

Develop SAP Business One extensions on the
SAP Cloud Platform

2

TABLE OF CONTENTS

PREREQUISITES .. 4
i. Download and Install Development Tools .. 4
ii. Create a SAP Cloud platform trial account ... 5
iii. Activate Web IDE Full Stack service .. 6
iv. SAP API Business Hub ... 9

STEP 1: CREATE A SAP FIORI APP CONNECTING TO SAP BUSINESS ONE SERVICE LAYER VIA
SAP API BUSINESS HUB .. 10
i. Create a SAPUI5 Application .. 10
ii. Add a Data Source to the SAPUI5 Application ... 13
iii. Add controls to the View1 view. ... 16
Add a sap.m.Table control .. 16
Add a Search Field control to the sap.m.Table .. 21
iv. Add a second view called Details .. 25
Create a Details view. .. 25
Add an Object Header control. ... 26
v. Define navigation between View1 and Details. ... 29

STEP 2: CREATE A NODEJS APP ... 31

STEP 3: DEPLOY THE NODEJS APP INTO SAP CLOUD FOUNDRY .. 32

STEP 4: CONSUME THE NODEJS APP FROM THE SAP FIORI APP .. 36
i. Add a Button “Add Freight” to the Details view. .. 36
ii. Implement the Button business logic calling the NodeJS server side and Service Layer. ... 38

 3

The objective of this hands on is to put in practice how to develop SAP Business One extensions on SAP

Cloud Platform.

The exercise will be composed by

- Step 1: Create a Fiori application connecting to SAP Business One Service Layer via SAP API
Business Hub

- Step 2: Implement a server side NodeJS application
- Step 3: Deploy the NodeJS application to SAP Cloud Foundry
- Step 4: Consume the server side NodeJS application from the Fiori application

This hands-on exercise will require several steps, please follow them in the proposed order as each step is
counting on the precedent steps.

 4

PREREQUISITES

i. Download and Install Development Tools

Download and install git version
control on your system from the
following link

https://git-scm.com/downloads

We will also make use of SAP
Cloud Platform Cloud Foundry
Environment.

To do so, we need the Cloud
Foundry command line interface
(CLI)

You can download it and install
if the CF CLI for your operating
system on.

https://github.com/cloud
foundry/cli#downloads

 5

ii. Create a SAP Cloud platform trial account

The exercises proposed in this hands on are implemented on top of the SAP Cloud Platform.

If you have already a trial SAP Cloud Platform account, you can skip this step.

To create a trial SAP Cloud Platform account, go to the following link:

Explanation Screenshot

To create a trial SAP Cloud
Platform account, go to the
following link:

https://account.hanatrial.ondemand.
com

Press the Register button

Enter all your details

Accept the terms and conditions by
checking both check boxes and
press “Register”.

 6

iii. Activate Web IDE Full Stack service

We will use Web IDE Full Stack for the creation and implementation of our application.
Web IDE is offered as a service on the SAP Cloud Platform.

To activate Web IDE Full Stack service please follow the steps here below, if you already have Web IDE Full
Stack service active in your account please skip this step.

Explanation Screenshot

Open your trial SAP Cloud
Platform account from the
following link:

https://account.hanatrial.ondema
nd.com

Press the Log On button if you
are not automatically logged in

After login if you are proposed
between Cloud Foundry Trial
and Neo Trial please choose
Neo Trial.

 7

Explanation Screenshot

Select the Services icon on the
left side bar.

Enter Web in the search edit
text.
Click on the SAP Web IDE Full
Stack box.

Click Enable.
This may take a few
minutes.

 8

Explanation Screenshot

Once Enabled select the
link Go to Service to open
Web IDE Full Stack.

Web IDE opens with an
empty Workspace unless
you already developed
applications with Web IDE
in the past.

 9

iv. SAP API Business Hub

SAP API Business Hub is the central catalog of all SAP and partner APIs for developers to build sample
apps, extensions and open integrations with SAP.

SAP Business One has exposed 3 packages as of today:

- SAP Business One – Sales
- SAP Business One – Business Partners
- SAP Business One - Inventory

Many other packages will follow very soon, stay tuned.

Please go to the following link for more details:
https://api.sap.com

 10

STEP 1: CREATE A SAP FIORI APP CONNECTING TO SAP BUSINESS ONE SERVICE LAYER VIA
SAP API BUSINESS HUB

The objective of this first exercise is to develop a SAP Fiori app using the SAP UI5 template.

Service Layer provides OData v4 support since SAP Business One 9.3 PL04 version for SAP HANA.

In this exercise, we will use the Service Layer APIs exposed via the SAP API Business Hub, please refer to
the prerequisites section SAP API Business Hub for more details.

Web IDE supports OData v4 on some templates like SAP Fiori Worklist Application OData v4 and SAPUI5.
More templates will support OData v4 gradually. In this exercise, we will use the SAPUI5 template.

i. Create a SAPUI5 Application

Explanation Screenshot

Open SAP Web IDE Full
Stack.

Check the prerequisites
sections “Create a SAP
Cloud platform trial
account” and “Activate
Web IDE Full Stack
service” if you don’t
know how to open
WebIDE Full Stack.

Right click on your
Workspace and select New
-> Project from Template.

 11

Explanation Screenshot

Select the SAPUI5
Application template.

Press Next.

If you don’t see this
template, change the
Category to All
categories.

Enter a Project Name.

Enter a Namespace.

Press Next.

Keep the Initial View
Details with the default
values.

Press Next.

 12

Explanation Screenshot

Press Finish to confirm the
creation of the SAPUI5
template.

 13

ii. Add a Data Source to the SAPUI5 Application

Explanation Screenshot

In Web IDE select your
project and right click to get
the menus.

Select New -> OData
Service.

Select SAP API Business
Hub in the Sources (left
side of the screen).

Select the “SAP Business
One – Sales” API package
from the dropdown control.

You might be prompted to
enter your SAP Community
User Name and Password.
Enter your credentials and
press Log In.

From the available APIs
presented select Orders
and make sure the
“Service: Orders
selected” blue message is
shown at the top of the
Data Connection tab.

Press Next.

 14

Explanation Screenshot

In the Model Selection step
keep the radio button “Use
default model” to create a
default model associated to
our OData Service.

Press Next.

Press Finish.

A new Data Source and its
corresponding Default
model is added
automatically to your
project.

Right click on the
webapp/manifest.json file
and select Open With ->
Descriptor Editor.

Select the Data Sources
tab.

Check that the Orders
OData service has been
added, points to the API
Hub url and the version is
4.0.

 15

Explanation Screenshot

In the same file
webapp/manifest.json as in
previous step select the
Models tab.

Select the Default model
and check:

- the Default
checkbox is
selected

- the Data Source
is Orders

 16

iii. Add controls to the View1 view.

Select the Entity Type

Explanation Screenshot

Open the view folder.

Open the
View1.view.xml file with
the Layout Editor.

Select the Outline tab.

Select View.view.xml.

On the Properties tab
(right side of the screen
Layout view screen) check
if /Orders is already
entered as the associated
Entity Set.

If /Orders is not yet entered
follow the next steps to
define the Entity Set.

If /Orders is already
available go to the next
section “Add a sap.m.Table
control”.

Click on the button to
select the Entity Set
associated to our view.

 17

Explanation Screenshot

Check the second option
Define dummy entity
set… and choose the
/Orders Entity Set.

Press OK.

Once back to the Layout
Editor the /Orders entity
should be shown.

Press Save button.

 18

Add a sap.m.Table control

Expand sap.m.Page.

Right click on content
and select Add.

Enter table to filter the
controls shown in the list.

Click on the Table control
so it will be added to our
view.

On the table created edit
each sap.m.Table ->
columns ->
sap.m.Column -> header
-> sap.m.Label Text
Property:

- Change Header 1
by DocEntry.

- Change Header 2
by CardCode.

- Change Header 3
by DocTotal.

 19

Select each one of the
items ->
sap.m.ColumnListItem ->
cells -> sap.m.Text cell to
bind them to their
corresponding Orders
properties.

On the Text property click
the Binding button on the
right side of the Text
property.

Delete the default
Expression string.

In the Search for data field
enter the name of the
Orders property DocEntry.

Double click on the field
name so it will be copied to
the Expression string
between curly brackets.

Repeat this step for
CardCode column.

For the DocTotal column
we will add 2 properties:

- DocTotal
- DocCurrency

We will then search and
add first the DocTotal and
afterwards search and add
the DocCurrency.

Press Save button on
the View1.view.xml file.

 20

Your View1.view.xml
layout should look like this
at this point.

Click on the green arrow to
run your application.

A new tab opens showing
your application.

You can see the Table is
automatically filled with the
list of Orders available in
the API Business Hub
sandbox running SAP
Business One.

 21

Add a Search Field control to the sap.m.Table

Explanation Screenshot

Open the
View.view.xml file with
the Layout Editor.

Go to the Outline tab
and select sap.m.Table
-> headerToolbar.

Right click to get the
context menus and
select Add.

Click on the Toolbar
proposed control.

 22

Explanation Screenshot

Go to the created
sap.m.Toolbar -> content
element and right click to
select the Add menu.

Enter SearchField to filter
the controls.

Click on the Search Field
proposed control.

Select the
sap.m.SearchField control
in the Outline tab.

Select the Events tab in
the right side of the screen.

On the Search event click

on the button and
select New Function
option.

 23

Explanation Screenshot

Enter onSearch as
function name that will be
called when the Search
button will be pressed.

Press OK.

Press Save.

A new function with that
name will be created in the
View.Controller.js.

Open the
View1.controller.js file.

Copy the code from
https://github.com/B1SA/B
1_SCP_HandsOn/blob/ma
ster/snippets/View1.controll
er.js_onSearch.js into your
onSearch method so it
looks like here.

This code filters the Orders
with DocEntry greater or
equal than the value
entered in the SearchField.

Press Save.

Run your application.

 24

Explanation Screenshot

Check that the SearchField
filters the table with Orders
having a DocEntry higher
than the entered value.

 25

iv. Add a second view called Details

Create a Details view.

Explanation Screenshot

Right click on your
application and select New
-> SAPUI5 View.

Keep the default values for
View Type and
Namespace.
Enter the name of the new
View: Details.

Press Next.

Press Finish to confirm the
creation of the Details
view.

 26

Explanation Screenshot

Two files are created:
- Details.view.xml
- Details.controller.js.

Add an Object Header control.

Explanation Screenshot

Open the
Details.view.xml file
with the Layout editor.

Go to the Outline tab.

Right click on
Details.view.xml ->
sap.m.App ->
sap.m.Page -> content
and select Add.

 27

Explanation Screenshot

Enter objectheader to
search for the Object
Header control.

Click on the Object
Header proposed control.

Select the created
sap.m.ObjectHeader
element in the Outline tree.

Go to the Properties tab in
the right side of the screen.

Click one by one on the
Data Binding icon for the
properties:

- Title
- Intro
- Number
- Number Unit

A new dialog will be
presented for each one of
the properties.

Search for the Orders Data
Field to be assigned to
each property:
- Title -> CardCode
- Intro -> DocEntry
- Number -> DocTotal
- Number Unit ->

DocCurrency

and double click on the
proposed list to get it into
the Expression string.

 28

Explanation Screenshot

Note: Do not select
BusinessPartners/CardC
ode for the CardCode
property.

Press Save button.

The sap.m.ObjectHeader
should look like this at this
point.

 29

v. Define navigation between View1 and Details.

Explanation Screenshot

From our main View1 table
we want to navigate to
Details view when the user
clicks on a row.

Open View1.view.xml file
with Layout Editor.

Select Outline tab
View1.view.xml ->
sap.m.App -> sap.m.Page -
> content -> sap.m.Table ->
items ->
sap.m.ColumnsListItem.

Select the Events tab.

Click on the icon.

Select Navigate To menu.

Select Propagate current
context on the Data Binding
combo box.

Select Details on the View
combo box.

Press OK.

Press Save to save the
View1.view.xml changes.

The selected Order data
from the View1 will be bound
to the Details view.

 30

Explanation Screenshot

From our Details view we
want to navigate back to our
main View1 when the user
press on the Navigate back
button.

Open the Details.view.xml
file with the Layout Editor.

Go to the Outline tab and
select sap.m.Page.

On the Properties tab scroll
down to see the Show Nav
Button property and change
its value to true.

Go to the Events tab.

On the Nav Button Press

event click on the icon .

Select the option Navigate
To.

Select View1 on the combo
box.

We will navigate back to
View one when the Nav back
button will be pressed.

Click on the Save button.

Test your app to see
navigation is working fine
between View1 and Details
view.

Congratulations! You have created your first SAP UI5 application connecting to SAP API Business Hub

 31

STEP 2: CREATE A NODEJS APP

In this step we are going to implement the backend of our application. It will contain a simple business logic
to calculate freight costs from different providers and consume 3rd Party services. The application is written in
NodeJS and the source code is available on GitHub.

Explanation Screenshot

Once git is installed (according to the
pre requisites), open your system
terminal (cmd, bash..)

Navigate to a specific folder where
you will download a sample
application.

Pay attention what folder is it, we will
access it later

Execute the following command to
clone our solution backend repository:

$ git clone
https://github.com/B1SA/FreightCalcul
ator.git

You can see the app code on your file
explorer:

Edit the File manifest.yml and set a
unique name for your application.
E.eg FreightCalc<Your Initials>

 32

STEP 3: DEPLOY THE NODEJS APP INTO SAP CLOUD FOUNDRY

In this step, we are going to deploy our Freight Calculator app to SAP Cloud Platform Cloud Foundry.

Explanation Screenshot

First, we need to activate the
SAP Cloud Platform Cloud
Foundry Environment.

On the SAP Cloud Platform
Dashboard click on the HOME
option

First, we need to activate the
SAP Cloud Platform Cloud
Foundry Environment.

From the SAP CP Home
Screen, click on Cloud Foundry
Trial

Select the Trial Region that most
suits you. And Click on OK

 33

Explanation Screenshot

This will initialize your Cloud
Foundry Trial and create a DEV
space (where the solutions will be
deployed). Go Ahead and access
your space.

Your space is created and ready to
deploy your app. We now need your
environment endpoint to be able to
push our app.

Click on the trial link

And then on Overview option in
the menu

Select and copy your API
Endpoint. E.g.

https://api.cf.eu10.hana
.ondemand.com

With the CLI installed
(according to the pre
requisites), open your system
terminal and navigate to the
folder of the backend app
cloned on STEP 2 of this guide

From that folder, login to Cloud
foundry using the command

cf login -a <API
ENDPOINT>

e g.

$ cf login -a
api.cf.eu10.hana.ondeman
d.com

When prompted provide your
SAP Cloud Platform email and
password

 34

Explanation Screenshot

Now all you have to do is push your
app to the SAP Cloud Platform Cloud
Foundry by using the command:

cf push

This process will read the manifest.yml
to name your application and also upload
and deploy all the artefacts in a container
in the Cloud Foundry Environment. Once
the Process finishes, you can see your
app URL:

This application makes use of a 3rd Party service called Shippo to calculate shipping costs. In order to consume their
services, we need an API KEY.

The Instructors of this hands-on session will provide a set of keys you can use in the next step. However, you can also
get your own FREE test key on their website https://goshippo.com/

Best practices of cloud development (see https://12factor.net/config) suggests that any kind of configuration (such as
keys) should not be part of the codebase but set as environment variables. And that is easily done with Cloud Foundry

Back to the terminal, set the
Environment Variable SHIPPO_KEY
to a valid API Key with the following
command

cf set-env <appname>
<variable name> <variable
value
e.g.
cf set-env freightcalcRO
SHIPPO_KEY shippo_test_1234

 35

Explanation Screenshot

Up next, restart your app

cf restart <appname>

You can test the app with a test page on
the app URL

Congratulations! You have implemented and deployed your first Cloud Foundry application on SAP Cloud
Platform!

 36

STEP 4: CONSUME THE NODEJS APP FROM THE SAP FIORI APP

i. Add a Button “Add Freight” to the Details view.

Explanation Screenshot

Open the
Details.view.xml file
with the Layout Editor.

On the Outline tab right
click on the sap.m.App
-> pages ->
sap.m.Page -> footer
element and select Add.

Select the Toolbar control
proposed.

 37

Explanation Screenshot

On the Outline tab right
click on sap.m.Toolbar ->
content and select Add.

Enter hbox in the Add
Control to: content new
dialog.

Select the proposed HBox
control.

On the Outline tab right
click on sap.m.Toolbar ->
content and select Add.

Enter button in the Add
Control to: content dialog.

Select the Button control.

On the Outline tab select
the sap.m.Button.

On the Properties tab
change the Text property
by Add Freight.

 38

ii. Implement the Button business logic calling the NodeJS server side and Service Layer.

Explanation Screenshot

Select Outline tab,
sap.m.Button.

Open Events tab.

Click on the Press event

 icon and select New
Function.

Enter onAddFreightPress
as the function name.

This function will be called
when the event Press is
fired on the AddFreight
button.

Open the
Details.controller.js file
and scroll down to the
bottom of the file.

A new empty function
called onAddFreightPress
has been automatically
created.

Before implementing this
function lets add some
definitions to the
Details.controller.js file.

Open the
Details.controller.js file.

Remove the code at the
beginning of the file until
“use strict”; as shown here
in the first screen.

Replace that code from by
the one shared at
https://github.com/B1SA/B
1_SCP_HandsOn/blob/ma
ster/snippets/Details.contro
ller.js_definitions.js as

 39

Explanation Screenshot

shown in the second
screen.

Let now implement the
function
onAddFreightPress.

 When the user clicks on
the AddFreight button we
call the server side
NodeJS to get freight
options.

Replace the URL to the
freight calculator by your
backend application URL
(code marked in red in the
screen capture).

In case of success we call
the function
openFreightDialog.

In case of error we simply
show a MessageToast.

You can get this code from
https://github.com/B1SA/B
1_SCP_HandsOn/blob/ma
ster/snippets/Details.contro
ller.js_onAddFreight.js.
PS: The code contains
more functions than this
one, please copy the full
set of functions. We will
explain each one of the
functions in the coming
steps.

On the Details.controller.js
scroll and search for the
function
openFreightDialog. This
function opens a new
Dialog showing the freight
options returned by the
server side.

This function will use an
xml fragment to design the
freight options dialog.

Edit this function and
change the pointer to the
xmlfragment to match the
name of your namespace
and SAPUI5 application
(you can get this
information from the
beginning of your
Details.controller.js file. In
my case it is

 40

Explanation Screenshot

“sa.B1SL_SUMMIT_2018.
view.Dialog”.

Let’s add the Fragment
required to show the
Dialog.

Right click on view folder
and select New->File
menu.

Give the name
Dialog.fragment.xml to
the new file.

Press OK.

Download the
Dialog.fragment.xml file
from
https://github.com/B1SA/B
1_SCP_HandsOn/blob/ma
ster/snippets/Dialog.fragme
nt.xml.

Copy the code inside your
Dialog.fragment.xml file.

You can notice in that file
contains the controls of the
Dialog. Also, that file
contains 3 callback
functions will be called for
the events:

- search
- confirm
- cancel

We will implement those
functions in our
Details.controller.js file.

 41

Explanation Screenshot

Open the
Details.controller.js file.

The
handleFreightDialogSear
ch (code copied already
earlier) is called when the
user enters data to filter the
list of freight options. The
filter will be based on the
provider property.

The
handleFreightDialogConf
irm function is called when
the user selects one of the
freight options proposed by
the Dialog.
This function calls the
function UpdateSO to
update the Order via
Service Layer API.

The
handleFreightDialogClos
e function is called when
the user closes the Dialog
without selecting a freight
option. A MessageToast
will show to the user the
message “No Provider
selected.”

 42

Explanation Screenshot

The updateSO function
calls SAP Business One
Service Layer via the SAP
API Business Hub
sandbox.

We do an ajax call to the
destination
/apihub_sandbox/
automatically created when
we added the Data Source
pointing to the SAP API
Business Hub. Then we
specify the DocEntry of the
Order to be updated with a
PATCH request.

In case of success we
show a MessageToast
message “SL success”.

In case of error we show a
MessageToast message
“SL error”.

Test your application.

Filter the Orders table with
DocEntry higher than
1211.

Please follow directions
from instructors so you
only update a specific
Order DocEntry to avoid
conflicts between hands-on
participants.

 43

Explanation Screenshot

Check the Order DocTotal
before adding the freight
costs.

Select one of the providers.

 44

Explanation Screenshot

Check the Order DocTotal
amount is updated after
you select a freight
provider based on the
provider costs.

You will also see the
success message if the
update of the Order is
successful.

Congratulations! You have just implemented your first full stack loosely coupled SAP Business One
extension!

www.sap.com/contactsap

© 2018 SAP SE or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

The information contained herein may be changed without prior notice. Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP or its affiliated companies shall not be liable
for errors or omissions with respect to the materials. The only warranties for SAP or SAP affiliate company products and services are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality
mentioned therein. This document, or any related presentation, and SAP SE’s or its affiliated companies’ strategy and possible future developments, products, and/or platform directions and functionality are
all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation
to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are
cautioned not to place undue reliance on these forward-looking statements, and they should not be relied upon in making purchasing decisions.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other
countries. All other product and service names mentioned are the trademarks of their respective companies. See http://www.sap.com/corporate-en/legal/copyright/index.epx for additional trademark
information and notices.

