

Title: Guide to Spark Machine Learning for credit scoring

Author: Álvaro Orgaz Expósito

Advisors: Ana María Pérez Marín, Catalina Bolancé Losilla

Department: Econometrics, Statistics and Applied Economics

Academic year: 2017-2018

In God we trust, all others bring data.

W. Edwards Deming

Guide to Spark Machine Learning for credit scoring

SUMMARY AND KEYWORDS

This bachelor’s degree thesis aims to develop a predictive analytics guide for credit fraud
detection using the Big Data tool Spark. Thus, the essence of this project is structured in three
main linked sections which combine theory and practice.

The first part is a description of the problem and concepts about credit risk as well as its
historical context. The second section contains a theoretical research in predictive algorithms,
frequently known as machine learning1 or artificial intelligence2 models. The third part is a
real case practical application of the studied models for predicting the probability of default
for a given dataset.

However, nowadays one of the most common problems in predictive analytics is the huge
amount of available data, and it gives meaning to the concept of Big Data. Thus, this project
will use the tool Spark, which is an engine for processing Big Data.

The main keywords of the thesis are data science, machine learning, artificial intelligence,
credit scoring, Big Data, Spark, analytics, linear and non-linear models.

Summary and keywords in the official language

El títol del projecte és: Guia sobre l’aprenentatge automàtic amb Spark pel risc creditici.

Aquest projecte final de grau pretén desenvolupar una guia sobre algoritmes predictius aplicats
a la detecció del frau creditici utilitzant una eina de Big Data anomenada Spark. Així doncs,
l'essència d'aquest projecte s'estructura en tres seccions enllaçades les quals combinen teoria i
pràctica.

La primera part és una descripció del problema i conceptes sobre el risc creditici així com el
seu context històric. La segona secció conté una investigació teòrica en algoritmes predictius,
freqüentment vinculats als conceptes d’aprenentatge automàtic o models d’intel·ligència
artificial. La tercera part és una aplicació pràctica dels models estudiats a un cas real per
predir la probabilitat d’impagament per a un determinat conjunt de dades.

Malgrat això, actualment un dels problemes més comuns en els projectes d’algoritmes
predictius és la gran quantitat de dades disponibles, la qual cosa dóna sentit al concepte del
Big Data. Així doncs, aquest projecte utilitzarà l'eina Spark, la qual és un motor de
processament de grans quantitats de dades.

En conclusió, aquesta tesi final de grau serà un manual per aquells usuaris que vulguin aprendre
sobre: la detecció i gestió del risc creditici amb algoritmes predictius; la teoria que hi ha darrere
els principals algoritmes en l’àrea de l’aprenentatge automàtic i la intel·ligència artificial; i

1 Field of computer science that uses statistical techniques to give computers the ability to learn with data.
2 Theory and development of computer systems able to perform tasks that require human intelligence.

Guide to Spark Machine Learning for credit scoring

l’aplicació d’aquests a un cas real des del plantejament del problema fins a la presa de decisions
(incloent-hi el codi de programació necessari).

Les principals paraules clau de la tesi són: ciència de dades, aprenentatge automàtic,
intel·ligència artificial, detecció del risc creditici, grans quantitats de dades, Spark, anàlisis de
dades, models lineals i no lineals.

American Mathematical Society classification

The thematic classification of this thesis according to the American Mathematical Society
corresponds to the section of Computer Science (68-XX), concretely:

‐ Artificial intelligence (68Txx)
‐ Algorithms (68Wxx)

Official AMS classification document at https://mathscinet.ams.org/mathscinet/msc/pdfs.

Guide to Spark Machine Learning for credit scoring

TABLE OF CONTENTS

1. INTRODUCTION ... 3

1.1. Definition of the problem ... 3

1.1.1. What is credit scoring? ... 4

1.1.2. Classic credit scoring methods: the role of statistics ... 4

1.1.3. Modern credit scoring methods: the role of machine learning 5

1.2. Aims... 5

1.3. Justification ... 5

1.4. Structure .. 6

1.5. Hypothesis ... 6

2. METHODOLOGY .. 7

2.1. Data sources and references ... 7

2.2. Classification of used machine learning techniques .. 7

2.3. Computer resources ... 8

2.3.1. What is the problem of Big Data? .. 8

2.3.2. Spark, a Big Data engine .. 9

3. METHODS FOR BINARY CLASSIFICATION ... 10

3.1. Generalised linear models .. 10

3.1.1. Logistic regression ... 11

3.2. Discriminative classification models ... 12

3.2.1. Naive Bayes .. 12

3.3. Tree-based models ... 14

3.3.1. Decision tree ... 15

3.3.2. Random forest .. 16

3.3.3. Gradient boosted trees .. 17

3.4. Neural networks ... 18

3.4.1. Multilayer perceptron classifier ... 18

4. REAL CASE APPROACH ... 21

4.1. Stages of a predictive analytics project .. 21

4.2. Database description and pre-processing ... 22

Guide to Spark Machine Learning for credit scoring

4.3. Target variable and possible applications of the model ... 23

4.4. Predictive performance measures ... 24

4.4.1. Measures with cut-off needed ... 24

4.4.2. Measures without cut-off needed .. 25

4.5. Phases of the protocol of model validation .. 26

4.6. Results of the protocol of model validation phase 2 .. 28

4.6.1. Logistic regression ... 28

4.6.2. Decision tree ... 28

4.6.3. Random forest .. 29

4.6.4. Gradient boosted trees .. 30

4.6.5. Naive Bayes .. 31

4.6.6. Multilayer perceptron classifier ... 31

4.7. Results of the protocol of model validation phase 3 .. 33

4.7.1. Training set .. 33

4.7.2. Test set ... 33

4.8. Results of the protocol of model validation phase 4 .. 34

4.8.1. Analysis of the correlation between features and outcome predictions 34

5. CONCLUSIONS .. 38

5.1. Hypothesis results .. 38

5.2. Aims achieved .. 38

5.3. Possible thesis extension .. 39

6. REFERENCES .. 40

7. INDEX OF FIGURES AND TABLES .. 42

7.1. Figures ... 42

7.2. Tables .. 42

8. ANNEXES ... 43

8.1. Metadata ... 43

8.2. Analysis of categorical variables distribution ... 44

8.3. Code ... 47

8.4. Models feature importance ... 63

Guide to Spark Machine Learning for credit scoring

3

1. INTRODUCTION

1.1. Definition of the problem

In this thesis, the problem in question arises from the business model of the credit sector:
clients borrow money from financial service companies (typically banks but nowadays also
peer-to-peer Fintech start-ups3 which are gaining ground in the sector) with a certain interest
rate which is the profit for the companies and/or investors. For this reason, customer loyalty
and good risk indicators are the keys to the success of credit businesses.

Although in this sector there are several different types of methodologies depending on the
business model, from classic banks with almost no digitalization to 100% digital peer-to-peer
start-ups that may not even have a banking license and only connect lenders with borrowers,
the typical customer journey map is:

‐ First, customers apply for a loan and provide the required data.
‐ Secondly, clients are pre-accepted or not based on the declarative data.
‐ Then, companies contact pre-accepted customers and check their documentation for

having the verified information.
‐ Consecutively, customers are financed or not based on the checked data.
‐ Finally, companies manage the credit risk during the life of the loan.

However, in the competitive market, customers have a lot of available options or credit
companies to choose between different prices and products. For this reason, apart from
managing the credit risk or miss payments, companies must invest a lot of money in marketing
for attracting clients. Furthermore, lots of them are not financed because they do not comply
with the risk requirements once the documents and personal information are checked, and for
this reason, it is also important to have good ratios of financing over pre-accepted customers
because if not, companies would be investing money in marketing with no profit since the
major part of the clients are not financed.

In conclusion, the success of a credit company mainly lies in selecting and filtering well the
customers (or rejecting determined profiles) that will be financed and will not default. Then,
these are the key points to manage:

‐ Marketing costs balanced with the financing rate.
‐ Risk metrics balanced with the interest rate because, in the end, there is not too much

risk (target miss payments rate assumed) but there is a too low-interest rate for the
obtained risk.

‐ Digitalization and automatization of the whole process to enhance the user experience
and reduce the operational costs.

For those who do not imagine how the customer selection is done, these are examples that
companies currently use:

3 Method of debt financing that enables individuals to borrow and lend money without an official financial
institution.

Guide to Spark Machine Learning for credit scoring

4

‐ Establishing rules for rejecting customers with determined characteristics.
‐ Establishing a risk score model for punctuating every client and assessing the potential

risk, then companies can offer a different pricing or interest depending on the risk level
of the clients and rejecting those whose are potentially too risky.

‐ Rejecting customers that are in national public or private databases of defaulters.

1.1.1. What is credit scoring?

Credit scoring is a method of evaluating the credit risk of customers when they apply for a
loan. Using historical financial information and statistical techniques credit scoring tries to
identify the effects of customers characteristics on miss payments. The score can be used to
rank the loan applicants or borrowers in terms of risk. A well-designed model should give
higher scores to borrowers whose loans will perform well and lower scores to borrowers whose
loans will not. However, no model is 100% accurate and some bad customers will receive higher
scores than some good ones.

According to the data, information about borrowers is obtained from credit bureaus and from
their loan application such as the applicant’s monthly income, outstanding debt, financial
assets, how long the applicant has been in the same job, whether the applicant has defaulted
a previous loan, whether the applicant owns or rents a home, etc. In short, all potential
variables that can be related to customer performance in terms of risk or defaults.

1.1.2. Classic credit scoring methods: the role of statistics

The question has always been the same: Can I count on the borrower to repay? Before credit
scoring models or algorithms, lenders assessed the risk of customers based on subjective factors
such as payment history, word-of-mouth and home visits. Thus, human judgment was the
main factor in deciding who received the credit and it was a slow process and also unreliable
because of human errors. However, those qualitative assessments have evolved into
quantitative ones over the years.

Credit scores arose in the 1950s and the sector took a big step forward. These scores were
statistical models based on correlations or linear models such as logistic regression proposed
by Cox in (1958), and built using payment information from thousands of actual consumers,
which made scores highly effective in predicting consumer credit behaviour. When combined
with new technology, scoring models have made the credit granting process fast, efficient and
objective, facilitating commerce and helping consumers quickly get the credit they need.

Concretely, the statisticians Bill Fair and Earl Isaac created an automated scoring system
which they continued to refine combined with technology and computers to build what became
the FICO score. They sold their credit scoring idea to banks and retailers around the world
providing consumers with the most significant score factors. Apart from declared customer
information, they used credit bureaus such as the companies Experian and Equifax to extract
more information about the default state of clients.

Guide to Spark Machine Learning for credit scoring

5

1.1.3. Modern credit scoring methods: the role of machine learning

Accuracy is a very important consideration in using credit scoring. Even if the lender can
reduce the costs of evaluating loan applications by using credit scoring, if the models are not
accurate, these cost savings would be eaten away by poorly performing loans.

Over time, the technology has been steadily improving, more data is available and then, more
complex algorithms can be applied. As a result, credit scores have also evolved in terms of
predictive behaviour.

Currently, although it is beginning to be accepted by banking regulators, machine learning
and artificial intelligence algorithms are gaining traction in the credit sector. For example,
some studied algorithms in this thesis (tree-based models and neural networks) allow discerning
the relationship between borrower characteristics and the probability of default in a more
flexible way than the standard statistical techniques. Although in some cases these algorithms
do not beat the traditional statistical models, for example, if there is not too much data, a
new era is beginning with machine learning.

1.2. Aims

Once the introduction to the problem is done, it is important to define the aims of this
bachelor’s degree thesis by sections. The main objectives of the theoretical part are introducing
the credit sector and doing research about the theory of most common algorithms used
nowadays in the areas of machine learning, artificial intelligence and predictive analytics. The
main aims of the practical part are applying the studied algorithms for predicting the
probability of default with a dataset of customer characteristics and comparing the predictive
behaviour between models. Thus, it is a case with a binary target variable (default or not
default) and different types of explanatory features. In conclusion, this thesis will provide the
necessary information for developing a predictive analytics project, from the business problem
definition to the application of the optimal model.

Beyond this, the Spanish banking regulator only authorizes to use as a maximum the model
complexity of the logistic regression. It means that black-box models such as tree-based models
or neural networks are not currently allowed. That is why banks have to justify their credit
scores and rules for financing and rejecting customers, and it is a way of simply understanding
what the entities are doing. For this reason, laws have to progress and be adapted to all these
new available and widely used techniques.

1.3. Justification

There is no reason to beat around the bush with the thesis justification. Basically, the idea of
this project surges from the confusions about machine learning and artificial intelligence that
users have in mind nowadays, which are easy to clarify with a bit of succinct information.
Also, the digitalization of the industry is playing a big role and the major part of people do
not understand anything about what is behind, for example, this kind of slogans: “How artificial

Guide to Spark Machine Learning for credit scoring

6

intelligence will impact our lives?”. For this reason, the credit sector is a perfect candidate for
giving sense and a good application example for the studied machine learning algorithms. In
short, it would be great that a person, without knowledge about these technical fields,
understands better what is machine learning and its potential uses through its application in
the credit sector.

1.4. Structure

This bachelor’s degree thesis is structured into five parts. The first one is the introduction
which contains information about the problem that this project aims to resolve or research,
the objectives and aims, traditional risk management methods versus the newest ones, and the
hypothesis that the author proposes before developing the thesis. The second part is the
methodology, which explains how this project has been conducted: data sources, general
classification of studied and used algorithms, and the computer resources used for developing
the practical case. The third section is a theoretical description of the algorithms. The fourth
section is the real case application of models with the corresponding analysis of predictive
performance, followed by the global conclusions. At the end of the body, you can find the
references, the list of figures and tables, and the annexes which contains the Spark R code for
reproducing the whole project as well as the metadata of the real case dataset and its pertinent
analysis.

1.5. Hypothesis

According to the theoretical section about the studied algorithms, the hypothesis is that
although the black-box models (so complex that the interpretability becomes difficult) such as
neural networks or tree-based models appear harder to understand, maybe they follow basic
rules or algorithmic theories that are not as much complicated or ingenious than the simpler
models.

According to the practical part of the thesis, one of the hypothesis is that the optimal model
depends on the objective of the researcher. At first sight, it seems that when the complexity
of the model increases, the predictive power or accuracy is higher but the interpretability
decreases. For this reason, probably the logistic regression model will give a better
interpretation of how every variable affects the outcome, and the neural network, as well as
complex tree-based models, will give a better predictive behaviour at the cost of interpretability
loss. Nevertheless, the dataset dimensions can influence these hypotheses because it has not a
lot of observations and maybe the most complex algorithms do not have enough data for
learning and beating the simple models. Let see what happens.

Furthermore, apart from the thesis contents, there is an important point about the coding
language. One of the aims of this project is developing the whole predictive analytics project
using the Big Data tool Spark in R statistical software. It means that the typical functions
that users use in R working in local mode do not run. Thus, another hypothesis is that learning
the necessary coding skills will be very-time consuming in the thesis development.

Guide to Spark Machine Learning for credit scoring

7

2. METHODOLOGY

2.1. Data sources and references

Currently, there are a lot of free books, courses, lectures, repositories, etc. for learning
everything, and especially the data science sector is becoming more and more open-source. For
developing this bachelor’s degree thesis, several data sources from books to data science online
platforms have been used for researching about the algorithms and for learning the necessary
programming language skills. In the reference section at the end of the thesis, you can find the
list of used references.

Furthermore, the author of this thesis tries to capture his particular view of the field in
question, and for this reason, the experience of the author is another important data source.

2.2. Classification of used machine learning techniques

Machine learning is mainly divided into two fields: supervised and unsupervised. This thesis
mainly works on the supervised machine learning, and it refers to techniques where the
computer learns without the exhaustive supervision of humans but there is a target variable
to predict. In the real case approach the objective is to predict the defaults and basically, it
will be done by discriminating the target binary variable using the space of explanatory
features. In short, supervised machine learning refers to predictive algorithms.

Apart from this field, there is the unsupervised machine learning. This term usually refers to
techniques where the computer learns without the exhaustive supervision of humans but there
is not a target variable. Then, the main objective is exploring the data without trying to
discriminate a concrete variable using others. For example, two well-known techniques are:
clustering which is a segmentation of observations by calculating the mathematical distance
between them and creating groups according to the similarities; and principal components
analysis (PCA), proposed by Hotelling in 1930, which is the creation of a new artificial
variables space where the new axis or principal components are a linear combination of the
original features and for building it the objective function maximizes the projected variance in
fewer axis. This second technique will be used in the models’ comparison of the real case
approach, and although PCA will not be explained in the theoretical section, see Hastie et al.
(2008) and Tibshirani et al. (2013) for more information about these techniques.

Once it is explained, this thesis will research and will use six concrete and well-known
algorithms. Just for giving a clear structure to the project, they will be divided into four groups
according to their algorithmic type. In theoretical section 3, you can find this scheme when
describing the theoretical concepts:

Algorithmic group Model

Tree-based models
Decision tree
Random forest
Gradient boosted trees

Guide to Spark Machine Learning for credit scoring

8

Discriminative classification models Naive Bayes
Generalised linear models Logistic regression
Neural networks Multilayer perceptron classifier

Table 1: Classification of algorithms included in the thesis.

2.3. Computer resources

This bachelor’s degree thesis will work with the statistical software R but with a particularity
that consists of using the Big Data engine called Spark. The whole project, including the data
pre-processing, the training of models, as well as the model validation phase where performance
measures are calculated, will be implemented using Spark in R Studio with the version 3.5.0 of
R statistical software. In the annexes, you can find the code with comments for developing
and reproducing the entire project.

2.3.1. What is the problem of Big Data?

Nowadays, the amount of data that is being created and stored on a global level is almost
inconceivable, and it just keeps growing exponentially. The volume is as massive that
processing data it is becoming a problem in terms of storage and computational capacity. In
general, statistics means working with samples of data for doing inference about the whole
population, and it enables to work in computers with not such a sophisticated storage and
computational capacity. However, when working with millions of observations and several
features, the problem of Big Data erases because most computers have not the required
hardware and functionalities.

Typically, the three Vs of Big Data are:

1. Volume. The amount of data matters and with Big Data, you will have to process high
volumes of structured and unstructured data. This can be data of unknown value, such
as Twitter feeds, clickstreams on a webpage or a mobile app, or sensor equipment.

2. Velocity. It is the fast rate at which data is received and acted on. Some internet-based

products even operate in real-time and will require real-time evaluation and action.

3. Variety. It refers to the many types of data that are available. Traditional data types
were structured and fit into a relational database. However, with the rise of Big Data,
data comes in new unstructured types such as text, audio, and video.

Currently, as Big Data has become a capital, there are a lot of available tools for managing it
and basically, they consist of two main branches:

a. Getting more powerful hardware for improving the storage and computational capacity

of computers. For example, the technological brand NVIDIA is investing in their
business line of graphics cards (GPUs) for developing a data science package called

Guide to Spark Machine Learning for credit scoring

9

Cuda. It integrates the Python language with the GPUs for computing machine
learning with the graphics card instead of working with RAM, improving so much the
potential.

b. Distributing data in a cluster service for computing the code and storing data in a
remote computer or server, which is more powerful than a single machine. For instance,
common products are: sending the code and data for receiving the outputs or
connecting to a cluster from a data science language such as R or Python. The
advantage of using these methods is the efficiency because it is only necessary to invest
money when you need to execute tasks. Some well-known tools are Spark, Hadoop,
MongoDB, Cloudera, Hive and Amazon Web Service. In this thesis, Spark is used in R
when developing the real case section 4.

2.3.2. Spark, a Big Data engine

In simple words, Spark is a fast cluster computing engine that is being optimized for speed of
computations. Spark is written in Scala programming language but it provides high-level APIs
in Scala, Python and R which means that the Spark engine can be run from these softwares.
Although it is not possible using the functions of these softwares if they have not an equivalent
in Spark, it supports a rich set of higher-level functions and packages such as SparkSQL for
data processing, sparklyr for manipulating data and MLlib for machine learning.

How does Spark enhance machine learning? Python and R are popular languages for data
scientists due to a large number of functions or packages that are readily available. But
traditional uses of these tools are often limiting, as they process data on a single machine where
it becomes time-consuming, the analysis requires sampling, and moving from development to
production environments requires extensive re-engineering. To help address these problems,
Spark provides with a powerful and unified engine that is both fast and easy to use.

Figure 1: Apache Spark official logo.

Guide to Spark Machine Learning for credit scoring

10

3. METHODS FOR BINARY CLASSIFICATION

In many situations applying predictive algorithms, the response variable is qualitative or
categorical instead of quantitative. For example, gender is qualitative, taking qualitative on
values male or female. In this section, we study models for predicting qualitative responses, a
process that is known as classification, although these algorithms can predict quantitative
variables too. Predicting a qualitative response involves assigning the observation to a class of
the response variable and the basis for making the classification is predicting the probability
of each category. There are many possible classification techniques and in this chapter, the
most widely-used classifiers will be discussed.

Citing Tibshirani et al. (2013), some classification examples include:

A person arrives at the emergency room with a set of symptoms that could possibly be
attributed to one of three medical conditions. Which of the three conditions does the
individual have?

An online banking service must be able to determine whether or not a transaction being
performed on the site is fraudulent, on the basis of the user’s IP address, past
transaction history, and so forth.

On the basis of DNA sequence data for a number of patients with and without a given
disease, a biologist would like to figure out which DNA mutations are deleterious
(disease-causing) and which are not.

3.1. Generalised linear models

In statistics, linear regression is used to modelling the relationship between a scalar response
(or dependent variable) and one or more explanatory variables (or independent variables). In
linear regression, the relationships are modelled using linear predictor functions whose
unknown model parameters are estimated from the data. In short, the model takes the form:

Notation and terminology:

 is the number of observations (in the real case approach it is the number of customers)
 is a vector of observed values of the response or dependent variable
 is the matrix of independent variables with p n-dimensional columns
 is a (p+1)-dimensional parameter vector where is the intercept and its elements

are the effects or partial derivatives of the with respect to the
 is a n-dimensional vector with the error term which captures all other factors that

influence the other than the regressors

However, linear regression is not appropriate in the case of a qualitative response. Why not?
Suppose that we are trying to predict the final status of a customer in a credit company. In
this example, there are three categories in the status response: not pre-accepted, pre-accepted

Guide to Spark Machine Learning for credit scoring

11

but not financed, financed. We could index these categories as a quantitative response variable,
1 if not pre-accepted; 2 if pre-accepted but not financed; 3 if financed. Unfortunately, this
coding implies an ordering on the response classes creating a false difference between categories
and if we use linear regression, some of our estimates might be outside the [0,1] interval, making
them hard to interpret as probabilities!

Fortunately, making some adjustments to simple linear models we can obtain generalised linear
models for pure classification which provides a predicted probability by response classes.
Concretely, this thesis will explain and use the generalised linear model logistic regression for
binary classification.

3.1.1. Logistic regression

Consider a defaults data set as in the real case approach of this thesis, where the binary
response is one of two categories, 1 if default or 0 if not default. Rather than modelling this
response directly, logistic regression models the probability of a particular category.

Now, let see the simple steps for understanding how the logistic regression works:

1. Let be the probability that the binary output is 1 given the features .

2. Use the logarithm of the odds ratio, instead of directly the probability as another way
of interpreting probabilities, which can take on any value between -∞ and ∞. For
example, if the probability of default is 0.9, on average nine out of every ten people
with an odds of 9 will default, since implies an odds of .

3. Model the logarithm of the odds ratio using the linear regression explained above:

4. Isolate the probability of default from the equation getting the logit activation function

or logit link function, which means that applying the function to the simple linear
predictor we can get the output in the probability range [0,1]:

5. Consider the likelihood function for the response (a sequence of Bernoulli trials):

Guide to Spark Machine Learning for credit scoring

12

6. Estimate the parameters by optimizing4 the next loss function created from the
logarithm of the function above:

7. Once the optimal are calculated, we finally have the model logistic regression. Now,

we can predict the default probability of the customer with explanatory variables :

Note: In the next sections, the abbreviation LR means logistic regression.

3.2. Discriminative classification models

The objective of the discriminant analysis is to find a direction or linear combination of the
original numerical variables that best separate categories from a categorical response variable,
in the real case approach the binary variable Defaulted. In this way, the space of explanatory
variables is divided into regions, and we can predict which class a new individual will belong
depending on which of the regions of the space is projected.

In this algorithmic group, two well-known models are naive Bayes and support vector machine.
However, this thesis will explain and use only the first one because support vector machine is
not implemented in Spark R environment for what this thesis needs. More information can be
found in Hastie et al. (2008) and Tibshirani et al. (2013).

3.2.1. Naive Bayes

The logistic regression involves directly modelling and in statistical jargon, it is
known as the conditional distribution of the response given the p predictors . In the case
of the navie Bayes, introduced into the community under a different name in the early 1960s,
it uses a less direct approach to estimating these probabilities.

Now, let see the simple steps for understanding how the naive Bayes works:

1. Establish the prior probability of the response classes which means the probability of
that a randomly chosen observation comes from every class. If we have a random

4 The implemented model function in the packages of statistical softwares such as R have a determined method of
optimization explained in the manuals.

Guide to Spark Machine Learning for credit scoring

13

sample of from the population, simply compute the fraction of the observations that
belong to the class.

2. Establish the probability distribution of the p predictors separately in each of the
response classes. In the real case approach, it means establishing the probability
distribution of each for customers defaulters () and for non-defaulters ()
separately.

3. Establish the probability distribution of the p predictors jointly in each of the
response classes. But it tends to be more challenging, unless we make assumptions
for these functions. Then, assuming that are statistically independent given
the response class :

4. Use the Bayes theorem to computing the posterior probability that an observation with

explanatory variables belongs to the class :

but as the denominator is a constant we only need to develop a classifier that
approximates the Bayes theorem for the posterior probability that an observation with
explanatory variables belongs to the class :

Every individual is assigned to the class with maximum and in spite of its
simplicity it works well in practice.

5. Once we have the classifier, we finally have the model naive Bayes. Now, we can predict
the default probability of the customer with explanatory variables with the Bayes
theorem:

In the 3D graphic at the following page, you can find we can see all the probability distributions
and concepts explained above for a binary response variable (equals 0 or 1) with prior
probabilities of 0.8 and 0.2 respectively, and it displace the classifier. You will see in next
sections that it is similar to the real case approach.

Note: In the next sections, the abbreviation NB means naïve Bayes.

Guide to Spark Machine Learning for credit scoring

14

Figure 2: Naive Bayes graphic from https://www.byclb.com/TR/Tutorials/neural_networks/ch4_1.htm.

3.3. Tree-based models

In this section, tree-based methods for classification will be described, although these models
can be used also for regression problems with a quantitative target variable. They are non-
parametric methods with the objective of predicting the value of a response variable, in the
real case approach if a customer defaults or not, based on decision rules derived from the data.
In this way, observations are divided into several homogeneous groups with respect to the
response variable and the aim is to discriminate against. In short, these models make splits of
the data with the explanatory variables (such as less than 45 years old or not) creating internal
nodes, from the root node to the leaf nodes. The next schema describes this concept:

Figure 3: Schema of tree-based models (nodes and splits).

Guide to Spark Machine Learning for credit scoring

15

3.3.1. Decision tree

As it has been explained, decision trees are tree-based models that make splits in the data
until they get the leaf nodes, in short, prediction via stratification of the feature space.

In more detail, imagine that the predictor space, a set of explanatory variables , is
divided into distinct and non-overlapping regions . The goal is to find boxes
as homogeous as possible with respect to the response variable. Then, every observation that
falls into the region have the same prediction, which is simply:

‐ For a quantitative response: the mean of response values for the training cases in .
‐ For a categorical response: the % of response values equals to the class for the training

observations in giving a probabilities distribution of the response K classes.

Unfortunately, it is computationally infeasible to consider every possible partition of the
feature space into boxes. For this reason, a recursive binary splitting is used beginning at the
top of the tree (at which point all observations belong to a single region) and then successively
splitting the predictor space via two new branches every node split. It is greedy because at
each step of the tree-building process, the best split is made at that particular step, rather
than picking a split that will lead to a better tree in some future step.

But which criteria is used to split the data? Which is the exact process for getting the model?
Now, let see the simple steps for understanding how the decision tree works:

1. Establish the split criteria for choosing the optimal data split in every split of the
features space. It will be the impurity of the resulting nodes with respect to the response
variable and in the classification case, it corresponds to the next Gini Index formula.
Basically, with the example of the real case approach, the idea is getting as many
defaulters as possible () in a resulting node of the split and as much non-defaulters
() as possible in the other.

Notation and terminology:

 is the number of classes in the response categorical variable
 represents a resulting node of the tree split
 represents the probability of belonging to class of the response

variable in the node , basically the % of observations with in the node

2. Perform the first binary splitting of the explanatory features space. It means
considering all predictors and all possible values of the cutpoint for each of
the predictors as follows:

‐ For quantitative explanatory variables: with a feature and the cutpoint

split the predictor space into the regions and .
‐ For categorical explanatory variables: with a feature and a category split

the predictor space into the regions and .

Guide to Spark Machine Learning for credit scoring

16

Then, choose the predictor and cutpoint that minimize the impurity between a
resulting node and its parent.

3. Next, repeat the process of step 2, looking for the best predictor and best cutpoint in
order to split the data further so as to minimize the impurity of the resulting regions.
However, this time, instead of splitting the entire predictor space, only split one of the
two previously identified regions in step 2.

4. Again, the process continues until a stopping criterion is reached. For example, in the
Spark R implementation of the model, the tree construction is stopped at a node when
one of the following stopping criteria is met for all leaf nodes or identified regions:

‐ The node depth is equal to the training maxDepth parameter.
‐ No split candidate leads to an information gain greater than the

minimum minInfoGain parameter.
‐ No split candidate produces 2 leaf nodes which each have at least

training minInstancesPerNode (parameter) instances.

5. Once we have the tree built, we finally have the model decision tree. Now, we can
predict the response class of the customer with explanatory variables passing the
customer by the tree and choosing the class with highest % of the leaf node in which
the customer falls.

Among the points in favour of this method, we find the simplicity of interpretation from the
splits, the possibility of visualizing the result graphically and working with numerical and
categorical variables at the same time. Also, it is an efficient method computationally, however,
if there are some minority classes in the answer variable, it is likely that it will make bad
predictions for this class.

Note: In the next sections, the abbreviation DT means decision tree.

3.3.2. Random forest

This model was proposed by Tin Kam Ho in 1995 and deeply developed by Leo Breiman. The
purpose of the random forest is to obtain a better classifier from the average of different
decision trees. However, as a result of applying the average results of a high number of trees,
the method loses the interpretation that was obtained with an individual decision trees.

In more detail, the random forest includes some concepts or adjustments which are:

a. Bagging. It means resampling the single training data (known as bootstrapping5) to

generate different bootstrapped training data sets and then, train the trees on
these sets in order to average the predictions of them. Bagging reduces prediction

5 The concept of bootstrap means resampling a sample of the population for having several pairs of training and
test sets. Then, a estimator or model can be trained with the training sets and evaluated in several test sets.

Guide to Spark Machine Learning for credit scoring

17

variance over a single tree and improves prediction accuracy at the expense of
interpretability.

b. Fix a number of features to consider in each tree. Apart from building the trees with
different bootstrapped sets, a determined number of explanatory variables will be
randomly selected to the splits in every tree. It has a clever rationale because if there
is one very strong predictor in the data set most of the trees will use this strong
predictor in the top split and consequently, all of the bagged trees will be similar and
their predictions will be highly correlated. Thus, it adds diversity to the trees and more
reliable results are obtained.

Once we have all the trees built, we finally have the model random forest. Now, we can predict
the response class of the customer with explanatory variables passing the customer by all
the tree and averaging the decision of all the trees generated.

Note: In the next sections, the abbreviation RF means random forest.

3.3.3. Gradient boosted trees

This model was proposed by Leo Breiman and deeply developed by Jerome H. Friedman.
Gradient boosted trees is another approach for improving the predictions from a single decision
tree. What is the idea behind this procedure? Given the first decision tree that predicts the
original response variable, a second decision tree is fitted with the residual errors (the values
of the objective variable minus the predictions) from the first one as the response variable.
That is, fitting trees using the residuals of the previous tree rather than the original response.
By fitting small trees to the residuals, we slowly improve the outputs in areas where the model
does not perform well. In general, statistical learning techniques that learn slowly tend to
perform well and in boosting, unlike in bagging, the construction of each tree depends strongly
on the trees that have already been grown.

In the history of Kaggle machine learning competitions, they usually master two techniques:
tree-based models for structured data and neuronal networks when the data includes images
or voice. Traditionally random forest predominated in structured data competitions, but
another algorithm won it: gradient boosted trees.

Now, let see the simple steps for understanding how the gradient boosted trees works:

1. Set the output prediction function of the model and the response variable for
the first tree for all observations in the training set.

Notation and terminology:

 is the original response variable
 is the matrix of explanatory features with variables and observations

2. Fit the decisions trees. For , repeat:

a. Fit a tree with the as features and as the response variable to predict.

Guide to Spark Machine Learning for credit scoring

18

b. Update by adding a shrunken version of the new tree. It means using a

weighting factor called the shrinkage factor or the learning rate to slow down
the learning in the model.

c. Update the residuals which will be the response variable in the next iteration.

3. Output the gradient boosted trees model.

Although it has not been mentioned, the implemented function in Spark R for this model
includes bagging. Remember that, as in the random forest model, it means that each tree is
built on a bootstrap dataset randomly sampled from the single training set.

Note: In the next sections, the abbreviation GBT means gradient boosted trees.

3.4. Neural networks

3.4.1. Multilayer perceptron classifier

The first perceptron algorithm was invented by Frank Rosenblatt in 1957. The multilayer
perceptron classifier (MLPC) is a classifier based on the feedforward artificial neural network,
which consists of multiple layers of nodes or neurons fully connected to the subsequent layer
in the network. Nodes in the input layer represent the input data and all other nodes map
inputs to outputs applying an activation function to a linear combination of the inputs with
the node’s weights. The next graphic represents a simple schema of MLPC with input
features, one hidden layer with neurons and neurons in the output layer (classes).

Figure 4: Neural network MLPC example schema.

Guide to Spark Machine Learning for credit scoring

19

This model is called feedforward because information flows through the function being
evaluated from the input data, through the intermediate nodes, and finally to the output. It
means that there are no feedback connections in which outputs of the model are fed back into
itself. When feedforward neural networks are extended to include feedback connections, they
are called recurrent neural networks.

In more detail, the main concepts for understanding the neural network multilayer perceptron
are:

a. Activation function. Except for the input nodes, each node is a neuron that uses a non-
linear activation function, it means that in every node, the resulting value of the linear
combination of the inputs (outputs of previous nodes) with the node’s weights is
applied to an activation function. In short, it is the same idea that the logit link function
in the logistic regression, but applied to every node of hidden layers.

‐ Nodes in intermediate layers use the sigmoid or logistic function:

‐ Nodes in the output layer use softmax function:

Notation and terminology:

 is the resulting value of the linear combination of the inputs (outputs
of previous nodes) with the node’s weights

 is the number of output neurons corresponding to the number of
classes in the response variable.

b. Layers. MLPC consists of three or more layers (an input and an output layer with one

or more hidden layers) with a determined number of neurons or nodes. All they are
fully connected with the next layer with a certain weight (parameter to optimize) to
every node in the following layer. The number of nodes by layers is:

‐ Input layer: corresponds to the numbers of explanatory variables.

‐ Hidden layers: the number of hidden layers ranges from one to many and the

number of neurons is a tuning parameter with no optimal value for all cases.

‐ Output layer: corresponds to the number of classes in the response variable.

c. Learning or weights optimization. It consists of optimizing the weights that connect
neurons layers, based on the amount of error in the output compared to the expected
result. The optimization algorithm repeats a two-phase cycle:

Guide to Spark Machine Learning for credit scoring

20

1. Propagation. When an input data is presented to the network, it is propagated
forward through the network, layer by layer, until it reaches the output layer.
The output of the network is then compared to the desired or true output, using
an error function or loss function and the resulting error value is calculated for
each of the neurons in the output layer.

2. Backpropagation for updating weights. Here, the error values are then
propagated from the output back through the network for optimizing the
weights of each connection in order to reduce the value of the error predictions
by some small amount. To learn or adjust weights properly, backpropagation is
commonly used by the gradient descent optimization algorithm, basically, it
calculates the derivative of the error function with respect to the network
weights, and changes the weights such that the error decreases.

After repeating this process for a sufficiently large number of training cycles, the
network will usually converge to some state where the error of the calculations is small.

Note: For more information about backpropagation process, visit the following link
with an example step by step: https://mattmazur.com/2015/03/17/a-step-by-step-
backpropagation-example.

d. Loss function or error function. It is a function used in the learning that maps values
of one or more variables onto a real number intuitively, through the optimization
algorithm, representing some cost associated with those values. In the case of the
implemented Spark R function for the binary response, the loss function is the logistic
loss function:

Notation and terminology:

‐ is the resulting value of applying the activation function to the linear
combination of the inputs (outputs of previous nodes) with the node’s weights.

‐ is the vector of true value in the response variable.

Note: In the next sections, the abbreviation NN means neural network multilayer perceptron
classifier.

Guide to Spark Machine Learning for credit scoring

21

4. REAL CASE APPROACH

4.1. Stages of a predictive analytics project

This section attempts to give a brief idea of all the project steps for developing a machine
learning model:

1. Variable exploration. This step decides the features types (nominal, ordinal, numerical,
etc.) and explores each variable distribution detecting singular values such as errors or
missing values. In this stage, it is typical to use unsupervised machine learning6 for a
better data understanding.

2. Feature selection. This step performs the variable selection trying to include all
possible features that discriminate well the target variable. It is important for the
future model application because, for example, it would be important to consider if it
is legal to use the gender of clients as an explanatory variable when the model is put
into production.

3. Pre-processing. This part modifies the dataset for adapting it to the way of reading
the data by the models and for optimising the performance. For example:

‐ Transforming or imputing missing values for models that cannot manage them.
‐ Deciding how many observations within each nominal feature level should be

kept in the model or otherwise merged to an OTHERS level. Because if a
variable has levels with too few observations, the models do not have enough
information to learn.

‐ Normalization and scaling numerical variables in order to improve model
performance.

4. Parameter tuning. This step seeks to find the best combination of model parameters,

using optimization approaches. This step is critical for most algorithms and interacts
with other steps, like pre-processing or feature selection.

5. Model comparison. This part accurately compares the predictive performance of
several chosen models with performance measures.

6. Feature importance. This step computes, for each variable, measures of its contribution
to the model. It is important for understanding how the model classifies the target
variable and which variables contribute more to discriminate it.

7. Application of the model. Analysis of the potential impact of the model and put it into
production.

6 This term usually refers to machine learning techniques where there is not a target variable, and the objective is
exploring the data without trying to discriminate the target variable using explanatory features. For example, two
well-known techniques are clustering and principal components analysis (PCA).

Guide to Spark Machine Learning for credit scoring

22

4.2. Database description and pre-processing

The data used in the real case approach is provided by a Fintech which has tracked the risk
of its financed customers. The dataset includes many variables that are expected to explain
the customer default behaviour. Concretely, the dataset contains 3468 financed customers of
the company and 26 variables including the response and the customer identifier. This is the
list of variables:

Related to Variable

Loan application

Contract ID: customer identifier unique for everyone
Application Week Day: weekday of the customer application
Application Hour Grouped: application hour grouped into 3 ranges
Amount: loan amount requested in €
Maturity: duration of the loan in months
Purpose: objective of the customer loan

Profile

Age: age of the customer
Gender: gender of the customer
Marital Status: marital status of the customer
People in Household: number of people in charge of the customer

Professional
situation

Profession Code: the profession of the customer
Profession Sector: private or public profession sector
Contract Type: type of employment contract
Seniority: number of months since the customer profession start date

Housing situation

Province: residence province of the customer
Postal Code ASNEF: probability of being in ASNEF7 by postal code
Housing Type: housing situation of the customer residence
Housing Seniority: months since the customer housing start date

Expenses

Rent: monthly rent cost of the customer in €
Mortgage: monthly mortgage cost of the customer in €
Amount of Ongoing Credits: monthly amount of ongoing credits in €
Number of Ongoing Credits: number of ongoing credits

Revenues
Income: monthly salary of the customer in €
Additional Income: monthly additional income of the customer in €
Partner Income: monthly partner income of the customer in €

Outcome Defaulted: if the customer has defaulted (1) or not (0)

Table 2: List of dataset variables. In the annexes, you can find the extended metadata.

The dataset is unbalanced and it has about 80% proportion of customers non-defaulters versus
20% defaulters. Having a balanced target variable is an important thing to consider when
fitting a model because if there are some minority classes in the outcome variable, in this real
case the outcome is binary (defaulted or not), it is likely that it will make poor predictions for
these classes because of the scarce information about these categories. For example, in the case
of this thesis, if the proportion of classes is too unbalanced (more non-defaulters than

7 Negative database of defaulters that companies can check to know if a customer is registered there or not.

Guide to Spark Machine Learning for credit scoring

23

defaulters), the models would tend to predict lower probabilities of default since it would be
more difficult to learn from the characteristics of defaulters.

Regarding the analysis of missing values that can be found in the metadata of the annexes, it
has been decided to use the whole dataset with a total number of 3468 customers. Once the
data is appropriately pre-processed, it will be divided into two groups (training and test) in a
ratio of 75%-25% respectively. It will be explained in the posterior sections 4.4 and 4.5.

Although the dataset is quite clean and complete in terms of data quality, it is necessary some
data pre-processing. The treatments include:

Treatment Variable type Action

Missing
values

Numerical
Modifying missing values by 0 because some models do not
support them. This imputation is given by the private
procedures of the company that owns the data.

Categorical
Modifying missing values in categorical variables by MISSING,
and it means to create a new category for missing values.

Outliers

Numerical No treatment is needed.

Categorical

Change infrequent categories (frequency distribution <5%) by
OTHERS. It needs an analysis of categorical variables
distribution for detecting categories that appear in too few
customers and it is attached in the annexes section 9.2.

Indexed
categories

Categorical

Some algorithms require only numerical input data. For this
reason, the non-numerical variables should be mapped with an
indexer (0, 1, 2, …) in both training and test sets, with always
the same mapping for avoiding different indexers by categories
in different datasets. Although in this thesis, with the
implemented Spark R functions it is not necessary.

Table 3: List of data pre-processing required treatments.

Note: When predicting a fresh data set, it means a different population sample than the
training data, it is necessary to do the same pre-processing than in the training data as well
as modify new categories of categorical features (that were not in the training dataset) by
OTHERS. Thus, the exact final mapping of categories used for training should be saved.

4.3. Target variable and possible applications of the model

The target variable is Defaulted. Let be an observation of the outcome random
variable which provides information about the client behaviour. If the customer has
defaulted, the observed value is equal to 1 and when has not is equal to 0. Then, the target
variable Defaulted is binary and for this reason, it is a machine learning classification problem
with the objective of predicting the probability of default.

Going back to the risk sector introduction, it would be useful to explain possible
implementations of the algorithms in a credit company. Remember that the key is basically

Guide to Spark Machine Learning for credit scoring

24

selecting well the clients that will be financed after the documentation check (for avoiding
marketing costs in pre-accepting clients that will not be financed and then with no profit) and
the ones that will have good risk metrics (for avoiding losing money with miss payments).

Once it is said, the possible applications of the models are:

‐ Use the model as a credit score for punctuating the customers in terms of risk, and

then rejecting those with too much probability of default and offering a better price to
those with the lowest probability.

‐ Use the model as a rejection rule, for example, directly rejecting and not pre-accepting
all the applications with a predicted probability higher than a determined threshold.

‐ Use the model in a marketing campaign to dedicating the budget to those clients with
the lowest probability of default.

‐ Use the model for analysing and discovering hidden characteristics of customers with
a low probability of default and then, offering them a better financial product (not only
in terms of lower interest rates, it could be a product designed for these profiles).

4.4. Predictive performance measures

This section will explain the predictive performance measures that will be used for choosing
and comparing the models. The next section will explain the protocol of model validation, it
means how the whole training process works and which performance measures are calculated
in every phase for deciding and comparing between models. Thus, it is important to understand
all the metrics before mentioning them in the next section.

The project presents 2 performance measures in the second protocol phase and 5 more in the
third (phases explained in the next section 4.5). These metrics let us compare and assess the
power for predicting the default probability between models.

4.4.1. Measures with cut-off needed

As it has been told, the algorithms estimate the probability of default that allow to define
the predicted class by comparing with different cut-offs . Clarifying with an
example, if a customer has a default probability of 0.45, he will be classified as a defaulter if
the cut-off is lower or equal to 0.45 but as a non-defaulter, if the cut-off is greater to 0.45.

Then, having an entire dataset punctuated by a model and comparing a concrete cut-off with
the predicted probabilities, it provides a confusion matrix like this:

 Predicted
 Not Default Default

Real
Not Default True negative (TN) False positive (FP)
Default False negative (FN) True positive (TP)

Table 4: Confusion matrix structure.

Guide to Spark Machine Learning for credit scoring

25

Once we have a confusion matrix, as a result of comparing a vector of predicted probabilities
with a defined cut-off, these metrics will be calculated:

‐ Sensitivity (true positive over real positive):

‐ Specificity (true negative over real negative):

‐ Accuracy:

However, looking for the optimal cut-offs of these performance measures, as the dataset is
unbalanced (only 20% of defaulters in the response variable), it is easy to find that:

‐ For sensitivity, the optimal cut-off is approximately a probability of 0 which means

predicting every client as a defaulter, then all the defaulters are well classified.
‐ For specificity, the optimal cut-off is approximately a probability of 1 which means

predicting every client as a non-defaulter, then all the non-defaulters are well classified.

For avoiding this situation, the final metrics with cut-off needed that will be used in the
protocol of model validation will be the accuracy and the sum of sensitivity and specificity.

4.4.2. Measures without cut-off needed

Apart from the mentioned metrics, other metrics are needed for comparing models without
establishing any cut-off. It is important because, for example, if we use the explained measures
with the cut-off 0.5 it makes no sense comparing a model with a range of predicted probabilities
from 0.1 to 0.4 with other from 0.1 to 0.9.

These are the metrics that will be calculated once we have a vector of predicted probabilities
by a model:

a. Percentage of true positive by quartiles of predicted probabilities vectors. It is a measure
without cut-off needed that shows the distribution of real positive in the dataset by
groups of 25% from lowest to highest predicted probability of default. In short, the
process for calculating it is: ordering a set of observations by default predicted
probability, selecting the customers that leave 25%, 50% and 75% of cases below, using
their probabilities as the cut-off for every quartile, calculate the % of true defaulters in
every group. Logically, the group of 25% observations with the lowest predicted
probabilities of default would have to contain fewer defaulters than the group with
highest default probabilities.

b. Area under the curve (AUC) of the receiver operating characteristics curves (ROC).
It is a well-known measure to evaluate the discriminative power of models in binary
classification problems. The process of calculating it is simple:

1. Comparing a vector of predicted probabilities with a concrete cut-off, get the
corresponding confusion matrix explained above and obtain the specificity and
sensitivity for this concrete cut-off.

Guide to Spark Machine Learning for credit scoring

26

2. Repeat the step 1 for all possible cut-offs from 0 to 1.

3. Plot the ROC curve where every point corresponds to a concrete cut-off with
its pair of sensitivity and specificity. As you can see in the graphic below, the
y-axis is the sensitivity and the x-axis is the complement of specificity equals
the false positive over real negative rate.

4. Calculate the area under the curve or AUC metric.

Figure 5: Example of ROC curve and AUC.

The area under the diagonal measures 0.5 and it is associated to a random classifier,
so the perfect model is AUC equals to 1. It gives an idea of the predictive robustness
of models because, without any determined cut-off, we have a metric that tells us: how
robust are the predicted probabilities by the model with a wide range of cut-offs.

4.5. Phases of the protocol of model validation

As it has been told in the point 4.1, the predictive analytics projects need a meticulous
methodology. Basically, apart from loading and pre-processing the data, as it has been
explained, it is necessary to find the best parametrization of every model and for doing it, the
key is using a consistent and impartial protocol of validation when comparing between models.

For example, a typical example of a wrong method is to compare only the performance of
models with the predicted probabilities of the training dataset, because here the model with
overfitting8 will win and, in the future, its behaviour predicting fresh datasets could be worst.

For this reason, this section explains the global picture of models training and protocol of
validation used in this thesis, step by step. These are the four germane phases:

8 The concept of good predictive performance in the training dataset and poor in the test set because of over
adjusting the complexity of a model. It is a typical situation that cross-validation and other techniques try to solve.

Guide to Spark Machine Learning for credit scoring

27

1. Create training and test sets as well as the training folds for cross-validation. Once the
data is appropriately pre-processed, it will be divided into two groups (training and
test) in a ratio of 75%-25% respectively. The training set will be used for finding the
best parametrizations of every model (phase 2). The test set will be used for training
the models with its optimal parametrization (phase 3) and comparing the results with
all the performance measures (phase 4) applied to both training and test datasets.
Then, it is important to check that the two partitions have the same possible categories
by categorical variables for avoiding problems when predicting the test set with the
models.

2. Find the best parametrization of every model with the training set. This project will
use 5-Fold Cross-Validation (CV) with the performance metrics: out of bag AUC and
out of bag % of true positive by quartiles9. Out of bag (OOB) means to use the
prediction of observations not included in the training dataset. What does all that
mean? In short, the training dataset will be separate in 5 sets and for every fold, the
other 4 folds will be used as the training dataset for training every model
parametrization. Then, with the predictions in the test set or the fold in question, we
will have the out of bag predictions. Finally, the 5 OOB vectors of predicted default
probabilities by fold will be saved in a global vector (having all the training dataset
punctuated with OOB predictions for every model parametrization) and then, with this
entire vector, the global AUC and % of true defaulters by quartiles will be calculated.

3. Train models with optimal parametrizations. Once the best parametrization of every
model is chosen, we re-train every final model with the whole training dataset. Now,
with the trained model we will predict the test dataset for having out of bag predictions
as well as the training predictions. Note that it is different from the global vector in
the section before (5 OOB vectors of predicted default probabilities) because now we
have only one model trained with all the training set and before, we were talking about
five models trained with a different 80% of the training set every time. Finally, having
all the training and test sets predicted for every model with its optimal parametrization,
several performance metrics will be calculated (with the optimal cut-off for everyone)
for both training and test sets.

4. Compare the models with performance measures. Finally, the protocol of validation is

concluded and all the explained performance metrics are calculated. Then it is time for
comparing the results and finding positive and negative aspects of the models.

In this step, apart from all the performance measures, the unsupervised machine
learning technique called principal components analysis (PCA) will be used for
understanding the correlations between the predicted probabilities of default and the
explanatory variables. It will complement the thesis by using an unsupervised
technique.

9 It means ordering the vector of predicted probabilities and doing groups of 25% from lowest to highest probability
as explained in the previous section.

Guide to Spark Machine Learning for credit scoring

28

4.6. Results of the protocol of model validation phase 2

This section contains the results table of phase 2 by models and descending order according to
the global OOB AUC. Then, the elected optimal parametrization will be the first row except
if the other measure, distribution of true positive by quartiles, is worst than other candidate
models.

4.6.1. Logistic regression

In the case of the model logistic regression, the candidate parametrizations of the model are
only numerical features as explanatory variables for predicting the target, only categorical
features, and both numerical and categorical features. The aim is trying different model
combinations to check if removing variables we can achieve similar performance results,
however, it is not so important as the germane objective is predicting and not interpreting the
results.

These are the results for the candidate parametrizations of the model (ordered by global OOB
AUC):

AUC BY

CV

% OF TRUE POSITIVE BY
QUARTILES

PARAMETRIZATION OF
MODEL: LR

Q1 Q2 Q3 Q4

All features 0.5733 0.1446 0.1900 0.2181 0.2488
Numerical features 0.5697 0.1446 0.1978 0.2118 0.2473
Categorical features 0.5655 0.1400 0.2103 0.2103 0.2411

Table 5: Results of logistic regression in the protocol of model validation phase 2.

In this case, there are not too many differences between the three parametrizations but the
optimal is using all features because it has the highest global AUC and a coherent distribution
of true positive by quartiles. It seems that the numerical and categorical features provide the
same information in terms of predictability, but once they are used together the model does
not improve so much. However, the optimal model will be with all features.

4.6.2. Decision tree

In the case of the model decision tree, the candidate parametrizations of the model (all with
both numerical and categorical features) are all the possible combinations of these parameters:

‐ Maximum number of bins for discretizing, at least the maximum number of categories

for any categorical feature (max_bins): 10, 20, 30.
‐ Maximum number of nodes separating any leaves from the root of the tree

(max_depth): 5, 10, 15.
‐ Minimum number of instances each child must have after the split

(min_instance_node): 5, 9, 13.

Guide to Spark Machine Learning for credit scoring

29

These are the results for the best candidate parametrizations of the model (ordered by global
OOB AUC):

 AUC
BY CV

% OF TRUE POSITIVE BY
QUARTILES

PARAMETRIZATION OF MODEL: DT Q1 Q2 Q3 Q4
max_bin=30;max_depth=5;min_instance=5 0.5601 0.1562 0.1831 0.2332 0.2321
max_bin=30;max_depth=5;min_instance=13 0.5574 0.1674 0.1750 0.2226 0.2369
max_bin=30;max_depth=5;min_instance=9 0.5545 0.1581 0.1804 0.2411 0.2226
max_bin=10;max_depth=5;min_instance=5 0.5451 0.1572 0.2083 0.2255 0.2120
max_bin=30;max_depth=10;min_instance=5 0.5429 0.1697 0.2013 0.2006 0.2387
max_bin=20;max_depth=5;min_instance=5 0.5415 0.1787 0.1714 0.2319 0.2241
max_bin=20;max_depth=5;min_instance=9 0.5411 0.1774 0.1711 0.2349 0.2224
max_bin=10;max_depth=5;min_instance=13 0.5408 0.1602 0.2061 0.2269 0.2076
max_bin=10;max_depth=5;min_instance=9 0.5402 0.1586 0.2114 0.2237 0.2084
max_bin=30;max_depth=10;min_instance=9 0.5362 0.1607 0.2122 0.2047 0.2259

… … … … … …

Table 6: Results of the decision tree in the protocol of model validation phase 2.

Although there is not a clear pattern in the parameters, the parametrization with max_bins
equal to 30 and max_depth equal to 5 have the highest global AUC. In this case, various
candidates could give similar models in terms of predictive robustness but the first option will
be chosen.

4.6.3. Random forest

In the case of the model random forest, the candidate parametrizations of the model (all with
both numerical and categorical features) are all the possible combinations of these parameters:

‐ Maximum number of bins for discretizing, at least the maximum number of categories

for any categorical feature (max_bins): 10, 20, 30.
‐ Maximum number of nodes separating any leaves from the root of the tree

(max_depth): 5, 10, 15.
‐ Number of trees to train (num.tree): 15, 30, 45.
‐ Minimum number of instances each child must have after the split

(min_instance_per_node): 5, 9, 13.
‐ The fraction of the training data used for learning each decision tree

(subsampling_rate): 1.

These are the results for the best candidate parametrizations of the model (ordered by global
OOB AUC):

 AUC
BY CV

% OF TRUE POSITIVE BY
QUARTILES

PARAMETRIZATION OF MODEL: RF Q1 Q2 Q3 Q4
max_bins=30;max_depth=5;num.trees=30; 0.5904 0.1415 0.1760 0.2134 0.2706

Guide to Spark Machine Learning for credit scoring

30

min_instances_per_node=9
max_bins=30;max_depth=15;num.trees=30;
min_instances_per_node=9

0.5887 0.1322 0.1776 0.2352 0.2566

max_bins=30;max_depth=5;num.trees=15;
min_instances_per_node=13

0.5886 0.1353 0.1822 0.2181 0.2659

max_bins=20;max_depth=5;num.trees=30;
min_instances_per_node=5

0.5868 0.1369 0.1838 0.2243 0.2566

… … … … … …

Table 7: Results of random forest in the protocol of model validation phase 2.

It seems that the models with more number of trees and higher maximum number of bins are
the best in terms of predictive power. The maximum depth and number of instances in each
child do not seem to be as important in this case. Then, the parametrization chosen as optimal
is the first one with the highest global AUC and the best trend of true defaulters by
probabilities quartiles.

4.6.4. Gradient boosted trees

In the case of the model gradient boosted trees, the candidate parametrizations of the model
(all with both numerical and categorical features) are all the possible combinations of these
parameters:

‐ Maximum number of bins for discretizing, at least the maximum number of categories

for any categorical feature (max_bins): 10, 20, 30.
‐ Maximum number of nodes separating any leaves from the root of the tree

(max_depth): 5, 10, 15.
‐ Maximum number of iterations (max_iter): 15, 30, 45.
‐ Step size to be used for each iteration of optimization (step_size): 0.05, 0.1, 0.15.
‐ Minimum number of instances each child must have after the split

(min_instance_node): 1.
‐ The fraction of the training data used for learning each decision tree

(subsampling_rate): 1.

These are the results for the best candidate parametrizations of the model (ordered by global
OOB AUC):

 AUC
BY CV

% OF TRUE POSITIVE BY
QUARTILES

PARAMETRIZATION OF MODEL: GBT Q1 Q2 Q3 Q4
max_depth=10;max_iter=15;step_size=0.1 0.5714 0.1462 0.1822 0.2150 0.2582
max_depth=10;max_iter=30;step_size=0.1 0.5650 0.1602 0.1776 0.2134 0.2504
max_depth=10;max_iter=30;step_size=0.05 0.5618 0.1477 0.1900 0.2290 0.2348
max_depth=15;max_iter=45;step_size=0.05 0.5614 0.1462 0.1869 0.2430 0.2255
max_depth=15;max_iter=30;step_size=0.1 0.5611 0.1524 0.1604 0.2539 0.2348
max_depth=15;max_iter=45;step_size=0.1 0.5606 0.1462 0.1791 0.2414 0.2348
max_depth=10;max_iter=15;step_size=0.05 0.5604 0.1446 0.2040 0.2212 0.2317

Guide to Spark Machine Learning for credit scoring

31

max_depth=10;max_iter=45;step_size=0.1 0.5598 0.1571 0.1838 0.2165 0.2442
… … … … … …

Table 8: Results of gradient boosted trees in the protocol of model validation phase 2.

The best combination of parameters is an intermediate maximal trees depth and a lower step
size with more iterations or a higher step size with fewer iterations. The results are quite
similar but the chosen parametrization is the first with the highest AUC and best true positive
distribution.

4.6.5. Naive Bayes

In the case of the model naive Bayes, the candidate parametrizations of the model are:

‐ Only numerical features as explanatory variables for predicting the target.
‐ Only categorical features as explanatory variables for predicting the target.
‐ Both numerical and categorical features as explanatory variables for predicting the

target.

These are the results for the candidate parametrizations of the model (ordered by global OOB
AUC):

AUC BY

CV

% OF TRUE POSITIVE BY
QUARTILES

PARAMETRIZATION OF
MODEL: NB

Q1 Q2 Q3 Q4

Categorical features 0.5621 0.1711 0.1838 0.1931 0.2535
All features 0.5305 0.1649 0.2134 0.2117 0
Numerical features 0.5304 0.1649 0.2134 0.2117 0

Table 9: Results of naive Bayes in the protocol of model validation phase 2.

In this case, the differences are quite relevant between the three parametrizations. The optimal
is using only categorical features and although the others do not have a too low global AUC,
they have 0 true defaulters in the fourth quartile which makes no sense.

4.6.6. Multilayer perceptron classifier

In the case of the model multilayer perceptron classifier, the candidate parametrizations of the
model (all with both numerical and categorical features) are all combinations of these
parameters:

‐ Number of nodes in input layer: number of numerical features plus the number of

unique categories less one per categorical feature.
‐ Number of nodes in output layer: 2 equals to the number of classes in the target

variable.

Guide to Spark Machine Learning for credit scoring

32

‐ Number of nodes in the first hidden layer: 6, 8, 10, 12.
‐ Number of nodes in the second hidden layer: 4, 6, 8, 10.
‐ The rest of parameters (initial weights for weights initialization, step size, maximum

iteration number, convergence tolerance of iterations) will be set by default in the
implemented function.

These are the results for the ten best candidate parametrizations of the model (ordered by
global OOB AUC):

 AUC
BY CV

% OF TRUE POSITIVE BY
QUARTILES

PARAMETRIZATION OF MODEL: NN Q1 Q2 Q3 Q4
hidden_layer_1=12;hidden_layer_2=4 0.5359 0.1757 0.1905 0.1982 0.2379
hidden_layer_1=8;hidden_layer_2=10 0.5284 0.1891 0.1720 0.2434 0.2093
hidden_layer_1=12;hidden_layer_2=10 0.5281 0.1890 0.1813 0.1930 0.2358
hidden_layer_1=10;hidden_layer_2=10 0.5279 0.1731 0.1975 0.2339 0.2162
hidden_layer_1=6;hidden_layer_2=10 0.5168 0.1815 0.2052 0.2200 0.1941
hidden_layer_1=8;hidden_layer_2=6 0.5156 0.1920 0.1953 0.2039 0.2123
hidden_layer_1=6;hidden_layer_2=8 0.5061 0.1968 0.2008 0.1994 0.2059
hidden_layer_1=8;hidden_layer_2=4 0.5029 0.1949 0.1977 0.2220 0.1895
hidden_layer_1=6;hidden_layer_2=4 0.4997 0.2049 0.1956 0.2003 0.2009
hidden_layer_1=10;hidden_layer_2=8 0.4973 0.2059 0.1944 0.2118 0.1821

… … … … … …

Table 10: Results of multilayer perceptron in the protocol of model validation phase 2.

None of these neural network models is better than other model candidates, but the
combination of 12 nodes in the first hidden layer and 4 in the second corresponds to the
multilayer perceptron classifier model with the better true positive distribution and global
AUC.

Guide to Spark Machine Learning for credit scoring

33

4.7. Results of the protocol of model validation phase 3

This section works with the optimal parametrization of every model trained with the whole
training set. Then, punctuating both training and test sets with these final models, the tables
below show all the explained performance measures for both datasets. In the next section, the
results will be commented and the models compared for deciding if one has performed better.

4.7.1. Training set

 LR DT RF GBT NB NN

CRITERIA

Sensitivity + Specificity 1.2091 1.2496 1.3796 1.9791 1.1574 1.1062
Accuracy 0.8004 0.8058 0.8183 0.9938 0.8000 0.5514
AUC 0.6500 0.6807 0.7639 0.9988 0.6096 0.5494
% True positive in Q1 0.0886 0.0824 0.0404 0.0000 0.1322 0.1650
% True positive in Q2 0.1807 0.2021 0.1168 0.0000 0.1838 0.1793
% True positive in Q3 0.2321 0.2348 0.2259 0.0062 0.2056 0.2348
% True positive in Q4 0.3002 0.3425 0.4184 0.7947 0.2799 0

CUT-OFF

Sensitivity + Specificity 0.2000 0.1900 0.2000 0.3100 0.2200 0.2300
Accuracy 0.4600 0.4200 0.2800 0.3100 0.4100 0.2500
% True positive in Q1 0.1385 0.1288 0.1716 0.0631 0.1558 0.1608
% True positive in Q2 0.1957 0.2281 0.1978 0.0936 0.1990 0.2058
% True positive in Q3 0.2540 0.2349 0.2292 0.1983 0.2503 0.2509
% True positive in Q4 0.5355 0.8889 0.4472 0.9679 0.4452 0.2509

Table 11: Results of the training set in the protocol of model validation phase 3.

4.7.2. Test set

 LR DT RF GBT NB NN

CRITERIA

Sensitivity + Specificity 1.1329 1.1353 1.1302 1.1051 1.0871 1.0196
Accuracy 0.7895 0.7895 0.7895 0.7884 0.7895 0.5323
AUC 0.5838 0.5731 0.5905 0.5612 0.5552 0.5175
% True positive in Q1 0.1511 0.1471 0.1556 0.1511 0.1733 0.1928
% True positive in Q2 0.1964 0.2135 0.1786 0.2009 0.2098 0.2813
% True positive in Q3 0.2321 0.2531 0.2277 0.2500 0.2009 0.2180
% True positive in Q4 0.2667 0.2463 0.2844 0.2444 0.2622 0

CUT-OFF

Sensitivity + Specificity 0.1900 0.1900 0.2200 0.1500 0.2200 0.2000
Accuracy 0.4500 0.7600 0.3100 0.9500 0.4300 0.2500
% True positive in Q1 0.1446 0.1288 0.1713 0.0803 0.1595 0.1608
% True positive in Q2 0.1991 0.2281 0.1969 0.1413 0.2039 0.2058
% True positive in Q3 0.2561 0.2349 0.2279 0.2670 0.2523 0.2509
% True positive in Q4 0.5398 0.8889 0.4270 0.9778 0.4742 0.2509

Table 12: Results of the test set in the protocol of model validation phase 3.

Guide to Spark Machine Learning for credit scoring

34

For example in table 12, for the logistic regression, the value 0.2561 is the default probability
of the customer that leaves a 75% of customers below in the test set with respect to their
predicted probabilities, and the value 0.1991 is the probability of the customer that leaves a
50%. Then, 23.21% is the percentage of defaulters with a predicted probability between 0.1991
and 0.2561, statistically the third quartile. Also, with the same example of table 12, the optimal
accuracy of the logistic regression is 0.7895 and it is obtained with the cut-off of 0.45.

4.8. Results of the protocol of model validation phase 4

According to the results table of the training dataset, there is a clear winner: gradient boosted
trees. It has the higher values for the metrics AUC, accuracy and the sum sensitivity and
specificity. Furthermore, it performs the best distribution of true defaulters having 0 defaulters
in the quartile with the lowest probabilities and an 80% of defaulters in the highest.
Additionally, looking at the cut-offs of the true defaulters’ distribution, we can see that the
range of probabilities is wider in this model, from 0.08 in the first quartile to 0.96 in the fourth.

That said, this model could be a clear case of over-fitting if in the test set it gets worst results.
For this reason, it is important to comment that the other models, except the multilayer
perceptron classifier and concretely the random forest, have very reasonable performance
measures with maybe no over-fitting.

According to the results table of the test set, now the model gradient boosted trees is not the
best one. The logistic regression and the random forest have the best AUC and very similar
values of accuracy and sum of sensitivity and specificity compared with the logistic regression
and the decision tree. Also, they have the best trends of true defaulters by quartiles.

Looking at the cut-off, all models have similar optimal cut-offs between the training and test
sets performance measures, but the accuracy cut-offs for the decision tree and the gradient
boosted trees are quite different and it suggests that they are not as solid models as others for
predicting fresh datasets. However, the logistic regression and random forest seem to be really
robust comparing the figures of the two tables and although there is not a clear winner, these
models appear to be the more appropriate between all candidates.

Apart from that, it is interesting that the defaulters’ correlation with the gradient boosted
trees model in the training dataset is now deprecated in the test. Furthermore, it is curious
that the neural network multilayer perceptron classifier is the worst model in this real case
approach. Although neural networks are considered the best models in terms of predictive
power for many situations, in this case, it seems that the low amount of data is not appropriate
for this kind of complex algorithms which require large amounts of data to beat the others.

4.8.1. Analysis of the correlation between features and outcome predictions

This section will try to study a point that has not been mentioned until now with an
unsupervised machine learning technique called principal components analysis. The aim is to
study the correlations between numerical features, it means in which directions they move

Guide to Spark Machine Learning for credit scoring

35

according to each other, and also research which profiles of customers have a higher predicted
probability of default by models. This machine learning technique can simplify this task
because these models are quite complex and the high number of interactions make really
difficult to understand why a customer is considered as a defaulter or not.

Only numerical features will be considered, but as we have seen in the logistic regression
model, the categorical features do not seem to add too much information to the numerical ones
(or vice versa). For this reason, this section will simply make the analysis with the numerical.
First of all, let see the results of the PCA (explained in the theory section) by observing the
first two principal components. In essence, it means studying how every variable affects the
new space of artificial variables created by the PCA because every new artificial variable or
principal component is a linear combination of the original features. This is the graphic:

Figure 6: Plot of the two first principal components of the PCA.

From this graphic of the first two principal components, it is possible to extract logical
customer patterns that will help to understand why the models predict lower or higher
probability of default. These are the main patterns:

a. The more income and partner income that customers have, the more loan amount
requested, maturity, amount of ongoing credits, mortgage, seniority, and the less
probability of being in ASNEF by postal code which means that customers live in zones
with fewer people in negative databases of defaulters.

Guide to Spark Machine Learning for credit scoring

36

b. Other characteristics, not too much correlated with the explained above, are that the

more cost of rent that customers have, the less age and housing seniority. It completely
makes sense in terms of social behaviour.

That said, we will project all the customers in this new artificial two principal components
with optimal models and the points will be coloured according to the predicted probability of
default. These are the resulting graphics by models:

Figure 7: Projections of customers in the two first principal components of the PCA.

Guide to Spark Machine Learning for credit scoring

37

Ignoring the multilayer perceptron classifier neural network, because of we cannot see any
clear pattern, the projections of the customers into the two first principal components show us
that in general, the profile of a defaulter is a customer that:

‐ Has a residence in a postal code with a high probability of being in ASNEF.
‐ Has low income, partner income, mortgage, seniority and amount of ongoing credits.
‐ Does not have a concrete age, monthly rent cost and housing seniority.

Nevertheless, as we can see in the graphics, these principal components have projected only a
30% of the global variance, and it means that the described profile of defaulters does not fit
for every customer.

Apart from this analysis of the correlation between features and outcome predictions by the
models, in the annexes, you can find the models features importance for the models: logistic
regression, decision tree and random forest. There, you will find the estimated coefficients by
the logistic regression ordered by absolute coefficient value, and the variable importance for
splitting the trees in the decision tree and random forest. In general, a higher value means
that this variable is more relevant in the model in terms of discriminating the response.

Guide to Spark Machine Learning for credit scoring

38

5. CONCLUSIONS

This is the last section of the thesis and it contains the conclusions after developing the whole
project.

5.1. Hypothesis results

According to the hypothesis of the theoretical section, it is confirmed that although black-box
models such as neural networks or tree-based models are more complex than, for example,
logistic regression, they follow algorithmic theories that are not as different or advanced in
terms of theory comprehension. The logic behind the building process of these models is not
so complicated but a large number of iterations when optimizing the models makes them a
black-box in terms of interpretability.

On the other hand, the hypothesis of the real case approach has been partially accomplished.
It was to be expected that more complex models, such as the neural network, would perform
better in terms of predictive power. However, what we have seen is that the simplest model,
the logistic regression, has performed as the best in the test set. That said, it is important to
note that the hypothesis considered the possibility that the dataset dimension influences the
results. It means that as the data had only 3468 observations, it has not been enough data for
the more complex algorithm which are the best in a competition such as Kaggle.

According to the hypothesis that the coding language Spark would be so time-consuming, after
the development of the entire project, it is possible to confirm that the Big Data engine Spark
has a really user-friendly framework and integration with well-known statistical coding
languages such as R or Python. However, for the author, it has been the first time in doing
data science and machine learning with Spark and a lot of time has been spent on learning it.

5.2. Aims achieved

The principal aim of this thesis was to create a guide (with theory and practice) to develop a
predictive analytics project from scratch with the Big Data tool Spark. Apart from that, a key
point was that all kind of users, experts or not, could understand the thesis even the more
theoretical concepts. Once the thesis is done, it can be said that from lots of resources and
references that can be found in books or on the internet, this thesis provides a hybrid guide
for machine learning with succinct theory and practice aimed to different audiences.

Furthermore, it was mentioned at the beginning that the Spanish banking regulator only allows
using the logistic regression model and that laws have to progress and be adapted to all these
new available and widely used algorithms. After seeing the results, the wrong way of
interpreting the results is that logistic regression performs well enough and for this reason, it
would be not necessary that banking regulators attempt to be more flexible. Why? In many
fields, neural networks and advanced tree-based are states of the art and the financial sector
need be no different, provided that enough data is available.

Guide to Spark Machine Learning for credit scoring

39

5.3. Possible thesis extension

In machine learning and artificial intelligence, finding the optimal parameters for a model is
the key point. Thus, the first important extension of the thesis would be looking for new
models’ parametrizations that improve the predictive performance as well as the creation of
new artificial variable from the original data for discriminating better the defaults.

Apart from that, it would be really interesting to analyse the business impact of the models.
In other words, researching how applying these machine learning will impact a credit company
in economic terms. After all, the new era of artificial intelligence is beginning and it is clear
that it will create a strong impact in the society.

Guide to Spark Machine Learning for credit scoring

40

6. REFERENCES

[1] Hastie, Trevor; Tibshirani, Robert; James, Gareth; Witten, Daniela. 2013. An introduction

to statistical learning. New York, USA. Springer.

[2] Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome. 2008. The elements of statistical
learning. California, USA. Springer.

[3] Hotelling, H. 1993. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 417-441, and 498-520.

[4] Cox, D.R. 1958. The regression analysis of binary sequences. Journal of the Royal
Statistical Society: series B, 20, 215-242.

[5] Hand, David. 1997. Construction and assessment of classification rules. Wiley, USA.

Chichester.

[6] H. Witten, Ian. 2011. Data mining: practical machine learning tools and techniques with
Java implementations. Third edition. San Francisco, USA. Morgan Kaufmann.

[7] J. Mester, Loretta. 2015. What’s the point of credit scoring? [pdf] Federal Reserve Bank of
Philadelphia. Available at: http://r-es.org/9jornadasR/pdf/9JUR_paper_2.pdf.

[8] Philadelphia Media Network (Digital), 2008. History of credit scores. Philly, [online] 8 May.
Available at: http://www.philly.com/philly/business/cars/research/general_cars/
General_History_of_Credit_Scores.html.

[9] Pell, Nicholas. 2015. A secret history of credit scores. TheStreet, [online] 13 April. Available
at: https://www.thestreet.com/story/13097739/1/a-secret-history-of-credit-scores-who-
determined-what-matters-and-why.html.

[10] J. Parra, Manuel. 2017. Taller procesamiento en Big Data con Spark R.
[pdf] University of Granda. Available at: http://r-
es.org/9jornadasR/pdf/9JUR_paper_2.pdf.

[11] Bradley, Joseph; Meng, Xiangrui; Lee, Denny. 2016. Why you should use Spark for
machine learning. InfoWorld, [online] 11 February. Available at:
https://www.infoworld.com/article/3031690/analytics/why-you-should-use-spark-for-
machine-learning.html.

[12] R Studio. Sparklyr from R Studio. [online] Available at: https://spark.rstudio.com.

[13] The Apache Spark Software Foundation. Apache Spark, lightning-fast unified analytics
engine. [online] Available at: https://spark.apache.org.

Guide to Spark Machine Learning for credit scoring

41

[14] DataCamp. RDocumentation. [online] Available at: https://www.rdocumentation.org.

[15] GitHub. GitHub platform. [online] Available at: https://github.com.

[16] R-bloggers. R news and tutorials by R bloggers. [online] Available at: https://www.r-
bloggers.com.

[17] Stack Overflow. Stack Overflow online community. [online] Available at:

https://stackoverflow.com.

[18] Wikipedia. Wikipedia, the free encyclopedia. [online] Available at:
https://en.wikipedia.org.

[19] The R Foundation, 2018. R 3.5.0 version (Joy in Playing). [computer program] Available
at: https://www.r-project.org.

[20] RStudio, 2018. RStudio 1.1.453 version. [computer program] Available at:
https://www.rstudio.com.

Guide to Spark Machine Learning for credit scoring

42

7. INDEX OF FIGURES AND TABLES

7.1. Figures

Figure 1: Apache Spark official logo. .. 9
Figure 2: Naive Bayes graphic .. 14
Figure 3: Schema of tree-based models (nodes and splits) ... 14
Figure 4: Neural network MLPC example schema ... 18
Figure 5: Example of ROC curve and AUC ... 26
Figure 6: Plot of the two first principal components of the PCA .. 35
Figure 7: Projections of customers in the two first principal components of the PCA 36

7.2. Tables

Table 1: Classification of algorithms included in the thesis. .. 8
Table 2: List of dataset variables. In the annexes, you can find the extended metadata. 22
Table 3: List of data pre-processing required treatments. .. 23
Table 4: Confusion matrix structure. ... 24
Table 5: Results of logistic regression in the protocol of model validation phase 2. 28
Table 6: Results of the decision tree in the protocol of model validation phase 2. 29
Table 7: Results of random forest in the protocol of model validation phase 2. 30
Table 8: Results of gradient boosted trees in the protocol of model validation phase 2. 31
Table 9: Results of naive Bayes in the protocol of model validation phase 2. 31
Table 10: Results of multilayer perceptron in the protocol of model validation phase 2. 32
Table 11: Results of the training set in the protocol of model validation phase 3. 33
Table 12: Results of the test set in the protocol of model validation phase 3. 33

Guide to Spark Machine Learning for credit scoring

43

8. ANNEXES

8.1. Metadata

Variable Type for models Number of categories Number if missing
Contract_ID Categorical - 0
Defaulted Categorical 2 0
Application_Hour_Group Categorical 3 0
Application_Week_Day Categorical 7 0
Amount Numerical - 0
Maturity Numerical - 0
Purpose Categorical 13 0
Province Categorical 50 0
Postal_Code_ASNEF Numerical - 12
Age Numerical - 0
Gender Categorical 2 0
Profession_Code Categorical 32 53
Profession_Sector Categorical 2 0
Contract_Type Categorical 3 0
Seniority Numerical - 0
Housing_Type Categorical 5 0
Housing_Seniority Numerical - 0
Marital_Status Categorical 6 0
People_in_Household Categorical 7 0
Income Numerical - 0
Additional_Income Numerical - 2290
Partner_Income Numerical - 1828
Rent Numerical - 2566
Mortgage Numerical - 1984
Amount_of_Ongoing_Credits Numerical - 0
Num_Ongoing_Credits Categorical 6 0

Guide to Spark Machine Learning for credit scoring

44

8.2. Analysis of categorical variables distribution

Variable Category Distribution

Defaulted
0 79.67%
1 20.33%

Application_Hour_Group
[7H, 20H) 85.55%
[20H, 23H) 8.42%
[23H, 7H) 6.03%

Application_Week_Day

1 19.20%
3 19.00%
2 18.66%
4 17.16%
5 13.93%
6 6.31%
7 5.74%

Purpose

HOMEIMPROVEMENT 28.98%
LIQUIDITY 21.80%
USEDCAR 8.77%
DEBTS 7.93%
MEDICALCARE 6.46%
VACATION 6.26%
FURNITURE_AND_APPLIANCES 5.82%
NEWCAR 4.33%
TRAINING 3.86%
WEDDINGS 2.62%
HITECH 1.27%
MOTO 0.95%
RELOCATION 0.95%

Gender
MALE 65.43%
FEMALE 34.57%

Profession_Sector
PRIVATE_SECTOR 79.67%
PUBLIC_SECTOR 20.33%

Contract_Type
PERMANENT 81.72%
PENSION 16.75%
INDEPENDENT 1.53%

Housing_Type

HOME_OWNERSHIP_WITH_MORTGAGE 36.85%
HOME_OWNERSHIP_WITHOUT_MORTGAGE 22.49%
THIRD_PARTY_PROVIDED_LODGING 21.66%
TENANT 18.22%
EMPLOYER_PROVIDED_LODGING 0.78%

Marital_Status

MARRIED 48.50%
SINGLE 27.19%
DIVORCED 10.03%
COHABITING 7.53%
WIDOWED 4.09%
SEPARATED 2.65%

People_in_Household
0 55.42%
1 22.84%
2 16.78%

Guide to Spark Machine Learning for credit scoring

45

3 4.15%
4 0.69%
5 0.09%
6 0.03%

Num_Ongoing_Credits

1 41.98%
2 23.36%
0 22.38%
3 8.82%
4 2.68%
5 0.78%

Profession_Code

OPERATOR 16.75%
ADMINISTRATIVE 11.71%
TECHNICIAN 8.42%
MIDDLEGRADEMANAGER 7.09%
RETIREMENT 6.52%
MEDICAL_PROFESSION 4.93%
POLICEMAN_FIREMAN_MILITARY 4.64%
EDUCATION 4.41%
INVALIDITY 4.15%
STAFFMANAGER 3.32%
COMMERCIAL 3.20%
ABSOLUTE_INVALIDITY 2.94%
SALESMAN 2.60%
HOTELIER 2.48%
COMPUTERSCIENCE_MATH 2.36%
EXECUTIVE 2.28%
DRIVER 1.99%
GUARD 1.93%
NA 1.53%
OTHER 1.44%
ENGINEER 1.15%
CONSULTANT 0.95%
ANALYST_FINANCE_MARKETING 0.84%
ENTREPRENEUR 0.66%
LIBERAL_PROFESSION 0.46%
LAWYER_NOTARY 0.26%
RESIDENCEEMPLOYEE 0.20%
MAJOR_INVALIDITY 0.17%
ARCHITECT 0.17%
CRAFTMAN_SALEMAN 0.14%
LAWYER_JUDGE 0.12%
ECONOMIST_ACCOUNTANT 0.12%
DOCTOR 0.06%

Province

Barcelona 16.29%
Madrid 13.99%
Asturias (Oviedo) 5.71%
Coruna 4.84%
Valencia 4.35%
Alicante 3.46%
Vizcaya (Bilbao) 3.29%

Guide to Spark Machine Learning for credit scoring

46

Pontevedra 3.29%
Zaragoza 2.51%
Guipuzcoa (Donostia-San Sebastian) 2.48%
Navarra (Pamplona) 2.39%
Leon 2.34%
Cantabria (Santander) 2.25%
Valladolid 2.22%
Sevilla 1.70%
Tarragona 1.70%
Salamanca 1.59%
Burgos 1.53%
Gerona 1.50%
Toledo 1.50%
Alava (Vitoria-Gasteiz) 1.38%
Lugo 1.36%
Las Palmas 1.36%
Murcia 1.27%
Santa Cruz de Tenerife 1.21%
Orense 1.21%
La Rioja (Logrono) 0.98%
Baleares (Palma de Mallorca) 0.92%
Ciudad Real 0.89%
Castellon 0.87%
Malaga 0.84%
Badajoz 0.78%
Lerida 0.72%
Albacete 0.72%
Cadiz 0.69%
Granada 0.63%
Huelva 0.61%
Avila 0.61%
Caceres 0.61%
Palencia 0.58%
Guadalajara 0.46%
Segovia 0.40%
Cordoba 0.40%
Almeria 0.35%
Jaen 0.32%
Huesca 0.29%
Cuenca 0.26%
Teruel 0.17%
Soria 0.12%
Zamora 0.09%

Guide to Spark Machine Learning for credit scoring

47

8.3. Code

This section contains the code of the whole thesis and it can be also found in the author’s
GitHub account https://github.com/alvarorgaz/Guide-to-Spark-Machine-Learning-for-credit-
scoring with a more practical and attractive format.

TITLE: Guide to Spark Machine Learning for credit scoring
AUTHOR: Álvaro Orgaz Expósito
ADVISORS: Ana María Pérez Marín Catalina Bolancé Losilla
DEPARTMENT: Econometrics, Statistics and Applied Economics
ACADEMIC YEAR: 2017-2018

LEGEND OF CODE COMMENTS (#)
1#: Code actions
2#: Optional or additional functions
3#: Notes and extra comments about the code

1. INSTALLATION AND CONNECTION TO SPARK

Notes:
N1. As the package "SparkR" is removed from R CRAN, download the package file "SparkR_2.3.0.tar.gz"
at the link: https://cran.r-project.org/src/contrib/Archive/SparkR/
N2. You will need to have installed the software Java and the firewall unblocked.
N3. The function "sparkR.init" of the package "SparkR" will install the latest version of Spark in
your computer (if not installed), then it is not necessary that you do it manually. It will be
used too by the function "spark_connect" of the package "sparklyr".

Mute warnings
options(warn=-1)

Install the necessary R packages from R CRAN (if not installed): "dplyr", "sparklyr", "pROC", "DBI",
“ggplot2”
install.packages("dplyr")
install.packages("sparklyr")
install.packages("pROC")
install.packages("DBI")
install.packages("ggplot2")

Install the necessary R package removed from R CRAN (if not installed) : "SparkR"
install.packages("SparkR_2.3.0.tar.gz",repos=NULL,type="source")

Load the necessary installed packages
library(SparkR)
library(dplyr)
library(sparklyr)
library(pROC)
library(DBI)
library(ggplot2)

Connect to Spark cluster in local mode (package "SparkR")
sc_SparkR <- sparkR.init(master="local")
sc_SparkR_sql <- sparkRSQL.init(sc_SparkR)

Connect to Spark cluster in local mode (package "sparklyr")
sc_sparklyr <- spark_connect(master="local")

Notes:
N4. You can connect to both local instances of Spark as well as remote Spark clusters but we will
connect to a local. The returned Spark connection (sc) provides a remote data source to the
Spark cluster. Once you have connected to Spark, you will be able to browse the tables contained
in the Spark cluster and also, in the case of the package "sparklyr", preview Spark data frames
using the RStudio data viewer.

2. DATA LOADING

Notes:
N5. You can read and write data in CSV, JSON, and Parquet formats. Data can be stored in remote
clusters or on the local cluster, and it returns a reference to a Spark data frame.

Load the data specifying the type of variables: numerical ("double") or categorical ("character")
data <- spark_read_csv(sc=sc_sparklyr,
 name="data",
 path="Data Financed Defaults.csv",
 header=TRUE,
 delimiter=";",
 infer_schema=FALSE,
 columns=list(Contract_ID="character",
 Defaulted="character",

Guide to Spark Machine Learning for credit scoring

48

 Application_Hour_Group="character",
 Application_Week_Day="character",
 Amount="double",
 Maturity="double",
 Purpose="character",
 Province="character",
 Postal_Code_ASNEF="double",
 Age="double",
 Gender="character",
 Profession_Code="character",
 Profession_Sector="character",
 Contract_Type="character",
 Seniority="double",
 Housing_Type="character",
 Housing_Seniority="double",
 Marital_Status="character",
 People_in_Household="character",
 Income="double",
 Additional_Income="double",
 Partner_Income="double",
 Rent="double",
 Mortgage="double",
 Amount_of_Ongoing_Credits="double",
 Num_Ongoing_Credits="character"))

Number of customers and variables
count(data) ### 3468 customers
ncol(data) ### 26 variables (including the identifier of customers)

3. ANALYSIS OF THE DATA VARIABLES BEFORE PRE-PROCESSING

Balanced or unbalanced dataset?
count(filter(data,Defaulted==1)) ### 705 = 20.33%
count(filter(data,Defaulted==0)) ### 2763 = 79.67%

Variables by type
variables_type <- sdf_schema(data)
variables_type <- data.frame(Variable=names(variables_type),
 Type=as.vector(unlist(sapply(names(variables_type),
 function(i){variables_type[[i]][2]}))))
categorical <- variables_type[variables_type$Type=="StringType","Variable"]
numerical <- variables_type[variables_type$Type=="DoubleType","Variable"]
variables_type

Missing values by variables
missings <- collect(data %>% mutate_all(is.na) %>% mutate_all(as.numeric) %>% summarize_all(sum))
missings <- data.frame(Variable=names(missings),Number_of_missings=as.vector(t(missings)))
missings[missings$Number_of_missings>0,]

Categories with frequency distribution <5% in its variable
for(i in categorical[-which(categorical=="Contract_ID")]){
 show(dbGetQuery(sc_sparklyr,paste0("SELECT ",i,",COUNT(*)/3468 AS Distribution FROM data GROUP BY ",
 i," ORDER BY Distribution DESC")))
}

4. DATA PRE-PROCESSING

Modify missing values found in the analysis:
- in numerical variables by 0
- in categorical variables by "Missing"
data <- data %>% mutate(
 Postal_Code_ASNEF=ifelse(is.na(Postal_Code_ASNEF),0,Postal_Code_ASNEF),
 Additional_Income=ifelse(is.na(Additional_Income),0,Additional_Income),
 Partner_Income=ifelse(is.na(Partner_Income),0,Partner_Income),
 Rent=ifelse(is.na(Rent),0,Rent),
 Mortgage=ifelse(is.na(Mortgage),0,Mortgage),
 Profession_Code=ifelse(is.na(Profession_Code),"Missing",Profession_Code)
)

Create the list with valid levels for categorical variables (excluding categories with <5%)
valid_levels <- list(
 Levels_Application_Hour_Group=
 c("[23H, 7H)","[7H, 20H)","[20H, 23H)","OTHERS"),
 Levels_Application_Week_Day=
 c("1","2","3","4","5","6","7","OTHERS"),
 Levels_Gender=
 c("MALE","FEMALE","OTHERS"),
 Levels_Profession_Sector=
 c("PRIVATE_SECTOR","PUBLIC_SECTOR","OTHERS"),
 Levels_Contract_Type=
 c("PERMANENT","PENSION","OTHERS"),
 Levels_People_in_Household=
 c("0","1","2","OTHERS"),
 Levels_Num_Ongoing_Credits=

Guide to Spark Machine Learning for credit scoring

49

 c("0","1","2","3","OTHERS"),
 Levels_Marital_Status=
 c("DIVORCED","SINGLE","COHABITING","MARRIED","OTHERS"),
 Levels_Province=
 c("Madrid","Barcelona","Asturias (Oviedo)","OTHERS"),
 Levels_Profession_Code=
 c("OPERATOR", "ADMINISTRATIVE","TECHNICIAN","MIDDLEGRADEMANAGER","RETIREMENT","OTHERS"),

Levels_Purpose=
 c("LIQUIDITY","HOMEIMPROVEMENT","DEBTS","FURNITURE_AND_APPLIANCES","USEDCAR","MEDICALCARE",
 "VACATION","OTHERS"),
 Levels_Housing_Type=
 c("THIRD_PARTY_PROVIDED_LODGING","HOME_OWNERSHIP_WITHOUT_MORTGAGE","TENANT",
 "HOME_OWNERSHIP_WITH_MORTGAGE","OTHERS")
)

Change outliers categories by OTHERS
data <- data %>% mutate(
 Purpose=
 ifelse(Purpose %in% valid_levels[["Levels_Purpose"]],Purpose,"OTHERS"),
 Gender=
 ifelse(Gender %in% valid_levels[["Levels_Gender"]],Gender,"OTHERS"),
 Housing_Type=
 ifelse(Housing_Type %in% valid_levels[["Levels_Housing_Type"]],Housing_Type,"OTHERS"),
 Province=
 ifelse(Province %in% valid_levels[["Levels_Province"]],Province,"OTHERS"),
 Marital_Status=
 ifelse(Marital_Status %in% valid_levels[["Levels_Marital_Status"]],Marital_Status,"OTHERS"),
 Profession_Code=
 ifelse(Profession_Code %in% valid_levels[["Levels_Profession_Code"]],Profession_Code,"OTHERS"),
 Contract_Type=
 ifelse(Contract_Type %in% valid_levels[["Levels_Contract_Type"]],Contract_Type,"OTHERS"),
 Profession_Sector=
 ifelse(Profession_Sector %in% valid_levels[["Levels_Profession_Sector"]],Profession_Sector,
 "OTHERS"),
 Application_Week_Day=
 ifelse(Application_Week_Day %in% valid_levels[["Levels_Application_Week_Day"]],
 Application_Week_Day,"OTHERS"),
 People_in_Household=
 ifelse(People_in_Household %in% valid_levels[["Levels_People_in_Household"]],People_in_Household,
 "OTHERS"),
 Num_Ongoing_Credits=
 ifelse(Num_Ongoing_Credits %in% valid_levels[["Levels_Num_Ongoing_Credits"]],Num_Ongoing_Credits,
 "OTHERS"),
 Application_Hour_Group=
 ifelse(Application_Hour_Group %in% valid_levels[["Levels_Application_Hour_Group"]],
 Application_Hour_Group,"OTHERS")
)

Notes:
N6. In the case that you need to convert all categorical variables to numerical with an integer
index, the necessary Spark R code could be:

for(i in categorical[-which(categorical=="Contract_ID" | categorical=="Defaulted")]){
label_i <- as.vector(valid_levels[[paste0("Levels_",i)]])
data <- data %>% ft_string_indexer_model(input_col=i,output_col=paste0(i,"_INDEXED"),
labels=label_i)
}

Save the Spark data frame with the pre-processed data in the Spark cluster
data <- copy_to(sc_sparklyr,data,overwrite=T)

Save the Spark data frame with the pre-processed data in a local file with format Parquet
spark_write_parquet(data,"data.parquet")

5. PROTOCOL OF MODEL VALIDATION PHASE 1: Create training and test sets as well as training folds for CV

Read the Spark data frame with the pre-processed data in a local file with format Parquet
data <- spark_read_parquet(sc_sparklyr,"data","data.parquet")

Create training and test datasets (75%-25%)
data_partitions <- data %>% compute("data_partitions") %>% sdf_partition(train=0.75,test=0.25,seed=1)

Create K folds or partitions from training data for cross-validation
K <- 5
weights <- rep(1/K,times = K)
names(weights) <- paste0("Fold ",as.character(1:K))
train_partitions <- data_partitions$train %>% compute("train_partitions") %>%
 sdf_partition(weights=weights,seed=1)

Check that all categories in the test set are included in the training set
for(i in categorical[-which(categorical=="Contract_ID")]){
 cat("Does the variable ",i," have the same categories in training and test sets?","\n")
 cat(sum(!unique(as.data.frame(collect(data_partitions$test))[,i]) %in%
 unique(as.data.frame(collect(data_partitions$train))[,i]))==0,"\n")
}

Guide to Spark Machine Learning for credit scoring

50

Notes:
N7. The function "sdf_partition" returns a list with as much Spark datasets as you define. The
fold weights are the probabilities of being in every fold for the observations, and they do not
mean the fold size.

6. PROTOCOL OF MODEL VALIDATION PHASE 2: Find the best parametrization of every model with training set

Create the vectors with the names of variables by types
out <- c("Contract_ID","Postal_Code_ASNEF","Additional_Income","Partner_Income","Rent","Mortgage")
response <- c("Defaulted")
features_num <- c("Amount","Maturity","Postal_Code_ASNEF","Age","Seniority","Housing_Seniority",
 "Income","Additional_Income","Rent","Partner_Income","Mortgage",
 "Amount_of_Ongoing_Credits")
features_cat <- c("Application_Hour_Group","Application_Week_Day","Purpose","Province","Gender",
 "Profession_Code","Profession_Sector","Contract_Type","Housing_Type",
 "Marital_Status","People_in_Household","Num_Ongoing_Credits")

6.1 LOGISTIC REGRESSION ###

Starting time
Sys.time()

Create the list of candidate parametrizations
params <- list(features_num,features_cat,c(features_num,features_cat))

Iterate all candidate parametrizations
results_cv_LR <- data.frame()

for(p in 1:length(params)){

 response_LR_global <- c()
 pred_LR_global <- c()

 # Iterate all training folds
 for(i in 1:K){

 # Create the training and test sets for the ith fold
 test_i <- train_partitions[[i]]
 train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]],
 train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]])

 # Train the model without ith fold and the pth parametrization
 model_LR_i <- ml_logistic_regression(train_i,
 response=response,
 features=params[[p]])

 # Predict ith fold with the pth parametrization
 pred_LR_i <- sdf_predict(test_i,model_LR_i)
 pred_LR_i <- data.frame(collect(pred_LR_i %>% select(probability_1)))[,"probability_1"]

 # Calculate the OOB AUC for the ith fold with the pth parametrization
 response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"]
 results_cv_LR[p,i] <- auc(roc(response_i,pred_LR_i))

 # Save the ith fold response and predictions with the pth parametrization
 response_LR_global <- c(response_LR_global,response_i)
 pred_LR_global <- c(pred_LR_global,pred_LR_i)
 }

 # Calculate the rest of performance measures with the global training set predicted as OOB
 quartile_cutoff <- quantile(pred_LR_global,seq(0.25,0.75,0.25))
 quartile <- ifelse(pred_LR_global<=quartile_cutoff[1],"Q1",
 ifelse(pred_LR_global<=quartile_cutoff[2],"Q2",
 ifelse(pred_LR_global<=quartile_cutoff[3],"Q3","Q4")))
 results_cv_LR[p,6] <- auc(roc(response_LR_global,pred_LR_global))
 results_cv_LR[p,7] <- mean(response_LR_global[quartile=="Q1"]==1)
 results_cv_LR[p,8] <- mean(response_LR_global[quartile=="Q2"]==1)
 results_cv_LR[p,9] <- mean(response_LR_global[quartile=="Q3"]==1)
 results_cv_LR[p,10] <- mean(response_LR_global[quartile=="Q4"]==1)
}

Print the results table
row.names(results_cv_LR) <- c("Parametrization 1: numerical features",
 "Parametrization 2: categorical features",
 "Parametrization 3: all features")
names(results_cv_LR) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5",
 "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4")
save(results_cv_LR,file="results_cv_LR.RData")
results_cv_LR

Finishing time
Sys.time()

6.2 DECISION TREE ###

Starting time

Guide to Spark Machine Learning for credit scoring

51

Sys.time()

Create the list of candidate parametrizations
max_bins <- c(10,20,30)
max_depth <- c(5,10,15)
min_instances_per_node <- c(5,9,13)
params <- expand.grid(max_bins,max_depth,min_instances_per_node)
params <- sapply(1:nrow(params),function(i){list(params[i,])})

Iterate all candidate parametrizations
results_cv_DT <- data.frame()

for(p in 1:length(params)){

 response_DT_global <- c()
 pred_DT_global <- c()

 # Iterate all training folds
 for(i in 1:K){

 # Create the training and test sets for the ith fold
 test_i <- train_partitions[[i]]
 train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]],
 train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]])

 # Train the model without ith fold and the pth parametrization
 model_DT_i <- ml_decision_tree(train_i,
 type="classification",
 response=response,
 features=c(features_num,features_cat),
 max_bins=as.numeric(params[[p]][1]),
 max_depth=as.numeric(params[[p]][2]),
 min_instances_per_node=as.numeric(params[[p]][3]),
 seed=1)

 # Predict ith fold with the pth parametrization
 pred_DT_i <- sdf_predict(test_i,model_DT_i)
 pred_DT_i <- data.frame(collect(pred_DT_i %>% select(probability_1)))[,"probability_1"]

 # Calculate the OOB AUC for the ith fold with the pth parametrization
 response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"]
 results_cv_DT[p,i] <- auc(roc(response_i,pred_DT_i))

 # Save the ith fold response and predictions with the pth parametrization
 response_DT_global <- c(response_DT_global,response_i)
 pred_DT_global <- c(pred_DT_global,pred_DT_i)
 }

 # Calculate the rest of performance measures with the global training set predicted as OOB
 quartile_cutoff <- quantile(pred_DT_global,seq(0.25,0.75,0.25))
 quartile <- ifelse(pred_DT_global<=quartile_cutoff[1],"Q1",
 ifelse(pred_DT_global<=quartile_cutoff[2],"Q2",
 ifelse(pred_DT_global<=quartile_cutoff[3],"Q3","Q4")))
 results_cv_DT[p,6] <- auc(roc(response_DT_global,pred_DT_global))
 results_cv_DT[p,7] <- mean(response_DT_global[quartile=="Q1"]==1)
 results_cv_DT[p,8] <- mean(response_DT_global[quartile=="Q2"]==1)
 results_cv_DT[p,9] <- mean(response_DT_global[quartile=="Q3"]==1)
 results_cv_DT[p,10] <- mean(response_DT_global[quartile=="Q4"]==1)
}

Print the results table
row.names(results_cv_DT) <- sapply(1:length(params),function(i){
 paste0("max_bins=",params[[i]][1],";max_depth=",params[[i]][2],";min_instances_node=",
 params[[i]][3])})
names(results_cv_DT) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5",
 "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4")
save(results_cv_DT,file="results_cv_DT.RData")
results_cv_DT

Finishing time
Sys.time()

6.3 RANDOM FOREST ###

Starting time
Sys.time()

Create the list of candidate parametrizations
max_bins <- c(10,20,30)
max_depth <- c(5,10,15)
num.trees <- c(15,30,45)
min_instances_per_node <- c(5,9,13)
params <- expand.grid(max_bins,max_depth,num.trees,min_instances_per_node)
params <- sapply(1:nrow(params),function(i){list(params[i,])})

Iterate all candidate parametrizations
results_cv_RF <- data.frame()

Guide to Spark Machine Learning for credit scoring

52

for(p in 1:length(params)){

 response_RF_global <- c()
 pred_RF_global <- c()

 # Iterate all training folds
 for(i in 1:K){

 # Create the training and test sets for the ith fold
 test_i <- train_partitions[[i]]
 train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]],
 train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]])

 # Train the model without ith fold and the pth parametrization
 model_RF_i <- ml_random_forest(train_i,
 type="classification",
 response=response,
 features=c(features_num,features_cat),
 max_bins=as.numeric(params[[p]][1]),
 max_depth=as.numeric(params[[p]][2]),
 num_trees=as.numeric(params[[p]][3]),
 min_instances_per_node=as.numeric(params[[p]][4]),
 subsampling_rate=1,
 seed=1)

 # Predict ith fold with the pth parametrization
 pred_RF_i <- sdf_predict(test_i,model_RF_i)
 pred_RF_i <- data.frame(collect(pred_RF_i %>% select(probability_1)))[,"probability_1"]

 # Calculate the OOB AUC for the ith fold with the pth parametrization
 response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"]
 results_cv_RF[p,i] <- auc(roc(response_i,pred_RF_i))

 # Save the ith fold response and predictions with the pth parametrization
 response_RF_global <- c(response_RF_global,response_i)
 pred_RF_global <- c(pred_RF_global,pred_RF_i)
 }

 # Calculate the rest of performance measures with the global training set predicted as OOB
 quartile_cutoff <- quantile(pred_RF_global,seq(0.25,0.75,0.25))
 quartile <- ifelse(pred_RF_global<=quartile_cutoff[1],"Q1",
 ifelse(pred_RF_global<=quartile_cutoff[2],"Q2",
 ifelse(pred_RF_global<=quartile_cutoff[3],"Q3","Q4")))
 results_cv_RF[p,6] <- auc(roc(response_RF_global,pred_RF_global))
 results_cv_RF[p,7] <- mean(response_RF_global[quartile=="Q1"]==1)
 results_cv_RF[p,8] <- mean(response_RF_global[quartile=="Q2"]==1)
 results_cv_RF[p,9] <- mean(response_RF_global[quartile=="Q3"]==1)
 results_cv_RF[p,10] <- mean(response_RF_global[quartile=="Q4"]==1)
}

Print the results table
row.names(results_cv_RF) <- sapply(1:length(params),function(i){
 paste0("max_bins=",params[[i]][1],";max_depth=",params[[i]][2],";num_trees=",params[[i]][3],
 ";min_instances_node=",params[[i]][4])})
names(results_cv_RF) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5",
 "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4")
save(results_cv_RF,file="results_cv_RF.RData")
results_cv_RF

Finishing time
Sys.time()

6.4 GRADIENT BOOSTED TREES ###

Starting time
Sys.time()

Create the list of candidate parametrizations
max_depth <- c(5,10,15)
max_iter <- c(15,30,45)
step_size <- c(0.05,0.1,0.15)
params <- expand.grid(max_depth,max_iter,step_size)
params <- sapply(1:nrow(params),function(i){list(params[i,])})

Iterate all candidate parametrizations
results_cv_GBT <- data.frame()

for(p in 1:length(params)){

 response_GBT_global <- c()
 pred_GBT_global <- c()

 # Iterate all training folds
 for(i in 1:K){

 # Create the training and test sets for the ith fold
 test_i <- train_partitions[[i]]
 train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]],

Guide to Spark Machine Learning for credit scoring

53

 train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]])

 # Create the training and test sets for the ith fold in package "SparkR" format
 test_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(test_i)))
 train_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(train_i)))

 # Train the model without ith fold and the pth parametrization
 formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+")))
 model_GBT_i <- spark.gbt(train_i_SparkR,
 formula=formula,
 type="classification",
 maxDepth=as.numeric(params[[p]][1]),
 maxIter=as.numeric(params[[p]][2]),
 stepSize=as.numeric(params[[p]][3]),
 subsamplingRate=1,
 seed=1)

 # Predict ith fold with the pth parametrization
 pred_GBT_i <- predict(model_GBT_i,test_i_SparkR)
 pred_GBT_i <- unlist(lapply(as.data.frame(pred_GBT_i)[,"probability"],
 function(x)SparkR:::callJMethod(x,"toArray")[[2]]))

 # Calculate the OOB AUC for the ith fold with the pth parametrization
 response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"]
 results_cv_GBT[p,i] <- auc(roc(response_i,pred_GBT_i))

 # Save the ith fold response and predictions with the pth parametrization
 response_GBT_global <- c(response_GBT_global,response_i)
 pred_GBT_global <- c(pred_GBT_global,pred_GBT_i)
 }

 # Calculate the rest of performance measures with the global training set predicted as OOB
 quartile_cutoff <- quantile(pred_GBT_global,seq(0.25,0.75,0.25))
 quartile <- ifelse(pred_GBT_global<=quartile_cutoff[1],"Q1",
 ifelse(pred_GBT_global<=quartile_cutoff[2],"Q2",
 ifelse(pred_GBT_global<=quartile_cutoff[3],"Q3","Q4")))
 results_cv_GBT[p,6] <- auc(roc(response_GBT_global,pred_GBT_global))
 results_cv_GBT[p,7] <- mean(response_GBT_global[quartile=="Q1"]==1)
 results_cv_GBT[p,8] <- mean(response_GBT_global[quartile=="Q2"]==1)
 results_cv_GBT[p,9] <- mean(response_GBT_global[quartile=="Q3"]==1)
 results_cv_GBT[p,10] <- mean(response_GBT_global[quartile=="Q4"]==1)
}

Print the results table
row.names(results_cv_GBT) <- sapply(1:length(params),function(i){
 paste0("max_depth=",params[[i]][1],";max_iter=",params[[i]][2],
 ";step_size=",params[[i]][3])})
names(results_cv_GBT) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5",
 "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4")
save(results_cv_GBT,file="results_cv_GBT.RData")
results_cv_GBT

Finishing time
Sys.time()

6.5 NAIVE BAYES ###

Starting time
Sys.time()

Create the list of candidate parametrizations
params <- list(features_num,features_cat,c(features_num,features_cat))

Iterate all candidate parametrizations
results_cv_NB <- data.frame()

for(p in 1:length(params)){

 response_NB_global <- c()
 pred_NB_global <- c()

 # Iterate all training folds
 for(i in 1:K){

 # Create the training and test sets for the ith fold
 test_i <- train_partitions[[i]]
 train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]],
 train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]])

 # Train the model without ith fold and the pth parametrization
 model_NB_i <- ml_naive_bayes(train_i,
 response=response,
 features=params[[p]])

 # Predict ith fold with the pth parametrization
 pred_NB_i <- sdf_predict(test_i,model_NB_i)
 pred_NB_i <- data.frame(collect(pred_NB_i %>% select(probability_1)))[,"probability_1"]

Guide to Spark Machine Learning for credit scoring

54

 # Calculate the OOB AUC for the ith fold with the pth parametrization
 response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"]
 results_cv_NB[p,i] <- auc(roc(response_i,pred_NB_i))

 # Save the ith fold response and predictions with the pth parametrization
 response_NB_global <- c(response_NB_global,response_i)
 pred_NB_global <- c(pred_NB_global,pred_NB_i)
 }
 # Calculate the rest of performance measures with the global training set predicted as OOB
 quartile_cutoff <- quantile(pred_NB_global,seq(0.25,0.75,0.25))
 quartile <- ifelse(pred_NB_global<=quartile_cutoff[1],"Q1",
 ifelse(pred_NB_global<=quartile_cutoff[2],"Q2",
 ifelse(pred_NB_global<=quartile_cutoff[3],"Q3","Q4")))
 results_cv_NB[p,6] <- auc(roc(response_NB_global,pred_NB_global))
 results_cv_NB[p,7] <- mean(response_NB_global[quartile=="Q1"]==1)
 results_cv_NB[p,8] <- mean(response_NB_global[quartile=="Q2"]==1)
 results_cv_NB[p,9] <- mean(response_NB_global[quartile=="Q3"]==1)
 results_cv_NB[p,10] <- mean(response_NB_global[quartile=="Q4"]==1)
}

Print the results table
row.names(results_cv_NB) <- c("Parametrization 1: numerical features",
 "Parametrization 2: categorical features",
 "Parametrization 3: all features")
names(results_cv_NB) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5",
 "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4")
save(results_cv_NB,file="results_cv_NB.RData")
results_cv_NB

Finishing time
Sys.time()

6.6 NEURAL NETWORK ###

Starting time
Sys.time()

Create the list of candidate parametrizations
layer_hidden_1 <- c(6,8,10,12)
layer_hidden_2 <- c(4,6,8,10)
params <- expand.grid(layer_hidden_1,layer_hidden_2)
params <- sapply(1:nrow(params),function(i){list(params[i,])})

Iterate all candidate parametrizations
results_cv_NN <- data.frame()

for(p in 1:length(params)){

 response_NN_global <- c()
 pred_NN_global <- c()

 # Iterate all training folds
 for(i in 1:K){

 # Create the training and test sets for the ith fold
 test_i <- train_partitions[[i]]
 train_i <- rbind(train_partitions[[c(1:K)[-i][1]]],train_partitions[[c(1:K)[-i][2]]],
 train_partitions[[c(1:K)[-i][3]]],train_partitions[[c(1:K)[-i][4]]])

 # Create the training and test sets for the ith fold in package "SparkR" format
 test_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(test_i)))
 train_i_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(train_i)))

 # Establish the number of neurons:
 layer_output <- 2
 layer_hidden_1 <- as.numeric(params[[p]][1])
 layer_hidden_2 <- as.numeric(params[[p]][2])
 layer_input <- sum(sapply(as.data.frame(train_i_SparkR[,features_cat]),
 function(x)length(unique(x))-1),length(features_num))

 # Train the model without ith fold and the pth parametrization
 formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+")))
 model_NN_i <- spark.mlp(train_i_SparkR,
 formula=formula,
 layers=c(layer_input,layer_hidden_1,layer_hidden_2,layer_output),
 seed=1)

 # Predict ith fold with the pth parametrization
 pred_NN_i <- predict(model_NN_i,test_i_SparkR)
 pred_NN_i <- unlist(lapply(as.data.frame(pred_NN_i)[,"probability"],
 function(x)SparkR:::callJMethod(x,"toArray")[[2]]))

 # Calculate the OOB AUC for the ith fold with the pth parametrization
 response_i <- data.frame(collect(test_i %>% select(Defaulted)))[,"Defaulted"]
 results_cv_NN[p,i] <- auc(roc(response_i,pred_NN_i))

 # Save the ith fold response and predictions with the pth parametrization
 response_NN_global <- c(response_NN_global,response_i)

Guide to Spark Machine Learning for credit scoring

55

 pred_NN_global <- c(pred_NN_global,pred_NN_i)
 }

 # Calculate the rest of performance measures with the global training set predicted as OOB
 quartile_cutoff <- quantile(pred_NN_global,seq(0.25,0.75,0.25))
 quartile <- ifelse(pred_NN_global<=quartile_cutoff[1],"Q1",
 ifelse(pred_NN_global<=quartile_cutoff[2],"Q2",
 ifelse(pred_NN_global<=quartile_cutoff[3],"Q3","Q4")))
 results_cv_NN[p,6] <- auc(roc(response_NN_global,pred_NN_global))
 results_cv_NN[p,7] <- mean(response_NN_global[quartile=="Q1"]==1)
 results_cv_NN[p,8] <- mean(response_NN_global[quartile=="Q2"]==1)
 results_cv_NN[p,9] <- mean(response_NN_global[quartile=="Q3"]==1)
 results_cv_NN[p,10] <- mean(response_NN_global[quartile=="Q4"]==1)
}

Print the results table
row.names(results_cv_NN) <- sapply(1:length(params),function(i){
 paste0("hidden_layer_1=",params[[i]][1],";hidden_layer_2=",params[[i]][2])})
names(results_cv_NN) <- c("AUC Fold 1","AUC Fold 2","AUC Fold 3","AUC Fold 4","AUC Fold 5",
 "AUC Global","% True + Q1","% True + Q2","% True + Q3","% True + Q4")
save(results_cv_NN,file="results_cv_NN.RData")
results_cv_NN

Finishing time
Sys.time()

Notes:
N8. In the Multilayer Perceptron Neural Network, the number of neurons by layers are:
- output layer: the # of classes in the response.
- hidden layers: tunning parameters.
- input layer: as much nodes as input variables. It means the # of numerical variables, plus
the # of unique categories in all categorical variables, less the # of categorical features
(because the model creates, for every categorical feature, dummies for every category except
one for avoiding linear dependence).

7. PROTOCOL OF MODEL VALIDATION PHASE 3: Train models with optimal parametrizations

Create target variable of training and test sets
response_train <- data.frame(collect(data_partitions$train %>% select(Defaulted)))[,"Defaulted"]
response_test <- data.frame(collect(data_partitions$test %>% select(Defaulted)))[,"Defaulted"]

Create the training and test sets in "SparkR" package format
train_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(data_partitions$train)))
test_SparkR <- createDataFrame(sc_SparkR_sql,as.data.frame(collect(data_partitions$test)))

Create the results table, one for training and one for test
metrics_names <- c("Sensitivity + Specificity","Accuracy","AUC","% True + Q1","% True + Q2",
 "% True + Q3","% True + Q4")
row.names <- c(paste0("Criteria: ",metrics_names),paste0("Cut-off: ",metrics_names[-3]))
results_optimals_train <- data.frame(row.names=row.names)
results_optimals_test <- data.frame(row.names=row.names)

7.1 LOGISTIC REGRESSION ###

Train the optimal model with all training set
model_LR <- ml_logistic_regression(data_partitions$train,
 response=response,
 features=c(features_num,features_cat))

Summary of the model
summary(model_LR)

Predict training data
pred_LR_train <- sdf_predict(data_partitions$train,model_LR)
pred_LR_train <- data.frame(collect(pred_LR_train %>% select(probability_1)))[,"probability_1"]

Predict test data
pred_LR_test <- sdf_predict(data_partitions$test,model_LR)
pred_LR_test <- data.frame(collect(pred_LR_test %>% select(probability_1)))[,"probability_1"]

Iterate all possible cut-offs and calculate performance measures in training set
m1_LR_train <- c()
m2_LR_train <- c()
lowest <- trunc(min(pred_LR_train)*100)/100+0.01
highest <- trunc(max(pred_LR_train)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_LR_train_c <- table(Real=response_train,Predicted=ifelse(pred_LR_train>=c,"1","0"))
 m1_LR_train <- c(m1_LR_train,table_LR_train_c[2,2]/sum(table_LR_train_c[2,]) +
 table_LR_train_c[1,1]/sum(table_LR_train_c[1,]))
 m2_LR_train <- c(m2_LR_train,sum(diag(table_LR_train_c))/sum(table_LR_train_c))
}

cutoffs_LR_train <- quantile(pred_LR_train,seq(0.25,1,0.25))
quartiles_LR_train <- ifelse(pred_LR_train<=cutoffs_LR_train[1],"Q1",
 ifelse(pred_LR_train<=cutoffs_LR_train[2],"Q2",

Guide to Spark Machine Learning for credit scoring

56

 ifelse(pred_LR_train<=cutoffs_LR_train[3],"Q3","Q4")))

results_optimals_train[1,"LR"] <- max(m1_LR_train)
results_optimals_train[2,"LR"] <- max(m2_LR_train)
results_optimals_train[3,"LR"] <- auc(roc(response_train,pred_LR_train))
results_optimals_train[4,"LR"] <- mean(response_train[quartiles_LR_train=="Q1"]==1)
results_optimals_train[5,"LR"] <- mean(response_train[quartiles_LR_train=="Q2"]==1)
results_optimals_train[6,"LR"] <- mean(response_train[quartiles_LR_train=="Q3"]==1)
results_optimals_train[7,"LR"] <- mean(response_train[quartiles_LR_train=="Q4"]==1)
results_optimals_train[8,"LR"] <- seq(lowest,highest,0.01)[which(m1_LR_train==max(m1_LR_train))[1]]
results_optimals_train[9,"LR"] <- seq(lowest,highest,0.01)[which(m2_LR_train==max(m2_LR_train))[1]]
results_optimals_train[10,"LR"] <- cutoffs_LR_train[1]
results_optimals_train[11,"LR"] <- cutoffs_LR_train[2]
results_optimals_train[12,"LR"] <- cutoffs_LR_train[3]
results_optimals_train[13,"LR"] <- cutoffs_LR_train[4]

Iterate all possible cut-offs and calculate performance measures in test set
m1_LR_test <- c()
m2_LR_test <- c()
lowest <- trunc(min(pred_LR_test)*100)/100+0.01
highest <- trunc(max(pred_LR_test)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_LR_test_c <- table(Real=response_test,Predicted=ifelse(pred_LR_test>=c,"1","0"))

 m1_LR_test <- c(m1_LR_test,table_LR_test_c[2,2]/sum(table_LR_test_c[2,]) +
 table_LR_test_c[1,1]/sum(table_LR_test_c[1,]))
 m2_LR_test <- c(m2_LR_test,sum(diag(table_LR_test_c))/sum(table_LR_test_c))
}

cutoffs_LR_test <- quantile(pred_LR_test,seq(0.25,1,0.25))
quartiles_LR_test <- ifelse(pred_LR_test<=cutoffs_LR_test[1],"Q1",
 ifelse(pred_LR_test<=cutoffs_LR_test[2],"Q2",
 ifelse(pred_LR_test<=cutoffs_LR_test[3],"Q3","Q4")))

results_optimals_test[1,"LR"] <- max(m1_LR_test)
results_optimals_test[2,"LR"] <- max(m2_LR_test)
results_optimals_test[3,"LR"] <- auc(roc(response_test,pred_LR_test))
results_optimals_test[4,"LR"] <- mean(response_test[quartiles_LR_test=="Q1"]==1)
results_optimals_test[5,"LR"] <- mean(response_test[quartiles_LR_test=="Q2"]==1)
results_optimals_test[6,"LR"] <- mean(response_test[quartiles_LR_test=="Q3"]==1)
results_optimals_test[7,"LR"] <- mean(response_test[quartiles_LR_test=="Q4"]==1)
results_optimals_test[8,"LR"] <- seq(lowest,highest,0.01)[which(m1_LR_test==max(m1_LR_test))[1]]
results_optimals_test[9,"LR"] <- seq(lowest,highest,0.01)[which(m2_LR_test==max(m2_LR_test))[1]]
results_optimals_test[10,"LR"] <- cutoffs_LR_test[1]
results_optimals_test[11,"LR"] <- cutoffs_LR_test[2]
results_optimals_test[12,"LR"] <- cutoffs_LR_test[3]
results_optimals_test[13,"LR"] <- cutoffs_LR_test[4]

7.2 DECISION TREE ###

Train the optimal model with all training set
model_DT <- ml_decision_tree(data_partitions$train,
 type="classification",
 response=response,
 features=c(features_num,features_cat),
 max_bins=30,
 max_depth=5,
 min_instances_per_node=5,
 seed=1)

Features importance
ml_feature_importances(model_DT)

Predict training data
pred_DT_train <- sdf_predict(data_partitions$train,model_DT)
pred_DT_train <- data.frame(collect(pred_DT_train %>% select(probability_1)))[,"probability_1"]

Predict test data
pred_DT_test <- sdf_predict(data_partitions$test,model_DT)
pred_DT_test <- data.frame(collect(pred_DT_test %>% select(probability_1)))[,"probability_1"]

Iterate all possible cut-offs and calculate performance measures in training set
m1_DT_train <- c()
m2_DT_train <- c()
lowest <- trunc(min(pred_DT_train)*100)/100+0.01
highest <- trunc(max(pred_DT_train)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_DT_train_c <- table(Real=response_train,Predicted=ifelse(pred_DT_train>=c,"1","0"))
 m1_DT_train <- c(m1_DT_train,table_DT_train_c[2,2]/sum(table_DT_train_c[2,]) +
 table_DT_train_c[1,1]/sum(table_DT_train_c[1,]))
 m2_DT_train <- c(m2_DT_train,sum(diag(table_DT_train_c))/sum(table_DT_train_c))
}

cutoffs_DT_train <- quantile(pred_DT_train,seq(0.25,1,0.25))
quartiles_DT_train <- ifelse(pred_DT_train<=cutoffs_DT_train[1],"Q1",
 ifelse(pred_DT_train<=cutoffs_DT_train[2],"Q2",

Guide to Spark Machine Learning for credit scoring

57

 ifelse(pred_DT_train<=cutoffs_DT_train[3],"Q3","Q4")))

results_optimals_train[1,"DT"] <- max(m1_DT_train)
results_optimals_train[2,"DT"] <- max(m2_DT_train)
results_optimals_train[3,"DT"] <- auc(roc(response_train,pred_DT_train))
results_optimals_train[4,"DT"] <- mean(response_train[quartiles_DT_train=="Q1"]==1)
results_optimals_train[5,"DT"] <- mean(response_train[quartiles_DT_train=="Q2"]==1)
results_optimals_train[6,"DT"] <- mean(response_train[quartiles_DT_train=="Q3"]==1)
results_optimals_train[7,"DT"] <- mean(response_train[quartiles_DT_train=="Q4"]==1)
results_optimals_train[8,"DT"] <- seq(lowest,highest,0.01)[which(m1_DT_train==max(m1_DT_train))[1]]
results_optimals_train[9,"DT"] <- seq(lowest,highest,0.01)[which(m2_DT_train==max(m2_DT_train))[1]]
results_optimals_train[10,"DT"] <- cutoffs_DT_train[1]
results_optimals_train[11,"DT"] <- cutoffs_DT_train[2]
results_optimals_train[12,"DT"] <- cutoffs_DT_train[3]
results_optimals_train[13,"DT"] <- cutoffs_DT_train[4]

Iterate all possible cut-offs and calculate performance measures in test set
m1_DT_test <- c()
m2_DT_test <- c()
lowest <- trunc(min(pred_DT_test)*100)/100+0.01
highest <- trunc(max(pred_DT_test)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_DT_test_c <- table(Real=response_test,Predicted=ifelse(pred_DT_test>=c,"1","0"))
 m1_DT_test <- c(m1_DT_test,table_DT_test_c[2,2]/sum(table_DT_test_c[2,]) +
 table_DT_test_c[1,1]/sum(table_DT_test_c[1,]))
 m2_DT_test <- c(m2_DT_test,sum(diag(table_DT_test_c))/sum(table_DT_test_c))
}

cutoffs_DT_test <- quantile(pred_DT_test,seq(0.25,1,0.25))
quartiles_DT_test <- ifelse(pred_DT_test<=cutoffs_DT_test[1],"Q1",
 ifelse(pred_DT_test<=cutoffs_DT_test[2],"Q2",
 ifelse(pred_DT_test<=cutoffs_DT_test[3],"Q3","Q4")))

results_optimals_test[1,"DT"] <- max(m1_DT_test)
results_optimals_test[2,"DT"] <- max(m2_DT_test)
results_optimals_test[3,"DT"] <- auc(roc(response_test,pred_DT_test))
results_optimals_test[4,"DT"] <- mean(response_test[quartiles_DT_test=="Q1"]==1)
results_optimals_test[5,"DT"] <- mean(response_test[quartiles_DT_test=="Q2"]==1)
results_optimals_test[6,"DT"] <- mean(response_test[quartiles_DT_test=="Q3"]==1)
results_optimals_test[7,"DT"] <- mean(response_test[quartiles_DT_test=="Q4"]==1)
results_optimals_test[8,"DT"] <- seq(lowest,highest,0.01)[which(m1_DT_test==max(m1_DT_test))[1]]
results_optimals_test[9,"DT"] <- seq(lowest,highest,0.01)[which(m2_DT_test==max(m2_DT_test))[1]]
results_optimals_test[10,"DT"] <- cutoffs_DT_test[1]
results_optimals_test[11,"DT"] <- cutoffs_DT_test[2]
results_optimals_test[12,"DT"] <- cutoffs_DT_test[3]
results_optimals_test[13,"DT"] <- cutoffs_DT_test[4]

7.3 RANDOM FOREST ###

Train the optimal model with all training set
model_RF <- ml_random_forest(data_partitions$train,
 type="classification",
 response=response,
 features=c(features_num,features_cat),
 max_bins=30,
 max_depth=5,
 num_trees=30,
 min_instances_per_node=9,
 subsampling_rate=1,
 seed=1)

Features importance
ml_feature_importances(model_RF)

Predict training data
pred_RF_train <- sdf_predict(data_partitions$train,model_RF)
pred_RF_train <- data.frame(collect(pred_RF_train %>% select(probability_1)))[,"probability_1"]

Predict test data
pred_RF_test <- sdf_predict(data_partitions$test,model_RF)
pred_RF_test <- data.frame(collect(pred_RF_test %>% select(probability_1)))[,"probability_1"]

Iterate all possible cut-offs and calculate performance measures in training set
m1_RF_train <- c()
m2_RF_train <- c()
lowest <- trunc(min(pred_RF_train)*100)/100+0.01
highest <- trunc(max(pred_RF_train)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_RF_train_c <- table(Real=response_train,Predicted=ifelse(pred_RF_train>=c,"1","0"))
 m1_RF_train <- c(m1_RF_train,table_RF_train_c[2,2]/sum(table_RF_train_c[2,]) +
 table_RF_train_c[1,1]/sum(table_RF_train_c[1,]))
 m2_RF_train <- c(m2_RF_train,sum(diag(table_RF_train_c))/sum(table_RF_train_c))
}

cutoffs_RF_train <- quantile(pred_RF_train,seq(0.25,1,0.25))
quartiles_RF_train <- ifelse(pred_RF_train<=cutoffs_RF_train[1],"Q1",

Guide to Spark Machine Learning for credit scoring

58

 ifelse(pred_RF_train<=cutoffs_RF_train[2],"Q2",
 ifelse(pred_RF_train<=cutoffs_RF_train[3],"Q3","Q4")))

results_optimals_train[1,"RF"] <- max(m1_RF_train)
results_optimals_train[2,"RF"] <- max(m2_RF_train)
results_optimals_train[3,"RF"] <- auc(roc(response_train,pred_RF_train))
results_optimals_train[4,"RF"] <- mean(response_train[quartiles_RF_train=="Q1"]==1)
results_optimals_train[5,"RF"] <- mean(response_train[quartiles_RF_train=="Q2"]==1)
results_optimals_train[6,"RF"] <- mean(response_train[quartiles_RF_train=="Q3"]==1)
results_optimals_train[7,"RF"] <- mean(response_train[quartiles_RF_train=="Q4"]==1)
results_optimals_train[8,"RF"] <- seq(lowest,highest,0.01)[which(m1_RF_train==max(m1_RF_train))[1]]
results_optimals_train[9,"RF"] <- seq(lowest,highest,0.01)[which(m2_RF_train==max(m2_RF_train))[1]]
results_optimals_train[10,"RF"] <- cutoffs_RF_train[1]
results_optimals_train[11,"RF"] <- cutoffs_RF_train[2]
results_optimals_train[12,"RF"] <- cutoffs_RF_train[3]
results_optimals_train[13,"RF"] <- cutoffs_RF_train[4]

Iterate all possible cut-offs and calculate performance measures in test set
m1_RF_test <- c()
m2_RF_test <- c()
lowest <- trunc(min(pred_RF_test)*100)/100+0.01
highest <- trunc(max(pred_RF_test)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_RF_test_c <- table(Real=response_test,Predicted=ifelse(pred_RF_test>=c,"1","0"))
 m1_RF_test <- c(m1_RF_test,table_RF_test_c[2,2]/sum(table_RF_test_c[2,]) +
 table_RF_test_c[1,1]/sum(table_RF_test_c[1,]))
 m2_RF_test <- c(m2_RF_test,sum(diag(table_RF_test_c))/sum(table_RF_test_c))
}

cutoffs_RF_test <- quantile(pred_RF_test,seq(0.25,1,0.25))
quartiles_RF_test <- ifelse(pred_RF_test<=cutoffs_RF_test[1],"Q1",
 ifelse(pred_RF_test<=cutoffs_RF_test[2],"Q2",
 ifelse(pred_RF_test<=cutoffs_RF_test[3],"Q3","Q4")))

results_optimals_test[1,"RF"] <- max(m1_RF_test)
results_optimals_test[2,"RF"] <- max(m2_RF_test)
results_optimals_test[3,"RF"] <- auc(roc(response_test,pred_RF_test))
results_optimals_test[4,"RF"] <- mean(response_test[quartiles_RF_test=="Q1"]==1)
results_optimals_test[5,"RF"] <- mean(response_test[quartiles_RF_test=="Q2"]==1)
results_optimals_test[6,"RF"] <- mean(response_test[quartiles_RF_test=="Q3"]==1)
results_optimals_test[7,"RF"] <- mean(response_test[quartiles_RF_test=="Q4"]==1)
results_optimals_test[8,"RF"] <- seq(lowest,highest,0.01)[which(m1_RF_test==max(m1_RF_test))[1]]
results_optimals_test[9,"RF"] <- seq(lowest,highest,0.01)[which(m2_RF_test==max(m2_RF_test))[1]]
results_optimals_test[10,"RF"] <- cutoffs_RF_test[1]
results_optimals_test[11,"RF"] <- cutoffs_RF_test[2]
results_optimals_test[12,"RF"] <- cutoffs_RF_test[3]
results_optimals_test[13,"RF"] <- cutoffs_RF_test[4]

7.4 GRADIENT BOOSTED TREES ###

Train the optimal model with all training set
formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+")))
model_GBT <- spark.gbt(data=train_SparkR,
 formula=formula,
 type="classification",
 maxDepth=10,
 maxIter=15,
 stepSize=0.1,
 minInstancesPerNode=1,
 seed=1)

Predict training data
pred_GBT_train <- predict(model_GBT,train_SparkR)
pred_GBT_train <- unlist(lapply(as.data.frame(pred_GBT_train)[,"probability"],
 function(x)SparkR:::callJMethod(x,"toArray")[[2]]))

Predict test data
pred_GBT_test <- predict(model_GBT,test_SparkR)
pred_GBT_test <- unlist(lapply(as.data.frame(pred_GBT_test)[,"probability"],
 function(x)SparkR:::callJMethod(x,"toArray")[[2]]))

Iterate all possible cut-offs and calculate performance measures in training set
m1_GBT_train <- c()
m2_GBT_train <- c()
lowest <- trunc(min(pred_GBT_train)*100)/100+0.01
highest <- trunc(max(pred_GBT_train)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_GBT_train_c <- table(Real=response_train,Predicted=ifelse(pred_GBT_train>=c,"1","0"))
 m1_GBT_train <- c(m1_GBT_train,table_GBT_train_c[2,2]/sum(table_GBT_train_c[2,]) +
 table_GBT_train_c[1,1]/sum(table_GBT_train_c[1,]))
 m2_GBT_train <- c(m2_GBT_train,sum(diag(table_GBT_train_c))/sum(table_GBT_train_c))
}

cutoffs_GBT_train <- quantile(pred_GBT_train,seq(0.25,1,0.25))
quartiles_GBT_train <- ifelse(pred_GBT_train<=cutoffs_GBT_train[1],"Q1",
 ifelse(pred_GBT_train<=cutoffs_GBT_train[2],"Q2",

Guide to Spark Machine Learning for credit scoring

59

 ifelse(pred_GBT_train<=cutoffs_GBT_train[3],"Q3","Q4")))

results_optimals_train[1,"GBT"] <- max(m1_GBT_train)
results_optimals_train[2,"GBT"] <- max(m2_GBT_train)
results_optimals_train[3,"GBT"] <- auc(roc(response_train,pred_GBT_train))
results_optimals_train[4,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q1"]==1)
results_optimals_train[5,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q2"]==1)
results_optimals_train[6,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q3"]==1)
results_optimals_train[7,"GBT"] <- mean(response_train[quartiles_GBT_train=="Q4"]==1)
results_optimals_train[8,"GBT"] <- seq(lowest,highest,0.01)[which(m1_GBT_train==max(m1_GBT_train))[1]]
results_optimals_train[9,"GBT"] <- seq(lowest,highest,0.01)[which(m2_GBT_train==max(m2_GBT_train))[1]]
results_optimals_train[10,"GBT"] <- cutoffs_GBT_train[1]
results_optimals_train[11,"GBT"] <- cutoffs_GBT_train[2]
results_optimals_train[12,"GBT"] <- cutoffs_GBT_train[3]
results_optimals_train[13,"GBT"] <- cutoffs_GBT_train[4]

Iterate all possible cut-offs and calculate performance measures in test set
m1_GBT_test <- c()
m2_GBT_test <- c()
lowest <- trunc(min(pred_GBT_test)*100)/100+0.01
highest <- trunc(max(pred_GBT_test)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_GBT_test_c <- table(Real=response_test,Predicted=ifelse(pred_GBT_test>=c,"1","0"))
 m1_GBT_test <- c(m1_GBT_test,table_GBT_test_c[2,2]/sum(table_GBT_test_c[2,]) +
 table_GBT_test_c[1,1]/sum(table_GBT_test_c[1,]))
 m2_GBT_test <- c(m2_GBT_test,sum(diag(table_GBT_test_c))/sum(table_GBT_test_c))
}

cutoffs_GBT_test <- quantile(pred_GBT_test,seq(0.25,1,0.25))
quartiles_GBT_test <- ifelse(pred_GBT_test<=cutoffs_GBT_test[1],"Q1",
 ifelse(pred_GBT_test<=cutoffs_GBT_test[2],"Q2",
 ifelse(pred_GBT_test<=cutoffs_GBT_test[3],"Q3","Q4")))

results_optimals_test[1,"GBT"] <- max(m1_GBT_test)
results_optimals_test[2,"GBT"] <- max(m2_GBT_test)
results_optimals_test[3,"GBT"] <- auc(roc(response_test,pred_GBT_test))
results_optimals_test[4,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q1"]==1)
results_optimals_test[5,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q2"]==1)
results_optimals_test[6,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q3"]==1)
results_optimals_test[7,"GBT"] <- mean(response_test[quartiles_GBT_test=="Q4"]==1)
results_optimals_test[8,"GBT"] <- seq(lowest,highest,0.01)[which(m1_GBT_test==max(m1_GBT_test))[1]]
results_optimals_test[9,"GBT"] <- seq(lowest,highest,0.01)[which(m2_GBT_test==max(m2_GBT_test))[1]]
results_optimals_test[10,"GBT"] <- cutoffs_GBT_test[1]
results_optimals_test[11,"GBT"] <- cutoffs_GBT_test[2]
results_optimals_test[12,"GBT"] <- cutoffs_GBT_test[3]
results_optimals_test[13,"GBT"] <- cutoffs_GBT_test[4]

7.5 NAIVE BAYES ###

Train the optimal model with all training set
model_NB <- ml_naive_bayes(data_partitions$train,
 response=response,
 features=features_cat)

Predict training data
pred_NB_train <- sdf_predict(data_partitions$train,model_NB)
pred_NB_train <- data.frame(collect(pred_NB_train %>% select(probability_1)))[,"probability_1"]

Predict test data
pred_NB_test <- sdf_predict(data_partitions$test,model_NB)
pred_NB_test <- data.frame(collect(pred_NB_test %>% select(probability_1)))[,"probability_1"]

Iterate all possible cut-offs and calculate performance measures in training set
m1_NB_train <- c()
m2_NB_train <- c()
lowest <- trunc(min(pred_NB_train)*100)/100+0.01
highest <- trunc(max(pred_NB_train)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_NB_train_c <- table(Real=response_train,Predicted=ifelse(pred_NB_train>=c,"1","0"))
 m1_NB_train <- c(m1_NB_train,table_NB_train_c[2,2]/sum(table_NB_train_c[2,]) +
 table_NB_train_c[1,1]/sum(table_NB_train_c[1,]))
 m2_NB_train <- c(m2_NB_train,sum(diag(table_NB_train_c))/sum(table_NB_train_c))
}

cutoffs_NB_train <- quantile(pred_NB_train,seq(0.25,1,0.25))
quartiles_NB_train <- ifelse(pred_NB_train<=cutoffs_NB_train[1],"Q1",
 ifelse(pred_NB_train<=cutoffs_NB_train[2],"Q2",
 ifelse(pred_NB_train<=cutoffs_NB_train[3],"Q3","Q4")))

results_optimals_train[1,"NB"] <- max(m1_NB_train)
results_optimals_train[2,"NB"] <- max(m2_NB_train)
results_optimals_train[3,"NB"] <- auc(roc(response_train,pred_NB_train))
results_optimals_train[4,"NB"] <- mean(response_train[quartiles_NB_train=="Q1"]==1)
results_optimals_train[5,"NB"] <- mean(response_train[quartiles_NB_train=="Q2"]==1)
results_optimals_train[6,"NB"] <- mean(response_train[quartiles_NB_train=="Q3"]==1)
results_optimals_train[7,"NB"] <- mean(response_train[quartiles_NB_train=="Q4"]==1)

Guide to Spark Machine Learning for credit scoring

60

results_optimals_train[8,"NB"] <- seq(lowest,highest,0.01)[which(m1_NB_train==max(m1_NB_train))[1]]
results_optimals_train[9,"NB"] <- seq(lowest,highest,0.01)[which(m2_NB_train==max(m2_NB_train))[1]]
results_optimals_train[10,"NB"] <- cutoffs_NB_train[1]
results_optimals_train[11,"NB"] <- cutoffs_NB_train[2]
results_optimals_train[12,"NB"] <- cutoffs_NB_train[3]
results_optimals_train[13,"NB"] <- cutoffs_NB_train[4]

Iterate all possible cut-offs and calculate performance measures in test set
m1_NB_test <- c()
m2_NB_test <- c()
lowest <- trunc(min(pred_NB_test)*100)/100+0.01
highest <- trunc(max(pred_NB_test)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_NB_test_c <- table(Real=response_test,Predicted=ifelse(pred_NB_test>=c,"1","0"))
 m1_NB_test <- c(m1_NB_test,table_NB_test_c[2,2]/sum(table_NB_test_c[2,]) +
 table_NB_test_c[1,1]/sum(table_NB_test_c[1,]))
 m2_NB_test <- c(m2_NB_test,sum(diag(table_NB_test_c))/sum(table_NB_test_c))
}

cutoffs_NB_test <- quantile(pred_NB_test,seq(0.25,1,0.25))
quartiles_NB_test <- ifelse(pred_NB_test<=cutoffs_NB_test[1],"Q1",
 ifelse(pred_NB_test<=cutoffs_NB_test[2],"Q2",
 ifelse(pred_NB_test<=cutoffs_NB_test[3],"Q3","Q4")))

results_optimals_test[1,"NB"] <- max(m1_NB_test)
results_optimals_test[2,"NB"] <- max(m2_NB_test)
results_optimals_test[3,"NB"] <- auc(roc(response_test,pred_NB_test))
results_optimals_test[4,"NB"] <- mean(response_test[quartiles_NB_test=="Q1"]==1)
results_optimals_test[5,"NB"] <- mean(response_test[quartiles_NB_test=="Q2"]==1)
results_optimals_test[6,"NB"] <- mean(response_test[quartiles_NB_test=="Q3"]==1)
results_optimals_test[7,"NB"] <- mean(response_test[quartiles_NB_test=="Q4"]==1)
results_optimals_test[8,"NB"] <- seq(lowest,highest,0.01)[which(m1_NB_test==max(m1_NB_test))[1]]
results_optimals_test[9,"NB"] <- seq(lowest,highest,0.01)[which(m2_NB_test==max(m2_NB_test))[1]]
results_optimals_test[10,"NB"] <- cutoffs_NB_test[1]
results_optimals_test[11,"NB"] <- cutoffs_NB_test[2]
results_optimals_test[12,"NB"] <- cutoffs_NB_test[3]
results_optimals_test[13,"NB"] <- cutoffs_NB_test[4]

7.6 NEURAL NETWORK ###

Train the optimal model with all training set
layer_output <- 2
layer_hidden_1 <- 12
layer_hidden_2 <- 4
layer_input <- sum(sapply(as.data.frame(train_SparkR[,features_cat]),function(x)length(unique(x))-1),
 length(features_num))
formula <- as.formula(paste(response,"~",paste(c(features_num,features_cat),collapse="+")))
model_NN <- spark.mlp(train_SparkR,
 formula=formula,
 layers=c(layer_input,layer_hidden_1,layer_hidden_2,layer_output),
 seed=1)

Predict training data
pred_NN_train <- predict(model_NN,train_SparkR)
pred_NN_train <- unlist(lapply(as.data.frame(pred_NN_train)[,"probability"],
 function(x)SparkR:::callJMethod(x,"toArray")[[2]]))
Predict test data
pred_NN_test <- predict(model_NN,test_SparkR)
pred_NN_test <- unlist(lapply(as.data.frame(pred_NN_test)[,"probability"],
 function(x)SparkR:::callJMethod(x,"toArray")[[2]]))

Iterate all possible cut-offs and calculate performance measures in training set
m1_NN_train <- c()
m2_NN_train <- c()
lowest <- trunc(min(pred_NN_train)*100)/100+0.01
highest <- trunc(max(pred_NN_train)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_NN_train_c <- table(Real=response_train,Predicted=ifelse(pred_NN_train>=c,"1","0"))
 m1_NN_train <- c(m1_NN_train,table_NN_train_c[2,2]/sum(table_NN_train_c[2,]) +
 table_NN_train_c[1,1]/sum(table_NN_train_c[1,]))
 m2_NN_train <- c(m2_NN_train,sum(diag(table_NN_train_c))/sum(table_NN_train_c))
}

cutoffs_NN_train <- quantile(pred_NN_train,seq(0.25,1,0.25))
quartiles_NN_train <- ifelse(pred_NN_train<=cutoffs_NN_train[1],"Q1",
 ifelse(pred_NN_train<=cutoffs_NN_train[2],"Q2",
 ifelse(pred_NN_train<=cutoffs_NN_train[3],"Q3","Q4")))

results_optimals_train[1,"NN"] <- max(m1_NN_train)
results_optimals_train[2,"NN"] <- max(m2_NN_train)
results_optimals_train[3,"NN"] <- auc(roc(response_train,pred_NN_train))
results_optimals_train[4,"NN"] <- mean(response_train[quartiles_NN_train=="Q1"]==1)
results_optimals_train[5,"NN"] <- mean(response_train[quartiles_NN_train=="Q2"]==1)
results_optimals_train[6,"NN"] <- mean(response_train[quartiles_NN_train=="Q3"]==1)
results_optimals_train[7,"NN"] <- mean(response_train[quartiles_NN_train=="Q4"]==1)
results_optimals_train[8,"NN"] <- seq(lowest,highest,0.01)[which(m1_NN_train==max(m1_NN_train))[1]]

Guide to Spark Machine Learning for credit scoring

61

results_optimals_train[9,"NN"] <- seq(lowest,highest,0.01)[which(m2_NN_train==max(m2_NN_train))[1]]
results_optimals_train[10,"NN"] <- cutoffs_NN_train[1]
results_optimals_train[11,"NN"] <- cutoffs_NN_train[2]
results_optimals_train[12,"NN"] <- cutoffs_NN_train[3]
results_optimals_train[13,"NN"] <- cutoffs_NN_train[4]

Iterate all possible cut-offs and calculate performance measures in test set
m1_NN_test <- c()
m2_NN_test <- c()
lowest <- trunc(min(pred_NN_test)*100)/100+0.01
highest <- trunc(max(pred_NN_test)*100)/100

for(c in seq(lowest,highest,0.01)){
 table_NN_test_c <- table(Real=response_test,Predicted=ifelse(pred_NN_test>=c,"1","0"))
 m1_NN_test <- c(m1_NN_test,table_NN_test_c[2,2]/sum(table_NN_test_c[2,]) +
 table_NN_test_c[1,1]/sum(table_NN_test_c[1,]))
 m2_NN_test <- c(m2_NN_test,sum(diag(table_NN_test_c))/sum(table_NN_test_c))
}

cutoffs_NN_test <- quantile(pred_NN_test,seq(0.25,1,0.25))
quartiles_NN_test <- ifelse(pred_NN_test<=cutoffs_NN_test[1],"Q1",
 ifelse(pred_NN_test<=cutoffs_NN_test[2],"Q2",
 ifelse(pred_NN_test<=cutoffs_NN_test[3],"Q3","Q4")))

results_optimals_test[1,"NN"] <- max(m1_NN_test)
results_optimals_test[2,"NN"] <- max(m2_NN_test)
results_optimals_test[3,"NN"] <- auc(roc(response_test,pred_NN_test))
results_optimals_test[4,"NN"] <- mean(response_test[quartiles_NN_test=="Q1"]==1)
results_optimals_test[5,"NN"] <- mean(response_test[quartiles_NN_test=="Q2"]==1)
results_optimals_test[6,"NN"] <- mean(response_test[quartiles_NN_test=="Q3"]==1)
results_optimals_test[7,"NN"] <- mean(response_test[quartiles_NN_test=="Q4"]==1)
results_optimals_test[8,"NN"] <- seq(lowest,highest,0.01)[which(m1_NN_test==max(m1_NN_test))[1]]
results_optimals_test[9,"NN"] <- seq(lowest,highest,0.01)[which(m2_NN_test==max(m2_NN_test))[1]]
results_optimals_test[10,"NN"] <- cutoffs_NN_test[1]
results_optimals_test[11,"NN"] <- cutoffs_NN_test[2]
results_optimals_test[12,"NN"] <- cutoffs_NN_test[3]
results_optimals_test[13,"NN"] <- cutoffs_NN_test[4]

8. PROTOCOL OF MODEL VALIDATION PHASE 4: Compare the models with performance measures

Save and print the results table of the training set
save(results_optimals_train,file="results_optimals_train.RData")
results_optimals_train

Save and print the results table of the test set
save(results_optimals_test,file="results_optimals_test.RData")
results_optimals_test

8.1 PRINCIPAL COMPONENTS ANALYSIS ###

Merge the training and test sets
data_pca <- rbind(data_partitions$train,data_partitions$test)

Normalize numerical variables for PCA
data_pca <- data_pca %>% mutate(
 Amount=(Amount-mean(Amount))/sd(Amount),
 Maturity=(Maturity-mean(Maturity))/sd(Maturity),
 Postal_Code_ASNEF=(Postal_Code_ASNEF-mean(Postal_Code_ASNEF))/sd(Postal_Code_ASNEF),
 Age=(Age-mean(Age))/sd(Age),
 Seniority=(Seniority-mean(Seniority))/sd(Seniority),
 Housing_Seniority=(Housing_Seniority-mean(Housing_Seniority))/sd(Housing_Seniority),
 Income=(Income-mean(Income))/sd(Income),
 Additional_Income=(Additional_Income-mean(Additional_Income))/sd(Additional_Income),
 Rent=(Rent-mean(Rent))/sd(Rent),
 Partner_Income=(Partner_Income-mean(Partner_Income))/sd(Partner_Income),
 Mortgage=(Mortgage-mean(Mortgage))/sd(Mortgage),
 Amount_of_Ongoing_Credits=(Amount_of_Ongoing_Credits-mean(Amount_of_Ongoing_Credits))/
 sd(Amount_of_Ongoing_Credits))

Run PCA and project every observation into the new space
pca <- data_pca %>% ml_pca(k=2,features=features_num)
pca_projections <- as.data.frame(pca %>% sdf_project() %>% select(PC1,PC2))

Plot the 2 main principal components
ggplot(as.data.frame(pca$pc),aes(PC1,PC2)) +
 geom_text(aes(label=row.names(pca$pc)),size=3,alpha=1,vjust =-1,hjust=0.5) +
 geom_segment(aes(x=0,xend=PC1,y=0,yend=PC2),arrow=arrow(length=unit(0.3,"cm")),col="darkblue") +
 labs(title="PCA",
 x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% projected variance"),
 y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% projected variance"))

Plot PCA projections coloured by predictions of the model Logistic Regression
Prediction_LR <- c(pred_LR_train,pred_LR_test)
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_LR)) +
 geom_point() + scale_colour_gradient(low="green",high="red") +
 xlim(-5,5) + ylim(-5,4) +

Guide to Spark Machine Learning for credit scoring

62

 labs(title="PCA Projections: Model Logistic Regression",
 x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"),
 y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance"))

Plot PCA projections coloured by predictions of the model Decision Tree
Prediction_DT <- c(pred_DT_train,pred_DT_test)
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_DT)) +
 geom_point() + scale_colour_gradient(low="green",high="red") +
 xlim(-5,5) + ylim(-5,4) +
 labs(title="PCA Projections: Model Decision Tree",
 x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"),
 y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance"))

Plot PCA projections coloured by predictions of the model Random Forest
Prediction_RF <- c(pred_RF_train,pred_RF_test)
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_RF)) +
 geom_point() + scale_colour_gradient(low="green",high="red") +
 xlim(-5,5) + ylim(-5,4) +
 labs(title="PCA Projections: Model Random Forest",
 x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"),
 y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance"))

Plot PCA projections coloured by predictions of the model Gradient Boosted Trees
Prediction_GBT <- c(pred_GBT_train,pred_GBT_test)
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_GBT)) +
 geom_point() + scale_colour_gradient(low="green",high="red") +
 xlim(-5,5) + ylim(-5,4) +
 labs(title="PCA Projections: Model Gradient Boosted Trees",
 x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"),
 y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance"))

Plot PCA projections coloured by predictions of the model Naive Bayes
Prediction_NB <- c(pred_NB_train,pred_NB_test)
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_NB)) +
 geom_point() + scale_colour_gradient(low="green",high="red") +
 xlim(-5,5) + ylim(-5,4) +
 labs(title="PCA Projections: Model Naive Bayes",
 x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"),
 y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance"))

Plot PCA projections coloured by predictions of the model Multilayer Perceptron
Prediction_NN <- c(pred_NN_train,pred_NN_test)
ggplot(pca_projections,aes(PC1,PC2,color=Prediction_NN)) +
 geom_point() + scale_colour_gradient(low="green",high="red") +
 xlim(-5,5) + ylim(-5,4) +
 labs(title="PCA Projections: Model Multilayer Perceptron",
 x=paste("PC1:",round(pca$explained_variance[1]*100,2),"% variance"),
 y=paste("PC2:",round(pca$explained_variance[2]*100,2),"% variance"))

9. DISCONNECTION OF SPARK CLUSTERS

Disconnect the Spark session of both "SparkR" and "sparklyr" packages
spark_disconnect(sc_sparklyr)
sparkR.session.stop()

Guide to Spark Machine Learning for credit scoring

63

8.4. Models feature importance

8.4.1. Logistic regression

Variable Estimated Coefficient

Postal_Code_ASNEF 2.0552
Profession_Code_MIDDLEGRADEMANAGER 0.9489
Profession_Code_ADMINISTRATIVE 0.8904
Profession_Code_OPERATOR 0.8643
Profession_Code_OTHERS 0.7602
Profession_Code_TECHNICIAN 0.7396
Num_Ongoing_Credits_3 -0.6847
Contract_Type_PERMANENT -0.6771
Province_Barcelona -0.5195
(Intercept) -0.4850
Application_Week_Day_4 0.4839
Contract_Type_PENSION -0.4685
Purpose_USEDCAR 0.4653
Purpose_DEBTS -0.4370
Province_OTHERS -0.4093
Housing_Type_TENANT 0.3966
Purpose_FURNITURE_AND_APPLIANCES 0.3779
Purpose_LIQUIDITY 0.3421
Purpose_HOMEIMPROVEMENT 0.3276
Marital_Status_COHABITING -0.3237
Application_Week_Day_5 0.3188
Application_Week_Day_6 0.2716
Housing_Type_HOME_OWNERSHIP_WITHOUT_MORTGAGE 0.2704
Province_Madrid -0.2404
Num_Ongoing_Credits_2 -0.2351
Application_Week_Day_1 0.2277
Application_Hour_Group_[20H,23H) -0.2204
Marital_Status_SINGLE -0.2041
Housing_Type_HOME_OWNERSHIP_WITH_MORTGAGE 0.1839
Num_Ongoing_Credits_1 -0.1830
Num_Ongoing_Credits_0 0.1159
Marital_Status_DIVORCED -0.1133
People_in_Household_0 0.1031
Marital_Status_MARRIED -0.0999
Application_Week_Day_2 0.0988
Housing_Type_THIRD_PARTY_PROVIDED_LODGING 0.0956
Application_Week_Day_3 0.0816
Purpose_OTHERS 0.0781
People_in_Household_1 -0.0610
Profession_Sector_PRIVATE_SECTOR -0.0566
People_in_Household_2 -0.0559
Purpose_VACATION 0.0519
Gender_MALE 0.0511
Age -0.0197
Application_Hour_Group_[7H,20H) -0.0084
Maturity 0.0024

Guide to Spark Machine Learning for credit scoring

64

Mortgage -0.0009
Rent -0.0008
Housing_Seniority -0.0001
Seniority 0.0001
Amount_of_Ongoing_Credits -0.0001
Amount 0.0000
Additional_Income 0.0000
Partner_Income 0.0000
Income 0.0000

8.4.2. Decision tree

Variable Importance

Age 0.1594
Amount_of_Ongoing_Credits 0.1282
Amount 0.1129
Housing_Seniority 0.0841
Mortgage 0.0772
Rent 0.0543
Partner_Income 0.0529
Housing_Type_THIRD_PARTY_PROVIDED_LODGING 0.0488
Income 0.0481
Seniority 0.0415
Purpose_DEBTS 0.0412
Application_Week_Day_4 0.0408
Province_Barcelona 0.0380
People_in_Household_0 0.0319
Postal_Code_ASNEF 0.0175
Purpose_HOMEIMPROVEMENT 0.0107
Contract_Type_PERMANENT 0.0076
Num_Ongoing_Credits_1 0.0050
Maturity 0.0000
Additional_Income 0.0000
Application_Hour_Group_[7H, 20H) 0.0000
Application_Hour_Group_[20H, 23H) 0.0000
Application_Week_Day_3 0.0000
Application_Week_Day_1 0.0000
Application_Week_Day_2 0.0000
Application_Week_Day_5 0.0000
Application_Week_Day_6 0.0000
Purpose_LIQUIDITY 0.0000
Purpose_OTHERS 0.0000
Purpose_USEDCAR 0.0000
Purpose_VACATION 0.0000
Purpose_FURNITURE_AND_APPLIANCES 0.0000
Province_OTHERS 0.0000
Province_Madrid 0.0000
Gender_MALE 0.0000
Profession_Code_OTHERS 0.0000
Profession_Code_OPERATOR 0.0000
Profession_Code_ADMINISTRATIVE 0.0000

Guide to Spark Machine Learning for credit scoring

65

Profession_Code_TECHNICIAN 0.0000
Profession_Code_MIDDLEGRADEMANAGER 0.0000
Profession_Sector_PRIVATE_SECTOR 0.0000
Contract_Type_PENSION 0.0000
Housing_Type_HOME_OWNERSHIP_WITH_MORTGAGE 0.0000
Housing_Type_HOME_OWNERSHIP_WITHOUT_MORTGAGE 0.0000
Housing_Type_TENANT 0.0000
Marital_Status_MARRIED 0.0000
Marital_Status_SINGLE 0.0000
Marital_Status_DIVORCED 0.0000
Marital_Status_COHABITING 0.0000
People_in_Household_1 0.0000
People_in_Household_2 0.0000
Num_Ongoing_Credits_2 0.0000
Num_Ongoing_Credits_0 0.0000
Num_Ongoing_Credits_3 0.0000

8.4.3. Random forest

Variable Importance

Amount 0.1064
Amount_of_Ongoing_Credits 0.0973
Age 0.0864
Housing_Seniority 0.0570
Seniority 0.0560
Income 0.0534
Postal_Code_ASNEF 0.0532
Mortgage 0.0410
Maturity 0.0302
Purpose_DEBTS 0.0278
Partner_Income 0.0273
Additional_Income 0.0222
Num_Ongoing_Credits_3 0.0201
Housing_Type_THIRD_PARTY_PROVIDED_LODGING 0.0198
People_in_Household_1 0.0172
Rent 0.0171
Housing_Type_HOME_OWNERSHIP_WITH_MORTGAGE 0.0159
Profession_Sector_PRIVATE_SECTOR 0.0150
Num_Ongoing_Credits_0 0.0146
Purpose_USEDCAR 0.0145
Profession_Code_OPERATOR 0.0141
Profession_Code_OTHERS 0.0116
Province_Barcelona 0.0099
Contract_Type_PENSION 0.0095
Application_Week_Day_5 0.0085
Housing_Type_TENANT 0.0084
Gender_MALE 0.0080
Purpose_OTHERS 0.0077
People_in_Household_2 0.0076
Profession_Code_TECHNICIAN 0.0075
Marital_Status_SINGLE 0.0073

Guide to Spark Machine Learning for credit scoring

66

Num_Ongoing_Credits_1 0.0070
Application_Week_Day_3 0.0069
Application_Week_Day_4 0.0066
Marital_Status_MARRIED 0.0064
Housing_Type_HOME_OWNERSHIP_WITHOUT_MORTGAGE 0.0064
Application_Week_Day_2 0.0063
People_in_Household_0 0.0061
Province_OTHERS 0.0056
Purpose_HOMEIMPROVEMENT 0.0053
Province_Madrid 0.0051
Purpose_FURNITURE_AND_APPLIANCES 0.0050
Contract_Type_PERMANENT 0.0046
Application_Week_Day_1 0.0046
Purpose_LIQUIDITY 0.0045
Application_Hour_Group_[7H, 20H) 0.0042
Marital_Status_DIVORCED 0.0040
Profession_Code_ADMINISTRATIVE 0.0034
Purpose_VACATION 0.0032
Marital_Status_COHABITING 0.0032
Application_Hour_Group_[20H, 23H) 0.0030
Application_Week_Day_6 0.0024
Profession_Code_MIDDLEGRADEMANAGER 0.0023
Num_Ongoing_Credits_2 0.0009

