IBM Systemn/360 Operating System
Indexed Sequential Access Methods
Program Logic Manual

Program Number 3605-10-526

This publication describes the program logic of the two
indexed sequential access methods: the queued indexed
sequential access method (QISAM) and the basic indexed
sequential access method (BISAM). It also discusses the
relationship of indexed sequential access method routines to
other parts of the control program.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program maintenance, and by
system programmers involved in altering the program design.

File Number S360-30
Order Number GY28-6618-4

Program Logic

Fifth Edition (June 1971)

This is a major revision of, and makes obsolete, GY28-6618-3 and technical
newsletter GN26-8001. The manual has been reorganized (see the preface)
and more detailed flowcharts of some of the ISAM modules added.
Technical information about rotational position sensing (RPS) devices (IBM
3330 and 2305 Direct Access Storage Devices) has been included in “Section
1: Introduction,” and “Section 2: ISAM Common Open, Common Close,
and Validation Modules.”

This edition applies to release 20.1 of the IBM System/360 Operating
System and to all subsequent releases until otherwise indicated in new
editions or technical newsletters. Changes to the information in this book
may be made at any time; before using this publication in connection with
the operation of IBM systems, consult the latest SRL Newsletter, GN20-
0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication.
If the form has been removed, comments may be addressed to IBM
Corporation, Programming Publications, Department D78, Monterey and
Cottle Roads, San Jose, California 95114. Comments become property of
IBM.

© Copyright International Business Machines Corporation 1966, 1968, 1969,
1971

Preface

This publication describes the program structure of the two indexed sequential access methods: QISAM
(queued indexed sequential access method) and BISAM (basic indexed sequential access method).

The manual is divided into seven sections:

Section 1: Introduction is an overview of indexed sequential access method organization and an overall
description of ISAM operations.

Section 2: Method of Operation comprises four parts:

1. ISAM Common Open, Common Close, and Validation Modules--a discussion of the common
processing operations for QISAM Scan, QISAM Load, and BISAM.

2. Queued Indexed Sequential Access Method, Load Mode--a discussion of the operations and routines
unique to creating data sets with QISAM.

3. Queued Indexed Sequential Access Method, Scan Mode--a discussion of the operations and routines
involved in retrieving and updating records sequentially using QISAM.

4. Basic Indexed Sequential Access Method--a discussion of the techniques and operations used in the
direct storage and retrieval of records in an indexed sequential data set.

Section 3: Program Organization contains flowcharts of individual ISAM routines.

Section 4: Directory contains a table of ISAM modules, by type, and module selection tables for QISAM
load mode, open executors, and close executors.

Section 5: Data Areas contains descriptions of data management control blocks and work areas used by
ISAM.

Section 6: Diagnostic Aids summarizes appendage, asynchronous, and exception codes set and used by
ISAM routines.

Section 7: Appendixes supplements this manual and program listings with a description of ISAM indexes
(Appendix A) and the ISAM channel programs (Appendix B).

Prerequisite Publications

Knowledge of the information in the following publications is required for an understanding of this
manual:

IBM System /560 Operating System:
Introduction to Control Program Logic, Program Logic Manual, GY28-6605
Supervisor Services, GC28-6646

Data Management Services, GC26-3746

iii

Recommended Reading
The following publications provide useful information:
IBM System /360 Operating System:
Supervisor and Data Management Macro Instructions, GC28-6647

Direct Access Device Space Management, Program Logic Manual, GY28-6607

v

Section 1: Introduction 1
Open Phase 3
Processing Phase 4
Close Phase 6

Section 2: Method of Operation 7
ISAM Common Open, Common Close, and Validation Modules 9
The ISAM Common Open Executors 9
The Validation Modules 12
Common Close Phase Organization 13
Queued Indexed Sequential Access Method Load Mode 17
Load Mode Open Phase Operations 17
Initial Load or Reload Open Operations 18
Resume Load Open Operations 18
Full Track Index Write Open Operations 18
The Final Load Mode Open Phase Operations 18
Load Mode Open Phase Organization 20
Initial Load Organization 23
Resume Load Open Organization 25
Full Track Index Write Phase Organization 28
The Final Executors in Load Mode Open Phase Organization
Load Mode Processing Phase Operations 30
PUT Routine 31
Beginning of Buffer Routine 34
End of Buffer Routine 34
Full-Track-Index Write 34
Appendages 36
Load Mode Processing Phase Organization 37
Channel Programs 38
Control Blocks and Work Areas 41
Load Mode Close Phase Operations 42
Load Mode Close Phase Organization 43
Queued Indexed Sequential Access Method Scan Mode 45
Scan Mode Open Phase Operations 45
Scan Mode Open Phase Organization 46
Scan Mode Processing Phase Operations 47
Buffer Control Techniques 48
SETL Routine 51
GET Routine 53
EOB Routine 55
Scheduling Routine 57
PUTX Routine 59
ESETL Routine 59
RELSE Routine 61
Appendages 61
Scan Mode Processing Phase Organization 62
Processing Routines 62
Scan Mode Channel Programs 63
Scan Mode Control Blocks and Work Areas 66
Scan Mode Close Phase 68

28

Contents

Basic Indexed Sequential Access Method 70

BISAM Open Phase Operations 70

BISAM Open Phase Organization 70

BISAM Processing Phase Operations 75
An Example of BISAM Processing Flow 75
Privileged Macro-Time Routines 76
Nonprivileged Macro-Time Routines 78
Appendage and Asynchronous Routines 80
Dynamic Buffering Routines 80
Check Routine 84

BISAM Processing Phase Organization 86
BISAM Channel Programs 89
BISAM Close Phase 109

Section 3: Program Organization 111
Flowcharts 113

Section 4: Directory 157
ISAM Module Directory 159

Section 5: Data Areas 163

ISAM Control Blocks and Data Areas 165
Data Control Block (DCB) 165
Data Event Control Block (DECB) 174
Data Set Control Block (DSCB) 176
Data Extent Block (DEB) 181
Input/Output Block (IOB) 183
Buffer Control Block (BCB)--BISAM 185
Buffer Control Block (BCB)--QISAM 188
Buffer Control Table (IOBBCT) 189
QISAM Load Mode DCB Work Area 193
QISAM Scan Mode DCB Work Area 200
BISAMDCB Work Area 207
QISAM Scan Mode Track Index Save Area 210
ISAM DCB Field Area 212

Section 6: Diagnostic Aids 215
Appendage Codes 217
QISAM Scan Mode Appendage Codes 217
BISAM READ and WRITE K Appendage Codes 217
BISAM WRITE KN Appendage Codes 218
Asynchronous Codes 219
BISAM READ and WRITE K Asynchronous Codes 219
BISAM WRITE KN Asynchronous Codes 219
Exception Codes 221
QISAM Exception Codes 221
BISAM Exception Codes 222

vi

Section 7: Appendixes 223
Appendix A: Indexed Sequential Data Set Organization 225
Introduction 225
Data Set Structure 225
Prime Data Area 226
Index Areas 227
Adding Records to a Data Set 229
Detailed Index Description 231
Appendix B: ISAM Channel Programs 239

Index 307

vii

Illustrations

Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.

©® N O Uk

Figure 45.

SIO Appendage for ISAM RPS 5

ISAM Open Flow of Control 10

RPS Identification Field in the Data Event Block 11

ISAM Common Close Executor 14

Flow of Control through the Close Executors 15

QISAM Load Mode Open Executors 19

Flow of Control through Load Mode Open Executors 21

Initial Load Open Flow 24

Resume Load Open Flow 29

Load Mode Put Routine 32

Load Mode BOB Routine 33

Load Mode EOB Routine 34

Load Mode Channel End Appendage Routine 35

Load Mode Abnormal End Appendage Routine 36

QISAM--Load Mode Channel Program Flow (Fixed Length Records) 39
QISAM--Load Mode Channel Program Flow (Variable Length Records) 40
Load Mode Control Blocks and Work Areas 41

Load Mode Close Executors 42

The Flow of Control through QISAM Load Mode Close Executors 44
QISAM Scan Mode Open Executors 45

Flow of Control through Scan Mode Open Executors 47

Scan Mode Channel Program/Buffer Queues 49

Buffer Queueing and Movement in Scan Mode 49

Scan Mode SETL Routine 52

Scan Mode GET Routine 54

Scan Mode EOB Routine 56

Scan Mode Scheduling Routine 58

Scan Mode PUTX Routine 59

Scan Mode ESETL Routine 60

Scan Mode RELSE Routine 61

Scan Mode Channel Program 23 65

Scan Mode Control Blocks and Work Areas 67

Scan Mode Close Executor 69

BISAM Open Executors 71

Flow of Control through BISAM Open Executors 74

Privileged Macro-Time Routines 77

Nonprivileged Macro-Time Routines 79

BISAM Appendage and Asynchronous Routines 81

Dynamic Buffering Routines 83

BISAM Check Routine 85

BISAM Processing Flow 86

Read K, Write K, Read KU Channel Program Flow 93

Write KN Channel Program Flow--Index Searching 94

Write KN Channel Program Flow--Add to Prime (Fixed Length Unblocked Records,
System Work Area 95

Write KN Channel Program Flow--Add to Prime (Fixed Length Unblocked Records,
User Work Area) 96

viil

TN

Figure 46.
Figure 47.

Figure 48.
Figure 49.

Figure 50.

Figure 51.
Figure 52.

Figure 53.

Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.

Write KN Channel Program Flow--Add to Prime (Fixed Length Blocked Records,
System Work Area) 97

Write KN Channel Program Flow--Add to Prime (Fixed Length Blocked Records,
User Work Area) 98

Write KN Channel Program Flow--Add to Prime (Variable Length Records) 99
Write KN Channel Program Flow--Add to End (Fixed Length Records,

System Work Area) 100

Write KN Channel Program Flow--Add to End (Fixed Length Records,
User Work Area) 101

Write KN Channel Program Flow--Add to End (Variable Length Records) 102
Write KN Channel Program Flow--Add to Overflow (Fixed Length Reocrds,
System Work Area) 103

Write KN Channel Program Flow--Add to Overflow (Fixed Length Records,
User Work Area) 104

Write KN Channel Program Flow--Add to Overflow (Variable Length Records) 105
Elements of a BISAM Request 106

BISAM Control Blocks and Processing Modules 107

BISAM Work Areas and Queues 108

BISAM Close Executor 109

DCB BISAM/QISAM 166

Data Event Control Block 174

Format 2 DSCB 176

ISAM Extension to DEB 181

ISAM Extension to IOB 183

Fields of the BISAM Dynamic Buffering BCB 185

Fields of the QISAM BCB 188

QISAM Load Mode Buffer Control Table 189

QISAM Load Mode DCB Work Area 193

Area Y: QISAM Load Index Fields 199

QISAM Scan Mode DCB Work Area 200

BISAM Work Area: Fixed Format Records 207

BISAM Work Area: Variable Format Records 207

Track Index Save Area 210

TISA Control Fields 211

DCB Field Area 212

Index Sequential Data Set Structure 226

Initial Structure of Prime Cylinder 227

Structure of Cylinder Index and Track Index 228

Structure of Prime Cylinder after Cylinder Overflow 229

Structure of Prime Cylinder after Independent Overflow 230

Format of ISAM Index Entry 231

ix

Tables

Table 1. Load Mode Processing Modules 37

Table 2. QISAM Scan Mode Processing Modules 63

Table 3. BISAM Privileged Macro-Time Modules 87

Table 4. BISAM Nonprivileged Macro-Time Modules 87

Table 5. BISAM Asynchronous Modules 87

Table 6. BISAM Appendage Modules 88

Table 7. BISAM Channel Program Modules 89

Table 8. ISAM Modules 159

Table 9. Load Mode Open Executor Module Selection 160

Table 10. QISAM Load Mode Processing Module Selection 161

Table 11. QISAM Load Mode Close Executor Module Selection 162

Table 12. QISAM Exception Code Summary 221

Table 13. BISAM Exception Code Summary 222

Table 14. Description of Track Indexes 234

Table 15. Description of Cylinder Indexes 236

Table 16. Description of Master Indexes 237

Flowcharts

Chart AA First Common Open Executor (IGG0192A) 113

Chart AB Second Common Open Executor (IGG0192B) 116

Chart AC Third Common Open Executor (IGG0192C) 118

Chart AD Fixed Length Validation Open Executor (IGG0192U) 119

Chart AE First Load Mode Open Executor (IGG0192I) 120

Chart AF First Initial Load Mode Open Executor (IGG0192D) 123

Chart AG First Resume Load Open Executor (IGG0196D) 126

Chart AH Last Scan Mode Open Executor (IGG01924) 127

Chart AT First Scan Mode Open Executor (IGG01928) 128

Chart A] ISAM Common Close Executor Module (IGG02020) 132

Chart AK QISAM Scan Processing Module (IGGO19HB) 134

Chart AL Scan Mode Appendage (IGGO19HG) 148

Chart AM Scan Mode Close Executor Module (IGG02029) 151

Chart AN BISAM Open Executor--Load Privileged Module (IGG0192I) 152

Chart AP BISAM Nonprivileged Macro-Time Processing--Read K, Read KU,
Write K (IGG019]JV) 154

Chart AQ BISAM Privileged Macro-Time Processing Module (Write KN,

without Read, and Update) 155

SECTION 1: INTRODUCTION

TN

Introduction

The indexed sequential access methods (ISAM) are data management techniques used for storing
indexed sequential data sets on direct access devices, or for retreiving those data sets.

A detailed description of the structure of an indexed sequential data set is provided in Appendix A of
this manual. Detailed information on how to create and process an indexed sequential data set is in the
publication, IBM System /360 Operating System: Data Management Services, GC26-3746.

ISAM routines are part of the IBM System/360 Operating System control program. They are grouped
into modules that are placed in the supervisor call (SVC) library during system generation. Only the
modules needed to perform those functions required by a processing program are loaded into main storage
from the system residence volume. Wherever possible, all processing programs use the same copy of a
module.

There are two indexed sequential access methods: queued indexed sequential access method (QISAM)
and basic indexed sequential access method (BISAM).

QISAM has routines for two modes: load mode routines, to create an indexed sequential data set and to
add records to the end of a data set; and scan mode routines, to retrieve and update records from a
previously created data set.

BISAM routines provide direct storage and retrieval of any logical record by its record key. The BISAM
routines also permit records to be updated-in-place. The BISAM Write-Key-New (WRITE KN) macro
instruction routine provides the user a means of inserting new records into an indexed sequential data set.

Routines within QISAM load mode, QISAM scan mode, and BISAM are divided into three phases of
execution: the open phase, the processing phase, and the close phase.

Open Phase

When a data control block (DCB) is opened to process an indexed sequential set, the open routine of
input/output support gives control to ISAM open executors. (The system input/output support routines are
described in the publication, IBM System/360 Operating System: Input/Output Support(Open/Close/EOV),
Program Logic Manual, GY28-6609.

The ISAM open executors are modules that perform the initial ISAM processing. Open processing is
done in two stages: the first or common open stage which is executed for both QISAM and BISAM, and the
second or mode-oriented stage which is executed by separate open modules for QISAM load mode, QISAM
scan mode, and BISAM.

The common open executors receive control from the open routine of I/O support when it is
determined that an indexed sequential access method is to be used. The same executors are used for both
QISAM and BISAM. These common open executors determine which mode of ISAM has been specified in
the processing program and then select the required ISAM modules from the system residence library. The
common open executors determine storage requirements for the access method routines and also begin the
building of control blocks and control lists for subsequent use by the processing and closing phases. When
these operations are completed, the common open executors transfer control to the mode oriented, second
stage open executors.

The common open executors are described in detail in the first part of the Method of Operation section
of this manual; the mode-oriented executors are discussed in the respective QISAM and BISAM parts.

Introduction 3

Processing Phase

During the processing phase of indexed sequential access method operations, several types of routines
are invoked: these include input/output macro instruction routines (in some cases, both privileged and
nonprivileged) and their related channel programs, channel program appendage routines, asynchronous
routines, and buffer management routines. Control blocks, work areas, and queues are used by the
processing phase routines and the corresponding channel programs.

When an input or output macro instruction is encountered in the processing program, ISAM routines
construct the needed channel programs for processing the data and request the I/O supervisor to schedule
those channel programs for execution. If an error occurs during the execution of the channel program, the
ISAM appendage and asynchronous routines inform the processing program of the error. In the processing
phase of ISAM, buffers are allocated, queued and scheduled (buffer management); and indications of
whether or not the channel programs have been executed successfully are given through the buffer
management routines and the appendage routines.

Processing Routines

The processing routines in ISAM select and complete the channel programs which store, process, and
retrieve an indexed sequential data set. These routines do various operations and construct different
channel programs depending on the characteristics of the data to be processed, the type of macro
instruction issued by the processing (user) program, and the indexed sequential access method (or mode)
being used.

For QISAM load mode, the primary processing routine is the PUT macro instruction routine. The load
mode PUT routine is used in creating or resuming the creation (see Resume Load) of an indexed sequential
data set.

In QISAM scan mode, five macro instruction routines are used in data retrieval and updating; the scan
mode routines are described under Scan Mode Processing Phase in the Method of Operation section.

The BISAM processing routines consist of several variations of the basic READ and WRITE macro
instruction routines. In BISAM, both nonprivileged and privileged routines are used to facilitate channel
program execution.

The QISAM load, QISAM scan, and BISAM processing routines are described fully in those respective
sections of this manual.

Appendage Routines

The appendages are routines entered from the Input/Output supervisor when a channel program is to be
started or when a channel program ends. The appendage routine determines if additional processing is
necessary before an input/output operation has started or after it has been completed. For example, more
than one channel program may be needed to satisfy completely a specific input or output request from the
processing program. In such a case, the channel appendage would keep track of the channel programs
needed and assist in initializing and scheduling these channel programs sequentially. Appendages may also
schedule asynchronous routines to handle the additional processing of an I/O request. (Appendages and

asynchronous routines are described in the publication, IBM System/360 Operating System: System
Programmer’s Guide, GC28-6650.)

Rotational Position Sensing Start I/O Appendages

The Rotational Position Sensing (RPS), start I/O (SIO) appendage routines decrease channel time by
disconnecting the channel from RPS devices whenever possible. This is done by inserting CCW (channel
command word) slots in the various ISAM channel programs.

4

When an ISAM data set is being used with an RPS device, the RPS start I/O appendages will modify the
channel command word slots dynamically to either a NOP, Set Sector, Read Sector, or a TIC, depending on

the device type and the channel program.

Three RPS SIO appendages are used, one each for QISAM scan, and load modes, and one for BISAM.
These SIO appendages will convert non-RPS channel programs to RPS channel programs and vice versa, as
necessary.

Conversion of a non-RPS channel program to an RPS channel program involves:
® conversion of the CCW slots from TICs or NOPs to Read or Set Sectors,
® possibly modifying a CCW’s command chaining flag so that the RPS CCWs are executed,

® interposing an RPS channel program prefix when the channel program starts with a search ID of five
bytes, and

® setting up sector values where necessary.

NOTE: The Rotational Position Sensing (RPS) devices referred to in this manual are the IBM Models 3330
and 2305 Direct Access Storage Devices.

10S appendage
entry

Set up non-RPS . Set up
channel program RPS device channel program
for RPS

Update sector value

Figure 1. SIO Appendage for ISAM RPS

Asynchronous Routines

Asynchronous routines are used in QISAM scan mode and in BISAM to perform any additional
processing of an I/O request required when a channel program ends.

Complete processing of an I/O request may require several channel programs. The asynchronous
routines set these up and schedule them as required. Also, when I/O request processing is complete,
whether satisfactorily or in error, the completion must be posted. These routines do the posting.

Introduction 5

The appendage routines of QISAM scan mode and BISAMselect and schedule the appropriate
asynchronous routines.

Further description of the scan mode asynchronous routines can be found in the discussion of Scan
Mode Appendages. For more detail about the BISAM asynchronous routines, see Section 2, BISAM
Appendage and Asynchronous Routines.

Buffer Handling Routines

Buffer handling or buffer management routines are provided in both modes of QISAM and, optionally,
in BISAM.

In QISAM load mode, the PUT routine has two subsidiary buffer handling routines: the beginning of
buffer (BOB) routine and the end of buffer (EOB) routine. The BOB and EOB routines perform both the
PUT move mode and PUT locate mode processing.

In move mode, the PUT macro instruction routine and its buffer handling routines move an output
record from the user work area or input area to an output buffer.

In locate mode, the PUT macro instruction routine and its subsidiary routines give the address of an
output buffer area to the user; the user must move the record to the buffer.

In QISAM scan mode, five buffer queues are used to control input/output operations. The queuing of
buffers is handled primarily by the GET macro instruction routine and its subsidiary routines—the
scheduling routine and the end of buffer routine.

In scan mode, a topy of channel program 22 is allocated to each buffer. The buffers are manipulated
among the queues and scheduled for I/O operations according the macro instructions issued in the
processing program. Refer to the discussion of “Buffer Control Techniques” in Section 2, QISAM Scan
Mode, for a description of the buffer queues.

Dynamic buffering may be used in BISAM to allow the queuing of multiple read requests. A buffer is
automatically acquired from a buffer pool and assigned to the request just before data transfer begins. The
buffer is returned automatically to the buffer pool when its contents are written, or it is returned under
programmer control with the FREEDBUF (Free Dynamic Buffer) macro instruction. Dynamic buffering
requires relatively fewer buffers since the read requests waiting in the queue do not monopolize buffers.

Close Phase

When a DCB for an ISAM data set is closed, the close routine of input/output support gives control to
ISAM close executor modules which terminate processing for the particular mode of ISAM being used. As
do the open executors, the close executors have two stages: (1) the mode-oriented stage (i.e. the load mode,
scan mode, or BISAM close executors), and (2) the common close stage executor.

When invoked by the CLOSE macro, the input/output support routines first determine that an ISAM
data set is being processed. The I/O support routines then examine the DCBMACREF field in the DCB to
determine which mode of ISAM is in use and which mode-oriented close executor should be given control.
The close executors for load mode, scan mode, and BISAM are described in each of those sections
respectively. Figure 4 in Section 2 shows the general flow of operations in the ISAM common close
executor-module IGG0202D.

SECTION 2: METHOD OF OPERATION

ISAM Common Open, Common Close, and Validation
QISAM Load Mode
QISAM Scan Mode

BISAM

ISAM Common Open, Common Close and Validation Modules

There are three distinct indexed sequential access methods: QISAM load mode, QISAM scan mode, and
BISAM. Each comprises a group of modules.

In addition to the three separate groups of modules, certain ISAM modules are used for both QISAM
and BISAM processing. In particular, the three common open executor modules (IGG0192A, IGG0192B,
and IGG0192C), the common close executor module (IGG0202D), and the validation open executor
modules (IGG01920, IGG01922 and IGG01950) are used in both modes of QISAM and in BISAM.

This section of the manual describes the common open and common close executors in detail, and
generally describes the validation modules which are further detailed in the discussion of QISAM (load,
scan) and BISAM.

The ISAM Common Open Executors

The first stage, or common, open executors receive control from the open routine of I/O support. A
pre-executor module of the I/O support routines (module IGG0190W) will:

(a) read in the additional DSCBs for this data set (if multivolume);

(b) test first volume for a format 2 DSCB;

(c) check DSCBs for ascending order on the same sequence in which space was allocated, and;
(d) transfer control (XCTL) to the first ISAM open executor.

The common executors, upon completion, pass control to second stage open executors required to
initialize the specific form of QISAM or BISAM called for by the processing program.

The DCB Integrity Feature: ISAM routines maintain DCB integrity by preserving pertinent DCB fields and
maintaining the current status of these fields during processing. The DCB integrity feature is invoked for
the user whenever he opens with DISP=SHR.

This feature prevents multiple tasks, when sharing the same indexed sequential data set, from altering
the data set without updating its attributes in the DCB. This could happen if one of the tasks opens the
data set for Write-Key-New and modifies an area so as to change various DCB fields. For example, adding
" records to the last prime data track would result in updating DCBLPDA and possibly DCBLIOV. Another
task with concurrent access to the data set in QISAM scan mode would not process the added records.

With the DCB integrity feature, any change in the DCB caused by a modification of the data set, will
cause a corresponding change in all DCBs currently open for that particular data set. An ISAM common
open module, IGG0192C, determines whether another ISAM data set has previously been opened, and if
not, obtains space for a DCB field area (DCBFA) associated with each ISAM data set that is opened. The
DCB field area is obtained (by a GETMAIN from subpool 255) by the ISAM open executor module,
IGG0192C, when a data set is opened for the first time.

The DCBFA contains the DCB information that can be changed while processing the data set and is
pointed to by all DCBs opened for that data set. The DCB fields requiring this updating are DCBLIOV,
DCBLPDA, DCBNOV, DCBNOREC, DCBNREC, DCBRORG1, DCBRORG2, DCBRORG3, DCBST, and
DCBTDC. These fields require a 36-byte DCB field area.

ISAM Common Modules 9

During processing of a data set opened for WKN or RU, ISAM routines gain access to the associated
DCB fields and modify them from the DCBFA. This eliminates the possibility of a user inadvertently and
incorrectly modifying these fields.

Open Phase Organization
The ISAM open executors are each 1024 bytes in length, and overlay each other in the transient area.

The three common open executor modules are IGG0192A, IGG0192B, and IGG0192C. The flow of
operations among these executors and to the second stage open executors is depicted in Figure 2 below.

Input/output support
open routine
| e |
I IGGO190W I
—_— e e

-

Common open executors

IGGO192A
| 1GG0192B |
L lGGo192C

r — 1 P

l Second stage | open executors l
BISAM open QISAM scan mode QISAM load mode
executors open executors open executors
(see figure 35) (see figure 21) (see figure 7)

Y

Input/output
support
open routine

1

Processing
program

Figure 2. ISAM Open Flow of Control

10

P

NOTE: The second stage open executors return control to the open routine of I/O support, which returns
control to the processing program.

Common open executor IGG0192A receives control from the open routine of input/output support.
The primary functions of IGG0192A are:

1. Module IGG0192A calculates the space needed for the DEB. (16 bytes are allocated for the DEB
prefix, and 32 bytes for the basic section of the DEB. The number of extents indicated by the user’s
data definition statements is picked up from the DSCBs (the data sets allocated must be “‘on-line”).
The number of extents, plus one, is multiplied by 16. Thus, each extent has 16 bytes.

2. After the determination of the space needed for the DEB, IGG0192A executes a GETMAIN for the
DEB.

3. IGGO0192A places a pointer to the DEB in the DCB and a pointer to the DCB in the DEB.

4. IGG0192A sets the pointer to the UCB in each extent (may be from 1 to 16 extents per volume.)
The UCB in each extent points to the direct access device where the data set (or extent) resides.

5. Checks the devices allocated to the data set to see if these devices have the Rotational Position
Sensing (RPS) feature and set a bit in DXCCW1+4 accordingly. If bit 0, 1, or 2 are on and if the
data set is being opened for either QISAM scan mode or BISAM, a count of one (1) is added to the
module count (DEBNMSUB) in anticipation of loading the necessary RPS Start I/O appendage. (See
the description of these bits in Figure 3, DEBRPSID.

After the GETMAIN has been performed for the DEB, IGG0192A will move the byte at DXCCW1+4 to
DEBISAD in the DEB; the result will be that DEBISAD will have its high order byte cleared to zeroes if no
RPS devices are being used. If RPS devices are being used the bit will be set as described in Figure 3.

Field Bit Setting Meaning
DEBRPSID 0 1 PRIME is on an RPS device
1 1 INDEX is on an RPS device
2 1 OVERFLOW is on an RPS device
3 1 An SI0 appendage has been loaded

(set by 1IGG0192K)

Figure 3. RPS Identification Field in the Data Event Block
Upon completion, IGGO192A transfers control to the common open executor module IGG0192B. The
primary functions of IGG0192B are outlined below:

1. IGG0192B uses the DCBBUFNO and DCBBUFL fields (plus eight bytes for a control field) to
develop the buffer pool.

2. Develops the Buffer Control Block (BCB), using DCBBUFNO and DCBBUFL, and uses a GETMAIN
from subpool 250 for the BCB space. ‘

ISAM Common Modules 11

3. IGGO0192B also calculates the buffer lengths (using DCBBLKSIZE) and places the calculation in the
DCBBUFL field (unless the user sets up his own buffers).

4. The DCBUFNO (number of buffers) field is checked, and if none have been specified, two buffers
are allocated for the data set.

5. If the computed buffer length is inadequate, IGG0192B schedules an ABEND with a completion
code of hexadecimal 37.

6. IGG0192B then returns to the initialization of the DEB-initializing the extent entries with the
address and count fields already established in the DEB.

The DEB will now contain the UCB pointer, the starting addresses of the extents (cylinder, track,
and head), and the number of cylinders per extent.

ISAM common open executor IGG0192B passes control to common open module, IGG0192C. The
functions of IGG0192C are outlined below:

1. IGGO0192C frees the main storage space occupied by all data set control blocks (DSCBs) except the
format 1 and the format 2 DSCBs.

2. Reset the DCBDEVT (device type) field, if necessary.

8. 1If the data set is to be shared by two or more tasks (as indicated with a DISP=SHR parameter in the
JCL), IGG0192C executes a GETMAIN from subpool 255 for the DCBFA (DCB Field Area);
unless, the DCBFA was previously obtained for this same data set.

The Validation Modules

Modules IGG01920, IGG01922, and IGG01950 are open executors used to validate and maintain DSCB
and DCB fields for resume load, scan mode, and BISAM. These modules are not considered common open
executors since an initial load (or reload) in load mode does not cause execution of the validation modules.

The operations done in IGG01920, IGG01922, and IGG01950 are described in detail below. Thereafter
the validation modules are referred to in the load, scan and BISAM discussions.

Module IGG01922 runs in tandem with module IGG01920 when that validation module is selected.
Since the functional description of IGG0122 would be essentially the same as that for IGG01920, it has not
been described here.

Load Mode Open Executor IGG01920 (executed with IGG01922):
1. Validate and reset, if necessary, the following fields in the format 2 DSCB:

(a) DS2LPRAD — the address of the last record in the prime data area. This address will be in the
form MBBCCHHR and is subsequently moved to the DCBLPDA field.

(b) DS2LOVAD — the address of the last record in the current independent overflow area. This
address will be in the form of an MBBCCHHR address and is subsequently moved to the
DCBLIOB field.

(c) DS2BYOVL — the number of bytes remaining on the current independent overflow track. This
count is later moved to the DCBNOV field.

12

(d) DS2RORG2 — the number of tracks remaining in the independent overflow area; subsequently
merged into the DCBRORG? field.

(e) DS20VRCT — the number of records in all overflow areas; merged to DCBNOREC.
These fields may be incorrect if the data set was previously closed improperly.
Load Mode Open Executor IGG01950:

IGG01950 is the VLR counterpart to module IGG01920. It is the first validation module entered when
variable length records are being added.

This module may not be executed, although it will be entered, if the user has specified that the data set
may be shared by other tasks (DISP=SHR). It will not be executed in that case because another DCB may
have already been opened for the data set and a DCBFA (DCB Field Area) already set up for the purpose of
maintaining the DCB fields.

1. IGGO01950 merges these end pointers from the format 2 DSCB to the DCB:

(a) DCBLPDA — the direct access device address of the last record in the prime data area.

(b) DCBLIOV — the direct access device address of the last record written in the independent
overtlow area.

2. Module IGG01950 also adjusts, when necessary, the independent overflow control information in
the DCB:

(a) DCBRORG2 — the tracks remaining in independent overflow.

(b) DCBNOV — the bytes remaining on current overflow track.

(c) DCBNOREC — the number of logical records in the overflow area.
Common Close Phase Organization‘

Like the open executors, the close executors are 1024 bytes in length and overlay each other in the
transient area. The common close executor module is module IGG0202D; its functions are as follows:

1. Obtain main storage space for the format 2 DSCB.
2. Read and update the format 2 DSCB and write it back into the volume table of contents (VTOC).

3. If operating with QISAM load mode, free main storage used for the load mode work area and
channel programs.

4. 1If the DCB being closed is the last one open on the data set, free the DCB Field Area (DCBFA).

5. If initial load, set bit 2 of DCBST (DCB Status Byte field).

ISAM Common Modules 13

Entry from
close executor

Read format 2
DSCB

l

Move updated fields
from the DCB
to the DSCB

Write format 2
DSCB

Load mode DISP=SHR

Free storage of
the work area
and channel programs

Yes
Last DCB open

Free DCBFA

Return to
close routine

Figure 4. ISAM Common Close Executor

14

The flow of control through the I/O support routines and the stages of ISAM close executors is shown in
Figure 5.

Input/output
support
close routine

:

' QISAM load mode

QISAM scan close executors

BISAM ode cl 1GG02021,
close executor ::(ecztco?se 1GG02028,
1GG0202J,

1GG0202A 1GG02029 1GG0202K,
1GG0202L,

1GG0202M

Y

ISAM common
close executor
1GG0202D

'

Input/output
support
close routine

Figure 5. Flow of Control through the Close Executors

ISAM Common Modules 15

Queued Indexed Sequential Access Method Load Mode

The load mode of QISAM is used to create (or recreate) indexed sequential data sets and may also be
used to reopen existing data sets to add records to the end of the prime data area. Creating a data set is
called ¢nitial loading; recreating one is called reloading; and reopening a data set is called resume loading.
(See Data Management Services, GC26-3746, for a user-oriented discussion of resume loading.)

Since it is part of the queued access method, load mode handles all required buffering, blocking, and
I/O activity synchronization.

There are three phases of QISAM load mode routines:
1. The Open Phase
2. The Processing Phase
3. The Close Phase

The open phase routines include executor modules that perform tasks needed to open a data set,
initialize data areas, and prepare to load other routines for the processing phase. The open phase executors
receive control from the open routine of I/O support. The processing phase routines include the put routine
(which receives control and is executed when a PUT macro instruction is issued in the user’s program),
appendages, and channel programs. The processing phase routines perform the actual access method
functions in QISAM load mode. The close phase routines perform functions essential to closing the indexed
sequential data set when all processing phase operations are finished. The close phase routines are executor
modules that receive control from the close routine of I/O Support.

Load Mode Open Phase Operations

There are two stages of QISAM load mode open executors. The first stage executors are entered for all
indexed sequential access methods and are referred to as the common open executors (See Figure 2). The
second stage open executors for load mode receive control from the common open executors. These second
stage executors are entered for QISAM load mode only. They perform initialization operations required for
load mode processing, whether creating, reloading, or resume loading the data set, with either variable or
fixed length records.

The first second-stage executor for load mode (module IGG01921) is entered for both initial and
resume loading to provide main storage space for the load mode work area. ISLCOMON is the load mode
DCB work area and contains the input/output blocks (IOBs), location tables, counters and various pointers.
The load mode processing modules and channel programs refer to and modify the ISLCOMON area.

The IOBs, tables, and pointers in ISLCOMON are used in scheduling, controlling, and checking the load
mode processing operations, filling the buffers with records, loading these records into the ISAM data set
and refering to these records and their locations in the various ISAM indexes.

Besides obtaining main storage space for an initializing ISLCOMON, the beginning open executor for
load mode determines if the user intends to create a new ISAM data set (initial load), to reload an old data
set, or to reopen an existing data set.

If the data set is being loaded on a direct access device with the Rotational Position Sensing (RPS)
feature, module IGG01921 provides main storage space for an eight-byte larger DCB work area
(ISLCOMON) than is the case when non-RPS devices are being used. (See the Data Area section of this
manual for a description of the ISLCOMON area.) Four of the eight bytes are used for the sector values in
dynamically modifying the channel programs for RPS (See Section 2 for a discussion of the RPS start I/O

QISAM Load Mode Operation 17

appendages.) The other four bytes are used by the load mode variable-length-record processing modules for
track capacity calculations in the prime data area.

Initial Load or Reload Open Operations

For the initial load or reload of an ISAM data set, the ISAM load mode open executors structure,
allocate space for, and format the prime data area, the track index area, and, if specified, the high-level
index areas. An initial load open module (IGG0192G) also initializes fields in the ISLCOMON area to be
used by the load mode buffering routines.

The initial load or reload open routines of the load mode open executors also determine whether or not
the last track of the track index for each cylinder will contain one or more data records, (i.e., shared track).
If there is to be a shared track, temporary records representing each track index entry (preformat) must be
written so the first data records can be written before the actual index entries are developed and written.
Refer to the descriptions of modules IGG0192D and IGG0192S in the discussion of Load Mode Open
Phase Organization for further information on the preformatting of shared tracks.

Resume Load Open Operations

When opening an existing ISAM data set to add records at the end of the prime data area (resume load),
the load mode open executors for resume load must insure that the addressing control fields for prime,
index, and overflow records are accurate and usable for locating the last records in each area and loading
additional records into the data set. Control fields for buffering and record-moving logic must be initialized
in accordance with the dimensions of the already created data set; this is also done as part of the resume
load open operations. (Refer to Resume Load Open Organization for further details.)

Full Track Index Write Open Operations

The full track index write feature of load mode allows for accumulating and writing a full track of track
index entries as a group rather than singly (refer to Data Set Organization in Appendix A). The track index
entries are accumulated in the Track Index Save Area (TISA) shown in Section 5. A full track of track
index is written into the track index area of the data set when the TISA is full, when end-of-cylinder is
reached, or when the data set is closed.

When the user opens the DCB for load mode and specifies the full track index write option
(DCBOPTCD=U), the load mode open phase executors perform operations especially for the initialization
of the full track index write feature. These operations include acquiring the track index save area, and
initializing Channel program 20 to write the track index entries from the TISA to the direct access storage
device.

The Final Load Mode Open Phase Operations

The final load mode open phase operations are performed for all load mode open options. The final
load mode open executors:

1. Load the needed ISAM Load Mode modules containing the appropriate PUT macro routines,
appendages, and channel programs.

2. [Initialize channel program 19 for preformatting shared track (see Initial Load Options) in Area Z of
ISLCOMON when required.

3. [Initialize channel programs 20 and 21 for writing track and high-level index entries.

18

Load open
executors

Construct
work area

#

Construct 10Bs

!

Calculate
capacity
requirements

}

Determine and
load modules

!

Construct
channel
programs

Preformat
Preformat first cylinder

Return to
common open

Figure 6. QISAM Load Mode Open Executors

QISAM Load Mode Operation 19

Load Mode Open Phase Organization

Load Mode Open Executor IGG01921

20

As indicated in the Load mode open operations discussion, the first Load mode open executor, module
IGG01921, is entered for both initial and resume load. The operations for this module are outlined below.

1.

Obtain main storage space for the load mode work area (ISLCOMON), and set the work area
pointers.

Fill in the load mode Input/Output Blocks (I0OBs) in ISLCOMON.

Determine from the DISP parameter the user’s intent to reload the data set; reset the DCB status
bits if necessary, and reinitialize the data set in accordance with DCB parameters supplied in the DD
statements.

Determine if track capacity of the independent overflow device is sufficient to contain the
maximum length record for an overflow chain (the longest possible record in an overflow chain.

If the data set is to be loaded on an RPS device, IGG01921 will execute a GETMAIN for a load
mode work area eight (8) bytes larger than the normal ISLCOMON area.

Four of these extra bytes are used for sector values in CP18, CP19, CP20, and CP21, respectively.
Two of them are used in track capacity calculations for the last record overhead. The other two
bytes are used for the non-last record overhead. (See Section Eight for further description of these
eight bytes in the DCB work area.)

The last two halfwords of these eight bytes described above are used in the processing modules for
variable length record (VLR) in load mode; these two halfwords are used to calculate the VLR track
capacity of prime data records on RPS devices.

Upon completion of module IGG01921, the selection of modules to continue load mode open operations
depends on whether initial or resume loading is to take place: this is indicated in the flow diagram below
which shows the flow of control through the load open executors.

ISAM common
open executor
1GG0192C
Initial or resume
load open executors
Resume loading
1GG01921
Variable length Fixed length
| ___ __lnitial load records records
(or reload)
Cylinder/master
indexes 1GG0192D
1IGG0192E ——— 1GG01950 1GG01920
IGGO192F 1GG0196D
1GG0192G 1GG0195G
Cylinder/master
indexes
1GG0196G
ol IGG0195D

Figure 7. (Part 1 of 2) Flow of Control through Load Mode Open Executors

QISAM Load Mode Operation 21

No full track index write

Full track index write
open executors
FTIW
1GG0195T
FTIW
1IGG0195U
Write checking Y No write checking
1GG0192U IGGO192R
Final load mode
open executors
1GG0192S
Write checking $ No write checking
1GG0192V 1IGG0192T
1/0 support

open routine

Figure 7. (Part 2 of 2) Flow of Control through Load Mode Open Executors

22

TN

Initial Load Organization

If an indexed sequential data set is to be created, the first load mode open executor (IGG01921) passes
control to module IGG0192D.

Load Executor IGG0192D

IGG0192D calculates several control fields needed in load mode processing. Listed below are some of
the primary functions performed by module IGG0192D in structuring the prime data area and calculating
various DCB fields needed to allocate direct access device storage for track, cylinder, and master indexes:

1.

2.

Determines if the higher levels of index are to be used and where these are to be located.
Determines whether the track index will share a track with prime data records (‘“shared track”).

Calculates and sets the DCBHIRPD field (highest record that can be written in the prime area), and
the DCBHIROV field (highest record of overflow).

Uses the DEBFIEAD field (indicates if high-level indexes are to be used and set from the user
specified OPTCD parameter in the DCB) to determine whether high-level indexes are to be used. If
the user has not specified an independent index area, the DEBNOEE field is used to determine
whether an independent overflow area has been specified.

Module IGG0192D also sets indicators to specify whether independent index, independent
overflow, or the.prime area is to be used for the high-level indexes when these are requested by the
user. The indicators are passed to module IGGO192E when high-level indexes are reqired. Module
IGG0192D transfers control to module IGGO192F if high-level indexes are not needed.

Before transferring control to either module IGG0192E or module IGG0192F, module IGG0192D
establishes several fields in the DCB work area, ISLCOMON, to be used by other open modules.

Determines if shared tracks need to be preformatted by calculating the number of index entries
required per cylinder and dividing by the number of entries which will fit on a track, to yield
number of entries on the final track and the portion of the track available for data.

If an RPS device is being used, IGG0192D treats the cylinder value on the device as a halfword. It
also refers to the two halfwords for RPS, defined in IGG01921 (described above), rather than to the
I/O device table for its track capacity calculations for prime data records. A similiar field is used
during open processing for the analogous calculations on the index device. However, this field is
already defined in the DSECT for the QISAM load mode work area and is returned to its normal
usage at the completion of open operations. The index back-up routine in IGG0192D sets bits 1 or
2 of DEBRPSID if necessary, as does IGG0195D.

The Load Mode Open Executor IGG0192E

If in the initial loading (creation) or reloading of an ISAM data set, cylinder or master indexes are
specified, then executor IGG0192D will pass control to module IGG0192E. The functions of IGG0192E
during creation of the data set are outlined below.

1.

IGGO192E structures the high-level indexes, using information from the data fields established by
module IGG0192D.

Formats the cylinder and/or master indexes in the independent index, independent overflow, or
prime areas depending upon the user’s specifications (in his DCB and data definition statements).

QISAM Load Mode Operation 23

ISAM common
open executor

1GG0192C
Resume loading
1GG01921 -
| _ _ __Initial load
(or reload)
Cylinder/master 1GG01920 or
indexes . 1GG01950 (resume
1GG0192D load executors,
see figures 7 and 9)

IGG0192E ————J

1GGO192F

1GG0192G

Full track index No full track index write

*Write option }

1GG0192U or
1IGG0195T IGGO192R (final
(see figure 7) executors,

see figure 7)

Figure 8. Initial Load Open Flow

24

Load Mode Open Executor IGG0192F

If cylinder or master indexes are not required in the initial load for creating an ISAM data set, then
module IGG0192D will pass control directly to module IGGO192F, instead of IGG0192E. Executor
IGG0192F might also receive control from IGG0192E after IGG0192E has structured the high-level index
areas. The primary functions of IGG0192F are:

1. Module IGGO192F initializes several index location table pointers (the ISLIXT fields in
ISLCOMON) to point to high-level indexes if these indexes have been created by module
IGGO192E.

2. Initializes pointers in the DCB to the high-level index entries.

3. Places the calculated amount of storage needed for cylinder and master indexes in the DCBNCRHI
field. This field of the DCB is useful to the user if he later needs to bring the high-level indexes into
main storage to search them.

4. Module IGG0192F also computes the number of tracks available for independent and cylinder
overflow and places this calculation in the DCB, the JFCB, and the DSCB.

NOTE: When the JFCB or DSCB are modified, they are scheduled for rewriting.
Load Mode Open Executor IGG0192G

During the initial loading of an ISAM data set, control is transferred from moduleIGG0192F to executor
module IGG0192G.

1. Module IGG0192G sets up the buffer control table (IOBBCT) used by the PUT macro processing
modules.

2. Formats and initializes several fields in the DCB work area (ISLCOMON) which are used later in
load mode processing. These fields include:

e ISLCBF-—a pointer to the buffer to be loaded next by the put processing routine.

e ISLBMPR—calculated by adding the logical record length to the key length and used to
facilitate “‘stepping through” a series of records in blocked buffers.

e ISLFBW-—(equal to the number of buffers specified in the DCB minus one) used to determine
when buffers are filled and can be scheduled for writing.

e ISLEOB—contains the end of block address calculated from adding the contents of the
DEBBUFL field to the starting address of the buffer.

Resume Load Open Organization

If the user is adding new records to the prime area of a previously created data set (resume loading),
then module IGG01921 doesn’t pass control to module IGG0192D and the rest of the initial load modules;
instead, control goes to the resume load modules beginning with IGG01920 or IGG01950. (See Figures 8
and 9 for initial and resume load module flow.)

The beginning open executors for resume load insures the accuracy of the required DSCB and DCB
fields. If the user is resume loading a data set containing fixed length records, module IGG01920 is the first
module entered. If variable length records are being added to the prime area, module IGG01950 is entered
first. ‘

QISAM Load Mode Operation 25

Load Mode Open Executor IGG01920

1. Validates and resets the following fields in the format 2 DSCB, as needed:

DS2LPRAD-—the address of the last record in the prime data area. This address is in the form,
MBBCCHHR, and is subsequently moved to the DCBLPDA field.

DS2LOVAD-the address of the last record in the current independent overflow area. This
address is in the form of an MBBCCHHR address and is subsequently moved to the DCBLIOV
field.

DS2BYOVL—the number of bytes remaining on the current independent overflow track. This
count is later moved to the DCBNOV field.

DS2RORG2—the number of tracks remaining in the independent overflow area. It is
subsequently merged into the DCBRORG?2 field.

DS20VRCT—the total number of records in all overflow areas, merged to DCBNOREC.

These fields may be incorrect if the data set was previously closed improperly; thus, the resume load
modules need to validate these fields before adding more records at the end of the prime area.

Load Mode Open Executor IGG01950

IGG01950 is the VLR counterpart of module IGG01920. It is the first resume load module entered
when variable length records are being added.

This module may not be executed, although it will be entered, if the user has specified that the data set
may be shared by other tasks (DISP=SHR). It will not be executed in that case because another DCB may
have already been opened for the data set and a DCBFA (DCB field area) already set up for the purpose of
maintaining the DCB fields. (See DCB Integrity Feature and description of the DCBFA). The processing
sequence of IGG01950 follows.

1. IGGO01950 merges these end pointers from the format 2 DSCB to the DCB:

DCBLPDA—the direct access device address of the last record in the prime data area.

DCBLIOV—the direct access device address of the last record written in the independent
overflow area.

2. Module IGG01950 also adjusts, when necessary, the independent overflow control information in
the DCB:

DCBRORG2—the tracks remaining in independent overflow.
DCBNOV —the bytes remaining on current overflow track.

DCBNOREC—the number of logical records in the overflow area.

Load Mode Open Executor IGG0196D

From module IGG01920 or module IGG01950, module IGG0196D will be given control during the
opening of a DCB for resume load. The functions of IGG0196D follow.

1. Sets up the buffer control table.

26

TN

2.

3.

Sets up the R, F, and P bytes for the current-normal and current-overflow track index entries.

Initializes and executes Channel Program 31A which reads the key portion of the last overflow
track index entry of the last cylinder. CP31A reads this last overflow track index entry into the key
save area of ISLCOMON.

If necessary, module IGG0196D initializes and executes Channel Program 31B. CP31B is used when
the last prime data block allocated for the data set is not full. CP31B reads this unfilled last prime
data block into the first buffer specified in the buffer control table.

Load Mode Open Executor IGG0195G

The next module, after IGG0196D, to be executed during open processing for resume loading is module
IGG0195G. IGGO0195G is the resume load counter—part of the initial load module IGG0192G. Both
modules calculate and initialize fields in the ISLCOMON area, necessary for buffer and record management
in loadmode. IGG0195G also:

1.

Sets up ISLCBF, ISLEOB, ISLBMPR, and ISLFBW in the load mode DCB work area (ISLCOMON).
(See module IGG0192G, and the ISLCOMON area in Section 5).

Sets the DCBMSWA field to the direct access device address (MBBCCHH) of the next to last track
in the last prime data extent. The DCBMSWA field normally contains the address of a user-supplied
work used when records are being added to an existing data set.

Initializes record moving logic.
Initializes Area Y, the Load mode processing work area containing a high level index entry, and

normal and overflow track-index entries. Area Y is shown in Figure 69.ISLVPTRS (in ISLCOMON)
points to area Y.

Load Mode Open Executor IGG0196G

1.

Sets the count fields in ISLCOMON:
® ISLNCNT-the count field for the current normal-track-index entry.
® ISLOCNT-the count field for the current overflow-track-index entry.

® ISLDCNT-the count field for the current dummy-track-index entry.

2. Sets the count fields in:

® The first buffer

® DCBLPDA-the direct access device address of the last prime data record in the prime data area
(MBBCCHHR).

® IOBSEEK-an extension of the standard IOB. This extension is present whenever the data set is
on a direct access storage device. The IOBSEEK field (or extension) comes after the standard
IOB and precedes the access method extension. IOBSEEK contains the seek address required by
the channel program in performing the I/O request (IOBSEEK+3).

QISAM Load Mode Operation 27

Load Mode Open Executor IGG0195D

If the user has no high level indexes (cylinder or master indexes), then, upon completion of module
IGG0196G, all the open executors used for resume load only will have been executed; and the flow of
control will pass to the rest of the load mode open executors which are used for both initial and resume
load (see Figures 8 and 9).

However, if during the opening of a DCB for resume loading, high level indexes are required, control
will be transferred from module IGG0196G to module IGG0195D.

The functions of IGG0195D, the last resume load open executor, are described below.

1. Initializes the index location table (ISLIXLT) in the load mode DCB work area (ISLCOMON).
ISLIXLT contains the beginning and ending address for each level of index above the track index.

2. 1If the direct access device being used is a 2321, corrects the bin number in the index location table.

Full Track Index Write Phase Organization

If the full-track-index-write option has been selected by the user, two load mode open executors (used
exclusively with full-track-index-write initialization) are entered. These modules are IGG0195T and
IGG0195U. Both modules are executed during a resume load when the full-track-index-write option has
been selected. For an initial load, only module IGG0195T is executed.

Modules IGG0195T and IGG0195U are both described below.

. Load Mode Open Executor IGG0195T

1. Calculates the size of the track-index-save-area (TISA). When the full-track-index-write feature is
selected, the TISA is used by the full-track-index-write-put routine module (either IGG0191I1 or
IGG0192, see Table 1) to accumulate track index entries and write them as a group. This is done
once for each track of track index. (The full-track-index-write is described in the discussion of the
Load Mode Processing Phase Operations.)

2. Calculates the size of the appropriate version of channel program 20.

3. Obtains main storage space for both the TISA and CP20, and initializes both. If main storage space
is not available, the full-track-index-write feature will not be employed.

Load Mode Open Executor IGG0195U

If the DCB is being opened for resume loading of an ISAM data set, IGG0195T will transfer control to
IGG0195U.

1. IGGO0195U initializes the track-index-save-area and CP20 resume writing track index entries.

The Final Executors in Load Mode Open Phase Organization

From the Resume or Initial Load open modules, and from the Full Track Index Write modules if used,
control is passed to the final Load mode open modules which are used for all forms of Load mode open
processing.

28

ISAM common
open executor
1GG0192C
1GG01921 Resume loading _
Variable length Fixed length
records records
Initial load
T~ "7~ 777 (orreload)
1GG0192D
(see figure 8) 1GG01950 1GG01920
1GG0196D
1GG0195G
1GG0196G Cylinder/master indexes 1
-—— * 1GG0195D
No full track index write
FTIW v ‘
Full track 1GG0192U
; i or
index write IGGO195T |GG0192R
(see figure 7) (final executors,
see figure 7)

Figure 9. Resume Load Open Flow

QISAM Load Mode Operation 29

Load Mode Open Executor IGG0192U

The first of the final open executors entered may be either module IGG0192U or IGGO192R.
IGG0192U will receive control if the user has specified that Write Checking will be used, module
IGG0192R will receive control if Write Checking is not being employed.

1. Load the modules that contain the:

e Macro-time routines-Modules IGG019GB, or IGG019IB for the PUT routine or Module
IGG01912 for Full Track Index Write

e Appendage routines-module IGG019GD
® Channel programs-Module IGG019GI or IGG019IF

2. Module IGG0192U will also obtain main storage space for the channel programs needed by the
processing routines.

3. Module IGG0192U will build channel program 18 from its skeleton brought in module IGGO19GF
or IGGO19IF.

Load Mode Executor IGG0192R

IGG0192R performs exactly those functions outlined above for module IGG0192U, except those
necessary for write checking.
Load Mode Executor IGG0192S

Module IGG0192S receives control from either IGG0192U or IGG0192R.

1. This module will build channel program 19 from its skeleton. CP19 is used to initialize the cylinder
overflow record and to preformat shared tracks when required with fixed length records.

2. 1If a track is being shared, the temporary index entries on the shared track of the first cylinder are
written. This is referred to as “preformatting” the first shared track. Channel program 19 is used to
preformat shared index tracks. The preformatting of shared tracks pertains to fixed length records
only. Area Z in ISLCOMON is used as a work area in preformatting the first shared track.

The description of module IGG0192D also discusses the shared track feature.

Load Mode Processing Phase Operations

When loading or resuming the loading of an ISAM data set, the user issues a PUT macro instruction to
place the record in the data set. The put routine moves the record to the buffer. When a specified number
of buffers are full, channel programs are scheduled to write the buffers into the prime data area of the data
set and to create or update any required index entries.

An appendage routine analyzes the results of each channel program execution. When necessary, the
appendage routine will start a new channel program to continue or complete the request, or it will process
and resolve errors resulting from the channel program execution. If the original request was successfully
completed, the appendage routine returns control to the user.

Information about the data set is communicated among the processing routines and the channel
programs in control blocks and work areas. These data areas are described in detail in Section 5.

This section describes the processing routine logic, the flow of control through the channel programs,
and the relationships of the data areas to each other, the channel programs, and the processing routines.

30

PUT Routine

Successive PUT macro instructions cause entries to the put routine which places records into the data
set and creates the necessary indexes. The records must be in data key sequence. The put routine may
operate in either of two modes: move or locate. In move mode, the routine actually moves a logical record
from an input buffer or work area into an output buffer. In locate mode, the routine supplies the address of
an output buffer to the processing program, which must then move the record to that buffer. The mode of
PUT is specified in the DCBMACREF field of the DCB.

The put routine utilizes the beginning of buffer and end of buffer subsidiary routines to accomplish
buffer management. The put routine initializes the various channel programs and requests execution of
them when writing data or indexes. The appendage modules gain control after channel program execution
and indicate whether or not the writing was successful.

The put routine first checks to see if the appendage routine has signaled (in DCBEXCD1) an
uncorrectable write error on a previous attempt to write either data or index entries. If so, the put routine
takes the exit to the processing program’s synchronous error routine, where the user may either issue a
CLOSE macro instruction or terminate the task. In any event, no more records will be accepted. The results
are unpredicatable if the programmer issues another PUT macro instruction.

The put routine then performs a check on the data key. (In locate mode the key checked is that of the
previous record.) If the keys are not in ascending sequence, control is given to the user’s synchronous error
routine. However, in this case, if the processing program is able to correct the sequence error, it may issue
another PUT for this record, and continue normal processing.

For variable length records, the put routine compares the length of the record with the maximum
record length specified in DCBLRECL. If it is greater than the maximum record length, the put routine sets
bit 4 of DCBEXCD2 and enters the user’s synchronous error routine. The user may either change the record
length and reissue a PUT for this record or he may for the next record.

The put routine next determines whether the processing mode is move or locate mode.

Move Mode Processing

Fixed Length Records: If the current buffer is full, the routine links to the beginning of buffer routine to
initialize a new buffer.

It then moves the user’s record to the buffer. If this record completes the buffer, the routine links to
the end of buffer routine to attempt to write the buffer. If the buffer is not full but a write channel
program is available, the routine uses the end of buffer routine to attempt to write any previously filled
buffers which could not be written for lack of a channel program.

The routine then returns control to the user.

Variable Length Records: If the record format is blocked and the record will fit in the current buffer
and/or on the current track, it is moved into the buffer and control is returned to the user. If the record
format is unblocked or if the current buffer is full, control is passed to the end of buffer routine to
schedule the current buffer for writing. The end of buffer routine will pass control to the beginning of
buffer routine to initialize the next buffer. Then the record is moved into the new buffer and control is
returned to the user.

If the record will not fit on the current track-either as part of the current buffer or as another block-the
current buffer is marked as the last for the current track. Control is then passed to the end of buffer routine
to schedule the current buffer for writing. The end of buffer routine passes control to the beginning of
buffer routine to initialize the next buffer. The record is moved into the new buffer and control is returned
to the user.

QISAM Load Mode Operation 31

Entry from
PUT macro

Previous
permanent
1/0 error

Sequence check

Current buffer full

Set error signal

Error return

Current
buffer full

EOB routine

Attempt to write
current buffer

!

BOB routine

Initialize new buffer

Provide buffer pointer

BOB routine

[l——

Initialize new buffer

|

Move record
to buffer

Current buffer full

EOB routine

Channel program
available

Attempt to write
current buffer

EOB routine

Attempt to write
previous buffers

Y

Figure 10. Load Mode Put Routine

32

Locate Mode Processing

Fixed Length Records: If the current buffer is full the put routine links to the end of buffer routine to
attempt to write the buffer just filled and then immediately links to the beginning of buffer routine to
initialize a new buffer. If the current buffer is not full but channel program (CP) 18 is now available, the
routine links to the end of buffer routine to attempt to write any buffers which could not be written
previously because the channel program was in use.

The locate put routine then provides the processing program with the address of an available buffer and
returns control to the processing program.

Variable Length Records: The PUT routine will compute the remaining bytes in the current buffer, using
the buffer size and subtracting the sum of the logical record lengths of those records that have already been
placed in the buffer by the user. Then the routine will determine if another record of maximum LRECL
can be placed into the address of the available position in the buffer. Otherwise, if the remaining bytes in
the buffer is less than LRECL or if record format is unblocked, control is passed to the EOB and BOB
routines as described above in the discussion of move mode. If it is determined that LRECL bytes added
either to the current buffer or as another block will exceed the remaining capacity of the current track, the
current buffer is marked as the last for the track. Control is then passed to the EOB and BOB routines.

Beginning
of buffer

Locate count field
in previous buffer

Will new count
start new cylinder

Preformat
new cylinder

Preformat

Initialize
new buffer

Figure 11. Load Mode BOB Routine

QISAM Load Mode Operation 33

Beginning-of-Buffer Routine

The beginning of buffer routine initializes a new buffer and determines the device location into which
the buffer will eventually be written.. If the records are fixed length and the location for this buffer proves
to be the first location available for data records on a new cylinder, CP19 may be called to preformat the
track index of the cylinder if it is to contain a shared track and/or a cylinder overflow control record. In
the preformatted records only the count field is significant.

If writing this buffer will cause the data set to exceed the prime data space allocated to it, or if the
appendage routine has indicated an uncorrectable write error occurred during an attempt to add the
previous contents of this buffer to the data set, the beginning of buffer routine takes the exit to the
processing program’s synchronous error routine.

The user may either issue a CLOSE macro instruction or terminate the task. In any event, no more
records will be accepted when either of these errors occurs. The end of buffer routine is entered when the
put routine has determined that the current buffer is full. It will initiate writing the current buffer plus any
previously filled buffers not yet written if the current buffer is marked as the last for the current tracks or
if the number of buffers ready for writing is equal to the contents of ISLFBW.

End-of-Buffer Routine

The number of buffers which must be filled in order for a write to be scheduled, so that the number of
writes per track is kept minimal, is maintained in the field ISLFBW. Its content depends on the number of
buffers in the pool; however, it does not exceed the number of buffers necessary to fill an empty track if
one is to be started or to fill a partially written track if one has been started.

If a channel program is available and if the number of full buffers is equal to the content of ISLFBW,
the end of buffer routine schedules a write channel program for that number of buffers and then
recomputes the number. If a track or cylinder is to be completed, it also schedules channel programs to
write index entries.

End of buffer

Should Channel Schedule Compute number
write be program channel 3 Of buffers to be
executed available program(s) written next

Figure 12. Load Mode EOB Routine

Full-Track-Index-Write

The Full-Track-Index-Write is an option for load mode that may be selected by specifying
DCBOPTCD=U.

34

Channel End
CP 18/20

Entry from 10S

Reset CP 18/20
busy bit

ﬁ

Channel End
CP 19

Entry from 10S

Less than 10
entries to write

Normal return
to 10S

Set status bits
‘Buffer Available’ for
each buffer written

Set CP start address
to skip cylinder
overflow control
record write

First execution
of CP 19

!

'

Update pointer to
next buffer group to
be written (IOBPTRA)

Initialize Final .
count fields mafexpecutlon
in area Z of CP 19

Normal return
to 10S

Construct entry in area
Y portion of load
mode work area

!

Initialize CP 21
to write
master index entry

EXCP return
to 10S

EXCP return Normal return
to 10S to 10S

Channel End

CP 21

Entry from 10S

Master index
entries to write

Normal return
to 10S

Note: CP 21 writes the cylinder and master index entries
on initial entry to the cylinder index entry already
written.

Figure 13. Load Mode Channel End Appendage Routines

QISAM Load Mode Operation 35

When the option is specified, ISAM accumulates track index entries in a track index save area (TISA)
obtained during open processing and writes these entries as a group, once for each track of track index.

The track index save area (TISA) obtained during open processing is preceded by a twenty-byte control
field which controls placement of entries. If an area of sufficient size is not available for the TISA, ISAM
defaults to the usual mode of processing. (Normal and overflow entries written at the end of each prime
data track.)

The TISA is written when it is full, when end-of-cylinder is detected, or at processing time.

Appendages

There are both channel end and abnormal end appendages for the channel programs of load mode.

Channel End Appendage: The channel end appendage for CP18 and CP20 indicates successful completion
of the channel program to the put routines. The channel end appendage of CP21 indicates successful
writing of an index record and determines whether a higher level index entry is needed. If so, it creates that
index entry and issues an EXCP so that entry will be written. The channel end appendage of CP19 receives
control after ten index entries have been written on a shared track and checks to see if more are needed. If
the track is not yet full, it continues to issue EXCP commands until the track is properly formatted.

Abnormal End
Appendage

Entry
from 10S

Permanent
1/0 error

Normal return
to 10S

CP 18 Set status bits Move first 16 bytes
prime data of buffer(s) [—® of I0B to load
in error mode work area

Load reg 0—address
Set DCBXCD1 of buffer in error

uncorrectable B reg 1—address of first
1/0 error 16 bytes of 10B

Normal return
to 10S

Figure 14. Load Mode Abnormal End Appendage Routine

36

When write checking has been specified, the CP18 and CP19 channel end appendages reinitialize those
channel programs to reread the data or index entry written before indicating successful completion.
Appendages do not modify the channel programs when CP20 and CP21 are used with write checking
because those channel programs are designed to readback without modifications.

Abnormal End Appendage: The abnormal end appendage for CP18, upon finding a permanent error,
identifies the buffer in error, saves the contents of the appropriate input/output block (IOB), and indicates
the error to the put routine. The abnormal end appendages for CP19, CP20, and CP21 will also indicate
permanent errors to the put routine.

When write checking has been specified, the CP18 and CP19 abnormal end appendages have an
additional function. If an error (e.g., data check) is detected during read-back, the appendage reinitializes
CP18 or CP19 for writing and issues the EXCP command.

Load Mode Processing Phase Organization

The processing routines of load mode include one module which contains the put routine and its
subsidiary routines: the beginning-of-buffer (BOB) routine and the end-of-buffer (EOB) routine. In
addition, there is one module of appendages and one module of channel programs. Each of these modules
exists in several versions; the version selected and executed depends on the options specified by the user.
Load mode open executors, IGG0192U and IGG0192R, load the proper version according to the users
program options. Table 1 shows the load mode processing modules.

Table 1. Load Mode Processing Modules

Module Name Additional Considerations Function
IGGO19GA No Write Check
Fixed Length Records . .
IGGO19GB Write Check PUT. processing co.ntams PUT
routine, EOB routine, and
IGGO19IA No Write Check BOB routine.
Variable Length Records
1GG0191B Write Check
1IGG019GC No Write Check PUT Appendage routines—
Channel end and
IGGO19GD Write Check abnormal end.
IGGO19GE No Write Check
Fixed Length Records
IGGO19GF Write Check Channel program skeletons—
contains CP18, CP19, CP20
IGGO19IE No Write Check and CP21.
Variable Length Records
IGGO19IF Write Check
1GG01911 No Write Check Full Track Index Write
Routines—contain CP20A,
1GG01912 Write Check CP20B, and CP20C.
IGG019GG RPS S10 appendage

QISAM Load Mode Operation 37

Channel Programs

The channel programs (except CP31 and CP91) exist in “‘write checking” and ‘“no write checking”
versions. CP19 and CP20 also exist in different versions for fixed length records and variable length records.
Table 3 shows which channel program skeleton modules are loaded for each combination of user options.
Flow of control through the channel programs is shown in Figure 15 for fixed length records and in Figure
16 for variable length records.

CP18 Used to write prime data records.
CP19 Fixed Length Records: Used to initialize cylinder overflow record and shared index tracks
(preformat).

Variable Length Records: Used to initialize cylinder overflow control record.

CP20 Used to write track index entries.

CP20A Used to write a full track of track index entries on a non—shared track of track index
entries.

CP20B Used to write a shared track of track index entries.

CP20C Used to perform write checking for CP20A and CP20B.

CP21 Used to write cylinder and master index entries.

CP31A Used to read the key portion of the last overflow track index entry of the last prime data

cylinder into the keysave area. (Resume loading only, located in IGG0196D.)

CP31B Used when the last prime data block is not full to read it into the first buffer specified in the
Buffer Control Table. (Resume loading only, located in IGG0196D.)

CP91 Used to fill unused index tracks with inactive and dummy entries. (CP91 is located in
IGG0202K.)

38

EOB Routine

PUT

BOB Routine

Calculate device
address for buffer

buffer begin new

No

+ Yes

CP 19 Apperdage
More preformat
entries to be
written

Tno

[cp19]

Yes,

Preformat
track index

Update extent
number and
extent address

buffer begin new

buffer begin new

Y | ves

[cen | CP 21 Appendage

Yes [Write cylinder
s Next level index
and (if needed) to be written?

master indexes

lNo

Full track

Full track
of track index

index write
option

entries

track index
entry in TISA

Write track
index

1 1

208/20C

Write accumu-
lated track
index entries

/ ICP 18/20 Appendage]

[cris

Write prime
data record

Y

‘ Return to user ’

Figure 15. QISAM—Load Mode Channel Program Flow (Fixed Length Records)

QISAM Load Mode Operation 39

PUT
BOB Routine

Y

Calculate device
address for buffer

EOB Routine

Update extent

number and
extent address

Will this
buffer begin new
extent

l Yes

CP 21 Appendage

Y
]

Next level index

[CP 21

Write cylinder
and (if needed)

master indexes

to be written?

INo

CP 19 Appendage

Cylinder
overflow option

/

[crig
Write COCR
on new
cylinder

Full track
of track ind

Will this

track

buffer begin new

No

Full track
index write

entries

lex

Write accumu-

lated track
index entries

option
No No
Accumulate
Write track track index
index entry in TISA
{ [cpris] [cPi8/20 Appendagd
Y [:[Write prime
/ data record

Y
(Return to user >

Figure 16. QISAM—Load Mode Channel Program Flow (Variable Length Records)

40

Control Blocks and Work Areas

Information about the data set and processing requests is carried in various control blocks and work
areas. The relationship of these areas to each other and to the data set and processing programs is shown in

Figure 17.

DCB DCB WORK AREA (ISLCOMON) CHANNEL PROGRAMS
(A 0 ECB 10BA
14 |DbcBBUFCB 2c ECB 1088 P18
2D | DCBDEBAD
68 ECB 10BC
30 |pcsput
84 Area Z (Preformat Work Area) CP 20/20A
DC Index Location Table cP 21
E4 DCBWKPT1
FO | DCBWKPT4 —"@
F4 | DCBWKPTS @ 144 Various buffer/data set work CP 19/91
F8 DCBWKPT6 fields and pointers
_\ 284 CP31A/318
ISLVPTRS CP 208
(Pointers to CPs, Area Y, etc.)
CP 20C
Buffer Control Table
TISA
DEB Area Y
-18 | 1 CE appendage table Keysave Area
-14 | 1 AE appendage table
ISAM DATA SET
k Prefix section
_ Index
18 | DEBDCBAD Basic section BUFFERS
‘—J 1C | DEBAPPAD
(:) —
20 | #1Index DEBFIEAD _ —
24 | #Prime DEBFPEAD . - L
28 | #Overflow DEBFOEAD -
S
L Prime extents == Prime (;
F Index extents = < -
s T -
Overflow extents 1 (
r Module 1D table = Overflow ||
NOTE: Displacements are in hexadecimal
CB
B D
®© 8;;__1“_'0_'@1&“
PUT module PUT
appendage

Figure 17. Load Mode Control Blocks and Work Areas

module

QISAM Load Mode Operation 41

Load Mode Close Phase Operations

The first load mode close executor is entered from the I/O support close routine. When all previously
scheduled writes are finished, the load mode close executors complete the data set activity for load mode.
Figure 18 below shows the load mode close phase functions.

Load mode
close executor

Pad last buffer
if necessary

}

Complete writing
of buffers
if necessary

Complete writing
of index entries
if necessary

Write end
of data mark

Pad out track
indexes on all
unused cylinders

Pad out
high level indexes
if necessary

i

Transfer to
common close
executor

Figure 18. Load Mode Close Executors

42

Load Mode Close Phase Organization

The close phase of QISAM load mode comprises six executor modules which perform operations
required to complete data set activity when a previously scheduled write operation is complete.

Load Mode Close Executor IGG02021

If a variable length record data set is closed, IGG0202I will not be executed, but it will transfer control
to the VLR close executor, module IGG02028.

With the closing of a fixed length record data set, IGG0202I does the following:
1. Pads (fills with dummy records) the last buffer, if necessary.

2. Writes all filled but unwritten buffers.

3. Completes the index entries.

Load Mode Close Executor IGG02028

This module receives control following the closing of variable length record data sets only. It then:
1. Pads the last buffer when necessary.

2. Writes all buffers that are filled but not yet written into the data set.

3. Completes the index entreis so these reflect the complete data set.

Load Mode Close Executor IGG0202]

1. IGG0202] writes the end of data mark after the last data record.

Load Mode Close Executor IGG0202K
1. Performs calculations for modules IGG0202L and IGG0202M in padding unused index space.

2. Initializes channel program CP91 is used to fill unused index tracks with inactive dummy entries.

Load Mode Close Executor IGG0202L

1. Writes the final dummy end index entry.

2. Pads, with inactive entries, the unused track index space of the cylinder containing the last prime
data record. Module IGG0202L uses ISLNIRT to signal the end of track index padding.

Load Mode Close Executor IGG0202M

1. Determines if higher level indexes exist and, if so, write the final dummy entries for these.

2. Pads out any unused index space with inactive entries. (See Data Set Organization section for
information on dummy entries and padding.)

The flow of control through the close executors is shown in Figure 19. After the mode-oriented
close executors have completed their functions, the ISAM common close executor (IGG0202D) receives
control. After completing the closing functions common to all ISAM, it returns control to the input/output
support close routines.

QISAM Load Mode Operation 43

Input/Output
Support
Close Routine

Y

1GG02021

Variable Length Records

Fixed /
Length
Records

1GG02028

A

1GG0202J

-

1GG0202K

1IGG0202L

1GG0202M

Y

ISAM Common
Close Executor
1GG0202D

Y

Input/Output
Support
Close Routine

Figure 19. The Flow of Control Through QISAM Load Mode Close Executors

44

Queued Indexed Sequential Access Method Scan Mode

The scan mode of QISAM retrieves and updates the records of an indexed sequential data set, in a

manner similar to that of the queued sequential access method.

There are three phases of scan mode routines: open phase, processing phase, and close phase.

Scan Mode Open Phase Operations

The ISAM common open executors are executed when an indexed sequential data set is opened and is
to be processed by scan mode. The last ISAM common open executor passes control to the scan mode open

executors. The functions of these executors are shown in Figure 20.
Scan open
executor

Move format 2
DSCB items to
DCB

Construct
work area

Load scan
mode modules

l

Initialize channel
programs and
free queues

Return to open

Figure 20. QISAM Scan Mode Open Executors
QISAM Scan Mode Operation 45

Scan Mode Open Phase Organization

The scan mode open executor modules are IGG01920, IGG01950, IGG01928, IGG01929, and
1GG01924.

The common open executor IGG0192C transfers control to the beginning open executors which are the
validation modules, IGG01920 and IGG01950. The validation modules insure that the DSCB and DCB
fields needed are still accurate. If the data set contains fixed length records, module IGG01920 will be the
first module entered. For variable length records, module IGG01950 will be entered first. IGG01920 and
IGG01950 are described in common processing module description part of this manual.

Upon completion, the validation module (IGG01920 or IGG01950) passes control to the first executor
used exclusively in opening for scan mode, module IGG01928.

Scan Mode Open Executor IGG01928

1.

2.

Obtains main storage space for and structure the QISAM scan mode DCB work area (see Section 5).
Loads scan mode processing modules processing routines.
Loads the module which contains the channel program skeletons, module IGG019HL.

Moves the required channel program skeletons into the scan mode work area (see Figure 32). This
includes moving one copy of read/write channel program, CP22, into the work area for each buffer.

Deletes the channel program skeleton module, IGG019HL, from main storage.
Tests the bits at DEBRPSID for an RPS device. If any of the bits are on, the scan mode SIO

appendage, IGG019HA, will be loaded. A GETMAIN for a 16-byte larger work area is issued to
allow for the channel program prefix required RPS devices.

Scan Mode Open Executor IGG01929

1.

2.

Initializes the channel programs loaded by module IGG01928 in the DCB Work Area. If necessary
initializes these channel programs to their ‘non-RPS’ state.

Chains the copies of CP22 together. Assigns a buffer to each copy of CP22.

Scan Mode Open Executor IGG01924

1.

46

Moves the format 2 DSCB fields needed into the DCB. (See modules IGG01950 and IGG01920, in
Section Two.)

Loads the RPS SIO appendage if required. (See module IGG01928 above.)
Completes the initialization of the scan mode work area.

Obtains the interruption request block (IRB) which will be used by the supervisor to maintain
information concerning an asynchronous routine located in the GET appendage module, module
IGGO019HG. Among the information in the IRB is the entry point address (RBEP—see the IRB as
shown in Figure 32) of the asynchronous routine within module IGGO19HG. (See the discussions of
the scan mode GET routine and the appendages, for further information on this asynchronous
routine).

PN

5. Calculates W1ICNOT which is equal to the integer that will contain the number of buffers
(DCBBUFNO) divided by (W1ICNOT=BUFNO/2).

WI1ICNOT is located in the Scan Mode DCB Work Area, and is used in scheduling Input/Output
requests. The read/write channel program (CP22) will only be scheduled if the WIICNOT field is

set.

IGG0192C

Y Y

1GG01950 1GG01920
1GG01928
A
1GG01929
i
1GG01924
4
108

Figure 21. Flow of Control Through Scan Mode Open Executors

Scan Mode Processing Phase Operations

QISAM scan mode is designed to read records from and/or write records back to an ISAM data set,
selectively. Scan mode may be used to retrieve and update indexed sequential data records sequentially or

QISAM Scan Mode Operation 47

randomly. The basic features of scan mode which make it able to retrieve and update records from any
point in the data set are:

e A buffer controlling technique which allocates a copy of the read/write channel program (CP22) to
each buffer.

e Several “logical” buffer queues to which each copy of CP22 and the buffer that the CP22 points to
may be moved. Figure 22 illustrates the chaining of channel program 22 and the buffers on these
queues.

o Usage of the WIICNOT field in the scan mode DCB work area. WIICNOT is equal to the number of
buffers being used (DCBBUFNO/2). W1ICNOT is especially important in the scheduling routine
operations. (Refer to the scheduling routine description.)

The five macro instructions which cause scan mode processing routines to retrieve and update indexed
sequential data records are SETL, GET, PUTX, ESETL, and RELSE. These macros are described fully in
the publication IBM System/360 Operating System: Supervisor and Data Management Macro Instructions.

The SETL routine sets the starting point of retrieval. The GET routine makes records available to the
processing program. The PUTX routine restores the records to the data set. The ESETL routine terminates
scanning of the data set. The RELSE routine causes the remaining records fo the current buffer to be
bypassed.

SETL intiializes channel programs to search the indexes for the start-of-retrieval point and to read in
the first buffer or buffers. GET initialites channel programs to read successive buffers, and PUTX causes the
same channel programs to be reset and rescheduled to write the updated buffers back into the data set.

The channel programs for scan mode are described in detail in Appendix B. Appendage routines analyze
the results of each channel program and initiate further processing operations depending on the status of
the channel program’s successful or unsuccessful execution.

Information about the data set is communicated among the processing routines and the channel
programs in control blocks, work areas, and queues. This section shows the relationship of these areas to
each other. They are described in detail in Section 5.

This section describes the processing routine logic.

Buffer Control Techniques

Buffers are attached, by a copy of CP22, to any one of the five buffer queues. (See Figure 22.) These
queues are used in controlling input/output operations. The buffers are assigned to particular queues
according to the current status of each buffer.

- 1. FREE Queue Buffer not in use.

2. READ Queue Buffer scheduled to be filled (a version of CP22 will read a record or records into the
buffer.)

3. USER Queue Buffer made available for processing program use by the GET macro instruction.
4. PUTX Queue Buffer flagged as ready to be written.

5. WRITE Queue Buffer scheduled to be written.

48

Free Queue Read Queue User Queue PUTX Queue Write Queue
First CP First CP First CP First CP First CP

Last CP Last CP Last CP Last CP Last CP

T R | c | c c | ¢

N\

Channel Program 22 Channel Program 22 Channel Program 22 Channel Program 22

Buffer 1 Buffer 2 Buffer3 |*°°"" Buffer i

NOTE:
C = number of buffers in the queue.
R = aresidue of unused buffers in Read Queue.
The R field is used to provide more efficient
scheduling of overflow records.

Figure 22. Scan Mode Channel Program/Buffer Queues

The queuing on these buffer queues is handled by the GET macro instruction routine and its subsidiary
routines— the scheduling routine and the end-of-buffer (EOB) routine. However, all scan mode routines
handle the buffer queuing to some degree. Figure 23 illustrates the buffer movement during Scan mode
processing.

ESETL
\
To initiate a Scan " To Terminate a Scan
SETL ESETL ESETL
i Y [
Free Read User PUTX WRITE
Queue Queue Queue Queue Queue
A A A \ A \
Scheduling Routine GET/EOB Routine EOB Routine EOB Routine
(If PUTX is Issued)
End of Buffer or ESETL

(If No PUTX is Issued)
GET/End of Buffer Routine

Figure 23. Buffer Queueing and Movement in Scan Mode

The buffer queue movements of SETL and ESETL are shown in the upper portions of Figure 23, and the
effects of GET and PUTX are in the lower portion. The routines that queues are indicated on the flowlines
to and from queues.

QISAM Scan Mode Operation 49

An Example of Buffer Movement in Scan Mode

For this example, it

has been assumed that the number of buffers=3, the number of logical records per

buffer=2, each GET macro instruction issued is followed by a PUTX macro instruction.

Macro Instructions Buffer Movement

1. OPEN All buffers (3 buffers in this example) are placed on the FREE queue.

2. SETL a.

3.GET (1st GET) a.
b.

C.

Locate the starting record of the file, or string of records specified in the SETL
macro instruction.

. Place buffer 1 on the READ queue and schedule a read of the specified records
into buffer 1; wait for completion of the read.

Move buffer 1, which has been filled, to the USER queue.
Move buffers 2 and 3 to the READ queue and schedule a read operation.

Return the address of the first record retrieved to the user.

4. PUTX Any PUTX will simply set an indicator that the current record is to be written back
to the data set and return. (Refer to Figure 28.)

5.GET (2nd GET) a.

b.

6. GET (3rd GET) a.

b.

C.
7. GET (4th GET) Re
8. GET (5th GET) a.

b.

9. GET (6th GET)

®

b.

10. GET (7th GET) a.

50

If the outstanding reads from the previous GET are completed, move those
buffers to the USER queue.

Return the address of the next input record to the user.

On the third GET, move the processed buffer— buffer 1— to the PUTX queue. (It
is assumed that a PUTX macro follows each GET in the processing program.)

Move buffers 2 and 3 from the READ queue to the USER queue, unless these
buffers were moved to the USER queue by the GET routine in step 5.

Return the address of the next input record in the file to the user.
turn the address of the next input record to the processing program.
Move the processed buffer (buffer 2, in this instance) to the PUTX queue.
Move two buffers from the PUTX queue to the WRITE queue and schedule a write
operation. Since the PUTX has been executed for two buffers, a WRITE may now
be scheduled. (See Scheduling and End of Buffer routines.)

Return the address of the next input record.

If the scheduled write is complete (step 8), move the two buffers from the WRITE
queue to the READ queue and schedule a read.

Return the address of the next input record.

On the seventh GET, the processed buffer (buffer 3, in this example) is moved to
the PUTX queue.

b. When the scheduled read is complete (step 9), move two buffers to the USER
queue. (It may be necessary to wait for the last scheduled write, move the buffers
to the READ queue, issue a read, and wait for that read before this step can
be executed.)

c. Return the address of the next input record.

11. GET/PUTX The succeeding GET and PUTX macro instructions will repeat steps 7 through 10.
Every time a read takes place, 2 blocks will have been filled. For a write to occur, 2
buffers must be filled.

12. ESETL a. WAIT for any outstanding read or write to be completed.
b. Move buffers from the READ or WRITE queue to the FREE queue.

c. Move any buffers from the USER queue to the PUTX queue or to the FREE
queue.

d. Move any buffers on the PUTX queue to the WRITE queue and schedule a write.
13. CLOSE a. Wait for any scheduled, but uncompleted, writes to be completed.

b. Return all buffers to the buffer pool.

SETL Routine

The SETL routine determines the start of a scan by executing a channel program (dependent on the
SETL option used) to search the indexes for the first record or block to be retrieved. In scan mode, records
are retrieved from the beginning of the data set unless a SETL macro is used.

In addition to determining the starting point, the SETL routine initializes the buffer queues. When
scanning is initiated, all buffers are on the free queue. (See “Scan Mode Open Phase”.) However, when
subsequent scans are to be initiated, it is possible that buffers will still be on the write queue from the
previous scan. When this is the case, the SETL routine moves these buffers to the free queue after awaiting
the completion of any writes in progress. The SETL routine then moves a buffer from the free queue to the
read queue, initiates a read operation, and upon completion of the read operation, returns control to the
processing program.

If the SETL routine detects any error condition, it sets the corresponding bit for that error in the DCB
exceptional condition (DCBEXCD1) field. (The exceptional condition codes are described in Section 9.)
After setting this bit, SETL passes control to the processing program’s synchronous error routine (SYNAD).
If no synchronous error routine is present, the task is abnormally terminated.

When the data set is shared (DISP=SHR), the SETL routine will cause the DCB Field Area (DCBFA) to
be updated. (See The DCB Integrity Feature.)

QISAM Scan Mode Operation 51

SETL macro

DISP = SHR

Refresh DCB

No
-t

Determine
start of scan.

WAIT

]

For completion
of writes

Y

Type of SETL

Move n/2
buffers from
free queue

to read queue

T
-

Move write
queue to
free queue

Move one
buffer from
free queue

to read queue

EXCP

Read

For completion
of read

Figure 24. Scan Mode SETL Routine

52

GET Routine

The get routine retrieves records from the data set sequentially, and gives the processing program access
to a record in the current buffer on the user queue. (SETL fills the first buffer.) The get routine has two
subsidiary routines: the end of buffer routine and the scheduling routine.

If, on entry from the macro instruction, the user has already been given access to the last record of the
user queue buffer currently being scanned, the routine links to the end of buffer routine to advance to a
new buffer.

Then, if a write has been initiated and is complete, the get routine moves the buffers on the write
queue to the free queue. If the get routine finds that an appendage routine has indicated unsuccessful
completion of a previous write, the exit to the processing program’s synchronous error routine is taken.
Another GET must be issued before a record becomes available for processing.

If the previous attempt to schedule a read has been unsuccessful due to a shortage of available buffers
(refer to “Scheduling Routine” for criteria for determining the minimum number of buffers necessary),
the scheduling routine is used to make another attempt to execute the read.

If a read has been initiated and is complete, the routine moves the buffers on the read queue to the user
queue and uses the scheduling routine (refer to “Scheduling Routine”) to attempt to schedule a new read.

If a buffer on the user queue has been incorrectly read, each GET command issued to that buffer causes
control to pass to the synchronous error routine. For blocked records, successive GET commands to the
buffer give the synchronous error routine access to each record of the buffer in turn. When the buffer is
exhausted and another GET is issued, the return to the processing program is normal unless another read
error occurred.

QISAM Scan Mode Operation 53

(GET macro >

End of buffer

No

EOB routine

Advance to
new buffer

Write
queue empty

Write
complete

Move write
queue to
free queue

Read
queue empty

&

Move read
queue to
user queue

Schedule

New read

Read
complete
No

Figure 25. Scan Mode GET Routine

54

EOB Routine

The end of buffer routine moves the buffer just completed from the user queue to either the PUTX
queue or the free queue. It moves the buffer to the PUTX queue if the user has issued a PUTX macro
instruction for any of the records in that buffer; otherwise, it moves the buffer to the free queue.

If there is a minimum of N/2 buffers on the PUTX queue and a previous write has been completed, the
routine moves the write the write queue buffers to the free queue, the PUTX queue buffers to the write
queue, and initiates a write.

If at this point, there are buffers on the user queue, the routine returns control to the calling routine.
Otherwise, the routine must move buffers from the read queue to the user queue. If the read queue is
empty, the routine waits for completion if a write is in progress, moves the write queue to the free queue
and uses the scheduling subroutine to initiate a read and, on completion of that read, moves the read queue
to the user queue. If the read queue is not empty, the routine moves the read queue to the user queue. It
then returns control to the calling routine.

Before moving a buffer from the write queue to the free queue, the routine ensures that the write of
that buffer was completed successfully. If not, the synchronous error routine is given control.

QISAM Scan Mode Operation 55

EOB routine

Move buffer
from user
queue to
PUTX queue

PUTX issued

Move buffer
from user
queue to
free queue

<l
-

Less
than N/2
on PUTX
dueug

EXCP

" Write
Writing o to _ PUTX. queue
complete a o to write Write
free queue queue
)

User queue
empty

Writing
completed

For write
completion

i

Write queue
to free
queue

Schedule read

Y

For read

Read queue to
user queue

Figure 26. Scan Mode EOB Routine

56

Scheduling Routine

Processing in the scheduling routine depends primarily on whether the next record to be read is on a
prime data or overflow track.

If an overflow record is to be read, a read may be scheduled if there are at least two buffers on the free
queue. It may also be scheduled if there is only one buffer and that buffer is on the free queue. Before
initiating the read, the routine moves the free queue to the read queue. It then returns control to the calling
routine.

If prime data is to be read, it attempts to schedule a read of N/2 buffers. Provided N/2 buffers are
available and at least N/2 blocks remain on the track, this can be done. It can also be done with fewer than
N/2 blocks remaining on the track if the track is not the last of a cylinder and no overflow chain is
associated with the track. If these conditions are met, the routine moves N/2 buffers from the free queue to
the read queue, initiates a read and returns control to the calling routine.

If these conditions are not met, the scheduling routine initiates a read to complete the last track of a
cylinder or a track having an overflow chain associated with it, provided that sufficient buffers are available
on the free queue. As before, it moves the buffers required to the read queue, initiates a read and returns

control to the calling routine.

If a read cannot be initiated, the routine returns control to the calling routine.

QISAM Scan Mode Operation 57

Scheduling routine

Next
record on
overflow
track

At
least n/2

track

At
least n/2
buffers on free
queue

At
least 2
on free
queue

Free queue
to read queue

EXCP

Read

Y

Y

Has overflow

blocks on prime data

No

chain

Last track

n/2 from free
queue to
read queue

EXCP

Read

Move buffers to
complete track
free queue to
read queue

wl inder

Yes

A

Enough
buffers on free
queue to com-
plete track

Na

-1

Figure 27. Scan Mode Scheduling Routine

58

i

Return

PUTX Routine

The PUTX macro is used in updating data sets. When the PUTX macro is issued in the processing
program, the PUTX routine of Scan mode will be used (see Processing Routines—Table 2). The PUTX
routine causes records obtained by locate mode GET macro instructions to be written back to the data set.

The PUTX routine sets an indicator flag associated with the current buffer on the user queue. The GET
macro instruction’s end of buffer (EOB) routine uses this indicator to determine if the user queue buffer
should be moved to the PUTX queue. Eventually, the buffer will be moved from the PUTX queue to the
Write queue (it is moved either by the EOB routine for GET or by the ESETL routine when an ESETL is
issued in the processing program). Once on the Write queue the buffer is scheduled to be written-i.e., the
channel program used to read or write the buffer (a copy of CP22 is used with each buffer) is reset and
scheduled to write the updated buffer back into the data set.

PUTX macro

Set PUTX flag
on for first buffer
user queue

Return

@4

Figure 28. Scan Mode PUTX Routine

ESETL Routine

The ESETL routine ends scanning.

If the user has issued a PUTX macro instruction for any of the records in the current buffer on the user
queue, the routine moves the buffer to the PUTX queue. If the READ queue is not empty the routine
awaits completion of pending reads and then moves the READ queue to the FREE queue.

If the PUTX queue is empty, the routine returns control to the processing program. Otherwise, the
routine awaits completion of pending writes and moves the WRITE queue to the FREE queue if the write
was successful. (If the write was not successful, the synchronous error routine is entered, and another
ESETL macro instruction must be issued to end this scan.) It then moves the PUTX queue to the WRITE
queue, initiates a write, and returns control to the user. '

QISAM Scan Mode Operation 59

ESETL macro

Move buffer
from. user
queue to
PUTX queue

Move buffer
from user
queue to
free queue

Read
queue empty

Read queue
to free queue

For read
completion

Write
queue empty

Write queue
to free queue

For write
completion

queue empty

PUTX queue
to write queue

EXCP

-k
-

[

Return

Write

Figure 29. Scan Mode ESETL Routine

60

- RELSE Routine

The RELSE routine links to the end of buffer routine causing the current buffer to be released and a
new buffer to be initialized. If the current record is the first or last logical record in the buffer, the request
is ignored. The RELSE routine then returns to the user.

The RELSE routine also determines if there were any write errors for those buffers on the write queue

whose writing has been completed. If so, the processing program’s synchronous error routine is given
control and another RELSE must be issued to release this buffer.

(RELSE macro)

Y
EOB Routine

Release
buffer

,v

(Return ’

Figure 30. Scan Mode RELSE Routine
Appendages

There are both channel end and abnormal end appendages for those routines which cause input/output
operations. (Refer to Table 2.)

The channel end appendage of the SETL I routine causes a normal return to the I/O supervisor if CP25
was completely executed. If CP25 was not conpletely executed, either the channel end or abnormal end
appendage of the SETL I routine may be entered, depending on the setting of the CSW status bits. In the
case of incomplete execution, an indicator is set so that the SETL I routine can later inform the processing
program that the record was unreachable. A normal return to the I/O supervisor is issued.

The channel end and abnormal end appendages of the SETL K (or SETL KC) routine examine CP23 to
find out where and why the channel program terminated. Based on this examination, either CP23 is
reinitialized to continue searching for the desired key by issuing an EXCP return, or an indicator is set to
inform the processing program that the key could not be found and a normal return is issued. Whether the
examination is performed by the channel end or abnormal end appendage depends upon the setting of the
CSW status bits, and the contents of the higher level indexes.

The channel end appendage of the GET routine issues a normal return to the I/O supervisor if there are

no more buffers on the read queue, or the last record on a track has been read, or the buffers on the read
queue were filled with records read from a prime data area. This channel end appendage issues an EXCP

QISAM Scan Mode Operation 61

return to the IO supervisor if an overflow record was read after it modifies CP22 to continue reading the
records in the overflow chain. When the last record of an overflow chain has been read, a normal return is
issued. The abnormal end appendage of the GET routine sets an indicator to mark the buffer which
contains the record in error and issues an EXCP return if there are more records to be read. Otherwise it
issues a normal return.

The channel end appendage of the PUTX routine (without write checking) makes a normal return to
the I/O supervisor if there are no more buffers on the write queue. An EXCP return is issued if there are
more buffers on the queue to be written. The abnormal end appendage makes the same returns under the
same conditions, but, in addition, it sets both a write error indicator and an indicator to inform the
processing program which buffer contains the record in error.

When write checking is in effect the PUTX routine channel programs are command chained to write the
contents of a set of buffers at a time, rather than writing all the buffers on the write queue. For prime data
records, a set of buffers is the number of buffers on the queue or the number needed to complete the
current track, whichever is lower. For overflow records, a set is one buffer. The contents of a set of buffers
is written and checked before the next set is written.

If return is made to the channel end appendage after the initial write of a set, CP22 is modified to
accomplish read—back, and an EXCP return to I/O supervisor is issued.

If return is made to the abnormal end appendage after the initial write of any buffer in the set, that
buffer is marked unreachable or unwritable and an EXCP return is issued to write the remaining buffers in
the set; or if no buffers remain in the set, CP22 is modified to accomplish read—back of the successfully
written buffers, and an EXCP return is issued. No attempt will be made to rewrite the buffer in error; the
processing program will be informed of the error the next time a GET macro instruction is issued for that
buffer.

If channel end return is made on both writing buffers and reading them back, an EXCP return is issued
if there is another set to be written. Otherwise, a normal return is issued.

If, when reading back any buffer that was successully written, a return to the abnormal end appendage
occurs, an EXCP return is issued to rewrite, and then another EXCP return to recheck the buffer in error.
Up to ten rewrites and rechecks per buffer are permitted; CP22 must be modified for each readback and
rewrite. If a successful readback can not be accomplished, or if an abnormal end return is made on any of
the attempts to rewrite the buffer, the buffer is marked as unwritable and an EXCP return is issued to start
writing the next set. If there are no more sets to be written, a normal return is issued.

When an EXCP return is to be issued and the next record to be written or searched is on another device,
the appendage routine cannot issue the EXCP command itself. Instead, it schedules an asynchronous

routine (located in the GET appendage). When the asynchronous routine receives control, it issues the
EXCP macro instruction.

Scan Mode Processing Phase Organization

Processing Routines

The modules containing the scan mode processing routines are shown in Table 2.

62

.

Table 2. QISAM Scan Mode Processing Modules

Module Name Function
IGGO19HB
(Fixed
length
records) GET, PUTX, RELSE, ESETL, SETL B
processing routines
IGGO19HN
(Variable
length
records)
IGGO19HD SETL K, SETL KC processing routines
IGGO19HF SETL | processing routines
IGGO19HG GET channel end a'nd abnormal end appendages and
asynchronous routine
IGGO19HH PUTX channel end and abnormal end appendages, no write check
IGGO19HI PUTX channel end and abnormal end appendages, write check
IGGO19HJ SETL I channel end and abnormal end appendages
1GGO19HK SETL K, SETL KC channel end and abnormal end appendages
IGGO19HL channel program skeletons
IGGO19HA RPS SI0 Appendage
Scan Mode Channel Programs

The scan mode channel program skeletons are contained in module IGGO19HL. The channel program
skeletons are moved to a work area and completed during the open phase of scan mode.

In processing and updating an ISAM data set, the following scan channel programs are used:

The two versions of CP22 are used to read or write data records.
Version 224 (CP224) is used to read the key and data fields of
unblocked records.

Version 22B (CP22B) is used to read the data field only of
unblocked records; or to read any blocked records.

Channel Program 22 (CP22)

Channel Program 23 (CP23) Used to locate the data record by SETL K or KC; searches the

index and data tracks.

Channel Program 24 (CP24) — Used to read count and data fields of the track index entries.

Channel Program 25 (CP25) Used to obtain track index entries; used with SETL I.

Channel Program 26 (CP26) Extension of CP23 (SETL K) for use on overflow chains.

If the user has allocated enough buffers and is reading a full track at a time, as many CP22s as are
needed (one for each buffer) will be chained together for reading the track; the same would be true for
writing a full track at one time, that is, all copies of CP22 would be chained together.

QISAM Scan Mode Operation 63

Assuming the use of a file with no overflow, CP23 would be used by SETL to locate the proper record;
then CP22 would be used to read the record; CP24 then reads the next level of track index entries and then
schedules the next CP22.

Figure 31 illustrates the operations of one scan mode channel program, CP23. Channel Program 23 is

used by SETL to position to the first record of the specified file. For this example, it is assumed that no
master indexes are being used.

64

Cylinder Read l
Index ?de:d the home Seek to I I Read data Index
ress (RO) of . I
Search N |- — — cylinder of the key Entry I
I the cylinder index |
' index track I I ey '
I
| >
| | I , |
Search | l I
LT / Read count
I for !<ey E.Q or I | field of ‘
l LT in cylinder I index entry
I |
| l | |
I ! |
I Read data of Locate the | l Read data
the cylinder }-— —correct track ' field of l
I index entry index track l l index entry
|_______________.__.————I L—:::::::::::_]
[_ Y r_ y .-—I

Find Read I1D-
Index Seek to the Data
lEntry track index track Seek data track Record

[i

Read the Position to Read
home address |___ beginning ac:: :samfe
of the track of track ot re °k
index indextrack ata trac
S h
Read count earc

ID EQor

Count field of
record to be
read by CP22

Search
for key EQ or
GT

L &

LT

‘,

L

|
|
|
|
|
|
|
|
jie
|
|
|
|
|
|
|
|

Read Count

Figure 31. Scan Mode Channel Program23

QISAM Scan Mode Operation 65

Scan Mode Control Blocks and Work Areas

Information about the data set and processing requests is carried in various control blocks, work area,
and queues. The address relationships of these areas to each other and processing routines and channel
queues are shown in Figure 32.

66

P

Dce

DCB Work Area

r -
1 DCBBUFCB D) 0 Input ECB
20 DCBDEBAB GET
~~ 30 DCBGET 4 Input 10B Processing module
4C DCBSETL
54 DCBESETL 30 Output ECB
34 Output I0B
C)
E4 DCBWKPT1 __J X 5 SETL
60 Sense bits and pointers P . I
Fo DCBWKPT4 : rocessing module
Fa4 DCBWKPTS —b@ 80 Queue table* -
Track index information -
BC and save area &
GET
> Appendage module
Fa Channel end appendage (asynchronous
vector table routine) F
Abnormal end appendage
1o¢ ector tabl
DEB vector table
18 + cE 124 W1CP23PT Channel b SETL
appendage table 128 W1CP26PT program =\ Appendage module
-14 1 AE appendage table I 12C WI1CP25PT pointers o
]
8 DEBIRBAD ™ 130 cP24
18 DEBDCBAD
17A W1DCBFA ‘
16 DEBAPPAD M) ™ pUTX
N 1D8 CP22 - J L.» Appendage module
Extent descriptions
(one copy per buffer)
A
~
. CP 23/26 or CP25 ~ .
IRB A Buffers
c RBEP 2 a0) . .K DCBFA
o
*Figures 22 and 23 describe the channel
program/buffer queues.

**If the prime area is on a different volume than

the high level indexes, the asynchronous
routine is executed and a different UCB is
needed.

NOTE: Displ

areinh

Figure 32. Scan Mode Control Blocks and Work Areas

QISAM Scan Mode Operation 67

Scan Mode Close Phase

The QISAM scan mode close phase has only one close executor, module IGG02029, which is entered
* from the I/O support CLOSE routine. Module IGG02029 uses the ESETL routine to terminate scanning
and clear the buffer queues. (Refer to ESETL Routine discussion, and The Buffer Control Techniques
discussion). Even if the user has already issued an ESETL the close executor will issue another one. The
close executor then awaits completion of any outstanding writes. If any of these writes are unsuccessful,
the user synchronous error is entered. The user must return to the close executor to complete the release of
buffers and work areas to the operating system.

If the outstanding writes are completed successfully or the return from the synchronous error routine
to the close executor has been done, then the close executor will:

1. Return all buffers to the buffer pool;

2. Release the work area;

3. Update the DCB tag deletion count, DCBTDC;

4. Update the number of overflow refebrences field in the DCB, DCBRORGS3.

When finished, the scan close executor, module IGG02029, passes control to the ISAM common close
executor.

68

Figure 33. Scan Mode Close Executor

écan close executors}

/
ESETL

End scan

Wait for
pending writes

Release
work area

Pass control
to common
ISAM executor

QISAM Scan Mode Operation 69

Basic Indexed Sequential Access Method

The basic indexed sequential access method (BISAM) provides direct storage and retrieval of the records
in an indexed sequential data set. The READ K macro instruction permits the retrieval of a logical record
from main storage by its record key. The READ KU and WRITE K macro instructions, when used together,
provide the ability to update logical records in place. The WRITE K macro instruction, when used without
READ KU, allows the user to replace unblocked logical records. The WRITE KN macro allows the user to
insert new logical records into the data set.

Since storage and retrieval of records are direct in BISAM, the BISAM routines are not able to read
ahead as the QISAM scan mode GET routine can. Consequently, the user must issue a WAIT or CHECK

macro instruction in order to determine whether a read operation has been completed.

As in QISAM, there are three phases of BISAM routines: open phase, processing phase, and the close
phase.

BISAM Open Phase Operations

The first BISAM open executor is entered from the last common ISAM open executor. The BISAM
open executors load the BISAM processing routines, selecting the processing phase modules according to
the processing program options. Particular processing modules are selected depending upon such options
and considerations as:

® The number of levels of index to be searched on the direct access device (NLSD).

® Whether the records are blocked or unblocked.

® Whether work areas are supplied by the user or by the access method routines.

® Whether or not write checking is to be used.

® Are buffers controlled by the user program or by the ISAM dynamic buffering routine (module
IGG019]I).

® The user’s intent to add new records to the data set with the WRITE KN macro instruction.

Some of these considerations also affect the sequence in which the BISAM open executors are called.
Figure 34 illustrates the flow of control through the BISAM open executors.

Those BISAM open executors which initialize channel programs include conversion to a non-RPS state
as part of their processing.

BISAM Open Phase Organization

When a DCB is being opened for BISAM processing, one or two of the validation modules are selected
to correlate format 2 DSCB and DCB fields. The validation modules (IGG01920, IGG01922, and
IGG01950) are also used for resume load and scan mode opens.

If the records are fixed length records, modules IGG01920 and IGG01922 are selected to do the

70

BISAM open
executors

Move format
2 DSCB
items to DCB

High
index to be in
storage

Read high
level index
into storage

Determine
and load
modules

Construct
work area

Need
system area for
write KN

Yes Construct
system area for
write KN

Return to open

Figure 34. BISAM Open Executors

BISAM Operations 71

validation and initial BISAM open processing. Executed concurrently, these two modules reset certain fields
in the format 2 DSCB which may be incorrect if the data set was previously closed improperly.

If variable length records are used, module IGG01950 is selected to merge end pointers from the
Format 2 DSCB to the DCB and adjust, if necessary, the independent overflow control imformation in the
DCB.

IGG01950 is the VLR counterpart to module IGG01920. It is the first BISAM open module entered
when variable length record are being added.

The validation module may not be executed, although it will be entered, if the user has specified that
the data set may be shared by other tasks (DISP=SHR). It will not be executed in that case because another
DCB may have already been opened for the data set and a DCBFA (DCB Field Area) already set up for the
purpose of maintaining the DCB fields. (See the DCB Integrity discussion and the description of the
DCBFA).

Module IGG0192W or IGG0192H receives control from modules IGG01920 and IGG01922, or module
IGG01950 during the opening of a DCB for BISAM.

BISAM Open Executor IGG0192H (Fixed Length Records)
1. Moves the format 2 DSCB fields needed for BISAM into the DCB.
2. Obtains and structures the work areas and provides pointers to the work areas.

3. If the data set is on an RPS (Rotational Position Sensing) device, module IGG0192H issues a
GETMAIN for an eight-byte larger work area (the BISAM DCB work area). Four of these bytes are
used as a pointer (DCWSIOA) to the RPS start I/O appendage module, module IGGOIQJH The
other four bytes are not used.

BISAM Open Executor IGG0192W (Variable Length Records)
1. Moves the format 2 DSCB fields needed for BISAM into the DCB.
2. Obtains and structures the work areas and provides pointers to the work areas.

3. For RPS, module IGG0192W will issue a GETMAIN for a work area 16 bytes larger than usual.
Four bytes will be used for the RPS SIO Appendage pointer (DCWSIOA). One fullword will be
unused. The last two fullwords will be used for the non-last and last record overhead on prime and
overflow, respectively. (See fields DCWIPG, DCWLPG, DCWIOG, and DCWLOG in the BISAM DCB
work area for VLR with RPS.)

BISAM Open Executor IGG0192P
1. When the high-level indexes are to be searched in main storage, module IGG0192P schedules CP87
to read the high level index into the user specified work area. The work area is specified in the DCB

at DCBMSHI. CP87 is contained in module IGG0192P.

2. After reading the high-level index into the user work area module IGG0192P saves the address of
the last active entry in the high-level index.

BISAM Open Executor IGG01921

1. Selects and loads the proper privileged module, according to the options specified in DCBMACRF

72

5.

6.

by the user. (See Table 3, for the privileged macro-time module.)

Selects, loads, and initializes CP1 when cylinder and master indexes are to be searched on the direct
access device.

Selects, loads, and initializes CP2 when the cylinder index is the highest level index to be searched
on the device.

If an RPS device is being used, IGG0192I will save and restore the high order byte of DEBISAD
when storing the address of the privileged macro-time module. (See step 1 above.) This is done to
preserve the RPS bits at DEBRPSID.

With RPS, this module will also initialize fields in the 16-byte larger DCB work area.

Initialize error queue counter to 2XNCP+BUFNO.

BISAM Open Executor IGG0192K (READ K, READ KU, WRITE K)

1.

2.

3.

4.

Selects and loads CP4, CP5, CP6, and CP7; initializes these channel programs.

Selects and loads the nonprivileged macro-time routine, module IGG019]JV, for READ K, READ
KU, and WRITE K.

If dynamic buffering is specified, loads the dynamic buffering module, IGG029]J1.

If RPS is used and the dynamic buffering module loaded, IGG0192K also sets bit 3 of DEBRPSID.

BISAM Open Executor IGG0192L (WRITE KN)

1.

2.

3.

Loads the set of WKN channel programs needed with the data set being processed (blocked or
unblocked records, user work area or system work area, etc. (See BISAM channel programs, Figures

42-54.)
Loads the nonprivileged routines macro-time routines for WKN, module IGG019JW.

Initializes CP8 and CP10B.

BISAM Open Executor IGG0192M (WRITE KN with Fixed Length Records)

1.

Initializes CP14 which is used to update the Cylinder Overflow Control Record (COCR), and write
overflow records. There are six different versions of this channel program. These versions are
described in Appendix B.

BISAM Open Executor IGG0192X (WRITE KN with Variable Length Records)

1.

Performs the same functions as IGG0192M as described above. See CP14 in the Appendix B.

BISAM Open Executor IGG0192Q (WRITE KN)

1.

Initializes CP1 or CP2, CP10A, CP15, CP16, and CP17.

BISAM Open Executor IGG01920 (WRITE KN, Fixed Length Records, user work area)

1.

Initializes CP12 or CP13 series, and CP123W; delete skeleton channel program modules.
BISAM Operations 73

Figure 35. Flow of Control Through BISAM Open Executors

74

Variable Length Records

ISAM Common
Open Executor
1GG0192C

Fixed Length Records

!

v

1GG01950 1GG01920
/ High Level Index i
Search inMain Storage
1GG0192W e IGGO192H
No High [No High
Level Index Level Index
Search in IGGo192p Search in
Main Storage Main Storage
y
1GG01921
Read K, Read KU, Write K Write KN only
1GG0192K -
No Write KN
/
1GG0192L
Variable Length Records Fixed Length
Records
/
1GG0192X 1GG0192M
/
1GG01920

User Provides Work Area

Variable Length Records Fixed Length Records } ISAM Provides
/ Work Area
1GG0192Z 1GG01920 1IGG0192N
Input/Output
1GG0192J) - Support Open
Routine

BISAM Open Executor IGG0192N (WRITE KN, Fixed Length Records, System Work Area)

1. Initializes CP9 series or CP11 Series, delete skeleton channel program modules.
BISAM Open Executor IGG0192Z (WRITE KN, Variable Length Records)

1. Initialize CP12AV, CP12BV, and CP123WV; delete skeleton channel program modules.
BISAM Open Executor IGG0192]

1. Module IGG0192] selects and loads the proper appendage modules and one asynchronous module.
Refer to the tables of BISAM appendage and asynchronous modules, Tables 5 and 6.

2. Initializes the interrupt request block (IRB) used by the asynchronous routine.

3. If any of the RPS bits at DEBRPSID in the DEB are set, IGG0192] loads the RPS SIO appendage,
IGGO19JH. If bit 3 of DEBRPSID is set, the address of IGG019]JH (the SIO appendage for BISAM
with RPS) is stored in the DCWSIOA field of the BISAM DCB work area. Otherwise, the address is
stored in the DEB appendage vector table.

During processing, if bit 3 of DEBRPSID is on, control is passed to IGGO19JH.
BISAM Processing Phase Operations

BISAM processing is done by channel programs which read and search indexes, prime data tracks, and
overflow chains. They also write prime data and overflow records and index entries. The channel programs
are set up and controlled by the BISAM processing routines.

All BISAM READ and WRITE macro instructions enter a non-privileged macro-time routine, which
enters a privileged macro-time routine where I/O interruptions may be readily enabled or disabled. The
privileged routine returns to the non-privileged routine upon completion. The non-privileged routine then
starts a channel program, if possible, and returns control to the user.

When a channel program ends, the I/O supervisor passes control to an appendage routine which analyzes
the manner in which the channel program ended and determines the action to be taken as a result. This
involves either a special return to I/O supervisor or the scheduling of an asynchronous routine. The overall
control flow through these routines is shown in Figure 41.

The user can supply his own buffers or use the dynamic buffering option of BISAM. In the latter case,
the dynamic buffering routine obtains and frees buffers for each processing request.

A check routine is available to all BISAM requests to allow the user to analyze processing errors.

Information about the data set and the processing requests is communicated among the processing
routines and the channel programs in control blocks, work areas, and queues. This section describes the
processing routine logic, the flow of control through the channel programs, and the relations of the data

areas to each other and to the processing routines and channel programs.

Descriptions of the channel programs are in Appendix B. Section 5 contains detailed layouts of the data
areas.

BISAM Operations 75

An Example of BISAM Processing Flow

Whenever a BISAM macro is issued, a nonprivileged macro-time module is entered. In thls example the
nonprivileged module entered will be IGG019JW after a WRITE KN is issued.

1. The WRITE KN is issued from the processing program.

2. The nonprivileged module is entered; module IGGO19JW issues an SVC 54 to disable interrupts and
link to the privileged macro-time routine. For a WRITE KN without READ K, WRITE K, or READ
KU the privileged routine module entered is IGG019JX. (See Table 3.)

3. Module IGG019JX:

(a.) Initializes the IOB

(b.)Determines if another WKN is in progress; and if so, the IOB is added to the on-schedule queue
and the on-schedule switch is set on.

(c.) If another WKN is not in progress and it is necessary to search the high level index in main
storage the following operations are done:

(1.)The first WKN channel program is initialized.
(2.)The SEEK address for the channel program is determined, using the DCBFTHI field.

(3.)If the track index is the highest level of index (this is assumed for this example), the
appendage code is set to 8.

4. Channel program 8 is initialized—CP8 is used to determine where the new record should be insertéd.
5. Return to the SVC 54 issued by IGG019JW.
6. The SVC 54 exits to the original nonprivileged module.

7. Module IGGO19JW tests the on-schedule switch, if it is set RETURN is made to the processing
program. If the on-schedule switch is off, an EXCP is issued using the IOB just created.

8. When the channel program ends, the appendage routine uses the appendage code (8, in this case. See
step 3.) in the IOB and the appendage vector table in the appendage module to select the needed
appendage routine for this particular channel program.

Privileged Macro-Times Routines

A privileged macro-time routine schedules the first channel program for a given macro instruction.
BISAM has several modules of privileged macro-time routines (Refer to Table 3.) However, no more than
one of these modules is loaded into storage by the BISAM openexecutor, IGG01921I, for a single DCB.

Selection of the macro-time routine module to be loaded depends on the BISAM macro instructions
specified in the DCB, the record format, and the number of levels of index which are searched on a direct
access device (rather than searched in main storage). These factors determine the choice of channel

programs needed in a macro-time routine.

A nonprivileged macro-time routine enters a privileged macro-time routine by means of an SVC 54

76

Entry from
disable

Write K

for update

0B
on update
queue

No Signal

invalid request

1s10B
on error
queue

Remove from
error queue

Is10B
on update
queue

Obtain 10B
from update Construct
queue 108
@) '
Y
Conflict Yes Place 10B
with other on unscheduled
macro queue
Write for be searched in Search
update ain storage
Yes No
/
Determine .Yes No Signal no
first channel - Successful record !
program found
Place IOB
#-1 on unscheduled [
queue

Initialize
channel

program

Figure 36. Privileged Macro-Time Routines '

Return via
SVC root

BISAM Operations 77

(Disable) instruction to disable I/O interruptions. If the IOB being reused has a dynamic buffer associated
with it, the buffer is returned to the dynamic buffer pool.

For any read or write request, the routine checks the error queue and the update queue, to see if any
existing IOB refers to the DECB (Data Event Control Block) of the present request. If so, the old IOB is
reused for the current request. If the IOB being reused has a dynamic buffer associated with it, the buffer
is returned to the dynamic buffer pool unless the request requires a dynamic buffer. If no IOB is found
that refers to the DECB of the present request, and a dynamic buffer must be assigned to the request,
DECBAREA is zeroed to force the assignment of a dynamic buffer in function 1 of the dynamic buffer
module (IGG019JI).

When a WRITE K macro is issued after a READ KU, both with the same DECB, an IOB for that DECB
should be on a queue called the update queue (as result of the READ KU). If the IOB is not on the update
queue, an invalid request condition exists and the privileged routine returns to the calling nonprivileged
routine. Otherwise, the privileged routine for the WRITE K associated with a previous READ KU removes
the IOB from the update queue. In all other cases, the routine constructs an IOB for the request.

Subsequently, the privileged routine attempts to schedule the first channel program needed for the
user’s request. If the channel program is available and the high level index is to be searched in main storage,
the routine performs this search. If the search is unsuccessful, a record-not-found condition exists and the
routine posts the DECB as complete, sets the appropriate exceptional condition bit in DECBEXCD, and
returns control to the nonprivileged routine. (Searching is always successful in the case of WRITE KN.) If
the search is unsuccessful or no search in main storage is necessary, the routine determines the first channel
program to be scheduled. If it is available, the routine schedules it. If it is unavailable, an unscheduled
condition exists, and the routine queues a request for the channel program by placing the IOB on a queue -
called the unscheduled queue. The routine then returns to the nonprivileged routine.

A special case exists if the WRITE KN macro instruction is being used with other READ or WRITE
macro instructions. Possible conflicts between these macro instructions are avoided because WRITE KN
changes indexes and record positions. Its channel programs are not scheduled if another WRITE KN,
WRITE K, READ K, or READ KU has been scheduled but not completed. The WRITE KN channel
programs are not scheduled if there are IOBs on the update queue or if there are IOBs on the unscheduled
queue for reasons other than those associated with WRITE KN. Similarly, WRITE K, READ K, and READ
KU are not scheduled if a WRITE KN has been scheduled but not completed or if a previous WRITE KN
cannot be scheduled.

NOTE: Entry to the privileged routine from the asynchronous routine is also possible. In this case, the
return will be to the asynchronous routine.

Nonprivileged Macro-Time Routines

There are two modules of nonprivileged macro-time routines. (Refer to Table 4.) The READ K, READ
KU, and WRITE K macro instructions link to one, and the WRITE KN macro instruction links to the other.

If the user has specified a record length in a READ K, READ KU, or WRITE K macro instruction, the
respective macro- instruction routine will check the record length specified against the logical record length
supplied by the user in the DCB (DCBLRECL). If the length specified in the macro instruction is invalid or
if the user has specified a record length in a WRITE KN macro instruction, the nonprivileged macro-time
routines set the record length check indicator in the DECB exceptional condition code field (DECBEXCD1)
and return control to the user. Otherwise, an SVC 54 is issued to link to a privileged macro-time routine.
The privileged routine, upon completion, returns to the nonprivileged routine.

If no channel program was scheduled, the nonprivileged macro-time routine issues the EXCP and
returns to the user. When the channel program is completed, an I/O interruption takes place and the I/O

78

READ/WRITE
macro

. Signal
Invalid Yes insalid

record length
spec record
length

Yes

DISP=SHR Refresh DCB

SvC

Nonprivileged
macro-time
routine

POST

Invalid
request

Completion i

No record Yes

found

Yes
Unscheduled

Y

EXCP

Start
channel
program

-

i

Return

Figure 37. Nonprivileged Macro-Time Routines

BISAM Operations 79

supervisor links to an appendage routine. (Appendage routines are described in the BISAM “Appendage and
Asynchronous Routines” section.)

If no channel program was scheduled because of an invalid request, a no record found condition, or an
unscheduled condition, the nonprivileged routine returns to the user. In the case of an invalid request, the
routine posts the DECB ‘complete’ and returns to the user.

Appendage and Asynchronous Routines
The BISAM appendages and asynchronous routines are shown in Tables 5 and 6 respectively.

Appendage routines determine the action to be taken when a channel program ends. Asynchronous
routines perform that action except in certain cases, explained below. Appendage modules consist of an
appendage vector table and a group of appendage routines. Asynchronous modules consist of an
asynchronous vector table and a group of asynchronous routines.

When a channel program ends, a general appendage routine uses a combination of the appendage code
in the IOB and the appendage vector table for the module to select the appropriate appendage routine. A
list of appendage and asynchronous codes is contained in Section 6 of this manual.

If the channel program is complete, the appendage routine schedules an asynchronous routine which
sets up the next channel program. If the channel program is not complete, the appendage routine returns to
IOS to reschedule that channel program.

If the channel program did not end in error, the action taken depends on whether (1) it is the final
channel program needed to satisfy the user’s request; (2) an additional channel program is needed to satisfy
the request and no other requests are waiting for the channel program just completed; or (3) neither of the
above conditions exists.

In the first case, the appendage routine schedules an asynchronous routine to report completion to the
user. If the data set is shared (DISP=SHR), the DCBFA is reset as needed before completion is posted. In
the second case, the appendage routine schedules the additional channel program by a special return to I/O
supervisor. In the third case, the appendage schedules an asynchronous routine which in turn schedules an
additional channel program for the current request and, if possible, reschedules the channel program just
completed for a waiting request.

If the present request used a dynamic buffer, the address of the buffer is saved in the IOB before the
IOB is placed on the update queue or the error queue.

The first time a channel program ends in error, the appendage routine returns control to the I/O
supervisor to retry the operation. If the I/O supervisor finds the error is permanent, it reenters the
appendage routine which schedules an asynchronous routine to report the error to the user and place the
request on the error queue.

80

Place on
unscheduled
queue

10S appendage Reschedule
entry via 10S
Yes

Report error
via asynchronous

Set up
channel Return via 10S
program

rupt to read or
write an overflow

i

Schedule
asynchronous
routine (create
IRB)

'

Dispatcher

Enter
asynchronous
routine

Another
request awaiting
cP

For that
request

Place 10B | °
on error queue

Permanent
1/0 error

Place I0B
Final channel Read KU on update
program queue
Next channel Free I0B
program area
available
<~
\
POST
- Refresh
This Completion > DCBFA
channel
program

@ .

Return via
Supervisor

Figure 38. BISAM Appendage and Asynchronous Routines

BISAM Operations 81

Dynamic Buffering Routines

The READ K and READ KU macro instructions require an area into which a block can be read. The
user may supply this area or, use BISAM routines to provide the area through the dynamic buffering option
of the macro instruction.

When the dynamic buffering option is used, BISAM routines release the buffer when a corresponding
WRITE K macro is completed. If no WRITE K is issued, the processing program may release the area
obtained with dynamic buffering for a READ K or READ KU by issuing a FREEDBUF (Free Dynamic
Buffer) macro instruction. '

Also, the privileged macro routine automatically releases the buffer if a READ macro is followed by a
WRITE KN or another READ, reusing a DECB, without an intervening WRITE K or FREEDBUF.

The dynamic buffering module contains two routines. The first, called function 1, obtains buffers in
response to the dynamic buffering option of a READ K or READ KU macro instruction. The second
routine, called function 2, frees the buffers.

Function 1 is an appendage routine entered by the I/O supervisor just prior to executing the scheduled
channel program. When used by the FREEDBUF macro instruction, function 2 is considered a macro-time
routine. When used on completion of a WRITE K macro instruction, Function 2 is considered as
asynchronous routine. The Function 2 routine of IGG019JI, when executed from FREEDBUF, also frees
any IOB on the error or update queue that is associated with the DECB, regardless of whether a dynamic
buffer is also associated with the DECB.

Rather than returning to I0S, IGG019]JI passes control to the RPL SIO appendage (IGG019]JH) if bit 3
of DEBRPSID is set.

A description of the BISAM Dynamic Buffering Buffer Control Block appears in Section 5.

82

Dynamic
buffering

Can
another
10B use
a buffer

Remove |I0B
from

waiting
queue

[
EXCP

Channel
program

Place buffer
area on
available
list

—
-

i

Return

Figure 39. Dynamic Buffering Routine

Dynamic
buffering SIO

Any
on available
queue

No

Remove
buffer
from
queue

Normal
return to 10S

Place 10B
on queue
awaiting
buffers

Skip posting
Return to 10S

BISAM Operations 83

Check Routine

The check routine module, loaded when check is specified in the DCBMACREF field, gets control each
time the user issues a CHECK macro instruction. The check routine examines the DECB exception code
(DECBEXCD) fields. If a permanent error has been posted, it searches the error queue for the
corresponding IOB. The check routine then either gives control to the user’s synchronous error (SYNAD)
routine; or, if the user has no SYNAD routine, issues SVC 55(EOV) to request an ABEND with a code of
‘001",

Upon entry to the SYNAD routine, register 0 will contain the address of the first sense byte of the IOB
(sense information is valid only when a unit check has occurred) and register 1 will contain the address of
the DECB. In the SYNAD routine, the user can issue a SYNADAF macro instruction. It will place all
pertinent information on the request in a buffer and return the buffer’s address to the user. For a
description of the SYNADAF macro instruction, refer to the publication IBM System/360 Operating
System: Supervisor and Data Management Macro Instructions.

84

(IGG019JC)

<l

ECB
status
complete

Wait

Yes

Get DECB
on error
queue

Get 10B+2

ABENDC

System
ABEND 001

Is there
aSYNAD
routine

Go to SYNAD
routine

Figure 40. BISAM Check Routine

- BISAM Operations 85

BISAM Processing Phase Organization

Processing

Program

NON-PRIVILEDGED

MACRO ROUTINE

Invalid
record length
specified

Disable
interruptions
(SVC 54)

BALR

EXIT

POST

Invalid length

in DECB

108
scheduled

EXCP

Execute
scheduled
108

1f entry

Channel end

Abnormal
end

fromB
|O

Yes

Consturct 10B
or obtain from
update or
error queue

Index

PRIVILEDGED
MACRO ROUTINE

1

to be d
in core

Search index

Can
0B be

Initialize

channel

program
[

scheduled

Place channel
program on
unscheduled
ueue

File
protect from

Error p ing

EXIT EFFECTOR

|
|
l
[
‘
1

N A R

cpa

Initialize CP6
for overflow
chain

Permanent error

All

searched

Yes

Update
I0BSEEK
field

Set
asynchronous
code

Y

Schedule

T T T T -1~

routine

Figure 41. BISAM Processing Flow

86

‘Another

completed

request awaiting

Place 108
on error
queue

hi-level indexes

CP of request.

routine

Final

Free 10B or
place on
update queue

1

POST

Request
complete

Yes A No

from asynchronous,

Table 8. BISAM Privileged Macro-Time Modules

Macro Instructions Additional Considerations Module Names
* —
READ K, WRITE K o Lt R] NLSD=0 1GG019J6
ixed Leng ecords -

READ KU NLSD#0 1GG019J7
Variable Length Records IGGO19H7

WRITE KN None 1IGG019JX

READ K, WRITE K NLSD=0 1GG019J0

READ KU in combination Fixed Length Records

with WRITE KN NLSD#0 1GG019J3
Variable Length Records IGGO19H3

*NLSD represents the number of levels of indexing (cylinder or master indexes) which are searched
on the device.

NLSD=0 represents the case where the data set was allocated no more than one cylinder and has no
cylinder or master indexes or there is only a cylinder index and it is searched in main storage.

NLSD#0 means: (1) there is only a cylinder index which is searched on the device and (2) there are
at least two levels of indexing, one of which is searched in main storage and the other is
searched on the device.

Table 4. BISAM Nonprivileged Macro-Time Modules

Macro Instructions Additional Considerations Module Names
READ K, WRITE K, READ KU None 1GGO19JV
WRITE KN None 1GGO19JW

Table 5. BISAM Asynchronous Modules

Macro Instruction Additional Considerations Modules
Fixed Length Records 1IGG019GX
READ K, WRITE K, READ KU
Variable Length Records IGG019IX
No Write Check IGGO19GY
: Fixed Length Records
WRITE KN Write Check IGG019GV
Variable Length Records ' IGGO191Y
No Write Check 1GG019GZ
READ K, WRITE K, READ KU Fixed Length Records
in combination with Write Check IGG019GW
WRITE KN
Variable Length Records 1GG0191Z

BISAM Operations 87

Table 6. BISAM Appendage Modules

Macro Instructions

Additional Considerations

Module Names

READ K, WRITE K,
READ KU

No Write Check 1GG019G8
Fixed Length Records Write Check IGG019G9
Variable Length Records 1GG01919

WRITE KN

Unblocked, System Work
Area, No Write Check

1GG019GO0 and IGGO19GL

Unblocked, System Work
Area, Write Check

IGG019G1 and IGGO19GM

Unblocked, User Work
Area, No Write Check

1GG019G2 and IGGO19G L

Unblocked, User Work
Area, Write Check

IGG019G3 and IGGO19GM

Blocked, System Work

Fixed Length Records Area, No Write Check

1GG019G4 and IGGO19GL

Blocked, System Work
Area, Write Check

1GG019G5 and IGGO19GM

Blocked, User Work -
Area, No Write Check

1GG019G6 and IGGO19G L

Blocked, User Work
Area, Write Check

IGG019G7 and IGGO19GM

Variable Length Records

iGG01910 and IGGO191IM

READ K, WRITE K,
READ KU in
combination with
WRITE KN

Unblocked, System Work
Area, No Write Check

IGG019GO0 and IGGO19GN

Unblocked, System Work
Area, No Write Check

1GG019G1 and IGGO19GO

Unblocked, User Work
Area, No Write Check

1GG019G2 and IGGO19GN

Unblocked, User Work
Area, Write Check

IGG019G3 and IGG0O19GO

Fixed Length Records
Blocked, System Work
Area, No Write Check

IGG019G4 and IGGO19GN

Blocked, System Work
Area, Write Check

1GG019G5 and 1IGGO19GO

Blocked, User Work
Area, No Write Check

IGG019G6 and IGGO19GN

Blocked, User Work
Area, Write Check

1GG019G7 and IGGO19GO

Variable Length Records

1GG01910 and IGGO19IN

RPS SIO Appendage

IGGO19JH

88

Table 7. BISAM Channel Program Modules

Macro Instructions Additional Considerations | Module Names Channel Programs
NLSD =1 1GG0O19JK 2
Any READ or WRITE
NLSD > 1 1IGG019JJ 1
None IGG0O19JL |4 56 7
READ K, WRITE K, READ KU
Write Check IGGO19JM | 4 5BW 6W 7W
Unblocked, System Work 8 9A 9B 9C 10A
Area, No Write Check IGGOT9IN 10B 14 15 16 17
Unblocked, System Work IGGO19JP 8 9A 9BW 9CW 10AW
Area, Write Check 10BW 14W 15 16 17W
Unblocked, User Work 8 10A 10B 12A 12B
Area, No Write Check IGGO19JR 12C 14 15 16 17
Unblocked, User Work 1GGO19JT 8 10AW 10BW 12A 12B
Area, Write Check 12CW 14 15 16 17W 123W
WRITE KN [Fixed Length Records
Blocked, System Work 1GG019JO 8 10A 10B 11A 11B
Area, No Write Check 14 15 16 17
Blocked, System Work 8 10AW 10BW 11A 11BW
Area, Write Check IGGo19JQ 14W 15 16 17W
Blocked, User Work ' 8 10A 10B 13A 13B
Area, No Write Check 1GGO19JS 13C 14 15 16 17
Blocked,‘User Work 1GG019JU 8 10AW 10BW 13A 13B
Area, Write Check 13CW 14W 15 16 17W 123W
Variable Length Records IGGO19HP | 8 12AV 12BV 14/14W
156 16 17 123WV
BISAM Channel Programs

BISAM uses the channel programs enumerated below. They are described in Appendix E. The flow of
control through the READ K, WRITE K, and READ KU channel programs is shown in Figure 42. The flow
for WRITE KN channel programs is shown in Figures 43 through 54 channel program modules are indicated
in Table 7.

NOTE: Figures 42 through 54 show only the normal (non-error) flow of control through the channel
programs.

For WRITE KN, two different methods are used to add records to the data set. For fixed length records
with a system work area, the prime track is rewritten and the index entries are updated before the overflow
record is written.

For fixed length records with a user-supplied work area and for variable length records, the overflow
record is written before the prime track and index entries. This requires two different methods of executing
CP14 as explained in Appendix B.

BISAM Operations 89

CP1

CP2

Cp4

CP5

CP5W

CP6W

Cp7

CP7W

CP8

Used to search master and cylinder indexes.

Used to search a cylinder index when it is the highest level to be searched on a device.

Used to search a track index. CP5 and CP5W is always appended to this channel program.

Used to search prime data tracks and to read or write prime data records.
Write checking version of CP5.
Write checking version of CP6.
Used to write data records when WRITE K is associated with READ KU.
Write checking version of CP7.

Used to search track indexes and search prime data tracks for the place to insert a new
record. There are separate versions for fixed length records and variable length records.

The following channel programs are used for insertion of fixed'length unblocked prime data records
when the work area is provided by the system. ‘

CP9A

CP9B

CP9BW

CP9C

CP9CW

Used to read into the work area the record occupying the position at which an insertion is
to be made.

Used to: (1) read an even-numbered record after writing a record into the previous slot
and (2) write back the last record of a non-EOF track when the number of records
bumped is odd.

Used in place of 9B when write checking is specified.

Used to: (1) read an odd-numbered record after writing a record into the previous slot
and (2) write back the last record of a non-EOF track when the number of records

bumped is even.

Used in place of CP9C when write checking is specified.

The following channel programs are used for fixed length records regardless of whether they are
blocked or unblocked or whether the work area is obtained by the system or the user.

CP10A

CP10AW

CP10B

CP10BW

90

Used to write a record or block to replace an EOF mark.
Used in place of CP10A when write check is specified.
Used to write an EOF mark.

Used in place of CP10B when write checking is specified.

P

The following channel programs are used for insertion of fixed length prime data records into blocks
when the work area is provided by the system.

CP11A Used to read into the work area a block to be bumped.
CP11B Used to write back a rearranged block.
CP11BW Used in place of CP11B when write checking is specified.

The following channel programs are used for insertion of fixed length unblocked prime data records
when the work area is supplied by the user.

CP12A Used to read all records from the track following the slot into which a new record is to be
inserted.

CP12B Used to write a new record followed by the records read by CP12A.

CP12C Used to write a new record with a key identical to that of a record which, although

logically deleted, is still physically present on the track.
CP12CW Used in place of CP12C when write checking is specified.

The following programs are used for insertion of variable length records, blocked or unblocked.

CP12AV Used to read all records from the track following the slot into which a new record is to be
inserted.
CP12BV Used to write a new record and the records read by CP12AV.

The following channel programs are used for insertion of fixed length prime data records into blocks
when the work area is provided by the user.

CP13A Used to read all blocks from the track following and including the slot into which a
record is to be inserted.

CP13B Used to write back the rearranged blocks read by CP13A.

CP13C Used to write back a block if the insertion is a record with a key identical to that of a
record which, although logically deleted, is still physically present within the block.

CP13CW Used in place of CP13C when write checking is specified.

The following channel programs are used regardless of whether records are fixed length or variable
length, blocked or unblocked, or whether the work area is obtained by the system or the user.

CP14 ‘ Used to update track index entries, update the Cylinder Overflow Control Record
(COCR), and write overflow records. There are six different setups for this channel
program. They are explained in Appendix B.
There are separate versions for Fixed Length records and for variable length records.
For variable length records and fixed length records with a user-supplied work area, CP14

is divided into two parts. Part I writes the overflow record and Part II updates the COCR
and index entries. See Appendix E for details.

BISAM Operations 91

CP14W

CP15

CP16

CP17

CP17W

CP87

CP123W

CP123WV

92

Used in place of CP14 when write checking is specified.

Used to read in the cylinder overflow control record and the overflow track index entry
when a new record is added to the end of a data set.

Used to search an overflow chain for (1) the record which logically precedes or is equal to
the new record to be added or (2) the last record in the chain.

Used to change the key in a normal or normal and overflow track index entry or in a
higher level index entry.

Used in place of CP17 when write checking is specified.
Used to read a high-level index into main storage.

Addendum to CP12A and CP12B or to CP13A and CP13B when write checking is
specified (fixed length records).

Addendum to CP12BV when write checking is specified (variable length records).

READ K
WRITE K greate ItOB for
READ KU eques

Search it

Higher level
index searched on
core

r

Search cylinder
and master
indexes

Cylinder
and Master

Highest level

Cylinder

Search
cylinder -

index

Search
track
index

CP 6/6W
earch overflow
chain

Read or write
records

Y
CP 5/5W

Search prime

data track

“Read or write
records

Type of request

Abnormal End

FREEDBUE*-

Normal End

Place 10B on
Update Q

t

WRITE K
Remove 10B from
Update Q

READ KU

READ K
WRITE K

Free I0B

Y
‘ Request complete ’

Write record

Free 10B

NOTE: Search is Key High or
Equal. If unsuccessful, “No Record

Found” condition exists.
*FREEDBUF may be issued by the
user or automatically by the
Y
‘ Request complete)

privileged macro-time routine.

Figure 42. Read K, Write K, Read KU Channel Program Flow

back in data
set
Y ()

BISAM Operations 93

P==="N

WRITE KN
Create 10B

for request

Highest Rew k
level index Search highest o e;v ey
searched in level index igher than any on

data set

core

Search
cylinder and

ndexes searched

Search
cylinder on device Cylinder master
index and Master indexes
Track
\
ﬁ key
/TN =-_higher than any on Add to end
data set
Fixed Length Records, System Work Area -Figure 49

Fixed Length Records, User Work Area -Figure 50
-Figure 51

Variable Length Records

Search track
index

Search prime
index

Fixed Length Records, System Work Area -Figure 52
Fixed Length Records, User Work Area -Figure 53
Variable Length Records -Figure 54

Record on
overflo
Add to overflow

Record on Prime

Fixed Length Unblocked Records, System Work Area -Figure 44
-Figure 45

Fixed Length Unblocked Records, User Work Area
Fixed Length Blocked Records, System Work Area -Figure 46
Fixed Length Blocked Records, User Work Area -Figure 47
-Figure 48

Variable Length Records

Figure 43. Write KN Channel Program Flow—Index Searching

94

Fixed Length
Unblocked Records, (Add to prime ’ From Figure 43

System Work Area

Read record
occupying inser-)
tion position

New
key a duplicate

Original
record marked for
deletion

Write new
record in place
of original

Report “duplicate
Bumped Record to

Y
‘ Request complete record”’ error to
user
] Write new
record in place [be Deleted
\ of original
: Bumped Record Written
“in Overflow

Change key in

Report ,
nof‘f);unc?fa ce in overflow to
add another
error to user CP 14 Setup 1
Write overflow
record, COCR, normal track
'and index entries, index entry

Last record
on track read

Read (even)
bumped record

Write record
to replace
EOF mark

Last record on
track read

EOF Not Read

Write last
record back
to prime
Left Over Record
f Written in Overflow

Left Over
‘Record Deleted

Write
EOF mark

Y
‘ Request complete ’

CP 14 Setup 1

Write overflow
record, COCR,
land index entries

Y
‘ Request complete}
BISAM Operations 95

Figure 44. Write KN Channel Program Flow—Add to Prime (Fixed Length Unblocked Records,

Update key in
normal track
index entry

Y

System Work Area)

Fixed Length Insert to
Unblocked Records, prime From Figure 43
User Work Area

Read all blocks
after insertion
point

Old record
marked for
deletion

Write back bloc!
after inserting
new record

New key
duplicate

Report “duplicate
| record’’ error
to user

Yes

Request complete End of file

Rewrite
rearranged
track

CP 14
Setup 1 part 1
Write -

overflow
record

Bumped
record marked
for deletion,

Last prime
track of
data set

Write new
EOF mark

Last track full

Y
Request complete
No ()

Independent
overflow

Write out
prime track

Write out
prime track

Change key of
normal track
index entry

Y
CP 14
Setup 1 part 2
Update COCR
and track
indices

Y

‘ Request complete ’

\

< Request complete >

Figure 45. Write KN Channel Program Flow—Add to Prime (Fixed Length Unblocked Records, User
Work Area)

96

Fixed Length
Blocked Records, ‘ Add to prime) From Figure 43
System Work Area

CP 118 CP 11A

Read block oc-
cupying inser-
tion position

Request complete

after new
record inserted

l

Report “duplicate
record’’ error to
user

Yes New key a

duplicate

record marked

No for deletion

No

Yes

End of file

No

Last block
previously full

exist for overflow

Report “Space No
Request complete | not found”
error to user

CP 14 Setup 1

Write overflow
record, COCR,
and index
entries

Yes

cp11B Form padding

Write out records following
rearranged bumped record in
block new block

Has
last block been
written

Bumped
record marked
for deletion

Last prime
data track of
data set

No Yes

Write new
block over
EOF mark

Yes No

Change key in
normal track
index entry

Last block full Write new

Y
e EOF mark

No
Y Set last block Y
Last record
Request complete) and last track R
Yes padding No full switches equest complete
on

Figure 46. Write KN Channel Program Flow-Add to Prime (Fixed Length Blocked Records, System
Work Area) BISAM Operations 97

(Insert to prime) From Figure 4‘3

Read all blocks
after insertion

point

Fixed Length Blocked Records,
User Work Area

New key
duplicate

Write back block,
after inserting
new record

-

Y
‘ Requ&stcomplete’

Report “duplicate
record”’ error
to user

Insert new record
in block

Rearrange track

prime track of data

CP14
Setup 1 part 1

Write
overflow
record

Last block full

prime
track

Independent
overflow

L.
prime

Write

prime track

14

C

Y
(Request complete)

Write out

data set

Write back
rearranged
track

Last
block previously

No—Padding

Record
Bumped

Yes

Request complete

Form padding

records following
bumped records
in new block

Rewrite
rearranged

track

Set last block
and last track
full switches ON

record padding

ast
track of

Setup 1 part 2
Update COCR
and track
indices
Change key
of normal
track index
entr
Y

Request complete

Figure 47. Write KN Channel Program Flow—Add to Prime (Fixed Length Blocked Records, User

Work Area)

98

Variable Length Records < Add to Prime , From Figure 43

CP 12AV

Read records
after inser-
tion point

New key
a duplicate

CP 12BV
Yes

Write back
track with
new record

record marked
for detection

Y " - Merge new
eport “duplicate recordand | o
Request complete record™ error reorganize
to user records

blocks after
insertion point
read

CP 12AV

Read more
blocks

CP 12BV

Rewrite

Oneor
more records

/CP 14 Setup 1 part 1/

Write Yes
overflow bumped to !
records overflow prime track

New
key highest on
track

More
records to be
written

Yes

[cP 14 Setup 1 part 2 /

CP 14 Extension
Write new Independent Rewrite
overflow index
entry

EOF mark

Request complete

v

Figure 48. Write KN Channel Program Flow-Add to Prime (Variable Length Records)
BISAM Operations 99

Fixed Length Records, .
System Work Area Add to end From Figure 43

CP 15
Read COCR
and overflow
track index
entry

Overflow
chain already
exits

Yes Yes No

No

CP 16 Setup 2 CP 14 Setup 2 CP 10A

Write overflow Write new
record, COCR record over
and index EOF mark

entries °

[]
Write overflow
records, COCR
and index
entries

Search over-
flow chain for
last record

Write new
EOF mark

CP 17

Update track
index entries

Independent
overflow

Yes °
; (»)

° CcP 17

Update master
index entry

Request complete

Figure 49. Write KN Channel Program Flow-Add to End (Fixed Length Records, System Work Area)

Executed once for
each index level

100

Fixed Length Records () .
User Work Area Add to end From Figure 43

Read COCR and
overflow track
index entry

Overflow
chain already
exits

CP 14
Setup 2 part 1
Write over-

flow record

Yes No

Y

CP 16 Setup 2

Search overflow
chain for last
record

CP14
Setup 3 part 1
Write over-
flow records

Write new
record over
EOF mark

Y

Write new
EOF mark

Y

Independent
overflow

Update track
index entries

Executed

f;
Write new Update master once . or
. each index
EOF mark index entry Jevel

CP14
Setup 3 part 2
Write index en-

tries and (ifcyl.
off) COCR

Request complete

Request complete

Figure 50. Write KN Channel Program Flow-Add to End (Fixed Length Records, User Work Area)

BISAM Operations 101

Variable Length Records ‘ Add to end , From Figure 43

Read COCR and
overflow track
index entry

Overflow
chain already
exits

Yes

Add to Prime

Figure 48

CP 14
Setup 2 part 1
Write over-
flow record

CP 16 Setup 2

Search over-
flow chain for
last record

CP 14
Setup 3 part 1
Write over-

flow records

)

w\
Independent No

overflow

Write new
EOF mark

CP 14 Setup
2or 3 part2
Write index en-
tries and (if cyl.,
off) COCR

Y

< Request complete ’

Figure 51. Write KN Channel Program Flow-Add to End (Variable Length Records)

102

Fixed Length Records,
System Work Area Add to overflow } From Figure 43

Does
overflow chain
exist

No

Yes

CP 14 Setup 4 CP 16 Setup 3 CP 14 Setup 5

Write over- Search over New Record,_ [Write overfiow
flow records ﬂ°‘f" chain for 1st on Chain | record, COCR

and COCR logically pre- and index entr
ceeding record

Preceeding
Record
Exists

Equal Record Exists

CP 14 Setup 6

Write new rec-
ord over delet-
ed one and

change index

Equal
record
deleted

Yes No Independent

overflow

No Yes

CP 10B

Report “duplicate
record” error to | Request complete
user

Figure 52. Write KN Channel Program Flow—Add to Overflow (Fixed Length Records, System Work
Area)

BISAM Operations 103

Fixed Length Records,

From Figure 43
User Work Area

Add to overflow

Does
overflow chain
exist

CP-14
Setup 5 part 1
Write over-

flow record

CP 14
Setup 4 part 1
Write over-
flow records

CP 16 Setup 3

chain for
logically pre-
ceeding record,
Equal Record
Exists

1st on Chain

Exists

Equal
record
deleted

Independent
overflow

Independent
overflow

Request complete

Write new
EOF mark

Write new
EOF mark

Report “duplicate
record”’ error to
user

14
Setup 4 part 2

CP 14
Setup 5 part 2
Write index en-
try and (if cyl.
off) COCR

Request complete

Request complete

Figure 53. Write KN Channel Program Flow—Add to Overflow (Fixed Length Records, User Work Area)

104

Variable Length Records From Figure 43

Add to overflow

Does
overflow chain
exist

No

CP 14
Setup 4 part 1
Write over-
flow records

CP14
Setup 5 part 1
Write over-
flow record

CP 16 Setup 3

earch over- New Record
flow chain for 1st on Chain

logically pre-
ceeding record

Equal Reocrd
Exists

CP 14 Setup 6

Write new rec-
ord over delet-
ed one and

change index

Equal
record
deleted

Independent
overflow

Independent
overflow

'CP 14 Extension

Write new
EOF mark

CP 14 Extension

Write new
EOF mark

Request complete

CP 14 CP 14
Setup 4 part 2 Setup 5 part 2
Write index en-
try and (if cyl.

off) COCR

Report “duplicate
record’’ error to
user

Request complete

Request complete

Figure 54. Write KN Channel Program Flow-Add to Overflow (Variable Length Records)

BISAM Operations - 105

BISAM Control Blocks and Work Areas

Information about the data set and processing requests is carried in control blocks, work areas, and
queues. The address relationships of the control blocks to the processing modules, work areas, buffers,
channel programs, IOB, and channel program queues are shown in Figures 56 and 57. Figure 55 below
shows the elements of a BISAM read or write request.

t, Key l quord]

—
Channel | 108 DECB
program
.
Controf blocks | -
and B DCB
work areas
Processing
modules

Figure 55. Elements of a BISAM Request

106

- DCB

{created dynamically by Open)

Figure 56. BISAM Control Blocks and Processing Modules

(Check module
e 2C DCBDEBAD
4C DCBSETL /
:(8: ggg t?vm Non-privileged Non-priviteged
marco module macro module
{Write KN) {Non-Write KN)
6C DCBFREED
E8 DCBWKPT2 T —,
0 DCBWKPT4 | e
F4 DCBWKPTS ocB 5 .
ynamic
work area buffering
{See Figure 57) module
DEB
] -
-18 1 CE appendage table Lo H
-14 +AE appendage table al Aooend
™ ° g1 Appendage Appendage
T i (:e, module
L 8 DEBIRBAD g et (part 2)
18 DEBDCBAD |
~— 1C DEBAPPAD L J
2 DEBDISAD / Priviledged
macro
module
1RB
—
Asynchronous
module

BISAM Operations 107

14 DCBBUFCB > @
Full-track work area for Write KN
40 DCBMSWA
49 DCBMSHI -
—————— Storage area for highest level
E4 DCBWKPT1 index (if searched in core)
E8 DCBWKPT2
| ec DCBWKPT3 ——_\ DCB WORK AREA
p— 1} DCWFCP4
4 DCWFCP7
(1 c| DCWFIOBU [Unscheduled s
_______ 10 DCWLIOBU |queue
I 1 There is one copy of 14 | DCWFUPDI [Update 108 108
| CP1/2 and the Write 18 DCWLUPDI |gueue
| | KN CP's. They are
| cP1/2 | described by DSECTS ‘ (
| [in processing module;
L] addressed by using 0B 1BO
“““““ DCBWKTP1/3 asa
base register. 30 DCWFIOBE Error
34 | [DCWLIOBE queue)
—— — — —
— M
|
| 108 [o]:]
cpPg : -
followed by (
P
other required | cre
Write KN CP's : CP5
108 10B
L _! CP6
CP4 108
CP5
CPé
BUFFER CONTROL BLOCK
0 | BCBFIOB [IOB's needing]
cr? 4 | BcBLIOB Lbuffers
8 | BCBNAVB| Next buffer
cP7 available
14
Buffer 1
Buffer 2
- 1
(""" Buffer 3
T
0-
-=o Buffer 4

Figure 57. BISAM Work Areas and Queues

108

BISAM Close Phase
The BISAM close executor (module IGG0202A) is entered from the I/O support CLOSE routine. It
terminates outstanding I/O requests and releases main storage obtained for the work area and for channel

programs. If dynamic buffering was used, it releases the system-obtained buffer area. The BISAM close
executor passes control to the ISAM common close executor.’

BISAM close
executors’)

i

Terminate
1/0 requests
and free
10Bs

Release
Dynamic dynamic
buffering buffering
area

No J
Y

Release
work
area

Pass control to
common ISAM
executor

Figure 58. BISAM Close Executor

BISAM Operations 109

SECTION 3: PROGRAM ORGANIZATION

Flowcharts

Chart AA1 First Common Open Executor (IGG0192A) (Part 1 of 3)

1GG0192A

Al
‘ ENTRY ’
DSCB'S FOR

SCAN
PRIME, INDEX, AND
OVERFL.OW EXTENT ENTRIES

ISLOOA3

SET FORMAT 1
DSCB_AND UCB
POINTERS

ISLOOB2
C1 2

INCREMENT
PRIME EXTENT
COUNTER

PRIME EXTENT

ISLO0C2

D2

INCREMENT
INDEX EXTENT
COUNTER

YES
INDEX EXTENT

ISLOOD2

OVERFLOW
EXTENT

ISLOOE3
F1

DECREMENT
DSCB_EXTENT RPS DEVICE
COUNT

ISLOOF4
G2

FORMAT 1 DSCB

e 4

YES INDICATE PRIME
ON RPS DEVICE

CHECKING
SPECIFIED

| ® ,

INDICATE SET WRITE CHECK
OVERFLOW ON RPS - OPTION
DEVICE

RPS DEVICE

©)

L

IS _DEVICE
2321

ISLOOB3

RPS DEVICE

INDICATE
|OVERFLOW ON RPS
DEVICE

3
CALCUL%TE
NON-FORMAT 1

DSCB

ISLOOF3

NO
FORMAT 3 DSCB

ISLO0J3

ISLOOH3

SET EXTEN
COUNTER = 9

ISLOOF41
H3

ADVANCE DSCB
POINTER TO NEXT,
DsSCB

ANY MORE
DSCB'S

YES
FORMAT 1 DSCB
FORMAT3 DSCB

Flowcharts 113

Chart AA2 First Common Open Executor (IGG0192A) (Part 2 of 3)

DETERMINE NUMBER
OF MODULES TO

BE LOADED
ISLOOD‘H82

ISLOOE2

SETL OR
SETL K/I

INCREMENT
IODULE COUNTER

SCAN MODE

ISLOOD5

EAD OPTIO!
SPECIFIED

INCREMENT
IODULE COUNTER

ISLOOF2_ ISLOOF21
ABEND D
———(aBEND ExIT

INCREMENT
ODULE CQUNTER
BY 2

WRITE
UPDATE_OPTION
SPECIFIED

CODE = 3B
UNSUCCESSFUL
LOAD

ISLOOE2A
E]

SCAN MODE

ISLOOE2B

ITE KEY
NEW OPTION
SPECIFIED

INCREMENT
IODULE CQUNTER
BY 2

{ no

ISLOOD1

ISLOOE2C 1/ ISLOOE2D

PUT/PUTX
SPECIFIED

MoV

INCORRECT

5 ISLOOC1
NO ABEND H5:
E/LOCATE y #1CODE = 30 MACRF -——~————" ABEND EXIT ’

2

INCREMENT
IODULE COUNTER

YNAMI
BUFFERING

OPTION
SPECIFIED

INCREMENT
ODULE_COUNTER
BY 2

ISLOOE2E 1

ISAM CHE!
SPECIFIED

114

Chart AA3 First Common Open Executor (IGG0192A) (Part 3 of 3)

GET MAIN
STORAGE SPACE
FOR DEB
ISLO0G2 1 ISLOTE4
INCREMENT
NDEX PRIM ODULE_COUNT PERFORM
OR_OVERFLOW FOR_RPS_SIO WHERE-TO-GO
ON RPS APPENDAGE LOGIC
ISLOOF5 ¥ TCTLRTN
4
DETERMINE DEB
XCTL

REQUIREMENTS

TO: IGGO192B

D1
GETMAIN
MAIN STORAGE
SPACE FOR DEB

1

COMPLETE PREFIX
ASIC
SECTIONS OF DEB

ISLO0J2 _ y
INITIALIZE
VECTOR_TABLE
FOR BISAM

ISLOOK21

COMPLETE DEB
OVERFLOW FIELDS

ISLOOK3
VARIABLE

NGTH
RECORDS

RECORDS
BLOCKED

ISLO1D5 ISLFIXUB
J1 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>