
GaitExtract Toolbox V1.71

User Manual

Tim Dorn
twdorn@stanford.edu

https://simtk.org/home/c3dtoolbox

Table of Contents

1. INTRODUCTION... 3

2. THE BASIC IDEA .. 4

3. TOOLBOX INSTALLATION... 4

4. LABORATORY CONFIGURATION .. 5

4.1. DATA EXTRACTION LABELS (SECTION 2 OF LOADLABELS.M) .. 5
4.2. FORCE PLATE IDENTIFICATION ... 6
4.3. ANALOG EMG CONFIGURATION .. 9
4.4. COORDINATE SYSTEMS .. 10
4.5. CENTER OF PRESSURE CALCULATION .. 12
4.6. SETTING UP ALTERNATE LABS (SECTION 1 OF LOADLABELS.M) ... 15

5. EVENT LABELING... 18

5.1. FOOT DETECTION ALGORITHM... 19

6. DETAILED FUNCTION LIST.. 22

BATCHEMGPROCESS(C3DKEY, EMGSETNAME, EMGPROCESSTASKS, FILESUFFIX*) ... 23
CREATEEVENT(C3DFILE, FOOT, LABEL, FRAME) ... 24
EXTRACTMOTFILE(PROCESSTASK1, VALUE1, PROCESSTASK2, VALUE2, …) ... 25
GENERATEMOTFILE(DATAMATRIX, COLNAMES, FILENAME).. 26
GENERATETRCFILE(C3DKEY, MARKERPOS, MARKERSET).. 27
GETEVENTS(C3DFILE, DIRECTION*, FP_ORDER*, FP_SEQUENCE*).. 28
GETKINETICS(C3DKEY, PLOTTOG*, FILTERFREQ*, MARKERSDYN*).. 32
GETMARKERS(C3DKEY, MARKERSETNAME, FILTER*) .. 34
GETMVC(C3DKEY, EMGSETNAME, WINDOWSIZE, *MVCMETHOD) ... 36
LOADLABELS() ... 37
MULTIPLEEMGPROCESS(C3DFILE, EMGSETNAME, EMGPROCESSTASKS, INTERVAL4TIME) 38
PROCESSEMG(EMGVEC, {PROCESSTASK1, VALUE1, PROCESSTASK2, VALUE2, ...}) .. 39
WRITEXML(TYPE, C3DKEY*) .. 41

7. EXAMPLE SUBJECT TRIAL .. 42

8. REVISION INFORMATION .. 43

GaitExtractToolbox Documentation Page 1

mailto:t.dorn@pgrad.unimelb.edu.au
https://simtk.org/home/c3dtoolbox

Copyright (c) 2008 Tim Dorn
Use of the GaitExtract Toolbox is permitted provided that the following conditions are met:

1. The software is not distributed or redistributed. Software distribution is allowed only

through https://simtk.org/home/c3dtoolbox.
2. Use of the GaitExtract Toolbox software must be acknowledged in all publications,

presentations, or documents describing work in which the GaitExtract Toolbox was used.
3. Credits to developers may not be removed from source files
4. Modifications of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR BUSINESS INTERRUPTION) OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

GaitExtractToolbox Documentation Page 2

1. Introduction

This toolbox is primarily used for extracting and processing experimental gait data into a

format that can be directly used with OpenSim. It can be configured for any laboratory setup,

specifically in terms of the coordinate systems used, force plate names, marker sets, EMG channels,

etc. Use of this toolbox for specific configurations / laboratories will require changes to the

parameters in loadLabels.m. In this manual, we assume that:

 Matlab is installed (R2007a or later)

 Vicon Nexus or Vicon Workstation was used to acquire experimental gait data. While this is

not strictly required for use of the toolbox, the user manual will describe process assuming

that Vicon is being used.

Extraction is performed directly from the C3D file of trial, which is easily obtained from the

data acquisition software (i.e. Vicon), so data can be processed offline on any computer with

Matlab. The GaitExtractToolbox is open-source software and is freely available from

https://simtk.org/home/c3dtoolbox (Figure 1).

Figure 1: GaitExtractToolbox on the website: https://simtk.org/home/c3dtoolbox

GaitExtractToolbox Documentation Page 3

https://simtk.org/home/c3dtoolbox�
https://simtk.org/home/c3dtoolbox
https://simtk.org/home/c3dtoolbox

2. The basic idea

Although there are many software packages out there to extract and process experimental gait

data from Vicon, much of the software is hard coded and the lack of flexibility does not suit

engineering applications. The basic purpose of this toolbox is to provide a platform to extract gait

data directly from a C3D file into to a Matlab environment where higher levels of flexibility are

available for data processing. Data can then be exported into *.trc, *.mot and *.sto files to be used

with musculoskeletal models in OpenSim.

The basic idea is to first experimentally record the kinematics, kinetics, and (optional) EMG

of a dynamic activity through using motion capture cameras, force plates, and EMG recording units.

The resulting trial is stored (by Vicon) as a file with a C3D extension. A working directory can be

created with a copy of the C3D file inside, and a simple high level Matlab m script, which defines

the processing commands that define operations to be performed on the data. The getEvents.m

function must be executed for each C3D file to create an ‘event key’ which can then be used to

extract and crop experimental data. See Section 5 for a complete list of functions that can be applied

to raw data. Feel free to modify these functions or make up your own. Please cite the following

reference if used in publications.

Dorn, T. W. (2008). Gait Extract Toolbox for Matlab, Version 1.71

3. Toolbox Installation

The installation requires the Matlab path to point to the directory where you have decided to

install this toolbox. It also requires the installation of Motion Labs® C3D Server (C3D Viewer

should also be installed and a freeware copy is provided with the toolbox). The installation m file

provided will install the scripts and set the paths for when Matlab loads. To install the toolbox:

1) Copy the toolbox to the directory you want to install it to (i.e. C:\GaitToolbox)

2) Load Matlab

3) Set current directory to GaitExtractToolbox\INSTALL

4) Run installGaitExtractToolbox.m

5) Follow the prompts

An example is provided to test the success of the installation (see Section 7).

GaitExtractToolbox Documentation Page 4

4. Laboratory Configuration

I primarily designed this toolbox to run in the Biomechanics Laboratory in the Department of

Mechanical Engineering at The University of Melbourne. It is however, simple to configure for any

gait lab configuration. There are infinite ways to configure a biomechanics lab in regards to,

coordinate systems, force plate configurations, marker set names, and other analog channel names.

Just like Vicon needs information about the laboratory to configure its parameters, so does this

toolbox. Once the lab is configured, the toolbox becomes a powerful data extraction and analysis

tool and can export directly into a format to be used by OpenSim (with XML setup files). This

section will outline the way the toolbox has been created.

Note: In this manual, the LABORATORY coordinate system is referred to as the VICON coordinate

system.

4.1. Data Extraction Labels (Section 2 of loadLabels.m)

All labels / configuration parameters are stored in the loadLabels.m file. This labels file is

used by many of the Matlab functions that plot graphs, and load C3D data. The labels are all stored

as a structure called glab, standing for “global labels” and its meanings are illustrated below.

DO NOT MODIFY

glab.name: Titles of each of the major labels

glab.dir: Labels for the XYZ directions of force

glab.S: Convention for ground reaction force (GRF) output

glab.X: Convention for center of pressure (CoP) output

glab.Mo: Convention for ground reaction moment about plate origin (GRMo) output

glab.Mx: Convention for ground reaction moment about CoP (GRMx) output

USER DEFINED (USER SHOULD MODIFY THESE)

glab.[jointModel]: Skeletal model joint labels

glab.[emgSet]: Analog channel names for EMG extraction. These names must match the

Vicon analog channel names otherwise EMG extraction won’t work (see

Section 4.3).

GaitExtractToolbox Documentation Page 5

glab.[emgProcess]: A cell of EMG processing tasks to define the order of EMG processing. These

names must match the labels given in processEMG.m otherwise EMG

extraction won’t work (see processEMG.m help).

glab.[markerSet]: Markers in the order for kinematic position extraction.

You may add other labels as needed. The benefit of storing these labels in one script is to

keep the whole program modular and easily expandable.

4.2. Force plate identification

There are many different types and brands of force plates used in the field of experimental

biomechanics. The main brands are AMTI, Bertec and Kistler. While these plates measure ground

reaction forces (GRF) directly, only the AMTI & Bertec plates measure the ground reaction

moment about its origin (GRMo) directly.

In fact, these plates actually measure different components of force because they use different

types of sensors in the hardware. For example, the AMTI & Bertec plates (http://www.amti.biz)

incorporate strain gauges mounted on each corner of the plate to directly measure the main six

components of force using six channels (Fx, Fy, Fz, Mx, My, Mz).

The Kistler plates (http://www.kistler.com) on the other hand consists of a base frame on

which four piezoelectric crystal 3-component force sensors are mounted which use eight channels

to output force (Fx(1+2), Fx(3+4), Fy(4+1), Fy(2+3), Fz1, Fz2, Fz3, Fz4). This clearly requires

several equations to calculate our required six force components that the AMTI plates give us

directly (Kistler claim that these sensors are used and placed in a way that measure pressures more

accurately than AMTI but requires some computational effort to derive the final forces).

Note: This toolbox assumes AMTI or Bertec (or any other 6 channel) type II plates are in use such

that the required force parameters (Fx, Fy, Fz, Mx, My, Mz) come directly from the C3D file. The

equations used to process ground data come from http://www.kwon3d.com/theory/grf/cop.html

For other force plate types (i.e. 8 channel Kistler), if you have Vicon Nexus, you can open the

C3D file in Nexus, and re-export it as C3D, and the force plate type will be converted to a six

channel type II force plate, fully compatible with this toolbox.

GaitExtractToolbox Documentation Page 6

http://www.amti.biz/
http://www.kistler.com/
http://www.kwon3d.com/theory/grf/cop.html

IMPORTANT NOTE: When Vicon Nexus exports a C3D file, it outputs ALL force platforms

as Type 2 platforms (Fx, Fy, Fz, Mx, My, Mz) in their local force plate coordinate system and

also outputs all markers in the Vicon coordinate system. So if you are using this toolbox to

extract motion and kinetic data from C3D files exported by Vicon Nexus, ensure that the

coordinate system is set up in loadlabels.m accordingly (see Section 4.5).

All force plates are connected to analog channel inputs into the Vicon box for

synchronization. The analog channels allow Vicon to determine which force plates are which, and

this is achieved by assigning each analog channel a unique identifier. Figure 2 illustrates an

example of a force plate configuration in a gait laboratory.

Note: Force plate corners must also be identified in your data capture software to determine the

force plate surface midpoints (used to calculate center of pressure, and to transform force plate

signals into the laboratory frame).

GaitExtractToolbox Documentation Page 7

FP3Fx FP3Mx
FP3Fy FP3My
FP3Fz FP3Mz

2 1

3 4

FP2Fx FP2Mx
FP2Fy FP2My
FP2Fz FP2Mz

2 1

3
 4

FP1Fx FP1Mx
FP1Fy FP1My
FP1Fz FP1Mz

2 1

3 4

Figure 2: Force plate configuration in a gait laboratory. Values in the table denote the analog channel names.
Values in the green circles denote the corner numbers.

GaitExtractToolbox Documentation Page 8

4.3. Analog EMG Configuration

For any analog setup, it is important that the channels are labeled correctly. The analog setup can be

accessed easily in Vicon. For example, in Vicon Workstation, go to the System Menu and select

Analog Setup.

Firstly, check that the force plate channel labels are correct from Section Error! Reference source

not found.. For each force plate i, the corresponding labels should be FPiFx, FPiFy, FPiFz, FPiMx,

FPiMy, FPiMz.

If you are recording EMG signals, these must also be recorded as analog signals. The EMG

channels follow the force plate channels as shown in Figure 3. It is very important that EMG

channel labels match the labels of glab.[emgSet] in loadLabels.m (See Section 4.1) for data

extraction to occur correctly. Refer to the Vicon manual for help on setting up analog channels.

Force plate

channels

EMG channels

Figure 3: Analog EMG channel setup. This screenshot was taken from Vicon Workstation and may be slightly
different to Vicon Nexus.

GaitExtractToolbox Documentation Page 9

4.4. Coordinate Systems

There are three different coordinate systems which need to be taken into account when extracting

kinetic data from the C3D file.

 Force plate (FP) coordinate system

 Laboratory (VICON) coordinate system

 Model (MODEL) coordinate system

Converting from one system to another can get a little confusing and tedious, so the function

coordChange.m exists (see Section 5) to perform rigid body transformations from one system to

another after kinetics or kinematics have been extracted (kinetics are extracted and output in the

VICON coordinate system).

Note: the musculoskeletal model used with this toolbox is the Gait23xx_Simbody in OpenSim:

1. Anderson, F.C. and M.G. Pandy, Dynamic optimization of human walking. J Biomech Eng,

2001. 123(5): p. 381-90.

2. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E.,

Thelen, D.G., 2007. OpenSim: open-source software to create and analyze dynamic

simulations of movement. IEEE Trans Biomed Eng 54(11), 1940-1950.

Figure 4 illustrates a coordinate system configuration for a typical gait laboratory and model.

GaitExtractToolbox Documentation Page 10

Force plate – GREEN

Vicon – RED

Ym
Model – BLUE

Xm

 Zm

AMTI Plate Coordinates

Yv

Xv

Zp

Yp

 Xp

Zv

Figure 4: Three coordinate systems required for experimental gait data collection and modelling. 1) Vicon
coordinate system (RED); 2) Force plate coordinate system (GREEN); Model coordinate system (BLUE).

GaitExtractToolbox Documentation Page 11

4.5. Center of Pressure Calculation

The center of pressure (CoP) is the single point of application of the ground reaction force

on a force plate and can be calculated by performing a moment equilibrium balance about the true

origin of the force plate (where ground reactions are measured about). The center of pressure in the

MODEL coordinate system is determined by summing three vectors (Figure 5).

1) MODEL ORIGIN TO FORCE PLATE SURFACE GEOMETRIC CENTER

 This value comes from the geometric center of the force plate corners, as specified in the

FORCE_PLATFORM\CORNERS field of the C3D file. These values are originally expressed in

the VICON coordinate system for each force plate and should be correctly setup in the Vicon

software prior to data capture. The toolbox converts this into the MODEL coordinate system.

2) FORCE PLATE SURFACE GEOMETRIC CENTER TO TRUE ORIGIN

Due to slight defects in the manufacturing process, each force plate measures a force and

moment about a different true origin , ,O a b c , which can be slightly offset from the geometric

center of the plate surface (and also lies below the surface of the plate). This vector from C C to

O is determined by the manufacturer during individual calibrations and is specified in the

FORCE_PLATFORM\ORIGIN field in the C3D file. These values are originally expressed in the

FORCE PLATE coordinate system for each force plate and should be correctly setup in the Vicon

software prior to data capture. The toolbox converts this into the MODEL coordinate system.

IMPORTANT NOTE: For this toolbox (and assumed in Vicon software), the ORIGIN vector is

defined from to C O . This means the Zp value of this vector will be POSITIVE (because the force

plate true origin will always be below the geometric center of the force plate surface). Some

software may treat this vector in the reverse orientation, in which case, this toolbox will

automatically detect and negate the vector during ground reaction processing.

3) FORCE PLATE TRUE ORIGIN TO CENTER OF PRESSURE

 This center of pressure value is calculated from a moment balance equation in the FORCE

PLATE coordinate system. The toolbox will convert the CoP into the MODEL coordinate system.

GaitExtractToolbox Documentation Page 12

Figure 5: Calculation of the center of pressure. All coordinates shown are in the force plate coordinate system.

Taking moments about the force plate’s true origin:

0 0

0 () 0

() 0

x x

y y

z z

M c y b F

M c x a F

zM y b x a F T

()

()

() ()

x z

y x z

z y x

M y b F cF

M cF x a F
y

zM x a F y b F T

This leads to three equations and three unknowns: , , zx y T . represents a vertical free moment

about the center of pressure. Solving for the three unknowns:

zT

GaitExtractToolbox Documentation Page 13

() ()

y x

z

x y

z

z z y

M cF
x a

F

M cF
y b

F

T M x a F y b F

 x

Noises in recorded ground reaction forces and moments will propagate to the CoP

calculation. Furthermore, since the CoP is calculated by dividing by the vertical GRF, it is most

sensitive at early and late stance where the vertical GRF is low, and discontinuities (or spikes) can

occur (Figure 6). Applying a Butterworth filter to eliminate the discontinuities would not be ideal

because doing so would modify the entire CoP trajectory. Furthermore, accurate CoP values may

required to set weightings for the foot constraint points during a muscle induced acceleration. A

CoP spike reduction algorithm was designed to filter out only the discontinuities in the first and last

few frames of stance. The algorithm performs successive passes of the first and last few frames of

CoP during stance, and looks for rapid discontinuities (successive frames of opposing CoP

gradients). Where discontinuities occur, the “spike” magnitude is reduced by a factor of a half until

the curve becomes smooth. Figure 6 illustrates the effect of the filter on the calculated anterior CoP

during the stance phase of walking.

Figure 6: Discontinuities (or spikes) can occur in early and late stance due to low vertical ground reaction forces.
The blue line represents the standard CoP calculation. The red line represents the corrected CoP trajectory after

CoP spike filter.

GaitExtractToolbox Documentation Page 14

4.6. Setting up alternate labs (Section 1 of loadLabels.m)

To set up the toolbox for data that was captured in a specific laboratory, you need to modify

several parameters, all located in one file: loadLabels.m

1a) Set up force plate numbers: You need to set up the standard force plate channel names, and

these names must be selectable via a numbering system. For example, you should not have

arbitrary force plate channel names that don’t have any meaning. For example, one possible

naming system is as follows: All force plate channels begin with a prefix ‘FP’, followed by

the force plate number, followed by ‘F’ or ‘M’, denoting a force or moment, followed by

‘x’, ‘y’, or ‘z’ denoting the direction. So the channel name ‘FP3My’ represents the Y

moment recorded by force plate 3 (in FP coordinates). Numbering force plates is important

when it comes to choosing which force plates the region of interest occurs. As an example,

during running, a force plate may be skipped due to a large stride length.

glab.FP.string = '%s%d%s'; % Prefix(String), Plate(Int), Suffix(String)

glab.FP.prefix = {'FP','FP','FP','FP','FP','FP'};
glab.FP.suffix = {'Fx','Fy','Fz','Mx','My','Mz'};

glab.FP.verticalForceIndex = 3;

glab.FP.filterOrder = 4;

glab.vertForceCutoff = 10;

 This says that force plate i is labeled as follows:

 X force: Fxi X moment: Mxi

 Y force: Fyi Y moment: Myi

 Z force: Fzi Z moment: Mzi

 Z is the vertical direction (in FP coordinates), corresponding to the ‘FPiFz’ channel.

If ground reaction forces and moments are filtered (in getKinetics.m), a zero phase

Butterworth filter is used. The filter order is defined by glab.FP.filterOrder field.

A note on the way the toolbox (getEvents.m) determines which foot is on which force plate

(foot-plate sequence): for each interval (an interval is defined by the space between two

GaitExtractToolbox Documentation Page 15

successive events), the average vertical force is calculated for every force plate in the C3D

file. If the average force is greater than a cutoff (glab.vertForceCutoff), the plate is deemed

“active”. Active plate indices together with the event labels are used to determine the foot-

plate sequence (so it is important to label events accurately – see Section 5).

Note: if force plates are not “zeroed” prior to data collection, a constant nonzero vertical

force offset (noise) may appear in C3D file. This may confuse the toolbox when trying to

determine the set of “active” force plates for a given interval. In cases where vertical noise

exists, it may be necessary to increase the vertical force cutoff (glab.vertForceCutoff). It is

set to 10N by default (if this parameter is not explicitly specified in the loadLabels.m file.

1b) Set up coordinate systems: The toolbox requires rigid body transformations between the

three main coordinate systems (VICON, FP, and MODEL) to extract all data into the

MODEL coordinate system (for OpenSim). Because the relationship between VICON and

FP coordinate systems are defined inside the C3D file by the force plate corner orientations,

the user only needs to supply the relationship between the VICON and MODEL coordinate

systems. For motion capture systems, the Z direction in the VICON laboratory frame is

always vertical. Therefore, depending on how the laboratory is set up, the forward direction

of gait may occur along one of four possible VICON directions: +X, -X, +Y, -Y. For each of

these cases, the user needs to describe the transform between the VICON and MODEL

coordinate systems.

% X direction (Vicon) Gait -> transformation vectors
glab.transform.VICMODEL(1,:) = [1 3 -2];

% -X direction (Vicon) Gait -> transformation vectors
glab. transform.VICMODEL(2,:) = [-1 3 2];

% Y direction (Vicon) Gait -> transformation vectors
glab. transform.VICMODEL(3,:) = [2 3 1];

% -Y direction (Vicon) Gait -> transformation vectors
glab. transform.VICMODEL(4,:) = [-2 3 -1];

For example, if a subject is walking forward in along the Y VICON direction, then the

following transformation holds:

Model (X) = Vicon (Y)

 Model (Y) = Vicon (Z)

 Model (Z) = Vicon (X)

GaitExtractToolbox Documentation Page 16

Conversely, if the subject has another trial whereby they turn around and again walk

forward, now in the –Y VICON direction, the following transformation will now hold:

 Model (X) = Vicon (-Y)

 Model (Y) = Vicon (Z)

 Model (Z) = Vicon (-X)

This transformation can easily be seen on the diagram on page 7. The user is encouraged to

draw a similar diagram for their laboratory to assist in determining the transformations.

IMPORTANT NOTE: Each time you run getEvents.m, local copies of the transform

matrices are stored in the C3Dkey Matlab structure these local copies are used for

extracting all subsequent data (i.e. ground forces, center of pressure, etc). So if you change

any transforms in the loadlabels.m file, ensure that you rerun getEvents.m for the trial to

update the local transform copy in the C3Dkey so that these changes become applicable.

1c) Set up special markers: Two sets of special markers are currently defined.

glab.offsetMarker = 'SACRUM_MARKER';

A single marker label can be defined to rigidly translate (align) the extracted markers to the

OpenSim “ground” platform so that the model is standing at the start of the platform when

the trial begins. This transformation is performed in the model X and Z direction only. This

is handy because laboratory (VICON) origins may differ from lab to lab and not necessarily

correspond to the global origin in the OpenSim environment. Note: A marker placed on the

posterior pelvis or trunk region is usually a good choice for an offset marker.

glab.legLengthMarkers = {'RASIS', 'RMALLEOLUS', 'LASIS', 'LMALLEOLUS'};

(Optional): A set of four markers that define the proximal/distal locations for each leg. This

is used to calculate and output the subject’s leg length (getEvents.m) to a file when a static

trial is being extracted.

1d) Set up joint model names: This is simply a structure containing the joint names in the

OpenSim model. Currently the joint label is only used to get create the coordinates file in

getKinetics.m. This is only needed if using the toolbox for OpenSim simulations.

GaitExtractToolbox Documentation Page 17

1e) Set up the directory to store toolbox output: Output images, mat files, and text files from

toolbox function calls can be stored in this directory for future reference. glab.storeInfo

must have a backslash at the end. i.e. '.\MyDir\'. This functionality is toggled by

glab.storeInfo (1 = on, 0 = off)

glab.storeInfo = 1;

glab.infoDirectory = '.\GaitExtract\';

Set up your marker sets and EMG labels: loadLabels.m also contains all local settings which are

dependant on the model being used. See section 4 for more details.

If you are analyzing trial files from multiple labs, place the loadLabels.m file for each lab in

its own directory. That way, the loadLabels.m file in the current working directory will be higher in

the path list and will get executed. Type ‘which loadLabels’ in Matlab to verify this.

5. Event Labeling

In Section 4.5 (part 1a), you may recall that the foot-plate sequence is determined by

examining each force plate’s vertical force in each event interval (space between two successive

events). This foot sequence represents which foot is on which force plate (termed the “active” force

plate) at any given time and will eventually become the ground reactions that are applied to the foot

segments in OpenSim. In order to detect these foot-plate sequences, events corresponding to foot

strike (FS) and foot off (FO) for each leg should be defined accordingly in the C3D file. However,

the foot-plate sequence detection algorithms only work for forward human gait. For other forms of

movement (such as landing or backward walking), it is possible to override the foot-plate detection

algorithm and explicitly specify the right and left foot “active” force plates for each event interval.

See the description of getEvents.m in Section 6 for information on how this is done.

Events are also used for cropping the trial. Trials are always cropped between the first and last

event. An illustration of event labelling is shown below.

GaitExtractToolbox Documentation Page 18

For consistent labeling in Vicon, the following guidelines may be useful:

Foot Strike (FS) – defined as the frame just before the GRF vector appears on the foot

(also known as heel strike (HS) in walking gait)

Foot Off (FO) – defined as the frame just after the GRF vector disappears from the foot

 (also known as toe off (TO) in walking gait)

Important Note: If you have cropped a trial in Vicon (i.e. the above trial has been cropped from

frame 126 to 398), events that existed outside this time frame are not removed from the C3D file

and may cause problems when using this toolbox. It is important to ensure that all events outside

the cropped regions are removed. Alternatively, you can crop the trial, remove all events, and begin

labeling from scratch.

5.1. Foot Detection Algorithm

To apply an external GRF recorded by the force plate onto a foot in the model, it must be

known which foot-side (left or right) the GRF belongs to. Thus it is important to group the foot

strikes into left and right components. Event tags label the stages of locomotion (foot-strike and

foot-off on each leg). This information was used to design an algorithm to automatically detect the

foot-side striking each plate. The algorithm was driven by two assumptions: 1) the stance foot force

was associated with only one plate (i.e. each foot hits exactly one plate during stance); and 2)

locomotion occurs in the direction of increasing force plate identification (i.e. plate 1 strike plate

GaitExtractToolbox Documentation Page 19

2 strike plate 3 strike). In short, the algorithm cycled through each set of two consecutive event

tags (denoted as a sequence) and determined the active force plates (plates that were recording a

force profile). Combining the active plates with the event information allowed the algorithm to

detect the foot-sides during the sequence. The pseudo code below (Figure 7) outlines the foot

detection algorithm in detail.

for each sequence in the trial {

 // Determine “active” plates in the sequence by examining the average

 // vertical force across each plate in the laboratory. If the average

 // force was greater than a fixed cutoff force (i.e. 10N), the plate

 // was deemed “active”. Sort these plates in ascending order following

 // assumption #2

 for i:numForcePlatesInTrial {

 averageForce(i) = getAverageForceInSequence;

 }

 activeForcePlates = sort(getPlates(averageForce > 10));

 numberActivePlates = length(activeForcePlates);

 if numberActivePlates == 0 {

 // No feet on the ground (double float)

 RightFootPlate = 0;

 LeftFootPlate = 0;

 }

 elseif numberActivePlates == 1 {

 // One foot on the ground (single support)

 // The foot-side is determined by examining the first event

 // label of the sequence. If it is a FOOTSTRIKE, then the

 // foot-side is equal to the side of the FOOTSTRIKE. If it is

 // a FOOTOFF, then the foot-side is the equal to the opposite foot-

 // side of the FOOTOFF.

 if firstEvent == FOOTSTRIKE {

 if footStrikeSide == RIGHT {

 RightFootPlate = activeForcePlates(1);

 LeftFootPlate = 0;

 }

 elseif footStrikeSide == LEFT {

 RightFootPlate = 0;

 LeftFootPlate = activeForcePlates(1);

 }

 }

 elseif firstEvent == FOOTOFF {

GaitExtractToolbox Documentation Page 20

 if footOffSide == RIGHT {

 RightFootPlate = opp(activeForcePlates(1));

 LeftFootPlate = 0;

 }

 elseif footOffSide == LEFT {

 RightFootPlate = 0;

 LeftFootPlate = opp(activeForcePlates(1));

 }

 }

 }

 elseif numberActivePlates == 2 {

 // Two feet on the ground (double support)

 // There are now two foot-sides and two active plates. The

 // algorithm needs to determine which foot is on which plate. Note

 // that double support phase will only be present in walking, not

 // running. In walking, double support occurs when an ipsilateral foot

 // makes contact with the ground during mid-stance of the

 // contralateral foot. The contralateral foot will be characterized by

 // a FOOTOFF event and will be the foot behind the ipsilateral foot.

 contralateralFoot = getFoot(find(FOOTOFF_event))

 if contralateralFoot == RIGHT {

 RightFootPlate = activeForcePlates(1);

 LeftFootPlate = activeForcePlates(2);

 }

 elseif contralateralFoot == LEFT {

 RightFootPlate = activeForcePlates(2);

 LeftFootPlate = activeForcePlates(1);

 }

 }

}

Figure 7: Algorithm used to automatically detect foot-sides that correspond to each plate. This algorithm was
implemented inside the GaitExtractToolbox and used to batch prepare each subject for OpenSim.

GaitExtractToolbox Documentation Page 21

6. Detailed Function List

The following pages will explain in some detail the functions contained within the toolbox.

This section will be continually updated as more functions are created. If anyone has made and

tested their own function, it would be appreciated to pass on to extend the toolbox.

Please report any suggestions / bugs / extensions to Tim Dorn: t.dorn@pgrad.unimelb.edu.au

A few notes before the function list:

* next to a variable input denotes optional inputs

 GRF = Ground Reaction Force

CoP = Center of Pressure

GRMo = Ground Reaction Moment about Origin

GRMx = Ground Reaction Moment about CoP

GaitExtractToolbox Documentation Page 22

mailto:t.dorn@pgrad.unimelb.edu.au

[eVecGlob, EMGVecGob] =

batchEMGprocess(C3Dkey, emgSetName, emgProcessTasks, fileSuffix*)

Description: Batch process EMG signals.

Version: November 2008

Inputs: C3Dkey = key of dynamic C3D file (from getEvents.m)

emgSetName: the label of EMG names contained in the EMG set

(this must be defined in loadlabels.m as a cell: glab.[emgSetName])

emgProcessTasks: the EMG processing options in the order of execution

(this must be defined in loadlabels.m as a cell: glab.[emgProcessTasks])

fileSuffix* = suffix of mot file that is saved if this is not included, or empty, then file

is not saved

Outputs: eVecGlob = structure of processed EMG

EMGVecGlob = structure of raw EMG

Notes: N/A

GaitExtractToolbox Documentation Page 23

createEvent(c3dFile, foot, label, frame)

Description: Create an event in a C3D file and save the C3D file.

Version: June 2009

Inputs: c3dFile: the name of the C3D file

foot: 'R' for right foot event, 'L' for left foot event, 'G' for general foot event

label: 'FS' for footstrike, 'FO' for footoff, 'GEN' for general event

frame: video frame number to add the event at

Outputs: OVERWRITES the input C3D file with new events (irreversible with this code so

make sure to backup the original C3D file first!)

Notes: N/A

GaitExtractToolbox Documentation Page 24

[out, plots2make, labels, dataFile] =

extractMotFile(ProcessTask1, Value1, ProcessTask2, Value2, …)

Description: Extract (and plot) data from a saved OpenSim data file (*.mot or *.sto) into a Matlab

structure

Version: July 2009

Inputs: See inside the m file for all the options

Outputs: out.name: trial name

out.labels: extracted data labels

out.data: extracted data (after filtering)

out.filtFreq: low pass filter frequency

performPlots: indices of plots extracted

labels: all labels from dataFile

dataFile: filename used

Notes: If no input arguments are given i.e. data = extractMotFile, the function allows you to

select a file for plotting and will superimpose over existing plots if a common

variable is being plotted.

GaitExtractToolbox Documentation Page 25

generateMotFile(dataMatrix, colnames, filename)

Description: Generate a motion *.mot file readable by OpenSim

Version: Nov 2008

Inputs: dataMatrix = data matrix to write to file (first column should be time)

colnames = cell array of column name strings

filename = string containing the output filename (must include extension)

Outputs: output motion file (*.mot)

Notes: Number of data columns must match the number of column names or an exception

will be thrown.

GaitExtractToolbox Documentation Page 26

generateTrcFile(C3Dkey, markerpos, markerset)

Description: Generate a marker *.trc file readable by OpenSim

Version: June 2009

Inputs: C3Dkey: the C3D key structure from getEvents

markerpos = array of marker positions

for M markers: should contain 1+3M columns

(time + XYZ of each marker)

markerset = cell array of strings containing the names of markers

e.g. markerset = {'M1', 'M2', 'M3'};

Outputs: output marker file (*.trc)

Notes: Number of data columns must match the number of column names or an exception

will be thrown.

GaitExtractToolbox Documentation Page 27

C3Dkey =

getEvents(c3dFile, direction*, FP_order*, FP_sequence*)

Description: Extract events and general trial details from C3D files to a Matlab structure (used by

other functions).

Version: Sept 2010

Inputs: c3dFile = the name of the C3D file

direction = direction of gait / direction that the subject is facing

IN GLOBAL VICON COORDINATES

(1 = X -1 = -X)

(2 = Y -2 = -Y)

FP_order* = Vector containing the order of force plate numbers stepped on during

the trial. This parameter can be neglected if the trial is NOT a dynamic general trial,

but otherwise it must be included.

e.g. Walking on FP3, FP2, FP1 FP_order = [3 2 1]

e.g. Running on FP1, FP3 (FP2 is skipped due to the large stride length

 FP_order = [1 3]

FP_sequence* = For gait, the sequence of force plates to be used for the left and

right foot during each event interval is automatically detected. However this can be

manually overridden by specifying this matrix. It must have two columns (1 =

rightfoot, 2 = leftfoot). Each row corresponds to an event interval (area between two

events). The value is the force plate number that is active.

e.g. FP_sequence(3,1) = 2 In the 3rd event interval, the RIGHT foot is on force

plate #2.

Note: direction and FP_order are required here if you will be processing kinetics

using this toolbox

GaitExtractToolbox Documentation Page 28

offsetTime* = offset time in seconds added to frame event (default = 0). Useful for

external device trigger delays to Vicon.

Outputs: C3Dkey is a structure which contains key information about the trial:

C3Dkey.transform.FPMODEL: transform matrix from FP MODEL

C3Dkey.transform.VICMODEL: transform matrix from VICON MODEL

C3Dkey.transform.FPVICON: transform matrix from FP VICON

C3Dkey.transform.MODELFP: transform matrix from MODEL FP

C3Dkey.transform.MODELVIC: transform matrix from MODEL VICON

C3Dkey.transform.VICONFP: transform matrix from VICON FP

C3Dkey.name: subject name

C3Dkey.markerSet: marker set used for the trial

C3Dkey.c3dFile: C3D file name

C3Dkey.direction: direction of forward facing value

C3Dkey.aFreq: analog frequency

C3Dkey.vFreq: video (VICON) frequency

C3Dkey.r: video/analog frequency ratio

C3Dkey.mass: subject mass (SIMPLE TRIAL ONLY)

C3Dkey.numFrames.uncroppedV: number of total video frames in the trial

C3Dkey.numFrames.uncroppedA: number of total analog frames in the trial

C3Dkey.numFrames.croppedV = number of cropped frames (video)

C3Dkey.numFrames.croppedA = number of cropped frames (analog)

C3Dkey.event.txt: label of events

C3Dkey.event.times: times of events

C3Dkey.event.percent: percentage of cycle that events occur

C3Dkey.event.Vframe: video frames of events

C3Dkey.event.Aframe: analog frames of events

C3Dkey.event.Vframe0: video frames of events (starting at frame 1)

C3Dkey.event.Aframe0: analog frames of events (starting at frame 1)

C3Dkey.event.times0: times of events (starting at time 0)

GaitExtractToolbox Documentation Page 29

C3Dkey.interval.txt: txt interval of events

C3Dkey.interval.time: time interval of events

C3Dkey.interval.Vframe: video frame interval of events

C3Dkey.interval.Aframe: analog frame interval of events

C3Dkey.interval.time0: time interval of events (starting at time 0)

C3Dkey.interval.Vframe0: video frame interval of events (starting at frame 1)

C3Dkey.interval.Aframe0: analog frame interval of events (starting at frame 1)

C3Dkey.sequence.frames: force plate frame sequence

C3Dkey.sequence.plates: force plate number sequence

C3Dkey.sequence.txt: force plate event text sequence

C3Dkey.offset: offset in mm to put the model on the platform in OpenSim

C3Dkey.averageSpeed: average trial speed (m/s)

C3Dkey.FP_order: Force plate order (in terms of stepping #)

C3Dkey.FP_order_inv: Force plate order inverse

C3Dkey.trialType: trial type (either will be SIMPLE or GENERAL)

C3Dkey.numPlatesTotal = total number of force plates in the trial

C3Dkey.numPlatesUsed = number of force plates used for extraction

C3Dkey.stanceFrames = (1,:) - Right leg, (2,:) - Left leg

C3Dkey.allowed.markers: 1 if markers can be extracted from this c3dfile

C3Dkey.allowed.kinetics: 1 if markers can be extracted from this c3dfile

C3Dkey.allowed.EMG: 1 if EMG can be extracted from this c3dfile

Time Vectors (of labeled event):

C3Dkey.timeVec.c3dAnalogFrame: actual analog frame number (from C3D)

C3Dkey.timeVec.analogFrame: analog frame number (starting at 1)

C3Dkey.timeVec.c3dVideoFrame: actual video frame number (from C3D)

C3Dkey.timeVec.videoFrame: video frame number (starting at 1)

C3Dkey.timeVec.Asec: analog time (sec) -> starting at 0 sec

C3Dkey.timeVec.Vsec: video time (sec) -> starting at 0 sec

GaitExtractToolbox Documentation Page 30

C3Dkey.timeVec.Apercent: analog percentage of labeled event

C3Dkey.timeVec.Vpercent: video percentage of labeled event

Notes: Events must be examined and labeled in Vicon before using this script. For static

trials, events need to be labeled at the start and end of where you want the static pose

data to be cropped. Any type of event (FS or FO) is fine for this. For dynamic trials,

there must be at least two events (start and end), but it can also have any number of

intermediate events in between (i.e. left foot off, right foot strike, etc) to label the

major phases of the gait cycle.

You must also ensure that the lab setup is correct in loadLabels.m. See section 4.5 for more

information.

GaitExtractToolbox Documentation Page 31

[GRF, CoP, GRMo, GRMx] =

getKinetics(C3Dkey, plottog*, filterFreq*, markersDyn*)

Description: Extract and process kinetic data (GRF, CoP, GRMo, GRMx) from a C3D file.

Version: Sept 2010

Inputs: C3Dkey: the C3D key frames structure from getEvents

plottog* = toggles the display of various plots

0 = no plots (default)

1 = plot kinetic graphs only (all in MODEL coordinates)

2 = plot kinetic graphs & kinetic verification (all in MODEL coordinates)

4 = plot kinetic verification only (all in MODEL coordinates)

filterFreq* = filter frequency for GRF, GRMo (optional)

< 0 means no filtering is done.

Uses a 4th order low pass Butterworth filter.

markersDyn* = optional dynamic markers data structure (from getMarkers.m) to aid

with the verification of extracted kinetics (used in verifyKinetics.m)

Outputs: The output is set up as follows:

GRF(1,:) Right Foot --> GRF X CoP(1,:) Right Foot --> CoP X

GRF(2,:) Right Foot --> GRF Y CoP(2,:) Right Foot --> CoP Y

GRF(3,:) Right Foot --> GRF Z CoP(3,:) Right Foot --> CoP Z

GRF(4,:) Left Foot --> GRF X CoP(4,:) Left Foot --> CoP X

GRF(5,:) Left Foot --> GRF Y CoP(5,:) Left Foot --> CoP Y

GRF(6,:) Left Foot --> GRF Z CoP(6,:) Left Foot --> CoP Z

GaitExtractToolbox Documentation Page 32

GRMo(1,:) RF -> GRM X about FP origin GRMx(1,:) RF -> GRM X about CoP

GRMo(2,:) RF -> GRM Y about FP origin GRMx(2,:) RF -> GRM Y about CoP

GRMo(3,:) RF -> GRM Z about FP origin GRMx(3,:) RF -> GRM Z about CoP

GRMo(4,:) LF -> GRM X about FP origin GRMx(4,:) LF -> GRM X about CoP

GRMo(5,:) LF -> GRM Y about FP origin GRMx(5,:) LF -> GRM Y about CoP

GRMo(6,:) LF -> GRM Z about FP origin GRMx(6,:) LF -> GRM Z about CoP

Notes: 1) Events MUST be labeled in VICON (and hence the C3D file).

2) Corners must be defined in VICON properly. Looking down onto the plate

from above: corner 1: where X, Y are both most positive in FP coordinates

 Corners 2, 3, 4 going CLOCKWISE (refer to Vicon manual for more

information)

3) Force plate origins must be defined properly from force plate true origin to

the center of the plate surface... in FP coordinate system (given in FP manual)

4) The key file (used by getEvents.m is slightly appended to by adding the

force plate order, and the result is saved to key.mat

5) Output is saved as a *.mot file used by OpenSim

Additional Options inside the m file:

lw = 3; % Set plot line width

opt = 'b'; % Plotting options

titlsize = 13; % Title font size

GaitExtractToolbox Documentation Page 33

markers =

getMarkers(C3Dkey, markerSetName, filter*)

Description: Extract marker position data from a C3D file.

Version: October 2011

Inputs: C3Dkey: the C3D key frames structure from getEvents

markerSetName: the label of markers contained in the marker set

(this must be defined in loadlabels.m as glab.[markerSetName])

filter: optional low pass filter the marker positions

if filter = 0, no filtering is done (default)

if filter > 0, filtering is done at (filter) Hz

Outputs: markers.data: the marker position data

markers.label: the marker position labels

markers.units: units of marker positions

markers.divide_to_meters: scale to divide to convert to meters

markers.SUCCESS: marker names that have been extracted successfully

markers.FAILED: marker names that have failed (do not exist)

markers.MISSINGMARKERS: marker names that have markers missing

Notes: The output is saved as a *.trc file used by OpenSim

It is important that the label names stored in the 'glab.markers' variable in

loadLabels.m match the label names used in Vicon for extraction to be successful.

Sometimes Vicon stores the marker labels as [markerName:SubjectName]. This will

result in an error since the strings do not match. To resolve this, ensure that “Include

subject names in labels” check box is switched OFF in Vicon Trials Options.

The data is extracted in the order defined in glab.markers.

GaitExtractToolbox Documentation Page 34

GaitExtractToolbox Documentation Page 35

[MVC, MVCset] =

getMVC(C3Dkey, emgSetName, windowSize, *MVCmethod)

Description: Obtain the Maximum Voluntary Contraction (MVC) voltage from a set EMG.

Version: June 2008

Inputs: C3Dkey: the C3D key frames structure from getEvents

emgSetName: the label of EMG names contained in the EMG set (this must be

defined in loadlabels.m as glab.[emgSetName])

windowSize = gliding 'look ahead' window size (sec)

*MVCmethod = calculating method of MVC (used once the maximum mean EMG

time window has been found)

'MEAN' MVC = mean value (default value if not specified)

'RMS' MVC = root mean square value

'MAX' MVC = maximum value

Outputs: MVC = structure of MVC voltages (uV)

(MVC.[muscLabel] = value)

MVCset = structure of cells containing information about the EMG labels

Notes: ---- EMG LABLES ARE CONTAINED IN: loadLabels.m

References:

ABC or EMG (page 30)

Bolgla, L. A. and T. L. Uhl (2007). "Reliability of electromyographic normalization methods for

evaluating the hip musculature." J Electromyogr Kinesiol 17(1): 102-11.

GaitExtractToolbox Documentation Page 36

loadLabels()

Description: Loads label files used throughout the toolbox.

Version: User updated

Inputs: N/A

Outputs: N/A

Notes: See Sections 4.1 & 4.5 for label descriptions

GaitExtractToolbox Documentation Page 37

[eVecGlob, EMGVecGob] =

multipleEMGprocess(C3DFile, emgSetName, emgProcessTasks, interval4Time)

Description: Batch Process multiple stride EMG signals from a single C3D file

Version: July 2009

Inputs: c3dFile = the name of the C3D file

emgSetName: the label of EMG names contained in the EMG set

(this must be defined in loadlabels.m as a cell: glab.[emgSetName])

emgProcessTasks: the EMG processing options in the order of execution

(this must be defined in loadlabels.m as a cell: glab.[emgProcessTasks])

interval4Time = the interval number to set for the time vector

Outputs: eVecGlob = structure of processed EMG

EMGVecGlob = structure of raw EMG

Notes: Ensure that events are places in the C3D file at the start & end of each interval. e.g. 4

events == 3 intervals. If we want to set the time vector to be the middle interval

(between events 2&3), then interval4Time = 2.

e.g. multipleEMGprocess('myfile.C3D', 'emgset', 2)

The output file will contain the time column (from interval4Time) and the time

normalized AVERAGE emg data over all intervals

GaitExtractToolbox Documentation Page 38

eVec =

processEMG(EMGVec, {ProcessTask1, Value1, ProcessTask2, Value2, ...})

Description: Process raw EMG values

Version: June 2009

Inputs: EMGVec.data = Raw EMG data from getEMG.m

EMGVec.time = time vector (sec)

EMGVec.name = string of muscle label

ProcessTaskX = Processing task X

ValueX = Value for processing task X

C3Dkey* = if this is given, the event lines will be added the processed EMG plot

Outputs: eVec = processed EMG structure (containing .time & .data)

Notes: Processing tasks are performed in the order they are given:

Task = 'REMDC' = Remove DC offsets Value = []

Task = 'RECT' = Full wave rectification Value = []

Task = 'REMDCRECT' = Remove DC offset & full wave rectification Value = []

Task = 'HPF' = High pass filter Value = [FilterOrder, Freq(Hz)]

Task = 'LPF' = Low pass filter Value = [FilterOrder, Freq(Hz)]

Task = 'BPF' = Band pass filter Value = [FilterOrder, FreqLow(Hz), FreqHigh(Hz)]

Task = 'TKE' = TKE filter Value = []

Task = 'NORM' = MVC Normalization Value = MVC (uV)

Task = 'NORM1' = Normalization to 1 Value = []

GaitExtractToolbox Documentation Page 39

Task = 'ABOVEZERO' = Force EMG > 0 Value = []

Task = 'SQRT' = Squareroot EMG Value = []

Task = 'MULTIPLY' = Multiply EMG Value = MultipleNumber

Task = 'REMOVESPIKES' = Remove Spikes Value = []

Task = 'PLOT' = Plot2Screen value Value = 1(ON defualt), 0(OFF)

Task = 'SAVE' = Save plots to emf & fig Value = [indices of process ops to not plot]

Task = 'HIDE' = Hide line indices Value = [](OFF default), (ON)

Task = 'VERTLINES' = Plot event lines Value = C3Dkey (default = [])

only active when PLOT = 1

Note that the HPF and LPF options, a zero-phase Butterworth filter is used

GaitExtractToolbox Documentation Page 40

[xmlString, fileName] =

writeXML(type, C3Dkey*)

Description: Write XML files for use in OpenSim.

Version: Sept 2010

Inputs: type: the type of XML setup file to be created (case sensitive)

type = 'scale' --> create scale XML file

type = 'ik' --> create inverse kinematics XML setup file

type = 'id' --> create inverse dynamics XML setup file

type = 'so' --> create static optimization XML setup file

type = 'jr' --> create joint reaction XML setup file

type = 'rra' --> create residual reduction XML setup file

type = 'cmc' --> create computed muscle control XML setup file

type = 'pi’ --> create pseudo inverse GRF decomposition XML setup file

C3Dkey*: the C3D key frames structure from getEvents

(if not given, default parameters are used. These can be then modified

manually using an XML editor)

Outputs: xmlString: the generated XML string

fileName: the generated file name

the XML file is saved in the current working directory as

[C3Dkey.c3dFile]_Setup_[type].xml

Notes: Note that these XML files are only templates. They may need to be fine tuned in

terms of the paths of the models you are using, and any additional settings that the

analyses offer. The XML files can be modified in Notepad++ or for the more

advanced Matlab users, you can go into the writeXML.m file and modify some of

the default XML output settings.

GaitExtractToolbox Documentation Page 41

7. Example Subject Trial

The EXAMPLE directory contains two examples for your viewing. The first is a static and

dynamic walking C3D file (captured using Vicon Workstation). The second is a static and dynamic

downstairs walking C3D file (where the force plates are individually orientated in different

positions). Inside each example directory, there is a high level m file that contains the pre-

processing instructions required to output relevant kinematics, ground reactions, and EMG to a

format suitable for OpenSim. The m files should be self explanatory if you have read Sections 1 to

5. Please note that conventional units are always used unless explicitly stated (i.e. kg for mass,

meters for length).

To run these examples, ensure that the toolbox is correctly installed and paths set correctly. In

Matlab (V2007a or greater), go into the EXAMPLE folder, choose your example, and run

testWalk.m or testDownStair.m. Note the Matlab outputs as well as the additional directories and

files created from the execution of the script.

Once the examples have been run successfully, you can preview the motion and ground forces

together in OpenSim, by selecting “Preview Motion Data” under the “File” menu. Then select the

marker exampleX_*.trc file. Do the same for the kinetics file exampleX_*_kinetics.mot.

Synchronize the motions together and view the extracted data. Everything should be ready for

further analysis in OpenSim!

This example is provided to outline the functionality of the toolbox. Trials are given for

demonstration purposes only. Please refer to the OpenSim web site for further information on the

specifics of muscle actuated simulations (https://simtk.org/home/opensim).

GaitExtractToolbox Documentation Page 42

https://simtk.org/home/opensim

8. Revision Information

V1.0 February 2007 - Initial release

V1.1 March 2007 - Fixed some installation path bugs

- runinvKin.m now also outputs marker positions (raw or

filtered) in standard format

- runinvKin.m now also provides a user friendly way to copy the

static kinematic files to the current location to perform inverse

kinematics on multiple trials of the same patient (and hence

same static trial kinematics)

- Added automatic detection of missing markers to ensure that all

markers are present at all frame numbers before processing

inverse kinematics

- Configured coordinate systems for both MECH and PHYSIO

labs at Melbourne University (\MatlabUtils\CoordChangeLabs)

- getKinetics.m now also outputs data in BOTH video and analog

frame rates rather than just at the video rate via the

outputFrameRate variable inside the m file.

- Added small feature to check that directories exist before

attempting to save plot images to them.

V1.2 Jan/Feb 2008 - Fixed bugs in the installation process

- Removed inverse kinematics / dynamics scripts from the toolbox

as they should be treated separately since they are model

dependant.

- Remade getKinetics.m for support for any number of force

plates as well as automatic event detection from the C3D file

rather than input relevant frame numbers.

- Modified the format of loadlabels.m.

- Made trialPlot.m, normalizeCycle.m, getEMG.m and

compareStance.m more user-friendly and compatible with the

new keyEvent auto detection.

- Renamed filterData.m to filterDiffData.m for clarity.

GaitExtractToolbox Documentation Page 43

- Updated exportc3d.m function to be able to supply desired

information such as offset, and scale parameters.

- Added getMarkers.m function

- Added saveOpenSim.m function

- Added writeXML.m function

V1.3 Mar-Jun 2008 - Added marker verification to the kinetic verification

- getKinetics.m now supports any combination of plates for data

extraction

- Fixed GRMx calculation in getKinetics.m

- Added extractOpenSim.m to extract and extend motion data

- Remade the getEMG and getMVC functionality

- Removed getMVCauto.m

- Removed several other files to generalize the toolbox and make

it inter-lab friendly.

V1.5 June-Nov 2008 - added batch EMG processing tool (batchEMGprocess.m)

- changed order of writeXML, and added generic variables to

make it easier to configure.

- Added extractMotFile.m for user friendly OpenSim motion file

extraction / filtering / plotting & superimposing.

- Refined the example file to extract and run a muscle actuated

simulation using OpenSim command lines.

V1.6 August 2009 - Fixed some bugs related to detection of force plate corners

- Fixed plotting bugs in extractMotFile.m

- Added createEvents.m to be able to create event labels in

Matlab (non Vicon users)

- Added multipleEMGprocess.m to extract multiple EMG cycles

from a single C3D file

V1.7 September

2010

- Fixed some bugs related to local force plate origins that would

have affected trials where force plate origins are non zero in X

and Z directions (usually are zero though but not always)

- Added functionality for overriding the automatic detection of

force plate sequence in getEvents.m.

- Automatic detection of coordinate system from FP to VICON

and FP to MODEL for each force plate, so now trials can be

extracted where multiple force plates are individually orientated

GaitExtractToolbox Documentation Page 44

GaitExtractToolbox Documentation Page 45

- getKinetics.m now outputs an xml kinetics file (that links to the

kinetics *.mot file) to support OpenSim 2.0+ formats.

- Updated writeXML.m to support OpenSim 2.0+ formats.

- Additional options in extractMotFile.m (some are still in

testing)

- Added an additional example C3D file (down stair walking)

- Reformatted and revised the user manual

- Fixed situations where markers are not found in the markerset

described in the loadLabels.m file. getMarkers.m now omits the

marker altogether from the *.trc file, rather than entering zeros

in the marker location in the *trc file.

V1.71 November

2010

- IMPORTANT FIX: Fixed some bugs related to center of

pressure (CoP) calculation. In most lab setups, this fix will not

be required and the correct CoP will be output. But there are a

number of cases where slightly incorrect center of pressures

were being reported. This version will correct the CoP

calculation.

- I have also added new section in the user manual detailing the

process by which the center of pressure is calculated. The foot

detection algorithm is also outlined in the manual.

- Added flexibility to change the Butterworth filter order for

filtering ground reaction data in loadlabels.m under the optional

tag: glab.FP.filterOrder

	1. Introduction
	2. The basic idea
	3. Toolbox Installation
	4. Laboratory Configuration
	4.1. Data Extraction Labels (Section 2 of loadLabels.m)
	4.2. Force plate identification
	4.3. Analog EMG Configuration
	4.4. Coordinate Systems
	4.5. Center of Pressure Calculation
	4.6. Setting up alternate labs (Section 1 of loadLabels.m)

	5. Event Labeling
	5.1. Foot Detection Algorithm

	6. Detailed Function List
	batchEMGprocess(C3Dkey, emgSetName, emgProcessTasks, fileSuffix*)
	createEvent(c3dFile, foot, label, frame)
	extractMotFile(ProcessTask1, Value1, ProcessTask2, Value2, …)
	generateMotFile(dataMatrix, colnames, filename)
	generateTrcFile(C3Dkey, markerpos, markerset)
	getEvents(c3dFile, direction*, FP_order*, FP_sequence*)
	getKinetics(C3Dkey, plottog*, filterFreq*, markersDyn*)
	getMarkers(C3Dkey, markerSetName, filter*)
	getMVC(C3Dkey, emgSetName, windowSize, *MVCmethod)
	loadLabels()
	multipleEMGprocess(C3DFile, emgSetName, emgProcessTasks, interval4Time)
	processEMG(EMGVec, {ProcessTask1, Value1, ProcessTask2, Value2, ...})
	writeXML(type, C3Dkey*)

	7. Example Subject Trial
	8. Revision Information

