
Google's R Style Guide
R is a high-level programming language used primarily for statistical
computing and graphics. The goal of the R Programming Style Guide is to
make our R code easier to read, share, and verify. The rules below were
designed in collaboration with the entire R user community at Google.

Summary: R Style Rules

File Names: end in .R1.
Identifiers: variable.name, FunctionName, kConstantName2.
Line Length: maximum 80 characters3.
Indentation: two spaces, no tabs4.
Spacing5.
Curly Braces: first on same line, last on own line6.
Assignment: use <-, not =7.
Semicolons: don't use them8.
General Layout and Ordering9.
Commenting Guidelines: all comments begin with # followed by a
space; inline comments need two spaces before the #

10.

Function Definitions and Calls11.
Function Documentation12.
Example Function13.
TODO Style: TODO(username)14.

Summary: R Language Rules

attach: avoid using it1.
Functions: errors should be raised using stop()2.
Objects and Methods: avoid S4 objects and methods when possible;
never mix S3 and S4

3.

Notation and Naming1.

File Names

File names should end in .R and, of course, be meaningful.
GOOD: predict_ad_revenue.R
BAD: foo.R

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

1 of 8 08/29/2011 07:54 PM

Identifiers

Don't use underscores (_) or hyphens (-) in identifiers. Identifiers
should be named according to the following conventions. Variable
names should have all lower case letters and words separated with
dots (.); function names have initial capital letters and no dots
(CapWords); constants are named like functions but with an initial k.

variable.name

GOOD: avg.clicks
BAD: avg_Clicks , avgClicks
FunctionName

GOOD: CalculateAvgClicks
BAD: calculate_avg_clicks , calculateAvgClicks
Make function names verbs.
Exception: When creating a classed object, the function name
(constructor) and class should match (e.g., lm).
kConstantName

Syntax2.

Line Length

The maximum line length is 80 characters.

Indentation

When indenting your code, use two spaces. Never use tabs or mix
tabs and spaces.
Exception: When a line break occurs inside parentheses, align the
wrapped line with the first character inside the parenthesis.

Spacing

Place spaces around all binary operators (=, +, -, <-, etc.).
Exception: Spaces around ='s are optional when passing parameters
in a function call.

Do not place a space before a comma, but always place one after a
comma.

GOOD:

tabPrior <- table(df[df$daysFromOpt < 0, "campaignid"])

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

2 of 8 08/29/2011 07:54 PM

total <- sum(x[, 1])
total <- sum(x[1,])

BAD:

tabPrior <- table(df[df$daysFromOpt<0, "campaignid"]) # Needs spaces around '<'
tabPrior <- table(df[df$daysFromOpt < 0,"campaignid"]) # Needs a space after the comma
tabPrior<- table(df[df$daysFromOpt < 0, "campaignid"]) # Needs a space before <-
tabPrior<-table(df[df$daysFromOpt < 0, "campaignid"]) # Needs spaces around <-
total <- sum(x[,1]) # Needs a space after the comma
total <- sum(x[,1]) # Needs a space after the comma, not before

Place a space before left parenthesis, except in a function call.

GOOD:
if (debug)

BAD:
if(debug)

Extra spacing (i.e., more than one space in a row) is okay if it
improves alignment of equals signs or arrows (<-).

plot(x = xCoord,
 y = dataMat[, makeColName(metric, ptiles[1], "roiOpt")],
 ylim = ylim,
 xlab = "dates",
 ylab = metric,
 main = (paste(metric, " for 3 samples ", sep="")))

Do not place spaces around code in parentheses or square brackets.
Exception: Always place a space after a comma.

GOOD:

if (debug)
x[1,]

BAD:

if (debug) # No spaces around debug
x[1,] # Needs a space after the comma

Curly Braces

An opening curly brace should never go on its own line; a closing
curly brace should always go on its own line. You may omit curly
braces when a block consists of a single statement; however, you
must consistently either use or not use curly braces for single

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

3 of 8 08/29/2011 07:54 PM

statement blocks.

if (is.null(ylim)) {
 ylim <- c(0, 0.06)
}

xor (but not both)

if (is.null(ylim))
 ylim <- c(0, 0.06)

Always begin the body of a block on a new line.

BAD:
if (is.null(ylim)) ylim <- c(0, 0.06)

if (is.null(ylim)) {ylim <- c(0, 0.06)}

Assignment

Use <-, not =, for assignment.

GOOD:
x <- 5

BAD:
x = 5

Semicolons

Do not terminate your lines with semicolons or use semicolons to put
more than one command on the same line. (Semicolons are not
necessary, and are omitted for consistency with other Google style
guides.)

Organization3.

General Layout and Ordering

If everyone uses the same general ordering, we'll be able to read and
understand each other's scripts faster and more easily.

Copyright statement comment1.
Author comment2.
File description comment, including purpose of program, inputs,
and outputs

3.

source() and library() statements4.

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

4 of 8 08/29/2011 07:54 PM

Function definitions5.
Executed statements, if applicable (e.g., print, plot)6.

Unit tests should go in a separate file named originalfilename_unittest.R.

Commenting Guidelines

Comment your code. Entire commented lines should begin with # and
one space.

Short comments can be placed after code preceded by two spaces, #,
and then one space.

Create histogram of frequency of campaigns by pct budget spent.
hist(df$pctSpent,
 breaks = "scott", # method for choosing number of buckets
 main = "Histogram: fraction budget spent by campaignid",
 xlab = "Fraction of budget spent",
 ylab = "Frequency (count of campaignids)")

Function Definitions and Calls

Function definitions should first list arguments without default
values, followed by those with default values.

In both function definitions and function calls, multiple arguments
per line are allowed; line breaks are only allowed between
assignments.
GOOD:

PredictCTR <- function(query, property, numDays,
 showPlot = TRUE)

BAD:

PredictCTR <- function(query, property, numDays, showPlot =
 TRUE)

Ideally, unit tests should serve as sample function calls (for shared
library routines).

Function Documentation

Functions should contain a comments section immediately below the
function definition line. These comments should consist of a
one-sentence description of the function; a list of the function's
arguments, denoted by Args:, with a description of each (including the

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

5 of 8 08/29/2011 07:54 PM

data type); and a description of the return value, denoted by Returns:.
The comments should be descriptive enough that a caller can use the
function without reading any of the function's code.

Example Function

CalculateSampleCovariance <- function(x, y, verbose = TRUE) {
 # Computes the sample covariance between two vectors.
 #
 # Args:
 # x: One of two vectors whose sample covariance is to be calculated.
 # y: The other vector. x and y must have the same length, greater than one,
 # with no missing values.
 # verbose: If TRUE, prints sample covariance; if not, not. Default is TRUE.
 #
 # Returns:
 # The sample covariance between x and y.
 n <- length(x)
 # Error handling
 if (n <= 1 || n != length(y)) {
 stop("Arguments x and y have invalid lengths: ",
 length(x), " and ", length(y), ".")
 }
 if (TRUE %in% is.na(x) || TRUE %in% is.na(y)) {
 stop(" Arguments x and y must not have missing values.")
 }
 covariance <- var(x, y)
 if (verbose)
 cat("Covariance = ", round(covariance, 4), ".\n", sep = "")
 return(covariance)
}

TODO Style

Use a consistent style for TODOs throughout your code.
TODO(username): Explicit description of action to be taken

Language4.

Attach

The possibilities for creating errors when using attach are numerous.
Avoid it.

Functions

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

6 of 8 08/29/2011 07:54 PM

Errors should be raised using stop().

Objects and Methods

The S language has two object systems, S3 and S4, both of which are
available in R. S3 methods are more interactive and flexible, whereas
S4 methods are more formal and rigorous. (For an illustration of the
two systems, see Thomas Lumley's "Programmer's Niche: A Simple
Class, in S3 and S4" in R News 4/1, 2004, pgs. 33 - 36: http://cran.r-
project.org/doc/Rnews/Rnews_2004-1.pdf.)

Use S3 objects and methods unless there is a strong reason to use S4
objects or methods. A primary justification for an S4 object would be
to use objects directly in C++ code. A primary justification for an S4
generic/method would be to dispatch on two arguments.

Avoid mixing S3 and S4: S4 methods ignore S3 inheritance and
vice-versa.

Exceptions5.

The coding conventions described above should be followed, unless there
is good reason to do otherwise. Exceptions include legacy code and
modifying third-party code.

Parting Words6.

Use common sense and BE CONSISTENT.

If you are editing code, take a few minutes to look at the code around you
and determine its style. If others use spaces around their if clauses, you
should, too. If their comments have little boxes of stars around them, make
your comments have little boxes of stars around them, too.

The point of having style guidelines is to have a common vocabulary of
coding so people can concentrate on what you are saying, rather than on
how you are saying it. We present global style rules here so people know
the vocabulary. But local style is also important. If code you add to a file
looks drastically different from the existing code around it, the
discontinuity will throw readers out of their rhythm when they go to read
it. Try to avoid this. OK, enough writing about writing code; the code
itself is much more interesting. Have fun!

References7.

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

7 of 8 08/29/2011 07:54 PM

http://www.maths.lth.se/help/R/RCC/ - R Coding Conventions
http://ess.r-project.org/ - For emacs users. This runs R in your emacs and
has an emacs mode.

Google's R Style Guide http://google-styleguide.googlecode.com/svn/trunk...

8 of 8 08/29/2011 07:54 PM

