions or from eX0eutors IGG0191E (exchange buffering not supported),
IGG0191F, IGG0191R, IGG0191Q (chained scheduling not supported), under
abnormal conditions if:

The DCB specifies BSAM or QSAM and either unit record, magnetic tape, or
paper tape.

The Open macro parameter is INOUT or OUTIN and the DCB specifies magnetic
tape.

The executor operates as follows:

• It computes the amount of main storage required for the lOBs, issues a
GETMAIN macro instruction from subpool 250 and then sets the main storage
for the lOBs to zeros.

Section 2: Method of Operation 143

144 OS SAM Logic

• It then tests to see if the device type for this data set is unit record. If so,
IGG0196K is specified in the WTG table for this DCB and the check for other
DCBs that need this executor is made.

If the device is not unit record, processing continues in this module. It constructs
the channel programs in the lOBs and fills in the other fields of the lOBs. It
stores the address of the first lOB in the DCB and sets the first lOB bit in the
first lOB. If there is only one lOB for this data set, it sets the lOB unrelated flag.

The executor specifies in the WTG table the next executor required for this DCB. If
the DCB specifies exchange buffering, the next executor is IGG01914. If the DCB
specifies paper tape, the next executor is IGG01912. If the DCB specifies
variable-length record format, the next executor is IGG01915. For the remaining
access conditions that cause this executor to be used, the next executor is IGG0191O.
The executor then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191H: Stage 2 Open executor IGG0191H receives
control after executor IGG0191S, if the DCB specifies:

Track overflow

(but not update). If both track overflow and update are specified, executor IGG0191P
receives control.

The module checks the non-rotational position sensing (RPS) indicator and, if it is off,
inserts the RPS CCWs. When RPS channel programs are built for variable record
format, the SILl bit is turned on in the Read-data CCW, thereby eliminating length
checking.

The executor operates as follows:

It receives control from executor IGG0191S.

It identifies the end-of-block routine and the direct access Note/Point routine to
be used in the processing specified by this DCB.

• It specifies in the WTG table that executor IGG01913 (for IGG01916, if the
DCB specifies variable-length record format) is the next executor required for
this DCB. It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG019lJ: Executor IGG0191J receives control after executor
IGG0196B or IGG01931 if the Open parameter list specifies:

INOUT or OUTIN

and the DCB specifies:

Direct-access storage

The executor operates as follows:

• It calculates the amount of main storage needed to build the lOBs for the data set
and then issues a GETMAIN for the required space. It then sets the area to
zeros.

In calculating the main storage area needed for the lOBs, the executor tests for
non-rotational position sensing. If the indicator is off, additional space to
implement the RPS CCWs in the channel programs is acquired.

Figure 28

• The executor then begins constructing the channel programs and filling in fields in
the lOBs. It constructs the search ID equal, the TIC, the READ, and if RPS is
specified, the Set-sector commands. It also includes a portion for write-check if
specified.

• The executor specifies in the WTG table that executor IGG0196L is the next
executor needed for this DCB and then searches the WTG table to pass control
to another executor.

Stage 2 Open Executor IGG0191K: Executor IGG0191K receives control after
executor IGG0196B or IGG01931 if the DCB specifies:

Chained channel-program scheduling

Direct-access storage

It is loaded and receives control when another executor finds its identification in the
WTG table.

The executor operates as follows:

If the NOTE/POINT macro instruction is used, the executor identifies direct
access Note/Point module IGG019BK to be loaded for use with this DCB.

It identifies the end-of-block routine to be loaded and used for the processing
described by this DCB.

I. It sets the ID number in DCBCNTRL field.

It obtains space for and constructs one lOB, the required number of lCBs (that
is, one lCB per channel program or buffer) and their associated channel
programs, and then links them.

When the module is entered for direct access, a test of the non-rotational
position-sensing (RPS) indicator (bit 2 of JFCBMASK+6) is made. If this bit is
not on, additional main storage is acquired by GETMAIN to incorporate the RPS
CCWs. An additional doubleword is also acquired for the sector values. When
the channel programs are built, the new CCWs are inserted.

• It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191L: Executor IGG0191L receives control after
executor IGG0196B or IGG0191I if the DCB specifies:

Create-BDAM (Write-Load)

The executor constructs lOBs and enters the address of the first lOB into the DCB.
Then it loads the Create-BDAM Write, Check, and Channel End appendages and
inserts their addresses into the DCB.

With the rotational position sensing (RPS) feature, more main storage is needed for the
record-ready channel programs. This executor computes the extra bytes needed for the
record-ready channel programs and issue a GETMAIN. The sector bytes are placed at
the end of all the lOBs and channel programs. The last doubleword of the GETMAIN
area is used for sector manipulation. The first byte is used by Set-sector, the second is
used by Read Sector. The third byte is used as a byte of zero on which to issue a
Set-sector command in order to position at the beginning of the track.

Section 2: Method of Operation 145

146 OS SAM Logic

If track overflow is specified, the routine specifies that executor IGG0191M is the next
executor required for this DCB. Otherwise, the routine specifies IGG0199L as the
next executor required. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0191M: Stage 2 Open executor IGG0191M constructs
channel programs to write track-overflow blocks using BSAM for a data set to be later
processed by BDAM. Executor IGG0191L identifies it in the WTG table as its
successor executor if the DCB specifies:

Create-BDAM (Write-Load)

Track overflow

It is loaded and gains control when another executor finds its identification in the WTG
table.

With the rotational position sensing (RPS) feature, more main storage is needed for the
record-ready channel programs. This executor computes the extra bytes needed for the
record-ready channel programs and issues a GETMAIN. The sector bytes are placed
at the end of all the lOBs and channel programs. The last doubleword of the
GETMAIN area is used for sector manipulation. The first byte is used by Set-sector,
the second is used by Read Sector. The third byte is used as a byte of zero on which
to issue a Set-sector command in order to position at the beginning of the track.

The executor operates as follows:

It receives control after it is loaded.

If the extents are smaller than the blocks, it passes control to the ABEND
routine.

It constructs channel programs to write the number of segments required by the
size of the block.

It specifies in the WTG table that Open executor processing is completed for this
DCB. It then searches the WTG table to pass control to another executor. If the
WTG table has no other entries, the executor returns control to the Open routine.

Stage 2 Open Executor IGG01910: Executor IGG01910 receives control from
IGG0191D if the Open parameter list specifies:

Input

The executor constructs Read channel programs for the lOBs constructed in
IGG0191D.

The module tests the non-rotational position sensing (RPS) indicator. If the indicator
is not on, IGG01910 inserts the RPS CCWs, where appropriate, in the channel
program.

The Read channel program is modified for offset Read (that is, for reading a BDAM
data set with VS record format and keys using BSAM READ macro instructions.)

The executor specifies in the WTG table that executor IGG01917 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Figure 28

Stage 2 Open Executor IGG0191P: Stage 2 Open executor IGG0191P receives control
after executors IGG0196B or IGG01931 if the Open parameter list specifies:

Update

(whether or not track overflow is also specified). It is loaded and receives control
when another executor finds its identification in the WTG table.

The executor operates as follows:

It receives control after it is loaded.

It identifies module IGG019CC as the end-of-block routine to be loaded for use
with the DCB.

If the NOTE/POINT macro instruction is specified, it identifies module
IGG019BK as the NOTE/POINT routine to be loaded for use with this DCB.

If record-ready, executor IGG0191Z is specified in the WTG table. If
non-record-ready, executor IGG0196P is specified in the WTG table. It then
searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0191Q: Executor IGG0191Q gains control after executors
IGG0196B, IGG0191T, IGG0191U, IGG0191V, or IGG01911 if the DCB specifies:

Chained channel-program scheduling

Unit record, magnetic tape

It is loaded and receives control when another executor finds its identification in the
WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If the DCB specifies the CNTRL macro instruction, this executor identifies
executor IGG0191G in the WTG table as the next executor to receive control for
this DCB. It then searches the WTG table to pass control to another executor.

If the NOTE/POINT macro instruction is specified and the device is magnetic
tape, it identifies module IGG019BL to be loaded for use with the DCB.

If the NOTE/POINT macro instruction is specified, and the device is unit record,
it identifies dummy data set module IGG019AV to be loaded and used in place of
Note/Point.

It identifies the end-of-block routine to be loaded and used for the processing
described by this DCB.

• It obtains space for and constructs one lOB, the required number of ICBs (one
per buffer or channel program) and channel programs appropriate to the device,
and links them.

It specifies in the WTG table that executor IGG01913 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Section 2: Method of Operation 147

148 as SAM Logic

Stage 2 Open Executor IGG0191R: Open executor IGG0191R receives control after
executors IGG0196B or IGG01911 if the Open parameter list specifies:

INOUT, or OUTIN

and the DCB specifies:

Chained channel-program scheduling

The executor is loaded and receives control when another executor finds its
identification in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If the device is direct-access storage, it identifies Note/Point module IGG019BK
to be loaded for use with the DCB.

• If the device is magnetic tape, it identifies Note/Point module IGG019BL to be
loaded for use with the DCB.

• It identifies the end-of-block routine to be loaded for use with the DCB.

• It obtains space for and constructs one lOB, the required number of ICBs (one
per buffer or channel program) and channel programs for direct-access storage or
magnetic tape, and links them.

• It specifies in the WTG table that executor IGG01913 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0191S: Stage 2 Open executor IGG0191S receives control
after executor IGG0196B or IGG01911 if the DCB specifies:

Track overflow

(but not update). The executor is loaded and gains control when another executor
finds its identification in the WTG table.

The module obtains and clears the space for lOBs and channel programs for the
maximum number of segments possible. It also tests the non-rotational position
sensing (RPS) indicator bit and, if it is off, increases the space acquired to facilitate
implementation of the two RPS CCWs. If the non-RPS indicator is on, space for
standard channel programs is acquired.

The executor operates as follows:

• It identifies the end-of-block routine and the direct-access NOTE/POINT
routine to be used in processing specified by this DCB.

•

•

It obtains space for and constructs lOBs and channel programs for the maximum
number of segments possible. It links the channel programs to the lOBs and the
lOBs to one another.

If search-direct has been requested (OPTCD=Z in the DCB), the executor
specifies IGG0199K as the next executor required for this DCB.

It specifies in the WTG table that executor IGG0191H is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Figure 28

Stage 2 Open Executor IGG0191W: Executor IGG0191 W receives control after
executor IGG0191B or IGG01911 if the DCB specifies:

Chained channel-program scheduling

Direct-access storage

Output

It is loaded and receives control when another executor finds its identification in the
WTG table.

The executor operates as follows:

• It receives control after it is loaded.

It identifies the end-of-block routine to be loaded and used for the processing
described by this DCB.

• It obtains space for and constructs one lOB, the required number of ICBs (that
is, one ICB per channel program or buffer) and their associated channel
programs, and then links them. If the non-rotational position sensing (RPS) bit is
off, the space for the lOB and ICB is increased to incorporate the RPS CCWs
and the space is inserted.

It specifies in the WTG table that executor IGG01913 is the next executor
required for the DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0191X: Executor IGG0191X receives control after
executors IGG0191B or IGG01911 if the Open parameter list specifies:

INOUT or OUTIN

and the DCB specifies:

Chained scheduling

Direct-access storage

The executor is loaded and receives control when another executor finds its
identification in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

It identifies the end-of-block routine to be loaded for use with the DCB.

It obtains space for and constructs one lOB, the required number of ICBs (one
per buffer or channel program) and channel programs for direct-access storage
and links them. If the rotational position sensing (RPS) indicator is off, the space
acquired for the lOB is incremented to incorporate the RPS CCWs, which will
then be inserted in the channel program.

• It specifies in the WTG table that executor IGG01913 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Section 2: Method of Operation 149

150 OS SAM Logic

Stage 2 Open Executor IGG0191Z: Executor IGG0191Z receives control after
executor IGGOI91P, if the Open parameter list specifies:

Update

Record-ready channel programs are to be generated

The executor operates as follows:

• It constructs lOBs and channel programs to empty and refill each buffer.

• For QSAM, the executor links the channel programs so that a buffer may be
either refilled only (by executing only the second half of the channel program) or
emptied and refilled (by executing the channel program from the beginning).

• It specifies in the WTG table that executor IGG01912 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0196J: This executor receives control after executor
IGG0191E has obtained the necessary main storage to construct the lOBs.

The executor operates as follows:

• If search-direct has been requested (OPTCD=Z in the DCB), the executor
creates the desired channel programs.

• It identifies the end-of-block routine to be used in the processing specified by the
DCB, obtains space for and constructs lOBs and channel programs, and links
them.

• If the device is direct-access storage, the executor copies the starting Seek address
from the DCB into the lOB.

It specifies in the WTG table that executor IGG01914 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0196K: Executor IGG0196K receives control if executor
IGG0191G determines that the device type is unit record.

It performs the same functions (except for GETMAIN) as executor IGGOI91G.

The executor specifies in the WTG table the next executor required for this DCB. If
the DCB specifies exchange buffering, the next executor is IGG01914. If the DCB
specifies variable-length record format, the next executor is IGGOI915. For the
remaining access conditions that cause this executor to be used, the next executor is
IGGOI910.

The executor then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0196L: The executor receives control from executor
IGG0191J to finish building the lOBs assembled in IGG019IJ.

The executor operates as follows:

Starting at the end of the last CCW constructed by IGGO 191J, it completes the
building of the channel programs. Appendix B (Section 6), BSAM/QSAM
Channel Programs, shows the channel program constructed by this executor and
executor IGG0191J.

Figure 28

• The executor specifies in the WTG table that executor IGG01910 (or IGG01915,
if the DCB specifies variable-length record format, is the next executor required
for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0196P: Executor IGG0196P receives control after
executor IGG0191P, if the OPEN parameter list specifies:

Update

Non-record-ready channel programs are to be generated

The executor operates as follows:

• It constructs lOBs and channel programs to empty and refill each buffer.

• For QSAM, the executor links the channel programs so that a buffer may be
either refilled only (by executing only the second half of the channel program) or
emptied and refilled (by executing the channel program from the beginning).

• With the rotational position sensing (RPS) feature, more main storage is needed
for record-ready channel programs. The executor computes the extra bytes
needed for these channel programs and issues a GETMAIN. The sectors are
placed at the end of all the lOBs and channel programs. When the main storage
requirement for all lOBs and channel programs has been computed, 2 bytes for
the Read segment of the channel program and 1 byte for the Write segment of
each channel program are added to the byte count and then rounded up to a
multiple of 8. The first two bytes following all the lOBs are used by the Read
segments. The first byte is used by Set-sector, and the second is used by
Read-sector. A byte from which to use Set-sector is needed by the Write
segment of each channel program. When a record is read, the sector value for the
search for that record must be stored before the next channel program is executed
before it will be overlaid by the next sector value.

• If record area is present (which indicates that the record format is variable-length
spanned), it specifies in the WTG table that executor IGG01915 is the next
executor required for this DCB. Otherwise, it specifies executor IGGO 1912. It
then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0197N: Executor IGG0197N receives control from
IGG01931 whenever the 3505 or 3525 is specified, or from IGG0197M whenever the
same devices are specified and a buffer pool is not needed.

The executor operates as follows:

• It makes a test to determine if the FUNC parameter is being used.

• If the FUNC parameter is not being used, and if the file is for Read only (without
OMR or RCE) or Punch only, IGG0191G is specified in the WTG table as the
next executor required for this DCB.

• If the FUNC parameter specifies print only or associated files, IGG0197P is
specified in the WTG table as the next executor required for this DCB.

• If a specified parameter combination is found to be invalid, a message to the
programmer (WTP) is issued along with a subsequent ABEND (004).

Section 2: Method of Operation 151

152 OS SAM Logic

• If the FUNC parameter is not being used, but the file is a Read only with OMR
or RCE, IGG0197P is specified in the WTG table as the next executor required
for this DCB.

• Once the validity of the FUNC parameter is established, the DCBMACRF field is
tested to determine if the CNTRL is valid for an input data set. If it is not valid,
a WTP message and an ABEND macro (004) with a return code of 02 are issued.

If the CNTRL specification is valid, a test is made to determine if the associated
DCBs specify the same access methods.

If the access methods are not the same, a message is written to the programmer
along with a subsequent ABEND (004).

It specifies in the WTG table that IGG0197P or IGG0191G is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Stage 2 Open Executor IGG0197P: IGG0197P receives control from IGG0197N if
neither Read only (without OMR or RCE) nor Punch only is specified for the 3505 or
3525.

The executor operates as follows:

It builds the lOB and CCWs and appends a work area to the lOB, according to
the type of data set that is specified.

It specifies in the WTG table that IGG0197Q is the next executor required for
this DCB. It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0197Q: IGG0197Q receives control from IGG0197P.

The executor operates as follows:

• A test is made to determine if data protection image (DPI) is specified in the
FUNC parameter.

If DPI is specified, SVC 105 is issued. This places the address of IMAGELIB in
register one.

• Both a BLDL and a LOAD macro are issued so that the DPI image can be built
and the image address can be loaded in register zero.

I

• The address is saved for the image deletion (after the image has been copied into
IOB+64) by the DELETE macro.

If DPI is not specified, tests are made to determine which EOB and/or control
module ID is to be entered in the DCB. (The same tests are made if DPI is
specified.)

• It specifies in the WTG table that IGG01910 is the next executor required for
this DCB. It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0199K: Executor

IGG0199K receives control after executor IGG0191S.

The executor operates as follows:

It obtains space for and constructs the lOB and channel programs for
direct-access devices with the search-direct feature (OPTCD=Z).

Figure 28

• Sets all known flags and completes related fields in DCB.

It specifies in the WTG table that IGG01916 is the next executor required for the
DCB if variable-length records are specified. Otherwise, IGG01913 is specified
in the WTG table.

It then searches the WTG table to pass control to another executor.

Stage 2 Open Executor IGG0199L: Executor Executor IGG0199L receives control
after executor IGG0191L if the DCB specifies:

Create-BDAM (Write-Load)

The executor constructs channel programs. When the DCB specifies RECFM= VS and
BFTEK=R, the routine constructs a segment work area for spanned record processing
and creates an IRB for the asynchronous exit routine, which executes writing of the
successive segments. It then searches the WTG table to pass control to another
executor. If the WTG table has no other entries, the executor returns control to the
Open routine.

With the rotational position sensing (RPS) feature, more main storage is needed for the
record-ready channel programs. This executor computes the extra bytes needed for the
record-ready channel programs and issues a GETMAIN. The sector bytes are placed
at the end of all the lOBs and channel programs. The last doubleword of the
GETMAIN area is used for sector manipulation. The first byte is used by Set-sector,
the second is used by Read-sector. The third byte is used as a byte of zero on which
to issue a Set-sector command in order to position at the beginning of the track.

If search-direct has been requested (OPTCD=Z), the executor creates the desired
channel programs.

Note: A user may provide a segment work area by setting a bit in the DCBMACRF
field and placing the address of that area in the DCBEOB field. In this case, this
routine will not construct the segment work area.

Stage 2 Open Executor IGG01990: Executor IGG01990 receives control from
executor IGG01991D if the Open parameter list specifies:

Input

and the DCB specifies:

OPT CD = Z (search-direct)

The executor operates as follows:

The executor constructs the lOBs and channel programs required when search
direct is specified. The format of the channel programs constructed by this
executor are shown in Appendix B under "BSAM/ QSAM Channel Programs."

If format-F or -U records are specified, IGG01910 required for this DCB.
Otherwise, (for format-V) executor IGG01915 is specified in the WTG table as
the next executor required for this DCB.

It then searches the WTG table to pass control to another executor.

Section 2: Method of Operation 153

Stage 3 Open Executors

154 OS SAM Logic

A stage 3 executor identifies and loads the modules needed to perform the processing
described by the DCB. If QSAM is used, and an input data set is to be processed, a
second stage 3 executor also primes the buffers.

The stage 3 Open executors are altered to load in the fixed standard end of extent
modules and the format-U channel end module when the rotational position sensing
(RPS) feature is used.

Figure 29 lists the access conditions that cause the different stage 3 executors to be
loaded and to gain control. . The executors are described in the text that follows in a
sequence identical to the list under "Executors" in Figure 29.

In this table an X in a column represents a condition that must be satisfied before the
executor is selected. A blank in the upper portion of the table indicates that either the
condition is not required for selection or not examined at this time. The table should
be used in conjunction with the flow of control information in Diagram E, SAM Flow
of Control for Open Executors, in Section 5.

Stage 3 Open Executor IGG01910: Executor IGG01910 receives control after
executor IGGOI91D, IGG01990 or IGGOI9IJ. It also receives control after executor
IGG0191G unless the DCB specifies paper tape.

This executor operates as follows:

• It receives control after it is loaded.

• It identifies, loads, and puts the address into the DCB of:

A Get or Put routine

A synchronizing routine

It enters into the DEBSUBID field of the DEB the identification of each routine
loaded.

It specifies executor IGG01917 in the WTG table as the next executor to receive
control for this DCB.

Stage 3 Open Executor IGG0191l: Executor IGGOI911 is entered from executors
IGGOI917, IGGOI918, IGGOI919, IGGOI990, IGGOI991, and IGGOI992 if the DCB
specifies:

Get or Put

This executor operates as follows:

It completes any remaining DCB fields.

It completes the lOBs.

For input it issues a BALR instruction to pass control to the end-of-block routine
identified by a stage 2 executor and loaded by one of the other stage 3 executors.
The end-of-block routine issues an EXCP macro instruction to prime the buffers.

For output it sets a flag, which is used to identify the first entry, into the Put
routine.

• It searches the WTG table to pass control to another executor. If the WTG table
has no other entries, the executor returns control to the Open routine.

Figure 29

Access Method Options Selection

Paper Tape X

Update X

Chained Scheduling X

Exchange Buffering X

Track Overflow X X

None of the preceding X

Input X

QSAM X

Variable-length
Record Format X X

Spanned Records X

Executors

IGG01910 10

IGG01911 11

IGG01912 12 12

IGG01913 13 13

IGG01914 14

IGG01915 15 15

IGG01916 16

IGG01917 17

IGG01918 18 18

IGG01919 19 19 19

IIGG01926 26 26 26

IGG01990 90

IGG01991 91

IGG01992 92

IGG01993 93

IIGG01994 94

Figure 29. Open Executor Selector - Stage 3

Stage 3 Open Executor IGG01912: Executor IGG01912 is entered after executor
IGG0191P and also from executor IGG0191G if the Open parameter is:

Update

or if the DCB specifies:

Paper tape

Section 2: Method of Operation 155

156 OS SAM Logic

The executor operates as follows:

• It identifies and loads the device-independent routines.

• If rotational position sensing (RPS) channel programs are constructed and the
record format is fixed, the format-F channel-end appendage will always be
loaded. For RPS with format-U without track overflow, a format-U channel-end
appendage is loaded.

• It loads the device-dependent routines.

• It enters the addresses of the routines into the DCB, and the address of the paper
tape appendage into the appendage vector table.

• It specifies executor IGG01918 in the WTG table as the executor to receive
control next for this DCB.

Stage 3 Open Executor IGG01913: Executor IGG01913 receives control after
executors IGG0191H, IGG0191K, IGG0191Q, and IGG0191R if the DCB specifies:

Chained channel-program scheduling, or track overflow.

It is loaded and receives control when another executor finds its identification in the
WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If QSAM is specified, it identifies, loads, and places the address into the DCB of:

A Get or a Put routine

A synchronizing routine

If BSAM is specified, it identifies, loads, and places the address into the DCB of:

A Read or Write routine

A Check routine

It specifies in the WTG table that Open executor IGG01919 is to receive control
next for this DCB.

Stage 3 Open Executor IGG01914: Executor IGG01914 receives control after
executors IGG019IE, IGG0191F, and IGG0191G, if the DCB specifies:

Exchange buffering.

It is loaded and receives control when another executor finds its identification in the
WTG table.

The executor operates as follows:

It receives control after it is loaded.

It specifies in the WTG table that executor IGG01910 is required for this DCB if
the access conditions specified are:

Output and locate, or

Input and move, or

Input, locate, and variable-length, or

format-D.

Figure 29

It then searches the WTG table to pass control to another executor.

• It identifies, loads, and puts the address into the DCB of:

A Get or Put routine

A synchronizing routine

and specifies executor IGG01990 in the WTG table as the executor to receive
control next for this DCB.

It searches the WTG table to pass control to another executor.

Stage 3 Open Executor IGG01915: Executor IGG01915 receives control after
executors IGG0191D, IGG0191O, IGG0191G, IGG0196K, and IGG01990, if the
DCB specifies:

Variable-length record format

Executor IGG01915 receives control from executor IGG0196P or IGG0191Z, if the
DCB specifies:

Variable-length spanned record format

The executor operates as follows:

If QSAM is specified, the executor identifies and loads a Get or Put routine and a
synchronizing routine.

If BSAM is specified, the executor identifies and loads a Read or Write routine, a
Check routine, and a routine to service the NOTE/POINT macro instruction if it
is specified.

It places the identifiers (IDs) of the routine loaded into the DEB subroutine ID
field and the addresses of the routines into the DCB.

• For a 3211 printer:

An abnormal-end appendage is loaded and its address is placed in the appendage
vector table.

An asynchronous error routine is loaded. The IRB used for scheduling this
routine is built and the IRB address placed in the DEB.

• It specifies in the WTG table that executor IGGO 1991 is the next executor
required for this DCB.

It searches the WTG table to determine to which executor it should pass control.

Stage 3 Open Executor IGG01916: Executor IGG01916 receives control after
executors IGG0191H, IGG0191K, IGGOI91Q, and IGG0191R if the DCB specifies:

Variable-length record format

Track overflow

The executor operates as follows:

If QSAM is specified, the executor identifies and loads a Get or Put routine and a
synchronizing routine.

Section 2: Method of Operation 157

158 as SAM Logic

• If BSAM is specified, the executor identifies and loads a Read or Write routine, a
Check routine, and a routine to service the NOTE/POINT macro instruction if it
is specified.

• It places the IDs of the routine, loaded into the DEB subroutine ID field and the
addresses of the routines into the DCB.

• It specifies in the WTG table that executor IGG01992 is the next executor
required for this DCB.

• It searches the WTG table to determine to which executor it should pass control.

Stage 3 Open Executor IGG01917: Executor IGG01917 is entered after executor
IGG01910 or IGG01910. It is loaded and receives control when another executor
finds its identification in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• It identifies and loads all the appendages required and places their addresses into
the appendage vector table.

• If rotational position sensing (RPS) channel programs are constructed and the
record format is fixed, the format-F channel-end appendage is always loaded. It
loads in the fixed standard end-of-extent module IGG019C4 where the fixed
standard record format is used.

• For PRS with format-U without track-overflow, a format-U channel-end
appendage is loaded.

• It loads the end-of-block routine identified by a stage 2 executor and places its
address into the DCB.

• If search-direct has been requested (OPTCD=Z in the DCB), the executor loads
in the necessary appendages.

• It enters into the DEBSUBID field of the DEB the identification of each routine
loaded.

• If QSAM is used, the executor specifies in the WTG table that executor
IGG01911 is the next executor required for this DCB. It then searches the WTG
table to pass control to another executor.

• If BSAM is used, the executor specifies in the WTG table that Open executor
processing is completed for this DCB. It then searches the WTG table to pass
control to another executor. If the WTG table has no other entries, the executor
returns control to the Open routine.

Stage 3 Open Executor IGG01918: Executor IGG01918 is entered after executor
IGGOI912. It is loaded and receives control when another executor finds its
identification in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• It loads the end-of -block routine identified by a stage 2 executor and places its
address into the DCB.

Figure 29

• It enters into the DEBSUBID field of the DEB the identification of each routine
loaded.

• If QSAM is used, the executor specifies in the WTG table that executor
IGG01911 is the next executor required for this DCB. It then searches the WTG
table to pass control to another executor.

• If BSAM is used, the executor specifies in the WTG table that Open executor
processing is completed for this DCB. It then searches the WTG table to pass
control to another executor. If the WTG table has no other entries, the executor
returns control to the Open routine.

Stage 3 Open Executor IGG01919: Executor IGG01919 is entered after IGG01913.
It is loaded and receives control when another executor finds its identification in the
WTG table.

The executor operates as follows:

•

•

•

•

•

I ·

It receives control after it is loaded.

It identifies and loads all the appendages required and places their addresses into
the appendage vector table.

If rotational position sensing (RPS) channel programs are constructed and the
record format is fixed, the format-F channel-end appendage is always loaded.
For RPS with format-U without track overflow, a format-U channel-end
appendage is loaded.

If search-direct has been requested (OPTCD=Z in the DCB), the executor loads
in the necessary appendages.

It enters into the DEBSUBID field of the DEB the identification of each routine
loaded. If the WTG table has no other entries, the executor returns control to the
Open routine.

It specifies in the WTG table that executor IGG01926 is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

I Stage 3 Open Executor IGG01926: Executor IGG01926 is loaded and receives control
when another executor finds its identification in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• It loads the end-of-block routine identified by a stage 2 executor and places its
address into the DCB.

• It enters into the DEBSUBID field of the DEB the identification of each routine
loaded.

• If QSAM is used, the executor specifies in the WTG table that executor
IGG01911 is the next executor required for this DCB. It then searches the WTG
table to pass control to another executor.

• If BSAM is used, the executor specifies in the WTG table that Open executor
processing is completed for this DCB. It then searches the WTG table to pass
control to another executor. If the WTG table has no other entries, the executor
returns control to the Open routine.

Section 2: Method of Operation 159

160 OS SAM Logic

Stage 3 Open Executor IGG01990: Executor IGG01990 is entered after executor
IGG01914 if the DCB specifies:

Exchange buffering

It is loaded and receives control when another executor finds its identification in the
WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• It identifies and loads all of the appendages required and places their addresses
into the appendage vector table.

If rotational position sensing (RPS) channel programs are constructed and the
record format is fixed, the format-F channel-end appendage will always be
loaded. It loads in the fixed standard end-of-extent module IGG019C4 where
the fixed standard record format is used.

• For RPS with format-U without track overflow, a format-U channel-end
appendage is loaded.

• It loads the end-of -block routine identified by a stage 2 executor and places its
address into the DCB.

• If search-direct has been requested (OPTCD=Z in the DCB), the executor loads
in the necessary appendages.

• It enters into the DEBSUBID field of the DEB the identification of each routine
loaded.

• If QSAM is used, the executor specifies in the WTG table that executor
IGG01911 is the next executor required for this DCB. It then searches the WTG
table to pass control to another executor.

• If BSAM is used, the executor specifies in the WTG table that Open executor
processing is completed for this DCB. It then searches the WTG table to pass
control to another executor. If the WTG table has no other entries, the executor
returns control to the Open routine. Executor IGG01991 receives control after,
and is a continuation of, executor IGGOI915. It completes the loading of
subroutines for a DCB which specifies:

Variable-length or record format-D

Stage 3 Open Executor IGG01991: The executor operates as follows:

• It identifies and loads all the appendages required and places their addresses into
the appendage vector table.

• If rotational position sensing (RPS) channel programs are constructed and the
record format is variable, the format-V channel-end appendage is always loaded.
It loads in the variable standard end-of-extent module, IGGOI9C4, where the
variable record format is used.

• For RPS with format-U without track overflow, a format-U channel-end
appendage is loaded.

Figure 29

It loads the end-of-block routine identified by the stage 2 executor and places its
address into the DCB.

• If search direct has been requested (OPTCD=Z in the DCB), the executor loads
in the necessary appendages.

• It enters the IDs of the routines loaded into the DEB subroutine ID field.

• The executor specifies in the WTG table that IGG01993 is the next executor
required for this DCB. It then searches the WTG table to determine the next
executor to receive control.

Stage 3 Open Executor IGG01992: Executor Executor IGG01992 receives control
after, and is a continuation of, executor IGGOI916. The executor loads subroutines for
a DCB which specifies:

Variable-length record format

Track overflow

The executor operates as follows:

•

•

•

•

•

It identifies and loads all the appendages required and places their addresses into
the appendage vector table.

If rotational position sensing (RPS) channel programs are constructed and the
record format is variable, the format-V channel end appendage is always loaded.
It loads in the variable standard end-of-extent module, IGGOI9C4, where the
variable-record format is used.

For RPS with format-U without track overflow, a format U channel end
appendage is loaded.

If search-direct has been requested (OPTCD=Z in the DCB), the executor loads
in the necessary appendages.

It enters the IDs of the routines loaded into the DEB subroutine ID field.

It specifies in the WTG table that executor IGG01994 is the next executor
required for this DCB. It then searches the WTG table to determine the next
executor to receive control. If there are no other entries in the WTG table, the
executor returns control to the Open routine.

Stage 3 Open Executor IGG01993: Executor IGG01993 is a continuation of executor
IGG01991. It completes the process of loading subroutines for a DCB that specifies:

Variable-length record format

The executor operates as follows:

• It identifies and loads all of the appendages required and places their addresses
into the appendage vector table.

• If rotational position sensing (RPS) channel programs are constructed and the
record format is variable, the format-V channel-end appendage is always loaded.
It loads in the variable standard end-of-extent module, IGGOI9C4, where the
variable-record format is used.

It loads the end-of-block routine identified by the stage 2 executor and places its
address into the DeB.

Section 2: Method of Operation 161

Close Executors

• It enters the IDs of the routines loaded into the DEB subroutine ID field.

• If QSAM is used, the executor specifies in the WTG table that executor
IGGOI911 is the next executor required for this DCB. It then searches the WTG
table to determine the next executor to receive control.

• If BSAM is used, the executor specifies that Open executor processing is
completed for this DCB. It then searches the WTG table to determine the next
executor to receive control. If there are no other entries in the WTG table, the
executor returns control to the Open routine.

• If search-direct has been requested (OPTCD=Z in the DCB), the executor loads
in the necessary appendages.

I Stage 3 Open Executor IGG01994: Executor IGGO 1994 is loaded and receives control
when another executor finds its identification in the WTG table. It completes the
process of loading subroutines for a DCB that specifies:

Variable-length record format

Track overflow

The executor operates as follows:

• It loads the end-of-block routine identified by the stage 2 executor and places its
address into the DCB.

• It enters the IDs of the routines loaded into the DEB subroutine ID field.

• If QSAM is used, the executor specifies in the WTG table that executor
IGG01911 is the next executor required for this DCB. It then searches the WTG
table to determine the next executor to receive control.

• If BSAM is used, the executor specifies that Open executor processing is
completed for this DCB. It then searches the WTG table to determine the next
executor to receive control. If there are no other entries in the WTG table, the
executor returns control to the Open routine.

There are seven Close executors. IGG0201A or IGG0201Z receives control if one of
the sequential access methods is used. Control goes to IGG0201A if the device type is
tape or unit record. Executor IGG0201X is an extension of IGG0201A. If the device
type is direct-access storage, control is passed to IGG0201Z. Executor IGG020lB
receives control after executors IGG0201A or IGG0201Z if QSAM was used with an
output data set and a channel program encountered an error condition while one of the
other Close executors had CPU control. Executor IGG0201P receives control from
IGG0201A whenever the 3525 or the 3505 is specified. Executor IGG0201R is an
extension of IGG0201P.

Control returns to the Close routine of I/O support when Close executor processing is
completed.

Figure 30 shows the conditions that cause the Close executors to gain control.

162 OS SAM Logic

I

I

Figure 30

Access Method Options Selection

Tape or unit record X X

Direct-access storage X X

Permanent error or end- X X X
of-volume condition when
using QSAM for output

3505 (OMR/RCE) or 3525 X X

Executors

IGG0201A 1A 1A 1A 1A

IGG02018 18 18 18

IGG0201P 1P 1P

IGG0201R 1R 1R

IGG0201X 1X 1X

IGG0201Y 1Y 1Y

IGG0201Z 1Z 1Z

Figure 30. Close Executor Selector

Close Executor IGG0201A: Executor IGG0201A receives control from the Close
routine of I/O support if the DCBDSORG field specifies a value of PS and if the
device type is tape or unit record.

The executor operates as follows:

It receives control after it is loaded.

If the Open parameter is output and the DCB specifies a Put operation, the
executor issues a TRUNC and a PUT macro instruction to cause scheduling of the
last buffer. On return of control, the executor awaits execution of the last
channel program.

If all channel programs were executed without encountering either an
end-of-volume condition or a permanent error, the executor continues processing.

If any of the preceding channel programs encountered either a permanent error or
an end-of -volume condition, the executor specifies in the WTG table that
executor IGG020lB is required for this DCB. Depending on the remaining
entries in the WTG table, it then either processes another DCB, or passes control
to executor IGG0201B.

If the 3525 or the 3505 with either OMR or RCE is specified, the executor
specifies in the WTG table that executor IGG0201P is required for this DCB.

If neither Output nor PUT is specified, the executor issues a PURGE macro
instruction for any pending channel programs. Note that when processing under
BSAM, the Check routine ensures execution of all channel programs.

It then searches the WTG table to pass control to another executor.

Section 2: Method of Operation 163

164 OS SAM Logic

Close Executor IGG0201B (Error Processing): Executor IGG0201B receives control
after either executor IGG0201A or IGG0201Z if one of the latter finds that a channel
program for an output data set using QSAM encountered a permanent error or an
end-of-volume condition. It is loaded and receives control when its identification is
found in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• It determines whether a channel program encountered a permanent error or an
end-of -volume condition.

• If a channel program encountered a permanent error, the executor performs its
remaining processing. Any buffers not written out are not processed.

• If a channel program encountered an end-of-volume condition, the executor finds
the IOB associated with that channel program and places its address into the
DCBIOBA field. It then passes control to the output synchronizing routine for
normal processing of the end-of-volume condition. When control returns, the
executor performs its remaining processing, unless one of the channel programs
encountered a permanent error or another end-of-volume condition. In either of
those cases, it resumes processing as it did when it first received control.

If Output and either a DCBDSORG field value of PP, or WRITE or PUT with a
DD statement of the form (MEMBERNAME) are specified, the executor issues a
STOW macro instruction. On completion of the Stow routine, the executor tests
for I/O errors and for logical errors, such as insufficient space in the directory.
For either type of error, the executor issues an ABEND macro instruction.

• The executor specifies in the WTG table that Close executor processing is
completed for this DCB. Depending on the remaining entries in the WTG table,
the executor either processes another DCB or returns control to the executor
IGG0201Y.

Close Executor IGG0201P: This module receives control from IGG0201A whenever:

The 3525 is specified or the 3505 is specified with either OMR or RCE.

The module operates as follows:

• It turns on the Close flag.

• Tests are made to determine if either OMR or RCE is being used with the 3505.

• If either is being used, the module issues a Feed and Stacker-select command
(with the OMR/RCE flag bit off) to return the device to normal punched mode.

Figure 30

• If either an associated data set or PRINT is being used with the 3525, the
following apply:

File Type Feed Caused by Close of

Print

Read/Print
Read/Punch/Print

Read/Punch
Punch/Print

Punch/Interpret
Read
Punch

Print File
Print File*
Print File**

Punch File**

Print File
Punch File

Read File
Punch File

• A feed is executed if an end-of-file is caused by the hardware; a feed is not executed if it is caused by a data
delimiter card.

"Punching or printing delimiter cards is not allowed for these file types since the Close routine always issues a
feed command.

• If a channel program for an output (QSAM) data set encountered a permanent
error, IGG0201B is specified in the WTG table as the next executor required for
this DCB. Otherwise, executor IGG0201R is specified in the WTG table.

It then searches the WTG table to pass control to another executor.

Close Executor IGG0201R: This module receives control from IGG00201P.

The module operates as follows:

• It frees buffer space from the buffer pool.

• It also frees lOB and ICB space.

It clears BSAM and QSAM vectors in the DCB.

It specifies in the WTG table that executor IGG0201B is the next executor
required for this DCB. It then searches the WTG table to pass control to another
executor.

Close Executor IGG0201X: Executor IGG0201X is a continuation of executor
IGG0201A and receives control from that executor.

The executor operates as follows:

• If QSAM and simple buffering are specified, the executor returns the buffers
associated with the DCB to the buffer control block pointed to by the address in
the DCBBUFCB field.

• The executor computes the amount of space occupied by the channel programs,
lOBs (and ICBs, if chained scheduling is used), and returns that space to the
supervisor by using a FREEMAIN macro instruction.

The executor specifies in the WTG table that Close executor processing is
completed for this DCB. Depending on the remaining entries in the WTG table,
it then either processes another DCB, passes control to executor IGG0201B, or
returns control to the Close routines.

Section 2: Method of Operation 165

166 OS SAM Logic

Close Executor IGG0201Y: Executor IGG0201Y receives control from executor
IGG0201Z.

The executor operates as follows:

• After it is loaded, it receives control.

• When record-ready channel programs are constructed, a GETMAIN macro
instruction is issued for more bytes. In the Close routine, when the lOB and
channel program areas are freed, the number of additional bytes is computed and
added to the byte count before issuing the FREEMAIN macro instruction.

• It purges the segment work area for a DCB that specifies BFTEK=R,
RECFM=VS, and MACRF=WL.

• It frees the record area obtained by an Open operation when a DCB specifies
BFTEK=A, spanned record, and QSAM locate mode.

Close Executor IGG0201Z: Executor IGG0201Z receives control from the Close
routine of O/C/EOV if the DCBDSORG field specifies a value of PS or PO and if
device type is direct-access storage.

The executor operates as follows:

• It receives control after it is loaded.

• If the Open parameter is Output and the DCB specifies a Put operation, the
executor issues a TRUNC and a PUT macro instruction to cause scheduling of the
last buffer. On return of control, the executor awaits execution of the last
channel program.

• If all channel programs were executed without encountering either an
end-of-volume condition or a permanent error, the executor continues processing.

• If any of the preceding channel programs encountered either a permanent error or
an end-of-volume condition, the executor specifies in the WTG table that
executor IGG0201B is required for this DCB. Depending on the remaining
entries in the WTG table, it then either processes another DCB, or passes control
to executor IGG0201B.

• If neither Output nor a Put operation is specified, the executor issues a PURGE
macro instruction for any pending channel programs. Note that, when processing
under BSAM, the Check routine ensures execution of all channel programs.

• If Output and either a DCBDSORG field value of PO, or WRITE or PUT with a
DO statement of the form (MEMBERNAME) are specified, the executor issues a
STOW macro instruction. On completion of the Stow routine, the executor tests
for I/O errors and for logical errors, such as insufficient space in the directory.
For either type of error, the executor issues an ABEND macro instruction.

• If QSAM and simple buffering are specified, the executor returns the buffers
associated with the DCB to the buffer control block pointed to by the address in
the field DCBBUFCB.

• The executor computes the amount of space occupied by the channel programs
and lOBs (and ICBs, if chained scheduling is used), and returns that space to the
supervisor by using a FREEMAIN macro instruction.

• The executor specifies in the WTG table that Close executor processing is
completed for this DCB. Depending on the remaining entries in the WTG table,
it then either processes another DCB, passes control to executor IGG0201B, or
returns control to the Close routines.

Figure 31

SYNAD /FEOV /EOV Executors

The executors listed in Figure 31 do error processing and rescheduling of channel
programs as required by BSAM and QSAM routines.

Type Module Number SVC Function

SYNAD/EOV IGGOOO5E 55 Performs error processing
for EOV condition.

SYNAD / Diagnostic IFG0551 B Performs error processing
for permanent errors.

FEOV IGCOOO3A 31 Discontinues reading and
writing on present volume.

EOV / New Volume IFG0551 L Schedules channel program

EOV /New Volume IFG0551 N

to be executed with new volume.

Performs rescheduling of
channel programs when
chained scheduling is used.

Figure 31. SAM EOV, FEOV, and Error Processing Executors.

SYNAD/EOV Executor IGC0005E (SVC 55): Executor IGC0005E performs
error-condition processing. If a synchronizing and error routine in QSAM, or a Check
routine in BSAM, finds that the execution of a channel program encountered either a
permanent error or an end-of-volume (EOV) condition, the routine issues an SVC 55
instruction. (The update synchronizing-and-error-processing routine passes control to
this executor only for an end-of-volume condition; the paper-tape-synchronizing
and-error-processing routine never passes control to this executor.) An SVC 55
instruction causes this executor to be loaded and to receive control.

Control passes to and from this executor along three paths, depending on whether
control was received due to an EOV condition, because of a permanent error condition
and there is a SYNAD routine present, or because of a permanent error condition and
there is no SYNAD routine present.

The flow of control under these three conditions for QSAM is shown in Diagram H
(Section 5). For BSAM, the same conditions are shown in Diagram I.

For an EOV condition, the executor operates as follows:

It obtains a work area.

It passes control to the end-of-volume routine of O/C/EOV. If that routine
finds a new volume, it eventually passes control to EOV /new volume executor.
After processing, the executor returns control to the synchronizing-and
error-processing routine or to the Check routine.

If there is no SYNAD routine present, the executor operates as follows for a permanent
error condition:

For QSAM, the executor passes control to the SYNAD/diagnostic executor,
IFG055IB.

For BSAM, the executor passes control to the ABEND routine.

Section 2: Method of Operation 167

If there is a SYNAD routine present, the executor operates as follows for a permanent
error condition:

I · For QSAM, the executor passes control to the SYNAD/diagnostic executor
(IFG0551B) after setting error indicators for the SYNAD routine. After error
processing, the user's SYNAD routine may return control to the synchronizing
routine. The synchronizing routine issues a second SVC 55 instruction to pass
control to this executor.

168 OS SAM Logic

• For BSAM, the executor returns control to the Check routine. The Check
routine passes control to the user's SYNAD routine. A return of control from the
SYNAD routine to the Check routine in BSAM is interpreted as an Accept-error
option. The Check routine issues a second SVC 55 instruction to pass control to
this executor again.

For BSAM, the executor implements the Accept-error option and returns control
to the check routine. For chained channel-program scheduling or purged lOBs,
control passes to the SYNAD/diagnostic executor, IFG055IB.

SYNAD/Diagnostic Executor IFG0551B: Executor IFG0551B performs error proces
sing for the SYNAD/EOV executor (IGC0005E) when a permanent error is detected.

For QSAM, if there is a SYNAD routine specified, IFG0551B returns control to the
error synchronizing routine which passes control to the user's SYNAD routine.

For QSAM, if there is no SYNAD routine or if there is a SYNAD routine and it
returns to the error synchronizing routine, IFG0551B implements the error options
specified in the DCBEROPT field in the DCB. It returns control to the synchronizing
routine for the Skip or Accept option if the error is one the user can accept.

For BSAM, if the SYNAD routine returns to the Check routine (this implies Accept)
and for chained-channel-program scheduling and purged lOB's, the executor
reschedules the channel programs.

The executor implements error options in the following manner:

• For the Terminate-error option, the executor passes control to the ABEND
routine.

• For the Accept-error option, the executor issues EXCP macro instructions to
reschedule all channel programs except the one executed with an error. If the
device is a printer, all channel programs are rescheduled.

• For the Skip-error option, the executor issues EXCP macro instructions to
reschedule all channel programs, including the one executed with an error.

In QSAM the error options Accept and Skip are implemented only when a data error is
present; a control error results in the Terminate option. A control error is differented
from a data error by the presence of 1 bits in any of the following:

• Bits 42-47 of the Channel Status Word (CSW)

• For direct-access devices, all bits in sense byte 1 or all bits except bit 4 (data
check) in sense byte O. Sense bytes 0 and 1 are found in the lOB at 10BSENSO
and IOBSENSl.

FEOV Executor IGC0003A (SVC 31): Executor IGC0003A causes reading or writing
to be discontinued for the balance of the present volume and permits the processing
program to start reading or writing a new volume. The FEOV (force-end-of-volume)
macro expansion includes an SVC 31 instruction that causes this executor to be loaded
and to gain control.

figure 31

For an input data set, processed under QSAM or BSAM, the executor operates as
follows:

• It receives control when the processing program uses an FEOV macro instruction.

It obtains a work area by means of a GETMAIN macro instruction.

• It prevents the execution of any pending channel programs by means of the
PURGE macro instruction.

• It passes control and the address of the work area to the end-of-volume routine
of I/O support by means of an XCTL macro instruction.

For an output data set processed under BSAM, the executor operates as follows:

• It receives control when the processing program uses an FEOV macro instruction.

• It obtains a work area by means of a GETMAIN macro instruction.

It passes control, and the address of the work area, to the end-of-volume routine
of I/O support by means of an XCTL macro instruction.

For an output data set processed under QSAM, the operation of the executor and the
resultant flow of control depends on the operating mode and how certain channel
programs execute.

Operation for Output Under QSAM

The operation of the FEOV executor for an output data set processed under the
queued sequential access method (QSAM) depends on the operating mode and the
execution of certain channel programs.

In the move operating mode, the execution of all channel programs is tested by the
FEOVexecutor. It awaits the execution of the channel program for the present buffer
and causes processing of any error conditions.

In the locate operating mode, the execution of the channel program for the next buffer
in the chain is tested by the output synchronizing routine. This test occurs immediately
after the end-of-block routine has caused the channel program for the present buffer
to be scheduled for execution. The execution of the channel programs for all the
following buffers, including the one just scheduled, is tested by the FEOV executor
after the last channel program has executed.

When a QSAM routine tests the execution of a channel program, one of three
conditions may be established, with the stated results:

• The channel program executed normally: Normal processing continues.

The channel program is not yet executed: The testing routine awaits completion
of the channel program.

The channel program executed with an error condition: The testing routine passes
control to the SYNAD/EOV executor (IGC0005E), by means of an SVC 55
instruction in synchronizing routine IGG019AR. The executor distinguishes
between permanent error conditions and end-of-volume conditions. For a
description of the error-processing operations initiated by the SYNAD/EOV
executor, refer to "Sequential Access Method Executors."

The FEOV executor substitutes its own SYNAD routine (contained within module
IGC0003A) for that of the processing program's. That SYNAD routine releases the
work area normally obtained by the executor and issues an ABEND macro instruction.

Section 2: Method of Operation 169

170 OS SAM Logic

The operation of the FEOV executor, and the resultant flow of control between it and
other control program routines, differs for each of eight conditions.

Diagram J (Section 5) illustrates the flow of control between the executor and related
routines for each of the eight conditions described in the following paragraphs.

Condition 1: An output data set is processed under QSAM in the move mode, and all
channel programs execute normally.

The executor operates as follows:

It issues a TRUNC macro instruction to pass control to the Put routine. (The Put
routine passes control to the end-of-block routine, which causes the channel
program for the present buffer to be scheduled for execution. Control returns to
the Put routine, which returns control to this executor.)

• It awaits execution of the channel program for the present buffer.

• It tests the execution of the channel program and finds that it executed normally.

• It passes control to the end-of-volume routine of I/O support. (That routine
passes control to the EOV /new volume executor, which returns control to the
processing program.)

Condition 2: An output data set is processed under QSAM in the move mode, and a
permanent error condition is encountered in the execution of a channel program.

The executor operates as follows:

• It issues a TRUNC macro instruction to pass control to the Put routine. (The Put
routine passes control to the end-of-block routine, which causes the channel
program for the present buffer to be scheduled for execution. Control returns to
the Put routine, which returns control to this executor.)

It awaits execution of the channel program and finds that it encountered an error
condition in its execution. It passes control to the synchronizing routine. (That
routine finds the same error condition and passes control to the SYNAD/EOV
executor (IGC0005E) by means of an SVC 55 instruction. The SYNAD/EOV
executor finds that the error condition is a permanent error condition and returns
control to the synchronizing routine, which returns control to the FEOV
executor.)

• It issues an ABEND macro instruction.

Condition 3: An output data set is processed under QSAM in the move mode, and an
end-of-volume condition is encountered in the execution of a channel program.

The executor operates as follows:

It issues a TRUNC macro instruction to pass control to the Put routine. (The Put
routine passes control to the end-of -block routine, which causes the channel
program for the present buffer to be scheduled for execution. Control returns to
the Put routine, which returns control to the FEOV executor.)

• It awaits execution of the channel program and finds that it encountered an error
condition in its execution.

It passes control to the synchronizing routine. (The routine finds the same error
condition and passes control to the SYNAD/EOV executor (IGC0005E) by
means of an SVC 55 instruction. The SYNAD/EOV executor finds that the
error condition is an end-of-volume condition and passes control to the EOV
routine of I/O support. That routine passes control to the EOV /new volume

Figure 31

executor, which returns control to the synchronizing routine. The synchronizing
routine now returns control to the FEOV executor.)

• It passes control to the end-of-volume routine of I/O support. That routine
passes control to the EOV /new volume executor again, which now returns
control to the processing program.

Condition 4: An output data set is processed under QSAM in the locate mode, and all
channel programs execute normally.

The executor operates as follows:

• It issues a TRUNC and a PUT macro instruction to pass control to the Put
routine. (The Put routine passes control to the end-of-block routine, which
causes the channel program for the present buffer to be scheduled for execution.
The Put routine then passes control to the synchronizing routine to obtain the
next buffer. That routine finds that the channel program for the next buffer
executed normally and returns control to the Put routine. The Put routine returns
control to the FEOV executor.)

It awaits execution of the last channel program and finds that the channel
program executed normally.

It passes control to the end-of-volume routine of O/C/EOV. (That routine
passes control to the EOV /new volume executor, which returns control to the
processing program.)

Condition 5: An output data set is processed under QSAM in the locate mode, and the
execution of the channel program for the next buffer in the chain encountered a
permanent error.

The FEOV executor operates as follows:

It issues a TRUNC and a PUT macro instruction to pass control to the Put
routine. (The Put routine passes control to the end-of-block routine, which
causes the channel program for the present buffer to be scheduled for execution.
The Put routine then passes control to the synchronizing routine to obtain the
next buffer. The synchronizing routine finds that the channel program executed
with an error condition and passes control to the SYNAD/EOV executor
(IGC0005E), by means of an SVC S5 instruction. The SYNAD/EOV executor
finds that the error condition is a permanent error condition, and returns control
to the synchronizing routine. The synchronizing routine now returns control to
the FEOV executor.)

• It issues an ABEND macro instruction.

Condition 6: An output data set is processed under QSAM in the locate mode, and the
execution of the channel program for any buffer other than the buffer specified in
condition 5 encounters a permanent error.

The executor operates as follows:

It issues a TRUNC and a PUT macro instruction to pass control to the Put
routine. (The Put routine passes control to the end-of-block routine, which
causes the channel program for the present buffer to be scheduled for execution.
The Put routine then passes control to the synchronizing routine, which returns
control to the Put routine. The Put routine returns control to the executor.)

Section 2: Method of Operation 171

172 as SAM Logic

• It awaits execution of the channel program for the last buffer and finds that the
channel program executed with an error condition.

• It passes control to the synchronizing routine. (The routine finds the same error
condition and passes control to the SYNAD/EOV executor (IGC0005E), by
means of an SVC 55 macro instruction. The SYNAD/EOV executor finds that
the error condition is a permanent error condition and returns control to the
synchronizing routine, which returns control to the FEOV executor.)

It issues an ABEND macro instruction.

Condition 7: An output data set is processed under QSAM in the locate mode, and the
execution of the channel program for the next buffer in the chain encountered an
end-of-volume condition.

The executor operates as follows:

• It issues a TRUNC and a PUT macro instruction to pass control to the Put
routine. (The Put routine passes control to the end-of-block routine, which
causes the channel program for the present buffer to be scheduled for execution.
The Put routine then passes control to the synchronizing routine to obtain the
next buffer. The synchronizing routine finds that the channel program executed
with an error condition, and passes control to the SYNAD/EOV executor
(IGC0005E), by means of an SVC 55 instruction. The SYNAD/EOV executor
finds that the error condition is an EOV condition, and passes control to the EOV
routine of I/O support. That routine passes control to the EOV /new volume
executor, which passes control to the synchronizing routine. The synchronizing
routine returns control to the Put routine, which now returns control to the
FEOVexecutor.)

• It passes control and the work area to the end-of-volume routine of O/C/EOV.
(That routine passes control to the EOV /new volume executor again, which
now returns control to the processing program.)

Condition 8: An output data set is processed under QSAM in the locate mode, and the
channel program for any buffer other than the one specified in condition 7 encounters
an end-of-volume condition.

The executor operates as follows:

It passes control to the Put routine. (The Put routine passes control to the
end-of-block routine, which causes the channel program for the present buffer to
be scheduled for execution. The Put routine then passes control to the
synchronizing routine, which returns control to the Put routine. The Put routine
returns control to the FEOV executor.)

It awaits execution of the channel program for the present buffer, and then finds
that the channel program executed with an error condition.

It passes control to the synchronizing routine. (The routine finds the same error
condition and passes control to the SYNAD/EOV executor (IGC0005E) by
means of an SVC 55 instruction. The SYNAD/EOV executor finds that the
error condition is an condition and passes control to the end-of-volume routine
of O/C/EOV. That routine passes control to the EOV /new volume executor,
which passes control to the synchronizing routine, which returns control to the
FEOVexecutor.)

It passes control and the work area, to the end-of-volume routine of O/C/EOV.
(That routine passes control to the EOV /new volume executor again, which
now returns control to the processing program.)

Figure 31

Note: An EOV condition is found during the implementation of an FEOV macro
instruction in conditions 3, 7, and 8. The subsequent processing results in three
volumes: Two volumes containing all the blocks scheduled for output by the FEOV
macro instruction and prior PUT macro instructions, and a third volume availablt: for
writing new blocks.

I EOV /New Volume Executor IFG0551L (Alias - IGG0551A): Executor IFG0551L
schedules, for execution with the new volume, any channel programs not executed with
the old volume. The end-of-volume routine of O/C/EOV issues an XCTL macro
instruction to pass control to this executor after the routine has caused the mounting of
the next volume of the input data set; for an output data set, the routine passes control
to this executor after the routine has mounted a new volume, or acquired additional
space on the current volume.

The executor operates as follows:

• It receives control when the next volume is available or when more space is
available on the same volume.

• If the user has requested an end-of-volume exit by a DCB exit list entry code
'06', the user's exit routine receives control by way of an SVC 12 instruction after
switching to a new volume. When an end-of-volume exit is taken for an output
data set and user-totaling has been specified, the address of the user-totaling
image area is in register O. Upon regaining control from the user's exit routine,
executor IFG0551L restores the pointers to the data extent block (DEB), the
request block (RB), the task control block (TCB), the task input/output table
(TIOT), and the unit control block (UCB). This restoration is necessary because
a restart occurring in the user's end-of-volume exit routine can change the
pointers. The end-of -volume exit and the checkpoint/restart are discussed in
more detail in OS Data Management Services Guide, GC26-3746.

• It resets all indications of the end-of-volume condition in the DCB. If chained
scheduling is specified, the executor issues an XCTL macro instruction to pass
control to IFG0551N.

• If the device type is direct access, the executor inserts the new full device address
(FDAD) into the DCB and the lOB.

• It issues BALR instructions to pass pending channel programs to the
end-of-block routine to have them scheduled for execution. If the DeB specifies
MACRF=WL (Write in the load mode) for creating a BDAM data set, control
passes to the Create-BDAM Write routine.

• It issues a FREEMAIN macro instruction for the work area obtained for the
end-of-volume routine.

• It returns control to the routine that passed control to the end-of-volume routine
via the SVC 55 instruction. For a normal end-of-volume condition found by a
synchronizing or Check routine, control returns to the synchronizing or Check
routine. For a forced end-of-volume condition established by an FEOV macro
instruction in the processing program, control returns to the processing program.
For an end-of-volume condition arising during the FEOV executor, control
returns to the FEOV executor.

Section 2: Method of Operation 173

I EOV /New Volume Executor IFG0551N (Alias - IGG0551B): Executor IFG0551N
performs the rescheduling functions of IFG0551L for those data sets being processed
that use chained scheduling. Executor IFG0551L transfers control to this module by
an XCTL macro instruction when it determines that ch,ained scheduling is specified.

The executor operates as follows:

• It receives control when chained scheduling is specified.

• If device type is direct access, the executor inserts the new full device address
(FDAD) into the DCB and the lOB.

• It issues BALR instructions to pass pending channel programs to the
end-of-block routine to have them scheduled for execution.

• It issues a FREEMAIN macro instruction for the work area obtained for the
end-of-volume routine.

• It returns control to the routine that passed control to the end-of-volume routine
by means of the SVC 55 instruction.

SETPRT Executors

174 as SAM Logic

There are six executors associated with the SETPRT macro instruction. The executor
IGC0008A receives control when the SVC 81 instruction is issued. Executor
IGG08101 receives control after executor IGC0008A if a specified UCS image is to be
loaded from the SYSl.IMAGELIB. The executor IGG08102 receives control after
executor IGG08101 to load the UCS image into the UCS buffer and to print
verification lines if required. The executors, IGG08103 and IGG08104, respectively,
locate the FCB image and load it into the forms control buffer. Executor IGG08104
also verifies the load and/or allows forms alignment.

Executor IGCOOIOE receives control when the SVC 105 instruction is issued. Figure
32 shows the conditions that cause the executors to gain control.

Access Method Conditions Selection

SETPRT macro X

Retrieve UCS image from
SYS1.IMAGELIB X

Load UCS image X

Locate the FCB image in calling
program or retrieve it from
SYS1.IMAGELIB X

Load FCB image X

Skeleton DCB and DEB needed
for IMAGELIB X

Executors

IGCOO08A 8A

IGG08101 01

IGG08102 02

IGG08103 03

IGG08104 04

IGC0010E OE

Figure 32. SETPRT Executor Selector

Figure 32

SETPRT Executor IGC0008A: The macro instruction SETPRT (set-printer) expands
into an SVC 81 instruction that causes this executor to be loaded and to gain control.
Executor IGC0008A determines whether the specified UCS image is to be loaded from
the SYSl.IMAGELIB after processing all outstanding output requests for the DCB.

The executor operates as follows:

• When BSAM is specified for the DCB, the executor purges all the outstanding
output requests.

• When QSAM is specified for the DCB, the executor causes all outstanding output
requests to quiesce.

• It uses the EXCP macro instruction to execute block data check or reset block
data check according to the specification in the SETPRT macro instruction.

• It uses the GETMAIN macro instruction to obtain a work area.

• When the specified UCS image has been loaded by a previous job step, it uses the
FREEMAIN macro instruction to free the work area and passes control back to
the user's program.

When the specified UCS image has not been loaded by a previous job step, it
passes control to executor IGG08101.

If an FCB load is required but a UCS load is not, executor IGG08103 is called.

SETPRT Executor IGG08101: Executor IGG08101 is entered from executor
IGC0008A when the specified UCS image is to be loaded from the SYSl.IMAGELIB.

The executor operates as follows:

• It uses the BLDL macro instruction to locate the UCS image in the
SYS 1.1MAGELIB.

• If the UCS image is not in the library, the executor requests the operator to
specify an alternate UCS image to be loaded.

When the UCS image is in the library, the executor uses the LOAD macro
instruction to retrieve the UCS image from the library.

The executor passes control to executor IGG08102 if the retrieved UCS image is
to be loaded into the UCS buffer or is to be displayed for visual verification.

Control is passed to IGG08103 when a UCS image is not to be loaded or
displayed and an FCB image is specified. If an FCB image is not specified, the
executor returns control to the user's program.

SETPRT Executor IGG08102: Executor IGG08102 is entered from executor
IGG08101 to load the UCS image into the UCS buffer and to print verification lines if
required.

The executor operates as follows:

• It uses the EXCP macro instruction to load the UCS image into the UCS buffer.

When verification of the image is required, the executor uses the EXCP macro
instruction to print the UCS image for verification.

It updates the UCB and uses the DELETE macro instruction to release the UCS
image. If the FCB is not to be loaded, a FREEMAIN macro instruction releases
the work area and control is returned to the user's program.

Section 2: Method of Operation 175

176 OS SAM Logic

If an FCB image is specified, executor IGG08103 is called; otherwise, control is given
to the user's program.

SETPRT Executor IGG08103: Executor IGG08103 locates the FCB image in the
problem program's DCB exit list or in SYSl.IMAGELIB and loads it into main storage.
It is entered from IGC0008A, IGG08101, or IGG08102.

The executor operates as follows:

• It checks the DCB exit list to see whether the specified FCB image is defined in
the problem program.

• It uses the BLDL macro instruction to locate the FCB image in
SYSl.IMAGELIB.

• If the image is not found in the library, the executor requests the operator to
specify an alternate FCB image.

• If the FCB image is specified in the problem program or successfully loaded into
main storage from SYS1.IMAGELm, executor IGG08104 is called to load the
image into the forms control buffer and/or print a verification.

• If no further FCB activity is required, control is returned to the user's program.

SETPRT Executor IGG08104: Executor IGG08104 loads the FCB image into the
forms control buffer and verifies the load and/or allow forms alignment. It is entered
from IGC0008A, IGG08102, or IGG08103.

The executor operates as follows:

• It checks to see whether an align-forms-only switch or a verify-only switch is set.

• If neither switch is set, the forms control buffer is loaded.

• If VERIFY is specified, a verification message is printed.

• If VERIFY or ALIGN is specified, the operator is instructed to align the forms.

• The executor always exits to the problem program.

lMAGELIB Executor IGC0010E: Executor IGC0010E builds a skeleton DCB and
DEB for the SYS 1.IMAGELIB data set or deletes the DCB and DEB for the
SYS1.IMAGELIB data set, depending on the parameter passed to it in register 1. The
executor is entered from the SVC 105 instruction.

The executor operates as follows:

• It makes a test to determine whether the control blocks for IMAGELIB need to
be built or deleted. If register 1 contains Os, a DCB and DEB are built.

• It uses a GETMAIN macro instruction to obtain a work area and then uses a
LOCATE macro instruction to determine where the IMAGELm volume is
residing.

• It takes the address of the UCB table from the CVT and searches for the
corresponding UCB.

• It uses the OBTAIN macro instruction to read in the format-1 DSCB and uses
the information found in the format-1 DSCB and the UCB address to construct a
skeleton DCB and DEB for the IMAGELIB volume.

Figure 33

• If register 1 contains an address when the executor tests to determine whether the
control blocks for the IMAGELIB volume need to be built or deleted, the DCB
and DEB for IMAGELIB are to be deleted.

It uses the FREEMAIN macro instruction to delete the control blocks.

It returns control to the calling routine through the SVC 3 instruction.

Buffer-Pool Management

Buffer-pool management routines form main storage space into buffers, and they
return buffers that are no longer needed. Figure 33 lists the buffer-pool management
routines.

Type

GETPOOL

BUILD

GETBUF

FREEBUF

FREEPOOL

BUILDRCD

Module Name

IECQBFG1

IECBBFB1

(Macro ExpanSion)

(Macro Expansion)

(Macro Expansion)

IGG019BO

Function

This routine obtains main storage and
forms a buffer pool.

This routine forms a buffer pool in
main storage supplied by the
processing program.

This routine provides buffers from
the buffer chain.

ThiS routine returns buffers to the
buffer pool.

This routine returns main storage
previously used for a buffer pool.

This routine allows a pointer to
a record area to be incorporated in
a buffer pool in main storage supplied
by the processing program.

Figure 33. Buffer-Pool Management Routines

GETPOOL Module IECQBFGl

Module IECQBFG 1 obtains main-storage space and forms it into buffers. It is loaded
at execution time by a LINK macro instruction.

The module operates as follows:

• It rounds the buffer length to the next higher doubleword multiple if the specified
length is not such a multiple.

It determines buffer alignment from the DCBBF ALN field value in the DCB.

It computes the number of bytes required and issues a GETMAIN macro
instruction.

• It constructs a buffer-pool control block in the first eight bytes of storage
obtained.

• If doubleword (not fullword) alignment is specified in the DCBBFALN field in
the DCB, the module starts the first buffer at the byte immediately following the
BUFCB.

Section 2: Method of Operation 177

If fullword (not doubleword) alignment is specified in the DCBBF ALN field, the
module skips one word after the buffer-pool control block before starting the first
buffer.

It chains the first buffer to the buffer-pool control block and determines the start
of the next buffer by adding the rounded buffer length value to the address of the
first buffer. The module chains the next buffer to the preceding buffer and
continues until all the buffers have been chained.

• It returns control to the processing program.

Figure 34 illustrates the buffer-pool control block (BUFCB) that describes the buffer
pool. Figure 35 illustrates the buffer-pool structures formed by the GETPOOL
module.

BUFAD

BUFCB
Address of

First Avai lab Ie Buffer

Byte 0

Figure 34. Buffer-Pool Control Block

Doubleword
Buffer Alignment Specified

BUFCB

~2 Words---+-

4 6

BUFL

Length of
Each Buffer

Fullword (Not Doubleword)
Buffer Alignment Specified

BUFCB

-0-

Figure 35. GETPOOL Buffer-Pool Structures

8

Build Module IECBBFB 1

178 OS SAM Logic

Module IECBBFB1 forms main storage space supplied by the processing program into
buffers. It is loaded at execution time by a LINK macro instruction.

The module operates as follows:

• It rounds the buffer length to the next higher fullword multiple if the specified
length is not such a multiple.

• It constructs a buffer-pool control block in the first 8 bytes of the main-storage
space provided by the processing program.

Figure 33

It starts the first buffer at the byte immediately following the buffer-pool control
block.

It chains the first buffer to the buffer pool control block and determines the start
of the next buffer by adding the rounded buffer-length value to the address of
the first buffer. The module chains the next buffer to the preceding buffer, and
continues until all the buffers are chained.

• It returns control to the processing program.

Figure 36 lists for each possible combination of space alignment and buffer length
parity the illustration that shows the structure of the resulting buffer chain or pool.
Figure 34 illustrates the buffer pool control block (BUFCB), Figure 37 illustrates the
various buffer alignments that the Build module forms.

GETBUF Macro Expansion

The purpose of this coding is to provide the next buffer from the buffer pool. The
macro expansion produces inline code that presents the address of the next buffer to
the processing program and updates the buffer-pool control block to point at the
following buffer.

FREEBUF Macro Expansion

The purpose of this coding is to return a buffer to the buffer chain. The macro
expansion produces inline code that stores the address presently in the buffer-pool
control block in the first word of the buffer being returned, and then stores the address
of that buffer in the buffer-pool control block.

Alignment of first byte of
space passed in BUILD
macro instruction

Doubleword

Fullword
(Not doubleword)

Parity of number of
words in buffer length
after rounding up length
parameter of BUILD
macro instruction

Even
Odd

Even
Odd

Buffer
pool
structure

A
B

C
D

Figure 36. Build Buffer Structuring Table

FREEPOOL Macro Expansion

The purpose of this coding is to return the space previously allotted to the buffer chain
to available main storage. The macro expansion produces inline code that computes
the total number of bytes to be returned, issues a FREEMAIN macro instruction, and
sets the DCBBUFCB field in the DCB to show that no buffer pool is associated with
that DCB.

Section 2: Method of Operation 179

B C o

BUFCB

I __ ..J

-0-
-0-

-0- I

-----~

-2words -

Figure 37. Build Buffer Pool Structure

BUILDRCD Routine IGG019BO

180 OS SAM Logic

This routine forms main-storage space supplied by the processing program into buffers
and links the buffer pool to a record area also supplied by the processing program. It is
loaded at execution time by a LINK macro instruction.

The module operates as follows:

• It rounds the buffer length to the next higher fullword multiple if the specified
length is not such a multiple.

• It constructs a buffer-pool control block (see Figure 38) in the first twelve bytes
of the main-storage space provided by the processing program.

• It turns on the high-order bit of the BUFLG byte of the buffer-pool control
block to indicate that a record area address is present.

It clears the control field (32 bytes) of the record area.

• It stores the record area length in the record area (see Figure 39) provided by the
processing program.

• It chains the first buffer to the buffer-pool control block and determines the start
of the next buffer by adding the rounded buffer length value to the address of the
first buffer. The next buffer is chained to the preceding buffer until all buffers
are built.

• It returns control to the processing program.

Figure 38 illustrates the buffer-pool control block (BUFeB) that describes the buffer
pool when logical record interface is required for variable-length spanned records
processed in the locate mode.'

Figure 33

Figure 39 illustrates the record area used to assemble and segment a spanned record.
This record area is either acquired dynamically by data management at Open time,
when the DCB specifies RECFM-VS/VBS, MACRF=GL/PL, and BFTEK=A, or
provided by the problem program by means of a BUILDRCD macro instruction.

BUFAD BUFLG BUFNO BUFLTH BUFRECAD

Address of Set to
Number of Length of Address of

First Available X'80' Buffers Each Record
Buffer Requested Buffer Area

Byte 0 5 6 8 12

Figure 38. Buffer Pool Control Block

BUF AD: 4 bytes, contains the address of the first available buffer in the pool.

BUFLG: 1 byte, set to X'80' when a record area address is present in the buffer
control block.

BUFNO: 1 byte, contains the number of buffers requested.

BUFLTH: 2 bytes, contains the length rounded to the nearest fullword of each
buffer requested.

BUFRECAD: 4 bytes, contains the starting address of the record area.

Length Index Position Track
of to of Address to Next

Count Record Flags Beginning Record Beginning lOB Reserved Oo~ \ Field Area of Data in Block Segment of Address

Byte
o

4 5 6 8

Record

16 20 22 32+
LRECL

Figure 39. Record Area

A description of the fields contained in the record area follows:

• Length of record area

This 4-byte field contains the length of the entire record area (data field + 24
bytes). The length may be determined by the LRECL of the DCB macro at
Open time plus 8 bytes for alignment or specified in the length of the record area
parameter of the BUILDRCD macro instruction, in which case the BUILDRCD
routine places the length of the record area in this field. The second high-order
bit of the first byte of this field is set to X'40' by the COBOL processor to
indicate special processing of variable-length spanned records. If this bit is set,

Section 2: Method of Operation 181

182 OS SAM Logic

all records (spanned or nonspanned) are presented to the processing program in
the record area.

• Flags

This I-byte field is used for internal data management control flags.

Index to beginning of data

This I-byte field contains the index value to the beginning of the data (record
descriptor word) in the data field.

• Position of record in block

This 2-byte field contains the relative position of the beginning segment of a
record within the block.

• Track address of beginning segment of record

This 8-byte field is used to save the track address of that block which has a
beginning segment of a record that is being processed. The low-order three bytes
of this field are used to save the record address of the block that will have the
beginning segment of a record if a spanned record is to be written.

• Next lOB address

This 4-byte field is used to save the next lOB address if a spanned record is to be
written.

• Count field

This 2-byte field is used to accumulate the number of bytes of data moved while
segmenting.

Reserved - Not used

• Data

The assembled logical record is located in this field. The maximum length of this
field is either determined by the LRECL field of the DCB macro at Open time
plus 8 bytes for alignment or equal to 24 bytes less than the length of the record
area parameter of the BUILDRCD macro instruction.

SECTION 3: DIRECTORY

Directory

Module CSECT SVC Logic Manual Module
Name Module Type Name Entry Reference Description (Page)

IECBBFB1 Build Module IECBBFB1 Figure 33 178
IECPFIND Resident Module IGCOlB 18 Figure 25 126

IECPBLDL 127
IECPCNVT 127
IECPRLTV 127

IECPFND1 Resident Module IEC018 18 Figure 25 127
IECPCNVT 128
IECPRLTV 128

IECQBFG1 GETPOOL Module IECQBFG1 Figure 33 177
IFG055lB SYNAD /Diagnostic

Executor IFG055lB Figure 31 168
IFG0551L EOV /New Volume

Executor IFG0551L Figure 31 173
IFG0551N EOV /New Volume

Executor IFG0551N Figure 31 174
IGCOO02A STOW Module IGCOO02A 21 Figure 25 124
IGCOO02E Control Module IGCOO02E 25 Figure 23 116
IGCOO03A FEOV Executor IGCOO03A 31 Figure 31 168
IGCOO05E SYNAD/EOV Executor IGC0055 55 Figure 31 167
IGCOO061 Control Module IGCOO061 69 Figure 23 123
IGCOO08A SETPRT Executor IGCOO08A 81 Figure 32 175
IGC0010E IMAGELIB Executor IGC0010E 105 Figure 32 176
IGGOOlOC Translate Routine IGG0010C 103 See Appendix A

Section 6 216
IGG019AA Get Module IGG019AA Figure 1 5
IGG019AB Get Module IGG019AB Figure 1 6
IGG019AC Get Module IGG019AC Figure 1 7
IGG019AD Get Module IGG019AD Figure 1 8
IGG019AE Get Module IGG019AE Figure 6 25
IGG019AF Synchronizing Module IGG019AF Figure 15 73
IGG019AG Get Module IGG019AG Figure 1 9
IGG019AI Put Module IGG019AI Figure 7 32
IGG019AJ Put Module IGG019AJ Figure 7 33
IGG019AK Put Module IGG019AK Figure 7 34
IGG019AL Put Module IGG019AL Figure 7 35
IGG019AM Get Module IGG019AM Figure 1 9
IGG019AN Get Module IGG019AN Figure 1 10
IGG019AQ Synchronizing Module IGG019AQ Figure 15 74
IGG019AR Synchronizing Module IGG019AR Figure 15 75
IGG019AT Get Module IGG019AT Figure 1 12
IGG019AV Open Executor IGG019AV Figure 27 132
IGG019AW Appendage IGG019AW Figure 17 81
IGG019AX Save Module IGG019AX Figure 14 68
IGG019BA Read/Write Module IGG019BA Figure 20 103
IGG019BB Check Module IGG019BB Figure 21 111

Section 3: Directory 183

Module CSECT SVC Logic Manual Module
Name Module Type Name Entry Reference Description (Page)

IGG019BC Control Module IGG019BC Figure 22 117
IGG019BD Control Module IGG019BD Figure 22 118
IGG019BE Control Module IGG019BE Figure 22 119
IGG019BF Read Module IGG019BF Figure 20 105
IGG019BG Check Module IGG019BG Figure 21 113
IGG019BH Read/Write Module IGG019BH Figure 20 106
IGG019BI Check Module IGG019BI Figure 21 113
IGG019BK Control Module IGG019BK Figure 22 120
IGG019BL Control Module IGG019BL Figure 22 121
IGG019BM Appendage IGG019BM Figure 17 83
IGG019BN Get Update Module IGG019BN Figure 6 27
IGG019BO Get Module IGG019BO Figure 1 13
IGG019BP Put Module IGG019BP Figure 7 36
IGG019BQ Synchronizing Module IGG019BQ Figure 15 75
IGG019BR Write Module IGG019BR Figure 20 106
IGG019BS Check Module IGG019BS Figure 21 114
IGG019BT Channel-End Appendage IGG019BT Figure 17 88
IGG019BU Read Module IGG019BU Figure 20 107
IGG019BV Channel-End Appendage IGG019BV Figure 17 88
IGG019BO BUlLDRCD Routine IGG019BO Figure 33 180
IGG019CA Control Module IGG019CA Figure 18 101
IGG019CB Control Module IGG019CB Figure 18 102
IGG019CC EOB Module IGG019CC Figure 9 48
IGG019CD EOB Module IGG019CD Figure 9 49
IGG019CE EOB Module IGG019CE Figure 9 50
IGG019CF EOB Module IGG019CF Figure 9 51
IGG019CG SIO Appendage IGG019CG Figure 17 85
IGG019CH End-of-Extent Appendage IGG019CH Figure 17 84
IGG019CI Channel-End Appendage IGG019CI Figure 17 89
IGG019CJ Channel-End Appendage IGG019CJ Figure 17 90
IGG019CK Channel-End Appendage IGG019CK Figure 17 91
IGG019CL SIO Appendage IGG019CL Figure 17 86
IGG019CM Code Conversion Module IGG019CM See Appendix A

Section 6 215
IGG019CN Code Conversion Module IGG019CN See Appendix A

Section 6 215
IGG019CO Code Conversion IGG019CO See Appendix A

Section 6 215
IGG019CP Code Conversion Module IGG019CP See Appendix A

Section 6 215
IGG019CQ Code Conversion Module IGG019CQ See Appendix A

Section 6 216
IGG019CR Code Conversion Module IGG019CR See Appendix A

Section 6 216
IGG019CS Channel-End Appendage IGG019CS Figure 17 91
IGG019CT EOB Module IGG019CT Figure 9 52
IGG019CU Appendage IGG019CU Figure 17 96
IGG019CV EOV Module IGG019CV Figure 11 59
IGG019CW EOB Module IGG019CW Figure 11 61

184 OS SAM Logic

Module CSECT SVC Logic Manual Module
Name Module Type Name Entry Reference Description (Page)

IGG019CX EOB Module IGG019CX Figure 11 63
IGG019CY EOB Module IGG019CY Figure 11 63
IGG019CZ End-of-Extent Appendage IGG019CZ Figure 17 84
IGG019Cl Asynchronous Error IGG019Cl Figure 16 77

Processing Module
IGG019C2 EOB Module IGG019C2 Figure 14 69
IGG019C3 Appendage IGG019C3 Figure 17 98
IGG019C4 Appendage IGG019CA Figure 17 85
IGG019C6 Appendage IGG019C6 Figure 17 92
IGG019DA Write Module IGG019DA Figure 20 108
IGG019DB Write Module IGG019DB Figure 20 110
IGG019DC Check Module IGG019DC Figure 21 114
IGG019DD Write Module IGG019DD Figure 20 110
IGG019EA Get Module IGG019EA Figure 3 19
IGG019EB Get Module IGG019EB Figure 3 20
IGG019EC Get Module IGG019EC Figure 3 21
IGG019ED Get Module IGG019ED Figure 3 21
IGG019EE Put Module IGG019EE Figure 8 42
IGG019EI Appendage IGG019EI Figure 17 92
IGG019EJ Appendage IGG019EJ Figure 17 93
IGG019EF Put Module IGG019EF Figure 8 44
IGG019FA Control Module IGG019FA Figure 18 102
IGG019FB Get Module IGG019FB Figure 1 14
IGG019FD Get Module IGG019FD Figure 1 15
IGG019FF Get Module IGG019FF Figure 1 17
IGG019FG Put Module IGG019FG Figure 7 38
IGG019FJ Put Module IGG019FJ Figure 7 39
IGG019FK EOB' Module IGG019FK Figure 9 53
IGG019FL Put Module IGG019FL Figure 7 40
IGG019FN SIO Appendage IGG019FN Figure 17 86
IGG019FP Channel-End Appendage IGG019FP Figure 17 95
IGG019FQ EOB Module IGG019FQ Figure 9 53
IGG019FR Appendage IGG019FR Figure 17 82
IGG019FS Asynchronous Error- IGG019FS Figure 16 78

Processing Module
IGG019FU EOB Module IGG019FU Figure 9 54
IGG019TC EOB Module IGG019TC Figure 9 55
IGG019TD EOB Module IGG019TD Figure 9 56
IGG019TV EOB Module IGG019TV Figure 11 64
IGG019TW EOB Module IGG019TW Figure 11 66
IGG019T2 EOB Module IGG019T2 Figure 14 69
IGG019T4 TSO Put Routine IGG019T4 See description of IGG0201A

Figure 30 163
IGG0191A Open Executor IGG0191A Figure 27 132
IGG0191B Open Executor IGG0191B Figure 27 133
IGG0191C Open Executor IGG0191C Figure 27 133
IGG0191D Open Executor IGG0191D Figure 28 140
IGG0191E Open Executor IGG0191E Figure 28 142
IGG0191F Open Executor IGG0191F Figure 28 143

Section 3: Directory 185

Module CSECT SVC Logic Manual Module
Name Module Type Name Entry Reference Description (Page)

IGG0191G Open Executor IGG0191G Figure 28 143
IGG0191H Open Executor IGG0191H Figure 28 144
IGG0191I Open Executor IGG0191I Figure 27 134
IGG0191J Open Executor IGG0191J Figure 28 144
IGG0191K Open Executor IGG0191K Figure 28 145
IGG0191L Open Executor IGG0191L Figure 28 145
IGG0191M Open Executor IGG0191L Figure 28 146
IGG0191N Open Executor IGG0191N Figure 27 134
IGG01910 Open Executor IGG01910 Figure 28 146
IGG0191P Open Executor IGG0191P Figure 28 147
IGG0191Q Open Executor IGG0191Q Figure 28 147
IGG0191R Open Executor IGG0191R Figure 28 148
IGG0191S Open Executor IGG0191S Figure 28 148
IGG0191T Open Executor IGG0191T Figure 27 134
IGG0191U Open Executor IGG0191U Figure 27 135
IGG0191V Open Executor IGG0191V Figure 27 135
IGG0191W Open Executor IGG0191W Figure 28 149
IGG0191X Open Executor IGG0191X Figure 28 149
IGG0191Y Open Executor IGG0191Y Figure 27 136
IGG0191Z Open Executor IGG0191Z Figure 28 150
IGG01910 Open Executor IGG01910 Figure 29 154
IGG01911 Open Executor IGG01911 Figure 29 154
IGG01912 Open Executor IGG01912 Figure 29 155
IGG01913 Open Executor IGG01913 Figure 29 156
IGG01914 Open Executor IGG01914 Figure 29 156
IGG01915 Open Executor IGG01915 Figure 29 157
IGG01916 Open Executor IGG01916 Figure 29 157
IGG01917 Open Executor IGG01917 Figure 29 158
IGG01918 Open Executor IGG01918 Figure 29 158
IGG01919 Open Executor IGG01919 Figure 29 159
IGGOI926 Open Executor IGG01926 Figure 29 159
IGG01931 Open Executor IGG01931 Figure 27 137
IGG0196A Open Executor IGG0196A Figure 27 137
IGG0196B Open Executor IGG0196B Figure 27 137
IGG0196I Open Executor IGG01961 Figure 27 138
IGG0196J Open Executor IGG0196J Figure 28 150
IGG0196K Open Executor IGG0196K Figure 28 150
IGG0196L Open Executor IGG0196L Figure 28 150
IGG0196P Open Executor IGG0196P Figure 28 151
IGG0196S TSO Module IGG0196S See IGGOI91I, Figure 27
IGG0197E Open Executor IGG0197E Figure 27 138
IGG0197F Open Executor IGG0197F Figure 27 138
IGG0197L Open Executor IGG0197L Figure 27 139
IGG0197M Open Executor IGG0197M Figure 27 139
IGG0197N Open Executor IGG0197N Figure 28 151
IGG0197P Open Executor IGG0197P Figure 28 152
IGG0197Q Open Executor IGG0197Q Figure 28 152
IGG0197U Open Executor IGG0197U Figure 27 139

186 OS SAM Logic

Module CSECT SVC Logic Manual Module
Name Module Type Name Entry Reference Description (Page)

IGG0199K Open Executor IGG0199K Figure 28 152
IGG0199L Open Executor IGG0199L Figure 28 153
IGG01990 Open Executor IGG01990 Figure 28 153
IGG01990 Open Executor IGG01990 Figure 29 160
IGG01991 Open Executor IGG01991 Figure 29 160
IGGOI992 Open Executor IGGOI992 Figure 29 161
IGG01993 Open Executor IGG01993 Figure 29 161
IGG01994 Open Executor IGG01994 Figure 29 162
IGG0201A Close Executor IGG0201A Figure 30 163
IGG0201B Close Executor IGG020lB Figure 30 164
IGG0201P Close Executor IGG0201P Figure 30 164
IGG0201R Close Executor IGG0201R Figure 30 165
IGG0201X Close Executor IGG0201X Figure 30 165
IGG0201Y Close Executor IGG0201Y Figure 30 166
IGG0201Z Close Executor IGG0201Z Figure 30 166
IGG0210A STOW Module IGG0210A Figure 25 125
IGG0551A Alias for IFG0551L Figure 31 173
IGG055lB Alias for IFG0551N Figure 31 174
IGG08101 SETPRT Executor IGG08101 Figure 32 175
IGG08102 SETPRT Executor IGG08102 Figure 32 175
IGG08103 SETPRT Executor IGG08103 Figure 32 176
IGG08104 SETPRT Executor IGG08104 Figure 32 176

Section 3: Directory 187

SECTION 4: DATA AREAS

QSAM Control Blocks

Figure 40 shows the control blocks used in QSAM. Through the data control block
(DCB), the QSAM routines associate the data being processed with the processing
program. Fields in the DCB point to the start of a buffer, the end of a buffer, and an
input/output block (lOB). These fields are updated as successive channel programs are
executed. Each lOB points at the next lOB and at a channel program (CP), and
carries an event control block (ECB) that the I/O supervisor posts after the channel
program has been executed.

+0 lOB

I r-- NEXT lOB

I ECB

I - CPAD
I
I 0 0 CP
I
1
1 0

t-~
lOB

----~ NEXT lOB
1 ECB
I CPAD I -
I
1 0 0 0

CP 0 I -I I
I lOB

'-1 NEXT lOB
ECB

,.-- CPAD
0

CP 0
41 I--

Legend:
Address Va lues:
o Entered by the OPEN executor.
1 Updated by the synchronizing routine.
2 Updated by the GET or PUT routine.
--- Successive Address Values

Figure 40. QSAM Control Blocks

DCB

IOBA
- RECAD

EO BAD r----

0

BUFFER POOL

I
1

21 1

I ~ .,
I

I I
21 2 I

I I

~ .!--j
I
I

3 I
1

~~

Section 4: Data Areas 189

BSAM Control Blocks

190 OS SAM Logic

Figure 41 shows the control blocks used in BSAM and their stages of completion.
Stage 0 shows the state of the control blocks before any READ or WRITE macro
instruction. Stage 1 shows the effect of the READ or WRITE macro instruction, that
is, the values supplied by the processing program in the data event control block
(DECB). Finally, stage 2 shows the effect of the Read or Write routine having tied
together these control blocks.

Before any READ or WRITE macro instruction, the data control block (DCB) points
to the first input/output block (lOB). This lOB points back to the DCB, to the next
lOB, and to the channel program (CP). The READ or WRITE macro instruction
identifies the DCB and the buffer to be read into or written out. Finally, the Read or
Write routine connects the DECB with the current lOB, inserts the address of the ECB
(which is located in the DECB) into the lOB, and points the channel program to the
buffer. Successive macro instructions cause updating of the lOB address in the DCB
and insert address values in the next DECB, lOB, and channel program.

0

I

I
I
I

DECB

2
lOB

10BAD I
DCBAD

IT ECB BUFFER
0 DC BAD

BUFAD
I J ECBAD

r+-- NEXT lOB
CPAD

o 0
CP 2

DECB

2
j. - - -'08 - - - - - - -r�""o:::BA:...:;D:::---_-t I

_ . __ ~ DCBAD --------

2 rl · .. rE:;.:C::.:;B~--_l I BUFFER
t-:D:-::C:::-B--;-:A:-D_---I _...I BUFAD -A, toof"' __ -If

ECBAD
o

r-- NEXT lOB ,
C~D I

21 o 0 1--_--_-' 2 ,
CP ,

I
I

____________ ..J

I
I
I
I 2

DECB

i f4- - - -lOB - - - - - - - -1---'1.:::O""BAc.::D::--_--I I
r- ,- _L--.. DCBAD t-------- ..
I DC BAD 2 ;- -I---'E=-::C::,::B __ ----i I BUFFER
I 0 0 ECBAD I-J BUFAD t--.-toof __ ...J,
I ~~-~~N~E~XJTtIO~B~ :
, .-- CPAD I

21 0 k~~=j I
I r-C_P ___ ~2 I
I L...,.j ---- ________ -1

I
I ,
I
1

DCB

1.----- 10BA

Legend:
Address Values
o Entered by the OPEN Executor.
I Provided by the processi ng program.
2 Completed by the READ or WRITE routine.
--- Successive Address Values.

Figure 41. BSAM Control Blocks

Section 4: Data Areas 191

Access Method Save Area for User Totaling

192 OS SAM Logic

The access method save area for user totaling is pointed to by the address in bytes 5-7
in the EXCP access method, BSAM, or QSAM-dependent section of the DEB.

Disp.

Dec. Hex.

0 0
Access method save routine address

4 4
Current image area address

8 8
First image area address

12 10
Last image area address

16 14
Length of each image area

20 18
Address of user's totaling area

24 1C
Size of access method totaling save area 1

28 20
Address of last image area for volume2

32 24
Register

36 28
save

40 1C area

44 30

48 34
First image area3

-'- -'-

T Last image area3 T
1The size of this save area includes the space used by image areas.

2This field is adjusted by the End-of-Volume routine so that it points to the
image area containing the usp.r's total for the last record written on the volume.

~he image areas are all the same size, that is, the length of the user's totaling
area rounded to the nearest halfword.

Figure 42. Access Save Area for User Totaling

SECTION 5: PROGRAM ORGANIZATION AND FLOW OF CONTROL

Sequential Access Method - Overview

QSAM

GET
PUT
PUTX
RElSE
TRUNC

BUllDRCD

CNTRl
PRTOV

FEOV
SETPRT

...
'"

_

'" ..

.

I ~

Get and Put Routines
See Diagram B
End-of-Block Routines
Figures 9. 11. & 12
Synchronizing-and-Error-
Processing Routines
See Figures 15. 16

Buffer-Pool Management
Routines See Figure 33

QSAM Control Routines
See Figures 18 and 19

SAM Executors
FEOV See Figure 31
SETPRT See Figure 32

....

Open and Close Executors

OPEN
to.. ..

CLOSE

SAM Open Executors
See Diagram D and
Figures 27. 28. and 29

SAM Close Executors
See Figure 30

BSAM

READ
WRITE

CHECK

FREEBUF
GETBUF

CNTRl
PRTOV

NOTE
POINT
BSP

FEOV
SETPRT

Jo. ..

...
p

.
p

Read and Write Routines
See Diagram C and Figure 20

Check Routines
See Diagram C and Figure 21

Buffer-Pool Management
Routines See Figure 33

BSAM Control Routine
See Figures 22 and 23

1'00.. ...

...
"'-...

....
I<

....

COMMON ACCESS METHOD ROUTINES

Buffer-Pool Management Routines Appendages

I/O Interruption

J

BUilD
FREEBUF
FREEPOOL
GETBUF
GETPOOL

Buffer-Pool
Management
Routines

..
via C=~)I ..

Supervisor
....

See Figure 33

BPAM

READ
WRITE

CHECK

FREEBUF
GETBUF

BlDl
STOW
FIND

NOTE
POINT

QSAM and BSAM
Appendages
See Figure 17

BPAM Routines
See Figure 25

DIAGRAM A

Section 5: Program Organization and Flow of Control 193

aSAM Get and Put Routines

GET
RE LSE

~

PUT
PU
TR

TX
UNC

~

The Get routines prepare the next record for the
program from a block of data obtained from an
input channel program. The RELSE routines
cause the present buffer to be scheduled for
refilling by setting an end-of-block condition.

List A can be used to select the appropriate
module selector table for the Get routines.

Flow of control information for aSAM routines
is shown in Diagram F.

Control Blocks used in aSAM are shown in
section 4 of this manual. See Figure 40, aSAM
Control Blocks.

The Put routines accept records from the program
and assemble them into a block of data for an
output channel program. A PUTX routine accepts
an output record from an input data set.

The TRUNC routines cause the present buffer to
be scheduled for emptying.

List A can be used to select the appropriate
module selector table for the Put routines.

Flow of control information for aSAM routines
is shown in Diagram F.

Control blocks used in aSAM are shown in
section 4 of this manual. See Figure 40, aSAM
Control Blocks.

~

DIAGRAM B

List A

Module Selector
Buffer Technique Getl Information

Put (PLM Section 2)

Simple Buffering --
Buffers are per- Get Figure 1
manently associated Put Figure 7
with one DCB

Exchange Buffering --
Buffers are passed
between input DCB, Get Figure 3
output DCB, and Put Figure 8
processing program

Update Mode --
Uses simple buf-
fering but shares
the buffer used by Get Figure 6
the update mode Put Figure 9
Get!PUTX routine

4 iI'

Section 5: Program Organization and Flow of Control 195

BSAM/BPAM ReadlWrite and Check Routines DIAGRAM C

READIWRITE Ci =~>

CHECK C:' ==~>

A Read or Write routine completes some of the entries in the channel
program from parameters in the data event control block (DECB).

The ReadlWrite modules are listed in Figure 20 (section 2 of manual)

For flow of control information for BSAM/BPAM routines, see
Figure 25 in section 2 and Diagram G in this section.

Control blocks used in BSAM are shown in section 4. See Figure 41.
BSAM Control Blocks.

The DECB is examined by a Check routine to determine the
status of the channel program.

The Check modules are listed in Figure 21 (section 2 of manual)

For flow of control information for BSAM/BPAM routines, see
Figure 25 in section 2 and Diagram G in this section.

Control blocks used in BSAM are shown in section 4. See Figure 41,
BSAM Control Blocks.

Section 5: Program Organization and Flow of Control 197

Sequential Access Method Open Executors DIAGRAM D

OPEN

STAGE 1

These executors construct
data extent blocks (DEBs)
and buffer pools.

....
)

Stage 1 Executors are described
in section 2 under "Sequential
Access Method Executors,"
See Figure 27.

Open Routines ®
One of the functions performed by the Open
routines is the merging of control block infor·
mation.

During the merge process, Open uses the
DSORG and MACRF fields to determine the
type of DCB being opened.

Open then places entries in the WTG table for
those access method executors which are
required to process the DCB.

SAM Open Executors

STAGE 2 STAGE 3

These executors construct
input/output blocks (lOBs)
and associated channel
programs.

These executors identify and
load the modules needed to

® perform the processing
----. described by the DCB.

Stage 2 Executors are described
in section 2 under "Sequential
Access Method Executors,"
See Figure 28.

Stage 3 Executors are described
in section 2 under "Sequential
Access Method Executors."
See Figure 29.

® Open routines are described in Open/Close/End-of-Volume Logic,
GY28-6609. For information on the WTG and XCTL tables, see
the "Access Method Determination" section of the manual.

® Diagram E shows the flow of control between the three stages of Open
Executors.

Section 5: Program Organization and Flow of Control 199

SAM Flow of Control for Open Executors

IGG0196A

Executor
Selection

IGG01961

Construct
DE"

IGG019tA

Construct OEB

/ Open Routine """\

(Write Output ;-
" Label Module

/' Open Routme '\

{ Merge OCB/JFCB
\.. Module

LEGEND:

r---
I-

--t

f--.

--- Normal Program Flow

Magnetic Tape Onlv

IGG0191V

User Totaling

IGG019tN

Construct DEB
Direct AlX'ess

IGG0191C

Dummy Date Set

- - - - Abnormal Program Flow

~
f-+

I-

-

--t ...

STAGE 1

IGG0191B IGG0197L IGG0197M

~ -+ Device Initiation
3605/3525 Stage 2 3505/3525

E xecutar Selection

IGG01968

Executor
(Selection

See Figure 28

IGG01911 IG601931

BUild Buff Pools Executor

Staga2 Selection

Executor Selection See Figure 28

IGGO'91T

Data Check Execution ~ Detemllnatlon of UCS
Image Load

+
lGG0191U

UCS Image Retrieval ~

• IGG0191V

UCS Image Load r-+--

• IGG0197U

Verification of r-+--
UCSlmage

• IGG0197E

FeB Image Retrieval
and Load

• IGG0197F

Forms Alignment r-+--FeB Image
Venflcatlon

..

I
I
I

r-L
I
I

STAGE 2

IGG0191K

IGG01910

IGG01990 16G01910

I
I---------..-t ~~!~I 1--_·_, INone of the other) ~

I
I

1 1 __

~
I
I
I

I

I
I
1

I
1

I
I
I
I

IGG0191E

Exdoange
Buffenng

Sto

IGG0196J

Exchanga Buffaing

Magrletice Tape.
DIrect-Ac:c:eII -Input

Direct-Access Storage

~ I __ I t- ~ - - - - ~I'-t Normal Scheduhng

~ r' Unit Record,

I I =~~;ape,

IGG0191G

IGG01915

IGGOl96K Vanable-Length ~
Records
Non PCI

Unit Record

IGG01914

Exchange Buffering f-----t
IGGOI •• F J:

.x B._ • -l Excha ... """,,'... 1
=~- I--J1'T' '+lL-----''TI'V' ~1'-_u_n_;t_R_ ... _'d.J11'-----------JI"\..I1w'

Output

IGG0191R

Chained Scheduling

I
.J..

IGG01913

TrackMOverflow

I--A-----y"'---,
INOUT.OUTIN I-"'~ 1-r---'T"'-----'I,..,~-~-'T'_-----------_7__=;~7__:__,_.j
~~--~ I I

IGG0191Q

Chamed Scheduling

Unit Record_
MagnetiC Tape

IGG0191S

~

I
IGGD191l

Create M aDAM
two-ite-"""

rt

lot

...
IGG0197N

30115/3525

.....

IGG019H

- Track-OVerflow

IGG0199K

Search-Direct -Input

Track-Overflow

f
IGG0191M

Create-BDAM
(Write-Load)

Track-Overflow

IGG0199L

Create - BDAM
(Write-load)

IGG0191J

Normal Scheduling

Inout,Outm

Direct-Access Storage

IGG0191P

U""Me

~
Update and
Track Overflow

IGG0197P

Read-only with f--
OMRor RCE

IGGOl96L

Normel
Scheduling

IGG0196P

Non record
.... V

IG00197Q

Read-only With
OMRar RCE

-

Chained Scheduling

IGG01916

...., Variable-Length
Records
Chained Scheduling

IGG01912

.... update

Paper Tape

~

f-t

Diagram E

STAGE 3

IGG01917

INone of the other)

IGGOl991

Verlable-Length -
Records

IGG01990

Exchange -
Buffermg

IGG01911
/' Open Routine ""'"

IGG01926 f- QSAM Final ModU")

-Chamed Scheduhng

.,.
IGG01919

Chained Scheduhng

IGG01992

Variable-length
Track..()verflow

.-
IGG01994

Venable-length -
Track"()verflow

IGG01918

Update

-
Paper Tape

Section 5: Program Organization and Flow of Control 201

QSAM Flow of Control
Notes for Diagram F

® A synchronizing-and-error-processing routine receives control when another
full input buffer is needed or if a new empty output buffer is needed.

® An end-of-block routine receives control when an input buffer is empty or an
output buffer is full.

© The end-of-block routine attempts to add the present mannel program to the
last one in the chain of scheduled mannel programs. If successful, control
returns to the processing program. If unsuccessful, control is passed to the
I/O supervisor by an EXCP instruction.

@ For normal channel-program scheduling, the routine passes control to the I/O
supervisor by an EXCP instruction to cause scheduling of the buffer.

® Depending on the status of the execution, a synmronizing routine may retain
control (using the WAIT macro instruction), return control to the Get or Put
routine, or pass control to the user's SYNAD routine or to the SYNAD/EOV executor.

Control is passed to the SYNAD/EOV executor by using an SVC 55 instruction in
the event that an end-of-volume or a permanent error condition is dp.tected. Refer
to Figure 40, "QSAM Control Blocks" (section 4) for a diagram of the
relationship of the lOBs to the other OSAM control blocks.

® The flow of control for the SYNAD/EOV executor IGCOOO5E is described in
Diagram H, QSAM Flow of Control for SYNAD/EOV Executor.

® This executor receives control by being scheduled for execution by the track-overflow
abnormal-end appendage IGG019C3. Control is passed to the processing program
through the supervisor.

202 OS SAM Logic

GET
PUT
PUTX
RELS
TRUN

E
C

-
Get or Put Routines

New Suffer Needed ® -
Buffer Ready for
Scheduling

®

Control returned to
processing program •

Interr
/0

t/ I/O Supervisor

PCI Exit

Channel-End
Exit

Abnormal-End
Exit

Post ECB for previous
Channel Program

End-of-Extent
Exit

510 Exit

SID

-

..

DIAGRAM F

Synchronizing and Error SYNAD/EOV Executor
Processing Routines ®

SVC55

The next lOB is examined -to determine status ® User'sSYNAD Routine
of the channel program.

lOB

L~
End-of-Block Routines T rack-Overflow

© Asynchronous Error Chained channel program
Normal channel program@ Processing Routine @

• EXCP

Appendages

Control received
from and returned
to I/O Supervisor

PC I Appendage

Channel End

~ _____ .J

a Abnormal End

.
End -of -E xtent

- 510

Section 5: Program Organization and Flow of Control 203

BSAM/BPAM Flow of Control
Notes for Diagram G

® A Read or a Write routine receives control after a READ or a WRITE macro instruction
is issued by a processing program.

® A Read or Write routine partially completes a channel program using parameters from
the data event control block (DECB), and passes the DECB, together with the Input/
Output block (lOB), to an end·of-block routine.

© The end-of-block routine attempts to add the present channel program to the last one
in the chain of scheduled channel programs. If successful, control returns to the
processing program. If unsuccessful, control is passed to the I/O supervisor by an
EXCP instruction. These routines are described in the aSAM portion of the manual.
See Figure 11.

@ For normal channel program scheduling, the routine passes control to the I/O supervisor
by an EXCP instruction to cause scheduling of the buffer. The end-of-block routines
are described in the aSAM portion of the manual. See Figure 9.

® A Check routine receives control from the processing program via a CHECK macro
instruction.

® A Check routine returns control to the processing program if the channel program executes
normally (without errors). See Figure 41, BSAM Control Blocks (section 4) for a diagram of
the relationship of the DECB to the other BSAM control blocks.

Control is passed to the SYNAD/EOV executor for a permanent I/O error condition or for
an end-of-volume condition. See Diagram I, (section 5) for further information about the
flow of control between the Check routines and the SYNAD/EOV executor.

® The flow of control between the Check routine, SYNAD/EOV executor (SVC 55) and the user's
SYNAD routine is described in Diagram I, BSAM Flow of Control for SYNAD/EOV executor.

® This executor receives control by being scheduled for execution by the track-overflow
abnormal-end appendage IGG019C3. Control is passed to the processing program through
the supervisor.

204 OS SAM Logic

READ
WRITE

CHECK

- .

I/O ,n"";U ption

DIAGRAM G

End-of-Block Routines
® Read or Write Routines ® © Chained channel program @ - Normal channel program 0

EXCP I

Check Routines @ SYNAD/EOV Executor ® DECB is examined to determine User's SYNAD Routine
status of channel program ® - ..

I
I DECB "--a

I/O Supervisor

® Track-Overflow
Asynchronous Error Processing
Routine

4
Appendages

Control received
from and returned
to I/O Supervisor

PCI Exit PCI Appendage

Channel-End - Channel End
Exit ___ -I

Abnormal-End Abnormal End
Exit ..

End-of-Extent E nd-of-E xtent
Exit

SID Exit - SID

SID - I

Section 5: Program Organization and Flow of Control 205

QSAM Flow of Control for SYNAD/EOV Executor DIAGRAM H

Synchronizing and Error
Processing Routines ®
Control path (5) for permanent
error condition with SYNAD
routine present

Control path (N) for permanent
error condition with no SYNAD
routine present -

S4

S5

User's SYNAD Routine

©

Synchronizing and Error E1

Processing Routines ®

Control path (E) for
end-of-volume condition

f

®

®

©

S1 N1

SYNAD/EOV Executor
® S6 .. IGCOOO5E (5VC 55)

S2 57

N2

S3 N3(EROPT = ACC, SKP)

S8(EROPT = ACC, SKP)
SYNAD/Diagnostic Executor

IFG0551B ®
N3 S8

(EROPT = ABE) (EROPT =ABE)
r

ABEND Routine
IFG0551D

(See O/C/EOV Logic GY28-6609)

E2 EOV Routine of
SYNAD/EOV Executor
IGCOOO5E (SVC 55) ®

E6
EOV /New Volume Executor
I FG0551 L (Normal Scheduling) ® E4

IFG0551N (NormaI5cheduling) -

Descriptive information on these routines is
located in the OSAM portion of section 2 under
"Synchronizing and Error Processing Routines."
See module selector information in Figures 15
and 16.

Executors IGCOO05E,IFG0561L,IFG0551N,
and I FG0551 B are described in sectiQn 2.
See Figure 31.

The user's SYNAD routine is described in the
OS Data Management Services Guide,
GC26-3746.

- I/O Support

E3

-
E5 User's EOV Exit Routine

Section 5: Program Organization and Flow of Control 207

BSAM Flow of Control for SYNAD/EOV Executor DIAGRAM I

CHECK Routine ®
Control path (S) for permanent
error condition with SYNAD
routine present

Control path (N) for permanent
error condition with no SYNAD
routine present

S3

, S4

User's SYNAD Routine

©

CHECK Routine ®

Control path (E) for
end-of-volume condition

t

®

®

©

S1 N1 -- SYNAD/EOV Executor
S2 IGCOOO5E (5VC 55)

S5 ®

E1

56
Alternate path for chained

S6a
channel-program scheduling
and purged lOBS.

N2

57a •
SYNAD/Diagnostic Executor

ABEND Routine
IF60551D

IFG0551B (See O/C/EOV logic GY28-6609)

. SYNAD/EOV Executor
IGCOOO5E (SVC 55) ®

E6 EOV /New Volume Executor ®
IFG0551 L (Normal Scheduling)
IFG0551N (Normal Scheduling)

Descriptive information on the Check routines
is located in section 2 under "Basic Sequential
Access Method Routines." See Figure 21.

Executors IFG0551 Land IFGOO551N are
described in section 2. See Figure 31.

The user's SYNAD routine is described in the

E2

--
E4

-

OS Data Management Services Guide, GC26-3746.

EOV Routine of -- I/O Support

E3

E5 User's EOV Exit Routine

Section 5: Program Organization and Flow of Control 209

aSAM Operation of FEOV Executor for output data set (lGG0003A) DIAGRAM J

Put Routines

6

FEOV Executor IGC0003A
(SVC 31)

12

EOV Routine of
I/O Support

13

EOV/New Volume Executor

7

-

15

IFG0551 L (Normal Scheduling)

IFG0551N (Chained Scheduling) ~

End-of-Block Routine

5

Synchronizing and Error
Processing Routine

t 10 8

ABEND Routine

11

SYNAD/EOV Executor
IGC0005E (SVC 55)

Processing Program

Condition* Sequence of Control

1,2,3,6,12,13,14

2 1,2,3,6,7,8,9,10,16

3 1,2,3,6,7,8,11,13,15,10,12,13,14

4 1,2,3,4,5,6,12,13,14

5 1,2,3,4,8,9,10,16

6 1,2,3,4,5,6,7,8,9,10,16

7 1,2,3,4,8,11,13,15,10,12,13,14

8 1,2,3,4,5,6,7,8,11,13,15,10,12,13,14

•

9

*These conditions are described in section 2 under "FEOV Executor IGCOO03A," see Figure 31.

Section 5: Program Organization and Flow of Control 211

SECTION 6: APPENDIXES

A. Code Conversion Routines
Modules IGG019CM, IGG019CN, IGG019CO, IGG019CP, IGG019CQ,
IGG019CR, and IGGOOlOC.

B. BSAM/QSAM Channel Programs
Modules IGG0191D, IGG0191E & IGG0196J, IGG0191F, IGG0191H,
IGG0191J & IGG0196L, IGG0191K, IGG01910, and IGG01990.

C. Update Channel Programs
Module IGG0191P

D. Chained Scheduling Channel Programs
Modules IGG0191K and IGG0191R.

E. BSAM (BDAM Create) Channel Programs
Modules IGG0191M, IGG0199L, and IGG0199M

F. ABEND Codes Cross-Reference Table

Section 6: Appendixes 213

Appendix A: Code Conversion Routines

Get routine IGG019AT (paper tape) and Write routine IGG019BF (paper tape) use
the tables in the following modules to convert characters read from paper tape to
EBCDIC characters.

Code Conversion Module IGG019CM

This module is loaded by the Open executor if the DCB specifies paper tape, and code
conversion for teletype transmission code.

The module consists of three tables:

• A validity-checking and special functions table

• A lowercase character translation table

An uppercase character translation table

Code Conversion Module IGG019CN

This module is loaded by the Open executor if the DCB specifies paper tape, and code
conversion for ASCII paper tape code.

The module consists of two tables:

• A validity-checking and special functions table

A character translation table

Code Conversion Module IGG019CO

This module is loaded by the Open executor if the DCB specifies paper tape and code
conversion for Burroughs paper tape code.

The module consists of two tables:

A validity-checking and special functions table

A character translation table

Code Conversion Module IGG019CP

This module is loaded by the Open executor if the DCB specifies paper tape and type
and code conversion for Friden paper tape code.

The module consists of three tables:

• A validity-checking and special functions table

• A lowercase character translation table

An uppercase character translation table

Section 6: Appendixes 215

Code Conversion Module IGG019CQ

This module is loaded by the Open executor if the DCB specifies paper tape and code
conversion for IBM PTTC/8 code.

The module consists of three tables:

A validity-checking and special functions table

A lowercase character translation table

• An uppercase character translation table

Code Conversion Module IGG019CR

This module is loaded by the Open executor if the DCB specifies paper tape and code
conversion for NCR paper tape code.

The module consists of three tables:

A validity-checking and special functions table

A lowercase character translation table

• An uppercase character translation table

Translate Routine IGGOO 1 OC

216 OS SAM Logic

This routine is a type 2 SVC routine if made resident at system generation or a type 3
SVC routine if it is transient that translates data from EBCDIC to ASCII on output
and ASCII to EBCDIC on input. It is entered when an XLATE macro instruction
(SVC 103) is issued.

The routine must be given the following parameters:

• Register 0 = Length of area to be translated

Register 1

Byte 0 - bit 0 = 0: Translate from ASCII to EBCDIC

bit 0 = 1: Translate from EBCDIC to ASCII

bits 1-7: Not used

Byte 1-3: Address of area that contains record to be translated.

Appendix B: BSAM/QSAM Channel Programs

CHANNEL PROGRAM FOR OUTPUT,
SIMPLE BUFFERING (lGG0191D)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 WRTCKD
CCW4

(WRITE CHECK)
CCW5 SCH ID EO
CCW6 TIC
CCW7 READ KD
CCW8 CCHHRKDD 1

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4
CCW5
CCW6

CCW7
CCW8
CCW9
CCW10
CCW11

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip

SET SECTOR
SCH ID EO
TIC
WRTCKD

RD SECTOR

(WRITE CHECK)
SET SECTOR
SCH ID EO
TIC
RD KD
CCHHRKDD3

1. If there is no write check, CCHHRKDD will be in CCW5.
2. For OSAM only.
3. If there is no write check, CCHHRKDD will be in CCW7.
4. For write-check only.

ADDRESS

IOBSEEK+3
*-8

CCW8 1

DCBBUFCB2

CCW8
*-8

SECTOR 1
IOBSEEK+3
*-8
CCW11 3

DCB BUFCB 2

SECTOR2

SECTOR2
CCW11
*-8

FLAGS COUNT

C 5

DS 8
c4s DCBBLKSI 2

C 5

K

C 1
C 5

DS 8
DS DCBBLKSI 2
C4 1

C 1
C 5

K

Section 6: Appendixes 217

CHANNEL PROGRAM FOR INPUT, EXCHANGE BUFFERING,
STANDARD FORMAT-F (lGG0191E and IGG0196J)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 MIT RD DATA

CCW3 IVI/T RD DATA

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4

CCW4

CCW5
CCW6

FLAGS

D = Data Chain
C = Command Chain
S = SI LI
K = Skip

SET SECTOR
SCH ID EO
TIC
MIT RD DATA

MIT RD DATA

MIT RD CNT
RD SECTOR

1. Number of CCWs = Blocking factor.

218 OS SAM Logic

ADDRESS FLAGS

IOBSEEK+3 C
*-8
BUFFER D

BUFFER+
(N-1)DCBPRECL

SECTOR1 C
IOBSEEK+3 C
*-8
BUFFER D

BUFFER+ C
(N-1)DCBPRECL

CK
SECTOR2

COUNT

5

LRECL 1

LRECL

1
5

LRECL 1

LRECL

8
1

CHANNEL PROGRAM FOR EXCHANGE BUFFERING, NOT
STANDARD FORMAT-F, INPUT (lGG0191E and IGG0196J)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH 10 EO
CCW2 TIC
CCW3 TIC
CCW43 MIT RD CNT
CCW5 MIT RD DATA

CCW5 MIT RD DATA

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4
CCW54

CCW6

CCW6

CCW7
CCW8

FLAGS

o = Data Chain
C = Command Chain
S = Sill
K = Skip

SET SECTOR
SCH ID EO
TIC
TIC
MIT RD CNT
MIT RD DATA

MIT RD DATA

RD SECTOR
CCHHRKDD

1. If there is only one lOB, store address of DCBFDAD+3.
2. Number of CCWs = Blocking factor.

ADDRESS

IOBSEEK+3
*-8
*+8
NEXT IOBSEEK+3 1

BUFFER

BUFFER+
(N-1)DCBPRECL

SECTOR1
IOBSEEK+3
*-8
*+8
CCW8
BUFFER

BUFFER+
(N-1)DCBPRECL
SECTOR2

3. If there is a search-direct, CCW4 and CCW5 are interchanged.
4. If there is a search-direct, CCW5 and CCW6 are interchanged.

FLAGS

C

CS
OS

S

C
C

C
OS

S

COUNT

5

5
LRECL 2

LRECL

1
5

8
LRECL

LRECL

1

Section 6: Appendixes 219

CHANNEL PROGRAM FOR OUTPUT, EXCHANGE,:
BUFFERING (IGG0191F) .

CCW# COMMAND CODE ADDRESS FLAGS COUNT

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 WRTCKD
CCW4' 01

CCW4 01

(WRITE CHECK)
CCW5 SCH ID EO
CCW6 TIC
CCW7 MIT RD DATA
CCW8 CCHHRKDD2

WITH ROTATIONAL POSITION SENSING

CCW1 SET SECTOR
CCW2 SCH ID EO
CCW3 TIC
CCW4 WRTCKD
CCW5 1

CCW5

CCW6

CCW7
CCW8
CCW9
CCW10
CCW11

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip

01

01

RDSECTOR

(WRITE CHECK)
SET SECTOR
SCH ID EO
TIC
MIT RD DATA
CCHHRKDD 3

IOBSEEK+3
*-8
CCW8
BUFFER

BUFFER+
(N-1)LRECL

CCW8
*-8

SECTOR1
IOBSEEK+3
*-8
CCW11
BUFFER

BUFFER+
(N-1)LRECL
SECTOR2

SECTOR2
CCW11
*-8

1. The number of CCWs is proportionate to the blocking factor.

C

DS
DS

C2S

C

K

C
C

DS
DS

CS'

C3

C
C

K

2. If there is no write-check. CCHHRKDD will be in CCW5. and the command chain bit in CCW4 will be off.
3. If there is no write-check. CCHHRKDD will be in CCW7. and the command chain bit in CCW6 will be off.

220 OS SAM Logic

5

8
LRECL

LRECL

5

BUFL

1
5

8
LRECL

LRECL

1

1
5

BUFL

!

CHANGE PROGRAM FOR TRACK-OVERFLOW, INPUT,
NON-FORMAT-U (lGG0191H)

CCW# COMMAND CODE ADDRESS FLAGS

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH 10 EO
CCW2 TIC
CCW3 RD DATA
CCW4 RDCNT
CCW5 RD DATA2

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4
CCW5
CCW6
CCW7

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K =Skip

SET SECTOR
SCH ID EO
TIC
RD DATA
RDCNT
RD DATA
RDSECTOR

IOBSEEK+3
*-8

DCBFDAD+3'
BUFAD3

SECTOR1
IOBSEEK+3
*-8

DCBFDAD+3'
BUFAD3

SECTOR2

1. If there is more than one lOB, then address is IOBSEEK+3 of next lOB.
2. If keys are specified, READ KD.
3. For OSAM only.
4. Sill bit is on for format·V records.

Note: Format-U with track-overflow is not supported by RPS.

C

CSK
CS
S4

C
C

CSK
C
CS

COUNT

5

7
5

1
5

7
5

1

Section 6: Appendixes 221

CHANNEL PROGRAM FOR OUTPUT, TRACK-OVERFLOW,
NON-FORMAT-U (lGG0191H)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3

CCW4

CCW5 4

CCW6

CCW3
CCW4

CCW7
CCW8

CCW9
CCW10

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip

SCH ID EO
TIC
WRT S CKD 1

null

MIT SCH I D E05

TIC

(WRITE CHECK)
SEEK CYL
SCH ID EO

TIC
RD KD

1. Op code is WRT CKD for the last record segment.

ADDRESS FLAGS

IOBSEEK+3 C
*-8 TIC
A COUNT AT D
END OF C. P.
DATAADDR C2

SRCH ADDR AT C
END OF C. P.
*-8 0

IOBSEEK+1 C
ADDR OF FIRST C
SEG COUNT FLD
*-8

0 K

2. Chaining is turned off in this CCW of the last segment if no validity checking is specified.
3. The key is written on the first record segment only.
4. CCWs 5 and 6 are required if more than one segment is to be written. Each segment but the

first is written by CCWs 5, 6, 3, 4, in that order.
5. CCW5 op code and address may be overlaid with the parasitic TIC from CCW2 if not all the

channel program segments are needed, but validity-checking is specified.

222 OS SAM Logic

COUNT

5
ADDR CCW7
8

KEY+SEGMENT
DATA LNTH3

5

SRCH ADDR
IN CCW5

6
5

CHANNEL PROGRAM FOR TRACK-OVERFLOW, OUTPUT,
NON-FORMAT-U (lGG0191H)

CCW# COMMAND CODE ADDRESS FLAGS

WITH ROTATIONAL POSITION SENSING

CCW1 SET SECTOR
CCW2 SCH 10 EO
CCW3 TIC
CCW4 WRTSCKD'

CCW5 null

CCW64 MIT SCH I D E05

CCW7 TIC

CCW4
CCW5
CCW8 RD SECTOR

(WRITE CHECK)
CCW9 SEEK CYL
CCW10 SET SECTOR
CCW11 SCH 10 EO

CCW12 TIC
CCW13 RD KD

FLAGS

o = Data Chain
C = Command Chain
S = Sill
K = Skip

1. The op code is WRT CKD for the last record segment.

SECTOR1
IOBSEEK+3
*-8
COUNT AT
END OF C. P.
DATAADDR

SRCH ADDR AT
END OF C. P.
*-8

SECTOR2

IOBSEEK+1
SECTOR2
ADDR FRST
SEG CNT
*-8
0

2. Chaining is turned off in this CCW of the last segment if no validity checking is specified.
3. The key is written on the first record segment only.
4. CCWs 6 alJd 7 are required if more than one segment is to be written.

Each segment but the first is written by CCWs 6, 7,4, and 5. The last segment is
followed by the parasitic TIC to CCW8 if not all the channel program segments are used.

5. CCW6 op code and address may be overlaid with the parasitic TIC from CCW3 if not
all the channel program segments are needed.

C
C
TIC
D

C

C

0

C2

C
C
C

K

COUNT

1
5
ADDR CCW8
8

KEY+SEG
DATA LNTH 3

5

ADDR OF SRCH
ARG IN CCW5

1

6
1
5

Section 6: Appendixes 223

I CHANNEL PROGRAM FOR INOUT, OUTIN
(lGG0191J and IGG0196L) .

CCW# COMMAND CODE ADDRESS

WITHOUT ROTATIONAL POSITION SENSING

CCWl SCH ID EO IOBSEEK+3
CCW2 TIC *-8
CCW3 MIT RD DATA
CCW4 MIT RO CNT NEXT IOBSEEK+3 1

CCW5 MIT RO K02

CCW6 SCH 10 EO IOBSEEK+3
CCW7 TIC *-8
CCW8 WRTCKD CCW13
CCW9 00

(WRITE CHECK)
CCW10 SCH 10 EO CCW13
CCWll TIC *-8
CCW12 MIT RO KD
CCW13 additional search argument

CCW# COMMAND CODE ADDRESS

WITHOUT ROTATIONAL POSITION SENSING AND WITH SEARCH·DIRECT

CCWl
CCW2
CCW3
CCW4
CCW5
CCW6
CCW7
CCW8
CCW9
CCW10
CCWll
CCW12
CCW13
CCW14
CCW15

FLAGS

o = Data Chain
C = Common Chain
S = Sill
K =Skip

SCH ID EO
TIC
TIC
MIT RO KD2
MIT RO CNT
00
00
SCH ID EO
TIC
WRTCKO
00
00
SCH 10 EO
TIC
MIT RO KO

1. If there is only one lOB, the address is the DCBFOAD+3.
2. Read both key and data only if key is specified.
3. Sill bit is on for format-U and format-V records.

IOBSEEK+3
*-8
*+8

*-8

CCW13
*-8

224 OS SAM Logic

FLAGS COUNT

C 5

CSK 1
CS 5
S3

C 5

OS 8
S

C 5

SK

FLAGS COUNT

C 5

CS
C

C

C 5

SK

CHANNEL PROGRAM FOR INOUT, OUTIN
(lGG0191J and IGG0196L)

CCW# COMMAND CODE ADDRESS

WITH ROTATIONAL POSITION SENSING

CCWl SET SECTOR SECTORl
CCW2 SCH ID EO IOBSEEK+2
CCW3 TIC *-8
CCW4 MIT RD DATA
CCW5 MIT RD CNT CCW19
CCW6 MIT RD KD'
CCW7 RD SECTOR SECTOR2
CCW8 SET SECTOR SECTOR1
CCW9 SCH ID EO IOBSEEK+3
CCW10 TIC *-8

CCW11 WRTCKD CCW18
CCW12 00
CCW13 RD SECTOR SECTOR2

(WRITE CHECK)

CCW14 SET SECTOR SECTOR2
CCW15 SCH ID EO CCW18
CCW16 TIC *-8
CCW17 MIT RD KD
CCW18 additional search argument
CCW19 additional search argument

CCW# COMMAND CODE ADDRESS

WITH ROTATIONAL POSITION SENSING AND WITH SEARCH-DIRECT

CCW1 SET SECTOR
CCW2 SCH ID EO
CCW3 TIC
CCW4 TIC
CCW5 MIT RD KD'
CCW6 MIT RD CNT
CCW7 RD SECTOR
CCW8 SET SECTOR
CCW9 SCH ID EO
CCW10 TIC
CCW11 WRT CKD
CCW12 00
CCW13 RD SECTOR

(WRITE CHECK)
CCW14 SET SECTOR
CCW15 SCH ID EO
CCW16 TIC
CCW17 MIT RD KD
CCW18 additional search argument
CCW19 additional search argument

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip

1. Read both key and data only if key is specified.

SECTOR 1
IOBSEEK+3
*-8
* +8

CCW19
SECTOR2
SECTOR 1
IOBSEEK+3
*-8
CCW18

SECTOR2

SECTOR2
CCW18
*-8

FLAGS COUNT

C 1
C 5

CSK 1
C 8
CS

1
C 1
C 5

DS 8
CS
C 1

C 1
C 5

SK

FLAGS COUNT

C 1
C 5

CS

C 8
1

C 1
C 5

DS 8
CS
C 1

C 1
C 5

SK

Section 6: Appendixes 225

CHANNEL PROGRAM FOR PCI, DIRECT-ACCESS OUTPUT
WITH WRITE-CHECK (lGG0191K)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 MIT SCH ID EO
CCW2 TIC
CCW3 WRT CKD
CCW4 00
CCW5 SCH ID EO
CCW6 TIC
CCW7 MIT RD DATA 1

CCW8 NOP

CCW9 CCHHRKDD

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4
CCW5
CCW6
CCW7
CCW8
CCW9
CCW10
CCW11
CCW12

CCW13

FLAGS

D = Data Chain
C = Command Chain
S = Sill

K = Skip
P = PCI

SET SECTOR
READ HA
MIT SCH ID EO
TIC
WRTCKD
00
READ SECTOR
SET SECTOR
SCH ID EO
TIC
MIT READ DATA 1

NOP

CCHHRKDD

1. If keys are specified, READ KD.

226 OS SAM Logic

ADDRESS FLAGS

ICBSEEK+3 C
*-8
CCW9 DSP
BUFFER CS
CCW9 C
*-8

CK
CCW1 or 3 in S
NEXTICB

SECTOR = 0 C
CK

ICBSEEK+3 C
* -8
CCW13 DSP
BUFFER CS
SECTOR 2 C
SECTOR 2 C
CCW13 C
* -8

CK
CCW 1 or 5 in S
NEXTICB

COUNT

5

8
BUF LENGTH
5

1
1

1
5
5

8
BUF LENGTH
1
1
5

1
1

I

CHANNEL PROGRAM FOR STANDARD FORMAT-F INPUT,
SIMPLE BUFFERING (lGG01910)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 READ KD 1

WITH ROTATIONAL POSITION SENSING

CCW1 SET S
CCW2 SCH ID EO
CCW3 TIC
CCW4 READ KD1
CCW5 MIT READ CNT
CCW6 READ S

FLAGS

D = Data Chain
C = Command Chain
S = SI LI
K = Skip

1. If key is not specified, read data only.
2. For OSAM only.

ADDRESS FLAGS

IOBSEEK+3 C
*-8
DCBBUFCB2

SECTOR 1 C
IOBSEEK+3 C
*-8
DCBBUFCB 2 C

CSK
SECTOR 2

COUNT

5

DCBBLKSI 2

1
5

DCBBLKSI 2

1
1

Section 6: Appendixes 227

CHANNEL PROGRAM FOR NOT-STANDARD FORMAT-F
SIMPLE BUFFERING, INPUT (lGG01910)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 TIC
CCW4 RD COUNT
CCW5 RD KD3

WITH ROTATIONAL POSITION SENSING

CCW1 SET SECTOR
CCW2 SCH ID EO
CCW3 TIC
CCW4 TIC
CCW5 RD COUNT
CCW6 RD KD3
CCW7 RD SECTOR
CCW8 CCHHRKDD

D = Data Chain
C = Command Chain
S = Sill
K = Skip

1. For OSAM only.
2. If there is one lOB, then address is DCBFDAD+3.
3. If the data set has no keys, then the op code is RD D.

228 OS SAM Logic

ADDRESS FLAGS

IOBSEEK+3 C
*-8
*+8 CSK
NEXT IOBSEEK+32 CS
DCB BUFCB1 S

SECTOR 1 C
IOBSEEK+3 C
*-8
*+8 CSK
CCW8 C
DCBBUFCB' CS
SECTOR2

COUNT

5

5
DCBBLKSI'

1
5

8
DCBBLKSI'

CHANNEL PROGRAM FOR NOT-STANDARD FORMAT-F, SIMPLE
BUFFERING, INPUT, SEARCH-DIRECT (lGG01990)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EOU
CCW2 TIC
CCW3 TIC1

CCW4 MIT RD D2 ,3

CCW5 M/TCNT
CCW6 CCHHRKLDLDL
CCW7 CCHHRKLDLD L

WITH ROTATIONAL POSITION SENSING

CCW1 SET SECTOR
CCW2 SCH ID EOU
CCW3 TIC
CCW4 TIC1

CCW5 MIT RD D2 ,3

CCW6 MIT RD CNT
CCW7 READ SECTOR
CCW8 CCHHRKLDLDL
CCW9 CCHHRKL DL DL 1

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K =Skip
P= PCI

ADDRESS FLAGS

IOBSEEK+3 C
*-8
*+81 C

C
*+8

SECTOR 1 CS
IOBSEEK+3 C
*-8

*+81 C
BUFFER CS
*+16 C
SECTOR2

1. For a search on record 0, this CCW is changed to an MIT RD CNT and its address field is CCW7.
2. If keys are present, the op code is RD KD and count is KL + DL.
3. For exchange buffering, there will be as many RD D CCWs as the blocking factor.

COUNT

5

8

DL

1
5

DL
8
1

Section 6: Appendixes 229

Appendix C: Update Channel Programs

CHANNEL PROGRAM FOR DIRECT ACCESS, UPDATE,
NO TRACK OVERFLOW (IGG0191P)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 WRT DATA 1

(WRITE CHECK)8
CCW4 SEEK CYL
CCW5 SCH ID EO
CCW6 TIC
CCW7 RD DATA4
CCW8 SEEK CYL 6

CCW9
CCW10
CCW11
CCW12
CCW13
CCW14

FLAGS

o = Data Chain
C = Command Chain
S = Sill
K = Skip

SCH 10 EO
TIC
TIC
RD COUNT
RD DATA4
MBBCCHHR

1. If key is specified, WRT KD.
2. For OSAM only.
3. Sill bit is on for format-U or format-V records.
4. If key is specified, READ KD.
5. Command chain off for BSAM.
6. CCW8 is present for OSAM only.

ADDRESS

IOBSEEK+3
*-8
BUFFER 2

IOBSEEK+1
IOBSEEK+3
*-8

CCW 14+1
CCW 14+3
*-8
*+8
NEXT CCW 147
BUFFER 2

7. If there is only one lOB, the address field is DCBFDAD+3.
8. CCWs 4-7 are present for write-check.

FLAGS

C

Cs 3

C
C

C5S3K
C
C

CS
S3

COUNT

5

DCBBLKSI 2

6
5

DCBBLKSI 2

6
5

5
DCBBLKSI 2

Section 6: Appendixes 231

CHANNEL PROGRAM FOR DIRECT-ACCESS UPDATE,
NO TRACK-OVERFLOW (lGG0191P)

CCW# COMMAND CODE

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4

CCW5
CCW6
CCW7
CCW8
CCW9
CCW10
CCW11
CCW12
CCW13
CCW14
CCW15
CCW16
CCW17
CCW18
CCW19

FLAGS

o = Data Chain
C = Command Chain
S = Sill
K = Skip

SET SECTOR
SCH 10 EO
TIC
WRT DATA 1

(WRITE CHECKl8
SEEK CYL
SET SECTOR
SCH 10 EO
TIC
RD DATA3

SEEK CYL 5

SET SECTOR
SCH ID EQ
TIC
TIC
RD COUNT
RD DATA
RD SECTOR
MBBCCHHR
CCHHRKDD

1. If key is specified, WRT KD.
2. For OSAM only.
3. If key is specified, READ KD.
4. Command chain is off for BSAM.
5. CCW lOis present for OSAM only.

ADDRESS

SECTOR A
IOBSEEK+3
*-8
BUFFER

IOBSEEK+1
SECTOR A
IOBSEEK+3
*-8

CCW18+1
SECTOR 1
CCW18+3
*-8
*+8
CCW196

BUFFER 2

SECTOR2

6. If there is only one lOB, the address field is DCBFDAD+3.
7. Command chain is off for BSAM if write-check is not specified.
8. CCWs 5-9 are present for write-check.

232 OS SAM Logic

FLAGS

C
C

C7S

C
C
C

C4SK

C
C
C

C
CS

COUNT

1
5

DCBBLKSI 2

6
1
5

DCBBLKSI 2

6
1
5

8
DCBBLKSI 2

1

CHANNEL PROGRAM FOR DIRECT-ACCESS UPDATE,
TRACK-OVERFLOW (lGG0191P)

CCW # COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 WRT DATA 1

(WRITE CHECK)8
CCW4 SEEK CYL
CCW5
CCW6
CCW7
CCW8
CCW9
CCW10
CCW11

CCW12
CCW13
CCW14

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip

SCH ID EO
TIC
RD DATA4
SEEK CYL 6

SCH ID EO
TIC
RD DATA

RD COUNT
RD DATA4
MBBCCHHR

L If key is specified, WRT KD.
2. For OSAM only.
3. Sill bit is on for format-U and format-V records.
4. I f key is specified, READ KD_
5. Command chain is off for BSAM.
6. CCW8 is present for OSAM only.

ADDRESS

IOBSEEK+3
*-8
BUFFER2

IOBSEEK+1
IOBSEEK+3
*-8

CCW14+1
CCW14+3
*-8

NEXT CCW14 7

BUFFER2

7_ If there is only one lOB, the address field is DCBFDAD+3.
8. CCWs 4-7 are present for write-check.

FLAGS

C

CS 3

C
C

C5S3K
C
C

CSK

CS
S3

COUNT

5

DCBBLKSI 2

6
5

DCBBLKSI2

6
5

50 (non-zero
length)
5
DCBBLKSI 2

Section 6: Appendixes 233

CHANNEL PROGRAM FOR DIRECT-ACCESS UPDATE,
TRACK-OVERFLOW (IGG0191P)

CCW# COMMAND CODE

WITH ROTATIONAL POSITION SENSING

CCWl
CCW2
CCW3
CCW4

CCW5
CCW6
CCW7
CCW8
CCW9
CCW10
CCWll
CCW12
CCW13
CCW14

CCW15
CCW16
CCW17
CCW18

D = Data Chain
C = Command Chain
S = Sill
K = Skip

SET SECTOR
SCH ID EO
TIC
WRT DATA 1

(WRITE CHECK)7
SEEK CYL
SET SECTOR
SCH ID EO
TIC
RD DATA3
SEEK CYL5
SET SECTOR
SCH ID EO
TIC
RD DATA

RD COUNT
RD DATA
RD SECTOR
MBBCCHHR

1. If key is specified, WRT KD.
2. For OSAM only.
3. If key is specified, READ KD.
4. Command chain is off for BSAM.
5. CCW10 is present for OSAM only.

ADDRESS

SECTOR A
IOBSEEK+3
*-8
BUFFER

IOBSEEK+l
SECTOR A
IOBSEEK+3
*-8

CCW18+1
SECTORl
CCW18+3
*-8

NEXT CCW18
BUFFER2

SECTOR2

6. Command chain is off for BSAM if write-check is not specified.
7. CCWs 5-9 are present for write-check.

234 OS SAM Logic

FLAGS

C
C

C6S

C
C
C

C4SK
C
C
C

CSK

CS
CS

COUNT

1
5

DCBBLKSI 2

6
1
5

DCBBLKSI2
6
1
5

50 (nonzero
length)
5
DCBBLKSI 2

1

Appendix D: Chained Scheduling Channel Programs

CHANNEL PROGRAM FOR MAIN lOB, PCI (lGG0191K)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH 10 EO
CCW2 TIC
CCW3 TIC

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip
P = PCI

SET SECTOR
SCH 10 EO
TIC
TIC

1. TIC goes to the first ICB channel program in the chain.

ADDRESS FLAGS COUNT

IOBSEEK+3 C 5
*-8
ICB CH PGM 1

SECTOR1 C 1
IOBSEEK+3 C 5
*-8
ICB CH PGM 1

Section 6: Appendixes 235

CHANNEL PROGRAM FOR PCI, INPUT, DIRECT ACCESS (lGG0191K)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCWl MIT RD COUNT
CCW2 MIT RD DATA 1

CCW3 NOP

WITH ROTATIONAL POSITION SENSING

CCWl
CCW2
CCW3
CCW4

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip
P = PCI

MIT RD COUNT
MIT RD DATA 1

TIC (HEX'88')
RD SECTOR

1. I f keys are specified, the command code is READ KD.
2. SI LI bit is on for format-U and format-V records.
3. Appendage may change to CCW1 in the next ICB.

236 as SAM Logic

ADDRESS FLAGS COUNT

NEXT ICBSEEK+3 CSP 5
BUFFER CS2 BUF LENGTH
CCWl IN NEXT ICB S 1

NEXT ICBSEEK+3 CP 8
BUFFER CS BUF LENGTH
*+8 3 S
SECTOR 2 1

CHANNEL PROGRAM FOR PCI, DIRECT ACCESS, OUTPUT,
NO WRITE-CHECK (lGG0191K)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 MITSCH ID EO
CCW2 TIC
CCW3 WRTCKD
CCW4 00
CCW5 NOP

CCW6 CCHHRKDD

WITH ROTATIONAL POSITION SENSING

CCWl SET SECTOR
CCW2 MIT SCH ID EO
CCW3 TIC
CCW4 WRTCKD
CCW5 00
CCW6 TIC (X'SS')

CCW7 RD SECTOR
CCWS CCHHRKDD

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip
P = PCI

1. Appendage may change to CCW1 or 4 in the next ICB.

ADDRESS FLAGS

ICBSEEK+3 C
*-s
CCW6 DSP
BUFFER CS
CCW1 or 3 in S
NEXTICB

SECTOR =0 C
ICBSEEK+3 C
*-s
CCWS DSP
BUFFER CS
* +S1 S

SECTOR 2

COUNT

5

S
BUF LENGTH
1

1
5

S
BUF LENGTH

1

Section 6: Appendixes 237

CHANNEL PROGRAM FOR PCI, INOUT, OUTlN, ICB,
WITHOUT WRITE-CHECK (lGG0191R)

CCW# COMMAND CODE

WITH RECORD READY

CCW1
CCW2
CCW3
CCW4
CCW5
CCW6
CCW7
CCW8
CCW9

CCW10
CCW11

FLAGS

D ~ Data Chain
C ~ Command Chain
S ~ Sill
K ~ Skip
P ~ PCI

MIT RD CNT
MIT RD DATA
TIC (X'88')
READ SECTOR
MIT SCH ID EQ
TIC
WRT CKD

TIC ('88')

READ SECTOR
CCHHRKDD

1. Sill bit is on for format·U and format·V records.
2. Appendage may change to the next ICB CCW.

238 as SAM Logic

ADDRESS FLAGS

NEXT ICBSEEK+3 CSP
CS 1

* +82 S
SECTOR2
ICBSEEK+3 CS
*-8
CCW11 DSP

CS
* +82 S

SECTOR2

COtJNT

5

1
5

8

1

CHANNEL PROGRAM FOR PCI, INOUT, OUTIN, ICB
WITH WRITE-CHECK (lGG0191R)

CCW# COMMAND CODE ADDRESS FLAGS

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4
CCW5
CCW6
CCW7
CCWS
CCW9
CCW10
CCW11
CCW12
CCW13
CCW14
CCW15

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip
P = PCI

MIT RD CNT
MIT RD DATA
TIC ('SS')
READ SECTOR
MIT SCH ID EO
TIC
WRT CKD

READ SECTOR
SET SECTOR
SCH ID EO
TIC
MIT RD DATA
NOP
CCHHRKDD

1. Appendage may change to next ICB CCW.

NEXT ICBSEEK+3 CSP

CS
* +S1 S
SECTOR2
ICBSEEK+3 CS
*-S
CCW15 DSP

CS
SECTOR2 C
SECTOR2 C
CCW15 CS
*-S

CSK

NEXT ICB CCW7 S

COUNT

5

1
5

S

1
1
5

1

Section 6: Appendixes 239

CHANNEL PROGRAM FOR PCI, INOUT, OUTIN, ICB (lGG0191R)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4
CCW5
CCW6
CCW7

CCW8
CCW9
CCW10
CCW11
CCW12

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K = Skip
P = PCI

MIT RD CNT
MIT RD DATA
NOP
MITSCH ID EO
TIC
WRTCKD

(WRITE CHECK 2)
SCH ID EO
TIC
MIT RD DATA
NOP
CCHHRKDD

1. SI LI bit is on for format-U and format-V records.

ADDRESS FLAGS

NEXT ICBSEEK+3 CSP
CS 1

NEXT ICB CCW2 S
ICBSEEK+3 CS
*-8
CCW12 DSP

CS

CCW12 CS
*-8

CSK
NEXT ICB CCW6 S

2. If there is no request for a write-check, CCWs 8-10 are omitted and CCW7 has no command chaining.

240 OS SAM Logic

COUNT

5
1

5

8

5

1

CHANNEL PROGRAM FOR PCI, MAIN JOB, INOUT, OUTIN (IGG0191R)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH ID EO
CCW2 TIC
CCW3 TIC

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3,
CCW4

FLAGS

D = Data Chain
C = Command Chain
S = Sill
K =Skip
P = PCI

SET SECTOR
SCH 10 EO
TIC
TIC

1. TIC goes to the first ICB channel program in the chain.

ADDRESS FLAGS COUNT

IOBSEEK+3 C 5
*-8
ICB CH PGM 1

SECTOR1 C 1
IOBSEEK+3 C 5
*-8
ICB CH PGM 1

Section 6: Appendixes 241

Appendix E: BSAM (BDAM Create) Channel Programs

CHANNEL PROGRAM FOR ERASE CCWs FOR BSAM LOAD MODE,
TRACK-OVERFLOW (lGG0191M)

CCW# COMMAND CODE ADDRESS FLAGS COUNT

WITHOUT ROTATIONAL POSITION SENSING

CCW1 1 SCH ID EO CCW10 C 5
CCW2 TIC *-8

CCW3 WRT DATA CCW10 cs 7
CCW4 SCH ID EO CCW10 C 5
CCW5 TiC *-8

CCW6 RD DATA CSK 8
CCW7 ERASE CCW7 CS 8
CCW8 MIT RD HA C 5

CCW9 TIC CCW1

CCW10 RO ADDR = CCHHOOOO

WITH ROTATIONAL POSITION SENSING

CCW1 1 SET SECTOR SECTOR = 0 C 1

CCW2 SRCH 10 EO CCW13 C 5

CCW3 TIC *-8
CCW4 WRTDATA CCW13 CS 7

CCW5 SET SECTOR SECTOR = 0 C 1

CCW6 SCH ID EO CCW13 C 5

CCW7 TIC *-8
CCW8 RD DATA CSK 8

CCW9 ERASE CCW9 CS 8

CCW10 SET SECTOR SECTOR = 0 C 1

CCW11 MIT RD HA C 5

CCW12 TIC CCW1
CCW13 RO ADDR CCHHOOOO

FLAGS --
D = Data Chain
C = Command Chain
S = Sill
K =Skip

1. Address of CCW 1 is stored in DCBEOBW

Section 6: Appendixes 243

CHANNEL PROGRAM FOR BSAM LOAD MODE ,
TRACK-OVERFLOW (lGG0191M)

CCW# COMMAND CODE ADDRESS FLAGS COUNT

WITHOUT ROTATIONAL POSITION SENSING

CCW1 SCH 10 EO IOBSEEK+3 C 5
CCW2 TIC * -8
CCW3 WRTCKD IOBDNRCF (1) D 8
CCW4
CCW51 TIC/NOP2 CCW20 CS CCW20
CCW6 SCHIDEO IOBROCNT (1) C 5
CCW7 TIC *-8
CCW8 WRT DATA IOBRODAT (1) C 8
CCW91 READ RO SK 16
CCW103 M/T SCH ID EO IOBROCNT (2) C 5
CCW11 TIC *-8
CCW12 WRTCKO IOBDNRCF (2) 0 8
CCW13
CCW141 TIC/NOP2 CCW19 CS CCW19
CCW15 SCH 10 EO IOBROCNT (2) C 5
CCW16 TIC *-8
CCW17 WRT DATA IOBRODAT (2) C 8
CCW181 READ RO SK 16

(WRITE CHECK)
CCW19 SEEK CYL IOBSEEK+1 C 6
CCW20 SCH 10 EO IOBDNRCF (1) C 5
CCW21 TIC *-8
CCW22 RD KO SK KL+D L

FLAGS --
D = Data Chain
C = Command Chain
S = Sill
K = Skip

1. CCWs 5, 9,14, and 18 are omitted if verify is not specified.
2. The TiC/NOP at CCW5 and CCW 14 is set to NOP if RO is to be written on this track.
3. CCWs 10·18 are repeated as many times as are needed to write all segments.

244 OS SAM Logic

CHANNEL PROGRAM FOR CREATE BDAM (lGG0199L)

CCW# COMMAND CODE

WITHOUT ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4

CCW5
CCW6
CCW7
CCW8
CCW9
CCW10
CCW11
CCW12
CCW13
CCW14

FLAGS

o = Data Chain
C = Command Chain
S = Sill
K = Skip

SCH 10 EO
TIC
WRTCKD
WRTCKD
(WRITE CHECK)1
SCH 10 EO
TIC
RD KD
SCH 10 EO
TIC
WRT DATA
SCH 10 E02

TIC
RD DATA
ERASE3

1. CCWs 5·7 are omitted if write-check is not specified.

ADDRESS

IOBSEEK+3
*-8
IOBDNRCF

IOBDNRCF
*-8

IOBROCNT
*-8
IOBRODAT
IOBROCNT
*-8

*

2. CCWs 11-13 are always generated for format-U and format-V records, or if write check

is specified.
3. CCW14 is generated for format-U and format-V records only.

FLAGS

C

0
C

C

CSK
C

C
C

CSK
S

COUNT

5

B
K1+BLKSIZE

5

256
5

8
5

1
8

Section 6: Appendixes 245

CHANNEL PROGRAM FOR CREATE BDAM (lGG0199L)

CCW# COMMAND CODE ADDRESS FLAGS COUNT

WITH ROTATIONAL POSITION SENSING

CCW1 SET SECTOR SECTOR 1 C 1
CCW2 SCH ID EO IOBSEEK+3 C 5
CCW3 TIC * -8

CCW4 WRTCKD IOBDNRCF 0 8
CCW5 WRT CKD C KL +BLKSIZE
CCW6 RD SECTOR SECTOR2 C 1

(WRITE CHECK)'
CCW7 SET SECTOR SECTOR2 C 1
CCW8 SCH 10 EO IOBDNRCF C 5
CCW9 TIC *-8
CCW10 RD KD CSK 256
CCW11 SET SECTOR SECTOR = 0 C 1
CCW12 SCH ID EO IOBROCNT C 5
CCW13 TIC *-8
CCW14 WRT DATA IOBRODAT C 8
CCW15 SET SECTOR 3 SECTOR2 C 1
CCW16 SCH ID EO IOBROCNT C 5
CCW17 TIC *-8
CCW18 RD DATA CSK 1
CCW19 ERASE2 * S 8

FLAGS --
D = Data Chain
C = Command Chain
S = Sill
K = Skip

1. CCWs 7-10 are om itted if write-check is not specified.
2. CCW19 is generated for format-U and format-V records only.
3. CCWs 15-18 are always generated for format-V and format-U records or if write-check

is specified.

246 OS SAM Logic

CHANNEL PROGRAM FOR BSAM LOAD MODE,
TRACK OVERFLOW (lGG0199M)

CCW# COMMAND CODE ADDRESS FLAGS

WITH ROTATIONAL POSITION SENSING

CCW1
CCW2
CCW3
CCW4
CCW5
CCW61

CCW7
CCW8
CCW9
CCW10
CCW11
CCW12
CCW13
CCW14
CCW15
CCW16
ccw1i
CCW18
CCW19
CCW20
CCW21
CCW22
CCW23
CCW24
CCW25
CCW26
CCW27
CCW28
CCW29

FLAGS

o = Data Chain
C = Command Chain
S = Sill
K =Skip

SET SECTOR
SCH 10 EQ
TIC
WRTCKD
00
TIC/NOP2

SET SECTOR
SCH 10 EO
TIC
WRT DATA
SET SECTOR
READ RO
MIT SCH 10 EO
TIC
WRT CKD

TIC/NOP2

SET SECTOR
SCH 10 EO
TIC
WRT DATA
SET SECTOR
READ RO

RD SECTOR
SEEK CYL
SET SECTOR
SCH 10 EO
TIC
RD KD

SECTOR 1
IOBSEEK+3
*-8
IOBDNRCF (1)

CCW24
SECTOR=O
IOBROCNT (1)

*-8
IOBRODAT (1)

SECTOR=O

IOBROCNT (2)

*-8
IOBDNRCF (2)

CCW24
SECTOR=O
IOBROCNT (2)
*-8
IOBRODAT (2)

SECTOR=O

SECTOR2
IOBSEEK+1
SECTOR 1
IOBDNRCF (1)
*-8

1. CCWs 11, 12,22,23, and 25-29 are omitted if verify is not specified.
2. The TIC/NOP at CCW6 and CCW17 is set to NOP if RO is to be written on this track.

C
C

0

CS
C
C

C
C
SK
C

0

CS
C
C

C
C
SK
C
C
C
C

SK

COUNT

1
5

8

CCW24
1
5

8
1
16
5

8

CCW24
1
5

8
1
16
1
6
1
5

KL+D L

Section 6: Appendixes 247

Appendix F: ABEND Codes and Cross-Reference Table

ABEND Return Module Logic Manual
Code Code Reference

003 01 IGG019CC Figure 9

02 IGG019CE Figure 9
IGG019CF Figure 9
IGG019FK Figure 9

03 IGG019FA Figure 18
IGG019FQ Figure 9

004 01 IGG0197N Figure 28
02 IGG0197N Figure 28
03 IGG0197N Figure 28
04 IGG0197N Figure 28
05 IGG0197M Figure 27
06 IGG0197Q Figure 28

013 10 IGG0191C Figure 27
14 IGG0191B Figure 27
18 IGG0191B Figure 27
1C IGG0191B Figure 27
20 IGG0191A Figure 27
24 IGG0191A Figure 27
28 IGG0191A Figure 27
2C IGG0196J Figure 28
30 IGG0191F Figure 28
34 IGG01911 Figure 27
38 IGG0191H Figure 28
3C IGG0191D Figure 28
40 IGG01910 Figure 29
44 IGG0191K Figure 28
48 IGG01911 Figure 29
4C IGG0196B Figure 27
50 IGG0196B Figure 27
54 IGG0196A Figure 27
58 IGG01912 Figure 29
5C IGG01915 Figure 29

IGG01916 Figure 29
60 IGG0191A Figure 27

B13 04 IGG0191U Figure 27
08 IGG0191U Figure 27
OC IGG0191V Figure 27
10 IGG0197U Figure 27
14 IGG0197U Figure 27
18 IGG0197F Figure 27
1C IGG0197F Figure 27

Section 6: Appendixes 249

ABEND Return Module Logic Manual
Code Code Reference

B14 04 IGG020lB Figure 30
08 IGG020lB Figure 30

IGG0201Z Figure 30
OC IGG020lB Figure 30

IGG0201Z Figure 30
10 IGG020lB Figure 30

IGG0201Z Figure 30

250 as SAM Logic

INDEX

Indexes to as logic manuals are consolidated in the OS Master Index to Logic Manuals, GY28-6717.
For additional information about any subject listed in this index, refer to other publications listed for the
same subject in the Master Index.

/* delimiter
restriction 21

plan to remove it 71

ABEND codes cross-reference table
(Appendix F) 249-250

abnormal-end, appendages 98-100
access conditions for selecting modules

(see module selector)
access method options

(see module selector)
access method save area for user totaling

access method save area 192
end-of-block modules 55-56
stage 1 open executors 131,136-138
EOV /new volume executor 173

address conversion routines
full-to-relative address 127-128
relative-to-full address 127-128

appendages
introduction to 80-81
module selector (Figure 17) 82
types

abnormal-end 98-100
channel-end 87-95
end-of-extent 81-85
PCI 95-98
SIO 85-87

appendixes
ABEND codes cross-reference table 249-250
BDAM create channel programs 243-247
BSAM/QSAM channel programs 217-229
BSAM (BDAM create) channel programs 243-247
chained scheduling channel programs 235-241
code conversion routines 215-216
update channel programs 231-234

ASCII block prefix 3
associated data set processing

EOB modules (Figure 9) 47
(see also 3505/3525)

asynchronous-error-processing routines
track overflow 70-72,77-79
3211 printer 79-80

backspace
BSP routine 123-124
CNTRL routine 119-120

basic direct access method, BDAM
(see BDAM-create)

basic partitioned access method
(see BPAM)

basic sequential access method
(see BSAM)

BDAM-create (WRITE-load)
channel programs (Appendix E) 243-247
check routines 114-115
stage 2 open executors 140-153
write modules 103-111

BDW (see block descriptor word)
BLDL

BPAM routines 124,126-128
BLDLTAB option

not specified 126
specified 127

block descriptor word (BDW) 38-40
block prefix, ASCII 3
blocked records

get routines
exchange-buffering 17-22
simple-buffering 3-17
update-mode 22-29

put routines
exchange-buffering 41-45
simple-buffering 30-41
update-mode (PUTX) 25,46

BPAM
description of routines 124-128
effect of BLDLTAB 126
flow of control (Diagram G) 204-205
introduction to 1,124
relation to BSAM routines 1,124
relation to processing program 1,124
residence of 124
f()utines for

BLDL 124,126-128
Convert MBBCCHRR 124,127-128
Convert TTR 124,127 -128
FIND 124,126-128
STOW 124-126

BSAM
control blocks 190-191
flow of control (Diagram G) 204-205
introduction to 1,103
module selector for

appendages (figure 17) 82
check (Figure 21) 112
control (Figure 22) 115
end-of-b10ck (see EOB routines)
read (Figure 20) 104
write (Figure 20) 104
overview (Diagram A) 193
relation to BP AM routines 1,124,204-205

Index 251

BSAM (continued)
routines

appendages 80-100
check 111-115
control 115-124
end-of -block 46-70
read 103-111
write 103-111
synchronizing-and-error
processing 71,77-80

BSAM (BSAM-create) channel programs
(Appendix E) 243-247

BSAM/QSAM channel programs
(Appendix B) 217-229

BSP
BSAM overview (Diagram A) 123
routine 123-124

buffer alignment 177-178
buffer is empty (get routines)

exchange-buffering 1.7-22
simple-buffering 3-17
update-mode 22-29

buffer pool management
BUILD routine 177-179
FREEBUF (macro expansion) 179
FREEPOOL (macro expansion) 179
GETBUF (macro expansion) 179
GETPOOL routine 177-178
introduction 1,177

buffer ready for emptying (put routines)
exchange buffering 41-45
simple buffering 30-41
update mode, PUTX 25,46

buffering techniques
get routines 3-29
put routines 29-45

BUILD
buffer pool management routine 177-179
common access method routine

(Diagram A) 193
BUILDRCD

buffer pool management routine
177,180-182

QSAM overview (Diagram A) 193

card punch, 3525
(see 3505/3525)

card reader
get routines 9

(see also 3505/3525)
chained channel-program scheduling

appendages
end-of-extent 84
PCI, channel end, abnormal 96-98

channel programs (Appendix D) 235-241
end-of-block routines 57-67
lOB prefix 57,59

252 as SAM Logic

joining
description of end-of-block
routines 57-67

introduction to 57-58
note/point routines 120-122
parting

channel end appendage
finds chaining terminated 96-98

PCI appendage 96-98
introduction 95-96

stage 2 open executors 140-153
stage 3 open executors 154-162

chained scheduling
(see chained channel-program
scheduling)

chained scheduling channel programs
(Appendix D) 235-241

channel-end, appendages 87-95
channel programs

BDAM create (Appendix E) 243-247
BSAM/QSAM (Appendix B) 217-229
chained scheduling (Appendix D) 235-241
update (Appendix C) 231-234

character conversion
(see paper tape character conversion)

CHECK macro instruction
BSAM/BPAM (Diagram C) 197
Check routines (Figure 21) 112-114

checkpoint records, DOS
(see OS/DOS tape compatibility)

check routines
BSAM/BPAM (Diagram C) 197
descriptions (Figure 21) 111-115

checkpoint/restart end-of-volume exit 173-174
close executors 162-166
CLOSE macro instruction

close executors 162-166
SAM overview (Diagram A) 193

CNTRL macro instruction
BSAM control routines (Figure 22) 115-124
QSAM control routines (Figure 18) 100-102

code conversion routines
descriptions (Appendix A) 215-216
IGGOOI0C (translate) 216
IGG019CM 215
IGG019CN 215
IGG019CO 215
IGG019CP 215
IGG0l9CQ 216
IGG019CR 216

common routines
appendages 80-100
buffer pool management 177-179
executors 129-177
SAM overview (Diagram A) 193

Control blocks, relation of
BSAM 190-191
QSAM 189-190

control character end-of-block routines
chained scheduling 57-67
normal scheduling 46-57

control modules
loaded at execution time (Figure 23) 116
selected and loaded by the open executor
(Figure 22) 115

control routines
BSAM

introduction to 115-116
module selector (Figure 22) 115

QSAM
introduction to 100
module selector (Figure 18) 100-102

convert full-to-relative address
routine 127-128

convert relative-to-full address
routine 127-128

converting routines
address conversion 127-128

(see also paper tape character
conversion routines)

create-BDAM (see BDAM-create)
cross-reference table, ABEND codes

(Appendix F) 249-250
CSECT name (as listed in the directory)
183-187

data areas
access method save area

for user totaling 192
BSAM control blocks 190-191
QSAM control blocks 189-190

data operating mode
get module 5,16-17
put module 32,38-39

data protection image, DPI
EOB modules (Figure 9) 47

(see also 3505/3525)
decision tables

(see module selector)
diagrams

A SAM overview 193
B QSAM get and put routines 195
C BSAM/BPAM read/write and check routines 197
D Sequential access method open executors 199
E SAM flow of control for open executors 201
F QSAM flow of control 202-203
G BSAM/BPAM flow of control 204-205
H QSAM flow of control for SYNAD/EOV executor 207
I BSAM flow of control for SYNAD/EOV executor 209
J QSAM operation of FEOV executor 211

directory, module name 183-187
DOS embedded checkpoint records

(see OS/DOS tape compatibility)
DPI, data protection image

EOB modules (Figure 9) 47
(see also 3505/3525)

dummy data set routine 131-132

effector routine, exit 96-98
embedded checkpoint records, DOS

(see OS/DOS tape compatibility)
empty buffer

get routines
exchange-buffering 17-22
simple-buffering 3-17
update-mode 22-29

put routines
exchange-buffering 41-45
simple-buffering 30-41
update-mode,PUTX 25,46

end-of-block condition
(See end-of -block routines)

end-of-block routines, QSAM/BSAM
chained channel-program scheduling 57-67
flow of control (Diagram F) 203
get routines 3-29
inout or outin 46
introduction to 46
ordinary 46-57
put routines 29-45
track overflow 68-70

end-of-extent, appendages 81-85
end-of-volume

(see EOV (end-of-volume) routine)
EODAD routine

control passes to 113-114,132
EOV/new volume executor 173-174
EOV (end-of-volume) exit 173-174,207,209
EOV (end-of-volume) routine of O/C/EOV

control passed to
BDAM-create write routines 106-111,207,209
check routine 167-168,207,208
EOV / new volume executors 173-174
FEOVexecutor 169-170
synchronizing routines 167 -168

control received from
BDAM-create check routine 114-115
check routines 111-114
FEOVexecutor 169-170
SYNAD/EOVexecutor 167-168
synchronizing routines 70-80,167-168

erase routine, track overflow 122-123
error option implementation

check routines 111-115,197
SYNAD/EOVexecutor 167-168
synchronizing and error processing
routines 70-77

exchange buffering
get routines 17-22
put routines 41-45
stage 2 open executors 140-153
stage 3 open executors 154-162

execution of channel programs
scheduled by chaining (PCI appendage) 95-98

Index 253

executors, SAM
control sequence 129-130
flow of control for Open

(Diagram E) 201
introduction to 129-130
RAM option 1
relation to I/O support 1,129-130
types of

close 162-166
EOV /new volume 173-174
FEOV 168-173
IMAGELIB (data set) 176-177
open 130-162
SETPRT 174-177
SYNAD/diagnostic 168
SYNAD/EOV 167-168

exit effector routine 96-98
FEOV executor

description 168-169
flow of control (Diagram 1) 211
operation for output under QSAM 169-173

FEOV macro instruction
FEOV executor 168-169

FEOV, SYNAD routine 169-173
FIND (D option) routine 124,126-128
FIND macro instruction

C Option (Macro expansion) 124,126
D Option routine 124,126-128

flow of control, diagrams for
BPAM routines (Diagram G) 204-205
BSAM routines (Diagram G) 204-205
FEOVexecutor, QSAM (Diagram 1) 211
QSAM routines (Diagram F) 202-203
SAM open executors (Diagram E) 201
SYNAD/EOV executors

BSAM (Diagram I) 209
QSAM (Diagram H) 207

forward space
control module 119-120

FREEBUF macro instruction
BSAM/BPAM (Diagram A) 193
buffer pool management 179
macro expansion 179

FREEPOOL macro instruction
buffer pool management 179
macro expansion 179
SAM overview (Diagram A) 193

full buffer
get routines

exchange-buffering 17-22
simple-buffering 3-17
update-mode 22-29

put routines (see buffer ready for
emptying)

GET macro instruction
get routines 3-29
introduction to get routines 3,195

254 OS SAM Logic

GETPOOL
buffer pool management routine 177-178
common access method routine

(Diagram A) 193
get routines

buffering techniques 3-5
exchange-buffering 17-22
introduction to 3-5,195
simple-buffering 3-17
update mode 22-29

GETBUF macro instruction
BSAM/BPAM (Diagram A) 193
buffer pool mangement 179
macro expansion 179

II
IMAGELIB executor 176-177

(See also SYSl.IMAGELIB)
inout mode

end-of-block routines 46-57
stage 2 open executors 140-153

input data set
without data 132
without entries 133

interruption request block
(track overflow module) 77-79

I/O interruption
BPAM flow of control (Diagram G) 204-205
BSAM flow of control (Diagram G) 204-205
QSAM flow of control (Diagram F) 202-203
SAM overview (Diagram A) 193

lOB (input/output block) SAM prefixes
description 57
comparison for normal and
chained-scheduling 59

II
load-BDAM

(see BDAM-create)
logical record interface

get module 13-14
put module 36-37

macro expansion
FIND (C option) 124,126
FREEBUF 179
FREEPOOL 179
GETBUF 179
PRTOV 102

MBBCCHRR, convert address routine 127-128
module cross-reference table
(directory) 183-187

module descriptions (as listed in
the directory) 183-187

module name directory 183-187
module selector

appendages (Figure 17) 82
check modules (Figure 21) 112
close executors (Figure 30) 163
control routines

BSAM (Figure 22) 115
QSAM/BSAM (Figure 18) 100

end-of-block modules
chained scheduling (Figure II)
58

ordinary (Figure 9) 47
track overflow (Figure 13) 67

get modules
exchange-buffering (Figure 3) 19
simple-buffering (Figure I) 5
update-mode (Figure 6) 25

open executors
stage I (Figure 27) 121
stage 2 (Figure 28) 141
stage 3 (Figure 29) 155

put modules
exchange-buffering (Figure 8) 42
simple-buffering (Figure 7) 32
update-mode, PUTX (Figure 6) 25

read modules (Figure 20) 104
SETPRT executors (Figure 32) 174
synchronizing and error processing
modules (Figure 15) 72

track overflow/3211 printer asynchronous
error-processing modules (Figure 16) 78

write modules (Figure 20) 104
module selector tables

(see module selector)
module type

(as listed in the directory) 183-187

II
name (module) directory 183-187
new buffer

(see full buffer, get routines; empty
buffer, put routines)

new volume executor, EOV 173-174
next buffer segment (put routines)

exchange-buffering 41-45
simple-buffering 30-41
update-mode (PUTX) 25

next record (get routines)
exchange-buffering 17 -22
simple-buffering 3-17
update-mode 22-29

non-rotational position sensing indicator
(see rotational position sensing, open
executors)

NOTE macro instruction
BSAM/BP AM overview (Digram A) 193
BSAM control routines 115-124

note/point routines
BSAM control routines 115-116
chained scheduling 120-122
normal scheduling 117 -120
track overflow 120-121
update mode 120-121

OMR, optical mark read
(see 3505/3525)

open executor
introduction to 129-132
RAM option 1
stage 1 130-140
stage 2 140-153
stage 3 1 54-162

OPEN macro instruction
executors 129-162
SAM overview (Diagram A) 193
general flow (Diagram D) 199

operation for output under QSAM,
FEOVexecutor 169-173

OPTCD=Z
(see search direct)

optical mark read
(see 3505/3525)

options, access method
(see module selector)

OS/DOS tape compatibility
appendages 82,92-95
BSAM control routines 117-120
get routines 4
synchronizing-and-error processing
routines 74-75

outin mode
end-of-block routines 46-57
stage 2 open executors 140-153

overview, SAM
(Diagram A) 193

paper tape appendage 91
paper tape character conversion routines

check routine 113
get routine 12-13
read routine 105-106
stage 2 open executor 143-144
stage 3 open executor 155-156
synchronizing and error
processing routine 12-13

paper tape code conversion modules
(Appendix A) 215-216

parting chained channel-programs,
appendage 92

Index 255

PCI, appendages 95-98
POINT macro instruction

BSAM/BPAM overview (Diagram A) 193
BSAM control routines 115-124

point routines
(see note/point routines)

priming input buffers
introduction to

exchange-buffering 17-18
simple-buffering 3-5
update-mode 22-25

stage 3 open executor 154
printer

(see 3211 printer, 1403 printer,
or 3505/3525)

printer overflow macro expansion
(PRTOV) 102

processing program
relation to SAM routines 193

program controlled interruption,
appendages 95-98

program organization, diagrams for
SAM routines (Diagram A) 193
BPAM routines (Diagram C) 197
BSAM routines (Diagram C) 197
open executors (Diagram D) 199
QSAM routines (Diagram B) 195

PRTOV macro instruction
appendage 86
BSAM 116
end-of-block routines 50-52
QSAM 100-102

PUT macro instruction
put routines 29-45
introduction to put routines 29,195

put routines,
exchange-buffering 41-45
simple-buffering 30-41
update-mode (PUTX) 25,45

PUTX macro instruction
put routines 30-45
overview (Diagram A,B) 193,195

PUTX routine
exchange-buffering 41-45
simple-buffering 30-41
update mode

ED

get routine 25-26
PUTX 45

QSAM
control blocks 189-190
flow of control (Diagram E) 203
introduction to 1,3

256 OS SAM Logic

module selector for
exchange-buffering get (Figure 3) 19
exchange-buffering put (Figure 8) 42
simple-buffering get (Figure 1) 5
simple-buffering put (Figure 7) 32
update-mode get (Figure 6) 25
update-mode, PUTX (Figure 6) 25

overview (Diagram A) 193
routines

appendages 80-100
control 100-102
end-of-block 46-70
get 3-29
put 29-45
synchronizing-and-error
processing 70-80

queued sequential access method (see QSAM)

RAM (resident access method) option 1
RCE, read column eliminate (see 3505/3525)
readback mode get routines 5,9-12
read column eliminate (see 3505/3525)
READ macro instruction

BSAM/BPAM (Diagram C) 197
read routines (Figure 20) 103-111

read routines
BSAM/BPAM (Diagram C) 197
descriptions (Figure 20) 103-111

record descriptor word (RDW) 14-16
RELSE macro instruction

get routines 5-29
introduction to 3-5
overview (Diagram A) 193

RELSE routines
description (get routines) 3-5
exchange-buffering 17-22
simple-buffering 3-17
update mode 22-29

resident access method (RAM) 1
rotational position sensing (RPS)

appendages
channel end 87,90
end-of -extent 81-83
PCI 96
SID 86-87

channel programs (Appendixes B,C,D,E) 217-247
get routines

exchange-buffering 19,21
update mode 25-26

open executors
introduction 130

RPS

stage 2 140-146,148-149,151,153
stage 3 154-156,158-161
read/write routines 106,108-110

(see rotational position sensing)

SAM
common routines

appendages 80-100
buffer pool management 177-179
executors 129-177,201

effect of BLDLTAB 126-128
effect of RAM 1
introduction to 1
overview (Diagram A) 193

scheduling
(see end-of-block routines,
also chained channel-program
scheduling)

SDW
(see segment descriptor word)

search direct (OPTCD=Z)
appendages (Figure 17) 82
channel programs (Appendix B)
219,224-225,229

stage 1 open executors 131-13 3
stage 2 open executors 140-143,148,150,152-153
stage 3 open executors 158-162

search-previous auxiliary storage
addressing 22-25

seek address in QSAM update mode 22-25
segment descriptor word (SDW) 14-17,27-29,38-40
sequential access methods

(see SAM)
sequential access method executors

(see executors, SAM)
SETPRT

executors 174-177
QSAM/BSAM overview (Diagram A) 193

simple buffering
get routines

description of 3-29
introduction to 3-5,195

put routines
description of 29-45
introduction to 29,195

update mode routines
description of 25-29
introduction to 22-25

SIO,appendages 85-87
space magnetic tape

BSP routine 123-124
CNTRL routine 119-120

spanned records
get routines 13-17
put routines 36-41

stage 1 open executors
descriptions 130-140
flow of control (Diagram E) 201
module selector (Figure 27) 131

stage 2 open executors
descriptions 140-153
flow of control (Diagram E) 201
module selector (Figure 28) 141

stage 3 open executors
descriptions 154-162
flow of control (Diagram E) 201
module selector (Figure 29) 155

start I/O (SIO) appendages 85-87
STOW

BPAM routines 124-126
SVC routine

see "svc Entry" in the
Directory 183-187

SYNAD/diagnostic executor 168
SYNAD/EOV executor

description 167-168
flow of control

BSAM (Diagram I) 209
QSAM (Diagram H) 207

SYNAD routine, FEOV executor
description 168-173
QSAM operation for output
data set (Diagram J) 211

synchronizing-and-error-processing
routines

asynchronous-error-processing 77-79
introduction to 70-72
QSAM (Figure 15) 72-77
QSAM/BSAM (Figure 16) 77-80
track overflow 77-79
3211 printer asynchronous-error
processing 79-80

SYSIN appendage 91
SYS l.IMAGELIB

executor 176-177
stage 1 open executor 135-136

II
tables

(see module selector)
tape compatibility, OS/DOS

appendages 82,92-95
control routines 117-120
get routines 4
synchronizing-and-error
processing routines 174-175

track balance routine 122
track erase routine 122-123
track overflow

abnormal end appendage 99
create-BDAM write routine 110-111
end-of-block routine 68-70
erase routine 122-123
error processing routine 77-79
introduction to 68
stage 2 open executors 144,146,148
stage 3 open executor 156-158

translate routine (IGGOOI0C) 216
TRUNC macro instruction 5

put routines 30-46
introduction to 29-31
overview (Diagram A) 193

Index 257

TRUNC routines
description (put routines) 32-45
exchange-buffering 41-45
simple-buffering 30-41

TTR, convert address routine 127-128

UCS feature, printer
stage 1 open executors 130,134-140

unblocked records
get routines

exchange-buffering 17-18
simple-buffering 3-4
update mode 22-23

put routines
exchange-buffering 41-42
simple-buffering 30-31
update mode (get routine) 25-29

universal character set
(see UCS feature, printer)

update channel programs (Appendix C)
231-234

update mode
appendages

end-of-extent 81-83
SIO 85-86

check routine 113-114
get routines 22-29
note/point routine 120-121
PUTX routine 45
read/write routine 106
schedule buffer (empty-and-refill
or refill only) 22-24

stage 2 open executors 147,150-151
stage 3 open executors 155-156
synchronizing routine 73-74

user totaling facility
access method save area 192
end-of-block modules 55-56
stage 1 open executors 131,136-138
EOV /New volume executor 173

258 OS SAM Logic

II
WRITE-load

(see BDAM-create)
WRITE macro instruction

BSAM/BPAM (Diagram C) 197
write routines 103-111

write routines
BSAM/BPAM (Diagram C) 197
descriptions 103-111

13
XLA TE macro instruction 216

1403 printer
open executor, stage 1 131,135-136,139-140

2520/2540
consideration of DCBBUFNO field 137

3211 printer
appendage 96-100
asynchronous-error-processing
module 79-80

open executor, stage 1 131-140
open executor stage 3 157
synchronizing module 75

3505/3525 (card reader, card punch)
appendages (Figure 17) 82
close exeuctors (Figure 30) 162-163
EOB modules (Figure 9) 47
line control (Figure 18) 100
open executor stage 1 (Figure
27) 131

open executor, stage 2 (Figure
28) 141

print (EOB module) 53-54
3525

(see 3505/3525)

READER'S COMMENT FORM

OS SAM Logic Order Number GY28-6604-5

Your comments about this publication will help us to produce better publications for your use. If
you wish to comment, please use the space provided below, giving specific page and paragraph
references.

Please do not use this form to ask technical questions about the system or equipment or to make
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen
tative or to the IBM Branch Office serving your locality.

Reply requested Name

Yes 0 Job Title

No D Address

_________________________ np ______________________ __

No postage necessary if mailed in the USA

Order Number GY28·6604·5

YOUR COMMENTS, PLEASE ...

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY .

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 078

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade CorporaUon
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

fold

fold

Order Number GY28-6604-S

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

