

Game	Programming	Using	Qt	5	Beginner's	Guide
Second	Edition

	

	

Create	amazing	games	with	Qt	5,	C++,	and	Qt	Quick

	

	

	

	

	

	

	

	

	

Pavel	Strakhov
Witold	Wysota
Lorenz	Haas

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Game	Programming	Using	Qt	5
Beginner's	Guide	Second
Edition
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted
in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of
brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	authors,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for
any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

Acquisition	Editor:	Shweta	Pant
Content	Development	Editor:	Flavian	Vaz
Technical	Editor:	Akhil	Nair
Copy	Editor:	Shaila	Kusanale
Project	Coordinator:	Devanshi	Doshi
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Jason	Monteiro
Production	Coordinator:	Aparna	Bhagat

First	published:	January	2016
Second	edition:	April	2018

Production	reference:	1240418

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78839-999-9

www.packtpub.com

http://www.packtpub.com

I	dedicate	this	book	to	all	people	who	are	passionate	about	programming;	live	long	and	prosper
–	Pavel	Strakhov

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over
5,000	books	and	videos,	as	well	as	industry	leading	tools	to	help
you	plan	your	personal	development	and	advance	your	career.	For
more	information,	please	visit	our	website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with
practical	eBooks	and	Videos	from	over	4,000	industry
professionals

Improve	your	learning	with	Skill	Plans	built	especially	for
you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book
published,	with	PDF	and	ePub	files	available?	You	can	upgrade	to
the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical
articles,	sign	up	for	a	range	of	free	newsletters,	and	receive	exclusive
discounts	and	offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	authors
Pavel	Strakhov	is	a	software	architect	and	developer	from	Russia.
He	started	working	with	Qt	in	2011	in	Moscow	Institute	of	Physics
and	Technology,	where	it	was	used	to	build	scientific	image
processing	software.	During	2012-2015,	he	was	highly	active	in	the
Qt	section	of	StackOverflow,	helping	people	learn	Qt	and	solve
issues.	In	2016,	he	started	working	on	Qt	bindings	for	Rust
language.

I	would	like	to	thank	all	the	reviewers	who	worked	with	me	on	this	book	for	their	invaluable	feedback.
I	am	also	very	grateful	to	all	people	from	Packt	Publishing	who	worked	with	me.	Writing	this	book
wouldn't	have	been	possible	without	their	support	and	motivation.

	

Witold	Wysota	is	a	software	architect	and	developer	living	in
Poland.	He	started	his	adventure	with	Qt	in	2004	and,	since	then,	it
has	become	his	main	area	of	expertise.

He	is	an	active	trainer	and	consultant	in	Qt,	C++,	and	related
technologies	in	both	commercial	and	academic	environments.

In	real	life,	he	is	a	passionate	adept	of	Seven	Star	Praying	Mantis,	a
traditional	style	of	Chinese	martial	arts.

	

Lorenz	Haas,	a	passionate	programmer,	started	his	Qt	career	with
Qt	3.	He	immersed	himself	in	this	framework,	became	one	of	the
first	certified	Qt	developers	and	specialists,	and	turned	his	love	for
Qt	into	his	profession.

Lorenz	is	now	working	as	a	lead	software	architect.	He	mainly

develops	machine	controls	and	their	user	interfaces	as	well	as
general	solutions	for	the	industry	sector.

Years	ago,	he	started	contributing	to	Qt	Creator	and	Qt.	He	added	a
couple	of	refactoring	options	that	you	probably	rely	on	regularly	if
you	use	Qt	Creator.	He	is	also	the	author	of	the	Beautifier	plugin.

What	this	book	covers
Chapter	1,	Introduction	to	Qt,	familiarizes	you	with	the	standard
behavior	that	is	required	when	creating	cross-platform	applications
and	shows	you	a	bit	of	history	of	Qt	and	how	it	evolved	over	time
with	an	emphasis	on	the	most	recent	architectural	changes	in	Qt.

Chapter	2,	Installation,	guides	you	through	the	process	of	installing	a
Qt	binary	release	for	desktop	platforms,	setting	up	the	bundled	IDE,
and	looks	at	various	configuration	options	related	to	cross-platform
programming.

Chapter	3,	Qt	GUI	Programming,	shows	you	how	to	create	classic
user	interfaces	with	the	Qt	Widgets	module.	It	also	familiarizes	you
with	the	process	of	compiling	applications	using	Qt.

Chapter	4,	Custom	2D	Graphics	with	Graphics	View,	familiarizes	you
with	2D	object-oriented	graphics	in	Qt.	You	will	learn	how	to	use
built-in	items	to	compose	the	final	results	as	well	as	create	your
own	items	supplementing	what	is	already	available.

Chapter	5,	Animations	in	Graphics	View,	describes	the	Qt	Animation
framework,	the	property	system,	and	shows	you	how	to	implement
animations	in	Graphics	View.	It	will	guide	you	through	the	process
of	creating	a	game	featuring	2D	graphics	and	animations.

Chapter	6,	Qt	Core	Essentials,	covers	the	concepts	related	to	data
processing	and	display	in	Qt—file	handling	in	different	formats,
Unicode	text	handling	and	displaying	user-visible	strings	in
different	languages,	and	regular	expression	matching.

Chapter	7,	Networking,	demonstrates	the	IP	networking	technologies
that	are	available	in	Qt.	It	will	teach	you	how	to	connect	to	TCP

servers,	implement	a	TCP	server,	and	implement	fast
communication	via	UDP.

Chapter	8,	Custom	Widgets,	describes	the	whole	mechanism	related	to
2D	software	rendering	in	Qt,	and	teaches	you	how	to	create	your
own	widget	classes	with	unique	functionalities.

Chapter	9,	OpenGL	and	Vulkan	in	Qt	applications,	discusses	Qt
capabilities	related	to	accelerated	3D	graphics.	You	will	learn	how
to	perform	fast	3D	drawing	using	OpenGL	and	Vulkan	APIs	and	use
the	convenient	wrappers	Qt	provides	for	them.

Chapter	10,	Scripting,	covers	the	benefits	of	scripting	in	applications.
It	will	teach	you	how	to	employ	a	scripting	engine	for	a	game	by
using	JavaScript	or	Python.

Chapter	11,	Introduction	to	Qt	Quick,	teaches	you	how	to	program
resolution-independent	fluid	user	interfaces	using	a	QML
declarative	engine	and	Qt	Quick	scene	graph	environment.

Chapter	12,	Customization	in	Qt	Quick,	focuses	on	how	to	implement
new	graphical	items	in	Qt	Quick	and	implement	custom	event
handling.

Chapter	13,	Animations	in	Qt	Quick	Games,	familiarizes	you	with	the
ways	to	perform	animations	in	Qt	Quick	and	give	more	hints	for
implementing	games	in	Qt	Quick.

Chapter	14,	Advanced	Visual	Effects	in	Qt	Quick,	goes	through	some
advanced	concepts	that	will	allow	you	to	perform	truly	unique
graphical	effects	in	Qt	Quick.

Chapter	15,	3D	Graphics	with	Qt,	outlines	using	Qt's	high-level	API
for	3D	graphics	and	show	you	how	to	implement	an	animated	3D
game.

Chapter	16,	Miscellaneous	and	Advanced	Concepts,	demonstrates	the

important	aspects	of	Qt	programming	that	didn't	make	it	into	the
other	chapters	but	may	be	important	for	game	programming.	This
chapter	is	available	online	at	https://www.packtpub.com/sites/default/files/do
wnloads/MiscellaneousandAdvancedConcepts.pdf.

https://www.packtpub.com/sites/default/files/downloads/MiscellaneousandAdvancedConcepts.pdf

About	the	reviewers
Julien	Déramond	is	a	software	developer	living	in	Paris,	France.
He	started	his	career	developing	C++	web	services	until	he	entered
the	embedded	world	via	the	Orange	set-top	boxes	in	2012.
Specialized	in	QML,	he	mainly	prototypes	and	develops	user
interfaces	with	designers.	Recently,	he	started	contributing	to	Qt,
especially	in	finding	bugs	and	proposing	patches	for	the	QML	JS
Reformater	of	Qt	Creator.	When	he	is	not	writing	code,	he	enjoys
traveling	and	drawing.

	

Simone	Angeloni	is	a	software	engineer	with	over	13	years	of
experience	in	C++	and	a	skillset	including	cross-platform
development,	embedded	systems,	multi-threading,	user	interfaces,
network	communication,	databases,	web	applications,	game
development,	and	visual	design.

He	is	currently	a	senior	software	engineer	in	the	R&D	dept	of	Nikon
Corporation,	and	he	is	developing	software/hardware	solutions	to
control	robots	used	in	the	motion	picture	industry.

Packt	is	searching	for	authors
like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	auth
ors.packtpub.com	and	apply	today.	We	have	worked	with	thousands	of
developers	and	tech	professionals,	just	like	you,	to	help	them	share
their	insight	with	the	global	tech	community.	You	can	make	a
general	application,	apply	for	a	specific	hot	topic	that	we	are
recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Game	Programming	Using	Qt	5	Beginner's	Guide	Second	Edition

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	authors

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Introduction	to	Qt

A	journey	through	time

The	cross-platform	programming

Supported	platforms

GUI	scalability

Qt	versions

Structure	of	Qt	framework

Qt	Essentials

Qt	Add-ons

qmake

Modern	C++	standards

Choosing	the	right	license

An	open	source	license

A	commercial	license

Summary

2.	 Installation

Installing	the	Qt	SDK

Time	for	action	–	Installing	Qt	using	an	online	i

nstaller

What	just	happened?

Qt	Creator

Qt	Creator's	modes

Setting	up	compilers,	Qt	versions,	and	kits

Time	for	action	–	Loading	an	example	project

Qt	documentation

Time	for	action	–	Running	the	Affine	Transformati

ons	project

What	just	happened?

Summary

3.	 Qt	GUI	Programming

Creating	GUI	in	Qt

Time	for	action	–	Creating	a	Qt	Widgets	project

What	just	happened?

Design	mode	interface

Time	for	action	–	Adding	widgets	to	the	form

Layouts

Time	for	action	–	Adding	a	layout	to	the	form

Signals	and	slots

Creating	signals	and	slots

Connecting	signals	and	slots

Old	connect	syntax

Signal	and	slot	access	specifiers

Time	for	action	–	Receiving	the	button-click	sign

al	from	the	form

What	just	happened?

Automatic	slot	connection	and	its	drawbacks

Time	for	action	–	Changing	the	texts	on	the	label

s	from	the	code

Creating	a	widget	for	the	tic-tac-toe	board

Choosing	between	designer	forms	and	plain	C++	classes

Time	for	action	–	Creating	a	game	board	widget

What	just	happened?

Automatic	deletion	of	objects

Time	for	action	–	Functionality	of	a	tic-tac-toe	

board

Time	for	action	–	Reacting	to	the	game	board's	si

gnals

What	just	happened?

Advanced	form	editor	usage

Time	for	action	–	Designing	the	game	configuratio

n	dialog

Accelerators	and	label	buddies

The	tab	order

Time	for	action	–	Public	interface	of	the	dialog

Polishing	the	application

Size	policies

Protecting	against	invalid	input

Main	menu	and	toolbars

Time	for	action	–	Creating	a	menu	and	a	toolbar

What	just	happened?

The	Qt	resource	system

Time	for	action	–	Adding	icons	to	the	project

Have	a	go	hero	–	Extending	the	game

Pop	quiz

Summary

4.	 Custom	2D	Graphics	with	Graphics	View

Graphics	View	architecture

Time	for	action	–	Creating	a	project	with	a	Graph

ics	View

What	just	happened?

Coordinate	systems

The	item's	coordinate	system

The	scene's	coordinate	system

The	viewport's	coordinate	system

Origin	point	of	the	transformation

What	just	happened?

Have	a	go	hero	–	Applying	multiple	trans

formations

Parent–child	relationship	between	items

Time	for	action	–	Using	child	items

Have	a	go	hero	–	Implementing	the	custom

rectangle	as	a	class

Conversions	between	coordinate	systems

Overview	of	functionality

Standard	items

Anti-aliasing

Pens	and	brushes

Item	selection

Keyboard	focus	in	graphics	scene

Painter	paths

Time	for	action	–	Adding	path	items	to	t

he	scene

Z-order	of	items

Ignoring	transformations

Time	for	action	–	Adding	text	to	a	custo

m	rectangle

Finding	items	by	position

Showing	specific	areas	of	the	scene

Saving	a	scene	to	an	image	file

What	just	happened?

Have	a	go	hero	–	Rendering	only	specific

parts	of	a	scene

Custom	items

Time	for	action	–	Creating	a	sine	graph	project

Time	for	action	–	Creating	a	graphics	item	class

What	just	happened?

Events

Time	for	action	–	Implementing	the	ability	to	sca

le	the	scene

What	just	happened?

Time	for	action	–	Taking	the	zoom	level	into	acco

unt

Time	for	action	–	Reacting	to	an	item's	selection

state

What	just	happened?

Time	for	action	–	Event	handling	in	a	custom	item

Time	for	action	–	Implementing	the	ability	to	cre

ate	and	delete	elements	with	mouse

Time	for	action	–	Changing	the	item's	size

Have	a	go	hero	–	Extending	the	item's	functionali

ty

Widgets	inside	Graphics	View

Optimization

A	binary	space	partition	tree

Caching	the	item's	paint	function

Optimizing	the	view

OpenGL	in	the	Graphics	View

Pop	quiz

Summary

5.	 Animations	in	Graphics	View

The	jumping	elephant	or	how	to	animate	the	scene

The	game	play

Time	for	action	-	Creating	an	item	for	Benjamin

The	playing	field

Time	for	action	-	Making	Benjamin	move

What	just	happened?

Parallax	scrolling

Time	for	action	-	Moving	the	background

What	just	happened?

Have	a	go	hero	-	Adding	new	background	layers

The	Animation	framework

Properties

Time	for	action	-	Adding	a	jump	animation

Property	animations

Time	for	action	-	Using	animations	to	move	items	smoothl

y

What	just	happened?

Have	a	go	hero	-	Letting	the	item	handle	Benjamin's	jump

Time	for	action	-	Keeping	multiple	animations	in	sync

What	just	happened?

Chaining	multiple	animations

Adding	gamepad	support

Working	with	gamepads	in	Qt

Time	for	action	-	Handling	gamepad	events

Item	collision	detection

Time	for	action	-	Making	the	coins	explode

What	just	happened?

Finishing	the	game

Have	a	go	hero	-	Extending	the	game

A	third	way	of	animation

Pop	quiz

Summary

6.	 Qt	Core	Essentials

Text	handling

String	encodings

QByteArray	and	QString

Using	other	encodings

Basic	string	operations

The	string	search	and	lookup

Dissecting	strings

Converting	between	numbers	and	strings

Internationalization

Using	arguments	in	strings

Regular	expressions

Time	for	action	–	A	simple	quiz	game

What	just	happened?

Extracting	information	out	of	a	string

Finding	all	pattern	occurrences

Containers

Main	container	types

Convenience	containers

Allowed	item	types

Implicit	sharing

Pointer	invalidation

What	just	happened?

Unnecessary	allocation

Range-based	for	and	Qt	foreach	macro

What	just	happened?

Data	storage

Files	and	devices

Traversing	directories

Reading	and	writing	files

Devices

Time	for	action	–	Implementing	

a	device	to	encrypt	data

What	just	happened?

Have	a	go	hero	–	A	GUI	for	the	

Caesar	cipher

Text	streams

Binary	streams

Time	for	action	–	Serialization	of	a	cus

tom	structure

What	just	happened?

XML	streams

Time	for	action	–	Implementing	an	XML	pa

rser	for	player	data

What	just	happened?

What	just	happened?

Have	a	go	hero	–	An	XML	serializer	for	p

layer	data

QVariant

QSettings

Settings	hierarchy

Customizing	the	settings	location	and	format

JSON	files

Time	for	action	–	The	player	data	JSON	s

erializer

Time	for	action	–	Implementing	a	JSON	pa

rser

What	just	happened?

Pop	quiz

Summary

7.	 Networking

QNetworkAccessManager

Setting	up	a	local	HTTP	server

Preparing	a	URL	for	testing

Time	for	action	–	Downloading	a	file

Have	a	go	hero	–	Extending	the	basic	file	downloa

der

Single	network	manager	per	application

Time	for	action	–	Displaying	a	proper	error	messa

ge

Downloading	files	over	FTP

Downloading	files	in	parallel

The	finished	signal

Time	for	action	–	Writing	the	OOP	conform	code	us

ing	QSignalMapper

What	just	happened?

The	error	signal

The	readyRead	signal

Time	for	action	–	Showing	the	download	progress

What	just	happened?

Using	a	proxy

Connecting	to	Google,	Facebook,	Twitter,	and	co.

Time	for	action	–	Using	Google's	Distance	Matrix	

API

Time	for	action	–	Constructing	the	query

Time	for	action	–	Parsing	the	server's	reply

Have	a	go	hero	–	Choosing	XML	as	the	reply's	form

at

Controlling	the	connectivity	state

QNetworkConfigurationManager

QNetworkConfiguration

QNetworkSession

QNetworkInterface

Communicating	between	games

Time	for	action	–	Realizing	a	simple	chat	program

The	server	–	QTcpServer

Time	for	action	–	Setting	up	the	server

What	just	happened?

Time	for	action	–	Reacting	on	a	new	pend

ing	connection

What	just	happened?

Time	for	action	–	Forwarding	a	new	messa

ge

Have	a	go	hero	–	Using	QSignalMapper

Time	for	action	–	Detecting	a	disconnect

What	just	happened?

The	client

Time	for	action	–	Setting	up	the	client

What	just	happened?

Time	for	action	–	Receiving	text	message

s

Time	for	action	–	Sending	text	messages

Have	a	go	hero	–	Extending	the	chat	serv

er	and	client

Synchronous	network	operations

Using	UDP

Time	for	action	–	Sending	a	text	via	UDP

Have	a	go	hero	–	Connecting	players	of	the	Benjam

in	game

Pop	quiz

Summary

8.	 Custom	Widgets

Raster	and	vector	graphics

Raster	painting

Painter	attributes

Coordinate	systems

Drawing	operations

Creating	a	custom	widget

Time	for	action	–	Custom-painted	widgets

What	just	happened?

Time	for	action –	Transforming	the	viewport

What	just	happened?

Time	for	action	–	Drawing	an	oscillogram

Time	for	action	–	Making	oscillograms	selectable

Have	a	go	hero	–	Reacting	only	to	the	left	mouse	

button

Touch	events

Working	with	images

Loading

Modifying

Painting

Painting	text

Static	text

Optimizing	widget	painting

Time	for	action	–	Optimizing	oscillogram	drawing

What	just	happened?

Have	a	go	hero	–	Caching	the	oscillogram	in	a	pix

map

Implementing	a	chess	game

Time	for	action	–	Developing	the	game	architectur

e

What	just	happened?

Time	for	action	–	Implementing	the	game	board	cla

ss

What	just	happened?

Time	for	action	–	Understanding	the	ChessView	cla

ss

What	just	happened?

Time	for	action	–	Rendering	the	pieces

What	just	happened?

Time	for	action	–	Making	the	chess	game	interacti

ve

What	just	happened?

Time	for	action	–	Connecting	the	game	algorithm

What	just	happened?

Have	a	go	hero	–	Implementing	the	UI	around	the	c

hess	board

Have	a	go	hero	–	Connecting	a	UCI-compliant	chess

engine

Pop	quiz

Summary

9.	 OpenGL	and	Vulkan	in	Qt	applications

Introduction	to	OpenGL	with	Qt

OpenGL	windows	and	contexts

Accessing	OpenGL	functions

Using	OpenGL	in	immediate	mode

Time	for	action	–	Drawing	a	triangle	using	Qt	and

OpenGL

Multisampling

Time	for	action	–	Scene-based	rendering

What	just	happened?

Time	for	action	–	Drawing	a	textured	cube

Have	a	go	hero	–	Animating	a	cube

Modern	OpenGL	with	Qt

Shaders

Time	for	action	–	Shaded	objects

GL	buffers

Using	multiple	OpenGL	versions

Offscreen	rendering

Vulkan	in	Qt	applications

Preparing	the	developing	environment

Vulkan	instance,	window,	and	renderer

Time	for	action	–	Creating	the	minimal	Vulkan	pro

ject

What	just	happened?

Using	Vulkan	types	and	functions

Time	for	action	–	Drawing	with	a	dynamic	backgrou

nd	color

Logs	and	validation

Combining	OpenGL	or	Vulkan	with	Qt	Widgets

Pop	quiz

Summary

10.	 Scripting

Why	script?

Evaluating	JavaScript	expressions

Time	for	action	–	Creating	a	JavaScript	editor

What	just	happened?

Global	object	state

Exposing	C++	objects	and	functions	to	JavaScript	code

Accessing	C++	object's	properties	and	methods

Data	type	conversions	between	C++	and	JavaScript

Accessing	signals	and	slots	in	scripts

Time	for	action	–	Using	a	button	from	JavaScript

Restricting	access	to	C++	classes	from	JavaScript

Creating	C++	objects	from	JavaScript

Exposing	C++	functions	to	JavaScript

Creating	a	JavaScript	scripting	game

Time	for	action	–	Implementing	the	game	engine

Time	for	action	–	Exposing	the	game	state	to	the	

JS	engine

What	just	happened?

Time	for	action	–	Loading	scripts	provided	by	use

rs

Time	for	action	–	Executing	the	strategy	scripts

Time	for	action	–	Writing	a	strategy	script

Have	a	go	hero	–	Extending	the	game

Python	scripting

Time	for	action	–	Writing	a	Qt	wrapper	for	embedd

ing	Python

What	just	happened?

Time	for	action	–	Converting	data	between	C++	and

Python

What	just	happened?

Have	a	go	hero	–	Implementing	the	remain

ing	conversions

Time	for	action	–	Calling	functions	and	returning

values

What	just	happened?

Have	a	go	hero	–	Wrapping	Qt	objects	int

o	Python	objects

Pop	quiz

Summary

11.	 Introduction	to	Qt	Quick

Declarative	UI	programming

Time	for	action	–	Creating	the	first	project

Time	for	action	–	Editing	QML

What	just	happened?

Property	groups

Anchors

Time	for	action	–	Positioning	items	relative	to	e

ach	other

QML	types,	components,	and	documents

How	does	it	work?

Time	for	action	–	Property	binding

A	limitation	of	automatic	property	updates

Overview	of	QML	types	provided	by	Qt

Qt	Quick	Designer

Time	for	action	–	Adding	a	form	to	the	project

Form	editor	files

Form	editor	interface

Time	for	action	–	Adding	an	import

Time	for	action	–	Adding	items	to	the	form

Time	for	action	–	Editing	anchors

Time	for	action	–	Applying	layouts	to	the	items

Time	for	action	–	Assigning	an	expression	to	the	

property

Time	for	action	–	Exposing	items	as	properties

What	just	happened?

Time	for	action	–	Creating	an	event	handler

Qt	Quick	and	C++

Accessing	C++	objects	from	QML

Accessing	QML	objects	from	C++

Bringing	life	into	static	user	interfaces

Fluid	user	interfaces

States	and	transitions

Time	for	action	–	Adding	states	to	the	form

Time	for	action	–	Adding	smooth	transition	effect

What	just	happened?

Have	a	go	hero	–	Adding	an	animation	of	

the	item's	position

Pop	quiz

Summary

12.	 Customization	in	Qt	Quick

Creating	a	custom	QML	component

Time	for	action	–	Creating	a	button	component

What	just	happened?

Time	for	action	–	Adding	button	content

What	just	happened?

Time	for	action	–	Sizing	the	button	properly

What	just	happened?

Time	for	action	–	Making	the	button	a	reusable	co

mponent

What	just	happened?

Importing	components

QML	and	virtual	resource	paths

Event	handlers

Time	for	action	–	Making	the	button	clickable

What	just	happened?

Time	for	action	–	Visualizing	button	states

What	just	happened?

Time	for	action	–	Notifying	the	environment	about

button	states

What	just	happened?

Touch	input

Time	for	action	–	Dragging	an	item	around

What	just	happened?

Time	for	action	–	Rotating	and	scaling	a	picture	

by	pinching

What	just	happened?

Have	a	go	hero	–	Rotating	and	scaling	wi

th	a	mouse

Keyboard	input

Have	a	go	hero	–	Practicing	key-event	pr

opagation

Text	input	fields

Gamepad	input

What	just	happened?

Sensor	input

Detecting	device	location

Creating	advanced	QML	components

Time	for	action	–	A	simple	analog	clock	applicati

on

What	just	happened?

Time	for	action	–	Adding	needles	to	the	clock

What	just	happened?

Time	for	action	–	Making	the	clock	functional

What	just	happened?

Dynamic	and	lazy	loading	of	QML	objects

Creating	objects	on	request

Delaying	item	creation

Imperative	painting	on	Canvas	using	JavaScript

Time	for	action	–	Preparing	Canvas	for	heartbeat	

visualization

What	just	happened?

Time	for	action	-	drawing	a	heartbeat

What	just	happened?

Time	for	action	–	Hiding	properties

Time	for	action	–	Making	the	diagram	more	colorfu

l

What	just	happened?

Using	C++	classes	as	QML	components

Time	for	action	–	Self-updating	car	dashboard

What	just	happened?

Time	for	action	–	Grouping	engine	properties

What	just	happened?

Time	for	action	–	Registering	C++	class	as	QML	ty

pe

Time	for	action	–	Making	CarInfo	instantiable	fro

m	QML

What	just	happened?

Pop	quiz

Summary

13.	 Animations	in	Qt	Quick	Games

Animation	framework	in	Qt	Quick

Generic	animations

Time	for	action	–	Scene	for	an	action	game

What	just	happened?

Time	for	action	–	Animating	the	sun's	horizontal	

movement

What	just	happened?

Composing	animations

Time	for	action	–	Making	the	sun	rise	and	set

What	just	happened?

Non-linear	animations

Time	for	action	–	Improving	the	path	of	the	sun

What	just	happened?

Property	value	sources

Time	for	action	–	Adjusting	the	sun's	color

What	just	happened?

Time	for	action	–	Furnishing	sun	animation

What	just	happened?

Have	a	go	hero	–	Animating	the	sun's	ray

s

Behaviors

Time	for	action	–	Animating	the	car	dashboard

What	just	happened?

States

Transitions

More	animation	types

Quick	game	programming

Game	loops

Input	processing

Time	for	action	–	Character	navigation

What	just	happened?

Time	for	action	–	Another	approach	to	character	n

avigation

What	just	happened?

Have	a	go	hero	–	Polishing	the	animation

Time	for	action	–	Generating	coins

What	just	happened?

Sprite	animation

Time	for	action	–	Implementing	simple	character	a

nimation

What	just	happened?

Time	for	action	–	Animating	characters	using	spri

tes

What	just	happened?

Time	for	action	–	Adding	jumping	with	sprite	tran

sitions

What	just	happened?

Have	a	go	hero	–	Making	Benjamin	wiggle	

his	tail	in	anticipation

Time	for	action	–	Revisiting	parallax	scrolling

What	just	happened?

Have	a	go	hero	–	Vertical	parallax	slidi

ng

Collision	detection

Time	for	action	–	Collecting	coins

What	just	happened?

Have	a	go	hero	–	Extending	the	game

Pop	quiz

Summary

14.	 Advanced	Visual	Effects	in	Qt	Quick

Making	the	game	more	attractive

Auto-scaling	user	interfaces

Graphical	effects

Have	a	go	hero	–	The	blur	parallax	scrol

led	game	view

Particle	systems

Tuning	the	emitter

Rendering	particles

Making	particles	move

Time	for	action	–	Vanishing	coins	spawning	partic

les

What	just	happened?

Custom	OpenGL-based	Qt	Quick	items

The	scene	graph

Time	for	action	–	Creating	a	regular	polygon	item

What	just	happened?

Have	a	go	hero	–	Creating	a	supporting	b

order	for	RegularPolygon

Using	QPainter	interface	in	Qt	Quick

Time	for	action	–	Creating	an	item	for	drawing	ou

tlined	text

What	just	happened?

Pop	quiz

Summary

15.	 3D	Graphics	with	Qt

Qt	3D	overview

Entities	and	components

Qt	3D	modules

Stable	modules

Experimental	modules

Using	modules

Rendering	3D	objects

Mesh,	material,	and	transform

Lighting

Time	for	action	–	creating	a	3D	scene

What	just	happened?

Time	for	action	–	constructing	the	Tower	of	Hanoi

scene

Time	for	action	–	repeating	3D	objects

What	just	happened?

Time	for	action	– creating	disks

Handling	user	input

Devices

Keyboard	and	mouse	buttons

Input	chords

Analog	(axis)	input

Object	picker

Frame-based	input	handling

Time	for	action	–	receiving	mouse	input

What	just	happened?

Performing	animations

Time	for	action	–	animating	disk	movements

What	just	happened?

Time	for	action	–	implementing	game	logic

Have	a	go	hero	–	improving	the	game

Integration	with	3D	modeling	software

Time	for	action	–	using	OBJ	files	for	the	disks

Loading	a	3D	scene

Working	with	Qt	3D	using	C++

Time	for	action	–	creating	a	3D	scene	using	C++

Integration	with	Qt	Widgets	and	Qt	Quick

Embedding	Qt	Quick	UI	into	a	3D	scene

Embedding	a	Qt	3D	scene	into	a	Qt	Quick	form

Pop	quiz

Summary

Pop	quiz	answers

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
As	a	leading	cross-platform	toolkit	for	all	significant	desktop,
mobile,	and	embedded	platforms,	Qt	is	becoming	more	popular	by
the	day.	This	book	will	help	you	learn	the	nitty-gritty	of	Qt	and	will
equip	you	with	the	necessary	toolsets	to	build	apps	and	games.	This
book	is	designed	as	a	beginner's	guide	to	take	programmers	new	to
Qt	from	the	basics,	such	as	objects,	core	classes,	widgets,	and	new
features	in	version	5.9,	to	a	level	where	they	can	create	a	custom
application	with	the	best	practices	of	programming	with	Qt.

From	a	brief	introduction	of	how	to	create	an	application	and
prepare	a	working	environment	for	both	desktop	and	mobile
platforms,	we	will	dive	deeper	into	the	basics	of	creating	graphical
interfaces	and	Qt's	core	concepts	of	data	processing	and	display.	As
you	progress	through	the	chapters,	you'll	learn	to	enrich	your	games
by	implementing	network	connectivity	and	employing	scripting.
Delve	into	Qt	Quick,	OpenGL,	and	various	other	tools	to	add	game
logic,	design	animation,	add	game	physics,	handle	gamepad	input,
and	build	astonishing	UIs	for	games.	Toward	the	end	of	this	book,
you'll	learn	to	exploit	mobile	device	features,	such	as	sensors	and
geolocation	services,	to	build	engaging	user	experiences.

Who	this	book	is	for
This	book	will	be	interesting	and	helpful	to	programmers
and	application	and	UI	developers	who	have	basic	knowledge	of
C++.	Additionally,	some	parts	of	Qt	allow	you	to	use	JavaScript,	so
basic	knowledge	of	this	language	will	also	be	helpful.	No	previous
experience	with	Qt	is	required.	Developers	with	up	to	a	year	of	Qt
experience	will	also	benefit	from	the	topics	covered	in	this	book.

To	get	the	most	out	of	this
book
You	don't	need	to	own	or	install	any	particular	software	before
starting	to	work	with	the	book.	A	common	Windows,	Linux,	or
MacOS	system	should	be	sufficient.	Chapter	2,	Installation,	contains
detailed	instructions	on	how	to	download	and	set	up	everything
you'll	need.

In	this	book,	you	will	find	several	headings	that	appear	frequently:

The	Time	for	action	section	contains	clear	instructions	on

how	to	complete	a	procedure	or	task.

The	What	just	happened?	section	explains	the	working	of

the	tasks	or	instructions	that	you	have	just	completed.

The	Have	a	go	hero	sections	contain	practical	challenges

that	give	you	ideas	to	experiment	with	what	you	have

learned.

The	Pop	quiz	sections	contain	short	single-choice

questions	intended	to	help	you	test	your	own	understanding.

You	will	find	the	answers	at	the	end	of	the	book.

While	going	through	the	chapters,	you	will	be	presented	with
multiple	games	and	other	projects	as	well	as	detailed	descriptions	of
how	to	create	them.	We	advise	you	to	try	to	create	these	projects
yourself	using	the	instructions	we'll	give	you.	If	at	any	point	of	time
you	have	trouble	following	the	instructions	or	don't	know	how	to	do

a	certain	step,	you	should	take	a	pick	at	the	example	code	files	to	see
how	it	can	be	done.	However,	the	most	important	and	exciting	part
of	learning	is	to	decide	what	you	want	to	implement	and	then	find	a
way	to	do	it,	so	pay	attention	to	the	"Have	a	go	hero"	sections	or
think	of	your	own	way	to	improve	each	project.

Download	the	example	code
files
You	can	download	the	example	code	files	for	this	book	from	your
account	at	www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you
can	visit	www.packtpub.com/support	and	register	to	have	the	files	emailed
directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.

2.	 Select	the	SUPPORT	tab.

3.	 Click	on	Code	Downloads	&	Errata.

4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the

onscreen	instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or
extract	the	folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows

Zipeg/iZip/UnRarX	for	Mac

7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://githu
b.com/PacktPublishing/Game-Programming-Using-Qt-5-Beginners-Guide-Second-Edition.
We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and
videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Game-Programming-Using-Qt-5-Beginners-Guide-Second-Edition
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user
input,	and	Twitter	handles.	Here	is	an	example:	"This	API	is
centered	on	QNetworkAccessManager,which	handles	the	complete
communication	between	your	game	and	the	Internet."

A	block	of	code	is	set	as	follows:

QNetworkRequest	request;

request.setUrl(QUrl("http://localhost/version.txt"));

request.setHeader(QNetworkRequest::UserAgentHeader,	"MyGame");

m_manager->get(request);

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code
block,	the	relevant	lines	or	items	are	set	in	bold:

void	FileDownload::downloadFinished(QNetworkReply	*reply)	{

				const	QByteArray	content	=	reply->readAll();

				_edit->setPlainText(content);

				reply->deleteLater();

}

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you
see	onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear
in	the	text	like	this.	Here	is	an	example:	"On	the	Select	Destination
Location	screen,	click	on	Next	to	accept	the	default	destination."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book
title	in	the	subject	of	your	message.	If	you	have	questions	about	any
aspect	of	this	book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy
of	our	content,	mistakes	do	happen.	If	you	have	found	a	mistake	in
this	book,	we	would	be	grateful	if	you	would	report	this	to	us.	Please
visit	www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any
form	on	the	Internet,	we	would	be	grateful	if	you	would	provide	us
with	the	location	address	or	website	name.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a
topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why
not	leave	a	review	on	the	site	that	you	purchased	it	from?	Potential
readers	can	then	see	and	use	your	unbiased	opinion	to	make
purchase	decisions,	we	at	Packt	can	understand	what	you	think
about	our	products,	and	our	authors	can	see	your	feedback	on	their
book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Introduction	to	Qt
In	this	chapter,	you	will	learn	what	Qt	is	and	how	it	evolved.	We	will
describe	the	structure	of	the	Qt	framework	and	the	differences
between	its	versions.	Finally,	you	will	learn	how	to	decide	which	Qt
licensing	scheme	is	right	for	your	projects.

The	main	topics	covered	in	this	chapter	are:

Qt	history

Supported	platforms

Structure	of	the	Qt	framework

Qt	versions

Qt	licenses

A	journey	through	time
The	development	of	Qt	started	in	1991	by	two	Norwegians—Eirik
Chambe-Eng	and	Haavard	Nord—who	were	looking	to	create	a
cross-platform	GUI	programming	toolkit.	The	first	commercial
client	of	Trolltech	(the	company	that	created	the	Qt	toolkit)	was	the
European	Space	Agency.	The	commercial	use	of	Qt	helped	Trolltech
sustain	further	development.	At	that	time,	Qt	was	available	for	two
platforms—Unix/X11	and	Windows—however,	developing	with	Qt
for	Windows	required	buying	a	proprietary	license,	which	was	a
significant	drawback	in	porting	the	existing	Unix/Qt	applications.

A	major	step	forward	was	the	release	of	Qt	Version	3.0	in	2001,
which	saw	the	initial	support	for	Mac	as	well	as	an	option	to	use	Qt
for	Unix	and	Mac	under	a	liberal	GPL	license.	Still,	Qt	for	Windows
was	only	available	under	a	paid	license.	Nevertheless,	at	that	time,
Qt	had	support	for	all	the	important	players	in	the	market—
Windows,	Mac,	and	Unix	desktops,	with	Trolltech's	mainstream
product	and	Qt	for	embedded	Linux.

In	2005,	Qt	4.0	was	released,	which	was	a	real	breakthrough	for	a
number	of	reasons.	First,	the	Qt	API	was	completely	redesigned,
which	made	it	cleaner	and	more	coherent.	Unfortunately,	at	the
same	time,	it	made	the	existing	Qt-based	code	incompatible	with
4.0,	and	many	applications	needed	to	be	rewritten	from	scratch	or
required	much	effort	to	be	adapted	to	the	new	API.	It	was	a	difficult
decision,	but	from	the	time	perspective,	we	can	see	it	was	worth	it.
Difficulties	caused	by	changes	in	the	API	were	well	countered	by	the
fact	that	Qt	for	Windows	was	finally	released	under	GPL.	Many
optimizations	were	introduced	that	made	Qt	significantly	faster.
Lastly,	Qt,	which	was	a	single	library	until	now,	was	divided	into	a
number	of	modules.	This	allowed	programmers	to	only	link	to	the
functionality	that	they	used	in	their	applications,	reducing	the

memory	footprint	and	the	dependencies	of	their	software.

In	2008,	Trolltech	was	sold	to	Nokia,	which	at	that	time	was
looking	for	a	software	framework	to	help	it	expand	and	replace	its
Symbian	platform	in	the	future.	The	Qt	community	became	divided;
some	people	were	thrilled,	others	were	worried	after	seeing	Qt's
development	get	transferred	to	Nokia.	Either	way,	new	funds	were
pumped	into	Qt,	speeding	up	its	progress	and	opening	it	for	mobile
platforms—Symbian	and	then	Maemo	and	MeeGo.

For	Nokia,	Qt	was	not	considered	a	product	of	its	own,	but	rather	a
tool.	Therefore,	Nokia	decided	to	introduce	Qt	to	more	developers
by	adding	a	very	liberal	Lesser	General	Public	License	(LGPL)
that	allowed	the	usage	of	the	framework	for	both	open	and	closed
source	development.

Bringing	Qt	to	new	platforms	and	less	powerful	hardware	required
a	new	approach	to	create	user	interfaces	and	to	make	them	more
lightweight,	fluid,	and	attractive.	Nokia	engineers	working	on	Qt
came	up	with	a	new	declarative	language	to	develop	such	interfaces
—the	Qt	Modeling	Language	(QML)	and	a	Qt	runtime	for	it
called	Qt	Quick.

The	latter	became	the	primary	focus	of	the	further	development	of
Qt,	practically	stalling	all	non-mobile-related	work,	channeling	all
efforts	to	make	Qt	Quick	faster,	easier,	and	more	widespread.	Qt	4
was	already	in	the	market	for	seven	years,	and	it	became	obvious
that	another	major	version	of	Qt	had	to	be	released.	It	was	decided
to	bring	more	engineers	to	Qt	by	allowing	anyone	to	contribute	to
the	project.	The	Qt	Project	founded	by	Nokia	in	2011	provided	an
infrastructure	for	code	review	and	introduced	an	open	governance
model,	allowing	outside	developers	to	participate	in	decision
making.

Nokia	did	not	manage	to	finish	working	on	Qt	5.0.	As	a	result	of	an
unexpected	turnover	of	Nokia	toward	different	technology	in	2011,
the	Qt	division	was	sold	in	mid	2012	to	the	Finnish	company	Digia

that	managed	to	complete	the	effort	and	release	Qt	5.0,	a
completely	restructured	framework,	in	December	of	the	same	year.
While	Qt	5.0	introduced	a	lot	of	new	features,	it	was	mostly
compatible	with	Qt	4	and	allowed	developers	to	seamlessly	migrate
to	the	new	major	version.

In	2014,	Digia	formed	the	Qt	Company	that	is	now	responsible	for
Qt	development,	commercialization,	and	licensing.	All	Qt-related
web	resources	scattered	across	Qt	Project	and	Digia	websites	were
eventually	unified	at	https://www.qt.io/.	Qt	continues	to	receive	bug
fixes,	new	features,	and	new	platform	support.	This	book	is	based
on	Qt	5.9,	which	was	released	in	2017.

https://www.qt.io/

The	cross-platform
programming
Qt	is	an	application-programming	framework	that	is	used	to
develop	cross-platform	applications.	What	this	means	is	that
software	written	for	one	platform	can	be	ported	and	executed	on
another	platform	with	little	or	no	effort.	This	is	obtained	by	limiting
the	application	source	code	to	a	set	of	calls	to	routines	and	libraries
available	to	all	the	supported	platforms,	and	by	delegating	all	tasks
that	may	differ	between	platforms	(such	as	drawing	on	the	screen
and	accessing	system	data	or	hardware)	to	Qt.	This	effectively
creates	a	layered	environment	(as	shown	in	the	following	diagram),
where	Qt	hides	all	platform-dependent	aspects	from	the	application
code:

Of	course,	at	times,	we	need	to	use	some	functionality	that	Qt
doesn't	provide.	In	such	situations,	it	is	important	to	use	a
conditional	compilation	for	platform-specific	code.	Qt	provides	a
wide	set	of	macros	specifying	the	current	platform.	We	will	return
to	this	topic	in	Chapter	6,	Qt	Core	Essentials.

Supported	platforms
The	framework	is	available	for	a	number	of	platforms,	ranging	from
classical	desktop	environments	through	embedded	systems	to
mobile	devices.	Qt	5.9	supports	the	following	platforms:	

Desktop	platforms:	Windows,	Linux,	and	macOS

Mobile	platforms:	UWP,	Android,	and	iOS

Embedded	platforms:	VxWorks,	INTEGRITY,	QNX,	and

Embedded	Linux

It	is	likely	that	the	list	of	supported	platforms	will	change	in	future
Qt	versions.	You	should	refer	to	the	Supported	Platforms
documentation	page	for	your	Qt	version	for	detailed	information
about	supported	versions	of	operating	systems	and	compilers.

GUI	scalability
For	the	most	part	of	the	history	of	desktop	application
development,	specifying	sizes	of	GUI	elements	in	pixels	was	the
common	practice.	While	most	operating	systems	had	dots	per
inch	(DPI)	settings	and	APIs	for	taking	it	into	account	for	a	long
time,	the	majority	of	existing	displays	had	approximately	the	same
DPI,	so	applications	without	high	DPI	support	were	common.

The	situation	changed	when	high-DPI	displays	became	more
common	in	the	market—most	notably	in	mobile	phones	and	tablets,
but	also	in	laptops	and	desktops.	Now,	even	if	you	only	target
desktop	platforms,	you	should	think	about	supporting	different	DPI
settings.	When	you	target	mobile	devices,	this	becomes	mandatory.

If	you	are	using	Qt	Widgets	or	Qt	Quick,	you	often	don't	need	to
specify	pixel	sizes	at	all.	Standard	widgets	and	controls	will	use
fonts,	margins,	and	offsets	defined	by	the	style.	If	layouts	are	used,
Qt	will	determine	positions	and	sizes	of	all	GUI	items	automatically.
Avoid	specifying	constant	sizes	for	GUI	elements	when	possible.
You	may	use	sizes	related	to	sizes	of	other	GUI	elements,	the
window,	or	the	screen.	Qt	also	provides	an	API	for	querying	screen
DPI,	GUI	style	metrics,	and	font	metrics,	which	should	help	to
determine	the	optimal	size	for	the	current	device.

On	macOS	and	iOS,	Qt	Widgets	and	Qt	Quick	applications	are
scaled	automatically	using	a	virtual	coordinate	system.	Pixel	values
in	the	application	remain	the	same,	but	the	GUI	will	scale	according
to	the	DPI	of	the	current	display.	For	example,	if	the	pixel	ratio	is
set	to	2	(a	common	value	for	retina	displays),	creating	a	widget	with
100	"pixels"	width	will	produce	a	widget	with	200	physical	pixels.
That	means	that	the	application	doesn't	have	to	be	highly	aware	of
DPI	variations.	However,	this	scaling	does	not	apply	to	OpenGL,

which	always	uses	physical	pixels.

Qt	versions
Each	Qt	version	number	(for	example,	5.9.2)	consists	of	major,
minor,	and	patch	components.	Qt	pays	special	attention	to	forwards
and	backwards	compatibility	between	different	versions.	Small
changes	which	are	both	forwards	and	backwards	compatible
(typically	bug	fixes	without	changing	any	API)	are	indicated	by
changing	only	the	patch	version.	New	minor	versions	usually	bring
in	new	API	and	features,	so	they	are	not	forwards	compatible.
However,	all	minor	versions	are	backwards	binary	and	source
compatible.	This	means	that	if	you're	transitioning	to	a	newer
minor	version	(for	example,	from	5.8	to	5.9),	you	should	always	be
able	to	rebuild	your	project	without	changes.	You	can	even
transition	to	a	new	minor	version	without	rebuilding,	by	only
updating	shared	Qt	libraries	(or	letting	the	package	manager	of	the
OS	do	that).	Major	releases	indicate	big	changes	and	may	break
backwards	compatibility.	However,	the	latest	major	release	(5.0)
was	mostly	source	compatible	with	the	previous	version.

Qt	declares	Long	Term	Support	(LTS)	for	certain	versions.	LTS
versions	receive	patch-level	releases	with	bug	fixes	and	security
fixes	for	three	years.	Commercial	support	is	available	for	even
longer	periods.	Current	LTS	releases	at	the	time	of	writing	are	5.6
and	5.9.

Structure	of	Qt	framework
As	Qt	expanded	over	time,	its	structure	evolved.	At	first,	it	was	just
a	single	library,	then	a	set	of	libraries.	When	it	became	harder	to
maintain	and	update	for	the	growing	number	of	platforms	that	it
supported,	a	decision	was	made	to	split	the	framework	into	much
smaller	modules	contained	in	two	module	groups—Qt	Essentials
and	Qt	Add-ons.	A	major	decision	relating	to	the	split	was	that	each
module	could	now	have	its	own	independent	release	schedule.

Qt	Essentials
The	Essentials	group	contains	modules	that	are	mandatory	to
implement	for	every	supported	platform.	This	implies	that	if	you
are	implementing	your	system	using	modules	from	this	group	only,
you	can	be	sure	that	it	can	be	easily	ported	to	any	other	platform
that	Qt	supports.	The	most	important	relations	between	Qt
Essentials	modules	are	shown	in	the	following	diagram:

Some	of	the	modules	are	explained	as	follows:

The	Qt	Core	module	contains	the	most	basic	Qt

functionality	that	all	other	modules	rely	on.	It	provides

support	for	event	processing,	meta-objects,	data	I/O,	text

processing,	and	threading.	It	also	brings	a	number	of

frameworks,	such	as	the	Animation	framework,	the	State

Machine	framework,	and	the	Plugin	framework.

The	Qt	GUI	module	provides	basic	cross-platform	support

to	build	user	interfaces.	It	contains	the	common

functionality	required	by	more	high-level	GUI	modules	(Qt

Widgets	and	Qt	Quick).	Qt	GUI	contains	classes	that	are

used	to	manipulate	windows	that	can	be	rendered	using

either	the	raster	engine	or	OpenGL.	Qt	supports	desktop

OpenGL	as	well	as	OpenGL	ES	1.1	and	2.0.

Qt	Widgets	extends	the	GUI	module	with	the	ability	to

create	a	user	interface	using	widgets,	such	as	buttons,	edit

boxes,	labels,	data	views,	dialog	boxes,	menus,	and	toolbars,

which	are	arranged	using	a	special	layout	engine.	Qt

Widgets	utilizes	Qt's	event	system	to	handle	input	events	in

a	cross-platform	way.	This	module	also	contains	the

implementation	of	an	object-oriented	2D	graphics	canvas

called	Graphics	View.

Qt	Quick	is	an	extension	of	Qt	GUI,	which	provides	a

means	to	create	lightweight	fluid	user	interfaces	using	QML.

It	is	described	in	more	detail	later	in	this	chapter,	as	well	as

in	Chapter	11,	Introduction	to	Qt	Quick.

Qt	QML	is	an	implementation	of	the	QML	language	used	in

Qt	Quick.	It	also	provides	API	to	integrate	custom	C++	types

into	QML's	JavaScript	engine	and	to	integrate	QML	code

with	C++.

Qt	Network	brings	support	for	IPv4	and	IPv6	networking

using	TCP	and	UDP.	It	also	contains	HTTP,	HTTPS,	FTP

clients,	and	it	extends	support	for	DNS	lookups.

Qt	Multimedia	allows	programmers	to	access	audio	and

video	hardware	(including	cameras	and	FM	radio)	to	record

and	play	multimedia	content.	It	also	features	3D	positional

audio	support.

Qt	SQL	brings	a	framework	that	is	used	to	manipulate	SQL

databases	in	an	abstract	way.

There	are	also	other	modules	in	this	group,	but	we	will	not	focus	on	them	in	this	book.	If
you	want	to	learn	more	about	them,	you	can	look	them	up	in	the	Qt	reference	manual.

Qt	Add-ons
This	group	contains	modules	that	are	optional	for	any	platform.
This	means	that	if	a	particular	functionality	is	not	available	on	some
platform	or	there	is	nobody	willing	to	spend	time	working	on	this
functionality	for	a	platform,	it	will	not	prevent	Qt	from	supporting
this	platform.	We'll	mention	some	of	the	most	important	modules
here:

Qt	Concurrent:	This	handles	multi-threaded	processing

Qt	3D:	This	provides	high-level	OpenGL	building	blocks

Qt	Gamepad:	This	enables	applications	to	support

gamepad	hardware

Qt	D-Bus:	This	allows	your	application	to	communicate

with	others	via	the	D-Bus	mechanism

Qt	XML	Patterns:	This	helps	us	to	access	XML	data

Many	other	modules	are	also	available,	but	we	will	not	cover	them
here.

qmake
Some	Qt	features	require	additional	build	steps	during	the
compilation	and	linking	of	the	project.	For	example,	Meta-Object
Compiler	(moc),	User	Interface	Compiler	(uic),	and
Resource	Compiler	(rcc)	may	need	to	be	executed	to	handle	Qt's
C++	extensions	and	features.	For	convenience,	Qt	provides
the	qmake	executable	that	manages	your	Qt	project	and	generates
files	required	for	building	it	on	the	current	platform	(such	as
Makefile	for	the	make	utility).	qmake	reads	the	project's
configuration	from	a	project	file	with	the	.pro	extension.	Qt	Creator
(the	IDE	that	comes	with	Qt)	automatically	creates	and	updates
that	file,	but	it	can	be	edited	manually	to	alter	the	build	process.

Alternatively,	CMake	can	be	used	to	organize	and	build	the	project.
Qt	provides	CMake	plugins	for	performing	all	the	necessary	build
actions.	Qt	Creator	also	has	fairly	good	support	for	CMake	projects.
CMake	is	more	advanced	and	powerful	than	qmake,	but	it's
probably	not	needed	for	projects	with	a	simple	build	process.

Modern	C++	standards
You	can	use	modern	C++	in	your	Qt	projects.	Qt's	build	tool
(qmake)	allows	you	to	specify	the	C++	standard	you	want	to	target.
Qt	itself	introduces	an	improved	and	extended	API	by	using	new
C++	features	when	possible.	For	example,	it	uses	ref-qualified
member	functions	and	introduces	methods	accepting	initializer	lists
and	rvalue	references.	It	also	introduces	new	macros	that	help	you
deal	with	compilers	that	may	or	may	not	support	new	standards.	

If	you	use	a	recent	C++	revision,	you	have	to	pay	attention	to	the
compiler	versions	you	use	across	the	target	platforms	because	older
compilers	may	not	support	the	new	standard.	In	this	book,	we	will
assume	C++11	support,	as	it	is	widely	available	already.	Thus,
we'll	use	C++11	features	in	our	code,	such	as	range-based	for	loops,
scoped	enumerations,	and	lambda	expressions.	

Choosing	the	right	license
Qt	is	available	under	two	different	licensing	schemes—you	can
choose	between	a	commercial	license	and	an	open	source	one.	We
will	discuss	both	here	to	make	it	easier	for	you	to	choose.	If	you
have	any	doubts	regarding	whether	a	particular	licensing	scheme
applies	to	your	use	case,	you	better	consult	a	professional	lawyer.

An	open	source	license
The	advantage	of	open	source	licenses	is	that	we	don't	have	to	pay
anyone	to	use	Qt;	however,	the	downside	is	that	there	are	some
limitations	imposed	on	how	it	can	be	used.

When	choosing	the	open	source	edition,	we	have	to	choose	between
GPL	3.0	and	LGPL	3.	Since	LGPL	is	more	liberal,	in	this	chapter	we
will	focus	on	it.	Choosing	LGPL	allows	you	to	use	Qt	to	implement
systems	that	are	either	open	source	or	closed	source—you	don't
have	to	reveal	the	sources	of	your	application	to	anyone	if	you	don't
want	to.

However,	there	are	a	number	of	restrictions	you	need	to	be	aware
of:

Any	modifications	that	you	make	to	Qt	itself	need	to	be

made	public,	for	example,	by	distributing	source	code

patches	alongside	your	application	binary.

LGPL	requires	that	users	of	your	application	must	be	able	to

replace	Qt	libraries	that	you	provide	them	with	other

libraries	with	the	same	functionality	(for	example,	a

different	version	of	Qt).	This	usually	means	that	you	have	to

dynamically	link	your	application	against	Qt	so	that	the	user

can	simply	replace	Qt	libraries	with	his	own.	You	should	be

aware	that	such	substitutions	can	decrease	the	security	of

your	system;	thus,	if	you	need	it	to	be	very	secure,	open

source	may	not	be	the	option	for	you.

LGPL	is	incompatible	with	a	number	of	licenses,	especially

proprietary	ones,	so	it	is	possible	that	you	won't	be	able	to

use	Qt	with	some	commercial	components.

Some	Qt	modules	may	have	different	licensing	restrictions.	For
example,	Qt	Charts,	Qt	Data	Visualization,	and	Qt	Virtual	Keyboard
modules	are	not	available	under	LGPL	and	can	only	be	used	under
GPL	or	the	commercial	license.

The	open	source	edition	of	Qt	can	be	downloaded	directly	from	https
://www.qt.io.

https://www.qt.io

A	commercial	license
Most	of	the	restrictions	are	lifted	if	you	decide	to	buy	a	commercial
license	for	Qt.	This	allows	you	to	keep	the	entire	source	code	a
secret,	including	any	changes	you	may	want	to	incorporate	into	Qt.
You	can	freely	link	your	application	statically	against	Qt,	which
means	fewer	dependencies,	a	smaller	deployment	bundle	size,	and	a
faster	startup.	It	also	increases	the	security	of	your	application,	as
end	users	cannot	inject	their	own	code	into	the	application	by
replacing	a	dynamically	loaded	library	with	their	own.

Summary
In	this	chapter,	you	learned	about	the	architecture	of	Qt.	We	saw
how	it	evolved	over	time	and	we	had	a	brief	overview	of	what	it
looks	like	now.	Qt	is	a	complex	framework	and	we	will	not	manage
to	cover	it	all,	as	some	parts	of	its	functionality	are	more	important
for	game	programming	than	others	that	you	can	learn	on	your	own
in	case	you	ever	need	them.	Now	that	you	know	what	Qt	is,	we	can
proceed	with	the	next	chapter,	where	you	will	learn	how	to	install
Qt	on	to	your	development	machine.

Installation
In	this	chapter,	you	will	learn	how	to	install	Qt	on	your
development	machine,	including	Qt	Creator,	an	IDE	tailored	to	use
with	Qt.	You	will	see	how	to	configure	the	IDE	for	your	needs	and
learn	the	basic	skills	to	use	that	environment.	By	the	end	of	this
chapter,	you	will	be	able	to	prepare	your	working	environment	for
both	desktop	and	embedded	platforms	using	the	tools	included	in
the	Qt	release.

The	main	topics	covered	in	this	chapter	are	as	follows:

Installing	Qt	and	its	developer	tools

Main	controls	of	Qt	Creator

Qt	documentation

Installing	the	Qt	SDK
Before	you	can	start	using	Qt	on	your	machine,	it	needs	to	be
downloaded	and	installed.	Qt	can	be	installed	using	dedicated
installers	that	come	in	two	flavors:	the	online	installer,	which
downloads	all	the	needed	components	on	the	fly,	and	a	much	larger
offline	installer,	which	already	contains	all	the	required
components.	Using	an	online	installer	is	easier	for	regular	desktop
installs,	so	we	prefer	this	approach.

Time	for	action	–	Installing	Qt
using	an	online	installer
All	Qt	resources,	including	the	installers,	are	available	at	https://qt.io.
To	obtain	the	open	source	version	of	Qt,	go	to	https://www.qt.io/download-
open-source/.	The	page	suggests	the	online	installer	for	your	current
operating	system	by	default,	as	shown	in	the	following	screenshot.
Click	on	the	Download	Now	button	to	download	the	online	installer,
or	click	on	View	All	Downloads	to	select	a	different	download
option:

https://www.qt.io/
https://www.qt.io/download-open-source/

When	the	download	is	complete	run	the	installer,	as	shown:

Click	on	Next	to	begin	the	installation	process.	If	you	are	using	a
proxy	server,	click	on	Settings	and	adjust	your	proxy	configuration.
Then,	either	log	into	your	Qt	Account	or	click	on	Skip,	if	you	don't
have	one.

Click	on	Next	again,	and	after	a	while	of	waiting	as	the	downloader
checks	remote	repositories,	you'll	be	asked	for	the	installation	path.
Ensure	that	you	choose	a	path	where	you	have	write	access	and

enough	free	space.	It's	best	to	put	Qt	into	your	personal	directory,
unless	you	ran	the	installer	as	the	system	administrator	user.
Clicking	on	Next	again	will	present	you	with	the	choice	of
components	that	you	wish	to	install,	as	shown	in	the	following
screenshot.	You	will	be	given	different	choices	depending	on	your
platform:

Before	we	continue,	you	need	to	choose	which	Qt	version	you	want

to	install.	We	recommend	that	you	use	the	most	recent	stable
version,	that	is,	the	first	item	under	the	Qt	section.	Ignore
the	Preview	section,	as	it	contains	prerelease	packages	that	may	be
unstable.	If	you	want	to	be	fully	consistent	with	the	book,	you	can
choose	Qt	5.9.0,	but	it's	not	required.	The	installer	also	allows	you
to	install	multiple	Qt	versions	at	once.

Expand	the	section	corresponding	to	the	Qt	version	you	want	to
install,	and	choose	whichever	platforms	you	need.	Select	at	least
one	desktop	platform	to	be	able	to	build	and	run	desktop
applications.	When	in	Windows,	you	have	to	make	additional
choices	for	the	desktop	builds.	Select	the	32-bit	or	64-bit	version
and	choose	the	compiler	you	want	to	be	working	with.	If	you	have	a
Microsoft	C++	compiler	(provided	with	Visual	Studio	or	Visual	C++
Build	Tools),	you	can	select	the	build	corresponding	to	the	installed
MSVC	version.	If	you	don't	have	a	Microsoft	compiler	or	you	simply
don't	want	to	use	it,	choose	the	MinGW	build	and	select	the
corresponding	MinGW	version	in	the	Tools	section	of	the	package
tree.

If	you	want	to	build	Android	applications,	choose	the	option
corresponding	to	the	desired	Android	platform.	In	Windows,	you
can	select	a	UWP	build	to	create	Universal	Windows	Platform
applications.

The	installer	will	always	install	Qt	Creator—the	IDE	(integrated
development	environment)	optimized	for	creating	Qt	applications.
You	may	also	select	Qt	add-ons	that	you	want	to	use.

After	choosing	the	required	components	and	clicking	on	Next	again,
you	will	have	to	accept	the	licensing	terms	for	Qt	by	marking	an
appropriate	choice,	as	shown	in	the	following	screenshot:

After	you	click	on	Install,	the	installer	will	begin	downloading	and
installing	the	required	packages.	Once	this	is	done,	your	Qt
installation	will	be	ready.	At	the	end	of	the	process,	you	will	be
given	an	option	to	launch	Qt	Creator:

What	just	happened?
The	process	we	went	through	results	in	the	whole	Qt	infrastructure
appearing	on	your	disk.	You	can	examine	the	directory	you	pointed
to	the	installer	to	see	that	it	created	a	number	of	subdirectories	in
this	directory,	one	for	each	version	of	Qt	chosen	with	the	installer,
and	another	one	called	Tools	that	contains	Qt	Creator.	The	Qt
directory	also	contains	a	MaintenanceTool	executable,	which	allows	you
to	add,	remove,	and	update	the	installed	components.	The	directory
structure	ensures	that	if	you	ever	decide	to	install	another	version	of
Qt,	it	will	not	conflict	with	your	existing	installation.	Furthermore,
for	each	version,	you	can	have	a	number	of	platform	subdirectories
that	contain	the	actual	Qt	installations	for	particular	platforms.

Qt	Creator
Now	that	Qt	is	installed,	we	will	get	familiar	with	Qt	Creator	and
use	it	to	verify	the	installation.

Qt	Creator's	modes
After	Qt	Creator	starts,	you	should	be	presented	with	the	following
screen:

The	panel	on	the	left	allows	you	to	switch	between	different	modes
of	the	IDE:

Welcome	mode:	Allows	you	to	quickly	open	last	sessions,

projects,	load	examples,	and	tutorials.

Edit	mode:	The	main	mode	used	to	edit	the	source	code	of

your	applications.

Design	mode:	Contains	a	visual	form	editor.	Design	mode	is

automatically	activated	when	you	create	or	open	a	Qt

Widgets	form	file	(.ui)	or	a	QML	form	file	(.ui.qml).

Debug	mode:	Automatically	activated	when	you	launch	the

application	under	debugger.	It	contains	additional	views	for

displaying	the	call	stack,	the	break	point	list,	and	values	of

local	variables.	More	views	(such	as	thread	lists	or	values	of

registers)	can	be	enabled	when	needed.

Projects	mode:	Allows	you	to	configure	how	Qt	Creator	will

build	and	run	your	application.	For	example,	you	can	choose

which	Qt	version	it	will	use	or	add	command-line	arguments

here.

Help	mode:	Provides	access	to	the	Qt	documentation.	We

will	focus	on	this	topic	later	in	the	chapter.

Setting	up	compilers,	Qt
versions,	and	kits
Before	Qt	Creator	can	build	and	run	projects,	it	needs	to	know
which	Qt	builds,	compilers,	debuggers,	and	other	tools	are
available.	Fortunately,	Qt	installer	will	usually	do	it	automatically,
and	Qt	Creator	is	able	to	automatically	detect	tools	that	are
available	system-wide.	However,	let's	verify	that	our	environment	is
properly	configured.	From	the	Tools	menu,	choose	Options.	Once	a
dialog	box	pops	up,	choose	Build	&	Run	from	the	side	list.	This	is
the	place	where	we	can	configure	the	way	Qt	Creator	can	build	our
projects.	A	complete	build	configuration	is	called	a	kit.	It	consists	of
a	Qt	installation	and	a	compiler	that	will	be	executed	to	perform	the
build.	You	can	see	tabs	for	all	the	three	entities	in	the	Build	&	Run
section	of	the	Options	dialog	box.

Let's	start	with	the	Compilers	tab.	If	your	compiler	was	not
autodetected	properly	and	is	not	in	the	list,	click	on	the	Add	button,
choose	your	compiler	type	from	the	list,	and	fill	the	name	and	path
to	the	compiler.	If	the	settings	were	entered	correctly,	Creator	will
autofill	all	the	other	details.	Then,	you	can	click	on	Apply	to	save	the
changes.

Next,	you	can	switch	to	the	Qt	Versions	tab.	Again,	if	your	Qt
installation	was	not	detected	automatically,	you	can	click	on	Add.
This	will	open	a	file	dialog	box	where	you	will	need	to	find	your	Qt
installation's	directory,	where	all	the	binary	executables	are	stored
(usually	in	the	bin	directory),	and	select	a	binary	called	qmake.	Qt
Creator	will	warn	you	if	you	choose	a	wrong	file.	Otherwise,	your	Qt
installation	and	version	should	be	detected	properly.	If	you	want,
you	can	adjust	the	version	name	in	the	appropriate	box.

The	last	tab	to	look	at	is	the	Kits	tab.	It	allows	you	to	pair	a	compiler
with	the	Qt	version	to	be	used	for	compilation.	In	addition	to	this,
for	embedded	and	mobile	platforms,	you	can	specify	a	device	to
deploy	to	and	a	sysroot	directory	containing	all	the	files	needed	to
build	the	software	for	the	specified	embedded	platform.	Check	that
the	name	of	each	kit	is	descriptive	enough	so	that	you	will	be	able	to
select	the	correct	kit	(or	kits)	for	each	of	your	applications.	If
needed,	adjust	the	names	of	the	kits.

Time	for	action	–	Loading	an
example	project
Examples	are	a	great	way	to	explore	the	capabilities	of	Qt	and	find
the	code	required	for	some	typical	tasks.	Each	Qt	version	contains	a
large	set	of	examples	that	are	always	up	to	date.	Qt	Creator	provides
an	easy	way	to	load	and	compile	any	example	project.

Let's	try	loading	one	to	get	familiar	with	Qt	Creator's	project	editing
interface.	Then,	we	will	build	the	project	to	check	whether	the
installation	and	configuration	were	done	correctly.

In	Qt	Creator,	click	on	the	Welcome	button	in	the	top-left	corner	of
the	window	to	switch	to	the	Welcome	mode.	Click	on	the	Examples
button	(refer	to	the	previous	screenshot)	to	open	the	list	of
examples	with	a	search	box.	Ensure	that	the	kit	that	you	want	to	use
is	chosen	in	the	drop-down	list	next	to	the	search	box.	In	the	box,
enter	aff	to	filter	the	list	of	examples	and	click	on	Affine
Transformations	to	open	the	project.	If	you	are	asked	whether	you
want	to	copy	the	project	to	a	new	folder,	agree.

After	selecting	an	example,	an	additional	window	appears	that
contains	the	documentation	page	of	the	loaded	example.	You	can
close	that	window	when	you	don't	need	it.	Switch	back	to	the	main
Qt	Creator	window.

Qt	Creator	will	display	the	Configure	Project	dialog	with	the	list	of
available	kits:

Verify	that	the	kits	you	want	to	use	are	marked	with	check	boxes,
and	click	on	the	Configure	Project	button.	Qt	Creator	will	then
present	you	with	the	following	window:

This	is	the	Edit	mode	of	Qt	Creator.	Let's	go	through	the	most
important	parts	of	this	interface:

Project	tree	is	located	at	the	top-left	of	the	window.	It

displays	all	open	projects	and	the	hierarchy	of	files	within

them.	You	can	double-click	on	a	file	to	open	it	for	editing.

The	context	menu	of	projects,	directories,	and	files	in	the

project	tree	contains	a	lot	of	useful	functions.

At	the	bottom-left	of	the	window,	there's	a	list	of	open

documents.	The	file	selected	in	this	list	will	appear	in	the

code	editor	in	the	center	of	the	window.	If	the	selected	file	is

a	Qt	Designer	form,	Qt	Creator	will	automatically	switch	to

the	Design	mode.	Each	file	in	the	list	has	a	close	button.

The	Type	to	locate	field	is	present	at	the	left	of	the	bottom

panel.	If	you	want	to	quickly	navigate	to	another	file	in	the

project,	type	the	beginning	of	its	name	in	the	field	and	select

it	in	the	pop-up	list.	Special	prefixes	can	be	used	to	enable

other	search	modes.	For	example,	the	c	prefix	allows	you	to

search	for	C++	classes.	You	can	press	Ctrl	+	K	to	activate

this	field.

The	buttons	at	the	bottom	of	the	left	panel	allow	you	to	build

and	run	your	current	project	under	debugger,	or	normally.

The	button	above	them	displays	names	of	the	current

project	and	the	current	build	configuration	(for	example,

Debug	or	Release)	and	allows	you	to	change	them.

The	output	panes	appear	below	the	code	editor	when	you

select	them	in	the	bottom	panel.	The	Issues	pane	contains

compiler	errors	and	other	related	messages.	The	Search

Results	pane	allows	you	to	run	a	text	search	in	the	entire

project	and	view	its	results.	The	Application	Output	pane

displays	the	text	your	application	has	printed	to	its	standard

output	(stderr	or	stdout).

Qt	Creator	is	highly	configurable,	so	you	can	adjust	the	layout	to	your	liking.	For	example,
it's	possible	to	change	the	locations	of	panes,	add	more	panes,	and	change	keyboard
shortcuts	for	every	action.

Qt	documentation
Qt	project	has	very	thorough	documentation.	For	each	API	item
(class,	method,	and	so	on),	there	is	a	section	in	the	documentation
that	describes	that	item	and	mentions	things	that	you	need	to	know.
There	are	also	a	lot	of	overview	pages	describing	modules	and	their
parts.	When	you	are	wondering	what	some	Qt	class	or	module	is
made	for	or	how	to	use	it,	the	Qt	documentation	is	always	a	good
source	of	information.

Qt	Creator	has	an	integrated	documentation	viewer.	The	most
commonly	used	documentation	feature	is	context	help.	To	try	it	out,
open	the	main.cpp	file,	set	the	text	cursor	inside	the	QApplication	text,
and	press	F1.	The	help	section	should	appear	to	the	right	of	the	code
editor.	It	displays	the	documentation	page	for	the	QApplication	class.
The	same	should	work	for	any	other	Qt	class,	method,	macro,	and
so	on.	You	can	click	on	the	Open	in	Help	Mode	button	on	top	of	the
help	page	to	switch	to	the	Help	mode,	where	you	have	more	space
to	view	the	page.

Another	important	feature	is	the	search	in	documentation	index.	To
do	that,	go	to	the	Help	mode	by	clicking	on	the	Help	button	on	the
left	panel.	In	Help	mode,	in	the	top-left	corner	of	the	window,	there
is	a	drop-down	list	that	allows	you	to	select	the	mode	of	the	left
section:	Bookmarks,	Contents,	Index,	or	Search.	Select	Index	mode,
input	your	request	in	the	Look	for:	text	field	and	see	whether	there
are	any	search	results	in	the	list	below	the	text	field.	For	example,
try	typing	qt	core	to	search	for	the	Qt	Core	module	overview.	If	there
are	results,	you	can	press	Enter	to	quickly	open	the	first	result	or
double-click	on	any	result	in	the	list	to	open	it.	If	multiple	Qt
versions	are	installed,	a	dialog	may	appear	where	you	need	to	select
the	Qt	version	you	are	interested	in.

Later	in	this	book,	we	will	sometimes	refer	to	Qt	documentation	pages	by	their	names.	You

Later	in	this	book,	we	will	sometimes	refer	to	Qt	documentation	pages	by	their	names.	You
can	use	the	method	described	previously	to	open	these	pages	in	Qt	Creator.

Time	for	action	–	Running	the
Affine	Transformations	project
Let's	try	building	and	running	the	project	to	check	whether	the
building	environment	is	configured	properly.	To	build	the	project,
click	on	the	hammer	icon	(Build)	at	the	bottom	of	the	left	panel.	At
the	right	of	the	bottom	panel,	a	grey	progress	bar	will	appear	to
indicate	the	build	progress.	When	the	build	finishes,	the	progress
bar	turns	green	if	the	build	was	successful	or	red	otherwise.	After
the	application	was	built,	click	on	the	green	triangle	icon	to	run	the
project.

Qt	Creator	can	automatically	save	all	files	and	build	the	project	before	running	it,	so	you
can	just	hit	the	Run	(Ctrl	+	R)	or	Start	Debugging	(F5)	button	after	making	changes	to	the
project.	To	verify	that	this	feature	is	enabled,	click	on	Tools	and	Options	in	the	main	menu,
go	to	the	Build	&	Run	section,	go	to	the	General	tab,	and	check	that	the	Save	all	files	before
build,	Always	build	project	before	deploying	it,	and	Always	deploy	project	before	running
it	options	are	checked.

If	everything	works,	after	some	time,	the	application	should	be
launched,	as	shown	in	the	next	screenshot:

What	just	happened?
How	exactly	was	the	project	built?	To	see	which	kit	and	which	build
configuration	was	used,	click	on	the	icon	in	the	action	bar	directly
over	the	green	triangle	icon	to	open	the	build	configuration	popup,
as	shown	in	the	following	screenshot:

The	exact	content	that	you	get	varies	depending	on	your
installation,	but	in	general,	on	the	left,	you	will	see	the	list	of	kits
configured	for	the	project	and	on	the	right,	you	will	see	the	list	of
build	configurations	defined	for	that	kit.	You	can	click	on	these	lists
to	quickly	switch	to	a	different	kit	or	a	different	build	configuration.
If	your	project	is	configured	only	for	one	kit,	the	list	of	kits	will	not
appear	here.

What	if	you	want	to	use	another	kit	or	change	how	exactly	the
project	is	built?	As	mentioned	earlier,	this	is	done	in	the	Projects

mode.	If	you	go	to	this	mode	by	pressing	the	Projects	button	on	the
left	panel,	Qt	Creator	will	display	the	current	build	configuration,	as
shown	in	the	following	screenshot:

The	left	part	of	this	window	contains	a	list	of	all	kits.	Kits	that	are
not	configured	to	be	used	with	this	project	are	displayed	in	gray
color.	You	can	click	on	them	to	enable	the	kit	for	the	current
project.	To	disable	a	kit,	choose	the	Disable	Kit	option	in	its	context
menu.

Under	each	enabled	kit,	there	are	two	sections	of	the	configuration.
The	Build	section	contains	settings	related	to	building	the	project:

Shadow	build	is	a	build	mode	that	places	all	temporary	build

files	in	a	separate	build	directory.	This	allows	you	to	keep

the	source	directory	clean	and	makes	your	source	files	easier

to	track	(especially	if	you	use	a	version	control	system).	This

mode	is	enabled	by	default.

Build	directory	is	the	location	of	temporary	build	files	(only

if	shadow	build	is	enabled).	Each	build	configuration	of	the

project	needs	a	separate	build	directory.

The	Build	steps	section	displays	commands	that	will	be	run

to	perform	the	actual	building	of	the	project.	You	can	edit

command-line	arguments	of	the	existing	steps	and	add

custom	build	steps.	By	default,	the	build	process	consists	of

two	steps:	qmake	(Qt's	project	management	tool	described	in

the	previous	chapter)	reads	the	project's	.pro	file	and

produces	a	makefile,	and	then	some	variation	of	make	tool

(depending	on	the	platform)	reads	the	makefile	and

executes	Qt's	special	compilers,	the	C++	compiler,	and	the

linker.	For	more	information	about	qmake,	look	up	the	qmake

Manual	in	the	documentation	index.

The	Build	environment	section	allows	you	to	view	and

change	environment	variables	that	will	be	available	to	the

build	tools.

Most	variations	of	the	make	tool	(including	mingw32-make)	accept	the	-j	num_cores	command-
line	argument	that	allows	make	to	spawn	multiple	compiler	processes	at	the	same	time.	It	is
highly	recommended	that	you	set	this	argument,	as	it	can	drastically	reduce	compilation
time	for	big	projects.	To	do	this,	click	on	Details	at	the	right	part	of	the	Make	build	step	and
input	-j	num_cores	to	the	Make	arguments	field	(replace	num_cores	with	the	actual	number
of	processor	cores	on	your	system).	However,	MSVC	nmake	does	not	support	this	feature.	To
fix	this	issue,	Qt	provides	a	replacement	tool	called	jom	that	supports	it.

There	can	be	multiple	build	configurations	for	each	kit.	By	default,
three	configurations	are	generated:	Debug	(required	for	the
debugger	to	work	properly),	Profile	(used	for	profiling),	and	Release
(the	build	with	more	optimizations	and	no	debug	information).

The	Run	section	determines	how	the	executable	produced	by	your
project	will	be	started.	Here,	you	can	change	your	program's
command-line	arguments,	working	directory,	and	environment
variables.	You	can	add	multiple	run	configurations	and	switch
between	them	using	the	same	button	that	allows	you	to	choose	the
current	kit	and	build	configuration.

In	most	cases	for	desktop	and	mobile	platforms,	the	binary	release	of	Qt	you	download
from	the	web	page	is	sufficient	for	all	your	needs.	However,	for	embedded	systems,
especially	for	ARM-based	systems,	there	is	no	binary	release	available,	or	it	is	too	heavy
resource	wise	for	such	a	lightweight	system.	Fortunately,	Qt	is	an	open	source	project,	so
you	can	always	build	it	from	sources.	Qt	allows	you	to	choose	the	modules	you	want	to	use
and	has	many	more	configuration	options.	For	more	information,	look	up	Building	Qt
Sources	in	the	documentation	index.

Summary
By	now,	you	should	be	able	to	install	Qt	on	your	development
machine.	You	can	now	use	Qt	Creator	to	browse	the	existing
examples	and	learn	from	them	or	to	read	the	Qt	reference	manual
to	gain	additional	knowledge.	You	should	have	a	basic
understanding	of	Qt	Creator's	main	controls.	In	the	next	chapter,
we	will	finally	start	using	the	framework,	and	you	will	learn	how	to
create	graphical	user	interfaces	by	implementing	our	very	first
simple	game.

Qt	GUI	Programming
This	chapter	will	help	you	learn	how	to	use	Qt	to	develop
applications	with	a	graphical	user	interface	using	the	Qt	Creator
IDE.	We	will	get	familiar	with	the	core	Qt	functionality,	widgets,
layouts,	and	the	signals	and	slots	mechanism	that	we	will	later	use
to	create	complex	systems	such	as	games.	We	will	also	cover	the
various	actions	and	resource	systems	of	Qt.	By	the	end	of	this
chapter,	you	will	be	able	to	write	your	own	programs	that
communicate	with	the	user	through	windows	and	widgets.

The	main	topics	covered	in	this	chapter	are	as	listed:

Windows	and	widgets

Creating	a	Qt	Widgets	project	and	implementing	a	tic-tac-

toe	game

Creating	widgets	with	or	without	the	visual	form	editor

Using	layouts	to	automatically	position	widgets

Creating	and	using	signals	and	slots

Using	the	Qt	resource	system

Creating	GUI	in	Qt
As	described	in	Chapter	1,	Introduction	to	Qt,	Qt	consists	of	multiple
modules.	In	this	chapter,	you	will	learn	how	to	use	the	Qt	Widgets
module.	It	allows	you	to	create	classic	desktop	applications.	The
user	interface	(UI)	of	these	applications	consists	of	widgets.

A	widget	is	a	fragment	of	the	UI	with	a	specific	look	and	behavior.
Qt	provides	a	lot	of	built-in	widgets	that	are	widely	used	in
applications:	labels,	text	boxes,	checkboxes,	buttons,	and	so	on.
Each	of	these	widgets	is	represented	as	an	instance	of	a	C++	class
derived	from	QWidget	and	provides	methods	for	reading	and	writing
the	widget's	content.	You	may	also	create	your	own	widgets	with
custom	content	and	behavior.

The	base	class	of	QWidget	is	QObject—the	most	important	Qt	class	that
contains	multiple	useful	features.	In	particular,	it	implements
parent–child	relationships	between	objects,	allowing	you	to
organize	a	collection	of	objects	in	your	program.	Each	object	can
have	a	parent	object	and	an	arbitrary	number	of	children.	Making	a
parent–child	relationship	between	two	objects	has	multiple
consequences.	When	an	object	is	deleted,	all	its	children	will	be
automatically	deleted	as	well.	For	widgets,	there	is	also	a	rule	that	a
child	occupies	an	area	within	the	boundaries	of	its	parent.	For
example,	a	typical	form	includes	multiple	labels,	input	fields,	and
buttons.	Each	of	the	form's	elements	is	a	widget,	and	the	form	is
their	parent	widget.

Each	widget	has	a	separate	coordinate	system	that	is	used	for
painting	and	event	handling	within	the	widget.	By	default,	the
origin	of	this	coordinate	system	is	placed	in	its	top-left	corner.	The
child's	coordinate	system	is	relative	to	its	parent.

Any	widget	that	is	not	included	into	another	widget	(that	is,
any	top-level	widget)	becomes	a	window,	and	the	desktop	operating
system	will	provide	it	with	a	window	frame,	which	usually	usually
allows	the	user	to	drag	around,	resize,	and	close	the	window
(although	the	presence	and	content	of	the	window	frame	can	be
configured).

Time	for	action	–	Creating	a	Qt
Widgets	project
The	first	step	to	develop	an	application	with	Qt	Creator	is	to	create	a
project	using	one	of	the	templates	provided	by	the	IDE.

From	the	File	menu	of	Qt	Creator,	choose	New	File	or	Project.
There	are	a	number	of	project	types	to	choose	from.	Follow	the
given	steps	for	creating	a	Qt	Desktop	project:

1.	 For	a	widget-based	application,	choose	the	Application

group	and	the	Qt	Widgets	Application	template,	as	shown	in

the	following	screenshot:

2.	 The	next	step	is	to	choose	a	name	and	location	for	your	new

project:

3.	 We	will	create	a	simple	tic-tac-toe	game,	so	we	will	name

our	project	tictactoe	and	provide	a	nice	location	for	it.

If	you	have	a	common	directory	where	you	put	all	your	projects,	you	can	tick	the	Use	as
default	project	location	checkbox	for	Qt	Creator	to	remember	the	location	and	suggest	it
the	next	time	you	start	a	new	project.

4.	 Next,	you	need	to	select	the	kit	(or	multiple	kits)	you	want	to

use	with	the	project.	Select	the	Desktop	Qt	kit	corresponding

to	the	Qt	version	you	want	to	use:

5.	 Now	you	will	be	presented	with	the	option	of	creating	the

first	widget	for	your	project.	We	want	to	create	a	widget	that

will	represent	the	main	window	of	our	application,	so	we	can

leave	the	Class	name	and	Base	class	fields	unchanged.	We

also	want	to	use	the	visual	form	editor	to	edit	the	content	of

the	main	window,	so	Generate	form	should	also	be	left

checked:

6.	 Then,	click	on	Next	and	Finish.

What	just	happened?
Creator	created	a	new	subdirectory	in	the	directory	that	you
previously	chose	for	the	location	of	the	project.	This	new	directory
(the	project	directory)	now	contains	a	number	of	files.	You	can
use	the	Projects	pane	of	Qt	Creator	to	list	and	open	these	files	(refer
to	Chapter	2,	Installation,	for	an	explanation	of	Qt	Creator's	basic
controls).	Let's	go	through	these	files.

The	main.cpp	file	contains	an	implementation	of	the	main()	function,
the	entry	point	of	the	application,	as	the	following	code	shows:

#include	"mainwindow.h"

#include	<QApplication>

int	main(int	argc,	char	*argv[])

{

				QApplication	a(argc,	argv);

				MainWindow	w;

				w.show();

				return	a.exec();

}

The	main()	function	creates	an	instance	of	the	QApplication	class	and
feeds	it	with	variables	containing	the	command-line	arguments.
Then,	it	instantiates	our	MainWindow	class,	calls	its	show	method,	and
finally,	returns	a	value	returned	by	the	exec	method	of	the
application	object.

QApplication	is	a	singleton	class	that	manages	the	whole	application.
In	particular,	it	is	responsible	for	processing	events	that	come	from
within	the	application	or	from	external	sources.	For	events	to	be
processed,	an	event	loop	needs	to	be	running.	The	loop	waits	for
incoming	events	and	dispatches	them	to	proper	routines.	Most
things	in	Qt	are	done	through	events:	input	handling,	redrawing,

receiving	data	over	the	network,	triggering	timers,	and	so	on.	This	is
the	reason	we	say	that	Qt	is	an	event-oriented	framework.	Without
an	active	event	loop,	the	event	handling	would	not	function
properly.	The	exec()	call	in	QApplication	(or,	to	be	more	specific,	in	its
base	class—QCoreApplication)	is	responsible	for	entering	the	main	event
loop	of	the	application.	The	function	does	not	return	until	your
application	requests	the	event	loop	to	be	terminated.	When	that
eventually	happens,	the	main	function	returns	and	your	application
ends.

The	mainwindow.h	and	the	mainwindow.cpp	files	implement	the	MainWindow
class.	For	now,	there	is	almost	no	code	in	it.	The	class	is	derived
from	QMainWindow	(which,	in	turn,	is	derived	from	QWidget),	so	it	inherits
a	lot	of	methods	and	behavior	from	its	base	class.	It	also	contains	a
Ui::MainWindow	*ui	field,	which	is	initialized	in	the	constructor	and
deleted	in	the	destructor.	The	constructor	also	calls	the	ui-
>setupUi(this);	function.

Ui::MainWindow	is	an	automatically	generated	class,	so	there	is	no
declaration	of	it	in	the	source	code.	It	will	be	created	in	the	build
directory	when	the	project	is	built.	The	purpose	of	this	class	is	to	set
up	our	widget	and	fill	it	with	content	based	on	changes	in	the	form
editor.	The	automatically	generated	class	is	not	a	QWidget.	In	fact,	it
contains	only	two	methods:	setupUi,	which	performs	the	initial	setup,
and	retranslateUi,	which	updates	visible	text	when	the	UI	language	is
changed.	All	widgets	and	other	objects	added	in	the	form	editor	are
available	as	public	fields	of	the	Ui::MainWindow	class,	so	we	can	access
them	from	within	the	MainWindow	method	as	ui->objectName.

mainwindow.ui	is	a	form	file	that	can	be	edited	in	the	visual	form	editor.
If	you	open	it	in	Qt	Creator	by	double-clicking	on	it	in	the	Projects
pane,	Qt	Creator	will	switch	to	the	Design	mode.	If	you	switch	back
to	the	Edit	mode,	you	will	see	that	this	file	is	actually	an	XML	file
containing	the	hierarchy	and	properties	of	all	objects	edited	in
Design	mode.	During	the	building	of	the	project,	a	special	tool
called	the	User	Interface	Compiler	converts	this	XML	file	to	the
implementation	of	the	Ui::MainWindow	class	used	in	the	MainWindow	class.

Note	that	you	don't	need	to	edit	the	XML	file	by	hand	or	edit	any	code	in	the	Ui::MainWindow
class.	Making	changes	in	the	visual	editor	is	enough	to	apply	them	to	your	MainWindow	class
and	make	the	form's	objects	available	to	it.

The	final	file	that	was	generated	is	called	tictactoe.pro	and	is	the
project	configuration	file.	It	contains	all	the	information	that	is
required	to	build	your	project	using	the	tools	that	Qt	provides.	Let's
analyze	this	file	(less	important	directives	are	omitted):

QT	+=	core	gui

greaterThan(QT_MAJOR_VERSION,	4):	QT	+=	widgets

TARGET	=	tictactoe

TEMPLATE	=	app

SOURCES	+=	main.cpp	mainwindow.cpp

HEADERS	+=	mainwindow.h

FORMS			+=	mainwindow.ui

The	first	two	lines	enable	Qt's	core,	gui,	and	widgets	modules.	The
TEMPLATE	variable	is	used	to	specify	that	your	project	file	describes	an
application	(as	opposed	to,	for	example,	a	library).	The	TARGET
variable	contains	the	name	of	the	produced	executable	(tictactoe).
The	last	three	lines	list	all	files	that	should	be	used	to	build	the
project.

In	fact,	qmake	enables	Qt	Core	and	Qt	GUI	modules	by	default,	even	if	you	don't	specify	them
explicitly	in	the	project	file.	You	can	opt	out	of	using	a	default	module	if	you	want.	For
example,	you	can	disable	Qt	GUI	by	adding	QT	-=	gui	to	the	project	file.

Before	we	proceed,	let's	tell	the	build	system	that	we	want	to	use
C++11	features	(such	as	lambda	expressions,	scoped	enumerations,
and	range-based	for	loops)	in	our	project	by	adding	the	following
line	to	tictactoe.pro:

CONFIG	+=	c++11

If	we	do	this,	the	C++	compiler	will	receive	a	flag	indicating	that
C++11	support	should	be	enabled.	This	may	not	be	needed	if	your
compiler	has	C++11	support	enabled	by	default.	If	you	wish	to	use
C++14	instead,	use	CONFIG	+=	c++14.

What	we	have	now	is	a	complete	Qt	Widgets	project.	To	build	and
run	it,	simply	choose	the	Run	entry	from	the	Build	drop-down
menu	or	click	on	the	green	triangle	icon	on	the	left-hand	side	of	the
Qt	Creator	window.	After	a	while,	you	should	see	a	window	pop	up.
Since	we	didn't	add	anything	to	the	window,	it	is	blank:

Design	mode	interface
Open	the	mainwindow.ui	file	and	examine	Qt	Creator's	Design	mode:

The	Design	mode	consists	of	five	major	parts	(they	are	marked	on
this	screenshot):

The	central	area	(1)	is	the	main	worksheet.	It	contains	a

graphical	representation	of	the	form	being	designed	where

you	can	move	widgets	around,	compose	them	into	layouts,

and	see	how	they	react.	It	also	allows	further	manipulation

of	the	form	using	the	point-and-click	method	that	we	will

learn	later.

The	toolbox	(2)	is	located	in	the	left	part	of	the	window.	It

contains	a	list	of	available	types	of	widget	that	are	arranged

into	groups	containing	items	with	a	related	or	similar

functionality.	Over	the	list,	you	can	see	a	box	that	lets	you

filter	widgets	that	are	displayed	in	the	list	to	show	only	those

that	match	the	entered	expression.	At	the	beginning	of	the

list,	there	are	also	items	that	are	not	really	widgets—one

group	contains	layouts,	and	the	other	one	contains	so-called

spacers,	which	are	a	way	to	push	other	items	away	from	each

other	or	create	an	empty	space	in	layouts.	The	main	purpose

of	the	toolbox	is	to	add	items	to	the	form	in	the	worksheet.

You	can	do	that	by	grabbing	a	widget	from	the	list	with	the

mouse,	dragging	it	to	the	widget	in	the	central	area,	and

releasing	the	mouse	button.

The	two	tabs	(3)	in	the	lower	part	of	the	window—Action

Editor	and	Signal/Slot	Editor—allow	us	to	create	helper

entities	such	as	actions	for	the	menus	and	toolbars	or	signal-

slot	connections	between	widgets.

The	object	tree	(4)	is	situated	in	the	top-right	corner	and

contains	the	hierarchy	tree	of	the	form's	items.	The	object

name	and	class	name	of	each	item	added	to	the	form	is

displayed	in	the	tree.	The	topmost	item	corresponds	to	the

form	itself.	You	can	use	both	the	central	area	and	the	object

tree	to	select	the	existing	items	and	access	their	context

menu	(for	example,	if	you	want	to	delete	an	item,	you	can

select	the	Remove...	option	in	the	context	menu).

The	property	editor	(5)	is	located	in	the	bottom-right

corner.	It	allows	you	to	view	and	change	the	values	of	all	the

properties	of	the	item	currently	selected	in	the	central	area

and	the	object	tree.	Properties	are	grouped	by	their	classes

that	they	have	been	declared	in,	starting	from	QObject	(the

base	class	implementing	properties),	which	declares	only

one,	but	an	important,	property—objectName.	Following	QObject,

there	are	properties	declared	in	QWidget,	which	is	a	direct

descendant	of	QObject.	They	are	mainly	related	to	the

geometry	and	layout	policies	of	the	widget.	Further	down

the	list,	you	can	find	properties	that	come	from	further

derivations	of	QWidget,	down	to	the	concrete	class	of	the

selected	widget.	The	Filter	field	above	the	properties	can

help	you	find	the	needed	property	quickly.

Taking	a	closer	look	at	the	property	editor,	you	can	see	that	some	of
them	have	 	arrows,	which	reveal	new	rows	when	clicked.	These	are
composed	properties	where	the	complete	property	value	is
determined	from	more	than	one	subproperty	value;	for	example,	if
there	is	a	property	called	geometry	that	defines	a	rectangle,	it	can	be
expanded	to	show	four	subproperties:	x,	y,	width,	and	height.	Another
thing	that	you	may	quickly	note	is	that	some	property	names	are
displayed	in	bold.	This	means	that	the	property	value	was	modified
and	is	different	from	the	default	value	for	this	property.	This	lets

you	quickly	find	the	properties	that	you	have	modified.

If	you	changed	a	property's	value	but	decided	to	stick	to	the	default	value	later,	you	should
click	on	the	corresponding	input	field	and	then	click	on	the	small	button	with	an	arrow	to

its	right:	 .	This	is	not	the	same	as	setting	the	original	value	by	hand.	For	example,	if	you
examine	the	
spacing	property	of	some	layouts,	it	would	appear	as	if	it	had	some	constant	default	value
for	(example,	6).	However,	the	actual	default	value	depends	on	the	style	the	application
uses	and	may	be	different	on	a	different	operating	system,	so	the	only	way	to	set	the
default	value	is	to	use	the	dedicated	button	and	ensure	that	the	property	is	not	displayed	in
bold	anymore.

If	you	prefer	a	purely	alphabetical	order	where	properties	are	not
grouped	by	their	class,	you	can	switch	the	view	using	a	pop-up
menu	that	becomes	available	after	you	click	on	the	wrench	icon
positioned	over	the	property	list;	however,	once	you	get	familiar
with	the	hierarchy	of	Qt	classes,	it	will	be	much	easier	to	navigate
the	list	when	it	is	sorted	by	class	affinity.

What	was	described	here	is	the	basic	tool	layout.	If	you	don't	like	it,
you	can	invoke	the	context	menu	from	the	main	worksheet,
uncheck	the	Automatically	Hide	View	Title	Bars	entry,	and	use	the
title	bars	that	appear	to	re-arrange	all	the	panes	to	your	liking,	or
even	close	the	ones	you	don't	currently	need.

Now	that	you	are	familiar	with	the	structure	of	the	visual	form
editor,	you	can	finally	add	some	content	to	our	widget.	We	are
making	a	tic-tac-toe	game	with	local	multiplayer,	so	we	need	some
way	of	displaying	which	of	the	two	players	currently	moves.	Let's
put	the	game	board	in	the	center	of	the	window	and	display	the
names	of	the	players	above	and	below	the	board.	When	a	player
needs	to	move,	we	will	make	the	corresponding	name's	font	bold.
We	also	need	a	button	that	will	start	a	new	game.

Time	for	action	–	Adding
widgets	to	the	form
Locate	the	Label	item	in	the	toolbox	(it's	in	the	Display	Widgets
category)	and	drag	it	to	our	form.	Use	the	property	editor	to	set
the	objectName	property	of	the	label	to	player1Name.	objectName	is	a	unique
identifier	of	a	form	item.	The	object	name	is	used	as	the	name	of	the
public	field	in	the	Ui::MainWindow	class,	so	the	label	will	be	available	as
ui->player1Name	in	the	MainWindow	class	(and	will	have	a	QLabel	*	type).
Then,	locate	the	text	property	in	the	property	editor	(it	will	be	in
the	QLabel	group,	as	it	is	the	class	that	introduces	the	property)	and
set	it	to	Player	1.	You	will	see	that	the	text	in	the	central	area	will	be
updated	accordingly.	Add	another	label,	set	its	objectName	to	player2Name
and	its	text	to	Player	2.

You	can	select	a	widget	in	the	central	area	and	press	the	F2	key	to	edit	the	text	in	place.
Another	way	is	to	double-click	on	the	widget	in	the	form.	It	works	for	any	widget	that	can
display	text.

Drag	a	Push	Button	(from	the	Buttons	group)	to	the	form	and	use
the	F2	key	to	rename	it	to	Start	new	game.	If	the	name	does	not	fit	in
the	button,	you	can	resize	it	using	the	blue	rectangles	on	its	edges.
Set	the	objectName	of	the	button	to	startNewGame.

There	is	no	built-in	widget	for	our	game	board,	so	we	will	need	to
create	a	custom	widget	for	it	later.	For	now,	we	will	use	an	empty
widget.	Locate	Widget	in	the	Containers	group	of	the	toolbox	and
drag	it	to	the	form.	Set	its	objectName	to	gameBoard:

Layouts
If	you	build	and	run	the	project	now,	you	will	see	the	window	with
two	labels	and	a	button,	but	they	will	remain	in	the	exact	positions
you	left	them.	This	is	what	you	almost	never	want.	Usually,	it	is
desired	that	widgets	are	automatically	resized	based	on	their
content	and	the	size	of	their	neighbors.	They	need	to	adjust	to	the
changes	of	the	window's	size	(or,	in	contrast,	the	window	size	may
need	to	be	restricted	based	on	possible	sizes	of	the	widgets	inside	of
it).	This	is	a	very	important	feature	for	a	cross-platform	application,
as	you	cannot	assume	any	particular	screen	resolution	or	size	of
controls.	In	Qt,	all	of	this	requires	us	to	use	a	special	mechanism
called	layouts.

Layouts	allow	us	to	arrange	the	content	of	a	widget,	ensuring	that
its	space	is	used	efficiently.	When	we	set	a	layout	on	a	widget,	we
can	start	adding	widgets,	and	even	other	layouts,	and	the
mechanism	will	resize	and	reposition	them	according	to	the	rules
that	we	specify.	When	something	happens	in	the	user	interface	that
influences	how	widgets	should	be	displayed	(for	example,	the	label
text	is	replaced	with	longer	text,	which	makes	the	label	require
more	space	to	show	its	content),	the	layout	is	triggered	again,	which
recalculates	all	positions	and	sizes	and	updates	widgets,	as
necessary.

Qt	comes	with	a	predefined	set	of	layouts	that	are	derived	from	the
QLayout	class,	but	you	can	also	create	your	own.	The	ones	that	we
already	have	at	our	disposal	are	QHBoxLayout	and	QVBoxLayout,	which
position	items	horizontally	and	vertically;	QGridLayout,	which	arranges
items	in	a	grid	so	that	an	item	can	span	across	columns	or	rows;
and	QFormLayout,	which	creates	two	columns	of	items	with	item
descriptions	in	one	column	and	item	content	in	the	other.	There	is
also	QStackedLayout,	which	is	rarely	used	directly	and	which	makes	one

of	the	items	assigned	to	it	possess	all	the	available	space.	You	can
see	the	most	common	layouts	in	action	in	the	following	figure:

Time	for	action	–	Adding	a
layout	to	the	form
Select	the	MainWindow	top-level	item	in	the	object	tree	and	click

on	 	,	the	Lay	Out	Vertically	icon	in	the	upper	toolbar.	The
button,	labels,	and	the	empty	widget	will	be	automatically	resized	to
take	all	the	available	space	of	the	form	in	the	central	area:

If	the	items	were	arranged	in	a	different	order,	you	can	drag	and
drop	them	to	change	the	order.

Run	the	application	and	check	that	the	window's	contents	are
automatically	positioned	and	resized	to	use	all	the	available	space
when	the	window	is	resized.	Unfortunately,	the	labels	take	more
vertical	space	than	they	really	require,	resulting	in	an	empty	space
in	the	application	window.	We	will	fix	this	issue	later	in	this	chapter
when	we	learn	about	size	policies.

You	can	test	the	layouts	of	your	form	without	building	and	running	the	whole	application.
Open	the	Tools	menu,	go	to	the	Form	Editor	submenu,	and	choose	the	Preview	entry.	You
will	see	a	new	window	open	that	looks	exactly	like	the	form	we	just	designed.	You	can
resize	the	window	and	interact	with	the	objects	inside	to	monitor	the	behavior	of	the
layouts	and	widgets.	What	really	happened	here	is	that	Qt	Creator	built	a	real	window	for
us	based	on	the	description	that	we	provided	in	all	the	areas	of	the	design	mode.	Without
any	compilation,	in	a	blink	of	an	eye,	we	received	a	fully	working	window	with	all	the
layouts	working	and	all	the	properties	adjusted	to	our	liking.	This	is	a	very	important	tool,
so	ensure	that	you	use	it	often	to	verify	that	your	layouts	are	controlling	all	the	widgets	as
you	intended	them	to—it	is	much	faster	than	compiling	and	running	the	whole	application
just	to	check	whether	the	widgets	stretch	or	squeeze	properly.	You	can	also	resize	the	form
in	the	central	area	of	the	form	editor	by	dragging	its	bottom-right	corner,	and	if	the
layouts	are	set	up	correctly,	the	contents	should	be	resized	and	repositioned.

Now	that	you	can	create	and	display	a	form,	two	important
operations	need	to	be	implemented.	First,	you	need	to	receive
notifications	when	the	user	interacts	with	your	form	(for	example,
presses	a	button)	to	perform	some	actions	in	the	code.	Second,	you
need	to	change	the	properties	of	the	form's	contents
programmatically,	and	fill	it	with	real	data	(for	example,	set	player
names	from	the	code).

Signals	and	slots
To	trigger	functionality	as	a	response	to	something	that	happens	in
an	application,	Qt	uses	a	mechanism	of	signals	and	slots.	This	is
another	important	feature	of	the	QObject	class.	It's	based	on
connecting	a	notification	(which	Qt	calls	a	signal)	about	a	change
of	state	in	some	object	with	a	function	or	method	(called	a	slot)
that	is	executed	when	such	a	notification	arises.	For	example,	if	a
button	is	pressed,	it	emits	(sends)	a	clicked()	signal.	If	some	method
is	connected	to	this	signal,	the	method	will	be	called	whenever	the
button	is	pressed.

Signals	can	have	arguments	that	serve	as	a	payload.	For	example,
an	input	box	widget	(QLineEdit)	has	a	textEdited(const	QString	&text)	signal
that's	emitted	when	the	user	edits	the	text	in	the	input	box.	A	slot
connected	to	this	signal	will	receive	the	new	text	in	the	input	box	as
its	argument	(provided	it	has	an	argument).

Signals	and	slots	can	be	used	with	all	classes	that
inherit	QObject	(including	all	widgets).	A	signal	can	be	connected	to	a
slot,	member	function,	or	functor	(which	includes	a	regular	global
function).	When	an	object	emits	a	signal,	any	of	these	entities	that
are	connected	to	that	signal	will	be	called.	A	signal	can	also	be
connected	to	another	signal,	in	which	case	emitting	the	first	signal
will	make	the	other	signal	be	emitted	as	well.	You	can	connect	any
number	of	slots	to	a	single	signal	and	any	number	of	signals	to	a
single	slot.

Creating	signals	and	slots
If	you	create	a	QObject	subclass	(or	a	QWidget	subclass,	as	QWidget
inherits	QObject),	you	can	mark	a	method	of	this	class	as	a	signal	or
a	slot.	If	the	parent	class	had	any	signals	or	non-private	slots,	your
class	will	also	inherit	them.

In	order	for	signals	and	slots	to	work	properly,	the	class	declaration
must	contain	the	Q_OBJECT	macro	in	a	private	section	of	its	definition
(Qt	Creator	has	generated	it	for	us).	When	the	project	is	built,	a
special	tool	called	Meta-Object	Compiler	(moc)	will	examine
the	class's	header	and	generate	some	extra	code	necessary	for
signals	and	slots	to	work	properly.

Keep	in	mind	that	moc	and	all	other	Qt	build	tools	do	not	edit	the	project	files.	Your	C++
files	are	passed	to	the	compiler	without	any	changes.	All	special	effects	are	achieved	by
generating	separate	C++	files	and	adding	them	to	the	compilation	process.

A	signal	can	be	created	by	declaring	a	class	method	in
the	signals	section	of	the	class	declaration:

signals:

				void	valueChanged(int	newValue);

However,	we	don't	implement	such	a	method;	this	will	be	done
automatically	by	moc.	We	can	send	(emit)	the	signal	by	calling	the
method.	There	is	a	convention	that	a	signal	call	should	be	preceded
by	the	emit	macro.		This	macro	has	no	effect	(it's	actually	a	blank
macro),	but	it	helps	us	clarify	our	intent	to	emit	the	signal:

void	MyClass::setValue(int	newValue)	{

				m_value	=	newValue;

				emit	valueChanged(newValue);

}

You	should	only	emit	signals	from	within	the	class	methods,	as	if	it
were	a	protected	function.

Slots	are	class	methods	declared	in	the	private	slots,	protected	slots,
or	public	slots	section	of	the	class	declaration.	Contrary	to	signals,
slots	need	to	be	implemented.	Qt	will	call	the	slot	when	a	signal
connected	to	it	is	emitted.	The	visibility	of	the	slot	(private,
protected,	or	public)	should	be	chosen	using	the	same	principles	as
for	normal	methods.

The	C++	standard	only	describes	three	types	of	sections	of	the	class	definition
(private,	protected,	and	public),	so	you	may	wonder	how	these	special	sections	work.	They
are	actually	simple	macros:	the	signals	
macro	expands	to	public,	and	slots	is	a	blank	macro.	So,	the	compiler	treats	them	as
normal	methods.	These	keywords	are,	however,	used	by	moc	to	determine	how	to
generate	the	extra	code.

Connecting	signals	and	slots
Signals	and	slots	can	be	connected	and	disconnected	dynamically
using	the		QObject::connect()	and	QObject::disconnect()	functions.	A	regular,
signal-slot	connection	is	defined	by	the	following	four	attributes:

An	object	that	changes	its	state	(sender)

A	signal	in	the	sender	object

An	object	that	contains	the	function	to	be	called	(receiver)

A	slot	in	the	receiver

If	you	want	to	make	the	connection,	you	need	to	call
the	QObject::connect	function	and	pass	these	four	parameters	to	it.	For
example,	the	following	code	can	be	used	to	clear	the	input	box
whenever	the	button	is	clicked	on:

connect(button,			&QPushButton::clicked,

								lineEdit,	&QLineEdit::clear);

Signals	and	slots	in	this	code	are	specified	using	a	standard	C++
feature	called	pointers	to	member	functions.	Such	a	pointer
contains	the	name	of	the	class	and	the	name	of	the	method	(in	our
case,	signal	or	slot)	in	that	class.	Qt	Creator's	code	autocompletion
will	help	you	write	connect	statements.	In	particular,	if	you	press
Ctrl	+	Space	after	
connect(button,	&,	it	will	insert	the	name	of	the	class,	and	if	you	do	that
after	connect(button,	&QPushButton::,	it	will	suggest	one	of	the	available
signals	(in	another	context,	it	would	suggest	all	the	existing
methods	of	the	class).

Note	that	you	can't	set	the	arguments	of	signals	or	slots	when
making	a	connection.	Arguments	of	the	source	signal	are	always
determined	by	the	function	that	emits	the	signal.	Arguments	of	the
receiving	slot	(or	signal)	are	always	the	same	as	the	arguments	of
the	source	signal,	with	two	exceptions:

If	the	receiving	slot	or	signal	has	fewer	arguments	than	the

source	signal,	the	remaining	arguments	are	ignored.	For

example,	if	you	want	to	use	the		valueChanged(int)	signal	but

don't	care	about	the	passed	value,	you	can	connect	this

signal	to	a	slot	without	arguments.

If	the	types	of	the	corresponding	arguments	are	not	the

same,	but	an	implicit	conversion	between	them	exists,	that

conversion	is	performed.	This	means	that	you	can,	for

example,	connect	a	signal	carrying	a	double	value	with	a	slot

taking	an	int	parameter.

If	the	signal	and	the	slot	do	not	have	compatible	signatures,	you
will	get	a	compile-time	error.

An	existing	connection	is	automatically	destroyed	after	the	sender
or	the	receiver	objects	are	deleted.	Manual	disconnection	is	rarely
needed.	The	connect()	function	returns	a	connection	handle	that	can
be	passed	to	disconnect().	Alternatively,	you	can	call		disconnect()	with
the	same	arguments	the	connect()	was	called	with	to	undo	the
connection.

You	don't	always	need	to	declare	a	slot	to	perform	a	connection.	It's
possible	to	connect	a	signal	to	a	standalone	function:

connect(button,	&QPushButton::clicked,	someFunction);

The	function	can	also	be	a	lambda	expression,	in	which	case	it	is
possible	to	write	the	code	directly	in	the	connect	statement:

connect(pushButton,	&QPushButton::clicked,	[]()

{

				qDebug()	<<	"clicked!";

});

It	can	be	useful	if	you	want	to	invoke	a	slot	with	a	fixed	argument
value	that	can't	be	carried	by	a	signal	because	it	has	less	arguments.
A	solution	is	to	invoke	the	slot	from	a	lambda	function	(or	a
standalone	function):

connect(pushButton,	&QPushButton::clicked,	[label]()

{

				label->setText("button	was	clicked");

});

A	function	can	even	be	replaced	with	a	function	object	(functor).	To
do	this,	we	create	a	class,	for	which	we	overload	the	call	operator
that	is	compatible	with	the	signal	that	we	wish	to	connect	to,	as
shown	in	the	following	code	snippet:

class	Functor	{

public:

				Functor(const	QString	&name)	:	m_name(name)	{}

				void	operator()(bool	toggled)	const	{

								qDebug()	<<	m_name	<<	":	button	state	changed	to"	<<	toggled;

				}

private:

				QString	m_name;

};

int	main(int	argc,	char	*argv[])

{

				QApplication	a(argc,	argv);

				QPushButton	*button	=	new	QPushButton();

				button->setCheckable(true);

				QObject::connect(button,	&QPushButton::toggled,

																					Functor("my	functor"));

				button->show();

				return	a.exec();

}

This	is	often	a	nice	way	to	execute	a	slot	with	an	additional
parameter	that	is	not	carried	by	the	signal,	as	this	is	much	cleaner
than	using	a	lambda	expression.	However,	keep	in	mind	that
automatic	disconnection	will	not	happen	when	the	object
referenced	in	the	lambda	expression	or	the	functor	is	deleted.	This
can	lead	to	a	use-after-free	bug.

While	it	is	actually	possible	to	connect	a	signal	to	a	method	of	a	QObject-based	class	that	is
not	a	slot,	doing	this	is	not	recommended.	Declaring	the	method	as	a	slot	shows	your	intent
better.	Additionally,	methods	that	are	not	slots	are	not	available	to	Qt	at	runtime,	which	is
required	in	some	cases.

Old	connect	syntax
Before	Qt	5,	the	old	connect	syntax	was	the	only	option.	It	looks	as
follows:

connect(spinBox,	SIGNAL(valueChanged(int)),

								dial,				SLOT(setValue(int)));

This	statement	establishes	a	connection	between	the	signal	of
the	spinBox	object	called	valueChanged	that	carries	an	int	parameter	and
a	setValue	slot	in	the	dial	object	that	accepts	an	int	parameter.	It	is
forbidden	to	put	argument	names	or	values	in	a	
connect	statement.	Qt	Creator	is	usually	able	to	suggest	all	possible
inputs	in	this	context	if	you	press	Ctrl	+	Space	after	SIGNAL(or	SLOT(.

While	this	syntax	is	still	available,	we	discourage	its	wide	use,
because	it	has	the	following	drawbacks:

If	the	signal	or	the	slot	is	incorrectly	referenced	(for

example,	its	name	or	argument	types	are	incorrect)	or	if

argument	types	of	the	signals	and	the	slot	are	not

compatible,	there	will	be	no	compile-time	error,	only	a

runtime	warning.	The	new	syntax	approach	performs	all	the

necessary	checks	at	compile	time.

The	old	syntax	doesn't	support	casting	argument	values	to

another	type	(for	example,	connect	a	signal	carrying

a	double	value	with	a	slot	taking	an		int	parameter).

The	old	syntax	doesn't	support	connecting	a	signal	to	a

standalone	function,	a	lambda	expression,	or	a	functor.

The	old	syntax	also	uses	macros	and	may	look	unclear	to	developers
not	familiar	with	Qt.	It's	hard	to	say	which	syntax	is	easier	to	read
(the	old	syntax	displays	argument	types,	while	the	new	syntax
displays	the	class	name	instead).	However,	the	new	syntax	has	a	big
disadvantage	when	using	overloaded	signals	or	slots.	The	only	way
to	resolve	the	overloaded	function	type	is	to	use	an	explicit	cast:

connect(spinBox,

								static_cast<void	(QSpinBox::*)(int)>(&QSpinBox::valueChanged),

								...);

The	old	connect	syntax	includes	argument	types,	so	it	doesn't	have
this	issue.	In	this	case,	the	old	syntax	may	look	more	acceptable,	but
compile-time	checks	may	still	be	considered	more	valuable	than
shorter	code.	In	this	book,	we	prefer	the	new	syntax,	but	use	the	old
syntax	when	working	with	overloaded	methods	for	the	sake	of
clarity.

Signal	and	slot	access
specifiers
As	mentioned	earlier,	you	should	only	emit	signals	from	the	class
that	owns	it	or	from	its	subclasses.	However,	if	signals	were	really
protected	or	private,	you	would	not	be	able	to	connect	to	them	using
the	pointer-to-member	function	syntax.	To	make	such	connections
possible,	signals	are	made	public	functions.	This	means	that	the
compiler	won't	stop	you	from	calling	the	signal	from	outside.	If	you
want	to	prevent	such	calls,	you	can	declare	QPrivateSignal	as	the	last
argument	of	the	signal:

signals:

				void	valueChanged(int	value,	QPrivateSignal);

QPrivateSignal	is	a	private	struct	created	in	each	QObject	subclass	by	the
Q_OBJECT	macro,	so	you	can	only	create	QPrivateSignal	objects	in	the
current	class.

Slots	can	be	public,	protected,	or	private,	depending	on	how	you
want	to	restrict	access	to	them.	When	using	the	pointer	to	a
member	function	syntax	for	connection,	you	will	only	be	able	to
create	pointers	to	slots	if	you	have	access	to	them.	It's	also	correct	to
call	a	slot	directly	from	any	other	location	as	long	as	you	have	access
to	it.

That	being	said,	Qt	doesn't	really	support	restricting	access	to
signals	and	slots.	Regardless	of	how	a	signal	or	a	slot	is	declared,
you	can	always	access	it	using	the	old	connect	syntax.	You	can	also
call	any	signal	or	slot	using	the	QMetaObject::invokeMethod	method.	While
you	can	restrict	direct	C++	calls	to	reduce	the	possibility	of	errors,
keep	in	mind	that	the	users	of	your	API	still	can	access	any	signal	or

slot	if	they	really	want	to.

There	are	some	aspects	of	signals	and	slots	that	we	have	not	covered	here.	We	will	discuss
them	later	when	we	deal	with	multithreading	(Online	Chapter,	https://www.packtpub.com/si
tes/default/files/downloads/MiscellaneousandAdvancedConcepts.pdf).

https://www.packtpub.com/sites/default/files/downloads/MiscellaneousandAdvancedConcepts.pdf

Time	for	action	–	Receiving	the
button-click	signal	from	the
form
Open	the	mainwindow.h	file	and	create	a	private	slots	section	in	the	class
declaration,	then	declare	the	startNewGame()	private	slot,	as	shown	in
the	following	code:

class	MainWindow	:	public	QMainWindow

{

				Q_OBJECT

public:

				explicit	MainWindow(QWidget	*parent	=	nullptr);

				~MainWindow();

private	slots:

				void	startNewGame();

}

To	quickly	implement	a	freshly	declared	method,	we	can	ask	Qt
Creator	to	create	the	skeleton	code	for	us	by	positioning	the	text
cursor	at	the	method	declaration,	pressing		Alt	+	Enter	on	the
keyboard,	and	choosing	Add	definition	in	tictactoewidget.cpp	from
the	popup.

It	also	works	the	other	way	round.	You	can	write	the	method	body	first	and	then	position
the	cursor	on	the	method	signature,	press	Alt	+	Enter,	and	choose	Add	(...)
declaration	from	the	quick-fix	menu.	There	are	also	various	other	context-dependent	fixes
that	are	available	in	Creator.

Write	the	highlighted	code	in	the	implementation	of	this	method:

void	MainWindow::startNewGame()

{

				qDebug()	<<	"button	clicked!";

}

Add	#include	<QDebug>	to	the	top	section	of	the	mainwindow.cpp	file	to	make
the	qDebug()	macro	available.

Finally,	add	a	connect	statement	to	the	constructor	after	the	setupUi()
call:

ui->setupUi(this);

connect(ui->startNewGame,	&QPushButton::clicked,

								this,	&MainWindow::startNewGame);

Run	the	application	and	try	clicking	on	the	button.	The	button	clicked!
text	should	appear	in	the	Application	Output	pane	in	the	bottom
part	of	Qt	Creator's	window	(if	the	pane	isn't	activated,	use
the	Application	Output	button	in	the	bottom	panel	to	open	it):

What	just	happened?
We	created	a	new	private	slot	in	the	MainWindow	class	and	connected
the	clicked()	signal	of	the	Start	new	game	button	to	the	slot.	When
the	user	clicks	on	the	button,	Qt	will	call	our	slot,	and	the	code	we
wrote	inside	it	gets	executed.

Ensure	that	you	put	any	operations	with	the	form	elements	after	the	setupUi()		call.	This
function	creates	the	elements,	so	
ui->startNewGame	will	simply	be	uninitialized	before	setupUi()	is	called,	and	attempting	to
use	it	will	result	in	undefined	behavior.

qDebug()	<<	...	is	a	convenient	way	to	print	debug	information	to
the	stderr	(standard	error	output)	of	the	application	process.	It's
quite	similar	to	the	std::cerr	<<	...	method	available	in	the	standard
library,	but	it	separates	supplied	values	with	spaces	and	appends	a
new	line	at	the	end.

Putting	debug	outputs	everywhere	quickly	becomes	inconvenient.	Luckily,	Qt	Creator	has
powerful	integration	with	C++	debuggers,	so	you	can	use	Debug	mode	to	check	whether
some	particular	line	is	executing,	see	the	current	values	of	the	local	variables	at	that
location,	and	so	on.	For	example,	try	setting	a	break	point	at	the	line
containing	qDebug()	by	clicking	on	the	space	to	the	left	of	the	line	number	(a	red	circle
indicating	the	break	point	should	appear).	Click	on	the	Start	Debugging	button	(a	green
triangle	with	a	bug	at	the	bottom-left	corner	of	Qt	Creator),	wait	for	the	application	to
launch,	and	press	the	Start	new	game	button.	When	the	application	enters	the	break	point
location,	it	will	pause,	and	Qt	Creator's	window	will	be	brought	to	the	front.	The	yellow
arrow	over	the	break	point	circle	will	indicate	the	current	step	of	the	execution.	You	can	use
the	buttons	below	the	code	editor	to	continue	execution,	stop,	or	execute	the	process	in
steps.	Learning	to	use	the	debugger	becomes	very	important	when	developing
large	applications.	We	will	talk	more	about	using	the	debugger	later	(Online	Chapter,	https
://www.packtpub.com/sites/default/files/downloads/MiscellaneousandAdvancedConcepts.pdf).

https://www.packtpub.com/sites/default/files/downloads/MiscellaneousandAdvancedConcepts.pdf

Automatic	slot	connection	and
its	drawbacks
Qt	also	offers	an	easier	way	to	make	a	connection	between	signals	of
the	form's	elements	and	the	slots	of	the	class.	You	can	right-click	on
the	button	in	the	central	area	of	the	form	editor	and	select	the	Go	to
slot...	option.	You	will	be	prompted	to	select	one	of	the	signals
available	in	the	button's	class	(QPushButton).	After	you	select
the	clicked()	signal,	Qt	Creator	will	automatically	add	a
new	on_startNewGame_clicked	slot	to	our		MainWindow	class.

The	tricky	part	is	that	there	is	no	connect()	call	that	enforces	the
connection.	How	is	the	button's	signal	connected	to	this	slot,	then?
The	answer	is	Qt's	automatic	slot	connection	feature.	When	the
constructor	calls	the	ui->setupUi(this)	function,	it	creates	the	widgets
and	other	objects	in	the	form	and	then	calls
the	QMetaObject::connectSlotsByName	method.	This	method	looks	at	the	list
of	slots	existing	in	the	widget	class	(in	our	case,	MainWindow)	and
searches	for	ones	that	have	their	name	in	an	on_<object	name>_<signal
name>

pattern,	where	<object	name>	is	the	objectName	of	an	existing	child	widget
and	<signal	name>	is	the	name	of	one	of	this	widget's	signals.	In	our
case,	a	button	called	startNewGame	is	a	child	widget	of	our	widget,	and	it
has	a	clicked	signal,	so	this	signal	is	automatically	connected	to
an	on_startNewGame_clicked	slot.

While	this	is	a	really	convenient	feature,	it	has	many	drawbacks:

It	makes	your	application	harder	to	maintain.	If	you	rename

or	remove	the	form	element,	you	have	to	update	or	remove

the	slot	manually.	If	you	forget	to	do	that,	the	application

will	only	produce	a	warning	at	runtime	when	the	automatic

connection	fails.	In	a	large	application,	especially	when	not

all	forms	are	instantiated	at	the	start	of	the	application,

there	is	a	significant	risk	that	you	will	miss	the	warning	and

the	application	will	not	work	as	intended.

You	have	to	use	a	specific	name	for	the	slot	(for	example,	

on_startNewGame_clicked()	instead	of	a	clean-looking	startNewGame()).

Sometimes	you	want	to	connect	signals	from	multiple

objects	to	the	same	slot.	Automatic	slot	connection	doesn't

provide	a	way	to	do	this,	and	creating	multiple	slots	just	to

call	a	single	function	will	lead	to	unnecessary	code	bloat.

Automatic	slot	connection	has	a	runtime	cost,	because	it

needs	to	examine	the	available	children	and	slots	and	find

the	matching	ones,	but	it's	usually	insignificant	since	it	only

runs	when	the	form	object	is	created.

The	basic	approach	shown	in	the	previous	section	is	much	more
maintainable.	Making	an	explicit	connect()	call	with	pointers	to
member	functions	will	ensure	that	both	signal	and	slot	are	specified
properly.	If	you	rename	or	remove	the	button,	it	will	immediately
result	in	a	compilation	error	that	is	impossible	to	miss.	You	are	also
free	to	choose	a	meaningful	name	for	the	slot,	so	you	can	make	it
part	of	your	public	API,	if	desired.

Considering	all	this,	we	advise	against	using	the	automatic	slot
connection	feature,	as	the	convenience	does	not	outweigh	the
drawbacks.

Time	for	action	–	Changing	the
texts	on	the	labels	from	the
code
Printing	text	to	the	console	is	not	as	impressive	as	changing	the	text
in	our	form.	We	don't	have	GUI	for	letting	users	enter	their	names
yet,	so	we'll	hardcode	some	names	for	now.	Let's	change	the
implementation	of	our	slot	to	the	following:

void	MainWindow::startNewGame()

{

				ui->player1Name->setText(tr("Alice"));

				ui->player2Name->setText(tr("Bob"));

}

Now,	when	you	run	the	application	and	click	on	the	button,	the
labels	in	the	form	will	change.	Let's	break	down	this	code	into
pieces:

As	mentioned	earlier,	the	first	label's	object	is	accessible	in

our	class	as	ui->player1Name	and	has	the	QLabel	*	type.

We're	calling	the	setText	method	of	the	QLabel	class.	This	is	the

setter	of	the	text	property	of	QLabel	(the	same	property	that	we

edited	in	the	property	editor	of	the	Design	mode).	As	per

Qt's	naming	convention,	getters	should	have	the	same	name

as	the	property	itself,	and	setters	should	have	a	set	prefix,

followed	by	the	property	name.	You	can	set	the	text	cursor

on	setText	and	press	F1	to	learn	more	about	the	property	and

its	access	functions.

The	tr()	function	(which	is	short	for	"translate")	is	used	to

translate	the	text	to	the	current	UI	language	of	the

application.	We	will	describe	the	translation	infrastructure

of	Qt	in	Chapter	6,	Qt	Core	Essentials.	By	default,	this	function

returns	the	passed	string	unchanged,	but	it's	a	good	habit	to

wrap	any	and	all	string	literals	that	are	displayed	to	the	user

in	this	function.	Any	user-visible	text	that	you	enter	in	the

form	editor	is	also	subject	to	translation	and	is	passed

through	a	similar	function	automatically.	Only	strings	that

should	not	be	affected	by	translation	(for	example,	object

names	that	are	used	as	identifiers)	should	be	created

without	the	tr()	function.

Creating	a	widget	for	the	tic-
tac-toe	board
Let's	move	on	to	implementing	the	board.	It	should	contain	nine
buttons	that	can	display	"X"	or	"O"	and	allow	the	players	to	make
their	moves.	We	could	add	the	button	directly	to	the	empty	widget
of	our	form.	However,	the	behavior	of	the	board	is	fairly	separate
from	the	rest	of	the	form,	and	it	will	have	quite	a	bit	of	logic	inside.
Following	the	encapsulation	principle,	we	prefer	implementing	the
board	as	a	separate	widget	class.	Then,	we'll	replace	the	empty
widget	in	our	main	window	with	the	board	widget	we	created.

Choosing	between	designer
forms	and	plain	C++	classes
One	way	of	creating	a	custom	widget	is	by	adding	a	Designer	Form
Class	to	the	project.	Designer	Form	Class	is	a	template	provided	by
Qt	Creator.	It	consists	of	a	C++	class	that	inherits	QWidget	(directly	or
indirectly)	and	a	designer	form	(.ui	file),	tied	together	by	some
automatically	generated	code.	Our	MainWindow	class	also	follows	this
template.

However,	if	you	try	to	use	the	visual	form	editor	to	create	our	tic-
tac-toe	board,	you	may	find	it	quite	inconvenient	for	this	task.	One
problem	is	that	you	need	to	add	nine	identical	buttons	to	the	form
manually.	Another	issue	is	accessing	these	buttons	from	the	code
when	you	need	to	make	a	signal	connection	or	change	the	button's
text.	The	ui->objectName	approach	is	not	applicable	here	because	you
can	only	access	a	concrete	widget	this	way,	so	you'd	have	to	resort
to	other	means,	such	as	the	findChild()	method	that	allows	you	to
search	for	a	child	object	by	its	name.

In	this	case,	we	prefer	to	add	the	buttons	in	the	code,	where	we	can
make	a	loop,	set	up	each	button,	and	put	them	into	an	array	for	easy
addressing.	The	process	is	pretty	similar	to	how	the	designer	forms
operate,	but	we'll	do	it	by	hand.	Of	course,	anything	that	the	form
editor	can	do	is	accessible	through	the	API.

After	you	build	the	project,	you	can	hold	Ctrl	and	click	on	ui_mainwindow.h	at	the	beginning
of	mainwindow.cpp	to	see	the	code	that	actually	sets	up	our	main	window.	You	should	not	edit
this	file,	because	your	changes	will	not	be	persistent.

Time	for	action	–	Creating	a
game	board	widget
Locate	the	tictactoe	folder	in	the	project	tree	(it's	the	top-level	entry
corresponding	to	our	whole	project),	open	its	context	menu,	and
select	Add	New...	Select	C++	in	the	left	list	and	C++	Class	in	the
central	list.	Click	on	the	Choose	button,	input	TicTacToeWidget	in	the
Class	name	field,	and	select	QWidget	in	the	Base	class	drop-down
list.	Click	on	Next	and	Finish.	Qt	Creator	will	create	header	and
source	files	for	our	new	class	and	add	them	to	the	project.

Open	the	tictactoewidget.h	file	in	Creator	and	update	it	by	adding	the
highlighted	code:

#ifndef	TICTACTOEWIDGET_H

#define	TICTACTOEWIDGET_H

#include	<QWidget>

class	TicTacToeWidget	:	public	QWidget

{

				Q_OBJECT

public:

				TicTacToeWidget(QWidget	*parent	=	nullptr);

				~TicTacToeWidget();

private:

				QVector<QPushButton*>	m_board;

};

#endif	//	TICTACTOEWIDGET_H	

Our	additions	create	a	QVector	object	(a	container	similar	to
std::vector)	that	can	hold	pointers	to	instances	of	the	QPushButton	class,
which	is	the	most	commonly	used	button	class	in	Qt.	We	have	to
include	the	Qt	header	containing	the	QPushButton	declaration.	Qt
Creator	can	help	us	do	this	quickly.	Set	the	text	cursor	on	QPushButton,
press	Alt	+	Enter,	and	select	Add	#include	<QPushButton>.	The

include	directive	will	appear	at	the	beginning	of	the	file.	As	you	may
have	noted,	each	Qt	class	is	declared	in	the	header	file	that	is	called
exactly	the	same	as	the	class	itself.

From	now	on,	this	book	will	not	remind	you	about	adding	the	include	directives	to	your
source	code—you	will	have	to	take	care	of	this	by	yourself.	This	is	really	easy;	just
remember	that	to	use	a	Qt	class	you	need	to	include	a	file	named	after	that	class.

The	next	step	is	to	create	all	the	buttons	and	use	a	layout	to	manage
their	geometries.	Switch	to	the	tictactoewidget.cpp	file	and	locate	the
constructor.

You	can	use	the	F4	key	to	switch	between	the	corresponding	header	and	the	source	files.
You	can	also	use	the	F2	key	to	navigate	from	the	definition	of	a	method	to	its
implementation,	and	back.

First,	let's	create	a	layout	that	will	hold	our	buttons:

QGridLayout	*gridLayout	=	new	QGridLayout(this);

By	passing	the	this	pointer	to	the	layout's	constructor,	we	attached
the	layout	to	our	widget.	Then,	we	can	start	adding	buttons	to	the
layout:

for(int	row	=	0;	row	<	3;	++row)	{

				for(int	column	=	0;	column	<	3;	++column)	{

								QPushButton	*button	=	new	QPushButton("	");

								gridLayout->addWidget(button,	row,	column);

								m_board.append(button);

				}

}

The	code	creates	a	loop	over	rows	and	columns	of	the	board.	In
each	iteration,	it	creates	an	instance	of	the	QPushButton	class.	The
content	of	each	button	is	set	to	a	single	space	so	that	it	gets	the
correct	initial	size.	Then,	we	add	the	button	to	the	layout	in	row	and
column.	At	the	end,	we	store	the	pointer	to	the	button	in	the	vector
that	was	declared	earlier.	This	lets	us	reference	any	of	the	buttons
later	on.	They	are	stored	in	the	vector	in	such	an	order	that	the	first
three	buttons	of	the	first	row	are	stored	first,	then	the	buttons	from

the	second	row,	and	finally	those	from	the	last	row.

This	should	be	enough	for	testing	the	widget.	Let's	add	it	to	our
main	window.	Open	the	mainwindow.ui	file.	Invoke	the	context	menu	of
the	empty	widget	called	gameBoard	and	choose	Promote	to.	This	allows
us	to	promote	a	widget	to	another	class,	that	is,	substitute	a	widget
in	the	form	with	an	instance	of	another	class.

In	our	case,	we	will	want	to	replace	the	empty	widget	with	our	game
board.	Select	QWidget	in	the	Base	class	name	list,	because	our
TicTacToeWidget	is	inherited	from	QWidget.	Input	TicTacToeWidget	into	the
Promoted	class	name	field	and	verify	that	the	Header	file	field
contains	the	correct	name	of	the	class's	header	file,	as	illustrated:

Then,	click	on	the	button	labeled	Add	and	then	Promote,	to	close
the	dialog	and	confirm	the	promotion.	You	will	not	note	any
changes	in	the	form,	because	the	replacement	only	takes	place	at
runtime	(however,	you	will	see	the	TicTacToeWidget	class	name	next	to
gameBoard	in	the	object	tree).

Run	the	application	and	check	whether	the	game	board	appears	in
the	main	window:

What	just	happened?
Not	all	widget	types	are	directly	available	in	the	form	designer.
Sometimes,	we	need	to	use	widget	classes	that	will	only	be	created
in	the	project	that	is	being	built.	The	simplest	way	to	be	able	to	put
a	custom	widget	on	a	form	is	to	ask	the	designer	to	replace	the	class
name	of	a	standard	widget	with	a	custom	name.	By	promoting	an
object	to	a	different	class,	we	saved	a	lot	of	work	trying	to	otherwise
fit	our	game	board	into	the	user	interface.

You	are	now	familiar	with	two	ways	of	creating	custom	widgets:	you
can	use	the	form	editor	or	add	widgets	from	the	code.	Both
approaches	are	valuable.	When	creating	a	new	widget	class	in	your
project,	choose	the	most	convenient	way	depending	on	your	current
task.

Automatic	deletion	of	objects
You	might	have	noted	that	although	we	created	a	number	of	objects
in	the	constructor	using	the	new	operator,	we	didn't	destroy	those
objects	anywhere	(for	example,	in	the	destructor).	This	is	because	of
the	way	the	memory	is	managed	by	Qt.	Qt	doesn't	do	any	garbage
collecting	(as	C#	or	Java	does),	but	it	has	this	nice	feature	related	to
QObject	parent–child	hierarchies.	The	rule	is	that	whenever	a	QObject
instance	is	destroyed,	it	also	deletes	all	of	its	children.	This	is
another	reason	to	set	parents	to	the	objects	that	we	create—if	we	do
this,	we	don't	have	to	care	about	explicitly	freeing	any	memory.

Since	all	layouts	and	widgets	inside	our	top-level	widget	(an
instance	of	MainWindow	class)	are	its	direct	or	indirect	children,	they
will	all	be	deleted	when	the	main	window	is	destroyed.	The	MainWindow
object	is	created	in	the	main()	function	without	the	new	keyword,	so	it
will	be	deleted	at	the	end	of	the	application	after	a.exec()	returns.

When	working	with	widgets,	it's	pretty	easy	to	verify	that	every
object	has	a	proper	parent.	You	can	assume	that	anything	that	is
displayed	inside	the	window	is	a	direct	or	indirect	child	of	that
window.	However,	the	parent–child	relationship	becomes	less
apparent	when	working	with	invisible	objects,	so	you	should	always
check	that	each	object	has	a	proper	parent	and	therefore	will	be
deleted	at	some	point.	For	example,	in	our	TicTacToeWidget	class,
the	gridLayout	object	receives	its	parent	through	a	constructor
argument	(this).	The	button	objects	are	initially	created	without	a
parent,	but	the	addWidget()	function	assigns	a	parent	widget	to	them.

Time	for	action	–	Functionality
of	a	tic-tac-toe	board
We	need	to	implement	a	function	that	will	be	called	upon	by
clicking	on	any	of	the	nine	buttons	on	the	board.	It	has	to	change
the	text	of	the	button	that	was	clicked	on—either	"X"	or	"O"—based
on	which	player	made	the	move.	It	then	has	to	check	whether	the
move	resulted	in	the	game	being	won	by	the	player	(or	a	draw	if	no
more	moves	are	possible),	and	if	the	game	ended,	it	should	emit	an
appropriate	signal,	informing	the	environment	about	the	event.

When	the	user	clicks	on	a	button,	the	clicked()	signal	is	emitted.
Connecting	this	signal	to	a	custom	slot	lets	us	implement	the
mentioned	functionality,	but	since	the	signal	doesn't	carry	any
parameters,	how	do	we	tell	which	button	caused	the	slot	to	be
triggered?	We	could	connect	each	button	to	a	separate	slot,	but
that's	an	ugly	solution.	Fortunately,	there	are	two	ways	of	working
around	this	problem.	When	a	slot	is	invoked,	a	pointer	to	the	object
that	caused	the	signal	to	be	sent	is	accessible	through	a	special
method	in	QObject,	called	sender().	We	can	use	that	pointer	to	find	out
which	of	the	nine	buttons	stored	in	the	board	list	is	the	one	that
caused	the	signal	to	fire:

void	TicTacToeWidget::someSlot()	{

				QPushButton	*button	=	static_cast<QPushButton*>(sender());

				int	buttonIndex	=	m_board.indexOf(button);

				//	...

}

While	sender()	is	a	useful	call,	we	should	try	to	avoid	it	in	our	own
code	as	it	breaks	some	principles	of	object-oriented	programming.
Moreover,	there	are	situations	where	calling	this	function	is	not

safe.	A	better	way	is	to	use	a	dedicated	class	called	QSignalMapper,
which	lets	us	achieve	a	similar	result	without	using	sender()	directly.
Modify	the	constructor	of	TicTacToeWidget,	as	follows:

QGridLayout	*gridLayout	=	new	QGridLayout(this);

QSignalMapper	*mapper	=	new	QSignalMapper(this);

for(int	row	=	0;	row	<	3;	++row)	{

				for(int	column	=	0;	column	<	3;	++column)	{

								QPushButton	*button	=	new	QPushButton("	");

								gridLayout->addWidget(button,	row,	column);

								m_board.append(button);

								mapper->setMapping(button,	m_board.count()	-	1);

								connect(button,	SIGNAL(clicked()),	mapper,	SLOT(map()));

				}

}

connect(mapper,	SIGNAL(mapped(int)),

								this,			SLOT(handleButtonClick(int)));

Here,	we	first	created	an	instance	of	QSignalMapper	and	passed	a
pointer	to	the	board	widget	as	its	parent	so	that	the	mapper	is
deleted	when	the	widget	is	deleted.

Almost	all	subclasses	of	QObject	can	receive	a	pointer	to	the	parent	object	in	the
constructor.	In	fact,	our	MainWindow	and	TicTacToeWidget	classes	can	also	do	that,	thanks	to
the	code	Qt	Creator	generated	in	their	constructors.	Following	this	rule	in	custom	QObject-
based	classes	is	recommended.	While	the	parent	argument	is	often	optional,	it's	a	good	idea
to	pass	it	when	possible,	because	objects	will	be	automatically	deleted	when	the	parent	is
deleted.	However,	there	are	a	few	cases	where	this	is	redundant,	for	example,	when	you
add	a	widget	to	a	layout,	the	layout	will	automatically	set	the	parent	widget	for	it.

Then,	when	we	create	buttons,	we	"teach"	the	mapper	that	each	of
the	buttons	has	a	number	associated	with	it—the	first	button	will
have	the	number	0,	the	second	one	will	be	bound	to	the	number	1,
and	so	on.	By	connecting	the	clicked()	signal	from	the	button	to	the
mapper's	map()	slot,	we	tell	the	mapper	to	process	that	signal.	When
the	mapper	receives	the	signal	from	any	of	the	buttons,	it	will	find
the	mapping	of	the	sender	of	the	signal	and	emit	another	signal
—mapped()—with	the	mapped	number	as	its	parameter.	This	allows	us
to	connect	to	that	signal	with	a	new	slot	(handleButtonClick())	that	takes
the	index	of	the	button	in	the	board	list.

Before	we	create	and	implement	the	slot,	we	need	to	create	a	useful

enum	type	and	a	few	helper	methods.	First,	add	the	following	code
to	the	public	section	of	the	class	declaration	in	the	tictactoewidget.h
file:

enum	class	Player	{

				Invalid,	Player1,	Player2,	Draw

};

Q_ENUM(Player)

This	enum	lets	us	specify	information	about	players	in	the	game.
The	Q_ENUM	macro	will	make	Qt	recognize	the	enum	(for	example,	it
will	allow	you	to	pass	the	values	of	this	type	to	qDebug()	and	also	make
serialization	easier).	Generally,	it's	a	good	idea	to	use	Q_ENUM	for	any
enum	in	a	QObject-based	class.

We	can	use	the	Player	enum	immediately	to	mark	whose	move	it	is
now.	To	do	so,	add	a	private	field	to	the	class:

Player	m_currentPlayer;

Don't	forget	to	give	the	new	field	an	initial	value	in	the	constructor:

m_currentPlayer	=	Player::Invalid;

Then,	add	the	two	public	methods	to	manipulate	the	value	of	this
field:

Player	currentPlayer()	const	

{	

				return	m_currentPlayer;	

}

void	setCurrentPlayer(Player	p)

{

				if(m_currentPlayer	==	p)	{

								return;

				}

				m_currentPlayer	=	p;

				emit	currentPlayerChanged(p);

				emit	currentPlayerChanged(p);

}

The	last	method	emits	a	signal,	so	we	have	to	add	the	signal
declaration	to	the	class	definition	along	with	another	signal	that	we
will	use:

signals:

				void	currentPlayerChanged(Player);

				void	gameOver(Player);

We	only	emit	the	currentPlayerChanged	signal	when	the	current	player	really	changes.	You
always	have	to	pay	attention	that	you	don't	emit	a	"changed"	signal	when	you	set	a	value
to	a	field	to	the	same	value	that	it	had	before	the	function	was	called.	Users	of	your	classes
expect	that	if	a	signal	is	called	changed,	it	is	emitted	when	the	value	really	changes.
Otherwise,	this	can	lead	to	an	infinite	loop	in	signal	emissions	if	you	have	two	objects	that
connect	their	value	setters	to	the	other	object's	changed	signal.

Now	it	is	time	to	implement	the	slot	itself.	First,	declare	it	in	the
header	file:

private	slots:

				void	handleButtonClick(int	index);

Use		Alt	+	Enter	to	quickly	generate	a	definition	for	the	new
method,	as	we	did	earlier.

When	any	of	the	buttons	is	pressed,	the	handleButtonClick()	slot	will	be
called.	The	index	of	the	button	clicked	on	will	be	received	as	the
argument.	We	can	now	implement	the	slot	in	the	.cpp	file:

void	TicTacToeWidget::handleButtonClick(int	index)

{

				if	(m_currentPlayer	==	Player::Invalid)	{

								return;	//	game	is	not	started

				}

				if(index	<	0	||	index	>=	m_board.size())	{

								return;	//	out	of	bounds	check

				}

				QPushButton	*button	=	m_board[index];

				if(button->text()	!=	"	")	return;	//	invalid	move

				button->setText(currentPlayer()	==	Player::Player1	?	"X"	:	"O");

				Player	winner	=	checkWinCondition();

				Player	winner	=	checkWinCondition();

				if(winner	==	Player::Invalid)	{

								setCurrentPlayer(currentPlayer()	==	Player::Player1	?

																									Player::Player2	:	Player::Player1);

								return;

				}	else	{

								emit	gameOver(winner);

				}

}

Here,	we	first	retrieve	a	pointer	to	the	button	based	on	its	index.
Then,	we	check	whether	the	button	contains	an	empty	space—if	not,
then	it's	already	occupied,	so	we	return	from	the	method	so	that	the
player	can	pick	another	field	in	the	board.	Next,	we	set	the	current
player's	mark	on	the	button.	Then,	we	check	whether	the	player	has
won	the	game.	If	the	game	didn't	end,	we	switch	the	current	player
and	return;	otherwise,	we	emit	a	gameOver()	signal,	telling	our
environment	who	won	the	game.	The	checkWinCondition()	method
returns	Player1,	Player2,	or	Draw	if	the	game	has	ended,	and	Invalid
otherwise.	We	will	not	show	the	implementation	of	this	method
here,	as	it	is	quite	lengthy.	Try	implementing	it	on	your	own,	and	if
you	encounter	problems,	you	can	see	the	solution	in	the	code
bundle	that	accompanies	this	book.

The	last	thing	we	need	to	do	in	this	class	is	to	add	another	public
method	for	starting	a	new	game.	It	will	clear	the	board	and	set	the
current	player:

void	TicTacToeWidget::initNewGame()	{

				for(QPushButton	*button:	m_board)	{

								button->setText("	");

				}

				setCurrentPlayer(Player::Player1);

}

Now	we	only	need	to	call	this	method	in
the	MainWindow::startNewGame	method:

void	MainWindow::startNewGame()

{

{

				ui->player1Name->setText(tr("Alice"));

				ui->player2Name->setText(tr("Bob"));

				ui->gameBoard->initNewGame();

}

Note	that	ui->gameBoard	actually	has	a	TicTacToeWidget	*	type,	and	we	can
call	its	methods	even	though	the	form	editor	doesn't	know	anything
specific	about	our	custom	class.	This	is	the	result	of	the	promoting
that	we	did	earlier.

It's	time	to	see	how	all	this	works	together!	Run	the	application,
click	on	the	Start	new	game	button,	and	you	should	be	able	to	play
some	tic-tac-toe.

Time	for	action	–	Reacting	to
the	game	board's	signals
While	writing	a	turn-based	board	game,	it	is	a	good	idea	to	always
clearly	mark	whose	turn	it	is	now	to	make	a	move.	We	will	do	this
by	marking	the	moving	player's	name	in	bold.	There	is	already	a
signal	in	the	board	class	that	tells	us	that	the	current	player	has
changed,	which	we	can	react	to	update	the	labels.

We	need	to	connect	the	board's	currentPlayerChanged	signal	to	a	new	slot
in	the	MainWindow	class.	Let's	add	appropriate	code	into	the	MainWindow
constructor:

ui->setupUi(this);

connect(ui->gameBoard,	&TicTacToeWidget::currentPlayerChanged,

								this,	&MainWindow::updateNameLabels);

Now,	for	the	slot	itself,	declare	the	following	methods	in
the	MainWindow	class:

private:

				void	setLabelBold(QLabel	*label,	bool	isBold);

private	slots:

				void	updateNameLabels();

Now	implement	them	using	the	following	code:

void	MainWindow::setLabelBold(QLabel	*label,	bool	isBold)

{

				QFont	f	=	label->font();

				f.setBold(isBold);

				label->setFont(f);

}

	

void	MainWindow::updateNameLabels()

{

				setLabelBold(ui->player1Name,

								ui->gameBoard->currentPlayer()	==	

												TicTacToeWidget::Player::Player1);

				setLabelBold(ui->player2Name,

								ui->gameBoard->currentPlayer()	==	

												TicTacToeWidget::Player::Player2);

}

What	just	happened?
QWidget	(and,	by	extension,	any	widget	class)	has	a	font	property	that
determines	the	properties	of	the	font	this	widget	uses.	This	property
has	the	QFont	type.	We	can't	just	write	label->font()->setBold(isBold);,
because	font()	returns	a	const	reference,	so	we	have	to	make	a	copy
of	the	QFont	object.	That	copy	has	no	connection	to	the	label,	so	we
need	to	call	label->setFont(f)	to	apply	our	changes.	To	avoid	repetition
of	this	procedure,	we	created	a	helper	function,	called	setLabelBold.

The	last	thing	that	needs	to	be	done	is	to	handle	the	situation	when
the	game	ends.	Connect	the	gameOver()	signal	from	the	board	to	a	new
slot	in	the	main	window	class.	Implement	the	slot	as	follows:

void	MainWindow::handleGameOver(TicTacToeWidget::Player	winner)	{

				QString	message;

				if(winner	==	TicTacToeWidget::Player::Draw)	{

								message	=	tr("Game	ended	with	a	draw.");

				}	else	{

								QString	winnerName	=	winner	==

TicTacToeWidget::Player::Player1	?

																				ui->player1Name->text()	:	ui->player2Name->text();

								message	=	tr("%1	wins").arg(winnerName);

				}

				QMessageBox::information(this,	tr("Info"),	message);

}

This	code	checks	who	won	the	game,	assembles	the	message	(we
will	learn	more	about	QString	in	Chapter	6,	Qt	Core	Essentials),	and
shows	it	using	a	static	method	QMessageBox::information()	that	shows	a
modal	dialog	containing	the	message	and	a	button	that	allows	us	to
close	the	dialog.

Run	the	game	and	check	that	it	now	highlights	the	current	player
and	shows	the	message	when	the	game	ends.

Advanced	form	editor	usage
Now	it's	time	to	give	the	players	a	way	to	input	their	names.	We	will
do	that	by	adding	a	game	configuration	dialog	that	will	appear	when
starting	a	new	game.

Time	for	action	–	Designing	the
game	configuration	dialog
First,	select	Add	New...	in	the	context	menu	of	the	tictactoe	project
and	choose	to	create	a	new	Qt	Designer	Form	Class,	as	shown	in	the
following	screenshot:

In	the	window	that	appears,	choose	Dialog	with	Buttons	Bottom:

Adjust	the	class	name	to	ConfigurationDialog,	leave	the	rest	of	the
settings	at	their	default	values,	and	complete	the	wizard.	The	files
that	appear	in	the	project	(.cpp,	.h,	and	.ui)	are	very	similar	to	the
files	generated	for	the	MainWindow	class	when	we	created	our	project.
The	only	difference	is	that	MainWindow	uses	QMainWindow	as	its	base	class,
and	ConfigurationDialog	uses	QDialog.	Also,	a	MainWindow	instance	is	created
in	the	main	function,	so	it	shows	when	the	application	is	started,

while	we'll	need	to	create	a	ConfigurationDialog	instance	somewhere	else
in	the	code.	QDialog	implements	behavior	that	is	common	for	dialogs;
in	addition	to	the	main	content,	it	displays	one	or	multiple	buttons.
When	the	dialog	is	selected,	the	user	can	interact	with	the	dialog
and	then	press	one	of	the	buttons.	After	this,	the	dialog	is	usually
destroyed.	QDialog	has	a	convenient	exec()	method	that	doesn't	return
until	the	user	makes	a	choice,	and	then	it	returns	information	about
the	pressed	button.	We	will	see	that	in	action	after	we	finish
creating	the	dialog.

Drag	and	drop	two	labels	and	two	line	edits	on	the	form,	position
them	roughly	in	a	grid,	double-click	on	each	of	the	labels,	and
adjust	their	captions	to	receive	a	result	similar	to	the	following:

Change	the	objectName	property	of	the	line	edits	to	player1Name	and
player2Name.	Then,	click	on	some	empty	space	in	the	form	and	choose
the	Layout	in	a	grid	entry	in	the	upper	toolbar.	You	should	see	the
widgets	snap	into	place—that's	because	you	have	just	applied	a
layout	to	the	form.	Open	the	Tools	menu,	go	to	the	Form	Editor
submenu,	and	choose	the	Preview	entry	to	preview	the	form.

Accelerators	and	label	buddies
Now,	we	will	focus	on	giving	the	dialog	some	more	polish.	The	first
thing	we	will	do	is	add	accelerators	to	our	widgets.	These	are
keyboard	shortcuts	that,	when	activated,	cause	particular	widgets	to
gain	keyboard	focus	or	perform	a	predetermined	action	(for
example,	toggle	a	checkbox	or	push	a	button).	Accelerators	are
usually	marked	by	underlining	them,	as	follows:

We	will	set	accelerators	to	our	line	edits	so	that	when	the	user
activates	an	accelerator	for	the	first	field,	it	will	gain	focus.	Through
this,	we	can	enter	the	name	of	the	first	player,	and,	similarly,	when
the	accelerator	for	the	second	line	edit	is	triggered,	we	can	start
typing	in	the	name	for	the	second	player.

Start	by	selecting	the	first	label	on	the	left-hand	side	of	the	first	line
edit.	Press	F2	and	change	the	text	to	Player	&A	Name:.	The	&	character
marks	the	character	directly	after	it	as	an	accelerator	for	the	widget.
Accelerators	may	not	work	with	digits	on	some	platforms,	so	we
decided	to	use	a	letter	instead.	Similarly,	rename	the	second	label
to	Player	&B	Name:.

For	widgets	that	are	composed	of	both	text	and	the	actual
functionality	(for	example,	a	button),	this	is	enough	to	make
accelerators	work.	However,	since	QLineEdit	does	not	have	any	text
associated	with	it,	we	have	to	use	a	separate	widget	for	that.	This	is
why	we	have	set	the	accelerator	on	the	label.	Now	we	need	to
associate	the	label	with	the	line	edit	so	that	the	activation	of	the
label's	accelerator	will	forward	it	to	the	widget	of	our	choice.	This	is
done	by	setting	a	so-called	buddy	for	the	label.	You	can	do	this	in

code	using	the	setBuddy	method	of	the	QLabel	class	or	using	Creator's
form	designer.	Since	we're	already	in	the	Design	mode,	we'll	use	the
latter	approach.	For	that,	we	need	to	activate	a	dedicated	mode	in
the	form	designer.

Look	at	the	upper	part	of	Creator's	window;	directly	above	the	form,
you	will	find	a	toolbar	containing	a	couple	of	icons.	Click	on	the	one
labeled	Edit	buddies	 .	Now,	move	the	mouse	cursor	over	the	label,
press	the	mouse	button,	and	drag	from	the	label	toward	the	line
edit.	When	you	drag	the	label	over	the	line	edit,	you'll	see	a
graphical	visualization	of	a	connection	being	set	between	the	label
and	the	line	edit.	If	you	release	the	button	now,	the	association	will
be	made	permanent.	You	should	note	that	when	such	an	association
is	made,	the	ampersand	character	(&)	vanishes	from	the	label,	and
the	character	behind	it	gets	an	underscore.	Repeat	this	for	the	other
label	and	corresponding	line	edit.	Click	on	the	Edit	widgets	
button	above	the	form	to	return	the	form	editor	to	the	default
mode.	Now,	you	can	preview	the	form	again	and	check	whether
accelerators	work	as	expected;	pressing	Alt	+	A	and	Alt	+	B	should
set	the	text	cursor	to	the	first	and	second	text	field,	respectively.

The	tab	order
While	you're	previewing	the	form,	you	can	check	another	aspect	of
the	UI	design.	Note	which	line	edit	receives	the	focus	when	the	form
is	open.	There	is	a	chance	that	the	second	line	edit	will	be	activated
first.	To	check	and	modify	the	order	of	focus,	close	the	preview	and
switch	to	the	tab	order	editing	mode	by	clicking	on	the	icon	called
Edit	Tab	Order	 	in	the	toolbar.

This	mode	associates	a	box	with	a	number	to	each	focusable	widget.
By	clicking	on	the	rectangle	in	the	order	you	wish	the	widgets	to
gain	focus,	you	can	reorder	values,	thus	re-ordering	focus.	Now
make	it	so	that	the	order	is	as	shown	here:

Our	form	only	has	two	widgets	that	can	receive	focus	(except	for	the
dialog's	buttons,	but	their	tab	order	is	managed	automatically).	If
you	create	a	form	with	multiple	controls,	there	is	a	good	chance	that
when	you	press	the	Tab	key	repeatedly,	the	focus	will	start	jumping
back	and	forth	between	buttons	and	line	edits	instead	of	a	linear
progress	from	top	to	bottom	(which	is	an	intuitive	order	for	this
particular	dialog).	You	can	use	this	mode	to	correct	the	tab	order.

Enter	the	preview	again	and	check	whether	the	focus	changes
according	to	what	you've	set.

When	deciding	about	the	tab	order,	it	is	good	to	consider	which	fields	in	the	dialog	are
mandatory	and	which	are	optional.	It	is	a	good	idea	to	allow	the	user	to	tab	through	all	the
mandatory	fields	first,	then	to	the	dialog	confirmation	button	(for	example,	one	that	says
OK	or	Accept),	and	then	cycle	through	all	the	optional	fields.	Thanks	to	this,	the	user	will	be
able	to	quickly	fill	all	the	mandatory	fields	and	accept	the	dialog	without	the	need	to	cycle
through	all	the	optional	fields	that	the	user	wants	to	leave	as	their	default	values.

Time	for	action	–	Public
interface	of	the	dialog
The	next	thing	to	do	is	to	allow	to	store	and	read	player	names	from
outside	the	dialog—since	the	ui	component	is	private,	there	is	no
access	to	it	from	outside	the	class	code.	This	is	a	common	situation
and	one	that	Qt	is	also	compliant	with.	Each	data	field	in	almost
every	Qt	class	is	private	and	may	contain	accessors	(a	getter	and
optionally	a	setter),	which	are	public	methods	that	allow	us	to	read
and	store	values	for	data	fields.	Our	dialog	has	two	such	fields—the
names	for	the	two	players.

Names	of	setter	methods	in	Qt	are	usually	started	with	set,	followed
by	the	name	of	the	property	with	the	first	letter	converted	to
uppercase.	In	our	situation,	the	two	setters	will	be	called
setPlayer1Name	and	setPlayer2Name,	and	they	will	both	accept	QString	and
return	void.	Declare	them	in	the	class	header,	as	shown	in	the
following	code	snippet:

void	setPlayer1Name(const	QString	&p1name);

void	setPlayer2Name(const	QString	&p2name);

Implement	their	bodies	in	the	.cpp	file:

void	ConfigurationDialog::setPlayer1Name(const	QString	&p1name)

{

				ui->player1Name->setText(p1name);

}

void	ConfigurationDialog::setPlayer2Name(const	QString	&p2name)

{

				ui->player2Name->setText(p2name);

}

Getter	methods	in	Qt	are	usually	called	the	same	as	the	property
that	they	are	related	to—player1Name	and	player2Name.	Put	the	following
code	in	the	header	file:

QString	player1Name()	const;

QString	player2Name()	const;

Put	the	following	code	in	the	implementation	file:

QString	ConfigurationDialog::player1Name()	const

{

				return	ui->player1Name->text();

}

QString	ConfigurationDialog::player2Name()	const

{

				return	ui->player2Name->text();

}

Our	dialog	is	now	ready.	Let's	use	it	in
the	MainWindow::startNewGame	function	to	request	player	names	before
starting	the	game:

ConfigurationDialog	dialog(this);

if(dialog.exec()	==	QDialog::Rejected)	{

				return;	//	do	nothing	if	dialog	rejected

}

ui->player1Name->setText(dialog.player1Name());

ui->player2Name->setText(dialog.player2Name());

ui->gameBoard->initNewGame();

In	this	slot,	we	create	the	settings	dialog	and	show	it	to	the	user,
forcing	them	to	enter	player	names.	The	exec()	function	doesn't
return	until	the	dialog	is	accepted	or	cancelled.	If	the	dialog	was
canceled,	we	abandon	the	creation	of	a	new	game.	Otherwise,	we
ask	the	dialog	for	player	names	and	set	them	on	appropriate	labels.
Finally,	we	initialize	the	board	so	that	users	can	play	the	game.	The
dialog	object	was	created	without	the	new	keyword,	so	it	will	be
deleted	immediately	after	this.

Now	you	can	run	the	application	and	see	how	the	configuration
dialog	works.

Polishing	the	application
We	have	implemented	all	the	important	functionalities	of	our	game,
and	now	we	will	start	improving	it	by	exploring	other	Qt	features.

Size	policies
If	you	change	the	height	of	the	main	window	of	our	game,	you	will
note	that	different	widgets	are	resized	in	a	different	way.	In
particular,	buttons	retain	their	original	height,	and	labels	gain
empty	fields	to	the	top	and	bottom	of	the	text:

This	is	because	each	widget	has	a	property	called	sizePolicy,	which
decides	how	a	widget	is	to	be	resized	by	a	layout.	You	can	set
separate	size	policies	for	horizontal	and	vertical	directions.	A	button
has	a	vertical	size	policy	of	Fixed	by	default,	which	means	that	the
height	of	the	widget	will	not	change	from	the	default	height
regardless	of	how	much	space	there	is	available.	A	label	has
a	Preferred	size	policy	by	default.	The	following	are	the	available	size
policies:

Ignored:	In	this,	the	default	size	of	the	widget	is	ignored	and

the	widget	can	freely	grow	and	shrink

Fixed:	In	this,	the	default	size	is	the	only	allowed	size	of	the

widget

Preferred:	In	this,	the	default	size	is	the	desired	size,	but	both

smaller	and	bigger	sizes	are	acceptable

Minimum:	In	this,	the	default	size	is	the	smallest	acceptable	size

for	the	widget,	but	the	widget	can	be	made	larger	without

hurting	its	functionality

Maximum:	In	this,	the	default	size	is	the	largest	size	of	the

widget,	and	the	widget	can	be	shrunk	(even	to	nothing)

without	hurting	its	functionality

Expanding:	In	this,	the	default	size	is	the	desired	size;	a	smaller

size	(even	zero)	is	acceptable,	but	the	widget	is	able	to

increase	its	usefulness	when	more	and	more	space	is

assigned	to	it

MinimumExpanding:	This	is	a	combination	of	Minimum	and	Expanding—

the	widget	is	greedy	in	terms	of	space,	and	it	cannot	be	made

smaller	than	its	default	size

How	do	we	determine	the	default	size?	The	answer	is	by	the	size
returned	by	the	sizeHint	virtual	method.	For	layouts,	the	size	is
calculated	based	on	the	sizes	and	size	policies	of	their	child	widgets
and	nested	layouts.	For	basic	widgets,	the	value	returned	by	sizeHint
depends	on	the	content	of	the	widget.	In	the	case	of	a	button,	if	it
holds	a	line	of	text	and	an	icon,	sizeHint	will	return	the	size	that	is
required	to	fully	encompass	the	text,	icon,	some	space	between
them,	the	button	frame,	and	the	padding	between	the	frame	and

content	itself.

In	our	form,	we	prefer	that	when	the	main	window	is	resized,	the
labels	will	keep	their	height,	and	the	game	board	buttons	will	grow.
To	do	this,	open	mainwindow.ui	in	the	form	editor,	select	the	first	label,
and	then	hold	Ctrl	and	click	on	the	second	label.	Now	both	labels
are	selected,	so	we	can	edit	their	properties	at	the	same	time.	Locate
sizePolicy	in	the	property	editor	(if	you're	having	trouble	locating	a
property,	use	the	Filter	field	above	the	property	editor)	and	expand
it	by	clicking	on	the	triangle	to	its	left.	Set	Vertical	Policy	to	Fixed.
You	will	see	the	changes	in	the	form's	layout	immediately.

The	buttons	on	the	game	board	are	created	in	the	code,	so	navigate
to	the	constructor	of	TicTacToeWidget	class	and	set	the	size	policy	using
the	following	code:

QPushButton	*button	=	new	QPushButton("	");

button->setSizePolicy(QSizePolicy::Preferred,

																						QSizePolicy::Preferred);

This	will	change	both	the	horizontal	and	vertical	policy	of	buttons	to
Preferred.	Run	the	game	and	observe	the	changes:

Protecting	against	invalid	input
The	configuration	dialog	did	not	have	any	validation	until	now.
Let's	make	it	such	that	the	button	to	accept	the	dialog	is	only
enabled	when	neither	of	the	two	line	edits	is	empty	(that	is,	when
both	the	fields	contain	player	names).	To	do	this,	we	need	to
connect	the		textChanged	signal	of	each	line	edit	to	a	slot	that	will
perform	the	task.

First,	go	to	the	configurationdialog.h	file	and	create	a	private	slot	void
updateOKButtonState();	in	the	ConfigurationDialog	class	(you	will	need	to	add
the	private	slots	section	manually).	Use	the	following	code	to
implement	this	slot:

void	ConfigurationDialog::updateOKButtonState()

{

				QPushButton	*okButton	=	ui->buttonBox-

>button(QDialogButtonBox::Ok);

				okButton->setEnabled(!ui->player1Name->text().isEmpty()	&&

																									!ui->player2Name->text().isEmpty());

}

This	code	asks	the	button	box	that	currently	contains
the	OK	and	Cancel	buttons	to	give	a	pointer	to	the	button	that
accepts	the	dialog	(we	have	to	do	that	because	the	buttons	are	not
contained	in	the	form	directly,	so	there	are	no	fields	for	them	in	ui).
Then,	we	set	the	button's	enabled	property	based	on	whether	both
player	names	contain	valid	values	or	not.

Next,	edit	the	constructor	of	the	dialog	to	connect	two	signals	to	our
new	slot.	The	button	state	also	needs	to	be	updated	when	we	first
create	the	dialog,	so	add	an	invocation	of	updateOKButtonState()	to	the
constructor:

ui->setupUi(this);

connect(ui->player1Name,	&QLineEdit::textChanged,

								this,	&ConfigurationDialog::updateOKButtonState);

connect(ui->player2Name,	&QLineEdit::textChanged,

								this,	&ConfigurationDialog::updateOKButtonState);

updateOKButtonState();

Main	menu	and	toolbars
As	you	may	remember,	any	widget	that	has	no	parent	will	be
displayed	as	a	window.	However,	when	we	created	our	main
window,	we	selected	QMainWindow	as	the	base	class.	If	we	had	selected
QWidget	instead,	we	would	still	be	able	to	do	everything	we	did	up	to
this	point.	However,	the	QMainWindow	class	provides	some	unique
functionality	that	we	will	now	use.

A	main	window	represents	the	control	center	of	an	application.	It
can	contain	menus,	toolbars,	docking	widgets,	a	status	bar,	and	the
central	widget	that	contains	the	main	content	of	the	window,	as
shown	in	the	following	diagram:

If	you	open	the	mainwindow.ui	file	and	take	a	look	at	the	object	tree,	you
will	see	the	mandatory	centralWidget	that	actually	contains	our	form.
There	are	also	optional	menuBar,	mainToolBar,	and	statusBar	that	were

added	automatically	when	Qt	Creator	generated	the	form.

The	central	widget	part	doesn't	need	any	extra	explanation;	it	is	a
regular	widget	like	any	other.	We	will	also	not	focus	on	dock
widgets	or	the	status	bar	here.	They	are	useful	components,	but	you
can	learn	about	them	yourself.	Instead,	we	will	spend	some	time
mastering	menus	and	toolbars.	You	have	surely	seen	and	used
toolbars	and	menus	in	many	applications,	and	you	know	how
important	they	are	for	a	good	user	experience.

The	main	menu	has	a	bit	of	unusual	behavior.	It's	usually
positioned	in	the	top	part	of	the	window,	but	in	macOS	and	some
Linux	environments,	the	main	menu	is	separated	from	the	window
and	displayed	in	the	top	area	of	the	screen.	Toolbars,	on	the	other
hand,	can	be	moved	freely	by	the	user	and	docked	horizontally	or
vertically	to	the	sides	of	the	main	window.

The	main	class	shared	by	both	these	concepts	is	QAction,	which
represents	a	functionality	that	can	be	invoked	by	a	user.	A	single
action	can	be	used	in	multiple	places—it	can	be	an	entry	in	a	menu
(the	QMenu	instances)	or	in	a	toolbar	(QToolBar),	a	button,	or	a	keyboard
shortcut	(QShortcut).	Manipulating	the	action	(for	example,	changing
its	text)	causes	all	its	incarnations	to	update.	For	example,	if	you
have	a	Save	entry	in	the	menu	(with	a	keyboard	shortcut	bound	to
it),	a	Save	icon	in	the	toolbar,	and	maybe	also	a	Save	button
somewhere	else	in	your	user	interface	and	you	want	to	disallow
saving	the	document	(for	example,	a	map	in	your	dungeons	and
dragons	game	level	editor)	because	its	contents	haven't	changed
since	the	document	was	last	loaded.	In	this	case,	if	the	menu	entry,
toolbar	icon,	and	button	are	all	linked	to	the	same	QAction	instance,
then,	once	you	set	the	enabled	property	of	the	action	to	false,	all	the
three	entities	will	become	disabled	as	well.	This	is	an	easy	way	to
keep	different	parts	of	your	application	in	sync—if	you	disable	an
action	object,	you	can	be	sure	that	all	entries	that	trigger	the
functionality	represented	by	the	action	are	also	disabled.	Actions
can	be	instantiated	in	code	or	created	graphically	using	Action
Editor	in	Qt	Creator.	An	action	can	have	different	pieces	of	data

associated	with	it—a	text,	tooltip,	status	bar	tip,	icons,	and	others
that	are	less	often	used.	All	these	are	used	by	incarnations	of	your
actions.

Time	for	action	–	Creating	a
menu	and	a	toolbar
Let's	replace	our	boring	Start	new	game	button	with	a	menu	entry
and	a	toolbar	icon.	First,	select	the	button	and	press	the	Delete	key
to	delete	it.	Then,	locate	Action	Editor	in	the	bottom-center	part	of
the	form	editor	and	click	on	the	New	button	on	its	toolbar.	Enter
the	following	values	in	the	dialog	(you	can	fill	the	Shortcut	field	by
pressing	the	key	combination	you	want	to	use):

Locate	the	toolbar	in	the	central	area	(between	the	Type	Here	text
and	the	first	label)	and	drag	the	line	containing	the	New	Game
action	from	the	action	editor	to	the	toolbar,	which	results	in	a
button	appearing	in	the	toolbar.

To	create	a	menu	for	the	window,	double-click	on	the	Type	Here
text	on	the	top	of	the	form	and	replace	the	text	with	&File	(although
our	application	doesn't	work	with	files,	we	will	follow	this

tradition).	Then,	drag	the	New	Game	action	from	the	action	editor
over	the	newly	created	menu,	but	do	not	drop	it	there	yet.	The
menu	should	open	now,	and	you	can	drag	the	action	so	that	a	red
bar	appears	in	the	submenu	in	the	position	where	you	want	the
menu	entry	to	appear;	now	you	can	release	the	mouse	button	to
create	the	entry.

Now	we	should	restore	the	functionality	that	was	broken	when	we
deleted	the	button.	Navigate	to	the	constructor	of	the	MainWindow	class
and	adjust	the	connect()	call:

connect(ui->startNewGame,	&QAction::triggered,

								this,	&MainWindow::startNewGame);

Actions,	like	widgets,	are	accessible	through	the	ui	object.	The	ui-
>startNewGame	object	is	now	a	QAction	instead	of	a	QPushButton,	and	we	use
its	triggered()	signal	to	detect	whether	the	action	was	selected	in
some	way.

Now,	if	you	run	the	application,	you	can	select	the	menu	entry,
press	a	button	on	the	toolbar,	or	press	the	Ctrl	+	N	keys.	Either	of
these	operations	will	cause	the	action	to	emit	the	triggered()	signal,
and	the	game	configuration	dialog	should	appear.

Like	widgets,	QAction	objects	have	some	useful	methods	that	are	accessible	in	our	form
class.	For	example,	executing	ui->startNewGame->setEnabled(false)	will	disable	all	ways	to
trigger	the	New	Game	action.

Let's	add	another	action	for	quitting	the	application	(although	the
user	can	already	do	it	just	by	closing	the	main	window).	Use	the
action	editor	to	add	a	new	action	with	text	Quit,	object	name	quit,	and
shortcut	Ctrl	+	Q.	Add	it	to	the	menu	and	the	toolbar,	like	the	first
action.

We	can	add	a	new	slot	that	stops	the	application,	but	such	a	slot
already	exists	in	QApplication,	so	let's	just	reuse	it.	Locate	the
constructor	of	our	form	in	mainwindow.cpp	and	append	the	following
code:

connect(ui->quit,	&QAction::triggered,

								qApp,					&QApplication::quit);

What	just	happened?
The	qApp	macro	is	a	shortcut	for	a	function	that	returns	a	pointer	to
the	application	singleton	object,	so	when	the	action	is	triggered,	Qt
will	call	the	quit()	slot	on	the	QApplication	object	created	in	main(),
which,	in	turn,	will	cause	the	application	to	end.

The	Qt	resource	system
Buttons	in	the	toolbar	usually	display	icons	instead	of	text.	To
implement	this,	we	need	to	add	icon	files	to	our	project	and	assign
them	to	the	actions	we	created.

One	way	of	creating	icons	is	by	loading	images	from	the	filesystem.
The	problem	with	this	is	that	you	have	to	install	a	bunch	of	files
along	with	your	application,	and	you	need	to	always	know	where
they	are	located	to	be	able	to	provide	paths	to	access	them.
Fortunately,	Qt	provides	a	convenient	and	portable	way	to	embed
arbitrary	files	(such	as	images	for	icons)	directly	in	the	executable
file.	This	is	done	by	preparing	resource	files	that	are	later	compiled
in	the	binary.	Qt	Creator	provides	a	graphical	tool	for	this	as	well.

Time	for	action	–	Adding	icons
to	the	project
We	will	add	icons	to	our	Start	new	game	and	Quit	actions.	First,	use
your	file	manager	to	create	a	new	subdirectory	called	icons	in	the
project	directory.	Place	two	icon	files	in	the	icons	directory.	You	can
use	icons	from	the	files	provided	with	the	book.

Click	on	Add	New...	in	the	context	menu	of	the	tictactoe	project	and
select	Qt	Resource	File	(located	in	Qt	category).	Name	it	resources,
and	finish	the	wizard.	Qt	Creator	will	add	a	new	resources.qrc	file	to
the	project	(it	will	be	displayed	under	the	Resources	category	in	the
project	tree).

Locate	the	new	resources.qrc	file	in	the	project	tree	of	Qt	Creator	and
choose	Add	Existing	Files...	in	its	context	menu.	Select	both	icons,
and	confirm	their	addition	to	the	resources.

Open	the	mainwindow.ui	form,	and	double-click	on	one	of	the	actions	in
the	action	editor.	Click	on	the	"..."	button	next	to	the	Icon	field,
select	icons	in	the	left	part	of	the	window,	and	select	the
appropriate	icon	in	the	right	part	of	the	window.	Once	you	confirm
changes	in	the	dialogs,	the	corresponding	button	on	the	toolbar	will
switch	to	displaying	the	icon	instead	of	the	text.	The	menu	entry
will	also	gain	the	selected	icon.	Repeat	this	operation	for	the	second
action.	Our	game	should	now	look	like	this:

Have	a	go	hero	–	Extending	the
game
There	are	a	lot	of	subtle	improvements	you	can	make	in	the	project.
For	example,	you	can	change	the	title	of	the	main	window	(by
editing	its	windowTitle	property),	add	accelerators	to	the	actions,
disable	the	board	buttons	that	do	nothing	on	click,	remove	the
status	bar,	or	use	it	for	displaying	the	game	status.

As	an	additional	exercise,	you	can	try	to	modify	the	code	we	wrote
in	this	chapter	to	allow	playing	the	game	on	boards	bigger	than	3	×
3.	Let	the	user	decide	the	size	of	the	board	(you	can	modify	the
game	options	dialog	for	that	and	use	QSlider	and	QSpinBox	to	allow	the
user	to	choose	the	size	of	the	board),	and	you	can	then	instruct
TicTacToeWidget	to	build	the	board	based	on	the	size	it	gets.	Remember
to	adjust	the	game-winning	logic!	If	at	any	point	you	run	into	a	dead
end	and	do	not	know	which	classes	and	functions	to	use,	consult	the
reference	manual.

Pop	quiz
Q1.	Which	classes	can	have	signals?

1.	 All	classes	derived	from	QWidget.

2.	 All	classes	derived	from	QObject.

3.	 All	classes.

Q2.	For	which	of	the	following	do	you	have	to	provide	your	own
implementation?

1.	 A	signal.

2.	 A	slot.

3.	 Both.

Q3.	A	method	that	returns	the	preferred	size	of	a	widget	is	called
which	of	these?

1.	 preferredSize.

2.	 sizeHint.

3.	 defaultSize.

Q4.	What	is	the	purpose	of	the	QAction	object?

1.	 It	represents	a	functionality	that	a	user	can	invoke	in	the

program.

2.	 It	holds	a	key	sequence	to	move	the	focus	on	a	widget.

3.	 It	is	a	base	class	for	all	forms	generated	using	the	form

editor.

Summary
In	this	chapter,	you	learned	how	to	create	simple	graphical	user
interfaces	with	Qt.	We	went	through	two	approaches:	designing	the
user	interface	with	a	graphical	tool	that	generates	most	of	the	code
for	us,	and	creating	user	interface	classes	by	writing	all	the	code
directly.	None	of	them	is	better	than	the	other.	The	form	designer
allows	you	to	avoid	boilerplate	code	and	helps	you	handle	large
forms	with	a	lot	of	controls.	On	the	other	hand,	the	code	writing
approach	gives	you	more	control	over	the	process	and	allows	you	to
create	automatically	populated	and	dynamic	interfaces.

We	also	learned	how	to	use	signals	and	slots	in	Qt.	You	should	now
be	able	to	create	simple	user	interfaces	and	fill	them	with	logic	by
connecting	signals	to	slots—predefined	ones	as	well	as	custom	ones
that	you	now	know	how	to	define	and	fill	with	code.

Qt	contains	many	widget	types,	but	we	didn't	introduce	them	to	you
one	by	one.	There	is	a	really	nice	explanation	of	many	widget	types
in	the	Qt	manual	called	Qt	Widget	Gallery,	which	shows	most	of
them	in	action.	If	you	have	any	doubts	about	using	any	of	those
widgets,	you	can	check	the	example	code	and	also	look	up	the
appropriate	class	in	the	Qt	reference	manual	to	learn	more	about
them.

As	you	already	saw,	Qt	allows	you	to	create	custom	widget	classes,
but	in	this	chapter	our	custom	classes	mostly	reused	the	default
widgets.	It's	also	possible	to	modify	how	the	widget	responds	to
events	and	implement	custom	painting.	We	will	get	to	this
advanced	topic	in	Chapter	8,	Custom	Widgets.	However,	if	you	want
to	implement	a	game	with	custom	2D	graphics,	there	is	a	simpler
alternative—the	Graphics	View	Framework	that	we'll	use	in	the	next
chapter.

Custom	2D	Graphics	with
Graphics	View
Widgets	are	great	for	designing	graphical	user	interfaces,	but	they
are	not	convenient	if	you	want	to	use	multiple	objects	with	custom
painting	and	behavior	together,	such	as	in	a	2D	game.	You	will	also
run	into	problems	if	you	wish	to	animate	multiple	widgets	at	the
same	time,	by	constantly	moving	them	around	in	the	application.
For	these	situations,	or	generally	for	frequently	transforming	2D
graphics,	Qt	offers	you	Graphics	View.	In	this	chapter,	you	will
learn	the	basics	of	the	Graphics	View	architecture	and	its	items.	You
will	also	learn	how	to	combine	widgets	with	Graphics	View	items.

The	main	topics	covered	in	this	chapter	are	as	follows:

Graphics	View	architecture

Coordinate	systems

Standard	graphics	items

Pens	and	brushes

Useful	features	of	Graphics	View

Creating	custom	items

Event	handling

Embedding	widgets	in	the	view

Optimizations

Graphics	View	architecture
The	Graphics	View	Framework	is	part	of	the	Qt	Widgets	module
and	provides	a	higher	level	of	abstraction	useful	for	custom	2D
graphics.	It	uses	software	rendering	by	default,	but	it	is	very
optimized	and	extremely	convenient	to	use.	Three	components
form	the	core	of	Graphics	View,	as	shown:

An	instance	of	QGraphicsView,	which	is	referred	to	as	View

An	instance	of	QGraphicsScene,	which	is	referred	to	as	Scene

Instances	of	QGraphicsItem,	which	are	referred	to	as	Items

The	usual	workflow	is	to	first	create	a	couple	of	items,	add	them	to	a
scene,	and	then	show	that	scene	on	a	view:

After	that,	you	can	manipulate	items	from	the	code	and	add	new
items,	while	the	user	also	has	the	ability	to	interact	with	visible
items.

Think	of	the	items	as	Post-it	notes.	You	take	a	note	and	write	a
message	on	it,	paint	an	image	on	it,	both	write	and	paint	on	it,	or,
quite	possibly,	just	leave	it	blank.	Qt	provides	a	lot	of	item	classes,
all	of	which	inherit	QGraphicsItem.	You	can	also	create	your	own	item
classes.	Each	class	must	provide	an	implementation	of	the	paint()
function,	which	performs	painting	of	the	current	item,	and
the	boundingRect()	function,	which	must	return	the	boundary	of	the
area	the	paint()	function	paints	on.

What	is	the	scene,	then?	Well,	think	of	it	as	a	larger	sheet	of	paper
on	to	which	you	attach	your	smaller	Post-its,	that	is,	the	notes.	On
the	scene,	you	can	freely	move	the	items	around	while	applying
funny	transformations	to	them.	It	is	the	scene's	responsibility	to
correctly	display	the	items'	position	and	any	transformations
applied	to	them.	The	scene	further	informs	the	items	about	any
events	that	affect	them.

Last,	but	not	least,	let's	turn	our	attention	to	the	view.	Think	of	the
view	as	an	inspection	window	or	a	person	who	holds	the	paper	with
the	notes	in	their	hands.	You	can	see	the	paper	as	a	whole,	or	you
can	only	look	at	specific	parts.	Also,	as	a	person	can	rotate	and
shear	the	paper	with	their	hands,	so	the	view	can	rotate	and	shear
the	scene's	content	and	do	a	lot	more	transformations	with	it.
QGraphicsView	is	a	widget,	so	you	can	use	the	view	like	any	other	widget
and	place	it	into	layouts	for	creating	neat	graphical	user	interfaces.

You	might	have	looked	at	the	preceding	diagram	and	worried	about	all	the	items	being
outside	the	view.	Aren't	they	wasting	CPU	time?	Don't	you	need	to	take	care	of	them	by
adding	a	so-called	view	frustum	culling	mechanism	(to	detect	which	item	not	to
draw/render	because	it	is	not	visible)?	Well,	the	short	answer	is	"no",	because	Qt	is	already
taking	care	of	this.

Time	for	action	–	Creating	a
project	with	a	Graphics	View
Let's	put	all	these	components	together	in	a	minimalistic	project.
From	the	Welcome	screen,	click	on	the	New	Project	button	and
select	Qt	Widgets	Application	again.	Name	the	project
graphics_view_demo,	select	the	correct	kit,	uncheck	the	Generate	form
checkbox,	and	finish	the	wizard.	We	don't	actually	need	the	MainWindow
class	that	was	generated	for	us,	so	let's	delete	it	from	the	project.	In
the	project	tree,	locate	mainwindow.h	and	select	Remove	file	in	the
context	menu.	Enable	the	Delete	file	permanently	checkbox	and
click	on	OK.	This	will	result	in	deleting	the	mainwindow.h	file	from	the
disk	and	removing	its	name	from	the	graphics_view_demo.pro	file.	If	the
file	was	open	in	Qt	Creator,	it	will	suggest	that	you	close	it.	Repeat
the	process	for	mainwindow.cpp.

Open	the	main.cpp	file,	remove	#include	"mainwindow.h",	and	write	the
following	code:

int	main(int	argc,	char	*argv[])

{

				QApplication	a(argc,	argv);

				QGraphicsScene	scene;

				QGraphicsRectItem	*rectItem	=	

								new	QGraphicsRectItem(QRectF(0,	0,	100,	50));

				scene.addItem(rectItem);

				QGraphicsEllipseItem	*circleItem	=

								new	QGraphicsEllipseItem(QRect(0,	50,	25,	25));

				scene.addItem(circleItem);

				QGraphicsSimpleTextItem	*textItem	=

								new	QGraphicsSimpleTextItem(QObject::tr("Demo"));

				scene.addItem(textItem);

				QGraphicsView	view(&scene);

				view.show();

				return	a.exec();

}

}

When	you	run	the	project,	you	should	get	the	following	result:

What	just	happened?
Our	new	project	is	so	simple	that	all	its	code	is	located	in	the	main()
function.	Let's	examine	the	code.	First,	we	create	a	QApplication	object,
as	in	any	Qt	Widgets	project.	Next,	we	create	a	scene	object	and
three	instances	of	different	item	classes.	The	constructor	of	each
item	class	accepts	an	argument	that	defines	the	content	of	the	item:

The	QGraphicsRectItem	constructor	receives	a	QRectF	object	that

contains	the	coordinates	of	the	rectangle

The	QGraphicsEllipseItem	constructor,	similarly,	receives	a

QRectF	object	that	defines	the	bounding	rectangle	of	the	circle

The	QGraphicsSimpleTextItem	constructor	receives	the	text	to

display

QRectF	is	basically	a	helpful	struct	with	four	fields	that	allow	us	to	specify	four	coordinates
of	the	rectangle's	boundaries	(left,	top,	width,	and	height).	Qt	also	offers	QPointF	that
contains	x	and	y	coordinates	of	a	point,	QLineF	that	contains	x	and	y	coordinates	of	two
ends	of	a	line,	and	QPolygonF	that	contains	a	vector	of	points.	The	F	letter	stands	for
"floating	point"	and	indicates	that	these	classes	hold	real	numbers.	They	are	widely	used	in
Graphics	View,	as	it	always	works	with	floating	point	coordinates.	The	corresponding
classes	without	F	(QPoint,	QRect,	and	so	on)	store	integer	coordinates	and	are	more	useful
when	working	with	widgets.

After	creating	each	item,	we	use	the	QGraphicsScene::addItem	function	to
add	the	item	to	the	scene.	Finally,	we	create	a	QGraphicsView	object	and
pass	the	pointer	to	the	scene	to	its	constructor.	The	show()	method
will	make	the	view	visible,	as	it	does	for	any	QWidget.	The	program
ends	with	an	a.exec()	call,	necessary	to	start	the	event	loop	and	keep
the	application	alive.

The	scene	takes	ownership	of	the	items,	so	they	will	be
automatically	deleted	along	with	the	scene.	This	also	means	that	an

item	can	only	be	added	to	one	single	scene.	If	the	item	was
previously	added	to	another	scene,	it	gets	removed	from	there
before	it	is	added	to	the	new	scene.

If	you	want	to	remove	an	item	from	a	scene	without	setting	it	directly	to	another	scene	or
without	deleting	it,	you	can	call	scene.removeItem(rectItem).	Be	aware,	however,	that	now
it	is	your	responsibility	to	delete	rectItem	to	free	the	allocated	memory!

Examine	the	resulting	window	and	compare	it	to	the	coordinates	of
the	rectangles	in	the	code	(the	QRectF	constructor	we	use	accepts	four
arguments	in	the	following	order:	left,	top,	width,	height).	You
should	be	able	to	see	that	all	three	elements	are	positioned	in	a
single	coordinate	system,	where	the	x	axis	points	to	the	right	and
the	y	axis	points	down.	We	didn't	specify	any	coordinates	for	the
text	item,	so	it's	displayed	at	the	origin	point	(that	is,	the	point
with	zero	coordinates),	next	to	the	top-left	corner	of	the	rectangle.
However,	that	(0,	0)	point	does	not	correspond	to	the	top-left
corner	of	the	window.	In	fact,	if	you	resize	the	window,	you'll	note
that	the	origin	has	shifted	relative	to	the	window,	because	the	view
tries	to	display	the	scene's	content	as	centered.

Coordinate	systems
To	use	Graphics	View	correctly,	you	need	to	understand	how	the
coordinate	systems	in	this	framework	work.	We'll	go	through	all	the
levels	of	hierarchy	and	see	how	we	can	change	the	positioning	of
items	and	the	whole	scene,	on	each	level.	We	will	provide	examples
of	the	code	that	you	can	paste	into	our	demo	project	and	examine
the	effect.

The	item's	coordinate	system
Each	item	has	its	own	coordinate	system.	In	our	example	of	Post-it
notes,	the	content	of	each	note	is	defined	relative	to	the	top-left
corner	of	the	note.	No	matter	how	you	move	or	rotate	the	item,
these	coordinates	remain	the	same.	The	coordinates	of	a	drawn
object	can	usually	be	passed	to	the	constructor	of	the	class,	like	we
did	in	our	demo	project,	or	to	a	special	setter	function	(for
example,	rectItem->setRect(0,	10,	20,	25)).	These	are	coordinates	in	the
item's	coordinate	system.

Some	classes,	such	as	QGraphicsSimpleTextItem,	do	not	provide	the	ability
to	change	the	coordinates	of	the	content,	so	they're	always
positioned	at	the	origin	of	the	item's	coordinate	system.	This	is	not
a	problem	at	all;	as	we'll	see	next,	there	are	ways	to	change	the
visible	position	of	the	content.

If	you	try	to	create	your	own	graphics	item	class	(we'll	get	to	it	later
in	this	chapter),	you'll	need	to	implement	the	paint()	and	boundingRect()
functions,	and	they	always	operate	in	the	item's	coordinate	system.
That's	right,	when	you're	painting	the	content,	you	can	just	pretend
that	your	item	will	never	be	moved	or	transformed.	When	that
actually	happens,	Qt	will	take	care	of	transforming	paint	operations
for	you.	Additionally,	coordinates	in	any	events	the	item	receives
(for	example,	coordinates	of	a	mouse	button	click)	are	expressed	in
the	item's	coordinate	system.

The	scene's	coordinate	system
Any	item	can	be	moved	in	the	scene	using	the	setPos()	function.	Try
to	call	textItem->setPos(50,	50)	and	verify	that	the	text	was	moved	in	the
scene.	Technically,	this	operation	changes	the	transformation
between	the	item's	coordinate	system	and	the	scene's	coordinate
system.	A	convenience	function	called	moveBy()	allows	you	to	shift	the
position	by	specified	amounts.

An	item	can	also	be	rotated	with	setRotation()	and	scaled	with
setScale().	Try	calling	textItem->setRotation(20)	to	see	this	in	action.	If	you
need	a	more	advanced	transformation,	such	as	shearing,	or	you
want	to	perform	multiple	translations	in	a	particular	order,	you	can
create	a	QTransform	object,	apply	the	required	transformations,	and
use	the	setTransform()	function	of	the	item.

The	setRotation()	function	accepts	qreal	as	the	argument	value,	which	is	usually	a	typedef
for	double.	The	function	interprets	the	number	as	degrees	for	a	clockwise	rotation	around
the	z	coordinate.	If	you	set	a	negative	value,	a	counter-clockwise	rotation	is	performed.
Even	if	it	does	not	make	much	sense,	you	can	rotate	an	item	by	450	degrees,	which	will
result	in	a	rotation	of	90	degrees.

The	viewport's	coordinate
system
The	view	consists	of	the	viewport	and	two	scrollbars.	The	viewport
is	a	subwidget	that	actually	contains	the	content	of	the	scene.	The
view	performs	conversion	from	the	scene	coordinates	to	the
viewport	coordinates	based	on	multiple	parameters.

First,	the	view	needs	to	know	the	bounding	rectangle	of	everything
we	could	want	to	see	in	the	scene.	It's	called	the	scene	rect	and	is
measured	in	the	scene's	coordinate	system.	By	default,	the	scene
rect	is	the	bounding	rectangle	of	all	items	that	were	added	at	the
scene	since	it	was	created.	This	is	usually	fine,	but	if	you	move	or
delete	an	item,	that	bounding	rectangle	will	not	shrink	(because	of
performance	reasons),	so	it	may	result	in	showing	a	lot	of	unwanted
empty	space.	Luckily,	in	such	cases,	you	can	set	the	scene	rect
manually	using	the	setSceneRect	function	of	the	scene	or	view.

The	difference	between	QGraphicsScene::setSceneRect	and	QGraphicsView::setSceneRect	is
usually	marginal,	since	you	will	typically	have	one	view	per	scene.	However,	it	is	possible
to	have	multiple	views	for	a	single	scene.	In	this	case,	QGraphicsScene::setSceneRect	sets	the
scene	rect	for	all	views,	and	QGraphicsView::setSceneRect	allows	you	to	override	the	scene
rect	for	each	view.

If	the	area	corresponding	to	the	scene	rect	is	small	enough	to	fit	in
the	viewport,	the	view	will	align	the	content	according	to	the	view's
alignment	property.	As	we	saw	earlier,	it	positions	the	content	at	the
center	by	default.	For	example,	calling	view.setAlignment(Qt::AlignTop	|
Qt::AlignLeft)	will	result	in	the	scene	staying	in	the	upper-left	corner
of	the	view.

If	the	scene	rect	area	is	too	large	to	fit	in	the	viewport,	the
horizontal	or	vertical	scrollbars	appear	by	default.	They	can	be	used
to	scroll	the	view	and	see	any	point	inside	the	scene	rect	(but	not

beyond	it).	The	presence	of	scrollbars	can	also	be	configured	using
the		horizontalScrollBarPolicy	and	the	verticalScrollBarPolicy	properties	of
the	view.

Try	to	call	scene.setSceneRect(0,	20,	100,	100)	and	see	how	the	view	acts
when	resizing	the	window.	If	the	window	is	too	small,	the	top	part
of	the	scene	will	no	longer	be	visible.	If	the	window	is	large	enough
and	the	view	has	the	default	alignment,	the	top	part	of	the	scene	will
be	visible,	but	only	the	defined	scene	rect	will	be	centered,	with	no
regard	to	the	items	outside	of	it.

The	view	provides	the	ability	to	transform	the	entire	scene.	For
example,	you	can	call	view.scale(5,	5)	to	make	everything	five	times
larger,	view.rotate(20)	to	rotate	the	scene	as	a	whole,	or	view.shear(1,	0)
to	shear	it.	As	with	items,	you	can	apply	a	more	complex
transformation	using	setTransform().

You	may	note	that	Graphics	View	(and	Qt	Widgets	in	general)	uses	a	left-handed
coordinate	system	by	default,	where	x	axis	points	right	and	y	axis	points	down.	However,
OpenGL	and	science-related	applications	usually	use	a	right-handed	or	standard
coordinate	system,	where	y	axis	points	up.	If	you	need	to	change	the	direction	of	the	y	axis,
the	simplest	solution	is	to	transform	the	view	by	calling	view.scale(1,	-1).

Origin	point	of	the
transformation
In	our	next	example,	we	will	create	a	cross	at	(0,	0)	point	and	add	a
rectangle	to	the	scene:

You	can	do	it	with	the	following	code:

scene.addLine(-100,	0,	100,	0);

scene.addLine(0,	-100,	0,	100);

QGraphicsRectItem*	rectItem	=	scene.addRect(50,	50,	50,	50);

In	this	code,	we	use	the	addLine()	and	addRect()	convenience	functions.
This	is	the	same	as	creating	a	QGraphicsLineItem	or	QGraphicsRectItem	and
adding	it	to	the	scene	manually.

Now,	imagine	that	you	want	to	rotate	the	rectangle	by	45	degrees	to
produce	the	following	result:

A	straightforward	attempt	to	do	it	will	use	the	setRotation()	method:

QGraphicsRectItem*	rectItem	=	scene.addRect(50,	50,	50,	50);

rectItem->setRotation(45);

However,	if	you	try	to	do	that,	you	will	get	the	following	result:

What	just	happened?
Most	transformations	depend	on	the	origin	point	of	the	coordinate
system.	For	rotation	and	scaling,	the	origin	point	is	the	only	point
that	remains	in	place.	In	the	preceding	example,	we	used	a
rectangle	with	the	top-left	corner	at	(50,	50)	and	the	size	of	(50,
50).	These	coordinates	are	in	the	item's	coordinate	system.	Since	we
originally	didn't	move	the	item,	the	item's	coordinate	system	was
the	same	as	the	scene's	coordinate	system,	and	the	origin	point	is
the	same	as	the	scene's	origin	(it's	the	point	marked	with	the	cross).
The	applied	rotation	uses	(0,	0)	as	the	center	of	rotation,	thus
providing	an	unexpected	result.

There	are	multiple	ways	to	overcome	this	problem.	The	first	way	is
to	change	the	transform's	origin	point:

QGraphicsRectItem*	rectItem	=	scene.addRect(50,	50,	50,	50);

rectItem->setTransformOriginPoint(75,	75);

rectItem->setRotation(45);

This	code	produces	the	rotation	we	want,	because	it	changes	the
origin	point	used	by	the	setRotation()	and	setScale()	functions.	Note
that	the	item's	coordinate	system	was	not	translated,	and	(75,	75)
point	continues	to	be	the	center	of	the	rectangle	in	the	item's
coordinates.

However,	this	solution	has	its	limitations.	If	you	use	setTransform()
instead	of	setRotation(),	you	will	get	the	unwanted	result	again:

QGraphicsRectItem*	rectItem	=	scene.addRect(50,	50,	50,	50);

rectItem->setTransformOriginPoint(75,	75);

QTransform	transform;

transform.rotate(45);

rectItem->setTransform(transform);

Another	solution	is	to	set	up	the	rectangle	in	such	a	way	that	its
center	is	in	the	origin	of	the	item's	coordinate	system:

QGraphicsRectItem*	rectItem	=	scene.addRect(-25,	-25,	50,	50);

rectItem->setPos(75,	75);

This	code	uses	completely	different	rectangle	coordinates,	but	the
result	is	exactly	the	same	as	in	our	first	example.	However,	now,
(75,	75)	point	in	the	scene's	coordinates	corresponds	to	(0,	0)	point
in	the	item's	coordinates,	so	all	transformations	will	use	it	as	the
origin:

QGraphicsRectItem*	rectItem	=	scene.addRect(-25,	-25,	50,	50);

rectItem->setPos(75,	75);

rectItem->setRotation(45);

This	example	shows	that	it	is	usually	more	convenient	to	set	up	the	items	so	that	their
origin	point	corresponds	to	their	actual	location.

Have	a	go	hero	–	Applying
multiple	transformations
To	understand	the	concept	of	transformations	and	their	origin
point,	try	to	apply	rotate()	and	scale()	to	an	item.	Also,	change	the
point	of	origin	and	see	how	the	item	will	react.	As	a	second	step,	use
QTransform	in	conjunction	with	setTransform()	to	apply	multiple
transformations	to	an	item	in	a	specific	order.

Parent–child	relationship
between	items
Imagine	that	you	need	to	create	a	graphics	item	that	contains
multiple	geometric	primitives,	for	example,	a	circle	inside	a
rectangle.	You	can	create	both	items	and	add	them	to	the	scene
individually,	but	this	solution	is	inconvenient.	First,	when	you	need
to	remove	that	combination	from	the	scene,	you	would	need	to
manually	delete	both	items.	However,	more	importantly,	when	you
need	to	move	or	transform	the	combination,	you	will	need	to
calculate	positions	and	complex	transformations	for	each	graphics
item.

Fortunately,	graphics	items	do	not	have	to	be	a	flat	list	of	items
added	directly	into	the	scene.	Items	can	be	added	into	any	other
items,	forming	a	parent–child	relationship	very	similar	to	the
relationship	of	QObject	that	we	observed	in	the	last	chapter:

Adding	an	item	as	a	child	of	another	item	has	the	following
consequences:

When	the	parent	item	is	added	to	the	scene,	the	child	item

automatically	becomes	part	of	that	scene,	so	there	is	no	need

to	call	QGraphicsScene::addItem()	for	it.

When	the	parent	item	is	deleted,	its	children	are	also

deleted.

When	the	parent	item	is	hidden	using	the	hide()	or

setVisible(false)	functions,	the	child	items	will	also	be	hidden.

Most	importantly,	the	child's	coordinate	system	is	derived

from	the	parent's	coordinate	system	instead	of	the	scene's.

This	means	that	when	the	parent	is	moved	or	transformed,

all	children	are	also	affected.	The	child's	position	and

transformations	are	relative	to	the	parent's	coordinate

system.

You	can	always	check	whether	an	item	has	a	parent	using	the	parentItem()	function,	and
check	the	returned	QGraphicsItem	pointer	against	nullptr,	which	means	that	the	item	does
not	have	a	parent.	To	figure	out	whether	there	are	any	children,	call	the	childItems()
function	on	the	item.	A	QList	method	with	the	QGraphicsItem	pointers	to	all	child	items	is
returned.

For	a	better	understanding	of	pos()	and	the	involved	coordinate
systems,	think	of	post-it	notes	again.	If	you	put	a	note	on	a	larger
sheet	of	paper	and	then	had	to	determine	its	exact	position,	how
would	you	do	it?	Probably	like	this:	"The	note's	upper-left	corner	is
positioned	3	cm	to	the	right	and	5	cm	to	the	bottom	from	the
paper's	top-left	edge".	In	the	Graphics	View	world,	this	will
correspond	to	a	parentless	item	whose	pos()	function	returns	a
position	in	the	scene	coordinates,	since	the	item's	origin	is	directly
pinned	to	the	scene.	On	the	other	hand,	say	you	put	a	note	A	on	top
of	a	(larger)	note	B,	which	is	already	pinned	on	a	paper,	and	you
have	to	determine	A's	position;	how	would	you	describe	it	this	time?
Probably	by	saying	that	note	A	is	placed	on	top	of	note	B	or	"2	cm	to
the	right	and	1	cm	to	the	bottom	from	the	top-left	edge	of	note	B".
You	most	likely	wouldn't	use	the	underlying	paper	as	a	reference
since	it	is	not	the	next	point	of	reference.	This	is	because	if	you

move	note	B,	A's	position	regarding	the	paper	will	change,	whereas
A's	relative	position	to	B	still	remains	unchanged.	To	switch	back	to
Graphics	View,	the	equivalent	situation	is	an	item	that	has	a	parent
item.	In	this	case,	the	pos()	function's	returned	value	is	expressed	in
the	coordinate	system	of	its	parent.	So,	setPos()	and	pos()	specify	the
position	of	the	item's	origin	in	relation	to	the	next	(higher)	point	of
reference.	This	can	be	the	scene	or	the	item's	parent	item.

Keep	in	mind,	however,	that	changing	an	item's	position	does	not
affect	the	item's	internal	coordinate	system.

For	widgets,	the	child	always	occupies	a	subarea	of	its	direct	parent.	For	graphics	items,
such	a	rule	does	not	apply	by	default.	A	child	item	can	be	displayed	outside	the	bounding
rectangle	or	visible	content	of	the	parent.	In	fact,	a	common	situation	is	when	the	parent
item	does	not	have	any	visual	content	by	itself	and	only	serves	as	a	container	for	a	set	of
primitives	belonging	to	one	object.

Time	for	action	–	Using	child
items
Let's	try	to	make	an	item	containing	multiple	children.	We	want	to
create	a	rectangle	with	a	filled	circle	in	each	corner	and	be	able	to
move	and	rotate	it	as	a	whole,	like	this:

First,	you	need	to	create	a	function	that	creates	a	single	complex
rectangle,	by	using	the	following	code:

QGraphicsRectItem	*createComplexItem(

				qreal	width,	qreal	height,	qreal	radius)	

{

				QRectF	rect(-width	/	2,	-height	/	2,	width,	height);

				QGraphicsRectItem	*parent	=	new	QGraphicsRectItem(rect);

				QRectF	circleBoundary(-radius,	-radius,	2	*	radius,	2	*	radius);

				for(int	i	=	0;	i	<	4;	i++)	{

								QGraphicsEllipseItem	*child	=

												new	QGraphicsEllipseItem(circleBoundary,	parent);

								child->setBrush(Qt::black);

								QPointF	pos;

								switch(i)	{

								case	0:

												pos	=	rect.topLeft();

												break;

								case	1:

												pos	=	rect.bottomLeft();

												pos	=	rect.bottomLeft();

												break;

								case	2:

												pos	=	rect.topRight();

												break;

								case	3:

												pos	=	rect.bottomRight();

												break;

								}

								child->setPos(pos);

				}

				return	parent;

}

We	start	with	creating	a	QRectF	variable	that	contains	the	rectangle
coordinates	in	the	item's	coordinate	system.	Following	the	tip	we
provided	earlier,	we	create	a	rectangle	centered	at	the	origin	point.
Next,	we	create	a	rectangle	graphics	item	called	parent,	as	usual.	The
circleBoundary	rectangle	is	set	to	contain	the	boundary	rect	of	a	single
circle	(again,	the	center	is	at	the	origin	point).	When	we	create	a
new	QGraphicsEllipseItem	for	each	corner,	we	pass	parent	to	the
constructor,	so	the	new	circle	item	is	automatically	added	as	a	child
of	the	rectangle	item.

To	set	up	a	child	circle,	we	first	use	the	setBrush()	function	that
enables	filling	of	the	circle.	This	function	expects	a	QBrush	object	that
allows	you	to	specify	an	advanced	filling	style,	but	in	our	simple
case,	we	use	an	implicit	conversion	from	the	Qt::GlobalColor	enum	to
QBrush.	You	will	learn	more	about	brushes	later	in	this	chapter.

Next,	we	select	a	different	corner	of	the	rectangle	for	each	circle	and
call	setPos()	to	move	the	circle	to	that	corner.	Finally,	we	return	the
parent	item	to	the	caller.

You	can	use	this	function	as	follows:

QGraphicsRectItem	*item1	=	createComplexItem(100,	60,	8);

scene.addItem(item1);

	

QGraphicsRectItem	*item2	=	createComplexItem(100,	60,	8);

scene.addItem(item2);

scene.addItem(item2);

item2->setPos(200,	0);

item2->setRotation(20);

Note	that	when	you	call	setPos(),	the	circles	are	moved	along	with	the
parent	item,	but	the	pos()	values	of	the	circles	do	not	change.	This	is
the	consequence	of	the	fact	that	pos()	means	the	position	relative	to
the	parent	item	(or	the	scene's	origin,	if	there	is	no	parent	item).
When	the	rectangle	is	rotated,	circles	rotate	with	it,	as	if	they	were
fixed	to	the	corners.	If	the	circles	weren't	children	of	the	rectangle,
positioning	them	properly,	in	this	case,	would	be	a	more
challenging	task.

Have	a	go	hero	–	Implementing
the	custom	rectangle	as	a
class
In	this	example,	we	avoided	creating	a	class	for	our	custom
rectangle	to	keep	the	code	as	simple	as	possible.	Following	the
principles	of	object-oriented	programming,	subclassing
QGraphicsRectItem	and	creating	children	items	in	the	constructor	of	the
new	class	is	a	good	idea.	Doing	this	doesn't	require	anything	you
don't	already	know.	For	example,	when	subclassing	QGraphicsRectItem,
you	don't	need	to	implement	any	virtual	functions,	because	they	are
all	properly	implemented	in	the	base	classes.

Conversions	between
coordinate	systems
If	an	item	is	simply	moved	using	setPos(),	conversion	from	the	item's
coordinates	to	the	scene	coordinates	is	as	simple	as	sceneCoord	=
itemCoord	+	item->pos().	However,	this	conversion	quickly	becomes	very
complex	when	you	use	transformations	and	parent–child
relationships,	so	you	should	always	use	dedicated	functions	to
perform	such	conversions.	QGraphicsItem	provides	the	following
functions:

	

Fu
nc
tio
n

Description

	

mapT

oSce

ne(

		

cons

t	

QPoi

ntF	

&poi

nt)

	

	
Maps	the	point	point	that	is	in	the	item's	coordinate	system	
to	the	corresponding	point	in	the	scene's	coordinate	system.
	

	
scen

ePos

	
Maps	the	item's	origin	point	to	the	scene's	coordinate	

()

	
system.	This	is	the	same	as	mapToScene(0,	0).
	

	
scen

eBou

ndin

gRec

t()

	

	
Returns	the	item's	bounding	rectangle	in	the	scene's	
coordinate	system.
	

	
mapF

romS

cene

(

		

cons

t	

QPoi

ntF	

&poi

nt)

	

	
Maps	the	point	point	that	is	in	the	scene's	coordinate	system	
to	the	corresponding	point	in	the	item's	coordinate	system.	
This	function	is	the	reverse	function	to	mapToScene().
	

	
mapT

oPar

ent(

		

cons

t	

QPoi

ntF	

&poi

nt)

	

	
Maps	the	point	point	that	is	in	the	item's	coordinate	system	
to	the	corresponding	point	in	the	coordinate	system	of	the	
item's	parent.	If	the	item	does	not	have	a	parent,	this	
function	behaves	like	mapToScene();	thus,	it	returns	the	
corresponding	point	in	the	scene's	coordinate	system.
	

	
mapF

romP

aren

t(

		

cons

t	

QPoi

ntF	

&poi

nt)

	

	
Maps	the	point	point	that	is	in	the	coordinate	system	of	the	
item's	parent	to	the	corresponding	point	in	the	item's	own	
coordinate	system.	This	function	is	the	reverse	function	to	
mapToParent().
	

	

	
mapT

oIte

m(

		

cons

t	

QGra

phic

sIte

m	

*ite

m,

	con

st	

QPoi

ntF	

&poi

nt)

	

	
Maps	the	point	point	that	is	in	the	item's	own	coordinate	
system	to	the	corresponding	point	in	the	coordinate	system	
of	the	item	item.
	

	
mapF

romI

tem(

		

cons

t	

QGra

phic

sIte

m	

*ite

m,

	con

st	

QPoi

ntF		

&poi

nt)

	

	
Maps	the	point	point	that	is	in	the	coordinate	system	of	the	
item	item	to	the	corresponding	point	in	the	item's	own	
coordinate	system.	This	function	is	the	reverse	function	to	
mapToItem().
	

	

What	is	great	about	these	functions	is	that	they	are	not	only
available	for	QPointF.	The	same	functions	are	also	available	for	QRectF,

QPolygonF,	and	QPainterPath,	not	to	mention	that	there	are	some
convenience	functions:

If	you	call	these	functions	with	two	numbers	of	the

qreal	type,	the	numbers	are	interpreted	as	the	x	and	y

coordinates	of	a	QPointF	pointer

If	you	call	the	functions	with	four	numbers,	the	numbers	are

interpreted	as	the	x	and	y	coordinates	and	the	width	and

height	of	a	QRectF	parameter

The	QGraphicsView	class	also	contains	a	set	of	mapToScene()	functions	that
map	coordinates	from	the	viewport's	coordinate	system	to	the	scene
coordinates	and	mapFromScene()	functions	that	map	the	scene
coordinates	to	the	viewport	coordinates.

Overview	of	functionality
You	should	now	have	some	understanding	of	Graphics	View's
architecture	and	transformation	mechanics.	We	will	now	describe
some	easy-to-use	functionality	that	you'll	probably	need	when
creating	a	Graphics	View	application.

Standard	items
In	order	to	effectively	use	the	framework,	you	need	to	know	what
graphics	item	classes	it	provides.	It's	important	to	identify	the
classes	you	can	use	to	construct	the	desirable	picture	and	resort	to
creating	a	custom	item	class,	only	if	there	is	no	suitable	item	or	you
need	better	performance.	Qt	comes	with	the	following	standard
items	that	make	your	life	as	a	developer	much	easier:

S
ta
n
d
a
r
d	
it
e
m

Description

	
QG

ra

ph

ic

sL

in

eI

te

m

	

	
Draws	a	line.	You	can	define	the	line	with	setLine(const	QLineF&).
	

	
QG

ra

ph

ic

sR

ec

	
Draws	a	rectangle.	You	can	define	the	rectangle's	geometry	
with	setRect(const	QRectF&).
	

tI

te

m

	

	

	
QG

ra

ph

ic

sE

ll

ip

se

It

em

	

	
Draws	an	ellipse	or	an	ellipse	segment.	You	can	define	the	
rectangle	within	which	the	ellipse	is	being	drawn	with	
setRect(const	QRectF&).	Additionally,	you	can	define	whether	only	
a	segment	of	the	ellipse	should	be	drawn	by	calling	
setStartAngle(int)	and	setSpanAngle(int).	The	arguments	of	both	
functions	are	in	sixteenths	of	a	degree.
	

	
QG

ra

ph

ic

sP

ol

yg

on

It

em

	

	
Draws	a	polygon.	You	can	define	the	polygon	with	
setPolygon(const	QPolygonF&).
	

	
QG

ra

ph

ic

sP

at

hI

te

m

	

	
Draws	a	path,	that	is,	a	set	of	various	geometric	primitives.	
You	can	define	the	path	with	setPath(const	QPainterPath&).
	

	
QG

ra

ph

ic

sS

im

pl

eT

ex

tI

te

m

	

	
Draws	plain	text.	You	can	define	the	text	with	setText(const	
QString&)	and	the	font	with	setFont(const	QFont&).	This	item	
doesn't	support	rich	formatting.
	

	

	
QG

ra

ph

ic

sT

ex

tI

te

m

	

	
Draws	formatted	text.	Unlike	QGraphicsSimpleTextItem,	this	item	
can	display	HTML	stored	in	a	QTextDocument	object.	You	can	set	
HTML	with	setHtml(const	QString&)	and	the	document	with	
setDocument(QTextDocument*).	QGraphicsTextItem	can	even	interact	with	
the	displayed	text	so	that	text	editing	or	URL	opening	is	
possible.
	

	
QG

ra

ph

ic

sP

ix

ma

pI

te

m

	

	
Draws	a	pixmap	(a	raster	image).	You	can	define	the	pixmap	
with	setPixmap(const	QPixmap&).	It's	possible	to	load	pixmaps	from	
local	files	or	resources,	similar	to	icons	(refer	to	Chapter	3,	Qt	
GUI	Programming,	for	more	information	about	resources).
	

	
QG

ra

ph

ic

sP

ro

xy

Wi

dg

et

	

	
Draws	an	arbitrary	QWidget	and	allows	you	to	interact	with	it.	
You	can	set	the	widget	with	setWidget(QWidget*).
	

	

As	we	already	saw,	you	can	usually	pass	the	content	of	the	item	to
the	constructor	instead	of	calling	a	setter	method	such	as	setRect().
However,	keep	in	mind	that	compact	code	may	be	harder	to
maintain	than	code	that	sets	all	the	variables	through	setter
methods.

For	most	items,	you	can	also	define	which	pen	and	which	brush
should	be	used.	The	pen	is	set	with	setPen()	and	the	brush	with
setBrush()	(we've	already	used	it	for	the	child	circles	in	the	previous
example).	These	two	functions,	however,	do	not	exist	for
QGraphicsTextItem.	To	define	the	appearance	of	a	QGraphicsTextItem	item,
you	have	to	use	setDefaultTextColor()	or	HTML	tags	supported	by	Qt.
QGraphicsPixmapItem	has	no	similar	methods,	as	the	concepts	of	pen	and
brush	cannot	be	applied	to	pixmaps.

Use	QGraphicsSimpleTextItem	wherever	possible	and	try	to	avoid	QGraphicsTextItem,	if	it	is
not	absolutely	necessary.	The	reason	is	that	QGraphicsTextItem	is	a	subclass	of	QObject	and
uses	QTextDocument,	which	is	basically	an	HTML	engine	(although	quite	limited).	This	is	way
heavier	than	an	average	graphics	item	and	is	definitely	too	much	overhead	for	displaying
simple	text.

It	is	generally	easier	to	use	standard	items	than	to	implement	them
from	scratch.	Whenever	you	will	use	Graphics	View,	ask	yourself
these	questions:	Which	standard	items	are	suited	for	my	specific
needs?	Am	I	re-inventing	the	wheel	over	and	over	again?	However,
from	time	to	time,	you	need	to	create	custom	graphics	items,	and
we'll	cover	this	topic	later	in	this	chapter.

Anti-aliasing
If	you	look	at	the	result	of	the	previous	screenshot,	you	can
probably	note	that	the	drawing	looks	pixelated.	This	happens
because	each	pixel	in	a	line	is	completely	black,	and	all	the
surrounding	pixels	are	completely	white.	The	physical	display's
resolution	is	limited,	but	a	technique	called	anti-aliasing	allows
you	to	produce	more	smooth	images	with	the	same	resolution.
When	drawing	a	line	with	anti-aliasing,	some	pixels	will	be	more	or
less	blacker	than	others,	depending	on	how	the	line	crosses	the
pixel	grid.

You	can	easily	enable	anti-aliasing	in	Graphics	View	using	the
following	code:

view.setRenderHint(QPainter::Antialiasing);

With	the	anti-aliasing	flag	turned	on,	the	painting	is	done	much
more	smoothly:

However,	lines	in	the	rectangle	on	the	left	now	look	thicker.	This
happens	because	we	used	lines	with	integer	coordinates	and	1	pixel
width.	Such	a	line	is	located	exactly	on	the	border	between	two	rows
of	pixels,	and	when	anti-aliased,	both	adjacent	rows	of	pixels	will	be

partially	painted.	This	can	be	fixed	by	adding	0.5	to	all	coordinates:

QRectF	rect(-width	/	2,	-height	/	2,	width,	height);

rect.translate(0.5,	0.5);

QGraphicsRectItem	*parent	=	new	QGraphicsRectItem(rect);

Now	the	line	is	positioned	right	in	the	middle	of	a	pixel	row,	so	it
only	occupies	a	single	row:

Another	solution	is	to	implement	a	custom	item	class	and	disable
anti-aliasing	when	painting	a	horizontal	or	vertical	line.

QGraphicsView	also	supports	the	QPainter::TextAntialiasing	flag	that	enables
anti-aliasing	when	drawing	text,	and	the	QPainter::SmoothPixmapTransform
flag	that	enables	smooth	pixmap	transformation.	Note	the	anti-
aliasing	and	smoothing	impact	performance	of	your	application,	so
use	them	only	when	needed.

Pens	and	brushes
The	pen	and	brush	are	two	attributes	that	define	how	different
drawing	operations	are	performed.	The	pen	(represented	by
the	QPen	class)	defines	the	outline,	and	the	brush		(represented	by
the	QBrush	class)	fills	the	drawn	shapes.	Each	of	them	is	really	a	set	of
parameters.	The	most	simple	one	is	the	color	defined,	either	as	a
predefined	global	color	enumeration	value	(such	as	Qt::red	or
Qt::transparent),	or	an	instance	of	the	QColor	class.	The	effective	color	is
made	up	of	four	attributes:	three	color	components	(red,	green,	and
blue)	and	an	optional	alpha	channel	value	that	determines	the
transparency	of	the	color	(the	larger	the	value,	the	more	opaque	the
color).	By	default,	all	components	are	expressed	as	8-bit	values	(0
to	255)	but	can	also	be	expressed	as	real	values	representing	a
percentage	of	the	maximum	saturation	of	the	component;	for
example,	0.6	corresponds	to	153	(0.6⋅255).	For	convenience,	one	of
the	QColor	constructors	accepts	hexadecimal	color	codes	used	in
HTML	(with	#0000FF	being	an	opaque	blue	color)	or	even	bare	color
names	(for	example,	blue)	from	a	predefined	list	of	colors	returned
by	a	static	function—QColor::colorNames().	Once	a	color	object	is	defined
using	RGB	components,	it	can	be	queried	using	different	color
spaces	(for	example,	CMYK	or	HSV).	Also,	a	set	of	static	methods
are	available	that	act	as	constructors	for	colors	expressed	in
different	color	spaces.

For	example,	to	construct	a	clear	magenta	color	any	of	the	following
expressions	can	be	used:

QColor("magenta")

QColor("#FF00FF")

QColor(255,	0,	255)

QColor::fromRgbF(1,	0,	1)

QColor::fromHsv(300,	255,	255)

QColor::fromCmyk(0,	255,	0,	0)

Qt::magenta

Apart	from	the	color,	QBrush	has	two	additional	ways	of	expressing
the	fill	of	a	shape.	You	can	use	QBrush::setTexture()	to	set	a	pixmap	that
will	be	used	as	a	stamp	or	QBrush::setGradient()	to	make	the	brush	use	a
gradient	to	do	the	filling.	For	example,	to	use	a	gradient	that	goes
diagonally	and	starts	as	yellow	in	the	top-left	corner	of	the	shape,
becomes	red	in	the	middle	of	the	shape,	and	ends	as	magenta	at	the
bottom-right	corner	of	the	shape,	the	following	code	can	be	used:

QLinearGradient	gradient(0,	0,	width,	height);

gradient.setColorAt(0,			Qt::yellow);

gradient.setColorAt(0.5,	Qt::red);

gradient.setColorAt(1.0,	Qt::magenta);

QBrush	brush	=	gradient;

When	used	with	drawing	a	rectangle,	this	code	will	give	the
following	output:

Qt	can	handle	linear	(QLinearGradient),	radial	(QRadialGradient),	and
conical	(QConicalGradient)	gradients.	Qt	provides	a	Gradients	example
(shown	in	the	following	screenshot)	where	you	can	see	different
gradients	in	action:

As	for	the	pen,	its	main	attribute	is	its	width	(expressed	in	pixels),
which	determines	the	thickness	of	the	shape	outline.	A	pen	can,	of

course,	have	a	color	set	but,	in	addition	to	that,	you	can	use	any
brush	as	a	pen.	The	result	of	such	an	operation	is	that	you	can	draw
thick	outlines	of	shapes	using	gradients	or	textures.

There	are	three	more	important	properties	for	a	pen.	The	first	is	the
pen	style,	set	using	QPen::setStyle().	It	determines	whether	lines
drawn	by	the	pen	are	continuous	or	divided	in	some	way	(dashes,
dots,	and	so	on).	You	can	see	the	available	line	styles	here:

																																					

The	second	attribute	is	the	cap	style,	which	can	be	flat,	square,	or
round.	The	third	attribute—the	join	style—is	important	for	polyline
outlines	and	dictates	how	different	segments	of	the	polyline	are
connected.	You	can	make	the	joins	sharp	(with	Qt::MiterJoin	or
Qt::SvgMiterJoin),	round	(Qt::RoundJoin),	or	a	hybrid	of	the	two
(Qt::BevelJoin).	You	can	see	the	different	pen	attribute	configurations
(including	different	join	and	cap	styles)	in	action	by	launching	the
Path	Stroking	example	shown	in	the	following	screenshot:

Item	selection
The	scene	supports	the	ability	of	selecting	items,	similar	to	how	you
select	files	in	a	file	manager.	To	be	selectable,	an	item	must	have	the
QGraphicsItem::ItemIsSelectable	flag	turned	on.	Try	to	add	parent-
>setFlag(QGraphicsItem::ItemIsSelectable,	true)	to	the	createComplexItem()
function	we	created	earlier.	Now,	if	you	run	the	application	and
click	on	a	rectangle,	it	is	selected,	which	is	indicated	by	dashed
lines:

You	can	use	the	Ctrl	button	to	select	multiple	items	at	once.
Alternatively,	you	can	call	view.setDragMode(QGraphicsView::RubberBandDrag)	to
activate	the	rubber	band	selection	for	the	view.

Another	useful	drag	mode	of	the	Graphics	View	is	ScrollHandDrag.	It	allows	you	to	scroll	the
view	by	dragging	the	scene	with	the	left	mouse	button,	without	the	need	to	use	scrollbars.

Besides	that,	there	are	different	ways	to	select	items
programmatically.	There	is	the	item's	QGraphicsItem::setSelected()
function,	which	takes	a	bool	value	to	toggle	the	selection	state	on	or
off,	or	you	can	call	QGraphicsScene::setSelectionArea()	on	the	scene,	which
takes	a	QPainterPath	parameter	as	an	argument,	in	which	case	all	items
within	the	area	are	selected.

With	the	scene's	QGraphicsScene::selectedItems()	function,	you	can	query
the	actual	selected	items.	The	function	returns	a	QList	holding
QGraphicsItem	pointers	to	the	selected	items.	For	example,	calling
QList::count()	on	that	list	will	give	you	the	number	of	selected	items.
To	clear	the	selection,	call	QGraphicsScene::clearSelection().	To	query	the
selection	state	of	an	item,	use	QGraphicsItem::isSelected(),	which	returns
true	if	the	item	is	selected	and	false	otherwise.

Another	interesting	flag	of	GraphicsItem	is	ItemIsMovable.	It	enables	you	to	drag	the	item
within	the	scene	by	holding	it	with	the	left	mouse	button,	effectively	changing	the	pos()	of
the	item.	Try	to	add	parent->setFlag(QGraphicsItem::ItemIsMovable,	true)	to	our
createComplexItem	function	and	drag	around	the	rectangles.

Keyboard	focus	in	graphics
scene
The	scene	implements	the	concept	of	focus	that	works	similar	to
keyboard	focus	in	widgets.	Only	one	item	can	have	focus	at	a	time.
When	the	scene	receives	a	keyboard	event,	it	is	dispatched	to	the
focus	item.

To	be	focusable,	an	item	must	have	the	QGraphicsItem::ItemIsFocusable	flag
enabled:

item1->setFlag(QGraphicsItem::ItemIsFocusable,	true);

item2->setFlag(QGraphicsItem::ItemIsFocusable,	true);

Then,	an	item	can	be	focused	by	a	mouse	click.	You	can	also	change
the	focused	item	from	the	code:

item1->setFocus();

Another	way	to	set	the	focus	is	to	use	the	scene's
QGraphicsScene::setFocusItem()	function,	which	expects	a	pointer	to	the
item	you	like	to	focus	as	a	parameter.	Every	time	an	item	gains
focus,	the	previously	focused	item	(if	any)	will	automatically	lose
focus.

To	determine	whether	an	item	has	focus,	you	again	have	two
possibilities.	One	is	that	you	can	call	QGraphicsItem::hasFocus()	on	an
item,	which	returns	true	if	the	item	has	focus	or	false	otherwise.
Alternatively,	you	can	get	the	actual	focused	item	by	calling	the
scene's	QGraphicsScene::focusItem()	method.	On	the	other	hand,	if	you
call	the	item's	QGraphicsItem::focusItem()	function,	the	focused	item	is

returned	if	the	item	itself	or	any	descendant	item	has	focus;
otherwise,	nullptr	is	returned.	To	remove	focus,	call	clearFocus()	on	the
focused	item	or	click	somewhere	in	the	scene's	background	or	on	an
item	that	cannot	get	focus.

If	you	want	a	click	on	the	scene's	background	not	to	cause	the	focused	item	to	lose	its	focus,
set	the	scene's	stickyFocus	property	to	true.

Painter	paths
If	you	want	to	create	a	graphics	item	that	consists	of	multiple
geometric	primitives,	creating	multiple	QGraphicsItem	objects	seems	to
be	tedious.	Fortunately,	Qt	provides	a		QGraphicsPathItem	class	that
allows	you	to	specify	a	number	of	primitives	in	a	QPainterPath	object.
QPainterPath	allows	you	to	"record"	multiple	painting	instructions
(including	filling,	outlining,	and	clipping),	and	then	efficiently	reuse
them	multiple	times.

Time	for	action	–	Adding	path
items	to	the	scene
Let's	paint	a	few	objects	consisting	of	a	large	number	of	lines:

static	const	int	SIZE	=	100;

static	const	int	MARGIN	=	10;

static	const	int	FIGURE_COUNT	=	5;

static	const	int	LINE_COUNT	=	500;

for(int	figureNum	=	0;	figureNum	<	FIGURE_COUNT;	++figureNum)	{

				QPainterPath	path;

				path.moveTo(0,	0);

				for(int	i	=	0;	i	<	LINE_COUNT;	++i)	{

								path.lineTo(qrand()	%	SIZE,	qrand()	%	SIZE);

				}

				QGraphicsPathItem	*item	=	scene.addPath(path);

				item->setPos(figureNum	*	(SIZE	+	MARGIN),	0);

}

For	each	item,	we	first	create	a	QPainterPath	and	set	the	current
position	to	(0,	0).	Then,	we	use	the	qrand()	function	to	generate
random	numbers,	apply	the	modulus	operator	(%)	to	produce	a
number	from	0	to	SIZE	(excluding	SIZE),	and	feed	them	to	the	lineTo()
function	that	strokes	a	line	from	the	current	position	to	the	given
position	and	sets	it	as	the	new	current	position.	Next,	we	use
the	addPath()	convenience	function	that	creates	a	QGraphicsPathItem	object
and	adds	it	to	the	scene.	Finally,	we	use	setPos()	to	move	each	item	to
a	different	position	in	the	scene.	The	result	looks	like	this:

QPainterPath	allows	you	to	use	practically	every	paint	operation	Qt	supports.	For	example,
QGraphicsPathItem	is	the	only	standard	item	able	to	draw	Bezier	curves	in	the	scene,	as
QPainterPath	supports	them.	Refer	to	the	documentation	of	QPainterPath	for	more
information.

Using	painter	paths	in	this	example	is	very	efficient,	because	we
avoided	creating	thousands	of	individual	line	objects	on	the	heap.
However,	putting	a	large	part	of	a	scene	in	a	single	item	may	reduce
the	performance.	When	parts	of	the	scene	are	separate	graphics
items,	Qt	can	efficiently	determine	which	items	are	not	visible	and
skip	drawing	them.

Z-order	of	items
Have	you	wondered	what	happens	when	multiple	items	are	painted
in	the	same	area	of	the	scene?	Let's	try	to	do	this:

QGraphicsEllipseItem	*item1	=	scene.addEllipse(0,	0,	100,	50);

item1->setBrush(Qt::red);

QGraphicsEllipseItem	*item2	=	scene.addEllipse(50,	0,	100,	50);

item2->setBrush(Qt::green);

QGraphicsEllipseItem	*item3	=	scene.addEllipse(0,	25,	100,	50);

item3->setBrush(Qt::blue);

QGraphicsEllipseItem	*item4	=	scene.addEllipse(50,	25,	100,	50);

item4->setBrush(Qt::gray);

By	default,	items	are	painted	in	the	order	they	were	added,	so	the
last	item	will	be	displayed	in	front	of	the	others:

However,	you	can	change	the	z-order	by	calling	the	setZValue()
function:

item2->setZValue(1);

The	second	item	is	now	displayed	in	front	of	the	others:

Items	with	a	higher	z	value	are	displayed	on	top	of	the	items	with
lower	z	values.	The	default	z	value	is	0.	Negative	values	are	also
possible.	If	items	have	the	same	z	value,	the	order	of	insertion
decides	the	placement,	and	items	added	later	overlap	those	added
earlier.

Ability	to	change	the	z-order	of	items	is	very	important	when
developing	2D	games.	Any	scene	typically	consists	of	a	number	of
layers	that	must	be	painted	in	a	specific	order.	You	can	set	a	z	value
for	each	item	based	on	the	layer	this	item	belongs	to.

The	parent–child	relationship	between	items	also	has	an	impact	on	the	z-order.	Children
are	displayed	on	top	of	their	parent.	Additionally,	if	an	item	is	displayed	in	front	of	another
item,	the	children	of	the	former	are	also	displayed	in	front	of	the	children	of	the	latter.

Ignoring	transformations
If	you	try	to	zoom	in	on	our	custom	rectangles	scene	(for	example,
by	calling	view.scale(4,	4))	,	you	will	note	that	everything	is	scaled
proportionally,	as	you	would	expect.	However,	there	are	situations
where	you	don't	want	some	elements	to	be	affected	by	scale	or	other
transformations.	Qt	provides	multiple	ways	to	deal	with	it.

If	you	want	lines	to	always	have	the	same	width,	regardless	of	the
zoom,	you	need	to	make	the	pen	cosmetic:

QPen	pen	=	parent->pen();

pen.setCosmetic(true);

parent->setPen(pen);

Now,	the	rectangles	will	always	have	lines	with	one-pixel	width,
regardless	of	the	view's	scale	(anti-aliasing	can	still	blur	them,
though).	It's	also	possible	to	have	cosmetic	pens	with	any	width,	but
using	them	in	Graphics	View	is	not	recommended.

Another	common	situation	where	you	don't	want	transformation	to
apply	is	displaying	text.	Rotating	and	shearing	text	usually	makes	it
unreadable,	so	you'd	usually	want	to	make	it	horizontal	and
untransformed.	Let's	try	to	add	some	text	to	our	project	and	look	at
how	we	can	solve	this	problem.

Time	for	action	–	Adding	text	to
a	custom	rectangle
Let's	add	a	number	to	each	of	the	corner	circles:

child->setPos(pos);

QGraphicsSimpleTextItem	*text	=

				new	QGraphicsSimpleTextItem(QString::number(i),	child);

text->setBrush(Qt::green);

text->setPos(-text->boundingRect().width()	/	2,

													-text->boundingRect().height()	/	2);

The	QString::number(i)	function	returns	the	string	representation	of
number	i.	The	text	item	is	a	child	of	the	circle	item,	so	its	position	is
relative	to	the	circle's	origin	point	(in	our	case,	its	center).	As	we
saw	earlier,	the	text	is	displayed	to	the	top-left	of	the	item's	origin,
so	if	we	want	to	center	the	text	within	the	circle,	we	need	to	shift	it
up	and	right	by	half	of	the	item's	size.	Now	the	text	is	positioned
and	rotated	along	with	its	parent	circle:

However,	we	don't	want	the	text	to	be	rotated,	so	we	need	to	enable
the	ItemIgnoresTransformations	flag	for	the	text	item:

text->setFlag(QGraphicsItem::ItemIgnoresTransformations);

text->setFlag(QGraphicsItem::ItemIgnoresTransformations);

This	flag	makes	the	item	ignore	any	transformations	of	its	parent
items	or	the	view.	However,	the	origin	of	its	coordinate	system	is
still	defined	by	the	position	of	pos()	in	the	parent's	coordinate
system.	So,	the	text	item	will	still	follow	the	circle,	but	it	will	no
longer	be	scaled	or	rotated:

However,	now	we	hit	another	problem:	the	text	is	no	longer
properly	centered	in	the	circle.	It	will	become	more	apparent	if	you
scale	the	view	again.	Why	did	that	happen?	With
the	ItemIgnoresTransformations	flag,	our	text->setPos(...)	statement	is	no
longer	correct.	Indeed,	pos()	uses	coordinates	in	the	parent's
coordinate	system,	but	we	used	the	result	of	boundingRect(),	which	uses
the	item's	coordinate	system.	These	two	coordinate	systems	were
the	same	before,	but	with	the	ItemIgnoresTransformations	flag	enabled,
they	are	now	different.

To	elaborate	on	this	problem,	let's	see	what	happens	with	the
coordinates	(we	will	consider	only	x	coordinate,	since	y	behaves	the
same).	Let's	say	that	our	text	item's	width	is	eight	pixels,	so	the	pos()
we	set	has	x	=	-4.	When	no	transformations	are	applied,	this	pos()
results	in	shifting	the	text	to	the	left	by	four	pixels.	If
the	ItemIgnoresTransformations	flag	is	disabled	and	the	view	is	scaled	by	2,
the	text	is	shifted	by	eight	pixels	relative	to	the	circle's	center,	but
the	size	of	the	text	itself	is	now	16	pixels,	so	it's	still	centered.	If
the	ItemIgnoresTransformations	flag	is	enabled,	the	text	is	still	shifted	to

the	left	by	eight	pixels	relative	to	the	circle's	center	(because	pos()
operates	in	the	parent	item's	coordinate	system,	and	the	circle	is
scaled),	but	the	width	of	the	item	is	now	8,	because	it	ignores	the
scale	and	so	it's	no	longer	centered.	When	the	view	is	rotated,	the
result	is	even	more	incorrect,	because	setPos()	will	shift	the	item	in
the	direction	that	depends	on	the	rotation.	Since	the	text	item	itself
is	not	rotated,	we	always	want	to	shift	it	up	and	left.

This	problem	would	go	away	if	the	item	were	already	centered
around	its	origin.	Unfortunately,	QGraphicsSimpleTextItem	can't	do	this.
Now,	if	it	were		QGraphicsRectItem,	doing	this	would	be	easy,	but	nothing
stops	us	from	adding	a	rectangle	that	ignores	transformations	and
then	adding	text	inside	that	rectangle!	Let's	do	this:

QGraphicsSimpleTextItem	*text	=

								new	QGraphicsSimpleTextItem(QString::number(i));

QRectF	textRect	=	text->boundingRect();

textRect.translate(-textRect.center());

QGraphicsRectItem	*rectItem	=	new	QGraphicsRectItem(textRect,	child);

rectItem->setPen(QPen(Qt::green));

rectItem->setFlag(QGraphicsItem::ItemIgnoresTransformations);

text->setParentItem(rectItem);

text->setPos(textRect.topLeft());

text->setBrush(Qt::green);

In	this	code,	we	first	create	a	text	item,	but	don't	set	its	parent.
Next,	we	get	the	bounding	rect	of	the	item	that	will	tell	us	how
much	space	the	text	needs.	Then,	we	shift	the	rect	so	that	its	center
is	at	the	origin	point	(0,	0).	Now	we	can	create	a	rect	item	for	this
rectangle,	set	the	circle	as	its	parent,	and	disable	transformations
for	the	rect	item.	Finally,	we	set	the	rect	item	as	the	parent	of	the
text	item	and	change	the	position	of	the	text	item	to	place	it	inside
the	rectangle.

The	rectangle	is	now	properly	positioned	at	the	center	of	the	circle,
and	the	text	item	always	follows	the	rectangle,	as	children	usually
do:

Since	we	didn't	originally	want	the	rectangle,	we	may	want	to	hide	it.	We	can't	use
rectItem->hide()	in	this	case,	because	that	would	also	result	in	hiding	its	child	item	(the
text).	The	solution	is	to	disable	the	painting	of	the	rectangle	by	calling	rectItem-
>setPen(Qt::NoPen).

An	alternative	solution	to	this	problem	is	to	translate	the	text	item's
coordinate	system	instead	of	using	setPos().	QGraphicsItem	doesn't	have
a	dedicated	function	for	translation,	so	we	will	need	to	use
setTransform:

QTransform	transform;

transform.translate(-text->boundingRect().width()	/	2,

																				-text->boundingRect().height()	/	2);

text->setTransform(transform);

Contrary	to	what	you	would	expect,	ItemIgnoresTransformations	doesn't
cause	the	item	to	ignore	its	own	transformations,	and	this	code	will
position	the	text	correctly	without	needing	an	additional	rectangle
item.

Finding	items	by	position
If	you	want	to	know	which	item	is	shown	at	a	certain	position,	you
can	use	the	QGraphicsScene::itemAt()	function	that	takes	the	position	in
the	scene's	coordinate	system	(either	a	QPointF	or	two	qreal	numbers)
and	the	device	transformation	object	(QTransform)	that	can	be	obtained
using	the	QGraphicsView::transform()	function.	The	function	returns	the
topmost	item	at	the	specified	position	or	a	null	pointer	if	no	item
was	found.	The	device	transformation	only	matters	if	your	scene
contains	items	that	ignore	transformations.	If	you	have	no	such
items,	you	can	use	the	default-constructed	QTransform	value:

QGraphicsItem	*foundItem	=	scene.itemAt(scenePos,	QTransform());

If	your	scene	contains	items	that	ignore	transformations,	it	may	be
more	convenient	to	use	the	QGraphicsView::itemAt()	function	that
automatically	takes	the	device	transform	into	account.	Note	that
this	function	expects	the	position	to	be	in	the	viewport's	coordinate
system.

If	you	want	all	items	that	are	located	at	some	position,	say	in	cases
where	multiple	items	are	on	top	of	each	other,	or	if	you	need	to
search	for	items	in	some	area,	use	the	
QGraphicsScene::items()	function.	It	will	return	a	list	of	items	defined	by
the	specified	arguments.	This	function	has	a	number	of	overloads
that	allow	you	to	specify	a	single	point,	a	rectangle,	a	polygon,	or	a
painter	path.	The	deviceTransform	argument	works	in	the	same	way	as
for	the	QGraphicsScene::itemAt()	function	discussed	earlier.	The	mode
argument	allows	you	to	alter	how	the	items	in	the	area	will	be
determined.	The	following	table	shows	the	different	modes:

Mod Meaning

e

	
Qt::Co

ntains

ItemBo

unding

Rect

	

	
The	item's	bounding	rectangle	must	be	completely	inside	
the	selection	area.
	

	
Qt::In

tersec

tsItem

Boundi

ngRect

	

	
Similar	to	Qt::ContainsItemBoundingRect	but	also	returns	items	
whose	bounding	rectangles	intersect	with	the	selection	
area.
	

	
Qt::Co

ntains

ItemSh

ape

	

	
The	item's	shape	must	be	completely	inside	the	selection	
area.	The	shape	may	describe	the	item's	boundaries	more	
precisely	than	the	bounding	rectangle,	but	this	operation	
is	more	computationally	intensive.
	

	
Qt::In

tersec

tsItem

Shape

	

	
Similar	to	Qt::ContainsItemShape	but	also	returns	items	whose	
shapes	intersect	with	the	selection	area.
	

	

The	items()	function	sorts	items	according	to	their	stacking
order.	The	order	argument	allows	you	to	choose	the	order	in	which
the	results	will	be	returned.		Qt::DescendingOrder	(default)	will	place	the
topmost	item	at	the	beginning,	and		Qt::AscendingOrder	will	result	in	a
reversed	order.

The	view	also	provides	a	similar	QGraphicsView::items()	function	that
operates	in	viewport	coordinates.

Showing	specific	areas	of	the
scene
As	soon	as	the	scene's	bounding	rectangle	exceeds	the	viewport's
size,	the	view	will	show	scroll	bars.	Besides	using	them	with	the
mouse	to	navigate	to	a	specific	item	or	point	on	the	scene,	you	can
also	access	them	by	code.	Since	the	view	inherits	QAbstractScrollArea,
you	can	use	all	its	functions	for	accessing	the	scroll	bars;
horizontalScrollBar()	and	verticalScrollBar()	return	a	pointer	to	QScrollBar,
and	thus	you	can	query	their	range	with	minimum()	and	maximum().	By
invoking	value()	and	setValue(),	you	get	and	can	set	the	current	value,
which	results	in	scrolling	the	scene.

However,	normally,	you	do	not	need	to	control	free	scrolling	inside
the	view	from	your	source	code.	The	normal	task	would	be	to	scroll
to	a	specific	item.	In	order	to	do	that,	you	do	not	need	to	do	any
calculations	yourself;	the	view	offers	a	pretty	simple	way	to	do	that
for	you—centerOn().	With	centerOn(),	the	view	ensures	that	the	item,
which	you	have	passed	as	an	argument,	is	centered	on	the	view
unless	it	is	too	close	to	the	scene's	border	or	even	outside.	Then,	the
view	tries	to	move	it	as	far	as	possible	on	the	center.	The
centerOn()	function	does	not	only	take	a	QGraphicsItem	item	as	argument;
you	can	also	center	on	a	QPointF	pointer	or	as	a	convenience	on	an	x
and	y	coordinate.

If	you	do	not	care	where	an	item	is	shown,	you	can	simply	call
ensureVisible()	with	the	item	as	an	argument.	Then,	the	view	scrolls
the	scene	as	little	as	possible	so	that	the	item's	center	remains	or
becomes	visible.	As	a	second	and	third	argument,	you	can	define	a
horizontal	and	vertical	margin,	which	are	both	the	minimum	space
between	the	item's	bounding	rectangle	and	the	view's	border.	Both
values	have	50	pixels	as	their	default	value.	Besides	a	QGraphicsItem

item,	you	can	also	ensure	the	visibility	of	a	QRectF	element	(of	course,
there	is	also	the	convenience	function	taking	four	qreal	elements).

If	you	need	to	ensure	the	entire	visibility	of	an	item,	use	ensureVisible(item-
>boundingRect())	(since	ensureVisible(item)	only	takes	the	item's	center	into	account).

centerOn()	and	ensureVisible()	only	scroll	the	scene	but	do	not	change	its
transformation	state.	If	you	absolutely	want	to	ensure	the	visibility
of	an	item	or	a	rectangle	that	exceeds	the	size	of	the	view,	you	have
to	transform	the	scene	as	well.	With	this	task,	again	the	view	will
help	you.	By	calling	fitInView()	with	QGraphicsItem	or	a	QRectF	element	as
an	argument,	the	view	will	scroll	and	scale	the	scene	so	that	it	fits	in
the	viewport	size.

As	a	second	argument,	you	can	control	how	the	scaling	is	done.	You
have	the	following	options:

Value Description

	
Qt::Ignore

AspectRati

o

	

	
The	scaling	is	done	absolutely	freely	regardless	of	the	
item's	or	rectangle's	aspect	ratio.
	

	
Qt::KeepAs

pectRatio

	

	
The	item's	or	rectangle's	aspect	ratio	is	taken	into	
account	while	trying	to	expand	as	far	as	possible	while	
respecting	the	viewport's	size.
	

	
Qt::KeepAs

pectRatioB

yExpanding

	

	
The	item's	or	rectangle's	aspect	ratio	is	taken	into	
account,	but	the	view	tries	to	fill	the	whole	viewport's	
size	with	the	smallest	overlap.
	

	

The	fitInView()	function	does	not	only	scale	larger	items	down	to	fit
the	viewport,	it	also	enlarges	items	to	fill	the	whole	viewport.	The
following	diagram	illustrates	the	different	scaling	options	for	an
item	that	is	enlarged	(the	circle	on	the	left	is	the	original	item,	and
the	black	rectangle	is	the	viewport):

																			

Saving	a	scene	to	an	image	file
We've	only	displayed	our	scene	in	the	view	so	far,	but	it	is	also
possible	to	render	it	to	an	image,	a	printer,	or	any	other	object	Qt
can	use	for	painting.	Let's	save	our	scene	to	a	PNG	file:

QRect	rect	=	scene.sceneRect().toAlignedRect();

QImage	image(rect.size(),	QImage::Format_ARGB32);

image.fill(Qt::transparent);

QPainter	painter(&image);

scene.render(&painter);

image.save("scene.png");

What	just	happened?
First,	you	determined	the	rectangle	of	the	scene	with	sceneRect().
Since	this	returns	a	QRectF	parameter	and	QImage	can	only	handle	QRect,
you	transformed	it	on	the	fly	by	calling	toAlignedRect().	The	difference
between	the	toRect()	function	and	toAlignedRect()	is	that	the	former
rounds	to	the	nearest	integer,	which	may	result	in	a	smaller
rectangle,	whereas	the	latter	expands	to	the	smallest	possible
rectangle	containing	the	original	QRectF	parameter.

Then,	you	created	a	QImage	file	with	the	size	of	the	aligned	scene's
rectangle.	As	the	image	is	created	with	uninitialized	data,	you	need
to	call	fill()	with	Qt::transparent	to	receive	a	transparent	background.
You	can	assign	any	color	you	like	as	an	argument	both	as	a	value	of
Qt::GlobalColor	enumeration	and	an	ordinary	QColor	object;	QColor(0,	0,
255)	will	result	in	a	blue	background.	Next,	you	create	a	QPainter	object
that	points	to	the	image.	This	painter	object	is	then	used	in	the
scene's	render()	function	to	draw	the	scene.	After	that,	all	you	have	to
do	is	use	the	save()	function	to	save	the	image	to	a	place	of	your
choice.	The	format	of	the	output	file	is	determined	by	its	extension.
Qt	supports	a	variety	of	formats,	and	Qt	plugins	can	add	support	for
new	formats.	Since	we	haven't	specified	a	path,	the	image	will	be
saved	in	the	application's	working	directory	(which	is	usually	the
build	directory,	unless	you	changed	it	using	the	Projects	pane	of	Qt
Creator).	You	can	also	specify	an	absolute	path,	such	as
/path/to/image.png.

Of	course,	you'll	need	to	construct	a	path	that's	valid	on	the	current	system	instead	of	hard-
coding	it	in	the	sources.	For	example,	you	can	use	the	QFileDialog::getSaveFileName()
function	to	ask	the	user	for	a	path.

Have	a	go	hero	–	Rendering
only	specific	parts	of	a	scene
This	example	draws	the	whole	scene.	Of	course,	you	can	also	render
only	specific	parts	of	the	scene	using	the	other	arguments	of	render().
We	will	not	go	into	this	here,	but	you	may	want	to	try	it	as	an
exercise.

Custom	items
As	we	already	saw,	Graphics	View	provides	a	lot	of	useful
functionality	that	covers	most	typical	use	cases.	However,	the	real
power	of	Qt	is	its	extensibility,	and	Graphics	View	allows	us	to
create	custom	subclasses	of	QGraphicsItem	to	implement	items	that	are
tailored	for	your	application.	You	may	want	to	implement	a	custom
item	class	when	you	need	to	do	the	following:

Paint	something	that	is	not	possible	or	difficult	to	do	with

standard	item	classes

Implement	some	logic	related	to	the	item,	for	example,	add

your	own	methods

Handle	events	in	individual	items

In	our	next	small	project,	we	will	create	an	item	that	can	draw	a
graph	of	the	sine	function	sin(x)	and	implement	some	event
handling.

Time	for	action	–	Creating	a
sine	graph	project
Use	Qt	Creator	to	create	a	new	Qt	Widgets	project	and	name	it
sine_graph.	On	the	Class	Information	page	of	the	wizard,	select	QWidget
as	the	base	class	and	input	View	as	the	class	name.	Uncheck
the	Generate	form	checkbox	and	finish	the	wizard.

We	want	the	View	class	to	be	the	graphics	view,	so	you	need	to
change	the	base	class	to	QGraphicsView	(the	wizard	doesn't	suggest	such
an	option).	For	this,	edit	the	class	declaration	to	look	like	class	View	:
public	QGraphicsView	...	and	the	constructor	implementation	to	look	like
View::View(QWidget	*parent)	:	QGraphicsView(parent)

Next,	edit	the	View	constructor	to	enable	anti-aliasing	and	set	a	new
graphics	scene	for	our	view:

setRenderHint(QPainter::Antialiasing);

setScene(new	QGraphicsScene);

The	view	doesn't	delete	the	associated	scene	on	destruction
(because	you	may	have	multiple	views	for	the	same	scene),	so	you
should	delete	the	scene	manually	in	the	destructor:

delete	scene();

You	can	try	to	run	the	application	and	check	that	it	displays	an
empty	view.

Time	for	action	–	Creating	a
graphics	item	class
Ask	Qt	Creator	to	add	a	new	C++	class	to	the	project.	Input	SineItem
as	the	class	name,	leave	<Custom>	in	the	Base	class	drop-down	list,
and	input	QGraphicsItem	in	the	field	below	it.	Finish	the	wizard	and
open	the	created	sineitem.h	file.

Set	the	text	cursor	inside	QGraphicsItem	in	the	class	declaration	and
press	Alt	+	Enter.	At	first;	Qt	Creator	will	suggest	that	you	Add
#include	<QGraphicsItem>.	Confirm	that	and	press	Alt	+	Enter	on
QGraphicsItem	again.	Now,	Qt	Creator	should	suggest	that	you
select	Insert	Virtual	Functions	of	Base	Classes.	When	you	select	this
option,	a	special	dialog	will	appear:

The	function	list	contains	all	virtual	functions	of	the	base	class.	The
pure	virtual	functions	(which	must	be	implemented	if	you	want	to
create	objects	of	the	class)	are	enabled	by	default.	Check	that
everything	is	set	as	in	the	preceding	screenshot,	and	then	click
on	OK.	This	convenient	operation	adds	declaration	and
implementation	of	the	selected	virtual	functions	to	the	source	files

of	our	class.	You	can	write	them	manually	instead,	if	you	want.

Let's	edit	sineitem.cpp	to	implement	the	two	pure	virtual	functions.
First	of	all,	a	couple	of	constants	at	the	top	of	the	file:

static	const	float	DX	=	1;

static	const	float	MAX_X	=	50;

In	our	graph,	x	will	vary	from	0	to	MAX_X,	and	DX	will	be	the	difference
between	the	two	consequent	points	of	the	graph.	As	you	may	know,
sin(x)	can	have	values	from	-1	to	1.	This	information	is	enough	to
implement	the	boundingRect()	function:

QRectF	SineItem::boundingRect()	const

{

				return	QRectF(0,	-1,	MAX_X,	2);

}

This	function	simply	returns	the	same	rectangle	every	time.	In	this
rectangle,	x	changes	from	0	to	MAX_X,	and	y	changes	from	-1	to	1.	This
returned	rectangle	is	a	promise	to	the	scene	that	the	item	will	only
paint	in	this	area.	The	scene	relies	on	the	correctness	of	that
information,	so	you	should	strictly	obey	that	promise.	Otherwise,
the	scene	will	become	cluttered	up	with	relics	of	your	drawing!

Now,	implement	the	paint()	function,	as	follows:

void	SineItem::paint(QPainter	*painter,	

				const	QStyleOptionGraphicsItem	*option,	QWidget	*widget)

{

				QPen	pen;

				pen.setCosmetic(true);

				painter->setPen(pen);

				const	int	steps	=	qRound(MAX_X	/	DX);

				QPointF	previousPoint(0,	sin(0));

				for(int	i	=	1;	i	<	steps;	++i)	{

								const	float	x	=	DX	*	i;

								QPointF	point(x,	sin(x));

								painter->drawLine(previousPoint,	point);

								previousPoint	=	point;

				}

				Q_UNUSED(option)

				Q_UNUSED(widget)

}

Add	#include	<QtMath>	to	the	top	section	of	the	file	to	make	math
functions	available.

What	just	happened?
When	the	view	needs	to	display	the	scene,	it	calls	the	paint()	function
of	each	visible	item	and	provides	three	arguments:	a	QPainter	pointer
that	should	be	used	for	painting,	a	QStyleOptionGraphicsItem	pointer	that
contains	painting-related	parameters	for	this	item,	and	an	optional
QWidget	pointer	that	may	point	to	the	currently	painted	widget.	In	the
implementation	of	the	function,	we	start	with	setting	a	cosmetic	pen
in	the	painter	so	that	the	line	width	of	our	graph	is	always	1.	Next,	we
calculate	the	number	of	points	in	the	graph	and	save	it	to	the	steps
variable.	Then,	we	create	a	variable	to	store	the	previous	point	of
the	graph	and	initialize	it	with	the	position	of	the	first	point	of	the
graph	(corresponding	to	x	=	0).	Next,	we	iterate	through	points,
calculate	x	and	y	for	each	point,	and	then	use	the	painter	object	to
draw	a	line	from	the	previous	point	to	the	current	point.	After	this,
we	update	the	value	of	the	previousPoint	variable.	We	use	the	Q_UNUSED()
macro	to	suppress	compiler	warnings	about	unused	arguments	and
to	indicate	that	we,	intentionally,	didn't	use	them.

Edit	the	constructor	of	our	View	class	to	create	an	instance	of	our	new
item:

SineItem	*item	=	new	SineItem();

scene()->addItem(item);

The	application	should	display	the	sine	graph	now,	but	it	is	very
small:

We	should	add	a	way	for	users	to	scale	our	view	using	the	mouse
wheel.	However,	before	we	get	to	this,	you	need	to	learn	a	little
more	about	event	handling.

Events
Any	GUI	application	needs	to	react	to	the	input	events.	We	are
already	familiar	with	the	signals	and	slots	mechanism	in	QObject-
based	classes.	However,	QObject	is	not	exactly	a	lightweight	class.
Signals	and	slots	are	powerful	and	convenient	for	connecting	parts
of	the	application,	but	invoking	a	signal	for	processing	each
keyboard	press	or	mouse	move	will	be	too	inefficient.	To	process
such	events,	Qt	has	a	special	system	that	uses	the	QEvent	class.

The	dispatcher	of	the	events	is	the	event	loop.	Almost	any	Qt
application	uses	the	main	event	loop	that	is	started	by	calling
QCoreApplication::exec	at	the	end	of	the	main()	function.	While	the
application	is	running,	the	control	flow	is	either	in	your	code	(that
is,	in	the	implementation	of	any	function	in	the	project)	or	in	the
event	loop.	When	the	operating	system	or	a	component	of	the
application	asks	the	event	loop	to	process	an	event,	it	determines
the	receiver	and	calls	a	virtual	function	that	corresponds	to	the
event	type.	A	QEvent	object	containing	information	about	the	event	is
passed	to	that	function.	The	virtual	function	has	a	choice	to	accept
or	ignore	the	event.	If	the	event	was	not	accepted,	the	event	is
propagated	to	the	parent	object	in	the	hierarchy	(for	example,
from	a	widget	to	its	parent	widget,	and	from	a	graphics	item	to	the
parent	item).	You	can	subclass	a	Qt	class	and	reimplement	a	virtual
function	to	add	custom	events	processing.

The	following	table	shows	the	most	useful	events:

Event	types Description

QEvent::KeyPress,	
QEvent::KeyRelease

A	keyboard	button	was	pressed	or
released.

QEvent::MouseButtonPress,	
QEvent::MouseButtonRelease,	
QEvent::MouseButtonDblClic

k

The	mouse	buttons	were	pressed	or
released.

QEvent::Wheel The	mouse	wheel	was	rolled.

QEvent::Enter
The	mouse	cursor	entered	the	object's
boundaries.

QEvent::MouseMove The	mouse	cursor	was	moved.

QEvent::Leave
The	mouse	cursor	left	the	object's
boundaries.

QEvent::Resize

The	widget	was	resized	(for	example,
because	the	user	resized	the	window	or
the	layout	changed).

QEvent::Close
The	user	attempted	to	close	the	widget's
window.

QEvent::ContextMenu

The	user	requested	a	context	menu	(the
exact	action	depends	on	the	operating
system's	way	to	open	the	context	menu).

QEvent::Paint The	widget	needs	to	be	repainted.

QEvent::DragEnter,	
QEvent::DragLeave,	
QEvent::DragMove,	
QEvent::Drop

The	user	performs	a	drag	and	drop
action.

QEvent::TouchBegin,	
QEvent::TouchUpdate,	
QEvent::TouchEnd,	
QEvent::TouchCancel

A	touchscreen	or	a	trackpad	reported	an
event.

	

Each	event	type	has	a	corresponding	class	that	inherits	QEvent	(for
example,	QMouseEvent).	Many	event	types	have	the	dedicated	virtual
function,	for	example,	QWidget::mousePressEvent	and
QGraphicsItem::mousePressEvent.	More	exotic	events	must	be	processed	by
re-implementing	the	QWidget::event	(or	QGraphicsItem::sceneEvent)	function
that	receives	all	events,	and	using	event->type()	to	check	the	event
type.

Events	dispatched	in	the	graphics	scene	have	special	types	(for
example,	QEvent::GraphicsSceneMousePress)	and	special	classes	(for
example,	QGraphicsSceneMouseEvent)	because	they	have	an	extended	set	of
information	about	the	event.	In	particular,	mouse	events	contain
information	about	the	coordinates	in	the	item's	and	the	scene's
coordinate	systems.

Time	for	action	–	Implementing
the	ability	to	scale	the	scene
Let's	allow	the	user	to	scale	the	scene	using	the	mouse	wheel	on	the
view.	Switch	to	the	view.h	file	and	add	a	declaration	and	an
implementation	of	the	wheelEvent()	virtual	function	using	the	same
method	we	just	used	in	the	SineItem	class.	Write	the	following	code	in
the	view.cpp	file:

void	View::wheelEvent(QWheelEvent	*event)

{

				QGraphicsView::wheelEvent(event);

				if	(event->isAccepted())	{

								return;

				}

				const	qreal	factor	=	1.1;

				if	(event->angleDelta().y()	>	0)	{

								scale(factor,	factor);

				}	else	{

								scale(1	/	factor,	1	/	factor);

				}

				event->accept();

}

If	you	run	the	application	now,	you	can	scale	the	sine	graph	using
the	mouse	wheel.

What	just	happened?
When	an	event	occurs,	Qt	calls	the	corresponding	virtual	function
in	the	widget	in	which	the	event	occurred.	In	our	case,	whenever	the
user	uses	the	mouse	wheel	on	our	view,	the	wheelEvent()	virtual
function	will	be	called,	and	the	event	argument	will	hold	information
about	the	event.

In	our	implementation,	we	start	with	calling	the	base	class's
implementation.	It	is	very	important	to	do	this	whenever	you
reimplement	a	virtual	function,	unless	you	want	the	default
behavior	to	be	completely	disabled.	In	our	case,
QGraphicsView::wheelEvent()	will	pass	the	event	to	the	scene,	and	if	we
forget	to	call	this	function,	neither	the	scene	nor	any	of	its	items	will
receive	any	wheel	events,	which	can	be	very	much	unwanted	in
some	cases.

After	the	default	implementation	is	complete,	we	use	the	isAccepted()
function	to	check	whether	an	event	was	accepted	by	the	scene	or
any	items.	The	event	will	be	rejected	by	default,	but	if	we	later	add
some	item	that	can	process	wheel	events	(for	example,	a	text
document	with	its	own	scrollbar),	it	will	receive	and	accept	the
event.	In	that	case,	we	don't	want	to	perform	any	other	action	based
on	this	event,	as	it's	usually	desirable	that	any	event	is	only
processed	(and	accepted)	in	one	location.

In	some	cases,	you	may	want	your	custom	implementation	to	take	priority	over	the	default
one.	In	that	case,	move	the	call	to	the	default	implementation	to	the	end	of	the	function
body.	When	you	want	to	prevent	a	particular	event	from	being	dispatched	to	the	scene,	use
an	early	return	to	prevent	the	default	implementation	from	executing.

The	factor	parameter	for	the	zooming	can	be	freely	defined.	You	can
also	create	a	getter	and	setter	method	for	it.	For	us,	1.1	will	do	the
work.	With	event->angleDelta(),	you	get	the	distance	of	the	mouse's
wheel	rotation	as	a	QPoint	pointer.	Since	we	only	care	about	vertical

scrolling,	just	the	y	axis	is	relevant	for	us.	In	our	example,	we	also
do	not	care	about	how	far	the	wheel	was	turned	because,	normally,
every	step	is	delivered	separately	to	wheelEvent().	However,	if	you
should	need	it,	it's	in	eighths	of	a	degree,	and	since	most	mouses
work	in	general	steps	of	15	degrees,	the	value	should	be	120	or	-120,
depending	on	whether	you	move	the	wheel	forward	or	backward.
On	a	forward	wheel	move,	if	y()	is	greater	than	zero,	we	zoom	in
using	the	already	familiar	scale()	function.	Otherwise,	if	the	wheel
was	moved	backward,	we	zoom	out.	Finally,	we	accept	the	event,
indicating	that	the	user's	input	was	understood,	and	there	is	no
need	to	propagate	the	event	to	parent	widgets	(although	the	view
currently	doesn't	have	a	parent).	That's	all	there	is	to	it.

When	you	try	this	example,	you	will	note	that,	while	zooming,	the
view	zooms	in	and	out	on	the	center	of	the	view,	which	is	the	default
behavior	for	the	view.	You	can	change	this	behavior	with
setTransformationAnchor().	QGraphicsView::AnchorViewCenter	is,	as	described,	the
default	behavior.	With	QGraphicsView::NoAnchor,	the	zoom	center	is	in	the
top-left	corner	of	the	view,	and	the	value	you	probably	want	to	use
is	QGraphicsView::AnchorUnderMouse.	With	that	option,	the	point	under	the
mouse	builds	the	center	of	the	zooming	and	thus	stays	at	the	same
position	inside	the	view.

Time	for	action	–	Taking	the
zoom	level	into	account
Our	graph	currently	contains	points	with	integer	x	values	because
we	set	DX	=	1.	This	is	exactly	what	we	want	for	the	default	level	of
zoom,	but	once	the	view	is	zoomed	in,	it	becomes	apparent	that	the
graph's	line	is	not	smooth.	We	need	to	change	DX	based	on	the
current	zoom	level.	We	can	do	this	by	adding	the	following	code	to
the	beginning	of	the	paint()	function():

const	qreal	detail	=

QStyleOptionGraphicsItem::levelOfDetailFromTransform(

				painter->worldTransform());

const	qreal	dx	=	1	/	detail;

Delete	the	DX	constant	and	replace	DX	with	dx	in	the	rest	of	the	code.
Now,	when	you	scale	the	view,	the	graph's	line	keeps	being	smooth
because	the	number	of	points	increases	dynamically.	The
levelOfDetailFromTransform	helper	function	examines	the	value	of	the
painter's	transformation	(which	is	a	combination	of	all
transformations	applied	to	the	item)	and	returns	the	level	of
detail.	If	the	item	is	zoomed	in	2:1,	the	level	of	detail	is	2,	and	if	the
item	is	zoomed	out	1:2,	the	level	of	detail	is	0.5.

Time	for	action	–	Reacting	to
an	item's	selection	state
Standard	items,	when	selected,	change	appearance	(for	example,
the	outline	usually	becomes	dashed).	When	we're	creating	a	custom
item,	we	need	to	implement	this	feature	manually.	Let's	make	our
item	selectable	in	the	View	constructor:

SineItem	*item	=	new	SineItem();

item->setFlag(QGraphicsItem::ItemIsSelectable);

Now,	let's	make	the	graph	line	green	when	the	item	is	selected:

if	(option->state	&	QStyle::State_Selected)	{

				pen.setColor(Qt::green);

}

painter->setPen(pen);

What	just	happened?
The	state	variable	is	a	bitmask	holding	the	possible	states	of	the
item.	You	can	check	its	value	against	the	values	of	the	QStyle::StateFlag
parameter	using	bitwise	operators.	In	the	preceding	case,	the	state
variable	is	checked	against	the	State_Selected	parameter.	If	this	flag	is
set,	we	use	green	color	for	the	pen.

The	type	of	state	is	QFlags<StateFlag>.	So,	instead	of	using	the	bitwise	operator	to	test
whether	a	flag	is	set,	you	can	use	the	convenient	function	testFlag().

Used	with	the	preceding	example,	it	would	be	as	follows:

if	(option->state.testFlag(QStyle::State_Selected))	{

The	most	important	states	you	can	use	with	items	are	described	in
the	following	table:

S
ta
te

Description

	
St

at

e_

En

ab

le

d

	

	
Indicates	that	the	item	is	enabled.	If	the	item	is	disabled,	you	
may	want	to	draw	it	as	grayed	out.
	

	
St

at

e_

Ha

sF

oc

	
Indicates	that	the	item	has	the	input	focus.	To	receive	this	
state,	the	item	needs	to	have	the	ItemIsFocusable	flag	set.
	

us

	
	

	
St

at

e_

Mo

us

eO

ve

r

	

	
Indicates	that	the	cursor	is	currently	hovering	over	the	item.	
To	receive	this	state,	the	item	needs	to	have	the	
acceptHoverEvents	variable	set	to	true.
	

	
St

at

e_

Se

le

ct

ed

	

	
Indicates	that	the	item	is	selected.	To	receive	this	state,	the	
item	needs	to	have	the	ItemIsSelectable	flag	set.	The	normal	
behavior	would	be	to	draw	a	dashed	line	around	the	item	as	
a	selection	marker.
	

	

Besides	the	state,	QStyleOptionGraphicsItem	offers	much	more
information	about	the	currently	used	style,	such	as	the	palette	and
the	font	used,	accessible	through	the	QStyleOptionGraphicsItem::palette
and	QStyleOptionGraphicsItem::fontMetrics	parameters,	respectively.	If	you
aim	for	style-aware	items,	take	a	deeper	look	at	this	class	in	the
documentation.

Time	for	action	–	Event
handling	in	a	custom	item
Items,	like	widgets,	can	receive	events	in	virtual	functions.	If	you
click	on	a	scene	(to	be	precise,	you	click	on	a	view	that	propagates
the	event	to	the	scene),	the	scene	receives	the	mouse	press	event,
and	it	then	becomes	the	scene's	responsibility	to	determine	which
item	was	meant	by	the	click.

Let's	override	the	SineItem::mousePressEvent	function	that	is	called	when
the	user	presses	a	mouse	button	inside	the	item:

void	SineItem::mousePressEvent(QGraphicsSceneMouseEvent	*event)

{

				if	(event->button()	&	Qt::LeftButton)	{

								float	x	=	event->pos().x();

								QPointF	point(x,	sin(x));

								static	const	float	r	=	0.3;

								QGraphicsEllipseItem	*ellipse	=

																new	QGraphicsEllipseItem(-r,	-r,	2	*	r,	2	*	r,	this);

								ellipse->setPen(Qt::NoPen);

								ellipse->setBrush(QBrush(Qt::red));

								ellipse->setPos(point);

								event->accept();

				}	else	{

								event->ignore();

				}

}

When	a	mouse	press	event	occurs,	this	function	is	called	and	the
passed	event	object	contains	information	about	the	event.	In	our
case,	we	check	whether	the	left	mouse	button	was	pressed	and	use
the	event->pos()	function	that	returns	coordinates	of	the	clicked	point
in	the	item's	coordinate	system.	In	this	example,	we	ignored	the	y
coordinate	and	used	the	x	coordinate	to	find	the	corresponding

point	on	our	graph.	Then,	we	simply	created	a	child	circle	item	that
shows	that	point.	We	accept	the	event	if	we	did	understand	the	action
performed	and	ignore	it	if	we	don't	know	what	it	means	so	that	it	can
be	passed	to	another	item.	You	can	run	the	application	and	click	on
the	graph	to	see	these	circles.	Note	that	when	you	click	outside	of
the	graph's	bounding	rect,	the	scene	doesn't	dispatch	the	event	to
our	item,	and	its	mousePressEvent()	function	is	not	called.

The	event	object	also	contains	the	button()	function	that	returns	the
button	that	was	pressed,	and	the	scenePos()	function	that	returns	the
clicked	point	in	the	scene's	coordinate	system.	The	scene's
responsibility	for	delivering	events	does	not	only	apply	to	mouse
events,	but	also	to	key	events	and	all	other	sorts	of	events.

Time	for	action	–	Implementing
the	ability	to	create	and	delete
elements	with	mouse
Let's	allow	the	users	to	create	new	instances	of	our	sine	item	when
they	click	on	the	view	with	the	left	mouse	button	and	delete	the
items	if	they	use	the	right	mouse	button.	Reimplement
the	View::mousePressEvent	virtual	function,	as	follows:

void	View::mousePressEvent(QMouseEvent	*event)

{

				QGraphicsView::mousePressEvent(event);

				if	(event->isAccepted())	{

								return;

				}

				switch	(event->button())	{

								case	Qt::LeftButton:	{

												SineItem	*item	=	new	SineItem();

												item->setPos(mapToScene(event->pos()));

												scene()->addItem(item);

												event->accept();

												break;

								}

								case	Qt::RightButton:	{

												QGraphicsItem	*item	=	itemAt(event->pos());

												if	(item)	{

																delete	item;

												}

												event->accept();

												break;

								}

								default:

												break;

				}

}

Here,	we	first	check	whether	the	event	was	accepted	by	the	scene	or
any	of	its	items.	If	not,	we	determine	which	button	was	pressed.	For
the	left	button,	we	create	a	new	item	and	place	it	in	the
corresponding	point	of	the	scene.	For	the	right	button,	we	search
for	an	item	at	that	position	and	delete	it.	In	both	cases,	we	accept
the	event.	When	you	run	the	application,	you	will	note	that	if	the
user	clicks	on	an	existing	item,	a	new	circle	will	be	added,	and	if	the
user	clicks	outside	of	any	items,	a	new	sine	item	will	be	added.
That's	because	we	properly	set	and	read	the	accepted	property	of	the
event.

You	may	note	that	the	scene	jumps	within	the	view	when	we	add	a	new	item.	This	is	caused
by	changes	of	the	scene	rect.	To	prevent	this,	you	can	set	a	constant	rect	using
setSceneRect()	or	change	the	alignment	using	setAlignment(Qt::AlignTop	|	Qt::AlignLeft)
in	the	view's	constructor.

Time	for	action	–	Changing	the
item's	size
Our	custom	graphics	item	always	displays	the	graph	for	x	values
between	0	and	50.	It	would	be	neat	to	make	this	a	configurable
setting.	Declare	a	private	float	m_maxX	field	in	the	SineItem	class,	remove
the	MAX_X	constant,	and	replace	its	uses	with	m_maxX	in	the	rest	of	the
code.	As	always,	you	must	set	the	initial	value	of	the	field	in	the
constructor,	or	bad	things	can	happen.	Finally,	implement	a	getter
and	a	setter	for	it,	as	shown:

float	SineItem::maxX()

{

				return	m_maxX;

}

void	SineItem::setMaxX(float	value)

{

				if	(m_maxX	==	value)	{

								return;

				}

				prepareGeometryChange();

				m_maxX	=	value;

}

The	only	non-trivial	part	here	is	the	prepareGeometryChange()	call.	This
method	is	inherited	from	QGraphicsItem	and	notifies	the	scene	that	our
boundingRect()	function	will	return	a	different	value	on	the	next
update.	The	scene	caches	bounding	rectangles	of	the	items,	so	if	you
don't	call	prepareGeometryChange(),	the	change	of	the	bounding	rectangle
may	not	take	effect.	This	action	also	schedules	an	update	for	our
item.

When	the	bounding	rect	does	not	change	but	the	actual	content	of	the	item	changes,	you
need	to	call	update()	on	the	item	to	notify	the	scene	that	it	should	repaint	the	item.

Have	a	go	hero	–	Extending	the
item's	functionality
The	abilities	of	SineItem	are	still	pretty	limited.	As	an	exercise,	you
can	try	to	add	an	option	to	change	the	minimum	x	value	of	the
graph	or	set	a	different	pen.	You	can	even	allow	the	user	to	specify
an	arbitrary	function	pointer	to	replace	the	sin()	function.	However,
keep	in	mind	that	the	bounding	rect	of	the	item	depends	on	the
value	range	of	the	function,	so	you	need	to	update	the	item's
geometry	accurately.

Widgets	inside	Graphics	View
In	order	to	show	a	neat	feature	of	Graphics	View,	take	a	look	at	the
following	code	snippet,	which	adds	a	widget	to	the	scene:

QSpinBox	*box	=	new	QSpinBox;

QGraphicsProxyWidget	*proxyItem	=	new	QGraphicsProxyWidget;

proxyItem->setWidget(box);

scene()->addItem(proxyItem);

proxyItem->setScale(2);

proxyItem->setRotation(45);

First,	we	create	a	QSpinBox	and	a	QGraphicsProxyWidget	element,	which	act
as	containers	for	widgets	and	indirectly	inherit	QGraphicsItem.	Then,
we	add	the	spin	box	to	the	proxy	widget	by	calling	addWidget().	When
QGraphicsProxyWidget	gets	deleted,	it	calls	delete	on	all	assigned	widgets,
so	we	do	not	have	to	worry	about	that	ourselves.	The	widget	you
add	should	be	parentless	and	must	not	be	shown	elsewhere.	After
setting	the	widget	to	the	proxy,	you	can	treat	the	proxy	widget	like
any	other	item.	Next,	we	add	it	to	the	scene	and	apply	a
transformation	for	demonstration.	As	a	result,	we	get	this:

Be	aware	that,	originally,	Graphics	View	wasn't	designed	for
holding	widgets.	So	when	you	add	a	lot	of	widgets	to	the	scene,	you
will	quickly	notice	performance	issues,	but	in	most	situations,	it
should	be	fast	enough.

If	you	want	to	arrange	some	widgets	in	a	layout,	you	can	use
QGraphicsAnchorLayout,	QGraphicsGridLayout,	or	QGraphicsLinearLayout.	Create	all
widgets,	create	a	layout	of	your	choice,	add	the	widgets	to	that
layout,	and	set	the	layout	to	a	QGraphicsWidget	element,	which	is	the
base	class	for	all	widgets	and	is,	easily	spoken,	the	QWidget	equivalent
for	Graphics	View	by	calling	setLayout():

QGraphicsProxyWidget	*edit	=	scene()->addWidget(

		new	QLineEdit(tr("Some	Text")));

QGraphicsProxyWidget	*button	=	scene()->addWidget(

		new	QPushButton(tr("Click	me!")));

QGraphicsLinearLayout	*layout	=	new	QGraphicsLinearLayout;

layout->addItem(edit);

layout->addItem(button);

QGraphicsWidget	*graphicsWidget	=	new	QGraphicsWidget;

graphicsWidget->setLayout(layout);

scene()->addItem(graphicsWidget);

The	scene's	addWidget()	function	is	a	convenience	function	and
behaves	similar	to	addRect,	as	shown	in	the	following	code	snippet:

QGraphicsProxyWidget	*proxy	=	new	QGraphicsProxyWidget(0);

proxy->setWidget(new	QLineEdit(QObject::tr("Some	Text")));

scene()->addItem(proxy);

The	item	with	the	layout	will	look	like	this:

Optimization
When	adding	many	items	to	a	scene	or	using	items	with
complex	paint()	functions,	the	performance	of	your	application	may
decrease.	While	default	optimizations	of	Graphics	View	are	suitable
for	most	cases,	you	may	need	to	tweak	them	to	achieve	better
performance.	Let's	now	take	a	look	at	some	of	the	optimizations	we
can	perform	to	speed	up	the	scene.

A	binary	space	partition	tree
The	scene	constantly	keeps	a	record	of	the	position	of	the	item	in	its
internal	binary	space	partition	tree.	Thus,	on	every	move	of	an	item,
the	scene	has	to	update	the	tree,	an	operation	that	can	become	quite
time-consuming,	and	also	memory	consuming.	This	is	especially
true	of	scenes	with	a	large	number	of	animated	items.	On	the	other
hand,	the	tree	enables	you	to	find	an	item	(for	example,	with	items()
or	itemAt())	incredibly	quickly,	even	if	you	have	thousands	of	items.

So	when	you	do	not	need	any	positional	information	about	the
items—this	also	includes	collision	detection—you	can	disable	the
index	function	by	calling	setItemIndexMethod(QGraphicsScene::NoIndex).	Be
aware,	however,	that	a	call	to	items()	or	itemAt()	results	in	a	loop
through	all	items	in	order	to	do	the	collision	detection,	which	can
cause	performance	problems	for	scenes	with	many	items.	If	you
cannot	relinquish	the	tree	in	total,	you	can	still	adjust	the	depth	of
the	tree	with	setBspTreeDepth(),	taking	the	depth	as	an	argument.	By
default,	the	scene	will	guess	a	reasonable	value	after	it	takes	several
parameters,	such	as	the	size	and	the	number	of	items,	into	account.

Caching	the	item's	paint
function
If	you	have	items	with	a	time-consuming	paint	function,	you	can
change	the	item's	cache	mode.	By	default,	no	rendering	is	cached.
With	setCacheMode(),	you	can	set	the	mode	to	either	ItemCoordinateCache	or
DeviceCoordinateCache.	The	former	renders	the	item	in	a	cache	of	a	given
QSize	element.	The	size	of	that	cache	can	be	controlled	with	the
second	argument	of	setCacheMode(),	so	the	quality	depends	on	how
much	space	you	assign.	The	cache	is	then	used	for	every	subsequent
paint	call.	The	cache	is	even	used	for	applying	transformations.	If
the	quality	deteriorates	too	much,	just	adjust	the	resolution	by
calling	setCacheMode()	again,	but	with	a	larger	QSize	element.
DeviceCoordinateCache,	on	the	other	hand,	does	not	cache	the	item	on	an
item	base	but	on	a	device	level.	This	is,	therefore,	optimal	for	items
that	do	not	get	transformed	all	the	time	because	every	new
transformation	will	cause	a	new	caching.	Moving	the	item,	however,
does	not	invalidate	the	cache.	If	you	use	this	cache	mode,	you	do
not	have	to	define	a	resolution	with	the	second	argument.	The
caching	is	always	performed	at	maximum	quality.

Optimizing	the	view
Since	we	are	talking	about	the	item's	paint()	function,	let's	touch	on
something	related.	By	default,	the	view	ensures	that	the	painter
state	is	saved	before	calling	the	item's	paint	function	and	that	the
state	gets	restored	afterward.	This	will	end	up	saving	and	restoring
the	painter	state,	say	50	times,	if	you	have	a	scene	with	50	items.
However,	you	can	disable	this	behavior	by	calling
setOptimizationFlag(DontSavePainterState,	true)	on	the	view.	If	you	do	this,	it
is	now	your	responsibility	to	ensure	that	any	paint()	function	that
changes	the	state	of	the	painter	(including	pen,	brush,
transformation,	and	many	other	properties)	must	restore	the
previous	state	at	the	end.	If	you	prevent	automatic	saving	and
restoring,	keep	in	mind	that	now	the	standard	items	will	alter	the
painter	state.	So	if	you	use	both	standard	and	custom	items,	either
stay	with	the	default	behavior	or	set	DontSavePainterState,	but	then	set
up	the	pen	and	brush	with	a	default	value	in	each	item's	paint
function.

Another	flag	that	can	be	used	with	setOptimizationFlag()	is
DontAdjustForAntialiasing.	By	default,	the	view	adjusts	the	painting	area
of	each	item	by	two	pixels	in	all	directions.	This	is	useful	because
when	one	paints	anti-aliased,	one	easily	draws	outside	the	bounding
rectangle.	Enable	that	optimization	if	you	do	not	paint	anti-aliased
or	if	you	are	sure	that	your	painting	will	stay	inside	the	bounding
rectangle.	If	you	enable	this	flag	and	spot	painting	artifacts	on	the
view,	you	haven't	respected	the	item's	bounding	rectangle!

As	a	further	optimization,	you	can	define	how	the	view	should
update	its	viewport	when	the	scene	changes.	You	can	set	the
different	modes	with	setViewportUpdateMode().	By	default
(QGraphicsView::MinimalViewportUpdate),	the	view	tries	to	determine	only
those	areas	that	need	an	update	and	repaints	only	these.	However,

sometimes	it	is	more	time-consuming	to	find	all	the	areas	that	need
a	redraw	than	to	just	paint	the	entire	viewport.	This	applies	if	you
have	many	small	updates.	Then,	QGraphicsView::FullViewportUpdate	is	the
better	choice	since	it	simply	repaints	the	whole	viewport.	A	kind	of
combination	of	the	last	two	modes	is
QGraphicsView::BoundingRectViewportUpdate.	In	this	mode,	Qt	detects	all	areas
that	need	a	redraw,	and	then	it	redraws	a	rectangle	of	the	viewport
that	covers	all	areas	affected	by	the	change.	If	the	optimal	update
mode	changes	over	time,	you	can	tell	Qt	to	determine	the	best	mode
using	QGraphicsView::SmartViewportUpdate.	The	view	then	tries	to	find	the
best	update	mode.

OpenGL	in	the	Graphics	View
As	a	last	optimization,	you	can	take	advantage	of	OpenGL.	Instead
of	using	the	default	viewport	based	on	QWidget,	advise	Graphics	View
to	use	an	OpenGL	widget:

QGraphicsView	view;

view.setViewport(new	QOpenGLWidget());

This	usually	improves	the	rendering	performance.	However,
Graphics	View	wasn't	designed	for	GPUs	and	can't	use	them
effectively.	There	are	ways	to	improve	the	situation,	but	that	goes
beyond	the	topic	and	scope	of	this	chapter.	You	can	find	more
information	about	OpenGL	and	Graphics	View	in	the	Boxes	Qt
example	as	well	as	in	Rødal's	article	"Accelerate	your	Widgets	with
OpenGL",	which	can	be	found	online	at
https://doc.qt.io/archives/qq/qq26-openglcanvas.html.

If	you	want	to	use	a	framework	designed	to	be	GPU	accelerated,	you
should	turn	your	attention	to	Qt	Quick	(we	will	start	working	with	it
in	Chapter	11,	Introduction	to	Qt	Quick).	However,	Qt	Quick	has	its
own	limitations	compared	to	Graphics	View.	This	topic	is
elaborated	in	Nichols's	article	Should	you	still	be	using
QGraphicsView?,	available	at	https://blog.qt.io/blog/2017/01/19/should-you-
be-using-qgraphicsview/.	Alternatively,	you	can	access	the	full	power	of
OpenGL	directly	using	its	API	and	helpful	Qt	utilities.	We	will
describe	this	approach	in	Chapter	9,	OpenGL	and	Vulkan	in	Qt
applications.

Unfortunately,	we	can't	say	that	you	have	to	do	this	or	that	to	optimize	Graphics	View	as	it
highly	depends	on	your	system	and	view/scene.	What	we	can	tell	you,	however,	is	how	to
proceed.	Once	you	have	finished	your	game	based	on	Graphics	View,	measure	the
performance	of	your	game	using	a	profiler.	Make	an	optimization	you	think	may	pay	or
simply	guess,	and	then	profile	your	game	again.	If	the	results	are	better,	keep	the	change,
otherwise	reject	it.	This	sounds	simple	and	is	the	only	way	optimization	can	be	done.	There
are	no	hidden	tricks	or	deeper	knowledge.	With	time,	however,	your	forecasting	will	get

https://doc.qt.io/archives/qq/qq26-openglcanvas.html
https://blog.qt.io/blog/2017/01/19/should-you-be-using-qgraphicsview/

are	no	hidden	tricks	or	deeper	knowledge.	With	time,	however,	your	forecasting	will	get
better.

Pop	quiz
Q1.	Which	of	the	following	classes	is	a	widget	class?

1.	 QGraphicsView

2.	 QGraphicsScene

3.	 QGraphicsItem

Q2.	Which	of	the	following	actions	does	not	change	the	graphics
item's	position	on	the	screen?

1.	 Scaling	the	view.

2.	 Shearing	this	item's	parent	item.

3.	 Translating	this	item.

4.	 Rotating	this	item's	child	item.

Q3.	Which	function	is	not	mandatory	to	implement	in	a	new	class
derived	from	QGraphicsItem?

1.	 boundingRect()

2.	 shape()

3.	 paint()

Q4.	Which	item	class	should	be	used	to	display	a	raster	image	in	the
Graphics	View?

1.	 QGraphicsRectItem

2.	 QGraphicsWidget

3.	 QGraphicsPixmapItem

Summary
In	this	chapter,	you	learned	how	the	Graphics	View	architecture
works.	We	went	through	the	building	blocks	of	the	framework
(items,	scene,	and	view).	Next,	you	learned	how	their	coordinate
systems	are	related	and	how	to	use	them	to	get	the	picture	you
want.	Later	on,	we	described	the	most	useful	and	frequently	needed
features	of	Graphics	View.	Next,	we	covered	creating	custom	items
and	handling	input	events.	In	order	to	build	a	bridge	to	the	world	of
widgets,	you	also	learned	how	to	incorporate	items	based	on
QWidget	into	Graphics	View.	Finally,	we	discussed	ways	to	optimize
the	scene.

Now,	you	really	know	most	of	the	functions	of	the	Graphics	View
framework.	With	this	knowledge,	you	can	already	do	a	lot	of	cool
stuff.	However,	for	a	game,	it	is	still	too	static.	In	the	next	chapter,
we	will	go	through	the	process	of	creating	a	complete	game	and
learn	to	use	the	Animation	framework.

Animations	in	Graphics	View
The	previous	chapter	gave	you	a	lot	of	information	about	powers	of
Graphics	View	framework.	With	that	knowledge,	we	can	now
proceed	to	implementing	our	first	2D	game.	Down	the	road,	we	will
learn	more	about	Qt's	property	system,	explore	multiple	ways	of
performing	animations,	and	add	gamepad	support	to	our
application.	By	the	end	of	the	chapter,	you	will	know	all	the	most
useful	features	of	Graphics	View.

Main	topics	covered	in	this	chapter	are	as	listed:

Using	timers

Camera	control

Parallax	scrolling

Qt's	property	system

The	Animation	framework

Using	Qt	Gamepad	module

The	jumping	elephant	or	how
to	animate	the	scene
By	now,	you	should	have	a	good	understanding	of	the	items,	the
scene,	and	the	view.	With	your	knowledge	of	how	to	create	items,
standard	and	custom	ones,	of	how	to	position	them	on	the	scene,
and	of	how	to	set	up	the	view	to	show	the	scene,	you	can	make
pretty	awesome	things.	You	can	even	zoom	and	move	the	scene	with
the	mouse.	That's	surely	good,	but	for	a	game,	one	crucial	point	is
still	missing—you	have	to	animate	the	items.

Instead	of	going	through	all	possibilities	of	how	to	animate	a	scene,
let's	develop	a	simple	jump-and-run	game	where	we	recap	parts	of
the	previous	topics	and	learn	how	to	animate	items	on	a	screen.	So
let's	meet	Benjamin,	the	elephant:

The	game	play
The	goal	of	the	game	is	for	Benjamin	to	collect	the	coins	that	are
placed	all	over	the	game	field.	Besides	walking	right	and	left,
Benjamin	can,	of	course,	also	jump.	In	the	following	screenshot,
you	see	what	this	minimalistic	game	should	look	like	at	the	end:

Time	for	action	-	Creating	an
item	for	Benjamin
Let's	create	a	new	Qt	Widgets	project	and	start	making	our	game.
Since	the	project	will	become	more	complex	than	our	previous
projects,	we	will	not	be	giving	you	precise	instructions	for	editing
the	code.	If	at	any	time	you	are	unsure	about	the	changes	you	make,
you	can	look	at	the	reference	implementation	provided	with	the
book.	It	also	contains	the	image	files	you	can	use	to	implement	the
game.

Let's	now	look	at	how	we	can	mobilize	Benjamin.	First,	we	need	a
custom	item	class	for	him.	We	call	the	Player	class	and	choose
QGraphicsPixmapItem	as	the	base	class,	because	Benjamin	is	a	PNG	image.
In	the	item's	Player	class,	we	further	create	a	private	field	of	integer
type	and	call	it	m_direction.	Its	value	signifies	in	which	direction
Benjamin	walks—left	or	right—or	if	he	stands	still.	Next,	we
implement	the	constructor:

Player::Player(QGraphicsItem	*parent)

				:	QGraphicsPixmapItem(parent)

				,	m_direction(0)

{

				QPixmap	pixmap(":/elephant");

				setPixmap(pixmap);

				setOffset(-pixmap.width()	/	2,	-pixmap.height()	/	2);

}

In	the	constructor,	we	set	m_direction	to	0,	which	means	that	Benjamin
isn't	moving	at	all.	If	m_direction	is	1,	Benjamin	moves	right,	and	if	the
value	is	-1,	he	moves	left.	In	the	body	of	the	constructor,	we	set	the
image	for	the	item	by	calling	setPixmap().	The	image	of	Benjamin	is
stored	in	the	Qt	Resource	system;	thus,	we	access	it	through

QPixmap(":/elephant"),	with	elephant	as	the	given	alias	for	the	actual
image	of	Benjamin.	Finally,	we	use	the	setOffset()	function	to	change
how	the	pixmap	is	positioned	in	the	item's	coordinate	system.	By
default,	the	origin	point	corresponds	to	the	top-left	corner	of	the
pixmap,	but	we	prefer	to	have	it	at	the	center	of	the	pixmap	so	that
applying	transformations	is	easier.

When	you	are	unsure	of	how	to	specify	the	path	to	your	resource,	you	can	ask	Qt	Creator
about	it.	To	do	that,	expand	the	Resources	branch	in	the	project	tree,	locate	the	resource,
and	select	the	Copy	Path...	entry	in	its	context	menu.

Next,	we	create	a	getter	and	setter	function	for	the	m_direction	field:

int	Player::direction()	const	{

				return	m_direction;

}

	

void	Player::setDirection(int	direction)

{

				m_direction	=	direction;

				if	(m_direction	!=	0)	{

								QTransform	transform;

								if	(m_direction	<	0)	{

												transform.scale(-1,	1);

								}

								setTransform(transform);

				}

}

The	direction()	function	is	a	standard	getter	function	for	m_direction
returning	its	value.	The	setDirection()	setter	function	additionally
checks	in	which	direction	Benjamin	is	moving.	If	he	is	moving	left,
we	need	to	flip	his	image	so	that	Benjamin	looks	to	the	left,	the
direction	in	which	he	is	moving.	If	he	is	moving	toward	the	right,	we
restore	the	normal	state	by	assigning	an	empty	QTransform	object,
which	is	an	identity	matrix.

We	cannot	use	QGraphicsItem::setScale	here,	because	it	only	supports	the	same	scale
factors	for	x	and	y	axes.	Fortunately,	setTransform()	enables	us	to	set	any	affine	or
perspective	transformation.

So,	we	now	have	our	item	of	the	Player	class	for	the	game's	character,

which	shows	the	image	of	Benjamin.	The	item	also	stores	the
current	moving	direction,	and	based	on	that	information,	the	image
is	flipped	vertically	if	needed.

The	playing	field
Since	we	will	have	to	do	some	work	on	the	scene,	we
subclass	QGraphicsScene	and	name	the	new	class	MyScene.	There,	we
implement	one	part	of	the	game	logic.	This	is	convenient
since	QGraphicsScene	inherits	QObject	and	thus	we	can	use	Qt's	signal	and
slot	mechanism.

The	scene	creates	the		environment	in	which	our	elephant	will	be
walking	and	jumping.	Overall,	we	have	a	view	fixed	in	size	holding	a
scene,	which	is	exactly	as	big	as	the	view.	We	do	not	take	size
changes	of	the	view	into	account,	since	they	will	complicate	the
example	too	much.

All	animations	inside	the	playing	field	are	done	by	moving	the
items,	not	the	scene.	So	we	have	to	distinguish	between	the	view's,
or	rather	the	scene's,	width	and	the	width	of	the	elephant's	virtual
"world"	in	which	he	can	move.	In	order	to	handle	the	movement
properly,	we	need	to	create	a	few	private	fields	in	the	MyScene	class.

The	width	of	this	virtual	world	is	defined	by	the	int	m_fieldWidth	field
and	has	no	(direct)	correlation	with	the	scene.	Within	the	range	of
m_fieldWidth,	which	is	500	pixels	in	the	example,	Benjamin	or	the
graphics	item	can	be	moved	from	the	minimum	x	coordinate,
defined	by	qreal	m_minX,	to	the	maximum	x	coordinate,	defined	by	qreal
m_maxX.	We	keep	track	of	his	actual	x	position	with	the	qreal
m_currentX	variable.	Next,	the	minimum	y	coordinate	the	item	is
allowed	to	have	is	defined	by	qreal	m_groundLevel.	We	have	to	also	take
into	account	the	item's	size.

Lastly,	what	is	left	is	the	view,	which	has	a	fixed	size	defined	by	the
scene's	bounding	rectangle	size,	which	is	not	as	wide	as	m_fieldWidth.
So	the	scene	(and	the	view)	follows	the	elephant	while	he	walks

through	his	virtual	world	of	the	m_fieldWidth	length.	Take	a	look	at	the
following	diagram	to	see	the	variables	in	their	graphical
representation:

Time	for	action	-	Making
Benjamin	move
The	next	thing	we	want	to	do	is	make	our	elephant	movable.	In
order	to	achieve	that,	we	add	a	QTimer	m_timer	private	member
to	MyScene.	QTimer	is	a	class	that	can	emit	the	timeout()	signal	periodically
with	the	given	interval.	In	the	MyScene	constructor,	we	set	up	the
timer	with	the	following	code:

m_timer.setInterval(30);

connect(&m_timer,	&QTimer::timeout,	

								this,	&MyScene::movePlayer);

First,	we	define	that	the	timer	emits	the	timeout	signal	every	30
milliseconds.	Then,	we	connect	that	signal	to	the	scene's	slot	called
movePlayer(),	but	we	do	not	start	the	timer	yet.	The	timer	will	be
started	when	the	player	presses	a	key	to	move.

Next,	we	need	to	handle	the	input	events	properly	and	update	the
player's	direction.	We	introduce	the	Player	*	m_player	field	that	will
contain	a	pointer	to	the	player	object	and	the	int	m_horizontalInput	field
that	will	accumulate	the	movement	commands,	as	we'll	see	in	the
next	piece	of	code.	Finally,	we	reimplement	the	keyPressEvent	virtual
function:

void	MyScene::keyPressEvent(QKeyEvent	*event)

{

				if	(event->isAutoRepeat())	{

								return;

				}

				switch	(event->key())	{

				case	Qt::Key_Right:

								addHorizontalInput(1);

								break;

								break;

				case	Qt::Key_Left:

								addHorizontalInput(-1);

								break;

				//...

				}

}

void	MyScene::addHorizontalInput(int	input)

{

				m_horizontalInput	+=	input;

				m_player->setDirection(qBound(-1,	m_horizontalInput,	1));

				checkTimer();

}

As	a	small	side	note,	whenever	code	snippets	in	the	following	code	passages	are	irrelevant
for	the	actual	detail,	we	will	skip	the	code	but	will	indicate	missing	code	with	//...	so	that
you	know	that	it	is	not	the	entire	code.	We	will	cover	the	skipped	parts	later	when	it	is	more
appropriate.

What	just	happened?
In	the	key	press	event	handler,	we	first	check	whether	the	key	event
was	triggered	because	of	an	auto-repeat.	If	this	is	the	case,	we	exit
the	function,	because	we	only	want	to	react	on	the	first	real	key
press	event.	Also,	we	do	not	call	the	base	class	implementation	of
that	event	handler	since	no	item	on	the	scene	needs	to	get	a	key
press	event.	If	you	do	have	items	that	could	and	should	receive
events,	do	not	forget	to	forward	them	while	reimplementing	event
handlers	at	the	scene.

If	you	press	and	hold	a	key	down,	Qt	will	continuously	deliver	the	key	press	event.	To
determine	whether	it	was	the	first	real	key	press	or	an	autogenerated	event,	use
QKeyEvent::isAutoRepeat().	It	returns	true	if	the	event	was	automatically	generated.

As	soon	as	we	know	that	the	event	was	not	delivered	by	an	auto
repeat,	we	react	to	the	different	key	presses.	Instead	of	calling
the	setDirection()	method	of	the	Player	*m_player	field	directly,	we	use
the	m_horizontalInput	class	field	to	accumulate	the	input	value.
Whenever	it's	changed,	we	ensure	the	correctness	of	the	value
before	passing	it	to	setDirection().	For	that,	we	use	qBound(),	which
returns	a	value	that	is	bound	by	the	first	and	the	last	arguments.
The	argument	in	the	middle	is	the	actual	value	that	we	want	to	get
bound,	so	the	possible	values	in	our	case	are	restricted	to	-1,	0,	and
1.

You	might	wonder,	why	not	simply	call	m_player->setDirection(1)	when
the	right	key	is	pressed?	Why	accumulate	the	inputs	in
the		m_horizontalInput	variable?	Well,	Benjamin	is	moved	by	the	left
and	right	arrow	keys.	If	the	right	key	is	pressed,	1	is	added;	if	it	gets
released,	-1	is	added.	The	same	applies	for	the	left	key,	but	only	the
other	way	around.	The	addition	of	the	value	rather	than	setting	it	is
now	necessary	because	of	a	situation	where	a	user	presses	and	holds
the	right	key,	and	the	value	of	m_direction	is	therefore	1.	Now,	without

releasing	the	right	key,	they	also	press	and	hold	the	left	key.
Therefore,	the	value	of	m_direction	is	getting	decreased	by	one;	the
value	is	now	0	and	Benjamin	stops.	However,	remember	that	both
keys	are	still	being	pressed.	What	happens	when	the	left	key	is
released?	How	would	you	know	in	this	situation	in	which	direction
Benjamin	should	move?	To	achieve	that,	you	would	have	to	find	out
an	additional	bit	of	information—whether	the	right	key	is	still
pressed	down	or	not,	which	seems	too	much	trouble	and	overhead.
In	our	implementation,	when	the	left	key	is	released,	1	is	added	and
the	value	of	m_direction	becomes	1,	making	Benjamin	move	right.
Voilà!	All	without	any	concern	about	what	the	state	of	the	other
button	might	be.

After	calling	setDirection(),	we	call	the	checkTimer()	function:

void	MyScene::checkTimer()

{

				if	(m_player->direction()	==	0)	{

								m_timer.stop();

				}	else	if	(!m_timer.isActive())	{

								m_timer.start();

				}

}

This	function	first	checks	whether	the	player	moves.	If	not,	the
timer	is	stopped,	because	nothing	has	to	be	updated	when	our
elephant	stands	still.	Otherwise,	the	timer	gets	started,	but	only	if	it
isn't	already	running.	We	check	this	by	calling	isActive()	on	the
timer.

When	the	user	presses	the	right	key,	for	example,	at	the	beginning
of	the	game,	checkTimer()	will	start	m_timer.	Since	its	timeout	signal	was
connected	to	movePlayer(),	the	slot	will	be	called	every	30	milliseconds
till	the	key	is	released.

Since	the	movePlayer()	function	is	a	bit	longer,	let's	go	through	it	step
by	step:

const	int	direction	=	m_player->direction();

if	(0	==	direction)	{

				return;

}

First,	we	cache	the	player's	current	direction	in	a	local	variable	to
avoid	multiple	calls	of	direction().	Then,	we	check	whether	the	player
is	moving	at	all.	If	they	aren't,	we	exit	the	function	because	there	is
nothing	to	animate:

const	int	dx	=	direction	*	m_velocity;

qreal	newX	=	qBound(m_minX,	m_currentX	+	dx,	m_maxX);

if	(newX	==	m_currentX)	{

				return;

}

m_currentX	=	newX;

Next,	we	calculate	the	shift	the	player	item	should	get	and	store	it	in
dx.	The	distance	the	player	should	move	every	30	milliseconds	is
defined	by	the	int	m_velocity	member	variable,	expressed	in	pixels.
You	can	create	setter	and	getter	functions	for	that	variable	if	you
like.	For	us,	the	default	value	of	4	pixels	will	do	the	job.	Multiplied
by	the	direction	(which	could	only	be	1	or	-1	at	this	point),	we	get	a
shift	of	the	player	by	4	pixels	to	the	right	or	to	the	left.	Based	on	this
shift,	we	calculate	the	new	x	position	of	the	player.	Next,	we	check
whether	that	new	position	is	inside	the	range	of	m_minX	and	m_maxX,	two
member	variables	that	are	already	calculated	and	set	up	properly	at
this	point.	Then,	if	the	new	position	is	not	equal	to	the	actual
position,	which	is	stored	in	m_currentX,	we	proceed	by	assigning	the
new	position	as	the	current	one.	Otherwise,	we	exit	the	function
since	there	is	nothing	to	move.

The	next	question	to	tackle	is	whether	the	view	should	always	move
when	the	elephant	is	moving,	which	means	that	the	elephant	would
always	stay,	say,	in	the	middle	of	the	view.	No,	he	shouldn't	stay	at	a
specific	point	inside	the	view.	Rather,	the	view	should	be	fixed	when
the	elephant	is	moving.	Only	if	he	reaches	the	borders	should	the
view	follow.	Let's	say	that	when	the	distance	between	the	elephant's

center	and	the	window's	border	is	less	than	150	pixels,	we	will	try	to
shift	the	view:

const	int	shiftBorder	=	150;

const	int	rightShiftBorder	=	width()	-	shiftBorder;

	

const	int	visiblePlayerPos	=	m_currentX	-	m_worldShift;

const	int	newWorldShiftRight	=	visiblePlayerPos	-	rightShiftBorder;

if	(newWorldShiftRight	>	0)	{

				m_worldShift	+=	newWorldShiftRight;

}

const	int	newWorldShiftLeft	=	shiftBorder	-	visiblePlayerPos;

if	(newWorldShiftLeft	>	0)	{

				m_worldShift	-=	newWorldShiftLeft;

}

const	int	maxWorldShift	=	m_fieldWidth	-	qRound(width());

m_worldShift	=	qBound(0,	m_worldShift,	maxWorldShift);

m_player->setX(m_currentX	-	m_worldShift);

The	int	m_worldShift	class	field	shows	how	much	we	have	already
shifted	our	world	to	the	right.	First,	we	calculate	the	actual
coordinate	of	our	elephant	in	the	view	and	save	it	to
the	visiblePlayerPos	variable.	Then,	we	calculate	its	position	relative	to
the	allowed	area	defined	by	the	shiftBorder	and	rightShiftBorder
variables.	If	visiblePlayerPos	is	beyond	the	right	border	of	the	allowed
area,	newWorldShiftRight	will	be	positive,	we	need	to	shift	the	world	by
newWorldShiftRight	to	the	right.	Similarly,	when	we	need	to	shift	it	to	the
left,	newWorldShiftLeft	will	be	positive,	and	it	will	contain	the	needed
amount	of	shift.	Finally,	we	update	the	position	of	m_player	using	a
setX()	helper	method	that	is	similar	to	setPos()	but	leaves	the	y
coordinate	unchanged.

Note	that	the	value	for	shiftBorder	is	randomly	chosen.	You	can	alter	it	as	you	like.	Of
course,	you	can	create	a	setter	and	getter	for	this	parameter	too.

The	last	important	part	to	do	here	is	to	apply	the	new	value	of
m_worldShift	by	setting	positions	of	the	other	world	items.	While	we're
at	it,	we	will	implement	parallax	scrolling.

Parallax	scrolling
Parallax	scrolling	is	a	trick	to	add	an	illusion	of	depth	to	the
background	of	the	game.	This	illusion	occurs	when	the	background
has	different	layers	that	move	at	different	speeds.	The	nearest
background	must	move	faster	than	the	ones	farther	away.	In	our
case,	we	have	these	four	backgrounds	ordered	from	the	most
distant	to	the	nearest:

The	sky:

The	trees:

The	grass:

The	ground:

Time	for	action	-	Moving	the
background
The	scene	will	create	a	graphics	item	for	each	part	of	the
background	and	store	pointers	to	them	in	the	m_sky,	m_grass,	and	m_trees
private	fields.	Now	the	question	is	how	to	move	them	at	different
speeds.	The	solution	is	quite	simple—the	slowest	one,	the	sky,	is	the
smallest	image.	The	fastest	background,	the	ground	and	the	grass,
are	the	largest	images.	Now	when	we	take	a	look	at	the	end	of	the
movePlayer()	function's	slot,	we	see	this:

qreal	ratio	=	qreal(m_worldShift)	/	maxWorldShift;

applyParallax(ratio,	m_sky);

applyParallax(ratio,	m_grass);

applyParallax(ratio,	m_trees);

The	applyParallax()	helper	method	contains	the	following	code:

void	MyScene::applyParallax(qreal	ratio,	QGraphicsItem*	item)	{

				item->setX(-ratio	*	(item->boundingRect().width()	-	width()));

}

What	just	happened?
What	are	we	doing	here?	At	the	beginning,	the	sky's	left	border	is
the	same	as	the	view's	left	border,	both	at	point	(0,	0).	At	the	end,
when	Benjamin	has	walked	to	the	maximum	right,	the	sky's	right
border	should	be	the	same	as	the	view's	right	border.	So,	at	this
position,	the	shift	of	the	sky	will	be	equal	to	the	sky's	width	(m_sky-
>boundingRect().width())	minus	the	width	of	the	view	(width()).	The	shift
of	the	sky	depends	on	the	position	of	the	camera	and,	consequently,
the	value	of	the	m_worldShift	variable;	if	it	is	far	to	the	left,	the	sky	isn't
shifted,	and	if	the	camera	is	far	to	the	right,	the	sky	is	maximally
shifted.	Thus,	we	have	to	multiply	the	sky's	maximum	shift	value
with	a	factor	based	on	the	current	position	of	the	camera.	The
relation	to	the	camera's	position	is	the	reason	this	is	handled	in	the
movePlayer()	function.	The	factor	we	have	to	calculate	has	to	be
between	0	and	1.	So	we	get	the	minimum	shift	(0	*	shift,	which
equals	0)	and	the	maximum	shift	(1	*	shift,	which	equals	shift).	We
name	this	factor	as	ratio.

How	far	the	world	was	shifted	is	saved	in	m_worldShift,	so	by	dividing
m_worldShift	by	maxWorldShift,	we	get	the	needed	factor.	It	is	0	when	the
player	is	to	the	far	left	and	1	if	they	are	to	the	far	right.	Then,	we
have	to	simply	multiply	ratio	with	the	maximum	shift	of	the	sky.

The	same	calculation	is	used	for	the	other	background	items,	so	it	is
moved	to	a	separate	function.	The	calculation	also	explains	why	a
smaller	image	is	moving	slower.	It's	because	the	overlap	of	the
smaller	image	is	less	than	that	of	the	larger	one,	and	since	the
backgrounds	are	moved	in	the	same	time	period,	the	larger	one	has
to	move	faster.

Have	a	go	hero	-	Adding	new
background	layers
Try	to	add	additional	background	layers	to	the	game,	following	the
preceding	example.	As	an	idea,	you	can	add	a	barn	behind	the	trees
or	let	an	airplane	fly	through	the	sky.

The	Animation	framework
For	now,	we	have	calculated	and	applied	new	positions	for	our
graphics	items	manually.	However,	Qt	provides	a	way	to	do	it
automatically,	called	the	Animation	framework.

The	framework	is	an	abstract	implementation	of	animations,	so	it
can	be	applied	to	any	QObject,	such	as	widgets,	or	even	plain
variables.	Graphics,	items	can	be	animated	too,	and	we	will	get	to
this	topic	soon.	Animations	are	not	restricted	to	the	object's
coordinates.	You	can	animate	color,	opacity,	or	a	completely
invisible	property.

To	create	an	animation,	you	typically	need	to	perform	the	following
steps:

1.	 Create	an	animation	object	(such	as	QPropertyAnimation)

2.	 Set	the	object	that	should	be	animated

3.	 Set	the	name	of	the	property	to	be	animated

4.	 Define	how	exactly	the	value	should	change	(for	example,

set	starting	and	ending	values)

5.	 Start	the	animation

As	you	probably	know,	calling	an	arbitrary	method	by	name	is	not
possible	in	C++,	and	yet,	the	animation	objects	are	able	to	change
arbitrary	properties	at	will.	This	is	possible	because	"property"	is
not	only	a	fancy	name,	but	also	another	powerful	feature	of
the	QObject	class	and	Qt	meta-object	compiler.

Properties
In	Chapter	3,	Qt	GUI	Programming,	we	edited	predefined	properties
of	widgets	in	the	form	editor	and	used	their	getter	and	setter
methods	in	the	code.	However,	until	now,	there	wasn't	a	real	reason
for	us	to	declare	a	new	property.	It'll	be	useful	with	the	Animation
framework,	so	let's	pay	more	attention	to	properties.

Only	classes	that	inherit	QObject	can	declare	properties.	To	create	a
property,	we	first	need	to	declare	it	in	a	private	section	of	the	class
(usually	right	after	the	Q_OBJECT	mandatory	macro)	using	a	special
Q_PROPERTY	macro.	That	macro	allows	you	to	specify	the	following
information	about	the	new	property:

The	property	name—a	string	that	identifies	the	property	in

the	Qt	meta	system.

The	property	type—any	valid	C++	type	can	be	used	for	a

property,	but	animations	will	only	work	with	a	limited	set	of

types.

Names	of	the	getter	and	setter	method	for	this	property.	If

declared	in	Q_PROPERTY,	you	must	add	them	to	your	class	and

implement	them	properly.

Name	of	the	signal	that	is	emitted	when	the	property

changes.	If	declared	in	Q_PROPERTY,	you	must	add	the	signal	and

ensure	that	it's	properly	emitted.

There	are	more	configuration	options,	but	they	are	less	frequently
needed.	You	can	learn	more	about	them	from	the	The	Property

System	documentation	page.

The	Animation	framework	supports	the	following	property	types:	int,	unsigned	int,	double,
float,	QLine,	QLineF,	QPoint,	QPointF,	QSize,	QSizeF,	QRect,	QRectF,	and	QColor.	Other	types	are
not	supported,	because	Qt	doesn't	know	how	to	interpolate	them,	that	is,	how	to	calculate
intermediate	values	based	on	the	start	and	end	values.	However,	it's	possible	to	add
support	for	custom	types	if	you	really	need	to	animate	them.

Similar	to	signals	and	slots,	properties	are	powered	by	moc,	which
reads	the	header	file	of	your	class	and	generates	extra	code	that
enables	Qt	(and	you)	to	access	the	property	at	runtime.	For
example,	you	can	use	the	QObject::property()	and	QObject::setProperty()
methods	to	get	and	set	properties	by	name.

Time	for	action	-	Adding	a	jump
animation
Go	to	the	myscene.h	file	and	add	a	private	qreal	m_jumpFactor	field.	Next,
declare	a	getter,	a	setter,	and	a	change	signal	for	this	field:

public:

				//...

				qreal	jumpFactor()	const;

				void	setJumpFactor(const	qreal	&jumpFactor);

signals:

				void	jumpFactorChanged(qreal);

In	the	header	file,	we	declare	the	jumpFactor	property	by	adding	the
following	code	just	after	the	Q_OBJECT	macro:

Q_PROPERTY(qreal	jumpFactor

											READ	jumpFactor

											WRITE	setjumpFactor

											NOTIFY	jumpFactorChanged)

Here,	qreal	is	the	type	of	the	property,	jumpFactor	is	the	registered
name,	and	the	following	three	lines	register	the	corresponding
member	functions	of	the	MyScene	class	in	the	property	system.	We'll
need	this	property	to	make	Benjamin	jump,	as	we	will	see	later	on.

The	jumpFactor()	getter	function	simply	returns	the	m_jumpFactor	private
member,	which	is	used	to	store	the	actual	position.	The
implementation	of	the	setter	looks	like	this:

void	MyScene::setjumpFactor(const	qreal	&pos)	{

				if	(pos	==	m_jumpFactor)	{

								return;

				}

				m_jumpFactor	=	pos;

				emit	jumpFactorChanged(m_jumpFactor);

}

It	is	important	to	check	whether	pos	will	change	the	current	value	of
m_jumpFactor.	If	this	is	not	the	case,	exit	the	function,	because	we	don't
want	the	change	signal	to	be	emitted	even	if	nothing	has	changed.
Otherwise,	we	set	m_jumpFactor	to	pos	and	emit	the	signal	that	informs
about	the	change.

Property	animations
We	implemented	the	horizontal	movement	using	a	QTimer.	Now,	let's
try	a	second	way	to	animate	items—the	Animation	framework.

Time	for	action	-	Using
animations	to	move	items
smoothly
Let's	add	a	new	private	member	called	m_jumpAnimation	of
the	QPropertyAnimation	*	type,	and	initialize	it	in	the	constructor	of
MyScene:

m_jumpAnimation	=	new	QPropertyAnimation(this);

m_jumpAnimation->setTargetObject(this);

m_jumpAnimation->setPropertyName("jumpFactor");

m_jumpAnimation->setStartValue(0);

m_jumpAnimation->setKeyValueAt(0.5,	1);

m_jumpAnimation->setEndValue(0);

m_jumpAnimation->setDuration(800);

m_jumpAnimation->setEasingCurve(QEasingCurve::OutInQuad);

What	just	happened?
For	the	instance	of	QPropertyAnimation	created	here,	we	define	the	item
as	a	parent;	thus,	the	animation	will	get	deleted	when	the	scene
deletes	the	item,	and	we	don't	have	to	worry	about	freeing	the	used
memory.	Then,	we	define	the	target	of	the	animation—our	MyScene
class—and	the	property	that	should	be	animated,	jumpFactor,	in	this
case.	Then,	we	define	the	start	and	the	end	value	of	that	property;	in
addition	to	that,	we	also	define	a	value	in	between,	by	setting
setKeyValueAt().	The	first	argument	of	the	qreal	type	defines	time	inside
the	animation,	where	0	is	the	beginning	and	1	the	end,	and	the
second	argument	defines	the	value	that	the	animation	should	have
at	that	time.	So	your	jumpFactor	element	will	get	animated	from	0	to	1
and	back	to	0	in	800	milliseconds.	This	was	defined	by	setDuration().
Finally,	we	define	how	the	interpolation	between	the	start	and	end
value	should	be	done	and	call	setEasingCurve(),	with	QEasingCurve::OutInQuad
as	an	argument.

Qt	defines	up	to	41	different	easing	curves	for	linear,	quadratic,	cubic,	quartic,	quintic,
sinusoidal,	exponential,	circular,	elastic,	back	easing,	and	bounce	functions.	These	are	too
many	to	describe	here.	Instead,	take	a	look	at	the	documentation;	simply	search	for
QEasingCurve::Type.

In	our	case,	QEasingCurve::OutInQuad	ensures	that	the	jump	speed	of
Benjamin	looks	like	an	actual	jump:	fast	in	the	beginning,	slow	at
the	top,	and	fast	at	the	end	again.	We	start	this	animation	with	the
jump	function:

void	MyScene::jump()

{

				if	(QAbstractAnimation::Stopped	==	m_jumpAnimation->state())	{

								m_jumpAnimation->start();

				}

}

We	only	start	the	animation	by	calling	start()	when	the	animation
isn't	running.	Therefore,	we	check	the	animation's	state	to	see
whether	it	has	been	stopped.	Other	states	could	be	Paused	or	Running.
We	want	this	jump	action	to	be	activated	whenever	the	player
presses	the	Space	key	on	their	keyboard.	Therefore,	we	expand	the
switch	statement	inside	the	key	press	event	handler	using	this	code:

case	Qt::Key_Space:

				jump();

				break;

Now	the	property	gets	animated,	but	Benjamin	will	still	not	jump.
Therefore,	we	handle	the	changes	of	the	jumpFactor	value	at	the	end	of
the	setJumpFactor	function:

void	MyScene::setJumpFactor(const	qreal	&jumpFactor)

{

				//...

				qreal	groundY	=	(m_groundLevel	-	m_player->boundingRect().height()

																																																																	/	2);

				qreal	y	=	groundY	-	m_jumpAnimation->currentValue().toReal()	*	

																																																						m_jumpHeight;

				m_player->setY(y);

				//...

}

When	our	QPropertyAnimation	is	running,	it	will	call	our	setJumpFactor()
function	to	update	the	property's	value.	Inside	that	function,	we
calculate	the	y	coordinate	of	the	player	item	to	respect	the	ground
level	defined	by	m_groundLevel.	This	is	done	by	subtracting	half	of	the
item's	height	from	the	ground	level's	value	since	the	item's	origin
point	is	in	its	center.	Then,	we	subtract	the	maximum	jump	height,
defined	by	m_jumpHeight,	which	is	multiplied	by	the	actual	jump	factor.
Since	the	factor	is	in	the	range	of	0	and	1,	the	new	y	coordinate
stays	inside	the	allowed	jump	height.	Then,	we	alter	the	player
item's	y	position	by	calling	setY(),	leaving	the	x	coordinate	as	the
same.	Et	voilà,	Benjamin	is	jumping!

Have	a	go	hero	-	Letting	the
item	handle	Benjamin's	jump
Since	the	scene	is	already	a	QObject,	adding	a	property	to	it	was	easy.
However,	imagine	that	you	want	to	create	a	game	for	two	players,
each	controlling	a	separate	Player	item.	In	this	case,	the	jump	factors
of	two	elephants	need	to	be	animated	independently,	so	you	want	to
make	an	animated	property	in	the	Player	class,	instead	of	putting	it
to	the	scene.

The	QGraphicsItem	item	and	all	standard	items	introduced	so	far	don't
inherit		QObject	and	thus	can't	have	slots	or	emit	signals;	they	don't
benefit	from	the	QObject	property	system	either.	However,	we	can
make	them	use	QObject!	All	you	have	to	do	is	add	QObject	as	a	base	class
and	add	the	Q_OBJECT	macro:

class	Player	:	public	QObject,	public	QGraphicsPixmapItem	{

				Q_OBJECT

//...

};

Now	you	can	use	properties,	signals,	and	slots	with	items	too.	Be
aware	that	QObject	must	be	the	first	base	class	of	an	item.

A	word	of	warning
Only	use	QObject	with	items	if	you	really	need	its	capabilities.	QObject	
adds	a	lot	of	overhead	to	the	item,	which	will	have	a	noticeable	impact	on	performance
when	you	have	many	items,	so	use	it	wisely	and	not	only	because	you	can.

If	you	make	this	change,	you	can	move	the	jumpFactor	property	from
MyScene	to	Player,	along	with	a	lot	of	related	code.	You	can	make	the
code	even	more	consistent	by	handling	the	horizontal	movement
in	Player	as	well.	Let	MyScene	handle	the	input	events	and	forward	the
movement	commands	to	Player.

Time	for	action	-	Keeping
multiple	animations	in	sync
Now	we'll	start	implementing	the	coin	class.	We	can	use	a
simple	QGraphicsEllipseItem	object,	but	we'll	need	to	animate	its
properties,	so	let's	create	a	new	Coin	class	and	derive	it	from	QObject
and	QGraphicsEllipseItem.	Define	two	properties:	opacity	of	the	qreal
type	and	rect	of	the	QRect	type.	This	is	done	only	by	the	following
code:

class	Coin	:	public	QObject,	public	QGraphicsEllipseItem

{

				Q_OBJECT

				Q_PROPERTY(qreal	opacity	READ	opacity	WRITE	setOpacity)

				Q_PROPERTY(QRectF	rect	READ	rect	WRITE	setRect)

//...

};

No	function	or	slot	was	added,	because	we	simply	used	built-in
functions	of	QGraphicsItem	and	associated	them	with	the	properties.

If	you	want	an	item	that	inherits	from	QObject	and	QGraphicsItem,	you	can	directly	inherit
QGraphicsObject.	Moreover,	it	already	registers	all	general	QGraphicsItem	properties	in	the
metasystem,	including	pos,	scale,	rotation,	and	opacity.	All	properties	come	with
corresponding	notification	signals,	such	as	opacityChanged().	However,	when	you	inherit
QGraphicsObject,	you	cannot,	at	the	same	time,	inherit	QGraphicsEllipseItem	or	any	other
item	class.	So	in	this	case,	we	will	need	to	either	implement	painting	of	the	ellipse	manually
or	add	a	child	QGraphicsEllipseItem	that	can	perform	the	painting	for	us.

Next,	we'll	create	the	explode()	function	that	will	start	some
animations	when	the	player	collects	the	coin.	Create	a	Boolean
private	field	in	the	class	and	use	it	to	ensure	that	each	coin	can	only
explode	once:

void	Coin::explode()

{

				if	(m_explosion)	{

								return;

				}

				m_explosion	=	true;

				//...

}

We	want	to	animate	our	two	properties	by	two	QPropertyAnimation
objects.	One	fades	the	coin	out,	while	the	other	scales	the	coin	in.	To
ensure	that	both	animations	get	started	at	the	same	time,	we	use
QParallelAnimationGroup,	as	follows:

QPropertyAnimation	*fadeAnimation	=	

				new	QPropertyAnimation(this,	"opacity");

//...

QPropertyAnimation	*scaleAnimation	=	new	QPropertyAnimation(this,

"rect");

//...

QParallelAnimationGroup	*group	=	new	QParallelAnimationGroup(this);

group->addAnimation(scaleAnimation);

group->addAnimation(fadeAnimation);

connect(group,	&QParallelAnimationGroup::finished,

								this,		&Coin::deleteLater);

group->start();

What	just	happened?
You	already	know	how	to	set	up	a	single	property	animation,	so	we
omitted	the	code	for	it.	After	setting	up	both	animations,	we	add
them	to	the	group	animation	by	calling	addAnimation()	on	the	group,
while	passing	a	pointer	to	the	animation	we	would	like	to	add.
Then,	when	we	start	the	group;	QParallelAnimationGroup	ensures	that	all
assigned	animations	start	at	the	same	time.

When	both	animations	have	finished,	group	will	emit	the	finished()
signal.	We	connected	that	signal	to	the	deleteLater()	slot	of	our	class
so	that	the	coin	object	gets	deleted	when	it's	no	longer	visible.	This
handy	slot	is	declared	in	the	QObject	class	and	is	useful	in	many	cases.

In	some	cases,	you	may	want	to	stop	an	animation.	You	can	do	that	by	calling	the	stop()
method.	It's	also	possible	to	pause	and	resume	an	animation	using	pause()	and	resume().
Using	these	methods	on	a	QParallelAnimationGroup	will	affect	all	transformations	added	to
that	group.

Chaining	multiple	animations
What	if	we	wanted	to	perform	an	animation	at	the	end	of	another
animation?	We	could	connect	the	finished()	signal	of	the	first
animation	to	the	start()	slot	of	the	second	one.	However,	a	much
more	convenient	solution	is	to	use	QSequentialAnimationGroup.	For
example,	if	we	want	coins	to	scale	and	then	to	fade,	the	following
code	will	do	the	trick:

QSequentialAnimationGroup	*group	=	new

QSequentialAnimationGroup(this);

group->addAnimation(scaleAnimation);

group->addAnimation(fadeAnimation);

group->start();

Adding	gamepad	support
The	player	can	use	the	keyboard	to	play	our	game,	but	it	would	be
nice	to	also	allow	playing	it	using	a	gamepad.	Fortunately,	Qt
provides	the	Qt	Gamepad	add-on	that	allows	us	to	do	this	easily.	As
opposed	to	Qt	Essentials	(for	example,	Qt	Widgets),	add-ons	may
be	supported	on	a	limited	number	of	platforms.	As	of	Qt	5.9,	Qt
Gamepad	supports	Windows,	Linux,	Android,	macOS,	iOS,	and
tvOS	(including	the	tvOS	remote).

Working	with	gamepads	in	Qt
The	starting	point	of	the	gamepad	API	is	the	QGamepadManager	class.	The
singleton	object	of	this	class	can	be	obtained	using
the	QGamepadManager::instance()	function.	It	allows	you	to	request	the	list
of	identifiers	of	the	available	gamepads	using	the	connectedGamepads()
function.	The	gamepadConnected()	signal	can	be	used	to	detect	new
gamepads	on	the	fly.	QGamepadManager	also	provides	API	for	configuring
buttons	and	axes	on	the	gamepad	and	is	able	to	save	the
configuration	to	the	specified	settings	file.

After	you	detected	that	one	or	multiple	gamepads	are	available	in
the	system,	you	should	create	a	new	QGamepad	object	and	pass	the
obtained	device	identifier	as	a	constructor's	argument.	You	can	use
the	first	available	gamepad	or	allow	the	user	to	select	which
gamepad	to	use.	In	this	case,	you	can	utilize	the	gamepad's	name
property	that	returns	a	readable	name	of	the	device.

The	Gamepad	object	contains	a	dedicated	property	for	each	axis	and
button.	This	gives	you	two	ways	to	receive	the	information	about
the	state	of	the	controls.	First,	you	can	use	the	getter	of	the	property
to	check	the	current	state	of	a	button	or	an	axis.	For	example,	the
buttonL1()	function	will	return	true	if	the	L1	button	is	currently
pressed,	and	the	axisLeftX()	will	return	the	current	horizontal
position	of	the	left	stick	as	a	double	value	that	is	in	the	range	of	-1	to	1.
For	trigger	buttons	(for	example,	buttonL2()),	the	property	contains	a
double	value	that	ranges	from	0	(not	pressed)	to	1	(fully	pressed).

The	second	way	is	to	use	the	signals	corresponding	to	each
property.	For	example,	you	can	connect	to
the	gamepad's	buttonL1Changed(bool	value)	and	axisLeftXChanged(double	value)
signals	to	monitor	the	changes	of	the	corresponding	properties.

Finally,	the	QGamepadKeyNavigation	class	can	be	used	to	quickly	add
gamepad	support	to	a	keyboard-oriented	application.	When	you
create	an	object	of	this	class,	your	application	will	begin	receiving
key	events	caused	by	gamepads.	By	default,	GamepadKeyNavigation	will
emulate	up,	down,	left,	right,	back,	forward,	and	return	keys	when
the	corresponding	gamepad	buttons	are	pressed.	However,	you	can
override	the	default	mapping	or	add	your	own	mapping	for	other
gamepad	buttons.

Time	for	action	-	Handling
gamepad	events
Let's	start	with	adding	the	Qt	Gamepad	add-on	to	our	project	by
editing	the	jrgame.pro	file:

QT	+=	core	gui	widgets	gamepad

This	will	make	the	headers	of	the	library	available	to	our	project
and	tell	qmake	to	link	the	project	against	this	library.	Now	add	the
following	code	to	the	constructor	of	the	MyScene	class:

QList<int>	gamepadIds	=	QGamepadManager::instance()-

>connectedGamepads();

if	(!gamepadIds.isEmpty())	{

				QGamepad	*gamepad	=	new	QGamepad(gamepadIds[0],	this);

				connect(gamepad,	&QGamepad::axisLeftXChanged,

												this,	&MyScene::axisLeftXChanged);

				connect(gamepad,	&QGamepad::axisLeftYChanged,

												this,	&MyScene::axisLeftYChanged);

}

The	code	is	pretty	straightforward.	First,	we	use	
QGamepadManager::connectedGamepads		to	get	the	list	of	IDs	of	the	available
gamepads.	If	some	gamepads	were	found,	we	create	a	QGamepad	object
for	the	first	found	gamepad.	We	pass	this	to	its	constructor,	so	it
becomes	a	child	of	our	MyScene	object,	and	we	don't	need	to	worry
about	deleting	it.	Finally,	we	connect	the
gamepad's	axisLeftXChanged()	and	axisLeftYChanged()	signals	to	new	slots
in	the	MyScene	class.	Now,	let's	implement	these	slots:

void	MyScene::axisLeftXChanged(double	value)

{

{

				int	direction;

				if	(value	>	0)	{

								direction	=	1;

				}	else	if	(value	<	0)	{

								direction	=	-1;

				}	else	{

								direction	=	0;

				}

				m_player->setDirection(direction);

				checkTimer();

}

	

void	MyScene::axisLeftYChanged(double	value)

{

				if	(value	<	-0.25)	{

								jump();

				}

}

The	value	argument	of	the	signals	contains	a	number	from	-1	to	1.	It
allows	us	not
only	to	detect	whether	a	thumbstick	was	pressed,	but	also	to	get
more	precise	information
about	its	position.	However,	in	our	simple	game,	we	don't	need	this
precision.	In	the	axisLeftXChanged()	slot,	we	calculate	and	set	the
elephant's	direction	based	on	the	sign	of	the	received	value.
In	the	axisLeftYChanged()	slot,	if	we	receive	a	large	enough	negative
value,	we	interpret	it	as	a	jump	command.	This	will	help	us	avoid
accidental	jumps.	That's	all!	Our	game	now	supports	both
keyboards	and	gamepads.

If	you	need	to	react	to	other	buttons	and	thumbsticks	of	the	gamepad,	use	the	other	signals
of	the	QGamepad	class.	It's	also	possible	to	read	multiple	gamepads	at	the	same	time	by
creating	multiple	QGamepad	objects	with	different	IDs.

Item	collision	detection
Whether	the	player	item	collides	with	a	coin	is	checked	by	the
scene's	checkColliding()	function,	which	is	called	after	the	player	item
has	moved	horizontally	or	vertically.

Time	for	action	-	Making	the
coins	explode
The	implementation	of	checkColliding()	looks	like	this:

void	MyScene::checkColliding()

{

				for(QGraphicsItem*	item:	collidingItems(m_player))	{

								if	(Coin	*c	=	qgraphicsitem_cast<Coin*>(item))	{

												c->explode();

								}

				}

}

What	just	happened?
First,	we	call	the	scene's	QGraphicsScene::collidingItems()	function,	which
takes	the	item	for	which	colliding	items	should	be	detected	as	a	first
argument.	With	the	second,	optional	argument,	you	can	define	how
the	collision	should	be	detected.	The	type	of	that	argument	is
Qt::ItemSelectionMode,	which	was	explained	earlier.	By	default,	an	item
will	be	considered	colliding	with	m_player	if	the	shapes	of	the	two
items	intersect.

Next,	we	loop	through	the	list	of	found	items	and	check	whether	the
current	item	is	a	Coin	object.	This	is	done	by	trying	to	cast	the
pointer	to	Coin.	If	it	is	successful,	we	explode	the	coin	by	calling
explode().	Calling	the	explode()	function	multiple	times	is	no	problem,
since	it	will	not	allow	more	than	one	explosion.	This	is	important
since	checkColliding()	will	be	called	after	each	movement	of	the	player.
So	the	first	time	the	player	hits	a	coin,	the	coin	will	explode,	but	this
takes	time.	During	this	explosion,	the	player	will	most	likely	be
moved	again	and	thus	collides	with	the	coin	once	more.	In	such	a
case,	explode()	may	be	called	multiple	times.

The	qgraphicsitem_cast<>()	is	a	faster	alternative	to	dynamic_cast<>().	However,	it	will
properly	work	for	custom	types	only	if	they	implement	type()	properly.	This	virtual
function	must	return	a	different	value	for	each	custom	item	class	in	the	application.

The	collidingItems()	function	will	always	return	the	background	items
as	well,	since	the	player	item	is	above	all	of	them	most	of	the	time.
To	avoid	the	continuous	check	if	they	actually	are	coins,	we	use	a
trick.	Instead	of	using	QGraphicsPixmapItem	directly,	we	subclass	it	and
reimplement	its	virtual	shape()	function,	as	follows:

QPainterPath	BackgroundItem::shape()	const	{

		return	QPainterPath();

}

We	already	used	the	QPainterPath	class	in	the	previous	chapter.	This
function	just	returns	an	empty	QPainterPath.	Since	the	collision
detection	is	done	with	the	item's	shape,	the	background	items	can't
collide	with	any	other	item	since	their	shape	is	permanently	empty.
Don't	try	this	trick	with	boundingRect()	though,	because	it	must	always
be	valid.

Had	we	done	the	jumping	logic	inside	Player,	we	could	have
implemented	the	item	collision	detection	from	within	the	item
itself.	QGraphicsItem	also	offers	a	collidingItems()	function	that	checks
against	colliding	items	with	itself.	So	scene->collidingItems(item)	is
equivalent	to	item->collidingItems().

If	you	are	only	interested	in	whether	an	item	collides	with	another	item,	you	can	call
collidesWithItem()	on	the	item,	passing	the	other	item	as	an	argument.

Finishing	the	game
The	last	part	we	have	to	discuss	is	the	scene's	initialization.	Set	the
initial	values	for	all	fields	and	the	constructor,	create
the	initPlayField()	function	that	will	set	up	all	the	items,	and	call	that
function	in	the	constructor.	First,	we	initialize	the	sky,	trees,
ground,	and	player	item:

void	MyScene::initPlayField()

{

				setSceneRect(0,	0,	500,	340);

				m_sky	=	new	BackgroundItem(QPixmap(":/sky"));

				addItem(m_sky);

				BackgroundItem	*ground	=	new	BackgroundItem(QPixmap(":/ground"));

				addItem(ground);

				ground->setPos(0,	m_groundLevel);

				m_trees	=	new	BackgroundItem(QPixmap(":/trees"));

				m_trees->setPos(0,	m_groundLevel	-	m_trees-

>boundingRect().height());

				addItem(m_trees);

				m_grass	=	new	BackgroundItem(QPixmap(":/grass"));

				m_grass->setPos(0,m_groundLevel	-	m_grass-

>boundingRect().height());

				addItem(m_grass);

				m_player	=	new	Player();

				m_minX	=	m_player->boundingRect().width()	*	0.5;

				m_maxX	=	m_fieldWidth	-	m_player->boundingRect().width()	*	0.5;

				m_player->setPos(m_minX,	m_groundLevel	-	m_player-

>boundingRect().height()	/	2);

				m_currentX	=	m_minX;

				addItem(m_player);

				//...

}

Next,	we	create	coin	objects:

m_coins	=	new	QGraphicsRectItem(0,	0,	m_fieldWidth,	m_jumpHeight);

m_coins->setPen(Qt::NoPen);

m_coins->setPen(Qt::NoPen);

m_coins->setPos(0,	m_groundLevel	-	m_jumpHeight);

const	int	xRange	=	(m_maxX	-	m_minX)	*	0.94;

for	(int	i	=	0;	i	<	25;	++i)	{

				Coin	*c	=	new	Coin(m_coins);

				c->setPos(m_minX	+	qrand()	%	xRange,	qrand()	%	m_jumpHeight);

}

addItem(m_coins);

In	total,	we	are	adding	25	coins.	First,	we	set	up	an	invisible	item
with	the	size	of	the	virtual	world,	called	m_coins.	This	item	should	be
the	parent	to	all	coins.	Then,	we	calculate	the	width	between	m_minX
and	m_maxX.	That	is	the	space	where	Benjamin	can	move.	To	make	it	a
little	bit	smaller,	we	only	take	94	percent	of	that	width.	Then,	in	the
for	loop,	we	create	a	coin	and	randomly	set	its	x	and	y	position,
ensuring	that	Benjamin	can	reach	them	by	calculating	the	modulo
of	the	available	width	and	of	the	maximal	jump	height.	After	all	25
coins	are	added,	we	place	the	parent	item	holding	all	the	coins	on
the	scene.	Since	most	coins	are	outside	the	actual	view's	rectangle,
we	also	need	to	move	the	coins	while	Benjamin	is	moving.
Therefore,	m_coins	must	behave	like	any	other	background.	For	this,
we	simply	add	the	following	code	to	the	movePlayer()	function,	where
we	also	move	the	background	by	the	same	pattern:

applyParallax(ratio,	m_coins);

Have	a	go	hero	-	Extending	the
game
That's	it.	This	is	our	little	game.	Of	course,	there	is	much	room	to
improve	and	extend	it.	For	example,	you	can	add	some	barricades
Benjamin	has	to	jump	over.	Then,	you	would	have	to	check	whether
the	player	item	collides	with	such	a	barricade	item	when	moving
forward,	and	if	so,	refuse	movement.	You	have	learned	all	the
necessary	techniques	you	need	for	that	task,	so	try	to	implement
some	additional	features	to	deepen	your	knowledge.

A	third	way	of	animation
Besides	QTimer	and	QPropertyAnimation,	there	is	a	third	way	to	animate	the
scene.	The	scene	provides	a	slot	called	advance().	If	you	call	that	slot,
the	scene	will	forward	that	call	to	all	items	it	holds	by	calling
advance()	on	each	one.	The	scene	does	that	twice.	First,	all	item
advance()	functions	are	called	with	0	as	an	argument.	This	means	that
the	items	are	about	to	advance.	Then,	in	the	second	round,	all	items
are	called	passing	1	to	the	item's	advance()	function.	In	that	phase,
each	item	should	advance,	whatever	that	means—maybe	moving,
maybe	a	color	change,	and	so	on.	The	scene's	slot	advance	is
typically	called	by	a	QTimeLine	element;	with	this,	you	can	define	how
many	times	during	a	specific	period	of	time	the	timeline	should	be
triggered.

QTimeLine	*timeLine	=	new	QTimeLine(5000,	this);

timeLine->setFrameRange(0,	10);

This	timeline	will	emit	the	frameChanged()	signal	every	5	seconds	for	10
times.	All	you	have	to	do	is	connect	that	signal	to	the	scene's	advance()
slot,	and	the	scene	will	advance	10	times	in	50	seconds.	However,
since	all	items	receive	two	calls	for	each	advance,	this	may	not	be
the	best	animation	solution	for	scenes	with	a	lot	of	items	where	only
a	few	should	advance.

Pop	quiz
Q1.	Which	of	the	following	is	a	requirement	for	animating	a
property?

1.	 The	name	of	the	property	must	start	with	"m_".

2.	 Getter	and	setter	of	the	property	must	be	slots.

3.	 The	property	must	be	declared	using	the	Q_PROPERTY	macro.

Q2.	Which	class	sends	a	signal	when	a	gamepad	button	is	pressed
or	released?

1.	 QGamepad

2.	 QWidget

3.	 QGraphicsScene

Q3.	What	is	the	difference	between	the	shape()	and	boundingRect()
functions	of	QGraphicsItem?

1.	 shape()	returns	the	bounding	rectangle	as	a	QPainterPath	instead

of	a	QRectF

2.	 shape()	causes	the	item	to	be	repainted.

3.	 share()	can	return	a	more	precise	description	of	the	item's

boundaries	than	boundingRect()

Summary
In	this	chapter,	you	deepened	your	knowledge	about	items,	about
the	scene,	and	about	the	view.	While	developing	the	game,	you
became	familiar	with	different	approaches	of	how	to	animate	items,
and	you	were	taught	how	to	detect	collisions.	As	an	advanced	topic,
you	were	introduced	to	parallax	scrolling.

After	having	completed	the	two	chapters	describing	Graphics	View,
you	should	now	know	almost	everything	about	it.	You	are	able	to
create	complete	custom	items,	you	can	alter	or	extend	standard
items,	and	with	the	information	about	the	level	of	detail,	you	even
have	the	power	to	alter	an	item's	appearance,	depending	on	its
zoom	level.	You	can	transform	items	and	the	scene,	and	you	can
animate	items	and	thus	the	entire	scene.

Furthermore,	as	you	saw	while	developing	the	game,	your	skills	are
good	enough	to	develop	a	jump-and-run	game	with	parallax
scrolling,	as	it	is	used	in	highly	professional	games.	We	also	learned
how	to	add	gamepad	support	to	our	game.	To	keep	it	fluid	and
highly	responsive,	finally	we	saw	some	tricks	on	how	to	get	the	most
out	of	Graphics	View.

When	we	worked	with	widgets	and	the	Graphics	View	framework,
we	had	to	use	some	general	purpose	Qt	types,	such	as	QString	or
QVector.	In	simple	cases,	their	API	is	pretty	obvious.	However,	these
and	many	other	classes	provided	by	Qt	Core	module	are	very
powerful,	and	you	will	greatly	benefit	from	deeper	knowledge	of
them.	When	you	develop	a	serious	project,	it's	very	important	to
understand	how	these	basic	types	work	and	what	dangers	they	may
pose	when	used	incorrectly.	In	the	next	chapter,	we	will	turn	our
attention	to	this	topic.	You	will	learn	how	you	can	work	with	text	in
Qt,	which	containers	you	should	use	in	different	cases,	and	how	to

manipulate	various	kind	of	data	and	implement	a	persistent
storage.	This	is	essential	for	any	game	that	is	more	complicated
than	our	simple	examples.

Qt	Core	Essentials
This	chapter	will	help	you	master	Qt	ways	of	basic	data	processing
and	storage.	First	of	all,	you	will	learn	how	to	handle	textual	data
and	how	to	match	text	against	regular	expressions.	Next,	we	will
provide	an	overview	of	Qt	containers	and	describe	common	pitfalls
related	to	them.	Then,	you	will	see	how	to	store	and	fetch	data	from
files	and	how	to	use	different	storage	formats	for	text	and	binary
data.	By	the	end	of	this	chapter,	you	will	be	able	to	implement	non-
trivial	logic	and	data	processing	in	your	games	efficiently.	You	will
also	know	how	to	load	external	data	in	your	games	and	how	to	save
your	own	data	in	permanent	storage	for	future	use.

Main	topics	covered	in	this	chapter:

Text	handling

Qt	containers

Serialization	to	INI,	JSON,	XML,	and	binary	data

Saving	the	application's	settings

Text	handling
Applications	with	a	graphical	user	interface	(and	games	surely	fall
into	this	category)	are	able	to	interact	with	users	by	displaying	text
and	by	expecting	textual	input	from	the	user.	We	have	already
scratched	the	surface	of	this	topic	in	the	previous	chapters	using	the
QString	class.	Now,	we	will	go	into	further	detail.

String	encodings
The	C++	language	does	not	specify	encoding	of	strings.	Thus,	any
char*	array	and	any	std::string	object	can	use	an	arbitrary	encoding.
When	using	these	types	for	interaction	with	native	APIs	and	third-
party	libraries,	you	have	to	refer	to	their	documentation	to	find	out
which	encoding	they	use.	The	encoding	used	by	native	APIs	of	the
operating	system	usually	depends	on	the	current	locale.	Third-party
libraries	often	use	the	same	encoding	as	native	APIs,	but	some
libraries	may	expect	another	encoding,	for	example,	UTF-8.

A	string	literal	(that	is,	each	bare	text	you	wrap	in	quotation	marks)
will	use	an	implementation	defined	encoding.	Since	C++11,	you
have	an	option	to	specify	the	encoding	your	text	will	have:

u8"text"	will	produce	a	UTF-8	encoded	const	char[]	array

u"text"	will	produce	a	UTF-16	encoded	const	char16_t[]	array

U"text"	will	produce	a	UTF-32	encoded	const	char32_t[]	array

Unfortunately,	the	encoding	used	for	interpreting	the	source	files	is
still	implementation	defined,	so	it's	not	safe	to	put	non-ASCII
symbols	in	string	literals.	You	should	use	escape	sequences	(such	as
\unnnn)	to	write	such	literals.

Text	in	Qt	is	stored	using	the	QString	class	that	uses	Unicode
internally.	Unicode	allows	us	to	represent	characters	in	almost	all
languages	spoken	in	the	world	and	is	the	de	facto	standard	for
native	encoding	of	text	in	most	modern	operating	systems.	There
are	multiple	Unicode-based	encodings.	Memory	representation	of
the	content	of	QString	resembles	UTF-16	encoding.	Basically,	it

consists	of	an	array	of	16-bit	values	where	each	Unicode	character	is
represented	by	either	1	or	2	values.

When	constructing	a	QString	from	a	char	array	or	an	std::string	object,
it's	important	to	use	a	proper	conversion	method	that	depends	on
the	initial	encoding	of	the	text.	By	default,	QString	assumes	UTF-8
encoding	of	the	input	text.	UTF-8	is	compatible	with	ASCII,	so
passing	UTF-8	or	ASCII-only	text	to	QString(const	char	*str)	is	correct.
QString	provides	a	number	of	static	methods	to	convert	from	other
encodings	such	as	QString::fromLatin1()	or	QString::fromUtf16().
QString::fromLocal8Bit()	method	assumes	the	encoding	corresponding	to
the	system	locale.

If	you	have	to	combine	both	QString	and	std::string	in	one	program,
QString	offers	you	the	toStdString()	and	fromStdString()	methods	to
perform	a	conversion.	These	methods	also	assume	UTF-8	encoding
of	std::string,	so	you	can't	use	them	if	your	strings	are	in	another
encoding.

Default	representation	of	string	literals	(for	example,	"text")	is	not
UTF-16,	so	each	time	you	convert	it	to	a	QString,	an	allocation	and
conversion	happens.	This	overhead	can	be	avoided	using
the	QStringLiteral	macro:

QString	str	=	QStringLiteral("I'm	writing	my	games	using	Qt");

QStringLiteral	does	two	things:

It	adds	a	u	prefix	to	your	string	literal	to	ensure	that	it	will	be

encoded	in	UTF-16	at	compile	time

It	cheaply	creates	a	QString	and	instructs	it	to	use	the	literal

without	performing	any	allocation	or	encoding	conversion

It's	a	good	habit	to	wrap	all	your	string	literals	(except	the	ones	that

need	to	be	translated)	into	QStringLiteral	but	it	is	not	required,	so
don't	worry	if	you	forget	to	do	that.

QByteArray	and	QString
QString	always	contains	UTF-16	encoded	strings,	but	what	if	you	have
data	in	an	unknown	(yet)	encoding?	Also,	what	if	the	data	is	not
even	text?	In	these	cases,	Qt	uses	the	QByteArray	class.	When	you	read
data	directly	from	a	file	or	receive	it	from	a	network	socket,	Qt	will
return	the	data	as	a	QByteArray,	indicating	that	this	is	an	arbitrary
array	of	bytes	without	any	information	about	the	encoding:

QFile	file("/path/to/file");

file.open(QFile::ReadOnly);

QByteArray	array	=	file.readAll();

The	closest	equivalent	of	QByteArray	in	the	standard	library	would	be
std::vector<char>.	As	the	name	implies,	this	is	just	an	array	of	bytes
with	some	helpful	methods.	In	the	preceding	example,	if	you	know
that	the	file	you	read	is	in	UTF-8,	you	can	convert	the	data	to	a
string,	as	follows:

QString	text	=	QString::fromUtf8(array);

If	you	have	no	idea	what	encoding	the	file	uses,	it	may	be	best	to	use
the	system	encoding,	so	QString::fromLocal8Bit	would	be	better.
Similarly,	when	writing	to	a	file,	you	need	to	convert	the	string	to	a
byte	array	before	passing	it	to	the	write()	function:

QString	text	=	"new	file	content\n";

QFile	file("/path/to/file");

file.open(QFile::WriteOnly);

QByteArray	array	=	text.toUtf8();

file.write(array);

You	can	use	file.close()	to	close	the	file.	QFile	will	also	automatically	close	the	file	when
deleted,	so	if	your	QFile	object	goes	out	of	scope	immediately	after	you've	finished	working

with	the	file,	there	is	no	need	for	an	explicit	close()	call.

Using	other	encodings
As	we've	already	mentioned,	QString	has	convenient	methods	for
decoding	and	encoding	data	in	the	most	popular	encodings,	such	as
UTF-8,	UTF-16,	and	Latin1.	However,	Qt	knows	how	to	handle
many	other	encodings	as	well.	You	can	access	them	using	the
QTextCodec	class.	For	example,	if	you	have	a	file	in	Big-5	encoding,	you
can	ask	Qt	for	a	codec	object	by	its	name	and	make	use	of	the
fromUnicode()	and	toUnicode()	methods:

QByteArray	big5Encoded	=	big5EncodedFile.readAll();

QTextCodec	*big5Codec	=	QTextCodec::codecForName("Big5");

QString	text	=	big5Codec->toUnicode(big5Encoded);

QByteArray	big5EncodedBack	=	big5Codec->fromUnicode(text);

You	can	list	the	codecs	supported	on	your	installation	using	the
QTextCodec::availableCodecs()	static	method.	In	most	installations,	Qt	can	handle	almost
1,000	different	text	codecs.

Basic	string	operations
The	most	basic	tasks	that	involve	text	strings	are	the	ones	where
you	add	or	remove	characters	from	the	string,	concatenate	strings,
and	access	the	string's	content.	In	this	regard,	QString	offers	an
interface	that	is	compatible	with	std::string,	but	it	also	goes	beyond
that,	exposing	many	more	useful	methods.

Adding	data	at	the	beginning	or	at	the	end	of	the	string	can	be	done
using	the	prepend()	and	append()	methods.	Inserting	data	in	the	middle
of	a	string	can	be	done	with	the	insert()	method	that	takes	the
position	of	the	character	where	we	need	to	start	inserting	as	its	first
argument	and	the	actual	text	as	its	second	argument.	All	these
methods	have	a	couple	of	overloads	that	accept	different	objects
that	can	hold	textual	data,	including	the	classic	const	char*	array.

Removing	characters	from	a	string	is	similar.	The	basic	way	to	do
this	is	to	use	the	remove()	method	that	accepts	the	position	at	which
we	need	to	delete	characters,	and	the	number	of	characters	to	delete
is	as	shown:

QString	str	=	QStringLiteral("abcdefghij");

str.remove(2,	4);	//	str	=	"abghij"

There	is	also	a	remove()	overload	that	accepts	another	string.	When
called,	all	its	occurrences	are	removed	from	the	original	string.	This
overload	has	an	optional	argument	that	states	whether	comparison
should	be	done	in	the	default	case-sensitive	(Qt::CaseSensitive)	or	case-
insensitive	(Qt::CaseInsensitive)	way:

QString	str	=	QStringLiteral("Abracadabra");

str.remove(QStringLiteral("ab"),	Qt::CaseInsensitive);

//	str	=	"racadra"

To	concatenate	strings,	you	can	either	simply	add	two	strings
together,	or	you	can	append	one	string	to	the	other:

QString	str1	=	QStringLiteral("abc");

QString	str2	=	QStringLiteral("def");

QString	str1_2	=	str1	+	str2;

QString	str2_1	=	str2;

str2_1.append(str1);

Accessing	strings	can	be	divided	into	two	use	cases.	The	first	is
when	you	wish	to	extract	a	part	of	the	string.	For	this,	you	can	use
one	of	these	three	methods—left(),	right(),	and	mid()—that	return	the
given	number	of	characters	from	the	beginning	or	end	of	the	string
or	extract	a	substring	of	a	specified	length,	starting	from	a	given
position	in	the	string:

QString	original	=	QStringLiteral("abcdefghij");

QString	l	=	original.left(3);	//	"abc"

QString	r	=	original.right(2);	//	"ij"

QString	m	=	original.mid(2,	5);	//	"cdefg"

The	second	use	case	is	when	you	wish	to	access	a	single	character	of
the	string.	The	use	of	the	index	operator	works	with	QString	in	a
similar	fashion	as	with	std::string,	returning	a	copy	or	non-const
reference	to	a	given	character	that	is	represented	by	the	QChar	class,
as	shown	in	the	following	code:

QString	str	=	"foo";

QChar	f	=	str[0];	//	const

str[0]	=	'g';	//	non-const

In	addition	to	this,	Qt	offers	a	dedicated	method—at()—that	returns
a	copy	of	the	character:

QChar	f	=	str.at(0);

You	should	prefer	to	use	at()	instead	of	the	index	operator	for	operations	that	do	not
modify	the	character,	as	this	explicitly	uses	a	constant	method.

The	string	search	and	lookup
The	second	group	of	functionalities	is	related	to	searching	for	the
string.	You	can	use	methods	such	as	startsWith(),	endsWith(),	and
contains()	to	search	for	substrings	in	the	beginning	or	end	or	in	an
arbitrary	place	in	the	string.	The	number	of	occurrences	of	a
substring	in	the	string	can	be	retrieved	using	the	count()	method.

Be	careful,	there	is	also	a	count()	method	that	doesn't	take	any	parameters	and	returns	the
number	of	characters	in	the	string.

If	you	need	to	know	the	exact	position	of	the	match,	you	can	use
indexOf()	or	lastIndexOf()	to	receive	the	position	in	the	string	where	the
match	occurs.	The	first	call	works	by	searching	forward,	and	the
other	one	searches	backwards.	Each	of	these	calls	takes	two
optional	parameters—the	second	one	determines	whether	the
search	is	case-sensitive	(similar	to	how	remove	works).	The	first	one	is
the	position	in	the	string	where	the	search	begins.	It	lets	you	find	all
the	occurrences	of	a	given	substring:

int	pos	=	-1;

QString	str	=	QStringLiteral("Orangutans	like	bananas.");

do	{

				pos	=	str.indexOf("an",	pos	+	1);

				qDebug()	<<	"'an'	found	starts	at	position"	<<	pos;

}	while(pos	!=	-1);

Dissecting	strings
There	is	one	more	group	of	useful	string	functionalities	that	makes
QString	different	from	std::string,	that	is,	cutting	strings	into	smaller
parts	and	building	larger	strings	from	smaller	pieces.

Very	often,	a	string	contains	substrings	that	are	glued	together	by	a
repeating	separator	(for	example,	"1,4,8,15").	While	you	can	extract
each	field	from	the	record	using	functions	that	you	already	know
(for	example,	indexOf),	an	easier	way	exists.	QString	contains	a	split()
method	that	takes	the	separator	string	as	its	parameter	and	returns
a	list	of	strings	that	are	represented	in	Qt	by	the	QStringList	class.
Then,	dissecting	the	record	into	separate	fields	is	as	easy	as	calling
the	following	code:

QString	record	=	"1,4,8,15,16,24,42";

QStringList	items	=	record.split(",");

for(const	QString&	item:	items)	{

				qDebug()	<<	item;

}

The	inverse	of	this	method	is	the	join()	method	present	in	the
QStringList	class,	which	returns	all	the	items	in	the	list	as	a	single
string	merged	with	a	given	separator:

QStringList	fields	=	{	"1",	"4",	"8",	"15",	"16",	"24",	"42"	};

QString	record	=	fields.join(",");

Converting	between	numbers
and	strings
QString	also	provides	some	methods	for	convenient	conversion
between	textual	and	numerical	values.	Methods	such	as	toInt(),
toDouble(),	or	toLongLong()	make	it	easy	to	extract	numerical	values	from
strings.	All	such	methods	take	an	optional	bool	*ok	parameter.	If	you
pass	a	pointer	to	a	bool	variable	as	this	parameter,	the	variable	will
be	set	to	true	or	false,	depending	on	whether	the	conversion	was
successful	or	not.	Methods	returning	integers	also	take	the	second
optional	parameter	that	specifies	the	numerical	base	(for	example,
binary,	octal,	decimal,	or	hexadecimal)	of	the	value:

bool	ok;

int	v1	=	QString("42").toInt(&ok,	10);

//	v1	=	42,	ok	=	true

long	long	v2	=	QString("0xFFFFFF").toInt(&ok,	16);

//	v2	=	16777215,	ok	=	true

double	v3	=	QString("not	really	a	number").toDouble(&ok);

//v3	=	0.0,	ok	=	false

A	static	method	called	number()	performs	the	conversion	in	the	other
direction—it	takes	a	numerical	value	and	number	base	and	returns
the	textual	representation	of	the	value:

QString	txt	=	QString::number(42);	//	txt	=	"42"

This	function	has	some	optional	arguments	that	allow	you	to
control	the	string	representation	of	the	number.	For	integers,	you
can	specify	the	numerical	base.	For	doubles,	you	can	choose	the
scientific	format	'e'	or	the	conventional	format	'f'	and	specify	the
number	of	digits	after	the	decimal	delimiter:

QString	s1	=	QString::number(42,	16);	//	"2a"

QString	s2	=	QString::number(42.0,	'f',	6);	//	"42.000000"

QString	s3	=	QString::number(42.0,	'e',	6);	//	"4.200000e+1"

Some	of	the	other	classes	that	represent	values	also	provide	conversions	to	and	from
QString.	An	example	of	such	a	class	is	QDate,	which	represents	a	date	and	provides	the
fromString()	and	toString()	methods.

These	methods	are	nice	and	easy	to	use	for	technical	purposes,	for
example,	for	reading	and	writing	numbers	to	configuration	files.
However,	they	are	not	suitable	when	you	need	to	display	a	number
to	the	user	or	parse	a	user	input	because	numbers	are	written
differently	in	different	countries.	This	brings	us	to	the	topic	of
internationalization.

Internationalization
Most	real	projects	have	a	target	audience	in	multiple	countries.	The
most	notable	difference	between	them	is	the	spoken	language,	but
there	are	other	aspects	some	developers	may	not	think	of.	For
example,	dot	"."	and	comma	","	are	both	fairly	common	as	the
decimal	separator	throughout	the	world.	Date	formats	are	also	very
different	and	incompatible,	and	using	a	wrong	format	(for
example,	mm/dd/yyyy	instead	of	dd/mm/yyyy)	will	result	in	a	completely
different	date.

Qt	provides	the	QLocale	class	for	dealing	with	locale-dependent
operations,	including	conversions	between	numbers	in	strings.	In
the	following	code,	text	and	number	may	have	different	values,
depending	on	the	system	locale:

QLocale	locale	=	QLocale::system();

QString	text	=	locale.toString(1.2);

double	number	=	locale.toDouble(QStringLiteral("1,2"));

QLocale	also	provides	methods	for	formatting	dates	and	prices,	and
allows	us	to	request	additional	information	about	local	conventions.

As	for	translations,	we've	already	mentioned	that	any	text	visible	to
users	should	be	wrapped	in	a	tr()	function.	Now	we	will	explain	this
requirement.

Qt's	translation	system	makes	it	possible	for	developing	and
translation	teams	to	work	independently.	The	project	goes	through
the	following	steps:

1.	 Developers	create	an	application	and	wrap	all	text	that

should	be	translated	in	special	translation	functions	(such	as

tr()).	Visible	text	in	forms	is	automatically	wrapped	in

translation	functions.

2.	 A	special	Qt	tool	(lupdate)	searches	for	all	strings	wrapped

in	translation	functions	and	generates	a	translation	file	(.ts).

3.	 Translators	open	this	file	in	a	special	application	called	Qt

Linguist.	In	that	application,	they	are	able	to	see	all	strings

grouped	by	context,	which	is	usually	the	class	this	text

belongs	to.	They	can	add	translations	and	save	them	in	the

translation	file.

4.	 When	this	new	translation	file	is	copied	back	to	the	project

and	applied	using	the	QCoreApplication::installTranslator	function,

the	translation	functions	start	returning	translated	text

instead	of	simply	returning	the	argument.

5.	 As	the	application	evolves	and	a	new	untranslated	text

appears,	it's	shown	untranslated	by	default.	However,	it	can

be	automatically	added	to	translation	files,	and	translators

can	add	new	translations	for	new	content,	without	losing	the

existing	translations.

We	will	not	go	into	the	details	of	this	process.	As	a	developer,	you
only	need	to	ensure	that	all	visible	strings	are	wrapped	in	a
translation	function	and	a	proper	context	is	provided.	The	context	is
necessary	because	a	short	text	(for	example,	one	word	on	a	button)
may	not	be	enough	to	understand	the	meaning	and	provide	a
proper	translation,	but	how	do	we	specify	the	context?

The	main	translation	function	is	QCoreApplication::translate().	It	accepts
three	arguments:	the	context,	the	text	to	translate,	and	an	optional
disambiguation	text.	The	disambiguation	argument	is	rarely
needed.	It	can	be	used	to	distinguish	between	multiple	instances	of
the	same	text	in	the	same	context	and	when	they	should	have

different	translations.

Instead	of	QCoreApplication::translate(),	you	should	usually	use	the	tr()
function,	which	is	declared	in	each	class	that	inherits	QObject.
MyClass::tr(text,	disambiguation)	is	a	shortcut	for
QCoreApplication::translate("MyClass",	text,	disambiguation).	Due	to	this,	all
translatable	texts	located	in	one	class	will	share	the	same	context
string,	so	they	will	be	grouped	in	Qt	Linguist	to	make	the
translator's	job	easier.

If	you	have	a	translatable	text	outside	of	a	subclass	of	QObject,	the	tr()
function	will	not	be	available	by	default.	In	this	case,	you	have	the
following	options:

Use	the	QCoreApplication::translate()	function	and	write	the

context	argument	explicitly

Reuse	the	tr()	function	of	a	relevant	class	(for

example,	MyClass::tr())

Declare	the	tr()	function	in	your	(non-QObject-based)	class	by

adding	the	Q_DECLARE_TR_FUNCTIONS(context)	macro	at	the	top	of	the

class	declaration

Note	that	the	translation	functions	should	receive	the	string	literals
directly.	Otherwise,	lupdate	will	not	be	able	to	understand	which
text	is	being	translated.	The	following	code	is	incorrect,	because	the
two	strings	will	not	be	seen	by	translators:

const	char*	text;

if	(condition)	{

				text	=	"translatable1";

}	else	{

				text	=	"translatable2";

}

QString	result	=	tr(text);	//	not	recognized!

The	simplest	way	to	fix	this	issue	is	to	apply	the	tr()	function
directly	to	each	string	literal:

QString	result;

if	(condition)	{

				result	=	tr("translatable1");

}	else	{

				result	=	tr("translatable2");

}

Another	solution	is	to	mark	translatable	text	with	the	QT_TR_NOOP
macro:

if	(condition)	{

				text	=	QT_TR_NOOP("translatable1");

}	else	{

				text	=	QT_TR_NOOP("translatable2");

}

QString	result	=	tr(text);

The	QT_TR_NOOP	macro	returns	its	argument	as	is,	but	lupdate	will
recognize	that	these	strings	must	be	translated.

It's	also	possible	to	add	a	comment	for	the	translator	using	a	special
form	of	C++	comments:	//:	...	or	/*:	...	*/.	Consider	this	example:

//:	The	button	for	sending	attachment	files

QPushButton	*button	=	new	QPushButton(tr("Send"));

In	this	section,	we	only	described	the	absolute	minimum	you	need	to	know	before	starting
work	on	a	multilanguage	game.	This	knowledge	can	save	you	a	lot	of	time,	because	it's
much	easier	to	mark	some	text	for	translation	as	you	write	it	than	to	go	through	a	large
code	base	and	do	it	later.	However,	you	will	need	to	learn	more	to	actually	implement
internationalization	in	your	project.	We	will	cover	this	topic	in	depth	later	(Online	chapter,	
https://www.packtpub.com/sites/default/files/downloads/MiscellaneousandAdvancedConcepts.

pdf).

https://www.packtpub.com/sites/default/files/downloads/MiscellaneousandAdvancedConcepts.pdf

Using	arguments	in	strings
A	common	task	is	to	have	a	string	that	needs	to	be	dynamic	in	such
a	way	that	its	content	depends	on	the	value	of	some	external
variable—for	instance,	you	would	like	to	inform	the	user	about	the
number	of	files	being	copied,	showing	"copying	file	1	of	2"	or
"copying	file	2	of	5"	depending	on	the	value	of	counters	that	denote
the	current	file	and	the	total	number	of	files.	It	might	be	tempting
to	do	this	by	assembling	all	the	pieces	together	using	one	of	the
available	approaches:

QString	str	=	"Copying	file	"	+	QString::number(current)

												+	"	of	"	+	QString::number(total);

There	are	a	number	of	drawbacks	to	such	an	approach;	the	biggest
one	is	the	problem	of	translating	the	string	into	other	languages,
wherein	different	languages	their	grammar	might	require	the	two
arguments	to	be	positioned	differently	than	in	English.

Instead,	Qt	allows	us	to	specify	positional	parameters	in	strings	and
then	replace	them	with	real	values.	This	approach	is	called	string
interpolation.	Positions	in	the	string	are	marked	with	the	%	sign
(for	example,	%1,	%2,	and	so	on)	and	they	are	replaced	by	making	a
call	to	arg()	and	passing	it	the	value	that	is	used	to	replace	the	next
lowest	marker	in	the	string.	Our	file	copy	message	construction
code	then	becomes	this:

QString	str	=	tr("Copying	file	%1	of	%2").arg(current).arg(total);

Contrary	to	the	behavior	of	the	printf()	built-in	function,	you	don't
need	to	specify	the	types	of	values	in	the	placeholders	(like	%d	or	%s).
Instead,	the	arg()	method	has	a	number	of	overloads	that	accept

single	characters,	strings,	integers,	and	real	numbers.	The	arg()
method	has	the	same	optional	arguments	that	QString::number()	has,
allowing	you	to	configure	how	numbers	are	formatted.	Additionally,
the	arg()	method	has	the	fieldWidth	argument	that	forces	it	to	always
output	the	string	of	a	specified	length,	which	is	convenient	for
formatting	tables:

const	int	fieldWidth	=	4;

qDebug()	<<	QStringLiteral("%1	|	%2").arg(5,	fieldWidth).arg(6,

fieldWidth);

qDebug()	<<	QStringLiteral("%1	|	%2").arg(15,	fieldWidth).arg(16,

fieldWidth);

//	output:

//	"			5	|				6"

//	"		15	|			16"

If	you	want	to	use	a	character	other	than	space	to	fill	empty	spaces,
use	the	fillChar	optional	argument	of	arg().

Regular	expressions
Let's	briefly	talk	about	regular	expressions—usually	shortened
as	"regex"	or	"regexp".	You	will	need	these	regular	expressions
whenever	you	have	to	check	whether	a	string	or	part	of	it	matches	a
given	pattern	or	when	you	want	to	find	specific	parts	inside	the	text
and	possibly	want	to	extract	them.	Both	the	validity	check	and	the
finding/extraction	are	based	on	the	so-called	pattern	of	the	regular
expression,	which	describes	the	format	a	string	must	have	to	be
valid,	to	be	found,	or	to	be	extracted.	Since	this	book	is	focused	on
Qt,	there	is	unfortunately	no	time	to	cover	regular	expressions	in
depth.	This	is	not	a	huge	problem,	however,	since	you	can	find
plenty	of	good	websites	that	provide	introductions	to	regular
expressions	on	the	internet.

Even	though	there	are	many	flavors	of	the	regular	expression's
syntax,	the	one	that	Perl	uses	has	become	the	de	facto	standard.	In
Qt,	the	QRegularExpression	class	provides	Perl-compatible	regular
expressions.

QRegularExpression	was	first	introduced	with	Qt	5.0.	In	the	previous	versions,	the	only
regular	exception	class	was	QRegExp,	and	it's	still	available	for	compatibility.	Since
QRegularExpression	is	closer	to	the	Perl	standard	and	since	its	execution	speed	is	much	faster
as	compared	to	QRegExp,	we	advise	you	to	use	QRegularExpression	whenever	possible.
Nevertheless,	you	can	read	the	QRegExp	documentation,	which	contains	a	nice	general
introduction	of	regular	expressions.

Time	for	action	–	A	simple	quiz
game
To	introduce	you	to	the	main	usage	of	QRegularExpression,	let's	imagine
this	game:	a	photo,	showing	an	object,	is	shown	to	multiple	players,
and	each	of	them	has	to	estimate	the	object's	weight.	The	player
whose	estimate	is	closest	to	the	actual	weight	wins.	The	estimates
will	be	submitted	via	QLineEdit.	Since	you	can	write	anything	in	a	line
edit,	we	have	to	ensure	that	the	content	is	valid.

So	what	does	valid	mean?	In	this	example,	we	define	that	a	value
between	1g	and	999kg	is	valid.	Knowing	this	specification,	we	can
construct	a	regular	expression	that	will	verify	the	format.	The	first
part	of	the	text	is	a	number,	which	can	be	between	1	and	999.	Thus,
the	corresponding	pattern	looks	like	[1-9]\d{0,2},	where	[1-9]	allows—
and	demands—exactly	one	digit,	except	zero.	It's	optionally
followed	by	up	to	two	digits,	including	zero.	This	is	expressed
through	\d{0,2},	where	\d	means	"any	digit",	0	is	the	minimal	allowed
count,	and	2	is	the	maximal	allowed	count.	The	last	part	of	the
input	is	the	weight's	unit.	With	a	pattern	such	as	(mg|g|kg),	we	allow
the	weight	to	be	input	in	milligrams	(mg),	grams	(g),	or	kilograms
(kg).	With	\s*,	we	finally	allow	an	arbitrary	number	of	whitespace
characters	between	the	number	and	unit.	Let's	combine	it	all
together	and	test	our	regular	expression	right	away:

QRegularExpression	regex("[1-9]\\d{0,2}\\s*(mg|g|kg)");

regex.setPatternOptions(QRegularExpression::CaseInsensitiveOption);

qDebug()	<<	regex.match("100	kg").hasMatch();							//	true

qDebug()	<<	regex.match("I	don't	know").hasMatch();	//	false

What	just	happened?
In	the	first	line,	we	constructed	the	aforementioned	QRegularExpression
object,	while	passing	the	regular	expression's	pattern	as	a
parameter	to	the	constructor.	Note	that	we	have	to	escape	the	\
character,	because	it	has	special	meaning	in	C++	syntax.

Regular	expressions	are	case-sensitive	by	default.	However,	we
want	to	allow	the	input	to	be	in	uppercase	or	mixed	case.	To	achieve
this,	we	can,	of	course,	write	(mg|mG|Mg|MG|g|G|kg|kG|Kg|KG)	or	convert	the
string	to	lowercase	before	matching,	but	there	is	a	much	cleaner
and	more	readable	solution.	On	the	second	line	of	the	code
example,	you	see	the	answer—a	pattern	option.	We	used
setPatternOptions()	to	set	the	QRegularExpression::CaseInsensitiveOption	option,
which	does	not	respect	the	case	of	the	characters	used.	Of	course,
there	are	a	few	more	options	that	you	can	read	about	in	Qt's
documentation	on	QRegularExpression::PatternOption.	Instead	of	calling
setPatternOptions(),	we	could	also	have	passed	the	option	as	a	second
parameter	to	the	constructor	of	QRegularExpression:

QRegularExpression	regex("[1-9]\\d{0,2}\\s*(mg|g|kg)",

					QRegularExpression::CaseInsensitiveOption);

When	we	need	to	test	an	input,	all	we	have	to	do	is	call	match(),
passing	the	string	we	would	like	to	check	against	it.	In	return,	we
get	an	object	of	the	QRegularExpressionMatch	type	that	contains	all	the
information	that	is	further	needed—and	not	only	to	check	the
validity.	With	QRegularExpressionMatch::hasMatch(),	we	then	can	determine
whether	the	input	matches	our	criteria,	as	it	returns	true	if	the
pattern	could	be	found.	Otherwise,	of	course,	false	is	returned.

Our	pattern	is	not	quite	finished.	The	hasMatch()	method	would	also

return	true	if	we	matched	it	against	"foo	142g	bar".	So,	we	have	to
define	that	the	pattern	is	checked	from	the	beginning	to	the	end	of
the	matched	string.	This	is	done	by	the	\A	and	\z	anchors.	The
former	marks	the	start	of	a	string	and	the	latter	the	end	of	a	string.
Don't	forget	to	escape	the	slashes	when	you	use	such	anchors.	The
correct	pattern	will	then	look	like	this:

QRegularExpression	regex("\\A[1-9]\\d{0,2}\\s*(mg|g|kg)\\z",

				QRegularExpression::CaseInsensitiveOption);

Extracting	information	out	of	a
string
After	we	have	checked	that	the	sent	guess	is	well	formed,	we	have	to
extract	the	actual	weight	from	the	string.	In	order	to	be	able	to
easily	compare	the	different	guesses,	we	further	need	to	transform
all	values	to	a	common	reference	unit.	In	this	case,	it	should	be	a
milligram,	the	lowest	unit.	So,	let's	see	what	QRegularExpressionMatch	can
offer	us	for	this	task.

With	capturedTexts(),	we	get	a	string	list	of	the	pattern's	captured
groups.	In	our	example,	this	list	will	contain	"23kg"	and	"kg".	The
first	element	is	always	the	string	that	was	fully	matched	by	the
pattern.	The	next	elements	are	all	the	substrings	captured	by	the
used	brackets.	Since	we	are	missing	the	actual	number,	we	have	to
alter	the	pattern's	beginning	to	([1-9]\d{0,2}).	Now,	the	list's	second
element	is	the	number,	and	the	third	element	is	the	unit.	Thus,	we
can	write	the	following:

int	getWeight(const	QString	&input)	{

				QRegularExpression	regex("\\A([1-9]\\d{0,2})\\s*(mg|g|kg)\\z");

				

regex.setPatternOptions(QRegularExpression::CaseInsensitiveOption);

				QRegularExpressionMatch	match	=	regex.match(input);

				if(match.hasMatch())	{

								const	QString	number	=	match.captured(1);

								int	weight	=	number.toInt();

								const	QString	unit	=	match.captured(2).toLower();

								if	(unit	==	"g")	{

												weight	*=	1000;

								}	else	if	(unit	==	"kg")	{

												weight	*=	1000000	;

								}

								return	weight;

				}	else	{

								return	-1;

				}

}

In	the	function's	first	two	lines,	we	set	up	the	pattern	and	its	option.
Then,	we	match	it	against	the	passed	argument.	If
QRegularExpressionMatch::hasMatch()	returns	true,	the	input	is	valid	and	we
extract	the	number	and	unit.	Instead	of	fetching	the	entire	list	of
captured	text	with	capturedTexts(),	we	query	specific	elements	directly
by	calling	QRegularExpressionMatch::captured().	The	passed	integer
argument	signifies	the	element's	position	inside	the	list.	So,	calling
captured(1)	returns	the	matched	digits	as	a	QString.

Be	aware	that	adding	a	group	at	a	later	time	will	shift	the	indices	of	all	the	following
groups	by	1,	and	you	will	have	to	adjust	your	code!	If	you	have	long	patterns	or	if	there	is	a
high	probability	that	further	brackets	will	be	added	in	future,	you	can	use	named	groups
to	make	your	code	more	maintainable.	There	is	a	
QRegularExpressionMatch::captured()	overload	that	allows	you	to	specify	the	group	name
instead	of	index.	For	example,	if	you	have	written	(?<number>[1-9][0-9]{0,2}),	then	you	can
get	the	digits	by	calling	match.captured("number").

To	be	able	to	calculate	using	the	extracted	number,	we	need	to
convert	QString	into	an	integer.	This	is	done	by	calling	QString::toInt().
The	result	of	this	conversion	is	then	stored	in	the	weight	variable.
Next,	we	fetch	the	unit	and	transform	it	to	lowercase	characters	on
the	fly.	This	way,	we	can,	for	example,	easily	determine	whether	the
user's	guess	is	expressed	in	grams	by	checking	the	unit	against	the
lowercase	"g".	We	do	not	need	to	take	care	of	the	capital	"G"	or	the
variants	"KG",	"Kg",	and	the	unusual	"kG"	for	kilogram.

To	get	the	standardized	weight	in	milligrams,	we	multiply	weight	by
1,000	or	1,000,000,	depending	on	whether	this	was	expressed	in	g
or	kg.	Lastly,	we	return	this	standardized	weight.	If	the	string	wasn't
well	formed,	we	return	-1	to	indicate	that	the	given	guess	was
invalid.	It	is	then	the	caller's	duty	to	determinate	which	player's
guess	was	the	best.

Pay	attention	to	whether	your	chosen	integer	type	can	handle	the	weight's	value.	For	our
example,	999	million	is	the	biggest	possible	result,	and,	fortunately,	it's	smaller	than	the
maximum	possible	value	of	a	signed	32-bit	integer	(2,147,483,647).	If	you're	unsure
whether	the	type	you	use	is	big	enough	on	all	target	systems,	use	a	fixed	width	integer	type
(for	example,	int64_t).

As	an	exercise,	try	to	extend	the	example	by	allowing	decimal
numbers	so	that	"23.5g"	is	a	valid	guess.	To	achieve	this,	you	have
to	alter	the	pattern	in	order	to	enter	decimal	numbers,	and	you	also
have	to	deal	with	double	instead	of	int	for	the	standardized	weight.

Finding	all	pattern	occurrences
Lastly,	let's	take	a	final	look	at	how	to	find,	for	example,	all	numbers
inside	a	string,	even	those	leading	with	zeros:

QString	input	=	QStringLiteral("123	foo	09	1a	3");

QRegularExpression	regex("\\b\\d+\\b");

QRegularExpressionMatchIterator	i	=	regex.globalMatch(input);

while	(i.hasNext())	{

				QRegularExpressionMatch	match	=	i.next();

				qDebug()	<<	match.captured();

}

The	input	string	contains	an	exemplary	text	in	which	we	would	like
to	find	all	numbers.	The	"foo"	as	well	as	"1a"	variables	should	not	be
found	by	the	pattern,	since	these	are	not	valid	numbers.	Therefore,
we	set	up	the	pattern,	defining	that	we	require	at	least	one	digit,	\d+,
and	that	this	digit—or	these	digits—should	be	wrapped	by	word
boundaries,	\b.	Note	that	you	have	to	escape	the	slashes.	With	this
pattern,	we	initiate	the	QRegularExpression	object	and	call	globalMatch()	on
it.	Inside	the	passed	argument,	the	pattern	will	be	searched.	This
time,	we	do	not	get	QRegularExpressionMatch	back;	instead,	we	get	an
iterator	of	the	QRegularExpressionMatchIterator	type.	Since
QRegularExpressionMatchIterator	has	a	convenient	hasNext()	method,	we
check	whether	there	is	a	further	match	and	if	so,	we	bring	up	the
next	match	by	calling	next().	The	type	of	the	returned	match	is	then
QRegularExpressionMatch,	which	you	already	know.

If	you	need	to	know	about	the	next	match	inside	the	while	loop,	you	can	use
QRegularExpressionMatchIterator::peekNext()	to	receive	it.	The	benefit	of	this	function	is	that
it	does	not	move	the	iterator.

This	way,	you	can	iterate	all	pattern	occurrences	in	the	string.	This
is	helpful	if	you,	for	example,	want	to	highlight	a	search	string	in
text.

Our	example	will	give	the	output	of	"123",	"09",	and	"3".

Taking	into	account	that	this	was	just	a	brief	introduction	to	regular
expressions,	we	would	like	to	encourage	you	to	read	the	Detailed
Description	section	in	the	documentation	to	QRegularExpression,
QRegularExpressionMatch,	and	QRegularExpressionMatchIterator.	Regular
expressions	are	very	powerful	and	useful,	so,	in	your	daily
programming	life,	you	can	benefit	from	the	profound	knowledge	of
regular	expressions!

Containers
When	you	need	to	store	a	collection	of	objects,	you	need	a	container
to	hold	them.	The	C++	standard	library	provides	many	powerful
containers,	such	as	std::vector,	std::list,	or	std::map.	However,	Qt
doesn't	use	these	containers	(actually,	it	hardly	uses	any	standard
library	classes	at	all)	and	provides	its	own	alternative
implementation	of	containers	instead.	When	Qt	containers	were
introduced,	they	provided	significantly	more	consistent
performance	on	different	platforms	compared	to	standard	library
implementations,	so	they	were	required	to	create	reliable	cross-
platform	applications.	This	is	not	really	the	case	now,	as	STL
implementations	and	compilers	have	since	evolved	and	gained	new
optimizations	and	features.	However,	there	are	still	reasons	to	use
Qt	containers,	especially	in	an	application	that	heavily	uses	other	Qt
classes:

Qt	API	always	uses	Qt	containers.	When	you	receive	a	QList,

it	will	almost	never	be	more	efficient	or	convenient	to

convert	it	to	a	standard	library	container.	Before	calling	a

method	that	accepts	QList,	you	should	populate	the	input

data	in	a	QList	instead	of	converting	it	from	an	STL	container.

Qt	containers	provide	unique	features,	like	implicit	sharing

(we	will	discuss	it	later	in	this	chapter)	or	Java-style

iterators,	and	some	convenience	methods	STL	containers

lack.

Qt	containers	follow	Qt's	naming	scheme	and	its	API

conventions,	so	they	look	more	natural	in	an	application

that	is	centered	around	Qt.	For	example,	QVector::isEmpty()	is

more	Qt-like	than	std::vector::empty().

In	addition,	Qt	containers	provide	STL-compatible	API	(for
example,	the	append()	method	has	the	push_back()	alias)	that	allows	us
to	replace	Qt	containers	with	STL	ones	without	changing	much	of
the	code.	Range	based	for	loop	and	some	of	the	standard	library
algorithms	are	also	compatible	with	Qt	containers.	That	being	said,
if	you	need	some	features	that	are	not	available	in	Qt	containers,
using	STL	containers	is	a	good	idea.

Main	container	types
When	you	interact	with	a	Qt	API	method,	you	don't	have	much
choice	on	the	container	type,	because	you	need	to	use	the	container
the	method	uses.	However,	generally,	you	are	free	to	choose
containers	to	store	your	data.	Let's	go	through	the	main	Qt
containers	and	learn	when	to	use	them.

We	will	only	give	a	brief	overview	of	Qt	containers	and	won't	go	into	details	such	as	the
algorithmic	complexity	of	different	operations.	For	most	Qt	containers,	there	is	a	similar
STL	container	that	we	will	name.	The	topic	of	choosing	the	right	container	is	widely
discussed,	and	it's	not	hard	to	find	more	information	on	it,	especially	for	STL	containers.
You	can	also	find	more	information	on	the	Container	Classes	Qt	documentation	page.

QVector	stores	items	in	a	continuous	region	of	memory.	The	items	are
densely	packed,	meaning	that	this	type	is	the	most	memory	efficient
and	cache	friendly.	Its	STL	equivalent	is	std::vector.	QVector	should	be
the	container	of	default	choice,	meaning	that	you	should	only	use	a
different	container	if	you	have	a	reason	to	do	it.	QVector	provides	fast
lookup	by	item	number,	fast	on	average	appending	items	to	the	end
and	removing	items	from	the	end.	Inserting	and	removing	items
from	the	beginning	or	middle	of	the	vector	is	slow,	because	it	causes
all	items	to	the	right	to	shift	in	memory.	Using	QVector	is
straightforward:

QVector<int>	numbers;

numbers.append(1);

numbers.append(5);

numbers.append(7);

qDebug()	<<	numbers.count();	//	3

qDebug()	<<	numbers[1];						//	5

The	QLinkedList	container,	as	the	name	implies,	implements	a	linked
list.	Its	STL	equivalent	is	std::list.	As	opposed	to	QVector,	it	provides
fast	inserting	and	removing	items	at	any	location	(the	beginning,
middle,	or	the	end),	but	slow	lookup	by	index,	because	it	needs	to

iterate	over	items	from	the	beginning	to	find	the	item	by	its	index.
QLinkedList	is	suitable	when	you	need	to	insert	or	remove	items	at	the
middle	of	a	huge	list	multiple	times.	However,	note	that	in	practice,
QVector	still	may	sometimes	be	more	performant	in	this	case,	because
QLinkedList	is	not	densely	packed	in	memory,	which	adds	some
overhead.

QSet,	a	Qt	equivalent	of	std::unordered_set,	is	an	unordered	collection	of
unique	items.	Its	advantage	is	the	ability	to	efficiently	add	items,
remove	items,	and	check	whether	a	particular	item	is	present	in	a
collection.	The	other	list	classes	are	not	able	to	do	the	last	operation
quickly,	because	they	need	to	iterate	over	all	items	and	compare
each	item	with	the	argument.	Like	with	any	other	collection,	you
can	iterate	over	the	set's	items,	but	the	iteration	order	is	not
specified,	that	is,	any	item	may	appear	on	the	first	iteration,	and	so
on.	An	example	of	the	QSet	API	is	shown	in	the	following	code:

QSet<QString>	names;

names.insert("Alice");

names.insert("Bob");

qDebug()	<<	names.contains("Alice");	//	true

qDebug()	<<	names.contains("John");	//	false

for(const	QString	&name:	names)	{

				qDebug()	<<	"Hello,"	<<	name;

}

The	last	flat	collection	is	QList.	Using	it	is	currently	not
recommended,	except	when	interacting	with	methods	that	accept	or
produce	QList	objects.	Its	performance	and	memory	efficiency
depends	on	the	item	type,	and	the	rules	that	define	"good"	item
types	are	complicated.	For	a	"bad"	type,	QList	is	represented	as	a
vector	of	void	*,	with	each	item	stored	as	a	separately	allocated
object	on	the	heap.	It's	possible	that	QList	implementation	will
change	in	Qt	6,	but	there	is	no	official	information	about	this	yet.

There	are	some	specialized	list	containers	that	provide	extra
functionality	for	a	particular	item	type:

The	already	familiar	QString	class	is	essentially	a	vector	of	QChar

(16-bit	Unicode	characters)

The	familiar	QByteArray	is	a	vector	of	char

QStringList	is	a	QList<QString>	with	additional	convenient

operations

QBitArray	provides	a	memory-efficient	array	of	bits	with	some

useful	APIs

Next,	there	are	two	main	key-value	collections:	QMap<K,	T>	and	QHash<K,
T>.	They	allow	you	to	associate	a	value	(or	multiple	values)	of	type	T
with	a	key	of	type	K.	They	both	provide	relatively	fast	lookup	by	key.
When	iterating	over	a	QMap	(similar	to	std::map),	the	items	are	sorted
by	keys,	regardless	of	the	insertion	order:

QMap<int,	QString>	map;

map[3]	=	"three";

map[1]	=	"one";

map[2]	=	"two";

for(auto	i	=	map.begin();	i	!=	map.end();	++i)	{

				qDebug()	<<	i.key()	<<	i.value();

}

//	output:

//	1	"one"

//	2	"two"

//	3	"three"

QHash	(similar	to	std::unordered_map)	has	very	similar	APIs	to	QMap,	but	will
iterate	over	items	in	unspecified	order,	like	QSet.	You	can	replace	QMap
with	QHash	in	the	previous	example	and	see	that	the	iteration	order
will	change	even	when	running	the	same	program	repeatedly.	In
exchange,	QHash	provides	faster	on-average	insertions	and	lookups	by
key	than	QMap.	You	should	use	QHash	instead	of	QMap	if	the	iteration
order	doesn't	matter	to	you.

An	attentive	reader	may	wonder	how	the	code	that	looks	very	deterministic	can	produce

random	results.	This	randomness	was	intentionally	introduced	to	protect	against
algorithmic	complexity	attacks	on	QHash	and	QSet.	You	can	read	the	corresponding	section
of	the	QHash	documentation	page	for	more	details	about	the	attack	and	ways	to	configure
the	randomization.

Finally,	QPair<T1,	T2>	is	a	simple	class	that	can	hold	two	values	of
different	types,	just	like	std::pair.	You	can	use	the	qMakePair()	function
to	make	a	pair	out	of	two	values.

Convenience	containers
In	addition	to	the	containers	described	earlier,	there	are	a	few
containers	built	on	top	of	them	that	provide	APIs	and	behavior	that
are	more	convenient	in	some	special	cases:

	

C
o
n
t
a
i
n
e
r

Description

Q

S

t

a

c

k

A	QVector	implementing	the	last	in,	first	out	(LIFO)	
structure.	It	contains	the	push()	function	for	adding	items	to	
the	stack,	the	pop()	function	for	removing	the	top	element,	and	
the	top()	function	for	reading	the	top	element	without	
removing	it.

Q

Q

u

e

u

e

A	QList	implementing	the	first	in,	first	out	(FIFO)	
structure.	Use	enqueue()	to	append	an	item	to	the	queue,	
dequeue()	to	take	the	head	item	from	the	queue,	and	head()	to	
read	the	head	item	without	removing	it.

Q

M

u

l

t

i

A	QMap	with	an	API	tailored	for	having	multiple	values	for	one	
key.	QMap	already	allows	us	to	do	it;	for	example,	you	can	add	
multiple	items	with	one	key	using	the	QMap::insertMulti()	
method.	However,	QMultiMap	renames	it	to	insert()	and	hides	the	

M

a

p

original	QMap::insert()	method	that	doesn't	allow	multiple	
values	per	key.

Q

M

u

l

t

i

H

a

s

h

Similar	to	QMultiMap,	it's	a	QHash	with	a	more	convenient	API	for	
storing	multiple	values	per	key.

Q

C

a

c

h

e

A	key-value	storage	similar	to	QHash	that	allows	you	to	
implement	a	cache.	QCache	will	delete	its	elements	when	they	
weren't	recently	used	to	keep	the	size	of	cache	under	the	
maximum	allowed	size.	Since	there	is	no	way	to	know	how	
much	space	an	arbitrary	item	actually	consumes,	you	
can	manually	specify	a	cost	for	each	item	and	the	maximum	
total	cost	for	a	particular	QCache	object.

Q

C

o

n

t

i

g

u

o

u

s

C

a

c

h

e

A	flat	container	that	allows	you	to	cache	a	sublist	of	a	large
list.	This	is	useful,	for	example,	when	implementing	a	viewer
for	a	large	table,	where	reads	and	writes	are	likely	to	happen
near	the	current	scroll	location.

	

It's	a	good	idea	to	use	one	of	these	classes	when	your	task	matches
their	use	case.

Allowed	item	types
Not	all	types	can	be	put	in	containers.	All	containers	can	only	hold
types	that	provide	a	default	constructor,	a	copy	constructor,	and	an
assignment	operator.	All	primitive	types	and	most	Qt	data	types
(such	as	QString	or	QPointF)	satisfy	these	requirements.	Simple	structs
also	can	be	stored	in	a	container	because	the	required	constructors
and	operators	are	generated	for	them	automatically,	as	per	C++
standard.

A	particular	type	usually	cannot	be	put	in	a	container	because	it
doesn't	have	a	constructor	without	arguments	or	copying	this	type
was	deliberately	disabled.	This	is	actually	the	case	for	QObject	and	all
its	descendants.	The	usage	patterns	of	QObject	suggest	that	you
usually	want	to	store	pointers	to	a	QObject	to	refer	to	it	later.	If	that
object	was	moved	to	a	container	or	moved	within	a	container,	the
pointer	would	be	invalidated,	so	there	is	no	copy	constructor	for
these	types.	However,	you	can	put	pointers	to	QObject	in	containers
(for	example,	QVector<QObject	*>)	because	a	pointer	is	a	primitive	type
that	satisfies	all	requirements.	In	this	case,	you	have	to	manually
ensure	that	your	container	will	not	contain	any	dangling	pointers
after	the	objects	are	deleted.

The	preceding	restrictions	apply	to	items	of	lists	and	values	of	key-
value	collections,	but	what	about	their	keys?	It	turns	out	that	the
key	types	have	more	restrictions	that	depend	on	the	collection	type.

QMap<K,	T>	additionally	requires	that	the	key	type	K	has	the
comparison	operator	operator<	that	provides	a	total	order	(that	is,
satisfies	a	particular	set	of	axioms).	As	an	exception,	pointer	types
are	also	allowed	as	a	key	type.

QHash<K,	T>	and	QSet<K>	require	that	the	K	type	has	operator==,	and	a	qHash(K

key)	function	overload	exists.	Qt	provides	these	overloads	for	a	large
number	of	types	for	which	it's	possible,	and	you	can	create	an
overload	for	your	custom	type	if	needed.

Implicit	sharing
One	of	the	most	significant	differences	between	standard	library
containers	and	Qt's	is	the	implicit	sharing	feature.	In	STL,	creating
a	copy	of	a	container	immediately	results	in	a	memory	allocation
and	copying	the	data	buffer:

std::vector<int>	x	{	1,	2,	3};

std::vector<int>	y	=	x;	//	full	copy

If	you	don't	intend	to	edit	the	copy,	this	is	essentially	a	waste	of
resources,	and	you	want	to	avoid	it.	This	can	be	easily	done	in	some
cases	by	providing	a	reference	(const	std::vector<int>	&)	instead	of
making	a	copy.	However,	sometimes	it	becomes	hard	to	ensure	that
the	reference	will	be	valid	long	enough,	for	example,	if	you	want	to
store	it	in	a	class	field.	An	alternative	way	to	solve	this	task	is	to
wrap	a	vector	in	a	shared_ptr	to	explicitly	share	it	between	multiple
objects.	This	becomes	unnecessary	when	you	work	with	Qt
containers	and	some	other	Qt	types.

In	Qt,	all	main	container	types	implement	implicit	sharing	or
copy-on-write	semantics.	Copying	a	QVector	will	not	result	in	a	new
memory	allocation	until	either	of	the	two	vectors	is	changed:

QVector<int>	x	{	1,	2,	3};

QVector<int>	y	=	x;

//	x	and	y	share	one	buffer	now

y[0]	=	5;	//	new	allocation	happens	here

//	x	and	y	have	different	buffers	now

As	long	as	no	edits	are	made	to	the	copy	or	the	original	object,	the
copying	is	very	cheap.	This	allows	you	to	cheaply	and	easily	share
constant	data	between	objects	without	cluttering	the	code	with

manual	management	of	shared	objects.	This	feature	is	also
implemented	for	QString,	QPen,	and	many	other	Qt	value	types.	Any
copy	operation	still	has	some	runtime	overhead	caused	by	reference
counting,	so	you	are	encouraged	to	pass	references	instead	of
making	copies	when	it's	easy.	However,	this	overhead	is
insignificant	in	most	cases,	except	places	with	heavy	computations.

If	you	like	implicit	sharing,	you	can	implement	it	in	your	own	data	types	using
QSharedDataPointer.	Refer	to	its	documentation	for	the	in-depth	instructions.

In	most	cases,	you	can	just	use	the	containers	as	if	they	didn't
implement	implicit	sharing,	but	there	are	a	few	cases	where	you
have	to	be	aware	of	it.

Pointer	invalidation
First,	implicit	sharing	means	that	holding	any	references	or
pointers	to	the	container's	content	is	disallowed	when	there	is	a
possibility	of	changing	this	object	or	any	object	that	shares	the	same
buffer.	The	following	small	example	illustrates	the	problem:

//	don't	do	this!

QVector<int>	x	{	1,	2,	3	};

int	*x0	=	x.begin();

QVector<int>	y	=	x;

x[0]	=	42;

qDebug()	<<	*x0;	//	output:	1

We	initialized	the	x0	variable	with	the	pointer	to	the	first	element	of
the	x	vector.	However,	when	we	set	a	new	value	for	that	element	and
then	tried	to	read	it	using	the	pointer,	we	got	the	old	value	again.

What	just	happened?
As	we	copied	the	x	vector	to	y,	the	state	of	two	vectors	became
shared	and	the	original	buffer	was	available	to	both	of	them.
However,	when	we	modified	x	using	operator[],	it	became	detached,
that	is,	a	new	buffer	was	allocated	for	it,	and	y	retained	the	original
buffer.	The	x0	pointer	continues	to	point	at	the	original	buffer,
which	is	now	only	available	to	y.	If	you	remove	the	QVector<int>	y	=	x;
line,	the	output	will	change	to	the	expected	42.	The	general	rule	is
that	you	should	avoid	storing	pointers	or	references	to	the	object's
content	while	it's	changed	or	shared	with	another	object.

Unnecessary	allocation
The	next	question	is	what	actions	on	the	object	trigger	the	actual
allocation	of	a	new	buffer?	Obviously,	x[0]	=	42	will	trigger	an
allocation	because	the	vector	needs	a	buffer	to	write	the	new	data
to.	However,	int	i	=	x[0]	will	also	trigger	an	allocation	if	x	is	not
declared	as	a	const	value	or	reference.	That	happens	because	in	C++
this	code	triggers	the	non-const	overload	of	operator[]	if	it's	available,
even	though	it's	not	necessary	in	this	case.	The	vector	doesn't	know
whether	the	requested	item	will	or	will	not	be	changed,	so	it	has	to
assume	that	it	will	be,	and	it	triggers	an	allocation	before	returning
a	reference	to	the	item	in	the	new	buffer.

The	same	issue	takes	effect	when	using	other	methods	that	have
const	and	non-const	overloads,	for	example,	begin()	or	data().	The
range-based	for	loop	also	calls	begin(),	so	it	will	also	detach	if	you
iterate	over	a	non-const	value.

If	you	explicitly	declare	the	container	variable	as	const	(for
example,	const	QVector<int>	y	or	const	QVector<int>	&y),	the	non-const
methods	will	not	be	available,	and	it	will	not	be	possible	to	trigger
an	allocation	using	this	variable.	An	alternative	solution	is	to	use
special	method	aliases	that	are	only	available	for	const	versions,
such	as	at()	for	operator=,	constBegin()	for	begin(),	and	constData()	for	data().
This	solution	is	not	usable	with	range-based	for	loop,	though.

Range-based	for	and	Qt
foreach	macro
Qt	provides	the	foreach	macro	for	iterating	over	Qt	containers:

QVector<int>	x	{	1,	2,	3	};

foreach(const	int	i,	x)	{

				qDebug()	<<	i;

}

This	macro	was	available	long	before	the	range-based	for	loop	made
it	into	the	C++	standard,	so	it's	still	very	common	in	Qt	code,	and
you	should	be	familiar	with	it.	The	foreach	loop	always	creates	a
temporary	constant	copy	of	the	iterated	object.	Since	it	uses	implicit
sharing,	this	is	very	cheap.	If	you	edit	x	while	iterating	over	it,	the
changes	will	not	affect	the	values	of	i	because	the	iteration	uses	a
copy,	but	this	also	means	that	such	an	operation	is	safe.	Note	that
when	using	range-based	for	loop,	STL-style	iterators,	or	Java-style
iterators,	editing	the	same	container	you're	iterating	over	is
generally	not	safe.	For	example,	changing	item	values	may	be
permitted,	but	deleting	an	item	may	result	in	undefined	behavior.

We	discussed	how	range-based	for	loop	can	cause	a	deep	copy	of	the
containers.	The	foreach	macro	by	itself	will	never	cause	a	deep	copy.
However,	if	you	edit	the	container	while	iterating	over	it,	this	will
result	in	a	deep	copy,	because	two	versions	of	data	have	to	be	stored
somewhere.

When	using	the	range-based	for	loop,	you	should	be	careful	not	to
pass	a	reference	to	a	temporary	object.	For	example,	this	code	looks
legitimate,	but	it	results	in	undefined	behavior:

//	don't	do	this!

for(QChar	c:	QString("abc").replace('a',	'z'))	{

				qDebug()	<<	c;

}

What	just	happened?
We	created	a	temporary	QString	object	and	called	its	replace()	method.
This	method'	s	return	type	is	QString	&,	so	it	doesn't	own	the	string's
data.	If	we	immediately	assigned	this	value	to	an	owning	variable,	it
would	be	correct	because	the	life	of	the	original	temporary	QString
lasts	until	the	end	of	the	full	expression	(in	this	case,	the
assignment):

QString	string	=	QString("abc").replace('a',	'z');

for(QChar	c:	string)	{	//	correct

				qDebug()	<<	c;

}

However,	the	temporary	object	in	the	original	example	doesn't	live
until	the	end	of	the	for	loop,	so	this	will	result	in	a	use-after-free
bug.	The	foreach	version	of	this	code	would	contain	an	implicit
assignment	to	a	variable,	so	it	would	be	correct.

On	the	other	hand,	the	macro	nature	of	foreach	is	its	disadvantage.
For	example,	the	following	code	does	not	compile	because	the	item
type	contains	a	comma:

QVector<QPair<int,	int>>	x;

foreach(const	QPair<int,	int>&	i,	x)	{

				//...

}

The	error	is	"macro	Q_FOREACH	passed	3	arguments,	but	takes	just	2".
To	fix	this	issue,	you	have	to	create	a	typedef	for	the	item	type.

Since	C++11,	range-based	for	loop	is	a	native,	clean	alternative	to
foreach,	so	we	suggest	that	you	prefer	the	native	construct	over	the

macro,	but	keep	in	mind	the	pitfalls	we	described.

Data	storage
When	implementing	games,	you	will	often	have	to	work	with
persistent	data;	you	will	need	to	store	the	saved	game	data,	load
maps,	and	so	on.	For	that,	you	have	to	learn	about	the	mechanisms
that	let	you	use	the	data	stored	on	digital	media.

Files	and	devices
The	most	basic	and	low-level	mechanism	that	is	used	to	access	data
is	to	save	and	load	it	from	the	files.	While	you	can	use	the	classic	file
access	approaches	provided	by	C	and	C++,	such	as	stdio	or	iostream,
Qt	provides	its	own	file	abstraction	that	hides	platform-dependent
details	and	provides	a	clean	API	that	works	across	all	platforms	in	a
uniform	manner.

The	two	basic	classes	that	you	will	work	with	when	using	files	are
QDir	and	QFile.	The	former	represents	the	contents	of	a	directory,	lets
you	traverse	filesystems,	creates	and	remove	directories,	and
finally,	accesses	all	files	in	a	particular	directory.

Traversing	directories
Traversing	directories	with	QDir	is	really	easy.	The	first	thing	to	do	is
to	have	an	instance	of	QDir	in	the	first	place.	The	easiest	way	to	do
this	is	to	pass	the	directory	path	to	the	QDir	constructor.

Qt	handles	file	paths	in	a	platform-independent	way.	Even	though	the	regular	directory
separator	on	Windows	is	a	backward	slash	character	(\)	and	on	other	platforms	it	is	the

forward	slash	(/),	Qt	internally	always	uses	the	forward	slash,	and	paths	returned	by	most

Qt	methods	never	contain	backward	slashes.	You	can	always	use	forward	slashes	when
passing	paths	to	Qt	methods,	even	on	Windows.	If	you	need	to	convert	the	Qt's	path
representation	to	the	native	form	(for	example,	for	passing	it	to	the	standard	library	or	a
third-party	library),	you	can	use	QDir::toNativeSeparators().	QDir::fromNativeSeparators()	

to	perform	the	inverse	operation.

Qt	provides	a	number	of	static	methods	to	access	some	special
directories.	The	following	table	lists	these	special	directories	and
functions	that	access	them:

Access	
function

Directory

	
QDir::current()

	

	
The	current	working	directory
	

	
QDir::home()

	

	
The	home	directory	of	the	current	user
	

	
QDir::root()

	

	
The	root	directory—usually	/	for	Unix	and	C:\	for	
Windows
	

	 	

	
QDir::temp()

	

	
The	system	temporary	directory
	

	

The	QStandardPaths	class	provides	information	about	other	standard
locations	present	in	the	system.	For	example,
QStandardPaths::writableLocation(QStandardPaths::MusicLocation)	returns	path	to
the	user's	music	folder.

Refer	to	the	QStandardPaths::StandardLocation	enum	documentation	for	the	list	of	available
locations.

When	you	already	have	a	valid	QDir	object,	you	can	start	moving
between	directories.	To	do	that,	you	can	use	the	cd()	and	cdUp()
methods.	The	former	moves	to	the	named	subdirectory,	while	the
latter	moves	to	the	parent	directory.	You	should	always	check	that
these	commands	were	successful.	If	they	return	false,	your	QDir
object	will	remain	in	the	same	directory!

To	list	files	and	subdirectories	in	a	particular	directory,	you	can	use
the	entryList()	method,	which	returns	a	list	of	entries	in	the	directory
that	match	the	criteria	passed	to	entryList().	The	filters	argument
takes	a	list	of	flags	that	correspond	to	the	different	attributes	that
an	entry	needs	to	have	to	be	included	in	the	result.	The	most	useful
flags	are	listed	in	the	following	table:

Filter Meaning

	
QDir::Dirs,	
QDir::Files,	
QDir::Drives

	

	
List	directories,	files,	or	Windows	drives.	You	
should	specify	at	least	one	of	these	filters	to	get	
any	results.
	

QDir::AllEntrie

s

List	directories,	files,	and	drives.	This	is	a	shortcut	
for	Dirs	|	Files	|	Drives.

	
QDir::AllDirs

	

	
List	directories	even	if	they	don't	match	the	name	
filters.
	

QDir::NoDotAndD

otDot

Don't	list	.	(current	directory)	and	..	(parent	
directory)	entries.	If	Dirs	flag	is	present	and	
NoDotAndDotDot	is	not,	these	entries	will	always	be	
listed.

	
QDir::Readable,	
QDir::Writable,	
QDir::Executabl

e

	

	
List	only	entries	that	can	be	read,	written	to,	or	
executed.
	

	
QDir::Hidden,	
QDir::System

	

	
List	hidden	files	and	system	files.	If	these	flags	are	
not	specified,	hidden	and	system	flags	will	not	be	
listed.
	

	

The	sort	argument	of	entryList()	allows	you	to	choose	the	ordering	of
the	results:

Flag Meaning

	
QDir::Unsorted

	

	
The	order	of	entries	is	undefined.	It's	a	good	idea	to	
use	it	if	the	order	doesn't	matter	to	you,	since	it	
may	be	faster.
	

	

QDir::Name,	
QDir::Time,	
QDir::Size,	
QDir::Type

	

	
Sort	by	appropriate	entry	attributes.
	

	
QDir::DirsFirs

t,	
QDir::DirsLast

	

	
Determines	whether	directories	should	be	listed	
before	or	after	files.	If	neither	flag	is	specified,	
directories	will	be	mixed	with	files	in	the	output.
	

	
QDir::Reversed

	

	
Reverses	the	order.
	

	

Additionally,	there	is	an	overload	of	entryList()	that	accepts	a	list	of
file	name	patterns	in	the	form	of	QStringList	as	its	first	parameter.
Here's	an	example	call	that	returns	all	JPEG	files	in	the
directory	sorted	by	size:

QStringList	nameFilters	=	{	QStringLiteral("*.jpg"),

QStringLiteral("*.jpeg")	};

QStringList	entries	=	dir.entryList(nameFilters,

				QDir::Files	|	QDir::Readable,	QDir::Size);

Besides	entryList(),	there	is	the	entryInfoList()	method	that	wraps	each
returned	file	name	in	a	QFileInfo	object	that	has	many	convenient
functions.	For	example,	QFileInfo::absoluteFilePath()	returns	the
absolute	path	to	the	file,	and	QFileInfo::suffix()	returns	the	extension
of	the	file.

If	you	need	to	traverse	directories	recursively	(for	example,	for	finding	all	files	in	all
subdirectories),	you	can	use	the	QDirIterator	class.

Reading	and	writing	files
Once	you	know	the	path	to	a	file	(for	example,	using	QDir::entryList(),
QFileDialog::getOpenFileName(),	or	some	external	source),	you	can	pass	it
to	QFile	to	receive	an	object	that	acts	as	a	handle	to	the	file.	Before
the	file	contents	can	be	accessed,	the	file	needs	to	be	opened	using
the	open()	method.	The	basic	variant	of	this	method	takes	a	mode	in
which	we	need	to	open	the	file.	The	following	table	explains	the
modes	that	are	available:

M
o
d
e

Description

	
Re

ad

On

ly

	

	
This	file	can	be	read	from.
	

	
Wr

it

eO

nl

y

	

	
This	file	can	be	written	to.
	

	
Re

ad

Wr

it

e

	

	
This	file	can	be	read	from	and	written	to.
	

	
	

Ap

pe

nd

	

	
All	data	writes	will	be	written	at	the	end	of	the	file.
	

	
Tr

un

ca

te

	

	
If	the	file	is	present,	its	content	is	deleted	before	we	open	it.
	

	
Te

xt

	

	
When	reading,	all	line	endings	are	transformed	to	\n.	When	
writing,	all	\n	symbols	are	transformed	to	the	native	format	
(for	example,	\r\n	on	Windows	or	\n	on	Linux).
	

	
Un

bu

ff

er

ed

	

	
The	flag	prevents	the	file	from	being	buffered.
	

The	open()	method	returns	true	or	false,	depending	on	whether	the	file
was	opened	or	not.	The	current	status	of	the	file	can	be	checked	by
calling	isOpen()	on	the	file	object.	Once	the	file	is	open,	it	can	be	read
from	or	written	to,	depending	on	the	options	that	are	passed	when
the	file	is	opened.	Reading	and	writing	is	done	using	the	read()	and
write()	methods.	These	methods	have	a	number	of	overloads,	but	we
suggest	that	you	focus	on	using	those	variants	that	accept	or	return
the	already	familiar	QByteArray	objects,	because	they	manage	the
memory	automatically.	If	you	are	working	with	plain	text,	then	a
useful	overload	for	write	is	the	one	that	accepts	the	text	directly	as
input.	Just	remember	that	the	text	has	to	be	null	terminated.	When
reading	from	a	file,	Qt	offers	a	number	of	other	methods	that	might
come	in	handy	in	some	situations.	One	of	these	methods	is	readLine(),
which	tries	to	read	from	the	file	until	it	encounters	a	new	line
character.	If	you	use	it	along	with	the	atEnd()	method	that	tells	you
whether	you	have	reached	the	end	of	the	file,	you	can	realize	the

line-by-line	reading	of	a	text	file:

QStringList	lines;

while(!file.atEnd())	{

				QByteArray	line	=	file.readLine();

				lines.append(QString::fromUtf8(line));

}

Another	useful	method	is	readAll(),	which	simply	returns	the	file
content,	starting	from	the	current	position	of	the	file	pointer	until
the	end	of	the	file.

You	have	to	remember,	though,	that	when	using	these	helper
methods,	you	should	be	really	careful	if	you	don't	know	how	much
data	the	file	contains.	It	might	happen	that	when	reading	line	by
line	or	trying	to	read	the	whole	file	into	memory	in	one	step,	you
exhaust	the	amount	of	memory	that	is	available	for	your	process.	If
you	only	intend	to	work	with	small	files	that	fit	into	memory,	you
can	check	the	size	of	the	file	by	calling	size()	on	the	QFile	instance	and
abort	if	the	file	is	too	large.	If	you	need	to	handle	arbitrary	files,
however,	you	should	process	the	file's	data	in	steps,	reading	only	a
small	portion	of	bytes	at	a	time.	This	makes	the	code	more	complex
but	allows	us	to	manage	the	available	resources	better.

If	you	require	constant	access	to	the	file,	you	can	use	the	map()	and
unmap()	calls	that	add	and	remove	mappings	of	the	parts	of	a	file	to	a
memory	address	that	you	can	then	use	like	a	regular	array	of	bytes:

QFile	f("myfile");

if(!f.open(QFile::ReadWrite))	{

				return;

}

uchar	*addr	=	f.map(0,	f.size());

if(!addr)	{

				return;

}

f.close();

doSomeComplexOperationOn(addr);

The	mapping	will	automatically	be	removed	when	the	QFile	object	is
destroyed.

Devices
QFile	is	really	a	descendant	class	of	QIODevice	("input/output	device"),
which	is	a	Qt	interface	used	to	abstract	entities	related	to	reading
and	writing	of	blocks	of	data.	There	are	two	types	of	devices:
sequential	and	random	access	devices.	QFile	belongs	to	the	latter
group;	it	has	the	concepts	of	start,	end,	size,	and	current	position
that	can	be	changed	by	the	user	with	the	seek()	method.	Sequential
devices,	such	as	sockets	and	pipes,	represent	streams	of	data—there
is	no	way	to	rewind	the	stream	or	check	its	size;	you	can	only	keep
reading	the	data	sequentially—piece	by	piece,	and	you	can	check
how	far	away	you	currently	are	from	the	end	of	data.	We	will	work
with	such	devices	in	Chapter	7,	Networking.

All	I/O	devices	can	be	opened	and	closed.	They	all	implement
the	open(),	read(),	and	write()	interfaces.	Writing	to	the	device	queues
the	data	for	writing;	when	the	data	is	actually	written,	the
bytesWritten()	signal	is	emitted	that	carries	the	amount	of	data	that
was	written	to	the	device.	If	more	data	becomes	available	in	the
sequential	device,	it	emits	the	readyRead()	signal,	which	informs	you
that	if	you	call	read	now,	you	can	expect	to	receive	some	data	from
the	device.

Time	for	action	–	Implementing
a	device	to	encrypt	data
Let's	implement	a	really	simple	device	that	encrypts	or	decrypts	the
data	that	is	streamed	through	it	using	a	very	simple	algorithm—the
Caesar	cipher.	When	encrypting,	it	shifts	each	character	in	the
plaintext	by	a	number	of	characters	defined	by	the	key.	It	does	the
reverse	when	decrypting.	Thus,	if	the	key	is	2	and	the	plaintext
character	is	a,	the	ciphertext	becomes	c.	Decrypting	z	with	the	key	4
will	yield	the	value	v.

First,	create	a	new	empty	project	by	selecting	the	Empty	qmake
Project	template	from	the	Other	Project	category.	Next,	add	a
main.cpp	file	and	a	new	CaesarCipherDevice	class	derived	from	QIODevice.	The
basic	interface	of	the	class	will	accept	an	integer	key	and	set	an
underlying	device	that	serves	as	the	source	or	destination	of	data.
This	is	all	simple	coding	that	you	should	already	understand,	so	it
shouldn't	need	any	extra	explanation,	as	shown:

class	CaesarCipherDevice	:	public	QIODevice

{

				Q_OBJECT

				Q_PROPERTY(int	key	READ	key	WRITE	setKey)

public:

				explicit	CaesarCipherDevice(QObject	*parent	=	0)

								:	QIODevice(parent)	{

								m_key	=	0;

								m_baseDevice	=	0;

				}

				void	setBaseDevice(QIODevice	*dev)	{

								m_baseDevice	=	dev;

				}

				QIODevice	*baseDevice()	const	{

								return	m_baseDevice;

				}

				void	setKey(int	k)	{

				void	setKey(int	k)	{

								m_key	=	k;

				}

				inline	int	key()	const	{

								return	m_key;

				}

private:

				int	m_key;

				QIODevice	*m_baseDevice;

};

The	next	thing	is	to	ensure	that	the	device	cannot	be	used	if	there	is
no	device	to	operate	on	(that	is,	when	m_baseDevice	==	nullptr).	For	this,
we	have	to	reimplement	the	QIODevice::open()	method	and	return	false
when	we	want	to	prevent	operating	on	our	device:

bool	CaesarCipherDevice::open(OpenMode	mode)	{

				if(!m_baseDevice)	{

								return	false;

				}

				if(!m_baseDevice->isOpen())	{

								return	false;

				}

				if(m_baseDevice->openMode()	!=	mode)	{

								return	false;

				}

				return	QIODevice::open(mode);

}

The	method	accepts	the	mode	that	the	user	wants	to	open	the
device	with.	We	perform	an	additional	check	to	verify	that	the	base
device	was	opened	in	the	same	mode	before	calling	the	base	class
implementation	that	will	mark	the	device	as	open.

It's	a	good	idea	to	call	QIODevice::setErrorString	to	let	the	user	know	about	an	error.
Additionally,	you	can	use	qWarning("message")	to	print	a	warning	to	the	console	when	an
error	occurs.

To	have	a	fully	functional	device,	we	still	need	to	implement	the	two
protected	pure	virtual	methods,	which	do	the	actual	reading	and
writing.	These	methods	are	called	by	Qt	from	other	methods	of	the
class	when	needed.	Let's	start	with	writeData(),	which	accepts	a

pointer	to	a	buffer	containing	the	data	and	size	equal	to	that	of	a
buffer:

qint64	CaesarCipherDevice::writeData(const	char	*data,	qint64	len)	{

				QByteArray	byteArray;

				byteArray.resize(len);

				for(int	i	=	0;	i	<	len;	++i)	{

								byteArray[i]	=	data[i]	+	m_key;

				}

				int	written	=	m_baseDevice->write(byteArray);

				emit	bytesWritten(written);

				return	written;

}

First,	we	create	a	local	byte	array	and	resize	it	to	the	length	of	the
input.	Then,	we	iterate	bytes	of	the	input,	add	the	value	of	the	key	to
each	byte	(which	effectively	performs	the	encryption)	and	put	it	in
the	byte	array.	Finally,	we	try	to	write	the	byte	array	to	the
underlying	device.	Before	informing	the	caller	about	the	amount	of
data	that	was	really	written,	we	emit	a	signal	that	carries	the	same
information.

The	last	method	we	need	to	implement	is	the	one	that	performs
decryption	by	reading	from	the	base	device	and	adding	the	key	to
each	cell	of	the	data.	This	is	done	by	implementing	readData(),	which
accepts	a	pointer	to	the	buffer	that	the	method	needs	to	write	to	and
the	size	of	the	buffer.

The	code	is	quite	similar	to	that	of	writeData(),	except	that	we	are
subtracting	the	key	value	instead	of	adding	it:

qint64	CaesarCipherDevice::readData(char	*data,	qint64	maxlen)	{

				QByteArray	baseData	=	m_baseDevice->read(maxlen);

				const	int	size	=	baseData.size();

				for(int	i	=	0;	i	<	size;	++i)	{

								data[i]	=	baseData[i]	-	m_key;

				}

				return	size;

}

First,	we	try	to	read	maxlen	bytes	from	the	underlying	device	and
store	the	data	in	a	byte	array.	Note	that	the	byte	array	can	contain
fewer	bytes	than	maxlen	(for	example,	if	we	reached	the	end	of	the
file)	but	it	can't	contain	more.	Then,	we	iterate	the	array	and	set
subsequent	bytes	of	data	buffer	to	the	decrypted	value.	Finally,	we
return	the	amount	of	data	that	was	really	read.

A	simple	main()	function	that	can	test	the	class	looks	as	follows:

int	main(int	argc,	char	**argv)	{

				QByteArray	ba	=	"plaintext";

				QBuffer	buf;

				buf.open(QIODevice::WriteOnly);

				CaesarCipherDevice	encrypt;

				encrypt.setKey(3);

				encrypt.setBaseDevice(&buf);

				encrypt.open(buf.openMode());

				encrypt.write(ba);

				qDebug()	<<	buf.data();

	

				CaesarCipherDevice	decrypt;

				decrypt.setKey(3);

				decrypt.setBaseDevice(&buf);

				buf.open(QIODevice::ReadOnly);

				decrypt.open(buf.openMode());

				qDebug()	<<	decrypt.readAll();

				return	0;

}

We	use	the	QBuffer	class	that	implements	the	QIODevice	API	and	acts	as
an	adapter	for	QByteArray	or	QString.

What	just	happened?
We	created	an	encryption	object	and	set	its	key	to	3.	We	also	told	it
to	use	a	QBuffer	instance	to	store	the	processed	content.	After
opening	it	for	writing,	we	sent	some	data	to	it	that	gets	encrypted
and	written	to	the	base	device.	Then,	we	created	a	similar	device,
passing	the	same	buffer	again	as	the	base	device,	but	now,	we	open
the	device	for	reading.	This	means	that	the	base	device	contains
ciphertext.	After	this,	we	read	all	data	from	the	device,	which	results
in	reading	data	from	the	buffer,	decrypting	it,	and	returning	the
data	so	that	it	can	be	written	to	the	debug	console.

Have	a	go	hero	–	A	GUI	for	the
Caesar	cipher
You	can	combine	what	you	already	know	by	implementing	a	full-
blown	GUI	application	that	is	able	to	encrypt	or	decrypt	files	using
the	Caesar	cipher	QIODevice	class	that	we	just	implemented.
Remember	that	QFile	is	also	QIODevice,	so	you	can	pass	its	pointer
directly	to	setBaseDevice().

This	is	just	a	starting	point	for	you.	The	QIODevice	API	is	quite	rich
and	contains	numerous	methods	that	are	virtual,	so	you	can
reimplement	them	in	subclasses.

Text	streams
Much	of	the	data	produced	by	computers	nowadays	is	based	on
text.	You	can	create	such	files	using	a	mechanism	that	you	already
know—opening	QFile	to	write,	converting	all	data	into	strings	using
QString::arg(),	optionally	encoding	strings	using	QTextCodec,	and
dumping	the	resulting	bytes	to	the	file	by	calling	write.	However,	Qt
provides	a	nice	mechanism	that	does	most	of	this	automatically	for
you	in	a	way	similar	to	how	the	standard	C++	iostream	classes	work.
The	QTextStream	class	operates	on	any	QIODevice	API	in	a	stream-
oriented	way.	You	can	send	tokens	to	the	stream	using	the	<<
operator,	where	they	get	converted	into	strings,	separated	by
spaces,	encoded	using	a	codec	of	your	choice,	and	written	to	the
underlying	device.	It	also	works	the	other	way	round;	using	the	>>
operator,	you	can	stream	data	from	a	text	file,	transparently
converting	it	from	strings	to	appropriate	variable	types.	If	the
conversion	fails,	you	can	discover	it	by	inspecting	the	result	of	the
status()	method—if	you	get	ReadPastEnd	or	ReadCorruptData,	it	means	that
the	read	has	failed.

While	QIODevice	is	the	main	class	that	QTextStream	operates	on,	it	can	also	manipulate
QString	or	QByteArray,	which	makes	it	useful	for	us	to	compose	or	parse	strings.

Using	QTextStream	is	simple—you	just	pass	a	device	to	its	constructor,
and	you're	good	to	go.	The		QTextStream	object	will	read	to	or	write
from	that	device.	By	default,	QTextStream	uses	the	encoding	specified
by	the	current	locale,	but	if	it	encounters	a	UTF-16	or	UTF-32	BOM
(byte	order	mark),	it	will	switch	to	the	encoding	specified	by	the
BOM.	The	stream	accepts	strings	and	numerical	values:

QFile	file("output.txt");

file.open(QFile::WriteOnly	|	QFile::Text);

QTextStream	stream(&file);

stream	<<	"Today	is	"	<<	QDate::currentDate().toString()	<<	endl;

QTime	t	=	QTime::currentTime();

stream	<<	"Current	time	is	"	<<	t.hour()	<<	"	h	and	"	

							<<	t.minute()	<<	"m."	<<	endl;

Apart	from	directing	content	into	the	stream,	the	stream	can	accept
a	number	of	manipulators,	such	as	endl,	which	have	a	direct	or
indirect	influence	on	how	the	stream	behaves.	For	instance,	you	can
tell	the	stream	to	display	a	number	as	decimal	and	another	as
hexadecimal	with	uppercase	digits	using	the	following	code
(highlighted	in	the	code	are	all	manipulators):

for(int	i	=	0;i	<	10;	++i)	{

				int	num	=	qrand()	%	100000;		//	random	number	between	0	and	99999

				stream	<<	dec	<<	num

											<<	showbase	<<	hex	<<	uppercasedigits	<<	num	<<	endl;

}

This	is	not	the	end	of	the	capabilities	of	QTextStream.	It	also	allows	us
to	display	data	in	a	tabular	manner	by	defining	column	widths	and
alignments.	Consider	a	game	player	record	defined	by	the	following
structure:

struct	Player	{

				QString	name;

				qint64	experience;

				QPoint	position;

				char	direction;

};

Suppose	you	have	a	set	of	records	for	players	stored	in	a
QVector<Player>	players	variable.	Let's	dump	such	information	into	a	file
in	a	tabular	manner:

QFile	file("players.txt");

file.open(QFile::WriteOnly	|	QFile::Text);

QTextStream	stream(&file);

stream	<<	center;

stream	<<	qSetFieldWidth(16)	<<	"Player"	<<	qSetFieldWidth(0)	<<	"	";

stream	<<	qSetFieldWidth(10)	<<	"Experience"	<<	qSetFieldWidth(0)	<<	"

";

stream	<<	qSetFieldWidth(13)	<<	"Position"	<<	qSetFieldWidth(0)	<<	"

";

stream	<<	"Direction"	<<	endl;

	

for(const	Player	&player:	players)	{

				stream	<<	left	<<	qSetFieldWidth(16)	<<	player.name

											<<	qSetFieldWidth(0)	<<	"	";

				stream	<<	right	<<	qSetFieldWidth(10)	<<	player.experience

											<<	qSetFieldWidth(0)	<<	"	";

				stream	<<	right	<<	qSetFieldWidth(6)	<<	player.position.x()

											<<	qSetFieldWidth(0)	<<	"	";

				stream	<<	qSetFieldWidth(6)	<<	player.position.y()

											<<	qSetFieldWidth(0)	<<	"	";

				stream	<<	center	<<	qSetFieldWidth(10);

	

				switch(player.direction)	{

				case	'n'	:	stream	<<	"north";	break;

				case	's'	:	stream	<<	"south";	break;

				case	'e'	:	stream	<<	"east";	break;

				case	'w'	:	stream	<<	"west";	break;

				default:	stream	<<	"unknown";	break;

				}

				stream	<<	qSetFieldWidth(0)	<<	endl;

}

The	program	creates	a	file	that	should	look	like	this:

					Player						Experience			Position				Direction

Gondael															46783					10					-5			north

Olrael															123648					-5				103				east

Nazaal													99372641					48				634			south

One	last	thing	about	QTextStream	is	that	it	can	operate	on	standard	C
file	structures,	which	makes	it	possible	for	us	to	use	QTextStream	to,	for
example,	write	to	stdout	or	read	from	stdin,	as	shown	in	the	following
code:

QTextStream	stdoutStream(stdout);

stdoutStream	<<	"This	text	goes	to	standard	output."	<<	endl;

Binary	streams
More	than	often,	we	have	to	store	object	data	in	a	device-
independent	way	so	that	it	can	be	restored	later,	possibly	on	a
different	machine	with	a	different	data	layout	and	so	on.	In
computer	science,	this	is	called	serialization.	Qt	provides	several
serialization	mechanisms	and	now	we	will	take	a	brief	look	at	some
of	them.

If	you	look	at	QTextStream	from	a	distance,	you	will	note	that	what	it
really	does	is	serialize	and	deserialize	data	to	a	text	format.	Its	close
cousin	is	the	QDataStream	class	that	handles	serialization	and
deserialization	of	arbitrary	data	to	a	binary	format.	It	uses	a	custom
data	format	to	store	and	retrieve	data	from	QIODevice	in	a	platform-
independent	way.	It	stores	enough	data	so	that	a	stream	written	on
one	platform	can	be	successfully	read	on	a	different	platform.

QDataStream	is	used	in	a	similar	fashion	as	QTextStream—the	<<	and	>>
operators	are	used	to	redirect	data	into	or	out	of	the	stream.	The
class	supports	most	of	the	built-in	Qt	data	types	so	that	you	can
operate	on	classes	such	as	QColor,	QPoint,	or	QStringList	directly:

QFile	file("outfile.dat");

file.open(QFile::WriteOnly	|	QFile::Truncate);

QDataStream	stream(&file);

double	dbl	=	3.14159265359;

QColor	color	=	Qt::red;

QPoint	point(10,	-4);

QStringList	stringList	{	"foo",	"bar"	};

stream	<<	dbl	<<	color	<<	point	<<	stringList;

If	you	want	to	serialize	custom	data	types,	you	can	teach	QDataStream	to
do	that	by	implementing	proper	redirection	operators.

Time	for	action	–	Serialization
of	a	custom	structure
Let's	perform	another	small	exercise	by	implementing	functions
that	are	required	to	use	QDataStream	to	serialize	the	same	simple
structure	that	contains	the	player	information	that	we	used	for	text
streaming:

struct	Player	{

				QString	name;

				qint64	experience;

				QPoint	position;

				char	direction;

};

For	this,	two	functions	need	to	be	implemented,	both	returning	a
QDataStream	reference	that	was	taken	earlier	as	an	argument	to	the	call.
Apart	from	the	stream	itself,	the	serialization	operator	accepts	a
constant	reference	to	the	class	that	is	being	saved.	The	most	simple
implementation	just	streams	each	member	into	the	stream	and
returns	the	stream	afterward:

QDataStream&	operator<<(QDataStream	&stream,	const	Player	&p)	{

				stream	<<	p.name;

				stream	<<	p.experience;

				stream	<<	p.position;

				stream	<<	p.direction;

				return	stream;

}

Complementary	to	this,	deserializing	is	done	by	implementing	a
redirection	operator	that	accepts	a	mutable	reference	to	the
structure	that	is	filled	by	data	that	is	read	from	the	stream:

QDataStream&	operator>>(QDataStream	&stream,	Player	&p)	{

					stream	>>	p.name;

					stream	>>	p.experience;

					stream	>>	p.position;

					stream	>>	p.direction;

					return	stream;

}

Again,	at	the	end,	the	stream	itself	is	returned.

Now	we	can	use	QDataStream	to	write	our	object	to	any	I/O	device	(for
example,	a	file,	a	buffer,	or	a	network	socket):

Player	player	=	/*	...	*/;

QDataStream	stream(device);

stream	<<	player;

Reading	the	object	back	is	just	as	simple:

Player	player;

QDataStream	stream(device);

stream	>>	player;

What	just	happened?
We	provided	two	standalone	functions	that	define	redirection
operators	for	the	Player	class	to	and	from	a	QDataStream	instance.	This
lets	your	class	be	serialized	and	deserialized	using	mechanisms
offered	and	used	by	Qt.

XML	streams
XML	has	become	one	of	the	most	popular	standards	that	is	used	to
store	hierarchical	data.	Despite	its	verbosity	and	difficulty	to	read
by	human	eye,	it	is	used	in	virtually	any	domain	where	data
persistency	is	required,	as	it	is	very	easy	to	read	by	machines.	Qt
provides	support	for	reading	and	writing	XML	documents	in	two
modules:

The	Qt	Xml	module	provides	access	using	the	Document

Object	Model	(DOM)	standard	with	classes	such	as

QDomDocument,	QDomElement,	and	others

The	Qt	Core	module	contains	QXmlStreamReader	and

QXmlStreamWriter	classes	that	implement	streaming	API

One	of	the	downsides	of	QDomDocument	is	that	it	requires	us	to	load	the
whole	XML	tree	into	the	memory	before	parsing	it.	Additionally,	Qt
Xml	is	not	actively	maintained.	Therefore,	we	will	focus	on	the
streaming	approach	provided	by	Qt	Core.

In	some	situations,	downsides	of	the	DOM	approach	are	compensated	for	by	its	ease	of	use
as	compared	to	a	streamed	approach,	so	you	can	consider	using	it	if	you	feel	that	you	have
found	the	right	task	for	it.	If	you	want	to	use	the	DOM	access	to	XML	in	Qt,	remember	to
enable	the	QtXml	module	in	your	applications	by	adding	a	QT	+=	xml	line	in	the	project
configuration	file.

Time	for	action	–	Implementing
an	XML	parser	for	player	data
In	this	exercise,	we	will	create	a	parser	to	fill	data	that	represents
players	and	their	inventory	in	an	RPG	game.	First,	let's	create	the
types	that	will	hold	the	data:

class	InventoryItem	{

				Q_GADGET

public:

				enum	class	Type	{

								Weapon,

								Armor,

								Gem,

								Book,

								Other

				};

				Q_ENUM(Type)

	

				Type	type;

				QString	subType;

				int	durability;

	

				static	Type	typeByName(const	QStringRef	&r);

};

	

class	Player	{

public:

				QString	name;

				QString	password;

				int	experience;

				int	hitPoints;

				QVector<InventoryItem>	inventory;

				QString	location;

				QPoint	position;

};

	

struct	PlayerInfo	{

				QVector<Player>	players;

				QVector<Player>	players;

};

What	just	happened?
We	want	to	use	the	Q_ENUM	macro	on	our	enum,	because	it	will	allow
us	to	easily	convert	enum	values	to	strings	and	back,	which	is	very
useful	for	serialization.	Since	InventoryItem	is	not	a	QObject,	we	need	to
add	a	Q_GADGET	macro	to	the	beginning	of	the	class	declaration	to
make	the	Q_ENUM	macro	work.	Think	of	Q_GADGET	as	of	a	lightweight
variation	of	Q_OBJECT	that	enables	some	of	its	features	but	not	others.

The	typeByName()	method	will	receive	a	string	and	return	the
corresponding	enum	variant.	We	can	implement	this	method	as
follows:

InventoryItem::Type	InventoryItem::typeByName(const	QStringRef	&r)	{

				QMetaEnum	metaEnum	=	QMetaEnum::fromType<InventoryItem::Type>();

				QByteArray	latin1	=	r.toLatin1();

				int	result	=	metaEnum.keyToValue(latin1.constData());

				return	static_cast<InventoryItem::Type>(result);

}

The	implementation	may	look	complicated,	but	it's	much	less	error-
prone	than	manually	writing	a	bunch	of	if	statements	to	choose	the
correct	return	value	manually.	First,	we	use	the	QMetaEnum::fromType<T>()
template	method	to	get	the	QMetaEnum	object	corresponding	to	our	enum.
The	keyToValue()	method	of	this	object	performs	the	conversion	that
we	need,	but	it	needs	to	be	accompanied	with	a	few	conversions.

You	can	note	that	we	are	using	a	class	called	QStringRef.	It	represents
a	string	reference—a	substring	in	an	existing	string—and	is
implemented	in	a	way	that	avoids	expensive	string	construction;
therefore,	it	is	very	fast.	The	similar	std::string_view	type	was	added	to
the	standard	library	in	C++17.	We	use	it	as	the	argument	type
because	QXmlStreamReader	will	provide	strings	in	this	format.

However,	the	keyToValue()	method	expects	a	const	char	*	argument,	so
we	use	the	toLatin1()	method	to	convert	our	string	to	QByteArray,	and
then	use	constData()	to	get	the	const	char	*	pointer	to	its	buffer.	Finally,
we	use	static_cast	to	convert	the	result	from	int	to	our	enum	type.

Save	the	following	XML	document	somewhere.	We	will	use	it	to	test
whether	the	parser	can	read	it:

<PlayerInfo>

				<Player	hp="40"	exp="23456">

								<Name>Gandalf</Name>

								<Password>mithrandir</Password>

								<Inventory>

												<InvItem	type="Weapon"	durability="3">

																<SubType>Long	sword</SubType>

												</InvItem>

												<InvItem	type="Armor"	durability="10">

																<SubType>Chain	mail</SubType>

												</InvItem>

								</Inventory>

								<Location	name="room1">

												<Position	x="1"	y="0"/>

								</Location>

				</Player>

</PlayerInfo>

Let's	create	a	class	called	PlayerInfoReader	that	will	wrap	QXmlStreamReader
and	expose	a	parser	interface	for	the	PlayerInfo	instances:

class	PlayerInfoReader	{

public:

				PlayerInfoReader(QIODevice	*device);

				PlayerInfo	read();

private:

				QXmlStreamReader	reader;

};

The	class	constructor	accepts	a	QIODevice	pointer	that	the	reader	will
use	to	retrieve	data	as	it	needs	it.	The	constructor	is	trivial,	as	it
simply	passes	the	device	to	the	reader	object:

PlayerInfoReader(QIODevice	*device)	{

				reader.setDevice(device);

}

Before	we	go	into	parsing,	let's	prepare	some	code	to	help	us	with
the	process.	First,	let's	add	an	enumeration	type	to	the	class	that
will	list	all	the	possible	tokens—tag	names	that	we	want	to	handle	in
the	parser:

enum	class	Token	{

				Invalid	=	-1,

				PlayerInfo,	//	root	tag

				Player,					//	in	PlayerInfo

				Name,	Password,	Inventory,	Location,	//	in	Player

				Position,			//	in	Location

				InvItem					//	in	Inventory

};

Then,	just	like	we	did	in	the	InventoryItem	class,	we	use	the	Q_GADGET	and
Q_ENUM	macros	and	implement	the	PlayerInfoReader::tokenByName()
convenience	method.

Now,	let's	implement	the	entry	point	of	the	parsing	process:

PlayerInfo	PlayerInfoReader::read()	{

				if(!reader.readNextStartElement())	{

								return	PlayerInfo();

				}

				if	(tokenByName(reader.name())	!=	Token::PlayerInfo)	{

								return	PlayerInfo();

				}

				PlayerInfo	info;

				while(reader.readNextStartElement())	{

								if(tokenByName(reader.name())	==	Token::Player)	{

												Player	p	=	readPlayer();

												info.players.append(p);

								}	else	{

												reader.skipCurrentElement();

								}

				}

				return	info;

}

First,	we	call	readNextStartElement()	on	the	reader	to	make	it	find	the
starting	tag	of	the	first	element,	and	if	it	is	found,	we	check	whether
the	root	tag	of	the	document	is	what	we	expect	it	to	be.	If	not,	we
return	a	default-constructed	PlayerInfo,	indicating	that	no	data	is
available.

Next,	we	create	a	PlayerInfo	variable.	We	iterate	all	the	starting	sub-
elements	in	the	current	tag	(PlayerInfo).	For	each	of	them,	we	check
whether	it	is	a	Player	tag	and	call	readPlayer()	to	descend	into	the	level
of	parsing	data	for	a	single	player.	Otherwise,	we	call
skipCurrentElement(),	which	fast-forwards	the	stream	until	a	matching
ending	element	is	encountered.

The	other	methods	in	this	class	will	usually	follow	the	same	pattern.
Each	parsing	method	iterates	all	the	starting	elements,	handling
those	it	knows	and	ignoring	all	others.	Such	an	approach	lets	us
maintain	forward	compatibility,	since	all	tags	introduced	in	the
newer	versions	of	the	document	are	silently	skipped	by	an	older
parser.

The	structure	of	readPlayer()	is	similar;	however,	it	is	more
complicated,	as	we	also	want	to	read	data	from	the	attributes	of	the
Player	tag	itself.	Let's	take	a	look	at	the	function	piece	by	piece.	First,
we	get	the	list	of	attributes	associated	with	the	opening	tag	and	ask
for	values	of	the	two	attributes	that	we	are	interested	in:

Player	p;

const	QXmlStreamAttributes&	playerAttrs	=	reader.attributes();

p.hitPoints	=	playerAttrs.value("hp").toString().toInt();

p.experience	=	playerAttrs.value("exp").toString().toInt();

After	this,	we	loop	all	child	tags	and	fill	the	Player	structure	based	on
the	tag	names.	By	converting	tag	names	to	tokens,	we	can	use	a
switch	statement	to	neatly	structure	the	code	in	order	to	extract
information	from	different	tag	types,	as	in	the	following	code:

while(reader.readNextStartElement())	{

				Token	t	=	tokenByName(reader.name());

				switch(t)	{

				case	Token::Name:

								p.name	=	reader.readElementText();

								break;

				case	Token::Password:

								p.password	=	reader.readElementText();

								break;

				case	Token::Inventory:

								p.inventory	=	readInventory();

								break;

				//...

				}

}

If	we	are	interested	in	the	textual	content	of	the	tag,	we	can	use
readElementText()	to	extract	it.	This	method	reads	until	it	encounters
the	closing	tag	and	returns	the	text	contained	within	it.	For	the
Inventory	tag,	we	call	the	dedicated	readInventory()	method.

For	the	Location	tag,	the	code	is	more	complex	than	earlier	as	we
again	descend	into	reading	child	tags,	extracting	the	required
information	and	skipping	all	unknown	tags:

case	Token::Location:

				p.location	=	reader.attributes().value("name").toString();

				while(reader.readNextStartElement())	{

								if(tokenByName(reader.name())	==	Token::Position)	{

												const	QXmlStreamAttributes&	attrs	=	reader.attributes();

												p.position.setX(attrs.value("x").toString().toInt());

												p.position.setY(attrs.value("y").toString().toInt());

												reader.skipCurrentElement();

								}	else	{

												reader.skipCurrentElement();

								}

				}

				break;

Next,	we	again	skip	the	tags	that	didn't	match	any	known	tokens.	At
the	end	of	readPlayer(),	we	simply	return	the	populated	Player	value.

The	last	method	is	similar	in	structure	to	the	previous	one—iterate
all	the	tags,	skip	everything	that	we	don't	want	to	handle
(everything	that	is	not	an	inventory	item),	fill	the	inventory	item
data	structure,	and	append	the	item	to	the	list	of	already	parsed
items,	as	follows:

QVector<InventoryItem>	PlayerInfoReader::readInventory()	{

				QVector<InventoryItem>	inventory;

				while(reader.readNextStartElement())	{

								if(tokenByName(reader.name())	!=	Token::InvItem)	{

												reader.skipCurrentElement();

												continue;

								}

								InventoryItem	item;

								const	QXmlStreamAttributes&	attrs	=	reader.attributes();

								item.durability	=

attrs.value("durability").toString().toInt();

								item.type	=	InventoryItem::typeByName(attrs.value("type"));

								while(reader.readNextStartElement())	{

												if(reader.name()	==	"SubType")	{

																item.subType	=	reader.readElementText();

												}

												else	{

																reader.skipCurrentElement();

												}

								}

								inventory	<<	item;

				}

				return	inventory;

}

In	main()	of	your	project,	write	some	code	that	will	check	whether	the
parser	works	correctly.	You	can	use	the	qDebug()	statements	to	output
the	sizes	of	lists	and	contents	of	variables.	Take	a	look	at	the
following	code	for	an	example:

QFile	file(filePath);

file.open(QFile::ReadOnly	|	QFile::Text);

PlayerInfoReader	reader(&file);

PlayerInfo	playerInfo	=	reader.read();

if	(!playerInfo.players.isEmpty())	{

				qDebug()	<<	"Count:"	<<	playerInfo.players.count();

				qDebug()	<<	"Size	of	inventory:"	<<

				qDebug()	<<	"Size	of	inventory:"	<<

																playerInfo.players.first().inventory.size();

				qDebug()	<<	"Inventory	item:"

													<<	playerInfo.players.first().inventory[0].type

													<<	playerInfo.players.first().inventory[0].subType;

				qDebug()	<<	"Room:"	<<	playerInfo.players.first().location

													<<	playerInfo.players.first().position;

}

What	just	happened?
The	code	you	just	wrote	implements	a	full	top-down	parser	of	the
XML	data.	First,	the	data	goes	through	a	tokenizer,	which	returns
identifiers	that	are	much	easier	to	handle	than	strings.	Then,	each
method	can	easily	check	whether	the	token	it	receives	is	an
acceptable	input	for	the	current	parsing	stage.	Based	on	the	child
token,	the	next	parsing	function	is	determined	and	the	parser
descends	to	a	lower	level	until	there	is	nowhere	to	descend	to.	Then,
the	flow	goes	back	up	one	level	and	processes	the	next	child.	If,	at
any	point,	an	unknown	tag	is	found,	it	gets	ignored.	This	approach
supports	a	situation	when	a	new	version	of	software	introduces	new
tags	to	the	file	format	specification,	but	an	old	version	of	software
can	still	read	the	file	by	skipping	all	the	tags	that	it	doesn't
understand.

Have	a	go	hero	–	An	XML
serializer	for	player	data
Now	that	you	know	how	to	parse	XML	data,	you	can	create	the
complementary	part—a	module	that	will	serialize	PlayerInfo
structures	into	XML	documents	using	QXmlStreamWriter.	Use	methods
such	as	writeStartDocument(),	writeStartElement(),	writeCharacters(),	and
writeEndElement()	for	this.	Verify	that	the	documents	saved	with	your
code	can	be	parsed	with	what	we	implemented	together.

QVariant
QVariant	is	a	class	that	can	hold	values	of	multiple	types:

QVariant	intValue	=	1;

int	x	=	intValue.toInt();

QVariant	stringValue	=	"ok";

QString	y	=	stringValue.toString();

When	you	assign	a	value	to	a	QVariant	object,	that	value	is	stored
inside	along	with	the	type	information.	You	can	use	its	type()	method
to	find	out	which	type	of	value	it	holds.	The	default	constructor
of	QVariant	creates	an	invalid	value	that	you	can	detect	using
the	isValid()	method.

QVariant	supports	a	great	amount	of	types,	including	Qt	value	types
such	as	QDateTime,	QColor,	and	QPoint.	You	can	also	register	your	own
types	to	store	them	in	QVariant.	One	of	the	most	powerful	features
of	QVariant	is	the	ability	to	store	a	collection	or	a	hierarchy	of	values.
You	can	use	the	QVariantList	type	(which	is	a	typedef	for	QList<QVariant>)	to
create	a	list	of	QVariant	objects,	and	you	can	actually	put	the	whole	list
into	a	single	QVariant	object!	You'll	be	able	to	retrieve	the	list	and
examine	individual	values:

QVariant	listValue	=	QVariantList	{	1,	"ok"	};

for(QVariant	item:	listValue.toList())	{

		qDebug()	<<	item.toInt()	<<	item.toString();

}

Similarly,	you	can	use	QVariantMap	or	QVariantHash	to	create	a	key-value
collection	with	QString	keys	and	QVariant	values.	Needless	to	say,	you
can	store	such	a	collection	in	a	single	QVariant	as	well.	This	allows	you
to	construct	a	hierarchy	with	unlimited	depth	and	arbitrary

structure.

As	you	can	see,	QVariant	is	a	pretty	powerful	class,	but	how	can	we	use
it	for	serializing?	For	a	start,	QVariant	is	supported	by	QDataStream,	so
you	can	use	the	binary	serialization	described	earlier	to	serialize
and	restore	any	QVariant	value	you	can	construct.	For	example,
instead	of	putting	each	field	of	your	structure	into	QDataStream,	you	can
put	them	into	a	QVariantMap	and	then	put	it	into	the	stream:

Player	player;

QVariantMap	map;

map["name"]	=	player.name;

map["experience"]	=	player.experience;

//...

stream	<<	map;

Loading	the	data	is	also	straightforward:

QVariantMap	map;

stream	>>	map;

Player	player;

player.name	=	map["name"].toString();

player.experience	=	map["experience"].toLongLong();

This	approach	allows	you	to	store	arbitrary	data	in	an	arbitrary
location.	However,	you	can	also	use	QVariant	along	with	QSettings	to
conveniently	store	the	data	in	an	appropriate	location.

QSettings
While	not	strictly	a	serialization	issue,	the	aspect	of	storing
application	settings	is	closely	related	to	the	described	subject.	A	Qt
solution	for	this	is	the	QSettings	class.	By	default,	it	uses	different
backends	on	different	platforms,	such	as	system	registry	on
Windows	or	INI	files	on	Linux.	The	basic	use	of	QSettings	is	very	easy
—you	just	need	to	create	the	object	and	use	setValue()	and	value()	to
store	and	load	data	from	it:

QSettings	settings;

settings.setValue("level",	4);

settings.setValue("playerName",	"Player1");

//	...

int	level	=	settings.value("level").toInt();

The	only	thing	you	need	to	remember	is	that	it	operates	on	QVariant,
so	the	return	value	needs	to	be	converted	to	the	proper	type	if
needed,	like	toInt()	in	the	preceding	code.	A	call	to	value()	can	take	an
additional	argument	that	contains	the	value	to	be	returned	if	the
requested	key	is	not	present	in	the	map.	This	allows	you	to	handle
default	values,	for	example,	in	a	situation	when	the	application	is
first	started	and	the	settings	are	not	saved	yet:

int	level	=	settings.value("level",	1).toInt();

If	you	don't	specify	the	default	value,	an	invalid	QVariant	will	be
returned	when	nothing	is	stored,	and	you	can	check	for	that	using
the	isValid()	method.

In	order	for	the	default	settings	location	to	be	correct,	you	need	to
set	the	organization	name	and	the	application	name.	They

determine	where	exactly	QSettings	store	data	by	default	and	ensure
that	the	stored	data	will	not	conflict	with	another	application.	This
is	typically	done	at	the	beginning	of	your	main()	function:

int	main(int	argc,	char	*argv[])	{

				QApplication	app(argc,	argv);

				QCoreApplication::setOrganizationName("Packt");

				QCoreApplication::setApplicationName("Game	Programming	using	Qt");

				//...

}

Settings	hierarchy
The	simplest	scenario	assumes	that	settings	are	"flat",	in	that	all
keys	are	defined	on	the	same	level.	However,	this	does	not	have	to
be	the	case—correlated	settings	can	be	put	into	named	groups.	To
operate	on	a	group,	you	can	use	the	beginGroup()			and		endGroup()	calls:

settings.beginGroup("server");

QString	serverIP	=	settings.value("host").toString();

int	port	=	settings.value("port").toInt();

settings.endGroup();

When	using	this	syntax,	you	have	to	remember	to	end	the	group
after	you	are	done	with	it.	An	alternative	way	to	do	the	same	thing	is
to	pass	the	group	name	directly	to	invocation	of	value(),	using	/	to
separate	it	from	the	value	name:

QString	serverIP	=	settings.value("server/host").toString();

int	port	=	settings.value("server/port").toInt();

You	can	create	multiple	nested	groups	by	calling	beginGroup()	multiple
times	(or,	equivalently,	writing	multiple	slashes	in	the	value	name).

There	is	another	way	to	introduce	a	non-flat	structure	to	QSettings.	It
can	handle	composite	QVariant	values—QVariantMap	and	QVariantList.	You
can	simply	convert	your	data	to	a	QVariant,	much	like	we	converted	it
to	a	QJsonValue	earlier:

QVariant	inventoryItemToVariant(const	InventoryItem	&item)	{

				QVariantMap	map;

				map["type"]							=	InventoryItem::typeToName(item.type);

				map["subtype"]				=	item.subType;

				map["durability"]	=	item.durability;

				return	map;

				return	map;

}

This	QVariant	value	can	be	passed	to	QSettings::setValue().	Of	course,	you
will	need	to	implement	the	inverse	operation	as	well.	More	than
that,	nothing	stops	you	from	converting	your	data	to	JSON	and
saving	it	to	QSettings	as	a	QByteArray.	However,	these	approaches	may
be	slower	than	proper	serialization,	and	the	resulting	settings	file
will	be	hard	to	edit	manually.

Various	Qt	classes	have	methods	that	are	meant	to	be	used
with	QSettings	to	easily	save	a	set	of	properties.	For
example,	QWidget::saveGeometry()		and		QWidget::restoreGeometry()	helpers
allow	you	to	save	the	window's	position	and	size	to	QSettings:

settings.setValue("myWidget/geometry",	myWidget->saveGeometry());

//...

myWidget->restoreGeometry(

				settings.value("myWidget/geometry").toByteArray());

Similarly,	multiple	widget	classes
have	saveState()	and	restoreState()	methods	to	save	information	about
the	widget's	state:

QMainWindow	can	save	positions	of	toolbars	and	dock	widgets

QSplitter	can	save	positions	of	its	handles

QHeaderView	can	save	sizes	of	the	table's	rows	or	columns

QFileDialog	can	save	the	dialog's	layout,	history,	and	current

directory

These	methods	are	a	great	way	to	preserve	all	changes	the	user	has
made	in	your	application's	interface.

Customizing	the	settings
location	and	format
The	constructor	of	the	QSettings	class	has	a	number	of	overloads	that
allow	you	to	change	the	location	where	the	data	will	be	stored	by	a
particular	QSettings	object,	instead	of	using	the	default	location.	First,
you	can	override	the	organization	name	and	the	application	name:

QSettings	settings("Packt",	"Game	Programming	using	Qt");

Next,	you	can	use	the	system-wide	storage	location	by	passing	
QSettings::SystemScope		as	the	scope	argument:

QSettings	settings(QSettings::SystemScope,	

				"Packt",	"Game	Programming	using	Qt");

In	this	case,	QSettings	will	try	to	read	the	settings	for	all	users	and
then	fall	back	to	the	user-specific	location.	Note	that	a	system-wide
location	may	not	be	writable,	so	using	setValue()	on	it	won't	have	the
desired	effect.

You	can	also	opt	out	of	the	preferred	format	detection	using	the	
QSettings::setDefaultFormat()	function.	For	example,	use	the	following
code	on	Windows	to	disable	using	the	registry:

QSettings::setDefaultFormat(QSettings::IniFormat);

Finally,	there	is	one	more	option	available	for	total	control	of	where
the	settings	data	resides—tell	the	constructor	directly	where	the
data	should	be	located:

QSettings	settings(

				QStandardPaths::writableLocation(QStandardPaths::ConfigLocation)	+

								"/myapp.ini",	

				QSettings::IniFormat

);

If	you	pass	QSettings::NativeFormat	to	this	constructor,	the	meaning	of
the	path	will	depend	on	the	platform.	For	example,	it	will	be
interpreted	as	a	registry	path	on	Windows.

Since	you	can	use	QSettings	to	read	and	write	to	an	arbitrary	INI	file,	it's	a	convenient	and
easy	way	to	implement	serialization	of	an	object	to	the	INI	format,	which	is	suitable	in
simple	cases.

QSettings	also	allows	you	to	register	your	own	formats	so	that	you	can
control	the	way	your	settings	are	stored,	for	example,	by	storing
them	using	XML	or	by	adding	on-the-fly	encryption.	This	is	done
using	QSettings::registerFormat(),	where	you	need	to	pass	the	file
extension	and	two	pointers	to	functions	that	perform	reading	and
writing	of	the	settings,	respectively,	as	follows:

bool	readCCFile(QIODevice	&device,	QSettings::SettingsMap	&map)	{

				CeasarCipherDevice	ccDevice;

				ccDevice.setBaseDevice(&device);

				//	...

				return	true;

}

bool	writeCCFile(QIODevice	&device,	const	QSettings::SettingsMap	&map)

{	

				//	...	

}

const	QSettings::Format	CCFormat	=	QSettings::registerFormat(

				"ccph",	readCCFile,	writeCCFile);

JSON	files
JSON	stands	for	"JavaScript	Object	Notation",	which	is	a	popular
lightweight	textual	format	that	is	used	to	store	object-oriented	data
in	a	human-readable	form.	It	comes	from	JavaScript	where	it	is	the
native	format	used	to	store	object	information;	however,	it	is
commonly	used	across	many	programming	languages	and	a
popular	format	for	web	data	exchange.	Qt	Core	supports	JSON
format,	as	we'll	see	in	the	following	code.	A	simple	JSON-formatted
definition	looks	as	follows:

{

				"name":	"Joe",

				"age":	14,

				"inventory":	[

								{	"type":	"gold",	"amount":	"144000"	},

								{	"type":	"short_sword",	"material":	"iron"	}

]

}

JSON	objects	can	contain	values	of	the	following	types:

T
y
p
e

Description

b
o
o
l

A	boolean	value	(true	or	false).

d
o
u

u
b
le

A	number	value	(for	example,	42.1).

st
ri
n
g

A	quoted	string	(for	example,	"Qt").

a
rr
a
y

A	collection	of	values	of	any	type	enclosed	in	square	brackets	
(for	example,	[42.1,	"Qt"]).

o
b
je
ct

	
A	set	of	key-value	pairs	enclosed	in	braces.	Keys	are	strings,	
and	values	can	be	of	any	type	(for	example,	{	"key1":	42.1,	
"key2":	[42.1,	"Qt"]	}).
	

n
u
ll

	
A	special	value	(null)	indicating	lack	of	data.
	

	

A	proper	JSON	document	must	have	either	an	array	or	an	object
at	the	top	level.	In	the	preceding	example,	we	had	an	object
containing	three	properties:	name,	age,	and	inventory.	The	first	two
properties	are	simple	values,	and	the	last	property	is	an	array	that
contains	two	objects	with	two	properties	each.

Qt	can	create	and	read	JSON	descriptions	using	the	QJsonDocument
class.	A	document	can	be	created	from	the	UTF-8-encoded	text
using	the	QJsonDocument::fromJson()	static	method,	and	can	later	be
stored	in	a	textual	form	again	using	toJson().	Once	a	JSON	document
is	created,	you	can	check	whether	it	represents	an	object	or	an	array

using	one	of	the	isArray()	and	isObject()	calls.	Then,	the	document	can
be	transformed	into	QJsonArray	or	QJsonObject	using	the	array()	or	object()
methods.

Since	the	structure	of	JSON	closely	resembles	that	of	QVariant	(which	can	also	hold	key-
value	pairs	using	QVariantMap	and	arrays	using	QVariantList),	conversion	methods
QJsonDocument::fromVariant()	and	QJsonDocument::toVariant()	also	exist.

QJsonObject	is	an	iterable	type	that	can	be	queried	for	a	list	of	keys
(using	keys())	or	asked	for	a	value	of	a	specific	key	(with	a	value()
method	or	operator[]).	Values	are	represented	using	the	QJsonValue
class,	which	can	store	any	of	the	value	types	listed	earlier.	New
properties	can	be	added	to	the	object	using	the	insert()	method	that
takes	a	key	as	a	string,	and	a	value	can	be	added	as	QJsonValue.	The
existing	properties	can	be	removed	using	remove().

QJsonArray	is	also	an	iterable	type	that	contains	a	classic	list	API;	it
contains	methods	such	as	append(),	insert(),	removeAt(),	at(),	and	size()	to
manipulate	entries	in	the	array,	again	working	on	QJsonValue	as	the
item	type.

Time	for	action	–	The	player
data	JSON	serializer
Our	next	exercise	is	to	create	a	serializer	of	the	same	PlayerInfo
structure	as	we	used	for	the	XML	exercise,	but	this	time	the
destination	data	format	will	be	JSON.

Start	by	creating	a	PlayerInfoJson	class	and	give	it	an	interface	similar
to	the	one	shown	in	the	following	code:

class	PlayerInfoJson	{

public:

				PlayerInfoJson()	{}

				QByteArray	playerInfoToJson(const	PlayerInfo	&pinfo);

};

All	that	is	really	required	is	to	implement	the	playerInfoToJson	method.
Generally,	we	need	to	convert	our	PlayerInfo	data	to	a	QJsonArray	and
then	use	QJsonDocument	to	encode	it	as	JSON:

QByteArray	PlayerInfoJson::playerInfoToJson(const	PlayerInfo	&pinfo)

{

				QJsonDocument	doc(toJson(pinfo));

				return	doc.toJson();

}

Now,	let's	start	implementing	the	toJson()	method:

QJsonArray	PlayerInfoJson::toJson(const	PlayerInfo	&pinfo)	{

				QJsonArray	array;

				for(const	Player	&p:	pinfo.players)	{

								array	<<	toJson(p);

				}

				return	array;

				return	array;

}

Since	the	structure	is	really	a	list	of	players,	we	can	iterate	over	it,
convert	each	player	to	a	QJsonValue,	and	append	the	result	to	QJsonArray.
Having	this	function	ready,	we	can	descend	a	level	and	implement
an	overload	for	toJson()	that	takes	a	Player	object:

QJsonValue	PlayerInfoJson::toJson(const	Player	&player)	{

				QJsonObject	object;

				object["name"]							=	player.name;

				object["password"]			=	player.password;

				object["experience"]	=	player.experience;

				object["hitpoints"]		=	player.hitPoints;

				object["location"]			=	player.location;

				object["position"]			=	QJsonObject({	{	"x",	player.position.x()	},

																																									{	"y",	player.position.y()	}

});

				object["inventory"]		=	toJson(player.inventory);

				return	object;

}

This	time,	we	are	using	QJsonObject	as	our	base	type,	since	we	want	to
associate	values	with	keys.	For	each	key,	we	use	the	index	operator
to	add	entries	to	the	object.	The	position	key	holds	a	QPoint	value,
which	is	not	a	valid	JSON	value,	so	we	convert	the	point	to	a
QJsonObject	with	two	keys	(x	and	y)	using	the	C++11	initializer	list.	The
situation	is	different	with	the	inventory—again,	we	have	to	write	an
overload	for	toJson	that	will	perform	the	conversion:

QJsonValue	PlayerInfoJson::toJson(const	QVector<InventoryItem>	&items)

{

				QJsonArray	array;

				for(const	InventoryItem	&item:	items)	{

								array	<<	toJson(item);

				}

				return	array;

}

The	code	is	almost	identical	to	the	one	handling	PlayerInfo	objects,	so

let's	focus	on	the	last	overload	of	toVariant—the	one	that	accepts	Item
instances:

QJsonValue	PlayerInfoJson::toJson(const	InventoryItem	&item)	{

				QJsonObject	object;

				object["type"]	=	InventoryItem::typeToName(item.type);

				object["subtype"]	=	item.subType;

				object["durability"]	=	item.durability;

				return	object;

}

There	is	not	much	to	comment	here—we	add	all	keys	to	the	object,
converting	the	item	type	to	a	string.	For	this,	we	have	to	add	the
static	InventoryItem::typeToName()	method	that	is	the	reverse	of	typeByName(),
that	is,	it	takes	a	enum	variant	and	outputs	its	name	as	a	string:

const	char	*InventoryItem::typeToName(InventoryItem::Type	value)

{

				QMetaEnum	metaEnum	=	QMetaEnum::fromType<InventoryItem::Type>();

				return	metaEnum.valueToKey(static_cast<int>(value));

}

This	is	pretty	much	a	wrapper	over	the	QMetaEnum::valueToKey()	method
that	does	all	the	magic	that	wouldn't	be	possible	without	Qt.

The	serializer	is	complete!	Now	you	can	use
PlayerInfoJson::playerInfoToJson()	to	convert	PlayerInfo	into	a	QByteArray
containing	the	JSON.	It's	suitable	for	writing	it	to	a	file	or	sending	it
over	the	network.	However,	to	make	it	more	useful,	we	need	to
implement	the	reverse	operation	(deserialization).

Time	for	action	–	Implementing
a	JSON	parser
Let's	extend	the	PlayerInfoJSON	class	and	equip	it	with	a
playerInfoFromJson()	method:

PlayerInfo	PlayerInfoJson::playerInfoFromJson(const	QByteArray	&ba)	{

				QJsonDocument	doc	=	QJsonDocument::fromJson(ba);

				if(!doc.isArray())	{

								return	PlayerInfo();

				}

				QJsonArray	array	=	doc.array();

				PlayerInfo	pinfo;

				for(const	QJsonValue	&value:	array)	{

								pinfo.players	<<	playerFromJson(value.toObject());

				}

				return	pinfo;

}

First,	we	read	the	document	and	check	whether	it	is	valid	and	holds
the	expected	array.	Upon	failure,	an	empty	structure	is	returned;
otherwise,	we	iterate	over	the	received	array	and	convert	each	of	its
elements	to	an	object.	Similar	to	the	serialization	example,	we
create	a	helper	function	for	each	complex	item	of	our	data	structure.
Thus,	we	write	a	new	playerFromJson()	method	that	converts	QJsonObject
to	a	Player,	that	is,	performs	a	reverse	operation	as	compared	to
toJson(Player):

Player	PlayerInfoJson::playerFromJson(const	QJsonObject	&object)	{

				Player	player;

				player.name							=	object["name"].toString();

				player.password			=	object["password"].toString();

				player.experience	=	object["experience"].toDouble();

				player.hitPoints		=	object["hitpoints"].toDouble();

				player.location			=	object["location"].toString();

				QJsonObject	positionObject	=	object["position"].toObject();

				QJsonObject	positionObject	=	object["position"].toObject();

				player.position			=	QPoint(positionObject["x"].toInt(),

																															positionObject["y"].toInt());

				player.inventory		=

inventoryFromJson(object["inventory"].toArray());

				return	player;

}

In	this	function,	we	used	operator[]	to	extract	data	from	QJsonObject,
and	then	we	used	different	functions	to	convert	the	data	to	the
desired	type.	Note	that	in	order	to	convert	to	QPoint,	we	first
converted	it	to	QJsonObject	and	then	extracted	the	values	before	using
them	to	build	QPoint.	In	each	case,	if	the	conversion	fails,	we	get	a
default	value	for	that	type	(for	example,	an	empty	string	or	a	zero
number).	To	read	the	inventory,	we	employ	another	custom
method:

QVector<InventoryItem>	PlayerInfoJson::inventoryFromJson(

				const	QJsonArray	&array)	

{

				QVector<InventoryItem>	inventory;

				for(const	QJsonValue	&value:	array)	{

						inventory	<<	inventoryItemFromJson(value.toObject());

				}

				return	inventory;

}

What	remains	is	to	implement	inventoryItemFromJson():

InventoryItem	PlayerInfoJson::inventoryItemFromJson(

				const	QJsonObject	&object)	

{

				InventoryItem	item;

				item.type	=	InventoryItem::typeByName(object["type"].toString());

				item.subType	=	object["subtype"].toString();

				item.durability	=	object["durability"].toDouble();

				return	item;

}

Unfortunately,	our	typeByName()	function	requires	QStringRef,	not	QString.

We	can	fix	this	by	adding	a	couple	of	overloads	and	forwarding
them	to	a	single	implementation:

InventoryItem::Type	InventoryItem::typeByName(const	QStringRef	&r)	{

				return	typeByName(r.toLatin1());

}

InventoryItem::Type	InventoryItem::typeByName(const	QString	&r)	{

				return	typeByName(r.toLatin1());

}

InventoryItem::Type	InventoryItem::typeByName(const	QByteArray	

&latin1)	{

				QMetaEnum	metaEnum	=	QMetaEnum::fromType<InventoryItem::Type>();

				int	result	=	metaEnum.keyToValue(latin1.constData());

				return	static_cast<InventoryItem::Type>(result);

}

What	just	happened?
The	class	that	was	implemented	can	be	used	for	bidirectional
conversion	between	Item	instances	and	a	QByteArray	object,	which
contains	the	object	data	in	the	JSON	format.	We	didn't	do	any	error
checking	here;	instead,	we	relied	on	Qt's	rule	that	an	error	results	in
a	sensible	default	value.

What	if	you	want	to	perform	error	checking?	The	most	straightforward	solution	in	this
case	is	to	use	exceptions,	as	they	will	automatically	propagate	from	the	multiple	nested
calls	to	the	caller's	location.	Ensure	that	you	catch	any	exceptions	you	throw,	or	the
application	will	terminate.	A	more	Qt-like	solution	is	to	create	a	bool	*ok	argument	in	all
methods	(including	internal	ones)	and	set	the	boolean	value	to	false	in	case	of	any	error.

Pop	quiz
Q1.	What	is	the	closest	equivalent	of	std::string	in	Qt?

1.	 QString

2.	 QByteArray

3.	 QStringLiteral

Q2.	Which	strings	match	the	\A\d\z	regular	expression?

1.	 Strings	consisting	of	digits

2.	 Strings	consisting	of	a	single	digit

3.	 This	is	not	a	valid	regular	expression

Q3.	Which	of	the	following	container	types	can	you	use	to	store	a
list	of	widgets?

1.	 QVector<QWidget>

2.	 QList<QWidget>

3.	 QVector<QWidget*>

Q4.	Which	class	can	you	use	to	convert	a	text	string	containing
JSON	to	a	Qt	JSON	representation?

1.	 QJsonValue

2.	 QJsonObject

3.	 QJsonDocument

Summary
In	this	chapter,	you	learned	a	number	of	core	Qt	technologies,
ranging	from	text	manipulation	and	containers	to	accessing	devices
that	can	be	used	to	transfer	or	store	data,	using	a	number	of
popular	technologies	such	as	XML	or	JSON.	You	should	be	aware
that	we	have	barely	scratched	the	surface	of	what	Qt	offers	and
there	are	many	other	interesting	classes	you	should	familiarize
yourself	with,	but	this	minimum	amount	of	information	should	give
you	a	head	start	and	show	you	the	direction	to	follow	with	your
future	research.

In	the	next	chapter,	we	will	go	beyond	the	boundaries	of	your
computer	and	explore	ways	to	use	the	powerful	world	of	the
modern	internet.	You	will	learn	how	to	interact	with	the	existing
network	services,	check	the	current	network	availability,	and
implement	your	own	servers	and	clients.	This	knowledge	will	come
in	handy	if	you	want	to	implement	multiplayer	networked	games.

Networking
In	this	chapter,	you	will	be	taught	how	to	communicate	with
internet	servers	and	with	sockets	in	general.	First,	we	will	take	a
look	at	QNetworkAccessManager,	which	makes	sending	network	requests
and	receiving	replies	really	easy.	Building	on	this	basic	knowledge,
we	will	then	use	Google's	Distance	API	to	get	information	about	the
distance	between	two	locations	and	how	long	it	would	take	to	get
from	one	to	the	other.	This	technique,	and	the	respective
knowledge,	can	also	be	used	to	include	Facebook	or	Twitter	in	your
application	via	their	respective	APIs.	Then,	we	will	take	a	look	at
Qt's	Bearer	API,	which	provides	information	about	a	device's
connectivity	state.	In	the	last	section,	you	will	learn	how	to	use
sockets	to	create	your	own	server	and	clients	using	TCP	or	UDP	as
the	network	protocol.

The	main	topics	covered	in	this	chapter	are	the	following:

Downloading	files	using	QNetworkAccessManager

Using	Google's	Distance	Matrix	API

Implementing	a	TCP	chat	server	and	client

Using	UDP	sockets

QNetworkAccessManager
All	network-related	functionality	in	Qt	is	implemented	in	the	Qt
Network	module.	The	easiest	way	to	access	files	on	the	internet	is	to
use	the	QNetworkAccessManager	class,	which	handles	the	complete
communication	between	your	game	and	the	internet.

Setting	up	a	local	HTTP	server
In	our	next	example,	we	will	be	downloading	a	file	over	HTTP.	If
you	don't	have	a	local	HTTP	server,	you	can	just	use	any	publicly
available	HTTP	or	HTTPS	resource	to	test	your	code.	However,
when	you	develop	and	test	a	network-enabled	application,	it	is
recommended	that	you	use	a	private,	local	network	if	feasible.	This
way,	it	is	possible	to	debug	both	ends	of	the	connection,	and	errors
will	not	expose	sensitive	data.

If	you	are	not	familiar	with	setting	up	a	web	server	locally	on	your
machine,	there	are,	luckily,	a	number	of	all-in-one	installers	that
are	freely	available.	These	will	automatically	configure	Apache2,
MySQL	(or	MariaDB),	PHP,	and	many	other	servers	on	your
system.	On	Windows,	for	example,	you	can	use	XAMPP
(https://www.apachefriends.org),	or	the	Uniform	Server
(http://www.uniformserver.com);	on	Apple	computers,	there	is	MAMP
(https://www.mamp.info);	and	on	Linux,	you	can	open	your	preferred
package	manager,	search	for	a	package	called	Apache2	or	a	similar
one,	and	install	it.	Alternatively,	take	a	look	at	your	distribution's
documentation.

Before	you	install	Apache	on	your	machine,	think	about	using	a
virtual	machine,	such	as	VirtualBox	(http://www.virtualbox.org)	for	this
task.	This	way,	you	keep	your	machine	clean,	and	you	can	easily	try
different	settings	for	your	test	server.	With	multiple	virtual
machines,	you	can	even	test	the	interaction	between	different
instances	of	your	game.	If	you	are	on	Unix,	Docker
(http://www.docker.com)	might	be	worth	taking	a	look	at.

https://www.apachefriends.org
http://www.uniformserver.com
https://www.mamp.info
http://www.virtualbox.org
http://www.docker.com

Preparing	a	URL	for	testing
If	you've	set	up	a	local	HTTP	server,	create	a	file	called	version.txt	in
the	root	directory	of	the	installed	server.	This	file	should	contain	a
small	piece	of	text	such	as	"I	am	a	file	on	localhost"	or	something
similar.	As	you	might	have	guessed,	a	real-life	scenario	could	be	to
check	whether	there	is	an	updated	version	of	your	game	or
application	on	the	server.	To	test	whether	the	server	and	the	file	are
correctly	set	up,	start	a	web	browser	and	open
http://localhost/version.txt.	You	should	then	see	the	file's	content:

.

If	this	fails,	it	may	be	the	case	that	your	server	does	not	allow	you	to
display	text	files.	Instead	of	getting	lost	in	the	server's
configuration,	just	rename	the	file	to	version.html.	This	should	do	the
trick!

If	you	don't	have	an	HTTP	server,	you	can	use	the	URL	of	your
favorite	website,	but	be	prepared	to	receive	HTML	code	instead	of
plain	text,	as	the	majority	of	websites	use	HTML.	You	can	also	use
the	https://www.google.com/robots.txt	URL,	as	it	responds	with	plain	text.

Time	for	action	–	Downloading
a	file
Create	a	Qt	Widgets	project	and	add	a	widget	class
named	FileDownload.	Add	a	button	that	will	start	the	download	and	a
plain	text	edit	that	will	display	the	result.	As	always,	you	can	look	at
the	code	files	provided	with	the	book	if	you	need	any	help.

Next,	enable	the	Qt	Network	module	by	adding	QT	+=	network	to	the
project	file.	Then,	create	an	instance	of	QNetworkAccessManager	in	the
constructor	and	put	it	in	a	private	field:

m_network_manager	=	new	QNetworkAccessManager(this);

Since	QNetworkAccessManager	inherits	QObject,	it	takes	a	pointer	to	QObject,
which	is	used	as	a	parent.	Thus,	you	do	not	have	delete	the	manager
later	on.

Secondly,	we	connect	the	manager's	finished()	signal	to	a	slot	of	our
choice;	for	example,	in	our	class,	we	have	a	slot	called
downloadFinished():

connect(m_network_manager,	&QNetworkAccessManager::finished,

								this,	&FileDownload::downloadFinished);

We	have	to	do	this	because	the	API	of	QNetworkAccessManager	is
asynchronous.	This	means	that	none	of	the	network	requests,	or
the	read	or	write	operations,	will	block	the	current	thread.	Instead,
when	the	data	is	available	or	another	network	event	occurs,	Qt	will
send	a	corresponding	signal	so	that	you	can	handle	the	data.

Thirdly,	we	actually	request	the	version.txt	file	from	localhost	when
the	button	is	clicked:

QUrl	url("http://localhost/version.txt");

m_network_manager->get(QNetworkRequest(url));

With	get(),	we	send	a	request	to	get	the	contents	of	the	file	specified
by	the	URL.	The	function	expects	a	QNetworkRequest	object,	which
defines	all	the	information	needed	to	send	a	request	over	the
network.	The	main	information	for	such	a	request	is,	naturally	the
URL	of	the	file.	This	is	the	reason	QNetworkRequest	takes	QUrl	as	an
argument	in	its	constructor.	You	can	also	set	the	URL	with	setUrl()	to
a	request.	If	you	wish	to	define	a	request	header	(for	example,	a
custom	user	agent),	you	can	use	setHeader():

QNetworkRequest	request;

request.setUrl(QUrl("http://localhost/version.txt"));

request.setHeader(QNetworkRequest::UserAgentHeader,	"MyGame");

m_network_manager->get(request);

The	setHeader()	function	takes	two	arguments:	the	first	is	a	value	of
the	QNetworkRequest::KnownHeaders	enumeration,	which	holds	the	most
common	(self-explanatory)	headers,	such	as	LastModifiedHeader	or
ContentTypeHeader,	and	the	second	is	the	actual	value.	You	can	also	write
the	header	using	setRawHeader():

request.setRawHeader("User-Agent",	"MyGame");

When	you	use	setRawHeader(),	you	have	to	write	the	header	field	names
yourself.	Besides	this,	it	behaves	like	setHeader().	A	list	of	all	the
available	headers	for	the	HTTP	protocol	Version	1.1	can	be	found	in
section	14	of	RFC	2616	(https://www.w3.org/Protocols/rfc2616/rfc2616-
sec14.html#sec14).

Getting	back	to	our	example,	with	the	get()	function,	we	requested
the	version.txt	file	from	the	localhost.	All	we	have	to	do	from	now	on

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14

is	wait	for	the	server	to	reply.	As	soon	as	the	server's	reply	is
finished,	the	downloadFinished()	slot	will	be	called	that	was	defined	by
the	preceding	connection	statement.	A	pointer	to	a	QNetworkReply
object	will	be	passed	as	the	argument	to	the	slot,	and	we	can	read
the	reply's	data	and	show	it	in	m_edit,	an	instance	of	QPlainTextEdit,	with
the	following:

void	FileDownload::downloadFinished(QNetworkReply	*reply)	{

				const	QByteArray	content	=	reply->readAll();

				m_edit->setPlainText(QString::fromUtf8(content));

				reply->deleteLater();

}

Since	QNetworkReply	inherits	QIODevice,	there	are	also	other	possibilities
to	read	the	content	of	the	reply.	For	example,	you	can	use	QDataStream
or	QTextStream	to	read	and	interpret	binary	or	textual	data,
respectively.	Here,	as	the	fourth	command,	QIODevice::readAll()	is	used
to	get	the	full	content	of	the	requested	file	in	a	QByteArray	object.	This
is	very	similar	to	reading	from	files,	which	was	shown	in	the
previous	chapter.	The	responsibility	for	the	transferred	pointer	to
the	corresponding	QNetworkReply	lies	with	us,	so	we	need	to	delete	it	at
the	end	of	the	slot.	However,	be	careful	and	do	not	call	delete	on	the
reply	directly.	Always	use	deleteLater(),	as	the	documentation
suggests!

In	the	previous	chapter,	we	warned	you	that	you	shouldn't	use	readAll()	to	read	large	files,
as	they	can't	fit	in	a	single	QByteArray.	The	same	holds	for	QNetworkReply.	If	the	server
decides	to	send	you	a	large	response	(for	example,	if	you	try	to	download	a	large	file),	the
first	portion	of	the	response	will	be	saved	to	a	buffer	inside	the	QNetworkReply	object,	and
then	the	download	will	throttle	down	until	you	read	some	data	from	the	buffer.	However,
you	can't	do	that	if	you	only	use	the	finished()	signal.	Instead,	you	need	to	use
the	QNetworkReply::readyRead()	signal	and	read	each	portion	of	the	data	in	order	to	free	the
buffer	and	allow	more	data	to	be	received.	We	will	show	how	to	do	this	later	in	this
chapter.

The	full	source	code	can	be	found	in	the	FileDownload	example
bundled	with	this	book.	If	you	start	the	small	demo	application	and
click	on	the	Load	File	button,	you	should	see	the	content	of	the
loaded	file:

Have	a	go	hero	–	Extending	the
basic	file	downloader
Of	course,	having	to	alter	the	source	code	in	order	to	download
another	file	is	far	from	an	ideal	approach,	so	try	to	extend	the	dialog
by	adding	a	line	edit	in	which	you	can	specify	the	URL	you	want	to
download.	Also,	you	can	offer	a	file	dialog	to	choose	the	location
where	the	downloaded	file	will	be	saved.	The	simplest	way	of	doing
that	is	to	use	the	QFileDialog::getSaveFileName()	static	function.

Single	network	manager	per
application
One	single	instance	of	QNetworkAccessManager	is	enough	for	an	entire
application.	For	example,	you	can	create	an	instance
of	QNetworkAccessManager	in	your	main	window	class	and	pass	a	pointer
to	it	to	all	the	other	places	where	it's	needed.	For	ease	of	use,	you
can	also	create	a	singleton	and	access	the	manager	through	that.

A	singleton	pattern	ensures	that	a	class	is	instantiated	only	once.	The	pattern	is	useful	for
accessing	application-wide	configurations	or—as	in	our	case—an	instance
of	QNetworkAccessManager.

A	simple	template-based	approach	to	create	a	singleton	will	look
like	this	(as	a	header	file):

template	<class	T>

class	Singleton

{

public:

				static	T&	instance()

				{

								static	T	static_instance;

								return	static_instance;

				}

private:

				Singleton();

				~Singleton();

				Singleton(const	Singleton	&);

				Singleton&	operator=(const	Singleton	&);

};

In	the	source	code,	you	will	include	that	header	file	and	acquire	a
singleton	of	a	class	called	MyClass	with	this:

MyClass	&singleton	=	Singleton<MyClass>::instance();

This	singleton	implementation	is	not	thread-safe,	meaning	that	attempting	to	access	the
instance	from	multiple	threads	simultaneously	will	result	in	undefined	behavior.	An
example	of	thread-safe	implementation	of	the	singleton	pattern	can	be	found
at	https://wiki.qt.io/Qt_thread-safe_singleton.

If	you	are	using	Qt	Quick—it	will	be	explained	in	Chapter	11,
Introduction	to	Qt	Quick—with	QQmlApplicationEngine,	you	can	directly
use	the	engine's	instance	of	QNetworkAccessManager:

QQmlApplicationEngine	engine;

QNetworkAccessManager	*network_manager	=

engine.networkAccessManager();

https://wiki.qt.io/Qt_thread-safe_singleton

Time	for	action	–	Displaying	a
proper	error	message
If	you	do	not	see	the	content	of	the	file,	something	went	wrong.	Just
as	in	real	life,	this	can	often	happen.	So,	we	need	to	ensure	that
there	is	a	good	error	handling	mechanism	in	such	cases	to	inform
the	user	about	what	is	going	on.	Fortunately,	QNetworkReply	offers
several	possibilities	to	do	this.

In	the	slot	called	downloadFinished(),	we	first	want	to	check	whether	an
error	occurred:

if	(reply->error()	!=	QNetworkReply::NoError)	{

				//	error	occurred

}

The	QNetworkReply::error()	function	returns	the	error	that	occurred
while	handling	the	request.	The	error	is	encoded	as	a	value	of	the
QNetworkReply::NetworkError	type.	The	most	common	errors	are	probably
these:

Error	
code

Meaning

	
QNetworkReply:

:ConnectionRef

usedError

	

	
The	program	was	not	able	to	connect	to	the	server	
at	all	(for	example,	if	no	server	was	running)
	

	
QNetworkReply:

:ContentNotFou

	
The	server	responded	with	HTTP	error	code	404,	
indicating	that	a	page	with	the	requested	URL	

ndError

	
could	not	be	found
	

	
QNetworkReply:

:ContentAccess

Denied

	

	
The	server	responded	with	HTTP	error	code	403,	
indicating	that	you	do	not	have	the	permission	to	
access	the	requested	file
	

	

There	are	more	than	30	possible	error	types,	and	you	can	look	them
up	in	the	documentation	of	the	QNetworkReply::NetworkError	enumeration.
However,	normally,	you	do	not	need	to	know	exactly	what	went
wrong.	You	only	need	to	know	whether	everything	worked	out
—QNetworkReply::NoError	would	be	the	return	value	in	this	case—or
whether	something	went	wrong.	To	provide	the	user	with	a
meaningful	error	description,	you	can	use	QIODevice::errorString().	The
text	is	already	set	up	with	the	corresponding	error	message,	and	we
only	have	to	display	it:

if	(reply->error())	{

				const	QString	error	=	reply->errorString();

				m_edit->setPlainText(error);

				return;

}

In	our	example,	assuming	that	we	made	an	error	in	the	URL	and
wrote	versions.txt	by	mistake,	the	application	will	look	like	this:

If	the	request	was	an	HTTP	request	and	the	status	code	is	of
interest,	it	can	be	retrieved	by	QNetworkReply::attribute():

int	statusCode	=

					reply-

>attribute(QNetworkRequest::HttpStatusCodeAttribute).toInt();

Since	it	returns	QVariant,	you	need	to	use	QVariant::toInt()	to	get	the
code	as	an	integer.	Besides	the	HTTP	status	code,	you	can	query	a
lot	of	other	information	through	attribute().	Take	a	look	at	the
description	of	the	QNetworkRequest::Attribute	enumeration	in	the
documentation.	There,	you	will	also	find
QNetworkRequest::HttpReasonPhraseAttribute,	which	holds	a	human-readable
reason	phrase	for	the	HTTP	status	code,	for	example,	"Not	Found"
if	an	HTTP	error	404	has	occurred.	The	value	of	this	attribute	is
used	to	set	the	error	text	for	QIODevice::errorString().	So,	you	can	either
use	the	default	error	description	provided	by	errorString()	or	compose
your	own	by	interpreting	the	reply's	attributes.

If	a	download	failed	and	you	want	to	resume	it,	or	if	you	only	want	to	download	a	specific
part	of	a	file,	you	can	use	the	Range	header.	However,	the	server	must	support	this.

In	the	following	example,	only	the	bytes	from	300	to	500	will	be
downloaded:

QNetworkRequest	request(url);

request.setRawHeader("Range",	"bytes=300-500");

QNetworkReply	*reply	=	m_network_manager->get(request);

If	you	want	to	simulate	sending	a	form	on	a	website,	you	will	usually	need	to	send	a	POST
request	instead	of	GET.	This	is	done	by	using	the	QNetworkAccessManager::post()	function

instead	of	the	get()	function	we	used.	You	will	also	need	to	specify	the	payload,	for
example,	using	the	QHttpMultiPart	class.

Downloading	files	over	FTP
Downloading	a	file	over	FTP	is	as	simple	as	downloading	files	over
HTTP.	If	it	is	an	anonymous	FTP	server	for	which	you	do	not	need
an	authentication,	just	use	the	URL	as	we	did	before.	Assuming	that
there	is	again	a	file	called	version.txt	on	the	FTP	server	on	the
localhost,	type	this:

m_network_manager->get(QNetworkRequest(

				QUrl("ftp://localhost/version.txt")));

That's	all;	everything	else	stays	the	same.	If	the	FTP	server	requires
an	authentication,	you'll	get	an	error;	consider	this	example:

Likewise,	setting	the	username	and	password	to	access	an	FTP
server	is	easy—either	write	it	in	the	URL,	or	use	the	setUserName()	and
setPassword()	functions	of	QUrl.	If	the	server	does	not	use	a	standard
port,	you	can	set	the	port	explicitly	with	QUrl::setPort().

To	upload	a	file	to	an	FTP	server,	use	QNetworkAccessManager::put(),	which	takes
QNetworkRequest	as	its	first	argument,	calling	a	URL	that	defines	the	name	of	the	new	file	on
the	server,	and	the	actual	data	as	its	second	argument,	which	should	be	uploaded.	For
small	uploads,	you	can	pass	the	content	as	QByteArray.	For	larger	content,	it's	better	to	use
a	pointer	to	QIODevice.	Ensure	that	the	device	is	open	and	stays	available	until	the	upload	is
complete.

Downloading	files	in	parallel
A	very	important	note	concerning	QNetworkAccessManager	is	the	fact	that
it	works	asynchronously.	This	means	that	you	can	post	a	network
request	without	blocking	the	main	event	loop,	and	this	is	what
keeps	the	GUI	responsive.	If	you	post	more	than	one	request,	they
are	put	in	the	manager's	queue.	Depending	on	the	protocol	used,
they	may	be	processed	in	parallel.	If	you	are	sending	HTTP
requests,	normally	up	to	six	requests	will	be	handled	at	a	time.	If
more	requests	are	queued,	they	will	be	automatically	processed
later.	This	will	not	block	the	application,	as	QNetworkAccessManager	uses
threads	internally.

There	is	really	no	need	to	encapsulate	QNetworkAccessManager	in	a	thread;	however,
unfortunately,	this	unnecessary	approach	is	frequently	recommended	all	over	the	internet.
Really,	don't	move	QNetworkAccessManager	to	a	thread	unless	you	know	exactly	what	you	are
doing.

If	you	send	multiple	requests,	the	slot	connected	to	the	manager's
finished()	signal	is	called	in	an	arbitrary	order,	depending	on	how
quickly	a	request	gets	a	reply	from	the	server.	This	is	why	you	need
to	know	to	which	request	a	reply	belongs.	This	is	one	reason	why
every	QNetworkReply	carries	its	related	QNetworkRequest.	It	can	be	accessed
through	QNetworkReply::request().

Even	if	the	determination	of	the	replies	and	their	purpose	may	work
for	a	small	application	in	a	single	slot,	it	will	quickly	get	large	and
confusing	if	you	send	a	lot	of	requests	with	different	purposes.	It
would	be	better	to	connect	requests	to	multiple	slots	that	are
specialized	for	a	given	task.	Fortunately,	this	can	be	achieved	very
easily.

Any	method	that	adds	a	request	to	QNetworkAccessManager	(such	as	get())
returns	a	pointer	to	QNetworkReply.	Using	this	pointer,	you	can	then
connect	the	reply's	signals	to	your	specific	slots.	For	example,	if	you

have	several	URLs,	and	you	want	to	save	all	linked	images	from
these	sites	to	your	hard	drive,	you	request	all	web	pages	via
QNetworkAccessManager::get()	and	connect	their	replies	to	a	slot	specialized
for	parsing	the	received	HTML.	If	links	to	the	images	are	found,	this
slot	will	request	them	again	with	get().	This	time,	however,	the
replies	to	these	requests	will	be	connected	to	a	second	slot,	which	is
designed	for	saving	the	images	to	the	disk.	Thus,	you	can	separate
the	two	tasks:	parsing	HTML	and	saving	data	to	a	local	drive.

The	most	important	signals	of	QNetworkReply	are	discussed	next.

The	finished	signal
The	finished()	signal	is	an	equivalent	of	the
QNetworkAccessManager::finished()	signal	that	we	used	earlier.	It	is
triggered	as	soon	as	a	reply	is	returned—successfully	or	not.	After
this	signal	is	emitted,	neither	the	reply's	data	nor	its	metadata	will
be	altered	any	more.	With	this	signal,	you	are	now	able	to	connect	a
reply	to	a	specific	slot.	This	way,	you	can	realize	the	scenario	on
saving	images	that	was	outlined	in	the	previous	section.

However,	one	problem	remains:	if	you	post	simultaneous	requests,
you	do	not
know	which	one	has	finished	and	thus	called	the	connected	slot.
Unlike	QNetworkAccessManager::finished(),	QNetworkReply::finished()	does	not
pass	a	pointer	to	QNetworkReply;	this	would	actually	be	a	pointer	to
itself	in	this	case.	We've	already	had	a	similar	problem	in	Chapter	3,
Qt	GUI	Programming,	so	let's	remember	how	we	can	deal	with	it.

A	quick	solution	to	solve	this	problem	is	to	use	sender().	It	returns	a
pointer	to	the	QObject	instance	that	has	called	the	slot.	Since	we	know
that	it	was	QNetworkReply,	we	can	write	the	following:

QNetworkReply	*reply	=	qobject_cast<QNetworkReply*>(sender());

if	(!reply)	{

				return;

}

In	this	code,	we	needed	to	cast	the	QObject	pointer	returned	by	sender()
to	a	pointer	of	the	QNetworkReply	type.

Whenever	you're	casting	classes	that	inherit	QObject,	use	qobject_cast.	Unlike	dynamic_cast,
it	does	not	use	RTTI	and	works	across	the	dynamic	library	boundaries.

Although	we	can	be	pretty	confident	that	the	cast	will	work,	do	not

forget	to	check	whether	the	pointer	is	valid.	If	it	is	a	null	pointer,
exit	the	slot.

Time	for	action	–	Writing	the
OOP	conform	code	using
QSignalMapper
A	more	elegant	way	that	does	not	rely	on	sender()	would	be	to	use
QSignalMapper	to	receive	the	reply	object	in	the	argument	of	the	slot.
First,	you	need	to	add	the	QSignalMapper	*m_imageFinishedMapper	private	field
to	your	class.	When	you	call	QNetworkAccessManager::get()	to	request	each
image,	set	up	the	mapper	as	follows:

for(const	QString&	url:	urls)	{

				QNetworkRequest	request(url);

				QNetworkReply	*reply	=	m_network_manager->get(request);

				connect(reply,	SIGNAL(finished()),

												m_imageFinishedMapper,	SLOT(map()));

				m_imageFinishedMapper->setMapping(reply,	reply);

}

In	a	prominent	place,	most	likely	the	constructor	of	the	class,
connect	the	mapper's	map()	signal	to	a	custom	slot.	Take	this	example
into	consideration:

connect(m_imageFinishedMapper,	SIGNAL(mapped(QObject*)),

								this,	SLOT(imageFinished(QObject*)));

Now	your	slot	receives	the	reply	object	as	the	argument:

void	Object::imageFinished(QObject	*replyObject)

{

				QNetworkReply	*reply	=	qobject_cast<QNetworkReply	*>(replyObject);

				//...

}

What	just	happened?
First,	we	posted	the	request	and	fetched	the	pointer	to	the
QNetworkReply	object.
Then,	we	connected	the	reply's	finished	signal	to	the	mapper's	slot
map().	Next,	we	called	the	setMapping()	method	of	the	mapper	to
indicate	that	the	sender	itself	should	be
sent	as	the	slot's	argument.	The	effect	is	very	similar	to	the	direct
use	of	the	QNetworkAccessManager::finished(QNetworkReply	*reply)	signal,	but
this	way,	we	can	use	multiple	slots	dedicated	to	different	purposes
(with	a	separate	mapper	corresponding	to	each	slot),	all	served	by	a
single	QNetworkAccessManager	instance.

QSignalMapper	also	allows	you	to	map	with	int	or	QString	as	an	identifier	instead	of	QObject
*,	as	used	in	the	preceding	code.	So,	you	can	rewrite	the	example	and	use	the	URL	to
identify	the	corresponding	request.

The	error	signal
Instead	of	dealing	with	errors	in	the	slot	connected	to	the	finished()
signal,	you	can	use	the	reply's	error()	signal,	which	passes	the	error
of	the	QNetworkReply::NetworkError	type	to	the	slot.	After	the	error()	signal
has	been	emitted,	the	finished()	signal	will,	most	likely,	also	be
emitted	shortly.

The	readyRead	signal
Until	now,	we	have	used	the	slot	connected	to	the	finished()	signal	to
get	the	reply's	content.	This	works	perfectly	if	you	are	deal	with
small	files.	However,	this	approach	is	unsuitable	when	dealing	with
large	files,	as	they	will	unnecessarily	bind	too	many	resources.	For
larger	files,	it	is	better	to	read	and	save	the	transferred	data	as	soon
as	it	is	available.	We	are	informed	by	QIODevice::readyRead()	whenever
new	data	is	available	to	be	read.	So,	for	large	files,	you	should	use
the	following	code:

QNetworkReply	*reply	=	m_network_manager->get(request);

connect(reply,	&QIODevice::readyRead,

								this,	&SomeClass::readContent);

m_file.open(QIODevice::WriteOnly);

This	will	help	you	connect	the	reply's	readyRead()	signal	to	a	slot,	set
up	QFile,	and	open	it.	In	the	connected	slot,	type	in	the	following
snippet:

QNetworkReply	*reply	=	/*	...	*/;

const	QByteArray	byteArray	=	reply->readAll();

m_file.write(byteArray);

m_file.flush();

Now,	you	can	fetch	the	content,	which	has	been	transferred	so	far,
and	save	it	to	the	(already	open)	file.	This	way,	the	resources	needed
are	minimized.	Don't	forget	to	close	the	file	after	the	finished()	signal
is	emitted.

In	this	context,	it	would	be	helpful	if	you	knew	upfront	the	size	of
the	file	you	want	to	download.	With	this	information,	we	can	check
upfront	whether	there	is	enough	space	left	on	the	disk.	We	can	use

QNetworkAccessManager::head()	for	this	purpose.	It	behaves	like	the	get()
function,	but	it	does	not	request	the	content	of	the	file.	Only	the
headers	are	transferred,	and	if	we	are	lucky,	the	server	sends	the
Content-Length	header,	which	holds	the	file	size	in	bytes.	To	get	that
information,	we	type	this:

int	length	=	reply-

>header(QNetworkRequest::ContentLengthHeader).toInt();

Time	for	action	–	Showing	the
download	progress
Especially	when	a	big	file	is	downloaded,	the	user	usually	wants	to
know	how	much	data	has	already	been	downloaded	and
approximately	how	long	it	will	take	for	the	download	to	finish.

In	order	to	achieve	this,	we	can	use	the	reply's	downloadProgress()
signal.	As	the	first	argument,	it	passes	the	information	on	how
many	bytes	have	already	been	received	and	as	the	second	argument,
how	many	bytes	there	are	in	total.	This	gives	us	the	possibility	to
indicate	the	progress	of	the	download	with	QProgressBar.	As	the	passed
arguments	are	of	the	qint64	type,	we	can't	use	them	directly	with
QProgressBar,	as	it	only	accepts	int.	So,	in	the	connected	slot,	we	can	do
the	following:

void	SomeClass::downloadProgress(qint64	bytesReceived,	qint64

bytesTotal)	{

				qreal	progress	=	(bytesTotal	<	1)	?	1.0

																			:	static_cast<qreal>(bytesReceived)	/	bytesTotal;

				progressBar->setValue(qRound(progress	*	progressBar->maximum()));

}

What	just	happened?
First,	we	calculate	the	percentage	of	the	download	progress.	The
calculated	progress	value	will	range	from	0	(0%)	to	1	(100%).	Then,
we	set	the	new	value	for	the	progress	bar	where	progressBar	is	the
pointer	to	this	bar.	However,	what	value	will	progressBar->maximum()	have
and	where	do	we	set	the	range	for	the	progress	bar?	What	is	nice	is
that	you	do	not	have	to	set	it	for	every	new	download.	It	is	only
done	once,	for	example,	in	the	constructor	of	the	class	containing
the	bar.	As	range	values,	we	would	recommend	this:

progressBar->setRange(0,	2048);

The	reason	is	that	if	you	take,	for	example,	a	range	of	0	to	100	and
the	progress	bar	is	500	pixels	wide,	the	bar	would	jump	5	pixels
forward	for	every	value	change.	This	will	look	ugly.	To	get	a	smooth
progression	where	the	bar	expands	by	1	pixel	at	a	time,	a	range	of	0
to	99.999.999	would	surely	work,	but	it	would	be	highly	inefficient.
This	is	because	the	current	value	of	the	bar	would	change	a	lot
without	any	graphical	depiction.	So,	the	best	value	for	the	range
would	be	0	to	the	actual	bar's	width	in	pixels.	Unfortunately,	the
width	of	the	bar	can	change	depending	on	the	actual	widget	width,
and	frequently	querying	the	actual	size	of	the	bar	every	time	the
value	changes	is	also	not	a	good	solution.	Why	2048,	then?	It's	just
a	nice	round	number	that	is	bigger	than	any	screen	resolution	we're
likely	to	get.	This	ensures	that	the	progress	bar	runs	smoothly,	even
if	it	is	fully	expanded.	If	you	are	targeting	smaller	devices,	choose	a
smaller,	more	appropriate	number.

To	be	able	to	calculate	the	time	remaining	for	the	download	to
finish,	you	have	to	start	a	timer.	In	this	case,	use	QElapsedTimer.	After
posting	the	request	with	QNetworkAccessManager::get(),	start	the	timer	by

calling	QElapsedTimer::start().	Assuming	that	the	timer	is	called	m_timer,
the	calculation	will	be	as	follows:

qreal	remaining	=	m_timer.elapsed()	*

																		(1.0	-	progress)	/	progress;

int	remainingSeconds	=	qRound(remaining	/	1000);

QElapsedTimer::elapsed()	returns	the	milliseconds	that	are	counted	from
the	moment	the	timer	is	started.	Assuming	that	the	download
progress	is	linear,	the	ratio	of	the	remaining	time	to	the	elapsed
time	equals	(1.0	-	progress)	/	progress.	For	example,	if	progress	is	0.25
(25%),	the	expected	remaining	time	will	be	three	times	bigger	than
the	elapsed	time:	(1.0	-	0.25)	/	0.25)	=	3.	If	you	divide	the	result	by
1,000	and	round	it	to	the	nearest	integer,	you'll	get	the	remaining
time	in	seconds.

QElapsedTimer	is	not	to	be	confused	with	QTimer.	QTimer	is	used	to	call	a	slot	after	a	certain
amount	of	time	has	passed.	QElapsedTimer	is	merely	a	convenience	class	that	is	able	to
remember	the	start	time	and	calculate	the	elapsed	time	by	subtracting	the	start	time	from
the	current	time.

Using	a	proxy
If	you	want	to	use	a	proxy,	you	first	have	to	set	up	QNetworkProxy.	You
can	define	the	type	of	proxy	with	setType().	As	arguments,	you	will
most	likely	want	to	pass	QNetworkProxy::Socks5Proxy	or
QNetworkProxy::HttpProxy.	Then,	set	up	the	hostname	with	setHostName(),	the
username	with	setUserName(),	and	the	password	with	setPassword().	The
last	two	properties	are,	of	course,	only	needed	if	the	proxy	requires
authentication.	Once	the	proxy	is	set	up,	you	can	set	it	to	the	access
manager	via	QNetworkAccessManager::setProxy().	Now,	all	new	requests	will
use	this	proxy.

Connecting	to	Google,
Facebook,	Twitter,	and	co.
Since	we	discussed	QNetworkAccessManager,	you	now	have	the	knowledge
you	need	to	integrate	Facebook,	Twitter,	or	similar	sites	into	your
application.	They	all	use	the	HTTPS	protocol	and	simple	requests	in
order	to	retrieve	data	from	them.	For	Facebook,	you	have	to	use	the
so-called	Graph	API.	It	describes	which	interfaces	are	available	and
what	options	they	offer.	If	you	want	to	search	for	users	who	are
called	Helena,	you	have	to	request	https://graph.facebook.com/search?
q=helena&type=user.	Of	course,	you	can	do	this	with	QNetworkManager.	You
will	find	more	information	about	the	possible	requests	to	Facebook
at	https://developers.facebook.com/docs/graph-api.

If	you	wish	to	display	tweets	in	your	game,	you	have	to	use	Twitter's
REST	or	Search	API.	Assuming	that	you	know	the	ID	of	a	tweet	you
would	like	to	display,	you	can	get	it	through
https://api.twitter.com/1.1/statuses/show.json?id=12345,	where	12345	is	the
actual	ID	for	the	tweet.	If	you	would	like	to	find	tweets	mentioning
#Helena,	you	would	write	https://api.twitter.com/1.1/search/tweets.json?
q=%23Helena.	You	can	find	more	information	about	the	parameters	and
the	other	possibilities	of	Twitter's	API	at
https://developer.twitter.com/en/docs.

Since	both	Facebook	and	Twitter	need	an	authentication	to	use
their	APIs,	we	will	take	a	look	at	Google	instead.	Let's	use	Google's
Distance	Matrix	API	in	order	to	get	information	about	how	long	it
would	take	for	us	to	get	from	one	city	to	another.	The	technical
documentation	for	the	API	we	will	use	can	be	found	at
https://developers.google.com/maps/documentation/distancematrix.

https://developers.facebook.com/docs/graph-api
https://developer.twitter.com/en/docs
https://developers.google.com/maps/documentation/distancematrix

Time	for	action	–	Using
Google's	Distance	Matrix	API
The	GUI	for	this	example	is	kept	simple—the	source	code	is
attached	with	the	book.	It	consists	of	two	line	edits	(ui->from	and	ui-
>to)	that	allow	you	to	enter	the	origin	and	destination	of	the	journey.
It	also	provides	you	with	a	combobox	(ui->vehicle)	that	allows	you	to
choose	a	mode	of	transportation—whether	you	want	to	drive	a	car,
ride	a	bicycle,	or	walk—a	push	button	(ui->search)	to	start	the	request,
and	a	text	edit,	or	(ui->result)	to	show	the	results.

It	looks	like	this:

MainWindow—a	subclass	of	QMainWindow—is	the	application's	main	class
that	holds	two	private	members:	m_network_manager,	which	is	a	pointer
to	QNetworkAccessManager,	and	m_reply,	which	is	a	pointer	to	QNetworkReply.

Time	for	action	–	Constructing
the	query
Whenever	the	button	is	pressed,	the	sendRequest()	slot	is	called:

void	MainWindow::sendRequest()

{

				if	(m_reply	!=	nullptr	&&	m_reply->isRunning())	{

								m_reply->abort();

				}

				ui->result->clear();

				//...

}

In	this	slot,	we	first	check	whether	there	is	an	old	request,	which
was	stored	in	m_reply,	and	whether	it	is	still	running.	If	that	is	true,	we
abort	the	old	request,	as	we	are	about	to	schedule	a	new	one.	Then,
we	also	wipe	out	the	result	of	the	last	request	by	calling
QPlainTextEdit::clear()	on	the	text	edit.

Next,	we	will	construct	the	URL	for	the	request.	We	can	do	this	by
composing	the	string	by	hand	where	we	add	the	query	parameters
to	the	base	URL	similar	to	the	following:

//	don't	do	this!

QString	url	=	baseUrl	+	"?origin="	+	ui->from->text()	+	"&...";

Besides	the	problem	that	this	quickly	becomes	hard	to	read	when
we	include	multiple	parameters,	it	is	also	rather	error-prone.	The
values	of	the	line	edits	have	to	be	encoded	to	fit	the	criteria	for	a
valid	URL.	For	every	user	value,	we,	therefore,	have	to	call
QUrl::toPercentEncoding()	explicitly.	A	much	better	approach,	which	is

easier	to	read	and	less	error-prone,	is	to	use	QUrlQuery.	It	circumvents
the	problem	that	may	result	when	you	forget	to	encode	the	data.	So,
we	do	this:

QUrlQuery	query;

query.addQueryItem(QStringLiteral("sensor"),

QStringLiteral("false"));

query.addQueryItem(QStringLiteral("language"),	QStringLiteral("en"));

query.addQueryItem(QStringLiteral("units"),

QStringLiteral("metric"));

query.addQueryItem(QStringLiteral("mode"),					ui->vehicle-

>currentText());

query.addQueryItem(QStringLiteral("origins"),		ui->from->text());

query.addQueryItem(QStringLiteral("destinations"),	ui->to->text());

The	usage	is	pretty	clear:	we	create	an	instance	and	then	add	the
query	parameters	with	addQueryItem().	The	first	argument	is	taken	as
the	key	and	the	second	as	the	value	resulting	in	a	string	such	as
"key=value".	The	value	will	be	automatically	encoded	when	we	use
QUrlQuery	in	conjunction	with	QUrl.	Other	benefits	of	using	QUrlQuery	are
that	we	can	check	whether	we	have	already	set	a	key	with
hasQueryItem(),	taking	the	key	as	an	argument,	or	removed	a	previously
set	key	by	calling	removeQueryItem().

Let's	review	which	parameters	we	have	set.	The	sensor	key	is	set	to
false	as	we	are	not	using	a	GPS	device	to	locate	our	position.	The
language	key	is	set	to	English,	and	for	units,	we	favor	metric	over
imperial.	Then,	the	search-related	parameters	are	set.	The	origins
key	holds	the	places	we	want	to	start	from.	As	its	value,	the	text	of
the	ui->from	line	edit	is	chosen.	If	you	want	to	query	multiple	starting
positions,	you	just	have	to	combine	them	using	|.	Equivalent	to	the
origins,	we	set	up	the	value	for	destinations.	Last,	we	pass	the	value
of	the	combo	box	to	mode,	which	defines	whether	we	want	to	go	by
a	car,	bicycle,	or	whether	we	want	to	walk.	Next,	we	execute	the
request:

QUrl	url(QStringLiteral(

					"https://maps.googleapis.com/maps/api/distancematrix/json"));

url.setQuery(query);

url.setQuery(query);

m_reply	=	m_network_manager->get(QNetworkRequest(url));

We	create	QUrl	that	contains	the	address	to	which	the	query	should
be	posted.	By	including	json	at	the	end,	we	define	that	the	server
should	transfer	its	reply	using	the	JSON	format.	Google	also
provides	the	option	for	us	to	get	the	result	as	XML.	To	achieve	this,
simply	replace	json	with	xml.	However,	since	the	APIs	of	Facebook
and	Twitter	return	JSON,	we	will	use	this	format.

Then,	we	set	the	previously	constructed	query	to	the	URL	by	calling
QUrl::setQuery().	This	automatically	encodes	the	values,	so	we	do	not
have	to	worry	about	that.	Last,	we	post	the	request	by	calling	the
get()	function	and	store	the	returned	QNetworkReply	in	m_reply.

Time	for	action	–	Parsing	the
server's	reply
In	the	constructor,	we	have	connected	the	manager's	finished()	signal
to	the	finished()	slot	of	the	MainWindow	class.	It	will	thus	be	called	after
the	request	has	been	posted:

void	MainWindow::finished(QNetworkReply	*reply)

{

				if	(m_reply	!=	reply)	{

								reply->deleteLater();

								return;

				}

				//...

}

First,	we	check	whether	the	reply	that	was	passed	is	the	one	that	we
have	requested	through	m_network_manager.	If	this	is	not	the	case,	we
delete	the	reply	and	exit	the	function.	This	can	happen	if	a	reply	was
aborted	by	the	sendRequest()	slot.	Since	we	are	now	sure	that	it	is	our
request,	we	set	m_reply	to	nullptr,	because	we	have	handled	it	and	do
not	need	this	information	any	more:

m_reply	=	nullptr;

if	(reply->error()	!=	QNetworkReply::NoError)	{

				ui->result->setPlainText(reply->errorString());

				reply->deleteLater();

				return;

}

Next,	we	check	whether	an	error	occurred,	and	if	it	did,	we	put	the
reply's	error	string	in	the	text	edit,	delete	the	reply,	and	exit	the
function.	After	this,	we	can	finally	start	decoding	the	server's

response:

const	QByteArray	content	=	reply->readAll();

const	QJsonDocument	doc	=	QJsonDocument::fromJson(content);

if	(!doc.isObject())	{

				ui->result->setPlainText(tr("Error	while	reading	the	JSON

file."));

				reply->deleteLater();

				return;

}

With	readAll(),	we	get	the	content	of	the	server's	reply.	Since	the
transferred	data	is	not	large,	we	do	not	need	to	use	partial	reading
with	readyRead().	The	content	is	then	converted	to	QJsonDocument	using
the	QJsonDocument::fromJson()	static	function,	which	takes	QByteArray	as	an
argument	and	parses	its	data.	If	the	document	is	not	an	object,	the
server's	reply	wasn't	valid,	as	the	API	call	should	respond	with	a
single	object.	In	this	case,	we	show	an	error	message	on	the	text
edit,	delete	the	reply,	and	exit	the	function.	Let's	look	at	the	next
part	of	the	code:

const	QJsonObject	obj	=	doc.object();

const	QJsonArray	origins	=	obj.value("origin_addresses").toArray();

const	QJsonArray	destinations	=

obj.value("destination_addresses").toArray();

Since	we	have	now	ensured	that	there	is	an	object,	we	store	it	in	obj.
Furthermore,	due	to	the	API,	we	also	know	that	the	object	holds	the
origin_addresses	and	destination_addresses	keys.	Both	values	are	arrays	that
hold	the	requested	origins	and	destinations.	From	this	point	on,	we
will	skip	any	tests	if	the	values	exist	and	are	valid	since	we	trust	the
API.	The	object	also	holds	a	key	called	status,	whose	value	can	be
used	to	check	whether	the	query	may	have	failed	and	if	yes,	why.
The	last	two	lines	of	the	source	code	store	the	origins	and
destinations	in	two	variables.	With	obj.value("origin_addresses"),	we	get
QJsonValue	that	holds	the	value	of	the	pair	specified	by	the
origin_addresses	key,	and	QJsonValue::toArray()	converts	this	value	to
QJsonArray.	The	returned	JSON	file	for	a	search	requesting	the

distance	from	Warsaw	or	Erlangen	to	Birmingham	will	look	like
this:

{

				"destination_addresses"	:	["Birmingham,	West	Midlands,	UK"],

				"origin_addresses"	:	["Warsaw,	Poland",	"Erlangen,	Germany"],

				"rows"	:	[...],

				"status"	:	"OK"

}

The	rows	key	holds	the	actual	results	as	an	array.	The	first	object	in
this	array	belongs	to	the	first	origin,	the	second	object	to	the	second
origin,	and	so	on.	Each	object	holds	a	key	named	elements,	whose
value	is	also	an	array	of	objects	that	belong	to	the	corresponding
destinations:

"rows"	:	[

				{

								"elements"	:	[{...},	{...}]

				},

				{

								"elements"	:	[{...},	{...}]

				}

],

Each	JSON	object	({...}	in	the	preceding	example)	for	an	origin-
destination	pair	consists	of	two	pairs	with	the	distance	and	duration
keys.	Both	values	of	these	keys	are	arrays	that	hold	the	text	and	value
keys,	where	text	is	a	human-readable	phrase	for	value.	The	object	for
the	Warsaw-Birmingham	search	looks	as	shown	in	the	following
snippet:

{

				"distance"	:	{

								"text"	:	"1,835	km",

								"value"	:	1834751

				},

				"duration"	:	{

								"text"	:	"16	hours	37	mins",

								"value"	:	59848

								"value"	:	59848

				},

				"status"	:	"OK"

}

As	you	can	see,	the	value	of	value	for	distance	is	the	distance
expressed	in	meters—since	we	have	used	units=metric	in	the	request—
and	the	value	of	text	is	value	transformed	into	kilometers	with	the
"km"	postfix.	The	same	applies	to	duration.	Here,	value	is	expressed
in	seconds,	and	text	is	value	converted	into	hours	and	minutes.

Now	that	we	know	how	the	returned	JSON	is	structured,	we	display
the	value	of	each	origin-destination	pair	in	the	text	edit.	Therefore,
we	loop	through	each	possible	pairing	using	the	two	QJsonArray.	We
need	the	indices	as	well	as	values,	so	we	use	the	classic	for	loop
instead	of	the	range-based	one:

QString	output;

for	(int	i	=	0;	i	<	origins.count();	++i)	{

				const	QString	origin	=	origins.at(i).toString();

				const	QJsonArray	row	=

obj.value("rows").toArray().at(i).toObject()

												.value("elements").toArray();

				for	(int	j	=	0;	j	<	destinations.count();	++j)	{

First,	we	create	an	output	string	variable	to	cache	the	constructed
text.	Before	starting	the	second	loop,	we	calculate	two	variables	that
will	be	the	same	for	all	destinations.	The	origin	variable	holds	the
text	representation	of	the	current	origin,	and	the	row	variable
contains	the	corresponding	row	of	the	table.	Whenever	we	try	to	get
an	item	out	of	a	QJsonArray	or	a	QJsonObject,	the	returned	value	will	have
the	QJsonValue	type,	so	each	time	we	do	that,	we	need	to	convert	it	to
an	array,	an	object,	or	a	string,	depending	on	what	we	expect	to	get
according	to	the	API.	When	we	calculate	the	row	variable,	starting	at
the	reply's	root	object,	we	fetch	the	value	of	the	rows	key	and	convert
it	to	an	array	(obj.value("rows").toArray()).	Then,	we	fetch	the	value	of
the	current	row	(.at(i)),	convert	it	to	an	object,	and	fetch	its	elements
key	(.toObject().value("elements")).	Since	this	value	is	also	an	array—the
columns	of	the	row—we	convert	it	to	an	array.

The	scope	inside	the	two	loops	will	be	reached	for	each
combination.	Think	of	the	transferred	result	as	a	table	where	the
origins	are	rows	and	the	destinations	are	columns:

output	+=	tr("From:	%1\n").arg(origin);

output	+=	tr("To:	%1\n").arg(destinations.at(j).toString());

First,	we	add	the	"From:"	string	and	the	current	origin	to	output.	The
same	is	done	for	the	destination,	which	results	in	the	following	as
the	value	for	output:

From:	Warsaw,	Poland

To:	Birmingham,	West	Midlands,	UK

Next,	we	will	read	the	duration	and	distance	from	the
corresponding	QJsonObject	from	where	we	call	data:

const	QJsonObject	data	=	row.at(j).toObject();

const	QString	status	=	data.value("status").toString();

In	this	code,	we	fetch	the	current	column	from	the	row	(at(j))	and
convert	it	to	an	object.	This	is	the	object	that	contains	the	distance
and	duration	for	an	origin-destination	pair	in	the	(i;
j)	cell.	Besides	distance	and	duration,	the	object	also	holds	a	key	called
status.	Its	value	indicates	whether	the	search	was	successful	(OK),
whether	the	origin	or	destination	could	not	be	found	(NOT_FOUND),	or
whether	the	search	could	not	find	a	route	between	the	origin	and
destination	(ZERO_RESULTS).	We	store	the	value	of	status	in	a	local
variable	that	is	also	named	status.

Next,	we	check	the	status	and	append	the	distance	and	the	duration
to	the	output:

if	(status	==	"OK")	{

				output	+=	tr("Distance:	%1\n").arg(

								data.value("distance").toObject().value("text").toString());

				output	+=	tr("Duration:	%1\n").arg(

				output	+=	tr("Duration:	%1\n").arg(

								data.value("duration").toObject().value("text").toString());

}	else	{	/*...*/	}

For	distance,	we	want	to	show	the	phrased	result.	Therefore,	we
first	get	the	JSON	value	of	the	distance	key	(data.value("distance")),
convert	it	to	an	object,	and	request	the	value	for	the	text	key
(toObject().value("text")).	Lastly,	we	convert	QJsonValue	to	QString	using
toString().	The	same	applies	for	duration.	Finally,	we	need	to	handle
the	errors	the	API	might	return:

}	else	if	(status	==	"NOT_FOUND")	{

				output	+=	tr("Origin	and/or	destination	of	this	"

																	"pairing	could	not	be	geocoded.\n");

}	else	if	(status	==	"ZERO_RESULTS")	{

				output	+=	tr("No	route	could	be	found.\n");

}	else	{

				output	+=	tr("Unknown	error.\n");

}

output	+=	QStringLiteral("=").repeated(35)	+	QStringLiteral("\n");

At	the	end	of	the	output	for	each	cell,	we	add	a	line	consisting	of	35
equals	signs	(QStringLiteral("=").repeated(35))	to	separate	the	result	from
the	other	cells.	Finally,	after	all	loops	finish,	we	put	the	text	into	the
text	edit	and	delete	the	reply	object:

ui->result->setPlainText(output);

reply->deleteLater();

The	actual	result	then	looks	as	follows:

Have	a	go	hero	–	Choosing
XML	as	the	reply's	format
To	hone	your	XML	skills,	you	can	use
https://maps.googleapis.com/maps/api/distancematrix/xml	as	the	URL	to	which
you	send	the	requests.	Then,	you	can	parse	the	XML	file,	as	we	did
with	JSON,	and	display	the	retrieved	data	likewise.

https://maps.googleapis.com/maps/api/distancematrix/xml

Controlling	the	connectivity
state
Before	trying	to	access	a	network	resource,	it's	useful	to	check
whether	you	have	an	active	connection	to	the	internet.	Qt	allows
you	to	check	whether	the	computer,	mobile	device,	or	tablet	is
online.	You	can	even	start	a	new	connection	if	the	operating	system
supports	it.

The	relevant	API	mainly	consists	of	four	classes.
QNetworkConfigurationManager	is	the	base	and	starting	point.	It	holds	all
network	configurations	available	on	the	system.	Furthermore,	it
provides	information	about	the	network	capabilities,	for	example,
whether	you	can	start	and	stop	interfaces.	The	network
configurations	found	by	it	are	stored	as	QNetworkConfiguration	classes.

QNetworkConfiguration	holds	all	information	about	an	access	point	but
not	about	a	network	interface,	as	an	interface	can	provide	multiple
access	points.	This	class	also	provides	only	the	information	about
network	configurations.	You	can't	configure	an	access	point	or	a
network	interface	through	QNetworkConfiguration.	The	network
configuration	is	up	to	the	operating	system	and
therefore	QNetworkConfiguration	is	a	read-only	class.	With
QNetworkConfiguration,	however,	you	can	determine	whether	the	type	of
connection	is	an	Ethernet,	WLAN,	or	4G	connection.	This	may
influence	what	kind	of	data	and,	more	importantly,	what	size	of
data	you	will	download.

With	QNetworkSession,	you	can	then	start	or	stop	system	network
interfaces,	which	are	defined	by	the	configurations.	This	way,	you
gain	control	over	an	access	point.	QNetworkSession	also	provides	session
management	that	is	useful	when	a	system's	access	point	is	used	by

more	than	one	application.	The	session	ensures	that	the	underlying
interface	only	gets	terminated	after	the	last	session	has	been	closed.
Lastly,	QNetworkInterface	provides	classic	information,	such	as	the
hardware	address	or	interface	name.

QNetworkConfigurationManage
r
QNetworkConfigurationManager	manages	all	network	configurations	that	are
available	on	a	system.	You	can	access	these	configurations	by
calling	allConfigurations().	Of	course,	you	have	to	create	an	instance	of
the	manager	first:

QNetworkConfigurationManager	manager;

QList<QNetworkConfiguration>	cfgs	=	manager.allConfigurations();

The	configurations	are	returned	as	a	list.	The	default	behavior	of
allConfigurations()	is	to	return	all	possible	configurations.	However,
you	can	also	retrieve	a	filtered	list.	If	you	pass
QNetworkConfiguration::Active	as	an	argument,	the	list	only	contains
configurations	that	have	at	least	one	active	session.	If	you	create	a
new	session	based	on	such	a	configuration,	it	will	be	active	and
connected.	By	passing	QNetworkConfiguration::Discovered	as	an	argument,
you	will	get	a	list	with	configurations	that	can	be	used	to
immediately	start	a	session.	Note,	however,	that	at	this	point,	you
cannot	be	sure	whether	the	underlying	interface	can	be	started.	The
last	important	argument	is	QNetworkConfiguration::Defined.	With	this
argument,	allConfigurations()	returns	a	list	of	configurations	that	are
known	to	the	system	but	are	not	usable	right	now.	This	may	be	a
previously	used	WLAN	hotspot,	which	is	currently	out	of	range.

You	will	be	notified	whenever	the	configurations	change.	If	a	new
configuration	becomes	available,	the	manager	emits	the
configurationAdded()	signal.	This	may	happen,	for	example,	if	mobile
data	transmission	becomes	available	or	if	the	user	turns	his/her
device's	WLAN	adapter	on.	If	a	configuration	is	removed,	for
example,	if	the	WLAN	adapter	is	turned	off,	configurationRemoved()	is

emitted.	Lastly,	when	a	configuration	is	changed,	you	will	be
notified	by	the	configurationChanged()	signal.	All	three	signals	pass	a
constant	reference	to	the	configuration	about	what	was	added,
removed,	or	changed.	The	configuration	passed	by	the
configurationRemoved()	signal	is,	of	course,	invalid.	It	still	contains	the
name	and	identifier	of	the	removed	configuration.

To	find	out	whether	any	network	interface	of	the	system	is	active,
call	isOnline().	If	you	want	to	be	notified	about	a	mode	change,	track
the	onlineStateChanged()	signal.

Since	a	WLAN	scan	takes	a	certain	amount	of	time,	allConfigurations()	may	not	return	all
the	available	configurations.	To	ensure	that	configurations	are	completely	populated,	call
updateConfigurations()	first.	Due	to	the	long	time	it	may	take	to	gather	all	the	information
about	the	system's	network	configurations,	this	call	is	asynchronous.	Wait	for	the
updateCompleted()	signal	and	only	then,	call	allConfigurations().

QNetworkConfigurationManager	also	informs	you	about	the	Bearer	API's
capabilities.	The	capabilities()	function	returns	a	flag	of	the
QNetworkConfigurationManager::Capabilities	type	and	describes	the	available
possibilities	that	are	platform-specific.	The	values	you	may	be	most
interested	in	are	as	follows:

Val
ue

Meaning

	
CanSta

rtAndS

topInt

erface

s

	

	
This	means	that	you	can	start	and	stop	access	points.
	

	
Applic

ationL

evelRo

aming

	

	
This	indicates	that	the	system	will	inform	you	if	a	more	
suitable	access	point	is	available,	and	that	you	can	actively	
change	the	access	point	if	you	think	there	is	a	better	one	
available.
	

	 	

	
DataSt

atisti

cs

	

	
With	this	capability,	QNetworkSession	contains	information	
about	the	transmitted	and	received	data.
	

QNetworkConfiguration
QNetworkConfiguration	holds,	as	mentioned	earlier,	information	about	an
access	point.	With	name(),	you	get	the	user-visible	name	for	a
configuration,	and	with	identifier(),	you	get	a	unique,	system-specific
identifier.	If	you	develop	games	for	mobile	devices,	it	may	be	of
advantage	to	you	to	know	which	type	of	connection	is	being	used.
This	might	influence	the	data	that	you	request;	for	example,	the
quality	and	thus,	the	size	of	a	video.	With	bearerType(),	the	type	of
bearer	used	by	a	configuration	is	returned.	The	returned
enumeration	values	are	rather	self-explanatory:	BearerEthernet,
BearerWLAN,	Bearer2G,	BearerCDMA2000,	BearerWCDMA,	BearerHSPA,	BearerBluetooth,
BearerWiMAX,	and	so	on.	You	can	look	up	the	full-value	list	in	the
documentation	for	QNetworkConfiguration::BearerType.

With	purpose(),	you	get	the	purpose	of	the	configuration,	for	example,
whether	it	is	suitable	to	access	a	private	network
(QNetworkConfiguration::PrivatePurpose)	or	to	access	a	public	network
(QNetworkConfiguration::PublicPurpose).	The	state	of	the	configuration,	if	it
is	defined,	discovered	or	active,	as	previously	described,	can	be
accessed	through	state().

QNetworkSession
To	start	a	network	interface	or	to	tell	the	system	to	keep	an	interface
connected	for	as	long	as	you	need	it,	you	have	to	start	a	session:

QNetworkConfigurationManager	manager;

QNetworkConfiguration	cfg	=	manager.defaultConfiguration();

QNetworkSession	*session	=	new	QNetworkSession(cfg,	this);

session->open();

A	session	is	based	on	a	configuration.	When	there	is	more	than	one
session	and	you	are	not	sure	which	one	to	use,	use
QNetworkConfigurationManager::defaultConfiguration().	It	returns	the	system's
default	configuration.	Based	on	this,	you	can	create	an	instance	of
QNetworkSession.	The	first	argument,	the	configuration,	is	required.	The
second	is	optional	but	is	recommended	since	it	sets	a	parent,	and
we	do	not	have	to	take	care	of	the	deletion.	You	may	want	to	check
whether	the	configuration	is	valid	(QNetworkConfiguration::isValid())	first.

Calling	open()	will	start	the	session	and	connect	the	interface	if
needed	and	supported.	Since	open()	can	take	some	time,	the	call	is
asynchronous.	So,	either	listen	to	the	opened()	signal,	which	is
emitted	as	soon	as	the	session	is	open,	or	to	the	error()	signal	if	an
error	happened.	The	error	information	is	represented	using	the
QNetworkSession::SessionError	type.	Alternatively,	instead	of	checking	the
opened()	signal,	you	can	also	watch	the	stateChanged()	signal.	The
possible	states	for	a	session	can	be	Invalid,	NotAvailable,	Connecting,
Connected,	Closing,	Disconnected,	and	Roaming.

If	you	want	to	open	the	session	in	a	synchronous	way,	call
waitForOpened()	right	after	calling	open().	It	will	block	the	event	loop	until
the	session	is	open.	This	function	will	return	true	if	successful	and
false	otherwise.	To	limit	the	waiting	time,	you	can	define	a	time-out.

Just	pass	the	milliseconds	that	you	are	willing	to	wait	as	an
argument	to	waitForOpened().	To	check	whether	a	session	is	open,	use
isOpen().

To	close	the	session,	call	close().	If	no	session	is	left	on	the	interface,
it	will	be	shot	down.	To	force	an	interface	to	disconnect,	call	stop().
This	call	will	invalidate	all	the	sessions	that	are	based	on	that
interface.

You	may	receive	the	preferredConfigurationChanged()	signal,	which
indicates	that	the	preferred	configuration,	that	is,	for	example,	the
preferred	access	point,	has	changed.	This	may	be	the	case	if	a
WLAN	network	is	now	in	range	and	you	do	not	have	to	use	2G
anymore.	The	new	configuration	is	passed	as	the	first	argument,
and	the	second	one	indicates	whether	changing	the	new	access
point	will	also	alter	the	IP	address.	Besides	checking	for	the	signal,
you	can	also	inquire	whether	roaming	is	available	for	a
configuration	by	calling	QNetworkConfiguration::isRoamingAvailable().	If
roaming	is	available,	you	have	to	decide	to	either	reject	the	offer	by
calling	ignore()	or	to	accept	it	by	calling	migrate().	If	you	accept
roaming,	it	will	emit	newConfigurationActivated()	when	the	session	is
roamed.	After	you	have	checked	the	new	connection,	you	can	either
accept	the	new	access	point	or	reject	it.	The	latter	means	that	you
will	return	to	the	previous	access	point.	If	you	accept	the	new	access
point,	the	previous	one	will	be	terminated.

QNetworkInterface
To	get	the	interface	that	is	used	by	a	session,	call
QNetworkSession::interface().	It	will	return	the	QNetworkInterface	object,
which	describes	the	interface.	With	hardwareAddress(),	you	get	the	low-
level	hardware	address	of	the	interface	that	is	normally	the	MAC
address.	The	name	of	the	interface	can	be	obtained	by	name(),	which
is	a	string	such	as	"eth0"	or	"wlan0".	A	list	of	IP	addresses	as	well	as
their	netmasks	and	broadcast	addresses	registered	with	the
interface	is	returned	by	addressEntries().	Furthermore,	information
about	whether	the	interface	is	a	loopback	or	whether	it	supports
multicasting	can	be	queried	with	flags().	The	returned	bitmask	is	a
combination	of	these	values:	IsUp,	IsRunning,	CanBroadcast,	IsLoopBack,
IsPointToPoint,	and	CanMulticast.

Communicating	between
games
After	having	discussed	Qt's	high-level	network	classes	such	as
QNetworkAccessManager	and	QNetworkConfigurationManager,	we	will	now	take	a
look	at	lower-level	network	classes	and	see	how	Qt	supports	you
when	it	comes	to	implementing	TCP	or	UDP	servers	and	clients.
This	becomes	relevant	when	you	plan	to	extend	your	game	by
including	a	multiplayer	mode.	For	such	a	task,	Qt	offers	QTcpSocket,
QUdpSocket,	and	QTcpServer.

Time	for	action	–	Realizing	a
simple	chat	program
To	get	familiar	with	QTcpServer	and	QTcpSocket,	let's	develop	a	simple
chat	program.	This	example	will	teach	you	the	basic	knowledge	of
network	handling	in	Qt	so	that	you	can	use	this	skill	later	to	connect
two	or	more	copies	of	a	game.	At	the	end	of	this	exercise,	we	want	to
see	something	like	this:

On	both	the	left-hand	side	and	the	right-hand	side	of	the	preceding
screenshot,	you	can	see	a	client,	whereas	the	server	is	in	the	middle.
We'll	start	by	taking	a	closer	look	at	the	server.

The	server	–	QTcpServer
As	a	protocol	for	communication,	we	will	use	Transmission
Control	Protocol	(TCP).	You	may	know	this	network	protocol
from	the	two	most	popular	internet	protocols:	HTTP	and	FTP.	Both
use	TCP	for	their	communication	and	so	do	the	globally	used
protocols	for	email	traffic:	SMTP,	POP3,	and	IMAP.	The	main
advantage	of	TCP	is	its	reliability	and	connection-based
architecture.	Data	transferred	by	TCP	is	guaranteed	to	be	complete,
ordered,	and	without	any	duplicates.	The	protocol	is	furthermore
stream	oriented,	which	allows	us	to	use	QDataStream	or	QTextStream.	A
downside	to	TCP	is	its	speed.	This	is	because	the	missing	data	has
to	be	retransmitted	until	the	receiver	fully	receives	it.	By	default,
this	causes	a	retransmission	of	all	the	data	that	was	transmitted
after	the	missing	part.	So,	you	should	only	choose	TCP	as	a	protocol
if	speed	is	not	your	top	priority,	but	rather	the	completeness	and
correctness	of	the	transmitted	data.	This	applies	if	you	send	unique
and	nonrepetitive	data.

Time	for	action	–	Setting	up	the
server
A	look	at	the	server's	GUI	shows	us	that	it	principally	consists	of
QPlainTextEdit	(ui->log)	that	is	used	to	display	system	messages	and	a
button	(ui->disconnectClients),	which	allows	us	to	disconnect	all	the
currently	connected	clients.	On	the	top,	next	to	the	button,	the
server's	address	and	port	are	displayed	(ui->address	and	ui->port).	After
setting	up	the	user	interface	in	the	constructor	of	the	server's	class
TcpServer,	we	initiate	the	internally	used	QTcpServer,	which	is	stored	in
the	m_server	private	member	variable:

if	(!m_server->listen(QHostAddress::LocalHost,	52693))	{

				ui->log->setPlainText(tr("Failure	while	starting	server:	%1")

																										.arg(m_server->errorString()));

				return;

}

connect(m_server,	&QTcpServer::newConnection,

								this,	&TcpServer::newConnection);

What	just	happened?
With	QTcpServer::listen(),	we	defined	that	the	server	should	listen	to
the	localhost	and	the	port	52693	for	new	incoming	connections.	The
value	used	here,	QHostAddress::LocalHost	of	the	QHostAddress::SpecialAddress
enumeration,	will	resolve	to	127.0.0.1.	Instead,	if	you	pass
QHostAddress::Any,	the	server	will	listen	to	all	IPv4	interfaces	as	well	as
to	IPv6	interfaces.	If	you	only	want	to	listen	to	a	specific	address,
just	pass	this	address	as	QHostAddress:

m_server->listen(QHostAddress("127.0.0.1"),	0);

This	will	behave	like	the	one	in	the	preceding	code,	only	in	that	the
server	will	now	listen	to	a	port	that	will	be	chosen	automatically.	On
success,	listen()	will	return	true.	So,	if	something	goes	wrong	in	the
example,	it	will	show	an	error	message	on	the	text	edit	and	exit	the
function.	To	compose	the	error	message,	we	are	using
QTcpServer::errorString(),	which	holds	a	human-readable	error	phrase.

To	handle	the	error	in	your	game's	code,	the	error	string	is	not
suitable.	In	any	case	where	you	need	to	know	the	exact	error,	use
QTcpServer::serverError(),	which	returns	the	enumeration	value	of
QAbstractSocket::SocketError.	Based	on	this,	you	know	exactly	what	went
wrong,	for	example,	QAbstractSocket::HostNotFoundError.	If	listen()	was
successful,	we	connect	the	server's	newConnection()	signal	to	the	class's
newConnection()	slot.	The	signal	will	be	emitted	every	time	a	new
connection	is	available.	Lastly,	we	show	the	server's	address	and
port	number	that	can	be	accessed	through	serverAddress()	and
serverPort():

ui->address->setText(m_server->serverAddress().toString());

ui->port->setText(QString::number(m_server->serverPort()));

This	information	is	required	by	the	clients	so	that	they	are	able	to
connect	to	the	server.

Time	for	action	–	Reacting	on	a
new	pending	connection
As	soon	as	a	client	tries	to	connect	to	the	server,	the	newConnection()
slot	will	be	called:

void	TcpServer::newConnection()

{

				while	(m_server->hasPendingConnections())	{

								QTcpSocket	*socket	=	m_server->nextPendingConnection();

								m_clients	<<	socket;

								ui->disconnectClients->setEnabled(true);

								connect(socket,	&QTcpSocket::disconnected,

																this,	&TcpServer::removeConnection);

								connect(socket,	&QTcpSocket::readyRead,

																this,	&TcpServer::readyRead);

								ui->log->appendPlainText(tr("*	New	connection:	%1,	port	%2\n")

																																	.arg(socket-

>peerAddress().toString())

																																	.arg(socket->peerPort()));

				}

}

What	just	happened?
Since	more	than	one	connection	may	be	pending,	we	use
hasPendingConnections()	to	determine	whether	there	is	at	least	one	more
pending	connection.	Each	one	is	then	handled	in	the	iteration	of	the
while	loop.	To	get	a	pending	connection	of	the	QTcpSocket	type,	we	call
nextPendingConnection()	and	add	this	connection	to	a	private	vector
called	m_clients,	which	holds	all	active	connections.	In	the	next	line,
as	there	is	now	at	least	one	connection,	we	enable	the	button	that
allows	all	connections	to	be	closed.	The	slot	connected	to	the
button's	click()	signal	will	call	QTcpSocket::close()	on	each	single
connection.	When	a	connection	is	closed,	its	socket	emits	a
disconnected()	signal.	We	connect	this	signal	to	our	removeConnection()
slot.	With	the	last	connection,	we	react	to	the	socket's	readyRead()
signal,	which	indicates	that	new	data	is	available.	In	such	a
situation,	our	readyRead()	slot	is	called.	Lastly,	we	print	a	system
message	that	a	new	connection	has	been	established.	The	address
and	port	of	the	connecting	client	and	peer	can	be	retrieved	by	the
socket's	peerAddress()	and	peerPort()	functions.

If	a	new	connection	can't	be	accepted,	the	acceptError()	signal	is	emitted	instead	of
newConnection().	It	passes	the	reason	for	the	failure	of	the	QAbstractSocket::SocketError	type
as	an	argument.	If	you	want	to	temporarily	decline	new	connections,	call	pauseAccepting()
on	QTcpServer.	To	resume	accepting	new	connections,	call	resumeAccepting().

Time	for	action	–	Forwarding	a
new	message
When	a	connected	client	sends	a	new	chat	message,	the	underlying
socket—since	it	inherits	QIODevice—emits	readyRead(),	and	thus,	our
readyRead()	slot	will	be	called.

Before	we	take	a	look	at	this	slot,	there	is	something	important	that
you	need	to	keep	in	mind.	Even	though	TCP	is	ordered	and	without
any	duplicates,	this	does	not	mean	that	all	the	data	is	delivered	in
one	big	chunk.	So,	before	processing	the	received	data,	we	need	to
ensure	that	we	get	the	entire	message.	Unfortunately,	there	is
neither	an	easy	way	to	detect	whether	all	data	was	transmitted	nor	a
globally	usable	method	for	such	a	task.	Therefore,	it	is	up	to	you	to
solve	this	problem,	as	it	depends	on	the	use	case.	Two	common
solutions,	however,	are	to	either	send	magic	tokens	to	indicate	the
start	and	end	of	a	message,	for	example,	single	characters	or	XML
tags,	or	you	can	send	the	size	of	the	message	upfront.

The	second	solution	is	shown	in	the	Qt	documentation	where	the
length	is	put	in	a	quint16	in	front	of	the	message.	We,	on	the	other
hand,	will	look	at	an	approach	that	uses	a	simple	magic	token	to
handle	the	messages	correctly.	As	a	delimiter,	we	use	the	"End	of
Transmission	Block"	character—ASCII	code	23—to	indicate	the	end
of	a	message.	We	also	choose	UTF-8	as	the	encoding	of	transmitted
messages	to	ensure	that	clients	with	different	locales	can
communicate	with	each	other.

Since	the	processing	of	received	data	is	quite	complex,	we	will	go
through	the	code	step	by	step	this	time:

void	TcpServer::readyRead()

{

{

				QTcpSocket	*socket	=	qobject_cast<QTcpSocket*>(sender());

				if	(!socket)	{

								return;

				}

				//...

}

To	determine	which	socket	called	the	slot,	we	use	sender().	If	the	cast
to	QTcpSocket	is	unsuccessful,	we	exit	the	slot.

Note	that	sender()	is	used	for	simplicity.	If	you	write	real-life	code,	it	is	better	to	use
QSignalMapper.

Next,	we	read	the	transferred—potentially	fragmentary—message
with	readAll():

QByteArray	&buffer	=	m_receivedData[socket];

buffer.append(socket->readAll());

Here,	QHash<QTcpSocket*,	QByteArray>	m_receivedData	is	a	private	class
member	where	we	store	the	previously	received	data	for	each
connection.	When	the	first	chunk	of	data	is	received	from	a	client,
m_receivedData[socket]	will	automatically	insert	an	empty	QByteArray	into
the	hash	and	return	a	reference	to	it.	On	subsequent	calls,	it	will
return	a	reference	to	the	same	array.	We	use	append()	to	append	the
newly	received	data	to	the	end	of	the	array.	Finally,	we	need	to
identify	the	messages	that	were	completely	received	by	now,	if	there
are	any	such	messages:

while(true)	{

				int	endIndex	=	buffer.indexOf(23);

				if	(endIndex	<	0)	{

								break;

				}

				QString	message	=	QString::fromUtf8(buffer.left(endIndex));

				buffer.remove(0,	endIndex	+	1);

				newMessage(socket,	message);

}

On	each	iteration	of	the	loop,	we	try	to	find	the	first	separator
character.	If	we	didn't	find	one	(endIndex	<	0),	we	exit	the	loop,	and
leave	the	remaining	partial	message	in	m_receivedData.	If	we	found	a
separator,	we	take	the	first	message's	data	using	the	left(endIndex)
function	that	returns	the	leftmost	endIndex	bytes	from	the	array.	To
remove	the	first	message	from	buffer,	we	use	the	remove()	function	that
will	remove	the	specified	number	of	bytes,	shifting	the	remaining
bytes	to	the	left.	We	want	to	remove	endIndex	+	1	bytes	(the	message
itself	and	the	separator	after	it).	Following	our	transmission
protocol,	we	interpret	the	data	as	UTF-8	and	call	our	newMessage()
function	that	will	handle	the	received	message.

In	the	newMessage()	function,	we	append	the	new	message	to	the	server
log	and	send	it	to	all	clients:

void	TcpServer::newMessage(QTcpSocket	*sender,	const	QString	&message)

{

				ui->log->appendPlainText(tr("Sending	message:

%1\n").arg(message));

				QByteArray	messageArray	=	message.toUtf8();

				messageArray.append(23);

				for(QTcpSocket	*socket:	m_clients)	{

								if	(socket->state()	==	QAbstractSocket::ConnectedState)	{

												socket->write(messageArray);

								}

				}

				Q_UNUSED(sender)

}

In	this	function,	we	encode	the	message	according	to	our
transmission	protocol.	First,	we	use	toUtf8()	to	convert	QString	to
QByteArray	in	UTF-8	encoding.	Next,	we	append	the	separator
character.	Finally,	we	iterate	over	the	list	of	clients,	check	whether
they	are	still	connected,	and	send	the	encoded	message	to	them.
Since	the	socket	inherits	QIODevice,	you	can	use	most	of	the	functions
that	you	know	from	QFile.	The	current	behavior	of	our	server	is	very
simple,	so	we	have	no	use	for	the	sender	argument,	so	we	add
the	Q_UNUSED	macro	to	suppress	the	unused	argument	warning.

Have	a	go	hero	–	Using
QSignalMapper
As	discussed	earlier,	using	sender()	is	a	convenient,	but	not	an	object-
oriented,	approach.	Thus,	try	to	use	QSignalMapper	instead	to	determine
which	socket	called	the	slot.	To	achieve	this,	you	have	to	connect	the
socket's	readyRead()	signal	to	a	mapper	and	the	slot	directly.	All	the
signal-mapper-related	code	will	go	into	the	newConnection()	slot.

The	same	applies	to	the	connection	to	the	removeConnection()	slot.	Let's
take	a	look	at	it	next.

Time	for	action	–	Detecting	a
disconnect
When	a	client	terminates	the	connection,	we	have	to	delete	the
socket	from	the	local	m_clients	list.	The	socket's	disconnected()	signal	is
already	connected	to	the	removeConnection()	slot,	so	we	just	need	to
implement	it	as	follows:

void	TcpServer::removeConnection()

{

				QTcpSocket	*socket	=	qobject_cast<QTcpSocket*>(sender());

				if	(!socket)	{

								return;

				}

				ui->log->appendPlainText(tr("*	Connection	removed:	%1,	port	%2\n")

																													.arg(socket->peerAddress().toString())

																													.arg(socket->peerPort()));

				m_clients.removeOne(socket);

				m_receivedData.remove(socket);

				socket->deleteLater();

				ui->disconnectClients->setEnabled(!m_clients.isEmpty());

}

What	just	happened?
After	getting	the	socket	that	emitted	the	call	through	sender(),	we
post	the	information	that	a	socket	is	being	removed.	Then,	we
remove	the	socket	from	m_clients,	remove	the	associated	buffer	from
m_receivedData	and	call	deleteLater()	on	it.	Do	not	use	delete.	Lastly,	if	no
client	is	left,	the	disconnect	button	is	disabled.

The	server	is	ready.	Now	let's	take	a	look	at	the	client.

The	client
The	GUI	of	the	client	(TcpClient)	is	pretty	simple.	It	has	three	input
fields	to	define	the	server's	address	(ui->address),	the	server's	port	(ui-
>port),	and	a	username	(ui->user).	Of	course,	there	is	also	a	button	to
connect	to	(ui->connect)	and	disconnect	from	(ui->disconnect)	the	server.
Finally,	the	GUI	has	a	text	edit	that	holds	the	received	messages	(ui-
>chat)	and	a	line	edit	(ui->text)	to	send	messages.

Time	for	action	–	Setting	up	the
client
After	providing	the	server's	address	and	port	and	choosing	a
username,	the	user	can	connect	to	the	server:

void	TcpClient::on_connect_clicked()

{

				//...

				if	(m_socket->state()	!=	QAbstractSocket::ConnectedState)	{

								ui->chat->appendPlainText(tr("==	Connecting..."));

								m_socket->connectToHost(ui->address->text(),	ui->port-

>value());

								//...

				}

}

What	just	happened?
The	m_socket	private	member	variable	holds	an	instance	of	QTcpSocket.	If
this	socket	is	already	connected,	nothing	happens.	Otherwise,	the
socket	is	connected	to	the	given	address	and	port	by	calling
connectToHost().	Besides	the	obligatory	server	address	and	port
number,	you	can	pass	a	third	argument	to	define	the	mode	in	which
the	socket	will	be	opened.	For	possible	values,	you	can	use	OpenMode
just	like	we	did	for	QIODevice.

Since	this	call	is	asynchronous,	we	print	a	notification	to	the	chat	so
that	the	user	is	informed	that	the	application	is	currently	trying	to
connect	to	the	server.	When	the	connection	is	established,	the
socket	sends	the	connected()	signal	that	prints	"Connected	to	server"
on	the	chat	to	indicate	that	we	have	connected	to	a	slot.	Besides	the
messages	in	the	chat,	we	also	updated	the	GUI	by,	for	example,
disabling	the	connect	button,	but	this	is	all	basic	stuff.	You	won't
have	any	trouble	understanding	this	if	you	have	had	a	look	at	the
sources.	So,	these	details	are	left	out	here.

Of	course,	something	could	go	wrong	when	trying	to	connect	to	a
server,	but	luckily,	we	are	informed	about	a	failure	as	well	through
the	error()	signal,	passing	a	description	of	error	in	the	form	of
QAbstractSocket::SocketError.	The	most	frequent	errors	will	probably	be
QAbstractSocket::ConnectionRefusedError	if	the	peer	refused	the	connection
or	QAbstractSocket::HostNotFoundError	if	the	host	address	could	not	be
found.	If	the	connection,	however,	was	successfully	established,	it
should	be	closed	later	on.	You	can	either	call	abort()	to	immediately
close	the	socket,	whereas	disconnectFromHost()	will	wait	until	all	pending
data	has	been	written.

Time	for	action	–	Receiving
text	messages
In	the	constructor,	we	have	connected	the	socket's	readyRead()	signal
to	a	local	slot.	So,	whenever	the	server	sends	a	message	through
QTcpSocket::write(),	we	read	the	data	and	decode	it:

m_receivedData.append(m_socket->readAll());

while(true)	{

				int	endIndex	=	m_receivedData.indexOf(23);

				if	(endIndex	<	0)	{

								break;

				}

				QString	message	=

QString::fromUtf8(m_receivedData.left(endIndex));

				m_receivedData.remove(0,	endIndex	+	1);

				newMessage(message);

}

This	code	is	very	similar	to	the	readyRead()	slot	of	the	server.	It's	even
simpler	because	we	only	have	one	socket	and	one	data	buffer,	so
m_receivedData	is	a	single	QByteArray.	The	newMessage()	implementation	in
the	client	is	also	much	simpler	than	in	the	server:

void	TcpClient::newMessage(const	QString	&message)

{

				ui->chat->appendPlainText(message);

}

Here,	we	just	need	to	display	the	received	message	to	the	user.

Time	for	action	–	Sending	text
messages
What	is	left	now	is	to	describe	how	to	send	a	chat	message.	On
hitting	return	button	inside	the	line	edit,	a	local	slot	will	be	called
that	checks	whether	there	is	actual	text	to	send	and	whether	m_socket
is	still	connected.	If	everything	is	ready,	we	construct	a	message
that	contains	the	self-given	username,	a	colon,	and	the	text	of	the
line	edit:

QString	message	=	QStringLiteral("%1:	%2")

																		.arg(m_user).arg(ui->text->text());

Then,	we	encode	and	send	the	message,	just	like	we	did	on	the
server	side:

QByteArray	messageArray	=	message.toUtf8();

messageArray.append(23);

m_socket->write(messageArray);

That's	all.	It's	like	writing	and	reading	from	a	file.	For	the	complete
example,	take	a	look	at	the	sources	bundled	with	this	book	and	run
the	server	and	several	clients.

You	can	see	that	the	server	and	client	share	a	significant	amount	of	code.	In	a	real	project,
you	definitely	want	to	avoid	such	duplication.	You	can	move	all	repeating	code	to	a
common	library	used	by	both	server	or	client.	Alternatively,	you	can	implement	server	and
client	in	a	single	project	and	enable	the	needed	functionality	using	command-line
arguments	or	conditional	compilation.

Have	a	go	hero	–	Extending	the
chat	server	and	client
This	example	has	shown	us	how	to	send	a	simple	text.	If	you	now	go
on	and	define	a	schema	for	how	the	communication	should	work,
you	can	use	it	as	a	base	for	more	complex	communication.	For
instance,	if	you	want	to	enable	the	client	to	receive	a	list	of	all	other
clients	(and	their	usernames),	you	need	to	define	that	the	server	will
return	such	a	list	if	it	gets	a	special	message	from	a	client.	You	can
use	special	text	commands	such	as	/allClients,	or	you	can	implement
a	more	complex	message	structure	using	QDataStream	or	JSON
serialization.	Therefore,	you	have	to	parse	all	messages	received	by
the	server	before	forwarding	them	to	all	the	connected	clients.	Go
ahead	and	try	to	implement	such	a	requirement	yourself.

By	now,	it	is	possible	that	multiple	users	have	chosen	the	same
username.	With	the	new	functionality	of	getting	a	user	list,	you	can
prevent	this	from	happening.	Therefore,	you	have	to	send	the
username	to	the	server	that	keeps	track	of	them.	In	the	current
implementation,	nothing	stops	the	client	from	sending	messages
under	a	different	username	each	time.	You	can	make	the	server
handle	usernames	instead	of	trusting	the	client's	each	message.

Synchronous	network
operations
The	example	we	explained	uses	a	nonblocking,	asynchronous
approach.	For	example,	after	asynchronous	calls	such	as
connectToHost(),	we	do	not	block	the	thread	until	we	get	a	result,	but
instead,	we	connect	to	the	socket's	signals	to	proceed.	On	the
Internet	as	well	as	Qt's	documentation,	on	the	other	hand,	you	will
find	dozens	of	examples	explaining	the	blocking	and	the
synchronous	approaches.	You	will	easily	spot	them	by	their	use	of
waitFor...()	functions.	These	functions	block	the	current	thread	until
a	function	such	as	connectToHost()	has	a	result—the	time	connected()	or
error()	will	be	emitted.	The	corresponding	blocking	function	to
connectToHost()	is	waitForConnected().	The	other	blocking	functions	that
can	be	used	are	waitForReadyRead(),	which	waits	until	new	data	is
available	on	a	socket	for	reading;	waitForBytesWritten(),	which	waits
until	the	data	has	been	written	to	the	socket;	and	waitForDisconnected(),
which	waits	until	the	connection	has	been	closed.

Look	out!	Even	if	Qt	offers	these	waitFor...()	functions,	do	not	use
them!	The	synchronous	approach	is	not	the	smartest	one,	since	it
will	freeze	your	game's	GUI.	A	frozen	GUI	is	the	worst	thing	that
can	happen	in	your	game,	and	it	will	annoy	every	user.	So,	when
working	inside	the	GUI	thread,	you	are	better	to	react	to	the
QIODevice::readyRead(),	QIODevice::bytesWritten(),	QAbstractSocket::connected(),
and	QAbstractSocket::disconnected()	signals.

QAbstractSocket	is	the	base	class	of	QTcpSocket	as	well	as	of	QUdpSocket.

Following	the	asynchronous	approach	shown,	the	application	will
only	become	unresponsive	while	your	own	slots	are	being	executed.
If	your	slots	contain	more	heavy	computations,	you	will	need	to

move	them	to	an	extra	thread.	Then,	the	GUI	thread	will	only	get
signals,	passing	the	new	messages,	and	to	send,	it	will	simply	pass
the	required	data	to	the	worker	thread.	This	way,	you	will	get	a
super	fluent	velvet	GUI.

Using	UDP
In	contrast	to	TCP,	UDP	is	unreliable	and	connectionless.	Neither
the	order	of	packets	nor	their	delivery	is	guaranteed.	These
limitations,	however,	allow	UDP	to	be	very	fast.	So,	if	you	have
frequent	data,	which	does	not	necessarily	need	to	be	received	by	the
peer,	use	UDP.	This	data	could,	for	example,	be	real-time	positions
of	a	player	that	get	updated	frequently	or	live	video/audio
streaming.	Since	QUdpSocket	is	mostly	the	same	as	QTcpSocket—both
inherit	QAbstractSocket—there	is	not	much	to	explain.	The	main
difference	between	them	is	that	TCP	is	stream-oriented,	whereas
UDP	is	datagram-oriented.	This	means	that	the	data	is	sent	in	small
packages,	containing	among	the	actual	content,	the	sender's	as	well
as	the	receiver's	IP	address	and	port	number.

Unlike	QTcpSocket	and	QTcpServer,	UDP	does	not	need	a	separate	server
class	because	it	is	connectionless.	A	single	QUdpSocket	can	be	used	as	a
server.	In	this	case,	you	have	to	use	QAbstractSocket::bind()	instead	of
QTcpServer::listen().	Like	listen(),	bind()	takes	the	addresses	and	ports
that	are	allowed	to	send	datagrams	as	arguments.	Note	that	TCP
ports	and	UDP	ports	are	completely	unrelated	to	each	other.

Whenever	a	new	package	arrives,	the	QIODevice::readyRead()	signal	is
emitted.	To	read	the	data,	use	the	receiveDatagram()	or	readDatagram()
function.	The	receiveDatagram()	function	accepts	an	optional	maxSize
argument	that	allows	you	to	limit	the	size	of	the	received	data.	This
function	returns	a	QNetworkDatagram	object	that	contains	the	datagram
and	has	a	number	of	methods	to	get	the	data.	The	most	useful	of
them	are	data(),	which	returns	the	payload	as	a	QByteArray	as	well	as
senderAddress()	and	senderPort()	that	allow	you	to	identify	the	sender.

The	readDatagram()	function	is	a	more	low-level	function	that	takes	four
parameters.	The	first	one	of	the	char*	type	is	used	to	write	the	data

in,	the	second	specifies	the	amount	of	bytes	to	be	written,	and	the
last	two	parameters	of	the	QHostAddress*	and	quint16*	types	are	used	to
store	the	sender's	IP	address	and	port	number.	This	function	is	less
convenient,	but	you	can	use	it	more	efficiently	than	receiveDatagram(),
because	it's	possible	to	use	the	same	data	buffer	for	all	datagrams
instead	of	allocating	a	new	one	for	each	datagram.

QUdpSocket	also	provides	the	overloaded	writeDatagram()	function	for
sending	the	data.	One	of	the	overloads	simply	accepts	a
QNetworkDatagram	object.	You	can	also	supply	the	data	in	the	form	of
QByteArray	or	a	char*	buffer	with	a	size,	but	in	these	cases,	you	also
need	to	specify	the	recipient's	address	and	port	number	as	separate
arguments.

Time	for	action	–	Sending	a
text	via	UDP
As	an	example,	let's	assume	that	we	have	two	sockets	of	the	QUdpSocket
type.	We	will	call	the	first	one	socketA	and	the	other	socketB.	Both	are
bound	to	the	localhost,	socketA	to	the	52000	port	and	socketB	to	the	52001
port.	So,	if	we	want	to	send	the	string	Hello!	from	socketA	to	socketB,	we
have	to	write	in	the	application	that	is	holding	socketA:

socketA->writeDatagram(QByteArray("Hello!"),

																							QHostAddress("127.0.0.1"),	52001);

The	class	that	holds	socketB	must	have	the	socket's	readyRead()	signal
connected	to	a	slot.	This	slot	will	then	be	called	because	of	our
writeDatagram()	call,	assuming	that	the	datagram	is	not	lost!	In	the	slot,
we	read	the	datagram	and	the	sender's	address	and	port	number
with:

while	(socketB->hasPendingDatagrams())	{

				QNetworkDatagram	datagram	=	socketB->receiveDatagram();

				qDebug()	<<	"received	data:"	<<	datagram.data();

				qDebug()	<<	"from:"	<<	datagram.senderAddress()

													<<	datagram.senderPort();

}

As	long	as	there	are	pending	datagrams—this	is	checked	by
hasPendingDatagrams()—we	read	them	using	the	high-level	QNetworkDatagram
API.	After	the	datagram	was	received,	we	use	the	getter	functions	to
read	the	data	and	identify	the	sender.

Have	a	go	hero	–	Connecting
players	of	the	Benjamin	game
With	this	introductory	knowledge,	you	can	go	ahead	and	try	some
stuff	by	yourself.	For	example,	you	can	take	the	game	Benjamin	the
elephant	and	send	Benjamin's	current	position	from	one	client	to
another.	This	way,	you	can	either	clone	the	screen	from	one	client	to
the	other,	or	both	clients	can	play	the	game	and,	additionally,	can
see	where	the	elephant	of	the	other	player	currently	is.	For	such	a
task,	you	would	use	UDP,	as	it	is	important	that	the	position	is
updated	very	fast	while	it	isn't	a	disaster	when	one	position	gets
lost.

Keep	in	mind	that	we	only	scratched	the	surface	of	networking	due	to	its	complexity.
Covering	it	fully	would	have	exceeded	this	beginner's	guide.	For	a	real	game,	which	uses	a
network,	you	should	learn	more	about	Qt's	possibilities	for	establishing	a	secure	connection
via	SSL	or	some	other	mechanism.

Pop	quiz
Q1.	Which	class	can	you	use	to	read	the	data	received	over	the
network?

1.	 QNetworkReply

2.	 QNetworkRequest

3.	 QNetworkAccessManager

Q2.	What	should	you	usually	do	with	the	QNetworkReply	*reply	object	in
the	finished()	signal	handler?

1.	 Delete	it	using	delete	reply

2.	 Delete	it	using	reply->deleteLater()

3.	 Don't	delete	it

Q3.	How	to	ensure	that	your	application	won't	freeze	because	of
processing	an	HTTP	request?

1.	 Use	waitForConnected()	or	waitForReadyRead()	functions

2.	 Use	readyRead()	or	finished()	signals

3.	 Move	QNetworkAccessManager	to	a	separate	thread

Q4.	Which	class	can	you	use	to	create	a	UDP	server?

1.	 QTcpServer

2.	 QUdpServer

3.	 QUdpSocket

Summary
In	the	first	part	of	this	chapter,	you	familiarized	yourself	with
QNetworkAccessManager.	This	class	is	at	the	heart	of	your	code	whenever
you	want	to	download	or	upload	files	to	the	internet.	After	having
gone	through	the	different	signals	that	you	can	use	to	fetch	errors,
to	get	notified	about	new	data	or	to	show	the	progress,	you	should
now	know	everything	you	need	on	that	topic.

The	example	about	the	Distance	Matrix	API	depended	on	your
knowledge	of	QNetworkAccessManager,	and	it	shows	you	a	real-life
application	case	for	it.	Dealing	with	JSON	as	the	server's	reply
format	was	a	summary	of	Chapter	4,	Qt	Core	Essentials,	but	it	was
highly	needed	since	Facebook	and	Twitter	only	use	JSON	to	format
their	network	replies.

In	the	last	section,	you	learned	how	to	set	up	your	own	TCP	server
and	clients.	This	enables	you	to	connect	different	instances	of	a
game	to	provide	the	multiplayer	functionality.	Alternatively,	you
were	taught	how	to	use	UDP.

You	are	now	familiar	with	Qt	widgets,	the	Graphics	View
framework,	the	core	Qt	classes,	and	the	networking	API.	This
knowledge	will	already	allow	you	to	implement	games	with	rich	and
advanced	functionality.	The	only	large	and	significant	part	of	Qt	we
will	explore	is	Qt	Quick.	However,	before	we	get	to	that,	let's
consolidate	our	knowledge	of	what	we	already	know	and	investigate
some	advanced	topics.

Now	we	are	returning	to	the	world	of	widgets.	In	Chapter	3,	Qt	GUI
Programming,	we	only	used	the	widget	classes	provided	by	Qt.	In
the	next	chapter,	you	will	learn	to	create	your	own	widgets	and
integrate	them	into	your	forms.

Custom	Widgets
We	have	so	far	been	using	only	ready-made	widgets	for	the	user
interface,	which	resulted	in	the	crude	approach	of	using	buttons	for
a	tic-tac-toe	game.	In	this	chapter,	you	will	learn	about	much	of
what	Qt	has	to	offer	with	regard	to	custom	widgets.	This	will	let	you
implement	your	own	painting	and	event	handling,	incorporating
content	that	is	entirely	customized.

The	main	topics	covered	in	this	chapter	are	as	follows:

Working	with	QPainter

Creating	custom	widgets

Image	handling

Implementing	a	chess	game

Raster	and	vector	graphics
When	it	comes	to	graphics,	Qt	splits	this	domain	into	two	separate
parts.	One	of	them	is	raster	graphics	(used	by	widgets	and	the
Graphics	View,	for	example).	This	part	focuses	on	using	high-level
operations	(such	as	drawing	lines	or	filling	rectangles)	to
manipulate	colors	of	a	grid	of	points	that	can	be	visualized	on
different	devices,	such	as	images,	printers,	or	the	display	of	your
computer	device.	The	other	is	vector	graphics,	which	involves
manipulating	vertices,	triangles,	and	textures.	This	is	tailored	for
maximum	speed	of	processing	and	display,	using	hardware
acceleration	provided	by	modern	graphics	cards.

Qt	abstracts	graphics	using	the	concept	of	a	surface	(represented	by
the	QSurface	class)	that	it	draws	on.	The	type	of	the	surface
determines	which	drawing	operations	can	be	performed	on	the
surface:	surfaces	that	support	software	rendering	and	raster
graphics	have	the	RasterSurface	type,	and	surfaces	that	support	the
OpenGL	interface	have	the	OpenGLSurface	type.	In	this	chapter,	you	will
deepen	your	knowledge	of	Qt's	raster	painting	system.	We	will	come
back	to	the	topic	of	OpenGL	in	the	next	chapter.

QSurface	objects	can	have	other	types,	but	they	are	needed	less	often.	RasterGLSurface	is
intended	for	internal	Qt	use.	OpenVGSurface	supports	OpenVG	(a	hardware	accelerated	2D
vector	graphics	API)	and	is	useful	on	embedded	devices	that	support	OpenVG	but	lack
OpenGL	support.	Qt	5.10	introduces	VulkanSurface,	which	supports	Vulkan	graphics	API.

Raster	painting
When	we	talk	about	GUI	frameworks,	raster	painting	is	usually
associated	with	drawing	on	widgets.	However,	since	Qt	is
something	more	than	a	GUI	toolkit,	the	scope	of	raster	painting	that
it	offers	is	much	broader.

In	general,	Qt's	drawing	architecture	consists	of	three	parts.	The
most	important	part	is	the	device	the	drawing	takes	place	on,
represented	by	the	QPaintDevice	class.	Qt	provides	a	number	of	paint
device	subclasses,	such	as	QWidget	or	QImage	and	QPrinter	or	QPdfWriter.	You
can	see	that	the	approach	for	drawing	on	a	widget	and	printing	on	a
printer	is	quite	the	same.	The	difference	is	in	the	second	component
of	the	architecture—the	paint	engine	(QPaintEngine).	The	engine	is
responsible	for	performing	the	actual	paint	operations	on	a
particular	paint	device.	Different	paint	engines	are	used	to	draw	on
images	and	to	print	on	printers.	This	is	completely	hidden	from
you,	as	a	developer,	so	you	really	don't	need	to	worry	about	it.

For	you,	the	most	important	piece	is	the	third	component—QPainter—
which	is	an	adapter	for	the	whole	painting	framework.	It	contains	a
set	of	high-level	operations	that	can	be	invoked	on	the	paint	device.
Behind	the	scenes,	the	whole	work	is	delegated	to	an	appropriate
paint	engine.	While	talking	about	painting,	we	will	be	focusing
solely	on	the	painter	object,	as	any	painting	code	can	be	invoked	on
any	of	the	target	devices	only	by	using	a	painter	initialized	on	a
different	paint	device.	This	effectively	makes	painting	in	Qt	device
agnostic,	as	in	the	following	example:

void	doSomePainting(QPainter	*painter)	{

				painter->drawLine(QPoint(0,0),	QPoint(100,	40));

}

The	same	code	can	be	executed	on	a	painter	working	on	any
possible	QPaintDevice	class,	be	it	a	widget,	an	image,	or	an	OpenGL
context	(through	the	use	of	QOpenGLPaintDevice).	We've	already	seen
QPainter	in	action	in	Chapter	4,	Custom	2D	Graphics	with	Graphics
View,	when	we	created	a	custom	graphics	item.	Now,	let's	learn
more	about	this	important	class.

The	QPainter	class	has	a	rich	API.	The	most	important	methods	in	this
class	can	be	divided	into	three	groups:

Setters	and	getters	for	attributes	of	the	painter

Methods,	with	names	starting	with	draw	and	fill,	that

perform	drawing	operations	on	the	device

Methods	that	allow	manipulating	the	coordinate	system	of

the	painter

Painter	attributes
Let's	start	with	the	attributes.	The	three	most	important	ones	are
the	pen,	brush,	and	font.	The	pen	holds	properties	of	the	outline
drawn	by	the	painter,	and	the	brush	determines	how	it	will	fill
shapes.	We've	already	described	pens	and	brushes	in	Chapter
4,	Custom	2D	Graphics	with	Graphics	View,	so	you	should	already
understand	how	to	work	with	them.

The	font	attribute	is	an	instance	of	the	QFont	class.	It	contains	a	large
number	of	methods	for	controlling	font	parameters	such	as	font
family,	style	(italic	or	oblique),	font	weight,	and	font	size	(either	in
points	or	device-dependent	pixels).	All	the	parameters	are	self-
explanatory,	so	we	will	not	discuss	them	here	in	detail.	It	is
important	to	note	that	QFont	can	use	any	font	installed	on	the	system.
In	case	more	control	over	fonts	is	required	or	a	font	that	is	not
installed	in	the	system	needs	to	be	used,	you	can	take	advantage	of
the	QFontDatabase	class.	It	provides	information	about	the	available
fonts	(such	as	whether	a	particular	font	is	scalable	or	bitmap	or
what	writing	systems	it	supports)	and	allows	adding	new	fonts	into
the	registry	by	loading	their	definitions	directly	from	files.

An	important	class,	when	it	comes	to	fonts,	is	the	QFontMetrics	class.	It
allows	calculating	how	much	space	is	needed	to	paint	particular	text
using	a	font	or	calculates	text	eliding.	The	most	common	use	case	is
to	check	how	much	space	to	allocate	for	a	particular	user-visible
string;	consider	this	example:

QFontMetrics	fm	=	painter.fontMetrics();

QRect	rect	=	fm.boundingRect("Game	Programming	using	Qt");

This	is	especially	useful	when	trying	to	determine	sizeHint	for	a

widget.

Coordinate	systems
The	next	important	aspect	of	the	painter	is	its	coordinate	system.
The	painter	in	fact	has	two	coordinate	systems.	One	is	its	own
logical	coordinate	system	that	operates	on	real	numbers,	and	the
other	is	the	physical	coordinate	system	of	the	device	the	painter
operates	on.	Each	operation	on	the	logical	coordinate	system	is
mapped	to	physical	coordinates	in	the	device	and	applied	there.
Let's	start	with	explaining	the	logical	coordinate	system	first,	and
then	we'll	see	how	this	relates	to	physical	coordinates.

The	painter	represents	an	infinite	cartesian	canvas,	with	the
horizontal	axis	pointing	right	and	the	vertical	axis	pointing	down	by
default.	The	system	can	be	modified	by	applying	affine
transformations	to	it—translating,	rotating,	scaling,	and	shearing.
This	way,	you	can	draw	an	analog	clock	face	that	marks	each	hour
with	a	line	by	executing	a	loop	that	rotates	the	coordinate	system	by
30	degrees	for	each	hour	and	draws	a	line	that	is	vertical	in	the
newly-obtained	coordinate	system.	Another	example	is	when	you
wish	to	draw	a	simple	plot	with	an	x	axis	going	right	and	a	y	axis
going	up.	To	obtain	the	proper	coordinate	system,	you	would	scale
the	coordinate	system	by	−1	in	the	vertical	direction,	effectively
reversing	the	direction	of	the	vertical	axis.

What	we	described	here	modifies	the	world	transformation	matrix
for	the	painter	represented	by	an	instance	of	the	QTransform	class.	You
can	always	query	the	current	state	of	the	matrix	by	calling	transform()
on	the	painter,	and	you	can	set	a	new	matrix	by	calling	setTransform().
QTransform	has	methods	such	as	scale(),	rotate(),	and	translate()	that
modify	the	matrix,	but	QPainter	has	equivalent	methods	for
manipulating	the	world	matrix	directly.	In	most	cases,	using	these
would	be	preferable.

Each	painting	operation	is	expressed	in	logical	coordinates,	goes
through	the	world	transformation	matrix,	and	reaches	the	second
stage	of	coordinate	manipulation,	which	is	the	view	matrix.	The
painter	has	the	concept	of	viewport()	and	window()	rectangles.	The
viewport	rectangle	represents	the	physical	coordinates	of	an	arbitrary
rectangle,	while	the	window	rectangle	expresses	the	same	rectangle	but
in	logical	coordinates.	Mapping	one	to	another	gives	a
transformation	that	needs	to	be	applied	to	each	drawn	primitive	to
calculate	the	area	of	the	physical	device	that	is	to	be	painted.

By	default,	the	two	rectangles	are	identical	to	the	rectangle	of	the
underlying	device	(thus,	no	window–viewport	mapping	is	done).	Such
transformation	is	useful	if	you	wish	to	perform	painting	operations
using	measurement	units	other	than	the	pixels	of	the	target	device.
For	example,	if	you	want	to	express	coordinates	using	percentages
of	the	width	and	height	of	the	target	device,	you	would	set	both	the
window	width	and	height	to	100.	Then,	to	draw	a	line	starting	at	20%
of	the	width	and	10%	of	the	height	and	ending	at	70%	of	the	width
and	30%	of	the	height,	you	would	tell	the	painter	to	draw	the	line
between	(20,	10)	and	(70,	30).	If	you	wanted	those	percentages	to
apply	not	to	the	whole	area	of	an	image	but	to	its	left	half,	you
would	set	the	viewport	rectangle	only	to	the	left	half	of	the	image.

Setting	the	window	and	viewport	rectangles	only	defines	coordinate	mapping;	it	does	not
prevent	drawing	operations	from	painting	outside	the	viewport	rectangle.	If	you	want	such
behavior,	you	have	to	enable	clipping	in	the	painter	and	define	the	clipping	region	or
path.

Drawing	operations
Once	you	have	the	painter	properly	set,	you	can	start	issuing
painting	operations.	QPainter	has	a	rich	set	of	operations	for	drawing
different	kinds	of	primitives.	All	of	these	operations	have	the	draw
prefix	in	their	names,	followed	by	the	name	of	the	primitive	that	is
to	be	drawn.	Thus,	operations	such	as	drawLine,	drawRoundedRect,	and
drawText	are	available	with	a	number	of	overloads	that	usually	allow
us	to	express	coordinates	using	different	data	types.	These	may	be
pure	values	(either	integer	or	real),	Qt's	classes,	such	as	QPoint	and
QRect,	or	their	floating	point	equivalents—QPointF	and	QRectF.	Each
operation	is	performed	using	current	painter	settings	(font,	pen,
and	brush).

Refer	to	the	documentation	of	the	QPainter	class	for	the	list	of	all	drawing	operations.

Before	you	start	drawing,	you	have	to	tell	the	painter	which	device
you	wish	to	draw	on.	This	is	done	using	the	begin()	and	end()
methods.	The	former	accepts	a	pointer	to	a	QPaintDevice	instance	and
initializes	the	drawing	infrastructure,	and	the	latter	marks	the
drawing	as	complete.	Usually,	we	don't	have	to	use	these	methods
directly,	as	the	constructor	of	QPainter	calls	begin()	for	us,	and	the
destructor	invokes	end().

Thus,	the	typical	workflow	is	to	instantiate	a	painter	object,	pass	it
to	the	device,	then	do	the	drawing	by	calling	the	set	and	draw
methods,	and	finally	let	the	painter	be	destroyed	by	going	out	of
scope,	as	follows:

{

				QPainter	painter(this);	//	paint	on	the	current	object

				QPen	pen(Qt::red);

				pen.setWidth(2);

				painter.setPen(pen);

				painter.setPen(pen);

				painter.setBrush(Qt::yellow);

				painter.drawRect(0,	0,	100,	50);

}

We	will	cover	more	methods	from	the	draw	family	in	the	following
sections	of	this	chapter.

Creating	a	custom	widget
It	is	time	to	actually	get	something	onto	the	screen	by	painting	on	a
widget.	A	widget	is	repainted	as	a	result	of	receiving	a	paint	event,
which	is	handled	by	reimplementing	the	paintEvent()	virtual
method.	This	method	accepts	a	pointer	to	the	event	object	of
the	QPaintEvent	type	that	contains	various	bits	of	information	about
the	repaint	request.	Remember	that	you	can	only	paint	on	the
widget	from	within	that	widget's	paintEvent()	call.

Time	for	action	–	Custom-
painted	widgets
Let's	immediately	put	our	new	skills	in	to	practice!	Start	by	creating
a	new	Qt	Widgets	Application	in	Qt	Creator,	choosing	QWidget	as	the
base	class,	and	ensuring	that	the	Generate	Form	box	is	unchecked.
The	name	of	our	widget	class	will	be	Widget.

Switch	to	the	header	file	for	the	newly	created	class,	add	a	protected
section	to	the	class,	and	type	void	paintEvent	in	that	section.	Then,
press	Ctrl	+	Space	on	your	keyboard	and	Creator	will	suggest	the
parameters	for	the	method.	You	should	end	up	with	the	following
code:

protected:

				void	paintEvent(QPaintEvent	*);

Creator	will	leave	the	cursor	positioned	right	before	the	semicolon.
Pressing	Alt	+	Enter	will	open	the	refactoring	menu,	letting	you	add
the	definition	in	the	implementation	file.	The	standard	code	for	a
paint	event	is	one	that	instantiates	a	painter	on	the	widget,	as
shown:

void	Widget::paintEvent(QPaintEvent	*)

{

				QPainter	painter(this);

}

If	you	run	this	code,	the	widget	will	remain	blank.	Now	we	can	start
adding	the	actual	painting	code	there:

void	Widget::paintEvent(QPaintEvent	*)

void	Widget::paintEvent(QPaintEvent	*)

{

				QPainter	painter(this);

				QPen	pen(Qt::black);

				pen.setWidth(4);

				painter.setPen(pen);

				QRect	r	=	rect().adjusted(10,	10,	-10,	-10);

				painter.drawRoundedRect(r,	20,	10);

}

Build	and	run	the	code,	and	you'll	obtain	the	following	output:

What	just	happened?
First,	we	set	a	four	pixels	wide	black	pen	for	the	painter.	Then,	we
called	rect()	to	retrieve	the	geometry	rectangle	of	the	widget.	By
calling	adjusted(),	we	receive	a	new	rectangle	with	its	coordinates	(in
the	left,	top,	right,	and	bottom	order)	modified	by	the	given
arguments,	effectively	giving	us	a	rectangle	with	a	10	pixel	margin
on	each	side.

Qt	usually	offers	two	methods	that	allow	us	to	work	with	modified	data.	Calling	adjusted()
returns	a	new	object	with	its	attributes	modified,	while	if	we	had	called	adjust(),	the
modification	would	have	been	done	in	place.	Pay	special	attention	to	which	method	you	use
to	avoid	unexpected	results.	It's	best	to	always	check	the	return	value	for	a	method—
whether	it	returns	a	copy	or	void.

Finally,	we	call	drawRoundedRect(),	which	paints	a	rectangle	with	its
corners	rounded	by	the	number	of	pixels	(in	the	x,	y	order)	given	as
the	second	and	third	argument.	If	you	look	closely,	you	will	note
that	the	rectangle	has	nasty	jagged	rounded	parts.	This	is	caused	by
the	effect	of	aliasing,	where	a	logical	line	is	approximated	using	the
limited	resolution	of	the	screen;	due	to	this,	a	pixel	is	either	fully
drawn	or	not	drawn	at	all.	As	we	learned	in	Chapter	4,	Custom	2D
Graphics	with	Graphics	View,	Qt	offers	a	mechanism	called	anti-
aliasing	to	counter	this	effect	using	intermediate	pixel	colors	where
appropriate.	You	can	enable	this	mechanism	by	setting	a	proper
render	hint	on	the	painter	before	you	draw	the	rounded	rectangle,
as	shown:

void	Widget::paintEvent(QPaintEvent	*)

{

				QPainter	painter(this);

				painter.setRenderHint(QPainter::Antialiasing,	true);

				//	...

}	

Now	you'll	get	the	following	output:

Of	course,	this	has	a	negative	impact	on	performance,	so	use	anti-
aliasing	only	where	the	aliasing	effect	is	noticeable.

Time	for	action	–	Transforming
the	viewport
Let's	extend	our	code	so	that	all	future	operations	focus	only	on
drawing	within	the	border	boundaries	after	the	border	is	drawn.
Use	the	window	and	viewport	transformation,	as	follows:

void	Widget::paintEvent(QPaintEvent	*)	{

				QPainter	painter(this);

				painter.setRenderHint(QPainter::Antialiasing,	true);

				QPen	pen(Qt::black);

				pen.setWidth(4);

				painter.setPen(pen);

				QRect	r	=	rect().adjusted(10,	10,	-10,	-10);

				painter.drawRoundedRect(r,	20,	10);

				painter.save();

				r.adjust(2,	2,	-2,	-2);

				painter.setViewport(r);

				r.moveTo(0,	-r.height()	/	2);

				painter.setWindow(r);

				drawChart(&painter,	r);

				painter.restore();

}

Also,	create	a	protected	method	called	drawChart():

void	Widget::drawChart(QPainter	*painter,	const	QRect	&rect)	{

				painter->setPen(Qt::red);

				painter->drawLine(0,	0,	rect.width(),	0);

}

Let's	take	a	look	at	our	output:

What	just	happened?
The	first	thing	we	did	in	the	newly	added	code	is	call	painter.save().
This	call	stores	all	parameters	of	the	painter	in	an	internal	stack.
We	can	then	modify	the	painter	state	(by	changing	its	attributes,
applying	transformations,	and	so	on)	and	then,	if	at	any	point	we
want	to	go	back	to	the	saved	state,	it	is	enough	to	call	painter.restore()
to	undo	all	the	modifications	in	one	go.

The	save()	and	restore()	methods	can	be	called	as	many	times	as	needed.	States	are	stored
in	a	stack,	so	you	can	save	multiple	times	in	a	row	and	then	restore	to	undo	each	change.
Just	remember	to	always	pair	a	call	to	save()	with	a	similar	call	to	restore(),	or	the
internal	painter	state	will	get	corrupted.	Each	call	to	restore()	will	revert	the	painter	to	the
last	saved	state.

After	the	state	is	saved,	we	modify	the	rectangle	again	by	adjusting
for	the	width	of	the	border.	Then,	we	set	the	new	rectangle	as	the
viewport,	informing	the	painter	about	the	physical	range	of
coordinates	to	operate	on.	Then,	we	move	the	rectangle	by	half	its
height	and	set	that	as	the	painter	window.	This	effectively	puts	the
origin	of	the	painter	at	half	the	height	of	the	widget.	Then,	the
drawChart()	method	is	called,	whereby	a	red	line	is	drawn	on	the	x	axis
of	the	new	coordinate	system.

Time	for	action	–	Drawing	an
oscillogram
Let's	further	extend	our	widget	to	become	a	simple	oscillogram
renderer.	For	that,	we	have	to	make	the	widget	remember	a	set	of
values	and	draw	them	as	a	series	of	lines.

Let's	start	by	adding	a	QVector<quint16>	member	variable	that	holds	a
list	of	unsigned	16-bit	integer	values.	We	will	also	add	slots	for
adding	values	to	the	list	and	for	clearing	the	list,	as	shown:

class	Widget	:	public	QWidget

{

				//	...

public	slots:

				void	addPoint(unsigned	yVal)	{

								m_points	<<	qMax(0u,	yVal);

								update();

				}

				void	clear()	{

								m_points.clear();

								update();

				}

protected:

				//	...

				QVector<quint16>	m_points;

};

Note	that	each	modification	of	the	list	invokes	a	method	called
update().	This	schedules	a	paint	event	so	that	our	widget	can	be
redrawn	with	the	new	values.

Drawing	code	is	also	easy;	we	just	iterate	over	the	list	and	draw
symmetric	blue	lines	based	on	the	values	from	the	list.	Since	the
lines	are	vertical,	they	don't	suffer	from	aliasing	and	so	we	can

disable	this	render	hint,	as	shown:

void	Widget::drawChart(QPainter	*painter,	const	QRect	&rect)	{

				painter->setPen(Qt::red);

				painter->drawLine(0,	0,	rect.width(),	0);

				painter->save();

				painter->setRenderHint(QPainter::Antialiasing,	false);

				painter->setPen(Qt::blue);

				for(int	i	=	0;	i	<	m_points.size();	++i)	{

								painter->drawLine(i,	-m_points.at(i),	i,	m_points.at(i));

				}

				painter->restore();

}

To	see	the	result,	let's	fill	the	widget	with	data	in	the	main()	function:

for(int	i	=	0;	i	<	450;	++i)	{

				w.addPoint(qrand()	%	120);

}

This	loop	takes	a	random	number	between	0	and	119	and	adds	it	as	a
point	to	the	widget.	A	sample	result	from	running	such	code	can	be
seen	in	the	following	screenshot:

If	you	scale	down	the	window,	you	will	note	that	the	oscillogram	extends	past	the
boundaries	of	the	rounded	rectangle.	Remember	about	clipping?	You	can	use	it	now	to
constrain	the	drawing	by	adding	a	simple	painter.setClipRect(r)	call	just	before	you	call
drawChart().

So	far,	the	custom	widget	was	not	interactive	at	all.	Although	the
widget	content	could	be	manipulated	from	within	the	source	code
(say	by	adding	new	points	to	the	plot),	the	widget	was	deaf	to	any
user	actions	(apart	from	resizing	the	widget,	which	caused	a
repaint).	In	Qt,	any	interaction	between	the	user	and	the	widget	is
done	by	delivering	events	to	the	widget.	Such	a	family	of	events	is
generally	called	input	events	and	contains	events	such	as	keyboard
events	and	different	forms	of	pointing-device	events—mouse,
tablet,	and	touch	events.

In	a	typical	mouse	event	flow,	a	widget	first	receives	a	mouse	press
event,	then	a	number	of	mouse	move	events	(when	the	user	moves
the	mouse	around	while	the	mouse	button	is	kept	pressed),	and
finally,	a	mouse	release	event.	The	widget	can	also	receive	an
additional	mouse	double-click	event	in	addition	to	these	events.	It	is
important	to	remember	that	by	default,	mouse	move	events	are	only
delivered	if	a	mouse	button	is	pressed	when	the	mouse	is	moved.	To
receive	mouse	move	events	when	no	button	is	pressed,	a	widget
needs	to	activate	a	feature	called	mouse	tracking.

Time	for	action	–	Making
oscillograms	selectable
It's	time	to	make	our	oscillogram	widget	interactive.	We	will	teach	it
to	add	a	couple	of	lines	of	code	to	it	that	let	the	user	select	part	of
the	plot.	Let's	start	with	storage	for	the	selection.	We'll	need	two
integer	variables	that	can	be	accessed	via	read-only	properties;
therefore,	add	the	following	two	properties	to	the	class:

Q_PROPERTY(int	selectionStart	READ	selectionStart

																														NOTIFY	selectionChanged)

Q_PROPERTY(int	selectionEnd			READ	selectionEnd

																														NOTIFY	selectionChanged)

Next,	you	need	to	create	corresponding	private	fields	(you	can
initialize	them	both	to	−1),	getters,	and	signals.

The	user	can	change	the	selection	by	dragging	the	mouse	cursor
over	the	plot.	When	the	user	presses	the	mouse	button	over	some
place	in	the	plot,	we'll	mark	that	place	as	the	start	of	the	selection.
Dragging	the	mouse	will	determine	the	end	of	the	selection.	The
scheme	for	naming	events	is	similar	to	the	paint	event;	therefore,
we	need	to	declare	and	implement	the	following	two	protected
methods:

void	Widget::mousePressEvent(QMouseEvent	*mouseEvent)	{

				m_selectionStart	=	m_selectionEnd	=	mouseEvent->pos().x()	-	12;

				emit	selectionChanged();

				update();

}

void	Widget::mouseMoveEvent(QMouseEvent	*mouseEvent)	{

				m_selectionEnd	=	mouseEvent->pos().x()	-	12;

				emit	selectionChanged();

				update();

				update();

}

The	structure	of	both	event	handlers	is	similar.	We	update	the
needed	values,	taking	into	consideration	the	left	padding	(12	pixels)
of	the	plot,	similar	to	what	we	do	while	drawing.	Then,	a	signal	is
emitted	and	update()	is	called	to	schedule	a	repaint	of	the	widget.

What	remains	is	to	introduce	changes	to	the	drawing	code.	We
suggest	that	you	add	a	drawSelection()	method	similar	to	drawChart(),	but
that	it	is	called	from	the	paint	event	handler	immediately	before
drawChart(),	as	shown:

void	Widget::drawSelection(QPainter	*painter,	const	QRect	&rect)	{

				if(m_selectionStart	<	0)	{

								return;

				}

				painter->save();

				painter->setPen(Qt::NoPen);

				painter->setBrush(palette().highlight());

				QRect	selectionRect	=	rect;

				selectionRect.setLeft(m_selectionStart);

				selectionRect.setRight(m_selectionEnd);

				painter->drawRect(selectionRect);

				painter->restore();

}

First,	we	check	whether	there	is	any	selection	to	be	drawn	at	all.
Then,	we	save	the	painter	state	and	adjust	the	pen	and	brush	of	the
painter.	The	pen	is	set	to	Qt::NoPen,	which	means	the	painter	should
not	draw	any	outline.	To	determine	the	brush,	we	use	palette();	this
returns	an	object	of	the	QPalette	type	holding	basic	colors	for	a
widget.	One	of	the	colors	held	in	the	object	is	the	color	of	the
highlight	often	used	for	marking	selections.	If	you	use	an	entry	from
the	palette	instead	of	manually	specifying	a	color,	you	gain	an
advantage	because	when	the	user	of	the	class	modifies	the	palette,
this	modification	is	taken	into	account	by	our	widget	code.

You	can	use	other	colors	from	the	palette	in	the	widget	for	other	things	we	draw	in	the
widget.	You	can	even	define	your	own	QPalette	object	in	the	constructor	of	the	widget	to
provide	default	colors	for	it.

Finally,	we	adjust	the	rectangle	to	be	drawn	and	issue	the	drawing
call.

When	you	run	this	program,	you	will	note	that	the	selection	color
doesn't	contrast	very	well	with	the	plot	itself.	To	overcome	this,	a
common	approach	is	to	draw	the	"selected"	content	with	a	different
(often	inverted)	color.	This	can	easily	be	applied	in	this	situation	by
modifying	the	drawChart()	code	slightly:

for(int	i	=	0;	i	<	m_points.size();	++i)	{

				if(m_selectionStart	<=	i	&&	m_selectionEnd	>=i)	{

								painter->setPen(Qt::white);

				}	else	{

								painter->setPen(Qt::blue);

				}

				painter->drawLine(i,	-m_points.at(i),	i,	m_points.at(i));

}

Now	you	see	the	following	output:

Have	a	go	hero	–	Reacting	only
to	the	left	mouse	button
As	an	exercise,	you	can	modify	the	event	handling	code	so	that	it
only	changes	the	selection	if	the	mouse	event	was	triggered	by	the
left	mouse	button.	To	see	which	button	triggered	the	mouse	press
event,	you	can	use	the	QMouseEvent::button()	method,	which	returns
Qt::LeftButton	for	the	left	button,	Qt::RightButton	for	the	right,	and	so	on.

Touch	events
Handling	touch	events	is	different.	For	any	such	event,	you	receive
a	call	to	the	touchEvent()	virtual	method.	The	parameter	of	such	a	call
is	an	object	that	can	retrieve	a	list	of	points	currently	touched	by	the
user	with	additional	information	regarding	the	history	of	user
interaction	(whether	the	touch	was	just	initiated	or	the	point	was
pressed	earlier	and	moved)	and	what	force	is	applied	to	the	point	by
the	user.	Note	that	this	is	a	low-level	framework	that	allows	you	to
precisely	follow	the	history	of	touch	interaction.	If	you	are	more
interested	in	higher-level	gesture	recognition	(pan,	pinch,	and
swipe),	there	is	a	separate	family	of	events	available	for	it.

Handling	gestures	is	a	two-step	procedure.	First,	you	need	to
activate	gesture	recognition	on	your	widget	by	calling	grabGesture()
and	passing	in	the	type	of	gesture	you	want	to	handle.	A	good	place
for	such	code	is	the	widget	constructor.

Then,	your	widget	will	start	receiving	gesture	events.	There	are	no
dedicated	handlers	for	gesture	events	but,	fortunately,	all	events	for
an	object	flow	through	its	event()	method,	which	we	can
reimplement.	Here's	some	example	code	that	handles	pan	gestures:

bool	Widget::event(QEvent	*e)	{

		if(e->type()	==	QEvent::Gesture)	{

				QGestureEvent	*gestureEvent	=	static_cast<QGestureEvent*>(e);

				QGesture	*pan		=	gestureEvent->gesture(Qt::PanGesture);

				if(pan)	{

						handlePanGesture(static_cast<QPanGesture*>(pan));

				}

		}

		return	QWidget::event(e);

}

First,	a	check	for	the	event	type	is	made;	if	it	matches	the	expected
value,	the	event	object	is	cast	to	QGestureEvent.	Then,	the	event	is	asked
whether	Qt::PanGesture	was	recognized.	Finally,	a	handlePanGesture
method	is	called.	You	can	implement	such	a	method	to	handle	your
pan	gestures.

Working	with	images
Qt	has	two	classes	for	handling	images.	The	first	one	is	QImage,	more
tailored	toward	direct	pixel	manipulation.	You	can	check	the	size	of
the	image	or	check	and	modify	the	color	of	each	pixel.	You	can
convert	the	image	into	a	different	internal	representation	(say	from
8-bit	color	map	to	full	32-bit	color	with	a	premultiplied	alpha
channel).	This	type,	however,	is	not	that	fit	for	rendering.	For	that,
we	have	a	different	class	called	QPixmap.	The	difference	between	the
two	classes	is	that	QImage	is	always	kept	in	the	application	memory,
while	QPixmap	can	only	be	a	handle	to	a	resource	that	may	reside	in
the	graphics	card	memory	or	on	a	remote	X	server.	Its	main
advantage	over	QImage	is	that	it	can	be	rendered	very	quickly	at	the
cost	of	the	inability	to	access	pixel	data.	You	can	freely	convert
between	the	two	types,	but	bear	in	mind	that	on	some	platforms,
this	might	be	an	expensive	operation.	Always	consider	which	class
serves	your	particular	situation	better.	If	you	intend	to	crop	the
image,	tint	it	with	some	color,	or	paint	over	it,	QImage	is	a	better
choice,	but	if	you	just	want	to	render	a	bunch	of	icons,	it's	best	to
keep	them	as	QPixmap	instances.

Loading
Loading	images	is	very	easy.	Both	QPixmap	and	QImage	have	constructors
that	simply	accept	a	path	to	a	file	containing	the	image.	Qt	accesses
image	data	through	plugins	that	implement	reading	and	writing
operations	for	different	image	formats.	Without	going	into	the
details	of	plugins,	it	is	enough	to	say	that	the	default	Qt	installation
supports	reading	the	following	image	types:

Type Description

	
BMP
	

	
Windows	Bitmap
	

	
GIF
	

	
Graphics	Interchange	Format
	

	
JPG/JPEG
	

	
Joint	Photography	Experts	Group
	

	
PNG
	

	
Portable	Network	Graphics
	

	
PPM/PBM/PGM
	

	
Portable	anymap
	

	
XBM
	

	
X	Bitmap
	

	
XPM
	

	
X	Pixmap
	

	

As	you	can	see,	the	most	popular	image	formats	are	available.	The
list	can	be	further	extended	by	installing	additional	plugins.

You	can	ask	Qt	for	a	list	of	supported	image	types	by	calling	a	static	method,
QImageReader::supportedImageFormats(),	which	returns	a	list	of	formats	that	can	be	read	by
Qt.	For	a	list	of	writable	formats,	call	QImageWriter::supportedImageFormats().

An	image	can	also	be	loaded	directly	from	an	existing	memory
buffer.	This	can	be	done	in	two	ways.	The	first	one	is	to	use	the
loadFromData()	method	(it	exists	in	both	QPixmap	and	QImage),	which
behaves	the	same	as	when	loading	an	image	from	a	file—you	pass	it
a	data	buffer	and	the	size	of	the	buffer	and	based	on	that,	the	loader
determines	the	image	type	by	inspecting	the	header	data	and	loads
the	picture	into	QImage	or	QPixmap.	The	second	situation	is	when	you
don't	have	images	stored	in	a	"filetype"	such	as	JPEG	or	PNG;
rather,	you	have	raw	pixel	data	itself.	In	such	a	situation,	QImage
offers	a	constructor	that	takes	a	pointer	to	a	block	of	data	together
with	the	size	of	the	image	and	format	of	the	data.	The	format	is	not
a	file	format	such	as	the	ones	listed	earlier	but	a	memory	layout	for
data	representing	a	single	pixel.

The	most	popular	format	is	QImage::Format_ARGB32,	which	means	that
each	pixel	is	represented	by	32-bits	(4	bytes)	of	data	divided	equally
between	alpha,	red,	green,	and	blue	channels—8-bits	per	channel.
Another	popular	format	is	QImage::Format_ARGB32_Premultiplied,	where
values	for	the	red,	green,	and	blue	channels	are	stored	after	being
multiplied	by	the	value	of	the	alpha	channel,	which	often	results	in
faster	rendering.	You	can	change	the	internal	data	representation
using	a	call	to	convertToFormat().	For	example,	the	following	code
converts	a	true-color	image	to	256	colors,	where	color	for	each	pixel
is	represented	by	an	index	in	a	color	table:

QImage	trueColor("image.png");

QImage	indexed	=	trueColor.convertToFormat(QImage::Format_Indexed8);

The	color	table	itself	is	a	vector	of	color	definitions	that	can	be
fetched	using	colorTable()	and	replaced	using	setColorTable().	For
example,	you	can	convert	an	indexed	image	to	grayscale	by
adjusting	its	color	table,	as	follows:

QImage	indexed	=	...;

QVector<QRgb>	colorTable	=	indexed.colorTable();

for(QRgb	&item:	colorTable)	{

				int	gray	=	qGray(item);

				item	=	qRgb(gray,	gray,	gray);

}

indexed.setColorTable(colorTable);

However,	there	is	a	much	cleaner	solution	to	this	task.	You	can
convert	any	image	to	the	Format_Grayscale8	format:

QImage	grayImage	=

coloredImage.convertToFormat(QImage::Format_Grayscale8);

This	format	uses	8	bits	per	pixel	and	doesn't	have	a	color	table,	so	it
can	only	store	grayscale	images.

Modifying
There	are	two	ways	to	modify	image	pixel	data.	The	first	one	works
only	for	QImage	and	involves	direct	manipulation	of	pixels	using	the
setPixel()	call,	which	takes	the	pixel	coordinates	and	color	to	be	set
for	that	pixel.	The	second	one	works	for	both	QImage	and	QPixmap	and
makes	use	of	the	fact	that	both	these	classes	are	subclasses	of
QPaintDevice.	Therefore,	you	can	open	QPainter	on	such	objects	and	use
its	drawing	API.	Here's	an	example	of	obtaining	a	pixmap	with	a
blue	rectangle	and	red	circle	painted	over	it:

QPixmap	px(256,	256);

px.fill(Qt::transparent);

QPainter	painter(&px);

painter.setPen(Qt::NoPen);

painter.setBrush(Qt::blue);

QRect	r	=	px.rect().adjusted(10,	10,	-10,	-10);

painter.drawRect(r);

painter.setBrush(Qt::red);

painter.drawEllipse(r);

First,	we	create	a	256	x	256	pixmap	and	fill	it	with	transparent
color.	Then,	we	open	a	painter	on	it	and	invoke	a	series	of	calls	that
draws	a	blue	rectangle	and	red	circle.

QImage	also	offers	a	number	of	methods	for	transforming	the	image,
including	scaled(),	mirrored(),	transformed(),	and	copy().	Their	API	is
intuitive,	so	we	won't	discuss	it	here.

Painting
Painting	images	in	its	basic	form	is	as	simple	as	calling	drawImage()	or
drawPixmap()	from	the	QPainter	API.	There	are	different	variants	of	the
two	methods,	but,	basically,	all	of	them	allow	one	to	specify	which
portion	of	a	given	image	or	pixmap	is	to	be	drawn	and	where.	It	is
worth	noting	that	painting	pixmaps	is	preferred	to	painting	images,
as	an	image	has	to	first	be	converted	into	a	pixmap	before	it	can	be
drawn.

If	you	have	a	lot	of	pixmaps	to	draw,	a	class	called	QPixmapCache	may
come	in	handy.	It	provides	an	application-wide	cache	for	pixmaps.
Using	it,	you	can	speed	up	pixmap	loading	while	introducing	a	cap
on	memory	usage.

Finally,	if	you	just	want	to	show	a	pixmap	as	a	separate	widget,	you
can	use	QLabel.	This	widget	is	usually	used	for	displaying	text,	but
you	can	configure	it	to	show	a	pixmap	instead	with	the	setPixmap()
function.	By	default,	the	pixmap	is	displayed	without	scaling.	When
the	label	is	larger	than	the	pixmap,	it's	position	is	determined	by	the
label's	alignment	that	you	can	change	with	the	setAlignment()
function.	You	can	also	call	setScaledContents(true)	to	stretch	the	pixmap
to	the	whole	size	of	the	label.

Painting	text
Drawing	text	using	QPainter	deserves	a	separate	explanation,	not
because	it	is	complicated,	but	because	Qt	offers	much	flexibility	in
this	regard.	In	general,	painting	text	takes	place	by	calling
QPainter::drawText()	or	QPainter::drawStaticText().	Let's	focus	on	the	former
first,	which	allows	the	drawing	of	generic	text.

The	most	basic	call	to	paint	some	text	is	a	variant	of	this	method,
which	takes	x	and	y	coordinates	and	the	text	to	draw:

painter.drawText(10,	20,	"Drawing	some	text	at	(10,	20)");

The	preceding	call	draws	the	given	text	at	position	10	horizontally
and	places	the	baseline	of	the	text	at	position	20	vertically.	The	text
is	drawn	using	the	painter's	current	font	and	pen.	The	coordinates
can	alternatively	be	passed	as	QPoint	instances,	instead	of	being	given
x	and	y	values	separately.	The	problem	with	this	method	is	that	it
allows	little	control	over	how	the	text	is	drawn.	A	much	more
flexible	variant	is	one	that	lets	us	give	a	set	of	flags	and	expresses
the	position	of	the	text	as	a	rectangle	instead	of	a	point.	The	flags
can	specify	the	alignment	of	the	text	within	the	given	rectangle	or
instruct	the	rendering	engine	about	wrapping	and	clipping	the	text.
You	can	see	the	result	of	giving	a	different	combination	of	flags	to
the	call	in	the	following	diagram:

In	order	to	obtain	each	of	the	preceding	results,	run	code	similar	to
the	following:

painter.drawText(rect,	Qt::AlignLeft	|	Qt::TextShowMnemonic,	"&ABC");

You	can	see	that	unless	you	set	the	Qt::TextDontClip	flag,	the	text	is
clipped	to	the	given	rectangle;	setting	Qt::TextWordWrap	enables	line
wrapping,	and	Qt::TextSingleLine	makes	the	engine	ignore	any	newline
characters	encountered.

Static	text
Qt	has	to	perform	a	number	of	calculations	when	laying	out	the
text,	and	this	has	to	be	done	each	time	the	text	is	rendered.	This	will
be	a	waste	of	time	if	the	text	and	its	attributes	have	not	changed
since	the	last	time.	To	avoid	the	need	to	recalculate	the	layout,	the
concept	of	static	text	was	introduced.

To	use	it,	instantiate	QStaticText	and	initialize	it	with	the	text	you
want	to	render	along	with	any	options	you	might	want	it	to	have
(kept	as	the	QTextOption	instance).	Then,	store	the	object	somewhere,
and	whenever	you	want	the	text	to	be	rendered,	just	call
QPainter::drawStaticText(),	passing	the	static	text	object	to	it.	If	the
layout	of	the	text	has	not	changed	since	the	previous	time	the	text
was	drawn,	it	will	not	be	recalculated,	resulting	in	improved
performance.	Here's	an	example	of	a	custom	widget	that	simply
draws	text	using	the	static	text	approach:

class	TextWidget	:	public	QWidget	{

public:

				TextWidget(QWidget	*parent	=	nullptr)	:	QWidget(parent)	{}

				void	setText(const	QString	&txt)	{

								m_staticText.setText(txt);

								update();

				}

protected:

				void	paintEvent(QPaintEvent	*)	{

								QPainter	painter(this);

								painter.drawStaticText(0,	0,	m_staticText);

				}

private:

				QStaticText	m_staticText;

};

Optimizing	widget	painting
As	an	exercise,	we	will	modify	our	oscillogram	widget	so	that	it	only
rerenders	the	part	of	its	data	that	is	required.

Time	for	action	–	Optimizing
oscillogram	drawing
The	first	step	is	to	modify	the	paint	event	handling	code	to	fetch
information	about	the	region	that	needs	updating	and	pass	it	to	the
method	drawing	the	chart.	The	changed	parts	of	the	code	have	been
highlighted	here:

void	Widget::paintEvent(QPaintEvent	*event)

{

				QRect	exposedRect	=	event->rect();

				...

				drawSelection(&painter,	r,	exposedRect);

				drawChart(&painter,	r,	exposedRect);

				painter.restore();

}	

The	next	step	is	to	modify	drawSelection()	to	only	draw	the	part	of	the
selection	that	intersects	with	the	exposed	rectangle.	Luckily,	QRect
offers	a	method	to	calculate	the	intersection	for	us:

void	Widget::drawSelection(QPainter	*painter,	const	QRect	&rect,

																											const	QRect	&exposedRect)

{

				//	...

				QRect	selectionRect	=	rect;

				selectionRect.setLeft(m_selectionStart);

				selectionRect.setRight(m_selectionEnd);

				painter->drawRect(selectionRect.intersected(exposedRect));

				painter->restore();

}

Finally,	drawChart	needs	to	be	adjusted	to	omit	the	values	outside	the

exposed	rectangle:

void	Widget::drawChart(QPainter	*painter,	const	QRect	&rect,

																							const	QRect	&exposedRect)

{

				painter->setPen(Qt::red);

				painter->drawLine(exposedRect.left(),	0,	exposedRect.width(),	0);

				painter->save();

				painter->setRenderHint(QPainter::Antialiasing,	false);

				const	int	lastPoint	=	qMin(m_points.size(),

																															exposedRect.right()	+	1);

				for(int	i	=	exposedRect.left();	i	<	lastPoint;	++i)	{

						if(m_selectionStart	<=	i	&&	m_selectionEnd	>=i)	{

								painter->setPen(Qt::white);

						}	else

						painter->setPen(Qt::blue);

						painter->drawLine(i,	-m_points.at(i),	i,	m_points.at(i));

				}

				painter->restore();

				Q_UNUSED(rect)

}

What	just	happened?
By	implementing	these	changes,	we	have	effectively	reduced	the
painted	area	to	the	rectangle	received	with	the	event.	In	this
particular	situation,	we	will	not	save	much	time	as	drawing	the	plot
is	not	that	time-consuming;	in	many	situations,	however,	you	will
be	able	to	save	a	lot	of	time	using	this	approach.	For	example,	if	we
were	to	plot	a	very	detailed	aerial	map	of	a	game	world,	it	would	be
very	expensive	to	replot	the	whole	map	if	only	a	small	part	of	it	were
modified.	We	can	easily	reduce	the	number	of	calculations	and
drawing	calls	by	taking	advantage	of	the	information	about	the
exposed	area.

Making	use	of	the	exposed	rectangle	is	already	a	good	step	toward
efficiency,	but	we	can	go	a	step	further.	The	current	approach
requires	that	we	redraw	each	and	every	line	of	the	plot	within	the
exposed	rectangle,	which	still	takes	some	time.	Instead,	we	can
paint	those	lines	only	once	into	a	pixmap,	and	then	whenever	the
widget	needs	repainting,	tell	Qt	to	render	part	of	the	pixmap	to	the
widget.

Have	a	go	hero	–	Caching	the
oscillogram	in	a	pixmap
Now,	it	should	be	very	easy	for	you	to	implement	this	approach	for
our	example	widget.	The	main	difference	is	that	each	change	to	the
plot	contents	should	not	result	in	a	call	to	update()	but	in	a	call	that
will	rerender	the	pixmap	and	then	call	update().	The	paintEvent	method
then	becomes	simply	this:

void	Widget::paintEvent(QPaintEvent	*event)

{

				QRect	exposedRect	=	event->rect();

				QPainter	painter(this);

				painter.drawPixmap(exposedRect,	m_pixmap,	exposedRect);

}

You'll	also	need	to	rerender	the	pixmap	when	the	widget	is	resized.
This	can	be	done	from	within	the	resizeEvent()	virtual	function.

While	it	is	useful	to	master	the	available	approaches	to	optimization,	it's	always	important
to	check	whether	they	actually	make	your	application	faster.	There	are	often	cases	where
the	straightforward	approach	is	more	optimal	than	a	clever	optimization.	In	the	preceding
example,	resizing	the	widget	(and	subsequently	resizing	the	pixmap)	can	trigger	a
potentially	expensive	memory	allocation.	Use	this	optimization	only	if	direct	painting	on
the	widget	is	even	more	expensive.

Implementing	a	chess	game
At	this	point,	you	are	ready	to	employ	your	newly	gained	skills	in
rendering	graphics	with	Qt	to	create	a	game	that	uses	widgets	with
custom	graphics.	The	hero	of	today	will	be	chess	and	other	chess-
like	games.

Time	for	action	–	Developing
the	game	architecture
Create	a	new	Qt	Widgets	Application	project.	After	the	project
infrastructure	is	ready,	choose	New	File	or	Project	from	the	File
menu	and	choose	to	create	a	C++	Class.	Call	the	new	class	ChessBoard
and	set	QObject	as	its	base	class.	Repeat	the	process	to	create	a
ChessAlgorithm	class	derived	from	QObject	and	another	one	called
ChessView,	but	choose	QWidget	as	the	base	class	this	time.	You	should
end	up	with	a	file	named	main.cpp	and	four	classes:

MainWindow	will	be	our	main	window	class	that	contains

a	ChessView

ChessView	will	be	the	widget	that	displays	our	chess	board

ChessAlgorithm	will	contain	the	game	logic

ChessBoard	will	hold	the	state	of	the	chess	board	and	provide	it

to	ChessView	and	ChessAlgorithm

Now,	navigate	to	the	header	file	for	ChessAlgorithm	and	add	the
following	methods	to	the	class:

public:

				ChessBoard*	board()	const;

public	slots:

				virtual	void	newGame();

signals:

				void	boardChanged(ChessBoard*);

protected:

				virtual	void	setupBoard();

				void	setBoard(ChessBoard	*board);

				void	setBoard(ChessBoard	*board);

Also,	add	a	private	m_board	field	of	the	ChessBoard*	type.	Remember	to
either	include	chessboard.h	or	forward-declare	the	ChessBoard	class.
Implement	board()	as	a	simple	getter	method	for	m_board.	The	setBoard()
method	will	be	a	protected	setter	for	m_board:

void	ChessAlgorithm::setBoard(ChessBoard	*board)

{

				if(board	==	m_board)	{

								return;

				}

				delete	m_board;

				m_board	=	board;

				emit	boardChanged(m_board);

}

Next,	let's	provide	a	base	implementation	for	setupBoard()	to	create	a
default	chess	board	with	eight	ranks	and	eight	columns:

void	ChessAlgorithm::setupBoard()

{

				setBoard(new	ChessBoard(8,	8,	this));

}

The	natural	place	to	prepare	the	board	is	in	a	function	executed
when	a	new	game	is	started:

void	ChessAlgorithm::newGame()

{

				setupBoard();

}

The	last	addition	to	this	class	for	now	is	to	extend	the	provided
constructor	to	initialize	m_board	to	a	null	pointer.

In	the	last	method	shown,	we	instantiated	a	ChessBoard	object,	so	let's
focus	on	that	class	now.	First,	extend	the	constructor	to	accept	two
additional	integer	parameters	besides	the	regular	parent	argument.

Store	their	values	in	private	m_ranks	and	m_columns	fields	(remember	to
declare	the	fields	themselves	in	the	class	header	file).

In	the	header	file,	just	under	the	Q_OBJECT	macro,	add	the	following
two	lines	as	property	definitions:

		Q_PROPERTY(int	ranks	READ	ranks	NOTIFY	ranksChanged)

		Q_PROPERTY(int	columns	READ	columns	NOTIFY	columnsChanged)

Declare	signals	and	implement	getter	methods	to	cooperate	with
those	definitions.	Also,	add	two	protected	methods:

protected:

				void	setRanks(int	newRanks);

				void	setColumns(int	newColumns);

These	will	be	setters	for	the	rank	and	column	properties,	but	we
don't	want	to	expose	them	to	the	outside	world,	so	we	will	give	them
protected	access	scope.

Put	the	following	code	into	the	setRanks()	method	body:

void	ChessBoard::setRanks(int	newRanks)

{

				if(ranks()	==	newRanks)	{

								return;

				}

				m_ranks	=	newRanks;

				emit	ranksChanged(m_ranks);

}

Next,	in	a	similar	way,	you	can	implement	setColumns().

The	last	class	we	will	deal	with	now	is	our	custom	widget,	ChessView.
For	now,	we	will	provide	only	a	rudimentary	implementation	for
one	method,	but	we	will	expand	it	later	as	our	implementation
grows.	Add	a	public	setBoard(ChessBoard	*)	method	with	the	following

body:

void	ChessView::setBoard(ChessBoard	*board)

{

				if(m_board	==	board)	{

								return;

				}

				if(m_board)	{

								//	disconnect	all	signal-slot	connections	between	m_board	and

this

								m_board->disconnect(this);

				}

				m_board	=	board;

				//	connect	signals	(to	be	done	later)

				updateGeometry();

}

Now,	let's	declare	the	m_board	member.	As	we	are	not	the	owners	of
the	board	object	(the	algorithm	class	is	responsible	for	managing
it),	we	will	use	the	QPointer	class,	which	tracks	the	lifetime	of	QObject
and	sets	itself	to	null	once	the	object	is	destroyed:

private:

				QPointer<ChessBoard>	m_board;

QPointer	initializes	its	value	to	null,	so	we	don't	have	to	do	it	ourselves
in	the	constructor.	For	completeness,	let's	provide	a	getter	method
for	the	board:

ChessBoard	*ChessView::board()	const	{

				return	m_board;

}

What	just	happened?
In	the	last	exercise,	we	defined	the	base	architecture	for	our
solution.	We	can	see	that	there	are	three	classes	involved:	ChessView
acting	as	the	user	interface,	ChessAlgorithm	for	driving	the	actual	game,
and	ChessBoard	as	a	data	structure	shared	between	the	view	and	the
engine.	The	algorithm	will	be	responsible	for	setting	up	the	board
(through	setupBoard()),	making	moves,	checking	win	conditions,	and
so	on.	The	view	will	be	rendering	the	current	state	of	the	board	and
will	signal	user	interaction	to	the	underlying	logic.

Most	of	the	code	is	self-explanatory.	You	can	see	in	the
ChessView::setBoard()	method	that	we	are	disconnecting	all	signals	from
an	old	board	object,	attaching	the	new	one	(we	will	come	back	to
connecting	the	signals	later	when	we	have	already	defined	them),
and	finally	telling	the	widget	to	update	its	size	and	redraw	itself
with	the	new	board.

Time	for	action	–	Implementing
the	game	board	class
Now	we	will	focus	on	our	data	structure.	Add	a	new	private	member
to	ChessBoard,	a	vector	of	characters	that	will	contain	information
about	pieces	on	the	board:

QVector<char>	m_boardData;

Consider	the	following	table	that	shows	the	piece	type	and	the
letters	used	for	it:

Piece	type White Black

	
King
	

	
K
	

	
k
	

	

	
	

	
Queen
	

	
Q
	

	
q
	

	

	
	

	
Rook
	

	
R
	

	
r
	

	

	
	

	
Bishop
	

	
B
	

	
b
	

	

	

	
	

	
Knight
	

	
N
	

	
n
	

	

	
	

	
Pawn
	

	
P
	

	
P
	

	

You	can	see	that	white	pieces	use	uppercase	letters	and	black	pieces
use	lowercase	variants	of	the	same	letters.	In	addition	to	that,	we
will	use	a	space	character	(0x20	ASCII	value)	to	denote	that	a	field
is	empty.	We	will	add	a	protected	method	for	setting	up	an	empty
board	based	on	the	number	of	ranks	and	columns	on	the	board	and
a	boardReset()	signal	to	inform	that	the	position	on	the	board	has
changed:

void	ChessBoard::initBoard()

{

				m_boardData.fill('	',	ranks()	*	columns());

				emit	boardReset();

}

We	can	update	our	methods	for	setting	rank	and	column	counts	to
make	use	of	that	method:

void	ChessBoard::setRanks(int	newRanks)

{

				if(ranks()	==	newRanks)	{

								return;

				}

				m_ranks	=	newRanks;

				initBoard();

				emit	ranksChanged(m_ranks);

}

	

	

void	ChessBoard::setColumns(int	newColumns)

{

				if(columns()	==	newColumns)	{

								return;

				}

				m_columns	=	newColumns;

				initBoard();

				emit	columnsChanged(m_columns);

}

The	initBoard()	method	should	also	be	called	from	within	the
constructor,	so	place	the	call	there	as	well.

Next,	we	need	a	method	to	read	which	piece	is	positioned	in	a
particular	field	of	the	board:

char	ChessBoard::data(int	column,	int	rank)	const

{

				return	m_boardData.at((rank-1)	*	columns()	+	(column	-	1));

}

Ranks	and	columns	have	indexes	starting	from	1,	but	the	data
structure	is	indexed	starting	from	0;	therefore,	we	have	to	subtract	1
from	both	the	rank	and	column	index.	It	is	also	required	to	have	a
method	to	modify	the	data	for	the	board.	Implement	the	following
public	method:

void	ChessBoard::setData(int	column,	int	rank,	char	value)

{

				if(setDataInternal(column,	rank,	value))	{

								emit	dataChanged(column,	rank);

				}

}

The	method	makes	use	of	another	one	that	does	the	actual	job.
However,	this	method	should	be	declared	with	protected	access	scope.
Again,	we	adjust	for	index	differences:

bool	ChessBoard::setDataInternal(int	column,	int	rank,	char	value)

bool	ChessBoard::setDataInternal(int	column,	int	rank,	char	value)

{

				int	index	=	(rank-1)	*	columns()	+	(column	-	1);

				if(m_boardData.at(index)	==	value)	{

								return	false;

				}

				m_boardData[index]	=	value;

				return	true;

}

Since	setData()	makes	use	of	a	signal,	we	have	to	declare	it	as	well:

signals:

				void	ranksChanged(int);

				void	columnsChanged(int);

				void	dataChanged(int	c,	int	r);

				void	boardReset();

The	signal	will	be	emitted	every	time	there	is	a	successful	change	to
the	situation	on	the	board.	We	delegate	the	actual	work	to	the
protected	method	to	be	able	to	modify	the	board	without	emitting
the	signal.

Having	defined	setData(),	we	can	add	another	method	for	our
convenience:

void	ChessBoard::movePiece(int	fromColumn,	int	fromRank,	

																											int	toColumn,	int	toRank)

{

				setData(toColumn,	toRank,	data(fromColumn,	fromRank));

				setData(fromColumn,	fromRank,	'	');

}

Can	you	guess	what	it	does?	That's	right!	It	moves	a	piece	from	one
field	to	another	one,	leaving	an	empty	space	behind.

There	is	still	one	more	method	worth	implementing.	A	regular	chess
game	contains	32	pieces,	and	there	are	variants	of	the	game	where
starting	positions	for	the	pieces	might	be	different.	Setting	the
position	of	each	piece	through	a	separate	call	to	setData()	would	be

very	cumbersome.	Fortunately,	there	is	a	neat	chess	notation	called
the	Forsyth-Edwards	Notation	(FEN),	with	which	the	complete
state	of	the	game	can	be	stored	as	a	single	line	of	text.	If	you	want
the	complete	definition	of	the	notation,	you	can	look	it	up	yourself.
In	short,	we	can	say	that	the	textual	string	lists	piece	placement
rank	by	rank,	starting	from	the	last	rank	where	each	position	is
described	by	a	single	character	interpreted	as	in	our	internal	data
structure	(K	for	white	king,	q	for	black	queen,	and	so	on).	Each	rank
description	is	separated	by	a	/	character.	If	there	are	empty	fields	on
the	board,	they	are	not	stored	as	spaces,	but	as	a	digit	specifying	the
number	of	consecutive	empty	fields.	Therefore,	the	starting	position
for	a	standard	game	can	be	written	as	follows:

"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR"

This	can	be	interpreted	visually,	as	follows:

Let's	write	a	method	called	setFen()	to	set	up	the	board	based	on	an
FEN	string:

void	ChessBoard::setFen(const	QString	&fen)

{

				int	index	=	0;

				int	skip	=	0;

				const	int	columnCount	=	columns();

				QChar	ch;

				for(int	rank	=	ranks();	rank	>	0;	--rank)	{

								for(int	column	=	1;	column	<=	columnCount;	++column)	{

												if(skip	>	0)	{

																ch	=	'	';

																skip--;

												}	else	{

																ch	=	fen.at(index++);

																if(ch.isDigit())	{

																				skip	=	ch.toLatin1()	-	'0';

																				ch	=	'	';

																				skip--;

																}

												}

												setDataInternal(column,	rank,	ch.toLatin1());

								}

								QChar	next	=	fen.at(index++);

								if(next	!=	'/'	&&	next	!=	'	')	{

												initBoard();

												return;	//	fail	on	error

								}

				}

				emit	boardReset();

}

The	method	iterates	over	all	fields	on	the	board	and	determines
whether	it	is	currently	in	the	middle	of	inserting	empty	fields	on	the
board	or	should	rather	read	the	next	character	from	the	string.	If	a
digit	is	encountered,	it	is	converted	into	an	integer	by	subtracting
the	ASCII	value	of	the	0	character	(that	is,	'7'	-	'0'	=	7).	After	setting
each	rank,	we	require	that	a	slash	or	a	space	be	read	from	the	string.
Otherwise,	we	reset	the	board	to	an	empty	one	and	bail	out	of	the
method.

What	just	happened?
We	taught	the	ChessBoard	class	to	store	simple	information	about
chess	pieces	using	a	one-dimensional	array	of	characters.	We	also
equipped	it	with	methods	that	allow	querying	and	modifying	game
data.	We	implemented	a	fast	way	of	setting	the	current	state	of	the
game	by	adopting	the	FEN	standard.	The	game	data	itself	is	not	tied
to	classic	chess.	Although	we	comply	with	a	standard	notation	for
describing	pieces,	it	is	possible	to	use	other	letters	and	characters
outside	the	well-defined	set	for	chess	pieces.	This	creates	a	versatile
solution	for	storing	information	about	chess-like	games,	such	as
checkers,	and	possibly	any	other	custom	games	played	on	a	two-
dimensional	board	of	any	size	with	ranks	and	columns.	The	data
structure	we	came	up	with	is	not	a	stupid	one—it	communicates
with	its	environment	by	emitting	signals	when	the	state	of	the	game
is	modified.

Time	for	action	–
Understanding	the	ChessView
class
This	is	a	chapter	about	doing	graphics,	so	it	is	high	time	we	focus	on
displaying	our	chess	game.	Our	widget	currently	displays	nothing,
and	our	first	task	will	be	to	show	a	chess	board	with	rank	and
column	symbols	and	fields	colored	appropriately.

By	default,	the	widget	does	not	have	any	proper	size	defined,	and
we	will	have	to	fix	that	by	implementing	sizeHint().	However,	to	be
able	to	calculate	the	size,	we	have	to	decide	how	big	a	single	field	on
the	board	will	be.	Therefore,	in	ChessView,	you	should	declare	a
property	containing	the	size	of	the	field,	as	shown:

Q_PROPERTY(QSize	fieldSize

											READ	fieldSize	WRITE	setFieldSize

											NOTIFY	fieldSizeChanged)

To	speed	up	coding,	you	can	position	the	cursor	over	the	property
declaration,	hit	the	Alt	+	Enter	combination,	and	choose	the
Generate	missing	Q_PROPERTY	members	fix-up	from	the	pop-up
menu.	Creator	will	provide	minor	implementations	for	the	getter
and	setter	for	you.	You	can	move	the	generated	code	to	the
implementation	file	by	positioning	the	cursor	over	each	method,
hitting	Alt	+	Enter,	and	choosing	the	Move	definition	to
chessview.cpp	file	fixup.	While	the	generated	getter	method	is	fine,
the	setter	needs	some	adjusting.	Modify	it	by	adding	the	following
highlighted	code:

void	ChessView::setFieldSize(QSize	arg)

{

{

				if	(m_fieldSize	==	arg)	{

								return;

				}

				m_fieldSize	=	arg;

				emit	fieldSizeChanged(arg);

				updateGeometry();

}

This	tells	our	widget	to	recalculate	its	size	whenever	the	size	of	the
field	is	modified.	Now	we	can	implement	sizeHint():

QSize	ChessView::sizeHint()	const

{

				if(!m_board)	{

								return	QSize(100,100);

				}

				QSize	boardSize	=	QSize(fieldSize().width()

								*	m_board->columns()	+	1,

				m_fieldSize.height()	*	m_board->ranks()	+	1);

				//	'M'	is	the	widest	letter

				int	rankSize	=	fontMetrics().width('M')	+	4;

				int	columnSize	=	fontMetrics().height()	+	4;

				return	boardSize	+	QSize(rankSize,	columnSize);

}

First,	we	check	whether	we	have	a	valid	board	definition	and	if	not,
return	a	sane	size	of	100	×	100	pixels.	Otherwise,	the	method
calculates	the	size	of	all	the	fields	by	multiplying	the	size	of	each	of
the	fields	by	the	number	of	columns	or	ranks.	We	add	one	pixel	to
each	dimension	to	accommodate	the	right	and	bottom	border.	A
chess	board	not	only	consists	of	fields	themselves	but	also	displays
rank	symbols	on	the	left	edge	of	the	board	and	column	numbers	on
the	bottom	edge	of	the	board.

Since	we	use	letters	to	enumerate	ranks,	we	check	the	width	of	the
widest	letter	using	the	QFontMetrics	class.	We	use	the	same	class	to
check	how	much	space	is	required	to	render	a	line	of	text	using	the
current	font	so	that	we	have	enough	space	to	put	column	numbers.
In	both	cases,	we	add	4	to	the	result	to	make	a	2	pixel	margin

between	the	text	and	the	edge	of	the	board	and	another	2	pixel
margin	between	the	text	and	the	edge	of	the	widget.

Actually,	the	widest	letter	in	the	most	common	fonts	is	W,	but	it	won't	appear	in	our	game.

It	is	very	useful	to	define	a	helper	method	for	returning	a	rectangle
that	contains	a	particular	field,	as	shown:

QRect	ChessView::fieldRect(int	column,	int	rank)	const

{

				if(!m_board)	{

								return	QRect();

				}

				const	QSize	fs	=	fieldSize();

				QPoint	topLeft((column	-	1)	*	fs.width(),

																			(m_board->ranks()-rank)	*	fs.height());

				QRect	fRect	=	QRect(topLeft,	fs);

				//	offset	rect	by	rank	symbols

				int	offset	=	fontMetrics().width('M');

				return	fRect.translated(offset+4,	0);

}

Since	rank	numbers	decrease	from	the	top	toward	the	bottom	of	the
board,	we	subtract	the	desired	rank	from	the	maximum	rank	there
is	while	calculating	fRect.	Then,	we	calculate	the	horizontal	offset	for
rank	symbols,	just	like	we	did	in	sizeHint(),	and	translate	the
rectangle	by	that	offset	before	returning	the	result.

Finally,	we	can	move	on	to	implementing	the	event	handler	for	the
paint	event.	Declare	the	paintEvent()	method	(the	fixup	menu
available	under	the	Alt	+	Enter	keyboard	shortcut	will	let	you
generate	a	stub	implementation	of	the	method)	and	fill	it	with	the
following	code:

void	ChessView::paintEvent(QPaintEvent	*)

{

				if(!m_board)	{

								return;

				}

				QPainter	painter(this);

				for(int	r	=	m_board->ranks();	r	>	0;	--r)	{

								painter.save();

								drawRank(&painter,	r);

								painter.restore();

				}

				for(int	c	=	1;	c	<=	m_board->columns();	++c)	{

								painter.save();

								drawColumn(&painter,	c);

								painter.restore();

				}

				for(int	r	=	1;	r	<=	m_board->ranks();	++r)	{

								for(int	c	=	1;	c	<=	m_board->columns();	++c)	{

												painter.save();

												drawField(&painter,	c,	r);

												painter.restore();

								}

				}

}

The	handler	is	quite	simple.	First,	we	instantiate	the	QPainter	object
that	operates	on	the	widget.	Then,	we	have	three	loops:	the	first	one
iterates	over	ranks,	the	second	over	columns,	and	the	third	over	all
fields.	The	body	of	each	loop	is	very	similar;	there	is	a	call	to	a
custom	draw	method	that	accepts	a	pointer	to	the	painter	and	index
of	the	rank,	column,	or	both	of	them,	respectively.	Each	of	the	calls
is	surrounded	by	executing	save()	and	restore()	on	our	QPainter
instance.	What	are	the	calls	for	here?	The	three	draw	methods
—drawRank(),	drawColumn(),	and	drawField()—will	be	virtual	methods
responsible	for	rendering	the	rank	symbol,	the	column	number,	and
the	field	background.	It	will	be	possible	to	subclass	ChessView	and
provide	custom	implementations	for	those	renderers	so	that	it	is
possible	to	provide	a	different	look	of	the	chess	board.	Since	each	of
these	methods	takes	the	painter	instance	as	its	parameter,	overrides
of	these	methods	can	alter	attribute	values	of	the	painter	behind	our
back.	Calling	save()	before	handing	over	the	painter	to	such	override
stores	its	state	on	an	internal	stack,	and	calling	restore()	after
returning	from	the	override	resets	the	painter	to	what	was	stored
with	save().	Note	that	the	painter	can	still	be	left	in	an	invalid	state	if
the	override	calls	save()	and	restore()		a	different	number	of	times.

Calling	save()	and	restore()	very	often	introduces	a	performance	hit,	so	you	should	avoid

saving	and	restoring	painter	states	too	often	in	time-critical	situations.	As	our	painting	is
very	simple,	we	don't	have	to	worry	about	that	when	painting	our	chess	board.

Having	introduced	our	three	methods,	we	can	start	implementing
them.	Let's	start	with	drawRank	and	drawColumn.	Remember	to	declare
them	as	virtual	and	put	them	in	protected	access	scope	(that's
usually	where	Qt	classes	put	such	methods),	as	follows:

void	ChessView::drawRank(QPainter	*painter,	int	rank)

{

				QRect	r	=	fieldRect(1,	rank);

				QRect	rankRect	=	QRect(0,	r.top(),	r.left(),	r.height())

								.adjusted(2,	0,	-2,	0);

				QString	rankText	=	QString::number(rank);

				painter->drawText(rankRect,

							Qt::AlignVCenter	|	Qt::AlignRight,	rankText);

}

	

void	ChessView::drawColumn(QPainter	*painter,	int	column)

{

				QRect	r	=	fieldRect(column,	1);

				QRect	columnRect	=

								QRect(r.left(),	r.bottom(),	r.width(),	height()	-	r.bottom())

								.adjusted(0,	2,	0,	-2);

				painter->drawText(columnRect,

								Qt::AlignHCenter	|	Qt::AlignTop,	QChar('a'	+	column	-	1));

}

Both	methods	are	very	similar.	We	use	fieldRect()	to	query	for	the
left-most	column	and	bottom-most	rank,	and,	based	on	that,	we
calculate	where	rank	symbols	and	column	numbers	should	be
placed.	The	call	to	QRect::adjusted()	is	to	accommodate	the	2	pixel
margin	around	the	text	to	be	drawn.	Finally,	we	use	drawText()	to
render	appropriate	text.	For	the	rank,	we	ask	the	painter	to	align
the	text	to	the	right	edge	of	the	rectangle	and	to	center	the	text
vertically.	In	a	similar	way,	when	drawing	the	column,	we	align	to
the	top	edge	and	center	the	text	horizontally.

Now	we	can	implement	the	third	draw	method.	It	should	also	be
declared	protected	and	virtual.	Place	the	following	code	in	the
method	body:

void	ChessView::drawField(QPainter	*painter,	int	column,	int	rank)

{

				QRect	rect	=	fieldRect(column,	rank);

				QColor	fillColor	=	(column	+	rank)	%	2	?

								palette().color(QPalette::Light)	:

								palette().color(QPalette::Mid);

				painter->setPen(palette().color(QPalette::Dark));

				painter->setBrush(fillColor);

				painter->drawRect(rect);

}

In	this	method,	we	use	the	QPalette	object	coupled	with	each	widget
to	query	for	Light	(usually	white)	and	Mid	(darkish)	color,	depending
on	whether	the	field	we	are	drawing	on	the	chess	board	is
considered	white	or	black.	We	do	that	instead	of	hardcoding	the
colors	to	make	it	possible	to	modify	colors	of	the	tiles	without
subclassing	simply	by	adjusting	the	palette	object.	Then,	we	use	the
palette	again	to	ask	for	the	Dark	color	and	use	that	as	a	pen	for	our
painter.	When	we	draw	a	rectangle	with	such	settings,	the	pen	will
stroke	the	border	of	the	rectangle	to	give	it	a	more	elegant	look.
Note	how	we	modify	attributes	of	the	painter	in	this	method	and	do
not	set	them	back	afterward.	We	can	get	away	with	it	because	of	the
save()	and	restore()	calls	surrounding	the	drawField()	execution.

We	are	now	ready	to	see	the	results	of	our	work.	Let's	switch	to	the
MainWindow	class	and	equip	it	with	the	following	two	private	variables:

ChessView	*m_view;

ChessAlgorithm	*m_algorithm;

Then,	modify	the	constructor	by	adding	the	following	highlighted
code	to	set	up	the	view	and	the	game	engine:

MainWindow::MainWindow(QWidget	*parent)	:

		QMainWindow(parent),

		ui(new	Ui::MainWindow)

{

				ui->setupUi(this);

				m_view	=	new	ChessView;

				m_view	=	new	ChessView;

				m_algorithm	=	new	ChessAlgorithm(this);

				m_algorithm->newGame();

				m_view->setBoard(m_algorithm->board());

				setCentralWidget(m_view);

				m_view->setSizePolicy(QSizePolicy::Fixed,	QSizePolicy::Fixed);

				m_view->setFieldSize(QSize(50,50));

				layout()->setSizeConstraint(QLayout::SetFixedSize);

}

Afterward,	you	should	be	able	to	build	the	project.	When	you	run	it,
you	should	see	a	result	similar	to	the	one	in	the	following
screenshot:

What	just	happened?
In	this	exercise,	we	did	two	things.	First,	we	provided	a	number	of
methods	for	calculating	the	geometry	of	important	parts	of	the
chess	board	and	the	size	of	the	widget.	Second,	we	defined	three
virtual	methods	for	rendering	visual	primitives	of	a	chess	board.	By
making	the	methods	virtual,	we	provided	an	infrastructure	to	let	the
look	be	customized	by	subclassing	and	overriding	base
implementations.	Furthermore,	by	reading	color	from	QPalette,	we
allowed	customizing	the	colors	of	the	primitives	even	without
subclassing.

The	last	line	of	the	main	window	constructor	tells	the	layout	of	the
window	to	force	a	fixed	size	of	the	window	equal	to	what	the	size
hint	of	the	widget	inside	it	reports.

Time	for	action	–	Rendering	the
pieces
Now	that	we	can	see	the	board,	it	is	time	to	put	the	pieces	on	it.	We
will	use	images	for	that	purpose.	In	my	case,	we	found	a	number	of
SVG	files	with	chess	pieces	and	decided	to	use	them.	SVG	is	a	vector
graphics	format	where	all	curves	are	defined	not	as	a	fixed	set	of
points	but	as	mathematic	curves.	Their	main	benefit	is	that	they
scale	very	well	without	causing	an	aliasing	effect.

Let's	equip	our	view	with	a	registry	of	images	to	be	used	for
"stamping"	a	particular	piece	type.	Since	each	piece	type	is
identified	with	char,	we	can	use	it	to	generate	keys	for	a	map	of
images.	Let's	put	the	following	API	into	ChessView:

public:

				void	setPiece(char	type,	const	QIcon	&icon);

				QIcon	piece(char	type)	const;

private:

				QMap<char,	QIcon>	m_pieces;

For	the	image	type,	we	do	not	use	QImage	or	QPixmap	but	QIcon.	This	is
because	QIcon	can	store	many	pixmaps	of	different	sizes	and	use	the
most	appropriate	one	when	we	request	an	icon	of	a	given	size	to	be
painted.	It	doesn't	matter	if	we	use	vector	images,	but	it	does	matter
if	you	choose	to	use	PNG	or	other	types	of	image.	In	such	cases,	you
can	use	addFile()	to	add	many	images	to	a	single	icon.

Going	back	to	our	registry,	the	implementation	is	very	simple.	We
just	store	the	icon	in	a	map	and	ask	the	widget	to	repaint	itself:

void	ChessView::setPiece(char	type,	const	QIcon	&icon)

{

{

				m_pieces.insert(type,	icon);

				update();

}

	

QIcon	ChessView::piece(char	type)	const

{

				return	m_pieces.value(type,	QIcon());

}

Now	we	can	fill	the	registry	with	actual	images	right	after	we	create
the	view	inside	the	MainWindow	constructor.	Note	that	we	stored	all	the
images	in	a	resource	file,	as	shown:

m_view->setPiece('P',	QIcon(":/pieces/Chess_plt45.svg"));	//	pawn

m_view->setPiece('K',	QIcon(":/pieces/Chess_klt45.svg"));	//	king

m_view->setPiece('Q',	QIcon(":/pieces/Chess_qlt45.svg"));	//	queen

m_view->setPiece('R',	QIcon(":/pieces/Chess_rlt45.svg"));	//	rook

m_view->setPiece('N',	QIcon(":/pieces/Chess_nlt45.svg"));	//	knight

m_view->setPiece('B',	QIcon(":/pieces/Chess_blt45.svg"));	//	bishop

	

m_view->setPiece('p',	QIcon(":/pieces/Chess_pdt45.svg"));	//	pawn

m_view->setPiece('k',	QIcon(":/pieces/Chess_kdt45.svg"));	//	king

m_view->setPiece('q',	QIcon(":/pieces/Chess_qdt45.svg"));	//	queen

m_view->setPiece('r',	QIcon(":/pieces/Chess_rdt45.svg"));	//	rook

m_view->setPiece('n',	QIcon(":/pieces/Chess_ndt45.svg"));	//	knight

m_view->setPiece('b',	QIcon(":/pieces/Chess_bdt45.svg"));	//	bishop

The	next	thing	to	do	is	to	extend	the	paintEvent()	method	of	the	view
to	actually	render	our	pieces.	For	that,	we	will	introduce	another
protected	virtual	method	called	drawPiece().	We'll	call	it	when
iterating	over	all	the	ranks	and	columns	of	the	board,	as	shown:

void	ChessView::paintEvent(QPaintEvent	*)

{

				//	...

				for(int	r	=	m_board->ranks();	r	>	0;	--r)	{

								for(int	c	=	1;	c	<=	m_board->columns();	++c)	{

												drawPiece(&painter,	c,	r);

								}

				}

}

It	is	not	a	coincidence	that	we	start	drawing	from	the	highest	(top)
rank	to	the	lowest	(bottom)	one.	By	doing	that,	we	allow	a	pseudo-
3D	effect;	if	a	piece	drawn	extends	past	the	area	of	the	field,	it	will
intersect	the	field	from	the	next	rank	(which	is	possibly	occupied	by
another	piece).	By	drawing	higher	rank	pieces	first,	we	cause	them
to	be	partially	covered	by	pieces	from	the	lower	rank,	which
imitates	the	effect	of	depth.	By	thinking	ahead,	we	allow
reimplementations	of	drawPiece()	to	have	more	freedom	in	what	they
can	do.

The	final	step	is	to	provide	a	base	implementation	for	this	method,
as	follows:

void	ChessView::drawPiece(QPainter	*painter,	int	column,	int	rank)

{

				QRect	rect	=	fieldRect(column,	rank);

				char	value	=	m_board->data(column,	rank);

				if(value	!=	'	')	{

								QIcon	icon	=	piece(value);

								if(!icon.isNull())	{

												icon.paint(painter,	rect,	Qt::AlignCenter);

								}

				}

}

The	method	is	very	simple;	it	queries	for	the	rectangle	of	a	given
column	and	rank	and	then	asks	the	ChessBoard	instance	about	the
piece	occupying	the	given	field.	If	there	is	a	piece	there,	we	ask	the
registry	for	the	proper	icon;	if	we	get	a	valid	one,	we	call	its	paint()
routine	to	draw	the	piece	centered	in	the	field's	rect.	The	image
drawn	will	be	scaled	to	the	size	of	the	rectangle.	It	is	important	that
you	only	use	images	with	a	transparent	background	(such	as	PNG
or	SVG	files	and	not	JPEG	files)	so	that	the	color	of	the	field	can	be
seen	through	the	piece.

What	just	happened?
To	test	the	implementation,	you	can	modify	the	algorithm	to	fill	the
board	with	the	default	piece	set	up	by	introducing	the	following
change	to	the	ChessAlgorithm	class:

void	ChessAlgorithm::newGame()

{

		setupBoard();

		board()->setFen(

						"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR	w	KQkq	-	0	1"

);

}

Running	the	program	should	show	the	following	result:

The	modification	we	did	in	this	step	was	very	simple.	First,	we
provided	a	way	to	tell	the	board	what	each	piece	type	looks	like.
This	includes	not	only	standard	chess	pieces	but	anything	that	fits
into	char	and	can	be	set	inside	the	ChessBoard	class's	internal	data
array.	Second,	we	made	an	abstraction	for	drawing	the	pieces	with
the	simplest	possible	base	implementation:	taking	an	icon	from	the
registry	and	rendering	it	to	the	field.	By	making	use	of	QIcon,	we	can
add	several	pixmaps	of	different	sizes	to	be	used	with	different	sizes
of	a	single	field.	Alternatively,	the	icon	can	contain	a	single	vector
image	that	scales	very	well	all	by	itself.

Time	for	action	–	Making	the
chess	game	interactive
We	have	managed	to	display	the	chess	board,	but	to	actually	play	a
game,	we	have	to	tell	the	program	what	moves	we	want	to	play.	We
can	do	that	by	adding	the	QLineEdit	widget	where	we	will	input	the
move	in	algebraic	form	(for	example,	Nf3	to	move	a	knight	to	f3),	but
a	more	natural	way	is	to	click	on	a	piece	with	the	mouse	cursor	(or
tap	it	with	a	finger)	and	then	click	again	on	the	destination	field.	To
obtain	such	functionality,	the	first	thing	to	do	is	to	teach	ChessView	to
detect	mouse	clicks.	Therefore,	add	the	following	method:

QPoint	ChessView::fieldAt(const	QPoint	&pt)	const

{

				if(!m_board)	{

								return	QPoint();

				}

				const	QSize	fs	=	fieldSize();

				int	offset	=	fontMetrics().width('M')	+	4;

				//	'M'	is	the	widest	letter

				if(pt.x()	<	offset)	{

								return	QPoint();

				}

				int	c	=	(pt.x()	-	offset)	/	fs.width();

				int	r	=	pt.y()	/	fs.height();

				if(c	<	0	||	c	>=	m_board->columns()	||

							r	<	0	||	r	>=	m_board->ranks())	{

								return	QPoint();

				}

				return	QPoint(c	+	1,	m_board->ranks()	-	r);

				//	max	rank	-	r

}

The	code	looks	very	similar	to	the	implementation	of	fieldRect().	This
is	because	fieldAt()	implements	its	reverse	operation—it	transforms

a	point	in	the	widget	coordinate	space	to	the	column	and	rank	index
of	a	field	the	point	is	contained	in.	The	index	is	calculated	by
dividing	point	coordinates	by	the	size	of	the	field.	You	surely
remember	that,	in	the	case	of	columns,	the	fields	are	offset	by	the
size	of	the	widest	letter	and	a	margin	of	4,	and	we	have	to	consider
that	in	our	calculations	here	as	well.	We	do	two	checks:	first	we
check	the	horizontal	point	coordinate	against	the	offset	to	detect
whether	the	user	clicked	on	the	part	of	the	widget	where	column
symbols	are	displayed,	and	then	we	check	whether	the	rank	and
column	calculated	fit	the	range	represented	in	the	board.	Finally,
we	return	the	result	as	a	QPoint	value,	since	this	is	the	easiest	way	in
Qt	to	represent	a	two-dimensional	value.

Now	we	need	to	find	a	way	to	make	the	widget	notify	its
environment	that	a	particular	field	was	clicked	on.	We	can	do	this
through	the	signal-slot	mechanism.	Switch	to	the	header	file	of
ChessView	(if	you	currently	have	chessview.cpp	opened	in	Qt	Creator,	you
can	simply	press	the	F4	key	to	be	transferred	to	the	corresponding
header	file)	and	declare	a	clicked(const	QPoint	&)	signal:

signals:

		void	clicked(const	QPoint	&);

To	detect	mouse	input,	we	have	to	override	one	of	the	mouse	event
handlers	a	widget	has:	either	mousePressEvent	or	mouseReleaseEvent.	It
seems	obvious	that	we	should	choose	the	former	event;	this	would
work,	but	it	is	not	the	best	decision.	Just	think	about	the	semantics
of	a	mouse	click:	it	is	a	complex	event	composed	of	pushing	and
releasing	the	mouse	button.	The	actual	"click"	takes	place	after	the
mouse	is	released.	Therefore,	let's	use	mouseReleaseEvent	as	our	event
handler:

void	ChessView::mouseReleaseEvent(QMouseEvent	*event)

{

				QPoint	pt	=	fieldAt(event->pos());

				if(pt.isNull())	{

								return;

				}

				}

				emit	clicked(pt);

}

The	code	is	simple;	we	use	the	method	we	just	implemented	and
pass	it	the	position	read	from	the	QMouseEvent	object.	If	the	returned
point	is	invalid,	we	quietly	return	from	the	method.	Otherwise,
clicked()	is	emitted	with	the	obtained	column	and	rank	values.

We	can	make	use	of	the	signal	now.	Go	to	the	constructor	of
MainWindow	and	add	the	following	line	to	connect	the	widget's	clicked
signal	to	a	custom	slot:

connect(m_view,	&ChessView::clicked,

								this,			&MainWindow::viewClicked);

Declare	the	slot	and	implement	it,	as	follows:

void	MainWindow::viewClicked(const	QPoint	&field)

{

				if(m_clickPoint.isNull())	{

								m_clickPoint	=	field;

				}	else	{

						if(field	!=	m_clickPoint)	{

								m_view->board()->movePiece(

										m_clickPoint.x(),	m_clickPoint.y(),

										field.x(),	field.y()

);

						}

						m_clickPoint	=	QPoint();

				}

}

The	function	uses	a	class	member	variable—m_clickPoint—to	store	the
clicked	field.	The	variable	value	is	made	invalid	after	a	move	is
made.	Thus,	we	can	detect	whether	the	click	we	are	currently
handling	has	"select"	or	"move"	semantics.	In	the	first	case,	we
store	the	selection	in	m_clickPoint;	in	the	other	case,	we	ask	the	board
to	make	a	move	using	the	helper	method	we	implemented	some

time	ago.	Remember	to	declare	m_clickPoint	as	a	private	member
variable	of	MainWindow.

All	should	be	working	now.	However,	if	you	build	the	application,
run	it,	and	start	clicking	around	on	the	chess	board,	you	will	see
that	nothing	happens.	This	is	because	we	forgot	to	tell	the	view	to
refresh	itself	when	the	game	position	on	the	board	is	changed.	We
have	to	connect	the	signals	that	the	board	emits	to	the	update()	slot	of
the	view.	Open	the	setBoard()	method	of	the	widget	class	and	fix	it,	as
follows:

void	ChessView::setBoard(ChessBoard	*board)

{

				//	...

				m_board	=	board;

				//	connect	signals

				if(board)	{

						connect(board,	SIGNAL(dataChanged(int,int)),

														this,		SLOT(update()));

						connect(board,	SIGNAL(boardReset()),

														this,		SLOT(update()));

				}

				updateGeometry();

}

If	you	run	the	program	now,	moves	you	make	will	be	reflected	in
the	widget,	as	shown:

At	this	point,	we	might	consider	the	visual	part	of	the	game	as
finished,	but	there	is	still	one	problem	you	might	have	spotted	while
testing	our	latest	additions.	When	you	click	on	the	board,	there	is
no	visual	hint	that	any	piece	was	actually	selected.	Let's	fix	that	now
by	introducing	the	ability	to	highlight	any	field	on	the	board.

To	do	that,	we	will	develop	a	generic	system	for	different	highlights.
Begin	by	adding	a	Highlight	class	as	an	internal	class	to	ChessView:

class	ChessView	:	public	QWidget

				//	...

public:

				class	Highlight	{

				public:

								Highlight()	{}

								virtual	~Highlight()	{}

								virtual	int	type()	const	{	return	0;	}

				};

				//	...

};

It	is	a	minimalistic	interface	for	highlights	and	only	exposes	a
method	returning	the	type	of	the	highlight	using	a	virtual	method.
In	our	exercise,	we	will	focus	on	just	a	basic	type	that	marks	a	single
field	with	a	given	color.	Such	a	situation	will	be	represented	by	the
FieldHighlight	class:

class	FieldHighlight	:	public	Highlight	{

public:

				enum	{	Type	=	1	};

				FieldHighlight(int	column,	int	rank,	QColor	color)

						:	m_field(column,	rank),	m_color(color)	{}

				inline	int	column()	const	{	return	m_field.x();	}

				inline	int	rank()	const	{	return	m_field.y();	}

				inline	QColor	color()	const	{	return	m_color;	}

				int	type()	const	{	return	Type;	}

private:

				QPoint	m_field;

				QColor	m_color;

};

You	can	see	that	we	provided	a	constructor	that	takes	the	column
and	rank	indices	and	a	color	for	the	highlight	and	it	stores	them	in
private	member	variables.	Also,	type()	is	redefined	to	return
FieldHighlight::Type,	which	we	can	use	to	easily	identify	the	type	of
highlight.	The	next	step	is	to	extend	ChessView	with	abilities	to	add
and	remove	highlights.	As	the	container	declares	a	private
QList<Highlight*>	m_highlights	member	variable,	add	method
declarations:

public:

				void	addHighlight(Highlight	*hl);

				void	removeHighlight(Highlight	*hl);

				inline	Highlight	*highlight(int	index)	const	{

								return	m_highlights.at(index);

				}

				inline	int	highlightCount()	const	{

								return	m_highlights.size();

				}

				}

Next,	provide	implementations	for	non-inline	methods:

void	ChessView::addHighlight(ChessView::Highlight	*hl)	{

				m_highlights.append(hl);	

				update();	

}

	

void	ChessView::removeHighlight(ChessView::Highlight	*hl)	{

				m_highlights.removeOne(hl);	

				update();	

}

Drawing	the	highlights	is	really	easy;	we	will	use	yet	another	virtual
draw	method.	Place	the	following	call	in	the	paintEvent()
implementation	right	before	the	loop	that	is	responsible	for
rendering	pieces:

drawHighlights(&painter);

The	implementation	simply	iterates	over	all	the	highlights	and
renders	those	it	understands:

void	ChessView::drawHighlights(QPainter	*painter)

{

				for(int	idx	=	0;	idx	<	highlightCount();	++idx)	{

								Highlight	*hl	=	highlight(idx);

								if(hl->type()	==	FieldHighlight::Type)	{

												FieldHighlight	*fhl	=	static_cast<FieldHighlight*>(hl);

												QRect	rect	=	fieldRect(fhl->column(),	fhl->rank());

												painter->fillRect(rect,	fhl->color());

								}

				}

}

By	checking	the	type	of	the	highlight,	we	know	which	class	to	cast
the	generic

pointer	to.	Then,	we	can	query	the	object	for	the	needed	data.
Finally,	we	use	QPainter::fillRect()	to	fill	the	field	with	the	given	color.
As	drawHighlights()	is	called	before	the	piece	painting	loop	and	after
the	field	painting	loop,	the	highlight	will	cover	the	background	but
not	the	piece.

That's	the	basic	highlighting	system.	Let's	make	our	viewClicked()	slot
use	it:

void	MainWindow::viewClicked(const	QPoint	&field)

{

				if(m_clickPoint.isNull())	{

								if(m_view->board()->data(field.x(),	field.y())	!=	'	')	{

												m_clickPoint	=	field;

												m_selectedField	=	new	ChessView::FieldHighlight(

														field.x(),	field.y(),	QColor(255,	0,	0,	50)

);

												m_view->addHighlight(m_selectedField);

								}

				}	else	{

								if(field	!=	m_clickPoint)	{

												m_view->board()->movePiece(

																m_clickPoint.x(),	m_clickPoint.y(),	field.x(),

field.y()

);

								};

								m_clickPoint	=	QPoint();

								m_view->removeHighlight(m_selectedField);

								delete	m_selectedField;

								m_selectedField	=	nullptr;

				}

}

Note	how	we	check	that	a	field	can	only	be	selected	if	it	is	not	empty
(that	is,	there	is	an	existing	piece	occupying	that	field).

You	should	also	add	a	ChessView::FieldHighlight	*m_selectedField	private
member	variable	and	initialize	it	with	a	null	pointer	in	the
constructor.	You	can	now	build	the	game,	execute	it,	and	start
moving	pieces	around:

What	just	happened?
By	adding	a	few	lines	of	code,	we	managed	to	make	the	board
clickable.	We	connected	a	custom	slot	that	reads	which	field	was
clicked	on	and	can	highlight	it	with	a	semitransparent	red	color.
Clicking	on	another	field	will	move	the	highlighted	piece	there.	The
highlighting	system	we	developed	is	very	generic.	We	use	it	to
highlight	a	single	field	with	a	solid	color,	but	you	can	mark	as	many
fields	as	you	want	with	a	number	of	different	colors,	for	example,	to
show	valid	moves	after	selecting	a	piece.	The	system	can	easily	be
extended	with	new	types	of	highlights;	for	example,	you	can	draw
arrows	on	the	board	using	QPainterPath	to	have	a	complex	hinting
system	(say,	showing	the	player	the	suggested	move).

Time	for	action	–	Connecting
the	game	algorithm
It	would	take	us	too	long	to	implement	a	full	chess	game	algorithm
here,	so	instead,	we	will	settle	for	a	much	simpler	game	called	Fox
and	Hounds.	One	of	the	players	has	four	pawns	(hounds),	which
can	only	move	over	black	fields	and	the	pawn	can	only	move	in	a
forward	fashion	(toward	higher	ranks).	The	other	player	has	just	a
single	pawn	(fox),	which	starts	from	the	opposite	side	of	the	board:

It	can	also	move	only	over	black	fields;	however	it	can	move	both
forward	(toward	higher	ranks)	as	well	as	backward	(toward	lower
ranks).	Players	move	their	pawns	in	turn.	The	goal	of	the	fox	is	to
reach	the	opposite	end	of	the	board;	the	goal	of	the	hounds	is	to
trap	the	fox	so	that	it	can't	make	a	move:

It's	time	to	get	to	work!	First,	we	will	extend	the	ChessAlgorithm	class
with	the	required	interface:

class	ChessAlgorithm	:	public	QObject

{

				Q_OBJECT

				Q_PROPERTY(Result	result	READ	result)

				Q_PROPERTY(Player	currentPlayer

															READ	currentPlayer

															NOTIFY	currentPlayerChanged)

public:

				enum	Result	{	NoResult,	Player1Wins,	Draw,	Player2Wins	};

				Q_ENUM(Result)

				enum	Player	{	NoPlayer,	Player1,	Player2	};

				Q_ENUM(Player)

	

				explicit	ChessAlgorithm(QObject	*parent	=	0);

				ChessBoard*	board()	const;

				inline	Result	result()	const	{

								return	m_result;

				}

				inline	Player	currentPlayer()	const	{

								return	m_currentPlayer;

				}

	

signals:

				void	boardChanged(ChessBoard*);

				void	gameOver(Result);

				void	currentPlayerChanged(Player);

	

public	slots:

				virtual	void	newGame();

				virtual	bool	move(int	colFrom,	int	rankFrom,	int	colTo,	int

rankTo);

				bool	move(const	QPoint	&from,	const	QPoint	&to);

	

protected:

				virtual	void	setupBoard();

				void	setBoard(ChessBoard	*board);

				void	setResult(Result);

				void	setCurrentPlayer(Player);

private:

				ChessBoard	*m_board;

				Result	m_result;

				Player	m_currentPlayer;

};

There	are	two	sets	of	members	here.	First,	we	have	a	number	of
enums,	variables,	signals,	and	methods	that	are	related	to	the	state
of	the	game:	which	player	should	make	their	move	now	and	what	is
the	result	of	the	game	currently.	The	Q_ENUM	macro	is	used	to	register
enumerations	in	Qt's	metatype	system	so	that	they	can	be	used	as
values	for	properties	or	arguments	in	signals.	Property	declarations
and	getters	for	them	don't	need	any	extra	explanation.	We	have	also
declared	protected	methods	for	setting	the	variables	from	within
subclasses.	Here's	their	suggested	implementation:

void	ChessAlgorithm::setResult(Result	value)

{

				if(result()	==	value)	{

								return;

				}

				}

				if(result()	==	NoResult)	{

								m_result	=	value;

								emit	gameOver(m_result);

				}	else	{

								m_result	=	value;

				}

}

	

void	ChessAlgorithm::setCurrentPlayer(Player	value)

{

				if(currentPlayer()	==	value)	{

								return;

				}

				m_currentPlayer	=	value;

				emit	currentPlayerChanged(m_currentPlayer);

}

Remember	about	initializing	m_currentPlayer	and	m_result	to	NoPlayer	and
NoResult	in	the	constructor	of	the	ChessAlgorithm	class.

The	second	group	of	functions	is	methods	that	modify	the	state	of
the	game:	the	two	variants	of	move().	The	virtual	variant	is	meant	to
be	reimplemented	by	the	real	algorithm	to	check	whether	a	given
move	is	valid	in	the	current	game	state	and	if	that	is	the	case,	to
perform	the	actual	modification	of	the	game	board.	In	the	base
class,	we	can	simply	reject	all	possible	moves:

bool	ChessAlgorithm::move(int	colFrom,	int	rankFrom,

			int	colTo,	int	rankTo)

{

				Q_UNUSED(colFrom)

				Q_UNUSED(rankFrom)

				Q_UNUSED(colTo)

				Q_UNUSED(rankTo)

				return	false;

}

The	overload	is	simply	a	convenience	method	that	accepts	two	QPoint
objects	instead	of	four	integers:

bool	ChessAlgorithm::move(const	QPoint	&from,	const	QPoint	&to)

bool	ChessAlgorithm::move(const	QPoint	&from,	const	QPoint	&to)

{

				return	move(from.x(),	from.y(),	to.x(),	to.y());

}

The	interface	for	the	algorithm	is	ready	now,	and	we	can	implement
it	for	the	Fox	and	Hounds	game.	Subclass	ChessAlgorithm	to	create	a
FoxAndHounds	class:

class	FoxAndHounds	:	public	ChessAlgorithm

{

public:

				FoxAndHounds(QObject	*parent	=	0);

				void	newGame();

				bool	move(int	colFrom,	int	rankFrom,	int	colTo,	int	rankTo);

};

The	implementation	of	newGame()	is	pretty	simple:	we	set	up	the
board,	place	pieces	on	it,	and	signal	that	it	is	time	for	the	first	player
to	make	their	move:

void	FoxAndHounds::newGame()

{

				setupBoard();

				board()->setFen("3p4/8/8/8/8/8/8/P1P1P1P1	w");

					//	'w'	-	white	to	move

				m_fox	=	QPoint(5,8);

				setResult(NoResult);

				setCurrentPlayer(Player1);

}

The	algorithm	for	the	game	is	quite	simple.	Implement	move()	as
follows:

bool	FoxAndHounds::move(int	colFrom,	int	rankFrom,

			int	colTo,	int	rankTo)

{

				if(currentPlayer()	==	NoPlayer)	{

								return	false;

				}

	

				//	is	there	a	piece	of	the	right	color?

				char	source	=	board()->data(colFrom,	rankFrom);

				if(currentPlayer()	==	Player1	&&	source	!=	'P')	return	false;

				if(currentPlayer()	==	Player2	&&	source	!=	'p')	return	false;

	

				//	both	can	only	move	one	column	right	or	left

				if(colTo	!=	colFrom	+	1	&&	colTo	!=	colFrom	-	1)	return	false;

	

				//	do	we	move	within	the	board?

				if(colTo	<	1		||	colTo		>	board()->columns())	return	false;

				if(rankTo	<	1	||	rankTo	>	board()->ranks())			return	false;

	

				//	is	the	destination	field	black?

				if((colTo	+	rankTo)	%	2)	return	false;

	

				//	is	the	destination	field	empty?

				char	destination	=	board()->data(colTo,	rankTo);

				if(destination	!=	'	')	return	false;

	

				//	is	white	advancing?

				if(currentPlayer()	==	Player1	&&	rankTo	<=	rankFrom)	return	false;

	

				board()->movePiece(colFrom,	rankFrom,	colTo,	rankTo);

				//	make	the	move

				if(currentPlayer()	==	Player2)	{

						m_fox	=	QPoint(colTo,	rankTo);	//	cache	fox	position

				}

				//	check	win	condition

				if(currentPlayer()	==	Player2	&&	rankTo	==	1)	{

								setResult(Player2Wins);	//	fox	has	escaped

				}	else	if(currentPlayer()	==	Player1	&&	!foxCanMove())	{

								setResult(Player1Wins);	//	fox	can't	move

				}	else	{

								//	the	other	player	makes	the	move	now

								setCurrentPlayer(currentPlayer()	==	Player1	?	Player2	:

Player1);

				}

				return	true;

}

Declare	a	protected	foxCanMove()	method	and	implement	it	using	the
following	code:

bool	FoxAndHounds::foxCanMove()	const

{

				if(emptyByOffset(-1,	-1)	||	emptyByOffset(-1,	1)	||

				if(emptyByOffset(-1,	-1)	||	emptyByOffset(-1,	1)	||

							emptyByOffset(1,	-1)	||	emptyByOffset(1,	1))	{

								return	true;

				}

				return	false;

}

Then,	do	the	same	with	emptyByOffset():

bool	FoxAndHounds::emptyByOffset(int	x,	int	y)	const

{

				const	int	destCol	=	m_fox.x()	+	x;

				const	int	destRank	=	m_fox.y()	+	y;

				if(destCol	<	1	||	destRank	<	1	||

							destCol	>		board()->columns()	||

							destRank	>	board()->ranks())	{

								return	false;

				}

				return	(board()->data(destCol,	destRank)	==	'	');

}

Lastly,	declare	a	private	QPoint	m_fox	member	variable.

The	simplest	way	to	test	the	game	is	to	make	two	changes	to	the
code.	First,	in	the	constructor	of	the	main	window	class,	replace
m_algorithm	=	new	ChessAlgorithm(this)	with	m_algorithm	=	new	FoxAndHounds(this).
Second,	modify	the	viewClicked()	slot,	as	follows:

void	MainWindow::viewClicked(const	QPoint	&field)

{

				if(m_clickPoint.isNull())	{

								//	...

				}	else	{

								if(field	!=	m_clickPoint)	{

												m_algorithm->move(m_clickPoint,	field);

								}

								//	...

				}

}

You	can	also	connect	signals	from	the	algorithm	class	to	custom

slots	of	the	view	or	window	to	notify	about	the	end	of	the	game	and
provide	a	visual	hint	as	to	which	player	should	make	their	move
now.

What	just	happened?
We	created	a	very	simplistic	API	for	implementing	chess-like	games
by	introducing	the	newGame()	and	move()	virtual	methods	to	the
algorithm	class.	The	former	method	simply	sets	up	everything.	The
latter	uses	simple	checks	to	determine	whether	a	particular	move	is
valid	and	whether	the	game	has	ended.	We	use	the	m_fox	member
variable	to	track	the	current	position	of	the	fox	to	be	able	to	quickly
determine	whether	it	has	any	valid	moves.	When	the	game	ends,	the
gameOver()	signal	is	emitted	and	the	result	of	the	game	can	be	obtained
from	the	algorithm.	You	can	use	the	exact	same	framework	for
implementing	all	chess	rules.

Have	a	go	hero	–	Implementing
the	UI	around	the	chess	board
During	the	exercise,	we	focused	on	developing	the	game	board	view
and	necessary	classes	to	make	the	game	actually	run.	However,	we
completely	neglected	the	regular	user	interface	the	game	might
possess,	such	as	toolbars	and	menus.	You	can	try	designing	a	set	of
menus	and	toolbars	for	the	game.	Make	it	possible	to	start	a	new
game,	save	a	game	in	progress	(say	by	implementing	a	FEN
serializer),	load	a	saved	game	(say	by	leveraging	the	existing	FEN
string	parser),	or	choose	different	game	types	that	will	spawn
different	ChessAlgorithm	subclasses.	You	can	also	provide	a	settings
dialog	for	adjusting	the	look	of	the	game	board.	If	you	feel	like	it,
you	can	add	chess	clocks	or	implement	a	simple	tutorial	system	that
will	guide	the	player	through	the	basics	of	chess	using	text	and
visual	hints	via	the	highlight	system	we	implemented.

Have	a	go	hero	–	Connecting	a
UCI-compliant	chess	engine
If	you	really	want	to	test	your	skills,	you	can	implement	a
ChessAlgorithm	subclass	that	will	connect	to	a	Universal	Chess
Interface	(UCI)	chess	engine	such	as	StockFish
(http://stockfishchess.org)	and	provide	a	challenging	artificial
intelligence	opponent	for	a	human	player.	UCI	is	the	de	facto
standard	for	communication	between	a	chess	engine	and	a	chess
frontend.	Its	specification	is	freely	available,	so	you	can	study	it	on
your	own.	To	talk	to	a	UCI-compliant	engine,	you	can	use	QProcess,
which	will	spawn	the	engine	as	an	external	process	and	attach	itself
to	its	standard	input	and	standard	output.	Then,	you	can	send
commands	to	the	engine	by	writing	to	its	standard	input	and	read
messages	from	the	engine	by	reading	its	standard	output.	To	get
you	started,	here's	a	short	snippet	of	code	that	starts	the	engine	and
attaches	to	its	communication	channels:

class	UciEngine	:	public	QObject	{

				Q_OBJECT

public:

				UciEngine(QObject	*parent	=	0)	:	QObject(parent)	{

								m_uciEngine	=	new	QProcess(this);

								m_uciEngine->setReadChannel(QProcess::StandardOutput);

								connect(m_uciEngine,	SIGNAL(readyRead()),

SLOT(readFromEngine()));

				}

public	slots:

				void	startEngine(const	QString	&enginePath)	{

								m_uciEngine->start(enginePath);

				}

				void	sendCommand(const	QString	&command)	{

								m_uciEngine->write(command.toLatin1());

				}

private	slots:

				void	readFromEngine()	{

http://stockfishchess.org

				void	readFromEngine()	{

								while(m_uciEngine->canReadLine())	{

												QString	line	=	QString::fromLatin1(m_uciEngine-

>readLine());

												emit	messageReceived(line);

								}

				}

signals:

				void	messageReceived(QString);

private:

				QProcess	*m_uciEngine;

};

Pop	quiz
Q1.	Which	class	should	you	use	to	load	a	JPEG	image	from	a	file
and	change	a	few	pixels	in	it?

1.	 QImage

2.	 QPixmap

3.	 QIcon

Q2.	Which	function	can	be	used	to	schedule	a	repaint	of	the	widget?

1.	 paintEvent()

2.	 update()

3.	 show()

Q3.	Which	function	can	be	used	to	change	the	color	of	the	outline
drawn	by	QPainter?

1.	 setColor()

2.	 setBrush()

3.	 setPen()

Summary
In	this	chapter,	we	learned	about	using	raster	graphics	with	Qt
Widgets.	What	was	presented	in	this	chapter	will	let	you	implement
custom	widgets	with	painting	and	event	handling.	We	also
described	how	to	handle	image	files	and	do	some	basic	painting	on
images.	This	chapter	concludes	our	overview	of	CPU	rendering	in
Qt.

In	the	next	chapter,	we	will	switch	from	raster	painting	to
accelerated	vector	graphics	and	explore	Qt	capabilities	related	to
OpenGL	and	Vulkan.

OpenGL	and	Vulkan	in	Qt
applications
Hardware	acceleration	is	crucial	for	implementing	modern	games
with	advanced	graphics	effects.	Qt	Widgets	module	uses	traditional
approach	optimized	for	CPU-based	rendering.	Even	though	you	can
make	any	widget	use	OpenGL,	the	performance	will	usually	not	be
maximized.	However,	Qt	allows	you	to	use	OpenGL	or	Vulkan
directly	to	create	high-performance	graphics	limited	only	by	the
graphics	card's	processing	power.	In	this	chapter,	you	will	learn
about	employing	your	OpenGL	and	Vulkan	skills	to	display	fast	3D
graphics.	If	you	are	not	familiar	with	these	technologies,	this
chapter	should	give	you	a	kickstart	for	further	research	in	this	topic.
We	will	also	describe	multiple	Qt	helper	classes	that	simplify	usage
of	OpenGL	textures,	shaders,	and	buffers.	By	the	end	of	the	chapter,
you	will	be	able	to	create	2D	and	3D	graphics	for	your	games	using
OpenGL	and	Vulkan	classes	offered	by	Qt	and	integrate	them	with
the	rest	of	the	user	interface.

The	main	topics	covered	in	this	chapter	are	as	listed:

OpenGL	in	Qt	applications

Immediate	mode

Textures

Shaders

OpenGL	buffers

Vulkan	in	Qt	applications

Introduction	to	OpenGL	with	Qt
We	are	not	experts	on	OpenGL,	so	in	this	part	of	the	chapter,	we
will	not	teach	you	to	do	any	fancy	stuff	with	OpenGL	and	Qt	but	will
show	you	how	to	enable	the	use	of	your	OpenGL	skills	in	Qt
applications.	There	are	a	lot	of	tutorials	and	courses	on	OpenGL	out
there,	so	if	you're	not	that	skilled	with	OpenGL,	you	can	still	benefit
from	what	is	described	here	by	employing	the	knowledge	gained
here	to	more	easily	learn	fancy	stuff.	You	can	use	external	materials
and	a	high-level	API	offered	by	Qt,	which	will	speed	up	many	of	the
tasks	described	in	the	tutorials.

OpenGL	windows	and	contexts
There	are	many	ways	you	can	perform	OpenGL	rendering	in	Qt.
The	most	straightforward	way	that	we	will	mainly	use	is	to
subclass	QOpenGLWindow.	It	allows	OpenGL	to	render	your	content
directly	to	a	whole	window	and	is	suitable	if	you	draw	everything	in
your	application	with	OpenGL.	You	can	make	it	a	fullscreen	window
if	you	want.	However,	later	we	will	also	discuss	other	approaches
that	will	allow	you	to	integrate	OpenGL	content	into	a	widget-based
application.

The	OpenGL	context	represents	the	overall	state	of	the	OpenGL
pipeline,	which	guides	the	process	of	data	processing	and	rendering
to	a	particular	device.	In	Qt,	it	is	represented	by
the	QOpenGLContext	class.	A	related	concept	that	needs	explanation	is
the	idea	of	an	OpenGL	context	being	"current"	in	a	thread.	The	way
OpenGL	calls	work	is	that	they	do	not	use	any	handle	to	any	object
containing	information	on	where	and	how	to	execute	the	series	of
low-level	OpenGL	calls.	Instead,	it	is	assumed	that	they	are
executed	in	the	context	of	the	current	machine	state.	The	state	may
dictate	whether	to	render	a	scene	to	a	screen	or	to	a	frame	buffer
object,	which	mechanisms	are	enabled,	or	the	properties	of	the
surface	OpenGL	is	rendering	on.	Making	a	context	"current"	means
that	all	further	OpenGL	operations	issued	by	a	particular	thread	will
be	applied	to	this	context.	To	add	to	that,	a	context	can	be	"current"
only	in	one	thread	at	the	same	time;	therefore,	it	is	important	to
make	the	context	current	before	making	any	OpenGL	calls	and	then
marking	it	as	available	after	you	are	done	accessing	OpenGL
resources.

QOpenGLWindow	has	a	very	simple	API	that	hides	most	of	the	unnecessary
details	from	the	developer.	Apart	from	constructors	and	a
destructor,	it	provides	a	small	number	of	very	useful	methods.	First,

there	are	auxiliary	methods	for	managing	the	OpenGL	context:
context(),	which	returns	the	context,	and	makeCurrent()	as	well	as
doneCurrent()	for	acquiring	and	releasing	the	context.	The	class	also
provides	a	number	of	virtual	methods	we	can	re-implement	to
display	OpenGL	graphics.

We	will	be	using	the	following	three	virtual	methods:

initializeGL()	is	invoked	by	the	framework	once,	before	any

painting	is	actually	done	so	that	you	can	prepare	any

resources	or	initialize	the	context	in	any	way	you	require.

paintGL()	is	the	equivalent	of	paintEvent()	for	the	widget	classes.

It	gets	executed	whenever	the	window	needs	to	be	repainted.

This	is	the	function	where	you	should	put	your	OpenGL

rendering	code.

resizeGL()	is	invoked	every	time	the	window	is	resized.	It

accepts	the	width	and	height	of	the	window	as	parameters.

You	can	make	use	of	that	method	by	re-implementing	it	so

that	you	can	prepare	yourself	for	the	fact	that	the	next	call

to	paintGL()	renders	to	a	viewport	of	a	different	size.

Before	calling	any	of	these	virtual	functions,	QOpenGLWindow	ensures	that
the	OpenGL	context	is	current,	so	there	is	no	need	to
manually	call	makeCurrent()	in	them.

Accessing	OpenGL	functions
Interaction	with	OpenGL	is	usually	done	through	calling	functions
provided	by	the	OpenGL	library.	For	example,	in	a	regular	C++
OpenGL	application,	you	can	see	calls	to	OpenGL	functions	such
as	glClearColor().	These	functions	are	resolved	when	your	binary	is
linked	against	the	OpenGL	library.	However,	when	you	write	a
cross-platform	application,	resolving	all	the	required	OpenGL
functions	is	not	trivial.	Luckily,	Qt	provides	a	way	to	call	OpenGL
functions	without	having	to	worry	about	the	platform-specific
details.

In	a	Qt	application,	you	should	access	OpenGL	functions	through	a
family	of	QOpenGLFunctions	classes.	The	QOpenGLFunctions	class	itself	only
provides	access	to	functions	that	are	part	of	OpenGL	ES	2.0	API.
This	subset	is	expected	to	work	at	most	desktop	and	embedded
platforms	supported	by	Qt	(where	OpenGL	is	available	at	all).
However,	this	is	a	really	limited	set	of	functions,	and	sometimes	you
may	want	to	use	a	more	recent	OpenGL	version	at	the	cost	of
supporting	less	platforms.	For	each	known	OpenGL	version	and
profile,	Qt	provides	a	separate	class	that	contains	the	set	of
available	functions.	For	example,	the	QOpenGLFunctions_3_3_Core	class	will
contain	all	functions	provided	by	the	OpenGL	3.3	core	profile.

The	approach	recommended	by	Qt	is	to	select	the	OpenGL
functions	class	corresponding	to	the	version	you	want	to	use	and
add	this	class	an	the	second	base	class	of	your	window	or	widget.
This	will	make	all	OpenGL	functions	from	that	version	available
within	your	class.	This	approach	allows	you	to	use	code	that	was
using	the	OpenGL	library	directly	without	changing	it.	When	you
put	such	code	in	your	class,	the	compiler	will,	for	example,	use
the	QOpenGLFunctions::glClearColor()	function	instead	of	the
global	glClearColor()	function	provided	by	the	OpenGL	library.

However,	when	using	this	approach,	you	must	be	careful	to	only	use
functions	provided	by	your	base	class.	You	can	accidentally	use	a
global	function	instead	of	a	function	provided	by	Qt	classes	if	the	Qt
class	you	choose	does	not	contain	it.	For	example,	if	you
use	QOpenGLFunctions	as	the	base	class,	you	can't	use	the	glBegin()
function,	as	it	is	not	provided	by	this	Qt	class.	Such	erroneous	code
may	work	on	one	operating	system	and	then	suddenly	not	compile
on	another	because	you	don't	link	against	the	OpenGL	library.	As
long	as	you	only	use	OpenGL	functions	provided	by	Qt	classes,	you
don't	have	to	think	about	linking	with	the	OpenGL	library	or
resolving	functions	in	a	cross-platform	way.

If	you	want	to	ensure	that	you	only	use	Qt	OpenGL	function
wrappers,	you	can	use	the	Qt	class	as	a	private	field	instead	of	a
base	class.	In	that	case,	you	have	to	access	every	OpenGL	function
through	the	private	field,	for	example,	m_openGLFunctions->glClearColor().
This	will	make	your	code	more	verbose,	but	at	least	you	will	be	sure
that	you	don't	accidentally	use	a	global	function.

Before	using	Qt	OpenGL	functions,	you	have	to	call
the	initializeOpenGLFunctions()	method	of	the	functions	class	in	the
current	OpenGL	context.	This	is	usually	done	in	the	initializeGL()
function	of	the	window.	The	QOpenGLFunctions	class	is	expected	to
always	initialize	successfully,	so	its	initializeOpenGLFunctions()	method
doesn't	return	anything.	In	all	the	other	functions'	classes,	this
function	returns	bool.	If	it	returns	false,	it	means	that	Qt	was	not	able
to	resolve	all	the	required	functions	successfully,	and	your
application	should	exit	with	an	error	message.

In	our	examples,	we	will	use	the	QOpenGLFunctions_1_1	class	that	contains
all	OpenGL	functions	we'll	use.	When	you're	creating	your	own
project,	think	about	the	OpenGL	profile	you	want	to	target	and
select	the	appropriate	functions	class.

Using	OpenGL	in	immediate
mode
We	will	start	with	the	most	basic	approach	that's	called	immediate
mode.	In	this	mode,	no	additional	setup	of	OpenGL	buffers	or
shaders	is	required.	You	can	just	supply	a	bunch	of	geometric
primitives	and	get	the	result	right	away.	Immediate	mode	is	now
deprecated	because	it	works	much	slower	and	is	less	flexible	than
more	advanced	techniques.	However,	it's	so	much	easier	than	them
that	basically	every	OpenGL	tutorial	starts	with	describing	the
immediate	mode	calls.	In	this	section,	we'll	show	how	to	perform
some	simple	OpenGL	drawing	with	very	little	code.	A	more	modern
approach	will	be	covered	in	the	next	section	of	this	chapter.

Time	for	action	–	Drawing	a
triangle	using	Qt	and	OpenGL
For	the	first	exercise,	we	will	create	a	subclass	of	QOpenGLWindow	that
renders	a	triangle	using	simple	OpenGL	calls.	Create	a	new	project,
starting	with	Empty	qmake	Project	from	the	Other	Project	group	as
the	template.	In	the	project	file,	put	the	following	content:

QT	=	core	gui

TARGET	=	triangle

TEMPLATE	=	app

Note	that	our	project	does	not	include	Qt	Widgets	module.	Using	the	QOpenGLWindow
approach	allows	us	to	remove	this	unnecessary	dependency	and	make	our	application
more	lightweight.

Note	that	Qt	Core	and	Qt	GUI	modules	are	enabled	by	default,	so
you	don't	have	to	add	them	to	the	QT	variable,	but	we	prefer	to
explicitly	show	that	we	are	using	them	in	our	project.

Having	the	basic	project	setup	ready,	let's	define	a	SimpleGLWindow	class
as	a	subclass	of	QOpenGLWindow	and	QOpenGLFunctions_1_1.	Since	we	don't
want	to	allow	external	access	to	OpenGL	functions,	we	use
protected	inheritance	for	the	second	base.	Next,	we	override	the
virtual	initializeGL()	method	of	QOpenGLWindow.	In	this	method,	we
initialize	our	QOpenGLFunctions_1_1	base	class	and	use	the	glClearColor()
function	that	it	provides:

class	SimpleGLWindow	:	public	QOpenGLWindow,

																							protected	QOpenGLFunctions_1_1	

{

public:

				SimpleGLWindow(QWindow	*parent	=	0)	:

								QOpenGLWindow(NoPartialUpdate,	parent)	{

				}

protected:

protected:

				void	initializeGL()	{

								if	(!initializeOpenGLFunctions())	{

												qFatal("initializeOpenGLFunctions	failed");

								}

								glClearColor(1,	1,	1,	0);

				}	

};

In	initializeGL(),	we	first	call	initializeOpenGLFunctions(),	which	is	a
method	of	the	QOpenGLFunctions_1_1	class,	one	of	the	base	classes	of	our
window	class.	The	method	takes	care	of	setting	up	all	the	functions
according	to	the	parameters	of	the	current	OpenGL	context	(thus,	it
is	important	to	first	make	the	context	current,	which	luckily	is	done
for	us	behind	the	scenes	before	initializeGL()	is	invoked).	If	this
function	fails,	we	use	the	qFatal()	macro	to	print	an	error	message	to
stderr	and	abort	the	application.	Then,	we	use
the	QOpenGLFunctions_1_1::glClearColor()	function	to	set	the	clear	color	of
the	scene	to	white.

The	next	step	is	to	re-implement	paintGL()	and	put	the	actual	drawing
code	there:

void	SimpleGLWindow::paintGL()	{

				glClear(GL_COLOR_BUFFER_BIT);

				glViewport(0,	0,	width(),	height());

				glBegin(GL_TRIANGLES);

				{

								glColor3f(1,	0,	0);

								glVertex3f(0.0f,	1.0f,	0.0f);

								glColor3f(0,	1,	0);

								glVertex3f(1.0f,	-1.0f,	0.0f);

								glColor3f(0,	0,	1);

								glVertex3f(-1.0f,	-1.0f,	0.0f);

				}

				glEnd();

}

This	function	first	clears	the	color	buffer	and	sets	the	OpenGL
viewport	of	the	context	to	be	the	size	of	the	window.	Then,	we	tell
OpenGL	to	start	drawing	using	triangles	with	the	glBegin()	call	and

passing	GL_TRIANGLES	as	the	drawing	mode.	Then,	we	pass	three
vertices	along	with	their	colors	to	form	a	triangle.	Finally,	we
inform	the	pipeline,	by	invoking	glEnd(),	that	we	are	done	drawing
using	the	current	mode.

What	is	left	is	a	trivial	main()	function	that	sets	up	the	window	and
starts	the	event	loop.	Add	a	new	C++	Source	File,	call	it	main.cpp,	and
implement	main(),	as	follows:

int	main(int	argc,	char	**argv)	{

				QGuiApplication	app(argc,	argv);

				SimpleGLWindow	window;

				window.resize(600,	400);

				window.show();

				return	app.exec();

}

This	function	is	very	similar	to	what	we	usually	have	in	the	main()
function,	but	we	use	QGuiApplication	instead	of	QApplication,	because	we
only	use	the	Qt	GUI	module.	After	running	the	project,	you	should
see	the	following:

Multisampling
You	can	see	that	the	triangle	has	jagged	edges.	That's	because	of	the
aliasing	effect.	You	can	counter	it	by	enabling	multisampling	for	the
window,	which	will	make	OpenGL	render	the	contents	as	if	the
screen	had	higher	resolution	and	then	average	the	result,	which	acts
as	anti-aliasing.	To	do	that,	add	the	following	code	to	the
constructor	of	the	window:

QSurfaceFormat	fmt	=	format();

fmt.setSamples(16);	//	multisampling	set	to	16

setFormat(fmt);

Note	that	multisampling	is	resource-demanding,	so	setting	a	high	number	of	samples	may
cause	your	application	to	fail	if	your	hardware	or	driver	can't	handle	it.	If	the	application
doesn't	work	after	enabling	multisampling,	try	to	lower	the	number	of	samples	or	just
disable	it.

Time	for	action	–	Scene-based
rendering
Let's	take	our	rendering	code	to	a	higher	level.	Putting	OpenGL
code	directly	into	the	window	class	requires	subclassing	the	window
class	and	makes	the	window	class	more	and	more	complex.	Let's
follow	good	programming	practice	and	separate	rendering	code
from	window	code.

Create	a	new	class	and	call	it	AbstractGLScene.	It	will	be	the	base	class
for
definitions	of	OpenGL	scenes.	We	also	derive	the	class	(with
protected	scope)	from	QOpenGLFunctions_1_1	to	make	accessing	different
OpenGL	functions	easier.	Make	the	scene	class	accept	a	pointer	to
QOpenGLWindow,	either	in	the	constructor	or	through	a	dedicated	setter
method.	Ensure	that	the	pointer	is	stored	in	the	class	for	easier
access,	as	we	will	rely	on	that	pointer	for	accessing	physical
properties	of	the	window.	Add	methods	for	querying	the	window's
OpenGL	context.	You	should	end	up	with	code	similar	to	the
following:

class	AbstractGLScene	:	protected	QOpenGLFunctions_1_1	{

public:

				AbstractGLScene(QOpenGLWindow	*window	=	nullptr)	{

								m_window	=	window;

				}

				QOpenGLWindow*	window()	const	{	return	m_window;	}

				QOpenGLContext*	context()	{

							return	m_window	?	m_window->context()	:	nullptr;

				}

				const	QOpenGLContext*	context()	const	{

								return	m_window	?	m_window->context()	:	nullptr;

				}

private:

				QOpenGLWindow	*m_window	=	nullptr;

				QOpenGLWindow	*m_window	=	nullptr;

};

Now	the	essential	part	begins.	Add	two	pure	virtual	methods	called
paint()	and	initialize().	Also,	remember	to	add	a	virtual	destructor.

Instead	of	making	initialize()	a	pure	virtual	function,	you	can	implement	its	body	in	such
a	way	that	it	will	call	initializeOpenGLFunctions()	to	fulfill	the	requirements	of	the
QOpenGFunctions	class.	Then,	subclasses	of	AbstractGLScene	can	ensure	that	the	functions	are
initialized	properly	by	calling	the	base	class	implementation	of	initialize().

Next,	create	a	subclass	of	QOpenGLWindow	and	call	it	SceneGLWindow.	Add
an	AbstractGLScene	*m_scene	private	field	and	implement	a	getter	and	a
setter	for	it.	Create	a	constructor	using	the	following	code:

SceneGLWindow::SceneGLWindow(QWindow	*parent)	:	

				QOpenGLWindow(NoPartialUpdate,	parent)

{

}

This	constructor	forwards	the	parent	argument	to	the	base
constructor	and	assigns	NoPartialUpdate	as	the	window's	UpdateBehavior.
This	option	means	that	the	window	will	be	fully	painted	on	each
paintGL()	call	and	thus	no	framebuffer	is	needed.	This	is	the	default
value	of	the	first	argument,	but	since	we	provide	the	second
argument,	we	are	obligated	to	provide	the	first	argument	explicitly.

Then,	re-implement	the	initializeGL()	and	paintGL()	methods	and	make
them	call	appropriate	equivalents	in	the	scene:

void	SceneGLWindow::initializeGL()	{

				if(m_scene)	{

								m_scene->initialize();

				}

}

void	SceneGLWindow::paintGL()	{

				if(m_scene)	{

								m_scene->paint();

				}

}

Finally,	instantiate	SceneGLWindow	in	the	main()	function.

What	just	happened?
We	have	just	set	up	a	class	chain	that	separates	the	window	code
from	the	actual	OpenGL	scene.	The	window	forwards	all	calls
related	to	scene	contents	to	the	scene	object	so	that	when	the
window	is	requested	to	repaint	itself,	it	delegates	the	task	to	the
scene	object.	Note	that	prior	to	doing	that,	the	window	will	make
the	OpenGL	context	current;	therefore,	all	OpenGL	calls	that	the
scene	makes	will	be	related	to	that	context.	You	can	store	the	code
created	in	this	exercise	for	later	reuse	in	further	exercises	and	your
own	projects.

Time	for	action	–	Drawing	a
textured	cube
Create	a	new	class	named	CubeGLScene	and	derive	it	from	AbstractGLScene.
Implement	the	constructor	to	forward	its	argument	to	the	base	class
constructor.	Add	a	method	to	store	a	QImage	object	in	the	scene	that
will	contain	texture	data	for	the	cube.	Add	a	QOpenGLTexture	pointer
member	as	well,	which	will	contain	the	texture,	initialize	it	to	nullptr
in	the	constructor,	and	delete	it	in	the	destructor.	Let's	call	the
m_textureImage	image	object	and	the	m_texture	texture.	Now	add	a
protected	initializeTexture()	method	and	fill	it	with	the	following	code:

void	CubeGLScene::initializeTexture()	{

				m_texture	=	new	QOpenGLTexture(m_textureImage.mirrored());

				m_texture-

>setMinificationFilter(QOpenGLTexture::LinearMipMapLinear);

				m_texture->setMagnificationFilter(QOpenGLTexture::Linear);

}

The	function	first	mirrors	the	image	vertically.	This	is	because	the	y
axis	in	OpenGL	points	up	by	default,	so	a	texture	would	be
displayed	"upside	down".	Then,	we	create	a	QOpenGLTexture	object,
passing	it	our	image.	After	that,	we	set	minification	and
magnification	filters	so	that	the	texture	looks	better	when	it	is
scaled.

We	are	now	ready	to	implement	the	initialize()	method	that	will	take
care	of	setting	up	the	texture	and	the	scene	itself:

void	CubeGLScene::initialize()	{

				AbstractGLScene::initialize();

				m_initialized	=	true;

				if(!m_textureImage.isNull())	{

								initializeTexture();

								initializeTexture();

				}

				glClearColor(1,	1,	1,	0);

				glShadeModel(GL_SMOOTH);

}

We	make	use	of	a	flag	called	m_initialized.	This	flag	is	needed	to
prevent	the	texture	from	being	set	up	too	early	(when	no	OpenGL
context	is	available	yet).	Then,	we	check	whether	the	texture	image
is	set	(using	the	QImage::isNull()	method);	if	so,	we	initialize	the
texture.	Then,	we	set	some	additional	properties	of	the	OpenGL
context.

In	the	setter	for	m_textureImage,	add	code	that	checks	whether	m_initialized	is	set	to	true
and,	if	so,	calls	initializeTexture().	This	is	to	make	certain	that	the	texture	is	properly	set
regardless	of	the	order	in	which	the	setter	and	initialize()	are	called.	Also	remember	to
set	m_initialized	to	false	in	the	constructor.

The	next	step	is	to	prepare	the	cube	data.	We	will	define	a	special
data	structure	for	the	cube	that	groups	vertex	coordinates	and
texture	data	in	a	single	object.	To	store	coordinates,	we	will	use
classes	tailored	to	that	purpose—QVector3D	and	QVector2D:

struct	TexturedPoint	{

				QVector3D	coord;

				QVector2D	uv;

				TexturedPoint(const	QVector3D&	pcoord	=	QVector3D(),

																		const	QVector2D&	puv	=	QVector2D())	:

								coord(pcoord),	uv(puv)	{

				}

};

QVector2D,	QVector3D,	and	QVector4D	are	helper	classes	that	represent	a	single	point	in	space
and	provide	some	convenient	methods.	For	instance,	QVector2D	stores	two	float	variables	(x
and	y),	much	like	the	QPointF	class	does.	These	classes	are	not	to	be	confused	with
QVector<T>,	a	container	template	class	that	stores	a	collection	of	elements.

QVector<TexturedPoint>	will	hold	information	for	the	whole	cube.	The
vector	is	initialized	with	data	using	the	following	code:

void	CubeGLScene::initializeCubeData()	{

				m_data	=	{

								//	FRONT	FACE

								{{-0.5,	-0.5,		0.5},	{0,	0}},	{{	0.5,	-0.5,		0.5},	{1,	0}},

								{{-0.5,	-0.5,		0.5},	{0,	0}},	{{	0.5,	-0.5,		0.5},	{1,	0}},

								{{	0.5,		0.5,		0.5},	{1,	1}},	{{-0.5,		0.5,		0.5},	{0,	1}},

	

								//	TOP	FACE

								{{-0.5,		0.5,		0.5},	{0,	0}},	{{	0.5,		0.5,		0.5},	{1,	0}},

								{{	0.5,		0.5,	-0.5},	{1,	1}},	{{-0.5,		0.5,	-0.5},	{0,	1}},

								//...

				};

}

The	code	uses	C++11	initializer	list	syntax	to	set	the	vector's	data.
The	cube	consists	of	six	faces	and	is	centered	on	the	origin	of	the
coordinate	system.	The	following	diagram	presents	the	same	data	in
graphical	form:

initializeCubeData()	should	be	called	from	the	scene	constructor	or
from	the	initialize()	method.	What	remains	is	the	painting	code:

		void	CubeGLScene::paint()	{

				glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);

				glViewport(0,	0,	window()->width(),	window()->height());

				glLoadIdentity();

	

				glRotatef(45,	1.0,	0.0,	0.0);

				glRotatef(45,	0.0,	1.0,	0.0);

	

	

				glEnable(GL_DEPTH_TEST);

				glEnable(GL_CULL_FACE);

				glCullFace(GL_BACK);

				paintCube();

}

First,	we	set	up	the	viewport	and	then	we	rotate	the	view.	Before
calling	paintCube(),	which	will	render	the	cube	itself,	we	enable	depth
testing	and	face	culling	so	that	only	visible	faces	are	drawn.	The
paintCube()	routine	looks	as	follows:

void	CubeGLScene::paintCube()	{

				if(m_texture)	{

								m_texture->bind();

				}

				glEnable(GL_TEXTURE_2D);

				glBegin(GL_QUADS);

				for(const	TexturedPoint	&point:	m_data)	{

								glTexCoord2d(point.uv.x(),	point.uv.y());

								glVertex3f(point.coord.x(),	point.coord.y(),	point.coord.z());

				}

				glEnd();

				glDisable(GL_TEXTURE_2D);

}

First,	the	texture	is	bound	and	texturing	is	enabled.	Then,	we	enter
the	quad	drawing	mode	and	stream	in	data	from	our	data	structure.
Finally,	we	disable	texturing	again.

For	completeness,	here's	a	main()	function	that	executes	the	scene:

int	main(int	argc,	char	**argv)	{

				QGuiApplication	app(argc,	argv);

				SceneGLWindow	window;

				QSurfaceFormat	fmt;

				fmt.setSamples(16);

				window.setFormat(fmt);

				CubeGLScene	scene(&window);

				window.setScene(&scene);

				scene.setTexture(QImage(":/texture.jpg"));

				window.resize(600,	600);

				window.show();

				window.show();

				return	app.exec();

}

Note	the	use	of	QSurfaceFormat	to	enable	multisample	antialiasing	for
the	scene.	We	have	also	put	the	texture	image	into	a	resource	file	to
avoid	problems	with	the	relative	path	to	the	file.

Have	a	go	hero	–	Animating	a
cube
Try	modifying	the	code	to	make	the	cube	animated.	To	do	that,	have
the	scene	inherit	QObject,	add	an	angle	property	of	the	float	type	to	it
(remember	about	the	Q_OBJECT	macro).	Then,	modify	one	of	the
glRotatef()	lines	to	use	the	angle	value	instead	of	a	constant	value.	Put
the	following	code	in	main(),	right	before	calling	app.exec():

QPropertyAnimation	animation(&scene,	"angle");

animation.setStartValue(0);

animation.setEndValue(359);

animation.setDuration(5000);

animation.setLoopCount(-1);

animation.start();

Remember	to	put	a	call	to	window()->update()	in	the	setter	for	the	angle
property	so	that	the	scene	is	redrawn.

Modern	OpenGL	with	Qt
The	OpenGL	code	shown	in	the	previous	section	uses	a	very	old
technique	of	streaming	vertices	one	by	one	into	a	fixed	OpenGL
pipeline.	Nowadays,	modern	hardware	is	much	more	feature-rich
and	not	only	does	it	allow	faster	processing	of	vertex	data	but	also
offers	the	ability	to	adjust	different	processing	stages,	with	the	use
of	reprogrammable	units	called	shaders.	In	this	section,	we	will
take	a	look	at	what	Qt	has	to	offer	in	the	domain	of	a	"modern"
approach	to	using	OpenGL.

Shaders
Qt	can	make	use	of	shaders	through	a	set	of	classes	based	around
QOpenGLShaderProgram.	This	class	allows	compiling,	linking,	and	executing
of	shader	programs	written	in	GLSL.	You	can	check	whether	your
OpenGL	implementation	supports	shaders	by	inspecting	the	result
of	a	static	QOpenGLShaderProgram::hasOpenGLShaderPrograms()	call	that	accepts	a
pointer	to	an	OpenGL	context.	All	modern	hardware	and	all	decent
graphics	drivers	should	have	some	support	for	shaders.

Qt	supports	all	kinds	of	shaders,	with	the	most	common	being
vertex	and	fragment	shaders.	These	are	both	part	of	the	classic
OpenGL	pipeline.	You	can	see	an	illustration	of	the	pipeline	in	the
following	diagram:

A	single	shader	is	represented	by	an	instance	of
the	QOpenGLShader	class.	You	need	to	specify	the	type	of	the	shader	in
the	constructor	of	this	class.	Then,	you	can	compile	the	shader's
source	code	by	calling	QOpenGLShader::compileSourceCode(),	which	has	a
number	of	overloads	for	handling	different	input	formats,
or	QOpenGLShader::compileSourceFile().	The	QOpenGLShader	object	stores	the	ID
of	the	compiled	shader	for	future	use.

When	you	have	a	set	of	shaders	defined,	you	can	assemble	a
complete	program	using	QOpenGLShaderProgram::addShader().	After	all
shaders	are	added,	you	can	link()	the	program	and	bind()	it	to	the
current	OpenGL	context.	The	program	class	has	a	number	of
methods	for	setting	values	of	different	input	parameters—uniforms
and	attributes	both	in	singular	and	array	versions.	Qt	provides
mappings	between	its	own	types	(such	as	QSize	or	QColor)	to	GLSL
counterparts	(for	example,	vec2	and	vec4)	to	make	the	programmer's
life	even	easier.

A	typical	code	flow	for	using	shaders	for	rendering	is	as	follows
(first	a	vertex	shader	is	created	and	compiled):

QOpenGLShader	vertexShader(QOpenGLShader::Vertex);

vertexShader.compileSourceCode(

				"uniform	vec4	color;\n"

				"uniform	highp	mat4	matrix;\n"

				"void	main(void)	{	gl_Position	=	gl_Vertex	*	matrix;	}"

);

The	process	is	repeated	for	a	fragment	shader:

QOpenGLShader	fragmentShader(QOpenGLShader::Fragment);

fragmentShader.compileSourceCode(

				"uniform	vec4	color;\n"

				"void	main(void)	{	gl_FragColor	=	color;	}"

);

Then,	shaders	are	linked	into	a	single	program	in	a	given	OpenGL
context:

QOpenGLShaderProgram	program(context);

program.addShader(&vertexShader);

program.addShader(&fragmentShader);

program.link();

When	shaders	are	linked	together,	OpenGL	searches	for	common
variables	(such	as	uniforms	or	buffers)	in	them	and	maps	them

together.	This	allows	you,	for	example,	to	pass	a	value	from	the
vertex	shader	to	the	fragment	shader.	Behind	the	scenes,	the	link()
function	uses	the	glLinkProgram()	OpenGL	call.

Whenever	the	program	is	used,	it	should	be	bound	to	the	current
OpenGL	context	and	filled	with	the	required	data:

program.bind();

QMatrix4x4	matrix	=	/*	...	*/;

QColor	color	=	Qt::red;

program.setUniformValue("matrix",	matrix);

program.setUniformValue("color",	color);

After	that,	calls	activating	the	render	pipeline	will	use	the	bound
program:

glBegin(GL_TRIANGLE_STRIP);

//...

glEnd();

Time	for	action	–	Shaded
objects
Let's	convert	our	last	program	so	that	it	uses	shaders.	To	make	the
cube	better,	we	will	implement	a	smooth	lighting	model	using	the
Phong	algorithm.	At	the	same	time,	we	will	learn	to	use	some	helper
classes	that	Qt	offers	for	use	with	OpenGL.

The	basic	goals	for	this	miniproject	are	as	follows:

Use	vertex	and	fragment	shaders	for	rendering	a	complex

object

Handle	model,	view,	and	projection	matrices

Use	attribute	arrays	for	faster	drawing

Start	by	creating	a	new	subclass	of	AbstractGLScene.	Let's	give	it	the
following	interface:

class	ShaderGLScene	:	public	QObject,	public	AbstractGLScene	{

				Q_OBJECT

public:

				ShaderGLScene(SceneGLWindow	*window);

				void	initialize();

				void	paint();

protected:

				void	initializeObjectData();

private:

				struct	ScenePoint	{

								QVector3D	coords;

								QVector3D	normal;

								ScenePoint(const	QVector3D	&c	=	QVector3D(),

																			const	QVector3D	&n	=	QVector3D())	:

																			const	QVector3D	&n	=	QVector3D())	:

												coords(c),	normal(n)

								{

								}

				};

				QOpenGLShaderProgram	m_shader;

				QMatrix4x4	m_modelMatrix;

				QMatrix4x4	m_viewMatrix;

				QMatrix4x4	m_projectionMatrix;

				QVector<ScenePoint>	m_data;

};

We're	not	using	textures	in	this	project,	so	TexturedPoint	was
simplified	to	ScenePoint	with	UV	texture	coordinates	removed.	Update
the	main()	function	to	use	the	ShaderGLScene	class.

We	can	start	implementing	the	interface	with	the	initializeObjectData()
function	that	will	be	called	in	the	constructor.	This	function	must
fill	the	m_data	member	with	information	about	vertices	and	their
normals.	The	implementation	will	depend	on	the	source	of	your
data.

In	the	sample	code	that	comes	with	this	book,	you	can	find	code	that	loads	data	from	a	file
in	the	PLY	format	generated	with	the	Blender	3D	program.	To	export	a	model	from
Blender,	ensure	that	it	consists	of	just	triangles	(for	that,	select	the	model,	go	into	the	Edit
mode	by	pressing	Tab,	open	the	Faces	menu	with	Ctrl	+	F,	and	choose	Triangulate	Faces).
Then,	click	on	File	and	Export;	choose	Stanford	(.ply).	You	will	end	up	with	a	text	file
containing	vertex	and	normal	data	as	well	as	face	definitions	for	the	vertices.	We	add	the
PLY	file	to	the	project's	resources	so	that	it	is	always	available	to	our	program.	Then,	we
use	the	PlyReader	C++	class	that	implements	the	parsing.

You	can	always	reuse	the	cube	object	from	the	previous	project.
Just	be	aware	that	its	normals	are	not	calculated	properly	for
smooth	shading;	thus,	you	will	have	to	correct	them.

Before	we	can	set	up	the	shader	program,	we	have	to	be	aware	of
what	the	actual	shaders	look	like.	Shader	code	will	be	loaded	from
external	files,	so	the	first	step	is	to	add	a	new	file	to	the	project.	In
Creator,	right-click	on	the	project	in	the	project	tree	and	choose
Add	New...;	from	the	left	pane,	choose	GLSL,	and	from	the	list	of
available	templates,	choose	Vertex	Shader	(Desktop	OpenGL).	Call
the	new	file	phong.vert	and	input	the	following	code:

uniform	highp	mat4	modelViewMatrix;

uniform	highp	mat3	normalMatrix;

uniform	highp	mat4	projectionMatrix;

uniform	highp	mat4	mvpMatrix;

	

attribute	highp	vec4	Vertex;

attribute	mediump	vec3	Normal;

	

varying	mediump	vec3	N;

varying	highp	vec3	v;

	

void	main(void)	{

				N	=	normalize(normalMatrix	*	Normal);

				v	=	vec3(modelViewMatrix	*	Vertex);

				gl_Position	=	mvpMatrix	*	Vertex;

}

The	code	is	very	simple.	We	declare	four	matrices	representing
different	stages	of	coordinate	mapping	for	the	scene.	We	also	define
two	input	attributes—Vertex	and	Normal—which	contain	the	vertex
data.	The	shader	will	output	two	pieces	of	data—a	normalized
vertex	normal	and	a	transformed	vertex	coordinate	as	seen	by	the
camera.	Of	course,	apart	from	that,	we	set	gl_Position	to	be	the	final
vertex	coordinate.	In	each	case,	we	want	to	be	compliant	with	the
OpenGL/ES	specification,	so	we	prefix	each	variable	declaration
with	a	precision	specifier.

Next,	add	another	file,	call	it	phong.frag,	and	make	it	a	fragment
shader	(Desktop	OpenGL).	The	content	of	the	file	is	a	typical
ambient,	diffuse,	and	specular	calculation:

struct	Material	{

				lowp	vec3	ka;

				lowp	vec3	kd;

				lowp	vec3	ks;

				lowp	float	shininess;

};

	

struct	Light	{

				lowp	vec4	position;

				lowp	vec3	intensity;

};

	

	

uniform	Material	mat;

	

uniform	Light	light;

	

varying	mediump	vec3	N;

varying	highp	vec3	v;

	

void	main(void)	{

				vec3	n	=	normalize(N);

				vec3	L	=	normalize(light.position.xyz	-	v);

				vec3	E	=	normalize(-v);

				vec3	R	=	normalize(reflect(-L,	n));

	

				float	LdotN	=	dot(L,	n);

				float	diffuse	=	max(LdotN,	0.0);

				vec3	spec	=	vec3(0,	0,	0);

	

				if(LdotN	>	0.0)	{

								float	RdotE	=	max(dot(R,	E),	0.0);

								spec	=	light.intensity	*	pow(RdotE,	mat.shininess);

				}

				vec3	color	=	light.intensity	*	(mat.ka	+	mat.kd	*	diffuse	+	mat.ks

*	spec);

				gl_FragColor	=	vec4(color,	1.0);

}

Apart	from	using	the	two	varying	variables	to	obtain	the
interpolated	normal	(N)	and	fragment	(v)	position,	the	shader
declares	two	structures	for	keeping	light	and	material	information.
Without	going	into	the	details	of	how	the	shader	itself	works,	it
calculates	three	components—ambient	light,	diffused	light,	and
specular	reflection—adds	them	together,	and	sets	that	as	the
fragment	color.	Since	all	the	per	vertex	input	data	is	interpolated	for
each	fragment,	the	final	color	is	calculated	individually	for	each
pixel.

Once	we	know	what	the	shaders	expect,	we	can	set	up	the	shader
program	object.	Let's	go	through	the	initialize()	method.	First,	we
call	the	base	class	implementation	and	set	the	background	color	of
the	scene	to	black,	as	shown	in	the	following	code:

void	initialize()	{

void	initialize()	{

				AbstractGLScene::initialize();

				glClearColor(0,	0,	0,	0);

				//...

}

Add	both	shader	files	to	the	project's	resources.	Then,	use	the
following	code	to	read	shaders	from	these	files	and	link	the	shader
program:

m_shader.addShaderFromSourceFile(QOpenGLShader::Vertex,

":/phong.vert");

m_shader.addShaderFromSourceFile(QOpenGLShader::Fragment,

":/phong.frag");

m_shader.link();

The	link()	function	returns	a	Boolean	value,	but,	we	skip	the	error
check	here	for	simplicity.	The	next	step	is	to	prepare	all	the	input
data	for	the	shader,	as	shown:

m_shader.bind();

m_shader.setAttributeArray("Vertex",	GL_FLOAT,

																											&m_data[0].coords,	3,	sizeof(ScenePoint));

m_shader.enableAttributeArray("Vertex");

	

m_shader.setAttributeArray("Normal",	GL_FLOAT,

																											&m_data[0].normal,	3,	sizeof(ScenePoint));

m_shader.enableAttributeArray("Normal");

	

m_shader.setUniformValue("mat.ka",	QVector3D(0.1,	0,	0.0));

m_shader.setUniformValue("mat.kd",	QVector3D(0.7,	0.0,	0.0));

m_shader.setUniformValue("mat.ks",	QVector3D(1.0,	1.0,	1.0));

m_shader.setUniformValue("mat.shininess",	128.0f);

	

m_shader.setUniformValue("light.position",	QVector3D(2,	1,	1));

m_shader.setUniformValue("light.intensity",	QVector3D(1,	1,	1));

First,	the	shader	program	is	bound	to	the	current	context	so	that	we
can	operate	on	it.	Then,	we	enable	the	setup	of	two	attribute	arrays
—one	for	vertex	coordinates	and	the	other	for	their	normals.	In	our
program,	the	data	is	stored	in	a	QVector<ScenePoint>,	where	each

ScenePoint	has	coords	and	normal	fields,	so	there	are	no	separate	C++
arrays	for	coordinates	and	normals.	Fortunately,	OpenGL	is	smart
enough	to	use	our	memory	layout	as	is.	We	just	need	to	map	our
vector	to	two	attribute	arrays.

We	inform	the	program	that	an	attribute	called	Vertex	is	an	array.
Each	item	of	that	array	consists	of	three	values	of
the	GL_FLOAT	type.	The	first	array	item	is	located	at	&m_data[0].coords,	and
data	for	the	next	vertex	is	located	at	sizeof(ScenePoint)	bytes	later	than
the	data	for	the	current	point.	Then	we	have	a	similar	declaration
for	the	Normal	attribute,	with	the	only	exception	that	the	first	piece	of
data	is	stored	at	&m_data[0].normal.	By	informing	the	program	about
layout	of	the	data,	we	allow	it	to	quickly	read	all	the	vertex
information	when	needed.

After	attribute	arrays	are	set,	we	pass	values	for	uniform	variables
to	the	shader	program,	which	concludes	the	shader	program	setup.
You	will	note	that	we	didn't	set	values	for	uniforms	representing	the
various	matrices;	we	will	do	that	separately	for	each	repaint.	The
paint()	method	takes	care	of	that:

void	ShaderGLScene::paint()	{

				m_projectionMatrix.setToIdentity();

				float	aspectRatio	=	qreal(window()->width())	/	window()->height();

				m_projectionMatrix.perspective(90,	aspectRatio,	0.5,	40);

	

				m_viewMatrix.setToIdentity();

				QVector3D	eye(0,	0,	2);

				QVector3D	center(0,	0,	0);

				QVector3D	up(0,	1,	0);

				m_viewMatrix.lookAt(eye,	center,	up);

				//...

}

In	this	method,	we	make	heavy	use	of	the	QMatrix4x4	class	that
represents	a	4	×	4	matrix	in	a	so-called	row-major	order,	which	is
suited	to	use	with	OpenGL.	At	the	beginning,	we	reset	the
projection	matrix	and	use	the	perspective()	method	to	give	it	a
perspective	transformation	based	on	the	current	window	size.

Afterward,	the	view	matrix	is	also	reset	and	the	lookAt()	method	is
used	to	prepare	the	transformation	for	the	camera;	center	value
indicates	the	center	of	the	view	that	the	eye	is	looking	at.	The	up
vector	dictates	the	vertical	orientation	of	the	camera	(with	respect
to	the	eye	position).

The	next	couple	of	lines	are	similar	to	what	we	had	in	the	previous
project:

glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);

glViewport(0,	0,	window()->width(),	window()->height());

glEnable(GL_DEPTH_TEST);

glEnable(GL_CULL_FACE);

glCullFace(GL_BACK);

After	that,	we	do	the	actual	painting	of	the	object:

m_modelMatrix.setToIdentity();

m_modelMatrix.rotate(45,	0,	1,	0);

QMatrix4x4	modelViewMatrix	=	m_viewMatrix	*	m_modelMatrix;

paintObject(modelViewMatrix);

We	start	by	setting	the	model	matrix,	which	dictates	where	the
rendered	object	is	positioned	relative	to	the	center	of	the	world	(in
this	case,	we	say	that	it	is	rotated	45	degrees	around	the	y	axis).
Then	we	assemble	the	model-view	matrix	(denoting	the	position	of
the	object	relative	to	the	camera)	and	pass	it	to	the	paintObject()
method:

void	ShaderGLScene::paintObject(const	QMatrix4x4&	mvMatrix)	{

				m_shader.bind();

				m_shader.setUniformValue("projectionMatrix",	m_projectionMatrix);

				m_shader.setUniformValue("modelViewMatrix",	mvMatrix);

				m_shader.setUniformValue("mvpMatrix",

m_projectionMatrix*mvMatrix);

				m_shader.setUniformValue("normalMatrix",	mvMatrix.normalMatrix());

				glDrawArrays(GL_TRIANGLES,	0,	m_data.size());

}

This	method	is	very	easy,	since	most	of	the	work	was	done	when
setting	up	the	shader	program.	First,	the	shader	program	is
activated,	and	then	all	the	required	matrices	are	set	as	uniforms	for
the	shader.	Included	is	the	normal	matrix	calculated	from	the
model-view	matrix.	Finally,	a	call	to	glDrawArrays()	is	issued,	telling	it
to	render	with	the	GL_TRIANGLES	mode	using	active	arrays,	starting	from
the	beginning	of	the	array	(offset	0)	and	reading	in	the	m_data.size()
entities	from	the	array.

After	you	run	the	project,	you	should	get	a	result	similar	to	the
following	one,	which	happens	to	contain	the	Blender	monkey,
Suzanne:

GL	buffers
Using	attribute	arrays	can	speed	up	programming,	but	for
rendering	all	data	still	needs	to	be	copied	to	the	graphics	card	on
each	use.	This	can	be	avoided	with	OpenGL	buffer	objects.	Qt
provides	a	neat	interface	for	such	objects	with	its	QOpenGLBuffer	class.
The	currently	supported	buffer	types	are	vertex	buffers	(where	the
buffer	contains	vertex	information),	index	buffers	(where	the
content	of	the	buffer	is	a	set	of	indexes	to	other	buffers	that	can	be
used	with	glDrawElements()),	and	also	less-commonly-used	pixel	pack
buffers	and	pixel	unpack	buffers.	The	buffer	is	essentially	a	block	of
memory	that	can	be	uploaded	to	the	graphics	card	and	stored	there
for	faster	access.	There	are	different	usage	patterns	available	that
dictate	how	and	when	the	buffer	is	transferred	between	the	host
memory	and	the	GPU	memory.	The	most	common	pattern	is	a	one-
time	upload	of	vertex	information	to	the	GPU	that	can	later	be
referred	to	during	rendering	as	many	times	as	needed.	Changing	an
existing	application	that	uses	an	attribute	array	to	use	vertex	buffers
is	very	easy.	First,	a	buffer	needs	to	be	instantiated:

ShaderGLScene::ShaderGLScene(SceneGLWindow	*window)	:

				AbstractGLScene(window),	

m_vertexBuffer(QOpenGLBuffer::VertexBuffer)

{	/*	...	*/	}

Then,	its	usage	pattern	needs	to	be	set.	In	case	of	a	one-time
upload,	the	most	appropriate	type	is	StaticDraw:

m_vertexBuffer.setUsagePattern(QOpenGLBuffer::StaticDraw);

Then,	the	buffer	itself	has	to	be	created	and	bound	to	the	current
context	(for	example,	in	the	initializeGL()	function):

m_vertexBuffer.create();

m_vertexBuffer.bind();

The	next	step	is	to	actually	allocate	some	memory	for	the	buffer	and
initialize	it:

m_vertexBuffer.allocate(m_data.constData(),

																								m_data.count()	*	sizeof(ScenePoint));

To	change	data	in	the	buffer,	there	are	two	options.	First,	you	can
attach	the	buffer	to	the	application's	memory	space,	using	a	call	to
map()	and	then	fill	the	data,	using	a	returned	pointer:

ScenePoint	*buffer	=	static_cast<ScenePoint*>(

				vbo.map(QOpenGLBuffer::WriteOnly));

assert(buffer	!=	nullptr);

for(int	i	=	0;	i	<	vbo.size();	++i)	{

				buffer[i]	=	...;

}

vbo.unmap();

An	alternative	approach	is	to	write	to	the	buffer	directly,	using
write():

vbo.write(0,	m_data.constData(),	m_data.size()	*	sizeof(ScenePoint));

Finally,	the	buffer	can	be	used	in	the	shader	program	in	a	way
similar	to	an	attribute	array:

vbo.bind();

m_shader.setAttributeBuffer("Vertex",	GL_FLOAT,

																												0,	3,	sizeof(ScenePoint));

m_shader.enableAttributeArray("Vertex");

m_shader.setAttributeBuffer("Normal",	GL_FLOAT,

																												sizeof(QVector3D),	3,	sizeof(ScenePoint));

m_shader.enableAttributeArray("Normal");

The	result	is	that	all	the	data	is	uploaded	to	the	GPU	once	and	then
used	as	needed	by	the	current	shader	program	or	other	OpenGL
call-supporting	buffer	objects.

Using	multiple	OpenGL
versions
Earlier	in	this	chapter,	we	discussed	a	family	of	QOpenGLFunctions	classes
that	provide	access	to	OpenGL	functions	included	in	a	specific
OpenGL	profile.	If	your	whole	application	can	use	one	profile,	you
can	just	select	the	appropriate	Qt	class	and	use	it.	However,
sometimes	you	don't	want	the	application	to	shut	down	completely
if	the	requested	profile	is	not	supported	on	the	current	system.
Instead,	you	can	relax	your	requirements	and	use	an	older	OpenGL
version	and	provide	simplified	but	still	working	rendering	for
systems	that	don't	support	the	new	profile.	In	Qt,	you	can
implement	such	an	approach	using	QOpenGLContext::versionFunctions():

class	MyWindow	:	public	QOpenGLWindow	{

protected:

				QOpenGLFunctions_4_5_Core	*glFunctions45;

				QOpenGLFunctions_3_3_Core	*glFunctions33;

				void	initializeGL()

				{

								glFunctions33	=	context()-

>versionFunctions<QOpenGLFunctions_3_3_Core>();

								glFunctions45	=	context()-

>versionFunctions<QOpenGLFunctions_4_5_Core>();

				}

				void	paintGL()	{

								if	(glFunctions45)	{

												//	OpenGL	4.5	rendering

												//	glFunctions45->...

								}	else	if	(glFunctions33)	{

												//	OpenGL	3.3	rendering

												//	glFunctions33->...

								}	else	{

												qFatal("unsupported	OpenGL	version");

								}

				}

};

};

In	the	initializeGL()	function,	we	try	to	request	wrapper	objects	for
multiple	OpenGL	versions.	If	the	requested	version	is	not	currently
available,	versionFunctions()	will	return	nullptr.	In	the	paintGL()	function,
we	use	the	best	available	version	to	perform	the	actual	rendering.

Next,	you	can	use	the	QSurfaceFormat	class	to	specify	the	OpenGL
version	and	profile	you	want	to	use:

MyWindow	window;

QSurfaceFormat	format	=	window.format();

format.setVersion(4,	0);

format.setProfile(QSurfaceFormat::CoreProfile);

window.setFormat(format);

window.show();

By	requesting	the	core	profile,	you	can	ensure	that	old	deprecated
functionality	will	not	be	available	in	our	application.

Offscreen	rendering
Sometimes,	it	is	useful	to	render	an	OpenGL	scene	not	to	the	screen
but	to	some	image	that	can	be	later	processed	externally	or	used	as
a	texture	in	some	other	part	of	rendering.	For	that,	the	concept	of
Framebuffer	Objects	(FBO)	was	created.	An	FBO	is	a	rendering
surface	that	behaves	like	the	regular	device	frame	buffer,	with	the
only	exception	that	the	resulting	pixels	do	not	land	on	the	screen.
An	FBO	target	can	be	bound	as	a	texture	in	an	existing	scene	or
dumped	as	an	image	to	regular	computer	memory.	In	Qt,	such	an
entity	is	represented	by	a	QOpenGLFramebufferObject	class.

Once	you	have	a	current	OpenGL	context,	you	can	create	an
instance	of	QOpenGLFramebufferObject,	using	one	of	the	available
constructors.	A	mandatory	parameter	to	pass	is	the	size	of	the
canvas	(either	as	a	QSize	object	or	as	a	pair	of	integers	describing	the
width	and	height	of	the	frame).	Different	constructors	accept	other
parameters,	such	as	the	type	of	texture	the	FBO	is	to	generate	or	a
set	of	parameters	encapsulated	in	QOpenGLFramebufferObjectFormat.

When	the	object	is	created,	you	can	issue	a	bind()	call	on	it,	which
switches	the	OpenGL	pipeline	to	render	to	the	FBO	instead	of	the
default	target.	A	complementary	method	is	release(),	which	restores
the	default	rendering	target.	Afterward,	the	FBO	can	be	queried	to
return	the	ID	of	the	OpenGL	texture	(using	the	texture()	method)	or
to	convert	the	texture	to	QImage	(by	invoking	toImage()).

Vulkan	in	Qt	applications
OpenGL	has	undergone	significant	changes	as	graphics	cards
hardware	has	evolved.	Many	old	parts	of	OpenGL	API	are	now
deprecated,	and	even	up-to-date	API	is	not	ideal	for	utilizing	the
capabilities	of	modern	hardware.	Vulkan	was	designed	as	an
attempt	to	create	an	API	more	suitable	for	this	purpose.

Vulkan	is	a	new	API	that	can	be	used	instead	of	OpenGL	to	perform
hardware-accelerated	rendering	and	computation.	While	Vulkan	is
more	verbose	and	complex	than	OpenGL,	it	closely	represents	the
actual	interaction	between	CPU	and	GPU.	This	allows	Vulkan	users
to	achieve	better	control	over	utilizing	GPU	resources,	which	can
lead	to	better	performance.	The	first	stable	version	of	Vulkan	API
was	released	in	2016.

While	Vulkan	is	a	cross-platform	solution,	a	Vulkan	application	still
needs	to	contain	a	bit	of	platform-specific	code,	mainly	related	to
window	creation	and	event	handling.	Since	Version	5.10,	Qt
provides	a	way	to	use	Vulkan	along	with	Qt's	existing	window	and
event	infrastructure.	You	still	retain	full	access	to	the	original
Vulkan	API	for	rendering,	but,	at	the	same	time,	you	can	use	the
already	familiar	Qt	API	for	everything	else.

As	with	OpenGL,	we	will	not	give	an	in-depth	guide	of	Vulkan	here.
We	will	only	provide	simple	examples	and	cover	the	interaction
between	Qt	and	Vulkan.	If	you	need	more	information	about
Vulkan,	you	can	refer	to	its	official	page
at	https://www.khronos.org/vulkan/.

https://www.khronos.org/vulkan/

Preparing	the	developing
environment
Before	you	can	start	developing	games	with	Vulkan	and	Qt,	you
need	to	make	a	few	preparations.	First,	you	need	to	install	the
Vulkan	SDK.	To	do	that,	head	to	https://www.lunarg.com/vulkan-sdk/,
download	a	file	for	your	operating	system,	and	execute	or	unpack	it.
Examine	the	index.html	file	in	the	doc	subdirectory	in	the	installation
folder	to	see	whether	you	need	to	perform	any	additional	actions.

Next,	you	need	a	Qt	build	with	Vulkan	support;	it	must	be	Qt	5.10
or	later.	If	you	have	installed	the	most	recent	version	available
through	the	installer,	it	may	already	be	suitable.

To	check	whether	your	Qt	version	has	Vulkan	support,	create	a	new
Qt	Console	Application,	ensure	that	you	select	the	kit	corresponding
to	the	most	recently	installed	Qt	version.	The	Vulkan	SDK	also
requires	you	to	set	some	environment	variables,	such
as	VULKAN_SDK,	PATH,	LD_LIBRARY_PATH,	and	VK_LAYER_PATH	(exact	names	and
values	can	depend	on	the	operating	system,	so	refer	to	the	SDK
documentation).	You	can	edit	environment	variables	for	your
project	by	switching	to	Qt	Creator's	Projects	pane	and	expanding
the	Build	Environment	section.

Put	the	following	code	in	main.cpp:

#include	<QGuiApplication>

#include	<vulkan/vulkan.h>

#include	<QVulkanInstance>

int	main(int	argc,	char	*argv[])	{

				QGuiApplication	app(argc,	argv);

				QVulkanInstance	vulkan;

				return	app.exec();

}

https://www.lunarg.com/vulkan-sdk/

}

Additionally,	adjust	the	project	file	so	that	we	actually	have	a	Qt
GUI	application	instead	of	a	console	application:

QT	+=	gui

CONFIG	+=	c++11

DEFINES	+=	QT_DEPRECATED_WARNINGS

SOURCES	+=	main.cpp

If	the	project	builds	successfully,	your	setup	is	complete.

If	the	compiler	can't	find	the	vulkan/vulkan.h	header,	then	the	Vulkan
SDK	was	not	installed	properly	or	its	headers	are	not	located	in	the
default	include	path.	Check	the	Vulkan	SDK	documentation	to	see
whether	you	have	missed	something.	You	can	also	switch	to	the
Projects	pane	of	Qt	Creator	and	edit	the	build	environment	of	the
project	to	make	the	installed	headers	visible.	Depending	on	the
compiler,	you	may	need	to	set	the	INCLUDEPATH	or	CPATH	environment
variable.

If	you	have	a	compile	error	corresponding	to	the	QVulkanInstance
header,	you	are	using	a	Qt	version	prior	to	5.10.	Ensure	that	you
install	a	recent	version	and	select	the	correct	kit	on	the	Projects
pane	of	Qt	Creator.

However,	if	the	QVulkanInstance	includes	directive	works,	but
the	QVulkanInstance	class	is	still	not	defined,	it	means	that	your	Qt	build
lacks	Vulkan	support.	In	this	case,	first	try	to	install	the	most	recent
version	using	the	official	installer,	if	you	haven't	done	so	already:

1.	 Close	Qt	Creator

2.	 Launch	the	Maintenance	Tool	executable	from	the	Qt

installation	directory

3.	 Select	Add	or	remove	components

4.	 Select	the	most	recent	Desktop	Qt	version

5.	 Confirm	the	changes

After	the	installation	is	done,	re-open	Qt	Creator,	switch	to	the
Projects	pane,	and	select	the	new	kit	for	the	project.

Unfortunately,	at	the	time	of	writing,	the	Qt	builds	available	through	the	official	installer
do	not	have	Vulkan	support.	It's	possible	(and	likely)	that	it	will	be	enabled	in	the	future
versions.

If	the	QVulkanInstance	class	is	still	not	recognized,	you	have	to	build	Qt
from	sources.	This	process	varies	depending	on	the	operating
system	and	the	Qt	version,	so	we	will	not	cover	the	details	in	the
book.	Go	to	the	http://doc.qt.io/qt-5/build-sources.html	page	and	follow
the	instructions	corresponding	to	your	operating	system.	If	the
Vulkan	SDK	is	properly	installed,	the	output	of	the	configure
command	should	contain	Vulkan	...	yes,	indicating	that	Vulkan
support	is	enabled.	After	you	build	Qt,	open	Qt	Creator's	options
dialog	and	set	up	a	Qt	version	and	a	kit,	as	described	in	Chapter	2,
Installation.

Finally,	select	the	new	kit	for	the	project	on	the	Projects	pane:

http://doc.qt.io/qt-5/build-sources.html

If	you've	done	everything	correctly,	the	project	should	now	build
and	execute	successfully.

Vulkan	instance,	window,	and
renderer
Before	we	start	creating	our	first	minimal	Vulkan	application,	let's
get	familiar	with	the	Qt	classes	we'll	need	for	the	task.

Unlike	OpenGL,	Vulkan	doesn't	have	a	global	state.	Interaction	with
Vulkan	starts	with	the	instance	object	represented	by	the	VkInstance
type.	An	application	usually	creates	a	single	VkInstance	object	that
contains	the	application-wide	state.	All	other	Vulkan	objects	can
only	be	created	from	the	instance	object.	In	Qt,	the	corresponding
class	is	QVulkanInstance.	This	class	provides	a	convenient	way	to
configure	Vulkan	and	then	initialize	it	with	the	given	configuration.
You	can	also	use	its	supportedExtensions()	and	supportedLayers()	functions
to	query	supported	features	before	using	them.	After	the
configuration	is	done,	you	should	call	the	create()	function	that
actually	triggers	loading	Vulkan	library	and	creating	a	VkInstance
object.	If	this	function	returns	true,	the	Vulkan	instance	object	is
ready	to	be	used.

The	next	step	is	to	create	a	window	capable	of	Vulkan	rendering.
This	is	done	by	subclassing	the	QVulkanWindow	class.	Similar	to
QOpenGLWindow,	QVulkanWindow	extends	QWindow	and	provides
functionality	required	for	utilizing	Vulkan	capabilities	as	well
as	some	convenience	functions.	You	can	also	use	virtual	functions
inherited	from	QWindow	to	handle	any	events	dispatched	by	Qt's	event
system.	However,	subclasses	of	QVulkanWindow	should	not	perform	any
actual	rendering.	This	task	is	delegated	to	the	QVulkanWindowRenderer
class.	The	QVulkanWindow::createRenderer()	virtual	function	will	be	called
once	after	the	window	is	first	shown,	and	you	should	reimplement
this	function	to	return	your	renderer	object.

Now,	about	the	renderer	itself:	QVulkanWindowRenderer	is	a	simple	class
containing	nothing	more	than	a	set	of	virtual	functions.	You	can
create	your	own	renderer	by	subclassing	QVulkanWindowRenderer	and	re-
implementing	the	only	pure	virtual	function	called	startNextFrame().
This	function	will	be	called	when	the	drawing	of	the	next	frame	is
requested.	You	can	perform	all	required	drawing	operations	in	this
function	and	end	it	with	a	call	to	QVulkanWindow::frameReady()	to	indicate
that	the	drawing	is	complete.	You	can	also	re-implement	other
virtual	functions	of	the	renderer.	The	most	useful	of	them
are	initResources()	and	releaseResources(),	which	allow	you	to	create
required	resources,	store	them	in	private	members	of	your	renderer
class,	and	then	destroy	them	when	necessary.

These	three	classes	define	the	basic	structure	of	your	Vulkan
application.	Let's	see	them	in	action.

Time	for	action	–	Creating	the
minimal	Vulkan	project
We've	already	created	a	project	while	testing	the	developing
environment.	Now	let's	add	two	new	classes	to	the	project.	One
class	named	MyWindow	should	be	derived	from	QVulkanWindow,	and	the
other	class	named	MyRenderer	should	be	derived
from	QVulkanWindowRenderer.	Implement	the	window's	createRenderer()
virtual	function:

QVulkanWindowRenderer	*MyWindow::createRenderer()	{

				return	new	MyRenderer(this);

}

Add	the	QVulkanWindow	*m_window	private	field	to	the	renderer	class.
Implement	the	constructor	to	initialize	this	field	and	override
the	startNextFrame()	virtual	function,	as	shown:

MyRenderer::MyRenderer(QVulkanWindow	*window)

{

				m_window	=	window;

}

void	MyRenderer::startNextFrame()	{

				m_window->frameReady();

}

Finally,	edit	the	main()	function:

int	main(int	argc,	char	*argv[])	{

				QGuiApplication	app(argc,	argv);

				QVulkanInstance	vulkan;

				if	(!vulkan.create())	{

								qFatal("Failed	to	create	Vulkan	instance:	%d",

vulkan.errorCode());	

vulkan.errorCode());	

				}

				MyWindow	window;

				window.resize(1024,	768);

				window.setVulkanInstance(&vulkan);

				window.show();

				return	app.exec();

}

When	you	compile	and	run	the	project,	a	blank	window	with	a	black
background	should	appear.

What	just	happened?
We've	created	a	window	that	will	be	rendered	using	Vulkan.	The
main()	function	initializes	Vulkan,	creates	a	window,	passes
the	instance	object	to	the	window,	and	shows	it	on	the	screen.	As
usual,	the	final	call	to	exec()	starts	Qt's	event	loop.	When	the	window
is	shown,	Qt	will	call	the	createRenderer()	function	on	the	window	and
a	new	renderer	object	will	be	created	in	your	implementation	of	this
function.	The	renderer	is	attached	to	the	window	and	will
automatically	be	deleted	along	with	it,	so	there	is	no	need	to	delete
it	manually.	Each	time	the	window	needs	to	be	painted,	Qt	will	call
the	renderer's	startNextFrame()	function.	We	don't	perform	any
painting	yet,	so	the	window	remains	blank.

It's	important	that	the	drawing	of	every	frame	ends	with	a	call
to	frameReady().	Until	this	function	is	called,	processing	of	the	frame
cannot	be	completed.	However,	it's	not	required	to	call	this	function
directly	from	the	startNextFrame()	function.	You	can	delay	this	call	if
you	need,	for	example,	to	wait	for	calculations	to	complete	in	a
separate	thread.

Similar	to	how	paintEvent()	works,	startNextFrame()	will	not	be	called	continuously	by
default.	It	will	only	be	called	once	after	showing	the	window.	It	will	also	be	called	each	time
a	part	of	the	window	is	exposed	(for	example,	as	a	result	of	moving	a	window	or	restoring
a	minimized	window).	If	you	need	to	render	a	dynamic	scene	continuously,	call	m_window-
>requestUpdate()	after	calling	m_window->frameReady().

Using	Vulkan	types	and
functions
We	can	let	Qt	handle	loading	the	Vulkan	library	and	resolving
functions	for	us.	It	works	similar	to	the	QOpenGLFunctions	set	of	classes.
Qt	provides	two	functions	classes	for	Vulkan:

The	QVulkanFunctions	class	provides	access	to	the	Vulkan

functions	that	are	not	device-specific

The	QVulkanDeviceFunctions	class	provides	functions	that	work	on

a	specific	VkDevice

You	can	obtain	these	objects	by	calling	the	functions()
and	deviceFunctions(VkDevice	device)	methods	of	the	QVulkanInstance	class,
respectively.	You	will	usually	use	the	device	functions	a	lot	in	the
renderer,	so	a	common	pattern	is	to	add	the	QVulkanDeviceFunctions
*m_devFuncs	private	field	to	your	renderer	class	and	initialize	it	in	the
initResources()	virtual	function:

void	MyRenderer::initResources()

{

				VkDevice	device	=	m_window->device();

				m_devFuncs	=	m_window->vulkanInstance()->deviceFunctions(device);

				//...

}

Now	you	can	use	m_devFuncs	to	access	the	Vulkan	API	functions.	We
won't	use	them	directly,	so	we	don't	need	to	figure	out	how	to	link
against	the	Vulkan	library	on	each	platform.	Qt	does	this	job	for	us.

As	for	structures,	unions,	and	typedefs,	we	can	use	them	directly
without	worrying	about	the	platform	details.	It's	enough	to	have	the
Vulkan	SDK	headers	present	in	the	system.

Time	for	action	–	Drawing	with
a	dynamic	background	color
Let's	see	how	we	can	use	the	Vulkan	API	in	our	Qt	project	to	change
the	background	color	of	the	window.	We'll	cycle	through	all	possible
hues	of	the	color	while	retaining	constant	saturation	and	lightness.
This	may	sound	complicated	when	you	think	about	a	color	in	RGB
space,	but	it's	actually	very	easy	if	you	work	with	the	HSL	(Hue,
Saturation,	Lightness)	color	model.	Luckily,	QColor	supports	multiple
color	models,	including	HSL.

First,	add	and	initialize	the	m_devFuncs	private	field,	as	just	shown.
Next,	add	the	float	m_hue	private	field	that	will	hold	the	current	hue	of
the	background	color.	Set	its	initial	value	to	zero.	We	can	now	start
writing	our	startNextFrame()	function	that	will	do	all	the	magic.	Let's	go
through	it	piece	by	piece.	First,	we	increment	our	m_hue	variable	and
ensure	that	we	don't	go	out	of	bounds;	then,	we	use
the	QColor::fromHslF()	function	to	construct	a	QColor	value	based	on
given	hue,	saturation,	and	lightness	(each	of	them	ranges	from	0	to
1):

void	MyRenderer::startNextFrame()

{

				m_hue	+=	0.005f;

				if	(m_hue	>	1.0f)	{

								m_hue	=	0.0f;

				}

				QColor	color	=	QColor::fromHslF(m_hue,	1,	0.5);

				//...

}

Next,	we	use	this	color	variable	to	construct	a	VkClearValue	array	that
we'll	use	for	setting	the	background	color:

		VkClearValue	clearValues[2];

		memset(clearValues,	0,	sizeof(clearValues));

		clearValues[0].color	=	{

						static_cast<float>(color.redF()),

						static_cast<float>(color.greenF()),

						static_cast<float>(color.blueF()),

						1.0f

		};

		clearValues[1].depthStencil	=	{	1.0f,	0	};

To	start	a	new	render	pass	in	Vulkan,	we	need	to	initialize
a	VkRenderPassBeginInfo	structure.	It	requires	a	lot	of	data,	but,
luckily,	QVulkanWindow	provides	most	of	the	data	for	us.	We	just	need	to
put	it	into	the	structure	and	use	the	clearValues	array	we	set	up
earlier:

VkRenderPassBeginInfo	info;

memset(&info,	0,	sizeof(info));

info.sType	=	VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;

info.renderPass	=	m_window->defaultRenderPass();

info.framebuffer	=	m_window->currentFramebuffer();

const	QSize	imageSize	=	m_window->swapChainImageSize();

info.renderArea.extent.width	=	imageSize.width();

info.renderArea.extent.height	=	imageSize.height();

info.clearValueCount	=	2;

info.pClearValues	=	clearValues;

Finally,	it's	time	to	perform	the	rendering:

VkCommandBuffer	commandBuffer	=	m_window->currentCommandBuffer();

m_devFuncs->vkCmdBeginRenderPass(commandBuffer,	&info,

																																	VK_SUBPASS_CONTENTS_INLINE);

m_devFuncs->vkCmdEndRenderPass(commandBuffer);

m_window->frameReady();

m_window->requestUpdate();

The	vkCmdBeginRenderPass()	Vulkan	API	function	will	begin	the	render
pass,	which	will	result	in	clearing	the	window	with	the	color	we've
set.	Since	we	don't	have	anything	else	to	draw,	we	complete	the
render	pass	immediately	using	the	vkCmdEndRenderPass()	function.	Then,

we	indicate	that	we've	already	done	everything	we	want	for	this
frame	by	calling	the	frameReady()	function.	This	allows	Qt	to	advance
the	rendering	loop.	As	the	final	step,	we	request	an	update	of	the
window	to	ensure	that	the	new	frame	will	be	requested	soon	and	the
color	animation	will	go	on.

If	you	run	the	project	now,	you	should	see	a	window	that	constantly
changes	its	background	color:

We	would	love	to	show	a	more	advanced	example.	However,	even
drawing	a	simple	triangle	in	Vulkan	usually	requires	a	few	hundred
lines	of	code,	because	Vulkan	requires	you	to	explicitly	set	up	a	lot
of	things.	While	Qt	provides	a	lot	of	helper	classes	for	OpenGL
rendering,	it	does	not	contain	any	similar	classes	that	would	help
with	Vulkan	rendering	or	computation	(as	of	Qt	5.10),	so	there	is
nothing	specific	to	Qt	in	these	tasks.

If	you	want	to	deepen	your	knowledge	of	Vulkan,	you	can	study	the	documentation	and
tutorials	present	on	its	official	website	and	the	Vulkan	SDK	website.	Qt	also	includes
several	good	examples	based	on	Vulkan,	such	as	Hello	Vulkan	Triangle,	Hello	Vulkan
Texture,	and	Hello	Vulkan	Cubes.

Logs	and	validation
Qt	automatically	receives	messages	from	the	Vulkan	library	and
puts	them	into	Qt's	own	logging	system.	The	critical	errors	will	be
passed	to	qWarning(),	so	they	will	appear	in	the	application	output	by
default.	However,	Qt	also	logs	additional	information	that	can	be
useful	when	debugging.	This	information	is	hidden	by	default,	but
you	can	make	it	visible	by	adding	the	following	line	to	the	main()
function	just	after	the	construction	of	QGuiApplication:

QLoggingCategory::setFilterRules(QStringLiteral("qt.vulkan=true"));

The	Vulkan	API	does	not	perform	any	sanity	checks	by	default.	If
you	pass	an	invalid	parameter	to	a	Vulkan	API	function,	the
application	may	silently	crash,	or	work	inconsistently.	However,
you	can	enable	validation	layers	for	your	Vulkan	instance.	They
do	not	change	the	functionality	of	the	API	calls,	but	they	enable
additional	checks	when	possible.	It's	a	good	idea	to	enable
validation	layers	in	a	debug	build.	You	can	do	that	by	calling
setLayers()	on	the	instance	object	before	calling	create():

vulkan.setLayers({	"VK_LAYER_LUNARG_standard_validation"	});

Keep	in	mind	that	an	attempt	to	request	a	currently	unsupported	layer	or	extension	will	be
ignored	by	Qt.

Let's	test	the	validation	layers	by	inserting	an	invalid	parameter	to
our	code:

info.renderArea.extent.width	=	-5;	//	invalid

When	you	run	the	application,	Qt	should	print	a	warning	to	the
application	output:

vkDebug:	CORE:	4:	Cannot	execute	a	render	pass	with	renderArea	not

within	the	bound	of	the	framebuffer.	RenderArea:	x	0,	y	0,	width	-5,

height	768.	Framebuffer:	width	1024,	height	768.

If	the	warning	does	not	appear,	it	means	that	the	validation	layers	are	not	available	or
they	failed	to	load.	Check	the	application	output	for	the	presence	of	validation	layers	(they
will	be	printed	after	the	"Supported	Vulkan	instance	layers"	line)	and	any	library	loading
errors.	Ensure	that	you've	set	up	the	Vulkan	SDK	and	the	project's	environment	variables
according	to	the	documentation.

However,	keep	in	mind	that	validation	layers	have	a	performance
impact	on	your	application.	You	should	probably	disable	them	in
your	final	builds.	You	can	also	disable	redirecting	Vulkan's	debug
output	to	the	Qt	logging	system,	using	the	following	code:

QVulkanInstance	vulkan;

vulkan.setFlags(QVulkanInstance::NoDebugOutputRedirect);

Combining	OpenGL	or	Vulkan
with	Qt	Widgets
Sometimes	you	want	to	combine	the	powers	of	accelerated	graphics
and	Qt	Widgets.	While	OpenGL	and	Vulkan	are	great	for	rendering
high-performance	2D	and	3D	scenes,	the	Qt	Widgets	module	is	far
easier	to	use	for	creating	user	interfaces.	Qt	offers	a	few	ways	to
combine	them	into	a	single	powerful	interface.	This	can	be	useful	if
your	application	depends	heavily	on	widgets	(for	example,	the	3D
view	is	only	one	of	the	views	in	your	application	and	is	controlled
using	a	bunch	of	other	widgets	surrounding	the	main	view).

The	first	way	is	the	QWidget::createWindowContainer()	function.	It	takes	an
arbitrary	QWindow	and	creates	a	QWidget	that	keeps	the	window	within	its
bounds.	That	widget	can	be	put	into	another	widget	and	can	be
managed	by	a	layout.	While	the	window	appears	to	be	embedded
into	another	window,	it	still	remains	a	native	window	from	the
operating	system's	perspective,	and	any	accelerated	rendering	will
be	performed	directly	on	the	window	without	a	heavy	performance
impact.	This	approach	has	a	few	limitations,	though.	For	example,
the	embedded	window	will	always	stack	on	top	of	other	widgets.
However,	it's	suitable	in	most	cases.

Let's	return	to	our	OpenGL	cube	project	and	put	it	into	a	layout
with	an	additional	label:

QWidget	widget;

QVBoxLayout*	layout	=	new	QVBoxLayout(&widget);

layout->addWidget(new	QLabel("Scene"),	0);

QWidget*	container	=	QWidget::createWindowContainer(&window,	&widget);

layout->addWidget(container,	1);

widget.resize(600,	600);

widget.show();

Instead	of	showing	the	OpenGL	window,	we	created	a	widget	and
put	the	window	into	the	layout	of	that	widget:

You	can	apply	this	approach	to	any	QWindow,	including	Vulkan-based
windows	and	Qt	Quick	windows,	which	we'll	work	with	in
subsequent	chapters.

There	is	another	way	to	solve	the	same	task,	but	it	only	works	with

OpenGL.	You	can	simply	replace	QOpenGLWindow	with	QOpenGLWidget	to	turn
a	window	into	a	fully	featured	widget.	The	API
of	QOpenGLWidget	(including	virtual	functions)	is	compatible
with	QOpenGLWindow,	so	it	can	act	as	a	drop-in	replacement.	There	are	no
limitations	for	the		stacking	order,	focus,	or	opacity	of	QOpenGLWidget.
You	can	even	mix	the	OpenGL	rendering	with	QPainter	operations.
However,	this	solution	has	a	performance	cost.	QOpenGLWindow	renders
directly	to	the	given	window,	while	QOpenGLWidget	first	renders	to	an
offscreen	buffer	that	is	then	rendered	to	the	widget,	so	it	will	be
slower.

Pop	quiz
Q1.	Which	of	the	following	programming	languages	is	accepted	by
the	QOpenGLShader::compileSourceCode()	function?

1.	 C

2.	 C++

3.	 GLSL

Q2.	Which	virtual	function	of	the	QOpenGLWindow	class	should	you
implement	to	perform	OpenGL	painting?

1.	 paintGL()

2.	 paintEvent()

3.	 makeCurrent()

Q3.	When	should	you	delete	the	object	of
your	QVulkanWindowRenderer	subclass?

1.	 In	the	destructor	of	the	QVulkanWindow	subclass

2.	 After	deleting	the	QVulkanInstance	object

3.	 Never

Summary
In	this	chapter,	we	learned	about	using	OpenGL	and	Vulkan
graphics	with	Qt.	With	this	knowledge,	you	can	create	hardware
accelerated	2D	and	3D	graphics.	We	also	explored	Qt	classes	that
simplify	usage	of	these	technologies	in	Qt	applications.	If	you	want
to	sharpen	your	OpenGL	and	Vulkan	skills,	you	can	study
numerous	books	and	articles	focused	on	these	topics.	Qt	provides
very	transparent	access	to	hardware	accelerated	graphics,	so
adapting	any	pure	OpenGL	or	Vulkan	approaches	for	Qt	should	be
easy.	If	you	prefer	to	have	a	higher-level	API	for	accelerated
graphics,	you	should	turn	your	attention	to	Qt	Quick	and	Qt	3D.	We
will	cover	it	in	the	last	part	of	this	book.

In	the	next	chapter,	you	will	learn	to	implement	scripting	in	your
game.	This	will	make	it	more	extensible	and	easier	to	modify.
Scripting	can	also	be	used	to	enable	modding	in	your	game,
allowing	players	to	customize	the	gameplay	how	they	want.

Scripting
In	this	chapter,	you	will	learn	how	to	bring	scripting	facilities	to
your	programs.	You	will	gain	knowledge	of	how	to	use	JavaScript	to
implement	the	logic	and	details	of	your	game,	without	having	to
rebuild	the	main	game	engine.	These	skills	will	also	be	useful	in	the
last	part	of	the	book	when	we	work	with	Qt	Quick.	Although	the
environment	we	will	focus	on	blends	best	with	Qt	applications,
there	are	other	options	if	you	don't	like	JavaScript.	We	will	also
show	how	you	can	use	Python	to	make	your	games	scriptable.

The	main	topics	covered	in	this	chapter	are	as	listed:

Executing	JavaScript	code

Interaction	between	C++	and	JavaScript

Implementing	a	scripting	game

Integrating	the	Python	interpreter

Why	script?
You	might	ask	yourself,	"why	should	I	use	any	scripting	language	if
I	can	implement	everything	I	need	in	C++"?	There	are	a	number	of
benefits	to	providing	a	scripting	environment	to	your	games.	Most
modern	games	really	consist	of	two	parts.	One	is	the	main	game
engine	that	implements	the	core	of	the	game	(data	structures,
processing	algorithms,	and	the	rendering	layer)	and	exposes	an	API
to	the	other	component,	which	provides	details,	behavior	patterns,
and	action	flows	for	the	game.	This	other	component	is	sometimes
written	in	a	scripting	language.	The	main	benefit	of	this	is	that	story
designers	can	work	independently	from	the	engine	developers,	and
they	don't	have	to	rebuild	the	whole	game	just	to	modify	some	of	its
parameters	or	check	whether	the	new	quest	fits	well	into	the
existing	story.	This	makes	the	development	much	quicker	compared
to	the	monolithic	approach.

Another	benefit	is	that	this	development	opens	the	game	to
modding—skilled	end	users	can	extend	or	modify	the	game	to
provide	some	added	value	to	the	game.	It's	also	a	way	to	implement
extensions	of	the	game	on	top	of	the	existing	scripting	API	without
having	to	redeploy	the	complete	game	binary	to	every	player.
Finally,	you	can	reuse	the	same	game	driver	for	other	games	and
just	replace	the	scripts	to	obtain	a	totally	different	product.

In	this	chapter,	we	will	use	the	Qt	QML	module	to	implement
scripting.	This	module	implements	QML	language	used	in	Qt	Quick.
Since	QML	is	JavaScript-based,	Qt	QML	includes	a	JavaScript
engine	and	provides	API	for	running	JavaScript	code.	It	also	allows
you	to	expose	C++	objects	to	JavaScript	and	vice	versa.

We	will	not	discuss	the	details	of	the	JavaScript	language	itself,	as
there	are	many	good	books	and	websites	available	where	you	can

learn	JavaScript.	Besides,	the	JavaScript	syntax	is	very	similar	to
that	of	C,	and	you	shouldn't	have	any	problems	understanding	the
scripts	that	we	use	in	this	chapter	even	if	you	haven't	seen	any
JavaScript	code	before.

Evaluating	JavaScript
expressions
To	use	Qt	QML	in	your	programs,	you	have	to	enable	the	script
module	for	your	projects	by	adding	the	QT	+=	qml	line	to	the	project
file.

C++	compilers	do	not	understand	JavaScript.	Therefore,	to	execute
any	script,	you	need	to	have	a	running	interpreter	that	will	parse	the
script	and	evaluate	it.	In	Qt,	this	is	done	with	the	QJSEngine	class.	This
is	a	JavaScript	runtime	that	handles	the	execution	of	script	code
and	manages	all	the	resources	related	to	scripts.	It	provides	the
evaluate()	method,	which	can	be	used	to	execute	JavaScript
expressions.	Let's	look	at	a	"Hello	World"	program	using	QJSEngine:

#include	<QCoreApplication>

#include	<QJSEngine>

int	main(int	argc,	char	**argv)	{

				QCoreApplication	app(argc,	argv);

				QJSEngine	engine;

				engine.installExtensions(QJSEngine::ConsoleExtension);

				engine.evaluate("console.log('Hello	World!');");

				return	0;

}	

This	program	is	very	simple.	First,	it	creates	an	application	object
that	is	required	for	the	script	environment	to	function	properly	and
instantiates	a	QJSEngine	object.	Next,	we	ask	QJSEngine	to	install	the
console	extension—the	global	console	object	that	can	be	used	to	print
messages	to	the	console.	It's	not	part	of	the	ECMAScript	standard,
so	it's	not	available	by	default,	but	we	can	easily	enable	it	using
the	installExtensions()	function.	Finally,	we	call	the	evaluate()	function

to	execute	the	script	source	given	to	it	as	a	parameter.	After
building	and	running	the	program,	you	will	see	a	well-known	Hello
World!	printed	to	the	console	with	the	js:	prefix.

By	default,	QJSEngine	provides	built-in	objects	defined	by	ECMA-262	standard,	including
Math,	Date,	and	String.	For	example,	a	script	can	use	Math.abs(x)	to	get	the	absolute	value	of
a	number.

If	you	don't	get	any	output,	it	probably	means	that	the	script	didn't
get	executed	properly,	possibly	because	of	an	error	in	the	script's
source	code.	To	verify	that,	we	can	check	the	value	returned	from
evaluate():

QJSValue	result	=	engine.evaluate("console.log('Hello	World!')");

if	(result.isError())	{

				qDebug()	<<	"JS	error:"	<<	result.toString();

}

This	code	checks	whether	there	is	an	exception	or	a	syntax	error
and	if	yes,	it	displays	the	corresponding	error	message.	For
example,	if	you	omit	the	closing	single	quote	in	the	script	source
text	and	run	the	program,	the	following	message	will	be	displayed:

JS	error:	"SyntaxError:	Expected	token	`)'"

You	can	see	that	evaluate()	returns	a	QJSValue.	This	is	a	special	type	that
is	used	to	exchange	data	between	the	JavaScript	engine	and	the
C++	world.	Like	QVariant,	it	can	hold	a	number	of	primitive	types
(boolean,	integer,	string,	and	so	on).	However,	it	is	in	fact	much	more
powerful,	because	it	can	hold	a	reference	to	a	JavaScript	object	or
function	that	lives	in	the	JavaScript	engine.	Copying	a	QJSValue	will
produce	another	object	that	references	the	same	JavaScript	object.
You	can	use	the	member	functions	of	QJSValue	to	interact	with	the
objects	from	C++.	For	example,	you	can	use	property()	and	setProperty()
to	manipulate	the	object's	properties	and	call()	to	call	the	function
and	get	the	returned	value	as	another	QJSValue.

In	the	previous	example,	QJSEngine::evaluate()	returned	an	Error	object.

When	the	JavaScript	code	runs	successfully,	you	can	use	the
returned	value	later	in	your	C++	code.	For	example,	the	script	can
calculate	the	amount	of	damage	done	to	a	creature	when	it	is	hit
with	a	particular	weapon.	Modifying	our	code	to	use	the	result	of
the	script	is	very	simple.	All	that	is	required	is	to	store	the	value
returned	by	evaluate()	and	then	it	can	be	used	elsewhere	in	the	code:

QJSValue	result	=	engine.evaluate("(7	+	8)	/	2");

if	(result.isError())	{

				//...

}	else	{

				qDebug()	<<	result.toNumber();

}

Time	for	action	–	Creating	a
JavaScript	editor
Let's	do	a	simple	exercise	and	create	a	graphical	editor	to	write	and
execute	scripts.	Start	by	creating	a	new	Qt	Widgets	project	and
implement	a	main	window	composed	of	two	plain	text	edit	widgets
(ui->codeEditor	and	ui->logWindow)	that	are	separated	using	a	vertical
splitter.	One	of	the	edit	boxes	will	be	used	as	an	editor	to	input	code
and	the	other	will	be	used	as	a	console	to	display	script	results.
Then,	add	a	menu	and	toolbar	to	the	window	and	create	actions	to
open	(ui->actionOpenDocument)	and	save	(ui->actionSaveDocument	and	ui-
>actionSaveDocumentAs)	the	document,	create	a	new	document	(ui-
>actionNewDocument),	execute	the	script	(ui->actionExecuteScript),	and	to	quit
the	application	(ui->actionQuit).	Remember	to	add	them	to	the	menu
and	toolbar.

As	a	result,	you	should	receive	a	window	similar	to	the	one	shown	in
the	following	screenshot:

Connect	the	quit	action	to	the	QApplication::quit()	slot.	Then,	create	an
openDocument()	slot	and	connect	it	to	the	triggered	signal	of	the
appropriate	action.	In	the	slot,	use	QFileDialog::getOpenFileName()	to	ask
the	user	for	a	document	path,	as	follows:

void	MainWindow::openDocument()

{

				QString	filePath	=	QFileDialog::getOpenFileName(

								this,	tr("Open	Document"),

								QDir::homePath(),	tr("JavaScript	Documents	(*.js)"));

				if(filePath.isEmpty())	{

								return;

				}

				open(filePath);

}

In	a	similar	fashion,	implement	the	New,	Save,	and	Save	As	action
handlers.	Lastly,	create	the	open(const	QString	&filePath)	slot	that	should
read	the	document	and	put	its	contents	into	the	code	editor:

void	MainWindow::open(const	QString	&filePath)

void	MainWindow::open(const	QString	&filePath)

{

				QFile	file(filePath);

				if(!file.open(QFile::ReadOnly	|	QFile::Text))	{

								QMessageBox::critical(this,	tr("Error"),	tr("Can't	open

file."));

								return;

				}

				setWindowFilePath(filePath);

				ui->codeEditor->setPlainText(QString::fromUtf8(file.readAll()));

				ui->logWindow->clear();

}

The	windowFilePath	property	of	QWidget	can	be	used	to	associate	a	file	with	a	window.	When
this	property	is	set,	Qt	will	automatically	adjust	the	window	title	and	even	add	a	proxy
icon	on	macOS,	allowing	convenient	access	to	the	file.	You	can	then	use	this	property	in
actions	related	to	using	the	file—when	saving	a	document,	you	can	check	whether	this
property	is	empty	and	ask	the	user	to	provide	a	filename.	Then,	you	can	reset	this	property
when	creating	a	new	document	or	when	the	user	provides	a	new	path	for	the	document.

At	this	point,	you	should	be	able	to	run	the	program	and	use	it	to
create	scripts	and	save	and	reload	them	in	the	editor.

Now,	to	execute	the	scripts,	add	a	QJSEngine	m_engine	member	variable
to	the	window	class.	Create	a	new	slot,	call	it	run,	and	connect	it	to
the	execute	action.	Put	the	following	code	in	the	body	of	the	slot:

void	MainWindow::run()

{

				ui->logWindow->clear();

				QTextCursor	logCursor	=	ui->logWindow->textCursor();

				QString	scriptSourceCode	=	ui->codeEditor->toPlainText();

				QJSValue	result	=	m_engine.evaluate(scriptSourceCode,	

																																								windowFilePath());

				if(result.isError())	{

								QTextCharFormat	errFormat;

								errFormat.setForeground(Qt::red);

								logCursor.insertText(tr("Exception	at	line	%1:\n")

												.arg(result.property("lineNumber").toInt()),	errFormat);

								logCursor.insertText(result.toString(),	errFormat);

								logCursor.insertBlock();

								logCursor.insertText(result.property("stack").toString(),	

																													errFormat);

				}	else	{

								QTextCharFormat	resultFormat;

								resultFormat.setForeground(Qt::blue);

								logCursor.insertText(result.toString(),	resultFormat);

								logCursor.insertText(result.toString(),	resultFormat);

				}

}

Build	and	run	the	program.	To	do	so,	enter	the	following	script	in
the	editor:

function	factorial(n)	{

				if(n	<	0)	{

								return;

				}

				if(n	==	0)	{

								return	1;

				}

				return	n	*	factorial(n	-	1);

}

	

factorial(7)

Save	the	script	in	a	file	called	factorial.js	and	then	run	it.	You	should
get	an	output	as	shown:

Next,	replace	the	script	with	the	following	one:

function	factorial(n)	{

				return	N;

}

	

factorial(7)

Running	the	script	should	yield	the	following	result:

What	just	happened?
The	run()	method	clears	the	log	window	and	evaluates	the	script
using	the	method	that	we	learned	earlier	in	this	chapter.	If	the
evaluation	is	successful,	it	prints	the	result	in	the	log	window,	which
is	what	we	see	in	the	first	screenshot	shown	in	the	previous	section.

In	the	second	attempt,	we	made	an	error	in	the	script	using	a
nonexistent	variable.	Evaluating	such	code	results	in	an	exception.
In	addition	to	reporting	the	actual	error,	we	also	use	the	lineNumber
property	of	the	returned	Error	object	to	report	the	line	that	caused
the	problem.	Next,	we	display	the	stack	property	of	the	error	object,
which	returns	the	backtrace	(a	stack	of	function	calls)	of	the
problem,	which	we	also	print	on	the	log.

Global	object	state
Let's	try	another	script.	The	following	code	defines	the	fun	local
variable,	which	is	assigned	an	anonymous	function	that	returns	a
number:

var	fun	=	function()	{

				return	42;

}

You	can	then	call	fun()	like	a	regular	function,	as	follows:

Now,	let's	look	at	what	happens	if	we	delete	the	definition	of	fun
from	the	script,	but	still	keep	the	invocation:

We	still	get	the	same	result	even	though	we	didn't	define	what	fun
means!	This	is	because	any	variables	at	the	top	scope	become
properties	of	the	global	object.	The	state	of	the	global	object	is
preserved	during	the	existence	of	QJSEngine,	so	the	fun	variable	will
remain	available	until	it's	overwritten	or	the	engine	is	destroyed.

To	prevent	users	from	accidentally	changing	the	global	object	with
local	variables,	we	can	wrap	the	provided	code	in	an	anonymous
function:

QString	wrappedCode	=

				QStringLiteral("(function()	{	%1\n})()").arg(scriptSourceCode);

QJSValue	result	=	m_engine.evaluate(wrappedCode,	windowFilePath());

In	this	case,	the	JavaScript	code	must	use	the	return	statement	to
actually	return	a	value	to	the	editor:

var	fun	=	function()	{

				return	42;

}

}

return	fun();

Removing	the	fun	variable	initialization	will	now	result	in	an	error:

ReferenceError:	fun	is	not	defined

However,	removing	the	var	keyword	will	make	the	variable	global
and	preserved.	A	malicious	user	can	also	break	the	existing	global
object's	properties.	For	example,	evaluating	Math.floor	=	null;	will
make	the	built-in	Math.floor	function	unavailable	in	all	subsequent
calls.

There	isn't	really	a	good	way	to	guard	or	reset	the	global	object.	If
you	are	concerned	about	malicious	scripts,	destroying	and	creating
a	new	QJSEngine	object	is	the	best	option.	If	you	need	to	run	multiple
scripts	that	are	not	allowed	to	interfere	with	each	other,	you	have	to
create	a	separate	QJSEngine	for	each	of	them.	However,	in	most
applications,	such	sandboxing	seems	to	be	an	overkill.

Exposing	C++	objects	and
functions	to	JavaScript	code
So	far,	we	were	only	evaluating	some	standalone	scripts	that	can
make	use	of	built-in	JavaScript	features.	Now,	it	is	time	to	learn	to
use	data	from	your	programs	in	the	scripts.	This	is	done	by
exposing	different	kinds	of	entities	to	and	from	scripts.

Accessing	C++	object's
properties	and	methods
The	simplest	way	to	expose	a	C++	object	to	JavaScript	code	is	to
take	advantage	of	Qt's	meta-object	system.	QJSEngine	is	able	to	inspect
QObject	instances	and	detect	their	properties	and	methods.	To	use
them	in	scripts,	the	object	has	to	be	visible	to	the	script.	The	easiest
way	to	make	this	happen	is	to	add	it	to	the	engine's	global	object.	As
you	remember,	all	data	between	the	script	engine	and	C++	is
exchanged	using	the	QJSValue	class,	so	first	we	have	to	obtain	a	JS
value	handle	for	the	C++	object:

QJSEngine	engine;

QPushButton	*button	=	new	QPushButton("Button");

//	...

QJSValue	scriptButton	=	engine.newQObject(button);

engine.globalObject().setProperty("pushButton",	scriptButton);

QJSEngine::newQObject()	creates	a	JavaScript	object	wrapping	an	existing
QObject	instance.	We	then	set	the	wrapper	as	a	property	of	the	global
object	called	pushButton.	This	makes	the	button	available	in	the	global
context	of	the	engine	as	a	JavaScript	object.	All	the	properties
defined	with	Q_PROPERTY	are	available	as	properties	of	the	object,	and
every	slot	is	accessible	as	a	method	of	that	object.	In	JavaScript,	you
will	be	able	to	use	the	pushButton	object	like	this:

pushButton.text	=	'My	Scripted	Button';

pushButton.checkable	=	true;

pushButton.setChecked(true);

pushButton.show();

Qt	slots	conventionally	return	void.	They	technically	can	have	any

return	type,	but	Qt	won't	use	the	return	value,	so	in	most	cases,
there	is	no	sense	in	returning	any	value.	On	the	contrary,	when	you
expose	a	C++	method	to	the	JavaScript	engine,	you	often	want	to
return	a	value	and	receive	it	in	JavaScript.	In	these	cases,	you
should	not	create	slots,	as	that	will	break	the	convention.	You
should	make	the	method	invokable	instead.	To	do	this,	place	the
method	declaration	in	a	regular	public	scope	and
add	Q_INVOKABLE	before	it:

public:

				Q_INVOKABLE	int	myMethod();

This	macro	instructs	moc	to	make	this	method	invokable	in	the
meta-object	system	so	that	Qt	will	be	able	to	call	it	at	runtime.	All
invokable	methods	are	automatically	exposed	to	scripts.

Data	type	conversions	between
C++	and	JavaScript
Qt	will	automatically	convert	arguments	and	return	types	of
methods	to	its	JavaScript	counterparts.	The	supported	conversions
include	the	following:

Basic	types	(bool,	int,	double,	and	such)	are	exposed	without

changes

Qt	data	types	(QString,	QUrl,	QColor,	QFont,	QDate,	QPoint,	QSize,	QRect,

QMatrix4x4,	QQuaternion,	QVector2D,	and	such)	are	converted	to

objects	with	the	available	properties

QDateTime	and	QTime	values	are	automatically	converted	to

JavaScript	Date	objects

Enums	declared	with	Q_ENUM	macro	can	be	used	in	JavaScript

Flags	declared	with	Q_FLAG	macro	can	be	used	as	flags	in

JavaScript

QObject*	pointers	will	be	automatically	converted	to

JavaScript	wrapper	objects

QVariant	objects	containing	any	supported	types	are

recognized

QVariantList	is	an	equivalent	of	a	JavaScript	array	with

arbitrary	items

QVariantMap	is	an	equivalent	of	a	JavaScript	object	with

arbitrary	properties

Some	C++	list	types	(QList<int>,	QList<qreal>,	QList<bool>,

QList<QString>,	QStringList,	QList<QUrl>,	QVector<int>,	QVector<qreal>,	and

QVector<bool>)	are	exposed	to	JavaScript	without	performing

additional	data	conversions

If	you	want	more	fine-grained	control	over	data	type	conversions,
you	can	simply	use	QJSValue	as	an	argument	type	or	a	return	type.	For
example,	this	will	allow	you	to	return	a	reference	to	an	existing
JavaScript	object	instead	of	creating	a	new	one	each	time.	This
approach	is	also	useful	for	creating	or	accessing	multidimensional
arrays	or	other	objects	with	complex	structure.	While	you	can	use
nested	QVariantList	or	QVariantMap	objects,	creating	QJSValue	objects
directly	may	be	more	efficient.

Qt	will	not	be	able	to	recognize	and	automatically	convert	a	custom
type.	Attempting	to	access	such	method	or	property	from
JavaScript	will	result	in	an	error.	You	can	use	the	Q_GADGET	macro	to
make	a	C++	data	type	available	to	JavaScript	and	use	Q_PROPERTY	to
declare	properties	that	should	be	exposed.

For	more	information	on	this	topic,	refer	to	the	Data	Type	Conversion	Between	QML	and
C++	documentation	page.

Accessing	signals	and	slots	in
scripts
QJSEngine	also	offers	the	capability	to	use	signals	and	slots.	The	slot
can	be	either	a	C++	method	or	a	JavaScript	function.	The
connection	can	be	made	either	in	C++	or	in	the	script.

First,	let's	see	how	to	establish	a	connection	within	a	script.	When	a
QObject	instance	is	exposed	to	a	script,	the	object's	signals	become	the
properties	of	the	wrapping	object.	These	properties	have	a	connect
method	that	accepts	a	function	object	that	is	to	be	called	when	the
signal	is	emitted.	The	receiver	can	be	a	regular	slot	or	a	JavaScript
function.	The	most	common	case	is	when	you	connect	the	signal	to
an	anonymous	function:

pushButton.toggled.connect(function()	{

				console.log('button	toggled!');

});

If	you	need	to	undo	the	connection,	you	will	need	to	store	the
function	in	a	variable:

function	buttonToggled()	{

				//...

}

pushButton.toggled.connect(buttonToggled);

//...

pushButton.toggled.disconnect(buttonToggled);

You	can	define	the	this	object	for	the	function	by	providing	an	extra
argument	to	connect():

var	obj	=	{	'name':	'FooBar'	};

var	obj	=	{	'name':	'FooBar'	};

pushButton.clicked.connect(obj,	function()	{

				console.log(this.name);

});

You	can	also	connect	the	signal	to	a	signal	or	slot	of	another
exposed	object.	To	connect	the	clicked()	signal	of	an	object	called
pushButton	to	a	clear()	slot	of	another	object	called	lineEdit,	you	can	use
the	following	statement:

pushButton.clicked.connect(lineEdit.clear);

Emitting	signals	from	within	the	script	is	also	easy—just	call	the
signal	as	a	function	and	pass	to	it	any	necessary	parameters:

pushButton.clicked();

spinBox.valueChanged(7);

To	create	a	signal-slot	connection	on	the	C++	side	where	the
receiver	is	a	JavaScript	function,	you	can	utilize	C++	lambda
functions	and	the	QJSValue::call()	function:

QJSValue	func	=	engine.evaluate(

				"function(checked)	{	console.log('func',	checked);	}");

QObject::connect(&button,	&QPushButton::clicked,	[func](bool	checked)

{

				QJSValue(func).call({	checked	});

});

Time	for	action	–	Using	a
button	from	JavaScript
Let's	put	all	this	together	and	build	a	complete	example	of	a
scriptable	button:

int	main(int	argc,	char	*argv[])	{

				QApplication	app(argc,	argv);

				QJSEngine	engine;

				engine.installExtensions(QJSEngine::ConsoleExtension);

				QPushButton	button;

				engine.globalObject().setProperty("pushButton",

engine.newQObject(&button));

				QString	script	=

								"pushButton.text	=	'My	Scripted	Button';\n"

								"pushButton.checkable	=	true;\n"

								"pushButton.setChecked(true);\n"

								"pushButton.toggled.connect(function(checked)	{\n"

								"		console.log('button	toggled!',	checked);\n"

								"});\n"

								"pushButton.show();";

				engine.evaluate(script);

	

				QJSValue	func	=	engine.evaluate(

										"function(checked)	{	console.log('button	toggled	2!',

checked);	}");

				QObject::connect(&button,	&QPushButton::clicked,	[func](bool

checked)	{

								QJSValue(func).call({	checked	});

				});

				return	app.exec();

}

In	this	code,	we	expose	the	function	to	JavaScript	and	execute	code
that	sets	some	properties	of	the	button	and	accesses	its	toggled
signal.	Next,	we	create	a	JavaScript	function,	store	a	reference	to	it
in	the	func	variable,	and	connect	the	toggled	signal	of	the	button	to

this	function	from	C++	side.

Restricting	access	to	C++
classes	from	JavaScript
There	are	cases	when	you	want	to	provide	a	rich	interface	for	a	class
to	manipulate	it	from	within	C++	easily,	but	to	have	strict	control
over	what	can	be	done	using	scripting,	you	want	to	prevent	scripters
from	using	some	of	the	properties	or	methods	of	the	class.

The	safest	approach	is	to	create	a	wrapper	class	that	only	exposes
the	allowed	methods	and	signals.	This	will	allow	you	to	design	your
original	classes	freely.	For	example,	if	you	want	to	hide	some
methods,	it's	quite	easy—just	don't	make	them	slots	and	don't
declare	them	with	Q_INVOKABLE.	However,	you	may	want	them	to	be
slots	in	the	internal	implementation.	By	creating	a	wrapper	class,
you	can	easily	hide	slots	of	the	internal	class	from	the	JavaScript
code.	We'll	show	how	to	apply	this	approach	later	in	this	chapter.

Another	issue	may	arise	if	the	data	types	used	by	your	internal
object	cannot	be	directly	exposed	to	JavaScript.	For	example,	if	one
of	your	methods	returns	a	QVector<QVector<int>>,	you	will	not	be	able	to
call	such	a	method	directly	from	JavaScript.	The	wrapper	class	is	a
good	place	to	put	the	required	data	conversion	operations.

You	should	also	be	aware	that	JavaScript	code	can	emit	any	signals
of	exposed	C++	objects.	In	some	cases,	this	can	break	the	logic	of
your	application.	If	you're	using	a	wrapper,	you	can	just	connect	the
signal	of	the	internal	class	to	the	signal	of	the	exposed	wrapper.	The
script	will	be	able	to	connect	to	the	wrapper's	signal,	but	it	won't	be
able	to	emit	the	original	signal.	However,	the	script	will	be	able	to
emit	the	wrapper's	signal,	and	this	can	affect	all	the	other
JavaScript	code	in	the	engine.

If	all	or	almost	all	APIs	of	the	class	are	safe	to	expose	to	JavaScript,
it's	much	easier	to	make	the	objects	themselves	available,	instead	of
creating	wrappers.	If	you	want	to	restrict	access	to	certain	methods,
keep	in	mind	that	JavaScript	code	can	only	access	public	and
protected	methods	declared	with	Q_INVOKABLE	and	slots.	Remember
that	you	can	still	connect	signals	to	non-slot	methods	if	you	use	the
connect()	variant	that	takes	a	function	pointer	as	an	argument.
JavaScript	code	also	cannot	access	any	private	methods.

For	properties,	you	can	mark	them	inaccessible	from	scripts	using
the	SCRIPTABLE	keyword	in	the	Q_PROPERTY	declaration.	By	default,	all
properties	are	scriptable,	but	you	can	forbid	their	exposure	to
scripts	by	setting	SCRIPTABLE	to	false,	as	shown	in	the	following
example:

Q_PROPERTY(QString	internalName	READ	internalName	SCRIPTABLE	false)	

Creating	C++	objects	from
JavaScript
We've	only	exposed	the	existing	C++	objects	to	JavaScript	so	far,
but	what	if	you	want	to	create	a	new	C++	object	from	JavaScript?
You	can	do	this	using	what	you	already	know.	A	C++	method	of	an
already	exposed	object	can	create	a	new	object	for	you:

public:

				Q_INVOKABLE	QObject*	createMyObject(int	argument)	{

								return	new	MyObject(argument);

				}

We	use	QObject*	instead	of	MyObject*	in	the	function	signature.	This	allows	us	to	import	the
object	into	the	JS	engine	automatically.	The	engine	will	take	ownership	of	the	object	and
delete	it	when	there	are	no	more	references	to	it	in	JavaScript.

Using	this	method	from	JavaScript	is	also	pretty	straightforward:

var	newObject	=	originalObject.createMyObject(42);

newObject.slot1();

This	approach	is	fine	if	you	have	a	good	place	for	the	createMyObject
function.	However,	sometimes	you	want	to	create	new	objects
independently	of	the	existing	ones,	or	you	don't	have	any	objects
created	yet.	For	these	situations,	there	is	a	neat	way	to	expose	the
constructor	of	the	class	to	the	JavaScript	engine.	First,	you	need	to
make	your	constructor	invokable	in	the	class	declaration:

public:

				Q_INVOKABLE	explicit	MyObject(int	argument,	QObject	*parent	=

nullptr);

Then,	you	should	use	the	newQMetaObject()	function	to	import	the	meta-

object	of	the	class	to	the	engine.	You	can	immediately	assign	the
imported	meta-object	to	a	property	of	the	global	object:

engine.globalObject().setProperty("MyObject",

					engine.newQMetaObject(&MyObject::staticMetaObject));

You	can	now	invoke	the	constructor	by	calling	the	exposed	object
with	the	new	keyword:

var	newObject	=	new	MyObject(42);

newObject.slot1();

Exposing	C++	functions	to
JavaScript
Sometimes	you	just	want	to	provide	a	single	function	instead	of	an
object.	Unfortunately,	QJSEngine	only	supports	functions	that	belong
to	QObject-derived	classes.	However,	we	can	hide	this	implementation
detail	from	the	JavaScript	side.	First,	create	a	subclass	of	QObject	and
add	an	invokable	member	function	that	proxies	the	original
standalone	function:

Q_INVOKABLE	double	factorial(int	x)	{

				return	superFastFactorial(x);

}

Next,	expose	the	wrapper	object	using	the	newQObject()	function,	as
usual.	However,	instead	of	assigning	this	object	to	a	property	of	the
global	object,	extract	the	factorial	property	from	the	object:

QJSValue	myObjectJS	=	engine.newQObject(new	MyObject());

engine.globalObject().setProperty("factorial",

																																		myObjectJS.property("factorial"));

Now,	the	JavaScript	code	can	access	the	method	as	if	it	were	a
global	function,	like	factorial(4).

Creating	a	JavaScript	scripting
game
Let's	perfect	our	skills	by	implementing	a	game	that	allows	players
to	use	JavaScript.	The	rules	are	simple.	Each	player	has	a	number	of
entities	that	move	on	the	board.	All	entities	move	in	turns;	during
each	turn,	the	entity	can	stand	still	or	move	to	an	adjacent	tile
(cardinally	or	diagonally).	If	an	entity	moves	to	the	tile	occupied	by
another	entity,	that	entity	is	killed	and	removed	from	the	board.

At	the	beginning	of	the	game,	all	entities	are	placed	randomly	on
the	board.	An	example	of	a	starting	position	is	displayed	on	the
following	image:

Each	player	must	provide	a	JavaScript	function	that	receives	an
entity	object	and	returns	its	new	position.	This	function	will	be
called	when	one	of	the	player's	entities	should	move.	Additionally,
the	player	may	provide	an	initialization	function	that	will	be	called
at	the	beginning	of	the	game.	The	state	of	the	board	and	entities	on
it	will	be	exposed	through	a	property	of	the	global	JavaScript	object.

In	our	game,	the	players	will	compete	to	create	the	best	survival
strategy.	Once	the	game	is	started,	the	players	have	no	control	over
the	entities,	and	the	provided	JavaScript	functions	must	account	for
any	possible	game	situation.	When	only	entities	of	one	player
remain	on	the	board,	that	player	wins.	The	rules	allow	any	number
of	players	to	participate,	although	we	will	only	have	two	players	in
our	example.

Time	for	action	–	Implementing
the	game	engine
We	will	use	the	Graphics	View	framework	to	implement	the	board
visualization.	We	will	not	provide	too	many	details	about	the
implementation,	since	we	focus	on	scripting	in	this	chapter.	The
basic	skills	you	learned	in	Chapter	4,	Custom	2D	Graphics	with
Graphics	View,	should	be	enough	for	you	to	implement	this	game.
The	full	code	of	this	example	is	provided	with	the	book.	However,
we	will	highlight	the	architecture	of	the	project	and	briefly	describe
how	it	works.

The	game	engine	implementation	consists	of	two	classes:

The	Scene	class	(derived	from	QGraphicsScene)	manages	the

graphics	scene,	creates	items,	and	implements	the	general

game	logic

The	Entity	class	(derived	from	QGraphicsEllipseItem)	represents	a

single	game	entity	on	the	board

Each	Entity	object	is	a	circle	with	0.4	radius	and	(0,	0)	center.	It	is
initialized	in	the	constructor,	using	the	following	code:

setRect(-0.4,	-0.4,	0.8,	0.8);

setPen(Qt::NoPen);

We	will	use	the	pos	property	(inherited	from	QGraphicsItem)	to	move	the
circle	on	the	board.	The	tiles	of	the	board	will	have	a	unit	size,	so	we
can	just	treat	pos	as	integer	QPoint	instead	of	QPointF	with	double

coordinates.	We	will	zoom	in	to	the	graphics	view	to	achieve	the
desired	visible	size	of	the	entities.

The	Entity	class	has	two	special	properties	with	getters	and	setters.
The	team	property	is	the	number	of	the	player	this	entity	belongs	to.
This	property	also	defines	the	color	of	the	circle:

void	Entity::setTeam(int	team)	{

				m_team	=	team;

				QColor	color;

				switch(team)	{

				case	0:

								color	=	Qt::green;

								break;

				case	1:

								color	=	Qt::red;

								break;

				}

				setBrush(color);

}

The	alive	flag	indicates	whether	the	entity	is	still	in	play.	For
simplicity,	we	will	not	immediately	delete	the	killed	entity	objects.
We	will	just	hide	them	instead:

void	Entity::setAlive(bool	alive)

{

				m_alive	=	alive;

				setVisible(alive);

				//...

}

Let's	turn	our	attention	to	the	Scene	class.	First,	it	defines	some	game
configuration	options:

The	fieldSize	property	determines	the	two-dimensional	size

of	the	board

The	teamSize	property	determines	how	many	entities	each

player	has	at	the	beginning	of	the	game

The	stepDuration	property	determines	the	number	of

milliseconds	passed	between	executing	the	next	round	of

turns

The	setter	of	the	fieldSize	property	adjusts	the	scene	rect	so	that	the
graphics	view	is	correctly	resized	at	the	beginning	of	the	game:

void	Scene::setFieldSize(const	QSize	&fieldSize)

{

				m_fieldSize	=	fieldSize;

				setSceneRect(-1,	-1,

																	m_fieldSize.width()	+	2,

																	m_fieldSize.height()	+	2);

}

The	execution	of	each	round	of	the	game	will	be	done	in	the	step()
function.	In	the	constructor,	we	initialize	a	QTimer	object	responsible
for	calling	this	function:

m_stepTimer	=	new	QTimer(this);

connect(m_stepTimer,	&QTimer::timeout,

								this,	&Scene::step);

m_stepTimer->setInterval(1000);

In	the	setStepDuration()	function,	we	simply	change	the	interval	of	this
timer.

The	QVector<Entity*>	m_entities	private	field	of	the	Scene	class	will	contain
all	the	entities	in	play.	The	game	is	started	by	calling	the	start()
function.	Let's	take	a	look	at	it:

void	Scene::start()	{

				const	int	TEAM_COUNT	=	2;

				for(int	i	=	0;	i	<	m_teamSize;	i++)	{

								for(int	team	=	0;	team	<	TEAM_COUNT;	team++)	{

												Entity*	entity	=	new	Entity(this);

												entity->setTeam(team);

												QPoint	pos;

												do	{

																pos.setX(qrand()	%	m_fieldSize.width());

																pos.setY(qrand()	%	m_fieldSize.height());

												}	while(itemAt(pos,	QTransform()));

												entity->setPos(pos);

												addItem(entity);

												m_entities	<<	entity;

								}

				}

				//...

				m_stepTimer->start();

}

We	create	the	requested	number	of	entities	for	each	team	and	place
them	at	random	locations	on	the	board.	If	we	happen	to	choose	an
already	occupied	place,	we	go	on	the	next	iteration	of	the	do-while
loop	and	choose	another	location.	Next,	we	add	the	new	item	to	the
scene	and	to	the	m_entities	vector.	Finally,	we	start	our	timer	so	that
the	step()	function	will	be	called	periodically.

In	the	main()	function,	we	initialize	the	random	number	generator
because	we	want	to	get	new	random	numbers	each	time:

qsrand(QDateTime::currentMSecsSinceEpoch());

Then,	we	create	and	initialize	the	Scene	object,	and	we	create	a
QGraphicsView	to	display	our	scene.

The	game	engine	is	almost	ready.	We	only	need	to	implement	the
scripting.

Time	for	action	–	Exposing	the
game	state	to	the	JS	engine
Before	we	move	on	to	executing	the	players'	scripts,	we	need	to
create	a	QJSEngine	and	insert	some	information	into	its	global	object.
The	scripts	will	use	this	information	to	decide	the	optimal	move.

First,	we	add	the	QJSEngine	m_jsEngine	private	field	to	the	Scene	class.
Next,	we	create	a	new	SceneProxy	class	and	derive	it	from	QObject.	This
class	will	expose	the	permitted	API	of	Scene	to	the	scripts.	We	pass	a
pointer	to	the	Scene	object	to	the	constructor	of	the	SceneProxy	object
and	store	it	in	a	private	variable:

SceneProxy::SceneProxy(Scene	*scene)	:

				QObject(scene),	m_scene(scene)

{

}

Add	two	invokable	methods	to	the	class	declaration:

Q_INVOKABLE	QSize	size()	const;

Q_INVOKABLE	QJSValue	entities()	const;

The	implementation	of	the	size()	function	is	pretty	straightforward:

QSize	SceneProxy::size()	const	{

				return	m_scene->fieldSize();

}

However,	the	entities()	function	is	a	bit	trickier.	We	cannot	add	Entity
objects	to	the	JS	engine	because	they	are	not	based	on	QObject.	Even

if	we	could,	we	prefer	to	create	a	proxy	class	for	entities	as	well.

Let's	do	this	right	now.	Create	the	EntityProxy	class,	derive	it	from
QObject,	and	pass	a	pointer	to	the	underlying	Entity	object	to	the
constructor,	like	we	did	in	SceneProxy.	Declare	two	invokable	functions
and	a	signal	in	the	new	class:

class	EntityProxy	:	public	QObject

{

				Q_OBJECT

public:

				explicit	EntityProxy(Entity	*entity,	QObject	*parent	=	nullptr);

				Q_INVOKABLE	int	team()	const;

				Q_INVOKABLE	QPoint	pos()	const;

				//...

signals:

				void	killed();

private:

				Entity	*m_entity;

};

Implementation	of	the	methods	just	forward	the	calls	to	the
underlying	Entity	object:

int	EntityProxy::team()	const

{

				return	m_entity->team();

}

	

QPoint	EntityProxy::pos()	const

{

				return	m_entity->pos().toPoint();

}

The	Entity	class	will	be	responsible	for	creating	its	own	proxy	object.
Add	the	following	private	fields	to	the	Entity	class:

EntityProxy	*m_proxy;

QJSValue	m_proxyValue;

The	m_proxy	field	will	hold	the	proxy	object.	The	m_proxyValue	field	will
contain	the	reference	to	the	same	object	added	to	the	JS	engine.
Initialize	these	fields	in	the	constructor:

m_proxy	=	new	EntityProxy(this,	scene);

m_proxyValue	=	scene->jsEngine()->newQObject(m_proxy);

We	modify	the	Entity::setAlive()	function	to	emit	the	killed()	signal
when	the	entity	is	killed:

void	Entity::setAlive(bool	alive)

{

				m_alive	=	alive;

				setVisible(alive);

				if	(!alive)	{

								emit	m_proxy->killed();

				}

}

It's	generally	considered	bad	practice	to	emit	signals	from	outside	the	class	that	owns	the
signal.	If	the	source	of	the	signal	is	another	QObject-based	class,	you	should	create	a
separate	signal	in	that	class	and	connect	it	to	the	destination	signal.	In	our	case,	we	cannot
do	that,	since	Entity	is	not	a	QObject,	so	we	choose	to	emit	the	signal	directly	to	avoid
further	complication.

Create	the	proxy()	and	proxyValue()	getters	for	these	fields.	We	can	now
return	to	the	SceneProxy	implementation	and	use	the	entity	proxy:

QJSValue	SceneProxy::entities()	const

{

				QJSValue	list	=	m_scene->jsEngine()->newArray();

				int	arrayIndex	=	0;

				for(Entity	*entity:	m_scene->entities())	{

								if	(entity->isAlive())	{

												list.setProperty(arrayIndex,	entity->proxyValue());

												arrayIndex++;

								}

				}

				return	list;

}

What	just	happened?
First,	we	ask	the	JS	engine	to	create	a	new	JavaScript	array	object.
Then,	we	iterate	over	all	entities	and	skip	entities	that	were	already
killed.	We	use	QJSValue::setProperty	to	add	the	proxy	object	of	each
entity	to	the	array.	We	need	to	specify	the	index	of	the	new	array
item,	so	we	create	the	arrayIndex	counter	and	increment	it	after	each
insertion.	Finally,	we	return	the	array.

This	function	completes	the	SceneProxy	class	implementation.	We	just
need	to	create	a	proxy	object	and	add	it	to	the	JS	engine	in	the
constructor	of	the	Scene	class:

SceneProxy	*sceneProxy	=	new	SceneProxy(this);

m_sceneProxyValue	=	m_jsEngine.newQObject(sceneProxy);

Time	for	action	–	Loading
scripts	provided	by	users
Each	player	will	provide	their	own	strategy	script,	so	the	Scene	class
should	have	a	field	for	storing	all	provided	scripts:

QHash<int,	QJSValue>	m_teamScripts;

Let's	provide	the	setScript()	function	that	accepts	the	player's	script
and	loads	it	into	the	JS	engine:

void	Scene::setScript(int	team,	const	QString	&script)	{

				QJSValue	value	=	m_jsEngine.evaluate(script);

				if	(value.isError())	{

								qDebug()	<<	"js	error:	"	<<	value.toString();

								return;

				}

				if(!value.isObject())	{

								qDebug()	<<	"script	must	return	an	object";

								return;

				}

				m_teamScripts[team]	=	value;

}

In	this	function,	we	try	to	evaluate	the	provided	code.	If	the	code
returned	a	JavaScript	object,	we	put	it	in	the	m_teamScripts	hash	table.
We	expect	that	the	provided	object	has	the	step	property	containing
the	function	that	decides	the	entity's	move.	The	object	may	also
contain	the	init	property	that	will	be	executed	at	the	beginning	of
the	game.

In	the	main()	function,	we	load	the	scripts	from	the	project's
resources:

scene.setScript(0,	loadFile(":/scripts/1.js"));

scene.setScript(1,	loadFile(":/scripts/2.js"));

The	loadFile()	helper	function	simply	loads	the	content	of	the	file	to	a
QString:

QString	loadFile(const	QString&	path)	{

				QFile	file(path);

				if	(!file.open(QFile::ReadOnly))	{

								qDebug()	<<	"failed	to	open	"	<<	path;

								return	QString();

				}

				return	QString::fromUtf8(file.readAll());

}

If	you	want	to	allow	users	to	provide	their	scripts	without	needing
to	recompile	the	project,	you	can	accept	the	script	files	from	the
command-line	arguments	instead:

QStringList	arguments	=	app.arguments();

if	(arguments.count()	<	3)	{

				qDebug()	<<	"usage:	"	<<	argv[0]	<<	"	path/to/script1.js

path/to/script2.js";

				return	1;

}

scene.setScript(0,	loadFile(arguments[1]));

scene.setScript(1,	loadFile(arguments[2]));

To	set	the	command-line	arguments	for	your	project,	switch	to	the	Projects	pane,	select
Run	in	the	left	column	and	locate	the	Command	line	arguments	input	box.	The	provided
project	contains	two	sample	scripts	in	the	scripts	subdirectory.

Time	for	action	–	Executing	the
strategy	scripts
First,	we	need	to	check	whether	the	player	provided	an	init	function
and	execute	it.	We'll	do	it	in	the	Scene::start()	function:

for(int	team	=	0;	team	<	TEAM_COUNT;	team++)	{

				QJSValue	script	=	m_teamScripts.value(team);

				if	(script.isUndefined())	{

								continue;

				}

				if	(!script.hasProperty("init"))	{

								continue;

				}

				m_jsEngine.globalObject().setProperty("field",	m_sceneProxyValue);

				QJSValue	scriptOutput	=	script.property("init").call();

				if	(scriptOutput.isError())	{

								qDebug()	<<	"script	error:	"	<<	scriptOutput.toString();

								continue;

				}

}

In	this	code,	we	use	isUndefined()	to	check	whether	the	code	was
provided	and	parsed	successfully.	Next,	we	use	hasProperty()	to	check
whether	the	returned	object	contains	the	optional	init	function.	If
we	found	it,	we	execute	it	using	QJSValue::call().	We	provide	some
information	about	the	board	by	assigning	our	SceneProxy	instance	to
the	field	property	of	the	global	object.

The	most	exciting	part	is	the	step()	function	that	implements	the
actual	game	execution.	Let's	take	a	look	at	it:

void	Scene::step()	{

				for(Entity*	entity:	m_entities)	{

								if	(!entity->isAlive())	{

								if	(!entity->isAlive())	{

												continue;

								}

								QJSValue	script	=	m_teamScripts.value(entity->team());

								if	(script.isUndefined())	{

												continue;

								}

								m_jsEngine.globalObject().setProperty("field",

m_sceneProxyValue);

	

								QJSValue	scriptOutput	=

												script.property("step").call({	entity->proxyValue()	});

								//...

				}

}

First,	we	iterate	over	all	entities	and	skip	the	killed	ones.	Next,	we
use	Entity::team()	to	determine	which	player	this	entity	belongs	to.	We
extract	the	corresponding	strategy	script	from	the	m_teamScripts	field
and	extract	the	step	property	from	it.	Then,	we	try	to	call	it	as	a
function	and	pass	the	current	entity's	proxy	object	as	an	argument.
Let's	see	what	we	do	with	the	script	output:

if	(scriptOutput.isError())	{

				qDebug()	<<	"script	error:	"	<<	scriptOutput.toString();

				continue;

}

QJSValue	scriptOutputX	=	scriptOutput.property("x");

QJSValue	scriptOutputY	=	scriptOutput.property("y");

if	(!scriptOutputX.isNumber()	||	!scriptOutputY.isNumber())	{

				qDebug()	<<	"invalid	script	output:	"	<<	scriptOutput.toVariant();

				continue;

}

QPoint	pos(scriptOutputX.toInt(),	scriptOutputY.toInt());

if	(!moveEntity(entity,	pos))	{

				qDebug()	<<	"invalid	move";

}

We	try	to	interpret	the	function's	return	value	as	an	object	with	x
and	y	properties.	If	both	properties	contain	numbers,	we	construct	a
QPoint	from	them	and	call	our	moveEntity()	function	that	tries	to	execute
the	move	chosen	by	the	strategy.

We	will	not	blindly	trust	the	value	returned	by	the	user's	script.
Instead,	we	carefully	check	whether	the	move	is	valid:

bool	Scene::moveEntity(Entity	*entity,	QPoint	pos)	{

				if	(pos.x()	<	0	||	pos.y()	<	0	||

								pos.x()	>=	m_fieldSize.width()	||

								pos.y()	>=	m_fieldSize.height())

				{

								return	false;	//	out	of	field	bounds

				}

				QPoint	posChange	=	entity->pos().toPoint()	-	pos;

				if	(posChange.isNull())	{

								return	true;	//	no	change

				}

				if	(qAbs(posChange.x())	>	1	||	qAbs(posChange.y())	>	1)	{

								return	false;	//	invalid	move

				}

				QGraphicsItem*	item	=	itemAt(pos,	QTransform());

				Entity*	otherEntity	=	qgraphicsitem_cast<Entity*>(item);

				if	(otherEntity)	{

								otherEntity->setAlive(false);

				}

				entity->setPos(pos);

				return	true;

}

We	check	that	the	new	position	is	in	bounds	and	is	not	too	far	from
the	entity's	current	position.	If	everything	is	correct,	we	execute	the
move.	If	another	entity	was	on	the	destination	tile,	we	mark	it	as
killed.	The	function	returns	true	if	the	move	was	successful.

That's	it!	Our	game	is	ready	to	run.	Let's	create	some	strategy
scripts	to	play	with.

Time	for	action	–	Writing	a
strategy	script
Our	first	script	will	simply	select	a	random	move:

{

				"step":	function(current)	{

								function	getRandomInt(min,	max)	{

										return	Math.floor(Math.random()	*	(max	-	min))	+	min;

								}

								return	{

												x:	current.pos().x	+	getRandomInt(-1,	2),

												y:	current.pos().y	+	getRandomInt(-1,	2),

								}

				}

}

Of	course,	a	more	intelligent	strategy	can	beat	this	script.	You	can
find	a	more	advanced	script	in	the	code	bundle.	First,	when	it	sees
an	enemy	entity	nearby,	it	always	goes	for	the	kill.	If	there	is	no
such	enemy,	it	tries	to	move	away	from	the	closest	ally,	attempting
to	fill	the	whole	board.	This	script	will	easily	wipe	out	the	randomly
moving	enemy:

Of	course,	there	is	always	room	for	improvement.	Try	to	think	of	a
better	strategy	and	write	a	script	that	can	win	the	game.

Have	a	go	hero	–	Extending	the
game
There	are	a	couple	of	ways	for	you	to	improve	the	game
implementation.	For	example,	you	can	detect	when	a	player	has
won	and	display	a	pop-up	message.	You	can	also	allow	an	arbitrary
number	of	players.	You	just	need	to	replace	the	TEAM_COUNT	constant
with	a	new	property	in	the	Scene	class	and	define	more	team	colors.
You	can	even	create	a	GUI	for	users	to	provide	their	scripts	instead
of	passing	them	as	command-line	arguments.

The	scripting	environment	can	also	be	improved.	You	can	provide
more	helper	functions	(for	example,	a	function	to	calculate	the
distance	between	two	tiles)	to	make	creating	scripts	easier.	On	the
other	hand,	you	can	modify	the	rules	and	reduce	the	amount	of
available	information	so	that,	for	example,	each	entity	can	only	see
other	entities	at	a	certain	distance.

As	discussed	earlier,	each	script	has	ways	to	break	the	global	object
or	emit	the	signals	of	the	exposed	C++	objects,	affecting	the	other
players.	To	prevent	that,	you	can	create	a	separate	QJSEngine	and	a
separate	set	of	proxy	objects	for	each	player,	effectively	sandboxing
them.

Python	scripting
Qt	QML	is	an	environment	that	is	designed	to	be	part	of	the	Qt
world.	Since	not	everyone	knows	or	likes	JavaScript,	we	will	present
another	language	that	can	easily	be	used	to	provide	scripting
environments	for	games	that	are	created	with	Qt.	Just	be	aware	that
this	will	not	be	an	in-depth	description	of	the	environment—we	will
just	show	you	the	basics	that	can	provide	foundations	for	your	own
research.

A	popular	language	used	for	scripting	is	Python.	There	are	two
variants	of	Qt	bindings	that	are	available	for	Python:	PySide2	and
PyQt.	PySide2	is	the	official	binding	that	is	available	under	LGPL.
PyQt	is	a	third-party	library	that	is	available	under	GPL	v3	and	a
commercial	license.

PyQt	is	not	available	under	LGPL,	so	for	commercial	closed-source	products,	you	need	to
obtain	a	commercial	license	from	Riverbank	computing!

These	bindings	allow	you	to	use	the	Qt	API	from	within	Python—
you	can	write	a	complete	Qt	application	using	just	Python.
However,	to	call	Python	code	from	within	C++,	you	will	need	a
regular	Python	interpreter.	Luckily,	it	is	very	easy	to	embed	such	an
interpreter	in	a	C++	application.

First,	you	will	need	Python	installed,	along	with	its	development
package.	For	example,	for	Debian-based	systems,	it	is	easiest	to
simply	install	the	libpythonX.Y-dev	package,	where	X.Y	stands	for	the
version	of	Python	available	in	the	repository:

sudo	apt-get	install	libpython3.5-dev

We	will	use	Python	3.5	in	our	example,	but	later	minor	versions

should	also	be	compatible	with	our	code.

Then,	you	need	to	tell	qmake	to	link	your	program	against	the
library.	For	Linux,	you	can	use	pkgconfig	to	do	this	automatically:

CONFIG	+=	link_pkgconfig	no_keywords

#	adjust	the	version	number	to	suit	your	needs

PKGCONFIG	+=	python-3.5m

The	no_keywords	configuration	option	tells	the	build	system	to	disable	Qt-specific	keywords
(signals,	slots,	and	emit).	We	have	to	do	this	because	Python	headers	use	the	slots
identifier	that	would	conflict	with	the	same	Qt	keyword.	You	can	still	access	the	Qt
keywords	if	you	write	them	as	Q_SIGNALS,	Q_SLOTS,	and	Q_EMIT.

For	Windows,	you	need	to	manually	pass	information	to	the
compiler:

CONFIG	+=	no_keywords

INCLUDEPATH	+=	C:\Python35\include

LIBS	+=	-LC:\Python35\include	-lpython35

To	call	Python	code	from	within	a	Qt	app,	the	simplest	way	is	to	use
the	following	code:

#include	<Python.h>

#include	<QtCore>

	

int	main(int	argc,	char	**argv)	{

				QCoreApplication	app(argc,	argv);

				Py_Initialize();

				const	char	*script	=	"print(\"Hello	from	Python\")";

				PyRun_SimpleString(script);

				Py_Finalize();

				return	app.exec();

}

This	code	initializes	a	Python	interpreter,	then	invokes	a	script	by
passing	it	directly	as	a	string,	and	finally,	it	shuts	down	the
interpreter	before	invoking	Qt's	event	loop.	Such	code	makes	sense
only	for	simple	scripting.	In	real	life,	you'd	want	to	pass	some	data

to	the	script	or	fetch	the	result.	For	that,	we	have	to	write	some
more	code.	As	the	library	exposes	the	C	API	only,	let's	write	a	nice
Qt	wrapper	for	it.

Time	for	action	–	Writing	a	Qt
wrapper	for	embedding	Python
As	the	first	task,	we	will	implement	the	last	program	using	an
object-oriented	API.	Create	a	new	console	project	and	add	the
following	class	to	it:

class	QtPython	:	public	QObject	{

				Q_OBJECT

public:

				QtPython(QObject	*parent	=	0);

				~QtPython();

				void	run(const	QString	&program);

	

private:

				QVector<wchar_t>	programNameBuffer;

};

The	implementation	file	should	look	like	this:

#include	<Python.h>

//...

QtPython::QtPython(QObject	*parent)	:	QObject(parent)	{

				QStringList	args	=	qApp->arguments();

				if	(args.count()	>	0)	{

								programNameBuffer.resize(args[0].count());

								args[0].toWCharArray(programNameBuffer.data());

								Py_SetProgramName(programNameBuffer.data());

				}

				Py_InitializeEx(0);

}

	

QtPython::~QtPython()	{

				Py_Finalize();

}

	

void	QtPython::run(const	QString	&program)	{

void	QtPython::run(const	QString	&program)	{

				PyRun_SimpleString(qPrintable(program));

}

Then,	add	a	main()	function,	as	shown	in	the	following	snippet:

int	main(int	argc,	char	*argv[])

{

				QCoreApplication	app(argc,	argv);

				QtPython	python;

				python.run("print('Hello	from	Python')");

				return	0;

}

Finally,	open	the	.pro	file	and	tell	Qt	to	link	with	the	Python	library,
as	was	shown	earlier.

What	just	happened?
We	created	a	class	called	QtPython	that	wraps	the	Python	C	API	for	us.

Never	use	a	Q	prefix	to	call	your	custom	classes,	as	this	prefix	is	reserved	for	official	Qt
classes.	This	is	to	ensure	that	your	code	will	never	have	a	name	clash	with	future	code
added	to	Qt.	The	Qt	prefix,	on	the	other	hand,	is	meant	to	be	used	with	classes	that	are
extensions	to	Qt.	You	probably	still	shouldn't	use	it,	but	the	probability	of	a	name	clash	is
much	smaller	and	yields	a	lesser	impact	than	clashes	with	an	official	class.	It	is	best	to
come	up	with	an	application-specific	prefix	or	use	a	namespace.

The	class	constructor	creates	a	Python	interpreter,	and	the	class
destructor	destroys	it.	We	use	Py_InitializeEx(0),	which	has	the	same
functionality	as	Py_Initialize(),	but	it	does	not	apply	C	signal
handlers,	as	this	is	not	something	we	would	want	when	embedding
Python.	Prior	to	this,	we	use	Py_SetProgramName()	to	inform	the
interpreter	of	our	context.	We	also	defined	a	run()	method,	taking
QString	and	returning	void.	It	uses	qPrintable(),	which	is	a	convenience
function	that	extracts	a	C	string	pointer	from	a	QString	object,	which
is	then	fed	into	PyRun_SimpleString().

Never	store	the	output	of	qPrintable(),	as	it	returns	an	internal	pointer	to	a	temporary	byte
array	(this	is	equivalent	to	calling	toLocal8Bit().constData()	on	a	string).	It	is	safe	to	use
directly,	but	the	byte	array	is	destroyed	immediately	afterward;	thus,	if	you	store	the
pointer	in	a	variable,	the	data	may	not	be	valid	later	when	you	try	using	that	pointer.

The	most	difficult	work	when	using	embedded	interpreters	is	to
convert	values	between	C++	and	the	types	that	the	interpreter
expects.	With	Qt	Script,	the	QScriptValue	type	was	used	for	this.	We
can	implement	something	similar	for	our	Python	scripting
environment.

Time	for	action	–	Converting
data	between	C++	and	Python
Create	a	new	class	and	call	it	QtPythonValue:

class	QtPythonValue	{

public:

				QtPythonValue();

				QtPythonValue(const	QtPythonValue	&other);

				QtPythonValue&	operator=(const	QtPythonValue	&other);

	

				QtPythonValue(int	val);

				QtPythonValue(const	QString	&str);

				~QtPythonValue();

	

				int	toInt()	const;

				QString	toString()	const;

				bool	isNone()	const;

	

private:

				QtPythonValue(PyObject	*ptr);

				void	incRef();

				void	incRef(PyObject	*val);

				void	decRef();

	

				PyObject	*m_value;

				friend	class	QtPython;

};

Next,	implement	the	constructors,	the	assignment	operator,	and	the
destructor,	as	follows:

QtPythonValue::QtPythonValue()	{

				incRef(Py_None);

}

QtPythonValue::QtPythonValue(const	QtPythonValue	&other)	{

				incRef(other.m_value);

}

QtPythonValue::QtPythonValue(PyObject	*ptr)	{

				m_value	=	ptr;

}

QtPythonValue::QtPythonValue(const	QString	&str)	{

				m_value	=	PyUnicode_FromString(qPrintable(str));

}

QtPythonValue::QtPythonValue(int	val)	{

				m_value	=	PyLong_FromLong(val);

}

QtPythonValue	&QtPythonValue::operator=(const	QtPythonValue	&other)	{

				if(m_value	==	other.m_value)	{

								return	*this;

				}

				decRef();

				incRef(other.m_value);

				return	*this;

}

QtPythonValue::~QtPythonValue()

{

				decRef();

}

Then,	implement	the	incRef()	and	decRef()	functions:

void	QtPythonValue::incRef(PyObject	*val)	{

				m_value	=	val;

				incRef();

}

void	QtPythonValue::incRef()	{

				if(m_value)	{

								Py_INCREF(m_value);

				}

}

void	QtPythonValue::decRef()	{

				if(m_value)	{

								Py_DECREF(m_value);

				}

}

Next,	implement	conversions	from	QtPythonValue	to	C++	types:

int	QtPythonValue::toInt()	const	{

				return	PyLong_Check(m_value)	?	PyLong_AsLong(m_value)	:	0;

				return	PyLong_Check(m_value)	?	PyLong_AsLong(m_value)	:	0;

}

	

QString	QtPythonValue::toString()	const	{

				return	PyUnicode_Check(m_value)	?

								QString::fromUtf8(PyUnicode_AsUTF8(m_value))	:	QString();

}

	

bool	QtPythonValue::isNone()	const	{

				return	m_value	==	Py_None;

}

Finally,	let's	modify	the	main()	function	to	test	our	new	code:

int	main(int	argc,	char	*argv[])	{

				QCoreApplication	app(argc,	argv);

				QtPython	python;

				QtPythonValue	integer	=	7,	string	=	QStringLiteral("foobar"),

none;

				qDebug()	<<	integer.toInt()	<<	string.toString()	<<	none.isNone();

				return	0;

}

When	you	run	the	program,	you	will	see	that	the	conversion
between	C++	and	Python	works	correctly	in	both	directions.

What	just	happened?
The	QtPythonValue	class	wraps	a	PyObject	pointer	(through	the	m_value
member),	providing	a	nice	interface	to	convert	between	what	the
interpreter	expects	and	our	Qt	types.	Let's	see	how	this	is	done.
First,	take	a	look	at	the	three	private	methods:	two	versions	of
incRef()	and	one	decRef().	PyObject	contains	an	internal	reference
counter	that	counts	the	number	of	handles	on	the	contained	value.
When	that	counter	drops	to	0,	the	object	can	be	destroyed.	Our
three	methods	use	adequate	Python	C	API	calls	to	increase	or
decrease	the	counter	in	order	to	prevent	memory	leaks	and	keep
Python's	garbage	collector	happy.

The	second	important	aspect	is	that	the	class	defines	a	private
constructor	that	takes	a	PyObject	pointer,	effectively	creating	a
wrapper	over	the	given	value.	The	constructor	is	private;	however,
the	QtPython	class	is	declared	as	a	friend	of	QtPythonValue,	which	means
that	only	QtPython	and	QtPythonValue	can	instantiate	values	by	passing
PyObject	pointers	to	it.	Now,	let's	take	a	look	at	public	constructors.

The	default	constructor	creates	an	object	pointing	to	a	None	value,
which	represents	the	absence	of	a	value.	The	copy	constructor	and
assignment	operator	are	pretty	standard,	taking	care	of
bookkeeping	of	the	reference	counter.	Then,	we	have	two
constructors—one	taking	int	and	the	other	taking	a	QString	value.
They	use	appropriate	Python	C	API	calls	to	obtain	a	PyObject
representation	of	the	value.	Note	that	these	calls	already	increase
the	reference	count	for	us,	so	we	don't	have	to	do	it	ourselves.

The	code	ends	with	a	destructor	that	decreases	the	reference
counter	and	three	methods	that	provide	safe	conversions	from
QtPythonValue	to	appropriate	Qt/C++	types.

Have	a	go	hero	–	Implementing
the	remaining	conversions
Now,	you	should	be	able	to	implement	other	constructors	and
conversions	for	QtPythonValue	that	operates	on	the	float,	bool,	or	even	on
QDate	and	QTime	types.	Try	implementing	them	yourself.	If	needed,
take	a	look	at	the	Python	documentation	to	find	appropriate	calls
that	you	should	use.

The	documentation	for	Python	3.5	is	available	online	at	https://docs.python.org/3.5/.	If
you've	installed	a	different	Python	version,	you	can	find	the	documentation	for	your
version	on	the	same	website.

We'll	give	you	a	head	start	by	providing	a	skeleton	implementation
of	how	to	convert	QVariant	to	QtPythonValue.	This	is	especially	important,
because	Python	makes	use	of	two	types	whose	equivalents	are	not
available	in	C++,	namely,	tuples	and	dictionaries.	We	will	need
them	later,	so	having	a	proper	implementation	is	crucial.	Here's	the
code:

QtPythonValue::QtPythonValue(const	QVariant	&variant)

{

				switch(variant.type())	{

				case	QVariant::Invalid:

								incRef(Py_None);

								return;

				case	QVariant::String:

								m_value	=	

PyUnicode_FromString(qPrintable(variant.toString()));

								return;

				case	QVariant::Int:

								m_value	=	PyLong_FromLong(variant.toInt());

								return;

				case	QVariant::LongLong:

								m_value	=	PyLong_FromLongLong(variant.toLongLong());

								return;

				case	QVariant::List:	{

https://docs.python.org/3.5/

								QVariantList	list	=	variant.toList();

								const	int	listSize	=	list.size();

								PyObject	*tuple	=	PyTuple_New(listSize);

								for(int	i	=	0;	i	<	listSize;	++i)	{

												PyTuple_SetItem(tuple,	i,	

QtPythonValue(list.at(i)).m_value);

								}

								m_value	=	tuple;

								return;

				}

				case	QVariant::Map:	{

								QVariantMap	map	=	variant.toMap();

								PyObject	*dict	=	PyDict_New();

								for(auto	iter	=	map.begin();	iter	!=	map.end();	++iter)	{

												PyDict_SetItemString(dict,	qPrintable(iter.key()),

																																	QtPythonValue(iter.value()).m_value);

								}

								m_value	=	dict;

								return;

				}

				default:

								incRef(Py_None);

								return;

				}

}

The	highlighted	code	shows	how	to	create	a	tuple	(which	is	a	list	of
arbitrary	elements)	from	QVariantList	and	how	to	create	a	dictionary
(which	is	an	associative	array)	from	QVariantMap.	You	should	also	add	a
QtPythonValue	constructor	that	takes	QStringList	and	produces	a	tuple.

We	have	written	quite	a	lot	of	code	now,	but	there	is	no	way	of
binding	any	data	from	our	programs	with	Python	scripting	so	far.
Let's	change	that.

Time	for	action	–	Calling
functions	and	returning	values
The	next	task	is	to	provide	ways	to	invoke	Python	functions	and
return	values	from	scripts.	Let's	start	by	providing	a	richer	run()	API.
Implement	the	following	method	in	the	QtPython	class:

QtPythonValue	QtPython::run(const	QString	&program,

				const	QtPythonValue	&globals,	const	QtPythonValue	&locals)

{

				PyObject	*retVal	=	PyRun_String(qPrintable(program),

								Py_file_input,	globals.m_value,	locals.m_value);

				return	QtPythonValue(retVal);

}

We'll	also	need	a	functionality	to	import	Python	modules.	Add	the
following	methods	to	the	class:

QtPythonValue	QtPython::import(const	QString	&name)	const

{

				return	QtPythonValue(PyImport_ImportModule(qPrintable(name)));

}

	

QtPythonValue	QtPython::addModule(const	QString	&name)	const

{

				PyObject	*retVal	=	PyImport_AddModule(qPrintable(name));

				Py_INCREF(retVal);

				return	QtPythonValue(retVal);

}

	

QtPythonValue	QtPython::dictionary(const	QtPythonValue	&module)	const

{

				PyObject	*retVal	=	PyModule_GetDict(module.m_value);

				Py_INCREF(retVal);

				return	QtPythonValue(retVal);

}

The	last	piece	of	the	code	is	to	extend	QtPythonValue	with	this	code:

bool	QtPythonValue::isCallable()	const	{

				return	PyCallable_Check(m_value);

}

	

QtPythonValue	QtPythonValue::attribute(const	QString	&name)	const	{

				return	QtPythonValue(PyObject_GetAttrString(m_value,

qPrintable(name)));

}

	

bool	QtPythonValue::setAttribute(const	QString	&name,	const

QtPythonValue	&value)	{

				int	retVal	=	PyObject_SetAttrString(m_value,	qPrintable(name),

value.m_value);

				return	retVal	!=	-1;

}

	

QtPythonValue	QtPythonValue::call(const	QVariantList	&arguments)	const

{

				return	QtPythonValue(

								PyObject_CallObject(m_value,

QtPythonValue(arguments).m_value));

}

	

QtPythonValue	QtPythonValue::call(const	QStringList	&arguments)	const

{

				return	QtPythonValue(

								PyObject_CallObject(m_value,

QtPythonValue(arguments).m_value));

}

Finally,	you	can	modify	main()	to	test	the	new	functionality:

int	main(int	argc,	char	*argv[])

{

				QCoreApplication	app(argc,	argv);

				QtPython	python;

	

				QtPythonValue	mainModule	=	python.addModule("__main__");

				QtPythonValue	dict	=	python.dictionary(mainModule);

				python.run("foo	=	(1,	2,	3)",	dict,	dict);

				python.run("print(foo)",	dict,	dict);

	

				QtPythonValue	module	=	python.import("os");

				QtPythonValue	chdir	=	module.attribute("chdir");

				chdir.call(QStringList()	<<	"/home");

				QtPythonValue	func	=	module.attribute("getcwd");

				qDebug()	<<	func.call(QVariantList()).toString();

	

				return	0;

}

You	can	replace	/home	with	a	directory	of	your	choice.	Then,	you	can
run	the	program.

What	just	happened?
We	did	two	tests	in	the	last	program.	First,	we	used	the	new	run()
method,	passing	to	it	the	code	that	is	to	be	executed	and	two
dictionaries	that	define	the	current	execution	context—the	first
dictionary	contains	global	symbols	and	the	second	contains	local
symbols.	The	dictionaries	come	from	Python's	__main__	module
(which,	among	other	things,	defines	the	print	function).	The	run()
method	may	modify	the	contents	of	the	two	dictionaries—the	first
call	defines	the	tuple	called	foo,	and	the	second	call	prints	it	to	the
standard	output.

The	second	test	calls	a	function	from	an	imported	module;	in	this
case,	we	call	two	functions	from	the	os	module—the	first	function,
chdir,	changes	the	current	working	directory,	and	the	other,	called
getcwd,	returns	the	current	working	directory.	The	convention	is	that
we	should	pass	a	tuple	to	call(),	where	we	pass	the	needed
parameters.	The	first	function	takes	a	string	as	a	parameter;
therefore,	we	pass	a	QStringList	object,	assuming	that	there	is	a
QtPythonValue	constructor	that	converts	QStringList	to	a	tuple	(you	need
to	implement	it	if	you	haven't	done	it	already).	Since	the	second
function	does	not	take	any	parameters,	we	pass	an	empty	tuple	to
the	call.	In	the	same	way,	you	can	provide	your	own	modules	and
call	functions	from	them,	query	the	results,	inspect	dictionaries,
and	so	on.	This	is	a	pretty	good	start	for	an	embedded	Python
interpreter.	Remember	that	a	proper	component	should	have	some
error	checking	code	to	avoid	crashing	the	whole	application.

You	can	extend	the	functionality	of	the	interpreter	in	many	ways.
You	can	even	use	PyQt5	to	use	Qt	bindings	in	scripts,	combining
Qt/C++	code	with	Qt/Python	code.

Have	a	go	hero	–	Wrapping	Qt
objects	into	Python	objects
At	this	point,	you	should	be	experienced	enough	to	try	and
implement	a	wrapper	for	the	QObject	instances	to	expose	signals	and
slots	to	Python	scripting.	If	you	decide	to	pursue	the	goal,
https://docs.python.org/3/	will	be	your	best	friend,	especially	the	section
about	extending	Python	with	C++.	Remember	that	QMetaObject
provides	information	about	the	properties	and	methods	of	Qt
objects	and	QMetaObject::invokeMethod()	allows	you	to	execute	a	method
by	its	name.	This	is	not	an	easy	task,	so	don't	be	hard	on	yourself	if
you	are	not	able	to	complete	it.	You	can	always	return	to	it	once	you
gain	more	experience	in	using	Qt	and	Python.

Before	you	head	on	to	the	next	chapter,	try	testing	your	knowledge
about	scripting	in	Qt.

https://docs.python.org/3/

Pop	quiz
Q1.	Which	is	the	method	that	you	can	use	to	execute	JavaScript
code?

1.	 QJSValue::call()

2.	 QJSEngine::evaluate()

3.	 QJSEngine::fromScriptValue()

Q2.	What	is	the	name	of	the	class	that	serves	as	a	bridge	to
exchange	data	between	JS	engine	and	C++?

1.	 QObject

2.	 QJSValue

3.	 QVariant

Q3.	If	you	want	to	expose	a	C++	object	to	the	script,	which	class
must	this	object	be	derived	from?

1.	 QObject

2.	 QJSValue

3.	 QGraphicsItem

Q4.	Which	of	the	following	kinds	of	functions	is	not	available	to
JavaScript	code?

1.	 Signals

2.	 Q_INVOKABLE	methods

3.	 Slots

4.	 Global	functions

Q5.	When	is	a	PyObject	instance	destroyed?

1.	 When	its	value	is	set	to	Py_None

2.	 When	its	internal	reference	counter	drops	to	0

3.	 When	the	corresponding	QtPythonValue	is	destroyed

Summary
In	this	chapter,	you	learned	that	providing	a	scripting	environment
to	your	games	opens	up	new	possibilities.	Implementing	a
functionality	using	scripting	languages	is	usually	faster	than	doing
the	full	write-compile-test	cycle	with	C++,	and	you	can	even	use	the
skills	and	creativity	of	your	users	who	have	no	understanding	of	the
internals	of	your	game	engine	to	make	your	games	better	and	more
feature-rich.	You	were	shown	how	to	use	QJSEngine,	which	blends	the
C++	and	JavaScript	worlds	together	by	exposing	Qt	objects	to
JavaScript	and	making	cross-language	signal-slot	connections.	You
also	learned	the	basics	of	scripting	with	Python.	There	are	other
scripting	languages	available	(for	example,	Lua),	and	many	of	them
can	be	used	along	with	Qt.	Using	the	experience	gained	in	this
chapter,	you	should	even	be	able	to	bring	other	scripting
environments	to	your	programs,	as	most	embeddable	interpreters
offer	similar	approaches	to	that	of	Python.

In	the	next	chapter,	you	will	be	introduced	to	Qt	Quick—a	library
for	creating	fluid	and	dynamic	user	interfaces.	It	may	not	sound	like
it's	related	to	this	chapter,	but	Qt	Quick	is	based	on	Qt	QML.	In	fact,
any	Qt	Quick	application	contains	a	QJSEngine	object	that	executes
JavaScript	code	of	the	application.	Being	familiar	with	this	system
will	help	you	understand	how	such	applications	work.	You	will	also
be	able	to	apply	the	skills	you've	learned	here	when	you	need	to
access	C++	objects	from	Qt	Quick	and	vice	versa.	Welcome	to	the
world	of	Qt	Quick.

Introduction	to	Qt	Quick
In	this	chapter,	you	will	be	introduced	to	a	technology	called	Qt
Quick	that	allows	us	to	implement	resolution-independent	user
interfaces	with	lots	of	eye-candy,	animations,	and	effects	that	can	be
combined	with	regular	Qt	code	that	implements	the	logic	of	the
application.	You	will	learn	the	basics	of	the	QML	declarative
language	that	forms	the	foundation	of	Qt	Quick.	You	will	create	a
simple	Qt	Quick	application	and	see	the	advantages	offered	by	the
declarative	approach.

The	main	topics	covered	in	this	chapter	are	these:

QML	basics

Overview	of	Qt	modules

Using	Qt	Quick	Designer

Utilizing	Qt	Quick	modules

Property	bindings	and	signal	handling

Qt	Quick	and	C++

States	and	transitions

Declarative	UI	programming
Although	it	is	technically	possible	to	use	Qt	Quick	by	writing	C++
code,	the	module	is	accompanied	by	a	dedicated	programming
language	called	QML	(Qt	Modeling	Language).	QML	is	an	easy
to	read	and	understand	declarative	language	that	describes	the
world	as	a	hierarchy	of	components	that	interact	and	relate	to	one
another.	It	uses	a	JSON-like	syntax	and	allows	us	to	use	imperative
JavaScript	expressions	as	well	as	dynamic	property	bindings.	So,
what	is	a	declarative	language,	anyway?

Declarative	programming	is	one	of	the	programming	paradigms
that	dictates	that	the	program	describes	the	logic	of	the
computation	without	specifying	how	this	result	should	be	obtained.
In	contrast	to	imperative	programming,	where	the	logic	is
expressed	as	a	list	of	explicit	steps	forming	an	algorithm	that
directly	modifies	the	intermediate	program	state,	a	declarative
approach	focuses	on	what	the	ultimate	result	of	the	operation
should	be.

Time	for	action	–	Creating	the
first	project
Let's	create	a	project	to	better	understand	what	QML	is.	In	Qt
Creator,	select	File	and	then	New	File	or	Project	in	the	main	menu.
Choose	Application	in	the	left	column	and	select	the	Qt	Quick
Application	-	Empty	template.	Name	the	project	as	calculator	and	go
through	the	rest	of	the	wizard.

Qt	Creator	created	a	sample	application	that	displays	an	empty
window.	Let's	examine	the	project	files.	The	first	file	is	the	usual
main.cpp:

#include	<QGuiApplication>

#include	<QQmlApplicationEngine>

	

int	main(int	argc,	char	*argv[])

{

				QGuiApplication	app(argc,	argv);

				QQmlApplicationEngine	engine;

				engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

				if	(engine.rootObjects().isEmpty())

								return	-1;

				return	app.exec();

}

This	code	simply	creates	the	application	object,	instantiates	the
QML	engine,	and	asks	it	to	load	the	main.qml	file	from	the	resources.
If	an	error	occurs,	rootObjects()	will	return	an	empty	list,	and	the
application	will	terminate.	If	the	QML	file	was	loaded	successfully,
the	application	enters	the	main	event	loop.

The	*.qrc	file	is	a	resource	file.	The	concept	of	resource	files	should
be	familiar	to	you	from	Chapter	3,	Qt	GUI	Programming.	Basically,	it

contains	the	list	of	arbitrary	project	files	that	are	required	for
project	execution.	During	compilation,	the	contents	of	these	files
are	embedded	into	the	executable.	You	can	then	retrieve	the	content
at	runtime	by	specifying	a	virtual	filename,	such	as	qrc:/main.qml	in
the	preceding	code.	You	can	expand	the	Resources	section	of	the
Project	tree	further	to	see	all	files	added	to	the	resource	file.

In	the	sample	project,	qml.qrc	references	a	QML	file	named	main.qml.	If
you	don't	see	it	in	the	project	tree,	expand	Resources,	qml.qrc,	and	then	/
sections.	The	main.qml	file	is	the	top-level	QML	file	that	is	loaded	into
the	engine.	Let's	take	a	look	at	it:

import	QtQuick	2.9

import	QtQuick.Window	2.2

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Hello	World")

}

This	file	declares	what	objects	should	be	created	at	the	start	of	the
application.	As	it	uses	some	QML	types	provided	by	Qt,	it	contains
two	import	directives	at	the	top	of	the	file.	Each	import	directive
contains	the	name	and	the	version	of	the	imported	module.	In	this
example,	import	QtQuick.Window	2.2	enables	us	to	use	the	Window	QML	type
provided	by	this	module.

The	rest	of	the	file	is	the	declaration	of	the	objects	the	engine	should
create.	The	Window	{	...	}	construction	tells	QML	to	create	a	new
object	of	the	Window	type.	The	code	within	this	section	assigns	values
to	properties	of	this	object.	We	explicitly	assign	a	constant	to
the	visible,	width,	and	height	properties	of	the	window	object.	The	qsTr()
function	is	the	translation	function,	just	like	tr()	in	C++	code.	It
returns	the	passed	string	without	change	by	default.	The	title
property	will	contain	the	result	of	evaluating	the	passed	expression.

Time	for	action	–	Editing	QML
Let's	add	some	content	to	our	window.	Edit	the	main.qml	file	with	the
following	code:

import	QtQuick	2.9

import	QtQuick.Window	2.2

import	QtQuick.Controls	2.2

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Hello	World")

				TextField	{

								text:	"Edit	me"

								anchors	{

												top:	parent.top

												left:	parent.left

								}

				}

				Label	{

								text:	"Hello	world"

								anchors	{

												bottom:	parent.bottom

												left:	parent.left

								}

				}

}

When	you	run	the	project,	you	will	see	a	text	field	and	a	label	in	the
window:

What	just	happened?
First,	we	added	an	import	statement	to	make	the	QtQuick.Controls
module	available	in	the	current	scope.	If	you're	not	sure	which
version	to	use,	invoke	Qt	Creator's	code	completion	and	use	the
most	recent	version.	Due	to	the	new	import,	we	can	now	use
the	TextField	and	Label	QML	types	in	our	QML	file.

Next,	we	declared	two	children	of	the	top-level	Window	object.	QML
objects	form	a	parent-child	relationship,	much	like	QObject	in	C++.
However,	you	don't	need	to	explicitly	assign	parents	to	items.
Instead,	you	declare	the	object	within	the	declaration	of	its	parent,
and	QML	will	automatically	ensure	that	relationship.	In	our
example,	the	TextField	{	...	}	part	tells	QML	to	create	a	new	QML
object	of	the	TextField	type.	

Since	this	declaration	lies	within	the	Window	{	...	}	declaration,	the
TextField	object	will	have	the	Window	object	as	its	parent.	The	same
applies	to	the	Label	object.	You	can	create	multiple	levels	of	nesting
in	a	single	file,	if	needed.	You	can	use	the	parent	property	to	access
the	parent	item	of	the	current	item.

After	declaring	a	new	object,	we	assign	values	to	its	properties
within	its	declaration.	The	text	property	is	self-explanatory—it
contains	the	text	displayed	in	the	UI.	Note	that	the	TextField	object
allows	the	user	to	edit	the	text.	When	the	text	is	edited	in	the	UI,
the	text	property	of	the	object	will	reflect	the	new	value.

Finally,	we	assign	value	to	the	anchors	property	group	to	position
the	items	as	we	like.	We	put	the	text	field	in	the	top-left	corner	of
the	window	and	put	the	label	in	the	bottom-left	corner.	This	step
requires	a	more	thorough	explanation.

Property	groups
Before	we	discuss	anchors,	let's	talk	about	property	groups	in
general.	This	is	a	new	concept	introduced	in	QML.	Property	groups
are	used	when	there	are	multiple	properties	with	a	similar	purpose.
For	example,	the	Label	type	has	a	number	of	properties	related	to	the
font.	They	can	be	implemented	as	separate	properties;	consider	the
following	example:

Label	{

				//	this	code	does	not	work

				fontFamily:	"Helvetica"

				fontSize:	12

				fontItalic:	true	

}

However,	such	repetitive	code	is	hard	to	read.	Luckily,	font
properties	are	implemented	as	a	property	group,	so	you	can	set
them	using	the	group	notation	syntax:

Label	{

				font	{

								family:	"Helvetica"

								pointSize:	12

								italic:	true	

				}

}

This	code	is	much	cleaner!	Note	that	there	is	no	colon	character
after	font,	so	you	can	tell	that	this	is	a	property	group	assignment.

In	addition,	if	you	only	need	to	set	one	subproperty	of	the	group,
you	can	use	the	dot	notation	syntax:

Label	{

				font.pointSize:	12

}

The	dot	notation	is	also	used	to	refer	to	subproperties	in	the
documentation.	Note	that	you	should	prefer	group	notation	if	you
need	to	set	more	than	one	subproperty.

That's	all	you	need	to	know	about	property	groups.	Besides	font,	you
can	find	many	other	property	groups	in	some	QML	types,	for
example,	border,	easing,	and	anchors.

Anchors
Anchors	allow	you	to	manage	item	geometry	by	attaching	certain
points	of	some	objects	to	points	of	another	object.	These	points	are
called	anchor	lines.	The	following	diagram	shows	the	anchor	lines
that	are	available	for	each	Qt	Quick	item:

You	can	establish	bindings	between	anchor	lines	to	manage	relative
positioning	of	items.	For	each	anchor	line,	there	is	a	property	that
returns	the	current	coordinate	of	that	anchor	line.	For
example,	the	left	property	returns	the	x	coordinate	of	the	left	border
of	the	item,	and	the	top	property	returns	the	y	coordinate	of	its	top
border.	Next,	each	object	contains	the	anchors	property	group	that
allows	you	to	set	coordinates	of	the	anchor	line	for	that	item.	For
example,	the	anchors.left	property	can	be	used	to	request	the	position
of	the	left	border	of	the	object.	You	can	use	these	two	kinds	of
properties	together	to	specify	relative	positions	of	objects:

anchors.top:	otherObject.bottom

This	code	declares	that	the	top	anchor	line	of	the	object	must	be

bound	to	the	bottom	anchor	line	of	the	other	object.	It's	also
possible	to	specify	a	margin	for	such	binding	through	properties,
such	as	anchors.topMargin.

The	anchors.fill	property	is	the	shortcut	for	binding	the	top,	bottom,	left,
and	right	anchors	to	the	specified	object's	respective	anchor	lines.	As
a	result,	the	item	will	have	the	same	geometry	as	the	other	object.
The	following	code	snippet	is	often	used	to	expand	the	item	to	the
whole	area	of	its	parent:

anchors.fill:	parent

Time	for	action	–	Positioning
items	relative	to	each	other
In	our	previous	example,	we	used	the	following	code	to	position	the
label:

anchors	{

				bottom:	parent.bottom

				left:	parent.left

}

You	should	be	able	to	understand	this	code	by	now.	The	parent
property	returns	the	reference	to	the	parent	QML	object.	In	our
case,	it's	the	window.	The	parent.bottom	expression	returns	the	y
coordinate	of	the	parent's	bottom	anchor	line.	By	assigning	this
expression	to	the	anchors.bottom	property,	we	ensure	that	the	bottom
anchor	line	of	the	label	stays	in	the	same	position	as	the	bottom
anchor	line	of	the	window.	The	x	coordinate	is	restricted	in	a	similar
way.

Now,	let's	see	whether	we	can	position	the	label	just	below	the	text
field.	In	order	to	do	that,	we	need	to	bind	the	anchors.top	property	of
the	label	to	the	bottom	anchor	line	of	the	text	field.	However,	we
have	no	way	to	access	the	text	field	from	within	the	label	yet.	We
can	fix	this	by	defining	the	id	property	of	the	text	field:

TextField	{

				id:	textField

				text:	"Edit	me"

				anchors	{

								top:	parent.top

								left:	parent.left

				}

}

Label	{

				text:	"Hello	world"

				anchors	{

								top:	textField.bottom

								topMargin:	20

								left:	parent.left

				}

}

Setting	an	ID	is	similar	to	assigning	the	object	to	a	variable.	We	can
now	use	the	textField	variable	to	refer	to	our	TextField	object.	The	label
is	now	positioned	20	pixels	below	the	text	field.

QML	types,	components,	and
documents
QML	introduces	some	new	concepts	that	you	should	be	familiar
with.	A	QML	type	is	a	concept	similar	to	C++	class.	Any	value	or
object	in	QML	should	have	some	type	and	should	be	exposed	to
JavaScript	code	in	a	certain	way.	There	are	two	major	kinds	of	QML
types:

Basic	types	are	types	that	hold	a	concrete	value	and	do	not

refer	to	any	other	objects,	for	example,	string	or	point

Object	types	are	types	that	can	be	used	to	create	objects

with	certain	functionality	and	consistent	interface

Basic	QML	types	are	similar	to	C++	primitive	types	and	data
structures,	such	as	QPoint.	Object	types	are	closer	to	widget	classes,
such	as	QLineEdit,	but	they	are	not	necessarily	tied	to	GUI.

There	are	numerous	QML	types	provided	by	Qt.	We've	already	used
the	Window,	TextField,	and	Label	types	in	our	previous	examples.	You	can
also	create	your	own	custom	QML	types	with	unique	functionality
and	behavior.	The	simplest	way	to	create	a	QML	type	is	to	add	a
new	.qml	file	with	a	capitalized	name	to	the	project.	The	base	file
name	defines	the	name	of	the	created	QML	type.	For	example,
the	MyTextField.qml	file	will	declare	a	new	MyTextField	QML	type.

Any	complete	and	valid	QML	code	is	called	a	document.	Any	valid
QML	file	contains	a	document.	It's	also	possible	to	load	documents
from	any	source	(for	example,	over	the	network).	A	component	is
a	document	loaded	into	the	QML	engine.

How	does	it	work?
Qt	Quick	infrastructure	hides	most	of	the	implementation	details
from	the	developer	and	allows	you	to	keep	your	application	code
clean.	Nevertheless,	it's	always	important	to	understand	what's
going	on.

The	QML	engine	is	a	C++	class	that	understands	QML	code	and
executes	the	required	actions	to	make	it	work.	In	particular,	the
QML	engine	is	responsible	for	creating	objects	according	to	the
requested	hierarchy,	assigning	values	to	properties,	and	executing
event	handlers	in	response	to	events.

While	QML	language	itself	is	quite	far	from	JavaScript,	it	allows	you
to	use	any	JavaScript	expressions	and	code	blocks	for	calculating
values	and	handling	events.	This	means	that	the	QML	engine	must
be	capable	of	executing	JavaScript.	Under	the	hood,	the
implementation	uses	a	very	fast	JavaScript	engine,	so	you	shouldn't
usually	worry	about	the	performance	of	your	JavaScript	code.

The	JavaScript	code	should	be	able	to	interact	with	QML	objects,	so
every	QML	object	is	exposed	as	a	JavaScript	object	with
corresponding	properties	and	methods.	This	integration	uses	the
same	mechanism	that	we	learned	in	Chapter	10,	Scripting.	In	C++
code,	you	have	some	control	over	the	objects	embedded	into	the
QML	engine	and	can	even	create	new	objects.	We	will	get	back	to
this	topic	later	in	the	chapter.

While	QML	is	a	general	purpose	language,	Qt	Quick	is	a	QML-based
module	that	focuses	on	user	interfaces.	It	provides	a	two-
dimensional	hardware	accelerated	canvas	that	contains	a	hierarchy
of	interconnected	items.	Unlike	Qt	Widgets,	Qt	Quick	was	designed
to	support	visual	effects	and	animations	efficiently,	so	you	can	use

its	powers	without	significant	performance	degradation.

Qt	Quick	views	are	not	based	on	a	web	browser	engine.	Browsers	tend	to	be	quite	heavy,
especially	for	mobile	devices.	However,	you	can	use	a	web	engine	explicitly	when	you	need
it	by	adding	the	WebView	or	WebEngine	object	to	your	QML	files.

Time	for	action	–	Property
binding
QML	is	much	more	powerful	than	simple	JSON.	Instead	of
specifying	an	explicit	value	for	a	property,	you	can	use	an	arbitrary
JavaScript	expression	that	will	be	automatically	evaluated	and
assigned	to	the	property.	For	example,	the	following	code	will
display	"ab"	in	the	label:

Label	{

				text:	"a"	+	"b"

				//...

}

You	can	also	refer	to	properties	of	the	other	objects	in	the	file.	As	we
saw	earlier,	you	can	use	the	textEdit	variable	to	set	relative	position
of	the	label.	This	is	one	example	of	a	property	binding.	If	the	value
of	the	textField.bottom	expression	changes	for	some	reason,	the
anchors.top	property	of	the	label	will	be	automatically	updated	with
the	new	value.	QML	allows	you	to	use	the	same	mechanism	for
every	property.	To	make	the	effect	more	obvious,	let's	assign	an
expression	to	the	label's	text	property:

Label	{

				text:	"Your	input:	"	+	textField.text

				//...

}

Now	the	label's	text	will	be	changed	according	to	this
expression.	When	you	change	the	text	in	the	input	field,	the	text	of
the	label	will	be	automatically	updated!:

The	property	binding	differs	from	a	regular	value	assignment	and
binds	the	value	of	the	property	to	the	value	of	the	supplied
JavaScript	expression.	Whenever	the	expression's	value	changes,
the	property	will	reflect	that	change	in	its	own	value.	Note	that	the
order	of	statements	in	a	QML	document	does	not	matter	as	you
declare	relations	between	properties.

This	example	shows	one	of	the	advantages	of	the	declarative
approach.	We	didn't	have	to	connect	signals	or	explicitly	determine
when	the	text	should	be	changed.	We	just	declared	that	the	text
should	be	influenced	by	the	input	field,	and	the	QML	engine	will
enforce	that	relation	automatically.

If	the	expression	is	complex,	you	can	replace	it	with	a	multiline
block	of	text	that	works	as	a	function:

text:	{

				var	x	=	textField.text;

				return	"("	+	x	+	")";

}

You	can	also	declare	and	use	a	named	JavaScript	function	within
any	QML	object	declaration:

Label	{

				function	calculateText()	{

								var	x	=	textField.text;

								return	"("	+	x	+	")";

				}

				text:	calculateText()

				//...

				//...

}

A	limitation	of	automatic
property	updates
QML	does	its	best	to	determine	when	the	function	value	may
change,	but	it	is	not	omnipotent.	For	our	last	function,	it	can	easily
determine	that	the	function	result	depends	on	the	value	of
the	textField.text	property,	so	it	will	re-evaluate	the	binding	if	that
value	changes.	However,	in	some	cases,	it	can't	know	that	a	function
may	return	a	different	value	the	next	time	it	is	called,	and	in	such
situations,	the	statement	will	not	be	re-evaluated.	Consider	the
following	property	binding:

Label	{

				function	colorByTime()	{

								var	d	=	new	Date();

								var	seconds	=	d.getSeconds();

								if(seconds	<	15)	return	"red";

								if(seconds	<	30)	return	"green";

								if(seconds	<	45)	return	"blue";

								return	"purple";

				}

				color:	colorByTime()

				//...

}

The	color	will	be	set	at	the	start	of	the	application,	but	it	will	not
work	properly.	QML	will	only	call	the	colorByTime()	function	once
when	the	object	is	initialized,	and	it	will	never	call	it	again.	This	is
because	it	has	no	way	of	knowing	how	often	this	function	must	be
called.	We	will	see	how	to	overcome	this	in	Chapter	12,	Customization
in	Qt	Quick.

Overview	of	QML	types
provided	by	Qt
Before	we	continue	to	work	on	our	QML	application,	let's	see	what
the	built-in	libraries	are	capable	of.	This	will	allow	us	to	pick	the
right	modules	for	the	task.	Qt	provides	a	lot	of	useful	QML	types.	In
this	section,	we	will	provide	an	overview	of	the	most	useful	modules
available	in	Qt	5.9.

The	following	modules	are	important	for	building	user	interfaces:

The	QtQuick	base	module	provides	functionality	related	to

drawing,	event	handling,	positioning	of	elements,

transformations,	and	many	other	useful	types

QtQuick.Controls	provides	basic	controls	for	user	interfaces,

such	as	buttons	and	input	fields

QtQuick.Dialogs	contains	file	dialogs,	color	dialogs,	and	message

boxes

QtQuick.Extras	provides	additional	controls,	such	as	dials,

tumblers,	and	gauges

QtQuick.Window	enables	window	management

QtQuick.Layouts	provide	layouts	for	automatic	positioning	of

objects	on	screen

UIComponents	provides	tab	widget,	progress	bar,	and	switch

types

QtWebView	allows	you	to	add	web	content	to	the	application

QtWebEngine	provides	more	sophisticated	web	browser

functionality

If	you	want	to	implement	rich	graphics,	the	following	modules	may
be	of	help:

QtCanvas3D	provides	a	canvas	for	3D	rendering

Qt3D	modules	provide	access	to	real-time	simulation	systems

supporting	2D	and	3D	rendering

QtCharts	allows	you	to	create	sophisticated	charts

QtDataVisualization	can	be	used	to	build	3D	visualizations	of

datasets

QtQuick.Particles	allows	you	to	add	particle	effects

QtGraphicalEffects	can	apply	graphical	effects	(such	as	blur	or

shadow)	to	other	Qt	Quick	objects

Qt	provides	a	lot	of	functionality	commonly	required	on	mobile
devices:

QtBluetooth	supports	basic	communication	with	other	devices

over	Bluetooth

QtLocation	allows	you	to	display	maps	and	find	routes

QtPositioning	provides	information	about	the	current	location

QtNfc	allows	you	to	utilize	NFC	hardware

QtPurchasing	implements	in-app	purchases

QtSensors	provides	access	to	on-board	sensors,	such	as

accelerometer	or	gyroscope

QtQuick.VirtualKeyboard	provides	an	implementation	of	an

onscreen	keyboard

Finally,	there	are	two	modules	providing	multimedia	capabilities:

QtMultimedia	provides	access	to	audio	and	video	playback,

audio	recording,	camera,	and	radio

QtAudioEngine	implements	3D	positional	audio	playback

There	are	many	more	QML	modules	that	we	didn't	mention	here.	You	can	find	the	full	list
on	the	All	QML	Modules	documentation	page.	Note	that	some	of	the	modules	are	not
provided	under	LGPL	license.

Qt	Quick	Designer
We	can	use	QML	to	easily	create	a	hierarchy	of	objects.	If	we	need	a
few	input	boxes	or	buttons,	we	can	just	add	some	blocks	to	the	code,
just	like	we	added	the	TextField	and	Label	components	in	the	previous
example,	and	our	changes	will	appear	in	the	window.	However,
when	dealing	with	complex	forms,	it's	sometimes	hard	to	position
the	objects	properly.	Instead	of	trying	different	anchors	and
relaunching	the	application,	you	can	use	the	visual	form	editor	to
see	the	changes	as	you	make	them.

Time	for	action	–	Adding	a
form	to	the	project
Locate	the	qml.qrc	file	in	Qt	Creator's	project	tree	and	invoke	the	Add
New...	option	in	its	context	menu.	From	Qt	section,	select
the	QtQuick	UI	File	template.	Input	Calculator	in	the	Component
name	field.	The	Component	form	name	field	will	be	automatically
set	to	CalculatorForm.	Finish	the	wizard.

Two	new	files	will	appear	in	our	project.	The	CalculatorForm.ui.qml	file	is
the	form	file	that	can	be	edited	in	the	form	editor.	The	Calculator.qml
file	is	a	regular	QML	file	that	can	be	edited	manually	to	implement
the	behavior	of	the	form.	Each	of	these	files	introduces	a	new	QML
type.	The	CalculatorForm	QML	type	is	immediately	used	in
the	generated	Calculator.qml	file:

import	QtQuick	2.4

CalculatorForm	{

}

Next,	we	need	to	edit	the	main.qml	file	to	add	a	Calculator	object	to	the
window:

import	QtQuick	2.9

import	QtQuick.Window	2.2

import	QtQuick.Controls	2.2

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Calculator")

				Calculator	{

								anchors.fill:	parent

				}

}

QML	components	are	similar	to	C++	classes	in	some	way.	A	QML
component	encapsulates	an	object	tree	so	that	you	can	use	it
without	knowing	about	the	exact	content	of	the	component.	When
the	application	is	started,	the	main.qml	file	will	be	loaded	into	the
engine,	so	the	Window	and	Calculator	objects	will	be	created.	The
Calculator	object,	in	turn,	will	contain	a	CalculatorForm	object.
The	CalculatorForm	object	will	contain	the	items	that	we	add	later	in	the
form	editor.

Form	editor	files
When	we	worked	with	Qt	Widgets	form	editor,	you	may	have	noted
that	a	widget	form	is	an	XML	file	that	is	converted	to	a	C++	class
during	compilation.	This	does	not	apply	to	Qt	Quick	Designer.	In
fact,	the	files	produced	by	this	form	editor	are	completely	valid
QML	files	that	are	directly	included	in	the	project.	However,	the
form	editor	files	have	a	special	extension	(.ui.qml),	and	there	are
some	artificial	restrictions	that	protect	you	from	doing	bad	things.

The	ui.qml	files	should	only	contain	content	that	is	visible	in	the	form
editor.	You	do	not	need	to	edit	these	files	by	hand.	It's	not	possible
to	call	functions	or	execute	JavaScript	code	from	these	files.
Instead,	you	should	implement	any	logic	in	a	separate	QML	file	that
uses	the	form	as	a	component.

If	you're	curious	about	the	content	of	a	ui.qml	file,	you	can	click	on	the	Text	Editor	tab	that
is	positioned	on	the	right	border	of	the	form	editor's	central	area.

Form	editor	interface
When	you	open	a	.ui.qml	file,	Qt	Creator	goes	to	the	Design	mode
and	opens	the	Qt	Quick	Designer	interface:

We've	highlighted	the	following	important	parts	of	the	interface:

The	main	area	(1)	contains	visualization	of	the	document's

content.	You	can	click	on	the	Text	Editor	tab	at	the	right

border	of	the	main	area	to	view	and	edit	the	QML	code	of

the	form	without	exiting	the	form	editor.	The	bottom	part	of

the	main	area	displays	list	of	states	of	the	component.

The	Library	pane	(2)	shows	the	available	QML	object	types

and	allows	you	to	create	new	objects	by	dragging	them	to	the

navigator	or	to	the	main	area.	The	Imports	tab	contains	a

list	of	available	QML	modules	and	allows	you	to	export	a

module	and	access	more	QML	types.

The	Navigator	pane	(3)	displays	the	hierarchy	of	the	existing

objects	and	their	names.	The	buttons	to	the	right	of	the

names	allow	you	to	export	an	object	as	public	property	and

toggle	its	visibility	in	the	form	editor.

The	Connections	pane	(4)	provides	ability	to	connect

signals,	change	property	bindings,	and	manage	public

properties	of	the	form.

The	Properties	pane	(5)	allows	you	to	view	and	edit

properties	of	the	selected	object.

We	will	now	use	the	form	editor	to	create	a	simple	calculator
application.	Our	form	will	contain	two	input	boxes	for	operands,
two	radio	buttons	for	selecting	the	operation,	a	label	to	display	the
result,	and	a	button	to	reset	everything	to	the	original	state.

Time	for	action	–	Adding	an
import
The	default	object	palette	contains	a	very	minimal	set	of	types
provided	by	the	QtQuick	module.	To	access	a	richer	set	of	controls,	we
need	to	add	an	import	directive	to	our	document.	To	do	this,	locate
the	Library	pane	in	the	top-left	corner	of	the	window	and	go	to	its
Imports	tab.	Next,	click	on	Add	Import	and	select	QtQuick.Controls
2.2	in	the	drop-down	list.	The	selected	import	will	appear	in	the	tab.
You	can	click	on	the	×	button	to	the	left	of	the	import	to	remove	it.
Note	that	you	cannot	remove	the	default	import.

Adding	the	import	using	the	form	editor	will	result	in	adding	the	import	QtQuick.Controls
2.2	directive	to	the	.ui.qml	file.	You	can	switch	the	main	area	to	the	Text	Editor	mode	to	see
this	change.

Now	you	can	switch	back	to	the	QML	Types	tab	of	the	Library	pane.
The	palette	will	contain	controls	provided	by	the	imported	module.

Time	for	action	–	Adding	items
to	the	form
Locate	the	Text	Field	type	in	the	Qt	Quick	-	Controls	2	section	of	the
library	pane	and	drag	it	to	the	main	area.	A	new	text	field	will	be
created.	We	will	also	need	the	Radio	Button,	Label,	and	Button
types	from	the	same	section.	Drag	them	to	the	form	and	arrange
them	as	shown:

Next,	you	need	to	select	each	element	and	edit	its	properties.	Click
on	the	first	text	field	in	the	main	area	or	in	the	navigator.	The	blue
frame	around	the	object	in	the	main	area	will	indicate	that	it	is
selected.	Now	you	can	use	the	property	editor	to	view	and	edit
properties	of	the	selected	element.	First,	we	want	to	set	the	id

property	that	will	be	used	to	refer	to	the	object	in	the	code.	Set	the	id
property	of	the	text	edits	to	argument1	and	argument2.	Locate	the	Text
property	under	the	TextField	tab	in	the	property	editor.	Set	it	to	0
for	both	text	fields.	The	changed	text	will	be	immediately	displayed
in	the	main	area.

Set	id	of	the	radio	buttons	to	operationAdd	and	operationMultiply.	Set	their
text	to	+	and	×.	Set	the	checked	property	of	the	operationAdd	button	to	true
by	toggling	the	corresponding	checkbox	in	the	property	editor.

The	first	label	will	be	used	to	statically	display	the	=	sign.	Set	its	id	to
equalSign	and	text	to	=.	The	second	label	will	actually	display	the
result.	Set	its	id	to	result.	We	will	take	care	of	the	text	property	later.

The	button	will	reset	the	calculator	to	the	original	state.	Set	its	id	to
reset	and	text	to	Reset.

You	can	run	the	application	now.	You	will	see	that	the	controls	are
shown	in	the	window,	but	they	are	not	repositioned	in	respect	to	the
window	size.	They	always	stay	in	the	same	positions.	If	you	check
out	the	text	content	of	CalculatorForm.ui.qml,	you	will	see	that	the	form
editor	sets	the	x	and	y	properties	of	each	element.	To	make	a	more
responsive	form,	we	need	to	utilize	the	anchors	property	instead.

Time	for	action	–	Editing
anchors
Let's	see	how	we	can	edit	anchors	in	the	form	editor	and	see	the
result	on	the	fly.	Select	the	argument1	text	field	and	switch	to	the
Layout	tab	in	the	middle	part	of	the	Properties	pane.	The	tab
contains	Anchors	text,	followed	by	a	set	of	buttons	for	all	anchor
lines	of	this	item.	You	can	mouse	over	the	buttons	to	see	their
tooltips.	Click	on	the	first	button,	
Anchor	item	to	the	top.	A	new	set	of	controls	will	appear	below	the
button,	allowing	you	to	configure	this	anchor.

First,	you	can	select	the	target	object,	that	is,	the	object	containing
the	anchor	line	that	will	be	used	as	the	reference.	Next,	you	can
select	the	margin	between	the	reference	anchor	line	and	the	anchor
line	of	the	current	object.	To	the	right	of	the	margin,	there	are
buttons	that	allow	you	to	choose	which	anchor	line	of	the	target	to
use	as	the	reference.	For	example,	if	you	choose	the	bottom	line,	our
text	field	will	retain	its	position	relative	to	the	bottom	border	of	the
form.

Anchor	the	top	line	of	the	text	field	to	the	top	line	of	the	parent	and
set	Margin	to	20.	Next,	anchor	the	horizontal	center	line	to	parent
with	Margin	0.	The	property	editor	should	look	like	this:

You	can	also	verify	the	QML	representation	of	these	settings:

TextField	{

				id:	a

				text:	qsTr("0")

				anchors.horizontalCenter:	parent.horizontalCenter

				anchors.top:	parent.top

				anchors.topMargin:	20

}

If	you	drag	the	text	field	around	using	the	mouse	instead	of	setting	the	anchors,	the	form
editor	will	set	the	x	and	y	properties	to	position	the	element	according	to	your	actions.	If
you	edit	anchors	of	the	item	afterward,	the	x	and	y	properties	may	remain	set,	but	their
effect	will	be	overridden	by	the	anchor	effects.

Let's	repeat	this	process	for	the	operationAdd	radio	button.	First,	we
need	to	adjust	its	horizontal	position	relative	to	the	horizontal
center	of	the	form.	Select	the	radio	button,	click	on	the	 	Anchor
item	to	the	right	button,	leave	parent	as	the	target,	and	click	on	the	
	Anchor	to	the	horizontal	center	of	the	target	button	to	the	right

of	the	margin	input.	Set	margin	to	10.	This	will	allow	us	to	position
the	second	radio	button	10	points	to	the	right	of	the	horizontal
center,	and	the	space	between	the	radio	buttons	will	be	20.

Now,	what	about	the	top	anchor?	We	can	attach	it	to	the	parent	and
just	set	the	margin	that	will	look	nice.	However,	ultimately,	what	we
want	is	a	specific	vertical	margin	between	the	first	text	field	and	the
first	radio	button.	We	can	do	this	easily.

Enable	the	top	anchor	for	the	operationAdd	radio	button,	select	argument1
in	the	Target	drop-down	list,	click	on	the	 	Anchor	to	the	bottom	of
the	target	button	to	the	right	of	the	margin	field,	and	input	20	in	the
margin	field.	Now	the	radio	button	is	anchored	to	the	text	field
above	it.	Even	if	we	change	the	height	of	the	text	field,	the	vertical
margin	between	the	elements	will	stay	intact.	You	can	run	the
application	and	verify	that	the	argument1	and	operationAdd	elements	now
respond	to	window	size	changes.

Now,	all	we	need	is	to	repeat	this	process	for	the	rest	of	the	objects.
However,	this	is	quite	a	tedious	task.	It	will	get	even	more
inconvenient	in	a	larger	form.	Making	changes	to	such	forms	will
also	be	cumbersome.	For	example,	to	change	the	order	of	fields,	you
will	need	to	carefully	edit	the	anchors	of	involved	objects.	While
anchors	are	good	in	simple	cases,	it's	better	to	use	a	more
automated	approach	for	large	forms.	Luckily,	Qt	Quick	provides
layouts	for	this	purpose.

Time	for	action	–	Applying
layouts	to	the	items
Before	we	apply	layouts	to	objects,	remove	the	anchors	we	had
created.	To	do	this,	select	each	element	and	click	on	the	buttons
under	Anchors	text	to	uncheck	them.	The	anchor	properties	below
the	buttons	will	disappear.	The	layout	will	now	be	able	to	position
the	objects.

First,	import	the	QtQuick.Layouts	1.3	module	into	the	form,	like	we	did
earlier	for	QtQuick.Controls.	Locate	the	Qt	Quick	-	Layouts	section	in
the	palette	and	examine	the	available	layouts:

Column	Layout	will	arrange	its	children	vertically

Row	Layout	will	arrange	its	children	horizontally

Grid	Layout	will	arrange	its	children	vertically	and

horizontally	in	a	grid

Stack	Layout	will	display	only	one	of	its	children	and	hide

the	rest	of	them

Layouts	are	sensitive	to	the	hierarchy	of	the	objects.	Let's	use
Navigator	instead	of	the	main	area	to	manage	our	items.	This	will
allow	us	to	see	the	parent-child	relationships	between	items	more
clearly.	First,	drag	a	Row	Layout	and	drop	it	over	the	root	item	in
the	Navigator.	A	new	rowLayout	object	will	be	added	as	a	child	of	the
root	object.	Next,	drag	the	operationAdd	and	operationMultiply	objects	in
the	Navigator	and	drop	them	to	the	rowLayout.	The	radio	buttons	are
now	children	of	the	row	layout,	and	they	are	automatically

positioned	next	to	each	other.

Now,	drag	a	Column	Layout	to	the	root	object.	Select	all	other
children	of	the	root	object,	including	rowLayout,	in	the	Navigator,	and
drag	them	to	the	columnLayout	object.	If	the	items	end	up	in	wrong
order,	use	the	Move	up	and	Move	down	buttons	at	the	top	part	of
the	Navigator	to	arrange	the	items	properly.	You	should	get	the
following	hierarchy:

The	columnLayout	object	will	automatically	position	its	children,	but
how	to	position	the	object	itself?	We	should	use	anchors	to	do	that.
Select	columnLayout,	switch	to	the	Layout	tab	in	the	property	editor	and
click	on	the	 	Fill	parent	item	button.	This	will	automatically
create	4	anchor	bindings	and	expand	columnLayout	to	fill	the	form.

The	items	are	now	positioned	automatically,	but	they	are	bound	to
the	left	border	of	the	window.	Let's	align	them	to	the	middle.	Select
the	first	text	field	and	switch	to	the	Layout	tab.	As	the	object	is	now
in	a	layout,	the	anchor	settings	are	replaced	with	settings	the	layout
understands.	The	Alignment	property	defines	how	the	item	is
positioned	within	the	available	space.	Select	AlignHCenter	in	the	first
drop-down	list.	Repeat	the	process	for	each	direct	child	of
columnLayout.

You	can	now	run	the	application	and	see	how	it	reacts	to	changing
window	size:

The	form	is	ready.	Let's	implement	the	calculations	now.

Time	for	action	–	Assigning	an
expression	to	the	property
As	you	already	saw,	assigning	constant	text	to	a	label	is	easy.
However,	you	can	also	assign	a	dynamic	expression	to	any	property
in	the	form	editor.	To	do	that,	select	the	result	label	and	mouse	over
the	circle	in	the	left	part	of	Text	property	input	field.	When	the
circle	turns	into	an	arrow,	click	on	it	and	select	Set	Binding	in	the
menu.	Input	argument1.text	+	argument2.text	in	the	binding	editor	and
confirm	the	change.

If	you	run	the	application	now,	you	will	see	that	the	result	label	will
always	display	the	concatenation	of	the	strings	the	user	inputs	in
the	fields.	That's	because	the	argument1.text	and	argument2.text	properties
have	the	string	type,	so	the	+	operation	performs	concatenation.

This	feature	is	very	useful	if	you	need	to	apply	simple	bindings.
However,	it	is	not	sufficient	in	our	case,	as	we	need	to	convert
strings	to	numbers	and	select	which	arithmetic	operation	the	user
requested.	Using	functions	in	the	form	editor	is	not	allowed,	so	we
cannot	implement	this	complex	logic	right	here.	We	need	to	do	it	in
the	Calculator.qml	file.	This	restriction	will	help	us	separate	the	view
from	the	logic	behind	it.

Time	for	action	–	Exposing
items	as	properties
Children	of	a	component	are	not	available	from	outside	of	it	by
default.	This	means	that	Calculator.qml	cannot	access	input	fields	or
radio	buttons	of	our	form.	To	implement	the	logic	of	the	calculator,
we	need	to	access	these	objects,	so	let's	expose	them	as	public
properties.	Select	the	argument1	text	field	in	the	Navigator	and	click	on
the	 	Toggles	whether	this	item	is	exported	as	an	alias	property	of
the	root	item	button	to	the	right	of	the	object	ID.	After	you	click	on
the	button,	its	icon	will	change	to	indicate	that	the	item	is	exported.
Now	we	can	use	the	argument1	public	property	in	Calculator.qml	to	access
the	input	field	object.

Enable	public	properties	for	the	argument1,	argument2,	operationAdd,
operationMultiply,	and	result	objects.	The	rest	of	the	objects	will	remain
hidden	as	implementation	details	of	the	form.

Now	go	to	the	Calculator.qml	file	and	use	the	exposed	properties	to
implement	the	calculator	logic:

CalculatorForm	{

				result.text:	{

								var	value1	=	parseFloat(argument1.text);

								var	value2	=	parseFloat(argument2.text);

								if(operationMultiply.checked)	{

												return	value1	*	value2;

								}	else	{

												return	value1	+	value2;

								}

				}

}

What	just	happened?
Since	we	exported	objects	as	properties,	we	can	access	them	by	ID
from	outside	of	the	form.	In	this	code,	we	bind	the	text	property	of
the	result	object	to	the	return	value	of	the	code	block	that	is	enclosed
in	braces.	We	use	argument1.text	and	argument2.text	to	access	the	current
text	of	the	input	fields.	We	also	use	operationMultiply.checked	to	see
whether	the	user	checked	the	operationMultiply	radio	button.	The	rest
is	just	straightforward	JavaScript	code.

Run	the	application	and	see	how	the	result	label	automatically
displays	the	result	when	the	user	interacts	with	the	form.

Time	for	action	–	Creating	an
event	handler
Let's	implement	the	last	bit	of	functionality.	When	the	user	clicks	on
the	Reset	button,	we	should	change	the	form's	values.	Go	back	to
the	form	editor	and	right-click	on	the	reset	button	in	the	Navigator
or	in	the	main	area.	Select	Add	New	Signal	Handler.	Qt	Creator	will
navigate	to	the	corresponding	implementation	file	(Calculator.qml)
and	display	the	Implement	Signal	Handler	dialog.	Select	the	clicked
signal	in	the	drop-down	list	and	click	on	the	OK	button	to	confirm
the	operation.	This	operation	will	do	two	things:

The	reset	button	will	be	automatically	exported	as	a	public

property,	just	like	we	did	it	manually	for	the	other	controls

Qt	Creator	will	create	a	boilerplate	for	the	new	signal

handler	in	the	Calculator.qml	file

Let's	add	our	implementation	to	the	automatically	generated	block:

reset.onClicked:	{

				argument1.text	=	"0";

				argument2.text	=	"0";

				operationAdd.checked	=	true;

}

When	the	button	is	clicked	on,	this	code	will	be	executed.	The	text
fields	will	be	set	to	0,	and	the	operationAdd	radio	button	will	be
checked.	The	operationMultiply	radio	button	will	be	unchecked
automatically.

Our	calculator	fully	works	now!	We	used	declarative	approach	to
implement	a	nicely	looking	and	responsive	application.

Qt	Quick	and	C++
While	QML	has	a	lot	of	built-in	functionality	available,	it	will	almost
never	be	enough.	When	you're	developing	a	real	application,	it
always	needs	some	unique	functionality	that	is	not	available	in
QML	modules	provided	by	Qt.	The	C++	Qt	classes	are	much	more
powerful,	and	third-party	C++	libraries	are	also	always	an	option.
However,	the	C++	world	is	separated	from	our	QML	application	by
the	restrictions	of	QML	engine.	Let's	break	that	boundary	right
away.

Accessing	C++	objects	from
QML
Let's	say	that	we	want	to	perform	a	heavy	calculation	in	C++	and
access	it	from	our	QML	calculator.	We	will	choose	factorial	for	this
project.

The	QML	engine	is	really	fast,	so	you	can	most	likely	calculate	factorials	directly	in
JavaScript	without	performance	problems.	We	just	use	it	here	as	a	simple	example.

Our	goal	is	to	inject	our	C++	class	into	the	QML	engine	as	a
JavaScript	object	that	will	be	available	in	our	QML	files.	We	will	do
that	exactly	like	we	did	it	in	Chapter	10,	Scripting.	The	main	function
creates	a	QQmlApplicationEngine	object	that	inherits	QJSEngine,	so	we	have
access	to	the	API	that	is	already	familiar	to	us	from	that	chapter.
Here,	we'll	just	show	how	we	can	apply	this	knowledge	to	our
application	without	going	into	detail.

Go	to	the	Edit	mode,	right-click	on	the	project	in	the	project	tree
and	select	Add	New.	Select	the	C++	Class	template,	input
AdvancedCalculator	as	the	class	name	and	select	QObject	in	the	Base
Class	drop-down	list.

Declare	the	invokable	factorial	function	in	the	generated
advancedcalculator.h	file:

Q_INVOKABLE	double	factorial(int	argument);

We	can	implement	this	function	using	the	following	code:

double	AdvancedCalculator::factorial(int	argument)	{

				if	(argument	<	0)	{

								return	std::numeric_limits<double>::quiet_NaN();

				}

				if	(argument	>	180)	{

						return	std::numeric_limits<double>::infinity();

				}

				double	r	=	1.0;

				for(int	i	=	2;	i	<=	argument;	++i)	{

								r	*=	i;

				}

				return	r;

}

We	guard	the	implementation	against	too	large	inputs	because	double
wouldn't	be	able	to	fit	the	resulting	values	anyway.	We	also	return
NaN	on	invalid	inputs.

Next,	we	need	to	create	an	instance	of	this	class	and	import	it	into
the	QML	engine.	We	do	this	in	the	main():

engine.globalObject().setProperty("advancedCalculator",

				engine.newQObject(new	AdvancedCalculator));

return	app.exec();

Our	object	is	now	available	as	the	advancedCalculator	global	variable.
Now	we	need	to	use	this	variable	in	the	QML	file.	Open	the	form
editor	and	add	the	third	radio	button	to	the	rowLayout	item.	Set	id	of
the	radio	button	to	operationFactorial	and	text	to	!.	Export	this	radio
button	as	a	public	property	so	that	we	can	access	it	from	the
outside.	Next,	let's	adjust	the	result.text	property	binding	in	the
Calculator.qml	file:

result.text:	{

				var	value1	=	parseFloat(argument1.text);

				var	value2	=	parseFloat(argument2.text);

				if(operationMultiply.checked)	{

								return	value1	*	value2;

				}	else	if	(operationFactorial.checked)	{

								return	advancedCalculator.factorial(value1);

				}	else	{

								return	value1	+	value2;

				}

}

If	the	operationFactorial	radio	button	is	checked,	this	code	will	call
the	factorial()	method	of	the	advancedCalculator	variable	and	return	it	as
the	result.	The	user	will	see	it	as	text	of	the	result	label.	When
factorial	operation	is	selected,	the	second	text	field	is	unused.	We'll
do	something	about	that	later	in	this	chapter.

For	more	information	about	exposing	C++	API	to	JavaScript,	refer	to	Chapter	10,	Scripting.
Most	of	the	techniques	described	there	apply	to	the	QML	engine	as	well.

We	exposed	a	C++	object	as	a	JavaScript	object	that	is	accessible
from	the	QML	engine.	However,	it	is	not	a	QML	object,	so	you	can't
include	it	in	the	QML	objects	hierarchy	or	apply	property	bindings
to	properties	of	the	object	that	was	created	this	way.	It's	possible	to
create	a	C++	class	that	will	work	as	a	fully	functional	QML	type,
leading	to	a	more	powerful	integration	of	C++	and	QML.	We	will
show	that	approach	in	Chapter	12,	Customization	in	Qt	Quick.

There	is	another	way	to	expose	our	AdvancedCalculator	class	to
JavaScript.	Instead	of	adding	it	to	the	global	object,	we	can	register
it	as	a	singleton	object	in	the	QML	module	system	using
the	qmlRegisterSingletonType()	function:

qmlRegisterSingletonType("CalculatorApp",	1,	0,	"AdvancedCalculator",

								[](QQmlEngine	*engine,	QJSEngine	*scriptEngine)	->	QJSValue	{

				Q_UNUSED(scriptEngine);

				return	engine->newQObject(new	AdvancedCalculator);

});

QQmlApplicationEngine	engine;

We	pass	the	QML	module	name,	major	and	minor	versions,	and	the
singleton	name	to	this	function.	You	can	choose	these	values
arbitrarily.	The	last	argument	is	a	callback	function	that	will	be
called	when	this	singleton	object	is	accessed	in	the	JS	engine	for	the
first	time.

The	QML	code	also	needs	to	be	slightly	adjusted.	First,	import	our

new	QML	module	into	scope:

import	CalculatorApp	1.0

Now	you	can	just	access	the	singleton	by	name:

return	AdvancedCalculator.factorial(value1);

When	this	line	is	executed	for	the	first	time,	Qt	will	call	our	C++
callback	and	create	the	singleton	object.	For	subsequent	calls,	the
same	object	will	be	used.

Accessing	QML	objects	from
C++
It	is	also	possible	to	create	QML	objects	from	C++	and	access	the
existing	objects	living	in	the	QML	engine	(for	example,	those
declared	in	some	QML	file).	However,	in	general,	doing	this	thing	is
bad	practice.	If	we	assume	the	most	common	case,	which	is	that	the
QML	part	of	our	application	deals	with	a	user	interface	in	Qt	Quick
for	the	logic	written	in	C++,	then	accessing	Qt	Quick	objects	from
C++	breaks	the	separation	between	logic	and	the	presentation	layer,
which	is	one	of	the	major	principles	in	GUI	programming.	The	user
interface	is	prone	to	dynamic	changes,	relayouting	up	to	a	complete
revamp.	Heavy	modifications	of	QML	documents,	such	as	adding	or
removing	items	from	the	design,	will	then	have	to	be	followed	by
adjusting	the	application	logic	to	cope	with	those	changes.	In
addition,	if	we	allow	a	single	application	to	have	multiple	user
interfaces	(skins),	it	might	happen	that	because	they	are	so
different,	it	is	impossible	to	decide	upon	a	single	set	of	common
entities	with	hard-coded	names	that	can	be	fetched	from	C++	and
manipulated.	Even	if	you	managed	to	do	that,	such	an	application
could	crash	easily	if	the	rules	were	not	strictly	followed	in	the	QML
part.

That	said,	we	have	to	admit	that	there	are	cases	when	it	does	make
sense	to	access	QML	objects	from	C++,	and	that	is	why	we	decided
to	familiarize	you	with	the	way	to	do	it.	One	of	the	situations	where
such	an	approach	is	desired	is	when	QML	serves	us	as	a	way	to
quickly	define	a	hierarchy	of	objects	with	properties	of	different
objects	linked	through	more	or	fewer	complex	expressions,	allowing
them	to	answer	to	changes	taking	place	in	the	hierarchy.

The	QQmlApplicationEngine	class	provides	access	to	its	top-level	QML

objects	through	the	rootObjects()	function.	All	nested	QML	objects
form	a	parent-child	hierarchy	visible	from	C++,	so	you	can	use
QObject::findChild	or	QObject::findChildren	to	access	the	nested	objects.	The
most	convenient	way	to	find	a	specific	object	is	to	set	its	objectName
property.	For	example,	if	we	want	to	access	the	reset	button	from
C++,	we	need	to	set	its	object	name.

The	form	editor	does	not	provide	a	way	to	set	objectName	for	its	items,
so	we	need	to	use	the	text	editor	to	make	this	change:

Button	{

				id:	reset

				objectName:	"buttonReset"

				//...

}

We	can	now	access	this	button	from	the	main	function:

if	(engine.rootObjects().count()	==	1)	{

				QObject	*window	=	engine.rootObjects()[0];

				QObject	*resetButton	=	window->findChild<QObject*>("buttonReset");

				if	(resetButton)	{

								resetButton->setProperty("highlighted",	true);

				}

}

In	this	code,	we	first	access	the	top-level	Window	QML	object.	Then,
we	use	the	findChild	method	to	find	the	object	corresponding	to	our
reset	button.	The	findChild()	method	requires	us	to	pass	a	class
pointer	as	the	template	argument.	Without	knowing	what	class
actually	implements	a	given	type,	it	is	safest	to	simply	pass	QObject*
as,	once	again,	we	know	all	QML	objects	inherit	it.	It	is	more
important	what	gets	passed	as	the	function	argument	value—it	is
the	name	of	the	object	we	want	returned.	Note	that	it	is	not	the	id	of
the	object	but	the	value	of	the	objectName	property.	When	the	result
gets	assigned	to	the	variables,	we	verify	whether	the	item	has	been
successfully	found	and	if	that	is	the	case,	the	generic	QObject	API	is
used	to	set	its	highlighted	property	to	true.	This	property	will	change

the	appearance	of	the	button.

The	QObject::findChild	and	QObject::findChildren	functions	perform	recursive	search	with
unlimited	depth.	While	they're	easy	to	use,	these	functions	may	be	slow	if	the	object	has
many	children.	To	improve	performance,	you	can	turn	off	recursive	search	by	passing
the	Qt::FindDirectChildrenOnly	flag	to	these	functions.	If	the	target	object	is	not	a	direct
child,	consider	calling	QObject::findChild	repeatedly	to	find	each	intermediate	parent.

If	you	need	to	create	a	new	QML	object,	you	can	use	the	QQmlComponent
class	for	that.	It	accepts	a	QML	document	and	allows	you	to	create	a
QML	object	from	it.	The	document	is	usually	loaded	from	a	file,	but
you	can	even	provide	it	directly	in	C++	code:

QQmlComponent	component(&engine);

component.setData(

				"import	QtQuick	2.6\n"

				"import	QtQuick.Controls	2.2\n"

				"import	QtQuick.Window	2.2\n"

				"Window	{	Button	{	text:	\"C++	button\"	}	}",	QUrl());

QObject*	object	=	component.create();

object->setProperty("visible",	true);

The	component.create()	function	instantiates	our	new	component	and
returns	a	pointer	to	it	as	QObject.	In	fact,	any	QML	object	derives
from	QObject.	You	can	use	Qt	meta-system	to	manipulate	the	object
without	needing	to	cast	it	to	a	concrete	type.	The	object's	properties
can	be	accessed	using	the	property()	and	setProperty()	functions.	In	this
example,	we	set	the	visible	property	of	the	Window	QML	object	to	true.
When	our	code	is	executed,	a	new	window	with	a	button	will	appear
on	screen.

You	can	also	call	the	object's	methods	using
the	QMetaObject::invokeMethod()	function:

QMetaObject::invokeMethod(object,	"showMaximized");

If	you	want	to	embed	a	new	object	into	the	existing	QML	form,	you
need	to	set	visual	parent	of	the	new	object.	Let's	say	that	we	want	to
add	a	button	to	the	calculator's	form.	First,	you	need	to	assign

objectName	to	it	in	main.qml:

Calculator	{

				anchors.fill:	parent

				objectName:	"calculator"

}

You	can	now	add	a	button	to	this	form	from	C++:

QQmlComponent	component(&engine);

component.setData(

				"import	QtQuick	2.6\n"

				"import	QtQuick.Controls	2.2\n"

				"Button	{	text:	\"C++	button2\"	}",	QUrl());

QObject	*object	=	component.create();

QObject	*calculator	=	window->findChild<QObject*>("calculator");

object->setProperty("parent",	QVariant::fromValue(calculator));

In	this	code,	we	create	a	component	and	assign	the	main	form	as	its
parent	property.	This	will	make	the	object	appear	in	the	top-left
corner	of	the	form.	Like	with	any	other	QML	object,	you	can	use
the	anchors	property	group	to	change	position	of	the	object.

When	creating	complex	objects,	it	takes	time	for	them	to	instantiate
and	at	times,	it	is	desired	to	not	block	the	control	flow	for	too	long
by	waiting	for	the	operation	to	complete.	In	such	cases,	you
can	create	an	object	in	the	QML	engine	asynchronously	using
the	QQmlIncubator	object.	This	object	can	be	used	to	schedule
instantiation	and	continue	the	flow	of	the	program.	We	can	query
the	state	of	the	incubator	and	when	the	object	is	constructed,	we
will	be	able	to	access	it.	The	following	code	demonstrates	how	to	use
the	incubator	to	instantiate	an	object	and	keep	the	application
responding	while	waiting	for	the	operation	to	complete:

QQmlComponent	component(&engine,

				QUrl::fromLocalFile("ComplexObject.qml"));

QQmlIncubator	incubator;

component.create(incubator);

while(!incubator.isError()	&&	!incubator.isReady())	{

while(!incubator.isError()	&&	!incubator.isReady())	{

				QCoreApplication::processEvents();

}

QObject	*object	=	incubator.isReady()	?	incubator.object()	:	0;

Bringing	life	into	static	user
interfaces
Our	user	interface	has	been	quite	static	until	now.	In	this	section,
we	will	add	a	simple	animation	to	our	calculator.	When	the	user
selects	the	factorial	operation,	the	second	(unused)	text	field	will
fade	out.	It	will	fade	in	when	another	operation	is	selected.	Let's	see
how	QML	allows	us	to	implement	that.

Fluid	user	interfaces
So	far,	we	have	been	looking	at	graphical	user	interfaces	as	a	set	of
panels	embedded	one	into	another.	This	is	well	reflected	in	the
world	of	desktop	utility	programs	composed	of	windows	and
subwindows	containing	mostly	static	content	scattered	throughout
a	large	desktop	area	where	the	user	can	use	a	mouse	pointer	to
move	around	windows	or	adjust	their	size.

However,	this	design	doesn't	correspond	well	with	modern	user
interfaces	that	often	try	to	minimize	the	area	they	occupy	(because
of	either	a	small	display	size	like	with	embedded	and	mobile	devices
or	to	avoid	obscuring	the	main	display	panel	like	in	games),	at	the
same	time	providing	rich	content	with	a	lot	of	moving	or
dynamically	resizing	items.	Such	user	interfaces	are	often	called
"fluid",	to	signify	that	they	are	not	formed	as	a	number	of	separate
different	screens	but	contain	dynamic	content	and	layout	where	one
screen	fluently	transforms	into	another.	The	QtQuick	module	provides
a	runtime	to	create	rich	applications	with	fluid	user	interfaces.

States	and	transitions
Qt	Quick	introduces	a	concept	of	states.	Any	Qt	Quick	object	can
have	a	predefined	set	of	states.	Each	state	corresponds	to	a	certain
situation	in	the	application	logic.	For	example,	we	can	say	that	our
calculator	application	has	two	states:

When	add	or	multiply	operations	are	selected,	the	user	has

to	input	two	operands

When	factorial	operation	is	selected,	the	user	has	to	input

only	one	operand

States	are	identified	by	string	names.	Implicitly,	any	object	has	the
base	state	with	an	empty	name.	To	declare	a	new	state,	you	need	to
specify	the	state	name	and	a	set	of	property	values	that	are	different
in	that	state,	compared	to	the	base	state.

Each	Qt	Quick	object	also	has	the	state	property.	When	you	assign	a
state	name	to	this	property,	the	object	goes	to	the	specified	state.
This	happens	immediately	by	default,	but	it's	possible	to	define
transitions	for	the	object	and	perform	some	visual	effects	when
changing	states.

Let's	see	how	we	can	utilize	states	and	transitions	in	our	project.

Time	for	action	–	Adding	states
to	the	form
Open	the	CalculatorForm.ui.qml	file	in	the	form	editor.	The	bottom	part
of	the	main	area	contains	the	states	editor.	The	base	state	item	is
always	present	on	the	left.	Click	on	the	Add	a	new	state	button	on
the	right	of	the	states	editor.	A	new	state	will	appear	in	the	editor.	It
contains	a	text	field	that	you	can	use	to	set	the	state's	name.	Set	the
name	to	single_argument.

Only	one	of	the	states	can	be	selected	at	a	time.	When	a	custom
state	is	selected,	any	changes	in	the	form	editor	will	only	affect	the
selected	state.	When	the	base	state	is	selected,	you	can	edit	the	base
state	and	all	the	changes	will	affect	all	other	states	unless	the
changed	property	is	overridden	in	some	state.

Select	the	single_argument	state	by	clicking	on	it	in	the	state	editor.	It
will	also	be	automatically	selected	upon	creation.	Next,	select
the	argument2	text	field	and	set	its	opacity	property	to	0.	The	field	will
become	completely	transparent,	except	for	the	blue	outline
provided	by	the	form	editor.	However,	this	change	only	affects	the
single_argument	state.	When	you	switch	to	the	base	state,	the	text	field
will	become	visible.	When	you	switch	back	to	the	second	state,	the
text	field	will	become	invisible	again.

You	can	switch	to	the	text	editor	to	see	how	this	state	is	represented
in	the	code:

states:	[

				State	{

								name:	"single_argument"

								PropertyChanges	{

												target:	b

												opacity:	0

								}

				}

]

As	you	can	see,	the	state	does	not	contain	a	full	copy	of	the	form.
Instead,	it	only	records	the	difference	between	this	state	and	the
base	state.

Now	we	need	to	ensure	that	the	form's	state	is	properly	updated.
You	just	need	to	bind	the	state	property	of	the	form	to	a	function
that	returns	the	current	state.	Switch	to	the	Calculator.qml	file	and	add
the	following	code:

CalculatorForm	{

				state:	{

								if	(operationFactorial.checked)	{

												return	"single_argument";

								}	else	{

												return	"";

								}

				}

				//...

}

As	with	any	other	property	binding,	the	QML	engine	will
automatically	update	the	value	of	the	state	property	when	needed.
When	the	user	selects	the	factorial	operation,	the	code	block	will
return	"single_argument",	and	the	second	text	field	will	be	hidden.	In
other	cases,	the	function	will	return	an	empty	string	that
corresponds	to	the	base	state.	When	you	run	the	application,	you
should	be	able	to	see	this	behavior.

Time	for	action	–	Adding
smooth	transition	effect
Qt	Quick	allows	us	to	easily	implement	smooth	transition	between
states.	It	will	automatically	detect	when	some	property	needs	to	be
changed,	and	if	there	is	a	matching	animation	attached	to	the
object,	that	animation	will	take	over	the	process	of	applying	the
change.	You	don't	even	need	to	specify	the	starting	and	ending
values	of	the	animated	property;	it's	all	done	automatically.

To	add	a	smooth	transition	to	our	form,	add	the	following	code	to
the	Calculator.qml	file:

CalculatorForm	{

				//...

				transitions:	Transition	{

								PropertyAnimation	{

												property:	"opacity"

												duration:	300

								}

				}

}

Run	the	application	and	you	will	see	that	the	text	field's	opacity
changes	gradually	when	the	form	transitions	to	another	state.

What	just	happened?
The	transitions	property	holds	the	list	of	Transition	objects	for	this
object.	It's	possible	to	specify	a	different	Transition	object	for	each
pair	of	states	if	you	want	to	perform	different	animations	in
different	cases.	However,	you	can	also	use	a	single	Transition	object
that	will	affect	all	transitions.	For	convenience,	QML	allows	us	to
assign	a	single	object	to	a	property	that	expects	a	list.

A	Transition	object	must	contain	one	or	multiple	animations	that	will
be	applied	during	this	transition.	In	this	example,	we	added
PropertyAnimation	that	allows	us	to	animate	any	property	of	any	child
object	of	the	main	form.	The	PropertyAnimation	QML	type	has
properties	that	allow	you	to	configure	what	exactly	it	will	do.	We
instructed	it	to	animate	the	opacity	property	and	take	300	ms	to
perform	the	animation.	The	opacity	change	will	be	linear	by	default,
but	you	can	use	the	easing	property	to	select	another	easing	function.

As	always,	the	Qt	documentation	is	a	great	source	of	detailed	information	about	available
types	and	properties.	Refer	to	Transition	QML	Type	and	Animation	QML	Type
documentation	pages	for	more	information.	We	will	also	talk	more	about	states	and
transitions	in	Chapter	13,	Animations	in	Qt	Quick	Games.

Have	a	go	hero	–	Adding	an
animation	of	the	item's
position
You	can	make	the	calculator's	transition	even	more	appealing	if	you
make	the	text	field	fly	away	off	screen	while	fading	out.	Just	use	the
form	editor	to	change	the	text	field's	position	in	the	single_argument
state,	and	then	attach	another	PropertyAnimation	to	the	Transition	object.
You	can	play	with	different	easing	types	to	see	which	looks	better
for	this	purpose.

Pop	quiz
Q1.	Which	property	allows	you	to	position	a	QML	object	relative	to
another	object?

1.	 border

2.	 anchors

3.	 id

Q2.	Which	file	name	extension	indicates	that	the	file	cannot	be
loaded	into	a	QML	engine?

1.	 .qml

2.	 .ui

3.	 .ui.qml

4.	 All	of	the	above	are	valid	QML	files

Q3.	What	is	a	Qt	Quick	transition?

1.	 A	change	of	parent-child	relationships	among	the	existing

Qt	Quick	objects

2.	 A	set	of	properties	that	change	when	an	event	occurs

3.	 A	set	of	animations	that	play	when	the	object's	state	changes

Summary
In	this	chapter,	you	were	introduced	to	with	a	declarative	language
called	QML.	The	language	is	used	to	drive	Qt	Quick—a	framework
for	highly	dynamic	and	interactive	content.	You	learned	the	basics
of	Qt	Quick—how	to	create	documents	with	a	number	of	element
types	and	how	to	create	your	own	in	QML,	or	in	C++.	You	also
learned	how	to	bind	expressions	to	properties	to	automatically
reevaluate	them.	You	saw	how	to	expose	the	C++	core	of	your
application	to	QML-based	user	interfaces.	You	learned	to	use	the
visual	form	editor	and	how	to	create	animated	transitions	in	the
interface.

You	also	learned	which	QML	modules	are	available.	You	were
shown	how	to	use	the	QtQuick.Controls	and	QtQuick.Layouts	modules	to
build	the	application's	user	interface	out	of	standard	components.
In	the	next	chapter,	we	will	see	how	you	can	make	your	own	fully
customized	QML	components	with	a	unique	look	and	feel.	We	will
show	how	to	implement	custom	graphics	and	event	handling	in
QML	applications.

Customization	in	Qt	Quick
In	the	previous	chapter,	you	learned	how	to	use	controls	and
layouts	provided	by	Qt	Quick	to	build	the	user	interface	of	your
application.	Qt	contains	numerous	QML	types	that	can	serve	as
building	blocks	for	your	game,	providing	rich	functionality	and	a
nice	appearance.	However,	sometimes	you	need	to	create	a	custom
component	that	satisfies	the	needs	of	your	game.	In	this	chapter,	we
will	show	a	couple	of	convenient	ways	to	extend	your	QML	project
with	custom	components.	By	the	end	of	this	chapter,	you	will	know
how	to	perform	custom	painting	on	a	canvas,	handle	various	input
events,	and	implement	lazy	loading	for	your	components.	We	will
also	see	how	to	integrate	a	C++	object	into	QML's	object	tree.

The	main	topics	covered	in	this	chapter	are	as	listed:

Creating	a	custom	component

Handling	mouse,	touch,	keyboard,	and	gamepad	events

Dynamic	and	lazy	loading

Painting	on	Canvas	using	JavaScript

Creating	a	custom	QML
component
We	already	touched	the	topic	of	custom	components	when	we
worked	with	the	form	editor	in	the	previous	chapter.	Our	QML	files
implemented	reusable	components	with	a	clean	interface	that	can
be	used	in	the	rest	of	the	application.	We	will	now	take	a	more	low-
level	approach	and	create	a	new	QML	component	directly	from
QML	code	using	the	basic	Qt	Quick	building	blocks.	Our	component
will	be	a	button	with	a	rounded	shape	and	a	nice	background.	The
button	will	hold	definable	text	and	an	icon.	Our	component	should
look	good	for	different	texts	and	icons.

Time	for	action	–	Creating	a
button	component
Start	by	creating	a	new	project	in	Qt	Creator.	Choose	Qt	Quick
Application	-	Empty	as	the	project	template.	Name	the
project	custom_button	and	leave	the	rest	of	the	options	unchanged.

At	this	point,	you	should	end	up	with	a	QML	document	containing
an	empty	window.	Let's	start	by	creating	the	button	frame.
Edit	the	main.qml	file	to	add	a	new	Rectangle	item	to	the	window:

import	QtQuick	2.9

import	QtQuick.Window	2.2

	

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Hello	World")

	

				Rectangle	{

								id:	button

								anchors.centerIn:	parent

								border	{	width:	1;	color:	"black"	}

								radius:	5

								width:	100;	height:	30

								gradient:	Gradient	{

												GradientStop	{	position:	0;	color:	"#eeeeee"	}

												GradientStop	{	position:	1;	color:	"#777777"	}

								}

				}

}

After	running	the	project,	you	should	see	a	result	similar	to	the
following:

What	just	happened?
You	can	see	that	the	rectangle	is	centered	in	the	window	using
a	centerIn	anchor	binding	that	we	didn't	mention	before.	This	is	one
of	the	two	special	anchors	that	are	provided	for	convenience,	to
avoid	having	to	write	too	much	code.	Using	centerIn	is	equivalent	to
setting	both	horizontalCenter	and	verticalCenter.	The	other	convenience
binding	is	fill,	which	makes	one	item	occupy	the	whole	area	of
another	item	(similar	to	setting	the	left,	right,	top,	and	bottom
anchors	to	their	respective	anchor	lines	in	the	destination	item).

Instead	of	setting	a	solid	color	for	the	button,	we	declared	the
background	to	be	a	linear	gradient.	We	bound	a	Gradient	element	to
the	gradient	property	and	defined	two	GradientStop	elements	as	its
children,	where	we	specified	two	colors	to	blend
between.	Gradient	does	not	inherit	from	Item	and	thus	is	not	a	visual
Qt	Quick	element.	Instead,	it	is	just	a	QML	object	that	serves	as	a
data	holder	for	the	gradient	definition.

The	Item	type	has	a	property	called	children	that	contains	a	list	of	the
visual	children	(Item	instances)	of	an	item	and	another	property
called	resources,	which	contains	a	list	of	non-visual	objects	(such
as	Gradient	or	GradientStop)	for	an	item.	Normally,	you	don't	need	to	use
these	properties	when	adding	visual	or	non-visual	objects	to	an
item,	as	the	item	will	automatically	assign	child	objects	to
appropriate	properties.	Note	that	in	our	code,	the	Gradient	object	is
not	a	child	object	of	the	Rectangle;	it	is	just	assigned	to
its	gradient	property.

Time	for	action	–	Adding
button	content
The	next	step	is	to	add	text	and	an	icon	to	the	button.	First,	copy	the
icon	file	to	the	project	directory.	In	Qt	Creator,
locate	the	qml.qrc	resource	file	in	the	project	tree.	In	the	context
menu	of	the	resource	file,	select	Add	Existing	Files	and	select	your
icon	file.	The	file	will	be	added	to	the	resources	and	will	appear	in
the	project	tree.	Our	example	file	is	called	edit-undo.png,	and	the
corresponding	resource	URL	is	qrc:/edit-undo.png.

You	can	get	the	resource	path	or	URL	of	a	file	by	locating	that	file	in	the	project	tree	and
using	the	Copy	Path	or	Copy	URL	option	in	its	context	menu.

Next,	we	will	add	the	icon	and	the	text	to	our	button	using	another
item	type	called	Row,	as	shown:

Rectangle	{

				id:	button

				anchors.centerIn:	parent

				border	{	width:	1;	color:	"black"	}

				radius:	5

				gradient:	Gradient	{

								GradientStop	{	position:	0;	color:	"#eeeeee"	}

								GradientStop	{	position:	1;	color:	"#777777"	}

				}

				width:	buttonContent.width	+	8

				height:	buttonContent.height	+	8

	

				Row	{

								id:	buttonContent

								anchors.centerIn:	parent

								spacing:	4

	

								Image	{

												id:	buttonIcon

												source:	"qrc:/edit-undo.png"

								}

								}

								Text	{

												id:	buttonText

												text:	"ButtonText"

								}

				}

}

You'll	get	the	following	output:

What	just	happened?
Row	is	a	positioner	QML	type	provided	by	the	QtQuick	module.	Its
purpose	is	similar	to	the	RowLayout	type	from	the	QtQuick.Layouts	module.
The	Row	item	spreads	its	children	in	a	horizontal	row.	It	makes	it
possible	to	position	a	series	of	items	without	using
anchors.	Row	has	the	spacing	property	that	dictates	how	much	space	to
leave	between	items.

The	QtQuick	module	also	contains	the	Column	type	that	arranges	children	in	a
column,	the	Grid	type	that	creates	a	grid	of	items,	and	the	Flow	type	that	positions	its
children	side	by	side,	wrapping	as	necessary.

Time	for	action	–	Sizing	the
button	properly
Our	current	panel	definition	still	doesn't	behave	well	when	it	comes
to	sizing	the	button.	If	the	button	content	is	very	small	(for
example,	the	icon	doesn't	exist	or	the	text	is	very	short),	the	button
will	not	look	good.	Typically,	push	buttons	enforce	a	minimum	size
—if	the	content	is	smaller	than	a	specified	size,	the	button	will	be
expanded	to	the	minimum	size	allowed.	Another	problem	is	that	the
user	might	want	to	override	the	width	or	height	of	the	item.	In	such
cases,	the	content	of	the	button	should	not	overflow	past	the	border
of	the	button.	Let's	fix	these	two	issues	by	replacing
the	width	and	height	property	bindings	with	the	following	code:

clip:	true

implicitWidth:	Math.max(buttonContent.implicitWidth	+	8,	80)

implicitHeight:	buttonContent.implicitHeight	+	8

What	just	happened?
The	implicitWidth	and	implicitHeight	properties	can	contain	the	desired
size	the	item	wants	to	have.	It's	a	direct	equivalent	of	sizeHint()	from
Qt	Widgets.	By	using	these	two	properties	instead
of	width	and	height	(which	are	bound	to	implicitWidth	and
implicitHeight	by	default),	we	allow	the	user	of	our	component	to
override	those	implicit	values.	When	this	happens	and	the	user	does
not	set	the	width	or	height	big	enough	to	contain	the	icon	and	text
of	the	button,	we	prevent	the	content	from	crossing	the	boundaries
of	the	parent	item	by	setting	the	clip	property	to	true.

Clipping	can	reduce	performance	of	your	game,	so	use	it	only	when	necessary.

Time	for	action	–	Making	the
button	a	reusable	component
So	far,	we	have	been	working	on	a	single	button.	Adding	another
button	by	copying	the	code,	changing	the	identifiers	of	all
components,	and	setting	different	bindings	to	properties	is	a	very
tedious	task.	Instead,	we	can	make	our	button	item	a	real
component,	that	is,	a	new	QML	type	that	can	be	instantiated	on
demand	as	many	times	as	required.

First,	position	the	text	cursor	in	the	beginning	of	our	Rectangle	item
and	press	Alt	+	Enter	on	the	keyboard	to	open	the	refactoring
menu,	like	in	the	following	screenshot:

From	the	menu,	choose	Move	Component	into	Separate	File.	In	the
popup,	type	in	a	name	for	the	new	type	(for	example,	Button)	and
check	anchors.centerIn	in	the	Property	assignments	for	main.qml	list:

Accept	the	dialog	by	clicking	on	the	OK	button.

What	just	happened?
You	can	see	that	we	have	a	new	file	called	Button.qml	in	the	project,
which	contains	everything	the	button	item	used	to	have,	with	the
exception	of	the	id	and	anchors.centerIn	properties.	The	main	file	was
simplified	to	the	following:

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Hello	World")

	

				Button	{

								id:	button

								anchors.centerIn:	parent

				}

}

Button	has	become	a	component—a	definition	of	a	new	type	of
element	that	can	be	used	the	same	way	as	standard	QML	element
types.	Remember	that	QML	component	names,	as	well	as	names	of
files	representing	them,	need	to	begin	with	a	capital	letter!	If	you
name	a	file	button.qml	instead	of	Button.qml,	then	you	will	not	be	able	to
use	Button	as	a	component	name,	and	trying	to	use	"button"	will
result	in	an	error	message.	This	works	both	ways—every	QML	file
starting	with	a	capital	letter	can	be	treated	as	a	component
definition.

Since	we	checked	anchors.centerIn	in	the	dialog,	this	property	was	not
moved	to	Button.qml.	The	reason	for	that	choice	is	that	our	button	can
be	put	anywhere,	so	it	can't	possibly	know	how	it	should	be
positioned.	Instead,	positioning	of	the	button	should	be	done	at	the
location	where	we	use	the	component.	Now	we	can	edit	main.qml

to	put	the	button	into	a	layout	or	use	other	positioning	properties
without	having	to	change	the	component's	code.

Importing	components
A	component	definition	can	be	used	directly	by	other	QML	files
residing	in	the	same	directory	as	the	component	definition.	In	our
example,	the	main.qml	and	Button.qml	files	are	located	in	the	same
directory,	so	you	can	use	the	Button	QML	type	inside	main.qml	without
having	to	import	anything.

If	you	need	to	access	a	component	definition	from	a	file	residing
elsewhere,	you	will	have	to	first	import	the	module	containing	the
component	in	the	file	where	you	want	to	use	it.	The	definition	of	a
module	is	very	simple—it	is	just	a	relative	path	to	the	directory
containing	QML	files.	This	means	that	if	you	have	a	file
named	Baz.qml	in	a	directory	called	Base/Foo/Bar	and	you	want	to	use
the	Baz	component	from	within	the		Base/Foo/Ham.qml	file,	you	will	have
to	put	the	following	import	statement	in	Ham.qml:

import	"Bar"

If	you	want	to	use	the	same	component	from	within
the	Base/Spam.qml	file,	you	will	have	to	replace	the	import	statement
with	this:

import	"Foo/Bar"

Importing	a	module	makes	all	its	components	available	for	use.	You
can	then	declare	objects	of	types	imported	from	a	certain	module.

QML	and	virtual	resource	paths
Our	project	uses	a	Qt	resource	file	to	make	our	QML	files	embedded
into	the	binary	and	ensure	that	they	are	always	available	to	the
application,	even	if	the	source	directory	is	not	present	at	the
computer.	During	startup,	we	refer	to	the	main	QML	file	using
the	qrc:/main.qml	URL.	This	means	that	the	runtime	only	sees	the	file
hierarchy	in	the	resource	file,	and	the	actual	source	directory	of	the
project	is	not	taken	into	account.

The	other	QML	file	has	the	qrc:/Button.qml	URL,	so	Qt	considers	them
to	be	in	the	same	virtual	directory	and	everything	still	works.
However,	if	you	create	a	QML	file	but	forget	to	add	it	to	the	project's
resources,	Qt	will	be	unable	to	load	that	file.	Even	if	the	file	is
present	in	the	same	real	directory	as	main.qml,	Qt	will	only	look	for	it
in	the	virtual	qrc:/	directory.

It's	possible	to	add	a	file	to	the	resources	with	a	prefix,	in	which	case	it	can	have	an	URL
like	qrc:/some/prefix/Button.qml,	and	the	runtime	will	consider	it	to	be	in	another	virtual
directory.	That	being	said,	unless	you	explicitly	create	a	new	prefix,	you	should	be	fine.	If
your	QML	files	are	arranged	in	subdirectories,	their	hierarchy	will	be	preserved	when	you
add	them	to	the	resource	file.

Event	handlers
Qt	Quick	is	meant	to	be	used	for	creating	user	interfaces	that	are
highly	interactive.	It	offers	a	number	of	elements	for	taking	input
events	from	the	user.	In	this	section,	we	will	go	through	them	and
see	how	you	can	use	them	effectively.

Time	for	action	–	Making	the
button	clickable
So	far,	our	component	only	looks	like	a	button.	The	next	task	is	to
make	it	respond	to	mouse	input.

The	MouseArea	QML	type	defines	a	transparent	rectangle	that	exposes
a	number	of	properties	and	signals	related	to	mouse	input.
Commonly	used	signals	include	clicked,	pressed,	and	released.	Let's	do	a
couple	of	exercises	to	see	how	the	element	can	be	used.

Open	the	Button.qml	file	and	add	a	MouseArea	child	item	to	the	button
and	use	anchors	to	make	it	fill	the	whole	area	of	the	button.	Call	the
element	buttonMouseArea.	Put	the	following	code	in	the	body	of	the	item:

Rectangle	{

				id:	button

				//	...

				Row	{	...	}

				MouseArea	{

								id:	buttonMouseArea

								anchors.fill:	parent

								onClicked:	button.clicked()

				}

}

In	addition	to	this,	set	the	following	declaration	in	the	button	object
just	after	its	ID	is	declared:

Rectangle	{

				id:	button

				signal	clicked()

				//	...

}

To	test	the	modification,	go	to	the	main.qml	file	and	add	a	signal
handler	to	the	button:

Button	{

				id:	button

				anchors.centerIn:	parent

				onClicked:	console.log("Clicked!")

}

Then,	run	the	program	and	click	on	the	button.	You'll	see	your
message	printed	to	the	Qt	Creator's	console.

What	just	happened?
With	the	signal	clicked()	statement,	we	declared	that	the	button	object
can	emit	a	signal	called	clicked.	With	the	MouseArea	item,	we	defined	a
rectangular	area	(covering	the	whole	button)	that	reacts	to	mouse
events.	Then,	we	defined	onClicked,	which	is	a	signal	handler.	For
every	signal	an	object	has,	a	script	can	be	bound	to	a	handler	named
like	the	signal	and	prefixed	with	"on";	hence,	for	the	clicked	signal,
the	handler	is	called	onClicked,	and,	for	valueChanged,	it	is
called	onValueChanged.

In	this	particular	case,	we	have	two	handlers	defined—one	for	the
button	where	we	write	a	simple	statement	to	the	console,	and	the
other	for	the	MouseArea	element	where	we	call	the	button's	signal
function,	effectively	emitting	that	signal.

MouseArea	has	even	more	features,	so	now	let's	try	putting	them	to	the
right	use	to	make	our	button	more	feature-rich.

Time	for	action	–	Visualizing
button	states
Currently,	there	is	no	visual	reaction	to	clicking	on	the	button.	In
the	real	world,	the	button	has	some	depth	and	when	you	push	it	and
look	at	it	from	above,	its	contents	seems	to	shift	a	little	toward	the
right	and	downward.	Let's	mimic	this	behavior	by	making	use	of	the
pressed	property	MouseArea	has,	which	denotes	whether	the	mouse
button	is	currently	being	pressed	(note	that	the	pressed	property	is
different	from	the	pressed	signal	that	was	mentioned	earlier).	The
content	of	the	button	is	represented	by	the	Row	element,	so	add	the
following	statements	inside	its	definition:

Row	{

				id:	buttonContent

				//	...

				anchors.verticalCenterOffset:	buttonMouseArea.pressed	?	1	:	0

				anchors.horizontalCenterOffset:	buttonMouseArea.pressed	?	1	:	0

				//	...

}

We	can	also	make	the	text	change	color	when	the	mouse	cursor
hovers	over	the	button.	For	this,	we	have	to	do	two	things.	First,
let's	enable	receiving	hover	events	on	the	MouseArea	by	setting
its	hoverEnabled	property:

hoverEnabled:	true

When	this	property	is	set,	MouseArea	will	be	setting
its	containsMouse	property	to	true	whenever	it	detects	the	mouse	cursor
over	its	own	area.	We	can	use	this	value	to	set	the	text	color:

Text	{

		id:	buttonText

		text:	"ButtonText"

		color:	buttonMouseArea.containsMouse	?	"white"	:	"black"

}

What	just	happened?
In	the	last	exercise,	we	learned	to	use	some	properties	and	signals
from	MouseArea	to	make	the	button	component	more	interactive.
However,	the	element	is	much	richer	in	features.	In	particular,	if
hover	events	are	enabled,	you	can	get	the	current	mouse	position	in
the	item's	local	coordinate	system	through
the	mouseX	and	mouseY	properties	that	return	values.	The	cursor
position	can	also	be	reported	by	handling	the	positionChanged	signal.
Speaking	of	signals,	most	MouseArea	signals	carry	a	MouseEvent	object	as
their	argument.	This	argument	is	called	mouse	and	contains	useful
information	about	the	current	state	of	the	mouse,	including	its
position	and	buttons	currently	pressed.	By	default,	MouseArea	only
reacts	to	the	left	mouse	button,	but	you	can
use	the	acceptedButtons	property	to	select	which	buttons	it	should
handle.	These	features	are	shown	in	the	following	example:

MouseArea	{

				id:	buttonMouseArea

				anchors.fill:	parent

				hoverEnabled:	true

				acceptedButtons:	Qt.LeftButton	|	Qt.MiddleButton	|	Qt.RightButton

				onClicked:	{

								switch(mouse.button)	{

												case	Qt.LeftButton:

																console.log("Left	button	clicked");	break;

												case	Qt.MiddleButton:

																console.log("Middle	button	clicked");	break;

												case	Qt.RightButton:

																console.log("Right	button	clicked");	break;

								}

				}

				onPositionChanged:	{

								console.log("Position:	["	+	mouse.x	+	";	"	+	mouse.y	+	"]");

				}

}

Time	for	action	–	Notifying	the
environment	about	button
states
We	have	added	some	code	to	make	the	button	look	more	natural	by
changing	its	visual	aspects.	Now,	let's	extend	the	button
programming	interface	so	that	developers	can	use	more	features	of
the	button.

The	first	thing	we	can	do	is	make	button	colors	definable	by
introducing	some	new	properties	for	the	button.	Let's	put	the
highlighted	code	at	the	beginning	of	the	button	component
definition:

Rectangle	{

				id:	button

				property	color	topColor:	"#eeeeee"

				property	color	bottomColor:	"#777777"

				property	color	textColor:	"black"

				property	color	textPressedColor:	"white"

				signal	clicked()

Then,	we'll	use	the	new	definitions	for	the	background	gradient:

gradient:	Gradient	{

				GradientStop	{	position:	0;	color:	button.topColor	}

				GradientStop	{	position:	1;	color:	button.bottomColor	}

}

Now	for	the	text	color:

Text	{

				id:	buttonText

				text:	"ButtonText"

				color:	buttonMouseArea.pressed	?

								button.textPressedColor	:	button.textColor

}

As	you	can	note,	we	used	the	pressed	property	of	MouseArea	to	detect
whether	a	mouse	button	is	currently	being	pressed	on	the	area.	We
can	equip	our	button	with	a	similar	property.	Add	the	following
code	to	the	top	level	Rectangle	of	the	Button	component:

property	alias	pressed:	buttonMouseArea.pressed

What	just	happened?
The	first	set	of	changes	introduced	four	new	properties	defining
four	colors	that	we	later	used	in	statements	defining	gradient	and
text	colors	for	the	button.	In	QML,	you	can	define	new	properties
for	objects	with	the	property	keyword.	The	keyword	should	be
followed	by	the	property	type	and	property	name.	QML
understands	many	property	types,	the	most	common
being	int,	real,	string,	font,	and	color.	Property	definitions	can	contain
an	optional	default	value	for	the	property,	preceded	with	a	colon.
The	situation	is	different	with	the	pressed	property	definition.

You	can	see	that	for	the	property	type,	the	definition	contains	the
word	alias.	It	is	not	a	property	type	but	an	indicator	that	the
property	is	really	an	alias	to	another	property—each	time
the	pressed	property	of	the	button	is	accessed,	the	value	of
the	buttonMouseArea.pressed	property	is	returned,	and	every	time	the
property	is	changed,	it	is	the	mouse	area's	property	that	really	gets
changed.	With	a	regular	property	declaration,	you	can	provide	any
valid	expression	as	the	default	value	because	the	expression	is
bound	to	the	property.	With	a	property	alias,	it	is	different—the
value	is	mandatory	and	has	to	be	pointing	to	an	existing	property	of
the	same	or	another	object.

Consider	the	following	two	definitions:

property	int	foo:	someobject.prop

property	alias	bar:	someobject.prop

At	first	glance,	they	are	similar	as	they	point	to	the	same	property
and	therefore	the	values	returned	for	the	properties	are	the	same.
However,	the	properties	are	really	very	different,	which	becomes

apparent	if	you	try	to	modify	their	values:

		foo	=	7

		bar	=	7

The	first	property	actually	has	an	expression	bound	to	it,	so
assigning	7	to	foo	simply	releases	the	binding	and	assigns	the
value	7	to	the	foo	property,	leaving	someobject.prop	with	its	original
value.	The	second	statement,	however,	is	an	alias;	therefore,
assigning	a	new	value	applies	the	modification	to
the	someobject.prop	property	the	alias	is	really	pointing	to.

Speaking	of	properties,	there	is	an	easy	way	to	react	when	a
property	value	is	modified.	For	each	existing	property,	there	is	a
handler	available	that	is	executed	whenever	the	property	value	is
modified.	The	handler	name	is	on	followed	by	the	property	name,
then	followed	by	the	word	Changed,	all	in	camel	case—thus,	for
a	foo	property,	it	becomes	onFooChanged	and	for	topColor,	it
becomes	onTopColorChanged.	To	log	the	current	press	state	of	the	button
to	the	console,	all	we	need	to	do	is	implement	the	property	change
handler	for	this	property:

Button	{

				//	...

	

				onPressedChanged:	{

								console.log("The	button	is	currently	"	+

																				(pressed	?	""	:	"not	")	+	"pressed")

				}

}

In	this	example,	we	created	a	fully	functional	custom	QML
component.	Our	button	reacts	to	mouse	input	and	exposes	some
useful	properties	and	signals	to	the	user.	This	makes	it	a	reusable
and	customizable	object.	In	a	real	project,	always	think	of	the
repeating	parts	of	your	UI	and	consider	moving	them	into	a	single
component	to	reduce	code	duplication.

Touch	input
MouseArea	is	the	simplest	of	input	event	elements.	Nowadays,	more
and	more	devices	have	touch	capabilities	and	Qt	Quick	can	handle
them	as	well.	Currently,	we	have	three	ways	of	handling	touch
input.

First	of	all,	simple	touch	events	are	also	reported	as	mouse
events.	Tapping	and	sliding	a	finger	on	the	screen	can	be	handled
using	MouseArea,	just	like	mouse	input.

Time	for	action	–	Dragging	an
item	around
Create	a	new	Qt	Quick	Application	-	Empty	project.
Edit	the	main.qml	file	to	add	a	circle	to	the	window:

Rectangle	{

				id:	circle

				width:	60;	height:	width

				radius:	width	/	2

				color:	"red"

}

Next,	add	a	MouseArea	to	the	circle	and	use	its	drag	property	to	enable
moving	the	circle	by	touch	(or	mouse):

Rectangle	{

				//...

				MouseArea	{

								anchors.fill:	parent

								drag.target:	circle

				}

}

Then,	you	can	start	the	application	and	begin	moving	the	circle
around.

What	just	happened?
A	circle	was	created	by	defining	a	rectangle	with	its	height	equal	to
width,	making	it	a	square	and	rounding	the	borders	to	half	the	side
length.	The	drag	property	can	be	used	to	tell	MouseArea	to	manage	a
given	item's	position	using	input	events	flowing	into
this	MouseArea	element.	We	denote	the	item	to	be	dragged	using
the	target	subproperty.	You	can	use	other	subproperties	to	control
the	axis	the	item	is	allowed	to	move	along	or	constrain	the	move	to
a	given	area.	An	important	thing	to	remember	is	that	the	item	being
dragged	cannot	be	anchored	for	the	axis	on	which	the	drag	is
requested;	otherwise,	the	item	will	respect	the	anchor	and	not	the
drag.	We	didn't	anchor	our	circle	item	at	all	since	we	want	it	to	be
draggable	along	both	axes.

The	second	approach	to	handling	touch	input	in	Qt	Quick
applications	is	to	use	PinchArea,	which	is	an	item	similar	to	MouseArea,
but	rather	than	dragging	an	item	around,	it	allows	you	to	rotate	or
scale	it	using	two	fingers	(with	a	so	called	"pinch"	gesture),	as
shown:

Be	aware	that	PinchArea	reacts	only	to	touch	input,	so	to	test	the
example,	you	will	need	a	real	multitouch	capable	device.

Time	for	action	–	Rotating	and
scaling	a	picture	by	pinching
Start	a	new	Qt	Quick	Application	-	Empty	project.	Add	an	image	file
to	the	resources,	just	like	we	previously	did	in	the	button	project.	In
the	main.qml	file,	add	an	image	to	the	window	and	make	it	centered	in
its	parent:

Image	{

				id:	image

				anchors.centerIn:	parent

				source:	"qrc:/wilanow.jpg"

}

Now,	we	will	add	a	PinchArea	element.	This	kind	of	item	can	be	used
in	two	ways—either	by	manually	implementing	signal
handlers	onPinchStarted,	onPinchUpdated,	and	onPinchFinished	to	have	total
control	over	the	functionality	of	the	gesture,	or	using	a	simplified
interface	similar	to	the	drag	property	of	MouseArea.	Since	the	simplified
interface	does	exactly	what	we	want,	there	is	no	need	to	handle
pinch	events	manually.	Let's	add	the	following	declaration	to	the
file:

PinchArea	{

				anchors.fill:	parent

				pinch	{

								target:	image

								minimumScale:	0.2

								maximumScale:	2.0

								minimumRotation:	-90

								maximumRotation:	90

				}

}

You'll	get	an	output	similar	to	the	following	screenshot:

What	just	happened?
Our	simple	application	loads	an	image	and	centers	it	in	the	view.
Then,	there	is	a	PinchArea	item	filling	the	view	area	that	is	told	to
operate	on	the	image	object.	We	define	the	range	of	the	scaling	and
rotating	of	the	item.	The	rest	is	left	to	the	PinchArea	item	itself.	If	you
start	interacting	with	the	application,	you	will	see	the	item	rotate
and	scale.	What	really	happens	behind	the	scenes	is
that	PinchArea	modifies	the	values	of	the	two	properties	each	Qt	Quick
item	has—rotation	and	scale.

PinchArea	can	also	control	the	dragging	of	the	item	with	pinch.dragAxis,	just
like	MouseArea	does	with	drag,	but	for	simplicity,	we	didn't	use	this	part	of	the	API.	Feel	free
to	experiment	with	it	in	your	own	code.

Have	a	go	hero	–	Rotating	and
scaling	with	a	mouse
Of	course,	you	don't	have	to	use	PinchArea	to	rotate	or	scale	an	item.
Properties	controlling	those	aspects	are	regular	properties	that	you
can	read	and	write	at	any	time.	Try	replacing	PinchArea	with	MouseArea	to
obtain	a	result	similar	to	what	we	just	did	by	modifying	the	scale
and	rotation	properties	as	a	result	of	receiving	mouse	events—when
the	user	drags	the	mouse	while	pressing	the	left	button,	the	image	is
scaled	and	when	the	user	does	the	same	while	pressing	the	right
button,	the	image	is	rotated.

If	you	manage	to	do	the	task,	try
replacing	MouseArea	with	PinchArea	again,	but	then,	instead	of	using
the	pinch	property,	handle	events	manually	to	obtain	the	same	effect
(the	event	object	is	called	pinch	and	has	a	number	of	properties	you
can	play	with).

A	third	approach	to	handling	touch	input	is	using
the	MultiPointTouchArea	item.	It	provides	a	low-level	interface	to
gestures	by	reporting	each	touch	point	separately.	It	can	be	used	to
create	custom	high-level	gesture	handlers	similar	to	PinchArea.

Keyboard	input
So	far,	we've	been	dealing	with	pointer	input,	but	user	input	is	not
just	that—we	can	also	handle	keyboard	input.	This	is	quite	simple
and	basically	boils	down	to	two	easy	steps.

First,	you	have	to	enable	receiving	keyboard	events	by	stating	that	a
particular	item	has	keyboard	focus:

focus:	true

Then,	you	can	start	handling	events	by	writing	handlers	in	a	similar
fashion	as	for	mouse	events.	However,	Item	doesn't	provide	its	own
handler	for	manipulating	keys	that	is	a	counterpart
for	keyPressEvent	and	keyReleaseEvent	of	QWidget.	Instead,	adequate
handlers	are	provided	by	the	Keys	attached	property.

Attached	properties	are	provided	by	elements	that	are	not	used	as
standalone	elements	but	provide	properties	to	other	objects	by
getting	attached	to	them	as	well.	This	is	a	way	of	adding	support	for
new	properties	without	modifying	the	API	of	the	original	element	(it
doesn't	add	new	properties	through	an	is-a	relation,	but	rather
through	a	has-a	one).	Each	object	that	references	an	attached
property	gets	its	own	copy	of	the	attaching	object	that	then	handles
the	extra	properties.	We	will	come	back	to	attached	properties	later
in	the	chapter.	For	now,	you	just	need	to	remember	that	in	certain
situations,	an	element	can	obtain	additional	properties	that	are	not
part	of	its	API.

Let's	go	back	to	implementing	event	handlers	for	keyboard	input.
As	we	said	earlier,	each	Item	has	a	Keys	attached	property	that	allows
us	to	install	our	own	keyboard	handlers.	The	basic	two

signals	Keys	adds	to	Item	are	pressed	and	released;	therefore,	we	can
implement	the	onPressed	and	onReleased	handlers	that	have
a	KeyEvent	argument	providing	similar	information	as	QKeyEvent	in	the
widget	world.	As	an	example,	we	can	see	an	item	that	detects	when
the	spacebar	was	pressed:

Rectangle	{

				focus:	true

				color:	"black"

				width:	100

				height:	100

				Keys.onPressed:	{

								if(event.key	===	Qt.Key_Space)	{

													color	=	"red";

								}

				}

				Keys.onReleased:	{

								if(event.key	===	Qt.Key_Space)	{

												color	=	"blue";

								}

				}

}

It	might	become	problematic	if	you	want	to	handle	many	different
keys	in	the	same	item,	as	the	onPressed	handler	would	likely	contain	a
giant	switch	section	with	branches	for	every	possible	key.
Fortunately,	Keys	offers	more	properties.	Most	of	the	commonly	used
keys	(but	not	letters)	have	their	own	handlers	that	are	called	when
the	particular	key	is	pressed.	Thus,	we	can	easily	implement	an	item
that	takes	a	different	color	depending	on	which	key	was	pressed
last:

Rectangle	{

				//...

				focus:	true

				Keys.onSpacePressed:						color	=	"purple"

				Keys.onReturnPressed:					color	=	"navy"

				Keys.onVolumeUpPressed:			color	=	"blue"

				Keys.onRightPressed:						color	=	"green"

				Keys.onEscapePressed:					color	=	"yellow"

				Keys.onTabPressed:								color	=	"orange"

				Keys.onDigit0Pressed:					color	=	"red"

				Keys.onDigit0Pressed:					color	=	"red"

}

Note	that	the	released	signal	will	still	be	emitted	for	every	released
key	even	if	the	key	has	its	own	pressed	signal.

Now,	consider	another	example:

Item	{

				id:	item

				property	int	number:	0

				width:	200;	height:	width

				focus:	true

				Keys.onSpacePressed:	{

								number++;

				}

				Text	{

								text:	item.number

								anchors.centerIn:	parent

				}

}

We	would	expect	that	when	we	press	and	hold	the	spacebar,	we	will
see	the	text	change	from	0	to	1	and	stay	on	that	value	until	we
release	the	key.	If	you	run	the	example,	you	will	see	that	instead,	the
number	keeps	incrementing	as	long	as	you	hold	down	the	key.	This
is	because	by	default,	the	keys	autorepeat—when	you	hold	the	key,
the	operating	system	keeps	sending	a	sequence	of	press-release
events	for	the	key	(you	can	verify	that	by	adding
the	console.log()	statements	to
the	Keys.onPressed	and	Keys.onReleased	handlers).	To	counter	this	effect,
you	can	differentiate	between	autorepeat	and	regular	events.	In	Qt
Quick,	you	can	do	this	easily,	as	each	key	event	carries	the
appropriate	information.	Simply	replace	the	handler	from	the	last
example	with	the	following	one:

Keys.onSpacePressed:	{

				if(!event.isAutoRepeat)	{

								number++;

				}

}

The	event	variable	we	use	here	is	the	name	of	the	parameter	of
the	spacePressed	signal.	As	we	cannot	declare	our	own	names	for	the
parameters	like	we	can	do	in	C++,	for	each	signal	handler,	you	will
have	to	look	up	the	name	of	the	argument	in	the	documentation.
You	can	search	for	Keys	in	the	documentation	index	to	open	the	Keys
QML	Type	page.	The	signal	list	will	contain	type	and	name	of	the
signal's	parameter,	for	example,	spacePressed(KeyEvent	event).

Whenever	you	process	an	event,	you	should	mark	it	as	accepted	to
prevent	it	from	being	propagated	to	other	elements	and	handled	by
them:

Keys.onPressed:	{

				if(event.key	===	Qt.Key_Space)	{

								color	=	"blue";

								event.accepted	=	true;

				}

}

However,	if	you	use	a	handler	dedicated	to	an	individual	button
(like	onSpacePressed),	you	don't	need	to	accept	the	event,	as	Qt	will	do
that	for	you	automatically.

In	standard	C++	applications,	we	usually	use	the	Tab	key	to
navigate	through	focusable	items.	With	games	(and	fluid	user
interfaces	in	general),	it	is	more	common	to	use	arrow	keys	for	item
navigation.	Of	course,	we	can	handle	this	situation	using
the	Keys	attached	property	and
adding	Keys.onRightPressed,	Keys.onTabPressed,	and	other	signal	handlers	to
each	of	our	items	where	we	want	to	modify	the	focus	property	of	the
desired	item,	but	it	would	quickly	clutter	our	code.	Qt	Quick	comes
to	our	help	once	again	by	providing	a	KeyNavigation	attached	property,
which	is	meant	to	handle	this	specific	situation	and	allows	us	to
greatly	simplify	the	needed	code.	Now,	we	can	just	specify	which
item	should	get	into	focus	when	a	specific	key	is	triggered:

Row	{

				spacing:	5

				Rectangle	{

								id:	first

								width:	50;	height:	width

								color:	focus	?	"blue"	:	"lightgray"

								focus:	true

								KeyNavigation.right:	second

				}

				Rectangle	{

								id:	second

								width:	50;	height:	width

								color:	focus	?	"blue"	:	"lightgray"

								KeyNavigation.right:	third

				}

				Rectangle	{

								id:	third

								width:	50;	height:	width

								color:	focus	?	"blue"	:	"lightgray"

				}

}	

Note	that	we	made	the	first	item	get	into	focus	in	the	beginning	by
explicitly	setting	the	focus	property.	By	setting	the	KeyNavigation.right
property,	we	instruct	Qt	to	focus	on	the	specified	item	when	this
item	receives	a	right	key	press	event.	The	reverse	transition	is	added
automatically—when	the	left	key	is	pressed	on	the	second	item,	the
first	item	will	receive	focus.	Besides	right,	KeyNavigation	contains
the	left,	down,	up,	tab,	and	backtab	(Shift	+	Tab)	properties.

Both	the	Keys	and	KeyNavigation	attached	properties	have	a	way	to
define
the	order	in	which	each	of	the	mechanisms	receive	the	events.	This
is	handled	by	the	priority	property,	which	can	be	set	to
either	BeforeItem	or	AfterItem.	By	default,	Keys	will	get	the	event	first
(BeforeItem),	then	the	internal	event	handling	can	take	place	and
finally,	KeyNavigation	will	have	a	chance	of	handling	the	event
(AfterItem).	Note	that	if	the	key	is	handled	by	one	of	the	mechanisms,
the	event	is	accepted	and	the	remaining	mechanisms	will	not
receive	that	event.

Have	a	go	hero	–	Practicing
key-event	propagation
As	an	exercise,	you	can	expand	our	last	example	by	building	a	larger
array	of	items	(you	can	use	the	Grid	element	to	position	them)	and
defining	a	navigation	system	that	makes	use	of
the	KeyNavigation	attached	property.	Have	some	of	the	items	handle
events	themselves	using	the	Keys	attached	property.	See	what
happens	when	the	same	key	is	handled	by	both	mechanisms.	Try
influencing	the	behavior	using	the	priority	property.

When	you	set	the	focus	property	of	an	item	to	true,	any	previously
used	item	loses	focus.	This	becomes	a	problem	when	you	try	to
write	a	reusable	component	that	needs	to	set	focus	to	its	children.	If
you	add	multiple	instances	of	such	a	component	to	a	single	window,
their	focus	requests	will	conflict	with	each	other.	Only	the	last	item
will	have	focus	because	it	was	created	last.	To	overcome	this
problem,	Qt	Quick	introduces	a	concept	of	focus	scopes.	By
wrapping	your	component	into	a	FocusScope	item,	you	gain	ability	to
set	focus	to	an	item	inside	the	component	without	influencing	the
global	focus	directly.	When	an	instance	of	your	component	receives
focus,	the	internal	focused	item	will	also	receive	focus	and	will	be
able	to	handle	keyboard	events.	A	good	explanation	of	this	feature	is
given	on	the	Keyboard	Focus	in	Qt	Quick	documentation	page.

Text	input	fields
Apart	from	the	attached	properties	we	described,	Qt	Quick	provides
built-in	elements	for	handling	keyboard	input.	The	two	most	basic
types	are	TextInput	and	TextEdit,	which	are	QML	equivalents
of	QLineEdit	and	QTextEdit.	The	former	are	used	for	single-line	text
input,	while	the	latter	serves	as	its	multiline	counterpart.	They	both
offer	cursor	handling,	undo-redo	functionality,	and	text	selections.
You	can	validate	text	typed	into	TextInput	by	assigning	a	validator	to
the	validator	property.	For	example,	to	obtain	an	item	where	the	user
can	input	a	dot-separated	IP	address,	we	can	use	the	following
declaration:

TextInput	{

				id:	ipAddress

				width:	100

				validator:	RegExpValidator	{

								//	four	numbers	separated	by	dots

								regExp:	/\d+\.\d+\.\d+\.\d+/

				}

				focus:	true

}

The	regular	expression	only	verifies	the	format	of	the	address.	The
user	can	still	insert	bogus	numbers.	You	should	either	do	a	proper
check	before	using	the	address	or	provide	a	more	complex	regular
expression	that	will	constrain	the	range	of	numbers	the	user	can
enter.

One	thing	to	remember	is	that	neither	TextInput	nor	TextEdit	has	any
visual	appearance	(apart	from	the	text	and	cursor	they	contain),	so
if	you	want	to	give	the	user	some	visual	hint	as	to	where	the	item	is
positioned,	the	easiest	solution	is	to	wrap	it	in	a	styled	rectangle:

Rectangle	{

		id:	textInputFrame

		width:	200

		height:	40

		border	{	color:	"black";	width:	2	}

		radius:	10

		antialiasing:	true

		color:	"darkGray"

}

TextInput	{

		id:	textInput

		anchors.fill:	textInputFrame

		anchors.margins:	5

		font.pixelSize:	height-2

		verticalAlignment:	TextInput.AlignVCenter

		clip:	true

}

Note	that	the	highlighted	code—the	clip	property	of	textInput—is
enabled	such	that	by	default,	if	the	text	entered	in	the	box	doesn't	fit
in	the	item,	it	will	overflow	it	and	remain	visible	outside	the	actual
item.	By	enabling	clipping,	we	explicitly	say	that	anything	that
doesn't	fit	the	item	should	not	be	drawn.

The	QtQuick.Controls	module	provides	more	advanced	text	input
controls,	such	as	TextField	and	TextArea.	We've	already	used	them	in
our	project	in	Chapter	11,	Introduction	to	Qt	Quick.

Gamepad	input
Handling	gamepad	events	is	a	very	common	task	when	developing	a
game.	Fortunately,	Qt	provides	Qt	Gamepad	module	for	this
purpose.	We	already	learned	how	to	use	it	in	C++.	Now	let's	see
how	to	do	this	in	QML	applications.

To	enable	Qt	Gamepad	module,	add	QT	+=	gamepad	to	the	project	file.
Next,	import	the	QML	module	by	adding	the	following	line	at	the
beginning	of	your	QML	file:

import	QtGamepad	1.0

This	import	allows	you	to	declare	objects	of	the	Gamepad	type.	Add	the
following	object	inside	your	top-level	QML	object:

	Gamepad	{

					id:	gamepad

					deviceId:	GamepadManager.connectedGamepads.length	>	0	?	

									GamepadManager.connectedGamepads[0]	:	-1

	}

The	GamepadManager	object	allows	us	to	list	identifiers	of	gamepads
available	in	the	system.	We	use	the	first	available	gamepad	if	any
are	present	in	the	system.	If	you	want	the	game	to	pick	up	a
connected	gamepad	on	the	fly,	use	the	following	code	snippet:

				Connections	{

								target:	GamepadManager

								onGamepadConnected:	gamepad.deviceId	=	deviceId

				}

What	just	happened?
The	preceding	code	simply	adds	a	signal	handler	for
the	gamepadConnected	signal	of	the	GamepadManager	object.	The	usual	way	to
add	a	signal	handler	is	to	declare	it	directly	in	the	section	of	the
sender.	However,	we	can't	do	that	in	this	case,	since		GamepadManager	is
an	existing	global	object	that	is	not	part	of	our	QML	object	tree.
Thus,	we	use	the	Connections	QML	type	that	allows	us	to	specify	an
arbitrary	sender	(using	the	target	property)	and	attach	a	signal
handler	to	it.	You	can	think	of	Connections	as	a	declarative	version	of
QObject::connect	calls.

The	initialization	is	done,	so	we	can	now	use	the	gamepad	object	to
request	information	about	the	gamepad	input.	There	are	two	ways
to	do	that.

First,	we	can	use	property	bindings	to	set	properties	of	other	objects
depending	on	the	buttons	pressed	on	the	gamepad:

Text	{

				text:	gamepad.buttonStart	?	"Start!"	:	""

}

Whenever	the	start	button	is	pressed	or	released	on	the	gamepad,
the	value	of	the	gamepad.buttonStart	property	will	be	set	to	true	or	false,
and	the	QML	engine	will	automatically	update	the	displayed	text.

The	second	way	is	to	add	a	signal	handler	to	detect	when	a	property
changes:

Gamepad	{

				//...

				onButtonStartChanged:	{

								if	(value)	{

								if	(value)	{

												console.log("start	pressed");

								}	else	{

												console.log("start	released");

								}

				}

}

The	Gamepad	QML	type	has	a	separate	property	and	signal	for	each
gamepad	button,	just	like	the	QGamepad	C++	class.

You	can	also	use	the	GamepadKeyNavigation	QML	type	to	introduce
gamepad	support	to	a	game	that	supports	keyboard	input:

GamepadKeyNavigation	{

				gamepad:	gamepad

				active:	true

				buttonStartKey:	Qt.Key_S

}

When	this	object	is	declared	in	your	QML	file,	gamepad	events
provided	by	the	gamepad	object	will	be	automatically	converted	to	key
events.	By	default,	GamepadKeyNavigation	is	able	to	emulate	up,	down,
left,	right,	back,	forward,	and	return	keys	when	the	corresponding
gamepad	buttons	are	pressed.	However,	you	can	override	the
default	mapping	or	add	your	own	mapping	for	other	gamepad
buttons.	In	the	preceding	example,	we	tell	GamepadKeyNavigation	that	the
start	key	on	the	gamepad	should	act	as	if	the	S	key	was	pressed	on
the	keyboard.	You	can	now	handle	these	events	just	as	any	regular
keyboard	event.

Sensor	input
Qt	is	reaching	out	to	more	and	more	platforms	that	are	used
nowadays.	This	includes	a	number	of	popular	mobile	platforms.
Mobile	devices	are	usually	equipped	with	additional	hardware,	less
often	seen	on	desktop	systems.	Let's	see	how	to	handle	sensor	input
in	Qt	so	that	you	can	use	it	in	your	games.

Most	of	the	features	discussed	in	this	section	are	not	usually	available	on	desktops.	If	you
want	to	play	with	them,	you	need	to	set	up	running	Qt	applications	on	a	mobile	device.
This	requires	a	few	configuration	steps	that	depend	on	your	target	platform.	Please	refer	to
Qt	documentation	for	exact	instructions,	as	they	will	offer	complete	and	up-to-date
information	that	wouldn't	be	possible	to	provide	in	a	book.	Good	starting	points
are	Getting	Started	with	Qt	for	Android		and	Qt	for	iOS	documentation	pages.

Access	to	sensors	present	on	mobile	devices	is	provided	by	the	Qt
Sensors	module	and	must	be	imported	before	it	can	be	used:

import	QtSensors	5.0

There	are	a	lot	of	QML	types	you	can	use	to	interact	with	sensors.
Have	a	look	at	this	impressive	list:

QML	type Description

	
Accelerome

ter

	

	
Reports	the	device's	linear	acceleration	along	the	x,	y,	
and	z	axes.
	

	
Altimeter

	

	
Reports	the	altitude	in	meters	relative	to	mean	sea	
level.
	

	
AmbientLig

	

AmbientLig

htSensor

	
Reports	the	intensity	of	the	ambient	light.
	

	
AmbientTem

peratureSe

nsor

	

	
Reports	the	temperature	in	degree	Celsius	of	the	
current	device's	ambient.
	

	
Compass

	

	
Reports	the	azimuth	of	the	device's	top	as	degrees	
from	magnetic	north.
	

	
DistanceSe

nsor

	

	
Reports	distance	in	cm	from	an	object	to	the	device.
	

	
Gyroscope

	

	
Reports	the	device's	movement	around	its	axes	in	
degrees	per	second.
	

	
HolsterSen

sor

	

	
Reports	if	the	device	is	holstered	in	a	specific	pocket.
	

	
HumiditySe

nsor

	

	
Reports	on	humidity.
	

	
IRProximit

ySensor

	

	
Reports	the	reflectance	of	the	outgoing	infrared	light.	
The	range	is	from	0	(zero	reflection)	to	1	(total	
reflection).
	

	
LidSensor

	

	
Reports	on	whether	a	device	is	closed.

	
Reports	on	whether	a	device	is	closed.
	

	
LightSenso

r

	

	
Reports	the	intensity	of	light	in	lux.
	

	
Magnetomet

er

	

	
Reports	the	device's	magnetic	flux	density	along	its	
axes.
	

	
Orientatio

nSensor

	

	
Reports	the	orientation	of	the	device.
	

	
PressureSe

nsor

	

	
Reports	the	atmospheric	pressure	in	Pascals.
	

	
ProximityS

ensor

	

	
Reports	if	an	object	is	close	to	the	device.	Which	
distance	is	considered	"close"	depends	on	the	device.
	

	
RotationSe

nsor

	

	
Reports	the	three	angles	that	define	the	orientation	of	
the	device	in	a	three-dimensional	space.
	

	
TapSensor

	

	
Reports	if	a	device	was	tapped.
	

	
TiltSensor

	

	
Reports	the	angle	of	tilt	in	degrees	along	the	device's	
axes.
	

Unfortunately,	not	all	sensors	are	supported	on	all	platforms.	Check	out	the	Compatibility
Map	documentation	page	to	see	which	sensors	are	supported	on	your	target	platforms
before	trying	to	use	them.

All	these	types	inherit	the	Sensor	type	and	provide	similar	API.	First,
create	a	sensor	object	and	activate	it	by	setting	its	active	property	to
true.	When	the	hardware	reports	new	values,	they	are	assigned	to
the	sensor's	reading	property.	As	with	any	property	in	QML,	you	can
choose	between	using	the	property	directly,	using	it	in	a	property
binding,	or	using	the	onReadingChanged	handler	to	react	to	each	new
value	of	the	property.

The	type	of	the	reading	object	corresponds	to	the	type	of	the	sensor.
For	example,	if	you	use	a	tilt	sensor,	you'll	receive	a	TiltReading	object
that	provides	suitable	properties	to	access	the	angle	of	tilt	around
the	x	(xRotation)	and	y	(yRotation)	axes.	For	each	sensor	type,	Qt
provides	a	corresponding	reading	type	that	contains	the	sensor
data.

All	readings	also	have	the	timestamp	property	that	contains	the
number	of	microseconds	since	some	fixed	point.	That	point	can	be
different	for	different	sensor	objects,	so	you	can	only	use	it	to
calculate	time	intervals	between	two	readings	of	the	same	sensor.

The	following	QML	code	contains	a	complete	example	of	using	a	tilt
sensor:

import	QtQuick	2.9

import	QtQuick.Window	2.2

import	QtSensors	5.0

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Hello	World")

				Text	{

								anchors.centerIn:	parent

								text:	{

												if	(!tiltSensor.reading)	{

																return	"No	data";

												}

												var	x	=	tiltSensor.reading.xRotation;

												var	x	=	tiltSensor.reading.xRotation;

												var	y	=	tiltSensor.reading.yRotation;

												return	"X:	"	+	Math.round(x)	+

																			"	Y:	"	+	Math.round(y)

								}

				}

				TiltSensor	{

								id:	tiltSensor

								active:	true

								onReadingChanged:	{

												//	process	new	reading

								}

				}

}

When	this	application	receives	a	new	reading,	the	text	on	screen
will	be	automatically	updated.	You	can	also	use	the	onReadingChanged
handler	to	process	new	data	in	another	way.

Detecting	device	location
Some	modern	games	require	information	about	the	player's
geographic	location	and	other	related	data,	such	as	movement
speed.	The	Qt	Positioning	module	allows	you	to	access	this
information.	Let's	see	a	basic	QML	example	of	determining	the
location:

import	QtQuick	2.9

import	QtQuick.Window	2.2

import	QtPositioning	5.0

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Hello	World")

				Text	{

								anchors.centerIn:	parent

								text:	{

												var	pos	=	positionSource.position;

												var	coordinate	=	pos.coordinate;

												return	"latitude:	"	+	coordinate.latitude	+

														"\nlongitude:	"	+	coordinate.longitude;

								}

				}

				PositionSource	{

								id:	positionSource

								active:	true

								onPositionChanged:	{

												console.log("pos	changed",

																								position.coordinate.latitude,

																								position.coordinate.longitude);

								}

				}

}

First,	we	import	the	QtPositioning	module	into	scope.	Next,	we	create
a	PositionSource	object	and	set	its	active	property	to	true.	The	position

property	of	the	PositionSource	object	will	be	automatically	updated	as
new	information	is	available.	In	addition	to	latitude	and	longitude,
this	property	also	contains	information	about	altitude,	direction
and	speed	of	travel,	and	accuracy	of	location.	Since	some	of	values
may	not	be	available,	each	value	is	accompanied	with	a	Boolean
property	that	indicates	if	the	data	is	present.	For	example,
if	directionValid	is	true,	then	direction	value	was	set.

There	are	multiple	ways	to	determine	the	player's	location.
The	PositionSource	type	has	a	few	properties	that	allow	you	to	specify
the	source	of	the	data.	First,	the	preferredPositioningMethods		property
allows	you	to	choose	between	satellite	data,	non-satellite	data,	or
using	both	of	them.	The	supportedPositioningMethods	property	holds
information	about	currently	available	methods.	You	can	also	use
the	nmeaSource	property	to	provide	an	NMEA	position-specification
data	file	which	overrides	any	other	data	sources	and	can	be	used	to
simulate	the	device's	location	and	movement	which	is	very	useful
during	development	and	testing	of	the	game.	

Creating	advanced	QML
components
By	now,	you	should	be	familiar	with	the	very	basics	of	QML	and	Qt
Quick.	Now,	we	can	start	combining	what	you	know	and	fill	the
gaps	with	more	information	to	build	more	advanced	QML
components.	Our	target	will	be	to	display	an	analog	clock.

Time	for	action	–	A	simple
analog	clock	application
Create	a	new	Qt	Quick	Application	-	Empty	project.	To	create	a
clock,	we	will	implement	a	component	representing	the	clock
needle,	and	we	will	use	instances	of	that	component	in	the	actual
clock	element.	In	addition	to	this,	we	will	make	the	clock	a	reusable
component;	therefore,	we	will	create	it	in	a	separate	file	and
instantiate	it	from	within	main.qml:

Window	{

				visible:	true

				width:	640

				height:	480

				title:	qsTr("Hello	World")

	

				Clock	{

								id:	clock

								anchors	{

												fill:	parent

												margins:	20

								}

				}

}

We	use	the	anchors	property	group	to	expand	the	item	to	fit	the	whole
window	except	for	the	20-pixel	margin	for	all	four	sides.

Before	this	code	works,	however,	we	need	to	add	a	new	QML	file	for
the	Clock	component.	Locate	the	qml.qrc	resource	file	in	the	project
tree	and	select	Add	New...	in	its	context	menu.
From	the	Qt	category,	select	QML	File	(Qt	Quick	2),	input	Clock	as
the	name	and	confirm	the	operation.	A	new	file	called	Clock.qml	will
be	created	and	added	to	the	resources	list.

Let's	start	by	declaring	a	circular	clock	plate:

import	QtQuick	2.9

	

Item	{

				id:	clock

	

				property	color	color:	"lightgray"

	

				Rectangle	{

								id:	plate

	

								anchors.centerIn:	parent

								width:	Math.min(clock.width,	clock.height)

								height:	width

								radius:	width	/	2

								color:	clock.color

								border.color:	Qt.darker(color)

								border.width:	2

				}

}

If	you	run	the	program	now,	you'll	see	a	plain	gray	circle	hardly
resembling	a	clock	plate:

The	next	step	is	to	add	marks	dividing	the	plate	into	12	sections.	We
can	do	this	by	putting	the	following	declaration	inside
the	plate	object:

Repeater	{

				model:	12

	

				Item	{

								id:	hourContainer

	

								property	int	hour:	index

								height:	plate.height	/	2

								transformOrigin:	Item.Bottom

								rotation:	index	*	30

								x:	plate.width/2

								y:	0

	

								Rectangle	{

												width:	2

												height:	(hour	%	3	==	0)	?	plate.height	*	0.1

																																				:	plate.height	*	0.05

												color:	plate.border.color

												antialiasing:	true

												anchors.horizontalCenter:	parent.horizontalCenter

												anchors.top:	parent.top

												anchors.topMargin:	4

								}

				}

}

Running	the	program	should	now	give	the	following	result,	looking
much	more	like	a	clock	plate:

What	just	happened?
The	code	we	just	created	introduces	a	couple	of	new	features.	Let's
go	through	them	one	by	one.

First	of	all,	we	used	a	new	element	called	Repeater.	It	does	exactly
what	its	name	says—it	repeats	items	declared	within	it	using	a	given
model.	For	each	entry	in	the	model,	it	creates	an	instance	of	a
component	assigned	to	a	property	called	delegate	(the	property	name
means	that	it	contains	an	entity	to	which	the	caller	delegates	some
responsibility,	such	as	describing	a	component	to	be	used	as	a
stencil	by	the	caller).	Item	declared	in	Repeater	describes	the	delegate
even	though	we	cannot	see	it	explicitly	assigned	to	a	property.	This
is	because	delegate	is	a	default	property	of	the	Repeater	type,	which
means	anything	unassigned	to	any	property	explicitly	gets	implicitly
assigned	to	the	default	property	of	the	type.

The	Item	type	also	has	a	default	property	called	data.	It	holds	a	list	of	elements	that	gets
automatically	split	into	two	"sublists"—the	list	of	the	item's	children	(which	creates	the
hierarchy	of	Item	instances	in	Qt	Quick)	and	another	list	called	resources,	which	contains
all	"child"	elements	that	do	not	inherit	from	Item.	You	have	direct	access	to	all	three	lists,
which	means	calling	children[2]	will	return	the	third	Item	element	declared	in	the	item,
and	data[5]	will	return	the	sixth	element	declared	in	the	Item,	regardless	of	whether	the
given	element	is	a	visual	item	(that	inherits	Item)	or	not.

The	model	can	be	a	number	of	things,	but	in	our	case,	it	is	simply	a
number	denoting	how	many	times	the	delegate	should	be	repeated.
The	component	to	be	repeated	is	a	transparent	item	containing	a
rectangle.	The	item	has	a	property	declared	called	hour	that	has
the	index	variable	bound	to	it.	The	latter	is	a	property	assigned
by	Repeater	to	each	instance	of	the	delegate	component.	The	value	it
contains	is	the	index	of	the	instance	in	the	Repeater	object—since	we
have	a	model	containing	twelve	elements,	index	will	hold	values
within	a	range	of	0	to	11.	The	item	can	make	use	of	the	index	property
to	customize	instances	created	by	Repeater.	In	this	particular	case,	we
use	index	to	provide	values	for	a	rotation	property	and	by	multiplying

the	index	by	30,	we	get	values	starting	from	0	for	the	first	instance
and	ending	at	330	for	the	last	one.

The	rotation	property	brings	us	to	the	second	most	important	subject
—item	transformations.	Each	item	can	be	transformed	in	a	number
of	ways,	including	rotating	the	item	and	scaling	it	in	two-
dimensional	space,	as	we	already	mentioned	earlier.	Another
property	called	transformOrigin	denotes	the	origin	point	around	which
scale	and	rotation	are	applied.	By	default,	it	points	to	Item.Center,
which	makes	the	item	scale	and	rotate	around	its	center,	but	we	can
change	it	to	eight	other	values,	such	as	Item.TopLeft	for	the	top-left
corner	or	Item.Right	for	the	middle	of	the	right	edge	of	the	item.	In	the
code	we	crafted,	we	rotate	each	item	clockwise	around	its	bottom
edge.	Each	item	is	positioned	horizontally	in	the	middle	of	the	plate
using	the	plate.width	/	2	expression	and	vertically	at	the	top	of	the
plate	with	the	default	width	of	0	and	the	height	of	half	the	plate's
height;	thus,	each	item	is	a	thin	vertical	line	spanning	from	within
the	top	to	the	center	of	the	plate.	Then,	each	item	is	rotated	around
the	center	of	the	plate	(each	item's	bottom	edge)	by	30	degrees
more	than	a	previous	item	effectively	laying	items	evenly	on	the
plate.

Finally,	each	item	has	a	gray	Rectangle	attached	to	the	top	edge	(offset
by	4)	and	horizontally	centered	in	the	transparent	parent.
Transformations	applied	to	an	item	influence	the	item's	children
similar	to	what	we	have	seen	in	Graphics	View;	thus,	the	effective
rotation	of	the	rectangle	follows	that	of	its	parent.	The	height	of	the
rectangle	depends	on	the	value	of	hour,	which	maps	to	the	index	of
the	item	in	Repeater.	Here,	you	cannot	use	index	directly	as	it	is	only
visible	within	the	topmost	item	of	the	delegate.	That's	why	we
create	a	real	property	called	hour	that	can	be	referenced	from	within
the	whole	delegate	item	hierarchy.

If	you	want	more	control	over	item	transformations,	then	we	are	happy	to	inform	you	that
apart	from	rotation	and	scale	properties,	each	item	can	be	assigned	an	array	of	elements
such	as	Rotation,	Scale,	and	Translate	to	a	property	called	transform,	which	are	applied	in
order,	one	at	a	time.	These	types	have	properties	for	fine-grained	control	over	the
transformation.	For	instance,	using	Rotation,	you	can	implement	rotation	over	any	of	the
three	axes	and	around	a	custom	origin	point	(instead	of	being	limited	to	nine	predefined
origin	points	as	when	using	the	rotation	property	of	Item).

Time	for	action	–	Adding
needles	to	the	clock
The	next	step	is	to	add	the	hour,	minute,	and	second	needles	to	the
clock.	Let's	start	by	creating	a	new	component	called	Needle	in	a	file
called	Needle.qml	(remember	that	component	names	and	files
representing	them	need	to	start	with	a	capital	letter):

import	QtQuick	2.9

	

Rectangle	{

				id:	root

	

				property	int	value:	0

				property	int	granularity:	60

				property	alias	length:	root.height

	

				width:	2

				height:	parent.height	/	2

				radius:	width	/	2

				antialiasing:	true

				anchors.bottom:	parent.verticalCenter

				anchors.horizontalCenter:	parent.horizontalCenter

				transformOrigin:	Item.Bottom

				rotation:	360	/	granularity	*	(value	%	granularity)

}

Needle	is	basically	a	rectangle	anchored	to	the	center	of	its	parent	by
its	bottom	edge,	which	is	also	the	item's	pivot.	It	also
has	the	value	and	granularity	properties	driving	the	rotation	of	the
item,	where	value	is	the	current	value	the	needle	shows
and	granularity	is	the	number	of	different	values	it	can	display.	Also,
anti-aliasing	for	the	needle	is	enabled	as	we	want	the	tip	of	the
needle	nicely	rounded.	Having	such	a	definition,	we	can	use	the
component	to	declare	the	three	needles	inside	the	clock	plate

object:

Needle	{

				length:	plate.height	*	0.3

				color:	"blue"

				value:	clock.hours

				granularity:	12

}

Needle	{

				length:	plate.height	*	0.4

				color:	"darkgreen"

				value:	clock.minutes

				granularity:	60

}

Needle	{

				width:	1

				length:	plate.height	*	0.45

				color:	"red"

				value:	clock.seconds

				granularity:	60

}

The	three	needles	make	use	of	the	hours,	minutes,	and	seconds	properties
of	clock,	so	these	need	to	be	declared	as	well:

property	int	hours:	0

property	int	minutes:	0

property	int	seconds:	0

By	assigning	different	values	to	the	properties	of	Clock	in	main.qml,	you
can	make	the	clock	show	a	different	time:

import	QtQuick	2.9

	

Clock	{

				//...

				hours:	7

				minutes:	42

				seconds:	17

}

You'll	get	an	output	as	shown:

What	just	happened?
Most	Needle	functionality	is	declared	in	the	component	itself,
including	geometry	and	transformations.	Then,	whenever	we	want
to	use	the	component,	we	declare	an	instance	of	Needle	and
optionally	customize	the	length	and	color	properties	as	well	as	set
its	value	and	granularity	to	obtain	the	exact	functionality	we	need.

Time	for	action	–	Making	the
clock	functional
The	final	step	in	creating	a	clock	is	to	make	it	actually	show	the
current	time.	In	JavaScript,	we	can	query	the	current	time	using
the	Date	object:

var	currentDate	=	new	Date();

var	hours			=	currentDate.getHours();

var	minutes	=	currentDate.getMinutes();

var	seconds	=	currentDate.getSeconds();

Therefore,	the	first	thing	that	comes	to	mind	is	to	use	the	preceding
code	to	show	the	current	time	on	the	clock:

Item	{

				id:	clock

				property	int	hours:			currentDate.getHours()

				property	int	minutes:	currentDate.getMinutes()

				property	int	seconds:	currentDate.getSeconds()

				property	date	currentDate:	new	Date()

				//	...

}

This	will	indeed	show	the	current	time	once	you	start	the
application,	but	the	clock	will	not	be	updating	itself	as	the	time
passes.	This	is	because	new	Date()	returns	an	object	representing	one
particular	moment	in	time	(the	date	and	time	at	the	moment	when
the	object	was	instantiated).	While	QML	usually	is	capable	of
automatically	updating	a	property	when	the	value	of	the	bound
expression	changes,	it's	unable	to	do	so	in	this	case.	Even	if	QML
was	smart	enough	to	see	that	the	new	Date()	property	always	returns	a
different	date,	it	doesn't	know	how	often	we	want	to	update	the

value,	and	updating	it	as	frequently	as	possible	is	generally	a	bad
idea.	Thus,	we	need	a	way	to	manually	schedule	periodic	execution
of	an	action.

To	obtain	this	effect	in	QML,	we	can	use	a	Timer	element	that	is	an
equivalent	of	QTimer	in	C++	and	lets	us	periodically	execute	some
code.	Let's	modify	the	code	to	use	a	timer:

Item	{

				id:	clock

				//...

				property	alias	running:	timer.running

				Timer	{

								id:	timer

								repeat:	true

								interval:	500

								running:	true

								onTriggered:	clock.currentDate	=	new	Date()

				}

				//...

}

What	just	happened?
By	setting	the	interval	property,	we	ask	the	timer	to	emit
the	triggered	signal	every	500	ms,	causing	our	currentDate	property	to
be	updated	with	a	new	Date		object	representing	the	current	time.
The	clock	is	also	given	the	running	property	(pointing	to	its	equivalent
in	the	timer)	that	can	control	whether	updates	should	be	enabled.
The	timer's	repeat
property	is	set	to	true;	otherwise,	it	will	trigger	just	once.

To	briefly	sum	up	what	you	have	learned	so	far,	we	can	say	that	you
know	how	to	create	hierarchies	of	objects	by	declaring	their
instances,	and	you	also	know	how	to	program	new	types	in	separate
files,	making	definitions	available	as	components	to	be	instantiated
in	other	QML	files.	You	can	even	use	the	Repeater	element	to	declare	a
series	of	objects	based	on	a	common	stencil.

Dynamic	and	lazy	loading	of
QML	objects
All	our	previous	QML	projects	contain	an	explicit	declaration	of	the
object	tree.	We	usually	create	a	window	and	place	multiple	specific
elements	into	it	in	specific	order.	The	QML	engine	creates	these
objects	on	startup	and	keeps	them	alive	until	the	application
terminates.	This	is	a	very	convenient	approach	that	allows	you	to
save	a	lot	of	time,	as	you	could	see	in	our	previous	examples.
However,	sometimes	you	need	the	object	tree	to	be	more	flexible—
for	example,	if	you	don't	know	upfront	which	elements	should	be
created.	QML	offers	a	few	ways	to	create	objects	dynamically	and	to
delay	creating	an	object	until	you	really	need	it.	Utilizing	these
features	can	make	your	QML	application	more	performant	and
flexible.

Creating	objects	on	request
The	problem	with	predeclaring	objects	directly	in	a	QML	file	is	that
you	need	to	know	upfront	how	many	objects	you	will	need.	More
often	than	not,	you	will	want	to	dynamically	add	and	remove
objects	to	your	scene,	for	example,	in	an	alien	invasion	game,
where,	as	the	player	progresses,	new	alien	saucers	will	be	entering
the	game	screen	and	other	saucers	will	be	getting	shot	down	and
destroyed.	Also,	the	player's	ship	will	be	"producing"	new	bullets
streaking	in	front	of	the	ship,	eventually	running	out	of	fuel	or
otherwise	disappearing	from	the	game	scene.	By	putting	a	good
amount	of	effort	into	the	problem,	you	will	be	able	to	use	Repeater	to
obtain	this	effect,	but	there	is	a	better	tool	at	hand.

QML	offers	us	another	element	type	called	Component,	which	is
another	way	to	teach	the	engine	about	a	new	element	type	by
declaring	its	contents	in	QML.	There	are	basically	two	approaches
to	doing	this.

The	first	approach	is	to	declare	a	Component	element	instance	in	the
QML	file	and	inline	the	definition	of	the	new	type	directly	inside	the
element:

Component	{

				id:	circleComponent

				Item	{

								//...

				}

}

The	other	approach	is	to	load	the	component	definition	from	an
existing	QML	file.	Let's	say	that	we	have	a	Circle.qml	file	with	the
following	content:

import	QtQuick	2.9

Item	{

				property	int	diameter:	20

				property	alias	color:	rect.color

				property	alias	border:	rect.border

				implicitWidth:	diameter

				implicitHeight:	diameter

				Rectangle	{

								id:	rect

								width:	radius

								height:	radius

								radius:	diameter	/	2

								anchors.centerIn:	parent

				}

}

Such	code	declares	a	component	that	defines	a	circle	and	exposes
its	diameter,	color,	and	border	properties.	Let's	see	how	we	can	create
instances	of	this	component	dynamically.

QML	exposes	a	special	global	object	called	Qt,	which	provides	a	set
of	interesting	methods.	One	of	the	methods	allows	the	caller	to
create	a	component	passing	the	URL	of	an	existing	QML	document:

var	circleComponent	=	Qt.createComponent("Circle.qml");

An	interesting	note	is	that	createComponent	can	not	only	accept	a	local
file	path	but	also	a	remote	URL,	and	if	it	understands	the	network
scheme	(for	example,	http),	it	will	download	the	document
automatically.	In	this	case,	you	have	to	remember	that	it	takes	time
to	do	that,	so	the	component	may	not	be	ready	immediately	after
calling		createComponent.	Since	the	current	loading	status	is	kept	in
the	status	property,	you	can	connect	to	the	statusChanged	signal	to	be
notified	when	this	happens.	A	typical	code	path	looks	similar	to	the
following:

Window	{

				//...

				Component.onCompleted:	{

								var	circleComponent	=	Qt.createComponent("Circle.qml");

								if(circleComponent.status	===	Component.Ready)	{

												addCircles(circleComponent);

								}	else	{

												circleComponent.statusChanged.connect(function()	{

																if(circleComponent.status	===	Component.Ready)	{

																				addCircles(circleComponent);

																}

												});

								}

				}

}

In	this	example,	we	use	the	Component.onCompleted	handler	to	run	the
code	as	soon	as	the	window	object	is	created.	This	handler	is
available	in	all	Qt	Quick	items	and	is	often	used	to	perform
initialization.	You	can	also	use	any	other	signal	handler	here.	For
example,	you	can	start	loading	the	component	when	a	button	is
pressed	or	a	timer	has	expired.

The	counterpart	of	the	completed()	signal	of	Component	is	destruction().	You	can	use
the	Component.onDestruction	handler	to	perform	actions	such	as	saving	the	state	of	the
object	to	persistent	storage	or	otherwise	cleaning	the	object	up.

If	the	component	definition	is	incorrect	or	the	document	cannot	be
retrieved,	the	status	of	the	object	will	change	to	Error.	In	that	case,
you	can	make	use	of	the	errorString()	method	to	see	what	the	actual
problem	is:

if(circleComponent.status	===	Component.Error)	{

				console.warn(circleComponent.errorString());

}

Once	you	are	sure	that	the	component	is	ready,	you	can	finally	start
creating	objects	from	it.	For	this,	the	component	exposes	a	method
called	createObject.	In	its	simplest	form,	it	accepts	an	object	that	is	to
become	the	parent	of	the	newly	born	instance	(similar	to	widget
constructors	accepting	a	pointer	to	a	parent	widget)	and	returns	the
new	object	itself	so	that	you	can	assign	it	to	some	variable.	Then,

you	can	start	setting	the	object's	properties:

Window	{

				//...

				ColumnLayout	{

								id:	layout

								anchors.fill:	parent

				}

				function	addCircles(circleComponent)	{

								["red",	"yellow",	"green"].forEach(function(color)	{

												var	circle	=	circleComponent.createObject(layout);

												circle.color	=	color;

												circle.Layout.alignment	=	Qt.AlignCenter;

								});

				}

				//...

}

A	more	complex	invocation	lets	us	do	both	these	operations	(create
the	object	and	set	its	properties)	in	a	single	call	by	passing	a	second
parameter	to	createObject:

var	circle	=	circleComponent.createObject(layout,

				{	diameter:	20,	color:	'red'	});

The	second	parameter	is	a	JavaScript	object	whose	properties	are	to
be	applied	to	the	object	being	created.	The	advantage	of	the	latter
syntax	is	that	all	property	values	are	applied	to	the	object	as	one
atomic	operation	and	they	won't	trigger	property	change	handlers
(just	like	when	the	item	is	declared	in	a	QML	document)	instead	of
a	series	of	separate	operations,	each	of	which	sets	the	value	for	a
single	property,	possibly	causing	an	avalanche	of	change	handler
invocations	in	the	object.

After	creation,	the	object	becomes	a	first-class	citizen	of	the	scene,
acting	in	the	same	way	as	items	declared	directly	in	the	QML
document.	The	only	difference	is	that	a	dynamically	created	object
can	also	be	dynamically	destructed	by	calling	its	destroy()	method,
which	is	similar	to	calling	delete	on	C++	objects.	When	speaking	of

destroying	dynamic	items,	we	have	to	point	out	that	when	you
assign	a	result	of	createObject	to	a	variable	(like	circle,	in	our	example)
and	that	variable	goes	out	of	scope,	the	item	will	not	be	released	and
garbage	collected	as	its	parent	still	holds	a	reference	to	it,
preventing	it	from	being	recycled.

We	didn't	mention	this	explicitly	before,	but	we	have	already	used
inline	component	definitions	earlier	in	this	chapter	when	we
introduced	the	Repeater	element.	The	repeated	item	defined	within
the	repeater	is	in	fact	not	a	real	item,	but	a	component	definition
that	is	instantiated	as	many	times	as	needed	by	the	repeater.

Delaying	item	creation
Another	recurring	scenario	is	that	you	do	know	how	many	elements
you	will	need,	but	the	problem	is	that	you	cannot	determine	upfront
what	type	of	elements	they	will	be.	At	some	point	during	the
lifetime	of	your	application,	you	will	learn	that	information	and	will
be	able	to	instantiate	an	object.	Until	you	gain	the	knowledge	about
the	given	component,	you	will	need	some	kind	of	item	placeholder
where	you	will	later	put	the	real	item.	You	can,	of	course,	write
some	code	to	use	the	createObject()	functionality	of	the	component,
but	this	is	cumbersome.

Fortunately,	Qt	Quick	offers	a	nicer	solution	in	the	form	of
a	Loader	item.	This	item	type	is	exactly	what	we	described	it	to	be—a
temporary	placeholder	for	a	real	item	that	will	be	loaded	on
demand	from	an	existing	component.	You	can	put	Loader	in	place	of
another	item	and	when	you	need	to	create	this	item,	one	way	is	to
set	the	URL	of	a	component	to	the	source	property:

Loader	{

				id:	loader

}

//...

onSomeSignal:	loader.source	=	"Circle.qml"

You	can	also	directly	attach	a	real	component	to	the	sourceComponent	of
a	Loader:

Loader	{

				id:	loader

				sourceComponent:	shouldBeLoaded	?	circleComponent	:	undefined

}

Immediately	afterward,	the	magic	begins	and	an	instance	of	the
component	appears	in	the	loader.	If	the	Loader	object	has	its	size	set
explicitly	(for	example,	by	anchoring	or	setting	the	width	and
height),	then	the	item	will	be	resized	to	the	size	of	the	loader.	If	an
explicit	size	is	not	set,	then	Loader	will	instead	be	resized	to	the	size	of
the	loaded	element	once	the	component	is	instantiated.	In	the
following	code,	the	loader	has	its	size	set	explicitly,	so	when	its	item
is	created,	it	will	respect	the	anchors	and	sizes	declared	here:

Loader	{

				anchors	{

								left:	parent.left

								leftMargin:	0.2	*	parent.width

								right:	parent.right

								verticalCenter:	parent.verticalCenter

				}

				height:	250

				source:	"Circle.qml"

}

Imperative	painting	on	Canvas
using	JavaScript
Declaring	graphical	items	is	nice	and	easy,	but	as	programmers,
we're	more	used	to	writing	imperative	code,	and	some	things	are
easier	expressed	as	an	algorithm	rather	than	as	a	description	of	the
final	result	to	be	achieved.	It	is	easy	to	use	QML	to	encode	a
definition	of	a	primitive	shape	such	as	a	rectangle	in	a	compact	way
—all	we	need	is	to	mark	the	origin	point	of	the	rectangle,	its	width,
height,	and	optionally,	a	color.	Writing	down	a	declarative
definition	of	a	complex	shape	consisting	of	many	control	points
positioned	in	given	absolute	coordinates,	possibly	with	an	outline	in
some	parts	of	it,	maybe	accompanied	by	an	image	or	two,	is	still
possible	in	a	language	such	as	QML;	however,	this	will	result	in	a
much	more	verbose	and	much	less	readable	definition.	This	is	a
case	where	using	an	imperative	approach	might	prove	more
effective.	HTML	(being	a	declarative	language)	already	exposes	a
proven	imperative	interface	for	drawing	different	primitives	called
a	Canvas	that	is	widely	used	in	web	applications.	Fortunately,	Qt
Quick	provides	us	with	its	own	implementation	of	a	Canvas	interface
similar	to	the	one	from	the	web	by	letting	us	instantiate	Canvas	items.
Such	items	can	be	used	to	draw	straight	and	curved	lines,	simple
and	complex	shapes,	and	graphs	and	graphic	images.	It	can	also
add	text,	colors,	shadows,	gradients,	and	patterns.	It	can	even
perform	low-level	pixel	operations.	Finally,	the	output	may	be	saved
as	an	image	file	or	serialized	to	a	URL	usable	as	source	for
an	Image	item.	There	are	many	tutorials	and	papers	available	out
there	on	using	an	HTML	canvas,	and	they	can	usually	be	easily
applied	to	a	Qt	Quick	canvas	as	well	(the	reference	manual	even
includes	a	list	of	aspects	you	need	to	pay	attention	to	when	porting
HTML	canvas	applications	to	a	Qt	Quick	Canvas),	so	here	we	will
just	give	you	the	very	basics	of	imperative	drawing	in	Qt	Quick.

Consider	a	game	where	the	player's	health	is	measured	by	the
condition	of	his	heart—the	slower	the	beat,	the	healthier	the	player
is.	We	will	use	this	kind	of	visualization	as	our	exercise	in	practicing
painting	using	the	Canvas	element.

Time	for	action	–	Preparing
Canvas	for	heartbeat
visualization
Let's	start	with	simple	things	by	creating	an	empty	Qt	Quick	project.
Add	the	following	code	to	the	main.qml	file:

Window	{

				//...

				Canvas	{

								id:	canvas

	

								implicitWidth:	600

								implicitHeight:	300

	

								onPaint:	{

												var	ctx	=	canvas.getContext("2d");

												ctx.clearRect(0,	0,	canvas.width,	canvas.height);

												ctx.strokeRect(50,	50,	100,	100);

								}

				}

}

When	you	run	the	project,	you	will	see	a	window	containing	a
rectangle:

What	just	happened?
In	the	preceding	code,	we	created	a	basic	boilerplate	code	for	using
a	canvas.	First,	we	created	a	Canvas	instance	with	an	implicit	width
and	height	set.	There,	we	created	a	handler	for	the	paint	signal	that	is
emitted	whenever	the	canvas	needs	to	be	redrawn.	The	code	placed
there	retrieves	a	context	for	the	canvas,	which	can	be	thought	of	as
an	equivalent	to	the	QPainter	instance	we	used	when	drawing	on	Qt
widgets.	We	inform	the	canvas	that	we	want	its	2D	context,	which
gives	us	a	way	to	draw	in	two	dimensions.	A	2D	context	is	the	only
context	currently	present	for	the	Canvas	element,	but	you	still	have	to
identify	it	explicitly—similar	to	HTML.	Having	the	context	ready,
we	tell	it	to	clear	the	whole	area	of	the	canvas.	This	is	different	from
the	widget	world	in	which	when	the	paintEvent	handler	was	called,	the
widget	was	already	cleared	for	us	and	everything	had	to	be	redrawn
from	scratch.	With	Canvas,	it	is	different;	the	previous	content	is	kept
by	default	so	that	you	can	draw	over	it	if	you	want.	Since	we	want	to
start	with	a	clean	sheet,	we	call	clearRect()	on	the	context.	Finally,	we
use	the	strokeRect()	convenience	method	that	draws	a	rectangle	on
the	canvas.

Time	for	action	-	drawing	a
heartbeat
We	will	extend	our	component	now	and	implement	its	main
functionality—drawing	a	heartbeat-like	diagram.

Add	the	following	property	declarations	to	the	canvas	object:

property	int	lineWidth:	2

property	var	points:	[]

property	real	arg:	-Math.PI

Inside	the	Canvas	section,	add	a	declaration	for	a	timer	that	will
trigger	updates	of	the	picture:

Timer	{

				interval:	10

				repeat:	true

				running:	true

				onTriggered:	{

								canvas.arg	+=	Math.PI	/	180;

								while(canvas.arg	>=	Math.PI)	{

												canvas.arg	-=	2	*	Math.PI;

								}

				}

}

Then	again,	inside	the	Canvas	section,	define	the	handler	for	when	the
value	of	arg	is	modified:

onArgChanged:	{

				points.push(func(arg));

				points	=	points.slice(-canvas.width);

				canvas.requestPaint();

}

This	handler	uses	a	custom	JavaScript	function—func().	Place	the
implementation	of	the	function	just	above	the	handler:

function	func(argument)	{

				var	a	=	(2	*	Math.PI	/	10);

				var	b	=	4	*	Math.PI	/	5;

				return	Math.sin(20	*	argument)	*	(

								Math.exp(-Math.pow(argument	/	a,	2))	+

								Math.exp(-Math.pow((argument	-	b)	/	a,	2))	+

								Math.exp(-Math.pow((argument	+	b)	/	a,	2))

);

}

Finally,	modify	the	onPaint	signal	handler:

onPaint:	{

				var	ctx	=	canvas.getContext("2d");

				ctx.reset();

				ctx.clearRect(0,	0,	canvas.width,	canvas.height);

				var	pointsToDraw	=	points.slice(-canvas.width);

				ctx.translate(0,	canvas.height	/	2);

				ctx.beginPath();

				ctx.moveTo(0,	-pointsToDraw[0]	*	canvas.height	/	2);

				for(var	i	=	1;	i	<	pointsToDraw.length;	i++)	{

								ctx.lineTo(i,	-pointsToDraw[i]	*	canvas.height	/	2);

				}

				ctx.lineWidth	=	canvas.lineWidth;

				ctx.stroke();

}

Then,	you	can	run	the	code	and	see	a	heartbeat-like	diagram	appear
on	the	canvas:

What	just	happened?
We	added	two	kinds	of	properties	to	the	element.	By
introducing	lineWidth,	we	can	manipulate	the	width	of	the	line	that
visualizes	the	heartbeat.	The	points	variable	stores	an	array	of
already	calculated	function	values.	We	initialize	it	to	an	empty
array.	The	arg	variable	stores	the	function	argument	that	was	last
evaluated.	The	argument	of	the	function	should	be	in	the	range
from	−π	to	+π;	thus,	we	initialize	arg	to	-Math.PI.	Then,	we	add	a	timer
that	ticks	in	regular	intervals,	incrementing	arg	by	1°	until	it	reaches
+π,	in	which	case	it	is	reset	to	the	initial	value.

Changes	to	arg	are	intercepted	in	the	handler	we	implement	next.	In
there,	we	push	a	new	item	to	the	array	of	points.	The	value	is
calculated	by	the	func	function,	which	is	quite	complicated,	but	it	is
sufficient	to	say	that	it	returns	a	value	from	within	a	range
of	−1	to	+1.	The	oldest	records	are	removed	from	the	array	of	points
using	Array.slice()	so	that	at	most,	the	last	canvas.width	items	remain	in
the	array.	This	is	so	that	we	can	plot	one	point	for	each	pixel	of	the
width	of	the	canvas,	and	we	don't	have	to	store	any	more	data	than
required.	At	the	end	of	the	function,	we	invoke	requestPaint(),	which	is
an	equivalent	of	QWidget::update()	and	schedules	a	repaint	of	the
canvas.

That,	in	turn,	calls	our	onPaint	signal	handler.	There,	after	retrieving
the	context,	we	reset	the	canvas	to	its	initial	state	and	then	calculate
an	array	of	points	that	is	to	be	drawn	again	using	slice().	Then,	we
prepare	the	canvas	by	translating	and	scaling	it	in	the	vertical	axis
so	that	the	origin	is	moved	to	half	of	the	height	of	the	canvas	(that's
the	reason	for	calling	reset()	at	the	beginning	of	the	procedure—to
revert	this	transformation).	After	that,	beginPath()	is	called	to	inform
the	context	that	we	are	starting	to	build	a	new	path.	Then,	the	path
is	built	segment	by	segment	by	appending	lines.	Each	value	is

multiplied	by	canvas.height	/	2	so	that	values	from	the	point	array	are
scaled	to	the	size	of	the	item.	The	value	is	negated	as	the	vertical
axis	of	the	canvas	grows	to	the	bottom,	and	we	want	positive	values
to	be	above	the	origin	line.	After	that,	we	set	the	width	of	the	pen
and	draw	the	path	by	calling	stroke().

Time	for	action	–	Hiding
properties
If	we	convert	our	heartbeat	canvas	to	a	QML	component,
the	points	and	arg	properties	will	be	the	public	properties	visible	to
the	user	of	the	component.	However,	they	are	really
implementation	details	we	want	to	hide.	We	should	only	expose
properties	that	make	sense	to	the	user	of	the	component,	such
as	lineWidth	or	color.

Since	the	Timer	object	inside	the	Canvas	is	not	exported	as	public
property,	that	timer	object	will	be	unavailable	from	the	outside,	so
we	can	attach	properties	to	the	timer	instead	of	attaching	them	to
the	top-level	Canvas	object.	However,	the	properties	do	not	belong	to
the	timer	logically,	so	this	solution	will	be	confusing.	For	such	cases,
there	is	a	convention	that	you	should	create	an	empty	QtObject	child
in	the	top-level	object	and	move	properties	into	it:

Canvas	{

				id:	canvas

				property	int	lineWidth:	2

				//...

				QtObject	{

								id:	d

								property	var	points:	[]

								property	real	arg:	-Math.PI

	

								function	func(argument)	{	/*	...	*/	}

								onArgChanged:	{	/*	...	*/	}

				}

				//...

}

QtObject	is	the	QML	representation	of	the	QObject	class.	It	is	a	QML

type	that	doesn't	have	any	particular	functionality,	but	can	hold
properties.	As	part	of	the	convention,	we	set	id	of	this	object	to	d.
The	onArgChanged	handler	is	moved	to	the	private	object	as	well.	In
the	onTriggered	and	onPaint	handlers,	we	should	now	refer	to	the
internal	properties	as	d.points	and	d.arg.	Consider	this	example:

onTriggered:	{

				d.arg	+=	Math.PI	/	180;

				while(d.arg	>=	Math.PI)	{

								d.arg	-=	2	*	Math.PI;

				}

}

The	points	and	arg	properties	are	now	unavailable	from	the	outside,
leading	to	clean	public	interface	of	our	heartbeat	object.

Time	for	action	–	Making	the
diagram	more	colorful
The	diagram	serves	its	purpose,	but	it	looks	a	bit	dull.	Add	some
shine	to	it	by	defining	three	new	color	properties	in	the	canvas
object—color,	topColor,	bottomColor—and	setting	their	default	values
to	black,	red,	and	blue,	respectively:

property	color	color:	"black"

property	color	topColor:	"red"

property	color	bottomColor:	"blue"

Then,	let's	make	use	of	these	properties	by
extending	onPaint	implementation:

onPaint:	{

				//...

				//	fill:

				ctx.beginPath();

				ctx.moveTo(0,	0);

				var	i;

				for(i	=	0;	i	<	pointsToDraw.length;	i++)	{

								ctx.lineTo(i,	-pointsToDraw[i]	*	canvas.height/2);

				}

				ctx.lineTo(i,	0);

				var	gradient	=	ctx.createLinearGradient(

												0,	-canvas.height	/	2,	0,	canvas.height	/	2);

				gradient.addColorStop(0.1,	canvas.topColor);

				gradient.addColorStop(0.5,	Qt.rgba(1,	1,	1,	0));

				gradient.addColorStop(0.9,	canvas.bottomColor);

				ctx.fillStyle	=	gradient;

				ctx.fill();

	

				//	stroke:

				ctx.beginPath();

				ctx.moveTo(0,	-pointsToDraw[0]	*	canvas.height	/	2);

				for(i	=	1;	i	<	pointsToDraw.length;	i++)	{

				for(i	=	1;	i	<	pointsToDraw.length;	i++)	{

								ctx.lineTo(i,	-pointsToDraw[i]	*	canvas.height	/	2);

				}

				ctx.lineWidth	=	canvas.lineWidth;

				ctx.strokeStyle	=	canvas.color;

				ctx.stroke();

}

Upon	running	the	preceding	code	snippet,	you	get	the	following
output:

What	just	happened?
The	modifications	to	onPaint	that	we	implemented	are	creating
another	path	and	using	that	path	to	fill	an	area	using	a	gradient.
The	path	is	very	similar	to	the	original	one,	but	it	contains	two
additional	points	that	are	the	first	and	last	points	drawn	projected
onto	the	horizontal	axis.	This	ensures	that	the	gradient	fills	the	area
properly.	Note	that	the	canvas	uses	imperative	code	for	drawing;
therefore,	the	order	of	drawing	the	fill	and	the	stroke	matters—the
fill	has	to	be	drawn	first	so	that	it	doesn't	obscure	the	stroke.

Using	C++	classes	as	QML
components
In	the	next	exercise,	we	will	implement	a	car	dashboard	that	can	be
used	in	a	racing	game	and	will	show	a	number	of	parameters	such
as	current	speed	and	motor	revolutions	per	minute.	The	input	data
will	be	provided	by	a	C++	object.	We'll	see	how	to	include	this
object	into	the	QML	object	tree	and	use	property	bindings	to
implement	the	dashboard.

The	final	result	will	look	similar	to	the	following:

Time	for	action	–	Self-updating
car	dashboard
We	will	start	with	the	C++	part.	Set	up	a	new	Qt	Quick	application.
This	will	generate	the	main	function	for	you	that
instantiates	QGuiApplication			and		QQmlApplicationEngine	and	sets	them	up
to	load	a	QML	document.

Use	the	File	menu	to	create	New	file	or	Project	and	create	a	new	Qt
Designer	form	class.	Call	it	CarInfo	and	choose	the	Widget	template.	We
will	use	this	class	for	modifying	values	of	different	parameters	so
that	we	may	observe	how	they	influence	what	the	Qt	Quick	scene
displays.	In	the	class	declaration,	add	the	following	properties:

class	CarInfo	:	public	QWidget	{

				Q_OBJECT

				Q_PROPERTY(int	rpm	READ	rpm	NOTIFY	rpmChanged)

				Q_PROPERTY(int	gear	READ	gear	NOTIFY	gearChanged)

				Q_PROPERTY(int	speed	READ	speed	NOTIFY	speedChanged)

				Q_PROPERTY(double	distance	READ	distance	NOTIFY	distanceChanged)

				//...

};

The	properties	are	read-only,	and	the	NOTIFY	clause	defines	signals
emitted	when	the	respective	property	values	change.	Go	ahead	and
implement	the	appropriate	functions	for	each	property.	Apart	from
the	getter,	also	implement	a	setter	as	a	public	slot.	Here's	an
example	for	a	property	controlling	the	speed	of	the	car:

int	CarInfo::speed()	const	{

				return	m_speed;

}

void	CarInfo::setSpeed(int	newSpeed)	{

				if(m_speed	==	newSpeed)	{

				if(m_speed	==	newSpeed)	{

								return;

				}

				m_speed	=	newSpeed;

				emit	speedChanged(m_speed);

}

You	should	be	able	to	follow	the	example	for	the	remaining
properties	on	your	own.

Since	we	want	to	use	the	widget	to	tweak	property	values,	design
the	user	interface	for	it	using	the	form	editor.	It	can	look	like	this:

Make	appropriate	signal-slot	connections	in	the	widget	so	that
modifying	any	of	the	widgets	for	a	given	parameter	or	using	the
setter	slot	directly	updates	all	the	widgets	for	that	parameter.

Instead	of	adding	member	variables	to	the	CarInfo	class	for	properties	such
as	speed,	rpm,	distance,	or	gear,	you	can	operate	directly	on	the	widgets	placed	on
the	ui	form,	as	shown	further.

For	example,	a	getter	for	the	distance	property	will	look	like	this:

qreal	CarInfo::distance()	const

{

				return	ui->distanceBox->value();

}

The	setter	would	then	be	modified	to	the	following:

void	CarInfo::setDistance(qreal	newDistance)

{

				ui->distanceBox->setValue(newDistance);

}

You	will	then	need	to	add	connect()	statements	to	the	constructor	to
ensure	that	signals	are	propagated	from	the	ui	form:

connect(ui->distanceBox,	SIGNAL(valueChanged(double)),

								this,												SIGNAL(distanceChanged(double)));

Next,	you	can	test	your	work	by	running	the	widget.	To	do	this,	you
have	to	alter	the	main	function	to	look	as	follows:

int	main(int	argc,	char	**argv)	{

				QApplication	app(argc,	argv);

				CarInfo	cinfo;

				cinfo.show();

				return	app.exec();

};

Since	we	are	using	widgets,	we	have	to	replace	QGuiApplication	with	
QApplication		and	enable	the	widgets	module	by	placing	QT	+=	widgets	in
the	project	file	(remember	to	run	qmake	from	the	project's	context
menu	afterward).	Ensure	that	everything	works	as	expected	(that	is,
that	moving	sliders	and	changing	spinbox	values	reflect	the	changes
to	widget	properties)	before	moving	on	to	the	next	step.

We	will	now	add	Qt	Quick	to	the	equation,	so	let's	start	by	updating
our	main	function	to	display	our	scene.	Introduce	the	highlighted
changes	to	the	code:

int	main(int	argc,	char	**argv)	{

				QApplication	app(argc,	argv);

				CarInfo	cinfo;

				QQmlApplicationEngine	engine;

				engine.rootContext()->setContextProperty("carData",	&cinfo);

				engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

				if	(engine.rootObjects().isEmpty())

								return	-1;

				cinfo.show();

				return	app.exec();

}

The	modifications	create	a	QML	engine	for	our	scene,	export
the	CarInfo	instance	to	the	global	context	of	the	QML	engine,	and
load	and	display	the	scene	from	a	file	located	in	a	resource.

It	is	important	to	first	export	all	the	objects	and	only	then	load	the
scene.	This	is	because	we	want	all	the	names	to	be	already
resolvable	when	the	scene	is	being	initialized	so	that	they	can	be
used	right	away.	If	we	reversed	the	order	of	calls,	we	would	get	a
number	of	warnings	on	the	console	about	the	identities	being
undefined.

Finally,	we	can	focus	on	the	QML	part.	Look	at	the	picture	of	the
result	we	want	to	be	shown	at	the	beginning	of	the	exercise.	For	the
black	background,	we	used	a	bitmap	image	created	in	a	graphical
editor	(you	can	find	the	file	in	the	materials	for	this	book),	but	you
can	obtain	a	similar	effect	by	composing	three	black	rounded
rectangles	directly	in	Qt	Quick—the	two	outer	parts	are	perfect
circles,	and	the	inner	module	is	a	horizontally	stretched	ellipse.

If	you	decide	to	use	our	background	file	(or	make	your	own	prettier
image),	you	should	add	it	to	the	project's	resources	and	put	the
following	code	into	main.qml:

import	QtQuick	2.9

import	QtQuick.Window	2.3

	

Window	{

				visible:	true

				width:	backgroundImage.width

				height:	backgroundImage.height

	

				Image	{

								id:	backgroundImage

								source:	"qrc:/dashboard.png"

								source:	"qrc:/dashboard.png"

								Item	{

												id:	leftContainer

												anchors.centerIn:	parent

												anchors.horizontalCenterOffset:	-550

												width:	400;	height:	width

								}

								Item	{

												id:	middleContainer

												anchors.centerIn:	parent

												width:	700;	height:	width

								}

								Item	{

												id:	rightContainer

												anchors.centerIn:	parent

												anchors.horizontalCenterOffset:	525

												width:	400;	height:	width

								}

				}

}

What	we	do	here	is	add	the	image	to	the	window	and	create	three
items	to	serve	as	containers	for	different	elements	of	the	dashboard.
The	containers	are	all	centered	in	the	parent,	and	we	use
a	horizontalCenterOffset	property	to	move	the	two	outer	items	sideways.
The	values	of	the	offset	as	well	as	the	widths	are	based	on	the
background	image's	geometry	(note	that	all	three	containers	are
perfect	squares).	If	instead	of	using	our	file,	you	settle	for	creating
the	three	parts	yourself	using	Qt	Quick	items,	the	containers	will
simply	be	anchored	to	the	centers	of	the	three	black	items.

The	dials	look	complicated,	but	in	reality,	they	are	very	easy	to
implement,	and	you	have	already	learned	everything	you	need	to
design	them.

Let's	start	with	the	needle.	Use	the	context	menu	of	the	resource	file
to	create	a	new	QML	file	and	call	it	Needle.qml.	Open	the	file	and	place
the	following	content:

import	QtQuick	2.9

	

Item	{

				id:	root

				property	int	length:	parent.width	*	0.4

				property	color	color:	"white"

				property	color	middleColor:	"red"

				property	int	size:	2

	

				Rectangle	{	//needle

								width:	root.size

								height:	length	+	20

								color:	root.color

								anchors.horizontalCenter:	parent.horizontalCenter

								anchors.bottom:	parent.bottom

								anchors.bottomMargin:	-20

								antialiasing:	true

				}

	

				Rectangle	{	//fixing

								anchors.centerIn:	parent

								width:	8	+	root.size

								height:	width

								radius:	width	/	2

								color:	root.color

								Rectangle	{	//middle	dot

												anchors	{

																fill:	parent

																margins:	parent.width	*	0.25

												}

												color:	root.middleColor

								}

				}

}

The	document	defines	an	item	with	four	attributes—the	length	of
the	needle	(defaults	to	80%	of	the	dial's	radius),	the	color	of	the
needle,	middleColor,	which	stands	for	the	color	of	the	needle's	fixing,
and	the	size,	which	defines	how	wide	the	needle	is.	The	code	is	self-
explanatory.	The	item	itself	does	not	have	any	dimensions	and	only
acts	as	an	anchor	for	visual	elements—the	needle	itself	is	a	thin
rectangle	oriented	vertically	with	a	fixing	20	units	from	the	end.
The	fixing	is	a	circle	of	the	same	color	as	the	needle	with	a	smaller
circle	in	the	middle	that	uses	a	different	fill	color.	The	smaller
radius	of	the	inner	circle	is	obtained	by	filling	the	outer	circle	with	a
25%	margin	from	each	side.

As	for	the	dials,	we	will	put	their	code	inline	in	the	main	file	since
we	just	have	two	of	them	and	they	differ	a	bit,	so	the	overhead	of
creating	a	separate	component	with	a	well-designed	set	of
properties	will	outweigh	the	benefits	of	having	nicely	encapsulated
objects.

If	you	think	about	what	needs	to	be	done	to	have	the	dial	displayed
and	working,	it	seems	that	the	hardest	thing	is	to	lay	out	the
numbers	nicely	on	the	circle,	so	let's	start	with	that.	Here's	an
implementation	of	a	function	for	calculating	the	position	along	a
circle	circumference,	based	on	the	radius	of	the	circle	and	angle	(in
degrees)	where	an	item	should	be	positioned:

function	calculatePosition(angle,	radius)	{

				if(radius	===	undefined)	{

								radius	=	width	/	2	*	0.8;

				}

				var	a	=	angle	*	Math.PI	/	180;

				var	px	=	width	/	2	+	radius	*	Math.cos(a);

				var	py	=	width	/	2	+	radius	*	Math.sin(a);

				return	Qt.point(px,	py);

}

The	function	converts	degrees	to	radians	and	returns	the	desired
point.	The	function	expects	the	width	property	to	be	available	that
helps	calculate	the	center	of	the	circle	and	in	case	a	radius	was	not
given,	serves	as	a	means	to	calculate	a	feasible	value	for	it.

With	such	a	function	available,	we	can	use	the	already
familiar	Repeater	element	to	position	items	where	we	want	them.	Let's
put	the	function	in	middleContainer	and	declare	the	dial	for	car	speed:

Item	{

				id:	middleContainer

				//	...

				function	calculatePosition(angle,	radius)	{	/*	...	*/	}

				Repeater	{

								model:	24	/	2

								Item	{

												property	point	pt:

												property	point	pt:

												middleContainer.calculatePosition(120	+	index	*	12	*	2)

												x:	pt.x

												y:	pt.y

												Label	{

																anchors.centerIn:	parent

																text:	index	*	20

												}

								}

				}

				Needle	{

								anchors.centerIn:	parent

								length:	parent.width	*	0.35

								size:	4

								rotation:	210	+	(carData.speed	*	12	/	10)

								color:	"yellow"

				}

}

You	might	have	noted	that	we	used	an	element	called	Label.	We
created	it	to	avoid	having	to	set	the	same	property	values	for	all	the
texts	we	use	in	the	user	interface:

import	QtQuick	2.9

	

Text	{

				color:	"white"

				font.pixelSize:	24

}

The	dial	consists	of	a	repeater	that	will	create	12	elements.	Each
element	is	an	item	positioned	using	the	earlier	described	function.
The	item	has	a	label	anchored	to	it	that	displays	the	given	speed.
We	use	120	+	index	*	12	*	2	as	the	angle	expression	as	we	want	"0"	to
be	positioned	at	120	degrees	and	each	following	item	positioned	24
degrees	further.

The	needle	is	given	rotation	based	on	the	value	read	from
the	carData	object.	Since	the	angular	distance	between	consecutive	20
kph	labels	is	24	degrees,	the	distance	for	one	kph	is	1.2	and	thus	we
multiply	carData.speed	by	that	factor.	Item	rotation	is	calculated	with	0

degrees	"pointing	right";	therefore,	we	add	90	to	the	initial	120
degree	offset	of	the	first	label	to	obtain	starting	coordinates
matching	those	of	the	label	system.

As	you	can	see	in	the	image	of	the	final	result	at	the	beginning	of
this	section,	the	speed	dial	contains	small	lines	every	2	kph,	with
those	divisible	by	10	kph	longer	than	others.	We	can	use
another	Repeater	to	declare	such	ticks:

Repeater	{

				model:	120	-	4

	

				Item	{

								property	point	pt:	middleContainer.calculatePosition(

												120	+	index	*	1.2	*	2,	middleContainer.width	*	0.35

)

								x:	pt.x

								y:	pt.y

								Rectangle	{

												width:	2

												height:	index	%	5	?	5	:	10

												color:	"white"

												rotation:	210	+	index	*	1.2	*	2

												anchors.centerIn:	parent

												antialiasing:	true

								}

				}

}

Finally,	we	can	put	a	label	for	the	dial:

Text	{

				anchors.centerIn:	parent

				anchors.verticalCenterOffset:	40

				text:	"SPEED\n[kph]"

				horizontalAlignment:	Text.AlignHCenter

				color:	"#aaa"

				font.pixelSize:	16

}

Ensure	that	the	label	is	declared	before	the	dial	needle,	or	give	the

needle	a	higher	z	value	so	that	the	label	doesn't	overpaint	the
needle.

Next,	repeat	the	process	on	your	own	for	the	left	container	by
creating	an	RPM	dial	reading	values	from	the	carData.rpm	property.
The	dial	also	displays	the	current	gear	of	the	car's	engine.	Place	the
following	code	inside	the	leftContainer	object	definition:

Item	{

				id:	gearContainer

				anchors.centerIn:	parent

				anchors.horizontalCenterOffset:	10

				anchors.verticalCenterOffset:	-10

				Text	{

								id:	gear

								property	int	value:	carData.gear

								property	var	gears:	[

												"R",	"N",

												"1st",	"2nd",	"3rd",

												"4th",	"5th"

]

								text:	gears[value	+	1]

								anchors.left:	parent.left

								anchors.bottom:	parent.bottom

								color:	"yellow"

								font.pixelSize:	32

								textFormat:	Text.RichText

				}

}	

The	only	part	needing	explanation	is	highlighted.	It	defines	an	array
of	gear	labels	starting	with	reverse,	going	through	neutral,	and	then
through	five	forward	gears.	The	array	is	then	indexed	with	the
current	gear	and	the	text	for	that	value	is	applied	to	the	label.	Note
that	the	value	is	incremented	by	1,	which	means	the	0th	index	of	the
array	will	be	used	when	carData.gear	is	set	to	1.

We	will	not	show	how	to	implement	the	right	container.	You	can	do
that	easily	yourself	now	with	the	use	of	the	Grid	positioner	to	lay	out
the	labels	and	their	values.	To	display	the	series	of	controls	on	the

bottom	of	the	right	container	(with	texts	ABS,	ESP,	BRK,	and	CHECK),	you
can	use	Row	of	Label	instances.

Now,	start	the	program	and	begin	moving	the	sliders	on	the	widget.
See	how	the	Qt	Quick	scene	follows	the	changes.

What	just	happened?
We	have	created	a	very	simple	QObject	instance	and	exposed	it	as	our
"data	model"	to	QML.	The	object	has	a	number	of	properties	that
can	receive	different	values.	Changing	a	value	results	in	emitting	a
signal,	which	in	turn	notifies	the	QML	engine	and	causes	bindings
containing	those	properties	to	be	reevaluated.	As	a	result,	our	user
interface	gets	updated.

Time	for	action	–	Grouping
engine	properties
The	data	interface	between	the	QML	and	C++	worlds	that	we
created	is	very	simple	and	has	a	small	number	of	properties.
However,	as	the	amount	of	data	we	want	to	expose	grows,	the	object
can	become	cluttered.	Of	course,	we	can	counter	that	effect	by
dividing	it	into	multiple	smaller	objects,	each	having	separate
responsibilities	and	then	exporting	all	those	objects	to	QML,	but
that	is	not	always	desirable.	In	our	case,	we	can	see	that	rpm	and	gear
are	properties	of	the	engine	subsystem,	so	we	can	move	them	to	a
separate	object;	however,	in	reality,	their	values	are	tightly	coupled
with	the	speed	of	the	car	and	to	calculate	the	speed,	we	will	need	to
know	the	values	of	those	two	parameters.	However,	the	speed	also
depends	on	other	factors	such	as	the	slope	of	the	road,	so	putting
the	speed	into	the	engine	subsystem	object	just	doesn't	seem	right.
Fortunately,	there	is	a	nice	solution	to	that	problem.

QML	has	a	concept	called	grouped	properties.	You	already	know	a
number	of	them—the	border	property	of	the	Rectangle	element	or	the
anchors	property	of	the	Item	element,	for	example.	Let's	see	how	to
define	such	properties	for	our	exposed	object.

Create	a	new	QObject-derived	class	and	call	it	CarInfoEngine.	Move	the
property	definitions	of	rpm	and	gear	to	that	new	class	along	with	their
getters,	setters,	and	change	signals.	Add	the	following	property
declaration	to	CarInfo:

Q_PROPERTY(QObject*	engine	READ	engine	NOTIFY	engineChanged)

Implement	the	getter	and	the	private	field:

				QObject*	engine()	const	{	return	m_engine;	}

private:

				CarInfoEngine	*m_engine;

We	will	not	use	the	signal	right	now.	However,	we	had	to	declare	it;
otherwise,	QML	would	complain	we	were	binding	expressions	that
depend	on	properties	that	are	non-notifiable:

signals:

				void	engineChanged();

Initialize	m_engine	in	the	constructor	of	CarInfo:

m_engine	=	new	CarInfoEngine(this);

Next,	update	the	code	of	CarInfo	to	modify	properties
of	m_engine	whenever	respective	sliders	on	the	widget	are	moved.
Provide	a	link	the	other	way	as	well—if	the	property	value	is
changed,	update	the	user	interface	accordingly.

Update	the	QML	document	and
replace	carData.gear	with	carData.engine.gear.	Do	the	same
for	carData.rpm	and	carData.engine.rpm.	You	should	end	up	with	something
along	the	lines	of	the	following:

Item	{

				id:	leftContainer

				//	...

				Item	{

								id:	gearContainer

								Text	{

												id:	gear

												property	int	value:	carData.engine.gear

												//	...

								}

				}

				Needle	{

								anchors.centerIn:	parent

								anchors.centerIn:	parent

								length:	parent.width	*	0.35

								rotation:	210	+	(carData.engine.rpm	*	35)

				}

}

What	just	happened?
Essentially,	what	we	did	is	expose	a	property	in	CarInfo	that	is	itself
an	object	that	exposes	a	set	of	properties.	This	object	of	the
CarInfoEngine	type	is	bound	to	the	CarInfo	instance	it	refers	to.

Time	for	action	–	Registering
C++	class	as	QML	type
So	far,	what	we	did	was	expose	ourselves	to	QML	single	objects
created	and	initialized	in	C++.	However,	we	can	do	much	more—the
framework	allows	us	to	define	new	QML	types.	These	can	either	be
generic	QObject-derived	QML	elements	or	items	specialized	for	Qt
Quick.

We	will	start	with	something	simple—exposing	the	CarInfo	type	to
QML	so	that	instead	of	instantiating	it	in	C++	and	then	exposing	it
in	QML,	we	can	directly	declare	the	element	in	QML	and	still	allow
the	changes	made	to	the	widget	to	be	reflected	in	the	scene.

To	make	a	certain	class	(derived	from	QObject)	instantiable	in	QML,
all	that	is	required	is	to	register	that	class	with	the	declarative
engine	using	the	qmlRegisterType	template	function.	This	function	takes
the	class	as	its	template	parameter	along	a	number	of	function
arguments:	the	module	uri,	the	major	and	minor	version	numbers,
and	the	name	of	the	QML	type	we	are	registering.	The	following	call
will	register	the	FooClass	class	as	the	QML	type	Foo,	available	after
importing	foo.bar.baz	in	Version	1.0:

qmlRegisterType<FooClass>("foo.bar.baz",	1,	0,	"Foo");

You	can	place	this	invocation	anywhere	in	your	C++	code;	just
ensure	that	this	is	before	you	try	to	load	a	QML	document	that
might	contain	declarations	of	Foo	objects.	A	typical	place	to	put	the
function	call	is	in	the	program's	main	function.	Afterward,	you	can
start	declaring	objects	of	the	Foo	type	in	your	documents.	Just
remember	that	you	have	to	import	the	respective	module	first:

import	QtQuick	2.9

import	foo.bar.baz	1.0

Item	{

				Foo	{

								id:	foo

				}

}	

Time	for	action	–	Making
CarInfo	instantiable	from	QML
First,	we	will	update	the	QML	document	to	create	an	instance
of	CarInfo	present	in	the	CarInfo	1.0	module:

import	QtQuick	2.9

import	CarInfo	1.0

	

Image	{

				source:	"dashboard.png"

	

				CarInfo	{

								id:	carData

								visible:	true	//	make	the	widget	visible

				}

		//	...

}

As	for	registering	CarInfo,	it	might	be	tempting	to	simply
call	qmlRegisterType	on	CarInfo	and	congratulate	ourselves	for	a	job	well
done:

int	main(int	argc,	char	**argv)	{

				QGuiApplication	app(argc,	argv);

				QQmlApplicationEngine	engine;

				//	this	code	does	not	work

				qmlRegisterType<CarInfo>("CarInfo",	1,	0,	"CarInfo");

				//...

}	

In	general,	this	would	work	(yes,	it	is	as	simple	as	that).	However,	it
will	not	work	with	widgets.	It's	not	possible	to	include	QWidget-based
objects	into	a	QML	object	tree	because	a	QWidget	object	can	only	have

another	QWidget	object	as	its	parent,	and	QML	needs	to	set	the	outer
QML	object	as	the	parent.	To	resolve	this	conflict,	we	need	to
ensure	that	what	we	instantiate	is	not	a	widget.	For	that,	we	will	use
a	proxy	object	that	will	forward	our	calls	to	the	actual	widget.
Therefore,	create	a	new	class	called	CarInfoProxy	derived
from	QObject	and	make	it	have	the	same	properties	as	CarInfo.
Consider	this	example:

class	CarInfoProxy	:	public	QObject	{

				Q_OBJECT

				Q_PROPERTY(QObject	*engine	READ	engine	NOTIFY	engineChanged)

				Q_PROPERTY(int	speed	READ	speed	WRITE	setSpeed	NOTIFY

speedChanged)

				//	...

Declare	one	more	property	that	will	let	us	show	and	hide	the	widget
on	demand:

		Q_PROPERTY(bool	visible	READ	visible	WRITE	setVisible	

																										NOTIFY	visibleChanged)

Then,	we	can	place	the	widget	as	a	member	variable	of	the	proxy	so
that	it	is	created	and	destroyed	alongside	its	proxy:

private:

				CarInfo	m_car;

This	way,	the	CarInfo	widget	will	have	nullptr	parent,	so	it	will	be
displayed	as	a	top-level	window.	The	QML	engine	will	create	an
object	of	the	CarInfoProxy	class	and	set	its	parent	to	be	another	QML
object,	but	this	will	not	affect	the	parent	of	the	widget.

Next,	implement	the	missing	interface.	For	simplicity,	we	are
showing	you	code	for	some	of	the	properties.	The	others	are	similar,
so	you	can	fill	in	the	gaps	on	your	own:

public:

public:

				CarInfoProxy(QObject	*parent	=	nullptr)	:	QObject(parent)	{

								connect(&m_car,	&CarInfo::engineChanged,

																this,	&CarInfoProxy::engineChanged);

								connect(&m_car,	&CarInfo::speedChanged,

																this,	&CarInfoProxy::speedChanged);

				}

				QObject	*engine()	const	{	

								return	m_car.engine();	

				}

				bool	visible()	const	{	

								return	m_car.isVisible();	

				}

				void	setVisible(bool	v)	{

								if(v	==	visible())	return;

								m_car.setVisible(v);

								emit	visibleChanged(v);

				}

				int	speed()	const	{	

								return	m_car.speed();	

				}

				void	setSpeed(int	v)	{	

								m_car.setSpeed(v);	

				}

signals:

				void	engineChanged();

				void	visibleChanged(bool);

				void	speedChanged(int);

};

You	can	see	that	we	reuse	the	CarInfoEngine	instance	from	the	widget
instead	of	duplicating	it	in	the	proxy	class.	Finally,	we	can
register	CarInfoProxy	as	CarInfo:

		qmlRegisterType<CarInfoProxy>("CarInfo",	1,	0,	"CarInfo");

If	you	run	the	code	now,	you	will	see	that	it	works—CarInfo	has
become	a	regular	QML	element.	Due	to	this,	its	properties	can	be
set	and	modified	directly	in	the	document,	right?	If	you	try	setting
the	speed	or	the	distance,	it	will	work	just	fine.	However,	try	to	set	a
property	grouped	in	the	engine	property:

CarInfo	{

				id:	carData

				visible:	true

				engine.gear:	3

}

QML	runtime	will	complain	with	a	message	similar	to	the	following
one:

Cannot	assign	to	non-existent	property	"gear"

													engine.gear:	3

																				^

This	is	because	the	runtime	does	not	understand	the	engine	property
—we	declared	it	as	QObject	and	yet	we	are	using	a	property	this	class
doesn't	have.	To	avoid	this	issue,	we	have	to	teach	the	runtime
about	CarInfoEngine.

First,	let's	update	the	property	declaration	macro	to
use	CarInfoEngine	instead	of	QObject:

Q_PROPERTY(CarInfoEngine*	engine	READ	engine	NOTIFY	engineChanged)

Also,	the	getter	function	itself:

CarInfoEngine*	engine()	const	{	

				return	m_engine;	

}

You	should	make	these	changes	in	both	the	CarInfo	and	CarInfoProxy
classes.	Then,	we	should	teach	the	runtime	about	the	type:

QString	msg	=	QStringLiteral("Objects	of	type	CarInfoEngine	cannot	be

created");

qmlRegisterUncreatableType<CarInfoEngine>("CarInfo",	1,	0,

"CarInfoEngine",	msg);

What	just	happened?
In	this	exercise,	we	let	the	QML	runtime	know	about	two	new
elements.	One	of	them	is	CarInfo,	which	is	a	proxy	to	our	widget	class.
We	told	the	engine	that	this	is	a	full-featured	class	that	is
instantiable	from	QML.	The	other	class,	CarInfoEngine,	also	became
known	to	QML;	however,	the	difference	is	that	every	attempt	to
declare	an	object	of	this	type	in	QML	fails	with	a	given	warning
message.	There	are	other	functions	available	for	registering	types	in
QML,	but	they	are	rarely	used,	so	we	will	not	be	describing	them
here.	If	you	are	curious	about	them,	type	in	qmlRegister	in	the	Index
tab	of	Creator's	Help	pane.

Pop	quiz
Q1.	Which	QML	type	allows	you	to	create	a	placeholder	for	an
object	that	will	be	instantiated	later?

1.	 Repeater

2.	 Loader

3.	 Component

Q2.	Which	QML	type	provides	low-level	access	to	individual	touch
events?

1.	 PinchArea

2.	 MouseArea

3.	 MultiPointTouchArea

Q3.	When	can	you	access	a	component	defined	in	another	QML	file
without	an	import	statement?

1.	 You	can	do	that	if	the	component	is	registered	using

the	qmlRegisterType	function

2.	 You	can	do	that	if	the	component	file	is	added	to	the	project

resources

3.	 You	can	do	that	if	the	component	file	is	in	the	same

directory	as	the	current	file

Summary
You	are	now	familiar	with	multiple	methods	that	can	be	used	to
extend	Qt	Quick	with	your	own	item	types.	You	learned	to	use
JavaScript	to	create	custom	visual	items.	You	also	know	how	to	use
C++	classes	as	non-visual	QML	elements	fully	integrated	with	your
UI.	We	also	discussed	how	to	handle	mouse,	touch,	keyboard,	and
gamepad	events	in	Qt	Quick	applications.	However,	so	far,	despite
us	talking	about	"fluid"	and	"dynamic"	interfaces,	you	haven't	seen
much	of	them.	Do	not	worry;	in	the	next	chapter,	we	will	focus	on
animations	in	Qt	Quick	as	well	as	fancy	graphics	and	applying	what
you	learned	in	this	chapter	for	creating	nice-looking	and	interesting
games.	So,	read	on!

Animations	in	Qt	Quick	Games
In	the	previous	two	chapters,	we	introduced	you	to	the	basics	of	Qt
Quick	and	QML.	By	now,	you	should	be	fluent	enough	with	the
syntax	and	understand	the	basic	concepts	of	how	Qt	Quick	works.
In	this	chapter,	we	will	show	you	how	to	make	your	games	stand	out
from	the	crowd	by	introducing	different	kinds	of	animations	that
make	your	applications	feel	more	like	the	real	world.	You	will	also
learn	to	treat	Qt	Quick	objects	as	separate	entities	programmable
using	state	machines.	A	significant	part	of	this	chapter	will
introduce	how	to	implement	a	number	of	important	gaming
concepts	using	Qt	Quick.	All	this	will	be	shown	while	we	build	a
simple	2D	action	game	using	the	presented	concepts.

The	main	topics	covered	in	this	chapter	are	as	follows:

Animation	framework	in	Qt	Quick

States	and	transitions	in	depth

Implementing	games	in	Qt	Quick

Sprite	animations

Using	state	machines	for	animation

Parallax	scrolling

Collision	detection

Animation	framework	in	Qt
Quick
In	Chapter	11,	Introduction	to	Qt	Quick,	we	implemented	a	simple
animation	using	Qt	Quick	states	and	transitions.	We	will	now
deepen	our	knowledge	on	this	topic	and	learn	how	to	add	some
dynamics	into	the	user	interfaces	we	create.	Thus	far,	books	cannot
contain	moving	pictures,	so	you	will	have	to	test	most	things	we
describe	here	yourself	by	running	the	provided	Qt	Quick	code.

Qt	Quick	provides	a	very	extensive	framework	for	creating
animations.	By	that,	we	don't	mean	only	moving	items	around.	We
define	an	animation	as	changing	an	arbitrary	value	over	time.	So,
what	can	we	animate?	Of	course,	we	can	animate	item	geometry.
However,	we	can	also	animate	rotation,	scale,	other	numeric	values,
and	even	colors,	but	let's	not	stop	here.	Qt	Quick	also	lets	you
animate	the	parent-child	hierarchy	of	items	or	anchor	assignments.
Almost	anything	that	can	be	represented	by	an	item	property	can	be
animated.

Moreover,	the	changes	are	rarely	linear—if	you	kick	a	ball	in	the	air,
it	first	gains	height	quickly	because	its	initial	speed	was	large.
However,	the	ball	is	a	physical	object	being	pulled	down	by	the
earth's	gravity,	which	slows	the	climb	down	until	the	ball	stops	and
then	starts	falling	down,	accelerating	until	it	hits	the	ground.
Depending	on	the	properties	of	both	the	ground	and	the	ball,	the
object	can	bounce	off	the	surface	into	the	air	again	with	less
momentum,	repeating	the	spring-like	motion	until	eventually	it
fades	away,	leaving	the	ball	on	the	ground.	Qt	Quick	lets	you	model
all	that	using	easing	curves	that	can	be	assigned	to	animations.

Generic	animations
Qt	Quick	provides	a	number	of	animation	types	derived	from	a
generic	Animation	element	that	you	will	never	use	directly.	The	type
exists	only	to	provide	an	API	common	to	different	animation	types.

Let's	take	a	closer	look	at	the	animation	framework	by	looking	at	a
family	of	animation	types	derived	from	the	most	common
animation	type—PropertyAnimation.	As	the	name	implies,	they	provide
the	means	to	animate	values	of	object	properties.	Despite	the	fact
that	you	can	use	the	PropertyAnimation	element	directly,	it	is	usually
more	convenient	to	use	one	of	its	subclasses	that	specialises	in
dealing	with	the	peculiarities	of	different	data	types.

The	most	basic	property	animation	type	is	NumberAnimation,	which	lets
you	animate	all	kinds	of	numeric	values	of	both	integral	and	real
numbers.	The	simplest	way	of	using	it	is	to	declare	an	animation,
tell	it	to	animate	a	specific	property	in	a	specific	object,	and	then	set
the	length	of	the	animation	and	the	starting	and	ending	value	for
the	property:

import	QtQuick	2.9

Item	{

				id:	root

				width:	600;	height:	width

				Rectangle	{

								id:	rect

								color:	"red"

								width:	50;	height:	width

				}

				NumberAnimation	{

								target:	rect

								property:	"x"

								from:	0;	to:	550

								duration:	3000

								duration:	3000

								running:	true

				}

}

Time	for	action	–	Scene	for	an
action	game
Let's	try	something	new	for	our	new	project.	Select	New	File	or
Project	from	the	File	menu	of	Qt	Creator,	switch	to	the	Other
Project	category	and	choose	the	Qt	Quick	UI	Prototype	template.	Qt
Creator	will	create	a	main	QML	file	and	a	project	file	with
the	.qmlproject	extension.	This	kind	of	project	file	is	different	than
regular	project	files	with	the	.pro	extension.	This	is	a	pure	QML
project	that	does	not	contain	any	C++	code	and	thus	does	not
require	compilation.	However,	you	need	a	QML	runtime
environment	to	run	this	project.	Your	Qt	installation	provides	such
an	environment,	so	you	can	run	the	project	from	the	terminal	using
the	qmlscene	main.qml	command	or	just	let	Qt	Creator	handle	that.	Note
that	the	Qt	resources	system	is	not	used	with	these	projects,	and	the
QML	files	are	loaded	directly	from	the	filesystem.

If	you	need	to	add	C++	code	to	your	project	or	you	intend	to	distribute	compiled	binaries	of
the	project,	use	the	Qt	Quick	Application	templates	instead.	The	Qt	Quick	UI
Prototype	template,	as	the	name	implies,	is	only	good	for	prototypes.

In	the	project	directory,	make	a	subdirectory	called	images	and	from
the	game	project	that	we	have	created	using	Graphics	View,
copy	grass.png,	sky.png,	and	trees.png.	Then,	put	the	following	code	into
the	QML	document:

import	QtQuick	2.9

Image	{

				id:	root

				property	int	dayLength:	60000	//	1	minute

				source:	"images/sky.png"

				

				Item	{

								id:	sun

								x:	140

								x:	140

								y:	root.height	-	170

								Rectangle	{

												id:	sunVisual

												width:	40

												height:	width

												radius:	width	/	2

												color:	"yellow"

												anchors.centerIn:	parent

								}

				}

				Image	{

								source:	"images/trees.png"

								x:	-200

								anchors.bottom:	parent.bottom

				}

				Image	{

								source:	"images/grass.png"

								anchors.bottom:	parent.bottom

				}

}

If	you	don't	declare	the	top-level	Window	object,	qmlscene	will	display	the	top-level	Qt	Quick
item	in	a	window	automatically.	Note	that	when	writing	a	Qt	Quick	application	driven	by
the	QQmlApplicationEngine	class,	you	need	to	declare	the	Window	object	explicitly.

When	you	run	the	project	now,	you	will	see	a	screen	similar	to	this
one:

What	just	happened?
We	set	up	a	very	simple	scene	consisting	of	three	images	stacked	up
to	form	a	landscape.	Between	the	background	layer	(the	sky)	and
the	foreground	(trees),	we	placed	a	yellow	circle	representing	the
sun.	Since	we	will	be	moving	the	sun	around	in	a	moment,	we
anchored	the	center	of	the	object	to	an	empty	item	without	physical
dimensions	so	that	we	can	set	the	sun's	position	relative	to	its
center.	We	also	equipped	the	scene	with	a	dayLength	property,	which
will	hold	information	about	the	length	of	one	day	of	game	time.	By
default,	we	set	it	to	60	seconds	so	that	things	happen	really	quickly
and	we	can	see	the	animation's	progress	without	waiting.	After	all
things	are	set	correctly,	the	length	of	the	day	can	be	balanced	to	fit
our	needs.

The	graphical	design	lets	us	easily	manipulate	the	sun	while
keeping	it	behind	the	tree	line.	Note	how	the	stacking	order	is
implicitly	determined	by	the	order	of	elements	in	the	document.

Time	for	action	–	Animating	the
sun's	horizontal	movement
The	everyday	cruise	of	the	sun	in	the	sky	starts	in	the	east	and
continues	west	to	hide	beneath	the	horizon	in	the	evening.	Let's	try
to	replicate	this	horizontal	movement	by	adding	animation	to
our	sun	object.

Open	the	QML	document	of	our	last	project.	Inside	the	root	item,
add	the	following	declaration:

NumberAnimation	{

				target:	sun

				property:	"x"

				from:	0

				to:	root.width

				duration:	dayLength

				running:	true

}

Running	the	program	with	such	modifications	will	produce	a	run
with	a	horizontal	movement	of	the	sun.	The	following	image	is	a
composition	of	a	number	of	frames	of	the	run:

What	just	happened?
We	introduced	a	NumberAnimation	element	that	is	set	to	animate
the	x	property	of	the	sun	object.	The	animation	starts	at	0	and	lasts
until	x	reaches	the	root	item's	width	(which	is	the	right	edge	of	the
scene).	The	movement	lasts	for	dayLength	milliseconds.
The	running	property	of	the	animation	is	set	to	true	to	enable	the
animation.	Since	we	didn't	specify	otherwise,	the	motion	is	linear.

You	may	be	thinking	that	the	animation	runs	in	the	wrong	direction
—"west"	is	on	the	left	and	"east"	is	on	the	right,	yes?	That's	true,
however,	only	if	the	observer	faces	north.	If	that	were	the	case	for
our	scene,	we	wouldn't	be	seeing	the	sun	at	all—at	noon,	it	crosses
the	south	direction.

Composing	animations
The	animation	we	made	in	the	last	section	looks	OK	but	is	not	very
realistic.	The	sun	should	rise	in	the	morning,	reach	its	peak
sometime	before	noon,	and	then,	sometime	later,	start	setting
toward	the	evening,	when	it	should	cross	the	horizon	and	hide
beneath	the	landscape.

To	achieve	such	an	effect,	we	can	add	two	more	animations	for
the	y	property	of	the	sun.	The	first	animation	would	start	right	at
the	beginning	and	decrease	the	vertical	position	of	the	sun
(remember	that	the	vertical	geometry	axis	points	down,	so
decreasing	the	vertical	position	means	the	object	goes	up).	The
animation	would	be	complete	at	one-third	of	the	day	length.	We
would	then	need	a	way	to	wait	for	some	time	and	then	start	a
second	animation	that	would	pull	the	object	down	toward	the
ground.	Starting	and	stopping	the	animation	is	easy—we	can	either
call	the	start()	and	stop()	functions	on	the	animation	item	or	directly
alter	the	value	of	the	running	property.	Each	Animation	object
emits	started()	and	stopped()	signals.	The	delay	can	be	implemented
using	a	timer.	We	can	provide	a	signal	handler	for	the	stopped
signal	of	the	first	animation	to	trigger	a	timer	to	start	the	other	one
like	this:

NumberAnimation	{

				id:	sunGoesUpAnim

				//	...

				onStopped:	sunGoesDownAnimTimer.start()

}

Timer	{

				id:	sunGoesDownAnimTimer

				interval:	dayLength	/	3

				onTriggered:	sunGoesDownAnim.start()

}

Even	ignoring	any	side	problems	this	would	bring	(for	example,
how	to	stop	the	animation	without	starting	the	second	one),	such	an
approach	couldn't	be	called	"declarative",	could	it?

Fortunately,	similar	to	what	we	had	in	C++,	Qt	Quick	lets	us	form
animation
groups	that	run	either	parallel	to	each	other	or	in	sequence.	There
are	the	SequentialAnimation	and	ParallelAnimation	types	where	you	can
declare	any	number	of	child	animation	elements	forming	the	group.
To	run	two	animations	in	parallel,	we	can	declare	the	following
hierarchy	of	elements:

ParallelAnimation	{

				id:	parallelAnimationGroup

				running:	true

				

				NumberAnimation	{

								target:	obj1;	property:	"prop1"

								from:	0;	to:	100

								duration:	1500

				}

				NumberAnimation	{

								target:	obj2;	property:	"prop2"

								from:	150;	to:	0

								duration:	1500

				}

}

The	same	technique	can	be	used	to	synchronize	a	larger	group	of
animations,	even	if	each	component	has	a	different	duration:

SequentialAnimation	{

				id:	sequentialAnimationGroup

				running:	true

				

				ParallelAnimation	{

								id:	parallelAnimationGroup

								

								NumberAnimation	{

												id:	animation1

												target:	obj2;	property:	"prop2"

												from:	150;	to:	0

												from:	150;	to:	0

												duration:	1000

								}

								NumberAnimation	{

												id:	animation2

												target:	obj1;	property:	"prop1"

												from:	0;	to:	100

												duration:	2000

								}

				}

				PropertyAnimation	{

								id:	animation3

								target:	obj1;	property:	"prop1"

								from:	100;	to:	300

								duration:	1500

				}

}

The	group	presented	in	the	snippet	consists	of	three	animations.
The	first	two	animations	are	executed	together	as	they	form	a
parallel	subgroup.	One	member	of	the	group	runs	twice	as	long	as
the	other.	Only	after	the	whole	subgroup	completes	is	the	third
animation	started.	This	can	be	visualized	using	a	Unified
Modeling	Language	(UML)	activity	diagram	where	the	size	of
each	activity	is	proportional	to	the	duration	of	that	activity:

Time	for	action	–	Making	the
sun	rise	and	set
Let's	add	vertical	movement	(animation	of	the	y	property)	to	our
sun	by	adding	a	sequence	of	animations	to	the	QML	document.	As
our	new	animations	will	be	running	in	parallel	to	the	horizontal
animation,	we	can	enclose	animations	for	both	directions	within	a
single	ParallelAnimation	group.	It	would	work,	but	in	our	opinion,	this
will	unnecessarily	clutter	the	document.	Another	way	of	specifying
parallel	animations	is	to	declare	them	as	separate	hierarchies	of
elements,	making	each	animation	independent	of	the	other,	and
that	is	what	we	will	do	here.

Open	our	document	from	the	last	exercise,	and	right	under	the
previous	animation,	place	the	following	code:

SequentialAnimation	{

				running:	true

				NumberAnimation	{

								target:	sun

								property:	"y"

								from:	root.height	+	sunVisual.height

								to:	root.height	-	270

								duration:	dayLength	/	3

				}

				PauseAnimation	{	duration:	dayLength	/	3	}

				NumberAnimation	{

								target:	sun

								property:	"y"

								from:	root.height	-	270

								to:	root.height	+	sunVisual.height

								duration:	dayLength	/	3

				}

}

Running	the	program	will	result	in	the	light	source	rising	in	the
morning	and	setting	in	the	evening.	However,	the	trajectory	of	the
move	seems	somewhat	awkward:

What	just	happened?
We	declared	a	sequential	animation	group	consisting	of	three
animations,	each	taking	one-third	of	the	day	length.	The	first
member	of	the	group	makes	the	sun	go	up.	The	second	member,
which	is	an	instance	of	a	new	element	type—PauseAnimation—
introduces	a	delay	equal	to	its	duration.	This,	in	turn,	lets	the	third
component	start	its	work	in	the	afternoon	to	pull	the	sun	down
toward	the	horizon.

The	problem	with	such	a	declaration	is	that	the	sun	moves	in	a
horribly	angular	way,	as	can	be	seen	in	the	image.

Non-linear	animations
The	reason	for	the	described	problem	is	that	our	animations	are
linear.	As	we	noted	at	the	beginning	of	this	chapter,	linear
animations	rarely	occur	in	nature,	which	usually	makes	their	use
yield	a	very	unrealistic	result.

We	also	said	earlier	that	Qt	Quick	allows	us	to	use	easing	curves	to
perform	animations	along	non-linear	paths.	There	are	a	large
number	of	curves	offered.	Here's	a	diagram	listing	the	available
non-linear	easing	curves:

You	can	use	any	of	the	curves	on	an	element	of	the
PropertyAnimation	type	or	one	derived	from	it	(for
example,	NumberAnimation).	This	is	done	using	the	easing	property	group,
where	you	can	set	the	type	of	the	curve.	Different	curve	types	may
further	be	tweaked	by	setting	a	number	of	properties	in
the	easing	property	group,	such	as	amplitude	(for	bounce	and	elastic
curves),	overshoot	(for	back	curves),	or	period	(for	elastic	curves).

Declaring	an	animation	along	an	InOutBounce	path	is	very	easy:

NumberAnimation	{

				target:	obj

				property:	prop

				from:	startValue

				to:	endValue

				easing.type:	Easing.InOutBounce

				running:	true

}

Time	for	action	–	Improving	the
path	of	the	sun
The	task	at	hand	will	be	to	improve	the	animation	of	the	sun	so	that
it	behaves	in	a	more	realistic	way.	We	will	do	this	by	adjusting	the
animations	so	that	the	object	moves	over	a	curved	path.

In	our	QML	document,	replace	the	previous	vertical	animation	with
the	following	one:

SequentialAnimation	{

				running:	true

				NumberAnimation	{

								target:	sun

								property:	"y"

								from:	root.height	+	sunVisual.height

								to:	root.height	-	270

								duration:	dayLength	/	2

								easing.type:	Easing.OutCubic

				}

				NumberAnimation	{

								target:	sun

								property:	"y"

								to:	root.height	+	sunVisual.height

								duration:	dayLength	/	2

								easing.type:	Easing.InCubic

				}	

}

The	following	picture	shows	how	the	sun	will	now	move:

What	just	happened?
The	sequence	of	three	animations	(two	linear	ones	and	a	pause)	was
replaced	by	another	sequence	of	two	animations	that	follow	a	path
determined	by	a	cubic	function.	This	makes	our	sun	rise	pretty	fast
and	then	slow	down	to	an	amount	almost	unnoticeable	near	the
moment	when	the	sun	approaches	noon.	When	the	first	animation
is	finished,	the	second	one	reverses	the	motion,	making	the	sun
descend	very	slowly	and	then	increase	its	velocity	as	dusk
approaches.	As	a	result,	the	farther	the	sun	is	from	the	ground,	the
slower	it	seems	to	move.	At	the	same	time,	the	horizontal	animation
remains	linear,	as	the	speed	of	earth	in	its	motion	around	the	sun	is
practically	constant.	When	we	combine	the	horizontal	and	vertical
animations,	we	get	a	path	that	looks	very	similar	to	what	we	can
observe	in	the	real	world.

Property	value	sources
From	the	QML	perspective,	Animation	and	element	types	derived	from
it	are	called	property	value	sources.	This	means	they	can	be
attached	to	a	property	and	generate	values	for	it.	What	is	important
is	that	it	allows	us	to	use	animations	using	a	much	simpler	syntax.
Instead	of	explicitly	declaring	the	target	and	property	of	an
animation,	you	can	attach	the	animation	to	a	named	property	of	the
parent	object.

To	do	this,	instead	of	specifying	target	and	property	for	Animation,	use
the	on	keyword,	followed	by	the	name	of	a	property	name	for	which
the	animation	is	to	be	a	value	source.	For	example,	to	animate
the	rotation	property	of	an	object	with	a	NumberAnimation	object,	the
following	code	can	be	used:

NumberAnimation	on	rotation	{

				from:	0

				to:	360

				duration:	500

}	

It	is	valid	to	specify	more	than	one	property	value	source	for	the
same	property	of	an	object.

Time	for	action	–	Adjusting	the
sun's	color
If	you	look	at	the	sun	at	dusk	or	dawn,	you	will	see	that	it	is	not
yellow	but	becomes	red	the	closer	it	is	to	the	horizon.	Let's	teach
our	object	representing	the	sun	to	do	the	same	by	providing	a
property	value	source	for	it.

Open	the	QML	document,	find	the	declaration	for
the	sunVisual	object,	and	extend	it	with	the	highlighted	part:

Rectangle	{

				id:	sunVisual

				//	...

				SequentialAnimation	on	color	{

								ColorAnimation	{

												from:	"red"

												to:	"yellow"

												duration:	0.2	*	dayLength	/	2

								}

								PauseAnimation	{	

												duration:	2	*	0.8	*	dayLength	/	2	

								}

								ColorAnimation	{

												to:	"red"

												duration:	0.2	*	dayLength	/	2

								}

								running:	true

				}

}

What	just	happened?
An	animation	was	attached	to	the	color	property	of	our	rectangle
modeling	the	visual	aspects	of	the	sun.	The	animation	consists	of
three	parts.	First,	we	perform	a	transition	from	red	to	yellow	using
the	ColorAnimation	object.	This	is	an	Animation	subtype	dedicated	to
modifying	colors.	Since	the	rectangle	color	is	not	a	number,	using
the	NumberAnimation	object	will	not	work,	as	the	type	cannot	interpolate
color	values.	Therefore,	we	either	have	to	use	the	PropertyAnimation	or
the		ColorAnimation		object.	The	duration	for	the	animation	is	set	to	20
percent	of	half	the	day	length	so	that	the	yellow	color	is	obtained
very	quickly.	The	second	component	is	a	PauseAnimation	object	to
provide	a	delay	before	the	third	component	is	executed,	which
gradually	changes	the	color	back	to	red.	For	the	last	component,	we
do	not	provide	a	value	for	the	from	property.	This	causes	the
animation	to	be	initiated	with	the	value	of	the	property	current	to
the	time	when	the	animation	is	executed	(in	this	case,	the	sun
should	be	yellow).

Note	that	we	only	had	to	specify	the	property	name	for	the	top-level
animation.	This	particular	element	is	what	serves	as	the	property
value	source,	and	all	descendant	animation	objects	"inherit"	the
target	property	from	that	property	value	source.

Time	for	action	–	Furnishing
sun	animation
The	animation	of	the	sun	looks	almost	perfect	right	now.	We	can
still	improve	it,	though.	If	you	look	into	the	sky	in	the	early	morning
and	then	again	at	noon,	you	will	note	that	the	sun	appears	much
bigger	during	sunrise	or	sunset	compared	to	its	size	when	it	is	at	its
zenith.	We	can	simulate	that	effect	by	scaling	the	object.

In	our	scene	document,	add	another	sequential	animation	that
operates	on	the	scale	property	of	the	sun:

SequentialAnimation	on	scale	{

				NumberAnimation	{

						from:	1.6;	to:	0.8

						duration:	dayLength	/	2

						easing.type:	Easing.OutCubic

				}

				NumberAnimation	{

						from:	0.8;	to:	1.6

						duration:	dayLength	/	2

						easing.type:	Easing.InCubic

				}

}

Let's	examine	the	result	again:

What	just	happened?
In	this	section,	we	just	followed	the	path	set	for	an	earlier
declaration—the	vertical	movement	of	the	stellar	body	influences	its
perceived	size;	therefore,	it	seems	like	a	good	decision	to	bind	the
two	animations	together.	Note	that	instead	of	specifying	a	new
property	value	source	for	the	scale,	we	might	have	modified	the
original	animation	and	made	the	scale	animation	parallel	to	the
animation	that	operates	on	the	y	property:

SequentialAnimation	{

				ParallelAnimation	{

								NumberAnimation	{

												target:	sun

												property:	"y"

												from:	root.height	+	sunVisual.height

												to:	root.height	-	270

												duration:	dayLength	/	2

												easing.type:	Easing.OutCubic

								}

								NumberAnimation	{

												target:	sun

												property:	"scale"

												from:	1.6;	to:	0.8

												duration:	dayLength	/	2

												easing.type:	Easing.OutCubic

								}	

								//	...	

				}

}

Have	a	go	hero	–	Animating	the
sun's	rays
By	now,	you	should	be	an	animation	expert.	If	you	want	to	try	your
skills,	here's	a	task	for	you.	The	following	code	can	be	applied	to
the	sun	object	and	will	display	very	simple	red	rays	emitted	from	the
sun:

Item	{	

				id:	sunRays	

				property	int	count:	10	

				width:	sunVisual.width	

				height:	width	

				anchors.centerIn:	parent	

				z:	-1	

				Repeater	{	

								model:	sunRays.count	

								Rectangle	{	

												color:	"red"	

												rotation:	index	*	360	/	sunRays.count	

												anchors.fill:	parent	

								}

				}

}

The	result	is	shown	on	the	following	picture:

The	goal	is	to	animate	the	rays	so	that	the	overall	effect	looks	good
and	fits	the	tune	like	style	of	the	scene.	Try	different	animations—
rotations,	size	changes,	and	colors.	Apply	them	to	different
elements—all	rays	at	once	(for	example,	using	the	sunRays	identifier)
or	only	particular	rectangles	generated	by	the	repeater.

Behaviors
In	the	previous	chapter,	we	implemented	a	dashboard	for	a	racing
game	where	we	had	a	number	of	clocks	with	needles.	We	could	set
values	for	each	clock	(for	example,	car	speed)	and	a	respective
needle	would	immediately	set	itself	to	the	given	value.	However,
such	an	approach	is	unrealistic—in	the	real	world,	changes	of	a
value	happen	over	time.	In	our	example,	the	car	accelerates	from	10
mph	to	50	mph	by	going	through	11	mph,	12	mph,	and	so	on,	until
after	some	time	it	reaches	the	desired	value.	We	call	this
the	behavior	of	a	value—it	is	essentially	a	model	that	tells	how	the
parameter	reaches	its	destined	value.	Defining	such	models	is	a
perfect	use	case	for	declarative	programming.	Fortunately,	QML
exposes	a	Behavior	element	that	lets	us	model	behaviors	of	property
changes	in	Qt	Quick.

The	Behavior	elements	let	us	associate	an	animation	with	a	given
property	so	that	every	time	the	property	value	is	to	be	changed,	it	is
done	by	running	the	given	animation	instead	of	by	making	an
immediate	change	to	the	property	value.

Consider	a	simple	scene	defined	by	the	following	code:

import	QtQuick	2.9

Item	{

				width:	600;	height:	width

				Item	{

								id:	empty

								x:	parent.width	/	2;	y:	parent.height	/	2

								Rectangle	{

												id:	rect

												width:	100;	height:	width

												color:	"red"

												anchors.centerIn:	parent

								}

								}

				}

				MouseArea	{

								anchors.fill:	parent

								onClicked:	{	

												empty.x	=	mouse.x;

												empty.y	=	mouse.y;

								}

				}

}

This	scene	contains	a	red	rectangle	anchored	to	an	empty	item.
Whenever	the	user	clicks	somewhere	within	the	scene,	the	empty
item	is	moved	there,	dragging	along	the	rectangle.	Let's	see	how	to
use	the	Behavior	element	to	smoothly	change	the	position	of	the
empty	item.	Similar	to	Animation	and	other	property	value	sources,
the	Behavior	element	can	be	used	with	the	on-property	syntax:

Item	{

				id:	empty

				x:	parent.width	/	2;	y:	parent.height	/	2

				Rectangle	{

								id:	rect

								width:	100;	height:	width

								color:	"red"

								anchors.centerIn:	parent

				}

				Behavior	on	x	{	

								NumberAnimation	{	}	

				}

				Behavior	on	y	{	

								NumberAnimation	{	}	

				}

}	

By	adding	the	two	marked	declarations,	we	define	behaviors	for
the	x	and	y	properties	that	follow	animations	defined
by	NumberAnimation.	We	do	not	include	start	or	end	values	for	the
animation	as	these	will	depend	on	the	initial	and	final	value	for	the
property.	We	also	don't	set	the	property	name	in	the	animation
because	by	default,	the	property	for	which	the	behavior	is	defined
will	be	used.	As	a	result,	we	get	a	linear	animation	of	a	numerical

property	from	the	original	value	to	the	destined	value	over	the
default	duration.

Using	linear	animations	for	real-world	objects	rarely	looks	good.	Usually,	you	will	get
much	better	results	if	you	set	an	easing	curve	for	the	animation	so	that	it	starts	slowly	and
then	gains	speed	and	decelerates	just	before	it	is	finished.

Animations	that	you	set	on	behaviors	can	be	as	complex	as	you
want:

Behavior	on	x	{

				SequentialAnimation	{

								PropertyAction	{

												target:	rect

												property:	"color"

												value:	"yellow"

								}

								ParallelAnimation	{

												NumberAnimation	{	

																easing.type:	Easing.InOutQuad

																duration:	1000

												}	

												SequentialAnimation	{

																NumberAnimation	{

																				target:	rect

																				property:	"scale"

																				from:	1.0;	to:	1.5

																				duration:	500

																}

																NumberAnimation	{

																				target:	rect

																				property:	"scale"

																				from:	1.5;	to:	1.0

																				duration:	500

																}

												}

								}

								PropertyAction	{	

												target:	rect

												property:	"color"

												value:	"red"	

								}

				}

}

The	behavioral	model	declared	in	the	last	piece	of	code	performs	a
sequential	animation.	It	first	changes	the	color	of	the	rectangle	to
yellow	using	the	PropertyAction	element,	which	performs	an	immediate
update	of	a	property	value	(we	will	talk	about	this	more	a	bit	later).
The	color	will	be	set	back	to	red	after	the	last	step	of	the	model.	In
the	meantime,	a	parallel	animation	is	performed.	One	of	its
components	is	a	NumberAnimation	class	that	executes	the	actual
animation	of	the	x	property	of	empty	(since	the	target	and	property	of
the	animation	are	not	explicitly	set).	The	second	component	is	a
sequential	animation	of	the	scale	property	of	the	rectangle,	which
first	scales	the	item	up	by	50	percent	during	the	first	half	of	the
animation	and	then	scales	it	back	down	in	the	second	half	of	the
animation.

Time	for	action	–	Animating	the
car	dashboard
Let's	employ	the	knowledge	we	just	learned	to	improve	the	car
dashboard	we	created	in	the	previous	chapter.	We	will	use
animations	to	show	some	realism	in	the	way	the	clocks	update	their
values.

Open	the	dashboard	project	and	navigate	to	the	main.qml	file.	Find	the
declaration	of	the	Needle	object,	which	is	responsible	for	visualizing
the	speed	of	the	vehicle.	Add	the	following	declaration	to	the	object:

Behavior	on	rotation	{

				SmoothedAnimation	{	

								velocity:	50	

				}

}

Repeat	the	process	for	the	left	clock.	Set	the	velocity	of	the
animation	to	100.	Build	and	run	the	project.	See	how	the	needles
behave	when	you	modify	the	parameter	values	in	spin	boxes.	Adjust
the	velocity	of	each	animation	until	you	get	a	realistic	result.

What	just	happened?
We	have	set	the	property	value	sources	on	needle	rotations	that	are
triggered	whenever	a	new	value	for	the	property	is	requested.
Instead	of	immediately	accepting	the	new	value,	the	Behavior	element
intercepts	the	request	and	starts	the	SmoothedAnimation	class	to
gradually	reach	the	requested	value.	The	SmoothedAnimation	class	is	an
animation	type	that	animates	numeric	properties.	The	speed	of	the
animation	is	not	determined	by	its	duration;	instead,
a	velocity	property	is	set.	This	property	dictates	how	fast	a	value	is	to
be	changed.	However,	the	animation	is	using	a	non-linear	path—it
starts	slowly,	then	accelerates	to	the	given	velocity,	and,	near	the
end	of	the	animation,	decelerates	in	a	smooth	fashion.	This	yields
an	animation	that	is	attractive	and	realistic	and,	at	the	same	time,	is
of	shorter	or	longer	duration,	depending	on	the	distance	between
the	starting	and	ending	values.

You	can	implement	custom	property	value	sources	by
subclassing	QQmlPropertyValueSource	and	registering	the	class	in	the	QML	engine.

States
When	you	look	at	real-world	objects,	it	is	often	very	easy	to	define
their	behavior	by	extracting	a	number	of	states	the	object	may	take
and	describing	each	of	the	states	separately.	A	lamp	can	be	turned
either	on	or	off.	When	it	is	"on",	it	is	emitting	light	of	a	given	color,
but	it	is	not	doing	that	when	in	the	"off"	state.	Dynamics	of	the
object	can	be	defined	by	describing	what	happens	if	the	object
leaves	one	of	the	states	and	enters	another	one.	Considering	our
lamp	example,	if	you	turn	the	lamp	on,	it	doesn't	momentarily	start
emitting	light	with	its	full	power,	but	the	brightness	of	the	light
gradually	increases	to	reach	its	final	power	after	a	very	short	period.

Qt	Quick	supports	state-driven	development	by	letting	us	declare
states	and	transitions	between	them	for	items.	The	model	fits	the
declarative	nature	of	Qt	Quick	very	well.

By	default,	each	item	has	a	single	anonymous	state,	and	all
properties	you	define	take	values	of	the	expressions	you	bind	or
assign	to	them	imperatively	based	on	different	conditions.	Instead
of	this,	a	set	of	states	can	be	defined	for	the	object	and	for	each	of
the	state	properties	of	the	object	itself;	in	addition,	the	objects
defined	within	it	can	be	programmed	with	different	values	or
expressions.	Our	example	lamp	definition	could	be	similar	to	this:

Item	{

				id:	lamp

				property	bool	lampOn:	false

				width:	200

				height:	200

				Rectangle	{

								id:	lightsource

								anchors.fill:	parent

								color:	"transparent"

				}

				}

}

We	could,	of	course,	bind	the	color	property	of	lightsource	to	lamp.lampOn
?	"yellow"	:	"transparent";	instead,	we	can	define	an	"on"	state	for	the
lamp	and	use	a	PropertyChanges	element	to	modify	the	rectangle	color:

Item	{

				id:	lamp

				property	bool	lampOn:	false

				//	...

				states:	State	{

								name:	"on"

								PropertyChanges	{

												target:	lightsource

												color:	"yellow"

								}

				}

}	

Each	item	has	a	state	property	that	you	can	read	to	get	the	current
state,	but	you	can	also	write	to	it	to	trigger	transition	to	a	given
state.	By	default,	the	state	property	is	set	to	an	empty	string	that
represents	the	anonymous	state.	Note	that	with	the	preceding
definition,	the	item	has	two	states—the	"on"	state	and	the
anonymous	state	(which	is	used	when	the	lamp	is	off	in	this	case).
Remember	that	state	names	have	to	be	unique	as	the	name	parameter
is	what	identifies	a	state	in	Qt	Quick.

To	enter	a	state,	we	can,	of	course,	use	an	event	handler	fired	when
the	value	of	the	lampOn	parameter	is	modified:

onLampOnChanged:	state	=	lampOn	?	"on"	:	""

Such	imperative	code	works,	but	it	can	be	replaced	with	a
declarative	definition	in	the	state	itself:

State	{

				name:	"on"

				when:	lamp.lampOn

				PropertyChanges	{

								target:	lightsource

								color:	"yellow"

				}

}	

Whenever	the	expression	bound	to	the	when	property	evaluates
to	true,	the	state	becomes	active.	If	the	expression	becomes	false,	the
object	will	return	to	the	default	state	or	will	enter	a	state	for	which
its	own	when	property	evaluates	to	true.

To	define	more	than	one	custom	state,	it	is	enough	to	assign	a	list	of
state	definitions	to	the	states	property:

states:	[

				State	{

								name:	"on"

								when:	lamp.lampOn

								PropertyChanges	{	/*...*/	}

				},

				State	{

								name:	"off"

								when:	!lamp.lampOn

				}

]

The	PropertyChanges	element	is	the	most	often	used	change	in	a	state
definition,	but	it	is	not	the	only	one.	In	exactly	the	same	way	that
the	ParentChange	element	can	assign	a	different	parent	to	an	item	and
the	AnchorChange	element	can	update	anchor	definitions,	it	is	also
possible	to	run	a	script	when	a	state	is	entered	using
the	StateChangeScript	
element.	All	these	element	types	are	used	by	declaring	their
instances	as	children	in	a	State	object.

Transitions
The	second	part	of	the	state	machine	framework	is	defining	how	an
object	transits	from	one	state	to	another.	Similar	to
the	states	property,	all	items	have	a	transitions		property,	which	takes
a	list	of	definitions	represented	by	the	Transition	objects	and	provides
information	about	animations	that	should	be	played	when	a
particular	transition	takes	place.

A	transition	is	identified	by	three	attributes—the	source	state,	the
destination	state,	and	a	set	of	animations.	Both	the	source	state
name	(set	to	the	from	property)	and	the	target	state	name	(set	to
the	to	property)	can	be	empty,	in	which	case	they	should	be
interpreted	as	"any".	If	a	Transition	exists	that	matches	the	current
state	change,	its	animations	will	be	executed.	A	more	concrete
transition	definition	(which	is	one	where	from	and/or	to	are	explicitly
set)	has	precedence	over	a	more	generic	one.

Suppose	that	we	want	to	animate	the	opacity	of	the	lamp	rectangle
from	0	to	1	when	the	lamp	is	switched	on.	We	can	do	it	as	an
alternative	to	manipulating	the	color.	Let's	update	the	lamp
definition:

Item	{

				id:	lamp

				property	bool	lampOn:	false

				Rectangle	{

								id:	lightsource

								anchors.fill:	parent

								color:	"yellow"

								opacity:	0

				}

				MouseArea	{

								anchors.fill:	parent

								onPressed:	{

												lamp.lampOn	=	!lamp.lampOn;

												lamp.lampOn	=	!lamp.lampOn;

								}

				}

				states:	State	{

								name:	"on"

								when:	lamp.lampOn

								PropertyChanges	{

												target:	lightsource

												opacity:	1

								}

				}

				transitions:	Transition	{

								NumberAnimation	{

												duration:	500

												property:	"opacity"

								}

				}

}

The	transition	is	triggered	for	any	source	and	any	target	state—it
will	be	active	when	the	lamp	goes	from	the	anonymous	to	the	"on"
state	as	well	as	in	the	opposite	direction.	It	defines	a
single	NumberAnimation	element	that	works	on	opacity	property	and	lasts
for	500	miliseconds.	The	animation	does	not	define	the	target
object;	thus,	it	will	be	executed	for	any	object	that	needs	updating
as	part	of	the	transition—in	the	case	of	the	lamp,	it	will	only	be
the	lightsource	object.

If	more	than	one	animation	is	defined	in	a	transition,	all	animations
will	run	in	parallel.	If	you	need	a	sequential	animation,	you	need	to
explicitly	use	a	SequentialAnimation	element:

Transition	{

				SequentialAnimation	{

								NumberAnimation	{	

												target:	lightsource

												property:	"opacity"												

												duration:	500	

								}

								ScriptAction	{	

												script:	{

																console.log("Transition	has	ended");

												}

								}

				}

}

States	are	a	feature	of	all	Item	types	as	well	as	its	descendent	types.	It	is,	however,	possible
to	use	states	with	elements	not	derived	from	the	Item	object	using	a	StateGroup	element,
which	is	a	self-contained	functionality	of	states	and	transitions	with	exactly	the	same
interface	as	what	is	described	here	regarding	Item	objects.

More	animation	types
The	animation	types	we	discussed	earlier	are	used	for	modifying
values	of	types	that	can	be	described	using	physical	metrics
(position,	sizes,	colors,	angles).	However,	there	are	more	types
available.

The	first	group	of	special	animations	consists	of
the	AnchorAnimation	and		ParentAnimation	elements.

The	AnchorAnimation	element	is	useful	if	a	state	change	should	cause	a
change	to	defined	anchors	for	an	item.	Without	it,	the	item	would
immediately	snap	into	its	place.	By	using	the	AnchorAnimation	element,
we	trigger	all	anchor	changes	to	be	gradually	animated.

The	ParentAnimation	element,	on	the	other	hand,	makes	it	possible	to
define	animations	that	should	be	present	when	an	item	receives	a
new	parent.	This	usually	causes	an	item	to	be	moved	to	a	different
position	in	the	scene.	By	using	the	ParentAnimation	element	in	a	state
transition,	we	can	define	how	the	item	gets	into	its	target	position.
The	element	can	contain	any	number	of	child	animation	elements
that	will	be	run	in	parallel	during	a	ParentChange	element.

The	second	special	group	of	animations	is	action	animations
—PropertyAction		and	ScriptAction.	These	animation	types	are	not
stretched	in	time	but	perform	a	given	one-time	action.

The	PropertyAction	element	is	a	special	kind	of	animation	that
performs	an	immediate	update	of	a	property	to	a	given	value.	It	is
usually	used	as	part	of	a	more	complex	animation	to	modify	a
property	that	is	not	animated.	It	makes	sense	to	use	it	if	a	property
needs	to	have	a	certain	value	during	an	animation.

ScriptAction	is	an	element	that	allows	the	execution	of	an	imperative
piece	of	code	during	an	animation	(usually	at	its	beginning	or	end).

Quick	game	programming
Here,	we	will	go	through	the	process	of	creating	a	platform	game
using	Qt	Quick.	It	will	be	a	game	similar	to	Benjamin	the	Elephant
from	Chapter	6,	Qt	Core	Essentials.	The	player	will	control	a	character
that	will	be	walking	through	the	landscape	and	collecting	coins.	The
coins	will	be	randomly	appearing	in	the	world.	The	character	can
access	highly	placed	coins	by	jumping.

Throughout	this	chapter	as	well	as	the	previous	one,	we	prepared	a
number	of	pieces	that	we	will	be	reusing	for	this	game.	The	layered
scene	that	was	arranged	when	you	learned	about	animations	will
serve	as	our	game	scene.	The	animated	sun	will	represent	the
passing	of	time.

We	will	guide	you	through	implementing	the	main	features	of	the
game.	At	the	end	of	the	chapter,	you	will	have	a	chance	to	test	your
skills	by	adding	more	game	mechanics	to	our	project.

Game	loops
Most	games	revolve	around	some	kind	of	game	loop.	It	is	usually
some	kind	of	function	that	is	called	repeatedly,	and	its	task	is	to
progress	the	game—process	input	events,	move	objects	around,
calculate	and	execute	actions,	check	win	conditions,	and	so	on.	Such
an	approach	is	very	imperative	and	usually	results	in	a	very
complex	function	that	needs	to	know	everything	about	everybody
(this	kind	of	anti-pattern	is	sometimes	called	a	god
object	pattern).	In	QML	(which	powers	the	Qt	Quick	framework),
we	aim	to	separate	responsibilities	and	declare	well-defined
behaviors	for	particular	objects.	Therefore,	although	it	is	possible	to
set	up	a	timer	that	will	periodically	call	a	game	loop	function,	this	is
not	the	best	possible	approach	in	a	declarative	world.

Instead,	we	suggest	using	a	natural	time-flow	mechanism	already
present	in	Qt	Quick—one	that	controls	the	consistency	of
animations.	Remember	how	we	defined	the	sun's	travel	across	the
sky	at	the	beginning	of	this	chapter?	Instead	of	setting	up	a	timer
and	moving	the	object	by	a	calculated	number	of	pixels,	we	created
an	animation,	defined	a	total	running	time	for	it,	and	let	Qt	take
care	of	updating	the	object.	This	has	the	great	benefit	of	neglecting
delays	in	function	execution.	If	you	used	a	timer	and	some	external
event	introduced	a	significant	delay	before	the	timeout	function	was
run,	the	animation	would	start	lagging	behind.	When	Qt	Quick
animations	are	used,	the	framework	compensates	for	such	delays,
skipping	some	of	the	frame	updates	to	ensure	that	the	requested
animation	duration	is	respected.	Thanks	to	that,	you	will	not	have
to	take	care	of	it	all	by	yourself.

To	overcome	the	second	difficult	aspect	of	a	game	loop—the	god
object	anti-pattern—we	suggest	encapsulating	the	logic	of	each	item
directly	in	the	item	itself	using	the	states	and	transitions	framework

we	introduced	earlier.	If	you	define	an	object	using	a	natural	time
flow	describing	all	states	it	can	enter	during	its	lifetime	and	actions
causing	transitions	between	states,	you	will	be	able	to	just	plop	the
object	with	its	included	behavior	wherever	it	is	needed	and	thus
easily	reuse	such	definitions	in	different	games,	reducing	the
amount	of	work	necessary	to	make	the	object	fit	into	the	game.

Input	processing
A	usual	approach	in	games	is	to	read	input	events	and	call	functions
responsible	for	actions	associated	with	particular	events:

void	Scene::keyEvent(QKeyEvent	*event)	{

				switch(event->key())	{

				case	Qt::Key_Right:	

								player->goRight();	break;

				case	Qt::Key_Left:		

								player->goLeft();		break;

				case	Qt::Key_Space:	

								player->jump();				break;

				//	...

				}

}

This,	however,	has	its	drawbacks,	one	of	which	is	the	need	to	check
events	at	even	periods	of	time.	This	might	be	hard	and	is	certainly
not	a	declarative	approach.

We	already	know	that	Qt	Quick	handles	keyboard	input	via
the	Keys	attached	property.	It	is	possible	to	craft	QML	code	similar	to
the	one	just	presented,	but	the	problem	with	such	an	approach	is
that	the	faster	the	player	taps	keys	on	the	keyboard,	the	more
frequently	the	character	will	move,	jump,	or	shoot.	However,	it's
possible	to	overcome	this	problem,	as	we'll	see	as	we	move	on.

Time	for	action	–	Character
navigation
Create	a	new	QML	document	and	call	it	Player.qml.	In	the	document,
place	the	following	declarations:

Item	{

				id:	player

				y:	parent.height

				focus:	true

				

				Keys.onRightPressed:	x	=	Math.min(x	+	20,	parent.width)

				Keys.onLeftPressed:	x	=	Math.max(0,	x	-	20)

				Keys.onUpPressed:	jump()

				

				function	jump()	{	

								jumpAnim.start();

				}

				

				Image	{

								source:	"images/elephant.png"

								anchors.bottom:	parent.bottom

								anchors.horizontalCenter:	parent.horizontalCenter

				}

				Behavior	on	x	{	

								NumberAnimation	{	duration:	100	}	

				}

				SequentialAnimation	on	y	{

								id:	jumpAnim

								running:	false

								NumberAnimation	{	

												to:	player.parent.height	-	50

												easing.type:	Easing.OutQuad	

								}	

								NumberAnimation	{	

												to:	player.parent.height

												easing.type:	Easing.InQuad	

								}	

				}

				}

}

Next,	open	the	document	containing	the	main	scene	definition	and
declare	the	player	character	near	the	end	of	the	document	after	all
the	background	layers	have	been	declared:

Player	{

				id:	player

				x:	40

}

What	just	happened?
The	player	itself	is	an	empty	item	with	a	keyboard	focus	that
handles	presses	of	the	right,	left,	and	up	arrow	keys,	causing	them
to	manipulate	the	x	and	y	coordinates	of	the	player.	The	x	property
has	a	Behavior	element	set	so	that	the	player	moves	smoothly	within
the	scene.	Finally,	anchored	to	the	player	item	is	the	actual
visualization	of	the	player—our	elephant	friend.

When	the	right	or	left	arrow	keys	are	pressed,	a	new	position	for	the
character	will	be	calculated	and	applied.	Thanks	to
the	Behavior	element,	the	item	will	travel	gradually	(during	one
second)	to	the	new	position.	Keeping	the	key	pressed	will	trigger
autorepeat	and	the	handler	will	be	called	again.	In	a	similar	fashion,
when	the	up	arrow	key	is	pressed,	it	will	activate	a	prepared
sequential	animation	that	will	lift	the	character	up	by	50	pixels	and
then	move	it	down	again	to	the	initial	position.

This	approach	works,	but	we	can	do	better.	Let's	try	something
different.

Time	for	action	–	Another
approach	to	character
navigation
Replace	the	previous	key	handlers	with	the	following	code:

Item	{

				id:	player

				//...

				QtObject	{

								id:	flags

								readonly	property	int	speed:	100

								property	int	horizontal:	0

				}

				Keys.onRightPressed:	{	

								recalculateDurations();	

								flags.horizontal	=	1;	

				}

				Keys.onLeftPressed:	{

								if(flags.horizontal	!=	0)	{

												return;

								}

								recalculateDurations();

								flags.horizontal	=	-1;

				}

				Keys.onUpPressed:	jump()

				Keys.onReleased:	{

								if(event.isAutoRepeat)	return;

								if(event.key	===	Qt.Key_Right)	{

												flags.horizontal	=	0;

								}

								if(event.key	===	Qt.Key_Left	&&	flags.horizontal	<	0)	{

												flags.horizontal	=	0;

								}

				}

				function	recalculateDurations()	{

								xAnimRight.duration	=	(xAnimRight.to	-	x)	*	1000	/

								xAnimRight.duration	=	(xAnimRight.to	-	x)	*	1000	/

flags.speed;

								xAnimLeft.duration	=	(x	-	xAnimLeft.to)	*	1000	/	flags.speed;

				}

				NumberAnimation	on	x	{

								id:	xAnimRight

								running:	flags.horizontal	>	0

								to:	parent.width

				}

				NumberAnimation	on	x	{

								id:	xAnimLeft

								running:	flags.horizontal	<	0

								to:	0

				}	

}

What	just	happened?
Instead	of	performing	actions	immediately,	upon	pressing	a	key,	we
are	now	setting	flags	(in	a	private	object)	for	which	direction	the
character	should	be	moving	in.	In	our	situation,	the	right	direction
has	priority	over	the	left	direction.	Setting	a	flag	triggers	an
animation	that	tries	to	move	the	character	toward	an	edge	of	the
scene.	Releasing	the	button	will	clear	the	flag	and	stop	the
animation.	Before	the	animation	is	started,	we	are	calling
the	recalculateDurations()	function,	which	checks	how	long	the
animation	should	last	for	the	character	to	move	at	the	desired
speed.

If	you	want	to	replace	keyboard-based	input	with	something	else,	for	example,
accelerometer	or	custom	buttons,	the	same	principle	can	be	applied.	When	using	an
accelerometer,	you	can	even	control	the	speed	of	the	player	by	measuring	how	much	the
device	is	tilted.	You	can	additionally	store	the	tilt	in	the	flags.horizontal	parameter	and
make	use	of	that	variable	in	the	recalculateDurations()	function.

Have	a	go	hero	–	Polishing	the
animation
What	we	have	done	is	sufficient	for	many	applications.	However,
you	can	try	controlling	the	movement	even	more.	As	a	challenge,	try
modifying	the	system	in	such	a	way	that	during	a	jump,	inertia
keeps	the	current	horizontal	direction	and	speed	of	movement	of
the	character	until	the	end	of	the	jump.	If	the	player	releases	the
right	or	left	keys	during	a	jump,	the	character	will	stop	only	after
the	jump	is	complete.

Despite	trying	to	do	everything	in	a	declarative	fashion,	some
actions	will	still	require	imperative	code.	If	some	action	is	to	be
executed	periodically,	you	can	use	the	Timer	item	to	execute	a
function	on	demand.	Let's	go	through	the	process	of	implementing
such	patterns	together.

Time	for	action	–	Generating
coins
The	goal	of	the	game	we	are	trying	to	implement	is	to	collect	coins.
We	will	spawn	coins	now	and	then	in	random	locations	of	the	scene.

Create	a	new	QML	Document	and	call	it	Coin.qml.	In	the	editor,	enter
the	following	code:

Item	{

				id:	coin

				

				Rectangle	{

								id:	coinVisual

								color:	"yellow"

								border.color:	Qt.darker(color)

								border.width:	2

								width:	30;	height:	width

								radius:	width	/	2

								anchors.centerIn:	parent

								

								transform:	Rotation	{

												origin.x:	coinVisual.width	/	2

												origin.y:	coinVisual.height	/	2

												axis	{	x:	0;	y:	1;	z:	0	}												

												NumberAnimation	on	angle	{

																from:	0;	to:	360

																loops:	Animation.Infinite

																running:	true

																duration:	1000

												}

								}

								Text	{

												color:	coinVisual.border.color

												anchors.centerIn:	parent

												text:	"1"

								}

				}

}

Next,	open	the	document	where	the	scene	is	defined	and	enter	the
following	code	somewhere	in	the	scene	definition:

Component	{

				id:	coinGenerator

				Coin	{}

}

Timer	{

				id:	coinTimer

				interval:	1000

				repeat:	true

				running:	true

				

				onTriggered:	{

								var	cx	=	Math.floor(Math.random()	*	root.width);

								var	cy	=	Math.floor(Math.random()	*	root.height	/	3)

															+	root.height	/	2;

								coinGenerator.createObject(root,	{	x:	cx,	y:	cy	});

				}

}

What	just	happened?
First,	we	defined	a	new	element	type,	Coin,	consisting	of	a	yellow
circle	with	a	number	centered	over	an	empty	item.	The	rectangle
has	an	animation	applied	that	rotates	the	item	around	a	vertical
axis,	resulting	in	a	pseudo	three-dimensional	effect.

Next,	a	component	able	to	create	instances	of	a	Coin	element	is
placed	in	the	scene.	Then,	a	Timer	element	is	declared	that	fires	every
second	and	spawns	a	new	coin	at	a	random	location	of	the	scene.

Sprite	animation
The	player	character	as	well	as	any	other	component	of	the	game
should	be	animated.	If	the	component	is	implemented	using	simple
Qt	Quick	shapes,	it	is	quite	easy	to	do	by	changing	the	item's
properties	fluently,	using	property	animations	(as	we	did	with
the	Coin	object).	Things	get	more	difficult	if	a	component	is	complex
enough	that	it	is	easier	to	draw	it	in	a	graphics	program	and	use	an
image	in	the	game	instead	of	trying	to	recreate	the	object	using	Qt
Quick	items.	Then,	you	need	a	number	of	images—one	for	every
frame	of	animation.	Images	would	have	to	keep	replacing	one
another	to	make	a	convincing	animation.

Time	for	action	–	Implementing
simple	character	animation
Let's	try	to	make	the	player	character	animated	in	a	simple	way.	In
the	materials	that	come	with	this	book,	you	will	find	a	number	of
images	with	different	walking	phases	for	Benjamin	the	Elephant.
You	can	use	them,	or	you	can	draw	or	download	some	other	images
to	be	used	in	place	of	those	provided	by	us.

Put	all	images	in	one	directory	(for	example,	images)	and	rename
them	so	that	they	follow	a	pattern	that	contains	the	base	animation
name	followed	by	a	frame	number,	for
example,	walking_01,	walking_02,	walking_03,	and	so	on.

Next,	open	the	Player.qml	document	and	replace	the	image	element
showing	elephant.png	with	the	following	code:

Image	{

				id:	elephantImage

				property	int	currentFrame:	1

				property	int	frameCount:	7

				source:	"images/walking_"	+	currentFrame	+	".png"

				mirror:	player.facingLeft

				

				anchors.bottom:	parent.bottom

				anchors.horizontalCenter:	parent.horizontalCenter

				NumberAnimation	on	currentFrame	{

								from:	1

								to:	frameCount

								loops:	Animation.Infinite

								duration:	elephantImage.frameCount	*	40

								running:	player.walking

				}

}

In	the	root	element	of	Player.qml,	add	the	following	properties:

property	bool	walking:	flags.horizontal	!==	0

property	bool	facingLeft:	flags.horizontal	<	0

Start	the	program	and	use	the	arrow	keys	to	see	Benjamin	move.

What	just	happened?
A	number	of	images	were	prepared	following	a	common	naming
pattern	containing	a	number.	All	the	images	have	the	same	size.
This	allows	us	to	replace	one	image	with	another	just	by	changing
the	value	of	the	source	property	to	point	to	a	different	image.	To
make	it	easier,	we	introduced	a	property	called
the	currentFrame	element	that	contains	the	index	of	the	image	to	be
displayed.	We	used	the	currentFrame	element	in	a	string,	forming	an
expression	bound	to	the	source	element	of	the	image.	To	make
substituting	frames	easy,	a	NumberAnimation	element	was	declared	to
modify	the	values	of	the	currentFrame	element	in	a	loop	from	1	to	the
number	of	animation	frames	available	(represented	by
the	frameCount	property)	so	that	each	frame	is	shown	for	40
milliseconds.

The	animation	is	playing	if	the	walking	property	evaluates
to	true	(based	on	the	value	of	the	flags.horizontal	element	in	the	player
object).	Finally,	we	use	the	mirror	property	of	the	Image	parameter	to
flip	the	image	if	the	character	is	walking	left.

The	preceding	approach	works,	but	it's	not	perfect.	The	complexity
of	the	declaration	following	this	pattern	grows	much	faster	than
required	when	we	want	to	make	movement	animation	more
complex	(for	example,	if	we	want	to	introduce	jumping).	This	is	not
the	only	problem,	though.	Loading	images	does	not	happen
instantly.	The	first	time	a	particular	image	is	to	be	used,	the
animation	can	stall	for	a	moment	while	the	graphics	get	loaded,
which	may	ruin	the	user	experience.	Lastly,	it	is	simply	messy	to
have	a	bunch	of	pictures	here	and	there	for	every	image	animation.

A	solution	to	this	is	to	use	a	sprite	sheet—a	set	of	small	images
combined	into	a	single	larger	image	for	better	performance.	Qt

Quick	supports	sprite	sheets	through	its	sprite	engine	that	handles
loading	sequences	of	sprites	from	a	single	image,	animating	them,
and	transitioning	between	different	sprites.

In	Qt	Quick,	a	sprite	sheet	can	be	an	image	of	any	type	supported	by
Qt	that	contains	an	image	strip	with	all	frames	of	the	animation.
Subsequent	frames	should	form	a	continuous	line	flowing	from	left
to	right	and	from	the	top	to	the	bottom	of	the	image.	However,	they
do	not	have	to	start	in	the	top-left	corner	of	the	containing	image,
nor	do	they	have	to	end	in	its	bottom-right	corner—a	single	file	can
contain	many	sprites.	A	sprite	is	defined	by	providing	the	size	of	a
single	frame	in	pixels	and	a	frame	count.	Optionally,	you	can	specify
an	offset	from	the	top-left	corner	where	the	first	frame	of	the	sprite
is	to	be	read	from.	The	following	diagram	can	be	helpful	in
visualizing	the	scheme:

QML	offers	a	Sprite	element	type	with	a	source	property	pointing	to
the	URL	of	the	container	image,
the	frameWidth	and	frameHeight	properties	determining	the	size	of	each
frame,	and	a	frameCount	property	defining	the	number	of	frames	in	the
sprite.	Offsetting	the	image	can	be	achieved	by	setting	values	of

the	frameX	and	frameY		properties.	In	addition	to	this,	some	additional
properties	are	present;	the	most	important	three
are	frameRate,	frameDuration,	and	duration.	All	these	serve	to	determine	the
pace	of	the	animation.	If	the	frameRate	element	is	defined,	it	is
interpreted	as	a	number	of	frames	to	cycle	through	per	second.	If
this	property	is	not	defined,	then	the		frameDuration	element	kicks	in
and	is	treated	as	a	period	of	time	in	which	to	display	a	single	frame
(thus,	it	is	directly	an	inverse	of	the	frameRate	element).	If	this
property	is	not	defined	as	well,	the	duration	element	is	used,	which
carries	the	duration	of	the	whole	animation.	You	can	set	any	of
these	three	properties,	but	you	don't	need	to	set	more	than	one	of
them.

Time	for	action	–	Animating
characters	using	sprites
Let's	wait	no	further.	The	task	at	hand	is	to	replace	the	manual
animation	from	the	previous	exercise	with	a	sprite	sheet	animation.

Open	the	Player.qml	document,	remove	the	whole	image	element
responsible	for	displaying	the	player	character,	and	add	the
following	code:

AnimatedSprite	{

				id:	sprite

				source:	"images/sprite.png"

				frameX:	560

				frameY:	0

				frameWidth:	80

				frameHeight:	52

				frameCount:	7

				frameRate:	10

				interpolate:	true

				width:	frameWidth

				height:	frameHeight

				running:	player.walking

				anchors.bottom:	parent.bottom

				anchors.horizontalCenter:	parent.horizontalCenter

				transform:	Scale	{

								origin.x:	sprite.width	/	2

								xScale:	player.facingLeft	?	-1	:	1

				}

}

What	just	happened?
We	replaced	the	previous	static	image	with	an	ever-changing	source
with	a	different	item.	As	the	Sprite	parameter	is	not	an	Item	element
but	a	data	definition	of	a	sprite,	we	cannot	use	it	in	place	of
the	Image	element.	Instead,	we	will	use	the	AnimatedSprite	element,
which	is	an	item	that	can	display	a	single	animated	sprite	defined
inline.	It	even	has	the	same	set	of	properties	as	the	Sprite	parameter.
We	defined	a	sprite	embedded	in	images/sprite.png	with	a	width
of	80	and	a	height	of	52	pixels.	The	sprite	consists	of	seven	frames
that	should	be	displayed	at	a	rate	of	10	frames	per	second.	The	
running	
property	is	set	up	similar	to	the	original	Animation	element.	As	the	
AnimatedSprite	
element	does	not	have	a	mirror	property,	we	emulate	it	by	applying	a
scale	transformation	that	flips	the	item	horizontally	if
the	player.facingLeft		expression	evaluates	to	true.	Additionally,	we	set
the	interpolate	property	to		true,	which	makes	the	sprite	engine
calculate	smoother	transitions	between	frames.

The	result	we	are	left	with	is	similar	to	an	earlier	attempt,	so	if	these
two	are	similar,	why	bother	using	sprites?	In	many	situations,	you
want	more	complex	animation	than	just	a	single-frame	sequence.
What	if	we	want	to	animate	the	way	Benjamin	jumps	in	addition	to
walking?	Embedding	more	manual	animations,	although	possible,
would	explode	the	number	of	internal	variables	required	to	keep	the
state	of	the	object.	Fortunately,	the	Qt	Quick	sprite	engine	can	deal
with	that.	The	AnimatedSprite	element	we	used	provides	a	subset	of
features	of	the	whole	framework.	By	substituting	the	item	with
the	SpriteSequence	element,	we	gain	access	to	the	full	power	of	sprites.
Whilst	we're	on	the	subject	of	Sprite,	we	need	to	tell	you	about	one
additional	property	of	the	object,	a	property	called	to	that	contains	a
map	of	probabilities	of	transitioning	from	the	current	sprite	to

another	one.	By	stating	which	sprites	the	current	one	migrates	to,
we	create	a	state	machine	with	weighted	transitions	to	other	sprites
as	well	as	cycling	back	to	the	current	state.

Transitioning	to	another	sprite	is	triggered	by	setting
the	goalSprite	property	on	the	SpriteSequence	object.	This	will	cause	the
sprite	engine	to	traverse	the	graph	until	it	reaches	the	requested
state.	It	is	a	great	way	to	fluently	switch	from	one	animation	to
another	by	going	through	a	number	of	intermediate	states.

Instead	of	asking	the	sprite	machine	to	gracefully	transit	to	a	given
state,	you	can	ask	it	to	force	an	immediate	change	by	calling
the	SpriteSequence	class's	jumpTo()	method	and	feeding	it	the	name	of	the
sprite	that	should	start	playing.

The	last	thing	that	needs	to	be	clarified	is	how	to	actually	attach	the
sprite	state	machine	to	the	SpriteSequence	class.	It	is	very	easy—just
assign	an	array	of	the	Sprite	objects	to	the	sprites	property.

Time	for	action	–	Adding
jumping	with	sprite	transitions
Let's	replace	the	AnimatedSprite	class	with	the	SpriteSequence	class	in	the
Bejamin	the	Elephant	animation,	adding	a	sprite	to	be	played
during	the	jumping	phase.

Open	the	Player.qml	file	and	replace	the	AnimatedSprite	object	with	the
following	code:

SpriteSequence	{

				id:	sprite

				width:	80

				height:	52

				interpolate:	false

				anchors.bottom:	parent.bottom

				anchors.horizontalCenter:	parent.horizontalCenter

				running:	true

				Sprite	{

								name:	"still"

								source:	"images/sprite.png"

								frameCount:	1

								frameWidth:	80;	frameHeight:	52

								frameDuration:	100

								to:	{	"still":	1,	"walking":	0,	"jumping":	0	}

				}

				Sprite	{

								name:	"walking"

								source:	"images/sprite.png"

								frameX:	560;	frameY:	0

								frameCount:	7

								frameWidth:	80;	frameHeight:	52

								frameRate:	20

								to:	{	"walking":	1,	"still":	0,	"jumping":	0	}

				}

				Sprite	{

								name:	"jumping"

								name:	"jumping"

								source:	"images/sprite.png"

								frameX:	480;	frameY:	52

								frameCount:	11

								frameWidth:	80;	frameHeight:	70

								frameDuration:	50

								to:	{	"still"	:	0,	"walking":	0,	"jumping":	1	}

				}

				transform:	Scale	{

								origin.x:	sprite.width	/	2

								xScale:	player.facingLeft	?	-1	:	1

				}

}

Next,	extend	the	jumpAnim	object	by	adding	the	highlighted	changes:

SequentialAnimation	{

				id:	jumpAnim

				running:	false

				ScriptAction	{	

								script:	{

												sprite.goalSprite	=	"jumping";

								}

				}

				NumberAnimation	{

								target:	player;	property:	"y"

								to:	player.parent.height	-	50

								easing.type:	Easing.OutQuad

				}

				NumberAnimation	{

								target:	player;	property:	"y"

								to:	player.parent.height

								easing.type:	Easing.InQuad

				}

				ScriptAction	{

								script:	{	

												sprite.goalSprite	=	"";

												sprite.jumpTo("still");	

								}

				}

}	

What	just	happened?
The	SpriteSequence	element	we	have	introduced	has	its	Item	elements-
related	properties	set	up	in	the	same	way	as
the	AnimatedSprite	element.	Apart	from	that,	a	sprite	called	"still"	was
explicitly	set	as	the	current	one.	We	defined	a	number
of	Sprite	objects	as	children	of	the	SpriteSequence	element.	This	is
equivalent	to	assigning	those	sprites	to	the	sprites	property	of	the
object.	The	complete	state	machine	that	was	declared	is	presented
in	the	following	diagram:

A	sprite	called	"still"	has	just	a	single	frame	representing	a	situation
when	Benjamin	doesn't	move.	The	sprite	keeps	spinning	in	the
same	state	due	to	the	weighted	transition	back	to	the	"still"	state.
The	two	remaining	transitions	from	that	state	have	their	weights	set
to	0,	which	means	they	will	never	trigger	spontaneously,	but	they

can	be	invoked	by	setting	the	goalSprite	property	to	a	sprite	that	can
be	reached	by	activating	one	of	those	transitions.

The	sequential	animation	was	extended	to	trigger	sprite	changes
when	the	elephant	lifts	into	the	air.

Have	a	go	hero	–	Making
Benjamin	wiggle	his	tail	in
anticipation
To	practice	sprite	transitions,	your	goal	is	to	extend	the	state
machine	of	Benjamin's	SpriteSequence	element	to	make	him	wiggle	his
tail	when	the	elephant	is	standing	still.	You	can	find	the	appropriate
sprite	in	the	materials	that	come	included	with	this	book.	The	sprite
field	is	called	wiggling.png.	Implement	the	functionality	by	making	it
probable	that	Benjamin	spontaneously	goes	from	the	"still"	state	to
"wiggling".	Pay	attention	to	ensure	that	the	animal	stops	wiggling
and	starts	walking	the	moment	the	player	activates	the	right	or	left
arrow	keys.

Time	for	action	–	Revisiting
parallax	scrolling
We	already	discussed	the	useful	technique	of	parallax	scrolling	in	Ch
apter	6,	Qt	Core	Essentials.	It	gives	the	impression	of	depth	for	2D
games	by	moving	multiple	layers	of	background	at	a	different	speed
depending	on	the	assumed	distance	of	the	layer	from	the	viewer.
Let's	see	how	easy	it	is	to	apply	the	same	technique	in	Qt	Quick.

We	will	implement	parallax	scrolling	with	a	set	of	layers	that	move
in	the	direction	opposite	to	the	one	the	player	is	moving	in.
Therefore,	we	will	need	a	definition	of	the	scene	and	a	moving	layer.

Create	a	new	QML	File	(Qt	Quick	2).	Call	it	ParallaxScene.qml.	The
scene	will	encompass	the	whole	game	"level"	and	will	expose	the
position	of	the	player	to	the	moving	layers.	Put	the	following	code	in
the	file:

import	QtQuick	2.9

	

Item	{

				id:	root

				property	int	currentPos

				x:	-currentPos	*	(root.width	-	root.parent.width)	/	width

}

Then,	create	another	QML	file	and	call	it	ParallaxLayer.qml.	Make	it
contain	the	following	definition:

import	QtQuick	2.9

	

Item	{

				property	real	factor:	0

				x:	factor	>	0	?	-parent.currentPos	/	factor	-	parent.x	:	0

				x:	factor	>	0	?	-parent.currentPos	/	factor	-	parent.x	:	0

}

Now,	let's	use	the	two	new	element	types	in	the	main	QML
document.	We'll	take	elements	from	the	earlier	scene	definition	and
make	them	into	different	parallax	layers—the	sky,	the	trees,	and	the
grass:

Rectangle	{

				id:	view

				

				width:	600

				height:	380

				

				ParallaxScene	{

								id:	scene

								width:	1500;	height:	380

								anchors.bottom:	parent.bottom

								currentPos:	player.x

								

								ParallaxLayer	{

												factor:	7.5

												width:	sky.width;	height:	sky.height

												anchors.bottom:	parent.bottom

												Image	{	id:	sky;	source:	"images/sky.png"	}

												Item	{

																	id:	sun

																	//...

												}

								}

								ParallaxLayer	{

												factor:	2.5

												width:	trees.width;	height:	trees.height

												anchors.bottom:	parent.bottom

												Image	{	id:	trees;	source:	"images/trees.png"	}

								}

								ParallaxLayer	{

												factor:	0

												width:	grass.width;	height:	grass.height

												anchors.bottom:	parent.bottom

												Image	{	id:	grass;	source:	"images/grass.png"	}

								}

								

								Item	{

												id:	player

												//	...

												//	...

								}

								Component	{

												id:	coinGenerator

												Coin	{}

								}

								Timer	{

												id:	coinTimer

												//...

												onTriggered:	{

																var	cx	=	Math.floor(Math.random()	*	scene.width);

																var	cy	=	Math.floor(Math.random()	*	scene.height	/	3)

+

																				scene.height	/	2;

																coinGenerator.createObject(scene,	{	x:	cx,	y:	cy});

												}

								}

				}

}

You	can	now	run	the	game	and	observe	the	movement	of
background	layers	when	the	player	moves	around:

What	just	happened?
The	ParallaxScene	element	we	implemented	is	a	moving	plane.	Its
horizontal	offset	depends	on	the	character's	current	position	and
the	size	of	the	view.	The	range	of	scroll	of	the	scene	is	determined
by	the	difference	between	the	scene	size	and	the	view	size—it	says
how	much	scrolling	we	have	to	do	when	the	character	moves	from
the	left	edge	to	the	right	edge	of	the	scene	so	that	it	is	in	view	all	the
time.	If	we	multiply	that	by	the	distance	of	the	character	from	the
left	edge	of	the	scene	expressed	as	a	fraction	of	the	scene	width,	we
will	get	the	needed	scene	offset	in	the	view	(or	otherwise	speaking,	a
projection	offset	of	the	scene).

The	second	type—ParallaxLayer—is	also	a	moving	plane.	It	defines	a
distance	factor	that	represents	the	relative	distance	(depth)	of	the
layer	behind	the	foreground,	which	influences	how	fast	the	plane
should	be	scrolled	compared	to	the	foreground	(scene).	The	value
of	0	means	that	the	layer	should	be	moving	with	exactly	the	same
speed	as	the	foreground	layer.	The	larger	the	value,	the	slower	the
layer	moves	as	compared	to	the	character.	The	offset	value	is
calculated	by	dividing	the	character's	position	in	the	scene	by	the
factor.	Since	the	foreground	layer	is	also	moving,	we	have	to	take	it
into	consideration	when	calculating	the	offset	for	each	parallax
layer.	Thus,	we	subtract	the	horizontal	position	of	the	scene	to	get
the	actual	layer	offset.

Having	the	layers	logically	defined,	we	can	add	them	to	the	scene.
Each	layer	has	a	physical	representation	in	our	case,	static	images
containing	textures	of	the	sky,	trees,	and	grass.	Each	layer	is	defined
separately	and	can	live	its	own	life,	containing	static	and	animated
elements	that	have	no	influence	on	remaining	layers.	For	example,
we	put	the	sun	object	into	the	sky	layer,	so	it	will	move	along	with
the	sky	layer	in	addition	to	playing	its	own	animations.

Finally,	since	we	no	longer	have	the	root	element,	we	modified
the	coinTimer	handler	to	use	the	scene	element	instead.

Have	a	go	hero	–	Vertical
parallax	sliding
As	an	additional	exercise,	you	may	want	to	implement	a	vertical
parallax	sliding	in	addition	to	a	horizontal	one.	Just	make	your
scene	bigger	and	have	it	expose	the	vertical	scroll	position	in
addition	to	the	horizontal	one	reported	by	the	currentPos	element.
Then,	just	repeat	all	the	calculations	for	the	y	property	of	each	layer
and	you	should	be	done	in	no	time.	Remember	that	distance	factors
for	x	and	y	may	be	different.

Collision	detection
There	is	no	built-in	support	for	collision	detection	in	Qt	Quick,	but
there	are	three	ways	of	providing	such	support.	First,	you	can	use	a
ready	collision	system	available	in	a	number	of	2D	physics	engines
such	as	Box2D.	Secondly,	you	can	implement	a	simple	collision
system	yourself	in	C++.	Lastly,	you	can	do	collision	checking
directly	in	JavaScript	by	comparing	object	coordinates	and
bounding	boxes.

Our	game	is	very	simple;	therefore,	we	will	use	the	last	approach.	If
we	had	a	larger	number	of	moving	objects	involved	in	our	game,	we
would	probably	choose	the	second	approach.	The	first	approach	is
best	if	you	have	an	object	of	non-rectangular	shapes	that	can	rotate
and	bounce	off	other	objects.	In	this	case,	having	a	physics	engine	at
hand	becomes	really	useful.

Time	for	action	–	Collecting
coins
From	Qt	Creator's	menu,	access	File	—	New	File	or	Project.	From	Qt
category,	choose	the	JS	File	template.	Call	the	collisions.js	file.	Put
the	following	content	into	the	document:

.pragma	library

	

function	boundingBox(object1)	{

				var	cR	=	object1.childrenRect;

				var	mapped	=	object1.mapToItem(

									object1.parent,	cR.x,	cR.y,	cR.width,	cR.height);

				return	Qt.rect(mapped.x,	mapped.y,	mapped.width,	mapped.height);

}

function	intersect(object1,	object2)	{

				var	r1	=	boundingBox(object1);

				var	r2	=	boundingBox(object2);

				return	(r1.x	<=	r2.x+r2.width	&&	//	r1.left	<=	r2.right

												r2.x	<=	r1.x+r1.width	&&	//	r2.left	<=	r1.right

												r1.y	<=	r2.y+r2.height	&&	//	r1.top	<=	r2.bottom

												r2.y	<=	r1.y+r1.height);	//	r2.top	<=	r1.bottom

}

Create	another	JS	File	and	call	it	coins.js.	Enter	the	following:

.import	"collisions.js"	as	Collisions

var	coins	=	[]

coins.collisionsWith	=	function(player)	{

				var	collisions	=	[];

				for(var	index	=	0;	index	<	coins.length;	++index)	{

								var	obj	=	this[index];

								if(Collisions.intersect(player,	obj))	{

												collisions.push(obj);

												collisions.push(obj);

								}

				}

				return	collisions;

};

coins.remove	=	function(obj)	{

				var	arr	=	Array.isArray(obj)	?	obj	:	[obj];

				var	L	=	arr.length;

				var	idx,	needle;

				while(L	&&	this.length)	{

								needle	=	arr[--L];

								idx	=	this.indexOf(needle);

								if(idx	!==	-1)	{	

													this.splice(idx,	1);

								}

				}

				return	this;

};

Finally,	open	the	main.qml	file	and	add	the	following	import	statement:

import	"coins.js"	as	Coins

In	the	player	object,	define	the	checkCollisions()	function:

function	checkCollisions()	{

				var	result	=	Coins.coins.collisionsWith(player);

				if(result.length	===	0)	return;

				result.forEach(function(coin)	{	coin.hit()	});

				Coins.coins.remove(result)	//	prevent	the	coin	from	being	hit

again

}

Next,	modify	the	coinTimer	handler	to	push	new	coins	to	the	list:

Timer	{

				id:	coinTimer

				//...

				onTriggered:	{

								var	cx	=	Math.floor(Math.random()	*	scene.width);

								var	cy	=	scene.height	-	60	-	Math.floor(Math.random()	*	60);

								var	coin	=	coinGenerator.createObject(scene,	{	x:	cx,	y:	cy});

								Coins.coins.push(coin);

								Coins.coins.push(coin);

				}

}

Lastly,	in	the	same	player	object,	trigger	collision	detection	by
handling	the	position	changes	of	the	player:

onXChanged:	{	

				checkCollisions();

}

onYChanged:	{	

				checkCollisions();

}

In	the	Coin.qml	file,	define	an	animation	and	a	hit()	function:

SequentialAnimation	{

				id:	hitAnim

				running:	false

				NumberAnimation	{

								target:	coin

								property:	"opacity"

								from:	1;	to:	0

								duration:	250

				}

				ScriptAction	{

								script:	coin.destroy()

				}

}

function	hit()	{

				hitAnim.start();

}

What	just	happened?
The	collisions.js	file	contains	functions	used	to	do	collision	checking.
The	first	line	of	the	file	is	a	.pragma	library	statement,	noting	that	this
document	only	contains	functions	and	does	not	contain	any
mutable	object.	This	statement	marks	the	document	as	a	library
that	can	be	shared	between	documents	that	import	it.	This	aids	in
reduced	memory	consumption	and	improved	speed,	as	the	engine
doesn't	have	to	reparse	and	execute	the	document	each	time	it	is
imported.

The	functions	defined	in	the	library	are	really	simple.	The	first	one
returns	a	bounding	rectangle	of	an	object	based	on	its	coordinates
and	the	size	of	its	children.	It	assumes	that	the	top-level	item	is
empty	and	contains	children	that	represent	the	visual	aspect	of	the
object.	Children	coordinates	are	mapped	using	the	mapToItem	function
so	that	the	rectangle	returned	is	expressed	in	the	parent	item
coordinates.	The	second	function	does	a	trivial	checking	of
intersection	between	two	bounding	rectangles	and	returns	true	if
they	intersect	and	false	otherwise.

The	second	document	keeps	a	definition	of	an	array	of	coins.	It	adds
two	methods	to	the	array	object.	The	first	one—collisionsWith—
performs	a	collision	check	between	any	of	the	items	in	the	array	and
the	given	object	using	functions	defined	in	collisions.js.	That's	why
we	import	the	library	at	the	start	of	the	document.	The	method
returns	another	array	that	contains	objects	intersecting
the	player	argument.	The	other	method,	called	remove,	takes	an	object
or	an	array	of	objects	and	removes	them	from	coins.

The	document	is	not	a	library;	therefore,	each	document	that
imports	coins.js	would	get	its	own	separate	copy	of	the	object.	Thus,
we	need	to	ensure	that	coins.js	is	imported	only	once	in	the	game	so

that	all	references	to	the	objects	defined	in	that	document	relate	to
the	same	instance	of	the	object	in	our	program	memory.

Our	main	document	imports	coins.js,	which	creates	the	array	for
storing	coin	objects	and	makes	its	auxiliary	functions	available.	This
allows	the	defined		checkCollisions()		function	to	retrieve	the	list	of
coins	colliding	with	the	player.	For	each	coin	that	collides	with	the
player,	we	execute	a	hit()	method;	as	a	last	step,	all	colliding	coins
are	removed	from	the	array.	Since	coins	are	stationary;	collision	can
only	occur	when	the	player	character	enters	an	area	occupied	by	a
coin.	Therefore,	it	is	enough	to	trigger	collision	detection	when	the
position	of	the	player	character	changes—we	use	the		onXChanged	
and	onYChanged	
handlers.

As	hitting	a	coin	results	in	removing	it	from	the	array,	we	lose	a
reference	to	the	object.	The	hit()	method	has	to	initiate	removal	of
the	object	from	the	scene.	A	minimalistic	implementation	of	this
function	would	be	to	just	call	the	destroy()	function	on	the	object,	but
we	do	more—the	removal	can	be	made	smoother	by	running	a	fade-
out	animation	on	the	coin.	As	a	last	step,	the	animation	can	destroy
the	object.

The	number	of	objects	we	track	on	the	scene	is	really	small,	and	we	simplify	the	shape	of
each	object	to	a	rectangle.	This	lets	us	get	away	with	checking	collisions	in	JavaScript.	For
a	larger	amount	of	moving	objects,	custom	shapes,	and	handling	rotations,	it	is	much
better	to	have	a	collision	system	based	on	C++.	The	level	of	complexity	of	such	a	system
depends	on	your	needs.

Have	a	go	hero	–	Extending	the
game
You	can	polish	your	game	development	skills	by	implementing	new
game	mechanics	in	our	jumping	elephant	game.	For	example,	you
can	introduce	a	concept	of	fatigue.	The	more	the	character	jumps,
the	more	tired	they	get	and	the	slower	they	begin	to	move	and	have
to	rest	to	regain	speed.	To	make	the	game	more	difficult,	at	times
moving	obstacles	can	be	generated.	When	the	character	bumps	into
any	of	them,	they	get	more	and	more	tired.	When	the	fatigue
exceeds	a	certain	level,	the	character	dies	and	the	game	ends.
The	heartbeat	diagram	we	previously	created	can	be	used	to
represent	the	character's	level	of	fatigue—the	more	tired	the
character	gets,	the	faster	their	heart	beats.

There	are	many	ways	these	changes	can	be	implemented,	and	we
want	to	give	you	a	level	of	freedom,	so	we	will	not	provide	a	step-by-
step	guide	on	how	to	implement	a	complete	game.	You	already
know	a	lot	about	Qt	Quick,	and	this	is	a	good	opportunity	to	test
your	skills!

Pop	quiz
Q1.	Which	of	the	following	types	cannot	be	used	with	the	special	on-
property	syntax?

1.	 Animation

2.	 Transition

3.	 Behavior

Q2.	Which	QML	type	allows	you	to	configure	a	sprite	animation
with	transitions	between	multiple	states?

1.	 SpriteSequence

2.	 Image

3.	 AnimatedSprite

Q3.	Which	QML	type	is	able	to	prevent	any	instant	change	of	the
property's	value	and	perform	a	gradual	change	of	value	instead?

1.	 Timer

2.	 Behavior

3.	 PropertyAction

Summary
In	this	chapter,	we	showed	you	how	to	extend	your	Qt	Quick	skills
to	make	your	applications	dynamic	and	attractive.	We	went	through
the	process	of	recreating	and	improving	a	game	created	earlier	in
C++	to	familiarize	you	with	concepts	such	as	collision	detection,
state-driven	objects,	and	time-based	game	loops.	You	are	now
familiar	with	all	the	most	important	concepts	required	to	make
games	using	Qt	Quick.

In	the	next	chapter,	we	will	turn	our	attention	to	techniques	that
will	make	your	games	even	more	visually	appealing.	We'll	explore
the	built-in	graphical	effects	Qt	Quick	provides.	You	will	also	learn
to	extend	Qt	Quick	with	custom	painted	items	implemented	in	C++.
This	will	give	you	the	freedom	to	create	any	visual	effects	you	have
in	mind.

Advanced	Visual	Effects	in	Qt
Quick
Sprite	animations	and	smooth	transitions	are	not	always	enough	to
make	the	game	visually	appealing.	In	this	chapter,	we	will	explore
many	ways	to	add	some	eye	candy	to	your	games.	Qt	Quick	provides
a	decent	amount	of	built-in	visual	effects	that	will	come	in	handy.
However,	from	time	to	time,	you	will	want	to	do	something	that	is
not	possible	to	do	with	standard	components—something	unique
and	specific	to	your	game.	In	these	cases,	you	don't	need	to	limit
your	imagination.	We	will	teach	you	to	dive	deep	into	the	C++	API
of	Qt	Quick	to	implement	truly	unique	graphics	effects.

The	main	topics	covered	in	this	chapter	are	these:

Auto-scaling	user	interfaces

Applying	graphical	effects	to	the	existing	items

Particle	systems

OpenGL	painting	in	Qt	Quick

Using	QPainter	in	Qt	Quick

Making	the	game	more
attractive
A	game	should	not	just	be	based	upon	an	interesting	idea,	and	it
should	not	only	work	fluently	on	a	range	of	devices	and	give
entertainment	to	those	people	playing	it.	It	should	also	look	nice
and	behave	nicely.	Whether	people	are	choosing	from	a	number	of
similar	implementations	of	the	same	game	or	want	to	spend	money
on	another	similarly	priced	and	entertaining	game,	there	is	a	good
chance	that	they'll	choose	the	game	that	looks	the	best—having	a	lot
of	animations,	graphics,	and	flashy	content.	We	already	learned	a
number	of	techniques	to	make	a	game	more	pleasing	to	the	eye,
such	as	using	animations	or	implementing	parallax	effect.	Here,	we
will	show	you	a	number	of	other	techniques	that	can	make	your	Qt
Quick	applications	more	attractive.

Auto-scaling	user	interfaces
The	first	extension	you	may	implement	is	making	your	game	auto-
adjust	to	the	device	resolution	it	is	running	on.	There	are	basically
two	ways	to	accomplish	this.	The	first	is	to	center	the	user	interface
in	the	window	(or	screen)	and	if	it	doesn't	fit,	enable	scrolling.	The
other	approach	is	to	scale	the	interface	to	always	fit	the	window	(or
screen).	Which	one	to	choose	depends	on	a	number	of	factors,	the
most	important	of	which	is	whether	your	UI	is	good	enough	when
upscaled.	If	the	interface	consists	of	text	and	non-image	primitives
(basically	rectangles),	or	if	it	includes	images	but	only	vector	ones
or	those	with	very	high	resolution,	then	it	is	probably	fine	to	try	and
scale	the	user	interface.	Otherwise,	if	you	use	a	lot	of	low-resolution
bitmap	images,	you	will	have	to	choose	one	particular	size	for	the
UI	(optionally	allowing	it	to	downscale,	since	the	quality
degradation	should	be	less	significant	in	this	direction	if	you	enable
anti-aliasing).

Whether	you	choose	to	scale	or	to	center	and	scroll,	the	basic
approach	is	the	same—you	put	your	UI	item	in	another	item	so	that
you	have	fine	control	over	the	UI	geometry,	regardless	of	what
happens	to	the	top-level	window.	Taking	the	centered	approach	is
quite	easy—just	anchor	the	UI	to	the	center	of	the	parent.	To	enable
scrolling,	wrap	the	UI	in	the	Flickable	item	and	constrain	its	size	if
the	size	of	the	window	is	not	big	enough	to	fit	the	whole	user
interface:

Window	{

				//...

				Flickable	{

								id:	uiFlickable

								anchors.centerIn:	parent

								contentWidth:	ui.width

								contentHeight:	ui.height

								width:	parent.width	>=	contentWidth	?

															contentWidth	:	parent.width

								height:	parent.height	>=	contentHeight	?

																contentHeight	:	parent.height

								UI	{

												id:	ui

								}

				}

}

You	can	put	the	following	simple	code	into	the	UI.qml	file	to	see	how
Flickable	positions	the	UI	item:

import	QtQuick	2.0

Rectangle	{

				width:	300

				height:	300

				gradient:	Gradient	{

								GradientStop	{	position:	0.0;	color:	"lightsteelblue"	}

								GradientStop	{	position:	1.0;	color:	"blue"	}

				}

}

You	should	probably	decorate	the	top-level	item	with	a	nice
background	if	the	UI	item	does	not	occupy	the	full	area	of	its
parent.

Scaling	seems	more	complicated,	but	it	is	really	easy	with	Qt	Quick.
Again,	you	have	two	choices—either	stretch	or	scale.	Stretching	is	as
easy	as	executing	the	anchors.fill:	parent	command,	which	effectively
forces	the	UI	to	recalculate	the	geometry	of	all	its	items,	but	it
possibly	allows	us	to	use	the	space	more	efficiently.	It	is,	in	general,
very	time-consuming	for	the	developer	to	provide	expressions	for
calculating	the	geometry	of	each	and	every	element	in	the	user
interface	as	the	size	of	the	view	changes.	This	is	usually	not	worth
the	effort.	A	simpler	approach	is	to	just	scale	the	UI	item	to	fit	the
window,	which	will	implicitly	scale	the	contained	items.	In	such	an
event,	their	size	can	be	calculated	relative	to	the	base	size	of	the

main	view	of	the	user	interface.	For	this	to	work,	you	need	to
calculate	the	scale	that	is	to	be	applied	to	the	user	interface	to	make
it	fill	the	whole	space	available.	The	item	has	a	scale	of	1	when	its
effective	width	equals	its	implicit	width	and	its	effective	height
equals	its	implicit	height.	If	the	window	is	larger,	we	want	to	scale
up	the	item	until	it	reaches	the	size	of	the	window.

Therefore,	the	window's	width	divided	by	the	item's	implicit	width
will	be	the	item's	scale	in	the	horizontal	direction.	This	is	shown	in
the	following	diagram:

						

The	same	can	be	applied	to	the	vertical	direction,	but	if	the	UI	has	a
different	aspect	ratio	than	the	window,	its	horizontal	and	vertical
scale	factors	will	be	different.	For	the	UI	to	look	nice,	we	have	to
take	the	lower	of	the	two	values—to	only	scale	up	as	much	as	the
direction	with	less	space	allows,	leaving	a	gap	in	the	other	direction:

Window	{

				//...

				UI	{

				UI	{

								id:	ui

								anchors.centerIn:	parent

								scale:	Math.min(parent.width	/	width,

																								parent.height	/	height)

				}

}

Again,	it	may	be	a	good	idea	to	put	some	background	on	the
window	item	to	fill	in	the	gaps.

What	if	you	want	to	save	some	margin	between	the	user	interface
and	the	window?	You	can,	of	course,	take	that	into	consideration
when	calculating	the	scale	((window.width	-	2	*	margin)	/	width,	and	so	on)
but	there	is	an	easier	way—simply	put	an	additional	item	inside	the
window,	leaving	an	appropriate	margin,	and	put	the	user	interface
item	in	that	additional	item	and	scale	it	up	to	the	additional	item's
size:

Window	{

				//...

				Item	{

								anchors	{

												fill:	parent

												margins:	10

								}

								UI	{

												id:	ui

												anchors.centerIn:	parent

												scale:	Math.min(parent.width	/	width,

																												parent.height	/	height)

								}

				}

}

When	you	scale	elements	a	lot,	you	should	consider	enabling	anti-
aliasing	for	items	that	can	lose	quality	when	rendered	in	a	size
different	than	their	native	size	(for	example,	images).	This	is	done
very	easily	in	Qt	Quick,	as	each	Item	instance	has	a	property
called	antialiasing	which,	when	enabled,	will	cause	the	rendering
backend	to	try	to	reduce	distortions	caused	by	the	aliasing	effect.

Remember	that	this	comes	at	the	cost	of	increased	rendering
complexity,	so	try	to	find	a	balance	between	quality	and	efficiency,
especially	on	low-end	hardware.	You	may	provide	an	option	to	the
user	to	globally	enable	or	disable	anti-aliasing	for	all	game	objects
or	to	gradually	adjust	quality	settings	for	different	object	types.

Graphical	effects
The	basic	two	predefined	items	in	Qt	Quick	are	rectangle	and
image.	You	can	use	them	in	a	variety	of	creative	ways	and	make
them	more	pleasant-looking	by	applying	GLSL	shaders.	However,
implementing	a	shader	program	from	scratch	is	cumbersome	and
requires	in-depth	knowledge	of	the	shader	language.	Luckily,	a
number	of	common	effects	are	already	implemented	and	ready	to
use	in	the	form	of	the	QtGraphicalEffects	module.

To	add	a	subtle	black	shadow	to	our	canvas-based	heartbeat
element	defined	in	the	HeartBeat.qml	file,	use	a	code	similar	to	the
following	that	makes	use	of	the	DropShadow	effect:

import	QtQuick	2.9

import	QtQuick.Window	2.2

import	QtGraphicalEffects	1.0

Window	{

				//...

				HeartBeat	{

								id:	heartBeat

								anchors.centerIn:	parent

								visible:	false

				}

				DropShadow	{

								source:	heartBeat

								anchors.fill:	heartBeat

								horizontalOffset:	3

								verticalOffset:	3

								radius:	8

								samples:	16

								color:	"black"

				}

}

To	apply	a	shadow	effect,	you	need	an	existing	item	as	the	source	of
the	effect.	In	our	case,	we	are	using	an	instance	of	the	HeartBeat	class
centered	in	a	top-level	item.	Then,	the	shadow	effect	is	defined	and
its	geometry	follows	that	of	its	source	using	the	anchors.fill	element.
Just	as	the	DropShadow	class	renders	the	original	item	as	well	as	the
shadow,	the	original	item	can	be	hidden	by	setting
its	visible	property	to	false:

Most	of	the	DropShadow	class's	properties	are	self-explanatory,	but	two
properties—radius	and	samples—require	some	additional	explanation.
The	shadow	is	drawn	as	a	blurred	monochromatic	copy	of	the
original	item	offset	by	a	given	position.	The	two	mentioned
properties	control	the	amount	of	blur	and	its	quality—the	more
samples	used	for	blurring,	the	better	the	effect,	but	also	the	more
demanding	the	computation	that	needs	to	be	performed.

Speaking	of	blur,	the	plain	blurring	effect	is	also	available	in	the
graphics	effects	module	through	the	GaussianBlur	element	type.	To
apply	a	blur	instead	of	a	shadow	to	the	last	example,	simply	replace
the	occurrence	of	the	DropShadow	class	with	the	following	code:

GaussianBlur	{

				source:	heartBeat

				anchors.fill:	heartBeat

				radius:	12

				samples:	20

				transparentBorder:	true

}

This	change	will	produce	the	following	result:		

Here,	you	can	see	two	earlier	mentioned	properties	as	well	as	a
vaguely	named	transparentBorder	one.	Enabling	this	property	fixes
some	artifacts	on	the	edges	of	the	blur	and	in	general,	you'll	want	to
keep	it	that	way.

Have	a	go	hero	–	The	blur
parallax	scrolled	game	view
The	blur	property	is	a	very	nice	effect	that	can	be	used	in	many
situations.	For	example,	you	can	try	to	implement	a	feature	within
our	elephant	game	whereby	when	the	user	pauses	the	game	(for
example,	by	pressing	the	P	key	on	the	keyboard),	the	view	gets
blurred.	Make	the	effect	smooth	by	applying	an	animation	to	the
effect's	radius	property.

Another	interesting	effect	is	Glow.	It	renders	a	colored	and	blurred
copy	of	the	source	element.	An	example	use	case	for	games	is
highlighting	some	parts	of	the	user	interface—you	can	direct	the
user's	attention	to	the	element	(for	example,	button	or	badge)	by
making	the	element	flash	periodically:

Window	{

				//...

				Badge	{

								id:	importantBadge

								anchors.centerIn:	parent

				}

				Glow	{

								source:	importantBadge

								anchors.fill:	source

								samples:	64

								color:	"red"

								SequentialAnimation	on	radius	{

												loops:	Animation.Infinite

												running:	true

												NumberAnimation	{	from:	0;	to:	30;	duration:	500	}

												PauseAnimation	{	duration:	100	}

												NumberAnimation	{	from:	30;	to:	0;	duration:	500	}

												PauseAnimation	{	duration:	1000	}

								}

								}

				}

}

The	complete	module	contains	20	different	effects.	We	cannot
describe	each	effect	in	detail	here.	Nevertheless,	you	can	learn
about	it	yourself.	If	you	clone	the	module's	source	git	repository
(found	under	https://code.qt.io/cgit/qt/qtgraphicaleffects.git/),	in
the	tests/manual/testbed	subdirectory	of	the	cloned	repository,	you	will
find	a	nice	application	for	testing	the	existing	effects.	To	run	the
tool,	open	the	testBed.qml	file	with	qmlscene:

https://code.qt.io/cgit/qt/qtgraphicaleffects.git/

You	can	also	access	a	complete	list	of	effects	and	their	short	descriptions	by	searching
for	QtGraphicalEffects	in	the	documentation	index.

Particle	systems
A	commonly	used	visual	effect	in	games	is	generating	a	large
number	of	small,	usually	short-lived,	often	fast-moving,	fuzzy
objects	such	as	stars,	sparks,	fumes,	dust,	snow,	splinters,	falling
leaves,	or	the	like.	Placing	these	as	regular	items	within	a	scene
would	greatly	degrade	performance.	Instead,	a	special	engine	is
used,	which	keeps	a	registry	of	such	objects	and	tracks	(simulates)
their	logical	attributes	without	having	physical	entities	in	the	scene.
Such	objects,	called	particles,	are	rendered	upon	request	in	the
scene	using	very	efficient	algorithms.	This	allows	us	to	use	a	large
number	of	particles	without	having	a	negative	impact	on	the	rest	of
the	scene.

Qt	Quick	provides	a	particle	system	in	the	QtQuick.Particles	import.
The	ParticleSystem	element	provides	the	core	for	the	simulation,	which
uses	the	Emitter	elements	to	spawn	particles.	They	are	then	rendered
according	to	definitions	in	a	ParticlePainter	element.	Simulated
entities	can	be	manipulated	using	the	Affector	objects,	which	can
modify	the	trajectory	or	life	span	of	particles.

Let's	start	with	a	simple	example.	The	following	code	snippet
declares	the	simplest	possible	particle	system:

import	QtQuick	2.0

import	QtQuick.Window	2.2

import	QtQuick.Particles	2.0

Window	{

				visible:	true

				width:	360

				height:	360

				title:	qsTr("Particle	system")

				ParticleSystem	{

								id:	particleSystem

								anchors.fill:	parent

								Emitter	{	anchors.fill:	parent	}

								ImageParticle	{	source:	"star.png"	}

				}

}

The	result	can	be	observed	in	the	following	image:

Let's	analyze	the	code.	After	importing	QtQuick.Particles	2.0,
a	ParticleSystem		item	is	instantiated	that	defines	the	domain	of	the
particle	system.	We	define	two	objects	within	that	system.	The	first
object	is	the	Emitter	and	defines	an	area	where	particles	will	be
spawned.	The	area	is	set	to	encompass	the	whole	domain.	The
second	object	is	an	object	of	the	ImageParticle	type,	which	is
a	ParticlePainter	subclass.	It	determines	that	particles	should	be
rendered	as	instances	of	a	given	image.	By	default,	the	Emitter	object
spawns	10	particles	per	second,	each	of	which	lives	for	one	second
and	then	dies	and	is	removed	from	the	scene.	In	the	code	presented,
the	Emitter	and	ImageParticle	objects	are	direct	children	of
the	ParticleSystem	class;	however,	this	doesn't	have	to	be	the	case.	The
particle	system	can	be	explicitly	specified	by	setting
the	system	property.

Tuning	the	emitter
You	can	control	the	amount	of	particles	being	emitted	by	setting
the	emitRate	property	of	the	emitter.	Another	property,	called
the	lifeSpan,	determines	how	many	milliseconds	it	takes	before	a
particle	dies.	To	introduce	some	random	behavior,	you	can	use
the	lifeSpanVariation	property	to	set	a	maximum	amount	of	time	(in
milliseconds)	the	life	span	can	be	altered	by	the	system	(in	both
directions):

Emitter	{

				anchors.fill:	parent

				emitRate:	350

				lifeSpan:	1500

				lifeSpanVariation:	400	//	effective:	1100-1900	ms

}

A	possible	result	of	this	change	is	shown	in	the	following	picture:

Increasing	the	emission	rate	and	life	span	of	particles	can	lead	to	a	situation	in	which	a
very	large	number	of	particles	have	to	be	managed	(and	possibly	rendered).	This	can
degrade	performance;	thus,	an	upper	limit	of	particles	that	can	concurrently	be	alive	can
be	set	through	the	maximumEmitted	property.

Tweaking	the	life	span	of	particles	makes	the	system	more	diverse.
To	strengthen	the	effect,	you	can	also	manipulate	the	size	of	each
particle	through	the	size	and			sizeVariation	properties:

Emitter	{

				anchors.fill:	parent

				emitRate:	50

				size:	12

				sizeVariation:	6

				endSize:	2

}

This	will	give	you	particles	of	different	sizes:

The	range	of	functionality	presented	thus	far	should	be	enough	to
create	many	nice-looking	and	useful	particle	systems.	However,
particles	are	emitted	from	the	whole	area	of	the	emitter,	which	is	a
regular	QQuickItem	and	thus	is	rectangular.	This	doesn't	have	to	be	the
case,	though.	The	Emitter	element	contains	a	shape	property,	which	is	a
way	to	declare	the	area	that	is	to	be	giving	birth	to	particles.
The	QtQuick.Particles	module	defines	three	types	of	custom	shape	that
can	be	used—EllipseShape,	LineShape,	and	MaskShape.	The	first	two	are	very
simple,	defining	either	an	empty	or	filled	ellipse	inscribed	in	the
item	or	a	line	crossing	one	of	the	two	diagonals	of	the	item.
The	MaskShape	element	is	more	interesting,	as	it	makes	it	possible	to
use	an	image	as	a	shape	for	the	Emitter	element:

Emitter	{

				anchors.fill:	parent

				emitRate:	1600

				shape:	MaskShape	{	source:	"star.png"	}

}

Particles	can	now	only	spawn	within	the	specified	area:

Rendering	particles
So	far,	we	have	used	a	bare	ImageParticle	element	to	render	particles.
It	is	only	one	of	the	three	ParticlePainters	available,	with	the	others
being	ItemParticle	and			CustomParticle.	However,	before	we	move	on	to
other	renderers,	let's	focus	on	tweaking	the	ImageParticle	element	to
obtain	some	interesting	effects.

The	ImageParticle	element	renders	each	logical	particle	as	an	image.
The	image	can	be	manipulated	separately	for	each	particle	by
changing	its	color	and	rotation,	deforming	its	shape,	or	using	it	as	a
sprite	animation.

To	influence	the	color	of	particles,	you	can	use	any	of	the	large
number	of	dedicated	properties
—alpha,	color,	alphaVariation,	colorVariation,	redVariation,	greenVariation,
and	blueVariation.	The	first	two	properties	define	the	base	value	for
the	respective	attributes,	and	the	remaining	properties	set	the
maximum	deviation	of	a	respective	parameter	from	the	base	value.
In	the	case	of	opacity,	there	is	only	one	type	of	variation	you	can
use,	but	when	defining	the	color,	you	can	either	set	different	values
for	each	of	the	red,	green,	and	blue	channels,	or	you	can	use	the
global	colorVariation				property,	which	is	similar	to	setting	the	same
value	for	all	three	channels.	Allowed	values	are	any	between	the
range	of	0	(no	deviation	allowed)	and	1.0	(100%	in	either	direction).

Note	that	when	a	color	is	applied	to	an	image,	the	respective	components	of	the	colors	(red,
green,	blue,	and	alpha)	are	multiplied.	Black	color	(0,	0,	0,	1)	has	all	components	set	to	0
except	for	alpha,	so	applying	a	solid	color	to	a	black	image	will	not	have	any	effect.	On	the
contrary,	if	your	image	contains	white	pixels	(1,	1,	1,	1),	they	will	be	displayed	in	exactly	the
specified	color.	Transparent	pixels	will	stay	transparent	because	their	alpha	component
will	remain	set	to	0.

In	our	example,	we	can	create	particles	with	different	colors	using
the	following	code:

ImageParticle	{

				source:	"star_white.png"

				colorVariation:	1

}

The	result	should	look	like	this:

The	properties	mentioned	are	stationary—the	particle	obeys	the
constant	value	during	its	whole	life.	The	ImageParticle	element	also
exposes	two	properties,	letting	you	control	the	color	of	particles
relative	to	their	age.	First	of	all,	there	is	a	property	called	
entryEffect	that	defines	what	happens	with	the	particle	at	its	birth	and
death.	The	default	value	is	Fade,	which	makes	particles	fade	in	from	0
opacity	at	the	start	of	their	life	and	fades	them	back	to	0	just	before
they	die.	You	have	already	experienced	this	effect	in	all	the	earlier
particle	animations	we	demonstrated.	Other	values	for	the	property
are		None	and	Scale.	The	first	one	is	obvious—there	is	no	entry	effect
associated	with	particles.	The	second	one	scales	particles	from	0	at
their	birth	and	scales	them	back	to	0	at	the	end	of	their	life.

The	other	time-related	property	is	colorTable.	You	can	feed	it	with	a
URL	of	an	image	to	be	used	as	a	one-dimensional	texture
determining	the	color	of	each	particle	over	its	life.	At	the	beginning,
the	particle	gets	color-defined	by	the	left	edge	of	the	image	and	then
progresses	right	in	a	linear	fashion.	It	is	most	common	to	set	an
image	here	containing	a	color	gradient	to	achieve	smooth
transitions	between	colors.

The	second	parameter	that	can	be	altered	is	the	rotation	of	a
particle.	Here,	we	can	also	either	use	properties	that	define	constant
values	for	rotation	(rotation	and		rotationVariation)	specified	in	degrees
or	modify	the	rotation	of	particles	in	time
with	rotationVelocity	and	rotationVelocityVariation.	The	velocity	defines	the
pace	or	rotation	in	degrees	per	second.

Particles	can	also	be	deformed.	The
xVector	and	yVector	properties	allow	binding	vectors,	which	define
distortions	in	horizontal	and	vertical	axes.	We	will	describe	how	to
set	the	vectors	in	the	next	section.	Last	but	not	least,	using
the	sprites	property,	you	can	define	a	list	of	sprites	that	will	be	used
to	render	particles.	This	works	in	a	fashion	similar	to	the
SpriteSequence	type	described	in	the	previous	chapter.

Making	particles	move
Apart	from	fading	and	rotating,	the	particle	systems	we	have	seen
so	far	were	very	static.	While	this	is	useful	for	making	star	fields,	it
is	not	at	all	useful	for	explosions,	sparks,	or	even	falling	snow.	This
is	because	particles	are	mostly	about	movement.	Here,	we	will	show
you	two	aspects	of	making	your	particles	fly.

The	first	aspect	is	modeling	how	the	particles	are	born.	By	that,	we
mean	the	physical	conditions	of	the	object	creating	the	particles.
During	an	explosion,	matter	is	pushed	away	from	the	epicenter	with
a	very	large	force	that	causes	air	and	small	objects	to	rush	outward
at	an	extremely	high	speed.	Fumes	from	a	rocket	engine	are	ejected
with	high	velocities	in	the	direction	opposite	to	that	of	the	propelled
craft.	A	moving	comet	draws	along	a	braid	of	dust	and	gases	put
into	motion	by	the	inertia.

All	these	conditions	can	be	modeled	by	setting	the	velocity	or
acceleration	of	the	particles.	These	two	metrics	are	described	by
vectors	determining	the	direction	and	amount	(magnitude	or
length)	of	the	given	quantity.	In	Qt	Quick,	such	vectors	are
represented	by	an	element	type	called	Direction,	where	the	tail	of	the
vector	is	attached	to	the	object	and	the	position	of	the	head	is
calculated	by	the	Direction	instance.	Since	we	have	no	means	of
setting	attributes	on	particles	because	we	have	no	objects
representing	them,	those	two	attributes—velocity	and	acceleration—are
applied	to	emitters	spawning	the	particles.	As	you	can	have	many
emitters	in	a	single	particle	system,	you	can	set	different	velocities
and	accelerations	for	particles	of	different	origins.

There	are	four	types	of	direction	elements	representing	different
sources	of	information	about	the	direction.	First,	there
is	CumulativeDirection,	which	acts	as	a	container	for	other	direction

types	and	works	like	a	sum	of	directions	contained	within.

Then,	there	is	PointDirection,	where	you	can
specify	the	x	and	y	coordinates	of	a	point	where	the	head	of	the
vector	should	be	attached.	To	avoid	the	unrealistic	effect	of	all
particles	heading	in	the	same	direction,	you	can	specify	xVariation
and	yVariation	to	introduce	allowed	deviation	from	a	given	point:

The	third	type	is	the	most	popular	direction	type—AngleDirection,
which	directly	specifies	the	angle	(in	degrees	clockwise	from
straight	right)	and	magnitude	(in	pixels	per	second)	of	the	vector.
The	angle	can	vary	from	the	base	by	angleVariation,	and
similarly,	magnitudeVariation	can	be	used	to	introduce	variation	to	the
length	of	the	vector:

The	last	type	is	similar	to	the	previous	one.	The	TargetDirection	vector
can	be	used	to	point	the	vector	toward	the	center	of	a	given	Qt
Quick	item	(set	with	the	targetItem		property).	The	length	of	the
vector	is	calculated	by	giving	the	magnitude	and		magnitudeVariation,	and
both	can	be	interpreted	as	pixels	per	second	or	multiples	of	distance
between	the	source	and	target	points	(depending	on	the	value	of
the	proportionalMagnitude	property):

Let's	get	back	to	setting	particle	velocity.	We	can	use
the	AngleDirection	vector	to	specify	that	particles	should	be	moving
left,	spreading	at	a	maximum	of	45	degrees:

Emitter	{

Emitter	{

				anchors.centerIn:	parent

				width:	50;	height:	50

				emitRate:	50

				

				velocity:	AngleDirection	{

								angleVariation:	45

								angle:	180

								magnitude:	200

				}

}

This	code	will	produce	the	effect	shown	on	the	following	picture:

Setting	acceleration	works	the	same	way.	You	can	even	set	both	the
initial	velocity	and	the	acceleration	each	particle	should	have.	It	is
very	easy	to	shoot	the	particles	in	the	left	direction	and	start	pulling
them	down:

Emitter	{

				anchors.right:	parent.right

				anchors.verticalCenter:	parent.verticalCenter

				emitRate:	15

				lifeSpan:	5000

				

				velocity:	AngleDirection	{

								angle:	180

								magnitude:	200

				}

				acceleration:	AngleDirection	{

								angle:	90	//	local	left	=	global	down

								angle:	90	//	local	left	=	global	down

								magnitude:	100

				}

}

This	code	will	produce	particles	moving	along	a	single	curve:

The	Emitter	element	has	one	more	nice	property	that	is	useful	in	the
context	of	moving	particles.	Setting	the	velocityFromMovement	parameter
to	a	value	different	from	0		makes	any	movement	of
the	Emitter	element	apply	to	the	velocity	of	the	particles.	The
direction	of	the	additional	vector	matches	the	direction	of	the
emitter's	movement,	and	the	magnitude	is	set	to	the	speed	of	the
emitter	multiplied	by	the	value	set	to	velocityFromMovement.	It	is	a	great
way	to	generate	fumes	ejected	from	a	rocket	engine:

Item	{

				Image	{

								id:	image

								source:	"rocket.png"

				}

				Emitter	{

								anchors.right:	image.right

								anchors.verticalCenter:	image.verticalCenter

								emitRate:	500

								lifeSpan:	3000

								lifeSpanVariation:	1000

								velocityFromMovement:	-20

								

								velocity:	AngleDirection	{

												magnitude:	100

												angleVariation:	40

								}

				}

				NumberAnimation	on	x	{

								...

				}

}

This	is	how	the	result	could	look	like:

The	second	way	of	addressing	the	behavior	of	particles	is	to
influence	their	attributes	after	they	are	born—in	any	particular
moment	of	their	life.	This	can	be	done	using	affectors.	These	are
items	inheriting	affector,	which	can	modify	some	attributes	of
particles	currently	traveling	though	the	area	of	the	affector.	One	of

the	simplest	affectors	is	Age.	It	can	advance	particles	to	a	point	in
their	lifetime	where	they	only	have	lifeLeft	milliseconds	of	their	life
left:

Age	{	

				once:	true	

				lifeLeft:	500	

				shape:	EllipseShape	{	fill:	true	}

				anchors.fill:	parent	

}

Setting	once	to	true	makes	each	affector	influence	a	given	particle	only
once.	Otherwise,	each	particle	can	have	its	attributes	modified
many	times.

Another	affector	type	is	Gravity,	which	can	accelerate	particles	in	a
given	angle.	Friction	can	slow	particles	down,	and	Attractor	will	affect
the	particle's	position,	velocity,	or	acceleration	so	that	it	starts
traveling	toward	a	given	point.	Wander	is	great	for	simulating
snowflakes	or	butterflies	flying	in	pseudo-random	directions.

There	are	also	other	affector	types	available,	but	we	will	not	go	into
their	details	here.	We	would	like	to	warn	you,	however,	against
using	affectors	too	often—they	can	severely	degrade	performance.

Time	for	action	–	Vanishing
coins	spawning	particles
It	is	now	time	to	practice	our	freshly	acquired	skills.	The	task	is	to
add	a	particle	effect	to	the	game	we	created	in	the	previous	chapter.
When	the	player	collects	a	coin,	it	will	explode	into	a	sprinkle	of
colorful	stars.

Start	by	declaring	a	particle	system	as	filling	the	game	scene,	along
with	the	particle	painter	definition:

ParticleSystem	{

				id:	coinParticles

				anchors.fill:	parent	//	scene	is	the	parent

				

				ImageParticle	{

								source:	"images/particle.png"

								colorVariation:	1

								rotationVariation:	180

								rotationVelocityVariation:	10

				}

}

Next,	modify	the	definition	of	Coin	to	include	an	emitter:

Emitter	{

				id:	emitter

				system:	coinParticles

				emitRate:	0

				lifeSpan:	1500

				lifeSpanVariation:	100

				velocity:	AngleDirection	{

								angleVariation:	180

								magnitude:	10

				}

				acceleration:	AngleDirection	{

				acceleration:	AngleDirection	{

								angle:	270

								magnitude:	30

				}

}

Finally,	the	hit()	function	has	to	be	updated:

function	hit()	{

				emitter.burst(50);

				hitAnim.start();

}

Run	the	game	and	see	what	happens	when	Benjamin	collects	coins:

What	just	happened?
In	this	exercise,	we	defined	a	simple	particle	system	that	fills	the
whole	scene.	We	defined	a	simple	image	painter	for	the	particles
where	we	allow	particles	to	take	on	all	the	colors	and	start	in	all
possible	rotations.	We	used	a	star	pixmap	as	our	particle	template.

Then,	an	Emitter	object	is	attached	to	every	coin.	Its	emitRate	is	set	to	0,
which	means	it	does	not	emit	any	particles	on	its	own.	We	set	a
varying	life	span	on	particles	and	let	them	fly	in	all	directions	by
setting	their	initial	velocity	with	an	angle	variation	of	180	degrees	in
both	directions	(giving	a	total	of	360	degrees).	By	setting	an
acceleration,	we	give	the	particles	a	tendency	to	travel	toward	the
top	edge	of	the	scene.

In	the	hit	function,	we	call	a	burst()	function	on	the	emitter,	which
makes	it	give	instant	birth	to	a	given	number	of	particles.

Custom	OpenGL-based	Qt
Quick	items
In	Chapter	12,	Customization	in	Qt	Quick,	we	learned	to	create	new
QML	element	types	that	can	be	used	to	provide	dynamic	data
engines	or	some	other	type	of	non-visual	objects.	Now	we	will	see
how	to	provide	new	types	of	visual	items	to	Qt	Quick.

The	first	question	you	should	ask	yourself	is	whether	you	really
need	a	new	type	of	item.	Maybe	you	can	achieve	the	same	goal	with
the	already	existing	elements?	Very	often,	you	can	use	vector	or
bitmap	images	to	add	custom	shapes	to	your	applications,	or	you
can	use	Canvas	to	quickly	draw	the	graphics	you	need	directly	in
QML.

If	you	decide	that	you	do	require	custom	items,	you	will	be	doing
that	by	implementing	subclasses	of	the	QQuickItem	C++	class,	which	is
the	base	class	for	all	items	in	Qt	Quick.	After	creating	the	new	type,
you	will	always	have	to	register	it	with	QML	using		qmlRegisterType.

The	scene	graph
To	provide	very	fast	rendering	of	its	scene,	Qt	Quick	uses	a
mechanism	called	scene	graph.	The	graph	consists	of	a	number	of
nodes	of	well-known	types,	each	describing	a	primitive	shape	to	be
drawn.	The	framework	makes	use	of	knowledge	of	each	of	the
primitives	allowed	and	their	parameters	to	find	the	most
performance-wise	optimal	order	in	which	items	can	be	rendered.
Rendering	itself	is	done	using	OpenGL,	and	all	the	shapes	are
defined	in	terms	of	OpenGL	calls.

Providing	new	items	for	Qt	Quick	boils	down	to	delivering	a	set	of
nodes	that	define	the	shape	using	terminology	the	graph
understands.	This	is	done	by	subclassing		QQuickItem	and
implementing	the	pure	virtual	updatePaintNode()	method,	which	is
supposed	to	return	a	node	that	will	tell	the	scene	graph	how	to
render	the	item.	The	node	will	most	likely	be	describing	a	geometry
(shape)	with	a	material	(color,	texture)	applied.

Time	for	action	–	Creating	a
regular	polygon	item
Let's	learn	about	the	scene-graph	by	delivering	an	item	class	for
rendering	convex	regular	polygons.	We	will	draw	the	polygon	using
the	OpenGL	drawing	mode	called	"triangle	fan".	It	draws	a	set	of
triangles	that	all	have	a	common	vertex.	Subsequent	triangles	are
defined	by	the	shared	vertex,	the	vertex	from	the	previous	triangle,
and	the	next	vertex	specified.	Take	a	look	at	the	diagram	to	see	how
to	draw	a	hexagon	as	a	triangle	fan	using	eight	vertices	as	control
points:

The	same	method	applies	for	any	regular	polygon.	The	first	vertex
defined	is	always	the	shared	vertex	occupying	the	center	of	the
shape.	The	remaining	points	are	positioned	on	the	circumference	of
a	bounding	circle	of	the	shape	at	equal	angular	distances.	The	angle
is	easily	calculated	by	dividing	the	full	angle	by	the	number	of	sides.

For	a	hexagon,	this	yields	60	degrees.

Let's	get	down	to	business	and	the	QQuickItem	subclass.	We	will	give	it
a	very	simple	interface:

class	RegularPolygon	:	public	QQuickItem

{

				Q_OBJECT

				Q_PROPERTY(int	vertices	READ	vertices	WRITE	setVertices	

															NOTIFY	verticesChanged)

				Q_PROPERTY(QColor	color	READ	color	WRITE	setColor	NOTIFY

colorChanged)

public:

				RegularPolygon();

				~RegularPolygon();

				int	vertices()	const;

				void	setVertices(int	v);

				QColor	color()	const;

				void	setColor(const	QColor	&c);

				QSGNode	*updatePaintNode(QSGNode	*,	UpdatePaintNodeData	*);

signals:

				void	verticesChanged(int);

				void	colorChanged(QColor);

private:

					int	m_vertexCount;

					QColor	m_color;

};

Our	polygon	is	defined	by	the	number	of	vertices	and	the	fill	color.
We	also	get	everything	we	inherited	from	QQuickItem,	including	the
width	and	height	of	the	item.	Besides	adding	the	obvious	getters
and	setters	for	the	properties,	we	override	the	virtual	
updatePaintNode()	method,	which	is	responsible	for	building	the	scene-
graph.

Before	we	deal	with	updating	graph	nodes,	let's	deal	with	the	easy
parts	first.	Implement	the	constructor	as	follows:

RegularPolygon::RegularPolygon()

{

				setFlag(ItemHasContents,	true);

				m_vertexCount	=	6;

}

We	make	our	polygon	a	hexagon	by	default.	We	also	set	a
flag,	ItemHasContents,	which	tells	the	scene-graph	that	the	item	is	not
fully	transparent	and	should	ask	us	how	the	item	should	be	painted
by	calling	updatePaintNode().	Existence	of	this	flag	allows	Qt	to	avoid
preparing	the	whole	infrastructure	if	the	item	would	not	be	painting
anything	anyway.

The	setters	are	also	quite	easy	to	grasp:

void	RegularPolygon::setVertices(int	v)	{

				v	=	qMax(3,	v);

				if(v	==	vertices())	return;

				m_vertexCount	=	v;

				emit	verticesChanged(v);

				update();

}

	

void	RegularPolygon::setColor(const	QColor	&c)	{

				if(color()	==	c)	return;

				m_color	=	c;

				emit	colorChanged(c);

				update();

}

A	polygon	has	to	have	at	least	three	sides;	thus,	we	enforce	this	as	a
minimum,	sanitizing	the	input	value	with	qMax.	After	we	change	any
of	the	properties	that	could	influence	the	look	of	the	item,	we
call	update()	to	let	Qt	Quick	know	that	the	item	needs	to	be
rerendered.	Let's	tackle	updatePaintNode()	now.	We'll	disassemble	it
into	smaller	pieces	so	that	it	is	easier	for	you	to	understand	how	the
function	works:

QSGNode	*RegularPolygon::updatePaintNode(

				QSGNode	*oldNode,	QQuickItem::UpdatePaintNodeData	*)	{

				QSGNode	*oldNode,	QQuickItem::UpdatePaintNodeData	*)	{

When	the	function	is	called,	it	may	receive	a	node	it	returned	during
a	previous	call.	Be	aware	that	the	graph	is	free	to	delete	all	the
nodes	when	it	feels	like	it,	so	you	should	never	rely	on	the	node
being	there	even	if	you	returned	a	valid	node	during	the	previous
run	of	the	function.	Let's	move	on	to	the	next	part	of	the	function:

		QSGGeometryNode	*node	=	nullptr;

		QSGGeometry	*geometry	=	nullptr;

The	node	we	will	return	is	a	geometry	node	that	contains
information	about	the	geometry	and	the	material	of	the	shape	being
drawn.	We	will	be	filling	those	variables	as	we	go	through	the
method.	Next,	we	check	whether	oldNode	was	provided:

				if	(!oldNode)	{

								node	=	new	QSGGeometryNode;

								geometry	=	new	QSGGeometry(

												QSGGeometry::defaultAttributes_Point2D(),	m_vertexCount	+

2);

								geometry->setDrawingMode(GL_TRIANGLE_FAN);

								node->setGeometry(geometry);

								node->setFlag(QSGNode::OwnsGeometry);

As	we	already	mentioned,	the	function	is	called	with	the	previously
returned	node	as	the	argument,	but	we	should	be	prepared	for	the
node	not	being	there	and	we	should	create	it.	Thus,	if	that	is	the
case,	we	create	a	new	QSGGeometryNode	and	a	new	QSGGeometry		for	it.	The
geometry	constructor	takes	a	so-called	attribute	set	as	its
parameter,	which	defines	a	layout	for	data	in	the	geometry.

Most	common	layouts	have	been	predefined:

Attribut
e	set

Usage
First	
attribute

Second	
attribute

	 	 	 	

	
Point2D

	

	
Solid	colored	shape
	

	
float	x,	y

	

	
-
	

	
ColoredPoint

2D

	

	
Per-vertex	color
	

	
float	x,	y

	

	
uchar	red,	green,	

blue,	alpha

	

	
TexturedPoin

t2D

	

	
Per-vertex	texture	
coordinate
	

	
float	x,	y

	

	
float	tx,	float	ty

	

	

We	will	be	defining	the	geometry	in	terms	of	2D	points	without	any
additional	information	attached	to	each	point;	therefore,	we	pass
QSGGeometry::defaultAttributes_Point2D()		to	construct	the	layout	we	need.
As	you	can	see	in	the	preceding	table	for	that	layout,	each	attribute
consists	of	two	floating	point	values	denoting
the	x	and	y	coordinates	of	a	point.

The	second	argument	of	the	QSGGeometry	constructor	informs	us	about
the	number	of	vertices	we	will	be	using.	The	constructor	will
allocate	as	much	memory	as	is	needed	to	store	the	required	number
of	vertices	using	the	given	attribute	layout.	After	the	geometry
container	is	ready,	we	pass	its	ownership	to	the	geometry	node	so
that	when	the	geometry	node	is	destroyed,	the	memory	for	the
geometry	is	freed	as	well.	At	this	moment,	we	also	mark	that	we	will
be	rendering	in	the	GL_TRIANGLE_FAN	mode.	The	process	is	repeated	for
the	material:

								QSGFlatColorMaterial	*material	=	new	QSGFlatColorMaterial;

								material->setColor(m_color);

								node->setMaterial(material);

								node->setFlag(QSGNode::OwnsMaterial);

We	use	QSGFlatColorMaterial	as	the	whole	shape	will	have	one	color	that
is	set	from	m_color.	Qt	provides	a	number	of	predefined	material
types.	For	example,	if	we	wanted	to	give	each	vertex	a	separate
color,	we	would	have	used		QSGVertexColorMaterial	along	with
the	ColoredPoint2D	attribute	layout.

The	next	piece	of	code	deals	with	a	situation	in	which	oldNode	did
contain	a	valid	pointer	to	a	node	that	was	already	initialized:

				}	else	{

								node	=	static_cast<QSGGeometryNode	*>(oldNode);

								geometry	=	node->geometry();

								geometry->allocate(m_vertexCount	+	2);

				}

In	this	case,	we	only	need	to	ensure	that	the	geometry	can	hold	as
many	vertices	as	we	need	in	case	the	number	of	sides	changed	since
the	last	time	the	function	was	executed.	Next,	we	check	the
material:

				QSGMaterial	*material	=	node->material();

				QSGFlatColorMaterial	*flatMaterial	=

												static_cast<QSGFlatColorMaterial*>(material);

				if(flatMaterial->color()	!=	m_color)	{

								flatMaterial->setColor(m_color);

								node->markDirty(QSGNode::DirtyMaterial);

				}

If	the	color	differs,	we	reset	it	and	tell	the	geometry	node	that	the
material	needs	to	be	updated	by	marking	the	DirtyMaterial	flag.

Finally,	we	can	set	vertex	data:

				QRectF	bounds	=	boundingRect();

				QSGGeometry::Point2D	*vertices	=	geometry->vertexDataAsPoint2D();

				//	first	vertex	is	the	shared	one	(middle)

				QPointF	center	=	bounds.center();

				vertices[0].set(center.x(),	center.y());

				//	vertices	are	distributed	along	circumference	of	a	circle

				qreal	angleStep	=	360.0	/	m_vertexCount;

				qreal	radius	=	qMin(width(),	height())	/	2;

				for	(int	i	=	0;	i	<	m_vertexCount;	++i)	{

								qreal	rads	=	angleStep	*	i	*	M_PI	/	180;

								qreal	x	=	center.x()	+	radius	*	std::cos(rads);

								qreal	y	=	center.y()	+	radius	*	std::sin(rads);

								vertices[1	+	i].set(x,	y);

				}

				vertices[1	+	m_vertexCount]	=	vertices[1];

First,	we	ask	the	geometry	object	to	prepare	a	mapping	for	us	from
the	allocated	memory	to	a	QSGGeometry::Point2D	structure,	which	can	be
used	to	conveniently	set	data	for	each	vertex.	Then,	actual
calculations	are	performed	using	the	equation	for	calculating	points
on	a	circle.	The	radius	of	the	circle	is	taken	as	the	smaller	part	of	the
width	and	height	of	the	item	so	that	the	shape	is	centered	in	the
item.	As	you	can	see	in	the	diagram	at	the	beginning	of	the	exercise,
the	last	point	in	the	array	has	the	same	coordinates	as	the	second
point	in	the	array	to	close	the	fan	into	a	regular	polygon.

At	the	very	end,	we	mark	the	geometry	as	changed	and	return	the
node	to	the	caller:

		node->markDirty(QSGNode::DirtyGeometry);

		return	node;

}

What	just	happened?
Rendering	in	Qt	Quick	can	happen	in	a	thread	different	that	is	than
the	main	thread.	Before	calling	the	updatePaintNode()	function,	Qt
performs	synchronization	between	the	GUI	thread	and	the
rendering	thread	to	allow	us	safely	access	our	item's	data	and	other
objects	living	in	the	main	thread.	The	function	executing	the	main
thread	is	blocked	while	this	function	executes,	so	it	is	crucial	that	it
executes	as	quickly	as	possible	and	doesn't	do	any	unnecessary
calculations	as	this	directly	influences	performance.	This	is	also	the
only	place	in	your	code	where	at	the	same	time	you	can	safely	call
functions	from	your	item	(such	as	reading	properties)	and	interact
with	the	scene-graph	(creating	and	updating	the	nodes).	Try	not
emitting	any	signals	nor	creating	any	objects	from	within	this
method	as	they	will	have	affinity	to	the	rendering	thread	rather
than	the	GUI	thread.

Having	said	that,	you	can	now	register	your	class	with	QML
using	qmlRegisterType	and	test	it	with	the	following	QML	document:

Window	{

				width:	600

				height:	600

				visible:	true

				RegularPolygon	{

								id:	poly

								anchors	{

												fill:	parent

												bottomMargin:	20

								}

								vertices:	5

								color:	"blue"

				}

}

This	should	give	you	a	nice	blue	pentagon.	If	the	shape	looks
aliased,	you	can	enforce	anti-aliasing	by	setting	the	surface	format
for	the	application:

int	main(int	argc,	char	**argv)	{

				QGuiApplication	app(argc,	argv);

				QSurfaceFormat	format	=	QSurfaceFormat::defaultFormat();

				format.setSamples(16);	//	enable	multisampling

				QSurfaceFormat::setDefaultFormat(format);

				qmlRegisterType<RegularPolygon>("RegularPolygon",	1,	0,	

"RegularPolygon");

				QQmlApplicationEngine	engine;

				engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

				if	(engine.rootObjects().isEmpty())

						return	-1;

				return	app.exec();

}

If	the	application	produces	a	black	screen	after	enabling	anti-aliasing,	try	to	lower	the
number	of	samples	or	disable	it.

Have	a	go	hero	–	Creating	a
supporting	border	for
RegularPolygon
What	is	returned	by	updatePaintNode()	may	not	just	be	a
single	QSGGeometryNode		but	also	a	larger	tree	of	QSGNode	items.	Each	node
can	have	any	number	of	child	nodes.	By	returning	a	node	that	has
two	geometry	nodes	as	children,	you	can	draw	two	separate	shapes
in	the	item:

As	a	challenge,	extend	RegularPolygon	to	draw	not	only	the	internal
filled	part	of	the	polygon	but	also	an	edge	that	can	be	of	a	different
color.	You	can	draw	the	edge	using	the	GL_QUAD_STRIP	drawing	mode.
Coordinates	of	the	points	are	easy	to	calculate—the	points	closer	to
the	middle	of	the	shape	are	the	same	points	that	form	the	shape
itself.	The	remaining	points	also	lie	on	a	circumference	of	a	circle
that	is	slightly	larger	(by	the	width	of	the	border).	Therefore,	you
can	use	the	same	equations	to	calculate	them.

The	GL_QUAD_STRIP	mode	renders	quadrilaterals	with	every	two	vertices
specified	after	the	first	four,	composing	a	connected	quadrilateral.

The	following	diagram	should	give	you	a	clear	idea	of	what	we	are
after:

Using	QPainter	interface	in	Qt
Quick
Implementing	items	in	OpenGL	is	quite	difficult—you	need	to	come
up	with	an	algorithm	of	using	OpenGL	primitives	to	draw	the	shape
you	want,	and	then	you	also	need	to	be	skilled	enough	with	OpenGL
to	build	a	proper	scene	graph	node	tree	for	your	item.	However,
there	is	another	way—you	can	create	items	by	painting	them
with	QPainter.	This	comes	at	a	cost	of	performance	as	behind	the
scenes,	the	painter	draws	on	an	indirect	surface	(a	frame	buffer
object	or	an	image)	that	is	then	converted	to	OpenGL	texture	and
rendered	on	a	quad	by	the	scene-graph.	Even	considering	that
performance	hit,	it	is	often	much	simpler	to	draw	the	item	using	a
rich	and	convenient	drawing	API	than	to	spend	hours	doing	the
equivalent	in	OpenGL	or	using	Canvas.

To	use	that	approach,	we	will	not	be	subclassing	QQuickItem	directly
but	QQuickPaintedItem,	which	gives	us	the	infrastructure	needed	to	use
the	painter	for	drawing	items.

Basically,	all	we	have	to	do,	then,	is	implement	the	pure
virtual	paint()	method	that	renders	the	item	using	the	received
painter.	Let's	see	this	put	into	practice	and	combine	it	with	the	skills
we	gained	earlier.

Time	for	action	–	Creating	an
item	for	drawing	outlined	text
The	goal	of	the	current	exercise	is	to	be	able	to	make	the	following
QML	code	work:

import	QtQuick	2.9

import	QtQuick.Window	2.3

import	OutlineTextItem	1.0

Window	{

				visible:	true

				width:	800

				height:	400

				title:	qsTr("Hello	World")

				Rectangle	{

								anchors.fill:	parent

								OutlineTextItem	{

												anchors.centerIn:	parent

												text:	"This	is	outlined	text"

												fontFamily:	"Arial"

												fontPixelSize:	64

												color:	"#33ff0000"

												antialiasing:	true

												border	{

																color:	"blue"

																width:	2

																style:	Qt.DotLine

												}

								}

				}

}

Then,	it	produces	the	following	result:

Start	with	an	empty	Qt	Quick	application	project.	Create	a	new	C++
class	and	call	it	OutlineTextItemBorder.	Place	the	following	code	into	the
class	definition:

class	OutlineTextItemBorder	:	public	QObject	{

				Q_OBJECT

				Q_PROPERTY(int	width	MEMBER	m_width	NOTIFY	widthChanged)

				Q_PROPERTY(QColor	color	MEMBER	m_color	NOTIFY	colorChanged)

				Q_PROPERTY(Qt::PenStyle	style	MEMBER	m_style	NOTIFY	styleChanged)

public:

				OutlineTextItemBorder(QObject	*parent	=	0);

				int	width()	const;

				QColor	color()	const;

				Qt::PenStyle	style()	const;

				QPen	pen()	const;

signals:

				void	widthChanged(int);

				void	colorChanged(QColor);

				void	styleChanged(int);

private:

				int	m_width;

				QColor	m_color;

				Qt::PenStyle	m_style;

};

This	is	a	simple	QObject-based	class	holding	a	number	of
properties.	You	can	see	that		Q_PROPERTY	macros	don't	have
the	READ	and	WRITE	keywords	we've	been	using	thus	far.	This	is	because
we	are	taking	a	shortcut	right	now,	and	we	let	moc	produce	code
that	will	operate	on	the	property	by	directly	accessing	the	given
class	member.	Normally,	we	would	recommend	against	such	an
approach	as	without	getters;	the	only	way	to	access	the	properties	is
through	the	generic	property()	and	setProperty()	calls.	However,	in	this
case,	we	will	not	be	exposing	this	class	to	the	public	in	C++	so	we
won't	need	the	setters,	and	we	implement	the	getters	ourselves,
anyway.	The	nice	thing	about	the	MEMBER		keyword	is	that	if	we	also
provide	the	NOTIFY	signal,	the	generated	code	will	emit	that	signal

when	the	value	of	the	property	changes,	which	will	make	property
bindings	in	QML	work	as	expected.	We	also	need	to	implement	the
method	that	returns	the	actual	pen	based	on	values	of	the
properties:

QPen	OutlineTextItemBorder::pen()	const	{

				QPen	p;

				p.setColor(m_color);

				p.setWidth(m_width);

				p.setStyle(m_style);

				return	p;

}

The	class	will	provide	a	grouped	property	for	our	main	item	class.
Create	a	class	called	OutlineTextItem	and	derive	it	from	QQuickPaintedItem,
as	follows:

class	OutlineTextItem	:	public	QQuickPaintedItem

{

				Q_OBJECT

				Q_PROPERTY(QString	text	MEMBER	m_text

																												NOTIFY	textChanged)

				Q_PROPERTY(QColor	color	MEMBER	m_color

																												NOTIFY	colorChanged)

				Q_PROPERTY(OutlineTextItemBorder*	border	READ	border

																												NOTIFY	borderChanged)

				Q_PROPERTY(QString	fontFamily	MEMBER	m_fontFamily

																												NOTIFY	fontFamilyChanged)

				Q_PROPERTY(int	fontPixelSize	MEMBER	m_fontPixelSize

																												NOTIFY	fontPixelSizeChanged)

public:

				OutlineTextItem(QQuickItem	*parent	=	0);

				void	paint(QPainter	*painter);

				OutlineTextItemBorder*	border()	const;

				QPainterPath	shape(const	QPainterPath	&path)	const;

private	slots:

				void	updateItem();

signals:

				void	textChanged(QString);

				void	colorChanged(QColor);

				void	borderChanged();

				void	fontFamilyChanged(QString);

				void	fontPixelSizeChanged(int);

				void	fontPixelSizeChanged(int);

private:

				OutlineTextItemBorder*	m_border;

				QPainterPath	m_path;

				QRectF	m_boundingRect;

				QString	m_text;

				QColor	m_color;

				QString	m_fontFamily;

				int	m_fontPixelSize;

};

The	interface	defines	properties	for	the	text	to	be	drawn,	in	addition
to	its	color,	font,	and	the	grouped	property	for	the	outline	data.
Again,	we	use	MEMBER	to	avoid	having	to	manually	implement	getters
and	setters.	Unfortunately,	this	makes	our	constructor	code	more
complicated,	as	we	still	need	a	way	to	run	some	code	when	any	of
the	properties	are	modified.	Implement	the	constructor	using	the
following	code:

OutlineTextItem::OutlineTextItem(QQuickItem	*parent)	:	

				QQuickPaintedItem(parent)	

{

				m_border	=	new	OutlineTextItemBorder(this);

				connect(this,	&OutlineTextItem::textChanged,

												this,	&OutlineTextItem::updateItem);

				connect(this,	&OutlineTextItem::colorChanged,

												this,	&OutlineTextItem::updateItem);

				connect(this,	&OutlineTextItem::fontFamilyChanged,

												this,	&OutlineTextItem::updateItem);

				connect(this,	&OutlineTextItem::fontPixelSizeChanged,

												this,	&OutlineTextItem::updateItem);

				connect(m_border,	&OutlineTextItemBorder::widthChanged,

												this,	&OutlineTextItem::updateItem);

				connect(m_border,	&OutlineTextItemBorder::colorChanged,

												this,	&OutlineTextItem::updateItem);

				connect(m_border,	&OutlineTextItemBorder::styleChanged,

												this,	&OutlineTextItem::updateItem);

				updateItem();

}

We	basically	connect	all	the	property	change	signals	from	both	the
object	and	its	grouped	property	object	to	the	same	slot	that	will
update	the	data	for	the	item	if	any	of	its	components	are	modified.

We	also	call	the	same	slot	directly	to	prepare	the	initial	state	of	the
item.	The	slot	can	be	implemented	like	this:

void	OutlineTextItem::updateItem()	{

				QFont	font(m_fontFamily,	m_fontPixelSize);

				m_path	=	QPainterPath();

				m_path.addText(0,	0,	font,	m_text);

				m_boundingRect	=	borderShape(m_path).controlPointRect();

				setImplicitWidth(m_boundingRect.width());

				setImplicitHeight(m_boundingRect.height());

				update();

}

At	the	beginning,	the	function	resets	a	painter	path	object	that
serves	as	a	backend	for	drawing	outlined	text	and	initializes	it	with
the	text	drawn	using	the	font	set.	Then,	the	slot	calculates	the
bounding	rect	for	the	path	using	the	borderShape()	function	that	we
will	shortly	see.	We	use	controlPointRect()	to	calculate	the	bounding
rectangle	as	it	is	much	faster	than	boundingRect()	and	returns	an	area
greater	than	or	equal	to	the	one		boundingRect(),	which	is	OK	for
us.	Finally,	it	sets	the	calculated	size	as	the	size	hint	for	the	item	and
asks	the	item	to	repaint	itself	with	the	update()	call.	Implement
the	borderShape()	function	using	the	following	code:

QPainterPath	OutlineTextItem::borderShape(const	QPainterPath	&path)

const

{

				QPainterPathStroker	pathStroker;

				pathStroker.setWidth(m_border->width());

				QPainterPath	p	=	pathStroker.createStroke(path);

				p.addPath(path);

				return	p;

}

The	borderShape()	function	returns	a	new	painter	path	that	includes
both	the	original	path	and	its	outline	created	with
the	QPainterPathStroker	object.	This	is	so	that	the	width	of	the	stroke	is
correctly	taken	into	account	when	calculating	the	bounding
rectangle.

What	remains	is	to	implement	the	paint()	routine	itself:

void	OutlineTextItem::paint(QPainter	*painter)	{

				if(m_text.isEmpty())	return;

				painter->setPen(m_border->pen());

				painter->setBrush(m_color);

				painter->setRenderHint(QPainter::Antialiasing,	true);

				painter->translate(-m_boundingRect.topLeft());

				painter->drawPath(m_path);

}

The	code	is	really	simple—we	bail	out	early	if	there	is	nothing	to
draw.	Otherwise,	we	set	up	the	painter	using	the	pen	and	color
obtained	from	the	item's	properties.	We	enable	anti-aliasing	and
calibrate	the	painter	coordinates	with	that	of	the	bounding
rectangle	of	the	item.	Finally,	we	draw	the	path	on	the	painter.

What	just	happened?
During	this	exercise,	we	made	use	of	the	powerful	API	of	Qt's	raster
graphics	engine	to	complement	an	existing	set	of	Qt	Quick	items
with	a	simple	functionality.	This	is	otherwise	very	hard	to	achieve
using	predefined	Qt	Quick	elements	and	even	harder	to	implement
using	OpenGL.	We	agreed	to	take	a	small	performance	hit	in
exchange	for	having	to	write	just	about	a	hundred	lines	of	code	to
have	a	fully	working	solution.	Remember	to	register	the	class	with
QML	if	you	want	to	use	it	in	your	code:

qmlRegisterUncreatableType<OutlineTextItemBorder>(

					"OutlineTextItem",	1,	0,	"OutlineTextItemBorder",	"");

qmlRegisterType<OutlineTextItem>(

					"OutlineTextItem",	1,	0,	"OutlineTextItem");

Pop	quiz
Q1.	Which	QML	type	can	be	used	to	enable	scrolling	of	a	large	item
inside	a	smaller	viewport?

1.	 Rectangle

2.	 Flickable

3.	 Window

Q2.	What	is	the	purpose	of	the	Affector	QML	type?

1.	 Affector	allows	you	to	change	properties	of	QML	items	during

an	animation

2.	 Affector	influences	properties	of	particles	spawned	by	a

particle	system

3.	 Affector	allows	you	to	control	initial	properties	of	particles

spawned	by	a	particle	system

Q3.	What	happens	when	you	use	QPainter	to	draw	on	a	Qt	Quick
item?

1.	 Every	call	to	the	QPainter	API	is	translated	to	an	equivalent

OpenGL	call

2.	 QPainter	paints	on	an	invisible	buffer	that	is	then	loaded	as	an

OpenGL	texture

3.	 The	item	painted	by	QPainter	is	displayed	without	hardware

acceleration

Summary
You	are	now	familiar	with	Qt	Quick's	capabilities	that	allow	you	to
add	astonishing	graphical	effects	to	your	games.	You	can	configure
particle	systems	and	implement	OpenGL	painting	in	the	Qt	Quick's
scene	graph.	You	are	also	able	to	utilize	the	skills	acquired	in	the
first	parts	of	the	book	to	implement	painted	Qt	Quick	items.

Of	course,	Qt	Quick	is	much	richer	than	all	this,	but	we	had	to	stop
somewhere.	The	set	of	skills	we	have	hopefully	passed	on	to	you
should	be	enough	to	develop	many	great	games.	However,	many	of
the	elements	have	more	properties	than	we	have	described	here.
Whenever	you	want	to	extend	your	skills,	you	can	check	the
reference	manual	to	see	whether	the	element	type	has	more
interesting	attributes.	Qt	Quick	is	still	in	active	development,	so	it's
a	good	idea	to	go	through	the	changelogs	of	the	recent	Qt	versions
to	see	the	new	features	that	could	not	be	covered	in	this	book.

In	the	next	chapter,	we'll	turn	our	attention	to	the	Qt	3D	module,
which	is	a	relatively	recent	addition	to	the	Qt	framework.	Qt	3D
provides	a	rich	QML	API	that	will	allow	us	to	use	many	of	the	skills
we	learned	while	working	with	Qt	Quick.	However,	instead	of	user
interface	and	2D	graphics,	you	will	now	create	games	that	display
hardware	accelerated	3D	graphics.	When	you	learn	to	use	Qt	3D,
you	will	be	able	to	take	your	games	to	a	completely	new	level!

3D	Graphics	with	Qt
Many	modern	games	take	place	in	3D	worlds.	Graphics	processing
units	are	constantly	evolving,	allowing	developers	to	create	more
and	more	visually	appealing	and	detailed	worlds.	While	you	can	use
OpenGL	or	Vulkan	directly	to	render	3D	objects,	this	can	prove	to
be	quite	challenging.	Luckily,	the	Qt	3D	module	provides	an
implementation	of	3D	rendering	with	a	high-level	API.	In	this
chapter,	we'll	learn	to	use	its	capabilities	and	see	how	we	can	create
a	3D	game	with	Qt.

Qt	3D	is	not	limited	to	rendering.	You'll	also	learn	to	handle	user
input	and	implement	game	logic	in	a	3D	game.	Qt	3D	was	designed
to	be	highly	efficient	and	fully	extensible,	so	it	allows	you	to
implement	your	own	additions	to	all	Qt	3D	systems.

Qt	3D	offers	both	C++	and	QML	API	with	mostly	equivalent
functionality.	While	the	C++	API	allows	you	to	modify	and	extend
the	implementation,	we	will	use	the	QML	approach,	that	will	allow
us	to	write	clean	and	declarative	code	and	use	the	techniques	we've
learned	in	the	previous	chapters.	By	combining	Qt	3D	with	the
powers	of	QML,	you	will	be	able	to	make	amazing	games	in	no	time!

The	main	topics	covered	in	this	chapter	are:

Rendering	3D	objects

Handling	user	input

Performing	animations

Integration	with	3D	editors	

Working	with	Qt	3D	using	C++

Integration	with	Qt	Widgets	and	Qt	Quick

Qt	3D	overview
Before	we	see	Qt	3D	in	action,	let's	go	through	the	important	parts
of	its	architecture.	

Entities	and	components
Qt	3D	is	not	just	a	3D	rendering	tool.	When	sufficiently	evolved,	it
can	become	a	full-featured	game	engine.	This	is	supported	by	its
original	architecture.	Qt	3D	introduces	a	new	set	of	abstractions
that	are	particularly	useful	for	its	task.	

You	may	have	noticed	that	most	of	the	Qt	API	heavily	uses
inheritance.	For	example,	each	widget	type	is	derived	from	QWidget,
which	in	turn	is	derived	from	QObject.	Qt	forms	large	family	trees	of
classes	to	provide	common	and	specialized	behavior.	In	contrast,
elements	of	a	Qt	3D	scene	are	constructed	using	composition
instead	of	inheritance.	A	single	part	of	a	Qt	3D	scene	is	called	an
entity	and	represented	by	the	Entity	type.	However,	an	Entity	object
by	itself	doesn't	have	any	particular	effect	or	behavior.	You	can	add
pieces	of	behavior	to	an	entity	in	the	form	of	components.

Each	component	controls	some	part	of	the	entity's	behavior.	For
example,	the	Transform	component	controls	the	entity's	position
within	the	scene,	the	Mesh	component	defines	its	shape,	and	the
Material	component	controls	the	properties	of	the	surface.	This
approach	allows	you	to	assemble	entities	from	only	the	components
that	you	need.	For	example,	if	you	need	to	add	a	light	source	to	the
scene,	you	can	create	an	entity	with	the	PointLight	component.	You
still	want	to	choose	a	location	of	the	light	source,	so	you'll	need	the
Transform	component	as	well.	However,	Mesh	and	Material	components
do	not	make	sense	for	a	light	source,	so	you	don't	need	to	use	them.	

Entities	are	arranged	in	a	classic	parent–child	relationship,	like	any
other	QML	objects	or	QObjects.	A	tree	of	entities	form	a	Qt	3D
scene.	The	topmost	entity	is	usually	responsible	for	defining	scene-
wide	configuration.	These	settings	are	specified	by	attaching	special
components	(such	as	RenderSettings	and	InputSettings)	to	the	top	level

Entity.

Qt	3D	modules
Qt	3D	is	split	into	a	number	of	modules	that	you	can	choose	to	use
in	your	project.	It	may	be	hard	to	see	which	of	them	you	need,	so
let's	see	what	each	module	is	made	for.

Stable	modules
The	Qt3DCore	module	implements	the	base	structure	of	Qt	3D.	It
provides	Entity	and	Component	types,	as	well	as	base	classes	for	other	Qt
3D	systems.	Qt3DCore	itself	does	not	implement	any	behavior,
providing	only	the	framework	that's	used	by	other	modules.

The	Qt3DRender	module	implements	3D	rendering,	so	it's	one	of	the
most	feature-rich	modules.	Let's	list	some	important	pieces	of	its
functionality:

GeometryRenderer	is	the	base	component	type	that	defines	the

visible	shape	of	an	entity

The	Mesh	component	allows	you	to	import	the	entity's

geometry	from	a	file

The	Material	component	is	the	base	component	type	that

defines	visible	properties	of	the	entity's	surface

The	SceneLoader	component	allows	you	to	import	a	hierarchy	of

entities	with	meshes	and	materials	from	a	file

Light	components	(DirectionalLight,	EnvironmentLight,	PointLight,

and	SpotLight)	allow	you	to	control	the	scene's	lighting

The	FrameGraph	API	provides	a	way	of	defining	how	exactly

your	scene	should	be	rendered.	It	allows	you	to	set	up	the

camera,	implement	multiple	viewports,	shadow	mapping,

custom	shaders,	and	much	more

The	ObjectPicker	component	allows	you	to	find	out	which

entities	are	positioned	at	a	particular	window	point.

Next,	Qt3DLogic	is	a	very	small	module	that	provides	the	FrameAction
component.	This	component	allows	you	to	execute	an	arbitrary
action	for	each	frame	of	your	entity.

Finally,	the	Qt3DInput	module	is	focused	on	user	input.	It	provides	a
few	components	that	allow	you	to	handle	keyboard	and	mouse
events	in	your	game.	Qt3DInput	also	contains	types	that	can	be	used	to
configure	the	input	devices.

Experimental	modules
At	the	time	of	writing,	all	the	other	Qt	3D	modules	are	still	in	tech
preview,	so	their	API	may	be	incomplete.	Future	Qt	versions	may
introduce	incompatible	changes	in	these	modules,	so	don't	be
surprised	if	you	need	to	make	a	few	changes	in	the	provided	code	to
make	it	work	(our	code	was	tested	on	Qt	5.10).	These	modules
should	eventually	be	stabilized	in	the	future,	so	you	should	check
the	Qt	documentation	to	find	out	their	current	status.

The	Qt3DAnimation	module,	as	the	name	implies,	is	responsible	for
animations	in	the	Qt	3D	scene.	It's	able	to	handle	keyframe
animations	on	the	entity's	Transform	component,	as	well	as	blend-
shape	and	vertex-blend	animations.	However,	we	won't	be	using
this	module	in	this	chapter,	as	the	already	familiar	animation
framework	of	Qt	Quick	is	more	than	enough	for	us.

The	Qt3DExtras	module	provides	components	that	are	not	strictly
necessary	for	working	with	Qt	3D,	but	are	very	useful	for	building
first	simple	projects.	They	are:

Mesh	generators	for	basic	geometric	shapes	(cubes,	spheres,

and	so	on)	

The	ExtrudedTextMesh	component	that	allows	you	to	show	3D

text	in	the	scene	

Many	standard	material	components,	such

as	DiffuseSpecularMaterial	and	GoochMaterial

Additionally,	Qt3DExtras	provides	two	convenience	classes	that	allow

the	user	to	control	the	position	of	the	camera	using	mouse	and
keyboard:

OrbitCameraController	moves	the	camera	along	an	orbital	path

FirstPersonCameraController	moves	the	camera	as	in	a	first-person

game

The	Qt3DQuickExtras	module	provides	the	Qt3DExtras::Quick::Qt3DQuickWindow
C++	class.	This	is	a	window	that	displays	a	QML-based	Qt	3D
scene.	

Finally,	the	Qt3DQuickScene2D	module	provides	the	ability	to	embed	Qt
Quick	items	into	the	Qt	3D	scene,	and	the	QtQuick.Scene3D	QML
module	allows	you	to	embed	a	Qt	3D	scene	into	a	Qt	Quick
application.

As	you	can	see,	the	capabilities	of	Qt	3D	are	not	limited	by
rendering.	You	can	also	use	it	to	handle	user	input	and	implement
the	game	logic	for	your	entities.	Qt	3D	is	fully	extensible,	so	you	can
use	its	C++	API	to	implement	your	own	components,	or	modify
existing	ones.	However,	we	will	mainly	use	the	QML-based	API	in
this	chapter.

Note	that	Qt	3D	objects	are	not	Qt	Quick	items,	so	not	all	Qt	Quick	capabilities	are	open	for
you	when	you	work	with	Qt	3D.	For	example,	you	can't	use	Repeater	to	instantiate	multiple
Qt	3D	entities.	However,	you	can	still	use	Qt	Quick	animations	because	they	can	handle
any	QML	objects.	It's	also	possible	to	embed	a	Qt	3D	scene	into	a	Qt	Quick	interface	using
the	Scene3D	QML	type.

Using	modules
Before	using	each	of	the	Qt	3D	modules,	you	have	to	enable	the
module	separately	in	the	project	file.	For	example,	the	following	line
will	enable	all	currently	documented	modules:

QT	+=	3dcore	3drender	3dinput	3dlogic	3danimation	\

						qml	quick	3dquick	3dquickextras	3dquickscene2d

When	using	QML,	each	module	must	also	be	separately	imported:

import	Qt3D.Core	2.10

import	Qt3D.Render	2.10

import	Qt3D.Extras	2.10

import	Qt3D.Input	2.0

import	Qt3D.Logic	2.0

import	QtQuick.Scene2D	2.9

import	QtQuick.Scene3D	2.0

You	can	see	that	different	Qt	3D	modules	have	different	QML	module	versions.	Some
modules	were	updated	in	Qt	5.10	and	have	new	features	that	we'd	like	to	use	in	our	code,	so
you	have	to	specify	the	last	version	(2.10)	to	make	new	QML	types	available.	On	the	other
hand,	some	modules	weren't	updated,	so	2.0	is	the	only	available	version.	The	up-to-date
versions	will	change	in	the	future	as	new	Qt	releases	come	out.	The	Qt	documentation
should	hopefully	contain	the	correct	import	statements.

All	C++	types	of	a	Qt	3D	module	are	placed	in	a	namespace.	In
other	regards,	Qt	naming	conventions	apply.	For	example,	the	Entity
QML	type	corresponds	to	the	QEntity	C++	class	in	the	Qt3DCore
namespace.	The	corresponding	include	directive	is	#include	<QEntity>.

Qt	3D	also	introduces	a	concept	of	aspects.	An	aspect	is	simply	a
piece	of	behavior	that	can	be	added	to	the	Qt	3D	engine.
The	Qt3DQuickWindow	class	contains	a	built-in	aspect	engine	that
automatically	enables	QRenderAspect,	QInputAspect,	and	QLogicAspect	aspects,
allowing	Qt	3D	to	render	the	scene,	process	user	input,	and	execute

frame	actions.	If	you	decide	to	use	the	Qt3DAnimation	module,	you
should	also	enable	QAnimationAspect.	You	can	do	that	using
the	Qt3DWindow::registerAspect()	method.	Other	Qt	3D	modules	don't
require	a	separate	aspect.	It's	also	possible	to	create	a	new	aspect,
but	it's	usually	not	necessary.

Rendering	3D	objects
Each	item	of	the	Qt	3D	scene	is	represented	by	the	Entity	type.
However,	not	all	entities	are	visible	3D	objects.	In	order	for	an
entity	to	be	visible,	it	has	to	have	a	mesh	component	and	a
material	component.

Mesh,	material,	and	transform
The	mesh	defines	the	geometrical	shape	of	the	entity.	It	contains
information	about	vertices,	edges,	and	faces	required	to	render	the
object.	The	base	type	of	all	mesh	components	is	GeometryRenderer.
However,	you'll	usually	use	one	of	its	descendants:

Mesh	imports	geometry	data	from	a	file

ConeMesh,	CuboidMesh,	CylinderMesh,	PlaneMesh,	SphereMesh,

and	TorusMesh	provide	access	to	primitive	geometric	shapes

ExtrudedTextMesh	defines	the	entity's	shape	based	on	a	specified

text	and	font

While	the	mesh	defines	where	the	object's	surface	will	be	drawn,	the
material	defines	how	exactly	it	will	be	drawn.	The	most	obvious
property	of	a	surface	is	its	color,	but	depending	on	the	reflection
model,	there	can	be	all	sorts	of	properties,	such	as	coefficients	of
diffuse	and	specular	reflection.	Qt	3D	provides	a	lot	of	different
material	types:

PerVertexColorMaterial	allows	you	to	set	color	properties	for	each

vertex	and	renders	ambient	and	diffuse	reflections

TextureMaterial	renders	a	texture	and	ignores	lighting

DiffuseSpecularMaterial	implements	the	Phong	reflection	model

and	allows	you	to	set	ambient,	diffuse,	and	specular

components	of	the	reflection

GoochMaterial	implements	the	Gooch	shading	model

MetalRoughMaterial	renders	a	metal-like	surface	using	PBR

(physically	based	rendering)

MorphPhongMaterial	also	follows	the	Phong	reflection	model	but

also	supports	morph	animations	of	the	Qt3DAnimation	module

The	third	common	component	of	a	visible	3D	object	is	Transform.
While	not	strictly	required,	it's	usually	necessary	for	setting	the
position	of	the	object	in	the	scene.	You	can	set	the	position	using
the	translation	property.	It's	also	possible	to	scale	the	object	using	the
scale3D	property	that	allows	you	to	set	different	scale	coefficients	for
each	axis,	or	the	scale	property	that	accepts	a	single	coefficient	that
applies	to	all	axes.	Similarly,	you	can	either	set	the	rotation
quaternion	using	the	rotation	property	or	set	individual	Euler	angles
using	rotationX,	rotationY,	and	rotationZ	properties.	Finally,	you	can	set
the	matrix	property	to	apply	an	arbitrary	transformation	matrix.

Note	that	transformations	apply	not	only	to	the	current	entity,	but	to	all	its	children	as
well.

Lighting
Some	of	the	available	materials	will	take	the	lighting	into	account.
Qt	3D	allows	you	to	add	different	types	of	lights	to	the	scene	and
configure	them.	You	can	do	that	by	adding	a	new	Entity	to	the	scene
and	attaching	a	DirectionalLight,	PointLight,	or	SpotLight	component	to	it.
Each	of	these	components	has	the	color	property	that	allows	you	to
configure	the	color	of	the	light	and	the	intensity	property	that	allows
you	to	choose	how	bright	the	light	is.	The	rest	of	the	properties	are
specific	to	the	light	type.

Directional	light	(also	called	"distant	light"	or	"sunlight")	casts
parallel	rays	in	the	direction	defined	by	the	worldDirection	property	of
the	DirectionalLight	type.	Position	and	rotation	of	the	entity	have	no
influence	on	the	lighting	effect	of	a	directional	light,	so	there	is	no
need	for	a	Transform	component.

Point	light	emits	light	from	its	position	in	all	directions.	The
position	of	the	light	can	be	changed	via	the	Transform	component
attached	to	the	same	entity.	The	PointLight	component	allows	you	to
configure	how	bright	the	light	will	be	at	a	distance	by	setting
the	constantAttenuation,	linearAttenuation,	and	quadraticAttenuation	properties.

While	point	light	can	be	interpreted	as	a	sphere	of	light,	spotlight
is	a	cone	of	light.	It	emits	light	from	its	position,	but	the	directions
are	limited	by	the	localDirection	property	that	defines	where	the
spotlight	is	facing	and	the	cutOffAngle	property	that	configures	how
wide	the	light	cone	is.	The	position	and	direction	of	the	spotlight
can	be	influenced	by	the	translation	and	rotation
of	the	Transform	component	attached	to	the	same	entity.	SpotLight	also
has	the	same	attenuation	properties	as	PointLight.

If	no	lights	are	present	in	the	scene,	Qt	will	automatically	add	an	implicit	point	light	so	that
the	scene	is	somewhat	visible.

The	fourth	type	of	light	is	different	from	the	others.	It's	called
environment	light	and	can	be	configured	by	adding
the	EnvironmentLight	component	to	an	entity.	It	defines	the	surrounding
lighting	of	the	scene	using	two	textures	assigned	to	its	irradiance
and	specular	properties.	Unlike	other	light	types,	this	component
does	not	have	color	or	intensity	properties.	There	can	only	be	one
environment	light	in	a	scene.

Note	that	light	sources	themselves	are	invisible.	Their	only	purpose
is	to	influence	the	appearance	of	3D	objects	that	use	certain
material	types.

Time	for	action	–	creating	a	3D
scene
In	this	chapter,	we	will	create	an	implementation	of	the	famous
Tower	of	Hanoi	game.	This	puzzle	game	contains	three	rods	and
multiple	disks	of	different	sizes.	The	disks	can	slide	onto	the	rods,
but	a	disk	cannot	be	placed	on	top	of	a	smaller	disk.	At	the	starting
position,	all	the	rods	are	placed	on	one	of	the	disks.	The	goal	is	to
move	them	all	to	another	rod.	The	player	can	only	move	one	disk	at
a	time.

As	usual,	you	will	find	the	complete	project	in	the	resources	that	come	with	the	book.

Create	a	new	Qt	Quick	Application	-	Empty	project	and	call	it	hanoi.
While	we	will	use	some	Qt	Quick	utilities,	our	project	will	not	really
be	based	on	Qt	Quick.	Qt	3D	will	do	most	of	the	work.	Nevertheless,
the	Qt	Quick	Application	-	Empty	is	the	most	suitable	of	currently
present	templates,	so	we	choose	to	use	it.	Edit	the	hanoi.pro	file	to
enable	the	Qt	modules	that	we'll	need:

QT	+=	3dcore	3drender	3dinput	quick	3dquickextras

We	will	use	the	Qt3DQuickWindow	class	to	instantiate	our	QML	objects
instead	of	the	QQmlApplicationEngine	class	we	usually	use	with	Qt	Quick.
To	do	that,	replace	the	main.cpp	file	with	the	following	code:

#include	<QGuiApplication>

#include	<Qt3DQuickWindow>

int	main(int	argc,	char*	argv[])

{

				QGuiApplication	app(argc,	argv);

				Qt3DExtras::Quick::Qt3DQuickWindow	window;

				Qt3DExtras::Quick::Qt3DQuickWindow	window;

				window.setSource(QUrl("qrc:/main.qml"));

				window.show();

				return	app.exec();

}

Next,	replace	the	main.qml	file	with	the	following	code:

import	Qt3D.Core	2.10

import	Qt3D.Render	2.10

import	Qt3D.Input	2.0

import	Qt3D.Extras	2.10

Entity	{

				components:	[

								RenderSettings	{

												activeFrameGraph:	ForwardRenderer	{

																clearColor:	"black"

																camera:	Camera	{

																				id:	camera

																				projectionType:	CameraLens.PerspectiveProjection

																				fieldOfView:	45

																				nearPlane	:	0.1

																				farPlane	:	1000.0

																				position:	Qt.vector3d(0.0,	40.0,	-40.0)

																				upVector:	Qt.vector3d(0.0,	1.0,	0.0)

																				viewCenter:	Qt.vector3d(0.0,	0.0,	0.0)

																}

												}

								},

								InputSettings	{}

]

}

This	code	declares	a	single	Entity	object	that	contains	two
components.	The		RenderSettings	component	defines	how	Qt	3D	should
render	the	scene.	The	activeFrameGraph	property	of	RenderSettings	can	hold
a	tree	of	render	operations,	but	the	simplest	possible	frame	graph	is
a	single	ForwardRenderer	object	that	takes	care	of	all	the
rendering.	ForwardRenderer	renders	objects	one	by	one	directly	to	the
OpenGL	framebuffer.	We	use	the	clearColor	property	to	set	the
background	color	of	our	scene	to	black.	The	camera	property	of
the	ForwardRenderer	holds	the	Camera	object	it	will	use	for	calculating	the

transformation	matrix.	Let's	go	through	the	properties	of	the	Camera
object	we've	used	in	our	code:

The	projectionType	property	defines	the	type	of	the	projection.

Besides	the	PerspectiveProjection,	you	can

use	OrthographicProjection,		FrustumProjection,	or		CustomProjection.

The	fieldOfView	property	contains	the	field	of	view	parameter

of	the	perspective	projection.	You	can	change	it	to	achieve	a

zoom	in/out	effect.

The	nearPlane	and	farPlane	properties	define	the	positions	of	the

nearest	and	the	furthest	planes	that	will	be	visible	in	the

camera	(they	correspond	to	the	visible	z	axis	values	in	the

viewport	coordinates).

The	position	vector	defines	the	position	of	the	camera	in	the

world	coordinates.

The	upVector	vector	in	the	world	coordinates	is	the	vector	that

would	appear	pointing	up	when	viewing	it	through	the

camera.

The	viewCenter	vector	in	the	world	coordinates	is	the	point	that

will	appear	in	the	center	of	the	viewport.

When	using	the	perspective	projection,	you	usually	need	to	set	the
aspect	ratio	according	to	the	window	size.	The	Camera	object	has
the	aspectRatio	property	for	that,	but	we	don't	need	to	set	it,	since
the	Qt3DQuickWindow	object	will	update	this	property	automatically.

You	can	disable	this	feature	by	adding	
window.setCameraAspectRatioMode(Qt3DExtras::Quick::Qt3DQuickWindow::UserAspectRatio)	to
the	main.cpp	file.

If	you	want	to	use	an	orthographic	projection	instead	of	a

perspective	one,	you	can	use	the	top,	left,	bottom,	and	right	properties
of	the	Camera	object	to	set	the	visible	area.

Finally,	the	second	component	of	our	Entity	is	the	InputSettings
component.	Its	eventSource	property	should	point	to	the	object	that
provides	the	input	events.	As	with	aspectRatio,	we	don't	need	to	set
this	property	manually.	The	Qt3DQuickWindow	will	find	the	InputSettings
object	and	set	itself	as	the	eventSource.

You	can	run	the	project	to	verify	that	it	compiles	successfully	and
doesn't	produce	any	runtime	errors.	You	should	receive	an	empty
black	window	as	a	result.

Now	let's	add	something	visible	to	our	scene.	Edit	the	main.qml	file	to
add	a	few	child	objects	to	the	root	Entity,	as	shown:

Entity	{

				components:	[

								RenderSettings	{	/*	...	*/	},

								InputSettings	{}

]

				FirstPersonCameraController	{

								camera:	camera

				}

				Entity	{

								components:	[

												DirectionalLight	{

																color:	Qt.rgba(1,	1,	1)

																intensity:	0.5

																worldDirection:	Qt.vector3d(0,	-1,	0)

												}

]

				}

				Entity	{

								components:	[

												CuboidMesh	{},

												DiffuseSpecularMaterial	{	ambient:	"#aaa";	shininess:	100;	

},

												Transform	{	scale:	10	}

]

				}

}

As	a	result,	you	should	see	a	cube	at	the	center	of	the	window:

More	than	that,	you	can	use	the	arrow	keys,	the	Page	Up	and	Page
Down	keys,	and	the	left	mouse	button	to	move	the	camera	around.

What	just	happened?
We	added	a	few	objects	to	our	scene	graph.	First,
the	FirstPersonCameraController	object	allows	the	user	to	freely	control	the
camera.	This	is	quite	useful	for	testing	the	game	while	you	don't
have	your	own	camera	controlling	code	yet.	Next,	an	entity	with	a
single	DirectionalLight	component	works	as	a	light	source	in	the	scene.
We	use	the	properties	of	this	component	to	set	the	color,	intensity,
and	direction	of	the	light.	

Finally,	we	added	an	entity	that	represents	a	regular	3D	object.	Its
shape	is	provided	by	the	CuboidMesh	component	that	generates	a	unit
cube.	The	appearance	of	its	surface	is	defined	by
the	DiffuseSpecularMaterial	component	that	conforms	to	the	widely
used	Phong	reflection	model.	You	can	use	ambient,	diffuse,
and	specular	color	properties	to	control	different	components	of	the
reflected	light.	The	shininess	property	defines	how	smooth	the	surface
is.	We	use	the	Transform	component	to	scale	the	cube	to	a	larger	size.

Time	for	action	–	constructing
the	Tower	of	Hanoi	scene
Our	next	task	will	be	to	create	a	foundation	and	three	rods	for	our
puzzle.	We	will	take	advantage	of	QML's	modular	system	and	split
our	code	into	multiple	components.	First,	let's	leave	camera	and
lighting	settings	in	the	main.qml	and	put	our	actual	scene	content	to	a
new	Scene	component.	In	order	to	do	that,	put	the	text	cursor	onto
the	Entity	declaration	of	the	cube,	press	Alt	+	Enter	and	select	Move
Component	into	Separate	File.	Input	Scene	as	the	component	name
and	confirm	the	operation.	Qt	Creator	will	create	a	new	Scene.qml	file
and	add	it	to	the	project's	resources.	The	main.qml	now	contains	just
an	instantiation	of	our	scene	component:

Entity	{

				//...

				Scene	{	}

}

The	actual	properties	of	the	entity	are	moved	to	the	Scene.qml	file.
Let's	adjust	it	to	the	following	form:

Entity	{

				id:	sceneRoot

				Entity	{

								components:	[

												DiffuseSpecularMaterial	{

																ambient:	"#444"

												},

												CuboidMesh	{},

												Transform	{

																scale3D:	Qt.vector3d(40,	1,	40)

												}

]

				}

				}

}

Our	scene	will	contain	multiple	items,	so	we	introduced	a	new	Entity
object	and	called	it	sceneRoot.	This	entity	doesn't	have	any
components,	so	it	will	not	have	any	visible	effect	on	the	scene.	This
is	similar	to	how	an	object	of	Item	type	usually	serves	as	a	container
for	Qt	Quick	items	without	providing	any	visual	content.

The	cube	entity	is	now	a	child	of	sceneRoot.	We	use	the	scale3D	property
of	the	Transform	component	to	change	the	dimensions	of	our	cube.
Now	it	looks	like	a	tabletop	that	will	serve	as	a	foundation	for	the
rest	of	the	objects.

Now	let's	work	on	the	rods.	Naturally,	we	want	to	have	a	Rod
component	because	it	is	a	repeating	part	of	our	scene.	Invoke	the
context	menu	of	qml.qrc	in	the	project	tree	and	choose	Add	New.
From	the	Qt	category,	choose	QML	File	(Qt	Quick	2)	and	input	Rod
as	the	filename.	Let's	see	how	we	can	implement	this	component:

import	Qt3D.Core	2.10

import	Qt3D.Render	2.10

import	Qt3D.Extras	2.10

Entity	{

				property	int	index

				components:	[

								CylinderMesh	{

												id:	mesh

												radius:	0.5

												length:	9

												slices:	30

								},

								DiffuseSpecularMaterial	{

												ambient:	"#111"

								},

								Transform	{

												id:	transform

												translation:	{

																var	radius	=	8;

																var	step	=	2	*	Math.PI	/	3;

																return	Qt.vector3d(radius	*	Math.cos(index	*	step),

																																			mesh.length	/	2	+	0.5,

																																			radius	*	Math.sin(index	*	step));

												}

								}

]

}

Similar	to	the	cube	entity,	our	rod	consists	of	a	mesh,	a	material,
and	a	Transform	component.	Instead	of	the	CubeMesh,	we	use
the	CylinderMesh	component	that	will	create	a	cylinder	for	us.	The	radius
and	length	properties	define	the	dimensions	of	the	object,	and	the
slices	property	impacts	the	number	of	generated	triangles.	We	chose
to	increase	the	number	of	slices	to	make	the	cylinders	look	better,
but	be	aware	that	it	has	a	performance	impact	that	may	become
noticeable	if	you	have	many	objects.	

Our	Rod	component	has	the	index	property	that	contains	the
positional	number	of	the	rod.	We	use	this	property	to	calculate	the	x
and	z	coordinates	of	the	rod	so	that	all	three	rods	are	placed	on	a
circle	with	an	eight	radius.	The	y	coordinate	is	set	to	ensure	that	the
rod	is	positioned	on	top	of	the	foundation.	We	assign	the	calculated
position	vector	to	the	translation	property	of	the	Transform	component.
Finally,	add	three	Rod	objects	to	the	Scene.qml	file:

Entity	{

				id:	sceneRoot

				//...

				Rod	{	index:	0	}

				Rod	{	index:	1	}

				Rod	{	index:	2	}

}

When	you	run	the	project,	you	should	see	the	foundation	and	the
rods:

Time	for	action	–	repeating	3D
objects
Our	code	works,	but	the	way	we	create	the	rods	is	not	ideal.
First,	enumerating	rods	and	their	indices	in	Scene.qml	is	inconvenient
and	error-prone.	Second,	we'll	need	to	have	a	way	to	access	a	Rod
object	by	its	index,	and	the	current	approach	doesn't	allow	that.	In
the	previous	chapters,	we	dealt	with	repeating	Qt	Quick	objects
using	the	Repeater	QML	type.	However,	Repeater	doesn't	work	for	Entity
objects.	It's	only	able	to	handle	types	that	inherit	from	Qt	Quick	Item.

The	solution	to	our	problem	is	already	familiar	to	you	since
Chapter	12,	Customization	in	Qt	Quick.	We	can	create	QML	objects
using	imperative	JavaScript	code.	Remove	Rod	objects	from	the
Scene.qml	file	and	make	the	following	additions	instead:

Entity	{

				id:	sceneRoot

				property	variant	rods:	[]

				Entity	{	/*	...	*/}

				Component.onCompleted:	{

								var	rodComponent	=	Qt.createComponent("Rod.qml");

								if(rodComponent.status	!==	Component.Ready)	{

												console.log(rodComponent.errorString());

												return;

								}

								for(var	i	=	0;	i	<	3;	i++)	{

												var	rod	=	rodComponent.createObject(sceneRoot,	{	index:	i	

});

												rods.push(rod);

								}

				}

}

What	just	happened?
First,	we	created	a	property	called	rods	that	will	hold	an	array	of
created	Rod	objects.	Next,	we	used	the	Component.onCompleted	attached
property	to	run	some	JavaScript	code	after	the	QML	engine
instantiates	our	root	object.	Our	first	action	was	to	load	the	Rod
component	and	check	whether	it	was	loaded	successfully.	After
obtaining	a	functioning	component	object,	we	used	its	createObject()
method	to	create	three	new	rods.	We	used	the	arguments	of	this
function	to	pass	the	root	object	and	value	of	the	index	property.
Finally,	we	pushed	the	Rod	object	into	the	array.

Time	for	action	–	creating	disks
Our	next	task	is	to	create	eight	disks	that	will	slide	onto	rods.	We'll
do	it	in	a	similar	way	to	how	we	handled	rods.	First,	create	a	new
file	called	Disk.qml	for	our	new	component.	Put	the	following	content
into	the	file:

import	Qt3D.Core	2.10

import	Qt3D.Render	2.10

import	Qt3D.Extras	2.10

Entity	{

				property	int	index

				property	alias	pos:	transform.translation

				components:	[

								DiffuseSpecularMaterial	{

												ambient:	Qt.hsla(index	/	8,	1,	0.5)

								},

								TorusMesh	{

												minorRadius:	1.1

												radius:	2.5	+	1	*	index

												rings:	80

								},

								Transform	{

												id:	transform

												rotationX:	90

												scale:	0.45

								}

]

}

Like	rods,	disks	are	identified	by	their	index.	In	this	case,	index
influences	the	color	and	size	of	the	disk.	We	calculate	the	disk's
color	using	the	Qt.hsla()	function	that	takes	hue,	saturation,	and
lightness	values	and	returns	a	color	value	that	can	be	assigned	to	the
ambient	property	of	the	material.	This	formula	will	give	us	eight
colorful	disks	of	different	hues.

The	position	of	the	disk	is	defined	by	the	translation	property	of
the	Transform	component.	We	want	to	be	able	to	read	and	change	the
position	of	the	disk	from	the	outside,	so	we	set	up	a	property	alias
called	pos	that	exposes	the	transform.translation	property	value.	

Next,	we	use	the	TorusMesh	component	to	define	the	shape	of	our
disks.	A	torus	shape	is	not	really	suitable	for	playing	the	Tower	of
Hanoi	game	in	reality,	but	it	will	have	to	do	for	now.	Later	in	this
chapter,	we'll	replace	it	with	a	more	suitable	shape.	The	properties
of	the	TorusMesh	component	allow	us	to	adjust	some	of	its
measurements,	but	we	also	have	to	apply	rotation	and	scale	to	the
object	to	achieve	the	desired	size	and	position.

Instead	of	putting	all	the	disk	objects	into	a	single	array,	let's	create
an	array	for	each	rod.	When	we	move	a	disk	from	one	rod	to
another	one,	we'll	remove	the	disk	from	the	first	rod's	array	and	add
it	to	the	second	rod's	array.	We	can	do	that	by	adding	a	property	to
the	Rod	component.	While	we're	at	it,	we	should	also	expose	the	rod's
position	to	the	outside.	We'll	need	it	to	position	the	disks	on	the
rods.	Declare	the	following	properties	in	the	top	level	Entity	in	Rod.qml:

readonly	property	alias	pos:	transform.translation

property	var	disks:	[]

The	pos	property	will	follow	the	value	of	the	translation	property	of	the
Transform	component.	Since	this	value	is	calculated	based	on	the	index
property,	we	declare	the	pos	property	as	readonly.

Next,	we	need	to	adjust	the	Component.onCompleted	handler	of	the	Scene
component.	Initialize	the	diskComponent	variable,	just	like	we	did
with	rodComponent.	Then	you	can	create	disks	using	the	following	code:

var	startingRod	=	rods[0];

for(i	=	0;	i	<	8;	i++)	{

				var	disk	=	diskComponent.createObject(sceneRoot,	{	index:	i	});

				disk.pos	=	Qt.vector3d(startingRod.pos.x,	8	-	i,

startingRod.pos.z);

				startingRod.disks.unshift(disk);

				startingRod.disks.unshift(disk);

}

After	creating	each	disk,	we	set	its	position	based	on	its	index	and
the	position	of	the	chosen	rod.	We	accumulate	all	disks	in	the	disks
property	of	the	rod.	We	choose	the	order	of	disks	in	the	array	so
that	the	bottom	disk	is	at	the	beginning	and	the	top	disk	is	at	the
end.	The	unshift()	function	adds	the	item	to	the	array	at	the
beginning,	giving	the	desired	order.

If	you	run	the	project,	you	should	see	all	eight	tori	on	one	of	the
rods:

The	next	piece	of	functionality	we'll	need	is	the	ability	to	move	disks
from	one	rod	to	another.	However,	it's	the	player	who	makes	the
decision,	so	we'll	also	need	some	way	to	receive	input	from	the	user.

Let's	see	what	options	we	have	for	handling	user	input.

Handling	user	input
The	first	way	of	receiving	events	in	Qt	3D	is	to	use	Qt	GUI
capabilities.	The	Qt3DQuickWindow	class	we	use	inherits	from	QWindow.	That
allows	you	to	subclass	Qt3DQuickWindow	and	reimplement	some	of	its
virtual	functions,	such	as	keyPressEvent()	or	mouseMoveEvent().	You	are
already	familiar	with	this	part	of	Qt	API	because	it's	roughly	the
same	as	provided	by	Qt	Widgets	and	Graphics	View.	Qt	3D	doesn't
introduce	anything	special	here,	so	we	won't	give	this	approach
much	attention.

Similar	to	Qt	Quick,	Qt	3D	introduces	a	higher-level	API	for
receiving	input	events.	Let's	see	how	we	can	use	it.

Devices
Qt	3D	is	focused	on	providing	a	good	abstraction	for	every	aspect	it
handles.	This	applies	to	input	as	well.	In	terms	of	Qt	3D,	an
application	may	have	access	to	an	arbitrary	number	of	physical
devices.	They	are	represented	by	the	AbstractPhysicalDevice	type.	At	the
time	of	writing,	there	are	two	built-in	types	of	physical	devices:
keyboard	and	mouse.	You	can	access	them	by	declaring	an	object
of	KeyboardDevice	or	MouseDevice	type	in	your	QML	file.

You	can	use	properties	of	the	device	object	to	configure	its	behavior.
There	is	currently	only	one	such	property:	the	MouseDevice	type	has
a	sensitivity	property	that	affects	how	mouse	movement	is	converted
to	axis	inputs.

It's	allowed	to	create	multiple	objects	of	the	same	device	type	in	a
single	application.	All	devices	will	handle	all	received	inputs,	but
you	can	set	different	values	of	properties	for	different	device
objects.

You	typically	don't	want	to	handle	events	directly	from	the	physical
devices.	Instead,	you	should	set	up	a	logical	device	that	receives
events	from	the	physical	devices	and	converts	them	to	actions	and
inputs	that	make	sense	for	your	application.	You	can	specify	a	set	of
actions	and	axes	for	your	device	using	the	actions	and	axes
properties	of	the	LogicalDevice	type,	and	Qt	3D	will	recognize	the
described	inputs	and	notify	your	objects	about	them.

We	will	provide	a	few	code	examples	to	demonstrate	how	to	handle	various	kinds	of	input
in	Qt	3D.	You	can	test	the	code	by	putting	it	into	the	main.qml	file	of	the	hanoi	project	or
create	a	separate	project	for	that.	

Keyboard	and	mouse	buttons
An	action	is	represented	by	the	Action	type.	An	action	can	be
triggered	by	pressing	a	single	key,	a	key	combination,	or	a	key
sequence.	This	is	defined	by	the	inputs	property	of	the	Action	type.	The
most	simple	kind	of	input	is	ActionInput	which	reacts	to	a	single	key.

When	the	action	is	triggered,	its	active	property	will	change	from
false	to	true.	When	the	corresponding	key	or	key	combination	is
released,	active	changes	back	to	false.	You	can	use	the	usual	QML
features	to	track	changes	of	the	property:

Entity	{

				//...

				KeyboardDevice	{	id:	keyboardDevice	}

				MouseDevice	{	id:	mouseDevice	}

				LogicalDevice	{

								actions:	[

												Action	{

																inputs:	ActionInput	{

																				sourceDevice:	keyboardDevice

																				buttons:	[Qt.Key_A]

																}

																onActiveChanged:	{

																				console.log("A	changed:	",	active);

																}

												},

												Action	{

																inputs:	ActionInput	{

																				sourceDevice:	keyboardDevice

																				buttons:	[Qt.Key_B]

																}

																onActiveChanged:	{

																				console.log("B	changed:	",	active);

																}

												},

												Action	{

																inputs:	ActionInput	{

																				sourceDevice:	mouseDevice

																				sourceDevice:	mouseDevice

																				buttons:	[MouseEvent.RightButton]

																}

																onActiveChanged:	{

																				console.log("RMB	changed:	",	active);

																}

												}

]

				}

}

As	you	can	see,	keyboard	and	mouse	button	events	are	handled	in
the	same	way.	However,	they	come	from	different	physical	devices,
so	make	sure	you	specify	the	correct	device	in	the	sourceDevice
property	of	ActionInput.

You	can	specify	multiple	buttons	for	ActionInput.	In	this	case,	the
action	will	trigger	if	any	of	the	specified	buttons	are	pressed.	For
example,	use	the	following	code	to	handle	both	the	main	Enter	key
and	the	Enter	key	on	the	keypad:

Action	{

				inputs:	ActionInput	{

								sourceDevice:	keyboardDevice

								buttons:	[Qt.Key_Return,	Qt.Key_Enter]

				}

				onActiveChanged:	{

								if	(active)	{

												console.log("enter	was	pressed");

								}	else	{

												console.log("enter	was	released");

								}

				}

}

Note	that	it's	not	required	to	put	the	input	handling	code	into	the	root	object	of	the	scene.
You	can	put	it	into	any	Entity.	It's	also	possible	to	have	multiple	entities	handling	input
events	at	the	same	time.

Input	chords
The	InputChord	type	allows	you	to	trigger	an	action	when	multiple	keys
are	pressed	at	the	same	time:

Action	{

				inputs:	InputChord	{

								timeout:	500

								chords:	[

												ActionInput	{

																sourceDevice:	keyboardDevice

																buttons:	[Qt.Key_Q]

												},

												ActionInput	{

																sourceDevice:	keyboardDevice

																buttons:	[Qt.Key_W]

												},

												ActionInput	{

																sourceDevice:	keyboardDevice

																buttons:	[Qt.Key_E]

												}

]

				}

				onActiveChanged:	{

								console.log("changed:	",	active);

				}

}

The	onActiveChanged	handler	will	be	called	when	Q,	W,	and	E	keys	are
pressed	within	500	milliseconds	and	held	together.

Analog	(axis)	input
Axis	in	Qt	3D	is	an	abstraction	of	analog	one-dimensional	input.	A
typical	source	of	axis	input	is	an	analog	stick	of	a	gamepad.	As	the
name	implies,	Axis	only	represents	movement	along	a	single	axis,	so
a	stick	can	be	represented	by	two	axes—one	for	vertical	movement
and	one	for	horizontal	movement.	A	pressure-sensitive	button	can
be	represented	by	a	single	axis.	An	axis	input	produces	a	float	value
ranging	from	−1	to	1,	with	zero	corresponding	to	the	neutral
position.

That	being	said,	there	is	no	gamepad	support	in	Qt	3D	at	the	time	of	writing.	It's	possible
that	it	will	be	added	in	future	versions.	You	can	also	use	the	extensible	C++	API	of	Qt	3D	to
implement	the	gamepad	device	using	Qt	Gamepad.	However,	the	simplest	solution	is	to	use
Qt	Gamepad	directly.	Nothing	prevents	you	from	using	QML	or	C++	API	of	Qt	Gamepad	in
an	application	that	uses	Qt	3D.

The	inputs	property	of	the	Axis	type	allows	you	to	specify	which	input
events	should	be	redirected	to	this	axis.	You	can	use
the	AnalogAxisInput	type	to	access	the	axis	data	provided	by	a	physical
device.	The	MouseDevice	provides	four	virtual	axes	that	are	emulated
based	on	the	mouse	input.	Two	of	them	are	based	on	the	vertical
and	horizontal	scroll.	Two	others	are	based	on	vertical	and
horizontal	pointer	movement,	but	they	only	work	while	any	mouse
button	is	pressed.

The	ButtonAxisInput	type	allows	you	to	emulate	an	axis	based	on	the
button	pressed.	You	can	use	the	scale	property	to	set	the	axis	value
corresponding	to	each	button.	When	multiple	buttons	are	pressed
together,	the	mean	of	their	axis	values	is	used.

Both	mouse-based	and	button-based	axes	are	demonstrated	in	the
following	example:

LogicalDevice	{

				axes:	[

				axes:	[

								Axis	{

												inputs:	[

																AnalogAxisInput	{

																				sourceDevice:	mouseDevice

																				axis:	MouseDevice.X

																}

]

												onValueChanged:	{

																console.log("mouse	axis	value",	value);

												}

								},

								Axis	{

												inputs:	[

																ButtonAxisInput	{

																				sourceDevice:	keyboardDevice

																				buttons:	[Qt.Key_Left]

																				scale:	-1.0

																},

																ButtonAxisInput	{

																				sourceDevice:	keyboardDevice

																				buttons:	[Qt.Key_Right]

																				scale:	1

																}

]

												onValueChanged:	{

																console.log("keyboard	axis	value",	value);

												}

								}

]

}

Object	picker
Object	picker	is	a	component	that	allows	an	entity	to	interact	with
the	mouse	pointer.	This	component	does	not	interact	with	the
previously	described	input	API	directly.	For	example,	you	don't
need	to	provide	a	mouse	device	for	it.	All	you	need	to	do	is	to	attach
the	ObjectPicker	component	to	an	entity	that	also	contains	a	mesh.
The	signals	from	ObjectPicker	will	notify	you	about	input	events
related	to	this	entity:

Signal Explanation

clicked(pic

k) The	object	was	clicked.

pressed(pic

k) The	mouse	button	was	pressed	over	the	object.

released(pi

ck)

The	mouse	button	was	released	after	pressed(pick)	was	
triggered.

moved(pick) The	mouse	pointer	was	moved.

entered() The	mouse	pointer	entered	the	object's	area.

exited() The	mouse	pointer	exited	the	object's	area.

	

Additionally,	the	pressed	property	will	be	set	to	true	while	a	mouse
button	is	pressed	over	the	object,	and	the	containsMouse	property	will
be	set	to	true	while	the	mouse	pointer	is	over	the	object's	area.	You
can	attach	change	handlers	to	these	properties	or	use	them	in	a
property	binding,	as	with	any	other	property	in	QML:

Entity	{

				components:	[

								DiffuseSpecularMaterial	{	/*	...	*/	},

								TorusMesh	{	/*	...	*/	},

								ObjectPicker	{

												hoverEnabled:	true

												onClicked:	{

																console.log("clicked");

												}

												onContainsMouseChanged:	{

																console.log("contains	mouse?",	containsMouse);

												}

								}

]

}

Depending	on	your	scene,	picking	can	be	a	heavy	computational
task.	By	default,	the	most	simple	and	efficient	options	are	used.	The
default	object	picker	will	only	handle	mouse	press	and	release
events.	You	can	set	its	dragEnabled	property	to	true	to	handle	mouse
movements	after	pressed(pick)	was	triggered.	You	can	also	set
the	hoverEnabled	property	to	true	to	handle	all	mouse	movements,	even
when	mouse	buttons	aren't	pressed.	There	properties	belong	to
the	ObjectPicker	component,	so	you	can	set	them	separately	for	each
entity.

There	are	also	global	picking	settings	that	affect	the	whole	window.
They	are	stored	in	the	pickingSettings	property	of	the	RenderSettings
component	that	is	normally	attached	to	the	root	entity.	The	settings
can	be	changed	like	this:

Entity	{

				components:	[

								RenderSettings	{

												activeFrameGraph:	ForwardRenderer	{	/*...*/	}

												pickingSettings.pickMethod:	

PickingSettings.TrianglePicking

								},

								InputSettings	{}

]

				//...

}

Let's	go	through	the	possible	settings.	The	pickResultMode	property
defines	the	behavior	of	overlapping	pickers.	If	it's	set
to	PickingSettings.NearestPick,	only	the	object	nearest	to	the	camera	will
receive	the	event.	If	PickingSettings.AllPicks	is	specified,	all	objects	will
receive	the	event.

The	pickMethod	property	allows	you	to	choose	how	pickers	decide
whether	the	mouse	pointer	overlaps	with	the	object.	The	default
value	is	PickingSettings.BoundingVolumePicking,	meaning	that	only	the
bounding	box	of	the	object	is	taken	into	account.	This	is	a	fast	but
inaccurate	method.	To	achieve	higher	accuracy,	you	can	set
the	PickingSettings.TrianglePicking	method,	which	takes	all	mesh
triangles	into	account.

Finally,	the	faceOrientationPickingMode	property	allows	you	to	choose	if
the	front	face,	back	face,	or	both	faces	will	be	used	for	the	triangle
picking.

Frame-based	input	handling
In	all	the	previous	examples,	we	used	property	change	signal
handlers	to	execute	code	when	the	state	of	the	logical	device	or
object	picker	changes.	This	allows	you,	for	example,	to	execute	a
function	at	the	moment	a	button	is	pressed	or	released.	However,
sometimes	you	want	to	execute	a	continuous	action	(for	example,
accelerate	an	object)	while	a	button	is	pressed.	This	is	easy	to	do
with	just	a	few	changes	to	the	code.

First,	you	need	to	attach	an	id	to	the	object	with	interesting
properties	(for	example	Action,	Axis,	or	ObjectPicker):

LogicalDevice	{

				actions:	[

								Action	{

												id:	myAction

												inputs:	ActionInput	{

																sourceDevice:	keyboardDevice

																buttons:	[Qt.Key_A]

												}

								}

]

}

This	will	allow	you	to	refer	to	its	properties.	Next,	you	need	to	use
the	FrameAction	component	provided	by	the	Qt3DLogic	module.	This
component	will	simply	emit	the	triggered()	signal	each	frame.	You
can	attach	it	to	any	entity	and	use	the	input	data	as	you	want:

Entity	{

				components:	[

								//...

								FrameAction	{

												onTriggered:	{

																console.log("A	state:	",	myAction.active);

																console.log("A	state:	",	myAction.active);

												}

								}								

]

You	can	use	the	FrameAction	component	to	run	any	code	that	should	be
executed	once	per	frame.	However,	don't	forget	that	QML	allows
you	to	use	property	bindings,	so	you	can	set	property	values	based
on	user	input	without	having	to	write	imperative	code	at	all.

Time	for	action	–	receiving
mouse	input
Our	game	is	pretty	simple,	so	the	only	action	the	player	has	to	do	is
pick	two	rods	for	a	move.	Let's	use	ObjectPicker	to	detect	when	the
player	clicks	on	a	rod.

First,	set	the	pickingSettings.pickMethod	property	of	the	RenderSettings
object	to	PickingSettings.TrianglePicking	in	the	main.qml	file	(you	can	use
the	code	example	from	the	previous	section).	Our	scene	is	very
simple,	and	triangle	picking	shouldn't	be	too	slow.	This	setting	will
greatly	increase	the	picker's	accuracy.

The	next	set	of	changes	will	go	to	the	Rod.qml	file.	First,	add	an	ID	to
the	root	entity	and	declare	a	signal	that	will	notify	the	outside	world
that	the	rod	was	clicked:

Entity	{

				id:	rod

				property	int	index

				readonly	property	alias	pos:	transform.translation

				property	var	disks:	[]

				signal	clicked()

				//...

}

Next,	add	an	ObjectPicker	to	the	components	array	and	emit	the	public
clicked()	signal	when	the	picker	reports	that	it	was	clicked:

Entity	{

				//...

				components:	[

								//...

								ObjectPicker	{

								ObjectPicker	{

												id:	picker

												hoverEnabled:	true

												onClicked:	rod.clicked()

								}

]

}

Finally,	let's	give	the	player	a	hint	that	the	rod	is	clickable	by
highlighting	it	when	it	intersects	with	the	mouse	pointer:

DiffuseSpecularMaterial	{

				ambient:	{

								return	picker.containsMouse?	"#484"	:	"#111";

				}

},

When	the	player	puts	the	mouse	pointer	over	a	rod,
the	picker.containsMouse	property	will	become	true,	and	QML	will	update
the	material's	color	automatically.	You	should	see	this	behavior
when	running	the	project.	The	next	task	is	to	access	the	rod's
clicked()	signal	from	the	Scene	component.	To	do	that,	you'll	need	to
make	the	following	changes	to	the	code:

Component.onCompleted:	{

				//...

				var	setupRod	=	function(i)	{

								var	rod	=	rodComponent.createObject(sceneRoot,	{	index:	i	});

								rod.clicked.connect(function()	{

												rodClicked(rod);

								});

								return	rod;

				}

				for(var	i	=	0;	i	<	3;	i++)	{

								rods.push(setupRod(i));

				}

				//...

}

function	rodClicked(rod)	{

				console.log("rod	clicked:	",	rods.indexOf(rod));

}

}

As	a	result	of	these	changes,	the	game	should	print	a	message	to	the
application	output,	whenever	a	rod	is	clicked.	

What	just	happened?
First,	we	added	a	setupRod()	helper	function	that	creates	a	new	rod
and	connects	its	signal	to	the	new	rodClicked()	function.	Then	we
simply	called	setupRod()	for	each	index	and	accumulated	the	rod
object	into	the	rods	array.	The	rodClicked()	function	will	contain	the
rest	of	our	game	logic,	but	for	now	it	only	prints	the	index	of	the
clicked	rod	to	the	application	output.

Note	that	the	content	of	the	setupRod()	function	cannot	be	placed	directly	into	the	body	of
the	for	loop	over	i.	The	clicked()	signal	is	connected	to	a	closure	that	captures
the	rod	variable.	Within	the	function,	each	rod	will	connect	to	a	closure	that	captures	the
corresponding	Rod	
object.	Within	the	for	loop,	all	closures	would	capture	the	common	
rod	variable	that	will	hold	the	last	Rod	object	for	all	the	closures.

Performing	animations
Animations	are	essential	for	making	a	good	game.	Qt	3D	provides	a
separate	module	for	performing	animations,	but	at	the	time	of
writing	it's	still	experimental.	Luckily,	Qt	already	provides	multiple
ways	to	play	animations.	When	using	C++	API,	you	can	use	the
Animation	Framework	(we	learned	about	it	in	Chapter	5,	Animations
in	Graphics	View).	When	using	QML,	you	can	use	the	powerful	and
convenient	animation	system	provided	by	Qt	Quick.	We	already
worked	with	it	a	lot	in	previous	chapters,	so	here	we'll	see	how	we
can	apply	our	knowledge	to	Qt	3D.

Qt	Quick	animations	can	be	applied	to	almost	any	property	of	any
QML	object	(strictly	speaking,	there	are	property	types	it	can't
handle,	but	we	won't	deal	with	those	types	here).	If	you	look	at	the
QML	files	of	our	project,	you'll	see	that	basically	everything	in	our
scene	is	defined	by	properties.	That	means	that	you	can	animate
positions,	colors,	dimensions	of	objects	and	almost	everything	else.

Our	current	task	will	be	to	create	an	animation	of	the	disk	sliding
up	from	the	rod,	moving	across	the	table	to	the	other	rod,	and
sliding	down	that	rod.	The	property	we'll	animate	is	pos	which	is	the
property	alias	for	transform.translation.

Time	for	action	–	animating
disk	movements
Our	animation	will	consist	of	three	parts,	so	it	will	require	a	fair
amount	of	code.	Instead	of	putting	all	that	code	directly	into	the
Scene	component,	let's	put	the	animation	into	a	separate	component.
Create	a	new	file	called	DiskAnimation.qml	and	fill	it	with	the	following
code:

import	QtQuick	2.10

SequentialAnimation	{

				id:	rootAnimation

				property	variant	target:	null

				property	vector3d	rod1Pos

				property	vector3d	rod2Pos

				property	int	startY

				property	int	finalY

				property	int	maxY:	12

				Vector3dAnimation	{

								target:	rootAnimation.target

								property:	"pos"

								to:	Qt.vector3d(rod1Pos.x,	maxY,	rod1Pos.z)

								duration:	30	*	(maxY	-	startY)

				}

				Vector3dAnimation	{

								target:	rootAnimation.target

								property:	"pos"

								to:	Qt.vector3d(rod2Pos.x,	maxY,	rod2Pos.z)

								duration:	400

				}

				Vector3dAnimation	{

								target:	rootAnimation.target

								property:	"pos"

								to:	Qt.vector3d(rod2Pos.x,	finalY,	rod2Pos.z)

								duration:	30	*	(maxY	-	finalY)

				}

}

What	just	happened?
Our	animation	has	a	lot	of	properties	because	it	should	be	flexible
enough	to	handle	all	the	cases	we	need.	First,	it	should	be	able	to
animate	any	disk,	so	we	added	the	target	property	that	will	contain
the	disk	we	currently	move.	Next,	the	rods	that	participate	in	the
movement	influence	the	intermediate	and	final	coordinates	of	the
disk	(more	specifically,	its	x	and	z	coordinates).	The	rod1Pos
and	rod2Pos	properties	will	hold	the	coordinates	of	the	rods	in	play.
The	startY	and	finalY	properties	define	the	starting	and	final
coordinates	of	the	disk.	These	coordinates	will	depend	on	the
current	number	of	disks	stored	on	each	rod.	Finally,	the	maxY
property	simply	defines	the	maximum	height	the	disk	will	raise	at
while	moving.	

The	property	we	animated	is	of	the	vector3d	type,	so	we	needed	to	use
the		Vector3dAnimation	type	that	is	able	to	correctly	interpolate	all	three
components	of	the	vector.	We	set	the	same	target	and	property	for	all
three	parts	of	the	animation.	Then,	we	carefully	calculated	the	final
position	of	the	disk	after	each	stage	and	assigned	it	to	the	to
property.	There	is	no	need	to	set	the	from	property,	as	the	animation
will	automatically	use	the	current	position	of	the	disk	as	the	starting
point.	Finally,	we	calculated	the	duration	of	each	step	to	ensure	steady
movement	of	the	disk.

Of	course,	we	want	to	test	the	new	animation	right	away.	Add
a	DiskAnimation	object	to	the	Scene	component	and	initialize	the
animation	at	the	end	of	the		Component.onCompleted	handler:

DiskAnimation	{	id:	diskAnimation	}

Component.onCompleted:	{

				//...

				var	disk1	=	rods[0].disks.pop();

				diskAnimation.rod1Pos	=	rods[0].pos;

				diskAnimation.rod1Pos	=	rods[0].pos;

				diskAnimation.rod2Pos	=	rods[1].pos;

				diskAnimation.startY	=	disk1.pos.y;

				diskAnimation.finalY	=	1;

				diskAnimation.target	=	disk1;

				diskAnimation.start();

}

When	you	run	the	application,	you	should	see	the	top	disk	moving
from	one	rod	to	another.

Time	for	action	–	implementing
game	logic
Most	of	the	required	preparations	are	done,	and	now	it's	time	to
make	our	game	functional.	The	player	should	be	able	to	make	a
move	by	clicking	on	a	rod	and	then	clicking	on	another	rod.	After
the	first	rod	is	selected,	the	game	should	remember	it	and	show	it	in
a	different	color.

First,	let's	prepare	the	Rod	component.	We	need	it	to	have	a	new
property	that	indicates	that	this	rod	was	selected	as	the	first	rod	for
the	next	move:

property	bool	isSourceRod:	false

It's	easy	to	make	the	rod	change	color	depending	on	the	isSourceRod
value	using	a	property	binding:

DiffuseSpecularMaterial	{

				ambient:	{

								if	(isSourceRod)	{

												return	picker.containsMouse?	"#f44"	:	"#f11";

								}	else	{

												return	picker.containsMouse?	"#484"	:	"#111";

								}

				}

},

Now	let's	turn	our	attention	to	the	Scene	component.	We'll	need	a
property	that	contains	the	currently	selected	first	rod:

Entity	{

				id:	sceneRoot

				property	variant	rods:	[]

				property	variant	sourceRod

				//...

}

All	that	remains	is	the	implementation	of	the	rodClicked()	function.
Let's	go	through	it	in	two	steps:

function	rodClicked(rod)	{

				if	(diskAnimation.running)	{	return;	}

				if	(rod.isSourceRod)	{

								rod.isSourceRod	=	false;

								sourceRod	=	null;

				}	else	if	(!sourceRod)	{

								if	(rod.disks.length	>	0)	{

												rod.isSourceRod	=	true;

												sourceRod	=	rod;

								}	else	{

												console.log("no	disks	on	this	rod");

								}

				}	else	{

								//...

				}

}

First,	we	check	whether	the	move	animation	is	already	running,	and
ignore	the	event	if	it	is.	Next,	we	check	whether	the	clicked	rod	was
already	selected.	In	this	case,	we	simply	deselect	the	rod.	This
allows	the	player	to	cancel	the	move	if	they	accidentally	selected	an
incorrect	rod.

If	sourceRod	is	unset,	that	means	that	we're	in	the	first	phase	of	the
move.	We	check	that	the	clicked	rod	has	some	disks	on	it,	otherwise
a	move	would	not	be	possible.	If	everything	is	all	right,	we	set
the	sourceRod	property	and	the	rod's	isSourceRod	property.

The	rest	of	the	function	handles	the	second	phase	of	the	move:

var	targetRod	=	rod;

if	(targetRod.disks.length	>	0	&&

if	(targetRod.disks.length	>	0	&&

				targetRod.disks[targetRod.disks.length	-	1].index	<

				sourceRod.disks[sourceRod.disks.length	-	1].index)

{

				console.log("invalid	move");

}	else	{

				var	disk	=	sourceRod.disks.pop();

				targetRod.disks.push(disk);

				diskAnimation.rod1Pos	=	sourceRod.pos;

				diskAnimation.rod2Pos	=	targetRod.pos;

				diskAnimation.startY	=	disk.pos.y;

				diskAnimation.finalY	=	targetRod.disks.length;

				diskAnimation.target	=	disk;

				diskAnimation.start();

}

sourceRod.isSourceRod	=	false;

sourceRod	=	null;

In	this	branch,	we	already	know	that	we	have	the	first	rod	object
stored	in	the	sourceRod	property.	We	store	the	clicked	rod	object	in
the	targetRod	variable.	Next,	we	check	whether	the	player	tries	to	put
a	larger	disk	on	top	of	the	smaller	one.	If	that's	the	case,	we	refuse
to	make	the	invalid	move.

If	everything	is	correct,	we	finally	perform	the	move.	We	use	the
pop()	function	to	remove	the	disk	from	the	end	of	the	sourceRod.disks
array.	This	is	the	disk	that	will	be	moved	to	the	other	rod.	We
immediately	push	the	disk	object	to	the	disks	array	of	the	other	rod.
Next,	we	carefully	set	up	all	properties	of	the	animation	and	start	it.
At	the	end	of	the	function,	we	clear	the	rod's	isSourceRod	property	and
the	scene's	sourceRod	property	to	allow	the	player	to	make	the	next
move.

Have	a	go	hero	–	improving	the
game
Try	to	make	your	own	modifications	to	the	game.	For	example,	you
can	notify	the	player	about	an	invalid	move	by	flashing	the
background	color	or	the	color	of	the	foundation	object.	You	can
even	add	a	3D	text	to	the	scene	using	the	ExtrudedTextMesh	component.
Try	to	play	with	different	easing	modes	to	make	the	animations	look
better.

The	properties	and	functions	of	the	Scene	object	are	visible	to	the
outside	world,	but	they	really	are	implementation	details.	You	can
fix	that	by	putting	them	into	an	internal	QtObject,	as	we	described	in	C
hapter	12,	Customization	in	Qt	Quick.

Qt	3D	is	very	flexible	when	it	comes	to	rendering.	While	it's	straightforward	to	use	with	the
simple	ForwardRenderer,	you	can	create	a	much	more	complex	render	graph	if	you	want.	It's
possible	to	render	to	multiple	viewports,	use	off-screen	textures,	apply	custom	shaders,	and
create	your	own	graphics	effects	and	materials.	We	can't	discuss	all	these	possibilities	in
this	book,	but	you	can	look	at	Qt	examples	to	see	how	this	can	be	done.	Some	of	the	relevant
examples	are	Qt3D:	Multi	Viewport	QML,	Qt3D:	Shadow	Map	QML,	and	Qt3D:	Advanced
custom	material	QML.	

Integration	with	3D	modeling
software
Geometric	shapes	provided	by	the	Qt3DExtras	module	are	great	for
prototyping.	As	we	saw,	these	mesh	generators	come	in	handy	when
you	want	to	create	and	test	a	new	game	quickly.	However,	a	real
game	usually	contains	more	complex	figures	than	spheres	and
cubes.	The	meshes	are	usually	prepared	using	specialized	3D
modelling	software.	Qt	3D	provides	wide	capabilities	for	importing
3D	data	from	external	files.

The	first	way	of	importing	such	data	is	the	Mesh	component.	You	only
need	to	attach	this	component	to	an	entity	and	specify	the	path	to
the	file	using	the	source	property.	As	of	Qt	5.10,	Mesh	supports	OBJ,
PLY,	STL,	and	Autodesk	FBX	file	formats.

As	always,	you	can	use	a	real	filename	or	a	Qt	resource	path.	However,	note	that	the
source	property	expects	an	URL,	not	a	path.	A	correct	absolute	resource	path	should	start
with	qrc:/,	and	an	absolute	file	path	should	start	with	file://.	You	can	also	use	relative
paths	that	will	be	resolved	relatively	to	the	current	QML	file.

If	you're	using	OBJ	files,	Mesh	provides	you	with	an	additional	option
to	only	load	a	sub-mesh	from	the	source	file.	You	can	do	it	by
specifying	the	name	of	the	sub-mesh	in	the	meshName	property	of	the
Mesh	component.	Instead	of	the	exact	name,	you	can	also	specify	a
regular	expression	to	load	all	sub-meshes	matching	that	expression.

Time	for	action	–	using	OBJ
files	for	the	disks
Qt	3D	doesn't	provide	a	suitable	mesh	for	the	disks,	but	we	can	use
a	3D	modelling	software	to	make	any	shape	we	want	and	then	use	it
in	our	project.	You	will	find	the	required	OBJ	files	in	the	resources
that	come	with	the	book.	The	files	are	named	from	disk0.obj
to	disk7.obj.	If	you	want	to	practice	with	a	3D	modelling	software,
you	can	prepare	the	files	yourself.

Create	a	subdirectory	named	obj	in	your	project	directory	and	put
the	OBJ	files	there.	Invoke	the	context	menu	of	qml.qrc	in	the	Qt
Creator's	project	tree	and	select	Add	Existing	Files.	Add	all	OBJ
files	to	the	project.	To	put	these	files	to	work,	we	need	to	edit	the
Disk.qml	file.	Remove	scale	and	rotation	from	the	Transform	component.
Replace	TorusMesh	with	Mesh	and	specify	the	resource	path	to	the	OBJ
file	as	the	source	property:

components:	[

				DiffuseSpecularMaterial	{	/*...*/	},

				Mesh	{

								source:	"qrc:/obj/disk"	+	index	+	".obj"

				},

				Transform	{

								id:	transform

				}

]

Qt	3D	will	now	use	our	new	models	for	the	disks:

Loading	a	3D	scene
The	Mesh	component	is	useful	when	you	want	to	import	a	single
object's	shape	from	an	external	file.	However,	sometimes	you	want
to	import	multiple	objects	from	a	single	file.	For	example,	you	could
prepare	some	decorations	surrounding	your	game	action	and	then
import	them	all	at	once.	This	is	where	the	SceneLoader	component
becomes	useful.

It	can	be	used	similar	to	the	Mesh	component:

Entity	{

				components:	[

								SceneLoader	{

												source:	"path/to/scene/file"

								}

]

}

However,	instead	of	providing	shape	for	its	entity,	SceneLoader	creates
a	whole	tree	of	Entity	objects	that	become	children	of	the	SceneLoader's
entity.	Each	new	entity	will	be	provided	with	a	mesh,	a	material,
and	a	transform	according	to	the	file	data.	SceneLoader	uses	Assimp
(Open	Asset	Import	Library)	to	parse	the	source	files,	so	it	supports
many	common	3D	formats.

Working	with	Qt	3D	using	C++
While	QML	is	a	powerful	and	convenient	way	of	using	Qt	3D,
sometimes	you	may	have	reasons	to	prefer	C++	over	QML.	For
example,	if	your	project	has	a	large	C++	codebase	or	your	team	is
not	familiar	with	JavaScript,	sticking	with	C++	might	be	the	right
solution.	If	you	want	to	extend	a	Qt	3D	class	with	your	custom
implementation,	you'll	have	to	use	the	C++	approach.	Additionally,
if	you	deal	with	large	amounts	of	objects,	processing	them	in	C++
may	be	noticeably	faster	than	doing	that	in	QML.	Qt	allows	you	to
choose	between	C++	and	QML	freely.

The	QML	API	of	Qt	3D	for	the	most	part	consists	of	C++	classes
exposed	without	many	changes.	That	means	that	most	of	the	code
you've	seen	in	this	chapter	so	far	can	be	transparently	translated	to
the	equivalent	C++	code	with	minimal	effort.	When	you	elect	not	to
use	QML,	you	lose	its	property	bindings,	syntax	sugar,	and	the
ability	to	declare	trees	of	objects	that	are	automatically	instantiated.
However,	as	long	as	you're	familiar	with	the	core	of	Qt	C++	API,
you	shouldn't	have	any	issues.	You'll	have	to	create	objects
manually	and	assign	parents	to	them.	In	place	of	property	bindings,
you'll	have	to	connect	to	property	change	signals	and	perform	the
required	updates	manually.	If	you	studied	the	earlier	chapters	of
this	book,	you	should	have	no	problems	with	doing	that.

Time	for	action	–	creating	a	3D
scene	using	C++
Let's	see	how	we	can	recreate	our	first	Qt	3D	scene	using	only	C++
code.	Our	scene	will	contain	a	light	source,	a	cube,	and	a	first
person	camera	controller.	You	can	use	the	Qt	Console	Application
template	to	create	the	project.	Don't	forget	to	enable	the	Qt	3D
modules	you	want	to	use	in	the	project	file:

QT	+=	3dextras

CONFIG	+=	c++11

The	first	change	compared	to	the	QML	approach	is	that	you	need	to
use	the	Qt3DWindow	class	instead	of	Qt3DQuickWindow.	The	Qt3DWindow	class
performs	a	few	actions	that	are	typically	needed	in	a	Qt	3D
application.	It	sets	up	a	QForwardRenderer,	a	camera,	and	initializes
the	QInputSettings	object	needed	for	processing	events.	You	can	access
the	default	frame	graph	using	the	defaultFrameGraph()	method.	The
default	camera	is	available	using	the	camera()	method.	The	aspect
ratio	of	the	default	camera	is	updated	automatically	according	to
the	window	size.	If	you	want	to	set	up	a	custom	frame	graph,	use
the	setActiveFrameGraph()	method.

All	the	code	from	our	small	example	will	be	put	into	the	main()
function.	Let's	go	through	it	piece	by	piece.	First,	we	initialize	the
usual	QGuiApplication	object,	create	a	Qt3DWindow	object,	and	apply	our
preferred	settings	to	its	frame	graph	and	camera:

int	main(int	argc,	char	*argv[])	{

				QGuiApplication	app(argc,	argv);

				Qt3DExtras::Qt3DWindow	window;

				window.defaultFrameGraph()->setClearColor(Qt::black);

				window.defaultFrameGraph()->setClearColor(Qt::black);

				Qt3DRender::QCamera	*camera	=	window.camera();

				camera->lens()->setPerspectiveProjection(45.0f,	16.0f	/	9.0f,

0.1f,	1000.0f);

				camera->setPosition(QVector3D(0,	40.0f,	-40.0f));

				camera->setViewCenter(QVector3D(0,	0,	0));

				//...

}

Next,	we	create	a	root	entity	object	that	will	hold	all	our	other
entities	and	create	a	camera	controller	attached	to	the	camera:

Qt3DCore::QEntity	*rootEntity	=	new	Qt3DCore::QEntity();

Qt3DExtras::QFirstPersonCameraController	*cameraController	=

				new	Qt3DExtras::QFirstPersonCameraController(rootEntity);

cameraController->setCamera(camera);

Next,	we	set	up	a	light	entity:

Qt3DCore::QEntity	*lightEntity	=	new	Qt3DCore::QEntity(rootEntity);

Qt3DRender::QDirectionalLight	*lightComponent	=	new

Qt3DRender::QDirectionalLight();

lightComponent->setColor(Qt::white);

lightComponent->setIntensity(0.5);

lightComponent->setWorldDirection(QVector3D(0,	-1,	0));

lightEntity->addComponent(lightComponent);

It's	important	that	we	pass	the	root	entity	to	the	QEntity	constructor
to	ensure	that	the	new	entity	will	be	a	part	of	our	scene.	To	add	a
component	to	the	entity,	we	use	the	addComponent()	function.	The	next
step	is	to	set	up	the	cube	3D	object:

Qt3DCore::QEntity	*cubeEntity	=	new	Qt3DCore::QEntity(rootEntity);

Qt3DExtras::QCuboidMesh	*cubeMesh	=	new	Qt3DExtras::QCuboidMesh();

Qt3DExtras::QDiffuseSpecularMaterial	*cubeMaterial	=

				new	Qt3DExtras::QDiffuseSpecularMaterial();

cubeMaterial->setAmbient(Qt::white);

Qt3DCore::QTransform	*cubeTransform	=	new	Qt3DCore::QTransform();

cubeTransform->setScale(10);

cubeEntity->addComponent(cubeMesh);

cubeEntity->addComponent(cubeMaterial);

cubeEntity->addComponent(cubeMaterial);

cubeEntity->addComponent(cubeTransform);

As	you	can	see,	this	code	simply	creates	a	few	objects	and	sets	their
properties	to	the	same	values	we	used	in	our	QML	example.	The
final	lines	of	code	complete	our	setup:

window.setRootEntity(rootEntity);

window.show();

return	app.exec();

We	pass	the	root	entity	to	the	window	and	show	it	on	screen.	That's
all!	Qt	3D	will	render	the	constructed	scene	in	the	same	way	it
worked	in	our	QML	project.

All	properties	of	Qt	3D	classes	are	equipped	with	change
notification	signals,	so	you	can	use	connect	statements	to	react	to
external	changes	properties.	For	example,	if	you	use
the	Qt3DInput::QAction	component	to	receive	keyboard	or	mouse	events,
you	can	use	its	activeChanged(bool	isActive)	signal	to	get	notifications
about	the	event.	You	can	also	perform	animations	in	the	3D	scene
using	C++	animation	classes	such	as	QPropertyAnimation.

Integration	with	Qt	Widgets
and	Qt	Quick
While	Qt	3D	is	a	very	powerful	module,	sometimes	it's	not	enough
to	make	a	complete	game	or	application.	Other	Qt	modules	such	as
Qt	Quick	or	Qt	Widgets	can	be	very	helpful,	for	example,	when
working	on	the	user	interface	of	your	game.	Luckily,	Qt	provides	a
few	ways	to	use	different	modules	together.

When	it	comes	to	Qt	Widgets,	your	best	bet
is	the	QWidget::createWindowContainer()
function.	It	allows	you	to	surround	your	3D	view	with	widgets	and
display	them	all	in	a	single	window.	This	approach	was	already
discussed	in	Chapter	9,	OpenGL	and	Vulkan	in	Qt	Applications,	and
can	be	applied	to	Qt	3D	without	any	changes.

However,	the	capabilities	of	Qt	Widgets	are	still	limited	in	the	world
of	hardware-accelerated	graphics.	Qt	Quick	is	much	more
promising	in	this	area,	and	the	synergy	between	QML	APIs	of	Qt
Quick	and	Qt	3D	can	prove	to	be	very	strong.	Qt	provides	two	ways
to	combine	Qt	Quick	and	Qt	3D	in	a	single	application	without
significant	performance	costs.	Let's	take	a	closer	look	at	them.

Embedding	Qt	Quick	UI	into	a
3D	scene
Qt	3D	allows	you	to	embed	an	arbitrary	Qt	Quick	item	into	your	3D
scene	using	the	Scene2D	type.	How	does	that	work?	First,	you	need	to
put	your	Qt	Quick	content	into	a	new	Scene2D	object.	Next,	you	need
to	declare	a	texture	that	will	be	used	as	a	render	target	for	the	form.
Whenever	Qt	Quick	decides	to	update	its	virtual	view,	the	Scene2D
object	will	render	it	directly	to	the	specified	texture.	You	only	need
to	display	this	texture	as	you	want.	The	most	simple	way	of	doing
that	is	to	pass	it	to	a	TextureMaterial	component	attached	to	one	of
your	3D	objects.	

However,	this	is	only	one	part	of	the	job.	It's	nice	to	allow	users	to
see	your	form,	but	they	should	also	be	able	to	interact	with	it.	This
is	also	supported	by	Scene2D!	To	make	it	work,	you	need	to	do	the
following:

1.	 Set	pickMethod	to	TrianglePicking	in	the	RenderSettings.	This	will

allow	object	pickers	to	retrieve	more	accurate	information

about	mouse	events.

2.	 Attach	an	ObjectPicker	component	to	all	entities	that	use	the

texture	created	by	Scene2D.	It's	a	good	idea	to	set	the	hoverEnabled

and	dragEnabled	properties	of	the	object	picker	to	true	to	make

mouse	events	work	as	expected.

3.	 Specify	all	these	entities	in	the	entities	property	of	the	Scene2D

object.

This	will	allow	Scene2D	to	forward	mouse	events	to	the	Qt	Quick

content.	Unfortunately,	forwarding	keyboard	events	is	not	available
yet.

Let's	see	an	example	of	this	approach:

import	Qt3D.Core	2.0

import	Qt3D.Render	2.0

import	Qt3D.Input	2.0

import	Qt3D.Extras	2.10

import	QtQuick	2.10

import	QtQuick.Scene2D	2.9

import	QtQuick.Controls	2.0

import	QtQuick.Layouts	1.0

Entity	{

				components:	[

								RenderSettings	{

												activeFrameGraph:	ForwardRenderer	{	/*...*/	}

												pickingSettings.pickMethod:

PickingSettings.TrianglePicking

								},

								InputSettings	{}

]

				Scene2D	{

								output:	RenderTargetOutput	{

												attachmentPoint:	RenderTargetOutput.Color0

												texture:	Texture2D	{

																id:	texture

																width:	200

																height:	200

																format:	Texture.RGBA8_UNorm

												}

								}

								entities:	[cube,	plane]

								Rectangle	{

												color:	checkBox1.checked?	"#ffa0a0"	:	"#a0a0ff"

												width:	texture.width

												height:	texture.height

												ColumnLayout	{

																CheckBox	{

																				id:	checkBox1

																				text:	"Toggle	color"

																}

																CheckBox	{

																				id:	checkBox2

																				text:	"Toggle	cube"

																}

																}

																CheckBox	{

																				id:	checkBox3

																				checked:	true

																				text:	"Toggle	plane"

																}

												}

								}

				}

				//...

}

This	code	sets	up	a	Qt	3D	scene	that	contains	a	Scene2D	object.	Scene2D
itself	is	not	visible	in	the	3D	scene.	We	declare	a	texture	that	will
receive	the	rendered	Qt	Quick	content.	You	can	choose	width	and
height	of	the	texture	depending	on	the	size	of	the	displayed	content.

Next,	we	declare	that	we'll	render	this	texture	in	two	entities	(we'll
create	them	in	the	next	piece	of	code).	Finally,	we	place	a	Qt	Quick
item	directly	into	the	Scene2D	object.	Make	sure	you	set	this	size	for
your	Qt	Quick	item	according	to	the	size	of	the	texture.	In	our
example,	we	created	a	form	containing	three	checkboxes	in	a	layout.

The	next	part	of	code	creates	two	items	for	displaying	the	Qt	Quick-
based	texture:

Entity	{

				id:	cube

				components:	[

								CuboidMesh	{},

								TextureMaterial	{

												texture:	texture

								},

								Transform	{

												scale:	10

												rotationY:	checkBox2.checked	?	45	:	0

								},

								ObjectPicker	{

												hoverEnabled:	true

												dragEnabled:	true

								}

]

}

}

Entity	{

				id:	plane

				components:	[

								PlaneMesh	{

												mirrored:	true

								},

								TextureMaterial	{

												texture:	texture

								},

								Transform	{

												translation:	checkBox3.checked	?	Qt.vector3d(-20,	0,	0)	:

Qt.vector3d(20,	0,	0)

												scale:	10

												rotationX:	90

												rotationY:	180

												rotationZ:	0

								},

								ObjectPicker	{

												hoverEnabled:	true

												dragEnabled:	true

								}

]

}

The	first	item	is	a	cube,	and	the	second	item	is	a	plane.	Most	of	the
properties	are	just	arbitrary	values	that	make	the	scene	look	good.
The	important	part	is	that	each	item	has	a	TextureMaterial	component,
and	we	passed	the	texture	object	into	it.	Each	item	also	has
an	ObjectPicker	component	that	allows	the	user	to	interact	with	the
item.	Note	that	we	used	the	mirrored	property	of	PlaneMesh	to	display	the
texture	in	its	original	(not	mirrored)	orientation.

One	plane	object	is	usually	enough	to	display	your	form.	We	used	two	objects	purely	for
demonstration	purposes.

While	Qt	Quick	items	and	Qt	3D	entities	live	in	different	worlds	and
don't	seem	to	interact	with	each	other,	they	are	still	declared	in	a
single	QML	file,	so	you	can	use	property	bindings	and	other	QML
techniques	to	make	all	these	items	work	together.	In	our	example,
not	only	is	the	background	color	of	the	root	Qt	Quick	item
controlled	by	the	checkbox,	but	the	3D	objects	are	also	influenced

by	checkboxes:

Embedding	a	Qt	3D	scene	into
a	Qt	Quick	form
Now	let's	see	how	we	can	perform	the	opposite	task.	This	approach
is	useful	if	your	application	is	built	mainly	around	Qt	Quick.	This
means	that	you	use	the	QQmlApplicationEngine	class	in	the	main()	function,
and	the	root	object	of	your	main.qml	file	is	usually	the	Window	object.	It's
very	easy	to	extend	your	Qt	Quick	application	with	a	bit	of	3D
action.

We	could	place	all	the	code	into	the	main.qml	file,	but	it's	more
convenient	to	split	it	because	setting	up	a	3D	scene	requires	quite	a
bit	of	code.	Let's	say	you	have	a	file	named	My3DScene.qml	that	contains
the	usual	content	of	a	3D	scene:

Entity	{

				components:	[

								RenderSettings	{

												activeFrameGraph:	ForwardRenderer	{	/*...*/	},

								InputSettings	{}

]

				Entity	{	/*...*/	}

				Entity	{	/*...*/	}

				//...

}

To	add	this	3D	scene	into	the	main.qml	file	(or	any	other	Qt	Quick-
based	QML	file),	you	should	use	the	Scene3D	QML	type	that	can	be
imported	from	the	QtQuick.Scene3D	module.	For	example,	this	is	how
you	can	create	a	form	with	a	button	and	a	3D	view:

import	QtQuick	2.10

import	QtQuick.Layouts	1.0

import	QtQuick.Controls	1.0

import	QtQuick.Window	2.0

import	QtQuick.Scene3D	2.0

Window	{

				visible:	true

				Button	{

								id:	button1

								text:	"button1"

								anchors	{

												top:	parent.top

												left:	parent.left

												right:	parent.right

												margins:	10

								}

				}

				Scene3D	{

								focus:	true

								anchors	{

												top:	button1.bottom

												bottom:	parent.bottom

												left:	parent.left

												right:	parent.right

												margins:	10

								}

								aspects:	["input",	"logic"]

								My3DScene	{}

				}

}

Most	of	the	code	is	the	usual	content	of	a	Qt	Quick	form.	The	Scene3D
item	does	all	the	magic.	The	root	3D	entity	should	be	added	to	this
item	directly	or,	as	in	our	case,	in	the	form	of	a	custom	component.
The	Scene3D	item	sets	up	a	Qt	3D	engine	and	renders	the	passed
scene:

If	you	want	to	use	Qt3DInput	or	Qt3DLogic	modules,	you	need	to	enable
the	corresponding	3D	aspects	using	the	aspects	property	of	Scene3D,	as
shown	in	the	screenshot.	Additionally,	the	multisample	Boolean
property	can	be	used	to	enable	multisampling.	The	hoverEnabled
property	can	be	used	to	enable	handling	of	mouse	events	when
mouse	buttons	are	not	pressed.

Similar	to	Qt3DQuickWindow,	Scene3D	sets	the	camera's	aspect	ratio
automatically	by	default.	You	can	disable	it	by	setting
its	cameraAspectRatioMode	property	to	Scene3D.UserAspectRatio.

This	approach	can	also	be	used	to	display	some	UI	controls	on	top
of	the	3D	view.	This	will	allow	you	to	use	the	full	power	of	Qt	Quick
to	make	the	UI	of	your	game	amazing.

Pop	quiz
Q1.	Which	component	can	be	used	to	rotate	a	3D	object?

1.	 CuboidMesh

2.	 RotationAnimation

3.	 Transform

Q2.	Which	component	is	the	most	suitable	for	emulating	the	light	of
the	sun?

1.	 DirectionalLight

2.	 PointLight

3.	 SpotLight

Q3.	What	is	a	Qt	3D	material?

1.	 An	object	that	allows	you	to	load	a	texture	from	a	file.

2.	 A	component	that	defines	the	physical	properties	of	the

object.

3.	 A	component	that	defines	the	visible	properties	of	the

object's	surface.

Summary
In	this	chapter,	we	learned	to	create	3D	games	with	Qt.	We	saw	how
to	create	and	position	3D	objects	in	the	scene	and	configure	the
camera	for	rendering.	Next,	we	examined	how	we	can	handle	user
input	using	Qt	3D.	More	than	that,	you	learned	to	apply	your
existing	animation	skills	to	Qt	3D	objects.	Finally,	we	found	out
how	to	use	Qt	3D	together	with	other	Qt	modules.

Like	Qt	Quick,	Qt	3D	is	rapidly	evolving.	At	the	time	of	writing,
some	of	the	modules	are	still	experimental.	You	should	expect	the
API	of	Qt	3D	to	be	improved	and	extended,	so	make	sure	you	check
the	Qt	documentation	for	newer	releases.

This	concludes	our	book	on	game	programming	using	Qt.	We	have
taught	you	the	general	basics	of	Qt,	described	its	widget	realm	to
you,	and	introduced	you	to	the	fascinating	world	of	Qt	Quick	and	Qt
3D.	Widgets	(including	Graphics	View),	Qt	Quick,	and	Qt	3D	are	the
main	paths	you	can	take	when	creating	games	using	the	Qt
framework.	We	have	also	shown	you	ways	of	merging	the	two
approaches	by	making	use	of	any	OpenGL	or	Vulkan	skills	you
might	have,	going	beyond	what	Qt	already	offers	today.	At	this
point,	you	should	start	playing	around	and	experimenting,	and	if	at
any	point	you	feel	lost	or	simply	lack	the	information	on	how	to	do
something,	the	very	helpful	Qt	reference	manual	should	be	the	first
resource	you	direct	yourself	to.

Good	luck	and	have	lots	of	fun!

Pop	quiz	answers
Chapter	3
Q1:	2
Q2:	2
Q3:	2
Q4:	1

Chapter	4
Q1:	1
Q2:	4
Q3:	2
Q4:	3

Chapter	5
Q1:	3
Q2:	1
Q3:	3

Chapter	6
Q1:	1
Q2:	2
Q3:	3
Q4:	3

Chapter	7
Q1:	1
Q2:	2
Q3:	2
Q4:	3

Chapter	8
Q1:	1

Q2:	2
Q3:	3

Chapter	9
Q1:	3
Q2:	1
Q3:	3

Chapter	10
Q1:	2
Q2:	2
Q3:	1
Q4:	4
Q5:	2

Chapter	11
Q1:	2
Q2:	2
Q3:	3

Chapter	12
Q1:	2
Q2:	3
Q3:	3

Chapter	13
Q1:	2
Q2:	1
Q3:	2

Chapter	14
Q1:	2
Q2:	2
Q3:	2

Chapter	15
Q1:	3

Q2:	1
Q3:	3

Chapter	16
Q1:	3
Q2:	2
Q3:	1
Q4:	3

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books
by	Packt:

Learn	QT	5
Nicholas	Sherriff

ISBN:	978-1-78847-885-4

Install	and	configure	the	Qt	Framework	and	Qt	Creator	IDE

Create	a	new	multi-project	solution	from	scratch	and	control

every	aspect	of	it	with	QMake

Implement	a	rich	user	interface	with	QML

Learn	the	fundamentals	of	QtTest	and	how	to	integrate	unit

testing

Build	self-aware	data	entities	that	can	serialize	themselves

to	and	from	JSON

Manage	data	persistence	with	SQLite	and	CRUD	operations

https://www.packtpub.com/web-development/learn-qt-5

Reach	out	to	the	internet	and	consume	an	RSS	feed

Produce	application	packages	for	distribution	to	other	users

Qt	5	Projects
Marco	Piccolino

ISBN:	978-1-78829-388-4

Learn	the	basics	of	modern	Qt	application	development

Develop	solid	and	maintainable	applications	with	BDD,

TDD,	and	Qt	Test

Master	the	latest	UI	technologies	and	know	when	to	use

them:	Qt	Quick,	Controls	2,	Qt	3D	and	Charts

Build	a	desktop	UI	with	Widgets	and	the	Designer

Translate	your	user	interfaces	with	QTranslator	and	Linguist

Get	familiar	with	multimedia	components	to	handle	visual

input	and	output

Explore	data	manipulation	and	transfer:	the	model/view

framework,	JSON,	Bluetooth,	and	network	I/O

Take	advantage	of	existing	web	technologies	and	UI

https://www.packtpub.com/application-development/qt-5-projects

components	with	WebEngine

Leave	a	review	-	let	other
readers	know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a
review	on	the	site	that	you	bought	it	from.	If	you	purchased	the
book	from	Amazon,	please	leave	us	an	honest	review	on	this	book's
Amazon	page.	This	is	vital	so	that	other	potential	readers	can	see
and	use	your	unbiased	opinion	to	make	purchasing	decisions,	we
can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked
with	Packt	to	create.	It	will	only	take	a	few	minutes	of	your	time,	but
is	valuable	to	other	potential	customers,	our	authors,	and	Packt.
Thank	you!

	Title Page
	Copyright and Credits
	Game Programming Using Qt 5 Beginner's Guide Second Edition

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Introduction to Qt
	A journey through time
	The cross-platform programming
	Supported platforms
	GUI scalability

	Qt versions
	Structure of Qt framework
	Qt Essentials
	Qt Add-ons
	qmake
	Modern C++ standards

	Choosing the right license
	An open source license
	A commercial license

	Summary

	Installation
	Installing the Qt SDK
	Time for action – Installing Qt using an online installer
	What just happened?

	Qt Creator
	Qt Creator's modes
	Setting up compilers, Qt versions, and kits
	Time for action – Loading an example project
	Qt documentation
	Time for action – Running the Affine Transformations project
	What just happened?

	Summary

	Qt GUI Programming
	Creating GUI in Qt
	Time for action – Creating a Qt Widgets project
	What just happened?

	Design mode interface
	Time for action – Adding widgets to the form

	Layouts
	Time for action – Adding a layout to the form

	Signals and slots
	Creating signals and slots
	Connecting signals and slots
	Old connect syntax
	Signal and slot access specifiers
	Time for action – Receiving the button-click signal from the form
	What just happened?

	Automatic slot connection and its drawbacks
	Time for action – Changing the texts on the labels from the code

	Creating a widget for the tic-tac-toe board
	Choosing between designer forms and plain C++ classes
	Time for action – Creating a game board widget
	What just happened?

	Automatic deletion of objects
	Time for action – Functionality of a tic-tac-toe board
	Time for action – Reacting to the game board's signals
	What just happened?

	Advanced form editor usage
	Time for action – Designing the game configuration dialog
	Accelerators and label buddies
	The tab order
	Time for action – Public interface of the dialog

	Polishing the application
	Size policies
	Protecting against invalid input
	Main menu and toolbars
	Time for action – Creating a menu and a toolbar
	What just happened?

	The Qt resource system
	Time for action – Adding icons to the project
	Have a go hero – Extending the game

	Pop quiz
	Summary

	Custom 2D Graphics with Graphics View
	Graphics View architecture
	Time for action – Creating a project with a Graphics View
	What just happened?

	Coordinate systems
	The item's coordinate system
	The scene's coordinate system
	The viewport's coordinate system
	Origin point of the transformation
	What just happened?
	Have a go hero – Applying multiple transformations

	Parent–child relationship between items
	Time for action – Using child items
	Have a go hero – Implementing the custom rectangle as a class

	Conversions between coordinate systems

	Overview of functionality
	Standard items
	Anti-aliasing
	Pens and brushes
	Item selection
	Keyboard focus in graphics scene
	Painter paths
	Time for action – Adding path items to the scene

	Z-order of items
	Ignoring transformations
	Time for action – Adding text to a custom rectangle

	Finding items by position
	Showing specific areas of the scene
	Saving a scene to an image file
	What just happened?
	Have a go hero – Rendering only specific parts of a scene

	Custom items
	Time for action – Creating a sine graph project
	Time for action – Creating a graphics item class
	What just happened?

	Events
	Time for action – Implementing the ability to scale the scene
	What just happened?

	Time for action – Taking the zoom level into account
	Time for action – Reacting to an item's selection state
	What just happened?

	Time for action – Event handling in a custom item
	Time for action – Implementing the ability to create and delete elements with mouse
	Time for action – Changing the item's size
	Have a go hero – Extending the item's functionality

	Widgets inside Graphics View
	Optimization
	A binary space partition tree
	Caching the item's paint function
	Optimizing the view
	OpenGL in the Graphics View

	Pop quiz
	Summary

	Animations in Graphics View
	The jumping elephant or how to animate the scene
	The game play
	Time for action - Creating an item for Benjamin
	The playing field
	Time for action - Making Benjamin move
	What just happened?

	Parallax scrolling
	Time for action - Moving the background
	What just happened?
	Have a go hero - Adding new background layers

	The Animation framework
	Properties
	Time for action - Adding a jump animation

	Property animations
	Time for action - Using animations to move items smoothly
	What just happened?

	Have a go hero - Letting the item handle Benjamin's jump
	Time for action - Keeping multiple animations in sync
	What just happened?

	Chaining multiple animations

	Adding gamepad support
	Working with gamepads in Qt
	Time for action - Handling gamepad events

	Item collision detection
	Time for action - Making the coins explode
	What just happened?

	Finishing the game
	Have a go hero - Extending the game
	A third way of animation

	Pop quiz
	Summary

	Qt Core Essentials
	Text handling
	String encodings
	QByteArray and QString
	Using other encodings
	Basic string operations
	The string search and lookup
	Dissecting strings
	Converting between numbers and strings
	Internationalization
	Using arguments in strings
	Regular expressions
	Time for action – A simple quiz game
	What just happened?
	Extracting information out of a string
	Finding all pattern occurrences

	Containers
	Main container types
	Convenience containers
	Allowed item types
	Implicit sharing
	Pointer invalidation
	What just happened?

	Unnecessary allocation

	Range-based for and Qt foreach macro
	What just happened?

	Data storage
	Files and devices
	Traversing directories
	Reading and writing files
	Devices
	Time for action – Implementing a device to encrypt data
	What just happened?
	Have a go hero – A GUI for the Caesar cipher

	Text streams
	Binary streams
	Time for action – Serialization of a custom structure
	What just happened?

	XML streams
	Time for action – Implementing an XML parser for player data
	What just happened?
	What just happened?
	Have a go hero – An XML serializer for player data

	QVariant
	QSettings
	Settings hierarchy
	Customizing the settings location and format

	JSON files
	Time for action – The player data JSON serializer
	Time for action – Implementing a JSON parser
	What just happened?

	Pop quiz
	Summary

	Networking
	QNetworkAccessManager
	Setting up a local HTTP server
	Preparing a URL for testing
	Time for action – Downloading a file
	Have a go hero – Extending the basic file downloader
	Single network manager per application
	Time for action – Displaying a proper error message
	Downloading files over FTP
	Downloading files in parallel
	The finished signal
	Time for action – Writing the OOP conform code using QSignalMapper
	What just happened?

	The error signal
	The readyRead signal
	Time for action – Showing the download progress
	What just happened?

	Using a proxy

	Connecting to Google, Facebook, Twitter, and co.
	Time for action – Using Google's Distance Matrix API
	Time for action – Constructing the query
	Time for action – Parsing the server's reply
	Have a go hero – Choosing XML as the reply's format

	Controlling the connectivity state
	QNetworkConfigurationManager
	QNetworkConfiguration
	QNetworkSession
	QNetworkInterface

	Communicating between games
	Time for action – Realizing a simple chat program
	The server – QTcpServer
	Time for action – Setting up the server
	What just happened?
	Time for action – Reacting on a new pending connection
	What just happened?
	Time for action – Forwarding a new message
	Have a go hero – Using QSignalMapper
	Time for action – Detecting a disconnect
	What just happened?

	The client
	Time for action – Setting up the client
	What just happened?
	Time for action – Receiving text messages
	Time for action – Sending text messages
	Have a go hero – Extending the chat server and client

	Synchronous network operations

	Using UDP
	Time for action – Sending a text via UDP
	Have a go hero – Connecting players of the Benjamin game

	Pop quiz
	Summary

	Custom Widgets
	Raster and vector graphics
	Raster painting
	Painter attributes
	Coordinate systems
	Drawing operations

	Creating a custom widget
	Time for action – Custom-painted widgets
	What just happened?

	Time for action – Transforming the viewport
	What just happened?

	Time for action – Drawing an oscillogram
	Time for action – Making oscillograms selectable
	Have a go hero – Reacting only to the left mouse button
	Touch events

	Working with images
	Loading
	Modifying
	Painting

	Painting text
	Static text

	Optimizing widget painting
	Time for action – Optimizing oscillogram drawing
	What just happened?

	Have a go hero – Caching the oscillogram in a pixmap

	Implementing a chess game
	Time for action – Developing the game architecture
	What just happened?

	Time for action – Implementing the game board class
	What just happened?

	Time for action – Understanding the ChessView class
	What just happened?

	Time for action – Rendering the pieces
	What just happened?

	Time for action – Making the chess game interactive
	What just happened?

	Time for action – Connecting the game algorithm
	What just happened?

	Have a go hero – Implementing the UI around the chess board
	Have a go hero – Connecting a UCI-compliant chess engine

	Pop quiz
	Summary

	OpenGL and Vulkan in Qt applications
	Introduction to OpenGL with Qt
	OpenGL windows and contexts
	Accessing OpenGL functions

	Using OpenGL in immediate mode
	Time for action – Drawing a triangle using Qt and OpenGL
	Multisampling
	Time for action – Scene-based rendering
	What just happened?

	Time for action – Drawing a textured cube
	Have a go hero – Animating a cube

	Modern OpenGL with Qt
	Shaders
	Time for action – Shaded objects
	GL buffers
	Using multiple OpenGL versions
	Offscreen rendering

	Vulkan in Qt applications
	Preparing the developing environment
	Vulkan instance, window, and renderer
	Time for action – Creating the minimal Vulkan project
	What just happened?

	Using Vulkan types and functions
	Time for action – Drawing with a dynamic background color
	Logs and validation

	Combining OpenGL or Vulkan with Qt Widgets
	Pop quiz
	Summary

	Scripting
	Why script?
	Evaluating JavaScript expressions
	Time for action – Creating a JavaScript editor
	What just happened?

	Global object state

	Exposing C++ objects and functions to JavaScript code
	Accessing C++ object's properties and methods
	Data type conversions between C++ and JavaScript
	Accessing signals and slots in scripts
	Time for action – Using a button from JavaScript
	Restricting access to C++ classes from JavaScript
	Creating C++ objects from JavaScript
	Exposing C++ functions to JavaScript

	Creating a JavaScript scripting game
	Time for action – Implementing the game engine
	Time for action – Exposing the game state to the JS engine
	What just happened?

	Time for action – Loading scripts provided by users
	Time for action – Executing the strategy scripts
	Time for action – Writing a strategy script
	Have a go hero – Extending the game

	Python scripting
	Time for action – Writing a Qt wrapper for embedding Python
	What just happened?

	Time for action – Converting data between C++ and Python
	What just happened?
	Have a go hero – Implementing the remaining conversions

	Time for action – Calling functions and returning values
	What just happened?
	Have a go hero – Wrapping Qt objects into Python objects

	Pop quiz
	Summary

	Introduction to Qt Quick
	Declarative UI programming
	Time for action – Creating the first project
	Time for action – Editing QML
	What just happened?

	Property groups
	Anchors
	Time for action – Positioning items relative to each other
	QML types, components, and documents
	How does it work?
	Time for action – Property binding
	A limitation of automatic property updates

	Overview of QML types provided by Qt
	Qt Quick Designer
	Time for action – Adding a form to the project
	Form editor files
	Form editor interface
	Time for action – Adding an import
	Time for action – Adding items to the form
	Time for action – Editing anchors
	Time for action – Applying layouts to the items
	Time for action – Assigning an expression to the property
	Time for action – Exposing items as properties
	What just happened?

	Time for action – Creating an event handler

	Qt Quick and C++
	Accessing C++ objects from QML
	Accessing QML objects from C++

	Bringing life into static user interfaces
	Fluid user interfaces
	States and transitions
	Time for action – Adding states to the form
	Time for action – Adding smooth transition effect
	What just happened?
	Have a go hero – Adding an animation of the item's position

	Pop quiz
	Summary

	Customization in Qt Quick
	Creating a custom QML component
	Time for action – Creating a button component
	What just happened?

	Time for action – Adding button content
	What just happened?

	Time for action – Sizing the button properly
	What just happened?

	Time for action – Making the button a reusable component
	What just happened?

	Importing components
	QML and virtual resource paths

	Event handlers
	Time for action – Making the button clickable
	What just happened?

	Time for action – Visualizing button states
	What just happened?

	Time for action – Notifying the environment about button states
	What just happened?

	Touch input
	Time for action – Dragging an item around
	What just happened?

	Time for action – Rotating and scaling a picture by pinching
	What just happened?
	Have a go hero – Rotating and scaling with a mouse

	Keyboard input
	Have a go hero – Practicing key-event propagation

	Text input fields
	Gamepad input
	What just happened?

	Sensor input
	Detecting device location

	Creating advanced QML components
	Time for action – A simple analog clock application
	What just happened?

	Time for action – Adding needles to the clock
	What just happened?

	Time for action – Making the clock functional
	What just happened?

	Dynamic and lazy loading of QML objects
	Creating objects on request
	Delaying item creation

	Imperative painting on Canvas using JavaScript
	Time for action – Preparing Canvas for heartbeat visualization
	What just happened?

	Time for action - drawing a heartbeat
	What just happened?

	Time for action – Hiding properties
	Time for action – Making the diagram more colorful
	What just happened?

	Using C++ classes as QML components
	Time for action – Self-updating car dashboard
	What just happened?

	Time for action – Grouping engine properties
	What just happened?

	Time for action – Registering C++ class as QML type
	Time for action – Making CarInfo instantiable from QML
	What just happened?

	Pop quiz
	Summary

	Animations in Qt Quick Games
	Animation framework in Qt Quick
	Generic animations
	Time for action – Scene for an action game
	What just happened?

	Time for action – Animating the sun's horizontal movement
	What just happened?

	Composing animations
	Time for action – Making the sun rise and set
	What just happened?

	Non-linear animations
	Time for action – Improving the path of the sun
	What just happened?

	Property value sources
	Time for action – Adjusting the sun's color
	What just happened?

	Time for action – Furnishing sun animation
	What just happened?
	Have a go hero – Animating the sun's rays

	Behaviors
	Time for action – Animating the car dashboard
	What just happened?

	States
	Transitions
	More animation types

	Quick game programming
	Game loops
	Input processing
	Time for action – Character navigation
	What just happened?

	Time for action – Another approach to character navigation
	What just happened?
	Have a go hero – Polishing the animation

	Time for action – Generating coins
	What just happened?

	Sprite animation
	Time for action – Implementing simple character animation
	What just happened?

	Time for action – Animating characters using sprites
	What just happened?

	Time for action – Adding jumping with sprite transitions
	What just happened?
	Have a go hero – Making Benjamin wiggle his tail in anticipation

	Time for action – Revisiting parallax scrolling
	What just happened?
	Have a go hero – Vertical parallax sliding

	Collision detection
	Time for action – Collecting coins
	What just happened?

	Have a go hero – Extending the game

	Pop quiz
	Summary

	Advanced Visual Effects in Qt Quick
	Making the game more attractive
	Auto-scaling user interfaces
	Graphical effects
	Have a go hero – The blur parallax scrolled game view

	Particle systems
	Tuning the emitter
	Rendering particles
	Making particles move

	Time for action – Vanishing coins spawning particles
	What just happened?

	Custom OpenGL-based Qt Quick items
	The scene graph
	Time for action – Creating a regular polygon item
	What just happened?
	Have a go hero – Creating a supporting border for RegularPolygon

	Using QPainter interface in Qt Quick
	Time for action – Creating an item for drawing outlined text
	What just happened?

	Pop quiz
	Summary

	3D Graphics with Qt
	Qt 3D overview
	Entities and components
	Qt 3D modules
	Stable modules
	Experimental modules

	Using modules

	Rendering 3D objects
	Mesh, material, and transform
	Lighting
	Time for action – creating a 3D scene
	What just happened?

	Time for action – constructing the Tower of Hanoi scene
	Time for action – repeating 3D objects
	What just happened?

	Time for action – creating disks

	Handling user input
	Devices
	Keyboard and mouse buttons
	Input chords
	Analog (axis) input
	Object picker
	Frame-based input handling
	Time for action – receiving mouse input
	What just happened?

	Performing animations
	Time for action – animating disk movements
	What just happened?

	Time for action – implementing game logic
	Have a go hero – improving the game

	Integration with 3D modeling software
	Time for action – using OBJ files for the disks
	Loading a 3D scene

	Working with Qt 3D using C++
	Time for action – creating a 3D scene using C++

	Integration with Qt Widgets and Qt Quick
	Embedding Qt Quick UI into a 3D scene
	Embedding a Qt 3D scene into a Qt Quick form

	Pop quiz
	Summary

	Pop quiz answers
	Other Books You May Enjoy
	Leave a review - let other readers know what you think

