Lecture 2 - Grouped Data Calculation

1. Mean, Median and Mode
2. First Quantile, third Quantile and Interquantile Range.

Mean - Grouped Data

Example: The following table gives the frequency distribution of the number of orders received each day during the past 50 days at the office of a mail-order company. Calculate the mean.

Number of order	f
$10-12$	4
$13-15$	12
$16-18$	20
$19-21$	14
	$n=50$

Solution:

Number of order	\boldsymbol{f}	\boldsymbol{x}	$\boldsymbol{f} \boldsymbol{x}$
$\mathbf{1 0 - 1 2}$	$\mathbf{4}$	$\mathbf{1 1}$	$\mathbf{4 4}$
$\mathbf{1 3 - 1 5}$	$\mathbf{1 2}$	14	168
$\mathbf{1 6 - 1 8}$	$\mathbf{2 0}$	17	340
$\mathbf{1 9 - 2 1}$	$\mathbf{1 4}$	20	280
	$\boldsymbol{n}=50$		$=\mathbf{8 3 2}$

X is the midpoint of the class. It is adding the class limits and divide by 2 .
$\bar{x}=\frac{\sum f x}{n}=\frac{832}{50}=16.64$

Median and Interquartile Range - Grouped Data

Step 1: Construct the cumulative frequency distribution.
Step 2: Decide the class that contain the median.
Class Median is the first class with the value of cumulative frequency equal at least $\mathrm{n} / 2$.
Step 3: Find the median by using the following formula:

$$
\text { Median }=L_{m}+\left(\frac{\frac{n}{2}-F}{f_{m}}\right) i
$$

Where:
$n=$ the total frequency
$F=$ the cumulative frequency before class median
$f_{m}=$ the frequency of the class median
$i=$ the class width
$L_{m}=$ the lower boundary of the class median

Example: Based on the grouped data below, find the median:

Time to travel to work	Frequency
$1-10$	8
$11-20$	14
$21-30$	12
$31-40$	9
$41-50$	7

Solution:
$\mathbf{1}^{\text {st }}$ Step: Construct the cumulative frequency distribution

Time to travel to work	Frequency	Cumulative Frequency
$1-10$	8	8
$11-20$	14	22
$21-30$	12	34
$31-40$	9	43
$41-50$	7	50

$$
\frac{n}{2}=\frac{50}{2}=25 \quad \longrightarrow \quad \text { class median is the } 3^{\text {rd }} \text { class }
$$

So, $\quad F=22, \quad f_{m}=12, \quad L_{m}=20.5$ and $i=10$

Therefore,

$$
\begin{aligned}
\text { Median } & =L_{m}+\left(\frac{\frac{n}{2}-F}{f_{m}}\right) i \\
& =21.5+\left(\frac{25-22}{12}\right) 10 \\
& =24
\end{aligned}
$$

Thus, 25 persons take less than 24 minutes to travel to work and another 25 persons take more than 24 minutes to travel to work.

Quartiles

Using the same method of calculation as in the Median, we can get Q_{1} and Q_{3} equation as follows:

$$
Q_{1}=L_{Q_{1}}+\left(\frac{\frac{n}{4}-F}{f_{Q_{1}}}\right) i \quad Q_{3}=L_{Q_{3}}+\left(\frac{\frac{3 n}{4}-F}{f_{Q_{3}}}\right) i
$$

Example: Based on the grouped data below, find the Interquartile Range

Time to travel to work	Frequency
$1-10$	8
$11-20$	14
$21-30$	12
$31-40$	9
$41-50$	7

Solution:

$1^{\text {st }}$ Step: Construct the cumulative frequency distribution

Time to travel to work	Frequency	Cumulative Frequency
$1-10$	8	8
$11-20$	$\mathbf{1 4}$	22
$21-30$	$\mathbf{1 2}$	34
$31-40$	$\mathbf{9}$	$\mathbf{4 3}$
$41-50$	7	50

$2^{\text {nd }}$ Step: Determine the Q_{1} and Q_{3}
Class $\mathrm{Q}_{1}=\frac{\mathrm{n}}{4}=\frac{50}{4}=12.5$
Class Q_{1} is the $2^{\text {nd }}$ class Therefore,

$$
\begin{aligned}
Q_{1}=L_{Q_{1}} & +\left(\frac{\frac{n}{4}-F}{f_{Q_{1}}}\right) i \\
& =10.5+\left(\frac{12.5-8}{14}\right) 10 \\
& =13.7143
\end{aligned}
$$

$$
\begin{aligned}
& \text { Class } \mathrm{Q}_{3}=\frac{3 \mathrm{n}}{4}=\frac{3(50)}{4}=37.5 \quad Q_{3}=L_{Q_{3}}+\left(\frac{\frac{n}{4}-F}{f_{Q_{3}}}\right) i \\
& \begin{array}{ll}
\text { Class } \mathrm{Q}_{3} \text { is the } 4^{\text {th }} \text { class } & =30.5+\left(\frac{37.5-34}{9}\right) 10 \\
\text { Therefore, } & =34.3889
\end{array}
\end{aligned}
$$

Interquartile Range

$$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

$$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

calculate the IQ
$\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}=34.3889-13.7143=20.6746$

Mode - Grouped Data

Mode

-Mode is the value that has the highest frequency in a data set.
-For grouped data, class mode (or, modal class) is the class with the highest frequency.
-To find mode for grouped data, use the following formula:

$$
\text { Mode }=L_{m o}+\left(\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}}\right) i
$$

Where:
i is the class width
Δ_{1} is the difference between the frequency of class mode and the frequency of the class after the class mode
Δ_{2} is the difference between the frequency of class mode and the frequency of the class before the class mode
$L_{m o}$ is the lower boundary of class mode

Calculation of Grouped Data - Mode

Example: Based on the grouped data below, find the mode

Time to travel to work	Frequency
$1-10$	8
$11-20$	14
$21-30$	12
$31-40$	9
$41-50$	7

Solution:

Based on the table,

$$
\begin{aligned}
& L_{m o}=10.5, \Delta_{1}=(14-8)=6, \Delta_{2}=(14-12)=2 \text { and } \\
& i=10 \\
& \text { Mode }=10.5+\left(\frac{6}{6+2}\right) 10=17.5
\end{aligned}
$$

Mode can also be obtained from a histogram.
Step 1: Identify the modal class and the bar representing it
Step 2: Draw two cross lines as shown in the diagram.
Step 3: Drop a perpendicular from the intersection of the two lines until it touch the horizontal axis.
Step 4: Read the mode from the horizontal axis

Variance and Standard Deviation -Grouped Data

Population Variance: $\quad \sigma^{2}=\frac{\sum f x^{2}-\frac{\left(\sum f x\right)^{2}}{N}}{N}$
Variance for sample data: $\quad s^{2}=\frac{\sum f x^{2}-\frac{\left(\sum f x\right)^{2}}{n}}{n-1}$

Standard Deviation:
Population: $\quad \sigma^{2}=\sqrt{\sigma^{2}}$

$$
\text { Sample: } \quad s^{2}=\sqrt{s^{2}}
$$

Example: Find the variance and standard deviation for the following data:

No. of order	f
$10-12$	4
$13-15$	12
$16-18$	20
$19-21$	14
Total	$\mathrm{n}=50$

Solution:

No. of order	f	x	$f x$	$f x^{2}$
$10-12$	4	$\mathbf{1 1}$	44	484
$\mathbf{1 3 - 1 5}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6 8}$	2352
$\mathbf{1 6 - 1 8}$	20	$\mathbf{1 7}$	340	5780
$19-21$	$\mathbf{1 4}$	20	280	5600
Total	$\mathrm{n}=50$		$\mathbf{8 3 2}$	$\mathbf{1 4 2 1 6}$

$$
\text { Variance, } \quad \begin{aligned}
s^{2} & =\frac{\sum f x^{2}-\frac{\left(\sum f x\right)^{2}}{n}}{n-1} \\
& =\frac{14216-\frac{(832)^{2}}{50}}{50-1} \\
& =7.5820
\end{aligned}
$$

Standard Deviation, $\quad s=\sqrt{s^{2}}=\sqrt{7.5820}=2.75$

Thus, the standard deviation of the number of orders received at the office of this mail-order company during the past 50 days is 2.75 .

