
CSCI 4831/5722 Computer Vision, Spring 2019 
Instructor: Fleming 
Homework 5, Due Sunday, April 7th, by 11:55pm 
 

Segmentation via Clustering 
 
In this homework assignment, you will use clustering algorithms to segment images. 
You will then use these segmentations to identify foreground and background 
objects. And finally, you will transfer foreground objects from one image to another 
as shown in the figure below. 
 

 
 
Provided files:  
All of the image and Matlab files for this assignment are provided. Source: Stanford 
Vision Lab (Prof. Fei Fei Li). 
 
There are 4 folders: 

1. code: contains Matlab scripts and functions. Some functions have headers 
but are waiting for your function definition. 

2. imgs: contains 17 images of cats 
3. gt: contains 17 binary images representing the foreground/background 

segmentation for the images in the imgs folder 
4. test_data: synthetic data you can use to test your clustering algorithm 

solution, as well as the feature normalization solution. 
 

 
What You Have to Do:  
 
Task 1 (30 points): Clustering Algorithms 
  
1.1 K-Means Clustering (15 points) 
As discussed in class, K-Means is one of the most popular clustering algorithms. We 
have provided skeleton code for K-Means clustering in the file 
KMeansClustering.m. Your first task is to finish implementing the K- Means 
algorithm using the provided file. You can use KMeansClusteringTest.m to test 
your implementation.  
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1.2 Hierarchical Agglomerative Clustering (15 points) 
Another simple clustering algorithm is Hierarchical Agglomerative Clustering, which 
is sometimes abbreviated as HAC. Agglomerative clustering uses a bottom-up 
approach, wherein each data point starts in its own cluster. These clusters are then 
joined greedily, by taking the two most similar clusters together and merging them. 
Next, pairs of clusters are successively merged until we are left with the desired 
number of predetermined clusters. The result is a tree-based representation of the 
objects, named dendrogram. 
  
We have provided skeleton code for hierarchical agglomerative clustering in the file 
HAClustering.m. Please finish the implementation in this file. You can use 
HAClusteringTest.m to test your implementation.  
 
 
 
Task 2 (15 points): Pixel Feature Vectors  
 
Before we can use a clustering algorithm to segment an image, we must compute 
some feature vector for each pixel. The feature vector for each pixel should encode 
the qualities that we care about in a good segmentation. More concretely, for a pair 
of pixels pi and pj with corresponding feature vectors fi and fj, the distance between 
fi and fj should be small if we believe that pi and pj should be placed in the same 
segment and large otherwise.  

2.1 Color Features  

One of the simplest possible feature vectors for a pixel is simply the vector of colors 
for that pixel. This method has been implemented for you in the file 
ComputeColorFeatures.m.  

2.2 Color and Position Features (5 points) 

Another simple feature vector for a pixel is to concatenate its color and its position 
within the image. In other words, for a pixel of color (r,g,b) located at position (x,y) 
in the image, its feature vector would be (r, g, b, x, y). Implement this method of 
computing feature vectors in the file ComputePositionColorFeatures.m. You 
can test your implementation by running 
ComputePositionColorFeaturesTest.m.  

2.3 Feature Normalization (10 points) 

Sometimes we want to combine different types of features (such as color and 
position) into a single feature vector. Features from different sources may have 
drastically different ranges; for example each color channel of an image may be in 
the range [0, 1) while the position of each pixel may have a much wider range. 
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Uneven scaling between different features in the feature vector may cause 
clustering algorithms to behave poorly.  

One way to correct for uneven scaling between different features is to apply some 
sort of normalization to the feature vector. One of the simplest types of 
normalization is to force each feature to have zero mean and unit variance.  

Suppose that we have a set of feature vectors f1, . . . , fn where each fi ∈ Rm 
is the 

feature vector for a single pixel, and fij is the value of the jth feature for the ith pixel. 

We can then compute the mean µj and variance σj
2 

of each feature as follows  

 

To force each feature to have zero mean and unit variance, we replace our feature 
vectors f1 , . . . , fn with a modified set of feature vectors 

 

Implement this method of feature vector normalization in the file 
NormalizeFeatures.m. You can test your implementation by running 
NormalizeFeaturesTest.m . 

 
Task 3 (20 points): Optional for UG students, mandatory for Graduate students 

For this programming assignment so far you were asked to implement a very 
simple feature transform for each pixel. While it is not required, you should 
feel free to experiment with other feature transforms. Could your final 
segmentations be improved by adding gradients, edges, SIFT or SURF 
descriptors, or other information to your feature vectors? Could a different 
type of normalization give better results? Add a paragraph to your write up 
documenting the features vectures you chose and why did you choose them. 

You can use the function ComputeFeatures.m as a starting point to 
implement your own feature transforms.  
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Task 4 (5 points): Image Segmentations 
After computing a feature vector for each pixel, we can compute a segmentation for 
the original image by applying a clustering algorithm to the computed feature 
vectors. Each cluster of feature vectors corresponds to a segment in the image, and 
each pair of pixels pi and pj in the image will be placed in the same segment if and 
only if their corresponding feature vectors fi and fj are located in the same cluster.  

You can compute a segmentation for an image using the function 
ComputeSegmentation.m. This function allows you to specify the function used 
to compute features for each pixel, whether the features should be normalized, and 
the clustering method used to cluster the feature vectors.  

For example, to compute a segmentation for the image img with 5 segments using 
K-Means clustering and using ComputeColorFeatures to compute pixel features 
with feature normalization you would write:  

segments = ComputeSegmentation(img, 5, ’kmeans’, @ComputeColorFeatures, true); 

 
You can read the full documentation for ComputeSegmentation by typing help 
ComputeSegmentation.  

If you find that your segmentations take a long time to compute, you can set the 
optional resize argument of ComputeSegmentation. If this argument is set 
then the image will be shrunk before being segmented, and the segmentation will 
then be upsampled to the size of the original image. You will probably need to use 
this feature when segmenting images with hierarchical agglomerative clustering.  

The syntax @ComputeColorFeatures creates a handle to the function 
ComputeColorFeatures; this mechanism allows functions to be passed as 
arguments to MATLAB functions.  

At this point you have a lot of options for computing segmentations: you have two 
different clustering algorithms (K-Means and HAC), two choices of pixel features 
(just color features or color and position features), and the choice to either 
normalize or not normalize the features. You can also vary the number of segments 
that are computed.  

Once you have computed a segmentation for an image, you can visualize it using the 
functions ShowSegmentation and ShowMeanColorImage. Read the 
documentation for these functions (using the help command) to see how they are 
used. Example output from these visualization tools can be seen in Figure 2.  

You can use the script RunComputeSegmentation as a starting point to compute 
segmentations for images. Choose a few images (either your own or images from the 
imgs folder) and compute segmentations for these images using different 
combinations of segmentation parameters (feature transform, normalization, 
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clustering method, number of clusters). A successful segmentation will cleanly 
separate the objects in the image from each other, while an unsuccessful separation 
will not.  

 
Task 5 (20 points): GrabCat: Transfer segments between images Optional for 
UG students, mandatory for Graduate students 
A successful segmentation of an image should separate the objects from the 
background. Assuming that we compute such a successful segmentation, we can 
“transfer” objects from one image to another by transferring the segments that 
make up the object. An example image produced using this procedure is shown in 
the first figure.  

Once you have computed a successful segmentation for an image, you can use the 
ChooseSegments function to choose a subset of these segments to transfer to a 
background image. The documentation for the ChooseSegments function contains 
more details on how to use it.  

Use some of your successful segmentations from the previous section to transfer 
objects from one image to another. You can use the provided foreground images of 
cats in the imgs directory and the provided background images in the 
imgs/backgrounds; also feel free to use your own images. You can use the script 
GrabCat.m as a starting point for this section.  

 
Task 6 (50 points): Quantitative Evaluation. Write-up  
Looking at images is a good way to get an idea for how well an algorithm is working, 
but the best way to evaluate an algorithm is to have some quantitative measure of 
its performance.  

For this project we have supplied a small dataset of cat images and ground truth 
segmentations of these images into foreground (cats) and background (everything 
else). You can quantitatively evaluate your segmentations by evaluating their 
performance on this dataset.  

To achieve good performance, you will probably need to divide each image into 
more than two segments. This means that you will need to combine multiple 
segments in order to reconstruct the foreground and the background. You can 
manually choose the foreground segments using ChooseSegments.m as in the 
previous sections. Alternatively, you can have the evaluation function 
EvaluateSegmentation.m automatically choose which segments should be in 
the foreground and which segments should be in the background.  

You can use the script EvaluateAllSegmentations.m to evaluate a 
segmentation method’s ability to separate foreground from background on the 
entire provided dataset. Use this script as a starting point to evaluate a variety of 
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segmentation parameters. Note that you can toggle the 
chooseSegmentsManually variable to either choose foreground segments 
yourself or allow EvaluateSegmentation.m to automatically choose 
foreground segments for you.  

 

What to include in your write-up: 
 

a) In your write up you should describe all methods of computing feature 
vectors that you used in your project. UG students should use any 
combinations of color and position data (from Task 2), or add more feature 
data if they wish to. Graduate students can add gradient, edges, SIFT or 
SURF features, or any new feature vectors they came up with for Task 3. 
For each method of computing feature vectors, explain why you expect that 
this feature vector will or will not produce a good segmentation for an 
image. 

In addition, you should describe all methods of feature normalization that your 
clustering method employs (task 2).  

b) In your write up you should include visualizations of at least 6 different 
segmentations (task 4). At least 3 of these segmentations should be 
successful, and at least 3 of these segmentations should be unsuccessful. 
Each of your examples should use different parameters for segmentation, 
and the parameters for each of your examples should be different.  

 
c) You should also answer the following questions in your writeup (a few 

sentences for each question is sufficient):  
1. What effect do each of the segmentation parameters (feature 

transform, feature normalization, number of clusters, clustering 
method, resize) have on the quality of the final segmentation?  

2. How do each of these parameters affect the speed of computing a 
segmentation?  

3. How do the properties of an image affect the difficulty of computing 
a good segmentation for that image?  

 
d) (Only for Graduate students) Include at least 2 examples of composite 

images produced by transferring segments from one image to another (task 
5). For each composite image explain how you produced it (i.e. describe 
what the input images were and what segmentation parameters were used).  

 



e) Include a detailed evaluation of the effect of varying segmentation 
parameters (feature transform, feature normalization, clustering method, 
number of clusters, resize) on the mean accuracy of foreground-background 
segmentations on the provided dataset. You should test a minimum of 15 
combinations of parameters. To present your results, you might consider 
making a table similar to Table 1.  

 

 

You should expand upon the qualitative assessment of Section c) and try to answer 
the following question:  

1. Based on your quantitative experiments, how do each of the segmentation 
parameters affect the quality of the final foreground-background 
segmentation?   

2. Are some images simply more difficult to segment correctly than others? If 
so, what are the qualities of these images that cause the segmentation 
algorithms to perform poorly?   

3. Also feel free to point out or discuss any other interesting observations that 
you made.   

Note:  Overall for this assignment, we care more about your explanation and 
discussion than about your actual code or results (although those are important 
too!).  

 
Submitting the assignment: 
Make sure each script or function file is well commented and it includes a block 
comment with your name, course number, assignment number and instructor name. 
Zip all the .m and the write-up file together and submit the resulting .zip file through 
Moodle as homework 5 by Sunday, April 7th, by 11:55pm. 
 
Total points: 100 for undergraduate students, 140 for graduate students. 
 


