
Global File System

Red Hat Global File System

Global File System: Red Hat Global File System
Copyright © 2007 Red Hat, Inc.

This book provides information about installing, configuring, and maintaining Red Hat GFS;
(Red Hat Global File System).

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

Documentation-Deployment

Copyright © 2007 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in
the Open Publication License, V1.0 or later (the latest version is presently available at ht-
tp://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copy-
right holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohib-
ited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Table of Contents

Introduction ... vi
1. Audience ... vi
2. Related Documentation .. vi
3. Document Conventions ... vii
4. Send in Your Feedback .. viii
5. Recommended References .. viii

1. GFS Overview ... 1
1. New and Changed Features ... 1
2. Performance, Scalability, and Economy ... 2

2.1. Superior Performance and Scalability ... 2
2.2. Performance, Scalability, Moderate Price .. 3
2.3. Economy and Performance .. 3

3. GFS Functions ... 4
4. GFS Software Subsystems ... 5
5. Before Setting Up GFS ... 6

2. System Requirements .. 8
1. Platform Requirements ... 8
2. Red Hat Cluster Suite ... 8
3. Fencing ... 8
4. Fibre Channel Storage Network .. 9
5. Fibre Channel Storage Devices ... 9
6. Network Power Switches .. 9
7. Console Access ..10
8. Installing GFS ...10

3. Getting Started ...11
1. Prerequisite Tasks ..11
2. Initial Setup Tasks ...11

4. Managing GFS ...13
1. Making a File System ..13
2. Mounting a File System ...16
3. Unmounting a File System ...18
4. GFS Quota Management ...18

4.1. Setting Quotas ...19
4.2. Displaying Quota Limits and Usage ...20
4.3. Synchronizing Quotas ..21
4.4. Disabling/Enabling Quota Enforcement ..22
4.5. Disabling/Enabling Quota Accounting ..23

5. Growing a File System ..24
6. Adding Journals to a File System ...26
7. Direct I/O ..28

7.1. O_DIRECT ..28
7.2. GFS File Attribute ...28
7.3. GFS Directory Attribute ...29

8. Data Journaling ...29
9. Configuring atime Updates ..30

iv

9.1. Mount with noatime ..31
9.2. Tune GFS atime Quantum ..31

10. Suspending Activity on a File System ...32
11. Displaying Extended GFS Information and Statistics33
12. Repairing a File System ...34
13. Context-Dependent Path Names ..35

Index ...38

Global File System

v

Introduction

Welcome to the Global File System Configuration and Administration document. This book
provides information about installing, configuring, and maintaining Red Hat GFS (Red Hat Glob-
al File System). Red Hat GFS depends on the cluster infrastructure of Red Hat Cluster Suite.
For information about Red Hat Cluster Suite refer to Red Hat Cluster Suite Overview and Con-
figuring and Managing a Red Hat Cluster.

HTML and PDF versions of all the official Red Hat Enterprise Linux manuals and release notes
are available online at http://www.redhat.com/docs/.

1. Audience
This book is intended primarily for Linux system administrators who are familiar with the follow-
ing activities:

• Linux system administration procedures, including kernel configuration

• Installation and configuration of shared storage networks, such as Fibre Channel SANs

2. Related Documentation
For more information about using Red Hat Enterprise Linux, refer to the following resources:

• Red Hat Enterprise Linux Installation Guide — Provides information regarding installation of
Red Hat Enterprise Linux 5.

• Red Hat Enterprise Linux Deployment Guide — Provides information regarding the deploy-
ment, configuration and administration of Red Hat Enterprise Linux 5.

For more information about Red Hat Cluster Suite for Red Hat Enterprise Linux 5, refer to the
following resources:

• Red Hat Cluster Suite Overview — Provides a high level overview of the Red Hat Cluster
Suite.

• Configuring and Managing a Red Hat Cluster — Provides information about installing, con-
figuring and managing Red Hat Cluster components.

• LVM Administrator's Guide: Configuration and Administration — Provides a description of
the Logical Volume Manager (LVM), including information on running LVM in a clustered en-
vironment.

• Using GNBD with Global File System — Provides an overview on using Global Network
Block Device (GNBD) with Red Hat GFS.

• Linux Virtual Server Administration — Provides information on configuring high-performance
systems and services with the Linux Virtual Server (LVS).

• Red Hat Cluster Suite Release Notes — Provides information about the current release of

vi

http://www.redhat.com/docs/

Red Hat Cluster Suite.

3. Document Conventions
Certain words in this manual are represented in different fonts, styles, and weights. This high-
lighting indicates that the word is part of a specific category. The categories include the follow-
ing:

Courier font

Courier font represents commands, file names and paths, and prompts .

When shown as below, it indicates computer output:

Desktop about.html logs paulwesterberg.png
Mail backupfiles mail reports

bold Courier font

Bold Courier font represents text that you are to type, such as: service jonas start

If you have to run a command as root, the root prompt (#) precedes the command:

gconftool-2

italic Courier font

Italic Courier font represents a variable, such as an installation directory: install_dir/bin/

bold font
Bold font represents application programs and text found on a graphical interface.

When shown like this: OK , it indicates a button on a graphical application interface.

Additionally, the manual uses different strategies to draw your attention to pieces of information.
In order of how critical the information is to you, these items are marked as follows:

Note

A note is typically information that you need to understand the behavior of the sys-
tem.

Tip

A tip is typically an alternative way of performing a task.

3. Document Conventions

vii

Important

Important information is necessary, but possibly unexpected, such as a configura-
tion change that will not persist after a reboot.

Caution

A caution indicates an act that would violate your support agreement, such as re-
compiling the kernel.

Warning

A warning indicates potential data loss, as may happen when tuning hardware for
maximum performance.

4. Send in Your Feedback
If you spot a typo in the Global File System Configuration and Administration document or if you
have thought of a way to make this manual better, we would love to hear from you! Please sub-
mit a report in Bugzilla (http://www.redhat.com/bugzilla) against the component rh-gfsg.

Be sure to mention the manual's identifier:

rh-gfsg

If you mention this manual's identifier, we will know exactly which version of the guide you have.

If you have a suggestion for improving the documentation, try to be as specific as possible. If
you have found an error, please include the section number and some of the surrounding text
so we can find it easily.

5. Recommended References
For additional references about related topics, refer to the following table:

Topic Reference Comment

Shared Data Clustering and
File Systems

Shared Data Clusters by Dilip
M. Ranade. Wiley, 2002.

Provides detailed technical in-
formation on cluster file sys-
tem and cluster volume-
manager design.

4. Send in Your Feedback

viii

http://www.redhat.com/bugzilla

Topic Reference Comment

Storage Area Networks
(SANs)

Designing Storage Area Net-
works: A Practical Reference
for Implementing Fibre Chan-
nel and IP SANs, Second Edi-
tion by Tom Clark. Addison-
Wesley, 2003.

Provides a concise summary
of Fibre Channel and IP SAN
Technology.

Building SANs with Brocade
Fabric Switches by C.
Beauchamp, J. Judd, and B.
Keo. Syngress, 2001.

Best practices for building
Fibre Channel SANs based
on the Brocade family of
switches, including core-edge
topology for large SAN fab-
rics.

Building Storage Networks,
Second Edition by Marc Far-
ley. Osborne/McGraw-Hill,
2001.

Provides a comprehensive
overview reference on stor-
age networking technologies.

Applications and High Avail-
ability

Blueprints for High Availabil-
ity: Designing Resilient Dis-
tributed Systems by E. Mar-
cus and H. Stern. Wiley,
2000.

Provides a summary of best
practices in high availability.

Table 1. Recommended References Table

5. Recommended References

ix

Chapter 1. GFS Overview
Red Hat GFS is a cluster file system that is available with Red Hat Cluster Suite. Red Hat GFS
nodes are configured and managed with Red Hat Cluster Suite configuration and management
tools. Red Hat GFS provides data sharing among GFS nodes in a Red Hat cluster. GFS
provides a single, consistent view of the file-system name space across the GFS nodes in a
Red Hat cluster. GFS allows applications to install and run without much knowledge of the un-
derlying storage infrastructure. GFS is fully compliant with the IEEE POSIX interface, allowing
applications to perform file operations as if they were running on a local file system. Also, GFS
provides features that are typically required in enterprise environments, such as quotas, multiple
journals, and multipath support.

GFS provides a versatile method of networking your storage according to the performance,
scalability, and economic needs of your storage environment. This chapter provides some very
basic, abbreviated information as background to help you understand GFS. It contains the fol-
lowing sections:

• Section 1, “New and Changed Features”

• Section 2, “Performance, Scalability, and Economy”

• Section 3, “GFS Functions”

• Section 4, “GFS Software Subsystems”

• Section 5, “Before Setting Up GFS”

1. New and Changed Features
This section lists new and changed features included with the initial release of Red Hat Enter-
prise Linux 5.

• GULM (Grand Unified Lock Manager) is not supported in Red Hat Enterprise Linux 5. If your
GFS file systems use the GULM lock manager, you must convert the file systems to use the
DLM lock manager. This is a two-part process.

• While running Red Hat Enterprise Linux 4, convert your GFS file systems to use the DLM
lock manager.

• Upgrade your operating system to Red Hat Enterprise Linux 5, converting the lock man-
ager to DLM when you do.

For information on upgrading to Red Hat Enterprise Linux 5 and converting GFS file systems
to use the DLM lock manager, see Configuring and Managing a Red Hat Cluster.

• Documentation for Red Hat Cluster Suite for Red Hat Enterprise Linux 5 has been expanded
and reorganized. For information on the available documents, see Section 2, “Related Docu-
mentation”.

1

2. Performance, Scalability, and Economy
You can deploy GFS in a variety of configurations to suit your needs for performance, scalabil-
ity, and economy. For superior performance and scalability, you can deploy GFS in a cluster
that is connected directly to a SAN. For more economical needs, you can deploy GFS in a
cluster that is connected to a LAN with servers that use GNBD (Global Network Block Device).

The following sections provide examples of how GFS can be deployed to suit your needs for
performance, scalability, and economy:

• Section 2.1, “Superior Performance and Scalability”

• Section 2.2, “Performance, Scalability, Moderate Price”

• Section 2.3, “Economy and Performance”

Note

The deployment examples in this chapter reflect basic configurations; your needs
might require a combination of configurations shown in the examples.

2.1. Superior Performance and Scalability

You can obtain the highest shared-file performance when applications access storage directly.
The GFS SAN configuration in Figure 1.1, “GFS with a SAN” provides superior file performance
for shared files and file systems. Linux applications run directly on GFS nodes. Without file pro-
tocols or storage servers to slow data access, performance is similar to individual Linux servers
with directly connected storage; yet, each GFS application node has equal access to all data
files. GFS supports over 300 GFS nodes.

2.1. Superior Performance and Scalability

2

Figure 1.1. GFS with a SAN

2.2. Performance, Scalability, Moderate Price

Multiple Linux client applications on a LAN can share the same SAN-based data as shown in
Figure 1.2, “GFS and GNBD with a SAN”. SAN block storage is presented to network clients as
block storage devices by GNBD servers. From the perspective of a client application, storage is
accessed as if it were directly attached to the server in which the application is running. Stored
data is actually on the SAN. Storage devices and data can be equally shared by network client
applications. File locking and sharing functions are handled by GFS for each network client.

Note

Clients implementing ext2 and ext3 file systems can be configured to access their
own dedicated slice of SAN storage.

Figure 1.2. GFS and GNBD with a SAN

2.3. Economy and Performance

2.2. Performance, Scalability, Moderate Price

3

Figure 1.3, “GFS and GNBD with Directly Connected Storage” shows how Linux client applica-
tions can take advantage of an existing Ethernet topology to gain shared access to all block
storage devices. Client data files and file systems can be shared with GFS on each client. Ap-
plication failover can be fully automated with Red Hat Cluster Suite.

Figure 1.3. GFS and GNBD with Directly Connected Storage

3. GFS Functions
GFS is a native file system that interfaces directly with the VFS layer of the Linux kernel file-
system interface. GFS is a cluster file system that employs distributed metadata and multiple
journals for optimal operation in a cluster. Cluster management of GFS nodes is managed
through Red Hat Cluster Suite. Volume management is managed through CLVM (Cluster Logic-
al Volume Manager). For information about Red Hat Cluster Suite refer to Configuring and Man-
aging a Red Hat Cluster. For information about using CLVM, refer to LVM Administrator's
Guide.

Note

CLVM is a cluster-wide implementation of LVM, enabled by the CLVM daemon,
clvmd running in a Red Hat Cluster Suite cluster. The daemon makes it possible to
use LVM2 to manage logical volumes across a cluster, allowing all nodes in the
cluster to share the logical volumes.

3. GFS Functions

4

GFS provides the following main functions:

• Making a File System

• Mounting a File System

• Unmounting a File System

• GFS Quota Management

• Growing a File System

• Adding Journals to a File System

• Direct I/O

• Data Journaling

• Configuring atime Updates

• Suspending Activity on a File System

• Displaying Extended GFS Information and Statistics

• Repairing a File System

• Context-Dependent Path Names (CDPN)

4. GFS Software Subsystems
Table 1.1, “GFS Software Subsystem Components” summarizes the GFS Software subsystems
and their components.

Software Subsystem Components Description

GFS gfs.ko Kernel module that implements the GFS
file system and is loaded on GFS cluster
nodes.

gfs_fsck Command that repairs an unmounted
GFS file system.

gfs_grow Command that grows a mounted GFS file
system.

gfs_jadd Command that adds journals to a moun-
ted GFS file system.

gfs_mkfs Command that creates a GFS file system
on a storage device.

gfs_quota Command that manages quotas on a
mounted GFS file system.

gfs_tool Command that configures or tunes a GFS

4. GFS Software Subsystems

5

Software Subsystem Components Description

file system. This command can also gath-
er a variety of information about the file
system.

lock_harness.ko Implements a pluggable lock module in-
terface for GFS that allows for a variety of
locking mechanisms to be used (for ex-
ample, the DLM lock module,
lock_dlm.ko).

lock_dlm.ko A lock module that implements DLM lock-
ing for GFS. It plugs into the lock har-
ness, lock_harness.ko and communic-
ates with the DLM lock manager in Red
Hat Cluster Suite.

lock_nolock.ko A lock module for use when GFS is used
as a local file system only. It plugs into
the lock harness, lock_harness.ko and
provides local locking.

Table 1.1. GFS Software Subsystem Components

5. Before Setting Up GFS
Before you install and set up GFS, note the following key characteristics of your GFS file sys-
tems:

Number of file systems
Determine how many GFS file systems to create initially. (More file systems can be added
later.)

File-system name
Determine a unique name for each file system. Each file-system name is required in the
form of a parameter variable. For example, this book uses file-system names gfs1 and gfs2

in some example procedures.

Journals
Determine the number of journals for your GFS file systems. One journal is required for
each node that mounts a GFS file system. Make sure to account for additional journals
needed for future expansion.

GFS nodes
Determine which nodes in the Red Hat Cluster Suite will mount the GFS file systems.

GNBD server nodes
If you are using GNBD, determine how many GNBD server nodes are needed. Note the

5. Before Setting Up GFS

6

hostname and IP address of each GNBD server node for setting up GNBD clients later. For
information on using GNBD with GFS, see the Using GNBD with Global File System docu-
ment.

Storage devices and partitions
Determine the storage devices and partitions to be used for creating logical volumes (via
CLVM) in the file systems.

5. Before Setting Up GFS

7

Chapter 2. System Requirements
This chapter describes the system requirements for Red Hat GFS with Red Hat Enterprise Linux
5 and consists of the following sections:

• Section 1, “Platform Requirements”

• Section 2, “Red Hat Cluster Suite”

• Section 3, “Fencing”

• Section 4, “Fibre Channel Storage Network”

• Section 5, “Fibre Channel Storage Devices”

• Section 6, “Network Power Switches”

• Section 7, “Console Access”

1. Platform Requirements
Table 2.1, “Platform Requirements” shows the platform requirements for GFS.

Operating System Hardware Architecture RAM

Red Hat Enterprise Linux AS, ES, or
WS, Version 4 or later ia64, x86-64, x86

SMP supported

256 MB, minimum

Table 2.1. Platform Requirements

2. Red Hat Cluster Suite
Red Hat GFS runs with Red Hat Cluster Suite 4.0 or later. The Red Hat Cluster Suite software
must be installed on the cluster nodes before you can install and run Red Hat GFS.

Note

Red Hat Cluster Suite 4.0 and later provides the infrastructure for application fail-
over in the cluster and network communication among GFS nodes (and other Red
Hat Cluster Suite nodes).

3. Fencing
You must configure each GFS node in your Red Hat cluster for at least one form of fencing.

8

Fencing is configured and managed in Red Hat Cluster Suite. For more information about fen-
cing options, refer to Configuring and Managing a Red Hat Cluster.

4. Fibre Channel Storage Network
Table 2.2, “Fibre Channel Network Requirements” shows requirements for GFS nodes that are
to be connected to a Fibre Channel SAN.

Requirement Description

HBA (Host Bus Adapter) One HBA minimum per GFS node

Connection method
Fibre Channel switch
Note: If an FC switch is used for fencing, you may want to
consider using Brocade, McData, or Vixel FC switches,
for which Red Hat Cluster Suite fencing agents exist.
Refer to Configuring and Managing a Red Hat Cluster for
more information about supported fencing agents.
Note: When a small number of nodes is used, it may be
possible to connect the nodes directly to ports on the stor-
age device.
Note: FC drivers may not work reliably with FC hubs.

Table 2.2. Fibre Channel Network Requirements

5. Fibre Channel Storage Devices
Table 2.3, “Fibre Channel Storage Device Requirements” shows requirements for Fibre Channel
devices that are to be connected to a GFS cluster.

Requirement Description

Device Type
FC RAID array or JBOD
Note: Make sure that the devices can operate reliably
when heavily accessed simultaneously from multiple initi-
ators.
Note: Make sure that your GFS configuration does not ex-
ceed the number of nodes an array or JBOD supports.

Size 8 TB maximum supported per GFS file systen.

Table 2.3. Fibre Channel Storage Device Requirements

6. Network Power Switches

4. Fibre Channel Storage Network

9

You can fence GFS nodes with power switches and fencing agents available with Red Hat
Cluster Suite. For more information about fencing with network power switches, refer to Config-
uring and Managing a Red Hat Cluster.

7. Console Access
Make sure that you have console access to each GFS node. Console access to each node en-
sures that you can monitor nodes and troubleshoot problems.

8. Installing GFS
Installing GFS consists of installing Red Hat GFS RPMs on nodes in a Red Hat cluster. Before
installing the RPMs, make sure of the following:

• The cluster nodes meet the system requirements described in this chapter.

• You have noted the key characteristics of your GFS configuration (refer to Section 5, “Before
Setting Up GFS”).

• The correct Red Hat Cluster Suite software is installed in the cluster.

For information on insalling RPMS for Red Hat Cluster Suite and Red Hat GFS, see Configuring
and Managing a Red Hat Cluster. If you have already installed the appropriate Red Hat Cluster
Suite RPMs, follow the procedures that pertain to installing the Red Hat GFS RPMs.

7. Console Access

10

Chapter 3. Getting Started
This chapter describes procedures for initial setup of GFS and contains the following sections:

• Section 1, “Prerequisite Tasks”

• Section 2, “Initial Setup Tasks”

1. Prerequisite Tasks
Before setting up Red Hat GFS, make sure that you have noted the key characteristics of the
GFS nodes (refer to Section 5, “Before Setting Up GFS”) and have loaded the GFS modules in-
to each GFS node.Also, make sure that the clocks on the GFS nodes are synchronized. It is re-
commended that you use the Network Time Protocol (NTP) software provided with your Red
Hat Enterprise Linux distribution. In addition, if you are using GNBD multipath, make sure that
you understand GNBD multipath considerations. For information on GNBD multipath, see the
document Using GNBD with Global Filesystem.

Note

The system clocks in GFS nodes must be within a few minutes of each other to
prevent unnecessary inode time-stamp updating. Unnecessary inode time-stamp
updating severely impacts cluster performance.

2. Initial Setup Tasks
Initial GFS setup consists of the following tasks:

1. Setting up logical volumes.

2. Making a GFS files system.

3. Mounting file systems.

Follow these steps to set up GFS initially.

1. Using CLVM (Cluster Logical Volume Manager), create a logical volume for each Red Hat
GFS file system.

Note

You can use init.d scripts included with Red Hat Cluster Suite to automate
activating and deactivating logical volumes. For more information about init.d

11

scripts, refer to Configuring and Managing a Red Hat Cluster.

2. Create GFS file systems on logical volumes created in Step 1. Choose a unique name for
each file system. For more information about creating a GFS file system, refer to Section 1,
“Making a File System”.

Command usage:

gfs_mkfs -p lock_dlm -t ClusterName:FSName -j NumberJournals BlockDevice

3. At each node, mount the GFS file systems. For more information about mounting a GFS file
system, refer to Section 2, “Mounting a File System”.

Command usage:

mount -t gfs BlockDevice MountPoint

mount -t gfs -o acl BlockDevice MountPoint

The -o aclmount option allows manipulating file ACLs. If a file system is mounted without
the -o acl mount option, users are allowed to view ACLs (with getfacl), but are not allowed
to set them (with setfacl).

Note

You can use init.d scripts included with Red Hat Cluster Suite to automate
mounting and unmounting GFS file systems. For more information about
init.d scripts, refer to Configuring and Managing a Red Hat Cluster.

2. Initial Setup Tasks

12

Chapter 4. Managing GFS
This chapter describes the tasks and commands for managing GFS and consists of the follow-
ing sections:

• Section 1, “Making a File System”

• Section 2, “Mounting a File System”

• Section 3, “Unmounting a File System”

• Section 4, “GFS Quota Management”

• Section 5, “Growing a File System”

• Section 6, “Adding Journals to a File System”

• Section 7, “Direct I/O”

• Section 8, “Data Journaling”

• Section 9, “Configuring atime Updates”

• Section 10, “Suspending Activity on a File System”

• Section 11, “Displaying Extended GFS Information and Statistics”

• Section 12, “Repairing a File System”

• Section 13, “Context-Dependent Path Names”

1. Making a File System
Once a cluster is set up and running, you can create a GFS file system with the gfs_mkfs com-
mand. A file system is created on an activated CLVM volume.The following information is re-
quired to run the gfs_mkfs command:

• Lock protocol/module name (for example, lock_dlm)

• Cluster name

• Number of journals (one journal required for each node that may be mounting the file sys-
tem)

Usage

gfs_mkfs -p LockProtoName -t LockTableName -j Number BlockDevice

13

Warning

Make sure that you are very familiar with using the LockProtoName and LockTable-

Name parameters. Improper use of the LockProtoName and LockTableName paramet-
ers may cause file system or lock space corruption.

LockProtoName

Specifies the name of the locking protocol (for example, lock_dlm) to use.

LockTableName

This parameter has two parts separated by a colon (no spaces) as follows: Cluster-
Name:FSName

• ClusterName, the name of the Red Hat cluster for which the GFS file system is being cre-
ated.

• FSName, the file-system name, can be 1 to 16 characters long, and the name must be
unique among all file systems in the cluster.

Number

Specifies the number of journals to be created by the gfs_mkfs command. One journal is re-
quired for each node that mounts the file system. (More journals than are needed can be
specified at creation time to allow for future expansion.)

BlockDevice

Specifies a volume.

Examples

In this example, lock_dlm is the locking protocol that the file system uses. The cluster name is
alpha, and the file-system name is gfs1. The file system contains eight journals and is created
on /dev/vg01/lvol0.

gfs_mkfs -p lock_dlm -t alpha:gfs1 -j 8 /dev/vg01/lvol0

In this example, a second lock_dlm file system is made, which can be used in cluster alpha. The
file-system name is gfs2. The file system contains eight journals and is created on /

dev/vg01/lvol1.

gfs_mkfs -p lock_dlm -t alpha:gfs2 -j 8 /dev/vg01/lvol1

Complete Options

Table 4.1, “Command Options: gfs_mkfs” describes the gfs_mkfs command options (flags and
parameters).

Examples

14

Flag Parameter Description

-b BlockSize Sets the file-system block size to BlockSize. De-
fault block size is 4096 bytes.

-D Enables debugging output.

-h Help. Displays available options.

-J MegaBytes Specifies the size of the journal in megabytes. De-
fault journal size is 128 megabytes. The minimum
size is 32 megabytes.

-j Number
Specifies the number of journals to be created by
the gfs_mkfs command. One journal is required for
each node that mounts the file system.
Note: More journals than are needed can be spe-
cified at creation time to allow for future expansion.

-p LockProtoName
Specifies the name of the locking protocol to use.
Recognized cluster-locking protocols include:
lock_dlm — The standard locking module.
lock_nolock — May be used when GFS is acting
as a local file system (one node only).

-O Prevents the gfs_mkfs command from asking for
confirmation before writing the file system.

-q Quiet. Do not display anything.

-r MegaBytes Specifies the size of the resource groups in mega-
bytes. Default resource group size is 256 mega-
bytes.

-s Blocks Specifies the journal-segment size in file-system
blocks.

-t LockTableName
This parameter has two parts separated by a colon
(no spaces) as follows: ClusterName:FSName.
ClusterName is the name of the Red Hat cluster for
which the GFS file system is being created. The
cluster name is set in the /

etc/cluster/cluster.conf file via the Cluster Con-
figuration Tool and displayed at the Cluster
Status Tool in the Red Hat Cluster Suite cluster
management GUI.
FSName, the file-system name, can be 1 to 16 char-
acters in length, and the name must be unique
among all file systems in the cluster.

-V Displays command version information.

Complete Options

15

Table 4.1. Command Options: gfs_mkfs

2. Mounting a File System
Before you can mount a GFS file system, the file system must exist (refer to Section 1, “Making
a File System”), the volume where the file system exists must be activated, and the supporting
clustering and locking systems must be started (refer to Chapter 3, Getting Started and Config-
uring and Managing a Red Hat Cluster. After those requirements have been met, you can
mount the GFS file system as you would any Linux file system.

To manipulate file ACLs, you must mount the file system with the -o acl mount option. If a file
system is mounted without the -o acl mount option, users are allowed to view ACLs (with get-

facl), but are not allowed to set them (with setfacl).

Usage

Mounting Without ACL Manipulation

mount -t gfs BlockDevice MountPoint

Mounting With ACL Manipulation

mount -t gfs -o acl BlockDevice MountPoint

-o acl

GFS-specific option to allow manipulating file ACLs.

BlockDevice

Specifies the block device where the GFS file system resides.

MountPoint

Specifies the directory where the GFS file system should be mounted.

Example

In this example, the GFS file system on /dev/vg01/lvol0 is mounted on the /gfs1 directory.

mount -t gfs /dev/vg01/lvol0 /gfs1

Complete Usage

mount -t gfs BlockDevice MountPoint -o option

The -o option argument consists of GFS-specific options (refer to Table 4.2, “GFS-Specific
Mount Options”) or acceptable standard Linux mount -o options, or a combination of both. Mul-
tiple option parameters are separated by a comma and no spaces.

2. Mounting a File System

16

Note

The mount command is a Linux system command. In addition to using GFS-specific
options described in this section, you can use other, standard, mount command op-
tions (for example, -r). For information about other Linux mount command options,
see the Linux mount man page.

Table 4.2, “GFS-Specific Mount Options” describes the available GFS-specific -o option values
that can be passed to GFS at mount time.

Option Description

acl Allows manipulating file ACLs. If a file system is
mounted without the acl mount option, users are
allowed to view ACLs (with getfacl), but are not al-
lowed to set them (with setfacl).

ignore_local_fs

Caution: This option should not be used
when GFS file systems are shared.

Forces GFS to treat the file system as a multihost
file system. By default, using lock_nolock automat-
ically turns on the localcaching and localflocks

flags.

localcaching

Caution: This option should not be used
when GFS file systems are shared.

Tells GFS that it is running as a local file system.
GFS can then turn on selected optimization capab-
ilities that are not available when running in cluster
mode. The localcaching flag is automatically
turned on by lock_nolock.

localflocks

Caution: This option should not be used
when GFS file systems are shared.

Tells GFS to let the VFS (virtual file system) layer
do all flock and fcntl. The localflocks flag is auto-
matically turned on by lock_nolock.

lockproto=LockModuleName Allows the user to specify which locking protocol to
use with the file system. If LockModuleName is not
specified, the locking protocol name is read from
the file-system superblock.

locktable=LockTableName Allows the user to specify which locking table to
use with the file system.

oopses_ok
This option allows a GFS node to not panic when
an oops occurs. (By default, a GFS node panics
when an oops occurs, causing the file system used
by that node to stall for other GFS nodes.) A GFS
node not panicking when an oops occurs minim-
izes the failure on other GFS nodes using the file
system that the failed node is using. There may be
circumstances where you do not want to use this
option — for example, when you need more de-

Complete Usage

17

Option Description

tailed troubleshooting information. Use this option
with care.
Note: This option is turned on automatically if
lock_nolock locking is specified; however, you can
override it by using the ignore_local_fs option.

upgrade Upgrade the on-disk format of the file system so
that it can be used by newer versions of GFS.

Table 4.2. GFS-Specific Mount Options

3. Unmounting a File System
The GFS file system can be unmounted the same way as any Linux file system — by using the
umount command.

Note

The umount command is a Linux system command. Information about this com-
mand can be found in the Linux umount command man pages.

Usage

umount MountPoint

MountPoint

Specifies the directory where the GFS file system should be mounted.

4. GFS Quota Management
File-system quotas are used to limit the amount of file-system space a user or group can use. A
user or group does not have a quota limit until one is set. GFS keeps track of the space used by
each user and group even when there are no limits in place. GFS updates quota information in
a transactional way so system crashes do not require quota usages to be reconstructed.

To prevent a performance slowdown, a GFS node synchronizes updates to the quota file only
periodically. The "fuzzy" quota accounting can allow users or groups to slightly exceed the set
limit. To minimize this, GFS dynamically reduces the synchronization period as a "hard" quota
limit is approached.

GFS uses its gfs_quota command to manage quotas. Other Linux quota facilities cannot be
used with GFS.

3. Unmounting a File System

18

4.1. Setting Quotas

Two quota settings are available for each user ID (UID) or group ID (GID): a hard limit and a
warn limit.

A hard limit is the amount of space that can be used. The file system will not let the user or
group use more than that amount of disk space. A hard limit value of zero means that no limit is
enforced.

A warn limit is usually a value less than the hard limit. The file system will notify the user or
group when the warn limit is reached to warn them of the amount of space they are using. A
warn limit value of zero means that no limit is enforced.

Limits are set using the gfs_quota command. The command only needs to be run on a single
node where GFS is mounted.

Usage

Setting Quotas, Hard Limit

gfs_quota limit -u User -l Size -f MountPoint

gfs_quota limit -g Group -l Size -f MountPoint

Setting Quotas, Warn Limit

gfs_quota warn -u User -l Size -f MountPoint

gfs_quota warn -g Group -l Size -f MountPoint

User

A user ID to limit or warn. It can be either a user name from the password file or the UID
number.

Group

A group ID to limit or warn. It can be either a group name from the group file or the GID
number.

Size

Specifies the new value to limit or warn. By default, the value is in units of megabytes. The
additional -k, -s and -b flags change the units to kilobytes, sectors, and file-system blocks,
respectively.

MountPoint

Specifies the GFS file system to which the actions apply.

Examples

This example sets the hard limit for user Bert to 1024 megabytes (1 gigabyte) on file system /

4.1. Setting Quotas

19

gfs.

gfs_quota limit -u Bert -l 1024 -f /gfs

This example sets the warn limit for group ID 21 to 50 kilobytes on file system /gfs.

gfs_quota warn -g 21 -l 50 -k -f /gfs

4.2. Displaying Quota Limits and Usage

Quota limits and current usage can be displayed for a specific user or group using the gfs_quota

get command. The entire contents of the quota file can also be displayed using the gfs_quota

list command, in which case all IDs with a non-zero hard limit, warn limit, or value are listed.

Usage

Displaying Quota Limits for a User

gfs_quota get -u User -f MountPoint

Displaying Quota Limits for a Group

gfs_quota get -g Group -f MountPoint

Displaying Entire Quota File

gfs_quota list -f MountPoint

User

A user ID to display information about a specific user. It can be either a user name from the
password file or the UID number.

Group

A group ID to display information about a specific group. It can be either a group name from
the group file or the GID number.

MountPoint

Specifies the GFS file system to which the actions apply.

Command Output

GFS quota information from the gfs_quota command is displayed as follows:

user User: limit:LimitSize warn:WarnSize value:Value

group Group: limit:LimitSize warn:WarnSize value:Value

The LimitSize, WarnSize, and Value numbers (values) are in units of megabytes by default.
Adding the -k, -s, or -b flags to the command line change the units to kilobytes, sectors, or file-

4.2. Displaying Quota Limits and Usage

20

system blocks, respectively.

User

A user name or ID to which the data is associated.

Group

A group name or ID to which the data is associated.

LimitSize

The hard limit set for the user or group. This value is zero if no limit has been set.

Value

The actual amount of disk space used by the user or group.

Comments

When displaying quota information, the gfs_quota command does not resolve UIDs and GIDs
into names if the -n option is added to the command line.

Space allocated to GFS's hidden files can be left out of displayed values for the root UID and
GID by adding the -d option to the command line. This is useful when trying to match the num-
bers from gfs_quota with the results of a du command.

Examples

This example displays quota information for all users and groups that have a limit set or are us-
ing any disk space on file system /gfs.

gfs_quota list -f /gfs

This example displays quota information in sectors for group users on file system /gfs.

gfs_quota get -g users -f /gfs -s

4.3. Synchronizing Quotas

GFS stores all quota information in its own internal file on disk. A GFS node does not update
this quota file for every file-system write; rather, it updates the quota file once every 60 seconds.
This is necessary to avoid contention among nodes writing to the quota file, which would cause
a slowdown in performance.

As a user or group approaches their quota limit, GFS dynamically reduces the time between its
quota-file updates to prevent the limit from being exceeded. The normal time period between
quota synchronizations is a tunable parameter, quota_quantum, and can be changed using the
gfs_tool command. By default, the time period is 60 seconds. Also, the quota_quantum paramet-
er must be set on each node and each time the file system is mounted. (Changes to the
quota_quantum parameter are not persistent across unmounts.)

You can use the gfs_quota sync command to synchronize the quota information from a node to
the on-disk quota file between the automatic updates performed by GFS.

4.3. Synchronizing Quotas

21

Usage

Synchronizing Quota Information

gfs_quota sync -f MountPoint

MountPoint

Specifies the GFS file system to which the actions apply.

Tuning the Time Between Synchronizations

gfs_tool settune MountPoint quota_quantum Seconds

MountPoint

Specifies the GFS file system to which the actions apply.

Seconds

Specifies the new time period between regular quota-file synchronizations by GFS. Smaller
values may increase contention and slow down performance.

Examples

This example synchronizes the quota information from the node it is run on to file system /gfs.

gfs_quota sync -f /gfs

This example changes the default time period between regular quota-file updates to one hour
(3600 seconds) for file system /gfs on a single node.

gfs_tool settune /gfs quota_quantum 3600

4.4. Disabling/Enabling Quota Enforcement

Enforcement of quotas can be disabled for a file system without clearing the limits set for all
users and groups. Enforcement can also be enabled. Disabling and enabling of quota enforce-
ment is done by changing a tunable parameter, quota_enforce, with the gfs_tool command. The
quota_enforce parameter must be disabled or enabled on each node where quota enforcement
should be disabled/enabled. Each time the file system is mounted, enforcement is enabled by
default. (Disabling is not persistent across unmounts.)

Usage

gfs_tool settune MountPoint quota_enforce {0|1}

MountPoint

Specifies the GFS file system to which the actions apply.

4.4. Disabling/Enabling Quota Enforcement

22

quota_enforce {0|1}

0 = disabled

1 = enabled

Comments

A value of 0 disables enforcement. Enforcement can be enabled by running the command with
a value of 1 (instead of 0) as the final command line parameter. Even when GFS is not enfor-
cing quotas, it still keeps track of the file-system usage for all users and groups so that quota-
usage information does not require rebuilding after re-enabling quotas.

Examples

This example disables quota enforcement on file system /gfs.

gfs_tool settune /gfs quota_enforce 0

This example enables quota enforcement on file system /gfs.

gfs_tool settune /gfs quota_enforce 1

4.5. Disabling/Enabling Quota Accounting

By default, quota accounting is enabled; therefore, GFS keeps track of disk usage for every
user and group even when no quota limits have been set. Quota accounting incurs unnecessary
overhead if quotas are not used. You can disable quota accounting completely by setting the
quota_account tunable parameter to 0. This must be done on each node and after each mount.
(The 0 setting is not persistent across unmounts.) Quota accounting can be enabled by setting
the quota_account tunable parameter to 1.

Usage

fs_tool settune MountPoint quota_account {0|1}

MountPoint

Specifies the GFS file system to which the actions apply.

quota_account {0|1}

0 = disabled

1 = enabled

Comments

To enable quota accounting on a file system, the quota_account parameter must be set back to
1. Afterward, the GFS quota file must be initialized to account for all current disk usage for users
and groups on the file system. The quota file is initialized by running: gfs_quota init -f Mount-

Point.

4.5. Disabling/Enabling Quota Accounting

23

Note

Initializing the quota file requires scanning the entire file system and may take a
long time.

Examples

This example disables quota accounting on file system /gfs on a single node.

gfs_tool settune /gfs quota_account 0

This example enables quota accounting on file system /gfs on a single node and initializes the
quota file.

gfs_tool settune /gfs quota_account 1
gfs_quota init -f /gfs

5. Growing a File System
The gfs_grow command is used to expand a GFS file system after the device where the file sys-
tem resides has been expanded. Running a gfs_grow command on an existing GFS file system
fills all spare space between the current end of the file system and the end of the device with a
newly initialized GFS file-system extension. When the fill operation is completed, the resource
index for the file system is updated. All nodes in the cluster can then use the extra storage
space that has been added.

The gfs_grow command must be run on a mounted file system, but only needs to be run on one
node in a cluster. All the other nodes sense that the expansion has occurred and automatically
start using the new space.

To verify that the changes were successful, use the gfs_grow command with the -T (test) and -v

(verbose) flags. Running the command with those flags displays the current state of the moun-
ted GFS file system.

Usage

gfs_grow MountPoint

MountPoint

Specifies the GFS file system to which the actions apply.

Comments

Before running the gfs_grow command:

5. Growing a File System

24

• Back up important data on the file system.

• Display the volume that is used by the file system to be expanded by running a gfs_tool df

MountPoint command.

• Expand the underlying cluster volume with LVM. For information on administering LVM
volumes, see the LVM Administrator's Guide

After running the gfs_grow command, run a df command to check that the new space is now
available in the file system.

Examples

In this example, the file system on the /gfs1 directory is expanded.

gfs_grow /gfs1

In this example, the state of the mounted file system is checked.

gfs_grow -Tv /gfs1

Complete Usage

gfs_grow [Options] {MountPoint | Device} [MountPoint | Device]

MountPoint

Specifies the directory where the GFS file system is mounted.

Device

Specifies the device node of the file system.

Table 4.3, “GFS-specific Options Available While Expanding A File System” describes the GFS-
specific options that can be used while expanding a GFS file system.

Option Description

-h Help. Displays a short usage message.

-q Quiet. Turns down the verbosity level.

-T Test. Do all calculations, but do not write any data to the disk and
do not expand the file system.

-V Displays command version information.

-v Turns up the verbosity of messages.

Table 4.3. GFS-specific Options Available While Expanding A File System

Examples

25

6. Adding Journals to a File System
The gfs_jadd command is used to add journals to a GFS file system after the device where the
file system resides has been expanded. Running a gfs_jadd command on a GFS file system
uses space between the current end of the file system and the end of the device where the file
system resides. When the fill operation is completed, the journal index is updated.

The gfs_jadd command must be run on mounted file system, but it only needs to be run on one
node in the cluster. All the other nodes sense that the expansion has occurred.

To verify that the changes were successful, use the gfs_jadd command with the -T (test) and -v

(verbose) flags. Running the command with those flags displays the current state of the moun-
ted GFS file system.

Usage

gfs_jadd -j Number MountPoint

Number

Specifies the number of new journals to be added.

MountPoint

Specifies the directory where the GFS file system is mounted.

Comments

Before running the gfs_jadd command:

• Back up important data on the file system.

• Run a gfs_tool df MountPoint command to display the volume used by the file system
where journals will be added.

• Expand the underlying cluster volume with LVM. For information on administering LVM
volumes, see the LVM Administrator's Guide

After running the gfs_jadd command, run a gfs_jadd command with the -T and -v flags enabled
to check that the new journals have been added to the file system.

Examples

In this example, one journal is added to the file system on the /gfs1 directory.

gfs_jadd -j1 /gfs1

In this example, two journals are added to the file system on the /gfs1 directory.

gfs_jadd -j2 /gfs1

Usage

26

In this example, the current state of the file system on the /gfs1 directory is checked for the new
journals.

gfs_jadd -Tv /gfs1

Complete Usage

gfs_jadd [Options] {MountPoint | Device} [MountPoint | Device]

MountPoint

Specifies the directory where the GFS file system is mounted.

Device

Specifies the device node of the file system.

Table 4.4, “GFS-specific Options Available When Adding Journals” describes the GFS-specific
options that can be used when adding journals to a GFS file system.

Flag Parameter Description

-h Help. Displays short usage message.

-J MegaBytes Specifies the size of the new journals in megabytes.
Default journal size is 128 megabytes. The minimum
size is 32 megabytes. To add journals of different
sizes to the file system, the gfs_jadd command must
be run for each size journal. The size specified is
rounded down so that it is a multiple of the journal-
segment size that was specified when the file system
was created.

-j Number Specifies the number of new journals to be added by
the gfs_jadd command. The default value is 1.

-T Test. Do all calculations, but do not write any data to
the disk and do not add journals to the file system.
Enabling this flag helps discover what the gfs_jadd

command would have done if it were run without this
flag. Using the -v flag with the -T flag turns up the
verbosity level to display more information.

-q Quiet. Turns down the verbosity level.

-V Displays command version information.

-v Turns up the verbosity of messages.

Table 4.4. GFS-specific Options Available When Adding Journals

Complete Usage

27

7. Direct I/O
Direct I/O is a feature of the file system whereby file reads and writes go directly from the applic-
ations to the storage device, bypassing the operating system read and write caches. Direct I/O
is used only by applications (such as databases) that manage their own caches.

An application invokes direct I/O by opening a file with the O_DIRECT flag. Alternatively, GFS can
attach a direct I/O attribute to a file, in which case direct I/O is used regardless of how the file is
opened.

When a file is opened with O_DIRECT, or when a GFS direct I/O attribute is attached to a file, all I/
O operations must be done in block-size multiples of 512 bytes. The memory being read from or
written to must also be 512-byte aligned.

One of the following methods can be used to enable direct I/O on a file:

• O_DIRECT

• GFS file attribute

• GFS directory attribute

7.1. O_DIRECT

If an application uses the O_DIRECT flag on an open() system call, direct I/O is used for the
opened file.

To cause the O_DIRECT flag to be defined with recent glibc libraries, define _GNU_SOURCE at the be-
ginning of a source file before any includes, or define it on the cc line when compiling.

7.2. GFS File Attribute

The gfs_tool command can be used to assign (set) a direct I/O attribute flag, directio, to a
GFS file. The directio flag can also be cleared.

Usage

Setting the directio Flag

gfs_tool setflag directio File

Clearing the directio Flag

gfs_tool clearflag directio File

File

Specifies the file where the directio flag is assigned.

Example

7.1. O_DIRECT

28

In this example, the command sets the directio flag on the file named datafile in directory /

gfs1.

gfs_tool setflag directio /gfs1/datafile

7.3. GFS Directory Attribute

The gfs_tool command can be used to assign (set) a direct I/O attribute flag, inherit_directio,
to a GFS directory. Enabling the inherit_directio flag on a directory causes all newly created
regular files in that directory to automatically inherit the directio flag. Also, the inher-

it_directio flag is inherited by any new subdirectories created in the directory. The inher-

it_directio flag can also be cleared.

Usage

Setting the inherit_directio flag

gfs_tool setflag inherit_directio Directory

Clearing the inherit_directio flag

gfs_tool clearflag inherit_directio Directory

Directory

Specifies the directory where the inherit_directio flag is set.

Example

In this example, the command sets the inherit_directio flag on the directory named /

gfs1/data/.

gfs_tool setflag inherit_directio /gfs1/data/

8. Data Journaling
Ordinarily, GFS writes only metadata to its journal. File contents are subsequently written to disk
by the kernel's periodic sync that flushes file-system buffers. An fsync() call on a file causes the
file's data to be written to disk immediately. The call returns when the disk reports that all data is
safely written.

Data journaling can result in a reduced fsync() time, especially for small files, because the file
data is written to the journal in addition to the metadata. An fsync() returns as soon as the data
is written to the journal, which can be substantially faster than the time it takes to write the file
data to the main file system.

Applications that rely on fsync() to sync file data may see improved performance by using data
journaling. Data journaling can be enabled automatically for any GFS files created in a flagged

7.3. GFS Directory Attribute

29

directory (and all its subdirectories). Existing files with zero length can also have data journaling
turned on or off.

Using the gfs_tool command, data journaling is enabled on a directory (and all its subdirector-
ies) or on a zero-length file by setting the inherit_jdata or jdata attribute flags to the directory
or file, respectively. The directory and file attribute flags can also be cleared.

Usage

Setting and Clearing the inherit_jdata Flag

gfs_tool setflag inherit_jdata Directory
gfs_tool clearflag inherit_jdata Directory

Setting and Clearing the jdata Flag

gfs_tool setflag jdata File
gfs_tool clearflag jdata File

Directory

Specifies the directory where the flag is set or cleared.

File

Specifies the zero-length file where the flag is set or cleared.

Examples

This example shows setting the inherit_jdata flag on a directory. All files created in the direct-
ory or any of its subdirectories will have the jdata flag assigned automatically. Any data written
to the files will be journaled.

gfs_tool setflag inherit_jdata /gfs1/data/

This example shows setting the jdata flag on a file. The file must be zero size. Any data written
to the file will be journaled.

gfs_tool setflag jdata /gfs1/datafile

9. Configuring atime Updates
Each file inode and directory inode has three time stamps associated with it:

• ctime — The last time the inode status was changed

• mtime — The last time the file (or directory) data was modified

• atime — The last time the file (or directory) data was accessed

If atime updates are enabled as they are by default on GFS and other Linux file systems then

Usage

30

every time a file is read, its inode needs to be updated.

Because few applications use the information provided by atime, those updates can require a
significant amount of unnecessary write traffic and file-locking traffic. That traffic can degrade
performance; therefore, it may be preferable to turn off atime updates.

Two methods of reducing the effects of atime updating are available:

• Mount with noatime

• Tune GFS atime quantum

9.1. Mount with noatime

A standard Linux mount option, noatime, can be specified when the file system is mounted,
which disables atime updates on that file system.

Usage

mount -t gfs BlockDevice MountPoint -o noatime

BlockDevice

Specifies the block device where the GFS file system resides.

MountPoint

Specifies the directory where the GFS file system should be mounted.

Example

In this example, the GFS file system resides on the /dev/vg01/lvol0 and is mounted on direct-
ory /gfs1 with atime updates turned off.

mount -t gfs /dev/vg01/lvol0 /gfs1 -o noatime

9.2. Tune GFS atime Quantum

When atime updates are enabled, GFS (by default) only updates them once an hour. The time
quantum is a tunable parameter that can be adjusted using the gfs_tool command.

Each GFS node updates the access time based on the difference between its system time and
the time recorded in the inode. It is required that system clocks of all GFS nodes in a cluster be
synchronized. If a node's system time is out of synchronization by a significant fraction of the
tunable parameter, atime_quantum, then atime updates are written more frequently. Increasing
the frequency of atime updates may cause performance degradation in clusters with heavy work
loads.

By using the gettune flag of the gfs_tool command, all current tunable parameters including
atime_quantum (default is 3600 seconds) are displayed.

The gfs_tool settune command is used to change the atime_quantum parameter value. It must

9.1. Mount with noatime

31

be set on each node and each time the file system is mounted. (The setting is not persistent
across unmounts.)

Usage

Displaying Tunable Parameters

gfs_tool gettune MountPoint

MountPoint

Specifies the directory where the GFS file system is mounted.

Changing the atime_quantum Parameter Value

gfs_tool settune MountPoint atime_quantum Seconds

MountPoint

Specifies the directory where the GFS file system is mounted.

Seconds

Specifies the update period in seconds.

Examples

In this example, all GFS tunable parameters for the file system on the mount point /gfs1 are dis-
played.

gfs_tool gettune /gfs1

In this example, the atime update period is set to once a day (86,400 seconds) for the GFS file
system on mount point /gfs1.

gfs_tool settune /gfs1 atime_quantum 86400

10. Suspending Activity on a File System
You can suspend write activity to a file system by using the gfs_tool freeze command. Sus-
pending write activity allows hardware-based device snapshots to be used to capture the file
system in a consistent state. The gfs_tool unfreeze command ends the suspension.

Usage

Start Suspension

gfs_tool freeze MountPoint

End Suspension

10. Suspending Activity on a File System

32

gfs_tool unfreeze MountPoint

MountPoint

Specifies the file system.

Examples

This example suspends writes to file system /gfs.

gfs_tool freeze /gfs

This example ends suspension of writes to file system /gfs.

gfs_tool unfreeze /gfs

11. Displaying Extended GFS Information
and Statistics
You can use the gfs_tool command to gather a variety of details about GFS. This section de-
scribes typical use of the gfs_tool command for displaying statistics, space usage, and exten-
ded status.

Usage

Displaying Statistics

gfs_tool counters MountPoint

The counters flag displays statistics about a file system. If -c is used, the gfs_tool command
continues to run, displaying statistics once per second.

Displaying Space Usage

gfs_tool df MountPoint

The df flag displays a space-usage summary of a given file system. The information is more de-
tailed than a standard df.

Displaying Extended Status

gfs_tool stat File

The stat flag displays extended status information about a file.

MountPoint

Specifies the file system to which the action applies.

Examples

33

File

Specifies the file from which to get information.

The gfs_tool command provides additional action flags (options) not listed in this section. For
more information about other gfs_tool flags, refer to the gfs_tool man page.

Examples

This example reports extended file system usage about file system /gfs.

gfs_tool df /gfs

This example reports extended file status about file /gfs/datafile.

gfs_tool stat /gfs/datafile

12. Repairing a File System
When nodes fail with the file system mounted, file-system journaling allows fast recovery.
However, if a storage device loses power or is physically disconnected, file-system corruption
may occur. (Journaling cannot be used to recover from storage subsystem failures.) When that
type of corruption occurs, you can recover the GFS file system by using the gfs_fsck command.

The gfs_fsck command must only be run on a file system that is unmounted from all nodes.

Note

The gfs_fsck command has changed from previous releases of Red Hat GFS in
the following ways:

• You can no longer set the interactive mode with Ctrl-C. Pressing Ctrl-C now
cancels the gfs_fsck command. Do not press Ctrl-C unless you want to cancel
the command.

• You can increase the level of verbosity by using the -v flag. Adding a second -v

flag increases the level again.

• You can decrease the level of verbosity by using the -q flag. Adding a second -

q flag decreases the level again.

• The -n option opens a file system as read-only and answers no to any queries
automatically. The option provides a way of trying the command to reveal er-
rors without actually allowing the gfs_fsck command to take effect.

Refer to the gfs_fsck man page, gfs_fsck(8), for additional information about oth-
er command options.

Examples

34

Usage

gfs_fsck -y BlockDevice

-y

The -y flag causes all questions to be answered with yes. With the -y flag specified, the
gfs_fsck command does not prompt you for an answer before making changes.

BlockDevice

Specifies the block device where the GFS file system resides.

Example

In this example, the GFS file system residing on block device /dev/vg01/lvol0 is repaired. All
queries to repair are automatically answered with yes.

gfs_fsck -y /dev/vg01/lvol0

13. Context-Dependent Path Names
Context-Dependent Path Names (CDPNs) allow symbolic links to be created that point to vari-
able destination files or directories. The variables are resolved to real files or directories each
time an application follows the link. The resolved value of the link depends on the node or user
following the link.

CDPN variables can be used in any path name, not just with symbolic links. However, the
CDPN variable name cannot be combined with other characters to form an actual directory or
file name. The CDPN variable must be used alone as one segment of a complete path.

Usage

For a Normal Symbolic Link

ln -s TargetLinkName

Target

Specifies an existing file or directory on a file system.

LinkName

Specifies a name to represent the real file or directory on the other end of the link.

For a Variable Symbolic Link

ln -s VariableLinkName

Variable

Specifies a special reserved name from a list of values (refer to Table 4.5, “CDPN Variable

Example

35

Values”) to represent one of multiple existing files or directories. This string is not the name
of an actual file or directory itself. (The real files or directories must be created in a separate
step using names that correlate with the type of variable used.)

LinkName

Specifies a name that will be seen and used by applications and will be followed to get to
one of the multiple real files or directories. When LinkName is followed, the destination de-
pends on the type of variable and the node or user doing the following.

Variable Description

@hostname This variable resolves to a real file or directory named with the
hostname string produced by the output of the following command:
echo `uname -n`

@mach This variable resolves to a real file or directory name with the ma-
chine-type string produced by the output of the following com-
mand: echo `uname -m`

@os This variable resolves to a real file or directory named with the op-
erating-system name string produced by the output of the following
command: echo `uname -s`

@sys This variable resolves to a real file or directory named with the
combined machine type and OS release strings produced by the
output of the following command: echo `uname -m`_`uname -s`

@uid This variable resolves to a real file or directory named with the
user ID string produced by the output of the following command:
echo `id -u`

@gid This variable resolves to a real file or directory named with the
group ID string produced by the output of the following command:
echo `id -g`

Table 4.5. CDPN Variable Values

Example

In this example, there are three nodes with hostnames n01, n02 and n03. Applications on each
node uses directory /gfs/log/, but the administrator wants these directories to be separate for
each node. To do this, no actual log directory is created; instead, an @hostname CDPN link is cre-
ated with the name log. Individual directories /gfs/n01/, /gfs/n02/, and /gfs/n03/ are created
that will be the actual directories used when each node references /gfs/log/.

n01# cd /gfs
n01# mkdir n01 n02 n03
n01# ln -s @hostname log

n01# ls -l /gfs
lrwxrwxrwx 1 root root 9 Apr 25 14:04 log -> @hostname/
drwxr-xr-x 2 root root 3864 Apr 25 14:05 n01/
drwxr-xr-x 2 root root 3864 Apr 25 14:06 n02/

Example

36

drwxr-xr-x 2 root root 3864 Apr 25 14:06 n03/

n01# touch /gfs/log/fileA
n02# touch /gfs/log/fileB
n03# touch /gfs/log/fileC

n01# ls /gfs/log/
fileA
n02# ls /gfs/log/
fileB
n03# ls /gfs/log/
fileC

Example

37

Index
A
adding journals to a file system, 26
atime, configuring updates, 30

mounting with noatime, 31
tuning atime quantum, 31

audience, vi

C
CDPN variable values table, 36
configuration, before, 6
configuration, initial, 11

prerequisite tasks, 11
console access

system requirements, 10

D
data journaling, 29
direct I/O, 28

directory attribute, 29
file attribute, 28
O_DIRECT, 28

displaying extended GFS information and stat-
istics, 33
DLM (Distributed Lock Manager), 1

F
features, new and changed, 1
feedback, viii
fencing

system requirements, 8
fibre channel network requirements table, 9
fibre channel storage device requirements ta-
ble, 9
fibre channel storage devices

system requirements, 9
fibre channel storage network

system requirements, 9
file system

adding journals, 26
atime, configuring updates, 30

mounting with noatime, 31
tuning atime quantum, 31

context-dependent path names (CDPNs),
35
data journaling, 29

direct I/O, 28
directory attribute, 29
file attribute, 28
O_DIRECT, 28

growing, 24
making, 13
mounting, 16
quota management, 18

disabling/enabling quota accounting, 23
disabling/enabling quota enforcement,
22
displaying quota limits, 20
setting quotas, 19
synchronizing quotas, 21

repairing, 34
suspending activity, 32
unmounting, 18

G
GFS

atime, configuring updates, 30
mounting with noatime, 31
tuning atime quantum, 31

direct I/O, 28
directory attribute, 29
file attribute, 28
O_DIRECT, 28

displaying extended information and statist-
ics, 33
managing, 13
quota management, 18

disabling/enabling quota accounting, 23
disabling/enabling quota enforcement,
22
displaying quota limits, 20
setting quotas, 19
synchronizing quotas, 21

GFS functions, 4
GFS software subsystem components table, 5
GFS software subsystems, 5
GFS-specific options for adding journals table,
27
GFS-specific options for expanding file sys-
tems table, 25
gfs_mkfs command options table, 14
growing a file system, 24
GULM (Grand Unified Lock Manager), 1

I

38

initial tasks
setup, initial, 11

introduction, vi
audience, vi
references, viii

M
making a file system, 13
managing GFS, 13
mount table, 17
mounting a file system, 16

N
network power switches

system requirements, 9

O
overview, 1

configuration, before, 6
economy, 2
features, new and changed, 1
GFS functions, 4
GFS software subsystems, 5
performance, 2
scalability, 2

P
path names, context-dependent (CDPNs), 35
platform

system requirements, 8
platform requirements table, 8
preface (see introduction)
prerequisite tasks

configuration, initial, 11

Q
quota management, 18

disabling/enabling quota accounting, 23
disabling/enabling quota enforcement, 22
displaying quota limits, 20
setting quotas, 19
synchronizing quotas, 21

R
recommended references table, viii
Red Hat Cluster Suite

system requirements, 8
references, recommended, viii
repairing a file system, 34

S
setup, initial

initial tasks, 11
suspending activity on a file system, 32
system requirements, 8

console access, 10
fencing, 8
fibre channel storage devices, 9
fibre channel storage network, 9
network power switches, 9
platform, 8
Red Hat Cluster Suite, 8

T
tables

CDPN variable values, 36
fibre channel network requirements, 9
fibre channel storage device requirements,
9
GFS software subsystem components, 5
GFS-specific options for adding journals, 27
GFS-specific options for expanding file sys-
tems, 25
gfs_mkfs command options, 14
mount options, 17
platform requirements, 8
recommended references, viii

U
unmounting a file system, 18

39

	Global File System
	Table of Contents
	Introduction
	1. Audience
	2. Related Documentation
	3. Document Conventions
	4. Send in Your Feedback
	5. Recommended References

	Chapter 1. GFS Overview
	1. New and Changed Features
	2. Performance, Scalability, and Economy
	2.1. Superior Performance and Scalability
	2.2. Performance, Scalability, Moderate Price
	2.3. Economy and Performance

	3. GFS Functions
	4. GFS Software Subsystems
	5. Before Setting Up GFS

	Chapter 2. System Requirements
	1. Platform Requirements
	2. Red Hat Cluster Suite
	3. Fencing
	4. Fibre Channel Storage Network
	5. Fibre Channel Storage Devices
	6. Network Power Switches
	7. Console Access
	8. Installing GFS

	Chapter 3. Getting Started
	1. Prerequisite Tasks
	2. Initial Setup Tasks

	Chapter 4. Managing GFS
	1. Making a File System
	2. Mounting a File System
	3. Unmounting a File System
	4. GFS Quota Management
	4.1. Setting Quotas
	4.2. Displaying Quota Limits and Usage
	4.3. Synchronizing Quotas
	4.4. Disabling/Enabling Quota Enforcement
	4.5. Disabling/Enabling Quota Accounting

	5. Growing a File System
	6. Adding Journals to a File System
	7. Direct I/O
	7.1. O_DIRECT
	7.2. GFS File Attribute
	7.3. GFS Directory Attribute

	8. Data Journaling
	9. Configuring atime Updates
	9.1. Mount with noatime
	9.2. Tune GFS atime Quantum

	10. Suspending Activity on a File System
	11. Displaying Extended GFS Information and Statistics
	12. Repairing a File System
	13. Context-Dependent Path Names

	Index

