

	
HTML	&	XHTML:	The	Definitive	Guide,	6th	Edition
	Table	of	Contents
	Copyright
	Dedication
	preface	Preface
	Chapter	1.	HTML,	XHTML,	and	the	World	Wide	Web
	Section	1.1.	The	Internet
	Section	1.2.	Talking	the	Internet	Talk
	Section	1.3.	HTML	and	XHTML:	What	They	Are
	Section	1.4.	HTML	and	XHTML:	What	They	Aren't
	Section	1.5.	Standards	and	Extensions
	Section	1.6.	Tools	for	the	Web	Designer
	Chapter	2.	Quick	Start
	Section	2.1.	Writing	Tools
	Section	2.2.	A	First	HTML	Document
	Section	2.3.	Embedded	Tags
	Section	2.4.	HTML	Skeleton
	Section	2.5.	The	Flesh	on	an	HTML	or	XHTML	Document
	Section	2.6.	Text
	Section	2.7.	Hyperlinks
	Section	2.8.	Images	Are	Special
	Section	2.9.	Lists,	Searchable	Documents,	and	Forms
	Section	2.10.	Tables
	Section	2.11.	Frames
	Section	2.12.	Stylesheets	and	JavaScript
	Section	2.13.	Forging	Ahead
	Chapter	3.	Anatomy	of	an	HTML	Document
	Section	3.1.	Appearances	Can	Deceive
	Section	3.2.	Structure	of	an	HTML	Document
	Section	3.3.	Tags	and	Attributes
	Section	3.4.	Well-Formed	Documents	and	XHTML
	Section	3.5.	Document	Content

	Section	3.6.	HTML/XHTML	Document	Elements
	Section	3.7.	The	Document	Header
	Section	3.8.	The	Document	Body
	Section	3.9.	Editorial	Markup
	Section	3.10.	The	Tag
	Chapter	4.	Text	Basics
	Section	4.1.	Divisions	and	Paragraphs
	Section	4.2.	Headings
	Section	4.3.	Changing	Text	Appearance	and	Meaning
	Section	4.4.	Content-Based	Style	Tags
	Section	4.5.	Physical	Style	Tags
	Section	4.6.	Precise	Spacing	and	Layout
	Section	4.7.	Block	Quotes
	Section	4.8.	Addresses
	Section	4.9.	Special	Character	Encoding
	Section	4.10.	HTML's	Obsolete	Expanded	Font	Handling
	Chapter	5.	Rules,	Images,	and	Multimedia
	Section	5.1.	Horizontal	Rules
	Section	5.2.	Inserting	Images	in	Your	Documents
	Section	5.3.	Document	Colors	and	Background	Images
	Section	5.4.	Background	Audio
	Section	5.5.	Animated	Text
	Section	5.6.	Other	Multimedia	Content
	Chapter	6.	Links	and	Webs
	Section	6.1.	Hypertext	Basics
	Section	6.2.	Referencing	Documents:	The	URL
	Section	6.3.	Creating	Hyperlinks
	Section	6.4.	Creating	Effective	Links
	Section	6.5.	Mouse-Sensitive	Images
	Section	6.6.	Creating	Searchable	Documents
	Section	6.7.	Relationships
	Section	6.8.	Supporting	Document	Automation

	Chapter	7.	Formatted	Lists
	Section	7.1.	Unordered	Lists
	Section	7.2.	Ordered	Lists
	Section	7.3.	The
Tag

	Section	7.4.	Nesting	Lists
	Section	7.5.	Definition	Lists
	Section	7.6.	Appropriate	List	Usage
	Section	7.7.	Directory	Lists
	Section	7.8.	Menu	Lists
	Chapter	8.	Cascading	Style	Sheets
	Section	8.1.	The	Elements	of	Styles
	Section	8.2.	Style	Syntax
	Section	8.3.	Style	Classes
	Section	8.4.	Style	Properties
	Section	8.5.	Tagless	Styles:	The	Tag
	Section	8.6.	Applying	Styles	to	Documents
	Chapter	9.	Forms
	Section	9.1.	Form	Fundamentals
	Section	9.2.	The
	Section	9.3.	A	Simple	Form	Example
	Section	9.4.	Using	Email	to	Collect	Form	Data
	Section	9.5.	The	 	Tag
	Section	9.6.	The	 Tag
	Section	9.7.	Multiline	Text	Areas
	Section	9.8.	Multiple-Choice	Elements
	Section	9.9.	General	Form-Control	Attributes
	Section	9.10.	Labeling	and	Grouping	Form	Elements
	Section	9.11.	Creating	Effective	Forms
	Section	9.12.	Forms	Programming
	Chapter	10.	Tables
	Section	10.1.	The	Standard	Table	Model

	Section	10.2.	Basic	Table	Tags
	Section	10.3.	Advanced	Table	Tags
	Section	10.4.	Beyond	Ordinary	Tables
	Chapter	11.	Frames
	Section	11.1.	An	Overview	of	Frames
	Section	11.2.	Frame	Tags
	Section	11.3.	Frame	Layout
	Section	11.4.	Frame	Contents
	Section	11.5.	The
	Section	11.6.	Inline	Frames
	Section	11.7.	Named	Frame	or	Window	Targets
	Section	11.8.	XFrames
	Chapter	12.	Executable	Content
	Section	12.1.	Applets	and	Objects
	Section	12.2.	Embedded	Content
	Section	12.3.	JavaScript
	Section	12.4.	JavaScript	Stylesheets	(Antiquated)
	Chapter	13.	Dynamic	Documents
	Section	13.1.	An	Overview	of	Dynamic	Documents
	Section	13.2.	Client-Pull	Documents
	Section	13.3.	Server-Push	Documents
	Chapter	14.	Mobile	Devices
	Section	14.1.	The	Mobile	Web
	Section	14.2.	Device	Considerations
	Section	14.3.	XHTML	Basic
	Section	14.4.	Effective	Mobile	Web	Design
	Chapter	15.	XML
	Section	15.1.	Languages	and	Metalanguages
	Section	15.2.	Documents	and	DTDs
	Section	15.3.	Understanding	XML	DTDs
	Section	15.4.	Element	Grammar
	Section	15.5.	Element	Attributes

	Section	15.6.	Conditional	Sections
	Section	15.7.	Building	an	XML	DTD
	Section	15.8.	Using	XML
	Chapter	16.	XHTML
	Section	16.1.	Why	XHTML?
	Section	16.2.	Creating	XHTML	Documents
	Section	16.3.	HTML	Versus	XHTML
	Section	16.4.	XHTML	1.1
	Section	16.5.	Should	You	Use	XHTML?
	Chapter	17.	Tips,	Tricks,	and	Hacks
	Section	17.1.	Top	of	the	Tips
	Section	17.2.	Cleaning	Up	After	Your	HTML	Editor
	Section	17.3.	Tricks	with	Tables
	Section	17.4.	Tricks	with	Windows	and	Frames
	Appendix	A.	HTML	Grammar
	Section	A.1.	Grammatical	Conventions
	Section	A.2.	The	Grammar
	Appendix	B.	HTML/XHTML	Tag	Quick	Reference
	Section	B.1.	Core	Attributes
	Section	B.2.	HTML	Quick	Reference
	Appendix	C.	Cascading	Style	Sheet	Properties	Quick	Reference
	Appendix	D.	The	HTML	4.01	DTD
	Appendix	E.	The	XHTML	1.0	DTD
	Appendix	F.	Character	Entities
	Appendix	G.	Color	Names	and	Values
	Section	G.1.	Color	Values
	Section	G.2.	Color	Names
	Section	G.3.	The	Standard	Color	Map
	Appendix	H.	Netscape	Layout	Extensions
	Section	H.1.	Creating	Whitespace
	Section	H.2.	Multicolumn	Layout
	Section	H.3.	Layers

	About	the	Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

HTML	&	XHTML:	The	Definitive	Guide,	6th	Edition
By	Bill	Kennedy,	Chuck	Musciano
...
Publisher:	O'Reilly
Pub	Date:	October	2006
Print	ISBN-10:	0-596-52732-2
Print	ISBN-13:	978-0-59-652732-7
Pages:	678

	

	
Table	of	Contents		|	Index

"...lucid,	in-depth	descriptions	of	the	behavior	of	every	HTML	tag	on	every	major	browser	and	platform,	plus
enough	dry	humor	to	make	the	book	a	pleasure	to	read."
--Edward	Mendelson,	PC	Magazine

"When	they	say	'definitive'	they're	not	kidding."
--Linda	Roeder,	About.com

Put	everthing	you	need	to	know	about	HTML	&	XHTML	at	your	fingertips.	For	nearly	a	decade,	hundreds	of
thousands	of	web	developers	have	turned	to	HTML	&	XHTML:	The	Definitive	Guide	to	master	standards-based	web
development.	Truly	a	definitive	guide,	the	book	combines	a	unique	balance	of	tutorial	material	with	a	comprehensive
reference	that	even	the	most	experienced	web	professionals	keep	close	at	hand.	From	basic	syntax	and	semantics	to
guidelines	aimed	at	helping	you	develop	your	own	distinctive	style,	this	classic	is	all	you	need	to	become	fluent	in	the
language	of	web	design.

The	new	sixth	edition	guides	you	through	every	element	of	HTML	and	XHTML	in	detail,	explaining	how	each	element
works	and	how	it	interacts	with	other	elements.	You'll	also	find	detailed	discussions	of	CSS	(Cascading	Style	Sheets),
which	is	intricately	related	to	web	page	development.	The	most	all-inclusive,	up-to-date	book	on	these	languages
available,	this	edition	covers	HTML	4.01,	XHTML	1.0,	and	CSS2,	with	a	preview	of	the	upcoming	XHTML2	and	CSS3.
Other	topics	include	the	newer	initiatives	in	XHTML	(XForms,	XFrames,	and	modularization)	and	the	essentials	of	XML
for	advanced	readers.	You'll	learn	how	to:

Use	style	sheets	to	control	your	document's	appearance

Work	with	programmatically	generated	HTML

Create	tables,	both	simple	and	complex

Use	frames	to	coordinate	sets	of	documents

Design	and	build	interactive	forms	and	dynamic	documents

Insert	images,	sound	files,	video,	Java	applets,	and	JavaScript	programs

Create	documents	that	look	good	on	a	variety	of	browsers

The	authors	apply	a	natural	learning	approach	that	uses	straightforward	language	and	plenty	of	examples.
Throughout	the	book,	they	offer	suggestions	for	style	and	composition	to	help	you	decide	how	to	best	use	HTML
and	XHTML	to	accomplish	a	variety	of	tasks.	You'll	learn	what	works	and	what	doesn't,	and	what	makes	sense	to

those	who	view	your	web	pages	and	what	might	be	confusing.	Written	for	anyone	who	wants	to	learn	the	language
of	the	Web--from	casual	users	to	the	full-time	design	professionals--this	is	the	single	most	important	book	on	HTML
and	XHTML	you	can	own.

Bill	Kennedy	is	chief	technical	officer	of	MobileRobots,	Inc.	When	not	hacking	new	HTML	pages	or	writing	about
them,	"Dr.	Bill"	(Ph.D.	in	biophysics	from	Loyola	University	of	Chicago)	is	out	promoting	the	company's	line	of	mobile,
autonomous	robots	that	can	be	used	for	artificial	intelligence,	fuzzy	logic	research,	and	education.

Chuck	Musciano	began	his	career	as	a	compiler	writer	and	crafter	of	tools	at	Harris	Corporations'	Advanced
Technology	Group	and	is	now	a	manager	of	Unix	Systems	in	Harris'	Corporate	Data	Center.

	

HTML	&	XHTML:	The	Definitive	Guide,	6th	Edition
By	Bill	Kennedy,	Chuck	Musciano
...
Publisher:	O'Reilly
Pub	Date:	October	2006
Print	ISBN-10:	0-596-52732-2
Print	ISBN-13:	978-0-59-652732-7
Pages:	678

	

	
Table	of	Contents		|	Index

	
			 Copyright
			 Dedication
			 preface	Preface
			 				Chapter	1.		HTML,	XHTML,	and	the	World	Wide	Web
			 	 Section	1.1.		The	Internet
			 	 Section	1.2.		Talking	the	Internet	Talk
			 	 Section	1.3.		HTML	and	XHTML:	What	They	Are
			 	 Section	1.4.		HTML	and	XHTML:	What	They	Aren't
			 	 Section	1.5.		Standards	and	Extensions
			 	 Section	1.6.		Tools	for	the	Web	Designer
			 				Chapter	2.		Quick	Start
			 	 Section	2.1.		Writing	Tools
			 	 Section	2.2.		A	First	HTML	Document
			 	 Section	2.3.		Embedded	Tags
			 	 Section	2.4.		HTML	Skeleton
			 	 Section	2.5.		The	Flesh	on	an	HTML	or	XHTML	Document
			 	 Section	2.6.		Text
			 	 Section	2.7.		Hyperlinks
			 	 Section	2.8.		Images	Are	Special
			 	 Section	2.9.		Lists,	Searchable	Documents,	and	Forms
			 	 Section	2.10.		Tables
			 	 Section	2.11.		Frames
			 	 Section	2.12.		Stylesheets	and	JavaScript
			 	 Section	2.13.		Forging	Ahead
			 				Chapter	3.		Anatomy	of	an	HTML	Document
			 	 Section	3.1.		Appearances	Can	Deceive
			 	 Section	3.2.		Structure	of	an	HTML	Document
			 	 Section	3.3.		Tags	and	Attributes
			 	 Section	3.4.		Well-Formed	Documents	and	XHTML
			 	 Section	3.5.		Document	Content
			 	 Section	3.6.		HTML/XHTML	Document	Elements
			 	 Section	3.7.		The	Document	Header

			 	 Section	3.8.		The	Document	Body
			 	 Section	3.9.		Editorial	Markup
			 	 Section	3.10.		The	<bdo>	Tag
			 				Chapter	4.		Text	Basics
			 	 Section	4.1.		Divisions	and	Paragraphs
			 	 Section	4.2.		Headings
			 	 Section	4.3.		Changing	Text	Appearance	and	Meaning
			 	 Section	4.4.		Content-Based	Style	Tags
			 	 Section	4.5.		Physical	Style	Tags
			 	 Section	4.6.		Precise	Spacing	and	Layout
			 	 Section	4.7.		Block	Quotes
			 	 Section	4.8.		Addresses
			 	 Section	4.9.		Special	Character	Encoding
			 	 Section	4.10.		HTML's	Obsolete	Expanded	Font	Handling
			 				Chapter	5.		Rules,	Images,	and	Multimedia
			 	 Section	5.1.		Horizontal	Rules
			 	 Section	5.2.		Inserting	Images	in	Your	Documents
			 	 Section	5.3.		Document	Colors	and	Background	Images
			 	 Section	5.4.		Background	Audio
			 	 Section	5.5.		Animated	Text
			 	 Section	5.6.		Other	Multimedia	Content
			 				Chapter	6.		Links	and	Webs
			 	 Section	6.1.		Hypertext	Basics
			 	 Section	6.2.		Referencing	Documents:	The	URL
			 	 Section	6.3.		Creating	Hyperlinks
			 	 Section	6.4.		Creating	Effective	Links
			 	 Section	6.5.		Mouse-Sensitive	Images
			 	 Section	6.6.		Creating	Searchable	Documents
			 	 Section	6.7.		Relationships
			 	 Section	6.8.		Supporting	Document	Automation
			 				Chapter	7.		Formatted	Lists
			 	 Section	7.1.		Unordered	Lists
			 	 Section	7.2.		Ordered	Lists
			 	 Section	7.3.		The		Tag
			 	 Section	7.4.		Nesting	Lists
			 	 Section	7.5.		Definition	Lists
			 	 Section	7.6.		Appropriate	List	Usage
			 	 Section	7.7.		Directory	Lists
			 	 Section	7.8.		Menu	Lists
			 				Chapter	8.		Cascading	Style	Sheets
			 	 Section	8.1.		The	Elements	of	Styles
			 	 Section	8.2.		Style	Syntax
			 	 Section	8.3.		Style	Classes
			 	 Section	8.4.		Style	Properties
			 	 Section	8.5.		Tagless	Styles:	The		Tag
			 	 Section	8.6.		Applying	Styles	to	Documents
			 				Chapter	9.		Forms

			 	 Section	9.1.		Form	Fundamentals
			 	 Section	9.2.		The	<form>	Tag
			 	 Section	9.3.		A	Simple	Form	Example
			 	 Section	9.4.		Using	Email	to	Collect	Form	Data
			 	 Section	9.5.		The	<input>	Tag
			 	 Section	9.6.		The	<button>	Tag
			 	 Section	9.7.		Multiline	Text	Areas
			 	 Section	9.8.		Multiple-Choice	Elements
			 	 Section	9.9.		General	Form-Control	Attributes
			 	 Section	9.10.		Labeling	and	Grouping	Form	Elements
			 	 Section	9.11.		Creating	Effective	Forms
			 	 Section	9.12.		Forms	Programming
			 				Chapter	10.		Tables
			 	 Section	10.1.		The	Standard	Table	Model
			 	 Section	10.2.		Basic	Table	Tags
			 	 Section	10.3.		Advanced	Table	Tags
			 	 Section	10.4.		Beyond	Ordinary	Tables
			 				Chapter	11.		Frames
			 	 Section	11.1.		An	Overview	of	Frames
			 	 Section	11.2.		Frame	Tags
			 	 Section	11.3.		Frame	Layout
			 	 Section	11.4.		Frame	Contents
			 	 Section	11.5.		The	<noframes>	Tag
			 	 Section	11.6.		Inline	Frames
			 	 Section	11.7.		Named	Frame	or	Window	Targets
			 	 Section	11.8.		XFrames
			 				Chapter	12.		Executable	Content
			 	 Section	12.1.		Applets	and	Objects
			 	 Section	12.2.		Embedded	Content
			 	 Section	12.3.		JavaScript
			 	 Section	12.4.		JavaScript	Stylesheets	(Antiquated)
			 				Chapter	13.		Dynamic	Documents
			 	 Section	13.1.		An	Overview	of	Dynamic	Documents
			 	 Section	13.2.		Client-Pull	Documents
			 	 Section	13.3.		Server-Push	Documents
			 				Chapter	14.		Mobile	Devices
			 	 Section	14.1.		The	Mobile	Web
			 	 Section	14.2.		Device	Considerations
			 	 Section	14.3.		XHTML	Basic
			 	 Section	14.4.		Effective	Mobile	Web	Design
			 				Chapter	15.		XML
			 	 Section	15.1.		Languages	and	Metalanguages
			 	 Section	15.2.		Documents	and	DTDs
			 	 Section	15.3.		Understanding	XML	DTDs
			 	 Section	15.4.		Element	Grammar
			 	 Section	15.5.		Element	Attributes
			 	 Section	15.6.		Conditional	Sections

			 	 Section	15.7.		Building	an	XML	DTD
			 	 Section	15.8.		Using	XML
			 				Chapter	16.		XHTML
			 	 Section	16.1.		Why	XHTML?
			 	 Section	16.2.		Creating	XHTML	Documents
			 	 Section	16.3.		HTML	Versus	XHTML
			 	 Section	16.4.		XHTML	1.1
			 	 Section	16.5.		Should	You	Use	XHTML?
			 				Chapter	17.		Tips,	Tricks,	and	Hacks
			 	 Section	17.1.		Top	of	the	Tips
			 	 Section	17.2.		Cleaning	Up	After	Your	HTML	Editor
			 	 Section	17.3.		Tricks	with	Tables
			 	 Section	17.4.		Tricks	with	Windows	and	Frames
			 				Appendix	A.		HTML	Grammar
			 	 Section	A.1.		Grammatical	Conventions
			 	 Section	A.2.		The	Grammar
			 				Appendix	B.		HTML/XHTML	Tag	Quick	Reference
			 	 Section	B.1.		Core	Attributes
			 	 Section	B.2.		HTML	Quick	Reference
			 				Appendix	C.		Cascading	Style	Sheet	Properties	Quick	Reference
			 				Appendix	D.		The	HTML	4.01	DTD
			 				Appendix	E.		The	XHTML	1.0	DTD
			 				Appendix	F.		Character	Entities
			 				Appendix	G.		Color	Names	and	Values
			 	 Section	G.1.		Color	Values
			 	 Section	G.2.		Color	Names
			 	 Section	G.3.		The	Standard	Color	Map
			 				Appendix	H.		Netscape	Layout	Extensions
			 	 Section	H.1.		Creating	Whitespace
			 	 Section	H.2.		Multicolumn	Layout
			 	 Section	H.3.		Layers
			 About	the	Authors
			 Colophon
			 Index

	

Copyright	©	2007,	2002,	2000,	1998,	1997,	1996	O'Reilly	Media,	Inc.	All	rights
reserved.	Printed	in	the	United	States	of	America.

Published	by	O'Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,
CA	95472.

O'Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(safari.oreilly.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	(800)	998-
9938	or	corporate@oreilly.com.

Editor: Tatiana	Apandi

Production	Editor: Colleen	Gorman

Copyeditor: Audrey	Doyle

Proofreader: Colleen	Gorman

Indexer: Johnna	VanHoose	Dinse

Cover	Designer: Edie	Freedman

Interior	Designer: Melanie	Wang

Illustrators: Robert	Romano	and	Jessamyn	Read

	
Printing	History:

April	1996: First	Edition.

May	1997: Second	Edition.

August	1998: Third	Edition.

August	2000: Fourth	Edition.

August	2002: Fifth	Edition.

October	2006: Sixth	Edition.

http://safari.oreilly.com
mailto:corporate@oreilly.com

	
Nutshell	Handbook,	the	Nutshell	Handbook	logo,	and	the	O'Reilly	logo	are
registered	trademarks	of	O'Reilly	Media,	Inc.	HTML	&	XHTML:	The	Definitive
Guide,	the	image	of	a	koala,	and	related	trade	dress	are	trademarks	of	O'Reilly
Media,	Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	O'Reilly	Media,	Inc.	was	aware	of	a	trademark	claim,	the	designations
have	been	printed	in	caps	or	initial	caps.

While	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the
publisher	and	authors	assume	no	responsibility	for	errors	or	omissions,	or	for
damages	resulting	from	the	use	of	the	information	contained	herein.

ISBN-10:	0-596-52732-2

ISBN-13:	978-0-596-52732-7

[M]

	

Dedication

This	book	is	dedicated	to	our	wives	and	children,	Cindy,	Courtney,
and	Cole,	and	Jeanne,	Eva,	and	Ethan.	Without	their	love	and
patience,	we	never	would	have	had	the	time	or	strength	to	write.

	

Preface

Learning	Hypertext	Markup	Language	(HTML)	and	Extensible	Hypertext	Markup
Language	(XHTML)	is	like	learning	any	new	language,	computer	or	human.	Most
students	first	immerse	themselves	in	examples.	Studying	others	is	a	natural	way
to	learn,	making	learning	easy	and	fun.	Our	advice	to	anyone	wanting	to	learn
HTML	and	XHTML	is	to	get	out	there	on	the	Web	with	a	suitable	browser	and	see
for	yourself	what	looks	good,	what's	effective,	and	what	works	for	you.	Examine
others'	documents	and	ponder	the	possibilities.	Mimicry	is	how	many	of	the
current	webmasters	have	learned	the	language.

Imitation	can	take	you	only	so	far,	though.	Examples	can	be	both	good	and	bad.
Learning	by	example	helps	you	talk	the	talk,	but	not	walk	the	walk.	To	become
truly	conversant,	you	must	learn	how	to	use	the	language	appropriately	in	many
different	situations.	You	could	learn	all	that	by	example,	if	you	live	long	enough.

Computer-based	languages	are	more	explicit	than	human	languages,	though	the
markup	languages	are	much	more	forgiving	than	the	programming	ones.
Nonetheless,	you	typically	have	to	get	the	computer	language	syntax	correct	or	it
won't	work.	There	are	"standards,"	too.	Committees	of	academics	and	industry
experts	define	the	proper	syntax	and	usage	of	a	computer	language	like	HTML.
The	problem	is	that	the	browser	technologies	that	you	and	your	audience	use	to
display	your	documents	don't	always	keep	up	with	the	standards.	Some	can't,	like
the	limited	viewers	used	in	the	burgeoning	mobile-device	market.	And	then	there
are	those	that	make	up	their	own	parts	to	the	language;	standards	be	damned.

Standards	change,	besides.	HTML	is	undergoing	a	conversion	into	XHTML,	making
it	an	application	of	the	Extensible	Markup	Language	(XML).	HTML	and	XHTML	are
so	similar	that	we	often	refer	to	them	as	a	single	language,	but	there	are	key
differences,	which	we	discuss	later	in	this	Preface.

To	be	safe,	the	way	to	become	fluent	in	HTML	and	XHTML	is	through	a
comprehensive,	up-to-date	language	reference	that	covers	the	language	syntax,
semantics,	and	variations	in	detail	to	help	you	distinguish	between	good	and	bad
usage.

There's	one	more	step	leading	to	fluency	in	a	language.	To	become	a	true	master
of	the	language,	you	need	to	develop	your	own	style.	That	means	knowing	not
only	what	is	appropriate,	but	also	what	is	effective.	Layout	matters.	So	does	the
order	of	presentation	within	a	document,	between	documents,	and	between
document	collections.

Our	goal	in	writing	this	book	is	to	help	you	become	fluent	in	HTML	and	XHTML,
fully	versed	in	their	syntax,	semantics,	and	elements	of	style.	We	take	the
natural-learning	approach,	using	examples	(good	ones,	of	course).	We	cover	in

detail	every	element	of	the	currently	accepted	standard	versions	of	the	languages
(HTML	4.01	and	XHTML	1.0)	as	well	as	all	of	the	current	extensions	supported	by
the	popular	browsers,	explaining	how	each	element	works	and	how	it	interacts
with	all	of	the	other	elements.

And,	with	all	due	respect	to	Strunk	and	White,	throughout	the	book	we	give	you
suggestions	for	style	and	composition	to	help	you	decide	how	best	to	use	HTML
and	XHTML	to	accomplish	a	variety	of	tasks,	from	simple	online	documentation	to
complex	marketing	and	sales	presentations.	We	show	you	what	works	and	what
doesn't,	what	makes	sense	to	those	who	view	your	pages,	and	what	might	be
confusing.

In	short,	this	book	is	a	definitive	guide	to	creating	documents	using	HTML	and
XHTML,	starting	with	basic	syntax	and	semantics	and	finishing	with	broad	style
guidelines	to	help	you	create	beautiful,	informative,	accessible	documents	that
you'll	be	proud	to	deliver	to	your	readers.

Our	Audience

We	wrote	this	book	for	anyone	interested	in	learning	and	using	the	language	of
the	Web,	from	the	most	casual	user	to	the	full-time	design	professional.	We	don't
expect	you	to	have	any	experience	in	HTML	or	XHTML	before	picking	up	this	book.
In	fact,	we	don't	even	expect	that	you've	ever	browsed	the	Web,	although	we'd	be
very,	very	surprised	if	you	haven't.	Being	connected	to	the	Internet	is	not	strictly
necessary	to	use	this	book,	but	if	you're	not	connected,	this	book	becomes	like	a
travel	guide	for	the	homebound.

The	only	things	we	ask	you	to	have	are	a	computer,	an	editor	that	can	create
simple	text	files,	and	copies	of	the	latest	web	browsers.	We	used	the	latest
Internet	Explorer,	Mozilla	Firefox,	Netscape	Navigator,	and	Opera	Software	ASA's
Opera	for	the	examples	in	this	book.	Because	HTML	and	XHTML	documents	are
stored	in	a	universally	accepted	formatplain	textand	because	the	languages	are
completely	independent	of	any	specific	computer,	we	won't	even	make	an
assumption	about	the	kind	of	computer	you're	using.	However,	browsers	do	vary
by	platform	and	operating	system,	which	means	that	your	HTML	or	XHTML
documents	can	look	quite	different	depending	on	the	computer	and	browser
version.	So	we	explain	where	we	can	how	the	various	browsers	use	certain
language	features,	paying	particular	attention	to	how	they	are	different.

If	you	are	new	to	HTML,	the	Web,	or	hypertext	documentation	in	general,	you
should	start	by	reading	Chapter	1.	In	it,	we	describe	how	all	these	technologies
come	together	to	create	web	sites	of	interrelated	documents.

If	you	are	already	familiar	with	the	Web,	but	not	with	HTML	or	XHTML	specifically,
start	by	reading	Chapter	2.	This	chapter	is	a	brief	overview	of	the	most	important

features	of	the	language	and	serves	as	a	roadmap	to	how	we	approach	the
language	in	the	remainder	of	the	book.

Subsequent	chapters	deal	with	specific	language	features	in	a	roughly	top-down
approach	to	HTML	and	XHTML.	Read	them	in	order	for	a	complete	tour	through
the	language,	or	jump	around	to	find	the	exact	feature	you're	interested	in.

Text	Conventions

Throughout	the	book,	we	use	a	constant-width	typeface	to	highlight	any	literal
element	of	the	HTML/XHTML	standards,	tags,	and	attributes.	We	always	use
lowercase	letters	for	tags.[*]	We	use	italic	for	filenames	and	to	indicate	new
concepts	when	they	are	defined.	Elements	you	need	to	supply	when	creating	your
own	documents,	such	as	tag	attributes	and	user-defined	strings,	appear	in
constant-width	italic	in	the	code.

[*]	HTML	is	case-insensitive	with	regard	to	tag	and	attribute	names,	but	XHTML	is	case-sensitive.	And	some	HTML	items,
such	as	source	filenames,	are	case-sensitive,	so	be	careful.

We	discuss	elements	of	the	language	throughout	the	book,	but	you'll	find	each
one	covered	in	depth	(some	might	say	in	nauseating	detail)	in	a	shorthand,	quick-
reference	definition	box	that	looks	like	the	one	that	follows	(for	the	<title>
element).	The	first	line	of	the	box	contains	the	element	name,	followed	by	a	brief
description	of	its	function.	Next,	we	list	the	various	attributes,	if	any,	of	the
element:	those	things	that	you	may	or	must	specify	as	part	of	the	element.

<title>

Function Defines	the	document	title

Attribute dirlang

End	tag </title>;	never	omitted

Contains plain_text

Used	in head_content

	
The	icon	 	identifies	tags	and	attributes	that	aren't	in	the	HTML	4.01	or	XHTML
1.0	standards,	and	those	that	are	handled	very	differently	between	the	various
popular	browsers.

The	description	also	includes	the	HTML	ending	tag,	if	any,	for	the	element,	along
with	a	general	indication	of	whether	the	end	tag	may	be	safely	omitted	in	general
use	in	HTML.	For	the	few	tags	that	require	end	tags	in	XHTML,	but	do	not	have
them	in	HTML,	the	language	lets	you	indicate	that	by	placing	a	forward	slash	(/)
before	the	tag's	closing	bracket,	as	in	
.	In	these	cases,	the	tag	may	also
contain	attributes,	indicated	with	an	intervening	ellipsis,	such	as	<br	...	/>.

The	"Contains"	header	names	the	rule	in	the	HTML	grammar	that	defines	the
elements	to	be	placed	within	this	tag.	Similarly,	the	"Used	in"	header	lists	those
rules	that	allow	this	tag	as	part	of	their	content.	We	define	these	rules	in
Appendix	A.

Finally,	HTML	and	XHTML	are	fairly	intertwined	languages.	You	will	occasionally
use	elements	in	different	ways	depending	on	context,	and	many	elements	share
identical	attributes.	Wherever	possible,	we	place	a	cross-reference	in	the	text	that
leads	you	to	a	related	discussion	elsewhere	in	the	book.	These	cross-references,
like	the	one	at	the	end	of	this	paragraph,	serve	as	a	crude	paper	model	of
hypertext	documentation,	one	that	would	be	replaced	with	a	true	hypertext	link
should	this	book	be	delivered	in	an	electronic	format.	[The	Syntax	of	a	Tag,	3.3.1]

We	encourage	you	to	follow	these	cross-references	whenever	possible.	Often,	we
cover	an	attribute	briefly	and	expect	you	to	jump	to	the	cross-reference	for	a

more	detailed	discussion.	In	other	cases,	following	the	link	takes	you	to
alternative	uses	of	the	element	under	discussion	or	to	style	and	usage
suggestions	that	relate	to	the	current	element.

Versions	and	Semantics

The	latest	HTML	standard	is	version	4.01,	but	most	updates	and	changes	to	the
language	standard	were	made	in	version	4.0.	Therefore,	throughout	the	book,	we
often	refer	to	the	HTML	standard	as	HTML	4,	encompassing	versions	4.0	and	later.
We	explicitly	state	the	"dot"	version	number	only	when	it	is	relevant.

The	XHTML	standard	is	currently	in	its	first	iteration,	1.0.	The	World	Wide	Web
Consortium	(W3C)	has	released	a	Working	Draft	of	a	second	version	(XHTML	2.0),
but	the	standard	is	yet	established.	For	the	most	part,	XHTML	1.0	is	identical	to
HTML	4.01;	we	detail	their	differences	in	Chapter	16.	Throughout	the	book,	we
specifically	note	cases	where	XHTML	handles	a	feature	or	element	differently	than
the	original	language,	HTML.

The	HTML	and	XHTML	standards	make	very	clear	the	distinction	between	"element
types"	of	a	document	and	the	markup	"tags"	that	delimit	those	elements.	For
example,	the	standard	refers	to	the	paragraph	element	type,	which	is	not	the
same	as	the	<p>	tag.	The	paragraph	element	consists	of	the	accepted	element-type
name	within	the	starting	tag	(<p>),	intervening	content,	and	the	ending	paragraph
tag	(</p>).	The	<p>	tag	is	the	starting	tag	for	the	paragraph	element,	and	its
contents,	known	as	attributes,	ultimately	affect	the	paragraph	element	type's
contents.

Although	these	are	important	distinctions,	we're	pragmatists.	It	is	the	markup	tag
that	authors	apply	in	their	documents	and	that	affects	any	intervening	content.
Accordingly,	throughout	the	book,	we	relax	the	distinction	between	element	types
and	tags,	often	talking	about	tags	and	all	related	contents	and	not	necessarily
using	the	term	element-type	when	it	would	be	technically	appropriate	to	make	the
distinction.	Forgive	us	the	transgression,	but	we	do	so	for	the	sake	of	clarity.

HTML	Versus	XHTML

It's	not	Latin,	but	HTML	has	reached	old	age	in	standard	version	4.01.	The	W3C
has	no	plans	to	develop	another	version	and	has	officially	said	so.	Rather,	HTML	is
being	subsumed	and	modularized	as	an	Extensible	Markup	Language	(XML).	Its
new	name	is	XHTML,	Extensible	Hyptertext	Markup	Language.

The	emergence	of	XHTML	is	just	another	chapter	in	the	often	tumultuous	history
of	HTML	and	the	Web,	where	confusion	for	authors	is	the	norm,	not	the	exception.
At	its	nadir,	the	elders	of	the	W3C	responsible	for	accepted	and	acceptable	uses	of

the	languagestandardslost	control	of	the	language	in	the	browser	"wars"	between
Netscape	and	Microsoft.	The	abortive	HTML+	standard	never	got	off	the	ground,
and	HTML	3.0	became	so	bogged	down	in	debate	that	the	W3C	simply	shelved	the
entire	draft.	HTML	3.0	never	happened,	despite	what	some	opportunistic
marketers	claimed	in	their	literature.	Instead,	by	late	1996,	the	browser
manufacturers	convinced	the	W3C	to	release	HTML	standard	version	3.2,	which
for	all	intents	and	purposes	simply	standardized	most	of	Netscape's	HTML
extensions.

Netscape's	dominance	as	the	leading	browser,	and	as	a	leader	in	web
technologies,	faded	dramatically	toward	the	end	of	the	millennium.	By	then,
Microsoft	had	effectively	bundled	Internet	Explorer	into	the	Windows	operating
system,	not	only	as	an	installed	application,	but	also	as	a	dominant	feature	of	the
GUI	desktop.	In	addition,	Internet	Explorer	introduced	several	features	(albeit
nonstandard	at	the	time)	that	appealed	principally	to	the	growing	Internet
business	and	marketing	community.

Fortunately	for	those	of	us	who	appreciate	and	strongly	support	standards,	the
W3C	took	back	its	primacy	role	with	HTML	4.0,	which	stands	today	as	HTML
version	4.01,	released	in	December	1999.	Absorbing	many	of	the	Netscape	and
Internet	Explorer	innovations,	the	standard	is	clearer	and	cleaner	than	any
previous	ones,	establishes	solid	implementation	models	for	consistency	across
browsers	and	platforms,	provides	strong	support	and	incentives	for	the	companion
Cascading	Style	Sheets	(CSS)	standard	for	HTML-based	displays,	and	makes
provisions	for	alternative	(nonvisual)	user	agents,	as	well	as	for	more	universal
language	supports.

Cleaner	and	clearer	aside,	the	W3C	realized	that	HTML	could	never	keep	up	with
the	demands	of	the	web	community	for	more	ways	to	distribute,	process,	and
display	documents.	HTML	offers	only	a	limited	set	of	document-creation	primitives
and	is	hopelessly	incapable	of	handling	nontraditional	content	like	chemical
formulae,	musical	notation,	and	mathematical	expressions.	Nor	can	it	well	support
alternative	display	media,	such	as	handheld	computers	and	intelligent	cellular
phones.

To	address	these	demands,	the	W3C	developed	the	XML	standard.	XML	provides	a
way	to	create	new,	standards-based	markup	languages	that	don't	take	an	act	of
the	W3C	to	implement.	XML-compliant	languages	deliver	information	that	can	be
parsed,	processed,	displayed,	sliced,	and	diced	by	the	many	different
communication	technologies	that	have	emerged	since	the	Web	sparked	the	digital
communication	revolution	a	decade	ago.	XHTML	is	HTML	reformulated	to	adhere
to	the	XML	standard.	It	is	the	foundation	language	for	the	future	of	the	Web.

Why	not	just	drop	HTML	for	XHTML?	For	many	reasons.	First	and	foremost,	XHTML
has	not	exactly	taken	the	Web	by	storm.	There's	just	too	much	current
investment	in	HTML-based	documentation	and	expertise	for	that	to	happen

anytime	soon.	Besides,	XHTML	is	HTML	4.01	reformulated	as	an	application	of
XML.	Know	HTML	4	and	you're	all	ready	for	the	future.[*]

[*]	We	plumb	the	depths	of	XML	and	XHTML	in	Chapters	15	and	16.

Deprecated	Features

One	of	the	unpopular	things	standards	bearers	have	to	do	is	make	choices
between	popular	and	proper.	The	authors	of	the	HTML	and	XHTML	standards
exercise	that	responsibility	by	"deprecating"	those	features	of	the	language	that
interfere	in	the	grand	scheme	of	things.

For	instance,	the	<center>	tag	tells	the	browser	to	display	the	enclosed	text
centered	in	the	display	window.	But	the	CSS	standard	provides	ways	to	center
text,	too.	The	W3C	chooses	to	support	the	CSS	way	and	discourages	the	use	of
<center>	by	deprecating	the	tag.	The	plan	is,	in	some	later	standard	version,	to
stop	using	<center>	and	other	deprecated	elements	and	attributes	of	the	language.

Throughout	the	book,	we	specially	note	and	continuously	remind	you	when	an
HTML	tag	or	other	component	is	deprecated	in	the	current	standards.	Should	you
stop	using	them	now?	Yes	and	no.

Yes,	because	there	is	a	preferred	and	perhaps	better	way	to	accomplish	the	same
thing.	By	exercising	that	alternative,	you	ensure	that	your	documents	will	survive
for	many	years	to	come	on	the	Web.	And,	yes,	because	the	tools	you	may	use	to
prepare	HTML/XHTML	documents	probably	adhere	to	the	preferred	standard.	You
may	not	have	a	choice,	unless	you	disable	your	tools.	In	any	event,	unless	you
hand-compose	all	your	documents,	you'll	need	to	know	how	the	preferred	way
works	so	that	you	can	identify	the	code	and	modify	it.

However	compelling	the	reasons	for	not	using	deprecated	elements	and	attributes
are,	they	still	are	part	of	the	standards.	They	remain	well	supported	by	most
browsers	and	aren't	expected	to	disappear	anytime	soon.	In	fact,	since	there	is	no
plan	to	change	the	HTML	standard,	the	"deprecated"	stamp	is	very	misleading.

So,	no,	you	don't	have	to	worry	about	deprecated	HTML	features.	There	is	no
reason	to	panic,	certainly.	We	do,	however,	encourage	you	to	make	a	move
toward	the	standards	soon.

A	Definitive	Guide

The	paradox	in	all	this	is	that	even	the	HTML	4.01	standard	is	not	the	definitive

resource.	There	are	many	more	features	of	HTML	in	popular	use	and	supported	by
the	popular	browsers	than	are	included	in	the	latest	language	standard.	And	there
are	many	parts	of	the	standards	that	are	ignored.	We	promise	you,	things	can	get
downright	confusing.

We've	managed	to	sort	things	out	for	you,	though,	so	you	don't	have	to	sweat
over	what	works	and	doesn't	work	with	what	browser.	This	book,	therefore,	is	the
definitive	guide	to	HTML	and	XHTML.	We	give	details	for	all	the	elements	of	the
HTML	4.01	and	XHTML	1.0	standards,	plus	the	variety	of	interesting	and	useful
extensions	to	the	language.	We	also	include	detailed	discussions	of	the	CSS
standard,	since	it	is	so	intricately	related	to	web	page	development.

In	addition,	there	are	a	few	things	that	are	closely	related	but	not	directly	part	of
HTML.	For	example,	we	touch,	but	do	not	handle,	JavaScript,	Common	Gateway
Interface	(CGI),	and	Java	programming.	They	all	work	closely	with	HTML
documents	and	run	with	or	alongside	browsers,	but	they	are	not	part	of	the
language	itself,	so	we	don't	delve	into	them.	Besides,	they	are	comprehensive
topics	that	deserve	their	own	books,	such	as	JavaScript:	The	Definitive	Guide,	by
David	Flanagan;	CGI	Programming	with	Perl,	by	Scott	Guelich,	Shishir
Gundavaram,	and	Gunther	Birzneiks;	Cascading	Style	Sheets:	The	Definitive
Guide,	by	Eric	Meyer;	and	Learning	Java,	by	Pat	Niemeyer	and	Jonathan	Knudsen
(all	published	by	O'Reilly).

This	is	your	definitive	guide	to	HTML	and	XHTML	as	they	are	and	should	be	used,
including	every	extension	we	could	find.	Some	extensions	aren't	documented
anywhere,	even	in	the	plethora	of	online	guides.	But,	if	we've	missed	anything,
certainly	let	us	know	and	we'll	put	it	in	the	next	edition.

Using	Code	Examples

This	book	is	here	to	help	you	get	your	job	done.	In	general,	you	may	use	the	code
in	this	book	in	your	programs	and	documentation.	You	do	not	need	to	contact	us
for	permission	unless	you're	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does
not	require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from
O'Reilly	books	does	require	permission.	Answering	a	question	by	citing	this	book
and	quoting	example	code	does	not	require	permission.	Incorporating	a	significant
amount	of	example	code	from	this	book	into	your	product's	documentation	does
require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	"HTML	&	XHTML:	The	Definitive
Guide,	Sixth	Edition,	by	Chuck	Musciano	and	Bill	Kennedy.	Copyright	2007
O'Reilly	Media,	Inc.,	978-0-596-52732-7."

Safari®	Enabled

	When	you	see	a	Safari®	Enabled	icon	on	the	cover	of	your	favorite
technology	book,	that	means	the	book	is	available	online	through	the	O'Reilly
Network	Safari	Bookshelf.

Safari	offers	a	solution	that's	better	than	e-books.	It's	a	virtual	library	that	lets
you	easily	search	thousands	of	top	tech	books,	cut	and	paste	code	samples,
download	chapters,	and	find	quick	answers	when	you	need	the	most	accurate,
current	information.	Try	it	for	free	at	http://safari.oreilly.com.

Comments	and	Questions

Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O'Reilly	Media,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
800-998-9938	(in	the	United	States	or	Canada)
707-829-0515	(international/local)
707-829-0104	(fax)

There	is	a	web	page	for	this	book,	which	lists	any	errata,	examples,	or	additional
information.	You	can	access	this	page	at:

http://www.oreilly.com/catalog/html6

To	comment	or	ask	technical	questions	about	this	book,	send	email	to:

bookquestions@oreilly.com

For	more	information	about	books,	conferences,	Resource	Centers,	and	the
O'Reilly	Network,	see	the	O'Reilly	web	site	at:

http://www.oreilly.com

Acknowledgments

We	did	not	compose,	and	certainly	could	not	have	composed,	this	or	any	other
edition	of	the	book	without	generous	contributions	from	many	people.	Our	wives,
Jeanne	and	Cindy,	and	our	children,	Eva,	Ethan,	Courtney,	and	Cole	(they
happened	before	we	started	writing),	formed	the	front	lines	of	support.	And	there
are	numerous	neighbors,	friends,	and	colleagues	who	helped	by	sharing	ideas,

http://safari.oreilly.com
http://www.oreilly.com/catalog/html6
mailto:bookquestions@oreilly.com
http://www.oreilly.com

testing	browsers,	and	letting	us	use	their	equipment	to	explore	HTML.	You	know
who	you	are,	and	we	thank	you	all.

In	addition,	we	thank	our	technical	reviewers,	Chat	Clussman,	Patrick	Krekelberg,
Sam	Marshall,	and	Shlomi	Fish,	for	carefully	scrutinizing	our	work.	We	took	most
of	your	keen	suggestions.	We	especially	thank	our	O'Reilly	editors,	especially	Mike
Loukides	and	Tatiana	Apandi,	for	their	patience	in	keeping	us	two	mavericks
corralled.	And	special	thanks	to	Tatiana	for	bringing	this	sixth	edition	to	fruition.

	

Chapter	1.	HTML,	XHTML,	and	the	World	Wide	Web

Though	it	began	as	a	military	experiment	and	spent	its	adolescence	as	a	sandbox
for	academics	and	eccentrics,	in	less	than	a	decade	just	before	the	new
millennium,	the	worldwide	network	of	computer	networks	(a.k.a.	the	Internet)
matured	into	a	highly	diversified,	financially	important	community	of	computer
users	and	information	vendors.	From	the	boardroom	to	your	living	room,	you	can
bump	into	Internet	users	of	nearly	any	and	all	nationalities,	of	any	and	all
persuasions,	from	serious	to	frivolous	individuals,	from	businesses	to	nonprofit
organizations,	and	from	born-again	Christian	evangelists	to	pornographers.

In	many	ways,	the	Webthe	open	community	of	hypertext-enabled	document
servers	and	readers	on	the	Internetis	responsible	for	the	meteoric	rise	in	the
network's	popularity.	You,	too,	can	become	a	valued	member	by	contributing:
writing	HTML	and	XHTML	documents	and	then	making	them	available	to	web
surfers	worldwide.

Let's	climb	up	the	Internet	family	tree	to	gain	some	deeper	insight	into	its
magnificence,	not	only	as	an	exercise	of	curiosity,	but	also	to	help	us	better
understand	just	who	and	what	we	are	dealing	with	when	we	go	online.

	

1.1.	The	Internet

Although	popular	media	accounts	are	often	confused	and	confusing,	the	concept	of
the	Internet	really	is	rather	simple:	it's	a	worldwide	collection	of	computer
networksa	network	of	networkssharing	digital	information	via	a	common	set	of
networking	and	software	protocols.

Networks	are	not	new	to	computers.	What	makes	the	Internet	unique	is	its
worldwide	collection	of	digital	telecommunication	links	that	share	a	common	set	of
computer-network	technologies,	protocols,	and	applications.	Whether	you	run
Microsoft	Windows	XP,	Linux,	Mac	OS,	or	even	the	now	ancient	Windows	3.1,
when	connected	to	the	Internet,	all	computers	speak	the	same	networking
language	and	use	functionally	identical	programs,	so	you	can	exchange
informationeven	multimedia	pictures	and	soundwith	someone	next	door	or	across
the	planet.

The	common	and	now	quite	familiar	programs	people	use	to	communicate	and
distribute	their	work	over	the	Internet	have	also	found	their	way	into	private	and
semiprivate	networks.	These	so-called	intranets	and	extranets	use	the	same
software,	applications,	and	networking	protocols	as	the	Internet.	But	unlike	the
Internet,	intranets	are	private	networks,	with	access	restricted	to	members	of	the
institution.	Likewise,	extranets	restrict	access	but	use	the	Internet	to	provide
services	to	members.

The	Internet,	on	the	other	hand,	seemingly	has	no	restrictions.	Anyone	with	a
computer	and	the	right	networking	software	and	connection	can	"get	on	the	Net"
and	begin	exchanging	words,	sounds,	and	pictures	with	others	around	the	world,
day	or	night:	no	membership	required.	And	that's	precisely	what	is	confusing
about	the	Internet.

Like	an	oriental	bazaar,	the	Internet	is	not	well	organized,	there	are	few	content
guides,	and	it	can	take	a	lot	of	time	and	technical	expertise	to	tap	its	full
potential.	That's	because....

1.1.1.	In	the	Beginning

The	Internet	began	in	the	late	1960s	as	an	experiment	in	the	design	of	robust
computer	networks.	The	goal	was	to	construct	a	network	of	computers	that	could
withstand	the	loss	of	several	machines	without	compromising	the	ability	of	the
remaining	ones	to	communicate.	Funding	came	from	the	U.S.	Department	of
Defense,	which	had	a	vested	interest	in	building	information	networks	that	could
withstand	nuclear	attack.

The	resulting	network	was	a	marvelous	technical	success,	but	it	was	limited	in
size	and	scope.	For	the	most	part,	only	defense	contractors	and	academic
institutions	could	gain	access	to	what	was	then	known	as	the	ARPAnet	(Advanced
Research	Projects	Agency	Network	of	the	Department	of	Defense).

With	the	advent	of	high-speed	modems	for	digital	communication	over	common
phone	lines,	some	individuals	and	organizations	not	directly	tied	to	the	main
digital	pipelines	began	connecting	to	and	taking	advantage	of	the	network's
advanced	and	global	communications.	Nonetheless,	it	wasn't	until	around	1993
that	the	Internet	really	took	off.

Several	crucial	events	led	to	the	meteoric	rise	in	popularity	of	the	Internet.	First,
in	the	early	1990s,	businesses	and	individuals	eager	to	take	advantage	of	the
ease	and	power	of	global	digital	communications	finally	pressured	the	largest
computer	networks	on	the	mostly	U.S.	government-funded	Internet	to	open	their
systems	for	nearly	unrestricted	traffic.	(The	network	wasn't	designed	to	route
information	based	on	content,	meaning	that	commercial	messages	went	through
university	computers	that	at	the	time	forbade	such	activity.)

True	to	their	academic	traditions	of	free	exchange	and	sharing,	many	of	the
original	Internet	members	continued	to	make	substantial	portions	of	their
electronic	collections	of	documents	and	software	available	to	the	newcomersfree
for	the	taking!	Global	communications,	a	wealth	of	free	software	and	information:
who	could	resist?

Well,	frankly,	the	Internet	was	a	tough	row	to	hoe	back	then.	Getting	connected
and	using	the	various	software	tools,	if	they	were	even	available	for	their
computers,	presented	an	insurmountable	technology	barrier	for	most	people.	And
most	available	information	was	plain-vanilla	text	about	academic	subjects,	not	the
neatly	packaged	fare	that	attracts	users	to	services	such	as	America	Online.	The
Internet	was	just	too	disorganized,	and,	outside	of	the	government	and	academia,
few	people	had	the	knowledge	or	interest	to	learn	how	to	use	the	arcane	software
or	the	time	to	spend	rummaging	through	documents	looking	for	ones	of	interest.

1.1.2.	HTML	and	the	Web

It	took	another	spark	to	light	the	Internet	rocket.	At	about	the	same	time	the
Internet	opened	up	for	business,	some	physicists	at	CERN,	the	European	Particle
Physics	Laboratory,	released	an	authoring	language	and	distribution	system	they
developed	for	creating	and	sharing	multimedia-enabled,	integrated	electronic
documents	over	the	Internet.	And	so	was	born	Hypertext	Markup	Language
(HTML),	browser	software,	and	the	Web.	No	longer	did	authors	have	to	distribute
their	work	as	fragmented	collections	of	pictures,	sounds,	and	text.	HTML	unified
those	elements.	Moreover,	the	Web's	systems	enabled	hypertext	linking,	whereby

documents	automatically	reference	other	documents	located	anywhere	around	the
world:	less	rummaging,	more	productive	time	online.

Lift-off	happened	when	some	bright	students	and	faculty	at	the	National	Center
for	Supercomputing	Applications	(NCSA)	at	the	University	of	Illinois,	Urbana-
Champaign	wrote	a	web	browser	called	Mosaic.	Although	designed	primarily	for
viewing	HTML	documents,	the	software	also	had	built-in	tools	to	access	the	much
more	prolific	resources	on	the	Internet,	such	as	FTP	archives	of	software	and
Gopher-organized	collections	of	documents.

With	versions	based	on	easy-to-use	GUIs	familiar	to	most	computer	owners,
Mosaic	became	an	instant	success.	It,	like	most	Internet	software,	was	available
on	the	Net	for	free.	Millions	of	users	snatched	up	copies	and	began	surfing	the
Internet	for	"cool	web	pages."

1.1.3.	Golden	Threads

Since	those	early	days,	the	Web	has	spawned	an	entirely	new	medium	for
worldwide	information	exchange	and	commerce.	For	instance,	when	the
marketeers	caught	on	to	the	fact	that	they	could	cheaply	produce	and	deliver	eye-
catching,	wow-and-whiz-bang	commercials	and	product	catalogs	to	those	millions
of	web	surfers	around	the	world,	there	was	no	stopping	the	stampede	of	blue
suede	shoes.	Even	the	key	developers	of	Mosaic	and	related	web	server
technologies	sensed	potential	riches.	They	left	NCSA	and	made	their	fortunes	with
Netscape	Communications	by	producing	commercial	web	browsers	and	server
software.	That	was	until	the	sleeping	giant,	Microsoft,	awoke.	But	that's	another
story....

Business	users	and	marketing	opportunities	have	helped	invigorate	the	Internet
and	fuel	its	phenomenal	growth.	Internet-based	commerce	has	become	Very	Big
Business,	exceeding	$150	billion	annually	by	2005.	Traditional	bricks-and-mortar
businesses	have	either	opened	web-based	commercial	sites	or	face	extinction.

For	some,	particularly	we	Internet	old-timers,	business	and	marketing	have	also
trashed	the	medium.	In	many	ways,	the	Web	has	become	a	vast	strip	mall	and	an
annoying	advertising	medium.	Believe	it	or	not,	once	upon	a	time,	Internet	users
actually	followed	commonly	held	(but	not	formally	codified)	rules	of	netiquette
that	prohibited	such	things	as	spam	email.

Nonetheless,	the	power	of	HTML	and	network	distribution	of	information	goes	well
beyond	marketing	and	monetary	rewards:	serious	informational	pursuits	also
benefit.	Publications	complete	with	images	and	other	media	such	as	executable
software	can	get	to	their	intended	audiences	in	the	blink	of	an	eye,	instead	of	the
months	traditionally	required	for	printing	and	mail	delivery.	Education	takes	a

great	leap	forward	when	students	gain	access	to	the	great	libraries	of	the	world.
And	at	times	of	leisure,	the	interactive	capabilities	of	HTML	links	can	reinvigorate
our	otherwise	television-numbed	minds.

	

1.2.	Talking	the	Internet	Talk

Every	computer	connected	to	the	Internet	(even	a	beat-up	old	Apple	II)	has	a
unique	address:	a	number	whose	format	is	defined	by	the	Internet	Protocol	(IP),
the	standard	that	defines	how	messages	are	passed	from	one	machine	to	another
on	the	Net.	An	IP	address	is	made	up	of	four	numbers,	each	less	than	256,	joined
together	by	periods,	such	as	192.12.248.73	and	131.58.97.254.

While	computers	deal	only	with	numbers,	people	prefer	names.	For	this	reason,
most	computers	also	have	names	bestowed	upon	them.	By	current	estimates,
there	are	hundreds	of	millions,	if	not	billions,	of	devices	on	the	Net,	so	it	would	be
very	difficult	to	come	up	with	that	many	unique	names,	let	alone	keep	track	of
them	all.	Instead,	the	Internet	is	a	network	of	networks,	and	is	divided	into
groups	known	as	domains,	which	are	further	divided	into	one	or	more
subdomains.	So,	while	you	might	choose	a	very	common	name	for	your	computer,
it	becomes	unique	when	you	append,	like	surnames,	all	of	the	machine's	domain
names	as	a	period-separated	suffix,	creating	a	fully	qualified	domain	name.

This	naming	stuff	is	easier	than	it	sounds.	For	example,	the	fully	qualified	domain
name	www.oreilly.com	translates	to	a	machine	named	"www"	that's	part	of	the
domain	known	as	"oreilly,"	which,	in	turn,	is	part	of	the	commercial	(com)	branch
of	the	Internet.	Other	branches	of	the	Internet	include	educational	institutions
(edu),	nonprofit	organizations	(org),	the	U.S.	government	(gov),	and	Internet
service	providers	(net).	Computers	and	networks	outside	the	United	States	may
have	two-letter	abbreviations	at	the	end	of	their	names:	for	example,	"ca"	for
Canada,	"jp"	for	Japan,	and	"uk"	for	the	United	Kingdom.

Special	computers,	known	as	nameservers,	keep	tables	of	machine	names	and
associated	IP	addresses	and	translate	one	into	the	other	for	us	and	for	our
machines.	Domain	names	must	be	registered	and	paid	for	through	any	one	of	the
now	many	for-profit	registrars.[*]	Once	a	unique	domain	name	is	registered,	its
owner	makes	it	and	its	address	available	to	other	domain	nameservers	around	the
world.

[*]	At	one	time,	a	single	nonprofit	organization	known	as	InterNIC	handled	that	function.	Now	ICANN.org	coordinates	U.S.
government-related	nameservers,	but	other	organizations	or	individuals	must	work	through	a	for-profit	company	to
register	their	unique	domain	names.

1.2.1.	Clients,	Servers,	and	Browsers

The	Internet	connects	two	kinds	of	computers:	servers,	which	serve	up
documents,	and	clients,	which	retrieve	and	display	documents	for	us	humans.

http://www.oreilly.com

Things	that	happen	on	the	server	machine	are	said	to	be	on	the	server	side,	and
activities	on	the	client	machine	occur	on	the	client	side.

To	access	and	display	HTML	documents,	we	run	programs	called	browsers	on	our
client	computers.	These	browser	clients	talk	to	special	web	servers	over	the
Internet	to	access,	retrieve,	and	display	electronic	documents.

A	variety	of	browsers	are	available	today.	Internet	Explorer	comes	with	Microsoft's
operating	system	software,	for	example,	while	most	other	browsers	are	free	for
download	on	the	Web.	And	most	browsers	run	on	client	devices	that	have	high-
resolution,	high-color	graphical	viewing	screens.	In	fact,	today's	browsers	share
common	HTML-rendering	software	under	the	hood,	so	to	speak,	and	differ	only	by
extraneous,	albeit	some	very	useful	features.	For	instance,	when	you	install
Netscape	Navigator	version	8,	you	decide	whether	to	use	the	NCSA	Mosaic
rendering	software,	portions	of	which	also	are	under	Microsoft's	Internet	Explorer,
or	Mozilla's	software,	which	comes	under	the	hood	of	another	popular	browser,
Firefox.

This	is	very	different	from	around	the	turn	of	the	century,	when	Internet	Explorer
savagely	competed	with	Netscape	Navigator	through	unique	extensions	to	the
HTML	language.	Internet	Explorer	won.	Many	of	its	extensions	even	became	HTML
standards,	and	others	such	as	Netscape's	layout	extensions	disappeared	and	so
got	relegated	to	appendices	in	this	book.

1.2.2.	The	Flow	of	Information

All	web	activity	begins	on	the	client	side,	when	a	user	starts	his	browser.	The
browser	begins	by	loading	a	home	page	document,	either	from	local	storage	or
from	a	server	over	some	network,	such	as	the	Internet,	a	corporate	intranet,	or	a
town	extranet.	When	starting	up	on	the	network,	the	client	browser	first	consults
a	domain	name	system	(DNS)	server	to	translate	the	home	page	server's	name,
such	as	www.oreilly.com,	into	an	IP	address,	before	sending	a	request	to	that
server	over	the	Internet.	This	request	(and	the	server's	reply)	is	formatted
according	to	the	dictates	of	the	Hypertext	Transfer	Protocol	(HTTP)	standard.

A	server	spends	most	of	its	time	listening	to	the	network,	waiting	for	document
requests	with	the	server's	unique	address	stamped	on	them.	Upon	receipt	of	a
request,	the	server	verifies	that	the	requesting	browser	is	allowed	to	retrieve
documents	from	the	server	and,	if	so,	checks	for	the	requested	document.	If	it
finds	the	document,	the	server	sends	it	to	the	browser.	The	server	usually	logs	the
request,	typically	including	the	client	computer's	IP	address,	the	document
requested,	and	the	time.	The	server	might	also	issue	special	attachments	known
as	cookies	that	contain	additional	information	about	the	requesting	browser	and
its	owner.

http://www.oreilly.com

Back	on	the	browser,	the	document	arrives.	If	it's	a	plain-vanilla	text	file,	most
browsers	display	it	in	a	common,	plain-vanilla	way.	Document	directories,	too,	are
treated	like	plain	documents,	which	most	graphical	browsers	display	as	folder
icons	that	the	user	may	select,	thereby	requesting	to	view	the	contents	of	the
subdirectory.

Browsers	can	retrieve	many	different	types	of	files	from	a	server.	Unless	assisted
by	a	helper	program	or	specially	enabled	by	plug-in	software	or	applets,	which
display	an	image	or	video	file	or	play	an	audio	file,	the	browser	usually	stores	the
file	directly	on	a	local	disk	for	later	use.

For	the	most	part,	however,	the	browser	retrieves	a	special	document	that
appears	to	be	a	plain	text	file	but	that	contains	both	text	and	special	markup
codes	called	tags.	The	browser	processes	these	HTML	or	XHTML	documents,
formatting	the	text	based	on	the	tags	and	downloading	special	accessory	files,
such	as	images.

The	user	reads	the	document,	selects	a	hyperlink	to	another	document,	and	the
entire	process	starts	over.

1.2.3.	Beneath	the	Web

We	should	point	out	again	that	browsers	and	HTTP	servers	need	not	be	part	of	the
Web	to	function.	In	fact,	you	never	need	to	be	connected	to	the	Internet	or	to	any
network,	for	that	matter,	to	write	HTML/XHTML	documents	and	operate	a	browser.
You	can	load	and	display	locally	stored	documents	and	accessory	files	directly	on
your	browser.	Many	organizations	take	advantage	of	this	capability	by	distributing
catalogs	and	product	manuals,	for	instance,	on	a	much	less	expensive,	but	much
more	interactively	useful,	CD-ROM,	rather	than	via	traditional	print	on	paper.
Many	graphical-user	applications	even	document	their	features	through
HTML/XHTML-based	Help	menus.

Isolating	web	documents	is	good	for	the	author,	too,	since	it	gives	you	the
opportunity	to	finish,	in	the	editorial	sense	of	the	word,	a	document	collection	for
later	distribution.	Diligent	authors	work	locally	to	write	and	proof	their	documents
before	releasing	them	for	general	distribution,	thereby	sparing	readers	the
agonies	of	broken	image	files	and	bogus	hyperlinks.[*]

[*]	Vigorous	testing	of	HTML	documents	once	they	are	made	available	on	the	Web	is,	of	course,	also	highly
recommended	and	necessary	to	rid	them	of	various	linking	bugs.

Organizations,	too,	can	be	connected	to	the	Internet	but	also	maintain	private
web	sites	and	document	collections	for	distribution	to	clients	on	their	local
networks,	or	intranets.	In	fact,	private	web	sites	are	fast	becoming	the	technology

of	choice	for	the	paperless	offices	we've	heard	so	much	about	during	these	last
few	years.	With	HTML	and	XHTML	document	collections,	businesses	can	maintain
personnel	databases	complete	with	employee	photographs	and	online	handbooks,
collections	of	blueprints,	parts,	assembly	manuals,	and	so	onall	readily	and	easily
accessed	electronically	by	authorized	users	and	displayed	on	a	local	computer.

1.2.4.	Standards	Organizations

Like	many	popular	technologies,	HTML	started	out	as	an	informal	specification
used	by	only	a	few	people.	As	more	and	more	authors	began	to	use	the	language,
it	became	obvious	that	more	formal	means	were	needed	to	define	and	managei.e.,
to	standardizethe	language's	features,	making	it	easier	for	everyone	to	create	and
share	documents.

1.2.4.1.	The	World	Wide	Web	Consortium

The	World	Wide	Web	Consortium	(W3C)	was	formed	with	the	charter	to	define	the
standards	for	HTML	and,	later,	XHTML.	Members	are	responsible	for	drafting,
circulating	for	review,	and	modifying	the	standard	based	on	cross-Internet
feedback	to	best	meet	the	needs	of	many.

Beyond	HTML	and	XHTML,	the	W3C	has	the	broader	responsibility	of	standardizing
any	technology	related	to	the	Web;	they	manage	the	HTTP,	Cascading	Style	Sheet
(CSS),	and	Extensible	Markup	Language	(XML)	standards,	as	well	as	related
standards	for	document	addressing	on	the	Web.	They	also	solicit	draft	standards
for	extensions	to	existing	web	technologies.

If	you	want	to	track	HTML,	XML,	XHTML,	CSS,	and	other	exciting	web
development	and	related	technologies,	contact	the	W3C	at	http://www.w3.org.

Also,	several	Internet	newsgroups	are	devoted	to	the	Web,	each	a	part	of	the
comp.infosystems.www	hierarchy.	These	include
comp.infosystems.www.authoring.html	and
comp.infosystems.www.authoring.images.

1.2.4.2.	The	Internet	Engineering	Task	Force

Even	broader	in	reach	than	W3C,	the	Internet	Engineering	Task	Force	(IETF)	is
responsible	for	defining	and	managing	every	aspect	of	Internet	technology.	The
Web	is	just	one	small	area	under	the	purview	of	the	IETF.

http://www.w3.org

The	IETF	defines	all	of	the	technology	of	the	Internet	via	official	documents
known	as	Requests	for	Comments,	or	RFCs.	Individually	numbered	for	easy
reference,	each	RFC	addresses	a	specific	Internet	technologyeverything	from	the
syntax	of	domain	names	and	the	allocation	of	IP	addresses	to	the	format	of
electronic	mail	messages.

To	learn	more	about	the	IETF	and	follow	the	progress	of	various	RFCs	as	they	are
circulated	for	review	and	revision,	visit	the	IETF	home	page,	http://www.ietf.org.

	

http://www.ietf.org

1.3.	HTML	and	XHTML:	What	They	Are

HTML	and	XHTML	define	the	syntax	and	placement	of	special,	embedded	directions
that	aren't	displayed	by	the	browser	but	advise	it	how	to	display	the	contents	of
the	document,	including	text,	images,	and	other	support	media.	The	languages
also	make	a	document	interactive	through	special	hypertext	links,	which	connect
your	document	with	other	documentson	either	your	computer	or	someone	else'sas
well	as	with	other	Internet	resources.

You've	certainly	heard	of	HTML	and,	perhaps,	XHTML,	but	did	you	know	that	they
are	just	two	of	many	other	markup	languages?	Indeed,	HTML	is	the	black	sheep	in
the	family	of	document	markup	languages.	HTML	was	based	on	SGML,	the
Standard	Generalized	Markup	Language.	The	powers	that	be	created	SGML	with
the	intent	that	it	would	be	the	one	and	only	markup	metalanguage	from	which	all
other	document	markup	elements	would	be	created.	Everything	from
hieroglyphics	to	HTML	can	be	defined	using	SGML,	negating	any	need	for	any
other	markup	language.

The	problem	with	SGML	is	that	it	is	so	broad	and	all-encompassing	that	mere
mortals	cannot	use	it.	Using	SGML	effectively	requires	very	expensive	and
complex	tools	that	are	completely	beyond	the	scope	of	regular	people	who	just
want	to	bang	out	an	HTML	document	in	their	spare	time.	As	a	result,	HTML
adheres	to	some,	but	not	all,	SGML	standards,[*]	eliminating	many	of	the	more
esoteric	features	so	that	it	is	readily	useable	and	used.

[*]	The	HTML	Document	Type	Definition	(DTD)	in	Appendix	D	uses	a	subset	of	SGML	to	define	the	HTML	4.01	standard.

Besides	the	fact	that	SGML	is	unwieldy	and	not	well	suited	to	describing	the	very
popular	HTML	in	a	useful	way,	there	was	also	a	growing	need	to	define	other
HTML-like	markup	languages	to	handle	different	network	documents.	Accordingly,
the	W3C	defined	XML.	Like	SGML,	XML	is	a	separate	formal	markup	metalanguage
that	uses	select	features	of	SGML	to	define	markup	languages.	It	eliminates	many
features	of	SGML	that	aren't	applicable	to	languages	like	HTML	and	simplifies
other	SGML	elements	in	order	to	make	them	easier	to	use	and	understand.

However,	HTML	version	4.01	is	not	XML	compliant.	Hence,	the	W3C	offers	XHTML,
a	reformulation	of	HTML	that	is	compliant	with	XML.	XHTML	attempts	to	support
every	last	nit	and	feature	of	HTML	4.01	using	the	more	rigid	rules	of	XML.	It
generally	succeeds,	but	it	has	enough	differences	to	make	life	difficult	for	the
standards-conscious	HTML	author.

	

1.4.	HTML	and	XHTML:	What	They	Aren't

Despite	all	their	new,	multimedia-enabling	page-layout	features,	and	the	hot
technologies	that	give	life	to	HTML/XHTML	documents	over	the	Internet,	it	is	also
important	to	understand	the	languages'	limitations.	They	are	not	word	processing
tools,	desktop	publishing	solutions,	or	even	programming	languages.	Their
fundamental	purpose	is	to	define	the	structure	of	documents	and	document
families	so	that	they	may	be	delivered	quickly	and	easily	to	a	user	over	a	network
for	rendering	on	a	variety	of	display	devices;	jacks-of-all-trades	but	masters	of
none,	so	to	speak.

1.4.1.	Content	Versus	Appearance

HTML	and	its	progeny,	XHTML,	provide	many	different	ways	to	let	you	define	the
appearance	of	your	documents,	but	their	focus	is	on	structure,	not	appearance.	Of
course,	appearance	is	important,	since	it	can	have	either	detrimental	or	beneficial
effects	on	how	users	access	and	use	the	information	in	your	documents.	And	that
is	why	the	companion	CSS	standard	is	important.

Nonetheless,	we	believe	that	content	is	paramount;	appearance	is	secondary,
particularly	since	it	is	less	predictable,	given	the	variety	of	browser	graphics	and
text-formatting	capabilities.	In	fact,	HTML	and	XHTML	contain	many	ways	for
structuring	your	document	content	without	regard	to	the	final	appearance:
section	headers,	structured	lists,	paragraphs,	rules,	titles,	and	embedded	images
are	defined	by	the	standard	languages	without	regard	for	how	these	elements
might	be	rendered	by	a	browser.	Consider,	for	example,	a	browser	for	the	blind,
wherein	graphics	on	the	page	come	with	audio	descriptions	and	alternative	rules
for	navigation.	The	HTML/XHTML	standards	define	such	a	thing:	content	over
visual	presentation.

If	you	treat	HTML	or	XHTML	as	a	document-formatting	tool,	you	will	be	sorely
disappointed.	There	is	simply	not	enough	capability	built	into	the	languages	to
allow	you	to	create	the	kinds	of	documents	you	might	whip	up	with	tools	such	as
FrameMaker	and	Word.	Attempts	to	subvert	the	supplied	structuring	elements	to
achieve	specific	formatting	tricks	seldom	work	across	all	browsers.	In	short,	don't
waste	your	time	trying	to	force	HTML	and	XHTML	to	do	things	they	were	never
designed	to	do.

Instead,	use	HTML	and	XHTML	in	the	manner	for	which	they	were	designed:
indicating	the	structure	of	a	document	so	that	the	browser	can	then	render	its
content	appropriately.	HTML	and	XHTML	are	rife	with	tags	that	let	you	indicate	the
semantics	of	your	document	content,	something	that	is	missing	from	or	often

badly	implemented	in	word	processors	and	page-layout	programs.	Create	your
documents	using	these	tags	and	you'll	be	happier,	your	documents	will	look	and
work	better,	and	your	readers	will	benefit	immensely.

	

1.5.	Standards	and	Extensions

The	basic	syntax	and	semantics	of	HTML	are	defined	in	the	HTML	standard,	now	in
its	final	version,	4.01.	HTML	matured	quickly,	in	barely	a	decade.	At	one	time,	a
new	version	would	appear	before	you	had	a	chance	to	finish	reading	an	earlier
edition	of	this	book.	Today,	HTML	has	stopped	evolving.	As	far	as	the	W3C	is
concerned,	XHTML	has	taken	over.	Now	the	wait	is	for	browser	manufacturers	to
implement	the	standards.

The	XHTML	standard	currently	is	version	1.0.	Fortunately,	XHTML	version	1.0	is,
for	the	most	part,	a	reconstitution	of	HTML	version	4.01.	There	are	some
differences,	which	we	explore	in	Chapter	16.	The	popular	browsers	continue	to
support	HTML	documents,	so	there	is	no	cause	to	stampede	to	XHTML.	Do,
however,	start	walking	in	that	direction:	a	newer	XHTML	version,	2.0,	is	under
consideration	at	the	W3C,	and	browser	developers	are	slowly	but	surely	dropping
nonstandard	HTML	features	from	their	products.

Obviously,	browser	developers	rely	upon	standards	and	accepted	conventions	to
have	their	software	properly	format	and	display	common	HTML	and	XHTML
documents.	Authors	use	the	standards	to	make	sure	they	are	writing	effective,
correct	documents	that	get	displayed	properly	by	the	browsers.

However,	standards	are	not	always	explicit;	manufacturers	have	some	leeway	in
how	their	browsers	might	display	an	element.	And	to	complicate	matters,
commercial	forces	have	pushed	developers	to	add	into	their	browsers	nonstandard
extensions	meant	to	improve	the	language.

Confused?	Don't	be:	in	this	book,	we	explore	in	detail	the	syntax,	semantics,	and
idioms	of	the	HTML	version	4.01	and	XHTML	version	1.0	languages,	along	with	the
many	important	extensions	that	are	supported	in	the	latest	versions	of	the	most
popular	browsers.

1.5.1.	Nonstandard	Extensions

It	doesn't	take	an	advanced	degree	in	The	Obvious	to	know	that	distinction	draws
attention;	so,	too,	with	browsers.	Extra	whiz-bang	features	can	give	the	edge	in
the	otherwise	standardized	browser	market.	That	can	be	a	nightmare	for	authors.
A	lot	of	people	want	you	to	use	the	latest	and	greatest	gimmick	or	even	useful
HTML/XHTML	extension.	But	it's	not	part	of	the	standard,	and	not	all	browsers
support	it.	In	fact,	on	occasion,	the	popular	browsers	support	different	ways	of
doing	the	same	thing.

1.5.2.	Extensions:	Pro	and	Con

Every	software	vendor	adheres	largely	to	the	technological	standards.	It's
embarrassing	to	be	incompatible,	and	your	competitors	will	take	every
opportunity	to	remind	buyers	of	your	product's	failure	to	comply,	no	matter	how
arcane	or	useless	that	standard	might	be.	At	the	same	time,	vendors	seek	to
make	their	products	different	from	and	better	than	the	competition's	offerings.
Netscape's	and	Internet	Explorer's	extensions	to	standard	HTML	are	perfect
examples	of	these	market	pressures.

Many	document	authors	feel	safe	using	these	extended	browsers'	nonstandard
extensions	because	of	their	combined	and	commanding	share	of	users.	For	better
or	worse,	extensions	to	HTML	in	prominent	browsers	become	part	of	the	street
version	of	the	language,	much	like	English	slang	creeping	into	the	vocabulary	of
most	Frenchmen,	despite	the	best	efforts	of	the	Académie	Française.

Fortunately,	with	HTML	version	4.0,	the	W3C	standards	caught	up	with	the
browser	manufacturers.	In	fact,	the	tables	turned	somewhat.	The	many
extensions	to	HTML	that	originally	appeared	as	extensions	in	Netscape	Navigator
and	Microsoft	Internet	Explorer	are	now	part	of	the	HTML	4	and	XHTML	1
standards,	and	there	are	other	parts	of	the	new	standard	which	are	not	yet
features	of	the	popular	browsers.

1.5.3.	Avoiding	Extensions

In	general,	we	urge	you	to	resist	using	extensions	unless	you	have	a	compelling
and	overriding	reason	to	do	so.	By	using	them,	particularly	in	key	portions	of	your
documents,	you	run	the	risk	of	losing	a	substantial	portion	of	your	potential
readership.	To	be	fair,	most	browsers	eschew	extensions,	so	the	point	is	moot	now.

We	admit	that	it	is	disingenuous	of	us	to	decry	the	use	of	extensions	while
presenting	complete	descriptions	of	their	use.	In	keeping	with	the	general
philosophy	of	the	Internet,	we'll	err	on	the	side	of	handing	out	rope	and	guns	to
all	interested	parties	while	hoping	you	have	enough	smarts	to	keep	from	hanging
yourself	or	shooting	yourself	in	the	foot.

Our	advice	still	holds,	though:	use	an	extension	only	where	it	is	necessary	or	very
advantageous,	and	do	so	with	the	understanding	that	you	are	disenfranchising	a
portion	of	your	audience.	To	that	end,	you	might	even	consider	providing
separate,	standards-based	versions	of	your	documents	to	accommodate	users	of
other	browsers.

1.5.4.	Extensions	Through	Modules

XHTML	version	1.1	provides	a	mechanism	for	extending	the	language	in	a
standard	way:	XML	modules.	In	fact,	XHTML	1.1	is	composed	of	modules	itself.

XHTML	modules	divide	the	HTML	language	into	discrete	document	types,	each
defining	features	and	functions	that	are	parts	of	the	language.	There	are	separate
modules	for	XHTML	forms,	text,	scripting,	tables,	and	so	onall	the	nondeprecated
elements	of	XHTML	1.0.

The	advantage	of	modules	is	extensibility.	In	addition	to	using	the	markup
features	from	the	XHTML	modules	normally	included	in	the	standard,	the	new
language	lets	you	easily	blend	other	XML	modules	into	your	documents,	extending
their	features	and	capabilities	in	a	standard	way.	For	instance,	the	W3C	has
defined	a	MathML	module	that	provides	explicit	markup	elements	for
mathematical	equations	that	you	could	use	in	your	next	XHTML-based	math
thesis.

Modules,	let	alone	the	XHTML	version	1.1	language,	are	experimental	and	are	not
well	supported	by	the	popular	browsers.	Accordingly,	we	don't	recommend	that
you	use	XHTML	modules	just	yet.	For	now,	the	subject	is	beyond	the	scope	of	this
book.	Consult	the	W3C	web	site	for	more	details.

	

1.6.	Tools	for	the	Web	Designer

While	you	can	use	the	barest	of	barebones	text	editors	to	create	HTML	and	XHTML
documents,	most	authors	have	a	toolbox	of	software	utilities	that	is	a	bit	more
elaborate	than	a	simple	text	editor.	At	the	barest	minimum,	you	also	need	a
browser,	so	you	can	test	and	refine	your	work.	Beyond	the	essentials	are	some
specialized	software	tools	for	developing	and	preparing	HTML	documents	and
accessory	multimedia	files.

1.6.1.	Essentials

At	the	very	least,	you'll	need	a	text	editor,	a	browser	to	check	your	work,	and,
ideally,	a	connection	to	the	Internet.

1.6.1.1.	Text	processor	or	WYSIWYG	editor?

Some	authors	use	the	word	processing	capabilities	of	their	specialized
HTML/XHTML	editing	software.	Some	use	a	WYSIWYG-like	(what-you-see-is-what-
you-get,	kind	of)	composition	tool	such	as	those	that	come	with	the	latest
versions	of	the	popular	word	processors.	Others,	such	as	ourselves,	prefer	to
compose	their	work	on	a	common	text	editor	and	later	insert	the	markup	tags	and
their	attributes.	Still	others	include	markup	as	they	compose.

We	think	the	stepwise	approachcompose,	then	mark	upis	the	better	way.	We	find
that	once	we've	defined	and	written	the	document's	content,	it's	much	easier	to
make	a	second	pass	to	judiciously	and	effectively	add	the	HTML/XHTML	tags	to
format	the	text.	Otherwise,	the	markup	can	obscure	the	content.	Note,	too,	that
unless	specially	trained	(if	they	can	be),	spellcheckers	and	thesauruses	typically
choke	on	markup	tags	and	their	various	parameters.	You	can	spend	what	seems
to	be	a	lifetime	clicking	the	Ignore	button	on	all	those	otherwise	valid	markup
tags	when	syntax-	or	spellchecking	a	document.

When	and	how	you	embed	markup	tags	into	your	document	dictates	the	tools	you
need.	We	recommend	that	you	use	a	good	word	processor,	which	comes	with	more
and	better	writing	tools	than	simple	text	editors	or	the	browser-based	markup-
language	editors.	You'll	find,	for	instance,	that	an	outliner,	spellchecker,	and
thesaurus	will	best	help	you	craft	the	document's	flow	and	content,	disregarding
for	the	moment	its	look.	The	latest	word	processors	encode	your	documents	with
HTML,	too,	but	don't	expect	miracles.	Except	for	boilerplate	documents,	you	will
probably	need	to	nurse	those	automated	HTML	documents	to	full	health.	(Not	to
mention	put	them	on	a	diet	when	you	see	how	long	the	generated	HTML	is.)	And

it'll	be	a	while	before	you'll	see	XHTML-specific	markup	tools	in	the	popular	word
processors.

Another	word	of	caution	about	automated	composition	tools:	they	typically	change
or	insert	content	(e.g.,	replacing	relative	hyperlinks	with	full	ones)	and	arrange
your	document	in	ways	that	will	annoy	you.	Annoying,	in	particular,	because	they
rarely	give	you	the	opportunity	to	do	things	your	own	way.

Become	fluent	in	native	HTML/XHTML.	Be	prepared	to	reverse	some	of	the	things
a	composition	tool	will	do	to	your	documents.	And	make	sure	you	can	wrest	your
document	away	from	the	tool	so	that	you	can	make	it	do	your	bidding.

1.6.1.2.	Browser	software

Obviously,	you	should	view	your	newly	composed	documents	and	test	their
functionality	before	you	release	them	for	use	by	others.	For	serious	authors,
particularly	those	looking	to	push	their	documents	beyond	the	HTML/XHTML
standards,	we	recommend	that	you	have	several	browsers,	perhaps	with	versions
running	on	different	computers,	just	to	be	sure	one's	delightful	display	isn't
another's	nightmare.

The	currently	popularand	therefore,	most	importantbrowsers	are	Microsoft
Internet	Explorer,	Mozilla	Firefox,	Safari	(for	Apple),	Opera,	and	Netscape
Navigator,	though	the	last	is	rapidly	disappearing	from	the	Web	landscape.	Most
versions	run	on	the	variety	of	popular	computing	platforms,	such	as	the	various
Microsoft	OSes,	Linux,	Mac	OS,	and	so	forth.	Different	browser	versions	often
vary	in	the	elements	of	HTML	and	XHTML	that	they	support.	We	make	every	effort
to	point	out	those	differences	throughout	this	book.	Nevertheless,	it	helps	to
download	not	only	the	latest	versions	from	their	web	sites,	but	also	previous
browser	versions	in	order	to	better	test	your	work	for	compatibility.	This	is
particularly	important	given	that	several	millions	of	the	estimated	more	than	one
billion	Web	users	worldwide	still	operate	the	ancient	Internet	Explorer	version	5!

1.6.2.	An	Extended	Toolkit

If	you're	serious	about	creating	documents,	you'll	soon	find	that	all	sorts	of	nifty
tools	are	available	to	make	life	easier.	The	list	of	freeware,	shareware,	and
commercial	products	grows	daily,	so	it's	not	very	useful	to	provide	a	list	here.	This
is,	in	fact,	another	good	reason	to	frequent	the	various	newsgroups	and	web	sites
that	keep	updated	lists	of	HTML	and	XHTML	resources	on	the	Web.	If	you	are
really	dedicated	to	writing	in	HTML	and	XHTML,	you	will	visit	those	sites,	and	you
will	visit	them	regularly	to	keep	abreast	of	the	language,	tools,	and	trends.

	

Chapter	2.	Quick	Start

We	didn't	spend	hours	studiously	poring	over	some	reference	book	before	we
wrote	our	first	HTML	document.	You	probably	shouldn't,	either.	HTML	is	simple	to
read	and	understand,	and	it's	simple	to	write.	And	once	you've	written	an	HTML
document,	you've	nearly	completed	your	first	XHTML	one,	too.	So	let's	get	started
without	first	learning	a	lot	of	arcane	rules.

To	help	you	get	that	quick,	satisfying	start,	we've	included	this	chapter	as	a	brief
summary	of	the	many	elements	of	HTML	and	its	progeny,	XHTML.	Of	course,	we've
left	out	a	lot	of	details	and	some	tricks	that	you	should	know.	Read	the	upcoming
chapters	to	get	the	essentials	for	becoming	fluent	in	HTML	and	XHTML.

Even	if	you	are	familiar	with	the	languages,	we	recommend	that	you	work	your
way	through	this	chapter	before	tackling	the	rest	of	the	book.	It	not	only	gives
you	a	working	grasp	of	basic	HTML/XHTML	and	their	jargon,	but	you'll	also	be
more	productive	later,	flush	with	the	confidence	that	comes	from	creating
attractive	documents	in	such	a	short	time.

	

2.1.	Writing	Tools

Use	any	text	editor	to	create	an	HTML	or	XHTML	document,	as	long	as	it	can	save
your	work	on	a	disk	in	text	file	format.	That's	because	even	though	web
documents	include	elaborate	text	layout	and	pictures,	they're	all	just	plain	old
text	documents	themselves.	A	fancier	WYSIWYG	editor	or	a	translator	for	your
favorite	word	processor	is	fine,	tooalthough	it	may	not	support	all	the	language
features	we	discuss	in	this	book.	You'll	probably	end	up	touching	up	the	source
text	they	produce,	in	any	case,	and	don't	expect	layout	results	like	what	you'd	get
with	a	page-layout	application.

While	it's	not	needed	to	compose	documents,	you	should	have	at	least	one
version	of	a	popular	browser	installed	on	your	computer	to	view	your	work.	That's
because,	unless	you	use	a	special	editor,	the	source	document	you	compose	won't
look	anything	like	what	gets	displayed	by	a	browser,	even	though	it's	the	same
document.	Make	sure	what	your	readers	actually	see	is	what	you	intended	by
viewing	the	document	yourself	with	a	browser.	Besides,	the	popular	ones	are	free
over	the	Internet.	We	currently	recommend	Microsoft	Internet	Explorer,	Mozilla
Firefox,	Apple	Safari,	Netscape	Navigator,	and	Opera	Software	ASA.

Also	note	that	you	don't	need	a	connection	to	the	Internet	or	the	Web	to	write
and	view	your	HTML	or	XHTML	documents.	You	can	compose	and	view	your
documents	stored	on	a	hard	drive	or	floppy	disk	that's	attached	to	your	computer.
You	can	even	navigate	among	your	local	documents	with	the	HTML/XHTML's
hyperlinking	capabilities	without	ever	being	connected	to	the	Internet,	or	any
other	network,	for	that	matter.	In	fact,	we	recommend	that	you	work	locally	to
develop	and	thoroughly	test	your	documents	before	you	share	them	with	others.

We	strongly	recommend,	however,	that	you	do	get	a	connection	to	the	Internet	if
you	are	serious	about	composing	your	own	documents.	You	can	download	and
view	others'	interesting	web	pages	and	see	how	they	accomplished	some
interesting	featuregood	or	bad.	Learning	by	example	is	fun,	too.	(Reusing	others'
work,	on	the	other	hand,	is	often	questionable,	if	not	downright	illegal.)	An
Internet	connection	is	essential	if	you	include	in	your	work	hyperlinks	to	other
documents	on	the	Internet.

	

2.2.	A	First	HTML	Document

It	seems	every	programming	language	book	ever	written	starts	off	with	a	simple
example	on	how	to	display	the	message,	"Hello,	World!"	Well,	you	won't	see	a
"Hello,	World!"	example	in	this	book.	After	all,	this	is	a	style	guide	for	the	new
millennium.	Instead,	ours	sends	greetings	to	the	World	Wide	Web:

<html>
<head>
<title>My	first	HTML	document</title>
</head>
<body>
<h2>My	first	HTML	document</h2>
Hello,	<i>World	Wide	Web!</i>
	<!	No	"Hello,	World"	for	us	>
<p>
			Greetings	from

O'Reilly
<p>
Composed	with	care	by:
<cite>(insert	your	name	here)</cite>

©2000	and	beyond
</body>
</html>

	
Go	ahead:	type	in	the	example	HTML	source	on	a	fresh	word	processing	page	and
save	it	on	your	local	disk	as	myfirst.html.	Make	sure	you	select	to	save	it	in	plain
text	format;	word	processor-specific	file	formats	like	Microsoft	Word's	.doc	files
save	hidden	characters	that	can	confuse	the	browser	software	and	disrupt	your
HTML	document's	display.

After	saving	myfirst.html	(or	myfirst.htm,	if	you	are	using	archaic	DOS-	or
Windows	3.11-based	file-naming	conventions)	onto	disk,	start	up	your	browser
and	locate	and	open	the	file	from	the	program's	File	menu.	Your	screen	should
look	like	Figure	2-1.	Though	look-and-feel	elements	such	as	menus	and	toolbars
differ	between	browsers,	the	window's	contents	should	be	quite	similar.

Figure	2-1.	A	very	simple	HTML	document

	
	

2.3.	Embedded	Tags

You	probably	noticed	right	away,	perhaps	in	surprise,	that	the	browser	displays
less	than	half	of	the	example	source	text.	Closer	inspection	of	the	source	reveals
that	what's	missing	is	everything	that's	bracketed	inside	a	pair	of	less-than	(<)
and	greater-than	(>)	characters.	[The	Syntax	of	a	Tag,	3.3.1]

HTML	and	XHTML	are	embedded	languages:	you	insert	their	directions,	or	tags,
into	the	same	document	that	you	and	your	readers	load	into	a	browser	to	view.
The	browser	uses	the	information	inside	those	tags	to	decide	how	to	display	or
otherwise	treat	the	subsequent	contents	of	your	document.

For	instance,	the	<i>	tag	that	follows	the	word	Hello	in	the	simple	example	tells
the	browser	to	display	the	following	text	in	italics.[*]	[Physical	Style	Tags,	4.5]

[*]	Italicized	text	is	a	very	simple	example	and	one	that	most	browsers,	except	the	text-only	variety	(e.g.,	Lynx),	can
handle.	In	general,	the	browser	tries	to	do	as	it	is	told,	but	as	we	demonstrate	in	upcoming	chapters,	browsers	vary	from
computer	to	computer	and	from	user	to	user,	as	do	the	fonts	that	are	available	and	selected	by	the	user	for	viewing
HTML	documents.	Assume	that	not	all	are	capable	of	or	willing	to	display	your	HTML	document	exactly	as	it	appears	on
your	screen.

The	first	word	in	a	tag	is	its	formal	name,	which	usually	is	fairly	descriptive	of	its
function,	too.	Any	additional	words	in	a	tag	are	special	attributes,	sometimes	with
an	associated	value	after	an	equals	sign	(=),	which	further	define	or	modify	the
tag's	actions.

2.3.1.	Start	and	End	Tags

Most	tags	define	and	affect	a	discrete	region	of	your	document.	The	region	begins
where	the	tag	and	its	attributes	first	appear	in	the	source	document	(a.k.a.	the
start	tag)	and	continues	until	a	corresponding	end	tag.	An	end	tag	is	the	tag's
name	preceded	by	a	forward	slash	(/).	For	example,	the	end	tag	that	matches	the
"start	italicizing"	<i>	tag	is	</i>.

End	tags	never	include	attributes.	In	HTML,	most	tags,	but	not	all,	have	an	end
tag.	And,	to	make	life	a	bit	easier	for	HTML	authors,	the	browser	software	often
infers	an	end	tag	from	surrounding	and	obvious	context,	so	you	needn't	explicitly
include	some	end	tags	in	your	source	HTML	document.	(We	tell	you	which	are
optional	and	which	are	never	omitted	when	we	describe	each	tag	in	later
chapters.)	Our	simple	example	is	missing	an	end	tag	that	is	so	commonly	inferred
and	hence	not	included	in	the	source	that	some	veteran	HTML	authors	don't	even
know	that	it	exists.	Which	one?

The	XHTML	standard	is	much	more	rigid,	insisting	that	all	tags	have	corresponding
end	tags.	[End	Tags,	16.3.2]	[Handling	Empty	Elements,	16.3.3]

	

2.4.	HTML	Skeleton

Notice,	too,	that	our	simple	example	HTML	document	starts	and	ends	with	<html>
and	</html>	tags.	These	tags	tell	the	browser	that	the	entire	document	is	composed
in	HTML.[*]	The	HTML	and	XHTML	standards	require	an	<html>	tag	for	compliant
documents,	but	most	browsers	can	detect	and	properly	display	HTML	encoding	in	a
text	document	that's	missing	this	outermost	structural	tag.	[<html>,	3.6.1]

[*]	XHTML	documents	also	begin	with	the	<html>	tag,	but	they	contain	additional	information	to	differentiate	them	from
common	HTML	documents.	See	Chapter	16	for	details.

Like	our	example,	except	for	special	frameset	documents,	all	HTML	and	XHTML
documents	have	two	main	structures:	a	head	and	a	body,	each	bounded	in	the
source	by	respectively	named	start	and	end	tags.	You	put	information	about	the
document	in	the	head	and	the	contents	you	want	displayed	in	the	browser's
window	inside	the	body.	Except	in	rare	cases,	you'll	spend	most	of	your	time
working	on	your	document's	body	content.	[<head>,	3.7.1]	[<body>,	3.8.1]

There	are	several	different	document	header	tags	that	you	can	use	to	define	how
a	particular	document	fits	into	a	document	collection	and	into	the	larger	scheme
of	the	Web.	Some	nonstandard	header	tags	even	animate	your	document.

For	most	documents,	however,	the	important	header	element	is	the	title.
Standards	require	that	every	HTML	and	XHTML	document	have	a	title,	even
though	the	currently	popular	browsers	don't	enforce	that	rule.	Choose	a
meaningful	title,	one	that	instantly	tells	the	reader	what	the	document	is	about.
Enclose	yours,	as	we	do	for	the	title	of	our	example,	between	the	<title>	and
</title>	tags	in	your	document's	header.	The	popular	browsers	typically	display	the
title	at	the	top	of	the	document's	window.	[<title>,	3.7.2]

	

2.5.	The	Flesh	on	an	HTML	or	XHTML	Document

Except	for	the	<html>,	<head>,	<body>,	and	<title>	tags,	the	HTML	and	XHTML
standards	have	few	other	required	structural	elements.	You're	free	to	include
pretty	much	anything	else	in	the	contents	of	your	document.	(The	web	surfers
among	you	know	that	authors	have	taken	full	advantage	of	that	freedom,	too.)
Perhaps	surprisingly,	though,	there	are	only	three	main	types	of	HTML/XHTML
content:	tags	(which	we	described	previously),	comments,	and	text.

2.5.1.	Comments

A	raw	document	with	all	its	embedded	tags	can	quickly	become	nearly
unreadable,	like	computer-programming	source	code.	We	strongly	recommend
that	you	use	comments	to	guide	your	composing	eye.

Although	it's	part	of	your	document,	nothing	in	a	comment,	which	goes	between
the	special	starting	tag	<!	and	ending	tag	>	comment	delimiters,	gets	included	in
the	browser	display	of	your	document.	You	see	a	comment	in	the	source,	as	in	our
simple	HTML	example,	but	you	don't	see	it	on	the	display,	as	evidenced	by	our
comment's	absence	in	Figure	2-1.	Anyone	can	download	the	source	text	of	your
documents	and	read	the	comments,	though,	so	be	careful	what	you	write.

2.5.2.	Text

If	it	isn't	a	tag	or	a	comment,	it's	text.	The	bulk	of	content	in	most	of	your
HTML/XHTML	documentsthe	part	readers	see	on	their	browser	displaysis	text.
Special	tags	give	the	text	structure,	such	as	headings,	lists,	and	tables.	Others
advise	the	browser	how	the	content	should	be	formatted	and	displayed.

2.5.3.	Multimedia

What	about	images	and	other	multimedia	elements	we	see	and	hear	as	part	of	our
web	browser	displays?	Aren't	they	part	of	the	HTML	document?	No.	The	data	that
comprises	digital	images,	movies,	sounds,	and	other	multimedia	elements	that
may	be	included	in	the	browser	display	is	in	files	separate	from	the	main
HTML/XHTML	document.	You	include	references	to	those	multimedia	elements	via
special	tags.	The	browser	uses	those	references	to	load	and	integrate	other	types
of	documents	with	your	text.

We	didn't	include	any	special	multimedia	references	in	the	previous	example
simply	because	they	are	separate,	nontext	documents	that	you	can't	just	type	into
a	text	processor.	We	do,	however,	talk	about	and	give	examples	of	how	to
integrate	images	and	other	multimedia	in	your	documents	later	in	this	chapter,	as
well	as	in	extensive	detail	in	subsequent	chapters.

	

2.6.	Text

Text-related	HTML/XHTML	markup	tags	comprise	the	richest	set	of	all	in	the
standard	languages.	That's	because	the	original	languageHTMLemerged	as	a	way
to	enrich	the	structure	and	organization	of	text.

HTML	came	out	of	academia.	What	was	and	still	is	important	to	those	early
developers	was	the	capability	of	their	mostly	academic,	text-oriented	documents
to	be	scanned	and	read	without	sacrificing	their	capability	to	distribute	documents
over	the	Internet	to	a	wide	diversity	of	computer	display	platforms.	(Unicode	text
is	the	only	universal	format	on	the	global	Internet.)	Multimedia	integration	is
something	of	an	appendage	to	HTML	and	XHTML,	albeit	an	important	one.

Also,	page	layout	is	secondary	to	structure.	We	humans	visually	scan	and	decide
textual	relationships	and	structure	based	on	how	it	looks;	machines	can	only	read
encoded	markings.	Because	documents	have	encoded	tags	that	relate	meaning,
they	lend	themselves	very	well	to	computer-automated	searches	and	to	the
recompilation	of	contentfeatures	very	important	to	researchers.	It's	not	so	much
how	something	is	said	as	what	is	being	said.

Accordingly,	neither	HTML	nor	XHTML	is	a	page-layout	language.	In	fact,	given	the
diversity	of	user-customizable	browsers,	as	well	as	the	diversity	of	computer
platforms	for	retrieval	and	display	of	electronic	documents,	all	these	markup
languages	strive	to	accomplish	is	to	advise,	not	dictate,	how	the	document	might
look	when	rendered	by	the	browser.	You	cannot	force	the	browser	to	display	your
document	in	any	certain	way.	You'll	hurt	your	brain	if	you	insist	otherwise.

2.6.1.	Appearance	of	Text

For	instance,	you	cannot	predict	what	font	and	what	absolute	size8-	or	40-point
Helvetica,	Geneva,	Subway,	or	whateverwill	be	used	for	a	particular	user's	text
display.	OK,	so	the	latest	browsers	now	support	standard	Cascading	Style	Sheets
(CSS)	and	other	desktop	publishing-like	features	that	let	you	control	the	layout
and	appearance	of	your	documents.	But	users	may	change	their	browser's	display
characteristics	and	override	your	carefully	laid	plans	at	will,	quite	a	few	of	the
older	browsers	out	there	don't	support	these	new	layout	features,	and	some
browsers	are	text-only	with	no	nice	fonts	at	all.	What	to	do?	Concentrate	on
content.	Cool	pages	are	a	flash	in	the	pan.	Deep	content	will	bring	people	back	for
more	and	more.

Nonetheless,	style	does	matter	for	readability,	and	it	is	good	to	include	it	where
you	can,	as	long	as	it	doesn't	interfere	with	content	presentation.	You	can	attach

common	style	attributes	to	your	text	with	physical	style	tags,	like	the	italic	<i>	tag
in	our	simple	example.	More	important	and	truer	to	the	language's	original
purpose,	HTML	and	XHTML	have	content-based	style	tags	that	attach	meaning	to
various	text	passages.	And	you	can	alter	text	display	characteristics,	such	as	font
style,	size,	color,	and	so	on,	with	CSS.

Today's	graphical	browsers	recognize	the	physical	and	content-related	text	style
tags	and	change	the	appearance	of	their	related	text	passages	to	visually	convey
meaning	or	structure.	You	can't	predict	exactly	what	that	change	will	look	like.

The	HTML	4	standard	(and	even	more	so,	the	XHTML	1.0	standard)	stresses	that
future	browsers	will	not	be	so	visually	bound.	Text	contents	may	be	heard	or	even
felt,	for	example,	not	read	by	viewers.	Context	clues	surely	are	better	in	those
cases	than	physical	styles.

2.6.1.1.	Content-based	text	styles

Content-based	style	tags	indicate	to	the	browser	that	a	portion	of	your
HTML/XHTML	text	has	a	specific	usage	or	meaning.	The	<cite>	tag	in	our	simple
example,	for	instance,	means	the	enclosed	text	is	some	sort	of	citationthe
document's	author,	in	this	case.	Browsers	commonly,	although	not	universally,
display	the	citation	text	in	italic,	not	as	regular	text.	[Content-Based	Style	Tags,
4.4]

While	it	may	or	may	not	be	obvious	to	the	current	reader	that	the	text	is	a
citation,	someday	someone	might	create	a	computer	program	that	searches	a	vast
collection	of	documents	for	embedded	<cite>	tags	and	compiles	a	special	list	of
citations	from	the	enclosed	text.	Similar	software	agents	already	scour	the
Internet	for	embedded	information	to	compile	listings,	such	as	the	infamous
Google	database	of	web	sites.

The	most	common	content-based	style	used	today	is	that	of	emphasis,	indicated
with	the		tag.	And	if	you're	feeling	really	emphatic,	you	might	use	the	
content	style.	Other	content-based	styles	include	<code>,	for	snippets	of
programming	code;	<kbd>,	to	denote	text	entered	by	the	user	via	a	keyboard;
<samp>,	to	mark	sample	text;	<dfn>,	for	definitions;	and	<var>,	to	delimit	variable
names	within	programming	code	samples.	All	of	these	tags	have	corresponding
end	tags.

2.6.1.2.	Physical	styles

Even	the	barest	of	barebones	text	processors	conform	to	a	few	traditional	text
styles,	such	as	italic	and	bold	characters.	While	not	word	processing	tools	in	the

traditional	sense,	HTML	and	XHTML	provide	tags	that	explicitly	tell	the	browser	to
display	(if	it	can)	a	character,	word,	or	phrase	in	a	particular	physical	style.

Although	you	should	use	related	content-based	tags,	for	the	reasons	we	argued
earlier,	sometimes	form	is	more	important	than	function.	Use	the	<i>	tag	to
italicize	text	without	imposing	any	specific	meaning,	the		tag	to	display	text	in
boldface,	or	the	<tt>	tag	so	that	the	browser,	if	it	can,	displays	the	text	in	a
teletype-style	monospaced	typeface.	[Physical	Style	Tags,	4.5]

It's	easy	to	fall	into	the	trap	of	using	physical	styles	when	you	should	really	be
using	a	content-based	style	instead.	Discipline	yourself	now	to	use	the	content-
based	styles	because,	as	we	argued	earlier,	they	convey	meaning	as	well	as	style,
thereby	making	your	documents	easier	to	automate	and	manage.

2.6.1.3.	Special	text	characters

Not	all	text	characters	available	to	you	for	display	by	a	browser	can	be	typed	from
the	keyboard.	And	some	characters	have	special	meanings,	such	as	the	brackets
around	tags,	which	if	not	somehow	differentiated	when	used	for	plain	textthe	less-
than	sign	(<)	in	a	math	equation,	for	examplewill	confuse	the	browser	and	trash
your	document.	HTML	and	XHTML	give	you	a	way	to	include	any	of	the	many
different	characters	that	comprise	the	Unicode	character	set	anywhere	in	your
text	through	a	special	encoding	of	its	character	entity.

Like	the	copyright	symbol	in	our	simple	example,	a	character	entity	starts	with	an
ampersand	(&),	followed	by	its	name,	and	terminated	with	a	semicolon	(;).
Alternatively,	you	may	also	use	the	character's	position	number	in	the	Unicode
table	of	characters,	preceded	by	the	pound	or	sharp	sign	(#),	in	lieu	of	its	name	in
the	character-entity	sequence.	When	rendering	the	document,	the	browser
displays	the	proper	character,	if	it	exists	in	the	user's	font.	[Character	Entities,
3.5.2]

For	obvious	reasons,	the	most	commonly	used	character	entities	are	the	greater-
than	(>),	less-than	(<),	and	ampersand	(&)	characters.	Check	Appendix	F
to	find	out	what	symbol	the	character	entity	¦	represents.	You'll	be	pleasantly
surprised!

2.6.2.	Text	Structures

It's	not	obvious	in	our	simple	example,	but	the	common	carriage	returns	we	use
to	separate	paragraphs	in	our	source	document	have	no	meaning	in	HTML	or
XHTML,	except	in	special	circumstances.	You	could	have	typed	the	document	onto
a	single	line	in	your	text	editor,	and	it	would	still	appear	the	same	in	Figure	2-1.

[*]

[*]	We	use	a	computer	programming-like	style	of	indentation	so	that	our	source	HTML/XHTML	documents	are	more
readable.	It's	not	obligatory,	nor	are	there	any	formal	style	guidelines	for	source	HTML/XHTML	document	text	formats.
We	do,	however,	highly	recommend	that	you	adopt	a	consistent	style	so	that	you	and	others	can	easily	follow	your
source	documents.

You'd	soon	discover,	too,	if	you	hadn't	read	it	here	first,	that	except	in	special
cases,	browsers	typically	ignore	leading	and	trailing	spaces,	and	sometimes	more
than	a	few	in	between.	(If	you	look	closely	at	the	source	example,	the	line
"Greetings	from"	looks	like	it	should	be	indented	by	leading	spaces,	but	it	isn't	in
Figure	2-1.)

2.6.2.1.	Divisions,	paragraphs,	and	line	breaks

A	browser	takes	the	text	in	the	body	of	your	document	and	"flows"	it	onto	the
computer	screen,	disregarding	any	common	carriage-return	or	line-feed
characters	in	the	source.	The	browser	fills	as	much	of	each	line	of	the	display
window	as	possible,	beginning	flush	against	the	left	margin,	before	stopping	after
the	rightmost	word	and	moving	on	to	the	next	line.	Resize	the	browser	window,
and	the	text	reflows	to	fill	the	new	space,	indicating	HTML's	inherent	flexibility.

Of	course,	readers	would	rebel	if	your	text	just	ran	on	and	on,	so	HTML	and
XHTML	provide	both	explicit	and	implicit	ways	to	control	the	basic	structure	of
your	document.	The	most	rudimentary	and	common	ways	are	with	the	division
(<div>),	paragraph	(<p>),	and	line-break	(
)	tags.	All	break	the	text	flow,	which
consequently	restarts	on	a	new	line.	The	differences	are	that	the	<div>	and	<p>	tags
define	an	elemental	region	of	the	document	and	text,	respectively,	the	contents	of
which	you	may	specially	align	within	the	browser	window,	apply	text	styles	to,	and
alter	with	other	block-related	features.

Without	special	alignment	attributes,	the	<div>	and	
	tags	simply	break	a	line	of
text	and	place	subsequent	characters	on	the	next	line.	The	<p>	tag	adds	more
vertical	space	after	the	line	break	than	either	the	<div>	or	
	tag.	[<div>,	4.1.1]
[<p>,	4.1.2]	[
,	4.6.1]

By	the	way,	the	HTML	standard	includes	end	tags	for	the	paragraph	and	division
tags,	but	not	for	the	line-break	tag.[*]	Few	authors	ever	include	the	paragraph
end	tag	in	their	documents;	the	browser	usually	can	figure	out	where	one
paragraph	ends	and	another	begins.[]	Give	yourself	a	star	if	you	knew	that	</p>
even	exists.

[*]	With	XHTML,	
's	start	and	end	are	between	the	same	brackets:	
.	Browsers	tend	to	be	very	forgiving	and
often	ignore	extraneous	things,	such	as	the	forward	slash	in	this	case,	so	it's	perfectly	OK	to	get	into	the	habit	of	adding
that	end	mark.

[]	The	paragraph	end	tag	is	being	used	more	commonly	now	that	the	popular	browsers	support	the	paragraph-
alignment	attribute.

2.6.2.2.	Headings

Besides	breaking	your	text	into	divisions	and	paragraphs,	you	can	also	organize
your	documents	into	sections	with	headings.	Just	as	they	do	on	this	and	other
pages	in	this	printed	book,	headings	not	only	divide	and	entitle	discrete	passages
of	text,	but	they	also	convey	meaning	visually.	And	headings	readily	lend
themselves	to	machine-automated	processing	of	your	documents.

There	are	six	heading	tags,	<h1>	tHRough	<h6>,	with	corresponding	end	tags.
Typically,	the	browser	displays	their	contents	in,	respectively,	very	large	to	very
small	font	sizes,	and	usually	in	boldface.	The	text	inside	the	<h4>	tag	typically	is
the	same	size	as	the	regular	text.	[Heading	Tags,	4.2.1]

The	heading	tags	also	break	the	current	text	flow,	standing	alone	on	lines	and
separated	from	surrounding	text,	even	though	there	aren't	any	explicit	paragraph
or	line-break	tags	before	or	after	a	heading.

2.6.2.3.	Horizontal	rules

Besides	headings,	HTML	and	XHTML	provide	horizontal	rule	lines	that	help
delineate	and	separate	the	sections	of	your	document.

When	the	browser	encounters	an	<hr>	tag	in	your	document,	it	breaks	the	flow	of
text	and	draws	a	line	across	the	display	window	on	a	new	line.	The	flow	of	text
resumes	immediately	below	the	rule.[*]	[<hr>,	5.1.1]

[*]	Similar	to	
,	with	XHTML,	the	formal	horizontal	rule	end	tag	is	<hr	/>.

2.6.2.4.	Preformatted	text

Occasionally,	you'll	want	the	browser	to	display	a	block	of	text	as	is:	for	example,
with	indented	lines	and	vertically	aligned	letters	or	numbers	that	don't	change
even	though	the	browser	window	might	get	resized.	The	<pre>	tag	rises	to	those
occasions.	All	text	up	to	the	closing	</pre>	end	tag	appears	in	the	browser	window
exactly	as	you	type	it,	including	carriage	returns,	line	feeds,	and	leading,	trailing,
and	intervening	spaces.	Although	very	useful	for	tables	and	forms,	<pre>	text	looks
pretty	dull;	the	popular	browsers	render	the	block	in	a	monospace	typeface.
[<pre>,	4.6.5]

	

2.7.	Hyperlinks

While	text	may	be	the	meat	and	bones	of	an	HTML	or	XHTML	document,	the	heart
is	hypertext.	Hypertext	gives	users	the	ability	to	retrieve	and	display	a	different
document	in	their	own	or	someone	else's	collection	simply	by	a	click	of	the
keyboard	or	mouse	on	an	associated	word	or	phrase	(hyperlink)	in	the	document.
Use	these	interactive	hyperlinks	to	help	readers	easily	navigate	and	find
information	in	your	own	or	others'	collections	of	otherwise	separate	documents	in
a	variety	of	formats,	including	multimedia,	HTML,	XHTML,	other	XML,	and	plain
text.	Hyperlinks	literally	bring	the	wealth	of	knowledge	on	the	whole	Internet	to
the	tip	of	the	mouse	pointer.

To	include	a	hyperlink	to	some	other	document	in	your	own	collection	or	on	a
server	in	Timbuktu,	all	you	need	to	know	is	the	document's	unique	address	and
how	to	drop	an	anchor	into	your	document.

2.7.1.	URLs

While	it	is	hard	to	believe,	given	the	billions	of	them	out	there,	every	document
and	resource	on	the	Internet	has	a	unique	address,	known	as	its	uniform	resource
locator	(URL;	commonly	pronounced	"you-are-ell").	A	URL	consists	of	the
document's	name	preceded	by	the	hierarchy	of	directory	names	in	which	the	file
is	stored	(pathname),	the	Internet	domain	name	of	the	server	that	hosts	the	file,
and	the	software	and	manner	by	which	the	browser	and	the	document's	host
server	communicate	to	exchange	the	document	(protocol):

protocol://server_domain_name/pathname

Here	are	some	sample	URLs:

http://www.kumquat.com/docs/catalog/price_list.html

price_list.html

../figs/my_photo.png

ftp://ftp.netcom.com/pub

The	first	example	is	an	absolute	or	complete	URL.	It	includes	every	part	of	the
URL	format:	protocol,	server,	and	pathname	of	the	document.	While	absolute
URLs	leave	nothing	to	the	imagination,	they	can	lead	to	big	headaches	when	you

http://protocol://server_domain_name/pathname
http://www.kumquat.com/docs/catalog/price_list.html
http://ftp://ftp.netcom.com/pub

move	documents	to	another	directory	or	server.	Fortunately,	browsers	also	let	you
use	relative	URLs	and	automatically	fill	in	any	missing	portions	with	respective
parts	from	the	current	document's	base	URL.	The	second	example	is	the	simplest
relative	URL	of	all;	with	it,	the	browser	assumes	that	the	price_list.html	document
is	located	on	the	same	server,	in	the	same	directory	as	the	current	document,	and
uses	the	same	network	protocol	(http).	Similarly,	example	three	is	a	relative	URL
which	looks	up	and	into	the	/figs	directory	for	a	picture	file.

Although	appearances	may	deceive,	the	last	FTP	example	URL	actually	is
absolute;	it	points	directly	at	the	contents	of	the	/pub	directory.	Moreover,	the	ftp
protocol	specification	in	the	example	accesses	different	software	on	the	server
than	the	http	protocol	in	the	other	examples.

2.7.2.	Anchors

The	anchor	(<a>)	tag	is	the	HTML/XHTML	feature	for	defining	both	the	source	and
the	destination	of	a	hyperlink.[*]	You'll	most	often	see	and	use	the	<a>	tag	with	its
href	attribute	to	define	a	source	hyperlink.	The	value	of	the	href	attribute	is	the
URL	of	the	destination.

[*]	The	nomenclature	here	is	a	bit	unfortunate:	the	"anchor"	tag	should	mark	just	a	destination,	not	the	jumping-off	point	of
a	hyperlink,	too.	You	"drop	anchor";	you	don't	jump	off	one.	We	won't	even	mention	the	atrociously	confusing	terminology
the	W3C	uses	for	the	various	parts	of	a	hyperlink,	except	to	say	that	someone	got	things	all	"bass-ackward."

The	contents	of	the	source	<a>	tagthe	words	and/or	images	between	it	and	its	
end	tagis	the	portion	of	the	document	that	is	specially	activated	in	the	browser
display	and	that	users	select	to	take	a	hyperlink.	These	anchor	contents	usually
look	different	from	the	surrounding	content	(text	in	a	different	color	or
underlined,	images	with	specially	colored	borders,	or	other	effects),	and	the
mouse-pointer	icon	changes	when	passed	over	them.	The	<a>	tag	contents,
therefore,	should	be	text	or	an	image	(icons	are	great)	that	explicitly	or
intuitively	tells	users	where	the	hyperlink	will	take	them.	[<a>,	6.3.1]

For	instance,	the	browser	will	specially	display	and	change	the	mouse	pointer
when	it	passes	over	the	"Kumquat	Archive"	text	in	the	following	example:

For	more	information	on	kumquats,	visit	our

Kumquat	Archive

	
If	the	user	clicks	the	mouse	button	on	that	text,	the	browser	automatically
retrieves	from	the	server	www.kumquat.com	a	web	(http:)	page	named

http://www.kumquat.com

archive.html,	then	displays	it	for	the	user.

2.7.3.	Hyperlink	Names	and	Navigation

Pointing	to	another	document	in	some	collection	somewhere	on	the	other	side	of
the	world	is	not	only	cool,	but	it	also	supports	your	own	web	documents.	Yet	the
hyperlink's	chief	duty	is	to	help	users	navigate	your	collection	in	their	search	for
valuable	information.	Hence,	the	concept	of	the	home	page	and	supporting
documents	has	arisen.

None	of	your	documents	should	run	on	and	on.	First,	there's	a	serious
performance	issue:	the	value	of	your	work	suffers,	no	matter	how	rich	it	is,	if	the
document	takes	forever	to	download	and	if,	once	it	is	retrieved,	users	must
endlessly	scroll	up	and	down	through	the	display	to	find	a	particular	section.

Rather,	design	your	work	as	a	collection	of	several	compact	and	succinct	pages,
like	chapters	in	a	book,	each	focused	on	a	particular	topic	for	quick	selection	and
browsing	by	the	user.	Then	use	hyperlinks	to	organize	that	collection.

For	instance,	use	your	home	pagethe	leading	document	of	the	collectionas	a
master	index	full	of	brief	descriptions	and	respective	hyperlinks	to	the	rest	of	your
collection.

You	can	also	use	either	the	name	variant	of	the	<a>	tag	or	the	id	attribute	of	nearly
all	tags	to	specially	identify	sections	of	your	document.	Tag	ids	and	name	anchors
serve	as	internal	hyperlink	targets	in	your	documents	to	help	users	easily
navigate	within	the	same	document	or	jump	to	a	particular	section	within	another
document.	Refer	to	that	id'd	section	in	a	hyperlink	by	appending	a	pound	sign	(#)
and	the	section	name	as	the	suffix	to	the	URL.

For	instance,	to	reference	a	specific	topic	in	an	archive,	such	as	"Kumquat	Stew
Recipes"	in	our	example	Kumquat	Archive,	first	mark	the	section	title	with	an	id:

...preceding	content...

<h3	id="Stews">Kumquat	Stew	Recipes</h3>

	
in	the	same	or	another	document,	then	prepare	a	source	hyperlink	that	points
directly	to	those	recipes	by	including	the	section's	id	value	as	a	suffix	to	the
document's	URL,	separated	by	a	pound	sign:

For	more	information	on	kumquats,	visit	our

		Kumquat	Archive,

and	perhaps	try	one	or	two	of	our

		Kumquat	Stew	Recipes.

	
If	selected	by	the	user,	the	latter	hyperlink	causes	the	browser	to	download	the
archive.html	document	and	start	the	display	at	our	"Stews"	section.

2.7.4.	Anchors	Beyond

Hyperlinks	are	not	limited	to	other	HTML	and	XHTML	documents.	Anchors	let	you
point	to	nearly	any	type	of	document	available	over	the	Internet,	including	other
Internet	services.

However,	"let"	and	"enable"	are	two	different	things.	Browsers	can	manage	the
various	Internet	services,	such	as	FTP	and	Gopher,	so	that	users	can	download
non-HTML	documents.	They	don't	yet	fully	or	gracefully	handle	multimedia.

Today,	there	are	few	standards	for	the	many	types	and	formats	of	multimedia.
Computer	systems	connected	to	the	Web	vary	wildly	in	their	capabilities	to	display
those	sound	and	video	formats.	Except	for	some	graphics	images,	standard
HTML/XHTML	gives	you	no	specific	provision	for	display	of	multimedia	documents
except	the	ability	to	reference	one	in	an	anchor.	The	browser,	which	retrieves	the
multimedia	document,	must	activate	a	special	helper	application,	download	and
execute	an	associated	applet,	or	have	a	plug-in	accessory	installed	to	decode	and
display	it	for	the	user	right	within	the	document's	display.

Although	HTML	and	most	web	browsers	currently	avoid	the	confusion	by
sidestepping	it,	that	doesn't	mean	you	can't	or	shouldn't	exploit	multimedia	in
your	documents:	just	be	aware	of	the	limitations.

	

2.8.	Images	Are	Special

Image	files	are	multimedia	elements	that	you	can	reference	with	anchors	in	your
document	for	separate	download	and	display	by	the	browser.	But,	unlike	other
multimedia,	standard	HTML	and	XHTML	have	an	explicit	provision	for	image
display	"inline"	with	the	text,	and	images	can	serve	as	intricate	maps	of
hyperlinks.	That's	because	there	is	some	consensus	in	the	industry	concerning
image	file	formatsspecifically,	GIF,	PNG,	and	JPEGand	the	graphical	browsers	have
built-in	decoders	that	integrate	those	image	types	into	your	document.[*]

[*]	Some	browsers	support	other	multimedia	besides	GIF	and	JPEG	graphics	for	inline	display.	Internet	Explorer,	for
instance,	supports	a	tag	that	plays	background	audio.	In	addition,	the	HTML	4	and	XHTML	standards	provide	a	way	to
display	other	types	of	multimedia	inline	with	document	text	through	a	general	tag.

2.8.1.	Inline	Images

The	HTML/XHTML	tag	for	inline	images	is	;	its	required	src	attribute	is	the
image	file	that	you	want	to	display	in	the	document.	[,	5.2.6]

The	browser	separately	loads	images	and	places	them	into	the	text	flow	as	though
the	image	were	some	special,	albeit	sometimes	very	large,	character.	Normally,
that	means	the	browser	aligns	the	bottom	of	the	image	to	the	bottom	of	the
current	line	of	text.	You	can	change	that	with	the	special	CSS	align	property,
whose	value	you	set	to	put	the	image	at	the	top,	middle,	or	bottom	of	adjacent	text.
Examine	Figures	2-2	through	2-4	for	the	image	alignment	you	prefer.	Of	course,
wide	images	may	take	up	the	whole	line	and	hence	break	the	text	flow.	You	can
also	place	an	image	by	itself,	by	including	preceding	and	following	division,
paragraph,	or	line-break	tags.

Figure	2-2.	An	inline	image	aligned	with	the	bottom	of	the	text
(default)

	

Figure	2-3.	An	inline	image	specially	aligned	with	the	middle	of
the	text

	

Figure	2-4.	An	inline	image	specially	aligned	with	the	top	of	the
text

	
Experienced	HTML	authors	use	images	not	only	as	supporting	illustrations,	but
also	as	quite	small	inline	characters	or	glyphs,	added	to	aid	browsing	readers'
eyes	and	to	highlight	sections	of	the	documents.	Veteran	HTML	authors[*]

commonly	add	custom	list	bullets	or	more	distinctive	section	dividers	than	the
conventional	horizontal	rules.	Images,	too,	may	be	included	in	a	hyperlink	so	that
users	may	select	an	inline	thumbnail	sketch	to	download	a	full-screen	image.	The
possibilities	with	inline	images	are	endless.

[*]	XHTML	is	too	new	to	call	anyone	a	veteran	or	experienced	XHTML	author.

We	also	should	mention	the	alt	attribute.	Give	it	some	text	value	that	explains
the	image	display	for	those	who	have	disabled	image	display,	or	for	browsers	that

may	be	able	to	read	to	the	disabled	user.

2.8.2.	Image	Maps

Image	maps	are	images	within	an	anchor	with	a	special	attribute:	they	may
contain	more	than	one	hyperlink.

One	way	to	enable	an	image	map	is	by	adding	the	ismap	attribute	to	an		tag
placed	inside	an	anchor	tag	(<a>).	When	the	user	clicks	somewhere	in	the	image,
the	graphical	browser	sends	the	relative	X,Y	coordinates	of	the	mouse	position	to
the	server	that	is	also	designated	in	the	anchor.	A	special	server	program	then
translates	the	image	coordinates	into	some	special	action,	such	as	downloading
another	document.	[Server-side	considerations,	6.5.1.1]

A	good	example	of	the	use	of	an	image	map	might	be	to	locate	a	hotel	while
traveling.	For	example,	when	the	user	clicks	on	a	map	of	the	region	he	intends	to
visit,	your	image	map's	server	program	might	return	the	names,	addresses,	and
phone	numbers	of	local	accommodations.

While	they	are	very	powerful	and	visually	appealing,	these	so-called	server-side
image	maps	mean	that	authors	must	have	some	access	to	the	map's	coordinate-
processing	program	on	the	server.	Many	authors	don't	even	have	access	to	the
server,	let	alone	a	program	on	the	server.	A	better	solution	is	to	take	advantage	of
client-side	image	maps.

Instead	of	depending	on	a	web	server,	the	usemap	attribute	for	the		tag,	with
the	<map>	and	<area>	tags,	allows	authors	to	embed	the	information	the	browser
needs	to	process	an	image	map	in	the	same	document	as	the	image.	Because	of
their	reduced	network	bandwidth	and	server	independence,	the	client-side	image
maps	are	popular	among	document	authors	and	system	administrators.	[Client-
Side	Image	Maps,	6.5.2]

	

2.9.	Lists,	Searchable	Documents,	and	Forms

Thought	we'd	exhausted	text	elements?	Headers,	paragraphs,	and	line	breaks	are
just	the	rudimentary	text-organizational	elements	of	a	document.	The	languages
also	provide	several	advanced	text-based	structures,	including	three	types	of	lists,
"searchable"	documents,	and	forms.	Searchable	documents	and	forms	go	beyond
text	formatting,	too;	they	are	a	way	to	interact	with	your	readers.	Forms	let	users
enter	text	and	click	checkboxes	and	radio	buttons	to	select	particular	items	and
then	send	that	information	back	to	the	server.	A	special	server	application	then
processes	the	form's	information	and	responds	accordingly;	for	example,	filling	a
product	order	or	collecting	data	for	a	user	survey.[*]

[*]	The	server-side	programming	required	for	processing	forms	is	beyond	the	scope	of	this	book.	We	give	some	basic
guidelines	in	the	appropriate	chapters,	but	please	consult	the	server	documentation	and	your	server	administrator	for
details.

The	syntax	for	these	special	features	and	their	various	attributes	can	get	rather
complicated;	they're	not	quick-start	grist.	We'll	mention	them	here,	but	we	urge
you	to	read	on	for	details	in	later	chapters.

2.9.1.	Unordered,	Ordered,	and	Definition	Lists

The	three	types	of	lists	match	those	we	are	most	familiar	with:	unordered,
ordered,	and	definition	lists.	An	unordered	listone	in	which	the	order	of	items	is
not	important,	such	as	a	laundry	or	grocery	listgets	bounded	by		and	
tags.	Each	item	in	the	list,	usually	a	word	or	short	phrase,	is	marked	by	the	
(list-item)	tag	and,	particularly	with	XHTML,	the		end	tag.	When	rendered,
the	list	item	typically	appears	indented	from	the	left	margin,	preceded	by	a	bullet
symbol.	[,	7.1.1]	[,	7.3]

Ordered	lists,	bounded	by	the		and		tags,	are	identical	in	format	to
unordered	ones,	including	the		tag	(and		end	tag	with	XHTML)	for	marking
list	items.	However,	the	order	of	items	is	importantas	in	equipment	assembly
steps,	for	instance.	The	browser	accordingly	displays	each	item	in	the	list
preceded	by	an	ascending	number.	[,	7.2.1]

Definition	lists	are	slightly	more	complicated	than	unordered	and	ordered	lists.
Within	a	definition	list's	enclosing	<dl>	and	</dl>	tags,	each	list	item	has	two	parts,
each	with	a	special	tag:	a	short	name	or	title,	contained	within	a	<dt>	tag,	followed
by	its	corresponding	value	or	definition,	denoted	by	the	<dd>	tag	(XHTML	includes
respective	end	tags).	When	the	tags	are	rendered,	the	browser	usually	puts	the
item	name	on	a	separate	line	(although	not	indented),	and	the	definition,	which

may	include	several	paragraphs,	indented	below	it.	[<dl>,	7.5.1]

The	various	types	of	lists	may	contain	nearly	any	type	of	content	normally
allowed	in	the	body	of	the	document.	So	you	can	organize	your	collection	of
digitized	family	photographs	into	an	ordered	list,	for	example,	or	put	them	into	a
definition	list	complete	with	text	annotations.	The	markup	language	standards
even	let	you	put	lists	inside	of	lists	(nesting),	opening	up	a	wealth	of	interesting
combinations.

2.9.2.	Searchable	Documents	and	Forms

The	original	type	of	user	interaction	provided	by	early	versions	of	HTML	still
available	today,	though	deprecated	in	the	standards,	is	an	<isindex>-based
searchable	document.	The	browser	provides	some	way	for	the	user	to	type	one	or
more	words	into	a	text	input	box	and	to	pass	those	keywords	to	a	related
processing	application	on	the	server.[*]	Obviously,	searchable	documents	are	very,
very	limitedone	per	document	and	only	one	user-input	element.	Fortunately,
HTML	and	XHTML	provide	better,	more	extensive	support	for	collecting	user	input
through	forms.	[<isindex>,	6.6.1]	[<form>,	9.2]

[*]	Few	authors	have	used	the	tag,	apparently.	The	<isindex>	tag	has	been	"deprecated"	in	HTML	version	4.0sent	out
to	pasture,	so	to	speak,	but	not	yet	laid	to	rest.

You	can	create	one	or	more	special	form	sections	in	your	document,	bounded	with
the	<form>	and	</form>	tags.	Inside	the	form,	you	may	put	predefined	as	well	as
customized	text-input	boxes	allowing	for	both	single	and	multiline	input.	You	may
also	insert	checkboxes	and	radio	buttons	for	single-	and	multiple-choice	selections
and	special	buttons	that	work	to	reset	the	form	or	send	its	contents	to	the	server.
Users	fill	out	the	form	at	their	leisure,	perhaps	after	reading	the	rest	of	the
document,	and	click	a	special	send	button	that	makes	the	browser	send	the	form's
data	to	the	server.	A	special	server-side	program	you	provide	then	processes	the
form	and	responds	accordingly,	perhaps	by	requesting	more	information	from	the
user,	modifying	subsequent	documents	the	server	sends	to	the	user,	and	so	on.
[<form>,	9.2]

Forms	provide	everything	you	might	expect	of	an	automated	form,	including	input
area	labels,	integrated	contents	for	instructions,	default	input	values,	and	so
onexcept	automatic	input	verification,	such	as	to	check	for	the	correct	number	of
digits	in	a	zip	code	or	phone	number,	for	instance;	your	server-side	program	or
client-side	JavaScripts	need	to	perform	that	function.

	

2.10.	Tables

For	a	language	that	emerged	from	academiaa	world	steeped	in	datait's	not
surprising	to	find	that	HTML	(and	now	its	progeny,	XHTML)	supports	a	set	of	tags
for	data	tables	that	not	only	align	your	numbers,	but	can	specially	format	your
text,	too.

Eight	tags	enable	tables;	including	the	<table>	tag	itself	and	a	<caption>	tag	for
including	a	description	of	the	table.	Special	tag	attributes	let	you	change	the	look
and	dimensions	of	the	table.	You	create	a	table	row	by	row,	putting	between	the
table	row	(<tr>)	tag	and	its	end	tag	(</tr>)	either	table	header	(<th>)	or	table	data
(<td>)	tags	and	their	respective	contents	for	each	cell	in	the	table	(end	tags,	too,
with	XHTML).	Headers	and	data	may	contain	nearly	any	regular	content,	including
text,	images,	forms,	and	even	another	table.	As	a	result,	you	can	also	use	tables
for	advanced	text	formatting,	such	as	for	multicolumn	text	and	sidebar	headers
(see	Figure	2-5).	For	more	information,	see	Chapter	10.

Figure	2-5.	Tables	let	you	perform	page	layout	tricks,	too

	
	

2.11.	Frames

Anyone	who	has	had	more	than	one	application	window	open	on	her	graphical
desktop	at	a	time	can	immediately	appreciate	the	benefits	of	frames.	Frames	let
you	divide	the	browser	window	into	multiple	display	areas,	each	containing	a
different	document.

Figure	2-6	is	an	example	of	a	frame	display.	It	shows	how	the	document	window
may	be	divided	into	independent	windows	separated	by	rule	lines	and	scroll	bars.
What	is	not	immediately	apparent	in	the	example,	though,	is	that	each	frame
displays	an	independent	document,	and	not	necessarily	HTML	or	XHTML	ones,
either.	A	frame	may	contain	any	valid	content	that	the	browser	is	capable	of
displaying,	including	multimedia.	If	the	frame's	contents	include	a	hypertext	link
that	the	user	selects,	the	new	document's	contents,	even	another	frame
document,	may	replace	that	same	frame,	another	frame's	content,	or	the	entire
browser	window.

Figure	2-6.	Frames	divide	the	browser's	window	into	two	or
more	independent	document	displays

	
Frames	are	defined	in	a	special	document,	in	which	you	replace	the	<body>	tag	with
one	or	more	<frameset>	tags	that	tell	the	browser	how	to	divide	its	main	window
into	discrete	frames.	Special	<frame>	tags	go	inside	the	<frameset>	tag	and	point	to
the	documents	that	go	inside	the	frames.	[<frameset>,	11.3.1]

The	individual	documents	referenced	and	displayed	in	the	frame	document
window	act	independently,	to	a	degree;	the	frame	document	controls	the	entire
window.	You	can,	however,	direct	one	frame's	document	to	load	new	content	into
another	frame.	In	Figure	2-6,	for	example,	selecting	a	Chapter	hyperlink	in	the
Table	of	Contents	frame	has	the	browser	load	and	display	that	chapter's	contents
in	the	frame	on	the	right.	That	way,	the	table	of	contents	is	always	available	to
the	user	as	he	browses	the	collection.	For	more	information	on	frames,	see
Chapter	11.

	

2.12.	Stylesheets	and	JavaScript

Browsers	also	have	support	for	two	powerful	innovations	to	HTML:	stylesheets	and
JavaScript.	Like	their	desktop	publishing	cousins,	stylesheets	let	you	control	how
your	web	pages	looktext	font	styles	and	sizes,	colors,	backgrounds,	alignments,
and	so	on.	More	important,	stylesheets	give	you	a	way	to	impose	display
characteristics	uniformly	over	the	entire	document	and	over	an	entire	collection
of	documents.

JavaScript	is	a	programming	language	with	functions	and	commands	that	let	you
control	how	the	browser	behaves	for	the	user.	Now,	this	is	not	a	JavaScript
programming	book,	but	we	do	cover	the	language	in	fair	detail	in	later	chapters	to
show	you	how	to	embed	JavaScript	programs	into	your	documents	and	achieve
some	very	powerful	and	fun	effects.

The	W3Cthe	putative	standards	organizationprefers	that	you	use	the	CSS	model
for	HTML/XHTML	document	design.	All	modern	GUI	browsers	support	CSS	and
JavaScript.	The	ancient	Netscape	4	alone	also	supports	a	JavaScript	Style	Sheet
(JSS)	model,	which	we	describe	in	Chapter	12,	but	we	do	not	recommend	that	you
use	it.	Let's	rephrase	thatdon't	waste	your	time	on	JSS.	CSS	is	the	universally
approved,	universally	supported	way	to	control	how	your	documents	might	(not
will)	usually	be	displayed	on	users'	browsers.

To	illustrate	CSS,	here's	a	way	to	make	all	the	top-level	(h1)	header	text	in	your
HTML	document	appear	in	the	color	red:

<html>
<head>
<title>CSS	Example</title>
<!	Hide	CSS	properties	within	comments	so	old	browsers
don't	choke	on	or	display	the	unfamiliar	contents.	>
		<style	type="text/css">
				<!
				h1	{color:	red}
				>
		</style>
</head>
<body>
<h1>I'll	be	red	if	your	browser	supports	CSS</h1>
Something	in	between.
<h1>I	should	be	red,	too!</h1>
</body>
</html>

	
Of	course,	you	can't	see	red	in	this	black-and-white	book,	so	we	won't	show	the
result	in	a	figure.	Believe	us,	or	prove	it	to	yourself	by	typing	in	and	loading	the
example	in	your	browser:	the	<h1>-enclosed	text	appears	red	on	a	color	screen.

JavaScript	is	an	object-based	language.	It	views	your	document	and	the	browser
that	displays	your	documents	as	a	collection	of	parts	("objects")	that	have	certain
properties	that	you	may	change	or	compute.	This	is	some	very	powerful	stuff,	but
not	something	that	most	authors	will	want	to	handle.	Rather,	most	of	us	probably
will	snatch	the	quick	and	easy,	yet	powerful	JavaScript	programs	that	proliferate
across	the	Web	and	embed	them	in	our	own	documents.	We	will	tell	you	how	in
Chapter	12.

	

2.13.	Forging	Ahead

Clearly,	this	chapter	represents	the	tip	of	the	iceberg.	If	you've	read	this	far,
hopefully	your	appetite	has	been	whetted	for	more.	By	now	you've	got	a	basic
understanding	of	the	scope	and	features	of	HTML	and	XHTML;	proceed	through
subsequent	chapters	to	expand	your	knowledge	and	learn	more	about	each
feature.

	

Chapter	3.	Anatomy	of	an	HTML	Document

Most	HTML	and	XHTML	documents	are	very	simple,	and	writing	one	shouldn't
intimidate	even	the	most	timid	of	computer	users.	First,	although	you	might	use	a
fancy	WYSIWYG	editor	to	help	you	compose	it,	a	document	is	ultimately	stored,
distributed,	and	read	by	a	browser	as	a	simple	text	file.[*]	That's	why	even	the
poorest	user	with	a	barebones	text	editor	can	compose	the	most	elaborate	of	web
pages.	(Accomplished	webmasters	often	elicit	the	admiration	of	"newbies"	by
composing	astonishingly	cool	pages	using	the	crudest	text	editor	on	a	cheap
laptop	computer	and	performing	in	odd	places,	such	as	on	a	bus	or	in	the
bathroom.)	Authors	should,	however,	keep	several	of	the	popular	browsers	on
hand,	including	recent	versions	of	each,	and	alternate	among	them	to	view	new
documents	under	construction.	Remember,	browsers	differ	in	how	they	display	a
page,	not	all	browsers	implement	all	of	the	language	standards,	and	some	have
their	own	special	extensions.

[*]	Informally,	both	the	text	and	the	markup	tags	are	ASCII	characters.	Technically,	unless	you	specify	otherwise,	text	and
tags	are	made	up	of	8-bit	characters	as	defined	in	the	standard	ISO-8859-1	Latin	character	set.	The	HTML/XHTML
standards	support	alternative	character	encodings,	including	Arabic	and	Cyrillic.	See	Appendix	F	for	details.

	

3.1.	Appearances	Can	Deceive

Documents	never	look	alike	when	displayed	by	a	text	editor	and	when	displayed
by	a	browser.	Take	a	look	at	any	source	document	on	the	Web.	At	the	very	least,
return	characters,	tabs,	and	leading	spaces,	although	important	for	readability	of
the	source	text	document,	are	ignored	for	the	most	part	when	displayed	by	an
HTML/XHTML	browser.	There	also	is	a	lot	of	extra	text	in	a	source	document,
mostly	from	the	display	tags	and	interactivity	markers	and	their	parameters	that
affect	portions	of	the	document	but	don't	appear	in	the	display.

Accordingly,	new	authors	are	confronted	with	having	to	develop	not	only	a
presentation	style	for	their	web	pages,	but	also	a	different	style	for	their	source
text.	The	source	document's	layout	should	highlight	the	programming-like	markup
aspects	of	HTML	and	XHTML,	not	their	display	aspects.	And	it	should	be	readable
not	only	by	you,	the	author,	but	by	others	as	well.

Experienced	document	writers	typically	adopt	a	programming-like	style,	albeit
very	relaxed,	for	their	source	text.	We	do	the	same	throughout	this	book,	and
that	style	will	become	apparent	as	you	compare	our	source	examples	with	the
actual	display	of	the	document	by	a	browser.

Our	formatting	style	is	simple,	but	it	serves	to	create	readable,	easily	maintained
documents:

Except	for	the	structural	tags	such	as	<html>,	<head>,	<frameset>,	and	<body>,	we
place	elements	that	structure	the	content	of	a	document	on	a	separate	line
and	indented	to	show	its	nesting	level	within	the	document.	Structural
elements	include	lists,	forms,	tables,	and	similar	tags.

Elements	that	control	the	appearance	or	style	of	text	get	inserted	in	the
current	line	of	text.	These	include	basic	font	style	tags	such	as		(bold	text)
and	document	linkages	such	as	<a>	(hypertext	anchor).

Avoid,	where	possible,	breaking	a	URL	onto	two	lines.

Add	extra	newline	characters	to	set	apart	special	sections	of	the	source
documentfor	instance,	around	paragraphs	or	tables.

The	task	of	maintaining	the	indentation	of	your	source	file	ranges	from	trivial	to
onerous.	Some	text	editors,	such	as	Emacs,	manage	the	indentation
automatically;	others,	such	as	common	word	processors,	couldn't	care	less	about
indentation	and	leave	the	task	completely	up	to	you.	If	your	editor	makes	your

life	difficult,	you	might	consider	striking	a	compromise,	perhaps	by	indenting	the
tags	to	show	structure,	but	leaving	the	actual	text	without	indentation	to	make
modifications	easier.

No	matter	what	compromises	or	stands	you	make	on	source-code	style,	it's
important	that	you	adopt	one.	You'll	be	very	glad	you	did	when	you	go	back	to
that	document	you	wrote	three	months	ago	searching	for	that	really	cool	trick	you
did	with...now,	where	was	that?

	

3.2.	Structure	of	an	HTML	Document

HTML	and	XHTML	documents	consist	of	text,	which	defines	the	content	of	the
document,	and	tags,	which	define	the	structure	and	appearance	of	the	document.
The	structure	of	an	HTML	document	is	simple,	consisting	of	an	outer	<html>	tag
enclosing	the	document:[*]

[*]	The	structure	of	an	XHTML	document	is	slightly	more	complicated,	as	we	detail	in	Chapter	16.

<html>
<head>
<title>Barebones	HTML	Document</title>
</head>
<body>
This	illustrates,	in	a	very	<i>simp</i>le	way,
the	basic	structure	of	an	HTML	document.
</body>
</html>

	
Most	documents	have	a	head	and	a	body,	delimited	by	the	<head>	and	<body>	tags.
The	head	is	where	you	give	your	document	a	title	and	where	you	indicate	other
parameters	the	browser	may	use	when	displaying	the	document.	The	body	is
where	you	put	the	actual	contents	of	the	document.	This	includes	the	text	for
display	and	document-control	markers	(tags)	that	advise	the	browser	how	to
display	the	text.	Tags	also	reference	special-effects	files,	including	graphics	and
sound,	and	indicate	the	hotspots	(hyperlinks	and	anchors)	that	link	your
document	to	other	documents.

	

3.3.	Tags	and	Attributes

For	the	most	part,	tagsthe	markup	elements	of	HTML	and	XHTMLare	simple	to
understand	and	use,	since	they	are	made	up	of	common	words,	abbreviations,	and
notations.	For	instance,	the	<i>	and	</i>	tags	respectively	tell	the	browser	to	start
and	stop	italicizing	the	text	characters	that	come	between	them.	Accordingly,	the
syllable	"simp"	in	our	barebones	example	in	Figure	3-1	should	appear	italicized
when	displayed	by	the	browser.

Figure	3-1.	Compare	this	browser	display	with	its	Barebones
source	HTML	shown	earlier

	
The	HTML	and	XHTML	standards	and	their	various	extensions	define	how	and
where	you	place	tags	within	a	document.	Let's	take	a	closer	look	at	that	syntactic
sugar	that	holds	together	all	documents.

3.3.1.	The	Syntax	of	a	Tag

Every	tag	consists	of	a	tag	name,	sometimes	followed	by	an	optional	list	of	tag
attributes,	all	placed	between	opening	and	closing	brackets	(<	and	>).	The	simplest
tag	is	nothing	more	than	a	name	appropriately	enclosed	in	brackets,	such	as	<head>
and	<i>.	More	complicated	tags	contain	one	or	more	attributes,	which	specify	or
modify	the	behavior	of	the	tag.

According	to	the	HTML	standard,	tag	and	attribute	names	are	not	case-sensitive.
There's	no	difference	in	effect	between	<head>,	<Head>,	<HEAD>,	and	even	<HeaD>;	all	of
them	are	equivalent.	With	XHTML,	case	is	important:	all	current	standard	tag	and
attribute	names	are	in	lowercase;	always	<head>,	never	<HEAD>.

For	both	HTML	and	XHTML,	the	values	that	you	assign	to	a	particular	attribute
may	be	case-sensitive,	depending	on	your	browser	and	server.	In	particular,	file
location	and	name	referencesor	URLsare	case-sensitive.	[Referencing	Documents:
The	URL,	6.2]

Tag	attributes,	if	any,	belong	after	the	tag	name,	each	separated	by	one	or	more
tab,	space,	or	return	characters.	Their	order	of	appearance	is	not	important.

A	tag	attribute's	value,	if	any,	follows	an	equals	sign	(=)	after	the	attribute	name.
You	may	include	spaces	around	the	equals	sign	so	that	width=6,	width	=	6,	width	=6,
and	width=	6	all	mean	the	same.	For	readability,	however,	we	prefer	not	to	include
spaces.	That	way,	it's	easier	to	pick	out	an	attribute/value	pair	from	a	crowd	of
pairs	in	a	lengthy	tag.

With	HTML,	if	an	attribute's	value	is	a	single	word	or	number	(no	spaces),	you
may	simply	add	it	after	the	equals	sign.	You	should	enclose	all	other	values	in
single	or	double	quotation	marks,	especially	those	values	that	contain	several
words	separated	by	spaces.	With	XHTML,	all	attribute	values	must	be	enclosed	in
quotes.	The	length	of	the	value	is	limited	to	1,024	characters.

Most	browsers	are	tolerant	of	how	tags	are	punctuated	and	broken	across	lines.
Nonetheless,	avoid	breaking	tags	across	lines	in	your	source	document	whenever
possible.	This	rule	promotes	readability	and	reduces	potential	errors	in	your	HTML
documents.

3.3.2.	Sample	Tags

Here	are	some	tags	with	attributes:

<ul	compact>
<ul	compact="compact">
<input	type=text	name=filename	size=24	maxlength=80>
<link	title="Table	of	Contents">

	
The	first	example	is	the	<a>	tag	for	a	hyperlink	to	our	publisher's	web-based
catalog	of	products.	It	has	a	single	attribute,	href,	followed	by	the	catalog's
address	in	cyberspaceits	URL.

The	second	example	shows	an	HTML	tag	that	formats	text	into	an	unordered	list
of	items.	Its	single	attributecompact,	which	limits	the	space	between	list	itemsdoes
not	require	a	value.

The	third	example	demonstrates	how	the	second	example	must	be	written	in
XHTML.	Notice	the	compact	attribute	now	has	a	value,	albeit	a	redundant	one,	and
that	its	value	is	enclosed	in	double	quotes.

The	fourth	example	shows	an	HTML	tag	with	multiple	attributes,	each	with	a	value

that	does	not	require	enclosing	quotation	marks.	Of	course,	with	XHTML,	each
attribute	value	must	be	enclosed	in	double	quotes.

The	last	example	shows	proper	use	of	enclosing	quotation	marks	when	the
attribute	value	is	more	than	one	word	long.

What	is	not	immediately	evident	in	these	examples	is	that	while	HTML	attribute
names	are	not	case-sensitive	(href	works	the	same	as	HREF	and	HreF	in	HTML),	most
attribute	values	are	case-sensitive.	The	value	filename	for	the	name	attribute	in	the
<input>	tag	example	is	not	the	same	as	the	value	Filename,	for	instance.

3.3.3.	Starting	and	Ending	Tags

We	alluded	earlier	to	the	fact	that	most	tags	have	a	beginning	and	an	end	and
affect	the	portion	of	content	between	them.	That	enclosed	segment	may	be	large
or	small,	from	a	single	text	character,	syllable,	or	wordsuch	as	the	italicized
"simp"	syllable	in	our	barebones	exampleto	the	<html>	tag	that	bounds	the	entire
document.	The	starting	component	of	any	tag	is	the	tag	name	and	its	attributes,	if
any.	The	corresponding	ending	tag	is	the	tag	name	alone,	preceded	by	a	slash	(/).
Ending	tags	have	no	attributes.

3.3.4.	Proper	and	Improper	Nesting

You	can	put	tags	inside	the	affected	segment	of	another	tag	(nested)	for	multiple
tag	effects	on	a	single	segment	of	the	document.	For	example,	a	portion	of	the
following	text	is	both	bold	and	included	as	part	of	an	anchor	defined	by	the	<a>
tag:

<body>
This	is	some	text	in	the	body,	with	a
link,	a	portion	of	which
is	set	in	bold.
</body>

	
According	to	the	HTML	and	XHTML	standards,	you	must	end	nested	tags	by
starting	with	the	most	recent	one	and	working	your	way	back	outfirst	in,	last	out.
For	instance,	in	this	example,	we	end	the	bold	tag	()	before	ending	the	link
tag	()	because	we	started	in	the	reverse	order:	<a>	tag	first,	then		tag.	It's	a
good	idea	to	follow	that	standard,	even	though	most	browsers	don't	absolutely
insist	you	do	so.	You	may	get	away	with	violating	this	nesting	rule	for	one

browser,	and	sometimes	even	with	all	current	browsers.	But	eventually	a	new
browser	version	won't	allow	the	violation,	and	you'll	be	hard-pressed	to	straighten
out	your	source	HTML	document.	Also,	be	aware	that	the	XHTML	standard
explicitly	forbids	improper	nesting.

3.3.5.	Tags	Without	Ends

According	to	the	HTML	standard,	a	few	tags	do	not	have	ending	tags.	In	fact,	the
standard	forbids	use	of	an	end	tag	for	these	special	ones,	although	most	browsers
are	lenient	and	ignore	the	errant	end	tag.	For	example,	the	
	tag	causes	a	line
break;	it	has	no	effect	otherwise	on	the	subsequent	portion	of	the	document	and,
hence,	does	not	need	an	ending	tag.

The	HTML	tags	that	do	not	have	corresponding	end	tags	are:

<area> <base> <basefont>

 <col> <frame>

<hr> <input>

<isindex> <link> <meta>

<param> 	 	

	
XHTML	always	requires	end	tags.	[Handling	Empty	Elements,	16.3.3]

3.3.6.	Omitting	Tags

You	often	see	documents	in	which	the	author	seemingly	has	forgotten	to	include
an	ending	tag,	in	apparent	violation	of	the	HTML	and	certainly	the	XHTML
standards.	Sometimes	even	the	<body>	tag	is	missing.	But	your	browser	doesn't
complain,	and	the	document	displays	just	fine.	What	gives?	The	HTML	standard
lets	you	omit	certain	tags	or	their	endings	for	clarity	and	ease	of	preparation.	The
HTML	standard	writers	didn't	intend	the	language	to	be	tedious.

For	example,	the	<p>	tag	that	defines	the	start	of	a	paragraph	has	a	corresponding
end	tag,	</p>,	but	the	end	tag	rarely	is	used.	In	fact,	many	HTML	authors	don't
even	know	it	exists.	[<p>,	4.1.2]

The	HTML	standard	lets	you	omit	a	starting	tag	or	ending	tag	whenever	it	can	be
unambiguously	inferred	by	the	surrounding	context.	Many	browsers	make	good
guesses	when	confronted	with	missing	tags,	leading	the	document	author	to
assume	that	a	valid	omission	was	made.

We	recommend	that	you	almost	always	add	the	ending	tag.	It'll	make	life	easier
for	yourself	as	you	transition	to	XHTML	as	well	as	for	the	browser	and	anyone	who
might	need	to	modify	your	document	in	the	future.

3.3.7.	Ignored	or	Redundant	Tags

HTML	browsers	sometimes	ignore	tags.	This	usually	happens	with	redundant	tags
whose	effects	merely	cancel	or	substitute	for	themselves.	The	best	example	is	a
series	of	<p>	tags,	one	after	the	other,	with	no	intervening	content.	Unlike	a	text-
processing	tool,	most	browsers	start	to	a	new	line	only	once.	The	extra	<p>	tags
are	redundant	and	the	browser	usually	ignores	them.

In	addition,	most	HTML	browsers	ignore	any	tag	that	they	don't	understand	or
that	the	document	author	specified	incorrectly.	Browsers	habitually	forge	ahead
and	make	some	sense	of	a	document,	no	matter	how	badly	formed	and	error
ridden	it	may	be.	This	isn't	just	a	tactic	to	overcome	errors;	it's	also	an	important
strategy	for	extensibility.	Imagine	how	much	harder	it	would	be	to	add	new
features	to	the	language	if	the	existing	base	of	browsers	choked	on	them.

The	thing	to	watch	out	for	with	nonstandard	tags	that	aren't	supported	by	most
browsers	is	their	enclosed	contents,	if	any.	Browsers	that	recognize	the	new	tag
may	process	those	contents	differently	than	those	that	don't	support	the	new	tag.
For	example,	older	browsers,	some	of	which	are	still	in	use	by	many	people	today,
don't	support	styles.	Dutifully,	they	ignore	the	<style>	tag,	but	then	go	on	to
render	its	contents	on	the	user's	screen,	effectively	defeating	the	tag's	purpose	in
addition	to	ruining	the	document's	appearance.	[Document-Level	Stylesheets,
8.1.2]

	

3.4.	Well-Formed	Documents	and	XHTML

XHTML	is	HTML's	prissy	cousin.	What	would	pass	most	beauty	contests	as	a	very
proper	and	complete	HTML	document,	done	according	to	the	book	and	including
end-paragraph	tags,	might	well	be	rejected	by	the	XML	judges	as	a	malformed
file.

To	conform	with	XML,	XHTML	insists	that	documents	be	"well	formed."	Among
other	things,	that	means	that	every	tag	must	have	an	ending	tageven	the	ones
like	
	and	<hr>	for	which	the	HTML	standard	forbids	the	use	of	an	end	tag.	With
XHTML,	the	ending	is	placed	inside	the	start	tag:	
,	for	example.	[Handling
Empty	Elements,	16.3.3]

It	also	means	that	tag	and	attribute	names	are	case-sensitive	and,	according	to
the	current	XHTML	standard,	must	be	in	lowercase.	Hence,	only	<head>	is
acceptable,	and	it	is	not	the	same	as	<HEAD>	or	<HeAd>,	as	it	is	with	the	HTML
standard.	[Case	Sensitivity,	16.3.4]

Well-formed	XHTML	documents,	like	HTML	standard	ones,	must	also	conform	to
proper	nesting.	No	argument	there.	[Correctly	Nested	Elements,	16.3.1]

In	their	defense,	the	XML	standard	and	its	offspring,	XHTML,	emphasize
extensibility.	That	way,	<p>	can	mean	the	beginning	of	a	paragraph	in	HTML,
whereas	another	variant	of	the	language	may	define	the	contents	of	the	<P>	tag	to
be	election-poll	results	that	display	quite	differentlyperhaps	in	tabular	form,	with
red,	white,	and	blue	stripes	and	accompanying	patriotic	music.

We	will	discuss	this	further	in	Chapters	15	and	16,	in	which	we	detail	the	XML	and
XHTML	standards	(and	the	Forces	of	Conformity).

	

3.5.	Document	Content

Nearly	everything	else	you	put	into	your	HTML	or	XHTML	document	that	isn't	a
tag	is,	by	definition,	content,	and	the	majority	of	that	is	text.	Like	tags,	document
content	is	encoded	using	a	specific	character	setby	default,	the	ISO-8859-1	Latin
character	set.	This	character	set	is	a	superset	of	conventional	ASCII,	adding	the
necessary	characters	to	support	the	Western	European	languages.	If	your
keyboard	does	not	allow	you	to	directly	enter	the	characters	you	need,	you	can
use	character	entities	to	insert	the	desired	characters.

3.5.1.	Advice	Versus	Control

Perhaps	the	hardest	rule	to	remember	when	marking	up	an	HTML	or	XHTML
document	is	that	all	the	tags	you	insert	regarding	text	display	and	formatting	are
only	advice	for	the	browser:	they	do	not	explicitly	control	how	the	browser	will
display	the	document.	In	fact,	the	browser	can	choose	to	ignore	all	of	your	tags
and	do	what	it	pleases	with	the	document	content.	What's	worse,	the	user	(of	all
people!)	has	control	over	the	text-display	characteristics	of	her	own	browser.

Get	used	to	this	lack	of	control.	The	best	way	to	use	markup	to	control	the
appearance	of	your	documents	is	to	concentrate	on	the	content	of	the	document,
not	on	its	final	appearance.	If	you	find	yourself	worrying	excessively	about
spacing,	alignment,	text	breaks,	and	character	positioning,	you'll	surely	end	up
with	ulcers.	You	will	have	gone	beyond	the	intent	of	HTML.	If	you	focus	on
delivering	information	to	users	in	an	attractive	manner,	using	the	tags	to	advise
the	browser	as	to	how	best	to	display	that	information,	you	are	using	HTML	or
XHTML	effectively,	and	your	documents	will	render	well	on	a	wide	range	of
browsers.

3.5.2.	Character	Entities

Besides	common	text,	HTML	and	XHTML	give	you	a	way	to	display	special	text
characters	that	you	normally	might	not	be	able	to	include	in	your	source
document	or	that	have	other	purposes.	A	good	example	is	the	less-than	or
opening	bracket	symbol	(<).	In	HTML,	it	normally	signifies	the	start	of	a	tag,	so	if
you	insert	it	simply	as	part	of	your	text,	the	browser	will	get	confused	and
probably	misinterpret	your	document.

For	both	HTML	and	XHTML,	the	ampersand	character	(&)	instructs	the	browser	to
use	a	special	character,	formally	known	as	a	character	entity.	For	example,	the

command	<	inserts	that	pesky	less-than	symbol	into	the	rendered	text	and	the
browser	does	not	confuse	it	to	mean	the	start	of	a	tag.	Similarly,	>	inserts	the
greater-than	symbol,	and	&	inserts	an	ampersand.	There	can	be	no	spaces
between	the	ampersand,	the	entity	name,	and	the	required,	trailing	semicolon.
(Semicolons	aren't	special	characters;	you	don't	need	to	use	an	ampersand
sequence	to	display	a	semicolon	normally.)	[Handling	Special	Characters,	16.3.7]

You	also	may	replace	the	entity	name	after	the	ampersand	with	a	pound	symbol
(#)	and	a	decimal	value	corresponding	to	the	entity's	position	in	the	character	set.
Hence,	the	sequence	<	does	the	same	thing	as	<	and	represents	the	less-
than	symbol.	In	fact,	you	could	substitute	all	the	normal	content	characters	within
an	HTML	document	with	ampersand	special	characters,	such	as	A	for	the
capital	letter	A	or	a	for	its	lowercase	version,	but	that	would	be	silly.	You	can
find	a	complete	listing	of	all	characters	and	their	names	and	numerical
equivalents	in	Appendix	F.

Keep	in	mind	that	not	all	special	characters	can	be	rendered	by	all	browsers.
Some	browsers	just	ignore	many	of	the	special	characters;	with	others,	the
characters	aren't	available	in	the	character	sets	on	a	specific	platform.	Be	sure	to
test	your	documents	on	a	range	of	browsers	before	electing	to	use	some	of	the
more	obscure	character	entities.

3.5.3.	Comments

Comments	are	another	type	of	textual	content	that	appears	in	the	source	HTML
document	but	is	not	rendered	by	the	user's	browser.	Comments	fall	between	the
special	<!	and	>	markup	elements.	Browsers	ignore	the	text	between	the	comment
character	sequences.	Here	are	some	sample	comments:

<!	This	is	a	comment	>
<!	This	is	a
multiple-line	comment
that	ends	on	this	line	>

	
There	must	be	a	space	after	the	initial	<!	and	preceding	the	final	>,	but	otherwise
you	can	put	nearly	anything	inside	the	comment.	The	biggest	exception	to	this
rule	is	that	the	HTML	standard	doesn't	let	you	nest	comments.[*]

[*]	Early	versions	of	Netscape	did	let	you	nest	comments,	but	no	longer.	The	practice	is	tricky,	so	just	say	no.

Internet	Explorer	also	lets	you	place	comments	within	a	special,	nonstandard
<comment>	tag.	Everything	between	the	<comment>	and	</comment>	tags	is	ignored	by

Internet	Explorer.	All	other	browsers	display	the	comment	to	the	user.	Obviously,
because	of	this	undesirable	behavior,	we	do	not	recommend	using	the	<comment>
tag.	Instead,	always	use	the	<!--	and	-->	sequences	to	delimit	comments.

Besides	the	obvious	use	of	comments	for	source	documentation,	many	web
servers	use	comments	to	take	advantage	of	features	specific	to	the	document
server	software.	These	servers	scan	the	document	for	specific	character
sequences	within	conventional	HTML/XHTML	comments	and	then	perform	some
action	based	upon	the	commands	embedded	in	the	comments.	The	action	might
be	as	simple	as	including	text	from	another	file	(known	as	a	server-side	include)
or	as	complex	as	executing	other	commands	on	the	server	to	generate	the
document	contents	dynamically.

	

3.6.	HTML/XHTML	Document	Elements

Every	HTML	document	should	conform	to	the	HTML	SGML	DTD,	the	formal
Document	Type	Definition	that	defines	the	HTML	standard.	The	DTD	defines	the
tags	and	syntax	that	are	used	to	create	an	HTML	document.	You	can	inform	the
browser	which	DTD	your	document	complies	with	by	placing	a	special	Standard
Generalized	Markup	Language	(SGML)	command	in	the	first	line	of	the	document:

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN">

	
This	cryptic	message	indicates	that	your	document	is	intended	to	be	compliant
with	the	HTML	4.01	final	DTD	defined	by	the	World	Wide	Web	Consortium	(W3C).
Other	versions	of	the	DTD	define	more	restricted	versions	of	the	HTML	standard,
and	not	all	browsers	support	all	versions	of	the	HTML	DTD.	In	fact,	specifying	any
other	<!DOCTYPE>	may	cause	the	browser	to	misinterpret	your	document	when
displaying	it	for	the	user.	It's	also	unclear	what	<!DOCTYPE>	to	use	if	you	include
nonstandard,	albeit	popular	extensions	in	the	HTML	documenteven	for	the
deprecated	HTML	3.0	standard,	for	which	a	DTD	was	never	released.

HTML	developers	are	increasingly	including	an	appropriate	SGML	DOCTYPE
command	as	a	prefix	in	their	HTML	documents.	Because	of	the	confusion	of
versions	and	standards,	if	you	do	choose	to	include	a	DOCTYPE	in	your	HTML
document,	choose	the	appropriate	one	to	ensure	that	your	document	is	rendered
correctly.

For	XHTML	authors,	we	do	strongly	recommend	that	you	include	the	proper
DOCTYPE	statement	in	your	XHTML	documents,	in	conformance	with	XML
standards.	Read	Chapters	15	and	16	for	more	about	DTDs	and	the	XML	and
XHTML	standards.

3.6.1.	The	<html>	Tag

As	we	saw	earlier,	the	<html>	and	</html>	tags	serve	to	delimit	the	beginning	and
end	of	a	document.	Since	the	typical	browser	can	easily	infer	from	the	enclosed
source	that	it	is	an	HTML	or	XHTML	document,	you	don't	really	need	to	include	the
tag	in	your	source	HTML	document.

<html>

Function Delimits	a	complete	HTML	or	XHTML	document

Attributes dir	 ,	lang,	version

End	tag </html>;	may	be	omitted	in	HTML

Contains head_tag,	body_tag,	frames

	
That	said,	it's	considered	good	form	to	include	this	tag	so	that	other	tools,
particularly	more	mundane	text-processing	ones,	can	recognize	your	document	as
an	HTML	document.	At	the	very	least,	the	presence	of	the	beginning	and	end
<html>	tags	ensures	that	the	beginning	or	the	end	of	the	document	has	not
inadvertently	been	deleted.	Besides,	XHTML	requires	the	<html>	and	</html>	tags.

Between	<html>	and	</html>	are	the	document's	head	and	body.	Within	the	head,
you'll	find	tags	that	identify	the	document	and	define	its	place	within	a	document
collection.	Within	the	body	is	the	actual	document	content,	defined	by	tags	that
determine	the	layout	and	appearance	of	the	document	text.	As	you	might	expect,
the	document	head	is	contained	within	<head>	and	</head>	tags	and	the	body	is
within	<body>	and	</body>	tags,	all	of	which	we	define	in	more	detail	later	in	this
chapter.[*]

[*]	For	the	special	HTML/XHTML	frame	document,	a	<frameset>	tag	replaces	the	<body>	tag;	more	about	this	in
Chapter	11.

By	far,	the	most	common	form	of	the	<html>	tag	is	simply:

<html>
document	head	and	body	content

</html>

	

3.6.1.1.	The	dir	attribute

The	dir	attribute	specifies	in	which	direction	the	browser	should	render	text	within
the	containing	element.	When	used	within	the	<html>	tag,	it	determines	how	text
will	be	presented	within	the	entire	document.	When	used	within	another	tag,	it
controls	the	text's	direction	for	just	the	content	of	that	tag.

By	default,	the	value	of	this	tag	is	ltr,	indicating	that	text	is	presented	to	the	user
left	to	right.	Use	the	other	value,	rtl,	to	display	text	right	to	left,	for	languages
like	Arabic	and	Hebrew.	Of	course,	the	results	depend	on	your	content	and	the
browser's	support	of	HTML	4	or	XHTML.	Netscape	and	Internet	Explorer	versions	4
and	earlier	ignore	the	dir	attribute.	The	HTML	4-compliant	Internet	Explorer
versions	5	and	6	simply	right-justify	(dir=rtl)	the	text,	although	if	you	look	closely
at	Figure	3-2,	you'll	notice	that	the	browser	moves	the	punctuation	(the	period)
to	the	other	side	of	the	sentence.	Netscape	6	right-justified	everything,	including
the	ending	period,	but	versions	7	and	8	did	not	(yet	another	sign	that	the	browser
wars	are	over):

<html	dir=rtl>
<head>
<title>Display	Directions</title>
</head>
<body>
This	is	how	IE	6	renders	right-to-left	directed	text.
</body>
</html>

	

Figure	3-2.	All	current	browsers	just	right-justify	text	with	the
dir	attribute,	and	get	the	punctuation	wrong,	to	boot

	

3.6.1.2.	The	lang	attribute

When	included	within	the	<html>	tag,	the	lang	attribute	specifies	the	language
you've	generally	used	within	the	document.	When	used	within	other	tags,	the	lang

attribute	specifies	the	language	you	used	within	that	tag's	content.	Ideally,
browsers	eventually	will	use	lang	to	better	render	the	text	for	the	user.

Set	the	value	of	the	lang	attribute	to	an	ISO-639	standard	two-character	language
code.	You	may	also	indicate	a	dialect	by	following	the	International	Organization
for	Standardization	(ISO)	language	code	with	a	dash	and	a	subcode	name.	For
example,	"en"	is	the	ISO	language	code	for	English;	"en-US"	is	the	complete	code
for	U.S.	English.	Other	common	language	codes	include	"fr"	(French),	"de"
(German),	"it"	(Italian),	"nl"	(Dutch),	"el"	(Greek),	"es"	(Spanish),	"pt"
(Portuguese),	"ar"	(Arabic),	"he"	(Hebrew),	"ru"	(Russian),	"zh"	(Chinese),	"ja"
(Japanese),	and	"hi"	(Hindi).

3.6.1.3.	The	version	attribute

Use	the	version	attribute	to	define	the	HTML	standard	version	that	you	followed
when	composing	the	document.	Its	value,	for	HTML	version	4.01,	should	read
exactly:

version="-//W3C//DTD	HTML	4.01//EN"

	
In	general,	version	information	within	the	<html>	tag	is	more	trouble	than	it	is
worth,	and	this	attribute	has	been	deprecated	in	HTML	4.	Serious	authors	should
instead	use	an	SGML	<!DOCTYPE>	tag	at	the	beginning	of	their	documents,	like	this:

<!DOCTYPE	HTML	PUBLIC	"-//W3C/DTD	HTML	4.01//EN"
				"http://www.w3c.org/TR/html4/strict.dtd">

	
	

3.7.	The	Document	Header

The	document	header	describes	the	various	properties	of	the	document,	including
its	title,	position	within	the	Web,	and	relationship	with	other	documents.	Most	of
the	data	contained	within	the	document	header	is	never	actually	rendered	as
content	visible	to	the	user.

3.7.1.	The	<head>	Tag

The	<head>	tag	serves	to	encapsulate	other	header	tags.	Place	it	at	the	beginning	of
your	document,	just	after	the	<html>	tag	and	before	the	<body>	or	<frameset>	tag.
Both	the	<head>	tag	and	its	corresponding	end	</head>	tag	can	be	unambiguously
inferred	by	the	browser	and	so	can	be	safely	omitted	from	an	HTML,	but	not	from
an	XHTML,	document.	We	encourage	you	to	include	them	in	all	your	documents,
since	they	promote	readability	and	support	document	automation.

<head>

Function Defines	the	document	header

Attributes dir,	lang,	profile

End	tag </head>;	rarely	omitted	in	HTML

Contains head_content

Used	in html_tag

	
The	<head>	tag	may	contain	a	number	of	other	tags	that	help	define	and	manage
the	document's	content.	These	include,	in	any	order	of	appearance:	<base>,
<isindex>,	<link>,	<meta>,	<nextid>,	<object>,	<script>,	<style>,	and	<title>.

3.7.1.1.	The	dir	and	lang	attributes

As	we	discussed	in	the	sections	about	the	<html>	tag	attributes,	dir	and	lang	help
extend	HTML	and	XHTML	to	an	international	audience.	[The	dir	attribute,	3.6.1.1]
[The	lang	attribute,	3.6.1.2]

3.7.1.2.	The	profile	attribute

Often,	the	header	of	a	document	contains	a	number	of	<meta>	tags	used	to	convey
additional	information	about	the	document	to	the	browser.	In	the	future,	authors
may	use	predefined	profiles	of	standard	document	metadata	to	better	describe
their	documents.	The	profile	attribute	supplies	the	URL	of	the	profile	associated
with	the	current	document.

The	format	of	a	profile	and	how	a	browser	might	use	it	are	not	yet	defined;	this
attribute	is	primarily	a	placeholder	for	future	development.

3.7.2.	The	<title>	Tag

The	<title>	tag	does	exactly	what	you	might	expect:	the	words	you	place	inside	its
beginning	and	end	tags	define	the	title	for	your	document.	(This	stuff	is	pretty
much	self-explanatory	and	easier	than	you	might	think	at	first	glance.)	The
browser	uses	the	title	in	some	special	manner,	and	it	is	most	often	placed	in	the
browser	window's	title	bar	or	on	a	status	line.	Usually,	too,	the	title	becomes	the
default	name	for	a	link	to	the	document	if	the	document	is	added	to	a	link
collection	or	to	a	user's	favorites	or	bookmarks	list.

<title>

Function Defines	the	document	title

Attributes dir,	lang

End	tag </title>;	never	omitted

Contains plain_text

Used	in head_content

	
The	<title>	tag	is	the	only	thing	required	within	a	document's	head.	Because	the
<head>	tag	itself	and	even	the	<html>	tag	can	safely	be	omitted,	the	<title>	tag	could
be	the	first	line	within	a	valid	HTML	document.	Beyond	that,	most	browsers	will
even	supply	a	generic	title	for	documents	lacking	a	<title>	tag,	such	as	the
document's	filename,	so	you	don't	even	have	to	supply	a	title.	That	goes	a	bit	too
far	even	for	our	down-and-dirty	tastes,	though.	No	respectable	author	should
serve	up	a	document	missing	the	<title>	tag	and	a	title.

When	you	do	include	a	<title>,	don't	forget	to	close	it	with	the	</title>	end	tag.
Otherwise,	your	title's	text	ends	up	displayed	in	the	body	of	your	document,	even
though	it	may	precede	the	<body>	tag.

Browsers	do	not	specially	format	title	text,	and	they	ignore	anything	other	than
text	inside	the	title	beginning	and	end	tags.	For	instance,	they	will	ignore	any
images	or	links	to	other	documents.

Here's	an	even	barer	barebones	example	of	a	valid	HTML	document,	to	highlight
the	header	and	title	tags;	watch	what	happens	when	Netscape	displays	it	in	Figure
3-3:

<html>
<head>
<title>HTML	and	XHTML:	The	Definitive	Guide</title>
</head>
</html>

	

Figure	3-3.	What's	in	a	<title>?

	

3.7.2.1.	What's	in	a	title?

Selecting	the	right	title	is	crucial	to	defining	a	document	and	ensuring	that	it	can
be	effectively	used	on	the	Web.

Keep	in	mind	that	users	can	access	each	document	in	your	collection	in	nearly	any
order	and	independently	of	one	another.	Each	document's	title	should	therefore
define	the	document	both	within	the	context	of	your	other	documents	and	on	its
own	merits.

Titles	that	include	references	to	document	sequencing	are	usually	inappropriate.
Simple	titles,	like	"Chapter	2"	and	"Part	VI,"	do	little	to	help	a	user	understand
what	the	document	might	contain.	More	descriptive	titles,	such	as	"Chapter	2:
Advanced	Square	Dancing"	and	"Part	VI:	Churchill's	Youth	and	Adulthood,"	convey
both	a	sense	of	place	within	a	larger	set	of	documents	and	specific	content	that
invites	the	reader	to	read	on.

Self-referential	titles	also	aren't	very	useful.	A	title	such	as	"Home	Page"	is
completely	content-free,	as	are	titles	like	"Feedback	Page"	and	"Popular	Links."
You	want	a	title	to	convey	a	sense	of	content	and	purpose	so	that	users	can
decide,	based	upon	the	title	alone,	whether	to	visit	that	page.	"The	Kumquat
Lover's	Home	Page"	is	descriptive	and	likely	to	draw	in	lovers	of	the	bitter	fruit,	as
are	"Kumquat	Lover's	Feedback	Page"	and	"Popular	Links	Frequented	by	Kumquat
Lovers."

People	spend	a	great	deal	of	time	creating	documents	for	the	Web,	often	only	to
squander	that	effort	with	an	uninviting,	ineffective	title.	As	special	software	that
automatically	collects	links	for	users	becomes	more	prevalent	on	the	Web,	the
only	descriptive	phrases	associated	with	your	pages	when	they	are	inserted	into
some	vast	link	database	will	be	the	titles	you	choose	for	them.	We	can't
emphasize	this	enough:	take	care	to	select	descriptive,	useful,	context-

independent	titles	for	each	of	your	documents.

3.7.2.2.	The	dir	and	lang	attributes

The	dir	and	lang	attributes	help	extend	HTML	and	XHTML	to	an	international
audience.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

3.7.3.	Related	Header	Tags

Other	tags	you	may	include	within	the	<head>	tag	deal	with	specific	aspects	of
document	creation,	management,	linking,	automation,	or	layout.	That's	why	we
only	mention	them	here	and	describe	them	in	greater	detail	in	other,	more
appropriate	sections	and	chapters	of	this	book.	Briefly,	the	special	header	tags
are:

<base>	and	<link>

Define	the	current	document's	base	location	and	relationship	to	other
documents.	[<base>,	6.7.1]	[<link>,	6.7.2]

<isindex>

Deprecated	in	HTML	4,	the	<isindex>	tag	at	one	time	could	be	used	to	create
automatic	document	indexing	forms,	allowing	users	to	search	databases	of
information	using	the	current	document	as	a	querying	tool.	[<isindex>,	6.6.1]

<nextid>

Not	supported	in	HTML	4	or	XHTML,	the	<nextid>	tag	tried	to	make	creation	of
unique	labels	easier	when	using	document	automation	tools.	[<nextid>,
6.8.2]

<meta>

Provides	additional	document	data	not	supplied	by	any	of	the	other	<head>
tags.[<meta>,	6.8.1]

<object>

Defines	methods	by	which	the	browser	can	render	nonstandard	objects.
[<object>,	12.2.1]

<script>

Defines	one	or	more	scripts	that	elements	within	the	document	can	invoke.
[<script>,	12.3.1]

<style>

Lets	you	create	Cascading	Style	Sheet	(CSS)	properties	to	control	body-
content	display	characteristics	for	the	entire	document.	[<style>,	8.1.2]

	

3.8.	The	Document	Body

The	document	body	is	the	meat	of	the	matter.	It's	where	you	put	the	contents	of
your	document.	The	beginning	<body>	and	end	</body>	tags	delimit	the	document
body.

3.8.1.	The	<body>	Tag

Within	HTML	4	and	XHTML,	the	<body>	tag	has	a	number	of	attributes	that	control
the	color	and	background	of	your	document.	Various	browsers	have	extended	the
tag	to	give	even	greater	control	over	your	document's	appearance.

<body>

Function Defines	the	document	body

Attributes

alink,	background,	bgcolor,	bgproperties,	class,	dir,	id,	lang,	leftmargin,	link,	onBlur,
onClick,	onDblClick,	onFocus,	onKeyDown,	onKeyPress,	onKeyUp,	onLoad,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	onUnload,	style,	text,	title,
topmargin,	vlink

End	tag </body>;	may	be	omitted	in	HTML

Contains body_content

Used	in html_tag

	
Anything	between	the	beginning	<body>	and	end	</body>	tags	is	called	body	content.
The	simplest	document	might	have	only	a	sequence	of	text	paragraphs	within	the
<body>	tag.	More	complex	documents	might	include	heavily	formatted	text,
graphical	figures,	tables,	and	a	variety	of	special	effects.

Because	the	browser	can	infer	the	position	of	the	<body>	and	</body>	tags,	they	can
safely	be	omitted	from	an	HTML,	but	not	an	XHTML,	document.	Like	the	<html>	and
<head>	tags,	we	recommend	that	you	include	both	the	<body>	and	</body>	tags	in	your
HTML	documents,	too,	to	make	them	more	easily	readable	and	maintainable.

The	various	attributes	for	the	<body>	tag	can	be	loosely	grouped	into	three	sets:
those	that	give	you	some	control	over	the	document's	appearance,	those	that
associate	programmable	functions	with	the	document	itself,	and	those	that	label
and	identify	the	body	for	later	reference.	We	address	the	appearance	attributes
(alink,	background,	bgcolor,	bgproperties,	leftmargin,	link,	text,	topmargin,	and	vlink)	in
Chapter	5;	the	class	and	style	attributes	for	CSS	in	Chapter	8;	JavaScript
stylesheets	and	the	programmatic	attributes	(the	"on-event"	ones)	in	Chapter	12;
the	language	attributes	(dir	and	lang)	earlier	in	this	chapter;	and	the	identification
attributes	(id	and	title)	in	Chapter	4.	[The	dir	attribute,	3.6.1.1]	[The	lang
attribute,	3.6.1.2]	[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

3.8.2.	Frames

The	HTML	and	XHTML	standards	define	a	special	type	of	document	in	which	you
replace	the	<body>	tag	with	one	or	more	<frameset>	tags.	This	so-called	frame
document	divides	the	display	window	into	one	or	more	independent	windows,
each	displaying	a	different	document.	We	thoroughly	describe	this	innovation	in
Chapter	11.

	

3.9.	Editorial	Markup

HTML	4.0	introduced	two	tags	that	can	help	groups	of	authors	collaborate	in	the
development	of	documents	and	maintain	some	semblance	of	editorial	and	version
control.	The	insert	(<ins>)	and	delete	()	tags	respectively	let	you	either
designate	portions	of	your	document's	body	as	new	or	added	content	or	designate
old	stuff	that	should	be	replaced.	And	with	special	attributes,	you	can	indicate
when	you	made	the	change	(datetime)	and	a	reference	to	a	document	that	may
explain	the	change	(cite).

3.9.1.	The	<ins>	and		Tags

The	<ins>	and		tags	let	authors	set	off	portions	of	body	content	that	they
intend	to	add	to	or	delete	from	the	current	versions	of	their	documents.	HTML
4/XHTML-compliant	browsers	display	the	contents	of	the	<ins>	and		tags	in
some	special	way	so	that	readers	can	quickly	scan	the	document	for	the	changes.

<ins>	and	

Function Define	inserted	and	deleted	document	content	(see	Figure	3-4)

Attributes cite,	class,	datetime,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,
onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </ins>	and	;	never	omitted

Contains body_content

Used	in body_content

	
Netscape	4	and	earlier	versions	ignore	the	tags,	as	did	Internet	Explorer	4	and	its
earlier	versions.	All	current	popular	browsers	now	support	the	tags.

Figure	3-4.	The	<ins>	and		tags	in	action

	

3.9.1.1.	The	cite	attribute

The	cite	attribute	lets	you	document	the	reasons	for	the	insertion	or	deletion.	Its
value	must	be	a	URL	that	points	to	some	other	document	that	explains	the
inserted/deleted	text.	How	a	browser	treats	cite	is	a	question	for	the	future.

3.9.1.2.	The	datetime	attribute

Although	the	reason	for	the	change	is	important,	knowing	when	a	change	was
made	is	often	more	important.	The	datetime	attribute	for	the	<ins>	and		tags
takes	a	single	value:	a	specially	encoded	date	and	timestamp.	The	rigorous	format
for	the	datetime	value	is	YYYY-MM-DDThh:mm:ssTZD.	The	components	are:

YYYY	is	the	year,	such	as	1998	or	2010.

MM	is	the	month;	01	for	January	through	12	for	December.

DD	is	the	day;	01	through	31.

T	is	a	required	character	designating	the	beginning	of	the	time	segment	of	the
stamp.

hh	is	the	hour	in	24-hour	format;	00	(midnight)	through	23	(11	p.m.).	(Add	a
following	colon	if	you	include	the	minutes.)

mm	are	the	minutes	on	the	hour;	00	through	59.	(Add	a	following	colon	if	you
include	the	seconds.)

ss	are	the	seconds;	00	through	59.

TZD	is	the	time-zone	designator.	It	can	be	one	of	three	values:	Z,	indicating
Greenwich	Mean	Time,[*]	or	the	hours,	minutes,	and	seconds	before	(-)	or
after	(+)	Coordinated	Universal	Time	(UTC),	where	time	is	relative	to	the	time
in	Greenwich,	England.

[*]	Greenwich	Mean	Time	is	also	know	as	"Zulu,"	thus	the	value	of	"Z."

For	example:

2007-02-22T14:26Z

	
decodes	to	February	22,	2007	at	2:26	p.m.	Greenwich	Mean	Time.	To	specify
Eastern	Standard	Time,	the	code	for	the	same	time	and	date	is:

2003-02-22T09:26-05:00

	
Notice	that	the	local	time	zone	may	change	depending	on	where	the	document

gets	edited,	whereas	the	universal	time	will	stay	the	same.

3.9.1.3.	The	class,	dir,	event,	id,	lang,	style,	title,	and	events	attributes

There	are	several	nearly	universal	attributes	for	the	many	HTML	and	XHTML	tags.
These	attributes	give	you	a	common	way	to	identify	(title)	and	label	(id)	a	tag's
contents	for	later	reference	or	automated	treatment,	to	change	the	contents'
display	characteristics	(class,	style),	and	to	reference	the	language	used	(lang)	and
related	direction	the	text	should	flow	(dir).	There	are	also	input	events	that	may
happen	in	and	around	the	tagged	contents	that	you	may	react	to	via	an	on-event
attribute	and	some	programming.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,
3.6.1.2]	[The	id	attribute,	4.1.1.4]	[The	id	attribute,	4.1.1.4]	[Inline	Styles:	The
style	Attribute,	8.1.1]	[Style	Classes,	8.3]	[JavaScript	Event	Handlers,	12.3.3]

3.9.2.	Using	Editorial	Markup

The	uses	of	<ins>	and		are	obvious	to	anyone	who	has	used	a	"boilerplate"
document	or	form	or	has	collaborated	with	others	in	the	preparation	of	a
document.

For	example,	law	firms	typically	have	a	collection	of	online	legal	documents	that
are	specially	completed	for	each	client.	Law	clerks	usually	do	the	"fill	in,"	and	the
final	document	gets	reviewed	by	a	lawyer.	To	highlight	those	changes	in	the
document	so	that	they	are	readily	evident	to	the	reviewer,	you	might	use	the	<ins>
tag	to	indicate	added	text	and	the		tag	to	mark	the	text	that	was	replaced.
Optionally,	use	the	cite	and	datetime	attributes	to	indicate	why	and	when	the
changes	were	made.

For	example,	the	clerk	might	fill	in	a	boilerplate	document	with	the	law	firm's	and
representative's	names,	indicating	the	time	and	source	for	the	change:

The	party	of	the	first	part,	as	represented	by
<ins	datetime=2002-06-22T08:30Z
					cite="http://www.mull+dull.com/tom_muller.html">
Thomas	Muller	of	Muller	and	Duller
</ins>
[insert	representation	here]

	
The	editorial	markup	tags	could	also	be	used	by	editing	tools	to	denote	how
documents	were	modified	as	authors	make	changes	over	a	period	of	time.	With
the	correct	use	of	the	cite	and	datetime	attributes,	it	would	be	possible	to	recreate

a	version	of	a	document	from	a	specific	point	in	time.

	

3.10.	The	<bdo>	Tag

As	we	mentioned	earlier,	the	authors	of	the	HTML	4	standard	made	a	concerted
effort	to	include	standard	ways	that	web	agents	(browsers)	are	supposed	to	treat
and	display	the	many	different	human	languages	and	dialects.	Accordingly,	the
HTML	4	standard	and	its	progeny,	XHTML,	contain	the	universal	dir	and	lang
attributes	that	let	you	explicitly	advise	the	browser	that	the	whole	document	or
specific	tagged	segments	within	it	are	in	a	particular	language.	These	language-
related	attributes,	then,	may	affect	some	display	characteristics;	for	example,	the
dir	attribute	tells	the	browser	to	write	the	words	across	the	display	from	either
left	to	right	(dir=ltr),	as	for	most	Western	languages,	or	right	to	left	(dir=rtl),	as
for	many	Asian	languages.[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

The	various	Unicode	and	ISO	standards	for	language	encoding	and	display	may
conflict	with	your	best	intentions.	In	particular,	the	contents	of	some	other
documents,	such	as	a	Multipurpose	Internet	Mail	Extension	(MIME)-encoded	file,
may	already	be	properly	formatted,	and	your	document	may	misadvise	the
browser	to	undo	that	encoding.	Hence,	the	HTML	4	and	XHTML	standards	have	the
<bdo>	tag.	With	it,	you	override	any	current	and	inherited	dir	specifications.	And
with	the	tag's	required	dir	attribute,	you	definitively	specify	the	direction	in	which
the	tag's	contents	should	be	displayed.

For	example,	Figure	3-5	shows	how	Internet	Explorer	handles	the	following	HTML
fragment	containing	a	<bdo>	redirection:

<bdo	dir=rtl>This	would	be	readable	if	in	Chinese,	perhaps.</bdo>
Back	to	the	Western	way	of	reading	and	writing.

	

Figure	3-5.	Tricks	with	<bdo>	redirected	text	flow

	
Admittedly,	the	effects	of	the	<bdo>	tag	are	a	bit	esoteric,	and	the	opportunities	to
use	it	currently	are	rare.

<bdo>

Function Overrides	bidirectional	algorithms	for	content	display

Attributes class,	dir,	id,	lang,	style,	title

End	tag </bdo>;	never	omitted

Contains text

Used	in body_content

	
	

Chapter	4.	Text	Basics

Any	successful	presentation,	even	a	thoughtful	tome,	should	have	its	text
organized	into	an	attractive,	effective	document.	Organizing	text	into	attractive
and	effective	documents	is	HTML	and	XHTML's	forte.	The	languages	give	you	a
number	of	tools	that	help	you	mold	your	text	and	get	your	message	across.	They
also	help	structure	your	document	so	that	your	target	audience	has	easy	access	to
your	words.

Always	keep	in	mind	while	designing	your	documents	(here	we	go	again!)	that	the
markup	tags,	particularly	with	regard	to	text,	only	advisethey	do	not	dictatehow	a
browser	will	ultimately	render	the	document.	Rendering	varies	from	browser	to
browser.	Don't	get	too	entangled	with	trying	to	get	just	the	right	look	and	layout.
Your	attempts	may	and	probably	will	be	thwarted	by	the	browser.

	

4.1.	Divisions	and	Paragraphs

Like	most	text	processors,	a	browser	wraps	the	words	it	finds	to	fit	the	horizontal
width	of	its	viewing	window.	Widen	the	browser's	window,	and	words
automatically	flow	upward	to	fill	the	wider	lines.	Squeeze	the	window,	and	words
wrap	downward.

Unlike	most	text	processors,	however,	HTML	and	XHTML	use	explicit	division
(<div>),	paragraph	(<p>),	and	line-break	(
)	tags	to	control	the	alignment	and
flow	of	text.	Return	characters,	although	quite	useful	for	readability	of	the	source
document,	typically	are	ignored	by	the	browserauthors	must	use	the	
	tag	to
explicitly	force	a	common	text	line	break.	The	<p>	tag,	while	also	causing	a	line
break,	carries	with	it	meaning	and	effects	beyond	a	simple	return.

The	<div>	tag	is	a	little	different.	When	originally	codified	in	the	HTML	3.2
standard,	<div>	was	meant	to	be	a	simple	organizational	toolto	divide	the
document	into	discrete	sections.	That	somewhat	obtuse	meaning	meant	few
authors	used	it.	But	recent	innovations	(alignment,	styles,	and	the	id	attribute	for
document	referencing	and	automation)	now	let	you	more	distinctly	label	and
thereby	define	individual	sections	of	your	documents,	as	well	as	control	the
alignment	and	appearance	of	those	sections.	These	features	breathe	real	life	and
meaning	into	the	<div>	tag.

By	associating	an	id	and	a	class	name	with	the	various	sections	of	your	document,
each	delimited	by	a	<div	id=name	class=name>	tag	and	attributes	(you	can	do	the	same
with	other	tags,	like	<p>,	too),	you	not	only	label	those	divisions	for	later	reference
by	a	hyperlink	and	for	automated	processing	and	management	(collecting	all	the
bibliography	divisions,	for	instance),	but	you	may	also	define	different,	distinct
display	styles	for	those	portions	of	your	document.	For	instance,	you	might	define
one	divisional	class	for	your	document's	abstract	(<div	class=abstract>,	for
example),	another	for	the	body,	a	third	for	the	conclusion,	and	a	fourth	divisional
class	for	the	bibliography	(<div	class=biblio>,	for	example).

Each	class,	then,	might	be	given	a	different	display	definition	in	a	document-level
or	externally	related	stylesheet:	for	example,	the	abstract	indented	and	in	an
italic	typeface	(such	as	div.abstract	{left-margin:	+0.5in;	font-style:	italic});	the
body	in	a	left-justified	roman	typeface;	the	conclusion	similar	to	the	abstract;	and
the	bibliography	automatically	numbered	and	formatted	appropriately.

We	provide	a	detailed	description	of	stylesheets,	classes,	and	their	applications	in
Chapter	8.

4.1.1.	The	<div>	Tag

As	defined	in	the	HTML	4.01	and	XHTML	1.0	and	1.1	standards,	a	<div>	tag	divides
your	document	into	separate,	distinct	sections.	It	may	be	used	strictly	as	an
organizational	tool,	without	any	sort	of	formatting	associated	with	it,	but	it
becomes	more	effective	if	you	add	the	id	and	class	attributes	to	label	the	divisions.
The	<div>	tag	also	may	be	combined	with	the	align	attribute	to	control	the
alignment	of	whole	sections	of	your	document's	content	in	the	display	and	with
the	many	programmatic	"on	event"	attributes	for	user	interaction.

<div>

Function Defines	a	block	of	text

Attributes align,	class,	dir,	id,	lang,	nowrap ,	onClick,	onDblClick,	onKeyDown,	onKeyPress,
onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </div>;	usually	omitted	in	HTML

Contains body_content

Used	in block

	

4.1.1.1.	The	align	attribute

The	align	attribute	for	<div>	positions	the	enclosed	content	to	the	left	(default),
center,	or	right	of	the	display.	In	addition,	you	can	specify	justify	to	align	both	the
left	and	the	right	margins	of	the	text.	The	<div>	tag	may	be	nested,	and	the
alignment	of	the	nested	<div>	tag	takes	precedence	over	the	containing	<div>	tag.
Further,	other	nested	alignment	tags,	such	as	<center>,	aligned	paragraphs	(see	<p>
in	section	4.1.2),	or	specially	aligned	table	rows	and	cells	override	the	effects	of
<div>.	Like	the	align	attribute	for	other	tags,	it	is	deprecated	in	the	HTML	and
XHTML	standards	in	deference	to	stylesheet-based	layout	controls.

4.1.1.2.	The	nowrap	attribute

Supported	by	Internet	Explorer	and	Opera,	but	not	Firefox	or	Netscape	Navigator,
the	nowrap	attribute	suppresses	automatic	word	wrapping	of	the	text	within	the
division.	Line	breaks	will	occur	only	where	you	have	placed	carriage	returns	in
your	source	document.

While	the	nowrap	attribute	probably	doesn't	make	much	sense	for	large	sections	of
text	that	would	otherwise	be	flowed	together	on	the	page,	it	can	make	things	a	bit
easier	when	creating	blocks	of	text	with	many	explicit	line	breaks:	poetry,	for
example,	or	addresses.	You	don't	have	to	insert	all	those	explicit	
	tags	in	a

text	flow	within	a	<div	nowrap>	tag.	On	the	other	hand,	a	large	number	of	users
with	browsers	that	ignore	the	nowrap	attribute	will	see	your	text	flow	merrily	along.
If	you	are	targeting	only	Internet	Explorer	or	Opera	with	your	documents,
consider	using	nowrap	where	needed,	but	otherwise,	we	can't	recommend	this
attribute	for	general	use.

4.1.1.3.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	should	be
displayed,	and	the	lang	attribute	lets	you	specify	the	language	used	within	the
division.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.1.1.4.	The	id	attribute

Use	the	id	attribute	to	label	the	document	division	for	later	reference	by	a
hyperlink,	stylesheet,	applet,	or	other	automated	process.	In	general,	an
acceptable	id	value	is	any	quote-enclosed	string	that	uniquely	identifies	the
division	and	that	later	can	be	used	to	reference	that	document	section
unambiguously.	Specifically,	the	value	must	begin	with	a	letter,	and	can	contain
letters,	numbers,	hyphens,	colons,	underscores,	and	periods,	but	not	spaces.
Although	we're	introducing	it	within	the	context	of	the	<div>	tag,	this	attribute	can
be	used	with	almost	any	tag.

When	used	as	an	element	label,	the	value	of	the	id	attribute	can	be	added	to	a
URL	to	address	the	labeled	element	uniquely	within	the	document.	You	can	label
both	large	portions	of	content	(via	a	tag	like	<div>)	and	small	snippets	of	text
(using	a	tag	like	<i>	or).	For	example,	you	might	label	the	abstract	of	a
technical	report	using	<div	id="abstract">.	A	URL	could	jump	right	to	that	abstract
by	referencing	report.html#abstract.	When	used	in	this	manner,	the	value	of	the	id
attribute	must	be	unique	with	respect	to	all	other	id	attributes	within	the
document	and	all	the	names	defined	by	any	<a>	tags	with	the	name	attribute.
[Linking	Within	a	Document,	6.3.3]

When	used	as	a	stylesheet	selector,	the	value	of	the	id	attribute	is	the	name	of	a
style	rule	that	can	be	associated	with	the	current	tag.	This	provides	a	second	set
of	definable	style	rules,	similar	to	the	various	style	classes	you	may	create.	A	tag
can	use	both	the	class	and	the	id	attributes	to	apply	two	different	rules	to	a	single
tag.	In	this	case,	the	name	associated	with	the	id	attribute	must	be	unique	with
respect	to	all	other	style	IDs	within	the	current	document.	You	can	find	a	more
complete	description	of	style	classes	and	IDs	in	Chapter	8.

4.1.1.5.	The	title	attribute

Use	the	optional	title	attribute	and	quote-enclosed	string	value	to	associate	a
descriptive	phrase	with	the	division.	Like	the	id	attribute,	the	title	attribute	can
be	used	with	almost	any	tag	and	behaves	similarly	for	all	tags.

There	is	no	standards-defined	usage	for	the	value	of	the	title	attribute,	but
current	browsers	display	the	title	when	the	mouse	pauses	over	that	elementin
this	case,	anywhere	in	the	<div>-defined	text	area.	For	example,	use	the	title
attribute	to	provide	helpful	tips	within	your	document.

4.1.1.6.	The	class	and	style	attributes

Use	the	style	attribute	with	the	<div>	tag	to	create	an	inline	style	for	the	content
enclosed	by	the	tag.	The	class	attribute	lets	you	apply	the	style	of	a	predefined
class	of	the	<div>	tag	to	the	contents	of	this	division.	The	value	of	the	class
attribute	is	the	name	of	a	style	defined	in	some	document-level	or	externally
defined	stylesheet.	In	addition,	class-identified	divisions	lend	themselves	well	to
computer	processing	of	your	documents;	for	example,	extracting	all	divisions	with
the	class	name	"biblio,"	for	the	automated	assembly	of	a	master	bibliography.
[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

4.1.1.7.	Event	attributes

Many	user-related	events	may	happen	in	and	around	a	division,	such	as	when	a
user	clicks	or	double-clicks	the	mouse	within	its	display	space.	The	browser
recognizes	these	events	if	it	conforms	to	the	current	HTML	or	XHTML	standard	(all
the	popular	ones	do).	With	the	respective	on	attribute	and	value,	you	may	react	to
those	events	by	displaying	a	user	dialog	box	or	activating	some	multimedia	event.
[JavaScript	Event	Handlers,	12.3.3]

4.1.2.	The	<p>	Tag

The	<p>	tag	signals	the	start	of	a	paragraph.	That's	not	well	known	even	by	some
veteran	webmasters,	because	it	runs	counterintuitive	to	what	we've	come	to
expect	from	experience.	Most	word	processors	we're	familiar	with	use	just	one
special	character,	typically	the	return	character,	to	signal	the	end	of	a	paragraph,
not	the	beginning.	By	contrast,	in	HTML	and	XHTML,	each	paragraph	should	start
with	the	paragraph	tag	<p>	and	end	with	the	corresponding	</p>	end	tag.	Moreover,
while	a	series	of	newline	or	return	characters	in	a	text	processor-displayed
document,	created	when	the	author	hits	the	Enter	key	repeatedly,	creates	an
empty	paragraph	for	each	one,	browsers	typically	ignore	all	but	the	first
paragraph	tag,	as	well	as	newline	characters.

In	practice,	with	HTML	you	can	ignore	the	starting	<p>	tag	at	the	beginning	of	the
first	paragraph	and	the	</p>	tags	at	the	end	of	each	paragraph:	they	can	be
implied	from	other	tags	that	occur	in	the	document	and	hence	safely	omitted.[*]

For	example:

[*]	XHTML,	on	the	other	hand,	requires	explicit	starting	and	ending	tags.

<body>
This	is	the	first	paragraph,	at	the	very	beginning	of	the	body	of
this	document.
<p>
The	tag	above	signals	the	start	of	this	second	paragraph.	When	rendered
by	a	browser,	it	will	begin	slightly	below	the	end	of	the	first	paragraph,
with	a	bit	of	extra	whitespace	between	the	two	paragraphs.	
	

<p>
This	is	the	last	paragraph	in	the	example.
</body>

	
Notice	that	we	haven't	included	the	paragraph	start	tag	(<p>)	for	the	first
paragraph	or	any	end	paragraph	tags;	they	can	be	unambiguously	inferred	by	the
HTML	browser	and	are	therefore	unnecessary.

<p>

Function Defines	a	paragraph	of	text

Attributes align,	class,	dir,	id,	lang,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </p>;	often	omitted	in	HTML

Contains text

Used	in block

	
In	general,	you'll	find	that	human	document	authors	tend	to	omit	postulated	tags
whenever	possible,	and	automatic	document	generators	tend	to	insert	them.	That
may	be	because	the	software	designers	didn't	want	to	run	the	risk	of	having	their
products	chided	by	competitors	as	not	adhering	to	the	HTML	standard,	even
though	we're	splitting	letter-of-the-law	hairs	here.	Go	ahead	and	be	defiant:	omit
that	first	paragraph's	<p>	tag	and	don't	give	a	second	thought	to	paragraph-ending
</p>	tagsprovided,	of	course,	that	your	document's	structure	and	clarity	are	not
compromised	(that	is,	as	long	as	you	are	aware	that	XHTML	frowns	severely	on
such	laxity,	too).

4.1.2.1.	Paragraph	rendering

When	encountering	a	new	paragraph	(<p>)	tag,	the	browser	typically	inserts	one
blank	line	plus	some	extra	vertical	space	into	the	display	before	starting	the	new
paragraph.	The	browser	then	collects	all	the	words	and,	if	present,	inline	images
into	the	new	paragraph,	ignoring	leading	and	trailing	spaces	(not	spaces	between
words,	of	course)	and	return	characters	in	the	source	text.	The	browser	software
then	flows	the	resulting	sequence	of	words	and	images	into	a	paragraph	that	fits
within	the	margins	of	its	display	window,	automatically	generating	line	breaks	as
needed	to	wrap	the	text	within	the	window.	For	example,	compare	how	a	browser
arranges	the	text	into	lines	and	paragraphs	(Figure	4-1)	to	how	the	preceding
example	is	printed	on	the	page.	The	browser	may	also	automatically	hyphenate
long	words,	and	the	paragraph	may	be	full-justified	to	stretch	the	line	of	words
out	toward	both	margins.

Figure	4-1.	Browsers	ignore	common	return	characters	in	the
source	HTML/XHTML	document

	
The	net	result	is	that	you	do	not	have	to	worry	about	line	length,	word	wrap,	and
line	breaks	when	composing	your	documents.	The	browser	will	take	any	arbitrary
sequence	of	words	and	images	and	display	a	nicely	formatted	paragraph.

If	you	want	to	control	line	length	and	breaks	explicitly,	consider	using	a
preformatted	text	block	with	the	<pre>	tag.	If	you	need	to	force	a	line	break,	use
the	
	tag.[<pre>,	4.6.5]	[
,	4.6.1]

4.1.2.2.	The	align	attribute

Most	browsers	automatically	left-justify	a	new	paragraph.	To	change	this	behavior,
HTML	4	and	XHTML	give	you	the	align	attribute	for	the	<p>	tag	and	provide	four
kinds	of	content	justification:	left,	right,	center,	and	justify.

Figure	4-2	shows	the	effect	of	various	alignments	as	rendered	from	the	following
source:

<p	align=right>
Right	over	here!

This	is	too.
<p	align=left>
Slide	back	left.
<p	align=center>
Smack	in	the	middle.
</p>
Left	is	the	default.

	

Figure	4-2.	Effect	of	the	align	attribute	on	paragraph
justification

	
Notice	in	the	HTML	example	that	the	paragraph	alignment	remains	in	effect	until
the	browser	encounters	another	<p>	tag	or	an	ending	</p>	tag.	We	deliberately	left
out	a	final	<p>	tag	in	the	example	to	illustrate	the	effects	of	the	</p>	end	tag	on
paragraph	justification.	Other	body	elementsincluding	forms,	headers,	tables,	and
most	other	body	content-related	tagsmay	also	disrupt	the	current	paragraph
alignment	and	cause	subsequent	paragraphs	to	revert	to	the	default	left
alignment.

Note	that	the	align	attribute	is	deprecated	in	HTML	4	and	XHTML,	in	deference	to
stylesheet-based	alignments.

4.1.2.3.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
paragraph	should	be	displayed,	and	the	lang	attribute	lets	you	specify	the
language	used	within	that	paragraph.	The	dir	and	lang	attributes	are	supported	by
the	popular	browsers,	even	though	there	are	no	behaviors	defined	for	any	specific
language.[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.1.2.4.	The	class,	id,	style,	and	title	attributes

Use	the	id	attribute	to	create	a	label	for	the	paragraph	that	can	later	be	used	to
unambiguously	reference	that	paragraph	in	a	hyperlink	target,	for	automated
searches,	as	a	stylesheet	selector,	and	with	a	host	of	other	applications.	[The	id

attribute,	4.1.1.4]

Use	the	optional	title	attribute	and	quote-enclosed	string	value	to	provide	a
descriptive	phrase	for	the	paragraph.	[The	title	attribute,	4.1.1.5]

Use	the	style	attribute	with	the	<p>	tag	to	create	an	inline	style	for	the	paragraph's
contents.	The	class	attribute	lets	you	label	the	paragraph	with	a	name	that	refers
to	a	predefined	class	of	the	<p>	tag	previously	declared	in	some	document-level	or
externally	defined	stylesheet.	Class-identified	paragraphs	lend	themselves	well	to
computer	processing	of	your	documentsfor	example,	extracting	all	paragraphs
whose	class	name	is	"citation,"	for	automated	assembly	of	a	master	list	of
citations.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

4.1.2.5.	Event	attributes

As	with	divisions,	a	browser	recognizes	many	user-initiated	events,	such	as	when
a	user	clicks	or	double-clicks	within	a	tag's	display	space,	if	the	browser	conforms
to	the	current	HTML	or	XHTML	standard.	With	the	respective	on	attribute	and
value,	you	may	react	to	those	events	by	displaying	a	user	dialog	box	or	activating
some	multimedia	event.	[JavaScript	Event	Handlers,	12.3.3]

4.1.2.6.	Allowed	paragraph	content

A	paragraph	may	contain	any	element	allowed	in	a	text	flow,	including
conventional	words	and	punctuation,	links	(<a>),	images	(),	line	breaks	(
),
font	changes	(,	<i>,	<tt>,	<u>,	<strike>,	<big>,	<small>,	<sup>,	<sub>,	and),	and
content-based	style	changes	(<acronym>,	<cite>,	<code>,	<dfn>,	,	<kbd>,	<samp>,
,	and	<var>).	If	any	other	element	occurs	within	the	paragraph,	it	implies
that	the	paragraph	has	ended,	and	the	browser	assumes	that	the	closing	</p>	tag
was	not	specified.

4.1.2.7.	Allowed	paragraph	usage

You	may	specify	a	paragraph	only	within	a	block,	along	with	other	paragraphs,
lists,	forms,	and	preformatted	text.	In	general,	this	means	that	paragraphs	can
appear	where	a	flow	of	text	is	appropriate,	such	as	in	the	body	of	a	document,	in
an	element	in	a	list,	and	so	on.	Technically,	paragraphs	cannot	appear	within	a
header,	anchor,	or	other	element	whose	content	is	strictly	text-only.	In	practice,
most	browsers	ignore	this	restriction	and	format	the	paragraph	as	a	part	of	the
containing	element.

	

4.2.	Headings

Users	have	a	hard	enough	time	reading	what's	displayed	on	a	screen.	A	long	flow
of	text,	unbroken	by	title,	subtitles,	and	other	headers,	crosses	the	eyes	and
numbs	the	mind,	not	to	mention	the	fact	that	it	makes	it	nearly	impossible	to	scan
the	text	for	a	specific	topic.

You	should	always	break	a	flow	of	text	into	several	smaller	sections	within	one	or
more	headings	(like	this	book).	There	are	six	levels	of	HTML/XHTML	headings	that
you	can	use	to	structure	a	text	flow	into	a	more	readable,	more	manageable
document.	And,	as	we	discuss	in	Chapters	5	and	8,	there	are	a	variety	of
graphical	and	text-style	tricks	that	help	divide	your	document	and	make	its
contents	more	accessible	as	well	as	more	readable.

4.2.1.	Heading	Tags

The	six	heading	tagswritten	as	<h1>,	<h2>,	<h3>,	<h4>,	<h5>,	and	<h6>indicate	the
highest	(<h1>)	to	lowest	(<h6>)	precedence	a	heading	may	have	in	the	document.

<h1>,	<h2>,	<h3>,	<h4>,	<h5>,	<h6>

Function Define	one	of	six	levels	of	headers

Attributes align,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </h1>,	</h2>,	</h3>,	</h4>,	</h5>,	</h6>;	never	omitted

Contains text

Used	in body_content

	
The	text	enclosed	within	a	heading	typically	is	rendered	by	the	browser	uniquely,
depending	upon	the	display	technology	available	to	it.	The	browser	may	choose	to
center,	format	in	boldface,	enlarge,	italicize,	underline,	or	change	the	color	of
headings	to	make	each	stand	out	within	the	document.	And	in	order	to	thwart	the
most	tedious	writers,	often	users	themselves	can	alter	how	a	browser	renders	the
different	headings.

Fortunately,	in	practice	most	browsers	use	a	diminishing	character	point	size	for
the	sequence	of	headers	so	that	<h1>	text	is	quite	large	and	<h6>	text	is	quite
minuscule	(see	Figure	4-3,	for	example).

Figure	4-3.	Browsers	typically	use	diminishing	text	sizes	for
rendering	headings

	
By	tradition,	authors	have	come	to	use	<h1>	headers	for	document	titles,	<h2>
headers	for	section	titles,	and	so	on,	often	matching	the	way	many	of	us	were
taught	to	outline	our	work	with	heads,	subheads,	and	sub-subheads.

Finally,	don't	forget	to	include	the	appropriate	heading	end	tags	in	your
document.	The	browser	won't	insert	them	automatically	for	you,	and	omitting	the
ending	tag	for	a	heading	can	have	disastrous	consequences	for	your	document.

4.2.1.1.	The	align	attribute

The	default	heading	alignment	for	most	browsers	is	left.	As	with	the	<div>	and	<p>
tags,	the	align	attribute	can	change	the	alignment	to	left,	center,	right,	or	justify.
Figure	4-4	shows	these	alternative	alignments	as	rendered	from	the	following
source:

<h1	align=right>Right	over	here!</h1>
<h2	align=left>Slide	back	left.</h2>
<h3	align=center>Smack	in	the	middle.</h3>

	

Figure	4-4.	The	heading's	align	attribute	in	action

	
The	justify	value	for	align	is	not	yet	supported	by	any	browser,	and	don't	hold	your
breath.	The	align	attribute	is	deprecated	in	HTML	4	and	XHTML,	in	deference	to
stylesheet-based	controls.

4.2.1.2.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within
that	paragraph	should	be	displayed,	and	lang	lets	you	specify	the	language	used
within	the	heading.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.2.1.3.	The	class,	id,	style,	and	title	attributes

Use	the	id	attribute	to	create	a	label	for	the	heading	that	can	later	be	used	to
unambiguously	reference	that	heading	in	a	hyperlink	target,	for	automated
searches,	as	a	stylesheet	selector,	and	with	a	host	of	other	applications.	[The	id
attribute,	4.1.1.4]

Use	the	optional	title	attribute	and	quote-enclosed	string	value	to	provide	a
descriptive	phrase	for	the	heading.	[The	title	attribute,	4.1.1.5]

Use	the	style	attribute	with	the	heading	tags	to	create	an	inline	style	for	the
headings'	contents.	The	class	attribute	lets	you	label	the	heading	with	a	name	that
refers	to	a	predefined	class	declared	in	some	document-level	or	externally	defined
stylesheet.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

4.2.1.4.	Event	attributes

Each	user-initiated	event	that	may	happen	in	and	around	a	heading	is	recognized
by	the	browser	if	it	conforms	to	the	HTML	or	XHTML	standard.	With	the	respective
on	attribute	and	value,	you	may	react	to	that	event	by	displaying	a	user	dialog	box

or	activating	some	multimedia	event.	[JavaScript	Event	Handlers,	12.3.3]

4.2.2.	Appropriate	Use	of	Headings

It's	often	good	form	to	repeat	your	document's	title	in	the	first	heading	tag
because	the	title	you	specify	in	the	<head>	of	your	document	doesn't	appear	in	the
user's	main	display	window.	The	following	HTML	segment	is	a	good	example	of
repeating	the	document's	title	in	the	header	and	in	the	body	of	the	document:

<html>
<head>
<title>Kumquat	Farming	in	North	America</title>
</head>
<body>
<h3>Kumquat	Farming	in	North	America</h3>
<p>

	

Perhaps	one	of	the	most	enticing	of	all	fruits	is	the...

	
Typically,	the	browser	places	the	<title>	text	along	the	top	of	the	main	display.	It
may	also	place	the	title	elsewhere	in	the	document	window	and	use	it	to	create
bookmarks	or	favorites	entries,	all	of	which	vaguely	are	somewhere	on	the	user's
desktop.	The	level-three	title	heading	in	this	example,	on	the	other	hand,	will
always	appear	at	the	very	beginning	of	the	document	display.	It	serves	as	a
visible	title	to	the	document,	regardless	of	how	the	browser	handles	the	<title>
tag's	contents.	And,	unlike	the	<title>	text,	the	heading	title	gets	printed	at	the
beginning	of	the	first	page	should	the	user	elect	to	print	the	document,	because	it
is	part	of	the	main	text.[<title>,	3.7.2]

In	our	example,	we	chose	to	use	a	level-three	heading	(<h3>)	whose	rendered	font
typically	is	just	a	bit	larger	than	the	regular	document	text.	Levels	one	and	two
are	larger	still	and	often	are	a	bit	overbearing.	Choose	a	level	of	heading	that	you
find	useful	and	attractive	and	use	that	level	consistently	throughout	your
documents.	Too	big	and	it	overwhelms	the	display	window;	too	small	and	it's
easily	missed	visually.

Once	you	have	established	the	top-level	heading	for	your	document,	use

additional	headings	at	the	same	or	lower	levels	throughout	to	add	structure	and
"scanability"	to	the	document.	If	you	use	a	level-three	heading	for	the	document
title,	for	example,	break	your	document	into	subsections	using	level-four
headings.	If	you	have	the	urge	to	subdivide	your	text	further,	consider	using	a
level-two	heading	for	the	title,	level	three	for	the	section	dividers,	and	level	four
for	the	subsections.

4.2.3.	Using	Headings	for	Smaller	Text

For	most	graphical	browsers,	the	fonts	used	to	display	<h1>,	<h2>,	and	<h3>	headers
are	larger,	<h4>	is	the	same,	and	<h5>	and	<h6>	are	smaller	than	the	regular	text
size.	Authors	typically	use	the	latter	two	sizes	for	boilerplate	text,	such	as	a
disclaimer	or	a	copyright	notice.	Though	style	rules	ought	to	be	used	instead,
some	authors	use	headers	for	their	smaller	text	to	format	tables	of	contents	or
home	pages	that	display	a	site's	contents.	Experiment	with	<h5>	and	<h6>	to	get	the
effect	you	want.	Figure	4-5	shows	how	a	typical	browser	renders	the	copyright
reference	in	the	following	sample	XHTML	segment:

resulting	in	years	of	successful	kumquat	production
throughout	North	America.
</p>
<h6>This	document	copyright	2007	by	the	Kumquat	Growers	of
America.	All	rights	reserved.</h6>
</body>
</html>

	

Figure	4-5.	HTML/XHTML	authors	typically	use	heading	level	six
for	boilerplate	text

	

4.2.4.	Allowed	Heading	Content

A	heading	may	contain	any	element	allowed	in	text,	including	conventional	text,
hyperlinks	(<a>),	images	(),	line	breaks	(
),	font	embellishments	(,	<i>,
<tt>,	<u>,	<strike>,	<big>,	<small>,	<sup>,	<sub>,	and),	and	content-based	styles
(<acronym>,	<cite>,	<code>,	<dfn>,	,	<kbd>,	<samp>,	,	and	<var>).	In	practice,
however,	font	or	style	changes	may	not	take	effect	within	a	heading	because	the
heading	itself	prescribes	a	font	change	within	the	browser.

At	one	time	early	on,	there	was	widespread	abuse	of	the	heading	tags	as	a	way	to
change	the	font	of	entire	sections	of	a	document.	Technically,	paragraphs,	lists,
and	other	block	elements	are	not	allowed	within	a	heading	and	may	be	mistaken
by	the	browser	to	indicate	the	implied	end	of	the	heading.	In	practice,	most
browsers	apply	the	style	of	the	heading	to	all	contained	paragraphs.	We
discourage	this	practice	because	it	is	not	only	a	violation	of	HTML	and	XHTML
standards,	but	also	is	usually	ugly	to	look	at.	Imagine	if	your	local	paper	printed
all	the	copy	in	headline	type!

Large	sections	of	heading	text	defeat	the	purpose	of	the	tag.	If	you	really	want	to
change	the	font	or	type	sizes	in	your	document,	use	the	standard	cascading	style
definitions.	See	Chapter	8	for	details.

We	strongly	recommend	that	you	carefully	test	your	pages	with	more	than	one
browser	and	at	several	different	resolutions.	As	you	might	expect,	your	<h6>	text
may	be	readable	at	640	x	480	resolution,	but	may	disappear	on	a	1280	x	1024
display.

4.2.5.	Allowed	Heading	Usage

Formally,	the	HTML	and	XHTML	standards	allow	headings	only	within	body
content.	In	practice,	most	browsers	recognize	headings	almost	anywhere,
formatting	the	rendered	text	to	fit	within	the	current	element.	In	all	cases,	the
occurrence	of	a	heading	signifies	the	end	of	any	preceding	paragraph	or	other	text
element,	so	you	can't	use	the	heading	tags	to	change	font	sizes	in	the	same	line.
Rather,	use	cascading	style	definitions	to	achieve	those	acute	display	effects.
[Inline	Styles:	The	style	Attribute,	8.1.1]

4.2.6.	Adding	Images	to	Headings

It	is	possible	to	insert	one	or	more	images	within	your	headings,	from	small
bullets	or	icons	to	full-size	logos.	Combining	a	consistent	set	of	headings	with
corresponding	icons	across	a	family	of	documents	is	not	only	visually	attractive
but	also	an	effective	way	of	aiding	users'	perusal	of	your	document	collection.
[,	5.2.6]

Adding	an	image	to	a	heading	is	easy.	For	example,	the	following	text	puts	an
"information"	icon	inside	the	"For	More	Information"	heading,	as	you	can	see	in
Figure	4-6:

<h2>

For	More	Information</h2>

	

Figure	4-6.	An	image	within	a	heading

	
In	general,	images	within	headings	look	best	at	the	beginning	of	the	heading,
aligned	with	the	bottom	or	middle	of	the	heading	text.

	

4.3.	Changing	Text	Appearance	and	Meaning

A	number	of	tags	change	the	appearance	of	and	associate	hidden	meaning	with
text.	In	general,	these	tags	can	be	grouped	into	two	flavors:	content-based	styles
and	physical	styles.

In	addition,	the	World	Wide	Web	Consortium	(W3C)	standard	for	Cascading	Style
Sheets	(CSS)	is	now	well	supported	by	the	popular	browsers,	providing	another,
more	comprehensive	way	for	authors	to	control	the	look	and	layout	of	their
document	text.	We	describe	the	tag-based	text	styles	in	this	chapter.	See	Chapter
8	for	details	about	CSS.

4.3.1.	Content-Based	Styles

Content-based	style	tags	inform	the	browser	that	the	enclosed	text	has	a	specific
meaning,	context,	or	usage.	The	browser	then	formats	the	text	in	a	manner
consistent	with	that	meaning,	context,	or	usage.	Note	the	distinction	here.
Content-based	style	tags	confer	meaning,	not	formatting.	Accordingly,	they	are
important	for	automated	processes;	machines	don't	care	what	the	document	looks
likeat	least	for	now.

Because	font	style	is	specified	via	semantic	clues,	the	browser	can	choose	a
display	style	that	is	appropriate	for	the	user.	Because	such	styles	vary	by	locale,
using	content-based	styles	helps	ensure	that	your	documents	will	have	meaning
to	a	broader	range	of	readers.	This	is	particularly	important	when	a	browser	is
targeted	at	blind	or	handicapped	readers	whose	display	options	are	radically
different	from	conventional	text	or	are	extremely	limited	in	some	way.

The	current	HTML	and	XHTML	standards	do	not	define	a	format	for	each	content-
based	style;	they	only	specify	that	they	must	be	rendered	in	a	manner	different
from	the	regular	text	in	a	document.	The	standards	don't	even	insist	that	the
content-based	styles	be	rendered	differently	from	one	another.	In	practice,	you'll
find	that	many	of	these	tags	have	fairly	obvious	relationships	with	conventional
print,	having	similar	meanings	and	rendered	styles,	and	are	rendered	in	the	same
style	and	fonts	by	most	browsers.

4.3.2.	Physical	Styles

We	use	the	word	intent	a	lot	when	we	talk	about	content-based	style	tags.	That's
because	the	meaning	conveyed	by	the	tag	is	more	important	than	the	way	a
browser	displays	the	text.	In	some	cases,	however,	you	might	want	the	text	to

appear	explicitly	in	some	special	wayitalic	or	bold,	for	exampleperhaps	for	legal	or
copyright	reasons.	In	those	cases,	use	a	physical	style	for	the	text.

While	the	tendency	with	other	text-processing	systems	is	to	control	style	and
appearance	explicitly,	with	HTML	or	XHTML	you	should	avoid	physical	tags	except
on	rare	occasions.	Provide	the	browser	with	as	much	contextual	information	as
possible.	Use	the	content-based	styles.	Even	though	current	browsers	may	do
nothing	more	than	display	their	text	in	italic	or	bold,	future	browsers	and	various
document-generation	tools	may	use	the	content-based	styles	in	any	number	of
creative	ways.

	

4.4.	Content-Based	Style	Tags

It	takes	discipline	to	use	HTML/XHTML	content-based	style	tags	because	it	is
easier	to	simply	think	of	how	your	text	should	look,	not	necessarily	what	it	may
also	mean.	Once	you	get	started	using	content-based	styles,	your	documents	will
be	more	consistent	and	better	lend	themselves	to	automated	searching	and
content	compilation.

Content-Based	Style	Tags

Function Alter	the	appearance	of	text	based	upon	the	meaning,	context,	or	usage	of	the
text

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tags Never	omitted

Contains text

Used	in text

	

4.4.1.	The	<abbr>	Tag

First	introduced	in	HTML	4.0,	the	<abbr>	tag	indicates	that	the	enclosed	text	is	an
abbreviated	form	of	a	longer	word	or	phrase.	The	browser	might	use	this
information	to	change	the	way	it	renders	the	enclosed	text	or	substitute
alternative	text.	Notice	that	we	said	mightnot	all	of	the	popular	browsers
currently	do	anything	to	the	text	enclosed	by	the	<abbr>	tag,	and	we	can't	predict
how	other	browsers	will	implement	the	tag	in	the	future.

4.4.2.	The	<acronym>	Tag

The	<acronym>	tag	indicates	that	the	enclosed	text	is	an	acronym,	an	abbreviation
usually	formed	from	the	first	letter	of	each	word	in	a	name	or	phrase,	such	as
HTML	and	IBM.	Like	<abbr>,	not	all	browsers	change	the	display	of	the	<acronym>
content-based	style	tag's	enclosed	text.

4.4.3.	The	<cite>	Tag

The	<cite>	tag	usually	indicates	that	the	enclosed	text	is	a	bibliographic	citation,

such	as	a	book	or	magazine	title.	By	convention,	the	citation	text	is	rendered	in
italics.	See	Figure	4-7	for	how	Internet	Explorer	renders	this	source	text:

While	kumquats	are	not	mentioned	in	Melville's
<cite>Moby	Dick</cite>,	it	is	nonetheless	apparent
that	the	mighty	cetacean	represents	the	bitter
"kumquat-ness"	within	every	man.	Indeed,	when	Ahab
spears	the	beast,	its	flesh	is	tough,	much	like	the	noble	fruit.

	

Figure	4-7.	Internet	Explorer	renders	<cite>	in	italics

	
Use	the	<cite>	tag	to	set	apart	any	reference	to	another	document,	especially
those	in	traditional	media,	such	as	books,	magazines,	journal	articles,	and	the
like.	If	an	online	version	of	the	referenced	work	exists,	you	also	should	enclose
the	citation	within	the	<a>	tag	in	order	to	make	it	a	hyperlink	to	that	online
version.

The	<cite>	tag	also	has	a	hidden	feature:	it	enables	you	or	someone	else	to
automatically	extract	a	bibliography	from	your	documents.	It	is	easy	to	envision	a
browser	that	compiles	tables	of	citations	automatically,	displaying	them	as
footnotes	or	as	a	separate	document	entirely.	The	semantics	of	the	<cite>	tag	go
far	beyond	changing	the	appearance	of	the	enclosed	text;	they	enable	the
browser	to	present	the	content	to	the	user	in	a	variety	of	useful	ways.

4.4.4.	The	<code>	Tag

Software	code	warriors	have	become	accustomed	to	a	special	style	of	text
presentation	for	their	source	programs.	The	<code>	tag	is	for	them.	It	renders	the
enclosed	text	in	a	monospaced,	teletype-style	font	such	as	Courier,	familiar	to
most	programmers	and	readers	of	O'Reilly	books	such	as	this	one.

This	following	bit	of	en<code>ed	text	is	rendered	in	a	monospaced	font	style	by
Firefox,	as	shown	in	Figure	4-8	(though	the	effect	is	not	dramatic,	admittedly):

The	array	reference	<code>a[i]</code>	is	identical	to
the	pointer	reference	<code>*(a+i)</code>.

	

Figure	4-8.	Use	<code>	to	present	computer-speak

	
You	should	use	the	<code>	tag	for	text	that	represents	computer	source	code	or
other	machine-readable	content.	While	the	<code>	tag	usually	just	makes	text
appear	in	a	monospaced	font,	the	implication	is	that	it	is	source	code,	and	future
browsers	may	add	other	display	effects.[*]

[*]	None	of	the	popular	browsers	format	<code>	segments	as	a	text	processor	might.	Rather,	use	the	<pre>	tag	in
conjunction	with	<code>	to	achieve	programming	code-like	display	effects.

For	example,	a	programmer's	browser	might	look	for	<code>	segments	and	perform
some	additional	text	formatting,	such	as	special	indentation	of	loops	and
conditional	clauses.	If	the	only	effect	you	desire	is	a	monospaced	font,	use	the	<tt>
tag.	If	you	want	to	display	the	programming	code	in	rigidly	formatted	monospaced
text,	use	the	<pre>	tag.	[The	<tt>	Tag,	4.5.10]	[<pre>,	4.6.5]

4.4.5.	The	<dfn>	Tag

Use	<dfn>	to	tag	defining	instances	of	special	terms	or	phrases.	The	popular
browsers	typically	display	<dfn>	text	in	italics.	In	the	future,	<dfn>	might	assist	in
creating	a	document	index	or	glossary.

For	example,	use	the	<dfn>	tag	to	introduce	a	new	phrase	to	the	reader:

When	analyzing	annual	crop	yields,	<dfn>rind	spectroscopy</dfn>	may	prove	useful.	By
comparing	the	relative	levels	of	saturated	hydrocarbons	in	fruit	from	adjacent	trees,

rind	spectroscopy	has	been	shown	to	be	87%	effective	in	predicting	an	outbreak	of
trunk	dropsy	in	trees	under	four	years	old.

	
Notice	that	we	delimit	only	the	first	occurrence	of	"rind	spectroscopy"	with	a	<dfn>
tag	in	the	example.	Good	style	tells	us	not	to	clutter	the	text	with	highlighted
text.	As	with	the	many	other,	content-related	and	physical	style	tags,	the	fewer
the	better.[*]	As	a	general	style,	especially	in	technical	documentation,	set	off	new
terms	when	they	are	first	introduced	to	help	your	readers	better	understand	the
topic	at	hand,	but	resist	tagging	the	terms	thereafter.

[*]	If	you	need	convincing	that	less	is	better	when	applying	the	content-based	and	physical	style	tags,	try	reading	a
college	textbook	in	which	someone	has	highlighted	what	he	considered	important	words	and	phrases	with	a	yellow
marker.

4.4.6.	The		Tag

The		tag	tells	the	client	browser	to	present	the	enclosed	text	with	emphasis.
For	nearly	all	browsers,	this	means	the	text	is	rendered	in	italic.	For	example,	the
popular	browsers	will	emphasize	by	italicizing	the	words	always	and	never	in	the
following	HTML/XHTML	source:

Kumquat	growers	must	always	refer	to	kumquats
as	"the	noble	fruit,"	never	as	just	a	"fruit."

	
Adding	emphasis	to	your	text	is	tricky	business.	Too	little,	and	the	emphatic
phrases	may	be	lost.	Too	much,	and	you	lose	the	urgency.	Like	any	seasoning,
emphasis	is	best	used	sparingly.

Although	invariably	displayed	in	italic,	the		tag	has	broader	implications	as
well,	and	someday	browsers	may	render	emphasized	text	with	a	different	special
effect.	The	<i>	tag	explicitly	italicizes	text;	use	it	if	all	you	want	is	italic.
Alternatively,	you	can	include	text	display-altering	cascading	style	definitions	in
your	document.	[The	<i>	Tag,	4.5.4]

Besides	for	emphasis,	also	consider	using		when	presenting	new	terms	or	as	a
fixed	style	when	referring	to	a	specific	type	of	term	or	concept.	For	instance,	one
of	O'Reilly's	book	styles	is	to	specially	format	file	and	device	names.	You	might
use	the		tag	to	differentiate	those	terms	from	simple	italics	used	for	emphasis.

4.4.7.	The	<kbd>	Tag

Speaking	of	special	styles	for	technical	concepts,	there	is	the	<kbd>	tag.	As	you
probably	already	suspect,	it	is	used	to	indicate	text	that	is	typed	on	a	keyboard.
Its	enclosed	text	typically	is	rendered	by	the	browser	in	a	monospaced	font.

The	<kbd>	tag	is	most	often	used	in	computer-related	documentation	and	manuals,
such	as	in	this	example:

Type	<kbd>quit</kbd>	to	exit	the	utility,	or	type
<kbd>menu</kbd>	to	return	to	the	main	menu.

	

4.4.8.	The	<samp>	Tag

The	<samp>	tag	indicates	a	sequence	of	literal	characters	that	should	have	no	other
interpretation	by	the	user.	This	tag	is	most	often	used	when	a	sequence	of
characters	is	taken	out	of	its	normal	context.	For	example,	the	following	source:

The	<samp>ae</samp>	character	sequence	may	be	converted
to	the	æ	ligature	if	desired.

	
is	rendered	by	Netscape,	for	instance,	as	shown	in	Figure	4-9.

Figure	4-9.	Setting	off	sample	text	using	the	<samp>	tag

	
The	special	HTML	reference	for	the	ae	ligature	entity	is	æ	and	is	converted	to
its	appropriate	æ	ligature	character	by	most	browsers.	For	more	information,	see
Appendix	F.

The	<samp>	tag	is	not	used	very	often.	You	should	use	it	in	those	few	cases	where
special	emphasis	needs	to	be	placed	on	small	character	sequences	taken	out	of
their	normal	context.

4.4.9.	The		Tag

Like	the		tag,	the		tag	is	for	emphasizing	text,	except	with	more	gusto.
Browsers	typically	display	the		tag	differently	than	the		tag,	usually	by
making	the	text	bold	(versus	italic)	so	that	users	can	distinguish	between	the	two.
For	example,	in	the	following	text,	the	emphasized	"never"	appears	in	italic	by
Opera,	and	the		"forbidden"	is	rendered	in	bold	characters	(see	Figure	4-
10):

One	should	never	make	a	disparaging	remark	about	the
noble	fruit.	In	particular,	mentioning	kumquats	in	conjunction
with	vulgar	phrases	is	expressly	forbidden	by
the	Association	bylaws.

	

Figure	4-10.	Strong	and	emphasized	text	are	rendered
differently

	
If	common	sense	tells	us	that	the		tag	should	be	used	sparingly,	the	
tag	should	appear	in	documents	even	more	infrequently.		text	is	like	shouting.
	text	is	nothing	short	of	a	scream.	Like	a	well-chosen	epithet	voiced	by	an
otherwise	taciturn	person,	restraint	in	the	use	of		makes	its	use	that	much
more	noticeable	and	effective.

4.4.10.	The	<var>	Tag

The	<var>	tag,	another	computer-documentation	trick,	indicates	a	variable	name	or

a	user-supplied	value.	The	tag	is	often	used	in	conjunction	with	the	<code>	and
<pre>	tags	for	displaying	particular	elements	of	computer-programming	code
samples	and	the	like.	Browsers	typically	render	<var>-tagged	text	in	italics,	as
shown	in	Figure	4-11,	which	displays	the	following	example:

The	user	should	type
<pre>
		cp	<var>source-file</var>		<var>dest-file</var>
</pre>
replacing	the	<var>source-file</var>	with	the	name	of
the	source	file,	and	<var>dest-file</var>	with	the	name
of	the	destination	file.

	

Figure	4-11.	The	<var>	tag	typically	appears	in	preformatted
(<pre>)	computer	code

	
Like	the	other	computer-programming	and	documentation-related	tags,	the	<var>
tag	not	only	makes	it	easy	for	users	to	understand	and	browse	your
documentation,	but	automated	systems	might	someday	use	the	appropriately
tagged	text	to	extract	information	and	useful	parameters	mentioned	in	your
documents.	Once	again,	the	more	semantic	information	you	provide	to	your
browser,	the	better	it	can	present	that	information	to	the	user.

4.4.11.	The	class,	style,	id,	and	title	Attributes

Although	each	content-based	tag	has	a	default	display	style,	you	can	override	that
style	by	defining	a	new	look	for	each	tag.	You	can	apply	this	new	look	to	the
content-based	tags	using	either	the	style	or	the	class	attribute.	[Inline	Styles:	The
style	Attribute,	8.1.1]	[Style	Classes,	8.3]

You	also	may	assign	a	unique	identifier	(id)	to	the	content-based	style	tag,	as	well
as	a	less	rigorous	title,	using	the	respective	attributes	and	their	accompanying
quote-enclosed	string	values.	[The	id	attribute,	4.1.1.4]	[The	title	attribute,
4.1.1.5]

4.4.12.	The	dir	and	lang	Attributes

The	dir	attribute	advises	the	browser	in	which	direction	the	text	within	the
content-based	style	tag	should	be	displayed,	and	lang	lets	you	specify	the
language	used	within	the	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,
3.6.1.2]

4.4.13.	Event	Attributes

Things	happen	in	and	around	a	content-based	tag's	content,	and,	with	the
respective	on	attribute	and	value	you	may	react	to	that	event	by	displaying	a	user
dialog	or	activating	some	multimedia	event.	[JavaScript	Event	Handlers,	12.3.3]

4.4.14.	Summary	of	Content-Based	Tags

The	various	graphical	browsers	render	text	inside	content-based	tags	in	similar
fashion;	text-only	browsers	such	as	Lynx	have	consistent	styles	for	the	tags.	Table
4-1	summarizes	these	browsers'	display	styles	for	the	native	tags.	However,
stylesheet	definitions	may	override	these	native	display	styles.

Table	4-1.	Content-based	tags

Tag Netscape	Navigator Internet	Explorer Mozilla	Firefox Opera Lynx

<abbr> N/A N/A N/A N/A N/A

<acronym> N/A N/A N/A N/A N/A

<cite> italic italic italic italic monospace

<code> monospace monospace monospace monospace monospace

<dfn> italic italic italic italic N/A

 italic italic italic italic monospace

<kbd> monospace monospace monospace monospace monospace

<samp> monospace monospace monospace monospace monospace

 bold bold bold bold monospace

<var> italic italic italic italic monospace

	

4.4.15.	Allowed	Content

Any	content-based	style	tag	may	contain	any	item	allowed	in	text,	including
conventional	text,	anchors,	images,	and	line	breaks.	In	addition,	other	content-
based	and	physical	style	tags	can	be	embedded	within	the	content.

4.4.16.	Allowed	Usage

Any	content-based	style	tag	may	be	used	anywhere	an	item	allowed	in	text	is
used.	In	practice,	this	means	you	can	use	the	,	<code>,	and	other	similar	tags
anywhere	in	your	document	except	inside	<title>,	<listing>,	and	<xmp>	tagged
segments.	You	can	use	text	style	tags	in	headings,	too,	but	their	effects	may	be
overridden	by	the	effects	of	the	heading	tags	themselves.

4.4.17.	Combining	Content-Based	Styles

It	may	have	occurred	to	you	to	combine	two	or	more	of	the	various	content-based
styles	to	create	interesting	and	perhaps	even	useful	hybrids.	Thus,	an	emphatic
citation	might	be	achieved	with:

<cite>Moby	Dick</cite>

	
In	practice,	Dr.	Frankenstein,	the	browser	usually	ignores	the	monsteras	you	can
test	by	typing	and	viewing	the	example	yourself,	"Moby	Dick"	gets	the	citation
without	emphasis.

The	HTML	and	XHTML	standards	do	not	require	the	browser	to	support	every
possible	combination	of	content-based	styles	and	do	not	define	how	the	browser

should	handle	such	combinations.	Someday	maybe;	for	now,	it's	best	to	choose
one	tag.

	

4.5.	Physical	Style	Tags

The	current	HTML	and	XHTML	standards	currently	provide	nine	physical	styles:
bold,	italic,	monospaced,	underlined,	strikethrough,	larger,	smaller,	superscripted,
and	subscripted	text.	Much	to	our	relief,	Internet	Explorer	has	stopped	supporting
a	tenth	physical	style,	"blinking"	text.	We	wish	the	others	would	"get	it."	All
physical	style	tags	require	ending	tags.

As	we	discuss	physical	tags	in	detail,	keep	in	mind	that	they	convey	an	acute
styling	for	the	immediate	text.	For	more	comprehensive,	document-wide	control
of	text	display,	use	stylesheets	(see	Chapter	8).

Physical	Style	Tags

Function Specify	physical	styles	for	text

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tags Never	omitted

Contains text

Used	in text

	

4.5.1.	The		Tag

The		tag	is	the	physical	equivalent	of	the		content-based	style	tag,	but
without	the	latter's	extended	meaning.	The		tag	explicitly	boldfaces	a	character
or	segment	of	text	that	is	enclosed	between	it	and	its	corresponding	end	tag
().	If	a	boldface	font	is	not	available,	the	browser	may	use	some	other
representation,	such	as	reverse	video	or	underlining.

4.5.2.	The	<big>	Tag

The	<big>	tag	makes	it	easy	to	increase	the	size	of	text.	It	couldn't	be	simpler:	the
browser	renders	the	text	between	the	<big>	tag	and	its	matching	</big>	ending	tag
one	font	size	larger	than	the	surrounding	text.	If	that	text	is	already	at	the
largest	size,	<big>	has	no	effect.	[,	4.10.3]

Even	better,	you	can	nest	<big>	tags	to	enlarge	the	text.	Each	<big>	tag	makes	the
text	one	size	larger,	up	to	a	limit	of	size	seven,	as	defined	by	the	font	model.

4.5.3.	The	<blink>	Tag	(Obsolete	Extension)

Text	contained	between	the	<blink>	tag	and	its	end	tag,	</blink>,	does	just	that:	it
blinks	on	and	off.	Firefox,	for	example,	simply	and	reiteratively	reverses	the
background	and	foreground	colors	for	the	<blink>-enclosed	text.	Neither	the	HTML
nor	the	XHTML	standard	includes	<blink>.	Originally,	it	was	supported	as	an
extension	only	by	Netscape	Navigator	versions	before	version	6;	then	it	was
dropped	in	version	6,	and	was	reinstated	in	versions	7	and	later.	Opera	and
Firefox	support	it,	tooonly	Internet	Explorer	eschews	it.	You	should,	too.

We	cannot	effectively	reproduce	the	animated	effect	in	these	static	pages,	but	it	is
easy	to	imagine	and	best	left	to	the	imagination,	too.	Blinking	text	has	two
primary	effects:	it	gets	your	readers'	attention	and	then	promptly	annoys	them	to
no	end.	Forget	about	blinking	text.

4.5.4.	The	<i>	Tag

The	<i>	tag	is	like	the		content-based	style	tag.	It	and	its	necessary	end	tag
(</i>)	tell	the	browser	to	render	the	enclosed	text	in	an	italic	or	oblique	typeface.
If	the	typeface	is	not	available	to	the	browser,	highlighting,	reverse	video,	or
underlining	might	be	used.

4.5.5.	The	<s>	Tag	(Deprecated)

The	<s>	tag	is	an	abbreviated	form	of	the	<strike>	tag	supported	by	all	current
browsers	even	though	it	is	deprecated	in	HTML	4	and	XHTML.	In	other	words,	the
"s"	stands	for	shy:	don't	use	it;	<s>	will	go	away,	eventually.

4.5.6.	The	<small>	Tag

The	<small>	tag	works	just	like	its	<big>	counterpart	(see	[The	<big>	Tag,	4.5.2]),
except	it	decreases	the	size	of	text	instead	of	increasing	it.	If	the	enclosed	text	is
already	at	the	smallest	size	supported	by	the	font	model,	<small>	has	no	effect.

As	you	can	with	<big>,	you	can	nest	<small>	tags	to	sequentially	shrink	text.	Each
<small>	tag	makes	the	text	one	size	smaller	than	the	containing	<small>	tag,	to	a
limit	of	size	1.

4.5.7.	The	<strike>	Tag	(Deprecated)

The	popular	browsers	put	a	line	through	("strike	through")	text	that	appears

inside	the	<strike>	tag	and	its	</strike>	end	tag.	Presumably,	it	is	an	editing	markup
that	tells	the	reader	to	ignore	the	text	passage,	reminiscent	of	the	days	before
typewriter	correction	tape.	You'll	rarely,	if	ever,	see	the	tag	in	use	today:	it	is
deprecated	in	HTML	4	and	XHTML,	just	one	step	away	from	complete	elimination
from	the	standard.

4.5.8.	The	<sub>	Tag

The	text	contained	between	the	_{tag	and	its}	end	tag	gets	displayed	half
a	character's	height	lower,	but	in	the	same	font	and	size	as	the	current	text	flow.
Both	<sub>	and	its	<sup>	counterpart	are	useful	for	math	equations	and	in	scientific
notation,	as	well	as	with	chemical	formulæ.

4.5.9.	The	<sup>	Tag

The	^{tag	and	its}	end	tag	superscript	the	enclosed	text;	it	gets	displayed
half	a	character's	height	higher,	but	in	the	same	font	and	size	as	the	current	text
flow.	This	tag	is	useful	for	adding	footnotes	to	your	documents,	along	with
exponential	values	in	equations.	When	you	use	it	in	combination	with	the	<a>	tag,
you	can	create	nice,	hyperlinked	footnotes:

The	larval	quat
weevil^{<small>74</small>}	is	a

	
This	example	assumes	that	footnotes.html	contains	all	your	footnotes,
appropriately	delimited	as	named	document	fragments.

4.5.10.	The	<tt>	Tag

Like	the	<code>	and	<kbd>	tags,	the	<tt>	tag	and	its	necessary	</tt>	end	tag	direct
the	browser	to	display	the	enclosed	text	in	a	monospaced	typeface.	For	those
browsers	that	already	use	a	monospaced	typeface,	this	tag	may	make	no
discernible	change	in	the	presentation	of	the	text.

4.5.11.	The	<u>	Tag	(Deprecated)

This	tag	tells	the	browser	to	underline	the	text	contained	between	the	<u>	and	the

corresponding	</u>	tag.	The	underlining	technique	is	simplistic,	drawing	the	line
under	spaces	and	punctuation	as	well	as	the	text.	This	tag	is	deprecated	in	HTML
4	and	XHTML,	but	the	popular	browsers	support	it.

The	same	display	effects	for	the	<u>	tag	are	better	achieved	by	using	stylesheets,
covered	in	Chapter	8.

4.5.12.	The	dir	and	lang	Attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
physical	tag	should	be	displayed,	and	lang	lets	you	specify	the	language	used
within	the	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.5.13.	The	class,	style,	id,	and	title	Attributes

Although	each	physical	tag	has	a	defined	style,	you	can	override	that	style	by
defining	your	own	look	for	each	tag.	You	can	apply	this	new	look	to	the	physical
tags	using	either	the	style	or	the	class	attribute.	[Inline	Styles:	The	style
Attribute,	8.1.1]	[Style	Classes,	8.3]

You	also	may	assign	a	unique	ID	to	the	physical	style	tag,	as	well	as	a	less
rigorous	title,	using	the	respective	attribute	and	accompanying	quote-enclosed
string	value.[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

4.5.14.	Event	Attributes

As	with	content-based	style	tags,	user-initiated	mouse	and	keyboard	events	can
happen	in	and	around	a	physical	style	tag's	contents.	The	browser	recognizes
many	of	these	events	if	it	conforms	to	current	standards,	and	with	the	respective
on	attribute	and	value,	you	may	react	to	the	event	by	displaying	a	user	dialog	box
or	activating	some	multimedia	event.	[JavaScript	Event	Handlers,	12.3.3]

4.5.15.	Summary	of	Physical	Style	Tags

The	various	graphical	browsers	render	text	inside	the	physical	style	tags	in	a
similar	fashion.	Table	4-2	summarizes	these	browsers'	display	styles	for	these
tags.	Stylesheet	definitions	may	override	these	native	display	styles.

Table	4-2.	Physical	style	tags

Tag Meaning Display	style

 Bold	contents Bold

<big> Increased	font	size Bigger	text

<blink>	(obsolete) Alternating	fore-	and	background	colors Blinking	text

<i> Italic	contents Italic

<small> Decreased	font	size Smaller	text

<s>,	<strike>	(deprecated) Strikethrough	text Strike

<sub> Subscripted	text subscript

<sup> Superscripted	text superscript

<tt> Teletypewriter	style monospaced

<u>	(deprecated) Underlined	contents Underlined

	
The	following	HTML	source	example	illustrates	some	of	the	various	physical	tags
as	rendered	by	Firefox	(see	Figure	4-12):

Explicitly	boldfaced,	<i>italicized</i>,	or
<tt>teletype-style</tt>	text	should	be	used
<big><big>sparingly</big></big>.
Otherwise,	drink	<strike>lots</strike>	1x10⁶
drops	of	H_{<small><small>2</small></small>}O.

	

Figure	4-12.	Use	physical	text	tags	with	caution

	

4.5.16.	Allowed	Content

Any	physical	style	tag	may	contain	any	item	allowed	in	text,	including
conventional	text,	anchors,	images,	and	line	breaks.	You	can	also	combine
physical	style	tags	with	other	content-based	tags.

4.5.17.	Allowed	Usage

You	can	use	any	physical	style	tag	anywhere	you	can	use	an	item	allowed	in	text.
In	general,	this	means	anywhere	within	a	document,	except	in	the	<title>,
<listing>,	and	<xmp>	tags.	You	can	use	a	physical	style	tag	in	a	heading,	but	the
browser	will	probably	override	and	ignore	its	effect	in	lieu	of	the	heading	tag.

4.5.18.	Combining	Physical	Styles

You	will	probably	have	better	luck	combining	physical	tags	than	you	might	have
combining	content-based	tags	to	achieve	multiple	effects.	For	instance,	all	the
popular	browsers	render	the	following	in	bold	and	italic	typeface:

<i>Thar	she	blows!</i>

	
Other	browsers	may	elect	to	ignore	such	nesting.	The	standards	require	the
browser	to	"do	its	best"	to	support	every	possible	combination	of	styles,	but	do	not
define	how	the	browser	should	handle	such	combinations.	Although	most	browsers
make	a	good	attempt	at	doing	so,	do	not	assume	all	combinations	will	be	available
to	you.

	

4.6.	Precise	Spacing	and	Layout

CSS	notwithstanding,	the	original	concept	of	HTML	is	for	specifying	document
content	without	indicating	format;	to	delineate	the	structure	and	semantics	of	a
document,	not	how	that	document	is	to	be	presented	to	the	user.	Normally,	you
should	leave	word	wrapping,	character	and	line	spacing,	and	other	presentation
details	up	to	the	browser.	That	way,	the	document's	contentits	rich	information,
not	its	good	looksis	what	matters.	When	looks	matter	more,	such	as	for
commercial	presentations,	look	to	stylesheets	for	layout	control	(see	Chapter	8).

4.6.1.	The	
	Tag

The	
	tag	interrupts	the	normal	line	filling	and	word	wrapping	of	paragraphs
within	an	HTML	or	XHTML	document.	It	has	no	ending	tag	with	HTML;[*]	it	simply
marks	the	point	in	the	flow	where	a	new	line	should	begin.	Most	browsers	simply
stop	adding	words	and	images	to	the	current	line,	move	down	and	over	to	the	left
margin,	and	resume	filling	and	wrapping.

[*]	With	XHTML,	put	the	end	inside	the	start	tag:	
.	See	Chapter	16	for	details.

Function Inserts	a	line	break	into	a	text	flow

Attributes class,	clear,	id,	style,	title

End	tag None	in	HTML;	</br>	or	<br	...	/>	in	XHTML

Contains Nothing

Used	in text

	
This	effect	is	handy	when	formatting	conventional	text	with	fixed	line	breaks,
such	as	addresses,	song	lyrics,	and	poetry.	Notice,	for	example,	the	lyrical	breaks
when	the	following	source	is	rendered	by	a	GUI	browser:

<h3>
Heartbreak	Hotel</h3>
<p>
Ever	since	my	baby	left	me

I've	found	a	new	place	to	dwell.

It's	down	at	the	end	of	lonely	street

Called	<cite>Heartbreak	Hotel</cite>.
</p>

	
The	results	are	shown	in	Figure	4-13.

Figure	4-13.	Give	lyrics	their	breaks	(
)

	
Also	notice	how	the	
	tag	simply	causes	text	to	start	a	new	line,	and	the
browser,	when	encountering	the	<p>	tag,	typically	inserts	some	vertical	space
between	adjacent	paragraphs.	[<p>,	4.1.2]

4.6.1.1.	The	clear	attribute

Normally,	the	
	tag	tells	the	browser	to	stop	the	current	flow	of	text
immediately	and	resume	at	the	left	margin	of	the	next	line	or	against	the	right
border	of	a	left-justified	inline	graphic	or	table.	Sometimes	you'd	rather	the
current	text	flow	resume	below	any	tables	or	images	currently	blocking	the	left	or
right	margin.

HTML	4	and	XHTML	provide	that	capability	with	the	clear	attribute	for	the	
	tag.
It	can	have	one	of	three	valuesleft,	right,	or	alleach	related	to	one	or	both	of	the
margins.	When	the	specified	margin	or	margins	are	clear	of	images,	the	browser
resumes	the	text	flow.

Figure	4-14	illustrates	the	effects	of	the	clear	attribute	when	the	browser	renders
the	following	HTML	fragment:

This	text	should	wrap	around	the	image,	flowing	between	the
image	and	the	right	margin	of	the	document.
<br	clear=left>
This	text	will	flow	as	well,	but	will	be	below	the	image,
extending	across	the	full	width	of	the	page.	There	will	be
whitespace	above	this	text	and	to	the	right	of	the	image.

	

Figure	4-14.	Clearing	images	before	resuming	text	flow	after	the

	tag

	
Inline	images	are	just	thatnormally	in	line	with	text,	but	usually	only	a	single	line
of	text.	Additional	lines	of	text	flow	below	the	image,	unless	that	image	is
specially	aligned	by	right	or	left	attribute	values	for	the		tag	(similarly	for
<table>).	Hence,	the	clear	attribute	for	the	
	tag	works	only	in	combination	with
left-	or	right-aligned	images	or	tables.	[,	5.2.6]	[The	align	attribute
(deprecated),	10.2.1.1]

The	following	XHTML	code	fragment	illustrates	how	to	use	the	
	tag	and	its	clear
attribute	as	well	as	the		tag's	alignment	attributes	to	place	captions	directly
above,	centered	on	the	right,	and	below	an	image	that	is	aligned	against	the	left
margin	of	the	browser	window:

Paragraph	tags	separate	leading	and	following
text	flow	from	the	captions.
<p>
I'm	the	caption	on	top	of	the	image.

This	one's	centered	on	the	right.
<br	clear="left"	/>
This	caption	should	be	directly	below	the	image.
</p>
<p	/>

	
Figure	4-15	illustrates	the	results	of	this	example	code.

Figure	4-15.	Captions	placed	on	top,	center-right,	and	below	an
image

	
You	might	also	include	a	<br	clear=all>	tag	just	after	an		tag	or	table	that	is	at
the	very	end	of	a	section	of	your	document.	That	way,	you	ensure	that	the
subsequent	section's	text	doesn't	flow	up	and	against	that	image	and	confuse	the
reader.[,	5.2.6]

4.6.1.2.	The	class,	id,	style,	and	title	attributes

You	can	associate	additional	display	rules	for	the	
	tag	using	stylesheets.	You
can	apply	the	rules	to	the	
	tag	using	either	the	style	or	the	class	attribute.
[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

You	also	may	assign	a	unique	ID	to	the	
	tag,	as	well	as	a	less	rigorous	title,
using	the	respective	attribute	and	accompanying	quote-enclosed	string	value.
[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

4.6.2.	The	<nobr>	Tag	(Extension)

Occasionally,	you	may	want	a	phrase	to	appear	unbroken	on	a	single	line	in	the
user's	browser	window,	even	if	that	means	the	text	extends	beyond	the	visible
region	of	the	window.	Computer	commands	are	good	examples.	Typically,	you	type
in	a	computer	commandeven	a	multiword	oneon	a	single	line.	Because	you	cannot
predict	exactly	how	many	words	will	fit	inside	an	individual's	browser	window,	the
sequence	of	computer-command	words	may	end	up	broken	into	two	or	more	lines
of	text.	Command	syntax	is	confusing	enough;	it	doesn't	need	the	extra	cross-
eyed	effect	of	being	wrapped	onto	two	lines.

With	standard	HTML	and	XHTML,	the	way	to	make	sure	text	phrases	stay	intact
across	the	browser	display	is	to	enclose	those	segments	in	a	<pre>	tag	and	format

it	by	hand.	That's	acceptable	and	nearly	universal	for	all	browsers.	However,	<pre>
alters	the	display	font	from	the	regular	text,	and	manual	line	breaks	inside	the
<pre>	tag	are	not	always	rendered	correctly.	[<pre>,	4.6.5]

<nobr>

Function Creates	a	region	of	nonbreaking	text

Attributes None

End	tag </nobr>;	always	used

Contains text

Used	in block

	
The	current	browsers	offer	the	<nobr>	tag	alternative	to	<pre>,	which	keeps	enclosed
text	intact	on	a	single	line	while	retaining	normal	text	style.[*]	<nobr>	makes	the
browser	treat	the	tag's	contents	as	though	they	are	a	single,	unbroken	word.	The
tag	contents	retain	the	current	font	style,	and	you	can	change	to	another	style
within	the	tag.

[*]	Be	aware	that	<nobr>	and	its	colleague	<wbr>	are	extensions	to	the	language	and	not	part	of	the	HTML	standard.

Here's	the	<nobr>	tag	in	action	with	our	computer-command	example:

When	prompted	by	the	computer,	enter
<nobr>
<tt>find	.	-name	*.html	-exec	rm	\{\}\;</tt>.
</nobr>

<nobr>After	a	few	moments,	the	load	on	your	server	will	begin
to	diminish	and	will	eventually	drop	to	zero.</nobr>

	
Notice	in	the	example	source	and	its	display	(Figure	4-16)	that	we've	included	the
special	<tt>	tag	inside	the	first	<nobr>	tag,	thereby	rendering	the	contents	in
monospaced	font.	If	the	<nobr>-tagged	text	cannot	fit	on	a	partially	filled	line	of
text,	the	extended	browser	precedes	it	with	a	line	break,	as	shown	in	the	figure.
The	second	<nobr>	segment	in	the	example	demonstrates	that	the	text	may	extend

beyond	the	right	window	boundary	if	the	segment	is	too	long	to	fit	on	a	single
line.	For	some	reason,	Netscape,	but	not	the	other	popular	browsers,	fails	to
provide	a	horizontal	scroll	bar	so	that	users	can	read	the	extended	text,	though.
[The	<tt>	Tag,	4.5.10]

Figure	4-16.	The	<nobr>	extension	suppresses	text	wrapping;
for	reasons	unknown,	Netscape	doesn't	enable	a	scroll	bar	so

that	you	can	read	the	extended	text

	
The	<nobr>	tag	does	not	suspend	the	browser's	normal	line-filling	process;	it	still
collects	and	inserts	images	andbelieve	it	or	notasserts	forced	line	breaks	caused
by	the	
	and	<p>	tags,	for	example.	The	<nobr>	tag's	only	action	is	to	suppress	an
automatic	line	break	when	the	current	line	reaches	the	right	margin.

In	addition,	you	might	think	this	tag	is	needed	only	to	suppress	line	breaks	for
phrases,	not	for	a	sequence	of	characters	without	spaces	that	can	exceed	the
browser	window's	display	boundaries.	Today's	browsers	do	not	hyphenate	words
automatically,	but	someday	soon	they	probably	will.	It	makes	sense	to	protect	any
break-sensitive	sequences	of	characters	with	the	<nobr>	tag.

4.6.3.	The	<wbr>	Tag	(Extension)

The	<wbr>	tag	is	the	height	of	text-layout	finesse,	offered	as	an	extension	by
Internet	Explorer,	but	not	any	others.	Used	with	the	<nobr>	tag,	<wbr>	advises
Internet	Explorer	when	it	may	insert	a	line	break	in	an	otherwise	nonbreakable
sequence	of	text.	Unlike	the	
	tag,	which	always	causes	a	line	break,	even
within	an	<nobr>-tagged	segment,	the	<wbr>	tag	works	only	when	placed	inside	an
<nobr>-tagged	content	segment	and	causes	a	line	break	only	if	the	current	line	has
already	extended	beyond	the	browser's	display	window	margins.

<wbr>	

Function Defines	a	potential	line-break	point	if	needed

Attributes None

End	tag None	in	HTML;	</wbr>	or	<wbr	...	/>	in	XHTML

Contains Nothing

Used	in text

	
Now,	<wbr>	may	seem	incredibly	esoteric	to	you,	but	scowl	not.	There	may	come	a
time	when	you	want	to	make	sure	portions	of	your	document	appear	on	a	single
line,	but	you	don't	want	to	overrun	the	browser	window	margins	so	far	that
readers	will	have	to	camp	on	the	horizontal	scroll	bar	just	to	read	your	fine	prose.
By	inserting	the	<wbr>	tag	at	appropriate	points	in	the	nonbreaking	sequence,	you
let	the	browser	gently	break	the	text	into	more	manageable	lines:

<nobr>
This	is	a	very	long	sequence	of	text	that	is
forced	to	be	on	a	single	line,	even	if	doing	so	causes
<wbr>
the	browser	to	extend	the	document	window	beyond	the
size	of	the	viewing	pane	and	the	poor	user	must	scroll	right
<wbr>
to	read	the	entire	line.
</nobr>

	
You'll	notice	in	our	Internet	Explorer-rendered	version	(Figure	4-17)	that	both
<wbr>	tags	take	effect.	By	increasing	the	horizontal	window	size	or	reducing	the
font	size,	you	may	fit	the	entire	segment	before	the	first	<wbr>	tag	within	the
browser	window.	In	that	case,	only	the	second	<wbr>	would	have	an	effect;	all	the
text	leading	up	to	it	would	extend	beyond	the	window's	margins.

Figure	4-17.	Gentle	line	breaks	with	Internet	Explorer's
<wbr>extension	tag

	

4.6.4.	Better	Line-Breaking	Rules

Unlike	some	browsers,	and	to	their	credit,	the	popular	browsers	do	not	consider
tags	to	be	line-break	opportunities.	Consider	the	unfortunate	consequences	to
your	document's	display	if,	while	rendering	the	following	example	segment,	the
browser	puts	the	comma	adjacent	to	the	"du"	or	the	period	adjacent	to	the	"df"	on
a	separate	line.

Make	sure	you	type	<tt>du</tt>,	not	<tt>df</tt>.

	

4.6.5.	The	<pre>	Tag

The	HTML/XHTML	standards'	<pre>	tag	and	its	required	end	tag	(</pre>)	define	a
segment	inside	which	the	browser	renders	text	in	exactly	the	character	and	line
spacing	written	in	the	source	document.	Normal	word	wrapping	and	paragraph
filling	are	disabled,	and	extraneous	leading	and	trailing	spaces	are	honored.
Browsers	display	all	text	between	the	<pre>	and	</pre>	tags	in	a	monospaced	font.

<pre>

Function Renders	a	block	of	text	without	any	formatting

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title,	width

End	tag </pre>;	never	omitted

Contains pre_content

Used	in block

	
Authors	most	often	use	the	<pre>	formatting	tag	when	the	integrity	of	columns	and
rows	of	characters	must	be	retained;	for	instance,	in	tables	of	numbers	that	must
line	up	correctly.	Another	application	for	<pre>	is	to	set	aside	a	blank	segmenta
series	of	blank	linesin	the	document	display,	perhaps	to	clearly	separate	one
content	section	from	another	or	to	temporarily	hide	a	portion	of	the	document
when	it	first	loads	and	is	rendered	by	the	user's	browser.

Tab	characters	have	their	desired	effect	within	the	<pre>	block,	with	tab	stops
defined	at	every	eighth	character	position.	We	discourage	their	use,	however,
because	tabs	aren't	consistently	implemented	among	the	various	browsers.	Use
spaces	to	ensure	correct	horizontal	positioning	of	text	within	<pre>-formatted	text
segments.

A	common	use	of	the	<pre>	tag	is	to	present	computer	source	code,	as	in	the
following	example:

<p>
The	processing	program	is:
<pre>
main(int	argc,	char	**argv)

{
				FILE	*f;
				int	i;

				if	(argc	!=	2)
						fprintf(stderr,	"usage:	%s	<file>\n",
										argv[0]);
				process(argv[1]);
				exit(0);
}
</pre>

	
Figure	4-18	shows	the	result.

Figure	4-18.	Use	the	<pre>	tag	to	preserve	the	integrity	of
columns	and	rows

	

4.6.5.1.	Allowable	content

The	text	within	a	<pre>	segment	may	contain	physical	and	content-based	style
changes,	along	with	anchors,	images,	and	horizontal	rules.	When	possible,	the
browser	should	honor	style	changes,	within	the	constraint	of	using	a	monospaced
font	for	the	entire	<pre>	block.	Tags	that	cause	a	paragraph	break	(heading,	<p>,
and	<address>	tags,	for	example)	must	not	be	used	within	the	<pre>	block.	Some
browsers	will	interpret	paragraph-ending	tags	as	simple	line	breaks,	but	this
behavior	is	not	consistent	across	all	browsers.

Style	markup	and	other	tags	are	allowed	in	a	<pre>	block,	so	you	must	use	entity
equivalents	for	the	literal	characters:	<	for	<,	>	for	>,	and	&	for	&.

You	place	tags	into	the	<pre>	block	as	you	would	in	any	other	portion	of	the
HTML/XHTML	document.	For	instance,	study	the	reference	to	the	"process"
function	in	the	previous	example.	It	contains	a	hyperlink	(using	the	<a>	tag)	to	its
source	file,	process.c.

4.6.5.2.	The	width	attribute

The	<pre>	tag	has	an	optional	attribute,	width,	which	determines	the	number	of
characters	to	fit	on	a	single	line	within	the	<pre>	block.	The	browser	may	use	this
value	to	select	a	font	or	font	size	that	fits	the	specified	number	of	characters	on
each	line	in	the	<pre>	block.	It	does	not	mean	that	the	browser	will	wrap	and	fill
text	to	the	specified	width.	Rather,	lines	longer	than	the	specified	width	simply
extend	beyond	the	visible	region	of	the	browser's	window.

The	width	attribute	is	only	advice	for	the	user's	browser;	it	may	or	may	not	be	able
to	adjust	the	view	font	to	the	specified	width.

4.6.5.3.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
<pre>	segment	should	be	displayed,	and	lang	lets	you	specify	the	language	used
within	that	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.6.5.4.	The	class,	id,	style,	and	title	attributes

Although	the	browsers	usually	display	<pre>	content	in	a	defined	style,	you	can
override	that	style	and	add	special	effects,	such	as	a	background	picture,	by
defining	your	own	style	for	the	tag.	You	can	apply	this	new	look	to	the	<pre>	tags
using	either	the	style	or	the	class	attribute.	[Inline	Styles:	The	style	Attribute,
8.1.1]	[Style	Classes,	8.3]

You	also	may	assign	a	unique	ID	to	the	<pre>	tag,	as	well	as	a	less	rigorous	title,
using	the	respective	attribute	and	accompanying	quote-enclosed	string	value.
[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

4.6.5.5.	Event	attributes

As	with	most	other	tagged	segments	of	content,	user-related	events	can	happen
in	and	around	<pre>	content,	such	as	when	a	user	clicks	or	double-clicks	within	its
display	space.	Current	browsers	recognize	many	of	these	events.	With	the

respective	on	attribute	and	value,	you	may	react	to	those	events	by	displaying	a
user	dialog	box	or	activating	some	multimedia	event.	[JavaScript	Event	Handlers,
12.3.3]

4.6.6.	The	<center>	Tag	(Deprecated)

The	<center>	tag	is	another	one	with	obvious	effects:	its	contents,	including	text,
graphics,	tables,	and	so	on,	are	centered	horizontally	inside	the	browser's	window.
For	text,	this	means	that	each	line	gets	centered	after	the	text	flow	is	filled	and
wrapped.	The	<center>	alignment	remains	in	effect	until	it	is	canceled	with	its
</center>	end	tag.

<center>	

Function Centers	a	section	of	text

Attributes align,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </center>;	never	omitted

Contains body_content

Used	in block

	
Line	by	line	is	a	common,	albeit	primitive,	way	to	center	text,	and	it	should	be
used	judiciously;	browsers	do	not	attempt	to	balance	a	centered	paragraph	or
other	block-related	elements,	such	as	elements	in	a	list,	so	keep	your	centered
text	short	and	sweet.	Titles	make	good	centering	candidates;	a	centered	list
usually	is	difficult	to	follow.	HTML	authors	commonly	use	<center>	to	center	a	table
or	image	in	the	display	window,	too.	There	is	no	explicit	center	alignment	option
for	inline	images	or	tables,	but	there	are	ways	to	achieve	the	effect	using
stylesheets.

Because	users	will	have	varying	window	widths,	display	resolutions,	and	so	on,
you	may	also	want	to	employ	the	<nobr>	and	<wbr>	extension	tags	(see	sections
4.6.2	and	4.6.3)	to	keep	your	centered	text	intact	and	looking	good.	For	example:

<center>
<nobr>
Copyright	2000	by	QuatCo	Enterprises.<wbr>
All	rights	reserved.
</nobr>
</center>

	
The	<nobr>	tags	in	the	sample	source	help	ensure	that	the	text	remains	on	a	single
line,	and	the	<wbr>	tag	controls	where	the	line	may	be	broken	if	it	exceeds	the
browser's	display-window	width.

Centering	is	useful	for	creating	distinctive	section	headers,	although	you	may
achieve	the	same	effect	with	an	explicit	align=center	attribute	in	the	respective
heading	tag.	You	might	also	center	text	using	align=center	in	conjunction	with	the
<div>	or	<p>	tag.	In	general,	the	<center>	tag	can	be	replaced	by	an	equivalent	<div
align=center>	or	similar	tag,	and	its	use	is	discouraged.

Indeed,	like		and	other	HTML	3.2	standard	tags	that	have	fallen	into	disfavor
in	the	wake	of	stylesheets,	the	<center>	tag	is	deprecated	in	the	HTML	4	and
XHTML	standards,	to	be	replaced	by	its	CSS	equivalent.	Nonetheless,	its	use	in
HTML	documents	is	fairly	common,	and	the	popular	browsers	are	sure	to	support
it	for	many	revisions	to	come.	Still,	be	aware	of	its	eventual	demise.

4.6.6.1.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
<center>	segment	should	be	displayed,	and	lang	lets	you	specify	the	language	used
within	the	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.6.6.2.	The	class,	id,	style,	and	title	attributes

Use	the	style	attribute	to	specify	an	inline	style	for	the	<center>	tag,	or	use	the
class	attribute	to	apply	a	predefined	style	class	to	the	tag.	[Inline	Styles:	The	style
Attribute,	8.1.1]	[Style	Classes,	8.3]

You	may	assign	a	unique	ID	to	the	<center>	tag,	as	well	as	a	title,	using	the
respective	attribute	and	accompanying	quote-enclosed	string	value.	[The	id
attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

4.6.6.3.	Event	attributes

As	with	most	other	tagged	segments	of	content,	user-related	events	can	happen
in	and	around	the	<center>	tag,	such	as	when	a	user	clicks	or	double-clicks	within
its	display	space.	The	current	browsers	recognize	many	of	these	events.	With	the
respective	on	attribute	and	value,	you	may	react	to	those	events	by	displaying	a
user	dialog	box	or	activating	some	multimedia	event.	[JavaScript	Event	Handlers,
12.3.3]

4.6.7.	The	<listing>	Tag	(Obsolete)

The	<listing>	tag	is	an	obsolete	tag,	explicitly	removed	from	the	HTML	4	standard,

meaning	that	you	shouldn't	use	it.	We	include	it	here	for	historical	reasons
because	some	browsers	support	it,	and	it	has	the	same	effect	on	text	formatting
as	the	<pre>	tag	with	a	specified	width	of	132	characters.

<listing>	

Function Renders	a	block	of	text	without	any	formatting

Attributes class,	style

End	tag </listing>;	never	omitted

Contains literal_text

Used	in block

	
The	only	difference	between	<pre>	and	<listing>	is	that	no	other	markup	is	allowed
within	the	<listing>	tag,	so	you	don't	have	to	replace	the	literal	<,	>,	and	&
characters	with	their	entity	equivalents	in	a	<listing>	block,	as	you	must	inside	a
<pre>	block.

Because	the	<listing>	tag	is	the	same	as	a	<pre	width=132>	tag,	and	because	it	might
not	be	supported	in	later	versions	of	the	popular	browsers,	we	recommend	that
you	stay	away	from	using	<listing>.

4.6.8.	The	<xmp>	Tag	(Obsolete)

Like	the	<listing>	tag,	the	<xmp>	tag	is	obsolete	and	you	should	not	use	it,	even
though	the	popular	browsers	support	it.	We	include	it	here	mostly	for	historical
reasons.

<xmp>	

Function Renders	a	block	of	text	without	any	formatting

Attributes class,	style

End	tag </xmp>;	never	omitted

Contains literal_text

Used	in block

	
The	<xmp>	tag	formats	text	just	like	the	<pre>	tag	with	a	specified	width	of	80
characters.	However,	unlike	the	<pre>	tag,	you	don't	have	to	replace	the	literal	<,	>,
and	&	characters	with	their	entity	equivalents	within	an	<xmp>	block.	The	name
<xmp>	is	short	for	"example";	the	language's	designers	intended	that	the	tag	be
used	to	format	examples	of	text	originally	displayed	on	80-column-wide	displays.
Because	the	80-column	display	has	mostly	gone	the	way	of	green	screens	and
teletypes	and	the	effect	of	an	<xmp>	tag	is	basically	the	same	as	<pre	width=80>,	don't
use	<xmp>;	it	may	disappear	in	subsequent	versions	of	HTML.

4.6.9.	The	<plaintext>	Tag	(Obsolete)

Throw	the	<plaintext>	tag	out	of	your	bag	of	HTML	tricks;	it's	obsolete,	like	<listing>
and	<xmp>,	and	is	included	here	for	historical	reasons.	Authors	once	used	<plaintext>
to	tell	the	browser	to	treat	the	rest	of	the	document's	text	as	written,	with	no
markup.	There	was	no	ending	tag	for	<plaintext>	(of	course,	no	markup!),	but
there	was	an	end	to	<plaintext>.	Forget	about	it.

<plaintext>

Function Renders	a	block	of	text	without	any	formatting

Attributes None

End	tag None

Contains literal_text

Used	in block

	
	

4.7.	Block	Quotes

A	common	element	in	conventional	documents	is	the	block	quote,	a	lengthy	copy
of	text	from	another	document.	Traditionally,	short	quotes	are	set	off	with
quotation	marks,	and	block	quotes	are	made	entirely	of	separate	paragraphs
within	the	main	document,	typically	with	special	indentation	and	sometimes
italicizedfeatures	that	you	may	change	through	style	or	class	definitions	(see
Chapter	8).

4.7.1.	The	<blockquote>	Tag

All	of	the	text	within	the	<blockquote>	and	</blockquote>	tags	is	set	off	from	the
regular	document	text,	usually	with	indented	left	and	right	margins	and
sometimes	in	italicized	typeface.	Actual	rendering	varies	from	browser	to	browser,
of	course.

<blockquote>

Function Defines	a	block	quotation

Attributes cite,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </blockquote>;	never	omitted

Contains body_content

Used	in block

	
The	HTML	and	XHTML	standards	allow	any	and	all	markup	within	the	<blockquote>,
although	some	physical	and	content-based	styles	may	conflict	with	the	font	the
browser	uses	for	the	block	quote.	Experimentation	will	reveal	those	warts.

The	<blockquote>	tag	is	often	used	to	set	off	long	quotations	from	other	sources.	For
example,	popular	browsers	display	the	following	as	an	indented	block	of	text:

We	acted	incorrectly	in	arbitrarily	changing	the	Kumquat
Festival	date.	Quoting	from	the	Kumquat	Growers'	Bylaws:
<blockquote>
		The	date	of	the	Kumquat	Festival	may	only	be	changed	by
		a	two-thirds	vote	of	the	General	Membership,	provided
		that	a	60	percent	quorum	of	the	Membership
		is	present.
</blockquote>
(Emphasis	mine)	Since	such	a	quorum	was	not	present,	the
vote	is	invalid.

	
Figure	4-19	displays	the	results.

Figure	4-19.	Block	quotes	get	their	own	space

	

4.7.1.1.	The	cite	attribute

The	cite	attribute	lets	you	indicate	the	source	of	a	quote.	The	attribute's	value
should	be	a	quote-enclosed	URL	that	points	to	the	online	document	and,	if
possible,	the	exact	location	in	the	document	where	the	quote	came	from.

For	instance,	you	could	cite	the	specific	section	in	the	Kumquat	Growers'	Bylaws
in	our	example.	Presumably,	someday	the	browser	may	actually	let	you	click	and
view	that	specific	citation	via	its	embedded	URL.	Today,	you	must	embed	an
explicit	hyperlink	to	the	document;	see	Chapter	6:

<blockquote	cite="http://www.kumquat.com/growers/bylaws#s23.4">

	

4.7.1.2.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
<blockquote>	segment	should	be	displayed,	and	lang	lets	you	specify	the	language
used	within	that	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.7.1.3.	The	class,	id,	style,	and	title	attributes

Use	the	style	attribute	to	specify	an	inline	style	for	the	<blockquote>	tag,	or	use	the
class	attribute	to	apply	a	predefined	style	class	to	the	tag.	[Inline	Styles:	The	style
Attribute,	8.1.1]	[Style	Classes,	8.3]

You	may	assign	a	unique	ID	to	the	<blockquote>	tag,	as	well	as	a	title,	using	the
respective	attribute	and	accompanying	quote-enclosed	string	value.	[The	id

attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

4.7.1.4.	Event	attributes

As	with	most	other	tagged	segments	of	content,	user-related	events	can	happen
in	and	around	the	<blockquote>	tag,	such	as	when	a	user	clicks	or	double-clicks
within	its	display	space.	The	current	browsers	recognize	many	of	these	events.
With	the	respective	on	attribute	and	value,	you	may	react	to	those	events	by
displaying	a	user	dialog	box	or	activating	some	multimedia	event.	[JavaScript
Event	Handlers,	12.3.3]

4.7.2.	The	<q>	Tag

Introduced	in	HTML	4.0,	the	<q>	tag	is	virtually	identical	to	its	<blockquote>
counterpart.	The	difference	is	in	their	display	and	application.	You	use	<q>	for
short	quotes	that	may	be	inline	with	surrounding	plain	text.	The	HTML	and	XHTML
standards	dictate	that	the	<q>-enclosed	text	begin	and	end	with	double	quotes.	All
the	popular	browsers	except	Internet	Explorer	support	<q>	and	place	double	quotes
at	each	end	of	the	enclosed	text.	The	result	is	that	you'll	get	two	sets	of	quotation
marks	if	you	include	your	own	quotes	to	satisfy	Internet	Explorer.	Nonetheless,
we	recommend	that	you	use	the	<q>	tag,	not	only	because	we	like	standards,	but
because	we	see	beyond	their	display	effects	to	applications	in	document	handling,
information	extraction,	and	so	forth.

Use	the	<blockquote>	tag,	on	the	other	hand,	for	longer	segments	that	the	browser
will	set	offusually	as	an	indented	blockfrom	the	surrounding	content,	such	as	that
shown	in	Figure	4-20.

<q>	

Function Defines	a	short	quotation

Attributes cite,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </q>;	never	omitted

Contains body_content

Used	in text

	

4.7.2.1.	The	cite	attribute

The	cite	attribute	works	with	the	<q>	tag	just	like	it	does	for	the	<blockquote>	tag:	it
lets	you	indicate	the	source	of	a	quote.	The	attribute's	value	should	be	a	quote-
enclosed	URL	that	points	to	the	online	document	and,	if	possible,	the	exact
location	in	the	document	where	the	quote	came	from.

4.7.2.2.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
<q>	segment	should	be	displayed,	and	lang	lets	you	specify	the	language	used
within	that	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.7.2.3.	The	class,	id,	style,	and	title	attributes

Use	the	style	attribute	to	specify	an	inline	style	for	the	<q>	tag,	or	use	the	class
attribute	to	apply	a	predefined	style	class	to	the	tag.	[Inline	Styles:	The	style
Attribute,	8.1.1]	[Style	Classes,	8.3]

You	may	assign	a	unique	ID	to	the	<q>	tag,	as	well	as	a	title,	using	the	respective
attribute	and	accompanying	quote-enclosed	string	value.	[The	id	attribute,

4.1.1.4]	[The	title	attribute,	4.1.1.5]

4.7.2.4.	Event	attributes

As	with	most	other	tagged	segments	of	content,	user-related	events	can	happen
in	and	around	the	<q>	tag,	such	as	when	a	user	clicks	or	double-clicks	within	its
display	space.	The	current	browsers	recognize	many	of	these	events.	With	the
respective	on	attribute	and	value,	you	may	react	to	those	events	by	displaying	a
user	dialog	box	or	activating	some	multimedia	event.	[JavaScript	Event	Handlers,
12.3.3]

	

4.8.	Addresses

Addresses	are	common	elements	in	text	documents,	so	there	is	a	special	tag	that
sets	addresses	apart	from	the	rest	of	a	document's	text.	While	this	may	seem	a	bit
extravagantaddresses	have	few	formatting	peculiarities	that	would	require	a
special	tagit	is	yet	another	example	of	content,	not	format,	being	the	primary
focus	of	HTML	and	XHTML	markup.

By	defining	text	that	constitutes	an	address,	the	author	lets	the	browser	format
that	text	in	a	different	manner	and	process	that	text	in	ways	helpful	to	users.	It
also	makes	the	content	readily	accessible	to	automated	readers	and	extractors.
For	instance,	an	online	directory	might	include	addresses	the	browser	collects	into
a	separate	document	or	table,	or	automated	tools	might	extract	addresses	from	a
collection	of	documents	to	build	a	separate	database	of	addresses.

4.8.1.	The	<address>	Tag

The	<address>	tag	and	its	required	end	tag	(</address>)	tell	a	browser	that	the
enclosed	text	is	a	contact	address,	typically	snail	mail	or	email.	The	address	may
include	other	contact	information,	too.	The	browser	may	format	the	text	in	a
different	manner	from	the	rest	of	the	document	text	or	use	the	address	in	some
special	way.	You	also	have	control	over	the	display	properties	through	the	style
and	class	attributes	for	the	tag	(see	Chapter	8).

<address>

Function Defines	an	address

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </address>;	never	omitted

Contains body_content

Used	in address_content

	
The	text	within	the	<address>	tag	may	contain	any	element	normally	found	in	the
body	of	a	document,	excluding	another	<address>	tag.	Style	changes	are	allowed,
but	they	may	conflict	with	the	style	the	browser	chose	to	render	the	<address>
element.

We	think	that	most,	if	not	all,	documents	should	have	their	authors'	addresses
included	somewhere	convenient	to	the	user,	usually	at	the	end.	At	the	very	least,
the	address	should	be	the	author	or	webmaster's	email	address,	along	with	a	link
to	their	home	page.	Street	addresses	and	phone	numbers	are	optional;	personal
ones	usually	are	not	included,	for	privacy	reasons.

For	example,	the	address	for	the	webmaster	responsible	for	a	collection	of
commercial	web	documents	often	appears	in	source	documents	as	follows,
including	the	special	mailto:	URL	protocol	that	lets	users	activate	the	browser's
email	tool:

<address>
		Webmaster

		O'Reilly

		Cambridge,	Massachusetts

</address>

	
Figure	4-20	displays	the	results,	which	are	identical	for	all	the	popular	browsers
in	that,	by	default,	the	body	of	the	address	gets	displayed	in	italics.

Figure	4-20.	The	<address>	tag	in	action

	
Whether	it	is	short	and	sweet	or	long	and	complete,	make	sure	every	document
you	create	has	an	address	attached	to	it.	If	something	is	worth	creating	and
putting	on	the	Web,	it	is	worth	comment	and	query	by	your	readership.
Anonymous	documents	carry	little	credibility	on	the	Web.

4.8.1.1.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
<address>	segment	should	be	displayed,	and	lang	lets	you	specify	the	language	used
within	that	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.8.1.2.	The	class,	id,	style,	and	title	attributes

Use	the	style	attribute	to	specify	an	inline	style	for	the	<address>	tag,	or	use	the
class	attribute	to	apply	a	predefined	style	class	to	the	tag.	[Inline	Styles:	The	style
Attribute,	8.1.1]	[Style	Classes,	8.3]

You	may	assign	a	unique	ID	to	the	<address>	tag,	as	well	as	a	title,	using	the
respective	attribute	and	accompanying	quote-enclosed	string	value.	[The	id
attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

4.8.1.3.	Event	attributes

As	with	most	other	tagged	segments	of	content,	user-related	events	can	happen
in	and	around	the	<address>	tag,	such	as	when	a	user	clicks	or	double-clicks	within
its	display	space.	The	current	browsers	recognize	many	of	these	events.	With	the
respective	on	attribute	and	value,	you	may	react	to	those	events	by	displaying	a
user	dialog	box	or	activating	some	multimedia	event.	[JavaScript	Event	Handlers,

12.3.3]

	

4.9.	Special	Character	Encoding

For	the	most	part,	characters	within	documents	that	are	not	part	of	a	tag	are
rendered	as	is	by	the	browser.	However,	some	characters	have	special	meaning
and	are	not	directly	rendered,	and	other	characters	can't	be	typed	into	the	source
document	from	a	conventional	keyboard.	Special	characters	need	either	a	special
name	or	a	numeric	character	encoding	for	inclusion	in	a	document.

4.9.1.	Special	Characters

As	has	become	obvious	in	the	discussion	and	examples	leading	up	to	this	section,
three	characters	in	source	documents	have	very	special	meaning:	the	less-than
sign	(<),	the	greater-than	sign	(>),	and	the	ampersand	(&).	These	characters
delimit	tags	and	special	character	references.	They'll	confuse	a	browser	if	left
dangling	alone	or	with	improper	tag	syntax,	so	you	have	to	go	out	of	your	way	to
include	their	actual,	literal	characters	in	your	documents.[*]

[*]	The	only	exception	is	that	these	characters	may	appear	literally	within	the	<listing>	and	<xmp>	tags,	but	this	is	a
moot	point	because	the	tags	are	obsolete.

Similarly,	you	have	to	use	special	encoding	to	include	double	quotation	mark
characters	within	a	quoted	string,	or	when	you	want	to	include	a	special	character
that	doesn't	appear	on	your	keyboard	but	is	part	of	the	ISO	Latin-1	character	set
that	most	browsers	implement	and	support.

4.9.2.	Inserting	Special	Characters

To	include	a	special	character	in	your	document,	enclose	either	its	standard	entity
name	or	a	pound	sign	(#)	and	its	numeric	position	in	the	Latin-1	standard
character	set[*]	inside	a	leading	ampersand	and	an	ending	semicolon,	without	any
spaces	in	between.	Whew.	That's	a	long	explanation	for	what	is	really	a	simple
thing	to	do,	as	the	following	examples	illustrate.	The	first	example	shows	how	to
include	a	greater-than	sign	in	a	snippet	of	code	by	using	the	character's	entity
name.	The	second	demonstrates	how	to	include	a	greater-than	sign	in	your	text
by	referencing	its	Latin-1	numeric	value:

[*]	The	popular	ASCII	character	set	is	a	subset	of	the	more	comprehensive	Latin-1	character	set.	Composed	by	the	well-
respected	International	Organization	for	Standardization	(ISO),	the	Latin-1	set	is	a	list	of	all	letters,	numbers,	punctuation
marks,	and	so	on,	commonly	used	by	Western-language	writers,	organized	by	number	and	encoded	with	special
names.	Appendix	F	contains	the	complete	Latin-1	character	set	and	encoding.

if	a	>	b,	then	t	=	0
if	a	>	b,	then	t	=	0

	
Both	examples	cause	the	text	to	be	rendered	as	follows:

if	a	>	b,	then	t	=	0

	
The	complete	set	of	character	entity	values	and	names	appears	in	Appendix	F.	You
could	write	an	entire	document	using	character	encodings,	but	that	would	be	silly.

	

4.10.	HTML's	Obsolete	Expanded	Font	Handling

In	earlier	versions	of	this	book,	we	rejoiced	that	HTML	version	3.2	had	introduced
a	font-handling	model	for	richer,	more	versatile	text	displays.	When	HTML	4
deprecated	these	special	font-handling	tags,	we	nonetheless	included	them	in	the
same	prominent	position	within	this	chapter	because	they	were	still	part	of	the
HTML	3.2	standard	and	were	still	very	popular	with	HTML	authors,	besides	being
well	supported	by	all	the	popular	browsers.	We	could	not	do	the	same	for	this
edition	of	the	book.

Like	many	deprecated	HTML	tags	and	attributes,	the	expanded	font-handling	tags
of	HTML	3.2	were	here	yesterday	and	are	gone	today.	Internet	Explorer,	the
world's	most	popular	browser,	displays	all	of	them;	other	browsers	display	some,
but	not	other	font-related	tags.	Accordingly,	we	include	the	Extended	Font	Model
tags	in	this	chapter,	but	at	the	end	of	this	chapter	and	with	all	the	implicit	red
flags	waving	hard.

The	W3C	wants	authors	to	use	CSS,	not	acute	tags	and	attributes,	for	explicit
control	of	the	font	styles,	colors,	and	sizes	of	the	text	characters.	That's	why
these	extended	font	tags	and	related	attributes	have	fallen	into	disfavor.	It's	now
time	for	you	to	eschew	the	extended	font	tags,	too.

4.10.1.	The	Extended	Font	Size	Model

Instead	of	absolute	point	values,	the	Extended	Font	Model	of	HTML	3.2	uses	a
relative	means	for	sizing	fonts.	Sizes	range	from	1,	the	smallest,	to	7,	the	largest;
the	default	(base)	font	size	is	3.

It	is	almost	impossible	to	state	reliably	the	actual	font	sizes	used	for	the	various
virtual	sizes.	Most	browsers	let	the	user	change	the	physical	font	size,	and	the
default	sizes	vary	from	browser	to	browser.	It	may	be	helpful	to	know,	however,
that	each	virtual	size	is	successively	20	percent	larger	or	smaller	than	the	default
font	size,	3.	Thus,	font	size	4	is	20	percent	larger,	font	size	5	is	40	percent	larger,
and	so	on,	and	font	size	2	is	20	percent	smaller	and	font	size	1	is	40	percent
smaller	than	font	size	3.

4.10.2.	The	<basefont>	Tag	(Deprecated)

The	<basefont>	tag	lets	you	define	the	basic	size	for	the	font	that	the	browser	will
use	to	render	normal	document	text.	We	don't	recommend	that	you	use	it,	as	it
has	been	deprecated	in	the	HTML	4	and	XHTML	standards	and	is	no	longer

supported	by	most	browsers,	except	Internet	Explorer.

<basefont>	

Function Defines	the	base	font	size	for	relative	font-size	changes

Attributes color,	face,	id,	name,	size

End	tag </basefont>;	often	omitted	in	HTML

Contains Nothing

Used	in block,	head_content

	
The	<basefont>	tag	recognizes	the	size	attribute,	whose	value	determines	the
document's	base	font	size.	You	may	specify	it	as	an	absolute	value,	from	1	to	7,	or
as	a	relative	value	(by	placing	a	plus	or	minus	sign	before	the	value).	In	the	latter
case,	the	base	font	size	is	increased	or	decreased	by	that	relative	amount.	The
default	base	font	size	is	3.

Internet	Explorer	supports	two	additional	attributes	for	the	<basefont>	tag:	color
and	name.	HTML	4	also	defines	the	face	attribute	as	a	synonym	for	the	name
attribute.	These	attributes	control	the	color	and	typeface	used	for	the	text	in	a
document	and	are	used	just	like	the	analogous	color	and	face	attributes	for	the
	tag,	described	in	the	next	section.

HTML	4	also	defines	the	id	attribute	for	the	<basefont>	tag,	allowing	you	to	label	the
tag	uniquely	for	later	access	to	its	contents.	[The	id	attribute,	4.1.1.4]

Authors	typically	include	the	<basefont>	tag	in	the	head	of	an	HTML	document,	if	at
all,	to	set	the	base	font	size	for	the	entire	document.	Nonetheless,	the	tag	may
appear	nearly	anywhere	in	the	document,	and	it	may	appear	several	times
throughout	the	document,	each	with	a	new	size	attribute.	With	each	occurrence,
the	<basefont>	tag's	effects	are	immediate	and	hold	for	all	subsequent	text.

In	an	egregious	deviation	from	the	HTML	and	Standard	Generalized	Markup
Language	(SGML)	standards,	Internet	Explorer	does	not	interpret	the	ending
</basefont>	tag	as	terminating	the	effects	of	the	most	recent	<basefont>	tag.	Instead,
the	</basefont>	end	tag	resets	the	base	font	size	to	the	default	value	of	3,	which	is
the	same	as	writing	<basefont	size=3>.

The	following	example	source	and	Figure	4-21	illustrate	how	Internet	Explorer
responds	to	the	<basefont>	tag	and	</basefont>	end	tag:

Unless	the	base	font	size	was	reset	above,
Inernet	Explorer	renders	this	part	in	font	size	3.
<basefont	size=7>
This	text	should	be	rather	large	(size	7).
<basefont	size=6>	Oh,
<basefont	size=4>	no!
<basefont	size=2>	I'm
<basefont	size=1>	shrinking!
</basefont>

Ahhhh,	back	to	normal.

	

Figure	4-21.	Playing	with	<basefont>

	
We	recommend	against	using	</basefont>;	use	<basefont	size=3>	instead.

4.10.3.	The		Tag	(Deprecated)

The		tag	lets	you	change	the	size,	style,	and	color	of	text.	We	don't
recommend	that	you	use	it,	because	it	has	been	deprecated	in	the	HTML	4	and
XHTML	standards,	even	though	all	the	popular	browsers	still	support	it.	But	should
you	decide	to	ignore	our	advice,	use	it	like	any	other	physical	or	content-based
style	tag	for	changing	the	appearance	of	a	short	segment	of	text.

	

Function Sets	the	font	size	for	text

Attributes class,	color,	dir,	face,	id,	lang,	size,	style,	title

End	tag ;	never	omitted

Contains text

Used	in text

	
To	control	the	color	of	text	for	the	entire	document,	see	the	attributes	for	the
<body>	tag,	described.	[Additions	and	Extensions	to	the	<body>	Tag,	5.3.1]

4.10.3.1.	The	size	attribute

The	value	of	the	size	attribute	must	be	one	of	the	virtual	font	sizes	(17)	described
earlier,	defined	as	an	absolute	size	for	the	enclosed	text	or	preceded	by	a	plus	or
minus	sign	(+	or	-)	to	define	a	relative	font	size	that	the	browser	adds	to	or
subtracts	from	the	base	font	size	(see	section	4.10.2).	The	browsers	automatically
round	the	size	to	1	or	7	if	the	calculated	value	exceeds	either	boundary.

In	general,	use	absolute	size	values	when	you	want	the	rendered	text	to	be	an
extreme	size,	either	very	large	or	very	small,	or	when	you	want	an	entire
paragraph	of	text	to	be	a	specific	size.

For	example,	using	the	largest	font	for	the	first	character	of	a	paragraph	makes
for	a	crude	form	of	illuminated	manuscript	(see	Figure	4-22):

<p>
Call	me	Ishmael.

	

Figure	4-22.	Exaggerating	the	first	character	of	a	sentence	with

the	size	attribute	for	

	
Also,	use	an	absolute	font	when	inserting	a	delightfully	unreadable	bit	of	"fine"
printboilerplate	or	legaleseat	the	bottom	of	your	document	(see	Figure	4-23):

<p>

All	rights	reserved.	Unauthorized	redistribution	of	this	document	is
prohibited.	Opinions	expressed	herein	are	those	of	the	authors,	not	the
Internet	Service	Provider.

	

Figure	4-23.	Use	the	tiniest	font	for	boilerplate	text

	
Except	for	the	extremes,	use	relative	font	sizes	to	render	text	in	a	size	different
from	the	surrounding	text,	to	emphasize	a	word	or	phrase.	For	an	exaggerated
example,	see	Figure	4-24:

<p>
Make	sure	you	always	sign	and	date	the	form!

	

Figure	4-24.	Use	relative	sizes	for	most	text	embellishments

	
If	your	relative	size	change	results	in	a	size	greater	than	7,	the	browser	uses	font
size	7.	Similarly,	font	sizes	less	than	1	are	rendered	with	font	size	1.

Note	that	specifying	size=+1	or	size=-1	is	identical	in	effect	to	using	the	<big>	and
<small>	tags,	respectively.	However,	nested	relative	changes	to	the	font	size	are
not	cumulative,	as	they	are	for	the	alternative	tags.	Each		tag	is	relative	to
the	base	font	size,	not	the	current	font	size.	For	example	(see	Figure	4-25):

<p>
The	ghost	moaned,	"oooooooooooooo."

	

Figure	4-25.	Relative	font	sizes	accumulate

	
Contrast	this	with	the	<big>	and	<small>	tags,	which	increase	or	decrease	the	font
size	one	level	for	each	nesting	of	the	tags.	[The	<big>	Tag,	4.5.2]

4.10.3.2.	The	color	attribute

Still	supported	by	the	popular	browsers,	the	color	attribute	for	the		tag	sets
the	color	of	the	enclosed	text.	The	value	of	the	attribute	may	be	expressed	in
either	of	two	ways:	as	the	red,	green,	and	blue	(RGB)	components	of	the	desired
color,	or	as	a	standard	color	name.	Enclosing	quotes	are	recommended	but	not
required.

The	RGB	color	value,	denoted	by	a	preceding	pound	sign,	is	a	six-digit
hexadecimal	number.	The	first	two	digits	are	the	red	component,	from	00	(no	red)
to	FF	(bright	red).	Similarly,	the	next	two	digits	are	the	green	component	and	the
last	two	digits	are	the	blue	component.	Black	is	the	absence	of	color,	#000000;
white	is	all	colors,	#FFFFFF.

For	example,	to	create	basic	yellow	text,	you	might	use:

Here	comes	the	sun!

	
Alternatively,	you	can	set	the	enclosed	font	color	using	any	one	of	the	many
standard	color	names.	See	Appendix	G	for	a	list	of	common	ones.	For	instance,
you	could	have	made	the	previous	sample	text	yellow	with	the	following	source:

Here	comes	the	sun!

	

4.10.3.3.	The	face	attribute

In	earlier	versions,	Internet	Explorer	and	Netscape	Navigator	let	you	change	the
font	style	in	a	text	passage	with	the	face	attribute	for	the		tag.[*]	While	this
is	still	supported	in	most	browsers,	we	strongly	recommend	that	you	manage	your
font	faces	using	appropriate	styles.	Interpretation	of	the	face	attribute	varies
among	browsers	and	missing	glyphs	within	a	font	can	cause	unexpected	behavior
with	the	displayed	text.

[*]	For	the	HTML	purist,	the	once-powerful	user	who	had	ultimate	control	over	the	browser,	this	is	egregious	indeed.
Form	over	function;	look	over	contentwhat's	next?	Embedded	video	commercials	you	can't	stop?

The	quote-enclosed	value	of	face	is	one	or	more	display	font	names	separated	with
commas.	The	font	face	displayed	by	the	browser	depends	on	which	fonts	are
available	on	the	individual	user's	system.	The	browser	parses	the	list	of	font
names,	one	after	the	other,	until	it	matches	one	with	a	font	name	supported	by
the	user's	system.	If	none	matches,	the	text	display	defaults	to	the	font	style	the
user	set	in	the	browser's	preferences.	For	example:

This	text	is	in	the	default	font.	But,

heaven	only	knows
what	font	face	is	this	one?

	
If	the	browser	user	has	the	Braggadocio,	Machine,	or	none	of	the	listed	font
typefaces	installed	in	her	system,	she	will	be	able	to	read	the	"heaven	only
knows"	message	in	the	respective	or	default	font	style.	Otherwise,	the	message
may	be	garbled,	because	the	Zapf	Dingbats	font	contains	symbols,	not	letters.	Of
course,	the	alternative	is	true,	too;	you	may	intend	that	the	message	be	a
symbol-encoded	secret.

4.10.3.4.	The	dir	and	lang	attributes

The	dir	attribute	lets	you	advise	the	browser	in	which	direction	the	text	within	the
tag	should	be	displayed,	and	lang	lets	you	specify	the	language	used	for	the	tag's
contents.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

4.10.3.5.	The	class,	id,	style,	and	title	attributes

You	can	associate	additional	display	rules	for	the		tag	using	stylesheets.	You
can	apply	the	rules	to	the		tag	using	either	the	style	or	class	attribute.	[Inline
Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

You	also	can	assign	a	unique	ID	to	the		tag,	as	well	as	a	less	rigorous	title,
using	the	respective	attribute	and	accompanying	quote-enclosed	string	value.
[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

	

Chapter	5.	Rules,	Images,	and	Multimedia

While	the	body	of	most	documents	is	text,	an	appropriate	seasoning	of	horizontal
rules,	images,	and	other	multimedia	elements	makes	for	a	much	more	inviting
and	attractive	document.	These	features	are	not	simply	gratuitous	geegaws	that
make	your	documents	look	pretty,	mind	you.	Multimedia	elements	bring	HTML	and
XHTML	documents	alive,	providing	a	dimension	of	valuable	information	often
unavailable	in	other	media,	such	as	print.	In	this	chapter,	we	describe	in	detail
how	you	can	insert	special	multimedia	elements	into	your	documents,	when	their
use	is	appropriate,	and	how	to	avoid	overdoing	it.

You	also	might	want	to	jump	ahead	and	skim	Chapter	12,	where	we	describe	some
catchall	tags	(the	HTML	4	and	XHTML	standard	<object>	and	the	popular	browsers'
<embed>)	that	let	you	insert	all	kinds	of	content	and	datafile	types,	including
multimedia,	into	your	documents.

	

5.1.	Horizontal	Rules

Horizontal	rules	give	you	a	way	to	separate	sections	of	your	document	visually.
That	way,	you	give	readers	a	clean,	consistent,	visual	indication	that	one	portion
of	your	document	has	ended	and	another	portion	has	begun.	Horizontal	rules
effectively	set	off	small	sections	of	text,	delimit	document	headers	and	footers,
and	provide	extra	visual	punch	to	headings	within	your	document.

5.1.1.	The	<hr>	Tag

The	<hr>	tag	tells	the	browser	to	insert	a	horizontal	rule	across	the	display
window.	With	HTML,	it	has	no	end	tag.	For	XHTML,	include	the	end-tag	slash	(/)
symbol	as	the	last	character	in	the	tag	itself	after	any	attributes	(<hr	.../>),	or
include	an	end	tag	immediately	following	(<hr></hr>).

Like	the	
	tag,	<hr>	forces	a	simple	line	break.	Unlike	
,	<hr>	causes	the
paragraph	alignment	to	revert	to	the	default	(left	justified).	The	browser	places
the	rule	immediately	below	the	current	line,	and	content	flow	resumes	below	the
rule.	[
,	4.6.1]

<hr>

Function Breaks	text	flow	and	inserts	a	horizontal	rule

Attributes
align,	class,	color ,	dir,	id,	lang,	noshade,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
size,	style,	title,	width

End	tag None	in	HTML;	</hr>	or	<hr	...	/>	in	XHTML

Contains Nothing

Used	in body_content

	
The	browser	decides	how	to	render	a	horizontal	rule.	Typically,	the	rule	extends
across	the	entire	document.	Graphical	browsers	also	may	render	it	with	a	chiseled
or	embossed	effect;	character-based	browsers	most	likely	use	dashes	or
underscores	to	create	the	rule.

There	is	no	additional	space	above	or	below	a	horizontal	rule.	If	you	want	to	set	it
off	from	the	surrounding	text,	you	must	explicitly	place	the	rule	in	a	new
paragraph,	followed	by	another	paragraph	containing	the	subsequent	text.	For
example,	note	the	spacing	around	the	horizontal	rules	in	the	following	HTML
source	and	in	Figure	5-1:

Figure	5-1.	Paragraph	tags	give	your	text	extra	elbowroom

	
This	text	is	directly	above	the	rule.
<hr>
And	this	text	is	immediately	below.
<p>
Whereas	this	text	will	have	space	before	the	rule.
<p>
<hr>
<p>
And	this	text	has	space	after	the	rule.

	
A	paragraph	tag	following	the	rule	tag	is	necessary	if	you	want	the	content
beneath	the	rule	line	aligned	in	any	style	other	than	the	default	left.

5.1.1.1.	The	size	attribute

Normally,	browsers	render	horizontal	rules	2	to	3	pixels[*]	thick	with	a	chiseled,
3D	appearance,	making	the	rule	look	incised	into	the	page.	You	may	thicken	the
rules	with	the	size	attribute.	The	required	value	is	the	thickness,	in	pixels.	You
can	see	the	effects	of	this	attribute	in	Figure	5-2,	as	constructed	from	the
following	source:

[*]	A	pixel	is	one	of	the	many	tiny	dots	that	make	up	the	display	on	your	computer.	While	display	sizes	vary,	a	good	rule	of
thumb	is	that	one	pixel	equals	one	point	on	a	75-dot-per-inch	display	monitor.	A	point	is	a	unit	of	measure	used	in	printing
and	is	roughly	equal	to	1/72	of	an	inch	(there	are	72.27	points	in	an	inch,	to	be	exact).	Typical	typefaces	used	by	various
browsers	are	usually	12	points	tall,	yielding	up	to	six	lines	of	text	per	inch.

Figure	5-2.	The	popular	browsers	let	you	vary	the	horizontal	rule
size

	
<p>
This	is	conventional	document	text,
followed	by	the	standard	2-pixel	tall	rule	line.
<hr>	
	

The	next	three	rule	lines	are	12,	36,	and	72	pixels
tall,	respectively.
<hr	size=12>
<hr	size=36>
<hr	size=72>

	
The	size	attribute	is	deprecated	in	HTML	4	and	XHTML	because	you	can	achieve	its
effects	with	appropriate	use	of	stylesheets.

5.1.1.2.	The	noshade	attribute

You	may	not	want	a	3D	rule	line,	preferring	a	flat,	2D	rule.	Just	add	the	noshade
attribute	to	the	<hr>	tag	to	eliminate	the	3D	effect.	No	value	is	required	with
HTML.	Use	noshade="noshade"	with	XHTML.

Note	the	difference	in	appearance	of	a	"normal"	3D	rule	versus	the	noshade	2D	one
in	Figure	5-3.	(We've	also	exaggerated	the	rule's	thickness	for	obvious	effect,	as
evident	in	the	source	HTML	fragment.)

Figure	5-3.	Normal	3D	rule	versus	the	noshade	2D	option

	
<hr	size=32>
<p>
<hr	size=32	noshade>

	
Interestingly,	Internet	Explorer's	noshade	rule	has	blunt	ends	instead	of	the
rounded	ones	the	other	browsers	render,	like	that	in	Figure	5-3.	Nevertheless,	the
noshade	attribute	is	deprecated	in	HTML	4	and	XHTML	because	you	can	achieve	its
effects	with	appropriate	use	of	stylesheets.

5.1.1.3.	The	width	attribute

The	default	rule	is	drawn	across	the	full	width	of	the	view	window.	You	can
shorten	or	lengthen	rules	with	the	width	attribute,	creating	rule	lines	that	either
are	an	absolute	number	of	pixels	wide	or	extend	across	a	certain	percentage	of
the	current	text	flow.	Most	browsers	automatically	center	partial-width	rules;	see
the	align	attribute	(see	section	4.1.1.1)	to	left-	or	right-justify	horizontal	rules.

Here	are	some	examples	of	width-specified	horizontal	rules	(see	Figure	5-4):

Figure	5-4.	The	long	and	short	of	absolute	and	relative	rule
widths

	
The	following	rules	are	40	and	320	pixels	wide	no	matter
the	actual	width	of	the	browser	window:
<hr	width=40>
<hr	width=320>
Whereas	these	next	two	rules	will	always	extend	across
10	and	75	percent	of	the	window,	regardless	of	its	width:
<hr	width="10%">
<hr	width="75%">

	
Notice,	too,	that	the	relative	(percentage)	value	for	the	width	attribute	is	enclosed
in	quotation	marks;	the	absolute	(integer)	pixel	value	is	not.	In	fact,	the
quotation	marks	aren't	absolutely	necessary	with	standard	HTML	(though	they	are
required	for	XHTML).	Further,	because	the	percent	symbol	normally	means	that
an	encoded	character	follows	it,	failure	to	enclose	the	percentage	for	the	width
value	in	quotation	marks	may	confuse	some	browsers	and	trash	a	portion	of	your
rendered	document.

In	general,	it	isn't	a	good	idea	to	specify	the	width	of	a	rule	as	an	exact	number	of
pixels.	Browser	windows	vary	greatly	in	their	width,	and	what	might	be	a	small
rule	on	one	browser	might	be	annoyingly	large	on	another.	For	this	reason,	we
recommend	specifying	rule	width	as	a	percentage	of	the	window	width.	That	way,
when	the	width	of	the	browser	window	changes	the	rules	retain	their	same
relative	size.

The	width	attribute	is	deprecated	in	HTML	4	and	XHTML	because	you	can	achieve
its	effects	with	appropriate	use	of	stylesheets.

5.1.1.4.	The	align	attribute

The	align	attribute	for	a	horizontal	rule	can	have	one	of	three	values:	left,	center,
or	right.	For	those	rules	whose	width	is	less	than	that	of	the	current	text	flow,	the
rule	will	be	positioned	accordingly,	relative	to	the	window	margins.	The	default
alignment	is	center.

A	varied	rule	alignment	makes	for	nice	section	dividers.	For	example,	the
following	source	alternates	a	35-percent-wide	rule	from	right	to	center	to	the	left
margin	(see	Figure	5-5):

Figure	5-5.	Varying	horizontal	rule	alignment	makes	for	subtle

section	dividers

	
<hr	width="35%"	align=right>
<h3>Fruit	Packing	Advice</h3>
...
<hr	width="35%"	align=center>
<h3>Shipping	Kumquats</h3>
...
<hr	width="35%"	align=left>
<h3>Juice	Processing</h3>
...

	
The	align	attribute	is	deprecated	in	HTML	4	and	XHTML	because	you	can	achieve
its	effects	with	appropriate	use	of	stylesheets.

5.1.1.5.	The	color	attribute

Supported	by	Internet	Explorer	and	Netscape	Navigator	versions	7	and	8,	but	not
other	popular	browsers	such	as	Opera,	the	color	attribute	lets	you	set	the	color	of
the	rule	line.	The	value	of	this	attribute	is	either	the	name	of	a	color	or	a
hexadecimal	triplet	that	defines	a	specific	color.	For	a	complete	list	of	color	names
and	values,	see	Appendix	G.

By	default,	a	rule	is	set	to	the	same	color	as	the	document	background,	with	the
chiseled	edges	slightly	darker	and	lighter	than	the	background	color.	You	lose	the
3D	effect	when	you	specify	another	color,	either	in	a	stylesheet	or	with	the	color
attribute.

5.1.1.6.	Combining	rule	attributes

You	may	combine	the	various	rule	attributes;	their	order	isn't	important.	To	create
big	rectangles,	for	example,	combine	the	size	and	width	attributes	(see	Figure	5-
6):

Figure	5-6.	Combining	rule	attributes	for	special	effects

	
<hr	size=32	width="50%"	align=center>

	
In	fact,	some	combinations	of	rule	attributes	are	necessaryalign	and	width,	for
example.	Align	alone	appears	to	do	nothing	because	the	default	rule	width
stretches	all	the	way	across	the	display	window.

5.1.1.7.	The	class,	dir,	event,	id,	lang,	style,	and	title	attributes

There	are	several	nearly	universal	attributes	for	the	many	content	tags.	These
attributes	give	you	a	common	way	to	identify	(title)	and	label	(id)	a	tag's
contents	for	later	reference	or	automated	treatment,	to	change	the	contents'
display	characteristics	(class,	style),	to	reference	the	language	(lang)	used,	and	to
specify	the	direction	in	which	the	text	should	flow	(dir).	Of	course,	how	language
and	the	direction	of	text	affect	a	horizontal	rule	is	unclear.	Nonetheless,	they	are
standard	attributes	for	the	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,
3.6.1.2]	[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]	[Inline	Styles:
The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

In	addition,	there	are	all	the	user	events	that	may	happen	in	and	around	the
horizontal	rule	that	the	browser	senses	and	that	you	may	react	to	via	an	on-event
attribute	and	some	programming.	[JavaScript	Event	Handlers,	12.3.3]

5.1.2.	Using	Rules	to	Divide	Your	Document

Horizontal	rules	provide	a	handy	visual	navigation	device	for	your	readers.	To	use
<hr>	effectively	as	a	section	divider,	first	determine	how	many	levels	of	headings
your	document	has	and	how	long	you	expect	each	section	of	the	document	to	be.
Then	decide	which	of	your	headings	warrants	being	set	apart	by	a	rule.

A	horizontal	rule	can	also	delimit	the	front	matter	of	a	document,	separating	the
table	of	contents	from	the	document	body,	for	example.	Also	use	a	horizontal	rule
to	separate	the	document	body	from	a	trailing	index,	bibliography,	or	list	of
figures.

Experienced	authors	also	use	horizontal	rules	to	mark	the	beginning	and	end	of	a
form.	This	is	especially	handy	for	long	forms	that	make	users	scroll	up	and	down
the	page	to	view	all	the	fields.	By	consistently	marking	the	beginning	and	end	of	a
form	with	a	rule,	you	help	users	stay	within	the	form,	better	ensuring	that	they
won't	inadvertently	miss	a	portion	when	filling	out	its	contents.

5.1.3.	Using	Rules	in	Headers	and	Footers

A	fundamental	style	approach	to	creating	document	families	is	to	have	a
consistent	look	and	feel,	including	a	standard	header	and	footer	for	each
document.	Typically,	the	header	contains	navigational	tools	that	help	users	easily
jump	to	internal	sections	as	well	as	related	documents	in	the	family,	and	the
footer	contains	author	and	document	information	as	well	as	feedback
mechanisms,	such	as	an	email	link	to	the	webmaster.

To	ensure	that	these	headers	and	footers	don't	infringe	on	the	main	document
contents,	consider	using	rules	directly	below	the	header	and	above	the	footer.	For
example	(see	also	Figure	5-7):

Figure	5-7.	Clearly	delineate	headers	and	footers	with	horizontal
rules

	
<body>
Kumquat	Growers	Handbook	-	Growing	Season	Guidelines
<hr>
<h1	align=center>Growing	Season	Guidelines</h1>
Growing	season	for	the	noble	fruit	varies	throughout
North	America,	as	shown	in	the	following	map:
<p>

<p>
<hr>
<i>Provided	as	a	public	service	by	the
Kumquat	Lovers	of	America</i>

	
By	consistently	setting	apart	your	headers	and	footers	using	rules,	you	help	users
locate	and	focus	upon	the	main	body	of	your	document.

	

5.2.	Inserting	Images	in	Your	Documents

One	of	the	most	compelling	features	of	HTML	and	XHTML	is	their	ability	to	include
images	with	your	document	text,	either	as	intrinsic	components	of	the	document
(inline	images),	as	separate	documents	specially	selected	for	download	via
hyperlinks,	or	as	background	to	your	document	or	elements	within	the	document.
When	judiciously	added	to	the	body	content,	imagesstatic	and	animated	icons,
pictures,	illustrations,	drawings,	and	so	oncan	make	your	documents	more
attractive,	inviting,	and	professional	looking,	as	well	as	informative	and	easy	to
browse.	You	may	also	specially	enable	an	image	so	that	it	becomes	a	visual	map
of	hyperlinks.	When	used	to	excess,	however,	images	make	your	document
cluttered,	confusing,	and	inaccessible,	and	they	unnecessarily	lengthen	the	time	it
takes	for	users	to	download	and	view	your	pages.

5.2.1.	Understanding	Image	Formats

Neither	HTML	nor	XHTML	prescribes	an	official	format	for	images.	However,	the
popular	browsers	specifically	accommodate	certain	image	formats:	GIF,	PNG,	and
JPEG,	in	particular	(see	the	following	sections	for	explanations).	Most	other
multimedia	formats	require	special	accessory	applications	that	each	browser
owner	must	obtain,	install,	and	successfully	operate	to	view	the	special	files.	So
it's	not	too	surprising	that	GIF,	PNG,	and	JPEG	are	the	de	facto	image	standards
on	the	Web.

Both	image	formats	were	already	in	widespread	use	before	the	Web	came	into
being,	so	there's	lots	of	supporting	software	out	there	to	help	you	prepare	your
graphics	for	either	format.	However,	each	has	its	own	advantages	and	drawbacks,
including	features	that	some	browsers	exploit	for	special	display	effects.

5.2.1.1.	GIF

The	Graphics	Interchange	Format	(GIF)	was	first	developed	for	image	transfer
among	users	of	the	CompuServe	online	service.	The	format	has	several	features
that	make	it	popular	for	use	in	HTML	and	XHTML	documents.	Its	encoding	is	cross-
platform	so	that	with	appropriate	GIF-decoding	software	(included	with	most
browsers),	the	graphics	you	create	and	make	into	a	GIF	file	on	a	Macintosh,	for
example,	can	be	loaded	into	a	Windows-based	PC,	decoded,	and	viewed	without	a
lot	of	fuss.	The	second	main	feature	is	that	GIF	uses	special	compression
technology	that	can	significantly	reduce	the	size	of	the	image	file	for	faster
transfer	over	a	network.	GIF	compression	is	"lossless,"	too;	none	of	an	image's

original	data	is	altered	or	deleted,	so	the	uncompressed	and	decoded	image
exactly	matches	its	original.	Also,	GIF	images	can	be	easily	animated.

Even	though	GIF	image	files	invariably	have	the	.gif	(or	.GIF)	filename	suffix,
there	actually	are	two	GIF	versions:	the	original	GIF87	and	an	expanded	GIF89a,
which	supports	several	new	featuresincluding	transparent	backgrounds,	interlaced
storage,	and	animationthat	are	popular	with	web	authors	(see	section	5.2.1.2).
The	currently	popular	browsers	support	both	GIF	versions,	which	use	the	same
encoding	scheme	that	maps	8-bit	pixel	values	to	a	color	table,	for	a	maximum	of
256	colors	per	image.	Most	GIF	images	have	even	fewer	colors;	there	are	special
tools	to	simplify	the	colors	in	more	elaborate	graphics.	By	simplifying	the	GIF
images,	you	create	a	smaller	color	map	and	enhance	pixel	redundancy	for	better
file	compression	and,	consequently,	faster	downloading.

However,	because	of	the	limited	number	of	colors,	a	GIF-encoded	image	is	not
always	appropriate,	particularly	for	photorealistic	pictures	(see	the	discussion	in
section	5.2.1.3).	GIFs	make	excellent	icons,	reduced-color	images,	and	drawings.

Because	most	graphical	browsers	explicitly	support	the	GIF	format,	it	is	currently
the	most	widely	accepted	image-encoding	format	on	the	Web.	It	is	acceptable	for
both	inline	images	and	externally	linked	ones.	When	in	doubt	as	to	which	image
format	to	use,	choose	GIF.[*]	It	will	work	in	almost	any	situation.

[*]	We	cannot	resist	the	temptation	to	point	out	that	choosy	authors	choose	GIF.

5.2.1.2.	Interlacing,	transparency,	and	animation

You	can	make	GIF	images	perform	three	special	tricks:	interlacing,	transparency,
and	animation.	With	interlacing,	a	GIF	image	seemingly	materializes	on	the
display,	instead	of	progressively	flowing	onto	it	from	top	to	bottom.	Normally,	a
GIF-encoded	image	is	a	sequence	of	pixel	data	in	order,	row	by	row,	from	the	top
to	the	bottom	of	the	image.	While	the	common	GIF	image	renders	onscreen	like
pulling	down	a	window	shade,	interlaced	GIFs	open	like	a	Venetian	blind.	That's
because	interlacing	sequences	every	fourth	row	of	the	image.	Users	get	to	see	a
full	imagetop	to	bottom,	albeit	fuzzyin	a	quarter	of	the	time	it	takes	to	download
and	display	the	remainder	of	the	image.	The	resulting	quarter-done	image	usually
is	clear	enough	so	that	users	with	slow	network	connections	can	evaluate	whether
to	take	the	time	to	download	the	remainder	of	the	image	file.

Not	all	graphical	browsers,	although	able	to	display	an	interlaced	GIF,	are	actually
able	to	display	the	materializing	effects	of	interlacing.	With	those	that	do,	users
still	can	defeat	the	effect	by	choosing	to	delay	image	display	until	after	download
and	decoding.	Older	browsers,	on	the	other	hand,	always	download	and	decode
images	before	display	and	don't	support	the	effect	at	all.

Another	popular	effect	available	with	GIF	imagesGIF89a-formatted	images,	that
isis	the	ability	to	make	a	portion	of	them	transparent	so	that	what's	underneath
(usually,	the	browser	window's	background)	shows	through.	The	transparent	GIF
image	has	one	color	in	its	color	map	designated	as	the	background	color.	The
browser	simply	ignores	any	pixel	in	the	image	that	uses	that	background	color,
thereby	letting	the	display	window's	background	show	through.	By	carefully
cropping	its	dimensions	and	by	using	a	solid,	contiguous	background	color,	you
can	make	a	transparent	image	seamlessly	meld	into	or	float	above	a	page's
surrounding	content.

Transparent	GIF	images	are	great	for	any	graphic	that	you	want	to	meld	into	the
document	and	not	stand	out	as	a	rectangular	block.	Transparent	GIF	logos	are
very	popular,	as	are	transparent	icons	and	dingbatsany	graphic	that	should	appear
to	have	an	arbitrary,	natural	shape.	You	may	also	insert	a	transparent	image
inline	with	conventional	text	to	act	as	a	special	character	glyph	within
conventional	text.

The	downside	to	transparency	is	that	the	GIF	image	will	look	lousy	if	you	don't
remove	its	border	when	it	is	included	in	a	hyperlink	anchor	(<a>)	tag	or	is
otherwise	specially	framed.	And	content	flow	happens	around	the	image's
rectangular	dimensions,	not	adjacent	to	its	apparent	shape.	That	can	lead	to
unnecessarily	isolated	images	or	odd-looking	sections	in	your	web	pages.

The	third	unique	trick	available	with	GIF89a-formatted	images	is	the	ability	to	do
simple	frame-by-frame	animation.	Using	special	GIF-animation	software	utilities,
you	may	prepare	a	single	GIF89a	file	that	contains	a	series	of	GIF	images.	The
browser	displays	each	image	in	the	file,	one	after	the	other,	something	like	the
page-flipping	animation	booklets	we	had	and	perhaps	drew	as	kids.	Special	control
segments	between	each	image	in	the	GIF	file	let	you	set	the	number	of	times	the
browser	runs	through	the	complete	sequence	(looping),	how	long	to	pause
between	each	image,	whether	the	image	space	gets	wiped	to	background	before
the	browser	displays	the	next	image,	and	so	on.	By	combining	these	control
features	with	those	normally	available	for	GIF	images,	including	individual	color
tables,	transparency,	and	interlacing,	you	can	create	some	very	appealing	and
elaborate	animations.[*]

[*]	Songline	Studios	has	published	an	entire	book	dedicated	to	GIF	animation:	GIF	Animation	Studio,	by	Richard	Koman.

Simple	GIF	animation	is	powerful	for	one	other	important	reason:	you	don't	need
to	specially	program	your	HTML	documents	to	achieve	animation.	But	there	is	one
major	downside	that	limits	their	use	for	anything	other	than	small,	icon-size,	or
thin	bands	of	space	in	the	browser	window:	GIF	animation	files	get	large	fast,
even	if	you	are	careful	not	to	repeat	static	portions	of	the	image	in	successive
animation	cells.	And	if	you	have	several	animations	in	one	document,	download
delays	mayand	usually	willannoy	the	user.	If	any	feature	deserves	close	scrutiny

for	excess,	it's	GIF	animation.

Any	and	all	GIF	tricksinterlacing,	transparency,	and	animationdon't	just	happen;
you	need	special	software	to	prepare	the	GIF	file.	Many	image	tools	now	save
your	creations	or	acquired	images	in	GIF	format,	and	most	now	let	you	enable
transparency	and	make	interlaced	GIF	files.	There	also	are	a	slew	of	shareware
and	freeware	programs	specialized	for	these	tasks,	as	well	as	for	creating	GIF
animations.	Look	into	your	favorite	Internet	software	archives	for	GIF	graphics
and	conversion	tools,	and	see	Chapter	17	for	details	on	creating	transparent
images.

5.2.1.3.	JPEG

The	Joint	Photographic	Experts	Group	(JPEG)	is	a	standards	body	that	developed
what	is	now	known	as	the	JPEG	image-encoding	format.	Like	GIFs,	JPEG	images
are	platform	independent	and	specially	compressed	for	high-speed	transfer	via
digital	communication	technologies.	Unlike	GIF,	JPEG	supports	tens	of	thousands
of	colors	for	more	detailed,	photorealistic	digital	images.	And	JPEG	uses	special
algorithms	that	yield	much	higher	data-compression	ratios.	It	is	not	uncommon,
for	example,	for	a	200	KB	GIF	image	to	be	reduced	to	a	30	KB	JPEG	image.	To
achieve	that	amazing	compression,	JPEG	does	lose	some	image	data.	However,
you	can	adjust	the	degree	of	"lossiness"	with	special	JPEG	tools	so	that	although
the	uncompressed	image	may	not	exactly	match	the	original,	it	will	be	close
enough	that	most	people	cannot	tell	the	difference.

Although	JPEG	is	an	excellent	choice	for	photographs,	it's	not	a	particularly	good
choice	for	illustrations.	The	algorithms	used	for	compressing	and	uncompressing
the	image	leave	noticeable	artifacts	when	dealing	with	large	areas	of	one	color.
Therefore,	if	you're	trying	to	display	a	drawing,	the	GIF	format	may	be	preferable.

The	JPEG	format,	usually	designated	by	the	.jpg	(or	.JPG)	filename	suffix,	is
nearly	universally	understood	by	today's	graphical	browsers.	On	rare	occasions,
you'll	come	across	an	older	browser	that	cannot	directly	display	JPEG	images.

5.2.1.4.	PNG

The	Portable	Network	Graphics	(PNG)	technology	originated	to	replace	GIF,	but
not	because	GIF	wasn't	up	to	the	job.	Indeed,	GIF	was	and	probably	still	is	the
most	widely	implemented	graphics	format	on	the	Internet.	Instead,	many	Internet
users	got	enraged	when	in	1993,	after	GIF	had	attained	its	popularity	and
widespread	use,	Unisys	decided	to	enforce	its	patent	and	collect	royalties	on	GIF's
essential	compression	technology.	That	action	ran	against	the	widespread
philosophy	of	free	exchange	and	use	enjoyed	by	the	mostly	academic	community

of	Internet	users,	and	prompted	an	informal	Internet	working	group	led	by
Thomas	Boutell	to	develop	the	PNG	alternative.

PNG's	advantages	over	GIF	and	JPEG,	besides	providing	a	litigation-free
alternative	format,	include	a	broader	selection	of	color	formats	(24-bit	true-color
RGB,	a	grayscale	and	GIF-like	8-bit	palette)	and	better	lossless	compression.
PNG's	unique	and	attractive	features	include	alpha	channels	which	let	you	specify
many	more	than	GIF's	one	layer	of	transparency	(more	than	65,000,	actually)
and	can	simulate	3D	imagery,	gamma	correction	which	controls	cross-platform
image	brightness	for	more	vivid	graphics,	and	two-dimensional	interlacing	which
provides	for	a	finer	progressively	developing	image.

PNG	does	not	support	animation.	Though	you	may	hesitate	to	use	PNG	on	that
basis	alone,	we	encourage	you	to	try	it	out	anyway,	especially	for	high-color	and
high-quality	images.

5.2.2.	When	to	Use	Images

Most	pictures	are	worth	a	thousand	words.	But	don't	forget	that	no	one	pays
attention	to	a	blabbermouth.	First	and	foremost,	think	of	your	document	images
as	visual	tools,	not	as	gratuitous	trappings.	They	should	support	your	text	content
and	help	readers	navigate	your	documents.	Use	images	to	clarify,	illustrate,	or
exemplify	the	contents.	Content-supporting	photographs,	charts,	graphs,	maps,
and	drawings	are	all	natural	and	appropriate	candidates.	Product	photographs	are
essential	components	in	online	catalogs	and	shopping	guides,	for	example.	And
link-enabled	icons	and	dingbats,	including	animated	images,	can	be	effective
visual	guides	to	internal	and	external	resources.	If	an	image	doesn't	do	any	of
these	valuable	services	for	your	document,	throw	it	out	already!

One	of	the	most	important	considerations	when	adding	images	to	a	document	is
the	additional	delay	they	add	to	the	retrieval	time	for	a	document	over	the
network,	particularly	for	modem	connections.	While	a	common	text	document
might	run,	at	most,	10,000	or	15,000	bytes,	images	can	easily	extend	to
hundreds	of	thousands	of	bytes	each.	And	the	total	retrieval	time	for	a	document
is	not	only	equal	to	the	sum	of	all	its	component	parts,	but	also	to	compounded
networking	overhead	delays.

Depending	on	the	speed	of	the	connection	(bandwidth,	usually	expressed	as	bits
or	bytes	per	second)	as	well	as	network	congestion	that	can	delay	connections,	a
single	document	containing	one	100	KB	image	may	take	less	than	a	second
through	a	cable	modem	connection	in	the	wee	hours	of	the	morning,	when	most
everyone	else	is	asleep,	to	well	over	10	minutes	with	a	cell	phone	at	noon.	You
get	the	picture?

With	that	said,	of	course,	pictures	and	other	multimedia	are	driving	Internet
providers	to	come	up	with	faster,	better,	more	robust	ways	to	deliver	web	content.
Modem	connections	are	quickly	going	the	way	of	the	horse	and	carriage,	replaced
by	technologies	like	high-speed	cable	modems	and	the	Asymmetric	Digital
Subscriber	Line	(ADSL).

Still,	as	the	price	lowers,	use	goes	up,	so	there	is	the	issue	of	congestion.	And
don't	forget	cell	phone	browsers	and	our	Third	World	neighbors,	where
connections	are	spotty	and	slow.	Besides,	if	you	are	competing	for	access	to	an
overburdened	server,	it	doesn't	matter	how	fast	your	connection	may	be.

5.2.3.	When	to	Use	Text

Text	hasn't	gone	out	of	style.	For	some	users,	it	is	the	only	accessible	portion	of
your	document.	We	argue	that,	in	most	circumstances,	your	documents	should	be
usable	by	readers	who	cannot	view	images,	or	have	disabled	automatic	download
in	their	browsers	to	improve	their	connections.	While	the	urge	to	add	images	to
all	of	your	documents	may	be	strong,	sometimes	pure	text	documents	make	more
sense.

Documents	being	converted	to	the	Web	from	other	formats	rarely	have	embedded
images.	Reference	materials	and	other	serious	content	often	are	completely
usable	in	a	text-only	form.

You	should	create	text-only	documents	when	access	speed	is	critical.	If	you	know
that	many	users	will	be	vying	for	your	pages,	you	should	accommodate	them	by
avoiding	the	use	of	images	within	your	documents.	In	some	extreme	cases,	you
might	provide	a	home	(leading)	page	that	lets	readers	decide	between	duplicate
collections	of	your	work:	one	containing	the	images	and	another	stripped	of	them.
(The	popular	browsers	include	special	picture	icons	as	placeholders	for	yet-to-be-
downloaded	images,	which	can	trash	and	muddle	your	document's	layout	into	an
unreadable	mess.)

Text	is	most	appropriatesupporting	images	only,	without	frills	and	nonessential
graphicsif	your	documents	are	to	be	readily	searchable	by	any	of	the	many	web
indexing	services.	These	search	engines	almost	always	ignore	images.	If	you
provide	the	major	content	of	your	pages	with	images,	very	little	information	about
your	documents	will	find	its	way	into	the	online	web	directories.

5.2.4.	Speeding	Image	Downloads

There	are	several	ways	to	reduce	the	overhead	and	delays	inherent	with	images,

besides	being	very	choosy	about	which	to	include	in	your	documents:

Keep	it	simple

A	full-screen,	24-bit	color	graphic,	even	when	reduced	in	size	by	digital
compression	with	one	of	the	standard	formats,	such	as	GIF,	PNG,	or	JPEG,	is
still	going	to	be	a	network-bandwidth	hog.	First	decide	between	image
integrity	and	size.	Then	acquire	and	use	the	proper	image-management	tool
that	optimizes	your	image	for	the	application,	particularly	for	special	effects
like	GIF	animation	or	PNG's	3D	effects.	Simplify	your	drawings.	Stay	away
from	panoramic	photographs.	Avoid	large,	empty	backgrounds	in	your	images,
as	well	as	gratuitous	borders	and	other	space-consuming	elements.	Also	avoid
dithering	(blending	two	colors	among	adjacent	pixels	to	achieve	a	third	color);
this	technique	can	significantly	reduce	the	compressibility	of	your	images.
Strive	for	large	areas	of	uniform	colors,	which	compress	readily.

Reuse	images

This	is	particularly	true	for	icons	and	GIF	animations.	Most	browsers	cache
incoming	document	components	in	local	storage	for	the	very	purpose	of	quick,
network-connectionless	retrieval	of	data.	For	smaller	GIF	animation	files,	try
to	prepare	each	successive	image	to	update	only	portions	that	change	in	the
animation,	instead	of	redrawing	the	entire	image	(this	speeds	up	the
animation,	too).

Divide	large	documents	into	smaller	segments

This	is	a	general	rule	that	includes	images.	Many	small	document	segments,
organized	through	hyperlinks	and	effective	tables	of	contents,	tend	to	be
better	accepted	by	users	than	a	few	large	documents.	In	general,	people
would	rather	"flip"	several	pages	than	dawdle,	waiting	for	a	large	one	to
download.	(It's	related	to	the	TV	channel-surfing	syndrome.)	One	accepted
rule	of	thumb	is	to	keep	your	documents	smaller	than	50	KB	each,	so	even
the	slowest	connections	won't	overly	frustrate	your	readers.

Isolate	necessarily	large	graphics

Provide	a	special	link	to	large	images,	perhaps	one	that	includes	a	thumbnail
of	the	graphic,	thereby	letting	readers	decide	whether	and	when	they	want	to

spend	the	time	downloading	the	full	image.	Because	the	downloaded	image
isn't	mixed	with	other	document	components	like	inline	images,	it's	also	much
easier	for	the	reader	to	identify	and	save	the	image	on	her	system's	local
storage	for	later	study.	(For	details	on	noninline	image	downloads,	see	section
5.6.2.)

Specify	image	dimensions

Finally,	another	way	to	improve	performance	is	by	including	the	image's
rectangular	height	and	width	information	in	its	tag.	By	supplying	those
dimensions,	you	eliminate	the	extra	steps	the	extended	browsers	must	take	to
download,	examine,	and	calculate	an	image's	space	in	the	document,	allowing
them	to	render	the	page	more	quickly.	There	is	a	downside	to	this	approach,
however,	that	we	explore	in	section	5.2.6.12.

5.2.5.	JPEG,	PNG,	or	GIF?

You	may	choose	to	use	only	one	type	of	image	format	in	your	HTML	documents	if
your	sources	for	images	or	your	software	tool	set	prefer	one	over	the	other
format.	All	are	nearly	universally	supported	by	today's	browsers,	so	there
shouldn't	be	any	user-viewing	problems.

Nevertheless,	we	recommend	that	you	acquire	the	facilities	to	create	and	convert
to	at	least	the	three	formats	we	describe	in	this	chapter	to	take	advantage	of	their
unique	capabilities.	For	instance,	use	GIF's	animation	and	PNG's	transparency
feature	for	icons	and	dingbats.	Alternatively,	use	JPEG's	deep	compression,	albeit
at	a	loss	of	some	integrity,	for	large	and	colorful	images	for	faster	downloading.

5.2.6.	The		Tag

The		tag	lets	you	reference	and	insert	a	graphic	image	into	the	current	text
flow	of	your	document.	There	is	no	implied	line	or	paragraph	break	before	or	after
the		tag,	so	images	can	be	truly	"in	line"	with	text	and	other	content.

Function Inserts	an	image	into	a	document

Attributes

align,	alt,	border,	class,	controls	 ,	dir,	dynsrc	 ,	height,	hspace,	id,	ismap,	lang,

longdesc ,	loop	 ,	lowsrc	 ,	name ,	onAbort,	onClick,	onDblClick,	onError,
onKeyDown,	onKeyPress,	onKeyUp,	onLoad,	onMouseDown,	onMouseMove,	onMouseOut,

onMouseOver,	onMouseUp,	src,	start	 ,	style,	title,	usemap,	vspace,	width

End	tag None	in	HTML;		or		in	XHTML

Contains Nothing

Used	in text

	
The	format	of	the	image	itself	is	not	defined	by	the	HTML	or	XHTML	standard,
although	the	popular	graphical	browsers	support	most	common	formats	like	GIF,
PNG,	and	JPEG	images.	The	standards	don't	specify	or	restrict	the	size	or
dimensions	of	the	image,	either.	Images	may	have	any	number	of	colors	as
allowed	by	their	format,	but	how	those	colors	are	rendered	is	highly	browser
dependent.

Image	presentation	in	general	is	very	browser	specific.	Images	may	be	ignored	by
nongraphical	browsers.	Browsers	operating	in	a	constrained	environment	may
modify	the	image	size	or	complexity.	And	users,	particularly	those	with	slow
network	connections,	may	choose	to	defer	image	loading	altogether.	Accordingly,
you	should	make	sure	your	documents	make	sense	and	are	useful	even	if	the
images	are	completely	removed.

The	HTML	version	of	the		tag	has	no	end	tag.	With	XHTML,	either	use	
immediately	following	the		tag	and	its	attributes,	or	make	the	last	character
in	the	tag	the	end-tag	slash	mark:	,	for	example.

5.2.6.1.	The	src	attribute

The	src	attribute	for	the		tag	is	required	(unless	you	use	dynsrc	with	Internet

Explorer-based	movies;	see	section	5.2.7.1).	Its	value	is	the	image	file's	URL,
either	absolute	or	relative	to	the	document	referencing	the	image.	To	unclutter
their	document	storage,	authors	typically	collect	image	files	into	a	separate	folder,
which	they	often	name	something	like	"pics"	or	"images."	[Referencing
Documents:	The	URL,	6.2]

For	example,	this	HTML	fragment	places	an	image	of	a	famous	kumquat	packing
plant	into	the	narrative	text	(see	Figure	5-8):

Figure	5-8.	Image	integrated	with	text

	
Here	we	are,	on	day	17	of	the	tour,	in	the	kumquat	packing	plant:
<p>

<p>
What	an	exciting	moment,	to	see	the	boxes	of	fruit	piled	high	to

	
In	the	example,	the	paragraph	(<p>)	tags	surrounding	the		tag	cause	the
browser	to	render	the	image	by	itself,	with	some	vertical	space	after	the
preceding	text	and	before	the	trailing	text.	Text	may	also	abut	the	image,	as	we
describe	in	section	4.1.1.1.

5.2.6.2.	The	lowsrc	attribute

To	the	benefit	of	users,	particularly	those	with	slow	network	connections,	early
versions	of	Netscape	provided	the	lowsrc	companion	to	the	src	attribute	in	the	
tag	as	a	way	to	speed	up	document	rendering.	The	lowsrc	attribute's	value,	like

src,	is	the	URL	of	an	image	file.	Netscape	before	version	6	would	load	and	display
the	lowsrc	image	when	it	first	encountered	the		tag.	Then,	when	the	document
had	been	completely	loaded	and	the	user	could	read	it,	Netscape	would	retrieve
the	image	specified	by	the	src	attribute.

No	other	browser	besides	Netscape	versions	4	and	earlier	supports	lowsrc.
Netscape	version	6	simply	uses	the	dimensions	of	the	lowsrc	image	to	temporarily
allocate	display	space	for	the	image	as	it	renders	the	document.	The	earlier
versions	of	Netscape	also	used	the	lowsrc	dimensions	to	resize	the	final	image,
which	you	could	exploit	for	some	special	effects.	This	no	longer	works.	Instead,	we
recommend	that	you	eschew	the	Netscape	extension	and	explicitly	allocate	image
space	with	the	height	and	width	attributes	described	later	in	this	chapter.

5.2.6.3.	The	alt	and	longdesc	attributes

The	alt	attribute	specifies	alternative	text	the	browser	may	show	if	image	display
is	not	possible	or	is	disabled	by	the	user.	Especially	favored	by	visually	impaired
users,	the	popular	browsers	also	let	us	choose	to	display	alt	text	along	with	the
image.	So	although	it's	an	option,	it's	one	we	highly	recommend	you	exercise	for
most	images	in	your	document.	This	way,	if	the	image	is	not	available,	the	user
still	has	some	indication	of	what's	missing.	And	for	users	with	certain	disabilities,
alt	often	is	the	only	way	they	can	appreciate	your	images.

In	addition,	Internet	Explorer	displays	the	alternative	description	in	a	text	box
when	users	pass	the	mouse	over	the	image.	Accordingly,	you	might	embed	short,
parenthetical	information	that	pops	up	when	users	pass	over	a	small,	inline	icon,
such	as	that	shown	in	Figure	5-9.

Figure	5-9.	Internet	Explorer	displays	alt	text	in	a	temporary
pop-up	window

	

The	value	for	the	alt	attribute	is	a	text	string	of	up	to	1,024	characters,	including
spaces	and	punctuation.	The	string	must	be	enclosed	in	quotation	marks.	The	alt
text	may	contain	entity	references	to	special	characters,	but	it	may	not	contain
any	other	sort	of	markup;	in	particular,	style	tags	aren't	allowed.

Graphical	browsers	don't	normally	display	the	alt	attribute	if	the	image	is
available	and	the	user	has	enabled	picture	downloading.	Otherwise,	they	insert
the	alt	attribute's	text	as	a	label	next	to	an	image-placeholder	icon.	Well-chosen
alt	labels	thereby	additionally	support	those	users	with	graphical	browsers	who
have	disabled	automatic	image	download	because	of	a	slow	connection	to	the
Web.

Nongraphical,	text-only	browsers	such	as	the	ancient	Lynx	put	the	alt	text	directly
into	the	content	flow,	just	like	any	other	text	element.	So,	when	used	effectively,
the	alt	tag	sometimes	can	transparently	substitute	for	missing	images.	(Your	text-
only	browser	users	will	appreciate	not	being	constantly	reminded	of	their	second-
class	web	citizenship.)	For	example,	consider	using	an	asterisk	as	the	alt	attribute
alternative	to	a	special	bullet	icon:

<h3>Introduction</h3>

	
A	graphical	browser	displays	the	bullet	image;	in	a	nongraphical	browser,	the	alt
asterisk	takes	the	place	of	the	missing	bullet.	Similarly,	use	alt	text	to	replace
special	image	bullets	for	list	items.	For	example,	the	following	code:

			Kumquat	recipes	
			Annual	harvest	dates

	
displays	the	new.gif	image	with	graphical	browsers	and	the	text	"(New!)"	with
text-only	browsers.	The	alt	attribute	uses	even	more	complex	text	(see	Figure	5-
10):

Figure	5-10.	Text-only	browsers	such	as	Lynx	display	an	image's
alt	attribute	text

	
Here	we	are,	on	day	17	of	the	tour,	in	the	kumquat
packing	plant:
<p>
<img	src="pics/packing_plant.gif"
		alt="[Image	of	our	tour	group	outside	the	main	packing	plant]">
<p>
What	an	exciting	moment,	to	see	the	boxes	of	fruit	moving

	
According	to	the	HTML	4.01	specification,	the	alt	attribute	is	required	for	all	
tags.	To	be	truly	compliant,	include	empty	alt	attributes	(alt="")	with	all	your
images.

The	longdesc	attribute	is	similar	to	the	alt	attribute	but	allows	for	longer
descriptions.	The	value	of	longdesc	is	the	URL	of	a	document	containing	a
description	of	the	image.	If	you	have	a	description	longer	than	1,024	characters,
use	the	longdesc	attribute	to	link	to	it.	Neither	HTML	4	nor	XHTML	specifies	what
the	content	of	the	description	must	be,	and	no	browsers	currently	implement
longdesc;	all	bets	are	off	when	deciding	how	to	create	those	long	descriptions.

5.2.6.4.	The	align	attribute

The	standards	don't	define	a	default	alignment	for	images	with	respect	to	other
text	and	images	in	the	same	line	of	text:	you	can't	always	predict	how	the	text
and	images	will	look.[*]	HTML	images	normally	appear	in	line	with	a	single	line	of
text.	Common	print	media	such	as	magazines	wrap	text	around	images,	with
several	lines	next	to	and	abutting	the	image,	not	just	a	single	line.

[*]	Most	of	the	popular	graphical	browsers	insert	an	image	so	that	its	base	aligns	with	the	baseline	of	the	textthe	same
alignment	specified	by	the	attribute	value	of	bottom.	But	document	designers	should	assume	that	alignment	varies
among	browsers	and	should	always	include	the	desired	type	of	image	alignment.

Fortunately,	document	designers	also	can	exert	some	control	over	the	alignment
of	images	with	the	surrounding	text	through	the	align	attribute	for	the		tag.
The	HTML	and	XHTML	standards	specify	five	image-alignment	attribute	values:
left,	right,	top,	middle,	and	bottom.	The	left	and	right	values	flow	any	subsequent
text	to	the	left	or	right	of	the	image,	which	is	moved	to	the	corresponding	margin
(Figure	5-11).	The	remaining	three	align	the	image	vertically	with	respect	to	the
surrounding	text.

Figure	5-11.	Standard	inline	image	alignments

	
All	of	the	popular	browsers,	including	Opera,	Firefox,	Netscape,	and	Internet
Explorer,	agree	that	align=bottom	is	the	default	vertical	alignment,	and	similarly
position	images	at	the	top	of	the	uppermost	character	in	the	line	of	text,	also
shown	in	Figure	5-11.

The	browsers	disagree,	however,	on	where	to	place	an	align=middle	image	with
regard	to	text.	As	shown	in	Figure	5-11,	Netscape	and	Opera	place	it	in	the

apparent	middle	of	the	text.	Internet	Explorer	and	Firefox,	on	the	other	hand,
place	the	image	at	the	middle	of	the	tallest	element,	not	necessarily	the	tallest
text	(Figure	5-12).

Figure	5-12.	Internet	Explorer	and	Firefox	align	the	middle	of
images	to	the	middle	of	the	tallest	element,	not	to	the	middle	of

the	text

	
The	browsers	also	support,	to	varying	degrees,	five	vertical	image	alignment
extensionstexttop,	center,	absmiddle,	baseline,	and	absbottom	(if	you	are	confused	as	to
exactly	what	each	alignment	value	means,	please	raise	your	hand):

texttop

The	align=texttop	attribute	and	value	tell	the	browser	to	align	the	top	of	the
image	with	the	top	of	the	tallest	text	item	in	the	current	line,	as	opposed	to
the	top	option,	which	aligns	the	top	of	the	image	with	the	top	of	the	tallest
item,	image	or	text,	in	the	current	line.	If	the	line	contains	no	other	images
that	extend	above	the	top	of	the	text,	texttop	and	top	have	the	same	effect.
Opera	does	not	support	texttop,	whereas	the	other	popular	browsers	treat	it
identically	as	described.

center

Originally	introduced	by	Internet	Explorer,	the	center	image	alignment	value
gets	treated	by	Internet	Explorer,	Netscape,	and	Firefox	exactly	the	same	as
they	individually	treat	middle,	which,	as	you	may	recall,	differs	among	the
browsers.	Opera,	on	the	other	hand,	ignores	align=center	altogether.

absmiddle

If	you	set	the	align	attribute	of	the		tag	to	absmiddle,	the	browser	will	fit
the	absolute	middle	of	the	image	to	the	absolute	middle	of	the	current	line.
This	is	different	from	the	common	middle	and	center	options,	which	align	the
middle	of	the	image	with	the	baseline	of	the	current	line	of	text	(the	bottom
of	the	characters).	Though	Netscape	and	Opera	do	not	distinguish	absmiddle
from	middle	alignments,	Firefox	and	Internet	Explorer	use	it	to	differentially
align	images	from	their	middle	valuesin	other	words,	Firefox	and	Internet
Explorer's	absmiddle	alignment	is	the	same	as	Netscape's	middle.

bottom	and	baseline	(default)

The	bottom	and	baseline	image-alignment	values	have	the	same	effect	as	if	you
didn't	include	any	alignment	attribute	at	all:	the	browsers	align	the	bottom	of
the	image	in	the	same	horizontal	plane	as	the	baseline	of	the	text.	This	is	not
to	be	confused	with	absbottom,	which	takes	into	account	letter	descenders.	(Did
we	see	a	hand	up	in	the	audience?)

absbottom

The	align=absbottom	attribute-value	pair	tells	the	browser	to	align	the	bottom	of
the	image	with	the	true	bottom	of	the	current	line	of	text.	The	true	bottom	is
the	lowest	point	in	the	text,	taking	into	account	descenders,	even	if	there	are
no	characters	with	descenders	in	the	line.	A	descender	is	the	tail	on	a	"y,"	for
example;	the	baseline	of	the	text	is	the	bottom	of	the	"v"	in	the	"y"	character.
Opera,	the	standard	bearer,	ignores	absbottom,	whereas	the	other	popular
browsers	treat	it	as	advertised	(Figure	5-13).

Figure	5-13.	Browsers	take	into	account	text	descenders	when
aligning	images	with	the	align=absbottom	attribute

	
Use	the	top	or	middle	alignment	value	for	best	integration	of	icons,	dingbats,	or
other	special	inline	effects	with	the	text	content.	Otherwise,	align=bottom	(the
default)	usually	gives	the	best	appearance.	When	aligning	one	or	more	images	on
a	single	line,	select	the	alignment	that	gives	the	best	overall	appearance	to	your
document.

5.2.6.5.	Wrapping	text	around	images

The	left	and	right	image-alignment	values	tell	the	browser	to	place	an	image
against	the	left	or	right	margin,	respectively,	of	the	current	text	flow.	The	browser
then	renders	subsequent	document	content	in	the	remaining	portion	of	the	flow
adjacent	to	the	image.	The	net	result	is	that	the	document	content	following	the
image	gets	wrapped	around	the	image:

The	kumquat	is	the	smallest	of	the	citrus	fruits,	similar	in	appearance	to	a
tiny	orange.	The	similarity	ends	with	its	appearance,	however.	While	oranges
are	generally
sweet,	kumquats	are	extremely	bitter.	Theirs	is	an	acquired	taste,	to	be	sure.

	

Figure	5-14	shows	text	flow	around	a	left-aligned	image.

Figure	5-14.	Text	flow	around	a	left-aligned	image

	
You	can	place	images	against	both	margins	simultaneously	(Figure	5-15),	and	the
text	will	run	down	the	middle	of	the	page	between	them:

Figure	5-15.	Running	text	between	left-	and	right-aligned
images

	

The	kumquat	is	the	smallest	of	the	citrus	fruits,	similar	in	appearance	to	a
tiny	orange.	The	similarity	ends	with	its	appearance,	however.	While	oranges
are	generally	sweet,	kumquats	are	extremely	bitter.	Theirs	is	an	acquired	taste,

to	be	sure.

	
While	text	is	flowing	around	an	image,	the	left	(or	right)	margin	of	the	page	is
temporarily	redefined	to	be	adjacent	to	the	image	as	opposed	to	the	edge	of	the
page.	Subsequent	images	with	the	same	alignment	will	stack	up	against	each
other.	The	following	source	fragment	achieves	that	staggered	image	effect:

Marcia!

Jan!

Cindy!

	
The	results	of	this	example	are	shown	in	Figure	5-16.

Figure	5-16.	Three	very	lovely	girls	from	a	very	old	sitcom

	
When	the	text	flows	beyond	the	bottom	of	the	image,	the	margin	returns	to	its
former	position,	typically	at	the	edge	of	the	browser	window.

5.2.6.6.	Centering	an	image

Have	you	noticed	that	you	can't	horizontally	center	an	image	in	the	browser
window	with	the	align	attribute?	The	middle	and	absmiddle	values	center	the	image
vertically	with	the	current	line,	but	the	image	is	horizontally	justified	depending
on	what	content	comes	before	it	in	the	current	flow	and	the	dimensions	of	the
browser	window.

You	can	horizontally	center	an	inline	image	in	the	browser	window,	but	only	if	it's
isolated	from	surrounding	content,	such	as	by	paragraph,	division,	or	line-break
tags.	Then,	either	use	the	<center>	tag	or	use	the	align=center	attribute	or	center-
justified	style	in	the	paragraph	or	division	tag	to	center	the	image.	For	example:

Kumquats	are	tasty	treats

<center>

</center>
that	everyone	should	strive	to	eat!

	
Use	the	paragraph	tag	with	its	align=center	attribute	if	you	want	some	extra	space
above	and	below	the	centered	image:

Kumquats	are	tasty	treats
<p	align=center>

</p>
that	everyone	should	strive	to	eat!

	

5.2.6.7.	Align	and	<center>	are	deprecated

The	HTML	4	and	XHTML	standards	have	deprecated	the	align	attribute	for	all	tags,
including	,	in	deference	to	stylesheets.	They've	deprecated	<center>,	too.
Nonetheless,	the	attribute	and	tag	are	very	popular	among	HTML	authors	and
remain	well	supported	by	the	popular	browsers.	So,	while	we	do	expect	that
someday	both	align	and	<center>	will	disappear,	it	won't	be	anytime	soon.	Just	don't
say	we	didn't	warn	you.

What	if	you	don't	want	to	use	align	or	<center>?	Some	authors	and	many	of	the
WYSIWYG	editors	use	HTML/XHTML	tables	to	align	content.	That's	one	way,	albeit
involved	(see	Chapter	10).	The	World	Wide	Web	Consortium	(W3C)	wants	you	to
use	styles.	For	example,	use	the	margin-left	style	to	indent	the	image	from	the	left

side	of	the	display.	You	can	read	lots	more	about	Cascading	Style	Sheets	(CSS)	in
Chapter	8.

5.2.6.8.	The	border	attribute

Browsers	normally	render	images	that	also	are	hyperlinks	(i.e.,	images	included	in
an	<a>	tag)	with	a	2-pixel-wide	colored	border,	indicating	to	the	reader	that	he	can
select	the	image	to	visit	the	associated	document.	Use	the	border	attribute	and	a
pixel-width	thickness	value	to	remove	(border=0)	or	widen	that	image	border.	Be
aware	that	this	attribute,	too,	is	deprecated	in	HTML	4	and	XHTML,	in	deference	to
stylesheets,	but	continues	to	be	well	supported	by	the	popular	browsers.

Figure	5-17	shows	you	the	thick	and	thin	of	image	borders,	as	rendered	by
Internet	Explorer	from	the	following	XHTML	source:

Figure	5-17.	The	thick	and	thin	of	image	borders

	

	

		

		

		

	

5.2.6.9.	Removing	the	image	border

You	can	eliminate	the	border	around	an	image	hyperlink	altogether	with	the
border=0	attribute	within	the		tag.	For	some	images,	particularly	image	maps,
the	absence	of	a	border	can	improve	the	appearance	of	your	pages.	Images	that
are	clearly	link	buttons	to	other	pages	may	also	look	best	without	borders.

Be	careful,	though,	that	by	removing	the	border,	you	don't	diminish	your	page's
usability.	No	border	means	you've	removed	a	common	visual	indicator	of	a	link,
making	it	more	difficult	for	your	readers	to	find	the	links	on	the	page.	Browsers
will	change	the	mouse	cursor	as	the	reader	passes	it	over	an	image	that	is	a
hyperlink,	but	you	should	not	assume	they	will,	nor	should	you	make	readers	test
your	borderless	images	to	find	hidden	links.

We	strongly	recommend	that	with	borderless	images	you	use	some	additional	way
to	let	your	readers	know	to	click	the	images.	Even	including	simple	text
instructions	will	go	a	long	way	toward	making	your	pages	more	accessible	to
readers.

5.2.6.10.	The	height	and	width	attributes

Ever	watch	the	display	of	a	page's	contents	shift	around	erratically	while	the
document	is	loading?	That	happens	because	the	browser	readjusts	the	page	layout
to	accommodate	each	loaded	image.	The	browser	determines	the	size	of	an
imageand,	hence,	the	rectangular	space	to	reserve	for	it	in	the	display	windowby
retrieving	the	image	file	and	extracting	its	embedded	height	and	width
specifications.	The	browser	then	adjusts	the	page's	display	layout	to	insert	that
picture	in	the	display.[*]	This	is	not	the	most	efficient	way	to	render	a	document
because	the	browser	must	sequentially	examine	each	image	file	and	calculate	its
screen	space	before	rendering	adjacent	and	subsequent	document	content.	That
can	significantly	increase	the	amount	of	time	it	takes	to	render	the	document	and
can	disrupt	reading	by	the	user.

[*]	Another	reminder	that	images	are	separate	files,	which	are	loaded	individually	and	in	addition	to	the	source	document.

A	more	efficient	way	for	authors	to	specify	an	image's	dimensions	is	with	the
height	and	width		attributes.	That	way,	the	browser	can	reserve	space	before

actually	downloading	an	image,	speeding	document	rendering	and	eliminating	the
content	shifting.	Both	attributes	require	an	integer	value	that	indicates	the	image
size	in	pixels;	the	order	in	which	they	appear	in	the		tag	is	not	important.

5.2.6.11.	Resizing	and	flood-filling	images

A	hidden	feature	of	the	height	and	width	attributes	is	that	you	don't	need	to	specify
the	actual	image	dimensions;	the	attribute	values	can	be	larger	or	smaller	than
the	actual	size	of	the	image.	The	browser	automatically	scales	the	image	to	fit	the
predefined	space.	This	gives	you	a	down-and-dirty	way	of	creating	thumbnail
versions	of	large	images	and	a	way	to	enlarge	very	small	pictures.	Be	careful,
though:	the	browser	still	must	download	the	entire	file,	no	matter	what	its	final
rendered	size	is,	and	you	will	distort	an	image	if	you	don't	retain	its	original
height	versus	width	proportions.

Another	trick	with	height	and	width	provides	an	easy	way	to	flood-fill	areas	of	your
page	and	can	also	improve	document	performance.	Suppose	you	want	to	insert	a
colored	bar	across	your	document.[]	Instead	of	creating	an	image	to	fill	the	full
dimensions,	create	one	that	is	just	1	pixel	high	and	wide	and	set	it	to	the	desired
color.	Then	use	the	height	and	width	attributes	to	scale	it	to	the	larger	size:

[]	This	is	one	way	to	create	colored	horizontal	rules,	since	Netscape	doesn't	support	the	color	attribute	for	the	<hr>
tag.

	
The	smaller	image	downloads	much	faster	than	a	full-scale	one,	and	the	width	and
height	attributes	have	Firefox,	for	example,	create	the	desired	bright-red	colored
bar	after	the	tiny	image	arrives	at	the	browser	(Figure	5-18).

Figure	5-18.	This	colored	horizontal	bar	was	made	from	a	1-
pixel	image

	

One	last	trick	with	the	width	attribute	is	to	use	a	percentage	value	rather	than	an
absolute	pixel	value.	This	causes	the	browser	to	scale	the	image	to	a	percentage
of	the	document	window	width.	Thus,	to	create	a	colored	bar	20	pixels	high	and
the	width	of	the	window,	you	could	use:

	
As	the	document	window	changes	size,	the	image	will	change	size	as	well.

If	you	provide	a	percentage	width	and	omit	the	height,	the	browser	will	retain	the
image's	aspect	ratio	as	it	grows	and	shrinks.	This	means	that	the	height	will
always	be	in	the	correct	proportion	to	the	width,	and	the	image	will	display
without	distortion.

5.2.6.12.	Problems	with	height	and	width

Although	the	height	and	width	attributes	for	the		tag	can	improve	performance
and	let	you	perform	neat	tricks,	there	is	a	knotty	downside	to	using	them.	The
browser	sets	aside	the	specified	rectangle	of	space	to	the	prescribed	dimensions	in
the	display	window,	even	if	the	user	has	turned	off	automatic	download	of	images.
What	the	user	often	is	left	with	is	a	page	full	of	semi-empty	frames	with
meaningless	picture-placeholder	icons	inside.	The	page	looks	terribly	unfinished
and	is	mostly	useless.	Without	accompanying	dimensions,	on	the	other	hand,	the
browser	simply	inserts	a	placeholder	icon	inline	with	the	surrounding	text,	so	at
least	there's	something	there	to	read	in	the	display.

We	don't	have	a	solution	for	this	dilemma,	other	than	to	insist	that	you	use	the
alt	attribute	with	some	descriptive	text	so	that	users	at	least	know	what	they	are
missing.	We	do	recommend	that	you	include	these	size	attributes	because	we
encourage	any	practice	that	improves	display	performance.

5.2.6.13.	The	hspace	and	vspace	attributes

Graphical	browsers	usually	don't	give	you	much	space	between	an	image	and	the
text	around	it.	And	unless	you	create	a	transparent	image	border	that	expands
the	space	between	them,	the	typical	2-pixel	buffer	between	an	image	and
adjacent	text	is	just	too	close	for	most	designers'	comfort.	Add	the	image	into	a
hyperlink,	and	the	special	colored	border	will	negate	any	transparent	buffer	space
you	labored	to	create,	as	well	as	drawing	even	more	attention	to	how	close	the
adjacent	text	butts	up	against	the	image.

The	hspace	and	vspace	attributes	can	give	your	images	breathing	room.	With	hspace,
you	specify	the	number	of	pixels	of	extra	space	to	leave	between	the	image	and
text	on	the	left	and	right	sides	of	the	image;	the	vspace	value	is	the	number	of
pixels	on	the	top	and	bottom:

The	kumquat	is	the	smallest	of	the	citrus	fruits,	similar
in	appearance	to	a	tiny	orange.	The	similarity	ends	with	its
appearance,	however.	While	oranges	are	generally	sweet,
kumquats	are	extremely	bitter.	Theirs	is	an	acquired	taste,
to	be	sure.	Most	folks,	at	first	taste,	wonder	how	you	could
ever	eat	another,	let	alone	enjoy	it!
<p>

The	kumquat	is	the	smallest	of	the	citrus	fruits,	similar
in	appearance	to	a	tiny	orange.	The	similarity	ends	with	its
appearance,	however.	While	oranges	are	generally	sweet,
kumquats	are	extremely	bitter.	Theirs	is	an	acquired	taste,
to	be	sure.	Most	folks,	at	first	taste,	wonder	how	you	could
ever	eat	another,	let	alone	enjoy	it!

	
Figure	5-19	shows	the	difference	between	two	wrapped	images.

Figure	5-19.	Improve	image/text	interfaces	with	vspace	and
hspace

	

We're	sure	you'll	agree	that	the	additional	space	around	the	image	makes	the	text
easier	to	read	and	the	overall	page	more	attractive.

5.2.6.14.	The	ismap	and	usemap	attributes

The	ismap	and	usemap	attributes	for	the		tag	tell	the	browser	that	the	image	is	a
special	mouse-selectable	visual	map	of	one	or	more	hyperlinks,	commonly	known
as	an	image	map.	You	can	specify	the	ismap	style	of	image	maps	only	within	an	<a>
tag	hyperlink.	[<a>,	6.3.1]

For	example	(notice	the	redundant	attribute	and	value,	as	well	as	the	trailing
end-tag	slash	mark	in	the		tag,	which	are	telltale	signs	of	XHTML):

		

	
The	browser	automatically	sends	the	coordinates	of	the	mouse	relative	to	the
upper-left	corner	of	the	image	to	the	server	when	the	user	clicks	somewhere	on
the	ismap	image.	Special	server	software	(the	/cgi-bin/images/map2	program,	in
the	example)	may	then	use	those	coordinates	to	determine	a	response.

The	ismap	attribute	is	a	server-side	mechanism	because	it	relies	on	the	server	for
processing	user	input.	The	usemap	attribute	provides	a	client-side	image-map
mechanism	that	effectively	eliminates	server-side	processing	of	the	mouse
coordinates	and	its	incumbent	network	delays	and	problems.	Using	special	<map>
and	<area>	tags,	HTML	authors	provide	a	map	of	coordinates	for	the	hyperlink-
sensitive	regions	in	the	usemap	image,	along	with	related	hyperlink	URLs.	The	value
of	the	usemap	attribute	is	a	URL	that	points	to	that	special	<map>	section.	The
browser	on	the	user's	client	computer	translates	the	coordinates	of	a	click	of	the
mouse	on	the	image	into	some	action,	including	loading	and	displaying	another
document.	[<map>,	6.5.3]	[<area>,	6.5.4]

For	example,	the	following	source	specially	encodes	the	100	x	100-pixel	map2.gif
image	into	four	segments,	each	of	which,	if	clicked	by	the	user,	links	to	a	different
document.	Notice	that	we've	included,	validly,	the	ismap	image-map	processing
capability	in	the	example		tag	so	that	users	of	other,	usemap-incapable	browsers
have	access	to	the	alternative,	server-side	mechanism	to	process	the	image	map:

		

...

<map	name="map2">
		<area	coords=0,0,49,49"	href="link1.html">
		<area	coords="50,0,99,49"	href="link2.html">
		<area	coords="0,50,49,99"	href="link3.html">
		<area	coords="50,50,99,99"	href="link4.html">
</map>

	
Geographical	maps	make	excellent	ismap	and	usemap	examples:	browsing	a
nationwide	company's	pages,	for	instance,	the	users	might	click	on	their
hometowns	on	a	map	to	get	the	addresses	and	phone	numbers	for	nearby	retail
outlets.	The	advantage	of	usemap	client-side	image-map	processing	is	that	it	does
not	require	a	server	or	special	server	software	and	so,	unlike	the	ismap
mechanism,	can	be	used	in	nonweb	(networkless)	environments,	such	as	local
files	and	CD-ROMs.

Please	read	our	more	complete	discussion	of	anchors	and	links,	including	image
maps	within	links,	in	section	6.5.

5.2.6.15.	The	class,	dir,	event,	id,	lang,	style,	and	title	attributes

Several	nearly	universal	attributes	give	you	a	common	way	to	identify	(title)	and
label	(id)	the	image	tag's	contents	for	later	reference	or	automated	treatment,	to
change	the	contents'	display	characteristics	(class,	style),	to	reference	the
language	(lang)	used,	and	to	specify	the	direction	in	which	the	text	should	flow
(dir).	And,	of	course,	there	are	all	the	user	events	that	may	happen	in	and	around
the	tagged	contents	that	the	browser	senses	and	that	you	may	react	to	via	an	on-
event	attribute	and	some	programming.	[Inline	Styles:	The	style	Attribute,	8.1.1]
[Style	Classes,	8.3]

Of	these	many	HTML	4	and	XHTML	attributes,	id	is	the	most	important.	It	lets	you
label	the	image	for	later	access	by	a	program	or	browser	operation	(see	Chapter
12).	[The	id	attribute,	4.1.1.4]

The	remaining	attributes	have	questionable	meaning	in	context	with	.
Granted,	a	few	stylesheet	options	are	available	that	may	influence	an	image's
display,	and	it's	good	to	include	a	title	(although	alt	is	better).	However,	it's	hard
to	imagine	the	influence	that	language	(lang)	or	its	presentation	direction	(dir)
might	have	on	an	image.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

5.2.6.16.	The	name,	onAbort,	onError,	onLoad,	and	other	event	attributes

There	are	four		attributes	originally	supported	by	Netscape	and	now	by	all	the
popular	browsers	that	enable	you	to	use	JavaScript	to	manipulate	images.	The
first	is	the	name	attribute.[*]	Now	redundant	with	the	id	attribute,	name	lets	you	label
the	image	so	that	a	JavaScript	applet	can	reference	it.	For	example:

[*]	HTML	version	4.01	and	XHTML	have	adopted	the	name	attribute,	too.

	
lets	you	later	refer	to	that	picture	of	a	kumquat	as	simply	"kumquat"	in	a
JavaScript	applet,	perhaps	to	erase	or	otherwise	modify	it.	You	cannot	individually
manipulate	an	image	with	JavaScript	if	it	is	not	named	or	doesn't	have	an
associated	id.

The	other	three	attributes	let	you	provide	some	special	JavaScript	event	handlers.
The	value	of	each	attribute	is	a	chunk	of	JavaScript	code,	enclosed	in	quotation
marks;	it	may	consist	of	one	or	more	JavaScript	expressions,	separated	by
semicolons.

The	popular	browsers	invoke	the	onAbort	event	handler	if	the	user	stops	loading	an
image,	usually	by	clicking	the	browser's	Stop	button.	You	might,	for	instance,	use
an	onAbort	message	to	warn	users	if	they	stop	loading	some	essential	image,	such
as	an	image	map	(see	section	6.5):

<img	src="pics/kumquat.gif"	usemap="#map1"
onAbort="window.alert('Caution:	This	image	contains	important	hyperlinks.
Please	load	the	entire	image.')">

	
The	onError	attribute	is	invoked	if	some	error	occurs	during	the	loading	of	the
image,	but	not	for	a	missing	image	or	one	that	the	user	chose	to	stop	loading.
Presumably,	the	applet	could	attempt	to	recover	from	the	error	or	load	a	different
image	in	its	place.

The	currently	popular	browsers	execute	the	JavaScript	code	associated	with	the
	tag's	onLoad	attribute	right	after	the	browser	successfully	loads	and	displays
the	image.

See	section	12.3.3	for	more	information	about	JavaScript	and	event	handlers.

5.2.6.17.	Combining		attributes

You	may	combine	any	of	the	various	standard	and	extension	attributes	for	images
where	and	when	they	make	sense.	The	order	for	inclusion	of	multiple	attributes	in
the		tag	is	not	important,	either.	Just	be	careful	not	to	use	redundant
attributes,	or	you	won't	be	able	to	predict	the	outcome.

5.2.7.	Video	Extensions

Internet	Explorer	supports	special	video-related		attribute	extensions	that	let
you	embed	movies	into	your	HTML	documents:	controls,	dynsrc,	loop,	and	start.
These	are	not	HTML	4	and	are	unlikely	to	become	XHTML	standard	attributes.	In
fact,	users	have	to	specifically	enable	them	with	Internet	Explorer's	"Play	video	in
web	pages"	Advanced	Internet	Options.

Equivalent	behavior	is	available	with	all	the	popular	browsers	via	an	extension
program	known	as	a	plug-in.	Plug-ins	place	an	additional	burden	on	the	user	in
that	each	user	must	find	and	install	the	appropriate	plug-in	software	before	being
able	to	view	the	inline	video.	The	Internet	Explorer		tag	extensions,	on	the
other	hand,	made	video	display	an	intrinsic	part	of	the	browser.	[Embedded
Content,	12.2]

5.2.7.1.	The	dynsrc	attribute

Use	the	dynsrc	attribute	extension	in	the		tag	to	reference	an	AVI,	MPG	or
MPEG,	MOV,	WMV,	or	any	popular	movie	format	for	inline	display	by	Internet
Explorer.	Its	required	value	is	the	URL	of	the	movie	file,	enclosed	in	quotation
marks.	For	example,	this	text	displays	the	tag	and	attribute	for	an	AVI	movie	file
titled	intro.avi:

	
Internet	Explorer	sets	aside	a	video	viewport	in	the	HTML	display	window	and
plays	the	movie,	with	audio	if	it's	included	in	the	clip	and	if	your	computer	is	able
to	play	audio.	Internet	Explorer	treats	dynsrc	movies	similar	to	inline	images:	in
line	with	current	body	content	and	according	to	the	dimension	of	the	video	frame.
And,	like	common	images,	the	dynsrc-referenced	movie	file	gets	displayed
immediately	after	download	from	the	server.	You	may	change	those	defaults	and
add	some	user	controls	with	other	attributes,	as	described	later.

Because	all	other	browsers	currently	ignore	the	special	Internet	Explorer
attributes	for	movies,	they	may	become	confused	by	an		tag	that	does	not
contain	the	otherwise	required	src	attribute	and	an	image	URL.	We	recommend

that	you	include	the	src	attribute	and	a	valid	image	file	URL	in	all		tags,
including	those	that	reference	a	movie	for	Internet	Explorer	users.	The	other
browsers	display	the	still	image	in	place	of	the	movie;	Internet	Explorer	does	the
reverse	and	plays	the	movie,	but	does	not	display	the	image.	Note	that	the	order
of	attributes	does	not	matter.	For	example:

	
Internet	Explorer	loads	and	plays	the	AVI	movie	intro.avi;	other	graphical
browsers	will	load	and	display	the	mvstill.gif	image	instead.

5.2.7.2.	The	controls	attribute

Normally,	Internet	Explorer	plays	a	movie	inside	a	framed	viewport	once,	without
any	visible	user	controls.	Although	no	longer	supported	in	Internet	Explorer
version	5	or	later,	with	older	versions	of	the	browser	the	controls	attribute	(no
value)	enabled	users	to	restart,	stop,	and	continue	the	movie	by	clicking	inside
that	viewport	with	the	mouse.	If	the	movie	clip	includes	a	soundtrack,	the	earlier
Internet	Explorer	provided	an	audio	volume	control	as	well.	For	example:

	

5.2.7.3.	The	loop	attribute

Internet	Explorer	normally	plays	a	movie	clip	from	beginning	to	end	once,	after
download.	The	loop	attribute	for	the	movie		tag	lets	you	have	the	clip	play
repeatedly	for	an	integer	number	of	times	set	by	the	attribute's	value,	or	forever
if	the	value	is	infinite.	The	user	may	still	cut	the	loop	short	by	clicking	the
browser's	Stop	button	or	by	moving	on	to	another	document.

The	following	intro.avi	movie	clip	will	play	from	beginning	to	end,	then	restart	at
the	beginning	and	play	through	to	the	end	nine	more	times:

	
Whereas	the	following	movie	will	play	over	and	over	again,	incessantly:

	
Looping	movies	aren't	necessarily	meant	to	annoy.	Some	special-effects
animations,	for	instance,	are	a	sequence	of	repeated	frames	or	segments.	Instead
of	stringing	the	redundant	segments	into	one	long	movie,	which	extends	its
download	time,	simply	loop	the	single,	compact	segment.

5.2.7.4.	The	start	attribute

Normally,	an	Internet	Explorer	movie	clip	starts	playing	as	soon	as	it's
downloaded.	You	can	modify	that	behavior	with	the	start	attribute	in	the	movie's
	tag.	By	setting	its	value	to	mouseover,	you	delay	playback	until	the	user	passes
the	mouse	pointer	over	the	movie	viewport.	The	other	valid	start	attribute	value,
fileopen,	is	the	default:	start	playback	just	after	download.	It	is	included	because
both	values	may	be	combined	in	the	start	attribute,	to	cause	the	movie	to	play
back	automatically	once,	after	download,	and	then	whenever	the	user	passes	the
mouse	over	its	viewport.	When	combining	the	start	attribute	values,	add	a	value-
separating	comma,	with	no	intervening	spaces,	or	else	enclose	them	in	quotes.

For	example,	our	by-now-infamous	intro.avi	movie	will	play	once	when	its	host
HTML	document	is	loaded	by	the	Internet	Explorer	user	and	again	whenever	he
passes	the	mouse	over	the	movie's	viewport:

	

5.2.7.5.	Combining	movie		attributes

Treat	Internet	Explorer	inline	movies	as	you	would	any	image,	mixing	and
matching	the	various	movie-specific	as	well	as	the	standard	and	extended	
tag	attributes	and	values	supported	by	the	browser.	For	example,	you	might	align
the	movie	(or	its	image	alternative,	if	displayed	by	another	browser)	to	the	right
of	the	browser	window:

	
Combining	attributes	to	achieve	a	special	effect	is	good.	We	also	recommend	that
you	combine	attributes	to	give	control	to	the	user,	when	appropriate.

As	we	stated	earlier	in	section	5.2.7.4,	by	combining	attributes,	you	can	also
delay	playback	until	the	user	passes	the	mouse	over	its	viewport.	Magically,	the
movie	comes	alive	and	plays	continuously:

	
	

5.3.	Document	Colors	and	Background	Images

The	HTML	4	and	XHTML	standards	provide	a	number	of	attributes	for	the	<body>	tag
that	let	you	define	text,	link,	and	document	background	colors,	in	addition	to
defining	an	image	to	be	used	as	the	document	background.	All	the	popular
browsers	additionally	extend	these	attributes	to	include	document	margins	and
better	background	image	control.	And,	of	course,	the	latest	stylesheet
technologies	integrated	into	the	current	browsers	let	you	manipulate	all	of	these
various	display	parameters.

5.3.1.	Additions	and	Extensions	to	the	<body>	Tag

The	attributes	that	control	the	document	background,	text	color,	and	document
margins	are	used	with	the	<body>	tag.	[<body>,	3.8.1]

5.3.1.1.	The	bgcolor	attribute

One	standard,	although	deprecated,	way	you	can	change	the	default	background
color	in	the	browser	window	to	another	hue	is	with	the	bgcolor	attribute	for	the
<body>	tag.	Like	the	color	attribute	for	the		tag,	the	required	value	of	the
bgcolor	attribute	may	be	expressed	in	either	of	two	ways:	as	the	red,	green,	and
blue	(RGB)	components	of	the	desired	color,	or	as	a	standard	color	name.
Appendix	G	provides	a	complete	discussion	of	RGB	color	encoding	along	with	a
table	of	acceptable	color	names	you	can	use	with	the	bgcolor	attribute.

Setting	the	background	color	is	easy.	To	get	a	pure	red	background	using	RGB
encoding,	try:

<body	bgcolor="#FF0000">

	
For	a	subtler	background,	try:

<body	bgcolor="peach">

	

5.3.1.2.	The	background	attribute

If	a	splash	of	color	isn't	enough,	you	may	also	place	an	image	into	the	background
of	a	document	with	the	background	attribute	in	the	<body>	tag.

The	required	value	of	the	background	attribute	is	the	URL	of	an	image.	The	browser
automatically	repeats	(tiles)	the	image	both	horizontally	and	vertically	to	fill	the
entire	window.

You	normally	should	choose	a	small,	somewhat	dim	image	to	create	an	interesting
but	unobtrusive	background	pattern.	Besides,	a	small,	simple	image	traverses	the
network	much	faster	than	an	intricate,	full-screen	image.

Figure	5-20	and	5-21	show	you	how	the	extended	browsers	render	a	single	wood
panel	as	an	individual	picture	and	then	tile	it	to	create	a	paneled	wall	when
included	as	a	document's	background:

Figure	5-20.	A	single	wood	panel...

	

Figure	5-21.	...becomes	many	as	the	<body>	background

	
					<body>
				

	
versus:

<body	background="pics/wood_panel.gif">

	
Background	images	of	various	dimensions	and	sizes	create	interesting	vertical	and
horizontal	effects	on	the	page.	For	instance,	a	tall,	skinny	image	might	set	off
your	document	heading:

<body	background="pics/vertical_fountain.gif">
<h3>Kumquat	Lore</h3>
For	centuries,	many	myths	and	legends	have	arisen	around	the	kumquat.
...

	
If	vertical_fountain.gif	is	a	narrow,	tall	image	whose	color	grows	lighter	toward	its
base	and	whose	length	exceeds	the	length	of	the	document	body,	the	resulting
document	might	look	like	the	one	shown	in	Figure	5-22.

Figure	5-22.	A	tall	and	skinny	background

	
You	can	achieve	a	similar	effect	horizontally	with	an	image	that	is	much	wider
than	it	is	long	(see	Figure	5-23).

Figure	5-23.	A	long	and	skinny	background

	
The	background	attribute	is	deprecated	in	HTML	4	and	XHTML	because	you	can
achieve	similar	effects	using	stylesheets.

5.3.1.3.	The	bgproperties	attribute

The	popular	browsers	no	longer	support	the	bgproperties	attribute	extension	for	the
<body>	tag.	It	worked	only	in	conjunction	with	the	background	attribute	extension	and
had	a	single	value,	fixed.	Its	effect	was	to	freeze	the	background	image	to	the
browser	window,	so	it	did	not	scroll	with	the	other	window	contents.	Hence,	the
example	H2Omark.gif	background	image	might	serve	as	a	watermark	for	the
document:

<body	background="pics/H2Omark.gif"	bgproperties="fixed">

	

5.3.1.4.	The	text	attribute

Once	you	alter	a	document's	background	color	or	add	a	background	image,	you
also	might	need	to	adjust	the	text	color	to	ensure	that	users	can	read	the	text.
The	HTML	4/XHTML	text	standard	attribute	for	the	<body>	tag	does	just	that:	it	sets
the	color	of	all	nonanchor	text	in	the	entire	document.

Give	the	text	attribute	a	color	value	in	the	same	format	as	you	use	to	specify	a
background	color	(see	bgcolor	in	the	earlier	section,	5.3.1.1)an	RGB	triplet	or	color
name,	as	described	in	Appendix	G.	For	example,	to	produce	a	document	with	blue
text	on	a	pale	yellow	background,	use:

<body	bgcolor="#777700"	text="blue">

	

Of	course,	it's	best	to	select	a	text	color	that	contrasts	well	with	your	background
color	or	image.

The	text	attribute	is	deprecated	in	HTML	4	and	XHTML	because	you	can	achieve
similar	effects	using	stylesheets.

5.3.1.5.	The	link,	vlink,	and	alink	attributes

The	link,	vlink,	and	alink	attributes	of	the	<body>	tag	control	the	color	of	hypertext
(text	inside	the	<a>	tag)	in	your	documents.	All	three	accept	values	that	specify	a
color	as	an	RGB	triplet	or	color	name,	just	like	the	text	and	bgcolor	attributes.

The	link	attribute	determines	the	color	of	all	hyperlinks	the	user	has	not	yet
followed.	The	vlink	attribute	sets	the	color	of	all	links	the	user	has	followed	at	one
time	or	another.	The	alink	attribute	defines	a	color	for	active	link	texti.e.,	a	link
that	is	currently	selected	by	the	user	and	is	under	the	mouse	cursor	with	the
mouse	button	depressed.

Like	text	color,	you	should	be	careful	to	select	link	colors	that	can	be	read	against
the	document	background.	Moreover,	the	link	colors	should	be	different	from	the
regular	text	as	well	as	from	each	other.

These	attributes	are	deprecated	in	HTML	4	and	XHTML	because	you	can	achieve
similar	effects	using	stylesheets.

5.3.1.6.	The	leftmargin	attribute

Once	peculiar	to	Internet	Explorer	but	now	supported	by	all	the	popular	browsers,
the	leftmargin	attribute	extension	for	the	<body>	tag	lets	you	indent	the	left	margin
relative	to	the	left	edge	of	the	browser's	window,	much	like	a	margin	on	a	sheet	of
paper.	Antiquated	browsers	ignore	this	attribute,	and	just	left-justify	the	body
content	to	the	left	edge	of	the	document	window.

The	value	of	the	leftmargin	attribute	is	the	integer	number	of	pixels	for	that	left-
margin	indent;	a	value	of	10	is	the	default.	The	margin	is	filled	with	the
background	color	or	image.

For	example,	Internet	Explorer	renders	the	following	text	justified	against	a
margin	50	pixels	away	from	the	left	edge	of	the	browser	window	(see	Figure	5-
24):

Figure	5-24.	The	leftmargin	attribute	for	indenting	body	content

	
<body	leftmargin=50>
Modern	browsers	lets	you	indent	the

<left	margin

away	from	the	left	edge	of	the	window.
</body>

	

5.3.1.7.	The	topmargin	attribute

Like	leftmargin,	the	topmargin	attribute	extension	used	to	be	exclusive	to	Internet
Explorer,	but	now	all	the	popular	browsers	support	it	well.	You	may	include	it	in
the	<body>	tag	to	set	a	margin	of	space	at	the	top	of	the	document.	The	margin
space	is	filled	with	the	document's	background	color	or	image.

Body	content	begins	flowing	below	the	integer	number	of	pixels	you	specify	as	the
value	for	topmargin;	a	value	of	0	is	the	default.

For	example,	Opera	renders	the	following	text	at	least	50	pixels	down	from	the
top	edge	of	the	browser	window	(see	Figure	5-25):

Figure	5-25.	The	topmargin	attribute	for	lowering	body	content

	
<body	topmargin=50>
^^^
Modern	browsers	give	your	documents
a	little	extra	headroom	with	topmargin.
</body>

	

5.3.1.8.	The	style	and	class	attributes

You	also	can	set	all	the	various	style-related	<body>	features,	and	then	some,	with
CSS.	But	although	you	may	include	the	style	attribute	with	the	<body>	tag	to	create
an	inline	style	for	the	entire	document	body,	we	recommend	that	you	set	those
styles	at	the	document	level	(using	the	<style>	tag	inside	the	document	head)	or
via	a	collection-level	(imported)	stylesheet.

Use	the	class	attribute	and	name	value	to	apply	the	appropriate	style	of	a
predefined	class	of	the	<body>	tag	to	the	contents.	(Because	there	can	be	only	one
body	per	document,	what	is	the	point	of	setting	a	class	name	otherwise?)	We
cover	the	use	of	style	and	class	definitions	in	Chapter	8.

5.3.1.9.	Mixing	and	matching	body	attributes

Although	background	and	bgcolor	attributes	can	appear	in	the	same	<body>	tag,	a
background	image	will	effectively	hide	the	selected	background	color	unless	the
image	contains	substantial	portions	of	transparent	areas,	as	we	described	earlier
in	this	chapter.	But	even	if	the	image	does	hide	the	background	color,	go	ahead
and	include	the	bgcolor	attribute	and	some	appropriate	color	value.	Users	can	turn
off	image	downloading,	which	includes	background	images,	so	otherwise	they	may
find	your	page	left	naked	and	unappealing.	Moreover,	without	a	bgcolor	attribute	or
a	downloaded	(for	whatever	reason)	background	image,	the	browsers	merrily
ignore	your	text	and	link	color	attributes,	too,	reverting	instead	to	their	own
default	values	or	the	ones	the	user	has	chosen.

5.3.2.	Extending	a	Warning

Much	like	early	users	of	the	Macintosh	felt	compelled	to	create	documents	using
ransom-note	typography	("I've	got	40	fonts	on	this	thing,	and	I'm	going	to	use
them	all!"),	many	authors	cannot	avoid	adding	some	sort	of	textured	background

to	every	document	they	create	("I've	got	13	wood	grains	and	22	kinds	of
marbling,	and	I'm	going	to	use	them	all!").

In	reality,	texture-mapped	backgrounds,	except	for	the	very	clever	ones,	add	no
information	to	your	documents.	The	value	of	your	document	ultimately	lies	in	its
text	and	imagery,	not	the	cheesy	blue	swirly	pattern	in	the	background.	No
matter	how	cool	it	looks,	your	readers	are	not	benefiting	and	you	could	be	losing
readability.

We	advise	you	not	to	use	the	color	extensions	except	for	comparatively	frivolous
endeavors	or	unless	the	extension	really	adds	to	the	document's	value,	such	as
for	business	advertising	and	marketing	pages.

5.3.2.1.	Problems	with	background	images

Here	are	some	of	the	things	that	can	go	wrong	with	background	images:

The	time	to	load	the	document	is	increased	by	the	amount	of	time	needed	to
load	the	image.	Until	the	background	image	is	completely	downloaded,	no
further	document	rendering	is	possible.

The	background	image	takes	up	room	in	the	browser's	local	cache,	displacing
other	images	that	might	actually	contain	useful	information.	This	makes	other
documents,	which	might	not	even	have	backgrounds,	take	longer	to	load.

The	colors	in	the	image	may	not	be	available	on	the	user's	display,	forcing	the
browser	to	dither	the	image.	This	replaces	large	areas	of	a	single	color	with
repeating	patterns	of	several	other	closer,	but	not	cleaner,	colors	and	can
make	the	text	more	difficult	to	read.

Because	the	browser	must	actually	display	an	image	in	the	background,	as
opposed	to	filling	an	area	with	a	single	color,	scrolling	through	the	document
can	take	much	longer.

Even	if	it's	clear	onscreen,	text	printed	on	top	of	an	image	invariably	is	more
difficult,	if	not	impossible,	to	read.

Fonts	vary	widely	among	machines;	the	ones	you	use	with	your	browser	that
work	fine	with	a	background	pattern	often	end	up	jagged	and	difficult	to	read
on	another	machine.

5.3.2.2.	Problems	with	background,	text,	and	link	colors

You	also	will	encounter	a	slew	of	problems	if	you	play	with	background	colors,
including	the	following:

The	color	you	choose,	while	just	lovely	in	your	eyes,	may	look	terrible	to	the
user.	Why	annoy	them	by	changing	what	users	most	likely	have	already	set	as
their	own	default	background	colors?

While	you	may	be	a	member	of	the	"light	text	on	a	dark	background"	school
of	document	design,	many	people	also	favor	the	"dark	text	on	a	light
background"	style	that	has	been	consistently	popular	for	more	than	3,000
years.	Instead	of	bucking	the	trend,	assume	that	users	have	already	set	their
browsers	to	a	comfortable	color	scheme.

Some	users	are	colorblind.	What	may	be	a	nifty-looking	combination	of	colors
to	you	may	be	completely	unreadable	to	others.	One	combination	in	particular
to	avoid	is	green	for	unvisited	links	and	red	for	visited	links.	Millions	of	men
are	afflicted	with	red/green	colorblindness.

Your	brilliant	hue	may	not	be	available	on	the	user's	display,	and	the	browser
may	be	forced	to	choose	one	that's	close	instead.	Some	colors	for	the	text	and
the	background	might	be	the	same	color	on	limited-color	displays!

For	the	same	reason	just	listed,	active,	unvisited,	and	visited	links	may	wind
up	as	the	same	color	on	limited-color	displays.

By	changing	text	colors,	particularly	those	for	visited	and	unvisited	links,	you
may	completely	confuse	users.	By	changing	those	colors,	you	effectively	force
them	to	experiment	with	your	page,	clicking	a	few	links	here	and	there	to
learn	your	color	scheme.

Most	page	designers	have	no	formal	training	in	cognitive	psychology,	fine	arts,
graphic	arts,	or	industrial	design,	yet	feel	fully	capable	of	selecting
appropriate	colors	for	their	documents.	If	you	must	fiddle	with	the	colors,	ask
a	professional	to	pick	them	for	you.

5.3.2.3.	And	then	again

There	is	no	denying	the	fact	that	these	extensions	result	in	some	very	stunning
HTML	and	XHTML	documents.	And	they	are	fun	to	explore	and	play	with.	So,
instead	of	leaving	this	section	on	a	sour	note	of	caution,	we	encourage	you	to	go
ahead	and	playjust	play	carefully.

	

5.4.	Background	Audio

One	other	form	of	inline	multimedia	is	generally	available	to	web	surfersaudio.
Most	browsers	treat	audio	multimedia	as	separate	documents,	downloaded	and
displayed	by	special	helper	applications,	applets,	or	plug-ins.	Internet	Explorer
and	Opera,	on	the	other	hand,	contain	built-in	sound	decoders	and	support	a
special	tag	(<bgsound>)	that	lets	you	integrate	with	your	document	an	audio	file	that
plays	in	the	background	as	a	soundtrack	for	your	page.	[Applets	and	Objects,
12.1]	[Embedded	Content,	12.2]

We	applaud	the	developers	of	Internet	Explorer	and	Opera	for	providing	a
mechanism	that	more	cleanly	integrates	audio	into	HTML	and	XHTML	documents.
The	possibilities	with	audio	are	very	enticing,	but	at	the	same	time,	we	caution
authors	that	special	tags	and	attributes	for	audio	don't	work	with	other	browsers,
and	whether	this	is	the	method	that	the	majority	of	browsers	will	eventually
support	is	not	at	all	assured.

5.4.1.	The	<bgsound>	Tag

Use	the	<bgsound>	tag	to	play	a	soundtrack	in	the	background.	This	tag	is	for
Internet	Explorer	and	Opera	documents	only.	Other	browsers	ignore	the	tag.	It
downloads	and	plays	an	audio	file	when	the	user	first	downloads	and	displays	the
host	document.	The	background	sound	file	also	will	replay	whenever	the	user
refreshes	the	browser	display.

<bgsound>	

Function Plays	a	soundtrack	in	the	document's	background

Attributes loop,	src

End	tag None	in	HTML

Contains Nothing

Used	in body_content

	

5.4.1.1.	The	src	attribute

The	src	attribute	is	required	for	the	<bgsound>	tag.	Its	value	references	the	URL	for
the	related	sound	file.	For	example,	when	Internet	Explorer	or	Opera	users	first
download	a	document	containing	the	tag:

<bgsound	src="audio/welcome.wav">

	
they	will	hear	the	welcome.wav	audio	fileperhaps	an	inviting	messageplay	once
through	their	computers'	sound	systems.

Currently,	<bgsound>	can	handle	several	different	sound	format	files,	including	.wav,
the	native	format	for	PCs;	.au,	the	native	format	for	most	Unix	workstations;	and
MIDI,	a	universal	music-encoding	scheme	(see	also	Table	5-1).

Table	5-1.	Common	multimedia	formats	and	respective	filename	extensions

Format Type Extension Platform	of	origin

Graphics	Interchange	Format Image gif Any

Joint	Photographic	Experts	Group Image jpg,	jpeg,	jpe Any

X	Bit	Map Image xbm Unix

Tagged	Image	File	Format Image tif,	tiff Any

PICT Image pic,	pict Apple

Rasterfile Image ras Sun

Portable	Network	Graphics Image png Any

Moving	Pictures	Expert	Group Movie mpg,	mpeg Any

Audio	Video	Interleave Movie avi Microsoft

QuickTime Movie qt,	mov Apple

Windows	Media	Video Movie wmv Microsoft

Shockwave Movie dvr Macromedia

Real	Video Movie ra,	rm,	ram Real	Networks

DivX Movie div,	divx,	tix,	mp4 DivX

AU Audio au,	snd Sun

Waveform	Audio Audio wav Microsoft

Audio	Interchange	File	Format Audio aif,	aiff Apple

Musical	Instrument	Digital	Interface Audio midi,	mid Any

PostScript Document ps,	eps,	ai Any

Acrobat Document pdf Any

	

5.4.1.2.	The	loop	attribute

As	with	inline	movies,	the	loop	attribute	for	the	browser's	<bgsound>	tag	lets	you
replay	a	background	soundtrack	a	certain	number	of	times	(or	indefinitely),	at
least	until	the	user	moves	on	to	another	page	or	quits	the	browser.

The	value	of	the	loop	attribute	is	the	integer	number	of	times	to	replay	the	audio
file,	or	infinite,	which	makes	the	soundtrack	repeat	endlessly.

For	example:

<bgsound	src="audio/tadum.wav"	loop=10>

	
repeats	the	ta-dum	soundtrack	10	times,	whereas:

<bgsound	src="audio/noise.wav"	loop=infinite>

	
continuously	plays	the	noise	soundtrack.

5.4.2.	Alternative	Audio	Support

There	are	other	ways	to	include	audio	in	your	documents,	using	more	general
mechanisms	that	support	other	embedded	media	as	well.	The	most	common
alternative	to	the	<bgsound>	tag	is	the	<embed>	tag,	originally	implemented	by
Netscape	and	supplanted	by	the	<object>	tag	in	the	HTML	4	and	XHTML	standards.
Take	a	look	in	Chapter	12	for	details.

Ultimately,	you	should	handle	all	background	audio,	including	spoken	(aural)
document	content,	using	the	various	audio	extensions	defined	in	a	CSS	standard.
While	we	cover	the	speech	synthesis-related	extensions	in	Chapter	8,	they	are
not	yet	supported	by	any	browser.	When	such	support	becomes	widely	available,
all	of	these	early	audio	extensions	will	go	the	way	of	the	<blink>	and	<isindex>	tags,
early	specialized	tags	deprecated	in	favor	of	more	generalized	and	powerful
features.

	

5.5.	Animated	Text

In	what	appears	to	be	an	effort	to	woo	advertisers,	Internet	Explorer	added	a
form	of	animated	text	to	HTML	that	all	the	popular	browsers	now	support.	The
animation	is	simpletext	scrolling	horizontally	across	the	displaybut	effective	for
moving	banners	and	other	elements	that	readily	and	easily	animate	an	otherwise
static	document.	On	the	other	hand,	like	the	<blink>	tag,	animated	text	can	easily
become	intrusive	and	abusive	for	the	reader.	Use	with	caution,	please,	if	at	all.

5.5.1.	The	<marquee>	Tag

The	<marquee>	tag	defines	the	text	that	scrolls	across	the	user's	display.	The
<marquee>	tag	is	not	a	standard	tag.	For	this	reason	alone,	we	do	not	recommend
that	you	use	this	extension.

<marquee>	

Function Creates	a	scrolling	text	marquee

Attributes align,	behavior,	bgcolor,	class,	controls,	direction,	height,	hspace,	loop,
scrollamount,	scrolldelay,	style,	vspace,	width

End	tag </marquee>;	never	omitted

Contains plain_text

Used	in body_content

	
The	text	between	the	<marquee>	tag	and	its	required	</marquee>	end	tag	scrolls
horizontally	across	the	display.	The	various	tag	attributes	control	the	size	of	the
display	area,	its	appearance,	its	alignment	with	the	surrounding	text,	and	the
scrolling	speed.

The	<marquee>	tag	and	attributes	are	ignored	by	some	browsers,	but	its	contents	are
not.	They	are	displayed	as	static	text,	sans	any	alignment	or	special	treatment
afforded	by	the	<marquee>	tag	attributes.

5.5.1.1.	The	align	attribute

The	popular	browsers	place	<marquee>	text	into	the	surrounding	body	content	just
as	if	it	were	an	embedded	image.	As	a	result,	you	can	align	the	marquee	within
the	surrounding	text.

The	align	attribute	accepts	a	value	of	top,	middle,	or	bottom,	meaning	that	the
specified	point	of	the	marquee	will	be	aligned	with	the	corresponding	point	in	the
surrounding	text.	Thus:

<marquee	align=top>

	
aligns	the	top	of	the	marquee	area	with	the	top	of	the	surrounding	text.	Also	see

the	height,	width,	hspace,	and	vspace	attributes	(later	in	this	chapter),	which	control
the	dimensions	of	the	marquee.

5.5.1.2.	The	behavior,	direction,	and	loop	attributes

Together,	these	three	attributes	control	the	style,	direction,	and	duration	of	the
scrolling	in	your	marquee.

The	behavior	attribute	accepts	three	values:

scroll	(default)

This	value	causes	the	marquee	to	act	like	the	grand	marquee	in	Times
Square:	the	marquee	area	is	initially	empty;	the	text	then	scrolls	in	from	one
side	(controlled	by	the	direction	attribute),	continues	across	until	it	reaches
the	other	side	of	the	marquee,	and	then	scrolls	off	until	the	marquee	is	once
again	empty.

slide

This	value	causes	the	marquee	to	start	empty.	Text	then	scrolls	in	from	one
side	(controlled	by	the	direction	attribute),	stops	when	it	reaches	the	other
side,	and	remains	onscreen.

alternate

This	value	causes	the	marquee	to	start	with	the	text	fully	visible	at	one	end	of
the	marquee	area.	The	text	then	scrolls	until	it	reaches	the	other	end,
whereupon	it	reverses	direction	and	scrolls	back	to	its	starting	point.

If	you	do	not	specify	a	marquee	behavior,	the	default	behavior	is	scroll.

The	direction	attribute	sets	the	direction	for	marquee	text	scrolling.	Acceptable
values	are	either	left	(the	default)	or	right.	Note	that	the	starting	end	for	the
scrolling	is	opposite	to	the	direction:	left	means	that	the	text	starts	at	the	right	of
the	marquee	and	scrolls	to	the	left.	Remember	also	that	rightward-scrolling	text	is
counter-intuitive	to	anyone	who	reads	left	to	right.

The	loop	attribute	determines	how	many	times	the	marquee	text	scrolls.	If	an
integer	value	is	provided,	the	scrolling	action	is	repeated	that	many	times.	If	the

value	is	infinite,	the	scrolling	repeats	until	the	user	moves	on	to	another
document	within	the	browser.

Putting	some	of	these	attributes	together:

<marquee	align=center	loop=infinite>
		Kumquats	aren't	filling
							Taste	great,	too!
</marquee>

	
The	example	message	starts	at	the	right	side	of	the	display	window	(default),
scrolls	leftward	all	the	way	across	and	off	the	display,	and	then	starts	over	again
until	the	user	moves	on	to	another	page.	Notice	the	intervening	periods	and
spaces	for	the	"trailer";	you	can't	append	one	marquee	to	another.

Also,	the	slide	style	of	scrolling	looks	jerky	when	repeated	and	should	be	scrolled
only	once.	Other	scrolling	behaviors	work	well	with	repeated	scrolling.

5.5.1.3.	The	bgcolor	attribute

The	bgcolor	attribute	lets	you	change	the	background	color	of	the	marquee	area.	It
accepts	either	an	RGB	color	value	or	one	of	the	standard	color	names.	See
Appendix	G	for	a	full	discussion	of	both	color-specification	methods.

To	create	a	marquee	area	whose	color	is	yellow,	you	would	write:

<marquee	bgcolor=yellow>

	

5.5.1.4.	The	height	and	width	attributes

The	height	and	width	attributes	determine	the	size	of	the	marquee	area.	If	not
specified,	the	marquee	area	extends	all	the	way	across	the	display	and	will	be	just
high	enough	to	enclose	the	marquee	text.

Both	attributes	accept	either	a	numeric	value,	indicating	an	absolute	size	in
pixels,	or	a	percentage,	indicating	the	size	as	a	percentage	of	the	browser	window
height	and	width.

For	example,	to	create	a	marquee	that	is	50	pixels	tall	and	occupies	one-third	of
the	display	window	width,	use:

<marquee	height=50	width="33%">

	
While	it	is	generally	a	good	idea	to	ensure	that	the	height	attribute	is	large	enough
to	contain	the	enclosed	text,	it	is	not	uncommon	to	specify	a	width	that	is	smaller
than	the	enclosed	text.	In	this	case,	the	text	scrolls	the	smaller	marquee	area,
resulting	in	a	kind	of	"viewport"	marquee	familiar	to	most	people.

5.5.1.5.	The	hspace	and	vspace	attributes

The	hspace	and	vspace	attributes	let	you	create	some	space	between	the	marquee
and	the	surrounding	text.	This	usually	makes	the	marquee	stand	out	from	the
text	around	it.

Both	attributes	require	an	integer	value	specifying	the	space	needed	in	pixels.
The	hspace	attribute	creates	space	to	the	left	and	right	of	the	marquee;	the	vspace
attribute	creates	space	above	and	below	the	marquee.	To	create	10	pixels	of	space
all	the	way	around	your	marquee,	for	example,	use:

<marquee	vspace=10	hspace=10>

	

5.5.1.6.	The	scrollamount	and	scrolldelay	attributes

These	attributes	control	the	speed	and	smoothness	of	the	scrolling	marquee.

The	scrollamount	attribute	value	is	the	number	of	pixels	needed	to	move	text	each
successive	movement	during	the	scrolling	process.	Lower	values	mean	smoother
but	slower	scrolling;	higher	numbers	create	faster,	jerkier	text	motion.

The	scrolldelay	attribute	lets	you	set	the	number	of	milliseconds	to	wait	between
successive	movements	during	the	scrolling	process.	The	smaller	this	value,	the
faster	the	scrolling.

You	can	use	a	low	scrolldelay	to	mitigate	the	slowness	of	a	small,	smooth
scrollamount.	For	example:

<marquee	scrollamount=1	scrolldelay=1>

	
scrolls	the	text	one	pixel	for	each	movement	but	does	so	as	fast	as	possible.	In

this	case,	the	scrolling	speed	is	limited	by	the	capabilities	of	the	user's	computer.

	

5.6.	Other	Multimedia	Content

The	Web	is	completely	open-minded	about	the	types	of	content	that	can	be
exchanged	by	servers	and	browsers.	In	this	section,	we	look	at	a	different	way	to
reference	images,	along	with	audio,	video,	and	other	document	formats.

5.6.1.	Embedded	Versus	Referenced	Content

Images	currently	enjoy	a	special	status	among	the	various	media	that	can	be
included	within	an	HTML	or	XHTML	document	and	displayed	inline	with	other
content	by	all	but	a	few	browsers.	Sometimes,	however,	as	we	discussed	earlier	in
this	chapter,	you	may	also	reference	images	externallyparticularly	large	ones	in
which	details	are	important	but	not	immediately	necessary	to	the	document
content.	Other	multimedia	elements,	including	digital	audio	and	video,	can	be
referenced	as	separate	documents	external	to	the	current	one.

You	normally	use	the	anchor	tag	(<a>)	to	link	external	multimedia	elements	to	the
current	document.	Just	like	other	link	elements	selected	by	the	user,	the	browser
downloads	the	multimedia	object	and	presents	it	to	the	user,	possibly	with	the
assistance	of	an	external	application	or	plug-in.	Referenced	content	is	always	a
two-step	process:	present	the	document	that	links	to	the	desired	multimedia
object,	then	present	the	object	if	the	user	selects	the	link.	[<a>,	6.3.1]

In	the	case	of	images,	you	can	choose	how	to	present	images	to	the	user:	inline
and	immediately	available	via	the		tag,	or	referenced	and	subsequently
available	via	the	<a>	tag.	If	your	images	are	small	and	critical	to	the	current
document,	you	should	provide	them	inline.	If	they	are	large	or	are	only	a
secondary	element	of	the	current	document,	make	them	available	as	referenced
content	via	the	<a>	tag.

If	you	choose	to	provide	images	via	the	<a>	tag,	it	is	sometimes	a	courtesy	to	your
readers	to	indicate	the	size	of	the	referenced	image	in	the	referencing	document
and	perhaps	provide	a	thumbnail	sketch.	Users	can	then	determine	whether	it	is
worth	their	time	and	expense	to	retrieve	it.

5.6.2.	Referencing	Audio,	Video,	and	Images

You	reference	any	external	document,	regardless	of	type	or	format,	via	a
conventional	anchor	(<a>)	link:

The	Kumquat	Grower's	Anthem	is	a	rousing	tribute	to

the	thousands	of	'quat	growers	around	the	world.

	
Just	like	any	referenced	document,	the	server	delivers	the	desired	multimedia
object	to	the	browser	when	the	user	selects	the	link.	If	the	browser	finds	that	the
document	is	not	HTML	or	XHTML,	but	rather	some	other	format,	it	automatically
invokes	an	appropriate	rendering	tool	to	display	or	otherwise	convey	the	contents
of	the	object	to	the	user.

You	can	configure	your	browser	with	special	helper	applications	that	handle
different	document	formats	in	different	ways.	Audio	files,	for	example,	might	be
passed	to	an	audio-processing	tool,	and	video	files	are	given	to	a	video-playing
tool.	If	a	browser	has	not	been	configured	to	handle	a	particular	document	format,
the	browser	will	inform	you	and	offer	to	simply	save	the	document	to	disk.	You
can	later	use	an	appropriate	viewing	tool	to	examine	the	document.

Browsers	identify	and	specially	handle	multimedia	files	from	one	of	two	different
hints:	either	from	the	file's	Multipurpose	Internet	Mail	Extension	(MIME)	type,
provided	by	the	server,	or	from	a	special	suffix	in	the	file's	name.	The	browser
prefers	MIME	because	of	its	richer	description	of	the	file	and	its	contents,	but	it
will	infer	the	file's	contents	(type	and	format)	from	the	file	suffix:	.gif	or	.jpg,	for
GIF	or	JPEG	encoded	images,	for	example,	or	.au	for	a	special	sound	file.

Because	not	all	browsers	look	for	a	MIME	type	or	are	necessarily	correctly
configured	with	helper	applications	by	their	users,	you	should	always	use	the
correct	file	suffix	in	the	names	of	multimedia	objects.	Refer	to	Table	5-1	for	more
information.

5.6.3.	Appropriate	Linking	Styles

Creating	effective	links	to	external	multimedia	documents	is	critical.	The	user
needs	some	indication	of	what	the	object	is	and	perhaps	the	kind	of	application
the	linked	object	needs	to	execute.	Moreover,	most	multimedia	objects	are	quite
large,	so	common	courtesy	tells	us	to	provide	users	with	some	indication	of	the
time	and	expense	involved	in	downloading	them.

In	lieu	of,	or	in	addition	to,	the	anchor	and	surrounding	text,	a	small	thumbnail	of
a	large	image,	or	a	familiar	icon	that	indicates	the	referenced	object's	format,	is
useful.

5.6.4.	Embedding	Other	Document	Types

The	Web	can	deliver	nearly	any	type	of	electronic	document,	not	just	graphics,
sound,	and	video	files.	To	display	them,	however,	the	client	browser	needs	a
helper	application	installed	and	referenced.	Recent	browsers	also	support	plug-in
accessory	software	and,	as	described	in	Chapter	12,	may	extend	the	browser	for
some	special	function,	including	inline	display	of	multimedia	objects.

For	example,	consider	a	company	whose	extensive	product	documentation	was
prepared	and	stored	in	some	popular	layout	application	such	as	Adobe	Acrobat,
FrameMaker,	QuarkXPress,	or	PageMaker.	The	Web	offers	an	excellent	way	for
distributing	that	documentation	over	a	worldwide	network,	but	converting	to
HTML	or	XHTML	would	be	too	costly	at	this	time.

The	solution	is	to	prepare	a	few	HTML	or	XHTML	documents	that	catalog	and	link
the	alternative	files	and	invoke	the	appropriate	display	applet.	Or,	make	sure	that
the	users'	browsers	have	the	plug-in	software	or	are	configured	to	invoke	the
appropriate	helper	application.	Adobe's	Acrobat	Reader	is	a	very	popular	plug-in,
for	example.	If	the	document	is	in	Acrobat	(.pdf)	format	and	if	a	link	to	an	Acrobat
document	is	chosen,	the	tool	is	started	and	accordingly	displays	the	document,
often	right	in	the	browser's	window.

	

Chapter	6.	Links	and	Webs

Up	to	this	point,	we've	dealt	with	HTML	and	XHTML	documents	as	standalone
entities,	concentrating	on	the	language	elements	you	use	for	structure	and	to
format	your	work.	The	true	power	of	these	markup	languages,	however,	lies	in
their	ability	to	join	collections	of	documents	together	into	a	full	library	of
information	and	to	link	your	library	of	documents	with	other	collections	around
the	world.	Just	as	readers	have	considerable	control	over	how	the	document	looks
onscreen,	with	hyperlinks	they	also	have	control	over	the	order	of	presentation	as
they	navigate	through	your	information.	It's	the	"HT"	in	HTML	and
XHTMLhypertextand	it's	the	twist	that	spins	the	Web.

	

6.1.	Hypertext	Basics

A	fundamental	feature	of	hypertext	is	that	you	can	hyperlink	documents;	you	can
point	to	another	place	inside	the	current	document,	inside	another	document	in
the	local	collection,	or	inside	a	document	anywhere	on	the	Internet.	The
documents	become	an	intricately	woven	web	of	information.	(Get	the	name
analogy	now?)	The	target	document	usually	is	somehow	related	to	and	enriches
the	source;	the	linking	element	in	the	source	should	convey	that	relationship	to
the	reader.

You	can	use	hyperlinks	for	all	kinds	of	effects.	You	can	use	them	inside	tables	of
contents	and	lists	of	topics.	With	a	click	of	the	mouse	on	their	browser	screen	or	a
press	of	a	key	on	their	keyboard,	readers	select	and	automatically	jump	to	a	topic
of	interest	in	the	same	document	or	to	another	document	located	in	an	entirely
different	collection	somewhere	around	the	world.

Hyperlinks	also	point	readers	to	more	information	about	a	mentioned	topic.	"For
more	information,	see	Kumquats	on	Parade,"	for	example.	Authors	use	hyperlinks
to	reduce	repetitive	information.	For	instance,	we	recommend	you	sign	your	name
to	each	document.	Instead	of	including	full	contact	information	in	each	document,
you	can	use	a	hyperlink	to	connect	your	name	to	a	single	document	that	contains
your	address,	phone	number,	and	so	forth.

A	hyperlink,	or	anchor	in	standard	parlance,	is	marked	by	the	<a>	tag	and	comes
in	two	flavors.	As	we	describe	in	detail	later,	one	type	of	anchor	creates	a	hotspot
in	the	document	that,	when	activated	and	selected	(usually	with	a	mouse)	by	the
user,	causes	the	browser	to	link.	It	automatically	loads	and	displays	another
portion	of	the	same	or	another	document	or	triggers	some	Internet	service-
related	action,	such	as	sending	email	or	downloading	a	special	file.	The	other	type
of	anchor	creates	a	label,	a	place	in	a	document	that	can	be	referenced	as	a
hyperlink.[*]

[*]	Both	types	of	anchors	use	the	same	tag;	perhaps	that's	why	they	have	the	same	name.	We	find	it's	easier	if	you
differentiate	them	and	think	of	the	type	that	provides	the	hotspot	and	address	of	a	hyperlink	as	the	"link"	and	the	type	that
marks	the	target	portion	of	a	document	as	the	"anchor."

Also,	some	mouse-related	events	are	associated	with	hyperlinks,	which,	through
JavaScript,	let	you	incorporate	some	exciting	effects.

	

6.2.	Referencing	Documents:	The	URL

Every	document	on	the	Web	has	a	unique	address.	(Imagine	the	chaos	if	they
didn't.)	The	document's	address	is	known	as	its	uniform	resource	locator	(URL).[]

[]	"URL"	usually	is	pronounced	"you	are	ell,"	not	"earl."

Several	HTML/XHTML	tags	include	a	URL	attribute	value,	including	hyperlinks,
inline	images,	and	forms.	All	use	the	same	URL	syntax	to	specify	the	location	of	a
web	resource,	regardless	of	the	type	or	content	of	that	resource.	That's	why	it's
known	as	a	uniform	resource	locator.

Because	they	can	be	used	to	represent	almost	any	resource	on	the	Internet,	URLs
come	in	a	variety	of	flavors.	All	URLs,	however,	have	the	same	top-level	syntax:

scheme:scheme_specific_part

	
The	scheme	describes	the	kind	of	object	the	URL	references;	the	scheme_specific_part
is,	well,	the	part	that	is	peculiar	to	the	specific	scheme.	The	important	thing	to
note	is	that	the	scheme	is	always	separated	from	the	scheme_specific_part	by	a	colon,
with	no	intervening	spaces.

6.2.1.	Writing	a	URL

Write	URLs	using	the	displayable	characters	in	the	US-ASCII	character	set.	For
example,	surely	you	have	heard	what	has	become	annoyingly	common	on	the
radio	for	an	announced	business	web	site:	"h,	t,	t,	p,	colon,	slash,	slash,	w,	w,	w,
dot,	blah-blah,	dot,	com."	That's	a	simple	URL,	written:

http://www.blah-blah.com

	
If	you	need	to	use	a	character	in	a	URL	that	is	not	part	of	this	character	set,	you
must	encode	the	character	using	a	special	notation.	The	encoding	notation
replaces	the	desired	character	with	three	characters:	a	percent	sign	and	two
hexadecimal	digits	whose	values	correspond	to	the	position	of	the	character	in	the
ASCII	character	set.

This	is	easier	than	it	sounds.	One	of	the	most	common	special	characters	is	the

space	(owners	of	older	Macintoshes,	take	special	notice),	whose	position	in	the
character	set	is	20	hexadecimal.[*]	You	can't	type	a	space	in	a	URL	(well,	you	can,
but	it	won't	work).	Rather,	replace	spaces	in	the	URL	with	%20:

[*]	Hexadecimal	numbering	is	based	on	16	characters:	0	through	9	followed	by	A	through	F,	which	in	decimal	are
equivalent	to	values	0	through	15.	Also,	letter	case	for	these	extended	values	is	not	significant;	"a"	(10	decimal)	is	the
same	as	"A,"	for	example.

http://www.kumquat.com/new%20pricing.html

	
This	URL	actually	retrieves	a	document	named	new	pricing.html	from	the
www.kumquat.com	server.

6.2.1.1.	Handling	reserved	and	unsafe	characters

In	addition	to	the	nonprinting	characters,	you'll	need	to	encode	reserved	and
unsafe	characters	in	your	URLs	as	well.

Reserved	characters	are	those	that	have	a	specific	meaning	within	the	URL	itself.
For	example,	the	slash	character	separates	elements	of	a	pathname	within	a	URL.
If	you	need	to	include	in	a	URL	a	slash	that	is	not	intended	to	be	an	element
separator,	you'll	need	to	encode	it	as	%2F:

http://www.calculator.com/compute?3%2f4

	
This	URL	actually	references	the	resource	named	compute	on	the
www.calculator.com	server	and	passes	the	string	3/4	to	it,	as	delineated	by	the
question	mark	(?).	Presumably,	the	resource	is	a	server-side	program	that
performs	some	arithmetic	function	on	the	passed	value	and	returns	a	result.

Unsafe	characters	are	those	that	have	no	special	meaning	within	the	URL	but	may
have	a	special	meaning	in	the	context	in	which	the	URL	is	written.	For	example,
double	quotes	("")	delimit	URL	attribute	values	in	tags.	If	you	were	to	include	a
double	quotation	mark	directly	in	a	URL,	you	would	probably	confuse	the	browser.
Instead,	you	should	encode	the	double	quotation	mark	as	%22	to	avoid	any	possible
conflict.

Table	6-1shows	other	reserved	and	unsafe	characters	that	should	always	be
encoded.

Table	6-1.	Reserved	and	unsafe	characters	and	their	URL	encodings

http://www.kumquat.com
http://www.calculator.com

Character Description Usage Encoding

; Semicolon Reserved %3B

/ Slash Reserved %2F

? Question	mark Reserved %3F

: Colon Reserved %3A

@ At	sign Reserved %40

= Equals	sign Reserved %3D

& Ampersand Reserved %26

< Less-than	sign Unsafe %3C

> Greater-than	sign Unsafe %3E

" Double	quotation	mark Unsafe %22

# Hash	symbol Unsafe %23

% Percent Unsafe %25

{ Left	curly	brace Unsafe %7B

} Right	curly	brace Unsafe %7D

| Vertical	bar Unsafe %7C

\ Backslash Unsafe %5C

^ Caret Unsafe %5E

~ Tilde Unsafe %7E

[Left	square	bracket Unsafe %5B

] Right	square	bracket Unsafe %5D

' Back	single	quotation	mark Unsafe %60

	

In	general,	you	should	always	encode	a	character	if	there	is	some	doubt	as	to
whether	it	can	be	placed	as	is	in	a	URL.	As	a	rule	of	thumb,	any	character	other
than	a	letter,	number,	or	any	of	the	symbolic	characters	like	$-_.+!*'()	should	be
encoded.

It	is	never	an	error	to	encode	a	character,	unless	that	character	has	a	specific
meaning	in	the	URL.	For	example,	encoding	the	slashes	in	an	HTTP	URL	causes
them	to	be	used	as	regular	characters,	not	as	pathname	delimiters,	breaking	the
URL.	Similarly,	encoding	an	ampersand	when	it	is	used	as	a	parameter	separator
in	a	URL	will	defeat	the	intended	purpose.	Instead,	write	these	ampersands	using
&	to	keep	their	intended	function	intact.

6.2.2.	Absolute	and	Relative	URLs

You	may	address	a	URL	in	one	of	two	ways:	absolute	or	relative.	An	absolute	URL
is	the	complete	address	of	a	resource	and	has	everything	your	system	needs	to
find	a	document	and	its	server	on	the	Web.	At	the	very	least,	an	absolute	URL
contains	the	scheme	and	all	required	elements	of	the	scheme_specific_part	of	the
URL.	It	may	also	contain	any	of	the	optional	portions	of	the	scheme_specific_part.

With	a	relative	URL,	you	provide	an	abbreviated	document	address	that,	when
automatically	combined	with	a	base	address	by	the	system,	becomes	a	complete
address	for	the	document.	Within	the	relative	URL,	any	component	of	the	URL
may	be	omitted.	The	browser	automatically	fills	in	the	missing	pieces	of	the
relative	URL	using	corresponding	elements	of	a	base	URL.	This	base	URL	is	usually
the	URL	of	the	document	containing	the	relative	URL,	but	it	may	be	another
document	specified	with	the	<base>	tag,	as	we	will	discuss	later	in	this	chapter.
[<base>,	6.7.1]

6.2.2.1.	Relative	schemes	and	servers

A	common	form	of	a	relative	URL	is	missing	the	scheme	and	server	name.
Because	many	related	documents	are	on	the	same	server,	it	makes	sense	to	omit
the	scheme	and	server	name	from	the	relative	URL.	For	instance,	assume	the
base	document	was	last	retrieved	from	the	server	www.kumquat.com.	This
relative	URL:

another-doc.html

	
is	equivalent	to	the	absolute	URL:

http://www.kumquat.com

http://www.kumquat.com/another-doc.html

	
Table	6-2	shows	how	the	base	and	relative	URLs	in	this	example	are	combined	to
form	an	absolute	URL.

Table	6-2.	Forming	an	absolute	URL

	 Protocol Server Directory File

Base	URL http www.kumquat.com / 	

Relative	URL another-doc.html

Absolute	URL http www.kumquat.com / another-doc.html

	

6.2.2.2.	Relative	document	directories

Another	common	form	of	a	relative	URL	omits	the	leading	slash	and	one	or	more
directory	names	from	the	beginning	of	the	document	pathname.	The	directory	of
the	base	URL	is	automatically	assumed	to	replace	these	missing	components.	It's
the	most	common	abbreviation,	because	most	authors	place	their	collections	of
documents	and	subdirectories	of	support	resources	in	the	same	directory	path	as
the	home	page.	For	example,	you	might	have	a	special	subdirectory	containing
FTP	files	referenced	in	your	document.	Let's	say	that	the	absolute	URL	for	that
document	is:

http://www.kumquat.com/planting/guide.html

	
A	relative	URL	for	the	file	README.txt	in	the	special	subdirectory	looks	like	this:

ftp:special/README.txt

	
You'll	actually	be	retrieving:

http://www.kumquat.com
http://www.kumquat.com

ftp://www.kumquat.com/planting/special/README.txt

	
Visually,	the	operation	looks	like	that	in	Table	6-3.

Table	6-3.	Forming	an	absolute	FTP	URL

	 Protocol Server Directory File

Base	URL http www.kumquat.com /planting guide.html

Relative	URL ftp special README.txt

Absolute	URL ftp www.kumquat.com /planting/special README.txt

	

6.2.2.3.	Using	relative	URLs

Relative	URLs	are	more	than	just	a	typing	convenience.	Because	they	are	relative
to	the	current	server	and	directory,	you	can	move	an	entire	set	of	documents	to
another	directory	or	even	another	server	and	never	have	to	change	a	single
relative	link.	Imagine	the	difficulties	if	you	had	to	go	into	every	source	document
and	change	the	URL	for	every	link	every	time	you	moved	it.	You'd	loathe	using
hyperlinks!	Use	relative	URLs	wherever	possible.

6.2.3.	The	http	URL

The	http	URL	is	by	far	the	most	common.	It	is	used	to	access	documents	from	a
web	server,	and	it	has	two	formats:

http://server:port/path#fragment
http://server:port/path?search

	
Some	of	the	parts	are	optional.	In	fact,	the	most	common	form	of	the	http	URL	is
simply:

http://www.kumquat.com
http://www.kumquat.com

http://server/path

	
which	designates	the	unique	server	and	the	directory	path	and	name	of	a
document.

6.2.3.1.	The	http	server

The	server	is	the	unique	Internet	name	or	IP	numerical	address	of	the	computer
system	that	stores	the	web	resource.	We	suspect	you'll	mostly	use	more	easily
remembered	Internet	names	for	the	servers	in	your	URLs.[*]	The	name	consists	of
several	parts,	including	the	server's	actual	name	and	the	successive	names	of	its
network	domain,	each	part	separated	by	a	period.	Typical	Internet	names	look	like
www.oreilly.com	or	hoohoo.ncsa.uiuc.edu.[]

[*]	Each	Internet-connected	computer	has	a	unique	addressa	numeric	(Internet	Protocol,	or	IP)	address,	of	course,
because	computers	deal	only	in	numbers.	Humans	prefer	names,	so	the	Internet	folks	provide	us	with	a	collection	of
special	servers	and	software	(the	domain	name	system,	or	DNS)	that	automatically	resolve	Internet	names	into	IP
addresses.

[]	The	three-letter	suffix	of	the	domain	name	identifies	the	type	of	organization	or	business	that	operates	that	portion	of
the	Internet.	For	instance,	"com"	is	a	commercial	enterprise,	"edu"	is	an	academic	institution,	and	"gov"	identifies	a
government-based	domain.	Outside	the	United	States,	a	less-descriptive	suffix	is	often	assignedtypically	a	two-letter
abbreviation	of	the	country	name,	such	as	"jp"	for	Japan	and	"de"	for	Deutschland.	Many	organizations	around	the	world
now	use	the	generic	three-letter	suffixes	in	place	of	the	more	conventional	two-letter	national	suffixes.

It	has	become	something	of	a	convention	that	webmasters	name	their	servers
www	for	quick	and	easy	identification	on	the	Web.	For	instance,	O'Reilly	Media's
web	server's	name	is	www,	which,	along	with	the	publisher's	domain	name,
becomes	the	very	easily	remembered	web	site,	www.oreilly.com.	Similarly,
MobileRobots'	web	server	is	named	www.mobilerobots.com.	Being	a	nonprofit
organization,	the	World	Wide	Web	Consortium's	main	server	has	a	different
domain	suffix:	www.w3c.org.	The	naming	convention	has	very	obvious	benefits,
which	you,	too,	should	take	advantage	of	if	you	are	called	upon	to	create	a	web
server	for	your	organization.

You	may	also	specify	the	address	of	a	server	using	its	numerical	IP	address.	The
address	is	a	sequence	of	four	numbers,	0	to	255,	separated	by	periods.	Valid	IP
addresses	look	like	137.237.1.87	or	192.249.1.33.

It'd	be	a	dull	diversion	to	tell	you	now	what	the	numbers	mean	or	how	to	derive
an	IP	address	from	a	domain	name,	particularly	because	you'll	rarely,	if	ever,	use
one	in	a	URL.	Rather,	this	is	a	good	place	to	hyperlink:	pick	up	any	good	Internet
networking	treatise	for	rigorous	detail	on	IP	addressing,	such	as	Ed	Krol's	The

http://www.oreilly.com
http://www.oreilly.com
http://www.mobilerobots.com
http://www.w3c.org

Whole	Internet	User's	Guide	and	Catalog	(O'Reilly).

6.2.3.2.	The	http	port

The	port	is	the	number	of	the	communication	port	by	which	the	client	browser
connects	to	the	server.	It's	a	networking	thingservers	perform	many	functions
besides	serving	up	web	documents	and	resources	to	client	browsers:	electronic
mail,	FTP	document	fetches,	filesystem	sharing,	and	so	on.	Although	all	that
network	activity	may	come	into	the	server	on	a	single	wire,	it's	typically	divided
into	software-managed	"ports"	for	service-specific	communicationssomething
analogous	to	boxes	at	your	local	post	office.

The	default	URL	port	for	web	servers	is	80.	Special	secure	web	serversSecure
HTTP	(SHTTP)	or	Secure	Sockets	Layer	(SSL)run	on	port	443.	Most	web	servers
today	use	port	80;	you	need	to	include	a	port	number	along	with	an	immediately
preceding	colon	in	your	URL	if	the	target	server	does	not	use	port	80	for	web
communication.

When	the	Web	was	in	its	infancy,	pioneer	webmasters	ran	their	Wild	Wild	Web
connections	on	all	sorts	of	port	numbers.	For	technical	and	security	reasons,
system-administrator	privileges	are	required	to	install	a	server	on	port	80.
Lacking	such	privileges,	these	webmasters	chose	other,	more	easily	accessible,
port	numbers.

Now	that	web	servers	have	become	acceptable	and	are	under	the	care	and
feeding	of	responsible	administrators,	documents	being	served	on	some	port	other
than	80	or	443	should	make	you	wonder	whether	that	server	is	really	on	the	up
and	up.	Most	likely,	the	maverick	server	is	being	run	by	a	clever	user
unbeknownst	to	the	server's	bona	fide	system	administrators.

6.2.3.3.	The	http	path

The	document	path	is	the	Unix-style	hierarchical	location	of	the	file	in	the	server's
storage	system.	The	pathname	consists	of	one	or	more	names	separated	by
slashes.	All	but	the	last	name	represent	directories	leading	down	to	the	document.
The	last	name	is	usually	that	of	the	document	itself,	though	the	web	server	will
typically	default	to	a	file	called	index.html.

It	has	become	a	convention	that	for	easy	identification,	HTML	document	names
end	with	the	suffix	.html	(otherwise,	they're	plain	ASCII	text	files,	remember?).
Although	recent	versions	of	Windows	allow	longer	suffixes,	old-time	developers
often	stick	to	the	three-letter	.htm	name	suffix	for	HTML	documents.

Although	the	server	name	in	a	URL	is	not	case-sensitive,	the	document	pathname
may	be.	Because	most	web	servers	are	run	on	Linux-based	systems,	and	Linux
filenames	are	case-sensitive,	those	document	pathnames	will	be	case-sensitive,
too.	Web	servers	running	on	Windows	machines	are	not	case-sensitive,	so	those
document	pathnames	are	not.	Because	it	is	impossible	to	know	the	operating
system	of	the	server	you	are	accessing,	always	assume	that	the	server	has	case-
sensitive	pathnames	and	take	care	to	get	the	case	correct	when	typing	your	URLs.

Certain	conventions	regarding	the	document	pathname	have	arisen.	If	the	last
element	of	the	document	path	is	a	directory,	not	a	single	document,	the	server
usually	will	send	back	either	a	listing	of	the	directory	contents	or	the	HTML	index
document	in	that	directory.	You	should	end	the	document	name	for	a	directory
with	a	trailing	slash	character,	but	in	practice,	most	servers	will	honor	the	request
even	if	this	character	is	omitted.

If	the	directory	name	is	just	a	slash	alone,	or	nothing	at	all,	the	server	decides
what	to	serve	to	your	browsertypically,	a	so-called	home	page	in	the	root
directory	stored	as	a	file	named	index.html.	Every	well-designed	web	server
should	have	an	attractive,	well-designed	home	page;	it's	a	shorthand	way	for
users	to	access	your	web	collection	because	they	don't	need	to	remember	the
document's	actual	filename,	just	your	server's	name.	That's	why,	for	example,	you
can	type	http://www.oreilly.com	into	Netscape's	Open	dialog	box	and	get	O'Reilly's
home	page.

Another	twist:	if	the	first	component	of	the	document	path	starts	with	the	tilde
character	(~),	it	means	that	the	rest	of	the	pathname	begins	from	the	personal
directory	in	the	home	directory	of	the	specified	user	on	the	server	machine.	For
instance,	the	URL	http://www.kumquat.com/~chuck	would	retrieve	the	top-level
page	from	Chuck's	document	collection.

Different	servers	have	different	ways	of	locating	documents	within	a	user's	home
directory.	Many	search	for	the	documents	in	a	directory	named	public_html.	Unix-
based	servers	are	fond	of	the	name	index.html	for	home	pages.	When	all	else
fails,	servers	tend	to	cough	up	a	directory	listing	or	the	default	HTML	document	in
the	home	page	directory.

6.2.3.4.	The	http	document	fragment

The	fragment	is	an	identifier	that	points	to	a	specific	section	of	a	document.	In
URL	specifications,	it	follows	the	server	and	pathname	and	is	separated	by	the
pound	sign	(#).	A	fragment	identifier	indicates	to	the	browser	that	it	should	begin
displaying	the	target	document	at	the	indicated	fragment	name.	As	we	describe	in
more	detail	later	in	this	chapter,	you	insert	fragment	names	into	a	document
either	with	the	universal	id	tag	attribute	or	with	the	name	attribute	for	the	<a>	tag.

http://www.oreilly.com
http://www.kumquat.com/%E2%88%BCchuck

In	the	following	example,	the	browser	loads	the	file	named
kumquat_locations.html	from	the	www.kumquat.com	server,	and	then	displays	the
document	starting	at	the	section	of	the	page	named	Northeast:

http://www.kumquat.com/kumquat_locations.html#Northeast

	
Like	a	pathname,	a	fragment	name	may	be	any	sequence	of	characters,	as	long	as
you	are	careful	with	spaces	and	other	symbolic	characters.

The	fragment	name	and	the	preceding	hash	symbol	are	optional;	omit	them	when
referencing	a	document	without	defined	fragments.

Formally,	the	fragment	element	applies	only	to	HTML	and	XHTML	documents.	If
the	target	of	the	URL	is	some	other	document	type,	the	browser	may	misinterpret
the	fragment	name.

Fragments	are	useful	for	long	documents.	By	identifying	key	sections	of	your
document	with	a	fragment	name,	you	make	it	easy	for	readers	to	link	directly	to
that	portion	of	the	document,	avoiding	the	tedium	of	scrolling	or	searching
through	the	document	to	get	to	the	section	that	interests	them.

As	a	rule	of	thumb,	we	recommend	that	every	section	header	in	your	documents
be	accompanied	by	an	equivalent	fragment	name.	By	consistently	following	this
rule,	you'll	make	it	possible	for	readers	to	jump	to	any	section	in	any	of	your
documents.	Fragments	also	make	it	easier	to	build	tables	of	contents	for	your
document	families.

6.2.3.5.	The	http	search	parameter

The	search	component	of	the	http	URL,	along	with	its	preceding	question	mark,	is
optional.	It	indicates	that	the	path	is	a	searchable	or	executable	resource	on	the
server.	The	content	of	the	search	component	is	passed	to	the	server	as
parameters	that	control	the	search	or	execution	function.

The	actual	encoding	of	parameters	in	the	search	component	depends	upon	the
server	and	the	resource	being	referenced.	We	cover	the	parameters	for
searchable	resources	later	in	this	chapter,	when	we	discuss	searchable	documents.
We	discuss	parameters	for	executable	resources	in	Chapter	9.

Although	our	initial	presentation	of	http	URLs	indicated	that	a	URL	may	have
either	a	fragment	identifier	or	a	search	component,	some	browsers	let	you	use
both	in	a	single	URL.	If	you	so	desire,	you	can	follow	the	search	parameter	with	a
fragment	identifier,	telling	the	browser	to	begin	displaying	the	results	of	the

http://www.kumquat.com

search	at	the	indicated	fragment.	Netscape,	for	example,	supports	this	usage.

We	don't	recommend	this	kind	of	URL,	though.	First	and	foremost,	it	doesn't	work
on	all	browsers.	Just	as	important,	using	a	fragment	implies	that	you	are	sure
that	the	results	of	the	search	will	have	a	fragment	of	that	name	defined	within
the	document.	For	large	document	collections,	this	is	hardly	likely.	You	are	better
off	omitting	the	fragment,	showing	the	search	results	from	the	beginning	of	the
document,	and	avoiding	potential	confusion	among	your	readers.

6.2.3.6.	Sample	http	URLs

Here	are	some	sample	http	URLs:

http://www.oreilly.com/catalog.html
http://www.oreilly.com
http://www.kumquat.com:8080
http://www.kumquat.com/planting/guide.html#soil_prep
http://www.kumquat.com/find_a_quat?state=Florida

	
The	first	example	is	an	explicit	reference	to	a	bona	fide	HTML	document	named
catalog.html	that	is	stored	in	the	root	directory	of	the	www.oreilly.com	server.	The
second	references	the	top-level	home	page	on	that	same	server.	That	home	page
may	or	may	not	be	catalog.html.	Sample	three	also	assumes	that	there	is	a	home
page	in	the	root	directory	of	the	www.kumquat.com	server	and	that	the	web
connection	is	to	the	nonstandard	port	8080.

The	fourth	example	is	the	URL	for	retrieving	the	web	document	named	guide.html
from	the	planting	directory	on	the	www.kumquat.com	server.	Once	retrieved,	the
browser	should	display	the	document	beginning	at	the	fragment	named	soil_	prep.

The	last	example	invokes	an	executable	resource	named	find_a_quat	with	the
parameter	named	state	set	to	the	value	Florida.	Presumably,	this	resource
generates	an	HTML	or	XHTML	response,	presumably	a	new	document	about
kumquats	in	Florida	that	is	subsequently	displayed	by	the	browser.

6.2.4.	The	file	URL

The	file	URL	is	perhaps	the	second	most	common	one	used,	but	it	is	not	readily
recognized	by	web	users	and	particularly	web	authors.	It	points	to	a	file	stored	on
a	computer	without	indicating	the	protocol	used	to	retrieve	the	file.	As	such,	it
has	limited	use	in	a	networked	environment.	That's	a	good	thing.	The	file	URL	lets

http://www.oreilly.com
http://www.kumquat.com
http://www.kumquat.com

you	load	and	display	a	locally	stored	document	and	is	particularly	useful	for
referencing	personal	HTML/XHTML	document	collections,	such	as	those	"under
construction"	and	not	yet	ready	for	general	distribution,	or	document	collections
on	CD-ROM.	The	file	URL	has	the	following	format:

file://server/path

	

6.2.4.1.	The	file	server

The	file	server	can	be,	like	the	http	one,	an	Internet	domain	name	or	IP	address
of	the	computer	containing	the	file	to	be	retrieved.	Unlike	http,	however,	which
requires	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	networking,	the
file	server	may	also	be	the	unqualified	but	unique	name	of	a	computer	on	a
personal	network,	or	a	storage	device	on	the	same	computer,	such	as	a	CD-ROM,
or	mapped	from	another	networked	computer.	No	assumptions	are	made	as	to
how	the	browser	might	contact	the	machine	to	obtain	the	file;	presumably	the
browser	can	make	some	connection,	perhaps	via	a	Network	File	System	or	FTP,	to
obtain	the	file.

If	you	omit	the	server	name	by	including	an	extra	slash	(/)	in	the	URL,	or	if	you
use	the	special	name	localhost,	the	browser	retrieves	the	file	from	the	machine	on
which	the	browser	is	running.	In	this	case,	the	browser	simply	accesses	the	file
using	the	normal	facilities	of	the	local	operating	system.	In	fact,	this	is	the	most
common	usage	of	the	file	URL.	By	creating	document	families	on	a	diskette	or	CD-
ROM	and	referencing	your	hyperlinks	using	the	file:///	URL,	you	create	a
distributable,	standalone	document	collection	that	does	not	require	a	network
connection	to	use.

6.2.4.2.	The	file	path

This	is	the	path	of	the	file	to	be	retrieved	on	the	desired	server.	The	syntax	of	the
path	may	differ	based	on	the	operating	system	of	the	server;	be	sure	to	encode
any	potentially	dangerous	characters	in	the	path.

6.2.4.3.	Sample	file	URLs

The	file	URL	is	easy:

file://localhost/home/chuck/document.html
file:///home/chuck/document.html

file://marketing.kumquat.com/monthly_sales.html
file://D:/monthly_sales.html

	
The	first	URL	retrieves	/home/chuck/document.html	from	the	user's	local	machine
off	the	current	storage	device,	typically	C:\	on	a	Windows	PC.	The	second	is
identical	to	the	first,	except	we've	omitted	the	localhost	reference	to	the	server;
the	server	name	defaults	to	the	local	drive.

The	third	example	uses	some	protocol	to	retrieve	monthly_sales.html	from	the
marketing.kumquat.com	server,	and	the	fourth	example	uses	the	local	PC's
operating	system	to	retrieve	the	same	file	from	the	D:\	drive	or	device.

6.2.5.	The	mailto	URL

The	mailto	URL	is	very	common	in	HTML/XHTML	documents.	It	has	the	browser
send	an	electronic	mail	message	to	a	named	recipient.	It	has	the	format:

mailto:address

	
The	address	is	any	valid	email	address,	usually	of	the	form:

user@server

	
Thus,	a	typical	mailto	URL	might	look	like:

mailto:chuckandbill@kumquats.com

	
You	may	include	multiple	recipients	in	the	mailto	URL,	separated	by	commas.	For
example,	this	URL	addresses	the	message	to	all	three	recipients:

mailto:chuck@kumquats.com,bill@kumquats.com,booktech@ora.com

	
There	should	be	no	spaces	before	or	after	the	commas	in	the	URL.

http://marketing.kumquat.com

6.2.5.1.	Defining	mail	header	fields

The	popular	browsers	open	an	email	helper	or	plug-in	application	when	the	user
selects	a	mailto	URL.	It	may	be	the	default	email	program	for	their	system,	or	a
common	application	such	as	Outlook	Express	with	Internet	Explorer	or	Netscape's
built-in	Communicator.	With	some	browsers,	users	can	designate	their	own	email
programs	for	handling	mailto	URLs	by	altering	a	specification	in	their	browsers'
Options	or	Preferences.

Like	http	search	parameters	that	you	attach	at	the	end	of	the	URL,	separated	by
question	marks	(?),	you	include	email-related	parameters	with	the	mailto	URL	in
the	HTML	document.	Typically,	additional	parameters	may	include	the	message's
header	fields,	such	as	the	subject,	cc	(carbon	copy),	and	bcc	(blind	carbon	copy)
recipients.	How	these	additional	fields	are	handled	depends	on	the	email	program.

A	few	examples	are	in	order:

mailto:chuckandbill@kumquats.com?subject=Loved	your	book!
mailto:chuck@kumquats.com?cc=booktech@oreilly.com
mailto:bill@kumquats.com?bcc=archive@myserver.com

	
As	you	can	probably	guess,	the	first	URL	sets	the	subject	of	the	message.	Note
that	some	email	programs	allow	spaces	in	the	parameter	value	and	others	do	not.
Annoyingly,	you	can't	replace	spaces	with	their	hexadecimal	equivalent,	%20,
because	many	email	programs	won't	make	the	proper	substitution.	It's	best	to	use
spaces	because	the	email	programs	that	don't	honor	the	spaces	simply	truncate
the	parameter	to	the	first	word.

The	second	URL	places	the	address	booktech@oreilly.com	in	the	cc	field	of	the
message.	Similarly,	the	last	example	sets	the	bcc	field.	You	may	also	set	several
fields	in	one	URL	by	separating	the	field	definitions	with	ampersands.	For
example,	this	URL	sets	the	subject	and	cc	addresses:

mailto:chuckandbill@kumquats.com?subject=Loved	your	book!&cc=booktech@oreilly.com&bcc
=archive@myserver.com

	
Not	all	email	programs	accept	or	recognize	the	bcc	and	cc	extensions	in	the	mailto
URLsome	either	ignore	them	or	append	them	to	a	preceding	subject.	Thus,	when
forming	a	mailto	URL,	it's	best	to	order	the	extra	fields	as	subject	first,	followed
by	cc	and	bcc.	And	don't	depend	on	the	cc	and	bcc	recipients	being	included	in	the
email.

mailto:booktech@oreilly.com

6.2.6.	The	ftp	URL

The	ftp	URL	is	used	to	retrieve	documents	from	a	File	Transfer	Protocol	(FTP)
server.[*]	It	has	the	format:

[*]	FTP	is	an	ancient	Internet	protocol	that	dates	back	to	the	Dark	Ages,	around	1975.	It	was	designed	as	a	simple	way	to
move	files	among	machines	and	is	popular	and	useful	to	this	day.	Many	HTML/XHTML	authors	use	FTP	to	place	files	on
their	web	servers.

ftp://user:password@server:port/path;type=typecode

	

6.2.6.1.	The	ftp	user	and	password

FTP	is	an	authenticated	service,	meaning	that	you	usually	must	have	a	valid
username	and	password	in	order	to	retrieve	documents	from	a	server.	However,
most	FTP	servers	also	support	restricted,	nonauthenticated	access	known	as
anonymous	FTP.	In	this	mode,	anyone	can	supply	the	username	"anonymous"	or
"guest"	and	be	granted	access	to	a	limited	portion	of	the	server's	documents.	Most
FTP	servers	also	assume	(but	may	not	grant)	anonymous	access	if	the	username
and	password	are	omitted.

If	you	are	using	an	authenticated	ftp	URL	to	access	a	site	that	requires	a
username	and	password,	include	the	user	and	password	components	in	the	URL,
along	with	the	colon	(:)	and	at	sign	(@).	If	you	keep	the	user	component	and	at
sign	but	omit	the	password	and	the	preceding	colon,	most	browsers	prompt	you
for	a	password	after	connecting	to	the	FTP	server.	This	is	the	recommended	way	of
accessing	authenticated	resources	on	an	FTP	server	because	it	prevents	others
from	seeing	your	password.

We	recommend	you	never	place	an	ftp	URL	with	a	username	and	password	in	any
HTML/XHTML	document.	The	reasoning	is	simple:	anyone	can	retrieve	the	simple
text	document,	extract	the	username	and	password	from	the	URL,	log	into	the	FTP
server,	and	tamper	with	its	documents.

6.2.6.2.	The	ftp	server	and	port

The	ftp	server	and	port	operate	by	the	same	rules	as	the	server	and	port	in	an
http	URL.	The	server	must	be	a	valid	Internet	domain	name	or	IP	address,	and	the
optional	port	specifies	the	port	on	which	the	server	is	listening	for	requests.	If
omitted,	the	default	port	number	is	21.

6.2.6.3.	The	ftp	path	and	typecode

The	path	component	of	an	ftp	URL	represents	a	series	of	directories,	separated	by
slashes,	leading	to	the	file	to	be	retrieved.	By	default,	the	file	is	retrieved	as	a
binary	file;	you	can	change	this	by	adding	the	typecode	(and	the	preceding
;type=)	to	the	URL.

If	the	typecode	is	set	to	d,	the	path	is	assumed	to	be	a	directory.	The	browser
requests	a	listing	of	the	directory	contents	from	the	server	and	displays	this
listing	to	the	user.	If	the	typecode	is	any	other	letter,	it	is	used	as	a	parameter	to
the	FTP	type	command	before	retrieving	the	file	referenced	by	the	path.	While
some	FTP	servers	may	implement	other	codes,	most	servers	accept	i	to	initiate	a
binary	transfer	and	a	to	treat	the	file	as	a	stream	of	ASCII	text.

6.2.6.4.	Sample	ftp	URLs

Here	are	some	sample	ftp	URLs:

ftp://www.kumquat.com/sales/pricing
ftp://bob@bobs-box.com/results;type=d
ftp://bob:secret@bobs-box.com/listing;type=a

	
The	first	example	retrieves	the	file	named	pricing	from	the	sales	directory	on	the
anonymous	FTP	server	at	www.kumquat.com.	The	second	logs	into	the	FTP	server
on	bobs-box.com	as	user	bob,	prompting	for	a	password	before	retrieving	the
contents	of	the	directory	named	results	and	displaying	them	to	the	user.	The	last
example	logs	into	bobs-box.com	as	bob	with	the	password	secret	and	retrieves	the
file	named	listing,	treating	its	contents	as	ASCII	characters.

6.2.7.	The	javascript	URL

The	javascript	URL	actually	is	a	pseudoprotocol,	not	usually	included	in
discussions	of	URLs.	With	advanced	browsers	such	as	Netscape,	Opera,	Firefox,
and	Internet	Explorer,	the	javascript	URL	can	be	associated	with	a	hyperlink	and
used	to	execute	JavaScript	commands	when	the	user	selects	the	link.	While	these
URLs	will	work,	we	don't	recommend	using	them.	Instead,	authors	should	use	the
onclick	attribute	to	associate	JavaScript	commands	with	elements	in	their
documents.

http://www.kumquat.com
http://bobs-box.com
http://bobs-box.com

6.2.7.1.	The	javascript	URL	arguments

Following	the	javascript	pseudoprotocol	is	one	or	more	semicolon-separated
JavaScript	expressions	and	methods,	including	references	to	multi-expression
JavaScript	functions	that	you	embed	within	the	<script>	tag	in	your	documents
(see	Chapter	12	for	details).	For	example:

javascript:window.alert('Hello,	world!')
javascript:doFlash('red',	'blue');	window.alert('Do	not	press	me!')

	
are	valid	URLs	you	may	include	as	the	value	for	a	link	reference	(see	section
6.3.1.2).	The	first	example	contains	a	single	JavaScript	method	that	activates	an
alert	dialog	with	the	simple	message	"Hello,	world!",	if	the	user	allows	JavaScript
to	run	with	their	browser.

The	second	javascript	URL	example	contains	two	arguments:	the	first	calls	a
JavaScript	function,	doFlash,	which	presumably	you	have	located	elsewhere	in	the
document	within	the	<script>	tag	and	which	perhaps	flashes	the	background	color
of	the	document	window	between	red	and	blue.	The	second	expression	is	the
same	alert	method	as	in	the	first	example,	with	a	slightly	different	message.

The	javascript	URL	may	appear	in	a	hyperlink	sans	arguments,	too.	In	that	case,
the	browser	may	open,	if	enabled,	a	special	JavaScript	editor	wherein	the	user
types	in	and	tests	various	expressions	and	methods.

6.2.8.	The	news	URL

Although	rarely	used	anymore,	the	news	URL	accesses	either	a	single	message	or
an	entire	newsgroup	within	the	Usenet	news	system.	It	has	two	forms:

news:newsgroup
news:message_id

	
An	unfortunate	limitation	in	news	URLs	is	that	they	don't	allow	you	to	specify	a
news	server.	Rather,	users	specify	news	servers	in	their	browser	preferences.	At
one	time,	not	long	ago,	Internet	newsgroups	were	nearly	universally	distributed;
all	news	servers	carried	all	the	same	newsgroups	and	their	respective	articles,	so
one	news	server	was	as	good	as	any.	Today,	the	sheer	bulk	of	disk	space	needed
to	store	the	daily	volume	of	newsgroup	activity	is	often	prohibitive	for	any	single
news	server,	and	there's	also	local	censorship	of	newsgroups.	Hence,	you	cannot

expect	that	all	newsgroups,	and	certainly	not	all	articles	for	a	particular
newsgroup,	will	be	available	on	the	user's	news	server.

Many	users'	browsers	may	not	be	correctly	configured	to	read	news.	We
recommend	that	you	avoid	placing	news	URLs	in	your	documents	except	in	rare
cases.

6.2.8.1.	Accessing	entire	newsgroups

Several	thousand	newsgroups	are	devoted	to	nearly	every	conceivable	topic
under	the	sun,	and	beyond.	Each	group	has	a	unique	name,	composed	of
hierarchical	elements	separated	by	periods.	For	example,	the	World	Wide	Web
announcements	newsgroup	is:

comp.infosys.www.announce

	
To	access	this	group,	use	the	URL:

news:comp.infosys.www.announce

	

6.2.8.2.	Accessing	single	messages

Every	message	on	a	news	server	has	a	unique	message	identifier	(ID)	associated
with	it.	This	ID	has	the	form:

unique_string@server

	
The	unique_string	is	a	sequence	of	ASCII	characters;	the	server	is	usually	the	name
of	the	machine	from	which	the	message	originated.	The	unique_string	must	be
unique	among	all	the	messages	that	originated	from	the	server.	A	sample	URL	to
access	a	single	message	might	be:

news:12A7789B@news.kumquat.com

	
In	general,	message	IDs	are	cryptic	sequences	of	characters	not	readily
understood	by	humans.	Moreover,	the	life	span	of	a	message	on	a	server	is

usually	measured	in	days,	after	which	the	message	is	deleted	and	the	message	ID
is	no	longer	valid.	The	bottom	line:	single-message	news	URLs	are	difficult	to
create,	become	invalid	quickly,	and	generally	are	not	used.

6.2.9.	The	nntp	URL

The	nntp	URL	goes	beyond	the	news	URL	to	provide	a	complete	mechanism	for
accessing	articles	in	the	Usenet	news	system.	It	has	the	form:

nntp://server:port/newsgroup/article

	

6.2.9.1.	The	nntp	server	and	port

The	nntp	server	and	port	are	defined	similarly	to	the	http	server	and	port,
described	earlier.	The	server	must	be	the	Internet	domain	name	or	IP	address	of
an	nntp	server;	the	port	is	the	port	on	which	that	server	is	listening	for	requests.

If	the	port	and	its	preceding	colon	are	omitted,	the	default	port	of	119	is	used.

6.2.9.2.	The	nntp	newsgroup	and	article

The	newsgroup	is	the	name	of	the	group	from	which	an	article	is	to	be	retrieved,
as	just	defined	in	section	6.2.8	The	article	is	the	numeric	ID	of	the	desired	article
within	that	newsgroup.	Although	the	article	number	is	easier	to	determine	than	a
message	ID,	it	falls	prey	to	the	same	limitations	of	single-message	references
using	the	news	URL,	just	described	in	section	6.2.8.	Specifically,	articles	do	not
last	long	on	most	nntp	servers,	and	nntp	URLs	quickly	become	invalid	as	a	result.

6.2.9.3.	Sample	nntp	URLs

A	sample	nntp	URL	might	be:

nntp://news.kumquat.com/alt.fan.kumquats/417

	
This	URL	retrieves	article	417	from	the	alt.fan.kumquats	newsgroup	on
news.kumquat.com.	Keep	in	mind	that	the	article	will	be	served	only	to	machines

http://news.kumquat.com

that	are	allowed	to	retrieve	articles	from	this	server.	In	general,	most	nntp
servers	restrict	access	to	those	machines	on	the	same	local	area	network.

6.2.10.	The	telnet	URL

The	telnet	URL	opens	an	interactive	session	with	a	desired	server,	allowing	the
user	to	log	in	and	use	the	machine.	Often,	the	connection	to	the	machine
automatically	starts	a	specific	service	for	the	user;	in	other	cases,	the	user	must
know	the	commands	to	type	to	use	the	system.	The	telnet	URL	has	the	form:

telnet://user:password@server:port

	

6.2.10.1.	The	Telnet	user	and	password

Specify	the	Telnet	user	and	password	are	defined	exactly	like	the	user	and
password	components	of	the	ftp	URL,	described	previously.	In	particular,	the	same
caveats	apply	regarding	protecting	your	password	and	never	placing	it	within	a
URL.

Just	like	the	ftp	URL,	if	you	omit	the	password	from	the	URL,	the	browser	should
prompt	you	for	a	password	just	before	contacting	the	Telnet	server.

If	you	omit	both	the	user	and	the	password,	the	Telnet	occurs	without	supplying	a
username.	For	some	servers,	Telnet	automatically	connects	to	a	default	service
when	no	username	is	supplied.	For	others,	the	browser	may	prompt	for	a
username	and	password	when	making	the	connection	to	the	Telnet	server.

6.2.10.2.	The	Telnet	server	and	port

The	Telnet	server	and	port	are	defined	similarly	to	the	http	server	and	port,
described	earlier.	The	server	must	be	the	Internet	domain	name	or	IP	address	of	a
Telnet	server;	the	port	is	the	port	on	which	that	server	is	listening	for	requests.	If
the	port	and	its	preceding	colon	are	omitted,	the	default	port	of	23	is	used.

6.2.11.	The	gopher	URL

Gopher	is	a	web-like	document-retrieval	system	that	achieved	some	popularity	on
the	Internet	just	before	the	Web	took	off,	making	gopher	obsolete.	Some	gopher

servers	still	exist,	though,	and	the	gopher	URL	lets	you	access	gopher	documents.

The	gopher	URL	has	the	form:

gopher://server:port/path

	

6.2.11.1.	The	gopher	server	and	port

The	gopher	server	and	port	are	defined	similarly	to	the	http	server	and	port,
described	previously.	The	server	must	be	the	Internet	domain	name	or	IP	address
of	a	gopher	server;	the	port	is	the	port	on	which	that	server	is	listening	for
requests.

If	the	port	and	its	preceding	colon	are	omitted,	the	default	port	of	70	is	used.

6.2.11.2.	The	gopher	path

The	gopher	path	can	take	one	of	three	forms:

type/selectortype/selector%09searchtype/selector%09search%09gopherplus

	
The	type	is	a	single	character	value	denoting	the	type	of	the	gopher	resource.	If
the	entire	path	is	omitted	from	the	gopher	URL,	the	type	defaults	to	1.

The	selector	corresponds	to	the	path	of	a	resource	on	the	gopher	server.	It	may	be
omitted,	in	which	case	the	top-level	index	of	the	gopher	server	is	retrieved.

If	the	gopher	resource	is	actually	a	gopher	search	engine,	the	search	component
provides	the	string	for	which	to	search.	The	search	string	must	be	preceded	by	an
encoded	horizontal	tab	(%09).

If	the	gopher	server	supports	gopher+	resources,	the	gopherplus	component
supplies	the	necessary	information	to	locate	that	resource.	The	exact	content	of
this	component	varies	based	upon	the	resources	on	the	gopher	server.	This
component	is	preceded	by	an	encoded	horizontal	tab	(%09).	If	you	want	to	include
the	gopherplus	component	but	omit	the	search	component,	you	must	still	supply	both
encoded	tabs	within	the	URL.

	

6.3.	Creating	Hyperlinks

Use	the	HTML/XHTML	<a>	tag	to	create	links	to	other	documents	and	to	name
anchors	for	fragment	indentifiers	within	documents.

6.3.1.	The	<a>	Tag

You	will	use	the	<a>	tag	most	commonly	with	its	href	attribute	to	create	a
hypertext	link,	or	hyperlink,	to	another	place	in	the	same	document	or	to	another
document.	In	these	cases,	the	current	document	is	the	source	of	the	link;	the
value	of	the	href	attribute,	a	URL,	is	the	target.[*]

[*]	You	may	run	across	the	terms	head	and	tail,	which	reference	the	target	and	source	of	a	hyperlink.	This	naming
scheme	assumes	that	the	referenced	document	(the	head)	has	many	tails	that	are	embedded	in	many	referencing
documents	throughout	the	Web.	We	find	this	naming	convention	confusing	and	stick	to	the	concept	of	source	and	target
documents	throughout	this	book.

The	other	way	you	can	use	the	<a>	tag	is	with	the	name	attribute,	to	mark	a
hyperlink	target,	or	fragment	identifier,	in	a	document.	This	method,	although
part	of	the	HTML	4	and	XHTML	standards,	is	slowly	succumbing	to	the	id	attribute,
which	lets	you	mark	nearly	any	element,	including	paragraphs,	divisions,	forms,
and	so	on,	as	a	hyperlink	target.

<a>

Function Defines	anchors	within	a	text	flow

Attributes
accesskey,	charset,	class,	coords,	dir,	HRef,	hreflang,	id,	lang,	name,	onBlur,	onClick,
onDblClick,	onFocus,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,
onMouseOut,	onMouseOver,	onMouseUp,	rel,	rev,	shape,	style,	tabindex,	target,	title,	type

End	tag ;	never	omitted

Contains a_content

Used	in text

	
The	standards	let	you	use	both	the	name	and	href	attributes	within	a	single	<a>	tag,
defining	a	link	to	another	document	and	a	fragment	identifier	within	the	current
document.	We	recommend	against	this	because	it	overloads	a	single	tag	with
multiple	functions	and	some	browsers	may	not	be	able	to	handle	it.	Instead,	use
two	<a>	tags	when	such	a	need	arises.	Your	source	will	be	easier	to	understand
and	modify	and	will	work	better	across	a	wider	range	of	browsers.

6.3.1.1.	Allowed	content

Between	the	<a>	tag	and	its	required	end	tag,	you	may	put	only	regular	text,
inline	elements,	line	breaks,	and	images.	The	browser	renders	all	of	these
elements	normally,	but	with	the	addition	of	some	special	effects	to	indicate	that
they	are	hyperlinks	to	other	documents.	For	instance,	the	popular	graphical
browsers	typically	underline	and	color	the	text	and	draw	a	colored	border	around
images	that	are	enclosed	by	<a>	tags.

6.3.1.2.	The	href	attribute

Use	the	href	attribute	to	specify	the	URL	of	the	target	of	a	hyperlink.	Its	value	is
any	valid	document	URL,	absolute	or	relative,	including	a	fragment	identifier	or	a
JavaScript	code	fragment.	If	the	user	selects	the	contents	of	the	<a>	tag,	the
browser	will	attempt	to	retrieve	and	display	the	document	indicated	by	the	URL

specified	by	the	href	attribute	or	execute	the	list	of	JavaScript	expressions,
methods,	and	functions.[Referencing	Documents:	The	URL,	6.2]

A	simple	<a>	tag	that	references	another	document	might	be:

The	growing
season	for	kumquats	in	the	Northeast.

	
which	appears	in	the	browser	display	shown	in	Figure	6-1.

Figure	6-1.	Hyperlink	to	another	HTML	document

	
Notice	that	the	browser	specially	renders	the	phrase	"growing	season",	letting	the
user	know	that	it	is	a	link	to	another	document.	Users	usually	have	the	option	to
set	their	own	text	color	for	the	link	and	have	the	color	change	when	a	link	is
taken;	blue	initially	and	then	red	after	it	has	been	selected	at	least	once,	for
instance.	More	complex	anchors	might	include	images:

		
								
									New	pruning	tips!
		<p>
		
								
									Kumquats	throughout	history

	
Most	graphical	browsers	such	as	Internet	Explorer,	but	not	Opera	for	some	reason,
place	a	special	border	around	images	that	are	part	of	an	anchor,	as	shown	in
Figure	6-2.	Remove	that	hyperlink	border	with	the	border=0	attribute	and	value
within	the		tag	for	the	image.	[The	border	attribute,	5.2.6.8]

Figure	6-2.	Internet	Explorer	puts	a	special	border	around	an
image	that	is	inside	an	anchor

	

6.3.1.3.	The	name	and	id	attributes

Use	the	name	and	id	attributes	with	the	<a>	tag	to	create	a	fragment	identifier
within	a	document.	Once	created,	the	fragment	identifier	becomes	a	potential
target	of	a	link.

Prior	to	HTML	4.0,	the	only	way	to	create	a	fragment	identifier	was	to	use	the	name
attribute	with	the	<a>	tag.	With	the	advent	of	the	id	attribute	in	HTML	4.0,	and	its
ability	to	be	used	with	almost	any	tag,	any	HTML	or	XHTML	element	can	be	a
fragment	identifier.	The	<a>	tag	retains	the	name	attribute	for	historic	purposes	and
honors	the	id	attribute	as	well.	These	attributes	can	be	used	interchangeably,	with
id	being	the	more	"modern"	version	of	the	name	attribute.	Both	name	and	id	can	be
specified	in	conjunction	with	the	href	attribute,	allowing	a	single	<a>	to	be	both	a
hyperlink	and	a	fragment	identifier.

An	easy	way	to	think	of	a	fragment	identifier	is	as	the	HTML	analog	of	the	goto
statement	label	common	in	many	programming	languages.	The	name	attribute
within	the	<a>	tag	or	the	id	attribute	within	the	<a>	or	other	tags	places	a	label
within	a	document.	When	that	label	is	used	in	a	link	to	that	document,	it	is	the
equivalent	of	telling	the	browser	to	goto	that	label.

The	value	of	the	id	or	name	attribute	is	a	character	string,	enclosed	in	quotation
marks.	The	string	must	begin	with	a	letter,	followed	by	letters,	numbers,	hyphens,
underscores,	colons,	and	periods.	The	value	must	be	a	unique	label,	not	reused	in
any	other	name	or	id	attribute	in	the	same	document,	although	it	can	be	reused	in
different	documents.

Here	are	some	name	and	id	examples:

<h2>Pruning	Your	Kumquat	Tree</h2>
<h2	id="Pruning">Pruning	Your	Kumquat	Tree</h2>

	
Notice	that	we	set	the	anchor	in	a	section	header	of	a	presumably	large
document.	It's	a	practice	we	encourage	you	to	follow	for	all	major	sections	of	your
work	for	easier	reference	and	future	smart	processing,	such	as	automated
extraction	of	topics.

The	following	link,	when	taken	by	the	user:

	
jumps	directly	to	the	section	of	the	document	we	named	in	the	previous
examples.

Browsers	don't	display	the	contents	of	the	anchor	<a>	tag	with	the	name	or	id
attribute	in	any	special	way.	Technically,	you	do	not	have	to	put	any	document
content	within	the	<a>	tag	with	the	name	attribute	because	it	simply	marks	a
location	in	the	document.	In	practice,	though,	some	browsers	ignore	the	tag
unless	some	document	contenta	word	or	phrase,	even	an	imageis	between	the	<a>
and		tags.	For	this	reason,	it's	probably	a	good	idea	to	have	at	least	one
displayable	element	in	the	body	of	any	<a>	tag.

6.3.1.4.	The	event	attributes

A	number	of	event	handlers	are	built	into	modern	browsers.	These	handlers	watch
for	certain	conditions	and	user	actions,	such	as	a	click	of	the	mouse	or	when	an
image	finishes	loading	into	the	browser	window.	With	client-side	JavaScript,	you
may	include	selected	event	handlers	as	attributes	of	certain	tags	and	execute	one
or	more	JavaScript	commands	and	functions	when	the	event	occurs.

With	the	anchor	(<a>)	tag,	you	may	associate	JavaScript	code	with	a	number	of
mouse-	and	keyboard-related	events.	The	value	of	the	event	handler	isenclosed	in
quotation	marksone	or	a	sequence	of	semicolon-separated	JavaScript	expressions,
methods,	and	function	references	that	the	browser	executes	when	the	event
occurs.	[JavaScript	Event	Handlers,	12.3.3]

A	popular,	albeit	simple,	use	of	the	onMouseOver	event	with	a	hyperlink	is	to	print	an
expanded	description	of	the	tag's	destination	in	the	JavaScript-aware	browser's
status	box	(Figure	6-3).	Normally,	the	browser	displays	the	frequently	cryptic
destination	URL	there	whenever	the	user	passes	the	mouse	pointer	over	an	<a>

tag's	contents:

<a	href="http://www.ora.com/kumquats/homecooking/recipes.html#quat5"
onMouseOver="status='A	yummy	recipe	for	kumquat	soup.';	return	true;">

	

Figure	6-3.	Use	JavaScript	to	display	a	message	in	the	browser's
status	box

	
We	argue	that	the	contents	of	the	tag	itself	should	explain	the	link,	but
sometimes	window	space	is	tight	and	an	expanded	explanation	is	helpful,	such	as
when	the	link	is	in	a	table	of	contents.

See	Chapter	12	for	more	about	JavaScript.

6.3.1.5.	The	rel	and	rev	attributes

The	optional	rel	and	rev	attributes	for	the	<a>	tag	express	a	formal	relationship	and
direction	between	source	and	target	documents.	The	rel	attribute	specifies	the
relationship	from	the	source	document	to	the	target,	and	the	rev	attribute
specifies	the	relationship	from	the	target	to	the	source.	Both	attributes	can	be
placed	in	a	single	<a>	tag,	and	the	browser	may	use	them	to	specially	alter	the
appearance	of	the	anchor	content	or	to	automatically	construct	document
navigation	menus.	Other	tools	also	may	use	these	attributes	to	build	special	link
collections,	tables	of	contents,	and	indexes.

The	value	of	either	the	rel	or	rev	attribute	is	a	space-separated	list	of
relationships.	The	actual	relationship	names	and	their	meanings	are	up	to	you:

they	are	not	formally	addressed	by	the	HTML	or	XHTML	standards.	For	example,	a
document	that	is	part	of	a	sequence	of	documents	might	include	its	relationship	in
a	link:

	
The	relationship	from	the	source	to	the	target	is	that	of	moving	to	the	next
document;	the	reverse	relationship	is	that	of	moving	to	the	previous	document.

These	document	relationships	are	also	used	in	the	<link>	tag	in	the	document
<head>.	The	<link>	tag	establishes	the	relationship	without	actually	creating	a	link
to	the	target	document;	the	<a>	tag	creates	the	link	and	imbues	it	with	the
relationship	attributes.	[<link>,	6.7.2]

Commonly	used	document	relationships	include:

next

Links	to	the	next	document	in	a	collection

prev

Links	to	the	previous	document	in	a	collection

head

Links	to	the	top-level	document	in	a	collection

toc

Links	to	a	collection's	table	of	contents

parent

Links	to	the	document	above	the	source

child

Links	to	the	document	below	the	source

index

Links	to	the	index	for	this	document

glossary

Links	to	the	glossary	for	this	document

Few	browsers	take	advantage	of	these	attributes	to	modify	the	link	appearance.
However,	these	attributes	are	a	great	way	to	document	links	you	create,	and	we
recommend	that	you	take	the	time	to	insert	them	whenever	possible.

6.3.1.6.	The	style	and	class	attributes

Use	the	style	and	class	attributes	for	the	<a>	tag	to	control	the	display	style	for	the
content	enclosed	by	the	tag	and	to	format	the	content	according	to	a	predefined
class	of	the	<a>	tag.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

6.3.1.7.	The	lang	and	dir	attributes

Like	almost	all	other	tags,	the	<a>	tag	accepts	the	lang	and	dir	attributes,	denoting
the	language	used	for	the	content	within	the	<a>	tag	and	the	direction	in	which
that	language	is	rendered.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,
3.6.1.2]

6.3.1.8.	The	target	attribute

The	target	attribute	lets	you	specify	where	to	display	the	contents	of	a	selected
hyperlink.	Commonly	used	in	conjunction	with	frames	or	multiple	browser
windows,	the	value	of	this	attribute	is	the	name	of	the	frame	or	window	in	which
the	referenced	document	should	be	loaded.	If	the	named	frame	or	window	exists,
the	document	is	loaded	in	that	frame	or	window.	If	not,	a	new	window	is	created
and	given	the	specified	name,	and	the	document	is	loaded	in	that	new	window.

For	more	information,	including	a	list	of	special	target	names,	see	section	11.7.

6.3.1.9.	The	title	attribute

The	title	attribute	lets	you	specify	a	title	for	the	document	to	which	you	are
linking.	The	value	of	the	attribute	is	any	string,	enclosed	in	quotation	marks.	The
browser	might	use	it	when	displaying	the	link,	perhaps	flashing	the	title	when	the
mouse	passes	over	the	link.	The	browser	might	also	use	the	title	attribute	when
adding	this	link	to	a	user's	bookmarks	or	favorites.

The	title	attribute	is	especially	useful	for	referencing	an	otherwise	unlabeled
resource,	such	as	an	image	or	a	non-HTML	document.	For	example,	the	browser
might	include	the	following	title	on	this	otherwise	wordless	image	display	page:

<a	href="pics/kumquat.gif"
			title="A	photograph	of	the	Noble	Fruit">

	
Ideally,	the	value	specified	should	match	the	title	of	the	referenced	document,	but
it's	not	required.

6.3.1.10.	The	charset,	hreflang,	and	type	attributes

According	to	the	HTML	4	and	XHTML	standards,	the	charset	attribute	specifies	the
character	encoding	used	in	the	document	that	is	the	destination	of	the	link.	The
value	of	this	attribute	must	be	the	name	of	a	standard	character	set:	"euc-jp,"	for
example.	The	default	value	is	"ISO-8859-1."

The	HReflang	attribute	may	be	specified	only	when	the	href	attribute	is	used.	Like
the	lang	attribute,	its	value	is	an	International	Organization	for	Standardization
(ISO)	standard	two-character	language	code.	Unlike	the	lang	attribute,	the	HReflang
attribute	does	not	address	the	language	used	by	the	contents	of	the	tag.	Instead,
it	specifies	the	language	used	in	the	document	referenced	by	the	href	attribute.
[The	lang	attribute,	3.6.1.2]

The	type	attribute	specifies	the	content	type	of	the	resource	referenced	by	the	<a>
tag.	Its	value	is	any	Multipurpose	Internet	Mail	Extension	(MIME)	encoding	type.
For	example,	you	might	inform	the	browser	that	you	are	linking	to	a	plain	ASCII
document	with:

	
The	browser	might	use	this	information	when	displaying	the	referenced	document,
or	might	even	present	the	link	differently	based	upon	the	content	type.

6.3.1.11.	The	coords	and	shape	attributes

Two	more	attributes	are	defined	in	the	HTML	and	XHTML	standards	for	the	<a>	tag
but	are	not	supported	by	the	currently	popular	browsers.	Like	the	attributes	of	the
same	names	for	the	<area>	tag,	the	coords	and	shape	attributes	define	a	region	of
influence	for	the	<a>	tag.	You	should	use	these	attributes	with	the	<a>	tag	only
when	that	tag	is	part	of	the	content	of	a	<map>	tag,	as	described	later	in	this
chapter.	[<map>,	6.5.3]	[The	coords	attribute,	6.5.4.2]	[The	shape	attribute,
6.5.4.7]

6.3.1.12.	The	accesskey	and	tabindex	attributes

Traditionally,	users	of	graphical	browsers	select	and	execute	a	hyperlink	by
pointing	and	clicking	the	mouse	device	on	the	region	of	the	browser	display
defined	by	the	anchor.	What	is	less	well	known	is	that	you	may	choose	a
hyperlink,	among	other	objects	in	the	browser	window,	by	pressing	the	Tab	key
and	then	activate	that	link	by	pressing	the	Enter	key.	With	the	tabindex	attribute,
you	may	reorder	the	sequence	in	which	the	browser	steps	through	to	each	object
when	the	user	presses	the	Tab	key.	The	value	of	this	attribute	is	an	integer
greater	than	0.	The	browser	starts	with	the	object	whose	tabindex=1	and	moves
through	the	other	objects	in	increasing	tabindex	order.

With	the	accesskey	attribute,	you	may	select	an	alternative	"hot	key"	that,	when
pressed,	activates	the	specific	link.	The	value	of	this	attribute	is	a	single	character
that	is	pressed	in	conjunction	with	an	Alt	or	"meta"	key,	depending	on	the
browser	and	computing	platform.	Ideally,	this	character	should	appear	in	the
content	of	the	<a>	tag;	if	so,	the	browser	may	choose	to	display	the	character
differently	to	indicate	that	it	is	a	hot	key.

See	an	expanded	description	for	both	of	these	attributes	in	Chapter	9.

6.3.2.	Linking	to	Other	Documents

Say	you	make	a	hyperlink	to	another	document	with	the	<a>	tag	and	its	href
attribute,	which	defines	the	URL	of	the	target	document.	The	contents	of	the	<a>
tag	are	presented	to	the	user	in	some	distinctive	manner	to	indicate	the	link	is

available.

When	creating	a	link	to	another	document,	you	should	consider	adding	the	title,
rel,	and	rev	attributes	to	the	<a>	tag.	They	help	document	the	link	you	are	creating
and	allow	the	browser	to	embellish	the	display	anchor	contents.

6.3.3.	Linking	Within	a	Document

Creating	a	link	within	the	same	document	or	to	a	specific	fragment	of	another
document	is	a	two-step	process.	The	first	step	is	to	make	the	target	fragment;	the
second	is	to	create	the	link	to	the	fragment.

Use	the	<a>	tag	with	its	name	attribute	to	identify	a	fragment.	Here's	a	sample
fragment	identifier:

<h3>Section	7</h3>

	
Alternatively,	use	the	id	attribute	and	embed	the	hyperlink	target	directly	in	a
defining	tag,	such	as	a	header:[*]

[*]	We	prefer	the	id	way,	although	not	all	browsers	support	it,	yet.

<h3	id="Section_7">Section	7</h3>

	
A	hyperlink	to	the	fragment	is	an	<a>	tag	with	the	HRef	attribute,	in	which	the
attribute's	valuethe	target	URLends	with	the	fragment's	name,	preceded	by	the
pound	sign	(#).	A	reference	to	the	previous	example's	fragment	identifier,	then,
might	look	like	this:

See	Section	7
for	further	details.

	
By	far,	the	most	common	use	of	fragment	identifiers	is	in	creating	a	table	of
contents	for	a	lengthy	document.	Begin	by	dividing	your	document	into	several
logical	sections,	using	appropriate	headers	and	consistent	formatting.	At	the	start
of	each	section,	add	a	fragment	identifier	for	that	section,	typically	as	part	of	the
section	title.	Finally,	make	a	list	of	links	to	those	fragment	identifiers	at	the
beginning	of	your	document.

Our	sample	document	extolling	the	life	and	wonders	of	the	mighty	kumquat,	for
example,	is	quite	long	and	involved,	including	many	sections	and	subsections	of
interest.	It	is	a	document	to	be	read	and	read	again.	In	order	to	make	it	easy	for
kumquat	lovers	everywhere	to	find	their	section	of	interest	quickly,	we've
included	fragment	identifiers	for	each	major	section	and	placed	an	ordered	list	of
linksa	hot-linked	table	of	contents,	as	it	wereat	the	beginning	of	each	Kumquat
Lover's	document,	a	sample	of	which	follows,	along	with	sample	fragment
identifiers	that	appear	in	the	same	document.	The	ellipses	symbol	(...)	means	that
there	are	intervening	segments	of	content,	of	course:

...
<h3>Table	of	Contents</h3>

		Soil	Preparation
		Digging	the	Hole
		Planting	the	Tree

...
<h3	id=soil_prep>Soil	Preparation</h3>
...
<h3	id=dig_hole>Digging	the	Hole</h3>
...
<h3	id=planting>Planting	the	Tree</h3>
...

	
The	kumquat	lover	can	thereby	click	the	desired	link	in	the	table	of	contents	and
jump	directly	to	the	section	of	interest,	without	lots	of	tedious	scrolling.

Notice	also	that	this	example	uses	relative	URLsa	good	idea	if	you	ever	intend	to
move	or	rename	the	document	without	breaking	all	the	hyperlinks.

	

6.4.	Creating	Effective	Links

A	document	becomes	hypertext	when	you	toss	in	a	few	links	in	the	same	way	that
water	becomes	soup	when	you	throw	in	a	few	vegetables.	Technically,	you've	met
the	goal,	but	the	outcome	may	not	be	very	tasty.

Inserting	anchors	into	your	documents	is	something	of	an	art,	requiring	good
writing	skills,	HTML/XHTML	prowess,	and	an	architectural	sense	of	your
documents	and	their	relationships	to	others	on	the	Web.	Effective	links	flow
seamlessly	into	a	document,	quietly	supplying	additional	browsing	opportunities	to
the	reader	without	disturbing	the	current	document.	Poorly	designed	links	scream
out,	interrupt	the	flow	of	the	source	document,	and	generally	annoy	the	reader.

While	there	are	as	many	linking	styles	as	there	are	authors,	here	are	a	few	of	the
more	popular	ways	to	link	your	documents.	All	do	two	things:	they	give	the
reader	quick	access	to	related	information,	and	they	tell	the	reader	how	the	link	is
related	to	the	current	contents.

6.4.1.	Lists	of	Links

Perhaps	the	most	common	way	to	present	hyperlinks	is	in	ordered	or	unordered
lists	in	the	style	of	a	table	of	contents	or	list	of	resources.

Two	schools	of	style	exist.	One	puts	the	entire	list	item	into	the	source	anchor;
the	other	abbreviates	the	item	and	puts	a	shorthand	phrase	in	the	source	anchor.
In	the	former,	make	sure	you	keep	the	anchor	content	short	and	sweet;	in	the
latter,	use	a	direct	writing	style	that	makes	it	easy	to	embed	the	link.

If	your	list	of	links	becomes	overly	long,	consider	organizing	it	into	several
sublists	grouped	by	topic.	Readers	can	then	scan	the	topics	(set	off,	perhaps,	as
<h3>	headers)	for	the	appropriate	list	and	then	scan	that	list	for	the	desired
document.

The	alternative	list	style	is	much	more	descriptive,	but	also	wordier,	so	you	have
to	be	careful	that	it	doesn't	end	up	cluttered:

<p>
Kumquat-related	documents	include:

		A	concise	guide	to	
						profitable	kumquat	farming,
						including	a	variety	of	business	plans,	lists	of	fruit
						packing	companies,	and	farming	supply	companies.

		101	different	ways	to	
						use	a	kumquat,	including	stewed	kumquats	and	kumquat	pie!
		The	kumquat	is	a	hardy	tree,	but	even	the	greenest	of
						thumbs	can	use	a	few	
						growing	tips	to	increase
						their	yield.
		The	business	of	kumquats	is	an	expanding	one,	as
						shown	by	this	10	year	overview	of	the
						
						kumquat	industry.

	
It	sometimes	gets	hard	to	read	a	source	HTML	document,	and	it	will	become	even
more	tedious	with	XHTML.	Imagine	the	clutter	if	we'd	used	anchors	with	fragment
identifiers	for	each	subtopic	in	the	list-item	explanations.	Nonetheless,	it	looks
pristine	and	easily	navigable	when	displayed	by	a	browser	such	as	Opera,	as
shown	in	Figure	6-4.

Figure	6-4.	Wordy	but	effectively	descriptive	link	list

	
This	more	descriptive	style	of	presenting	a	link	list	tries	hard	to	draw	readers	into
the	linked	document	by	giving	a	fuller	taste	of	what	they	can	expect	to	find.
Because	each	list	element	is	longer	and	requires	more	scanning	by	the	reader,
you	should	use	this	style	sparingly	and	dramatically	limit	the	number	of	links.

Use	the	brief	list	style	when	presenting	large	numbers	of	links	to	a	well-informed
audience.	The	second,	more	descriptive	style	is	better	suited	to	a	smaller	number
of	links	for	which	your	readership	is	less	well-versed	in	the	topic	at	hand.

6.4.2.	Inline	References

If	you	aren't	collecting	links	into	lists,	you're	probably	sprinkling	them	throughout
your	document.	So-called	inline	links	are	more	in	keeping	with	the	true	spirit	of
hypertext	because	they	enable	readers	to	mark	their	current	place	in	the
document,	visit	the	related	topic	in	more	depth	or	find	a	better	explanation,	and
then	come	back	to	the	original	and	continue	reading.	That's	very	personalized
information	processing.

The	biggest	mistake	novice	authors	make,	however,	is	to	overload	their
documents	with	links	and	treat	them	as	though	they	are	panic	buttons	demanding
to	be	pressed.	You	may	have	seen	this	style	of	linking;	HTML	pages	with	the	word
here	all	over	the	place,	like	the	panic-ridden	example	in	Figure	6-5	(we	can't
bring	ourselves	to	show	you	the	source	for	this	travesty).

Figure	6-5.	Links	should	not	wave	and	yell,	like	first-graders,
"Here!	Me!	Me!"

	
As	links,	phrases	such	as	"click	here"	and	"also	available"	are	content-free	and
annoying.	They	make	the	person	who	is	scanning	the	page	for	an	important	link
read	all	the	surrounding	text	to	actually	find	the	reference.

The	better,	more	refined	style	for	an	inline	link	is	to	make	every	one	contain	a
noun	or	noun/verb	phrase	relating	to	the	topic	at	hand.	Compare	how	kumquat
farming	and	industry	news	references	are	treated	in	Figure	6-6	to	the	"Here!	Me!
Me!"	example	in	Figure	6-5.

Figure	6-6.	Kinder,	gentler	inline	links	work	best

	
A	quick	scan	of	Figure	6-6	immediately	yields	useful	links	to	"kumquat	farming
methods"	and	"kumquat	industry's	past	ten	years."	There	is	no	need	to	read	the
surrounding	text	to	understand	where	the	link	will	take	you.	Indeed,	the
immediately	surrounding	content	in	our	example,	as	for	most	inline	links,	serves
only	as	syntactic	sugar	in	support	of	the	embedded	links.

Embedding	links	into	the	general	discourse	of	a	document	takes	more	effort	than
creating	link	lists.	You	have	to	actually	understand	the	content	of	the	current
document	as	well	as	the	target	documents,	be	able	to	express	that	relationship	in
just	a	few	words,	and	then	intelligently	incorporate	that	link	at	some	key	place	in
the	source	document.	Hopefully	this	key	place	is	where	you	might	expect	the	user
to	be	ready	to	interrupt	her	reading	and	ask	a	question	or	request	more
information.	To	make	matters	even	more	difficult,	particularly	for	the	traditional
tech	writer,	this	form	of	author-reader	conversation	is	most	effective	when
presented	in	active	voice	(he,	she,	or	it	does	something	to	an	object	versus	the
object	having	something	done	to	it).	The	effort	expended	is	worthwhile,	resulting
in	more	informative,	easily	read	documents.	Remember,	you'll	write	the	document
once,	but	it	will	be	read	thousands,	if	not	millions,	of	times.	Please	your	readers,
please.

6.4.3.	Linking	Dos	and	Don'ts

Here	are	some	hints	for	creating	links:

Keep	the	link	content	as	concise	as	possible

Long	links	or	huge	inline	graphic	icons	for	links	are	visually	disruptive	and
potentially	confusing.

Never	place	two	links	immediately	adjacent	to	one	another

Most	browsers	make	it	difficult	to	tell	where	one	link	stops	and	the	next	link
starts.	Separate	them	with	regular	text	or	line	breaks.

Be	consistent

If	you	are	using	inline	references,	make	all	of	your	links	inline	references.	If
you	choose	to	use	lists	of	links,	stick	to	either	the	short	or	the	long	form;	try
not	to	mix	styles	in	a	single	document.

Try	reading	your	document	with	all	the	nonanchor	text	removed

If	some	links	suddenly	make	no	sense,	rewrite	them	so	that	they	stand	on
their	own.	(Many	people	scan	documents	looking	only	for	links;	the
surrounding	text	becomes	little	more	than	a	gray	background	to	the	more
visually	compelling	links.)

6.4.4.	Using	Images	and	Links

It	has	become	fashionable	to	use	images	and	icons	instead	of	words	for	link
contents.	For	instance,	instead	of	the	word	next,	you	might	use	an	icon	of	a	little
pointing	hand.	A	link	to	the	home	page	is	not	complete	without	a	picture	of	a	little
house.	Links	to	searching	tools	must	now	contain	a	picture	of	a	magnifying	glass,
a	question	mark,	or	binoculars.	And	all	those	flashing,	GIF-animated	little
advertisements!

Resist	falling	prey	to	the	"Mount	Everest	syndrome"	of	inserting	images	simply
because	you	can.	Again,	it's	a	matter	of	context.	If	you	or	your	document's
readers	can't	tell	at	a	glance	what	relationship	a	link	has	with	the	current
document,	you've	failed.	Use	cute	images	for	links	sparingly,	consistently,	and
only	in	ways	that	help	readers	scan	your	document	for	important	information	and
leads.	Also,	be	ever	mindful	that	your	pages	may	be	read	by	someone	from	nearly
anywhere	on	Earth	(perhaps	beyond,	even)	and	that	images	do	not	translate
consistently	across	cultural	boundaries.	(Ever	hear	what	the	"OK"	hand	sign
common	in	the	United	States	means	to	a	Japanese	person?)

Creating	consistent	iconography	for	a	collection	of	pages	is	a	daunting	task	that
you	really	should	perform	with	the	assistance	of	someone	formally	schooled	in
visual	design.	Trust	us,	the	kind	of	mind	that	produces	nifty	code	and	writes
XHTML	well	is	rarely	suited	to	creating	beautiful,	compelling	imagery.	Find	a	good
visual	designer;	your	pages	and	readers	will	benefit	immeasurably.

	

6.5.	Mouse-Sensitive	Images

Normally,	an	image	placed	within	an	anchor	simply	becomes	part	of	the	anchor
content.	The	browser	may	alter	the	image	in	some	special	way	(usually	with	a
special	border)	to	alert	the	reader	that	it	is	a	hyperlink,	but	users	click	the	image
in	the	same	way	they	click	a	textual	hyperlink.

The	HTML	and	XHTML	standards	provide	a	feature	that	lets	you	embed	many
different	links	inside	the	same	image.	Clicking	different	areas	of	the	image	causes
the	browser	to	link	to	different	target	documents.	Such	mouse-sensitive	images,
known	as	image	maps,	open	up	a	variety	of	creative	linking	styles.

There	are	two	ways	to	create	image	maps,	known	as	server-side	and	client-side
image	maps.	The	former,	enabled	by	the	ismap	attribute	for	the		tag,	requires
access	to	a	server	and	related	image-map	processing	applications.	The	latter	is
created	with	the	usemap	attribute	for	the		tag,	along	with	corresponding	<map>
and	<area>	tags.

Translation	of	the	mouse	position	in	the	image	to	a	link	to	another	document
happens	on	the	user's	machine,	so	client-side	image	maps	don't	require	a	special
server	connection	and	can	even	be	implemented	in	non-Web	environments,	such
as	on	a	local	hard	drive	or	in	a	CD-ROM-based	document	collection.	Any
HTML/XHTML	can	implement	a	client-side	(usemap)	image	map.	[<map>,	6.5.3]
[<area>,	6.5.4]	[,	5.2.6]

6.5.1.	Server-Side	Image	Maps

You	add	an	image	to	an	anchor	simply	by	placing	an		tag	within	the	body	of
the	<a>	tag.	Make	that	embedded	image	into	a	mouse-sensitive	one	by	adding	the
ismap	attribute	to	the		tag.	This	special		attribute	tells	the	browser	that
the	image	is	a	special	map	containing	more	than	one	link.	(The	ismap	attribute	is
ignored	by	the	browser	if	the		tag	is	not	within	an	<a>	tag.)

When	the	user	clicks	someplace	within	the	image,	the	browser	passes	the
coordinates	of	the	mouse	pointer	along	with	the	URL	specified	in	the	<a>	tag	to	the
document	server.	The	server	uses	the	mouse-pointer	coordinates	to	determine
which	document	to	deliver	back	to	the	browser.

When	ismap	is	used,	the	href	attribute	of	the	containing	<a>	tag	must	contain	the
URL	of	a	server	application	or,	for	some	HTTP	servers,	a	related	map	file	that
contains	the	coordinate	and	linking	information.	If	the	URL	is	simply	that	of	a
conventional	document,	errors	may	result,	and	the	desired	document	probably

will	not	be	retrieved.

The	coordinates	of	the	mouse	position	are	screen	pixels	counted	from	the	upper-
left	corner	of	the	image,	beginning	with	(0,0).	The	browser	adds	the	mouse
coordinates,	preceded	by	a	question	mark,	to	the	end	of	the	URL.

For	example,	if	a	user	clicks	43	pixels	over	and	15	pixels	down	from	the	upper-left
corner	of	the	image	displayed	from	the	following	link:

	
the	browser	sends	the	following	search	parameters	to	the	HTTP	server:

/cgi-bin/imagemap/toolbar.map?43,15

	
In	the	example,	toolbar.map	is	a	special	image-map	file	located	inside	the	cgi-
bin/imagemap	directory	and	containing	coordinates	and	links.	A	special	image-
map	process	uses	that	file	to	match	the	passed	coordinates	(43,15	in	our
example)	and	return	the	selected	hyperlink	document.

6.5.1.1.	Server-side	considerations

With	mouse-sensitive,	ismap-enabled	image	maps,	the	browser	is	required	to	pass
along	only	the	URL	and	mouse	coordinates	to	the	server.	The	server	converts	the
coordinates	into	a	specific	document.	The	conversion	process	differs	among
servers	and	is	not	defined	by	the	HTML	or	XHTML	standard.

You	need	to	consult	with	your	web	server	administrators	and	perhaps	even	read
your	server's	documentation	to	determine	how	to	create	and	program	a	server-
side	image	map.	Most	servers	come	with	some	software	utility,	typically	located	in
a	cgi-bin/imagemap	directory,	to	handle	image	maps.	And	most	of	these	use	a	text
file	containing	the	image-map	regions	and	related	hyperlinks	that	is	referenced	by
your	image-map	URL	to	process	the	image-map	query.

Here's	an	example	image-map	file	describing	the	sensitive	regions	in	our	example
image:

#	Imagemap	file=toolbar.map

default																	dflt.html
circ	100,30,50										link1.html
rect	180,120,290,500				link2.html
poly	80,80,90,72,160,90	link3.html

	
Each	sensitive	region	of	the	image	map	is	described	by	a	geometric	shape	and
defining	coordinates	in	pixels,	such	as	the	circle	with	its	center	point	and	radius,
the	rectangle's	upper-left	and	lower-right	edge	coordinates,	and	the	loci	of	a
polygon.	All	coordinates	are	relative	to	the	upper-left	corner	of	the	image	(0,0).
Each	shape	has	a	related	URL.

An	image-map	processing	application	typically	tests	each	shape	in	the	order	in
which	it	appears	in	the	image	file	and	returns	the	document	specified	by	the
corresponding	URL	to	the	browser	if	the	user's	mouse	X,Y	coordinates	fall	within
the	boundaries	of	that	shape.	That	means	it's	OK	to	overlap	shapes;	just	be	aware
which	takes	precedence.	Also,	the	entire	image	need	not	be	covered	with
sensitive	regions:	if	the	passed	coordinates	don't	fall	within	a	specified	shape,	the
default	document	gets	sent	back	to	the	browser.

This	is	just	one	example	of	how	an	image	map	may	be	processed	and	the
accessory	files	required	for	that	process.	Please	huddle	with	your	webmaster	and
server	manuals	to	discover	how	to	implement	a	server-side	image	map	for	your
own	documents	and	system.

6.5.2.	Client-Side	Image	Maps

The	obvious	downside	to	server-side	image	maps	is	that	they	require	a	server.
That	means	you	need	access	to	the	required	HTTP	server	or	its	/cgi-bin	directory,
either	of	which	is	rarely	available	to	anyone	other	than	owners	or	system
administrators.	And	server-side	image	maps	limit	portability	because	not	all
image-map	processing	applications	are	the	same.

Server-side	image	maps	also	mean	delays	for	the	user	while	browsing	because
the	browser	must	get	the	server's	attention	to	process	the	image	coordinates.	This
is	true	even	if	there's	no	action	to	take,	such	as	when	the	user	clicks	on	a	section
of	the	image	that	isn't	hyperlinked	and	doesn't	lead	anywhere.

Client-side	image	maps	suffer	from	none	of	these	difficulties.	Enabled	by	the	usemap
attribute	for	the		tag	and	defined	by	special	<map>	and	<area>	extension	tags,
client-side	image	maps	let	authors	include	in	their	documents	coordinates	and
links	that	describe	the	sensitive	regions	of	an	image.	The	browser	on	the	client
computer	translates	the	coordinates	of	the	mouse	position	within	the	image	into

an	action,	such	as	loading	and	displaying	another	document.	And	special
JavaScript-enabled	attributes	provide	a	wealth	of	special	effects	for	client-side
image	maps.	[JavaScript	Event	Handlers,	12.3.3]

To	create	a	client-side	image	map,	include	the	usemap	attribute	as	part	of	the	
tag.[*]	Its	value	is	the	URL	of	a	<map>	segment	in	an	HTML	document	that	contains
the	map	coordinates	and	related	link	URLs.	The	document	in	the	URL	identifies
the	HTML	or	XHTML	document	containing	the	map;	the	fragment	identifier	in	the
URL	identifies	the	map	itself.	Most	often,	the	map	is	in	the	same	document	as	the
image,	and	the	URL	can	be	reduced	to	the	fragment	identifier:	a	pound	sign	(#)
followed	by	the	map	name.

[*]	Alternatively,	according	to	the	HTML	4	standard,	you	may	reference	a	client-side	image	map	by	including	the	usemap
attribute	with	the	<object>	and	form	<input>	tags.	See	Chapter	12	for	details.

For	example,	the	following	source	fragment	tells	the	browser	that	the	map.gif
image	is	a	client-side	image	map	and	that	its	mouse-sensitive	coordinates	and
related	link	URLs	are	found	in	the	map	fragment	of	the	current	document:

	

6.5.3.	The	<map>	Tag

For	client-side	image	maps	to	work,	you	must	provide	a	set	of	coordinates	and
URLs	that	define	the	mouse-sensitive	regions	of	a	client-side	image	map	and	the
hyperlink	to	take	for	each	region	that	the	user	may	click	or	otherwise	select.[]

Include	those	coordinates	and	links	as	values	of	attributes	in	conventional	<a>	tags
or	special	<area>	tags;	the	collection	of	<area>	specifications	or	<a>	tags	is	enclosed
within	the	<map>	tag	and	its	end	tag,	</map>.	The	<map>	segment	may	appear
anywhere	in	the	body	of	the	document.

[]	The	Tab	key	also	steps	through	the	hyperlinks	in	a	document,	including	client-side	image	maps.	Select	a	chosen
hyperlink	with	the	Enter	key.

<map>

Function Encloses	client-side	image-map	(usemap)	specifications

Attributes class,	dir,	id,	lang,	name,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </map>;	never	omitted

Contains map_content

Used	in body_content

	
More	specifically,	the	<map>	tag	may	contain	either	a	sequence	of	<area>	tags	or
conventional	HTML/XHTML	content	including	<a>	tags.	You	cannot	mix	and	match
<area>	tags	with	conventional	content.	Browsers	may	display	conventional	content
within	the	<map>	tag;	<area>	tag	contents	will	not.	If	you	are	concerned	about
compatibility	with	older	browsers,	use	only	<map>	tags	containing	<area>	tags.

If	you	do	place	<a>	tags	within	a	<map>	tag,	they	must	include	the	shape	and	coords
attributes	that	define	a	region	within	the	objects	that	reference	the	<map>	tag.

6.5.3.1.	The	name	attribute

The	value	of	the	name	attribute	in	the	<map>	tag	is	the	name	used	by	the	usemap
attribute	in	an		or	<object>	tag	to	locate	the	image-map	specification.	The
name	must	be	unique	and	not	used	by	another	<map>	in	the	document,	but	more
than	one	image	map	may	reference	the	same	<map>	specifications.	[The	ismap	and
usemap	attributes,	5.2.6.14]

6.5.3.2.	The	class,	id,	style,	and	title	attributes

The	stylesheet	display-related	style	and	class	attributes	for	the	<map>	tag	are	useful
only	when	the	<map>	tag	contains	conventional	content,	in	which	case	they	apply	to
the	content	of	the	tag.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,
8.3]

The	id	and	title	attributes,	on	the	other	hand,	are	straightforward.	They	are
standard	ways	to	respectively	label	the	tag	for	later	reference	by	a	hyperlink	or
program	or	to	title	the	section	for	later	review.	[The	id	attribute,	4.1.1.4]	[The
title	attribute,	4.1.1.5]

6.5.3.3.	The	event	attributes

The	various	event	attributes	allow	you	to	assign	JavaScript	handlers	to	events
that	may	occur	within	the	confines	of	the	map.	[JavaScript	Event	Handlers,
12.3.3]

6.5.4.	The	<area>	Tag

The	guts	of	a	client-side	image	map	are	the	<area>	tags	within	the	map	segment.
These	<area>	tags	define	each	mouse-sensitive	region	and	the	action	the	browser
should	take	if	the	user	selects	it	in	an	associated	client-side	image	map.

The	region	defined	by	an	<area>	tag	acts	just	like	any	other	hyperlink:	when	the
user	moves	the	mouse	pointer	over	the	region	of	the	image,	the	pointer	icon
changes,	typically	into	a	hand,	and	the	browser	may	display	the	URL	of	the
related	hyperlink	in	the	status	box	at	the	bottom	of	the	browser	window.[*]

Regions	of	the	client-side	image	map	not	defined	in	at	least	one	<area>	tag	are	not
mouse	sensitive.

[*]	That	is,	unless	you	activate	a	JavaScript	event	handler	that	writes	the	contents	of	the	status	box.	See	the	onMouse
event	handlers	in	section	6.3.1.4.

<area>

Function Defines	coordinates	and	links	for	a	region	on	a	client-side	image	map

Attributes
accesskey,	alt,	class,	coords,	dir,	href,	id,	lang,	nohref,	notab,	onBlur,	onClick,
onDblClick,	onFocus,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,

onMouseOut,	onMouseUp,	shape,	style,	tabindex,	taborder	 ,	target	 ,	title,	type

End	tag None	in	HTML;	</area>	or	<area	...	/>	in	XHTML

Contains Nothing

Used	in map_content

	

6.5.4.1.	The	alt	attribute

Like	its	cousin	for	the		tag,	the	alt	attribute	for	the	<area>	tag	attaches	a	text
label	to	the	image,	except	in	this	case	the	label	is	associated	with	a	particular
area	of	the	image.	The	popular	browsers	display	this	label	to	the	user	when	the
mouse	passes	over	the	area,	and	nongraphical	browsers	may	use	it	to	present	the
client-side	image	map	as	a	list	of	links	identified	by	the	alt	labels.

6.5.4.2.	The	coords	attribute

The	required	coords	attribute	of	the	<area>	tag	defines	coordinates	of	a	mouse-
sensitive	region	in	a	client-side	image	map.	The	number	of	coordinates	and	their
meanings	depend	upon	the	region's	shape	as	determined	by	the	shape	attribute,
discussed	later	in	this	chapter.	You	may	define	hyperlink	regions	as	rectangles,
circles,	and	polygons	within	a	client-side	image	map.

The	appropriate	values	for	each	shape	include:

circle	or	circ

coords="x,y,r	",	where	x	and	y	define	the	position	of	the	center	of	the	circle	(0,0
is	the	upper-left	corner	of	the	image)	and	r	is	its	radius	in	pixels.

polygon	or	poly

coords="x1,y1,x2,y2,x3,y3,...",	where	each	pair	of	X,Y	coordinates	defines	a
vertex	of	the	polygon,	with	0,0	being	the	upper-left	corner	of	the	image.	At
least	three	pairs	of	coordinates	are	required	to	define	a	triangle;	higher-order
polygons	require	a	larger	number	of	vertices.	The	polygon	is	automatically
closed,	so	it	is	not	necessary	to	repeat	the	first	coordinate	at	the	end	of	the
list	to	close	the	region.

rectangle	or	rect

coords="x1,y1,x2,y2",	where	the	first	coordinate	pair	is	one	corner	of	the
rectangle	and	the	other	pair	is	the	corner	diagonally	opposite,	with	0,0	being
the	upper-left	corner	of	the	image.	Note	that	a	rectangle	is	just	a	shortened
way	of	specifying	a	polygon	with	four	vertices.

For	example,	the	following	XHTML	fragment	defines	a	single	mouse-sensitive
region	in	the	lower-right	quarter	of	a	100	x	100-pixel	image	and	another	circular
region	smack	in	the	middle:

<map	name="map1">
		<area	shape="rect"	coords="75,75,99,99"	nohref="nohref"	/>
		<area	shape="circ"	coords="50,50,25"	nohref="nohref"	/>
</map>

	
If	the	coordinates	in	one	<area>	tag	overlap	with	another	region,	the	first	<area>	tag
takes	precedence.	The	browsers	ignore	coordinates	that	extend	beyond	the
boundaries	of	the	image.

6.5.4.3.	The	href	attribute

Like	the	href	attribute	for	the	anchor	(<a>)	tag,	the	href	attribute	for	the	<area>	tag
defines	the	URL	of	the	desired	link	if	its	region	in	the	associated	image	map	is
clicked.	The	value	of	the	HRef	attribute	is	any	valid	URL,	relative	or	absolute,
including	JavaScript	code.

For	example,	the	browser	will	load	and	display	the	link4.html	document	if	the	user
clicks	in	the	lower-right	quarter	of	a	100	x	100-pixel	image,	as	defined	by	the
first	image-map	<area>	tag	in	the	following	HTML	example:

<map	name="map">
		<area	coords="75,75,99,99"	href="link4.html">
		<area	coords="0,0,25,25"	href="javascript:window.alert('Oooh,	tickles!');"	>
</map>

	
The	second	<area>	tag	in	the	example	uses	a	javascript	URL,	which,	when	the	user
clicks	in	the	upper-left	quadrant	of	the	image	map,	executes	a	JavaScript	alert
method	that	displays	the	silly	message	in	a	dialog	box.

6.5.4.4.	The	nohref	attribute

The	nohref	attribute	for	the	<area>	tag	defines	a	mouse-sensitive	region	in	a	client-
side	image	map	for	which	no	action	is	taken,	even	though	the	user	may	select	it.
You	must	include	either	an	href	or	a	nohref	attribute	for	each	<area>	tag.

6.5.4.5.	The	notab,	taborder,	and	tabindex	attributes

As	an	alternative	to	the	mouse,	a	user	may	choose	a	document	"hotspot,"	such	as
a	hyperlink	embedded	in	an	image	map,	by	pressing	the	Tab	key.	Once	the	user
chooses	the	hotspot,	he	activates	the	hyperlink	by	pressing	the	Enter	key.	By
default,	the	browser	steps	to	each	hotspot	in	the	order	in	which	they	appear	in
the	document.	You	can	now	change	that	default	order	with	what	was	originally
introduced	by	Internet	Explorer	with	the	taborder	attribute	and	is	now	standardized
as	the	tabindex	attribute.	The	value	of	the	attribute	is	an	integer	indicating	the
position	of	this	area	in	the	overall	tab	sequence	for	the	document.

Supported	by	Internet	Explorer	only	and	not	part	of	the	HTML	4	and	XHTML
standards,	notab	areas	get	passed	over	as	the	user	presses	the	Tab	key	to	move
the	cursor	around	the	document.	Otherwise,	this	area	will	be	part	of	the	tabbing
sequence.	The	attribute	is	useful,	of	course,	in	combination	with	the	nohref
attribute.

Internet	Explorer	version	4	supported	the	notab	and	taborder	attributes.	Versions	5
and	later	support	tabindex,	too,	so	use	the	standard	rather	than	the	extension
attributes.

6.5.4.6.	The	event	attributes

The	same	mouse-related	JavaScript	event	handlers	that	work	for	the	anchor	(<a>)
tag	also	work	with	client-side	image-map	hyperlinks.	The	value	of	the	event
handler	isenclosed	in	quotation	marksone	or	a	sequence	of	semicolon-separated
JavaScript	expressions,	methods,	and	function	references	that	the	browser
executes	when	the	event	occurs.	[JavaScript	Event	Handlers,	12.3.3]

For	example,	a	popular,	albeit	simple,	use	of	the	onMouseOver	event	is	to	print	a
more	descriptive	explanation	in	the	browser's	status	box	whenever	the	user
passes	the	mouse	pointer	over	a	region	of	the	image	map:

<area	href="http://www.oreilly.com/kumquats/homecooking/recipes.html#quat5"
			onMouseOver="self.status='A	recipe	for	kumquat	soup.';return	true">

	
We	should	point	out	that	the	current	versions	of	the	popular	browsers
automatically	display	the	alt	attribute's	string	value,	ostensibly	accomplishing	the
same	task.	So	we	recommend	that	you	include	the	alt	attribute	and	value	in	lieu
of	hacking	JavaScript.	And,	in	context	with	a	text-based	hyperlink,	we	argue	that
the	contents	of	the	tag	itself	should	explain	the	link.	But	images	can	be	deceptive,
so	we	urge	you	to	take	advantage	of	both	the	alt	attribute	and	event	handlers	to
provide	text	descriptions	with	your	image	maps.

6.5.4.7.	The	shape	attribute

Use	the	shape	attribute	to	define	the	shape	of	an	image	map's	mouse-sensitive
region:	a	circle	(circ	or	circle),	polygon	(poly	or	polygon),	or	rectangle	(rect	or
rectangle).

The	value	of	the	shape	attribute	affects	how	the	browser	interprets	the	value	of	the
coords	attribute.	If	you	don't	include	a	shape	attribute,	the	value	default	is	assumed.
According	to	the	standard,	default	means	that	the	area	covers	the	entire	image.	In
practice,	the	browsers	default	to	a	rectangular	area	and	expect	to	find	four	coords
values.	If	you	don't	specify	a	shape	and	don't	include	four	coordinates	with	the
tag,	the	browsers	ignore	the	area	altogether.

In	fact,	only	the	most	recent	versions	of	the	popular	browsers	recognize	the	shape
value	default	to	provide	a	catchall	area	for	clicks	that	fall	outside	all	the	other
defined	hotspots.	Because	areas	are	in	a	"first-come,	first-served"	order	in	the
<map>	tag,	you	should	place	the	default	area	last.	Otherwise,	it	covers	up	any	and
all	areas	that	follow	in	your	image	map.

The	browsers	are	lax	in	their	implementation	of	the	shape	names.	Netscape	4,	for
example,	doesn't	recognize	"rectangle"	but	does	recognize	"rect"	for	a	rectangular
shape.	For	this	reason,	we	recommend	that	you	use	the	abbreviated	names.

6.5.4.8.	The	target	attribute

The	target	attribute	gives	you	a	way	to	control	where	the	contents	of	the	selected
hyperlink	in	the	image	map	get	displayed.	The	attribute	is	commonly	used	in
conjunction	with	frames	or	multiple	browser	windows,	and	its	the	value	is	the
name	of	the	frame	or	window	in	which	the	referenced	document	should	be	loaded.
If	the	named	frame	or	window	exists,	the	document	is	loaded	in	that	frame	or
window.	If	not,	a	new	window	is	created	and	given	the	specified	name,	and	the
document	is	loaded	in	that	new	window.	For	more	information,	including	a	list	of
special	target	names,	see	section	11.7.

6.5.4.9.	The	title	attribute

The	title	attribute	lets	you	specify	a	title	for	the	document	to	which	the	image
map's	area	links.	The	value	of	the	attribute	is	any	string,	enclosed	in	quotes.	The
browser	might	use	the	title	when	displaying	the	link,	perhaps	flashing	the	title
when	the	mouse	passes	over	the	area.	The	browser	might	also	use	the	title
attribute	when	adding	this	link	to	a	user's	bookmarks	or	favorites.

The	title	attribute	is	especially	useful	for	referencing	an	otherwise	unlabeled
resource,	such	as	an	image	or	a	non-HTML	document.	Ideally,	the	value	specified
should	match	the	title	of	the	referenced	document,	but	this	isn't	required.

6.5.4.10.	The	class,	dir,	id,	lang,	and	style	attributes

The	class	and	style	attributes	allow	you	to	supply	display	properties	and	class
names	to	control	the	appearance	of	the	area,	although	their	value	seems	limited
for	this	tag.	The	id	attribute	allows	you	to	create	a	name	for	the	area	that	might
be	referenced	by	a	hyperlink.	[The	id	attribute,	4.1.1.4]	[Inline	Styles:	The	style
Attribute,	8.1.1]	[Style	Classes,	8.3]

The	lang	and	dir	attributes	define	the	language	used	for	this	area	and	the	direction
in	which	text	is	rendered.	Again,	their	use	is	not	apparent	with	this	tag.	[The	dir
attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

6.5.5.	A	Client-Side	Image-Map	Example

The	following	example	HTML	fragment	draws	together	the	various	components	of
a	client-side	image	map	discussed	earlier	in	this	section.	It	includes	the		tag
with	the	image	reference	and	a	usemap	attribute	with	a	name	that	points	to	a	<map>
that	defines	four	mouse-sensitive	regions	(three	plus	a	default)	and	related	links:

<body>
...

...
<map	name="map1">
		<area	shape=rect	coords="0,20,40,100"
						href="k_juice.html"
						onMouseOver="self.status='How	to	prepare	kumquat	juice.'
						;return	true">
		<area	shape=rect	coords="50,50,80,100"
						href="k_soup.html"
						onMouseOver="self.status='A	recipe	for	hearty	kumquat	soup.'
						;return	true">
		<area	shape=rect	coords="90,50,140,100"
						href="k_fruit.html"
						onMouseOver="self.status='Care	and	handling	of	the	native	kumquat.'
						;return	true">
		<area	shape=default
						href="javascript:window.alert('Choose	the	cup	or	one	of	the	bowls.')"
						onMouseOver="self.status='Select	the	cup	or	a	bowl	for	more	information.'
						;return	true">
</map>

	
See	Figure	6-7	for	the	results.

Figure	6-7.	A	simple	client-side	image	map	with	JavaScript-
enabled	mouse	events

	

6.5.6.	Handling	Other	Browsers

Unlike	its	server-side	ismap	counterpart,	the	client-side	image-map	tag	with
attributes	()	doesn't	need	to	be	included	in	an	<a>	tag.	But	it	may	be	so
that	you	can	gracefully	handle	browsers	that	are	unable	to	process	client-side
image	maps.

For	example,	the	ancient	Mosaic	and	early	versions	of	Netscape	simply	load	a
document	named	main.html	if	the	user	clicks	the	map.gif	image	referenced	in	the
following	source	fragment.	More	recent	browsers,	on	the	other	hand,	divide	the
image	into	mouse-sensitive	regions,	as	defined	in	the	associated	<map>,	and	link	to
a	particular	name	anchor	within	the	same	main.html	document	if	the	user	selects
the	image-map	region:

		

...
<map	name="map1">
		<area	coords="0,0,49,49"	href="main.html#link1">
		<area	coords="50,0,99,49"	href="main.html#link2">
		<area	coords="0,50,49,99"	href="main.html#link3">
		<area	coords="50,50,99,99"	href="main.html#link4">
</map>

	
To	make	an	image	map	backward	compatible	with	all	image-map-capable
browsers,	you	may	also	include	client-side	and	server-side	processing	for	the
same	image	map.	Capable	browsers	will	honor	the	faster	client-side	processing;

all	other	browsers	will	ignore	the	usemap	attribute	in	the		tag	and	rely	upon	the
referenced	server	process	to	handle	user	selections	in	the	traditional	way.	For
example:

		

...
<map	name="map2">
		<area	coords="0,0,49,49"	href="link1.html">
		<area	coords="50,0,99,49"	href="link2.html">
		<area	coords="0,50,49,99"	href="link3.html">
		<area	coords="50,50,99,99"	href="link4.html">
</map>

	

6.5.7.	Effective	Use	of	Mouse-Sensitive	Images

Some	of	the	most	visually	compelling	pages	on	the	Web	have	mouse-	and	hot-
key-sensitive	images:	maps	with	regions	that	(when	clicked	or	selected	with	the
Tab	and	Enter	keys)	lead,	for	example,	to	more	information	about	a	country	or
town	or	result	in	more	detail	about	the	location	and	who	to	contact	at	a	regional
branch	of	a	business.	We've	seen	an	image	of	a	fashion	model	whose	various
clothing	parts	lead	to	their	respective	catalog	entries,	complete	with	detailed
descriptions	and	prices	for	ordering.

The	visual	nature	of	these	"hyperactive"	pictures,	coupled	with	the	need	for	an
effective	interface,	means	that	you	should	strongly	consider	having	an	artist,	a
user-interface	designer,	and	even	a	human-factors	expert	evaluate	your	imagery.
At	the	very	least,	engage	in	a	bit	of	user	testing	to	make	sure	people	know	what
region	of	the	image	to	select	to	move	to	the	desired	document.	Make	sure	the
sensitive	areas	of	the	image	indicate	this	to	the	user	using	a	consistent	visual
mechanism.	Consider	using	borders,	drop	shadows,	or	color	changes	to	indicate
those	areas	that	the	user	can	select.

Finally,	always	remember	that	the	decision	to	use	mouse-sensitive	images	is	an
explicit	decision	to	exclude	text-based	and	image-restricted	browsers	from	your
pages.	This	includes	browsers	connecting	to	the	Internet	via	slow	modem
connections.	For	these	people,	downloading	your	beautiful	images	is	simply	too
expensive.	To	keep	from	disenfranchising	a	growing	population,	make	sure	any
page	that	has	a	mouse-sensitive	image	has	a	text-only	equivalent	easily
accessible	from	a	link	on	the	image-enabled	version.	Some	thoughtful	webmasters
even	provide	separate	pages	for	users	preferring	full	graphics	versus	mostly	text.

	

6.6.	Creating	Searchable	Documents

Another	extensible	form	of	an	HTML	link	that	does	not	use	the	<a>	tag	is	one	that
causes	the	server	to	search	a	database	for	a	document	that	contains	a	user-
specified	keyword	or	words.	An	HTML	document	that	contains	such	a	link	is	known
as	a	searchable	document.

6.6.1.	The	<isindex>	Tag	(Deprecated)

Before	it	was	deprecated	in	both	the	HTML	4	and	XHTML	standards,	authors	used
to	use	the	<isindex>	tag	to	pass	keywords	along	with	a	search	engine's	URL	to	the
server.	The	server	then	matched	the	keywords	against	a	database	of	terms	to
select	the	next	document	for	display.	Today's	authors	mostly	use	forms	to	pass
information	to	the	server	and	supporting	programs.	See	Chapter	9	for	details.

<isindex>

Function Indicates	that	a	document	can	be	searched

Attributes action ,	class,	dir,	id,	lang,	prompt,	style,	title

End	tag None	in	HTML;	</isindex>	or	<isindex	...	/>	in	XHTML

Contains Nothing

Used	in head_content

	
When	a	browser	encounters	the	<isindex>	tag,	it	adds	a	standard	search	interface
to	the	document	(rendered	by	Internet	Explorer	in	Figure	6-8):

<html>
<head>
<title>Kumquat	Advice	Database</title>
<base	href="cgi-bin/quat-query">
<isindex>
</head>
<body>
<h3>Kumquat	Advice	Database</h3>
<p>
Search	this	database	to	learn	more	about	kumquats!
</body>
</html>

	

Figure	6-8.	A	searchable	document

	
The	user	types	a	list	of	space-separated	keywords	into	the	field	provided.	When
the	user	presses	the	Enter	key,	the	browser	automatically	appends	the	query	list
to	the	end	of	a	URL	and	passes	the	information	to	the	server	for	further
processing.

While	the	HTML	and	XHTML	standards	allow	the	deprecated	<isindex>	tag	to	be
placed	only	in	the	document	header,	most	browsers	let	the	tag	appear	anywhere
in	the	document	and	insert	the	search	field	in	the	content	flow	where	the	<isindex>
tag	appears.	This	convenient	extension	lets	you	add	instructions	and	other	useful
elements	before	presenting	the	user	with	the	actual	search	field.

6.6.1.1.	The	prompt	attribute

The	browser	provides	a	leading	prompt	just	above	or	to	the	left	of	the	user-entry
field.	Internet	Explorer's	default	prompt	has	even	changed	over	the	years.	Version
5,	for	example,	used	"This	is	a	searchable	index.	Enter	search	keywords:".	Figure
6-8	shows	the	new	one	with	version	6's	prompt.	That	default	prompt	is	not	the
best	for	all	occasions,	so	it	is	possible	to	change	it	with	the	prompt	attribute.

When	added	to	the	<isindex>	tag,	the	value	of	the	prompt	attribute	is	the	string	of
text	that	precedes	the	keyword	entry	field	the	browser	places	in	the	document.

For	example,	compare	Figure	6-8	with	Figure	6-9,	in	which	we	added	the
following	prompt	to	the	previous	source	example:

<isindex	prompt="To	learn	more	about	kumquats,	enter	a	keyword:">

	

Figure	6-9.	The	prompt	attribute	creates	custom	prompts	in

searchable	documents

	
Older	browsers	ignore	the	prompt	attribute,	but	there	is	little	reason	not	to	include
a	better	prompt	string	for	your	more	up-to-date	readership.

6.6.1.2.	The	query	URL

Besides	the	<isindex>	tag	in	the	header	of	a	searchable	document,	the	other
important	element	of	this	special	tag	is	the	query	URL.	By	default,	it	is	the	URL	of
the	source	document	itselfnot	good	if	your	document	can't	handle	the	query.
Rather,	most	authors	use	the	<base>	attribute	to	point	to	a	different	URL	for	the
search.	[<base>,	6.7.1]

The	browser	appends	a	question	mark	to	the	query	URL,	followed	by	the	specified
search	parameters.	Nonprintable	characters	are	appropriately	encoded;	multiple
parameters	are	separated	by	plus	signs	(+).

In	the	previous	example,	if	a	user	typed	"insect	control"	in	the	search	field,	the
browser	would	retrieve	the	URL:

cgi-bin/quat-query?insect+control

	

6.6.1.3.	The	action	attribute

For	Internet	Explorer	only,	you	can	specify	the	query	URL	for	the	index	with	the
action	attribute.	The	effect	is	exactly	as	though	you	had	used	the	HRef	attribute
with	the	<base>	tag:	the	browser	links	to	the	specified	URL	with	the	search
parameters	appended	to	the	URL.

While	the	action	attribute	provides	the	desirable	feature	of	divorcing	the
document's	base	URL	from	the	search	index	URL,	it	will	cause	your	searches	to	fail
if	the	user	is	not	using	Internet	Explorer.	For	this	reason,	we	do	not	recommend
that	you	use	the	action	attribute	to	specify	the	query	URL	for	the	search.

6.6.1.4.	The	class,	dir,	id,	lang,	style,	and	title	attributes

The	class	and	style	attributes	allow	you	to	supply	display	properties	and	class
names	to	control	the	appearance	of	the	tag,	although	their	value	seems	limited
for	<isindex>.	The	id	and	title	attributes	allow	you	to	create	a	name	and	title	for
the	tag;	the	name	might	be	referenced	by	a	hyperlink.	[The	id	attribute,	4.1.1.4]
[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

The	dir	and	lang	attributes	define	the	language	used	for	this	tag	and	the	direction
in	which	text	is	rendered.	Again,	their	use	is	not	apparent	with	<isindex>.	[The	dir
attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

6.6.1.5.	Server	dependencies

Like	image	maps,	searchable	documents	require	support	from	the	server	to	make
things	work.	How	the	server	interprets	the	query	URL	and	its	parameters	is	not
defined	by	the	HTML	or	XHTML	standards.

You	should	consult	your	server's	documentation	to	determine	how	you	can	receive
and	use	the	search	parameters	to	locate	the	desired	document.	Typically,	the
server	breaks	the	parameters	out	of	the	query	URL	and	passes	them	to	a	program
designated	by	the	URL.

	

6.7.	Relationships

Very	few	documents	stand	alone.	Instead,	a	document	is	usually	part	of	a
collection	of	documents,	each	connected	by	one	or	several	of	the	hypertext
strands	we	describe	in	this	chapter.	One	document	may	be	a	part	of	several
collections,	linking	to	some	documents	and	being	linked	to	by	others.	Readers
move	among	the	document	families	as	they	follow	the	links	that	interest	them.

When	you	link	two	documents,	you	establish	an	explicit	relationship	between
them.	Conscientious	authors	use	the	rel	attribute	of	the	<a>	tag	to	indicate	the
nature	of	the	link.	In	addition,	two	other	tags	may	be	used	within	a	document	to
further	clarify	the	location	of	a	document	within	a	document	family	and	its
relationship	to	the	other	documents	in	that	family.	These	tags,	<base>	and	<link>,
are	placed	within	the	body	of	the	<head>	tag.	[<head>,	3.7.1]

6.7.1.	The	<base>	Header	Element

As	we	previously	explained,	URLs	within	a	document	can	be	either	absolute	(with
every	element	of	the	URL	explicitly	provided	by	the	author)	or	relative	(with
certain	elements	of	the	URL	omitted	and	supplied	by	the	browser).	Normally,	the
browser	fills	in	the	blanks	of	a	relative	URL	by	drawing	the	missing	pieces	from
the	URL	of	the	current	document.	You	can	change	that	with	the	<base>	tag.

<base>

Function Defines	the	base	URL	for	other	anchors	in	the	document

Attributes href,	target

End	tag None	in	HTML;	</base>	or	<base	...	/>	in	XHTML

Contains Nothing

Used	in head_content

	
The	<base>	tag	should	appear	only	in	the	document	header,	not	in	its	body
contents.	The	browser	thereafter	uses	the	specified	base	URL,	not	the	current
document's	URL,	to	resolve	all	relative	URLs,	including	those	found	in	<a>,	,
<link>,	and	<form>	tags.	It	also	defines	the	URL	that	will	be	used	to	resolve	queries
in	searchable	documents	containing	the	<isindex>	tag.	[Referencing	Documents:
The	URL,	6.2]

6.7.1.1.	The	href	attribute

The	HRef	attribute	must	have	a	valid	URL	as	its	value,	which	the	browser	then	uses
to	define	the	absolute	URL	against	which	relative	URLs	are	based	within	the
document.

For	example,	the	<base>	tag	in	this	XHTML	document	head:

<head>
<base	href="http://www.kumquat.com/"	/>
</head>
...

	
tells	the	browser	that	any	relative	URLs	within	this	document	are	relative	to	the
top-level	document	directory	on	www.kumquat.com,	regardless	of	the	address	and
directory	of	the	machine	from	which	the	user	retrieved	the	current	document.

http://www.kumquat.com

Contrary	to	what	you	may	expect,	you	can	make	the	base	URL	relative,	not
absolute.	The	browser	should	(but	doesn't	always)	form	an	absolute	base	URL	out
of	this	relative	URL	by	filling	in	the	missing	pieces	with	the	URL	of	the	document
itself.	This	property	can	be	used	to	good	advantage.	For	instance,	in	this	next
HTML	example:

<head>
<base	href="/info/">
</head>
...

	
the	browser	makes	the	<base>	URL	into	one	relative	to	the	server's	/info	directory,
which	probably	is	not	the	same	directory	of	the	current	document.	Imagine	if	you
had	to	readdress	every	link	in	your	document	with	that	common	directory.	Not
only	does	the	<base>	tag	help	you	shorten	those	URLs	in	your	document	that	have
a	common	root,	but	it	also	lets	you	constrain	the	directory	from	which	relative
references	are	retrieved	without	binding	the	document	to	a	specific	server.

6.7.1.2.	The	target	attribute

When	working	with	documents	inside	frames,	the	target	attribute	with	the	<a>	tag
ensures	that	a	referenced	URL	gets	loaded	into	the	correct	frame.	Similarly,	the
target	attribute	for	the	<base>	tag	lets	you	establish	the	default	name	of	one	of	the
frames	or	windows	in	which	the	browser	is	to	display	redirected	hyperlinked
documents.	[An	Overview	of	Frames,	11.1]

If	you	have	no	other	default	target	for	your	hyperlinks	within	your	frames,	you
may	want	to	consider	using	<base	target=_top>.	This	ensures	that	links	that	are	not
specifically	targeted	to	a	frame	or	window	will	load	in	the	top-level	browser
window.	This	eliminates	the	embarrassing	and	common	error	of	having	references
to	pages	on	other	sites	appear	within	a	frame	on	your	pages,	instead	of	within
their	own	pages.	A	minor	bit	of	HTML,	to	be	sure,	but	it	makes	life	much	easier	for
your	readers.

6.7.1.3.	Using	<base>

The	most	important	reason	for	using	<base>	is	to	ensure	that	any	relative	URLs
within	the	document	will	resolve	into	correct	document	addresses,	even	if	the
documents	themselves	are	moved	or	renamed.	This	is	particularly	important	when
creating	a	document	collection.	By	placing	the	correct	<base>	tag	in	each
document,	you	can	move	the	entire	collection	between	directories	and	even

servers	without	breaking	all	of	the	links	within	the	documents.	You	also	need	to
use	the	<base>	tag	for	a	searchable	document	(<isindex>)	if	you	want	user	queries
posed	to	a	URL	different	from	that	of	the	host	document.

A	document	that	contains	both	the	<isindex>	tag	and	other	relative	URLs	may	have
problems	if	the	relative	URLs	are	not	relative	to	the	desired	index-processing	URL.
Because	this	is	usually	the	case,	don't	use	relative	URLs	in	searchable	documents
that	use	the	<base>	tag	to	specify	the	query	URL	for	the	document.

6.7.2.	The	<link>	Header	Element

Use	the	<link>	tag	to	define	the	relationship	between	the	current	document	and
another	in	a	web	collection.

The	<link>	tag	belongs	in	the	<head>	content	and	nowhere	else.	Use	the	attributes
of	the	<link>	tag	like	those	of	the	<a>	tag,	but	their	effects	serve	only	to	document
the	relationship	between	documents.	The	<link>	tag	has	no	content,	and	only
XHTML	supports	the	closing	</link>	tag.

<link>

Function Defines	a	relationship	between	this	document	and	another	document

Attributes
charset,	class,	dir,	href,	hreflang,	id,	lang,	media,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	rel,
rev,	style,	target,	title,	type

End	tag None	in	HTML;	</link>	or	<link	...	/>	in	XHTML

Contains Nothing

Used	in head_content

	

6.7.2.1.	The	href	attribute

As	with	its	other	tag	applications,	the	HRef	attribute	specifies	the	URL	of	the	target
<link>	tag.	It	is	a	required	attribute,	and	its	value	is	any	valid	document	URL.	The
specified	document	is	assumed	to	have	a	relationship	to	the	current	document.

6.7.2.2.	The	rel	and	rev	attributes

The	rel	and	rev	attributes	express	the	relationship	between	the	source	and	target
documents.	The	rel	attribute	specifies	the	relationship	from	the	source	document
to	the	target;	the	rev	attribute	specifies	the	relationship	from	the	target	document
to	the	source	document.	Both	attributes	can	be	included	in	a	single	<link>	tag.

The	value	of	either	attribute	is	a	space-separated	list	of	relationships.	The	actual
relationship	names	are	not	specified	by	the	HTML	standard,	although	some	have
come	into	common	usage.	For	example,	a	document	that	is	part	of	a	sequence	of
documents	might	use:

<link	href="part-14.html"	rel=next	rev=prev>

	

when	referencing	the	next	document	in	the	series.	The	relationship	from	the
source	to	the	target	is	that	of	moving	to	the	next	document;	the	reverse
relationship	is	that	of	moving	to	the	previous	document.

6.7.2.3.	The	title	attribute

The	title	attribute	lets	you	specify	the	title	of	the	document	to	which	you	are
linking.	This	attribute	is	useful	when	referencing	a	resource	that	does	not	have	a
title,	such	as	an	image	or	a	non-HTML	document.	In	this	case,	the	browser	might
use	the	<link>	title	when	displaying	the	referenced	document.	For	example:

<link	href="pics/kumquat.gif"
		title="A	photograph	of	the	Noble	Fruit">

	
tells	the	browser	to	use	the	indicated	title	when	displaying	the	referenced	image.

The	value	of	the	attribute	is	an	arbitrary	character	string,	enclosed	in	quotation
marks.

6.7.2.4.	The	type	attribute

The	type	attribute	provides	the	MIME	content	type	of	the	linked	document.
Supported	by	all	the	popular	browsers,	the	HTML	4	and	XHTML	standard	type
attribute	can	be	used	with	any	linked	document.	It	is	often	used	to	define	the	type
of	a	linked	stylesheet.	In	this	context,	the	value	of	the	type	attribute	is	usually
text/css.	For	example:

<link	href="styles/classic.css"	rel=stylesheet	type="text/css">

	
creates	a	link	to	an	external	stylesheet	within	the	<head>	of	a	document.	See
Chapter	8	for	details.

6.7.2.5.	How	browsers	might	use	<link>

Although	the	standards	do	not	require	browsers	to	do	anything	with	the
information	provided	by	the	<link>	tag,	it's	not	hard	to	envision	how	this
information	might	be	used	to	enhance	the	presentation	of	a	document.

As	a	simple	example,	suppose	you	consistently	provide	<link>	tags	for	each	of	your
documents	that	define	next,	prev,	and	parent	links.	A	browser	could	use	this
information	to	place	at	the	top	or	bottom	of	each	document	a	standard	toolbar
containing	buttons	that	would	jump	to	the	appropriate	related	document.	By
relegating	the	task	of	providing	simple	navigational	links	to	the	browser,	you	are
free	to	concentrate	on	the	more	important	content	of	your	document.

As	a	more	complex	example,	suppose	that	a	browser	expects	to	find	a	<link>	tag
defining	a	glossary	for	the	current	document	and	that	this	glossary	document	is
itself	a	searchable	document.	Whenever	a	reader	clicked	on	a	word	or	phrase	in
the	document,	the	browser	could	automatically	search	the	glossary	for	the
definition	of	the	selected	phrase,	presenting	the	result	in	a	small	pop-up	window.

As	the	Web	evolves,	expect	to	see	more	and	more	uses	of	the	<link>	tag	to	define
document	relationships	explicitly.

6.7.2.6.	Other	<link>	attributes

The	HTML	4	and	XHTML	standards	also	include	the	ubiquitous	collection	of
attributes	related	to	stylesheets	and	user	events,	and	language	for	the	<link>	tag.
You	can	refer	to	the	corresponding	section	describing	these	attributes	for	the	<a>
tag	for	a	complete	description	of	their	usage.	[<a>,	6.3.1]

Because	you	put	the	<link>	tag	in	the	<head>	section,	whose	contents	are	not
displayed,	it	may	seem	that	these	attributes	are	useless.	It	is	entirely	possible
that	some	future	browser	may	find	some	way	to	display	the	<link>	information	to
the	user,	possibly	as	a	navigation	bar	or	a	set	of	hot-list	selections.	In	those	cases,
the	display	and	rendering	information	would	prove	useful.	Currently,	no	browser
provides	these	capabilities.

	

6.8.	Supporting	Document	Automation

Two	additional	header	tags	have	the	primary	functions	of	supporting	document
automation	and	interacting	with	the	web	server	itself	and	with	document-
generation	tools.

6.8.1.	The	<meta>	Header	Element

Given	the	rich	set	of	header	tags	for	defining	a	document	and	its	relationship	with
others	that	go	unused	by	most	authors,	you'd	think	we'd	all	be	satisfied.	But	no,
there's	always	someone	with	special	needs.	These	authors	want	to	be	able	to	give
even	more	information	about	their	precious	documentsinformation	that	browsers,
readers	of	the	source,	or	document-indexing	tools	might	use.	The	<meta>	tag	is	for
those	of	you	who	need	to	go	beyond	the	beyond.

<meta>

Function Supplies	additional	information	about	a	document

Attributes charset ,	content,	dir,	http_equiv,	lang,	name,	scheme

End	tag None	in	HTML;	</meta>	or	<meta	...	/>	in	XHTML

Contains Nothing

Used	in head_content

	
The	<meta>	tag	belongs	in	the	document	header	and	has	no	content.	Instead,
attributes	of	the	tag	define	name/value	pairs	that	associate	the	document.	In
certain	cases,	the	web	server	serving	the	document	uses	these	values	to	further
define	the	document	content	type	to	the	browser.

6.8.1.1.	The	name	attribute

The	name	attribute	supplies	the	name	of	the	name/value	pair	defined	by	the	<meta>
tag.	Neither	the	HTML	nor	the	XHTML	standard	specifies	any	predefined	<meta>
names.	In	general,	you	are	free	to	use	any	name	that	makes	sense	to	you	and
other	readers	of	your	source	document.

One	commonly	used	name	is	keywords,	which	defines	a	set	of	keywords	for	the
document.	When	encountered	by	any	of	the	popular	search	engines	on	the	Web,
these	keywords	may	be	used	to	categorize	the	document.	If	you	want	your
documents	to	be	indexed	by	a	search	engine,	consider	putting	this	kind	of	tag	in
the	<head>	of	each	document:

<meta	name="keywords"	content="kumquats,	cooking,	peeling,	eating">

	
If	the	name	attribute	is	not	provided,	the	name	of	the	name/value	pair	is	taken
from	the	http-equiv	attribute.

6.8.1.2.	The	content	attribute

The	content	attribute	provides	the	value	of	the	name/value	pair.	It	can	be	any	valid
string	(enclosed	in	quotes	if	it	contains	spaces).	It	should	always	be	specified	in
conjunction	with	either	a	name	or	an	http-equiv	attribute.

As	an	example,	you	might	place	the	author's	name	in	a	document	with:

<meta	name="Authors"	content="Chuck	Musciano	&	Bill	Kennedy">

	

6.8.1.3.	The	http-equiv	attribute

The	http-equiv	attribute	supplies	a	name	for	the	name/value	pair	and	instructs	the
server	to	include	the	name/value	pair	in	the	MIME	document	header	that	is
passed	to	the	browser	before	sending	the	actual	document.

When	a	server	sends	a	document	to	a	browser,	it	first	sends	a	number	of
name/value	pairs.	While	some	servers	might	send	a	number	of	these	pairs,	all
servers	send	at	least	one:

content-type:	text/html

	
This	tells	the	browser	to	expect	to	receive	an	HTML	document.

When	you	use	the	<meta>	tag	with	the	http-equiv	attribute,	the	server	will	add	your
name/value	pairs	to	the	content	header	it	sends	to	the	browser.	For	example,
adding:

<meta	http-equiv="charset"	content="iso-8859-1">
<meta	http-equiv="expires"	content="31	Dec	99">

	
causes	the	header	sent	to	the	browser	to	contain:

content-type:	text/html
charset:	iso-8859-1
expires:	31	Dec	99

	

Of	course,	adding	these	additional	header	fields	makes	sense	only	if	your	browser
accepts	the	fields	and	uses	them	in	some	appropriate	manner.

6.8.1.4.	The	charset	attribute

Internet	Explorer	versions	5	and	earlier	provided	explicit	support	for	a	charset
attribute	in	the	<meta>	tag.	Set	the	value	of	the	attribute	to	the	name	of	the
character	set	to	be	used	for	the	document.	This	is	not	the	recommended	way	to
define	a	document's	character	set.	Rather,	we	recommend	always	using	the	http-
equiv	and	content	attributes	to	define	the	character	set.

6.8.1.5.	The	scheme	attribute

This	attribute	specifies	the	scheme	to	be	used	to	interpret	the	property's	value.
This	scheme	should	be	defined	within	the	profile	specified	by	the	profile	attribute
of	the	<head>	tag.	[<head>,	3.7.1]

6.8.2.	The	<nextid>	Header	Element	(Archaic)

This	tag	is	not	defined	in	the	HTML	4	and	XHTML	standards	and	should	not	be
used.	We	describe	it	here	for	historical	reasons.

<nextid>

Function Defines	the	next	valid	document	entity	identifier

Attributes n

End	tag None

Contains Nothing

Used	in head_content

	
The	idea	behind	the	<nextid>	tag	is	to	provide	some	way	of	automatically	indexing
fragment	identifiers.

6.8.2.1.	The	n	attribute

The	n	attribute	specifies	the	name	of	the	next	generated	fragment	identifier.	It	is
typically	an	alphabetic	string	followed	by	a	two-digit	number.	A	typical	<nextid>	tag
might	look	like	this:

<html>
<head>
<nextid	n=DOC54>
</head>
...

	
An	automatic	document	generator	might	use	the	nextid	information	to	successively
name	fragment	identifiers	DOC54,	DOC55,	and	so	forth,	within	this	document.

	

Chapter	7.	Formatted	Lists

Making	information	more	accessible	is	the	single	most	important	quality	of	HTML
and	its	progeny,	XHTML.	The	languages'	excellent	collection	of	text	style	and
formatting	tools	help	you	organize	your	information	into	documents	readers	can
quickly	understand,	scan,	and	extract,	possibly	with	automated	browser	agents.

Beyond	embellishing	your	text	with	specialized	text	tags,	HTML	and	XHTML
provide	a	rich	set	of	tools	that	help	you	organize	content	into	formatted	lists.
There's	nothing	magical	or	mysterious	about	lists.	In	fact,	the	beauty	of	lists	is
their	simplicity.	They're	based	on	common	list	paradigms	we	encounter	every	day,
such	as	unordered	grocery	lists,	ordered	instruction	lists,	and	dictionary-like
definition	lists.	All	are	familiar,	comfortable	ways	of	organizing	content.	All
provide	powerful	means	for	quickly	understanding,	scanning,	and	extracting
pertinent	information	from	your	web	documents.

	

7.1.	Unordered	Lists

Like	a	laundry	or	shopping	list,	an	unordered	list	is	a	collection	of	related	items
that	have	no	special	order	or	sequence.	The	most	common	unordered	list	you'll
find	on	the	Web	is	a	collection	of	hyperlinks	to	other	documents.	Some	common
topic,	such	as	"Related	Kumquat	Lovers'	Sites,"	allies	the	items	in	an	unordered
list,	but	they	have	no	order	among	themselves.

7.1.1.	The		Tag

The		tag	signals	to	the	browser	that	the	following	content,	between	it	and	the
	end	tag,	is	an	unordered	list	of	items.	Inside,	a	leading		tag	identifies
each	item	in	the	unordered	list.	Otherwise,	nearly	anything	HTML/XHTML-wise
goes,	including	other	lists,	text,	and	multimedia	elements.

Function Defines	an	unordered	list

Attributes
class,	compact	 ,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,
onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,

title,	type	

End	tag ;	never	omitted

Contains list_content

Used	in block

	
Typically,	the	browser	adds	a	leading	bullet	character	and	formats	each	unordered
list	item	on	a	new	line,	indented	somewhat	from	the	left	margin	of	the	document.
The	actual	rendering	of	unordered	lists,	although	similar	for	the	popular	browsers
(see	Figure	7-1),	is	not	dictated	by	the	standards,	so	you	shouldn't	get	bent	out	of
shape	trying	to	attain	exact	positioning	of	the	elements.

Here	is	an	example	XHTML	unordered	list,	as	shown	in	Figure	7-1:

Popular	Kumquat	recipes:

		Pickled	Kumquats
		'Quats	and	'Kraut	(a	holiday	favorite!)
		'Quatshakes

	
There	are	so	many	more	to	please	every	palate!

Figure	7-1.	A	simple	unordered	list

	
Tricky	HTML	authors	sometimes	use	nested	unordered	lists,	with	and	without	-
tagged	items,	to	take	advantage	of	the	automatic,	successive	indenting.	You	can
produce	some	fairly	slick	text	segments	that	way.	Just	don't	depend	on	it	for	all
browsers,	including	future	ones.	Rather,	it's	best	to	use	the	border	property	with	a
style	definition	in	the	paragraph	(<p>)	or	division	(<div>)	tag	to	indent	nonlist
sections	of	your	document	(see	Chapter	8).

7.1.1.1.	The	type	attribute

The	graphical	browsers	automatically	bullet	each	-tagged	item	in	an	unordered
list.	Netscape	and	Firefox	use	a	diamond	like	that	shown	in	Figure	7-1,	whereas
Internet	Explorer	and	Opera	use	a	solid	circle,	for	example.	Browsers	that	support
HTML	3.2	and	later	versions,	including	4.0	and	4.01,	as	well	as	XHTML	1.0,	let
you	use	the	type	attribute	to	specify	which	bullet	symbol	you'd	rather	have
precede	items	in	an	unordered	list.	This	attribute	may	have	the	value	of	disc,
circle,	or	square.	All	the	items	within	that	list	thereafter	use	the	specified	bullet
symbol,	unless	an	individual	item	overrides	the	list	bullet	type,	as	described	later
in	this	chapter.

With	the	advent	of	standard	Cascading	Style	Sheets	(CSS),	the	World	Wide	Web
Consortium	(W3C)	has	deprecated	the	type	attribute	in	HTML	4	and	in	XHTML.
Expect	it	to	disappear.

7.1.1.2.	Compact	unordered	lists

If	you	like	wide-open	spaces,	you'll	hate	the	optional	compact	attribute	for	the	
tag.	It	tells	the	browser	to	squeeze	the	unordered	list	into	an	even	smaller,	more
compact	text	block.	Typically,	the	browser	reduces	the	line	spacing	between	list
items;	it	also	may	reduce	the	indentation	between	list	items,	if	it	does	anything	at
all	with	indentation	(usually	it	doesn't).

Some	browsers	ignore	the	compact	attribute,	so	you	shouldn't	depend	on	its
formatting	attributes.	Also,	the	attribute	is	deprecated	in	the	HTML	4	and	XHTML
standards,	so	it	hasn't	long	to	live.

7.1.1.3.	The	style	and	class	attributes

The	style	and	class	attributes	bring	CSS-based	display	control	to	lists,	providing	far
more	comprehensive	control	than	you	would	get	through	individual	attributes	like
type.	Combine	the	style	attribute	with	the		tag,	for	instance,	to	assign	your	own
bullet	icon	image,	instead	of	using	the	common	circle,	disc,	or	square.	The	class
attribute	lets	you	apply	the	style	of	a	predefined	class	of	the		tag	to	the
contents	of	the	unordered	list.	The	value	of	the	class	attribute	is	the	name	of	a
style	defined	in	some	document-level	or	externally	defined	stylesheet.	For	more
information,	see	Chapter	8.	[Inline	Styles:	The	style	Attribute,	8.1.1][Style
Classes,	8.3]

7.1.1.4.	The	lang	and	dir	attributes

The	lang	attribute	lets	you	specify	the	language	used	within	a	list,	and	dir	lets	you
advise	the	browser	in	which	direction	the	text	should	be	displayed.	The	value	of
the	lang	attribute	is	any	of	the	International	Organization	for	Standardization
(ISO)	standard	two-character	language	abbreviations,	including	an	optional
language	modifier.	For	example,	adding	lang=en-UK	tells	the	browser	that	the	list	is
in	English	("en")	as	spoken	and	written	in	the	United	Kingdom	("UK").
Presumably,	the	browser	may	make	layout	or	typographic	decisions	based	upon
your	language	choice.	[The	lang	attribute,	3.6.1.2]

The	dir	attribute	tells	the	browser	in	which	direction	to	display	the	list
contentsfrom	left	to	right	(dir=ltr),	like	English	and	French,	or	from	right	to	left
(dir=rtl),	as	with	Hebrew	and	Chinese.	[The	dir	attribute,	3.6.1.1]

7.1.1.5.	The	id	and	title	attributes

Use	the	id	attribute	to	specially	label	the	unordered	list.	An	acceptable	value	is
any	quote-enclosed	string	that	uniquely	identifies	the	list	and	can	later	be	used	to
unambiguously	reference	the	list	in	a	hyperlink	target,	for	automated	searches,	as
a	stylesheet	selector,	and	for	a	host	of	other	applications.	[The	id	attribute,
4.1.1.4]

You	also	can	use	the	optional	title	attribute	and	quote-enclosed	string	value	to
identify	the	list.	Unlike	an	id	attribute,	a	title	does	not	have	to	be	unique.	[The

title	attribute,	4.1.1.5]

7.1.1.6.	The	event	attributes

The	many	user-related	events	that	may	happen	in	and	around	a	list,	such	as
when	a	user	clicks	or	double-clicks	within	its	display	space,	are	recognized	by
current	browsers.	With	the	respective	on	attribute	and	value,	you	may	react	to
those	events	by	displaying	a	user	dialog	box	or	activating	some	multimedia	event.
[JavaScript	Event	Handlers,	12.3.3]

	

7.2.	Ordered	Lists

Use	an	ordered	list	when	the	sequence	of	the	list	items	is	important.	A	list	of
instructions	is	a	good	example,	as	are	tables	of	contents	and	lists	of	document
footnotes	or	endnotes.

7.2.1.	The		Tag

The	typical	browser	formats	the	contents	of	an	ordered	list	just	like	an	unordered
list,	except	that	the	items	are	numbered	rather	than	bulleted.	The	numbering
starts	at	one	and	is	incremented	by	one	for	each	successive	ordered	list	element
tagged	with	.	[,	7.3]

Function Defines	an	ordered	list

Attributes
class,	compact,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	start,	style,	title,
type

End	tag ;	never	omitted

Contains list_content

Used	in block

	
HTML	3.2	introduced	a	number	of	features	that	provide	a	wide	variety	of	ordered
lists.	You	can	change	the	start	value	of	the	list	and	select	from	five	different
numbering	styles.

Here	is	a	sample	XHTML	ordered	list:

<h3>Pickled	Kumquats</h3>
Here's	an	easy	way	to	make	a	delicious	batch	of	pickled	'quats:

		Rinse	50	pounds	of	fresh	kumquats
		Bring	eight	gallons	white	vinegar	to	rolling	boil
		Add	kumquats	gradually,	keeping	vinegar	boiling
		Boil	for	one	hour,	or	until	kumquats	are	tender
		Place	in	sealed	jars	and	enjoy!

	
Opera	renders	the	example	as	shown	in	Figure	7-2.

Figure	7-2.	An	ordered	list

	

7.2.1.1.	The	start	attribute

Normally,	browsers	automatically	number	ordered	list	items	beginning	with	the
Arabic	numeral	1.	The	start	attribute	for	the		tag	lets	you	change	that
beginning	value.	To	start	numbering	a	list	at	5,	for	example:

<ol	start=5>
			This	is	item	number	5.
			This	is	number	6!
			And	so	forth...

	

7.2.1.2.	The	type	attribute

By	default,	browsers	number	ordered	list	items	with	a	sequence	of	Arabic
numerals.	Besides	being	able	to	start	the	sequence	at	some	number	other	than	1,
you	can	use	the	type	attribute	with	the		tag	to	change	the	numbering	style
itself.	The	attribute	may	have	a	value	of	A	for	numbering	with	capital	letters,	a	for
numbering	with	lowercase	letters,	I	for	capital	Roman	numerals,	i	for	lowercase
Roman	numerals,	or	1	for	common	Arabic	numerals.	See	Table	7-1.

Table	7-1.	HTML	type	values	for	numbering	ordered	lists

Type	value Generated	style Sample	sequence

A Capital	letters A,	B,	C,	D

a Lowercase	letters a,	b,	c,	d

I Capital	Roman	numerals I,	II,	III,	IV

i Lowercase	Roman	numerals i,	ii,	iii,	iv

1 Arabic	numerals 1,	2,	3,	4

	
The	start	and	type	attributes	work	in	tandem.	The	start	attribute	sets	the	starting
value	of	the	item	counter	(an	integer)	at	the	beginning	of	an	ordered	list.	The	type
attribute	sets	the	actual	numbering	style.	For	example,	the	following	ordered	list
starts	numbering	items	at	8,	but	because	the	style	of	numbering	is	set	to	i,	the
first	number	is	the	lowercase	Roman	numeral	"viii."	Subsequent	items	are
numbered	with	the	same	style,	and	each	value	is	incremented	by	1,	as	shown	in
this	HTML	example,	and	rendered	as	shown	in	Figure	7-3:[*]

[*]	Notice	that	we	don't	include	the		end	tag	in	the	HTML	example	but	do	in	all	the	XHTML	ones.	Some	end	tags	are
optional	with	HTML	but	must	be	included	in	all	XHTML	documents.

<ol	start=8	type="i">
			This	is	the	Roman	number	8.
			The	numerals	increment	by	1.
			And	so	forth...

	

Figure	7-3.	The	start	and	type	attributes	work	in	tandem

	
The	type	and	value	of	individual	items	in	a	list	can	be	different	from	those	of	the
list	as	a	whole,	described	in	section	7.3.1	later	in	this	chapter.	As	mentioned
earlier,	the	start	and	type	attributes	are	deprecated	in	HTML	4	and	XHTML.

Consider	using	stylesheets	instead.

7.2.1.3.	Compact	ordered	lists

Like	the		tag,	the		tag	has	an	optional	compact	attribute	that	is	deprecated	in
the	HTML	4	and	XHTML	standards.	Unless	you	absolutely	need	to	use	it,	don't.

7.2.1.4.	The	class,	dir,	id,	lang,	event,	style,	and	title	attributes

These	attributes	are	applicable	with	ordered	lists,	too;	their	effects	are	identical	to
those	for	unordered	lists.	[The	class	and	style	attributes,	4.1.1.6]	[The	lang	and
dir	attributes,	6.3.1.7]	[The	id	and	title	attributes,	7.1.1.5]	[The	event	attributes,
6.3.1.4]

	

7.3.	The		Tag

It	should	be	quite	obvious	to	you	by	now	that	the		tag	defines	an	item	in	a	list.
It's	the	universal	tag	for	list	items	in	ordered	()	and	unordered	()	lists,	as
we	discussed	earlier,	and	for	directories	(<dir>)	and	menus	(<menu>),	which	we
discuss	in	detail	later	in	this	chapter.

Because	the	end	of	a	list	element	can	always	be	inferred	by	the	surrounding
document	structure,	most	authors	omit	the	ending		tags	for	their	HTML	list
elements.	That	makes	sense	because	it	becomes	easier	to	add,	delete,	and	move
elements	around	within	a	list.	However,	XHTML	requires	the	end	tag,	so	it's	best
to	get	used	to	including	it	in	your	documents.

Although	universal	in	meaning,	there	are	some	differences	and	restrictions	to	the
use	of	the		tag	for	each	list	type.	In	unordered	and	ordered	lists,	nearly
anything	can	follow	the		tag,	including	other	lists	and	multiple	paragraphs.
Typically,	if	it	handles	indentation	at	all,	the	browser	successively	indents	nested
list	items,	and	the	content	in	those	items	is	justified	to	the	innermost	indented
margin.

Function Defines	an	item	within	an	ordered,	unordered,	directory,	or	menu	list

Attributes
class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title,	type,
value

End	tag ;	often	omitted	in	HTML

Contains flow

Used	in list_content

	
Directory	and	menu	lists	are	another	matter.	They	are	lists	of	short	items,	like	a
single	word	or	simple	text	blurb	and	nothing	else.	Consequently,		items	within
<dir>	and	<menu>	tags	may	not	contain	other	lists	or	other	block	elements,	including
paragraphs,	preformatted	blocks,	or	forms.

Clean	documents,	fully	compliant	with	the	HTML	and	XHTML	standards,	should	not
contain	any	text	or	other	document	item	inside	the	unordered,	ordered,	directory,
or	menu	lists	that	is	not	contained	within	an		tag.	Most	browsers	tolerate
violations	to	this	rule,	but	you	can't	hold	the	browser	responsible	for	compliant
rendering	of	exceptional	cases,	either.

7.3.1.	Changing	the	Style	and	Sequence	of	Individual	List
Items

Just	as	you	can	change	the	bullet	or	numbering	style	for	all	of	the	items	in	an
unordered	or	ordered	list,	you	can	change	the	style	for	individual	items	within
those	lists.	With	ordered	lists,	you	also	can	change	the	value	of	the	item	number.
As	you'll	see,	the	combinations	of	changing	style	and	numbering	can	lead	to	a
variety	of	useful	list	structures,	particularly	when	included	with	nested	lists.	Do
note,	however,	that	the	standards	have	deprecated	these	attributes	in	deference
to	their	CSS	counterparts.

7.3.1.1.	The	type	attribute

Acceptable	values	for	the	type	attribute	in	the		tag	are	the	same	as	the	values
for	the	appropriate	list	type:	items	within	unordered	lists	may	have	their	type	set
to	circle,	square,	or	disc,	and	items	in	an	ordered	list	may	have	their	type	set	to	any
of	the	values	shown	previously	in	Table	7-1.

Be	careful.	With	earlier	browsers,	such	as	Netscape	Navigator	and	Internet
Explorer	versions	4	and	earlier,	a	change	in	the	bullet	or	numbering	type	in	one
list	item	similarly	affected	subsequent	items	in	the	list.	Not	so	for	HTML	4-
compliant	browsers,	including	Netscape	version	6,	Internet	Explorer	versions	5
and	later,	Firefox,	and	Opera!	The	type	attribute's	effects	are	acute	and	limited	to
only	the	current		tag.	Subsequent	items	revert	to	the	default	type;	each	must
contain	the	specified	type.

The	type	attribute	changes	the	display	style	of	the	individual	list	item's	leading
number,	and	only	that	item,	but	not	the	value	of	the	number,	which	persistently
increments	by	one.	Figure	7-4	shows	the	effect	that	changing	the	type	for	an
individual	item	in	an	ordered	list	has	on	subsequent	items,	as	rendered	from	the
following	XHTML	source:

		<li	type=A>Changing	the	numbering	type
		<li	type=I>Uppercase	Roman	numerals
		<li	type=i>Lowercase	Roman	numerals
		<li	type=1>Plain	ol'	numbers
		<li	type=a>Doesn't	alter	the	order.
			<--	But,	although	numbering	continues	sequentially,
			types	don't	persist.	See?	I	should've	been	a	"g"!

	

Figure	7-4.	Changing	the	numbering	style	for	each	item	in	an
ordered	list

	
You	can	use	the	stylesheet-related	style	and	class	attributes	to	affect	individual
type	changes	in	ordered	and	unordered	lists	that	may	or	may	not	affect
subsequent	list	items.	See	Chapter	8	for	details	(particularly	section	8.4.8.5).

7.3.1.2.	The	value	attribute

The	value	attribute	changes	the	numbers	of	a	specific	list	item	and	all	of	the	list
items	that	follow	it.	Because	the	ordered	list	is	the	only	type	with	sequentially
numbered	items,	the	value	attribute	is	valid	only	when	used	within	an		tag
inside	an	ordered	list.

To	change	the	current	and	subsequent	numbers	attached	to	each	item	in	an
ordered	list,	simply	set	the	value	attribute	to	an	integer.	The	following	source	uses
the	value	attribute	to	jump	the	numbering	on	items	in	an	XHTML	ordered	list,	and
gets	rendered	by	modern	browsers	as	shown	in	Figure	7-5:

		Item	number	1
		And	the	second
		<li	value=9>	Jump	to	number	9
		And	continue	with	10...

	

Figure	7-5.	The	value	attribute	lets	you	change	individual	item
numbers	in	an	ordered	list

	

7.3.1.3.	The	style	and	class	attributes

The	style	attribute	for	the		tag	creates	an	inline	style	for	the	elements
enclosed	by	the	tag,	overriding	any	other	style	rule	in	effect.	The	class	attribute
lets	you	format	the	content	according	to	a	predefined	class	of	the		tag;	its
value	is	the	name	of	that	class.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style
Classes,	8.3]

7.3.1.4.	The	class,	dir,	id,	lang,	event,	style,	and	title	attributes

You	can	apply	these	attributes	to	individual	list	items;	they	have	similar	effects
for	ordered	and	unordered	lists.	[The	class	and	style	attributes,	4.1.1.6]	[The	lang
and	dir	attributes,	6.3.1.7]	[The	id	and	title	attributes,	7.1.1.5]	[The	event
attributes,	6.3.1.4]

	

7.4.	Nesting	Lists

Except	when	placed	inside	directories	or	menus,	lists	nested	inside	other	lists	are
fine.	You	can	embed	menu	and	directory	lists	within	other	lists.	Indents	for	each
nested	list	are	cumulative,	so	do	not	nest	lists	too	deeply;	the	list	contents	could
quickly	turn	into	a	thin	ribbon	of	text	flush	against	the	right	edge	of	the	browser
document	window.

7.4.1.	Nested	Unordered	Lists

The	items	in	each	nested	unordered	list	may	be	preceded	by	a	different	bullet
character	at	the	discretion	of	the	browser.	For	example,	Internet	Explorer	displays
an	alternating	series	of	hollow,	solid	circular,	and	square	bullets	for	the	various
nests	in	the	following	source	fragment,	as	shown	in	Figure	7-6:

		Morning	Kumquat	Delicacies
				
						Hot	Dishes
								
										Kumquat	omelet
										Kumquat	waffles
												
														Country	style
														Belgian
												
										
								
						
						Cold	Dishes
								
										Kumquats	and	cornflakes
										Pickled	Kumquats
										Diced	Kumquats
								
						
				
		

	

Figure	7-6.	Bullets	change	for	nested	unordered	list	items

	
You	can	change	the	bullet	style	for	each	unordered	list	and	even	for	individual	list
items,	but	the	repertoire	of	bullets	is	limited,	typically	a	simple	solid	disc	for	level-
one	items,	an	open	circle	for	level	two,	and	a	solid	square	for	subsequent	levels.

7.4.2.	Nested	Ordered	Lists

By	default,	browsers	number	the	items	in	ordered	lists	beginning	with	the	Arabic
numeral	1,	nested	or	not.	It	would	be	great	if	the	standards	numbered	nested
ordered	lists	in	some	rational,	consecutive	manner;	e.g.,	the	items	in	the	second
nest	of	the	third	main	ordered	list	might	be	successively	numbered	"3.2.1,"
"3.2.2,"	"3.2.3,"	and	so	on.

With	the	type	and	value	attributes,	however,	you	do	have	a	lot	more	latitude	in	how
you	create	nested	ordered	lists.	An	excellent	example	is	the	traditional	style	for
outlining,	which	uses	the	many	different	ways	of	numbering	items	offered	by	the
type	attribute	(see	Figure	7-7):

<ol	type="A">
		A	History	of	Kumquats
				<ol	type="1">
						Early	History
								<ol	type="a">
										The	Fossil	Record
										Kumquats:	The	Missing	Link?
								
						

						Mayan	Use	of	Kumquats
						Kumquats	in	the	New	World
				
		
		Future	Use	of	Kumquats

	

Figure	7-7.	The	type	attribute	lets	you	do	traditional	outlining
with	ordered	lists

	
	

7.5.	Definition	Lists

HTML	and	XHTML	also	support	a	list	style	entirely	different	from	the	ordered	and
unordered	lists	we've	discussed	so	far:	definition	lists.	Like	the	entries	you	find	in
a	dictionary	or	encyclopedia,	complete	with	text,	pictures,	and	other	multimedia
elements,	the	definition	list	is	the	ideal	way	to	present	a	glossary,	list	of	terms,	or
other	name/value	list.

7.5.1.	The	<dl>	Tag

The	definition	list	is	enclosed	by	the	<dl>	and	</dl>	tags.	Within	the	tags,	each	item
in	a	definition	list	is	composed	of	two	parts:	a	term,	followed	by	its	definition	or
explanation.	Instead	of	,	each	item	name	in	a	<dl>	list	is	marked	with	the	<dt>
tag,	followed	by	the	item's	definition	or	explanation	marked	by	the	<dd>	tag.

<dl>

Function Defines	a	definition	list

Attributes class,	compact,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title,	type

End	tag </dl>;	never	omitted

Contains dl_content

Used	in block

	
Unless	you	change	the	display	attributes	with	stylesheet	rules,	browsers	typically
render	the	item	or	term	name	at	the	left	margin	and	render	the	definition	or
explanation	below	it	and	indented.	If	the	definition	terms	are	very	short	(typically
less	than	three	characters),	the	browser	may	choose	to	place	the	first	portion	of
the	definition	on	the	same	line	as	the	term.	See	how	the	following	source	XHTML
definition	list	gets	displayed	in	Figure	7-8:

Figure	7-8.	A	definition	list	example

	
<h3>Common	Kumquat	Parasites</h3>
<dl>

		<dt>Leaf	mites</dt>
		<dd>The	leaf	mite	will	ravage	the	Kumquat	tree,	stripping	it
						of	any	and	all	vegetation.</dd>
		<dt>Trunk	dropsy</dt>
		<dd>This	microscopic	larvae	of	the	common	opossum
						chigger	will	consume	the	structural	elements	of	the
						tree	trunk,	causing	it	to	collapse	inward.</dd>
</dl>

	
As	with	other	list	types,	you	can	add	more	space	between	the	definition	list	items
by	inserting	paragraph	<p>	tags	at	the	end	of	their	content	or	by	defining	a
spacious	style	for	the	respective	tags.

7.5.1.1.	More	compact	definition	lists

The	<dl>	tag	supports	the	compact	attribute,	advising	the	browser	to	make	the	list
presentation	as	small	as	possible.	Few	browsers,	if	any,	honor	this	attribute,	and	it
has	been	deprecated	in	HTML	4	and	XHTML.

7.5.1.2.	The	class,	dir,	id,	lang,	style,	title,	and	event	attributes

The	many	other	attributes	for	the	<dl>	tag	should	be	quite	familiar	by	now.	The
style	and	class	attributes	let	you	control	the	display	style,	the	id	and	title	tag
attributes	let	you	uniquely	label	its	contents,	the	lang	and	dir	attributes	let	you
specify	its	native	language	and	the	direction	in	which	the	text	will	be	rendered,
and	the	many	on-event	attributes	let	you	react	to	user-initiated	mouse	and
keyboard	actions	on	the	contents.	Not	all	are	implemented	by	the	currently
popular	browsers	for	this	tag	or	for	many	others.	[The	dir	attribute,	3.6.1.1]	[The
lang	attribute,	3.6.1.2]	[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]
[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]	[JavaScript	Event
Handlers,	12.3.3]

7.5.2.	The	<dt>	Tag

The	<dt>	tag	defines	the	term	component	of	a	definition	list.	It	is	valid	only	when
used	within	a	definition	(<dl>)	list	preceding	the	term	or	item,	before	the	<dd>	tag
and	the	term's	definition	or	explanation.

Traditionally,	the	definition	term	that	follows	the	<dt>	tag	is	short	and	sweetone	or

a	few	words.	Technically,	it	can	be	any	length.	If	the	definition	term	is	long,	the
browser	may	exercise	the	option	of	extending	the	item	beyond	the	display	window
or	wrapping	it	onto	the	next	line,	where	the	definition	begins.

Because	the	end	of	the	<dt>	tag	immediately	precedes	the	start	of	the	matching
<dd>	tag,	it	is	unambiguous,	so	the	</dt>	end	tag	is	not	required	in	HTML
documents.

<dt>

Function Defines	a	definition	list	term

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </dt>;	may	be	omitted	in	HTML

Contains text

Used	in dl_content

	
However,	the	XHTML	standard	insists	that	it	be	present,	so	get	used	to	including	it
in	your	documents.

7.5.2.1.	Formatting	text	with	<dt>

In	practice,	browsers	are	either	too	lenient	or	too	dumb	to	enforce	the	rules,	so
some	tricky	HTML	authors	misuse	the	<dt>	tag	to	shift	the	left	margin	right	and
left,	respectively,	for	fancy	text	displays.	(Remember,	tab	characters	and	leading
spaces	usually	don't	work	with	regular	text.)	We	don't	condone	violating	the
HTML,	and	certainly	not	the	XHTML	standard,	and	we	caution	you	once	again
about	tricked-up	documents.	Use	stylesheets	instead.

7.5.2.2.	The	class,	dir,	id,	lang,	style,	title,	and	event	attributes

The	<dt>	tag	supports	the	standard	HTML	4/XHTML	tag	attributes.	The	style	and
class	attributes	let	you	control	the	display	style,	the	id	and	title	tag	attributes	let
you	uniquely	label	its	contents,	the	lang	and	dir	attributes	let	you	specify	its
native	language	and	the	direction	in	which	the	text	will	be	rendered,	and	the
many	on-event	attributes	let	you	react	to	user-initiated	mouse	and	keyboard
actions	on	the	contents.	Not	all	are	implemented	by	the	currently	popular
browsers	for	this	tag	or	for	many	others.	[The	dir	attribute,	3.6.1.1]	[The	lang
attribute,	3.6.1.2]	[The	id	attribute,	4.1.1.4][The	title	attribute,	4.1.1.5]	[Inline
Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]	[JavaScript	Event	Handlers,

12.3.3]

7.5.3.	The	<dd>	Tag

The	<dd>	tag	marks	the	start	of	the	definition	portion	of	an	item	in	a	definition	list.
According	to	the	HTML	and	XHTML	standards,	<dd>	belongs	only	inside	a	definition
(<dl>)	list,	immediately	following	the	<dt>	tag	and	term	and	preceding	the
definition	or	explanation.

<dd>

Function Defines	a	definition	list	term

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </dd>;	may	be	omitted	in	HTML

Contains flow

Used	in dl_content

	
The	content	that	follows	the	<dd>	tag	may	be	any	HTML	or	XHTML	construct,
including	other	lists,	block	text,	and	multimedia	elements.	Although	treating	it
otherwise	identically	as	conventional	content,	browsers	typically	indent	definition
list	(<dd>)	definitions.	Because	the	start	of	another	term	and	definition	(<dt>)	or	the
required	end	tag	of	the	definition	(</dl>)	unambiguously	terminates	the	preceding
definition,	the	</dd>	end	tag	is	not	needed,	and	its	absence	makes	your	source	text
more	readable.	However,	once	again,	XHTML	insists	that	the	end	tag	appear	in
your	documents,	so	you	may	as	well	get	used	to	adding	</dd>	to	your	documents.

7.5.3.1.	The	class,	dir,	id,	lang,	style,	title,	and	event	attributes

The	<dt>	tag	supports	the	standard	tag	attributes.	The	style	and	class	attributes	let
you	control	the	display	style,	the	id	and	title	tag	attributes	let	you	uniquely	label
its	contents,	the	lang	and	dir	attributes	let	you	specify	its	native	language	and	the
direction	in	which	the	text	will	be	rendered,	and	the	many	on-event	attributes	let
you	react	to	user-initiated	mouse	and	keyboard	actions	on	the	contents.	Not	all
are	implemented	by	the	currently	popular	browsers	for	this	tag	or	for	many
others.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]	[The	id	attribute,
4.1.1.4]	[The	title	attribute,	4.1.1.5]	[Inline	Styles:	The	style	Attribute,	8.1.1]
[Style	Classes,	8.3]	[JavaScript	Event	Handlers,	12.3.3]

	

7.6.	Appropriate	List	Usage

In	general,	use	unordered	lists	for:

Link	collections

Short,	nonsequenced	groups	of	text

Emphasizing	the	high	points	of	a	presentation

In	general,	use	ordered	lists	for:

Tables	of	contents

Instruction	sequences

Sets	of	sequential	sections	of	text

Assigning	numbers	to	short	phrases	that	can	be	referenced	elsewhere

In	general,	use	definition	lists	for:

Glossaries

Custom	bullets	(make	the	item	after	the	<dt>	tag	an	icon-size	bullet	image)

Any	list	of	name/value	pairs

	

7.7.	Directory	Lists

The	directory	list	is	a	specialized	form	of	unordered	list.	It	has	been	deprecated	in
the	HTML	4	and	XHTML	standards.	We	don't	recommend	that	you	use	it	at	all.
[,	7.1.1]

7.7.1.	The	<dir>	Tag	(Deprecated)

The	designers	of	HTML	originally	dedicated	the	<dir>	tag	for	displaying	lists	of	files.
As	such,	the	browser,	if	it	treats	<dir>	and		differently	at	all	(most	don't),
expects	the	various	list	elements	to	be	quite	short,	possibly	no	longer	than	20	or
so	characters.	Some	browsers	display	the	elements	in	a	multicolumn	format	and
may	not	use	a	leading	bullet.

<dir>	

Function Defines	a	directory	list

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </dir>;	never	omitted

Contains list_content

Used	in block

	
As	with	an	unordered	list,	you	define	directory	list	items	with	the		tag.	When
used	within	a	directory	list,	however,	the		tag	may	not	contain	any	block
element,	including	paragraphs,	other	lists,	preformatted	text,	or	forms.

The	following	example	puts	the	directory	tag	to	its	traditional	task	of	presenting	a
list	of	filenames:

The	distribution	tape	has	the	following	files	on	it:
<dir>
		<code>README</code>
		<code>Makefile</code>
		<code>main.c</code>
		<code>config.h</code>
		<code>util.c</code>
</dir>

	
Notice	that	we	used	the	<code>	tag	to	ensure	that	the	filenames	would	be	rendered
in	an	appropriate	manner	(see	Figure	7-9).

Figure	7-9.	An	example	<dir>	list

	

7.7.1.1.	The	<dir>	attributes

The	attributes	for	the	<dir>	tag	are	identical	to	those	for	,	with	the	same
effects.

	

7.8.	Menu	Lists

The	menu	list	is	yet	another	specialized	form	of	the	unordered	list.	Like	<dir>,	it	is
deprecated	in	the	HTML	4	and	XHTML	standards,	so	we	don't	recommend	using	it.
[,	7.1.1]

7.8.1.	The	<menu>	Tag	(Deprecated)

The	<menu>	tag	displays	a	list	of	short	choices	to	the	reader,	such	as	a	menu	of	links
to	other	documents.	The	browser	may	use	a	special	(typically	more	compact)
representation	of	items	in	a	menu	list	compared	with	the	general	unordered	list,
or	even	use	some	sort	of	graphical	pull-down	menu	to	implement	the	menu	list.	If
the	list	items	are	short	enough,	the	browser	may	even	display	them	in	a
multicolumn	format	and	may	not	precede	each	list	item	with	a	bullet.

Like	an	unordered	list,	define	the	menu	list	items	with	the		tag.	When	used
within	a	menu	list,	however,	the		tag	may	not	contain	any	block	elements,
including	paragraphs,	other	lists,	preformatted	text,	or	forms.

Compare	the	following	source	text	and	display	(Figure	7-10)	with	the	directory
(Figure	7-9)	and	unordered	(Figure	7-1)	list	displays	presented	earlier	in	the
chapter:

Some	popular	kumquat	recipes	include:
<menu>
		Pickled	Kumquats
		'Quats	and	'Kraut	(a	holiday	favorite!)
		'Quatshakes
</menu>
There	are	many	more	to	please	every	palate!

	

Figure	7-10.	Sample	<menu>	list

	

<menu>	

Function Defines	a	menu	list

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </menu>;	never	omitted

Contains list_content

Used	in block

	
	

Chapter	8.	Cascading	Style	Sheets

Stylesheets	are	the	way	publishing	professionals	manage	the	overall	"look"	of
their	publicationsbackgrounds,	fonts,	colors,	and	so	onfrom	a	single	page	to	huge
collections	of	documents.	Most	desktop	publishing	software	supports	stylesheets,
as	do	popular	word	processors,	so	using	stylesheets	for	HTML	documents	is
obvious.

For	the	most	part,	HTML	focuses	on	content	over	style.	Authors	are	encouraged	to
worry	about	providing	high-quality	information	and	leave	it	to	the	browser	to
worry	about	presentation.	We	strongly	urge	you	to	adopt	this	philosophy	in	your
documentsdon't	mistake	style	for	substance.

However,	presentation	is	for	the	benefit	of	the	reader,	and	even	the	original
designers	of	HTML	understand	the	interplay	between	style	and	readabilityfor
example,	through	the	physical	style	and	header	tags.	Stylesheets	extend	that
presentation	with	several	additional	effects,	including	colors,	a	wider	selection	of
fonts,	and	even	sounds	so	that	users	can	better	distinguish	elements	of	your
document.	But	most	importantly,	stylesheets	let	you	control	the	presentation
attributes	for	all	the	tags	in	a	documentfor	a	single	document	or	a	collection	of
many	documentsfrom	a	single	master.

In	early	1996,	the	World	Wide	Web	Consortium	(W3C)	put	together	a	draft
proposal	defining	Cascading	Style	Sheets	(CSS)	for	HTML.	This	draft	proposal
quickly	matured	into	a	recommended	standard.	In	mid-1998,	the	W3C	extended
the	original	specification	to	create	CSS2,	which	includes	presentation	standards
for	a	variety	of	media	besides	the	familiar	onscreen	browser,	along	with	several
other	enhancements.

The	W3C	continues	to	work	on	a	minor	version	upgrade	(version	2.1)	and	a	draft
of	CSS3,	but	these	are	not	imminent.	Indeed,	no	current	browser	or	web	agent
fully	complies	with	the	CSS2	standard.	However,	because	we	realize	that	eventual
compliance	with	the	W3C	standard	is	likely,	we'll	cover	all	the	components	of	the
CSS2	standard	in	this	chapter.	As	always,	we'll	denote	clearly	what	is	real,	what	is
proposed,	and	what	is	actually	supported.[*]

[*]	In	the	fall	of	2000,	work	began	on	CSS3.	As	CSS3	is	still	under	construction	and	browsers	have	not	yet	even	become
fully	compliant	with	CSS2,	we	focus	on	CSS2	throughout	this	chapter.

	

8.1.	The	Elements	of	Styles

At	the	simplest	level,	a	style	is	nothing	more	than	a	rule	the	browser	follows	to
render	a	particular	HTML	or	XHTML	tag's	contents.[*]	Each	tag	has	a	number	of
style	properties	associated	with	it,	whose	values	define	how	that	tag	is	rendered
by	the	browser.	A	rule	defines	a	specific	value	for	one	or	more	properties	of	a	tag.
For	example,	most	tags	can	have	a	color	property,	the	value	of	which	defines	the
color	in	which	the	modern	GUI	browser	should	display	the	contents	of	the	tag.
Other	properties	include	fonts,	line	spacing,	margins,	borders,	sound	volume,	and
voice,	which	we	describe	in	detail	later	in	this	chapter.

[*]	We	explicitly	avoided	the	term	display	here	because	it	connotes	visual	presentation,	whereas	the	CSS2	standard
works	hard	to	suggest	many	different	ways	of	presenting	the	tagged	contents	of	a	document.

There	are	three	ways	to	attach	a	style	to	a	tag:	inline,	on	the	document	level,	or
through	the	use	of	an	external	stylesheet.	You	may	use	one	or	more	stylesheets
for	your	documents.	The	browser	either	merges	the	style	definitions	from	each
style	or	redefines	the	style	characteristic	for	a	tag's	contents.	Styles	from	these
various	sources	are	applied	to	your	document,	combining	and	defining	style
properties	that	cascade	from	external	stylesheets	through	local	document	styles,
and	ending	with	inline	styles.	This	cascade	of	properties	and	style	rules	gives	rise
to	the	standard's	name:	Cascading	Style	Sheets.

We	cover	the	syntactic	basics	of	the	three	stylesheet	techniques	here.	We	delve
more	deeply	into	the	appropriate	use	of	inline,	document-level,	and	external
stylesheets	at	the	end	of	this	chapter.

8.1.1.	Inline	Styles:	The	style	Attribute

The	inline	style	is	the	simplest	way	to	attach	a	style	to	a	tagjust	include	a	style
attribute	with	the	tag	along	with	a	list	of	properties	and	their	values.	The	browser
uses	those	style	properties	and	values	to	render	the	contents	of	that	tag.

For	instance,	the	following	style	tells	the	browser	to	display	the	level-1	header
text,	"I'm	so	bluuuuoooo!",	not	only	in	the	<h1>	tag	style,	but	also	colored	blue	and
italicized:

<h1	style="color:	blue;	font-style:	italic">I'm	so	bluuuuoooo!</h1>

	
Inline	styles	can	be	difficult	to	maintain,	because	they	add	more	contents	to	their

tags'	definitions,	making	them	harder	to	read.	Also,	because	they	have	only	a
local	effect,	they	must	be	sprinkled	throughout	your	document.	Use	the	inline
style	attribute	sparingly	and	only	in	those	rare	circumstances	when	you	cannot
achieve	the	same	effects	otherwise.

8.1.2.	Document-Level	Stylesheets

The	real	power	of	stylesheets	becomes	more	evident	when	you	place	a	list	of
presentation	rules	at	the	beginning	of	your	HTML	or	XHTML	document.	Placed
within	the	<head>	and	enclosed	within	their	own	<style>	and	</style>	tags,
document-level	stylesheets	affect	all	the	same	tags	within	that	document,	except
for	tags	that	contain	overriding	inline	style	attributes.[*]

[*]	XHTML-based	document-level	stylesheets	are	specially	enclosed	in	CDATA	sections	of	your	documents.	See	section
16.3.7	in	Chapter	16	for	details.

<style>

Function Defines	a	document-level	stylesheet

Attributes dir,	lang,	media,	title,	type

End	tag </style>;	rarely	omitted	in	HTML

Contains styles

Used	in head_content

	
Everything	between	the	<style>	and	</style>	tags	is	considered	part	of	the	style
rules	that	the	browser	is	to	apply	when	rendering	the	document.	Actually,	the
contents	of	the	<style>	tag	are	not	HTML	or	XHTML	and	are	not	bound	by	the
normal	rules	for	markup	content.	The	<style>	tag,	in	effect,	lets	you	insert	foreign
content	into	your	document	that	the	browser	uses	to	format	your	tags.

For	example,	a	styles-conscious	browser	displays	the	contents	of	all	<h1>	tags	as
blue,	italic	text	in	an	HTML	document	that	has	the	following	document-level
stylesheet	definition	in	its	head:

<head>
<title>All	True	Blue</title>
<style	type="text/css">
		<!--
		/*	make	all	level-1	headers	blue	in	italics	*/
		h1	{color:	blue;	font-style:	italic}
		-->
</style>
</head>
<body>
<h1>I'm	so	bluuuuoooo!</h1>
...
<h1>I	am	ba-loooooo,	tooooo!</h1>

	

8.1.2.1.	The	type	attribute

Other	types	of	stylesheets	are	available	for	HTML/XHTML	besides	CSS.	Like	the
JavaScript	stylesheets	we	describe	in	Chapter	12,	they	are	not	well	supported,	if
at	all,	by	the	popular	browsers,	so	we	don't	spend	a	lot	of	time	on	them	in	this
book.	Nonetheless,	the	browser	needs	a	way	to	distinguish	which	stylesheet	you
use	in	your	document.	Use	the	type	attribute	within	the	<style>	tag	for	that.	All
cascading	stylesheets	are	of	the	type	text/css;	JavaScript	stylesheets	use	the	type
text/javascript.	You	may	omit	the	type	attribute	and	hope	the	browser	figures	out
the	kinds	of	styles	you	are	using,	but	we	suggest	you	always	include	the	type
attribute,	so	there	is	no	opportunity	for	confusion.	[JavaScript	Stylesheets
(Antiquated),	12.4]

8.1.2.2.	The	media	attribute

HTML	and	XHTML	documents	can	wind	up	in	the	strangest	places	these	days,	such
as	on	cellular	phones.	To	help	the	browser	figure	out	the	best	way	to	render	your
documents,	include	the	media	attribute	within	the	<style>	tag.	The	value	of	this
attribute	is	the	document's	intended	medium,	although	it	doesn't	preclude
rendering	by	other	media.	The	default	value	is	screen	(computer	display).	Other
values	include	tty	(text	only),	tv	(television),	projection	(theaters),	handheld	(PDAs
and	cell	phones),	print	(ink	on	paper),	braille	(tactile	devices),	embossed	(Braille
printers),	aural	(audio;	speech	synthesis,	for	instance),	and	all	(many	different
types	of	media).

If	you	want	to	explicitly	list	several	types	of	media,	instead	of	specifying	all,	use	a
quote-enclosed,	comma-separated	list	of	media	types	as	the	value	of	the	media
attribute.	For	example:

<style	type="text/css"	media="screen,print">

	
tells	the	browser	that	your	document	contains	CSS	both	for	printing	and	for
computer	displays.

Be	careful	specifying	media,	because	the	browser	cannot	apply	the	styles	you
define	unless	the	document	is	being	rendered	on	one	of	your	specified	media.
Thus,	the	browser	would	not	apply	our	example	set	of	styles	designed	for
media="screen,print"	if	the	user	is,	for	instance,	connected	to	the	Web	with	a
handheld	computer.

How	do	you	create	different	style	definitions	for	different	media	without	creating
multiple	copies	of	your	document?	The	CSS2	standard	lets	you	define	media-

specific	stylesheets	through	its	extension	to	the	@import	at-rule	and	through	the
@media	at-rule,	which	we	describe	in	section	8.1.5	later	in	this	chapter.

8.1.2.3.	The	dir,	lang,	and	title	attributes

As	with	any	HTML/XHTML	element,	you	can	associate	a	descriptive	title	with	the
<!--	<DEFANGED_STYLE>	tag	and	specify	the	language	and	text-rendering	direction	with
the	title,	lang,	and	dir	attributes.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,
3.6.1.2]	[The	id	attribute,	4.1.1.4]

8.1.3.	Style-Free	Browsers

Certainly	you	noticed	that,	in	the	preceding	document-level	stylesheet	example,
we	enclosed	the	contents	of	the	<style>	tag	inside	an	HTML	comment	(<!--)	tag.
Older,	style-free	browsers	ignore	the	<style>	tag,	but	then	blithely	go	on	to	display
its	contents.	Current	browsers	expect	style	rules	to	appear	within	an	HTML
comment	and	process	them	accordingly,	whereas	older	browsers	appropriately
ignore	the	unrecognized	<style>	tag	and	go	on	to	treat	the	comment	tag	and	its
intervening	text	normally.	That	works.

The	order	of	the	tags	is	very	important.	Here's	the	approach,	which	you	may	have
noticed	in	our	document-level	style	example:

<style>
<!--
		h1	{color:	blue;	font-style:	italic}
-->
</style>

	
Use	a	<style>	tag,	followed	by	an	HTML	comment,	then	followed	by	the	document-
level	style	rule(s).	Finally,	in	order,	close	the	comment	and	the	</style>	tag.

XHTML	documents	require	a	slightly	different	approach.	In	those	documents,	we
enclose	document-level	styles	in	a	CDATA	section	rather	than	an	HTML	comment
tag.	See	section	16.3.7	for	details.

Also,	as	they	do	for	other	attributes	they	don't	recognize,	the	style-free	browsers
ignore	inline	style	attributes	and	their	values,	so	there	are	no	detrimental	effects
in	that	regard	for	your	document	displays.

8.1.4.	External	Stylesheets

You	can	also	place	style	definitions	into	a	separate	document	(a	text	file	with	the
Multipurpose	Internet	Mail	Extension,	or	MIME,	type	of	text/css)	and	import	this
external	stylesheet	into	your	document.	Use	the	same	stylesheet	for	other
documents	in	your	collection,	too,	even	entire	collections	of	documents,	to
achieve	a	consistent	look	and	feel.	Because	an	external	stylesheet	is	a	separate
file	and	the	browser	loads	it	over	the	network,	you	can	store	it	anywhere,	reuse	it
often,	and	even	use	others'	stylesheets.

For	example,	suppose	we	create	a	file	named	gen_styles.css	containing	the
following	style	rule:

h1	{color:	blue;	font-style:	italic}

	
For	each	and	every	one	of	the	documents	in	our	collections,	we	can	tell	the
browser	to	read	the	contents	of	the	gen_styles.css	file,	which	in	turn	colors	all	the
<h1>	tag	contents	blue	and	renders	the	text	in	italic.	Of	course,	that	is	true	only	if
the	user's	machine	is	capable	of	these	style	tricks,	she's	using	a	styles-conscious
browser,	and	the	style	isn't	overridden	by	a	document-level	or	inline	style
definition.

You	can	load	external	stylesheets	into	your	document	in	two	different	ways:	by
linking	them	or	by	importing	them.

8.1.4.1.	Linked	external	stylesheets

One	way	to	load	an	external	stylesheet	is	to	use	the	<link>	tag	within	the	<head>	of
your	document:

<head>
<title>Style	linked</title>
<link	rel=stylesheet	type="text/css"
						href="http://www.kumquats.com/styles/gen_styles.css"
						title="The	blues">
</head>
<body>
<h1>I'm	so	bluuuuoooo!</h1>
...
<h1>	I	am	ba-loooooo,	tooooo!</h1>

	
Recall	that	the	<link>	tag	creates	a	relationship	between	the	current	document	and
some	other	document	on	the	Web.	In	this	example,	we	tell	the	browser	that	the
document	named	in	the	href	attribute	is	a	cascading	stylesheet	(css),	as	indicated
by	the	type	attribute.	Referencing	an	external	stylesheet	in	<link>	requires	that
you	include	the	href	and	type	attributes.	We	also	tell	the	browser	explicitly,	albeit
optionally,	that	the	file's	relationship	to	our	document	is	that	it	is	a	stylesheet,	and
we	provide	a	title	making	it	available	for	later	reference	by	the	browser.	[The
<link>	Header	Element,	6.7.2]

The	stylesheet-specifying	<link>	tag	and	its	required	href	and	type	attributes	must
appear	in	the	<head>	of	a	document.	The	URL	of	the	stylesheet	may	be	absolute	or
relative	to	the	document's	base	URL.

8.1.4.2.	Imported	external	stylesheets

The	second	technique	for	loading	an	external	stylesheet	imports	the	file	with	a
special	command	(a.k.a.	at-rule)	within	the	<style>	tag:

<head>
<title>Imported	stylesheet</title>
<style	type="text/css">
		<!--
				@import	
	
	url(http://www.kumquats.com/styles/gen_styles.css);
				@import	"http://www.kumquats.com/styles/spec_styles.css";
				body	{background:	url(backgrounds/marble.gif)}
		-->
</style>
</head>

	
The	@import	at-rule	expects	a	single	URL	for	the	network	path	to	the	external
stylesheet.	As	shown	in	this	example,	the	URL	may	be	either	a	string	enclosed	in
double	quotes	and	ending	with	a	semicolon	or	the	contents	of	the	url	keyword,
enclosed	in	parentheses,	with	a	trailing	semicolon.	The	URL	may	be	absolute	or
relative	to	the	document's	base	URL.

The	@import	at-rule	must	appear	before	any	conventional	style	rules,	either	in	the
<style>	tag	or	in	an	external	stylesheet.	Otherwise,	the	standard	insists	that	the
browser	ignore	the	errant	@import.	By	first	importing	all	the	various	stylesheets,

then	processing	document-level	style	rules,	the	CSS2	standard	cascades:	the	last
one	standing	wins.	[URL	property	values,	8.4.1.4]

The	@import	at-rule	can	appear	in	a	document-level	style	definition	or	even	in
another	external	stylesheet,	letting	you	create	nested	stylesheets.

8.1.5.	Media-Specific	Styles

Besides	the	media	attribute	for	the	<style>	tag,	the	CSS2	standard	has	two	other
features	that	let	you	apply	different	stylesheets,	depending	on	the	agent	or	device
that	renders	your	document.	This	way,	for	instance,	you	can	have	one	style	or
whole	stylesheet	take	effect	when	your	document	gets	rendered	on	a	computer
screen	and	another	set	of	styles	for	when	the	contents	get	punched	out	on	a
Braille	printer.	And	what	about	those	cell	phones	that	access	the	Web?

Like	the	media	attribute	for	the	<style>	tag	that	affects	the	entire	stylesheet,	you
can	specify	whether	the	user's	document	processor	loads	and	uses	an	imported
stylesheet.	Do	that	by	adding	a	media-type	keyword	or	a	series	of	comma-
separated	keywords	to	the	end	of	the	@import	at-rule.	For	instance,	the	following
example	lets	the	user	agent	decide	whether	to	import	and	use	the	speech-
synthesis	stylesheet	or	a	common	PC	display	and	print	stylesheet,	if	it	is	able	to
render	the	specified	media	types:

@import	url(http://www.kumquats.com/styles/visual_styles.css)	screen,print;
@import	"http://www.kumquats.com/styles/speech_styles.css"	aural;

	
The	@import	CSS2	media	types	are	the	same	as	those	for	the	<style>	tag's	media
attribute,	including	all,	aural,	braille,	embossed,	handheld,	print,	projection,	screen,
tty,	and	tv.

Another	CSS2	way	to	select	media	is	through	the	explicit	@media	at-rule,	which	lets
you	include	media-specific	rules	within	the	same	stylesheet,	either	at	the
document	level	or	in	an	external	stylesheet.	At	the	document	level,	as	with
@import,	the	@media	at-rule	must	appear	within	the	contents	of	the	<style>	tag.	The
at-rules	may	not	appear	within	another	rule.	Unlike	@import,	@media	may	appear
subsequent	to	other	style	rules,	and	its	style-rule	contents	override	previous	rules
according	to	the	cascading	standard.

The	contents	of	@media	include	one	or	more	comma-separated	media-type
keywords	followed	by	a	curly	brace	({})-enclosed	set	of	style	rules.	For	example:

body	{background:	white}

@media	tv,	projection					{
				body	{background:	yellow}
				}

	
The	yellow	attribute	to	the	@media	at-rule	causes	the	body's	background	color	to
display	yellow,	rather	than	the	default	white	set	in	the	general	style	rule,	when
the	document	is	rendered	on	a	television	or	projection	screen	(as	specified	by	the
tv	and	projection	attributes).

8.1.6.	Linked	Versus	Imported	Stylesheets

At	first	glance,	it	may	appear	that	linked	and	imported	stylesheets	are	equivalent,
using	different	syntax	for	the	same	functionality.	This	is	true	if	you	use	just	one
<link>	tag	in	your	document.	However,	special	CSS2-standard	rules	come	into	play
if	you	include	two	or	more	<link>	tags	within	a	single	document.

With	one	<link>	tag,	the	browser	should	load	the	styles	in	the	referenced
stylesheet	and	format	the	document	accordingly,	with	any	document-level	and
inline	styles	overriding	the	external	definitions.	With	two	or	more	<link>	tags,	the
browser	should	present	the	user	with	a	list	of	all	the	linked	stylesheets.	The	user
then	selects	one	of	the	linked	sheets,	which	the	browser	loads	and	uses	to	format
the	document;	the	other	linked	stylesheets	get	ignored.

On	the	other	hand,	the	styles-conscious	browser	merges,	as	opposed	to
separating,	multiple	@imported	stylesheets	to	form	a	single	set	of	style	rules	for
your	document.	The	last	imported	stylesheet	takes	precedence	if	there	are
duplicate	definitions	among	the	stylesheets.	Hence,	if	the	external	gen_styles.css
stylesheet	specification	first	tells	the	browser	to	make	<h1>	contents	blue	and
italic,	and	then	a	later	spec_styles.css	tells	the	browser	to	make	<h1>	text	red,	the
<h1>	tag	contents	appear	red	and	italic.	And	if	we	later	define	another	colorsay,
yellowfor	<h1>	tags	in	a	document-level	style	definition,	the	<h1>	tags	are	all	yellow
and	italic.	Cascading	effects.	See?

In	practice,	the	popular	browsers	treat	linked	stylesheets	just	like	imported	ones
by	cascading	their	effects.	The	browsers	do	not	currently	let	you	choose	from
among	linked	choices.	Imported	styles	override	linked	external	styles,	just	as	the
document-level	and	inline	styles	override	external	style	definitions.	To	bring	this
all	together,	consider	this	example:

<html>
<head>
<link	rel=stylesheet	href=sheet1.css	type=text/css>

<link	rel=stylesheet	href=sheet2.css	type=text/css>
<style>
<!--
		@import	url(sheet3.css);
		@import	url(sheet4.css);
-->
</style>
</head>

	
Using	the	CSS2	model,	the	browser	should	prompt	the	user	to	choose	sheet1.css
or	sheet2.css.	It	should	then	load	the	selected	sheet,	followed	by	sheet3.css	and
sheet4.css.	Duplicate	styles	defined	in	sheet3.css	or	sheet4.css,	and	in	any	inline
styles,	override	styles	defined	in	the	selected	sheet.	In	practice,	the	popular
browsers	cascade	the	stylesheet	rules	as	defined	in	the	example	order	sheet1
through	sheet4.

8.1.7.	Limitations	of	Current	Browsers

All	the	popular	browsers	support	the	<link>	tag	to	apply	an	external	stylesheet	to	a
document.	None	supports	multiple,	user-selectable	<link>	stylesheets,	as	proposed
by	the	CSS2	standard.	Instead,	they	treat	the	<link>	stylesheets	as	they	do	@import
or	document-level	styles,	by	cascading	the	rules.

Netscape	version	6,	but	not	earlier	versions,	Internet	Explorer	versions	5	and
later,	as	well	as	all	versions	of	Opera	and	Firefox,	honor	the	@import	and	the	@media
at-rules,	for	both	document-level	and	external	sheets,	allowing	sheets	to	be
nested.

Achieving	media-specific	styles	through	external	stylesheets	with	earlier	Netscape
browsers	is	hopeless.	Assume,	therefore,	that	most	people	who	have	Netscape
version	4	will	render	your	documents	on	a	common	PC	screen,	so	make	screen	the
default.	Then	embed	all	other	media-specific	styles,	such	as	those	for	print	or
Braille,	within	@media	at-rules	so	that	CSS-compliant	agents	properly	select	styles
based	on	the	rendering	medium.

Another	alternative	is	to	create	media-specific	<style>	tags	within	each	document.
Run,	do	not	walk,	away	from	that	idea.

8.1.8.	Style	Comments

Comments	are	welcome	inside	the	<style>	tag	and	in	external	stylesheets,	but
treat	them	differently	than	HTML	comments:	stylesheets	aren't	HTML.	Rather,
enclose	style	comments	between	/*	and	*/	markers,	as	we	did	in	the	example	in
section	8.1.2,	earlier	in	this	chapter.	(Those	of	you	who	are	familiar	with	the	C
programming	language	will	recognize	these	comment	markings.)	Use	this
comment	syntax	for	both	document-level	and	external	stylesheets.	Comments
cannot	be	nested.

We	recommend	documenting	your	styles	whenever	possible,	especially	in	external
stylesheets.	Whenever	the	possibility	exists	that	other	authors	may	use	your
styles,	comments	make	it	much	easier	to	understand	your	styles.

8.1.9.	Style	Precedence

You	may	import	multiple	external	stylesheets	and	combine	them	with	document-
level	and	inline	style	effects	in	many	different	ways.	Their	effects	cascade	(hence
the	name,	of	course).	You	may	specify	the	font	type	for	our	example	<h1>	tag,	for
instance,	in	an	external	style	definition,	whereas	its	color	may	come	from	a
document-level	stylesheet.

Stylesheet	effects	are	not	cumulative,	however:	of	the	many	styles	that	may
define	different	values	for	the	same	propertycolors	for	the	contents	of	our
example	tag,	for	instancethe	one	that	takes	precedence	can	be	found	by	following
these	rules,	listed	here	in	order:

Sort	by	origin

A	style-defined	"closer"	to	a	tag	takes	precedence	over	a	more	"distant"	style;
an	inline	style	takes	precedence	over	a	document-level	style,	which	takes
precedence	over	the	effects	of	an	external	style.

If	more	than	one	applicable	style	exists,	sort	by	class

A	property	defined	as	a	class	of	a	tag	(see	section	8.3,	later	in	this	chapter)
takes	precedence	over	a	property	defined	for	the	tag	in	general.

If	multiple	styles	still	exist,	sort	by	specificity

The	properties	for	a	more	specific	contextual	style	(see	section	8.2.3,	later	in

this	chapter)	take	precedence	over	properties	defined	for	a	less	specific
context.

If	multiple	styles	still	exist,	sort	by	order

The	property	specified	latest	takes	precedence.

The	relationship	between	style	properties	and	conventional	tag	attributes	is
almost	impossible	to	predict.	For	instance,	stylesheet-dictated	background	and
foreground	colorswhether	defined	externally,	at	the	document	level,	or
inlineoverride	the	various	color	attributes	that	may	appear	within	a	tag.	But	the
align	attribute	of	an	inline	image	usually	takes	precedence	over	a	style-dictated
alignment.

Myriad	style	and	tag	presentation-attribute	combinations	exist.	You	need	a	crystal
ball	to	predict	which	combination	wins	and	which	loses	the	precedence	battle.	The
rules	of	redundancy	and	style-versus-attribute	precedence	are	elucidated	in	the
W3C	CSS2	standard,	but	no	clear	pattern	of	precedence	is	implemented	in	the
styles-conscious	browsers.	This	is	particularly	unfortunate	because	there	will	be
an	extended	period,	perhaps	several	more	years,	in	which	users	may	or	may	not
use	styles-conscious	browsers.	Authors	must	implement	both	styles	and	nonstyle
presentation	controls	to	achieve	the	same	effects.

Nonetheless,	our	recommendation	is	to	runas	fast	as	you	canfrom	one-shot,
inline,	localized	kinds	of	presentation	effects	such	as	those	afforded	by	the	
tag	and	color	attribute.	They	have	served	their	temporary	purpose;	it's	now	time
to	bring	consistency	(without	the	pain!)	back	into	your	document	presentation.
Use	styles.

	

8.2.	Style	Syntax

The	syntax	of	a	styleits	"rule,"	as	you	may	have	gleaned	from	our	previous
examplesis	very	straightforward.

8.2.1.	The	Basics

A	style	rule	is	made	up	of	at	least	two	basic	parts:	a	selector,	which	is	the	name	of
the	HTML	or	XHTML	markup	element	(tag	name)	that	the	style	rule	affects,
followed	by	a	curly	brace	({})-enclosed,	semicolon-separated	list	of	one	or	more
style	property:value	pairs:

selector	{property1:value1;	property2:value1;	...}

	
For	instance,	we	might	define	the	color	property	for	the	contents	of	all	the	level-1
header	elements	of	our	document	to	be	the	value	green:

h1	{color:	green}

	
In	this	example,	H1	is	the	selector,	which	is	also	the	name	of	the	level-1	header
element,	color	is	the	style	property,	and	green	is	the	value.

Most	properties	require	at	least	one	value,	but	may	have	two	or	more	values.
Comma-separated	values	typically	indicate	a	series	of	options	as	accepted	by	the
property,	of	which	the	first	valid	value	applies	to	the	property,	whereas	space-
separated	values	each	apply	separately	to	the	property.	The	last	valid	value	may
override	a	previous	value:

selector	{property3:value1	value2	value3}
selector	{property4:value1,	value2,	value3}

	
For	instance,	the	following	display	background	will	be	black,	not	white	or	gray,
even	though	you	specify	both	white	and	black	values	in	the	rule:

body	{background:	white	black}

	

Current	styles-conscious	browsers	ignore	letter	case	in	any	element	of	a	style
rule.	Hence,	h1	and	h1	are	the	same	selector,	and	COLOR,	color,	ColOR,	and	cOLor	are
equivalent	properties.	At	one	time,	convention	dictated	that	HTML	authors	write
selector	names	in	uppercase	characters,	such	as	h1,	P,	and	STRONG.	This	convention
is	still	common	and	is	used	in	the	W3C's	own	CSS2	document.

However,	current	standards	dictate,	particularly	for	XML-compliant	documents,
that	element	names	be	identical	to	their	respective	Document	Type	Definitions
(DTDs).	With	XHTML,	for	instance,	all	element	names	are	lowercase	(e.g.,	h1,	p,
and	strong),	so	their	respective	CSS2	selectors	must	be	in	lowercase.	We	abide	by
the	latter	convention.

Any	valid	element	name	(a	tag	name	minus	its	enclosing	<	and	>	characters	and
attributes)	can	be	a	selector.	You	may	include	more	than	one	tag	name	in	the	list
of	selectors,	as	we	explain	in	the	following	sections.

8.2.2.	Multiple	Selectors

When	separated	by	commas,	all	the	elements	named	in	the	selector	list	are
affected	by	the	property	values	in	the	style	rule.	This	makes	life	easy	for	authors.
For	instance:

h1,	h2,	h3,	h4,	h5,	h6	{text-align:	center}

	
does	exactly	the	same	thing	as:

h1	{text-align:	center}
h2	{text-align:	center}
h3	{text-align:	center}	h4	{text-align:	center}
h5	{text-align:	center}
h6	{text-align:	center}

	
Both	styles	tell	the	browser	to	center	the	contents	of	header	levels	1	through	6.
For	most	authors,	the	first	version	is	easier	to	type,	understand,	and	modify.	And
it	takes	less	time	and	fewer	resources	to	transmit	across	a	network,	though	the
effect	is	trivial.	Define	styles	in	the	manner	that	is	most	comfortable	for	you.	You
don't	have	to	use	multiple	selectors.

8.2.3.	Contextual	Selectors

Normally,	the	styles-conscious	browser	applies	document-level	or	imported	styles
to	a	tag's	contents	wherever	they	appear	in	your	document,	without	regard	to
context.	However,	the	CSS2	standard	defines	a	way	to	have	a	style	applied	only
when	a	tag	occurs	within	a	certain	context	within	a	document,	such	as	when	it	is
nested	within	other	tags.

To	create	a	contextual	selector,	list	the	tags	in	the	order	in	which	they	should	be
nested	in	your	document,	outermost	tag	first.	Then,	when	the	browser	encounters
that	nesting	order,	the	style	properties	are	applied	to	the	last	tag	in	the	list.

For	example,	here's	how	you	might	use	contextual	styles	to	create	a	classic
outline,	complete	with	uppercase	Roman	numerals	for	the	outer	level,	capital
letters	for	the	next	level,	Arabic	numerals	for	the	next,	and	lowercase	letters	for
the	innermost	level:

ol	li	{list-style:	upper-roman}
ol	ol	li	{list-style:	upper-alpha}
ol	ol	ol	li	{list-style:	decimal}
ol	ol	ol	ol	li	{list-style:	lower-alpha}

	
According	to	the	example	stylesheet,	when	the	styles-conscious	browser
encounters	the		tag	nested	within	one		tag,	it	uses	the	upper-roman	value	for
the	list-style	property	of	the		tag.	When	it	sees	an		tag	nested	within	two
	tags,	the	browser	uses	the	upper-alpha	list	style.	Nest	an		tag	within	three
and	four		tags,	and	you'll	see	the	decimal	and	lower-alpha	list	styles,	respectively.
Compare	Figure	8-1,	displayed	from	the	preceding	example,	with	using	the	
tag's	type	attribute	to	achieve	similar	effects,	as	shown	in	Figure	7-7	in	Chapter	7.

Figure	8-1.	Nested	ordered	list	styles

	
Similarly,	you	may	impose	a	specific	style	on	tags	related	only	by	context.	For
instance,	this	contextual	style	definition	colors	the	emphasis	()	tag's	contents
red	only	when	it	appears	inside	a	level-1	header	tag	(<h1>),	not	elsewhere	in	the
document:

h1	em	{color:	red}

	
If	there	is	potential	ambiguity	between	two	contextual	styles,	the	more	specific
context	prevails.

Like	individual	tags,	you	may	have	several	contextual	selectors	mixed	with
individual	selectors,	separated	by	commas,	sharing	the	same	list	of	style
declarations.	For	example:

h1	em,	p	strong,	address	{color:	red}

	
means	you'll	see	red	whenever	the		tag	appears	within	an	<h1>	tag,	when	the
	tag	appears	within	a	<p>	tag,	and	for	the	contents	of	the	<address>	tag.

The	nesting	need	not	be	exact	to	match	the	rule.	For	example,	if	you	nest	the
	tag	within	a		tag	within	a	<p>	tag,	you'll	still	match	the	rule	for	p	strong
that	we	defined	earlier.	If	a	particular	nesting	matches	several	style	rules,	the
most	specific	rule	is	used.	For	example,	if	you	defined	two	contextual	selectors:

p	strong	{color:	red}
p	ul	strong	{color:	blue}

	
and	you	use	the	sequence	<p>	in	your	document,	the	second,	more
specific	rule	applies,	coloring	the	contents	of	the		tag	blue.

8.2.4.	Universal,	Child,	and	Adjacent	Selectors

The	CSS2	standard	defines	additional	patterns	for	selectors	besides	commas	and
spaces,	as	illustrated	in	the	following	examples:

*	{color:	purple;	font:	ZapfDingBats}
ol	>	li	{font-size:	200%;	font-style:	italic}

h1	+	h2	{margin-top:	+4mm}

	
In	the	first	example,	the	universal	asterisk	selector	applies	the	style	to	all
elements	of	your	document	so	that	any	text	gets	displayed	in	Zapf	Dingbat
characters.[*]	The	second	example	selects	a	particular	child/parent	relationship;	in
this	case,	items	in	an	ordered	list.	The	third	example	illustrates	the	adjacent
selector	type,	which	selects	for	one	tag	immediately	following	another	in	your
document.	In	this	case,	the	special	selector	adds	vertical	space	to	instances	in
which	your	document	has	a	level-2	header	immediately	following	a	level-1
header.

[*]	Assuming,	of	course,	that	the	style	is	not	overridden	by	a	subsequent	rule.

8.2.5.	Attribute	Selectors

It	is	possible	to	attach	a	style	to	only	those	HTML/XHTML	elements	that	have
specific	attributes.	You	do	this	by	listing	the	desired	attributes	in	square	brackets
([])	next	to	the	element	name,	before	the	style	definition:

div[align]	{	font-style:	italic	}
div[align=left]	{font-style:	italic	}
div[title~="bibliography"]	{	font-size:	smaller	}
div[lang|="en"]	{color:	green	}

	
The	first	example	is	the	simplest:	it	italicizes	the	subsequent	text	contents	of	only
those	<div>	tags	that	contain	the	align	attribute,	regardless	of	the	value	assigned
to	the	attribute.	The	second	example	is	a	bit	pickier;	it	matches	only	<div>	tags
whose	align	attributes	are	set	to	left.

The	third	example	matches	any	<div>	tag	whose	title	attribute	contains	the	word
bibliography,	specifically	delimited	by	one	or	more	spaces.	Partial	word	matches	do
not	count;	if	you	used	div[title~="a"],	you	would	match	only	<div>	tags	whose	title
attributes	contained	a	single	"a"	delimited	by	spaces	(or	at	the	beginning	or	end
of	the	title).

The	final	example	matches	any	<div>	tag	whose	lang	attribute	is	set	to	a	hyphen-
separated	list	of	words,	beginning	with	"en."	This	example	matches	attributes
such	as	lang=en,	lang=en-us,	and	lang=en-uk.

You	may	combine	the	universal	selector	with	attribute	selectors	to	match	any

element	with	a	specific	attribute.	For	example:

*[class=comment]	{	display:	none	}

	
would	hide	all	the	elements	in	your	document	whose	class	attributes	are	set	to
comment.

Netscape,	Firefox,	Opera,	and	other	modern	browsers	support	attribute	selectors;
for	unknown	reasons,	Internet	Explorer	does	not.

8.2.6.	Pseudoelements

Some	elemental	relationships	in	your	documents	you	cannot	explicitly	tag.	The
drop-cap	is	a	common	print	style,	but	how	do	you	select	the	first	letter	in	a
paragraph?	There	are	ways,	but	you	have	to	identify	each	instance	separately.
There	is	no	tag	for	the	first	line	in	a	paragraph.	And	sometimes	you	might	want
the	browser	to	automatically	generate	content,	such	as	to	add	the	prefix	"Item	#"
and	automatically	number	each	item	in	an	ordered	list.

CSS2	introduces	four	new	pseudoelements	that	let	you	define	special
relationships	and	styles	for	their	display	(:first-line,	:first-letter,	:before,	and
:after).	Declare	each	as	a	colon-separated	suffix	of	a	standard	markup	element.
For	example:

p:first-line	{font-size:	200%;	font-style:	italic}

	
means	that	the	browser	should	display	the	first	line	of	each	paragraph	italicized
and	twice	as	large	as	the	rest	of	the	text.	Similarly:

p:first-letter	{font-size:	200%;	float:	left}

	
tells	the	browser	to	make	the	first	letter	of	a	paragraph	twice	as	large	as	the
remaining	text	and	to	float	the	letter	to	the	left,	allowing	the	first	two	lines	of	the
paragraph	to	float	around	the	larger	initial	letter	(see	Figure	8-2).[*]

[*]	The	properties	you	can	specify	for	the	:first-letter	and	:first-line	pseudoelements	are	font,	color,
background,	text-decoration,	vertical-align,	text-transform,	line-height,	and	clear.	And	in
addition,	the	:first-letter	pseudoelement	accepts	the	margin	properties,	padding	properties,	border	properties,
and	float.	The	:first-line	pseudoelement	also	accepts	the	word-spacing	and	letter-spacing	properties.

Figure	8-2.	Use	the	first-letter	pseudoelement	to	select	the	first
letter	of	text	within	a	tag's	content

	
The	:before	and	:after	pseudoelements	let	you	identify	where	in	your	document
you	insert	generated	content	such	as	list	numbers	and	special	lead-in	headers.
Hence,	these	pseudoelements	go	hand	in	hand	with	the	CSS2	content	and	counter
properties.	To	whet	your	appetite,	consider	this	example:

ul	{counter-reset:	item;	list-style:	none}
ul	li:before	{content:	"Item	#"	counters(item,	".")	"	";
														counter-increment:	item}
...

			This	is	item	number	1.
		
					This	is	sub-item	number	1.1.
		
			This	is	item	number	2.
		
					This	is	sub-item	2.1.
					This	is	sub-item	2.2.
...	and	so	on

	
All	the	popular	browsers	support	the	pseudoelements,	generating	effects	such	as
that	shown	in	Figure	8-2.	However,	Internet	Explorer	does	not	support	the	content
property	and	Netscape	doesn't	support	counters.	So	only	the	newcomers,	Firefox
and	Opera,	properly	display	the	progressively	numbered	unordered	list	items,
defined	by	the	foregoing	example	and	shown	in	Figure	8-3.

Figure	8-3.	Style	counters	combine	with	pseudoelements	to
create	outline-line	numbering

	
	

8.3.	Style	Classes

CSS2	allows	you	to	define	several	different	styles	for	the	same	element	by
naming	a	class	for	each	style	at	the	document	level	or	in	an	external	stylesheet.
Later	in	a	document,	you	explicitly	select	which	style	to	apply	by	including	the
styles-related	class	attribute	with	the	related	name	value	in	the	respective	tag.

8.3.1.	Regular	Classes

For	example,	in	a	technical	paper,	you	might	want	to	define	one	paragraph	style
for	the	abstract,	another	for	equations,	and	a	third	for	centered	quotations.
Differentiate	these	paragraphs	by	defining	each	as	a	different	style	class:

<style	type="text/css">
<!--
p.abstract	{font-style:	italic;
												margin-left:	0.5cm;
												margin-right:	0.5cm}
p.equation	{font-family:	Symbol;
												text-align:	center}
h1,	p.centered	{text-align:	center;
																margin-left:	0.5cm;
																margin-right:	0.5cm}
-->
</style>

	
Notice	first	in	the	example	that	defining	a	class	is	simply	a	matter	of	appending	a
period-separated	class	name	as	a	suffix	to	the	tag	name	as	the	selector	in	a	style
rule.	Unlike	the	XHTML-compliant	selector,	which	is	the	name	of	the	standard	tag
and	must	be	in	lowercase,	the	class	name	can	be	any	sequence	of	letters,
numbers,	and	hyphens,	but	it	must	begin	with	a	letter.[*]	Careful,	though:	case
does	matter,	so	abstract	is	not	the	same	as	AbsTRact.	Classes,	like	selectors,	may	be
included	with	other	selectors,	separated	by	commas,	as	in	the	third	example.	The
only	restriction	on	classes	is	that	they	cannot	be	nested;	for	example,
p.equation.centered	is	not	valid.

[*]	Due	to	its	support	of	JavaScript	stylesheets,	Netscape	4	cannot	handle	class	names	that	happen	to	match	JavaScript
keywords.	The	class	abstract,	for	instance,	generates	an	error	in	Netscape	4.

Accordingly,	the	first	rule	in	the	example	creates	a	class	of	paragraph	styles

named	abstract	whose	text	is	italic	and	indented	from	the	left	and	right	margins	by
0.5	centimeters.	Similarly,	the	second	paragraph	style	class,	equation,	instructs	the
browser	to	center	the	text	and	to	use	the	Symbol	typeface	to	display	the	text.	The
last	style	rule	creates	a	style	with	centered	text	and	0.5-centimeter	margins,
applying	this	style	to	all	level-1	headers	as	well	as	creating	a	class	of	the	<p>	tag
named	centered	with	that	style.

To	use	a	particular	class	of	a	tag,	you	add	the	class	attribute	to	the	tag,	as	in	this
example	(Figure	8-4):

<p	class=abstract>
This	is	the	abstract	paragraph.		See	how	the	margins	are	indented?
</p>
<h3>The	equation	paragraph	follows</h3>
<p	class=equation>
a	=	b	+	1
</p>
<p	class=centered>
This	paragraph's	text	should	be	centered.
</p>

	

Figure	8-4.	Use	classes	to	distinguish	different	styles	for	the
same	tag

	
For	each	paragraph,	the	value	of	the	class	attribute	is	the	name	of	the	class	to	be
used	for	that	tag.

8.3.2.	Generic	Classes

You	also	may	define	a	class	without	associating	it	with	a	particular	tag	and	apply
that	class	selectively	through	your	documents	for	a	variety	of	tags.	For	example:

.italic	{font-style:	italic}

	
creates	a	generic	class	named	italic.	To	use	it,	simply	include	its	name	with	the
class	attribute.	For	instance,	<p	class=italic>	and	<h1	class=italic>	create	an	italic
paragraph	and	level-1	header,	respectively.

Generic	classes	are	quite	handy	and	make	it	easy	to	apply	a	particular	style	to	a
broad	range	of	tags.	All	the	popular	browsers	support	CSS2	generic	classes.

8.3.3.	ID	Classes

Almost	all	HTML	tags	accept	the	id	attribute,	which	assigns	a	unique	identifier	to
an	element	within	the	document.	Besides	being	the	target	of	a	URL	or	identified	in
an	automated	document-processing	tool,	the	id	attribute	can	also	specify	a	style
rule	for	the	element.

To	create	a	style	class	that	the	styles-conscious	browser	applies	to	only	those
portions	of	your	document	explicitly	tagged	with	the	id	attribute,	follow	the	same
syntax	as	for	style	classes,	except	with	a	#	character	before	the	class	name
instead	of	a	period.	For	example:

<style>
<!--
#yellow	{color	:	yellow}
h1#blue	{color	:	blue}
-->
</style>

	
Within	your	document,	use	that	same	id	name	to	apply	the	style,	such	as	<h1
id=blue>	to	create	a	blue	heading.	Or,	as	in	the	example,	use	id=yellow	elsewhere	in
the	document	to	turn	a	tag's	contents	yellow.	You	can	mix	and	match	both	class
and	id	attributes,	giving	you	a	limited	ability	to	apply	two	independent	style	rules
to	a	single	element.

There	is	a	dramatic	drawback	to	using	style	classes	this	way:	the	HTML	and
XHTML	standards	dictate	that	the	value	of	the	id	attribute	be	unique	for	each
instance	in	which	it's	used	within	the	document.	Yet	here,	we	have	to	use	the

same	value	to	apply	the	style	class	more	than	once.

Even	though	current	browsers	let	you	get	away	with	it,	we	strongly	discourage
creating	and	using	the	id	kinds	of	style	classes.	Stick	to	the	standard	style	class
convention	to	create	correct,	robust	documents.

8.3.4.	Pseudoclasses

In	addition	to	conventional	style	classes,	the	CSS2	standard	defines
pseudoclasses,	which	allow	you	to	define	the	display	style	for	certain	tag	states,
such	as	changing	the	display	style	when	a	user	selects	a	hyperlink.	You	create
pseudoclasses	as	you	do	regular	classes,	but	with	two	notable	differences:	they
are	attached	to	the	tag	name	with	a	colon	rather	than	a	period,	and	they	have
predefined	names,	not	arbitrary	ones	you	may	give	them.	There	are	seven
pseudoclasses,	three	of	which	are	explicitly	associated	with	the	<a>	tag.

8.3.4.1.	Hyperlink	pseudoclasses

CSS2-compliant	browsers	distinguish	three	special	states	for	the	hyperlinks
created	by	the	<a>	tag:	not	yet	visited,	currently	being	visited,	and	already	visited.
The	browser	may	change	the	appearance	of	the	tag's	contents	to	indicate	its
state,	such	as	with	underlining	or	color.	Through	pseudoclasses,	you	may	control
how	these	states	get	displayed	by	defining	styles	for	a:link	(not	visited),	a:active
(being	visited),	and	a:visited.

The	:link	pseudoclass	controls	the	appearance	of	links	that	are	not	selected	by	the
user	and	have	not	yet	been	visited.	The	:active	pseudoclass	defines	the
appearance	of	links	that	are	currently	selected	by	the	user	and	are	being
processed	by	the	browser.	The	:visited	pseudoclass	defines	those	links	that	the
user	has	already	visited.

To	completely	define	all	three	states	of	the	<a>	tag,	you	might	write:

a:link	{color:	blue}
a:active	{color:	red;	font-weight:	bold}
a:visited	{color:	green}

	
In	this	example,	the	styles-conscious	browser	renders	unvisited	links	in	blue.
When	the	user	selects	a	link,	the	browser	changes	its	color	to	red	and	makes	it
bold.	Once	visited,	the	link	reverts	to	green.

8.3.4.2.	Interaction	pseudoclasses

The	CSS2	standard	defines	two	new	pseudoclasses	that,	along	with	:active,	relate
to	user	actions	and	advise	the	interactive	agent,	such	as	a	browser,	how	to	display
the	affected	element	as	the	user	interacts	with	the	element.	In	other	words,	these
two	pseudoclasseshover	and	focusare	dynamic.

For	instance,	when	you	drag	the	mouse	over	a	hyperlink	in	your	document,	the
browser	may	change	the	mouse-pointer	icon.	Hovering	can	be	associated	with	a
style	that	appears	only	while	the	mouse	is	over	the	element.	For	example,	if	you
add	the	:hover	pseudoclass	to	our	example	list	of	hyperlink	style	rules:

a:hover	{color:	yellow}

	
the	text	associated	with	unvisited	links	normally	appears	blue,	but	turns	yellow
when	you	point	to	it	with	the	mouse,	red	after	you	click	the	link	and	while	you	are
visiting	it,	and	green	after	you're	done	visiting	the	hyperlink.

Similarly,	the	:focus	pseudoclass	lets	you	change	the	style	for	an	element	when	it
becomes	the	object	of	attention.	An	element	may	be	under	focus	when	you	tab	to
it,	click	on	it,	or,	depending	on	the	browser,	advance	the	cursor	to	it.	Regardless	of
how	the	focus	got	to	the	element,	the	style	rules	associated	with	the	focus
pseudoclass	are	applied	only	while	the	element	has	the	focus.

8.3.4.3.	Nesting	and	language	pseudoclasses

The	CSS2	:first-child	pseudoclass	lets	you	specify	how	an	element	may	be
rendered	when	it	is	the	first	instance,	or	child,	of	the	containing	element.	For
instance,	the	following	rule	gets	applied	to	a	paragraph	when	it	is	the	first
element	of	a	division;	there	can	be	no	intervening	elements	(notice	the	special
greater-than	bracket	syntax	relating	the	first	child	with	its	parent	element):

div	>	p:first-child		{font-style:	italic}

	
Accordingly,	the	first	paragraph	in	the	following	HTML	fragment	would	be
rendered	in	italics	by	a	CSS2-compliant	browser	because	it	is	the	first	child
element	of	its	division.	Conversely,	the	second	paragraph	comes	after	a	level-2
header,	which	is	the	first	child	of	the	second	division.	So,	that	second	paragraph	in
the	example	gets	rendered	in	plain	text,	because	it	is	not	the	first	child	of	its
division	(Figure	8-5):

<div>
		<p>
				I	get	to	be	in	italics	because	my	paragraph	is	the	first	child	of	the	division.
		</p>
</div>
<div>
		<h2>	New	Division</h2>
		<p>
				I'm	in	plain	text	because	my	paragraph	is	a	second	child	of	the	division.

	

Figure	8-5.	The	first-child	pseudoclass	in	action

	
Finally,	the	CSS2	standard	defines	a	new	pseudoclass	that	lets	you	select	an
element	based	on	its	language.	For	instance,	you	might	include	the	lang=fr
attribute	in	a	<div>	tag	to	instruct	the	browser	that	the	division	contains	French
language	text.	The	browser	may	specially	treat	the	text.	Or,	you	may	impose	a
specific	style	with	the	pseudoclass	:lang.	For	example:

div:lang(it)	{font-family:	Roman}

	
says	that	text	in	divisions	of	a	document	that	contain	the	Italian	language	should
use	the	Roman	font	family.	Appropriate,	don't	you	think?	Notice	that	you	specify
the	language	in	parentheses	immediately	after	the	lang	keyword.	Use	the	same
two-letter	International	Organization	for	Standardization	(ISO)	standard	code	for
the	pseudoclass	:lang	as	you	do	for	the	lang	attribute.	[The	lang	attribute,	3.6.1.2]

8.3.4.4.	Browser	support	of	pseudoclasses

None	of	the	popular	browsers	supports	the	:lang	or	:focus	pseudoclass	yet.	All	the
current	popular	browsers	support	the	:link,	:active,	:hover,	and	:visited
pseudoclasses	for	the	hyperlink	tag	(<a>),	as	well	as	:first-child.	Even	though	you
may	use	:active	for	other	elements,	none	of	the	browsers	yet	supports	applications
beyond	the	<a>	tag.

8.3.5.	Mixing	Classes

Mix	pseudoclasses	with	regular	classes	by	appending	the	pseudoclass	name	to	the
selector's	class	name.	For	example,	here	are	some	rules	that	define	plain,	normal,
and	fancy	anchors:

a.plain:link,	a.plain:active,	a.plain:visited	{color:	blue}
a:link	{color:	blue}
a:visited	{color:	green}
a:active	{color:	red}
a.fancy:link	{font-style:	italic}
a.fancy:visited	{font-style:	normal}
a.fancy:active	{font-weight:	bold;	font-size:	150%}

	
The	plain	version	of	<a>	is	always	blue,	no	matter	what	the	state	of	the	link	is.
Accordingly,	normal	links	start	out	blue,	turn	red	when	active,	and	convert	to
green	when	visited.	The	fancy	link	inherits	the	color	scheme	of	the	normal	<a>	tag,
but	italicizes	the	text	for	unvisited	links,	converts	back	to	normal	text	after	being
visited,	and	actually	grows	50	percent	in	size	and	becomes	bold	when	active.

A	word	of	warning	about	that	last	property	of	the	fancy	class:	specifying	a	font-size
change	for	a	transient	display	property	results	in	lots	of	browser	redisplay	activity
when	the	user	clicks	the	link.	Given	that	some	browsers	run	on	slow	machines,
this	may	not	be	visually	refreshing	for	your	readers.	Given	also	that	implementing
that	sort	of	display	change	is	something	of	a	pain,	it	is	unlikely	that	most
browsers	will	support	radical	appearance	changes	in	<a>	tag	pseudoclasses.

8.3.6.	Class	Inheritance

Classes	inherit	the	style	properties	of	their	generic	base	tags.	For	instance,	all	the
properties	of	the	plain	<p>	tag	apply	to	a	specially	defined	paragraph	class,	except
where	the	class	overrides	a	particular	property.

Classes	cannot	inherit	from	other	classes,	only	from	the	unclassed	versions	of	the

tags	they	represent.	In	general,	therefore,	you	should	put	as	many	common
styles	as	possible	into	the	rule	for	the	basic	version	of	a	tag	and	create	classes
only	for	those	properties	that	are	unique	to	that	class.	This	makes	maintenance
and	sharing	of	your	style	classes	easier,	especially	for	large	document	collections.

	

8.4.	Style	Properties

At	the	heart	of	the	CSS2	standard	are	the	many	properties	that	let	you	control
how	the	styles-conscious	browser	presents	your	documents	to	the	user.	The
standard	collects	these	properties	into	six	groups:	fonts,	colors	and	backgrounds,
text,	boxes	and	layout,	lists,	and	tag	classification.	We'll	stick	with	that	taxonomy
and	preface	the	whole	shebang	with	a	discussion	of	property	values	and
inheritance	before	diving	into	the	properties	themselves.

You'll	find	a	summary	of	the	style	properties	in	Appendix	C.

8.4.1.	Property	Values

Most	properties	set	a	value	to	some	characteristic	of	your	document	for	rendering
by	the	browserthe	size	of	the	characters	in	a	font	or	the	color	of	level-2	headers,
for	example.	As	we	discussed	earlier,	when	describing	the	syntax	of	styles,	you
give	value	to	a	CSS2	property	by	following	the	property's	keyword	with	a	colon	(:)
and	one	or	more	space-	or	comma-separated	numbers	or	value-related	keywords.
For	example:

color:blue
font-family:	Helvetica,	Univers,	sans-serif

	
color	and	font-family	are	the	properties	in	these	two	style	examples;	blue	and	the
various	comma-separated	font	names	are	their	values,	respectively.

There	are	eight	kinds	of	property	values:	keywords,	length	values,	percentage
values,	URLs,	colors,	angles,	time,	and	frequencies.

8.4.1.1.	Keyword	property	values

A	property	may	have	a	keyword	value	that	expresses	action	or	dimension.	For
instance,	the	effects	of	underline	and	line-through	are	obvious	property	values.	And
you	express	property	dimensions	with	such	keywords	as	small	and	xx-large.	Some
keywords	are	even	relational:	bolder,	for	instance,	is	an	acceptable	value	for	the
font-weight	property.	Keyword	values	are	not	case	sensitive:	Underline,	UNDERLINE,	and
underline	are	all	acceptable	keyword	values.

8.4.1.2.	Length	property	values

So-called	length	values	(a	term	taken	from	the	CSS2	standard)	explicitly	set	the
size	of	a	property.	They	are	numbers,	some	with	decimals,	too.	Length	values	may
have	a	leading	+	or	-	sign	to	indicate	that	the	value	is	to	be	added	to	or
subtracted	from	the	current	value	of	the	property.	Length	values	must	be	followed
immediately	by	a	two-letter	unit	abbreviation,	with	no	intervening	spaces.

There	are	three	kinds	of	length-value	units:	relative,	pixels,	and	absolute.
Relative	units	specify	a	size	that	is	relative	to	the	size	of	some	other	property	of
the	content.	Currently,	there	are	only	two	relative	units:	em,	which	is	the	width	of
the	lowercase	letter	"m"	in	the	current	font;	and	x-height,	abbreviated	ex,	which
is	the	height	of	the	letter	"x"	in	the	current	font.

Pixels	are	the	tiny	dots	of	colored	light	that	make	up	the	onscreen	text	and
images	on	a	computer	monitor	or	TV	image.	The	pixels	unit,	abbreviated	px,	is
equal	to	the	minute	size	of	1	pixel,	so	you	may	express	the	size	of	some
properties	by	how	many	pixels	across	or	down	they	run.

Absolute	property	value	units	are	more	familiar	to	us	all.	They	include	inches	(in),
centimeters	(cm),	millimeters	(mm),	points	(pt;	1/72	of	an	inch),	and	picas	(pc;	12
points).

All	of	the	following	are	valid	length	values,	although	the	current	styles-conscious
browsers	do	not	recognize	all	units:

1in
1.5cm
+0.25mm
-3pt
-2.5pc
+100em
-2.75ex
250px

	

8.4.1.3.	Percentage	property	values

Similar	to	the	relative	length	property	value	type,	a	percentage	value	describes	a
proportion	relative	to	some	other	aspect	of	the	content.	It	has	an	optional	sign,
meaning	it	may	be	added	to	or	subtracted	from	the	current	value	for	that
property,	and	optional	decimal	portion	to	its	numeric	value.	Percentage	values

have	the	percent	sign	(%)	suffix.	For	example:

line-height:	120%

	
computes	the	separation	between	lines	to	be	120	percent	of	the	current	line
height	(usually	relative	to	the	text	font	height).	Note	that	this	value	is	not
dynamic:	changes	made	to	the	font	height	after	the	rule	has	been	processed	by
the	browser	do	not	affect	the	computed	line	height.

8.4.1.4.	URL	property	values

Some	properties	also	accept,	if	not	expect,	a	URL	value.	The	syntax	for	a	CSS2
URL	property	value	is	different	from	that	in	HTML/XHTML:

url(service://server.com/pathname)

	
With	CSS2	properties,	the	keyword	url	is	required,	as	are	the	opening	and	closing
parentheses.	Do	not	leave	any	spaces	between	url	and	the	opening	parenthesis.
The	url	value	may	contain	either	an	absolute	or	a	relative	URL.	However,	the	URL
is	relative	to	the	stylesheet's	URL,	not	necessarily	the	document's	base	URL.	This
means	that	if	you	use	a	url	value	in	a	document-level	or	inline	style,	the	URL	is
relative	to	the	HTML	document	containing	the	style	document.	Otherwise,	the	URL
is	relative	to	the	@imported	or	<link>ed	external	stylesheet's	URL.

8.4.1.5.	Color	property	values

Color	values	specify	colors	in	a	property	(surprised?).	You	can	specify	a	color	as	a
color	name	or	a	hexadecimal	RGB	triple,	as	for	common	HTML/XHTML	attributes,
or	as	a	decimal	RGB	triple	unique	to	style	properties.	Both	color	names	and
hexadecimal	RGB	triple	notation	are	described	in	Appendix	G.

With	CSS2,	too,	you	may	assign	just	one	hexadecimal	digit	instead	of	two	to	the
red,	green,	and	blue	(RGB)	components	of	a	color.	That	digit	is	simply	doubled	to
create	a	conventional	six-digit	triple.	Thus,	the	color	#78C	is	equivalent	to	#7788CC.
In	general,	three-digit	color	values	are	handy	only	for	simple	colors.

The	decimal	RGB	triple	notation	is	unique:

rgb(red,	green,	blue)

	
The	red,	green,	and	blue	intensity	values	are	decimal	integers	in	the	range	0	to	255,
or	integer	percentages.	As	with	a	url	value,	do	not	leave	any	spaces	between	rgb
and	the	opening	parenthesis.

For	example,	in	decimal	RGB	convention,	the	color	white	is	rgb(255,	255,	255)	or
rgb(100%,	100%,	100%),	and	a	medium	yellow	is	rgb(127,	127,	0)	or	rgb(50%,	50%,	0%).

8.4.1.6.	Angle,	time,	and	frequency	property	values

A	few	properties	require	a	value	that	expresses	an	angle,	such	as	the	heading	of	a
compass.	These	properties	take	a	numeric	value	followed	by	the	units	deg
(degrees),	grad	(gradations),	or	rad	(radians).	Similarly,	express	time	values	as
numbers	followed	by	either	ms	(milliseconds)	or	s	(seconds)	units.

Finally,	frequency	values	are	numbers	followed	by	Hz	(hertz)	or	kHz	(1	kilohertz	=
1000	Hz).	Interestingly,	there	is	no	corresponding	MHz	or	GHz	units,	because
frequencies	in	CSS2	refer	to	audio,	not	TV,	FM	radio,	Bluetooth	wireless
networking,	or	other	electromagnetic	waves.

8.4.2.	Property	Inheritance

In	lieu	of	a	specific	rule	for	a	particular	element,	properties	and	their	values	for
tags	within	tags	are	inherited	from	the	parent	tag.	Thus,	setting	a	property	for	the
<body>	tag	effectively	applies	that	property	to	every	tag	in	the	body	of	your
document,	except	for	those	that	specifically	override	it.	So,	to	make	all	the	text	in
your	document	blue,	you	need	only	write:

body	{color:	blue}

	
instead	of	creating	a	rule	for	every	tag	you	use	in	your	document.

This	inheritance	extends	to	any	level.	If	you	later	created	a	<div>	tag	with	text
styled	by	a	different	color,	the	styles-conscious	browser	would	display	all	the	text
contents	of	that	<div>	tag	and	all	its	enclosed	tags	in	that	new	color.	When	the
<div>	tag	ends,	the	color	reverts	to	that	of	the	containing	<body>	tag.

In	many	of	the	following	property	descriptions,	we	refer	to	the	tag	containing	the
current	tag	as	the	parent	element	of	that	tag.

8.4.3.	Font	Properties

The	loudest	complaint	that	we	hear	about	HTML	and	its	progeny,	XHTML,	is	that
they	lack	font	styles	and	characteristics	that	even	the	simplest	of	text	editors
implement.	The	various		attributes	address	part	of	the	problem,	but	they	are
tedious	to	use,	because	each	text	font	change	requires	a	different		tag.

Stylesheets	simplify	all	that,	of	course.	The	CSS2	standard	provides	seven	font
properties	that	modify	the	appearance	of	text	contained	within	the	affected	tag:
font-family,	font-size,	font-size-adjust,	font-style,	font-variant,	font-stretch,	and	font-
weight.	In	addition,	there	is	a	universal	font	property	in	which	you	can	declare	all
the	font	values.

Please	be	aware	that	stylesheets	cannot	overcome	limitations	of	the	user's
display/document-rendering	system,	and	the	browser	cannot	conjure	effects	if	the
fonts	it	uses	do	not	provide	the	means.

8.4.3.1.	The	font-family	property

The	font-family	property	accepts	a	comma-separated	list	of	font	names.	The
browser	uses	the	first	font	named	in	the	list	that	also	is	installed	and	available	for
display	on	the	client	machine	for	text	display.

Font-name	values	are	for	specific	font	styles,	such	as	Helvetica	and	Courier,	or	for
a	generic	font	style,	as	defined	by	the	CSS2	standard:	serif,	sans-serif,	cursive,
fantasy,	and	monospace.	The	browser	defines	which	font	it	actually	uses	for	each
generic	font.	For	instance,	Courier	is	the	most	popular	choice	for	a	monospaced
font.

Because	fonts	vary	wildly	among	browsers,	you	should	usually	provide	several
choices	when	specifying	a	font	style,	ending	with	a	suitable	generic	font.	For
example:

h1	{font-family:	Helvetica,	Univers,	sans-serif}

	
causes	the	browser	to	look	for	and	use	Helvetica,	and	then	Univers.	If	neither	font
is	available	for	the	client	display,	the	browser	uses	the	generic	sans-serif	typeface.

Enclose	font	names	that	contain	spacesNew	Century	Schoolbook,	for	examplein
quotation	marks.	For	instance:

p	{font-family:	Times,	"New	Century	Schoolbook",	Palatino,	serif}

	
With	inline	styles,	that	extra	set	of	double	quotation	marks	causes	problems.	The
solution	is	to	use	single	quotation	marks	in	an	inline	style:

<p	style="font-family:	Times,	'New	Century	Schoolbook',	Palatino,	serif">

	
In	practice,	you	don't	have	to	use	quotation	marks,	because	font-name	values	are
comma	separated,	so	the	browser	normally	ignores	the	spaces.	Hence,	both	of	the
following	are	legal:

p	{font-family:	Times,	New	Century	Schoolbook,	Palatino,	serif}
<p	style="font-family:	Times,	New	Century	Schoolbook,	Palatino,	serif">

	
Nonetheless,	we	recommend	that	you	use	quotation	marks.	It's	a	good	habit	to
get	into,	and	it	makes	things	that	much	less	ambiguous.

8.4.3.2.	The	font-size	property

The	font-size	property	lets	you	prescribe	absolute	or	relative	length	values,
percentages,	and	keywords	to	define	the	font	size.	For	example:

p	{font-size:	12pt}
p	{font-size:	120%}
p	{font-size:	+2pt}
p	{font-size:	medium}
p	{font-size:	larger}

	
The	first	rule	is	probably	the	most	used,	because	it	is	the	most	familiar:	it	sets	the
font	size	for	text	enclosed	in	your	document's	paragraph(s)	to	a	specific	number
of	points	(12	in	this	example).	The	second	example	rule	sets	the	font	size	to	be
20	percent	larger	than	the	parent	element's	font	size.	The	third	increases	the
font's	normal	size	by	2	points.

The	fourth	example	selects	a	predefined	font	size	set	by	the	browser,	identified	by
the	medium	keyword.	Valid	absolute-size	keywords	are	xx-small,	x-small,	small,	medium,
large,	x-large,	and	xx-large;	these	usually	correspond	to	the	seven	font	sizes	used
with	the	size	attribute	of	the		tag.

The	last	font-size	rule	selects	the	next	size	larger	than	the	font	associated	with	the
parent	element.	Thus,	if	the	size	were	normally	medium,	it	would	be	changed	to
large.	You	can	also	specify	smaller,	with	the	expected	results.

None	of	the	current	browsers	handles	incremented	or	decremented	font	sizes
correctly.	Rather,	they	ignore	the	decrement	sign	and	size	altogether,	and
misinterpret	the	incremented	size	value	as	an	absolute	size.	For	instance,	in	the
middle	example	in	this	section,	the	font	size	would	end	up	as	2	points,	not	2
points	larger	than	the	normal	size.

8.4.3.3.	The	font-stretch	property

In	addition	to	different	sizes,	font	families	sometimes	contain	condensed	and
expanded	versions,	in	which	the	characters	are	squeezed	or	stretched,
respectively.	Use	the	font-stretch	property	to	choose	more	compressed	or
stretched-out	characters	from	your	font.

Use	the	property	value	of	normal	to	select	the	normal-size	version	of	the	font.	The
relative	values	wider	and	narrower	select	the	next-wider	or	next-narrower	variant	of
the	font's	characters,	respectively,	but	not	wider	or	narrower	than	the	most
("ultra")	expanded	or	contracted	one	in	the	family.

The	remaining	font-stretch	property	values	choose	specific	variants	from	the	font
family.	Starting	from	the	most	condensed	and	ending	with	the	most	expanded,	the
values	are	ultra-condensed,	extra-condensed,	condensed,	semi-condensed,	semi-expanded,
expanded,	extra-expanded,	and	ultra-expanded.

The	font-stretch	property,	of	course,	assumes	that	your	display	fonts	support
stretchable	fonts.	Even	so,	the	currently	popular	browsers	ignore	this	property.

8.4.3.4.	The	font-size-adjust	property

Without	too	many	details,	the	legibility	and	display	size	of	a	font	depend
principally	on	its	aspect	ratio:	the	ratio	of	its	rendered	size	to	its	x-height,	which
is	a	measure	of	the	font's	lowercase	glyph	height.	Fonts	with	aspect	ratios
approaching	1.0	tend	to	be	more	legible	at	smaller	sizes	than	fonts	with	aspect
ratios	approaching	0.

Also,	because	of	aspect	ratios,	the	actual	display	size	of	one	font	may	appear
smaller	or	larger	than	another	font	at	the	same	size.	So,	when	one	font	is	not
available	for	rendering,	the	substituted	font	may	distort	the	presentation.

The	font-size-adjust	property	lets	you	readjust	the	substituted	font's	aspect	ratio	so

that	it	better	fits	the	display.	Use	the	property	value	of	none	to	ignore	the	aspect
ratio.	Otherwise,	include	your	desired	aspect	ratio	(a	decimal	value	less	than
one),	typically	the	aspect	ratio	for	your	first-choice	display	font.	The	styles-
conscious	browser	computes	and	displays	the	substituted	font	at	a	size	adjusted	to
your	specified	aspect	ratio:

s	=	(n/a)	*	fs

	
where	s	is	the	new,	computer	font	size	for	display	of	the	substituted	font,
calculated	as	the	font-size-adjust	value	n	divided	by	the	substituted	font's	aspect
ratio	a	times	the	current	font	size	fs.

For	example,	let's	imagine	that	your	first-choice	font	is	Times	New	Roman,	which
has	an	aspect	ratio	of	0.45.	If	it's	not	available,	the	browser	may	then	substitute
Comic	Sans	MS,	which	has	an	aspect	ratio	of	0.54.	So	that	the	substitution
maintains	nearly	equivalent	sizing	for	the	font	displaysay,	at	an	18-px	font
sizewith	the	font-size-adjust	property	set	to	0.45,	the	CSS2-compliant	browser
would	display	or	print	the	text	with	the	substituted	Comic	Sans	MS	font	at	the
smaller	size	of	(0.45/0.54	x	18	px)	=	15	px.

Unfortunately,	we	can't	show	you	how	the	popular	browsers	would	do	this	because
they	don't	support	it.

8.4.3.5.	The	font-style	property

Use	the	font-style	property	to	slant	text.	The	default	style	is	normal	and	may	be
changed	to	italic	or	oblique.	For	example:

h2	{font-style:	italic}

	
makes	all	level-2	header	text	italic.	Netscape	4	supported	only	the	italic	value	for
font-style;	all	current	browsers	support	both	values,	although	it	is	usually	difficult
to	distinguish	italic	from	oblique.

8.4.3.6.	The	font-variant	property

Use	the	font-variant	property	to	display	text	in	small	capitals.	The	default	value	for
this	property	is	normal,	indicating	the	conventional	version	of	the	font.	Otherwise,
give	the	property	the	value	small-caps	to	select	a	version	of	the	font	in	which	the

lowercase	letters	have	been	replaced	with	small	capital	letters.

All	the	current	browsers	support	this	property.	Internet	Explorer	versions	4	and	5
incorrectly	displayed	small-caps	as	all	uppercase	letters.

8.4.3.7.	The	font-weight	property

The	font-weight	property	controls	the	weight	or	boldness	of	the	lettering.	The
default	value	of	this	property	is	normal.	You	may	specify	bold	to	obtain	a	bold
version	of	a	font	or	use	the	relative	bolder	and	lighter	values	to	obtain	a	version	of
the	font	that	is	bolder	or	lighter	than	the	parent	element's	font.

To	specify	varying	levels	of	lightness	or	boldness,	set	the	value	to	a	multiple	of
100,	between	the	values	100	(lightest)	and	900	(boldest).	The	value	400	is	equal	to
the	normal	version	of	the	font,	and	700	is	the	same	as	specifying	bold.

The	current	browsers	fully	support	this	property.

8.4.3.8.	The	font	property

More	often	than	not,	you'll	find	yourself	specifying	more	than	one	font-related
property	at	a	time	for	a	tag's	text	content	display.	A	complete	font	specification
can	get	somewhat	unwieldy.	For	example:

p	{font-family:	Times,	Garamond,	serif;
			font-weight:	bold;
			font-size:	12pt;
			line-height:	14pt}

	
To	mitigate	this	troublesome	and	potentially	unreadable	collection,	use	the
comprehensive	font	property	and	group	all	the	attributes	into	one	set	of
declarations:

p	{font:	bold	12pt/14pt	Times,	Garamond,	serif}

	
The	grouping	and	ordering	of	font	attributes	is	important	within	the	font	property.
The	font	style,	weight,	and	variant	attributes	must	be	specified	first,	followed	by
the	font	size	and	the	line	height	separated	by	a	slash	character,	and	ending	with
the	list	of	font	families.	Of	all	the	properties,	the	size	and	family	are	required;	the

others	may	be	omitted.

Here	are	a	few	more	example	font	style	rules:

em	{font:	italic	14pt	Times}
h1	{font:	24pt/48pt	sans-serif}
code	{font:	12pt	Courier,	monospace}

	
The	first	example	tells	the	styles-conscious	browser	to	emphasize		text	using	a
14-point	italic	Times	face.	The	second	rule	has	<h1>	text	displayed	in	the	boldest
24-point	sans-serif	font	available,	with	an	extra	24	points	of	space	between	the
lines	of	text.	Finally,	text	within	a	<code>	tag	is	set	in	12-point	Courier	or	the
browser-defined	monospaced	font.

We	leave	it	to	your	imagination	to	conjure	up	examples	of	the	abuses	you	could
foster	with	font	styles.	Perhaps	a	recent	issue	of	Wired	magazine,	notorious	for
avant-garde	fonts	and	other	print-related	abuses,	would	be	helpful	in	that	regard.

8.4.4.	Font	Selection	and	Synthesis

The	original	CSS	standard,	CSS1,	had	a	simplistic	font-matching	algorithm:	if
your	specified	font	does	not	exist	in	the	local	client's	font	collection,	substitute	a
generic	font.	Of	course,	the	results	are	often	less	than	pleasing	to	the	eye	and	can
wreak	havoc	with	the	display.	Moreover,	there	are	often	more	suitable	font
substitutes	than	generic	ones.	The	CSS2	standard	significantly	extends	the	CSS1
font-matching	model	and	includes	a	new	at-rule	that	lets	authors	define,
download,	and	use	new	fonts	in	their	documents.

8.4.4.1.	CSS2	font-matching	steps

The	CSS2	font-matching	algorithm	has	four	steps.	The	first	step	is	simply	to	use
the	specified	font	when	it	is	found	on	the	user's	machine;	this	could	be	one	of
several	font	families	specified	in	the	stylesheet	rule,	parsed	in	their	order	of
appearance.

The	second	step,	taken	when	none	of	the	fonts	specified	in	the	rule	exists	on	the
user's	machine,	has	the	browser	attempt	to	find	a	close	match	among	similar	local
fonts.	For	example,	a	request	for	Helvetica	might	wind	up	using	Arial,	a	similar
sans-serif	font.

The	third	step	in	the	CSS2	font-matching	algorithm	has	the	browser	try	to

synthesize	a	font,	taking	a	local	font	and	changing	it	to	match	the	specified	one.
For	example,	a	request	for	72-point	Helvetica	might	be	satisfied	by	taking	the
local	12-point	Arial	font	and	scaling	it	up	to	match	the	desired	size.

Failing	all	three	previous	steps,	the	browser	may	take	a	fourth	step	and	download
the	desired	font,	provided	the	author	has	supplied	suitable	external	font
definitions.	These	external	font	definitions	are	created	with	the	@font-face	at-rule,
whose	general	syntax	is:

@font-face	{
			descriptor	:	value;
			...
			descriptor	:	value
			}

	
Each	@font-face	at-rule	defines	a	new	font	to	the	browser.	Subsequent	requests	for
fonts	may	be	satisfied	by	these	new	fonts.	The	browser	uses	the	various
descriptor	values	to	ensure	that	the	font	supplied	matches	the	font	requested.

8.4.4.2.	Basic	font	descriptors

The	basic	font	descriptors	that	you	use	in	the	@font-face	at-rule	correspond	to	the
CSS2	font	properties	and	accept	the	same	values	as	those	properties.	Accordingly,
use	the	font-family,	font-style,	font-variant,	font-weight,	font-stretch,	and	font-size
descriptors	and	their	associated	values	to	define	a	new	font	to	the	browser.	For
example:

@font-face	{
			font-family	:	"Kumquat	Sans";
			font-style	:	normal,	italic;
			src	:	url("http://www.kumquat.com/foundry/kumquat-sans")
			}

	
defines	a	font	named	Kumquat	Sans	that	is	available	for	download	from
www.kumquat.com.	Within	that	downloadable	font,	both	the	normal	and	the	italic
versions	of	Kumquat	Sans	are	available.	Because	we	provide	no	other	font
descriptors,	the	browser	assumes	that	all	other	font	properties	(weight,	variant,
etc.)	can	be	satisfied	within	this	font.

In	general,	omitting	a	font	descriptor	lets	the	browser	match	any	value	provided
for	that	descriptor.	By	providing	one	or	more	values	for	a	font	descriptor,	you	are

http://www.kumquat.com

restricting	the	browser	to	match	only	those	values	in	later	font	requests.	Hence,
you	should	be	as	specific	as	possible	when	defining	a	font	this	way,	to	better
ensure	that	the	browser	makes	good	matches	later.	For	example,	if	a	font	does
not	contain	an	italic	version	and	you	fail	to	tell	the	browser,	it	may	use	an
incorrect	font	when	attempting	to	fulfill	a	request	for	an	italic	style	of	that	font.

8.4.4.3.	The	src	descriptor

The	src	descriptor	in	the	@font-face	at-rule	tells	the	browser	where	to	retrieve	the
font.	For	downloadable	fonts,	the	value	of	this	descriptor	is	its	document	URL,
expressed	in	CSS2	syntax	with	the	url	keyword.	To	reference	locally	installed
fontsones	stored	on	the	user's	machinewith	src,	use	the	keyword	local	rather	than
url	and	supply	the	local	name	of	the	font.

The	src	descriptor's	value	may	also	be	a	list	of	locations,	separated	by	commas.	In
our	previous	example,	we	could	have	used:

src	:	url("http://www.kumquat.com/foundry/kumquat-sans"),	local("Lucida	Sans")

	
which	asks	the	browser	to	download	and	use	Kumquat	Sans	from
www.kumquat.com	and,	if	that	fails,	to	look	for	a	locally	installed	copy	of	Lucida
Sans.

You	can	even	provide	hints	to	the	browser.	CSS2	is	decidedly	nonpartisan	when	it
comes	to	the	format	of	the	font	file.	Recognizing	that	a	number	of	different	font
formats	exist,	the	standard	lets	you	use	any	format	you	want,	presuming	that	the
browser	can	make	sense	of	it.	To	provide	a	format	hint,	use	the	keyword	format
followed	by	one	or	more	format	names,	such	as:

src	:	url("http://www.kumquat.com/foundry/kumquat-sans")	format("type-1"),
				local("Lucida	Sans")	format("truetype",	"intellitype")

	
In	this	case,	the	external	font	is	in	Type	1	format,	and	the	local	flavors	of	Lucida
Sans	are	available	in	both	TrueType	and	Intellifont	formats.	Other	recognized	font
formats	include	truedoc-pfr,	opentype,	embedded-opentype,	truetype,	truetype-gx,	and
speedo.

8.4.4.4.	Advanced	font	descriptors

http://www.kumquat.com

In	addition	to	the	standard	font	descriptors,	CSS2	supports	a	number	of	more
esoteric	ones	that	further	refine	the	defined	font.	Typical	page	designers	do	not
have	much	need	for	these	descriptors,	but	more	discriminating	typographers	may
find	them	useful.

The	unicode-range	descriptor	accepts	a	comma-separated	list	of	Unicode	values,
each	beginning	with	U+	followed	by	a	hexadecimal	value.	You	can	specify	ranges	of
values	by	adding	a	dash	and	another	hexadecimal	value;	the	question	mark
matches	any	value	in	that	position.

The	purpose	of	the	unicode-range	descriptor	is	to	define	exactly	which	character
glyphs	are	defined	in	the	font.	If	characters	used	in	your	document	are	not
available,	the	browser	does	not	download	and	use	the	font.	For	example,	a	value
of	U+2A70	indicates	that	the	font	contains	the	glyph	at	that	position	in	the	font.
Using	U+2A7?	represents	characters	in	the	range	2A70	to	2A7F,	and	U+2A70-2A9F
defines	a	broader	range.	For	the	most	part,	this	descriptor	is	used	to	restrict	the
use	of	special	symbol	fonts	to	just	those	symbols	defined	in	the	font.

The	units-per-em	descriptor	accepts	a	single	numeric	value	defining	the	size	of	the
font's	em	area.	This	value	is	important	if	you	specify	the	values	of	other
descriptors	using	em	units.

The	panose-1	descriptor	accepts	exactly	10	integer	values,	separated	by	spaces,
corresponding	to	the	Panose-1	characterization	of	this	font.	Defining	the	actual
Panose-1	values	is	well	beyond	the	scope	of	this	book;	interested	authors	should
refer	to	appropriate	documentation	for	the	Panose-1	system	for	more	information.

The	stemv	and	stemh	descriptors	define	the	thickness,	in	ems,	of	the	vertical	and
horizontal	strokes	of	the	font.	Similarly,	the	cap-height	and	x-height	descriptors
define	the	height	of	the	upper-	and	lowercase	glyphs	in	the	font.	Finally,	the	ascent
and	descent	descriptors	define	the	font's	maximum	height	and	depth.	If	you	use
any	of	these	descriptors,	you	must	also	specify	the	units-per-em	descriptor.

The	slope	descriptor	defines	the	slope	of	the	vertical	stroke	of	the	font.	This	is
important	for	matching	italic	and	oblique	versions	of	a	font.

The	baseline,	centerline,	mathline,	and	topline	descriptors	define	the	conventional
baseline,	center	baseline,	mathematical	baseline,	and	top	baseline	of	the	font.	All
accept	a	numeric	value	expressed	in	ems.	All	require	that	you	specify	the	units-
per-em	descriptor,	too.

The	bbox	descriptor	accepts	exactly	two	coordinate	(X,	Y)	pairs,	specifying	the
lower-left	and	upper-right	corners	of	the	font's	bounding	box.	The	bbox	descriptor
is	important	if	the	browser	chooses	to	synthesize	a	font	based	on	this	font.	By
specifying	the	size	of	the	bounding	box,	you	ensure	that	the	synthesized	font
occupies	the	same	space	as	the	desired	one.

The	widths	descriptor	accepts	a	comma-separated	list	of	Unicode	ranges,	followed
by	space-separated	values	which	define	the	widths	of	the	characters	in	the
indicated	range.	If	you	supply	one	value	for	a	range,	all	the	characters	in	that
range	have	the	same	width.	Multiple	values	are	assigned	to	successive	characters
in	a	range.	Like	the	bbox	descriptor,	the	widths	descriptor	is	used	to	ensure	good
fidelity	between	a	synthesized	font	and	its	requested	counterpart.

Finally,	the	optional	definitions-src	descriptor	provides	the	URL	of	a	file	that
contains	all	of	the	descriptors	for	a	font.	This	is	handy	if	you	need	to	define	a	font
in	great	detail.	Instead	of	including	the	lengthy	descriptors	in	each	document	or
stylesheet	that	uses	the	font,	you	define	the	descriptors	once	in	a	separate	file
and	reference	that	file	using	the	definitions-src	descriptor.

8.4.5.	Color	and	Background	Properties

Every	element	in	your	document	has	a	foreground	and	a	background	color.	In
some	cases,	the	background	is	not	one	color,	but	a	colorful	image.	The	color	and
background	style	properties	control	these	colors	and	images.

The	children	of	an	HTML/XHTML	element	normally	inherit	the	foreground	color	of
their	parent.	For	instance,	if	you	make	<body>	text	red,	the	styles-conscious
browser	also	displays	header	and	paragraph	text	in	red.

Background	properties	behave	differently,	howeverthey	are	not	inherited.	Instead,
each	element	has	a	default	background	that	is	transparent,	allowing	the	parent's
background	to	show	through.	Thus,	setting	the	background	image	of	the	<body>	tag
does	not	cause	that	image	to	be	reloaded	for	every	element	within	the	body	tag.
Instead,	the	browser	loads	the	image	once	and	displays	it	behind	the	rest	of	the
document,	serving	as	the	background	for	all	elements	that	do	not	themselves
have	an	explicit	background	color	or	image.

All	the	current	popular	browsers	support	the	following	background	and	color
properties.

8.4.5.1.	The	background-color	property

The	background-color	property	controls	the	(you	guessed	it!)	background	color	of	an
element.	Set	it	to	a	color	value	or	to	the	keyword	transparent	(the	default	value).
The	effects	should	be	obvious.

While	you	may	have	become	accustomed	to	setting	the	background	color	of	an
entire	document	through	the	special	attributes	for	the	<body>	tag,	you	can	apply
the	background-color	style	property	to	any	element.	For	example,	to	set	the

background	color	of	one	item	in	a	bulleted	list,	you	could	use:

<li	style="background-color:	blue">

	
Similarly,	you	could	give	all	the	table	header	cells	in	a	document	a	snapshot
negative	effect	with:

th	{background-color:	black;	color:	white}

	
If	you	really	want	your	emphasized	text	to	stand	out,	paint	its	background	red:

em	{background-color:	red}

	

8.4.5.2.	The	background-image	property

The	background-image	property	puts	an	image	behind	the	contents	of	an	element.	Its
value	is	either	a	URL	or	the	keyword	none	(the	default	value).

As	with	background	colors,	you	can	place	a	background	image	behind	the	entire
document	or	behind	selected	elements	of	a	document.	With	this	style	property,
effects	such	as	placing	an	image	behind	a	table	or	selected	text	are	now	simple:

<table	style="background-image:	url(backgrounds/woodgrain.gif)">
li.marble	{background-image:	url(backgrounds/marble.gif)}

	
The	first	example	uses	an	inline	style	to	place	a	wood	grain	finish	behind	a	table.
The	second	defines	a	list-item	class	that	places	a	marble	background	behind	
tags	that	use	the	class=marble	attribute.	For	example,	this	XHTML	snippet:

<h2>Here's	what's	for	dinner	tonight:</h2>

			<li	class="marble">Liver	with	Onions
			<li	class="marble">Mashed	Potatoes	and	Gravy
			<li	class="marble">Green	Beans
			<li	class="marble">Choice	of	Milk,	Tea,	or	Coffee

<h2>And	for	dessert:</h2>

			Creamed	Quats	in	Milk	(YUM!	YUM!)

	
produces	a	result	like	that	in	Figure	8-6.

Figure	8-6.	Placing	a	background	image	behind	an	element

	
If	the	image	is	larger	than	the	containing	element,	it	is	clipped	to	the	area
occupied	by	the	element.	If	the	image	is	smaller,	it	is	repeated	to	tile	the	area
occupied	by	the	element,	as	dictated	by	the	value	of	the	background-repeat	attribute.

You	control	the	starting	position	of	the	image	within	the	element	with	the
background-position	property.	The	background-attachment	property	manages	the	scrolling
behavior	of	the	image.

While	it	may	seem	that	a	background	color	and	a	background	image	are	mutually
exclusive,	you	should	usually	define	a	background	color	even	if	you	are	using	a
background	image.	That	way,	if	the	image	is	unavailablefor	example,	when	the
user	doesn't	automatically	download	imagesthe	browser	displays	the	background
color	instead.	In	addition,	if	the	background	image	has	transparent	areas,	the
background	color	is	used	to	fill	in	those	areas.

8.4.5.3.	The	background-attachment	property

If	you	specify	a	background	image	for	an	element,	use	the	background-attachment

property	to	control	how	that	image	is	attached	to	the	browser's	display	window.
With	the	default	value	scroll,	the	browser	moves	the	background	image	with	the
element	as	the	user	scrolls	through	the	document.	A	value	of	fixed	prevents	the
image	from	moving.

8.4.5.4.	The	background-position	property

By	default,	the	styles-conscious	browser	begins	rendering	a	background	image
starting	in	the	upper-left	corner	of	the	allotted	display	area.	With	the	background-
position	property,	you	can	offset	the	starting	position	of	the	background	image	by
an	absolute	(length)	or	relative	(percentage	or	keyword)	offset.	The	resulting,
potentially	"cropped,"	image	fills	the	area	from	that	offset	starting	point.

You	may	specify	one	or	two	values	for	the	background-position	property.	If	you	use	a
single	value,	it	applies	to	both	the	vertical	and	horizontal	positions.	With	two
values,	the	first	is	the	horizontal	offset	and	the	second	is	the	vertical	offset.

Length	values	(with	their	appropriate	units;	see	section	8.4.1.2,	earlier	in	this
chapter)	indicate	an	absolute	distance	from	the	upper-left	corner	of	the	element
behind	which	you	display	the	background	image.	Negative	length	values
effectively	crop	the	corresponding	top	and	left	sides	of	the	image	within	the
allotted	viewport,	just	as	an	image	that	is	too	big	for	the	browser's	window	gets
cropped	on	the	bottom	and	right	sides.

For	example:

table	{background-image:	url(backgrounds/marble.gif);
							background-position:	10px	20px}

	
offsets	the	marble	background	10	pixels	to	the	right	and	20	pixels	down	from	the
upper-left	corner	of	any	<table>	element	in	your	document.

Percentage	values	are	a	bit	trickier	but	somewhat	easier	to	use.	Measured	from	0
percent	to	100	percent	from	left	to	right	and	top	to	bottom,	the	center	of	the
element's	content	display	space	is	at	50%,	50%.	Similarly,	the	position	one-third
of	the	way	across	the	area	and	two-thirds	of	the	way	down	is	at	33%,	66%.	So,	to
offset	the	background	for	our	example	dinner	menu	to	the	center	of	the	element's
content	display	space,	we	use:[*]

[*]	Interestingly,	this	property	worked	as	advertised	with	Internet	Explorer	versions	4	and	5	but	is	broken	in	version	6,	as	it
is	with	other	popular	browsers:	the	offset	works	only	if	you	set	the	background-repeat	property.

background-position:	50%

	
Why	use	a	number	when	a	single	word	will	do?	You	can	use	the	keywords	left,
center,	and	right,	as	well	as	top,	center,	and	bottom,	for	0%,	50%,	and	100%,	respectively.
To	center	an	image	in	the	tag's	content	area,	use:

background-position:	center

	
You	can	mix	and	match	length	and	percentage	values,[]	too,	so	that:

[]	That	is,	if	the	browser	supports	the	value	units.	So	far,	Internet	Explorer	and	Netscape	support	only	a	meager
repertoire	of	length	unitspixels	and	percents.

background-position:	1cm	50%

	
places	the	image	one	centimeter	to	the	right	of	the	tag's	left	edge,	centered
vertically	in	the	tag's	area.

Note	that	with	relative	offsets,	the	image	moves	relative	to	the	tag's	contents
when	the	user	resizes	the	browser	display	window	because	the	space	allotted	to
the	content	also	gets	resized.	By	contrast,	the	image	stays	in	the	same	place
relative	to	the	element's	contents	if	you	use	absolute	offset	values.

Finally,	one	might	also	expect	that	the	repeating	background	(by	default;	see	the
following	section,	8.4.5.5)	would	tile	down	and	to	the	right	of	the	offset.	Not	so.
Current	browsers	"wrap"	the	image	around	to	fill	the	element's	allotted	display
space.	For	example,	look	closely	at	Figure	8-7	and	notice	the	tiling	effects	for	an
offset	versus	nonoffset	background	image	displayed	from	the	following	example
style	fragments:

<style	type=css/text>
<!--
pre	{background-image:	url(backgrounds/vert.gif)}
pre.offset	{background-image:	url(backgrounds/vert.gif);	background-position:	-20px
-20px}
-->
</style>
...
The	following	background	image	is	offset	by	-20	pixels	left	and	up:
<pre	class=offset>

</pre>
<p>
This	background	image	is	not	offset:
<pre>

</pre>

	

Figure	8-7.	Background-offset	with	tiling

	

8.4.5.5.	The	background-repeat	property

Normally,	the	browser	tiles	a	background	image	to	fill	the	allotted	space,
repeating	the	image	both	horizontally	and	vertically.	Use	the	background-repeat
property	to	alter	this	repeat	(default	value)	behavior.	To	have	the	image	repeat

horizontally	but	not	vertically,	use	the	value	repeat-x.	For	only	vertical	repetition,
use	repeat-y.	To	suppress	tiling	altogether,	use	no-repeat.

A	common	use	of	this	property	is	to	place	a	watermark	or	logo	in	the	background
of	a	page	without	repeating	the	image	over	and	over.	For	instance,	this	code
places	the	watermark	image	in	the	background	at	the	center	of	the	page:

body	{background-image:	url(backgrounds/watermark.gif);
						background-position:	center	center;
						background-repeat:	no-repeat
					}

	
A	popular	trick	is	to	create	a	vertical	ribbon	down	the	righthand	side	of	the	page:

body	{background-image:	url(backgrounds/ribbon.gif);
						background-position:	top	right;
						background-repeat:	repeat-y
					}

	

8.4.5.6.	The	background	property

Like	the	various	font	properties,	the	many	background	CSS2	properties	can	get
cumbersome	to	write	and	hard	to	read	later.	So,	like	the	font	property,	there	is
also	a	general	background	property.

The	background	property	accepts	values	from	any	and	all	of	the	background-color,
background-image,	background-attachment,	background-repeat,	and	background-position
properties,	in	any	order.	If	you	do	not	specify	values	for	some	of	the	properties,
those	properties	are	explicitly	set	to	their	default	values.	Thus:

background:	red

	
sets	the	background-color	property	to	red	and	resets	the	other	background
properties	to	their	default	values.	A	more	complex	example:

background:	url(backgrounds/marble.gif)	blue	repeat-y	fixed	center

	

sets	all	the	background	image	and	color	properties	at	once,	resulting	in	a	marble
image	on	top	of	a	blue	background	(blue	showing	through	any	transparent	areas).
The	image	repeats	vertically,	starting	from	the	center	of	the	content	display	area,
and	does	not	scroll	when	the	user	scrolls	the	display.	Notice	that	we	include	just	a
single	position	value	(center),	and	the	browser	uses	it	for	both	the	vertical	and
horizontal	positions.

8.4.5.7.	The	color	property

The	color	property	sets	the	foreground	color	for	a	tag's	contentsthe	color	of	the
text	lettering,	for	instance.	Its	value	is	either	the	name	of	a	color,	a	hexadecimal
RGB	triple,	or	a	decimal	RGB	triple,	as	outlined	earlier	in	section	8.4.1.5.	The
following	are	all	valid	property	declarations:

color:	mauve
color:	#ff7bd5
color:	rgb(255,	125,	213)
color:	rgb(100%,	49%,	84%)

	
Generally,	you'll	use	the	color	property	with	text,	but	you	may	also	modify
nontextual	content	of	a	tag.	For	instance,	the	following	example	produces	a	green
horizontal	rule:

hr	{color:	green}

	
If	you	don't	specify	a	color	for	an	element,	it	inherits	the	color	of	its	parent
element.

8.4.6.	Text	Properties

Cascading	stylesheets	make	a	distinction	between	font	properties,	which	control
the	size,	style,	and	appearance	of	text,	and	text	properties,	which	control	how
text	is	aligned	and	presented	to	the	user.

8.4.6.1.	The	letter-spacing	property

The	letter-spacing	property	puts	additional	space	between	text	letters	as	they	are

displayed	by	the	browser.	Set	the	property	with	either	a	length	value	or	the
default	keyword	normal,	indicating	that	the	browser	should	use	normal	letter
spacing.	For	example:

blockquote	{letter-spacing:	2px}

	
puts	an	additional	two	pixels	between	adjacent	letters	within	the	<blockquote>	tag.
Figure	8-8	illustrates	what	happens	when	you	put	five	pixels	between	characters.

Figure	8-8.	The	letter-spacing	property	lets	you	stretch	text

	
All	the	popular	browsers	support	this	property.

8.4.6.2.	The	line-height	property

Use	the	line-height	property	to	define	the	minimum	spacing	between	lines	of	a
tag's	text	content.	Normally,	browsers	single-space	text	linesthe	top	of	the	next
line	is	just	a	few	points	below	the	last	line.	By	adding	to	that	line	height,	you
increase	the	amount	of	space	between	lines.

The	line-height	value	can	be	an	absolute	or	a	relative	length,	a	percentage,	a
scaling	factor,	or	the	keyword	normal.	For	example:

p	{line-height:	14pt}
p	{line-height:	120%}
p	{line-height:	2.0}

	
The	first	example	sets	the	line	height	to	exactly	14	points	between	baselines	of
adjacent	lines	of	text.	The	second	computes	the	line	height	to	120	percent	of	the

font	size.	The	last	example	uses	a	scaling	factor	to	set	the	line	height	to	twice	as
large	as	the	font	size,	creating	double-spaced	text.	The	value	normal,	the	default,	is
usually	equal	to	a	scaling	factor	of	1.0	to	1.2.

Keep	in	mind	that	absolute	and	percentage	values	for	line-height	compute	the	line
height	based	on	the	value	of	the	font-size	property.	Children	of	the	element	inherit
the	computed	property	value.	Subsequent	changes	to	font-size	by	either	the
parent	or	the	child	elements	do	not	change	the	computed	line	height.

Scaling	factors,	on	the	other	hand,	defer	the	line-height	computation	until	the
browser	actually	displays	the	text.	Hence,	varying	font	sizes	affect	line	height
locally.	In	general,	it	is	best	to	use	a	scaling	factor	for	the	line-height	property	so
that	the	line	height	changes	automatically	as	the	font	size	changes.

Although	it	is	usually	considered	separate	from	font	properties,	you	may	include
this	text-related	line-height	property's	value	as	part	of	the	shorthand	notation	of
the	font	property.	[The	font	property,	8.4.3.8]

8.4.6.3.	The	text-align	property

Text	justified	with	respect	to	the	page	margins	is	a	rudimentary	feature	of	nearly
all	text	processors.	The	text-align	property	brings	that	capability	to	HTML	for	any
block-level	tag.	(The	W3C	standards	people	prefer	that	you	use	CSS2	text-align
styles	rather	than	the	explicit	align	attribute	for	block-level	tags	such	as	<div>	and
<p>.)	Use	one	of	four	values:	left,	right,	center,	or	justify.	The	default	value	is,	of
course,	left.[*]

[*]	For	left-to-right	locales.	In	right-to-left	locales,	the	default	is	right.

For	example:

div	{text-align:	right}

	
tells	the	styles-conscious	browser	to	align	all	the	text	inside	<div>	tags	against	the
right	margin.	The	justify	value	tells	the	browser	to	align	the	text	to	both	the	left
and	right	margins,	spreading	the	letters	and	words	in	the	middle	to	fit.

All	the	popular	browsers	currently	support	the	left,	right,	and	center	alignments,
but	not	justify.

8.4.6.4.	The	text-decoration	property

The	text-decoration	property	produces	text	embellishments,	some	of	which	are	also
available	with	the	original	physical	style	tags.	Its	value	is	one	or	more	of	the
keywords	underline,	overline,	line-through,	and	blink.	The	value	none	is	the	default,
which	tells	the	styles-conscious	browser	to	present	text	normally.

The	text-decoration	property	is	handy	for	defining	different	link	appearances:

a:visited,	a:link,	a:active	{text-decoration:	underline	overline}

	
This	puts	lines	above	and	below	the	links	in	your	document.

This	text	property	is	not	inherited,	and	nontextual	elements	are	not	affected	by
the	text-decoration	property.

Interestingly,	all	the	popular	browsers	support	the	text-decoration	property,	but
only	Internet	Explorer	has	the	good	taste	not	to	support	its	blink	value.

8.4.6.5.	The	text-indent	property

Although	less	common	today,	it	is	still	standard	practice	to	indent	the	first	line	of
a	paragraph	of	text.[*]	And	some	text	blocks,	such	as	definitions,	typically	"out-
dent"	the	first	line,	creating	what	is	called	a	hanging	indent.

[*]	But	not,	obviously,	in	this	book.

The	CSS2	text-indent	property	lets	you	apply	these	features	to	any	block	tag	and
thereby	control	the	amount	of	indentation	of	the	first	line	of	the	block.	Use	length
and	percentage	values:	negative	values	create	the	hanging	indent,	and
percentage	values	compute	the	indentation	as	a	percentage	of	the	parent
element's	width.	The	default	value	is	0.

To	indent	all	the	paragraphs	in	your	document,	for	example,	you	could	use:

p	{text-indent:	3em}

	
The	length	unit	em	scales	the	indent	as	the	font	of	the	paragraph	changes	in	size
on	different	browsers.

Hanging	indents	are	a	bit	trickier,	because	you	have	to	watch	out	for	the	element
borders.	Negative	indentation	does	not	shift	the	left	margin	of	the	text;	it	simply
shifts	the	first	line	of	the	element	left,	possibly	into	the	margin,	border,	or	padding

of	the	parent	element.	For	this	reason,	hanging	indents	work	as	expected	only	if
you	also	shift	the	left	margin	of	the	element	to	the	right	by	an	amount	equal	to	or
greater	than	the	size	of	the	hanging	indent.	For	example:

p.wrong	{text-indent:	-3em}
p.hang	{text-indent:	-3em;	margin-left:	3em}
p.large	{text-indent:	-3em;	margin-left:	6em}

	
creates	three	paragraph	styles.	The	first	creates	a	hanging	indent	that	extends
into	the	left	margin,	the	second	creates	a	conventional	hanging	indent,	and	the
third	creates	a	paragraph	whose	body	is	indented	more	than	the	hanging	indent.
Figure	8-9	shows	all	three	styles	in	use.

Figure	8-9.	The	effects	of	text-indent	and	margin-left	on	a
paragraph

	
All	the	popular	browsers	support	the	text-indent	property.

8.4.6.6.	The	text-shadow	property

The	text-shadow	property	lets	you	give	your	text	a	three-dimensional	appearance
through	the	time-honored	use	of	shadowing.	Values	for	the	property	include	a
required	offset	and	optional	blur	radius	and	color.	The	property	may	include	more
than	one	set	of	values,	separated	with	commas,	to	achieve	a	stack	of	shadows,
with	each	subsequent	set	of	values	layered	on	top	of	the	previous	one	but	always
beneath	the	original	text.

The	property's	required	offset	is	composed	of	two	length	values:	the	first	specifies
the	horizontal	offset,	and	the	second	specifies	the	vertical	offset.	Positive	values
place	the	shadow	to	the	right	and	below	the	respective	length	distance	from	the

text.	Negative	values	move	the	shadow	left	and	up,	respectively.

The	optional	blur	radius	is	also	a	length	value	that	specifies	the	boundaries	for
blurring,	an	effect	that	depends	on	the	rendering	agent.	The	other	shadow	value
is	color.	This,	of	course,	may	be	an	RGB	triple	or	color	name,	as	for	other
properties,	and	specifies	the	shadow	color.	If	you	don't	specify	this	value,	text-
shadow	uses	the	color	value	of	the	color	property.	For	example:

h1	{text-shadow;	10px	10px	2px	yellow}
p:first-letter	{text-shadow:	-5px	-5px	purple,	10px	10px	orange}

	
The	first	text-shadow	example	puts	a	2-pixel	blurred-yellow	shadow	behind,	10
pixels	below,	and	10	pixels	to	the	right	of	level-1	headers	in	your	document.	The
second	example	puts	two	shadows	behind	the	first	letter	of	each	paragraph.	The
purple	shadow	sits	5	pixels	above	and	5	pixels	to	the	left	of	that	first	letter.	The
other	shadow,	like	in	the	first	example	(although	orange	in	this	case),	goes	10
pixels	to	the	right	and	10	pixels	below	the	first	letter	of	each	paragraph.

Unfortunately,	we	can't	show	you	any	of	these	effects,	because	none	of	the
popular	browsers	supports	this	property.

8.4.6.7.	The	text-transform	property

The	text-TRansform	property	lets	you	automatically	convert	portions	or	all	of	your
document's	text	into	uppercase	or	lowercase	lettering.	Acceptable	values	are
capitalize,	uppercase,	lowercase,	and	none.

capitalize	renders	the	first	letter	of	each	word	in	the	text	into	uppercase,	even	if
the	source	document's	text	is	in	lowercase.	The	uppercase	and	lowercase	values
respectively	render	all	the	text	in	the	corresponding	case.	none,	of	course,	cancels
any	transformations.	For	example:

h1	{text-transform:	uppercase}

	
formats	all	the	letters	in	level-1	headers,	presumably	titles,	in	uppercase	text,
whereas:

h2	{text-transform:	capitalize}

	

makes	sure	that	each	word	in	level-2	headers	begins	with	a	capital	letter,	a
convention	that	might	be	appropriate	for	section	heads,	for	instance.

Note	that	while	uppercase	and	lowercase	affect	the	entire	text,	capitalize	affects	only
the	first	letter	of	each	word	in	the	text.	Consequently,	transforming	the	word
"htMl"	with	capitalize	generates	"HtMl."

All	the	popular	browsers	support	the	text-TRansform	property.

8.4.6.8.	The	vertical-align	property

The	vertical-align	property	controls	the	relative	position	of	an	element	with
respect	to	the	line	containing	the	element.	Valid	values	for	this	property	include:

baseline

Align	the	baseline	of	the	element	with	the	baseline	of	the	containing	element.

middle

Align	the	middle	of	the	element	with	the	middle	(usually	the	x-height)	of	the
containing	element.

sub

Subscript	the	element.

super

Superscript	the	element.

text-top

Align	the	top	of	the	element	with	the	top	of	the	font	of	the	parent	element.

text-bottom

Align	the	bottom	of	the	element	with	the	bottom	of	the	font	of	the	parent
element.

top

Align	the	top	of	the	element	with	the	top	of	the	tallest	element	in	the	current
line.

bottom

Align	the	bottom	of	the	element	with	the	bottom	of	the	lowest	element	in	the
current	line.

In	addition,	a	percentage	value	indicates	a	position	relative	to	the	current
baseline	so	that	a	position	of	50%	puts	the	element	halfway	up	the	line	height
above	the	baseline.	A	position	value	of	-100%	puts	the	element	an	entire	line
height	below	the	baseline	of	the	current	line.

All	the	popular	browsers	agree	on	where	to	place	images	relative	to	a	line	of	text
for	baseline	(default	and	the	same	as	no	vertical-align	specification),	middle	(but	not
center),	super	(but	not	sub),	text-top,	text-bottom,	top	(same	as	text-top;	but	not
bottom),	and	for	both	plus	and	minus	percentage	offset	values.	Figure	8-10	shows
you	how	Internet	Explorer	treats	the	various	vertical-align	values.

Figure	8-10.	Internet	Explorer's	treatment	of	the	vertical
alignment	property	values

	
For	the	differences,	Firefox	treats	center	like	Internet	Explorer	and	different	from
middle	(Figure	8-10),	whereas	Netscape	treats	center	identical	to	middle,	but	Opera
doesn't	recognize	the	value	at	all.	With	sub,	it's	Netscape's	turn	to	agree	with
Firefox	and	place	the	bottom	of	the	subscripted	image	at	the	bottom	of	the
character	descender,	whereas	Opera	places	the	bottom	of	the	image	perceptively
below	the	baseline,	but	unlike	Internet	Explorer,	not	so	low	as	to	be	just	above
the	next	line	of	text.

With	the	bottom	value,	it's	Opera's	turn	to	agreewith	Internet	Explorer,	aligning	the
bottom	of	the	image	with	the	bottom	of	the	line	just	above	the	next	line	of	text,
whereas	Firefox	and	Netscape	place	the	bottom	of	the	image	at	the	bottom	of	the
character	descender.	Clear	as	mud?	Perhaps	Figures	8-11	through	8-13	will	help
you	to	visualize	the	differences	when	also	compared	with	Figure	8-10.

Figure	8-11.	Firefox's	rendering	of	selected	vertical-align	values

	

Figure	8-12.	Opera's	rendering	of	selected	vertical-align	values

	

Figure	8-13.	Netscape's	rendering	of	selected	vertical-align
values

	

8.4.6.9.	The	word-spacing	property

Use	the	word-spacing	property	to	add	space	between	words	within	a	tag.	You	can
specify	a	length	value,	or	use	the	keyword	normal	to	revert	to	normal	word

spacing.	For	example:

h3	{word-spacing:	25px}

	
places	an	additional	25	pixels	of	space	between	words	in	the	<h3>	tag.

All	the	currently	popular	browsers	support	the	word-spacing	property.

8.4.7.	Box	Properties

The	CSS2	model	assumes	that	HTML	and	XHTML	elements	always	fit	within
rectangular	boxes.	Using	the	properties	defined	in	this	section,	you	can	control
the	size,	appearance,	and	position	of	the	boxes	containing	the	elements	in	your
documents.

8.4.7.1.	The	CSS2	formatting	model

Each	element	in	a	document	fits	into	a	rectangular	space	or	box.	The	CSS2
authors	call	this	box	the	core	content	area	and	surround	it	with	three	more
boxes:	the	padding,	the	border,	and	the	margin.	Figure	8-14	shows	these	boxes
and	defines	some	useful	terminology.

Figure	8-14.	The	CSS2	formatting	model	and	terminology

	
The	top,	bottom,	left-outer,	and	right-outer	edges	bound	the	content	area	of	an
element	and	all	of	its	padding,	border,	and	margin	spaces.	The	inner-top,	inner-
bottom,	left-inner,	and	right-inner	edges	define	the	sides	of	the	core	content	area.
The	extra	space	around	the	element	is	the	area	between	the	inner	and	outer
edges,	including	the	padding,	border,	and	margin.	A	browser	may	omit	any	and	all
of	these	extra	spaces	for	any	element,	and	for	many,	the	inner	and	outer	edges
are	the	same.

When	elements	are	vertically	adjacent,	the	bottom	margin	of	the	upper	elements
and	the	top	margin	of	the	lower	elements	overlap	so	that	the	total	space	between
the	elements	is	the	greater	of	the	adjacent	margins.	For	example,	if	one
paragraph	has	a	bottom	margin	of	1	inch,	and	the	next	paragraph	has	a	top
margin	of	0.5	inches,	the	greater	of	the	two	margins,	1	inch,	is	placed	between
the	two	paragraphs.	This	practice	is	known	as	margin	collapsing	and	generally
results	in	better	document	appearance.

Horizontally	adjacent	elements	do	not	have	overlapping	margins.	Instead,	the
CSS2	model	adds	together	adjacent	horizontal	margins.	For	example,	if	a
paragraph	has	a	left	margin	of	1	inch	and	is	adjacent	to	an	element	with	a	right
margin	of	0.5	inches,	the	total	space	between	the	two	is	1.5	inches.	This	rule	also
applies	to	nested	elements	so	that	a	paragraph	within	a	division	has	a	left	margin
equal	to	the	sum	of	the	division's	left	margin	and	the	paragraph's	left	margin.

As	shown	in	Figure	8-14,	the	total	width	of	an	element	is	equal	to	the	sum	of
seven	items:	the	left	and	right	margins,	the	left	and	right	borders,	the	left	and
right	padding,	and	the	element's	content	itself.	The	sum	of	these	seven	items
must	equal	the	width	of	the	containing	element.	Of	these	seven	items,	only	three
(the	element's	width	and	its	left	and	right	margins)	can	be	given	the	value	auto,
indicating	that	the	browser	can	compute	a	value	for	that	property.	When	this
becomes	necessary,	the	browser	follows	these	rules:

If	none	of	these	properties	is	set	to	auto	and	the	total	width	is	less	than	the
width	of	the	parent	element,	the	margin-right	property	is	set	to	auto	and	made
large	enough	to	make	the	total	width	equal	to	the	width	of	the	parent
element.

If	exactly	one	property	is	set	to	auto,	that	property	is	made	large	enough	to
make	the	total	width	equal	to	the	width	of	the	parent	element.

If	width,	margin-left,	and	margin-right	are	set	to	auto,	the	CSS2-compliant
browser	sets	both	margin-left	and	margin-right	to	0	and	sets	width	large	enough
to	make	the	total	equal	to	the	width	of	the	parent	element.

If	both	the	left	and	right	margins	are	set	to	auto,	they	are	always	set	to	equal
values,	centering	the	element	within	its	parent.

There	are	special	rules	for	floating	elements.	A	floating	element	(such	as	an
image	with	align=left	specified)	does	not	have	its	margins	collapsed	with	the
margins	of	containing	or	preceding	elements,	unless	the	floating	element	has
negative	margins.	Figure	8-15	shows	how	the	following	bit	of	HTML	might	be
rendered:

<body>
<p>

Some	sample	text...
</body>

	

Figure	8-15.	Handling	the	margins	of	floating	elements

	
The	browser	moves	the	image,	including	its	margins,	as	far	as	possible	to	the	left
and	toward	the	top	of	the	paragraph	without	overlapping	the	left	and	top	margins
of	the	paragraph	or	the	document	body.	The	left	margins	of	the	paragraph	and	the
containing	body	are	added,	and	their	top	margins	are	collapsed.

8.4.7.2.	The	border	properties

The	border	surrounding	an	element	has	a	color,	a	thickness,	and	a	style.	You	can
use	various	properties	to	control	these	three	aspects	of	the	border	on	each	of	the
four	sides	of	an	element.	Shorthand	properties	make	it	easy	to	define	the	same
color,	thickness,	and	style	for	the	entire	border,	if	desired.	Border	properties	are

not	inherited;	you	must	explicitly	set	them	for	each	element	that	has	a	border.

8.4.7.3.	The	border-color	property

Use	the	border-color	property	to	set	the	border	color.	If	this	property	is	not
specified,	the	browser	draws	the	border	using	the	value	of	the	element's	color
property.

The	border-color	property	accepts	from	one	to	four	color	values.	The	number	of
values	determines	how	they	are	applied	to	the	borders	(summarized	in	Table	8-1).
If	you	include	just	one	property	value,	all	four	sides	of	the	border	are	set	to	the
specified	color.	Two	values	set	the	top	and	bottom	borders	to	the	first	value	and
the	left	and	right	borders	to	the	second	value.	With	three	values,	the	first	is	the
top	border,	the	second	sets	the	right	and	left	borders,	and	the	third	color	value	is
for	the	bottom	border.	Four	values	specify	colors	for	the	top,	right,	bottom,	and
left	borders,	in	that	order.

Table	8-1.	Order	of	effects	for	multiple	border,	margin,	and	padding	property	values

Number	of	values Affected	border(s),	margin(s),	or	padding

1 All	items	have	the	same	value.

2 The	first	value	sets	top	and	bottom;	the	second	value	sets	left	and	right.

3 The	first	value	sets	top;	the	second	sets	both	left	and	right;	the	third	value	sets	bottom.

4 The	first	value	sets	top;	the	second	sets	right;	the	third	sets	bottom;	the	fourth	value	sets	left.

	

8.4.7.4.	The	border-width	property

The	border-width	property	lets	you	change	the	width	of	the	border.	Like	the	border-
color	property,	it	accepts	from	one	to	four	values	that	are	applied	to	the	various
borders	in	a	similar	manner	(refer	to	Table	8-1).

Besides	a	specific	length	value,	you	may	also	specify	the	width	of	a	border	as	one
of	the	keywords	thin,	medium,	or	thick.	The	default	value,	if	the	width	is	not
explicitly	set,	is	medium.	Some	typical	border	widths	are:

border:	1px
border:	thin	thick	medium

border:	thick	2mm

	
The	first	example	sets	all	four	borders	to	exactly	1	pixel.	The	second	makes	the
top	border	thin,	the	right	and	left	borders	thick,	and	the	bottom	border	medium.	The
last	example	makes	the	top	and	bottom	borders	thick	and	the	right	and	left
borders	2	millimeters	wide.

If	you	are	uncomfortable	defining	all	four	borders	with	one	property,	you	can	use
the	individual	border-top-width,	border-bottom-width,	border-left-width,	and	border-right-
width	properties	to	define	the	thickness	of	each	border.	Each	property	accepts	just
one	value;	the	default	is	medium.

All	the	currently	popular	browsers	support	this	property.

8.4.7.5.	The	border-style	property

According	to	the	CSS2	model,	you	may	apply	a	number	of	embellishments	to	your
HTML	element	borders.

The	border-style	property	values	include	none	(default),	dotted,	dashed,	solid,	double,
groove,	ridge,	inset,	and	outset.	The	border-style-conscious	browser	applies	one	to
four	values	for	the	property	to	each	border,	in	the	same	order	as	for	the	border
colors	and	widths,	as	described	in	Table	8-1.

The	browser	draws	dotted,	dashed,	solid,	and	double	borders	as	flat	lines	on	top	of
the	tag's	background.	The	groove,	ridge,	inset,	and	outset	values	create	three-
dimensional	borders:	the	groove	is	an	incised	line,	the	ridge	is	an	embossed	line,
the	inset	border	makes	the	entire	tag	area	appear	set	into	the	document,	and	the
outset	border	makes	the	entire	tag	area	appear	raised	above	the	document.	The
effect	of	the	three-dimensional	nature	of	these	last	four	styles	on	the	tag's
background	image	is	undefined	and	left	up	to	the	browser.	Netscape	supports
three-dimensional	effects.

All	the	currently	popular	browsers	support	the	border	styles.	An	example	is	shown
in	Figure	8-16.

Figure	8-16.	The	border-style	property	nicely	frames	images

	

8.4.7.6.	Borders	in	shorthand

Specifying	a	complex	border	can	get	tedious,	so	the	CSS2	standard	provides	five
shorthand	properties	that	accept	any	or	all	of	the	width,	color,	and	style	values	for
one	or	all	of	the	border	edges.	The	border-top,	border-bottom,	border-left,	and	border-
right	properties	affect	their	respective	borders'	sides;	the	comprehensive	border
property	controls	all	four	sides	of	the	border	simultaneously.	For	example:

border-top:	thick	solid	blue
border-left:	1ex	inset
border-bottom:	blue	dashed
border:	red	double	2px

	
The	first	property	makes	the	top	border	a	thick,	solid,	blue	line.	The	second	sets
the	left	border	to	use	an	inset	effect	that	is	as	thick	as	the	x-height	of	the
element's	font,	while	leaving	the	color	the	same	as	the	element's	color.	The	third
property	creates	a	blue	dashed	line	at	the	bottom	of	the	element,	using	the
default	medium	thickness.	Finally,	the	last	property	makes	all	four	borders	a	red
double	line,	2	pixels	thick.

That	last	property	raises	two	issues.	First,	you	cannot	supply	multiple	values	to
the	border	property	to	selectively	affect	certain	borders,	as	you	can	with	the
individual	border-color,	border-width,	and	border-style	properties.	The	border	property
always	affects	all	four	borders	around	an	element.

Second,	a	bit	of	reflection	should	reveal	that	it	is	not	possible	to	create	a	double-
line	border	just	2	pixels	thick.	In	cases	like	this,	the	browser	is	free	to	adjust	the
thickness	to	render	the	border	properly.

While	we	usually	think	of	borders	surrounding	block	elements	such	as	images,
tables,	and	text	flows,	you	also	can	apply	borders	to	inline	tags.	This	lets	you	put
a	box	around	a	word	or	phrase	within	a	text	flow.	The	implementation	of	borders
on	inline	tags	that	span	multiple	lines	is	undefined	and	left	to	the	browser.

All	of	the	currently	popular	browsers	support	the	border	styles.

8.4.7.7.	The	clear	property

Like	its	cousin	attribute	for	the	
	tag,	the	clear	property	tells	the	browser
whether	to	place	a	tag's	contents	adjacent	to	a	"floating"	element	or	on	the	first
line	below	it.	Text	flows	around	floating	elements	such	as	images	and	tables	with
an	align=left	or	align=right	attribute	or	any	HTML/XHTML	element	with	its	float
property	set	to	anything	but	none.	[
,	4.6.1]	[The	float	property,	8.4.7.9]

The	value	of	the	clear	property	can	be	none,	left,	right,	or	both.	A	value	of	none,	the
default,	means	that	the	browser	acts	normally	and	places	the	tag's	contents
adjacent	to	floating	elements	on	either	side,	if	there	is	room	to	do	so.	The	value
left	prevents	contents	from	being	placed	adjacent	to	a	floating	element	on	its	left;
right	prevents	placement	on	the	right	side	of	a	floating	element;	and	both	prevents
the	tag's	contents	from	appearing	adjacent	to	any	floating	element.

The	effect	of	this	style	is	the	same	as	preceding	the	tag	with	a	
	tag	with	its
clear	attribute	set.	Hence:

h1	{clear:	left}

	
has	the	same	effect	as	preceding	every	<h1>	tag	with	<br	clear=left>.

8.4.7.8.	The	clip	property

Normally,	the	content	of	an	element	is	completely	visible	within	the	display	space
of	the	element.	The	clip	property	defines	a	viewing	window	within	an	element's
display	space,	letting	you	hide	unwanted	elements	and	focus	attention	on	some
area	or	aspect	of	the	content.

The	default	value	of	the	clip	property	is	auto,	meaning	that	the	viewing	window
matches	the	box	of	the	element.	Instead,	you	may	specify	a	shape	that	creates	a
distinct	viewing	window	into	the	element's	display	area.	Currently,	the	only	shape
supported	by	CSS2[*]	is	a	rectangle,	denoted	by	the	rect	keyword.	For	example:

[*]	Presumably,	future	versions	of	the	standard	will	expand	to	include	other	shapes.

p	{overflow	:	hidden;
			clip	:	rect(15px,	-10px,	5px,	10px)	}

	
The	four	values	define	the	top,	right,	bottom,	and	left	edges	of	the	clipping
rectangle.	Each	value	is	an	offset	relative	to	the	box	edges	defined	for	the
element.	So,	in	this	example,	the	top	of	the	clipping	area	is	15	pixels	below	the
top	of	the	element's	box,	the	right	edge	is	10	pixels	to	the	right	of	the	box,	the
bottom	is	5	pixels	above	the	bottom	of	the	box,	and	the	left	edge	is	10	pixels	to
the	right	of	the	left	side	of	the	box.

Note	that	the	clip	property	takes	effect	only	when	the	overflow	property	of	an
element	is	set	to	some	value	other	than	visible.	When	overflow	is	set	to	visible,	no
clipping	occurs	and	the	clip	property	is	ignored.

The	popular	browsers	don't	yet	support	the	clip	property.

8.4.7.9.	The	float	property

The	float	property	designates	a	tag's	display	space	as	a	floating	element	and
causes	text	to	flow	around	it	in	a	specified	manner.	It	is	generally	analogous	to
the	align	attribute	for	images	and	tables,	but	you	can	apply	it	to	any	element,
including	text.	[The	align	attribute	(deprecated),	10.2.1.1]

The	float	property	accepts	one	of	three	values:	left,	right,	or	none	(the	default).
Using	none	disables	the	float	property.	The	others	work	like	their	align	attribute-
value	counterparts,	telling	the	browser	to	place	the	content	to	either	side	of	the
flow	and	allow	other	content	to	be	rendered	next	to	it.

Accordingly,	the	browser	places	a	tag's	contents	(including	its	margins,	padding,
and	borders)	specified	with	float:	left	against	the	left	margin	of	the	current	text
flow,	and	subsequent	content	flows	to	its	right,	down	and	below	the	tag's
contents.	The	float:	right	pair	puts	the	tag	contents	against	the	right	edge	of	the
flow	and	flows	other	content	on	its	left,	down	and	below	the	tag's	contents.

Although	the	float	property	is	most	commonly	used	with	tables	and	images,	it	is
perfectly	acceptable	to	apply	it	to	a	text	element.	For	example,	the	following
creates	a	"run-in"	header,	with	the	text	flowing	around	the	header	text,	as	shown
in	Figure	8-17:

h2	{float:	left;
text-align:	center;

margin-right:	10px	}

	

Figure	8-17.	Use	the	float	property	with	text	blocks	to	create
run-in	headers

	
All	the	popular	browsers	support	this	property.

8.4.7.10.	The	height	property

As	you	might	suspect,	the	height	property	controls	the	height	of	the	associated
tag's	display	region.	You'll	find	it	most	often	used	with	images	and	tables,	but	you
can	use	it	to	control	the	height	of	other	document	elements	as	well.

The	value	of	the	height	property	is	either	a	length	value	or	the	keyword	auto	(the
default).	Using	auto	implies	that	the	affected	tag	has	an	initial	height	that	should
be	used	when	displaying	the	tag.	Otherwise,	the	height	of	the	tag	is	set	to	the
desired	height.	If	an	absolute	value	is	used,	the	height	is	set	to	that	length	value.
For	example:

img	{height:	100px}

	
tells	the	browser	to	display	the	image	referenced	by	the		tag	scaled	so	that	it
is	100	pixels	tall.	If	you	use	a	relative	value,	the	base	size	to	which	it	is	relative	is
browser	and	tag	dependent.

When	scaling	elements	to	a	specific	height,	you	can	preserve	the	aspect	ratio	of
the	object	by	also	setting	the	width	property	of	the	tag	to	auto.	Thus:

img	{height:	100px;	width:	auto}

	
ensures	that	the	images	are	always	100	pixels	tall,	with	an	appropriately	scaled
width.	[The	width	property,	8.4.7.16]

If	you	want	to	constrain	the	height	of	an	element	to	a	range	rather	than	a	specific
value,	use	the	min-height	and	max-height	properties.	These	properties	accept	values
like	the	height	property	and	establish	a	range	for	the	height	of	the	element.	The
browser	then	adjusts	the	height	of	the	element	to	fall	within	the	desired	range.

All	of	the	popular	browsers	fully	support	the	height	property,	but	none	of	the
browsers	yet	supports	the	min-height	and	max-height	properties.

8.4.7.11.	The	margin	properties

Like	the	border	properties,	the	various	margin	properties	let	you	control	the
margin	space	around	an	element,	just	outside	of	its	border	(see	Figure	8-14).
Margins	are	always	transparent,	allowing	the	background	color	or	image	of	the
containing	element	to	show	through.	As	a	result,	you	can	specify	only	the	size	of
a	margin;	it	has	no	color	or	rendered	style.

The	margin-left,	margin-right,	margin-top,	and	margin-bottom	properties	all	accept	a
length	or	percentage	value	indicating	the	amount	of	space	to	reserve	around	the
element.	In	addition,	the	keyword	auto	tells	the	styles-conscious	browser	to	revert
to	the	margins	it	normally	would	place	around	an	element.	Percentage	values	are
computed	as	a	percentage	of	the	containing	element's	width.	The	default	margin,
if	not	specified,	is	0.

These	are	all	valid	margin	settings:

body	{margin-left:	1in;	margin-top:	0.5in;	margin-right:	1in}
p	{margin-left:	-0.5cm}
img	{margin-left:	10%}

	
The	first	example	creates	1-inch	margins	down	the	right	and	left	edges	of	the
entire	document	and	a	0.5-inch	margin	across	the	top	of	the	document.	The
second	example	shifts	the	left	edge	of	the	<p>	tag	0.5	centimeters	left,	into	the	left
margin.	The	last	example	creates	a	margin	to	the	left	of	the		tag	equal	to	10
percent	of	the	parent	element's	width.

As	you	can	the	shorthand	border	property,	you	can	use	the	shorthand	margin

property	to	define	all	four	margins,	using	from	one	to	four	values,	which	affect
the	margins	in	the	order	described	in	Table	8-1.	Using	this	notation,	our	<body>
margins	in	the	previous	example	could	also	have	been	specified	as:

body	{margin:	0.5in	1in}

	
The	margin-left	and	margin-right	properties	interact	with	the	width	property	to
determine	the	total	width	of	an	element,	as	described	earlier	in	section	8.4.7.1.

All	the	popular	browsers	support	the	margin	properties	and	values.

8.4.7.12.	The	padding	properties

Like	the	margin	properties,	the	various	padding	properties	let	you	control	the
padding	space	around	an	element,	between	the	element's	content	area	and	its
border	(see	Figure	8-14,	earlier	in	the	chapter).

Padding	always	is	rendered	using	the	background	color	or	image	of	the	element.
As	a	result,	you	can	specify	only	the	size	of	the	padding;	it	has	no	color	or
rendered	style.

The	padding-left,	padding-right,	padding-top,	and	padding-bottom	properties	all	accept	a
length	or	percentage	value	indicating	the	amount	of	space	the	styles-conscious
browser	should	reserve	around	the	element.	Percentage	values	are	computed	as	a
percentage	of	the	containing	element's	width.	Padding	can	never	be	negative.	The
default	padding	is	0.

These	are	valid	padding	settings:

p	{padding-left:	0.5cm}
img	{padding-left:	10%}

	
The	first	example	creates	0.5	centimeters	of	padding	between	the	contents	of	the
<p>	tag	and	its	left	border.	The	second	example	creates	padding	to	the	left	of	the
	tag	equal	to	10	percent	of	the	parent	element's	width.

Like	the	shorthand	margin	and	border	properties,	you	can	use	the	shorthand	padding
property	to	define	all	four	padding	amounts,	using	from	one	to	four	values	to
affect	the	padding	sides	as	described	in	Table	8-1.	Internet	Explorer	does	not
support	the	padding	property,	but	all	the	other	popular	browsers	do.

8.4.7.13.	The	overflow	property

The	overflow	property	tells	the	browser	how	to	handle	content	that	overflows	the
display	area	of	an	element.	The	default	value	of	this	property,	visible,	tells	the
browser	to	render	all	content,	making	it	visible	even	if	it	falls	outside	of	the
element's	display	area.

Erring	on	the	side	of	caution,	you	most	often	want	the	browser	to	display	all	of
your	document's	contents.	But	in	rare	cases,	elements	may	overlap,	creating	an
ugly	display.	To	prevent	such	mishaps,	set	the	overflow	property	to	either	hidden,
scroll,	or	auto.

The	hidden	value	forces	the	browser	to	hide	all	content	that	overflows	its	allotted
space,	making	it	invisible	to	the	user.	The	value	scroll	creates	scroll	bars	for	the
element,	which	viewers	may	use	to	see	the	hidden	content.	However,	scroll	bars
are	added	to	the	element	even	if	the	content	does	not	overflow.

Adding	permanent	scroll	bars	ensures	that	the	scroll	bars	do	not	come	and	go	as
the	content	of	the	element	changes	in	size	in	a	dynamic	document.	The	downside
to	this	is	the	clutter	and	distractions	that	scroll	bars	create.	Avoid	all	this	with	the
auto	value	for	the	overflow	property.	When	on	auto,	scroll	bars	appear	only	when
they	are	needed.	If	the	element's	content	changes	so	that	it	is	not	clipped,	the
scroll	bars	are	removed	from	the	element.

None	of	the	currently	popular	browsers	supports	the	overflow	property.

8.4.7.14.	The	position	properties

Without	intervention,	the	browser	flows	document	elements	together,	positioned
sequentially	through	the	display.	You	can	change	this	standard	behavior	with	the
CSS2	position	property,	in	conjunction	with	the	top,	bottom,	left,	and	right
properties.

If	the	position	property	is	set	to	static,	conventional	HTML/XHTML	layout	and
positioning	rules	apply,	with	the	left	and	top	edges	of	the	element's	box
determined	by	the	browser.	To	shift	an	element	with	respect	to	its	containing	flow,
set	the	position	property	to	relative.	In	this	case,	the	top,	bottom,	left,	and	right
properties	are	used	to	compute	the	box	position	relative	to	its	normal	position	in
the	flow.	Subsequent	elements	are	not	affected	by	this	position	change	and	are
placed	in	the	flow	as	though	this	element	had	not	been	shifted.

Setting	the	position	property	to	absolute	removes	the	element	from	the	containing
flow,	allowing	subsequent	elements	to	move	up	accordingly.	The	position	of	the
element	is	then	computed	relative	to	the	containing	block,	using	the	top,	bottom,

left,	and	right	properties.	This	type	of	positioning	allows	an	element	to	be	placed
in	a	fixed	position	with	respect	to	its	containing	element	but	to	move	as	that
containing	element	moves.

Finally,	setting	the	position	property	to	fixed	positions	an	element	with	respect	to
the	window	or	page	in	which	it	is	displayed.	Like	absolute	positioning,	the	element
is	removed	from	the	containing	flow,	with	other	elements	shifting	accordingly.	The
top,	bottom,	left,	and	right	properties	are	used	to	set	the	element's	position	with
respect	to	the	containing	window	or	page.	Note	that	for	continuous	media	(such
as	a	scrolling	browser	display),	the	element	is	displayed	once	at	the	desired
position.	For	printed	media,	the	element	is	printed	on	each	page	at	the	desired
position.	You	might	used	fixed	positioning	to	place	headers	and	footers	at	the	top
and	bottom	of	the	browser	window	or	at	the	top	and	bottom	of	each	printed	page.

The	top,	bottom,	left,	and	right	properties	each	accept	a	length	or	percentage
value.	When	the	position	attribute	is	set	to	relative,	the	percentage	is	based	on	the
size	of	the	element's	box.	When	position	is	set	to	absolute	or	fixed,	the	percentage
is	based	on	the	size	of	the	containing	element's	box.	When	length	values	are
used,	they	specify	offsets	from	the	corresponding	edge	of	the	element's	containing
box.	For	example,	to	position	an	element	such	that	its	bottom	is	1	centimeter
above	the	bottom	of	the	browser	window	(or	each	printed	page),	you	would	set
the	position	property	to	fixed	and	the	bottom	property	to	1cm.

8.4.7.15.	The	visibility	property

The	visibility	property	determines	whether	the	contents	of	an	element	are	visible
in	the	display.	The	space	set	aside	for	the	element	is	still	created	and	affects	the
layout	of	the	document,	but	the	content	of	the	element	may	be	made	invisible
within	that	space.

The	default	value	for	this	property,	visible,	causes	the	element's	content	to	be
displayed.	Setting	this	property	to	hidden	makes	the	content	invisible	without
removing	the	element's	display	box,	altering	the	layout	of	the	document.	Note
that	you	can	remove	an	element's	content	and	display	box	from	the	document	by
setting	the	display	property	to	none.

This	property	is	often	used	in	dynamic	documents,	where	changing	its	value	for
an	element	removes	its	content	from	the	display	without	reformatting	the
document.

When	this	property	is	used	in	conjunction	with	table	rows,	row	groups,	columns,
and	column	groups,	you	may	also	specify	the	value	collapse.	Used	in	this	context,
the	collapse	value	removes	the	associated	row(s)	or	column(s)	from	the	table
without	otherwise	reformatting	or	redrawing	the	table.	Within	dynamic

documents,	this	lets	you	remove	elements	from	a	table	without	reformatting	the
entire	table.	Used	outside	of	a	table,	the	collapse	value	has	the	same	effect	as	the
hidden	value.

8.4.7.16.	The	width	property

The	width	property	is	the	companion	to	the	height	property	and	controls	the	width
of	an	associated	tag.	Specifically,	it	defines	the	width	of	the	element's	content
area,	as	shown	in	Figure	8-8.	You'll	see	it	most	often	used	with	images	and	tables,
but	you	could	conceivably	use	it	to	control	the	width	of	other	elements	as	well.

The	value	for	the	width	property	is	either	a	length	or	percentage	value,	or	the
keyword	auto.	The	value	auto	is	the	default	and	implies	that	the	affected	tag	has	an
initial	width	that	should	be	used	when	displaying	the	tag.	If	a	length	value	is
used,	the	width	is	set	to	that	value;	percentage	values	compute	the	width	to	be	a
percentage	of	the	width	of	the	containing	element.	For	example:

img	{width:	100px}

	
displays	the	image	referenced	by	the		tag	scaled	to	100	pixels	wide.

When	scaling	elements	to	a	specific	width,	the	aspect	ratio	of	the	object	is
preserved	if	the	height	property	of	the	tag	is	set	to	auto.	Thus:

img	{width:	100px;	height:	auto}

	
makes	all	the	images	100	pixels	wide	and	scales	their	heights	appropriately.	[The
height	property,	8.4.7.10]

If	you	want	to	constrain	the	width	of	an	element	to	a	range	rather	than	a	specific
value,	use	the	min-width	and	max-width	properties.	These	properties	accept	values
like	the	width	property	and	establish	a	range	for	the	width	of	the	element.	The
browser	then	adjusts	the	width	of	the	element	to	fall	within	the	desired	range.

The	width	property	interacts	with	the	margin-left	and	margin-right	properties	to
determine	the	total	width	of	an	element,	as	described	earlier	in	section	8.4.7.1.

8.4.7.17.	The	z-index	property

In	addition	to	the	x	and	y	positions	of	an	element	within	the	browser	window	or

on	the	printed	page,	each	element	has	a	vertical,	or	z,	position.	Elements	with
higher	z	positions	are	"closer"	to	the	viewer	and	obscure	elements	underneath
them.

Z	positions	are	not	absolute	throughout	a	document.	Instead,	z	positions	are
relative	to	the	containing	element.	For	example,	two	<div>	elements	within	a
document	might	be	positioned	to	lie	on	top	of	one	another.	The	first	<div>	might
have	a	z	position	of	1,	and	the	second	might	have	a	z	position	of	2.	The	entire
contents	of	the	second	<div>	are	displayed	over	(or	in	front	of)	the	first	<div>.	If
elements	within	the	first	<div>	have	z	positions	of	3	or	4,	they	are	still	displayed
within	their	containing	<div>s	and	do	not	"jump	out"	in	front	of	the	second	<div>.

You	control	the	z	position	of	an	element	with	the	z-index	property.	The	value	of	the
z-index	property	is	a	positive	integer	that	sets	the	z	position	of	the	element	with
respect	to	its	containing	element.	With	the	z-index	property,	you	can	dynamically
alter	the	z	position	of	an	element	to	make	it	visible,	or	position	a	text	element	in
front	of	an	image	to	label	items	of	interest.

8.4.8.	List	Properties

The	CSS2	standard	also	lets	you	control	the	appearance	of	list
elementsspecifically,	ordered	and	unordered	lists.	Browsers	format	list	items	just
like	any	other	block	item,	except	that	the	block	has	some	sort	of	marker
preceding	the	contents.	For	unordered	lists,	the	marker	is	a	bullet	of	some	sort;
for	numbered	lists,	the	marker	is	a	numeric	or	alphabetic	character	or	symbol.
The	CSS2	list	properties	let	you	control	the	appearance	and	position	of	the
marker	associated	with	a	list	item.

8.4.8.1.	The	list-style-image	property

The	list-style-image	property	defines	the	image	that	the	browser	uses	to	mark	a
list	item.	The	value	of	this	property	is	the	URL	of	an	image	file	or	the	keyword
none.	The	default	value	is	none.

The	image	is	the	preferred	list	marker.	If	it	is	available,	the	browser	displays	it	in
place	of	any	other	defined	marker.	If	the	image	is	unavailable,	or	if	the	user	has
disabled	image	loading,	the	browser	uses	the	marker	defined	by	the	list-style-type
property	(see	section	8.4.8.3,	later	in	this	chapter).

HTML/XHTML	authors	use	the	list-style-image	property	to	define	custom	bullets	for
their	unordered	lists.	While	you	conceivably	could	use	any	image	as	a	bullet,	we
recommend	that	you	keep	your	marker	GIF	or	JPEG	images	small,	to	ensure
attractively	rendered	lists.

For	example,	by	placing	the	desired	bullet	image	in	the	file	mybullet.gif	on	your
server,	you	could	use	that	image:

li	{list-style-image:	url(pics/mybullet.gif);	list-style-type:	square}

	
In	this	case,	the	browser	uses	the	image	if	it	is	able	to	successfully	download
mybullet.gif.	Otherwise,	the	browser	uses	a	conventional	square	bullet.

All	the	popular	browsers	support	the	list-style-image	property,	as	shown	in	Figure
8-18.

Figure	8-18.	The	list-style-image	property	lets	you	use	your	own
bullets

	

8.4.8.2.	The	list-style-position	property

There	are	two	ways	to	position	the	marker	associated	with	a	list	item:	inside	the
block	associated	with	the	item	or	outside	the	block.	Accordingly,	the	list-style-
position	property	accepts	one	of	two	values:	inside	or	outside.

The	default	value	is	outside,	meaning	that	the	item	marker	hangs	to	the	left	of	the
item,	like	this:

•This	is	a	bulleted	
	
	list
	with	an	"outside"	marker

	
The	value	inside	causes	the	marker	to	be	drawn	with	the	list	item	flowing	around
it,	much	like	a	floating	image:

•This	is	a	bulleted	list
	with	an	"inside"	marker

	
Notice	that	the	second	line	of	text	is	not	indented	but	instead	lines	up	with	the
left	edge	of	the	marker.

The	current	versions	of	the	popular	browsers	fully	support	the	list-style-position
property.

8.4.8.3.	The	list-style-type	property

The	list-style-type	property	serves	double	duty	in	a	sense,	determining	how	a
styles-conscious	browser	renders	both	ordered	and	unordered	list	items.	The
property	has	the	same	effect	as	the	type	attribute	on	a	list	item.	[The	type
attribute,	6.7.2.4]

When	applied	to	items	within	an	unordered	list,	the	list-style-type	property	uses
one	of	four	valuesdisc,	circle,	square,	or	noneand	marks	the	unordered	list	items
with	a	corresponding	dingbat.	The	default	value	of	a	level-1	list	item	is	disc,
although	browsers	change	that	default	depending	on	the	nesting	level	of	the	list.

When	applied	to	items	within	an	ordered	list,	the	list-style-type	property	uses	one
of	six	valuesdecimal,	lower-roman,	upper-roman,	lower-alpha,	upper-alpha,	or
nonecorresponding	to	the	item	numbers	expressed	as	decimal	values,	lowercase
Roman	numerals,	uppercase	Roman	numerals,	lowercase	letters,	uppercase
letters,	or	with	no	style,	respectively.	Most	browsers	use	decimal	numbering	as
the	default.

The	popular	browsers	support	list-style-type	as	well	as	the	list-style	property
described	in	the	next	section.

8.4.8.4.	The	list-style	property

The	list-style	property	is	the	shorthand	version	for	all	the	other	list-style
properties.	It	accepts	any	or	all	of	the	values	allowed	for	the	list-style-type,	list-
style-position,	and	list-style-image	properties,	in	any	order	and	with	values
appropriate	for	the	type	of	list	they	are	to	affect.	These	are	valid	list-style
properties:

li	{list-style:	disc}
li	{list-style:	lower-roman	inside}
li	{list-style:	url(http://www.kumquat.com/images/tiny-quat.gif)	square}

	
The	first	example	creates	list	items	that	use	a	disc	as	the	bullet	image.	The
second	causes	numbered	list	items	to	use	lowercase	Roman	numerals,	drawn
inside	the	list	item's	block.	In	the	last	example,	the	styles-conscious	browser	uses
a	square	as	the	bullet	image	if	the	referenced	image	is	unavailable.

8.4.8.5.	Using	list	properties	effectively

Although	you	can	apply	list	properties	to	any	element,	they	affect	only	the
appearance	of	elements	whose	display	property	is	set	to	list-item.	Normally,	the
only	tag	with	this	property	is	the		tag.

However,	this	shouldn't	deter	you	from	using	these	properties	elsewhere,
particularly	with	the		and		tags.	Because	these	properties	are	inherited	by
elements	whose	parents	have	them	set,	modifying	a	list	property	for	the		and
	tags	subsequently	modifies	it	for	all	the		tags	contained	within	that	list.
This	makes	it	much	easier	to	define	lists	with	a	particular	appearance.

For	example,	suppose	you	want	to	create	a	list	style	that	uses	lowercase	Roman
numerals.	One	way	is	to	define	a	class	of	the		tag	with	the	appropriate	list-
style-type	defined:

li.roman	{list-style-type:	lower-roman}

	
Within	your	list,	you'll	need	to	specify	each	list	element	using	that	class:

		<li	class=roman>Item	one
		<li	class=roman>Item	two
		<li	class=roman>And	so	forth

	
Having	to	repeat	the	class	name	is	tedious	and	error-prone.	A	better	solution	is	to
define	a	class	of	the		tag:

ol.roman	{list-style-type:	lower-roman}

	
Any		tag	within	the	list	inherits	the	property	and	uses	lowercase	Roman
numerals:

<ol	class=roman>
		Item	one
		Item	two
		And	so	forth

	
This	is	much	easier	to	understand	and	manage.	If	you	want	to	change	the
numbering	style	later,	you	need	only	change	the		tag	properties,	instead	of
finding	and	changing	each	instance	of	the		tag	in	the	list.

You	can	use	these	properties	in	a	much	more	global	sense,	too.	Setting	a	list
property	on	the	<body>	tag	changes	the	appearance	of	all	lists	in	the	document;
setting	it	on	a	<div>	tag	changes	all	the	lists	within	that	division.

8.4.9.	Table	Properties

For	the	most	part,	HTML/XHTML	browsers	render	table	content	using	the	same
properties	that	control	the	rendering	of	conventional	document	content.	However,
a	few	special	circumstances	occur	only	within	tables.	To	give	authors	greater
control	over	these	items,	CSS2	has	added	a	few	table-specific	properties.	The
popular	browsers	do	not	yet	support	any	of	them.

8.4.9.1.	The	border-collapse,	border-spacing,	and	empty-cells	properties

There	are	two	divergent	views	regarding	cell	borders	within	tables.	The	first	view
holds	that	each	cell	is	an	independent	entity	with	unique	borders.	The	second
view	holds	that	adjacent	cells	share	the	border	side	and	that	changing	a	border	in
one	cell	should	affect	the	neighboring	cell.

To	give	the	most	control	to	authors,	CSS2	provides	the	border-collapse	property,
which	lets	you	choose	the	model	that	suits	your	style.	By	default,	the	value	of	this
property	is	collapse,	meaning	adjacent	cells	share	their	border	style.	Alternatively,
you	can	set	the	border-collapse	property	to	separate,	which	enlarges	the	table	so	that
borders	are	rendered	separately	and	distinctly	around	each	cell.

If	you	choose	the	separate	model,	you	can	also	use	the	border-spacing	property	to	set
the	spacing	between	adjacent	borders.	The	default	border	spacing	is	0,	meaning
that	adjacent	cell	borders	touch	each	other,	although	some	browsers	may	use	a
different	default.	By	increasing	this	value,	you	cause	the	browser	to	insert
additional	space	between	borders,	allowing	the	background	color	or	image	of	the
table	to	show	through.	If	you	specify	just	one	value	for	border-spacing,	it	sets	the
spacing	for	both	horizontal	and	vertical	borders.	If	you	provide	two	values,	the
first	sets	the	horizontal	spacing	and	the	second	determines	the	vertical	spacing.

Within	the	separate	model,	you	can	also	control	how	borders	are	drawn	around
empty	cells.	By	default,	borders	are	drawn	around	every	cell	in	a	table,	even	if	it
has	no	content.	You	can	change	this	by	switching	the	empty-cells	property	from	its
default	value	of	show	to	the	value	hide.	When	this	property	is	set,	empty	cells
simply	show	the	table	background.	If	a	whole	row	of	cells	is	empty,	the	browser
removes	the	row	from	the	table	entirely.

8.4.9.2.	The	caption-side	property

Use	the	caption-side	property	only	with	the	<caption>	element.	It	accepts	values	of
top	(default),	bottom,	left,	or	right,	and	tells	the	browser	where	to	place	the	caption
adjacent	to	its	associated	table.	The	caption-side	property	provides	a	more
consistent	method	of	placing	the	caption	than	the	browser-dependent	and
standards-deprecated	align	attribute	of	the	<caption>	tag.

All	of	the	popular	browsers,	except	Internet	Explorer,	support	caption-side.

8.4.9.3.	The	speak-header	property

An	audio-capable	browser	might	offer	a	number	of	ways	for	users	to	navigate	by
hearing	the	contents	of	a	table.	A	simplistic	approach	would	have	the	browser
read	the	table	contents	in	order,	from	top	to	bottom	and	right	to	left.	A	more
sophisticated	audio	browser	organizes	the	table	contents	according	to	their
respective	headers	and	reads	the	information	in	a	more	comprehensible	manner.
To	avoid	confusion	in	any	case,	the	browser	must	provide	some	way	to	tell	the
user	which	cell	it	is	reading.

The	speak-header	property	provides	two	ways	for	a	browser	to	identify	a	cell	or

collection	of	cells	in	the	table.	If	once	(the	default)	is	specified,	the	browser	reads
the	contents	of	a	header	cell	only	once	before	proceeding	to	read	the	contents	of
each	associated	data	cell.	This	way,	a	user	moving	across	a	row	of	cells	would
hear	the	row	header	and	column	header	of	the	first	cell	in	the	row,	but	would
hear	the	changing	column	headers	only	as	she	moved	to	subsequent	cells	in	the
row.

If	you	set	the	speak-header	property	to	always,	the	browser	prefaces	the	reading	of
each	cell's	contents	with	a	reading	of	its	associated	header.	This	may	prove	more
useful	with	complex	tables	or	where	the	header	values	make	it	easier	to
understand	the	table	contentsespecially	when	a	table	contains	only	numbers.

Note	that	headers	are	spoken	only	when	the	browser	knows	which	header	cells
are	associated	with	which	data	cells.	Conscientious	authors	always	use	the	header
attribute	with	their	table	cells,	to	specify	the	header	cells	related	to	each	data	cell
in	their	tables.

8.4.9.4.	The	table-layout	property

Table	layout	is	a	tough	task	for	any	browser.	To	create	an	attractive	table,	the
browser	must	find	the	widest	cell	in	each	column,	adjust	that	column	to
accommodate	the	width,	and	then	adjust	the	overall	table	to	accommodate	all	of
its	columns.	For	large	tables,	document	rendering	can	be	noticeably	slowed	as	the
browser	makes	several	passes	over	the	table,	trying	to	get	things	just	right.

To	help	in	this	process,	use	the	table-layout	property.	If	you	set	the	property	to
fixed,	the	browser	determines	column	widths	based	on	the	widths	of	cells	in	the
first	row	of	the	table.	If	you	explicitly	set	the	column	widths,	setting	the	table's
table-layout	property	to	fixed	makes	the	table-rendering	process	even	faster,
enhancing	the	readers'	experience	as	they	view	your	document.

By	default,	the	table-layout	property	is	set	to	auto,	which	forces	the	browser	to	use
the	more	time-consuming,	multiple-pass	layout	algorithm,	even	if	you	specify	the
widths	of	your	columns	in	the	table.	If	your	table	content	is	variable	and	you
cannot	explicitly	set	the	widths,	leave	the	table-layout	property	set	to	auto.	If	you
can	fix	your	column	widths	and	your	table	content	is	amenable,	set	table-layout	to
fixed.

8.4.10.	Classification	Properties

Classification	properties	are	the	most	fundamental	of	the	CSS2	style	properties.
They	do	not	directly	control	how	a	styles-conscious	browser	renders	HTML	or
XHTML	elements.	Instead,	they	tell	the	browser	how	to	classify	and	handle

various	tags	and	their	contents	as	they	are	encountered.

For	the	most	part,	you	should	not	set	these	properties	on	an	element	unless	you
are	trying	to	achieve	a	specific	effect.

8.4.10.1.	The	display	property

Every	element	in	an	HTML	or	XHTML	document	can	be	classified,	for	display
purposes,	as	a	block	item,	an	inline	item,	or	a	list	item.	Block	elements,	like
headings,	paragraphs,	tables,	and	lists,	are	formatted	as	separate	blocks	of	text,
separate	from	their	previous	and	following	block	items.	Inline	items,	like	the
physical	and	content-based	style	tags	and	hyperlink	anchors,	are	rendered	within
the	current	line	of	text	within	a	containing	block.	List	items,	specifically	-
tagged	content,	are	rendered	like	block	items,	with	a	preceding	bullet	or	number
known	as	a	marker.

The	display	property	lets	you	change	an	element's	display	type	to	block,	inline,
list-item,	or	none.	The	first	three	values	change	the	element's	classification
accordingly;	the	value	none	turns	off	the	element,	preventing	it	and	its	children
from	being	displayed	in	the	document.

Conceivably,	you	could	wreak	all	sorts	of	havoc	by	switching	element
classifications,	forcing	paragraphs	to	be	displayed	as	list	items	and	converting
hyperlinks	to	block	elements.	In	practice,	this	is	just	puerile	monkey	business,
and	we	don't	recommend	that	you	change	element	classifications	without	a	very
good	reason	to	do	so.

All	the	popular	browsers	support	this	property,	but	Internet	Explorer	supports	only
the	block	and	none	values.

8.4.10.2.	The	white-space	property

The	white-space	property	defines	how	the	styles-conscious	browser	treats
whitespace	(tabs,	spaces,	and	carriage	returns)	within	a	block	tag.	The	keyword
value	normalthe	defaultcollapses	whitespace	so	that	one	or	more	spaces,	tabs,	and
carriage	returns	are	treated	as	a	single	space	between	words.	The	value	pre
emulates	the	<pre>	tag,	in	that	the	browser	retains	and	displays	all	spaces,	tabs,
and	carriage	returns.	Finally,	the	nowrap	value	tells	the	browser	to	ignore	carriage
returns	and	not	insert	automatic	line	breaks;	all	line	breaking	must	be	done	with
explicit	
	tags.

Like	the	display	property,	the	white-space	property	is	rarely	used	for	good	purposes.
Don't	change	how	elements	handle	whitespace	without	a	compelling	reason	for

doing	so.

Internet	Explorer	only	supports	the	nowrap	value,	and	the	other	popular	browsers
support	both	pre	and	nowrap	values	for	the	white-space	property.

8.4.11.	Generated	Content	Properties

The	idea	of	generated	content	is	not	new	to	HTML.	Even	the	earliest	browsers
automatically	appended	appropriate	bullets	or	numbers	to	enhance	the	readability
of	your	unordered	and	ordered	list	items.	Such	features	are	hardly	enough,
though,	and	authors	have	wished	for	better	content-generation	tools	in	HTML.
CSS2	finally	comes	through,	giving	authors	the	ability	to	create	arbitrary	content,
numbered	lists,	and	all	sorts	of	element-based	content.

The	foundation	of	the	CSS2	generated-content	model	is	the	content	and	quotes
properties,	along	with	the	:before	and	:after	pseudoelements.	You	use	the	former
to	define	the	content	you	need,	and	use	the	latter	to	position	that	content	with
respect	to	the	elements	in	your	document.

8.4.11.1.	The	:before	and	:after	pseudoelements

We	introduced	you	to	pseudoelements	earlier	in	this	chapter,	and	you	even	saw
some	in	action	(refer	to	Figures	8-2	and	8-3).	The	:before	and	:after
pseudoelements	operate	similarly.	Append	either	to	a	style-element	selector	to
select	and	specify	the	content	and	properties	of	generated	content	in	your
document.	In	general,	any	content	created	within	these	pseudoelements	inherits
the	display	attributes	of	the	parent	element,	such	that	fonts,	sizes,	and	colors
applied	to	an	element	are	also	applied	to	its	generated	content.	For	example:

p.note	{	color	:	blue	}
p.note:before	{	content	:	"Note:	"	}

	
This	style	example	inserts	the	word	Note:	before	every	<p	class=note>	element.	The
inserted	text	is	rendered	in	blue,	like	the	rest	of	the	paragraph.	Replacing	it	with
this	style	would	color	the	inserted	text	red,	and	the	remainder	of	the	note	would
be	blue:

p.note:before	{content	:	"Note:	";	color	:	red}

	

Any	generated	content,	before	or	after	an	element,	is	included	in	the	box	of	an
element	and	affects	its	formatting,	flow,	size,	and	layout.

8.4.11.2.	The	content	property

The	content	property	accepts	a	wide	variety	of	values,	ranging	from	simple	strings
to	automatic	counter	references.	You	can	include	any	number	of	these	values,
separated	by	spaces,	in	a	single	content	property.	The	browser	concatenates	the
values	to	form	a	single	value	that	it	then	inserts	into	the	document.

The	simplest	of	content	values	is	a	quote-enclosed	string.	You	may	not	include
HTML	or	XHTML	markup	in	the	string.	Rather,	use	escape	sequences	to	generate
special	text	(e.g.,	\A,	which	generates	a	line	break).

CSS2	escape	sequences	are	like	HTML/XHTML	character	entities.	Whereas
character	entities	begin	with	the	ampersand	(&),	followed	by	the	name	or	decimal
value	of	a	character	(#	suffix	for	the	latter),	you	create	the	same	characters	for
CSS2	string-content	property	values	by	preceding	the	hexadecimal	equivalent	of
the	character	with	a	backslash	(\).	The	escape	sequence	\A	is	the	same	as	the
character	entity	
,	which,	if	you	consult	Appendix	F,	you'll	find	is	the	line-feed
character.

The	content	property	also	accepts	URL	values.	Expressed	in	styles,	not	HTML-like
fashion,	the	URL	may	point	to	any	object	acceptable	to	the	browser,	including
text,	images,	and	sound	files.	For	example,	to	place	a	decorative	symbol	next	to
each	equation	in	a	document,	you	might	use:

p.equation:before	{	content	:	url("http://www.kumquat.com/decorative-symbol.jpg")	}

	
Keep	in	mind	that	the	object	shouldn't	contain	HTML/XHTML	markup	because	the
browser	inserts	its	contents	verbatim	into	the	document.

The	content	property	also	supports	automatic	generation	of	contextually	correct,
locale-specific	quotation	marks.	You	insert	them	using	the	open-quote	and	close-quote
keywords.	These	keywords	insert	the	appropriate	quotation	mark	and	increment
or	decrement,	respectively,	the	browser's	nested	quotation	counter.	You	can
control	the	appearance	of	the	quotation	marks	using	the	quotes	property,	described
shortly.	You	may	also	use	the	no-open-quote	and	no-close-quote	keywords,	which
increment	or	decrement	the	nesting	depth	without	inserting	a	quotation	mark.

A	clever	feature	of	the	content	property	is	its	ability	to	have	the	browser	render
the	value	of	any	attribute	of	its	associated	element.	The	attr	value	has	a	single
parameter,	corresponding	to	the	name	of	an	attribute.	If	that	attribute	is	defined

for	the	element,	its	value	is	inserted	into	the	document.	To	display	the	URL	of	an
image	after	the	image,	for	instance,	you	might	write:

img:after	{	content	:	"("attr(src)	")	"	}

	
If	the	attribute	is	not	defined	for	the	element,	no	content	gets	inserted,	although
the	other	values	for	the	content	property	(like	the	parentheses	we	included	in	the
earlier	example)	would	still	be	inserted.

One	of	the	most	powerful	features	of	the	content	property	is	its	ability	to	create
numbered	lists.	We	cover	this	in	detail	in	the	upcoming	section,	8.4.11.4.

All	the	popular	browsers	support	the	:before	and	:after	pseudoelements,	but
Internet	Explorer	does	not	support	the	content	property.

8.4.11.3.	Specifying	quotation	marks

While	you	insert	quotation	marks	using	the	open-quote	and	close-quote	values	with
the	content	property,	you	control	the	actual	characters	used	for	quotation	marks
with	the	quotes	property.

The	value	of	this	property	is	one	or	more	pairs	of	strings.	The	first	pair	defines	the
open	and	close	quotation	marks	for	the	outermost	level	of	quotations	in	your
document.	The	next	pair	specifies	the	next	level,	and	so	forth.	If	the	quotation
level	exceeds	the	supplied	pairs	of	characters,	the	browser	starts	over	with	the
outermost	pair.	Note	that	while	most	languages	use	single	characters	as	quotation
marks,	you	can	specify	strings	of	any	length	to	be	used	as	quotation	marks.

You	may	also	want	to	specify	alternative	quotation	marks	based	on	the	language
used.	You	can	use	the	:lang	pseudoelement	to	associate	different	quotes	properties
with	different	languages.	For	example:

q:lang(en)	{	quotes	:	'"'	'"'	"'"	"'"	}
q:lang(no)	{	quotes	:	" "	" "	"<"	">"	}

	
ensures	that	English	and	Norwegian	documents	use	their	respective	quotation
marks.

8.4.11.4.	Creating	counters

You	can	create	simple	numbered	lists	easily	in	HTML	and	XHTML	with	the	
element.	More	complex	numbered	lists,	especially	nested	numbered	lists,	are
impossible	with	the	markup	languages,	though.	Instead,	CSS2	provides	the	notion
of	a	counter	whose	value	can	be	set	and	changed	as	the	browser	renders	your
document.	Insert	the	value	of	the	counter	using	special	functions	recognized	by
the	content	property,	and	alter	the	appearance	and	format	of	the	counter	with
other	CSS2	properties.

Every	CSS2	counter	has	a	name.	To	create	a	counter,	simply	mention	its	name	in
the	counter-reset	or	counter-increment	properties	associated	with	any	element.	If	an
instance	of	that	named	counter	does	not	already	exist	in	the	current	document
nesting	level,	the	CSS2-conscious	browser	automatically	creates	it.	Thereafter,	set
or	reset	the	value	of	the	counter	as	needed.	For	example,	suppose	we	want	to	use
<h1>	elements	as	chapter	headings,	with	<h2>	elements	as	section	headings.	Both
chapters	and	sections	are	numbered,	with	section	headings	being	reset	with	each
new	chapter.	You	can	achieve	this	with:

h1:before	{	counter-increment	:	chapter;	counter-reset	:	section	}
h2:before	{	counter-increment	:	section	}

	
When	the	CSS2-conscious	browser	encounters	the	first	<h1>	element	in	the
document,	it	creates	both	the	chapter	and	section	counters	and	resets	their	values
to	0.	At	the	same	time,	and	for	every	encounter	thereafter,	the	CSS2-conscious
browser	enacts	the	counter-increment	property	to	set	the	chapter	counter	to	1,
representing	Chapter	1,	then	2,	and	so	on.	As	<h2>	elements	are	encountered
within	a	chapter,	the	section	counter	gets	incremented	according	to	the	h2	style
rule,	numbering	each	section	in	order.	Notice,	too,	that	the	section	counter	gets
reset	by	the	h1	rule	so	that	the	section	counter	restarts	for	each	chapter.[*]

[*]	Note	here	that	the	browser	doesn't	display	counters	unless	you	explicitly	tell	it	to.	See	"Using	counters	in	your
documents."

Both	the	counter-reset	and	counter-increment	properties	accept	lists	of	counter	names,
letting	you	reset	or	increment	groups	of	counters	in	one	property.	You	can	also
supply	a	numeric	value	after	a	counter	name	so	that	with	counter-reset,	the
counter	gets	initialized	to	that	specified	value,	and	counter-increment	adds	the	value
to	the	current	counter	value.	Negative	numbers	are	allowed,	too,	so	that	you	may
count	down,	if	desired.

For	example,	if	we	want	our	document	to	begin	with	Chapter	7	and	we	want
section	numbers	to	increase	by	2,	we	might	rewrite	the	previous	example	as
follows:

body	{	counter-reset	:	chapter	6	}
h1:before	{	counter-increment	:	chapter;	counter-reset	:	section	}
h2:before	{	counter-increment	:	section	2	}

	
Notice	how	we	created	the	chapter	counter	in	the	earliest	possible	element	in	our
document,	using	a	value	one	less	than	the	desired	first	value.	When	the	browser
encounters	the	first	<h1>	element,	it	creates,	sets	to	6,	and	then	increments	the
chapter	counter.

The	scope	of	a	counter	name	is	the	nesting	level	in	which	it	is	defined;	it	is	not
necessarily	document-wide.	If	you	use	the	same	counter	name	in	a	child	element,
the	browser	creates	a	new	instance	of	the	counter	at	that	level.	In	our	example,
all	the	<h1>	and	<h2>	elements	exist	at	the	same	nesting	level,	so	one	instance	of
the	chapter	and	section	counters	serves	that	whole	level.	If	you	nested	a	<div>	tag	in
that	element,	which	in	turn	contained	<h1>	and	<h2>	elements,	new	instances	of
both	counters	would	be	created	at	that	new	level.

This	nesting	behavior	is	critical	for	nested	numbered	lists	to	work.	If	you	associate
a	counter	with	the		element	and	then	nest	several	ordered	lists,	each	list	level
has	its	own	instance	of	the	counter,	with	separate	number	sequences	at	each
level.

8.4.11.5.	Using	counters	in	your	documents

Creating	counters	is	of	little	use	if	you	don't	display	their	values	in	your
documents.	The	display	is	not	automatic.	To	show	a	counter,	use	the	special
counter()	and	counters()	values	in	the	content	property.

The	counter()	value	requires	the	name	of	a	counter	inside	its	parentheses,	with	an
optional	format	specification.	The	browser	then	displays	the	value	of	the	specified
counter	within	the	generated	content	in	the	format	desired.	The	format	can	be
any	list	format	accepted	by	the	list-style-type	property,	as	described	earlier	in
section	8.4.8.3.

For	example,	to	actually	display	the	numbers	of	our	numbered	chapters	and
sections,	we	expand	our	style	rules	for	the	<h1>	and	<h2>	elements:

h1:before	{	counter-increment	:	chapter;
			counter-reset	:	section;
			content	:	"Chapter	"	counter(chapter)	":	"	}
h2:before	{	counter-increment	:	section;
			content	:	"Section	"	counter(section)	":	"}

	
Then,	when	the	CSS2-conscious	browser	encounters	this	in	the	document:

<h1>Kumquat	Growers</h1>

	
it	renders	it	as	shown	in	Figure	8-19.	To	number	our	chapters	using	Roman
numerals,	we	would	change	the	properties	to:

h1:before	{	counter-increment	:	chapter;
			counter-reset	:	section;
			content	:	"Chapter	"	counter(chapter,	upper-roman)	":	"	}
h2:before	{	counter-increment	:	section;
			content	:	"Section	"	counter(section,	lower-roman)	":	"}

	
The	counter()	value	is	the	value	of	the	counter	at	the	current	nesting	level.	To
access	all	the	values	of	the	same-named	counter	at	all	nesting	levels,	use	the
plural	counters()	value	instead.	Include	the	counter	name	in	the	parentheses	and
a	separator	string.	The	browser	puts	the	separator	string	between	each	list	of
values	for	the	counter	in	the	display.	You	may	also	supply	a	format	type	to	switch
from	the	default	decimal	numbering.

Figure	8-19.	Use	CSS2	counters	to	automatically	number
chapters	and	sections

	

The	counters()	value	is	most	useful	when	creating	nested	numbered	lists.	Consider
these	properties:

ol	{	counter-reset:	item	}
li:before	{	counter-increment:	item	;
			content:	counters(item,	".")	}

	
If	you	nest	several		elements	in	your	document,	each		includes	all	the
nested	values,	separated	by	periods.	This	should	create	the	familiar	numbering
pattern[*]	of	1,	1.1,	1.1.1,	and	so	on,	as	the	nesting	increases,	as	we
demonstrated	much	earlier	in	this	chapter	(refer	to	Figure	8-3).

[*]	Surely	you've	noticed	it	in	this	book!

Again,	only	the	newcomers	Firefox	and	Opera	properly	display	styles-generated
counters	and	content.

8.4.11.6.	Creating	markers

According	to	the	CSS2	standard,	the	browser	should	place	styles-generated
content	before	or	after	the	conventional	HTML/XHTML	content	of	the	affected
element,	and	it	should	therefore	become	part	of	the	element's	flow.	This	is	not
acceptable	for	numbered	lists,	where	the	number	should	be	displayed	separate
from	the	content	of	each	numbered	item.	To	do	this,	add	the	display	property	to
your	generated	content,	with	the	special	value	of	marker.	To	make	our	nested
numbered	list	example	completely	correct,	for	instance,	we	use	the	rules:

ul	{	counter-reset:	item	}
li:before	{	display	:	marker;
			counter-increment:	item	;
			content:	counters(item,	".")	}

	
This	way,	the	generated	counter	number	gets	rendered	to	the	left	of	the	element's
actual	content.	In	a	similar	fashion,	you	can	place	markers	after	an	element.	For
example,	use	the	following	properties	to	create	numbered	equations	within
chapters	(the	<blockquote>	element	delineates	the	equation):

h1:before	{	counter-increment	:	chapter;
			counter-reset	:	equation	}
blockquote:after	{	counter-increment	:	equation;

			display	:	marker;
			content	:	"("counter(chapter,	upper-roman)	"-"	counter(equation)	")"	}

	
When	rendering	a	marker,	the	browser	determines	where	to	place	the	marker
content	in	relation	to	the	element's	actual	content.	You	modify	this	behavior	with
the	marker-offset	property.	It	accepts	a	numerical	(length)	value	equal	to	the
distance	between	the	edge	of	the	marker	and	the	edge	of	the	associated	element.
For	example,	to	ensure	that	our	equation	numbers	get	shifted	0.5	inches	away
from	the	related	equation,	we	could	use:

h1:before	{	counter-increment	:	chapter;
			counter-reset	:	equation	}
blockquote:after	{	counter-increment	:	equation;
			display	:	marker;
			content	:	"("counter(chapter,	upper-roman)	"-"	counter(equation)	")";
			marker-offset	:	0.5in	}

	

8.4.12.	Audio	Properties

From	its	humble	beginnings,	HTML	has	been	a	visual	medium	for	computer	display
devices.	Although	increasing	attention	has	been	paid	to	other	media	as	the
standard	evolved,	CSS2	is	the	first	real	effort	to	comprehensively	address	using
HTML/XHTML	documents	for	nonvisual	media.

For	example,	CSS2	forecasts	that	someday	some	browsers	will	be	able	to	speak
the	textual	content	of	a	document,	using	some	sort	of	text-to-speech	technology.
Such	a	browser	would	be	of	enormous	help	for	the	visually	impaired	and	would
also	allow	web	browsing	via	the	phone	and	other	devices	where	a	visual	display	is
not	readily	available	or	usable.	Imagine	the	excitement	of	driving	down	the	road
while	your	favorite	web	pages	are	read	to	you![*]

[*]	Conversely,	imagine	the	annoyance	of	someone	having	web	pages	read	to	them	while	you	try	to	enjoy	a	quiet	meal	or
watch	a	movie.	We	are	constantly	reminded	that	every	advance	in	technology	has	a	dark	side.

CSS2	attempts	to	standardize	these	alternative	renderings	by	defining	a	number
of	properties	that	control	the	aural	experience	of	a	web	listener.	None	of	them	is
currently	supported	in	any	popular	browser,	but	we	envision	a	time	in	the	near
future	when	you	may	be	able	to	take	advantage	of	some	or	all	of	these	properties.

8.4.12.1.	The	volume	property

The	most	basic	aural	property	is	volume.	It	accepts	numeric	length	or	percentage
values	along	with	a	few	keywords	corresponding	to	preset	volume	levels.

Numeric	values	range	from	0	to	100,	with	0	corresponding	to	the	minimum
audible	level	and	100	being	the	maximum	comfortable	level.	Note	that	0	is	not
the	same	as	silent,	as	the	minimum	audible	level	in	an	environment	with	loud
background	noise	(like	a	factory	floor)	may	be	quite	high.

Percentage	values	compute	an	element's	volume	as	a	percentage	of	the
containing	element's	volume.	Computed	values	less	than	0	are	set	to	0;	values
greater	than	100	are	set	to	100.	Thus,	to	make	an	element	twice	as	loud	as	its
parent	element,	set	the	volume	property	to	200%.	If	the	volume	of	the	parent
element	is	75,	the	child	element's	volume	gets	set	to	the	limit	of	100.

You	also	may	specify	a	keyword	value	for	the	volume	property.	Here,	silent	actually
turns	the	sound	off.	The	x-soft	value	corresponds	to	a	value	of	0;	soft	is	the	same
as	the	numeric	volume	of	25;	medium	is	50,	loud	is	75,	and	x-loud	corresponds	to
100.

8.4.12.2.	Speaking	properties

Three	properties	control	whether	and	how	text	is	converted	to	speech.	The	first	is
speak,	which	turns	speech	on	and	off.	By	default,	the	value	of	speak	is	normal,
meaning	that	text	is	converted	to	speech	using	standard,	locale-specific	rules	for
pronunciation,	grammar,	and	inflection.	If	you	set	speak	to	none,	speech	is	turned
off.	You	might	use	this	feature	to	suppress	speaking	of	secondary	content	or
content	that	does	not	readily	translate	to	audio,	such	as	a	table.

Finally,	you	can	set	the	speak	property	to	spell-out,	which	spells	out	each	word.	This
is	useful	for	acronyms	and	abbreviations.	For	example,	using:

acronym	{	speak	:	spell-out	}

	
ensures	that	acronyms	such	as	URL	get	translated	aurally	as	"you-are-ell"	and	not
as	"earl."

By	default,	the	speak-punctuation	property	is	set	to	none,	causing	punctuation	to	be
expressed	as	pauses	and	inflection	in	the	generated	speech.	If	you	give	this
property	the	code	value,	punctuation	is	spoken	literally.	This	might	be	useful	for
aurally	reproducing	programming	code	fragments	or	literal	transcriptions	of	some

content.[*]

[*]	Regrettably,	there	is	no	victor-borge	mode	for	this	property.	Perhaps	CSS3	will	address	this	egregious	oversight.

The	speak-numeral	property	defaults	to	the	value	continuous,	meaning	that	numerals
are	pronounced	as	a	single	number.	Accordingly,	the	number	"1234"	would	be
reproduced	as	"one	thousand	two	hundred	thirty-four."	When	set	to	digits,	the
numbers	are	pronounced	digit	by	digit,	such	as	"one,	two,	three,	four."

8.4.12.3.	Voice	characteristics

To	create	a	richer	listening	experience,	CSS2	defines	a	number	of	properties	that
alter	the	spoken	content.	This	lets	you	use	different	voices	for	different	content,
speed	up	the	speech,	and	change	the	pitch	and	stress	levels	in	the	speech.

The	speech-rate	property	accepts	a	numeric	length	value	that	defines	the	number	of
words	spoken	per	minute.	The	default	value	is	locale	dependent	because	different
cultures	have	different	notions	of	a	"normal"	rate	of	speech.	Instead	of	a	specific
value,	you	may	use	any	of	the	keywords	x-slow,	slow,	medium,	fast,	and	x-fast,
corresponding	to	80,	120,	180,	300,	and	500	words	per	minute,	respectively.	The
faster	keyword	sets	the	rate	to	40	words	per	minute	faster	than	the	containing
element,	and	slower	sets	the	rate	to	40	words	per	minute	slower	than	the
containing	element.

The	voice-family	property	is	the	aural	analog	of	the	font-family	property.	A	voice
family	defines	a	style	and	type	of	speech.	Such	definitions	are	browser	and
platform	specific,	much	like	fonts.	It	is	assumed	that	browsers	will	define	generic
voice	families,	such	as	"male,"	"female,"	and	"child,"	and	may	also	offer	specific
voice	families	like	"television	announcer"	or	"book	author."	The	value	of	the	voice-
family	property	is	a	comma-separated	list	of	these	voice	family	names;	the
browser	goes	down	the	list	until	it	finds	a	voice	family	that	it	can	use	to	speak	the
element's	text.

The	pitch	property	controls	the	average	pitch,	with	units	in	hertz	(hz),	of	the
spoken	content.	The	basic	pitch	of	a	voice	is	defined	by	the	voice	family.	Altering
the	pitch	lets	you	create	a	variation	of	the	basic	voice,	much	like	changing	the
point	size	of	a	font.	For	example,	with	a	change	in	pitch,	the	"book	author"	might
be	made	to	sound	like	a	chipmunk.[*]

[*]	Assuming,	of	course,	that	she	doesn't	already	sound	like	a	chipmunk.

You	can	set	the	pitch	property	to	a	numeric	value	such	as	120hz	or	210hz	(the
average	pitches	of	typical	male	and	female	voices)	or	to	one	of	the	keywords	x-

low,	low,	medium,	high,	or	x-high.	Unlike	other	speech	property	keywords,	these	do
not	correspond	to	specific	pitch	frequencies	but	instead	depend	on	the	base	pitch
of	the	voice	family.	The	only	requirement	is	that	these	keywords	correspond	to
increasingly	lower	or	higher	pitches.

While	the	pitch	property	sets	the	average	pitch,	the	pitch-range	property	defines
how	far	the	pitch	can	change	as	the	browser	reproduces	text	aurally.	The	value	of
this	property	is	a	numeric	value	ranging	from	0	to	100,	with	a	default	value	of	50.
Setting	the	pitch-range	to	0	produces	a	flat,	monotonic	voice;	values	over	50
produce	increasingly	animated	and	excited-sounding	voices.

The	stress	property	controls	the	amount	of	inflection	that	is	placed	on	elements	in
the	spoken	text.	Various	languages	have	differing	rules	for	stressing	syllables	and
adding	inflection	based	on	grammar	and	pronunciation	rules.	The	stress	property
accepts	a	value	in	the	range	of	0	to	100,	with	the	default	value	of	50
corresponding	to	"normal"	stress.	Using	a	value	of	0	eliminates	inflection	in	the
spoken	content.	Values	over	50	increasingly	exaggerate	the	inflection	of	certain
spoken	elements.

The	richness	property	controls	the	quality	or	fullness	of	the	voice.	A	richer	voice
tends	to	fill	a	room	and	carries	farther	than	a	less	rich,	or	smoother,	voice.	Like
pitch	and	stress,	the	richness	property	accepts	a	numeric	value	in	the	range	of	0	to
100,	with	a	default	value	of	50.	Values	approaching	0	make	the	voice	softer.
Values	over	50	make	the	voice	fuller	and	more	booming.

8.4.12.4.	Pause	properties

Like	whitespace	in	a	printed	document,	insert	pauses	in	spoken	content	to	offset
and	thereby	draw	attention	to	content	as	well	as	to	create	a	better-paced,	more
understandable	spoken	presentation.

The	pause-before	and	pause-after	properties	generate	pauses	just	before	or	just	after
an	element's	spoken	content.	These	properties	accept	either	an	absolute	time
value	(using	the	s	or	ms	unit)	or	a	percentage	value.	With	a	percentage	value,	the
pause	is	relative	to	the	length	of	time	required	to	speak	a	single	word.	For
example,	if	the	speech	rate	is	120	words	per	minute,	one	word,	on	average,	is
spoken	every	0.5	seconds.	A	pause	of	100	percent,	therefore,	would	be	0.5
seconds	long;	a	20	percent	pause	would	be	0.1	seconds	long,	and	so	on.

The	pause	property	sets	both	the	pause-before	and	pause-after	properties	at	once.	Use
one	value	for	pause	to	set	both	properties;	the	first	of	two	values	sets	pause-before,
and	the	second	sets	the	pause-after	property	value.

8.4.12.5.	Cue	properties

Cue	properties	let	you	insert	audible	cues	before	or	after	an	element.	For
example,	you	might	precede	each	chapter	in	a	book	with	a	musical	cue,	or	denote
the	end	of	quoted	text	with	an	audible	tone.

The	cue-before	and	cue-after	properties	take	as	their	value	the	URL	of	a	sound	file,
which	the	browser	loads	and	plays	before	or	after	the	styled	document	element,
respectively.	Technically,	the	sound	can	be	of	any	duration,	but	the	presumption	is
that	audible	cues	are	short	and	nonintrusive,	enhancing	the	audio	experience
instead	of	overwhelming	it.

Use	the	cue	property	to	set	both	the	cue-before	and	cue-after	properties	at	once.	If
you	provide	one	URL	value,	it	sets	both	cue	sounds;	with	two	values,	the	first	sets
the	cue-before	sound	and	the	second	sets	the	cue-after	sound.

8.4.12.6.	Audio	mixing

To	create	a	more	pleasant	listening	experience,	you	may	want	to	play	background
music	during	a	spoken	passage.	The	play-during	property	meets	this	need.	Its
values	are	the	URL	of	the	sound	file	and	several	keywords	that	control	playback.

The	repeat	keyword	repeats	the	background	audio	until	the	spoken	content	is
complete.	If	you	don't	use	this	keyword,	the	background	sound	plays	once,	even	if
it	is	shorter	than	the	spoken	content.	A	background	sound	that	is	longer	than	the
spoken	content	ends	when	the	content	ends.

The	mix	keyword	tells	the	CSS2-conscious	browser	to	meld	the	background	sound
with	any	other	background	sounds	that	may	be	playing	as	defined	by	some	parent
element.	If	you	don't	use	this	keyword,	child-element	background	sounds	replace
parent-element	background	sounds,	which	resume	when	the	current	element	has
finished.

In	lieu	of	a	URL	representing	the	background	sound,	you	can	use	the	value	none.
This	lets	you	silence	all	background	sounds,	such	as	one	or	more	playing	from
parent	elements,	while	the	current	element	is	being	spoken.

8.4.12.7.	Spatial	positioning

While	a	rendered	document	exists	on	a	two-dimensional	page,	spoken	content	can
be	placed	anywhere	in	the	three-dimensional	space	surrounding	the	listener.	The
CSS2	standard	defines	the	azimuth	and	elevation	properties	so	that	you	can	place
spoken	content	from	elements	in	different	places	around	the	listener.	azimuth
relates	to	where	and	elevation	tells	how	far	above	or	below	the	sound	appears	to
the	listener.

The	azimuth	property	accepts	either	an	angle	value	or	keywords	indicating	a
position	around	the	listener.	The	position	directly	in	front	of	the	listener	is	defined
to	be	0	degrees.	The	listener's	right	is	at	90	degrees,	and	directly	behind	is	180
degrees.	The	listener's	left	is	at	270	degrees	or,	equivalently,	-90	degrees.

Position	keywords	include	a	base	position,	possibly	modified	by	the	behind	keyword.
These	keywords	correspond	to	the	angular	positions	listed	in	Table	8-2.

Table	8-2.	Angular	equivalents	for	azimuth	keywords

Keyword Angular	position Angular	position	when	used	with	behind

left-side 270 270

far-left 300 240

left 320 220

center-left 340 200

center 0 180

center-right 20 160

right 40 140

far-right 60 120

right-side 90 90

	
The	leftwards	keyword	subtracts	20	degrees	from	the	parent	element's	azimuth.
Similarly,	rightwards	adds	20	degrees	to	the	parent	element's	azimuth.	Note	that	this
process	can	continue	until	you	work	your	way	around	the	listener;	these	values
add	or	subtract	20	degrees	no	matter	what	the	azimuth	of	the	parent	is.

The	elevation	property	accepts	an	angular	value	ranging	from	-90	degrees	to	90
degrees,	corresponding	to	from	directly	below	the	listener	to	directly	above	the
listener.	Zero	degrees	is	considered	to	be	level	with	the	listener's	ears.	You	can
also	use	the	below,	level,	and	above	keywords	for	-90,	0,	and	90	degrees,
respectively.

Use	the	higher	keyword	to	increase	the	elevation	by	10	degrees	over	the	parent
element's	elevation;	lower	changes	the	elevation	of	the	sound	to	10	degrees	below
the	parent	element's	elevation.

8.4.13.	Paged	Media

Printing	has	never	been	HTML's	strong	suit.	In	fact,	the	HTML	and	XHTML
standards	have	intentionally	ignored	printing	because	printing	assumes	page
layout,	and	HTML	and	XHTML	are	not	layout	tools.

Authors	use	cascading	stylesheets	to	format	and	lay	out	their	HTML/XHTML
document	contents,	so	it	is	not	surprising	that	the	CSS2	standard	introduces	some
basic	pagination	control	features	that	let	authors	help	the	browser	figure	out	how
to	best	print	their	documents.	These	features	fall	into	two	groups:	those	that
define	a	particular	page	layout	and	those	that	control	the	pagination	of	a
document.

8.4.13.1.	Defining	pages

As	an	extension	to	the	box	model,	CSS2	defines	a	page	box,	a	box	of	finite
dimensions	in	which	content	is	rendered.	The	page	box	does	not	necessarily
correspond	to	a	physical	sheet	of	paper;	the	user	agent	maps	one	or	more	page
boxes	to	sheets	of	paper	during	the	printing	process.	Many	small	page	boxes	may
fit	on	a	single	sheet;	large	page	boxes	may	be	scaled	to	fit	on	a	sheet	or	may	be
broken	across	several	sheets	at	the	discretion	of	the	browser.

During	the	printing	process,	content	flows	into	the	page	box,	is	paginated
appropriately,	and	is	transferred	to	a	target	sheet	on	a	hard-copy	output	device.
The	dimensions	of	the	page	box	may	differ	from	the	browser's	display	window,	so
the	flow	and	rendering	of	a	printed	document	may	be	completely	different	from	its
onscreen	representation.	As	always,	obtaining	a	specific	rendered	appearance	for
your	documents	is	generally	impossible.	However,	you	can	use	the	CSS2
pagination	features	to	help	the	browser	print	your	document	in	an	attractive,
useful	manner.

You	define	a	page	box	using	the	special	@page	at-rule.	Immediately	following	the
@page	keyword	is	an	optional	name	for	the	page,	followed	by	a	list	of	properties
separated	by	semicolons	and	enclosed	in	curly	braces.	These	properties	define	the
size,	margins,	and	appearance	of	the	page	box.

Use	the	size	property	to	specify	the	size	of	the	page	box.	The	value	of	this
property	is	either	one	or	two	length	values,	or	one	of	the	special	keywords
portrait,	landscape,	or	auto.	If	you	provide	a	single	length	value,	it	creates	a	square,
setting	both	the	width	and	the	height	of	the	page	to	that	value.	Two	length	values
set	the	width	and	the	height	of	the	page,	respectively.	The	portrait	keyword
specifies	the	locally	accepted	page	size	that	is	taller	than	it	is	wide	(typically	8	x
11),	and	landscape	uses	a	locally	accepted	page	size	that	is	wider	than	it	is	tall

(typically	11	x	8	inches).	Finally,	auto	creates	a	page	box	that	is	the	same	size	as
the	target	sheet	of	paper	on	which	the	document	is	printed.

In	general,	you	should	use	the	special	page	size	keywords	to	ensure	that	your
document	prints	well	in	the	local	environment.	Using:

@page	normal	{	size	:	8.5in	11in	}

	
works	fine	in	the	U.S.	but	may	fail	in	European	locales.	Instead,	use:

@page	normal	{	size	:	portrait	}

	
which	should	select	an	8.5"	x	11"	page	in	the	U.S.	and	an	A4	sheet	in	Europe.[*]

[*]	The	word	normal	in	the	rule	is	the	page	name,	of	course.

Use	the	margin,	margin-top,	margin-bottom,	margin-left,	and	margin-right	properties
within	the	@page	at-rule	to	set	margins	for	your	page.	Keep	in	mind	that	the
browser	may	define	margins	for	rendering	the	page	box	within	the	target	sheet,
so	your	margins	are	in	addition	to	those	margins.	The	default	margins	for	the
page	box	are	not	defined	and	are	browser	dependent.

Finally,	the	marks	property	is	used	within	the	@page	at-rule	to	create	crop	and
registration	marks	outside	the	page	box	on	the	target	sheet.	By	default,	no	marks
are	printed.	You	may	use	one	or	both	of	the	crop	and	cross	keywords	to	create	crop
marks	and	registration	marks,	respectively,	on	the	target	print	page.

8.4.13.2.	Left,	right,	and	first	pages

In	many	printing	applications,	authors	want	different	page	layouts	for	the	first
page	of	their	document	as	well	as	differing	formats	for	right	and	left	pages	in
double-sided	documents.	CSS2	accommodates	all	of	these	cases	using	three
pseudoclasses	attached	to	the	name	of	a	page.

The	:first	pseudoclass	applies	the	page	format	to	the	first	page	in	a	document.
Page-layout	attributes	specified	in	the	:first	page	override	corresponding
attributes	in	the	general	page	layout.	You	can	use	the	:first	pseudoclass	in
conjunction	with	a	named	page	layout;	the	appropriate	first-page	layout	is	applied
if	the	first	page	of	the	document	is	rendered	using	the	named	page.

In	a	similar	fashion,	the	:left	and	:right	pseudoclasses	define	left	and	right	page
layouts	for	your	document.	Again,	named	pages	can	have	left	and	right	variations.
The	browser	automatically	applies	appropriate	left	and	right	layouts	to	every	page
in	the	document,	if	such	layouts	exist.

You	need	not	specify	named	pages	to	use	any	of	these	pseudoclasses.	Indeed,
most	documents	do	not	do	so.	For	example,	if	you	use	these	settings:

@page	:first	{	margin-top	:	3in	}
@page	:left	{	margin-left	:	2in;	margin-right	:	1in	}
@page	:right	{	margin-left	:	1in;	margin-right	:	2in	}

	
without	further	intervention,	the	first	page	of	your	document	will	have	a	3-inch
top	margin	(and	an	appropriate	right	and	left	margin,	depending	on	how	your
locale	defines	whether	the	first	page	of	a	document	is	on	the	right	or	the	left).
Subsequent	pages	will	alternate	between	wide	and	narrow	inner	and	outer
margins.

8.4.13.3.	Using	named	pages

Once	you	create	a	named	page	layout,	you	can	use	it	in	your	document	by	adding
the	page	property	to	a	style	that	is	later	applied	to	an	element	in	your	document.	If
an	element	has	a	page	layout	that	is	different	from	that	of	the	preceding	or
containing	element,	a	page	break	is	inserted	into	the	document,	and	formatting
resumes	using	the	new	page	layout.	When	the	scope	of	the	element	ends,	the
page	layout	reverts	to	the	previous	layout,	with	appropriate	page	breaks	as
needed.

For	example,	this	style	renders	all	the	tables	in	your	document	on	landscape
pages:

@page	{	size	:	portrait	}
@page	rotated	{	size	:	landscape	}
table	{	page	:	rotated	}

	
While	printing,	if	the	browser	encounters	a	<table>	element	in	your	document	and
the	current	page	layout	is	the	default	portrait	layout,	it	starts	a	new	page	and
prints	the	table	on	a	landscape	page.	If	nontabular	content	follows	the	table,	the
browser	inserts	another	page	break,	and	the	flow	resumes	on	the	default	portrait-
size	page.	Several	tables	in	a	row	would	be	rendered	on	a	single	landscape	sheet,
if	they	all	fit.

8.4.13.4.	Controlling	pagination

Unless	you	specify	otherwise,	page	breaks	occur	only	when	the	page	format
changes	or	when	the	content	overflows	the	current	page	box.	To	otherwise	force
or	suppress	page	breaks,	use	the	page-break-before,	page-break-after,	and	page-break-
inside	properties.

Both	the	page-break-before	and	page-break-after	properties	accept	the	auto,	always,
avoid,	left,	and	right	keywords.	auto	is	the	default;	it	lets	the	browser	generate
page	breaks	as	needed.	The	keyword	always	forces	a	page	break	before	or	after	the
element,	and	avoid	suppresses	a	page	break	immediately	before	or	after	the
element.	The	left	and	right	keywords	force	one	or	two	page	breaks	so	that	the
element	is	rendered	on	a	lefthand	or	righthand	page.

Using	pagination	properties	is	straightforward.	Suppose	your	document	has	level-
1	headers	start	new	chapters,	with	sections	denoted	by	level-2	headers.	You'd	like
each	chapter	to	start	on	a	new,	righthand	page,	but	you	don't	want	section
headers	to	be	split	across	a	page	break	from	the	subsequent	content.	Accordingly,
you	might	write	your	CSS2	print	rule	as	follows:

h1	{	page-break-before	:	right	}
h2	{	page-break-after	:	avoid	}

	
Use	only	the	auto	and	avoid	values	with	the	page-break-inside	property.	auto	allows
page	breaks	within	the	element	(the	default	behavior),	and	avoid	suppresses	them.
Even	so,	elements	that	are	larger	than	the	printed	page	get	broken	up;	that	is
why	the	keyword	is	avoid	and	not	prevent.

If	you	prefer	that	your	tables	not	be	broken	across	pages	if	possible,	you	would
write	the	following	rule:

table	{	page-break-inside	:	avoid	}

	

8.4.13.5.	Controlling	widows	and	orphans

In	typographic	lingo,	orphans	are	those	lines	of	a	paragraph	stranded	at	the
bottom	of	a	page	due	to	a	page	break,	and	widows	are	those	lines	remaining	at
the	top	of	a	page	following	a	page	break.	Generally,	printed	pages	do	not	look
attractive	with	single	lines	of	text	stranded	at	the	top	or	bottom.	Most	printers	try
to	leave	at	least	two	or	more	lines	of	text	at	the	top	or	bottom	of	each	page.

If	you	want	to	take	control	of	this	behavior,	you	can	apply	the	widows	and	orphans
properties	to	an	element.	The	value	of	each	property	is	the	minimum	number	of
lines	of	text	that	can	be	left	at	the	top	or	bottom	of	the	page,	respectively.	The
default	is	2,	meaning	that	the	browser	generates	page	breaks	as	needed	to
ensure	that	at	least	two	lines	of	text	from	the	element	appear	at	the	top	or
bottom	of	each	page.	You	generally	want	to	apply	this	property	to	all	of	the
elements	in	your	document,	to	ensure	consistent	pagination	throughout.

	

8.5.	Tagless	Styles:	The		Tag

Up	to	now,	we	have	used	cascading	stylesheets	to	change	the	appearance	of
content	within	a	designated	tag.	In	some	cases,	however,	you	may	want	to	alter
the	appearance	of	only	a	portion	of	a	tag's	contentsusually	text.	Designate	these
special	segments	with	the		tag.

Function Delimits	an	arbitrary	amount	of	text

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag ;	never	omitted

Contains html_content

Used	in body_content

	
The		tag	simply	delimits	a	portion	of	content	(constrained	by	normal	tag-
nesting	rules,	of	course).	Browsers	treat	the		tag	as	another	physical	or
content-based	style	tagthe	only	difference	is	that	the	default	meaning	of	the	
tag	is	to	leave	the	text	alone.

The		tag	became	part	of	HTML	so	that	you	could	apply	style,	display,	and
event	management	to	an	arbitrary	section	of	document	content.	Define	a	style	for
the		tag	as	you	would	any	other	HTML	or	XHTML	tag:

span	{color:	purple}
span.bigger	{font-size:	larger}

	
and	use	it	like	any	other	HTML	or	XHTML	tag:

Quat	harvest	projections	are	bigger	than	ever!

	
Similarly,	apply	an	inline	style	to	the		tag	to	modify	the	appearance	of	its
contents:

Quat	harvest	projections	are	bigger	than	ever!

	

Like	any	other	physical	or	content-based	style	tag,		tags	can	be	nested	and
may	contain	other	tags.

The		tag	also	supports	the	many	common	tag	attributes.	The	style	and	class
attributes,	of	course,	let	you	control	the	display	style;	the	id	and	title	tag
attributes	let	you	uniquely	label	its	contents;	the	dir	and	lang	attributes	let	you
specify	its	native	language;	and	the	many	on-event	attributes	let	you	react	to
user-initiated	mouse	and	keyboard	actions	on	the	contents.	Not	all	are
implemented	by	the	currently	popular	browsers	for	this	tag	or	for	many	others.
[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]	[The	id	attribute,	4.1.1.4]
[The	title	attribute,	4.1.1.5]	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style
Classes,	8.3]	[JavaScript	Event	Handlers,	12.3.3]

	

8.6.	Applying	Styles	to	Documents

You	should	consider	several	issues	before,	during,	and	after	you	use	styles	in	your
web	documents	and	document	collections.	The	first,	overarching	issue	is	whether
to	use	them	at	all.	Frankly,	few	of	the	style	effects	are	unique;	you	can	achieve
most	of	them,	albeit	less	easily	and	with	much	less	consistency,	via	the	physical
and	content-based	style	tags	(e.g.,	<i>	and)	and	the	various	tag	attributes
(e.g.,	color	and	background).

8.6.1.	To	Style	or	Not	to	Style

We	think	the	CSS2	standard	is	a	winner,	not	only	over	JavaScript-based	standards
but	also	for	the	convenience	and	effectiveness	of	all	of	your	markup	documents,
including	HTML,	XHTML,	and	most	other	XML-compliant	ones.	Most	browsers	in
use	today	support	CSS1	and	many	of	the	features	of	CSS2.	The	benefits	are	clear.
So,	why	wouldn't	you	use	styles?

Although	we	strongly	urge	you	to	learn	and	use	CSS2	stylesheets	for	your
documents,	we	realize	that	creating	stylesheets	is	an	investment	of	time	and
energy	that	pays	off	only	in	the	long	run.	Designing	a	stylesheet	for	a	one-	or
two-page	document	is	probably	not	time	effective,	particularly	if	you	won't	be
reusing	the	stylesheet	for	any	other	documents.	In	general,	however,	we	believe
the	choice	is	not	if	you	should	use	CSS2	stylesheets,	but	when.

8.6.2.	Which	Type	of	Stylesheet,	and	When

Once	you	have	decided	to	use	cascading	stylesheets	(for	pain	or	pleasure),	the
next	question	is	which	type	of	stylesheetinline,	document	level,	or	externalyou
should	apply,	and	when.	Each	has	its	pros	and	cons;	each	is	best	applied	under
certain	circumstances.

8.6.2.1.	The	pros	and	cons	of	external	styles

Because	stylesheets	provide	consistency	in	the	presentation	of	your	documents,
external	stylesheets	are	the	best	and	easiest	way	to	manage	styles	for	your	entire
document	collection.	Simply	place	the	desired	style	rules	in	a	stylesheet,	and
apply	those	styles	to	the	desired	documents.	Because	all	of	the	documents	are
affected	by	a	single	stylesheet,	conversion	of	the	entire	collection	to	a	new	style	is
as	simple	as	changing	a	single	rule	in	the	corresponding	external	stylesheet.

Even	in	cases	where	documents	may	differ	in	style,	it	is	often	possible	to	collect	a
few	basic	style	rules	in	a	single	sheet	that	can	be	shared	among	several	otherwise
different	documents,	including:

Background	color

Background	image

Font	sizes	and	faces

Margins

Text	alignment

Another	benefit	of	external	stylesheets	is	that	other	web	authors	who	want	to
copy	your	style	can	easily	access	that	sheet	and	make	their	pages	look	like	yours.
Imitation	being	the	sincerest	form	of	flattery,	you	should	not	be	troubled	when
someone	elects	to	emulate	the	look	and	feel	of	your	pages.	More	to	the	point,	you
can't	stop	them	from	linking	to	your	stylesheets,	so	you	might	as	well	learn	to	like
it.	Like	conventional	HTML	documents,	it	is	not	possible	to	encrypt	or	otherwise
hide	your	stylesheets	so	that	others	cannot	view	and	use	them.

The	biggest	problem	with	external	stylesheets	is	that	they	may	increase	the
amount	of	time	needed	to	access	a	given	web	page.	Not	only	must	the	browser
download	the	page	itself,	but	it	must	also	download	the	stylesheet	before	the	page
can	be	displayed	to	the	user.	While	most	stylesheets	are	relatively	small,	their
existence	can	definitely	be	felt	when	accessing	the	Web	over	a	slow	connection.

Without	appropriate	discipline,	external	stylesheets	can	become	large	and
unwieldy.	When	creating	stylesheets,	include	only	those	styles	that	are	common
to	the	pages	using	the	sheet.	If	a	set	of	styles	is	needed	for	only	one	or	two
pages,	you	are	better	off	isolating	them	in	a	separate	sheet	or	adding	them	to
those	documents	using	document-level	styles.	Otherwise,	you	may	find	yourself
expending	an	exorbitant	amount	of	effort	counteracting	the	effects	of	external
styles	in	many	individual	documents.

8.6.2.2.	The	pros	and	cons	of	document-level	styles

Document-level	styles	are	most	useful	when	creating	custom	documents.	They	let
you	override	one	or	more	rules	in	your	externally	defined	style	to	create	a	slightly
different	document.

You	might	also	want	to	use	document-level	styles	to	experiment	with	new	style

rules	before	moving	them	to	your	stylesheets.	By	adding	and	changing	rules	using
document-level	styles,	you	eliminate	the	risk	of	adding	a	broken	style	to	your
stylesheets,	breaking	the	appearance	of	all	the	documents	that	use	that	sheet.

The	biggest	problem	with	document	styles	is	that	you	may	succumb	to	using	them
in	lieu	of	creating	a	formal,	external	stylesheet	to	manage	your	document
collection.	It	is	easy	to	simply	add	rules	to	each	document,	cutting	and	pasting	as
you	create	new	documents.	Unfortunately,	managing	a	collection	of	documents
with	document-level	styles	is	tedious	and	error-prone.	Even	a	simple	change	can
result	in	hours	of	editing	and	potential	mistakes.

As	a	rule	of	thumb,	any	style	rule	that	impacts	three	or	more	documents	should
be	moved	to	a	stylesheet	and	applied	to	those	documents	using	the	<link>	tag	or
@import	at-rule.	Adhering	to	this	rule	as	you	create	your	document	families	pays	off
in	the	long	run	when	it	is	time	to	change	your	styles.

8.6.2.3.	The	pros	and	cons	of	inline	styles

At	the	end	of	the	cascade,	inline	styles	override	the	more	general	styles.	Get	into
the	habit	now	of	using	inline	styles	rarely	and	just	for	that	purpose.	You	cannot
reuse	inline	styles,	making	style	management	difficult.	Moreover,	such	changes
are	spread	throughout	your	documents,	making	finding	and	altering	inline	styles
error-prone.	(That's	why	we	might	eschew	tag-	and	attribute-based	styles	in	the
first	place,	no?)

Anytime	you	use	an	inline	style,	think	long	and	hard	about	whether	you	might
accomplish	the	same	effect	using	a	style	class	definition.	For	instance,	you	are
better	off	defining:

<style	type="text/css">
<!--
		p.centered	{text-align:	center}
		em.blue	{color:	blue}
-->
</style>

	
and	later	using:

<p	class=centered>
<em	class=blue>

	

rather	than:

<p	style="text-align:	center">
<em	style="color:	blue">

	
Your	styles	are	easier	to	find	and	manage	and	can	easily	be	reused	throughout
your	documents.

	

Chapter	9.	Forms

Forms,	forms,	forms,	forms:	we	fill	'em	out	for	nearly	everything,	from	the
moment	we're	born,	'til	the	moment	we	die.	Pretty	mundane,	really.	So	what's	to
explain	all	the	hoopla	and	excitement	over	HTML	forms?	Simply	this:	they	make
HTML	and,	of	course,	XHTML	truly	interactive.

When	you	think	about	it,	interacting	with	a	web	page	is	basically	a	lot	of	button
pushing:	click	here,	click	there,	go	here,	go	therethere's	no	real	interactivity,	and
it's	certainly	not	personalized.	Programs	such	as	applets,	servlets,	JSPs,	and	ASPs
provide	extensive	user-interaction	capability	but	can	be	difficult	to	write.	Forms,
on	the	other	hand,	are	easily	made	in	HTML/XHTML	and	make	it	possible	to	create
documents	that	collect	and	process	user	input	and	to	formulate	personalized
replies.

This	powerful	mechanism	has	far-reaching	implications,	particularly	for	electronic
commerce.	It	finishes	an	online	catalog	by	giving	buyers	a	way	to	immediately
order	products	and	services.	It	gives	nonprofit	organizations	a	way	to	sign	up	new
members.	It	lets	market	researchers	collect	user	data.	It	gives	you	an	automated
way	to	interact	with	your	readers.

Mull	over	the	ways	you	might	want	to	interact	with	your	readers	while	we	take	a
look	at	both	the	client-	and	server-side	details	of	creating	forms.

	

9.1.	Form	Fundamentals

Forms	are	composed	of	one	or	more	text-input	boxes,	clickable	buttons,	multiple-
choice	checkboxes,	and	even	pull-down	menus	and	image	maps,	all	placed	inside
the	<form>	tag.	You	can	have	more	than	one	form	in	a	document,	and	within	each
one	you	also	may	put	regular	body	content,	including	text	and	images.	The	text	is
particularly	useful	for	providing	form	element	labels,	prompts,	and	instructions	to
the	users	on	how	to	fill	out	the	form.	And,	within	the	various	form	elements,	you
can	use	JavaScript	event	handlers	for	a	variety	of	effects,	such	as	testing	and
verifying	form	contents	and	calculating	a	running	sum.

A	user	fills	out	the	various	fields	in	the	form,	then	clicks	a	special	Submit	button
(or,	sometimes,	presses	the	Enter	key)	to	submit	the	form	to	a	server.	The
browser	packages	up	the	user-supplied	values	and	choices	and	sends	them	to	a
server	or	to	an	email	address.[*]	The	server	passes	the	information	along	to	a
supporting	program	or	application	that	processes	the	information	and	creates	a
reply,	usually	in	HTML.	The	reply	simply	may	be	a	thank	you,	or	it	might	prompt
the	user	on	how	to	fill	out	the	form	correctly	or	to	supply	missing	fields.	The
server	sends	the	reply	to	the	browser	client,	which	then	presents	it	to	the	user.
With	emailed	forms,	the	information	is	simply	put	into	someone's	mailbox;	there
is	no	notification	of	the	form	being	sent.

[*]	The	popular	browsers	may	also	encrypt	the	information,	securing	it	from	credit	card	thieves,	for	example.	However,
the	encryption	facility	must	be	supported	on	the	server	as	well:	consult	the	web	server	documentation	for	details.

The	server-side,	data-processing	aspects	of	forms	are	not	part	of	the	HTML	or
XHTML	standard;	they	are	defined	by	the	server's	software.	While	a	complete
discussion	of	server-side	forms	programming	is	beyond	the	scope	of	this	book,
we'd	be	remiss	if	we	did	not	include	at	least	a	simple	example	to	get	you	started.
To	that	purpose,	we've	included	at	the	end	of	this	chapter	a	few	skeletal	programs
that	illustrate	some	of	the	common	styles	of	server-side	forms	programming.

A	final	caveat:	as	is	its	wont,	the	World	Wide	Web	Consortium	(W3C)	has	been
working	on	an	XML-based	definition	of	forms.	This	new	version	of	forms,	known	as
XForms,	is	currently	a	"working	document,"	subject	to	review	and	changes	as
needed.	XForms	differs	from	the	conventional	forms	model	in	almost	every	way:
the	forms	are	defined	differently,	data	is	validated	differently,	and	information	is
transmitted	to	the	server	differently.	As	you	might	imagine,	XForms	is	not
currently	supported	by	any	browser	or	server,	although	a	preliminary	version	of
XForms	is	available	for	testing	as	part	of	the	Mozilla	XForms	Project.	Given	its
lack	of	general	support,	dramatic	differences	from	the	current	model,	and	the	long
odds	that	XForms	will	replace	the	millions	of	forms	already	in	use,	it	would	be
premature	to	address	it	in	any	detail	in	this	chapter.	Instead,	we'll	cover	the	forms

as	defined	in	HTML	and	XHTML,	and	leave	you	with	a	warning	that	a	new	forms
model	may	be	coming	at	some	point	in	the	future.

	

9.2.	The	<form>	Tag

Place	a	form	anywhere	inside	the	body	of	a	document,	with	its	elements	enclosed
by	the	<form>	tag	and	its	respective	end	tag	(</form>).	You	can,	and	we	recommend
you	often	do,	include	regular	body	content	inside	a	form	to	specially	label	user-
input	fields	and	to	provide	directions.

<form>

Function Defines	a	form

Attributes
accept,	action,	charset,	class,	dir,	enctype,	id,	lang,	method,	name,	onClick,
onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,
onMouseOver,	onMouseUp,	onReset,	onSubmit,	style,	target,	title

End	tag </form>;	never	omitted

Contains form_content

Used	in block

	
Browsers	flow	the	special	form	elements	into	the	containing	paragraphs	as	though
they	were	small	images	embedded	into	the	text.	There	aren't	any	special	layout
rules	for	form	elements,	so	you	need	to	use	other	elements,	such	as	tables	and
stylesheets,	to	control	the	placement	of	elements	within	the	text	flow.

You	must	define	at	least	two	special	form	attributes,	which	provide	the	name	of
the	form's	processing	server	and	the	method	by	which	the	parameters	are	to	be
sent	to	the	server.	A	third,	optional	attribute	lets	you	change	how	the	parameters
get	encoded	for	secure	transmission	over	the	network.

9.2.1.	The	action	Attribute

The	required	action	attribute	for	the	<form>	tag	gives	the	URL	of	the	application	that
is	to	receive	and	process	the	form's	data.	Most	webmasters	keep	their	forms-
processing	applications	in	a	special	directory	on	their	web	server,	usually	named
cgi-bin,	which	stands	for	Common	Gateway	Interface-binaries.	[*]	Keeping	these
special	forms-processing	programs	and	applications	in	one	directory	makes	it
easier	to	manage	and	secure	the	server.

[*]	The	Common	Gateway	Interface	(CGI)	defines	the	protocol	by	which	servers	interact	with	programs	that	process
form	data.

A	typical	<form>	tag	with	the	action	attribute	looks	like	this:

<form	action="http://www.kumquat.com/cgi-bin/update">
...
</form>

	
The	example	URL	tells	the	browser	to	contact	the	web	server	named	www	in	the
kumquat.com	domain	and	pass	along	the	user's	form	values	to	the	application	named
update	located	in	the	cgi-bin	directory.

In	general,	if	you	see	a	URL	that	references	a	document	in	a	directory	named	cgi-
bin,	you	can	be	pretty	sure	that	the	document	is	actually	an	application	that
dynamically	creates	the	desired	page	each	time	it's	invoked.

9.2.2.	The	enctype	Attribute

The	browser	specially	encodes	the	form's	data	before	passing	that	data	to	the
server	so	that	it	does	not	become	scrambled	or	corrupted	during	the	transmission.
It	is	up	to	the	server	to	either	decode	the	parameters	or	pass	them,	still	encoded,
to	the	application.

The	standard	encoding	format	is	the	Internet	Media	Type	application/x-www-form-
urlencoded.	You	can	change	that	encoding	with	the	optional	enctype	attribute	in	the
<form>	tag.	The	only	optional	encoding	formats	currently	supported	are
multipart/form-data	and	text/plain.

The	multipart/form-data	alternative	is	required	for	those	forms	that	contain	file-
selection	fields	for	upload	by	the	user.	You	should	use	the	text/plain	format	in
conjunction	with	a	mailto	URL	in	the	action	attribute	for	sending	forms	to	an	email
address	rather	than	a	server.	Unless	your	forms	need	file-selection	fields	or	you
must	use	a	mailto	URL	in	the	action	attribute,	you	probably	should	ignore	this
attribute	and	simply	rely	upon	the	browser	and	your	processing	server	to	use	the
default	encoding	type.	[File-selection	controls,	9.5.1.3]

9.2.2.1.	The	application/x-www-form-urlencoded	encoding

The	standard	encodingapplication/x-www-form-urlencodedconverts	any	spaces	in
the	form	values	into	a	plus	sign	(+),	nonalphanumeric	characters	into	a	percent
sign	(%)	followed	by	two	hexadecimal	digits	that	are	the	ASCII	code	of	the
character,	and	the	line	breaks	in	multiline	form	data	into	%0D%0A.

The	standard	encoding	also	includes	a	name	for	each	field	in	the	form.	(A	field	is	a
discrete	element	in	the	form,	whose	value	can	be	nearly	anything	from	a	single

number	to	several	lines	of	textthe	user's	address,	for	example.)	If	there	is	more
than	one	value	in	the	field,	the	values	are	separated	by	ampersands.

For	example,	here's	what	the	browser	sends	to	the	server	after	the	user	fills	out	a
form	with	two	input	fields	labeled	name	and	address;	the	former	field	has	just	one
line	of	text,	and	the	latter	field	has	several	lines	of	input:

name=O'Reilly+Media&address=1005+Gravenstein+Highway+North%0D%0A
Sebastopol,%0D%0ACA+95472

	
We've	broken	the	value	into	two	lines	here	for	clarity,	but	in	reality,	the	browser
sends	the	data	in	an	unbroken	string.	The	name	field	is	O'Reilly	Media,	and	the	value
of	the	address	field,	complete	with	embedded	newline	characters,	is:

1005	Gravenstein	Highway	North
Sebastopol,
CA	95472

	

9.2.2.2.	The	multipart/form-data	encoding

The	multipart/form-data	encoding	encapsulates	the	fields	in	the	form	as	several
parts	of	a	single	Multipurpose	Internet	Mail	Extension	(MIME)-compatible
compound	document.	Each	field	has	its	own	section	in	the	resulting	file,	set	off	by
a	standard	delimiter.	Within	each	section,	one	or	more	header	lines	define	the
name	of	the	field,	followed	by	one	or	more	lines	containing	the	value	of	the	field.
Because	the	value	part	of	each	section	can	contain	binary	data	or	otherwise
unprintable	characters,	no	character	conversion	or	encoding	occurs	within	the
transmitted	data.

This	encoding	format	is	by	nature	more	verbose	and	longer	than	the
application/x-www-form-urlencoded	format.	As	such,	you	can	use	it	only	when	the
method	attribute	of	the	<form>	tag	is	set	to	post,	as	described	in	section	9.2.4,	later	in
this	chapter.	A	simple	example	makes	it	easy	to	understand	this	format.	Here's
our	previous	example,	when	transmitted	as	multipart/form-data:

------------------------------146931364513459
Content-Disposition:	form-data;	name="name"

O'Reilly	Media
------------------------------146931364513459
Content-Disposition:	form-data;	name="address"

1005	Gravenstein	Highway	North
Sebastopol,
CA	95472
------------------------------146931364513459--

	
The	first	line	of	the	transmission	defines	the	delimiter	that	appears	before	each
section	of	the	document.	It	always	consists	of	30	dashes	and	a	long	random
number	that	distinguishes	it	from	other	text	that	might	appear	in	actual	field
values.

The	next	lines	contain	the	header	fields	for	the	first	section.	There	is	always	a
Content-Disposition	field	indicating	that	the	section	contains	form	data	and	providing
the	name	of	the	form	element	whose	value	is	in	this	section.	You	may	see	other
header	fields;	in	particular,	some	file-selection	fields	include	a	Content-Type	header
field	that	indicates	the	type	of	data	contained	in	the	file	being	transmitted.

After	the	headers,	there	is	a	single	blank	line	followed	by	the	actual	value	of	the
field	on	one	or	more	lines.	The	section	concludes	with	a	repeat	of	the	delimiter
line	that	started	the	transmission.	Another	section	follows	immediately,	and	the
pattern	repeats	until	all	of	the	form	parameters	have	been	transmitted.	The	end
of	the	transmission	is	indicated	by	an	extra	two	dashes	at	the	end	of	the	last
delimiter	line.

As	we	pointed	out	earlier,	use	multipart/form-data	encoding	only	when	your	form
contains	a	file-selection	field.	Here's	an	example	of	how	the	transmission	of	a	file-
selection	field	might	look:

------------------------------146931364513459
Content-Disposition:	form-data;	name="thefile";	filename="test"
Content-Type:	text/plain
	

First	line	of	the	file
...
Last	line	of	the	file
------------------------------146931364513459--

	
The	only	notable	difference	is	that	the	Content-Disposition	field	contains	an	extra
element,	filename,	which	defines	the	name	of	the	file	being	transmitted.	There
might	also	be	a	Content-Type	field	to	further	describe	the	file's	contents.

9.2.2.3.	The	text/plain	encoding

Use	this	encoding	only	when	you	don't	have	access	to	a	forms-processing	server
and	need	to	send	the	form	information	by	email	(the	form's	action	attribute	must
be	a	mailto	URL).	The	conventional	encodings	are	designed	for	computer
consumption;	text/plain	is	designed	with	people	in	mind.

In	this	encoding,	each	element	in	the	form	is	placed	on	a	single	line,	with	the
name	and	value	separated	by	an	equals	sign.	Returning	to	our	name	and	address
example,	the	form	data	would	be	returned	as:

name=O'Reilly	Media
address=1005	Gravenstein	Highway	North%0D%0ASebastopol,%0D%0ACA	95472

	
As	you	can	see,	the	only	characters	still	encoded	in	this	form	are	the	carriage-
return	and	line-feed	characters	in	multiline	text-input	areas.	Otherwise,	the	result
is	easily	readable	and	generally	parsable	by	simple	tools.

9.2.3.	The	accept-charset	Attribute

The	accept-charset	attribute	was	introduced	in	the	HTML	4.0	standard.	It	lets	you
specify	a	list	of	character	sets	that	the	server	must	support	to	properly	interpret
the	form	data.	The	value	of	this	attribute	is	a	quote-enclosed	list	of	one	or	more
International	Organization	for	Standardization	(ISO)	character	set	names.	The
browser	may	choose	to	disregard	the	form	or	handle	it	differently	if	the	acceptable
character	sets	do	not	match	the	character	set	the	user	is	using.	The	default	value
of	this	attribute	is	unknown,	implying	that	the	form's	character	set	is	the	same	as
that	of	the	document	containing	the	form.

9.2.4.	The	method	Attribute

This	attribute	for	the	<form>	tag	sets	the	method	by	which	the	browser	sends	the
form's	data	to	the	server	for	processing.	There	are	two	ways:	the	POST	method
and	the	GET	method.	If	method	is	not	specified,	GET	is	used.

With	the	POST	method,	the	browser	sends	the	data	in	two	steps:	the	browser	first
contacts	the	forms-processing	server	specified	in	the	action	attribute	and	then,
once	contact	is	made,	sends	the	data	to	the	server	in	a	separate	transmission.

On	the	server	side,	POST-style	applications	are	expected	to	read	the	parameters

from	a	standard	location	once	they	begin	execution.	Once	read,	the	parameters
must	be	decoded	before	the	application	can	use	the	form	values.	Your	particular
server	defines	exactly	how	your	POST-style	applications	can	expect	to	receive
their	parameters.

The	GET	method,	on	the	other	hand,	contacts	the	forms-processing	server	and
sends	the	form	data	in	a	single	transmission	step:	the	browser	appends	the	data
to	the	form's	action	URL,	separated	by	the	question	mark	character.

The	common	browsers	transmit	the	form	information	by	either	method;	some
servers	receive	the	form	data	by	only	one	or	the	other	method.	You	indicate
which	of	the	two	methodsPOST	or	GETyour	forms-processing	server	handles	with
the	method	attribute	in	the	<form>	tag.

Here's	the	complete	tag	including	the	GET	transmission	method	attribute	for	the
previous	form	example:

<form	method=GET
			action="http://www.kumquat.com/cgi-bin/update">
		...
</form>

	

9.2.4.1.	POST	or	GET?

Which	one	should	you	use	if	your	forms-processing	server	supports	both	the	POST
and	GET	methods?	Here	are	some	rules	of	thumb:

For	best	form-transmission	performance,	send	small	forms	with	a	few	short
fields	via	the	GET	method.

Because	some	server	operating	systems	limit	the	number	and	length	of
command-line	arguments	that	can	be	passed	to	an	application	at	once,	use
the	POST	method	to	send	forms	that	have	many	fields	or	that	have	long	text
fields.

If	you	are	inexperienced	in	writing	server-side	forms-processing	applications,
choose	GET.	The	extra	steps	involved	in	reading	and	decoding	POST-style
transmitted	parameters,	while	not	too	difficult,	may	be	more	than	you	are
willing	to	tackle.

If	security	is	an	issue,	choose	POST.	GET	places	the	form	parameters	directly

in	the	application	URL,	where	they	easily	can	be	captured	by	network	sniffers
or	extracted	from	a	server	logfile.	If	the	parameters	contain	sensitive
information	like	credit	card	numbers,	you	may	be	compromising	your	users
without	their	knowledge.	While	POST	applications	are	not	without	their
security	holes,	they	can	at	least	take	advantage	of	encryption	when
transmitting	the	parameters	as	a	separate	transaction	with	the	server.

If	you	want	to	invoke	the	server-side	application	outside	the	realm	of	a	form,
including	passing	it	parameters,	use	GET,	because	it	lets	you	include	form-like
parameters	as	part	of	a	URL.	POST-style	applications,	on	the	other	hand,
expect	an	extra	transmission	from	the	browser	after	the	URLsomething	you
can't	do	as	part	of	a	conventional	<a>	tag.

9.2.4.2.	Passing	parameters	explicitly

The	foregoing	bit	of	advice	warrants	some	explanation.	Suppose	you	had	a	simple
form	with	two	elements	named	x	and	y.	The	browser	encodes	them	like	this:

x=27&y=33

	
If	method=GET,	the	browser	also	includes	the	server-side's	processing	application's
URL	as	a	prefix,	like	this:

http://www.kumquat.com/cgi-bin/update?x=27&y=33

	
There	is	nothing	to	keep	you	from	creating	a	conventional	<a>	tag	that	invokes	the
form	with	any	parameter	value	you	desire,	like	so:

	
The	only	hitch	is	that	the	ampersand	that	separates	the	parameters	is	also	the
character-entity	insertion	character.	When	placed	within	the	href	attribute	of	the
<a>	tag,	the	ampersand	causes	the	browser	to	replace	the	characters	following	it
with	a	corresponding	character	entity.

To	keep	this	from	happening,	you	must	replace	the	literal	ampersand	with	its
entity	equivalent,	either	&	or	&	(see	Appendix	F).	With	this	substitution,	our
example	of	the	alternative	form	reference	to	the	server-side	application	looks	like
this:

	
Because	of	the	potential	confusion	that	arises	from	having	to	escape	the
ampersands	in	the	URL,	server	implementers	are	encouraged	to	also	accept	the
semicolon	as	a	parameter	separator.	You	might	want	to	check	the	documentation
to	see	whether	your	server	honors	this	convention.

9.2.5.	The	target	Attribute

It	is	possible	to	redirect	the	results	of	a	form	to	another	window	or	frame.	Simply
add	the	target	attribute	to	your	<form>	tag	and	provide	the	name	of	the	window	or
frame	to	receive	the	results.

Like	the	target	attribute	used	in	conjunction	with	the	<a>	tag,	you	can	use	a
number	of	special	names	with	the	target	attribute	in	the	<form>	tag	to	create	a	new
window	or	to	replace	the	contents	of	existing	windows	and	frames.	[The	target
Attribute	for	the	<a>	Tag,	11.7.1]

9.2.6.	The	id,	name,	and	title	Attributes

The	id	attribute	lets	you	attach	a	unique	string	label	to	your	form	for	reference	by
programs	(applets)	and	hyperlinks.	Before	id	was	introduced	in	HTML	4.0,
Netscape	used	the	name	attribute	to	achieve	similar	effects,	although	it	cannot	be
used	in	a	hyperlink.	To	be	compatible	with	the	broadest	range	of	browsers,	we
recommend	that	for	now	you	include	both	name	and	id	with	<form>,	if	needed.	In	the
future,	you	should	use	only	the	id	attribute	for	this	purpose.

The	title	attribute	defines	a	quote-enclosed	string	value	to	label	the	form.
However,	it	titles	only	the	form	segment;	its	value	cannot	be	used	in	an	applet
reference	or	hyperlink.	[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

9.2.7.	The	class,	style,	lang,	and	dir	Attributes

The	style	attribute	creates	an	inline	style	for	the	elements	enclosed	by	the	form,
overriding	any	other	style	rules	in	effect.	The	class	attribute	lets	you	format	the
content	according	to	a	predefined	class	of	the	<form>	tag;	its	value	is	the	name	of
that	class.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

The	actual	effects	of	style	with	<form>	are	hard	to	predict,	however.	In	general,

style	properties	affect	the	body	contenttext,	in	particularthat	you	may	include	as
part	of	the	form's	contents,	but	<form>	styles	do	affect	the	display	characteristics	of
the	form	elements.

For	instance,	you	may	create	a	special	font	face	and	background	color	style	for
the	form.	The	form's	text	labels,	but	not	the	text	inside	a	text-input	form	element,
appear	in	the	specified	font	face	and	background	color.	Similarly,	the	text	labels
you	put	beside	a	set	of	radio	buttons	appear	in	the	form-specified	style,	but	the
radio	buttons	themselves	do	not.

The	lang	attribute	lets	you	specify	the	language	used	within	the	form,	with	its
value	being	any	of	the	ISO	standard	two-character	language	abbreviations,
including	an	optional	language	modifier.	For	example,	adding	lang=en-UK	tells	the
browser	that	the	list	is	in	English	("en")	as	spoken	and	written	in	the	United
Kingdom	("UK").	Presumably,	the	browser	may	make	layout	or	typographic
decisions	based	upon	your	language	choice.

Similarly,	the	dir	attribute	tells	the	browser	in	which	direction	to	display	the	list
contentsfrom	left	to	right	(dir=ltr),	like	English	and	French,	or	from	right	to	left
(dir=rtl),	as	with	Hebrew	and	Chinese.

The	popular	browsers	support	the	dir	and	lang	attributes,	even	though	no
behaviors	are	defined	for	any	specific	language.	[The	dir	attribute,	3.6.1.1]	[The
lang	attribute,	3.6.1.2]

9.2.8.	The	Event	Attributes

As	for	most	other	elements	in	a	document,	the	<form>	tag	honors	the	standard
mouse	and	keyboard	event-related	attributes	the	compliant	browser	will
recognize.	We	describe	the	majority	of	these	attributes	in	detail	in	Chapter	12.
[JavaScript	Event	Handlers,	12.3.3]

Forms	have	two	special	event-related	attributes:	onSubmit	and	onReset.	The	value	of
each	event	attribute	isenclosed	in	quotation	marksone	or	a	sequence	of
semicolon-separated	JavaScript	expressions,	methods,	and	function	references.
With	onSubmit,	the	browser	executes	these	commands	before	it	actually	submits	the
form's	data	to	the	server	or	sends	it	to	an	email	address.

You	may	use	the	onSubmit	event	for	a	variety	of	effects.	The	most	popular	is	for	a
client-side	forms-verification	program	that	scans	the	form	data	and	prompts	the
user	to	complete	one	or	more	missing	elements.	Another	popular	and	much
simpler	use	is	to	inform	users	when	a	mailto	URL	form	is	being	processed	via
email.

The	onReset	attribute	is	used	just	like	the	onSubmit	attribute,	except	that	the
associated	program	code	is	executed	only	if	the	user	presses	a	Reset	button	in	the
form.

	

9.3.	A	Simple	Form	Example

In	a	moment,	we'll	examine	each	of	the	many	form	controls	in	detail.	Let's	first
take	a	quick	look	at	a	simple	example,	to	see	how	forms	are	put	together.	This
HTML	form	(shown	in	Figure	9-1)	gathers	basic	demographic	information	about	a
user:

Figure	9-1.	A	simple	form

	
<form	method=POST	action="http://www.kumquat.com/demo">
		Name:
				<input	type=text	name=name	size=32	maxlength=80>
		<p>
		Sex:
				<input	type=radio	name=sex	value="M">	Male
				<input	type=radio	name=sex	value="F">	Female
		<p>
		Annual	Income:
				<select	name=income	size=1>
						<option>Under	$25,000
						<option>$25,001	to	$50,000
						<option>$50,001	and	higher
				</select>
		<p>
		<input	type=submit>
</form>

	

The	first	line	of	the	example	starts	the	form	and	indicates	we'll	be	using	the	POST
method	for	data	transmission.	The	form's	user-input	controls	follow,	each	defined
by	an	<input>	tag	and	type	attribute.	There	are	three	controls	in	the	simple
example,	each	contained	within	its	own	paragraph.

The	first	control	is	a	conventional	text-entry	field,	letting	the	user	type	up	to	80
characters	but	displaying	only	32	of	them	at	a	time.	The	next	one	is	a	multiple-
choice	option,	which	lets	the	user	select	only	one	of	two	radio	buttons.	This	is
followed	by	a	pull-down	menu	for	choosing	one	of	three	options.	The	final	control
is	a	simple	submission	button,	which,	when	clicked	by	the	user,	sets	the	form's
processing	in	motion.

	

9.4.	Using	Email	to	Collect	Form	Data

It	is	increasingly	common	to	find	authors	who	have	no	access	to	a	web	server
other	than	to	upload	their	documents.	Consequently,	they	have	no	ability	to
create	or	manage	CGI	programs.	In	fact,	some	Internet	service	providers	(ISPs),
particularly	those	hosting	space	for	hundreds	or	even	thousands	of	sites,	typically
disable	CGI	services	to	limit	their	servers'	processing	load	and	as	a	security
precaution.

If	you	are	working	with	one	of	the	many	sites	where	you	cannot	get	a	form
processed	to	save	your	life,	all	is	not	lost:	you	can	use	a	mailto	URL	as	the	value
of	the	form's	action	attribute.	The	latest	browsers	automatically	email	the	various
form	parameters	and	values	to	the	address	supplied	in	the	URL.	The	recipient	of
the	mail	can	then	process	the	form	and	take	action	accordingly.

By	substituting	the	following	for	the	<form>	tag	in	our	previous	example:

<form	method=POST	action="mailto:chuckandbill@oreilly.com"
				enctype="text/plain"
				onSubmit="window.alert('This	form	is	being	sent	by	email,	even
				though	it	may	not	appear	that	anything	has	happened...')">

	
the	form	data	gets	emailed	to	chuckandbill	when	submitted	by	the	user,	not
otherwise	processed	by	a	server.	Notice,	too,	that	we	have	a	simple	JavaScript
alert	message	that	appears	when	the	browser	gets	ready	to	send	out	the	form
data.	The	alert	tells	the	user	not	to	expect	confirmation	that	the	form	data	was
sent	(see	Figure	9-2).

Figure	9-2.	A	warning	about	a	mailto	form	submission

	
Also,	unless	disabled	by	the	user	or	if	you	omit	the	method=POST	attribute,	the
browser	typically	warns	users	that	they	are	about	to	send	unencrypted
(text/plain)	and	thereby	unsecured	information	over	the	network	and	gives	them
the	option	to	cancel	the	submission.	Otherwise,	the	form	is	sent	via	email	without
incident	or	notification.

The	body	of	the	resulting	emailed	form	message	looks	something	like	this:

name=Bill	Kennedy
sex=M
income=Under	$25,000

	

9.4.1.	Problems	with	Email	Forms

If	you	choose	to	use	either	mailto	or	a	form-to-email	facility,	there	are	several
problems	you	may	have	to	deal	with:

Your	forms	won't	work	on	browsers	that	don't	support	a	mailto	URL	as	a	form
action.	All	of	the	currently	popular	browsers	do	support	mailto	forms.

Some	browsers,	including	some	early	versions	(pre-version	5)	of	Internet
Explorer,	do	not	properly	place	the	form	data	into	the	email	message	body	and
may	even	open	an	email	dialog	box,	confusing	the	user.

A	mailto	URL	doesn't	present	users	with	a	confirmation	page	to	assure	them
that	their	forms	have	been	processed.	After	executing	the	mailto	form,	the

user	is	left	looking	at	the	form,	as	though	nothing	had	happened.	(As	we	did
in	the	preceding	example,	use	JavaScript	to	overcome	some	of	this	dilemma
with	an	onSubmit	or	onClick	event	handler.)

Your	data	may	arrive	in	a	form	that	is	difficult,	if	not	impossible,	to	read,
unless	you	use	a	readable	enctype,	such	as	text/plain.

Most	importantly,	you	lose	whatever	security	protections	the	server	may	have
provided	with	the	form.

The	last	problem	deserves	additional	explanation.	Some	web	providers	support
secure	web	servers	that	attach	an	encryption	key	to	your	web	page	when	sent	to
the	user's	browser.	The	popular	browsers	use	that	key	to	encrypt	any	data	your
document	may	send	back	to	that	same	server,	including	the	user's	form	data.
Because	only	the	client's	browser	and	the	server	know	the	key,	only	that	server	is
able	to	decipher	the	information	coming	back	to	it	from	the	client	browser,
effectively	securing	the	information	from	nefarious	eavesdroppers	and	hackers.

However,	if	you	use	email	to	retrieve	the	form	data,	the	server	decrypts	it	before
packaging	the	form	information	into	the	body	of	an	email	message	and	sending	it
to	you.	Email	normally	is	highly	susceptible	to	eavesdropping	and	other	types	of
snooping.	Its	contents	are	very	insecure.

So,	please,	if	you	use	an	email	method	to	retrieve	sensitive	form	data,	such	as
credit	cards	and	personal	information,	be	aware	of	the	potential	consequences.
And	don't	be	fooled	or	fool	your	users	with	a	"secure"	server	when	insecure	email
comes	out	the	back	end.

In	spite	of	all	these	problems,	email	forms	present	an	attractive	alternative	to	the
web	author	constrained	by	a	restricted	server.	Our	advice:	use	CGI	scripts	if	at	all
possible	and	fall	back	on	mailto	URLs	if	all	else	fails.

	

9.5.	The	<input>	Tag

Use	the	<input>	tag	to	define	any	one	of	a	number	of	common	form	"controls,"	as
they	are	called	in	the	HTML	and	XHTML	standards,	including	text	fields,	multiple-
choice	lists,	clickable	images,	and	submission	buttons.	Although	there	are	many
attributes	for	the	<input>	tag,	only	the	name	attribute	is	required	for	each	element
(but	not	for	a	submission	or	reset	button;	see	the	following	explanation).	And	as
we	describe	in	detail	later,	each	type	of	input	control	uses	only	a	subset	of	the
allowed	attributes.	Additional	<input>	attributes	may	be	required	based	upon	which
type	of	form	element	you	specify.

Table	9-1	summarizes	the	various	form	<input>	types	and	attributes,	required	and
optional.

Table	9-1.	Required	and	some	common	form	element	attributes

Form	tag
or
<input>
type

Attributes	(x	=	required;	 	=	optional;	blank	=	not	supported)

accept accesskey align alt border cols checked disabledmaxlengthmultiple namenotab onBlur onChange

button 	 	 	 	 	 	 	 	 x 	

checkbox 	 	 	 	 	 	 	 x 	 	

file 	 	 	 	 	 	 x

hidden 	 	 	 	 	 	 	 	 	 	 x 	 	 	

image 	 	 	 	 	 	 	

password 	 	 	 	 	 	 	 x

radio 	 	 	 	 	 	 	 x 	 	

reset 	 	 	 	 	 	 	 	 	 	 	

submit 	 	 	 	 	 	 	 	 	 	

text 	 	 	 	 	 	 	 x

<button> 	 	 	 	 	 	 	 	 x 	 	

<select> 	 	 	 	 	 	 	 	 x 	

<textarea> 	 	 	 	 	 	 	 x 	

	

<input>

Function Creates	an	input	element	within	a	form

Attributes

accept,	accesskey,	align,	alt,	border	 ,	checked,	class,	dir,	disabled,	id,	lang,

maxlength,	name,	notab	 ,	onBlur,	onChange,	onClick,	onDblClick,	onFocus,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,

onSelect,	size,	src,	tabindex,	taborder	 ,	title,	type,	usemap,	value

End	tag None	in	HTML;	</input>	or	<input	...	/>	in	XHTML

Contains Nothing

Used	in form_content

	
You	select	the	type	of	control	to	include	in	the	form	with	the	<input>	tag's	type
attribute,	and	you	name	the	field	(used	during	the	form	submission	process	to	the
server;	see	earlier	description)	with	the	name	attribute.	If	you	do	not	specify	it,	the
type	field	defaults	to	a	value	of	text.	Although	the	value	of	the	name	attribute	is
technically	an	arbitrary	string,	we	recommend	that	you	use	a	name	without
embedded	spaces	or	punctuation.	If	you	stick	to	just	letters	and	numbers	(but	no
leading	digits)	and	represent	spaces	with	the	underscore	(_)	character,	you'll	have
fewer	problems.	For	example,	cost_in_dollars	and	overhead_percentage	are	good
choices	for	element	names;	$cost	and	overhead	%	might	cause	problems.

In	addition,	notice	that	the	name	you	give	to	a	form	control	is	directly	associated
with	the	data	that	the	user	inputs	to	that	control	and	that	gets	passed	to	the
forms-processing	server.	It	is	not	the	same	as	nor	does	it	share	the	same
namespace	with	the	name	attribute	for	a	hyperlink	fragment	or	a	frame	document.

9.5.1.	Text	Fields	in	Forms

The	HTML	and	XHTML	standards	let	you	include	four	types	of	text-entry	controls
in	your	forms:	a	conventional	text-entry	field,	a	masked	field	for	secure	data
entry,	a	field	that	names	a	file	to	be	transmitted	as	part	of	your	form	data,	and	a
special	multiline	text-entry	<textarea>	tag.	The	first	three	types	are	<input>-based

controls;	the	fourth	is	a	separate	tag	that	we	describe	later	in	this	chapter,	in
section	9.7.

9.5.1.1.	Conventional	text	fields

The	most	common	form	input	control	is	the	text-entry	field	for	usernames,
addresses,	and	other	unique	data.	A	text-entry	field	appears	in	the	browser
window	as	an	empty	box	on	one	line	and	accepts	a	single	line	of	user	input.
Eventually,	that	line	of	text	becomes	the	value	of	the	control	when	the	user
submits	the	form	to	the	server.	To	create	a	text-entry	field	inside	a	form	in	your
document	you	set	the	type	of	the	<input>	form	element	to	text.	Include	a	name
attribute	as	well;	it's	required.

What	constitutes	a	line	of	text	differs	among	the	various	browsers.	Fortunately,
HTML	and	XHTML	give	us	a	way,	with	the	size	and	maxlength	attributes,	to	dictate
the	width	(in	the	number	of	characters)	of	the	text-input	display	box,	and	how
many	total	characters	to	accept	from	the	user,	respectively.	The	value	for	either
attribute	is	an	integer	equal	to	the	maximum	number	of	characters	you'll	allow
the	user	to	see	and	type	in	the	field.	If	maxlength	exceeds	size,	the	text	scrolls	back
and	forth	within	the	text-entry	box.	If	maxlength	is	smaller	than	size,	there	is	extra
blank	space	in	the	text-entry	box	to	make	up	the	difference	between	the	two
attributes.

The	default	value	for	size	depends	on	the	browser,	but	typically	it	is	80	characters;
the	default	value	for	maxlength	is	unlimited.	We	recommend	that	you	set	them
yourself.	Adjust	the	size	attribute	so	that	the	text-entry	box	does	not	extend
beyond	the	right	margin	of	a	typical	browser	window	(about	60	characters	with	a
very	short	prompt).	Set	maxlength	to	a	reasonable	number	of	characters;	for
example,	two	for	state	abbreviations,	12	for	phone	numbers,	and	so	on.

A	text-entry	field	is	usually	blank	until	the	user	types	something	into	it.	You	may,
however,	specify	an	initial	default	value	for	the	field	with	the	value	attribute.	The
user	may	modify	the	default,	of	course.	If	the	user	presses	a	form's	Reset	button,
the	value	of	the	field	is	reset	to	this	default	value.	[Reset	buttons,	9.5.4.2]

All	of	these	are	valid	text-entry	form	controls:

<input	type=text	name=comments>
<input	type=text	name=zipcode	size=10	maxlength=10>
<input	type="text"	name="address"	size="30"	maxlength="256"	/>
<input	type="text"	name="rate"	size="3"	maxlength="3"	value="100"	/>

	
The	first	example	is	HTML	and	creates	a	text-entry	field	set	to	the	browser's

default	width	and	maximum	length.	As	we	argued,	this	is	not	a	good	idea,	because
defaults	may	vary	among	browsers,	and	your	form	layout	is	sure	to	look	bad	with
some	of	them.	Rather,	fix	the	width	and	maximum	number	of	acceptable	input
characters	as	we	do	in	the	second	example:	it	lets	the	user	type	in	up	to	10
characters	inside	an	input	box	10	characters	wide.	Its	value	is	sent	to	the	server
with	the	name	zipcode	when	the	user	submits	the	form.

The	third	example	is	XHTML	and	tells	the	browser	to	display	a	text-input	box	30
characters	wide	into	which	the	user	may	type	up	to	256	characters.	The	browser
automatically	scrolls	text	inside	the	input	box	to	expose	the	extra	characters.

The	last	text-input	control	is	XHTML,	too.	It	tells	the	browser	to	display	a	text	box
three	characters	wide,	into	which	the	user	can	type	up	to	three	characters.	Its
initial	value	is	set	to	100.

Notice	that	in	the	second	and	fourth	examples	it	is	implied	that	the	user	will	enter
certain	kinds	of	dataa	postal	code	or	a	numeric	rate,	respectively.	Except	for
limiting	how	many,	neither	HTML	nor	XHTML	provide	a	way	for	you	to	dictate
what	characters	may	be	typed	into	a	text-input	field.	For	instance,	in	the	last
example	field,	the	user	may	type	"ABC,"	even	though	you	intend	the	field's	value
to	be	a	number	less	than	1,000.	Your	server-side	application	or	applet	must	trap
erroneous	or	mistaken	input,	check	for	incomplete	forms,	and	send	the
appropriate	error	message	to	the	user	when	things	aren't	right.	That	can	be	a
tedious	process,	so	we	emphasize	again:	provide	clear	and	precise	instructions
and	prompts.	Make	sure	your	forms	tell	users	what	kinds	of	input	you	expect	from
them,	thereby	reducing	the	number	of	mistakes	they	may	make	when	filling	them
out.

9.5.1.2.	Masked	text	controls

Like	the	Lone	Ranger	and	Zorro,	the	mask	is	on	the	good	guys	in	a	masked	text
field.	It	behaves	just	like	a	conventional	text	control	in	a	form,	except	that	the
user-typed	characters	don't	appear	onscreen.	Rather,	the	browser	obscures	the
characters	in	masked	text	to	keep	such	things	as	passwords	and	other	sensitive
codes	away	from	prying	eyes.

To	create	a	masked	text	control,	set	the	value	of	the	type	attribute	to	password.	All
other	attributes	and	semantics	of	the	conventional	text	control	apply	to	the
masked	one.	Hence,	you	must	provide	a	name,	and	you	may	specify	a	size	and
maxlength	for	the	field,	as	well	as	an	initial	value	(we	recommend	it).

Don't	be	misled:	a	masked	text	control	is	not	all	that	secure.	The	typed-in	value	is
only	obscured	onscreen;	the	browser	transmits	it	unencrypted	when	the	form	is
submitted	to	the	server,	unless	you	are	using	a	web	server	running	Secure

Sockets	Layer	(SSL)	(https	server,	for	example).	So,	while	prying	eyes	may	not
see	them	onscreen,	devious	bad	guys	may	steal	the	information	electronically.

9.5.1.3.	File-selection	controls

As	its	name	implies,	the	file-selection	control	lets	a	user	select	a	file	stored	on	the
computer	and	send	it	to	the	server	when	she	submits	the	form.	Create	a	file-
selection	control	in	a	form	by	setting	the	value	of	the	type	attribute	to	file.	Like
other	text	controls,	the	size	and	maxlength	of	a	file-selection	field	should	be	set	to
appropriate	values,	with	the	browser	creating	a	field	20	characters	wide,	if	not
otherwise	directed.

The	browser	presents	the	file-selection	form	control	to	the	user	like	other	text
fields,	accompanied	by	a	button	labeled	Browse	to	its	right.	Users	either	type	the
pathname	of	the	file	directly	as	text	into	the	field	or,	with	the	Browse	option,
select	the	pathname	of	the	file	from	a	system-specific	dialog	box.

The	Browse	button	opens	a	platform-specific	file-selection	dialog	box	that	allows
users	to	select	a	value	for	the	field.	In	this	case,	the	entire	pathname	of	the
selected	file	is	placed	into	the	field,	even	if	the	length	of	that	pathname	exceeds
the	control's	specified	maxlength.

Use	the	accept	attribute	to	constrain	the	types	of	files	that	the	browser	lets	the
user	browse,	even	though	it	does	not	constrain	what	they	may	type	in	as	the
pathname.	accept's	value	is	a	comma-separated	list	of	MIME	encodings;	users
browse	and	select	only	files	whose	type	matches	one	of	those	in	the	list.	For
example,	to	restrict	the	selection	to	images,	you	might	add	accept="image/*"	to	the
file-selection	<input>	tag.

Unlike	other	form	input	controls,	the	file-selection	field	works	correctly	only	with
a	specific	form	data	encoding	and	transmission	method.	If	you	include	one	or
more	file-selection	fields	in	your	form,	you	must	set	the	enctype	attribute	of	the
<form>	tag	to	multipart/form-data	and	the	<form>	tag's	method	attribute	to	post.
Otherwise,	the	file-selection	field	behaves	like	a	regular	text	field,	transmitting	its
value	(that	is,	the	file's	pathname)	to	the	server	instead	of	the	contents	of	the	file
itself.

All	of	this	is	easier	than	it	may	sound.	For	example,	here	is	an	HTML	form	that
collects	a	person's	name	and	favorite	file:

<form	enctype="multipart/form-data"	method=post
				action="cgi-bin/save_file">
Your	name:	<input	type=text	size=20	name=the_name>
<p>
Your	favorite	file:	<input	type=file	size=20	name=fav_file>

</form>

	
The	data	transmitted	from	the	browser	to	the	server	for	this	example	form	has
two	parts.	The	first	contains	the	value	for	the	name	field,	and	the	second	contains
the	name	and	contents	of	the	specified	file:

-----------------------------6099238414674
Content-Disposition:	form-data;	name="the_name"

One	line	of	text	field	contents
-----------------------------6099238414674
Content-Disposition:	form-data;	name="fav_file";	filename="abc"

First	line	of	file
...
Last	line	of	file
-----------------------------6099238414674--

	
The	browsers	don't	check	that	the	user	has	specified	a	valid	file.	If	no	file	is
specified,	the	filename	portion	of	the	Content-Disposition	header	is	empty.	If	the	file
doesn't	exist,	its	name	appears	in	the	filename	subheader,	but	there	is	no	Content-
Type	header	or	subsequent	lines	of	file	content.	Valid	files	may	contain
nonprintable	or	binary	data;	there	is	no	way	to	restrict	user-selectable	file	types.
In	light	of	these	potential	problems,	the	forms-processing	application	on	the
server	should	be	robust	enough	to	handle	missing	files,	erroneous	files,	extremely
large	files,	and	files	with	unusual	or	unexpected	formats.

9.5.2.	Checkboxes

The	checkbox	form	control	gives	users	a	way	to	select	or	deselect	an	item	quickly
and	easily	in	your	form.	Checkboxes	also	may	be	grouped	to	create	a	set	of
choices,	any	and	all	of	which	the	user	may	select	or	deselect.

Create	individual	checkboxes	by	setting	the	type	attribute	for	each	<input>	tag	to
checkbox.	Include	the	required	name	and	value	attributes.	Only	the	values	of	those
items	selected	by	the	user	appear	in	the	submitted	form.	The	optional	checked
attribute	(no	value)	tells	the	browser	to	display	a	selected	(checked)	checkbox
and	include	its	value	when	submitting	the	form	to	the	server	unless	the	user
deliberately	deselects	(unchecks)	the	box.

The	value	of	the	checked	checkbox	submitted	to	the	server	is	the	text	string	you
specify	in	the	required	value	attribute.	For	example,	in	XHTML:

<form>
		What	pets	do	you	own?
		<p>
				<input	type="checkbox"	name="pets"	value="dog"	/>	Dog
		

				<input	type="checkbox"	checked="checked"	name="pets"	value="cat"	/>	Cat
		

				<input	type="checkbox"	name="pets"	value="bird"	/>	Bird
		

				<input	type="checkbox"	name="pets"	value="fish"	/>	Fish
		</p>
</form>

	
creates	a	checkbox	group	as	shown	in	Figure	9-3.

Figure	9-3.	A	checkbox	group

	
Although	part	of	the	group,	each	checkbox	control	appears	as	a	separate	choice
onscreen.	Notice,	too,	with	all	due	respect	to	dog,	bird,	and	fish	lovers,	that	we've
preselected	the	Cat	checkbox	with	the	checked	attribute	in	its	tag.	We've	also
provided	text	labels;	the	similar	value	attributes	don't	appear	in	the	browser's
window	but	are	the	values	submitted	with	their	associated	name	to	the	server	if
the	user	selects	the	checkbox.	Also,	you	need	to	use	paragraph	or	line-break	tags
to	control	the	layout	of	your	checkbox	group,	as	you	do	for	other	form	controls.

In	the	example,	if	the	user	selects	Cat	and	Fish	and	submits	the	form,	the	values
included	in	the	parameter	list	sent	to	the	server	would	be:

pets=cat
pets=fish

	

9.5.3.	Radio	Buttons

Radio	button	form	controls	are	similar	in	behavior	to	checkboxes,	except	that	the
user	can	select	only	one	in	the	group.[*]	Create	a	radio	button	by	setting	the	type
attribute	of	the	<input>	tag	to	radio.	As	with	checkbox	controls,	radio	buttons	each
require	a	name	and	value	attribute.	Radio	buttons	with	the	same	name	are	members
of	a	group.	One	of	them	may	be	checked	by	including	the	checked	attribute	with
that	element.	If	you	don't	check	one	in	the	group,	the	browser	does	it
automatically	for	you	by	checking	the	first	element	in	the	group.

[*]	Some	of	us	are	old	enough,	while	not	yet	senile,	to	recall	when	automobile	radios	had	mechanical	push	buttons	for
selecting	a	station.	Pushing	in	one	button	popped	out	the	previously	depressed	one,	implementing	a	mechanical	one-of-
many	choice	mechanism.

You	should	give	each	radio	button	element	a	different	value	so	that	the	forms-
processing	server	can	sort	them	out	after	form	submission.

Here's	the	previous	example	reworked	in	HTML	so	that	you	get	to	choose	only	one
animal	as	a	favorite	pet	(see	Figure	9-4):

Figure	9-4.	Radio	buttons	allow	only	one	selection	per	group

	
<form>
		Which	type	of	animal	is	your	favorite	pet?
		<p>
				<input	type=radio	name=favorite	value="dog">	Dog
				<input	type=radio	checked	name=favorite	value="cat">	Cat
				<input	type=radio	name=favorite	value="bird">	Bird

				<input	type=radio	name=favorite	value="fish">	Fish
</form>

	
As	in	the	previous	example	with	checkboxes,	we've	tipped	our	hat	toward	felines,
making	the	Cat	radio	button	the	default	choice.	If	the	user	selects	an
alternativeBird,	for	instancethe	browser	automatically	deselects	Cat	and	selects
Bird.	When	the	user	submits	the	form	to	the	server,	the	browser	includes	only	one
value	with	the	name	"favorite"	in	the	list	of	form	parameters;	favorite=bird,	if	that
was	the	last	choice.

One	of	the	controls	in	a	group	of	radio	buttons	always	is	selected,	so	it	makes	no
sense	to	create	a	single	radio	button.	Instead,	use	groups	of	two	or	more	options,
such	as	for	On/Off	and	Yes/No	types	of	form	controls.

9.5.4.	Action	Buttons

Although	the	terminology	is	potentially	confusing,	there	is	another	class	of
buttons	for	forms.	Unlike	the	radio	buttons	and	checkboxes	described	previously,
these	special	types	of	form	controls	act	immediately,	their	effects	cannot	be
reversed,	and	they	affect	the	entire	contents	of	the	form,	not	just	the	value	of	a
single	field.	These	"action"	buttons	(for	lack	of	a	better	term)	include	submit,
reset,	regular,	and	image	buttons.	When	the	user	selects	them,	both	the	submit
and	image	buttons	cause	the	browser	to	submit	all	of	the	form's	parameters	to	the
forms-processing	server.	A	regular	button	does	not	submit	the	form	but	can	be
used	to	invoke	an	applet	to	manipulate	or	validate	the	form.	The	reset	button	acts
locally	to	erase	any	user	input	and	have	the	form	revert	to	its	original	(default)
contents.

In	this	section,	we	describe	the	action	buttons	that	you	may	create	with	the
standard	form	<input>	element.	In	the	next	section,	we	describe	in	detail	the	newer
<button>	tag	that	achieves	identical	effects	and	allows	you	greater	control	over	the
presentation	and	display	of	your	form	buttons.

9.5.4.1.	Submission	buttons

The	submit	button	(<input	type=submit>)	does	what	its	name	implies,	setting	in
motion	the	form's	submission	to	the	server	from	the	browser.	You	may	have	more
than	one	submit	button	in	a	form.	You	may	also	include	name	and	value	attributes
with	the	submit	type	of	form	<input>	button.

With	the	simplest	submit	button	(one	without	a	name	or	value	attribute),	the

browser	displays	a	small	rectangle	or	oval	with	the	default	label	"Submit."
Otherwise,	the	browser	labels	the	button	with	the	text	you	include	with	the	tag's
value	attribute.	If	you	provide	a	name	attribute,	the	browser	adds	the	value	attribute
for	the	submit	button	to	the	parameter	list	and	sends	it	along	to	the	server.	That's
good,	because	it	gives	you	a	way	to	identify	which	submit	button	in	a	form	the
user	selected,	letting	you	process	any	one	of	several	different	forms	with	a	single
forms-processing	application.

All	of	the	following	are	valid	submission	buttons:

<input	type=submit>
<input	type=submit	value="Order	Kumquats">
<input	type="submit"	value="Ship	Overnight"	name="ship_style"	/>

	
The	first	one	is	in	HTML	and	is	also	the	simplest:	the	browser	displays	a	button,
labeled	"Submit,"	which	activates	the	forms-processing	sequence	when	the	user
clicks	it.	It	does	not	add	an	element	to	the	parameter	list	that	the	browser	passes
to	the	forms-processing	server	and	application.

The	second	example	HTML	button	has	a	value	attribute	that	makes	the	displayed
button's	label	"Order	Kumquats"	but,	like	the	first	example,	does	not	include	the
button's	value	in	the	form's	parameter	list.

The	last	example,	in	XHTML,	sets	the	button	label	and	makes	it	part	of	the	form's
parameter	list.	When	the	user	clicks	this	submission	button,	it	adds	the	parameter
ship_style="Ship	Overnight"	to	the	form's	parameter	list.

9.5.4.2.	Reset	buttons

The	reset	type	of	form	<input>	button	is	nearly	self-explanatory:	it	lets	the	user
reseterase	or	set	to	some	default	valueall	elements	in	the	form.	Unlike	the	other
buttons,	a	reset	button	does	not	initiate	form	processing.	Instead,	the	browser
does	the	work	of	resetting	the	form	elements.	The	server	never	knows	(or	cares,
for	that	matter)	whether	or	when	the	user	selects	a	reset	button.

By	default,	the	browser	displays	a	reset	button	with	the	label	"Reset."	You	can
change	that	by	specifying	a	value	attribute	with	your	own	button	label.

Here	are	two	sample	reset	buttons:

<input	type=reset>
<input	type="reset"	value="Use	Defaults"	/>

	
The	first	one,	in	HTML,	creates	a	reset	button	that	is	by	default	labeled	"Reset"	by
the	browser.	The	second	example,	in	XHTML,	tells	the	browser	to	label	the	reset
button	with	"Use	Defaults."	Both	examples	initiate	the	same	response	in	the
browser	by	resetting	the	form	to	its	original	contents.

9.5.4.3.	Custom	image	buttons

The	image	type	of	form	<input>	element	is	a	special	submit	button	made	out	of	a
picture	that,	when	selected	by	the	user,	tells	the	browser	to	submit	the	form	to
the	server.	Upon	submission,	the	browser	also	includes	the	X,Y	coordinates	of	the
mouse	pointer	within	the	image	in	the	form's	parameter	list,	much	like	the
mouse-sensitive	image	maps	we	discussed	in	Chapter	6.

Image	buttons	require	an	src	attribute	and,	as	its	value,	the	URL	of	the	image	file.
You	can	include	a	name	attribute	and	a	descriptive	alt	attribute	for	use	by
nongraphical	browsers.	Although	it	is	deprecated	in	HTML	4,	you	also	may	use
align	to	control	alignment	of	the	image	within	the	current	line	of	text.	Use	the
border	attribute	to	control	the	width,	if	any,	of	the	frame	that	Netscape	and	Firefox
put	around	the	form	image,	much	like	the	border	attribute	for	the		tag.
(Neither	Internet	Explorer	nor	Opera	puts	borders	around	form	<input>	images.)

Here	are	a	couple	of	valid	image	buttons:

<input	type="image"	src="pics/map.gif"	name="map"	/>
<input	type=image	src="pics/xmap.gif"	align=top	name=map>

	
The	browser	displays	the	designated	image	within	the	form's	content	flow.	The
second	button's	image	is	aligned	with	the	top	of	the	adjacent	text,	as	specified	by
the	align	attribute.	Netscape	and	Firefox	add	a	border,	as	they	do	when	an	image
is	part	of	an	anchor	(<a>)	tag,	to	signal	that	the	image	is	a	form	button.

When	the	user	clicks	the	image,	the	browser	sends	the	horizontal	offset,	in	pixels,
of	the	mouse	from	the	left	edge	of	the	image	and	the	vertical	offset	from	the	top
edge	of	the	image	to	the	server.	These	values	are	assigned	the	name	of	the	image
as	specified	with	the	name	attribute,	followed	by	.x	and	.y,	respectively.	Thus,	if
someone	clicked	the	image	specified	in	the	first	example,	the	browser	would	send
parameters	named	map.x	and	map.y	to	the	server.

Image	buttons	behave	much	like	mouse-sensitive	image	maps	(usemap),	and	like
the	programs	or	client-side	<map>	tags	that	process	image	maps,	your	forms
processor	may	use	the	X,Y	mouse-pointer	parameters	to	choose	a	special	course

of	action.	You	should	use	an	image	button	when	you	need	the	additional	form
information	to	process	the	user's	request.	If	an	image	map	of	links	is	all	you	need,
use	a	mouse-sensitive	image	map.	Mouse-sensitive	images	also	have	the	added
benefit	of	providing	server-side	support	for	automatic	detection	of	shape	selection
within	the	image,	letting	you	deal	with	the	image	as	a	selectable	collection	of
shapes.	Form	buttons	with	images	require	you	to	write	code	that	determines
where	the	user	clicked	on	the	image	and	how	the	server	can	translate	this
position	to	an	appropriate	action.

Oddly,	the	HTML	4	and	XHTML	standards	allow	the	use	of	the	usemap	attribute	with
an	image	button,	but	do	not	explain	how	such	a	use	might	conflict	with	normal
server	processing	of	the	X,Y	coordinates	of	the	mouse	position.	We	recommend
not	mixing	the	two,	using	mouse-sensitive	images	outside	of	forms	and	image
buttons	within	forms.

9.5.4.4.	Push	buttons

Using	the	<input	type=button>	tag	(or	the	<button>	tag,	described	later	in	this	chapter,
in	section	9.6),	you	create	a	button	that	the	user	may	click,	but	that	does	not
submit	or	reset	the	form.	Use	the	value	attribute	to	set	the	label	on	the	button.
The	name	attribute,	if	included	in	the	tag,	causes	the	supplied	value	to	be	passed	to
the	forms-processing	script.

You	might	wonder	what	value	the	button	type	provides:	little	or	none,	unless	you
supply	one	or	more	of	the	on-event	attributes	along	with	a	snippet	of	JavaScript	to
be	executed	when	the	user	interacts	with	the	button.	Thus	empowered,	these
buttons	provide	a	way	for	the	user	to	initiate	form	content	validation,	update
fields,	manipulate	the	document,	and	perform	all	other	kinds	of	client-side
activity.	[JavaScript	Event	Handlers,	12.3.3]

9.5.4.5.	Multiple	buttons	in	a	single	form

You	can	have	several	buttons	of	the	same	or	different	types	in	a	single	form.	Even
simple	forms	often	have	both	reset	and	submit	buttons,	for	example.	To
distinguish	between	them,	make	sure	each	has	a	different	value	attribute,	which
the	browser	uses	for	the	button	label.	Depending	on	the	way	you	program	the
forms-processing	application,	you	might	make	the	name	of	each	button	different,
but	it	is	usually	easier	to	name	all	similarly	acting	buttons	the	same	and	let	the
button-handling	subroutine	sort	them	out	by	value.	For	instance	(all	in	HTML):

<input	type=submit	name=edit	value="Add">
<input	type=submit	name=edit	value="Delete">
<input	type=submit	name=edit	value="Change">

<input	type=submit	name=edit	value="Cancel">

	
When	the	user	selects	one	of	these	example	buttons,	a	form	parameter	named
edit	gets	sent	to	the	server.	The	value	of	this	parameter	is	one	of	the	button
names.	The	server-side	application	takes	the	value	and	behaves	accordingly.

Because	an	image	button	doesn't	have	a	value	attribute,	the	only	way	to
distinguish	among	several	image	buttons	on	a	single	form	is	to	ensure	that	they
all	have	different	names.

9.5.5.	Hidden	Fields

The	last	type	of	form	<input>	control	we	describe	in	this	chapter	is	hidden	from
view.	No,	we're	not	trying	to	conceal	anything;	it's	a	way	to	embed	information
into	your	forms	that	the	browser	or	user	cannot	ignore	or	alter.	The	browser
automatically	includes	the	<input	type=hidden>	tag's	required	name	and	value	attributes
in	the	submitted	form's	parameter	list.	These	attributes	serve	to	label	the	form
and	can	be	invaluable	when	sorting	out	different	forms	or	form	versions	from	a
collection	of	submitted	and	saved	forms.

Another	use	for	hidden	fields	is	to	manage	user-server	interactions.	For	instance,
it	helps	the	server	to	know	that	the	current	form	has	come	from	a	person	who
made	a	similar	request	a	few	moments	ago.	Normally,	the	server	does	not	retain
this	information,	and	each	transaction	between	the	server	and	client	is	completely
independent	from	all	other	transactions.

For	example,	the	first	form	the	user	submits	might	have	asked	for	some	basic
information,	such	as	the	user's	name	and	where	she	lives.	Based	on	that	initial
contact,	the	server	might	create	a	second	form	asking	more	specific	questions	of
the	user.	Because	it	is	tedious	for	users	to	reenter	the	same	basic	information
from	the	first	form,	you	can	program	the	server	to	put	the	originally	submitted
values	back	into	the	second	form	in	hidden	fields.	When	the	second	form	comes
back,	all	the	important	information	from	both	forms	is	there,	and	the	second	form
can	be	matched	to	the	first	one,	if	necessary.

Hidden	fields	also	may	direct	the	server	toward	some	specific	action.	For	example,
you	might	embed	the	following	hidden	field:

<input	type=hidden	name=action	value=change>

	

Then,	if	you	have	one	server-side	application	that	handles	the	processing	of
several	forms,	each	form	might	contain	a	different	action	code	to	help	that	server
application	sort	them	out.

	

9.6.	The	<button>	Tag

As	we	described	earlier,	you	create	an	action	button	with	standard	HTML	or	XHTML
by	including	its	type	value	in	the	standard	<input>	tag.	For	instance,	the	<input
type=submit>	form	control	creates	a	button	that,	when	selected	by	the	user,	tells	the
browser	to	send	the	form's	contents	to	the	processing	server	or	to	an	email
address	(the	mailto	option).	Display-wise,	you	don't	have	any	direct	control	over
what	that	submit	button	looks	like,	beyond	changing	the	default	label	"Submit"	to
some	other	word	or	short	phrase	(e.g.,	"Hit	me"	or	"Outta	here!").

First	introduced	in	the	HTML	4.0	standard,	the	<button>	tag	acts	the	same	as
<input>,	but	it	gives	you	more	control	over	how	the	browser	displays	the	element.
In	particular,	all	of	the	attributes	you	might	use	with	the	<input	type=button>
element	are	acceptable	with	the	<button>	tag.

<button>

Function Creates	a	button	element	within	a	form

Attributes
accesskey,	class,	dir,	disabled,	id,	lang,	name,	notab	 ,	onBlur,	onClick,	onDblClick,
onFocus,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,

onMouseOver,	onMouseUp,	style,	tabindex,	taborder	 ,	title,	type,	value

End	tag </button>;	never	omitted

Contains button_content

Used	in form_content

	

9.6.1.	The	<button>	Button

Neither	the	HTML	4	nor	the	XHTML	standard	is	overly	clear	as	to	what	display
enhancements	to	a	form	the	<button>	element	should	provide,	other	than	to
suggest	that	the	contents	should	be	3D	and	visually	appear	to	react	like	a	push
button	when	the	user	selects	it	(i.e.,	go	in	and	back	out	when	pressed).	All	the
popular	browsers	support	<button>.

The	<button>	control	provides	for	a	greater	variety	and	richer	contents	than	its
<input>	analogs.	Everything	between	the	<button>	and	</button>	tags	becomes	the
content	of	the	button,	including	any	acceptable	body	content,	such	as	text	or
multimedia.	For	instance,	you	could	include	an	image	and	related	text	within	a
button,	creating	attractive	labeled	icons	in	your	buttons.	The	only	verboten
element	is	an	image	map	because	its	mouse-	and	keyboard-sensitive	actions
interfere	with	the	form	button.

9.6.2.	The	type	Attribute

Use	the	type	attribute	for	the	<button>	tag	to	define	the	button's	action.	You	should
set	its	value	to	submit,	reset,	or	button.	Like	its	<input>	analog,	a	<button	type=submit>

form	element,	when	selected	by	the	user,	tells	the	browser	to	package	and	send
the	contents	of	the	form	to	the	forms-processing	server	or	email	it	to	the	mailto
recipient.	Using	type=reset	creates	a	conventional	reset	button,	and	using
type=button	creates	a	conventional	push	button.

For	example,	Figure	9-5	shows	the	following	exclaim.gif	icon	inset	on	a	3D	button
that	pushes	in	and	pops	back	out	when	the	user	clicks	it	with	the	mouse.	In	doing
so,	the	browser	submits	the	form	to	the	server:

Figure	9-5.	A	form-submit	<button>

	
<button	type=submit>
Order		Now!
</button>

	
Notice	that	you	can	exploit	the	rich	set	of		tag	attributes,	including	align	and
alt,	for	this	<button>	style	of	form	control.

Because	the	<button>	tag	is	so	similar	to	the	<input	type=button>	element,	why	have	it
at	all?	The	only	reason	is	to	provide	far	richer	content	for	buttons.	If	your	buttons
are	conventional	text	buttons,	the	<input>	tag	will	suffice.	If	you	want	to	create
fancy,	mixed-content	buttons,	you'll	need	to	use	the	<button>	tag.

	

9.7.	Multiline	Text	Areas

The	conventional	and	hidden-text	types	for	forms	restrict	user	input	to	a	single
line	of	characters.	The	<textarea>	form	tag	sets	users	free.

9.7.1.	The	<textarea>	Tag

As	part	of	a	form,	the	<textarea>	tag	creates	a	multiline	text-entry	area	in	the
user's	browser	display.	In	it,	the	user	may	type	a	nearly	unlimited	number	of	lines
of	text.	Upon	submission	of	the	form,	the	browser	collects	all	the	lines	of	text,
each	separated	by	%0D%0A	(carriage	return/line	feed),	and	sends	them	to	the	server
as	the	value	of	this	form	element,	using	the	name	specified	by	the	required	name
attribute.

You	may	include	plain	text	inside	the	<textarea>	tag	and	its	end	tag	(</textarea>).
That	default	text	must	be	plain	text,	with	no	tags	or	other	special	elements.	The
user	may	modify	the	contents	and	the	browser	uses	that	text	as	the	default	value
if	the	user	presses	a	reset	button	for	the	form.	Hence,	the	text	content	is	most
often	included	for	instructions	and	examples:

Tell	us	about	yourself:
<textarea	name=address	cols=40	rows=4>
		Your	Name	Here
		1234	My	Street
		Anytown,	State	Zipcode
</textarea>

	

<textarea>

Function Creates	a	multiline	text-input	area

Attributes

accesskey,	class,	cols,	dir,	disabled,	id,	lang,	name,	notab	 ,	onBlur,	onChange,
onClick,	onDblClick,	onFocus,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,
onMouseOut,	onMouseOver,	onMouseUp,	onSelect,	readonly,	rows,	style,	tabindex,	taborder	

,	title,	wrap

End	tag </textarea>;	never	omitted

Contains plain_text

Used	in form_content

	

9.7.1.1.	The	rows	and	cols	attributes

A	multiline	text-input	area	stands	alone	onscreen:	body	content	flows	above	and
below,	but	not	around	it.	You	can	control	its	dimensions,	however,	by	defining	the
cols	and	rows	attributes	for	the	visible	rectangular	area	set	aside	by	the	browser
for	multiline	input.	We	suggest	you	set	these	attributes.	The	common	browsers
have	a	habit	of	setting	aside	the	smallest,	least	readable	region	possible	for
<textarea>	input,	and	the	user	can't	resize	it.	Both	attributes	require	integer	values
for	the	respective	dimension's	size	in	characters.	The	browser	automatically
scrolls	text	that	exceeds	either	dimension.

9.7.1.2.	The	wrap	attribute

Normally,	the	browser	sends	the	text	that	you	type	into	the	text	area	to	the
server	exactly	as	typed,	with	lines	broken	only	where	the	user	pressed	the	Enter
key.	Because	this	is	often	not	the	action	the	user	desired,	you	can	enable	word
wrapping	within	the	text	area.	When	the	user	types	a	line	that	is	longer	than	the
width	of	the	text	area,	the	browser	automatically	moves	the	extra	text	down	to
the	next	line,	breaking	the	line	at	the	nearest	point	between	words	in	the	line.

With	the	wrap	attribute	set	to	virtual,	the	text	is	wrapped	within	the	text	area	for
presentation	to	the	user,	but	is	transmitted	to	the	server	as	though	no	wrapping
had	occurred	except	where	the	user	pressed	the	Enter	key.

With	the	wrap	attribute	set	to	physical,	the	text	is	wrapped	within	the	text	area	and
is	transmitted	to	the	server	as	though	the	user	had	actually	typed	it	that	way.
This	is	the	most	useful	way	to	use	word	wrap	because	the	text	is	transmitted
exactly	as	the	user	sees	it	in	the	text	area.

To	obtain	the	default	action,	set	the	wrap	attribute	to	off.

As	an	example,	consider	the	following	60	characters	of	text	that	are	being	typed
into	a	40-character-wide	text	area:

Word	wrapping	is	a	feature	that	makes	life	easier	for	users.

	
With	wrap=off,	the	text	area	contains	one	line	and	the	user	must	scroll	to	the	right
to	see	all	of	the	text.	One	line	of	text	is	transmitted	to	the	server.

With	wrap=virtual,	the	text	area	contains	two	lines	of	text,	broken	after	the	word
makes.	Only	one	line	of	text	is	transmitted	to	the	server:	the	entire	line	with	no
embedded	newline	characters.

With	wrap=physical,	the	text	area	contains	two	lines	of	text,	broken	after	the	word
makes.	Two	lines	of	text	are	sent	to	the	server,	separated	by	a	newline	character
after	the	word	makes.

	

9.8.	Multiple-Choice	Elements

Checkboxes	and	radio	buttons	give	you	powerful	means	for	creating	multiple-
choice	questions	and	answers,	but	they	can	lead	to	long	forms	that	are	tedious	to
write	and	put	a	fair	amount	of	clutter	onscreen.	The	<select>	tag	gives	you	two
compact	alternatives:	pull-down	menus	and	scrolling	lists.

9.8.1.	The	<select>	Tag

By	placing	a	list	of	<option>-tagged	items	inside	the	<select>	tag	of	a	form,	you
magically	create	a	pull-down	menu	of	choices.	Figure	9-2,	earlier	in	this	chapter,
displays	a	<select>	pull-down	menu.

<select>

Function Creates	single-	and	multiple-choice	menus

Attributes
class,	dir,	disabled,	id,	lang,	multiple,	name,	notab	 ,	onBlur,	onChange,	onClick,
onDblClick,	onFocus,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,

onMouseOut,	onMouseOver,	onMouseUp,	size,	style,	tabindex,	taborder	 ,	title

End	tag </select>;	never	omitted

Contains select_content

Used	in form_content

	
As	with	other	form	tags,	the	name	attribute	is	required	and	used	by	the	browser
when	submitting	the	<select>	choices	to	the	server.	Unlike	with	radio	buttons,	no
item	is	preselected,	so	if	the	user	doesn't	select	one,	the	browser	doesn't	send	any
value	to	the	server	with	the	submitted	form.

Otherwise,	the	browser	submits	the	selected	item	with	the	name	attribute	value
when	submitting	<select>	form	data	to	the	server.

9.8.1.1.	The	multiple	attribute

To	allow	more	than	one	option	selection	at	a	time,	add	the	multiple	attribute	to	the
<select>	tag.	This	causes	the	<select>	element	to	behave	like	an	<input	type=checkbox>
element.	When	submitted,	the	browser	collects	the	multiple	selections,	separated
with	commas,	into	a	single	parameter	list,	such	as:

pets=dog,cat,mouse

	
If	you	don't	include	the	multiple	attribute,	the	user	may	select	only	one	option	at	a
time,	just	like	in	a	group	of	radio	buttons.

9.8.1.2.	The	size	attribute

The	size	attribute	determines	how	many	options	are	visible	to	the	user	at	a	time.
The	value	of	size	should	be	a	positive	integer.	The	default	value	is	1.	When	size=1
without	multiple,	the	browser	typically	displays	the	<select>	list	as	a	pop-up	menu.
With	size	values	greater	than	1	or	with	multiple,	the	browser	typically	displays	the
<select>	element's	contents	as	a	scrolling	list.

In	the	following	XHTML	example,	we've	converted	our	previous	checkbox	example
into	a	scrolling,	multiple-choice	menu.	Notice	that	the	size	attribute	tells	the
browser	to	display	three	options	at	a	time:[*]

[*]	Notice	the	</option>	end	tags.	They	are	not	usually	included	in	standard	HTML	documents	but	must	appear	in
XHTML.

What	pets	do	you	have?
		<select	name="pets"	size="3"	multiple="multiple">
				<option>Dog</option>
				<option>Cat</option>
				<option>Bird</option>
				<option>Fish</option>
		</select>

	
The	result	is	shown	in	Figure	9-6.

Figure	9-6.	A	<select>	element,	formatted	with	size=3

	

9.8.2.	The	<option>	Tag

Use	the	<option>	tag	to	define	each	item	within	a	<select>	form	control.	The	browser
displays	the	<option>	tag's	contents	as	an	element	within	the	<select>	tag's	menu	or
scrolling	list,	so	the	contents	must	be	plain	text	only,	without	any	other	sort	of
markup.

<option>

Function Defines	available	options	within	a	<select>	menu

Attributes
class,	dir,	disabled,	id,	label,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,
onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	selected,	style,
title,	value

End	tag </option>;	usually	omitted	in	HTML

Contains plain_text

Used	in select_content

	

9.8.2.1.	The	value	attribute

Use	the	value	attribute	to	set	a	value	for	each	option	the	browser	sends	to	the
server	if	the	user	selects	that	option.	If	the	value	attribute	has	not	been	specified,
the	value	of	the	option	is	set	to	the	content	of	the	<option>	tag.	As	an	example,
consider	these	HTML	options:

<option	value=Dog>Dog
<option>Dog

	
Both	have	the	same	value.	The	first	is	explicitly	set	within	the	<option>	tag;	the
second	defaults	to	the	content	of	the	<option>	tag	itself:	"Dog".

9.8.2.2.	The	selected	attribute

By	default,	all	options	within	a	multiple-choice	<select>	tag	are	unselected	and
therefore	not	included	in	the	parameters	list	when	the	client	submits	the	form	to
the	server.	Include	the	selected	attribute	inside	the	<option>	tag	to	preselect	one	or
more	options,	which	the	user	may	then	deselect.

The	HTML	version	of	the	selected	attribute	has	no	value;	the	XHTML	version	has
the	value	selected="selected".	Single-choice	<select>	tags	preselect	the	first	option	if
no	option	is	explicitly	preselected.

9.8.2.3.	The	label	attribute

Normally,	the	browser	creates	a	label	from	the	contents	of	the	<option>	tag	when
displaying	it	to	the	user.	If	the	label	attribute	is	supplied,	its	value	is	used	as	the
label	instead.

9.8.3.	The	<optgroup>	Tag

Menus	of	choices	in	forms	can	be	quite	large,	making	them	difficult	to	display	and
use.	In	these	cases,	it	is	helpful	to	group	related	choices,	which	can	then	be
presented	as	a	set	of	nested,	cascading	menus	to	the	user.	Introduced	in	HTML
4.0,	the	<optgroup>	tag	brings	this	capability	to	HTML	and	XHTML	forms,	albeit	in	a
limited	way.

You	can	use	the	<optgroup>	tag	only	within	a	<select>	tag,	and	it	may	contain	only
<option>	tags.	The	browser	creates	submenus	for	each	<optgroup>	tag	within	the
main	<select>	menu.

For	example,	with	HTML	you	might	use	<optgroup>	to	present	a	form	menu	of	states
organized	by	region	(Figure	9-7):

Figure	9-7.	The	<optgroup>	tag	helps	organize	form	<select>
menus

	
<select	name=state>
			<optgroup	label=Northeast>

						<option>Maine
						<option>New	Hampshire
						...
			</optgroup>
			<optgroup	label=South>
						<option>Florida
						<option>Georgia
			</optgroup>
			...
</select>

	
Like	that	shown	for	Opera	in	Figure	9-7,	the	other	popular	GUI	browsers	similarly
indent	the	<optgroup>	items	within	a	scrolling	menu,	though	the	others	italicize	and
make	the	group	headers	bold.

The	biggest	drawback	to	the	<optgroup>	tag	is	that	it	cannot	be	nested,	limiting	you
to	one	level	of	submenus.	Presumably,	this	restriction	will	be	lifted	in	a	future
version	of	XHTML.

<optgroup>

Function Groups	related	<option>	elements	within	a	<select>	menu

Attributes class,	dir,	disabled,	id,	label,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,
onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </optgroup>;	may	be	omitted	in	HTML

Contains optgroup_content

Used	in select_content

	

9.8.3.1.	The	label	attribute

Use	the	label	attribute	to	define	an	<optgroup>	submenu	title	to	the	user.	You	should
keep	the	label	short	and	to	the	point	to	ensure	that	the	menu	can	be	displayed
easily	on	a	large	variety	of	displays.

	

9.9.	General	Form-Control	Attributes

The	many	form-control	tags	contain	common	attributes	that,	like	most	other	tags,
generally	serve	to	label,	set	up	the	display,	extend	the	text	language,	and	make
the	tag	extensible	programmatically.

9.9.1.	The	id	and	title	Attributes

The	id	attribute,	as	for	most	other	standard	tags,	lets	you	attach	a	unique	string
label	to	the	form	control	and	its	contents	for	reference	by	programs	(applets)	and
hyperlinks.	This	name	is	distinct	from	the	name	assigned	to	a	control	element
with	the	name	attribute.	Names	assigned	with	the	id	attribute	are	not	passed	to	the
server	when	the	form	is	processed.

The	title	attribute	is	similar	to	id	in	that	it	uses	a	quote-enclosed	string	value	to
label	the	form	control.	However,	it	titles	only	the	form	segment;	you	cannot	use
its	value	in	an	applet	reference	or	hyperlink.	Browsers	may	use	the	title	as	pop-
up	help	for	the	user	or	in	nonvisual	presentation	of	the	form.	[The	id	attribute,
4.1.1.4]	[The	title	attribute,	4.1.1.5]

9.9.2.	The	event	Attributes

Like	most	other	elements,	most	of	the	form	controls	support	a	number	of	user
mouse	and	keyboard	event-related	attributes	that	the	HTML	4/XHTML-compliant
browser	recognizes	and	lets	you	specially	process	using	JavaScript	or	a	Java
applet,	for	example.	We	describe	the	majority	of	these	events	in	detail	in	Chapter
12.

9.9.3.	The	style,	class,	lang,	and	dir	Attributes

The	style	attribute	for	the	various	form	controls	creates	an	inline	style	for	the
elements	enclosed	by	the	tag,	overriding	any	other	style	rules	in	effect.	The	class
attribute	lets	you	format	the	content	according	to	a	predefined	class	of	the	<form>
tag;	its	value	is	the	name	of	that	class.	[Inline	Styles:	The	style	Attribute,	8.1.1]
[Style	Classes,	8.3]

The	lang	attribute	specifies	the	language	used	within	a	control,	accepting	as	its
value	any	of	the	ISO	standard	two-character	language	abbreviations,	including	an
optional	language	modifier.	For	example,	adding	lang=en-UK	tells	the	browser	that

the	list	is	in	English	("en")	as	spoken	and	written	in	the	United	Kingdom	("UK").
Presumably,	the	browser	may	make	layout	or	typographic	decisions	based	upon
your	language	choice.	[The	lang	attribute,	3.6.1.2]

Similarly,	the	dir	attribute	tells	the	browser	in	which	direction	to	display	the
control	contentseither	from	left	to	right	(dir=ltr),	like	English	and	French,	or	from
right	to	left	(dir=rtl),	as	with	Hebrew	and	Chinese.	[The	dir	attribute,	3.6.1.1]

The	popular	browsers	support	the	dir	and	lang	attributes,	even	though	there	are
no	behaviors	defined	for	any	specific	language.

9.9.4.	The	tabindex,	taborder	 ,	and	notab	 	Attributes

By	default,	all	elements	(except	hidden	elements)	are	part	of	the	form's	tab	order.
As	the	user	presses	the	Tab	key,	the	browser	shifts	the	input	focus	from	element
to	element	in	the	form.	For	most	browsers,	the	tabbing	order	of	the	elements
matches	the	order	of	the	elements	within	the	<form>	tag.	With	the	tabindex
attribute,	you	can	change	the	order	and	the	position	of	those	elements	within	the
tab	order.

To	reposition	an	element	within	the	tab	order,	set	the	value	of	the	attribute	to	the
element's	desired	position	in	the	tab	order,	with	the	first	element	in	the	order
being	number	one.	If	you	really	want	to	change	a	form's	tab	order,	we	suggest
you	include	the	tabindex	attribute	with	every	element	in	the	form,	with	an
appropriate	value	for	each	element.	In	this	way,	you'll	be	sure	to	place	every
element	explicitly	in	the	tab	order,	and	there	will	be	no	surprises	when	the	user
tabs	through	the	form.

The	value	of	the	tabindex	attribute	is	a	positive	integer	indicating	the	position	of
the	tagged	contents	in	the	overall	tab	sequence	for	the	document.	The	tabbing
order	begins	with	elements	with	explicit	tabindex	values,	starting	from	the	lowest
to	the	highest	numbers.	Same-valued	tags	get	tab-selected	in	the	order	in	which
they	appear	in	the	document.	All	other	selectable	tags,	such	as	the	various	form
controls	and	hyperlinks,	are	the	last	to	get	tabbed,	in	the	order	in	which	they
appear	in	the	document.	To	exclude	an	element	from	the	tab	order,	set	the	value
of	tabindex	to	0.	The	element	is	skipped	when	the	user	tabs	around	the	form.

Internet	Explorer	introduced	the	concept	of	tab-order	management	with	its
proprietary	taborder	and	notab	attributes.	The	taborder	attribute	functions	exactly
like	the	tabindex	attribute,	and	notab	is	equivalent	to	tabindex=0.	Internet	Explorer
versions	5	and	later	now	support	the	standard	tabindex,	as	do	the	other	popular
browsers.	Consequently,	we	strongly	suggest	that	you	use	the	tabindex	attribute
and	not	taborder.

9.9.5.	The	accesskey	Attribute

Many	user	interfaces	promote	the	idea	of	shortcut	keys:	short	sequences	of
keystrokes	that	give	you	quick	access	to	an	element	in	the	user	interface.	HTML	4
and	XHTML	provide	support	for	this	capability	with	the	accesskey	attribute.	The
value	of	the	accesskey	attribute	is	a	single	character	that,	when	pressed	in
conjunction	with	some	other	special	key,	causes	focus	to	shift	immediately	to	the
associated	form	element.	This	special	key	varies	with	each	user	interface:	PC
users	press	the	Alt	key,	whereas	Unix	keyboard	users	typically	press	the	Meta
key.

For	example,	adding	accesskey="T"	to	a	<textarea>	element	would	cause	focus	to	shift
to	that	text	area	when	a	Windows	user	pressed	Alt-T.	Note	that	the	value	of	the
accesskey	attribute	is	a	single	character	and	is	case	sensitive	(a	capital	"T"	is	not
the	same	as	its	lowercase	cousin,	for	instance).

All	the	popular	browsers	support	the	accesskey	attribute.	Be	careful	to	test	your
hot-key	options,	however.	For	instance,	while	Alt-f	works	with	Internet	Explorer	to
jump-select	the	tag	with	the	accesskey="f"	attribute,	in	Netscape	this	key
combination	opens	the	File	pull-down	menu.

Also	note	that	the	accesskey	option	not	only	jumps	to	but	also	selects	the
associated	form	element.	So,	for	instance,	if	you	associate	an	accesskey	with	a
radio	button,	by	pressing	the	access-key	combination,	the	user	display	not	only
shifts	focus	to	that	radio	button	but	also	selects	it,	as	though	the	user	had	clicked
the	mouse	on	that	element.	The	same	goes	for	all	action	form	elements:	jump
and	select.

9.9.6.	The	disabled	and	readonly	Attributes

The	HTML	4	and	XHTML	standards	let	you	define	but	otherwise	disable	a	form
control	simply	by	inserting	the	disabled	attribute	within	the	tag.	A	disabled	form
control	appears	in	the	display	but	cannot	be	accessed	via	the	Tab	key	or	otherwise
selected	with	the	mouse.	Its	parameters	are	not	passed	to	the	server	when	the
user	submits	the	form.

Browsers	can	change	the	appearance	of	disabled	elements	and	alter	any	labels
associated	with	them.	The	popular	browsers	gray	out	disabled	radio	and	submit
buttons,	as	in	the	following	HTML	fragment	(also	shown	in	Figure	9-8):

Figure	9-8.	Disabled	form	controls	turn	gray

	
<form>
		Name:
				<input	type=text	name=name	size=32	maxlength=80	readonly>
		<p>
		Sex:
				<input	type=radio	name=sex	value="M"	disabled>	Male
				<input	type=radio	name=sex	value="F"	accesskey="z">	Female
		<p>
		Income:
				<select	name=income	size=1	disabled>
						<option>Under	$25,000
						<option>$25,001	to	$50,000
						<option>$50,001	and	higher
				</select>
		<p>
		<input	type=submit	disabled>
</form>

	
Similarly,	the	user	may	not	alter	a	text-related	<input>	or	<textarea>	form	control
that	you	designate	as	readonly	with	the	attribute.	These	elements	are	still	part	of
the	tab	order	and	may	be	selected,	and	the	value	of	the	control	gets	sent	to	the
server	when	the	user	submits	the	form.	The	user	just	can't	alter	the	value.	So,	in
a	sense,	a	form	control	rendered	readonly	is	the	visible	analog	of	the	<input
type=hidden>	control.

What	is	the	point	of	all	these	hidden	and	unchangeable	form	elements?
Automation.	By	automatically	generating	enabled	and	disabled	form	elements,
you	can	tailor	the	form	to	the	user.	For	example,	if	the	user	indicates	on	one	form
that	she	is	female,	a	subsequent	form	may	contain	that	information	in	a	hidden
attribute,	and	certain	elements	in	the	form	may	be	displayed	for	familiarity	while

certain	elements	are	disabled	to	make	the	form	easier	to	navigate.

	

9.10.	Labeling	and	Grouping	Form	Elements

The	common	text	and	other	content	you	may	use	to	label	and	otherwise	explain	a
form	are	static.	Other	than	by	their	visual	relationship	to	the	form's	input	areas,
these	labels	and	instructions	are	unassociated	with	the	form	controls	that	they
serve.	Because	of	this,	forms	are	not	easily	understood	and	navigable,	particularly
by	people	with	impaired	vision.	Try	it.	Get	a	simple	personal-information	form
onscreen,	close	your	eyes,	and	find	the	place	to	enter	your	name.

The	HTML	4.0	standard	introduced	three	tags	that	make	navigation	of	forms
easier	for	users,	particularly	those	with	disabilities.	They	include	a	way	to	group
and	caption	regions	of	the	form	and	a	way	to	individually	label	form	controls.	All
are	supposed	to	get	special	treatment	by	the	browser,	such	as	being	rendered	by	a
speech	synthesizer	as	well	as	specially	displayed,	and	can	be	easily	accessed	from
the	user	keyboardthat	is,	when	browsers	become	fully	HTML	4/XHTML	compliant.

9.10.1.	The	<label>	Tag

Use	the	<label>	tag	to	define	relationships	between	a	form	control,	such	as	a	text-
input	field,	and	one	or	more	text	labels.	According	to	the	latest	standards,	the
text	in	a	label	is	to	receive	special	treatment	by	the	browser.	Browsers	may
choose	a	special	display	style	for	the	label	(you	can,	too,	with	stylesheets).	And
when	selected	by	the	user,	the	browser	automatically	transfers	focus	to	a	label's
associated	form	control.

<label>

Function Creates	a	label	for	a	form	element

Attributes
accesskey,	class,	dir,	for,	id,	lang,	onBlur,	onClick,	onDblClick,	onFocus,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
style,	title

End	tag </label>;	never	omitted

Contains label_contents

Used	in form_content

	

9.10.1.1.	Implicit	and	explicit	associations

One	or	more	labels	get	associated	with	a	form	control	in	one	of	two	ways:
implicitly,	by	including	the	form	control	as	contents	of	the	label	tag,	or	explicitly,
by	naming	the	ID	of	the	target	form	control	in	the	<label>	tag's	for	attribute.

For	example,	in	XHTML:

<label	for="SSN">Social	Security	Number:</label>
<input	type="text"	name="SocSecNum"	id="SSN"	/>
<label>Date	of	birth:	<input	type="text"	name="DofB"	/></label>

	
The	first	label	explicitly	relates	the	text	"Social	Security	Number:"	with	the	form's
Social	Security	number	text-input	control	(SocSecNum),	because	its	for	attribute's
value	is	identical	to	the	control's	id,	SSN.	The	second	label	("Date	of	birth:")	does
not	require	a	for	attribute,	nor	does	its	related	control	require	an	id	attribute,
because	they	are	implicitly	joined	by	placing	the	<input>	tag	within	the	<label>	tag.

Be	careful	not	to	confuse	the	name	and	id	attributes.	The	former	creates	a	name	for
an	element	that	the	browser	sends	to	the	server-side	forms	processor;	id	creates
a	name	that	<label>	tags	and	URLs	can	use.	Note	also	that	although	a	label	may

reference	only	a	single	form	control,	several	labels	may	reference	a	single	control.
Thus,	you	can	steer	users	to	a	particular	form	input	region	from	several	places	in
a	document.

9.10.1.2.	Other	label	attributes

Labels	also	share	many	of	the	general	display,	access,	and	event-related	tag
attributes	described	earlier	in	section	9.9.	In	addition	to	the	standard	HTML	4	and
XHTML	event	attributes,	labels	also	support	the	onfocus	and	onblur	attributes.

9.10.2.	Forming	a	Group

Beyond	individual	labels,	you	may	group	a	set	of	form	controls	and	label	the
group	with	the	<fieldset>	and	<legend>	tags.	Again,	the	HTML	4	and	XHTML
standards	attempt	to	make	forms	more	readily	accessible	by	users,	particularly
those	with	disabilities.	Grouping	form	controls	into	explicit	sections	gives	you	the
opportunity	to	specially	display	and	otherwise	manage	the	form	contents.

9.10.2.1.	The	<fieldset>	tag

The	<fieldset>	tag	encapsulates	a	section	of	form	contents,	creating	a	group	of
related	form	fields.	<fieldset>	doesn't	have	any	required	or	unique	attributes.

<fieldset>

Function Groups	related	elements	within	a	form

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </fieldset>;	never	omitted

Contains form_content

Used	in form_content

	
When	a	group	of	form	elements	are	placed	within	a	<fieldset>	tag,	the	browser
may	display	them	in	a	special	manner.	This	might	include	a	special	border,	3D
effects,	or	even	creating	a	subform	to	handle	the	elements.

9.10.2.2.	The	<legend>	tag

Use	the	<legend>	tag	to	create	a	label	for	a	fieldset	in	a	form.	The	tag	may	appear
only	inside	a	<fieldset>.	As	with	<label>,	the	<legend>	contents	are	to	be	specially
treated	by	the	HTML	4/XHTML-compliant	browser,	transferring	focus	to	associated
form	elements	when	selected	and	serving	to	improve	accessibility	of	users	to	a
<fieldset>.

<legend>

Function Creates	a	legend	for	a	field	set	within	a	form

Attributes accesskey,	align,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,
onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </legend>;	may	be	omitted	in	HTML

Contains legend_content

Used	in form_content

	
In	addition	to	supporting	many	of	the	form	element	attributes	described	earlier	in
section	9.9,	the	<legend>	tag	accepts	the	accesskey	attribute	and	the	align	attribute.
The	value	of	align	may	be	top,	bottom,	left,	or	right,	instructing	the	browser	where
the	legend	should	be	placed	with	respect	to	the	field	set.

Bringing	all	these	tags	together,	here	are	a	field	set	and	legend	containing	a	few
form	elements,	individually	labeled:

<fieldset>
			<legend>Personal	information</legend>
			<label>Name:<input	type="text"	/></label>
			<label>Address:<input	type="text"	/></label>
			<label>Phone:<input	type="text"	/></label>
</fieldset>

	
Notice	in	Figure	9-9	how	Firefox	neatly	puts	a	frame	around	the	field	set	and
through	the	legend	but	doesn't	otherwise	format	the	field	set's	contents.
Obviously,	you'll	need	to	do	some	format-tweaking	yourself.

Figure	9-9.	Browsers	fully	frame	form	fieldsets

	
	

9.11.	Creating	Effective	Forms

Properly	done,	a	form	can	provide	an	effective	user	interface	for	your	readers.
With	some	server-side	programming	tricks,	you	can	use	forms	to	personalize	the
documents	that	you	present	to	readers	and	thereby	significantly	increase	the
value	of	your	pages	on	the	Web.

9.11.1.	Browser	Constraints

Unlike	other	GUIs,	browser	displays	are	static.	They	have	little	or	no	capability	for
real-time	data	validation,	for	example,	or	for	updating	the	values	in	a	form	based
upon	user	input,	giving	users	no	help	or	guidance.[*]	Consequently,	poorly
designed	web	forms	are	difficult	to	fill	out.

[*]	This	is	not	entirely	true.	While	neither	HTML	nor	XHTML	provides	for	data	validation	and	user	guidance,	it	is	possible	to
attach	to	your	form	elements	Java	or	JavaScript	applets	that	do	a	very	nice	job	of	validating	form	data,	updating	form
fields	based	upon	user	input,	and	guiding	users	through	your	forms.

Make	sure	your	forms	assist	users	as	much	as	possible.	For	example,	adjust	the
size	of	text-input	fields	to	give	clues	on	acceptable	input;	five-character	(or	nine-
character)	zip	codes,	for	instance.	Use	checkboxes,	radio	buttons,	and	selection
lists	whenever	possible	to	narrow	the	list	of	choices	the	user	must	make.

Make	sure	you	also	adequately	document	your	forms.	Explain	how	to	fill	them
out,	supplying	examples	for	each	field.	Provide	appropriate	hyperlinks	to
documentation	that	describes	each	field,	if	necessary.

When	the	form	is	submitted,	make	sure	that	the	server-side	application
exhaustively	validates	the	user's	data.	If	an	error	is	discovered,	present	the	user
with	intelligent	error	messages	and	possible	corrections.	One	of	the	most
frustrating	aspects	of	filling	out	forms	is	to	have	to	start	over	from	scratch
whenever	the	server	discovers	an	error.	To	alleviate	this	ugly	redundancy	and
burden	on	your	readers,	consider	spending	extra	time	and	resources	on	the
server	side	that	returns	the	user's	completed	form	with	the	erroneous	fields
flagged	for	changes.

While	these	suggestions	require	significant	effort	on	your	part,	they	pay	off	many
times	over	by	making	life	easier	for	your	users.	Remember,	you	create	the	form
just	once,	but	it	may	be	used	thousands	or	even	millions	of	times	by	users.

9.11.2.	Handling	Limited	Displays

Although	most	PCs	have	been	upgraded	to	provide	resolution	significantly	better
than	the	600	x	480	that	was	common	when	we	wrote	the	first	edition	of	this
book,	many	devices	(WebTV,	cell	phones	with	built-in	browsers,	PDAs)	dictate	that
form	design	should	be	conservative.	The	best	compromise	is	to	assume	a
document-viewing	window	roughly	75	readable	characters	wide	and	30	to	50	lines
tall.[*]	You	should	design	your	forms	(and	all	your	documents)	so	that	they	are
effective	when	viewed	through	a	window	of	this	size.

[*]	Some	devices,	such	as	cell	phones,	have	tiny	displays,	as	small	as	four	lines.	A	better	approach,	though	beyond	the
scope	of	this	book,	is	to	tailor	your	design	to	the	device,	using	Extensible	Stylesheet	Transformations	(XSLT).

You	should	structure	your	form	to	scroll	naturally	into	two	or	three	logical
sections.	The	user	can	fill	out	the	first	section,	page	down;	fill	out	the	second
section,	page	down;	and	so	forth.

You	should	also	avoid	wide	input	elements.	It	is	difficult	enough	to	deal	with	a
scrolling	text	field	or	text	area	without	having	to	scroll	the	document	itself
horizontally	to	see	additional	portions	of	the	input	element.

9.11.3.	User-Interface	Considerations

When	you	elect	to	create	a	form,	you	immediately	assume	another	role:	that	of	a
user-interface	designer.	While	a	complete	discussion	of	user-interface	design	is
beyond	the	scope	of	this	book,	it	helps	to	understand	a	few	basic	design	rules	to
create	effective,	attractive	forms.

Any	user	interface	is	perceived	at	several	levels	simultaneously.	Forms	are	no
different.	At	the	lowest	level,	your	brain	recognizes	shapes	within	the	document,
attempting	to	categorize	the	elements	of	the	form.	At	a	higher	level,	you	are
reading	the	text	guides	and	prompts,	trying	to	determine	what	input	is	required	of
you.	At	the	highest	level,	you	are	seeking	to	accomplish	a	goal	with	the	interface
as	your	tool.

A	good	form	accommodates	all	three	of	these	perceptive	needs.	Input	elements
should	be	organized	in	logical	groups	so	that	your	brain	can	process	the	form
layout	in	chunks	of	related	fields.	Consistent,	well-written	prompts	and	supporting
text	assist	and	lead	the	user	to	enter	the	correct	information.	Text	prompts	also
remind	users	of	the	task	at	hand	and	reinforce	the	form's	goal.

9.11.4.	Creating	Forms	That	Flow

Users	process	forms	in	a	predictable	order,	one	element	after	another,	seeking	to

find	the	next	element	as	they	finish	the	previous	one.	To	accommodate	this
searching	process,	you	should	design	your	forms	so	that	one	field	leads	naturally
to	another	and	related	fields	are	grouped	together.	Similarly,	groups	should	lead
naturally	to	one	another	and	should	be	formatted	in	a	consistent	manner.

Simply	stringing	a	number	of	fields	together	does	not	constitute	an	effective	form.
You	must	put	yourself	in	the	place	of	your	users,	who	are	using	the	form	for	the
first	time.	Test	your	form	on	unsuspecting	friends	and	colleagues	before	you
release	it	to	the	general	public.	Is	it	easy	to	determine	the	purpose	of	the	form?
Where	do	you	start	filling	things	out?	Can	the	user	find	a	button	to	click	to	submit
the	form?	Is	there	an	opportunity	to	confirm	decisions?	Do	readers	understand
what	is	expected	of	them	for	each	field?

Your	forms	should	lead	the	user	naturally	through	the	process	of	supplying	the
necessary	data	for	the	application.	You	wouldn't	ask	for	a	street	address	before
asking	for	the	user's	name;	other	rules	may	dictate	the	ordering	of	other	groups
of	input	elements.	To	see	whether	your	form	really	works,	make	sure	you	view	it
on	several	browsers	and	have	several	people	fill	it	out	and	comment	on	its
effectiveness.

9.11.5.	Good	Form,	Old	Chap

At	first	glance,	the	basic	rule	of	HTML	and	XHTMLcontent,	not	styleseems	in	direct
opposition	to	the	basic	rule	of	good	interface	designprecise,	consistent	layout.
Even	so,	it	is	possible	to	use	some	elements	to	greatly	improve	the	layout	and
readability	of	most	forms.

Traditional	page	layout	uses	a	grid	of	columns	to	align	common	elements	within	a
page.	The	resulting	implied	vertical	and	horizontal	"edges"	of	adjacent	elements
give	a	sense	of	order	and	organization	to	the	page	and	make	it	easy	for	the	eye	to
scan	and	follow.

HTML	and	XHTML	make	it	hard,	but	you	can	accomplish	the	same	sort	of	layout
for	your	forms.	For	example,	you	can	group	related	elements	and	separate	groups
with	empty	paragraphs	or	horizontal	rules.

Vertical	alignment	is	more	difficult,	but	not	impossible.	In	general,	forms	are
easier	to	use	if	you	arrange	the	input	elements	vertically	and	aligned	to	a
common	margin.	One	popular	form	layout	keeps	the	left	edge	of	the	input
elements	aligned,	with	the	element	labels	immediately	to	the	left	of	the	elements.
This	is	done	by	using	tables	to	place	and	align	each	form	element	and	its	label.
Here	is	our	previous	HTML	form	example,	with	the	labels	placed	in	the	first
column	and	the	corresponding	elements	in	the	second:

<form	method=POST	action="http://www.kumquat.com/demo">
		<table	border=0>
				<tr	valign=top>
						<td	align=right>Name:</td>
						<td	align=left><input	type=text	name=name	size=32	maxlength=80>
						</td>
				</tr>
				<tr	valign=top	>
						<td	align=right>Sex:</td>
						<td	align=left>
								<input	type=radio	name=sex	value="M">	Male	

								<input	type=radio	name=sex	value="F">	Female
						</td>
				</tr>
				<tr	valign=top	>
						<td	align=right>Income:</td>
						<td	align=left>
								<select	name=income	size=1>
										<option>Under	$25,000
										<option>$25,001	to	$50,000
										<option>$50,001	and	higher
								</select>
						</td>
				</tr>
				<tr	valign=top>
						<td	colspan=2	align=center>
								<input	type=submit	value="Submit	Query">
						</td>
				</tr>
		</table>
</form>

	
Notice	in	the	resulting	rendered	form,	shown	in	Figure	9-10,	that	the	table	has
placed	each	input	element	in	its	own	row.	The	align	attributes	in	the	table	cells
force	the	labels	to	the	right	and	the	elements	to	the	left,	creating	a	vertical
margin	through	the	form.	By	spanning	the	cell	in	the	last	row,	the	submission
button	is	centered	with	respect	to	the	entire	form.	In	general,	using	tables	in	this
manner	makes	form	layout	much	easier	and	more	consistent	throughout	your
documents.	If	you	find	this	example	at	all	difficult,	see	Chapter	10,	which	explains
in	detail	all	the	glories	of	tables.

Figure	9-10.	Use	a	consistent	vertical	margin	to	align	form

elements

	
You	may	find	other	consistent	ways	to	lay	out	your	forms.	The	key	is	to	find	a
useful	layout	style	that	works	well	across	most	browsers	and	stick	with	it.	Even
though	HTML	and	XHTML	have	limited	tools	to	control	layout	and	positioning,	take
advantage	of	what	is	available	in	order	to	make	your	forms	more	attractive	and
easier	to	use.

	

9.12.	Forms	Programming

If	you	create	forms,	sooner	or	later	you'll	need	to	create	the	server-side
application	that	processes	them.	Don't	panic.	There	is	nothing	magic	about	server-
side	programming,	nor	is	it	overly	difficult.	With	a	little	practice	and	some
perseverance,	you'll	be	cranking	out	forms	applications.

The	most	important	advice	we	can	give	about	forms	programming	is	easy	to
remember:	copy	others'	work.	Writing	a	forms	application	from	scratch	is	fairly
hard;	copying	a	functioning	forms	application	and	modifying	it	to	support	your
form	is	far	easier.

Fortunately,	server	vendors	know	this,	and	they	usually	supply	sample	forms
applications	with	their	server.	Rummage	about	for	a	directory	named	cgi-src,	and
you	should	discover	a	number	of	useful	examples	you	can	easily	copy	and	reuse.

We	can't	hope	to	replicate	all	the	useful	stuff	that	came	with	your	server	or
provide	a	complete	treatise	on	forms	programming.	What	we	can	do	is	offer	a
simple	example	of	GET	and	POST	applications,	giving	you	a	feel	for	the	work
involved	and	hopefully	getting	you	moving	in	the	right	direction.

Before	we	begin,	keep	in	mind	that	not	all	servers	invoke	these	applications	in	the
same	manner.	Our	examples	cover	the	broad	class	of	servers	derived	from	the
original	National	Center	for	Supercomputing	Applications	(NCSA)	HTTP	server.
They	also	should	work	with	the	very	popular	and	public-domain	Apache	server.	In
all	cases,	consult	your	server	documentation	for	complete	details.	You	will	find
even	more	detailed	information	in	CGI	Programming	with	Perl,	by	Scott	Guelich,
Gunther	Birznieks,	and	Shishir	Gundavaram,	and	Webmaster	in	a	Nutshell,	by
Stephen	Spainhour	and	Robert	Eckstein,	both	published	by	O'Reilly.

One	alternative	to	CGI	programming	is	the	Java	servlet	model,	covered	in	Java
Servlet	Programming,	by	Jason	Hunter	with	William	Crawford	(O'Reilly).	Servlets
can	be	used	to	process	GET	and	POST	form	submissions,	although	they	are
actually	more	general	objects.	There	are	no	examples	of	servlets	in	this	book.

9.12.1.	Returning	Results

Before	we	begin,	we	need	to	discuss	how	server-side	applications	end.	All	server-
side	applications	pass	their	results	back	to	the	server	(and	on	to	the	user)	by
writing	those	results	to	the	application's	standard	output	as	a	MIME-encoded	file.
Hence,	the	first	line	of	the	application's	output	must	be	a	MIME	Content-Type
descriptor.	If	your	application	returns	an	HTML	document,	the	first	line	is:

Content-type:	text/html

	
The	second	line	must	be	completely	empty.	Your	application	can	return	other
content	types,	toojust	include	the	correct	MIME	type.	A	GIF	image,	for	example,	is
preceded	with:

Content-type:	image/gif

	
Generic	text	that	is	not	to	be	interpreted	as	HTML	can	be	returned	with:

Content-type:	text/plain

	
This	is	often	useful	for	returning	the	output	of	other	commands	that	generate
plain	text	rather	than	HTML.

9.12.2.	Handling	GET	Forms

With	the	GET	method,	the	browser	passes	form	parameters	as	part	of	the	URL
that	invokes	the	server-side	forms	application.	A	typical	invocation	of	a	GET-style
application	might	use	a	URL	like	this:

http://www.kumquat.com/cgi-bin/dump_get?name=bob&phone=555-1212

	
When	the	www.kumquat.com	server	processes	this	URL,	it	invokes	the	application
named	dump_get	that	is	stored	in	the	directory	named	cgi-bin.	Everything	after
the	question	mark	is	passed	to	the	application	as	parameters.

Things	diverge	a	bit	at	this	point,	due	to	the	nature	of	the	GET-style	URL.	While
forms	place	name/value	pairs	in	the	URL,	it	is	possible	to	invoke	a	GET-style
application	with	only	values	in	the	URL.	Thus,	the	following	is	a	valid	invocation
as	well,	with	parameters	separated	by	plus	signs	(+):

http://www.kumquat.com/cgi-bin/dump_get?bob+555-1212

	
This	is	a	common	invocation	when	the	browser	references	the	application	via	a

http://www.kumquat.com

searchable	document	with	the	<isindex>	tag.	The	parameters	typed	by	the	user	into
the	document's	text-entry	field	get	passed	to	the	server-side	application	as
unnamed	parameters	separated	by	plus	signs.

If	you	invoke	your	GET	application	with	named	parameters,	your	server	passes
those	parameters	to	the	application	in	one	way;	unnamed	parameters	are	passed
differently.

9.12.2.1.	Using	named	parameters	with	GET	applications

Named	parameters	are	passed	to	GET	applications	by	creating	an	environment
variable	named	QUERY_STRING	and	setting	its	value	to	the	entire	portion	of	the	URL
following	the	question	mark.	Using	our	previous	example,	the	value	of	QUERY_STRING
would	be	set	to:

name=bob&phone=555-1212

	
Your	application	must	retrieve	this	variable	and	extract	from	it	the	parameter
name/value	pairs.	Fortunately,	most	servers	come	with	a	set	of	utility	routines
that	perform	this	task	for	you,	so	a	simple	C	program	that	just	dumps	the
parameters	might	look	like	this:

#include	<stdio.h>
#include	<stdlib.h>

#define	MAX_ENTRIES	10000

typedef	struct	{char	*name;
																char	*val;
															}	entry;

char	*makeword(char	*line,	char	stop);
char	x2c(char	*what);
void	unescape_url(char	*url);
void	plustospace(char	*str);

main(int	argc,	char	*argv[])

{		entry	entries[MAX_ENTRIES];
				int	num_entries,	i;
				char	*query_string;

/*	Get	the	value	of	the	QUERY_STRING	environment	variable	*/
				query_string	=	getenv("QUERY_STRING");

/*	Extract	the	parameters,	building	a	table	of	entries	*/
				for	(num_entries	=	0;	query_string[0];	num_entries++)	{
							entries[num_entries].val	=	makeword(query_string,	'&');

							plustospace(entries[num_entries].val);
							unescape_url(entries[num_entries].val);
							entries[num_entries].name	=
										makeword(entries[num_entries].val,	'=');
							}

/*	Spit	out	the	HTML	boilerplate	*/
				printf("Content-type:	text/html\n");
				printf("\n");

				printf(<html>);
				printf(<head>);
				printf("<title>Named	Parameter	Echo</title>\n");
				printf("</head>");
				printf(<body>);
				printf("You	entered	the	following	parameters:\n");
				printf("\n");

/*	Echo	the	parameters	back	to	the	user	*/
				for(i	=	0;	i	<	num_entries;	i++)
								printf("	%s	=	%s\n",	entries[i].name,
																		entries[i].val);

/*	And	close	out	with	more	boilerplate	*/
				printf("\n");
				printf("</body>\n");
				printf("</html>\n");
}

	
The	example	program	begins	with	a	few	declarations	that	define	the	utility
routines	that	scan	through	a	character	string	and	extract	the	parameter	names
and	values.[*]	The	body	of	the	program	obtains	the	value	of	the	QUERY_STRING
environment	variable	using	the	getenv()	system	call,	uses	the	utility	routines	to
extract	the	parameters	from	that	value,	and	then	generates	a	simple	HTML
document	that	echoes	those	values	back	to	the	user.

[*]	These	routines	are	usually	supplied	by	the	server	vendor.	They	are	not	part	of	the	standard	C	or	Unix	library.

For	real	applications,	you	should	insert	your	actual	processing	code	after	the
parameter	extraction	and	before	the	HTML	generation.	Of	course,	you'll	also	need
to	change	the	HTML	generation	to	match	your	application's	functionality.

9.12.2.2.	Using	unnamed	parameters	with	GET	applications

Unnamed	parameters	get	passed	to	the	application	as	command-line	parameters.
This	makes	writing	the	server-side	application	almost	trivial.	Here	is	a	simple	shell
script	that	dumps	the	parameter	values	back	to	the	user:

#!/bin/csh	-f
#
#	Dump	unnamed	GET	parameters	back	to	the	user

echo	"Content-type:	text/html"	echo
echo	'<html>'
echo	'<head>'
echo	'<title>Unnamed	Parameter	Echo</title>'
echo	'</head>'
echo	'<body>'
echo	'You	entered	the	following	parameters:'
echo	''

foreach	i	($*)
			echo	''	$i
end

echo	''
echo	'</body>'

exit	0

	
Again,	we	follow	the	same	general	style:	output	a	generic	document	header,
including	the	MIME	Content-Type,	followed	by	the	parameters	and	some	closing
boilerplate.	To	convert	this	to	a	real	application,	replace	the	foreach	loop	with
commands	that	actually	do	something.

9.12.3.	Handling	POST	Forms

Forms-processing	applications	that	accept	HTML/XHTML	POST-style	parameters
expect	to	read	encoded	parameters	from	their	standard	input.	Like	GET-style
applications	with	named	parameters,	they	can	take	advantage	of	the	server's
utility	routines	to	parse	these	parameters.

Here	is	a	program	that	echoes	the	POST-style	parameters	back	to	the	user:

#include	<stdio.h>
#include	<stdlib.h>

#define	MAX_ENTRIES	10000

typedef	struct	{char	*name;
																char	*val;
															}	entry;

char	*makeword(char	*line,	char	stop);
char	*fmakeword(FILE	*f,	char	stop,	int	*len);
char	x2c(char	*what);
void	unescape_url(char	*url);
void	plustospace(char	*str);

main(int	argc,	char	*argv[])

{		entry	entries[MAX_ENTRIES];
				int	num_entries,	i;

/*	Parse	parameters	from	stdin,	building	a	table	of	entries	*/
				for	(num_entries	=	0;	!feof(stdin);	num_entries++)	{
							entries[num_entries].val	=	fmakeword(stdin,	'&',	&cl);
							plustospace(entries[num_entries].val);
							unescape_url(entries[num_entries].val);
							entries[num_entries].name	=
										makeword(entries[num_entries].val,	'=');
							}

/*	Spit	out	the	HTML	boilerplate	*/
				printf("Content-type:	text/html\n");
				printf("\n");
				printf(<html>);
				printf(<head>);
				printf("<title>Named	Parameter	Echo</title>\n");
				printf("</head>");
				printf(<body>);
				printf("You	entered	the	following	parameters:\n");

				printf("\n");

/*	Echo	the	parameters	back	to	the	user	*/
				for(i	=	0;	i	<	num_entries;	i++)
								printf("	%s	=	%s\n",	entries[i].name,
																		entries[i].val);

/*	And	close	out	with	more	boilerplate	*/
				printf("\n");
				printf("</body>\n");
				printf("</html>\n");
}

	
Again,	we	follow	the	same	general	form.	The	program	starts	by	declaring	the
various	utility	routines	needed	to	parse	the	parameters,	along	with	a	data
structure	to	hold	the	parameter	list.	The	actual	code	begins	by	reading	the
parameter	list	from	the	standard	input	and	building	a	list	of	parameter	names	and
values	in	the	array	named	entries.	Once	this	is	complete,	a	boilerplate	document
header	is	written	to	the	standard	output,	followed	by	the	parameters	and	some
closing	boilerplate.

Like	the	other	examples,	this	program	is	handy	for	checking	the	parameters	being
passed	to	the	server	application	early	in	the	forms-	and	application-debugging
process.	You	can	also	use	it	as	a	skeleton	for	other	applications	by	inserting
appropriate	processing	code	after	the	parameter	list	is	built	up	and	altering	the
output	section	to	send	back	the	appropriate	results.

	

Chapter	10.	Tables

Of	all	the	extensions	that	found	their	way	into	HTML	and	XHTML,	none	is	more
welcome	than	tables.	While	tables	are	useful	for	the	general	display	of	tabular
data,	they	also	serve	an	important	role	in	managing	document	layout.	Creative
use	of	tables,	as	we'll	show	in	this	chapter,	can	go	a	long	way	to	enliven	an
otherwise	dull	document	layout.	And	you	can	apply	all	the	Cascading	Style	Sheet
(CSS)	styles	to	the	various	elements	of	a	table	to	achieve	a	desktop-published
look	and	feel.

	

10.1.	The	Standard	Table	Model

The	standard	model	for	tables	is	fairly	straightforward:	a	table	is	a	collection	of
numbers	and	words	arranged	in	rows	and	columns	of	cells.	Most	cells	contain	the
data	values;	others	contain	row	and	column	headers	that	describe	the	data.

You	define	a	table	and	include	all	of	its	elements	between	the	<table>	tag	and	its
corresponding	</table>	end	tag.	Table	elements,	including	data	items,	row	and
column	headers,	and	captions,	each	have	their	own	markup	tags.	Working	from
left	to	right	and	top	to	bottom,	you	define,	in	sequence,	the	header	and	data	for
each	column	cell	across	and	down	the	table.

The	latest	standards	also	provide	a	rich	collection	of	tag	attributes,	many	of	which
once	were	popular	extensions	to	HTML	as	supported	by	the	popular	browsers.
They	make	your	tables	look	good,	by	enabling	special	alignment	of	the	table
values	and	headers,	borders,	table	rule	lines,	and	automatic	sizing	of	the	data
cells	to	accommodate	their	content,	among	other	capabilities.	The	various	popular
browsers	have	slightly	different	sets	of	table	attributes;	we'll	point	out	those
variations	as	we	go.

10.1.1.	Table	Contents

You	can	put	nearly	anything	you	might	have	within	the	body	of	an	HTML	or
XHTML	document	inside	a	table	cell,	including	images,	forms,	rules,	headings,	and
even	another	table.	The	browser	treats	each	cell	as	a	window	unto	itself,	flowing
the	cell's	content	to	fill	the	space,	but	with	some	special	formatting	provisions	and
extensions.

10.1.2.	An	Example	Table

Here's	a	quick	example	that	should	satisfy	your	itching	curiosity	to	see	what	an
HTML	table	looks	like	in	a	source	document	and	when	finally	rendered,	as	shown
in	Figure	10-1.	More	importantly,	it	shows	you	the	basic	structure	of	a	table,	from
which	you	can	infer	many	of	the	elements,	tag	syntax	and	order,	attributes,	and
so	on,	and	to	which	you	may	refer	as	you	read	the	following	various	detailed
descriptions:

Figure	10-1.	HTML	table	example

	
<table	border	cellspacing=0	cellpadding=5>
		<caption	align=bottom>
				Kumquat	versus	a	poked	eye,	by	gender</caption>
		<tr>
				<td	colspan=2	rowspan=2></td>
				<th	colspan=2	align=center>Preference</th>
		</tr>
		<tr>
				<th>Eating	Kumquats</th>
				<th>Poke	In	The	Eye</th>
		</tr>
		<tr	align=center>
				<th	rowspan=2>Gender</th>
				<th>Male</th>
				<td>73%</td>
				<td>27%</td>
		</tr>
		<tr	align=center>
				<th>Female</th>
				<td>16%</td>
				<td>84%</td>
		</tr>
</table>

	

10.1.3.	Missing	Features

At	one	time,	standard	HTML	tables	didn't	have	all	the	features	of	a	full-fledged

table-generation	tool	you	might	find	in	a	popular	word	processor.	Rather,	the
popular	browsers,	Internet	Explorer	and	Netscape	in	particular,	provided
extensions	to	the	language.

Missing	were	features	that	supported	running	headers	and	footers,	particularly
useful	when	printing	a	lengthy	table.	Another	missing	feature	was	control	over
table	rules	and	divisions.

Today,	the	standards	are	ahead	of	the	browsers	in	terms	of	table	features;	HTML	4
and	XHTML	standardize	the	many	extensions	and	provide	additional	solutions.

	

10.2.	Basic	Table	Tags

You	can	create	a	wide	variety	of	tables	with	only	five	tags:	the	<table>	tag,	which
encapsulates	a	table	and	its	elements	in	the	document's	body	content;	the	<tr>
tag,	which	defines	a	table	row;	the	<th>	and	<td>	tags,	which	define	the	table's
headers	and	data	cells;	and	the	<caption>	tag,	which	defines	a	title	or	caption	for
the	table.	Beyond	these	core	tags,	you	may	also	define	and	control	whole	sections
of	tables,	including	adding	running	headers	and	footers,	with	the	<colgroup>,	<col>,
<tbody>,	<thead>,	and	<tfoot>	tags.	Each	tag	has	one	or	more	required	and	optional
attributes,	some	of	which	affect	not	only	the	tag	itself	but	also	related	tags.

10.2.1.	The	<table>	Tag

The	<table>	tag	and	its	</table>	end	tag	define	and	encapsulate	a	table	within	the
body	of	your	document.	Unless	you	place	them	within	the	browser	window	by
stylesheet,	paragraph,	division-level,	or	other	alignment	options,	the	browser
stops	the	current	text	flow,	breaks	the	line,	inserts	the	table	beginning	on	a	new
line,	and	then	restarts	the	text	flow	on	a	new	line	below	the	table.

<table>

Function Defines	a	table

Attributes

align,	background,	bgcolor,	border,	bordercolor	 ,	bordercolordark	 ,

bordercolorlight	 ,	cellpadding,	cellspacing,	class,	cols,	dir,	frame,	height,
hspace,	id,	lang,	nowrap,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	rules,	style,
summary,	title,	valign,	vspace,	width

End	tag </table>;	never	omitted

Contains table_content

Used	in block

	
The	only	content	allowed	within	the	<table>	is	one	or	more	<tr>	tags,	which	define
each	row	of	table	contents,	along	with	the	various	table	sectioning	tags:	<thead>,
<tfoot>,	<tbody>,	<col>,	and	<colgroup>.

10.2.1.1.	The	align	attribute	(deprecated)

The	HTML	4	and	XHTML	standards	have	deprecated	this	attribute	in	favor	of	the
align	property	provided	by	CSS,	yet	it	remains	popular	and	is	currently	well
supported	by	the	popular	browsers.

Like	images,	tables	are	rectangular	objects	that	float	in	the	browser	display,
aligned	according	to	the	current	text	flow.	Normally,	the	browser	left-justifies	a
table,	abutting	its	left	edge	to	the	left	margin	of	the	display	window.	Or	the	table
may	be	centered	if	under	the	influence	of	the	<center>	tag,	a	centered	paragraph,
or	a	centered	division.	Unlike	images,	however,	tables	are	not	inline	objects.	Text
content	normally	flows	above	and	below	a	table,	not	beside	it.	You	can	change
that	display	behavior	with	the	align	attribute	or	a	cascading	style	definition	for	the
<table>	tag.

The	align	attribute	accepts	a	value	of	either	left,	right,	or	center,	indicating	that
the	table	should	be	placed	flush	against	the	left	or	right	margin	of	the	text	flow,

with	the	text	flowing	around	the	table,	or	in	the	middle	with	text	flowing	above
and	below,	respectively.

Note	that	the	align	attribute	within	the	<table>	tag	is	different	from	those	used
within	a	table's	element	tags,	<tr>,	<td>,	and	<th>.	In	those	tags,	the	attribute
controls	text	alignment	within	the	table's	cells,	not	alignment	of	the	table	within
the	containing	body-text	flow.

10.2.1.2.	The	bgcolor	and	background	attributes

You	can	make	the	background	of	a	table	a	different	color	than	the	document's
background	with	the	bgcolor	attribute	for	the	<table>	tag.	You	must	set	the	color
value	for	the	bgcolor	attribute	to	either	a	red,	blue,	and	green	(RGB)	color	value	or
a	standard	color	name.	Appendix	G	provides	both	the	syntax	of	color	values	and
the	acceptable	color	names.

The	popular	browsers	give	every	cell	in	the	table	(but	not	the	caption)	this
background	color.	You	may	also	set	individual	row	and	cell	colors	by	providing	the
bgcolor	attribute	or	a	style	attribute	for	those	rows	or	cells.

The	background	attribute,	a	nonstandard	extension	supported	by	all	the	popular
browsers,	supplies	the	URL	of	an	image	that	is	tiled	to	fill	the	background	of	the
table.	The	image	is	clipped	if	the	table	is	smaller	than	the	image.	By	using	this
attribute	with	a	borderless	table,	you	can	put	text	over	an	image	contained	within
a	document.

10.2.1.3.	The	border	attribute

The	optional	border	attribute	for	the	<table>	tag	tells	the	browser	to	draw	lines
around	the	table	and	the	rows	and	cells	within	it.	The	default	is	no	borders	at	all.
You	may	specify	a	value	for	border,	but	you	don't	have	to	with	HTML.	Alone,	the
attribute	simply	enables	borders	and	a	set	of	default	characteristics.	With	XHTML,
use	border="border"	to	achieve	the	same	default	results.	Otherwise,	in	HTML	or	with
XHTML,	supply	an	integer	value	for	border	equal	to	the	pixel	width	of	the	3D
chiseled-edge	lines	that	surround	the	outside	of	the	table	and	make	it	appear	to
be	embossed	onto	the	page.

10.2.1.4.	The	frame	and	rules	attributes

With	Netscape	4,	the	border	attribute	was	all	or	nothing,	affecting	the	appearance
and	spacing	both	of	the	frame	around	the	table	and	of	the	rule	lines	between	data
cells.	Internet	Explorer	versions	4	and	later	and	Netscape	6	and	later	versions,	as

well	as	the	popular	Firefox	and	Opera,	let	you	individually	modify	the	various	line
segments	that	make	up	the	borders	around	the	table	(frame)	and	around	the	data
cells	(rules).

The	standard	frame	attribute	modifies	border's	effects	for	the	lines	that	surround	the
table.	The	default	valuewhat	you	get	if	you	don't	use	frame	at	allis	box,	which	tells
the	browser	to	draw	all	four	lines	around	the	table.	The	value	border	does	the
same	thing	as	box.	The	value	void	removes	all	four	of	the	frame	segments.	The	frame
values	above,	below,	lhs,	and	rhs	draw	the	various	border	segments	on	the	top,
bottom,	left,	and	right	side,	respectively,	of	the	table.	The	value	hsides	draws
borders	on	the	top	and	bottom	(horizontal)	sides	of	the	table;	vsides	draws	borders
on	the	left	and	right	(vertical)	sides	of	the	table.

With	standard	tables	now	supported	by	the	latest	versions	of	all	the	popular
browsers,	you	also	may	control	the	thickness	of	a	table's	internal	cell	borders	via
the	rules	attribute.	The	default	behavior,	represented	by	the	value	of	all,	is	to
draw	borders	around	all	cells.	Specifying	groups	places	thicker	borders	between	row
and	column	groups	defined	by	the	<thead>,	<tbody>,	<tfoot>,	<col>,	and	<colgroup>
tags.	Using	rows	or	cols	places	borders	only	between	every	row	or	column,
respectively,	and	using	none	removes	borders	from	every	cell	in	the	table.

10.2.1.5.	The	bordercolor,	bordercolorlight,	and	bordercolordark	attributes

The	popular	browsers	normally	draw	a	table	border	in	three	colors,	using	light	and
dark	variations	on	the	document's	background	color	to	achieve	a	3D	effect.
Internet	Explorer's	nonstandard	bordercolor	attribute	lets	you	set	the	color	of	the
table	borders	and	rules	to	something	other	than	the	background	(if	borders	are
enabled,	of	course).	The	bordercolor	attribute's	value	can	be	either	an	RGB
hexadecimal	color	value	or	a	standard	color	name,	both	of	which	we	describe	fully
in	Appendix	G.

Internet	Explorer	also	lets	you	set	the	border	edge	colors	individually	with	special
extension	attributes:	the	bordercolorlight	and	bordercolordark	colors	shade	the	lighter
and	darker	edges	of	the	border.	The	3D	beveled-border	effect	is	tied	to	the
relationship	between	these	two	colors.	In	general,	the	light	color	should	be	about
25	percent	brighter	than	the	border	color,	and	the	dark	color	should	be	about	25
percent	darker.	That	is,	if	you	use	them	at	all:	only	your	Internet	Explorer	users
will	see	the	effects.

10.2.1.6.	The	cellspacing	attribute

The	cellspacing	attribute	controls	the	amount	of	space	placed	between	adjacent
cells	in	a	table	and	along	the	outer	edges	of	cells	along	the	edges	of	a	table.

Browsers	normally	put	two	pixels	of	space	between	cells	and	along	the	outer
edges	of	a	table.	If	you	include	a	border	attribute	in	the	<table>	tag,	the	cell	spacing
between	interior	cells	grows	by	two	more	pixels	(for	a	total	of	four)	to	make	space
for	the	chiseled	edge	on	the	interior	border.	The	outer	edges	of	edge	cells	grow	by
the	value	of	the	border	attribute.

By	including	the	cellspacing	attribute,	you	can	widen	or	reduce	the	interior	cell
borders.	For	instance,	to	make	the	thinnest	possible	interior	cell	borders,	include
the	border	and	cellspacing=0	attributes	in	the	table's	tag.

10.2.1.7.	The	cellpadding	attribute

The	cellpadding	attribute	controls	the	amount	of	space	between	the	edge	of	a	cell
and	its	contents,	which	by	default	is	1	pixel.	You	may	make	all	the	cell	contents	in
a	table	touch	their	respective	cell	borders	by	including	cellpadding=0	in	the	table
tag.	You	may	also	increase	the	cellpadding	space	by	making	its	value	greater	than
1.

10.2.1.8.	Combining	the	border,	cellspacing,	and	cellpadding	attributes

The	interactions	between	the	border,	cellspacing,	and	cellpadding	attributes	of	the
<table>	tag	combine	in	ways	that	can	be	confusing.	Figure	10-2	summarizes	how
the	attributes	create	interior	and	exterior	borders	of	various	widths.

Figure	10-2.	The	border,	cellspacing,	and	cellpadding	attributes
of	a	table

	
While	all	sorts	of	combinations	of	the	border	and	cellspacing	attributes	are	possible,
these	are	the	most	common:

border=1	and	cellspacing=0	produces	the	narrowest	possible	interior	and	exterior
borders:	2	pixels	wide.

border=n	and	cellspacing=0	makes	the	narrowest	possible	interior	borders	(2
pixels	wide)	with	an	external	border	that	is	n	+	1	pixels	wide.

border=1	and	cellspacing=n	tables	have	equal-width	exterior	and	interior	borders,
all	with	chiseled	edges	just	1	pixel	wide.	All	borders	will	be	n	+	2	pixels	wide.

10.2.1.9.	The	cols	attribute

To	format	a	table,	the	browser	must	first	read	a	table's	entire	content	to
determine	the	number	and	width	of	each	column	in	the	table.	This	can	be	a
lengthy	process	for	long	tables,	forcing	users	to	wait	to	see	your	pages.	The
nonstandard	cols	attribute	tells	the	browser,	in	advance,	how	many	columns	to
expect	in	the	table.	The	value	of	this	attribute	is	an	integer	value	defining	the
number	of	columns	in	the	table.

The	cols	attribute	only	advises	the	browser.	If	you	define	a	different	number	of
columns,	the	browser	is	free	to	ignore	the	cols	attribute	in	order	to	render	the
table	correctly.	In	general,	it	is	good	form	to	include	this	attribute	with	your
<table>	tag,	if	only	to	help	the	browser	do	a	faster	job	of	formatting	your	tables.

10.2.1.10.	The	valign	and	nowrap	attributes

The	valign	attribute	sets	the	default	vertical	alignment	of	data	in	cells	for	the
entire	table.	Acceptable	values	for	the	valign	attribute	in	<table>	are	top,	bottom,
middle,	and	baseline;	the	default	vertical	position	is	the	center	of	the	cell.

Browsers	treat	each	table	cell	as	though	it's	a	browser	window	unto	itself,	flowing
contents	inside	the	cell	as	they	would	common	body	contents	(although	they	are
subject	to	special	table-cell	alignment	properties).	Accordingly,	the	browsers
automatically	wrap	text	lines	to	fill	the	allotted	table	cell	space.	The	nowrap
attribute,	when	included	in	the	<table>	tag,	stops	that	normal	word	wrapping	in	all
rows	in	the	table.	With	nowrap,	the	browser	assembles	the	contents	of	the	cell	onto
a	single	line,	unless	you	insert	a	
	or	<p>	tag,	which	then	forces	a	break	so	that
the	contents	continue	on	a	new	line	inside	the	table	cell.

With	the	<table>	tag,	only	Opera	supports	valign.	None	of	the	browsers	supports
nowrap	at	that	level.	Instead,	you	can	achieve	similar	effects	by	including	a	valign	or
nowrap	attribute	within	the	individual	<tr>,	<td>,	and	<th>	tags,	an	approach	that	all
the	popular	browsers	support.

10.2.1.11.	The	width	and	height	attributes

Browsers	automatically	make	a	table	only	as	wide	as	needed	to	correctly	display
all	of	the	cell	contents.	If	necessary,	you	can	make	a	table	wider	with	the	width
attribute.

The	value	of	the	width	attribute	is	either	an	integer	number	of	pixels	or	a	relative
percentage	of	the	screen	width,	including	values	greater	than	100	percent.	For
example:

<table	width=400>

	
tells	the	extended	browser	to	make	the	table	400	pixels	wide,	including	any
borders	and	cell	spacing	that	extend	into	the	outer	edge	of	the	table.	If	the	table
is	wider	than	400	pixels,	the	browser	ignores	the	attribute.	Alternatively:

<table	width="50%">

	
tells	the	browser	to	make	the	table	half	as	wide	as	the	display	window.	Again,	this
width	includes	any	borders	or	cell	spacing	that	extends	into	the	outer	edge	of	the
table	and	has	no	effect	if	the	table	normally	is	more	than	half	the	user's	current
screen	width.

Use	relative	widths	for	tables	you	want	to	resize	automatically	to	the	user's
window;	for	instance,	tables	you	always	want	to	extend	across	the	entire	window
(<table	width="100%">).	Use	an	absolute	width	value	for	carefully	formatted	tables
whose	contents	become	hard	to	read	in	wide	display	windows.

Also	with	the	popular	browsers,	you	can	use	the	nonstandard	height	attribute	to
suggest	a	recommended	height	for	the	table.	The	browser	makes	the	table	no
shorter	than	this	height	but	may	make	the	table	taller	if	needed	to	contain	the
table's	contents.	This	attribute	is	useful	when	trying	to	stretch	tables	to	fit	in	a
frame	or	some	specific	area	of	a	document	but	is	of	little	use	otherwise,
particularly	because	it	is	not	a	standard	attribute.

10.2.1.12.	The	summary	attribute

The	summary	attribute	was	introduced	to	HTML	in	the	4.0	standard.	Its	value	is	a
quote-enclosed	string	that	describes	the	purpose	and	summarizes	the	contents	of
the	table.	Its	intended	use,	according	to	the	standard,	is	to	provide	extended
access	to	nonvisual	browsers,	particularly	for	users	with	disabilities.

10.2.1.13.	The	hspace	and	vspace	attributes

As	with	images,	give	your	table	some	extra	space	within	the	body	of	your
document.	Use	the	nonstandard	hspace	and	vspace	attributes	in	the	<table>	tag,	each
with	a	value	equal	to	the	number	of	pixels	of	space	to	offset	the	table	from	the
left	and	right	or	top	and	bottom,	respectively,	of	the	enclosing	text.	Interestingly,
all	of	the	popular	browsers,	except	for	Internet	Explorer,	support	these	as	<table>
attributes,	even	though	Internet	Explorer	supports	them	with	the		tag.

10.2.2.	Common	Table	Attributes

The	HTML	and	XHTML	standards,	combined	with	the	CSS	standard,	provide	a
number	of	attributes	common	not	only	to	the	<table>	tag	and	the	other	table-
creation	tags,	but	to	most	other	tags	as	well.

10.2.2.1.	The	id	and	title	attributes

Use	the	id	attribute	with	a	quote-enclosed	string	value	to	uniquely	label	a	<table>
tag	for	later	reference	by	a	hyperlink	or	an	applet.	Use	the	title	attribute	with	a
string	value	to	optionally	title	the	table	or	any	of	its	segments	for	general
reference.	A	title's	value	need	not	be	unique,	and	the	browser	may	or	may	not
use	it.	The	popular	browsers,	for	example,	display	the	title	attribute's	text	value
whenever	the	user	passes	the	mouse	pointer	over	the	element's	contents.	[The	id
attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

10.2.2.2.	The	dir	and	lang	attributes

Although	its	contents	are	predominantly	in	English,	the	Web	is	worldwide.	The
HTML	4	and	XHTML	standards	take	pains	to	extend	the	language	to	all	cultures.
We	support	that	effort	wholeheartedly.	The	dir	and	lang	attributes	are	just	small
parts	of	that	process.

The	dir	attribute	advises	the	browser	in	which	direction	the	text	of	the	contents
should	flowfrom	left	to	right	(dir=ltr),	as	for	common	Western	languages	like
English	and	German,	or	right	to	left	(dir=rtl),	as	for	common	Eastern	languages
like	Hebrew	and	Chinese.

The	lang	attribute	lets	you	explicitly	indicate	the	language	used	in	the	table	or
even	individual	cell	contents.	Its	value	should	be	an	International	Organization
for	Standardization	(ISO)	standard	two-letter	primary	code	followed	by	an
optional	dialect	subcode,	with	a	hyphen	(-)	between	the	two.

All	the	latest	versions	of	the	popular	browsers	support	the	dir	and	lang	attributes.
[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

10.2.2.3.	The	class	and	style	attributes

The	CSS	standard	is	the	sanctioned	way	to	define	display	attributes	for
HTML/XHTML	elements,	and	it	is	rapidly	becoming	the	only	way.	Use	the	style
attribute	to	define	display	characteristics	for	the	table	and	its	elements	that	take
immediate	effect	and	override	the	display	styles	that	may	be	currently	in	effect
for	the	whole	document.	Use	the	class	attribute	to	reference	a	stylesheet	that
defines	the	unique	display	characteristics	for	the	table	and	its	elements.

We	discuss	the	class	and	style	attributes	and	the	CSS	standard	in	detail	in	Chapter
8.	Their	effects	apply	to	all	aspects	of	tables,	and	are	well	supported	by	the
popular	browsers.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

10.2.2.4.	The	event	attributes

Most	of	today's	browsers	have	internal	mechanisms	that	detect	the	various	user-
initiated	mouse	and	keyboard	events	that	can	happen	in	and	around	your	tables
and	their	elements.	For	instance,	the	user	might	click	the	mouse	pointer	in	one	of
the	table	cells	or	highlight	the	caption	and	then	press	the	Enter	key.

With	the	various	event	attributes,	such	as	onClick	and	onKeyDown,	you	can	react	to
these	events	by	having	the	browser	execute	one	or	more	JavaScript	commands	or
applets	that	you	reference	as	the	value	to	the	respective	event	attribute.	See
Chapter	12	for	details.

10.2.3.	The	<tr>	Tag

Make	a	new	row	in	a	table	with	the	<tr>	tag.	Place	within	the	<tr>	tag	one	or	more

cells	containing	headers,	defined	with	the	<th>	tag,	or	data,	defined	with	the	<td>
tag	(see	section	10.2.4).	The	<tr>	tag	accepts	a	number	of	special	attributes	that
control	its	behavior,	along	with	the	common	table	attributes	described	earlier	in
section	10.2.2.

Every	row	in	a	table	has	the	same	number	of	cells	as	the	longest	row;	the
browser	automatically	creates	empty	cells	to	pad	rows	with	fewer	defined	cells.

<tr>

Function Defines	a	row	within	a	table

Attributes
align,	background	 ,	bgcolor,	bordercolor	 ,	bordercolordark	 ,	bordercolorlight

,	char,	charoff,	class,	dir,	id,	lang,	nowrap,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
style,	title,	valign

End	tag </tr>;	may	be	omitted	in	HTML

Contains tr_content

Used	in table_content

	

10.2.3.1.	The	align	and	valign	attributes

The	align	attribute	for	the	<table>	tag	may	be	deprecated	in	the	HTML	and	XHTML
standards,	but	it	is	alive	and	kicking	for	<tr>	and	other	table	elements.	The	align
attribute	for	the	<tr>	tag	lets	you	change	the	default	horizontal	alignment	of	all
the	contents	of	the	cells	in	a	row.	The	attribute	affects	all	the	cells	within	the
current	row,	but	not	subsequent	rows.

An	align	attribute	value	of	left,	right,	center,	justify,	or	char	causes	the	browser	to
align	the	contents	of	each	cell	in	the	row	against	the	left	or	right	edge,	in	the
center	of	the	cell,	spread	across	the	cell,	or	to	a	specified	character	in	the	cell,
respectively.

Similarly,	you	can	change	the	default	vertical	alignment	for	the	contents	of	data
cells	contained	within	a	table	row	with	the	valign	attribute.	Normally,	browsers
render	cell	contents	centered	vertically.	By	including	the	valign	attribute	in	the
<tr>	tag	with	a	value	of	top,	bottom,	center,	middle,	or	baseline	(Internet	Explorer
only),	you	tell	the	browser	to	place	the	table	row's	contents	flush	against	the	top
or	bottom	of	their	cells,	centered,	or	aligned	to	the	baseline	of	the	top	line	of	text
in	other	cells	in	the	row,	respectively	(see	Figure	10-3):

Figure	10-3.	Effects	of	the	valign	attribute;	only	Internet
Explorer	(shown	here)	supports	the	baseline	value	for	valign

	
<table	border="border">
		<tr>
				<th>Alignment</th>
				<th>Top</th>
				<th>Baseline</th>
				<th>Center</th>
				<th>Middle></th>
				<th>Bottom</th>
		</tr>
		<tr	align="center">
				<th><h1>Baseline_		_
Another	line</h1></th>
				<td	valign="top">AAyy</td>
				<td	valign="baseline">_AAyy_</td>
				<td	valign="center">AAyy</td>
				<td	valign="middle">AAyy</td>
				<td	valign="bottom">AAyy</td>
		</tr>
</table>

	
You	also	can	specify	the	horizontal	and	vertical	alignments	for	individual	cells
within	a	row	(see	Section	10.2.3.1).	Use	the	alignment	attributes	in	the	<tr>	tag
to	specify	the	most	common	cell-content	justifications	for	the	row	(if	not	the
default),	and	use	a	different	align	or	valign	attribute	for	those	individual	cells	that
deviate	from	the	common	alignment.

Table	10-1	contains	the	horizontal	(align)	and	vertical	(valign)	table	cell-content
attribute	values	and	options.	Values	in	parentheses	are	the	defaults	for	the

popular	browsers.

Table	10-1.	Table	cell-content	alignment	attribute	values	and	options

Attribute Headers	(<th>) Data	(<td>)

align Left (Left)

	 (Center) Center

	 Right Right

	 Justify Justify

	 Char[a] Char[a]

valign Top Top

	 (Center) (Center)

	 (Middle) (Middle)

	 Bottom Bottom

	 Baseline Baseline

[a]

	
[a]	Value	not	yet	supported.

10.2.3.2.	The	char	and	charoff	attributes

Even	simple	word	processors	let	you	line	up	decimal	points	for	numbers	in	a	table.
Until	the	advent	of	the	HTML	4.0	standard,	however,	the	language	was	deficient	in
this	feature.	Now	you	may	include	the	char	attribute	to	indicate	which	letter	in
each	of	the	table	row's	cells	should	be	the	axis	for	that	alignment.	You	need	not
include	a	value	with	char.	If	you	don't,	the	default	character	is	language	based:	it's
a	period	in	English,	for	example,	and	a	comma	in	French.	Include	the	char
attribute	and	a	single	letter	as	its	value	to	specify	a	different	alignment	character.

Use	the	charoff	attribute	and	an	integer	value	to	specify	the	offset	to	the	first
occurrence	of	the	alignment	character	on	each	line.	If	a	line	doesn't	include	the
alignment	character,	it	should	be	horizontally	shifted	to	end	at	the	alignment

position.

The	char	and	charoff	attributes	are	defined	in	HTML	4	and	XHTML	but	are	not	yet
supported	by	any	of	the	popular	browsers.

10.2.3.3.	The	bgcolor	and	background	attributes

Like	its	relative	for	the	<table>	tag,	the	bgcolor	attribute	for	the	<tr>	tag	sets	the
background	color	of	the	entire	row.	Its	value	is	either	an	RGB	color	value	or	a
standard	color	name.	Appendix	G	provides	both	the	syntax	of	color	values	and	the
acceptable	color	names.

Every	cell	in	the	row	is	given	this	background	color.	You	can	change	individual	cell
colors	by	providing	the	bgcolor	attribute	for	those	cells.

The	nonstandard	background	attribute	with	its	image-file	URL	value	places	a	graphic
tiled	into	and	behind	the	text	of	the	entire	table	row.	For	example,	this	tag	fills
the	table	row	with	bricks:

<tr	background="bricks.gif">

	
All	the	popular	browsers	support	bgcolor	and	all	support	the	background	extension,
except	Internet	Explorer.

10.2.3.4.	The	bordercolor,	bordercolorlight,	and	bordercolordark	attributes

Like	their	nonstandard	brethren	for	the	<table>	tag,	Internet	Explorer	only	lets	you
use	these	attributes	to	set	the	color	of	the	borders	within	the	current	row.

Their	values	override	any	values	set	by	the	corresponding	attributes	in	the
containing	<table>	tag.	See	the	corresponding	descriptions	of	these	extensions	in
section	10.2.1.5,	earlier	in	this	chapter,	for	details.	Color	values	can	be	either
RGB	color	values	or	standard	color	names,	both	of	which	we	describe	fully	in
Appendix	G.

10.2.3.5.	The	nowrap	attribute

Browsers	treat	each	table	cell	as	though	it	were	a	browser	window	unto	itself,
flowing	contents	inside	the	cell	as	they	would	common	body	contents	(although
subject	to	special	table	cell-alignment	properties).	Accordingly,	the	browsers

automatically	wrap	text	lines	to	fill	the	allotted	table	cell	space.	The	nowrap
attribute,	when	included	in	a	table	row,	stops	that	normal	word	wrapping	in	all
cells	in	that	row.	With	nowrap,	the	browser	assembles	the	contents	of	the	cell	onto
a	single	line,	unless	you	insert	a	
	or	<p>	tag,	which	forces	a	break	so	that	the
contents	continue	on	a	new	line	inside	the	table	cell.

10.2.4.	The	<th>	and	<td>	Tags

The	<th>	and	<td>	tags	go	inside	the	<tr>	tags	of	a	table	to	create	the	header	and
data	cells,	respectively,	and	to	define	the	cell	contents	within	the	rows.	The	tags
operate	similarly;	the	only	real	differences	are	that	the	browsers	render	header
textmeant	to	title	or	otherwise	describe	table	datain	boldface	font	style	and	that
the	default	alignment	of	their	respective	contents	may	be	different	than	for	data.
Data	typically	gets	left-justified	by	default;	headers	get	centered	(refer	to	Table
10-1).

<th>	and	<td>

Function Define	table	data	and	header	cells

Attributes

abbr,	align,	background,	bgcolor,	bordercolor	 ,	bordercolordark	 ,

bordercolorlight	 ,	char,	charoff,	class,	colspan,	dir,	headers,	height,	id,	lang,
nowrap,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	rowspan,	scope,	style,	title,
valign,	width

End	tag </th>	or	</td>;	may	be	omitted	in	HTML

Contains body_content

Used	in tr_content

	
Like	those	available	for	the	table	row	(<tr>)	tag,	the	table	cell	tags	support	a	rich
set	of	style	and	content-alignment	attributes	that	you	may	apply	to	a	single	data
or	header	cell.	These	attributes	override	the	default	values	for	the	current	row.
Special	attributes	control	the	number	of	columns	or	rows	a	cell	may	span	in	the
table.	The	<th>	and	<td>	tags	also	accept	the	common	table	attributes	described
earlier	in	section	10.2.2.

The	contents	of	the	<th>	and	<td>	tags	can	be	anything	you	might	put	in	the	body
of	a	document,	including	text,	images,	forms,	and	so	oneven	another	table.	And,
as	described	earlier,	the	browser	automatically	creates	a	table	large	enough,	both
vertically	and	horizontally,	to	display	all	the	contents	of	any	and	all	the	cells.

If	a	particular	row	has	fewer	header	or	data	items	than	other	rows,	the	browser
adds	empty	cells	at	the	end	to	fill	the	row.	If	you	need	to	make	an	empty	cell
before	the	end	of	a	rowfor	instance,	to	indicate	a	missing	data	pointcreate	a
header	or	data	cell	with	no	content.

Empty	cells	look	different	from	those	containing	data	or	headers	if	the	table	has
borders:	the	empty	cell	does	not	appear	embossed	onto	the	window	but	instead	is
simply	left	blank.	If	you	want	to	create	an	empty	cell	that	has	incised	borders	like
all	the	other	cells	in	your	table,	be	sure	to	place	a	minimal	amount	of	content	in
the	cell:	a	single	
	tag,	for	instance.

10.2.4.1.	The	align	and	valign	attributes

The	align	and	valign	attributes	are	identical	to	those	of	the	same	name	for	the
table	row	tag	(<tr>;	see	10.2.3,	earlier	in	this	chapter),	except	that	when	used
with	a	<th>	or	<td>	tag,	they	control	the	horizontal	or	vertical	alignment	of	content
in	just	the	current	cell.	Their	value	overrides	any	alignment	established	by	the
respective	align	or	valign	attribute	of	the	<tr>	tag	but	does	not	affect	the	alignment
of	subsequent	cells.	Refer	to	Table	10-1	for	alignment	details.

You	may	set	the	align	attribute's	value	to	left,	right,	or	center,	causing	the
browsers	to	align	the	cell	contents	against	the	left	or	right	edge	or	in	the	center	of
the	cell,	respectively.

In	earlier	versions,	Internet	Explorer	(version	5)	also	supported	the	align	value
justify	so	that	the	words	spread	out	to	fill	the	cell,	as	in	a	newspaper	column.	No
longer.

The	valign	attribute	may	have	a	value	of	top	(default),	bottom,	center,	middle,	or
baseline,	telling	the	browser	to	align	the	cell's	contents	to	the	top	or	bottom	edge,
in	the	center	or	middle	of	the	cell,	or	(Internet	Explorer	only)	to	the	baseline	of
the	first	line	of	text	in	other	cells	in	the	row.

10.2.4.2.	The	width	attribute

Like	its	twin	in	the	<table>	tag	that	lets	you	widen	a	table,	the	width	attribute	for
table	cell	tags	lets	you	widen	an	individual	cell	and	hence	the	entire	column	it
occupies.	You	set	the	width	to	an	integer	number	of	pixels	or	a	percentage
indicating	the	cell's	width	as	a	fraction	of	the	table	as	a	whole.

For	example:

<th	width=400>

	
sets	the	current	header	cell's	width,	and	hence	the	entire	column	of	cells,	to	400
pixels	wide.	Alternatively:

<td	width="40%">

	
creates	a	data	cell	with	a	column	occupying	40	percent	of	the	entire	table's	width.

Because	the	popular	browsers	make	all	cells	in	a	column	the	same	width,	you
should	place	a	width	attribute	in	only	one	cell	within	a	column,	preferably	the	first
instance	of	the	cell	in	the	first	row,	for	source	readability.	If	two	or	more	cells	in
the	same	column	happen	to	have	width	attributes,	the	widest	one	is	honored.	You
can't	make	a	column	thinner	than	the	minimum	needed	to	display	all	of	the	cells
in	the	column.	Accordingly,	if	the	browser	determines	that	the	column	of	cells
needs	to	be	at	least	150	pixels	wide	to	accommodate	all	the	cells'	contents,	it
ignores	a	width	attribute	in	one	of	the	column's	cell	tags	that	attempts	to	make
the	cell	only	100	pixels	wide.

10.2.4.3.	The	height	attribute

The	height	attribute	lets	you	specify	a	minimum	height,	in	pixels,	for	the	current
cell.	Because	all	cells	in	a	row	have	the	same	height,	you	need	to	specify	this
attribute	on	only	one	cell	in	the	row,	preferably	the	first.	If	some	other	cell	in	the
row	needs	to	be	taller	to	accommodate	its	contents,	the	browser	ignores	the	height
attribute,	and	all	the	cells	in	the	row	are	set	to	the	larger	size.

By	default,	all	the	cells	in	a	row	are	the	height	of	the	largest	cell	in	the	row	that
just	accommodates	its	contents.

10.2.4.4.	The	colspan	attribute

It's	common	to	have	a	table	header	that	describes	several	columns	beneath	it,
like	the	headers	we	used	in	Figure	10-1.	Use	the	colspan	attribute	in	a	table
header	or	data	tag	to	extend	a	table	cell	across	two	or	more	columns	in	its	row.
Set	the	value	of	the	colspan	attribute	to	an	integer	value	equal	to	the	number	of
columns	you	want	the	header	or	data	cell	to	span.	For	example:

<td	colspan="3">

	
tells	the	browser	to	make	the	cell	occupy	the	same	horizontal	space	as	three	cells
in	rows	above	or	below	it.	The	browser	flows	the	contents	of	the	cell	to	occupy	the
entire	space.

What	happens	if	there	aren't	enough	extra	cells	on	the	right?	The	browser	just
extends	the	cell	over	as	many	columns	as	exist	to	the	right;	it	doesn't	add	extra
empty	cells	to	each	row	to	accommodate	an	overextended	colspan	value.	You	may
defeat	that	limitation	by	adding	the	needed	extra	but	contentless	cells	to	a	single
row.	(Give	them	a	single	
	tag	as	their	contents	if	you	want	an	embossed
border	around	them.)

10.2.4.5.	The	rowspan	attribute

Just	as	the	colspan	attribute	layers	a	table	cell	across	several	columns,	the	rowspan
attribute	stretches	a	cell	down	two	or	more	rows	in	the	table.

Include	the	rowspan	attribute	in	the	<th>	or	<td>	tag	of	the	uppermost	row	of	the
table	where	you	want	the	cell	to	begin	and	set	its	value	equal	to	the	number	of
rows	you	want	it	to	span.	The	cell	then	occupies	the	same	space	as	the	current
row	and	an	appropriate	number	of	cells	below	that	row.	The	browser	flows	the
contents	of	the	cell	to	occupy	the	entire	extended	space.	For	example:

<td	rowspan="3">

	
creates	a	cell	that	occupies	the	current	row	plus	the	two	rows	below	it.

Like	the	colspan	attribute,	the	browser	ignores	overextended	rowspan	attributes	and
extends	the	current	cell	only	down	rows	you've	explicitly	defined	by	other	<tr>
tags	following	the	current	row.	The	browsers	do	not	add	empty	rows	to	a	table	to
fill	a	rowspan	below	the	last	defined	row	in	a	table.

10.2.4.6.	Combining	the	colspan	and	rowspan	attributes

You	may	extend	a	single	cell	both	across	several	columns	and	down	several	rows
by	including	both	the	colspan	and	rowspan	attributes	in	its	table	header	or	data	tag.
For	example:

				<th	colspan="3"	rowspan="4">

	
creates	a	header	cell	that,	as	you	might	expect,	spans	across	three	columns	and
down	four	rows,	including	the	current	cell	and	extending	two	more	cells	to	the
right	and	three	more	cells	down.	The	browser	flows	the	contents	of	the	cell	to
occupy	the	entire	space,	aligned	inside	according	to	the	current	row's	alignment
specifications	or	to	those	you	explicitly	include	in	the	same	tag,	as	described
earlier.

10.2.4.7.	The	nowrap	attribute

Browsers	treat	each	table	cell	as	though	it	were	a	browser	window	unto	itself,
flowing	contents	inside	the	cell	as	they	would	common	body	contents	(although

subject	to	special	table	cell-alignment	properties).	Accordingly,	the	browsers
automatically	wrap	text	lines	to	fill	the	allotted	table	cell	space.	The	nowrap
attribute,	when	included	in	a	table	header	or	data	tag,	stops	that	normal	word
wrapping.	With	nowrap,	the	browser	assembles	the	contents	of	the	cell	onto	a	single
line,	unless	you	insert	a	
	or	<p>	tag,	which	forces	a	break	so	that	the	contents
continue	on	a	new	line	inside	the	table	cell.

10.2.4.8.	The	bgcolor	and	background	attributes

Yet	again,	you	can	change	the	background	colorthis	time	for	an	individual	data
cell.	This	attribute's	value	is	either	an	RGB	hexadecimal	color	value	or	a	standard
color	name.	Appendix	G	provides	both	the	syntax	of	color	values	and	the
acceptable	color	names.

The	background	attribute	supplies	the	URL	of	an	image	that	is	tiled	to	fill	the
background	of	the	cell.	The	image	is	clipped	if	the	cell	is	smaller	than	the	image.
Interestingly,	Internet	Explorer,	like	all	the	other	popular	browsers,	supports
background	when	applied	to	a	single	cell,	but	unlike	the	other	popular	browsers,
does	not	support	background	for	<table>	or	<tr>.

Neither	background	nor	bgcolor	overrides	a	related	stylesheet	property.

10.2.4.9.	The	bordercolor,	bordercolorlight,	and	bordercolordark	attributes

Internet	Explorer	lets	you	alter	the	colors	that	make	up	an	individual	cell's
borderif	table	borders	are	turned	on	with	the	border	attribute,	of	course.	See	the
respective	attributes'	descriptions	under	the	<table>	tag	in	section	10.2.1.5,	earlier
in	this	chapter,	for	details.

The	values	for	these	three	attributes	override	any	values	set	for	the	containing
<table>	or	<tr>	tag.	Their	values	can	be	either	RGB	color	values	or	standard	color
names,	both	of	which	we	describe	fully	in	Appendix	G.

10.2.4.10.	The	char	and	charoff	attributes

Just	as	for	the	<tr>	tag,	you	may	use	the	char	attribute	with	<th>	or	<td>	to	indicate
which	letter	in	the	table	cell	should	be	the	axis	for	alignment,	such	as	for	decimal
numbers.	You	need	not	include	a	value	with	char	in	HTML.	If	you	don't,	the	default
character	is	language	based:	it's	a	period	in	English,	for	example,	and	a	comma	in
French.	Include	the	char	attribute	and	a	single	letter	as	its	value	to	specify	a
different	alignment	character.

Use	the	charoff	attribute	and	an	integer	value	to	specify	the	offset	to	the	first
occurrence	of	the	alignment	character	in	the	cell.	If	a	cell	doesn't	include	the
alignment	character,	it	should	be	shifted	horizontally	to	end	at	the	alignment
position.

The	char	and	charoff	attributes	are	standard	in	HTML	4	and	XHTML	but	are	not	yet
supported	by	any	of	the	popular	browsers.

10.2.4.11.	The	headers	and	scope	attributes

The	headers	attribute	associates	header	cells	with	a	data	cell	in	the	table.	The	value
of	this	attribute	is	a	quote-enclosed	list	of	names	that	have	been	defined	for
various	header	cells	using	the	id	attribute.	The	headers	attribute	is	especially	useful
for	nonvisual	browsers,	which	might	speak	the	contents	of	a	header	cell	before
presenting	the	associated	data	cell	contents.

Use	the	scope	attribute	to	associate	data	cells	with	a	header	cell.	With	a	value	of
row,	all	cells	in	the	header's	row	are	associated	with	the	header	cell.	Specifying	col
binds	all	the	cells	in	the	current	column	to	the	cell.	Using	rowgroup	or	colgroup	binds
all	the	cells	in	the	cell's	row	group	(defined	by	a	<thead>,	<tbody>,	or	<tfoot>	tag)	or
column	group	(defined	by	a	<col>	or	<colgroup>	tag)	with	the	header	cell.

10.2.4.12.	The	abbr	attribute

The	value	of	this	attribute	should	be	an	abbreviated	description	of	the	cell's
contents.	When	short	on	space,	browsers	might	choose	to	render	the	abbreviation
instead,	or	they	might	use	it	in	nonvisual	contexts.

10.2.4.13.	The	axis	attribute

Tables	are	usually	chock-full	of	data,	prompting	the	reader	to	ask	questions.	A
tabular	expense	report,	for	example,	naturally	leads	to	queries	like	"How	much
did	I	spend	on	meals?"	or	"What	did	my	cab	fares	total?"	In	the	future,	browsers
may	support	such	queries	with	the	help	of	the	axis	attribute.

The	value	of	this	attribute	is	a	quote-enclosed	list	of	category	names	that	might
be	used	to	form	a	query.	As	a	result,	if	you	used	axis=meals	on	the	cells	containing
meal	purchases,	the	browser	could	locate	those	cells,	extract	their	values,	and
produce	a	sum.

10.2.5.	The	<caption>	Tag

A	table	commonly	needs	a	caption	to	explain	its	contents,	so	the	popular	browsers
provide	a	table-caption	tag.	Authors	typically	place	the	<caption>	tag	and	its
contents	immediately	after	the	<table>	tag,	but	you	can	place	it	nearly	anywhere
inside	the	table	and	between	the	row	tags.	The	caption	may	contain	any	body
content,	much	like	a	cell	within	a	table.

<caption>

Function Defines	a	table	caption

Attributes
align	 ,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,
onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,

title,	valign	

End	tag </caption>;	never	omitted

Contains body_content

Used	in table_content

	

10.2.5.1.	The	align	and	valign	attributes

By	default,	browsers	place	the	caption's	contents	centered	above	the	table.	You
may	place	it	below	the	table	with	the	align	attribute	set	to	the	value	bottom	(the
value	top,	of	course,	is	equivalent	to	the	default).

Also	use	the	align	attribute	to	control	the	horizontal	position	of	the	caption,	but
the	interpretation	of	the	alternative	values	varies	with	the	popular	browsers:	with
Internet	Explorer	and	Opera,	for	example,	setting	the	align	attribute	to	left	or
right	respectively	left-justifies	or	right-justifies	the	caption	text	against	the
horizontal	edge	at	the	top	of	the	table.	With	Netscape	and	Firefox,	the	caption
text	gets	placed	next	to	and	at	the	top	of	the	left	or	right	side	of	the	table,
respectively.

Internet	Explorer	additionally	supports	the	valign	attribute	with	top	or	bottom	values
for	<caption>.	In	combination	with	align,	you	place	the	caption	text	aligned	at	any
of	the	four	corners	of	the	table,	but	not	along	either	side.	The	other	browsers
ignore	valign.

For	example,	Figure	10-4	demonstrates	how	Internet	Explorer	displays	the
following	caption	at	the	bottom	of	the	table	and	left-justified,	whereas	Firefox,
because	it	ignores	valign	and	interprets	left	alignment	differently,	places	the
caption	against	the	left	side	of	the	table	(Figure	10-5):

Figure	10-4.	Combining	Internet	Explorer's	align	and	valign
<caption>	attributes	lets	you	place	the	text	at	any	of	the	table's

four	corners	as	well	as	centered	top	or	bottom

	
<caption	valign=bottom	align=left>
				Kumquat	versus	a	poked	eye,	by	gender
</caption>

	

Figure	10-5.	Firefox,	like	Netscape,	ignores	valign	and	places	the
left-aligned	caption	to	the	left	of	the	table

	

10.2.5.2.	The	many	other	attributes

Like	the	other	table	tags,	<caption>	supports	the	many	and	various	language-,
event-,	and	styles-related	attributes,	which	we	described	earlier	in	"Common
Table	Attributes".	Use	them	in	good	health.	Just	be	sure	to	use	the	contextual
selector	TABLE	CAPTION	when	referring	to	caption	styles	at	the	document	level	or	in
external	stylesheets.

	

10.3.	Advanced	Table	Tags

While	it	is	possible	to	build	a	simple	table	quickly,	complex	tables	with	varying
border	styles,	running	headers	and	footers,	and	column-based	layout	were	not
easily	constructed	from	the	old	HTML	3.2	table	model.	Microsoft	rectified	this
inadequacy	somewhat	by	adding	a	number	of	table-layout	controls	to	Internet
Explorer	version	3.0.	These	very	useful	extensions	found	their	way	into	the	HTML
4	standard	and	subsequently	into	XHTML.	They	provide	row-based	grouping	and
running	headers	and	footers,	along	with	column-based	layout	features.

10.3.1.	Defining	Table	Sections

Within	tables,	all	rows	are	created	equal.	In	real	tables,	some	rows	are	more
equal	than	others.	And	most	tables	have	header	and	footer	rows	that	repeat	from
page	to	page.	In	large	tables,	adjacent	rows	are	grouped	and	delineated	with
different	rule	lines	to	make	the	tables	easier	to	read	and	understand.	HTML	4	and
XHTML	support	all	of	these	features	with	the	<thead>,	<tfoot>,	and	<tbody>	tags.

10.3.2.	The	<thead>	Tag

Use	the	<thead>	tag	to	define	a	set	of	table	header	rows.	The	<thead>	tag	may
appear	only	once	per	table	and	is	placed	at	the	beginning,	just	after	the	<table>
tag.	Within	the	<thead>	tag,	you	may	place	one	or	more	<tr>	tags,	defining	the	rows
within	the	table	header.	If	given	the	opportunity,	the	HTML	4/XHTML-compliant
browser	replicates	these	heading	rows	when	the	table	is	printed	or	displayed	in
multiple	sections.	Thereafter,	it	repeats	these	headings	on	each	printed	page	if	the
table	appears	on	more	than	one	page.

<thead>

Function Defines	a	table	header

Attributes
align,	char,	charoff,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
style,	title,	valign

End	tag </thead>;	may	be	omitted	in	HTML

Contains table_content

Used	in table_content

	
The	ending	</thead>	tag	is	optional	for	HTML.	Because	the	<thead>	tag	appears	only
in	tables	where,	presumably,	other	rows	are	designated	as	the	table	body	or
footer,	browsers	automatically	close	the	<thead>	tag	when	they	encounter	a	<tbody>
or	<tfoot>	tag	or	when	the	table	ends.

The	many	attributes	of	the	<thead>	tag	operate	identically,	take	the	same	values,
and	affect	all	the	enclosed	<tr>	contents	as	though	you	had	specified	them
individually	for	each	<tr>	enTRy.	For	example,	the	align	attribute	accepts	values	of
left,	right,	or	center,	controlling	the	horizontal	alignment	of	text	in	all	of	the
heading's	rows.	Similarly,	the	valign	attribute	accepts	values	of	top,	middle,	baseline
(Internet	Explorer	only),	or	bottom,	dictating	the	vertical	alignment	of	text	in	all	of
the	heading	rows.

If	you	don't	specify	any	alignments	or	styles,	the	browser	centers	the	heading	text
vertically	and	horizontally	within	the	respective	cells,	equivalent	to	specifying
align=center	and	valign=middle	for	each.	Of	course,	individual	row	and	cell	or
stylesheet	specifications	may	override	these	attributes.

10.3.3.	The	<tfoot>	Tag

Use	the	<tfoot>	tag	to	define	a	footer	for	a	table.	The	<tfoot>	tag	may	appear	only
once,	just	before	the	<tbody>	tag.	Like	<thead>,	it	may	contain	one	or	more	<tr>	tags
that	let	you	define	those	rows	that	the	currently	popular	browsers	use	as	the

table	footer.	Thereafter,	the	browser	repeats	these	rows	if	the	table	is	broken
across	multiple	physical	or	virtual	pages.	Most	often,	the	browser	repeats	the
table	footer	at	the	bottom	of	each	portion	of	a	table	printed	on	multiple	pages.

<tfoot>

Function Defines	a	table	footer

Attributes
align,	char,	charoff,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
style,	title,	valign

End	tag </tfoot>;	may	be	omitted	in	HTML

Contains table_content

Used	in table_content

	
The	closing	</tfoot>	tag	is	optional	in	HTML	because	the	footer	ends	at	the
following	<tbody>	tag	or	at	the	end	of	the	table.

10.3.4.	The	<tbody>	Tag

Use	the	<tbody>	tag	to	divide	your	table	into	discrete	sections.	The	<tbody>	tag
collects	one	or	more	rows	into	a	group	within	a	table.	It	is	perfectly	acceptable	to
have	no	<tbody>	tags	within	a	table,	although	where	you	might	include	one,	you
probably	will	have	two	or	more	<tbody>	tags	within	a	table.	So	identified,	you	can
give	each	<tbody>	group	different	rule	line	sizes	above	and	below	the	section.
Within	a	<tbody>	tag,	only	table	rows	may	be	defined	using	the	<tr>	tag.	And,	by
definition,	a	<tbody>	section	of	a	table	stands	alone.	For	example,	you	may	not
span	from	one	<tbody>	into	another.

<tbody>

Function Defines	a	section	within	a	table

Attributes
align,	char,	charoff,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
style,	title,	valign

End	tag </tbody>;	may	be	omitted	in	HTML

Contains table_content

Used	in table_content

	
The	closing	</tbody>	tag	is	optional	in	HTML	because	the	section	ends	at	the	next
<tbody>	tag,	or	when	the	table	ends.	Like	<tfoot>,	there	are	many	attributes	for	the
<tbody>	tag,	but	none	is	supported	by	the	popular	browsers.	If	you	have	special
alignment	attributes	for	this	section,	you'll	need	to	specify	them	for	each	row
within	the	<tbody>	tag.

10.3.5.	Using	Table	Sections

From	a	presentation	standpoint,	the	most	important	thing	you	can	do	with	the
<thead>,	<tfoot>,	and	<tbody>	tags	is	divide	your	table	into	logical	sections	that	are
delimited	by	different	borders.	By	default,	Internet	Explorer	does	not	do	anything
special	with	the	borders	around	the	headers,	footers,	and	sections	within	your
table.	By	adding	the	rules	attribute	to	the	<table>	tag,	however,	you	can	draw
thicker	rule	lines	between	your	<thead>,	one	or	more	<tbody>,	and	<tfoot>	table
sections,	helping	readers	better	understand	your	table's	organization.	[The	align
attribute	(deprecated),	10.2.1.1]

For	example,	here	is	the	simple	table	you	saw	earlier	in	this	chapter,	augmented
with	a	header	and	footer.	Notice	that	we've	omitted	many	of	the	closing	tags	for
brevity	and	readability	of	the	HTML	but	that	the	tags	must	appear	in	an	XHTML-
compliant	document:

<table	border	cellspacing=0	cellpadding=5	rules=groups>

		<caption	align=bottom>Kumquat	versus	a	poked	eye,	by	gender</caption>
		<thead>
				<tr>
						<td	colspan=2	rowspan=2>
						<th	colspan=2	align=center>Preference
				</tr>
				<tr>
						<th>Eating	Kumquats
						<th>Poke	In	The	Eye
				</tr>
		</thead>
		<tfoot>
				<tr>
						<td	colspan=4	align=center>
								Note:	eye	pokes	did	not	result	in	permanent	injury
				</tr>
		</tfoot>
		<tbody>
				<tr	align=center>
						<th	rowspan=2>Gender
						<th>Male
						<td>73%
						<td>27%
				</tr>
				<tr	align=center>
						<th>Female
						<td>16%
						<td>84%
				</tr>
		</tbody>
</table>

	
The	table	as	rendered	by	Opera	is	shown	in	Figure	10-6.	Notice	that	the	rules
after	the	table	header	and	before	the	footer	are	thinner	than	the	borders	around
the	other	table	rows.	This	happened	because	we	included	the	special	rules=groups
attribute	to	the	<table>	tag.	You	may	obtain	similar	effects	by	specifying	rules=rows
or	rules=all.

Figure	10-6.	Use	HTML	4/XHTML	table	tags	to	specially	section
your	tables

	
Long	tables	often	benefit	from	thicker	rules	every	few	rows,	making	it	easier	to
read	the	tables.	Do	this	by	grouping	the	rules	in	your	table	with	several	<tbody>
tags.	Each	set	of	rows	contained	in	a	single	<tbody>	tag	will	have	thicker	rules
before	and	after	it.

Here	is	an	expanded	version	of	our	HTML	table	example,	with	additional	sections
set	off	as	separate	groups:

<table	border	cellspacing=0	cellpadding=5	rules=groups>
		<caption	align=bottom>Kumquat	versus	a	poked	eye,	by	gender</caption>
		<thead>
				<tr>
						<td	colspan=2	rowspan=2>
						<th	colspan=2	align=center>Preference
				<tr>
						<th>Eating	Kumquats
						<th>Poke	In	The	Eye
		<tfoot>
				<tr>
						<td	colspan=4	align=center>
								Note:	eye	pokes	did	not	result	in	permanent	injury
		<tbody>
				<tr	align=center>
						<th	rowspan=4>Gender
						<th>Males	under	18
						<td>94%
						<td>6%
				<tr	align=center>
						<th>Males	over	18
						<td>73%
						<td>27%
		<tbody>

				<tr	align=center>
						<th>Females	under	18
						<td>34%
						<td>66%
				<tr	align=center>
						<th>Females	over	18
						<td>16%
						<td>84%
		</table>

	
The	result	is	shown	in	Figure	10-7.	Notice	the	Gender	column?	Netscape	versions
4	and	earlier	placed	it	to	the	left	and	centered	between	the	Males	and	Females
rows,	as	you	might	expect.	However,	the	HTML	4	and	XHTML	standards	explicitly
disallow	spanning	<tbody>	sections	so	that	the	compliant	browsers	all	display	the
example	with	just	up	to	four	rows	in	the	table,	separated	into	two	groups.	You
could	create	any	number	of	groups	within	the	table	by	adding	more	<tbody>	tags.

Figure	10-7.	Multiple	<tbody>	segments	further	divide	a	table,
but	you	cannot	span	across	them

	

10.3.6.	Defining	Column	Groups

The	basic	table	model	is	row	centric.	Sometimes,	though,	it	is	easier	to	deal	with
your	table	as	a	collection	of	columns.	Using	the	<colgroup>	and	<col>	tags,	HTML	4

and	XHTML,	as	originally	implemented	by	Internet	Explorer	through	table
extensions,	help	you	turn	the	tables	and	think	in	columns.

Unlike	the	sectioning	tags	described	in	the	previous	sections,	which	are
interspersed	with	the	rows	of	a	table	to	define	headers,	footers,	and	sections
within	the	table,	the	column-related	tags	cannot	be	intermingled	with	the	content
of	a	table.	You	must	place	them	at	the	very	beginning	of	a	table,	before	the
content.	They	define	the	model	by	which	HTML	4/XHTML-compliant	browsers
render	the	columns.

10.3.7.	The	<colgroup>	Tag

The	<colgroup>	tag	defines	a	column	group.	You	can	use	the	<colgroup>	tag	in	two
ways:	as	a	single	definition	of	several	identical	columns,	or	as	a	container	for
several	dissimilar	columns.	You	can	put	one	or	more	<colgroup>	tags	within	a	<table>
tag.	The	ending	</colgroup>	tag	is	rarely	used	in	HTML	but	is	required	in	XHTML.	In
HTML,	the	<colgroup>	ends	at	the	next	<colgroup>,	<thead>,	<tbody>,	<tfoot>,	or	<tr>	tag.

All	the	currently	popular	browsers	support	<colgroup>	and	its	attributes.

10.3.7.1.	The	span	attribute

Use	the	span	attribute	with	the	<colgroup>	tag	to	achieve	the	first	type	of	column
grouping.	The	value	of	the	span	attribute	is	the	integer	number	of	columns	affected
by	the	<colgroup>	tag.	For	example,	a	table	with	six	columnsfour	in	the	first	group
and	two	in	the	otherwould	appear	in	the	source	code	as:

<colgroup	span="4">
<colgroup	span="2">

	
When	the	HTML	4/XHTML-compliant	browser	collects	the	table	cells	into	columns
by	the	example	definition,	it	groups	the	first	four	cells	in	each	row	as	the	first
column	group	and	the	next	two	cells	into	a	second	column	group.	Any	other
attributes	of	the	individual	<colgroup>	tags	then	are	applied	to	the	columns
contained	within	that	group.

10.3.7.2.	When	to	span	and	col

To	use	the	<colgroup>	tag	as	a	container	for	dissimilar	columns,	leave	out	the	span

attribute,	but	include	within	each	<colgroup>	tag	an	individual	<col>	tag	for	each
column	within	the	group.	For	instance,	in	HTML:

<colgroup>
		<col>
		<col>
		<col>
		<col>
<colgroup>
		<col>
		<col>

	
This	method	creates	the	same	number	of	columns	in	each	group	as	we	had	with
the	span	attribute,	but	it	lets	you	specify	column	attributes	individually.	You	can
still	supply	attributes	for	all	the	columns	via	the	<colgroup>	tag,	but	the	attributes
in	the	<col>	tags	will	override	them,	as	appropriate.

<colgroup>

Function Defines	a	column	group	within	a	table

Attributes
align,	char,	charoff,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
span,	style,	title,	valign,	width

End	tag </colgroup>;	usually	omitted	in	HTML

Contains column_content

Used	in table_content

	
For	instance,	suppose	we	want	our	first	example	group	of	four	columns	to	each
occupy	20	percent	of	the	table,	and	the	remaining	two	columns	to	each	take	up
10	percent	of	the	total	table	width.	That's	easy	with	the	span	attribute:

				<colgroup	span=4	width="20%">
				<colgroup	span=2	width="10%">

	
You	can	also	create	this	structure	with	individually	specified	columns	(in	HTML):

				<colgroup	width="20%">
						<col>
						<col>
						<col>
						<col>
				<colgroup	width="10%">
						<col>
						<col>

	
You	can	use	both	methods	in	the	same	table.	For	instance,	we	could	specify	our
example	column	groupings,	complete	with	width	attributes:

<colgroup	span=4	width="20%"	align=right>
<colgroup	width="10%">
		<col	align=left>
		<col	align=right>

	
Notice	that	this	lets	us	align	the	contents	of	the	two	columns	of	the	second	group
individually	(the	default	alignment	is	centered).

10.3.7.3.	The	other	<colgroup>	attributes

The	many	attributes	common	to	tables	control	the	familiar	aspects	of	each	column
in	the	<colgroup>-encapsulated	column	group.	These	attributes	accept	the	same
values	and	behave	exactly	like	the	equivalent	attributes	for	the	<td>	tag.

10.3.8.	The	<col>	tag

Use	the	<col>	tag	to	control	the	appearance	of	one	or	more	columns	within	a
column	group.

<col>

Function Define	a	column	within	a	column	group

Attributes
align,	char,	charoff,	class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,
onKeyPress,	onKeyUp,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,
span,	style,	title,	valign,	width

End	tag None	in	HTML;	</col>	or	<col	...	/>	in	XHTML

Contains Nothing

Used	in column_content

	
The	<col>	tag	may	appear	only	within	a	<colgroup>	tag	within	a	table.	It	has	no
content	and	thus	has	no	ending	tag	in	HTML.	Use	</col>	or	a	lone	forward	slash	at
the	end	of	the	tag	(<col	/>)	for	the	required	XHTML	end	tag.	The	<col>	tag
represents	one	or	more	columns	within	a	<colgroup>	to	which	an	HTML	4/XHTML-
compliant	browser	applies	the	<col>	tag's	attributes.

All	the	currently	popular	browsers	support	the	<col>	tag	and	its	attributes.

10.3.8.1.	The	span	attribute

The	span	attribute	for	the	<col>	tag,	like	for	the	<colgroup>	tag,	lets	you	specify	how
many	successive	columns	are	affected	by	this	<col>	tag.	By	default,	only	one	is
affected.	For	example,	let's	create	a	<colgroup>	that	has	five	columns.	We	align	the
first	and	last	columns	to	the	left	and	right,	respectively,	and	center	the	middle
three:

<colgroup>
		<col	align=left>
		<col	align=center	span=3>
		<col	align=right>

	
You	should	use	the	<col>	tag	only	within	<colgroup>	tags	that	do	not	themselves	use

the	span	attribute.	Otherwise,	the	HTML	4/XHTML-compliant	browsers	ignore	the
individual	<col>	tags	and	their	attributes.

10.3.8.2.	The	other	<col>	attributes

The	many	attributes	common	to	tables	control	the	familiar	aspects	of	the	column
defined	by	the	<col>	tag.	These	attributes	accept	the	same	values	and	behave
exactly	like	the	equivalent	attributes	for	the	<td>	tag.

10.3.9.	Using	Column	Groups

Column	groups	are	easier	to	use	than	they	first	appear.	Think	of	them	as	a
template	for	how	to	format	your	table	columns.	Their	main	purpose	is	to	create
groups	that	can	be	separated	by	thicker	rules	within	your	table	and	to	streamline
the	process	of	applying	formatting	attributes	to	all	the	cells	in	one	or	more
columns.

Returning	to	our	original	table	example,	we	can	place	a	thicker	rule	between	the
column	labels	and	the	data	cells	by	placing	the	column	labels	in	one	column	group
and	the	data	cells	in	another	(in	HTML):

<table	border=	cellspacing=0	cellpadding=5	rules=groups>
		<caption	align=bottom>Kumquat	versus	a	poked	eye,	by	gender</caption>
		<colgroup	span=2>
		<colgroup	span=2>
		<thead>
				<tr>
						<td	colspan=2	rowspan=2>
						<th	colspan=2	align=center>Preference
				<tr>
						<th>Eating	Kumquats
						<th>Poke	In	The	Eye
		<tbody>
				<tr	align=center>
						<th	rowspan=4>Gender
						<th>Males	under	18
						<td>94%
						<td>6%
				<tr	align=center>
						<th>Males	over	18
						<td>73%
						<td>27%

				<tr	align=center>
						<th>Females	under	18
						<td>34%</td>
						<td>66%</td>
				<tr	align=center>
						<th>Females	over	18
						<td>16%
						<td>84%
		<tfoot>
				<tr>
						<td	colspan=4	align=center>
								Note:	eye	pokes	did	not	result	in	permanent	injury
</table>

	
The	results	are	shown	in	Figure	10-8.	All	we	added	were	the	two	<colgroup>	tags;
the	additional	borders	were	drawn	by	the	rules=groups	attribute	in	the	<table>	tag.
For	borders	between	column	groups	to	be	drawn,	the	rules	attribute	must	be	set	to
groups,	cols,	or	all.

Figure	10-8.	Example	demonstrating	the	various	HTML	4/XHTML
table	features

	
	

10.4.	Beyond	Ordinary	Tables

On	the	face	of	it,	tables	are	pretty	ordinary:	just	a	way	for	academics	and	other
like-minded	data	crunchers	to	format	items	into	columns	and	rows	for	easy
comparison.	Scratch	below	the	surface,	though,	and	you	will	see	that	tables	are
really	extraordinary.	Besides	<pre>,	the	<table>	tag	and	related	attributes	provide
the	only	way	for	you	to	easily	control	the	layout	of	your	document.	The	content
inside	a	<pre>	tag,	of	course,	is	very	limited.	Tables,	on	the	other	hand,	may
contain	nearly	anything	allowed	in	normal	body	content,	including	multimedia	and
forms.	And	the	table	structure	lets	you	explicitly	control	where	those	elements
appear	in	the	user's	browser	window.	With	the	right	combinations	of	attributes,
tables	provide	a	way	for	you	to	create	multicolumn	text	and	side	and	straddle
heads.	They	also	enable	you	to	make	your	forms	easier	to	read,	understand,	and
fill	out.	That's	just	for	starters.

We	don't	know	that	we	can	recommend	getting	too	caught	up	with	page
layouttables	or	beyond.	Remember,	it	ain't	about	looks,	it's	about	content.	But....

It's	easy	to	argue	that	tables	of	information	benefit	from	some	controlled	layout
and	that	forms	follow	a	close	second.	Tables	provide	the	only	way	to	create
predictable,	browser-independent	layouts	for	your	web	pages.	Used	in	moderation
and	filled	with	quality	content,	tables	are	a	tool	that	every	author	should	be	able
to	wield.

And	now	that	we've	whetted	your	appetite	for	page	layout	with	tables,	don't
despair	that	we've	let	you	down	by	ending	this	chapter	without	exampleswe	have
several	in	Chapter	17.

	

Chapter	11.	Frames

You	can	divide	the	browser's	main	display	window	into	independent	window
frames,	each	simultaneously	displaying	a	different	documentsomething	like	a	wall
of	monitors	in	a	TV	control	room.	Netscape	invented	the	feature	in	the	mid-
1990s.	Instantly	popular,	frames	now	are	standard	features	for	HTML	4	and
XHTML.

	

11.1.	An	Overview	of	Frames

Figure	11-1	is	a	simple	example	of	a	frame	display.	It	shows	how	you	can	divide
the	document	window	into	columns	and	rows	of	individual	frames	separated	by
rules	and	scroll	bars.	Although	it	is	not	immediately	apparent	in	the	example,
each	frame	in	the	window	contains	an	independent	document.	Frames	may
contain	any	valid	content	the	browser	is	capable	of	displaying,	including	XHTML
documents	and	multimedia.	If	the	frame's	contents	include	a	hyperlink	that	the
user	selects,	the	new	document's	contentseven	another	frame	documentmay
replace	that	same	frame,	another	frame's	content,	or	the	entire	browser	window.

Frames	are	enabled	with	a	special	frame	document.	Its	contents	do	not	get
displayed.	Instead,	the	frame	document	contains	tags	that	tell	the	browser	how	to
divide	its	main	display	window	into	discrete	frames	and	what	documents	go	inside
the	frames.

The	individual	documents	referenced	and	displayed	in	the	frame	document
window	act	independently,	to	a	degree;	the	frame	document	controls	the	entire
window.	You	can,	however,	direct	one	frame's	document	to	load	new	content	into
another	frame.	You	do	that	by	attaching	a	name	to	a	frame	and	targeting	the
named	frame	with	a	special	attribute	for	the	hyperlink	<a>	tag.

	

11.2.	Frame	Tags

You	need	to	know	only	two	tags	in	order	to	create	a	frame	document:	<frameset>
and	<frame>.	In	addition,	the	HTML	4	and	XHTML	standards	provide	the	<iframe>	tag,
which	you	may	use	to	create	inline,	or	floating,	frames,	and	the	<noframes>	tag	to
handle	browsers	that	cannot	handle	frames.

A	frameset	is	simply	the	collection	of	frames	that	make	up	the	browser's	window.
Column-	and	row-definition	attributes	for	the	<frameset>	tag	let	you	define	the
number	of	and	initial	sizes	for	the	columns	and	rows	of	frames.	The	<frame>	tag
defines	which	documentHTML	or	otherwiseinitially	goes	into	the	frame	within
those	framesets	and	is	where	you	may	give	the	frame	a	name	to	use	for
document	hyperlinks.

Here	is	the	HTML	source	we	used	to	generate	Figure	11-1:

<html>
<head>
<title>Frames	Layout</title>
</head>
<frameset	rows="60%,*"	cols="65%,20%,*">
		<frame	src="frame1.html">
		<frame	src="frame2.html">
		<frame	src="frame3.html"	name="fill_me">
		<frame	scrolling=yes	src="frame4.html">
		<frame	src="frame5.html">
		<frame	src="frame6.html"	id="test">
		<noframes>
				Sorry,	this	document	can	be	viewed	only	with	a
				frames-capable	browser.
				Take	this	link
				to	the	first	HTML	document	in	the	set.
		</noframes>
</frameset>
</html>

	

Figure	11-1.	A	simple	six-panel	frame	layout

	
Notice	a	few	things	in	the	simple	frame	example	and	its	rendered	image	(Figure
11-1).	First,	like	tables,	the	browser	fills	frames	in	a	frameset	row	by	row.
Second,	Frame	4	sports	a	scroll	bar	because	we	told	it	to,	even	though	the
contents	may	otherwise	fit	without	scrolling.	(Scroll	bars	automatically	appear	if
the	contents	overflow	the	frame's	dimensions,	unless	explicitly	disabled	with	the
scrolling	attribute	in	the	<frame>	tag.)

Another	item	of	interest	is	the	name	attribute	in	the	example	frame	tags.	Once
named,[*]	you	can	reference	that	particular	frame	as	the	target	in	which	to	display	a
hyperlinked	document	or	perform	some	automated	action.	To	do	that,	you	add	a
special	target	attribute	to	the	anchor	(<a>)	tag	of	the	source	link.

[*]	But,	interestingly,	not	id'd,	even	though	the	attribute	exists	for	frames	and	can	identify	other	HTML/XHTML	elements
as	hyperlink	targets.

For	instance,	to	link	a	document	called	new.html	for	display	in	Frame	3,	which
we've	named	fill_me,	the	anchor	looks	like	this:

	
If	the	user	chooses	the	hyperlinksay,	in	Frame	1the	new.html	document	replaces
the	original	frame3.html	contents	in	Frame	3.	[The	target	Attribute	for	the	<a>
Tag,	11.7.1]

11.2.1.	What's	in	a	Frame?

Anyone	who	has	opened	more	than	one	window	on	their	desktop	display	to
compare	contents	or	operate	interrelated	applications	knows	instinctively	the
power	of	frames.

One	simple	use	for	frames	is	to	put	content	that	is	common	in	a	collection,	such
as	copyright	notices,	introductory	material,	and	navigational	aids,	into	one	frame,
with	all	other	document	content	in	an	adjacent	frame.	As	the	user	visits	new
pages,	each	loads	into	the	scrolling	frame,	while	the	fixed-frame	content	persists.

A	richer	frame	document-enabled	environment	provides	navigational	tools	for
your	document	collections.	For	instance,	assign	one	frame	to	hold	a	table	of
contents	and	various	searching	tools	for	the	collection.	Have	another	frame	hold
the	user-selected	document	contents.	As	users	visit	your	pages	in	the	content
frame,	they	never	lose	sight	of	the	navigational	aids	in	the	other	frame.

Another	beneficial	use	of	frame	documents	is	to	compare	a	returned	form	with	its
original	to	verify	the	content	the	user	submitted.	By	placing	the	form	in	one
frame	and	its	submitted	result	in	another,	you	let	the	user	quickly	verify	that	the
result	corresponds	to	the	data	entered	in	the	form.	If	the	results	are	incorrect,	the
form	is	readily	available	to	be	filled	out	again.

	

11.3.	Frame	Layout

Frame	layout	is	similar	to	table	layout.	Using	the	<frameset>	tag,	you	can	arrange
frames	into	rows	and	columns	while	defining	their	relative	or	absolute	sizes.

11.3.1.	The	<frameset>	Tag

Use	the	<frameset>	tag	to	define	a	collection	of	frames	and	other	framesets	and	to
control	their	spacing	and	borders.	You	may	also	nest	framesets,	resulting	in	a
richer	set	of	layout	capabilities.

<frameset>

Function Defines	a	collection	of	frames

Attributes border,	bordercolor	 ,	class,	cols,	frameborder	 ,	framespacing	 ,	id,	onLoad,
onUnload,	style,	title

End	tag </frameset>;	never	omitted

Contains frameset_content

Used	in html_content

	
Use	the	<frameset>	tag	in	lieu	of	a	<body>	tag	in	the	frame	document.	You	may	not
include	any	other	content	except	valid	<head>	and	<frameset>	content	in	a	frame
document.	Combining	frames	with	a	conventional	document	containing	a	<body>
section	may	result	in	unpredictable	browser	behavior.

11.3.1.1.	The	rows	and	cols	attributes

The	<frameset>	tag	has	one	required	attribute:	either	cols	or	rowsyour	choice.	They
define	the	size	and	number	of	columns	or	rows	of	either	frames	or	nested
framesets	for	the	document	window.	Both	attributes	accept	a	quote-enclosed,
comma-separated	list	of	values	that	specifies	either	the	absolute	(pixels)	or
relative	(percentage	or	remaining	space)	width	(for	columns)	or	height	(for	rows)
for	the	frames.	The	number	of	attribute	values	determines	how	many	rows	or
columns	of	frames	the	browser	displays	in	the	document	window.

As	with	tables,	the	browser	matches	the	size	you	give	a	frameset	as	closely	as
possible.	The	browser	does	not,	however,	extend	the	boundaries	of	the	main
document	window	to	accommodate	framesets	that	would	otherwise	exceed	those
boundaries	or	fill	the	window	with	empty	space	if	the	specified	frames	don't	fill	the
window.	Rather,	browsers	allocate	space	to	a	particular	frame	relative	to	all	other
frames	in	the	row	and	column	and	resolutely	fill	the	entire	document	window.	(Did
you	notice	that	the	main	frame	window	does	not	have	scroll	bars?)

For	example:

<frameset	rows="150,300,150">

	
creates	three	rows	of	frames,	each	extending	across	the	entire	document	window.
The	first	and	last	frames	are	set	to	150	pixels	tall,	and	the	second	is	set	to	300
pixels.	In	reality,	unless	the	browser	window	is	exactly	600	pixels	tall,	the	browser
automatically	and	proportionately	stretches	or	compresses	the	first	and	last
frames	so	that	each	occupies	one-quarter	of	the	window	space.	The	center	row
occupies	the	remaining	half	of	the	window	space.

Frame	row-	and	column-size	values	expressed	as	percentages	of	the	window
dimensions	are	more	sensible.	For	instance,	the	following	example	is	effectively
identical	to	the	preceding	one:

<frameset	rows="25%,50%,25%">

	
Of	course,	if	the	percentages	don't	add	up	to	100	percent,	the	browser
automatically	and	proportionally	resizes	each	row	to	make	up	the	difference.

If	you	are	like	us,	making	things	add	up	is	not	a	strength.	Perhaps	some	of	the
frame	designers	suffer	the	same	difficulty,	which	would	explain	why	they	included
the	very	nifty	asterisk	option	for	<frameset>	rows	and	cols	values.	It	tells	the	browser
to	size	the	respective	column	or	row	to	whatever	space	is	left	over	after	putting
adjacent	frames	into	the	frameset.

For	example,	when	the	browser	encounters	the	following	frame	tag:

<frameset	cols="100,*">

	
it	makes	a	fixed-size	column	100	pixels	wide	and	then	creates	another	frame
column	that	occupies	all	of	the	remaining	space	in	the	browser	window.

Here's	a	fancier	layout	example:

<frameset	cols="10,*,10">

	
This	one	creates	two	very	thin	columns	down	the	edges	of	the	window	and	gives
the	remaining	center	portion	to	the	middle	column.

You	may	also	use	the	asterisk	for	more	than	one	row-	or	column-attribute	value.

In	that	case,	the	corresponding	rows	or	columns	equally	divide	the	available
space.	For	example:

<frameset	rows="*,100,*">

	
creates	a	100-pixel-tall	row	in	the	middle	of	the	browser	display	and	equal-size
rows	above	and	below	it.

If	you	precede	the	asterisk	with	an	integer	value,	the	corresponding	row	or
column	gets	proportionally	more	of	the	available	space.	For	example:

<frameset	cols="10%,3*,*,*">

	
creates	four	columns:	the	first	column	occupies	10	percent	of	the	overall	width	of
the	display.	The	browser	then	gives	the	second	frame	three-fifths	of	the	remaining
space,	and	the	third	and	the	fourth	are	each	given	one-fifth	of	the	remaining
space.

Using	asterisks	(especially	with	the	numeric	prefix)	makes	it	easy	to	divide	the
remaining	space	in	a	frameset.

Be	aware,	too,	that	unless	you	explicitly	tell	it	not	to,	the	browser	allows	users	to
resize	the	individual	frame	document's	columns	and	rows	manually	and,	hence,
change	the	relative	proportions	each	frame	occupies	in	the	frame's	display.	To
prevent	this,	use	the	noresize	attribute	for	the	<frame>	tag,	which	we	describe	later.
[<frame>,	11.4.1]

11.3.1.2.	The	border,	frameborder,	framespacing,	and	bordercolor	attributes

The	popular	browsers	provide	attribute	extensions	that	you	may	use	to	generally
define	and	change	the	borders	surrounding	the	frames	in	a	frameset.	The	HTML	4
and	XHTML	standards	prefer	instead	that	you	include	these	border-related	display
features	via	Cascading	Style	Sheet	(CSS)	styles.

By	default,	every	frame	in	a	frameset	is	surrounded	by	a	thin	3D	border	(see
Figure	11-1).	Make	these	borders	uniformly	thicker	or	get	rid	of	them	altogether
with	the	border	attribute	for	the	<frameset>	tag.	Set	the	value	of	border	to	0	to	turn
off	borders	(see	Figure	11-2).	The	value	1	is	the	same	as	the	default.	To	uniformly
increase	the	width	of	all	the	frame	borders	in	the	frameset,	set	the	border	attribute
value	to	an	integer	greater	than	1.

Figure	11-2.	The	border	and	frameborder	attributes	let	you
remove	the	borders	between	frames

	
Use	the	frameborder	attribute	with	the	value	1	or	yes	to	enable,	or	with	a	value	0	or
no	to	disable	borders.	Use	the	framespacing	attribute	with	an	integer	value	1	or
greater	to	thicken	the	border	between	frames.	Why	two	separate	attributes	to
achieve	the	same	effect	as	the	single	border?	Historical	reasons,	mostly.	Suffice	it
to	say	here	that	some	confusion	still	exists.	All	the	popular	browsers	accept	border
for	<frameset>,	so	please	use	it	rather	than	the	individual	alternatives.

All	the	popular	browsers,	except	Opera	for	some	reason,	also	let	you	control	the
color	of	the	frame	borders	with	the	bordercolor	attribute	(Figure	11-3).	Use	a	color
name	or	hexadecimal	triple	as	its	value.	For	example,	although	you	can't	see	the
color	in	this	black-and-white	book,	the	borders	in	Figure	11-3	are	light	green,
corresponding	to	the	red,	green,	and	blue	(RGB)	value	of	"00CC00."	(For	clarity,
we	also	increase	the	size	of	the	border	with	the	border	attribute.)	You	can	find	a
complete	list	of	color	names	and	values	in	Appendix	G.

Figure	11-3.	Use	the	bordercolor	and	border	attributes	to	control
the	color	and	spacing	between	frames

	

11.3.1.3.	Frames	and	JavaScript

All	the	popular	browsers	support	JavaScript-related	event	handlers	that	let	your
frame	documents	react	when	they	are	first	loaded	and	when	the	frame	window
gets	resized	(onLoad);	when	the	user	unloads	them	from	the	browser	(onUnload);
when	the	window	containing	the	frameset	loses	focus,	such	as	when	the	user
selects	another	window	(onBlur);	or	when	the	frameset	becomes	the	active	window
(onFocus).	Included	as	<frameset>	attributes,	these	event	handlers	take	quote-
enclosed	lists	of	JavaScript	commands	and	function	calls	as	their	values.

For	example,	you	might	notify	the	user	when	all	the	contents	have	been	loaded
into	their	respective	frames	of	a	lengthy	frameset:

<frameset	onLoad="window.alert('Everything	is	loaded.	You	may	now	continue.')">

	
You	also	may	use	these	four	attributes	with	the	<body>	tag.	We	cover	JavaScript
event	handlers	in	more	detail	in	section	12.3.3.

11.3.1.4.	Other	<frameset>	attributes

Like	most	of	the	other	standard	tags,	the	<frameset>	tag	honors	four	of	the	standard
attributes:	class,	style,	title,	and	id.

Use	the	class	attribute	to	associate	a	predefined	style	class	with	this	frame	and,
via	style	inheritance,	its	content.	Alternatively,	use	the	style	attribute	to	define	a
style	inline	with	the	<frameset>	tag.	We	cover	styles	more	completely	in	Chapter	8.

The	id	attribute	creates	a	unique	identifier	for	the	frame,	and	the	title	attribute
creates	a	title	for	the	frame	that	might	be	presented	to	the	user	or	used	by	a
nonvisual	browser.	[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]

11.3.2.	Nesting	<frameset>	Tags

You	can	create	some	elaborate	browser	displays	with	a	single	<frameset>,	but	the
frame	layout	is	unimaginative.	Instead,	create	staggered	frames	and	other,	more
complex,	layouts	with	multiple	<frameset>	tags	nested	within	a	top-level	<frameset>	in
the	frame	document.

For	example,	create	a	layout	of	two	columns,	the	first	with	two	rows	and	the
second	with	three	rows	(as	shown	in	Figure	11-4),	by	nesting	two	<frameset>	tags
with	row	specifications	within	a	top-level	<frameset>	that	specifies	the	columns:

<frameset	cols="50%,*">
		<frameset	rows="50%,*">
				<frame	src="frame1.html">
				<frame	src="frame2.html">
		</frameset>
		<frameset	rows	="33%,33%,*">
				<frame	src="frame3.html">
				<frame	src="frame4.html">
				<frame	src="frame5.html">
		</frameset>
</frameset>

	

Figure	11-4.	Staggered	frame	layouts	use	nested	<frameset>
tags

	
	

11.4.	Frame	Contents

A	frame	document	contains	no	displayable	content,	except	perhaps	a	message	for
nonframes-enabled	browsers.	Instead,	<frame>	tags	inside	one	or	more	<frameset>
tags	(which	encapsulate	the	contents	of	a	frame	document)	provide	URL
references	to	the	individual	documents	that	occupy	each	frame.	[<noframes>,
11.5]

11.4.1.	The	<frame>	Tag

The	<frame>	tag	appears	only	within	a	<frameset>.	Use	it	to	set,	via	its	associated	src
attribute,	the	URL	of	the	document	content	that	initially	gets	displayed	inside	the
respective	frame.

<frame>

Function Defines	a	single	frame	in	a	<frameset>

Attributes bordercolor	 ,	class,	frameborder	 ,	id,	longdesc,	marginheight,	marginwidth,	name,
noresize,	scrolling,	src,	style,	title

End	tag </frame>;	rarely	included	in	HTML

Contains Nothing

Used	in frameset_content

	
Browsers	place	the	frame	contents	into	the	frameset	column	by	column,	from	left
to	right,	and	then	row	by	row,	from	top	to	bottom.	Accordingly,	the	sequence	and
number	of	<frame>	tags	inside	the	<frameset>	tag	are	important.

The	browser	displays	empty	frames	for	<frame>	tags	that	do	not	have	src	attributes.
It	also	displays	empty	frames	if	the	<frameset>	tag	calls	for	more	frames	than	the
corresponding	<frame>	tags	defineif	your	frame	document	calls	for	three	columns
and	you	provide	only	two	frames,	for	example.	Orphan	frames	remain	empty,	and
you	cannot	put	content	into	them	later,	even	if	they	have	a	target	name	or	id	for
display	redirection.	[The	name	and	id	attributes,	6.3.1.3]

11.4.1.1.	The	src	attribute

The	value	of	the	src	attribute	for	the	<frame>	tag	is	the	URL	of	the	document	that	is
to	be	displayed	in	the	frame.	There	is	no	other	way	to	provide	content	for	a
frame.	You	shouldn't,	for	instance,	include	any	<body>	content	within	the	frame
document;	the	browser	ignores	the	frame	tags	and	displays	just	the	contents	of	a
<body>	tag	if	it	comes	first,	or	vice	versa.

The	document	referenced	by	the	src	attribute	may	be	any	valid	document	or	any
displayable	object,	including	images	and	multimedia.	In	particular,	the	referenced
document	may	itself	be	composed	of	one	or	more	frames.	The	frames	are
displayed	within	the	referencing	frame,	providing	yet	another	way	of	achieving
complex	layouts	using	nested	frames.

Because	the	source	may	be	a	complete	document,	all	the	features	of	HTML/XHTML
apply	within	a	frame,	including	backgrounds	and	colors,	tables,	fonts,	and	the	like.
Unfortunately,	this	also	means	that	multiple	frames	in	a	single	browser	window
may	conflict	with	each	other.	Specifically,	if	each	nested	frame	document	(not	a
regular	HTML	or	XHTML	document)	has	a	different	<title>	tag,	the	title	of	the
overall	browser	window	is	the	title	of	the	most	recently	loaded	frame	document.
The	easiest	way	to	avoid	this	problem	is	to	ensure	that	all	related	frame
documents	use	the	same	title.

11.4.1.2.	The	name	and	id	attributes

The	optional	name	attribute	for	the	<frame>	tag	labels	that	frame	for	later	reference
by	a	target	attribute	for	the	anchor	(<a>)	tag	and	the	<form>	tag.	This	way,	you	can
alter	the	contents	of	a	frame	using	a	hyperlink	in	another	frame.	Otherwise,	like
normal	browser	windows,	linked	documents	replace	the	contents	of	the	source
frame.	We	discuss	names	and	targets	at	greater	length	later	in	this	chapter.	[The
target	Attribute	for	the	<a>	Tag,	11.7.1]

Similarly,	the	id	attribute	uniquely	identifies	a	frame,	but	the	browsers	do	not
support	its	use	for	target	redirection,	even	though	they	do	support	id's	use	as	a
hyperlink	target	in	many	other	HTML	and	XHTML	tags.

The	value	of	the	name	or	id	attribute	is	a	text	string	enclosed	in	quotation	marks.

11.4.1.3.	The	noresize	attribute

Even	though	you	may	explicitly	set	frame	dimensions	with	attributes	in	the
<frameset>	tag,	users	can	manually	alter	the	size	of	a	column	or	row	of	frames.	To
suppress	this	behavior,	add	the	noresize	attribute	to	the	frame	tags	in	the	row	or
column	whose	relative	dimensions	you	do	not	want	users	fiddling	with.	For
example,	for	a	two-by-two	frame	document,	a	noresize	attribute	in	any	one	of	the
four	associated	frame	tags	effectively	freezes	the	relative	proportions	of	all	the
frames.

The	noresize	attribute	is	especially	useful	for	frames	that	contain	fixed	images
serving	as	advertisements,	a	button	bar,	or	a	logo.	By	fixing	the	size	of	the	frame
to	contain	just	the	image	and	setting	the	noresize	attribute,	you	guarantee	that
the	image	is	displayed	in	the	intended	manner	and	that	the	remainder	of	the
browser	window	is	always	given	over	to	the	other	frames	in	the	document.

11.4.1.4.	The	scrolling	attribute

The	browser	displays	vertical	and	horizontal	scroll	bars	with	frames	whose
contents	are	larger	than	the	allotted	window	space.	If	there	is	sufficient	room	for
the	content,	the	scroll	bars	disappear.	The	scrolling	attribute	for	the	<frame>	tag
gives	you	explicit	control	over	whether	the	scroll	bars	appear	or	disappear.

With	scrolling="yes",	all	the	popular	browsers	except	Netscape	add	scroll	bars	to
the	designated	frame	even	if	there	is	nothing	to	scroll.	If	you	set	the	scrolling
attribute	value	to	no,	scroll	bars	are	never	added	to	the	frame,	even	if	the	frame
contents	are	larger	than	the	frame	itself.	The	value	auto,	the	default,	works	as
though	you	didn't	include	the	scrolling	attribute	in	the	tag.

11.4.1.5.	The	marginheight	and	marginwidth	attributes

The	browser	normally	places	a	small	amount	of	space	between	the	edge	of	a
frame	and	its	contents.	You	can	change	those	margins	with	the	marginheight	and
marginwidth	attributes,	each	including	a	value	for	the	exact	number	of	pixels	to
place	around	the	frame's	contents.

You	cannot	make	a	margin	less	than	1	pixel	or	make	it	so	large	that	there	is	no
room	for	the	frame's	contents.	That's	because,	like	most	other	HTML	attributes,
these	advise;	they	do	not	dictate	to	the	browser.	If	your	desired	margin	values
cannot	be	accommodated,	the	browser	ignores	them	and	renders	the	frame	as
best	it	can.

11.4.1.6.	The	frameborder	and	bordercolor	attributes

With	some	earlier	versions	of	Internet	Explorer,	you	could	add	and	remove
borders	from	a	single	frame	with	the	frameborder	attribute.	Values	of	yes	or	1	and	no
or	0	respectively	enable	or	disable	borders	for	the	frame	and	override	the	value	of
the	frameborder	attribute	for	any	frameset	containing	the	frame.	Don't	use	it.

With	all	the	popular	browsers	except	Opera,	you	also	can	change	the	color	of	the
individual	frame's	borders	with	the	bordercolor	attribute.	Use	a	color	name	or
hexadecimal	triple	as	its	value.	If	two	adjacent	frames	have	different	bordercolor
attributes,	the	resulting	border	color	is	undefined.	You	can	find	a	complete	list	of
color	names	and	values	in	Appendix	G.

11.4.1.7.	The	title	and	longdesc	attributes

Like	most	other	standard	tags,	you	can	provide	a	title	for	a	frame	with	the	title
attribute.	The	value	of	the	attribute	is	a	quote-enclosed	string	that	describes	the
contents	of	the	frame.	Browsers	might	display	the	title,	for	instance,	when	the

mouse	passes	over	the	frame.

If	the	title	attribute	isn't	quite	enough	for	you,	you	can	use	the	longdesc	attribute.
Its	value	is	the	URL	of	a	document	that	describes	the	frame.	Presumably,	this	long
description	might	be	in	some	alternative	media,	suitable	for	use	by	a	nonvisual
browser.

	

11.5.	The	<noframes>	Tag

A	frame	document	has	no	<body>.	It	must	not	because	the	browser	ignores	any
frame	tags	if	it	finds	any	<body>	content	before	it	encounters	the	first	<frameset>	tag.
A	frame	document,	therefore,	is	all	but	invisible	to	any	nonframes-capable
browser.	The	<noframes>	tag	gives	some	relief	to	the	frames-disabled.

<noframes>

Function Supplies	content	for	nonframes-capable	browsers

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </noframes>;	sometimes	omitted	in	HTML

Contains body_content

Used	in frameset_content

	
You	should	use	the	<noframes>	tag	only	within	the	outermost	<frameset>	tag	of	a
frame	document.	Content	between	the	<noframes>	tag	and	its	required	end	tag
(</noframes>)	is	not	displayed	by	any	frames-capable	browser	but	is	displayed	in
lieu	of	other	contents	in	the	frame	document	by	browsers	that	do	not	handle
frames.	The	content	of	the	<noframes>	tag	can	be	any	normal	body	content,
including	the	<body>	tag	itself.

Although	this	tag	is	optional,	experienced	authors	typically	include	the	<noframes>
tag	in	their	frame	documents	with	content	that	warns	nonframes-capable	browser
users	that	they're	missing	the	show.	And	smart	authors	give	those	users	a	way
out,	if	not	direct	access	to	the	individual	documents	that	make	up	the	frame
document	contents.

Remember	our	first	frame	example	in	this	chapter?	Figure	11-5	shows	what
happens	when	that	frame	document	gets	loaded	into	an	old	version	of	Mosaic.

Figure	11-5.	A	<noframes>	message	in	a	nonframes-capable
browser

	
The	HTML	to	produce	this	message	looks	like	this:

<noframes>
		Sorry,	this	document	can	be	viewed	only	with	a
		frame-capable	browser.	Go	to	the	
		first	HTML	document	in	the	set.
</noframes>

	
<noframes>	works	because	most	browsers	are	extremely	tolerant	of	erroneous	tags
and	incorrect	documents.	A	nonframes	browser	simply	ignores	the	frame	tags.
What's	left,	then,	is	the	content	of	the	<noframes>	tag,	which	the	browser	dutifully
displays.

If	your	browser	strictly	enforces	some	version	of	HTML	or	XHTML	that	does	not
support	frames,	it	may	simply	display	an	error	message	and	refuse	to	display	the
document,	even	if	it	contains	a	<noframes>	tag.

11.5.1.	<noframes>	Attributes

No	attributes	are	specific	to	the	<noframes>	tag,	but	you	can	use	any	of	the	16
standard	attributes:	class	and	style	for	style	management,	lang	and	dir	for
language	type	and	display	direction,	title	and	id	for	titling	and	naming	the
enclosed	content,	and	any	of	the	event	attributes	for	user-activated	JavaScript
processing	within	the	<noframes>	tag.	[The	dir	attribute,	3.6.1.1]	[The	lang
attribute,	3.6.1.2]	[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]	[Inline
Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]	[JavaScript	Event	Handlers,
12.3.3]

	

11.6.	Inline	Frames

To	this	point,	our	discussion	has	centered	on	frames	that	are	defined	as	part	of	a
frameset.	A	frameset,	in	turn,	replaces	the	conventional	<body>	of	a	document	and
supplies	content	to	the	user	via	its	contained	frames.

The	HTML	4	and	XHTML	standards	let	you	do	things	a	bit	differently:	you	can	also
define	a	frame	that	exists	within	a	conventional	document,	displayed	as	part	of
that	document's	text	flow.	These	frames	behave	a	lot	like	inline	images,	which	is
why	they	are	known	as	inline	frames.

All	the	popular	browsers	support	inline	frames.

11.6.1.	The	<iframe>	Tag

Define	an	inline	frame	with	the	<iframe>	tag.	The	<iframe>	tag	is	not	used	within	a
<frameset>	tag.	Instead,	it	appears	anywhere	in	your	document	that	an		tag
might	appear.	The	<iframe>	tag	defines	a	rectangular	region	within	the	document	in
which	the	browser	displays	a	separate	document,	including	scroll	bars	and
borders.

<iframe>

Function Defines	an	inline	frame	within	a	text	flow

Attributes align,	class,	frameborder,	height,	id,	longdesc,	marginheight,	marginwidth,	name,
scrolling,	src,	style,	title,	width

End	tag </iframe>;	never	omitted

Contains body_content

Used	in text

	
Use	the	src	attribute	with	<iframe>	to	specify	the	URL	of	the	document	that
occupies	the	inline	frame.	All	of	the	other,	optional	attributes	for	the	<iframe>	tag,
including	name,	class,	frameborder,	id,	longdesc,	marginheight,	marginwidth,	name,	scrolling,
style,	and	title,	behave	exactly	like	the	corresponding	attributes	for	the	<frame>
tag.	[The	<frame>	Tag,	11.4.1]

Use	the	content	of	the	<iframe>	tag	to	provide	information	to	users	of	browsers	that
do	not	support	inline	frames.	Compliant	browsers	ignore	these	contents,	whereas
all	other	browsers	ignore	the	<iframe>	tag	and	therefore	display	its	contents	as
though	they	were	regular	body	content.	For	instance,	use	the	<iframe>	content	to
explain	to	users	what	they	are	missing:

...other	document	content...<iframe	src="sidebar.html"	width=75	height=200	align
=right>
Your	browser	does	not	support	inline	frames.	To	view	this
document	correctly,	you	need
to	install	a	more	recent	browser	on	your	computer.
</iframe>...subsequent	document	content...

	
In	this	example,	we	let	the	user	know	that	she	was	accessing	an	unsupported
feature	and	provided	a	link	to	the	missing	content.

11.6.1.1.	The	align	attribute

Like	the	deprecated	align	attribute	for	the	<table>	and		tags,	this	inline	frame
attribute	lets	you	control	where	the	frame	gets	placed	in	line	with	the	adjacent
text	or	moved	to	the	edge	of	the	document,	allowing	text	to	flow	around	the
frame.

For	inline	alignment,	use	top,	middle,	or	bottom	as	the	value	of	this	attribute.	The
browser	aligns	the	frame	with	the	top,	middle,	or	bottom	of	the	adjacent	text,
respectively.	To	allow	text	to	flow	around	the	inline	frame,	use	the	left	or	right
values	for	this	attribute.	The	frame	is	moved	to	the	left	or	right	edge	of	the	text
flow,	respectively,	and	the	remaining	content	of	the	document	is	flowed	around
the	frame.	A	value	of	center	places	the	inline	frame	in	the	middle	of	the	display,
with	text	flowing	above	and	below.

11.6.1.2.	The	height	and	width	attributes

The	popular	browsers	put	the	contents	of	an	inline	frame	into	a	predefined,	150-
pixel-tall,	300-pixel-wide	box.	Use	the	height	and	width	attributes	with	values	as
the	number	of	pixels	to	change	those	dimensions.

11.6.2.	Using	Inline	Frames

Although	you'll	probably	shy	away	from	them	for	most	of	your	web	pages,	inline
frames	can	be	useful,	particularly	for	providing	information	related	to	the	current
document	being	viewed,	similar	to	the	sidebar	articles	you	find	in	a	conventional
printed	publication.

Except	for	their	location	within	conventional	document	content,	inline	frames	are
treated	exactly	like	regular	frames.	You	can	load	other	documents	into	the	inline
frame	using	its	name	(see	the	next	section)	and	link	to	other	documents	from
within	the	inline	frame.

	

11.7.	Named	Frame	or	Window	Targets

As	we	discussed	earlier	in	section	11.4.1,	you	can	label	a	frame	by	adding	the	name
attribute	to	its	<frame>	tag.[2]	Once	named,	the	frame	may	become	the	destination
display	window	for	a	hyperlinked	document	selected	within	a	document	displayed
in	some	other	frame.	You	accomplish	this	redirection	by	adding	the	special	target
attribute	to	the	anchor	that	references	the	document.

[2]	The	id	attribute	provides	the	same	unique	labeling	but	you	cannot	use	it	for	frame	content	redirection.	Instead,	the
browser	ignores	the	id-named	target	frame	and	displays	the	linked	document	in	a	new	window.

11.7.1.	The	target	Attribute	for	the	<a>	Tag

If	you	include	a	target	attribute	within	an	<a>	tag,	the	browser	loads	and	displays
the	document	named	in	the	tag's	href	attribute	in	a	frame	or	window	whose	name
matches	the	target.	If	the	named	frame	or	window	doesn't	exist,	the	browser
opens	a	new	window,	gives	it	the	specified	label,	and	loads	the	new	document	into
that	window.	Once	this	process	has	been	completed,	linked	documents	can	target
the	new	window.

Targeted	hyperlinks	make	it	easy	to	create	effective	navigational	tools.	A	simple
table	of	contents	document,	for	example,	might	redirect	documents	into	a
separate	window:

<h3>Table	of	Contents</h3>

		Preface
		Chapter	1
		Chapter	2
		Chapter	3

	
The	first	time	the	user	selects	one	of	the	table-of-contents	hyperlinks	the	browser
opens	a	new	window,	labels	it	view_window,	and	displays	the	desired	document's
contents	inside	it.	If	the	user	selects	another	hyperlink	from	the	table	of	contents
and	the	view_window	is	still	open,	the	browser	again	loads	the	selected	document
into	that	window,	replacing	the	previous	document.

Throughout	the	whole	process,	the	window	containing	the	table	of	contents	is
accessible	to	the	user.	By	clicking	on	a	hyperlink	in	one	window,	the	user	causes

the	contents	of	the	other	window	to	change.

Instead	of	opening	an	entirely	new	browser	window,	a	more	common	use	of	target
is	to	direct	hyperlink	contents	to	one	or	more	frames	in	a	<frameset>	display	or	to
an	inline	<iframe>	window.	You	might	place	the	table	of	contents	into	one	frame	of
a	two-frame	document	and	use	the	adjacent	frame	to	display	the	selected
documents:

<frameset	cols="150,*">
		<frame	src="toc.html">
		<frame	src="pref.html"	name="view_frame">
</frameset>

	
When	the	browser	initially	displays	the	two	frames,	the	left	frame	contains	the
table	of	contents,	and	the	right	frame	contains	the	Preface	(see	Figure	11-6).

Figure	11-6.	Table	of	contents	frame	controls	content	of
adjacent	frame

	
When	a	user	selects	a	hyperlink	from	the	table	of	contents	in	the	left	frame	(for
example,	Chapter	1),	the	browser	loads	and	displays	the	associated	document	into
the	view_frame	frame	on	the	right	side	(Figure	11-7).	As	other	links	get	selected,
the	right	frame's	contents	change,	while	the	left	frame	continuously	makes	the
table	of	contents	available	to	the	user.

Figure	11-7.	The	contents	of	Chapter	1	are	displayed	in	the
adjacent	frame

	

11.7.2.	Special	Targets

There	are	four	reserved	target	names	for	special	document-redirection	actions:

_blank

The	browser	always	loads	a	target="_blank"	linked	document	into	a	newly
opened,	unnamed	window.

_self

This	target	value	is	the	default	for	all	<a>	tags	that	do	not	specify	a	target,
causing	the	target	document	to	be	loaded	and	displayed	in	the	same	frame	or
window	as	the	source	document.	This	target	is	redundant	and	unnecessary
unless	used	in	combination	with	the	target	attribute	in	the	<base>	tag	in	a
document's	head	(see	the	next	section,	11.7.3).

_parent

This	target	causes	the	document	to	be	loaded	into	the	parent	window	or
frameset	containing	the	frame	containing	the	reference.	If	the	reference	is	in
a	window	or	top-level	frame,	it	is	equivalent	to	the	target	_self.

A	brief	example	may	help	clarify	how	this	hyperlink	target	works.	Consider	a
link	in	a	frame	that	is	part	of	a	three-column	frameset.	This	frameset,	in	turn,

is	a	row	in	the	top-level	frameset	being	displayed	in	the	browser	window.
Figure	11-8	shows	this	arrangement.

If	no	target	is	specified	for	the	hyperlink,	it	is	loaded	into	the	containing
frame.	If	a	target	of	_parent	is	specified,	the	document	is	loaded	into	the	area
occupied	by	the	three-column	frameset	containing	the	frame	that	contains	the
link.

Figure	11-8.	Using	special	targets	in	nested	frames	and
framesets

_top

This	target	causes	the	document	to	be	loaded	into	the	window	containing	the
hyperlink,	replacing	any	frames	currently	displayed	in	the	window.

Continuing	with	the	frame	hierarchy,	as	shown	in	Figure	11-8,	using	a	target
of	_top	would	remove	all	the	contained	frames	and	load	the	document	into	the
entire	browser	window.

All	four	of	these	target	values	begin	with	the	underscore	character.	The	browser
ignores	any	other	window	or	target	beginning	with	an	underscore,	so	don't	use
the	underscore	as	the	first	character	of	any	frame	name	or	id	you	define	in	your
documents.

11.7.3.	The	<base>	Default	Target

It	can	be	tedious	to	specify	a	target	for	every	hyperlink	in	your	documents,
especially	when	most	are	targeted	at	the	same	window	or	frame.	To	alleviate	this
problem,	you	can	add	a	target	attribute	to	the	<base>	tag.	[<base>,	6.7.1]

The	target	attribute	in	the	<base>	tag	sets	the	default	target	for	every	hyperlink	in
the	current	document	that	does	not	contain	an	explicit	target	attribute.	For
instance,	in	our	example	table	of	contents	document,	almost	every	link	causes	the
document	to	be	displayed	in	another	window	named	view_frame.	Instead	of
including	that	target	in	each	hyperlink,	you	should	place	the	common	target	in
the	table	of	contents'	<base>	tag	within	its	<head>:

<head>
<title>Table	of	Contents</title>
<base	target="view_frame">
</head>
<body>
<h3>Table	of	Contents</h3>

		Preface
		Chapter	1
		Chapter	2
		Chapter	3

</body>

	
Notice	that	we	don't	include	any	other	target	references	in	the	list	of	hyperlinks,
because	the	browser	loads	and	displays	all	the	respective	documents	in	the	base
target	view_frame.

11.7.4.	Traditional	Link	Behavior

Before	the	onset	of	frames,	each	time	you	selected	a	hyperlink,	the	corresponding
document	replaced	the	contents	of	the	browser	window.	With	frames,	this
behavior	is	modified	so	that	the	corresponding	document	replaces	the	content	of
the	referencing	frame.	This	is	often	not	the	desired	behavior,	and	it	can	be
disconcerting	to	people	browsing	your	documents.

For	example,	suppose	you	have	arranged	all	of	the	documents	on	your	site	to
present	themselves	in	three	frames:	a	navigational	frame	at	the	top	of	the

browser	window,	a	scrolling	content	frame	in	the	middle,	and	a	feedback	form	at
the	bottom.	You	named	the	content	frame	with	the	name	attribute	of	the	<frame>	tag
in	the	top-level	document	for	your	collection	and	used	the	target	attribute	of	the
<base>	tag	in	every	document	on	your	site	to	ensure	that	all	links	are	loaded	into
the	center	content	frame.

This	arrangement	works	perfectly	for	all	the	documents	on	your	site,	but	what
happens	when	a	user	selects	a	link	that	takes	him	to	a	different	site?	The
referenced	document	is	still	loaded	into	the	center	content	frame.	Now	the	user	is
confronted	by	a	document	from	some	other	site,	surrounded	by	your	navigation
and	feedback	frames![3]	Very	impolite.

[3]	Check	out	Chapter	17	for	how	to	step	out	into	the	forefront	when	your	pages	happen	to	be	on	the	other	end	of	a
targetless	hyperlink.

The	solution	is	to	make	sure	that	every	hyperlink	that	references	a	remote
document	has	a	target	of	_top.	This	way,	when	the	user	selects	a	link	that	takes
him	away	from	your	site,	the	remote	document	replaces	the	contents	of	the	entire
browser	window,	including	your	navigation	and	feedback	frames.	If	the	majority	of
the	links	in	your	documents	are	to	other	sites,	you	might	consider	adding
target="_top"	to	a	<base>	tag	in	your	document	and	using	explicit	target	attributes	in
the	links	to	your	local	documents.

	

11.8.	XFrames

Frames	are	a	rags-to-riches	success	story.	From	a	nonstandard	extension	in	the
Netscape	browser	to	a	standard	component	of	HTML	and	XHTML,	frames	have
proven	themselves	as	a	core	element	of	the	HTML	world.	Nonetheless,	there	are
problems	with	frames	that	have	never	been	fully	resolved:

Navigation	with	a	browser's	Back	button	can	be	unpredictable.

You	cannot	directly	reference	a	document	within	a	frameset.

You	cannot	reference	a	particular	collection	of	frames	with	a	single	URL.

Search	engines	often	do	not	follow	framed	content.

To	correct	these	deficiencies	while	retaining	the	power	of	frames,	the	World	Wide
Web	Consortium	(W3C)	has	proposed	a	slightly	different	model	for	framed
content.	This	model	is	still	a	working	document,	and	has	not	yet	been
implemented	in	any	browser.	Still,	we	briefly	describe	it	here	to	make	authors
aware	of	what	they	might	expect	from	frames	in	the	near	future.

11.8.1.	An	XFrames	Document

Within	HTML	and	XHTML,	frames	replace	the	<body>	of	a	document,	leaving	the
<html>	and	<head>	tags	intact.	In	the	XFrames	model,	an	XFrames	document
replaces	the	entire	<html>	document,	carrying	with	it	its	own	<head>	and	framed
content.	Within	the	<head>	tag,	authors	can	provide	a	<title>	and	<style>	tags;	the
framed	content	is	then	denoted	within	<group>	and	<frame>	tags.	A	short	XFrames
document	might	look	like	this:

<frames	xmlns="http://www.w3.org/2002/06/xframes/">
		<head>
				<title>Kumquat	Lore</title>
				<style	type="text/css">
						#header	{height:	10em	}
						#toc,	#nav	{width:	20%}
						#footer	{height:	4em	}
				</style>
		</head>
		<group	compose="vertical">

				<frame	xml:id="header"	source="lore.xhtml"/>
				<group	compose="horizontal">
						<frame	xml:id="toc"	source="toc.xhtml"/>
						<frame	xml:id="main"	source="intro.xhtml"/>
						<frame	xml:id="nav"	source="main-nav.xhtml"/>
				</group>
				<frame	xml:id="footer"	source="copyright.xhtml"/>
		</group>
</frames>

	
The	<head>	tag	sets	the	title	for	the	framed	document	and	defines	styles	that	will
affect	the	display	of	the	correspondingly	named	frames	within	the	document	set.
The	<group>	tag,	analogous	to	the	<frameset>	tag,	defines	a	group	of	frames	and
other	groups	whose	layout	is	controlled	by	the	compose	attribute.	The	<frame>	tag
defines	a	single	document	whose	content	is	displayed	within	that	frame	in	the
document.	In	this	document,	five	frames	are	arranged	in	three	rows,	with	one
frame	at	the	top,	one	at	the	bottom,	and	three	in	the	middle	row.	In	that	row,	the
left	and	right	frames	each	occupy	20	percent	of	the	available	space,	with	the
center	frame	taking	up	the	remainder.	Individual	frames	are	named	with	the	xml:id
attribute;	these	names	are	referenced	when	loading	new	content	in	a	frame,
when	associating	styles	with	a	frame,	and	when	creating	a	URL	to	display	a
specific	frameset,	as	described	shortly.

The	compose	attribute	in	the	<group>	tag	provides	some	additional	layout	capabilities
that	conventional	frames	do	not	allow.	While	the	horizontal	and	vertical	layout
choices	perform	the	appropriate	action,	the	single	and	free	choices	are	more
interesting.	Setting	compose	to	single	causes	the	browser	to	display	only	one	of	the
frames	in	the	group	at	a	time,	while	providing	some	sort	of	mechanism	to	indicate
the	presence	of	other	frames	and	a	way	to	select	them.	One	can	imagine	a	pull-
down	menu	that	lets	the	user	choose	one	frame	at	a	time,	for	example.

The	free	value	for	the	compose	attribute	displays	the	frames	in	a	group	as	a	set	of
freely	movable	windows	within	a	display	area.	The	user	can	move	and	rearrange
the	windows	as	desired,	even	overlapping	them!	Presumably,	this	would	allow
frames	to	be	displayed	in	a	sort	of	"desktop"	within	the	browser,	completely	at	the
user's	discretion.

11.8.2.	XFrames	URLs

To	support	explicit	reference	to	frames	within	a	framed	document,	the	XFrames
model	extends	the	definition	of	a	URL	to	include	a	special	#frames	keyword.	This
feature	lets	you	specify	the	content	for	each	frame	in	a	document,	something	that

is	impossible	with	the	current	HTML	and	XHTML	frames	model.

To	use	this	feature,	add	the	special	#frames	keyword	to	the	end	of	a	URL
referencing	a	frame	document.	Follow	the	keyword	with	a	list	of	frame	IDs	and
their	desired	content,	all	enclosed	in	parentheses.	Sound	difficult?	It's	not:

http://www.kumquat.com/lore.html#frames(toc=section7.xhtml,main=arctic-quats.xhtml)

	
This	URL	opens	the	framed	document	named	lore.html,	and	loads	the	toc	and	main
frames	with	the	desired	pages.	The	other	frames	named	in	the	document	are
loaded	with	their	default	content	because	they	are	not	mentioned	in	this	URL.
Frames	without	default	content	are	left	blank.

This	powerful	syntax	has	lots	of	benefits	for	authors	and	end	users.	Authors	can
now	construct	links	that	will	open	a	complete	set	of	framed	documents	in	a
specific,	repeatable	manner.	And	users	can	save	a	bookmark	to	a	framed
document,	assured	that	when	they	return	to	the	document,	all	the	frames	will	be
opened	with	the	same	content	as	when	they	saved	the	URL.

	

Chapter	12.	Executable	Content

One	of	the	most	useful	web	technologies	is	the	ability	to	deliver	applications
directly	to	the	browser.	These	typically	small	programs	perform	simple	tasks	on
the	client	computer,	from	responding	to	user	mouse	or	keyboard	actions	to	spicing
up	your	web	page	displays	with	multimedia-enabling	software.

You	can	embed	scripts	in	your	documents	using	a	language	known	as	JavaScript.
Or	you	can	load	and	execute	small,	Java-based,	platform-independent	applications
known	as	applets.	During	execution,	these	programs	may	generate	dynamic
content,	interact	with	the	user,	validate	form	data,	or	even	create	windows	and
run	entire	applications	independent	of	your	pages.	The	possibilities	are	endless,
and	they	go	far	beyond	the	simple	document	model	originally	envisioned	for
HTML.

In	this	chapter,	we	show	you,	with	simple	examples,	how	to	include	two	kinds	of
executable	contentscripts	and	appletsin	your	documents.	We	won't,	however,
teach	you	how	to	write	and	debug	executable	content.	This	is	a	book	about	HTML
and	XTHML,	after	all.	Rather,	get	an	expert	opinion:	turn	to	any	of	the	many
excellent	texts	from	O'Reilly,	especially	the	companion	JavaScript:	The	Definitive
Guide,	by	David	Flanagan.

	

12.1.	Applets	and	Objects

Applets	represent	a	shift	in	the	basic	model	of	web	communications.	In	most	other
web	applications,	servers	perform	most	of	the	computational	work,	client	browsers
being	not	much	more	than	glorified	terminals.	With	applets,	web	technology	shifts
to	the	client,	distributing	some	or	all	of	the	computational	load	from	the	server	to
the	client	computer	and	its	browser.

Applets	also	represent	a	way	of	extending	a	browser's	features	without	forcing
users	to	acquire	new	browsers,	as	is	the	case	when	developers	implement	new	tag
and	attribute	extensions	to	HTML.	Nor	do	users	have	to	acquire	and	install	a
special	application,	as	is	required	for	helper	or	plug-in	applications.[*]	This	means
that	once	users	have	a	browser	that	supports	applets	(all	the	currently	popular
ones	do),	you	can	deliver	applets	directly	to	the	browser,	including	display	and
multimedia	innovations.

[*]	Actually,	Internet	Explorer	6	users	must	download	and	install	Java	support.	Read	on	for	details.

12.1.1.	The	Object	Model

Java-based	appletsweb	page-referenced	programs	retrieved	from	a	network
server	and	executed	on	the	user's	client	computerare	an	example	of	what	the
HTML	4	and	XHTML	standards	call	inclusions.	As	with	images,	the	browser	first
loads	the	HTML	document,	then	examines	it	for	inclusionsadditional,	separate,	and
discrete	content	that	the	client	browser	is	to	handle.	A	GIF	image	is	one	type	of
inclusion.	A	.wav	sound	file,	an	MPEG	movie,	and	a	Java-based	clock	program	are
other	types.

The	HTML	4	and	XHTML	standards	generally	call	the	inclusion	contents	objects.	In
fact,	in	your	document	you	may	identify	and	load	nearly	any	object	file	over	the
network	through	a	universal	<object>	tag,	discussed	in	detail	shortly	in	section
12.2.1.

Once	the	object	has	been	downloaded,	the	standards	dictate	that	the	browser
somehow	render	the	object,	by	internal	or	external	mechanisms.	Otherwise,	plug-
ins	and	other	helper	applications	may	provide	the	necessary	rendering
mechanism.	Internet	Explorer,	for	example,	has	its	internal	resources	play	an	AVI
movie,	whereas	other	browsers	rely	upon	some	third-party	software,	such	as
RealPlayer	or	QuickTime,	to	show	the	movie.

12.1.1.1.	The	applet	model

With	Java	applets,	the	browser	sets	aside	a	portion	of	the	document	display	space.
You	may	control	the	size	and	position	of	this	display	area;	the	applet	controls
what	is	presented	inside.

The	applet	is	software,	an	executable	program.	Accordingly,	besides	providing	a
display	space,	the	browser,	in	tandem	with	the	client	computer	environment	and
resources,	provides	the	applet	with	a	runtime	environment	called	a	virtual
machine.

During	execution,	Java	applets	have	access	to	a	restricted	environment	within	the
user's	computer.	For	instance,	applets	have	access	to	the	mouse	and	keyboard	so
that	they	may	receive	input	from	the	user.	Depending	on	the	security	policy	in
place,	applets	also	may	initiate	network	connections	and	retrieve	data	from	other
servers	on	the	Internet.	In	sum,	applets	are	full-fledged	programs,	complete	with
a	variety	of	input	and	output	mechanisms,	along	with	a	full	suite	of	network
services.

You	may	place	several	applets	in	a	single	document;	they	all	execute	in	parallel
and	may	communicate	with	each	other.	While	the	browser	may	limit	their	access
to	its	computer	system,	applets	have	complete	control	of	their	virtual
environment	within	the	browser.

12.1.1.2.	The	applet	advantage

There	are	several	advantages	of	applets,	not	the	least	of	which	is	providing	more
compelling	user	interfaces	within	a	web	page.	For	instance,	an	applet	might	create
a	unique	set	of	menus,	choices,	text	fields,	and	similar	user-input	tools	different
from	those	available	through	the	browser.	When	the	user	clicks	a	button	within
the	applet's	interaction/display	region,	the	applet	might	respond	by	displaying
results	within	the	region,	signaling	another	applet,	or	even	loading	a	completely
new	page	into	the	browser.

We	don't	mean	to	imply	that	the	only	use	of	applets	is	to	enhance	the	user
interface.	An	applet	is	a	full-fledged	program	that	can	perform	any	number	of
computational	and	user-interactive	tasks	on	the	client	computer.	An	applet	might
implement	a	real-time	video	display,	perform	circuit	simulation,	engage	the	user
in	a	game,	provide	a	chat	interface,	and	so	on.

12.1.1.3.	Using	applets	correctly

An	applet	is	nothing	more	than	another	tool	you	can	use	to	produce	compelling
and	useful	web	pages.	Keep	in	mind	that	an	applet	uses	computational	resources
on	the	client	to	run	and	therefore	places	a	load	on	the	user's	computer.	It	can

degrade	system	performance.

Similarly,	if	an	applet	uses	a	lot	of	network	bandwidth	to	accomplish	its	task	(a
real-time	video	feed,	for	example),	it	may	make	other	network	communication
unbearably	slow.	While	such	applications	are	fun,	they	do	little	more	than	annoy
your	target	audience.

To	use	an	applet	correctly,	balance	the	load	between	the	browser	and	the	server.
For	each	page,	decide	which	tasks	are	best	left	to	the	server	(forms	processing,
index	searches,	and	the	like)	and	which	tasks	are	better	suited	for	local
processing	(user-interface	enhancements,	real-time	data	presentation,	small
animations,	input	validation,	and	so	on).	Divide	the	processing	accordingly.
Remember	that	many	users	have	slower	network	connections	and	computers	than
you	do,	and	design	your	applets	to	satisfy	the	majority	of	your	audience.

Used	the	right	way,	applets	seamlessly	enhance	your	pages	and	provide	a
satisfying	experience	for	your	audience.	Used	improperly,	applets	are	just	another
annoying	bandwidth	waster,	alienating	your	users	and	hurting	your	pages.

12.1.1.4.	Writing	applets

Creating	Java	applets	is	a	programming	task,	not	usually	a	job	for	the	HTML	or
XHTML	author.	For	details,	we	recommend	that	you	consult	any	of	the	many	Java
programming	texts,	including	those	from	O'Reilly.

Developed	by	Sun	Microsystems,	Inc.	of	Mountain	View,	California,	Java	supports
an	object-oriented	programming	style	wherein	classes	of	applets	can	be	used	and
reused	to	build	complex	applications.	One	would	think	that	applets	written	in	the
same	language	should	run	in	any	browser	that	supports	Java.	As	is	so	often	the
case,	reality	is	more	complex.	Until	Netscape	6	and	Internet	Explorer	6,	browsers
included	their	own	Java	Virtual	Machines	(JVMs),	and	their	implementations,
especially	Microsoft's,	could	be	quirky.	Certain	Microsoft	implementation	decisions
in	Internet	Explorer	4	and	earlier	caused	some	valid	Java	applets	to	fail	when
running.	Microsoft	fixed	these	problems	with	Internet	Explorer	version	5	but,
because	of	its	lawsuit	with	Sun,	chose	not	to	include	a	JVM	in	Internet	Explorer	6.
[*]	Although	this	may	sound	like	bad	news	for	applets,	in	fact,	Internet	Explorer	6
prompts	you	to	download	Microsoft's	JVM.	Sun's	Java	Plug-in	is	free	over	the
Internet.	Users	of	any	browser	can	install	the	Java	Plug-in	to	get	state-of-the-art
Java	support.

[*]	As	we	wrote	this,	even	this	situation	may	change,	with	Microsoft	reversing	itself	and	deciding	to	include	a	JVM	in	a
service	pack	for	Windows	XP.	There	is	still	no	sign	of	default	inclusion	of	a	JVM	in	Internet	Explorer	6	downloads,
however.

We	should	take	this	opportunity	also	to	mention	ActiveX,	an	alternative
executable	content	technology	originally	developed	by	Microsoft.	ActiveX	itself	is
proprietary,	closely	coupled	with	various	versions	of	Microsoft	Windows,	and
Microsoft's	plug-in	works	only	when	used	with	Internet	Explorer,	though
alternative	plug-in	implementations	now	exist	for	all	the	popular	browsers.

ActiveX	controls	(as	they	are	called)	run	on	browser	versions	targeted	to	various
versions	of	Windows,	but	a	single	ActiveX	control	will	not	run	on	these	different
versions	without	recompilation.	This	is	in	contrast	with	Java	applets;	a	single	Java
applet	can	be	written	and	compiled	once	and	immediately	run	on	a	broad	range	of
browsers	and	operating	systems.

ActiveX	also	presents	an	unacceptably	high	security	risk	to	any	user	whose
browser	supports	ActiveX	technology.	[]	Though	over	the	years	security	has
gotten	better,	it	is	ridiculously	easy	to	penetrate	and	damage	a	computer	running
a	browser	that	allows	ActiveX	applets	to	be	executed.	In	fact,	all	the	popular
browsers,	Internet	Explorer	included,	let	users	explicitly	block	ActiveX	applets.	For
this	reason,	we	cannot	recommend	ActiveX	as	a	viable	applet	implementation
technology	and	we	go	so	far	as	to	recommend	that	users	disable	ActiveX
capability	within	their	browsers.

[]	You	can	find	a	good	description	of	the	risks	at	http://www.digicrime.com/activex.

	

http://www.digicrime.com/activex

12.2.	Embedded	Content

In	this	section,	we	cover	three	tags	that	support	embedded	content.	The	<object>
tag	is	in	the	HTML	4	and	XHTML	standards.	It	is	a	generalized	hybrid	of	the
deprecated	<applet>	tag	for	embedding	applets,	particularly	Java	applets,	and	the
<embed>	tag	extension	that	lets	you	include	an	object	whose	Multipurpose	Internet
Mail	Extension	(MIME)	type	references	the	plug-in	needed	to	process	and	possibly
display	that	object.

The	latest	standards	strongly	encourage	you	to	use	the	<object>	tag	to	incorporate
applets	and	other	discrete	inclusions	in	your	documents,	including	images
(although	the	standards	do	not	go	so	far	as	to	deprecate	the		tag).	Use
<object>	with	the	classid	attribute	to	insert	Java	and	other	applets	into	a	document,
along	with	their	execution	parameters	as	contents	of	the	associated	<param>	tag.
Use	<object>	with	the	data	attribute	to	download	and	display	non-HTML/XHTML
content,	such	as	multimedia,	in	the	user's	computing	environment.	Object	data
may	be	processed	and	rendered	by	an	included	applet,	by	utilities	that	come	with
your	browser,	or	by	a	plug-in	(helper)	application	that	the	user	supplies.

For	applets,	the	browser	creates	a	display	region	in	the	containing	text	flow
exactly	like	an	inline	image	or	an	<iframe>:	without	line	breaks	and	as	a	single
large	entity.	The	browser	then	downloads	and	executes	the	applet's	program	code,
if	specified,	and	downloads	and	renders	any	included	data	just	after	download	and
display	of	the	document.	Execution	of	the	applet	continues	until	the	code
terminates	itself	or	when	the	user	stops	viewing	the	page	containing	the	applet.

With	data,	the	browser	decodes	the	object's	data	type	and	either	handles	its
rendering	directly,	such	as	with	GIF,	PNG,	and	JPEG	images,	or	invokes	an
associated	plug-in	application	for	the	job.

12.2.1.	The	<object>	Tag

The	<object>	tag	was	originally	implemented	by	Microsoft	to	support	its	ActiveX
controls.	Only	later	did	Microsoft	add	Java	support.	In	a	similar	manner,	Netscape
initially	supported	the	alternative	<embed>	and	<applet>	tags	for	inclusion	objects	and
later	provided	limited	support	for	the	<object>	tag.

All	that	jostling	for	position	by	the	browser	giants[*]	made	us	nervous,	and	we
were	hesitant	in	previous	editions	of	this	book	to	even	suggest	that	you	use
<object>	at	all.	We	now	heartily	endorse	it,	based	on	the	strength	of	the	HTML	4
and	(particularly)	XHTML	standards,	especially	because	the	currently	popular
browsers	support	<object>.

[*]	Believe	it	or	not,	Netscape	once	dominated	the	browser	market!

Nonetheless,	be	aware	that	the	popular	browsers	interpret	<object>	and	<embed>	a
bit	differently.	For	example,	Internet	Explorer	still	treats	<object>	content	as
ActiveX	controls	and	launches	its	helper	program	to	display	the	data.	By	contrast,
the	browser	displays	<embed>	content	within	the	document	display.

<object>

Function Embeds	an	object	or	applet	in	a	document

Attributes

align,	archive,	border,	class,	classid,	codebase,	codetype,	data,	declare,	dir,	height,

hspace,	id,	lang,	name,	notab ,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,
onLoad,	onMouseDown,	onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	shapes,	standby,
style,	tabindex,	title,	type,	usemap,	vspace,	width

End	tag </object>;	never	omitted

Contains object_content

Used	in text

	
The	contents	of	the	<object>	tag	may	be	any	valid	HTML	or	XHTML	content,	along
with	<param>	tags	that	pass	parameters	to	an	applet.	If	the	browser	can	retrieve	the
requested	object	and	successfully	process	it,	either	by	executing	the	applet	or	by
processing	the	object's	data	with	a	plug-in	application,	the	contents	of	the	<object>
tag,	except	for	the	<param>	tags,	are	ignored.	If	any	problem	occurs	during	the
retrieval	and	processing	of	the	object,	the	browser	won't	insert	the	object	into	the
document	but	instead	will	display	the	contents	of	the	<object>	tag,	except	for	the
<param>	tags.	In	short,	you	should	provide	alternative	content	in	case	the	browsers
cannot	handle	the	<object>	tag	or	the	object	cannot	be	loaded	successfully.

12.2.1.1.	The	classid	attribute

Use	the	classid	attribute	to	specify	the	location	of	the	object,	typically	a	Java	class,
which	you	want	the	browser	to	include.	The	value	may	be	the	absolute	or	relative
URL	of	the	desired	object.	Relative	URLs	are	considered	to	be	relative	to	the	URL
specified	by	the	codebase	attribute	if	it	is	provided;	otherwise,	they	are	relative	to
the	current	document's	URL.

For	example,	to	execute	a	clock	Java	applet	contained	in	a	file	named	clock.class,
you	might	include	the	following	code	in	your	HTML	document:

<object	classid="java:clock.class">

</object>

	
The	browser	locates	the	code	for	the	applet	using	the	current	document's	base
URL.	Hence,	if	the	current	document's	URL	is:

http://www.kumquat.com/harvest_time.html

	
the	browser	retrieves	the	applet	code	for	our	clock.class	example	as:

http://www.kumquat.com/clock.class

	

12.2.1.2.	The	codebase	attribute

Use	the	codebase	attribute	to	provide	an	alternative	base	URL	from	which	the
browser	should	retrieve	an	object.	The	value	of	this	attribute	is	a	URL	pointing	to
a	directory	containing	the	object	referenced	by	the	classid	attribute.	The	codebase
URL	overrides,	but	does	not	permanently	replace,	the	document's	base	URL,	which
is	the	default	if	you	don't	use	codebase.	[Referencing	Documents:	The	URL,	6.2]

Continuing	with	our	previous	examples,	suppose	your	document	comes	from
http://www.kumquat.com,	but	the	clock	applet	is	kept	in	a	separate	directory
named	classes.	You	cannot	retrieve	the	applet	by	specifying
classid="classes/clock.class".	Rather,	include	the	codebase	attribute	and	new	base
URL:

<object	classid="clock.class"	codebase="http://www.kumquat.com/classes/">
</object>

	
which	resolves	to	the	URL:

http://www.kumquat.com/classes/clock.class

	
Although	we	used	an	absolute	URL	in	this	example,	you	also	can	use	a	relative
URL.	For	instance,	applets	typically	are	stored	on	the	same	server	as	the	host
documents,	so	we'd	usually	be	better	off,	for	relocation's	sake,	specifying	a

http://www.kumquat.com

relative	URL	for	the	codebase,	such	as:

<object	code="clock.class"	codebase="/classes/">
</object>

	
The	classid	attribute	is	similar	to	the	code	attribute	of	the	<applet>	tag,	providing
the	name	of	the	file	containing	the	object;	it	is	used	in	conjunction	with	the
codebase	attribute	to	determine	the	full	URL	of	the	object	to	be	retrieved	and	placed
in	the	document.

12.2.1.3.	The	archive	attribute

For	performance	reasons,	you	may	choose	to	preload	collections	of	objects
contained	in	one	or	more	archives.	This	is	particularly	true	of	Java-based
applications,	where	one	Java	class	relies	on	many	other	classes	to	get	its	work
done.	The	value	of	the	archive	attribute	is	a	quote-enclosed	list	of	URLs,	each
pointing	to	an	archive	to	be	loaded	by	the	browser	before	it	renders	or	executes
the	object.

12.2.1.4.	The	codetype	attribute

The	codetype	attribute	is	required	only	if	the	browser	cannot	determine	an	applet's
MIME	type	from	the	classid	attribute	or	if	the	server	does	not	deliver	the	correct
MIME	type	when	downloading	an	object.	This	attribute	is	nearly	identical	to	type
(see	section	6.7.2.4),	except	that	it	is	used	to	identify	program	code	type,
whereas	type	should	be	used	to	identify	datafile	types.

The	following	example	explicitly	tells	the	browser	that	the	object's	code	is	Java:

<object	code="clock.class"	codetype="application/java">
</object>

	

12.2.1.5.	The	data	attribute

Use	the	data	attribute	to	specify	the	datafile,	if	any,	that	the	object	is	to	process.
The	data	attribute's	value	is	the	URL	of	the	file,	either	absolute	or	relative	to	the
document's	base	URL	or	to	that	which	you	provide	with	the	codebase	attribute.	The
browser	determines	the	data	type	by	the	type	of	object	that	is	being	inserted	in

the	document.

This	attribute	is	similar	to	the	src	attribute	of	the		tag,	in	that	it	downloads
data	to	be	processed	by	the	included	object.	The	difference,	of	course,	is	that	the
data	attribute	lets	you	include	just	about	any	file	type,	not	just	an	image	file.	In
fact,	the	<object>	tag	expects,	but	doesn't	require,	that	you	explicitly	name	an
enabling	application	for	the	object	with	the	classid	attribute,	or	indicate	the	MIME
type	of	the	file	via	the	type	attribute	to	help	the	browser	decide	how	to	process
and	render	the	data.

For	example,	here	is	an	image	included	as	an	object,	rather	than	as	an		file:

<object	data="pics/kumquat.gif"	type="image/gif">
</object>

	

12.2.1.6.	The	type	attribute

The	type	attribute	lets	you	explicitly	define	the	MIME	type	of	the	data	that	appears
in	the	file	you	declare	with	the	data	attribute.	(Use	codetype	to	indicate	an	applet's
MIME	type.)	If	you	don't	provide	data,	or	if	the	MIME	type	of	the	data	is	apparent
from	the	URL	or	is	provided	by	the	server,	you	may	omit	this	attribute.	We
recommend	that	you	include	it	anyway,	to	ensure	that	the	browser	handles	your
data	correctly.

For	examples	of	data	MIME	types,	look	in	your	browser	preferences	for
applications.	There	you'll	find	a	list	of	the	many	file	data	types	your	browser
recognizes	and	the	application,	if	not	the	browser	itself,	that	processes	and
renders	that	file	type.

12.2.1.7.	The	align,	class,	border,	height,	hspace,	style,	vspace,	and	width
attributes

As	with	the	corresponding	attributes	for	the		tag,	several	attributes	let	you
control	the	appearance	of	the	<object>	display	region.	The	height	and	width
attributes	control	the	size	of	the	viewing	region.	The	hspace	and	vspace	attributes
define	a	margin	around	the	viewing	region.	The	value	for	each	dimension
attribute	should	be	an	actual	number	of	pixels.

The	align	attribute	determines	how	the	browser	aligns	the	region	in	context	with
the	surrounding	text.[*]	Use	top,	texttop,	middle,	absmiddle,	baseline,	bottom,	or	absbottom
to	align	the	object	display	space	with	adjacent	text,	or	left	and	right	alignments

for	wraparound	content.

[*]	The	align	attribute	is	deprecated	in	the	HTML	4	and	XHTML	standards	because	of	the	CSS	standard,	but	it	is	still
popularly	used	and	supported.

The	display	region's	dimensions	often	must	match	some	other	applet	requirement,
so	be	careful	to	check	these	values	with	the	applet	programmer.	Sometimes	the
applet	may	scale	its	display	output	to	match	your	specified	region.

For	instance,	our	example	clock	applet	might	grow	or	shrink	to	fit	nearly	any	size
display	region.	Instead,	we	might	fix	it	to	a	square	space,	100	x	100	pixels:

<object	classid="clock.class"	height="100"	width="100">
</object>

	
As	with	,	use	the	border	attribute	to	control	the	width	of	the	frame	that
surrounds	the	object's	display	space	when	you	include	it	as	part	of	a	hyperlink.
The	null	value	(border=0)	removes	the	frame.	[,	5.2.6]

Use	the	class	and	style	attributes	to	control	the	display	style	for	the	content
enclosed	by	the	tag	and	to	format	the	content	according	to	a	predefined	class	of
the	<object>	tag.	[Inline	Styles:	The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

12.2.1.8.	The	declare	attribute

The	declare	attribute	lets	you	define	an	object	but	restrains	the	browser	from
downloading	and	processing	it.	Used	in	conjunction	with	the	name	attribute,	this
facility	is	similar	to	a	forward	declaration	in	a	more	conventional	programming
language	that	lets	you	defer	download	of	an	object	until	it	actually	gets	used	in
the	document.

12.2.1.9.	The	id,	name,	and	title	attributes

Use	the	id	or	name	attribute	to	uniquely	label	an	object.	Use	the	title	attribute	to
simply	title	the	tag.	Each	attribute's	value	is	a	text	string.	The	browser	may
choose	to	display	a	title	to	the	user	or	may	use	it	in	some	other	manner	while
rendering	the	document.	Use	id	or	name	to	reference	the	object	in	other	elements
of	your	document,	including	hyperlinks	and	other	objects.

For	example,	suppose	you	have	two	clock	applets	in	your	document,	along	with
two	applets	the	user	operates	to	set	those	clocks.	Provide	unique	labels	for	the

clock	applets	using	the	name	or	id	attribute,	then	pass	those	labels	to	the	setting
applets	using	the	<param>	tag,	which	we	discuss	later	in	this	chapter	in	section
12.2.2:

<object	classid="clock.class"	id="clock1">
</object>
<object	classid="clock.class"	id="clock2">
</object>
<object	classid="setter.class">
		<param	id="clockToSet"	value="clock1">
</object>
<object	classid="setter.class">
		<param	id="clockToSet"	value="clock2">
</object>

	
Because	we	have	no	need	to	distinguish	between	the	setter	applets,	we	choose
not	to	identify	their	instances.

12.2.1.10.	The	shapes	and	usemap	attributes

Recall	from	our	detailed	discussion	of	hyperlinks	in	Chapter	6	that	you	can	divide
a	picture	into	geometric	regions	and	attach	a	hyperlink	to	each,	creating	a	so-
called	image	map.	The	shapes	and	usemap	attributes	for	the	<object>	tag	generalize
that	feature	to	include	other	object	types.

The	standard	shapes	attribute	informs	the	browser	that	the	<object>	tag's	contents
are	a	series	of	hyperlinks	and	shape	definitions.	The	usemap	attribute	and	required
URL	value	point	to	a	<map>	where	you	define	the	shapes	and	associated	hyperlinks,
identical	to	the	client-side	image	maps	discussed	in	section	6.5.2.

For	example,	here	is	the	image	map	we	described	in	Chapter	6,	rewritten	in
XHTML	as	a	"shaped"	object:

<object	data="pics/map.gif"	shapes="shapes">
		
		
		
		
</object>

	
and	as	the	more	familiar	image	map:

<object	data="pics/map.gif"	usemap="#map1">
</object>
...
<map	name="map1">
		<area	coords="0,0,49,49"	href="main.html#link1"	/>
		<area	coords="50,0,99,49"	href="main.html#link2"	/>
		<area	coords="0,50,49,99"	href="main.html#link3"	/>
		<area	coords="50,50,99,99"	href="main.html#link4"	/>
</map>

	
You	also	may	take	advantage	of	all	the	attributes	associated	with	the	hyperlink,
<map>,	and	<area>	tags	to	define	and	arrange	the	image-map	regions.	For	instance,
we	recommend	that	you	include	alternative	(alt	attribute)	text	descriptions	for
each	sensitive	region	of	the	image	map.

12.2.1.11.	The	standby	attribute

The	standby	attribute	lets	you	display	a	messagethe	attribute's	value	text
stringduring	the	time	the	browser	is	downloading	the	object	data.	If	your	objects
are	large	or	if	you	expect	slow	network	responses	add	this	attribute	as	a	courtesy
to	your	users.

12.2.1.12.	The	tabindex	and	notab	attributes

For	Internet	Explorer	with	ActiveX	objects	only,	the	notab	attribute	excludes	the
object	from	the	document	tabbing	order.

As	an	alternative	to	the	mouse,	users	also	may	press	the	Tab	key	to	select	and
the	Return	or	Enter	key	to	activate	a	hyperlink	or	to	access	a	form	control,	and
browsers	may	provide	other	mechanisms	to	select	content.	Normally,	each	time
the	user	moves	to	the	next	objectby	pressing	the	Tab	key,	for	examplethe	browser
steps	to	the	next	hyperlink	or	form	control	in	the	order	in	which	they	appear	in
the	document.	To	change	that	order,	use	the	HTML	4/XHTML	standard	tabindex
attribute	and	an	integer	value	to	indicate	the	object's	position	in	the	sequence	of
selectable	elements	on	the	page.

12.2.1.13.	The	dir	and	lang	attributes

Use	the	dir	and	lang	attributes,	like	their	counterparts	for	most	other	tags,	to

specify	the	language	and	dialect	of	the	<object>-enclosed	contents	as	well	as	the
direction	by	which	the	browser	adds	text	characters	to	the	display.	[The	dir
attribute,	3.6.1.1]	[The	lang	attribute,	3.6.1.2]

12.2.1.14.	Object	event	handling

As	user-initiated	mouse	and	keyboard	events	occur	within	the	object,	you	may
want	to	perform	special	actions.	Accordingly,	you	can	use	the	10	standard	event
attributes	to	catch	these	events	and	execute	JavaScript	code.	We	describe
JavaScript	event	handlers	more	fully	shortly	in	section	12.3.3.

12.2.1.15.	Supporting	incompatible	browsers

Because	some	browsers	may	not	support	applets	or	the	<object>	tag,	sometimes
you	may	need	to	tell	readers	what	they	are	missing.	You	do	this	by	including	body
content	between	the	<object>	and	</object>	tags.

Browsers	that	support	the	<object>	tags	ignore	the	extraneous	content	inside.	Of
course,	browsers	that	don't	support	objects	don't	recognize	the	<object>	tags.	Being
generally	tolerant	of	apparent	mistakes,	browsers	usually	ignore	the	unrecognized
tags	and	blithely	go	on	to	display	whatever	content	appears	inside.	It's	as	simple
as	that.	The	following	fragment	tells	object-incapable	browser	users	that	they
won't	see	our	clock	example:

<object	classid=clock.class>
		If	your	browser	were	capable	of	handling	applets,	you'd	see
		a	nifty	clock	right	here!
</object>

	
More	importantly,	object-capable	browsers	display	the	contents	of	the	<object>	tag
if	they	cannot	load,	execute,	or	render	the	object.	If	you	have	several	objects	of
similar	intent	but	with	differing	capabilities,	you	can	nest	their	<object>	tags.	The
browser	tries	each	object	in	turn,	stopping	with	the	first	one	it	can	handle.	Thus,
the	outermost	object	might	be	a	full-motion	video.	Within	that	<object>	tag,	you
might	include	a	simpler	MPEG	video,	and	within	that	<object>	tag,	a	simple	GIF
image.	If	the	browser	can	handle	full-motion	video,	your	users	get	the	full	effect.
If	that	level	of	video	isn't	available,	the	browser	can	try	the	simpler	MPEG	video
stream.	If	that	fails,	the	browser	can	just	display	the	image.	If	images	aren't
possible,	the	innermost	<object>	tag	might	contain	a	text	description	of	the	object.

12.2.2.	The	<param>	Tag

The	<param>	tag	supplies	parameters	for	a	containing	<object>	or	<applet>	tag.	(We
discuss	the	deprecated	<applet>	tag	in	the	upcoming	section,	12.2.3.)

<param>

Function Supplies	a	parameter	to	an	embedded	object

Attributes id,	name,	type,	value,	valuetype

End	tag None	in	HTML;	</param>	or	<param	...	/>	in	XHTML

Contains Nothing

Used	in applet_content

	
The	<param>	tag	has	no	content	and,	with	HTML,	no	end	tag.	It	appears,	perhaps
with	other	<param>	tags,	only	between	an	<object>	or	<applet>	tag	and	its	end	tag.
Use	the	<param>	tag	to	pass	parameters	to	the	embedded	object,	such	as	a	Java
applet,	as	required	for	it	to	function	correctly.

12.2.2.1.	The	id,	name,	and	value	attributes

The	<param>	tag	has	two	required	attributes:	name	or	id,	and	value.	You've	seen	these
attributes	before	with	forms.	Together,	they	define	a	name/value	pair	that	the
browser	passes	to	the	applet.

For	instance,	our	clock	applet	example	might	let	users	specify	the	time	zone	by
which	it	sets	its	hour	hand.	To	pass	the	parameter	identified	as	"timezone"	with
the	value	"EST"	to	our	example	applet,	specify	the	parameters	as:

<object	classid="clock.class">
		<param	id="timezone"	value="EST"	/>
</object>

	
The	browser	passes	the	name/value	pairs	to	the	applet,	but	that	is	no	guarantee
that	the	applet	is	expecting	the	parameters,	that	the	names	and	values	are
correct,	or	that	the	applet	will	even	use	the	parameters.	Correct	parameter
names,	including	capitalization	and	acceptable	values,	are	determined	by	the

applet	author.	The	wise	HTML/XHTML	author	works	closely	with	the	applet
programmer	or	has	detailed	documentation	to	ensure	that	the	applet	parameters
are	named	correctly	and	are	assigned	valid	values.

12.2.2.2.	The	type	and	valuetype	attributes

Use	the	type	and	valuetype	attributes	to	define	the	type	of	the	parameter	the
browser	passes	to	the	embedded	object	and	how	that	object	is	to	interpret	the
value.	The	valuetype	attribute	can	have	one	of	three	values:	data,	ref,	or	object.	The
value	data	indicates	that	the	parameter	value	is	a	simple	string.	This	is	the	default
value.	The	ref	value	indicates	that	the	value	is	a	URL	of	some	other	resource	on
the	Web.	Finally,	object	indicates	that	the	value	is	the	name	of	another	embedded
object	in	the	current	document.	This	may	be	needed	to	support	interobject
communication	within	a	document.

The	value	of	the	type	attribute	is	the	MIME	media	type	of	the	value	of	the
parameter.	This	usually	is	of	no	significance	when	the	parameter	value	is	a	simple
string,	but	it	can	be	important	when	the	value	is	actually	a	URL	pointing	to	some
other	object	on	the	Web.	In	those	cases,	the	embedded	object	may	need	to	know
the	MIME	type	of	the	object	in	order	to	use	it	correctly.	For	example,	this
parameter	tells	the	embedded	object	that	the	parameter	is	actually	the	URL	of	a
Microsoft	Word	document:

<param	id="document"	value="http://kumquats.com/quat.doc"
			type="application/msword"	valuetype="ref"	/>

	

12.2.3.	The	<applet>	Tag	(Deprecated)

Use	the	<applet>	tag	within	your	documents	to	download	and	execute	an	applet.
Also,	use	the	tag	to	define	a	region	within	the	document	display	for	the	applet's
display	area.	You	may	supply	alternative	content	within	the	<applet>	tag	for	display
by	browsers	that	do	not	support	applets.

<applet>

Function Inserts	an	application	into	the	current	text	flow

Attributes align,	alt,	archive,	class,	code,	codebase,	height,	hspace,	id,	mayscript,	name,	object,
style,	title,	vspace,	width

End	tag </applet>;	never	omitted

Contains applet_content

Used	in text

	
Most	applets	require	one	or	more	parameters	that	you	supply	in	the	document	to
control	their	execution.	Put	these	parameters	between	the	<applet>	tag	and	its
corresponding	</applet>	end	tag,	using	the	<param>	tag.	The	browser	will	pass	the
document-specific	parameters	to	the	applet	at	the	time	of	execution.	[<param>,
12.2.2]

The	<applet>	tag	has	been	deprecated	in	the	HTML	4	and	XHTML	standards	in
deference	to	the	generalized	<object>	tag,	which	can	do	the	same	as	<applet>	and
much	more.	Nonetheless,	<applet>	is	a	popular	tag	and	remains	supported	by	the
popular	browsers.

12.2.3.1.	Applet	rendering

The	browser	creates	an	applet's	display	region	in	the	containing	text	flow	exactly
like	an	inline	image:	without	line	breaks	and	as	a	single	large	entity.	The	browser
downloads	and	executes	the	applet	just	after	download	and	display	of	the
document	and	continues	execution	until	the	code	terminates	itself	or	the	user
stops	viewing	the	page	containing	the	applet.

12.2.3.2.	The	align	attribute

As	with	an	image	or	<iframe>,	you	can	use	the	align	attribute	to	control	the	applet's
display	region	with	respect	to	its	surrounding	text,	although	the	standards	prefer

that	you	use	respective	Cascading	Style	Sheet	(CSS)	alignment	properties.	Set
the	align	attribute's	value	to	top,	texttop,	middle,	absmiddle,	baseline,	bottom,	or
absbottom,	or	use	the	left	and	right	alignments	for	wraparound	content.	For	a
detailed	description,	see	section	5.2.6.

12.2.3.3.	The	alt	attribute

The	alt	attribute	gives	you	a	way	to	tell	users	gracefully	that	something	is	missing
if,	for	some	reason,	the	applet	cannot	or	will	not	execute	on	their	computer.	Its
value	is	a	quote-enclosed	message	string	that,	like	the	alt	attribute	for	images,
gets	displayed	in	lieu	of	the	applet	itself.	The	alt	message	is	only	for	browsers	that
support	applets.	See	section	12.2.1.15	earlier	in	this	chapter	to	find	out	how	to
inform	users	of	applet-incapable	browsers	why	they	can't	view	an	applet.

12.2.3.4.	The	archive	attribute

The	archive	attribute	collects	common	Java	classes	into	a	single	library	that	is
cached	on	the	user's	local	disk.	Once	the	data	is	cached,	the	browser	doesn't	need
to	use	the	network	to	access	an	applet;	it	retrieves	the	software	from	the	local
cache,	thereby	reducing	the	inherent	delays	of	additional	network	activity	to	load
the	class.

The	value	of	the	archive	attribute	is	a	URL	identifying	the	archive	file.	The	suffix	of
the	archive	filename	may	be	either	.zip	or	.jar.	Archived	.zip	files	are	in	the
familiar	ZIP	archive	format.	Archived	.jar	files	are	in	the	Java	archive	format.
Archived	.jar	files	support	compression	and	advanced	features	such	as	digital
signatures.

You	can	use	the	archive	attribute	with	any	<applet>	tag,	even	if	the	class	referenced
by	the	tag's	code	attribute	does	not	exist	in	the	archive.	If	the	class	is	not	found	in
the	archive,	the	browser	simply	attempts	to	retrieve	the	class	relative	to	the
document	URL	or	the	codebase	URL,	if	specified.

12.2.3.5.	The	code	and	codebase	attributes

The	code	attribute	is	required	with	<applet>.	Use	code	to	specify	the	filename,	not
the	URL,	of	the	Java	class	to	be	executed	by	the	browser.	Like	<object>,	make	the
search	relative	to	another	storage	location	by	using	the	codebase	attribute,
described	earlier	in	section	12.2.1.2,	or	an	archive,	as	described	earlier	in	section
12.2.1.3.	The	extension	suffix	of	the	filename	should	be	.class.	If	you	don't
include	the	suffix,	some	browsers	append	.class	automatically	when	searching	for

the	applet.

Here	is	our	clock	example	from	earlier	rewritten	as	an	<applet>:

<applet	code="clock.class"	codebase="http://www.kumquat.com/classes/">
</applet>

	
which	the	browser	retrieves	and	displays	from:

http://www.kumquat.com/classes/clock.class

	

12.2.3.6.	The	name	attribute

The	name	attribute	lets	you	supply	a	unique	name	for	this	instance	of	the	code
classthe	copy	of	the	applet	that	runs	on	the	individual	user's	computer.	As	with
other	named	elements	in	your	document,	providing	a	name	for	the	applet	lets
other	parts	of	your	document,	including	other	applets,	reference	and	interact	with
this	one	(e.g.,	for	sharing	computed	results).

12.2.3.7.	The	height,	hspace,	vspace,	and	width	attributes

Use	the	height	and	width	attributes	(identical	to	the	counterparts	for	the		and
<object>	tags)	to	define	the	size	of	the	applet's	display	region	in	the	document.	Use
hspace	and	vspace	to	interpose	some	empty	space	around	the	applet	region	and
thereby	set	it	off	from	the	text.	They	all	accept	values	indicating	the	size	of	the
region	in	pixels.	[The	height	and	width	attributes,	5.2.6.10]

12.2.3.8.	The	mayscript	attribute

The	mayscript	attribute	indicates	that	the	Java	applet	is	accessing	JavaScript
features	within	the	browser.	Normally,	Java	applets	attempting	to	access
JavaScript	cause	a	browser	error.	If	your	applets	access	JavaScript,	you	must
specify	mayscript	in	the	<applet>	tag.

12.2.3.9.	The	title	attribute

The	value	of	this	attribute	is	a	quoted	string	that	provides	a	title,	if	necessary,	for
the	applet.

12.2.3.10.	The	object	attribute

This	unfortunately	named	attribute	and	its	string	value	reference	the	name	of	the
resource	that	contains	a	serialized	version	of	the	applet.	How	and	what	it	does	is
an	enigma;	none	of	the	popular	browsers	supports	it.

12.2.4.	The	<embed>	Tag	(Extension)

At	one	time,	the	<embed>	tag	was	the	only	way	you	could	include	a	reference	in
your	document	for	the	browser	to	handle	some	special	plug-in	application	and
perhaps	data	for	that	application.	Today's	standard	is	the	<object>	tag	with	the	data
attribute,	and	we	recommend	that	you	use	it	in	lieu	of	<embed>.	Nonetheless,	<embed>
currently	remains	well	supported	by	all	the	popular	browsers.

With	<embed>,	you	reference	the	data	object	via	the	src	attribute	and	URL	value	for
download	by	the	browser.	The	browser	uses	the	MIME	type	of	the	src'd	object	to
determine	the	plug-in	that	is	required	to	process	the	object.	Alternatively,	you
may	also	use	the	type	attribute	to	specify	a	MIME	type	without	an	object	and
thereby	initiate	execution	of	a	plug-in	application,	if	it	exists	on	the	user's
computer.

Like	all	other	tags,	the	nonstandard	<embed>	tag	extension	has	a	set	of	predefined
attributes	that	define	parameters	and	modify	the	tag's	behavior.	Unlike	most
other	tags,	however,	the	browsers	let	you	include	plug-in-specific	name/value
attribute	pairs	in	<embed>	that,	instead	of	altering	the	action	of	the	tag	itself,	get
passed	to	the	plug-in	application	for	further	processing.

<embed>

Function Embeds	an	object	in	a	document

Attributes align,	border ,	height,	hidden,	hspace ,	name,	palette ,	pluginspage ,	src,	type,

units,	vspace ,	width

End	tag None

Contains Nothing

Used	in text

	
For	example,	this	tag:

<embed	src=movie.avi	width=320	height=200	autostart=true	loop=3>

	
has	attributes	that	are	processed	by	the	<embed>	tag	(src,	width,	and	height),	and	two
that	are	not	recognized,	but	rather	are	passed	to	the	plug-in	associated	with	AVI
video	clips:	autostart	and	loop.[*]

[*]	Internet	Explorer	has	built-in	support	for	AVI	movies;	other	browsers	require	that	users	download	and	install	a	plug-in
that	plays	the	AVI	movie.

It	is	not	possible	to	document	all	the	possible	attributes	that	the	many	different
plug-ins	might	need	with	their	associated	<embed>	tags.	Instead,	you	must	turn	to
the	plug-in	developer	to	learn	about	all	of	their	required	and	optional	attributes
for	each	plug-in	that	you	plan	to	use	in	your	pages.

12.2.4.1.	The	align,	border,	height,	hspace,	vspace,	and	width	attributes

The	browser	displays	embedded	objects	to	the	user	in	a	region	set	aside	within
the	document	window.	The	<embed>	tag's	align,	border,	height,	width,	hspace,	and	vspace
attributes	let	you	control	the	appearance	of	that	region	exactly	as	they	do	for	the

	tag,	so	we	won't	belabor	them.	[,	5.2.6]

Briefly,	the	height	and	width	attributes	control	the	size	of	the	viewing	region.
Normally,	you	should	specify	the	height	and	width	in	pixels,	but	you	may	use
some	other	units	of	measure	if	you	also	specify	the	units	attribute	(see	section
12.2.4.8,	later	in	this	chapter).	The	hspace	and	vspace	attributes	define	a	margin,	in
pixels,	around	the	viewing	region.	The	align	attribute	determines	how	the	browser
aligns	the	region	within	surrounding	text,	and	the	border	attribute	determines	the
width	of	the	border,	if	any,	surrounding	the	viewing	region.

All	the	popular	browsers	support	the	height,	width,	and	align	attributes,	but	unlike
<applet>	or	<object>,	Internet	Explorer	does	not	support	border,	hspace,	or	vspace	for
the	<embed>	tag.

12.2.4.2.	The	hidden	attribute

The	hidden	attribute	makes	an	object	invisible	to	the	user,	forcing	it	to	have	a
height	and	width	of	0.	Note	that	setting	hidden	does	not	cause	the	browser	to
display	an	empty	region	within	the	document,	but	rather	completely	removes	the
object	from	the	containing	text	flow.

This	attribute	is	useful	for	audio	streams	placed	within	documents.	The	HTML
entry:

<embed	src=music.wav	hidden	autostart=true	loop=true>

	
embeds	an	audio	object	in	the	page.	The	browser	does	not	show	anything	to	the
user,	but	rather	plays	background	music	for	the	page.	By	contrast,	the	plug-in
associated	with:

<embed	src=music.wav>

	
might	present	an	audio	control	panel	to	users	so	that	they	can	start	and	stop	the
audio	playback,	adjust	the	volume,	and	so	forth.

12.2.4.3.	The	name	attribute

Like	other	name	attributes,	this	one	lets	you	label	the	embedded	object	for	later
reference	by	other	elements	in	your	document,	including	other	objects.	The	value

of	the	name	attribute	is	a	character	string.

12.2.4.4.	The	palette	attribute

Netscape	and	Internet	Explorer	support	the	palette	attribute,	but	in	completely
different	ways.	With	Netscape,	the	value	of	the	palette	attribute	is	either	foreground
or	background,	indicating	which	palette	of	window	system	colors	the	plug-in	uses	for
its	display.

With	Internet	Explorer,	the	value	of	palette	is	a	pair	of	hexadecimal	color	values,
separated	by	a	vertical	bar.	The	first	value	determines	the	foreground	color	used
by	the	plug-in;	the	second	sets	the	background	color.	Thus,	specifying	this	palette:

palette=#ff0000|#00ff00

	
causes	the	plug-in	to	use	red	as	its	foreground	color	and	green	as	its	background
color.	For	a	complete	description	of	hexadecimal	color	values,	see	Appendix	G.

12.2.4.5.	The	pluginspage	attribute

The	pluginspage	attribute,	once	supported	only	by	Netscape,	but	no	longer,	specifies
the	URL	of	a	web	page	that	provides	instruction	on	where	to	obtain	and	how	to
install	the	plug-in	associated	with	the	embedded	object.	Now	all	the	popular
browsers	direct	you	to	their	supporting	plug-in	home	pages	for	downloads.

12.2.4.6.	The	src	attribute

Like	its	document-referencing	counterparts	for	myriad	other	tags,	the	src	attribute
supplies	the	URL	of	the	data	object	that	you	embed	in	the	HTML	document.	The
server	providing	the	object	must	be	configured	so	that	it	notifies	the	browser	of
the	correct	MIME	type	of	the	object.	If	not,	the	browser	uses	the	suffix	of	the	last
element	of	the	src	valuethe	object's	filename	in	the	URL	pathto	determine	the
type	of	the	object.	The	browser	uses	this	MIME	type	to	determine	which	plug-in	it
executes	to	process	the	object.

If	you	don't	include	an	src	attribute	with	the	<embed>	tag,	you	must	include	a	type
attribute	to	explicitly	reference	the	MIME	type	and,	as	a	result,	the	plug-in
application.

12.2.4.7.	The	type	attribute

Use	the	type	attribute	in	addition	to	or	in	lieu	of	the	src	attribute.	Its	value
explicitly	indicates	the	MIME	type	of	the	embedded	object,	which	in	turn
determines	which	plug-in	the	browser	invokes	to	process	the	object.	This	attribute
is	not	required	if	you	include	the	src	attribute	and	the	browser	can	determine	the
object	type	from	the	object's	URL	or	server.	You	must	supply	a	type	attribute	if	you
don't	include	the	src	attribute.

It	may	seem	odd	to	use	an	<embed>	tag	without	an	src	attribute	reference	to	some
object,	but	this	is	common	if	the	plug-in	requires	no	data	or	retrieves	its	data
dynamically	after	it	is	started.	In	these	cases,	the	type	attribute	is	required	so	that
the	browser	knows	which	plug-in	to	invoke.

12.2.4.8.	The	units	attribute

Pixels	are	the	default	unit	of	measure	for	the	height	and	width	attributes	that
control	the	<embed>	display	space.	The	units	attribute	lets	you	explicitly	state	that
the	absolute	measure	is	pixels,	or	change	it	to	the	relative	en,	which	is	one-half
the	current	point	size	of	text	in	the	document.	With	the	en	units,	you	tailor	the
object's	viewing	area	(viewport)	to	be	proportional	to	its	immediately	surrounding
content,	the	size	of	which	is	varied	by	the	user.

For	example,	this	tag	creates	a	viewport	of	200	x	320	pixels:

<embed	src=movie.avi	height=200	width=320	units=pixels>

	
By	changing	units	to	en,	that	same	viewport,	when	included	within	a	flow	of	12-
point	text,	becomes	1200	x	1920	pixels.

12.2.5.	The	<noembed>	Tag	(Extension)

The	<noembed>	tag,	although	not	part	of	the	standards,	is	supported	by	the	popular
browsers;	they	consequently	ignore	the	<noembed>	enclosed	text.	On	the	other
hand,	browsers	that	do	not	recognize	<embed>	ignore	<noembed>,	too,	consequently
displaying	the	latter	tag's	enclosed	text	and	thereby	supplying	alternative	content
to	tell	users	what	they	are	missing	in	the	<embed>	content.

<noembed>

Function Supplies	content	to	<embed>-incompatible	browsers

Attributes None

End	tag </noembed>;	never	omitted

Contains Nothing

Used	in text

	
Normally,	you	use	the	contents	of	the	<noembed>	tag	to	display	some	sort	of
message	placating	users	of	inadequate	browsers:

<embed	src=cool.mov	autostart=true	loop=true>
<noembed>To	view	the	cool	movie,	you	need	to	upgrade	to	a	browser
that	supports	the	<embed>	tag!</noembed>

	
We	recommend	using	a	<noembed>	message	only	in	those	cases	where	the	object	is
crucial	for	the	user	to	comprehend	and	use	your	document.	And,	in	those	cases,
you	should	provide	a	link	to	a	document	that	can	stand	alone	without	the
embedded	object,	or	nicely	explain	the	difficulty.

	

12.3.	JavaScript

All	the	executable	content	elements	we've	discussed	so	far	have	had	one	common
trait:	they	are	separate	from	the	browser	and	the	HTML/XHTML	documentseparate
data,	separate	execution	engine.

JavaScript	is	different.	It	is	a	scripting	language	that	taps	the	native	functionality
of	the	browser.	You	may	sprinkle	JavaScript	statements	throughout	your
documents,	either	as	blocks	of	code	or	as	single	statements	attached	to	individual
tags.	JavaScript-enabled	browsers,	including	all	the	currently	popular	ones,
interpret	and	act	upon	the	JavaScript	statements	you	provide	to	do	such	things	as
alter	the	appearance	of	the	document,	control	the	display,	validate	and
manipulate	form	elements,	and	perform	general	computational	tasks.

As	with	Java,	we	do	not	pretend	to	teach	JavaScript	programming	in	this	book.
We'll	show	you	how	to	embed	and	execute	JavaScript	within	your	documents,	but
we	ask	that	you	turn	to	books	like	the	companion	JavaScript:	The	Definitive	Guide
(O'Reilly)	for	a	complete	reference.

12.3.1.	The	<script>	Tag

One	way	to	place	JavaScript	code	in	your	document	is	via	the	HTML	and	XHTML
standard	<script>	tag.

The	browser	processes	everything	between	<script>	and	</script>	as	executable
JavaScript	statements	and	data.	You	cannot	place	HTML	or	XHTML	within	this	tag;
the	browser	flags	it	as	an	error.

However,	browsers	that	do	not	support	<script>	process	its	contents	as	regular
HTML,	to	the	confusion	of	the	user.	For	this	reason,	we	recommend	that	you
include	the	contents	of	the	<script>	tag	inside	HTML	comments,	just	like	CSS
<style>	rules:

<script	language="JavaScript">
<!--
						JavaScript	statements	go	here
//	-->
</script>

	
For	browsers	that	ignore	the	<script>	tag,	the	contents	are	masked	by	the
comment	delimiters	<!--	and	-->.	JavaScript-enabled	browsers,	on	the	other	hand,

automatically	recognize	and	interpret	the	JavaScript	statements	delimited	by	the
comment	tags.	By	using	this	skeleton	for	all	your	<script>	tags,	you	can	be	sure
that	all	browsers	handle	your	document	gracefully,	if	not	completely.

Unfortunately,	as	we	discuss	in	Chapter	16,	script	content	for	XHTML	documents
must	be	within	a	special	CDATA	declaration,	rather	than	within	comments.	Hence,
HTML	browsers	won't	honor	XHTML	scripts,	and	vice	versa.	Our	only
recommendation	at	this	point	is	to	follow	the	popular	browsers:	write	in	HTML,	but
use	as	many	of	the	features	of	XHTML	as	you	can	in	preparation	for	the	future.

You	may	include	more	than	one	<script>	tag	in	a	document,	located	in	either	the
<head>	or	the	<body>.	The	JavaScript-enabled	browser	executes	the	statements	in
order.	Variables	and	functions	defined	within	one	<script>	tag	may	be	referenced
by	JavaScript	statements	in	other	<script>	tags.	In	fact,	one	common	JavaScript
programming	style	is	to	use	a	single	<script>	in	the	document	<head>	to	define
common	functions	and	global	variables	for	the	document	and	then	to	call	those
functions	and	reference	their	variables	in	other	JavaScript	statements	sprinkled
throughout	the	document.

<script>

Function Defines	an	executable	script	within	a	document

Attributes charset,	defer,	language,	src,	type

End	tag </script>;	never	omitted

Contains scripts

Used	in head_content,	body_content

	

12.3.1.1.	The	language	and	type	attributes

Use	the	language	or	type	attribute	in	the	<script>	tag	to	declare	the	scripting
language	that	you	used	to	compose	the	contents	of	the	tag.	The	HTML	4	and
XHTML	standards	deprecate	the	language	attribute	in	favor	of	the	type	attribute.
Regrettably,	the	value	for	each	attribute	is	different.

If	you	are	using	JavaScriptby	far	the	most	common	scripting	language	on	the
Webuse	language=JavaScript	or	type="text/javascript".	You	may	occasionally	see	the
language	value	VBScript	(text/vbscript	for	type),	indicating	that	the	enclosed	code	is
written	in	Microsoft's	Visual	Basic	script.

With	JavaScript,	you	may	also	use	the	language	value	"JavaScript	1.2",	indicating
that	the	enclosed	script	is	written	for	browsers	that	support	version	1.2	of	the
language	(most	current	browsers	do).	Versioning	can	be	a	problem,	but	it's	not
too	severe.	Netscape	2.0,	for	instance,	supports	JavaScript	1.0	but	does	not
process	scripts	identified	as	"JavaScript	1.1".	Then	again,	what	proportion	of	your
audience	is	still	running	Netscape	2.0?

12.3.1.2.	The	src	and	charset	attributes

For	particularly	large	JavaScript	programs	and	ones	you	reuse	often,	you	should
store	the	code	in	a	separate	file.	In	these	cases,	have	the	browser	load	that

separate	file	through	the	src	attribute.	The	value	of	the	src	attribute	is	the	URL	of
the	file	containing	the	JavaScript	program.	The	stored	file	should	have	a	MIME
type	of	application/javascript,	but	it	will	be	handled	automatically	by	a	properly
configured	server	if	the	filename	suffix	is	.js.

For	example:

<script	type="text/javascript"	src="http://www.kumquat.com/quatscript.js">
</script>

	
tells	the	<script>-able	browser	to	load	a	JavaScript	program	named
quatscript.jsfrom	the	server.	Although	there	are	no	<script>	contents,	the	ending
</script>	still	is	required.

Used	in	conjunction	with	the	src	attribute,	the	charset	attribute	tells	the	browser
the	character	set	used	to	encode	the	JavaScript	program.	Its	value	is	the	name	of
any	International	Organization	for	Standardization	(ISO)	standard	character	set
encoding.

12.3.1.3.	The	defer	attribute

Some	JavaScript	scripts	create	actual	document	content	using	the	document.write
method.	If	your	scripts	do	not	alter	the	contents	of	the	document,	add	the	defer
attribute	to	the	<script>	tag	to	speed	its	processing.	Because	the	browser	knows
that	it	can	safely	read	the	remainder	of	the	document	without	executing	your
scripts,	it	defers	interpretation	of	the	script	until	after	the	document	has	been
rendered	for	the	user.

12.3.2.	The	<noscript>	Tag

Use	the	<noscript>	tag	to	tell	users	of	browsers	that	do	not	support	the	<script>	tag
that	they	are	missing	something.	You've	already	seen	many	examples	of	this	type
of	tag.	You	know	the	drill

<noscript>

Function Supplies	content	to	<script>-challenged	browsers

Attributes class,	dir,	id,	lang,	onClick,	onDblClick,	onKeyDown,	onKeyPress,	onKeyUp,	onMouseDown,
onMouseMove,	onMouseOut,	onMouseOver,	onMouseUp,	style,	title

End	tag </noscript>;	never	omitted

Contains body_content

Used	in text

	
Very	old,	albeit	<script>-able,	browsers	like	Netscape	2	and	Internet	Explorer	3
blithely	display	the	contents	of	the	<noscript>	tag,	to	the	confusion	of	their	users.
Given	the	paucity	of	users	of	these	browsers,	we	question	the	need,	but	there	are
ways	to	detect	and	handle	<script>-challenged	browsers,	detailed	in	any	good
JavaScript	book.

The	<noscript>	tag	supports	the	six	standard	HTML	4/XHTML	attributesclass	and
style	for	style	management,	lang	and	dir	for	language	type	and	display	direction,
title	and	id	for	titling	and	naming	the	enclosed	contentand	the	event	attributes
for	user-initiated	processing.	[The	dir	attribute,	3.6.1.1]	[The	lang	attribute,
3.6.1.2]	[The	id	attribute,	4.1.1.4]	[The	title	attribute,	4.1.1.5]	[Inline	Styles:
The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]	[JavaScript	Event	Handlers,
12.3.3]

12.3.3.	JavaScript	Event	Handlers

One	of	the	most	important	features	JavaScript	provides	is	the	ability	to	detect	and
react	to	events	that	occur	while	a	document	is	loading,	rendering,	and	being
browsed	by	the	user.	The	JavaScript	code	that	handles	these	events	may	be
placed	within	the	<script>	tag,	but	more	commonly,	it	is	associated	with	a	specific
tag	via	one	or	more	special	tag	attributes.

For	example,	you	might	want	to	invoke	a	JavaScript	function	when	the	user
passes	the	mouse	over	a	hyperlink	in	a	document.	The	JavaScript-aware	browsers

support	a	special	"mouse	over"	event-handler	attribute	for	the	<a>	tag,	called
onMouseOver,	to	do	just	that:

<a	href="doc.html"	onMouseOver="status='Click	me!';
return	true">

	
When	the	mouse	passes	over	this	example	link,	the	browser	executes	the
JavaScript	statements.	(Notice	that	the	two	JavaScript	statements	are	enclosed	in
quotes	and	separated	by	a	semicolon,	and	that	single	quotes	surround	the	text-
message	portion	of	the	first	statement.)

While	a	complete	explanation	of	this	code	is	beyond	our	scope,	the	net	result	is
that	the	browser	places	the	message	"Click	me!"	in	the	status	bar	of	the	browser
window.	Commonly,	authors	use	this	simple	JavaScript	function	to	display	a	more
descriptive	explanation	of	a	hyperlink,	in	place	of	the	often	cryptic	URL	that	the
browser	traditionally	displays	in	the	status	window.

HTML	and	XHTML	both	support	a	rich	set	of	event	handlers	through	related	on-
event	tag	attributes.	The	value	of	any	of	the	JavaScript	event-handler	attributes
is	a	quoted	string	containing	one	or	more	JavaScript	statements	separated	by
semicolons.	If	necessary,	you	can	break	extremely	long	statements	across	several
lines.	You	also	should	take	care	to	use	entities	for	embedded	double	quotes	in	the
statements,	to	avoid	syntax	errors	when	processing	the	attribute	values.

12.3.3.1.	Standard	event	handler	attributes

Table	12-1	presents	the	current	set	of	event	handlers	as	tag	attributes.	Most	are
supported	by	the	popular	browsers,	which	also	support	a	variety	of	nonstandard
event	handlers	(tagged	with	asterisks	in	the	table).

We	put	the	event	handlers	into	two	categories:	user	related	and	document
related.	The	user-related	ones	are	the	mouse	and	keyboard	events	that	occur
when	the	user	handles	either	device	on	the	computer.	User-related	events	are
quite	ubiquitous,	appearing	as	standard	attributes	in	nearly	all	the	standard	tags
(even	though	they	may	not	yet	be	supported	by	any	browser),	so	we	don't	list
their	associated	tags	in	Table	12-1.	Instead,	we'll	tell	you	which	tags	do	not	accept
these	event	attributes:	<applet>,	<base>,	<basefont>,	<bdo>,	
,	,	<frame>,
<frameset>,	<head>,	<html>,	<iframe>,	<isindex>,	<meta>,	<param>,	<script>,	<style>,	and
<title>.

Table	12-1.	Event	handlers

Event	handler HTML/XHTML	tags

onAbort[*]

onBlur <a>,	<area>,	<body>,	<button>,	<frameset>,	<input>,	<label>,	<select>,	<textarea>

onChange <input>,	<select>,	<textarea>

onClick Most	tags

onDblClick Most	tags

onError[*]

onFocus <a>,	<area>,	<body>,	<button>,	<frameset>,	<input>,	<label>,	<select>,	<textarea>

onKeyDown Most	tags

onKeyPress Most	tags

onKeyUp Most	tags

onLoad <body>,	<frameset>,	[*]

onMouseDown Most	tags

onMouseMove Most	tags

onMouseOut Most	tags

onMouseOver Most	tags

onMouseUp Most	tags

onReset <form>

onSelect <input>,	<textarea>

onSubmit <form>

onUnload <body>,	<frameset>

[*]

	
[*]	Nonstandard	handlers.

Some	events,	however,	occur	rarely	and	with	special	tags.	These	relate	to	the
special	events	and	states	that	occur	during	the	display	and	management	of	a
document	and	its	elements	by	the	browser.

12.3.3.2.	The	mouse-related	events

The	onClick,	onDblClick,	onMouseDown,	and	onMouseUp	attributes	refer	to	the	mouse
button.	The	onClick	event	happens	when	the	user	presses	down	and	then	quickly
releases	the	mouse	button.	If	the	user	then	quickly	clicks	the	mouse	button	for	a
second	time,	the	onDblClick	event	gets	triggered	in	the	browser	as	well.

If	you	need	to	detect	both	halves	of	a	mouse	click	as	separate	events,	use
onMouseDown	and	onMouseUp.	When	the	user	presses	the	mouse	button,	the	onMouseDown
event	occurs.	The	onMouseUp	event	happens	when	the	user	releases	the	mouse
button.

The	onMouseMove,	onMouseOut,	and	onMouseOver	events	happen	when	the	user	drags	the
mouse	pointer.	The	onMouseOver	event	occurs	when	the	mouse	first	enters	the
display	region	occupied	by	the	associated	HTML	element.	After	entry,	onMouseMove
events	are	generated	as	the	mouse	moves	about	within	the	element.	Finally,
when	the	mouse	exits	the	element,	onMouseOut	occurs.

For	some	elements,	the	onFocus	event	corresponds	to	onMouseOver,	and	onBlur
corresponds	to	onMouseOut.

12.3.3.3.	The	keyboard	events

The	HTML	4	and	XHTML	standards	currently	support	only	three	events	relating	to
user	keyboard	actions:	onKeyDown,	onKeyUp,	and	onKeyPress.	The	onKeyDown	event	occurs
when	the	user	depresses	a	key	on	the	keyboard;	onKeyUp	happens	when	the	key	is
released.	The	onKeyPress	event	is	triggered	when	a	key	is	pressed	and	released.
Usually,	you'll	have	handlers	for	either	the	up	and	down	events	or	the	composite
key-press	event,	but	not	for	both.

12.3.3.4.	Document	events

Most	of	the	document-related	event	handlers	relate	to	the	actions	and	states	of
form	controls.	For	instance,	onReset	and	onSubmit	happen	when	the	user	activates
the	respective	reset	or	submit	button.	Similarly,	onSelect	and	onChange	occur	as
users	interact	with	certain	form	elements.	See	Chapter	9	for	a	detailed	discussion
of	these	forms-related	events.

There	also	are	some	document-related	event	handlers	that	occur	when	various
document	elements	get	handled	by	the	browser.	For	instance,	the	onLoad	event
may	happen	when	a	frameset	is	complete	or	when	the	body	of	an	HTML	or	XHTML
document	gets	loaded	and	displayed	by	the	browser.	Similarly,	onUnload	occurs
when	a	document	is	removed	from	a	frame	or	window.

12.3.4.	javascript	URLs

You	can	replace	any	conventional	URL	reference	in	a	document	with	one	or	more
JavaScript	statements.	The	browser	then	executes	the	JavaScript	code,	instead	of
downloading	another	document,	whenever	the	browser	references	the	URL.	The
result	of	the	last	statement	is	taken	to	be	the	"document"	referenced	by	the	URL
and	is	displayed	by	the	browser	accordingly.	The	result	of	the	last	statement	is	not
the	URL	of	a	document;	it	is	the	actual	content	to	be	displayed	by	the	browser.

To	create	a	javascript	URL,	use	javascript	as	the	URL's	protocol:

	
In	this	example,	the	JavaScript	function	generate_document()	gets	executed	whenever
the	user	selects	the	hyperlink.	The	value	returned	by	the	function,	presumably	a
valid	HTML	or	XHTML	document,	is	rendered	and	displayed	by	the	browser.

It	may	be	that	the	executed	statement	returns	no	value.	In	this	case,	the	current
document	is	left	unchanged.	For	example,	this	javascript	URL:

	
pops	up	an	alert	dialog	box	and	does	nothing	else.	The	document	containing	the
hyperlink	is	still	visible	after	the	dialog	box	is	displayed	and	dismissed	by	the	user.

12.3.5.	JavaScript	Entities

Character	entities	in	HTML	and	XHTML	consist	of	an	ampersand	(&),	an	entity
name	or	number,	and	a	closing	semicolon.	For	instance,	to	insert	the	ampersand
character	itself	in	a	document	text	flow,	use	the	character	sequence	&.
Similarly,	JavaScript	entities	consist	of	an	ampersand,	one	or	more	JavaScript
statements	enclosed	in	curly	braces,	and	a	closing	semicolon.	For	example:

&{document.fgColor};

	
You	must	separate	multiple	statements	by	semicolons	within	the	curly	braces.	The
value	of	the	last	(or	only)	statement	is	converted	to	a	string	and	replaces	the
entity	in	the	document.

Normally,	entities	can	appear	anywhere	in	a	document.	JavaScript	entities,
however,	are	restricted	to	values	of	tag	attributes.	This	lets	you	write	"dynamic
tags"	whose	attributes	are	not	known	until	the	document	is	loaded	and	the
JavaScript	is	executed.	For	example,	this	tag	sets	the	text	color	of	the	document
to	the	color	value	returned	by	the	individual's	favorite_color()	function:

<body	text=&{favorite_color()};>

	
Support	for	JavaScript	entities	is	inconsistent	among	the	various	browsers	and	for
this	reason	we	recommend	against	their	use.

12.3.6.	The	<server>	Tag

The	<server>	tag	is	a	strange	beast.	The	web	server	processes	it	and	the	browser
never	sees	it,	so	what	you	can	do	with	this	tag	depends	on	the	server	you	are
using,	not	on	the	reader's	browser.

Netscape's	web	servers,	for	example	(not	to	be	confused	with	their	browser),	use
the	<server>	tag	to	let	you	place	JavaScript	statements	within	a	document	that	the
server	processes.	The	results	of	the	executed	JavaScript	are	then	inserted	into
the	document,	replacing	the	<server>	tag.	A	complete	discussion	of	this	so-called
"server-side"	JavaScript	is	completely	beyond	this	book;	we	include	this	brief
reference	only	to	document	the	<server>	tag.

Like	the	<script>	tag,	the	<server>	tag	contains	JavaScript	code.	However,	the	latter
tag	and	content	code	must	appear	inside	the	document	<head>.	The	server	extracts
it	from	the	document	and	executes	it	when	the	document	is	requested	for
download.

<server>

Function Defines	server-side	JavaScript

Attributes None

End	tag </server>;	never	omitted

Contains JavaScript

Used	in head_content

	
Obviously,	server-side	JavaScript	is	tightly	coupled	to	the	server,	not	to	the
browser.	To	fully	exploit	this	tag	and	the	benefits	of	server-side	JavaScript	or
other	server-side	programming	languages,	consult	your	web	server's
documentation.

	

12.4.	JavaScript	Stylesheets	(Antiquated)

Much	of	a	browser's	work	is	manipulating	the	display,	and	much	of	its	display	code
already	has	been	exposed	for	JavaScripting.	So	it	seemed	only	natural,	perhaps
even	relatively	easy,	for	the	developers	at	Netscape	to	implement	JavaScript
Stylesheets	(JSS).	Based	on	the	World	Wide	Web	Consortium	(W3C)-
recommended	CSS	model,	outlined	in	Chapter	8,	this	alternative	document	style
technology	lets	you	prescribe	display	properties	for	all	the	various	HTML
elements,	either	inline	as	tag	attributes,	at	the	document	level,	or	for	an	entire
document	collection.

JSS	is	antiquated.	Even	the	inventor	eschews	support	for	JSS	entirely	in	favor	of
the	standard	CSS2.	We	are	strong	proponents	of	reasonable	standards,	and	now
that	the	CSS2	model	is	fully	supported	in	HTML	4	and	XHTML,	we	can't
recommend	that	you	use	anything	but	CSS-standard	stylesheets.

We	thoroughly	discuss	the	concepts	and	ideas	behind	stylesheetsspecifically,
Cascading	Style	Sheetsin	Chapter	8,	so	we	won't	repeat	ourselves	here.	Rather,
we	address	only	how	to	create	and	manipulate	styles	with	JavaScript	here	purely
for	historical	reasons.	Before	forging	ahead	in	this	section,	we	recommend	that
you	first	absorb	the	information	in	Chapter	8.

12.4.1.	JavaScript	Stylesheet	Syntax

Netscape	versions	4	and	earlier	implemented	JSS	by	extending	several	existing
HTML	tags	and	defining	a	few	objects	that	store	your	document's	styles.	Netscape
no	longer	supports	JSS,	nor	does	any	other	browser.

12.4.1.1.	External,	document-level,	and	inline	JSS

As	with	CSS,	you	can	reference	and	load	external	JSS	files	with	the	<link>	tag.	For
example:

<link	href="styles.js"	
	
	rel=stylesheet	type=text/JavaScript>

	
The	only	real	difference	between	this	tag	and	the	one	for	a	CSS	external
stylesheet	is	that	the	type	attribute	of	the	<link>	tag	is	set	to	text/JavaScript	rather

than	text/CSS.	The	referenced	file,	styles.js,	contains	JavaScript	statements	that
define	styles	and	classes	that	Netscape	then	uses	to	control	display	of	the	current
document.

Document-level	JSS	is	defined	within	a	<style>	tag	in	the	<head>	of	the	document,
just	like	with	CSS.	Again,	there	is	only	one	real	difference:	the	type	attribute	of
the	<style>	tag	is	set	to	text/JavaScript	rather	than	text/CSS.

The	contents	of	the	<style>	tag	for	JSS	are	quite	different	from	those	for	CSS,
however.	For	example:

<style	type=text/JavaScript>
<!--
				tags.BODY.marginLeft	=	"20px";
				tags.P.fontWeight	=	"bold";
		//	-->
</style>

	
First,	notice	that	we	use	the	standard	JavaScript	and	HTML	comments	to	surround
our	JSS	definitions,	preventing	noncompliant	browsers	from	processing	them	as
HTML	content.	Also	notice	that	the	syntax	of	the	style	definition	is	that	of
JavaScript,	where	letter	case,	among	other	things,	does	make	a	difference.

You	associate	inline	JavaScript-based	style	rules	with	a	specific	tag	using	the	style
attribute,	just	like	with	CSS	inline	styles.	The	value	of	the	attribute	is	a	list	of	JSS
assignments,	separated	by	semicolons.	For	example:

<p	style="color	=	'green';	fontWeight	=	'bold'">

	
creates	a	green,	boldfaced	text	paragraph.	Notice	first	that	you	need	to	enclose
inline	style	values	within	single	quotation	marks,	not	double	quotation	marks,	as
you	might	use	for	document-level	and	external	JSS	styles.	This	is	reasonable
because	the	style	attribute	value	itself	must	be	enclosed	in	double	quotation
marks.

Also	note	that	inline	JSS	definitions	use	only	the	property	name,	not	the
containing	tag	object	that	owns	the	property.	This	makes	sense	because	inline	JSS
styles	affect	only	the	current	tag,	not	all	instances	of	the	tag.

12.4.1.2.	JSS	values

In	general,	all	of	the	values	you	may	use	for	CSS	you	may	also	use	in	JSS
definitions.	For	keyword,	length,	and	percentage	values,	simply	enclose	the	value
in	quotes	and	use	it	as	you	would	any	string	value	in	JavaScript.	Thus,	the	CSS
value	bold	becomes	"bold"	or	'bold'	for	JSS	document-level	or	inline	styles,
respectively;	12pt	in	CSS	becomes	'12pt'	or	"12pt"	in	JSS.

Specify	color	values	as	the	color	name	or	a	hexadecimal	color	value,	enclosed	in
single	or	double	quotes.	JSS	does	not	support	the	CSS	decimal	red,	green,	and
blue	(RGB)	notation.

JSS	URL	values	are	strings	containing	the	desired	URL.	Thus,	the	CSS	URL	value
(http://www.kumquat.com)	becomes	'http://http://www.kumquat.com'	for	a	JSS	inline	style,
or	"http://www.kumquat.com"	at	the	document	level.

One	unique	power	of	JSS	is	that	any	value	can	be	computed	dynamically	when
the	browser	processes	the	document.	Instead	of	statically	specifying	the	font	size,
for	example,	you	can	compute	it	on	the	fly:

tags.P.fontSize	=	favorite_font_size();

	
We	assume	that	the	JavaScript	function	favorite_font_size()	somehow	determines
the	desired	font	size	and	returns	a	string	value	containing	that	size.	This,	in	turn,
is	assigned	to	the	fontSize	property	for	the	<p>	tag,	defining	the	font	size	for	all
paragraphs	in	the	document.

12.4.1.3.	Defining	styles	for	tags

JavaScript	defines	a	document	property	called	tags	that	contains	the	style
properties	for	all	HTML	tags.	To	define	a	style	for	a	tag,	simply	set	the	appropriate
property	of	the	desired	style	property	within	the	tag	property	of	the	document	object.
For	example:

document.tags.P.fontSize	=	'12pt';
document.tags.H2.color	=	'blue';

	
These	two	JSS	definitions	set	the	font	size	for	the	<p>	tag	to	12	points	and	render
all	<h2>	tags	in	blue.	The	equivalent	CSS	definitions	are:

p	{font-size	:	12pt}
h2	{color	:	blue}

http://www.kumquat.com
http://http://www.kumquat.com
http://www.kumquat.com

	
Because	the	tags	property	always	refers	to	the	current	document,	you	may	omit
document	from	any	JSS	tag	style	definition.	We	could	have	written	the	preceding
two	styles	as:

tags.P.fontSize	=	'12pt';
tags.H2.color	=	'blue';

	
Moreover,	as	we	mentioned	previously,	you	may	omit	the	tag	name,	as	well	as	the
document	and	tags	properties	for	inline	JSS,	using	the	style	attribute.

Capitalization	and	case	are	significant	in	JSS.	The	tag	names	within	the	tags
property	must	always	be	fully	capitalized.	The	embedded	capital	letters	within	the
tag	properties	are	significant:	any	deviation	from	the	exact	lettering	produces	an
error,	and	Netscape	won't	honor	your	JSS	declaration.	All	of	the	following	JSS
definitions	are	invalid,	though	the	reasons	are	not	overly	apparent:

tags.p.fontsize	=	'12pt';
tags.Body.Color	=	'blue';
tags.P.COLOR	=	'red';

	
The	correct	versions	are:

tags.P.fontSize	=	'12pt';
tags.BODY.color	=	'blue';
tags.P.color	=	'red';

	
It	can	be	very	tedious	to	specify	a	number	of	properties	for	a	single	tag,	so	you
can	take	advantage	of	the	JavaScript	with	statement	to	reduce	your	typing
burden.	These	styles:

tags.P.fontSize	=	'14pt';
tags.P.color	=	'blue';
tags.P.fontWeight	=	'bold';
tags.P.leftMargin	=	'20%';

	
can	more	easily	be	written	as:

with	(tags.P)	{
		fontSize	=	'14pt';
		color	=	'blue';
		fontWeight	=	'bold';
		leftMargin	=	'20%';
		}

	
You	can	apply	similar	styles	to	diverse	tags	just	as	easily:

with	(tags.P,	tags.LI,	tags.H1)	{
		fontSize	=	'14pt';
		color	=	'blue';
		fontWeight	=	'bold';
		leftMargin	=	'20%';
		}

	

12.4.1.4.	Defining	style	classes

Like	CSS,	JSS	lets	you	target	styles	for	specific	ways	that	a	tag	can	be	used	in
your	document.	JSS	uses	the	classes	property	to	define	separate	styles	for	the
same	tag.	There	are	no	predefined	properties	within	the	classes	property;	instead,
any	property	you	reference	is	defined	as	a	class	to	be	used	by	the	current
document.	For	example:

classes.bold.P.fontWeight	=	'bold';
with	(classes.abstract.P)	{
		leftMargin	=	'20pt';
		rightMargin	=	'20pt';
		fontStyle	=	'italic';
		textAlign	=	'justify';
		}

	
The	first	style	defines	a	class	of	the	<p>	tag	named	bold	whose	font	weight	is	set	to
bold.	The	next	style	uses	the	with	statement	to	create	a	class	of	the	<p>	tag	named
abstract	with	the	specified	properties.	The	equivalent	CSS	rules	would	be:

P.bold	{font-weight	:	bold}
P.abstract	{left-margin	:	20pt;

		right-margin	:	20pt;
		font-style	:	italic;
		text-align	:	justify
		}

	
Once	defined,	use	a	JSS	class	just	like	any	CSS	class:	with	the	class	attribute	and
the	class	name.

Like	CSS,	JSS	also	lets	you	define	a	class	without	defining	the	tag	that	uses	the
class.	This	lets	you	define	generic	classes	that	you	can	later	apply	to	any	tag.	To
create	a	generic	style	class	in	JSS,	use	the	special	tag	property	all:

classes.green.all.color	=	"green";

	
You	can	then	add	class="green"	to	any	tag	to	have	Netscape	render	its	contents	in
green.	The	equivalent	CSS	is:

.green	{color	:	green}

	

12.4.1.5.	Using	contextual	styles

One	of	the	most	powerful	aspects	of	CSS	is	its	contextual	style	capability,	wherein
the	browser	applies	a	style	to	tags	only	if	they	appear	in	the	document	in	a
certain	nesting.	JSS	supports	contextual	styles	as	well,	through	the	special
contextual()	method	within	the	tags	property.	The	parameters	to	this	method	are
the	tags	and	classes	that	define	the	context	in	which	Netscape	applies	the	style.
For	example:

tags.contextual(tags.UL,	tags.UL,	tags.LI).listStyleType	=	'disc';

	
defines	a	context	wherein	the	elements	(tags.LI)	of	an	unordered	list	nested
within	another	unordered	list	(tags.UL,	tags.UL)	use	the	disc	as	their	bullet	symbol.
The	CSS	equivalent	is:

ul	ul	li	{list-style-type	:	disc}

	

You	can	mix	tags	and	classes	in	the	contextual()	method.	For	instance:

tags.contextual(classes.abstract.P,	tags.EM).color	=	'red';

	
tells	the	browser	to	display	in	red		tags	that	appear	within	paragraphs	that	are
of	the	abstract	class.	The	CSS	equivalent	is:

p.abstract	em	{color	:	red}

	
Because	the	tags	object	is	unambiguously	included	within	the	contextual()	method,
you	may	omit	it	from	the	definition.	Hence,	our	nested	list	example	may	be
rewritten	as:

tags.contextual(UL,	UL,	LI).listStyleType	=	'disc';

	

12.4.2.	JavaScript	Stylesheet	Properties

A	subset	of	the	CSS	style	properties	are	supported	in	JSS.	Table	12-2	shows	the
JSS	style	properties,	their	CSS	equivalents,	and	the	sections	in	which	those
properties	are	fully	documented.

Table	12-2.	JSS	properties	and	CSS	equivalents

JSS	property CSS	property See	section

align float 8.4.7.9

backgroundImage background-image 8.4.5.2

backgroundColor background-color 8.4.5.1

borderBottomWidth border-bottom-width 8.4.7.4

borderLeftWidth border-left-width 8.4.7.4

borderRightWidth border-right-width 8.4.7.4

borderStyle border-style 8.4.7.5

borderTopWidth border-top-width 8.4.7.4

clear clear 8.4.7.7

display display 8.4.10.1

fontSize font-size 8.4.3.2

fontStyle font-style 8.4.3.5

height height 8.4.7.10

lineHeight line-height 8.4.6.2

listStyleType list-style-type 8.4.8.3

marginBottom margin-bottom 8.4.7.11

marginLeft margin-left 8.4.7.11

marginRight margin-right 8.4.7.11

marginTop margin-top 8.4.7.11

paddingBottom padding-bottom 8.4.7.12

paddingLeft padding-left 8.4.7.12

paddingRight padding-right 8.4.7.12

paddingTop padding-top 8.4.7.12

textDecoration text-decoration 8.4.6.4

textTransform text-transform 8.4.6.7

textAlign text-align 8.4.6.3

textIndent text-indent 8.4.6.5

verticalAlign vertical-align 8.4.6.7

whiteSpace white-space 8.4.10.2

width width 8.4.7.16

	
JSS	also	defines	three	methods	that	allow	you	to	define	margins,	padding,	and
border	widths	within	a	single	style	property.	The	three	methods,	margins(),
paddings(),	and	borderWidths(),	accept	four	parameters,	corresponding	to	the	top,
right,	bottom,	and	left	margins,	padding,	and	border	width,	respectively.	Unlike
their	CSS	counterparts	(margin,	discussed	in	section	8.4.7.11;	padding,	discussed	in
section	8.4.7.12;	and	border-width,	discussed	in	section	8.4.7.4),	these	JSS
methods	require	that	you	always	specify	all	four	parameters.	There	is	no
shorthand	way	in	JSS	to	set	multiple	margins,	paddings,	or	border	widths	with	a
single	value.

	

Chapter	13.	Dynamic	Documents

The	standard	HTML/XHTML	document	model	is	static.	Once	displayed	on	the
browser,	a	document	does	not	change	until	the	user	initiates	some	activity,	such
as	selecting	a	hyperlink.	The	Netscape	developers	found	that	limitation
unacceptable	and	built	some	special	features	into	their	browser	that	let	you
change	HTML	document	content	dynamically.	In	fact,	they	provide	two	different
mechanisms	for	dynamic	documents,	which	we	describe	in	detail	in	this	chapter.
Internet	Explorer	supports	some	of	these	mechanisms,	which	we'll	discuss	as	well.

We	should	mention	that	many	of	the	features	of	dynamic	documents	have	been
displaced	by	plug-in	browser	accessories	and,	in	particular,	applets,	as	well	as	the
new	Asynchronous	JavaScript	and	XML	(Ajax)	technologies.	Nonetheless,
Netscape	and	Internet	Explorer	continue	to	support	dynamic	documents,	and	we
believe	the	technology	has	virtues	you	should	be	aware	of,	if	not	take	advantage
of,	in	your	HTML	documents.	[Applets	and	Objects,	12.1]

	

13.1.	An	Overview	of	Dynamic	Documents

Recall	from	our	discussion	in	Chapter	1	that	the	client	browser	initiates	data	flow
on	the	Web	by	contacting	a	server	with	a	document	request.	The	server	honors
the	request	by	sending	the	document	to	the	client.	The	client	subsequently
displays	the	document's	contents	to	the	user.	For	normal	web	documents,	a	single
transaction	initiated	from	the	client	side	is	all	that	is	needed	to	collect	and	display
the	document.	Once	displayed,	however,	it	does	not	change.

Dynamic	documents,	on	the	other	hand,	are	the	result	of	multiple	transactions
initiated	from	either	or	both	the	server	side	and	the	client	side.	A	client-pull
document	is	one	that	initiates	multiple	transactions	from	the	client	side.	When	the
server	is	the	instigator,	the	dynamic	document	is	known	as	a	server-push
document.

In	a	client-pull	document,	special	HTML	codes	tell	the	client	to	periodically	request
and	download	another	document	from	one	or	more	servers	on	the	network,
dynamically	updating	the	display.

Server-push	documents	also	advance	the	way	servers	communicate	with	clients.
Normally,	over	the	Web,	the	client	stays	connected	with	a	server	for	only	as	long
as	it	takes	to	retrieve	a	single	document.	With	server-push	documents,	the
connection	remains	open	and	the	server	continues	to	send	data	to	the	client
periodically,	adding	to	or	replacing	the	previous	contents.

Mozilla-based	browsers,	including	Firefox	and	Netscape,	currently	are	the	only
browsers	able	to	handle	HTTP	server-push	dynamic	documents	natively.	And
because	server-push	documents	don't	work	without	an	HTTP	server,	you	can't
develop	and	test	them	unless	you	have	a	server	running	locally	as	well.

13.1.1.	Another	Word	of	Caution

As	always,	we	tell	you	exactly	how	to	use	these	exciting	but	nonstandard
features,	and	we	admonish	you	not	to	use	them	unless	you	have	a	compelling	and
overriding	reason	to	do	so.	We	are	particularly	strident	with	that	admonition	for
dynamic	documents,	not	only	because	they	aren't	part	of	the	HTML	standard,	but
also	because	dynamic	documents	can	hog	the	network.	They	require	larger,	longer
downloads	than	their	static	counterparts,	and	they	require	many	more	(in	the
case	of	client-pull)	or	longer-term	(for	server-push)	client/server	connections.
Multiple	connections	on	a	single	server	are	limited	to	a	few	of	the	millions	of	web
users	at	a	time.	We'd	hate	to	see	your	readers	miss	out	because	you've	created	a
jiggling	image	in	a	dynamic	document	that	would	otherwise	have	been	an

effective	and	readily	accessible	static	document	that	more	people	could	enjoy.

	

13.2.	Client-Pull	Documents

Client-pull	documents	are	relatively	easy	to	prepare,	and	you	can	run	them
locally	without	requiring	an	HTTP	server.	That's	because	the	client-pull	document
has	the	browser	request	and	load	another	document,	even	if	from	local	storage.
All	you	need	to	do	is	embed	a	<meta>	tag	into	the	header	of	your	HTML	or	XHTML
document.	The	special	tag	tells	the	client	browser	to	display	the	current	document
for	a	specified	period	of	time	and	then	load	and	display	an	entirely	new	one,	just
as	though	the	user	had	selected	the	new	document	from	a	hyperlink.	(Note	that
currently	there	isn't	an	easy	way	to	change	just	a	portion	of	a	document
dynamically	using	client-pull,	though	you	could	use	frames	if	you	wanted	a	split-
screen	effect.)	[<meta>,	6.8.1]

13.2.1.	Uniquely	Refreshing

Client-pull	dynamic	documents	work	with	all	the	popular	browsers	because	they
respond	to	a	special	HTTP	header	field	called	Refresh.

You	may	recall	from	previous	discussions	that	whenever	an	HTTP	server	sends	a
document	to	the	client	browser,	it	precedes	the	document's	data	with	one	or	more
header	fields.	One	header	field,	for	instance,	contains	a	description	of	the
document's	content	type,	used	by	the	browser	to	decide	how	to	display	the
document's	contents.	For	example,	the	server	precedes	HTML	documents	with	the
header	"Content-type:	text/html,"	whose	meaning	should	be	fairly	obvious.

As	we	discussed	in	Chapter	6,	you	can	add	your	own	special	fields	to	an	HTML
document's	HTTP	header	by	inserting	a	<meta>	tag	into	its	<head>.	[<meta>,	6.8.1]

The	HTTP	Refresh	field	implements	client-pull	dynamic	HTML	documents,	enabled
by	the	<meta>	tag	format:

<meta	http-equiv="Refresh"	content="field	value">

	
The	tag's	http-equiv	attribute	tells	the	HTTP	server	to	include	the	Refresh	field,	with
a	value	specified	by	the	content	attribute	(if	any,	carefully	enclosed	in	quotation
marks),	in	the	string	of	headers	it	sends	to	the	client	browser	just	before	it	sends
the	rest	of	the	document's	content.	The	browser	recognizes	the	Refresh	header	as
the	mark	of	a	dynamic	HTML	document	and	responds	accordingly,	as	we	discuss	in
the	next	section.

13.2.2.	The	Refresh	Header	Contents

The	value	of	the	content	attribute	in	the	special	Refresh	<meta>	tag	determines	when
and	how	the	browser	updates	the	current	document.	Set	it	to	an	integer,	and	the
browser	delays	that	many	seconds	before	automatically	loading	another
document.	You	may	set	the	content	field	value	to	0,	meaning	no	delay	at	all.	In
that	case,	the	browser	loads	the	next	document	immediately	after	it	finishes
rendering	the	current	one,	which	allows	you	to	achieve	some	very	crude
animation	effects.	[<meta>,	6.8.1]

13.2.2.1.	Refreshing	the	same	document

If	the	Refresh	field's	content	value	is	just	the	number	of	seconds,	the	browser
reloads	that	same	document	over	and	over	again,	delaying	the	specified	time
between	each	cycle,	until	the	user	goes	to	another	document	or	shuts	down	the
browser.

For	example,	the	browser	reloads	the	following	client-pull	document	every	15
seconds:

<html>
<head>
		<meta	http-equiv="Refresh"	content="15">
		<title>Kumquat	Market	Prices</title>
</head>
<body>
		<h3>	Kumquat	Market	Prices</h3>
		Kumquats	are	currently	trading	at	$1.96	per	pound.
</body>
</html>

	
The	financial	wizards	among	you	may	have	noticed	that,	with	some	special
software	tricks	on	the	server	side,	you	can	update	the	price	of	kumquats	in	the
document	so	that	it	acts	like	a	ticker-tape	machine,	with	the	latest	kumquat
commodity	price	updated	every	15	seconds.

13.2.2.2.	Refreshing	with	a	different	document

Instead	of	reloading	the	same	document	repeatedly,	you	can	tell	the	browser	to
load	a	different	document	dynamically.	You	do	so	by	adding	that	document's	URL

after	the	delay	time	and	an	intervening	semicolon	in	the	<meta>	tag's	content
attribute.	For	example:

<meta	http-equiv="Refresh"
		content="15;	URL=http://www.kumquat.com/next.html">

	
causes	the	browser	to	retrieve	the	next.html	document	from	the
www.kumquat.com	web	server	after	having	displayed	the	current	document	for	15
seconds.

13.2.2.3.	Cycling	between	documents

Keep	in	mind	that	the	effects	of	the	Refresh	<meta>	tag	apply	only	to	the	document
in	which	it	appears.	Hence,	to	cycle	between	several	documents,	you	must	include
a	Refresh	<meta>	tag	in	each	one.	To	achieve	the	effect,	set	the	content	value	for	each
document	in	the	cycle	with	a	URL	which	points	to	the	next	document,	and	the	last
document	pointing	back	to	the	first	one	to	complete	the	cycle.

For	example,	the	following	are	the	<meta>	tags	for	the	headers	of	each	in	a	three-
HTML-document	cycle.

The	first.html	document	contains:

<meta	http-equiv="Refresh"
		content="30;	URL=second.html">

	
The	second.html	document	contains:

<meta	http-equiv="Refresh"
		content="30;	URL=third.html">

	
And	the	third.html	document	has	in	its	<head>	(besides	other	crazy	ideas):

<meta	http-equiv="Refresh"
		content="30;	URL=first.html">

	
If	it	is	left	alone,	the	browser	endlessly	loops	between	the	three	documents	at	30-

http://www.kumquat.com

second	intervals.

Cycling	documents	make	excellent	attractors,	catching	the	attention	of	passers-by
to	a	web-driven	kiosk,	for	example.	Users	can	navigate	through	the	wider
collection	of	kiosk	documents	by	clicking	hyperlinks	in	one	of	the	kiosk's	attractor
pages	and	then	by	clicking	subsequent	ones.[*]

[*]	This	brings	up	a	good	point:	the	user	may	override	the	Refresh	dynamic	action	at	any	time	(for	instance,	by	clicking
a	hyperlink	before	the	client-pull	timeout	expires).	The	browser	always	ignores	the	Refresh	action	in	lieu	of	user
interaction.

To	complete	the	cycle,	documents	selected	from	an	attractor	page	also	should
have	their	own	Refresh	fields	that	point	back	to	the	originating	attractor	document
in	the	cycling	set	of	attractors.	You	should	specify	a	fairly	long	delay	period	for	the
nonattractor	pages120	to	300	seconds	or	moreso	that	the	kiosk	doesn't
automatically	reset	while	a	user	is	reading	the	current	document.	However,	the
delay	period	should	be	short	enough	so	that	the	kiosk	resets	to	the	attractor
mode	in	a	reasonable	period	of	time	after	the	user	finishes.

13.2.3.	Pulling	Non-HTML	Content

The	client-pull	feature	is	not	restricted	to	HTML	documents,	although	it	is
certainly	easiest	to	create	dynamic	documents	with	HTML.	With	a	bit	of	server-
side	programming,	you	can	add	a	Refresh	field	to	the	HTTP	header	of	any	sort	of
document,	from	audio	files	to	images	to	video	clips.

For	example,	create	a	real-time	video	feed	by	adding	a	Refresh	header	field	in	each
of	a	sequence	of	images	grabbed	and	digitized	from	a	camera.	Include	a	delay	of	0
with	the	URL	that	points	to	the	next	image	so	that	as	quickly	as	the	browser
displays	one	image,	it	retrieves	the	next.	Assuming	that	the	network	keeps	up,
the	result	is	a	crude	(really	crude)	TV.

Because	the	browser	clears	the	window	before	presenting	each	subsequent	image,
the	resulting	flicker	and	flash	make	it	almost	impossible	to	present	a	coherent
sequence	of	images.	This	technique	is	more	effective	when	presenting	a	series	of
images	designed	to	be	viewed	as	a	slide	show,	where	the	user	expects	some	sort
of	display	activity	between	each	image.

Perhaps	a	better	use	of	the	client-pull	feature	is	with	long-playing	multimedia
documents,	which	the	popular	browsers	use	special	helper	applications	to	display.
On	a	multitasking	computer,	such	as	one	running	Linux	or	Windows,	the	browser
downloads	one	document,	while	a	helper	application	plays	another.	Combine	the
client-pull	capabilities	with	that	multitasking	to	improve	multimedia	document
performance.	Instead	of	waiting	for	a	single,	large	document	such	as	a	movie	or

audio	file	to	download	before	playing,	break	it	into	smaller	segments,	each
automatically	downloaded	by	the	previous	segment	via	the	Refresh	header.	The
browser	plays	the	first	segment	while	downloading	the	second,	then	third,	then
fourth,	and	so	on.

13.2.4.	Combining	Refresh	with	Other	HTTP	Header	Fields

You	can	have	your	client-pull	dynamic	documents	perform	some	neat	tricks	by
combining	the	effects	of	the	Refresh	field	with	other	HTTP	header	fields.	One
combination	that	is	particularly	useful	is	Refresh	with	a	Redirect	field.

The	Redirect	field	lets	the	server	tell	the	browser	to	retrieve	the	requested
document	elsewhere	at	the	field's	accompanying	URL	value.	The	client	browser
automatically	redirects	its	request	to	the	new	URL	and	gets	the	document	from
the	new	location,	usually	without	telling	the	user.	We	retrieve	redirected
documents	all	the	time	and	may	never	notice.

The	most	common	cause	for	redirection	is	when	someone	moves	an	HTML
document	collection	to	a	new	directory	or	to	a	new	server.	As	a	courtesy,	the
webmaster	programs	the	original	host	server	to	send	an	HTTP	header	field
containing	the	Redirect	field	and	new	URL	(without	a	document	body)	to	any	and
all	browsers	that	request	the	document	from	the	original	location.	That	way,	the
new	document	location	is	transparent	to	users,	and	they	won't	have	to	reset	their
browser	bookmarks.

But	sometimes	you	want	the	users	to	reset	their	bookmarks	to	the	new	location,
because	the	old	one	won't	be	redirecting	browsers	forever	(perhaps	because	it's
being	taken	out	of	service).	One	way	to	notify	users	of	the	new	location	is	to	have
the	redirection	URL	point	to	some	HTML	document	other	than	the	home	page	of
the	new	collection	that	contains	a	message	about	the	new	location.	Once	noted,
users	then	take	a	"Continue"	hyperlink	to	the	new	home	page	location	and	set
their	bookmarks	accordingly.

By	combining	the	Redirect	and	Refresh	fields,	you	can	make	that	notification	screen
automatically	move	to	the	new	home	page.	If	the	browser	receives	an	HTTP
header	with	both	fields,	it	honors	both;	it	immediately	fetches	the	redirected	URL
and	displays	it,	and	it	sets	the	refresh	timer	and	replacement	URL,	if	specified.
When	the	time	expires,	the	browser	automatically	retrieves	the	next	URLyour	new
home	page	location.

13.2.4.1.	A	random	URL	generator

Another	application	for	the	combination	of	Redirect	and	Refresh	HTTP	header	fields

is	a	perpetual,	random	URL	generator.	You'll	need	some	programming	skills	to
create	a	server-side	application	that	selects	a	random	URL	from	a	prepared	list
and	outputs	a	Redirect	field	that	references	that	URL	along	with	a	Refresh	field	that
reinvokes	the	random-URL	application	after	some	delay.

When	the	modern	browser	receives	the	complete	header,	it	immediately	loads	and
displays	the	randomly	selected	document	specified	in	the	Redirect	field's	URL.	After
the	delay	specified	in	the	Refresh	field,	the	browser	reruns	the	random-URL
generator	on	the	server	(as	specified	in	the	refresh	URL),	and	the	cycle	starts
over.	The	result	is	an	endless	cycle	of	random	URLs	displayed	at	regular	intervals.

13.2.5.	Performance	Considerations

Client-pull	documents	consume	extra	network	resources,	especially	when	the
refresh	delay	is	small,	because	each	refresh	may	involve	a	new	connection	to	a
server.	It	may	take	a	browser	several	seconds	to	contact	the	server	and	begin
retrieving	the	document.	As	a	result,	rapid	updates	generally	are	not	feasible,
especially	over	slow	network	connections.

Use	client-pull	dynamic	documents	for	low-frequency	updates	of	entire
documents,	or	for	cycling	among	documents	without	user	intervention.

	

13.3.	Server-Push	Documents

Netscape	invented	server-push	dynamic	documents.	With	the	technology,	the
client/server	connection	remains	open	after	an	initial	transfer	of	data,	and	the
server	periodically	sends	new	data	to	the	client,	updating	the	document's	display.
Server-push	is	made	possible	by	some	special	programming	on	the	server	side
and	is	enabled	by	the	multipart/mixed-media	type	feature	of	Multipurpose
Internet	Mail	Extensions	(MIME),	the	computer	industry's	standard	for	multimedia
document	transmission	over	the	Internet.

13.3.1.	The	Multipart/Mixed	Media	Type

As	we	mentioned	earlier	in	this	chapter	in	the	discussion	of	client-pull	dynamic
documents,	the	HTTP	server	sends	a	two-part	transmission	to	the	client	browser:
a	header	describing	the	document,	followed	by	the	document	itself.	The
document's	MIME	type	is	part	of	the	HTTP	header	field.	Normally,	the	server
includes	"Content-Type:	text/html"	in	an	HTML	document's	header	before	sending
its	actual	contents.	By	changing	that	content	type	to	"multipart/mixed,"	you	can
send	an	HTML	document	or	several	documents	in	several	pieces,	rather	than	in	a
single	chunk.	Only	Mozilla-based	browsers,	such	as	Netscape	and	Firefox,	though,
understand	and	respond	to	the	multipart	header	field;	other	browsers	either
ignore	additional	parts	or	refuse	the	document	altogether.

The	general	form	of	the	MIME	multipart/mixed-media	Content-Type	header	looks	like
this:

Content-type:	multipart/mixed;boundary="SomeRandomString"

	
This	HTTP	header	component	tells	the	Mozilla	client	to	expect	the	document	to
follow	in	several	parts	and	to	look	for	SomeRandomString,	which	separates	the	parts.
That	boundary	string	should	be	unique	and	should	not	appear	anywhere,	in	any	of
the	individual	parts.	The	content	of	the	server-to-client	transmission	looks	like
this:

SomeRandomString
Content-type:	text/plain

Data	for	the	first	part
SomeRandomString
Content-type:	text/plain

Data	for	the	second	part

SomeRandomString

	
The	preceding	example	has	two	document	parts,	both	composed	of	just	plain	text.
The	server	sends	each	part,	preceded	by	our	SomeRandomString	document-boundary
delimiter	(which	itself	is	preceded	by	two	dashes),	followed	by	the	Content-Type	field
and	then	the	data	for	each	part.	The	last	transmission	from	server	to	client	is	a
single	reference	to	the	boundary	string,	followed	by	two	more	dashes	indicating
that	this	was	the	last	part	of	the	document.

Upon	receipt	of	each	part,	the	Mozilla	browser	automatically	adds	the	incoming
data	to	the	current	document	display.

You	have	to	write	a	special	HTTP	server	application	to	enable	this	type	of	server-
push	dynamic	documentone	that	creates	the	special	HTTP	MIME	multipart/mixed
header	and	sends	the	various	documents	separated	by	the	boundary	delimiter.

13.3.2.	The	Multipart/X-Mixed-Replace	Media	Type

Server-push	dynamic	document	authors	may	use	an	experimental	variant	of	the
MIME	multipart/mixed	media	type	known	as	multipart/x-mixed-replace	media.	The
difference	between	this	special	content	type	and	its	predecessor	is	that,	instead	of
simply	adding	content	to	the	current	display,	the	"replace"	version	has	each
subsequent	part	replace	the	preceding	one.

The	format	of	the	mixed-replace	HTTP	header	is	very	similar	to	its
multipart/mixed	counterpart;	the	only	difference	is	in	the	Content-Type:

multipart/x-mixed-replace;boundary=SomeRandomString

	
All	other	rules	regarding	the	format	of	the	multipart	content	are	the	same,
including	the	boundary	string	used	to	separate	the	parts	and	the	individual
Content-Type	fields	for	each	part	of	the	content.

13.3.3.	Exploiting	Multipart	Documents

It	is	easy	to	see	how	you	can	use	the	two	special	MIME	multipart	content	types	to

create	server-push	dynamic	documents.	By	delaying	the	time	between	parts,	you
might	create	an	automatically	scrolling	message	in	the	Mozilla	browser	window.
Or	by	replacing	portions	of	the	document	through	the	x-mixed-replace	MIME	type,
you	might	include	a	dynamic	billboard	in	your	document,	or	perhaps	even
animation.

Note	that	server-push	multipart	documents	need	not	apply	only	to	HTML	or	other
plain-text	documents.	Images,	too,	are	a	MIME-encoded	content	type,	so	you	can
have	the	HTTP	server	transmit	several	images	in	sequence	as	parts	of	a	multipart
transmission.	Because	you	may	also	have	each	new	image	replace	the	previous
one,	the	result	is	crude	animation.	Done	correctly,	over	a	network	of	sufficient
bandwidth,	the	effect	can	be	quite	satisfying.

13.3.3.1.	Efficiency	considerations

Server-push	documents	maintain	a	connection	between	the	client	and	server	for
the	duration	of	the	dynamic	document's	activity.	For	some	servers,	this	may
consume	extra	network	resources	and	may	also	require	that	several	processes
remain	active,	servicing	the	open	connection.	Make	sure	the	server-push	process
(and,	hence,	the	client/server	connection)	expires	upon	completion	or	after	some
idle	period.	Otherwise,	someone	will	inadvertently	camp	on	an	endlessly	cycling
server-push	document	and	choke	off	other	users'	access	to	the	server.

Before	choosing	to	implement	server-push	documents,	make	sure	that	your
server	can	support	the	added	processing	and	networking	load.	Keep	in	mind	that
many	simultaneous	server-push	documents	may	be	active,	multiplying	the	impact
on	the	server	and	seriously	affecting	overall	server	performance.

13.3.4.	Creating	a	Server-Push	Document

Create	a	special	application	that	runs	with	the	HTTP	server	to	enable	server-push
dynamic	documents.	The	application	must	create	the	special	MIME	Content-Type
header	field	that	notifies	the	Mozilla	browser	that	the	following	document	comes
in	several	partsadded	to	or	replacing	a	portion	of	the	current	document.	The
application	must	create	the	appropriate	boundary	delimiter	and	send	the	Content-
Type	header	and	data	for	each	part,	perhaps	also	delaying	transmission	of	each
part	by	some	period	of	time.	Consult	your	server's	documentation	to	learn	how	to
create	a	server-side	application	that	can	be	invoked	by	accessing	a	specific	URL	on
the	server.	With	some	servers,	this	may	be	as	simple	as	placing	the	application	in
a	certain	directory	on	the	server.	With	others,	you	may	have	to	bend	over
backward	and	howl	at	the	moon	on	certain	days.

13.3.4.1.	Server-push	example	application	for	NCSA	and	Apache	httpd

The	National	Center	for	Supercomputing	Applications	(NCSA)	and	Apache	httpd
servers	run	on	most	Unix	and	Linux	systems.	Administrators	usually	configure	the
servers	to	run	server-side	applications	stored	in	a	directory	named	cgi-bin.

The	following	is	a	simple	shell	script	that	illustrates	how	to	send	a	multipart
document	to	a	Netscape	or	Firefox	client	via	httpd:[2]

[2]	It	is	an	idiosyncrasy	of	NCSA	httpd	that	no	spaces	are	allowed	in	the	Content	-	Type	field	that	precedes	your
multipart	document.	Some	authors	like	to	place	a	space	after	the	semicolon	and	before	the	boundary	keyword.	Don't	do
this	with	NCSA	httpd;	run	the	whole	Content	-	Type	together	without	spaces	to	get	the	server	to	recognize	the
correct	multipart	content	type.

#!/bin/sh
#
#	Let	the	client	know	we	are	sending	a	multipart	document
#	with	a	boundary	string	of	"NEXT"
#
echo	"HTTP/1.0	200"
echo	"Content-type:	multipart/x-mixed-replace;boundary=NEXT"
echo	""
echo	"NEXT"
while	true
do
#
#	Send	the	next	part,	followed	by	a	boundary	string
#	Then	sleep	five	seconds	before	repeating
#
	echo	"Content-type:	text/html"
	echo	""
	echo	<html>
	echo	<head>
	echo	"<title>Processes	On	This	Server</title>"
	echo	"</head>"
	echo	<body>
	echo	"<h3>	Processes	On	This	Server</h3>"
	echo	"Date:"
	date
	echo	<p>
	echo	<pre>
	ps	-el
	echo	"</pre>"
	echo	"</body>"
	echo	"</html>"

	echo	"NEXT"
	sleep	5
done

	
In	a	nutshell,	this	example	script	updates	a	list	of	the	processes	running	on	the
server	machine	every	five	seconds.	The	update	continues	until	the	browser	breaks
the	connection	by	moving	on	to	another	document.

We	offer	this	shell	script	example	to	illustrate	the	basic	logic	behind	any	server-
push	document	generator.	In	reality,	you	should	try	to	create	your	server-side
applications	using	a	more	conventional	programming	language,	such	as	Perl	or	C.
These	applications	will	run	more	efficiently	and	can	better	detect	when	the	client
has	severed	the	connection	to	the	server.

	

Chapter	14.	Mobile	Devices

Just	now,	as	most	web	developers	have	become	very	proficient	at	developing
engaging	content	for	the	popular	PC-based	browsers,	they	are	being	confronted
with	the	challenge	of	providing	equally	elegant	pages	for	those	ubiquitous,	tiny
mobile	devices.	But	mobile	web-enabled	devices	were	not	anticipated	back	in	the
early	1990s	when	HTML	was	first	defined	and	refined,	and	the	current	standards
don't	help	much,	either.	In	this	chapter,	we	look	at	the	broad	range	of	mobile	web-
enabled	devices,	the	challenge	they	present	to	web	designers,	and	a	subset	of
XHTML	that	addresses	those	devices.	We	also	offer	some	suggestionsand	lots	of
sympathyfor	creating	effective	content	that	works	across	many	of	these	devices.

	

14.1.	The	Mobile	Web

With	the	World	Wide	Web	now	firmly	entrenched	as	a	part	of	normal	modern	life,
it	is	only	natural	that	users	want	to	access	web	content	wherever	they	may	be,	at
any	time.	Responding	to	this	demand,	vendors	now	offer	an	incredible	array	of
devices	and	access	methods	to	meet	that	need.	Although	the	types	of	devices
number	in	the	hundreds,	the	overall	market	can	be	examined	as	a	few	key
product	categories.

14.1.1.	Devices

Most	of	today's	mobile	devicesmobile	phones	and	personal	digital	assistants
(PDAs)have	digital	displays,	typically	an	LCD,	and	onboard	processing.	So	why	not
a	built-in	browser?

14.1.1.1.	Mobile	phones

The	browser	software	resides	in	the	cell	phone's	core	operating	system	and	the
end	user	cannot	easily	upgrade	or	extend	it.	And,	as	we	discuss	in	more	detail
shortly,	it	has	far	fewer	features	than	are	normally	associated	with	a	typical
desktop	browser.	Other	features	are	available	only	to	the	persistent	user	willing	to
endure	horrifically	bad	user	interfaces	to	reach	them.

The	cell	phone	provider	gives	you	access	to	the	Internet	by	any	one	of	several
different	technologies,	and	some	restrict	the	available	content,	or	make	it	difficult
to	access	content	outside	of	their	proprietary	web	portal.

14.1.1.2.	PDAs

PDAs	arguably	provide	the	best	mobile	web	experience.	The	PDA	marketplace	is
dominated	by	devices	running	the	Palm	OS	operating	system	from	PalmSource,
Inc.	(originally	Palm	Computing,	Inc.)	and	those	running	the	Windows	Mobile
operating	system	from	Microsoft.	Regardless	of	vendor,	these	devices	provide	a
high-quality	browser	that	may	include	many	of	the	features	you	would	normally
find	in	a	desktop	browser.	The	end	user	can	upgrade	or	extend	the	browser	with
relative	ease.	Other	network	applications,	such	as	email	and	FTP,	may	be
available	as	well.

PDAs	typically	rely	on	the	Institute	of	Electrical	and	Electronics	Engineers	(IEEE)

standard	802.11,	commonly	known	as	WiFi	(pronounced	"why	fie"),	for	wireless
Ethernet-based	connectivity	with	a	network	and,	ultimately,	the	Internet.	Some
PDAs	use	Bluetooth,	an	alternative	wireless	technology,	to	connect	with	another
network	device,	such	as	a	mobile	phone,	laptop	computer,	or	Bluetooth	network
access	point,	in	order	to	ultimately	connect	with	the	Web.

14.1.1.3.	Convergence	devices

Convergence	devices	attempt	to	marry	the	convenience	of	a	mobile	phone	with
the	flexibility	and	power	of	a	PDA.	They	use	cellular	network	connectivity,	but
may	also	offer	802.11	networking,	as	well.	They	can	run	most	applications
available	to	PDA	users	and	provide	some	integration	between	the	PDA	experience
and	conventional	telephony	features.	Convergence	products	are	currently	offered
by	PalmSource	(running	Palm	OS	and	Windows	Mobile)	and	various	cellular	phone
manufacturers	(running	Windows	Mobile).	Convergence	devices	offer	distinct
compromises	between	the	PDA	experience,	with	its	larger	screen	and	computing
power,	and	mobile	phones,	with	their	small	form	factor	and	ease	of	use.

14.1.2.	Cellular	Access

In	addition	to	the	device	type,	users	can	choose	from	a	number	of	access	plans
that	allow	their	mobile	device	to	connect	with	the	Internet.	As	with	mobile
devices,	hundreds	of	access	plans	are	available,	but	they	can	generally	be
categorized	into	a	few	common	groups.

14.1.2.1.	Low	speed

Often	known	as	first-	or	second-generation	data	access,	low-speed	cellular	access
operates	at	rates	similar	to	that	of	a	56-kilobaud	dial-up	modem.	Providers
typically	charge	by	the	byte	(!),	with	packages	offering	blocks	of	bytes	on	a
monthly	basis.	Because	of	its	speed	and	relatively	high	cost,	low-speed	access	is
intended	for	intermittent,	sparse	use	for	specific	small-volume	tasks.	Continuous
access	using	these	plans	is	not	feasible,	both	from	the	cost	perspective	and	from
its	arduously	slow	data	rate.	This	kind	of	low-speed	access	is	available	exclusively
on	mobile	phones	and	some	convergence	devices	from	many	different	vendors.

14.1.2.2.	High-speed	cellular	access

Recent	advances	in	cellular	technology	have	enabled	carriers	to	offer	high-speed
cellular	access	with	speeds	ranging	up	to	1.5	megabits	per	second.	At	these

speeds,	users	can	enjoy	a	high-quality	web	experience	that	includes	video	and
audio	content.	Recognizing	the	market	potential,	most	carriers	offer	high-speed
access	in	a	single-price,	unlimited-usage	plan.	Marketed	under	a	variety	of
monikers	(such	as	EDGE	and	EVDO,	among	others),	this	kind	of	connectivity	was
originally	deployed	in	mobile	phones,	but	is	fast	showing	up	in	PDAs,	convergence
devices,	and	some	laptop	computers.

14.1.2.3.	WiFi

Many	web-enabled	PDAs	and	some	convergence	devices	include	802.11	wireless
networking	and,	consequently,	can	connect	with	compatible	wireless	LAN	access
points	that	have	become	ubiquitous	in	the	last	few	years.	Whole	cities	and
campuses	now	provide	pervasive	wireless	and	consequent	mobile	access	to	the
Internet.	While	most	devices	offer	the	"b"	version	of	the	technology	(802.11b),
which	operates	at	a	maximum	of	11	megabits	per	second,	some	newer	devices
include	the	"g"	version,	which	provides	for	rates	up	to	54	megabits	per	second.
Access	costs	range	from	free	(home	networks,	employer	networks,	and	public
access	points)	to	tens	of	dollars	per	month	for	independent	suppliers,	such	as
Cingular	and	T-Mobile.

Based	on	this	device	and	access	taxonomy,	the	mobile	web	content	designer	has
nine	potential	user	environments	to	consider.	Unfortunately,	it	gets	much	worse
because	each	specific	device	and	access	plan	may	have	its	own	restrictions	and
idiosyncrasies.	As	we'll	see	in	the	next	section,	dozens	of	variables	can	affect	the
overall	mobile	web	user	experience.

	

14.2.	Device	Considerations

When	designing	content	for	mobile	devices,	the	developer	needs	to	keep	many
design	constraints	in	mind.	If	the	developer	neglects	any	one	of	them,	the
resulting	web	pages	will	be	difficult	if	not	impossible	to	use	on	the	mobile	web.	We
suggest	that	the	successful	mobile	web	designer	always	keep	browser,	input,
network,	and	display	constraints	in	mind	to	keep	from	getting	in	a	bind.[*]

[*]	The	astute	reader	will	note	that	"browser,	input,	network,	and	display"	from	the	clever	and	helpful	acronym	BIND.

14.2.1.	Browser	Constraints

Browser	variations	present	the	biggest	challenge	to	the	mobile	web	content
designer.	Limited	by	the	host	device,	mobile	browsers	cannot	support	the	full
range	of	tags	available	in	a	conventional	desktop	browser.	For	those	tags	that	are
supported,	implementation	is	not	consistent	across	a	range	of	mobile	devices.	As	a
result,	designers	need	to	carefully	consider	which	tags	they	will	use	in	their
content	and	often	have	to	sacrifice	more	complicated	page	designs	in	favor	of
simpler	pages	that	display	correctly	on	a	larger	number	of	devices.

Beyond	tag	availability,	mobile	browsers	may	or	may	not	support	scripting,
stylesheets,	frames,	embedded	objects,	layers,	cookies,	and	other	support
structures	within	the	page	content.	Even	widely	supported	<meta>	tags,	such	as
refresh	tags,	may	not	be	supported.	In	general,	cautious	designers	will	avoid	any
of	these	elements	in	their	content.	While	the	resulting	content	will	certainly	be
simpler,	it	is	guaranteed	to	be	viewable	on	many	devices.	Unlike	desktop	browsers
that	try	to	muddle	through	when	presented	with	unsupported	tags,	many	mobile
browsers	just	give	up	when	confronted	with	complex	content.	More	than	anything
else,	mobile	web	designers	do	not	want	attempts	to	access	their	content	to	result
in	a	"page	not	viewable"	error	within	the	browser.

Even	when	the	content	sticks	to	the	"safe"	tags,	as	described	later	in	this	chapter,
the	results	are	unpredictable	among	different	browsers.	There	are	no	standard
fonts,	and	some	mobile	browsers	offer	only	one	font,	in	one	size,	without	bold	or
italic	embellishment.	Most	devices	allow	the	user	to	select	different	font	sizes	for
the	device	to	accommodate	aging	eyes	and	small	displays;	these	size	differences
can	dramatically	affect	the	rendering	of	content	on	the	device's	small	screen.

Some	mobile	browsers	cannot	handle	any	sort	of	images	in	their	pages,	although
this	is	becoming	less	of	a	problem	in	more	recent	mobile	devices.	Almost	all
mobile	browsers	have	a	difficult	time	with	large	images	and	may	ignore	or	alter
such	images	as	they	see	fit.	There	is	no	clear	definition	of	what	constitutes	a

"large"	image;	it	is	in	the	eye	of	the	browser	and	may	be	determined	by	both
image	dimensions	and	overall	size.	Formatting	and	wrapping	of	text	with	images
is	inconsistent,	and	mobile	browsers	often	ignore	image	alignment	attributes
altogether.	Needless	to	say,	the	current	generation	of	devices	cannot	handle	any
sort	of	embedded	video,	flash,	or	animated	content	in	any	form.

14.2.2.	Input	Constraints

Cellular	phones	lack	the	single	most	convenient	input	device	that	makes	the
desktop	browser	successful:	a	mouse.	PDAs	and	convergence	devices	do	not	suffer
this	limitation,	typically	allowing	the	user	to	tap	on	the	screen	with	a	stylus,	but
the	majority	of	your	target	audience	for	mobile	content	is	using	a	cellular	phone.
Consequently,	general	page	navigation	is	a	chore	on	mobile	devices.	Moving	the
focus	within	a	page	to	select	a	link	can	be	tedious	at	best,	especially	when	there
are	several	links	to	navigate	among.

Entering	text	on	a	cellular	phone	is	tiresome,	too.	Most	phones	offer	two	text
entry	modes:	a	multitap	mode	where	pressing	a	key	cycles	through	the	letters	on
that	key,	and	a	predictive	mode	where	the	user	adds	letters	until	the	phone	finds
the	desired	word	based	on	the	letter	pattern.	The	former	is	tedious	but	ultimately
more	accurate;	the	latter	may	be	quicker,	but	usually	fails	because	typing	URLs	is
the	most	common	mobile	web	activity	and	does	not	follow	typical	spelling
patterns.

For	both	modes,	typing	punctuation	is	difficult	because	fewer	common	punctuation
symbols	are	often	available	through	a	single	key,	which	cycles	through	a	dozen	or
more	symbols.

14.2.3.	Network	Constraints

Most	mobile	content	designers	are	keenly	aware	of	the	constraints	imposed	by	the
slow	networking	speeds	of	most	mobile	devices.	What	many	fail	to	appreciate,
however,	is	how	much	users	have	to	pay	for	each	byte	of	mobile	web	content.
Ironically,	today's	mobile	web	designers	need	to	return	to	a	1995-era	design
mindset,	when	advanced	dial-up	speeds	were	reaching	just	56	kilobits	per	second
and	connection	times	were	metered	by	the	Internet	service	provider	(ISP).	Is	your
content	so	valuable	that	users	are	willing	to	pay	every	time	they	want	to	view
your	pages?

Beyond	bandwidth	concerns,	mobile	device	users	often	operate	within	odd,
carrier-imposed	limitations	that	network	PC	users	would	never	tolerate.	Some
URLs	may	be	blocked	by	certain	carriers,	and	others	may	be	passed	through	proxy

servers	that	alter	or	translate	content	for	the	mobile	device.	It	is	difficult	to
predict	how	a	particular	carrier	will	treat	a	particular	page.	The	best	defensive
strategy	is	to	keep	your	content	as	simple	as	possible	to	avoid	odd	translation	and
conversion	of	your	pages.

Finally,	network	connectivity	is	not	constant	while	viewing	content	on	a	mobile
device.	Users	may	reach	your	site,	view	a	page	or	two,	and	suddenly	lose	their
connection	as	they	pass	into	a	dead	zone	in	their	coverage.	Content	that	requires
lots	of	navigation	among	pages	can	be	frustrating	in	marginal	coverage	areas.

14.2.4.	Display	Constraints

There	is	no	denying	one	attribute	of	all	mobile	devices:	the	display	is	small,	even
tiny.	Even	convergence	device	displays,	which	manufacturers	boast	to	be	the
largest	within	the	mobile	phone	market,	are	miniscule	when	compared	to	a
conventional	desktop	browser.	Most	devices	provide	vertical	scrolling,	allowing
content	to	flow	beyond	the	bottom	of	the	display,	but	very	few	support	horizontal
scrolling.	As	a	result,	content	must	be	consciously	designed	to	work	in	a	small
display	with	tightly	bounded	horizontal	space	and	a	limited	amount	of	vertical
space.

To	make	matters	worse,	the	actual	display	dimensions	are	different	for	almost
every	device	that	reaches	the	market.	Unlike	desktops,	where	designers	typically
assume	800	x	600	or	1024	x	768	displays,	the	dimensions	of	a	mobile	device	can
range	from	128	x	128	on	some	cellular	phones	to	320	x	480	and	higher	on	some
PDAs.	Cell	phones	often	sport	odd	display	sizes,	such	as	176	x	220	or	122	x	96.	In
general,	you	cannot	make	any	assumptions	about	display	size	nor	should	you
target	a	specific	size	with	your	content.	This	is	good	design	advice	for	any	web
page	in	any	environment!

	

14.3.	XHTML	Basic

Recognizing	the	inherent	limitations	in	mobile	browsing,	and	seeking	to	promote	a
standard	content	model	for	those	devices,	the	World	Wide	Web	Consortium	(W3C)
has	defined	a	reduced	version	of	XHTML	that	caters	to	these	devices.	Known	as
XHTML	Basic,	this	version	of	XHTML	defines	a	standard	set	of	tags	that	are
sufficient	for	creating	effective	content	for	mobile	devices,	yet	are	simple	enough
to	ensure	that	they	will	be	consistently	adopted	across	a	wide	range	of	mobile
browsers.

Be	forewarned:	just	because	a	standard	supports	mobile	devices	doesn't	mean
that	a	browser	will.	Often	hardware	limitations	prevent	implementation.

14.3.1.	Supported	Tags

XHTML	Basic	is	best	addressed	as	several	groups	of	tags	that	together	define	a
minimal	but	useful	version	of	XHTML.

14.3.1.1.	Basic	content

XHTML	Basic	wouldn't	work	if	it	didn't	support	the	four	core	tags	that	define	any
document:	<html>,	<head>,	<title>,	and	<body>.	You	should	never	write	a	document
without	these	tags,	of	course,	and	you	should	use	them	to	delimit	your	document
accordingly.

More	complicated	document	structure	is	not	supported.	XHTML	Basic	specifically
excludes	frames	and	layers	from	mobile	web	devices.

Within	the	document	body,	XHTML	Basic	supports	a	core	set	of	text-structural
tags,	including	the	six	heading	tags	(<h1>	tHRough	<h6>),	
,	<p>,	<pre>,	and
<blockquote>.	These	are	sufficient	to	create	flows	of	text	that	are	organized	into
paragraphs	and	blocks	of	text	and	are	identified	by	headings	at	various	levels,
which	makes	for	a	readable	document	in	any	browser.

Within	a	text	flow,	XHTML	Basic	also	supports	all	of	the	content-based	style	tags,
including	<abbr>,	<acronym>,	<address>,	<cite>,	<code>,	<dfn>,	,	<kbd>,	<q>,	<samp>,
,	and	<var>.	But	given	the	paucity	of	fonts	on	most	mobile	devices,
especially	mobile	phones,	a	mobile	browser	may	be	hard-pressed	to	even	have
more	than	one	way	to	represent	all	these	tags.	This	warning	also	applies	to	the
heading	tags,	as	it	is	highly	unlikely	that	most	mobile	phones	can	offer	six	font
sizes	to	distinguish	the	six	heading	tags.

Device	font	limitations	also	force	the	XHTML	Basic	standard	to	rule	out	the
physical	style	tags,	such	as	bold	and	italic	text.	With	no	guarantee	that	those
styles	will	be	available,	it	would	be	misleading	to	support	the	equivalent	tags.
Bidirectional	text	also	is	not	supported;	many	mobile	devices	have	a	hard	enough
time	rendering	conventional	text	flows.

XHTML	Basic	has	a	strong	focus	on	using	stylesheets	to	manage	the	presentation
of	your	mobile	content,	but	not	within	the	context	of	the	page	itself:	the	<style>
tag	itself	is	not	supported.	Instead,	XHTML	Basic	defers	to	external	stylesheets
and,	to	support	them,	includes	the	<div>	and		tags	so	that	you	can	delimit
your	content	and	apply	styles	to	it	as	needed.	Use	the	class	attribute	to	associate
a	style	with	that	text.

Of	course,	XHTML	Basic	also	supports	the	<a>	tag	so	that	you	can	link	your	pages
to	other	documents.

14.3.1.2.	Images,	objects,	and	scripting

Although	you	should	use	it	very	judiciously,	XHTML	Basic	does	include	the	
tag.	You	should	never	drop	images	into	your	documents	without	due
consideration,	and	even	more	so	for	mobile	browsing,	because	they	can
dramatically	affect	the	time	needed	to	download	a	document	and	even	may	break
certain	browsers	if	they	are	too	large.	We	offer	more	advice	on	using	images
effectively	in	your	documents	later	in	this	chapter.

XHTML	Basic	also	supports	more	general	object	embedding	in	mobile	content	with
the	<object>	and	<param>	tags.	While	the	intent	is	noble,	these	tags	pave	the	road	to
heck	for	mobile	browsing.	Support	is	highly	browser	and	device	specific,	and	the
mobile	market	is	not	yet	mature	enough	to	let	authors	assume	broad	support	for
any	sort	of	embedded	content	beyond	simple	images.	Nonetheless,	if	you	are	able
to	target	your	content	to	a	specific	device	that	provides	appropriate	support,	these
tags	are	here	for	your	use.

XHTML	Basic	does	not	support	scripting	or	event	handling.	None	of	the	event-
handling	attributes	is	supported,	nor	are	the	<script>	and	<noscript>	tags.	Given	the
limited	memory	and	computing	power	of	the	typical	mobile	device,	this	is	not
unreasonable.	Highly	dynamic,	script-driven	pages	are	better	left	to	a	full	desktop
browser.

14.3.1.3.	Lists

In	order	to	provide	additional	structure	to	your	content,	XHTML	Basic	supports
ordered	(),	unordered	(),	and	definition	(<dfn>)	lists	and	their	supporting

,	<dl>,	<dd>,	and	<dt>	tags.	These	lists	can	really	help	to	organize	and	structure
your	content,	especially	navigation	pages	that	offer	multiple	links	to	the	user.

In	particular,	coupling	a	numbered	list	of	links	with	the	accesskey	attribute	in	their
associated	<a>	tags	makes	it	very	easy	for	a	cell	phone-based	browser	user	to
navigate	your	pages	with	a	single	press	of	a	key.

14.3.1.4.	Forms

Interactivity	is	another	feature	critical	to	web	browsing,	so	XHTML	Basic	provides
support	for	forms,	including	the	basic	structure	and	input	elements	<form>,	<input>,
<label>,	<select>,	<option>,	and	<textarea>	tags.	The	XHTML	Basic	specification	does
not	restrict	the	kinds	of	form	elements	that	you	might	use,	but	keep	in	mind	that
some	mobile	devices	may	not	support	extremely	large	choice	items	or	menus.

The	only	form	elements	specifically	prohibited	by	the	XHTML	Basic	standard	are
file	and	image	uploading	elements.	Ironically,	these	would	be	attractive	browser
options	for	all	those	cell	phones	that	sport	built-in	cameras	by	allowing	users	to
upload	pictures	to	a	web	server.

14.3.1.5.	Tables

Web	designers	commonly	use	tables	to	structure	content	display.	While	you	may
achieve	similar	effects	for	the	mobile	browser,	be	judicious.	Although	not	explicitly
stated,	the	XHTML	standard	bearers	frown	on	the	practice	and	want	you	to	use
tables	for	tables	of	information,	not	layout.

XHTML	Basic	supports	only	the	core	table	tags:	<table>,	<tr>,	<td>,	<th>,	and
<caption>.	Fancier	things,	such	as	spanning	columns	and	even	nested	tables,	are
specifically	not	supported	by	the	XHTML	Basic	standard.	Complex	tables	may	not
be	rendered	correctly,	and	the	narrow	display	size	can	easily	disrupt	your
intended	table	presentation.	Subtle	table	effects,	such	as	varying	cell	margins	and
rule	widths,	will	almost	certainly	be	handled	inconsistently	between	mobile
browsers	and	are	best	avoided	to	ensure	broad	compatibility	of	your	content.

14.3.1.6.	Document	header

XHTML	Basic	supports	a	few	of	the	common	tags	found	in	the	document	<head>;
specifically,	the	<meta>,	<link>,	and	<base>	tags.	The	primary	intent	of	the	<link>	and
<base>	tags	is	to	allow	you	to	link	to	your	stylesheets	from	within	your	mobile
documents.	Be	somewhat	cautious	with	the	<meta>	tag,	though:	the	mobile
browsers	do	not	support	all	variations	of	its	attributes.

14.3.2.	Design	Versus	Intent

While	the	XHTML	Basic	standard	defines	a	specific	set	of	tags	that	should	work	on
any	compliant	mobile	browser,	do	not	be	misled	into	thinking	that	you	can	push
the	elements	of	XHTML	Basic	to	the	limit	in	designing	your	content.	The	mobile
device	market	is	too	young	and	the	browsers	too	immature	to	provide	consistent
support	for	every	possible	tag	variation	within	XHTML	Basic.	More,	ahem,	mature
designers	may	think	back	to	when	they	were	designing	pages	in	the	mid-90s,
when	creating	content	that	worked	across	Netscape	Navigator	and	early	versions
of	Internet	Explorer	was	challenging	at	best	and	more	likely	infuriating.	Both
browsers	attempted	to	implement	the	early	HTML	standards,	but	there	were	too
many	variations	in	the	products	to	make	anyone's	life	easy.

The	intent	of	the	mobile-web	standard	is	to	create	a	small	set	of	tags	that	work
reasonably	well	across	a	wide	range	of	devices,	from	phones	to	PDAs	to	set-top
boxes	and	other	devices.	The	W3C	even	lists	appliances	such	as	smart
refrigerators	and	washing	machines	as	potential	targets	for	human	interactions
through	web	pages.	Good	designers	will	stay	within	the	intent	of	the	design,	using
the	tags	in	a	reasonable	manner	and	avoiding	tricks	and	clever	coding	to
implement	a	particular	page.	The	resulting	content	will	work	well	on	lots	of
devices,	and	the	designers	will	be	calmer	and	happier	people.

	

14.4.	Effective	Mobile	Web	Design

There	is	no	secret	to	creating	effective	mobile	content.	In	fact,	the	advice	we've
been	giving	throughout	this	book	applies	to	mobile	devices	just	like	it	does	for
their	larger	desktop	cousins:	know	your	audience,	know	their	needs,	and	know
their	browsing	environment.	With	that	said,	the	mobile	browsing	experience	is
different	enough	from	the	desktop	that	we'd	be	remiss	if	we	did	not	offer	some
specific	hints	to	make	your	web	content	look	and	act	great.

With	the	popularity	of	mobile	web	access	mushrooming,	there	is	an	abundance	of
mobile	web	design	advice,	good	and	bad.	In	the	following	sections,	we'll	offer	up
our	favorite	bits	of	guidance,	based	upon	personal	experience	and	many	visits	to
many	bad	mobile	sites.

14.4.1.	Understand	Your	User

People	turn	to	a	mobile	browser	for	different	reasons	than	when	they	access	the
Web	from	the	desktop	or	laptop.	Most	users	are	not	seeking	an	extended	perusal
of	some	deep,	thought-provoking	dissertation,	nor	are	they	looking	to	apply	for
their	next	home	mortgage.	Instead,	they	most	often	need	small	bits	of	data
delivered	quickly:	news	headlines,	weather	information,	flight	information,	sports
scores,	and	the	like.	Browsers	have	become	the	interface	to	many	other
networked	devices,	too,	so	a	mobile	browser	can	have	commercial	and	industrial
applications.	They	won't	be	looking	to	download	large	pictures	or	a	feature-length
movie.	They	may	want	to	receive	driving	directions,	to	obtain	a	price	check,	to
buy	tickets	to	a	movie	in	a	real	theater,	to	adjust	the	operating	parameters	of	a
smart	machine,	to....

Keep	this	in	mind	when	designing	your	content.	What	are	you	making	available	to
your	users?	Why	would	they	want	to	view	it	in	a	mobile	browser?	Is	your	content
so	useful	that	users	will	want	to	see	it	on	the	run,	in	their	hand,	while	they	do
other	things?	Don't	try	to	shoehorn	your	site	into	a	mobile	format	just	to	say	you
did	it.	Select	and	deliver	content	that	matters	to	people	when	they	are	in	a	mobile
setting.	In	almost	all	cases,	judicious	editing	is	the	first	step	to	creating	an
effective	mobile	experience.

Once	you	have	determined	who	will	see	and	use	your	content	in	their	mobile
browser,	think	about	their	environment	during	the	browsing	session.	Most	likely,
they	will	be	distracted	while	viewing	your	site;	many	will	be	driving,	in	a	meeting,
or	talking	with	others.	Your	content	needs	to	punch	through	the	distraction,
quickly	deliver	the	needed	data,	and	get	out	of	the	way.	It	needs	to	be	easily
understood,	readily	navigated,	and	quickly	accessed.	Bandwidth	restrictions	will

most	likely	make	your	content	arrive	slowly;	don't	make	things	worse	by	making
users	work	to	get	what	they	want.	Fast	and	mobile	are	the	catchwords.

14.4.2.	Links	and	Navigation

Except	for	overly	large	pages,	poorly	designed	content	navigation	models	are	the
worst	aspect	of	most	mobile	web	pages.	Many	pages	offer	useful	content,	but	they
make	it	so	difficult	to	navigate	that	most	users	give	up	and	surf	elsewhere.	It
seems	that	many	designers,	having	built	complex	navigation	structures	for	a
conventional	desktop	browser,	feel	compelled	to	reuse	that	same	structure	in	a
tiny,	little	mobile	browser.	It	also	seems	apparent	that	these	designers	never
actually	try	to	use	their	content	in	a	mobile	environment.	If	they	did,	surely	they
would	make	things	simpler	and	more	accessible.

Moving	around	within	a	page	on	a	mobile	browser	is	much	more	difficult	than	in	a
desktop	browser.	Scrolling	is	a	pain	in	a	mobile	browser,	requiring	many	clicks	of
tiny	buttons.	Shifting	focus	from	link	to	link	is	similarly	tedious,	often	requiring
use	of	slightly	different	tiny	buttons.	Be	kind	to	your	users:	design	your	page
navigation	to	avoid	scrolling	and	focus	movement	wherever	possible.	If	you
require	traditional	"home,"	"next,"	and	"previous"	links	in	your	pages,	put	them	at
the	very	top,	where	users	can	see	them	and	access	them	immediately.	Don't	force
users	to	scroll	through	the	entire	page	to	find	your	navigation	elements	at	the
very	bottom.	Use	just	a	few	effective	navigational	elements	that	clearly	indicate
where	they	will	lead	the	user.

Some	browsers	support	the	accesskey	attribute,	allowing	you	to	associate	a	key	on
the	keypad	with	a	link	or	form	element	in	your	content.	Pressing	the	key	selects
the	link	or	switches	the	focus	to	an	appropriate	form	element.	If	you	arrange	your
links	as	a	numbered	list	map,	each	with	an	accesskey	number,	users	can	quickly
jump	to	a	link	with	a	single	key	press,	instead	of	tediously	tapping	to	get	to	the
desired	link.	For	example:

Kumquat	Resources:

			Growers
			Vendors
			Fan	Clubs

	
enables	the	user	to	press	"1"	on	the	device	keypad	in	order	to	access	the	kumquat
growers	page,	"2"	to	see	vendors,	and	"3"	to	find	a	fan	club.	Enable	these	as
simple	hyperlinks,	and	the	user	has	to	make	several	key	presses	to	access	and

select	the	embedded	link.	Small	design	decisions	like	this	can	make	a	big
difference	in	the	overall	user	experience.

In	general,	following	a	link	in	a	mobile	browser	is	costly,	in	both	time	and	money.
Clearly	identify	your	links	so	that	the	user	knows	where	they	lead	and	what	they
will	provide.	Anonymous	"click	here"	links	are	annoying.	Users	do	not	want	to
explore	your	site;	they	want	to	get	to	the	desired	content	quickly.	If	a	link	might
lead	to	a	large	amount	of	content,	such	as	an	image,	let	users	know	in	the	linking
page	so	that	they	can	choose	to	avoid	it.

Especially	avoid	image-based	links,	except	when	the	images	are	very	small.	Many
mobile	browsers	allow	the	user	to	navigate	the	page	and	select	a	link	before	the
full	page	is	loaded.	Remember	that	the	page	gets	fully	downloaded	from	the
server	before	going	back	and	downloading	supporting	files	such	as	images.
Accordingly,	text-based	links	appear	nearly	immediately,	whereas	image-based
ones	make	the	user	wait.	In	any	case,	avoid	image-map	navigation	because	the
regions	in	the	map	may	not	be	easily	visible	or	selectable,	as	they	would	in	a
browser	with	a	mouse.

Resist	the	urge	to	link	to	other	windows	with	the	target	attribute.	Many	mobile
browsers	cannot	handle	multiple	windows	and	will	simply	drop	the	linking	window
content.	Users	will	be	confused	and	your	content	will	certainly	not	be	presented
as	you	intended.

14.4.3.	Forms

Forms	present	a	challenge	to	the	mobile	web	designer.	To	make	the	mobile
experience	interactive,	you	need	to	include	forms	for	users	to	input	requests	and
parameters	and	for	them	to	receive	customized	content	from	a	site.
Unfortunately,	most	forms	do	not	translate	well	to	the	mobile	browser,	where	text
input	and	field	selection	is	difficult	and	error-prone.	Mobile	users	crave	quick,
customized	information.	Design	your	forms	to	be	easy	to	use,	and	your	users	will
return	again	and	again	to	use	them.

As	always,	good	content	begins	with	good	editing	and	forms	are	no	exception.
Make	sure	that	your	forms	are	short	and	to	the	point.	Clearly	and	succinctly	label
the	various	input	fields	and	elements	so	that	users	know	immediately	what	is
expected	of	them.	Whenever	possible,	set	default	values	in	the	form	so	that	users
need	not	fumble	through	every	element	before	they	can	submit	the	form.	This	is
especially	useful	when	a	user	must	return	to	a	form	to	correct	an	error.	Forcing
the	user	to	reenter	data	each	time	he	visits	the	form	is	especially	punitive.

Text	entry	is	a	special	problem,	especially	when	entering	passwords	and	other
masked	text.	Not	all	mobile	devices	handle	masked	text	input	cleanly,	and

entering	a	masked	password	using	multitap	text	entry	is	exquisitely	painful.	In
some	mobile	browsers,	the	text	entry	is	conducted	in	a	separate	pop-up	window
provided	by	the	browser,	forcing	the	user	to	go	through	several	levels	of	selection
and	acknowledgment	to	place	a	single	text	value	in	a	field.

Keep	it	simple.	Forms	with	many	input	elements	do	not	translate	well	to	the	small
mobile	screen.	As	users	scroll	through	the	form	to	fill	it	out,	they	are	unable	to
see	the	previous	elements	already	entered	and	cannot	see	the	items	to	come.
This	disorientation	makes	it	harder	to	get	forms	right	in	a	mobile	setting.	You
might	consider	breaking	your	large	form	into	multiple	smaller	forms,	letting	users
incrementally	enter	their	information.	If	you	take	this	approach,	make	sure	you
validate	data	as	you	receive	it;	don't	collect	six	screens	of	information	and	then
force	the	user	to	return	to	the	first	screen	to	fix	an	error.

14.4.4.	Layout	and	Presentation

The	mobile	web	is	not	the	place	for	fancy	layout	and	slick	content	presentation.
The	limited	tags	in	XHTML	Basic	help	ensure	this,	and	the	prudent	mobile
designer	will	not	try	to	go	beyond	those	limits.	While	the	transition	from	the
feature-rich	desktop	browser	to	the	minimal	mobile	environment	can	be	difficult,
designers	must	remember	that	the	point	of	content	design	is	to	inform	the	user,
not	to	impress	your	designer	peers.

14.4.4.1.	Stylesheets

All	is	not	lost	for	those	wanting	to	create	attractive	mobile	content.	Good
designers	use	stylesheets	to	separate	their	content	from	its	presentation
attributes.	This	also	makes	it	easier	to	have	a	single	content	source	whose
appearance	is	controlled	by	different	stylesheets	depending	on	the	user	device.
Because	inline	styles	are	not	recommended	or	supported	in	the	standard	for
mobile	content,	use	external	links	to	your	mobile	content	stylesheets.	For
example:

<link	rel="stylesheet"	type="text/css"	media="handheld"	href="sheet.css">

	
In	this	link,	the	media	attribute	is	key:	it	ensures	that	this	stylesheet	will	be
applied	when	your	content	is	viewed	on	a	mobile	device,	and	will	be	ignored
otherwise.	You'll	want	to	keep	your	stylesheets	small	because	they	contribute	to
the	delay	required	to	load	your	pages	over	a	slower	mobile	connection.

Know,	too,	that	not	all	mobile	browsers	support	stylesheets.	For	those	that	do,

connectivity	issues	may	prevent	the	browser	from	loading	the	stylesheet.	Test	all
your	content	without	any	stylesheet,	and	make	sure	that	it	presents	well	without
styles.

14.4.4.2.	Text	fonts

Fonts	present	a	particular	problem	to	mobile	content	designers.	Unlike	desktop
browsers	with	access	to	hundreds	of	fonts	in	many	variations,	mobile	browsers
often	have	just	one	available.	It	may	come	in	only	one	or	two	sizes,	and	may	not
offer	italic	and	bold	characters.	The	reality	is	that	the	tiny	displays	on	mobile
devices	are	not	equipped	to	show	complex	fonts,	so	the	device	vendors	avoid
them	because	they	would	be	illegible.

To	work	around	these	font	restrictions,	use	header	tags	to	enable	different	font
sizes,	if	they	are	available,	instead	of	relative	or	absolute	font	sizing.	Most	mobile
browsers	try	to	make	a	distinction	between	the	<h1>,	<h2>,	and	<h3>	tags,	so	use
them	as	intended	for	page	titles,	section	headers,	and	content	delimiters	in	your
pages.	Keep	in	mind,	too,	that	many	mobile	browsers	represent	all	the	various
emphasis	tags	(bold,	italic,	emphasis,	and	the	like)	with	bold	text.	If	you	try	to
use	different	emphasis	tags	in	a	single	page,	your	users	may	see	only	one	kind	of
emphasized	text.

14.4.4.3.	Margins	and	spacing

The	narrow	display	on	mobile	devices	constrains	how	you	lay	out	your	pages.
Avoid	any	sort	of	margins;	you'll	just	be	giving	up	precious	horizontal	space.	The
same	is	true	for	nested	lists:	deep	nesting	will	cause	your	content	to	creep	to	the
right,	forcing	your	text	into	a	single	river	of	words	down	the	right	edge	of	the
display.

Absolute	spacing	and	layout	control	is	difficult	on	mobile	devices.	Common
desktop	tricks,	such	as	1	x	1	images	and	transparent	GIFs,	just	don't	work	as	you
would	expect	on	a	mobile	device.	Standard	HTML	elements	such	as	frames	and
layers	are	generally	not	supported,	and	limited	table	support	makes	table-based
layout	difficult	as	well.	In	general,	view	the	mobile	device	as	a	simple	vertical	flow
of	content	and	allow	the	mobile	browser	to	format	your	content	as	best	it	can
without	your	interference.

Finally,	be	aware	that	adaptation	may	occur	with	your	content.	Adaptation	is	the
automated	conversion	of	your	content	to	make	it	more	suitable	for	a	mobile
client.	It	may	occur	at	the	server,	when	a	mobile	device	is	found	to	be	requesting
a	page.	It	often	occurs	within	the	carrier	networks,	where	pages	are	stripped	of
offending	tags	and	images	are	dramatically	reduced	to	make	them	more

acceptable	to	the	mobile	device.	It	also	occurs	implicitly	in	the	mobile	browser,
where	unsupported	tags	and	attributes	are	ignored	during	rendering.

You	cannot	prevent	adaptation.	Your	best	bet	is	to	avoid	it	by	creating	simple
content	that	will	not	be	subjected	to	adaptation	at	any	layer.	In	short,	the	simpler
that	your	content	is,	the	more	likely	it	is	going	to	appear	as	intended	on	the
mobile	device.

14.4.5.	Images

In	the	early	days	of	the	Web,	images	made	life	difficult.	Dial-up	connections	just
weren't	able	to	deliver	large	images	in	a	timely	fashion,	leading	to	user
frustration	and	unusable	pages.	Older	web	users	may	remember	the	days	when
links	often	had	parenthetical	sizes	appended	to	them.	When	running	on	a	28.8
kilobit	modem,	selecting	a	link	followed	by	"(132K)"	gave	you	time	to	grab	a
coffee	while	the	image	made	its	way	to	your	browser.

Fabulous	advances	in	cheap	bandwidth	have	made	an	image-rich	web	experience
the	norm.	Designers	are	used	to	using	large	images	to	make	their	pages	beautiful.
Unfortunately,	these	kinds	of	designs	fail	on	slow	mobile	devices,	as	well	as	fast
mobile	devices	with	limited	memory.	As	a	result,	images,	especially	large	images,
are	a	luxury	in	a	mobile	environment.

That	isn't	to	say	that	images	are	forbidden	in	your	mobile	content.	Instead,	use
images	sparingly.	A	small	logo	may	work	just	fine	in	your	pages,	and	tiny
navigational	icons	will	certainly	make	your	pages	easier	to	use.	If	you	must
deliver	large	images	do	it	with	a	separate	link,	with	a	warning	about	the	size	of
the	object	the	user	will	be	accessing.	This	way,	users	understand	the	cost	before
they	select	the	link.

When	you	do	deliver	large	images,	use	common	file	formats	such	as	GIF89a	and
JPEG.	We	know	of	no	mobile	browser	that	cannot	handle	these	well-established
file	formats.	Keeping	in	mind	the	small	display	sizes	of	mobile	devices,	use	images
that	are	close	to	the	display	size.	In	any	case,	do	not	send	an	enormous	image
and	expect	the	browser	to	scale	it	to	the	display	size.	It	is	downright	mean	to
send	a	"gigantic"	1024	x	768	image	over	a	slow	mobile	connection,	swamping	the
mobile	device's	memory	and	forcing	the	device	to	shrink	the	image	to	fit	its
display.	To	further	assist	the	browser,	always	use	the	height	and	width	attributes	in
the		tag	to	let	the	browser	know	what	to	expect	as	the	image	trickles	in.

14.4.6.	General	Advice

In	closing,	we	offer	one	final	bit	of	advice:	less	is	more.	The	mobile	web	is	not	the
place	to	show	off	your	cutting-edge	page-layout	skills	or	fancy	image	library.
Instead,	it	is	about	quick	delivery	of	great	content	that	meets	a	specific	need	at	a
specific	point	in	time.

To	stay	focused	on	this	minimalist	approach,	consider	adopting	the	W3C's
recommended	mobile	page	design	guidelines:

Design	all	your	pages	to	work	within	a	display	that	is	120	pixels	wide.	While
many	newer	devices	are	wider	than	this,	targeting	this	smaller	number	will
ensure	reasonable	presentation	on	a	broad	range	of	devices,	old	and	new.

Use	GIF89a	or	JPEG	images.	As	we	noted	before,	this	ensures	that	your
images	will	render	on	almost	any	mobile	device.

Do	not	deviate	from	the	XHTML	Basic	document	type.	Using	tags	not
supported	by	XHTML	Basic	almost	guarantees	rendering	errors	on	a	large
percentage	of	mobile	devices.

Use	stylesheets	to	separate	content	from	presentation.	XHTML	Basic	defines
the	best	way	to	integrate	stylesheets	with	your	mobile	content.

Keep	your	total	page	size	under	20	kilobytes.	This	includes	the	base	page
content,	any	associated	stylesheets,	and	all	included	images.

By	adopting	these	guidelines,	judiciously	editing	your	content,	and	structuring
your	pages	to	be	easily	navigated,	you'll	be	creating	remarkable	mobile	content
that	will	have	your	users	cheering.

	

Chapter	15.	XML

HTML	is	a	maverick.	It	only	loosely	follows	the	rules	of	formal	electronic
document-markup	design	and	implementation.	The	language	was	born	out	of	the
need	to	assemble	text,	graphics,	and	other	digital	content	and	send	them	over	the
global	Internet.	In	the	early	days	of	the	Web's	boom,	the	demand	for	better
browsers	and	document	serversdriven	by	hordes	of	new	users	with	insatiable
appetites	for	more	and	cooler	web	pagesleft	little	time	for	worrying	about	things
like	standards	and	practices.

Of	course,	without	guiding	standards,	HTML	would	eventually	have	devolved	into
Babel.	That	almost	happened,	during	the	browser	wars	in	the	mid-	to	late	1990s.
Chaos	is	not	an	acceptable	foundation	for	an	industry	whose	value	is	measured	in
the	trillions	of	dollars.	Although	the	standards	people	at	the	World	Wide	Web
Consortium	(W3C)	managed	to	rein	in	the	maverick	HTML	with	standard	version
4,	it	is	still	too	wild	for	the	royal	herd	of	markup	languages.

The	HTML	4.01	standard	is	defined	using	the	Standard	Generalized	Markup
Language	(SGML).	While	more	than	adequate	for	formalizing	HTML,	SGML	is	far
too	complex	to	use	as	a	general	tool	for	extending	and	enhancing	HTML.	Instead,
the	W3C	has	devised	a	standard	known	as	the	Extensible	Markup	Language,	or
XML.	Based	on	the	simpler	features	of	SGML,	XML	is	kinder,	gentler,	and	more
flexible,	well	suited	to	guiding	the	birth	and	orderly	development	of	new	markup
languages.	With	XML,	HTML	is	being	reborn	as	XHTML.

In	this	chapter,	we	cover	the	basics	of	XML,	including	how	to	read	it,	how	to	create
simple	XML	Document	Type	Definitions	(DTDs),	and	the	ways	you	might	use	XML
to	enhance	your	use	of	the	Internet.	In	the	next	chapter,	we	explore	the	depths	of
XHTML.

You	don't	have	to	understand	everything	there	is	to	know	about	XML	to	write
XHTML.	We	think	it's	helpful,	but	if	you	want	to	cut	to	the	chase,	feel	free	to	skip
to	the	next	chapter.	Before	you	do,	however,	you	may	want	to	take	a	look	at	some
of	the	uses	of	XML	covered	at	the	end	of	this	chapter,	starting	with	section	15.8.

This	chapter	provides	only	an	overview	of	XML.	Our	goal	is	to	whet	your	appetite
and	make	you	conversant	in	XML.	For	full	fluency,	consult	Learning	XML	by	Erik	T.
Ray	or	XML	in	a	Nutshell	by	W.	Scott	Means	and	Elliotte	Rusty	Harold,	both	from
O'Reilly.

	

15.1.	Languages	and	Metalanguages

A	language	is	composed	of	commonly	accepted	symbols	that	we	assemble	in	a
meaningful	way	in	order	to	express	ourselves	and	to	pass	along	information	that
is	intelligible	to	others.	For	example,	English	is	a	language	with	rules	(grammar)
that	define	how	to	put	its	symbols	(words)	together	to	form	sentences,
paragraphs,	and,	ultimately,	books	like	the	one	you	are	holding.	If	you	know	the
words	and	understand	the	grammar,	you	can	read	the	book,	even	if	you	don't
necessarily	understand	its	contents.

An	important	difference	between	human	and	computer-based	languages	is	that
human	languages	are	self-describing.	We	use	English	sentences	and	paragraphs
to	define	how	to	create	correct	English	sentences	and	paragraphs.	Our	brains	are
marvelous	machines	that	have	no	problem	understanding	that	you	can	use	a
language	to	describe	itself.	However,	computer	languages	are	not	so	rich	and
computers	are	not	so	bright	that	you	could	easily	define	a	computer	language
with	itself.	Instead,	we	define	one	languagea	metalanguagethat	defines	the	rules
and	symbols	for	other	computer	languages.

Software	developers	create	the	metalanguage	rules	and	then	define	one	or	more
languages	based	on	those	rules.[*]	The	metalanguage	also	guides	developers	who
create	the	automated	agents	that	display	or	otherwise	process	the	contents	of
documents	that	use	its	language(s).

[*]	The	use	of	metalanguages	has	long	been	popular	in	the	world	of	computer	programming.	The	C	programming
language,	for	instance,	has	a	set	of	rules	and	symbols	defined	by	one	of	several	metalanguages,	including	yacc.
Developers	use	yacc	to	create	compilers,	which	in	turn	process	language	source	files	into	computer-intelligible
programs	(hence,	its	name:	Yet	Another	Compiler	Compiler).	yacc's	only	purpose	is	to	help	developers	create	new
programming	languages.

XML	is	the	metalanguage	the	W3C	created	and	that	developers	use	to	define
markup	languages	such	as	XHTML.	Browser	developers	rely	on	XML's
metalanguage	rules	to	create	automated	processes	that	read	the	language
definition	of	XHTML	and	implement	the	processes	that	ultimately	display	or
otherwise	process	XHTML	documents.

Why	bother	with	a	markup	metalanguage?	Because,	as	the	familiar	proverb	goes,
the	W3C	wants	to	teach	us	how	to	fish	so	that	we	can	feed	ourselves	for	a
lifetime.	With	XML,	there	is	a	standardized	way	to	define	markup	languages	for
different	needs,	instead	of	having	to	rely	upon	HTML	extensions.	Mathematicians
need	a	way	to	express	mathematical	notations,	for	instance;	composers	need	a
way	to	present	musical	scores;	businesses	want	their	web	sites	to	take	sales
orders	from	customers;	physicians	look	to	exchange	medical	records;	plant
managers	want	to	run	their	factories	from	web-based	documents.	All	of	these

groups	need	an	acceptable,	resilient	way	to	express	these	different	kinds	of
information	so	that	the	software	industry	can	develop	the	programs	that	process
and	display	these	diverse	documents.

XML	provides	the	answer.	Each	content	sectorthe	business	group,	the	factory-
automation	consortium,	a	trade	associationmay	define	a	markup	language	that
suits	their	particular	need	for	information	exchange	and	processing	over	the	Web.
Computer	programmers	then	create	XML-compliant	processesparsersthat	read	the
new	language	definitions	and	allow	the	server	to	process	the	documents	of	those
languages.

15.1.1.	Creation	Versus	Display

While	there	is	no	limit	to	the	kinds	of	markup	languages	that	you	can	create	with
XML,	displaying	your	documents	may	be	more	complicated.	For	instance,	when
you	write	HTML,	a	browser	understands	what	to	do	with	the	<h1>	tag	because	it	is
defined	in	the	HTML	DTD.

With	XML,	you	create	the	DTD.[*]	For	example,	wouldn't	a	recipe	DTD	be	a	great
way	to	capture	and	standardize	all	those	kumquat	recipes	you've	been	collecting
in	your	kitchen	drawers?	With	special	<ingredient>	and	<portion>	tags,	the	recipes
are	easy	to	define	and	understand.	However,	browsers	won't	know	what	to	do	with
these	new	tags	unless	you	attach	a	stylesheet	that	defines	their	handling.	Without
a	stylesheet,	XML-compliant	browsers	render	these	tags	in	a	very	generic
waycertainly	not	the	flourishing	presentation	your	kumquat	recipes	deserve.

[*]	An	alternative	to	DTDs	is	XML	Schemas.	Schemas	offer	features	related	to	data	typing	and	are	more
programmatically	oriented	than	document-oriented.	For	more	information,	check	out	XML	Schema	by	Eric	van	der	Vlist
(O'Reilly).

Even	with	stylesheets,	there	are	limitations	to	presenting	XML-based	information.
Let's	say	you	want	to	create	something	more	challenging,	such	as	a	DTD	for
musical	notation	or	silicon	chip	design.	While	describing	these	data	types	in	a	DTD
is	possible,	displaying	this	information	graphically	is	certainly	beyond	the
capabilities	of	any	stylesheets	we've	seen	yet;	properly	displaying	this	type	of
graphically	rich	information	would	require	a	specialized	rendering	tool.

Nonetheless,	your	recipe	DTD	is	a	great	tool	for	capturing	and	sharing	recipes.	As
we'll	see	later	in	this	chapter,	XML	isn't	simply	about	creating	markup	languages
for	displaying	content	in	browsers.	It	has	great	promise	for	sharing	and	managing
information	so	that	those	precious	kumquat	dishes	will	be	preserved	for	many
generations	to	come.	Just	bear	in	mind	that,	in	addition	to	writing	a	DTD	to
describe	your	new	XML-based	markup	language,	in	most	cases	you	will	want	to
supplement	the	DTD	with	a	stylesheet.[]

[]	In	fact,	it	is	possible	to	write	XML	documents	using	only	a	stylesheet.	DTDs	are	highly	recommended	but	optional.
See	http://www.w3c.org/TR/xml-stylesheet	for	details.

15.1.2.	A	Little	History

To	complete	your	education	into	the	whys	and	wherefores	of	markup	languages,	it
helps	to	know	how	all	these	markup	languages	came	to	be.

In	the	beginning,	there	was	SGML.	SGML	was	intended	to	be	the	only
metalanguage	from	which	all	markup	languages	would	derive.	With	SGML,	you
can	define	everything	from	hieroglyphics	to	HTML,	negating	the	need	for	any
other	metalanguage.

The	problem	with	SGML	is	that	it	is	so	broad	and	all-encompassing	that	mere
mortals	cannot	use	it.	Using	SGML	effectively	requires	very	expensive	and
complex	tools	that	are	completely	beyond	the	scope	of	regular	people	who	just
want	to	bang	out	an	HTML	document	in	their	spare	time.	As	a	result,	developers
created	other	markup	languages	that	are	greatly	reduced	in	scope	and	are	much
easier	to	use.	The	HTML	standards	themselves	were	initially	defined	using	a
subset	of	SGML	that	eliminated	many	of	its	more	esoteric	features.	The	DTD	in
Appendix	D	uses	this	subset	of	SGML	to	define	the	HTML	4.01	standard.

Recognizing	that	SGML	was	too	unwieldy	to	describe	HTML	in	a	useful	way	and
that	there	was	a	growing	need	to	define	other	HTML-like	markup	languages,	the
W3C	defined	XML.	XML	is	a	formal	markup	metalanguage	that	uses	select	features
of	SGML	to	define	markup	languages	in	a	style	similar	to	that	of	HTML.	It
eliminates	many	SGML	elements	that	aren't	applicable	to	languages	such	as
HTML,	and	simplifies	other	elements	to	make	them	easier	to	use	and	understand.

XML	is	a	middle	ground	between	SGML	and	HTML,	a	useful	tool	for	defining	a	wide
variety	of	markup	languages.	XML	is	becoming	increasingly	important	as	the	Web
extends	beyond	browsers	and	moves	into	the	realm	of	direct	data	interchange
among	people,	computers,	and	disparate	systems.	A	small	number	of	people	wind
up	creating	new	markup	languages	with	XML,	and	many	more	people	want	to	be
able	to	understand	XML	DTDs	in	order	to	use	all	of	these	new	markup	languages.

	

http://www.w3c.org/TR/xml-stylesheet

15.2.	Documents	and	DTDs

To	be	perfectly	correct,	we	must	explain	that	"XML"	has	come	to	mean	many
subtly	different	things.	An	XML	document	is	a	document	containing	content	that
conforms	to	a	markup	language	defined	from	the	XML	standard.	An	XML
Document	Type	Definition	(XML	DTD)	is	a	set	of	rulesmore	formally	known	as
entity	and	element	declarationsthat	define	an	XML	markup	language;	i.e.,	how
the	tags	are	arranged	in	a	correct	(valid)	XML	document.	To	make	things	even
more	confusing,	entity	and	element	declarations	may	appear	in	an	XML	document
itself,	as	well	as	within	an	XML	DTD.

An	XML	document	contains	character	data,	which	consists	of	plain	content	and
markup	in	the	form	of	tags	and	XML	declarations.	Thus:

<blah>harrumph</blah>

	
is	a	line	in	a	well-formed	XML	document.	Well-formed	XML	documents	follow
certain	rules,	such	as	the	requirement	for	every	tag	to	have	a	closing	tag.	These
rules	are	presented	in	the	context	of	XHTML	in	Chapter	16.

To	be	considered	valida	valid	XML	document	conforms	to	a	DTDevery	XML
document	must	have	a	corresponding	set	of	XML	declarations	that	define	how	the
tags	and	content	should	be	arranged	within	it.	These	declarations	may	be	included
directly	in	the	XML	document,	or	they	may	be	stored	separately	in	an	XML	DTD.	If
an	XML	DTD	exists	that	defines	the	<blah>	tag,	our	well-formed	XML	document	is
valid,	provided	you	preface	it	with	a	<!DOCTYPE>	tag	that	explains	where	to	find	the
appropriate	DTD:

<?xml	version="1.0"?>
<!DOCTYPE	blah	SYSTEM	"blah.dtd">
<blah>harrumph</blah>

	
The	example	document	begins	with	the	optional	<?xml>	directive	declaring	the
version	of	XML	it	uses.	It	then	uses	the	<!DOCTYPE>	directive	to	identify	the	DTD	that
some	automated	system,	such	as	a	browser,	uses	to	process	and	perhaps	display
the	contents	of	the	document.	In	this	case,	a	DTD	named	blah.dtd	should	be
accessible	to	the	browser[*]	so	that	the	browser	can	determine	whether	the	<blah>
tag	is	valid	within	the	document.

[*]	We	use	the	word	browser	here	because	that's	what	most	people	will	use	to	process	and	view	XML	documents.	The

XML	specification	uses	the	more	generic	phrase	"processing	application"	because,	in	some	cases,	the	XML	document
will	be	processed	not	by	a	traditional	browser,	but	by	some	other	tool	that	knows	how	to	interpret	XML	documents.

XML	DTDs	contain	only	XML	entity	and	element	declarations.	XML	documents,	on
the	other	hand,	may	contain	both	XML	element	declarations	and	conventional
content	that	uses	those	elements	to	create	a	document.	This	intermingling	of
content	and	declarations	is	perfectly	acceptable	to	a	computer	processing	an	XML
document,	but	it	can	get	confusing	for	humans	trying	to	learn	about	XML.	For	this
reason,	we	focus	our	attention	in	this	chapter	on	the	XML	entity	and	element
declaration	features	that	you	can	use	to	define	new	tags	and	document	types.	In
other	words,	we	are	addressing	only	the	DTD	features	of	XML;	the	content
features	mirror	the	rules	and	requirements	you	already	know	and	use	in	order	to
create	HTML	documents.

	

15.3.	Understanding	XML	DTDs

To	use	a	markup	language	defined	with	XML,	you	should	be	able	to	read	and
understand	the	elements	and	entities	found	in	its	XML	DTD.	But	don't	be	put	off:
while	XML	DTDs	are	verbose,	filled	with	obscure	punctuation,	and	designed
primarily	for	computer	consumption,	they	are	actually	easy	to	understand	once
you	get	past	all	the	syntactic	sugar.	Remember,	your	brain	is	better	at	languages
than	any	computer.

As	we	said	previously,	an	XML	DTD	is	a	collection	of	XML	entity	and	element
declarations	and	comments.	Entities	are	name/value	pairs	that	make	the	DTD
easier	to	read	and	understand,	and	elements	are	the	actual	markup	tags	defined
by	the	DTD,	such	as	HTML's	<p>	and	<h1>	tags.	The	DTD	also	describes	the	content
and	grammar	for	each	tag	in	the	language.	Along	with	the	element	declarations,
you'll	also	find	attribute	declarations	that	define	the	attributes	authors	may	use
with	the	tags	defined	by	the	element	declarations.

There	is	no	required	order,	although	the	careful	DTD	author	arranges	declarations
in	such	a	way	that	humans	can	easily	find	and	understand	them,	computers
notwithstanding.	The	beloved	DTD	author	includes	lots	of	comments,	too,	that
explain	the	declarations	and	how	they	can	be	used	to	create	a	document.
Throughout	this	chapter,	we	use	examples	taken	from	the	XHTML	1.0	DTD,	which
you	can	find	in	its	entirety	at	the	W3C	web	site.	Although	it	is	lengthy,	you'll	find
this	DTD	to	be	well	written,	complete,	and,	with	a	little	practice,	easy	to
understand.

XML	also	provides	for	conditional	sections	within	a	DTD,	allowing	groups	of
declarations	to	be	optionally	included	or	excluded	by	the	DTD	parser.	This	is	useful
when	a	DTD	actually	defines	several	versions	of	a	markup	language;	the	desired
version	can	be	derived	by	including	or	excluding	appropriate	sections.	The	XHTML
1.0	DTD,	for	example,	defines	both	the	"regular"	version	of	HTML	and	a	version
that	supports	frames.	By	allowing	the	parser	to	include	only	the	appropriate
sections	of	the	DTD,	the	rules	for	the	<html>	tag	can	change	to	support	either	a
<body>	tag	or	a	<frameset>	tag,	as	needed.

15.3.1.	Comments

The	syntax	for	comments	within	an	XML	DTD	is	exactly	like	that	for	HTML
comments:	comments	begin	with	<!--	and	end	with	-->.	The	XML	processor	ignores
everything	between	these	two	elements.	Comments	may	not	be	nested.

15.3.2.	Entities

An	entity	is	a	fancy	term	for	a	constant.	Entities	are	crucial	to	creating	modular,
easily	understood	DTDs.	Although	they	may	differ	in	many	ways,	all	entities
associate	a	name	with	a	string	of	characters.	When	you	use	the	entity	name
elsewhere	within	a	DTD,	or	in	an	XML	document,	language	parsers	replace	the
name	with	the	corresponding	characters.	Drawing	an	example	from	HTML,	the	<
entity	is	replaced	by	the	<	character	wherever	it	appears	in	an	HTML	document.

Entities	come	in	two	flavors:	parsed	and	unparsed.	An	XML	processor	will	handle
parsed	entities	and	ignore	unparsed	ones.	The	vast	majority	of	entities	are
parsed.	An	unparsed	entity	is	reserved	for	use	within	attribute	lists	of	certain
tags;	it	is	nothing	more	than	a	replacement	string	used	as	a	value	for	a	tag
attribute.

You	can	further	divide	the	group	of	parsed	entities	into	general	entities	and
parameter	entities.	General	entities	are	used	in	the	XML	document,	and
parameter	entities	are	used	in	the	XML	DTD.

You	may	not	realize	that	you've	been	using	general	entities	within	your	HTML
documents	all	along.	They're	the	ones	that	have	an	ampersand	(&)	character
preceding	their	name.	For	example,	the	entity	for	the	copyright	(©)	symbol
(©)	is	a	general	entity	defined	in	the	HTML	DTD.	Appendix	F	lists	all	of	the
other	general	entities	you	know	and	love.

To	make	life	easier,	XML	predefines	the	five	most	common	general	entities,	which
you	can	use	in	any	XML	document.	While	it	is	still	preferred	that	they	be	explicitly
defined	in	any	DTD	that	uses	them,	these	five	entities	are	always	available	to	any
XML	author:

				&														&
				'													'
				>															>
				<															<
				"													"

	
You'll	find	parameter	entities	littered	throughout	any	well-written	DTD,	including
the	HTML	DTD.	Parameter	entities	have	a	percent	sign	(%)	preceding	their	names.
The	percent	sign	tells	the	XML	processor	to	look	up	the	entity	name	in	the	DTD's
list	of	parameter	entities,	insert	the	value	of	the	entity	into	the	DTD	in	place	of
the	entity	reference,	and	process	the	value	of	the	entity	as	part	of	the	DTD.

That	last	bit	is	important.	By	processing	the	contents	of	the	parameter	entity	as

part	of	the	DTD,	the	XML	processor	allows	you	to	place	any	valid	XML	content	in	a
parameter	entity.	Many	parameter	entities	contain	lengthy	XML	definitions	and
may	even	contain	other	entity	definitions.	Parameter	entities	are	the	workhorses
of	the	XML	DTD;	creating	DTDs	without	them	would	be	extremely	difficult.[*]

[*]	C	and	C++	programmers	may	recognize	that	the	entity	mechanism	in	XML	is	similar	to	the	#define	macro
mechanism	in	C	and	C++.	The	XML	entities	provide	only	simple	character-string	substitution	and	do	not	employ	C's
more	elaborate	macro	parameter	mechanism.

15.3.3.	Entity	Declarations

Let's	define	an	entity	with	the	<!ENTITY>	tag	in	an	XML	DTD.	Inside	the	tag,	first
supply	the	entity	name	and	value,	and	then	indicate	whether	it	is	a	general	or	a
parameter	entity:

<!ENTITY	name	value>
<!ENTITY	%	name	value>

	
The	first	version	creates	a	general	entity;	the	second,	because	of	the	percent
sign,	creates	a	parameter	entity.

For	both	entity	types,	the	name	is	simply	a	sequence	of	characters	beginning	with
a	letter,	colon,	or	underscore	and	followed	by	any	combination	of	letters,
numbers,	periods,	hyphens,	underscores,	or	colons.	The	only	restriction	is	that
names	may	not	begin	with	a	symbol	other	than	the	colon	or	underscore,	or	the
sequence	"xml"	(either	upper-	or	lowercase).

The	entity	value	is	either	a	character	string	within	quotes	(unlike	HTML	markup,
you	must	use	quotes	even	if	it	is	a	string	of	contiguous	letters)	or	a	reference	to
another	document	containing	the	value	of	the	entity.	For	these	external	entity
values,	you'll	find	either	the	keyword	SYSTEM,	followed	by	the	URL	of	the	document
containing	the	entity	value,	or	the	keyword	PUBLIC,	followed	by	the	formal	name	of
the	document	and	its	URL.

A	few	examples	will	make	this	clear.	Here	is	a	simple	general	entity	declaration:

<!ENTITY	fruit	"kumquat	or	other	similar	citrus	fruit">

	
In	this	declaration,	the	entity	"&fruit;"	within	the	document	is	replaced	with	the
phrase	"kumquat	or	other	similar	citrus	fruit"	wherever	it	appears.

Similarly,	here	is	a	parameter	entity	declaration:

<!ENTITY	%	ContentType	"CDATA">

	
Anywhere	the	reference	%ContentType;	appears	in	your	DTD,	it	is	replaced	with	the
word	CDATA.	This	is	the	typical	way	to	use	parameter	entities:	to	create	a	more
descriptive	term	for	a	generic	parameter	that	will	be	used	many	times	in	a	DTD.

Here	is	an	external	general	entity	declaration:

<!ENTITY	boilerplate	SYSTEM	"http://server.com/boilerplate.txt">

	
It	tells	the	XML	processor	to	retrieve	the	contents	of	the	file	boilerplate.txt	from
server.com	and	use	it	as	the	value	of	the	boilerplate	entity.	Anywhere	you	use
&boilerplate;	in	your	document,	the	contents	of	the	file	are	inserted	as	part	of	your
document	content.

Here	is	an	external	parameter	entity	declaration,	lifted	from	the	HTML	DTD,	which
references	a	public	external	document:

<!ENTITY	%	HTMLlat1	PUBLIC	"-//W3C//ENTITIES	Latin	1	for	XHTML//EN"
				"xhtml-lat1.ent">

	
It	defines	an	entity	named	HTMLlat1	whose	contents	are	to	be	taken	from	the	public
document	identified	as	-//W3C//ENTITIES	Latin	1	for	XHTML//EN.	If	the	processor
does	not	have	a	copy	of	this	document	available,	it	can	use	the	URL	xhtml-
lat1.ent	to	find	it.	This	particular	public	document	is	actually	quite	lengthy,
containing	all	of	the	general	entity	declarations	for	the	Latin	1	character
encodings	for	HTML.[*]	Accordingly,	simply	writing	this	in	the	HTML	DTD:

[*]	You	can	enjoy	this	document	for	yourself	at	http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent.

%HTMLlat1;

	
causes	all	of	those	general	entities	to	be	defined	as	part	of	the	language.

A	DTD	author	can	use	the	PUBLIC	and	SYSTEM	external	values	with	general	and
parameter	entity	declarations.	You	should	structure	your	external	definitions	to

http://server.com
http://xhtml-lat1.ent
http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

make	your	DTDs	and	documents	easy	to	read	and	understand.

You'll	recall	that	we	began	the	section	on	entities	with	a	mention	of	unparsed
entities	whose	only	purpose	is	to	be	used	as	values	to	certain	attributes.	You
declare	an	unparsed	entity	by	appending	the	keyword	NDATA	to	an	external	general
entity	declaration,	followed	by	the	name	of	the	unparsed	entity.	If	we	wanted	to
convert	our	general	boilerplate	entity	to	an	unparsed	general	entity	for	use	as	an
attribute	value,	we	could	say:

<!ENTITY	boilerplate	SYSTEM	"http://server.com/boilerplate.txt"	NDATA	text>

	
With	this	declaration,	attributes	defined	as	type	ENTITY	(as	described	in	Section
15.5.1)	could	use	boilerplate	as	one	of	their	values.

15.3.4.	Elements

Elements	are	definitions	of	the	tags	that	you	can	use	in	documents	based	on	your
XML	markup	language.	In	some	ways,	element	declarations	are	easier	than	entity
declarations	because	all	you	need	to	do	is	specify	the	name	of	the	tag	and	what
sort	of	content	that	tag	may	contain:

<!ELEMENT	name	contents>

	
The	name	follows	the	same	rules	as	names	for	entity	definitions.	The	contents	section
may	be	one	of	four	types	described	here:

The	keyword	EMPTY	defines	a	tag	with	no	content,	such	as	<hr>	and	
	in
HTML.	Empty	elements	in	XML	get	a	bit	of	special	handling,	as	described	in
section	15.4.5.

The	keyword	ANY	indicates	that	the	tag	can	have	any	content,	without
restriction	or	further	processing	by	the	XML	processor.

The	content	may	be	a	set	of	grammar	rules	that	defines	the	order	and	nesting
of	tags	within	the	defined	element.	You	use	this	content	type	when	the	tag
being	defined	contains	only	other	tags,	without	conventional	content	allowed
directly	within	the	tag.	In	HTML,	the		tag	is	such	a	tag,	as	it	can	contain
only		tags.

Mixed	content,	denoted	by	a	comma-separated	list	of	element	names	and	the
keyword	#PCDATA,	is	enclosed	in	parentheses.	This	content	type	allows	tags	to
have	user-defined	content,	along	with	other	markup	elements.	The		tag,
for	example,	may	contain	user-defined	content	as	well	as	other	tags.

The	last	two	content	types	form	the	meat	of	most	DTD	element	declarations.	This
is	where	the	fun	begins.

	

15.4.	Element	Grammar

The	grammar	of	human	language	is	rich	with	a	variety	of	sentence	structures,
verb	tenses,	and	all	sorts	of	irregular	constructs	and	exceptions	to	the	rules.
Nonetheless,	you	mastered	most	of	it	by	the	age	of	three.	Computer	language
grammars	typically	are	simple	and	regular,	and	have	few	exceptions.	In	fact,
computer	grammars	use	only	four	rules	to	define	how	elements	of	a	language
may	be	arranged:	sequence,	choice,	grouping,	and	repetition.

15.4.1.	Sequence,	Choice,	Grouping,	and	Repetition

Sequence	rules	define	the	exact	order	in	which	elements	appear	in	a	language.
For	instance,	if	a	sequence	grammar	rule	states	that	element	A	is	followed	by	B
and	then	by	C,	your	document	must	provide	elements	A,	B,	and	C	in	that	exact
order.	A	missing	element	(A	and	C,	but	no	B,	for	example),	an	extra	element	(A,
B,	E,	then	C),	or	an	element	out	of	place	(C,	A,	then	B)	violates	the	rule	and	does
not	match	the	grammar.

In	many	grammars,	XML	included,	sequences	are	defined	by	simply	listing	the
appropriate	elements,	in	order	and	separated	by	commas.	Accordingly,	our
example	sequence	in	the	DTD	would	appear	simply	as	A,	B,	C.

Choice	grammar	rules	provide	flexibility	by	letting	the	DTD	author	choose	one
element	from	among	a	group	of	valid	elements.	For	example,	a	choice	rule	might
state	that	you	may	choose	elements	D,	E,	or	F;	any	one	of	these	three	elements
would	satisfy	the	grammar.	Like	many	other	grammars,	XML	denotes	choice	rules
by	listing	the	appropriate	choices	separated	by	a	pipe	character	(|).	Thus,	we
could	write	our	simple	choice	in	the	DTD	as	D	|	E	|	F.	If	you	read	the	vertical	bar
as	the	word	or,	choice	rules	become	easy	to	understand.

Grouping	rules	collect	two	or	more	rules	into	a	single	rule,	building	richer,	more
usable	languages.	For	example,	a	grouping	rule	might	allow	a	sequence	of
elements,	followed	by	a	choice,	followed	by	a	sequence.	You	can	indicate	groups
within	a	rule	by	enclosing	them	in	parentheses	in	the	DTD.	For	example:

Document	::=	A,	B,	C,	(D	|	E	|	F),	G

	
requires	that	a	document	begin	with	elements	A,	B,	and	C,	followed	by	a	choice	of
one	element	out	of	D,	E,	or	F,	followed	by	element	G.

Repetition	rules	let	you	repeat	one	or	more	elements	some	number	of	times.	With

XML,	as	with	many	other	languages,	you	denote	repetition	by	appending	a	special
character	suffix	to	an	element	or	group	within	a	rule.	Without	the	special
character,	that	element	or	group	must	appear	exactly	once	in	the	rule.	Special
characters	include	the	plus	sign	(+),	meaning	that	the	element	may	appear	one	or
more	times	in	the	document;	the	asterisk	(*),	meaning	that	the	element	may
appear	zero	or	more	times;	and	the	question	mark	(?),	meaning	that	the	element
may	appear	either	zero	or	one	time.

For	example,	the	rule:

Document	::=	A,	B?,	C*,	(D	|	E	|	F)+,	G*

	
creates	an	unlimited	number	of	correct	documents	with	the	elements	A	through	F.
According	to	the	rule,	each	document	must	begin	with	A,	optionally	followed	by	B,
followed	by	zero	or	more	occurrences	of	C,	followed	by	at	least	one,	but	perhaps
more,	of	either	D,	E,	or	F,	followed	by	zero	or	more	Gs.	All	of	the	following
examples	(and	many	others)	match	this	rule:

				ABCDG
				ACCCFFGGG
				ACDFDFGG

	
You	might	want	to	work	through	these	examples	to	prove	to	yourself	that	they
are,	in	fact,	correct	with	respect	to	the	repetition	rule.

15.4.2.	Multiple	Grammar	Rules

By	now,	you	can	probably	imagine	that	specifying	an	entire	language	grammar	in
a	single	rule	is	difficult,	although	possible.	Unfortunately,	the	result	would	be	an
almost	unreadable	sequence	of	nearly	unintelligible	rules.	To	remedy	this
situation,	the	items	in	a	rule	may	themselves	be	rules	containing	other	elements
and	rules.	In	these	cases,	the	items	in	a	grammar	that	are	themselves	rules	are
known	as	nonterminals,	and	the	items	that	are	elements	in	the	language	are
known	as	terminals.	Eventually,	all	the	nonterminals	must	reference	rules	that
create	sequences	of	terminals,	or	the	grammar	would	never	produce	a	valid
document.

For	example,	we	can	express	our	sample	grammar	in	two	rules:

Document	::=	A,	B?,	C*,	Choices+,	G*

Choices	::=	D	|	E	|	F

	
In	this	example,	Document	and	Choices	are	nonterminals,	and	A,	B,	C,	D,	E,	F,
and	G	are	terminals.

There	is	no	requirement	in	XML	(or	most	other	grammars)	that	dictates	or	limits
the	number	of	nonterminals	in	your	grammar.	Most	grammars	use	nonterminals
wherever	it	makes	sense	for	clarity	and	ease	of	use.

15.4.3.	XML	Element	Grammar

The	rules	for	defining	the	contents	of	an	element	match	the	grammar	rules	we
just	discussed.	You	may	use	sequences,	choices,	groups,	and	repetition	to	define
the	allowable	contents	of	an	element.	The	nonterminals	in	rules	must	be	names	of
other	elements	defined	in	your	DTD.

A	few	examples	show	how	this	works.	Consider	the	declaration	of	the	<html>	tag,
taken	from	the	HTML	DTD:

				<!ELEMENT	html	(head,	body)>

	
This	defines	the	element	named	html	whose	content	is	a	head	element	followed	by	a
body	element.	Notice	you	do	not	enclose	the	element	names	in	angle	brackets
within	the	DTD;	you	use	that	notation	only	when	the	elements	are	actually	used
in	a	document.

Within	the	HTML	DTD,	you	can	find	the	declaration	of	the	<head>	tag:

				<!ELEMENT	head	(%head.misc;,
												((title,	%head.misc;,	(base,	%head.misc;)?)	|
													(base,	%head.misc;,	(title,	%head.misc;))))>

	
Gulp.	What	on	Earth	does	this	mean?	First,	notice	that	a	parameter	entity	named
head.misc	appears	several	times	in	this	declaration.	Let's	go	get	it:

				<!ENTITY	%	head.misc	"(script|style|meta|link|object)*">

	

Now	things	are	starting	to	make	sense:	head.misc	defines	a	group	of	elements,	from
which	you	may	choose	one.	However,	the	trailing	asterisk	indicates	that	you	may
include	zero	or	more	of	these	elements.	The	net	result	is	that	anywhere	%head.misc;
appears,	you	can	include	zero	or	more	script,	style,	meta,	link,	or	object	elements,
in	any	order.	Sound	familiar?

Returning	to	the	head	declaration,	we	see	that	we	are	allowed	to	begin	with	any
number	of	the	miscellaneous	elements.	We	must	then	make	a	choice:	either	a
group	consisting	of	a	title	element,	optional	miscellaneous	items,	and	an	optional
base	element	followed	by	miscellaneous	items;	or	a	group	consisting	of	a	base
element,	miscellaneous	items,	a	title	element,	and	some	more	miscellaneous
items.

Why	such	a	convoluted	rule	for	the	<head>	tag?	Why	not	just	write:

				<!ELEMENT	head	(script|style|meta|link|object|base|title)*>

	
which	allows	any	number	of	head	elements	to	appear,	or	none	at	all?	The	HTML
standard	requires	that	every	<head>	tag	contain	exactly	one	<title>	tag.	It	also
allows	for	only	one	<base>	tag,	if	any.	Otherwise,	the	standard	does	allow	any
number	of	the	other	head	elements,	in	any	order.

Put	simply,	the	head	element	declaration,	while	initially	confusing,	forces	the	XML
processor	to	ensure	that	exactly	one	title	element	appears	in	the	head	element
and	that,	if	specified,	just	one	base	element	appears	as	well.	It	then	allows	for	any
of	the	other	head	elements,	in	any	order.

This	one	example	demonstrates	a	lot	of	the	power	of	XML:	the	ability	to	define
commonly	used	elements	using	parameter	entities	and	the	use	of	grammar	rules
to	dictate	document	syntax.	If	you	can	work	through	the	head	element	declaration
and	understand	it,	you	are	well	on	your	way	to	reading	any	XML	DTD.

15.4.4.	Mixed	Element	Content

Mixed	element	content	extends	the	element	grammar	rules	to	include	the	special
#PCDATA	keyword.	PCDATA	stands	for	"parsed	character	data"	and	signifies	that	the
content	of	the	element	will	be	parsed	by	the	XML	processor	for	general	entity
references.	After	the	entities	are	replaced,	the	character	data	is	passed	to	the
XML	application	for	further	processing.

What	this	boils	down	to	is	that	parsed	character	data	is	the	actual	content	of	your
XML	document.	Elements	that	accept	parsed	character	data	may	contain	plain	old

text,	plus	whatever	other	tags	you	allow,	as	defined	in	the	DTD.

For	instance:

				<!ELEMENT	title	(#PCDATA)>

	
means	that	the	title	element	may	contain	only	text	with	entities.	No	other	tags
are	allowed,	just	as	in	the	HTML	standard.

A	more	complex	example	is	the	<p>	tag,	whose	element	declaration	is:

				<!ELEMENT	p	%Inline;>

	
Another	parameter	entity,	%Inline;,	is	defined	in	the	HTML	DTD	as:

				<!ENTITY	%	Inline	"(#PCDATA	|	%inline;	|	%misc;)*">

	
which	expands	to	these	entities	when	you	replace	the	parameters:

				<!ENTITY	%	special	"br	|	span	|	bdo	|	object	|	img	|	map">
				<!ENTITY	%	fontstyle	"tt	|	i	|	b	|	big	|	small">
				<!ENTITY	%	phrase	"em	|	strong	|	dfn	|	code	|	q	|	sub	|	sup	|	samp	|	kbd	|
																		var	|	cite	|	abbr	|	acronym">
				<!ENTITY	%	inline.forms	"input	|	select	|	textarea	|	label	|	button">
				<!ENTITY	%	misc	"ins	|	del	|	script	|	noscript">
				<!ENTITY	%	inline	"a	|	%special;	|	%fontstyle;	|	%phrase;	|	%inline.forms;">

	
What	do	we	make	of	all	this?	The	%Inline;	entity	defines	the	contents	of	the	p
element	as	parsed	character	data,	plus	any	of	the	elements	defined	by	%inline;
and	any	defined	by	%misc;.	Note	that	case	does	matter:	%Inline;	is	different	from
%inline;.

The	%inline;	entity	includes	lots	of	stuff:	special	elements,	font-style	elements,
phrase	elements,	and	inline	form	elements.	%misc	includes	the	ins,	del,	script,	and
noscript	elements.	You	can	read	the	HTML	DTD	for	the	other	entity	declarations	to
see	which	elements	are	also	allowed	as	the	contents	of	a	p	element.

Why	did	the	HTML	DTD	authors	break	up	all	these	elements	into	separate	groups?
If	they	were	simply	defining	elements	to	be	included	in	the	p	element,	they	could

have	built	a	single	long	list.	However,	HTML	has	rules	that	govern	where	inline
elements	may	appear	in	a	document.	The	authors	grouped	elements	that	are
treated	similarly	into	separate	entities	that	could	be	referenced	several	times	in
the	DTD.	This	makes	the	DTD	easier	to	read	and	understand,	as	well	as	easier	to
maintain	when	a	change	is	needed.

15.4.5.	Empty	Elements

Elements	whose	content	is	defined	to	be	empty	deserve	a	special	mention.	XML
introduced	notational	rules	for	empty	elements,	different	from	the	traditional
HTML	rules	that	govern	them.

HTML	authors	are	used	to	specifying	an	empty	element	as	a	single	tag,	such	as

	or	.	XML	requires	that	every	element	have	an	opening	and	a	closing	tag,
so	an	image	tag	would	be	written	as	,	with	no	embedded	content.	Other
empty	elements	would	be	written	in	a	similar	manner.

Because	this	format	works	well	for	nonempty	tags	but	is	a	bit	of	overkill	for	empty
ones,	you	can	use	a	special	shorthand	notation	for	empty	tags.	To	write	an	empty
tag	in	XML,	just	place	a	slash	(/)	immediately	before	the	closing	angle	bracket	of
the	tag.	Thus,	you	can	write	a	line	break	as	
	and	an	image	tag	as	.	Notice	that	the	attributes	of	the	empty	element,	if	any,	appear
before	the	closing	slash	and	bracket.

	

15.5.	Element	Attributes

The	final	piece	of	the	DTD	puzzle	involves	attributes.	You	know	attributes:	they
are	the	name/value	pairs	included	with	tags	in	your	documents	that	control	the
behavior	and	appearance	of	those	tags.	To	define	attributes	and	their	allowed
values	within	an	XML	DTD,	use	the	<!ATTLIST>	directive:

				<!ATTLIST	element	attributes>

	
The	element	is	the	name	of	the	element	to	which	the	attributes	apply.	The	attributes
are	a	list	of	attribute	declarations	for	the	element.	Each	attribute	declaration	in
this	list	consists	of	an	attribute	name,	its	type,	and	its	default	value,	if	any.

15.5.1.	Attribute	Values

Attribute	values	can	be	of	several	types,	each	denoted	in	an	attribute	definition
with	one	of	the	following	keywords:

CDATA

Indicates	that	the	attribute	value	is	a	character	or	string	of	characters.	This	is
the	attribute	type	you	would	use	to	specify	URLs	or	other	arbitrary	user	data.
For	example,	the	src	attribute	of	the		tag	in	HTML	has	a	value	of	CDATA.

ID

Indicates	that	the	attribute	value	is	a	unique	identifier	within	the	scope	of	the
document.	This	attribute	type	is	used	with	an	attribute,	such	as	the	HTML	id
attribute,	whose	value	defines	an	ID	within	the	document,	as	discussed	in
"Core	Attributes"	in	Appendix	B.

IDREF	or	IDREFS

Indicate	that	the	attribute	accepts	an	ID	defined	elsewhere	in	the	document
via	an	attribute	of	type	ID.	You	use	the	ID	type	when	defining	IDs;	you	use

IDREF	and	IDREFS	when	referencing	a	single	ID	and	a	list	of	IDs,	respectively.

ENTITY	or	ENTITIES

Indicate	that	the	attribute	accepts	the	name	or	list	of	names	of	unparsed
general	entities	defined	elsewhere	in	the	DTD.	The	definition	and	use	of
unparsed	general	entities	is	covered	in	section	15.3.2.

NMTOKEN	or	NMTOKENS

Indicate	that	the	attribute	accepts	a	valid	XML	name	or	list	of	names.	These
names	are	given	to	the	processing	application	as	the	value	of	the	attribute.
The	application	determines	how	they	are	used.

In	addition	to	these	keyword-based	types,	you	can	create	an	enumerated	type	by
listing	the	specific	values	allowed	with	this	attribute.	To	create	an	enumerated
type,	list	the	allowed	values,	separated	by	pipe	characters	and	enclosed	in
parentheses,	as	the	type	of	the	attribute.	For	example,	here	is	how	the	method
attribute	for	the	<form>	tag	is	defined	in	the	HTML	DTD:

				method						(get|post)					"get"

	
The	method	attribute	accepts	one	of	two	values,	either	get	or	post;	get	is	the	default
value	if	nothing	is	specified	in	the	document	tag.

15.5.2.	Required	and	Default	Attributes

After	you	define	the	name	and	type	of	an	attribute,	you	must	specify	how	the	XML
processor	should	handle	default	or	required	values	for	the	attribute.	You	do	this
by	supplying	one	of	four	values	after	the	attribute	type.

If	you	use	the	#REQUIRED	keyword,	the	associated	attribute	must	always	be	provided
when	the	element	is	used	in	a	document.	Within	the	XHTML	DTD,	the	src	attribute
of	the		tag	is	required	because	an	image	tag	makes	no	sense	without	an
image	to	display.

The	#IMPLIED	keyword	means	that	the	attribute	may	be	used	but	is	not	required
and	that	no	default	value	is	associated	with	the	attribute.	If	it	is	not	supplied	by
the	document	author,	the	attribute	has	no	value	when	the	XML	processor	handles

the	element.	For	the		tag,	the	width	and	height	attributes	are	implied	because
the	browser	derives	sizing	information	from	the	image	itself	if	these	attributes	are
not	specified.

If	you	specify	a	value,	it	then	becomes	the	default	value	for	that	attribute.	If	the
user	does	not	specify	a	value	for	the	attribute,	the	XML	processor	inserts	the
default	value	(the	value	specified	in	the	DTD).

If	you	precede	the	default	value	with	the	keyword	#FIXED,	the	value	is	not	only	the
default	value	for	the	attribute,	it	is	the	only	value	that	can	be	used	with	that
attribute	if	it	is	specified.

For	example,	examine	the	attribute	list	for	the	form	element,	taken	(and	abridged)
from	the	HTML	DTD:

				<!ATTLIST	form
				action																	CDATA								#REQUIRED
				method																	(get|post)				"get"
				enctype																CDATA								"application/x-www-form-urlencoded"
				onsubmit															CDATA								#IMPLIED
				onreset																CDATA								#IMPLIED
				accept																	CDATA								#IMPLIED
				accept-charset									CDATA								#IMPLIED
>

	
This	example	associates	seven	attributes	with	the	form	element.	The	action
attribute	is	required	and	accepts	a	character	string	value.	The	method	attribute	has
one	of	two	values,	either	get	or	post.	get	is	the	default,	so	if	the	document	author
doesn't	include	the	method	attribute	in	the	form	tag,	the	XML	parser	assumes
method=get	automatically.

The	enctype	attribute	for	the	form	element	accepts	a	character	string	value	and,	if
not	specified,	defaults	to	a	value	of	application/x-www-form-urlencoded.	The	remaining
attributes	all	accept	character	strings,	are	not	required,	and	have	no	default
values	if	they	are	not	specified.

If	you	look	at	the	attribute	list	for	the	form	element	in	the	HTML	DTD,	you'll	see
that	it	does	not	exactly	match	our	example.	That's	because	we've	modified	our
example	to	show	the	types	of	the	attributes	after	any	parameter	entities	have
been	expanded.	In	the	actual	HTML	DTD,	the	attribute	types	are	provided	as
parameter	entities	whose	names	give	a	hint	of	the	kinds	of	values	the	attribute
expects.	For	example,	the	type	of	the	action	attribute	appears	as	%URI;,	not	CDATA,
but	elsewhere	in	the	DTD	is	defined	to	be	CDATA.	By	using	this	style,	the	DTD
author	lets	you	know	that	the	string	value	for	this	attribute	should	be	a	URL,	not

just	any	old	string.	Similarly,	the	type	of	the	onsubmit	and	onreset	attributes	is	given
as	%Script.	This	is	a	hint	that	the	character	string	value	should	name	a	script	to	be
executed	when	the	form	is	submitted	or	reset.

	

15.6.	Conditional	Sections

As	we	mentioned	earlier	in	this	chapter,	XML	lets	you	include	or	ignore	whole
sections	of	your	DTD,	so	you	can	tailor	the	language	for	alternative	uses.	The
HTML	DTD,	for	instance,	defines	transitional,	strict,	and	frame-based	versions	of
the	language.	DTD	authors	can	select	the	portions	of	the	DTD	they	plan	to	include
or	ignore	by	using	XML	conditional	directives:

<![INCLUDE	[
			...any	XML	content...
]]>

	
or:

<![IGNORE	[
			...any	XML	content...
]]>

	
The	XML	processor	either	includes	or	ignores	the	contents,	respectively.
Conditional	sections	may	be	nested,	with	the	caveat	that	all	sections	contained
within	an	ignored	section	are	ignored,	even	if	they	are	set	to	be	included.

You	rarely	see	a	DTD	with	the	INCLUDE	and	IGNORE	keywords	spelled	out.	Instead,	you
see	parameter	entities	that	document	why	the	section	is	being	included	or
ignored.	Suppose	you	are	creating	a	DTD	to	exchange	construction	plans	among
builders.	Because	you	have	an	international	customer	base,	you	build	a	DTD	that
can	handle	both	English	and	metric	units.	You	might	define	two	parameter
entities:

				<!ENTITY	%	English	"INCLUDE">
				<!ENTITY	%	Metric	"IGNORE">

	
You	would	then	place	all	the	English-specific	declarations	in	a	conditional	section
and	isolate	the	metric	declarations	similarly:

				<![%English	[...English	stuff	here...]]>
				<![%Metric	[...Metric	stuff	here...]]>

	
To	use	the	DTD	for	English	construction	jobs,	define	%English	as	INCLUDE	and	%Metric
as	IGNORE,	which	causes	your	DTD	to	use	the	English	declarations.	For	metric
construction,	reverse	the	two	settings,	ignoring	the	English	section	and	including
the	metric	section.

	

15.7.	Building	an	XML	DTD

Now	that	we've	emerged	from	the	gory	details	of	XML	DTDs,	let's	see	how	they
work	by	creating	a	simple	example.	You	can	create	a	DTD	with	any	text	editor	and
a	clear	idea	of	how	you	want	to	mark	up	your	XML	documents.	You'll	need	an	XML
parser	and	processing	application	to	actually	interpret	and	use	your	DTD,	as	well
as	a	stylesheet	to	permit	XML-capable	browsers	to	display	your	document.

15.7.1.	An	XML	Address	DTD

Let's	create	a	simple	XML	DTD	that	defines	a	markup	language	for	specifying
documents	containing	names	and	addresses.	We	start	with	an	address	element,
which	contains	other	elements	that	tag	the	address	contents.	Our	address	element
has	a	single	attribute	indicating	whether	it	is	a	work	or	a	home	address:

				<!ELEMENT	address	(name,	street+,	city,	state,	zip?)>
				<!ATTLIST	address	type	(home|business)	#REQUIRED>

	
Voilà!	The	first	declaration	creates	an	element	named	address	that	contains	a	name
element,	one	or	more	street	elements,	a	city	and	state	element,	and	an	optional
zip	element.	The	address	element	has	a	single	attribute,	type,	which	must	be
specified	and	can	have	a	value	of	either	home	or	business.

Let's	define	the	name	elements	first:

					<!ELEMENT	name	(first,	middle?,	last)>
					<!ELEMENT	first	(#PCDATA)>
					<!ELEMENT	middle	(#PCDATA)>
					<!ELEMENT	last	(#PCDATA)>

	
The	name	element	also	contains	other	elementsa	first	name,	an	optional	middle
name,	and	a	last	nameeach	defined	in	the	subsequent	DTD	lines.	These	three
elements	have	no	nested	tags	and	contain	only	parsed	character	data;	i.e.,	the
actual	name	of	the	person.

The	remaining	address	elements	are	easy,	too:

				<!ELEMENT	street	(#PCDATA)>
				<!ELEMENT	city	(#PCDATA)>

				<!ELEMENT	state	(#PCDATA)>
				<!ELEMENT	zip	(#PCDATA)>
				<!ATTLIST	zip	length	CDATA	"5">

	
All	these	elements	contain	parsed	character	data.	The	zip	element	has	an
attribute	named	length	that	indicates	the	length	of	the	zip	code.	If	the	length
attribute	is	not	specified,	it	is	set	to	5.

15.7.2.	Using	the	Address	DTD

Once	we	have	defined	our	address	DTD,	we	can	use	it	to	mark	up	address
documents.	For	example:

				<address	type="home">
							<name>
										<first>Chuck</first>
										<last>Musciano</last>
							</name>
							<street>123	Kumquat	Way</street>
							<city>Cary</city>
							<state>NC</state>
							<zip	length="10">27513-1234</zip>
					</address>

	
With	an	appropriate	XML	parser	and	an	application	to	use	this	data,	we	can	parse
and	store	addresses,	create	addresses	to	share	with	other	people	and	applications,
and	create	display	tools	that	would	publish	addresses	in	a	wide	range	of	styles	and
media.	Although	our	DTD	is	simple,	it	has	defined	a	standard	way	to	capture
address	data	that	is	easy	to	use	and	understand.

	

15.8.	Using	XML

Our	address	example	is	trivial.	It	hardly	scratches	the	surface	of	the	wide	range	of
applications	that	XML	is	suited	for.	To	whet	your	appetite,	here	are	some	common
uses	for	XML	that	you	will	certainly	be	seeing	now	and	in	the	future.

15.8.1.	Creating	Your	Own	Markup	Language

We	touched	on	this	earlier	when	we	mentioned	that	the	latest	versions	of	HTML
are	being	reformulated	as	compliant	XML	DTDs.	We	cover	the	impact	XML	has	on
HTML	in	the	next	chapter.

But	even	more	significantly,	XML	enables	communities	of	users	to	create
languages	that	best	capture	their	unique	data	and	ideas.	Mathematicians,
chemists,	musicians,	and	professionals	from	hundreds	of	other	disciplines	can
create	special	tags	that	represent	unique	concepts	in	a	standardized	way.	Even	if
no	browser	exists	that	can	accurately	render	these	tags	in	a	displayable	form,	the
ability	to	capture	and	standardize	information	is	tremendously	important	for
future	extraction	and	interpretation	of	these	ideas.

For	more	mainstream	XML	applications	with	established	audiences,	it	is	easy	to
envision	custom	browsers	being	created	to	appropriately	display	the	information.
Smaller	applications	or	markets	may	have	more	of	a	challenge	creating	markup
languages	that	enjoy	such	wide	acceptance.	Creating	the	custom	display	tool	for	a
markup	language	is	difficult;	delivering	that	tool	for	multiple	platforms	is
expensive.	As	we've	noted,	you	can	mitigate	some	of	these	display	concerns
through	appropriate	use	of	stylesheets.	Luckily,	XML's	capabilities	extend	beyond
document	display.

15.8.2.	Document	Exchange

Because	XML	grew	out	of	the	tremendous	success	of	HTML,	many	people	think	of
XML	as	yet	another	document-display	tool.	In	fact,	the	real	power	of	XML	lies	not
in	the	document-display	arena,	but	in	the	world	of	data	capture	and	exchange.

Despite	the	billions	of	computers	deployed	worldwide,	sharing	data	is	as	tedious
and	error-prone	as	ever.	Competing	applications	do	not	operate	from	common
document-storage	formats,	so	sending	a	single	document	to	a	number	of
recipients	is	fraught	with	peril.	Even	when	vendors	attempt	to	create	an
interchange	format,	it	still	tends	to	be	proprietary	and	often	is	viewed	as	a
competitive	advantage	for	participating	vendors.	There	is	little	incentive	for

vendors	to	release	application	code	for	the	purpose	of	creating	easy	document-
exchange	tools.

XML	avoids	these	problems.	It	is	platform	neutral,	is	generic,	and	can	perform
almost	any	data-capture	task.	It	is	equally	available	to	all	vendors	and	can	easily
be	integrated	into	most	applications.	The	stabilization	of	the	XML	standard	and
the	increasing	availability	of	XML	authoring	and	parsing	tools	is	making	it	easier
to	create	XML	markup	languages	for	document	capture	and	exchange.

Most	importantly,	document	exchange	rarely	requires	document	presentation,
thus	eliminating	"display	difficulties"	from	the	equation.	Often,	an	existing
application	uses	XML	to	include	data	from	another	source	and	then	uses	its	own
internal	display	capabilities	to	present	the	data	to	the	end	user.	The	cost	of	adding
XML-based	data	exchange	to	existing	applications	is	relatively	small.

15.8.3.	Connecting	Systems

A	level	below	applications,	there	is	also	a	need	for	systems	to	exchange	data.	As
business-to-business	communication	increases,	this	need	grows	even	faster.	In
the	past,	this	meant	that	someone	had	to	design	a	protocol	to	encode	and
exchange	the	data.	With	XML,	exchanging	data	is	as	easy	as	defining	a	DTD	and
integrating	the	parser	into	your	existing	applications.

The	data	sets	exchanged	can	be	quite	small.	Imagine	shopping	for	a	new	PC	on
the	Web.	If	you	could	capture	your	system	requirements	as	a	small	document
using	an	XML	DTD,	you	could	send	that	specification	to	a	hundred	different
vendors	to	quote	you	a	system.	If	you	extend	that	model	to	include	almost
anything	you	can	shop	forfrom	cars	to	hot	tubsXML	provides	an	elegant	base	layer
of	communication	among	cooperating	vendors	on	the	Internet.

Almost	any	data	that	is	captured	and	stored	can	more	easily	be	shared	using	XML.
For	many	systems,	the	XML	DTDs	may	define	a	data-transfer	protocol	and	nothing
more.	The	data	may	never	actually	be	stored	using	the	XML-defined	markup;	it
may	exist	in	an	XML-compatible	form	only	long	enough	to	pass	on	the	wire
between	two	systems.

One	increasingly	popular	use	of	XML	is	web	services,	which	make	it	possible	for
diverse	applications	to	discover	each	other	and	exchange	data	seamlessly	over
the	Internet,	regardless	of	their	programming	language	or	architecture.	For	more
information	on	web	services,	consult	Web	Services	Essentials	by	Ethan	Cerami
(O'Reilly).

In	conjunction	with	XML-based	data	exchange,	the	Extensible	Stylesheet
Language,	or	XSL,	is	increasingly	being	used	to	describe	the	appearance	and

definition	of	the	data	represented	by	these	XML	DTDs.	Much	like	Cascading	Style
Sheets	(CSS)	and	its	ability	to	transform	HTML	documents,	XSL	supports	the
creation	of	stylesheets	for	any	XML	DTD.	You	can	use	CSS	with	XML	documents	as
well,	but	it	is	not	as	programmatically	rich	as	XSL.	While	CSS	stops	with
stylesheets,	XSL	is	a	style	language.	XSL	certainly	addresses	the	need	for	data
display,	and	it	provides	rich	tools	that	allow	data	represented	with	one	DTD	to	be
transformed	into	another	DTD	in	a	controlled	and	deterministic	fashion.	A
complete	discussion	of	XSL	is	beyond	the	scope	of	this	book;	consult	XSLT	by
Doug	Tidwell	(O'Reilly)	for	complete	details.

The	potential	for	XML	goes	well	beyond	that	of	traditional	markup	and
presentation	tools.	What	we	now	see	and	use	in	the	XML	world	is	only	scratching
the	surface	of	the	potential	for	this	technology.

15.8.4.	Standardizing	HTML

Last,	but	certainly	not	least,	the	W3C	uses	XML	to	define	a	standard	version	of
HTML	known	as	XHTML.	XHTML	retains	almost	all	of	the	features	of	HTML	4.01,
but	it	also	introduces	a	number	of	minor	(and	a	few	not-so-minor)	differences.
The	next	chapter	compares	and	contrasts	XHTML	and	HTML,	mapping	out	the
differences	so	that	you	can	begin	creating	documents	that	comply	with	both	the
HTML	and	XHTML	standards.

	

Chapter	16.	XHTML

Despite	its	name,	you	don't	use	the	Extensible	Markup	Language	(XML)	to	directly
create	and	mark	up	web	documents.	Instead,	you	use	XML	to	define	a	new
markup	language,	which	you	then	use	to	mark	up	web	documents.	This	should
come	as	no	surprise	to	anyone	who	has	read	the	preceding	chapter	in	this	book.
Nor,	then,	should	it	surprise	you	that	one	of	the	first	languages	defined	using	XML
is	an	XMLized	version	of	HTML,	the	most	popular	markup	language	ever.	HTML	is
being	disciplined	and	cleaned	up	by	XML,	to	bring	it	back	into	line	with	the	larger
family	of	markup	languages.	This	standard	is	XHTML	1.0.[*]

[*]	Throughout	this	chapter,	we	use	"XHTML"	to	mean	the	XHTML	1.0	standard.	There	is	a	nascent	XHTML	1.1	standard
that	diverges	from	HTML	4.01	and	is	more	restrictive	than	XHTML	1.0.	We	describe	the	salient	features	of	XHTML	1.1	in
section	16.4.

Because	of	HTML's	legacy	features	and	oddities,	using	XML	to	describe	HTML	was
not	an	easy	job	for	the	World	Wide	Web	Consortium	(W3C).	In	fact,	certain	HTML
rules,	as	we'll	discuss	later,	cannot	be	expressed	with	XML.	Nonetheless,	if	the
W3C	has	its	way,	XHTML	will	ultimately	replace	the	HTML	we	currently	know	and
love.

So	much	of	XHTML	is	identical	to	HTML's	current	standard,	version	4.01,	that	you
can	apply	almost	everything	presented	elsewhere	in	this	book	to	both	HTML	and
XHTML.	We	detail	the	differences,	both	good	and	bad,	in	this	chapter.	To	become
fluent	in	XHTML,	you'll	first	need	to	absorb	the	rest	of	this	book,	and	then	adjust
your	thinking	to	embrace	what	we	present	in	this	chapter.

	

16.1.	Why	XHTML?

As	we	described	in	the	preceding	chapter,	HTML	began	as	a	simple	markup
language	similar	in	appearance	and	usage	to	other	Standard	Generalized	Markup
Language	(SGML)-based	markup	languages.	In	its	early	years,	little	effort	was	put
into	making	HTML	perfectly	SGML	compliant.	As	a	result,	odd	features	and	a	lax
attitude	toward	enforcing	the	rules	became	standard	parts	of	both	HTML	and	the
browsers	that	processed	HTML	documents.

As	the	Web	grew	from	an	experiment	into	an	industry,	the	desire	for	a	standard
version	of	HTML	led	to	the	creation	of	several	official	versions,	culminating	most
recently	with	version	4.01.	As	HTML	has	stabilized	into	this	latest	version,
browsers	have	become	more	alike	in	their	support	of	various	HTML	features.	In
general,	the	world	of	HTML	has	settled	into	a	familiar	set	of	constructs	and	usage
rules.

Unfortunately,	HTML	offers	only	a	limited	set	of	document-creation	primitives,	is
incapable	of	handling	nontraditional	content	such	as	chemical	formulae,	musical
notation,	or	mathematical	expressions,	and	fails	to	adequately	support	alternative
display	media	such	as	handheld	computers	or	intelligent	cellular	phones.	We	need
new	ways	to	deliver	information	that	can	be	parsed,	processed,	displayed,	sliced,
and	diced	by	the	many	different	communication	technologies	that	have	emerged
since	the	Web	sparked	the	digital	communication	revolution	a	decade	ago.

Instead	of	trying	to	rein	in	another	herd	of	maverick,	nonstandard	markup
languages,	the	W3C	introduced	XML	as	a	standard	way	to	create	new	markup
languages.	XML	is	the	framework	upon	which	organizations	can	develop	their	own
markup	languages	to	suit	the	needs	of	their	users.	XML	is	an	updated	version	of
SGML,	streamlined	and	enhanced	for	today's	dynamic	systems.	And	while	the
W3C	originally	intended	it	as	a	tool	to	create	document	markup	languages,	XML	is
also	becoming	quite	useful	as	a	standard	way	to	define	small	languages	that
different	applications	use	as	data-exchange	protocols.

Of	course,	we	don't	want	to	abandon	the	plethora	of	documents	already	marked
up	with	HTML,	or	the	infrastructure	of	knowledge,	tools,	and	technologies	that
currently	support	HTML	and	the	Web.	Yet,	we	do	not	want	to	miss	the
opportunities	of	XML,	either.	XHTML	is	the	bridge.	It	uses	the	features	of	XML	to
define	a	markup	language	that	is	nearly	identical	to	standard	HTML	4.01	and	gets
us	all	started	down	the	XML	road.

16.1.1.	XHTML	Document	Type	Definitions

HTML	4.01	comes	in	three	variants,	each	defined	by	a	separate	SGML	Document
Type	Definition	(DTD).	XHTML	also	comes	in	three	variants,	with	XML	DTDs
corresponding	to	the	three	SGML	DTDs	that	define	HTML	4.01.	To	create	an
XHTML	document,	you	must	choose	one	of	these	DTDs	and	then	create	a
document	that	uses	that	DTD's	elements	and	rules.

The	first	XHTML	DTD	corresponds	to	the	"strict"	HTML	DTD.	The	strict	definition
excludes	all	deprecated	elements	(tags	and	attributes)	in	HTML	4.01	and	forces
authors	to	use	only	those	features	that	are	fully	supported	in	HTML.	Many	of	the
HTML	elements	and	attributes	dealing	with	presentation	and	appearance,	such	as
the		tag	and	the	align	attribute,	are	missing	from	the	strict	XHTML	DTD	and
have	been	replaced	by	the	equivalent	properties	in	the	Cascading	Style	Sheets
(CSS)	model.

Most	HTML	authors	find	the	strict	XHTML	DTD	too	restrictive	because	many	of	the
deprecated	elements	and	attributes	are	still	in	widespread	use	throughout	the
Web.	More	importantly,	lots	of	content	out	there	on	the	Web	uses	the	legacy
elements	and	attributes,	and	the	popular	browsers	still	support	most	of	the
deprecated	elements.	The	only	real	advantage	of	using	the	strict	XHTML	DTD	is
that	compliant	documents	are	guaranteed	to	be	fully	supported	in	future	versions
of	XHTML.[*]

[*]	If	the	W3C	has	its	way,	HTML	won't	change	beyond	version	4.01.	No	more	HTML;	all	new	developments	will	be	in
XHTML	and	many	other	XML-based	languages.

Most	authors	will	probably	choose	to	use	the	"transitional"	XHTML	DTD.	It's	closest
to	the	current	HTML	standard	and	includes	all	those	wonderful,	but	deprecated,
features	that	make	life	as	an	HTML	author	easier.	With	the	transitional	XHTML
DTD,	you	can	ease	into	the	XML	family	while	staying	current	with	the	browser
industry.

The	third	DTD	is	for	frames.	It	is	identical	to	the	transitional	DTD	in	all	other
respects;	the	only	difference	is	the	replacement	of	the	document	body	with
appropriate	frame	elements.	You	might	think	that,	for	completeness's	sake,	there
would	be	strict	and	transitional	frame	DTDs,	but	the	W3C	decided	that	if	you	use
frames,	you	might	as	well	use	all	the	deprecated	elements	as	well.

	

16.2.	Creating	XHTML	Documents

For	the	most	part,	creating	an	XHTML	document	is	no	different	from	creating	an
HTML	document.	Using	your	favorite	text	editor,	simply	add	the	markup	elements
to	your	document's	contents	in	the	right	order,	and	display	it	using	your	favorite
browser.	To	be	strictly	correct	("valid,"	as	they	say	at	the	W3C),	your	XHTML
document	needs	a	boilerplate	declaration	upfront	that	specifies	the	DTD	you	used
to	create	the	document	and	defines	a	namespace	for	the	document.

16.2.1.	Declaring	Document	Types

For	an	XHTML	browser	to	correctly	parse	and	display	your	XHTML	document,	you
should	tell	it	which	version	of	XML	is	being	used	to	create	the	document.	You	must
also	state	which	XHTML	DTD	defines	the	elements	in	your	document.

The	XML	version	declaration	uses	a	special	XML	processing	directive.	In	general,
these	XML	directives	begin	with	<?	and	end	with	?>,	but	otherwise	they	look	like
typical	tags	in	your	document.[*]	To	declare	that	you	are	using	XML	version	1.0,
place	this	directive	in	the	first	line	in	your	document:

[*]	<!	was	already	taken.

<?xml	version="1.0"	encoding="UTF-8"?>

	
This	tells	the	browser	that	you	are	using	XML	1.0	along	with	the	8-bit	Unicode
character	set,	the	one	most	commonly	used	today.	The	encoding	attribute's	value
should	reflect	the	character	set	used	in	your	document.	Refer	to	the	appropriate
International	Organization	for	Standardization	(ISO)	standards	for	other	encoding
names.

Once	you've	gotten	the	important	issue	of	the	XML	version	squared	away,	you
should	then	declare	the	markup	language's	DTD:

<!DOCTYPE	html
				PUBLIC	"-//W3C//DTD	XHTML	1.0	Strict//EN"
				"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

	
With	this	statement,	you	declare	that	your	document's	root	element	is	html,	as

defined	in	the	DTD	whose	public	identifier	is	defined	as	"-//W3C//DTD	XHTML	1.0
Strict//EN".	The	browser	may	know	how	to	find	the	DTD	matching	this	public
identifier.	If	it	does	not,	it	can	use	the	URL	following	the	public	identifier	as	an
alternative	location	for	the	DTD.

As	you	may	have	noticed,	the	preceding	<!DOCTYPE>	directive	told	the	browser	to
use	the	strict	XHTML	DTD.	Here's	the	one	you'll	probably	use	for	your	transitional
XHTML	documents:

<!DOCTYPE	html
				PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"
				"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

	
And,	as	you	might	expect,	the	<!DOCTYPE>	directive	for	the	frame-based	XHTML	DTD
is:

<!DOCTYPE	html
					PUBLIC	"-//W3C//DTD	XHTML	1.0	Frameset//EN"
					"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

	

16.2.2.	Understanding	Namespaces

As	described	in	the	last	chapter,	an	XML	DTD	defines	any	number	of	element	and
attribute	names	as	part	of	the	markup	language.	These	elements	and	attributes
are	stored	in	a	namespace	that	is	unique	to	the	DTD.	As	you	reference	elements
and	attributes	in	your	document,	the	browser	looks	them	up	in	the	namespace	to
find	out	how	they	should	be	used.

For	instance,	the	<a>	tag's	name	(a)	and	attributes	(e.g.,	href	and	style)	are	defined
in	the	XHTML	DTD,	and	their	names	are	placed	in	the	DTD's	namespace.	Any
processing	agentusually	a	browser,	but	your	eyes	and	brain	can	serve	the	same
functioncan	look	up	the	name	in	the	appropriate	DTD	to	figure	out	what	the
markup	means	and	what	it	should	do.

With	XML,	your	document	actually	can	use	more	than	one	DTD	and	therefore
require	more	than	one	namespace.	For	example,	you	might	create	a	transitional
XHTML	document	but	also	include	special	markup	for	some	math	expressions
according	to	an	XML	math	language.	What	happens	when	both	the	XHTML	DTD
and	the	math	DTD	use	the	same	name	to	define	different	elements,	such	as	<a>	for
XHTML	hypertext	and	<a>	for	an	absolute	value	in	math?	How	does	the	browser

choose	which	namespace	to	use?

The	answer	is	the	xmlns[*]	attribute.	Use	it	to	define	one	or	more	alternative
namespaces	within	your	document.	You	can	place	it	within	the	start	tag	of	any
element	within	your	document,	and	its	URL-like[]	value	defines	the	namespace
that	the	browser	should	use	for	all	content	within	that	element.

[*]	XML	namespacexmlnsget	it?	This	is	why	XML	doesn't	let	you	begin	any	element	or	attribute	with	the	three-letter	prefix
of	"xml":	it's	reserved	for	special	XML	attributes	and	elements.

[]	It	looks	like	a	URL,	and	you	might	think	that	it	references	a	document	that	contains	the	namespace,	but	alas,	it
doesn't.	It	is	simply	a	unique	name	that	identifies	the	namespace.	Display	agents	use	that	placeholder	to	refer	to	their
own	resources	for	how	to	treat	the	named	element	or	attribute.

With	XHTML,	according	to	XML	conventions,	you	should	at	the	very	least	include
within	your	document's	<html>	tag	an	xmlns	attribute	that	identifies	the	primary
namespace	used	throughout	the	document:

<html	xmlns="http://www.w3.org/TR/xhtml1">

	
If	and	when	you	need	to	include	math	markup,	use	the	xmlns	attribute	again	to
define	the	math	namespace.	So,	for	instance,	you	could	use	the	xmlns	attribute
within	some	math-specific	tag	of	your	otherwise	common	XHTML	document
(assuming	the	MATH	element	exists,	of	course):

<div	xmlns="http://www.w3.org/1998/Math/MathML">x2/x</div>

	
In	this	case,	the	XML-compliant	browser	would	use	the
http://www.w3.org/1998/Math/MathML	namespace	to	divine	that	this	is	the
MATH,	not	the	XHTML,	version	of	the	<div>	tag,	and	should	therefore	be	displayed
as	a	division	equation.

It	would	quickly	become	tedious	if	you	had	to	embed	the	xmlns	attribute	into	each
and	every	<div>	tag	anytime	you	wanted	to	show	a	division	equation	in	your
document.	A	better	wayparticularly	if	you	plan	to	apply	it	to	many	different
elements	in	your	documentis	to	identify	and	label	the	namespace	at	the	beginning
of	your	document,	and	then	refer	to	it	by	that	label	as	a	prefix	to	the	affected
element	in	your	document.	For	example:

<html	xmlns="http://www.w3.org/TR/xhtml1"
						xmlns:math="http://www.w3.org/1998/Math/MathML">

http://www.w3.org/1998/Math/MathML

	
The	math	namespace	can	now	be	abbreviated	to	"math"	later	in	your	document.	So
the	streamlined:

</math:div>x2/x</div>

	
now	has	the	same	effect	as	the	lengthy	earlier	example	of	the	math	<div>	tag
containing	its	own	xmlns	attribute.

The	vast	majority	of	XHTML	authors	will	never	need	to	define	multiple
namespaces	and	so	will	never	have	to	use	fully	qualified	names	containing	the
namespace	prefix.	Even	so,	you	should	understand	that	multiple	namespaces	exist
and	that	you	will	need	to	manage	them	if	you	choose	to	embed	content	based	on
one	DTD	within	content	defined	by	another	DTD.

16.2.3.	A	Minimal	XHTML	Document

As	a	courtesy	to	all	fledgling	XHTML	authors,	we	now	present	the	minimal	and
correct	XHTML	document,	including	all	the	appropriate	XML,	XHTML,	and
namespace	declarations.	With	this	most	difficult	part	out	of	the	way,	you	need
only	supply	content	to	create	a	complete	XHTML	document:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	html
				PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"
				"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html	xmlns="http://www.w3.org/TR/xhtml1"	xml:lang="en"	lang="en">
		<head>
				<title>Every	document	must	have	a	title</title>
		</head>
		<body>
		...your	content	goes	here...		</body>
</html>

	
Working	through	the	minimal	document	one	element	at	a	time,	we	begin	by
declaring	that	we	are	basing	the	document	on	the	XML	1.0	standard	and	using	8-
bit	Unicode	characters	to	express	its	contents	and	markup.	We	then	announce,	in
the	familiar	HTML-like	<!DOCTYPE>	statement,	that	we	are	following	the	markup	rules
defined	in	the	transitional	XHTML	1.0	DTD,	which	allow	us	free	rein	to	use	nearly

any	HTML	4.01	element	in	our	document.

Our	document	content	actually	begins	with	the	<html>	tag,	which	has	its	xmlns
attribute	declare	that	the	XHTML	namespace	is	the	default	namespace	for	the
entire	document.	Also	note	the	lang	attribute,	in	both	the	XML	and	XHTML
namespaces,	which	declares	that	the	document	language	is	English.

Finally,	we	include	the	familiar	document	<head>	and	<body>	tags,	along	with	the
required	<title>	tag.

	

16.3.	HTML	Versus	XHTML

The	majority	of	HTML	is	completely	compatible	with	XHTML,	and	this	book	is
devoted	to	that	majority.	In	this	chapter,	however,	we	talk	about	the	minority:
where	the	HTML	4.01	standard	and	the	XHTML	DTD	differs.	If	you	truly	desire	to
create	documents	that	are	both	HTML	and	XHTML	compliant,	you	must	heed	the
various	warnings	and	caveats	we	outline	in	the	following	sections.

The	biggest	differencethat's	Difference	with	a	capital	D	and	that	spells	difficultis
that	writing	XHTML	documents	requires	much	more	discipline	and	attention	to
detail	than	even	the	most	fastidious	HTML	author	ever	dreamed	necessary.	In
W3C	parlance,	that	means	your	documents	must	be	impeccably	well	formed.
Throughout	the	history	of	HTMLand	in	this	bookauthors	have	been	encouraged	to
create	well-formed	documents,	but	you	have	to	break	rank	with	the	HTML
standards	for	your	documents	to	be	considered	well	formed	by	XML	standards.

Nonetheless,	your	efforts	to	master	XHTML	will	be	rewarded	with	documents	that
are	well	formed	and	a	sense	of	satisfaction	from	playing	by	the	new	rules.	You	will
truly	benefit	in	the	future,	too:	through	XML,	your	documents	will	be	able	to
appear	in	places	you	never	dreamed	would	exist	(mostly	good	places,	we	hope).

16.3.1.	Correctly	Nested	Elements

One	requirement	of	a	well-formed	XHTML	document	is	that	its	elements	are
nested	correctly.	This	isn't	any	different	from	the	HTML	standards:	simply	close
the	markup	elements	in	the	order	in	which	you	opened	them.	If	one	element	is
within	another,	the	end	tag	of	the	inner	element	must	appear	before	the	end	tag
of	the	outer	element.

Hence,	in	the	following	well-formed	XHTML	segment,	we	end	the	italics	tag	before
we	end	the	bold	one,	because	we	started	italicizing	after	we	started	bolding	the
content:

Close	the	italics	tag	<i>first</i>.

	
On	the	other	hand,	the	following:

Well	formed,	this	is	<i>not!</i>

	

is	not	well	formed.

XHTML	strictly	enforces	other	nesting	restrictions	that	have	always	been	part	of
HTML	but	have	not	always	been	enforced.	These	restrictions	are	not	formally	part
of	the	XHTML	DTD;	they	are	instead	defined	as	part	of	the	XHTML	standard	that	is
based	on	the	DTD.[*]

[*]	This	is	hair	splitting	within	the	XHTML	standard.	The	XML	standard	has	no	mechanism	to	define	which	tags	may	not
be	placed	within	another	tag.	SGML,	upon	which	XML	is	based,	does	have	such	a	feature,	but	it	was	removed	from	XML
to	make	the	language	easier	to	use	and	implement.	As	a	result,	these	restrictions	are	simply	listed	in	an	appendix	of	the
XHTML	standard	instead	of	being	explicitly	defined	in	the	XHTML	DTD.

Nesting	restrictions	include	the	following:

The	<a>	tag	cannot	contain	another	<a>	tag.

The	<pre>	tag	cannot	contain	,	<object>,	<big>,	<small>,	<sub>,	or	<sup>	tags.

The	<button>	tag	cannot	contain	<input>,	<select>,	<textarea>,	<label>,	<button>,
<form>,	<fieldset>,	<iframe>,	or	<isindex>	tags.

The	<label>	tag	cannot	contain	other	<label>	tags.

The	<form>	tag	cannot	contain	other	<form>	tags.

These	restrictions	apply	to	nesting	at	any	level.	For	example,	because	an	<a>	tag
cannot	contain	any	other	<a>	tags,	any	tag	contained	within	that	<a>	tag	cannot
itself	contain	an	<a>	tag,	even	though	it	might	otherwise.

16.3.2.	End	Tags

As	we've	documented	throughout	this	book,	any	HTML	tag	that	contains	other
tags	or	content	has	a	corresponding	end	tag.	However,	one	of	the	hallmarks	of
HTML	(codified	in	the	4.01	standard)	is	that	you	may	leave	out	the	end	tags	if	the
processing	agent	can	infer	their	presence.	This	is	why	most	of	us	HTML	authors
commonly	leave	out	the	</p>	end	tag	between	adjacent	paragraphs.	Also,	lists	and
tables	can	be	complicated	to	wade	through,	and	not	having	to	visually	stumble
over	all	the	,	</td>,	</th>,	and	</tr>	end	tags	certainly	makes	HTML	easier	to
read,	albeit	a	bit	more	ambiguous.

This	is	not	so	for	XHTML.	Every	tag	that	contains	other	tags	or	content	must	have
a	corresponding	end	tag	present,	correctly	nested	within	the	XHTML	document.	A

missing	end	tag	is	an	error	and	renders	the	document	noncompliant.	Although
seemingly	draconian,	this	and	the	nesting	rules	nonetheless	remove	any	and	all
ambiguities	as	to	where	one	tag	starts	and	another	tag	ends.

16.3.3.	Handling	Empty	Elements

In	XML,	and	thus	XHTML,	every	tag	must	have	a	corresponding	end	tageven	those
that	aren't	allowed	to	contain	other	tags	or	content.	Accordingly,	XHTML	expects
the	line	break	to	appear	as	
</br>	in	your	document.	Ugh.

Fortunately,	there	is	an	acceptable	alternative:	include	a	slash	before	the	closing
bracket	of	the	tag	to	indicate	its	ending	(e.g.,	
).	If	the	tag	has	attributes,	the
slash	comes	after	all	the	attributes	so	that	an	image	could	be	defined	as:

	
While	this	notation	may	seem	foreign	and	annoying	to	an	HTML	author,	it	actually
serves	a	useful	purpose.	Any	XHTML	element	that	has	no	content	can	be	written
this	way.	Thus,	an	empty	paragraph	can	be	written	as	<p	/>,	and	an	empty	table
cell	can	be	written	as	<td	/>.	This	is	a	handy	way	to	mark	empty	table	cells.

Clever	as	it	may	seem,	writing	empty	tags	in	this	abbreviated	way	may	confuse
HTML	browsers.	To	avoid	compatibility	problems,	you	can	fool	the	HTML	browsers
by	placing	a	space	before	the	forward	slash	in	an	empty	element	using	the	XHTML
version	of	its	end	tag.	For	example,	use	
,	with	a	space	between	the	br	and	/,
instead	of	the	XHTML	equivalents	
	and	
</br>.	Table	16-1	contains	all	of	the
empty	HTML	tags,	expressed	in	their	acceptable	XHTML	(transitional	DTD)	forms.

Table	16-1.	HTML	empty	tags	in	XHTML	format

<area	/> <base	/> <basefont	/>

 <col	/> <frame	/>

<hr	/> <input	/>

<isindex	/> <link	/> <meta	/>

<param	/> 	 	

	

16.3.4.	Case	Sensitivity

If	you	thought	getting	all	those	end	tags	in	the	right	place	and	cleaning	up	the
occasional	nesting	error	would	make	writing	XHTML	documents	difficult,	hold	on
to	your	hat.	XHTML	is	case-sensitive	for	all	tag	and	attribute	names.	In	an	XHTML
document,	<a>	and	<A>	are	different	tags;	src	and	SRC	are	different	attributes,	and
so	are	sRc	and	SrC!	How	forgiving	HTML	seems	now.

The	XHTML	DTD	defines	all	former	HTML	tags	and	attributes	using	lowercase
letters.	Uppercase	tag	or	attribute	names	are	not	valid	XHTML	tags	or	attributes.

This	can	be	a	difficult	situation	for	any	author	wishing	to	convert	existing	HTML
documents	into	XHTML-compliant	ones.	Lots	of	web	pages	use	uppercase	tag	and
attribute	names,	to	make	them	stand	out	from	the	surrounding	lowercase
content.

To	become	compliant,	all	those	names	must	be	converted	to	lowercaseeven	the
ones	you	used	in	your	CSS	stylesheet	definitions.	Fortunately,	it's	easy	to
accomplish	this	kind	of	change	with	various	editing	tools,	and	XHTML	authoring
systems	should	perform	the	conversion	for	you.

16.3.5.	Quoted	Attribute	Values

As	if	all	those	case-sensitive	attribute	names	weren't	aggravating	enough,	XHTML
requires	that	you	enclose	every	attribute	valueeven	the	numeric	onesin	double
quotes.	In	HTML,	you	could	quote	anything	your	heart	desired,	but	quote	marks
are	required	only	if	the	attribute	value	included	whitespace	or	other	special
characters.	To	be	XHTML	compliant,	every	attribute	must	be	enclosed	in	quotes.

For	example:

<table	rows=3>

	
is	wrong	in	XHTML.	It	is	correctly	written	as:

<table	rows="3">

	

16.3.6.	Explicit	Attribute	Values

Within	HTML,	there	are	a	small	number	of	attributes	that	have	no	value.	Instead,
their	mere	presence	within	a	tag	causes	that	tag	to	behave	differently.	In	general,
these	attributes	represent	a	sort	of	on/off	switch	for	the	tag,	like	the	compact
attribute	for	the	various	list	tags	or	the	ismap	attribute	for	the		tag.

In	XHTML,	every	attribute	must	have	a	value.	Those	without	values	must	use
their	own	names.	Thus,	compact	in	XHTML	is	correctly	specified	as
compact="compact",	and	checked	becomes	checked="checked".	Each	must	contain	the
required	attribute	value	enclosed	in	quotes.	Table	16-2	contains	a	list	of	attributes
with	the	required	XHTML	values.

Table	16-2.	XHTML	values	for	valueless	HTML	attributes

checked="checked" compact="compact" declare="declare"

defer="defer" disabled="disabled" ismap="ismap"

multiple="multiple" noresize="noresize" noshade="noshade"

nowrap="nowrap" readonly="readonly" selected="selected"

	
Be	aware	that	this	attribute	value	requirement	may	cause	some	old	HTML
browsers	to	ignore	the	attribute	altogether.	All	the	modern	browsers	don't	have
that	problem,	so	the	vast	majority	of	users	won't	notice	any	difference.	There	is
no	good	solution	to	this	problem,	other	than	distributing	HTML	4.0-compliant
browsers	to	the	needy.

16.3.7.	Handling	Special	Characters

XHTML	is	more	sensitive	than	HTML	to	the	use	of	the	<	and	&	characters	in
JavaScript	and	CSS	declarations	within	your	documents.	In	HTML,	you	can	avoid
potential	conflicts	by	enclosing	your	scripts	and	stylesheets	in	comments	(<!--	and
-->).	XML	browsers,	however,	may	simply	remove	all	the	contents	of	comments
from	your	document,	thereby	deleting	your	hidden	scripts	and	stylesheets.

To	properly	shield	your	special	characters	from	XML	browsers,	enclose	your	styles
or	scripts	in	a	CDATA	section.	This	tells	the	XML	browser	that	any	characters
contained	within	are	plain	old	characters,	without	special	meanings.	For	example:

<script	language="JavaScript">
<![CDATA[
	...JavaScript	here...

]]>
</script>

	
This	doesn't	solve	the	problem,	though.	HTML	browsers	ignore	the	contents	of	the
CDATA	XML	tag	but	honor	the	contents	of	comment-enclosed	scripts	and
stylesheets,	whereas	XML	browsers	do	just	the	opposite.	We	recommend	that	you
put	your	scripts	and	styles	in	external	files	and	reference	them	in	your	document
with	appropriate	external	links.

Special	characters	in	attribute	values	are	problematic	in	XHTML,	too.	In	particular,
you	always	should	write	an	ampersand	within	an	attribute	value	using	&	and
not	simply	an	&	character.	Similarly,	play	it	safe	and	encode	less-than	and	greater-
than	signs	using	their	<	and	>	entities.	For	example,	while:

	
is	perfectly	valid	HTML,	you	must	write	it	as:

	
for	it	to	be	compliant	XHTML.

16.3.8.	The	id	and	name	Attributes

Early	versions	of	HTML	used	the	name	attribute	with	the	<a>	tag	to	create	a
fragment	identifier	in	the	document.	This	fragment	could	then	be	used	in	a	URL	to
refer	to	a	particular	spot	within	a	document.	The	name	attribute	was	later	added	to
other	tags,	such	as	<frame>	and	,	allowing	those	elements	to	be	referenced	by
name	from	other	spots	in	the	document.

With	HTML	4.0,	the	W3C	added	the	id	attribute	to	almost	every	tag.	Like	name,	id
lets	you	associate	an	identifier	with	nearly	any	element	in	a	document	for	later
reference	and	use,	perhaps	by	a	hyperlink	or	a	script.

XHTML	has	a	strong	preference	for	the	id	attribute	as	the	anchor	of	choice	within
a	document.	The	name	attribute	is	defined	but	formally	deprecated	for	those
elements	that	have	historically	used	it.	With	widespread	support	of	HTML	4.0	now
in	place,	you	should	begin	to	avoid	the	name	attribute	where	possible	and	instead
use	the	id	attribute	to	bind	names	to	elements	in	your	documents.	If	you	must

use	the	name	attribute	on	certain	tags,	include	an	identical	id	attribute	to	ensure
that	the	tag	will	behave	similarly	when	processed	by	a	strict	XHTML	browser.

	

16.4.	XHTML	1.1

In	May	2001,	the	W3C	released	an	updated	the	XHTML	standard,	XHTML	1.1.
While	most	standards	expand	upon	their	previous	versions,	XHTML	1.1	takes	the
unusual	step	of	defining	a	more	restrictive	version	of	XHTML.	If	you	think	of
XHTML	1.0	as	unwieldy,	picky,	and	time	consuming,	you'll	find	XHTML	1.1	even
more	so.	In	our	opinion,	XHTML	1.1	is	an	example	of	the	standards	process	taken
to	absurd	levels,	defining	a	standard	that	may	be	academically	pure	but	is
essentially	unusable.

16.4.1.	Differences	in	XHTML	1.1

XHTML	1.1	begins	with	the	XHTML	1.0	strict	DTD	and	makes	a	few	modifications.
By	supporting	only	the	strict	version	of	XHTML	1.0,	version	1.1	eliminates	all
deprecated	elements	and	all	browser	extensions	still	in	common	use	on	the	Web.
It	also	makes	the	following	minor	changes:

The	lang	attribute	has	been	removed	from	every	element.	Instead,	authors
should	use	the	xml:lang	attribute.

The	name	attribute	has	been	removed	from	the	<a>	and	<map>	elements.	Authors
should	use	the	id	attribute	in	its	place.

Finally,	the	XHTML	1.1	standard	defines	a	new	set	of	elements	that	implement	a
typographic	feature	known	as	ruby	text.	Ruby	text	is	short	runs	of	text	placed
alongside	the	base	text;	it	is	often	used	to	annotate	the	text	or	to	indicate
pronunciation.	Ruby	text	has	its	roots	in	East	Asian	documents,	particularly
Chinese	schoolbooks	and	Japanese	books	and	magazines.	Ruby	text	is	typically
displayed	in	a	smaller	font[*]	than	the	base	text	and	follows	certain	alignment
rules	to	ensure	that	it	appears	adjacent	to	the	appropriate	base	text	element.

[*]	The	origin	of	the	name	"ruby"	lies	in	the	name	that	printers	use	for	the	5.5-point	font	used	by	the	British	press	to	set
this	smaller	adjacent	text.

You	define	and	manage	ruby	text	with	a	set	of	elements	that	provides	grouping
and	layout	control.	We'll	be	blunt:	this	new	feature	is	so	esoteric	and	of	so	little
importance	to	the	vast	majority	of	HTML	authorseven	those	who	would	subject
themselves	to	the	needless	agony	of	XHTML	1.1	conformancethat	it	does	not
warrant	extensive	coverage	in	this	book.	Those	who	are	interested	can	find	a
complete	discussion	of	ruby	text	at	http://www.w3.org/TR/ruby.

http://www.w3.org/TR/ruby

For	the	rest	of	us,	it	is	sufficient	to	know	that	there	are	a	few	new	elements	in
XHTML	1.1	that	you	would	be	wise	not	to	use	in	your	own	DTDs,	if	only	to	prevent
confusion	with	the	XHTML	1.1	DTD.	These	new	elements	are:

<ruby>

Defines	a	segment	of	ruby	text

<rb>

Defines	the	ruby	base	text

<rt>

Defines	the	ruby	text	associated	with	the	base	text

<rp>

Is	used	as	a	"ruby	parenthesis"	to	group	related	ruby	elements

<rbc>

Serves	as	a	ruby	base	text	container	to	group	several	base	text	elements

<rtc>

Serves	as	a	ruby	text	container	to	group	several	ruby	elements

Should	you	encounter	any	of	these	elements	in	a	document,	refer	to	the
aforementioned	specification	for	details	on	how	they	are	used.	In	general,	you'll
find	a	single	outer	<ruby>	element	with	at	least	one	<rb>	and	<rt>	element	within	it.
You	can	collect	multiple	<rb>	and	<rt>	elements	within	an	<rp>	element	or	group
them	within	the	<rbc>	or	<rtc>	container	element.

	

16.5.	Should	You	Use	XHTML?

For	a	document	author	used	to	HTML,	XHTML	is	clearly	a	more	painful	and
certainly	a	less	forgiving	document	markup	language.	Whereas	at	one	time	we
prided	ourselves	on	being	able	to	crank	out	HTML	with	pencil	and	paper,	it's	much
more	tedious	to	write	XHTML	without	special	document-preparation	applications.
Why	should	any	author	want	to	take	on	that	extra	baggage?

16.5.1.	The	Dusty	Deck	Problem

Over	just	a	few	years,	authors	have	generated	billions	upon	billions	of	web	pages.
It	is	a	safe	bet	that	the	majority	of	these	pages	are	not	compliant	with	any
defined	version	of	HTML.	It	is	an	even	safer	bet	that	the	vast	majority	of	these
pages	are	not	XHTML	compliant.

The	harsh	reality	is	that	these	billions	of	pages	will	never	be	converted	to	XHTML.
Who	has	the	time	to	go	back,	root	out	these	old	pages,	and	tweak	them	to	make
them	XHTML	compliantespecially	when	the	end	result,	as	perceived	by	the	user,
will	not	change?	Like	the	dusty	decks	of	COBOL	programs	that	lay	unchanged	for
decades	before	Y2K	forced	programmers	to	bring	them	up	to	snuff,	these	dusty
decks	of	web	pages	will	also	lie	untouched	until	a	similarly	dramatic	event	forces
us	to	update	them.

However,	the	dusty-deck	problem	is	no	excuse	for	not	writing	compliant
documents	going	forward.	Leave	those	old	documents	alone,	but	don't	create	a
new	conversion	problem	every	time	you	create	a	new	document.	A	little	effort
now	will	help	your	documents	work	across	a	wider	range	of	browsers	in	the
future.

16.5.2.	Automatic	Conversion

If	your	sense	of	responsibility	leads	you	to	undertake	the	conversion	of	your
existing	HTML	documents	into	XHTML,	you'll	find	a	utility	named	Tidy	to	be
exceptionally	useful.	Written	by	Dave	Raggett,	one	of	the	movers	and	shakers	at
the	W3C,	it	automates	a	significant	amount	of	the	work	required	to	convert	HTML
documents	into	XHTML.

While	Tidy's	capabilities	are	too	varied	and	wonderful	to	be	fully	listed	here,	we
can	at	least	assure	you	that	Tidy	can	detect	and	correct	case	conversion,	quoted
attributes,	and	proper	element	nesting.	For	the	complete	list	of	features	and	the
latest	version	of	Tidy	for	various	computing	platforms,	visit

http://tidy.sourceforge.net.

16.5.3.	Lenient	Browsers	and	Lazy	Authors

There	is	a	good	rule	of	thumb	regarding	data	sharing,	especially	on	the	Internet:
be	lenient	in	what	you	accept	and	strict	in	what	you	produce.	This	is	a	not	a
commentary	on	social	policy,	but	rather	a	pragmatic	admonition	to	tolerate
ambiguity	and	errors	in	data	you	receive	while	making	sure	that	anything	you
send	is	scrupulously	correct.

Web	browsers	are	good	examples	of	lenient	acceptors.	Most	current	web	pages
have	some	sort	of	error	in	them,	albeit	often	just	an	error	of	omission.
Nonetheless,	browsers	accept	the	error	and	present	a	reasonable	document	to	the
user.	This	leniency	lets	authors	get	away	with	all	sorts	of	things,	often	without
even	knowing	they've	made	a	mistake.

Most	authors	stop	developing	a	page	when	it	looks	good	and	works	the	way	they
want	it	to.	Very	few	take	the	time	to	run	their	pages	through	the	various	HTML-
compliance	tools	to	catch	potential	errors.	Many	of	those	who	do	try	to	test	for
compliance	are	so	overwhelmed	by	the	number	of	minor	errors	they	have
committed	that	they	simply	give	up	and	continue	to	create	bad	pages	that	can	be
handled	by	good	browsers.

Because	the	number	of	bad	pages	continues	to	grow,	browsers	cannot	afford	to
start	being	strict.	Any	browser	that	tried	to	enforce	even	the	most	basic	rules	of
the	HTML	standard	would	be	abandoned	by	users	who	want	to	see	web	pages,	not
error	messages.	A	vicious	cycle	ensues:	bad	pages	force	the	use	of	lenient
browsers,	which	encourage	the	creation	of	more	bad	pages.	Break	the	cycle	by
vowing	to	create	only	XHTML-compliant	content	whenever	you	can.

16.5.4.	Time,	Money,	and	Standards

XHTML	was	developed	as	an	XML	representation	of	the	HTML	standard.	It	is
intended,	going	forward,	to	become	the	single	standard	everyone	should	use	to
create	content	for	the	Web.

In	a	perfect	world,	standards	are	universally	adopted	and	used.	Full	compliance	is
required	of	any	document	before	it	is	placed	on	the	Web.	Conversion	of	legacy
documents	is	done	immediately.

In	the	real	world,	a	shortage	of	time	and	money	prevents	the	universal	use	of
standards.	Under	pressure	to	quickly	deliver	something	that	works,	developers
turn	out	pages	that	work	only	well	enough.	Because	browsers	allow	second-rate

http://tidy.sourceforge.net

content	to	exist	on	the	Web,	the	need	to	comply	with	a	standard	becomes	a
secondary	issueone	that	is	too	quickly	ignored	in	the	dizzying	pace	of	web
development.

16.5.5.	Man	Versus	Machine

All	is	not	lost,	however.	While	XHTML	is	painful	and	tedious	for	humans	to	create,
it	is	quite	easy	for	machines	to	create.	The	number	of	web-authoring	tools
continues	to	increase,	and	the	pages	created	by	these	machines	should	be
completely	XHTML	compliant.	While	it	doesn't	make	much	economic	sense	for	a
web	author	to	spend	a	lot	of	time	getting	all	those	end	tags	in	the	right	spot,	it
does	make	sense	for	the	programmer	developing	an	authoring	tool	to	ensure	that
the	tool	generates	all	those	correct	end	tags.	The	effort	the	web	author	expends	is
leveraged	exactly	once	for	each	page;	the	effort	of	the	tool	creator	is	leveraged
over	and	over,	each	time	the	tool	produces	a	new	page.

It	seems	that	the	real	future	of	XHTML	lies	in	the	realm	of	machine-generated
content.	XHTML	is	far	too	picky	to	be	successfully	used	by	the	millions	of	casual
web	authors	who	create	small	sites.	However,	if	those	same	authors	use	a	tool	to
create	their	pages,	they	could	be	generating	XHTML-compliant	pages	and	never
even	know	it.

If	you	are	among	that	small	community	of	developers	who	create	tools	that
generate	HTML	output,	you	are	doing	a	great	disservice	to	your	many	potential
customers	if	your	tool	does	not	generate	excruciatingly	correct	XHTML-compliant
output.	There	is	no	technical	excuse	for	any	tool	not	to	generate	XHTML-compliant
output.	If	there	are	compatibility	issues	surrounding	how	the	output	might	be
used	(with	a	nonXHTML	browser,	perhaps),	the	tool	should	provide	a	switch	that
lets	the	author	select	XHTML-compliant	output	as	an	option.

16.5.6.	What	to	Do?

We	recommend	that	all	HTML	authors	take	the	time	to	absorb	the	differences
between	HTML	and	XHTML	outlined	in	this	chapter.	Given	the	resources	and
opportunity,	you	should	try	to	create	XHTML-compliant	pages	wherever	possible
for	the	sites	you	are	creating.	Certainly	you	should	choose	authoring	tools	that
support	XHTML	and	give	you	the	option	of	generating	XHTML-compliant	pages.

One	day,	XHTML	may	replace	HTML	as	the	official	standard	language	of	the	Web.
Even	so,	the	number	of	noncompliant	pages	on	the	Web	is	overwhelming,	forcing
browsers	to	honor	old	HTML	constructs	and	features	for	at	least	the	next	five
years.	For	better	or	worse,	HTML	is	here	to	stay	as	the	de	facto	standard	for	web

authors	for	years	to	come.

	

Chapter	17.	Tips,	Tricks,	and	Hacks

We've	sprinkled	a	number	of	tips,	tricks,	and	hacks	throughout	this	book,	along
with	style	guidelines,	examples,	and	instructions.	So	why	have	a	special	chapter
on	tips,	tricks,	and	hacks?	Because	HTML	and	XHTML	are	the	languages,	albeit
constrained,	that	make	the	Web	the	exciting	place	that	it	is,	and	interested
readers	want	to	know,	"How	do	I	do	the	cool	stuff?"

	

17.1.	Top	of	the	Tips

The	most	important	tip	for	even	veteran	authors	is	to	surf	the	Web	yourself.	We
can	show	and	explain	a	few	neat	tricks	to	get	you	started,	but	hundreds	of
thousands	of	authors	out	there	are	combining	and	recombining	HTML	and	XHTML
tags	and	juggling	content	to	create	compelling	and	useful	documents.

All	the	popular	browsers	provide	a	way	to	view	the	source	for	the	web	pages	that
you	download.	Examine	(don't	steal)	them	for	how	they	create	the	eye-catching
and	effective	features,	and	use	them	to	guide	your	own	creations.	Get	a	feel	for
the	more	effective	web	collections.	How	are	their	documents	organized?	How
large	is	each	document?

We	all	learn	from	experience,	so	go	get	it!

17.1.1.	Design	for	Your	Audience

We	repeatedly	argue	throughout	this	book	that	content	matters	most,	not	look.
But	that	doesn't	mean	presentation	doesn't	matter.

Effective	documents	match	your	target	audience's	expectations,	giving	them	a
familiar	environment	in	which	to	explore	and	gather	information.	Serious
academicians,	for	instance,	expect	a	journal-like	appearance	for	a	treatise	on	the
physiology	of	the	kumquat:	long	on	meaningful	words,	figures,	and	diagrams	and
short	on	frivolous	trappings	like	cute	bullets	and	font	abuse.	Don't	insult	the
reader's	eye,	except	when	exercising	artistic	license	to	jar	or	to	attack	your
reader's	sensibilities.	By	anticipating	your	audience	and	designing	your	documents
to	appeal	to	their	tastes,	you	also	subtly	deflect	unwanted	surfers	from	your
pages.

For	instance,	use	subtle	colors	and	muted	text	transitions	between	sections	for	a
classical	art	museum's	collection,	to	mimic	the	hushed	environment	of	a	real
classical	art	museum.	The	typical	rock	'n'	roll-crazed	web-surfer	maniac	probably
won't	take	more	than	a	glance	at	your	site,	but	the	millionaire	arts	patron	might.

Also,	use	effective	layout	to	gently	guide	your	readers'	eyes	to	areas	of	interest	in
your	documents.	Do	that,	by	adhering	to	the	basic	rules	of	document	layout	and
design,	such	as	placing	figures	and	diagrams	near	(if	not	inline	with)	their	content
references.	Nothing's	worse	than	having	to	scroll	up	and	down	the	browser
window	in	a	desperate	search	for	a	picture	that	can	explain	everything.

We	won't	lie	and	suggest	that	we're	design	experts.	We	aren't,	but	they're	not
hard	to	find.	So,	another	tip	for	the	serious	web	page	author	is	to	seek

professional	help.	The	best	situation	is	to	have	design	experience	yourself.	Next
best	is	to	have	a	pro	looking	over	your	shoulder,	or	at	least	somewhere	within
earshot.

Make	a	trip	to	your	local	library	and	do	some	reading	on	your	own,	too.	Better
yet,	browse	the	various	online	guides.	Check	out	Web	Design	in	a	Nutshell	by
Jennifer	Niederst	Robbins	(O'Reilly).	Your	readers	will	be	glad	you	did.	[Tools	for
the	Web	Designer,	1.6]

17.1.2.	Consistent	Documents

The	next	best	tip	we	can	give	you	is	to	reuse	your	documents.	Don't	start	from
scratch	each	time.	Rather,	develop	a	consistent	framework,	even	to	the	point	of	a
content	outline	into	which	you	add	the	detail	and	character	for	each	page.	And
endeavor	to	create	CSS2-based	stylesheets	so	that	the	look	and	feel	of	your
documents	remains	consistent	across	your	collection.

	

17.2.	Cleaning	Up	After	Your	HTML	Editor

Although	you	can	create	and	edit	HTML/XHTML	documents	with	a	text	editor,	such
as	vi	or	Notepad,	most	HTML	authors	use	an	application	that	is	designed	for
creating	web	pagesseveral	are	free	of	charge,	many	offer	a	free	evaluation	period,
and	most	are	available	for	download	over	the	Web.	Be	forewarned,	though;	in	our
experience,	you	will	rarely	(if	ever)	be	able	to	create	a	web	document	from	one	of
these	editors	without	having	to	inspect,	add	to,	edit,	and	sometimes	even	repair
the	source	HTML	that	the	editor	generates.	The	following	sections	discuss	a	few
things	that	you	should	know	about	and	watch	out	for.

17.2.1.	Where	Did	My	Document	Go?

One	of	the	first	things	you	will	notice	is	that	many	of	the	HTML	editors
automatically	introduce	into	your	document	markup	that	you	did	not	explicitly
select	or	write.	Remember	this	very	simple	HTML	document	that	we	started	with
in	Chapter	2?

<html>
<head>
<title>My	first	HTML	document</title>
</head>
<body>
<h2>My	first	HTML	document</h2>
Hello,	<i>World	Wide	Web!</i>
	<!--	No	"Hello,	World"	for	us	-->
<p>
Greetings	from

O'Reilly	Media
<p>
Composed	with	care	by:
<cite>(insert	your	name	here)</cite>

©2000	and	beyond
</body>
</html>

	
Here	is	what	the	source	looks	like	after	you	load	it	into	Microsoft	Word	from	Office
XP:

<html	xmlns:o="urn:schemas-microsoft-com:office:office"

xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns="http://www.w3.org/TR/REC-html40">

<head>
<meta	http-equiv=Content-Type	content="text/html;	charset=windows-1252">
<meta	name=ProgId	content=Word.Document>
<meta	name=Generator	content="Microsoft	Word	10">
<meta	name=Originator	content="Microsoft	Word	10">
<link	rel=File-List	href="html_files/filelist.xml">
<title><html></title>
<!--[if	gte	mso	9]><xml>
	<w:WordDocument>
		<w:Compatibility>
			<w:BreakWrappedTables/>
			<w:SnapToGridInCell/>
			<w:WrapTextWithPunct/>
			<w:UseAsianBreakRules/>
		</w:Compatibility>
<w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
	</w:WordDocument>
</xml><![endif]-->
<style>
<!--
	/*	Style	Definitions	*/
	p.MsoNormal,	li.MsoNormal,	div.MsoNormal
				{mso-style-parent:"";
				margin:0in;
				margin-bottom:.0001pt;
				mso-pagination:widow-orphan;
				font-size:12.0pt;
				font-family:"Times	New	Roman";
				mso-fareast-font-family:"Times	New	Roman";}
p.MsoPlainText,	li.MsoPlainText,	div.MsoPlainText
				{margin:0in;
				margin-bottom:.0001pt;
				mso-pagination:widow-orphan;
				font-size:10.0pt;
				font-family:"Courier	New";
				mso-fareast-font-family:"Times	New	Roman";}
@page	Section1
				{size:8.5in	11.0in;
				margin:1.0in	65.95pt	1.0in	65.95pt;
				mso-header-margin:.5in;
				mso-footer-margin:.5in;
				mso-paper-source:0;}

div.Section1
				{page:Section1;}
-->
</style>
<!--[if	gte	mso	10]>
<style>
	/*	Style	Definitions	*/
	table.MsoNormalTable
				{mso-style-name:"Table	Normal";
				mso-tstyle-rowband-size:0;
				mso-tstyle-colband-size:0;
				mso-style-noshow:yes;
				mso-style-parent:"";
				mso-padding-alt:0in	5.4pt	0in	5.4pt;
				mso-para-margin:0in;
				mso-para-margin-bottom:.0001pt;
				mso-pagination:widow-orphan;
				font-size:10.0pt;
				font-family:"Times	New	Roman";}
</style>
<![endif]-->
</head>

<body	lang=EN-US	style='tab-interval:.5in'>

<div	class=Section1>

<p	class=MsoPlainText><html><o:p></o:p></p>

<p	class=MsoPlainText><head><o:p></o:p></p>

<p	class=MsoPlainText><title>My	first	HTML	document</title><o:p></o:p></p>

<p	class=MsoPlainText></head><o:p></o:p></p>

<p	class=MsoPlainText><body><o:p></o:p></p>

<p	class=MsoPlainText><h2>My	first	HTML	document</h2><o:p></o:p></p>

<p	class=MsoPlainText>Hello,	<i>World	Wide	Web!</i><o:p></o:p></p>

<p	class=MsoPlainText>	<!--	No
"Hello,	World"	for	us	--><o:p></o:p></p>

<p	class=MsoPlainText><p><o:p></o:p></p>

<p	class=MsoPlainText>Greetings	from
<o:p></o:p></p>

<p	class=MsoPlainText>O'Reilly
Media<o:p></o:p></p>

<p	class=MsoPlainText><p><o:p></o:p></p>

<p	class=MsoPlainText>Composed	with	care	by:	<o:p></o:p></p>

<p	class=MsoPlainText><cite>(insert	your	name	here)</cite><o:p></o:p></p>

<p	class=MsoPlainText>
&copy;2000	and	beyond<o:p></o:p></p>

<p	class=MsoPlainText></body><o:p></o:p></p>

<p	class=MsoPlainText></html></p>

</div>

</body>

</html>

	
Yeow!	Where	did	the	document	go?	Excessive	markup	makes	the	source	document
almost	humanly	impossible	to	read.	What	infuriates	document	purists	like	us,
beyond	the	fact	that	lots	of	stuff	that	we	neither	wanted	nor	asked	for	was	added,
is	that	Word	automatically	treats	any	text	document	containing	HTML	markup	as
fodder	for	its	mill.	You	can	remove	the	.html	or	.htm	suffix	from	the	filename	or
delete	<html>	and	<head>	from	the	document,	to	no	availWord	will	still	get	you.

Microsoft	isn't	alone	in	cluttering	the	source.	Most	HTML	editors	add	at	least	a
<meta>	tag	that	contains	their	product	information.	Many	go	through	and	"fix"	your
document	to	comply	with	current	standards	and	practices,	toofor	example,	by
adding	all	those	paragraph	and	list-item	end	tags	that	HTML	allows	you	to	omit.
(From	an	XHTML	standpoint,	we	admit	that	this	meddling	is	probably	valid.)

To	its	credit,	Word	runs	well,	unlike	other	tools	that	routinely	crashed	without
warning	as	we	fought	with	their	treatment	of	the	markup.	Microsoft	even	offers	a
Word	plug-in	that	removes	the	additional	markup	so	that	you	can	recover	a
reasonable	facsimile	of	the	original	document.[*]

[*]	You	can	find	this	plug-in	at	http://office.microsoft.com/downloads/2000/Msohtmf2.aspx.

http://office.microsoft.com/downloads/2000/Msohtmf2.aspx

17.2.2.	When	and	Why	to	Edit	the	Editor

No	matter	how	good	the	HTML	editor	is,	you'll	inevitably	have	to	edit	the	(albeit
cluttered)	source	it	generates.	We've	had	to	do	it	a	lot	ourselves,	and	so	have	all
the	web	developers	we've	talked	with	over	the	last	few	years.

Not	all	HTML	editors	provide	an	easy	means	to	add	JavaScript	to	your	documents,
and	many	are	not	up-to-date	with	the	HTML/XHTML	and	CSS2	standards.
Remember,	too,	that	the	popular	browsers	don't	always	agree	on	how	they	render
a	tag,	and	even	different	versions	of	the	same	browser	may	differ.	Furthermore,
even	the	best	HTML	editors	don't	necessarily	support	extensions	to	the	language.

So	into	the	source	you'll	have	to	go,	whether	to	include	some	HTML	feature	not
yet	supported	by	the	editor	(such	as	a	new	CSS2	property),	to	insert	an	attribute
value	or	keyword,	or	to	modify	ones	that	the	editor	added.

The	tip	is	this:	compose	first.	Try	to	start	with	a	clean,	finished	document.
Concentrate	on	content	from	the	outset,	and	add	the	special	effects	later.	Use	a
good	HTML	editor	from	the	start,	or	prepare	your	documents	in	two	steps	with	two
different	toolsa	good	content	editor	followed	by	a	good	HTML	editorparticularly	if
you	plan	to	distribute	the	document	in	a	format	other	than	HTML.

17.2.3.	Use	the	Best

If	you	compose	web	pages,	we	can't	imagine	you	not	using	an	HTML	editor	of
some	sort.	The	convenience	is	just	too	compelling.	But	choose	carefully:	some
HTML	editors	are	abysmal,	and	you'll	spend	more	time	hunting	down	misplaced
tags	and	errant	attributes	than	you'll	spend	actually	creating	the	document.	Top
tip:	you	get	what	you	pay	for.

It's	no	surprise	that	HTML	editors	vary	greatly	in	their	features.	Many	editors	let
you	switch	the	display	from	source	text	to	what	may	appear	when	rendered	by	a
browser.	Some	simply	let	you	add	tags	and	modify	attribute	values	through	pull-
down	menus	and	hot-key	options.	Others	are	WYSIWYG	layout	tools	that	make	it
easy	to	include	graphics	and	other	multimedia	content.	Other	advanced	features
include	embedding	and	testing	applets	and	scripts.

In	general,	HTML	editors	fall	into	one	of	two	categories:	either	they	are	good
layout	tools,	including	advanced	styling	features	and	tools	for	dynamic	content,	or
they	excel	at	content	creation	and	management.	Obviously,	if	you	are	producing
flashy,	commercial	web	pages	that	rely	on	advanced	layout	techniques	and	include
lots	of	different	styles	and	dynamic	content,	use	a	good	layout	tool.	If	you	are
producing	a	content-rich	document,	use	a	tool	that	provides	good	editorial

assistance.

No	matter	which	type	you	use,	there	are	some	common	considerations	to	keep	in
mind	when	selecting	an	HTML	editor:

Is	it	up-to-date?

No	HTML	editor	is	yet	entirely	up-to-date	with	the	current	standards,
particularly	CSS2.	Read	the	product	specifications	and	update	often.

Does	it	include	a	source	editor?

Although	you	may	load	an	HTML	editor-generated	document	into	a	different
text	editor	to	change	the	source,	it's	much	more	convenient	if	the	editor	itself
lets	you	view	and	edit	the	HTML	source.	Also,	make	sure	that	your	HTML
editor	doesn't	automatically	"fix"	your	source	edits.

Is	it	modifiable?

Ideally,	the	HTML	editor	should	let	you	customize	its	behavior	to	fit	your
specifications.	For	example,	at	a	minimum	you	should	be	allowed	to	choose
your	own	font	colors,	styles,	and	backgrounds,	if	those	are	automatically
included	in	the	editor's	boilerplate	document.

Is	it	affordable	and	reliable?

We	can't	stress	enough	that	you	get	what	you	pay	for.	If	creating	web	pages	is
more	than	just	a	passing	fancy,	get	the	best	editor	you	can	find.	Find	one	that
is	well	supported	and	well	reviewed	by	other	HTML	authors.	Ask	around,	and
perhaps	join	an	HTML	author's	newsgroup	to	get	the	latest	scoop	on	products.

	

17.3.	Tricks	with	Tables

By	design,	tables	let	authors	create	appealing,	accessible	tables	of	information.
But	the	table	tags	also	can	be	exploited	to	create	innovative,	attractive	page
designs	that	are	otherwise	unattainable	in	standard	HTML	and	XHTML.

17.3.1.	Multicolumn	Pages

One	very	common	and	popular	page-layout	element	missing	from	HTML	and
XHTML	is	multiple	columns	of	text.	Here's	a	tip	on	how	to	use	tables	to	achieve
that	effect.[*]

[*]	Okay,	it's	true	that	earlier	versions	of	Netscape	supported	the	<multicol>	extension.	No	longer.	This	is	a	more
universal	solution.

17.3.1.1.	Basic	multicolumn	layout

The	basic	two-column	layout	using	<table>	has	a	single	table	row	with	three	data
cells:	one	each	for	the	columns	of	text	and	an	intervening	empty	cell	to	more
attractively	separate	the	two	columns.	We've	also	added	a	large	cellspacing
attribute	value	to	create	additional	intervening	space	between	the	columns.

The	following	example	HTML	table	is	an	excellent	template	for	a	simple	two-
column	text	layout:

<table	border=0	cellspacing=7>
		<tr>
				<td>Copy	for	column	1...
				<td>

				<td>Copy	for	column	2...
	</table>

	
See	Figure	17-1	for	the	results.

Figure	17-1.	A	simple	two-column	layout

	
The	one	thing	the	browsers	won't	do	is	automatically	balance	the	text	in	the
columns,	resulting	in	adjacent	columns	of	approximately	the	same	length.	You'll
have	to	experiment	with	your	document,	manually	shifting	text	from	one	column
to	another	until	you	achieve	a	nicely	balanced	page.

Keep	in	mind,	though,	that	users	may	resize	their	display	windows,	and	the
columns'	contents	will	shift	accordingly.	So	don't	spend	a	lot	of	time	getting	the
last	sentences	of	each	column	to	line	up	exactly;	they're	bound	to	be	skewed	in
other	browser-window	widths.

Of	course,	you	can	easily	convert	the	example	layout	to	three	or	more	columns	by
dividing	the	text	among	more	cells	in	the	table.	But	keep	in	mind	that	pages	with
more	than	three	columns	may	prove	difficult	to	read	on	small	displays,	where	the
actual	column	width	might	be	quite	small.

17.3.1.2.	Straddle	heads

The	basic	multicolumn	format	is	just	the	start.	By	adding	cells	that	span	across
the	columns,	you	create	headlines.	Similarly,	you	can	make	figures	span	across
more	than	one	column:	simply	add	the	colspan	attribute	to	the	cell	containing	the
headline	or	figure.	Figure	17-2	shows	an	attractive	three-column	layout	with
straddle	heads	and	a	spanning	figure,	created	from	the	following	HTML	source
with	table	tags:

Figure	17-2.	Fancy	straddle	heads	and	spanning	figures	with
HTML	table	tags

	
<table	border=0	cellspacing=7>
		<tr>
				<th	colspan=5><h2>The	History	of	the	Kumquat</h2>
		<tr	valign=top>
				<td	rowspan=2>Copy	for	column	1...
				<td	rowspan=2	width=24>

				<td>Copy	for	column	2...
				<td	width=24>

				<td>Copy	for	column	3...
		<tr>
				<td	colspan=3	align=center>
				<p>
				<i>The	Noble	Fruit</i>
</table>

	
To	achieve	this	nice	layout,	we	used	the	colspan	attribute	on	the	cell	in	the	first
row	to	span	all	five	table	columns	(three	with	copy	and	the	two	intercolumn
spaces).	We	used	the	rowspan	attribute	on	the	first	column	and	its	adjacent	column
spacer	to	extend	the	columns	down	beside	the	figure.	The	figure's	cell	has	a
colspan	attribute	so	that	the	contents	span	the	other	two	columns	and	intervening
spaces.

17.3.2.	Side	Heads

The	only	text-heading	features	available	in	HTML	and	XHTML	are	the	<h1>	tHRough
<h6>	tags.	These	tags	are	always	embedded	in	the	text	flow,	separating	adjacent
paragraphs	of	text.	Through	multiple	columns,	you	can	achieve	an	alternative
style	that	places	headings	into	a	separate	side	column,	running	vertically
alongside	the	document	text.

Figure	17-3	shows	you	a	fairly	fancy	pair	of	side	heads,	the	result	of	the	following
bit	of	source	XHTML	table	code:

Figure	17-3.	Table	tags	created	these	side	heads

	
<table>
		<tr>
				<th	width="20%"	align="right">
						<h3>Section	1</h3></th>
				<td></td>
				<td>
						Copy	for	section	1	goes	on	and	on	a	bit
						so	that	it	will	take	up	more	than	one	line	in	the
						table	cell	window...	</td>
		</tr>
		<tr>
				<th	align="right">
						<h3>Section	2</h3></th>
				<td></td>
				<td>
						Copy	for	section	2	goes	on	and	on	a	bit
						so	that	it	will	take	up	more	than	one	line	in	the
						table	cell	window...</td>
		</tr>

</table>

	
Notice	how	we	created	reasonably	attractive	side	heads	set	off	from	the	left
margin	of	the	browser	window	by	adjusting	the	first	header	cell's	width	and	right-
justifying	the	cell	contents.

Just	as	in	our	multicolumn	layout,	the	example	side-head	layout	uses	an	empty
column	to	create	a	space	between	the	narrow	left	column	containing	the	heading
and	the	wider	right	column	containing	the	text	associated	with	that	heading.	It's
best	to	specify	that	column's	width	as	a	percentage	of	the	table	width	instead	of
explicitly	in	numbers	of	pixels,	to	make	sure	that	the	heading	column	scales	to	fit
both	wide	and	narrow	display	windows.

17.3.3.	Better	Forms	Layout

Of	all	the	features	in	HTML	and	XHTML,	forms	cry	out	for	better	layout	control.
Unlike	other	structured	elements,	forms	look	best	when	rendered	in	a	fixed	layout
with	precise	margins	and	vertical	alignment	of	elements.	However,	except	for
carefully	planned,	<pre>-formatted	form	segments,	the	standards	just	don't	give	us
any	special	tools	to	better	control	forms	layout.	You	can	accomplish	a	lot	with
stylesheets,	but	that	gets	complicated	quickly.	Instead,	tables	provide	easy	forms
layout.

17.3.3.1.	Basic	forms	layout

Your	forms	almost	always	look	better	and	are	easier	for	your	readers	to	follow	if
you	use	a	table	to	structure	and	align	the	elements.	For	example,	you	might	use	a
vertical	alignment	to	your	forms,	with	field	labels	to	the	left	and	their	respective
form	elements	aligned	to	an	adjacent	vertical	margin	on	the	right.	Don't	try	that
with	just	standard	HTML	or	XHTML.	Rather,	prepare	a	form	that	contains	a	two-
column	table.	The	following	HTML	source	does	just	that,	as	shown	in	Figure	17-4:

Figure	17-4.	Align	your	forms	nicely	with	tables

	
<form	method=post	action="http:/cgi-bin/process">
		<table>
				<tr>
						<th	align=right>Name:
						<td><input	type=text	size=32>
				<tr>
						<th	align=right>Address:
						<td><input	type=text	size=32>
				<tr>
						<th	align=right>Phone:
						<td><input	type=text	size=12>
				<tr>
						<td	colspan=2	align=center>
						<input	type=submit	value="Register">
		</table>
</form>

	
Of	course,	more	complex	form	layouts	can	be	managed	with	tables,	too.	We
recommend	that	you	first	sketch	the	form	layout	on	paper	and	plan	how	various
combinations	of	table	elements,	including	row-	and	column-straddled	table	cells,
might	be	used	to	affect	the	layout.

17.3.3.2.	Building	forms	with	nested	tables

As	we	mentioned	earlier,	you	can	place	a	table	inside	a	cell	in	another	table.
While	this	alone	can	lead	to	some	elaborate	table	designs,	nested	tables	also	are
useful	for	managing	a	subset	of	form	elements	within	the	larger	table	containing
the	entire	form.	The	best	application	for	using	a	nested	table	in	a	form	is	for
laying	out	checkboxes	and	radio	buttons.

For	example,	insert	the	following	row	containing	a	table	into	the	form	table	in	the
previous	example.	It	creates	a	checkbox	with	four	choices:

<tr>
		<th	align=right	valign=top>Preferences:
		<td>
		<table>
				<tr>
				<td><input	type=checkbox	name=pref>Lemons
				<td><input	type=checkbox	name=pref>Limes
				<tr>
				<td><input	type=checkbox	name=pref>Oranges
				<td><input	type=checkbox	name=pref>Kumquats
		</table>

	
Figure	17-5	shows	you	how	this	nested	table	attractively	formats	the	checkboxes,
which	browsers	would	otherwise	render	on	a	single	line	and	not	well	aligned.

Figure	17-5.	Nesting	tables	to	format	elements	of	a	form

	
	

17.4.	Tricks	with	Windows	and	Frames

For	the	vast	majority	of	links	in	your	documents,	you'll	want	the	newly	loaded
document	displayed	in	the	same	window,	replacing	the	previous	one.	That	makes
sense	because	your	users	usually	follow	a	sequential	path	through	your	collection.

But	sometimes	it	makes	sense	to	open	a	document	in	a	new	window	so	that	the
new	document	and	the	old	document	are	both	directly	accessible	on	the	user's
screen.	If	the	new	document	is	related	to	the	original,	for	instance,	it	makes
sense	to	have	both	in	view.	Other	times,	you	might	want	to	open	more	than	one
document	in	multiple	windows	in	a	frameset.	More	commonly,	the	new	document
starts	the	user	down	a	new	web	of	documents,	and	you	want	her	to	see	and
remember	where	she	came	from.

Regardless	of	the	reason,	it	is	easy	to	open	a	new	browser	window	from	your
document.	All	you	need	to	do	is	add	the	target	attribute	in	the	appropriate
hyperlink	(<a>)	tag.

17.4.1.	Targeting	Windows

We	normally	use	the	target	attribute	to	load	a	document	into	a	specific	frame	that
we've	named	in	a	frameset.	It	also	serves	to	create	a	new	window,	by	one	of	two
methods:

Reference	a	new	name

If	you	use	a	name	you	haven't	previously	defined	as	the	value	for	the	target
attribute	of	a	hyperlink,	the	popular	browsers	automatically	create	a	new
window	with	that	name	and	load	the	referenced	document	into	that	window.
This	is	the	preferred	way	to	create	new	windows	because	you	can
subsequently	use	the	name	to	load	other	documents	into	the	same	window.
Using	this	technique,	you	can	control	which	document	gets	loaded	where.

Create	an	unnamed	window

All	the	popular	browsers	support	a	special	target	named	_blank[*]	that	lets	you
create	a	new	window.	The	_blank	window	has	limited	use,	though,	because	it	is
namelessyou	cannot	direct	any	other	documents	into	that	window.	(New
documents	loaded	via	hyperlinks	selected	by	the	user	within	the	window	get

displayed	in	that	same	window,	of	course.)

[*]	Some	browsers	also	accept	the	name	_new.	If	you	can't	get	_blank	to	work	with	your	browser,
try	_new.

17.4.2.	Overriding	Others'	Targets

Ever	visited	a	site	whose	home	page	is	a	frame	document	that	never	gives	up?
You	know,	the	kind	that	leaves	its	great	big	logo	on	the	top	of	the	window	and	its
site	TOC	running	down	the	side	of	the	display,	staring	you	in	the	face	long	after
you've	hyperlinked	away	from	the	site?	What	if	your	site's	frameset	gets	trapped
into	one	of	their	window	frames?	What	to	do?	(Apparently	their	webmasters
haven't	heard	about	the	_blank	target.)

The	short	answer	is	to	use	JavaScript	to	force	open	a	new	window	for	your
documents.	But	that,	too,	is	potentially	confusing	for	users	because	they	may
already	have	a	full	window	ready	for	your	document.	So,	to	embellish,	let
JavaScript	discover	whether	your	page	is	destined	for	a	corner	frame	or	for	the
whole	window.

Here	is	an	example	script	that	loads	a	web	page	called	index2.html	into	its	own
full	window.	Note	that	JavaScript-enabled	browsers	won't	let	you	clear	a
previously	loaded	document	display	unless	your	document	owns	it.	So,	in	the	case
where	the	target	is	not	the	whole	window	(i.e.,	self	is	not	window.top),	the	example
script	opens	a	new	window	that	becomes	the	target	for	your	pages.	The	user	may
choose	to	close	your	document	window	and	return	to	the	other	one,	or	vice	versa:

<html>
<head>
<title>I	need	a	window	of	my	own</title>
<script	language="JavaScript">
<!--
		if	(self	!=	window.top)
						window.open("http://www.kumquats.com/index2.html");
		else
				self.location.href	=	"http://www.kumquats.com/index2.html";
//-->
</script>
</head>
<body>
Your	browser	apparently	doesn't	support	JavaScript.	Please
	hyperlink	to	our	site	manually.
</body>
</html>

	

17.4.3.	Multiple	Frames	in	One	Link

Loading	a	new	document	from	a	hyperlink	is	a	snap,	even	if	you	put	the	new
document	into	an	alternative	frame	or	window	from	its	hyperlink	parent.
Occasionally,	though,	you'll	want	to	load	documents	into	two	frames	when	the
user	clicks	just	one	link.	With	a	bit	of	trickery,	you	can	load	two	or	more	frames	at
once,	provided	they	are	arranged	a	certain	way	in	the	browser	window.

Consider	this	frame	layout:

<frameset	rows=2>
		<frameset	cols=2>
				<frame	name=A>
				<frame	name=B>
		</frameset>
		<frameset>
				<frame	name=C>
				<frame	name=D>
		</frameset>
</frameset>

	
If	someone	clicks	a	link	in	frame	A,	the	only	thing	you	can	do	is	update	one	of	the
four	frames.	Suppose	you	wanted	to	update	frames	B	and	D	at	the	same	time.	The
trick	is	to	replace	frames	B	and	D	with	a	single	frame,	like	this:

<frameset	cols=2>
		<frameset	rows=2>
				<frame	name=A>
				<frame	name=C>
		</frameset>
		<frame	name=BD>
</frameset>

	
Aha!	Now	you	have	a	single	target	in	which	to	load	a	single	document,	frame	BD.
The	document	you	load	should	contain	the	original	frames	B	and	D	in	one	column,
like	this:

<frameset	cols=2>

		<frame	name=B>
		<frame	name=D>
</frameset>

	
The	two	frames	fill	frame	BD.	When	you	update	frame	BD,	both	frames	are
replaced,	giving	the	appearance	of	two	frames	being	updated	at	once.

The	drawback	to	this	is	that	the	frames	must	be	adjacent	and	able	to	be	grouped
into	a	single	document.	For	most	pages,	though,	this	solution	works	fairly	well.

We've	only	scratched	the	surface	of	HTML	and	XHTML	tips	and	tricks	here.	Our
advice:	keep	hacking!

	

Appendix	A.	HTML	Grammar

For	the	most	part,	browsers	do	not	rigidly	enforce	the	exact	syntax	of	an	HTML	or
even	an	XHTML	document.	This	gives	authors	wide	latitude	in	creating	documents
and	gives	rise	to	documents	that	work	on	most	browsers	but	actually	are
incompatible	with	the	HTML	and	XHTML	standards.	Our	advice	is	to	stick	to	the
standards,	unless	your	documents	are	fly-by-night	affairs.

The	standards	explicitly	define	the	ordering	and	nesting	of	tags	and	document
elements.	This	syntax	is	embedded	within	the	appropriate	Document	Type
Definition	(DTD)	and	is	not	readily	understood	by	those	who	are	not	versed	in
Standard	Generalized	Markup	Language	(SGML;	for	the	HTML	4.01	DTD,	see
Appendix	D)	or	Extensible	Markup	Language	(XML;	for	the	XHTML	1.0	DTD,	see
Appendix	E).	Accordingly,	we	provide	an	alternate	definition	of	the	allowable	HTML
and	XHTML	syntax,	using	a	fairly	common	tool	called	a	grammar.

Grammar,	whether	it	defines	English	sentences	or	HTML	documents,	is	just	a	set
of	rules	that	indicates	the	order	of	language	elements.	These	language	elements
can	be	divided	into	two	sets:	terminal	(the	actual	words	of	the	language)	and
nonterminal	(all	other	grammatical	rules).	In	HTML	and	XHTML,	the	words
correspond	to	the	embedded	markup	tags	and	text	in	a	document.

To	use	the	grammar	to	create	a	valid	document,	follow	the	order	of	the	rules	to
see	where	the	tags	and	text	may	be	placed	to	create	a	valid	document.

	

A.1.	Grammatical	Conventions

We	use	a	number	of	typographic	and	punctuation	conventions	to	make	our
grammar	easy	to	understand.

A.1.1.	Typographic	and	Naming	Conventions

For	our	grammar,	we	denote	the	terminals	with	a	monospaced	typeface.	The
nonterminals	appear	in	italicized	text.

We	also	use	a	simple	naming	convention	for	the	majority	of	our	nonterminals:	if	a
nonterminal	defines	the	syntax	of	a	specific	tag,	its	name	is	the	tag	name	followed
by	_tag.	If	a	nonterminal	defines	the	various	language	elements	that	may	be
nested	within	a	certain	tag,	its	name	is	the	tag	name	followed	by	_content.

For	example,	if	you	are	wondering	exactly	which	elements	are	allowed	within	an
<a>	tag,	you	can	look	for	the	a_content	rule	within	the	grammar.	Similarly,	to
determine	the	correct	syntax	of	a	definition	list	created	with	the	<dl>	tag,	look	for
the	dl_tag	rule.

A.1.2.	Punctuation	Conventions

Each	rule	in	the	grammar	starts	with	the	rule's	name,	followed	by	the
replacement	symbol	(::=)	and	the	rule's	value.	We've	intentionally	kept	the
grammar	simple,	but	we	do	use	three	punctuation	elements	to	denote	alternation,
repetition,	and	optional	elements	in	the	grammar.

A.1.2.1.	Alternation

Alternation	indicates	a	rule	may	actually	have	several	different	values,	of	which
you	must	choose	exactly	one.	Pipes	(|)	separate	the	alternatives	for	the	rule.

For	example,	the	heading	rule	is	equivalent	to	any	one	of	six	HTML	heading	tags,	so
it	appears	in	the	table	as:

heading																		::=						h1_tag
																									|								h2_tag
																									|								h3_tag
																									|								h4_tag

																									|								h5_tag
																									|								h6_tag

	
The	heading	rule	tells	us	that	wherever	the	heading	nonterminal	appears	in	a	rule,
you	can	replace	it	with	exactly	one	of	the	actual	heading	tags.

A.1.2.2.	Repetition

Repetition	indicates	that	an	element	within	a	rule	may	be	repeated	some	number
of	times.	Repeated	elements	are	enclosed	in	curly	braces	({...}).	The	closing	brace
has	a	subscripted	number	other	than	1	if	the	element	must	be	repeated	a
minimum	number	of	times.

For	example,	the		tag	may	contain	only		tags,	or	it	may	be	empty.	The
rule,	therefore,	is:

ul_tag							::=					
																						{li_tag	}0
																					

	
This	rule	says	that	the	syntax	of	the		tag	requires	the		tag	and	zero	or
more		tags,	followed	by	a	closing		tag.	We	spread	this	rule	across	several
lines	and	indented	some	of	the	elements	to	make	it	more	readable;	your
documents	need	not	actually	be	formatted	this	way.

A.1.2.3.	Optional	elements

Some	elements	may	appear	in	a	document	but	are	not	required.	Optional
elements	are	enclosed	in	square	brackets	([.	.	.]).	The	<table>	tag,	for	example,
has	an	optional	caption:

table_tag							::=					<table>
																								[caption_tag]
																									{tr_tag	}0
																								</table>

	
In	addition,	the	rule	says	that	a	table	begins	with	the	<table>	tag,	followed	by	an

optional	caption	and	zero	or	more	table-row	tags,	and	ends	with	the	</table>	tag.

A.1.3.	More	Details

Our	grammar	stops	at	the	tag	level;	it	does	not	delve	further	to	show	the	syntax
of	each	tag,	including	tag	attributes.	For	these	details,	refer	to	the	quick-
reference	card	included	with	this	book.

A.1.4.	Predefined	Nonterminals

The	HTML	and	XHTML	standards	define	a	few	specific	kinds	of	content	that
correspond	to	various	types	of	text.	We	use	these	content	types	throughout	the
grammar.	They	are:

literal_text

Text	is	interpreted	exactly	as	specified;	no	character	entities	or	style	tags	are
recognized.

plain_text

Regular	characters	in	the	document	character	encoding,	along	with	character
entities	denoted	by	the	ampersand	character,	are	recognized.

style_text

Like	plain_text,	with	physical	and	content-based	style	tags	allowed.

	

A.2.	The	Grammar

The	grammar	is	a	composite	of	the	HTML	4.01	and	XHTML	1.0	standard	tags	and
special	extensions	to	the	language	as	currently	supported	by	the	popular
browsers.

The	rules	are	in	alphabetical	order.	The	starting	rule	for	an	entire	document	is
named	html_document.

a_content[a] ::= heading

	 | text

a_tag ::= <a>

	 	 {a_content}0

	 	

abbr_tag ::= <abbr>	text	</abbr>

acronym_tag ::= <acronym>	text	</acronym>

address_content ::= p_tag

	 | text

address_tag ::= <address>

	 	 {address_content}0

	 	 </address>

applet_content ::= {<param>}0

	 	 body_content

applet_tag ::= <applet>	applet_content	</applet>

b_tag ::= 	text	

basefont_tag ::= <basefont>	body_content	</basefont>

bdo_tag ::= <bdo>	text	</bdo>

big_tag ::= <big>	text	</big>

blink_tag ::= <blink>	text	</blink>

block ::= {block_content}0

block_content ::= <isindex>

	 | basefont_tag

	 | blockquote_tag

	 | center_tag

	 | dir_tag

	 | div_tag

	 | dl_tag

	 | form_tag

	 | listing_tag

	 | menu_tag

	 | multicol_tag

	 	 	

	 | nobr_tag

	 | ol_tag

	 | p_tag

	 | pre_tag

	 | table_tag

	 | ul_tag

	 | xmp_tag

blockquote_tag ::= <blockquote>	body_content	</blockquote>

body_content ::= <bgsound>

	 | <hr>

	 | address_tag

	 | block

	 | del_tag

	 | heading

	 | ins_tag

	 | layer_tag

	 | map_tag

	 | marquee_tag

	 | text

body_tag ::= <body>

	 	 {body_content}0

	 	 </body>

caption_tag ::= <caption>	body_content	</caption>

center_tag ::= <center>	body_content	</center>

cite_tag ::= <cite>	text	</cite>

code_tag ::= <code>	text	</code>

colgroup_content ::= {<col>}0

colgroup_tag ::= <colgroup>

	 	 colgroup_content

content_style ::= abbr_tag

	 | acronym_tag

	 | cite_tag

	 | code_tag

	 | dfn_tag

	 | em_tag

	 | kbd_tag

	 | q_tag

	 | strong_tag

	 | var_tag

dd_tag ::= <dd>	flow	</dd>

del_tag ::= 	flow	

dfn_tag ::= <dfn>	text	</dfn>

dir_tag[b] ::= <dir>

	 	 {li_tag}

	 	 </dir>

div_tag ::= <div>	body_content	</div>

dl_content ::= dt_tag	dd_tag

dl_tag ::= <dl>

	 	 {dl_content}

	 	 </dl>

dt_tag ::= <dt>

	 	 text

	 	 </dt>

em_tag ::= 	text	

fieldset_tag ::= <fieldset>

	 	 [legend_tag]

	 	 {form_content}0

	 	 </fieldset>

flow ::= {flow_content}0

flow_content ::= block

	 | text

font_tag ::= 	style_text	

form_content[c] ::= <input>

	 | <keygen>

	 | body_content

	 | fieldset_tag

	 | label_tag

	 | select_tag

	 | textarea_tag

form_tag ::= <form>

	 	 {form_content}0

	 	 </form>

frameset_content ::= <frame>

	 | noframes_tag

frameset_tag ::= <frameset>

	 	 {frameset_content}0

	 	 </frameset>

h1_tag ::= <h1>	text	</h1>

h2_tag ::= <h2>	text	</h2>

h3_tag ::= <h3>	text	</h3>

h4_tag ::= <h4>	text	</h4>

h5_tag ::= <h5>	text	</h5>

	 	 	

h6_tag ::= <h6>	text	</h6>

head_content ::= <base>

	 | <isindex>

	 | <link>

	 | <meta>

	 | <nextid>

	 | style_tag

	 | title_tag

head_tag ::= <head>

	 	 {head_content}0

	 	 </head>

heading ::= h1_tag

	 | h2_tag

	 | h3_tag

	 | h4_tag

	 | h5_tag

	 | h6_tag

html_content ::= head_tag	body_tag

	
| head_tag	frameset_tag

html_document ::= html_tag

html_tag ::= <html>	html_content	</html>

i_tag ::= <i>	text	</i>

ilayer_tag ::= <ilayer>	body_content	</ilayer>

ins_tag ::= <ins>	flow	</ins>

kbd_tag ::= <kbd>	text	</kbd>

label_content[d] ::= <input>

	 | body_content

	 | select_tag

	 | textarea_tag

label_tag ::= <label>

	 	 {label_content}0

	 	 </label>

layer_tag ::= <layer>	body_content	</layer>

legend_tag ::= <legend>	text	</legend>

li_tag ::= 	flow	

listing_tag ::= <listing>	literal_text	</listing>

map_content ::= {<area>}0

map_tag ::= <map>	map_content	</map>

marquee_tag ::= <marquee>	style_text	</marquee>

menu_tag[e] ::= <menu>

	 	 {li_tag}0

	 	
</menu>

multicol_tag ::= <multicol>	body_content	</multicol>

nobr_tag ::= <nobr>	text	</nobr>

noembed_tag ::= <noembed>	text	</noembed>

noframes_tag ::= <noframes>

	 	 {body_content}0

	 	 </noframes>

noscript_tag ::= <noscript>	text	</noscript>

object_content ::= {<param>}0

	 	 body_content

object_tag ::= <object>	object_content	</object>

ol_tag ::=

	 	 {li_tag}

	 	

optgroup_tag ::= <optgroup>

	 	 {option_tag}0

	 	 </optgroup>

option_tag ::= <option>	plain_text	</option>

p_tag ::= <p>	text	</p>

physical_style ::= b_tag

	 | bdo_tag

	 | big_tag

	 | blink_tag

	 | font_tag

	 | i_tag

	 | s_tag

	 | small_tag

	 | span_tag

	 | strike_tag

	 | sub_tag

	 | sup_tag

	 | tt_tag

	 | u_tag

pre_content ::=

	 | <hr>

	 | a_tag

	 | style_text

pre_tag ::= <pre>

	 	 {pre_content}0

	 	 </pre>

q_tag ::= <q>	text	</q>

s_tag ::= <s>	text	</s>

samp_tag ::= <samp>	text	</samp>

script_tag[f] ::= <script>	plain_text	</script>

select_content ::= optgroup_tag

	 | option_tag

select_tag ::= <select>

	 	 {select_content}0

	 	 </select>

server_tag	[g] ::= <server>	plain_text	</server>

small_tag ::= <small>	text	</small>

span_tag ::= 	text	

strike_tag ::= <strike>	text	</strike>

strong_tag ::= 	text	

style_tag ::= <style>	plain_text	</style>

sub_tag ::= _{text}

sup_tag ::= ^{text}

table_cell ::= td_tag

	 | th_tag

table_content ::= <tbody>

	 | <tfoot>

	 | <thead>

	 | tr_tag

table_tag ::= <table>

	 	 [caption_tag]

	 	 {colgroup_tag}0

	 	 {table_content}0

	 	 </table>

td_tag ::= <td>	body_content	</td>

text ::= {text_content}0

text_content ::=

	 | <embed>

	 | <iframe>

	 |

	 | <spacer>

	 | <wbr>

	 | a_tag

	 | applet_tag

	 | content_style

	 | ilayer_tag

	 | noembed_tag

	 | noscript_tag

	 	 	

	 | object_tag

	 | physical_style

	 | plain_text

textarea_tag ::= <textarea>	plain_text	</textarea>

th_tag ::= <th>	body_content	</th>

title_tag ::= <title>	plain_text	</title>

tr_tag ::= <tr>

	 	 {table_cell}0

	 	 </tr>

tt_tag ::= <tt>	text	</tt>

u_tag ::= <u>	text	</u>

ul_tag ::=

	 	 {li_tag}

	 	

var_tag ::= <var>	text	</var>

xmp_tag ::= <xmp>	literal_text	</xmp>

[a]

[b]

[c]

[d]

[e]

[f]

[g]

	
[a]	a_content	may	not	contain	a_tags;	you	may	not	nest	<a>	tags	within	other	<a>	tags.

[b]	The	li_tag	within	the	dir_tag	may	not	contain	any	element	found	in	a	block.

[c]	form_content	may	not	contain	form_tags;	you	may	not	nest	one	<form>	within	another	<form>.

[d]	As	with	the	<form>	tag,	you	cannot	embed	<form>	or	<label>	tags	within	a	<label>	tag.

[e]	The	li_tag	within	the	menu_tag	may	not	contain	any	element	found	in	a	block.

[f]	A	script_tag	may	be	placed	anywhere	within	an	HTML	document,	without	regard	to	syntactic	rules.

[g]	A	server_tag	may	be	placed	anywhere	within	an	HTML	document,	without	regard	to	syntactic	rules.

	

Appendix	B.	HTML/XHTML	Tag	Quick	Reference

In	this	appendix,	we	list	in	alphabetical	order	all	the	known	(and	some
undocumented)	HTML	and	XHTML	tags	and	attributes	currently	supported	by	one
or	more	of	today's	popular	browsers.

	

B.1.	Core	Attributes

Prior	to	HTML	4.0,	few	attributes	could	be	used	consistently	for	all	the	HTML	tags.
HTML	4.0	changed	this,	defining	a	set	of	16	core	attributes	that	you	can	apply	to
almost	all	the	elements	in	both	HTML	4.01	and	XHTML	1.0.	For	brevity,	we	list
these	core	attributes	in	this	section	and	spare	you	the	redundancies	in	the	table
that	follows:

class=name Specify	a	style	class	controlling	the	appearance	of	the	tag's	contents.

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl).

id=name Define	a	reference	name	for	the	tag	that	is	unique	in	the	document.

lang=language Specify	the	human	language	for	the	tag's	contents	with	an	International	Organization	for
Standardization	(ISO)	639	standard	two-character	name	and	optional	dialect	subcode.

onclick=applet Specify	an	applet	to	be	executed	when	the	user	clicks	the	mouse	on	the	tag's	content	display	area.

ondblclick=applet Specify	an	applet	to	be	executed	when	the	user	double-clicks	the	mouse	button	on	the	tag'scontent	display	area.

onkeydown=applet Specify	an	applet	to	be	executed	when	the	user	presses	down	on	a	key	while	the	tag's	contents
have	input	focus.

onkeypress=applet Specify	an	applet	to	be	executed	when	the	user	presses	and	releases	a	key	while	the	tag'scontents	have	focus.

onkeyup=applet Specify	an	applet	to	be	executed	when	the	user	releases	a	pressed	key	while	the	tag's	contents
have	focus.

onmousedown=applet Specify	an	applet	to	be	executed	when	the	user	presses	down	on	the	mouse	button	while	pointingto	the	tag's	content	display	area.

onmousemove=applet Specify	an	applet	to	be	executed	when	the	user	moves	the	mouse	in	the	tag's	content	displayarea.

onmouseout=applet Specify	an	applet	to	be	executed	when	the	user	moves	the	mouse	off	the	tag's	content	displayarea.

onmouseover=applet Specify	an	applet	to	be	executed	when	the	user	moves	the	mouse	into	the	tag's	content	displayarea.

onmouseup=applet Specify	an	applet	to	be	executed	when	the	user	releases	the	mouse	button	while	in	the	tag's
content	display	area.

style=style Specify	an	inline	style	for	the	tag.

title=string Specify	a	title	for	the	tag.

	
Only	a	small	handful	of	tags	accept	none	or	only	some,	but	not	all,	of	these
attributes.	They	are:

<applet> <base> <basefont>	

<bdo>
 <comment>	

<embed> 	 <frame>

<frameset> <head> <hr>

<html> <iframe> <isindex>	

<keygen> <marquee>	 <meta>

<nextid>	 <nobr> <noembed>

<param> <script> <server>

<spacer> <style> <title>

<wbr>	 	 	

	
For	convenience,	we've	marked	each	of	these	tags	with	an	asterisk	(*)	in	the
following	table,	and	we	list	all	of	the	attributes	supported	by	these	special	tags,
including	the	common	ones.	For	all	other	tags	(those	without	an	asterisk),	assume
that	the	common	attributes	listed	previously	apply.	Do	note,	however,	that	the
popular	browsers	do	not	support	all	of	the	HTML	4.0	standard	attributes,	common
or	not.	Please	refer	to	the	main	text	for	details.

	

B.2.	HTML	Quick	Reference

We	use	the	alert	icon	 	to	the	far	right	of	each	item	to	indicate	tags	and
attributes	that	are	extensions	to	the	HTML	4.01	and	XHTML	1.0	standards.	We	use

the	Internet	Explorer	icon	 	to	identify	those	extension	tags	and	attributes	that
are	unique	to	Internet	Explorer	and	are	not	well	supported	by	the	other	popular
browsers.	Even	though	we	include	them	in	the	main	text,	we	have	not	included
here	any	of	the	antiquated	or	obsolete	elements	or	attributes	that	are	explicitly
not	part	of	the	standards	and	are	no	longer	supported	by	any	browser.

We	include	the	possible	attributes	(some	required)	indented	below	their
respective	tags.	In	the	description,	we	give	possible	attribute	values	as	either	a
range	of	integer	numbers	or	a	definitive	list	of	options,	where	possible.

<a>	...	 Create	a	hyperlink	anchor	(href	attribute)	or	fragment	identifier	(id	attribute). 	

accesskey=char Define	the	hot-key	character	for	this	anchor. 	

charset=encoding Specify	the	character	set	used	to	encode	the	target. 	

coords=list Specify	a	list	of	shape-dependent	coordinates. 	

href=url Specify	the	URL	of	a	hyperlink	target. 	

HReflang=language Specify	the	language	encoding	for	the	target. 	

name=name Specify	the	name	of	a	fragment	identifier.

rel=relationship Indicate	the	relationship	of	this	document	to	the	target. 	

rev=relationship Indicate	the	reverse	relationship	of	the	target	to	this	document. 	

shape=shape Define	the	region's	shape	to	be	circ,	circle,	poly,	polygon,	rect,	or	rectangle. 	

tabindex=value Define	the	position	of	this	anchor	in	the	document's	tabbing	order. 	

target=name Define	the	name	of	the	frame	or	window	to	receive	the	referenced	document. 	

type=type Specify	the	Multipurpose	Internet	Mail	Extension	(MIME)	type	of	the	target. 	

<abbr>	...	</abbr> The	enclosed	text	is	an	abbreviation. 	

<acronym>	... The	enclosed	text	is	an	acronym. 	

</acronym>

<address>	...
</address>

The	enclosed	text	is	an	address. 	

<applet>	...	</applet> Define	an	executable	applet	within	a	text	flow. *

align=position Align	the	<applet>	region	to	either	the	top,	middle,	bottom	(default),	left,	right,	absmiddle,
baseline,	or	absbottom	of	the	text	in	the	line.

alt=string Specify	alternative	text	to	replace	the	<applet>	region	within	browsers	that	support	the
<applet>	tag	but	cannot	execute	the	application. 	

archive=url Specify	a	class	archive	to	be	downloaded	to	the	browser	and	then	searched	for	code	class. 	

class=name Specify	a	style	class	controlling	the	appearance	of	this	tag. 	

code=class Specify	the	class	name	of	the	code	to	be	executed	(required). 	

codebase=url Specify	the	URL	from	which	the	code	is	retrieved. 	

height=n Specify	the	height,	in	pixels,	of	the	<applet>	region. 	

hspace=n Specify	additional	space,	in	pixels,	to	allow	to	the	left	and	right	of	the	<applet>	region. 	

id=name Define	a	name	for	this	applet	that	is	unique	to	this	document. 	

mayscript Allow	the	applet	to	access	JavaScript	within	the	page.

name=name Specify	the	name	of	this	particular	instance	of	the	applet.

object=data Specify	a	representation	of	the	object's	execution	state. 	

style=style Specify	an	inline	style	for	this	tag. 	

title=string Provide	a	title	for	the	applet. 	

vspace=n Specify	additional	space,	in	pixels,	to	allow	above	and	below	the	<applet>	region. 	

width=n Specify	the	width,	in	pixels,	of	the	<applet>	region. 	

<area> Define	a	mouse-sensitive	area	in	a	client-side	image	map. 	

accesskey=char Define	the	hot-key	character	for	this	area. 	

alt=string Provide	alternative	text	to	be	displayed	by	nongraphical	browsers. 	

coords=list Specify	a	comma-separated	list	of	shape-dependent	coordinates	that	define	the	edge	of
this	area. 	

HRef=url Specify	the	URL	of	a	hyperlink	target	associated	with	this	area. 	

nohref Indicate	that	no	document	is	associated	with	this	area;	clicking	in	the	area	has	no	effect. 	

notab Do	not	include	this	area	in	the	tabbing	order.

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	the	area. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	the	area. 	

shape=shape Define	the	region's	shape	to	be	circ,	circle,	poly,	polygon,	rect,	or	rectangle. 	

tabindex=value Define	the	position	of	this	area	in	the	document's	tabbing	order. 	

taborder=n Specify	this	area's	position	in	the	tabbing	order.

target=name Specify	the	frame	or	window	to	receive	the	document	linked	by	this	area.

	...	 Format	the	enclosed	text	using	a	bold	typeface. 	

<base> Specify	the	base	URL	for	all	relative	URLs	in	this	document. *

href=url Specify	the	base	URL	(required). 	

target=name Define	the	default	target	of	all	<a>	links	in	the	document.

<basefont> Specify	the	font	size	for	subsequent	text	(deprecated;	do	not	use).
*

color=color Specify	the	base	font's	color.

face=name Specify	the	local	font	to	be	used	for	the	base	font.

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

name=name Specify	the	local	font	to	be	used	for	the	base	font.

size=value Set	the	base	font	size,	from	1	to	7	(required;	default	is	3).

<bdo>	...	</bdo> Bidirectional	override,	changing	the	rendering	direction	of	the	enclosed	text. *

class=name Specify	a	style	class	controlling	the	appearance	of	this	tag. 	

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

lang=language Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

style=style Specify	an	inline	style	for	this	tag. 	

title=string Specify	a	title	for	this	tag. 	

<bgsound> Define	background	audio	for	the	document.

loop=value Set	the	number	of	times	to	play	the	audio;	value	may	be	an	integer	or	the	value	infinite.

src=url Provide	the	URL	of	the	audio	file	to	be	played.

<big>	...	</big> Format	the	enclosed	text	using	a	bigger	typeface.

<blink>	...	</blink> Cause	the	enclosed	content	to	blink.

<blockquote>	...
</blockquote>

The	enclosed	text	is	a	block	quotation. 	

cite=url Specify	the	URL	of	the	source	of	the	quoted	material. 	

<body>	...	</body> Delimit	the	beginning	and	end	of	the	document	body. 	

alink=color Set	the	color	of	active	hypertext	links	in	the	document.

background=url Specify	the	URL	of	an	image	to	be	tiled	in	the	document	background.

bgcolor=color Set	the	background	color	of	the	document.

bgproperties=value With	value	set	to	fixed,	prevent	the	background	image	from	scrolling	with	the	document
content.

leftmargin=value Set	the	size,	in	pixels,	of	the	document's	left	margin.

link=color Set	the	color	of	unvisited	hypertext	links	in	the	document.

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	the	document	window. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	the	document	window. 	

onload=applet Specify	an	applet	to	be	run	when	the	document	is	loaded. 	

onunload=applet Specify	an	applet	to	be	run	when	the	document	is	unloaded. 	

text=color Set	the	color	of	regular	text	in	the	document.

topmargin=value Set	the	size,	in	pixels,	of	the	document's	top	margin.

vlink=color Set	the	color	of	visited	links	in	the	document.

 Break	the	current	text	flow,	resuming	at	the	beginning	of	the	next	line. *

class=name Specify	a	style	class	controlling	the	appearance	of	this	tag. 	

clear=margin Break	the	flow	and	move	downward	until	the	desired	margin,	either	left,	right,	none,	or
all,	is	clear. 	

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

style=style Specify	an	inline	style	for	this	tag. 	

title=string Specify	a	title	for	this	tag. 	

<button> Create	a	push-button	element	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	button. 	

disabled Disable	the	button,	preventing	the	user	from	clicking	it. 	

name=name Specify	the	name	of	the	parameter	to	be	passed	to	the	forms-processing	application	if	the
input	element	is	selected	(required). 	

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	moves	out	of	the	button. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	moves	into	the	button. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

type=type Specify	the	button	typeeither	button,	submit,	or	reset.

value=string
Specify	the	value	of	the	parameter	sent	to	the	forms-processing	application	if	this	form
element	is	selected	(required). 	

<caption>	...
</caption>

Define	a	caption	for	a	table. 	

align=position Set	the	horizontal	alignment	of	the	caption	to	left,	center,	or	right.

valign=position Set	the	vertical	position	of	the	caption	to	either	top	or	bottom.

<center>	...	</center> Center	the	enclosed	text.

<cite>	...	</cite> The	enclosed	text	is	a	citation. 	

<code>	...	</code> The	enclosed	text	is	a	code	sample. 	

<col> Define	a	column	within	a	<colgroup>. 	

align=position Set	the	column	alignment	to	left,	center,	or	right.

char=character Specify	the	alignment	character	for	text	in	these	cells. 	

charoff=value Set	the	offset	within	the	cell	at	which	the	alignment	character	is	placed. 	

span=n Define	the	number	of	columns	affected	by	this	<col>	tag. 	

valign=position Set	the	vertical	alignment	of	text	within	the	column	to	top,	middle,	or	bottom.

width=n Set	the	width,	in	pixels	or	as	a	percentage,	of	the	column. 	

<colgroup> Define	a	column	group	within	a	table. 	

align=position Set	the	horizontal	alignment	of	text	within	the	columns	to	left,	center,	or	right.

char=character Specify	the	alignment	character	for	text	in	these	cells. 	

charoff=value Set	the	offset	within	the	cell	at	which	the	alignment	character	is	placed. 	

span=n Define	the	number	of	columns	in	the	group. 	

valign=position Set	the	vertical	alignment	of	text	within	the	columns	to	top,	middle,	or	bottom.

width=n Set	the	width,	in	pixels	or	as	a	percentage,	of	each	column	in	the	group. 	

<comment>	...
</comment> Place	a	comment	in	the	document	(comments	are	visible	in	all	other	browsers).

*

<dd>	...	</dd> Define	the	definition	portion	of	an	element	in	a	definition	list. 	

	...	 Delineate	a	deleted	section	of	a	document. 	

cite=url Cite	a	document	justifying	the	deletion. 	

datetime=date Specify	the	date	and	time	of	the	deletion. 	

<dfn>	...	</dfn> Format	the	enclosed	text	as	a	definition. 	

<dir>	...	</dir> Create	a	directory	list	containing		tags.

type=bullet Set	the	bullet	style	for	this	list	to	circle,	disc	(default),	or	square.

<div>	...	</div> Create	a	division	within	a	document. 	

align=type Align	the	text	within	the	division	to	left,	center,	or	right.

nowrap Suppress	word	wrapping	within	this	division.

<dl>	...	</dl> Create	a	definition	list	containing	<dt>	and	<dd>	tags. 	

compact Make	the	list	more	compact	if	possible.

<dt>	...	</dt> Define	the	definition	term	portion	of	an	element	in	a	definition	list. 	

	...	 Format	the	enclosed	text	with	additional	emphasis. 	

<embed> Embed	an	application	in	a	document.
*

align=position Align	the	applet	area	to	either	the	top	or	bottom	of	the	adjacent	text,	or	to	the	left	or	right
margin	of	the	page,	with	subsequent	text	flowing	around	the	applet.

border=n Specify	the	size,	in	pixels,	of	the	border	around	the	applet.

height=n Specify	the	height,	in	pixels,	of	the	applet. 	

hidden If	present,	hide	the	applet	on	the	page. 	

hspace=n Define,	in	pixels,	additional	space	to	be	placed	to	the	left	and	right	of	the	applet. 	

name=name Provide	a	name	for	the	applet.

palette=value

In	Netscape	and	Opera,	a	value	of	foreground	causes	the	applet	to	use	the	foreground
palette	(in	Windows	only),	and	background	uses	the	background	palette;	with	Internet
Explorer	and	Firefox,	provide	the	foreground	and	background	colors	for	the	applet,
specified	as	two	color	values	separated	by	a	pipe	(|).

src=url Supply	the	URL	of	the	data	to	be	fed	to	the	applet. 	

type=type Specify	the	MIME	type	of	the	plug-in	to	be	used. 	

units=type Set	the	units	for	the	height	and	width	attributes	to	either	pixels	(the	default)	or	en	(half
the	text	point	size). 	

vspace=n Define,	in	pixels,	additional	space	to	be	placed	above	and	below	the	applet. 	

width=n Specify	the	width,	in	pixels,	of	the	applet.

<fieldset>	...
</fieldset>

Create	a	group	of	elements	in	a	form. 	

	...	 Set	the	size	or	color	of	the	enclosed	text	(deprecated;	do	not	use).
*

class=name Specify	a	style	class	controlling	the	appearance	of	this	tag. 	

color=color Set	the	color	of	the	enclosed	text	to	the	desired	color. 	

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

face=list Set	the	typeface	of	the	enclosed	text	to	the	first	available	font	in	the	comma-separated	list
of	font	names.

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

lang=language Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

size=value Set	the	size	to	an	absolute	size,	from	1	to	7,	or	relative	to	the	<basefont>	size,	using	+n	or
-n	(required).

style=style Specify	an	inline	style	for	this	tag. 	

title=string Specify	a	title	for	this	tag. 	

<form>	...	</form> Delimit	a	form. 	

accept-charset=list Specify	a	list	of	character	sets	accepted	by	the	server	processing	this	form. 	

action=url Specify	the	URL	of	the	application	that	processes	the	form	(required). 	

enctype=encoding Specify	how	the	form	element	values	are	encoded. 	

method=style Specify	the	parameter-passing	styleeither	get	or	post	(required). 	

name=name Supply	a	name	for	this	form	for	use	by	JavaScript. 	

onreset=applet Specify	an	applet	to	be	run	when	the	form	is	reset. 	

onsubmit=applet Specify	an	applet	to	be	run	when	the	form	is	submitted. 	

target=name Specify	the	name	of	the	frame	or	window	to	receive	the	results	of	the	form	after
submission. 	

<frame>	...	</frame> Define	a	frame	within	a	frameset. *

bordercolor=color Set	the	color	of	the	frame's	border. 	

class=name Specify	a	style	class	controlling	the	appearance	of	this	tag. 	

frameborder=n If	value	is	1,	enable	frame	borders;	if	value	is	0,	disable	frame	borders

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

longdesc=url Provide	the	URL	of	a	document	describing	the	contents	of	the	frame. 	

marginheight=n Place	n	pixels	of	space	above	and	below	the	frame	contents. 	

marginwidth=n Place	n	pixels	of	space	to	the	left	and	right	of	the	frame	contents. 	

name=name Define	the	name	of	the	frame.

noresize Disable	user	resizing	of	the	frame. 	

scrolling=type Always	add	scroll	bars	(yes),	never	add	scroll	bars	(no),	or,	for	Netscape	only,	add	scroll
bars	when	needed	(auto). 	

src=url Define	the	URL	of	the	source	document	for	this	frame. 	

style=style Specify	an	inline	style	for	this	tag. 	

title=string Specify	a	title	for	this	tag. 	

<frameset>	...
</frameset>

Define	a	collection	of	frames	or	other	framesets. *

border=n Set	the	thickness	of	the	frame	borders	in	this	frameset.

bordercolor=color Define	the	color	of	the	borders	in	this	frameset.

cols=list Specify	the	number	and	width	of	frames	within	this	frameset. 	

frameborder=value If	value	is	1,	enable	frame	borders;	if	value	is	0,	disable	frame	borders.

framespacing=n Define	the	thickness	of	the	frame	borders	in	this	frameset. 	

onblur=applet Define	an	applet	to	be	run	when	the	mouse	leaves	this	frameset. 	

onfocus=applet Define	an	applet	to	be	run	when	the	mouse	enters	this	frameset. 	

onload=applet Define	an	applet	to	be	run	when	this	frameset	is	loaded. 	

onunload=applet Define	an	applet	to	be	run	when	this	frameset	is	removed	from	the	display. 	

rows=list Specify	the	number	and	height	of	frames	within	a	frameset. 	

<hn>	...	</hn> The	enclosed	text	is	a	level-n	header,	for	level	n	from	1	to	6. 	

align=type Specify	the	heading	alignment	as	left	(default),	center,	or	right.

<head>	...	</head> Delimit	the	beginning	and	end	of	the	document	head. *

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

lang=language Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

profile=url Provide	the	URL	of	a	profile	for	this	document. 	

<hr> Break	the	current	text	flow	and	insert	a	horizontal	rule. *

align=type Specify	the	rule	alignment	as	left,	center	(default),	or	right.

class=name Specify	a	style	class	controlling	the	appearance	of	the	rule. 	

color=color Define	the	color	of	the	rule.

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

lang=language

Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

noshade Do	not	use	3D	shading	to	render	the	rule.

onclick=applet Specify	an	applet	to	be	executed	when	the	mouse	button	is	clicked	on	this	tag. 	

ondblclick=applet Specify	an	applet	to	be	executed	when	the	mouse	button	is	double-clicked	on	this	tag. 	

onkeydown=applet Specify	an	applet	to	be	executed	when	a	key	is	pressed	down	while	this	tag	has	input
focus. 	

onkeypress=applet Specify	an	applet	to	be	executed	when	a	key	is	pressed	and	released	while	this	tag	has
focus. 	

onkeyup=applet Specify	an	applet	to	be	executed	when	a	key	is	released	while	this	tag	has	focus. 	

onmousedown=applet Specify	an	applet	to	be	executed	when	a	mouse	button	is	pressed	down	on	this	tag. 	

onmousemove=applet Specify	an	applet	to	be	executed	when	the	mouse	is	moved	over	this	tag. 	

onmouseout=applet Specify	an	applet	to	be	executed	when	the	mouse	moves	out	of	this	tag's	display	area. 	

onmouseover=applet Specify	an	applet	to	be	executed	when	the	mouse	moves	into	this	tag's	display	area. 	

onmouseup=applet Specify	an	applet	to	be	executed	when	a	mouse	button	is	released	while	over	this	tag. 	

size=pixels Set	the	thickness	of	the	rule	to	an	integer	number	of	pixels. 	

style=style Specify	an	inline	style	for	this	tag. 	

title=string Specify	a	title	for	this	tag. 	

width=value	or	% Set	the	width	of	the	rule	to	either	an	integer	number	of	pixels	or	a	percentage	of	the	page
width.

<html>	...	</html> Delimit	the	beginning	and	end	of	the	entire	Hypertext	Markup	Language	(HTML)	document. *

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

lang=language Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

version=string Indicate	the	HTML	version	used	to	create	this	document. 	

<i>	...	</i> Format	the	enclosed	text	in	an	italic	typeface. 	

<iframe>	...	</iframe> Define	an	inline	frame. *

align=position Set	the	position	of	the	frame	aligned	to	the	top,	center,	or	bottom	of	the	surrounding	text,
or	flush	against	the	left	or	right	margins	with	subsequent	text	flowing	around	the	frame.

class=name Specify	a	style	class	controlling	the	appearance	of	the	frame. 	

frameborder=value If	value	is	1,	enable	frame	borders;	if	value	is	0,	disable	frame	borders.

height=n Set	the	height,	in	pixels,	of	the	frame. 	

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

longdesc=url Provide	the	URL	of	a	document	describing	the	contents	of	the	frame. 	

marginheight=n Place	n	pixels	of	space	above	and	below	the	frame	contents. 	

marginwidth=n Place	n	pixels	of	space	to	the	left	and	right	of	the	frame	contents. 	

name=name Define	the	name	of	the	frame.

scrolling=type Always	add	scroll	bars	(yes)	or	never	add	scroll	bars	(no). 	

src=url Define	the	URL	of	the	source	document	for	this	frame. 	

style=style Specify	an	inline	style	for	this	tag. 	

title=string Specify	a	title	for	this	tag. 	

width=n Set	the	width,	in	pixels,	of	the	frame. 	

 Insert	an	image	into	the	current	text	flow. 	

align=type Align	the	image	to	the	top,	middle,	bottom	(default),	left,	right,	absmiddle,	baseline,	or
absbottom	of	the	text.

alt=text Provide	alternative	text	for	nonimage-capable	browsers. 	

border=n Set	the	pixel	thickness	of	the	border	around	images	contained	within	hyperlinks.

controls Add	playback	controls	for	embedded	video	clips.

dynsrc=url Specify	the	URL	of	a	video	clip	to	be	displayed.

height=n Specify	the	height	of	the	image	in	scan	lines. 	

hspace=n Specify	the	space,	in	pixels,	to	be	added	to	the	left	and	right	of	the	image. 	

ismap Indicate	that	the	image	is	mouse-selectable	when	used	within	an	<a>	tag. 	

longdesc=url Provide	the	URL	of	a	document	describing	the	image.

loop=value Set	the	number	of	times	to	play	the	video;	value	may	be	an	integer	or	the	value	infinite.

lowsrc=url Specify	a	low-resolution	image	to	be	loaded	by	the	browser	first,	followed	by	the	image
specified	by	the	src	attribute.

name=name Provide	a	name	for	the	image	for	use	by	JavaScript.

onabort=applet Provide	an	applet	to	be	run	if	image	loading	is	aborted. 	

onerror=applet Provide	an	applet	to	be	run	if	image	loading	is	unsuccessful. 	

onload=applet Provide	an	applet	to	be	run	if	image	loading	is	successful. 	

src=url Specify	the	source	URL	of	the	image	to	be	displayed	(required). 	

start=start Specify	when	to	play	the	video	clipeither	fileopen	or	mouseover.

usemap=url Specify	the	map	of	coordinates	and	links	that	define	the	hypertext	links	within	this	image. 	

vspace=n Specify	the	vertical	space,	in	pixels,	added	at	the	top	and	bottom	of	the	image. 	

width=n Specify	the	width	of	the	image	in	pixels.

<input	type=button> Create	a	push-button	element	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

disabled Disable	this	control,	making	it	inactive. 	

name=name Specify	the	name	of	the	parameter	to	be	passed	to	the	forms-processing	application	if	the
input	element	is	selected	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	this	control. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	this	control. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	the	value	of	the	parameter	sent	to	the	forms-processing	application	if	this	form
element	is	selected	(required). 	

<input
type=checkbox> Create	a	checkbox	input	element	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

checked Mark	the	element	as	initially	selected. 	

disabled Disable	this	control,	making	it	inactive. 	

name=string Specify	the	name	of	the	parameter	to	be	passed	to	the	forms-processing	application	if	the
input	element	is	selected	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

readonly Prevent	user	modification	of	this	element. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	the	value	of	the	parameter	sent	to	the	forms-processing	application	if	this	form
element	is	selected	(required). 	

<input	type=file> Create	a	file-selection	element	within	a	<form>. 	

accept=list Specify	a	list	of	MIME	types	that	can	be	accepted	by	this	element. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

disabled Disable	this	control,	making	it	inactive. 	

maxlength=n Specify	the	maximum	number	of	characters	to	accept	for	this	element. 	

name=name Specify	the	name	of	the	parameter	that	is	passed	to	the	forms-processing	application	for
this	input	element	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	this	control. 	

onchange=applet Specify	an	applet	to	be	run	when	the	user	changes	the	value	of	this	element. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	this	control. 	

readonly Prevent	user	modification	of	this	element. 	

size=n Specify	the	number	of	characters	to	display	for	this	element. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	the	value	of	the	parameter	sent	to	the	forms-processing	application	if	this	form
element	is	selected	(required). 	

<input	type=hidden> Create	a	hidden	element	within	a	<form>. 	

name=name Specify	the	name	of	the	parameter	that	is	passed	to	the	forms-processing	application	for
this	input	element	(required). 	

value=string Specify	the	value	of	this	element	that	is	passed	to	the	forms-processing	application. 	

<input	type=image> Create	an	image	input	element	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

align=type Align	the	image	to	the	top,	middle,	or	bottom	of	the	form	element's	text.

alt=string Provide	an	alternative	description	for	the	image. 	

border=n Set	the	pixel	thickness	of	the	border	of	the	image.

disabled Disable	this	control,	making	it	inactive. 	

name=name Specify	the	name	of	the	parameter	to	be	passed	to	the	forms-processing	application	for
this	input	element	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

src=url Specify	the	source	URL	of	the	image	(required). 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

usemap=url Specify	the	URL	of	a	map	to	be	used	with	this	image.
	

<input
type=password> Create	a	content-protected	text-input	element	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

disabled Disable	this	control,	making	it	inactive. 	

maxlength=n Specify	the	maximum	number	of	characters	to	accept	for	this	element. 	

name=name Specify	the	name	of	the	parameter	to	be	passed	to	the	forms-processing	application	for
this	input	element	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	this	element. 	

onchange=applet Specify	an	applet	to	be	run	when	the	user	changes	the	value	of	this	element. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	this	element. 	

onselect=applet Specify	an	applet	to	be	run	if	the	user	clicks	this	element. 	

readonly Prevent	user	modification	of	this	element. 	

size=n Specify	the	number	of	characters	to	display	for	this	element. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	the	initial	value	for	this	element. 	

<input	type=radio> Create	a	radio-button	input	element	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

checked Mark	the	element	as	initially	selected. 	

disabled Disable	this	control,	making	it	inactive. 	

name=string Specify	the	name	of	the	parameter	to	be	passed	to	the	forms-processing	application	if	the
input	element	is	selected	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

readonly Prevent	user	modification	of	this	element. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	the	value	of	the	parameter	sent	to	the	forms-processing	application	if	this	form
element	is	selected	(required). 	

<input	type=reset> Create	a	reset	button	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

disabled Disable	this	control,	making	it	inactive. 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	an	alternate	label	for	the	reset	button	(default	is	"Reset"). 	

<input	type=submit> Create	a	submit	button	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

disabled Disable	this	control,	making	it	inactive. 	

name=name Specify	the	name	of	the	parameter	that	is	passed	to	the	forms-processing	application	for
this	input	element	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	an	alternate	label	for	the	submit	button,	as	well	as	the	value	passed	to	the	forms-
processing	application	for	this	parameter	if	this	button	is	clicked. 	

<input	type=text> Create	a	text-input	element	within	a	<form>. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

disabled Disable	this	control,	making	it	inactive. 	

maxlength=n Specify	the	maximum	number	of	characters	to	accept	for	this	element. 	

name=name Specify	the	name	of	the	parameter	that	is	passed	to	the	forms-processing	application	for
this	input	element	(required). 	

notab Specify	that	this	element	is	not	part	of	the	tabbing	order.

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	this	element. 	

onchange=applet Specify	an	applet	to	be	run	when	the	user	changes	the	value	of	this	element. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	this	element. 	

onselect=applet Specify	an	applet	to	be	run	if	the	user	clicks	this	element. 	

readonly Prevent	user	modification	of	this	element. 	

size=n Specify	the	number	of	characters	to	display	for	this	element. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

taborder=n Specify	this	element's	position	in	the	tabbing	order.

value=string Specify	the	initial	value	for	this	element. 	

<ins>	...	</ins> Delineate	an	inserted	section	of	a	document. 	

cite=url Cite	a	document	dissatisfying	the	insertion. 	

datetime=date Specify	the	date	and	time	of	the	insertion. 	

<isindex> Create	a	"searchable"	HTML	document	(deprecated;	do	not	use).
*

action=url For	Internet	Explorer	only,	provide	the	URL	of	the	program	that	performs	the	searching
action.

class=name Specify	a	style	class	controlling	the	appearance	of	this	tag. 	

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

id=name Define	a	name	for	this	tag	that	is	unique	to	this	document. 	

lang=language
Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

prompt=string Provide	an	alternate	prompt	for	the	input	field.

style=style Specify	an	inline	style	for	this	tag. 	

title=string Specify	a	title	for	this	tag. 	

<kbd>	...	</kbd> The	enclosed	text	is	keyboard-like	input. 	

<keygen> Generate	key	information	in	a	form. *

challenge=string Provide	a	challenge	string	to	be	packaged	with	the	key. 	

name=name Provide	a	name	for	the	key. 	

<label>	...	</label> Define	a	label	for	a	form	control. 	

accesskey=char Define	the	hot-key	character	for	this	label. 	

for=id Specify	the	form	element	associated	with	this	label. 	

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	this	label. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	this	label. 	

<legend>	...	</legend> Define	a	legend	for	a	form	field	set. 	

accesskey=char Define	the	hot-key	character	for	this	legend. 	

align=position Align	the	legend	to	the	top,	bottom,	left,	or	right	of	the	field	set.

	...	 Delimit	a	list	item	in	an	ordered	()	or	unordered	()	list. 	

type=format
Set	the	type	of	this	list	element	to	the	desired	formatfor		within	:	A	(capital
letters),	a	(lowercase	letters),	I	(capital	Roman	numerals),	i	(lowercase	Roman	numerals),
or	1	(Arabic	numerals;	default);	for		within	:	circle,	disc	(default),	or	square.

	

value=n Set	the	number	for	this	list	item	to	n. 	

<link> Define	a	link	between	this	document	and	another	document	in	the	document	<head>. 	

charset=charset Specify	the	character	set	used	to	encode	the	target	of	this	link. 	

HRef=url Specify	the	hypertext	reference	URL	of	the	target	document. 	

HReflang=language Specify	the	language	used	for	the	target's	contents	using	a	standard	two-character	ISO
language	name. 	

media=list Specify	a	list	of	media	types	upon	which	this	object	can	be	rendered. 	

rel=relation Indicate	the	relationship	from	this	document	to	the	target. 	

rev=relation Indicate	the	reverse	relationship	from	the	target	to	this	document. 	

type=string Specify	the	MIME	type	for	the	linked	document.	Usually	used	in	conjunction	with	links	to
stylesheets,	when	the	type	is	set	to	text/css. 	

<map>	...	</map> Define	a	map	containing	hotspots	in	a	client-side	image	map. 	

name=name Define	the	name	of	this	map	(required). 	

<marquee>	...
</marquee>

Create	a	scrolling-text	marquee	(Internet	Explorer	only).
*

align=position Align	the	marquee	to	the	top,	middle,	or	bottom	of	the	surrounding	text.

behavior=style Define	the	marquee	style	to	be	scroll,	slide,	or	alternate.

bgcolor=color Set	the	background	color	of	the	marquee.

class=name Specify	a	style	class	controlling	the	appearance	of	this	tag. 	

direction=dir Define	the	direction,	left	or	right,	in	which	the	text	is	to	scroll.

height=n Define	the	height,	in	pixels,	of	the	marquee	area. 	

hspace=n Define	the	space,	in	pixels,	to	be	inserted	to	the	left	and	right	of	the	marquee. 	

loop=value Set	the	number	of	times	to	animate	the	marquee;	value	is	an	integer	or	infinite.

scrollamount=value Set	the	number	of	pixels	to	move	the	text	for	each	scroll	movement.

scrolldelay=value Specify	the	delay,	in	milliseconds,	between	successive	movements	of	the	marquee	text.

style=style Specify	an	inline	style	for	this	tag. 	

vspace=n Define	the	space,	in	pixels,	to	be	inserted	above	and	below	the	marquee. 	

width=n Define	the	width,	in	pixels,	of	the	marquee	area.

<menu>	...	</menu> Define	a	menu	list	containing		tags.

type=bullet Set	the	bullet	style	for	this	list	to	circle,	disc	(default),	or	square.

<meta> Provide	additional	information	about	a	document. *

content=string Specify	the	value	for	the	meta-information	(required). 	

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

http-equiv=string
Specify	the	HTTP	equivalent	name	for	the	meta-information	and	cause	the	server	to
include	the	name	and	content	in	the	HTTP	header	for	this	document	when	it	is	transmitted
to	the	client.

	

lang=language Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

name=string Specify	the	name	of	the	meta-information. 	

scheme=scheme Specify	the	profile	scheme	used	to	interpret	this	property. 	

<nextid> Define	the	next	valid	document	entity	identifier	(obsolete;	do	not	use).
*

n=n Set	the	next	ID	number.

<nobr>	...	</nobr> No	breaks	allowed	in	the	enclosed	text.
*

<noembed>	...
</noembed>

Define	content	to	be	presented	by	browsers	that	do	not	support	the	<embed>	tag.
*

<noframes>	...
</noframes>

Define	content	to	be	presented	by	browsers	that	do	not	support	frames. 	

<noscript>	...
</noscript>

Define	content	to	be	presented	by	browsers	that	do	not	support	the	<script>	tag. 	

<object> Insert	an	object	into	a	document. 	

align=position
Align	the	object	with	the	surrounding	text	(texttop,	middle,	textmiddle,	baseline,	textbottom,
or	center)	or	against	the	margin	with	subsequent	text	flowing	around	the	object	(left	or
right).

archive=list Specify	a	list	of	URLs	of	archives	containing	resources	used	by	this	object. 	

border=n Define,	in	pixels,	the	object's	border	width.

classid=url Supply	the	URL	of	the	object. 	

codebase=url Supply	the	URL	of	the	object's	code	base. 	

codetype=type Specify	the	MIME	type	of	the	code	base. 	

data=url Supply	data	for	the	object. 	

declare Declare	this	object	without	instantiating	it. 	

height=n Define,	in	pixels,	the	height	of	the	object. 	

hspace=n Provide	extra	space,	in	pixels,	to	the	right	and	left	of	the	object. 	

name=name Define	the	name	of	this	object.

notab Do	not	make	this	object	part	of	the	tabbing	order.

shapes Specify	that	this	object	has	shaped	hyperlinks. 	

standby=string Define	a	message	to	display	while	the	object	loads. 	

tabindex=n Specify	this	object's	position	in	the	document	tab	order. 	

type=type Specify	the	MIME	type	for	the	object	data. 	

usemap=url Define	an	image	map	for	use	with	this	object. 	

vspace=n Provide	extra	space,	in	pixels,	above	and	below	the	object. 	

width=n Define,	in	pixels,	the	width	of	the	object. 	

	...	 Define	an	ordered	list	containing	numbered	(ascending)		elements. 	

compact Present	the	list	in	a	more	compact	manner.

start=n Start	numbering	the	list	at	n	rather	than	1.

type=format Set	the	numbering	format	for	this	list	to	A	(capital	letters),	a	(lowercase	letters),	I	(capital
Roman	numerals),	i	(lowercase	Roman	numerals),	or	1	(Arabic	numerals;	default).

<optgroup>	...
</optgroup>

Define	a	group	of	options	within	a	<select>	element.
	

disabled Disable	this	group,	making	it	inactive. 	

label=string Provide	a	label	for	this	group. 	

<option>	...	</option> Define	an	option	within	a	<select>	item	in	a	<form>. 	

disabled Disable	this	option,	making	it	inactive. 	

label=string Provide	a	label	for	this	option. 	

selected Make	this	item	initially	selected. 	

value=string Return	the	specified	value	to	the	forms-processing	application	instead	of	the	<option>
contents. 	

<p>	...	</p> Start	and	end	a	paragraph. 	

align=type Align	the	text	within	the	paragraph	to	left,	center,	or	right.

<param>	...	</param> Supply	a	parameter	to	a	containing	<applet>. *

id=name Define	the	unique	identifier	for	this	parameter. 	

name=name Define	the	name	of	the	parameter.

type=type Specify	the	MIME	type	of	the	parameter. 	

value=string Define	the	value	of	the	parameter. 	

valuetype=type Define	the	type	of	the	value	attribute,	either	as	data,	ref	(the	value	is	a	URL	pointing	to	the
data),	or	object	(the	value	is	the	name	of	an	object	in	this	document). 	

<pre>	...	</pre> Render	the	enclosed	text	in	its	original,	preformatted	style,	honoring	line	breaks	and
spacing	verbatim. 	

width=n Size	the	text,	if	possible,	so	that	n	characters	fit	across	the	display	window.

<q>	...	</q> The	enclosed	text	is	an	inline	quotation	(not	supported	by	Internet	Explorer). 	

cite=url Specify	the	URL	of	the	source	of	the	quoted	material. 	

<s>	...	</s> Same	as	<strike>;	the	enclosed	text	is	struck	through	with	a	horizontal	line.

<samp>	...	</samp> The	enclosed	text	is	a	sample. 	

<script>	...	</script> Define	a	script	within	a	document. *

charset=encoding Specify	the	character	set	used	to	encode	the	script. 	

defer Defer	execution	of	this	script. 	

language=encoding Specify	the	language	used	to	create	the	script. 	

src=url Provide	the	URL	of	the	document	containing	the	script. 	

type=encoding Specify	the	MIME	type	of	the	script. 	

<select>	...	</select> Define	a	multiple-choice	menu	or	scrolling	list	within	a	<form>,	containing	one	or	more
<option>	tags. 	

disabled Disable	this	control,	making	it	inactive. 	

multiple Allow	the	user	to	select	more	than	one	<option>	within	the	<select>. 	

name=name Define	the	name	for	the	selected	<option>	values	that,	if	selected,	are	passed	to	the	forms-
processing	application	(required).

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	this	element. 	

onchange=applet Specify	an	applet	to	be	run	when	the	user	changes	the	value	of	this	element. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	this	element. 	

size=n Display	n	items	using	a	pull-down	menu	for	size=1	(without	multiple	specified)	and	a
scrolling	list	of	n	items	otherwise. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

<small>	...	</small> Format	the	enclosed	text	using	a	smaller	typeface.

	...	 Define	a	span	of	text	for	style	application. 	

<strike>	...	</strike> Strike	through	the	enclosed	text	with	a	horizontal	line.

	...	 Strongly	emphasize	the	enclosed	text. 	

<style>	...	</style> Define	one	or	more	document-level	styles. *

Specify	the	rendering	direction	for	the	title	texteither	left	to	right	(ltr)	or	right	to	left

dir=dir (rtl). 	

lang=language Specify	the	language	used	for	this	tag's	title	using	a	standard	two-character	ISO	language
name. 	

media=list Specify	a	list	of	media	types	upon	which	this	object	can	be	rendered. 	

title=string Specify	a	title	for	this	tag. 	

type=type Define	the	format	of	the	styles	(always	text/css). 	

_{...} Format	the	enclosed	text	as	subscript. 	

^{...} Format	the	enclosed	text	as	superscript. 	

<table>	...	</table> Define	a	table. 	

align=position Align	the	table	in	the	center	and	flow	the	subsequent	text	around	the	table.

background=url Define	a	background	image	for	the	table.

bgcolor=color Define	a	background	color	for	the	entire	table.

border=n Create	a	border	that	is	n	pixels	wide.

bordercolor=color Define	the	border	color	for	the	entire	table.

bordercolordark=color Define	the	dark	border-highlighting	color	for	the	entire	table.

bordercolorlight=colorDefine	the	light	border-highlighting	color	for	the	entire	table.

cellpadding=n Place	n	pixels	of	padding	around	each	cell's	contents. 	

cellspacing=n Place	n	pixels	of	spacing	between	cells. 	

cols=n Specify	the	number	of	columns	in	this	table. 	

frame=type Define	where	table	borders	are	displayedborder	(default),	void,	above,	below,	hsides,	lhs,	rhs,
vsides,	or	box. 	

height=n Define	the	height	of	the	table	in	pixels. 	

hspace=n Specify	the	horizontal	space,	in	pixels,	added	at	the	left	and	right	of	the	table.

nowrap Suppress	text	wrapping	in	table	cells.

rules=edges Determine	where	inner	dividers	are	drawnall	(default),	groups	(only	around	row	and	column
groups),	rows,	cols,	or	none.

	

summary=string Provide	a	summary	description	of	this	table. 	

valign=position Align	text	in	the	table	to	the	top,	center,	bottom,	or	baseline.

vspace=n Specify	the	vertical	space,	in	pixels,	added	at	the	top	and	bottom	of	the	table.

width=n Set	the	width	of	the	table	to	n	pixels	or	a	percentage	of	the	window	width. 	

<tbody>	...	</tbody> Create	a	row	group	within	a	table. 	

align=position Align	the	table	body	cells'	contents	to	the	left,	center,	or	right.

char=char Specify	the	body	group	cell	alignment	character. 	

charoff=value Specify	the	offset	within	the	cells	of	the	alignment	position. 	

valign=position Vertically	align	the	body	group	cells'	contents	to	the	top,	center,	bottom,	or	baseline	of	the
cell.

<td>	...	</td> Define	a	table	data	cell. 	

abbr=string Specify	an	abbreviation	for	the	cell's	contents. 	

align=position Align	the	cell	contents	to	the	left,	center,	or	right.

axis=string Provide	a	name	for	a	related	group	of	cells. 	

background=url Define	a	background	image	for	this	cell.

bgcolor=color Define	the	background	color	for	the	cell.

bordercolor=color Define	the	border	color	for	the	cell.

bordercolordark=color Define	the	dark	border-highlighting	color	for	the	cell.

bordercolorlight=colorDefine	the	light	border-highlighting	color	for	the	cell.

char=char Specify	the	cell	alignment	character. 	

charoff=value Specify	the	offset	of	the	alignment	position	within	the	cell. 	

colspan=n Have	this	cell	straddle	n	adjacent	columns. 	

headers=list Provide	a	list	of	header	cell	IDs	associated	with	this	cell. 	

height=n Define	the	height,	in	pixels,	for	this	cell. 	

nowrap Do	not	automatically	wrap	and	fill	text	in	this	cell.

rowspan=n Have	this	cell	straddle	n	adjacent	rows. 	

scope=scope Define	the	scope	of	this	header	cellrow,	col,	rowgroup,	or	colgroup. 	

valign=position Vertically	align	this	cell's	contents	to	the	top,	center,	bottom,	or	baseline	of	the	cell.

width=n Set	the	width	of	this	cell	to	n	pixels	or	a	percentage	of	the	table	width. 	

<textarea>	...
</textarea>

Define	a	multiline	text-input	area	within	a	<form>;	the	content	of	the	<textarea>	tag	is	the
initial,	default	value. 	

accesskey=char Define	the	hot-key	character	for	this	element. 	

cols=n Display	n	columns	(characters)	of	text	within	the	text	area. 	

disabled Disable	this	control,	making	it	inactive. 	

name=string Define	the	name	for	the	text-area	value	that	is	passed	to	the	forms-processing	application
(required). 	

onblur=applet Specify	an	applet	to	be	run	when	the	mouse	leaves	this	element. 	

onchange=applet Specify	an	applet	to	be	run	when	the	user	changes	the	value	of	this	element. 	

onfocus=applet Specify	an	applet	to	be	run	when	the	mouse	enters	this	element. 	

onselect=applet Specify	an	applet	to	be	run	if	the	user	clicks	this	element. 	

readonly Prevent	user	modification	of	this	element. 	

rows=n Display	n	rows	of	text	within	the	text	area. 	

tabindex=n Specify	this	element's	position	in	the	tabbing	order. 	

<tfoot>	...	</tfoot> Define	a	table	footer. 	

align=position Align	the	footer	cells'	contents	to	the	left,	center,	or	right.

char=char Specify	the	cell	alignment	character. 	

charoff=value Specify	the	offset	within	the	cell	of	the	alignment	position. 	

valign=position Vertically	align	the	footer	cells'	contents	to	the	top,	center,	bottom,	or	baseline	of	the	cell.

<th>	...	</th> Define	a	table	header	cell. 	

abbr=string Specify	an	abbreviation	for	the	cell's	contents. 	

align=position Align	the	cell	contents	to	the	left,	center,	or	right.

axis=string Provide	a	name	for	a	related	group	of	cells. 	

background=url Define	a	background	image	for	this	cell.

bgcolor=color Define	the	background	color	for	the	cell.

bordercolor=color Define	the	border	color	for	the	cell.

bordercolordark=color Define	the	dark	border-highlighting	color	for	the	cell.

bordercolorlight=colorDefine	the	light	border-highlighting	color	for	the	cell.

char=char Specify	the	cell	alignment	character. 	

charoff=value Specify	the	offset	of	the	alignment	position	within	the	cell. 	

colspan=n Have	this	cell	straddle	n	adjacent	columns. 	

headers=list Provide	a	list	of	header	cell	IDs	associated	with	this	cell. 	

height=n Define	the	height,	in	pixels,	for	this	cell. 	

nowrap Do	not	automatically	wrap	and	fill	text	in	this	cell.

rowspan=n Have	this	cell	straddle	n	adjacent	rows. 	

scope=scope Define	the	scope	of	this	header	cellrow,	col,	rowgroup,	or	colgroup. 	

valign=position Vertically	align	this	cell's	contents	to	the	top,	center,	bottom,	or	baseline	of	the	cell.

width=n Set	the	width	of	this	cell	to	n	pixels	or	a	percentage	of	the	table	width. 	

<thead>	...	</thead> Define	a	table	heading. 	

align=position Define	the	horizontal	text	alignment	in	the	headingleft,	center,	right,	or	justify.

char=char Specify	the	cell	alignment	character	for	heading	cells. 	

charoff=value Specify	the	offset	within	the	cells	of	the	alignment	position. 	

valign=position Define	the	vertical	text	alignment	in	the	headingleft,	center,	right,	or	justify.

<title>	...	</title> Define	the	HTML	document's	title. *

dir=dir Specify	the	rendering	direction	for	texteither	left	to	right	(ltr)	or	right	to	left	(rtl). 	

lang=language Specify	the	language	used	for	this	tag's	contents	using	a	standard	two-character	ISO
language	name. 	

<tr>	...	</tr> Define	a	row	of	cells	within	a	table. 	

align=type Align	the	cell	contents	in	this	row	to	the	left,	center,	or	right.

background=url Define	a	background	image	for	this	cell.

bgcolor=color Define	the	background	color	for	this	row.

bordercolor=color For	Internet	Explorer,	define	the	border	color	for	this	row.

bordercolordark=color For	Internet	Explorer,	define	the	dark	border-highlighting	color	for	this	row.

bordercolorlight=color For	Internet	Explorer,	define	the	light	border-highlighting	color	for	this	row.

char=char Specify	the	cell	alignment	character	for	this	row. 	

charoff=value Specify	the	offset	of	the	alignment	position	within	the	cells	of	this	row. 	

nowrap Disable	word	wrap	for	all	cells	in	this	row.

valign=position Vertically	align	the	cell	contents	in	this	row	to	the	top,	center,	bottom,	or	baseline	of	the	cell.

<tt>	...	</tt> Format	the	enclosed	text	in	teletype-style	(monospaced)	font. 	

<u>	...	</u> Underline	the	enclosed	text.

	...	 Define	an	unordered	list	of	bulleted		elements. 	

compact Display	the	list	in	a	more	compact	manner,	if	possible.

type=bullet Set	the	bullet	style	for	this	list	to	circle,	disc	(default),	or	square.

<var>	...	</var> The	enclosed	text	is	a	variable's	name. 	

<wbr> Indicate	a	potential	word	break	point	within	a	<nobr>	section.
*

	
	

Appendix	C.	Cascading	Style	Sheet	Properties	Quick
Reference

In	the	following	table,	we	list,	in	alphabetical	order,	all	the	properties	defined	in
the	World	Wide	Web	Consortium's	(W3C's)	Recommended	Specification	for
Cascading	Style	Sheets	(CSS),	Level	2	(http://www.w3.org/pub/WWW/TR/REC-
CSS2).	We	include	each	property's	possible	values,	defined	as	either	an	explicit
keyword	(shown	in	constant	width)	or	as	one	of	these	values:

angle

A	numeric	value	followed	by	deg,	grad,	or	rad.

color

Either	a	color	name	or	hexadecimal	RGB	value,	as	defined	in	Appendix	G,	or
an	RGB	triple	of	the	form:

rgb(red,	green,	blue)

where	red,	green,	and	blue	are	either	numbers	in	the	range	0	to	255	or
percentage	values	indicating	the	brightness	of	that	color	component.	Values	of
255	or	100%	indicate	that	the	corresponding	color	component	is	at	its	brightest;
values	of	0	or	0%	indicate	that	the	corresponding	color	component	is	turned	off
completely.	For	example:

rgb(27,	119,	207)
rgb(50%,	75%,	0%)

are	both	valid	color	specifications.

frequency

A	numeric	value	followed	by	hz	or	khz,	indicating	hertz	or	kilohertz.

http://www.w3.org/pub/WWW/TR/REC-CSS2

length

An	optional	sign	(either	+	or	-),	immediately	followed	by	a	number	(with	or
without	a	decimal	point),	immediately	followed	by	a	two-character	unit
identifier.	For	values	of	0,	the	unit	identifier	may	be	omitted.

The	unit	identifiers	em	and	ex	refer	to	the	overall	height	of	the	font	and	to	the
height	of	the	letter	"x,"	respectively.	The	unit	identifier	px	is	equal	to	a	single
pixel	on	the	display	device.	The	unit	identifiers	in,	cm,	mm,	pt,	and	pc	refer	to
inches,	centimeters,	millimeters,	points,	and	picas,	respectively.	There	are
72.27	points	in	an	inch	and	12	points	in	a	pica.

number

An	optional	sign,	immediately	followed	by	a	number	(with	or	without	a
decimal	point).

percent

An	optional	sign,	immediately	followed	by	a	number	(with	or	without	a
decimal	point),	immediately	followed	by	a	percent	sign.	The	actual	value	is
computed	as	a	percentage	of	some	other	element	property,	usually	the
element's	size.

shape

A	shape	keyword,	followed	by	a	parentheses-enclosed	list	of	comma-
separated,	shape-specific	parameters.	Currently,	the	only	supported	shape
keyword	is	rect,	which	expects	four	numeric	parameters	denoting	the	offsets
of	the	top,	right,	bottom,	and	left	edges	of	the	rectangle.

time

A	numeric	value	followed	by	s	or	ms,	designating	a	time	in	seconds	or	in
milliseconds.

url

The	keyword	url,	immediately	followed	(no	spaces)	by	a	left	parenthesis,
followed	by	a	URL	optionally	enclosed	in	single	or	double	quotes,	followed	by	a
matching	right	parenthesis.	For	example:

url("http://www.oreilly.com/catalog")

is	a	valid	URL	value.

Finally,	some	values	are	lists	of	other	values	and	are	described	as	a	"list	of"	some
other	value.	In	these	cases,	a	list	consists	of	one	or	more	of	the	allowed	values,
separated	by	commas.

If	several	different	values	are	allowed	for	a	property,	these	alternative	choices	are
separated	by	pipes	(|).

If	the	standard	defines	a	default	value	for	the	property,	that	value	is	underlined.

azimuth
angle	|	left-side	|	far-left	|	left	|	center-
left	|	center	|	center-right	|	right	|	far-
right	|	right-side

Determines	the	position	around	the	listener	at	which	a
sound	is	played.

8.4.12.7

background 	

Composite	property	for	the	background-attachment,
background-color,	background-image,	background-position,
and	background-repeat	properties;	value	is	any	of	these
properties'	values,	in	any	order.

8.4.5.6

background-
attachment scroll	|	fixed Determines	whether	the	background	image	is	fixed	in	the

window	or	scrolls	as	the	document	scrolls.
8.4.5.3

background-
color color	|	transparent Sets	the	background	color	of	an	element. 8.4.5.1

background-
image url	|	none Sets	the	background	image	of	an	element. 8.4.5.2

background-
position

percent	|	length	|	top	|	center	|	bottom	|
left	|	right

Sets	the	initial	position	of	the	element's	background
image,	if	specified;	values	normally	are	paired	to
provide	X,Y	positions;	default	position	is	0%	0%.

8.4.5.4

background-
repeat repeat	|	repeat-x	|	repeat-y	|	no-repeat Determines	how	the	background	image	is	repeated	(tiled)

across	an	element.
8.4.5.5

border 	
Sets	all	four	of	an	element's	borders;	value	is	one	or
more	of	a	color,	a	value	for	border-width,	and	a	value
for	border-style.

8.4.7.6

border-
bottom 	

Sets	an	element's	bottom	border;	value	is	one	or	more
of	a	color,	a	value	for	border-bottom-width,	and	a	value
for	border-style.

8.4.7.6

border-
bottom-
width

length	|	thin	|	medium	|	thick Sets	the	thickness	of	an	element's	bottom	border. 8.4.7.4

border-
collapse collapse	|	separate Sets	the	table	border	rendering	algorithm. 8.4.9.1

border-
color

color Sets	the	color	of	all	four	of	an	element's	borders;
default	is	the	color	of	the	element.

8.4.7.3

border-left 	
Sets	an	element's	left	border;	value	is	one	or	more	of
a	color,	a	value	for	border-left-width,	and	a	value	for
border-style.

8.4.7.6

border-
left-width length	|	thin	|	medium	|	thick Sets	the	thickness	of	an	element's	left	border 8.4.7.4

border-
right 	

Sets	an	element's	right	border;	value	is	one	or	more	of
a	color,	a	value	for	border-right-width,	and	a	value	for
border-style.

8.4.7.6

border-
right-width length	|	thin	|	medium	|	thick Sets	the	thickness	of	an	element's	right	border. 8.4.7.4

border-
spacing 	

With	separate	borders,	sets	the	spacing	between
bordersone	value	sets	vertical	and	horizontal	spacing;
two	values	set	horizontal	and	vertical	spacing,
respectively.

8.4.9.1

border-
style

dashed	|	dotted	|	double	|	groove	|	inset	|
none	|	outset	|	ridge	|	solid

Sets	the	style	of	all	four	of	an	element's	borders. 8.4.7.5

border-top 	
Sets	an	element's	top	border;	value	is	one	or	more	of	a
color,	a	value	for	border-top-width,	and	a	value	for
border-style.

8.4.7.6

border-top-
width length	|	thin	|	medium	|	thick Sets	the	thickness	of	an	element's	top	border. 8.4.7.4

border-
width length	|	thin	|	medium	|	thick Sets	the	thickness	of	all	four	of	an	element's	borders. 8.4.7.4

bottom length	|	percent Used	with	the	position	property	to	place	the	bottom
edge	of	an	element.

8.4.7.14

caption-
side top	|	bottom	|	left	|	right Sets	the	position	for	a	table	caption. 8.4.9.2

clear both	|	left	|	none	|	right
Sets	which	margins	of	an	element	must	not	be	adjacent
to	a	floating	element;	the	element	is	moved	down	until
that	margin	is	clear.

8.4.7.7

clip shape Sets	the	clipping	mask	for	an	element. 8.4.7.8

color color Sets	the	color	of	an	element. 8.4.5.7

content 	 Inserts	generated	content	around	an	element;	see	text 8.4.11.2

for	details.

counter-
increment 	

Increments	a	counter	by	1;	value	is	a	list	of	counter
names,	with	each	name	optionally	followed	by	a	value	by
which	it	is	incremented.

8.4.11.4

counter-
reset 	

Resets	a	counter	to	zero;	value	is	a	list	of	counter
names,	with	each	name	optionally	followed	by	a	value	to
which	it	is	reset.

8.4.11.4

cue-after url	|	none Plays	the	designated	sound	after	an	element	is	spoken. 8.4.12.5

cue-before url	|	none Plays	the	designated	sound	before	an	element	is	spoken. 8.4.12.5

display block	|	inline	|	list-item	|	marker	|	none Controls	how	an	element	is	displayed. 8.4.10.1

elevation angle	|	below	|	level	|	above	|	higher	|	lower Sets	the	height	at	which	a	sound	is	played. 8.4.12.7

empty-cells hide	|	show With	separate	borders,	hides	empty	cells	in	a	table. 8.4.9.1

float left	|	none	|	right
Determines	whether	an	element	floats	to	the	left	or
right,	allowing	text	to	wrap	around	it	or	be	displayed
inline	(using	none).

8.4.7.9

font 	
Sets	all	font	attributes	for	an	element;	value	is	any
of	the	values	for	font-style,	font-variant,	font-weight,
font-size,	line-height,	and	font-family,	in	that	order.

8.4.3.8

font-family List	of	font	names
Defines	the	font	for	an	element,	either	as	a	specific
font	or	as	one	of	the	generic	fonts	serif,	sans-serif,
cursive,	fantasy,	and	monospace.

8.4.3.1

font-size
xx-small	|	x-small	|	small	|	medium	|	large	|
x-large	|	xx-large	|	larger	|	smaller	|	length
|	percent

Defines	the	font	size. 8.4.3.2

font-size-
adjust none	|	ratio Adjusts	the	current	font's	aspect	ratio. 8.4.3.4

font-
stretch

wider	|	normal	|	narrower	|	ultra-condensed
|	extra-condensed	|	condensed	|	semi-
condensed	|	semi-expanded	|	expanded	|
extra-expanded	|	ultra-expanded

Determines	the	amount	to	stretch	the	current	font. 8.4.3.3

font-style normal	|	italic	|	oblique Defines	the	style	of	the	face,	either	normal	or	some
type	of	slanted	style.

8.4.3.5

font-
variant normal	|	small-caps Defines	a	font	to	be	in	small	caps. 8.4.3.6

font-weight normal	|	bold	|	bolder	|	lighter	|	number
Defines	the	font	weightif	a	number	is	used,	it	must	be	a
multiple	of	100	between	100	and	900;	400	is	normal,
700	is	the	same	as	the	keyword	bold.

8.4.3.7

height length	|	auto Defines	the	height	of	an	element. 8.4.7.10

left length	|	percent Used	with	the	position	property	to	place	the	left	edge
of	an	element.

8.4.7.14

letter-
spacing length	|	normal Inserts	additional	space	between	text	characters. 8.4.6.1

line-height length	|	number	|	percent	|	normal Sets	the	distance	between	adjacent	text	baselines. 8.4.6.2

list-style 	
Defines	list-related	styles	using	any	of	the	values	for
list-style-image,	list-style-position,	and	list-style-
type.

8.4.8.4

list-style-
image url	|	none

Defines	an	image	to	be	used	as	a	list	item's	marker,	in
lieu	of	the	value	for	list-style-type. 8.4.8.1

list-style-
position inside	|	outside Indents	or	extends	(default)	a	list	item's	marker	with

respect	to	the	item's	content.
8.4.8.2

list-style-
type

circle	|	disc	|	square	|	decimal	|	lower-alpha
|	lower-roman	|	none	|	upper-alpha	|	upper-
roman

Defines	a	list	item's	marker	either	for	unordered	lists
(circle,	disc,	or	square)	or	for	ordered	lists	(decimal,
lower-alpha,	lower-roman,	none,	upper-alpha,	or	upper-
roman).

8.4.8.3

margin length	|	percent	|	auto Defines	all	four	of	an	element's	margins. 8.4.7.11

margin-
bottom length	|	percent	|	auto

Defines	the	bottom	margin	of	an	element;	default	value
is	0. 8.4.7.11

margin-left length	|	percent	|	auto
Defines	the	left	margin	of	an	element;	default	value	is
0. 8.4.7.11

margin-
right length	|	percent	|	auto

Defines	the	right	margin	of	an	element;	default	value
is	0. 8.4.7.11

margin-top length	|	percent	|	auto
Defines	the	top	margin	of	an	element;	default	value	is
0. 8.4.7.11

orphans number Sets	the	minimum	number	of	lines	allowed	in	an	orphaned
paragraph	fragment.

8.4.13.5

overflow auto	|	hidden	|	scroll	|	visible Determines	how	overflow	content	is	rendered. 8.4.7.13

padding 	 Defines	all	four	padding	amounts	around	an	element. 8.4.7.12

padding-
bottom length	|	percent

Defines	the	bottom	padding	of	an	element;	default	value
is	0. 8.4.7.12

padding-
left length	|	percent

Defines	the	left	padding	of	an	element;	default	value
is	0. 8.4.7.12

padding-
right length	|	percent

Defines	the	right	padding	of	an	element;	default	value
is	0. 8.4.7.12

padding-top length	|	percent Defines	the	top	padding	of	an	element;	default	value	is
0.

8.4.7.12

page name Associates	a	named	page	layout	with	an	element. 8.4.13.3

page-break-
after auto	|	always	|	avoid	|	left	|	right Forces	or	suppresses	page	breaks	after	an	element. 8.4.13.4

page-break-
before auto	|	always	|	avoid	|	left	|	right Forces	or	suppresses	page	breaks	before	an	element. 8.4.13.4

page-break-
inside auto	|	avoid Suppresses	page	breaks	within	an	element. 8.4.13.4

pause-after percent	|	time Pauses	after	speaking	an	element. 8.4.12.4

pause-
before percent	|	time Pauses	before	speaking	an	element. 8.4.12.4

pitch frequency	|	x-low	|	low	|	medium	|	high	|	x-
high

Sets	the	average	pitch	of	an	element's	spoken	content. 8.4.12.3

pitch-range number
Sets	the	range	of	the	pitch,	from	0	(flat)	to	100
(broad);	default	is	50. 8.4.12.3

play-during url	|	mix	|	none	|	repeat

If	a	URL	is	provided,	it	is	played	during	an	element's
spoken	contentspecifying	repeat	loops	the	audio;	mix
causes	it	to	mix	with,	rather	than	replace,	other
background	audio.

8.4.12.6

position absolute	|	fixed	|	relative	|	static Sets	the	positioning	model	for	an	element. 8.4.7.14

quotes List	of	strings Sets	the	quote	symbols	used	to	quote	text. 8.4.11.3

richness number
Sets	the	richness	of	the	voice,	from	0	(flat)	to	100
(mellifluous);	default	is	50. 8.4.12.3

right length	|	percent Used	with	the	position	property	to	place	the	right	edge
of	an	element.

8.4.7.14

speak normal	|	none	|	spell-out Determines	how	an	element's	content	is	spoken. 8.4.12.2

speak-
header always	|	once Determines	whether	table	headers	are	spoken	once	for

each	row	or	column	or	each	time	a	cell	is	spoken.
8.4.9.3

speak-
numeral continuous	|	digits Determines	how	numerals	are	spoken. 8.4.12.2

speak-
punctuation code	|	none Determines	whether	punctuation	is	spoken	or	used	for

inflection.
8.4.12.2

speech-rate number	|	x-slow	|	slow	|	medium	|	fast	|	x-
fast	|	faster	|	slower

Sets	the	rate	of	speech;	a	number	sets	the	rate	in
words	per	minute.

8.4.12.3

stress number Sets	the	stress	of	the	voice,	from	0	(catatonic)	to	100
(hyperactive);	default	is	50.

8.4.12.3

table-
layout auto	|	fixed Determines	the	table-rendering	algorithm. 8.4.9.4

text-align center	|	justify	|	left	|	right Sets	the	text	alignment	style	for	an	element. 8.4.6.3

text-
decoration

blink	|	line-through	|	none	|	overline	|
underline

Defines	any	decoration	for	the	text;	values	may	be
combined. 8.4.6.4

text-indent length	|	percent
Defines	the	indentation	of	the	first	line	of	text	in	an
element;	default	is	0. 8.4.6.5

text-shadow See	text Creates	text	drop	shadows	of	varying	colors	and
offsets.

8.4.6.6

text-
TRansform capitalize	|	lowercase	|	none	|	uppercase transforms	the	text	in	the	element	accordingly. 8.4.6.7

top length	|	percent Used	with	the	position	property	to	place	the	top	edge
of	an	element.

8.4.7.14

vertical-
align

percent	|	baseline	|	bottom	|	middle	|	sub	|
super	|	text-bottom	|	text-top	|	top

Sets	the	vertical	positioning	of	an	element. 8.4.6.8

visibility collapse	|	hidden	|	visible Determines	whether	an	element	is	visible	in	the
document	or	table.

8.4.7.15

voice-
family

List	of	voices Selects	a	named	voice	family	to	speak	an	element's
content.

8.4.12.3

volume number	|	percent	|	silent	|	x-soft	|	soft	|
medium	|	loud	|	x-loud

Sets	the	volume	of	spoken	content;	numeric	values	range
from	0	to	100.

8.4.12.1

white-space normal	|	nowrap	|	pre Defines	how	whitespace	within	an	element	is	handled. 8.4.10.2

widows number Sets	the	minimum	number	of	lines	allowed	in	a	widowed
paragraph	fragment.

8.4.13.5

width length	|	percent	|	auto Defines	the	width	of	an	element. 8.4.7.16

word-
spacing length	|	normal Inserts	additional	space	between	words. 8.4.6.9

z-index number Sets	the	rendering	layer	for	the	current	element. 8.4.7.17

	
	

Appendix	D.	The	HTML	4.01	DTD

The	HTML	4.01	standard	is	formally	defined	as	three	Standard	Generalized
Markup	Language	(SGML)	Document	Type	Definitions	(DTDs):	the	Strict	DTD,	the
Transitional	DTD,	and	the	Frameset	DTD.	The	Strict	DTD	defines	only	those
elements	that	are	not	deprecated	in	the	4.0	standard.	Ideally,	everyone	would
create	HTML	documents	that	conform	to	the	Strict	DTD.	The	Transitional	DTD
includes	all	those	deprecated	elements	and	more	accurately	reflects	the	HTML	in
use	today,	with	many	older	elements	still	in	common	use.	The	Frameset	DTD	is
identical	to	the	Transitional	DTD,	with	the	exception	that	the	document	<body>	is
replaced	by	the	<frameset>	tag.

Since	the	Transitional	DTD	provides	the	broadest	coverage	of	all	HTML	elements
currently	in	use,	it	is	the	DTD	upon	which	this	book	is	based	and	the	one	we
reproduce	here.	Note	that	we	have	reprinted	this	DTD	verbatim	and	have	not
attempted	to	add	extensions	to	it.	Where	our	description	and	the	DTD	deviate,
assume	the	DTD	is	correct:

<!--
				This	is	the	HTML	4.01	Transitional	DTD,	which	includes
				presentation	attributes	and	elements	that	W3C	expects	to	phase	out
				as	support	for	style	sheets	matures.	Authors	should	use	the	Strict
				DTD	when	possible,	but	may	use	the	Transitional	DTD	when	support
				for	presentation	attributes	and	elements	is	required.
				HTML	4	includes	mechanisms	for	style	sheets,	scripting,
				embedding	objects,	improved	support	for	right	to	left	and	mixed
				direction	text,	and	enhancements	to	forms	for	improved
				accessibility	for	people	with	disabilities.
										Draft:	$Date:	2006/10/25	17:08:45	$
										Authors:
														Dave	Raggett	<dsr@w3.org>
														Arnaud	Le	Hors	<lehors@w3.org>
														Ian	Jacobs	<ij@w3.org>
				Further	information	about	HTML	4.01	is	available	at:
								http://www.w3.org/TR/1999/REC-html401-19991224
				The	HTML	4.01	specification	includes	additional
				syntactic	constraints	that	cannot	be	expressed	within
				the	DTDs.
-->
<!ENTITY	%	HTML.Version	"-//W3C//DTD	HTML	4.01	Transitional//EN"
		--	Typical	usage:
				<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01	Transitional//EN"
												"http://www.w3.org/TR/html4/loose.dtd">
				<html>

				<head>
				...
				</head>
				<body>
				...
				</body>
				</html>
				The	URI	used	as	a	system	identifier	with	the	public	identifier	allows
				the	user	agent	to	download	the	DTD	and	entity	sets	as	needed.
				The	FPI	for	the	Strict	HTML	4.01	DTD	is:
								"-//W3C//DTD	HTML	4.01//EN"
				This	version	of	the	strict	DTD	is:
								http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd
				Authors	should	use	the	Strict	DTD	unless	they	need	the
				presentation	control	for	user	agents	that	don't	(adequately)
				support	style	sheets.
				If	you	are	writing	a	document	that	includes	frames,	use
				the	following	FPI:
								"-//W3C//DTD	HTML	4.01	Frameset//EN"
				This	version	of	the	frameset	DTD	is:
								http://www.w3.org/TR/1999/REC-html401-19991224/frameset.dtd
				Use	the	following	(relative)	URIs	to	refer	to
				the	DTDs	and	entity	definitions	of	this	specification:
				"strict.dtd"
				"loose.dtd"
				"frameset.dtd"
				"HTMLlat1.ent"
				"HTMLsymbol.ent"
				"HTMLspecial.ent"
-->
<!--==================	Imported	Names	====================================-->
<!--	Feature	Switch	for	frameset	documents	-->
<!ENTITY	%	HTML.Frameset	"IGNORE">
<!ENTITY	%	ContentType	"CDATA"
				--	media	type,	as	per	[RFC2045]
				-->
<!ENTITY	%	ContentTypes	"CDATA"
				--	comma-separated	list	of	media	types,	as	per	[RFC2045]
				-->
<!ENTITY	%	Charset	"CDATA"
				--	a	character	encoding,	as	per	[RFC2045]
				-->
<!ENTITY	%	Charsets	"CDATA"
				--	a	space-separated	list	of	character	encodings,	as	per	[RFC2045]
				-->

<!ENTITY	%	LanguageCode	"NAME"
				--	a	language	code,	as	per	[RFC1766]
				-->
<!ENTITY	%	Character	"CDATA"
				--	a	single	character	from	[ISO10646]
				-->
<!ENTITY	%	LinkTypes	"CDATA"
				--	space-separated	list	of	link	types
				-->
<!ENTITY	%	MediaDesc	"CDATA"
				--	single	or	comma-separated	list	of	media	descriptors
				-->
<!ENTITY	%	URI	"CDATA"
				--	a	Uniform	Resource	Identifier,
							see	[URI]
				-->
<!ENTITY	%	Datetime	"CDATA"	--	date	and	time	information.	ISO	date	format	-->
<!ENTITY	%	Script	"CDATA"	--	script	expression	-->
<!ENTITY	%	StyleSheet	"CDATA"	--	style	sheet	data	-->
<!ENTITY	%	FrameTarget	"CDATA"	--	render	in	this	frame	-->
<!ENTITY	%	Text	"CDATA">
<!--	Parameter	Entities	-->
<!ENTITY	%	head.misc	"SCRIPT|STYLE|META|LINK|OBJECT"	--	repeatable	head	elements	-->
<!ENTITY	%	heading	"H1|H2|H3|H4|H5|H6">
<!ENTITY	%	list	"UL	|	OL	|		DIR	|	MENU">
<!ENTITY	%	preformatted	"PRE">
<!ENTITY	%	Color	"CDATA"	--	a	color	using	sRGB:	#RRGGBB	as	Hex	values	-->
<!--	There	are	also	16	widely	known	color	names	with	their	sRGB	values:
				Black		=	#000000				Green		=	#008000
				Silver	=	#C0C0C0				Lime			=	#00FF00
				Gray			=	#808080				Olive		=	#808000
				White		=	#FFFFFF				Yellow	=	#FFFF00
				Maroon	=	#800000				Navy			=	#000080
				Red				=	#FF0000				Blue			=	#0000FF
				Purple	=	#800080				Teal			=	#008080
				Fuchsia=	#FF00FF				Aqua			=	#00FFFF
	-->
<!ENTITY	%	bodycolors	"
		bgcolor					%Color;								#IMPLIED		--	document	background	color	--
		text								%Color;								#IMPLIED		--	document	text	color	--
		link								%Color;								#IMPLIED		--	color	of	links	--
		vlink							%Color;								#IMPLIED		--	color	of	visited	links	--
		alink							%Color;								#IMPLIED		--	color	of	selected	links	--
		">
<!--================	Character	mnemonic	entities	=========================-->

<!ENTITY	%	HTMLlat1	PUBLIC
			"-//W3C//ENTITIES	Latin1//EN//HTML"
			"HTMLlat1.ent">
%HTMLlat1;
<!ENTITY	%	HTMLsymbol	PUBLIC
			"-//W3C//ENTITIES	Symbols//EN//HTML"
			"HTMLsymbol.ent">
%HTMLsymbol;
<!ENTITY	%	HTMLspecial	PUBLIC
			"-//W3C//ENTITIES	Special//EN//HTML"
			"HTMLspecial.ent">
%HTMLspecial;
<!--===================	Generic	Attributes	===============================-->
<!ENTITY	%	coreattrs
	"id										ID													#IMPLIED		--	document-wide	unique	id	--
		class							CDATA										#IMPLIED		--	space-separated	list	of	classes	--
		style							%StyleSheet;			#IMPLIED		--	associated	style	info	--
		title							%Text;									#IMPLIED		--	advisory	title	--"
		>
<!ENTITY	%	i18n
	"lang								%LanguageCode;	#IMPLIED		--	language	code	--
		dir									(ltr|rtl)						#IMPLIED		--	direction	for	weak/neutral	text	--"
		>
<!ENTITY	%	events
	"onclick					%Script;							#IMPLIED		--	a	pointer	button	was	clicked	--
		ondblclick		%Script;							#IMPLIED		--	a	pointer	button	was	double	clicked--
		onmousedown	%Script;							#IMPLIED		--	a	pointer	button	was	pressed	down	--
		onmouseup			%Script;							#IMPLIED		--	a	pointer	button	was	released	--
		onmouseover	%Script;							#IMPLIED		--	a	pointer	was	moved	onto	--
		onmousemove	%Script;							#IMPLIED		--	a	pointer	was	moved	within	--
		onmouseout		%Script;							#IMPLIED		--	a	pointer	was	moved	away	--
		onkeypress		%Script;							#IMPLIED		--	a	key	was	pressed	and	released	--
		onkeydown			%Script;							#IMPLIED		--	a	key	was	pressed	down	--
		onkeyup					%Script;							#IMPLIED		--	a	key	was	released	--"
		>
<!--	Reserved	Feature	Switch	-->
<!ENTITY	%	HTML.Reserved	"IGNORE">
<!--	The	following	attributes	are	reserved	for	possible	future	use	-->
<![%HTML.Reserved;	[
<!ENTITY	%	reserved
	"datasrc					%URI;										#IMPLIED		--	a	single	or	tabular	Data	Source	--
		datafld					CDATA										#IMPLIED		--	the	property	or	column	name	--
		dataformatas	(plaintext|html)	plaintext	--	text	or	html	--"
		>
]]>

<!ENTITY	%	reserved	"">
<!ENTITY	%	attrs	"%coreattrs;	%i18n;	%events;">
<!ENTITY	%	align	"align	(left|center|right|justify)		#IMPLIED"
																			--	default	is	left	for	ltr	paragraphs,	right	for	rtl	--
		>
<!--===================	Text	Markup	======================================-->
<!ENTITY	%	fontstyle
	"TT	|	I	|	B	|	U	|	S	|	STRIKE	|	BIG	|	SMALL">
<!ENTITY	%	phrase	"EM	|	STRONG	|	DFN	|	CODE	|
																			SAMP	|	KBD	|	VAR	|	CITE	|	ABBR	|	ACRONYM"	>
<!ENTITY	%	special
			"A	|	IMG	|	APPLET	|	OBJECT	|	FONT	|	BASEFONT	|	BR	|	SCRIPT	|
				MAP	|	Q	|	SUB	|	SUP	|	SPAN	|	BDO	|	IFRAME">
<!ENTITY	%	formctrl	"INPUT	|	SELECT	|	TEXTAREA	|	LABEL	|	BUTTON">
<!--	%inline;	covers	inline	or	"text-level"	elements	-->
<!ENTITY	%	inline	"#PCDATA	|	%fontstyle;	|	%phrase;	|	%special;	|	%formctrl;">
<!ELEMENT	(%fontstyle;|%phrase;)	-	-	(%inline;)*>
<!ATTLIST	(%fontstyle;|%phrase;)
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		>
<!ELEMENT	(SUB|SUP)	-	-	(%inline;)*				--	subscript,	superscript	-->
<!ATTLIST	(SUB|SUP)
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		>
<!ELEMENT	SPAN	-	-	(%inline;)*									--	generic	language/style	container	-->
<!ATTLIST	SPAN
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		%reserved;																											--	reserved	for	possible	future	use	--
		>
<!ELEMENT	BDO	-	-	(%inline;)*										--	I18N	BiDi	over-ride	-->
<!ATTLIST	BDO
		%coreattrs;																										--	id,	class,	style,	title	--
		lang								%LanguageCode;	#IMPLIED		--	language	code	--
		dir									(ltr|rtl)						#REQUIRED	--	directionality	--
		>
<!ELEMENT	BASEFONT	-	O	EMPTY											--	base	font	size	-->
<!ATTLIST	BASEFONT
		id										ID													#IMPLIED		--	document-wide	unique	id	--
		size								CDATA										#REQUIRED	--	base	font	size	for	FONT	elements	--
		color							%Color;								#IMPLIED		--	text	color	--
		face								CDATA										#IMPLIED		--	comma-separated	list	of	font	names	--
		>
<!ELEMENT	FONT	-	-	(%inline;)*									--	local	change	to	font	-->
<!ATTLIST	FONT
		%coreattrs;																										--	id,	class,	style,	title	--

		%i18n;																															--	lang,	dir	--
		size								CDATA										#IMPLIED		--	[+|-]nn	e.g.	size="+1",	size="4"	--
		color							%Color;								#IMPLIED		--	text	color	--
		face								CDATA										#IMPLIED		--	comma-separated	list	of	font	names	--
		>
<!ELEMENT	BR	-	O	EMPTY																	--	forced	line	break	-->
<!ATTLIST	BR
		%coreattrs;																										--	id,	class,	style,	title	--
		clear							(left|all|right|none)	none	--	control	of	text	flow	--
		>
<!--==================	HTML	content	models	===============================-->
<!--
				HTML	has	two	basic	content	models:
								%inline;					character	level	elements	and	text	strings
								%block;						block-like	elements	e.g.	paragraphs	and	lists
-->
<!ENTITY	%	block
					"P	|	%heading;	|	%list;	|	%preformatted;	|	DL	|	DIV	|	CENTER	|
						NOSCRIPT	|	NOFRAMES	|	BLOCKQUOTE	|	FORM	|	ISINDEX	|	HR	|
						TABLE	|	FIELDSET	|	ADDRESS">
<!ENTITY	%	flow	"%block;	|	%inline;">
<!--===================	Document	Body	====================================-->
<!ELEMENT	BODY	O	O	(%flow;)*	+(INS|DEL)	--	document	body	-->
<!ATTLIST	BODY
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		onload										%Script;			#IMPLIED		--	the	document	has	been	loaded	--
		onunload								%Script;			#IMPLIED		--	the	document	has	been	removed	--
		background						%URI;						#IMPLIED		--	texture	tile	for	document	background	--
		%bodycolors;																									--	bgcolor,	text,	link,	vlink,	alink	--
		>
<!ELEMENT	ADDRESS	-	-	((%inline;)|P)*		--	information	on	author	-->
<!ATTLIST	ADDRESS
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		>
<!ELEMENT	DIV	-	-	(%flow;)*												--	generic	language/style	container	-->
<!ATTLIST	DIV
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		%align;																														--	align,	text	alignment	--
		%reserved;																											--	reserved	for	possible	future	use	--
		>
<!ELEMENT	CENTER	-	-	(%flow;)*									--	shorthand	for	DIV	align=center	-->
<!ATTLIST	CENTER
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		>
<!--==================	The	Anchor	Element	================================-->

<!ENTITY	%	Shape	"(rect|circle|poly|default)">
<!ENTITY	%	Coords	"CDATA"	--	comma-separated	list	of	lengths	-->
<!ELEMENT	A	-	-	(%inline;)*	-(A)							--	anchor	-->
<!ATTLIST	A
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		charset					%Charset;						#IMPLIED		--	char	encoding	of	linked	resource	--
		type								%ContentType;		#IMPLIED		--	advisory	content	type	--
		name								CDATA										#IMPLIED		--	named	link	end	--
		href								%URI;										#IMPLIED		--	URI	for	linked	resource	--
		hreflang				%LanguageCode;	#IMPLIED		--	language	code	--
		target						%FrameTarget;		#IMPLIED		--	render	in	this	frame	--
		rel									%LinkTypes;				#IMPLIED		--	forward	link	types	--
		rev									%LinkTypes;				#IMPLIED		--	reverse	link	types	--
		accesskey			%Character;				#IMPLIED		--	accessibility	key	character	--
		shape							%Shape;								rect						--	for	use	with	client-side	image	maps	--
		coords						%Coords;							#IMPLIED		--	for	use	with	client-side	image	maps	--
		tabindex				NUMBER									#IMPLIED		--	position	in	tabbing	order	--
		onfocus					%Script;							#IMPLIED		--	the	element	got	the	focus	--
		onblur						%Script;							#IMPLIED		--	the	element	lost	the	focus	--
		>
<!--==================	Client-side	image	maps	============================-->
<!--	These	can	be	placed	in	the	same	document	or	grouped	in	a
					separate	document	although	this	isn't	yet	widely	supported	-->
<!ELEMENT	MAP	-	-	((%block;)	|	AREA)+	--	client-side	image	map	-->
<!ATTLIST	MAP
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		name								CDATA										#REQUIRED	--	for	reference	by	usemap	--
		>
<!ELEMENT	AREA	-	O	EMPTY															--	client-side	image	map	area	-->
<!ATTLIST	AREA
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		shape							%Shape;								rect						--	controls	interpretation	of	coords	--
		coords						%Coords;							#IMPLIED		--	comma-separated	list	of	lengths	--
		href								%URI;										#IMPLIED		--	URI	for	linked	resource	--
		target						%FrameTarget;		#IMPLIED		--	render	in	this	frame	--
		nohref						(nohref)							#IMPLIED		--	this	region	has	no	action	--
		alt									%Text;									#REQUIRED	--	short	description	--
		tabindex				NUMBER									#IMPLIED		--	position	in	tabbing	order	--
		accesskey			%Character;				#IMPLIED		--	accessibility	key	character	--
		onfocus					%Script;							#IMPLIED		--	the	element	got	the	focus	--
		onblur						%Script;							#IMPLIED		--	the	element	lost	the	focus	--
		>
<!--==================	The	LINK	Element	==================================-->
<!--
		Relationship	values	can	be	used	in	principle:

			a)	for	document	specific	toolbars/menus	when	used
						with	the	LINK	element	in	document	head	e.g.
						start,	contents,	previous,	next,	index,	end,	help
			b)	to	link	to	a	separate	style	sheet	(rel=stylesheet)
			c)	to	make	a	link	to	a	script	(rel=script)
			d)	by	stylesheets	to	control	how	collections	of
						html	nodes	are	rendered	into	printed	documents
			e)	to	make	a	link	to	a	printable	version	of	this	document
						e.g.	a	postscript	or	pdf	version	(rel=alternate	media=print)
-->
<!ELEMENT	LINK	-	O	EMPTY															--	a	media-independent	link	-->
<!ATTLIST	LINK
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		charset					%Charset;						#IMPLIED		--	char	encoding	of	linked	resource	--
		href								%URI;										#IMPLIED		--	URI	for	linked	resource	--
		hreflang				%LanguageCode;	#IMPLIED		--	language	code	--
		type								%ContentType;		#IMPLIED		--	advisory	content	type	--
		rel									%LinkTypes;				#IMPLIED		--	forward	link	types	--
		rev									%LinkTypes;				#IMPLIED		--	reverse	link	types	--
		media							%MediaDesc;				#IMPLIED		--	for	rendering	on	these	media	--
		target						%FrameTarget;		#IMPLIED		--	render	in	this	frame	--
		>
<!--===================	Images	===-->
<!--	Length	defined	in	strict	DTD	for	cellpadding/cellspacing	-->
<!ENTITY	%	Length	"CDATA"	--	nn	for	pixels	or	nn%	for	percentage	length	-->
<!ENTITY	%	MultiLength	"CDATA"	--	pixel,	percentage,	or	relative	-->
<![%HTML.Frameset;	[
<!ENTITY	%	MultiLengths	"CDATA"	--	comma-separated	list	of	MultiLength	-->
]]>
<!ENTITY	%	Pixels	"CDATA"	--	integer	representing	length	in	pixels	-->
<!ENTITY	%	IAlign	"(top|middle|bottom|left|right)"	--	center?	-->
<!--	To	avoid	problems	with	text-only	UAs	as	well	as
			to	make	image	content	understandable	and	navigable
			to	users	of	non-visual	UAs,	you	need	to	provide
			a	description	with	ALT,	and	avoid	server-side	image	maps	-->
<!ELEMENT	IMG	-	O	EMPTY																--	Embedded	image	-->
<!ATTLIST	IMG
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		src									%URI;										#REQUIRED	--	URI	of	image	to	embed	--
		alt									%Text;									#REQUIRED	--	short	description	--
		longdesc				%URI;										#IMPLIED		--	link	to	long	description
																																										(complements	alt)	--
		name								CDATA										#IMPLIED		--	name	of	image	for	scripting	--
		height						%Length;							#IMPLIED		--	override	height	--
		width							%Length;							#IMPLIED		--	override	width	--

		usemap						%URI;										#IMPLIED		--	use	client-side	image	map	--
		ismap							(ismap)								#IMPLIED		--	use	server-side	image	map	--
		align							%IAlign;							#IMPLIED		--	vertical	or	horizontal	alignment	--
		border						%Pixels;							#IMPLIED		--	link	border	width	--
		hspace						%Pixels;							#IMPLIED		--	horizontal	gutter	--
		vspace						%Pixels;							#IMPLIED		--	vertical	gutter	--
		>
<!--	USEMAP	points	to	a	MAP	element	which	may	be	in	this	document
		or	an	external	document,	although	the	latter	is	not	widely	supported	-->
<!--====================	OBJECT	======================================-->
<!--
		OBJECT	is	used	to	embed	objects	as	part	of	HTML	pages
		PARAM	elements	should	precede	other	content.	SGML	mixed	content
		model	technicality	precludes	specifying	this	formally	...
-->
<!ELEMENT	OBJECT	-	-	(PARAM	|	%flow;)*
	--	generic	embedded	object	-->
<!ATTLIST	OBJECT
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		declare					(declare)						#IMPLIED		--	declare	but	don't	instantiate	flag	--
		classid					%URI;										#IMPLIED		--	identifies	an	implementation	--
		codebase				%URI;										#IMPLIED		--	base	URI	for	classid,	data,	archive--
		data								%URI;										#IMPLIED		--	reference	to	object's	data	--
		type								%ContentType;		#IMPLIED		--	content	type	for	data	--
		codetype				%ContentType;		#IMPLIED		--	content	type	for	code	--
		archive					CDATA										#IMPLIED		--	space-separated	list	of	URIs	--
		standby					%Text;									#IMPLIED		--	message	to	show	while	loading	--
		height						%Length;							#IMPLIED		--	override	height	--
		width							%Length;							#IMPLIED		--	override	width	--
		usemap						%URI;										#IMPLIED		--	use	client-side	image	map	--
		name								CDATA										#IMPLIED		--	submit	as	part	of	form	--
		tabindex				NUMBER									#IMPLIED		--	position	in	tabbing	order	--
		align							%IAlign;							#IMPLIED		--	vertical	or	horizontal	alignment	--
		border						%Pixels;							#IMPLIED		--	link	border	width	--
		hspace						%Pixels;							#IMPLIED		--	horizontal	gutter	--
		vspace						%Pixels;							#IMPLIED		--	vertical	gutter	--
		%reserved;																											--	reserved	for	possible	future	use	--
		>
<!ELEMENT	PARAM	-	O	EMPTY														--	named	property	value	-->
<!ATTLIST	PARAM
		id										ID													#IMPLIED		--	document-wide	unique	id	--
		name								CDATA										#REQUIRED	--	property	name	--
		value							CDATA										#IMPLIED		--	property	value	--
		valuetype			(DATA|REF|OBJECT)	DATA			--	How	to	interpret	value	--
		type								%ContentType;		#IMPLIED		--	content	type	for	value

																																										when	valuetype=ref	--
		>
<!--===================	Java	APPLET	==================================-->
<!--
		One	of	code	or	object	attributes	must	be	present.
		Place	PARAM	elements	before	other	content.
-->
<!ELEMENT	APPLET	-	-	(PARAM	|	%flow;)*	--	Java	applet	-->
<!ATTLIST	APPLET
		%coreattrs;																										--	id,	class,	style,	title	--
		codebase				%URI;										#IMPLIED		--	optional	base	URI	for	applet	--
		archive					CDATA										#IMPLIED		--	comma-separated	archive	list	--
		code								CDATA										#IMPLIED		--	applet	class	file	--
		object						CDATA										#IMPLIED		--	serialized	applet	file	--
		alt									%Text;									#IMPLIED		--	short	description	--
		name								CDATA										#IMPLIED		--	allows	applets	to	find	each	other	--
		width							%Length;							#REQUIRED	--	initial	width	--
		height						%Length;							#REQUIRED	--	initial	height	--
		align							%IAlign;							#IMPLIED		--	vertical	or	horizontal	alignment	--
		hspace						%Pixels;							#IMPLIED		--	horizontal	gutter	--
		vspace						%Pixels;							#IMPLIED		--	vertical	gutter	--
		>
<!--===================	Horizontal	Rule	==================================-->
<!ELEMENT	HR	-	O	EMPTY	--	horizontal	rule	-->
<!ATTLIST	HR
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		align							(left|center|right)	#IMPLIED
		noshade					(noshade)						#IMPLIED
		size								%Pixels;							#IMPLIED
		width							%Length;							#IMPLIED
		>
<!--===================	Paragraphs	=======================================-->
<!ELEMENT	P	-	O	(%inline;)*												--	paragraph	-->
<!ATTLIST	P
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		%align;																														--	align,	text	alignment	--
		>
<!--===================	Headings	===-->
<!--
		There	are	six	levels	of	headings	from	H1	(the	most	important)
		to	H6	(the	least	important).
-->
<!ELEMENT	(%heading;)		-	-	(%inline;)*	--	heading	-->
<!ATTLIST	(%heading;)
		%attrs;																														--	%coreattrs,	%i18n,	%events	--

		%align;																														--	align,	text	alignment	--
		>
<!--===================	Preformatted	Text	================================-->
<!--	excludes	markup	for	images	and	changes	in	font	size	-->
<!ENTITY	%	pre.exclusion	"IMG|OBJECT|APPLET|BIG|SMALL|SUB|SUP|FONT|BASEFONT">
<!ELEMENT	PRE	-	-	(%inline;)*	-(%pre.exclusion;)	--	preformatted	text	-->
<!ATTLIST	PRE
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		width							NUMBER									#IMPLIED
		>
<!--=====================	Inline	Quotes	==================================-->
<!ELEMENT	Q	-	-	(%inline;)*												--	short	inline	quotation	-->
<!ATTLIST	Q
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		cite								%URI;										#IMPLIED		--	URI	for	source	document	or	msg	--
		>
<!--===================	Block-like	Quotes	================================-->
<!ELEMENT	BLOCKQUOTE	-	-	(%flow;)*					--	long	quotation	-->
<!ATTLIST	BLOCKQUOTE
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		cite								%URI;										#IMPLIED		--	URI	for	source	document	or	msg	--
		>
<!--===================	Inserted/Deleted	Text	============================-->
<!--	INS/DEL	are	handled	by	inclusion	on	BODY	-->
<!ELEMENT	(INS|DEL)	-	-	(%flow;)*						--	inserted	text,	deleted	text	-->
<!ATTLIST	(INS|DEL)
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		cite								%URI;										#IMPLIED		--	info	on	reason	for	change	--
		datetime				%Datetime;					#IMPLIED		--	date	and	time	of	change	--
		>
<!--===================	Lists	==-->
<!--	definition	lists	-	DT	for	term,	DD	for	its	definition	-->
<!ELEMENT	DL	-	-	(DT|DD)+														--	definition	list	-->
<!ATTLIST	DL
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		compact					(compact)						#IMPLIED		--	reduced	interitem	spacing	--
		>
<!ELEMENT	DT	-	O	(%inline;)*											--	definition	term	-->
<!ELEMENT	DD	-	O	(%flow;)*													--	definition	description	-->
<!ATTLIST	(DT|DD)
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		>
<!--	Ordered	lists	(OL)	numbering	style
				1			arablic	numbers					1,	2,	3,	...
				a			lower	alpha									a,	b,	c,	...

				A			upper	alpha									A,	B,	C,	...
				i			lower	roman									i,	ii,	iii,	...
				I			upper	roman									I,	II,	III,	...
				The	style	is	applied	to	the	sequence	number	which	by	default
				is	reset	to	1	for	the	first	list	item	in	an	ordered	list.
				This	can't	be	expressed	directly	in	SGML	due	to	case	folding.
-->
<!ENTITY	%	OLStyle	"CDATA"													--	constrained	to:	"(1|a|A|i|I)"	-->
<!ELEMENT	OL	-	-	(LI)+																	--	ordered	list	-->
<!ATTLIST	OL
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		type								%OLStyle;						#IMPLIED		--	numbering	style	--
		compact					(compact)						#IMPLIED		--	reduced	interitem	spacing	--
		start							NUMBER									#IMPLIED		--	starting	sequence	number	--
		>
<!--	Unordered	Lists	(UL)	bullet	styles	-->
<!ENTITY	%	ULStyle	"(disc|square|circle)">
<!ELEMENT	UL	-	-	(LI)+																	--	unordered	list	-->
<!ATTLIST	UL
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		type								%ULStyle;						#IMPLIED		--	bullet	style	--
		compact					(compact)						#IMPLIED		--	reduced	interitem	spacing	--
		>
<!ELEMENT	(DIR|MENU)	-	-	(LI)+	-(%block;)	--	directory	list,	menu	list	-->
<!ATTLIST	DIR
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		compact					(compact)						#IMPLIED		--	reduced	interitem	spacing	--
		>
<!ATTLIST	MENU
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		compact					(compact)						#IMPLIED		--	reduced	interitem	spacing	--
		>
<!ENTITY	%	LIStyle	"CDATA"													--	constrained	to:	"(%ULStyle;|%OLStyle;)"	-->
<!ELEMENT	LI	-	O	(%flow;)*													--	list	item	-->
<!ATTLIST	LI
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		type								%LIStyle;						#IMPLIED		--	list	item	style	--
		value							NUMBER									#IMPLIED		--	reset	sequence	number	--
		>
<!--================	Forms	===-->
<!ELEMENT	FORM	-	-	(%flow;)*	-(FORM)			--	interactive	form	-->
<!ATTLIST	FORM
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		action						%URI;										#REQUIRED	--	server-side	form	handler	--
		method						(GET|POST)					GET							--	HTTP	method	used	to	submit	the	form--

		enctype					%ContentType;		"application/x-www-form-urlencoded"
		accept						%ContentTypes;	#IMPLIED		--	list	of	MIME	types	for	file	upload	--
		name								CDATA										#IMPLIED		--	name	of	form	for	scripting	--
		onsubmit				%Script;							#IMPLIED		--	the	form	was	submitted	--
		onreset					%Script;							#IMPLIED		--	the	form	was	reset	--
		target						%FrameTarget;		#IMPLIED		--	render	in	this	frame	--
		accept-charset	%Charsets;		#IMPLIED		--	list	of	supported	charsets	--
		>
<!--	Each	label	must	not	contain	more	than	ONE	field	-->
<!ELEMENT	LABEL	-	-	(%inline;)*	-(LABEL)	--	form	field	label	text	-->
<!ATTLIST	LABEL
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		for									IDREF										#IMPLIED		--	matches	field	ID	value	--
		accesskey			%Character;				#IMPLIED		--	accessibility	key	character	--
		onfocus					%Script;							#IMPLIED		--	the	element	got	the	focus	--
		onblur						%Script;							#IMPLIED		--	the	element	lost	the	focus	--
		>
<!ENTITY	%	InputType
		"(TEXT	|	PASSWORD	|	CHECKBOX	|
				RADIO	|	SUBMIT	|	RESET	|
				FILE	|	HIDDEN	|	IMAGE	|	BUTTON)"
			>
<!--	attribute	name	required	for	all	but	submit	and	reset	-->
<!ELEMENT	INPUT	-	O	EMPTY														--	form	control	-->
<!ATTLIST	INPUT
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		type								%InputType;				TEXT						--	what	kind	of	widget	is	needed	--
		name								CDATA										#IMPLIED		--	submit	as	part	of	form	--
		value							CDATA										#IMPLIED		--	specify	for	radio	buttons	and	checkboxes	--
		checked					(checked)						#IMPLIED		--	for	radio	buttons	and	checkboxes	--
		disabled				(disabled)					#IMPLIED		--	unavailable	in	this	context	--
		readonly				(readonly)					#IMPLIED		--	for	text	and	passwd	--
		size								CDATA										#IMPLIED		--	specific	to	each	type	of	field	--
		maxlength			NUMBER									#IMPLIED		--	max	chars	for	text	fields	--
		src									%URI;										#IMPLIED		--	for	fields	with	images	--
		alt									CDATA										#IMPLIED		--	short	description	--
		usemap						%URI;										#IMPLIED		--	use	client-side	image	map	--
		ismap							(ismap)								#IMPLIED		--	use	server-side	image	map	--
		tabindex				NUMBER									#IMPLIED		--	position	in	tabbing	order	--
		accesskey			%Character;				#IMPLIED		--	accessibility	key	character	--
		onfocus					%Script;							#IMPLIED		--	the	element	got	the	focus	--
		onblur						%Script;							#IMPLIED		--	the	element	lost	the	focus	--
		onselect				%Script;							#IMPLIED		--	some	text	was	selected	--
		onchange				%Script;							#IMPLIED		--	the	element	value	was	changed	--
		accept						%ContentTypes;	#IMPLIED		--	list	of	MIME	types	for	file	upload	--

		align							%IAlign;							#IMPLIED		--	vertical	or	horizontal	alignment	--
		%reserved;																											--	reserved	for	possible	future	use	--
		>
<!ELEMENT	SELECT	-	-	(OPTGROUP|OPTION)+	--	option	selector	-->
<!ATTLIST	SELECT
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		name								CDATA										#IMPLIED		--	field	name	--
		size								NUMBER									#IMPLIED		--	rows	visible	--
		multiple				(multiple)					#IMPLIED		--	default	is	single	selection	--
		disabled				(disabled)					#IMPLIED		--	unavailable	in	this	context	--
		tabindex				NUMBER									#IMPLIED		--	position	in	tabbing	order	--
		onfocus					%Script;							#IMPLIED		--	the	element	got	the	focus	--
		onblur						%Script;							#IMPLIED		--	the	element	lost	the	focus	--
		onchange				%Script;							#IMPLIED		--	the	element	value	was	changed	--
		%reserved;																											--	reserved	for	possible	future	use	--
		>
<!ELEMENT	OPTGROUP	-	-	(OPTION)+	--	option	group	-->
<!ATTLIST	OPTGROUP
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		disabled				(disabled)					#IMPLIED		--	unavailable	in	this	context	--
		label							%Text;									#REQUIRED	--	for	use	in	hierarchical	menus	--
		>
<!ELEMENT	OPTION	-	O	(#PCDATA)									--	selectable	choice	-->
<!ATTLIST	OPTION
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		selected				(selected)					#IMPLIED
		disabled				(disabled)					#IMPLIED		--	unavailable	in	this	context	--
		label							%Text;									#IMPLIED		--	for	use	in	hierarchical	menus	--
		value							CDATA										#IMPLIED		--	defaults	to	element	content	--
>
<!ELEMENT	TEXTAREA	-	-	(#PCDATA)							--	multi-line	text	field	-->
<!ATTLIST	TEXTAREA
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		name								CDATA										#IMPLIED
		rows								NUMBER									#REQUIRED
		cols								NUMBER									#REQUIRED
		disabled				(disabled)					#IMPLIED		--	unavailable	in	this	context	--
		readonly				(readonly)					#IMPLIED
		tabindex				NUMBER									#IMPLIED		--	position	in	tabbing	order	--
		accesskey			%Character;				#IMPLIED		--	accessibility	key	character	--
		onfocus					%Script;							#IMPLIED		--	the	element	got	the	focus	--
		onblur						%Script;							#IMPLIED		--	the	element	lost	the	focus	--
		onselect				%Script;							#IMPLIED		--	some	text	was	selected	--
		onchange				%Script;							#IMPLIED		--	the	element	value	was	changed	--
		%reserved;																											--	reserved	for	possible	future	use	--

		>
<!--
		#PCDATA	is	to	solve	the	mixed	content	problem,
		per	specification	only	whitespace	is	allowed	there!
	-->
<!ELEMENT	FIELDSET	-	-	(#PCDATA,LEGEND,(%flow;)*)	--	form	control	group	-->
<!ATTLIST	FIELDSET
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		>
<!ELEMENT	LEGEND	-	-	(%inline;)*							--	fieldset	legend	-->
<!ENTITY	%	LAlign	"(top|bottom|left|right)">
<!ATTLIST	LEGEND
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		accesskey			%Character;				#IMPLIED		--	accessibility	key	character	--
		align							%LAlign;							#IMPLIED		--	relative	to	fieldset	--
		>
<!ELEMENT	BUTTON	-	-
					(%flow;)*	-(A|%formctrl;|FORM|ISINDEX|FIELDSET|IFRAME)
					--	push	button	-->
<!ATTLIST	BUTTON
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		name								CDATA										#IMPLIED
		value							CDATA										#IMPLIED		--	sent	to	server	when	submitted	--
		type								(button|submit|reset)	submit	--	for	use	as	form	button	--
		disabled				(disabled)					#IMPLIED		--	unavailable	in	this	context	--
		tabindex				NUMBER									#IMPLIED		--	position	in	tabbing	order	--
		accesskey			%Character;				#IMPLIED		--	accessibility	key	character	--
		onfocus					%Script;							#IMPLIED		--	the	element	got	the	focus	--
		onblur						%Script;							#IMPLIED		--	the	element	lost	the	focus	--
		%reserved;																											--	reserved	for	possible	future	use	--
		>
<!--=======================	Tables	=======================================-->
<!--	IETF	HTML	table	standard,	see	[RFC1942]	-->
<!--
	The	BORDER	attribute	sets	the	thickness	of	the	frame	around	the
	table.	The	default	units	are	screen	pixels.
	The	FRAME	attribute	specifies	which	parts	of	the	frame	around
	the	table	should	be	rendered.	The	values	are	not	the	same	as
	CALS	to	avoid	a	name	clash	with	the	VALIGN	attribute.
	The	value	"border"	is	included	for	backwards	compatibility	with
	<TABLE	BORDER>	which	yields	frame=border	and	border=implied
	For	<TABLE	BORDER=1>	you	get	border=1	and	frame=implied.	In	this
	case,	it	is	appropriate	to	treat	this	as	frame=border	for	backwards
	compatibility	with	deployed	browsers.
-->

<!ENTITY	%	TFrame	"(void|above|below|hsides|lhs|rhs|vsides|box|border)">
<!--
	The	RULES	attribute	defines	which	rules	to	draw	between	cells:
	If	RULES	is	absent	then	assume:
					"none"	if	BORDER	is	absent	or	BORDER=0	otherwise	"all"
-->
<!ENTITY	%	TRules	"(none	|	groups	|	rows	|	cols	|	all)">

<!--	horizontal	placement	of	table	relative	to	document	-->
<!ENTITY	%	TAlign	"(left|center|right)">
<!--	horizontal	alignment	attributes	for	cell	contents	-->
<!ENTITY	%	cellhalign
		"align						(left|center|right|justify|char)	#IMPLIED
			char							%Character;				#IMPLIED		--	alignment	char,	e.g.	char=':'	--
			charoff				%Length;							#IMPLIED		--	offset	for	alignment	char	--"
		>
<!--	vertical	alignment	attributes	for	cell	contents	-->
<!ENTITY	%	cellvalign
		"valign					(top|middle|bottom|baseline)	#IMPLIED"
		>
<!ELEMENT	TABLE	-	-
					(CAPTION?,	(COL*|COLGROUP*),	THEAD?,	TFOOT?,	TBODY+)>
<!ELEMENT	CAPTION		-	-	(%inline;)*					--	table	caption	-->
<!ELEMENT	THEAD				-	O	(TR)+											--	table	header	-->
<!ELEMENT	TFOOT				-	O	(TR)+											--	table	footer	-->
<!ELEMENT	TBODY				O	O	(TR)+											--	table	body	-->
<!ELEMENT	COLGROUP	-	O	(COL)*										--	table	column	group	-->
<!ELEMENT	COL						-	O	EMPTY											--	table	column	-->
<!ELEMENT	TR							-	O	(TH|TD)+								--	table	row	-->
<!ELEMENT	(TH|TD)		-	O	(%flow;)*							--	table	header	cell,	table	data	cell-->
<!ATTLIST	TABLE																								--	table	element	--
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		summary					%Text;									#IMPLIED		--	purpose/structure	for	speech	output--
		width							%Length;							#IMPLIED		--	table	width	--
		border						%Pixels;							#IMPLIED		--	controls	frame	width	around	table	--
		frame							%TFrame;							#IMPLIED		--	which	parts	of	frame	to	render	--
		rules							%TRules;							#IMPLIED		--	rulings	between	rows	and	cols	--
		cellspacing	%Length;							#IMPLIED		--	spacing	between	cells	--
		cellpadding	%Length;							#IMPLIED		--	spacing	within	cells	--
		align							%TAlign;							#IMPLIED		--	table	position	relative	to	window	--
		bgcolor					%Color;								#IMPLIED		--	background	color	for	cells	--
		%reserved;																											--	reserved	for	possible	future	use	--
		datapagesize	CDATA									#IMPLIED		--	reserved	for	possible	future	use	--
		>
<!ENTITY	%	CAlign	"(top|bottom|left|right)">

<!ATTLIST	CAPTION
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		align							%CAlign;							#IMPLIED		--	relative	to	table	--
		>
<!--
COLGROUP	groups	a	set	of	COL	elements.	It	allows	you	to	group
several	semantically	related	columns	together.
-->
<!ATTLIST	COLGROUP
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		span								NUMBER									1									--	default	number	of	columns	in	group	--
		width							%MultiLength;		#IMPLIED		--	default	width	for	enclosed	COLs	--
		%cellhalign;																									--	horizontal	alignment	in	cells	--
		%cellvalign;																									--	vertical	alignment	in	cells	--
		>
<!--
	COL	elements	define	the	alignment	properties	for	cells	in
	one	or	more	columns.
	The	WIDTH	attribute	specifies	the	width	of	the	columns,	e.g.
					width=64								width	in	screen	pixels
					width=0.5*						relative	width	of	0.5
	The	SPAN	attribute	causes	the	attributes	of	one
	COL	element	to	apply	to	more	than	one	column.
-->
<!ATTLIST	COL																										--	column	groups	and	properties	--
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		span								NUMBER									1									--	COL	attributes	affect	N	columns	--
		width							%MultiLength;		#IMPLIED		--	column	width	specification	--
		%cellhalign;																									--	horizontal	alignment	in	cells	--
		%cellvalign;																									--	vertical	alignment	in	cells	--
		>
<!--
				Use	THEAD	to	duplicate	headers	when	breaking	table
				across	page	boundaries,	or	for	static	headers	when
				TBODY	sections	are	rendered	in	scrolling	panel.
				Use	TFOOT	to	duplicate	footers	when	breaking	table
				across	page	boundaries,	or	for	static	footers	when
				TBODY	sections	are	rendered	in	scrolling	panel.
				Use	multiple	TBODY	sections	when	rules	are	needed
				between	groups	of	table	rows.
-->
<!ATTLIST	(THEAD|TBODY|TFOOT)										--	table	section	--
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		%cellhalign;																									--	horizontal	alignment	in	cells	--
		%cellvalign;																									--	vertical	alignment	in	cells	--

		>
<!ATTLIST	TR																											--	table	row	--
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		%cellhalign;																									--	horizontal	alignment	in	cells	--
		%cellvalign;																									--	vertical	alignment	in	cells	--
		bgcolor					%Color;								#IMPLIED		--	background	color	for	row	--
		>
<!--	Scope	is	simpler	than	headers	attribute	for	common	tables	-->
<!ENTITY	%	Scope	"(row|col|rowgroup|colgroup)">
<!--	TH	is	for	headers,	TD	for	data,	but	for	cells	acting	as	both	use	TD	-->
<!ATTLIST	(TH|TD)																						--	header	or	data	cell	--
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		abbr								%Text;									#IMPLIED		--	abbreviation	for	header	cell	--
		axis								CDATA										#IMPLIED		--	comma-separated	list	of	related	headers--
		headers					IDREFS									#IMPLIED		--	list	of	id's	for	header	cells	--
		scope							%Scope;								#IMPLIED		--	scope	covered	by	header	cells	--
		rowspan					NUMBER									1									--	number	of	rows	spanned	by	cell	--
		colspan					NUMBER									1									--	number	of	cols	spanned	by	cell	--
		%cellhalign;																									--	horizontal	alignment	in	cells	--
		%cellvalign;																									--	vertical	alignment	in	cells	--
		nowrap						(nowrap)							#IMPLIED		--	suppress	word	wrap	--
		bgcolor					%Color;								#IMPLIED		--	cell	background	color	--
		width							%Length;							#IMPLIED		--	width	for	cell	--
		height						%Length;							#IMPLIED		--	height	for	cell	--
		>
<!--==================	Document	Frames	===================================-->
<!--
		The	content	model	for	HTML	documents	depends	on	whether	the	HEAD	is
		followed	by	a	FRAMESET	or	BODY	element.	The	widespread	omission	of
		the	BODY	start	tag	makes	it	impractical	to	define	the	content	model
		without	the	use	of	a	marked	section.
-->
<![%HTML.Frameset;	[
<!ELEMENT	FRAMESET	-	-	((FRAMESET|FRAME)+	&	NOFRAMES?)	--	window	subdivision-->
<!ATTLIST	FRAMESET
		%coreattrs;																										--	id,	class,	style,	title	--
		rows								%MultiLengths;	#IMPLIED		--	list	of	lengths,	default:	100%	(1	row)	--
		cols								%MultiLengths;	#IMPLIED		--	list	of	lengths,	default:	100%	(1	col)	--
		onload						%Script;							#IMPLIED		--	all	the	frames	have	been	loaded		--
		onunload				%Script;							#IMPLIED		--	all	the	frames	have	been	removed	--
		>
]]>
<![%HTML.Frameset;	[
<!--	reserved	frame	names	start	with	"_"	otherwise	starts	with	letter	-->
<!ELEMENT	FRAME	-	O	EMPTY														--	subwindow	-->

<!ATTLIST	FRAME
		%coreattrs;																										--	id,	class,	style,	title	--
		longdesc				%URI;										#IMPLIED		--	link	to	long	description
																																										(complements	title)	--
		name								CDATA										#IMPLIED		--	name	of	frame	for	targetting	--
		src									%URI;										#IMPLIED		--	source	of	frame	content	--
		frameborder	(1|0)										1									--	request	frame	borders?	--
		marginwidth	%Pixels;							#IMPLIED		--	margin	widths	in	pixels	--
		marginheight	%Pixels;						#IMPLIED		--	margin	height	in	pixels	--
		noresize				(noresize)					#IMPLIED		--	allow	users	to	resize	frames?	--
		scrolling			(yes|no|auto)		auto						--	scrollbar	or	none	--
		>
]]>
<!ELEMENT	IFRAME	-	-	(%flow;)*									--	inline	subwindow	-->
<!ATTLIST	IFRAME
		%coreattrs;																										--	id,	class,	style,	title	--
		longdesc				%URI;										#IMPLIED		--	link	to	long	description
																																										(complements	title)	--
		name								CDATA										#IMPLIED		--	name	of	frame	for	targetting	--
		src									%URI;										#IMPLIED		--	source	of	frame	content	--
		frameborder	(1|0)										1									--	request	frame	borders?	--
		marginwidth	%Pixels;							#IMPLIED		--	margin	widths	in	pixels	--
		marginheight	%Pixels;						#IMPLIED		--	margin	height	in	pixels	--
		scrolling			(yes|no|auto)		auto						--	scrollbar	or	none	--
		align							%IAlign;							#IMPLIED		--	vertical	or	horizontal	alignment	--
		height						%Length;							#IMPLIED		--	frame	height	--
		width							%Length;							#IMPLIED		--	frame	width	--
		>
<![%HTML.Frameset;	[
<!ENTITY	%	noframes.content	"(BODY)	-(NOFRAMES)">
]]>
<!ENTITY	%	noframes.content	"(%flow;)*">
<!ELEMENT	NOFRAMES	-	-	%noframes.content;
	--	alternate	content	container	for	non	frame-based	rendering	-->
<!ATTLIST	NOFRAMES
		%attrs;																														--	%coreattrs,	%i18n,	%events	--
		>
<!--================	Document	Head	=======================================-->
<!--	%head.misc;	defined	earlier	on	as	"SCRIPT|STYLE|META|LINK|OBJECT"	-->
<!ENTITY	%	head.content	"TITLE	&	ISINDEX?	&	BASE?">
<!ELEMENT	HEAD	O	O	(%head.content;)	+(%head.misc;)	--	document	head	-->
<!ATTLIST	HEAD
		%i18n;																															--	lang,	dir	--
		profile					%URI;										#IMPLIED		--	named	dictionary	of	meta	info	--
		>

<!--	The	TITLE	element	is	not	considered	part	of	the	flow	of	text.
							It	should	be	displayed,	for	example	as	the	page	header	or
							window	title.	Exactly	one	title	is	required	per	document.
				-->
<!ELEMENT	TITLE	-	-	(#PCDATA)	-(%head.misc;)	--	document	title	-->
<!ATTLIST	TITLE	%i18n>
<!ELEMENT	ISINDEX	-	O	EMPTY												--	single	line	prompt	-->
<!ATTLIST	ISINDEX
		%coreattrs;																										--	id,	class,	style,	title	--
		%i18n;																															--	lang,	dir	--
		prompt						%Text;									#IMPLIED		--	prompt	message	-->
<!ELEMENT	BASE	-	O	EMPTY															--	document	base	URI	-->
<!ATTLIST	BASE
		href								%URI;										#IMPLIED		--	URI	that	acts	as	base	URI	--
		target						%FrameTarget;		#IMPLIED		--	render	in	this	frame	--
		>
<!ELEMENT	META	-	O	EMPTY															--	generic	metainformation	-->
<!ATTLIST	META
		%i18n;																															--	lang,	dir,	for	use	with	content	--
		http-equiv		NAME											#IMPLIED		--	HTTP	response	header	name		--
		name								NAME											#IMPLIED		--	metainformation	name	--
		content					CDATA										#REQUIRED	--	associated	information	--
		scheme						CDATA										#IMPLIED		--	select	form	of	content	--
		>
<!ELEMENT	STYLE	-	-	%StyleSheet								--	style	info	-->
<!ATTLIST	STYLE
		%i18n;																															--	lang,	dir,	for	use	with	title	--
		type								%ContentType;		#REQUIRED	--	content	type	of	style	language	--
		media							%MediaDesc;				#IMPLIED		--	designed	for	use	with	these	media	--
		title							%Text;									#IMPLIED		--	advisory	title	--
		>
<!ELEMENT	SCRIPT	-	-	%Script;										--	script	statements	-->
<!ATTLIST	SCRIPT
		charset					%Charset;						#IMPLIED		--	char	encoding	of	linked	resource	--
		type								%ContentType;		#REQUIRED	--	content	type	of	script	language	--
		language				CDATA										#IMPLIED		--	predefined	script	language	name	--
		src									%URI;										#IMPLIED		--	URI	for	an	external	script	--
		defer							(defer)								#IMPLIED		--	UA	may	defer	execution	of	script	--
		event							CDATA										#IMPLIED		--	reserved	for	possible	future	use	--
		for									%URI;										#IMPLIED		--	reserved	for	possible	future	use	--
		>
<!ELEMENT	NOSCRIPT	-	-	(%flow;)*
		--	alternate	content	container	for	non	script-based	rendering	-->
<!ATTLIST	NOSCRIPT
		%attrs;																														--	%coreattrs,	%i18n,	%events	--

		>
<!--================	Document	Structure	==================================-->
<!ENTITY	%	version	"version	CDATA	#FIXED	'%HTML.Version;'">
<![%HTML.Frameset;	[
<!ENTITY	%	html.content	"HEAD,	FRAMESET">
]]>
<!ENTITY	%	html.content	"HEAD,	BODY">
<!ELEMENT	HTML	O	O	(%html.content;)				--	document	root	element	-->
<!ATTLIST	HTML
		%i18n;																															--	lang,	dir	--
		%version;
		>

	
	

Appendix	E.	The	XHTML	1.0	DTD

The	XHTML	1.0	standard	is	formally	defined	as	three	Extensible	Markup	Language
(XML)	Document	Type	Definitions	(DTDs):	the	Strict	DTD,	the	Transitional	DTD,
and	the	Frameset	DTD.	These	DTDs	correspond	to	the	respective	HTML	4.01	DTDs,
defining	the	same	elements	and	attributes	using	XML	rather	than	the	Standard
Generalized	Markup	Language	(SGML)	as	the	DTD	authoring	language.

The	Strict	DTD	defines	only	those	elements	that	are	not	deprecated	in	the	HTML
4.01	standard.	Ideally,	everyone	would	create	XHTML	documents	that	conform	to
the	Strict	DTD.	The	Transitional	DTD	includes	all	those	deprecated	elements	and
more	accurately	reflects	the	HTML	in	use	today,	with	many	older	elements	still	in
common	use.	The	Frameset	DTD	is	identical	to	the	Transitional	DTD,	with	the
exception	that	the	document	<body>	is	replaced	by	the	<frameset>	element.

Since	the	HTML	Transitional	DTD	is	the	one	upon	which	this	book	is	based,	it	is
only	appropriate	that	we	include	the	corresponding	XHTML	DTD.	Note	that	we
have	reprinted	this	DTD	verbatim	and	have	not	attempted	to	add	extensions	to	it.
Where	our	description	and	the	DTD	deviate,	assume	the	DTD	is	correct:

<!--
			Extensible	HTML	version	1.0	Transitional	DTD
			This	is	the	same	as	HTML	4.0	Transitional	except	for
			changes	due	to	the	differences	between	XML	and	SGML.
			Namespace	=	http://www.w3.org/1999/xhtml
			For	further	information,	see:	http://www.w3.org/TR/xhtml1
			Copyright	(c)	1998-2000	W3C	(MIT,	INRIA,	Keio),
			All	Rights	Reserved.
			This	DTD	module	is	identified	by	the	PUBLIC	and	SYSTEM	identifiers:
			PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"
			SYSTEM	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
			$Revision:	1.2	$
			$Date:	2006/10/25	17:08:45	$
-->
<!--================	Character	mnemonic	entities	=========================-->
<!ENTITY	%	HTMLlat1	PUBLIC
			"-//W3C//ENTITIES	Latin	1	for	XHTML//EN"
			"xhtml-lat1.ent">
%HTMLlat1;
<!ENTITY	%	HTMLsymbol	PUBLIC
			"-//W3C//ENTITIES	Symbols	for	XHTML//EN"
			"xhtml-symbol.ent">
%HTMLsymbol;
<!ENTITY	%	HTMLspecial	PUBLIC

			"-//W3C//ENTITIES	Special	for	XHTML//EN"
			"xhtml-special.ent">
%HTMLspecial;
<!--==================	Imported	Names	====================================-->
<!ENTITY	%	ContentType	"CDATA">
				<!--	media	type,	as	per	[RFC2045]	-->
<!ENTITY	%	ContentTypes	"CDATA">
				<!--	comma-separated	list	of	media	types,	as	per	[RFC2045]	-->
<!ENTITY	%	Charset	"CDATA">
				<!--	a	character	encoding,	as	per	[RFC2045]	-->
<!ENTITY	%	Charsets	"CDATA">
				<!--	a	space	separated	list	of	character	encodings,	as	per	[RFC2045]	-->
<!ENTITY	%	LanguageCode	"NMTOKEN">
				<!--	a	language	code,	as	per	[RFC1766]	-->
<!ENTITY	%	Character	"CDATA">
				<!--	a	single	character	from	[ISO10646]	-->
<!ENTITY	%	Number	"CDATA">
				<!--	one	or	more	digits	-->
<!ENTITY	%	LinkTypes	"CDATA">
				<!--	space-separated	list	of	link	types	-->
<!ENTITY	%	MediaDesc	"CDATA">
				<!--	single	or	comma-separated	list	of	media	descriptors	-->
<!ENTITY	%	URI	"CDATA">
				<!--	a	Uniform	Resource	Identifier,	see	[RFC2396]	-->
<!ENTITY	%	UriList	"CDATA">
				<!--	a	space	separated	list	of	Uniform	Resource	Identifiers	-->
<!ENTITY	%	Datetime	"CDATA">
				<!--	date	and	time	information.	ISO	date	format	-->
<!ENTITY	%	Script	"CDATA">
				<!--	script	expression	-->
<!ENTITY	%	StyleSheet	"CDATA">
				<!--	style	sheet	data	-->
<!ENTITY	%	Text	"CDATA">
				<!--	used	for	titles	etc.	-->
<!ENTITY	%	FrameTarget	"NMTOKEN">
				<!--	render	in	this	frame	-->
<!ENTITY	%	Length	"CDATA">
				<!--	nn	for	pixels	or	nn%	for	percentage	length	-->
<!ENTITY	%	MultiLength	"CDATA">
				<!--	pixel,	percentage,	or	relative	-->
<!ENTITY	%	MultiLengths	"CDATA">
				<!--	comma-separated	list	of	MultiLength	-->
<!ENTITY	%	Pixels	"CDATA">
				<!--	integer	representing	length	in	pixels	-->
<!--	these	are	used	for	image	maps	-->

<!ENTITY	%	Shape	"(rect|circle|poly|default)">
<!ENTITY	%	Coords	"CDATA">
				<!--	comma	separated	list	of	lengths	-->
<!--	used	for	object,	applet,	img,	input	and	iframe	-->
<!ENTITY	%	ImgAlign	"(top|middle|bottom|left|right)">
<!--	a	color	using	sRGB:	#RRGGBB	as	Hex	values	-->
<!ENTITY	%	Color	"CDATA">
<!--	There	are	also	16	widely	known	color	names	with	their	sRGB	values:
				Black		=	#000000				Green		=	#008000
				Silver	=	#C0C0C0				Lime			=	#00FF00
				Gray			=	#808080				Olive		=	#808000
				White		=	#FFFFFF				Yellow	=	#FFFF00
				Maroon	=	#800000				Navy			=	#000080
				Red				=	#FF0000				Blue			=	#0000FF
				Purple	=	#800080				Teal			=	#008080
				Fuchsia=	#FF00FF				Aqua			=	#00FFFF
-->
<!--===================	Generic	Attributes	===============================-->
<!--	core	attributes	common	to	most	elements
		id							document-wide	unique	id
		class				space	separated	list	of	classes
		style				associated	style	info
		title				advisory	title/amplification
-->
<!ENTITY	%	coreattrs
	"id										ID													#IMPLIED
		class							CDATA										#IMPLIED
		style							%StyleSheet;			#IMPLIED
		title							%Text;									#IMPLIED"
		>
<!--	internationalization	attributes
		lang								language	code	(backwards	compatible)
		xml:lang				language	code	(as	per	XML	1.0	spec)
		dir									direction	for	weak/neutral	text
-->
<!ENTITY	%	i18n
	"lang								%LanguageCode;	#IMPLIED
		xml:lang				%LanguageCode;	#IMPLIED
		dir									(ltr|rtl)						#IMPLIED"
		>
<!--	attributes	for	common	UI	events
		onclick					a	pointer	button	was	clicked
		ondblclick		a	pointer	button	was	double	clicked
		onmousedown	a	pointer	button	was	pressed	down
		onmouseup			a	pointer	button	was	released

		onmousemove	a	pointer	was	moved	onto	the	element
		onmouseout		a	pointer	was	moved	away	from	the	element
		onkeypress		a	key	was	pressed	and	released
		onkeydown			a	key	was	pressed	down
		onkeyup					a	key	was	released
-->
<!ENTITY	%	events
	"onclick					%Script;							#IMPLIED
		ondblclick		%Script;							#IMPLIED
		onmousedown	%Script;							#IMPLIED
		onmouseup			%Script;							#IMPLIED
		onmouseover	%Script;							#IMPLIED
		onmousemove	%Script;							#IMPLIED
		onmouseout		%Script;							#IMPLIED
		onkeypress		%Script;							#IMPLIED
		onkeydown			%Script;							#IMPLIED
		onkeyup					%Script;							#IMPLIED"
		>
<!--	attributes	for	elements	that	can	get	the	focus
		accesskey			accessibility	key	character
		tabindex				position	in	tabbing	order
		onfocus					the	element	got	the	focus
		onblur						the	element	lost	the	focus
-->
<!ENTITY	%	focus
	"accesskey			%Character;				#IMPLIED
		tabindex				%Number;							#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED"
		>
<!ENTITY	%	attrs	"%coreattrs;	%i18n;	%events;">
<!--	text	alignment	for	p,	div,	h1-h6.	The	default	is
					align="left"	for	ltr	headings,	"right"	for	rtl	-->
<!ENTITY	%	TextAlign	"align	(left|center|right)	#IMPLIED">
<!--===================	Text	Elements	====================================-->
<!ENTITY	%	special
			"br	|	span	|	bdo	|	object	|	applet	|	img	|	map	|	iframe">
<!ENTITY	%	fontstyle	"tt	|	i	|	b	|	big	|	small	|	u
																						|	s	|	strike	|font	|	basefont">
<!ENTITY	%	phrase	"em	|	strong	|	dfn	|	code	|	q	|	sub	|	sup	|
																			samp	|	kbd	|	var	|	cite	|	abbr	|	acronym">
<!ENTITY	%	inline.forms	"input	|	select	|	textarea	|	label	|	button">
<!--	these	can	occur	at	block	or	inline	level	-->
<!ENTITY	%	misc	"ins	|	del	|	script	|	noscript">
<!ENTITY	%	inline	"a	|	%special;	|	%fontstyle;	|	%phrase;	|	%inline.forms;">

<!--	%Inline;	covers	inline	or	"text-level"	elements	-->
<!ENTITY	%	Inline	"(#PCDATA	|	%inline;	|	%misc;)*">
<!--==================	Block	level	elements	==============================-->
<!ENTITY	%	heading	"h1|h2|h3|h4|h5|h6">
<!ENTITY	%	lists	"ul	|	ol	|	dl	|	menu	|	dir">
<!ENTITY	%	blocktext	"pre	|	hr	|	blockquote	|	address	|	center	|	noframes">
<!ENTITY	%	block
				"p	|	%heading;	|	div	|	%lists;	|	%blocktext;	|	isindex	|fieldset	|	table">
<!ENTITY	%	Block	"(%block;	|	form	|	%misc;)*">
<!--	%Flow;	mixes	Block	and	Inline	and	is	used	for	list	items	etc.	-->
<!ENTITY	%	Flow	"(#PCDATA	|	%block;	|	form	|	%inline;	|	%misc;)*">
<!--==================	Content	models	for	exclusions	=====================-->
<!--	a	elements	use	%Inline;	excluding	a	-->
<!ENTITY	%	a.content
			"(#PCDATA	|	%special;	|	%fontstyle;	|	%phrase;	|	%inline.forms;	|	%misc;)*">
<!--	pre	uses	%Inline	excluding	img,	object,	applet,	big,	small,
					sub,	sup,	font,	or	basefont	-->
<!ENTITY	%	pre.content
			"(#PCDATA	|	a	|	br	|	span	|	bdo	|	map	|	tt	|	i	|	b	|	u	|	s	|
						%phrase;	|	%inline.forms;)*">
<!--	form	uses	%Flow;	excluding	form	-->
<!ENTITY	%	form.content	"(#PCDATA	|	%block;	|	%inline;	|	%misc;)*">
<!--	button	uses	%Flow;	but	excludes	a,	form,	form	controls,	iframe	-->
<!ENTITY	%	button.content
			"(#PCDATA	|	p	|	%heading;	|	div	|	%lists;	|	%blocktext;	|
						table	|	br	|	span	|	bdo	|	object	|	applet	|	img	|	map	|
						%fontstyle;	|	%phrase;	|	%misc;)*">
<!--================	Document	Structure	==================================-->
<!--	the	namespace	URI	designates	the	document	profile	-->
<!ELEMENT	html	(head,	body)>
<!ATTLIST	html
		%i18n;
		xmlns							%URI;										#FIXED	'http://www.w3.org/1999/xhtml'
		>
<!--================	Document	Head	=======================================-->
<!ENTITY	%	head.misc	"(script|style|meta|link|object|isindex)*">
<!--	content	model	is	%head.misc;	combined	with	a	single
					title	and	an	optional	base	element	in	any	order	-->
<!ELEMENT	head	(%head.misc;,
					((title,	%head.misc;,	(base,	%head.misc;)?)	|
						(base,	%head.misc;,	(title,	%head.misc;))))>
<!ATTLIST	head
		%i18n;
		profile					%URI;										#IMPLIED
		>

<!--	The	title	element	is	not	considered	part	of	the	flow	of	text.
							It	should	be	displayed,	for	example	as	the	page	header	or
							window	title.	Exactly	one	title	is	required	per	document.
				-->
<!ELEMENT	title	(#PCDATA)>
<!ATTLIST	title	%i18n;>
<!--	document	base	URI	-->
<!ELEMENT	base	EMPTY>
<!ATTLIST	base
		href								%URI;										#IMPLIED
		target						%FrameTarget;		#IMPLIED
		>
<!--	generic	metainformation	-->
<!ELEMENT	meta	EMPTY>
<!ATTLIST	meta
		%i18n;
		http-equiv		CDATA										#IMPLIED
		name								CDATA										#IMPLIED
		content					CDATA										#REQUIRED
		scheme						CDATA										#IMPLIED
		>
<!--
		Relationship	values	can	be	used	in	principle:
			a)	for	document	specific	toolbars/menus	when	used
						with	the	link	element	in	document	head	e.g.
						start,	contents,	previous,	next,	index,	end,	help
			b)	to	link	to	a	separate	style	sheet	(rel="stylesheet")
			c)	to	make	a	link	to	a	script	(rel="script")
			d)	by	stylesheets	to	control	how	collections	of
						html	nodes	are	rendered	into	printed	documents
			e)	to	make	a	link	to	a	printable	version	of	this	document
						e.g.	a	PostScript	or	PDF	version	(rel="alternate"	media="print")
-->
<!ELEMENT	link	EMPTY>
<!ATTLIST	link
		%attrs;
		charset					%Charset;						#IMPLIED
		href								%URI;										#IMPLIED
		hreflang				%LanguageCode;	#IMPLIED
		type								%ContentType;		#IMPLIED
		rel									%LinkTypes;				#IMPLIED
		rev									%LinkTypes;				#IMPLIED
		media							%MediaDesc;				#IMPLIED
		target						%FrameTarget;		#IMPLIED
		>

<!--	style	info,	which	may	include	CDATA	sections	-->
<!ELEMENT	style	(#PCDATA)>
<!ATTLIST	style
		%i18n;
		type								%ContentType;		#REQUIRED
		media							%MediaDesc;				#IMPLIED
		title							%Text;									#IMPLIED
		xml:space			(preserve)					#FIXED	'preserve'
		>
<!--	script	statements,	which	may	include	CDATA	sections	-->
<!ELEMENT	script	(#PCDATA)>
<!ATTLIST	script
		charset					%Charset;						#IMPLIED
		type								%ContentType;		#REQUIRED
		language				CDATA										#IMPLIED
		src									%URI;										#IMPLIED
		defer							(defer)								#IMPLIED
		xml:space			(preserve)					#FIXED	'preserve'
		>
<!--	alternate	content	container	for	non	script-based	rendering	-->
<!ELEMENT	noscript	%Flow;>
<!ATTLIST	noscript
		%attrs;
		>
<!--=======================	Frames	=======================================-->
<!--	inline	subwindow	-->
<!ELEMENT	iframe	%Flow;>
<!ATTLIST	iframe
		%coreattrs;
		longdesc				%URI;										#IMPLIED
		name								NMTOKEN								#IMPLIED
		src									%URI;										#IMPLIED
		frameborder	(1|0)										"1"
		marginwidth	%Pixels;							#IMPLIED
		marginheight	%Pixels;						#IMPLIED
		scrolling			(yes|no|auto)		"auto"
		align							%ImgAlign;					#IMPLIED
		height						%Length;							#IMPLIED
		width							%Length;							#IMPLIED
		>
<!--	alternate	content	container	for	non	frame-based	rendering	-->
<!ELEMENT	noframes	%Flow;>
<!ATTLIST	noframes
		%attrs;
		>

<!--===================	Document	Body	====================================-->
<!ELEMENT	body	%Flow;>
<!ATTLIST	body
		%attrs;
		onload						%Script;							#IMPLIED
		onunload				%Script;							#IMPLIED
		background		%URI;										#IMPLIED
		bgcolor					%Color;								#IMPLIED
		text								%Color;								#IMPLIED
		link								%Color;								#IMPLIED
		vlink							%Color;								#IMPLIED
		alink							%Color;								#IMPLIED
		>
<!ELEMENT	div	%Flow;>		<!--	generic	language/style	container	-->
<!ATTLIST	div
		%attrs;
		%TextAlign;
		>
<!--===================	Paragraphs	=======================================-->
<!ELEMENT	p	%Inline;>
<!ATTLIST	p
		%attrs;
		%TextAlign;
		>
<!--===================	Headings	===-->
<!--
		There	are	six	levels	of	headings	from	h1	(the	most	important)
		to	h6	(the	least	important).
-->
<!ELEMENT	h1		%Inline;>
<!ATTLIST	h1
		%attrs;
		%TextAlign;
		>
<!ELEMENT	h2	%Inline;>
<!ATTLIST	h2
		%attrs;
		%TextAlign;
		>
<!ELEMENT	h3	%Inline;>
<!ATTLIST	h3
		%attrs;
		%TextAlign;
		>
<!ELEMENT	h4	%Inline;>

<!ATTLIST	h4
		%attrs;
		%TextAlign;
		>
<!ELEMENT	h5	%Inline;>
<!ATTLIST	h5
		%attrs;
		%TextAlign;
		>
<!ELEMENT	h6	%Inline;>
<!ATTLIST	h6
		%attrs;
		%TextAlign;
		>
<!--===================	Lists	==-->
<!--	Unordered	list	bullet	styles	-->
<!ENTITY	%	ULStyle	"(disc|square|circle)">
<!--	Unordered	list	-->
<!ELEMENT	ul	(li)+>
<!ATTLIST	ul
		%attrs;
		type								%ULStyle;					#IMPLIED
		compact					(compact)					#IMPLIED
		>
<!--	Ordered	list	numbering	style
				1			arabic	numbers						1,	2,	3,	...
				a			lower	alpha									a,	b,	c,	...
				A			upper	alpha									A,	B,	C,	...
				i			lower	roman									i,	ii,	iii,	...
				I			upper	roman									I,	II,	III,	...
				The	style	is	applied	to	the	sequence	number	which	by	default
				is	reset	to	1	for	the	first	list	item	in	an	ordered	list.
-->
<!ENTITY	%	OLStyle	"CDATA">
<!--	Ordered	(numbered)	list	-->
<!ELEMENT	ol	(li)+>
<!ATTLIST	ol
		%attrs;
		type								%OLStyle;						#IMPLIED
		compact					(compact)						#IMPLIED
		start							%Number;							#IMPLIED
		>
<!--	single	column	list	(DEPRECATED)	-->
<!ELEMENT	menu	(li)+>
<!ATTLIST	menu

		%attrs;
		compact					(compact)					#IMPLIED
		>
<!--	multiple	column	list	(DEPRECATED)	-->
<!ELEMENT	dir	(li)+>
<!ATTLIST	dir
		%attrs;
		compact					(compact)					#IMPLIED
		>
<!--	LIStyle	is	constrained	to:	"(%ULStyle;|%OLStyle;)"	-->
<!ENTITY	%	LIStyle	"CDATA">
<!--	list	item	-->
<!ELEMENT	li	%Flow;>
<!ATTLIST	li
		%attrs;
		type								%LIStyle;						#IMPLIED
		value							%Number;							#IMPLIED
		>
<!--	definition	lists	-	dt	for	term,	dd	for	its	definition	-->
<!ELEMENT	dl	(dt|dd)+>
<!ATTLIST	dl
		%attrs;
		compact					(compact)						#IMPLIED
		>
<!ELEMENT	dt	%Inline;>
<!ATTLIST	dt
		%attrs;
		>
<!ELEMENT	dd	%Flow;>
<!ATTLIST	dd
		%attrs;
		>
<!--===================	Address	==-->
<!--	information	on	author	-->
<!ELEMENT	address	%Inline;>
<!ATTLIST	address
		%attrs;
		>
<!--===================	Horizontal	Rule	==================================-->
<!ELEMENT	hr	EMPTY>
<!ATTLIST	hr
		%attrs;
		align							(left|center|right)	#IMPLIED
		noshade					(noshade)						#IMPLIED
		size								%Pixels;							#IMPLIED

		width							%Length;							#IMPLIED
		>
<!--===================	Preformatted	Text	================================-->
<!--	content	is	%Inline;	excluding
								"img|object|applet|big|small|sub|sup|font|basefont"	-->
<!ELEMENT	pre	%pre.content;>
<!ATTLIST	pre
		%attrs;
		width							%Number;						#IMPLIED
		xml:space			(preserve)				#FIXED	'preserve'
		>
<!--===================	Block-like	Quotes	================================-->
<!ELEMENT	blockquote	%Flow;>
<!ATTLIST	blockquote
		%attrs;
		cite								%URI;										#IMPLIED
		>
<!--===================	Text	alignment	===================================-->
<!--	center	content	-->
<!ELEMENT	center	%Flow;>
<!ATTLIST	center
		%attrs;
		>
<!--===================	Inserted/Deleted	Text	============================-->
<!--
		ins/del	are	allowed	in	block	and	inline	content,	but	its
		inappropriate	to	include	block	content	within	an	ins	element
		occurring	in	inline	content.
-->
<!ELEMENT	ins	%Flow;>
<!ATTLIST	ins
		%attrs;
		cite								%URI;										#IMPLIED
		datetime				%Datetime;					#IMPLIED
		>
<!ELEMENT	del	%Flow;>
<!ATTLIST	del
		%attrs;
		cite								%URI;										#IMPLIED
		datetime				%Datetime;					#IMPLIED
		>
<!--==================	The	Anchor	Element	================================-->
<!--	content	is	%Inline;	except	that	anchors	shouldn't	be	nested	-->
<!ELEMENT	a	%a.content;>
<!ATTLIST	a

		%attrs;
		charset					%Charset;						#IMPLIED
		type								%ContentType;		#IMPLIED
		name								NMTOKEN								#IMPLIED
		href								%URI;										#IMPLIED
		hreflang				%LanguageCode;	#IMPLIED
		rel									%LinkTypes;				#IMPLIED
		rev									%LinkTypes;				#IMPLIED
		accesskey			%Character;				#IMPLIED
		shape							%Shape;								"rect"
		coords						%Coords;							#IMPLIED
		tabindex				%Number;							#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED
		target						%FrameTarget;		#IMPLIED
		>
<!--=====================	Inline	Elements	================================-->
<!ELEMENT	span	%Inline;>	<!--	generic	language/style	container	-->
<!ATTLIST	span
		%attrs;
		>
<!ELEMENT	bdo	%Inline;>		<!--	I18N	BiDi	over-ride	-->
<!ATTLIST	bdo
		%coreattrs;
		%events;
		lang								%LanguageCode;	#IMPLIED
		xml:lang				%LanguageCode;	#IMPLIED
		dir									(ltr|rtl)						#REQUIRED
		>
<!ELEMENT	br	EMPTY>			<!--	forced	line	break	-->
<!ATTLIST	br
		%coreattrs;
		clear							(left|all|right|none)	"none"
		>
<!ELEMENT	em	%Inline;>			<!--	emphasis	-->
<!ATTLIST	em	%attrs;>
<!ELEMENT	strong	%Inline;>			<!--	strong	emphasis	-->
<!ATTLIST	strong	%attrs;>
<!ELEMENT	dfn	%Inline;>			<!--	definitional	-->
<!ATTLIST	dfn	%attrs;>
<!ELEMENT	code	%Inline;>			<!--	program	code	-->
<!ATTLIST	code	%attrs;>
<!ELEMENT	samp	%Inline;>			<!--	sample	-->
<!ATTLIST	samp	%attrs;>
<!ELEMENT	kbd	%Inline;>		<!--	something	user	would	type	-->

<!ATTLIST	kbd	%attrs;>
<!ELEMENT	var	%Inline;>			<!--	variable	-->
<!ATTLIST	var	%attrs;>
<!ELEMENT	cite	%Inline;>			<!--	citation	-->
<!ATTLIST	cite	%attrs;>
<!ELEMENT	abbr	%Inline;>			<!--	abbreviation	-->
<!ATTLIST	abbr	%attrs;>
<!ELEMENT	acronym	%Inline;>			<!--	acronym	-->
<!ATTLIST	acronym	%attrs;>
<!ELEMENT	q	%Inline;>			<!--	inlined	quote	-->
<!ATTLIST	q
		%attrs;
		cite								%URI;										#IMPLIED
		>
<!ELEMENT	sub	%Inline;>	<!--	subscript	-->
<!ATTLIST	sub	%attrs;>
<!ELEMENT	sup	%Inline;>	<!--	superscript	-->
<!ATTLIST	sup	%attrs;>
<!ELEMENT	tt	%Inline;>			<!--	fixed	pitch	font	-->
<!ATTLIST	tt	%attrs;>
<!ELEMENT	i	%Inline;>			<!--	italic	font	-->
<!ATTLIST	i	%attrs;>
<!ELEMENT	b	%Inline;>			<!--	bold	font	-->
<!ATTLIST	b	%attrs;>
<!ELEMENT	big	%Inline;>			<!--	bigger	font	-->
<!ATTLIST	big	%attrs;>
<!ELEMENT	small	%Inline;>			<!--	smaller	font	-->
<!ATTLIST	small	%attrs;>
<!ELEMENT	u	%Inline;>			<!--	underline	-->
<!ATTLIST	u	%attrs;>
<!ELEMENT	s	%Inline;>			<!--	strike-through	-->
<!ATTLIST	s	%attrs;>
<!ELEMENT	strike	%Inline;>			<!--	strike-through	-->
<!ATTLIST	strike	%attrs;>
<!ELEMENT	basefont	EMPTY>		<!--	base	font	size	-->
<!ATTLIST	basefont
		id										ID													#IMPLIED
		size								CDATA										#REQUIRED
		color							%Color;								#IMPLIED
		face								CDATA										#IMPLIED
		>
<!ELEMENT	font	%Inline;>	<!--	local	change	to	font	-->
<!ATTLIST	font
		%coreattrs;
		%i18n;

		size								CDATA										#IMPLIED
		color							%Color;								#IMPLIED
		face								CDATA										#IMPLIED
		>
<!--====================	Object	======================================-->
<!--
		object	is	used	to	embed	objects	as	part	of	HTML	pages.
		param	elements	should	precede	other	content.	Parameters
		can	also	be	expressed	as	attribute/value	pairs	on	the
		object	element	itself	when	brevity	is	desired.
-->
<!ELEMENT	object	(#PCDATA	|	param	|	%block;	|	form	|	%inline;	|	%misc;)*>
<!ATTLIST	object
		%attrs;
		declare					(declare)						#IMPLIED
		classid					%URI;										#IMPLIED
		codebase				%URI;										#IMPLIED
		data								%URI;										#IMPLIED
		type								%ContentType;		#IMPLIED
		codetype				%ContentType;		#IMPLIED
		archive					%UriList;						#IMPLIED
		standby					%Text;									#IMPLIED
		height						%Length;							#IMPLIED
		width							%Length;							#IMPLIED
		usemap						%URI;										#IMPLIED
		name								NMTOKEN								#IMPLIED
		tabindex				%Number;							#IMPLIED
		align							%ImgAlign;					#IMPLIED
		border						%Pixels;							#IMPLIED
		hspace						%Pixels;							#IMPLIED
		vspace						%Pixels;							#IMPLIED
		>
<!--
		param	is	used	to	supply	a	named	property	value.
		In	XML	it	would	seem	natural	to	follow	RDF	and	support	an
		abbreviated	syntax	where	the	param	elements	are	replaced
		by	attribute	value	pairs	on	the	object	start	tag.
-->
<!ELEMENT	param	EMPTY>
<!ATTLIST	param
		id										ID													#IMPLIED
		name								CDATA										#REQUIRED
		value							CDATA										#IMPLIED
		valuetype			(data|ref|object)	"data"
		type								%ContentType;		#IMPLIED

		>
<!--===================	Java	applet	==================================-->
<!--
		One	of	code	or	object	attributes	must	be	present.
		Place	param	elements	before	other	content.
-->
<!ELEMENT	applet	(#PCDATA	|	param	|	%block;	|	form	|	%inline;	|	%misc;)*>
<!ATTLIST	applet
		%coreattrs;
		codebase				%URI;										#IMPLIED
		archive					CDATA										#IMPLIED
		code								CDATA										#IMPLIED
		object						CDATA										#IMPLIED
		alt									%Text;									#IMPLIED
		name								NMTOKEN								#IMPLIED
		width							%Length;							#REQUIRED
		height						%Length;							#REQUIRED
		align							%ImgAlign;					#IMPLIED
		hspace						%Pixels;							#IMPLIED
		vspace						%Pixels;							#IMPLIED
		>
<!--===================	Images	===-->
<!--
			To	avoid	accessibility	problems	for	people	who	aren't
			able	to	see	the	image,	you	should	provide	a	text
			description	using	the	alt	and	longdesc	attributes.
			In	addition,	avoid	the	use	of	server-side	image	maps.
-->
<!ELEMENT	img	EMPTY>
<!ATTLIST	img
		%attrs;
		src									%URI;										#REQUIRED
		alt									%Text;									#REQUIRED
		name								NMTOKEN								#IMPLIED
		longdesc				%URI;										#IMPLIED
		height						%Length;							#IMPLIED
		width							%Length;							#IMPLIED
		usemap						%URI;										#IMPLIED
		ismap							(ismap)								#IMPLIED
		align							%ImgAlign;					#IMPLIED
		border						%Length;							#IMPLIED
		hspace						%Pixels;							#IMPLIED
		vspace						%Pixels;							#IMPLIED
		>
<!--	usemap	points	to	a	map	element	which	may	be	in	this	document

		or	an	external	document,	although	the	latter	is	not	widely	supported	-->
<!--==================	Client-side	image	maps	============================-->
<!--	These	can	be	placed	in	the	same	document	or	grouped	in	a
					separate	document	although	this	isn't	yet	widely	supported	-->
<!ELEMENT	map	((%block;	|	form	|	%misc;)+	|	area+)>
<!ATTLIST	map
		%i18n;
		%events;
		id										ID													#REQUIRED
		class							CDATA										#IMPLIED
		style							%StyleSheet;			#IMPLIED
		title							%Text;									#IMPLIED
		name								CDATA										#IMPLIED
		>
<!ELEMENT	area	EMPTY>
<!ATTLIST	area
		%attrs;
		shape							%Shape;								"rect"
		coords						%Coords;							#IMPLIED
		href								%URI;										#IMPLIED
		nohref						(nohref)							#IMPLIED
		alt									%Text;									#REQUIRED
		tabindex				%Number;							#IMPLIED
		accesskey			%Character;				#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED
		target						%FrameTarget;		#IMPLIED
		>
<!--================	Forms	===-->
<!ELEMENT	form	%form.content;>			<!--	forms	shouldn't	be	nested	-->
<!ATTLIST	form
		%attrs;
		action						%URI;										#REQUIRED
		method						(get|post)					"get"
		name								NMTOKEN								#IMPLIED
		enctype					%ContentType;		"application/x-www-form-urlencoded"
		onsubmit				%Script;							#IMPLIED
		onreset					%Script;							#IMPLIED
		accept						%ContentTypes;	#IMPLIED
		accept-charset	%Charsets;		#IMPLIED
		target						%FrameTarget;		#IMPLIED
		>
<!--
		Each	label	must	not	contain	more	than	ONE	field
		Label	elements	shouldn't	be	nested.

-->
<!ELEMENT	label	%Inline;>
<!ATTLIST	label
		%attrs;
		for									IDREF										#IMPLIED
		accesskey			%Character;				#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED
		>
<!ENTITY	%	InputType
		"(text	|	password	|	checkbox	|
				radio	|	submit	|	reset	|
				file	|	hidden	|	image	|	button)"
			>
<!--	the	name	attribute	is	required	for	all	but	submit	&	reset	-->
<!ELEMENT	input	EMPTY>					<!--	form	control	-->
<!ATTLIST	input
		%attrs;
		type								%InputType;				"text"
		name								CDATA										#IMPLIED
		value							CDATA										#IMPLIED
		checked					(checked)						#IMPLIED
		disabled				(disabled)					#IMPLIED
		readonly				(readonly)					#IMPLIED
		size								CDATA										#IMPLIED
		maxlength			%Number;							#IMPLIED
		src									%URI;										#IMPLIED
		alt									CDATA										#IMPLIED
		usemap						%URI;										#IMPLIED
		tabindex				%Number;							#IMPLIED
		accesskey			%Character;				#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED
		onselect				%Script;							#IMPLIED
		onchange				%Script;							#IMPLIED
		accept						%ContentTypes;	#IMPLIED
		align							%ImgAlign;					#IMPLIED
		>
<!ELEMENT	select	(optgroup|option)+>		<!--	option	selector	-->
<!ATTLIST	select
		%attrs;
		name								CDATA										#IMPLIED
		size								%Number;							#IMPLIED
		multiple				(multiple)					#IMPLIED
		disabled				(disabled)					#IMPLIED

		tabindex				%Number;							#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED
		onchange				%Script;							#IMPLIED
		>
<!ELEMENT	optgroup	(option)+>			<!--	option	group	-->
<!ATTLIST	optgroup
		%attrs;
		disabled				(disabled)					#IMPLIED
		label							%Text;									#REQUIRED
		>
<!ELEMENT	option	(#PCDATA)>					<!--	selectable	choice	-->
<!ATTLIST	option
		%attrs;
		selected				(selected)					#IMPLIED
		disabled				(disabled)					#IMPLIED
		label							%Text;									#IMPLIED
		value							CDATA										#IMPLIED
		>
<!ELEMENT	textarea	(#PCDATA)>					<!--	multi-line	text	field	-->
<!ATTLIST	textarea
		%attrs;
		name								CDATA										#IMPLIED
		rows								%Number;							#REQUIRED
		cols								%Number;							#REQUIRED
		disabled				(disabled)					#IMPLIED
		readonly				(readonly)					#IMPLIED
		tabindex				%Number;							#IMPLIED
		accesskey			%Character;				#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED
		onselect				%Script;							#IMPLIED
		onchange				%Script;							#IMPLIED
		>
<!--
		The	fieldset	element	is	used	to	group	form	fields.
		Only	one	legend	element	should	occur	in	the	content
		and	if	present	should	only	be	preceded	by	whitespace.
-->
<!ELEMENT	fieldset	(#PCDATA	|	legend	|	%block;	|	form	|	%inline;	|	%misc;)*>
<!ATTLIST	fieldset
		%attrs;
		>
<!ENTITY	%	LAlign	"(top|bottom|left|right)">
<!ELEMENT	legend	%Inline;>					<!--	fieldset	label	-->

<!ATTLIST	legend
		%attrs;
		accesskey			%Character;				#IMPLIED
		align							%LAlign;							#IMPLIED
		>
<!--
	Content	is	%Flow;	excluding	a,	form,	form	controls,	iframe
-->
<!ELEMENT	button	%button.content;>		<!--	push	button	-->
<!ATTLIST	button
		%attrs;
		name								CDATA										#IMPLIED
		value							CDATA										#IMPLIED
		type								(button|submit|reset)	"submit"
		disabled				(disabled)					#IMPLIED
		tabindex				%Number;							#IMPLIED
		accesskey			%Character;				#IMPLIED
		onfocus					%Script;							#IMPLIED
		onblur						%Script;							#IMPLIED
		>
<!--	single-line	text	input	control	(DEPRECATED)	-->
<!ELEMENT	isindex	EMPTY>
<!ATTLIST	isindex
		%coreattrs;
		%i18n;
		prompt						%Text;									#IMPLIED
		>
<!--=======================	Tables	=======================================-->
<!--	Derived	from	IETF	HTML	table	standard,	see	[RFC1942]	-->
<!--
	The	border	attribute	sets	the	thickness	of	the	frame	around	the
	table.	The	default	units	are	screen	pixels.
	The	frame	attribute	specifies	which	parts	of	the	frame	around
	the	table	should	be	rendered.	The	values	are	not	the	same	as
	CALS	to	avoid	a	name	clash	with	the	valign	attribute.
-->
<!ENTITY	%	TFrame	"(void|above|below|hsides|lhs|rhs|vsides|box|border)">
<!--
	The	rules	attribute	defines	which	rules	to	draw	between	cells:
	If	rules	is	absent	then	assume:
					"none"	if	border	is	absent	or	border="0"	otherwise	"all"
-->
<!ENTITY	%	TRules	"(none	|	groups	|	rows	|	cols	|	all)">

<!--	horizontal	placement	of	table	relative	to	document	-->

<!ENTITY	%	TAlign	"(left|center|right)">
<!--	horizontal	alignment	attributes	for	cell	contents
		char								alignment	char,	e.g.	char=':'
		charoff					offset	for	alignment	char
-->
<!ENTITY	%	cellhalign
		"align						(left|center|right|justify|char)	#IMPLIED
			char							%Character;				#IMPLIED
			charoff				%Length;							#IMPLIED"
		>
<!--	vertical	alignment	attributes	for	cell	contents	-->
<!ENTITY	%	cellvalign
		"valign					(top|middle|bottom|baseline)	#IMPLIED"
		>
<!ELEMENT	table
					(caption?,	(col*|colgroup*),	thead?,	tfoot?,	(tbody+|tr+))>
<!ELEMENT	caption		%Inline;>
<!ELEMENT	thead				(tr)+>
<!ELEMENT	tfoot				(tr)+>
<!ELEMENT	tbody				(tr)+>
<!ELEMENT	colgroup	(col)*>
<!ELEMENT	col						EMPTY>
<!ELEMENT	tr							(th|td)+>
<!ELEMENT	th							%Flow;>
<!ELEMENT	td							%Flow;>
<!ATTLIST	table
		%attrs;
		summary					%Text;									#IMPLIED
		width							%Length;							#IMPLIED
		border						%Pixels;							#IMPLIED
		frame							%TFrame;							#IMPLIED
		rules							%TRules;							#IMPLIED
		cellspacing	%Length;							#IMPLIED
		cellpadding	%Length;							#IMPLIED
		align							%TAlign;							#IMPLIED
		bgcolor					%Color;								#IMPLIED
		>
<!ENTITY	%	CAlign	"(top|bottom|left|right)">
<!ATTLIST	caption
		%attrs;
		align							%CAlign;							#IMPLIED
		>
<!--
colgroup	groups	a	set	of	col	elements.	It	allows	you	to	group
several	semantically	related	columns	together.

-->
<!ATTLIST	colgroup
		%attrs;
		span								%Number;							"1"
		width							%MultiLength;		#IMPLIED
		%cellhalign;
		%cellvalign;
		>
<!--
	col	elements	define	the	alignment	properties	for	cells	in
	one	or	more	columns.
	The	width	attribute	specifies	the	width	of	the	columns,	e.g.
					width=64								width	in	screen	pixels
					width=0.5*						relative	width	of	0.5
	The	span	attribute	causes	the	attributes	of	one
	col	element	to	apply	to	more	than	one	column.
-->
<!ATTLIST	col
		%attrs;
		span								%Number;							"1"
		width							%MultiLength;		#IMPLIED
		%cellhalign;
		%cellvalign;
		>
<!--
				Use	thead	to	duplicate	headers	when	breaking	table
				across	page	boundaries,	or	for	static	headers	when
				tbody	sections	are	rendered	in	scrolling	panel.
				Use	tfoot	to	duplicate	footers	when	breaking	table
				across	page	boundaries,	or	for	static	footers	when
				tbody	sections	are	rendered	in	scrolling	panel.
				Use	multiple	tbody	sections	when	rules	are	needed
				between	groups	of	table	rows.
-->
<!ATTLIST	thead
		%attrs;
		%cellhalign;
		%cellvalign;
		>
<!ATTLIST	tfoot
		%attrs;
		%cellhalign;
		%cellvalign;
		>
<!ATTLIST	tbody

		%attrs;
		%cellhalign;
		%cellvalign;
		>
<!ATTLIST	tr
		%attrs;
		%cellhalign;
		%cellvalign;
		bgcolor					%Color;								#IMPLIED
		>
<!--	Scope	is	simpler	than	headers	attribute	for	common	tables	-->
<!ENTITY	%	Scope	"(row|col|rowgroup|colgroup)">
<!--	th	is	for	headers,	td	for	data	and	for	cells	acting	as	both	-->
<!ATTLIST	th
		%attrs;
		abbr								%Text;									#IMPLIED
		axis								CDATA										#IMPLIED
		headers					IDREFS									#IMPLIED
		scope							%Scope;								#IMPLIED
		rowspan					%Number;							"1"
		colspan					%Number;							"1"
		%cellhalign;
		%cellvalign;
		nowrap						(nowrap)							#IMPLIED
		bgcolor					%Color;								#IMPLIED
		width							%Pixels;							#IMPLIED
		height						%Pixels;							#IMPLIED
		>
<!ATTLIST	td
		%attrs;
		abbr								%Text;									#IMPLIED
		axis								CDATA										#IMPLIED
		headers					IDREFS									#IMPLIED
		scope							%Scope;								#IMPLIED
		rowspan					%Number;							"1"
		colspan					%Number;							"1"
		%cellhalign;
		%cellvalign;
		nowrap						(nowrap)							#IMPLIED
		bgcolor					%Color;								#IMPLIED
		width							%Pixels;							#IMPLIED
		height						%Pixels;							#IMPLIED
		>

	

	

Appendix	F.	Character	Entities

The	following	table	lists	the	defined	standard	and	proposed	character	entities	for
HTML	and	XHTML,	as	well	as	several	that	are	nonstandard	but	generally
supported.

Entity	names,	if	defined,	appear	for	their	respective	characters	and	can	be	used	in
the	character-entity	sequence	&name;	to	define	any	character	for	display	by	the
browser.	Otherwise,	or	alternatively	for	named	characters,	use	the	character's
three-digit	numeral	value	in	the	sequence	&#nnn;	to	specially	define	a	character
entity.	Actual	characters,	however,	may	or	may	not	be	displayed	by	the	browser,
depending	on	the	computer	platform	and	user-selected	font	for	display.

Not	all	256	characters	in	the	International	Organization	for	Standardization	(ISO)
character	set	appear	in	the	table.	Missing	ones	are	not	recognized	by	the	browser
as	either	named	or	numeric	entities.

To	be	sure	that	your	documents	are	fully	compliant	with	the	HTML	4.0	and	XHTML
1.0	standards,	use	only	those	named	character	entities	with	no	entries	in	the
Conformance	column.	Characters	with	a	value	of	"!!!"	in	the	Conformance	column
are	not	formally	defined	by	the	standards;	use	them	at	your	own	risk.

Numeric	entity Named	entity Symbol Description Conformance

	 	 	 Horizontal	tab 	

 	 	 Line	feed 	

 	 	 Carriage	return 	

 	 	 Space 	

! 	 ! Exclamation	point 	

" " " Quotation	mark 	

# 	 # Hash	mark 	

$ 	 $ Dollar	sign 	

% 	 % Percent	sign 	

& & & Ampersand 	

' 	 ' Apostrophe 	

((Left	parenthesis 	

)) Right	parenthesis 	

* 	 * Asterisk 	

+ 	 + Plus	sign 	

, 	 , Comma 	

- 	 - Hyphen 	

. 	 . Period 	

/ 	 / Slash 	

0-9 	 09 Digits	09 	

: 	 : Colon 	

; 	 ; Semicolon 	

< < < Less	than	sign 	

= 	 = Equals	sign 	

> > > Greater	than	sign 	

? 	 ? Question	mark 	

@ 	 @ Commercial	at	sign 	

A-Z 	 A-Z Letters	A-Z 	

[[Left	square	bracket 	

\ 	 \ Backslash 	

]] Right	square	bracket 	

^ 	 Caret 	

_ 	 _ Underscore 	

` 	 ` Grave	accent 	

a-z 	 a-z Letters	a-z 	

{ 	 { Left	curly	brace 	

| 	 | Vertical	bar 	

} 	 } Right	curly	brace 	

~ 	 ~ Tilde 	

‚ 	 , Low	left	single	quote !!!

ƒ 	 Florin !!!

„ 	 " Low	left	double	quote !!!

… 	 ... Ellipsis !!!

† 	 Dagger !!!

‡ 	 Double	dagger !!!

ˆ 	 ^ Circumflex !!!

‰ 	 Permil !!!

Š 	 Capital	S,	caron !!!

‹ 	 < Less	than	sign !!!

Œ 	 Œ Capital	OE	ligature !!!

Ž 	 Capital	Z,	caron !!!

‘ 	 ' Left	single	quote !!!

’ 	 ' Right	single	quote !!!

“ 	 " Left	double	quote !!!

” 	 " Right	double	quote !!!

• 	 • Bullet !!!

– 	 En	dash !!!

— 	 Em	dash !!!

˜ 	 ~ Tilde !!!

™ 	 ™ Trademark !!!

š 	 Small	s,	caron !!!

› 	 > Greater	than	sign !!!

œ 	 œ Small	oe	ligature !!!

ž 	 Small	z,	caron !!!

Ÿ 	 Capital	Y,	umlaut !!!

 	 Nonbreaking	space 	

¡ ¡ ¡ Inverted	exclamation	point 	

¢ ¢ ¢ Cent	sign 	

£ £ £ Pound	sign 	

¤ ¤ ¤ General	currency	sign 	

¥ ¥ ¥ Yen	sign 	

¦ ¦ Broken	vertical	bar 	

§ § § Section	sign 	

¨ ¨ ¨ Umlaut 	

© © © Copyright 	

ª ª ª Feminine	ordinal 	

« « « Left	angle	quote 	

¬ ¬ ¬ Not	sign 	

­ ­ Soft	hyphen 	

® ® ® Registered	trademark
	

¯ ¯ ¯ Macron	accent 	

° ° ° Degree	sign 	

± ± ± Plus	or	minus 	

² ² 2 Superscript	2 	

³ ³ 3 Superscript	3 	

´ ´ ´ Acute	accent 	

µ µ μ Micro	sign	(Greek	mu) 	

¶ ¶ ¶ Paragraph	sign 	

· · · Middle	dot 	

¸ ¸ , Cedilla 	

¹ ¹ 1 Superscript	1 	

º º º Masculine	ordinal 	

» » » Right	angle	quote 	

¼ ¼ ¼ Fraction	one-fourth 	

½ ½ ½; Fraction	one-half 	

¾ ¾ ¾ Fraction	three-fourths 	

¿ ¿ ¿ Inverted	question	mark 	

À À À Capital	A,	grave	accent 	

Á Á Á Capital	A,	acute	accent 	

Â Â Â Capital	A,	circumflex	accent 	

Ã Ã Ã Capital	A,	tilde 	

Ä Ä Ä Capital	A,	umlaut 	

Å Å Å Capital	A,	ring 	

Æ Æ Æ Capital	AE	ligature 	

Ç Ç Ç Capital	C,	cedilla 	

È È È Capital	E,	grave	accent 	

É É É Capital	E,	acute	accent 	

Ê Ê Ê Capital	E,	circumflex	accent 	

Ë Ë Ë Capital	E,	umlaut 	

Ì Ì Ì Capital	I,	grave	accent 	

Í Í í Capital	I,	acute	accent 	

Î Î Î Capital	I,	circumflex	accent 	

Ï Ï Ï Capital	I,	umlaut 	

Ð Ð Capital	eth,	Icelandic 	

Ñ Ñ Ñ Capital	N,	tilde 	

Ò Ò Ò Capital	O,	grave	accent 	

Ó Ó Ó Capital	O,	acute	accent 	

Ô Ô Ô Capital	O,	circumflex	accent 	

Õ Õ Õ Capital	O,	tilde 	

Ö Ö Ö Capital	O,	umlaut 	

× × x Multiply	sign 	

Ø Ø Ø Capital	O,	slash 	

Ù Ù Ù Capital	U,	grave	accent 	

Ú Ú Ú Capital	U,	acute	accent 	

Û Û û Capital	U,	circumflex	accent 	

Ü Ü Ü Capital	U,	umlaut 	

Ý Ý Ý Capital	Y,	acute	accent 	

Þ Þ Capital	thorn,	Icelandic 	

ß ß ß Small	sz	ligature,	German 	

à à à Small	a,	grave	accent 	

á á á Small	a,	acute	accent 	

â â â Small	a,	circumflex	accent 	

ã ã ã Small	a,	tilde 	

ä ä ä Small	a,	umlaut 	

å å å Small	a,	ring 	

æ æ æ Small	ae	ligature 	

ç ç ç Small	c,	cedilla 	

è è è Small	e,	grave	accent 	

é é é Small	e,	acute	accent 	

ê ê ê Small	e,	circumflex	accent 	

ë ë ë Small	e,	umlaut 	

ì ì ì Small	i,	grave	accent 	

í í í Small	i,	acute	accent 	

î î î Small	i,	circumflex	accent 	

ï ï î Small	i,	umlaut 	

ð ð Small	eth,	Icelandic 	

ñ ñ ñ Small	n,	tilde 	

ò ò ò Small	o,	grave	accent 	

ó ó ó Small	o,	acute	accent 	

ô ô ô Small	o,	circumflex	accent 	

õ õ õ Small	o,	tilde 	

ö ö ö Small	o,	umlaut 	

÷ ÷ ÷ Division	sign 	

ø ø Small	o,	slash 	

ù ù ù Small	u,	grave	accent 	

ú ú ú Small	u,	acute	accent 	

û û Û Small	u,	circumflex	accent 	

ü ü ü Small	u,	umlaut 	

ý ý y Small	y,	acute	accent 	

þ þ Small	thorn,	Icelandic 	

ÿ ÿ ÿ Small	y,	umlaut 	

	
	

Appendix	G.	Color	Names	and	Values

With	the	popular	browsers,	and	according	to	the	Cascading	Style	Sheets	(CSS)
standard,	you	may	prescribe	the	display	color	for	various	elements	in	your
documents.	You	do	so	by	specifying	a	color	value	or	a	standard	name.	The	user
may	override	these	color	specifications	through	her	browser	preferences.

	

G.1.	Color	Values

In	all	cases,	you	may	set	the	color	value	for	an	HTML	element,	such	as	<body>	text,
<table>	background,	and	so	on,	as	a	six-digit	hexadecimal	number	that	represents
the	red,	green,	and	blue	(RGB)	components	of	the	color.	The	first	two	digits
correspond	to	the	red	component	of	the	color,	the	next	two	are	the	green
component,	and	the	last	two	are	the	blue	component.	A	value	of	00	corresponds	to
a	component	being	completely	off;	the	hexadecimal	value	of	FF	(decimal	255)
corresponds	to	the	component	being	completely	on.	Thus,	bright	red	is	FF0000,
bright	green	is	00FF00,	and	bright	blue	is	0000FF.	Other	primary	colors	are	mixtures
of	the	components,	such	as	yellow	(FFFF00),	magenta	(FF00FF),	and	cyan	(00FFFF).
White	(FFFFFF)	and	black	(000000)	also	are	easy	to	figure	out.

You	use	these	values	in	a	tag	by	replacing	the	color	with	the	RGB	triple,	preceded
by	a	pound	sign	(#).	Thus,	to	make	all	visited	links	display	as	magenta,	use	this
body	tag:

<body	vlink="#FF00FF">

	
	

G.2.	Color	Names

Determining	the	RGB-triple	value	for	anything	other	than	the	simplest	colors	(you
try	figuring	out	esoteric	colors	like	"papaya	whip"	or	"navajo	white")	is	not	easy.
You	can	go	crazy	trying	to	adjust	the	RGB	triple	for	a	color	to	get	the	shade	just
right,	especially	when	each	adjustment	requires	loading	a	document	into	your
browser	to	view	the	result.

To	make	life	easier,	the	standards	define	16	standard	color	names	that	you	can
use	anywhere	you	can	use	a	numeric	color	value.	For	example,	you	can	make	all
visited	links	in	the	display	magenta	with	the	following	attribute	and	value	for	the
body	tag:

<body	vlink="magenta">

	
The	color	names	and	RGB	values	defined	in	the	HTML/XHTML	standards	are:

aqua	(#00FFFF) gray	(#808080) navy	(#000080) silver	(#C0C0C0)

black	(#000000) green	(#008000) olive	(#808000) teal	(#008080)

blue	(#0000FF) lime	(#00FF00) purple	(#800080) yellow	(#FFFF00)

fuchsia	(#FF00FF) maroon	(#800000) red	(#FF0000) white	(#FFFFFF)

	
The	popular	browsers	go	well	beyond	the	standard	and	support	the	several
hundred	color	names	defined	for	use	in	the	X	Window	System.	Note	that	these
color	names	may	contain	no	spaces;	also,	the	word	gray	may	be	spelled	grey	in
any	color	name.

Those	colors	marked	with	an	asterisk	(*)	actually	represent	a	family	of	colors
numbered	one	through	four.	Thus,	there	are	actually	four	variants	of	blue,	named
"blue1,"	"blue2,"	"blue3,"	and	"blue4,"	along	with	plain	old	"blue."	Blue1	is	the
lightest	of	the	four;	blue4	is	the	darkest.	The	unnumbered	color	name	is	the	same
color	as	the	first;	thus,	blue	and	blue1	are	identical.

Finally,	if	all	that	isn't	enough,	there	are	100	variants	of	gray	(and	grey),
numbered	1	through	100.	"Gray1"	is	the	darkest,	"gray100"	is	the	lightest,	and
"gray"	is	very	close	to	"gray75."

The	extended	color	names	are:

aliceblue darkturquoise lightseagreen palevioletred*

antiquewhite* darkviolet lightskyblue* papayawhip

aquamarine* deeppink* lightslateblue peachpuff*

azure* deepskyblue* lightslategray peru

beige dimgray lightsteelblue* pink*

bisque* dodgerblue* lightyellow* plum*

black firebrick* limegreen powderblue

blanchedalmond floralwhite linen purple*

blue* forestgreen magenta* red*

blueviolet gainsboro maroon* rosybrown*

brown* ghostwhite mediumaquamarine royalblue*

burlywood* gold* mediumblue saddlebrown

cadetblue* goldenrod* mediumorchid* salmon*

chartreuse* gray mediumpurple* sandybrown

chocolate* green* mediumseagreen seagreen*

coral* greenyellow mediumslateblue seashell*

cornflowerblue honeydew* mediumspringgreen sienna*

cornsilk* hotpink* mediumturquoise skyblue*

cyan* indianred* mediumvioletred slateblue*

darkblue ivory* midnightblue slategray*

darkcyan khaki* mintcream snow*

darkgoldenrod* lavender mistyrose* springgreen*

darkgray lavenderblush* moccasin steelblue*

darkgreen lawngreen navajowhite* tan*

darkkhaki lemonchiffon* navy thistle*

darkmagenta lightblue* navyblue tomato*

darkolivegreen* lightcoral oldlace turquoise*

darkorange* lightcyan* olivedrab* violet

darkorchid* lightgoldenrod* orange* violetred*

darkred lightgoldenrodyellow orangered* wheat*

darksalmon lightgray orchid* white

darkseagreen* lightgreen palegoldenrod whitesmoke

darkslateblue lightpink* palegreen* yellow*

darkslategray* lightsalmon* paleturquoise* yellowgreen

	
	

G.3.	The	Standard	Color	Map

Supporting	hundreds	of	color	names	and	millions	of	RGB	triples	is	nice,	but	the
reality	is	that	a	large	(albeit	shrinking)	population	of	users	can	display	only	256
colors	on	their	systems.	When	confronted	with	a	color	not	defined	in	this	set	of
256,	the	browser	has	two	choices:	convert	the	color	to	one	of	the	existing	colors,
or	dither	the	color	using	the	available	colors	in	the	color	map.

Conversion	is	easy;	the	color	is	compared	to	all	the	other	colors	in	the	color	map
and	is	replaced	by	the	closest	color	found.	Dithering	is	more	difficult.	Using	two	or
more	colors	in	the	color	map,	the	errant	color	is	approximated	by	mixing	different
ratios	of	the	available	colors.	When	you	view	them	up	close,	you'll	see	a	pattern
of	alternating	pixels	using	the	available	colors.	At	a	distance,	the	pixels	blend	to
form	a	color	close	to	the	original	color.

In	general,	your	images	will	look	best	if	you	can	avoid	both	conversion	and
dithering.	Conversion	will	make	your	colors	appear	"off";	dithering	makes	them
look	fuzzy.	How	to	avoid	these	problems?	Easy:	use	colors	in	the	standard	color
map	when	creating	your	images.

The	standard	color	map	actually	has	216	values	in	it.	There	are	six	variants	of
red,	six	of	green,	and	six	of	blue	that	are	combined	in	all	possible	ways	to	create
these	216	(6	x	6	x	6)	colors.	These	variants	have	decimal	brightness	values	of	0,
51,	102,	153,	204,	and	255,	corresponding	to	hexadecimal	values	of	00,	33,	66,
99,	CC,	and	FF.	Colors	such	as	003333	(dark	cyan)	and	999999	(medium	gray)
exist	directly	in	the	color	map	and	won't	be	converted	or	dithered.

Keep	in	mind	that	many	of	the	extended	color	names	are	not	in	the	standard	color
map	and	will	be	converted	or	dithered	to	a	(hopefully)	similar	color.	Using	color
names,	while	convenient,	does	not	guarantee	that	the	browser	will	use	the
desired	color.

When	creating	images,	try	to	use	colors	in	the	standard	color	map.	When
selecting	colors	for	text,	links,	or	backgrounds,	make	sure	you	select	colors	in	the
standard	color	map.	Your	pages	will	look	better	and	will	be	more	consistent	when
viewed	with	different	browsers.

	

Appendix	H.	Netscape	Layout	Extensions

From	the	start	of	their	enterprise	before	the	turn	of	the	century,	the	developers	at
Netscape	were	at	the	forefront	of	browser	design	that	addressed	the	needs	of
commercial	interests.	During	those	heady	years,	Netscape	extended	HTML	to
provide	authors	with	far	more	sophisticated	page-layout	capabilities	than
otherwise	available	in	any	other	browser.	And	they	were	very	successful	in	that
enterprise.	Netscape	Navigator	was	the	dominant	browser	by	far	until	the	early
2000s	with	the	advent	of	Cascading	Style	Sheets	(CSS)	and	other	standards.
Microsoft	finally	caught	on,	too.

In	this	appendix,	we	document	for	historical	purposes	three	features	that	were
unique	to	Netscape	versions	4	and	earlier	and	no	other	browsers	since	then:
spacers,	multiple	columns,	and	layers.	These	tags	lure	the	designer	with	exciting
page-layout	capabilities.	Play	with	them	as	you	will,	but	we	warn	you:	they	won't
ever	become	part	of	HTML/XHTML	standards.	They	aren't	even	supported	by	the
latest	version	of	Netscape	Navigator.

	

H.1.	Creating	Whitespace

One	of	the	simplest	elements	in	any	page	design	is	the	empty	space	surrounding
content.	Empty	space	is	often	just	as	important	to	the	look	and	feel	of	a	page	as
the	areas	filled	with	text	and	images.	Commonly	known	as	whitespace,	these
empty	areas	shape	and	contain	the	content	of	your	page.

Native	HTML	has	no	way	to	create	empty	space	on	your	page,	short	of	using	a
<pre>	tag	filled	with	blank	lines	or	an	empty	image.	In	fact,	browsersacting
according	to	the	HTML/XHTML	standardsremove	leading,	trailing,	and	any	other
extra	spaces	in	text	and	ignore	extra	linefeeds.	Netscape	4	fills	this	void	with	the
<spacer>	tag.	[The	
	Tag,	4.6.1]

H.1.1.	The	<spacer>	Tag	(Antiquated)

Use	the	<spacer>	tag	to	create	horizontal,	vertical,	and	rectangular	whitespace	in
documents	rendered	by	Netscape	4.

<spacer>

Function Defines	a	blank	area	in	a	document

Attributes align,	height,	size,	type,	width

End	tag None	in	HTML

Contains Nothing

Used	in text

	

H.1.1.1.	Creating	horizontal	space

The	most	common	use	of	the	<spacer>	tag	is	to	indent	a	line	of	text.	To	achieve	this
effect,	set	the	value	of	the	type	attribute	to	horizontal,	and	use	the	size	attribute	to
define	the	width,	in	pixels	(not	text	characters),	of	the	horizontal	area.	For
example:

<spacer	type=horizontal	size=100>

	
inserts	100	pixels	of	space	in	line	with	the	current	line	of	text.	Netscape	4
appends	subsequent	content	at	the	end	of	the	spacer	if	sufficient	space	remains
on	the	current	line.	Otherwise,	it	places	the	next	element	onto	the	next	line,
following	its	normal	word-wrap	behavior.

If	there	is	not	enough	room	to	place	the	entire	<spacer>	tag's	whitespace	on	the
current	line,	the	browser	shortens	the	space	to	fit	on	the	current	line.	In	a	sense,
the	size	of	the	spacer	is	soft,	telling	the	browser	to	insert	up	to	the	specified
number	of	pixels	until	the	end	of	the	current	line	is	reached.

For	example,	if	a	spacer	is	100	pixels	wide,	and	only	75	pixels	of	space	remain	on
the	current	line	within	the	browser's	display	window,	Netscape	4	inserts	75	pixels
of	space	into	the	line	and	places	the	next	element	at	the	beginning	of	the	next
line	in	the	display.	Accordingly,	a	horizontal	spacer	is	never	broken	across	a	line,

creating	space	at	the	end	of	one	line	and	the	beginning	of	the	next.

By	far,	the	most	common	application	of	the	horizontal	spacer	is	to	indent	the	first
line	of	a	paragraph.	Simply	place	a	horizontal	spacer	at	the	start	of	a	paragraph
to	get	the	desired	result:

<spacer	type=horizontal	size=50>
The	effects	of	cooler	weather	on	the	kumquat's	ripening	process
vary	based	upon	the	temperature.	Temperatures	above	28°
sweeten	the	fruit,	while	four	or	more	hours	below	28°	will
damage	the	tree.

	
Figure	H-1	shows	the	results.

Figure	H-1.	Indenting	a	paragraph	with	a	horizontal	spacer
(Netscape	4	only)

	
Of	course,	you	also	can	use	horizontal	spacers	to	insert	additional	space	between
letters	or	words	in	a	line	of	text.	This	might	be	useful	for	displaying	poetry	or
specialized	ad	copy.	But	don't	use	a	spacer	to	create	an	indented	block	of	textyou
cannot	predict	the	size	of	the	user's	browser	window,	font	sizes,	and	so	forth,	and,
hence,	where	it	will	break	a	particular	line	of	text.	Instead,	use	the	<blockquote>	tag
or	adjust	the	paragraph's	left	margin	with	an	appropriate	style.

H.1.1.2.	Creating	vertical	space

You	may	insert	extra	whitespace	between	lines	of	text	and	paragraphs	in	your
documents	by	setting	the	type	attribute	in	the	<spacer>	tag	to	vertical.	You	also
must	include	the	size	attribute.	Make	its	value	a	positive	integer	equal	to	the
amount	of	whitespace,	in	pixels.

The	vertical	spacer	acts	just	like	the	
	tag.	Both	tags	cause	an	immediate	line
break.	The	difference	is	that	with	the	vertical	spacer,	you	control	how	far	below

the	current	line	of	text	Netscape	4	should	start	the	subsequent	line.	The
whitespace	is	added	toand	therefore	is	never	less	thanthe	normal	amount	of	space
that	would	appear	below	the	current	line	of	text	as	a	result	of	the	paragraph's	line
spacing.

Because	HTML	pages	are	infinitely	tall,	the	vertical	space	may	be	any	number	of
pixels	high.	Of	course,	it'd	be	sophomoric	to	be	excessive	(oh,	OK,	try
size=100000000).	Most	of	today's	monitors	have	a	vertical	scan	of	no	more	than
1,024	lines,	so	a	vertical	pixel	size	value	of	1,025	ensures	that	the	next	line	of
text	is	placed	off	the	user's	screen,	if	that	is	the	effect	you	desire.

Vertical	spacers	aren't	quite	as	common	as	horizontal	spacers,	but	they	can	still
be	useful.	In	the	following	text,	we've	used	a	vertical	spacer	to	provide	a	bit	more
separation	between	the	document's	header	and	the	regular	text:

<h1	align=right>Temperature	Effects</h1>
<spacer	type=vertical	size=50>
The	effects	of	cooler	weather	on	the	kumquat's	ripening	process
vary	based	upon	the	temperature.	Temperatures	above	28°
sweeten	the	fruit,	while	four	or	more	hours	below	28°	will
damage	the	tree.

	
Figure	H-2	shows	the	results.

Figure	H-2.	Using	a	vertical	spacer	to	separate	a	header	from	the
text	(Netscape	4	only)

	

H.1.1.3.	Creating	blocks	of	space

The	third	spacer	type	creates	a	rectangular	block	of	blank	space,	much	like	a
blank	image.	Set	the	type	attribute	to	block	and	include	three	other	attributes	to
fully	define	the	space:	width,	height,	and	align.

The	width	and	height	attributes	specify	the	size	of	the	spacer	in	pixels	or	as	a
percentage	of	the	element	containing	the	spacer.	These	attributes	are	used	only
when	the	type	attribute	is	set	to	block	and	otherwise	are	ignored.	Similarly,	the	size
attribute	is	ignored	when	the	<spacer>	type	is	block.	If	specifying	a	size	in	pixels,
you	must	give	a	positive	integer	value	to	both	the	width	and	height	attributes;	their
default	value	is	0.

The	third	required	block	spacer	attribute,	align,	controls	how	Netscape	4	places
the	empty	block	relative	to	the	surrounding	text.	The	values	for	this	attribute	are
identical	to	those	for	the	align	attribute	in	the		tag.	Use	the	top,	texttop,	middle,
absmiddle,	baseline,	bottom,	and	absbottom	values	to	obtain	the	desired	vertical
alignment	of	the	block	spacer.	Use	the	left	and	right	values	to	force	the	block
spacer	to	the	indicated	margin	and	cause	the	following	text	to	flow	up	and	around
the	spacer.	The	default	value	is	bottom.	For	a	complete	description	of	the	align
attribute	and	its	values,	see	section	4.1.1.1.

This	HTML	fragment	places	the	compass	points	around	an	empty	area:

<center>
North

West
<spacer	type=block	width=50	height=50	align=absmiddle>
East

South
</center>

	
Figure	H-3	shows	the	resulting	document.

Figure	H-3.	Using	a	block	spacer	to	create	space	in	a	document
(Netscape	4	only)

	

H.1.2.	Mimicking	the	<spacer>	Tag

Because	only	Netscape	versions	4	and	earlier	support	the	<spacer>	tag,	other
browsers	ignore	it,	ruining	your	carefully	contrived	layout.	We	strongly	suggest
that	you	instead	use	the	CSS	standard	text-indent	property	for	identical	results.

You	might	also	emulate	the	<spacer>	tag	with	the		tag	and	a	special,	small
image.	This	way,	you	can	achieve	<spacer>-like	effects	even	with	browsers	that
don't	support	CSS.	For	an	image	to	emulate	<spacer>,	you'll	need	a	GIF	that	is
completely	transparent.	Because	no	part	of	the	image	is	ever	seen,	you	can	make
it	as	small	as	you	want;	we	recommend	a	1	x	1-pixel	GIF	image.	In	the	following
examples,	our	tiny	1	x	1-pixel	transparent	image	is	named	small.gif.

To	emulate	a	horizontal	spacer	of	the	form:

<spacer	type=horizontal	size=n>

	
use	this		tag:

	
Replace	n	with	the	desired	pixel	width.	Keep	in	mind,	however,	that	the	width	of
the		tag	is	fixed	and	may	not	integrate	into	the	text	flow	exactly	like	the
<spacer>	tag	would,	especially	if	the		tag	falls	at	or	near	the	end	of	a	line	of
text.

To	emulate	a	vertical	spacer	of	the	form:

<spacer	type=vertical	size=n>

	

use	this	HTML	fragment:

	
The	
	tags	are	needed	in	the	example	to	emulate	the	line-breaking	behavior	of
the	vertical	spacer.	Again,	replace	n	with	the	desired	height.

To	emulate	a	block	spacer	of	the	form:

<spacer	type=block	width=w	height=h	align=a>

	
use	this		tag:

	
Replace	w,	h,	and	a	with	the	desired	width,	height,	and	alignment	values.

	

H.2.	Multicolumn	Layout

Multicolumn	text	formatting	is	one	of	the	most	common	features	of	desktop
publishing.	In	addition	to	creating	attractive	pages	in	a	variety	of	formats,
multiple	columns	let	you	present	your	text	using	shorter,	easier-to-read	lines.
HTML	page	designers	have	longed	for	the	ability	to	easily	create	multiple	text
columns	in	a	single	page,	but	they	have	been	forced	to	use	various	tricks,	such	as
multicolumn	tables	(see	Chapter	17).

Netscape	4	neatly	solved	this	problem	with	the	unique	<multicol>	tag.	While	fancy
unbalanced	columns	and	straddling	are	not	possible	with	this	tag,	as	they	are	with
tables,	conventionally	balanced	text	columns	are	easy	to	create	with	<multicol>.
And	while	this	capability	is	available	only	with	Netscape	4,	the	<multicol>	tag
degrades	nicely	in	other	browsers.

H.2.1.	The	<multicol>	Tag	(Antiquated)

The	<multicol>	tag	creates	multiple	columns	of	text	and	lets	you	control	the	size
and	number	of	columns.

<multicol>	(Antiquated)

Function Formats	text	with	multiple	columns

Attributes class,	cols,	gutter,	style,	width

End	tag </multicol>;	never	omitted

Contains body_content

Used	in block

	
The	<multicol>	tag	can	contain	any	other	HTML	content,	much	like	the	<div>	tag.	All
of	the	content	within	the	<multicol>	tag	is	displayed	just	like	conventional	content,
except	that	Netscape	4	places	the	contents	into	multiple	columns	rather	than	just
one.

The	<multicol>	tag	creates	a	break	in	the	text	flow	and	inserts	a	blank	line	before
rendering	its	content	into	multiple	columns.	After	the	tag,	another	blank	line	is
added	and	the	text	flow	resumes	using	the	previous	layout	and	formatting.

Netscape	4	automatically	balances	the	columns,	making	each	approximately	the
same	length.	Where	possible,	the	browser	moves	text	between	columns	to
accomplish	the	balancing.	In	some	cases,	the	columns	cannot	be	balanced
perfectly	because	of	embedded	images,	tables,	or	other	large	elements.

You	can	nest	<multicol>	tags,	embedding	one	set	of	columns	within	another	set	of
columns.	While	infinite	nesting	is	supported,	more	than	two	levels	of	nesting	are
generally	impractical	and	results	in	unattractive	text	flows.

H.2.1.1.	The	cols	attribute

The	cols	attribute	is	required	by	the	<multicol>	tag	to	define	the	number	of
columns.	If	this	attribute	is	omitted,	Netscape	4	creates	just	one	column,	as
though	the	<multicol>	tag	isn't	there	at	all.	You	may	create	any	number	of
columns,	but	in	practice,	more	than	three	or	four	columns	make	text	unreadable
on	most	displays.

The	following	example	creates	a	three-column	layout:

<h1	align=right>Temperature	Effects</h1>
<multicol	cols=3>
The	effects	of	cooler	weather	on	the	kumquat's	ripening	process
vary	based	upon	the	temperature.	Temperatures	above	28°
sweeten	the	fruit,	while	four	or	more	hours	below	28°	will
damage	the	tree.	The	savvy	quat	farmer	will	carefully	monitor
the	temperature,	especially	in	the	predawn	hours	when	the	mercury
dips	to	its	lowest	point.	Smudge	pots	and	grove	heaters	may	be
required	to	keep	the	trees	warm;	many	growers	will	spray	the	trees
with	water	to	create	an	insulating	layer	of	ice	over	the	fruit	and
leaves.
<p>
If	a	disastrous	frost	is	predicted,	below	20°,	the	only	recourse
may	be	to	harvest	the	fruit	early	to	save	it	from	an	assured	disaster.
Kumquats	may	subsequently	be	ripened	using	any	of	the	popular	methane
and	cyanoacrylate	injection	systems	used	for	other	citrus	fruits.
Used	correctly,	these	systems	will	produce	fruit	whose	taste	is
indistinguishable	from	tree-ripened	kumquats.
</multicol>

	
Figure	H-4	shows	the	results.

Figure	H-4.	A	three-column	<multicol>	document	segment
(Netscape	4	only)

	
You	can	see	in	Figure	H-4	how	Netscape	4	has	balanced	the	columns	to
approximately	equal	lengths.	You	also	can	see	how	several	lines	within	the
columns	appear	shorter	because	longer	words	were	wrapped	to	the	next	line	of
text.	These	overly	ragged	right	margins	within	the	columns	are	unavoidable	and
serve	to	emphasize	that	you	shouldn't	create	more	than	four	or	five	columns	in	a
flow.	Our	example	is	still	barely	readable	if	displayed	as	five	columns;	it	breaks
down	completely	and	even	induces	rendering	errors	if	cols	is	set	to	7,	as	shown	in
Figure	H-5.

Figure	H-5.	Too	many	columns	create	unreadable	pages
(Netscape	4	only)

	

H.2.1.2.	The	gutter	attribute

The	space	between	columns	is	known	as	the	gutter.	By	default,	Netscape	creates
a	gutter	that	is	10	pixels	wide	between	each	of	your	columns.	To	change	this,	set
the	gutter	attribute's	value	to	the	desired	width	in	pixels.	Netscape	4	reserves	this
much	space	between	your	columns;	the	remaining	space	is	used	for	the	columns
themselves.

Figure	H-6	shows	the	effect	this	can	have	on	your	columns.	In	this	figure,	we've
reformatted	our	sample	text	using	<multicol	cols=3	gutter=50>.	Contrast	this	with

Figure	H-4,	which	uses	the	default	10-pixel	gutters.

Figure	H-6.	Change	gutter	widths	with	the	<multicol>	gutter
attribute	(Netscape	4	only)

	

H.2.1.3.	The	width	attribute

Normally,	the	<multicol>	tag	fills	the	current	width	of	the	current	text	flow.	To	have
your	multiple	columns	occupy	a	thinner	space,	or	to	extend	them	beyond	the
visible	window,	use	the	width	attribute	to	specify	the	overall	width	of	the	<multicol>
tag.	The	columns	are	resized	so	that	the	columns	plus	the	gutters	fill	the	width
you've	specified.[*]	The	width	may	be	specified	as	an	absolute	number	of	pixels	or
as	a	percentage	of	the	width	of	the	current	text	flow.

[*]	To	be	exact,	each	column	is	(w	-g(n	-	1))/n	pixels	wide,	where	w	is	the	width	of	the	<multicol>tag,	g	is	the	width	of
a	gutter,	and	n	is	the	number	of	columns.	Thus,	using	<multicol	cols=3	gutter=10	width=500>	creates
columns	that	are	160	pixels	wide.

Figure	H-7	shows	the	effects	of	adding	width="75%"	to	our	column	example,
retaining	the	default	gutter	width	of	10	pixels.

Figure	H-7.	Changing	the	width	of	<multicol>	columns
(Netscape	4	only)

	
If	your	columns	include	images	or	other	fixed-width	elements,	be	careful	when
you	reduce	their	size.	Netscape	4	does	not	wrap	text	around	images	that	extend
beyond	the	boundaries	of	a	column.	Instead,	the	image	covers	the	adjacent
columns,	ruining	your	document.

Always	make	sure	that	embedded	elements	in	columns	are	small	enough	to	fit
within	your	columns,	even	on	fairly	small	browser	displays.

H.2.1.4.	The	style	and	class	attributes

Use	the	style	attribute	with	the	<multicol>	tag	to	create	an	inline	style	for	all	the
content	inside	the	tag.	The	class	attribute	lets	you	label	the	section	with	a	name
that	refers	to	a	predefined	class	of	the	<multicol>	tag	declared	in	some	document-
level	or	externally	defined	stylesheet.	[Inline	Styles:	The	style	Attribute,	8.1.1]
[Style	Classes,	8.3]

H.2.2.	Multiple	Columns	and	Other	Browsers

As	we've	noted,	the	<multicol>	tag	is	supported	only	by	Netscape	versions	4	and
earlier.	Fortunately,	when	other	browsers	encounter	the	<multicol>	tag,	they	ignore
it	and	render	the	enclosed	text	as	part	of	the	normal	text	flow,	usually	with	little
consequent	disruption	to	the	document.

The	only	problem	is	that	the	contents	of	the	<multicol>	tag	flow	up	into	the
previous	flow,	without	an	intervening	break.	Thus,	you	might	consider	preceding
every	<multicol>	tag	with	a	<p>	tag.	Netscape	4	won't	mind,	and	other	browsers	at
least	perform	a	paragraph	break	before	rendering	your	multicolumn	text	in	a
single	column.

It	is	possible	to	emulate	the	<multicol>	tag	using	tables,	but	the	results	are	crude
and	difficult	to	manage	across	multiple	browsers.	To	do	so,	create	a	single-row
table	with	a	cell	for	each	column.	Place	an	appropriate	amount	of	the	text	flow	in
each	cell	to	achieve	balanced	columns.	The	difficulty,	of	course,	is	that	the
"appropriate	amount"	varies	wildly	between	browsers,	making	it	almost	impossible
to	create	multiple	columns	that	are	attractive	on	several	different	browsers.

If	you	must	have	multiple	columns	and	can	tolerate	your	columns	reverting	to	a
single	column	on	incompatible	browsers,	we	recommend	that	you	use	<multicol>.

H.2.3.	Effective	Multicolumn	Layouts

We've	offered	advice	on	columns	throughout	these	sections.	Here	is	a	quick	recap
of	our	tips	for	creating	effective	column	layouts:

Use	a	small	number	of	columns.

Don't	use	excessively	wide	gutters.

Ensure	that	embedded	elements	such	as	images	and	tables	fit	in	your	columns
on	most	displays.

Precede	each	<multicol>	tag	with	a	<p>	tag	to	improve	your	document's
appearance	on	other	browsers.

Avoid	nesting	<multicol>	tags	more	than	two	deep.

	

H.3.	Layers

Spacers	and	multiple	columns	are	natural	extensions	to	conventional	HTML,
existing	within	a	document's	normal	flow.	With	version	4,	Netscape	took	HTML
into	an	entirely	new	dimension	with	layers.	It	transforms	the	single-element
document	model	into	one	containing	many	layered	elements	that	are	combined	to
form	the	final	document.	Regrettably,	layers	are	not	supported	by	Netscape	6	or
any	version	of	Internet	Explorer.

Layers	supply	the	layout	artist	with	a	critical	element	missing	in	standard	HTML:
absolute	positioning	of	content	within	the	browser	window.	Layers	let	you	define	a
self-contained	unit	of	HTML	content	that	can	be	positioned	anywhere	in	the
browser	window,	placed	above	or	below	other	layers,	and	made	to	appear	and
disappear	as	you	desire.	Document	layouts	that	were	impossible	with	conventional
HTML	are	trivial	with	layers.

If	you	think	of	your	document	as	a	sheet	of	paper,	layers	are	like	sheets	of	clear
plastic	placed	on	top	of	your	document.	For	each	layer,	you	define	the	content	of
the	layer,	its	position	relative	to	the	base	document,	and	the	order	in	which	it	is
placed	on	the	document.	Layers	can	be	transparent	or	opaque,	visible	or	hidden,
providing	an	endless	combination	of	layout	options.

H.3.1.	The	<layer>	Tag	(Antiquated)

Each	HTML	document	content	layer	is	defined	with	the	<layer>	tag.	A	layer	can	be
thought	of	as	a	miniature	HTML	document	whose	content	is	defined	between	the
<layer>	and	</layer>	tags.	Alternatively,	the	content	of	the	layer	can	be	retrieved
from	another	HTML	document	by	using	the	src	attribute	with	the	<layer>	tag.

<layer>	(Antiquated)

Function Defines	a	layer	of	content	within	a	document

Attributes above,	background,	below,	bgcolor,	class,	clip,	left,	name,	src,	style,	top,	visibility,
width,	z-index

End	tag </layer>;	never	omitted

Contains body_content

Used	in block

	
Regardless	of	its	origin,	Netscape	4	formats	a	layer's	content	exactly	like	a
conventional	document,	except	that	the	result	is	contained	within	that	separate
layer,	apart	from	the	rest	of	your	document.	You	control	the	position	and	visibility
of	this	layer	using	the	attributes	of	the	<layer>	tag.

Layers	can	be	nested,	too.	Nested	layers	move	with	the	containing	layer	and	are
visible	only	if	the	containing	layer	itself	is	visible.

H.3.1.1.	The	name	attribute

If	you	plan	on	creating	a	layer	and	never	referring	to	it,	you	needn't	give	it	a
name.	However,	if	you	plan	to	stack	other	layers	relative	to	the	current	layer,	as
we	demonstrate	later	in	this	appendix,	or	to	modify	your	layer	using	JavaScript,
you'll	need	to	name	your	layers	using	the	name	attribute.	The	value	you	give	name	is
a	text	string,	whose	first	character	must	be	a	letter,	not	a	number	or	symbol.

Once	you	name	the	layer,	you	can	refer	to	it	elsewhere	in	the	document	and
change	it	while	the	user	interacts	with	your	page.	For	example,	this	bit	of	HTML:

<layer	name="warning"	visibility=hide>
Warning!	Your	input	parameters	were	not	valid!
</layer>

	

creates	a	layer	named	warning	that	is	initially	hidden.	If	in	the	course	of	validating
a	form	using	a	JavaScript	routine,	you	find	an	error	and	want	to	display	the
warning,	you	would	use	this	command:

warning.visibility	=	"show";

	
Netscape	4	then	makes	the	layer	visible	to	the	user.

H.3.1.2.	The	left	and	top	attributes

Without	attributes,	a	layer	gets	placed	in	the	document	window	as	though	it	were
part	of	the	normal	document	flow.	Layers	at	the	very	beginning	of	a	document	get
put	at	the	top	of	the	Netscape	4	window;	layers	that	are	between	conventional
document	content	get	placed	in	line	with	that	content.

The	power	of	layers,	however,	is	that	you	can	place	them	anywhere	in	the
document.	Use	the	top	and	left	attributes	for	the	<layer>	tag	to	specify	its	absolute
position	in	the	document	display.

Both	attributes	accept	an	integer	value	equal	to	the	number	of	pixels	offset	from
the	top-left	(0,0)	edge	of	the	document's	display	space	or,	if	nested	inside	another
layer,	the	containing	layer's	display	space.	As	with	other	document	elements
whose	size	or	position	extends	past	the	edge	of	the	browser's	window,	Netscape
gives	the	user	scroll	bars	to	access	layered	elements	outside	the	current	viewing
area.

The	following	is	a	simple	layer	example	that	staggers	three	words	diagonally	down
the	displaynot	something	you	can	do	easily,	and	certainly	not	with	the	same
precision,	in	conventional	HTML:

<layer	left=10	top=10>
		Upper	left!
</layer>
<layer	left=50	top=50>
		Middle!
</layer>
<layer	left=90	top=90>
		Lower	right!
</layer>

	
Figure	H-8	shows	the	result.

Figure	H-8.	Simple	text	positioning	with	the	<layer>	tag

	
Admittedly,	this	example	is	a	bit	dull.	Here's	a	better	one	that	creates	a	drop
shadow	behind	a	heading:

<layer>
		<layer	left=2	top=2>
				<h1>Introduction	to	Kumquat	Lore</h1>
		</layer>
		<layer	left=0	top=0>
				<h1>Introduction	to	Kumquat	Lore</h1>
		</layer>
</layer>
<h1> </h1>
Early	in	the	history	of	man,	the	kumquat	played	a	vital	role	in	the
formation	of	religious	beliefs.	Central	to	annual	harvest	celebrations
was	the	day	upon	which	kumquats	ripened.	Likened	to	the	sun	(<i>
sol</i>),	the	golden	fruit	was	taken	(<i>stisus</i>)	from	the	trees	on
the	day	the	sun	stood	highest	in	the	sky.	We	carry	this	day	forward
even	today,	as	our	summer	<i>solstice</i>.

	
Figure	H-9	shows	the	result.	Figure	H-10	demonstrates	what	happens	with	layers
when	viewed	with	a	browser	other	than	Netscape	4.

Figure	H-9.	Creating	drop-shadow	effects	with	multiple	layers
(Netscape	4	only)

	

Figure	H-10.	Internet	Explorer	doesn't	support	multiple	layers

	
We	used	a	few	tricks	to	create	the	drop-shadow	effect	for	the	example	header.
Netscape	4	covers	layers	created	earlier	in	the	document	with	later	layers.	Hence,
we	create	the	gray	shadow	first,	followed	by	the	actual	heading,	so	that	it	appears
on	top,	above	the	shadow.	We	also	enclosed	these	two	layers	in	a	separate
containing	layer.	This	way,	the	shadow	and	header	positions	are	relative	to	the
containing	layer,	not	the	document	itself.	The	containing	layer,	lacking	an	explicit
position,	is	placed	into	the	document	flow	as	though	it	were	normal	content	and
winds	up	where	a	conventional	heading	would	appear	in	the	document.

Normal	content,	however,	still	starts	at	the	top	of	the	document	and	could	end	up
behind	the	fancy	heading	in	our	example.	To	push	content	below	our	layered
heading,	we	include	an	empty	heading	(save	for	a	nonbreaking	space)
before	including	our	conventional	document	text.

This	is	important	enough	to	repeat:	normal	document	content	following	a	<layer>
tag	is	positioned	directly	under	the	layer	it	follows.	You	can	circumvent	this	effect
using	an	inline	layer,	described	in	"The	<ilayer>	Tag	(Antiquated)"	section	later	in
this	chapter.

H.3.1.3.	The	above,	below,	and	z-index	attributes

Layers	exist	in	three	dimensions,	occupying	space	on	the	page	and	stacked	on	top
of	one	another	as	well	as	on	top	of	conventional	document	content.	As	we
mentioned	earlier,	layers	normally	are	stacked	in	order	of	their	appearance	in	the
document:	layers	at	the	beginning	get	covered	by	later	layers	in	the	same	display
area.

You	can	control	the	stacking	order	of	the	layers	with	the	above,	below,	and	z-index
attributes	for	the	<layer>	tag.	These	attributes	are	mutually	exclusive;	use	only
one	per	layer.

The	value	for	the	above	or	below	attribute	is	the	name	of	another	layer	in	the
current	document.	Of	course,	that	referenced	layer	must	have	a	name	attribute
whose	value	is	the	same	name	you	use	with	the	above	or	below	attribute	in	the
referring	<layer>	tag.	You	also	must	have	created	the	referenced	layer	earlier	in
the	document;	you	cannot	refer	to	a	layer	that	comes	later.

In	direct	contradiction	with	what	you	might	expect,	Netscape	4	puts	the	current
layer	below	the	above-named	layer	and	above	the	below-named	layer.[*]	Oh,	well.
Note	that	the	layers	must	occupy	the	same	display	space	for	you	to	see	any
effects.

[*]	One	cannot	help	but	imagine	that	the	above	and	below	attributes	were	implemented	in	the	wee	hours.

Let's	use	our	drop-shadow	layer	example	again	to	illustrate	the	above	attribute:

<layer>
		<layer	name=text	left=0	top=0>
				<h1>Introduction	to	Kumquat	Lore</h1>
		</layer>
		<layer	name=shadow	above=text	left=2	top=2>
				<h1>Introduction	to	Kumquat	Lore</h1>
		</layer>
</layer>

	
The	above	attribute	in	the	layer	named	shadow	tells	Netscape	4	to	position	the

shadow	layer	so	that	the	layer	named	text	is	above	it.	The	effect	is	identical	to
Figure	H-9.

The	above	and	below	attributes	can	get	confusing	when	you	stack	several	layers.	We
find	it	somewhat	easier	to	use	the	z-index	attribute	for	keeping	track	of	which
layers	go	over	which.	With	z-index,	you	specify	the	order	in	which	Netscape	stacks
the	layers:	higher	z-index	value	layers	are	put	on	top	of	lower	z-index	value	layers.

For	example,	to	create	our	drop	shadow	using	the	z-index	attribute,	we	would	use
the	following:

<layer>
		<layer	left=0	top=0	z-index=2>
				<h1>Introduction	to	Kumquat	Lore</h1>
		</layer>
		<layer	left=2	top=2	z-index=1>
				<h1>Introduction	to	Kumquat	Lore</h1>
		</layer>
</layer>

	
Again,	the	effect	is	identical	to	Figure	H-9.	Normally,	Netscape	4	would	display	the
second	layerthe	gray	one	in	this	caseon	top	of	the	first	layer.	But	because	we've
given	the	gray	layer	a	lower	z-index	value,	it	is	placed	behind	the	first	layer.

The	z-index	values	need	not	be	sequential,	although	they	must	be	integers,	so	we
could	have	used	the	values	99	and	2,	respectively,	and	gotten	the	same	result	in
the	previous	example.	And	you	need	not	specify	a	z-index	for	all	the	layers	that
occupy	the	same	display	spaceyou	need	specify	it	only	for	those	that	you	want	to
raise	or	lower	in	relation	to	other	layers.	However,	be	aware	that	the	order	of
precedence	may	get	confusing	if	you	don't	z-index	all	related	layers.

For	instance,	what	order	of	precedence	by	color	would	you	predict	when	Netscape
4	renders	the	following	sequence	of	layers?

<layer	left=0	top=0	z-index=3>
		<h1>Introduction	to	Kumquat	Lore</h1>
</layer>
<layer	left=4	top=4>
		<h1>Introduction	to	Kumquat	Lore</h1>
</layer>
<layer	left=8	top=8	z-index=2>
		<h1>Introduction	to	Kumquat	Lore</h1>
</layer>

	
Give	yourself	a	star	if	you	said	that	the	green	header	goes	on	top	of	the	red
header,	which	goes	on	top	of	the	blue	header.	Why?	Because	the	red	header	is	of
lower	priority	than	the	green	header	based	on	order	of	appearance,	and	we	forced
the	blue	layer	below	the	red	one	by	giving	it	a	lower	z-index	value.	Netscape	4
displays	z-indexed	layers	according	to	their	given	order	and	non-z-indexed	layers
according	to	their	order	of	appearance	in	the	document.	Precedence	based	on
order	of	appearance	also	applies	for	layers	that	have	the	same	z-index	value.	If
you	nest	layers,	all	the	layers	at	the	same	nesting	level	are	ordered	according	to
their	z-index	attributes.	This	group	is	then	ordered	as	a	single	layer	among	all	the
layers	at	the	containing	level.	In	short,	layers	nested	within	a	layer	cannot	be
interleaved	among	layers	at	a	different	level.

For	example,	consider	these	nested	layers	with	their	content	and	end	tags	omitted
for	clarity	(indentation	indicates	nest	level):

<layer	name=a	z-index=20>
		<layer	name=a1	z-index=5>
		<layer	name=a2	z-index=15>
<layer	name=b	z-index=30>
		<layer	name=b1	z-index=10>
		<layer	name=b2	z-index=25>
		<layer	name=b3	z-index=20>
<layer	name=c	z-index=10>

	
Layers	a,	b,	and	c	are	at	the	same	level,	with	layers	a1	and	a2	nested	within	a	and
b1,	b2,	and	b3	nested	within	b.	Although	the	z-index	numbers	might,	at	first	glance,
appear	to	cause	Netscape	4	to	interleave	the	various	nested	layers,	the	actual
ordering	of	the	layers,	from	bottom	to	top,	is	c,	a,	a1,	a2,	b,	b1,	b3,	and	b2.

If	two	layers	are	nested	within	the	same	layer	and	they	have	the	same	z-index
value,	the	layer	defined	later	in	the	document	is	placed	on	top	of	the	previously
defined	layer.[*]

[*]	This,	of	course,	applies	to	layers	inside	the	same	containing	nest	only.

H.3.1.4.	The	background	and	bgcolor	attributes

As	with	the	corresponding	attributes	for	the	<body>	tag,	you	can	define	the
background	color	and	an	image	for	a	Netscape	4	layer	with	the	bgcolor	and
background	attributes,	respectively.[]	By	default,	the	background	of	a	layer	is

transparent,	allowing	lower	layers	to	show	through.

[]	Note	that	you	can	control	the	background	color	(as	well	as	many	other	display	features)	of	not	just	a	single	tag	but	all
<DEFANGED_layer>	tags	within	your	document	using	stylesheets.	See	section	5.3.1.8,	"The	style	and	class
attributes."

The	bgcolor	attribute	accepts	a	color	name	or	RGB	triple	as	its	value,	as	defined	in
Appendix	G.	If	specified,	Netscape	sets	the	entire	background	of	the	layer	to	this
color,	rendering	the	layer	opaque.	This	attribute	is	handy	for	creating	a	colored
box	behind	text,	as	a	highlighting	or	attention-getting	mechanism.	It	does,
however,	hide	any	layers	below	it,	including	conventional	HTML	content.

The	background	attribute	accepts	the	URL	of	an	image	as	its	value.	The	image	is
tiled	to	fill	the	area	occupied	by	the	layer.	If	portions	of	the	image	are
transparent,	those	portions	of	the	layer	are	transparent,	and	underlying	layers
show	through.

If	you	include	both	attributes,	the	background	color	shows	through	the
transparent	spots	in	the	background	image.	The	whole	layer	is	opaque.

The	background	attribute	is	useful	for	placing	a	texture	behind	text,	but	it	fails
miserably	when	the	goal	is	to	render	text	in	front	of	a	fixed	image.	Because	the
size	of	a	layer	is	dictated	by	its	contents,	not	the	background	image,	using	the
image	as	the	background	causes	it	to	be	clipped	or	tiled,	depending	on	the	size	of
the	text.

To	place	text	reliably	on	top	of	an	image,	use	one	layer	nested	within	another:

<layer>
		
		<p>
		<layer	top=75>
				<h2	align=center>And	they	lived	happily	ever	after...</h2>
		</layer>
</layer>

	
Netscape	4	sets	aside	space	for	the	entire	image	in	the	outer	layer.	The	inner
layer	occupies	the	same	space,	except	that	we	shift	it	down	75	pixels	to	align	the
text	better	over	the	image.	Figure	H-11	shows	the	result.

Figure	H-11.	Placing	text	over	an	image	using	layers	(Netscape	4
only)

	

H.3.1.5.	The	visibility	attribute

By	default,	layers	usually	are	visible.	You	can	change	that	by	setting	the	visibility
attribute	to	show,	hide,	or	inherit.	As	expected,	show	forces	the	layer	to	be	seen,	hide
hides	it	from	view,	and	inherit	explicitly	declares	that	you	want	the	layer	to	inherit
its	parent's	visibility.	The	default	value	for	this	attribute	is	inherit.	Layers	that	are
not	nested	are	considered	to	be	children	of	the	main	document,	which	is	always
visible.	Thus,	non-nested	layers	lacking	the	visibility	attribute	are	initially	visible.

It	makes	little	sense	to	hide	layers	unless	you	plan	to	reveal	them	later.	In
general,	you	should	use	this	attribute	only	when	you	include	some	JavaScript
routines	with	your	document	that	reveal	the	hidden	layers	as	a	result	of	some
user	interaction.	[JavaScript	Event	Handlers,	12.3.3]

Layers	that	are	hidden	do	not	block	layers	below	them	from	view.	Instead,	a
hidden	layer	can	best	be	thought	of	as	being	transparent.	One	way	to	hide
content	in	the	main	document	is	to	place	an	opaque	layer	over	the	content.	To
display	the	hidden	context,	hide	the	opaque	layer,	revealing	the	content
underneath.

H.3.1.6.	The	width	attribute

Layers	are	only	as	big	as	necessary	to	contain	their	content.	The	initial	width	of	a
layer	is	defined	to	be	the	distance	from	the	point	at	which	the	layer	is	created	in
the	current	text	flow	to	the	right	margin.	Netscape	4	then	formats	the	layer's
contents	to	that	width	and	makes	the	height	of	the	layer	tall	enough	to	contain	all
of	the	layer's	contents.	If	the	contents	of	the	layer	wind	up	smaller	than	the	initial
width,	the	layer's	width	is	reduced	to	this	smaller	amount.

You	can	explicitly	set	the	width	of	a	layer	using	the	width	attribute.	The	value	of
this	attribute	defines	the	width	of	the	layer	in	pixels	or	as	a	percentage	of	the
containing	layer.	As	expected,	Netscape	4	then	sets	the	height	based	upon	the

size	of	the	layer's	contents,	wrapped	to	the	specified	width.	If	elements	in	the
layersuch	as	imagescannot	be	wrapped	and	instead	extend	past	the	right	margin
of	the	layer,	only	a	portion	of	the	element	is	shown.	The	remainder	is	clipped	by
the	edge	of	the	layer	and	is	not	shown.	This	is	similar	to	the	behavior	of	an	image
in	the	main	document	window.	If	the	image	extends	beyond	the	edge	of	the
browser	window,	only	a	portion	of	the	image	is	displayed.	Unlike	the	browser
window,	however,	layers	cannot	sport	scroll	bars	allowing	the	user	to	scroll	around
in	the	layer's	contents.

H.3.1.7.	The	src	attribute

The	contents	of	a	layer	are	not	restricted	to	what	you	type	between	its	<layer>	and
</layer>	tags;	you	can	also	refer	to	and	automatically	load	the	contents	of	another
document	into	the	layer	with	the	src	attribute.	The	value	of	the	src	attribute	is	the
URL	of	the	document	containing	the	layer's	content.

Note	that	the	layer	src'd	document	should	not	be	a	full-fledged	HTML	document.	In
particular,	it	should	not	contain	<body>	or	<head>	tags,	although	other	HTML	content
is	allowed.

You	can	combine	conventional	layer	content	with	content	taken	from	another	file
by	using	the	src	attribute	and	placing	content	within	the	<layer>	tag.	In	this	case,
the	content	from	the	file	is	placed	in	the	layer	first,	followed	by	any	inline	content
within	the	tag	itself.	If	you	choose	to	use	the	src	attribute	without	supplying
additional	inline	content,	you	still	must	supply	the	closing	</layer>	tag	to	end	the
definition	of	the	layer.

The	src	attribute	provides,	for	the	first	time,	a	source	inclusion	capability	in	HTML.
Previously,	to	insert	content	from	one	HTML	document	into	another,	you	had	to
rely	on	a	server-based	capability	to	read	the	other	file	and	insert	it	into	your
document	at	the	correct	location.	Because	layers	are	positioned,	by	default,	at
their	defining	point	within	the	current	flow,	including	another	file	in	your
document	is	simple:

...other	content...<layer	src="boilerplate"></layer>...more	content...

	
Because	a	layer	is	rendered	as	a	separate	HTML	entity,	the	content	of	the	included
file	is	not	flowed	into	the	containing	text.	Instead,	it	is	as	though	the	inserted	text
were	contained	within	a	<div>	tag	or	other	block-level	HTML	element.

H.3.1.8.	The	clip	attribute

Normally,	users	see	the	entire	layer	unless	it	is	obscured	by	a	covering	layer.	With
the	clip	attribute,	you	can	mask	off	portions	of	a	layer,	revealing	only	a
rectangular	portion	within	the	layer.	The	area	of	the	layer	outside	the	visible	area
is	made	transparent,	allowing	whatever	is	under	the	layer	to	show	through.

The	value	of	the	clip	attribute	is	two	or	four	integer	values,	separated	by	commas,
defining	pixel	offsets	into	the	layer	corresponding	to	the	left,	top,	right,	and
bottom	edges	of	the	clip	area.	If	only	two	values	are	supplied,	they	correspond	to
the	right	and	bottom	edges	of	the	visible	area,	and	Netscape	assumes	the	top	and
left	values	are	0.	Therefore,	clip="75,100"	is	equivalent	to	clip="0,0,75,100".

The	clip	attribute	is	handy	for	hiding	portions	of	a	layer,	or	for	creating	fade	and
wipe	effects	using	JavaScript	functions	to	change	the	clipping	window	over	time.

H.3.1.9.	The	style	and	class	attributes

Use	the	style	attribute	with	the	<layer>	tag	to	create	an	inline	style	for	all	the
content	inside	a	layer.	The	class	attribute	lets	you	label	the	layer	with	a	name	that
refers	to	a	predefined	class	of	the	<layer>	tag	declared	in	some	document-level	or
externally	defined	stylesheet.	Accordingly,	you	may	choose	to	use	a	stylesheet
rather	than	individual	and	redundant	bgcolor	tag	attributes	to	define	a	background
color	for	all	your	document	layers	or	for	a	particular	class	of	layers.	[Inline	Styles:
The	style	Attribute,	8.1.1]	[Style	Classes,	8.3]

H.3.2.	The	<ilayer>	Tag	(Antiquated)

While	you	control	the	position	of	a	<layer>	using	top	and	left	attribute	coordinates
relative	to	the	document's	entire	display	space,	Netscape	4	provides	a	separate
tag,	<ilayer>,	that	lets	you	position	individual	layers	with	respect	to	the	current
flow	of	content,	much	like	an	inline	image.

<ilayer>	(Antiquated)

Function Defines	an	inline	layer	of	content	within	a	text	flow

Attributes above,	background,	below,	bgcolor,	class,	clip,	left,	name,	src,	style,	top,	visibility,
width,	z-index

End	tag </ilayer>;	never	omitted

Contains body_content

Used	in text

	
An	<ilayer>	tag	creates	a	layer	that	occupies	space	in	the	containing	text	flow.
Subsequent	content	is	placed	after	the	space	occupied	by	<ilayer>.	This	is	in
contrast	to	the	<layer>	tag,	which	creates	a	layer	above	the	containing	text	flow,
allowing	subsequent	content	to	be	placed	under	the	layer	just	created.

The	<ilayer>	tag	removes	the	need	for	an	enclosing,	attribute-free	<layer>	that
serves	to	put	a	nest	of	specially	positioned	layers	inline	with	the	content	flow,
much	like	we	did	in	most	of	the	examples	in	the	previous	sections	of	this
appendix.	The	attributes	of	<ilayer>	are	the	same	as	those	for	the	<layer>	tag.

H.3.2.1.	The	top	and	left	attributes

The	only	attributes	that	distinguish	the	actions	of	the	<ilayer>	tag	from	its	<layer>
sibling	are	top	and	left:	Netscape	4	renders	<ilayer>	content	directly	in	the
containing	text	flow,	offset	by	the	top	and	left	attribute	values	from	the	upper-left
corner	of	that	inline	positionnot	the	document's	upper-left	display	corner,	as	with
<layer>.	Netscape	4	also	accepts	negative	values	for	the	top	and	left	attributes	of
the	<ilayer>	tag,	letting	you	shift	the	contents	above	and	to	the	left	of	the	current
flow.

For	example,	to	subscript,	superscript,	or	shift	words	within	the	current	line,	you
could	use:

This	<ilayer	top=4>word</ilayer>	is	shifted	down,	while

this	<ilayer	left=10>one</ilayer>	is	shifted	over.	With	a	negative
value,	words	can	be	moved	<ilayer	top=-4>up</ilayer>	and	to
the	<ilayer	left=-10>left</ilayer>.

	
Figure	H-12	shows	the	resulting	effects.	Notice	how	the	shifted	words	overlap	and
obscure	the	surrounding	text.	Netscape	4	makes	no	effort	to	make	room	for	the
shifted	elements;	they	are	simply	placed	in	a	different	spot	on	the	page.

Figure	H-12.	Moving	inline	layers	with	respect	to	the	adjacent
text	(Netscape	4	only)

	

H.3.2.2.	Combining	<layer>	and	<ilayer>

Anything	you	can	create	with	a	regular	layer	you	can	use	within	an	inline	layer.
However,	bear	in	mind	that	the	top	and	left	attribute	offsets	are	indeed	from	the
<ilayer>	content's	allotted	position,	not	from	the	document	display	space.
Accordingly,	use	<ilayer>	to	position	content	inline	with	the	conventional	HTML
document	flow,	and	use	<layer>	to	position	elements	and	content	precisely	in	the
document	display	space.

Also	(and	fortunately),	Netscape	4	does	not	distinguish	between	<ilayer>	and
<layer>	tags	when	it	comes	to	order	of	appearance.	You	may	declare	that	an
<ilayer>	appear	below	some	<layer>	by	using	the	name	and	above	attributes:

<layer	name=me>I'm	on	top</layer>
<ilayer	above=me>I'm	on	the	bottom</ilayer>

	
Similarly,	you	can	reorder	the	appearance	of	both	absolute	and	inline	layers
where	they	overlap	by	assigning	z-index	attribute	values	to	the	various	elements.
Nesting	rules	apply,	too.

	

About	the	Authors
Chuck	Musciano	(cmusciano@aol.com)	acquired	a	B.S.	in	computer	science	from
Georgia	Tech	in	1982.	He	spent	15	years	in	the	employ	of	Harris	Corporation,	in
Melbourne,	Florida,	first	as	a	compiler	writer	and	crafter	of	tools	and	later	as	a
member	of	Harris's	Advanced	Technology	Group.	His	focus	on	Unix-	and
Internetbased	technology	enabled	him	to	support	early	web	initiatives	within
Harris.	After	various	positions	of	increasing	responsibility	in	the	IT	industry,	he
currently	serves	as	the	Vice	President	of	Information	Services	for	Martin	Marietta
Materials	in	Raleigh,	North	Carolina.	Throughout	his	career	he	has	written	for
various	trade	publications,	both	in	print	and	as	an	online	columnist,	including	the
"Webmaster"	column	for	SunWorld	and	the	"Tag	of	the	Week"	column	for
WebReview.	In	his	spare	time,	he	enjoys	life	in	North	Carolina	with	his	wife	Cindy,
daughter	Courtney,	and	son	Cole.

Bill	Kennedy	(bkennedy@mobilerobots.com)	is	currently	Chief	Technology	Officer
for	MobileRobots,	Inc.,	a	developer	and	manufacturer	of	intelligent	mobile	robots
and	other	smart	machines.	How	he	came	to	chasing	AI	robots	around	is	not
surprising,	given	his	many	roundabout	careers.	Bill	has	a	Ph.D.	in	biochemistry
and	biophysics	from	Loyola	University	of	Chicago	and	did	over	12	years	of
biomedical	research	through	the	1970s	and	early	'80s.	Infected	by	the	PC	bug
(32K	Apple	II;	really!),	he	created	a	software	company	that	developed	computer
games	and	educational	programs.	Needing	a	real	job	with	benefits,	Bill	also
served	as	technical	editor,	senior	editor,	and	editor-in-chief	for	various
International	Data	Group	magazines,	including	inCider,	Sun	Technology	Journal,
SunWorld,	and	A+	Publishing/Mac	Computing,	among	others,	in	the	'80s	and	'90s.
An	avid	user	of	the	Internet	since	the	mid	'80s,	Bill,	with	his	wife	Jeanne	Dietsch,
founded	ActivMedia	Research,	the	first	market-research	firm	ever	to	formally
study	businesses	on	the	Web.	Their	first	report,	published	in	1995,	contained	data
gathered	by	actually	visiting	each	and	every	business	web	site	in	existence	back
then,	if	you	can	imagine.	Always	ready	to	embrace	emerging	technologies,	Bill
and	his	partners	formed	ActivMedia	Robotics	in	1996,	which	now,	as	MobileRobots
Inc.	(http://www.mobilerobots.com),	sells	more	intelligent	mobile	platforms	to
more	artificial	and	machine-intelligent	researchers	around	the	world	than	anyone
else.	And	the	company's	mobile-robotics	navigation	technologies	are	quickly	being
adopted	for	commercial	and	industrial	applications.	So,	what's	next?

	

mailto:cmusciano@aol.com
mailto:bkennedy@mobilerobots.com
http://www.mobilerobots.com

Colophon
The	animal	on	the	cover	of	HTML	&	XHTML:	The	Definitive	Guide	is	a	koala.	The
koala	is	an	Australian	marsupial,	the	only	member	of	the	Phascolarctidae	family.

When	they	are	born,	koalas	are	tiny,	weighing	approximately	0.5	grams.	A	young
koala	stays	in	its	mother's	pouch	for	approximately	seven	months.	Unlike	most
marsupials,	the	koala's	pouch	opens	near	the	rear,	not	near	the	head.	Koalas	have
a	high	mortality	rate	and	face	extinction	in	Australia	due	to	epidemics	in
18871889	and	19001903,	and	unrestrained	hunting	throughout	the	20th	century.
They	are	a	protected	species.	Populations	are	rebuilding,	but	at	present,	they
survive	only	in	eastern	Australia.

The	cover	image	is	a	19th-century	engraving	from	the	Dover	Pictorial	Archive.
The	cover	font	is	Adobe	ITC	Garamond.	The	text	font	is	Linotype	Birka;	the
heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	LucasFont's
TheSans	Mono	Condensed.

	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
	
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
<	(less-than	sign)
	<!--	-->	tag	2nd
	<a>	tag	2nd
						hyperlink	states
						linking	external	documents
						nesting	restrictions
	<abbr>	tag
	<acronym>	tag
	<address>	tag
	<applet>	tag
	<area>	tag	2nd	3rd
		tag	2nd
	<base>	tag	2nd
	<basefont>	tag
	<bdo>	tag
	<bgsound>	tag
	<big>	tag
	<blink>	tag
	<body>	tag	2nd	3rd
						color	extensions
	
	tag	2nd	3rd	4th
						vertical	<spacer>	vs.
	<button>	tag
						nesting	restrictions
	<caption>	tag	2nd
	<center>	tag
	<cite>	tag	2nd
	<code>	tag	2nd
						filenames,	use	with

	<col>	tag
	<colgroup>	tag
	<dd>	tag
		tag
	<dfn>	tag	2nd
	<dir>	tag
	<div>	tag	2nd
	<dl>	tag	2nd
	<dt>	tag	2nd
		tag	2nd
	<embed>	tag
						for	audio
	<fieldset>	tag
		tag
	<form>	tag	2nd
						nesting	restrictions
	<frame>	tag	2nd
	<frameset>	tag	2nd	3rd
	<h#>	tag	2nd
	<head>	tag	2nd	3rd
	<hr>	tag	2nd
	<html>	tag	2nd	3rd
	<i>	tag	2nd
							tag	vs.
	<iframe>	tag
	<ilayer>	tag
		tag	2nd
						custom	image	buttons	(forms)
						emulating	spacers	with
						video	extensions
	<input>	tag
						action	buttons
						checkboxes	(type=checkbox)
						file-selection	(type=file)
						hidden	fields	(type=hidden)
						masked	text-entry	(type=password)
						radio	buttons	(type=radio)

						text-entry	(type=text)
	<ins>	tag
	<isindex>	tag	2nd	3rd
	<kbd>	tag	2nd
	<label>	tag
						nesting	restrictions
	<legend>	tag
		tag	2nd
	<link>	tag	2nd	3rd	4th	5th
						web	browser	limitations
	<listing>	tag
	<map>	tag	2nd	3rd
	<marquee>	tag
	<menu>	tag
	<meta>	tag	2nd	3rd
	<multicol>	tag	2nd
	<nextid>	tag	2nd
	<nobr>	tag	2nd
						centered	content	and
	<noembed>	tag
	<noframes>	tag
	<noscript>	tag
	<object>	tag	2nd
		tag	2nd
	<optgroup>	tag
	<option>	tag
	<p>	tag	2nd	3rd
	<param>	tag
	<plaintext>	tag
	<pre>	tag	2nd
						nesting	restrictions
	<q>	tag
	<s>	tag
	<samp>	tag	2nd
	<script>	tag	2nd
	<select>	tag
	<server>	tag
	<small>	tag

	<spacer>	tag
		tag
	<strike>	tag
		tag	2nd
	<style>	tag	2nd	3rd
						@import	at-rule
						comments	in
						dir,	lang,	and	title	attributes
	<sub>	tag
	<sup>	tag
	<table>	tag	2nd
	<tbody>	tag
	<td>	tag	2nd
	<textarea>	tag
	<tfoot>	tag
	<th>	tag	2nd
	<thead>	tag
	<title>	tag	2nd
	<tr>	tag	2nd
	<tt>	tag	2nd
	<u>	tag
		tag	2nd
	<var>	tag	2nd
	<wbr>	tag
						centered	content	and
	<xmp>	tag
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
abbr	attribute	(<th>	and	<td>)
	above	attribute	(<layer>)
	absbottom,	absmiddle	values
	absolute	font	size
	absolute	URLs	2nd
	accept	attribute	(<input	type=file>)
	accept-charset	attribute	(<form>)
	accesskey	attribute
						<a>
						<legend>
						form	controls
	action	attribute
						<form>
						<isindex>
	action	buttons	(forms)
	ActiveX	technology
	addresses
						IP	addresses	2nd
						XML	DTD,	defining	for
	adjacent	selectors
	Advanced	Research	Projects	Agency	(ARPA)
	align	attribute
						<applet>
						<caption>
						<div>
						<embed>
						<h#>
						<hr>

						<iframe>
							2nd
						<input	type=image>
						<legend>
						<marquee>
						<object>
						<p>
						<spacer>
						<table>
						<th>	and	<td>
						<tr>
	alignment
						<center>	tags
						form	elements	2nd
						frames
						headings
						horizontal	rules
						image	buttons	(forms)
						images	2nd	3rd
						layers	2nd
						sections
						tables	2nd	3rd	4th	5th
						text	2nd	3rd	4th
						whitespace	blocks
	alink	attribute	(<body>)
	all	value	(style	media)
	alt	attribute
						<applet>
						<area>
						
	alternate	value	(marquee	behavior)
	ampersand	(&)
						entities	2nd	3rd

						in	URLs
						in	XHTML
	anchors	2nd
	animation
						frame-by-frame	(GIF)
						of	text
	annotated	lists
	anonymous	FTP
	applets	2nd	3rd
	application/x-www-form-urlencoded	encoding
	archive	attribute
						<applet>
						<object>
	ARPA	(Advanced	Research	Projects	Agency)
	articles	(newsgroups),	identifiers	for
	ASCII	text	file	format,	saving	HTML/XHTML	documents	in
	at-rules
						@font-face
						@import
						@media
						@page
	attribute	selectors
						supporting	browsers
	attributes
						deprecated
						for	<body>	tags
						HTML	tags	2nd
						images,	enabling	JavaScript	manipulation
						XHTML	2nd
						XML	2nd	3rd
	audience,	designing	for
	audio	2nd
						<bgsound>	tags
						client-pull	feature	for

						mixing
						properties
	aural	value	(style	media)
	authoring	tools	for	XHTML	pages
	automation,	document
	azimuth	property
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
background
						audio
						colors	2nd	3rd	4th	5th	6th	7th	8th
						images	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
						layers
						style	properties	for
	background	attribute
						<body>	2nd
						<layer>
						<table>
						<th>	and	<td>
	background	property
	background-attachment	property
	background-color	property
	background-image	property
	background-position	property
	background-repeat	property
	backslash	(\\\\),	CSS2	escape	characters	and
	base	URLs	2nd
	baseline	descriptor
	bbox	descriptor
	behavior	attribute	(<marquee>)
	below	attribute	(<layer>)
	bgcolor	attribute
						<body>	2nd
						<layer>
						<marquee>
						<table>

						<th>	and	<td>
						<tr>
	bgproperties	attribute	(<body>)
	bibliographic	citations
	binary	files
	blank	lines
	blind	carbon	copy	(bcc)	field,	mail	messages
	blinking	text	2nd
	block	items
	block	quotes
						<blockquote>	tags
						<q>	tags
	blocks	of	whitespace
	body	content	2nd
						margins	for
	boilerplate	HTML	documents
						uses	of	<ins>	and		tags	in
	boldface	text	2nd
	border	attribute
						<embed>
						
						<input	type=image>
						<object>
						<table>	2nd
	border-collapse	property
	border-color	property
	border-spacing	property
	border-style	property
	border-width	property
	bordercolor	attribute
						<frame>
						<table>
						<th>	and	<td>
						<tr>
	bordercolorlight,	bordercolordark	attributes
						<table>

						<th>	and	<td>
						<tr>
	borders
						colors
						frame	2nd
						image	buttons	(forms)
						images	2nd
						size
						style	properties	for	2nd
						tables	2nd	3rd
	bottom	value
	boundary	string
	box	style	properties
	braille	value	(style	media)
	browser	extensions,	XHTML	Version	1.1	and
	browsers
						mobile	devices,	constraints
	buffer	space
	bugs,		height/width	attributes
	bulleted	(unordered)	lists
						bullet	shape
						list	marker	style	properties
						nesting
	buttons
						form	action	buttons
						mouse
						radio	buttons
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
cap-height	descriptor
	caption,	table
	caption-side	property
	carbon	copy	(cc)	field,	mail	messages
	carriage	returns
	Cascading	Style	Sheets
	case	sensitivity	2nd
						elements	of	style	rules
						XHTML	tags	and	attribute	names	2nd
	case,	transforming	text	in	documents
	CDATA	sections
						in	XML	DTDs
						JavaScript	and	CSS	declarations,	enclosing	within
	cellpadding	attribute	(<table>)
	cells,	table
	cellspacing	attribute	(<table>)
	cellular	access
						high-speed
						lowspeed
						WiFi
	center	attribute	()
	center	value	(alignment)
	centering
	centerline	descriptor
	CGI	(Common	Gateway	Interface)	programs
						author	inability	to	create	or	manage
						storing
	char	attribute
						<th>	and	<td>

						<tr>
	character	entities	2nd	3rd	4th	5th
						JavaScript
	characters
						letter	spacing
						reserved/unsafe	in	URLs
						special
						word	spacing
	charoff	attribute
						<th>	and	<td>
						<tr>
	charset	attribute
						<a>
						<meta>
						<script>
	checkboxes
	circular	bullets
	circular	image	map	areas
	cite	attribute
						<blockquote>
						<ins>	and	
						<q>
	class	attribute	2nd
						<a>
						<address>
						<area>
						<blockquote>
						<body>
						<caption>
						<center>
						<div>
						<dl>,	<dt>,	and	<dd>
						

						<form>	2nd
						<frameset>
						<isindex>
						<layer>
						<map>
						<multicol>
						<object>
						<p>	2nd
						<pre>
						<q>
						,	,	and	
						content-based	style	tags
						form	controls
						physical	style	tags
						table	attributes
	classes,	style	2nd
						inheritance	and	2nd
	classid	attribute,	<object>
	classification	style	properties
	clear	attribute	(
)
	clear	images
	clear	property
	clickable	image	maps
	client-pull	documents
	client-side	image	maps	2nd	3rd
						example	of
	clients
	clip	attribute	(<layer>)
	clip	property
	code	attribute	(<applet>)
	codebase	attribute	(<applet>)
	codetype	attribute	(<object>)
	colon	(:)	and	pseudoclasses
	color	attribute
						<basefont>

						
						<hr>
	color	property
	color	values
	colormaps
	colors	2nd	3rd
						<body>	tag	extensions
						background	2nd	3rd	4th	5th	6th
						border
						frame	borders	2nd
						graphics	file	formats	and
						horizontal	rules
						hyperlinks	2nd
						JavaScript	Style	Sheets	(JSS),	specifying	values
						names
						performance	considerations
						standard	color	map
						style	properties	for	2nd
						tables	2nd	3rd	4th
						text	2nd	3rd
						transparent	GIFs
	cols	attribute
						<col>
						<multicol>
						<table>
						<textarea>
	colspan	attribute	(<td>	and	<th>)
	columns
						<multicol>	tags
						frames
						multiline	text-entry	areas
						tables	2nd	3rd
						text	layout	in	2nd
						whitespace	between	(gutter)

	comma	(,)	in	styles
	comments	2nd	3rd
						<comment>	tags
						in	<style>	tags
						in	XML	DTDs
	Common	Gateway	Interface
	compact	attribute
						<dl>
						
						
	conditional	sections,	XML	DTD
	content	attribute	(<meta>)	2nd
	content	property
						open-quote	and	close-quote	values
	content	types	2nd
						application/x-www-form-urlencoded
						file-selection	controls	and
						multipart/form-data
						multipart/mixed
						multipart/x-mixed-replace
						text/css
						text/plain
	content-based	style	tags	2nd	3rd
						table	of
	Content-Disposition	header	2nd
	Content-Type	header	2nd
	contextual	styles	2nd
	controls	attribute	()
	controls,	form
	conventions	for	HTML	programming
	convergences	devices
	converting	HTML	documents	to	XHTML
	coordinates	in	image	maps
	coords	attribute
						<a>
						<area>

	counter-increment	property
	counter-reset	property
	counters
	CSS	(Cascading	Style	Sheets)	2nd
						box	properties
						cascading	of	effects
						classification	properties
						color	and	background	properties
						comments	in
						CSS2	standard
						font	properties
						how	to	use
						list	properties	2nd
						rectangular	box	model	for
						style	properties
						style	syntax
						tagless	styles	()
						text	properties
	CSS2	standard	2nd
						@import	and	@media	at-rules
						audio	properties
						border	shorthand	properties
						box	properties
						browser	versions,	supporting	and	non-supporting
						classification	properties
						counters
						escape	entities
						font	properties
						font-matching	algorithm
						formatting	model
						generated	content	properties
						list	properties
						markers,	creating

						media-specific	style	sheets,	defining
						pagination	control	features	for	printing
						pseudoclasses
						pseudoelements	defined	in
						selectors	2nd
						style	properties
						style	syntax
						table	properties
	cue	properties
	custom	bullets
	custom	image	buttons	(forms)
	cycling	documents
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
dashed	borders
	data	attribute	(<object>)
	data,	exchanging	with	XML
						connecting	systems
						document	exchange
	datetime	attribute	(<ins>	and)
	declare	attribute	(<object>)
	declaring	XML	entities	and	elements
	defer	attribute	(<script>)
	definition	lists	2nd
						using	appropriately
	definitions-src	descriptor
	delay
						document	refresh
						loading
						marquee	movement
	deprecated	attributes
						align	2nd	3rd	4th
						background,	<body>
						bgcolor,	<body>
						border,	
						class,	for	lists
						compact,	for	lists	2nd	3rd
						link,	vlink,	and	alink,	<body>
						name,	<a>
						noshade,	<hr>
						size,	<hr>

						start,	for	lists
						style,	for	lists
						text,	<body>
						type	2nd	3rd
						value,	for	lists
						version,	<html>	tags
						width,	<hr>
	deprecated	elements
						HTML	4.01	standard,	and
						XHTML	and	2nd
	deprecated	tags
						<applet>	2nd
						<basefont>
						<center>	2nd
						<dir>
						
						<isindex>	2nd
						<menu>
						<s>
						
						<strike>
						<u>
						font-handling	tags
						for	audio	support
	designing	in	HTML
	dir	attribute	2nd	3rd
						<a>
						<address>
						<area>
						<bdo>,	overriding	with
						<blockquote>
						<center>
						<div>

						<dl>,	<dt>,	and	<dd>
						
						<form>
						<head>
						<html>
						<isindex>
						<object>
						<p>	2nd
						<pre>
						<q>
						<title>
						,	,	and	
						form	controls
						table	tags
	direction	attribute	(<marquee>)
	directory	lists
	disabled	attribute	(form	controls)
	disc	bullets
	display	constraints,	mobile	devices
	display	property
	displaying	XML	documents
	displays,	form	contents	and
	document-level	styles
						advantages	and	disadvantages	of	using
	document-related	events
	documentation
						<meta>	tags	for
						for	form	elements
						HTML	tags	quick	reference
	documents
						as	layers
						automation
						embedding	2nd
						exchanging	with	XML	applications

						HTML
						pathnames
						XHTML
	domains	2nd	3rd
	dotted	borders
	double	borders
	double	quotation	marks	(")	in	XHTML	attribute	values
	downloading	delay
	downloading	images
	DTD	for	HTML	2nd	3rd
						HTML	4.01	standard
	DTD	for	XHTML
						creating
						declaring
						XHTML	1.0	standard
	DTD	for	XML	2nd
						comments
						conditional	sections
						creating	(example)
						elements	2nd	3rd
						entities	2nd
	dynamic	documents
						client-pull
						server-push
	dynsrc	attribute	()
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
elements,	nesting
	elevation	property
	email,	mailto	URL	for	2nd
						defining	mail	header	fields
						sending	form	data	via
	embedded	links
	embedded	objects	2nd
						<applet>	tags
						<embed>	tags
						<noembed>	tags
						<object>	tags
						<param>	tags
	embedded	tags
	emphasis,	tags	for
						
						<blink>
						<dfn>
						
						<i>
						
	empty	elements	in	XHTML	documents
	empty-cells	property
	encoding
						characters
						file-selection	controls	and
	enctype	attribute
						<form>

						<input	type=file>
	ending	tags	2nd
						omitting	in	HTML
						XHTML	vs.	HTML	documents
	entities	2nd	3rd	4th
						JavaScript
						URL	encodings
	entity	and	element	declarations	(XML)
	equals	sign	(=)	for	tag	attributes
	=	(equals	sign)	for	tag	attributes
	escape	entities,	CSS2	standard
	event	attributes
						<a>
						<address>
						<area>	(client-side	image	maps)
						<blockquote>
						<center>
						<div>
						<form>
						<h#>
						
						<input	type=button>	(push	buttons)
						<map>
						<p>
						<pre>
						<q>
						
						content-based	tags
						form	controls
						frames	and
						objects	and
						physical	style	tags
						table	tags
	event	handlers,	JavaScript

	executable	content
						applets
						JavaScript
						JavaScript	style	sheets
	explicit	label	associations	(forms)
	Extended	Font	Model
	extensions,	HTML
	external	style	sheets	2nd
						advantages	and	disadvantages	of	using
	extranets
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
face	attribute
						<basefont>
						
	family,	font
	favorite_font_size()	function
	file	server
	File	Transfer	Protocol
	file-selection	controls	(forms)
	files
						file	URLs
						HTML
						listing	in	directory	lists
						XHTML
	fixed	value	(background	image	position)
	flashing	text	2nd
	float	property
	floating	elements,	rules	for	margin	collapsing
	floating	frames
	flood-filling	images
	flowing	text
	font	property
	font-family	property
	font-size	property
	font-style	property
	font-variant	property
	font-weight	property
	fonts
						color
						descriptors

						font	size
						heading	tags	to	change
						HTML	tags	for	2nd	3rd
						JavaScript	Style	Sheets	(JSS),	tags	property
						style	properties	for
	footers
						rules	with
						table
	for	attribute	(<label>)
	foreground	colors
	format
						alignment
						encoding
						graphics	formats	2nd
						HTML	documents
						indentation
						list	items
						multimedia	file	formats
						paragraph	rendering
						preformatted	text
	forms	2nd
						<button>	tags
						example	of
						input	controls	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
						layout	of	2nd
						mailto	URL,	with
						nested	tables	with
						programming	2nd
						writing	effectively
	FQDNs
	fragment	identifiers	2nd
						<a>	tags	as
						tables	of	contents,	and
	frame	attribute	(<table>)

	frame-by-frame	animation
	frameborder	attribute
						<frame>
	frames	2nd
						<frame>	tags	2nd
						<frameset>	tags	2nd	3rd
						<noframes>	tags
						alignment
						as	hyperlink	targets	2nd	3rd	4th	5th	6th
						borders
						contents	of
						inline
						layout
						margins	and	borders
						opening	multiple	at	one	time
						scrolling
						tips	and	tricks
	Frameset	DTD	2nd
	framesets
	FTP	(File	Transfer	Protocol)
						ftp	URLs
						obtaining	browsers	via
	fully	qualified	domain	names
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
general	entities,	XML
	generated	content	properties
	generic	style	classes
	GET	method	2nd
	GIF	(Graphics	Interchange	Format)	2nd
						GIF	animation
	gopher	URLs
	grammar,	elements
						nonterminals	and	terminals
						XML	2nd
	grammar,	HTML
	graphics	2nd
	grooved	borders
	grouping	form	elements
	grouping	grammar	rules,	elements
	gutter	attribute	(<multicol>)
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
handheld	value	(style	media)
	hanging	indents
	head	of	HTML	documents	2nd	3rd	4th
	headers
						rules	with
						table	2nd
						vertical	spacers	with
	headers	attribute	(<th>	and	<td>)
	headings	2nd
						allowed	content
						images	in
						side	heads	(tables)
						straddle	heads	(tables)
						text	size	and
	height	attribute
						<applet>
						<embed>
						<iframe>
						
						<marquee>
						<spacer>
						<table>
						<tr>
	height	property
	helper	applications	2nd
	hexadecimal	character	equivalents,	escape	characters	in	CSS2
	hexadecimal	color	values

	hexadecimal	RGB	triples
	hidden	attribute	(<embed>)
	hidden	form	fields
	hidden	text-entry	fields
	hide	value	(layer	visibility)
	home	pages	2nd	3rd
	horizontal
						margins
						rules	2nd	3rd	4th	5th	6th	7th
						whitespace
	hot	keys	for	hyperlinks
	href	attribute
						<a>	2nd
						<area>
						<base>
						<link>
	hreflang	attribute	(<a>)
	hspace	attribute
						<embed>
						
						<marquee>
	HTML
						creation	of
						documents	in
						DTD	(Document	Type	Definition)	2nd	3rd	4th
						extensions	to	2nd	3rd
						grammar	of
						limitations	of
						object	model
						standardizing	with	XML
						tags
						text	editors	for	2nd	3rd	4th	5th
						tips	and	tricks	2nd
						Version	4.0

						Version	4.01,	xix
						XHTML	vs.
	HTML	attributes
	HTML	documents
						boilerplates
						colors	in
						columns
						content	vs.	appearance
						content,	types	of
						converting	to	XHMTL
						designing	for	your	audience
						document	automation
						document-level	styles
						document-related	events
						dynamic
						editorial	markup	tags
						executable	content
						forms
						frames
						headings	in
						home	pages	2nd	3rd
						images	in
						linking	to
						margins	for	body	content
						myfirst.html	(example)
						pathnames
						refreshing	automatically
						relationships	between
						searchable	2nd
						sectioning	2nd
						structure	of	2nd	3rd
						style	sheets
						styles

						tables
						tables	of	contents
						titles	of	2nd	3rd
						whitespace	in
	HTML	tags	2nd	3rd	4th
						attributes	for	2nd
						content-based	style	2nd	3rd	4th
						deprecated
						empty,	in	XHTML	format
						font	handling
						for	editorial	markup
						grammar	for
						nesting
						obsolete
						omitting
						physical	style
						quick	reference
						starting	and	ending	tags	2nd
						tagless	styles	()
	HTTP	(Hypertext	Transfer	Protocol)
						Redirect	header
						Refresh	header
	http	servers
	http	URLs
	http-equiv	attribute	(<meta>)	2nd
	hyperlinks	2nd	3rd	4th
						colors	for
						effective	use	of
						image	maps,	clickable	2nd	3rd	4th	5th	6th	7th
						images	and
						linking	within	documents
						navigating	with	Tab	and	hot	keys
						relationships	between
						states	of

						targets	for	2nd	3rd	4th	5th	6th
						to	external	content
						to	multiple	frames
	Hypertext	Markup	Language
	Hypertext	Transfer	Protocol
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
id	attribute	2nd
						<a>
						<address>
						<basefont>
						<blockquote>
						<center>
						<div>	2nd
						<dl>,	<dt>,	and	<dd>
						<form>
						<frameset>
						<isindex>
						<label>
						<map>
						<object>
						<p>	2nd
						<q>
						,	,	and	
						for	hyperlink	targets
						for	style	classes
						form	controls
						table	tags
						XHTML	documents
	identifiers	(IDs)
						articles	in	newsgroups
						messages	on	news	servers
	IE

	IETF	(Internet	Engineering	Task	Force)
	ignored	HTML	tags
	image	maps
						areas	2nd
						clickable	2nd	3rd	4th	5th	6th
						client-side	2nd	3rd	4th
						coordinates
						HTML	documents	and
						performance
						server-side	2nd
	images	2nd	3rd
						alignment	2nd
						as	list	item	signifiers
						background	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
						borders	2nd
						clickable
						combining	attributes	for
						custom	image	buttons	(forms)
						download	performance
						flowing	text	around
						graphics	formats	2nd
						hyperlinks	and
						in	headings
						margins	around
						preventing	from	scrolling	2nd
						resizing
						reusing
						rules
						size
						text	flow	around
						text	in	place	of
						when	to	use
						wrapping	text	around

	implicit	label	associations	(forms)
	imported	external	style	sheets	2nd
						linked	vs.
	inclusions
	indentation
						abusing	<dt>	for
						block	quotes
						nested	unordered	lists,	using	for
						paragraphs,	with	<spacer>
						text-indent	property	for
	infinite	value	(marquee	looping)
	inherit	value	(layer	visibility)
	inheritance,	styles	and	2nd
	inline
						frames
						images
						items
						layers
						references
						styles	2nd	3rd
	input	constraints,	mobile	devices
	inset	borders
	interaction	pseudoclasses
	interlacing
	internationalization
						dir	and	lang	attributes
						dir	attribute,	overriding	with	<bdo>
	Internet
	Internet	Engineering	Task	Force	(IETF)
	Internet	Explorer
						<basefont>	tags,	and
						<bgsound>	tags
						<comment>	tag
						<q>	tags	and
						action	attribute

						Active	technology	and
						animated	text	support
						audio	features
						color	attribute
						Extended	Font	Model	tags,	and
						inline	audio,	and
						leftmargin	attribute
						multimedia	support
						notab	attribute
						nowrap	attribute
						obtaining
						palette	attribute
						tags	and	line-breaking
						text,	direction	and	justification
						topmargin	attribute
						video	extensions
	intranets
	IP	(Internet	protocol)
						addresses
	ismap	attribute	()	2nd	3rd
	italic	2nd
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
JavaScript	language	2nd
							attributes
						<noscript>	tags
						<script>	tags
						event	handlers	2nd
						frames	and
						JavaScript	pseudo-protocol
						JavaScript	pseudo-URLs
						overriding	hyperlink	targets
						style	sheet	properties
						style	sheets	(JSS)	2nd
	JPEG	format	2nd
	JSS	(JavaScript	Style	Sheets)	2nd	3rd
						encoding	of
						style	sheet	properties
	justification
	justify	value	(align	attribute)
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
keyboard	events
	keyboard	input,	tag	for
	keyword	property	values
	keywords	for	documents
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
label	attribute
						<optgroup>
						<option>
	labeling	form	elements
	lang	attribute	2nd	3rd
						<a>
						<address>
						<area>
						<blockquote>
						<center>
						<div>
						<dl>,	<dt>,	and	<dd>
						
						<form>
						<head>
						<html>
						<isindex>
						<object>
						<p>	2nd
						<pre>
						<q>
						<title>
						,	,	and	
						form	controls
						table	tags
						XHTML	Version	1.1,	absence	from

	language	attribute	(<script>)
	languages
						computer,	defining	with	metalanguages
						pseudoclasses	for
	layers
						<ilayer>	tags
						<layer>	tags
						alignment	2nd
						visibility	of
	left	attribute
						<ilayer>
						<layer>
	leftmargin	attribute	(<body>)
	length
	length	property	values
	less-than	sign	(<)
	letter-spacing	property
	line	breaks	2nd	3rd	4th
						allowing	with	<wbr>
						nowrap	attribute	and
						suppressing	with	<nobr>
						vertical	<spacer>
	line-height	property
	line-through	text	style
	link	attribute	(<body>)
	linked	external	style	sheets	2nd
						imported	vs.
	links
	list-style	property	2nd
	list-style-image	property
	list-style-position	property
	list-style-type	property
	lists	2nd
						definition	lists
						directory	lists
						items	of	2nd

						menu	lists
						nesting	2nd
						of	hyperlinks
						ordered	(numbered)
						selection	lists	(forms)
						style	properties	for	2nd
						unordered	(bulleted)
						using	appropriately
	loading	delay
	longdesc	attribute
						<frame>
						
	loop	attribute
						
						<marquee>
	looping
						marquee	text
						video
	lowsrc	attribute	()
	Lynx
						content-based	tags,	and
						images,	substituting	text	for
						text	display	limitations
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
mailto	URLs	2nd
						defining	mail	header	fields
						form	data	via
	maps
						standard	color
	margin	collapsing
	marginheight	attribute	(<frame>)
	margins
						around	CSS	boxes
						around	table	cells
						body	content
						frames
						images
						marquee	areas
						style	properties	for
	marginwidth	attribute	(<frame>)
	markers
	markup	metalanguage,	XML	as
	masked	text-entry	fields
	mathline	descriptor
	maxlength	attribute
						<input	type=file>
						<input	type=text>
	mayscript	attribute	(<applet>)
	media	attribute	(<style>)
	menu	lists
	message	IDs,	news	servers
	metalanguages,	defining	computer	languages	with

	method	attribute	(<form>)
	Microsoft	Internet	Explorer
	Microsoft	Word	2000,	creating	HTML	documents	with
	middle	value
	MIME	types	2nd
						application/x-www-form-urlencoded
						file-selection	controls	and
						multipart/form-data
						multipart/mixed
						multipart/x-mixed-replace
						text/css
						text/plain
	missing	HTML	tags
	mix	keyword
	mobile	devices
						browsers,	constraints
						convergence	devices
						display	constraints
						input	constraints
						mobile	web	design
						network	constraints
						PDAs
						phones
	mobile	phones
	mobile	web	design
						forms
						images
						layout
						links
						navigating
						presentation
	monitor,	form	contents	and
	monospaced	text
						<code>	tags

						<kbd>	tags
						<plaintext>	tags
						<tt>	tags
						<var>	tags
	Mosaic	browser
	mouse-related	events
						pseudoclasses	for
	mouse-sensitive	images
	movies
	MSIE
	multicolumn	layout
	multiline	text-entry	areas
	multimedia	2nd
						audio
						browser	handling	of
						client-pull	feature	for
						common	file	formats
						GIF	animation
						images
						text	animation
						video,		extensions	for
	multipart/form-data	encoding
	multipart/mixed	encoding
	multipart/x-mixed-replace	encoding
	multiple	attribute	(<select>)
	multiple-choice	elements	(forms)
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
n	attribute	(<nextid>)
	name	attribute
						<a>
						<applet>
						<basefont>
						<div>
						<embed>
						<form>
						<frame>	2nd
						
						<label>
						<layer>
						<map>
						<meta>
						<object>
						<param>
						form	input	elements
						XHTML	documents
						XHTML	Version	1.1,	restrictions	in
	name	servers
	named	form	parameters	2nd
	named	frames
	namespaces,	XHTML	DTDs
	naming	conventions	for	HTML
	navigating	with	hyperlinks
	Navigator
	NCSA	(National	Center	for	Supercomputing	Applications)

	nesting
						<frameset>	tags
						<multicol>	tags
						content-based	style	tags
						contextual	style	rules
						HTML	tags
						language	pseudoclasses	and
						layers
						lists
						physical	style	tags
						tables
						XHTML	documents,	elements	in
	Netscape	2nd
						plug-ins	2nd
						tags	and	line-breaking
						text,	direction	and	justification
	network	constraints,	mobile	devices
	news	URLs
	newsgroups
	nntp	URLs
	nohref	attribute	(<area>)
	nonterminals
	noresize	attribute	(<frame>)
	noshade	attribute	(<hr>)
	notab	attribute
						<map>
						<object>
						form	controls
	nowrap	attribute
						<div>
						<table>
						<th>	and	<td>
						<tr>
	numbered	(ordered)	lists	2nd

						list	marker	style	properties
						nesting
						numbering	style
						using	appropriately
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
object	attribute	(<applet>)
	object	model	(HTML	v4.0)
	obsolete	tags
	offset
	omitting	HTML	tags
	onAbort	attribute	2nd
	onBlur	attribute
	onChange	attribute	2nd
	onClick	attribute	2nd
	onDblClick	attribute	2nd
	onError	attribute
	onFocus	attribute
	onKeyDown	attribute	2nd
	onKeyPress	attribute	2nd
	onKeyRelease	attribute
	onKeyUp	attribute
	onLoad	attribute	2nd	3rd
	onMouseDown	attribute	2nd
	onMouseMove	attribute	2nd
	onMouseOut	attribute	2nd	3rd
	onMouseOver	attribute	2nd	3rd	4th	5th
	onMouseUp	attribute	2nd
	onReset	attribute	2nd	3rd
	onSelect	attribute	2nd
	onSubmit	attribute	2nd	3rd
	onUnload	attribute	2nd
	ordered	(numbered)	lists	2nd
						list	marker	style	properties
						nesting
						numbering	style

						using	appropriately
	orphans
	outset	borders
	overflow	property
	overlining
	overriding	hyperlink	targets
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
padding
	padding	properties
	page	boxes
						size	property
	page	layout	2nd
						alignment
						columns
						designing	for	your	audience
						forms	2nd
						frames
						HTML	tags	for
						layers
						multiple	columns
						style	sheets
						tables
						wrapping	text
	page-break	properties
	palette	attribute	(<embed>)
	panose-1	descriptor
	paragraphs	2nd
						indenting	with	<spacer>
	parameter	entities,	XML
	parameters,	form	2nd
	parsed	and	unparsed	entities,	XML
	password	input	fields
	pathnames	2nd
	pause	properties
	PCDATA,	XML	tags	2nd

	PDAs
	percent	sign	(%)
						for	character	encoding
						in	URL	encoding
	percentage	property	values
	performance
						applets
						background	images
						client-pull	documents
						colors
						flood-filling
						image	maps
						images	and
						lowsrc	attribute	()	for
						marquee	movement
						server-push	documents
						text
	physical	style	tags	2nd
						summary	of
						table	of
	physical	text	wrapping
	play-during	property
	plug-in	accessories	2nd	3rd	4th
	pluginspage	attribute	(<embed>)
	plus	sign	(+)	in	URL	encoding
	+	(plus	sign)	in	URL	encoding
	polygonal	image	map	area
	ports
						ftp	servers
						gopher	servers
						nntp
						telnet
						web	servers
	position	properties

	positioning	list	item	markers
	POST	method	2nd
	pound	sign	(#)
						for	entities
						for	name	anchors
						in	URLs
	precedence	of	styles
	preformatted	text
						<listing>	tags
						<pre>	tags
						<xmp>	tags
	print	formatting	for	HTML/XHTML	documents
						named	pages,	using
						pagination	controlling	2nd
						tables
						using	multiple	formats
	print	value	(style	media)
	private	webs
	profile	attribute	(<head>)
	programming	forms
						parameters	in	URLs
	projection	value	(style	media)
	prompt	attribute	(<isindex>)
	properties,	style
						Cascading	Style	Sheets	2nd	3rd
						JavaScript	Style	Sheets
	property:value	pairs,	styles
	protocols
	pseudoclasses,	style
						:active
						:first-child
						:focus
						:hover
						:lang
						:link

						:visited
						colon	(:)
						for	user	interaction	2nd
						hyperlink	states
						nesting,	languages
						web	browser	support	for
	pseudoelements	for	styles
						:after
						:before
						:first-letter
						:first-line
	punctuation	conventions	for	HTML
	push	buttons
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
query	URLs
	QUERY_STRING	variable
	question	mark	(?)	in	URLs	2nd
	quick	reference	for	HTML	tags
	quotation	marks	(")
						for	attribute	values	2nd
						in	URLs
	quotes	property
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
radio	buttons
	random	URL	generator
	readability,	whitespace	and
	readonly	attribute	(form	controls)
	rectangular	image	map	area
	Redirect	header
	redundant	HTML	tags
	references
						inline
						to	external	content
						to	multimedia	elements
	Refresh	header
	rel	attribute
						<a>
						<link>
	relationships
						between	HTML	documents
						between	hyperlinks
	relative	font	size
	relative	frame	sizes
	relative	URLs	2nd
						<base>	tags
						advantages	of	using
	repeat	keyword
	repetition	grammar	rules,	elements
	Requests	for	Comments	(RFCs)
	reserved	characters
	reset	buttons

	resizing	images
	reusing	images
	rev	attribute
						<a>
						<link>
	RFCs	(Requests	for	Comments)
	RGB	color	values	2nd
	ridged	borders
	rows	attribute
						<frameset>
						<textarea>
	rows,	creating	in	tables	2nd
	rowspan	attribute	(<th>	and	<td>)
	ruby	text
	rules
	rules	attribute	(<table>)
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
scheme	attribute	(<meta>)
	schemes,	URL	2nd
	scope	attribute	(<th>	and	<td>)
	screen	value	(style	media)
	scroll	value	(marquee	behavior)
	scrollamount	attribute	(<marquee>)
	scrolldelay	attribute	(<marquee>)
	scrolling
						<marquee>	tags	and
						fixing	images	against	2nd
						frames
	scrolling	attribute	(<frame>)
	search	parameter	of	URLs
	searchable	documents	2nd
	sections
						document	2nd
						performance	and
						table
	security
						ActiveX	and
						mailto	forms,	problems	with
	selected	attribute	(<option>)
	selection	lists
	selectors
						gopher	URLs
						style	rules	2nd	3rd	4th
	semicolon	(;)	in	character	entities
	sequence	grammar	rules,	elements

	server-push	documents	2nd
	server-side	applications
	server-side	image	maps	2nd
	servers
						<isindex>	tags	and
						data	to/from
						file	servers
						form	programming
						ftp	servers
						gopher	servers
						http	servers
						nntp	servers
						telnet	servers
	SGML	(Standard	Generalized	Markup	Language)
						<!DOCTYPE>	command	in	HTML	documents
						limitations	of
	SGML	DTD
	shadowing	text
	shape	attribute
						<a>
						<area>	2nd
	shapes	attribute	(<object>)
	sharp	sign
	show	value	(layer	visibility)
	side	heads	(tables)
	size
						applets
						borders
						column	width
						CSS	boxes	2nd	3rd
						embedded	objects	2nd
						font	size
						form	entry	controls
						frames	2nd	3rd
						horizontal	rule

						image	map	areas	2nd
						images
						layers
						line	height
						marquee	area
						selection	lists
						table	cells
						tables
						text	2nd	3rd	4th	5th
						text-entry	fields
						whitespace	blocks
	size	attribute
						<basefont>
						
						<hr>
						<input	type=file>
						<input	type=text>
						<multiple>
						<spacer>
	slash	(/)
						in	ending	tags
						in	URLs	2nd
	slide	value	(marquee	behavior)
	slope	descriptor
	software
						for	designers
						for	writing	HTML	documents
						formatting	code
	solid	borders
	sound
	space
	span	attribute
						<col>
						<colgroup>

	speak	property
	speak-header	property
	special	characters	2nd	3rd	4th	5th	6th
						in	URLs
						JavaScript	entities
						XHTML,	handling	in
	special	processing	directives,	XML
	speech-rate	property
	square	brackets	([])
	square	bullets
	src	attribute
						<bgsound>
						<embed>
						<frame>
							2nd
						<input	type=image>
						<layer>
						<script>
	src	descriptor
	stacking	layers
	Standard	Generalized	Markup	Language
	standardizing	HTML	2nd	3rd	4th	5th
						XHTML	standard
	standby	attribute	(<object>)
	start	attribute
						
						
	starting	tags	2nd
	state,	hyperlink
	stemv	and	stemh	descriptors
	straddle	heads	(tables)
	Strict	DTD	2nd
	strike-through	text	style
	structural	tags
	style	attribute	2nd	3rd
						<a>

						<address>
						<area>
						<blockquote>
						<body>
						<caption>
						<center>
						<div>
						<dl>,	<dt>,	and	<dd>
						
						<form>	2nd
						<frameset>
						<isindex>
						<layer>
						
						<map>
						<multicol>
						<object>
						<p>	2nd
						<pre>
						<q>
						,	,	and	
						content-based	style	tags
						form	controls
						physical	style	tags
						table	attributes
	style,	text
	styles
						box	properties
						classes	for	2nd
						classification	properties
						color	and	background	properties
						contextual	selectors	2nd
						CSS	properties	for

						document-level	2nd	3rd
						external	style	sheets	2nd
						font	style	properties
						how	to	use
						inline	2nd
						JavaScript	Stylesheets	(JSS)	2nd
						list	properties
						media-specific
						precedence
						property:value	pairs
						pseudoclasses	for
						pseudoelements	for
						style	sheets	2nd	3rd	4th
						tagless	styles	()
						text	style	properties
						web	browser	limitations
	subdomains	2nd
	submit	buttons
	subscripts	and	superscripts
	summary	attribute	(<table>)
	systems,	exchanging	data	with	XML
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
Tab	key
						navigating	form	controls
						navigating	hyperlinks
						navigating	objects
	tabindex	attribute
						<a>
						<map>
						<object>
						form	controls
	table-layout	property
	tables	2nd	3rd	4th
						alignment	2nd	3rd
						borders	2nd	3rd
						captions
						cells	2nd	3rd
						colors	in	2nd	3rd	4th
						columns	2nd	3rd
						controlling	page	layout	with
						example	of	basic	structure
						headers	and	footers
						HTML	v4.0	tags	for
						nesting
						rows	2nd	3rd
						sectioning
						side	heads
						size

						straddle	heads
						wrapping	text	in	cells	2nd	3rd
	tables	of	contents
	taborder	attribute
						<map>
						form	controls
	tabs
	tagless	styles	()
	tags
	tags	property	(JavaScript)
	target	attribute
						<a>	2nd	3rd
						<area>
						<base>	2nd
						<form>
						special	values	for
	telnet	URLs
						user	and	password
	templates	for	HTML	documents
	terminals
	terms,	definition	lists
	text
						addresses
						alignment	2nd
						animating
						appearance	tags	for	2nd
						block	quotes
						breaking	lines
						color	of	2nd
						flowing	around	images
						form	fields	for
						headings
						inline	references	in
						instead	of	images	2nd

						margins	for	body	content
						monospaced
						multicolumn	layout	2nd
						multiline	text-entry	areas	(forms)
						paragraphs
						preformatted
						size	of
						special	characters	2nd	3rd	4th	5th	6th
						structural	tags
						style	properties	for
						text-only	browsers	2nd
						text/css	encoding
						text/plain	encoding
						three-dimensional	appearance
						whitespace
						wrapping	2nd
	text	attribute	(<body>)
	text	editors	2nd
	text	size
						<basefont>	tags
						<big>	tags
							tags
						<small>	tags
						Extended	Font	Model
						heading	tags	for
	text-align	property
	text-decoration	property
	text-entry	fields	(forms)
	text-shadow	property
	text-transform	property
	text/css	encoding
	text/plain	encoding
	texttop	value
	three-dimensional	appearance,	text

	Tidy	utility	for	HTML-to-XHTML	conversions
	tilde	(~)	in	URLs
	~	(tilde)	in	URLs
	tiling	with	images
	title	attribute
						<a>
						<applet>
						<area>
						<div>
						<dl>,	<dt>,	and	<dd>
						<form>
						<frame>
						<frameset>
						
						<isindex>
						<link>
						<map>
						<object>
						<p>	2nd
						,	,	and	
						form	controls
						table	tags
	titles
						bibliographic
						choosing
						document	2nd	3rd
						forms
						frames
						hyperlinked	documents	2nd
						image	map	area
						sections
						table	captions
	top	attribute

						<ilayer>
						<layer>
	top	value
	topline	descriptor
	topmargin	attribute	(<body>)
	Transitional	DTD	2nd
	transparent	GIFs
	troubleshooting	background	images/colors
	tty	value	(style	media)
	tv	value	(style	media)
	type	attribute
						<a>
						<button>
						<embed>
						<input>
							2nd
						<link>
						<object>
						
						<param>
						<script>
						<spacer>	2nd	3rd
						<style>
						
	type	in	gopher	URLs
	typecodes	in	ftp	URLs
	typographic	conventions	for	HTML
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
underscoring	2nd
	unicode-range	descriptor
	uniform	resource	locators
	unique	identifiers	(IDs)
						articles	in	newsgroups
						messages	on	news	servers
	units	attribute	(<embed>)
	units-per-em	descriptor
	universal	child	selectors
	unnamed	form	parameters
	unordered	lists
						bulleted	2nd	3rd	4th	5th
						directory	lists
	unsafe	characters	in	URLs
	URLs	(uniform	resource	locators)	2nd
						absolute	vs.	relative	2nd
						as	style	property	values
						character	encodings	in
						file	URLs
						form	parameters	in	2nd
						ftp	URLs
						generating	randomly
						gopher	URLs
						http	URLs
						JavaScript	pseudoprotocol
						javascript	URLs
						mailto	URLs	2nd	3rd

						news	and	nntp	URLs
						query	URLs
						telnet	URLs
						XFrames
	usemap	attribute
							2nd	3rd
						<object>
	Usenet	news	system
	user	and	password,	telnet	URLs
	user-interface	design
	user-related	event	handlers
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
valid	XML	documents
	valign	attribute
						<caption>
						<table>
						<th>	and	<td>
	value	attribute
						
						<option>
						<param>
	valuetype	attribute	(<param>)
	version	attribute	(<html>)
	vertical
						margins
						whitespace
	vertical-align	property
	video	2nd
							extensions
						client-pull	feature	for
						inline
	virtual	text	wrapping
	visibility	attribute	(<layer>)
	visibility	property
	vlink	attribute	(<body>)
	volume	property
	vspace	attribute
						<embed>
						

						<marquee>
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
W3C	(World	Wide	Web	Consortium)
	Web
						information	on
						navigating	with	hyperlinks
	web	browsers
						<link>	tags	and
						applet	rendering
						character	entities,	rendering
						client-pull	documents
						client-side	image	maps	and
						executable	content
						form	limitations
						HTML	documents,	use	in	editing
						HTML	tags	2nd
						image	borders
						image	presentation
						images,	rendering
						incompatible	with	embedded	objects
						incompatible	with	executable	content
						incompatible	with	frames
						JavaScript
						leniency	in	data	acceptance
						Mosaic	browser
						Netscape	Navigator
						obtaining
						styles

						text-only	2nd
	web	servers
						<server>	tags
						server-push	documents
	webs,	private
	weight,	font
	well-formed	documents
						XHTML	and
						XML	2nd
	white-space	property
	whitespace
							tags	for
						<nobr>	tags
						<spacer>	tags
						around	horizontal	rules
						around	table	cells
						between	columns	(gutters)
						blocks	of
						frames	and
						handling	in	block	tags
						hanging	indents
						HTML	tags	for
						indentation
						letter	spacing
						line	breaks
						line	height
						margins	2nd	3rd
						paragraphs
						readability	and
						tabs	in	preformatted	text
						word	spacing
	widows
	width	attribute
						<applet>

						<embed>
						<hr>
						<iframe>
						
						<layer>
						<marquee>
						<multicol>
						<pre>
						<spacer>
						<table>
						<th>	and	<td>
	width	property
	widths	descriptor
	WiFi
	windows	2nd
						as	hyperlink	targets	2nd	3rd	4th	5th	6th
						tips	and	tricks
	word	processors
	word	wrap
	word-spacing	property
	World	Wide	Web
	World	Wide	Web	Consortium	(W3C)
	wrap	attribute	(<textarea>)
	wrapping	text
						<multicol>	and
						around	images	2nd
						in	<textarea>	entry	areas
						nowrap	attribute	(<div>)
						table	cell	contents	2nd	3rd
	writing	HTML	documents
						applets
						dynamic	documents
						editorial	markup
						forms,	how	to	use	2nd	3rd	4th

						hyperlinking	effectively
						image	maps	and
						lists,	how	to	use	2nd
						server-push	documents
						software	for	2nd
						styles,	how	to	use
						tables	2nd	3rd
						tips	and	tricks	2nd
						titles,	choosing
						user-interface	design
	WWW
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
x-height	descriptor
	XFrames
						documents
						URLs
	XHTML	2nd
						authoring	tools
						case-sensitivity	in	style	rule	elements
						deciding	to	use
						documents	in
						DTDs	2nd
						HTML	conversion	software
						HTML	vs.
						machine-generated	content	and
						tags,	quick	reference
						Version	1.0	and	HTML	4.01
						Version	1.1	2nd	3rd
						well-formed	documents	and
						XML,	using	to	define
	XHTML	Basic
						content-based	tags
						core	tags
						design
						document	header
						forms
						images
						lists

						objects
						scripting
						stylesheets
						tables
						text	structural	tags
	XHTML	documents
						content	2nd
						creating	2nd	3rd
						ending	tags	in
						nesting	elements	in
	XML	(Extensible	Markup	Language)	2nd
						as	markup	metalanguage
						DTDs
						special	processing	directives
						uses	for	2nd	3rd
	xmlns	attribute,	defining	namespaces	with
		
	

	

Index

	
[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]	[P]	[Q]	[R]
[S]	[T]	[U]	[V]	[W]	[X]	[Z]
		
z-index	attribute	(<layer>)
	z-index	property
		
	

	Chapter 1. HTML, XHTML, and the World Wide Web
	Chapter 2. Quick Start
	Chapter 3. Anatomy of an HTML Document
	Chapter 4. Text Basics
	Chapter 5. Rules, Images, and Multimedia
	Chapter 6. Links and Webs
	Chapter 7. Formatted Lists
	Chapter 8. Cascading Style Sheets
	Chapter 9. Forms
	Chapter 10. Tables
	Chapter 11. Frames
	Chapter 12. Executable Content
	Chapter 13. Dynamic Documents
	Chapter 14. Mobile Devices
	Chapter 15. XML
	Chapter 16. XHTML
	Chapter 17. Tips, Tricks, and Hacks

