Lecture 2 – Grouped Data Calculation

- 1. Mean, Median and Mode
- 2. First Quantile, third Quantile and Interquantile Range.

Mean – Grouped Data

Example: The following table gives the frequency distribution of the number of orders received each day during the past 50 days at the office of a mail-order company. Calculate the mean. Number f

Numberfof order110 - 12413 - 151216 - 182019 - 2114n = 50

Solution:

Number	f	x	fx
of order			
10 - 12	4	11	44
13 – 15	12	14	168
16 – 18	20	17	340
19 – 21	14	20	280
	<i>n</i> = 50		= 832

X is the midpoint of the class. It is adding the class limits and divide by 2.

$$\overline{x} = \frac{\sum fx}{n} = \frac{832}{50} = 16.64$$

Median and Interquartile Range – Grouped Data

Step 1: Construct the cumulative frequency distribution.

Step 2: Decide the class that contain the median.

Class Median is the first class with the value of cumulative frequency equal at least n/2.

Step 3: Find the median by using the following formula:

Median =
$$L_m + \left(\frac{\frac{n}{2} - F}{f_m}\right)i$$

Where:

- n = the total frequency
- F = the **cumulative frequency** *before* class median
 - f_m = the **frequency** of the class median
 - i = the class width
 - L_m = the **lower boundary** of the class median

Time to travel to work	Frequency
1 – 10	8
11 - 20	14
21 - 30	12
31 - 40	9
41 - 50	7

Example: Based on the grouped data below, find the median:

Solution:

1st Step: Construct the cumulative frequency distribution

Time to travel	Frequency	Cumulative
to work		Frequency
1 – 10	8	8
11 – 20	14	22
21 – 30	12	34
31 – 40	9	43
41 – 50	7	50

 $\frac{n}{2} = \frac{50}{2} = 25 \longrightarrow \text{ class median is the } 3^{\text{rd}} \text{ class}$ So, F = 22, $f_m = 12$, $L_m = 20.5$ and i = 10 Therefore,

Median =
$$L_m + \left(\frac{\frac{n}{2} - F}{f_m}\right)i$$

= 21.5 + $\left(\frac{25 - 22}{12}\right)10$
= 24

Thus, 25 persons take less than 24 minutes to travel to work and another 25 persons take more than 24 minutes to travel to work.

Quartiles

Using the same method of calculation as in the Median, we can get Q_1 and Q_3 equation as follows:

$$Q_1 = L_{Q_1} + \left(\frac{\frac{n}{4} - F}{f_{Q_1}}\right)i \qquad \qquad Q_3 = L_{Q_3} + \left(\frac{\frac{3n}{4} - F}{f_{Q_3}}\right)i$$

Example: Based on the grouped data below, find the Interquartile Range

Time to travel to work	Frequency
1 – 10	8
11 - 20	14
21 – 30	12
31 - 40	9
41 - 50	7

Solution:

1st Step: Construct the cumulative frequency distribution

Time to travel to work	Frequency	Cumulative Frequency
1 – 10	8	8
11 – 20	14	22
21 - 30	12	34
31 – 40	9	43
41 - 50	7	50

 2^{nd} Step: Determine the Q_1 and Q_3

Class
$$Q_1 = \frac{n}{4} = \frac{50}{4} = 12.5$$

Class Q_1 is the 2nd class
Therefore,

$$Q_1 = L_{Q_1} + \left(\frac{\frac{n}{4} - F}{f_{Q_1}}\right)i$$

$$= 10.5 + \left(\frac{12.5 - 8}{14}\right)10$$

$$= 13.7143$$

Class
$$Q_3 = \frac{3n}{4} = \frac{3(50)}{4} = 37.5$$
 $Q_3 = L_{Q_3} + \left(\frac{\frac{n}{4} - F}{f_{Q_3}}\right)i$
Class Q_3 is the 4th class $= 30.5 + \left(\frac{37.5 - 34}{9}\right)10$
Therefore, $= 34.3889$

Interquartile Range

$$IQR = Q_3 - Q_1$$

$$IQR = Q_3 - Q_1$$

calculate the IQ IQR = $Q_3 - Q_1 = 34.3889 - 13.7143 = 20.6746$

Mode – Grouped Data

•Mode is the value that has the highest frequency in a data set.

•For grouped data, class mode (or, modal class) is the class with the highest frequency.

•To find mode for grouped data, use the following formula:

Mode =
$$L_{mo} + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)i$$

Where:

i is the class width

- Δ_1 is the difference between the frequency of class mode and the frequency of the class **after** the class mode
- Δ_2 is the difference between the frequency of class mode and the frequency of the class **before** the class mode
- L_{mo} is the **lower boundary** of class mode

Calculation of Grouped Data - Mode

Example: Based on the grouped data below, find the mode

Time to travel to work	Frequency
1 – 10	8
11 - 20	14
21 - 30	12
31 - 40	9
41 - 50	7

Solution:

Based on the table,

$$L_{mo} = 10.5, \ \Delta_1 = (14 - 8) = 6, \ \Delta_2 = (14 - 12) = 2$$
 and
 $i = 10$
Mode = $10.5 + \left(\frac{6}{6+2}\right) 10 = 17.5$

Mode can also be obtained from a histogram.

Step 1: Identify the modal class and the bar representing it

Step 2: Draw two cross lines as shown in the diagram.

- Step 3: Drop a perpendicular from the intersection of the two lines until it touch the horizontal axis.
- Step 4: Read the mode from the horizontal axis

Variance and Standard Deviation -Grouped Data

Population Variance:

Variance for sample data:

Standard Deviation:

Population:

$$\sigma^2 = \sqrt{\sigma^2}$$

Sample:

 $s^2 = \sqrt{s^2}$

Example: Find the variance and standard deviation for the following data:

No. of order	f	
10 - 12	4	
13 – 15	12	
16 – 18	20	
19 – 21	14	
Total	n = 50	

Solution:

No. of order	f	x	fx	fx^2
10 - 12	4	11	44	484
13 – 15	12	14	168	2352
16 – 18	20	17	340	5780
19 – 21	14	20	280	5600
Total	n = 50		832	14216

Thus, the standard deviation of the number of orders received at the office of this mail-order company during the past 50 days is 2.75.