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SUMMARY AND KEYWORDS 
 
This bachelor’s degree thesis aims to develop a predictive analytics guide for credit fraud 
detection using the Big Data tool Spark. Thus, the essence of this project is structured in three 
main linked sections which combine theory and practice. 
 
The first part is a description of the problem and concepts about credit risk as well as its 
historical context. The second section contains a theoretical research in predictive algorithms, 
frequently known as machine learning1 or artificial intelligence2 models. The third part is a 
real case practical application of the studied models for predicting the probability of default 
for a given dataset. 
 
However, nowadays one of the most common problems in predictive analytics is the huge 
amount of available data, and it gives meaning to the concept of Big Data. Thus, this project 
will use the tool Spark, which is an engine for processing Big Data. 
  
The main keywords of the thesis are data science, machine learning, artificial intelligence, 
credit scoring, Big Data, Spark, analytics, linear and non-linear models. 
 
 
Summary and keywords in the official language 
 
El títol del projecte és: Guia sobre l’aprenentatge automàtic amb Spark pel risc creditici. 
 
Aquest projecte final de grau pretén desenvolupar una guia sobre algoritmes predictius aplicats 
a la detecció del frau creditici utilitzant una eina de Big Data anomenada Spark. Així doncs, 
l'essència d'aquest projecte s'estructura en tres seccions enllaçades les quals combinen teoria i 
pràctica. 
 
La primera part és una descripció del problema i conceptes sobre el risc creditici així com el 
seu context històric. La segona secció conté una investigació teòrica en algoritmes predictius, 
freqüentment vinculats als conceptes d’aprenentatge automàtic o models d’intel·ligència 
artificial. La tercera part és una aplicació pràctica dels models estudiats a un cas real per 
predir la probabilitat d’impagament per a un determinat conjunt de dades. 
 
Malgrat això, actualment un dels problemes més comuns en els projectes d’algoritmes 
predictius és la gran quantitat de dades disponibles, la qual cosa dóna sentit al concepte del 
Big Data. Així doncs, aquest projecte utilitzarà l'eina Spark, la qual és un motor de 
processament de grans quantitats de dades. 
 
En conclusió, aquesta tesi final de grau serà un manual per aquells usuaris que vulguin aprendre 
sobre: la detecció i gestió del risc creditici amb algoritmes predictius; la teoria que hi ha darrere 
els principals algoritmes en l’àrea de l’aprenentatge automàtic i la intel·ligència artificial; i 

                                                           
1 Field of computer science that uses statistical techniques to give computers the ability to learn with data. 
2 Theory and development of computer systems able to perform tasks that require human intelligence. 
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l’aplicació d’aquests a un cas real des del plantejament del problema fins a la presa de decisions 
(incloent-hi el codi de programació necessari). 
 
Les principals paraules clau de la tesi són: ciència de dades, aprenentatge automàtic, 
intel·ligència artificial, detecció del risc creditici, grans quantitats de dades, Spark, anàlisis de 
dades, models lineals i no lineals. 
 
 
American Mathematical Society classification 
 
The thematic classification of this thesis according to the American Mathematical Society 
corresponds to the section of Computer Science (68-XX), concretely: 
 

‐ Artificial intelligence (68Txx) 
‐ Algorithms (68Wxx) 

 
Official AMS classification document at https://mathscinet.ams.org/mathscinet/msc/pdfs. 
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1. INTRODUCTION 
 
1.1. Definition of the problem 
 
In this thesis, the problem in question arises from the business model of the credit sector: 
clients borrow money from financial service companies (typically banks but nowadays also 
peer-to-peer Fintech start-ups3 which are gaining ground in the sector) with a certain interest 
rate which is the profit for the companies and/or investors. For this reason, customer loyalty 
and good risk indicators are the keys to the success of credit businesses. 
 
Although in this sector there are several different types of methodologies depending on the 
business model, from classic banks with almost no digitalization to 100% digital peer-to-peer 
start-ups that may not even have a banking license and only connect lenders with borrowers, 
the typical customer journey map is: 

 
‐ First, customers apply for a loan and provide the required data. 
‐ Secondly, clients are pre-accepted or not based on the declarative data. 
‐ Then, companies contact pre-accepted customers and check their documentation for 

having the verified information. 
‐ Consecutively, customers are financed or not based on the checked data. 
‐ Finally, companies manage the credit risk during the life of the loan. 

 
However, in the competitive market, customers have a lot of available options or credit 
companies to choose between different prices and products. For this reason, apart from 
managing the credit risk or miss payments, companies must invest a lot of money in marketing 
for attracting clients. Furthermore, lots of them are not financed because they do not comply 
with the risk requirements once the documents and personal information are checked, and for 
this reason, it is also important to have good ratios of financing over pre-accepted customers 
because if not, companies would be investing money in marketing with no profit since the 
major part of the clients are not financed. 
 
In conclusion, the success of a credit company mainly lies in selecting and filtering well the 
customers (or rejecting determined profiles) that will be financed and will not default. Then, 
these are the key points to manage: 

 
‐ Marketing costs balanced with the financing rate. 
‐ Risk metrics balanced with the interest rate because, in the end, there is not too much 

risk (target miss payments rate assumed) but there is a too low-interest rate for the 
obtained risk. 

‐ Digitalization and automatization of the whole process to enhance the user experience 
and reduce the operational costs. 

 
For those who do not imagine how the customer selection is done, these are examples that 
companies currently use: 

                                                           
3 Method of debt financing that enables individuals to borrow and lend money without an official financial 
institution. 
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‐ Establishing rules for rejecting customers with determined characteristics. 
‐ Establishing a risk score model for punctuating every client and assessing the potential 

risk, then companies can offer a different pricing or interest depending on the risk level 
of the clients and rejecting those whose are potentially too risky. 

‐ Rejecting customers that are in national public or private databases of defaulters. 
 
 
1.1.1. What is credit scoring? 

 
Credit scoring is a method of evaluating the credit risk of customers when they apply for a 
loan. Using historical financial information and statistical techniques credit scoring tries to 
identify the effects of customers characteristics on miss payments. The score can be used to 
rank the loan applicants or borrowers in terms of risk. A well-designed model should give 
higher scores to borrowers whose loans will perform well and lower scores to borrowers whose 
loans will not. However, no model is 100% accurate and some bad customers will receive higher 
scores than some good ones.  
 
According to the data, information about borrowers is obtained from credit bureaus and from 
their loan application such as the applicant’s monthly income, outstanding debt, financial 
assets, how long the applicant has been in the same job, whether the applicant has defaulted 
a previous loan, whether the applicant owns or rents a home, etc. In short, all potential 
variables that can be related to customer performance in terms of risk or defaults. 
 
 
1.1.2. Classic credit scoring methods: the role of statistics 

 
The question has always been the same: Can I count on the borrower to repay? Before credit 
scoring models or algorithms, lenders assessed the risk of customers based on subjective factors 
such as payment history, word-of-mouth and home visits. Thus, human judgment was the 
main factor in deciding who received the credit and it was a slow process and also unreliable 
because of human errors. However, those qualitative assessments have evolved into 
quantitative ones over the years. 
 
Credit scores arose in the 1950s and the sector took a big step forward. These scores were 
statistical models based on correlations or linear models such as logistic regression proposed 
by Cox in (1958), and built using payment information from thousands of actual consumers, 
which made scores highly effective in predicting consumer credit behaviour. When combined 
with new technology, scoring models have made the credit granting process fast, efficient and 
objective, facilitating commerce and helping consumers quickly get the credit they need. 
 
Concretely, the statisticians Bill Fair and Earl Isaac created an automated scoring system 
which they continued to refine combined with technology and computers to build what became 
the FICO score. They sold their credit scoring idea to banks and retailers around the world 
providing consumers with the most significant score factors. Apart from declared customer 
information, they used credit bureaus such as the companies Experian and Equifax to extract 
more information about the default state of clients. 
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1.1.3. Modern credit scoring methods: the role of machine learning 

 
Accuracy is a very important consideration in using credit scoring. Even if the lender can 
reduce the costs of evaluating loan applications by using credit scoring, if the models are not 
accurate, these cost savings would be eaten away by poorly performing loans. 
 
Over time, the technology has been steadily improving, more data is available and then, more 
complex algorithms can be applied. As a result, credit scores have also evolved in terms of 
predictive behaviour. 
 
Currently, although it is beginning to be accepted by banking regulators, machine learning 
and artificial intelligence algorithms are gaining traction in the credit sector. For example, 
some studied algorithms in this thesis (tree-based models and neural networks) allow discerning 
the relationship between borrower characteristics and the probability of default in a  more 
flexible way than the standard statistical techniques. Although in some cases these algorithms 
do not beat the traditional statistical models, for example, if there is not too much data, a 
new era is beginning with machine learning. 
 
 
1.2. Aims 
 
Once the introduction to the problem is done, it is important to define the aims of this 
bachelor’s degree thesis by sections. The main objectives of the theoretical part are introducing 
the credit sector and doing research about the theory of most common algorithms used 
nowadays in the areas of machine learning, artificial intelligence and predictive analytics. The 
main aims of the practical part are applying the studied algorithms for predicting the 
probability of default with a dataset of customer characteristics and comparing the predictive 
behaviour between models. Thus, it is a case with a binary target variable (default or not 
default) and different types of explanatory features. In conclusion, this thesis will provide the 
necessary information for developing a predictive analytics project, from the business problem 
definition to the application of the optimal model. 
 
Beyond this, the Spanish banking regulator only authorizes to use as a maximum the model 
complexity of the logistic regression. It means that black-box models such as tree-based models 
or neural networks are not currently allowed. That is why banks have to justify their credit 
scores and rules for financing and rejecting customers, and it is a way of simply understanding 
what the entities are doing. For this reason, laws have to progress and be adapted to all these 
new available and widely used techniques. 
 
 
1.3. Justification 
 
There is no reason to beat around the bush with the thesis justification. Basically, the idea of 
this project surges from the confusions about machine learning and artificial intelligence that 
users have in mind nowadays, which are easy to clarify with a bit of succinct information. 
Also, the digitalization of the industry is playing a big role and the major part of people do 
not understand anything about what is behind, for example, this kind of slogans: “How artificial 
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intelligence will impact our lives?”. For this reason, the credit sector is a perfect candidate for 
giving sense and a good application example for the studied machine learning algorithms. In 
short, it would be great that a person, without knowledge about these technical fields, 
understands better what is machine learning and its potential uses through its application in 
the credit sector. 
 
 
1.4. Structure 
 
This bachelor’s degree thesis is structured into five parts. The first one is the introduction 
which contains information about the problem that this project aims to resolve or research, 
the objectives and aims, traditional risk management methods versus the newest ones, and the 
hypothesis that the author proposes before developing the thesis. The second part is the 
methodology, which explains how this project has been conducted: data sources, general 
classification of studied and used algorithms, and the computer resources used for developing 
the practical case. The third section is a theoretical description of the algorithms. The fourth 
section is the real case application of models with the corresponding analysis of predictive 
performance, followed by the global conclusions. At the end of the body, you can find the 
references, the list of figures and tables, and the annexes which contains the Spark R code for 
reproducing the whole project as well as the metadata of the real case dataset and its pertinent 
analysis. 
 
 
1.5. Hypothesis 
 
According to the theoretical section about the studied algorithms, the hypothesis is that 
although the black-box models (so complex that the interpretability becomes difficult) such as 
neural networks or tree-based models appear harder to understand, maybe they follow basic 
rules or algorithmic theories that are not as much complicated or ingenious than the simpler 
models. 
 
According to the practical part of the thesis, one of the hypothesis is that the optimal model 
depends on the objective of the researcher. At first sight, it seems that when the complexity 
of the model increases, the predictive power or accuracy is higher but the interpretability 
decreases. For this reason, probably the logistic regression model will give a better 
interpretation of how every variable affects the outcome, and the neural network, as well as 
complex tree-based models, will give a better predictive behaviour at the cost of interpretability 
loss. Nevertheless, the dataset dimensions can influence these hypotheses because it has not a 
lot of observations and maybe the most complex algorithms do not have enough data for 
learning and beating the simple models. Let see what happens. 
 
Furthermore, apart from the thesis contents, there is an important point about the coding 
language. One of the aims of this project is developing the whole predictive analytics project 
using the Big Data tool Spark in R statistical software. It means that the typical functions 
that users use in R working in local mode do not run. Thus, another hypothesis is that learning 
the necessary coding skills will be very-time consuming in the thesis development. 
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2. METHODOLOGY 
 
2.1. Data sources and references 
 
Currently, there are a lot of free books, courses, lectures, repositories, etc. for learning 
everything, and especially the data science sector is becoming more and more open-source. For 
developing this bachelor’s degree thesis, several data sources from books to data science online 
platforms have been used for researching about the algorithms and for learning the necessary 
programming language skills. In the reference section at the end of the thesis, you can find the 
list of used references. 
 
Furthermore, the author of this thesis tries to capture his particular view of the field in 
question, and for this reason, the experience of the author is another important data source. 
 
 
2.2. Classification of used machine learning techniques 
 
Machine learning is mainly divided into two fields: supervised and unsupervised. This thesis 
mainly works on the supervised machine learning, and it refers to techniques where the 
computer learns without the exhaustive supervision of humans but there is a target variable 
to predict. In the real case approach the objective is to predict the defaults and basically, it 
will be done by discriminating the target binary variable using the space of explanatory 
features. In short, supervised machine learning refers to predictive algorithms. 
 
Apart from this field, there is the unsupervised machine learning. This term usually refers to 
techniques where the computer learns without the exhaustive supervision of humans but there 
is not a target variable. Then, the main objective is exploring the data without trying to 
discriminate a concrete variable using others. For example, two well-known techniques are: 
clustering which is a segmentation of observations by calculating the mathematical distance 
between them and creating groups according to the similarities; and principal components 
analysis (PCA), proposed by Hotelling in 1930, which is the creation of a new artificial 
variables space where the new axis or principal components are a linear combination of the 
original features and for building it the objective function maximizes the projected variance in 
fewer axis. This second technique will be used in the models’ comparison of the real case 
approach, and although PCA will not be explained in the theoretical section, see Hastie et al. 
(2008) and Tibshirani et al. (2013) for more information about these techniques. 
 
Once it is explained, this thesis will research and will use six concrete and well-known 
algorithms. Just for giving a clear structure to the project, they will be divided into four groups 
according to their algorithmic type. In theoretical section 3, you can find this scheme when 
describing the theoretical concepts: 
 

Algorithmic group Model 

Tree-based models 
Decision tree 
Random forest 
Gradient boosted trees 
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Discriminative classification models Naive Bayes 
Generalised linear models Logistic regression 
Neural networks Multilayer perceptron classifier 

 

Table 1: Classification of algorithms included in the thesis. 

 
 
2.3. Computer resources 
 
This bachelor’s degree thesis will work with the statistical software R but with a particularity 
that consists of using the Big Data engine called Spark. The whole project, including the data 
pre-processing, the training of models, as well as the model validation phase where performance 
measures are calculated, will be implemented using Spark in R Studio with the version 3.5.0 of 
R statistical software. In the annexes, you can find the code with comments for developing 
and reproducing the entire project. 
 
 
2.3.1. What is the problem of Big Data? 

 
Nowadays, the amount of data that is being created and stored on a global level is almost 
inconceivable, and it just keeps growing exponentially. The volume is as massive that 
processing data it is becoming a problem in terms of storage and computational capacity. In 
general, statistics means working with samples of data for doing inference about the whole 
population, and it enables to work in computers with not such a sophisticated storage and 
computational capacity. However, when working with millions of observations and several 
features, the problem of Big Data erases because most computers have not the required 
hardware and functionalities. 
 
Typically, the three Vs of Big Data are: 
 

1. Volume. The amount of data matters and with Big Data, you will have to process high 
volumes of structured and unstructured data. This can be data of unknown value, such 
as Twitter feeds, clickstreams on a webpage or a mobile app, or sensor equipment. 

 
2. Velocity. It is the fast rate at which data is received and acted on. Some internet-based 

products even operate in real-time and will require real-time evaluation and action. 
 

3. Variety. It refers to the many types of data that are available. Traditional data types 
were structured and fit into a relational database. However, with the rise of Big Data, 
data comes in new unstructured types such as text, audio, and video. 

 
Currently, as Big Data has become a capital, there are a lot of available tools for managing it 
and basically, they consist of two main branches: 

 
a. Getting more powerful hardware for improving the storage and computational capacity 

of computers. For example, the technological brand NVIDIA is investing in their 
business line of graphics cards (GPUs) for developing a data science package called 
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Cuda. It integrates the Python language with the GPUs for computing machine 
learning with the graphics card instead of working with RAM, improving so much the 
potential. 
 

b. Distributing data in a cluster service for computing the code and storing data in a 
remote computer or server, which is more powerful than a single machine. For instance, 
common products are: sending the code and data for receiving the outputs or 
connecting to a cluster from a data science language such as R or Python. The 
advantage of using these methods is the efficiency because it is only necessary to invest 
money when you need to execute tasks. Some well-known tools are Spark, Hadoop, 
MongoDB, Cloudera, Hive and Amazon Web Service. In this thesis, Spark is used in R 
when developing the real case section 4. 

 
 
2.3.2. Spark, a Big Data engine 

 
In simple words, Spark is a fast cluster computing engine that is being optimized for speed of 
computations. Spark is written in Scala programming language but it provides high-level APIs 
in Scala, Python and R which means that the Spark engine can be run from these softwares. 
Although it is not possible using the functions of these softwares if they have not an equivalent 
in Spark, it supports a rich set of higher-level functions and packages such as SparkSQL for 
data processing, sparklyr for manipulating data and MLlib for machine learning. 
 
How does Spark enhance machine learning? Python and R are popular languages for data 
scientists due to a large number of functions or packages that are readily available. But 
traditional uses of these tools are often limiting, as they process data on a single machine where 
it becomes time-consuming, the analysis requires sampling, and moving from development to 
production environments requires extensive re-engineering. To help address these problems, 
Spark provides with a powerful and unified engine that is both fast and easy to use. 
 

 
 

Figure 1: Apache Spark official logo. 
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3. METHODS FOR BINARY CLASSIFICATION 
 
In many situations applying predictive algorithms, the response variable is qualitative or 
categorical instead of quantitative. For example, gender is qualitative, taking qualitative on 
values male or female. In this section, we study models for predicting qualitative responses, a 
process that is known as classification, although these algorithms can predict quantitative 
variables too. Predicting a qualitative response involves assigning the observation to a class of 
the response variable and the basis for making the classification is predicting the probability 
of each category. There are many possible classification techniques and in this chapter, the 
most widely-used classifiers will be discussed. 
 
Citing Tibshirani et al. (2013), some classification examples include:  

 
A person arrives at the emergency room with a set of symptoms that could possibly be 
attributed to one of three medical conditions. Which of the three conditions does the 
individual have? 
 
An online banking service must be able to determine whether or not a transaction being 
performed on the site is fraudulent, on the basis of the user’s IP address, past 
transaction history, and so forth. 
 
On the basis of DNA sequence data for a number of patients with and without a given 
disease, a biologist would like to figure out which DNA mutations are deleterious 
(disease-causing) and which are not. 

 
 
3.1. Generalised linear models 
 
In statistics, linear regression is used to modelling the relationship between a scalar response 
(or dependent variable) and one or more explanatory variables (or independent variables). In 
linear regression, the relationships are modelled using linear predictor functions whose 
unknown model parameters are estimated from the data. In short, the model takes the form: 
 

 
 
Notation and terminology: 

  is the number of observations (in the real case approach it is the number of customers) 
  is a vector of observed values of the response or dependent variable 
  is the matrix of independent variables with p n-dimensional columns 
  is a (p+1)-dimensional parameter vector where  is the intercept and its elements 

are the effects or partial derivatives of the  with respect to the  
  is a n-dimensional vector with the error term which captures all other factors that 

influence the  other than the regressors  
 
However, linear regression is not appropriate in the case of a qualitative response. Why not? 
Suppose that we are trying to predict the final status of a customer in a credit company. In 
this example, there are three categories in the status response: not pre-accepted, pre-accepted 
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but not financed, financed. We could index these categories as a quantitative response variable, 
1 if not pre-accepted; 2 if pre-accepted but not financed; 3 if financed. Unfortunately, this 
coding implies an ordering on the response classes creating a false difference between categories 
and if we use linear regression, some of our estimates might be outside the [0,1] interval, making 
them hard to interpret as probabilities! 
 
Fortunately, making some adjustments to simple linear models we can obtain generalised linear 
models for pure classification which provides a predicted probability by response classes. 
Concretely, this thesis will explain and use the generalised linear model logistic regression for 
binary classification. 
 
 
3.1.1. Logistic regression 

 
Consider a defaults data set as in the real case approach of this thesis, where the binary 
response is one of two categories, 1 if default or 0 if not default. Rather than modelling this  
response directly, logistic regression models the probability of a particular category. 
 
Now, let see the simple steps for understanding how the logistic regression works: 
 

1. Let  be the probability that the binary output  is 1 given the features . 
 

2. Use the logarithm of the odds ratio, instead of directly the probability as another way 
of interpreting probabilities, which can take on any value between -∞ and ∞. For 
example, if the probability of default is 0.9, on average nine out of every ten people 
with an odds of 9 will default, since  implies an odds of .  
 

 

 
3. Model the logarithm of the odds ratio using the linear regression explained above: 

 

 

 
4. Isolate the probability of default from the equation getting the logit activation function 

or logit link function, which means that applying the function to the simple linear 
predictor we can get the output in the probability range [0,1]: 
 

 

 
5. Consider the likelihood function for the response (a sequence of Bernoulli trials): 
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6. Estimate the parameters  by optimizing4 the next loss function created from the 
logarithm of the function above: 
 

 

 

 

 
7. Once the optimal  are calculated, we finally have the model logistic regression. Now, 

we can predict the default probability of the customer  with explanatory variables : 
 

 

 
Note: In the next sections, the abbreviation LR means logistic regression. 
 
 
3.2. Discriminative classification models 
 
The objective of the discriminant analysis is to find a direction or linear combination of the 
original numerical variables that best separate categories from a categorical response variable, 
in the real case approach the binary variable Defaulted. In this way, the space of explanatory 
variables is divided into regions, and we can predict which class a new individual will belong 
depending on which of the regions of the space is projected. 
 
In this algorithmic group, two well-known models are naive Bayes and support vector machine. 
However, this thesis will explain and use only the first one because support vector machine is 
not implemented in Spark R environment for what this thesis needs. More information can be 
found in Hastie et al. (2008) and Tibshirani et al. (2013). 
 
 
3.2.1. Naive Bayes 

 
The logistic regression involves directly modelling  and in statistical jargon, it is 
known as the conditional distribution of the response  given the p predictors . In the case 
of the navie Bayes, introduced into the community under a different name in the early 1960s, 
it uses a less direct approach to estimating these probabilities. 
 
Now, let see the simple steps for understanding how the naive Bayes works: 
 

1. Establish the prior probability of the response classes which means the probability of 
that a randomly chosen observation comes from every class. If we have a random 

                                                           
4 The implemented model function in the packages of statistical softwares such as R have a determined method of 
optimization explained in the manuals. 
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sample of  from the population, simply compute the fraction of the observations that 
belong to the  class. 

 
 

2. Establish the probability distribution of the p predictors  separately in each of the 
response  classes. In the real case approach, it means establishing the probability 
distribution of each  for customers defaulters ( ) and for non-defaulters ( ) 
separately. 

 
 

3. Establish the probability distribution of the p predictors  jointly in each of the 
response  classes. But it tends to be more challenging, unless we make assumptions 
for these functions. Then, assuming that  are statistically independent given 
the response class : 

 

  
4. Use the Bayes theorem to computing the posterior probability that an observation with 

explanatory variables  belongs to the class : 
 

 

 
but as the denominator  is a constant we only need to develop a classifier that 
approximates the Bayes theorem for the posterior probability that an observation with 
explanatory variables  belongs to the class : 

  

 

 
Every individual is assigned to the class with  maximum and in spite of its 
simplicity it works well in practice. 
 

5. Once we have the classifier, we finally have the model naive Bayes. Now, we can predict 
the default probability of the customer  with explanatory variables  with the Bayes 
theorem: 

 

 
In the 3D graphic at the following page, you can find we can see all the probability distributions 
and concepts explained above for a binary response variable (  equals 0 or 1) with prior 
probabilities of 0.8 and 0.2 respectively, and it displace the  classifier. You will see in next 
sections that it is similar to the real case approach. 
 
Note: In the next sections, the abbreviation NB means naïve Bayes. 
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Figure 2: Naive Bayes graphic from https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm. 

 
 
3.3. Tree-based models 
 
In this section, tree-based methods for classification will be described, although these models 
can be used also for regression problems with a quantitative target variable. They are non-
parametric methods with the objective of predicting the value of a response variable, in the 
real case approach if a customer defaults or not, based on decision rules derived from the data. 
In this way, observations are divided into several homogeneous groups with respect to the 
response variable and the aim is to discriminate against. In short, these models make splits of 
the data with the explanatory variables (such as less than 45 years old or not) creating internal 
nodes, from the root node to the leaf nodes. The next schema describes this concept: 
 

 
 

Figure 3: Schema of tree-based models (nodes and splits). 
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3.3.1. Decision tree 

 
As it has been explained, decision trees are tree-based models that make splits in the data 
until they get the leaf nodes, in short, prediction via stratification of the feature space.  
 
In more detail, imagine that the predictor space, a set of explanatory variables , is 
divided into  distinct and non-overlapping regions . The goal is to find boxes  
as homogeous as possible with respect to the response variable. Then, every observation that 
falls into the region  have the same prediction, which is simply: 

 
‐ For a quantitative response: the mean of response values for the training cases in . 
‐ For a categorical response: the % of response values equals to the class  for the training 

observations in  giving a probabilities distribution of the response K classes. 
 
Unfortunately, it is computationally infeasible to consider every possible partition of the 
feature space into  boxes. For this reason, a recursive binary splitting is used beginning at the 
top of the tree (at which point all observations belong to a single region) and then successively 
splitting the predictor space via two new branches every node split. It is greedy because at 
each step of the tree-building process, the best split is made at that particular step, rather 
than picking a split that will lead to a better tree in some future step. 
 
But which criteria is used to split the data? Which is the exact process for getting the model? 
Now, let see the simple steps for understanding how the decision tree works: 
 

1. Establish the split criteria for choosing the optimal data split in every split of the 
features space. It will be the impurity of the resulting nodes with respect to the response 
variable and in the classification case, it corresponds to the next Gini Index formula. 
Basically, with the example of the real case approach, the idea is getting as many 
defaulters as possible ( ) in a resulting node of the split and as much non-defaulters 
( ) as possible in the other. 

 

 
Notation and terminology: 

  is the number of classes in the response categorical variable 
  represents a resulting node of the tree split 
  represents the probability of belonging to class  of the response 

variable in the node , basically the % of observations with  in the node  
 

2. Perform the first binary splitting of the explanatory features space. It means 
considering all predictors  and all possible values of the cutpoint  for each of 
the predictors as follows: 

 
‐ For quantitative explanatory variables: with a feature  and the cutpoint  

split the predictor space into the regions  and . 
‐ For categorical explanatory variables: with a feature  and a category  split 

the predictor space into the regions  and . 
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Then, choose the predictor and cutpoint that minimize the impurity  between a 
resulting node and its parent. 
 

3. Next, repeat the process of step 2, looking for the best predictor and best cutpoint in 
order to split the data further so as to minimize the impurity of the resulting regions. 
However, this time, instead of splitting the entire predictor space, only split one of the 
two previously identified regions in step 2. 
 

4. Again, the process continues until a stopping criterion is reached. For example, in the 
Spark R implementation of the model, the tree construction is stopped at a node when 
one of the following stopping criteria is met for all leaf nodes or identified regions: 

 
‐ The node depth is equal to the training maxDepth parameter. 
‐ No split candidate leads to an information gain greater than the 

minimum minInfoGain parameter. 
‐ No split candidate produces 2 leaf nodes which each have at least 

training minInstancesPerNode (parameter) instances. 
 

5. Once we have the tree built, we finally have the model decision tree. Now, we can 
predict the response class of the customer  with explanatory variables  passing the 
customer by the tree and choosing the class with highest % of the leaf node in which 
the customer falls. 

 
Among the points in favour of this method, we find the simplicity of interpretation from the 
splits, the possibility of visualizing the result graphically and working with numerical and 
categorical variables at the same time. Also, it is an efficient method computationally, however, 
if there are some minority classes in the answer variable, it is likely that it will make bad 
predictions for this class. 
 
Note: In the next sections, the abbreviation DT means decision tree. 
 
 
3.3.2. Random forest 

 
This model was proposed by Tin Kam Ho in 1995 and deeply developed by Leo Breiman. The 
purpose of the random forest is to obtain a better classifier from the average of  different 
decision trees. However, as a result of applying the average results of a high number of trees, 
the method loses the interpretation that was obtained with an individual decision trees. 
 
In more detail, the random forest includes some concepts or adjustments which are: 

 
a. Bagging. It means resampling the single training data (known as bootstrapping5) to 

generate  different bootstrapped training data sets and then, train the  trees on 
these sets in order to average the predictions of them. Bagging reduces prediction 

                                                           
5 The concept of bootstrap means resampling a sample of the population for having several pairs of training and 
test sets. Then, a estimator or model can be trained with the training sets and evaluated in several test sets. 
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variance over a single tree and improves prediction accuracy at the expense of 
interpretability. 
 

b. Fix a number of features to consider in each tree. Apart from building the trees with 
different bootstrapped sets, a determined number of explanatory variables will be 
randomly selected to the splits in every tree. It has a clever rationale because if there 
is one very strong predictor in the data set most of the trees will use this strong 
predictor in the top split and consequently, all of the bagged trees will be similar and 
their predictions will be highly correlated. Thus, it adds diversity to the trees and more 
reliable results are obtained. 

 
Once we have all the trees built, we finally have the model random forest. Now, we can predict 
the response class of the customer  with explanatory variables  passing the customer by all 
the tree and averaging the decision of all the trees generated. 
 
Note: In the next sections, the abbreviation RF means random forest. 
 
 
3.3.3. Gradient boosted trees 

 
This model was proposed by Leo Breiman and deeply developed by Jerome H. Friedman. 
Gradient boosted trees is another approach for improving the predictions from a single decision 
tree. What is the idea behind this procedure? Given the first decision tree that predicts the 
original response variable, a second decision tree is fitted with the residual errors (the values 
of the objective variable minus the predictions) from the first one as the response variable. 
That is, fitting  trees using the residuals of the previous tree rather than the original response. 
By fitting small trees to the residuals, we slowly improve the outputs in areas where the model 
does not perform well. In general, statistical learning techniques that learn slowly tend to 
perform well and in boosting, unlike in bagging, the construction of each tree depends strongly 
on the trees that have already been grown.  
 
In the history of Kaggle machine learning competitions, they usually master two techniques: 
tree-based models for structured data and neuronal networks when the data includes images 
or voice. Traditionally random forest predominated in structured data competitions, but 
another algorithm won it: gradient boosted trees. 
 
Now, let see the simple steps for understanding how the gradient boosted trees works: 
 

1. Set the output prediction function of the model  and the response variable for 
the first tree  for all  observations in the training set. 
 
Notation and terminology: 

  is the original response variable 
  is the matrix of explanatory features with  variables and  observations 

 
2. Fit the  decisions trees. For , repeat: 

 
a. Fit a tree  with the  as features and  as the response variable to predict. 
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b. Update  by adding a shrunken version of the new tree. It means using a 

weighting factor called the shrinkage factor or the learning rate to slow down 
the learning in the model. 

 
 

 
c. Update the residuals which will be the response variable in the next iteration. 

 
 

  
3. Output the gradient boosted trees model. 

 

 
Although it has not been mentioned, the implemented function in Spark R for this model 
includes bagging. Remember that, as in the random forest model, it means that each tree is 
built on a bootstrap dataset randomly sampled from the single training set. 
 
Note: In the next sections, the abbreviation GBT means gradient boosted trees. 
 
 
3.4. Neural networks 
 

3.4.1. Multilayer perceptron classifier 

 
The first perceptron algorithm was invented by Frank Rosenblatt in 1957. The multilayer 
perceptron classifier (MLPC) is a classifier based on the feedforward artificial neural network, 
which consists of multiple layers of nodes or neurons fully connected to the subsequent layer 
in the network. Nodes in the input layer represent the input data and all other nodes map 
inputs to outputs applying an activation function to a linear combination of the inputs with 
the node’s weights. The next graphic represents a simple schema of MLPC with  input 
features, one hidden layer with  neurons and  neurons in the output layer (  classes). 
 

 
 

Figure 4: Neural network MLPC example schema. 
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This model is called feedforward because information flows through the function being 
evaluated from the input data, through the intermediate nodes, and finally to the output. It 
means that there are no feedback connections in which outputs of the model are fed back into 
itself. When feedforward neural networks are extended to include feedback connections, they 
are called recurrent neural networks. 
 
In more detail, the main concepts for understanding the neural network multilayer perceptron 
are: 
  

a. Activation function. Except for the input nodes, each node is a neuron that uses a non-
linear activation function, it means that in every node, the resulting value of the linear 
combination of the inputs (outputs of previous nodes) with the node’s weights is 
applied to an activation function. In short, it is the same idea that the logit link function 
in the logistic regression, but applied to every node of hidden layers. 

 
‐ Nodes in intermediate layers use the sigmoid or logistic function: 

 

 

 
‐ Nodes in the output layer use softmax function: 

 

 

  
Notation and terminology: 

  is the resulting value of the linear combination of the inputs (outputs 
of previous nodes) with the node’s weights 

  is the number of output neurons corresponding to the number of 
classes in the response variable. 

 
b. Layers. MLPC consists of three or more layers (an input and an output layer with one 

or more hidden layers) with a determined number of neurons or nodes. All they are 
fully connected with the next layer with a certain weight (parameter to optimize) to 
every node in the following layer. The number of nodes by layers is: 

 
‐ Input layer: corresponds to the numbers of explanatory variables. 

 
‐ Hidden layers: the number of hidden layers ranges from one to many and the 

number of neurons is a tuning parameter with no optimal value for all cases. 
 

‐ Output layer: corresponds to the number of classes in the response variable. 
 

c. Learning or weights optimization. It consists of optimizing the weights that connect 
neurons layers, based on the amount of error in the output compared to the expected 
result. The optimization algorithm repeats a two-phase cycle: 
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1. Propagation. When an input data is presented to the network, it is propagated 
forward through the network, layer by layer, until it reaches the output layer. 
The output of the network is then compared to the desired or true output, using 
an error function or loss function and the resulting error value is calculated for 
each of the neurons in the output layer. 
 

2. Backpropagation for updating weights. Here, the error values are then 
propagated from the output back through the network for optimizing the 
weights of each connection in order to reduce the value of the error predictions 
by some small amount. To learn or adjust weights properly, backpropagation is 
commonly used by the gradient descent optimization algorithm, basically, it 
calculates the derivative of the error function with respect to the network 
weights, and changes the weights such that the error decreases. 

 
After repeating this process for a sufficiently large number of training cycles, the 
network will usually converge to some state where the error of the calculations is small. 
 
Note: For more information about backpropagation process, visit the following link 
with an example step by step: https://mattmazur.com/2015/03/17/a-step-by-step-
backpropagation-example. 
 

d. Loss function or error function. It is a function used in the learning that maps values 
of one or more variables onto a real number intuitively, through the optimization 
algorithm, representing some cost associated with those values. In the case of the 
implemented Spark R function for the binary response, the loss function is the logistic 
loss function: 

 
 
Notation and terminology: 

‐  is the resulting value of applying the activation function  to the linear 
combination of the inputs (outputs of previous nodes) with the node’s weights. 

‐  is the vector of true value in the response variable. 
 
Note: In the next sections, the abbreviation NN means neural network multilayer perceptron 
classifier. 
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4. REAL CASE APPROACH 
 
4.1. Stages of a predictive analytics project 
 
This section attempts to give a brief idea of all the project steps for developing a machine 
learning model: 
  

1. Variable exploration. This step decides the features types (nominal, ordinal, numerical, 
etc.) and explores each variable distribution detecting singular values such as errors or 
missing values. In this stage, it is typical to use unsupervised machine learning6 for a 
better data understanding. 
 

2. Feature selection. This step performs the variable selection trying to include all 
possible features that discriminate well the target variable. It is important for the 
future model application because, for example, it would be important to consider if it 
is legal to use the gender of clients as an explanatory variable when the model is put 
into production. 
 

3. Pre-processing. This part modifies the dataset for adapting it to the way of reading 
the data by the models and for optimising the performance. For example: 

 
‐ Transforming or imputing missing values for models that cannot manage them. 
‐ Deciding how many observations within each nominal feature level should be 

kept in the model or otherwise merged to an OTHERS level. Because if a 
variable has levels with too few observations, the models do not have enough 
information to learn. 

‐ Normalization and scaling numerical variables in order to improve model 
performance. 

 
4. Parameter tuning. This step seeks to find the best combination of model parameters, 

using optimization approaches. This step is critical for most algorithms and interacts 
with other steps, like pre-processing or feature selection. 
 

5. Model comparison. This part accurately compares the predictive performance of 
several chosen models with performance measures. 
 

6. Feature importance. This step computes, for each variable, measures of its contribution 
to the model. It is important for understanding how the model classifies the target 
variable and which variables contribute more to discriminate it. 
 

7. Application of the model. Analysis of the potential impact of the model and put it into 
production. 

 

                                                           
6 This term usually refers to machine learning techniques where there is not a target variable, and the objective is 
exploring the data without trying to discriminate the target variable using explanatory features. For example, two 
well-known techniques are clustering and principal components analysis (PCA). 
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4.2. Database description and pre-processing 
 
The data used in the real case approach is provided by a Fintech which has tracked the risk 
of its financed customers. The dataset includes many variables that are expected to explain 
the customer default behaviour. Concretely, the dataset contains 3468 financed customers of 
the company and 26 variables including the response and the customer identifier. This is the 
list of variables: 
 

Related to Variable 

Loan application 

Contract ID: customer identifier unique for everyone 
Application Week Day: weekday of the customer application 
Application Hour Grouped: application hour grouped into 3 ranges 
Amount: loan amount requested in € 
Maturity: duration of the loan in months 
Purpose: objective of the customer loan 

Profile 

Age: age of the customer 
Gender: gender of the customer 
Marital Status: marital status of the customer 
People in Household: number of people in charge of the customer 

Professional 
situation 

Profession Code: the profession of the customer 
Profession Sector: private or public profession sector 
Contract Type: type of employment contract 
Seniority: number of months since the customer profession start date 

Housing situation 

Province: residence province of the customer 
Postal Code ASNEF: probability of being in ASNEF7 by postal code 
Housing Type: housing situation of the customer residence 
Housing Seniority: months since the customer housing start date 

Expenses 

Rent: monthly rent cost of the customer in € 
Mortgage: monthly mortgage cost of the customer in € 
Amount of Ongoing Credits: monthly amount of ongoing credits in € 
Number of Ongoing Credits: number of ongoing credits 

Revenues 
Income: monthly salary of the customer in € 
Additional Income: monthly additional income of the customer in € 
Partner Income: monthly partner income of the customer in € 

Outcome Defaulted: if the customer has defaulted (1) or not (0) 
 

Table 2: List of dataset variables. In the annexes, you can find the extended metadata. 

 
The dataset is unbalanced and it has about 80% proportion of customers non-defaulters versus 
20% defaulters. Having a balanced target variable is an important thing to consider when 
fitting a model because if there are some minority classes in the outcome variable, in this real 
case the outcome is binary (defaulted or not), it is likely that it will make poor predictions for 
these classes because of the scarce information about these categories. For example, in the case 
of this thesis, if the proportion of classes is too unbalanced (more non-defaulters than 

                                                           
7 Negative database of defaulters that companies can check to know if a customer is registered there or not. 
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defaulters), the models would tend to predict lower probabilities of default since it would be 
more difficult to learn from the characteristics of defaulters. 
 
Regarding the analysis of missing values that can be found in the metadata of the annexes, it 
has been decided to use the whole dataset with a total number of 3468 customers. Once the 
data is appropriately pre-processed, it will be divided into two groups (training and test) in a 
ratio of 75%-25% respectively. It will be explained in the posterior sections 4.4 and 4.5. 
 
Although the dataset is quite clean and complete in terms of data quality, it is necessary some 
data pre-processing. The treatments include: 
 
Treatment Variable type Action 

Missing 
values 

Numerical 
Modifying missing values by 0 because some models do not 
support them. This imputation is given by the private 
procedures of the company that owns the data. 

Categorical 
Modifying missing values in categorical variables by MISSING,  
and it means to create a new category for missing values. 

Outliers 

Numerical No treatment is needed. 

Categorical 

Change infrequent categories (frequency distribution <5%) by 
OTHERS. It needs an analysis of categorical variables 
distribution for detecting categories that appear in too few 
customers and it is attached in the annexes section 9.2. 

Indexed 
categories 

Categorical 

Some algorithms require only numerical input data. For this 
reason, the non-numerical variables should be mapped with an 
indexer (0, 1, 2, …) in both training and test sets, with always 
the same mapping for avoiding different indexers by categories 
in different datasets. Although in this thesis, with the 
implemented Spark R functions it is not necessary. 

 

Table 3: List of data pre-processing required treatments. 

 
Note: When predicting a fresh data set, it means a different population sample than the 
training data, it is necessary to do the same pre-processing than in the training data as well 
as modify new categories of categorical features (that were not in the training dataset) by 
OTHERS. Thus, the exact final mapping of categories used for training should be saved. 
 
 
4.3. Target variable and possible applications of the model 
 

The target variable is Defaulted. Let  be an observation of the outcome random 
variable  which provides information about the client behaviour. If the customer has 
defaulted, the observed value is equal to 1 and when has not is equal to 0. Then, the target 
variable Defaulted is binary and for this reason, it is a machine learning classification problem 
with the objective of predicting the probability of default. 
 
Going back to the risk sector introduction, it would be useful to explain possible 
implementations of the algorithms in a credit company. Remember that the key is basically 
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selecting well the clients that will be financed after the documentation check (for avoiding 
marketing costs in pre-accepting clients that will not be financed and then with no profit) and 
the ones that will have good risk metrics (for avoiding losing money with miss payments). 
 
Once it is said, the possible applications of the models are: 

 
‐ Use the model as a credit score for punctuating the customers in terms of risk, and 

then rejecting those with too much probability of default and offering a better price to 
those with the lowest probability. 

‐ Use the model as a rejection rule, for example, directly rejecting and not pre-accepting 
all the applications with a predicted probability higher than a determined threshold. 

‐ Use the model in a marketing campaign to dedicating the budget to those clients with 
the lowest probability of default. 

‐ Use the model for analysing and discovering hidden characteristics of customers with 
a low probability of default and then, offering them a better financial product (not only 
in terms of lower interest rates, it could be a product designed for these profiles). 

 
 
4.4. Predictive performance measures 
 
This section will explain the predictive performance measures that will be used for choosing 
and comparing the models. The next section will explain the protocol of model validation, it 
means how the whole training process works and which performance measures are calculated 
in every phase for deciding and comparing between models. Thus, it is important to understand 
all the metrics before mentioning them in the next section. 
 
The project presents 2 performance measures in the second protocol phase and 5 more in the 
third (phases explained in the next section 4.5). These metrics let us compare and assess the 
power for predicting the default probability between models. 
 
 
4.4.1. Measures with cut-off needed 

 
As it has been told, the algorithms estimate the probability of default  that allow to define 
the predicted class by comparing  with different cut-offs . Clarifying with an 
example, if a customer has a default probability of 0.45, he will be classified as a defaulter if 
the cut-off is lower or equal to 0.45 but as a non-defaulter, if the cut-off is greater to 0.45. 
 
Then, having an entire dataset punctuated by a model and comparing a concrete cut-off with 
the predicted probabilities, it provides a confusion matrix like this: 
 

  Predicted 
  Not Default Default 

Real 
Not Default True negative (TN) False positive (FP) 
Default False negative (FN) True positive (TP) 

 

Table 4: Confusion matrix structure. 
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Once we have a confusion matrix, as a result of comparing a vector of predicted probabilities 
with a defined cut-off, these metrics will be calculated: 

 
‐ Sensitivity (true positive over real positive):  

‐ Specificity (true negative over real negative):  

‐ Accuracy:  
 
However, looking for the optimal cut-offs of these performance measures, as the dataset is 
unbalanced (only 20% of defaulters in the response variable), it is easy to find that: 

 
‐ For sensitivity, the optimal cut-off is approximately a probability of 0 which means 

predicting every client as a defaulter, then all the defaulters are well classified. 
‐ For specificity, the optimal cut-off is approximately a probability of 1 which means 

predicting every client as a non-defaulter, then all the non-defaulters are well classified. 
 
For avoiding this situation, the final metrics with cut-off needed that will be used in the 
protocol of model validation will be the accuracy and the sum of sensitivity and specificity. 
 
 
4.4.2. Measures without cut-off needed 

 
Apart from the mentioned metrics, other metrics are needed for comparing models without 
establishing any cut-off. It is important because, for example, if we use the explained measures 
with the cut-off 0.5 it makes no sense comparing a model with a range of predicted probabilities 
from 0.1 to 0.4 with other from 0.1 to 0.9. 
 
These are the metrics that will be calculated once we have a vector of predicted probabilities 
by a model: 
  

a. Percentage of true positive by quartiles of predicted probabilities vectors. It is a measure 
without cut-off needed that shows the distribution of real positive in the dataset by 
groups of 25% from lowest to highest predicted probability of default. In short, the 
process for calculating it is: ordering a set of observations by default predicted 
probability, selecting the customers that leave 25%, 50% and 75% of cases below, using 
their probabilities as the cut-off for every quartile, calculate the % of true defaulters in 
every group. Logically, the group of 25% observations with the lowest predicted 
probabilities of default would have to contain fewer defaulters than the group with 
highest default probabilities. 
 

b. Area under the curve (AUC) of the receiver operating characteristics curves (ROC). 
It is a well-known measure to evaluate the discriminative power of models in binary 
classification problems. The process of calculating it is simple: 
 

1. Comparing a vector of predicted probabilities with a concrete cut-off, get the 
corresponding confusion matrix explained above and obtain the specificity and 
sensitivity for this concrete cut-off. 
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2. Repeat the step 1 for all possible cut-offs from 0 to 1. 
 

3. Plot the ROC curve where every point corresponds to a concrete cut-off with 
its pair of sensitivity and specificity. As you can see in the graphic below, the 
y-axis is the sensitivity and the x-axis is the complement of specificity equals 
the false positive over real negative rate. 
 

4. Calculate the area under the curve or AUC metric. 
 

 
 

Figure 5: Example of ROC curve and AUC. 

  
The area under the diagonal measures 0.5 and it is associated to a random classifier, 
so the perfect model is AUC equals to 1. It gives an idea of the predictive robustness 
of models because, without any determined cut-off, we have a metric that tells us: how 
robust are the predicted probabilities by the model with a wide range of cut-offs. 

 
 
4.5. Phases of the protocol of model validation 
 

As it has been told in the point 4.1, the predictive analytics projects need a meticulous 
methodology. Basically, apart from loading and pre-processing the data, as it has been 
explained, it is necessary to find the best parametrization of every model and for doing it, the 
key is using a consistent and impartial protocol of validation when comparing between models.  
 
For example, a typical example of a wrong method is to compare only the performance of 
models with the predicted probabilities of the training dataset, because here the model with 
overfitting8 will win and, in the future, its behaviour predicting fresh datasets could be worst. 
 
For this reason, this section explains the global picture of models training and protocol of 
validation used in this thesis, step by step. These are the four germane phases: 
 

                                                           
8 The concept of good predictive performance in the training dataset and poor in the test set because of over 
adjusting the complexity of a model. It is a typical situation that cross-validation and other techniques try to solve. 
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1. Create training and test sets as well as the training folds for cross-validation. Once the 
data is appropriately pre-processed, it will be divided into two groups (training and 
test) in a ratio of 75%-25% respectively. The training set will be used for finding the 
best parametrizations of every model (phase 2). The test set will be used for training 
the models with its optimal parametrization (phase 3) and comparing the results with 
all the performance measures (phase 4) applied to both training and test datasets. 
Then, it is important to check that the two partitions have the same possible categories 
by categorical variables for avoiding problems when predicting the test set with the 
models. 
 

2. Find the best parametrization of every model with the training set. This project will 
use 5-Fold Cross-Validation (CV) with the performance metrics: out of bag AUC and 
out of bag % of true positive by quartiles9. Out of bag (OOB) means to use the 
prediction of observations not included in the training dataset. What does all that 
mean? In short, the training dataset will be separate in 5 sets and for every fold, the 
other 4 folds will be used as the training dataset for training every model 
parametrization. Then, with the predictions in the test set or the fold in question, we 
will have the out of bag predictions. Finally, the 5 OOB vectors of predicted default 
probabilities by fold will be saved in a global vector (having all the training dataset 
punctuated with OOB predictions for every model parametrization) and then, with this 
entire vector, the global AUC and % of true defaulters by quartiles will be calculated. 
 

3. Train models with optimal parametrizations. Once the best parametrization of every 
model is chosen, we re-train every final model with the whole training dataset. Now, 
with the trained model we will predict the test dataset for having out of bag predictions 
as well as the training predictions. Note that it is different from the global vector in 
the section before (5 OOB vectors of predicted default probabilities) because now we 
have only one model trained with all the training set and before, we were talking about 
five models trained with a different 80% of the training set every time. Finally, having 
all the training and test sets predicted for every model with its optimal parametrization, 
several performance metrics will be calculated (with the optimal cut-off for everyone) 
for both training and test sets. 

 
4. Compare the models with performance measures. Finally, the protocol of validation is 

concluded and all the explained performance metrics are calculated. Then it is time for 
comparing the results and finding positive and negative aspects of the models. 
 
In this step, apart from all the performance measures, the unsupervised machine 
learning technique called principal components analysis (PCA) will be used for 
understanding the correlations between the predicted probabilities of default and the 
explanatory variables. It will complement the thesis by using an unsupervised 
technique. 

   

                                                           
9 It means ordering the vector of predicted probabilities and doing groups of 25% from lowest to highest probability 
as explained in the previous section. 
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4.6. Results of the protocol of model validation phase 2 
 
This section contains the results table of phase 2 by models and descending order according to 
the global OOB AUC. Then, the elected optimal parametrization will be the first row except 
if the other measure, distribution of true positive by quartiles, is worst than other candidate 
models. 
 
 
4.6.1. Logistic regression 

 
In the case of the model logistic regression, the candidate parametrizations of the model are 
only numerical features as explanatory variables for predicting the target, only categorical 
features, and both numerical and categorical features. The aim is trying different model 
combinations to check if removing variables we can achieve similar performance results, 
however, it is not so important as the germane objective is predicting and not interpreting the 
results. 
 
These are the results for the candidate parametrizations of the model (ordered by global OOB 
AUC): 

 
AUC BY 

CV 

% OF TRUE POSITIVE BY 
QUARTILES 

PARAMETRIZATION OF 
MODEL: LR 

Q1 Q2 Q3 Q4 

All features 0.5733 0.1446 0.1900 0.2181 0.2488 
Numerical features 0.5697 0.1446 0.1978 0.2118 0.2473 
Categorical features 0.5655 0.1400 0.2103 0.2103 0.2411 

 

Table 5: Results of logistic regression in the protocol of model validation phase 2. 

 
In this case, there are not too many differences between the three parametrizations but the 
optimal is using all features because it has the highest global AUC and a coherent distribution 
of true positive by quartiles. It seems that the numerical and categorical features provide the 
same information in terms of predictability, but once they are used together the model does 
not improve so much. However, the optimal model will be with all features. 
 
 
4.6.2. Decision tree 

 
In the case of the model decision tree, the candidate parametrizations of the model (all with 
both numerical and categorical features) are all the possible combinations of these parameters: 

 
‐ Maximum number of bins for discretizing, at least the maximum number of categories 

for any categorical feature (max_bins): 10, 20, 30. 
‐ Maximum number of nodes separating any leaves from the root of the tree 

(max_depth): 5, 10, 15. 
‐ Minimum number of instances each child must have after the split 

(min_instance_node): 5, 9, 13. 
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These are the results for the best candidate parametrizations of the model (ordered by global 
OOB AUC): 

 AUC 
BY CV 

% OF TRUE POSITIVE BY 
QUARTILES 

PARAMETRIZATION OF MODEL: DT Q1 Q2 Q3 Q4 
max_bin=30;max_depth=5;min_instance=5 0.5601 0.1562 0.1831 0.2332 0.2321 
max_bin=30;max_depth=5;min_instance=13 0.5574 0.1674 0.1750 0.2226 0.2369 
max_bin=30;max_depth=5;min_instance=9 0.5545 0.1581 0.1804 0.2411 0.2226 
max_bin=10;max_depth=5;min_instance=5 0.5451 0.1572 0.2083 0.2255 0.2120 
max_bin=30;max_depth=10;min_instance=5 0.5429 0.1697 0.2013 0.2006 0.2387 
max_bin=20;max_depth=5;min_instance=5 0.5415 0.1787 0.1714 0.2319 0.2241 
max_bin=20;max_depth=5;min_instance=9 0.5411 0.1774 0.1711 0.2349 0.2224 
max_bin=10;max_depth=5;min_instance=13 0.5408 0.1602 0.2061 0.2269 0.2076 
max_bin=10;max_depth=5;min_instance=9 0.5402 0.1586 0.2114 0.2237 0.2084 
max_bin=30;max_depth=10;min_instance=9 0.5362 0.1607 0.2122 0.2047 0.2259 

… … … … … … 
 

Table 6: Results of the decision tree in the protocol of model validation phase 2. 

 
Although there is not a clear pattern in the parameters, the parametrization with max_bins 
equal to 30 and max_depth equal to 5 have the highest global AUC. In this case, various 
candidates could give similar models in terms of predictive robustness but the first option will 
be chosen. 
 
 
4.6.3. Random forest 

 
In the case of the model random forest, the candidate parametrizations of the model (all with 
both numerical and categorical features) are all the possible combinations of these parameters: 

 
‐ Maximum number of bins for discretizing, at least the maximum number of categories 

for any categorical feature (max_bins): 10, 20, 30. 
‐ Maximum number of nodes separating any leaves from the root of the tree 

(max_depth): 5, 10, 15. 
‐ Number of trees to train (num.tree): 15, 30, 45. 
‐ Minimum number of instances each child must have after the split 

(min_instance_per_node): 5, 9, 13. 
‐ The fraction of the training data used for learning each decision tree 

(subsampling_rate): 1. 
 

These are the results for the best candidate parametrizations of the model (ordered by global 
OOB AUC): 

 AUC 
BY CV 

% OF TRUE POSITIVE BY 
QUARTILES 

PARAMETRIZATION OF MODEL: RF Q1 Q2 Q3 Q4 
max_bins=30;max_depth=5;num.trees=30; 0.5904 0.1415 0.1760 0.2134 0.2706 
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min_instances_per_node=9 
max_bins=30;max_depth=15;num.trees=30; 
min_instances_per_node=9 

0.5887 0.1322 0.1776 0.2352 0.2566 

max_bins=30;max_depth=5;num.trees=15; 
min_instances_per_node=13 

0.5886 0.1353 0.1822 0.2181 0.2659 

max_bins=20;max_depth=5;num.trees=30; 
min_instances_per_node=5 

0.5868 0.1369 0.1838 0.2243 0.2566 

… … … … … … 
 

Table 7: Results of random forest in the protocol of model validation phase 2. 

 
It seems that the models with more number of trees and higher maximum number of bins are 
the best in terms of predictive power. The maximum depth and number of instances in each 
child do not seem to be as important in this case. Then, the parametrization chosen as optimal 
is the first one with the highest global AUC and the best trend of true defaulters by 
probabilities quartiles. 
 
 
4.6.4. Gradient boosted trees 

 
In the case of the model gradient boosted trees, the candidate parametrizations of the model 
(all with both numerical and categorical features) are all the possible combinations of these 
parameters: 

 
‐ Maximum number of bins for discretizing, at least the maximum number of categories 

for any categorical feature (max_bins): 10, 20, 30. 
‐ Maximum number of nodes separating any leaves from the root of the tree 

(max_depth): 5, 10, 15. 
‐ Maximum number of iterations (max_iter): 15, 30, 45. 
‐ Step size to be used for each iteration of optimization (step_size): 0.05, 0.1, 0.15. 
‐ Minimum number of instances each child must have after the split 

(min_instance_node): 1. 
‐ The fraction of the training data used for learning each decision tree 

(subsampling_rate): 1. 
 
These are the results for the best candidate parametrizations of the model (ordered by global 
OOB AUC): 

 AUC 
BY CV 

% OF TRUE POSITIVE BY 
QUARTILES 

PARAMETRIZATION OF MODEL: GBT Q1 Q2 Q3 Q4 
max_depth=10;max_iter=15;step_size=0.1 0.5714 0.1462 0.1822 0.2150 0.2582 
max_depth=10;max_iter=30;step_size=0.1 0.5650 0.1602 0.1776 0.2134 0.2504 
max_depth=10;max_iter=30;step_size=0.05 0.5618 0.1477 0.1900 0.2290 0.2348 
max_depth=15;max_iter=45;step_size=0.05 0.5614 0.1462 0.1869 0.2430 0.2255 
max_depth=15;max_iter=30;step_size=0.1 0.5611 0.1524 0.1604 0.2539 0.2348 
max_depth=15;max_iter=45;step_size=0.1 0.5606 0.1462 0.1791 0.2414 0.2348 
max_depth=10;max_iter=15;step_size=0.05 0.5604 0.1446 0.2040 0.2212 0.2317 
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max_depth=10;max_iter=45;step_size=0.1 0.5598 0.1571 0.1838 0.2165 0.2442 
… … … … … … 

 

Table 8: Results of gradient boosted trees in the protocol of model validation phase 2. 

 
The best combination of parameters is an intermediate maximal trees depth and a lower step 
size with more iterations or a higher step size with fewer iterations. The results are quite 
similar but the chosen parametrization is the first with the highest AUC and best true positive 
distribution. 
 
 
4.6.5. Naive Bayes 

 
In the case of the model naive Bayes, the candidate parametrizations of the model are: 

 
‐ Only numerical features as explanatory variables for predicting the target. 
‐ Only categorical features as explanatory variables for predicting the target. 
‐ Both numerical and categorical features as explanatory variables for predicting the 

target. 
 
These are the results for the candidate parametrizations of the model (ordered by global OOB 
AUC): 

 
AUC BY 

CV 

% OF TRUE POSITIVE BY 
QUARTILES 

PARAMETRIZATION OF 
MODEL: NB 

Q1 Q2 Q3 Q4 

Categorical features 0.5621 0.1711 0.1838 0.1931 0.2535 
All features 0.5305 0.1649 0.2134 0.2117 0 
Numerical features 0.5304 0.1649 0.2134 0.2117 0 

 

Table 9: Results of naive Bayes in the protocol of model validation phase 2. 

 
In this case, the differences are quite relevant between the three parametrizations. The optimal 
is using only categorical features and although the others do not have a too low global AUC, 
they have 0 true defaulters in the fourth quartile which makes no sense. 
 
 
4.6.6. Multilayer perceptron classifier 

 
In the case of the model multilayer perceptron classifier, the candidate parametrizations of the 
model (all with both numerical and categorical features) are all combinations of these 
parameters: 

 
‐ Number of nodes in input layer: number of numerical features plus the number of 

unique categories less one per categorical feature. 
‐ Number of nodes in output layer: 2 equals to the number of classes in the target 

variable. 
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‐ Number of nodes in the first hidden layer: 6, 8, 10, 12. 
‐ Number of nodes in the second hidden layer: 4, 6, 8, 10. 
‐ The rest of parameters (initial weights for weights initialization, step size, maximum 

iteration number, convergence tolerance of iterations) will be set by default in the 
implemented function. 

 
These are the results for the ten best candidate parametrizations of the model (ordered by 
global OOB AUC): 

 AUC 
BY CV 

% OF TRUE POSITIVE BY 
QUARTILES 

PARAMETRIZATION OF MODEL: NN Q1 Q2 Q3 Q4 
hidden_layer_1=12;hidden_layer_2=4 0.5359 0.1757 0.1905 0.1982 0.2379 
hidden_layer_1=8;hidden_layer_2=10 0.5284 0.1891 0.1720 0.2434 0.2093 
hidden_layer_1=12;hidden_layer_2=10 0.5281 0.1890 0.1813 0.1930 0.2358 
hidden_layer_1=10;hidden_layer_2=10 0.5279 0.1731 0.1975 0.2339 0.2162 
hidden_layer_1=6;hidden_layer_2=10 0.5168 0.1815 0.2052 0.2200 0.1941 
hidden_layer_1=8;hidden_layer_2=6 0.5156 0.1920 0.1953 0.2039 0.2123 
hidden_layer_1=6;hidden_layer_2=8 0.5061 0.1968 0.2008 0.1994 0.2059 
hidden_layer_1=8;hidden_layer_2=4 0.5029 0.1949 0.1977 0.2220 0.1895 
hidden_layer_1=6;hidden_layer_2=4 0.4997 0.2049 0.1956 0.2003 0.2009 
hidden_layer_1=10;hidden_layer_2=8 0.4973 0.2059 0.1944 0.2118 0.1821 

… … … … … … 
 

Table 10: Results of multilayer perceptron in the protocol of model validation phase 2. 

 
None of these neural network models is better than other model candidates, but the 
combination of 12 nodes in the first hidden layer and 4 in the second corresponds to the 
multilayer perceptron classifier model with the better true positive distribution and global 
AUC. 
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4.7. Results of the protocol of model validation phase 3 
 
This section works with the optimal parametrization of every model trained with the whole 
training set. Then, punctuating both training and test sets with these final models, the tables 
below show all the explained performance measures for both datasets. In the next section, the 
results will be commented and the models compared for deciding if one has performed better. 
 
 
4.7.1. Training set 

  LR DT RF GBT NB NN 

CRITERIA 

Sensitivity + Specificity 1.2091 1.2496 1.3796 1.9791 1.1574 1.1062 
Accuracy 0.8004 0.8058 0.8183 0.9938 0.8000 0.5514 
AUC 0.6500 0.6807 0.7639 0.9988 0.6096 0.5494 
% True positive in Q1 0.0886 0.0824 0.0404 0.0000 0.1322 0.1650 
% True positive in Q2 0.1807 0.2021 0.1168 0.0000 0.1838 0.1793 
% True positive in Q3 0.2321 0.2348 0.2259 0.0062 0.2056 0.2348 
% True positive in Q4 0.3002 0.3425 0.4184 0.7947 0.2799 0 

CUT-OFF 

Sensitivity + Specificity 0.2000 0.1900 0.2000 0.3100 0.2200 0.2300 
Accuracy 0.4600 0.4200 0.2800 0.3100 0.4100 0.2500 
% True positive in Q1 0.1385 0.1288 0.1716 0.0631 0.1558 0.1608 
% True positive in Q2 0.1957 0.2281 0.1978 0.0936 0.1990 0.2058 
% True positive in Q3 0.2540 0.2349 0.2292 0.1983 0.2503 0.2509 
% True positive in Q4 0.5355 0.8889 0.4472 0.9679 0.4452 0.2509 

 

Table 11: Results of the training set in the protocol of model validation phase 3. 

 
 
4.7.2. Test set 

  LR DT RF GBT NB NN 

CRITERIA 

Sensitivity + Specificity 1.1329 1.1353 1.1302 1.1051 1.0871 1.0196 
Accuracy 0.7895 0.7895 0.7895 0.7884 0.7895 0.5323 
AUC 0.5838 0.5731 0.5905 0.5612 0.5552 0.5175 
% True positive in Q1 0.1511 0.1471 0.1556 0.1511 0.1733 0.1928 
% True positive in Q2 0.1964 0.2135 0.1786 0.2009 0.2098 0.2813 
% True positive in Q3 0.2321 0.2531 0.2277 0.2500 0.2009 0.2180 
% True positive in Q4 0.2667 0.2463 0.2844 0.2444 0.2622 0 

CUT-OFF 

Sensitivity + Specificity 0.1900 0.1900 0.2200 0.1500 0.2200 0.2000 
Accuracy 0.4500 0.7600 0.3100 0.9500 0.4300 0.2500 
% True positive in Q1 0.1446 0.1288 0.1713 0.0803 0.1595 0.1608 
% True positive in Q2 0.1991 0.2281 0.1969 0.1413 0.2039 0.2058 
% True positive in Q3 0.2561 0.2349 0.2279 0.2670 0.2523 0.2509 
% True positive in Q4 0.5398 0.8889 0.4270 0.9778 0.4742 0.2509 

 

Table 12: Results of the test set in the protocol of model validation phase 3. 
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For example in table 12, for the logistic regression, the value 0.2561 is the default probability 
of the customer that leaves a 75% of customers below in the test set with respect to their 
predicted probabilities, and the value 0.1991 is the probability of the customer that leaves a 
50%. Then, 23.21% is the percentage of defaulters with a predicted probability between 0.1991 
and 0.2561, statistically the third quartile. Also, with the same example of table 12, the optimal 
accuracy of the logistic regression is 0.7895 and it is obtained with the cut-off of 0.45. 
 
 
4.8. Results of the protocol of model validation phase 4 
 
According to the results table of the training dataset, there is a clear winner: gradient boosted 
trees. It has the higher values for the metrics AUC, accuracy and the sum sensitivity and 
specificity. Furthermore, it performs the best distribution of true defaulters having 0 defaulters 
in the quartile with the lowest probabilities and an 80% of defaulters in the highest. 
Additionally, looking at the cut-offs of the true defaulters’ distribution, we can see that the 
range of probabilities is wider in this model, from 0.08 in the first quartile to 0.96 in the fourth. 
 
That said, this model could be a clear case of over-fitting if in the test set it gets worst results. 
For this reason, it is important to comment that the other models, except the multilayer 
perceptron classifier and concretely the random forest, have very reasonable performance 
measures with maybe no over-fitting. 
 
According to the results table of the test set, now the model gradient boosted trees is not the 
best one. The logistic regression and the random forest have the best AUC and very similar 
values of accuracy and sum of sensitivity and specificity compared with the logistic regression 
and the decision tree. Also, they have the best trends of true defaulters by quartiles. 
 
Looking at the cut-off, all models have similar optimal cut-offs between the training and test 
sets performance measures, but the accuracy cut-offs for the decision tree and the gradient 
boosted trees are quite different and it suggests that they are not as solid models as others for 
predicting fresh datasets. However, the logistic regression and random forest seem to be really 
robust comparing the figures of the two tables and although there is not a clear winner, these 
models appear to be the more appropriate between all candidates. 
 
Apart from that, it is interesting that the defaulters’ correlation with the gradient boosted 
trees model in the training dataset is now deprecated in the test. Furthermore, it is curious 
that the neural network multilayer perceptron classifier is the worst model in this real case 
approach. Although neural networks are considered the best models in terms of predictive 
power for many situations, in this case, it seems that the low amount of data is not appropriate 
for this kind of complex algorithms which require large amounts of data to beat the others. 
 
 
4.8.1. Analysis of the correlation between features and outcome predictions 

 
This section will try to study a point that has not been mentioned until now with an 
unsupervised machine learning technique called principal components analysis. The aim is to 
study the correlations between numerical features, it means in which directions they move 
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according to each other, and also research which profiles of customers have a higher predicted 
probability of default by models. This machine learning technique can simplify this task 
because these models are quite complex and the high number of interactions make really 
difficult to understand why a customer is considered as a defaulter or not. 
 
Only numerical features will be considered, but as we have seen in the logistic regression 
model, the categorical features do not seem to add too much information to the numerical ones 
(or vice versa). For this reason, this section will simply make the analysis with the numerical. 
First of all, let see the results of the PCA (explained in the theory section) by observing the 
first two principal components. In essence, it means studying how every variable affects the 
new space of artificial variables created by the PCA because every new artificial variable or 
principal component is a linear combination of the original features. This is the graphic: 
 

 
 

Figure 6: Plot of the two first principal components of the PCA. 

 
From this graphic of the first two principal components, it is possible to extract logical 
customer patterns that will help to understand why the models predict lower or higher 
probability of default. These are the main patterns: 
  

a. The more income and partner income that customers have, the more loan amount 
requested, maturity, amount of ongoing credits, mortgage, seniority, and the less 
probability of being in ASNEF by postal code which means that customers live in zones 
with fewer people in negative databases of defaulters. 
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b. Other characteristics, not too much correlated with the explained above, are that the 

more cost of rent that customers have, the less age and housing seniority. It completely 
makes sense in terms of social behaviour. 

 
That said, we will project all the customers in this new artificial two principal components 
with optimal models and the points will be coloured according to the predicted probability of 
default. These are the resulting graphics by models: 
 

 

 

 
 

Figure 7: Projections of customers in the two first principal components of the PCA. 
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Ignoring the multilayer perceptron classifier neural network, because of we cannot see any 
clear pattern, the projections of the customers into the two first principal components show us 
that  in general, the profile of a defaulter is a customer that: 

 
‐ Has a residence in a postal code with a high probability of being in ASNEF. 
‐ Has low income, partner income, mortgage, seniority and amount of ongoing credits. 
‐ Does not have a concrete age, monthly rent cost and housing seniority. 

 
Nevertheless, as we can see in the graphics, these principal components have projected only a 
30% of the global variance, and it means that the described profile of defaulters does not fit 
for every customer. 
 
Apart from this analysis of the correlation between features and outcome predictions by the 
models, in the annexes, you can find the models features importance for the models: logistic 
regression, decision tree and random forest. There, you will find the estimated coefficients by 
the logistic regression ordered by absolute coefficient value, and the variable importance for 
splitting the trees in the decision tree and random forest. In general, a higher value means 
that this variable is more relevant in the model in terms of discriminating the response. 
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5. CONCLUSIONS 
 
This is the last section of the thesis and it contains the conclusions after developing the whole 
project. 
 
 
5.1. Hypothesis results 
 
According to the hypothesis of the theoretical section, it is confirmed that although black-box 
models such as neural networks or tree-based models are more complex than, for example, 
logistic regression, they follow algorithmic theories that are not as different or advanced in 
terms of theory comprehension. The logic behind the building process of these models is not 
so complicated but a large number of iterations when optimizing the models makes them a 
black-box in terms of interpretability. 
 
On the other hand, the hypothesis of the real case approach has been partially accomplished. 
It was to be expected that more complex models, such as the neural network, would perform 
better in terms of predictive power. However, what we have seen is that the simplest model, 
the logistic regression, has performed as the best in the test set. That said, it is important to 
note that the hypothesis considered the possibility that the dataset dimension influences the 
results. It means that as the data had only 3468 observations, it has not been enough data for 
the more complex algorithm which are the best in a competition such as Kaggle. 
 
According to the hypothesis that the coding language Spark would be so time-consuming, after 
the development of the entire project, it is possible to confirm that the Big Data engine Spark 
has a really user-friendly framework and integration with well-known statistical coding 
languages such as R or Python. However, for the author, it has been the first time in doing 
data science and machine learning with Spark and a lot of time has been spent on learning it. 
 
 
5.2. Aims achieved 
 
The principal aim of this thesis was to create a guide (with theory and practice) to develop a 
predictive analytics project from scratch with the Big Data tool Spark. Apart from that, a key 
point was that all kind of users, experts or not, could understand the thesis even the more 
theoretical concepts. Once the thesis is done, it can be said that from lots of resources and 
references that can be found in books or on the internet, this thesis provides a hybrid guide 
for machine learning with succinct theory and practice aimed to different audiences. 
 
Furthermore, it was mentioned at the beginning that the Spanish banking regulator only allows 
using the logistic regression model and that laws have to progress and be adapted to all these 
new available and widely used algorithms. After seeing the results, the wrong way of 
interpreting the results is that logistic regression performs well enough and for this reason, it 
would be not necessary that banking regulators attempt to be more flexible. Why? In many 
fields, neural networks and advanced tree-based are states of the art and the financial sector 
need be no different, provided that enough data is available. 
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5.3. Possible thesis extension 
 
In machine learning and artificial intelligence, finding the optimal parameters for a model is 
the key point. Thus, the first important extension of the thesis would be looking for new 
models’ parametrizations that improve the predictive performance as well as the creation of 
new artificial variable from the original data for discriminating better the defaults. 
 
Apart from that, it would be really interesting to analyse the business impact of the models. 
In other words, researching how applying these machine learning will impact a credit company 
in economic terms. After all, the new era of artificial intelligence is beginning and it is clear 
that it will create a strong impact in the society. 
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8. ANNEXES 
 
8.1. Metadata 
 

Variable Type for models Number of categories Number if missing 
Contract_ID Categorical - 0 
Defaulted Categorical 2 0 
Application_Hour_Group Categorical 3 0 
Application_Week_Day Categorical 7 0 
Amount Numerical - 0 
Maturity Numerical - 0 
Purpose Categorical 13 0 
Province Categorical 50 0 
Postal_Code_ASNEF Numerical - 12 
Age Numerical - 0 
Gender Categorical 2 0 
Profession_Code Categorical 32 53 
Profession_Sector Categorical 2 0 
Contract_Type Categorical 3 0 
Seniority Numerical - 0 
Housing_Type Categorical 5 0 
Housing_Seniority Numerical - 0 
Marital_Status Categorical 6 0 
People_in_Household Categorical 7 0 
Income Numerical - 0 
Additional_Income Numerical - 2290 
Partner_Income Numerical - 1828 
Rent Numerical - 2566 
Mortgage Numerical - 1984 
Amount_of_Ongoing_Credits Numerical - 0 
Num_Ongoing_Credits Categorical 6 0 
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8.2. Analysis of categorical variables distribution 
 

Variable Category Distribution 

Defaulted 
0 79.67% 
1 20.33% 

Application_Hour_Group 
[7H, 20H) 85.55% 
[20H, 23H) 8.42% 
[23H, 7H) 6.03% 

Application_Week_Day 

1 19.20% 
3 19.00% 
2 18.66% 
4 17.16% 
5 13.93% 
6 6.31% 
7 5.74% 

Purpose 

HOMEIMPROVEMENT 28.98% 
LIQUIDITY 21.80% 
USEDCAR 8.77% 
DEBTS 7.93% 
MEDICALCARE 6.46% 
VACATION 6.26% 
FURNITURE_AND_APPLIANCES 5.82% 
NEWCAR 4.33% 
TRAINING 3.86% 
WEDDINGS 2.62% 
HITECH 1.27% 
MOTO 0.95% 
RELOCATION 0.95% 

Gender 
MALE 65.43% 
FEMALE 34.57% 

Profession_Sector 
PRIVATE_SECTOR 79.67% 
PUBLIC_SECTOR 20.33% 

Contract_Type 
PERMANENT 81.72% 
PENSION 16.75% 
INDEPENDENT 1.53% 

Housing_Type 

HOME_OWNERSHIP_WITH_MORTGAGE 36.85% 
HOME_OWNERSHIP_WITHOUT_MORTGAGE 22.49% 
THIRD_PARTY_PROVIDED_LODGING 21.66% 
TENANT 18.22% 
EMPLOYER_PROVIDED_LODGING 0.78% 

Marital_Status 

MARRIED 48.50% 
SINGLE 27.19% 
DIVORCED 10.03% 
COHABITING 7.53% 
WIDOWED 4.09% 
SEPARATED 2.65% 

People_in_Household 
0 55.42% 
1 22.84% 
2 16.78% 
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3 4.15% 
4 0.69% 
5 0.09% 
6 0.03% 

Num_Ongoing_Credits 

1 41.98% 
2 23.36% 
0 22.38% 
3 8.82% 
4 2.68% 
5 0.78% 

Profession_Code 

OPERATOR 16.75% 
ADMINISTRATIVE 11.71% 
TECHNICIAN 8.42% 
MIDDLEGRADEMANAGER 7.09% 
RETIREMENT 6.52% 
MEDICAL_PROFESSION 4.93% 
POLICEMAN_FIREMAN_MILITARY 4.64% 
EDUCATION 4.41% 
INVALIDITY 4.15% 
STAFFMANAGER 3.32% 
COMMERCIAL 3.20% 
ABSOLUTE_INVALIDITY 2.94% 
SALESMAN 2.60% 
HOTELIER 2.48% 
COMPUTERSCIENCE_MATH 2.36% 
EXECUTIVE 2.28% 
DRIVER 1.99% 
GUARD 1.93% 
NA 1.53% 
OTHER 1.44% 
ENGINEER 1.15% 
CONSULTANT 0.95% 
ANALYST_FINANCE_MARKETING 0.84% 
ENTREPRENEUR 0.66% 
LIBERAL_PROFESSION 0.46% 
LAWYER_NOTARY 0.26% 
RESIDENCEEMPLOYEE 0.20% 
MAJOR_INVALIDITY 0.17% 
ARCHITECT 0.17% 
CRAFTMAN_SALEMAN 0.14% 
LAWYER_JUDGE 0.12% 
ECONOMIST_ACCOUNTANT 0.12% 
DOCTOR 0.06% 

Province 

Barcelona  16.29% 
Madrid  13.99% 
Asturias (Oviedo)  5.71% 
Coruna  4.84% 
Valencia  4.35% 
Alicante  3.46% 
Vizcaya (Bilbao)  3.29% 
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Pontevedra  3.29% 
Zaragoza  2.51% 
Guipuzcoa (Donostia-San Sebastian)  2.48% 
Navarra (Pamplona)  2.39% 
Leon  2.34% 
Cantabria (Santander)  2.25% 
Valladolid  2.22% 
Sevilla  1.70% 
Tarragona  1.70% 
Salamanca  1.59% 
Burgos  1.53% 
Gerona  1.50% 
Toledo  1.50% 
Alava (Vitoria-Gasteiz)  1.38% 
Lugo  1.36% 
Las Palmas  1.36% 
Murcia  1.27% 
Santa Cruz de Tenerife  1.21% 
Orense  1.21% 
La Rioja (Logrono)  0.98% 
Baleares (Palma de Mallorca)  0.92% 
Ciudad Real  0.89% 
Castellon  0.87% 
Malaga  0.84% 
Badajoz  0.78% 
Lerida  0.72% 
Albacete  0.72% 
Cadiz  0.69% 
Granada  0.63% 
Huelva  0.61% 
Avila  0.61% 
Caceres  0.61% 
Palencia  0.58% 
Guadalajara  0.46% 
Segovia  0.40% 
Cordoba  0.40% 
Almeria  0.35% 
Jaen  0.32% 
Huesca  0.29% 
Cuenca  0.26% 
Teruel  0.17% 
Soria  0.12% 
Zamora  0.09% 
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8.3. Code 
 
This section contains the code of the whole thesis and it can be also found in the author’s 
GitHub account https://github.com/alvarorgaz/Guide-to-Spark-Machine-Learning-for-credit-
scoring with a more practical and attractive format. 
 
### TITLE: Guide to Spark Machine Learning for credit scoring 
### AUTHOR: Álvaro Orgaz Expósito 
### ADVISORS: Ana María Pérez Marín Catalina Bolancé Losilla 
### DEPARTMENT: Econometrics, Statistics and Applied Economics 
### ACADEMIC YEAR: 2017-2018 
 
### LEGEND OF CODE COMMENTS (#) 
### 1#: Code actions 
### 2#: Optional or additional functions 
### 3#: Notes and extra comments about the code 
 
########################################################################################################### 
 
# 1. INSTALLATION AND CONNECTION TO SPARK 
 
### Notes: 
### N1. As the package "SparkR" is removed from R CRAN, download the package file "SparkR_2.3.0.tar.gz"  
###     at the link: https://cran.r-project.org/src/contrib/Archive/SparkR/ 
### N2. You will need to have installed the software Java and the firewall unblocked. 
### N3. The function "sparkR.init" of the package "SparkR" will install the latest version of Spark in  
###     your computer (if not installed), then it is not necessary that you do it manually. It will be  
###     used too by the function "spark_connect" of the package "sparklyr". 
 
# Mute warnings 
options(warn=-1) 
 
# Install the necessary R packages from R CRAN (if not installed): "dplyr", "sparklyr", "pROC", "DBI",  
# “ggplot2” 
## install.packages("dplyr") 
## install.packages("sparklyr") 
## install.packages("pROC") 
## install.packages("DBI") 
## install.packages("ggplot2") 
 
# Install the necessary R package removed from R CRAN (if not installed) : "SparkR" 
## install.packages("SparkR_2.3.0.tar.gz",repos=NULL,type="source") 
 
# Load the necessary installed packages 
library(SparkR) 
library(dplyr) 
library(sparklyr) 
library(pROC) 
library(DBI) 
library(ggplot2) 
 
# Connect to Spark cluster in local mode (package "SparkR") 
sc_SparkR <- sparkR.init(master="local") 
sc_SparkR_sql <- sparkRSQL.init(sc_SparkR) 
 
# Connect to Spark cluster in local mode (package "sparklyr") 
sc_sparklyr <- spark_connect(master="local") 
 
### Notes: 
### N4. You can connect to both local instances of Spark as well as remote Spark clusters but we will 
###     connect to a local. The returned Spark connection (sc) provides a remote data source to the  
###     Spark cluster. Once you have connected to Spark, you will be able to browse the tables contained  
###     in the Spark cluster and also, in the case of the package "sparklyr", preview Spark data frames  
###     using the RStudio data viewer. 
 
########################################################################################################### 
 
# 2. DATA LOADING 
 
### Notes: 
### N5. You can read and write data in CSV, JSON, and Parquet formats. Data can be stored in remote 
###     clusters or on the local cluster, and it returns a reference to a Spark data frame. 
 
# Load the data specifying the type of variables: numerical ("double") or categorical ("character") 
data <- spark_read_csv(sc=sc_sparklyr, 
                       name="data", 
                       path="Data Financed Defaults.csv", 
                       header=TRUE, 
                       delimiter=";", 
                       infer_schema=FALSE, 
                       columns=list(Contract_ID="character", 
                                    Defaulted="character", 
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                                    Application_Hour_Group="character", 
                                    Application_Week_Day="character", 
                                    Amount="double", 
                                    Maturity="double", 
                                    Purpose="character", 
                                    Province="character", 
                                    Postal_Code_ASNEF="double", 
                                    Age="double", 
                                    Gender="character", 
                                    Profession_Code="character", 
                                    Profession_Sector="character", 
                                    Contract_Type="character", 
                                    Seniority="double", 
                                    Housing_Type="character", 
                                    Housing_Seniority="double", 
                                    Marital_Status="character", 
                                    People_in_Household="character", 
                                    Income="double", 
                                    Additional_Income="double", 
                                    Partner_Income="double", 
                                    Rent="double", 
                                    Mortgage="double", 
                                    Amount_of_Ongoing_Credits="double", 
                                    Num_Ongoing_Credits="character")) 
 
# Number of customers and variables 
count(data)  ### 3468 customers 
ncol(data)   ### 26 variables (including the identifier of customers) 
 
########################################################################################################### 
 
# 3. ANALYSIS OF THE DATA VARIABLES BEFORE PRE-PROCESSING 
 
# Balanced or unbalanced dataset? 
count(filter(data,Defaulted==1))  ### 705 = 20.33% 
count(filter(data,Defaulted==0))  ### 2763 = 79.67%  
 
# Variables by type 
variables_type <- sdf_schema(data) 
variables_type <- data.frame(Variable=names(variables_type), 
                             Type=as.vector(unlist(sapply(names(variables_type), 
                                                          function(i){variables_type[[i]][2]})))) 
categorical <- variables_type[variables_type$Type=="StringType","Variable"] 
numerical <- variables_type[variables_type$Type=="DoubleType","Variable"] 
variables_type 
 
# Missing values by variables 
missings <- collect(data %>% mutate_all(is.na) %>% mutate_all(as.numeric) %>% summarize_all(sum)) 
missings <- data.frame(Variable=names(missings),Number_of_missings=as.vector(t(missings))) 
missings[missings$Number_of_missings>0,] 
 
# Categories with frequency distribution <5% in its variable 
for(i in categorical[-which(categorical=="Contract_ID")]){ 
  show(dbGetQuery(sc_sparklyr,paste0("SELECT ",i,",COUNT(*)/3468 AS Distribution FROM data GROUP BY ", 
                                     i," ORDER BY Distribution DESC"))) 
} 
 
########################################################################################################### 
 
# 4. DATA PRE-PROCESSING 
 
# Modify missing values found in the analysis: 
# - in numerical variables by 0 
# - in categorical variables by "Missing" 
data <- data %>% mutate( 
  Postal_Code_ASNEF=ifelse(is.na(Postal_Code_ASNEF),0,Postal_Code_ASNEF), 
  Additional_Income=ifelse(is.na(Additional_Income),0,Additional_Income), 
  Partner_Income=ifelse(is.na(Partner_Income),0,Partner_Income), 
  Rent=ifelse(is.na(Rent),0,Rent), 
  Mortgage=ifelse(is.na(Mortgage),0,Mortgage), 
  Profession_Code=ifelse(is.na(Profession_Code),"Missing",Profession_Code) 
  ) 
 
# Create the list with valid levels for categorical variables (excluding categories with <5%) 
valid_levels <- list( 
  Levels_Application_Hour_Group= 
    c("[23H, 7H)","[7H, 20H)","[20H, 23H)","OTHERS"), 
  Levels_Application_Week_Day= 
    c("1","2","3","4","5","6","7","OTHERS"), 
  Levels_Gender= 
    c("MALE","FEMALE","OTHERS"), 
  Levels_Profession_Sector= 
    c("PRIVATE_SECTOR","PUBLIC_SECTOR","OTHERS"), 
  Levels_Contract_Type= 
    c("PERMANENT","PENSION","OTHERS"), 
  Levels_People_in_Household= 
    c("0","1","2","OTHERS"), 
  Levels_Num_Ongoing_Credits= 
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    c("0","1","2","3","OTHERS"), 
  Levels_Marital_Status= 
    c("DIVORCED","SINGLE","COHABITING","MARRIED","OTHERS"), 
  Levels_Province= 
    c("Madrid","Barcelona","Asturias (Oviedo)","OTHERS"), 
  Levels_Profession_Code= 
    c("OPERATOR", "ADMINISTRATIVE","TECHNICIAN","MIDDLEGRADEMANAGER","RETIREMENT","OTHERS"), 
   
Levels_Purpose= 
    c("LIQUIDITY","HOMEIMPROVEMENT","DEBTS","FURNITURE_AND_APPLIANCES","USEDCAR","MEDICALCARE", 
      "VACATION","OTHERS"), 
  Levels_Housing_Type= 
    c("THIRD_PARTY_PROVIDED_LODGING","HOME_OWNERSHIP_WITHOUT_MORTGAGE","TENANT", 
      "HOME_OWNERSHIP_WITH_MORTGAGE","OTHERS") 
  ) 
 
# Change outliers categories by OTHERS 
data <- data %>% mutate( 
  Purpose= 
    ifelse(Purpose %in% valid_levels[["Levels_Purpose"]],Purpose,"OTHERS"), 
  Gender= 
    ifelse(Gender %in% valid_levels[["Levels_Gender"]],Gender,"OTHERS"), 
  Housing_Type= 
    ifelse(Housing_Type %in% valid_levels[["Levels_Housing_Type"]],Housing_Type,"OTHERS"), 
  Province= 
    ifelse(Province %in% valid_levels[["Levels_Province"]],Province,"OTHERS"), 
  Marital_Status= 
    ifelse(Marital_Status %in% valid_levels[["Levels_Marital_Status"]],Marital_Status,"OTHERS"), 
  Profession_Code= 
    ifelse(Profession_Code %in% valid_levels[["Levels_Profession_Code"]],Profession_Code,"OTHERS"), 
  Contract_Type= 
    ifelse(Contract_Type %in% valid_levels[["Levels_Contract_Type"]],Contract_Type,"OTHERS"), 
  Profession_Sector= 
    ifelse(Profession_Sector %in% valid_levels[["Levels_Profession_Sector"]],Profession_Sector, 
           "OTHERS"), 
  Application_Week_Day= 
    ifelse(Application_Week_Day %in% valid_levels[["Levels_Application_Week_Day"]], 
           Application_Week_Day,"OTHERS"), 
  People_in_Household= 
    ifelse(People_in_Household %in% valid_levels[["Levels_People_in_Household"]],People_in_Household, 
           "OTHERS"), 
  Num_Ongoing_Credits= 
    ifelse(Num_Ongoing_Credits %in% valid_levels[["Levels_Num_Ongoing_Credits"]],Num_Ongoing_Credits, 
           "OTHERS"), 
  Application_Hour_Group= 
    ifelse(Application_Hour_Group %in% valid_levels[["Levels_Application_Hour_Group"]], 
           Application_Hour_Group,"OTHERS") 
  ) 
 
### Notes: 
### N6. In the case that you need to convert all categorical variables to numerical with an integer 
###     index, the necessary Spark R code could be: 
 
## for(i in categorical[-which(categorical=="Contract_ID" | categorical=="Defaulted")]){ 
##   label_i  <- as.vector(valid_levels[[paste0("Levels_",i)]]) 
##   data <- data %>% ft_string_indexer_model(input_col=i,output_col=paste0(i,"_INDEXED"), 
##           labels=label_i) 
## } 
 
# Save the Spark data frame with the pre-processed data in the Spark cluster 
data <- copy_to(sc_sparklyr,data,overwrite=T) 
 
# Save the Spark data frame with the pre-processed data in a local file with format Parquet 
## spark_write_parquet(data,"data.parquet") 
 
########################################################################################################### 
 
# 5. PROTOCOL OF MODEL VALIDATION PHASE 1: Create training and test sets as well as training folds for CV 
 
# Read the Spark data frame with the pre-processed data in a local file with format Parquet 
## data <- spark_read_parquet(sc_sparklyr,"data","data.parquet") 
 
# Create training and test datasets (75%-25%) 
data_partitions <- data %>% compute("data_partitions") %>% sdf_partition(train=0.75,test=0.25,seed=1) 
 
# Create K folds or partitions from training data for cross-validation 
K <- 5 
weights <- rep(1/K,times = K) 
names(weights) <- paste0("Fold ",as.character(1:K)) 
train_partitions <- data_partitions$train %>% compute("train_partitions") %>%  
  sdf_partition(weights=weights,seed=1)  
 
# Check that all categories in the test set are included in the training set 
for(i in categorical[-which(categorical=="Contract_ID")]){ 
  cat("Does the variable ",i," have the same categories in training and test sets?","\n") 
  cat(sum(!unique(as.data.frame(collect(data_partitions$test))[,i]) %in%  
           unique(as.data.frame(collect(data_partitions$train))[,i]))==0,"\n") 
} 
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### Notes: 
### N7. The function "sdf_partition" returns a list with as much Spark datasets as you define. The  
###     fold weights are the probabilities of being in every fold for the observations, and they do not 
###     mean the fold size. 
 
########################################################################################################### 
 
# 6. PROTOCOL OF MODEL VALIDATION PHASE 2: Find the best parametrization of every model with training set 
 
# Create the vectors with the names of variables by types 
out <- c("Contract_ID","Postal_Code_ASNEF","Additional_Income","Partner_Income","Rent","Mortgage") 
response <- c("Defaulted") 
features_num <- c("Amount","Maturity","Postal_Code_ASNEF","Age","Seniority","Housing_Seniority", 
                  "Income","Additional_Income","Rent","Partner_Income","Mortgage", 
                  "Amount_of_Ongoing_Credits") 
features_cat <- c("Application_Hour_Group","Application_Week_Day","Purpose","Province","Gender", 
                  "Profession_Code","Profession_Sector","Contract_Type","Housing_Type", 
                  "Marital_Status","People_in_Household","Num_Ongoing_Credits") 
 
# 6.1 LOGISTIC REGRESSION   ############################################################################### 
 
# Starting time 
Sys.time() 
 
# Create the list of candidate parametrizations 
params <- list(features_num,features_cat,c(features_num,features_cat)) 
 
# Iterate all candidate parametrizations 
results_cv_LR <- data.frame() 
 
for(p in 1:length(params)){ 
 
  response_LR_global <- c() 
  pred_LR_global <- c() 
 
  # Iterate all training folds 
  for(i in 1:K){ 
   
    # Create the training and test sets for the ith fold 
    test_i <- train_partitions[[i]] 
    train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]], 
                     train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]]) 
     
    # Train the model without ith fold and the pth parametrization 
    model_LR_i <- ml_logistic_regression(train_i, 
                                         response=response, 
                                         features=params[[p]]) 
     
    # Predict ith fold with the pth parametrization 
    pred_LR_i <- sdf_predict(test_i,model_LR_i) 
        pred_LR_i <- data.frame(collect(pred_LR_i %>% select(probability_1)))[,"probability_1"] 
     
    # Calculate the OOB AUC for the ith fold with the pth parametrization 
    response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"] 
    results_cv_LR[p,i] <- auc(roc(response_i,pred_LR_i)) 
     
    # Save the ith fold response and predictions with the pth parametrization 
    response_LR_global <- c(response_LR_global,response_i) 
    pred_LR_global <- c(pred_LR_global,pred_LR_i) 
  } 
   
  # Calculate the rest of performance measures with the global training set predicted as OOB 
  quartile_cutoff <- quantile(pred_LR_global,seq(0.25,0.75,0.25)) 
  quartile <- ifelse(pred_LR_global<=quartile_cutoff[1],"Q1", 
                        ifelse(pred_LR_global<=quartile_cutoff[2],"Q2", 
                               ifelse(pred_LR_global<=quartile_cutoff[3],"Q3","Q4"))) 
  results_cv_LR[p,6] <- auc(roc(response_LR_global,pred_LR_global)) 
  results_cv_LR[p,7] <- mean(response_LR_global[quartile=="Q1"]==1) 
  results_cv_LR[p,8] <- mean(response_LR_global[quartile=="Q2"]==1) 
  results_cv_LR[p,9] <- mean(response_LR_global[quartile=="Q3"]==1) 
  results_cv_LR[p,10] <- mean(response_LR_global[quartile=="Q4"]==1) 
} 
 
# Print the results table 
row.names(results_cv_LR) <- c("Parametrization 1: numerical features", 
                              "Parametrization 2: categorical features", 
                              "Parametrization 3: all features") 
names(results_cv_LR) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5", 
                          "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4") 
save(results_cv_LR,file="results_cv_LR.RData") 
results_cv_LR 
 
# Finishing time 
Sys.time() 
 
# 6.2 DECISION TREE   ##################################################################################### 
 
# Starting time 
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Sys.time() 
 
# Create the list of candidate parametrizations 
max_bins <- c(10,20,30) 
max_depth <- c(5,10,15) 
min_instances_per_node <- c(5,9,13) 
params <- expand.grid(max_bins,max_depth,min_instances_per_node) 
params <- sapply(1:nrow(params),function(i){list(params[i,])}) 
 
# Iterate all candidate parametrizations 
results_cv_DT <- data.frame() 
 
for(p in 1:length(params)){ 
 
  response_DT_global <- c() 
  pred_DT_global <- c() 
   
  # Iterate all training folds 
  for(i in 1:K){ 
     
    # Create the training and test sets for the ith fold 
    test_i <- train_partitions[[i]] 
    train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]], 
                     train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]]) 
     
    # Train the model without ith fold and the pth parametrization 
    model_DT_i <- ml_decision_tree(train_i, 
                                   type="classification", 
                                   response=response, 
                                   features=c(features_num,features_cat), 
                                   max_bins=as.numeric(params[[p]][1]), 
                                   max_depth=as.numeric(params[[p]][2]), 
                                   min_instances_per_node=as.numeric(params[[p]][3]), 
                                   seed=1) 
     
    # Predict ith fold with the pth parametrization 
    pred_DT_i <- sdf_predict(test_i,model_DT_i) 
    pred_DT_i <- data.frame(collect(pred_DT_i %>% select(probability_1)))[,"probability_1"] 
     
    # Calculate the OOB AUC for the ith fold with the pth parametrization 
    response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"] 
    results_cv_DT[p,i] <- auc(roc(response_i,pred_DT_i)) 
     
    # Save the ith fold response and predictions with the pth parametrization 
    response_DT_global <- c(response_DT_global,response_i) 
    pred_DT_global <- c(pred_DT_global,pred_DT_i) 
  } 
   
  # Calculate the rest of performance measures with the global training set predicted as OOB 
  quartile_cutoff <- quantile(pred_DT_global,seq(0.25,0.75,0.25)) 
  quartile <- ifelse(pred_DT_global<=quartile_cutoff[1],"Q1", 
                     ifelse(pred_DT_global<=quartile_cutoff[2],"Q2", 
                            ifelse(pred_DT_global<=quartile_cutoff[3],"Q3","Q4"))) 
  results_cv_DT[p,6] <- auc(roc(response_DT_global,pred_DT_global)) 
  results_cv_DT[p,7] <- mean(response_DT_global[quartile=="Q1"]==1) 
  results_cv_DT[p,8] <- mean(response_DT_global[quartile=="Q2"]==1) 
  results_cv_DT[p,9] <- mean(response_DT_global[quartile=="Q3"]==1) 
  results_cv_DT[p,10] <- mean(response_DT_global[quartile=="Q4"]==1) 
} 
 
# Print the results table 
row.names(results_cv_DT) <- sapply(1:length(params),function(i){ 
  paste0("max_bins=",params[[i]][1],";max_depth=",params[[i]][2],";min_instances_node=", 
         params[[i]][3])}) 
names(results_cv_DT) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5", 
                          "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4") 
save(results_cv_DT,file="results_cv_DT.RData") 
results_cv_DT 
 
# Finishing time 
Sys.time() 
 
# 6.3 RANDOM FOREST   ##################################################################################### 
 
# Starting time 
Sys.time() 
 
# Create the list of candidate parametrizations 
max_bins <- c(10,20,30) 
max_depth <- c(5,10,15) 
num.trees <- c(15,30,45) 
min_instances_per_node <- c(5,9,13) 
params <- expand.grid(max_bins,max_depth,num.trees,min_instances_per_node) 
params <- sapply(1:nrow(params),function(i){list(params[i,])}) 
 
# Iterate all candidate parametrizations 
results_cv_RF <- data.frame() 
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for(p in 1:length(params)){ 
 
  response_RF_global <- c() 
  pred_RF_global <- c() 
   
  # Iterate all training folds 
  for(i in 1:K){ 
 
    # Create the training and test sets for the ith fold 
    test_i <- train_partitions[[i]] 
    train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]], 
                     train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]]) 
     
    # Train the model without ith fold and the pth parametrization 
    model_RF_i <- ml_random_forest(train_i, 
                                   type="classification", 
                                   response=response, 
                                   features=c(features_num,features_cat), 
                                   max_bins=as.numeric(params[[p]][1]), 
                                   max_depth=as.numeric(params[[p]][2]), 
                                   num_trees=as.numeric(params[[p]][3]), 
                                   min_instances_per_node=as.numeric(params[[p]][4]), 
                                   subsampling_rate=1, 
                                   seed=1) 
     
    # Predict ith fold with the pth parametrization 
    pred_RF_i <- sdf_predict(test_i,model_RF_i) 
    pred_RF_i <- data.frame(collect(pred_RF_i %>% select(probability_1)))[,"probability_1"] 
     
    # Calculate the OOB AUC for the ith fold with the pth parametrization 
    response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"] 
    results_cv_RF[p,i] <- auc(roc(response_i,pred_RF_i)) 
     
    # Save the ith fold response and predictions with the pth parametrization 
    response_RF_global <- c(response_RF_global,response_i) 
    pred_RF_global <- c(pred_RF_global,pred_RF_i) 
  } 
   
  # Calculate the rest of performance measures with the global training set predicted as OOB 
  quartile_cutoff <- quantile(pred_RF_global,seq(0.25,0.75,0.25)) 
  quartile <- ifelse(pred_RF_global<=quartile_cutoff[1],"Q1", 
                     ifelse(pred_RF_global<=quartile_cutoff[2],"Q2", 
                            ifelse(pred_RF_global<=quartile_cutoff[3],"Q3","Q4"))) 
  results_cv_RF[p,6] <- auc(roc(response_RF_global,pred_RF_global)) 
  results_cv_RF[p,7] <- mean(response_RF_global[quartile=="Q1"]==1) 
  results_cv_RF[p,8] <- mean(response_RF_global[quartile=="Q2"]==1) 
  results_cv_RF[p,9] <- mean(response_RF_global[quartile=="Q3"]==1) 
  results_cv_RF[p,10] <- mean(response_RF_global[quartile=="Q4"]==1) 
} 
 
# Print the results table  
row.names(results_cv_RF) <- sapply(1:length(params),function(i){ 
  paste0("max_bins=",params[[i]][1],";max_depth=",params[[i]][2],";num_trees=",params[[i]][3], 
         ";min_instances_node=",params[[i]][4])}) 
names(results_cv_RF) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5", 
                          "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4") 
save(results_cv_RF,file="results_cv_RF.RData") 
results_cv_RF 
 
# Finishing time 
Sys.time() 
 
# 6.4 GRADIENT BOOSTED TREES    ########################################################################### 
 
# Starting time 
Sys.time() 
 
# Create the list of candidate parametrizations 
max_depth <- c(5,10,15) 
max_iter <- c(15,30,45) 
step_size <- c(0.05,0.1,0.15) 
params <- expand.grid(max_depth,max_iter,step_size) 
params <- sapply(1:nrow(params),function(i){list(params[i,])}) 
 
# Iterate all candidate parametrizations 
results_cv_GBT <- data.frame() 
 
for(p in 1:length(params)){ 
 
  response_GBT_global <- c() 
  pred_GBT_global <- c() 
   
  # Iterate all training folds 
  for(i in 1:K){ 
     
    # Create the training and test sets for the ith fold 
    test_i <- train_partitions[[i]] 
    train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]], 
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                     train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]]) 
     
    # Create the training and test sets for the ith fold in package "SparkR" format 
    test_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(test_i))) 
    train_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(train_i))) 
     
    # Train the model without ith fold and the pth parametrization 
    formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+"))) 
    model_GBT_i <- spark.gbt(train_i_SparkR, 
                             formula=formula, 
                             type="classification", 
                             maxDepth=as.numeric(params[[p]][1]), 
                             maxIter=as.numeric(params[[p]][2]), 
                             stepSize=as.numeric(params[[p]][3]), 
                             subsamplingRate=1, 
                             seed=1) 
     
    # Predict ith fold with the pth parametrization 
    pred_GBT_i <- predict(model_GBT_i,test_i_SparkR) 
    pred_GBT_i <- unlist(lapply(as.data.frame(pred_GBT_i)[,"probability"], 
                                function(x)SparkR:::callJMethod(x,"toArray")[[2]])) 
     
    # Calculate the OOB AUC for the ith fold with the pth parametrization 
    response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"] 
    results_cv_GBT[p,i] <- auc(roc(response_i,pred_GBT_i)) 
     
    # Save the ith fold response and predictions with the pth parametrization 
    response_GBT_global <- c(response_GBT_global,response_i) 
    pred_GBT_global <- c(pred_GBT_global,pred_GBT_i) 
  } 
  
  # Calculate the rest of performance measures with the global training set predicted as OOB 
  quartile_cutoff <- quantile(pred_GBT_global,seq(0.25,0.75,0.25)) 
  quartile <- ifelse(pred_GBT_global<=quartile_cutoff[1],"Q1", 
                     ifelse(pred_GBT_global<=quartile_cutoff[2],"Q2", 
                            ifelse(pred_GBT_global<=quartile_cutoff[3],"Q3","Q4"))) 
  results_cv_GBT[p,6] <- auc(roc(response_GBT_global,pred_GBT_global)) 
  results_cv_GBT[p,7] <- mean(response_GBT_global[quartile=="Q1"]==1) 
  results_cv_GBT[p,8] <- mean(response_GBT_global[quartile=="Q2"]==1) 
  results_cv_GBT[p,9] <- mean(response_GBT_global[quartile=="Q3"]==1) 
  results_cv_GBT[p,10] <- mean(response_GBT_global[quartile=="Q4"]==1) 
} 
 
# Print the results table 
row.names(results_cv_GBT) <- sapply(1:length(params),function(i){ 
  paste0("max_depth=",params[[i]][1],";max_iter=",params[[i]][2], 
         ";step_size=",params[[i]][3])}) 
names(results_cv_GBT) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5", 
                          "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4") 
save(results_cv_GBT,file="results_cv_GBT.RData") 
results_cv_GBT 
 
# Finishing time 
Sys.time() 
 
# 6.5 NAIVE BAYES   ####################################################################################### 
 
# Starting time 
Sys.time() 
 
# Create the list of candidate parametrizations 
params <- list(features_num,features_cat,c(features_num,features_cat)) 
 
# Iterate all candidate parametrizations 
results_cv_NB <- data.frame() 
 
for(p in 1:length(params)){ 
 
  response_NB_global <- c() 
  pred_NB_global <- c() 
   
  # Iterate all training folds 
  for(i in 1:K){ 
     
    # Create the training and test sets for the ith fold 
    test_i <- train_partitions[[i]] 
    train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]], 
                     train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]]) 
     
    # Train the model without ith fold and the pth parametrization 
    model_NB_i <- ml_naive_bayes(train_i, 
                                 response=response, 
                                 features=params[[p]]) 
     
    # Predict ith fold with the pth parametrization 
    pred_NB_i <- sdf_predict(test_i,model_NB_i) 
    pred_NB_i <- data.frame(collect(pred_NB_i %>% select(probability_1)))[,"probability_1"] 
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    # Calculate the OOB AUC for the ith fold with the pth parametrization 
    response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"] 
    results_cv_NB[p,i] <- auc(roc(response_i,pred_NB_i)) 
     
    # Save the ith fold response and predictions with the pth parametrization 
    response_NB_global <- c(response_NB_global,response_i) 
    pred_NB_global <- c(pred_NB_global,pred_NB_i) 
  } 
  # Calculate the rest of performance measures with the global training set predicted as OOB 
  quartile_cutoff <- quantile(pred_NB_global,seq(0.25,0.75,0.25)) 
  quartile <- ifelse(pred_NB_global<=quartile_cutoff[1],"Q1", 
                     ifelse(pred_NB_global<=quartile_cutoff[2],"Q2", 
                            ifelse(pred_NB_global<=quartile_cutoff[3],"Q3","Q4"))) 
  results_cv_NB[p,6] <- auc(roc(response_NB_global,pred_NB_global)) 
  results_cv_NB[p,7] <- mean(response_NB_global[quartile=="Q1"]==1) 
  results_cv_NB[p,8] <- mean(response_NB_global[quartile=="Q2"]==1) 
  results_cv_NB[p,9] <- mean(response_NB_global[quartile=="Q3"]==1) 
  results_cv_NB[p,10] <- mean(response_NB_global[quartile=="Q4"]==1) 
} 
 
# Print the results table 
row.names(results_cv_NB) <- c("Parametrization 1: numerical features", 
                              "Parametrization 2: categorical features", 
                              "Parametrization 3: all features") 
names(results_cv_NB) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5", 
                          "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4") 
save(results_cv_NB,file="results_cv_NB.RData") 
results_cv_NB 
 
# Finishing time 
Sys.time() 
 
# 6.6 NEURAL NETWORK    ################################################################################### 
 
# Starting time 
Sys.time() 
 
# Create the list of candidate parametrizations 
layer_hidden_1 <- c(6,8,10,12) 
layer_hidden_2 <- c(4,6,8,10) 
params <- expand.grid(layer_hidden_1,layer_hidden_2) 
params <- sapply(1:nrow(params),function(i){list(params[i,])}) 
 
# Iterate all candidate parametrizations 
results_cv_NN <- data.frame() 
 
for(p in 1:length(params)){ 
 
  response_NN_global <- c() 
  pred_NN_global <- c() 
   
  # Iterate all training folds 
  for(i in 1:K){ 
     
    # Create the training and test sets for the ith fold 
    test_i <- train_partitions[[i]] 
    train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]], 
                     train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]]) 
     
    # Create the training and test sets for the ith fold in package "SparkR" format 
    test_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(test_i))) 
    train_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(train_i))) 
     
    # Establish the number of neurons: 
    layer_output <- 2 
    layer_hidden_1 <- as.numeric(params[[p]][1]) 
    layer_hidden_2 <- as.numeric(params[[p]][2]) 
    layer_input <- sum(sapply(as.data.frame(train_i_SparkR[,features_cat]), 
                              function(x)length(unique(x))-1),length(features_num)) 
     
    # Train the model without ith fold and the pth parametrization 
    formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+"))) 
    model_NN_i <- spark.mlp(train_i_SparkR, 
                            formula=formula, 
                            layers=c(layer_input,layer_hidden_1,layer_hidden_2,layer_output), 
                            seed=1) 
     
    # Predict ith fold with the pth parametrization 
    pred_NN_i <- predict(model_NN_i,test_i_SparkR) 
    pred_NN_i <- unlist(lapply(as.data.frame(pred_NN_i)[,"probability"], 
                               function(x)SparkR:::callJMethod(x,"toArray")[[2]])) 
    
    # Calculate the OOB AUC for the ith fold with the pth parametrization 
    response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"] 
    results_cv_NN[p,i] <- auc(roc(response_i,pred_NN_i)) 
     
    # Save the ith fold response and predictions with the pth parametrization 
    response_NN_global <- c(response_NN_global,response_i) 
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    pred_NN_global <- c(pred_NN_global,pred_NN_i) 
  } 
   
  # Calculate the rest of performance measures with the global training set predicted as OOB 
  quartile_cutoff <- quantile(pred_NN_global,seq(0.25,0.75,0.25)) 
  quartile <- ifelse(pred_NN_global<=quartile_cutoff[1],"Q1", 
                     ifelse(pred_NN_global<=quartile_cutoff[2],"Q2", 
                            ifelse(pred_NN_global<=quartile_cutoff[3],"Q3","Q4"))) 
  results_cv_NN[p,6] <- auc(roc(response_NN_global,pred_NN_global)) 
  results_cv_NN[p,7] <- mean(response_NN_global[quartile=="Q1"]==1) 
  results_cv_NN[p,8] <- mean(response_NN_global[quartile=="Q2"]==1) 
  results_cv_NN[p,9] <- mean(response_NN_global[quartile=="Q3"]==1) 
  results_cv_NN[p,10] <- mean(response_NN_global[quartile=="Q4"]==1) 
} 
 
# Print the results table 
row.names(results_cv_NN) <- sapply(1:length(params),function(i){ 
  paste0("hidden_layer_1=",params[[i]][1],";hidden_layer_2=",params[[i]][2])}) 
names(results_cv_NN) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5", 
                          "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4") 
save(results_cv_NN,file="results_cv_NN.RData") 
results_cv_NN 
 
# Finishing time 
Sys.time() 
 
### Notes: 
### N8. In the Multilayer Perceptron Neural Network, the number of neurons by layers are: 
###     - output layer: the # of classes in the response. 
###     - hidden layers: tunning parameters. 
###     - input layer: as much nodes as input variables. It means the # of numerical variables, plus 
###       the # of unique categories in all categorical variables, less the # of categorical features  
###       (because the model creates, for every categorical feature, dummies for every category except  
###       one for avoiding linear dependence). 
 
########################################################################################################### 
 
# 7. PROTOCOL OF MODEL VALIDATION PHASE 3: Train models with optimal parametrizations 
 
# Create target variable of training and test sets 
response_train <- data.frame(collect(data_partitions$train %>% select(Defaulted)))[,"Defaulted"] 
response_test <- data.frame(collect(data_partitions$test %>% select(Defaulted)))[,"Defaulted"] 
 
# Create the training and test sets in "SparkR" package format 
train_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(data_partitions$train))) 
test_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(data_partitions$test))) 
 
# Create the results table, one for training and one for test 
metrics_names <- c("Sensitivity + Specificity","Accuracy","AUC","% True + Q1","% True + Q2", 
                   "% True + Q3","% True + Q4") 
row.names <- c(paste0("Criteria: ",metrics_names),paste0("Cut-off: ",metrics_names[-3])) 
results_optimals_train <- data.frame(row.names=row.names) 
results_optimals_test <- data.frame(row.names=row.names) 
 
# 7.1 LOGISTIC REGRESSION     ############################################################################# 
 
# Train the optimal model with all training set 
model_LR <- ml_logistic_regression(data_partitions$train, 
                                   response=response, 
                                   features=c(features_num,features_cat)) 
 
# Summary of the model 
summary(model_LR) 
 
# Predict training data 
pred_LR_train <- sdf_predict(data_partitions$train,model_LR) 
pred_LR_train <- data.frame(collect(pred_LR_train %>% select(probability_1)))[,"probability_1"] 
 
# Predict test data 
pred_LR_test <- sdf_predict(data_partitions$test,model_LR) 
pred_LR_test <- data.frame(collect(pred_LR_test %>% select(probability_1)))[,"probability_1"] 
 
# Iterate all possible cut-offs and calculate performance measures in training set 
m1_LR_train <- c() 
m2_LR_train <- c() 
lowest <- trunc(min(pred_LR_train)*100)/100+0.01 
highest <- trunc(max(pred_LR_train)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_LR_train_c <- table(Real=response_train,Predicted=ifelse(pred_LR_train>=c,"1","0")) 
  m1_LR_train <- c(m1_LR_train,table_LR_train_c[2,2]/sum(table_LR_train_c[2,]) + 
                               table_LR_train_c[1,1]/sum(table_LR_train_c[1,])) 
  m2_LR_train <- c(m2_LR_train,sum(diag(table_LR_train_c))/sum(table_LR_train_c)) 
} 
 
cutoffs_LR_train <- quantile(pred_LR_train,seq(0.25,1,0.25)) 
quartiles_LR_train <- ifelse(pred_LR_train<=cutoffs_LR_train[1],"Q1", 
                             ifelse(pred_LR_train<=cutoffs_LR_train[2],"Q2", 
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                                    ifelse(pred_LR_train<=cutoffs_LR_train[3],"Q3","Q4"))) 
 
results_optimals_train[1,"LR"] <- max(m1_LR_train) 
results_optimals_train[2,"LR"] <- max(m2_LR_train) 
results_optimals_train[3,"LR"] <- auc(roc(response_train,pred_LR_train)) 
results_optimals_train[4,"LR"] <- mean(response_train[quartiles_LR_train=="Q1"]==1) 
results_optimals_train[5,"LR"] <- mean(response_train[quartiles_LR_train=="Q2"]==1) 
results_optimals_train[6,"LR"] <- mean(response_train[quartiles_LR_train=="Q3"]==1) 
results_optimals_train[7,"LR"] <- mean(response_train[quartiles_LR_train=="Q4"]==1) 
results_optimals_train[8,"LR"] <- seq(lowest,highest,0.01)[which(m1_LR_train==max(m1_LR_train))[1]] 
results_optimals_train[9,"LR"] <- seq(lowest,highest,0.01)[which(m2_LR_train==max(m2_LR_train))[1]] 
results_optimals_train[10,"LR"] <- cutoffs_LR_train[1] 
results_optimals_train[11,"LR"] <- cutoffs_LR_train[2] 
results_optimals_train[12,"LR"] <- cutoffs_LR_train[3] 
results_optimals_train[13,"LR"] <- cutoffs_LR_train[4] 
 
# Iterate all possible cut-offs and calculate performance measures in test set 
m1_LR_test <- c() 
m2_LR_test <- c() 
lowest <- trunc(min(pred_LR_test)*100)/100+0.01 
highest <- trunc(max(pred_LR_test)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_LR_test_c <- table(Real=response_test,Predicted=ifelse(pred_LR_test>=c,"1","0")) 
 
  m1_LR_test <- c(m1_LR_test,table_LR_test_c[2,2]/sum(table_LR_test_c[2,]) + 
                     table_LR_test_c[1,1]/sum(table_LR_test_c[1,])) 
  m2_LR_test <- c(m2_LR_test,sum(diag(table_LR_test_c))/sum(table_LR_test_c)) 
} 
 
cutoffs_LR_test <- quantile(pred_LR_test,seq(0.25,1,0.25)) 
quartiles_LR_test <- ifelse(pred_LR_test<=cutoffs_LR_test[1],"Q1", 
                             ifelse(pred_LR_test<=cutoffs_LR_test[2],"Q2", 
                                    ifelse(pred_LR_test<=cutoffs_LR_test[3],"Q3","Q4"))) 
 
results_optimals_test[1,"LR"] <- max(m1_LR_test) 
results_optimals_test[2,"LR"] <- max(m2_LR_test) 
results_optimals_test[3,"LR"] <- auc(roc(response_test,pred_LR_test)) 
results_optimals_test[4,"LR"] <- mean(response_test[quartiles_LR_test=="Q1"]==1) 
results_optimals_test[5,"LR"] <- mean(response_test[quartiles_LR_test=="Q2"]==1) 
results_optimals_test[6,"LR"] <- mean(response_test[quartiles_LR_test=="Q3"]==1) 
results_optimals_test[7,"LR"] <- mean(response_test[quartiles_LR_test=="Q4"]==1) 
results_optimals_test[8,"LR"] <- seq(lowest,highest,0.01)[which(m1_LR_test==max(m1_LR_test))[1]] 
results_optimals_test[9,"LR"] <- seq(lowest,highest,0.01)[which(m2_LR_test==max(m2_LR_test))[1]] 
results_optimals_test[10,"LR"] <- cutoffs_LR_test[1] 
results_optimals_test[11,"LR"] <- cutoffs_LR_test[2] 
results_optimals_test[12,"LR"] <- cutoffs_LR_test[3] 
results_optimals_test[13,"LR"] <- cutoffs_LR_test[4] 
 
# 7.2 DECISION TREE     ################################################################################### 
 
# Train the optimal model with all training set 
model_DT <- ml_decision_tree(data_partitions$train, 
                             type="classification", 
                             response=response, 
                             features=c(features_num,features_cat), 
                             max_bins=30, 
                             max_depth=5, 
                             min_instances_per_node=5, 
                             seed=1) 
 
# Features importance 
ml_feature_importances(model_DT) 
 
# Predict training data 
pred_DT_train <- sdf_predict(data_partitions$train,model_DT) 
pred_DT_train <- data.frame(collect(pred_DT_train %>% select(probability_1)))[,"probability_1"] 
 
# Predict test data 
pred_DT_test <- sdf_predict(data_partitions$test,model_DT) 
pred_DT_test <- data.frame(collect(pred_DT_test %>% select(probability_1)))[,"probability_1"] 
 
# Iterate all possible cut-offs and calculate performance measures in training set 
m1_DT_train <- c() 
m2_DT_train <- c() 
lowest <- trunc(min(pred_DT_train)*100)/100+0.01 
highest <- trunc(max(pred_DT_train)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_DT_train_c <- table(Real=response_train,Predicted=ifelse(pred_DT_train>=c,"1","0")) 
  m1_DT_train <- c(m1_DT_train,table_DT_train_c[2,2]/sum(table_DT_train_c[2,]) + 
                     table_DT_train_c[1,1]/sum(table_DT_train_c[1,])) 
  m2_DT_train <- c(m2_DT_train,sum(diag(table_DT_train_c))/sum(table_DT_train_c)) 
} 
 
cutoffs_DT_train <- quantile(pred_DT_train,seq(0.25,1,0.25)) 
quartiles_DT_train <- ifelse(pred_DT_train<=cutoffs_DT_train[1],"Q1", 
                             ifelse(pred_DT_train<=cutoffs_DT_train[2],"Q2", 
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                                    ifelse(pred_DT_train<=cutoffs_DT_train[3],"Q3","Q4"))) 
 
results_optimals_train[1,"DT"] <- max(m1_DT_train) 
results_optimals_train[2,"DT"] <- max(m2_DT_train) 
results_optimals_train[3,"DT"] <- auc(roc(response_train,pred_DT_train)) 
results_optimals_train[4,"DT"] <- mean(response_train[quartiles_DT_train=="Q1"]==1) 
results_optimals_train[5,"DT"] <- mean(response_train[quartiles_DT_train=="Q2"]==1) 
results_optimals_train[6,"DT"] <- mean(response_train[quartiles_DT_train=="Q3"]==1) 
results_optimals_train[7,"DT"] <- mean(response_train[quartiles_DT_train=="Q4"]==1) 
results_optimals_train[8,"DT"] <- seq(lowest,highest,0.01)[which(m1_DT_train==max(m1_DT_train))[1]] 
results_optimals_train[9,"DT"] <- seq(lowest,highest,0.01)[which(m2_DT_train==max(m2_DT_train))[1]] 
results_optimals_train[10,"DT"] <- cutoffs_DT_train[1] 
results_optimals_train[11,"DT"] <- cutoffs_DT_train[2] 
results_optimals_train[12,"DT"] <- cutoffs_DT_train[3] 
results_optimals_train[13,"DT"] <- cutoffs_DT_train[4] 
 
# Iterate all possible cut-offs and calculate performance measures in test set 
m1_DT_test <- c() 
m2_DT_test <- c() 
lowest <- trunc(min(pred_DT_test)*100)/100+0.01 
highest <- trunc(max(pred_DT_test)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_DT_test_c <- table(Real=response_test,Predicted=ifelse(pred_DT_test>=c,"1","0")) 
  m1_DT_test <- c(m1_DT_test,table_DT_test_c[2,2]/sum(table_DT_test_c[2,]) + 
                    table_DT_test_c[1,1]/sum(table_DT_test_c[1,])) 
  m2_DT_test <- c(m2_DT_test,sum(diag(table_DT_test_c))/sum(table_DT_test_c)) 
} 
 
cutoffs_DT_test <- quantile(pred_DT_test,seq(0.25,1,0.25)) 
quartiles_DT_test <- ifelse(pred_DT_test<=cutoffs_DT_test[1],"Q1", 
                            ifelse(pred_DT_test<=cutoffs_DT_test[2],"Q2", 
                                   ifelse(pred_DT_test<=cutoffs_DT_test[3],"Q3","Q4"))) 
 
results_optimals_test[1,"DT"] <- max(m1_DT_test) 
results_optimals_test[2,"DT"] <- max(m2_DT_test) 
results_optimals_test[3,"DT"] <- auc(roc(response_test,pred_DT_test)) 
results_optimals_test[4,"DT"] <- mean(response_test[quartiles_DT_test=="Q1"]==1) 
results_optimals_test[5,"DT"] <- mean(response_test[quartiles_DT_test=="Q2"]==1) 
results_optimals_test[6,"DT"] <- mean(response_test[quartiles_DT_test=="Q3"]==1) 
results_optimals_test[7,"DT"] <- mean(response_test[quartiles_DT_test=="Q4"]==1) 
results_optimals_test[8,"DT"] <- seq(lowest,highest,0.01)[which(m1_DT_test==max(m1_DT_test))[1]] 
results_optimals_test[9,"DT"] <- seq(lowest,highest,0.01)[which(m2_DT_test==max(m2_DT_test))[1]] 
results_optimals_test[10,"DT"] <- cutoffs_DT_test[1] 
results_optimals_test[11,"DT"] <- cutoffs_DT_test[2] 
results_optimals_test[12,"DT"] <- cutoffs_DT_test[3] 
results_optimals_test[13,"DT"] <- cutoffs_DT_test[4] 
 
# 7.3 RANDOM FOREST     ################################################################################### 
 
# Train the optimal model with all training set 
model_RF <- ml_random_forest(data_partitions$train, 
                             type="classification", 
                             response=response, 
                             features=c(features_num,features_cat), 
                             max_bins=30, 
                             max_depth=5, 
                             num_trees=30, 
                             min_instances_per_node=9, 
                             subsampling_rate=1, 
                             seed=1) 
 
# Features importance 
ml_feature_importances(model_RF) 
 
# Predict training data 
pred_RF_train <- sdf_predict(data_partitions$train,model_RF) 
pred_RF_train <- data.frame(collect(pred_RF_train %>% select(probability_1)))[,"probability_1"] 
 
# Predict test data 
pred_RF_test <- sdf_predict(data_partitions$test,model_RF) 
pred_RF_test <- data.frame(collect(pred_RF_test %>% select(probability_1)))[,"probability_1"] 
 
# Iterate all possible cut-offs and calculate performance measures in training set 
m1_RF_train <- c() 
m2_RF_train <- c() 
lowest <- trunc(min(pred_RF_train)*100)/100+0.01 
highest <- trunc(max(pred_RF_train)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_RF_train_c <- table(Real=response_train,Predicted=ifelse(pred_RF_train>=c,"1","0")) 
  m1_RF_train <- c(m1_RF_train,table_RF_train_c[2,2]/sum(table_RF_train_c[2,]) + 
                     table_RF_train_c[1,1]/sum(table_RF_train_c[1,])) 
  m2_RF_train <- c(m2_RF_train,sum(diag(table_RF_train_c))/sum(table_RF_train_c)) 
} 
 
cutoffs_RF_train <- quantile(pred_RF_train,seq(0.25,1,0.25)) 
quartiles_RF_train <- ifelse(pred_RF_train<=cutoffs_RF_train[1],"Q1", 
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                             ifelse(pred_RF_train<=cutoffs_RF_train[2],"Q2", 
                                    ifelse(pred_RF_train<=cutoffs_RF_train[3],"Q3","Q4"))) 
 
results_optimals_train[1,"RF"] <- max(m1_RF_train) 
results_optimals_train[2,"RF"] <- max(m2_RF_train) 
results_optimals_train[3,"RF"] <- auc(roc(response_train,pred_RF_train)) 
results_optimals_train[4,"RF"] <- mean(response_train[quartiles_RF_train=="Q1"]==1) 
results_optimals_train[5,"RF"] <- mean(response_train[quartiles_RF_train=="Q2"]==1) 
results_optimals_train[6,"RF"] <- mean(response_train[quartiles_RF_train=="Q3"]==1) 
results_optimals_train[7,"RF"] <- mean(response_train[quartiles_RF_train=="Q4"]==1) 
results_optimals_train[8,"RF"] <- seq(lowest,highest,0.01)[which(m1_RF_train==max(m1_RF_train))[1]] 
results_optimals_train[9,"RF"] <- seq(lowest,highest,0.01)[which(m2_RF_train==max(m2_RF_train))[1]] 
results_optimals_train[10,"RF"] <- cutoffs_RF_train[1] 
results_optimals_train[11,"RF"] <- cutoffs_RF_train[2] 
results_optimals_train[12,"RF"] <- cutoffs_RF_train[3] 
results_optimals_train[13,"RF"] <- cutoffs_RF_train[4] 
 
# Iterate all possible cut-offs and calculate performance measures in test set 
m1_RF_test <- c() 
m2_RF_test <- c() 
lowest <- trunc(min(pred_RF_test)*100)/100+0.01 
highest <- trunc(max(pred_RF_test)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_RF_test_c <- table(Real=response_test,Predicted=ifelse(pred_RF_test>=c,"1","0")) 
  m1_RF_test <- c(m1_RF_test,table_RF_test_c[2,2]/sum(table_RF_test_c[2,]) + 
                    table_RF_test_c[1,1]/sum(table_RF_test_c[1,])) 
  m2_RF_test <- c(m2_RF_test,sum(diag(table_RF_test_c))/sum(table_RF_test_c)) 
} 
 
cutoffs_RF_test <- quantile(pred_RF_test,seq(0.25,1,0.25)) 
quartiles_RF_test <- ifelse(pred_RF_test<=cutoffs_RF_test[1],"Q1", 
                            ifelse(pred_RF_test<=cutoffs_RF_test[2],"Q2", 
                                   ifelse(pred_RF_test<=cutoffs_RF_test[3],"Q3","Q4"))) 
 
results_optimals_test[1,"RF"] <- max(m1_RF_test) 
results_optimals_test[2,"RF"] <- max(m2_RF_test) 
results_optimals_test[3,"RF"] <- auc(roc(response_test,pred_RF_test)) 
results_optimals_test[4,"RF"] <- mean(response_test[quartiles_RF_test=="Q1"]==1) 
results_optimals_test[5,"RF"] <- mean(response_test[quartiles_RF_test=="Q2"]==1) 
results_optimals_test[6,"RF"] <- mean(response_test[quartiles_RF_test=="Q3"]==1) 
results_optimals_test[7,"RF"] <- mean(response_test[quartiles_RF_test=="Q4"]==1) 
results_optimals_test[8,"RF"] <- seq(lowest,highest,0.01)[which(m1_RF_test==max(m1_RF_test))[1]] 
results_optimals_test[9,"RF"] <- seq(lowest,highest,0.01)[which(m2_RF_test==max(m2_RF_test))[1]] 
results_optimals_test[10,"RF"] <- cutoffs_RF_test[1] 
results_optimals_test[11,"RF"] <- cutoffs_RF_test[2] 
results_optimals_test[12,"RF"] <- cutoffs_RF_test[3] 
results_optimals_test[13,"RF"] <- cutoffs_RF_test[4] 
 
# 7.4  GRADIENT BOOSTED TREES     ######################################################################### 
 
# Train the optimal model with all training set 
formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+"))) 
model_GBT <- spark.gbt(data=train_SparkR, 
                       formula=formula, 
                       type="classification", 
                       maxDepth=10, 
                       maxIter=15, 
                       stepSize=0.1, 
                       minInstancesPerNode=1, 
                       seed=1) 
 
# Predict training data 
pred_GBT_train <- predict(model_GBT,train_SparkR) 
pred_GBT_train <- unlist(lapply(as.data.frame(pred_GBT_train)[,"probability"], 
                                function(x)SparkR:::callJMethod(x,"toArray")[[2]])) 
 
# Predict test data 
pred_GBT_test <- predict(model_GBT,test_SparkR) 
pred_GBT_test <- unlist(lapply(as.data.frame(pred_GBT_test)[,"probability"], 
                               function(x)SparkR:::callJMethod(x,"toArray")[[2]])) 
 
# Iterate all possible cut-offs and calculate performance measures in training set 
m1_GBT_train <- c() 
m2_GBT_train <- c() 
lowest <- trunc(min(pred_GBT_train)*100)/100+0.01 
highest <- trunc(max(pred_GBT_train)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_GBT_train_c <- table(Real=response_train,Predicted=ifelse(pred_GBT_train>=c,"1","0")) 
  m1_GBT_train <- c(m1_GBT_train,table_GBT_train_c[2,2]/sum(table_GBT_train_c[2,]) + 
                     table_GBT_train_c[1,1]/sum(table_GBT_train_c[1,])) 
  m2_GBT_train <- c(m2_GBT_train,sum(diag(table_GBT_train_c))/sum(table_GBT_train_c)) 
} 
 
cutoffs_GBT_train <- quantile(pred_GBT_train,seq(0.25,1,0.25)) 
quartiles_GBT_train <- ifelse(pred_GBT_train<=cutoffs_GBT_train[1],"Q1", 
                             ifelse(pred_GBT_train<=cutoffs_GBT_train[2],"Q2", 
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                                    ifelse(pred_GBT_train<=cutoffs_GBT_train[3],"Q3","Q4"))) 
 
results_optimals_train[1,"GBT"] <- max(m1_GBT_train) 
results_optimals_train[2,"GBT"] <- max(m2_GBT_train) 
results_optimals_train[3,"GBT"] <- auc(roc(response_train,pred_GBT_train)) 
results_optimals_train[4,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q1"]==1) 
results_optimals_train[5,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q2"]==1) 
results_optimals_train[6,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q3"]==1) 
results_optimals_train[7,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q4"]==1) 
results_optimals_train[8,"GBT"] <- seq(lowest,highest,0.01)[which(m1_GBT_train==max(m1_GBT_train))[1]] 
results_optimals_train[9,"GBT"] <- seq(lowest,highest,0.01)[which(m2_GBT_train==max(m2_GBT_train))[1]] 
results_optimals_train[10,"GBT"] <- cutoffs_GBT_train[1] 
results_optimals_train[11,"GBT"] <- cutoffs_GBT_train[2] 
results_optimals_train[12,"GBT"] <- cutoffs_GBT_train[3] 
results_optimals_train[13,"GBT"] <- cutoffs_GBT_train[4] 
 
# Iterate all possible cut-offs and calculate performance measures in test set 
m1_GBT_test <- c() 
m2_GBT_test <- c() 
lowest <- trunc(min(pred_GBT_test)*100)/100+0.01 
highest <- trunc(max(pred_GBT_test)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_GBT_test_c <- table(Real=response_test,Predicted=ifelse(pred_GBT_test>=c,"1","0")) 
  m1_GBT_test <- c(m1_GBT_test,table_GBT_test_c[2,2]/sum(table_GBT_test_c[2,]) + 
                    table_GBT_test_c[1,1]/sum(table_GBT_test_c[1,])) 
  m2_GBT_test <- c(m2_GBT_test,sum(diag(table_GBT_test_c))/sum(table_GBT_test_c)) 
} 
 
cutoffs_GBT_test <- quantile(pred_GBT_test,seq(0.25,1,0.25)) 
quartiles_GBT_test <- ifelse(pred_GBT_test<=cutoffs_GBT_test[1],"Q1", 
                            ifelse(pred_GBT_test<=cutoffs_GBT_test[2],"Q2", 
                                   ifelse(pred_GBT_test<=cutoffs_GBT_test[3],"Q3","Q4"))) 
 
results_optimals_test[1,"GBT"] <- max(m1_GBT_test) 
results_optimals_test[2,"GBT"] <- max(m2_GBT_test) 
results_optimals_test[3,"GBT"] <- auc(roc(response_test,pred_GBT_test)) 
results_optimals_test[4,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q1"]==1) 
results_optimals_test[5,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q2"]==1) 
results_optimals_test[6,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q3"]==1) 
results_optimals_test[7,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q4"]==1) 
results_optimals_test[8,"GBT"] <- seq(lowest,highest,0.01)[which(m1_GBT_test==max(m1_GBT_test))[1]] 
results_optimals_test[9,"GBT"] <- seq(lowest,highest,0.01)[which(m2_GBT_test==max(m2_GBT_test))[1]] 
results_optimals_test[10,"GBT"] <- cutoffs_GBT_test[1] 
results_optimals_test[11,"GBT"] <- cutoffs_GBT_test[2] 
results_optimals_test[12,"GBT"] <- cutoffs_GBT_test[3] 
results_optimals_test[13,"GBT"] <- cutoffs_GBT_test[4] 
 
# 7.5 NAIVE BAYES     ##################################################################################### 
 
# Train the optimal model with all training set 
model_NB <- ml_naive_bayes(data_partitions$train, 
                           response=response, 
                           features=features_cat) 
 
# Predict training data 
pred_NB_train <- sdf_predict(data_partitions$train,model_NB) 
pred_NB_train <- data.frame(collect(pred_NB_train %>% select(probability_1)))[,"probability_1"] 
 
# Predict test data 
pred_NB_test <- sdf_predict(data_partitions$test,model_NB) 
pred_NB_test <- data.frame(collect(pred_NB_test %>% select(probability_1)))[,"probability_1"] 
 
# Iterate all possible cut-offs and calculate performance measures in training set 
m1_NB_train <- c() 
m2_NB_train <- c() 
lowest <- trunc(min(pred_NB_train)*100)/100+0.01 
highest <- trunc(max(pred_NB_train)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_NB_train_c <- table(Real=response_train,Predicted=ifelse(pred_NB_train>=c,"1","0")) 
  m1_NB_train <- c(m1_NB_train,table_NB_train_c[2,2]/sum(table_NB_train_c[2,]) + 
                     table_NB_train_c[1,1]/sum(table_NB_train_c[1,])) 
  m2_NB_train <- c(m2_NB_train,sum(diag(table_NB_train_c))/sum(table_NB_train_c)) 
} 
 
cutoffs_NB_train <- quantile(pred_NB_train,seq(0.25,1,0.25)) 
quartiles_NB_train <- ifelse(pred_NB_train<=cutoffs_NB_train[1],"Q1", 
                             ifelse(pred_NB_train<=cutoffs_NB_train[2],"Q2", 
                                    ifelse(pred_NB_train<=cutoffs_NB_train[3],"Q3","Q4"))) 
 
results_optimals_train[1,"NB"] <- max(m1_NB_train) 
results_optimals_train[2,"NB"] <- max(m2_NB_train) 
results_optimals_train[3,"NB"] <- auc(roc(response_train,pred_NB_train)) 
results_optimals_train[4,"NB"] <- mean(response_train[quartiles_NB_train=="Q1"]==1) 
results_optimals_train[5,"NB"] <- mean(response_train[quartiles_NB_train=="Q2"]==1) 
results_optimals_train[6,"NB"] <- mean(response_train[quartiles_NB_train=="Q3"]==1) 
results_optimals_train[7,"NB"] <- mean(response_train[quartiles_NB_train=="Q4"]==1) 
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results_optimals_train[8,"NB"] <- seq(lowest,highest,0.01)[which(m1_NB_train==max(m1_NB_train))[1]] 
results_optimals_train[9,"NB"] <- seq(lowest,highest,0.01)[which(m2_NB_train==max(m2_NB_train))[1]] 
results_optimals_train[10,"NB"] <- cutoffs_NB_train[1] 
results_optimals_train[11,"NB"] <- cutoffs_NB_train[2] 
results_optimals_train[12,"NB"] <- cutoffs_NB_train[3] 
results_optimals_train[13,"NB"] <- cutoffs_NB_train[4] 
 
# Iterate all possible cut-offs and calculate performance measures in test set 
m1_NB_test <- c() 
m2_NB_test <- c() 
lowest <- trunc(min(pred_NB_test)*100)/100+0.01 
highest <- trunc(max(pred_NB_test)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_NB_test_c <- table(Real=response_test,Predicted=ifelse(pred_NB_test>=c,"1","0")) 
  m1_NB_test <- c(m1_NB_test,table_NB_test_c[2,2]/sum(table_NB_test_c[2,]) + 
                    table_NB_test_c[1,1]/sum(table_NB_test_c[1,])) 
  m2_NB_test <- c(m2_NB_test,sum(diag(table_NB_test_c))/sum(table_NB_test_c)) 
} 
 
cutoffs_NB_test <- quantile(pred_NB_test,seq(0.25,1,0.25)) 
quartiles_NB_test <- ifelse(pred_NB_test<=cutoffs_NB_test[1],"Q1", 
                            ifelse(pred_NB_test<=cutoffs_NB_test[2],"Q2", 
                                   ifelse(pred_NB_test<=cutoffs_NB_test[3],"Q3","Q4"))) 
 
results_optimals_test[1,"NB"] <- max(m1_NB_test) 
results_optimals_test[2,"NB"] <- max(m2_NB_test) 
results_optimals_test[3,"NB"] <- auc(roc(response_test,pred_NB_test)) 
results_optimals_test[4,"NB"] <- mean(response_test[quartiles_NB_test=="Q1"]==1) 
results_optimals_test[5,"NB"] <- mean(response_test[quartiles_NB_test=="Q2"]==1) 
results_optimals_test[6,"NB"] <- mean(response_test[quartiles_NB_test=="Q3"]==1) 
results_optimals_test[7,"NB"] <- mean(response_test[quartiles_NB_test=="Q4"]==1) 
results_optimals_test[8,"NB"] <- seq(lowest,highest,0.01)[which(m1_NB_test==max(m1_NB_test))[1]] 
results_optimals_test[9,"NB"] <- seq(lowest,highest,0.01)[which(m2_NB_test==max(m2_NB_test))[1]] 
results_optimals_test[10,"NB"] <- cutoffs_NB_test[1] 
results_optimals_test[11,"NB"] <- cutoffs_NB_test[2] 
results_optimals_test[12,"NB"] <- cutoffs_NB_test[3] 
results_optimals_test[13,"NB"] <- cutoffs_NB_test[4] 
 
# 7.6 NEURAL NETWORK      ################################################################################# 
 
# Train the optimal model with all training set 
layer_output <- 2 
layer_hidden_1 <- 12 
layer_hidden_2 <- 4 
layer_input <- sum(sapply(as.data.frame(train_SparkR[,features_cat]),function(x)length(unique(x))-1), 
                   length(features_num)) 
formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+"))) 
model_NN <- spark.mlp(train_SparkR, 
                      formula=formula, 
                      layers=c(layer_input,layer_hidden_1,layer_hidden_2,layer_output), 
                      seed=1) 
 
# Predict training data 
pred_NN_train <- predict(model_NN,train_SparkR) 
pred_NN_train <- unlist(lapply(as.data.frame(pred_NN_train)[,"probability"], 
                               function(x)SparkR:::callJMethod(x,"toArray")[[2]])) 
# Predict test data 
pred_NN_test <- predict(model_NN,test_SparkR) 
pred_NN_test <- unlist(lapply(as.data.frame(pred_NN_test)[,"probability"], 
                              function(x)SparkR:::callJMethod(x,"toArray")[[2]])) 
 
# Iterate all possible cut-offs and calculate performance measures in training set 
m1_NN_train <- c() 
m2_NN_train <- c() 
lowest <- trunc(min(pred_NN_train)*100)/100+0.01 
highest <- trunc(max(pred_NN_train)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_NN_train_c <- table(Real=response_train,Predicted=ifelse(pred_NN_train>=c,"1","0")) 
  m1_NN_train <- c(m1_NN_train,table_NN_train_c[2,2]/sum(table_NN_train_c[2,]) + 
                     table_NN_train_c[1,1]/sum(table_NN_train_c[1,])) 
  m2_NN_train <- c(m2_NN_train,sum(diag(table_NN_train_c))/sum(table_NN_train_c)) 
} 
 
cutoffs_NN_train <- quantile(pred_NN_train,seq(0.25,1,0.25)) 
quartiles_NN_train <- ifelse(pred_NN_train<=cutoffs_NN_train[1],"Q1", 
                             ifelse(pred_NN_train<=cutoffs_NN_train[2],"Q2", 
                                    ifelse(pred_NN_train<=cutoffs_NN_train[3],"Q3","Q4"))) 
 
results_optimals_train[1,"NN"] <- max(m1_NN_train) 
results_optimals_train[2,"NN"] <- max(m2_NN_train) 
results_optimals_train[3,"NN"] <- auc(roc(response_train,pred_NN_train)) 
results_optimals_train[4,"NN"] <- mean(response_train[quartiles_NN_train=="Q1"]==1) 
results_optimals_train[5,"NN"] <- mean(response_train[quartiles_NN_train=="Q2"]==1) 
results_optimals_train[6,"NN"] <- mean(response_train[quartiles_NN_train=="Q3"]==1) 
results_optimals_train[7,"NN"] <- mean(response_train[quartiles_NN_train=="Q4"]==1) 
results_optimals_train[8,"NN"] <- seq(lowest,highest,0.01)[which(m1_NN_train==max(m1_NN_train))[1]] 
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results_optimals_train[9,"NN"] <- seq(lowest,highest,0.01)[which(m2_NN_train==max(m2_NN_train))[1]] 
results_optimals_train[10,"NN"] <- cutoffs_NN_train[1] 
results_optimals_train[11,"NN"] <- cutoffs_NN_train[2] 
results_optimals_train[12,"NN"] <- cutoffs_NN_train[3] 
results_optimals_train[13,"NN"] <- cutoffs_NN_train[4] 
 
# Iterate all possible cut-offs and calculate performance measures in test set 
m1_NN_test <- c() 
m2_NN_test <- c() 
lowest <- trunc(min(pred_NN_test)*100)/100+0.01 
highest <- trunc(max(pred_NN_test)*100)/100 
 
for(c in seq(lowest,highest,0.01)){ 
  table_NN_test_c <- table(Real=response_test,Predicted=ifelse(pred_NN_test>=c,"1","0")) 
  m1_NN_test <- c(m1_NN_test,table_NN_test_c[2,2]/sum(table_NN_test_c[2,]) + 
                    table_NN_test_c[1,1]/sum(table_NN_test_c[1,])) 
  m2_NN_test <- c(m2_NN_test,sum(diag(table_NN_test_c))/sum(table_NN_test_c)) 
} 
 
cutoffs_NN_test <- quantile(pred_NN_test,seq(0.25,1,0.25)) 
quartiles_NN_test <- ifelse(pred_NN_test<=cutoffs_NN_test[1],"Q1", 
                            ifelse(pred_NN_test<=cutoffs_NN_test[2],"Q2", 
                                   ifelse(pred_NN_test<=cutoffs_NN_test[3],"Q3","Q4"))) 
 
results_optimals_test[1,"NN"] <- max(m1_NN_test) 
results_optimals_test[2,"NN"] <- max(m2_NN_test) 
results_optimals_test[3,"NN"] <- auc(roc(response_test,pred_NN_test)) 
results_optimals_test[4,"NN"] <- mean(response_test[quartiles_NN_test=="Q1"]==1) 
results_optimals_test[5,"NN"] <- mean(response_test[quartiles_NN_test=="Q2"]==1) 
results_optimals_test[6,"NN"] <- mean(response_test[quartiles_NN_test=="Q3"]==1) 
results_optimals_test[7,"NN"] <- mean(response_test[quartiles_NN_test=="Q4"]==1) 
results_optimals_test[8,"NN"] <- seq(lowest,highest,0.01)[which(m1_NN_test==max(m1_NN_test))[1]] 
results_optimals_test[9,"NN"] <- seq(lowest,highest,0.01)[which(m2_NN_test==max(m2_NN_test))[1]] 
results_optimals_test[10,"NN"] <- cutoffs_NN_test[1] 
results_optimals_test[11,"NN"] <- cutoffs_NN_test[2] 
results_optimals_test[12,"NN"] <- cutoffs_NN_test[3] 
results_optimals_test[13,"NN"] <- cutoffs_NN_test[4] 
 
########################################################################################################### 
 
# 8. PROTOCOL OF MODEL VALIDATION PHASE 4: Compare the models with performance measures 
 
# Save and print the results table of the training set 
save(results_optimals_train,file="results_optimals_train.RData") 
results_optimals_train 
 
# Save and print the results table of the test set 
save(results_optimals_test,file="results_optimals_test.RData") 
results_optimals_test 
 
# 8.1 PRINCIPAL COMPONENTS ANALYSIS     ################################################################### 
 
# Merge the training and test sets 
data_pca <- rbind(data_partitions$train,data_partitions$test) 
 
# Normalize numerical variables for PCA 
data_pca <- data_pca %>% mutate( 
  Amount=(Amount-mean(Amount))/sd(Amount), 
  Maturity=(Maturity-mean(Maturity))/sd(Maturity), 
  Postal_Code_ASNEF=(Postal_Code_ASNEF-mean(Postal_Code_ASNEF))/sd(Postal_Code_ASNEF), 
  Age=(Age-mean(Age))/sd(Age), 
  Seniority=(Seniority-mean(Seniority))/sd(Seniority), 
  Housing_Seniority=(Housing_Seniority-mean(Housing_Seniority))/sd(Housing_Seniority), 
  Income=(Income-mean(Income))/sd(Income), 
  Additional_Income=(Additional_Income-mean(Additional_Income))/sd(Additional_Income), 
  Rent=(Rent-mean(Rent))/sd(Rent), 
  Partner_Income=(Partner_Income-mean(Partner_Income))/sd(Partner_Income), 
  Mortgage=(Mortgage-mean(Mortgage))/sd(Mortgage), 
  Amount_of_Ongoing_Credits=(Amount_of_Ongoing_Credits-mean(Amount_of_Ongoing_Credits))/ 
    sd(Amount_of_Ongoing_Credits)) 
 
# Run PCA and project every observation into the new space 
pca <- data_pca %>% ml_pca(k=2,features=features_num) 
pca_projections <- as.data.frame(pca %>% sdf_project() %>% select(PC1,PC2)) 
 
# Plot the 2 main principal components 
ggplot(as.data.frame(pca$pc),aes(PC1,PC2)) + 
  geom_text(aes(label=row.names(pca$pc)),size=3,alpha=1,vjust =-1,hjust=0.5) + 
  geom_segment(aes(x=0,xend=PC1,y=0,yend=PC2),arrow=arrow(length=unit(0.3,"cm")),col="darkblue") + 
  labs(title="PCA", 
       x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% projected variance"), 
       y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% projected variance")) 
 
# Plot PCA projections coloured by predictions of the model Logistic Regression 
Prediction_LR <- c(pred_LR_train,pred_LR_test) 
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_LR)) + 
  geom_point() + scale_colour_gradient(low="green",high="red") + 
  xlim(-5,5) + ylim(-5,4) +  
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  labs(title="PCA Projections: Model Logistic Regression", 
       x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"), 
       y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance")) 
 
# Plot PCA projections coloured by predictions of the model Decision Tree 
Prediction_DT <- c(pred_DT_train,pred_DT_test) 
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_DT)) + 
  geom_point() + scale_colour_gradient(low="green",high="red") + 
  xlim(-5,5) + ylim(-5,4) +  
  labs(title="PCA Projections: Model Decision Tree", 
       x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"), 
       y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance")) 
 
# Plot PCA projections coloured by predictions of the model Random Forest 
Prediction_RF <- c(pred_RF_train,pred_RF_test) 
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_RF)) + 
  geom_point() + scale_colour_gradient(low="green",high="red") + 
  xlim(-5,5) + ylim(-5,4) +  
  labs(title="PCA Projections: Model Random Forest", 
       x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"), 
       y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance")) 
 
# Plot PCA projections coloured by predictions of the model Gradient Boosted Trees 
Prediction_GBT <- c(pred_GBT_train,pred_GBT_test) 
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_GBT)) + 
  geom_point() + scale_colour_gradient(low="green",high="red") + 
  xlim(-5,5) + ylim(-5,4) +  
  labs(title="PCA Projections: Model Gradient Boosted Trees", 
       x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"), 
       y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance")) 
 
# Plot PCA projections coloured by predictions of the model Naive Bayes 
Prediction_NB <- c(pred_NB_train,pred_NB_test) 
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_NB)) + 
  geom_point() + scale_colour_gradient(low="green",high="red") + 
  xlim(-5,5) + ylim(-5,4) +  
  labs(title="PCA Projections: Model Naive Bayes", 
       x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"), 
       y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance")) 
 
# Plot PCA projections coloured by predictions of the model Multilayer Perceptron 
Prediction_NN <- c(pred_NN_train,pred_NN_test) 
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_NN)) + 
  geom_point() + scale_colour_gradient(low="green",high="red") + 
  xlim(-5,5) + ylim(-5,4) +  
  labs(title="PCA Projections: Model Multilayer Perceptron", 
       x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"), 
       y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance")) 
 
########################################################################################################## 
 
# 9. DISCONNECTION OF SPARK CLUSTERS 
 
# Disconnect the Spark session of both "SparkR" and "sparklyr" packages 
spark_disconnect(sc_sparklyr) 
sparkR.session.stop() 
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8.4. Models feature importance 
 
8.4.1. Logistic regression 

 
Variable Estimated Coefficient 

Postal_Code_ASNEF 2.0552 
Profession_Code_MIDDLEGRADEMANAGER 0.9489 
Profession_Code_ADMINISTRATIVE 0.8904 
Profession_Code_OPERATOR 0.8643 
Profession_Code_OTHERS 0.7602 
Profession_Code_TECHNICIAN 0.7396 
Num_Ongoing_Credits_3 -0.6847 
Contract_Type_PERMANENT -0.6771 
Province_Barcelona -0.5195 
(Intercept) -0.4850 
Application_Week_Day_4 0.4839 
Contract_Type_PENSION -0.4685 
Purpose_USEDCAR 0.4653 
Purpose_DEBTS -0.4370 
Province_OTHERS -0.4093 
Housing_Type_TENANT 0.3966 
Purpose_FURNITURE_AND_APPLIANCES 0.3779 
Purpose_LIQUIDITY 0.3421 
Purpose_HOMEIMPROVEMENT 0.3276 
Marital_Status_COHABITING -0.3237 
Application_Week_Day_5 0.3188 
Application_Week_Day_6 0.2716 
Housing_Type_HOME_OWNERSHIP_WITHOUT_MORTGAGE 0.2704 
Province_Madrid -0.2404 
Num_Ongoing_Credits_2 -0.2351 
Application_Week_Day_1 0.2277 
Application_Hour_Group_[20H,23H) -0.2204 
Marital_Status_SINGLE -0.2041 
Housing_Type_HOME_OWNERSHIP_WITH_MORTGAGE 0.1839 
Num_Ongoing_Credits_1 -0.1830 
Num_Ongoing_Credits_0 0.1159 
Marital_Status_DIVORCED -0.1133 
People_in_Household_0 0.1031 
Marital_Status_MARRIED -0.0999 
Application_Week_Day_2 0.0988 
Housing_Type_THIRD_PARTY_PROVIDED_LODGING 0.0956 
Application_Week_Day_3 0.0816 
Purpose_OTHERS 0.0781 
People_in_Household_1 -0.0610 
Profession_Sector_PRIVATE_SECTOR -0.0566 
People_in_Household_2 -0.0559 
Purpose_VACATION 0.0519 
Gender_MALE 0.0511 
Age -0.0197 
Application_Hour_Group_[7H,20H) -0.0084 
Maturity 0.0024 
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Mortgage -0.0009 
Rent -0.0008 
Housing_Seniority -0.0001 
Seniority 0.0001 
Amount_of_Ongoing_Credits -0.0001 
Amount 0.0000 
Additional_Income 0.0000 
Partner_Income 0.0000 
Income 0.0000 

 
 
8.4.2. Decision tree 

 
Variable Importance 

Age 0.1594 
Amount_of_Ongoing_Credits 0.1282 
Amount 0.1129 
Housing_Seniority 0.0841 
Mortgage 0.0772 
Rent 0.0543 
Partner_Income 0.0529 
Housing_Type_THIRD_PARTY_PROVIDED_LODGING 0.0488 
Income 0.0481 
Seniority 0.0415 
Purpose_DEBTS 0.0412 
Application_Week_Day_4 0.0408 
Province_Barcelona 0.0380 
People_in_Household_0 0.0319 
Postal_Code_ASNEF 0.0175 
Purpose_HOMEIMPROVEMENT 0.0107 
Contract_Type_PERMANENT 0.0076 
Num_Ongoing_Credits_1 0.0050 
Maturity 0.0000 
Additional_Income 0.0000 
Application_Hour_Group_[7H, 20H) 0.0000 
Application_Hour_Group_[20H, 23H) 0.0000 
Application_Week_Day_3 0.0000 
Application_Week_Day_1 0.0000 
Application_Week_Day_2 0.0000 
Application_Week_Day_5 0.0000 
Application_Week_Day_6 0.0000 
Purpose_LIQUIDITY 0.0000 
Purpose_OTHERS 0.0000 
Purpose_USEDCAR 0.0000 
Purpose_VACATION 0.0000 
Purpose_FURNITURE_AND_APPLIANCES 0.0000 
Province_OTHERS 0.0000 
Province_Madrid 0.0000 
Gender_MALE 0.0000 
Profession_Code_OTHERS 0.0000 
Profession_Code_OPERATOR 0.0000 
Profession_Code_ADMINISTRATIVE 0.0000 



 
 
Guide to Spark Machine Learning for credit scoring 

65 
 

Profession_Code_TECHNICIAN 0.0000 
Profession_Code_MIDDLEGRADEMANAGER 0.0000 
Profession_Sector_PRIVATE_SECTOR 0.0000 
Contract_Type_PENSION 0.0000 
Housing_Type_HOME_OWNERSHIP_WITH_MORTGAGE 0.0000 
Housing_Type_HOME_OWNERSHIP_WITHOUT_MORTGAGE 0.0000 
Housing_Type_TENANT 0.0000 
Marital_Status_MARRIED 0.0000 
Marital_Status_SINGLE 0.0000 
Marital_Status_DIVORCED 0.0000 
Marital_Status_COHABITING 0.0000 
People_in_Household_1 0.0000 
People_in_Household_2 0.0000 
Num_Ongoing_Credits_2 0.0000 
Num_Ongoing_Credits_0 0.0000 
Num_Ongoing_Credits_3 0.0000 

 
 
8.4.3. Random forest 

 
Variable Importance 

Amount 0.1064 
Amount_of_Ongoing_Credits 0.0973 
Age 0.0864 
Housing_Seniority 0.0570 
Seniority 0.0560 
Income 0.0534 
Postal_Code_ASNEF 0.0532 
Mortgage 0.0410 
Maturity 0.0302 
Purpose_DEBTS 0.0278 
Partner_Income 0.0273 
Additional_Income 0.0222 
Num_Ongoing_Credits_3 0.0201 
Housing_Type_THIRD_PARTY_PROVIDED_LODGING 0.0198 
People_in_Household_1 0.0172 
Rent 0.0171 
Housing_Type_HOME_OWNERSHIP_WITH_MORTGAGE 0.0159 
Profession_Sector_PRIVATE_SECTOR 0.0150 
Num_Ongoing_Credits_0 0.0146 
Purpose_USEDCAR 0.0145 
Profession_Code_OPERATOR 0.0141 
Profession_Code_OTHERS 0.0116 
Province_Barcelona 0.0099 
Contract_Type_PENSION 0.0095 
Application_Week_Day_5 0.0085 
Housing_Type_TENANT 0.0084 
Gender_MALE 0.0080 
Purpose_OTHERS 0.0077 
People_in_Household_2 0.0076 
Profession_Code_TECHNICIAN 0.0075 
Marital_Status_SINGLE 0.0073 
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Num_Ongoing_Credits_1 0.0070 
Application_Week_Day_3 0.0069 
Application_Week_Day_4 0.0066 
Marital_Status_MARRIED 0.0064 
Housing_Type_HOME_OWNERSHIP_WITHOUT_MORTGAGE 0.0064 
Application_Week_Day_2 0.0063 
People_in_Household_0 0.0061 
Province_OTHERS 0.0056 
Purpose_HOMEIMPROVEMENT 0.0053 
Province_Madrid 0.0051 
Purpose_FURNITURE_AND_APPLIANCES 0.0050 
Contract_Type_PERMANENT 0.0046 
Application_Week_Day_1 0.0046 
Purpose_LIQUIDITY 0.0045 
Application_Hour_Group_[7H, 20H) 0.0042 
Marital_Status_DIVORCED 0.0040 
Profession_Code_ADMINISTRATIVE 0.0034 
Purpose_VACATION 0.0032 
Marital_Status_COHABITING 0.0032 
Application_Hour_Group_[20H, 23H) 0.0030 
Application_Week_Day_6 0.0024 
Profession_Code_MIDDLEGRADEMANAGER 0.0023 
Num_Ongoing_Credits_2 0.0009 

 


