GY30-2029-3

OS/MFT and OS/MVT

Systems TCAM Logic
Program No. 360S-CQ-548

0S Release No. 210

Preface

The Organization and Use of the TCAM Program Logic Manual section of
this book defines the audience for which this program logic manual was intended,
explains how the book is organized, and suggests how the reader might best
familiarize himself with its contents. In order to understand the logic of TCAM,
the reader must have a general understanding of the System/360 Operating
System. In addition, the following prerequisite publications are applicable:

e OS TCAM Concepts and Facilities, Order No. GC30-2022, to gain
familiarity with the overall concepts and structure of TCAM.

e OS TCAM Programmer’s Guide, Order No. GC30-2024, to learn how to
construct and modify a TCAM MCP and a TCAM-compatible application
program.

The OS TCAM User’s Guide, Order No. GC30-2025, provides supplementary
debugging information.

The OS System Control Blocks publication, Order No. GC28-6628, provides
corequisite information on system control blocks that are used by TCAM.

Fourth Edition (July 1972)

This publication is a major revision of, and obsoltes, GY 30-2029-2; it provides function support
of Component Release 4 of TCAM, and maintenance support of TCAM contained in Release
21.0 of OS.

Significant new material has been added throughout, and existing material has been changed
extensively; therefore, no vertical lines or bullets appear in the margins, and the manual should
be reread in its entirety.

The contents of this publication are subject to change from time to time. Changes will be
reflected in periodically updated editions. Before using this publication, consult the latest
System/360 SRL Newsletter, GN20-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form is provided at the back of this publication for your comments. If the form is missing,
comments may be addressed to IBM Corporation, Publications Center, Dept. EO1, P. O. Box
12275, Research Triangle Park, North Carolina 27709. Comments become the property of
IBM.

© Copyright International Business Machines Corporation 1971, 1972

Summary of Changes

This complete revision of the OS TCAM Logic publication obsoletes the previous
edition, GY30-2029-2. In this edition the method of operation text and charts are
replaced by revised and improved method of operation charts and text. The
Executable TCAM Modules Microfiche Directory has been replaced because of
changes in the method of operation chart identification and for operator control
and TOTE on-line test. Additional data area layouts are included for TOTE.

This revised edition also incorporates information on the following TCAM
support:

e 2790 Data Communications System
¢ 3270 Information Display System

e 3670 Brokerage Terminal

e 7770 enhancements

« disk error handling

« general poll for 2260 and 3270

« reverse interrupt (RVI)

« TOTE Il On-Line Test (OLT)

« TSO/TCAM mixed environment

iii

Contents

Organization and Use of the TCAM Program LogicManual 1
Section 1: Introduction L e 3
System Generationt e e e e e e e e e e e e e e e e e e 3
TCAM Macro Definitions e e e 3
TCAM Resident Modules e 3
TCAM Support Modules e 5
TCAM Transient Modules e e e 5
System Nucleus Modules L e 5
The Message Control Programinthe System 5
Assembling and Linkage Editing a Message Control Program 5
Execution of a Message Control Program 5
The Application Program inthe System 6
Assembling and Linkage Editing an Application Program 6
Execution of an Application Program e 6
Relationship of the OS Dispatcherto TCAM 7
Selected Options o L e e e e e e 7
OperatorControl L e e e e e 7
Application Program Processing Lo L e 7
Line Queuing Options it e e e e e e e e e e e 8
Message Queuing Options L.l e e e e e e 8
Logging e e e e e e e e e e e e 8
Checkpoint/Restart o i i e e e e e e e e e e e e e 8
TCAM as a Startable Procedure 9
Error Recovery Procedures 9
Subtask Trace L o e e e e e e e 9
Cross-Reference Table e 10
TCAM in a Multiprocessing Environment 10
Time Sharing Optiont i e e e 10
General Poll e e 11
Teleprocessing On-Line Test Executive (TOTE) 11
Configuration Data Set e 12
TOTE Requirementst ittt ittt et et 12
Abnormal Termination Recovery 12
Section 2: Basic TCAM Concepts it ee.. 13
The TCAM Dispatcher it ittt e 13
Elements, Queues,and Subtasks L. L Lo oL 13
The Ready Queue 0 i ittt e e e e e e e e e e e e e e 15
Principle of Tpostand Twait i i ittt e et 17
Buffer Management P 18
Queue Management L ol e e e e e e e e e e e e e e 22
Nonreusable Disk Queuing e 22
Reusable Disk Queuing e e e e e e e e 34
Main-Storage QUeuing e e e e e e e e e e e e e e 35
Main-Storage Queuving with Disk Backup 35
Special Queuing Considerations Lo Lo e 36
Section 3: Method of Operation 38
Method of Operation Introduction 39

Method of Operation Charts Overview 42

A. Defining the System/Network 43
Al. ExecutingINTRO e e 44
A2-1. Opening the Message QueuesDataSet 48
A2-2. Opening the Checkpoint DataSet 50
A2-3. Opening the Line GroupDataSet 54
A3. Executing READY e e e e e 60
Ad. Initializing the Application Program 62

B. Controlling the TCAM System vt 66
B1-1. Dispatching Functions of the TCAM Dispatcher e e 68
B1-2. Queuing Functions of the TCAM Dispatcher 71

vi

B2. Functionsof AQCTLSVC 102 72

C. Processingthe Messages i i it i i e e e e 76
C1-1.1. Starting a Receive Operation 78
C1-1.2. STARTMH for a Receive Operation 80
C1-1.3. Incoming MH Processing 82
Cl-1.4. FORWARD Processing o v v i v i vt e it eiee e 88
C1-2. Disk Queuing L e e e 90
C1-3.1. StartingaSend Operation 92
C1-3.2. STARTMHforaSend Operation 96
C1-3.3 Outgoing MH Processing 98
C2-1. Data Flow: MCP to Application Program 102
C2-2. Data Flow: Application ProgramtoMCP 106
C3-1. Application Program/Operator Control Interface 108
C3-2. Application Program Network Control. 110
D. Checkpointing/Restarting the System 112
DI1-1. Environment Checkpoint e 114
D1-2. Incident Checkpoint: MHRequest 115
D1-3. Incident Checkpoint: Operator Control Request 116
D1-4. Application Program Checkpoint Request 117
D2. Restart e e e e e e e e e e 122
E. Closing the System/Network 124
El. MCPTermination 0 i ittt i e e e e e 126
E2. Application Program Termination 130
Section4: Program Organization 133
Executable TCAM Modules Microfiche Directory 134
Non-Executable TCAM Modules Microfiche Directory 184
Macro Linkage Charts o e e e e e e e 187
Operator Control Command Linkage Charts 241
ERP Linkage Charts it e e e e e e e e 245
BSCERP e e e e e e 247
Flowcharts e e e e e e e e e e e 250
Section 5: DataArealayouts e 395
Linkages from a TCAM Buffer Prefix 397
Linkage among Storage Areas in the MCP and an Application Program 399
Address Vector Table e e e e 401
Access Method Work Area L e e e 423
Buffer Prefix e e e e e e e 429
Channel Program Block e e e 433
Checkpoint Disk Records o i i it e e e e e 437
Checkpoint Elements i i i i it e e e e e e e e e e 447
Checkpoint Work Areast i e e e e e e e 449
Command Input Buffer e 455
Common Buffer Data Area Prefix 461
Common Buffer Master QCB e e 463
Concentrator DataReady Queue e 457
Concentrator Device ID Table 465
Data Control Block e e e e 467
Data Event Control Block 477
Data Extent Block e e e e 479
Data Extent Block for Application Programs 483
Device Characteristics Table 485
Disk Data Area. o i e e e e e e e e e e e e e e e e e 487
Element Request Block L 489
Invitation List e e e e e e 491
I/OBIOCKS o i e 495
Line Control Block e e e e e e 503
On-Line Test Control Block it 511
Operator Control Address Vector Table 531
Option Characteristics Table 537
OptionTable e e e e e e e e 539
OS 1/0 Device Characteristics Table 541
Process Control Block 543

Figures

Process Entry Work Area e e e e 547

Queue Control Block e e e e 551
Queue Control Block Extension e 557
Resource Control Block o . e 559
Special Characters Table e e 561
Station Control Block e 563
Subtask Control Block e 571
Terminal Table e e e e 573
Termname Table e 581
Test Event Control Block e 583
TOTE Resource Control Block 587
TSO TSINPUT Control Block o e e et 591
Section 6: Diagnostic Aids 597
SCB Error Word Usageby Module 597
LCB Status Byte Usageby Module o0 599
Table of Message Origins 0 i i i it e e e e e e 601
Register Usage Conventions in TCAM i, 613
TCAM Service Aids o . L e e e e e 617
Appendix A: List of TCAM Modulesby Library 621
SYST.LINKLIB . . . e e 621
SYSI.MACLIB e e e e 623
SYST.NUCLEUS e e e e e e e e 627
SYSI.SVCLIB e e e e e 627
SYSL.TELCMLIB e e e e e e 630
Appendix B: TCAM Queuesand QCBs L L. 635
TCAM QUEUES o e 635
TCAMQCBS o e e e e e e e e e 637
Appendix C: List of Relative Prioritiesin TCAM 641
Appendix D: TCAM Channel Programs and TP OperationCodes 645
Glossary L e e e e 683
Index L e e 693
1. Physical Organizationof TCAM 4
2. TCAMQCBLinkage i it it e e e e 14
3. Priorityof SubtasksonaQCB L oo 14
4. PassingElementstoaQCB L e 15
5. Linkage from the Ready Queue to SubtaskCode 16
6. Pointers during a Ready Queue Update 17
7. UnitControl Area o e e e e e e e e e e 19
8. Buffer Units Chained to Form Logical Buffers. 20
9. Effect of an ERB on Buffer Unit Linkage 21
10. Assignment of Disk Message Queues Data Set Relative Record Numbers
across Three Volumes it 23
11. Disk Queuing a Three-UnitBuffer 25
12. Disk Queuing an Eight-UnitBuffer 26
13. Disk Queuing the Second Bufferof aMessage L. 27
14. Disk QueuingaOne-UnitMessage une... 28
15. Disk Queuing Pointers e e e e e e e e e e 29
16. Example of Two Queue-Back Chains 30
17. Disk Queuing-FIFO and FEFO Pointers 33
18. Zones for Servicing and Updating a Reusable Disk
Message Queues DataSet. e e e e e e 35

vii

Organization and Use of the TCAM Program Logic Manual

This publication covers the internal logic of the IBM System/360 OS Telecommu-
nications Access Method (TCAM). The TCAM PLM is directed to the IBM
program system representatives and system engineers who provide program
maintenance and who need information on the internal organization of TCAM.

Section 1, the Introduction, provides general information that is basic to an
understanding of TCAM. This information places TCAM in the proper perspec-
tive to the operating system (OS).

Section 2 describes the Basic TCAM Concepts. These should be understood
before approaching the specifics of the internal logic. Concepts described are the
TCAM Dispatcher, buffer management, and queue management.

Section 3, the Method of Operation section, describes the functional flow of each
operation in the TCAM system. The method of operation diagrams present the
internal logic of a basic TCAM system without relying on extensive textual
descriptions. The diagrams provide four kinds of information:

« Basic function (provided in the picture area).

e Module interfaces (shown as input to and output from the function being
performed in the picture).

« Procedures that support the function (description provided).

« Pointers into the listings and flowcharts (cross-references provided with the
description to lead to the proper routine, method of operation chart, flowchart,
or listing).

Section 4 covers program organization and operation of TCAM. This informa-
tion is provided in a series of tables that describe the functions of the various
TCAM modules. Also included are:

« Charts of message handling macros, parameter lists, and the module linkages
and functions that result from each TCAM macro coded.

« Tables of operator control commands and the action of the system as a result of
each command.

« Tables of error recovery procedures to trace and record 1/0 errors.

« Flowcharts of some TCAM modules to show line and queue control. The
flowchart identification is the same as the last two characters of the module
name. When multiple flowcharts are necessary for a module, these two or three
characters are followed by a dash and then a number (HM1-1). In addition,
duplicate identifications are assigned to these flowcharts to facilitate off-page
linkage.

Section 5 is a composite of the data areas used by TCAM. Each description
includes the purpose, internal references, allocation, and initialization information.
Both a visual and a tabular description of the DSECT for each area are also given.

Section 6 contains tables of information to aid in debugging and analyzing the
activity of TCAM.

The seventh section consists of information, in four appendixes, to aid in the use

of TCAM: a list of TCAM queues and QCBs, a list of TCAM modules by library,
a list of TCAM relative priorities, and the TCAM channel programs.

Organization and Use of the TCAM Program Logic Manual |

(This page left blank intentionally)

2 OSTCAMPLM

Section 1: Introduction

System Generation

TCAM Macro Definitions

TCAM Resident Modules

TCAM is a component of the IBM System/360 Operating System. The primary
purpose of TCAM is to provide a high-level access method to communicate with
telecommunications equipment while maintaining the greatest possible device
independence. In addition to supporting the transfer of data (messages) between
both local and remote terminals and the system, TCAM provides a flexible
message control language that can be used to direct the processing of the data. By
using the TCAM macro instructions, installation-oriented message control is
achieved.

TCAM operates under OS MFT or MVT in System/360 Model 40 or larger
processors. The minimum main-storage requirement is 128K bytes. In addition to
the system timer and normal OS requirements, TCAM requires a 2701, 2702, or
2703 on a multiplexer channel (unless only the 7770 or 2260 Local terminals are
used, in which case the 7770 or 2848 is attached to the channel). Secondary
storage for libraries and main or secondary storage for queuing are also required.

This section describes the various parts of TCAM and explains what they are,
where they come from, how they get into the system, their relationships to each
other, and how they pass control back and forth.

Figure 1 shows the steps necessary to begin processing in the TCAM environ-
ment.

When TCAM is called for during a system generation procedure (by the
ACSMETH=TCAM operand in the DATAMGT system generation macro
instruction), the TCAM modules are included in four libraries: SYS1.MACLIB,
SYS1.TELCMLIB, SYS1.SVCLIB, and SYS1.LINKLIB. An Attention routine
and a Type I SVC module (the AQCTL SVC 102 routine) are incorporated in the
Supervisor Nucleus (SYS1.NUCLEUS). There is an entry in the SVC table in the
nucleus for Type 4 SVC 104 TOPCTL, which is resident in SYS1.SVCLIB. Using
these modules, the user can assemble, linkage edit, and execute TCAM message
control and application programs.

The operating system macro definition library (SYS1.MACLIB) includes the
macro definitions necessary for the assembly of TCAM message control and
application programs.

When performing a system generation to include TCAM, the user must define a
special library area named SYS1.TELCMLIB. During the generation run, mo-
dules that can later be linkage edited with message control and application pro-
gram object modules are copied from SYS1.CQ548 into SYS1.TELCMLIB. In
this publication, these modules are defined as the TCAM resident modules.
Appendix A contains a list of the modules in SYS1. TELCMLIB.

Section I: Introduction 3

Application
Source Program

Assembler

System Generation
Macro Instructions

QS/360 Starter System

System Residence

SYS1. MACLIB

Includes all TCAM

Message Control
Source Program

Assembler

Macro Definitions

Linkage Editor

SYS1. TELCMLIB
All TCAM Resident Modules

Linkage Editor

to be Linked with User
Object Modules

User Code and
GET/PUT Linkages

Status Changing
Resident Routines

Job Scheduler

SYS1. SVCLIB
Includes all TCAM Support
Modules Loaded by OPEN,

and all OPEN,CLOSE,and
ERP Modules

SYS1. LINKLIB
Includes TCAM Transient

Macro Linkage
and User Code

MH Resident Routines

Modules

~ LT

(0] 4

Job Scheduler

PL
Main Storage !)
Supervisor Nucleus
fAttention Routine |
JAQCTL SVC Module
Partition J L.
N T T
Application Program 2
Partition or other Programs
2
GET/PUT Modules
Partition Application Program 1 -
! GET/PUT Modules
Partition Message Control Program :
0 Any Attached Subtasks -

Figure 1. Physical Organization of TCAM

4 OSTCAMPLM

TCAM Support Modules
During the system generation run, all modules that are loaded into main storage by
the various system open executors, and the TCAM open and close executors are
copied from SYS1.CQ548 into SYS1.SVCLIB. The TCAM Dispatcher, the
Command Scheduler, the Type IV SVC modules, and the Error Recovery Proce-
dure routines are also placed in SYS1.SVCLIB. In this publication, these modules
are defined as TCAM support modules. Appendix A contains a list of the TCAM
support modules in SYS1.SVCLIB.

The Error Recovery Procedure routines and the TCAM Open and Close routines
can, at the option of the user at system generation, be resident or transient during
program execution. In either case, these routines reside in SYS1.SVCLIB.

TCAM Transient Modules
At system generation time, modules that can be called into main storage for a
limited length of time during the execution of a TCAM message control or appli-
cation program are copied from SYS1.CQ548 into SYS1.LINKLIB. In this
publication, these modules are defined as TCAM transient modules. Appendix A
contains a list of the modules in SYS1.LINKLIB.

The Operator Control, Checkpoint, and On-line Test routines stored in
SYS1.LINKLIB can optionally be specified to be resident during program execu-
tion. However, in this publication they are defined as transient modules.

System Nucleus Modules
At system generation time, the Attention routine and the AQCTL SVC 102
routine (a Type I SVC) are copied from SYS1.CQ548 into SYS1.NUCLEUS. In
this publication these two modules are defined as the system nucleus modules.

The Message Control Program in the System

Assembling and Linkage Editing a Message Control Program
The user codes the TCAM macro instructions necessary to design a Message
Control Program. When these instructions are entered for assembly, the output of
this assembly includes: several tables and control blocks, linkages to TCAM
resident and support routines, Message Handler (MH) macro instruction expan-
sions, and any user-written routines that were included.

The assembled object module is then linkage edited to include the desired resident
routines from SYS1.TELCMLIB. These resident routines are the MCP routines
used to process header information, to translate from one transmission code to
another, to direct messages to the proper lines and queues, to manage system
resources, etc.

The resulting load module is stored in a system library to be loaded for execution.

Execution of a Message Control Program
The TCAM Message Control Program (MCP) is normally executed as the
highest-priority task in the highest-priority partition or region in the system. The
OS Initiator/Terminator routine loads and transfers control to the MCP. The first
TCAM macro instruction executed must be INTRO. The initial functions of
INTRO are to establish the TCAM address vector table (AVT), addressability
and entry linkages for the MCP, the cross-reference table, the channel program
block (CPB) pool, the buffer unit pool, and main-storage queues. INTRO also

Section 1: Introduction 5

attaches the Operator Control, FE Common Write, and On-line Test tasks and
enables the user to override some INTRO parameters through the system console.

The MCP runs under the control of the OS task management routines. It is
scheduled and dispatched according to the priorities included in the task control
block (TCB) in the partition in which it is being executed.

The Application Program in the System

Assembling and Linkage Editing an Application Program
A TCAM application program processes messages obtained from a TCAM MCP.
The application program can run in a partition or region different from the MCP,
or it can run as an attached task in the same partition or region.

An application program needs only the OPEN, CLOSE, GET, and PUT macro
instructions and some data set definition macro instructions. No resident routines
need to be linkage edited with the object module. However, the user may wish to
write application programs that use the following macro instructions to examine
and modify the status of the MCP:

+ CHECK
« CKREQ
« ICOPY

« ICHNG

« MCOUNT
« POINT

« QRESET
« TCHNG
« TCOPY

« TPDATE

When any of these macro instructions are used, the linkage editor includes the
corresponding resident modules in the load module. The load module is stored in
a system library from which it is loaded for execution.

Execution of an Application Program
It is possible to run an MCP with no application program, but one or more appli-
cation programs are usually being executed asynchronously with the MCP.

In most cases an application program is loaded into the next highest-priority
partition to the MCP. However, application programs may also be executed in the
same partition as the MCP after being brought in by the system ATTACH facility.

Application programs, like the MCP, run under the control of the OS task man-
agement routines. They are scheduled and dispatched according to the priorities
indicated in the task control blocks (TCBs) for the partitions in which they are
being run.

The primary difference between a TCAM application program and any other
processing program is the requirement for and the implementation of inter-

partition communication.

The various macro instructions that can be used in an application program are as
follows:

6 OSTCAMPLM

1. TCOPY, ICOPY, QCOPY, and TPDATE . The corresponding resident
routine for each of these macro instructions copies the requested information
from the MCP partition, using address pointers stored in the AVT and in the
terminal table. These tables are located by the communications vector table
(CVT).

2. All other macro instructions. The routines invoked by the remaining macro
instructions cause SVC Type I interruptions to the supervisory routines.

A module within a partition can move data or control information from another
partition into its own partition; however, that module must use an SVC either to
move data from its own partition into another partition or to move data within
another partition.

Relationship of the OS Dispatcher to TCAM

Selected Options

Operator Control

The operating system (OS) gains control from the TCAM task when the TCAM
MCP has no work to perform and issues an OS WAIT macro. When OS gains
control, it examines all the ready tasks in the system and passes control to the one
with the highest priority.

When a TCAM appendage has work for the MCP, it invokes the OS Post routine
by branching to an entry point to post the MCP event control block (ECB). This
indicates to the OS Dispatcher that the MCP now has work to do and is vying for
control of the system. OS can pass control to the TCAM task when it is the
highest-priority task that is ready to be activated. TCAM resumes execution at
the instruction following the WAIT that gave control to OS.

TCAM posts the ECBs for its attached tasks when they are to be activated. When
TCAM subsequently issues a WAIT, the attached tasks can vie to gain control
from OS.

TCAM has certain optional features available. These features are optional in one
of three possible ways:

1. Some of the functions of the feature are optional.
2. The presence or absence of the feature itself is optional.
3. The feature may be either resident or transient.

The following sections discuss each of the optional features of TCAM.

The TCAM Operator Control facility provides a way for the user to dynamically
examine or alter the status of his telecommunications network. A detailed de-
scription of the functions of this facility is included in the Operator Control
section of the OS TCAM Programmer’s Guide, Order No. GC30-2024.

The TCAM user specifies at SYSGEN time whether he wants the Operator
Control facility in his system to be supported by resident or transient routines.
The control module of the Operator Control facility is always resident. If the user
indicates that he wants the operator control support routines to be transient, these
routines are called in whenever they are needed. If the routines are specified to be
resident, they are all present in the system at all times.

Application Program Processing

The application program services of TCAM enable a programmer to process
messages from a telecommunications network with the same macro instructions

Section I: Introduction 7

Line Queuing Options

Message Queuing Options

Logging

Checkpoint/Restart

8

OS TCAM PLM

that he uses for local input/output devices. Because the TCAM MCP performs
the 1/0 operations, a completely device-independent application program can be
written. The programmer need not be concerned with the time and device-
dependent aspects of the telecommunications environment.

A TCAM MCP can operate in the system without an application program or
programs. However, if the user wishes to examine and process the data coming in
from his terminals to a greater extent than is allowed by the macro instructions of
the MCP, he must use one or more application programs. The macros specific to
application programs are discussed in detail in the OS TCAM Programmer’s
Guide, Order No. GC30-2024.

The TCAM user has the option of queuing either by line or by terminal, as
specified in the TERMINAL macro for each terminal or group of terminals.
Queuing by terminal is required for buffered terminals and for dial lines. Since
queuing by terminal requires one destination QCB per terminal rather than one
per line group, this method requires more main-storage space.

There are three types of queuing for messages:

o Main-storage queuing
« Reusable disk queuing
« Nonreusable disk queuing

The message queues may be maintained by any one of the three methods or by a
combination of main-storage queuing with backup on either reusable or nonreusa-
ble disk.

In an MCP there are at most two message queues data sets: reusable disk with or
without main-storage queues, and nonreusable disk with or without main-storage
queues. The user specifies the type of queuing for a given data set by coding
specified keyword operands of the macros that build the terminal table. The way
in which the types of queuing are specified is discussed in detail in the OS TCAM
Programmer’s Guide, Order No. GC30-2024. The way that the various queuing
types function is discussed under Queue Management in the Basic TCAM
Concepts section of this publication.

The logging option allows the user to maintain a record of incoming or outgoing
message traffic on a sequential medium. Message segments or full messages, as
determined by the placement of LOG macros in an MH, are placed on an output
device. The various types of logs and the corresponding MH subgroups in which a
LOG macro appears, are:

1. Incoming header segments only (Inheader)

. All incoming segments (Inbuffer)

. Complete incoming messages (Inmessage)

. Outgoing header segments only (Outheader)

. All outgoing segments (Outbuffer)

. Complete outgoing messages (Outmessage)

AN N W

Checkpoint/Restart is provided as an optional facility for the TCAM MCP at
user-specified intervals (every 30 seconds to 65,535 seconds). By using the
TCAM Checkpoint/Restart facility for the MCP and other TCAM facilities, such

as sequence numbers, an effective restart can be accomplished in an application
program.

The checkpoint routines store tables and other control information necessary for a
restart subsequent to a system failure or normal closedown. Restart of the TCAM

job after a system failure is accomplished by initial program loading (IPL) the

system again (if necessary), and loading the TCAM MCP. TCAM reinitializes the

tables and pointers from the latest checkpoint record on the disk (unless CY is

specified on the STARTUP parameter of the INTRO macro to suppress continua-

tion start-up). After a system failure, the STARTUP=C or STARTUP=W
operand on the INTRO macro causes TCAM to perform a continuation restart

with a scan of the message queues. If STARTUP=WY is specified, a continuation

restart with no message queues scan is performed.

After a normal closedown, TCAM can either reconstruct the environment that
existed before closedown (a warm restart) or it can reinitialize the system (a cold
restart). A warm restart is specified by STARTUP=W on INTRO; a cold restart
is specified by STARTUP=C.

To include the Checkpoint/Restart facility in an MCP, the user has only to
specify an OPEN for the checkpoint data set. As a result of this, the Checkpoint
Executor is attached in the same region as the MCP. The other checkpoint
modules can be either resident or transient, depending on what the user specifies
at SYSGEN time.

TCAM as a Startable Procedure

Error Recovery Procedures

Subtask Trace

The user has the option of starting a TCAM MCP or application program either
by JCL in the system input device or by the START operator command at the
system console. If the START command is to be used, the JCL for the MCP and
the different TCAM problem programs must be cataloged on SYS1.PROCLIB
under individual procedure names. The user may then enter START and the

procname for the program he wants, and job management immediately fetches the

JCL at the procname and starts the program.

The Error Recovery Procedure (ERP) routines are designed to diagnose and
recover, if possible, from line errors occurring during a telecommunications
operation. The error routines provide the following:

« Automatic retry of all errors not involving data transfer. Data transfer errors
are also handled by the EOB/ETB Handling subtask, if specified in the MH.
« Automatic retry of text errors during a receive operation when the data is still

available; that is, the PCI Appendage has not tposted the buffers containing the

data following the last good EOB/ETB.

« Statistical recording of all terminal errors.

o Error messages to the primary TCAM operator console for all permanent
€ITOrS.

The ERP routines are optional in that they may be either resident or transient.
The user specifies this option at SYSGEN time.

The Subtask Trace facility maintains a time-sequential table of the dispatching

activity of the TCAM Dispatcher. Each time the Dispatcher activates a subtask, it

completes an entry in the subtask trace table.

Section 1: Introduction

9

Cross-Reference Table

The presence of the Subtask Trace facility in the TCAM system is determined by
the DTRACE operand of the INTRO macro in the MCP. If the operand is coded
DTRACE=0, the facility is not included. If the operand is coded with a numerical
value, that value determines the number of four-word entries reserved for the
subtask trace table.

The format of the subtask trace table is shown in the OS TCAM User’s Guide,
Order No. GC30-2025.

The TCAM cross-reference table is formatted if the CROSSRF =integer operand
of the INTRO macro is assembled with a nonzero value. The numerical value of
integer determines the number of four-word entries reserved for this table. Each
time that a line is successfully opened, the Line Group Open routine (IGG01940)
completes an entry in the table.

The format of the cross-reference table is shown in the OS TCAM User’s Guide,
Order No. GC30-2025.

TCAM in a Multiprocessing Environment

Time Sharing Option

10

OS TCAM PLM

TCAM operating in a multiprocessing environment increases throughput, availa-
bility, and flexibility. All TCAM appendages and SVC 102 cause the TCAM task
to become ineligible to be dispatched in order to prevent TCAM disabled code
from modifying TCAM control blocks while enabled TCAM code is executing.
These modules set a flag in the TCAM TCB to indicate that the task is not eligible
to be dispatched and then call the OS Task Removal routine. When the Task
Removal routine issues an external interrupt to lock the other CPU, the other
CPU loops on the lock. When the TCAM module completes its functions, it
resets the TCB flag and zeros the lock before exiting. The other CPU then
obtains the lock and dispatches the task of the highest priority on its ready queue.

To prevent two enabled tasks from attempting to enqueue/dequeue on the same
resource at the same time, each task issues a test-and-set instruction on a specific
byte in the QCB before referring to the queue. The byte must be equal to zero
before the task can update the queue, and the task must reset the byte to zero
after completing the update.

TCAM provides terminal support for the Time Sharing Option (TSO) under MVT
when this option is requested on the INTRO macro. There are special macros to
generate an MCP with MH routines to handle TSO messages. TCAM also
supports application programs that are run under TSO in the foreground region.

If the TSO option is specified, TCAM provides a conversational approach to
terminal support—this includes support of the transmit and receive interrupt
features, modifications to the scheduling of 1/0O operations, and editing of the
data in TSO messages to make the data compatible with disk or tape.

TCAM and the TSO control program run in different partitions. Modified
message flow allows TCAM to route the messages to the TSO region.

TCAM support for TSO also includes the ability to use 1050s and 2741s on the
same dial line, the ability to simulate receive interrupts when they are not a
feature of the hardware, and the ability to have the transmission code dynamically
determined.

General Poll

In a mixed environment, time-sharing supported terminals can be shared by
time-sharing applications and message-switching applications.

Three types of polling are available for device invitation. The most common is
specific poll, which invites each device to transmit. The next most common is the
Auto Poll feature, which uses 2702-2703 hardware to perform specific polling
without I/O interruption or CPU uitlization. The general poll is desired for a
remote cluster of devices. It allows any device, if ready, to transmit without a
specific invitation.

General poll is a remote input technique in which special invitation characters are
sent to a 2260 or 3270 device control unit to solicit transmission of data from all
attached devices that are ready to send. General poll may be conducted with
programmed poll or Auto Poll, both of which invite each individual device to send.

General poll begins with transmission of the invitation characters. If a positive
response is received, TCAM determines the identity of the device terminal
originating the transmission message and puts this information in LCBTTCIN.
An entire message is read from one device until an ETX is received. Each device
can send only one message at a poll. When the ETX is entered a complete
message has been received, and all buffers are tposted to the Message Handler,
and the message is processed.

Standard scheduling is performed as for any receive operation on a multipoint line.
To receive the next message from the control unit, TCAM begins a new input
operation; however, invitation characters are not re-sent (as in programmed poll
or Auto Poll); the next message is read. This cycle continues until the device
control unit indicates, by sending an EOT, there is no more data to be sent.
General poll may also be terminated by the receipt by the control unit of a re-
sponse other than an ACK, NAK, or ENQ.

No interruptions are allowed during general poll except for conversational proc-
essing. Once the EOT is received, TCAM either transmits or polls the next entry
in the invitation list. The user should be aware of the time constraints of the
hardware involved.

Teleprocessing On-Line Test Executive (TOTE)

The Teleprocessing On-Line Test Executive (TOTE) is an attached subtask of
TCAM, designed to control the selection, loading, and execution of on-line tests
(OLTs). The on-line test function consists of three parts: TOTE, an on-line
device configurator, and the individual teleprocessing device tests (OLTs). TOTE
is the interface between TCAM and the on-line tests.

The individual OLTs are intended to diagnose hardware errors, verify repairs,
verify engineering changes, and test devices. TOTE conveys messages to the user
about the test, schedules and controls the test, and prompts the user when re-
quested or when an error in the format of a Test Request Message (TRM) is
detected. The OLTs are transient and reside in a library on a system direct access
device.

Test selection is achieved by entering a Test Request Message (TRM) from a
TCAM station, operator control terminal, or the system console. Test results are
sent to the terminal controlling the test, unless an alternate printer is designated as
a parameter or the option field of a TRM.

Section 1: Introduction 11

Configuration Data Set

TOTE Requirements

Abnormal Termination Recovery

12

OS TCAM PLM

TOTE also allows the user to enter changes to configuration data stored in a
Configuration Data Set (CDS). The configuration data set contains descriptive
data about the I/0 units attached to the system: this includes telephone numbers,
what devices are attached to which channel addresses, the features installed, and
any other data the OLTs might need to test all the equipment installed in a
particular location.

After the data set is generated it may be dynamically altered by answering ques-
tions presented by configuration request messages (CRMs). A CRM can be
entered from either the system console (through the operator control facility) or a
TCAM station.

The following requirements must be met before executing TOTE:

« The TCAM operator control facility must be initialized.

o The OLT modules must have been placed in a library.

« The configuration data set must have been built by a stand-alone, on-line test,
support program (SOSP).

« The terminals must be represented in the TCAM JCL by a DD card.

The following requirements must be met before executing a device test:

o The devices and communications lines used or tested must have been config-
ured.

« The devices used as the control terminal or alternate printer for the OLT, as
well as the devices to be tested, must be on opened communication lines.

o The communication lines to be tested must have been opened.

All 1/0 for the OLTs is done by the EXIO macro. Upon receiving this request,
TOTE usually builds an IOB using the data in the parameter list passed with the
request. This request is linked to the test DCB, an ECB, a DEB, and the OLTCB.
When all these blocks are properly prepared, an EXCP macro initiates the channel
program.

There is an entry point in the TOTE resident module (IEDQWA) that is entered
at OLT ABEND. This module will set a flag to indicate that areas used by the
OLT are to be cleaned up or freed when the control module next gains control.
The flag also indicates that the OLT has terminated, and the reason for the
termination is displayed on the system console.

All lines and terminals allocated to the OLT are returned to the state in which
they were found when the OLT was started; normal TCAM operations are
resumed.

Section 2: Basic TCAM Concepts

The TCAM Dispatcher

This section discusses each of the three basic concepts that influence the control
and functions of TCAM. The first concept, the method by which the TCAM
Dispatcher manages the TCAM resources, determines the flow of control among
the TCAM subtasks. The second and third concepts are the management of the
queues and of the buffers, respectively. An understanding of these three concepts
will help to clarify the charts in the Method of Operation section of this publica-
tion.

The TCAM Dispatcher is the control module of the TCAM system. The primary
purpose of this module is to allocate and schedule system resources. The follow-
ing sections describe how the TCAM Dispatcher allocates and schedules the
system resources, for example, CPU processing time, main storage, [/O paths, and
elements (primarily buffers and lines). The key to the mechanism is the ready
queue, through which a resource is allocated to a subtask.

The mechanisms of allocation are the twair and tpost functions performed by the
TCAM subtasks. A twait schedules a subtask to be activated when a specific
resource is available; a tpost passes an available resource to the ready queue. The
actual implementation of twait and tpost are not exclusive functions of the sub-
tasks; rather, the subtasks return to specific entry points in the TCAM Dispatcher
to indicate the status of the resource. Dispatching is the process of providing a
routine with an element and giving the routine control to handle the element.

Elements, Queues, and Subtasks

The physical resources of the system are composed of elements (for example, the
buffer pool, a resource, is broken into individual buffers, the elements) with each
element represented by a resource control block (RCB). An RCB is an 8-byte
prefix to an element. The first four bytes are a pointer to the queue control block
(QCB) that the element is to be associated with; the last four bytes contain a
priority byte and a link field.

There is at least one subtask that works with every type of element in the system.
Each subtask is represented by a subtask control block (STCB), which contains
the data necessary to activate the subtask it represents.

The elements, and the subtasks that operate on these elements, are associated with
one another by a third control block, the queue control block (QCB). Thus, a
QCB has a pointer to the chain of elements under its control and a pointer to the
chain of STCBs for the subtasks waiting to operate on these elements. The chains
are referred to as queues. Figure 2 illustrates the linkage of these queues to a
QCB.

Section 2: Basic TCAM Concepts 13

14

OS TCAM PLM

Elements
QCB

STCBs

P

B

Figure 2. TCAM QCB Linkage

When a subtask needs an element, it can do one of two things: (1) request an
element from the QCB that handles that particular element by tposting a request
element to that QCB, or (2) insert its STCB into the STCB chain of the QCB to
twait for the element. When the element is available, the subtask is dispatched.
When a subtask has finished using an element, it gives (tposts) the element to the
appropriate QCB. The TCAM Dispatcher gives this element to the first (highest-
priority) subtask in the STCB chain of the QCB. In this case, subtask A in Figure
3 is dispatched. The subtask associated with STCB B in Figure 3 can be dis-
patched if subtask A indicates to the TCAM Dispatcher that it does not need to
process the element. The STCB chain ends with a permanent STCB. STCB C in
Figure 3 remains the last STCB in the chain. STCB C might point to a routine
that does nothing more than chain elements into the QCB element chain. Subtask
C has a lower priority than any other subtask that might use the element and,
therefore, is dispatched only if each of the higher-priority subtasks bypasses
processing.

No elements available

QCB

STCB A

STCB B
PRI=3 :L_—l
- STCB C

PRI=1

Figure 3. Priority of Subtasks on a QCB

Figure 4 demonstrates the linkage when an element processed by subtask X is
tposted to the QCB and placed on the element chain by subtask C. Subtask C can
place the element in the QCB element chain only if subtask A and subtask B do
not need the element and pass it down the chain to subtask C.

The Ready Queue

r—————>—=7 A
' |
Subtask X 1 Element used |
i by X |
(R —
T
QcB Tpost

Y
r 7
Element Element used :
Chain | by X |
A e — J

(
\\
_ —_—
\ -——
STCB A))

PRI=3 STCB B }

PRIZ2 [sTCBC

PRI=1

Figure 4. Passing Elements to a QCB

The previous discussion points out that subtasks gain control from the TCAM
Dispatcher depending on:

1. The availability of elements, and
2. The priority of the STCB for the subtask.

The TCAM Message Control Program is responsible for allocating CPU process-
ing time to the various tasks under its control; it does so by using the ready queue.

The ready queue is a chain of elements that represent all the work to be done in
the TCAM system. The work to be done is represented by the various elements
(RCBs) that appear on the ready queue in priority order. The purpose of the
ready queue is to ensure that all elements are processed and dispatched with
respect to priority and without one impacting the resources of another.

To support dispatching while enabled for interruption, TCAM actually uses two
ready queues. One is designated to be used by disabled appendages or by the
disabled AQCTL SVC 102 routine for tposting elements, while the other is used
by enabled routines. Although the two ready queues are not managed by the same
technique, each is a ready queue because it contains elements (RCBs) to be
processed by the various subtasks.

TCAM manages the disabled ready queue by the first-in-first-out (FIFO) techni-
que. The queue itself consists of two words: a one-word pointer to the first and a
one-word pointer to the last element on the queue. Disabled appendages place an
element (RCB) on the disabled ready queue by linking the new element to the
element pointed to by the second word of the queue and by then updating the
second word to point to the new element.

Section 2: Basic TCAM Concepts 15

TCAM manages the enabled ready queue by the priority-FIFO technique. The
TCAM Dispatcher has the responsibility for merging the disabled into the enabled
ready queue just before dispatching. The enabled ready queue handles dispatch-
ing, and unless specified otherwise, it is the one usually referred to as the ready
queue.

The TCAM Dispatcher manages the ready queue by executing the subtask associ-
ated with the highest-priority element on its chain. Since the element has an RCB
as its prefix, the Dispatcher can refer to the correct QCB in order to pass control
to the first subtask represented in the STCB chain of the QCB. The subtask
processes the element and then returns control to the TCAM Dispatcher, which
can then examine the next element on the ready queue. Figure 5 illustrates the
chain of linkage from the ready queue to a subtask when an element is on the
ready queue.

Ready Queue QCB
Element IT\ Element Chain W Elements
Priovity Link
STCB 4\
STCB A
Key
Element A A
-
-~
Key QCB 4\ _ Priority
-
~
Piiority Link P -
~
-~
-
-
-
-
_ Key
Element B “
1
Key acs M N > Priority Link
Subtask Code
Piioity Link

Figure 5. Linkage from the Ready Queue to Subtask Code

16

OS TCAM PLM

When the Dispatcher gains control it removes the highest-priority element from
the ready queue by placing the address of the element in register 1. The Dispatch-
er then inserts the link field of the element in the ready queue to point to the next
element. When there are no elements for the ready queue, it points to the
“dummy last element” in the AVT (AVTDELEM). This element has a priority of
zero. Figure 6 demonstrates the change in linkage between the ready queue and
its elements during an update of the ready queue by the Dispatcher,

Register 1

Element /l\ =~
/
-
-
7~
-
-
pd
Ready Queue r
7~
e <
Element ’I‘ =
7~
7~
7~
7~
P
Element A
Key Qcs P
AN - .
N Priority Link
N
AN
AN
LEGEND N N
N Element B
AN
—————— Original Linkage |
¢ 9 Sl o T » Ker Qcs A

==:> Data movement to update the ready queue

— — — ¥ Linkage after ready queue update

Priority Link

Figure 6. Pointers during a Ready Queue Update

Principle of Tpost and Twait

The technique of passing an element from one queue to another queue is called
tposting. When the subtask that an STCB points to finishes processing an element
and wishes to allow another routine to process that same element, the subtask
tposts the element to the second routine. The subtask achieves the tpost by
placing in the RCB of the element a pointer to the QCB that controls the STCB
for the new routine, and then returning to the TCAM Dispatcher with an indica-
tion that the element is to be placed on the ready queue.

The second technique for handling resources is called twaiting. When a subtask
needs elements to process, it returns control to the TCAM Dispatcher indicating
that it has finished the processing that it can do at this time. The twait is imple-
mented by the TCAM Dispatcher. The Dispatcher places the STCB for this
subtask in the STCB chain of the QCB to which the resource that the subtask
needs to complete processing will be tposted. When an STCB is in the STCB
chain of a QCB and the subtask for that STCB does not have control, the subtask
is twaiting,.

When an application program needs either to place an element on the disabled
ready queue, to post an event control block (ECB) as complete, or to move data
from one partition to another, a special technique is used. This technique is
performed by the AQCTL SVC 102 routine, which uses pointers in the AVT to
refer to the disabled ready queue. Since AQCTL is a resident Type I SVC, the
actual processing occurs in the OS Supervisor, out of the control of either the
application program or the MCP.

Section 2: Basic TCAM Concepts 17

Buffer Management
The TCAM network has one buffer unit pool that contains buffer units of one
size. These buffer units are the basic building blocks from which buffers are
constructed. Henceforth, in this publication unit refers to a buffer unit.

Messages entering a TCAM network are placed in buffers, which are user-defined
areas of main storage used for handling, queuing, and transferring message
segments between all lines and queuing media. (A message segment is that
portion of a message contained in one buffer.) A buffer has two parts, one that
contains control information (the buffer prefix) and the other that contains all or
part of the message. Buffers must be at least 35 bytes long, and may be no longer
than 65,535 bytes.

The size of a unit is specified in the UNITSZ= operand of the INTRO macro of
an MCP, and the number of units in the buffer unit pool is equal to the sum of the
numbers specified by the LNUNITS and MSUNITS operands of INTRO. For
internal management purposes, TCAM adds 12 bytes as a prefix to the user-
specified unit size. These 12 bytes are called a unit control area. Thus, if a user
defines a unit size of 60 bytes (UNITSZ=60), the size of the unit is actually 72
bytes.

The size of a buffer for a line group is specified by the BUFSIZE= operand of the
DCB macro for a line group data set. All buffers used by a given line group are
the same size, but each line group may use buffers that differ in size from those
assigned to other line groups. (The buffer size can be overridden on a terminal
basis for send operations by using the BUFSIZE= operand of the TERMINAL
macro.)

TCAM constructs buffers by linking together the number of units necessary to
create a buffer that contains a number of usable bytes equal to or greater than
that specified by the BUFSIZE= operand of the DCB macro for a given line
group. (The 12 bytes added to each unit by TCAM are not considered in defining
the size of the buffer; the user should consider only the number of bytes he
specified in the UNITSZ= operand of INTRO.) For example, if UNITSZ=60 in
the INTRO macro and BUFSIZE=120 in a line group DCB macro are specified,
TCAM links together two units in building each buffer for that line group.

There are two types of buffers—header buffers and text buffers. A header buffer
contains all or part of a message header. A text buffer contains message text
only.

A buffer prefix is a control area contained within each buffer of the system. The
user must allow room for the buffer prefix in defining his buffers. TCAM fills the
buffer prefix area with buffer control information.

There are two kinds of buffer prefix. The first-buffer prefix is 30 bytes long and

is contained within the first buffer of a message. Any subsequent-buffer prefix is
23 bytes long and is contained within all buffers after the first.

18 OSTCAM PLM

Thus, there are two kinds of control areas associated with buffers: the 12-byte
unit control area associated with each buffer unit and assigned automatically by
TCAM, and the 30-byte or 23-byte buffer prefix assigned to each buffer by
TCAM in an area defined by the user. Each unit must be big enough to contain a
header prefix plus three bytes of message text (35 bytes) and may be no larger
than 255 bytes. A subsequent buffer contains more bytes of actual message than
the first buffer, since a subsequent-buffer prefix is 7 bytes shorter than the
first-buffer prefix.

The 12-byte unit control area that TCAM assigns to each unit is used to manage
multi-unit buffers. This control area has different functions dependent on the
status of its buffer. It may contain pointers, be used as an RCB, or be used to
generate a channel program. The initial format of this 12-byte area is defined in
Figure 7.

Offset

0 1 4 8
Address of the first Address of the next
QcCB unit of the next unit of this buffer
Key address logical buffer that
is assigned

Figure 7. Unit Control Area

Figure 8 shows how two buffers assigned to a line group look at the time of an
initial request if the user specifies the following:

INTRO UNITSZ=60
DCB BUFSIZE=100,BUFIN=2

In Figure 8, each buffer consists of two units linked together by the pointer in the
third word of the 12-byte unit control area. The two buffers are linked together
by the second word of the 12-byte unit control area. Note that in this situation
the first eight bytes of the unit control area of the first unit in each buffer is
functioning as an RCB.

When the user’s program requests and obtains buffers, they look like the ones in
Figure 8. However, when a line is ready to read or write, the function of the
12-byte control area changes. TCAM then uses the area to contain the channel
program that operates on the unit. TCAM places a CCW in each RCB field, and
the pointer in the third word becomes a TIC to the next unit. The 30-byte prefix
contains a count of the number of units in a logical buffer; this indicates where
one buffer stops and another starts.

To tpost a buffer, TCAM places only the first unit of that buffer on the ready

queue. All other units can be located through the chain created in the TIC field of
the unit control area.

Section 2: Basic TCAM Concepts 19

Buffer 1

Buffer 2

RCB
"

Unit Control Area

Next
Buffer

Next
Unit

[&————— 12 Bytes ————r{———— 30 Bytes

[¢———————— 30 Bytes —————————P>

30~byte Prefix Message Header and/or Text

RCB
—

€ 12Bytes — pl¢— 40 Bytes — L@ 20 Bytes

Unit Control Area Message Header and/or Text

K

Unused

|€¢—— 12 Bytes ———»

Unit Control Area
Next
| 0 | Unit

23 Bytes

37 Bytes P

23-byte Prefix Message Header and/or Text

[12 Bytes >

40 Bytes <

20 Bytes ————»

Unit Control Area

K

Message Header and/or Text Unused

Figure 8. Buffer Units Chained to Form Buffers

20

OS TCAM PLM

TCAM uses an element request block (ERB) to make requests for buffers for a
line group. Initial requests for buffers for a line are made when a scheduler tposts
its ERB, which contains the number of buffers requested, to the buffer request
QCSB for a receive operation, or to the disk I/O QCB for a send operation.

Subsequent requests for buffers are handled by the TCAM Program-Controlled
Interruption (PCI) Appendage. When the PCI= operand of the DCB for a line
group is coded to allow program-controlled interruption, a PCI may occur during
the filling or emptying of the first and each subsequent buffer assigned to that line
group. When the PCI is received, the PCI Appendage gains control.

When PCI=A is coded on the DCB macro and the first interruption occurs, PCI
Appendage assigns to the line group a number of buffers equal to the difference
between the maximum number assigned to the line group (specified by the
BUFMAX= operand of the DCB) and the number initially assigned to the line
group (specified by the BUFIN= operand of the line group DCB for a receiving
operation and by the BUFOUT= operand for a sending operation). On subse-
quent PCIs, the appendage deallocates the buffer immediately preceding the one
being filled or emptied and requests a new buffer in order to keep the number of
buffers assigned to the line group equal to that specified by the BUFMAX=
operand. (For a sending operation, the buffer units are returned by the buffer
return QCB to the buffer unit pool—the element chain of the buffer request
QCB; for a receiving operation, the buffer is sent to the Message Handler for the
line group for that DCB.)

When PCI=R is coded, the appendage deallocates the previous buffer when the
second and subsequent PCIs occur, but makes no requests for additional buffers.
If program-controlled interruptions are not permitted (PCI=N) or additional
allocation is not allowed (PCI=R), the number of buffers assigned must be
sufficient to handle the entire transmission, since no new buffers are allocated
until the transmission is complete. If PCI=N, there is no deallocation of buffers
until the transmission is complete.

Figure 9 shows the result of tposting an ERB with a count of three to the buffer
request QCB. The ERB chain of the LCB points to the first buffer. This figure
demonstrates the change in linkage after units have been transferred from the
buffer unit pool to form a buffer chain off the requesting ERB. The physical
location of the units in main storage does not change—the various pointers are
changed to reflect the new organization.

Buffer Request QCB Unit Buffer Unit Pool

Control A
Key ,b Element Chain one e
N 12 bytes
Priority Link N\ ,

M s1¢B Chain

Buffer Request STCB

Key
ERB
Key 4‘ QCB
Priority Link -
- - -
Status IT‘ Chain —————
-
03 03

LEGEND
——® Linkage before ERB is serviced

— — —p» Linkage after ERB is serviced

Figure 9. Effect of an ERB on Buffer Unit Linkage

Section 2: Basic TCAM Concepts 21

Queue Management
The incoming group of an MH performs user-specified functions in a buffer that
contains a message segment. After these functions are completed, the segment is
tposted to a destination QCB, which represents a line, terminal, or application
program.

Each destination QCB in a TCAM MCEP is assigned to one or more specific
message queues data sets. When a buffer is tposted to its destination QCB, it is
placed on the appropriate message queue in the associated message queues data
set to wait its turn to be sent to the specified destination.

The message queues data set to which a message segment is to be directed may be
in main storage or on a direct-access storage device. Each message queue within a
data set contains segments that are to be transmitted on a certain line or to a
certain terminal, or that are to be processed in a specific application program.

TCAM supports five types of queuing to a message queues data set:

« Nonreusable disk queuing

« Reusable disk queuing

« Main-storage queuing

« Main-storage queuing with nonreusable disk backup
« Main-storage queuing with reusable disk backup

The following sections discuss the functions of these types of queuing.

Nonreusable Disk Queuing
Queuing a message on a direct-access storage device is referred to in this publica-
tion as disk queuing. The fields AVINADDR and AVTRADDR in the AVT
contain the index to the nonreusable and reusable disk relative record numbers,
respectively, of the next record to be assigned.

In nonreusable disk queuing, the Destination Scheduler initiates a closedown when
a user-specified percentage of the disk message queues data set has been filled. If,
before the closedown is completed, there are more messages in the system than
the data set has room to accommodate, TCAM issues an ABEND.

The EXCP Driver routine assigns disk relative addresses across the volumes of a
multivolume disk message queues data set in such a way that the next relative
record address after the last record on a track is on a different volume. The
routine numbers all the records for a given track consecutively before assigning
addresses on a track of a different volume. In addition, the routine numbers all
the tracks of a cylinder before assigning addresses on a different cylinder. Figure
10 illustrates the disk record numbering scheme for a data set that has four
records per track on three volumes.

At MCP assembly or restart time, each destination QCB is assigned a unique
relative record number for the first buffer segment tposted to it. As a result, when
the first message enters the TCAM system, the AVT value is one greater than the
total number of destination QCBs.

The Destination Scheduler stores the address to be used for the first unit of the
first buffer of the next message received in the QCBDNHDR field of the destina-
tion QCB—this is referred to as the next-message location. The routine stores the
address for the first unit of the next buffer of the current message in the
SCBNTXT field of the SCB—this is referred to as the next-buffer location.

22 OSTCAMPLM

Volume 1 Volume 2 Volume 3

/ N\
/ N
/ \
Cylinder Track Relative Record Number Relative Record Number

0 0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 m 12 113 114 115 116 17 118 19

1 0 120 121 122 123 124 125 126 127 128 129 130 131
1 132...

Figure 10. Assignment of Disk Message Queues Data Set Relative Record Numbers Across
Three Volumes

The principle of assigning next-message and next-buffer values allows queuing
ahead on the disk. Records for buffer units are assigned before the buffer is
received.

In the example in Figure 11, there are five possible destinations. For each of
these, the MCP assembly has preassigned record addresses (marked A through E)
with relative record addresses zero to four. The applicable code for this example
is:

INTRO UNITSZ=100
LINEA DCB BUFSIZE=300,PCI=(A,A)
LINEC DCB BUFSIZE=800,PCI=(A,A)
Three messages arrive in the following order:
1. 500 characters—from Line A to Line D

2. 3000 characters—from Line C to Line B
3. 30 characters—from Line A to Line B

Section 2: Basic TCAM Concepts 23

24

OS TCAM PLM

Figure 11 shows the situation in which TCAM reads a buffer (the first buffer of
the first message) from line A. The 30-byte prefix contains the information that
this message is to be sent to line D. The message segment consists of three units
(since BUFSIZE=300 and UNITSZ=100) and does not contain an end-of-
message (EOM) indicator. The Destination Scheduler assigns the first unit of this
header buffer to the preassigned location for destination D, record 3. The
Scheduler then preassigns the next-message location for destination D to the next
available disk location at record 5, and places a pointer to record S in the prefix of
the buffer that will start in disk record 3. The Scheduler then assigns two addi-
tional units to the next available disk locations at records 6 and 7. The Scheduler
inserts a pointer to the first of these records in the prefix of the buffer that will
start in disk record 3.

Since the 300-byte buffer does not contain an EOM indicator, the Destination
Scheduler preassigns a record number (8) for the first unit of the next buffer to
arrive for this message. The Scheduler places a pointer to record 8 in the prefix of
the buffer that will start in disk record 3. The records are actually written after
the three pointers are included in the prefix of record 3. Figure 11 shows the
records and pointers after they are written on disk.

In this queuing scheme the additional records are always contiguous, and the first
unit of a subsequent buffer of a message is always contiguous to the last unit of
the previous buffer.

In Figure 12 the first buffer of the 3000-byte message from line C for line B is
queued. The buffer consists of eight units since BUFSIZE for line C is 800 bytes.
The Destination Scheduler places the first unit of the message in the preassigned
slot for destination line B. The scheduler then preassigns a location for the first
unit of the next message for line B to record 9, the next available disk location.
The scheduler places the additional records (units) for the current message
segment in disk locations 10 through 16. Since this buffer does not contain an
EOM indicator, the scheduler preassigns the next-buffer location to record 17.

In Figure 13, the second buffer of the message for line D is queued. This is a
three-unit buffer with an EOM character in the last unit. The DestinationSched-
uler places the first unit in the next-buffer slot of line D at record 8 and places the
two additional records in the next available disk locations, records 18 and 19. No
preassignment for the next-buffer location is made because of the EOM character
in this buffer. The scheduler preassigned the next-message slot for line D to
record 5 when the first buffer of this message was queued (see Figure 11).

In Figure 14, the 30-byte message from line A to line B is queued. Since this
message is contained within a single unit, only that unit must be written on disk.
The Destination Scheduler places this unit in the preassigned next-message
location for destination B, record 9. No next-buffer location needs to be preas-
signed, but the scheduler changes the next-message location for line B to disk
record 20. The next available disk location is now record 21.

Figures 11 through 14 do not illustrate all the disk record pointers. However,
Figure 15 shows the pointers mentioned above, as well as the pointers from each
subsequent buffer of a message-to the first buffer of the message. These pointers
are the base for the queue-back chain to be discussed next.

Line A

Unit 30-Byte Unit Unit
Control Prefi: Data Control Data Control Data
Area Area Area
Relative Record 3 6 7
VOLUME 1
Relative Record
Message |
0-3 A B c Buffer |
Unit 1
12-15
A
24 - 27 PRFINHDR 1 &
/ &
VOLUME 2 / /
Relative Record
Preassigned Message 1 / Message |
4-7 E D Next D Buffer | Buffer |
Message Unit 2 Unit 3
16 -19 /
pren L
28 -3
VOLUME 3
Relative Record
Preassigned
8-11 D Next
Buffer
20-23
32-35

Figure 11. Disk Queuing a Three-Unit Buffer

Section 2: Basic TCAM Concepts

Line C

Figure 12. Disk Queuing an Eight-Unit Buffer

Unit Unit Unit Unit
Control 30—B.yte Data Control Data Control Data Control Data
Prefix
Area Area Area \/ Area
Unit Unit Unit Unit
Control Data Control Data Control Data Control Data
Area Area Area Area
VOLUME 1
Relative Record
Message 1 Message 1
0-3 A B Buffer 1 C D Buffer 1
Unit 1 Unit 1
;1\
Message 1 Message 1 Message 1 Message 1
12-15 Buffer 1 B Buffer 1 B Buffer 1 B Buffer 1
Unit 4 Unit 5 Unit 6 Unit 7
24 - 27
VOLUME 2
Relative Record
Preassigned Message 1 Message 1
4-7 E D Next D Buffer 1 D Buffer 1
\ Message Unit 2 Unit 3
Message 1 \ Preassigned
16 -19 Buffer 1 B Next
Unit 8 Buffer
28 - 31
VOLUME 3
Relative Record
Preassigned Preassigned Message 1 Message 1
8-11 D Next B Next Buffer 1 B Buffer 1
Buffer Messsage Unit 2 Unit 3
20-23
32-35

26 OSTCAMPLM

Line A - second buffer

Unit Unit Unit
Control 23-B'y|'e Data Control Data Control Data
Area Prefix Area Area
Relative Record 8 18 19
VOLUME 1
Relative Record
Message | Message 1
0-3 A Buffer 1 C D Buffer 1
Unit 1 Unit 1
,
Message 1 Message 1 Message 1 Message 1
12-15 B Buffer 1 Buffer 1 B Buffer 1 B Buffer 1
Unit 4 Unit 5 Unit 6 / Unit 7
24 - 27
VOLUME 2
Relative Record
L
Preassigned Message 1 Message 1
4-7 E Next D Buffer 1 D Buffer 1
Message Unit 2 Unit 3
Message 1 Preassigned Message 1 Message 1
16 =19 B Buffer 1 Next D Buffer 2 D Buffer 2
Unit 8 Buffer Unit 2 Unit 3
28 - 31
VOLUME 3
Relative Record
Message 1 Preassigned Message 1 Message |
8-11 D Buffer 2 Next B Buffer 1 B Buffer 1
Unit 1 Message Unit 2 Unit 3
20-23
32-35

Figure 13. Disk Queuing the Second Buffer of a Message

Section 2: Basic TCAM Concepts

Line A

Unit E Unit Unit
Control 30-Byte o Control Empty Control Empty
Area Prefix M Area Area
Relative Record
VOLUME 1
Relative Record
Message 1 Message 1
0-3 A B Buffer 1 D Buffer 1
Unit 1 Unit 1
11\
Messagel Message 1 Message 1 Message 1
12-15 B Buffer 1 B Buffer 1 Buffer 1 B Buffer 1
Unit 4 Unit 5 Unit 6 Unit 7
24 - 27 /
VOLUME 2
Relative Record
Preassigned Preassigned Message 1 Message 1
4-7 E Next D Next Buffer 1 D Buffer 1
Buffer Messqge Unit 2 Unit 3
Message 1 Preassigned Message 1 Message 1
16 - 19 B Buffer 1 B Next Buffer 2 D Buffer 2
Unit 8 Buffer Unit 2 Unit 3
28 - 31
VOLUME 3
Relative Record
Message 1 Message 2 Message 1 Message 1
8-11 D Buffer 2 B Buffer 1 Buffer 1 B Buffer 1 -
Unit 1 Unit 1 Unit 2 Unit 3
1/
‘ Preassigned
20-23 B Next
Message
32-35

Figure 14. Disk Queuing a One-Unit Message

28 OSTCAMPLM

Queue-Back Destination

Additional Records for Buffer 1

Data

Contiquous

Data

Next Message

LEGEND

BUFFSIZE = 300
KEYLEN =100

Figure 15. Disk Queuing Pointers

23-Byte 23-Byte
Prefix Data / Prefix Data
\ Queue-Back Source

Additional Records for Buffer 2

Contiquous

Additional Records for Buffer 3

Contiquous

ZOmi

Queue-back Chain: A queue-back chain is a time-sequential record of the sending
and receiving message traffic for the terminal or terminals of a specific destination
QCB. TCAM maintains this chain for the message retrieval function of applica-
tion programs. A message that has already been sent can be retrieved by source
(input) or by destination (output) sequence number.

When the first buffer of a message is tposted to its destination QCB, the Destina-
tion Scheduler moves the current queue-back chain pointer (QCBQBACK) from
the destination QCB to the PRFHQBCK field in the buffer prefix and then stores
the disk relative record number assignment of the first unit of the buffer in the
queue-back chain field of that destination QCB (QCBQBACK). The presence of
a relative record number for the first buffer of a message in the queue-back chain
of the destination QCB indicates that the message is to be queued for the terminal
or terminals of the destination QCB.

When the last buffer of a message is tposted to its destination QCB, the Destina-
tion Scheduler uses the source destination offset in the buffer prefix (PRFSRCE)
to gain access to the associated terminal entry. The location of the destination
QCB for the sending (source) terminal is in this terminal entry. The scheduler
then places the current destination QCB queue-back chain pointer
(QCBQBACK) in the text queue-back field in the buffer prefix (PRFTQBCK)
and places the disk relative record number (address) of the first unit of the last
buffer.in the queue-back chain of the destination QCB (QCBQBACK) for the
source terminal. The presence of a relative record number for the last buffer of a
message in the queue-back chain of the destination QCB indicates that the
message was sent from the terminal or terminals represented by that destination
QCB.

Section 2: Basic TCAM Concepts 29

Destination QCB
for Station A

An examination of the queue-back chain of a specific destination QCB indicates
exactly which messages were sent from or received by the related terminal or
terminals. If the value in the chain is for the first buffer of a message, the message
was received by this terminal; if the value is for the last buffer of a message, the
message was sent by this terminal. Since the prefix of a first buffer points to its
subsequent buffer segment (PRFNTXT) and the prefix of a subsequent buffer
segment points to its first buffer (PRFCHDR), the entire message is available
from the queue-back chain pointers.

Note that if a message is only one buffer long, its relative record number location
goes in both queue-back chains.

Destination QCB
for Station B

QCBQBACK S~ QCBQBACK
\
\
|
/
/
7
=z -~
/7 23-Byte Prefix
H PRFTQBCKJMessoge 3 -Subsequent Bfrl Indicates a message sent from Station A
— /,
-
-~
Ve
/
/ 30-Byte Prefix
l PRFHQBCK IMessage 3 = First Buffer] Indicates a message sent to Station B
\
\ 23-Byte Prefix
\ N PRFTQBCK |Message 2 - Subsequent Bfr Indicates a message sent from Station B
N\

N 30-Byte Prefix

q PRFHQBCK [Message 2~ First Buffer Indicates a message sent to Station A
—

4

/
| 23-Byte Prefix

\
4 Message 1 - Subsequent Bfr Indicates a message sent from Station A
30-Byte Prefix
Message 1 - First Buffer Indicates a message sent to Station B
LEGEND:

——— 9 Queuve-back chain for Station A

——— Queuve-back chain for Station B

Figure 16. Example of Two Queue-Back Chains

30 OSTCAMPLM

Figure 16 illustrates the queue-back chains for two destination QCBs. The
following message sequence applies to this example:

Message 1—sent from Station A to Station B
Message 2—sent from Station B to Station A
Message 3—sent from Station A to Station B

Duplicate-Header Messages: When a message is identical to a message sent
previously (as in multiple routing), it is called a duplicate-header message. This
condition is indicated by a flag in bit 4 of the status field (PRFSTAT1) of the
30-byte buffer prefix. The Destination Scheduler handles a duplicate-header
message just like any other message except that no additional record locations and
no next-buffer location are assigned. The first unit of the first segment of a
duplicate-header message contains the same pointers that are in the first unit of
the first segment of the original message. TCAM modules use these pointers to
obtain any additional units and buffers in the message.

FEFO Queuing: FEFO (first-ended-first-out) queuing is used in sending messages
from the message queues data sets to destinations. This queuing allows TCAM to
send the messages that end first, rather than the messages that begin transmission

first.

Since the segments of a message cannot be kept in main storage until the message
is complete, they must be queued (placed on the disk) as they are received. This
results in a FIFO (first-in-first-out) message queue.

To create a chain of messages in FEFO order, the message with the previous
EOM received for a destination QCB must chain to the message with the current
EOM, regardless of which message began transmission first. This chaining pointer
cannot be written until after the current EOM is received. When the current
EOM is received, one message is completely on disk and the other is on disk
except for the last segment. A chain of first-buffer prefixes is all that is required;
therefore, the FEFO pointer can be written in the data field (at DATFEFO) of
the record that contains the first-buffer (30-byte) prefix of the message already
on disk at the same time the EOM segment of the current message is written.

When the first-ended message is to be sent and its first segment is read from disk,
the FEFO pointer is read from the data field of the record and placed in the
FEFO field of the SCB. When the first buffer is passed to the outgoing MH, the
STARTMH subtask updates the FEFO field in the destination QCB. The
message-serviced flag (X‘40’) is written in the disk data field along with the
FEFO pointer when the EOM is successfully sent.

The destination QCB contains two FEFO pointers: the disk record address of the
first FEFO message to send to the destination (QCBFFEFO) and the disk record
address of the last message completely received (QCBLFEFO).

Figure 17 illustrates FEFO queuing for five messages routed to the same destina-
tion. Messages 1, 3, and 4 require two buffers, and messages 2 and 5 require one
buffer. The first buffers of the messages arrive in the order in which the messages
are numbered. The messages complete transmission in the following order: 2, 4,
3,1,5.

Section 2: Basic TCAM Concepts 31

32 OSTCAMPLM

In this example, assume that the first buffers of messages 1, 2, 3, and 4 are already
written on disk, message 2 is complete, and the first buffer of message 5 is cur-
rently being transmitted. The FEFO queuing activity proceeds as follows:

o Message 2 is written out on the line. No FEFO pointers were written when
message 2 completed because it was the first message for the destination.

« Message 4 is completely received. Message 2 is still sending. QCBFFEFO and
QCBLFEFO are updated to point to disk address 8. A FEFO pointer to
message 4 is written in the disk data field of the first unit of the first buffer of
message 2.

« Message 3 is completely received. A FEFO pointer to message 3 is written in
the disk data field of the first unit of the first buffer of message 4. The destina-
tion QCB field QCBLFEFO is updated to point to disk address 7.

« Message 2 is completely sent. Message 4 is to be sent out. When the first
buffer of message 4 is sent to the MH, its disk data field is used to update the
QCBFFEFO field of the destination QCB to point to disk record 7.

e Message 1 is completely received. A FEFO pointer to message 1 is written in
the disk data field of the first buffer of message 3. The destination QCB field
QCBLFEFO is updated to point to disk address 1, the location of the first
buffer of message 1.

« Message 5 is completely received. A FEFO pointer to message S is written in
the disk data field of the first buffer of the last message received, message 1.
The QCBLFEFO field is updated to disk address 10, the location of the first
unit of the first buffer of message 5.

« Message 4 is completely sent. Message 3 is the next message to be sent. When
the first buffer of message 3 is sent to the MH, its disk data field is used to
update QCBFFEFO to point to message 1 in disk location 1, the next message
to be sent.

o Message 3 is completely sent. Message 1 is the next message to be sent. When
the first buffer of message 1 is sent to the MH, its disk data field is used to
update QCBFFEFO to point to message 5 in disk location 10, the next message
to be sent.

o Message 1 is completed, and message 5 is sent out. The QCBFFEFO pointer is
cleared.

Message 1 - First Buffer

Disk Relative Record Address
30-Byte Disk Data
Prefix Message Date ¢, 14]
I
|
|
\
\
\
\
Message 2 - First Buffer
30-Byte Disk Data
Prefix Message Data Field 5
/
|
|
\
\
\
\
Message 3 - First Buffer
30-Byte Disk Data
Prefix Message Data Field 4
T
|
|
\
\
\
\
Message 4 - First Buffer
30-Byte Disk Data ,
Prefix Message Data |4 8
I
I
|
\
\
\
\
Message 5 - First Buffer
30-Byte Disk Data
Prefix Message Data Field 10
LEGEND

— — # Next First-Buffer FIFO Chain

—— FEFO Chain

Figure 17. Disk Queuing—FIFO and FEFO Pointers

Section 2: Basic TCAM Concepts 33

Reusable Disk Queuing

34 OSTCAM PLM

Hold Queues: When the HOLD macro is issued in the outgoing section of an MH,
a special hold queue is built for multipoint terminals on a line that is queued by
line.

When queuing muitidrop terminals by line, the messages for the different termi-
nals are intermixed on the destination queue. The Send Scheduler uses the FEFO
chain to read one “first buffer of a message” after another. When a message for a
held terminal is reached, it is placed in the hold queue chain.

A pointer to the first held message is placed in the QCBINTFF field of the
destination QCB. When the next message to be held is encountered, no changes
are made for the message in the QCB in the FEFO chain; QCBFFEFO is merely
updated to point to the next FEFO message.

When a release occurs, the QCBINTFF field is moved into the QCBFFEFO field.
The FEFO chain is again followed, skipping over those messages already marked
serviced.

Queuing by terminal must be specified for dial lines, and messages are not inter-
mixed on a message queue. In this case, only one message is in the hold queue,
because the Send Scheduler determines that the terminal is held and does not
request any more messages.

Reusable disk queuing uses a “wrapped” message queues data set, on which
serviced messages are overlaid by new messages entering the system.

The Destination Scheduler activates the Reusability—Copy subtask to keep the
data set “cleaned up” to avoid losing messages that have not been serviced.
Message units are queued until 3/8 of the data set is full. At this point, the
Reusability—Copy subtask examines the next-message field in each destination
QCB for this data set. If any next-message field has a location value that falls
within the scope of the first quarter of the data set, the subtask writes a dummy
cancel message record at the specified next-message address and updates the
next-message field in the QCB to the current adjusted address value at
AVTRADDR in the AVT. This keeps new messages in close proximity on the
data set.

The Reusability—Copy subtask performs the next-message update process each
quarter of the way through the data set from this point on. For example, after
5/8 of the data set has been assigned to units, the Reusability—Copy subtask
compares the address values in the second quarter to the next-message location
specified in each destination QCB for this data set.

The Reusability—Copy subtask also handles log data sets. Although the
LOGTYPE macro contains no ALTDEST= operand, the original destination is
automatically designated as an alternate destination, which allows the subtask to
perform zone reorganizations on log data sets on reusable disk.

The Reusability—Copy subtask sends to the specified alternate destination any
unserviced messages located in the quarter that precedes the part of the data set
that is getting dummy cancel record messages. The subtask does this by reading
the old message from its current location and enqueuing the message to its alter-
nate destination, thus causing the message to be written in the current zone of the
data set.

If a duplicate-header message is more than a quarter of the data set away from the
first unit of the first segment of the original message, the Reusability—-Copy
subtask copies the entire message.

The Reusability—Copy subtask gains control each time the address value reaches a
zone mid-point (the middle of a quarter) of the data set. The only exception is
that the first time through the data set, it is not activated until the address value is
3/8 of the way through the data set.

Figure 18 illustrates the part of the disk message queues data set that has had
canceled messages issued to it and the part in which messages are sent to alternate
destinations when the address value is at a specific zone mid-point.

Message Queuves Data Set Message Queves Data Set
0 .0
Dummy Cancel Messages Send Messages to Alternate Destination
3/4 1/4 3/4 1/4

Dummy Cancel Messages
2/4 Zone Mid-point = Current Value of Address 2/4

Zone Mid=-point = Current Value of Address

Figure 18. Zones for Servicing and Updating a Reusable Disk Message Queues Data Set

Main-Storage Queuing
Main-storage queuing chains the actual main storage addresses of message units,
rather than using relative record numbers. Once an entire message is queued, all
the fields in the buffer prefix look the same as in disk queuing, except that the
Destination Scheduler uses the additional units field (PRFXTRA) of the buffer
prefix to hold the main-storage address of this unit and the current record field
(PRFCRCD) to hold the disk address if disk backup is used. The scheduler uses
the TIC field of the 12-byte unit control area that precedes each unit to chain
units together.

Main-storage queuing does not assign locations ahead; rather, the destination
QCB contains the address of the previous first-buffer segment, and the SCB
contains the address of the previous subsequent-buffer segment. When the first
segment of a message is received, the address of the previous first-buffer segment
is inserted in the destination QCB in the previous first-buffer field
(QCBCPVHD). When a message segment other than the first-buffer segment is
received, its address is placed in the previous subsequent-buffer field of the SCB.

The Destination Scheduler does not build a queue-back chain for a main-storage
message queues data set.

Main-Storage Queuing with Disk Backup
If the user specifies main-storage queuing with backup on either reusable or
nonreusable disk, the message segments are first queued as described under
Main-Storage Queuing and then the data is copied into buffers for the disk
message queues data set and queued as described in the sections on disk queuing.

Section 2: Basic TCAM Concepts 35

If the Destination Scheduler finds that the main-storage message queues data set
does not contain enough free units to queue a message, the scheduler queues the
message on disk only. Main-storage queuing resumes as soon as space is available.
The CPB Initialization routine retrieves the messages queued on disk just as if
they were placed in the main-storage data set.

Special Queuing Considerations

36 OSTCAMPLM

Duplicate-Header Message that Spans Queue-Type: A duplicate header message
that spans queue-type is one that is tposted to a destination QCB that is to be
queued in a manner other than that of the original message. For example, the
original message is directed to a destination QCB that uses reusable disk queuing
and the duplicate-header message is directed to a destination QCB that uses
main-storage queuing with no disk backup.

If the entire message does not have to be copied, the Destination Scheduler moves
the send scheduler STCB to the STCB chain of the LCB (if it is not already there)
to service the message. If the message has to be copied, the Reusability—Copy
subtask is activated.

Destination QCB for Main-Storage Queuing with Disk Backup: In this situation all
recalls are from disk; therefore, the duplicate-header message is written on the
disk data set only.

Main-Storage Queuing when Units Run Out: If a main-storage message queues
data set fills up with data and there is a message segment unit to be queued, the
Destination Scheduler acts according to the type of unit being processed. If the
unit is not the first unit of the first segment of a message, the scheduler gets the
first segment of the message, flags the message lost, and frees all the queued units
except the first one.

If the unit to be queued is the first unit of the first segment of a message and one
unit is available in the data set, the scheduler queues the unit and flags the mes-
sage as lost by setting a flag in that unit. If no unit is available or if the count of
units in the main-storage queue exceeds or equals the MSMAX= value specified
on the INTRO macro, the scheduler queues the buffer unit that contains the first
unit of the message into the data set, does not return a unit to the buffer unit pool
in its place, and sets a flag to stop receiving activity. Receiving is resumed when
enough messages have been sent to remove enough units from the message queues
data set to lower the number of units used to or below the MSMIN= value
specified on the INTRO macro.

(This page left blank intentionally)

Section 2: Basic TCAM Concepts 37

WId WNVOLSO 8¢

Section 3: Method of Operation

The diagrams in this section provide an overview of the basic functional structure of a TCAM system. The diagrams alone provide
general concepts and can be used for quick reference. Extended descriptions accompany the diagrams to provide more detailed
information—bit settings, field descriptions, names of modules performing the functions, and register usage. The diagrams are divided

into three general areas:

INPUT

LEGEND:

Primary functional flow

> Optional functional flow

- Necessary supporting functional flow

> TCAM control flow

SEEEDRESS . Optional supporting functional flow

SVCnnn > System control flow
-3 Linkage
o o e . e o s s = Previous linkage

>

PROCESS

OUTPUT

Conventions Used:

Data areas

MCP or Application
Program Macros

/ Operator Control activity

Area referred to or filled with

V,
2% data

Vi 04
02000

~—

Inclusive areas

Exclusive areas

I-Q-J []

uoperad(Q JO POYION € UOIISS

6¢

Method of Operation Introduction

Item Description

1. The left area of the diagram contains the input required to perform a given function. This input can be data areas, registers, parameter
lists, and the like. When more than one field in a data area is refered to, the fields are illustrated schematically, rather than
contiguously. Contiguity is shown when possible. In like manner, these fields are represented sequentially whenever possible.

2. The central area of the diagram contains the processing steps required to perform a given function. The numbering of these steps does
not necessarily indicate sequence, as some steps are executed concurrently. In some instances, processing steps are further subdivided
into substeps, indicated by lowercase alphabets.

The information in this processing area is presented on a high level; see the accompanying extended description for each diagram for
more detailed information. The numbers associated with the processing steps correspond to the numbers in the extended description
section.

3. The right area of the diagram contains the output resulting from the processing step. Just as with the input, the output can be in the
form of data areas, parameter lists, addresses in registers, and the like. The same conventions are applicable to both input and output.

4. When input is for a particular substep of processing, the data flow arrow from the input area penetrates the processing box. When
input is for an entire step, the arrow does not penetrate the box.

Note: Sometimes the input to or output from a particular step will be represented in a detailed manner the first time, while
subsequent references to the same input or output will be less detailed.

WId NVOL SO 0O

- Defining the System/Network

Executing INTRO

Executing READY
Initializing the

HWN =

Application Program

Opening the Data Sets

Legend:

v
i

isnasaadp -

Primary functional flow

Optional functional flow
Necessary supporting
functional flow

Optional supporting
functional flow

Controlling the TCAM System

1 The TCAM Dispatcher
2 AQCTL SVC 102

Processing the Message

1 MCP Processing

~

p—

~,
-—_\,/

2 MCP/Application
Program
Interface

Py
A -

'
Y
/

3 Application Program
Processing

<duunnni
mesnndP

Checkpointing/Restarting the System

1 Checkpoint
Restart

E
. Closing the System/Network

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>