Workshop Monitoring with Prometheus
and Grafana

To walk through the steps in these handson instructions, you need an environment with
Prometheus, Grafana and Docker Engine. This document describes two approaches that both
require Virtual Box on your laptop:

1. Use the fully prepared Virtual Machine
Just import the.ova file into Virtual Box, run the machine and login with vagrant/vagrant
2. Create and run the environment ‘from scratch’ using Vagrant; then connect using ssh
You need to pick one of these two approaches.

Quick online handson

A third option is to run a Prometheus handson completely in the cloud, at
https://www.katacoda.com/courses/prometheus/getting-started (at Katacoda, a Prometheus
instance is spun up for you in the cloud and you can walk through the basic steps of scraping the
Node Exporter).

Use the fully prepared Virtual Machine

Download the Virtual Machine from this URL: One Drive - monitoring-with-prometheus-
workshop2018 VirtualBoxMachine.ova - or copy it from the USB drive handed to you by the
workshop instructor.

Run VirtualBox.

Open the File menu and select Import Appliance

W Oracle VM VirtualBox Manager

File Machine Help

J Preferences... Ctrl+G
{g) lmportAppIianceh Ctrl+l
£+ Export Appliance.. Ctrl+E
wF Virtual Media Manager... Ctrl+D
= Host Network Manager... Ctrl+W
DB Metwork Operations Manager...

j’j Check for Updates...

/Ay Reset All Warnings

N Exit Ctrl+Q

Browse for the ova file monitoring-with-prometheus-workshop2018_VirtualBoxMachine.ova

https://www.katacoda.com/courses/prometheus/getting-started
https://conclusionfutureit-my.sharepoint.com/:u:/g/personal/lucas_jellema_amis_nl/EZemyicogb9EqAnKbx7yWZABVjbvl4M4cb1vYVfUSABTag?e=TUUciW
https://conclusionfutureit-my.sharepoint.com/:u:/g/personal/lucas_jellema_amis_nl/EZemyicogb9EqAnKbx7yWZABVjbvl4M4cb1vYVfUSABTag?e=TUUciW

Import Virtual Appliance

Appliance to import

VirtualBox currently supports importing appliances saved in the Open
Virtualization Format (OVF). To continue, select the file to import below.

|ads\m0nitoring—with—prometheus—workshopZDlB_Vir‘tuaIBoxMachme.o\raH R

Expert Mode Cancel

And press Next.

You may want to edit the title or any of the other properties — although the current settings will do

nicely.

& Import Virtual Appliance

Appliance settings

These are the virtual machines contained in the appliance and the suggested
settings of the imported VirtualBox machines. You can change many of the
properties shown by double-dlicking on the items and disable others using
the check boxes below.

Virtual System 1

1 8vm_Prometheus_workshop||
5% Product Prometheus, Grafana, Dock...
=) Description Environment for Workshop ...
= Guest 0S Type Ubuntu (64-bit)
{# cru 2
& rRam 4096 MB
#° Sound Card [~1ICH ACOT v

[] Reinitialize the MAC address of all network cards

Restore Defaults Cancel

A

Appliance is not signed

Press Import to do import the appliance.

The appliance is imported. This will take a few minutes.

€ Import Virtual Appliance £ | ﬁ = gﬁg -

Machine Tools Global Tools

New Settings

~
I Appliance settings
These are the virtual machines contained in the appliance and the suggested
settings of the imported VirtualBox machines. You can change many of the
i'? Importing Appliance ..: Importing appliance 'C\Users\lucas_j\OneDrive - Conclusion\Downloads\monitori...
T
Importing virtual disk image 'monitoring-with-prometheus-workshop2018_VirtualBoxMachine-disko02.vmdk' ... (3/3)
1% X
2 minutes remaining
| ¥ CPU 2
B rRAM 4096 MB
¥ Sound Card ICH AC97 v
|:| Reinitialize the MAC address of all network cards
Appliance is not signed
\d

Restore Defaults Import Cancel

After the appliance is loaded, either double click on it or use the Start option context menu .

N# Oracle VM VirtualBox Manager — O X
File Machine Help
@@ VD Toe) P
3 o =)
'w} e Settings.. Ctrl+S | E Details & J M
MNew Settings Discard Start - < Machine Tools Global Tools
. ‘& Clone.. Ctrl+0O | |
== Preview
¥ Remove.. Ctrl+R —
Lavm_Prometheus_
&% Group Ctrl+U bp
Ly Start ' » Normal Start
Pause Ctrl+P ? Headless Start
- _ buntul8vm_Prometheus_workshop
Reset Ctrl+ &7 Detachable Start
Close kcal, Hard Disk |
I, Nested Paging,
Discard Saved State... Ctrl+) M Paravirtualization
_F| Show Log.. Ctrl+L
Refresh
i §MB
Show in Explorer lsabled
Create Shortcut on Desktop :Sab‘e‘j
T CONTronErT IE
Controller: SCSI |
SCSTPart: maonitarina-with-nrometheus-workshon?118 VirhualRaxMachine-disk0in? vmdk
P Donnramic Crrnllinn Cantiira N
When the VM is running,
Login as vagrant/vagrant
P ubuntutaw metheus_workshop [Running] - Oracke VM VirtualBox - o x

Documentation: https://help.ubuntu.com

Get cloud support with Ubuntu
http:// com/busin

ilable
and

at

ubuntu-bionic:

You can skip the next section and turn to the section titled First Run Prometheus.
Note:

You can start (multiple) programs in background using the
nohup <command> &

construction.

For example:

nohup ./prometheus &

To stop a background job, use

ps -ef | grep <string identifying the job>
to learn the process id of the job and then use

kiTll <job_id>

to stop the background job.

Create the environment from scratch

Note: in order to successfully complete these steps, you need to have both VirtualBox
(https://www.virtualbox.org/wiki/Downloads) and Vagrant
(https://www.vagrantup.com/downloads.html) installed on your laptop.

Clone GitHub Repo https://github.com/lucasjellema/monitoring-workshop-prometheus-grafana to
your laptop.

Create Virtual Machine using Vagrant
Open a command line (or terminal) window and navigate to the root directory of the cloned
repository. Then run:

vagrant plugin install vagrant-disksize

This installs a plugin for Vagrant that allows us to specify the disksize of the VMs produced by
Vagrant. Then execute:

vagrant up

This will create and run a Virtual Machine, accessible at IP address 192.168.188.112 and with Ubuntu
18 LTS (Bionic — see https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes for release notes) and
Docker Engine set up. This step will take several minutes.

Next, run:
vagrant ssh

This will connect you to the Virtual Machine, as user vagrant.

Download resources
First the Prometheus server. Execute this command:

wget
https://github.com/prometheus/prometheus/releases/download/v2.3.2/promethe
us-2.3.2.Tlinux-amd64.tar.qgz

to download the Prometheus server. Then extract the archive using:
tar -xzf prometheus-2.3.2.Tinux-amd64.tar.gz

Then download the alertmanager — a standalone component:

wget

https://github.com/prometheus/alertmanager/releases/download/v0.15.2/alert
manager-0.15.2.1inux-amd64.tar.gz

That also needs to be extracted:
tar xvfz alertmanager-0.15.2.Tinux-amd64.tar.gz

At this point, all required resources have been added to the Virtual Machine and you are ready to
proceed.

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://github.com/lucasjellema/monitoring-workshop-prometheus-grafana
https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes
https://github.com/prometheus/prometheus/releases/download/v2.3.2/prometheus-2.3.2.linux-amd64.tar.gz
https://github.com/prometheus/prometheus/releases/download/v2.3.2/prometheus-2.3.2.linux-amd64.tar.gz
https://github.com/prometheus/alertmanager/releases/download/v0.15.2/alertmanager-0.15.2.linux-amd64.tar.gz
https://github.com/prometheus/alertmanager/releases/download/v0.15.2/alertmanager-0.15.2.linux-amd64.tar.gz

First Run Prometheus

Prometheus is ready to run. It has a minimal configuration at this point — in the prometheus.yml file
in directory ~/prometheus-2.3.2.linux-amd64. This file has one scrape-config entry called
prometheus— one that instructs Prometheus to scrape itself — at port 9090. The application
Prometheus exposes metrics for monitoring purposes — to allow administrators to observe the
behaviour and health of the Prometheus platform. Prometheus — the same or a different instance -
can be used to gather and analyse these metrics.

Navigate to the home directory for Prometheus:

cd prometheus-2.3.2.Tinux-amd64/

And list the files

1s

You should see the prometheus.yml file. Use

cat prometheus.yml

to inspect the contents of the file. You should find the scrape config for prometheus itself.
Start Prometheus:

./prometheus

This will bring up the Prometheus server that will load and interpret the prometheus.yml
configuration file and start acting according to its contents. This means that Prometheus starts
scraping he metrics exposed by Prometheus itself.

Open a browser window on your laptop for the URL http://192.168.188.112:9090/targets . This will
show a page with all the scrape targets currently configured for this Prometheus instance. There will
be only one target shown — Prometheus itself.

The metrics th at Prometheus exposes can be inspected in their raw form at
http://192.168.188.112:9090/metrics . Here you will see the metrics that the developers of the
Prometheus platform have decided to expose in order to optimize the observability of their
platform.

A more pleasing presentation of these same metrics — after scraping and processing by Prometheus
— can be seen at http://192.168.188.112:9090/graph .

Check for example the metric prometheus_http_request_duration_seconds_count - the running
count for the number of measurements of the latency for HTTP requests.

http://192.168.188.112:9090/targets
http://192.168.188.112:9090/metrics
http://192.168.188.112:9090/graph

O Enable guery history

| prometheus_http_request_duration_seconds_coun{ |
v

Load time: 17ms
Resolution: 15
Total time series: 9

prometheus_http_request,

Graph =~ Console

Element Value
prometheus_http_request_duration_seconds_count{handler="/alerts",instance="localnost:9090" job="prometheus"} 14
prometheus_http_request_duration_seconds_count{handler="/graph” instance="localhost:9090" job="prometheus"} 7
prometheus_http_request_duration_seconds_count{handler="/label:name/values" instance="localhost:9090" job="prometheus"} 10
prometheus_http_request_duration_seconds_count{handler="/metrics".instance="localhost 9090" job="prometheus"} 1606
prometheus_hitp_request_duration_seconds_count{handler="/query" instance="localhost 090" job="prometheus"} 20
prometheus_http_request_duration_seconds_count{handler="/query_range" instance="localhost:9090" job="prometheus"} 70
prometheus_http_request_duration_seconds_count{handler="/rules" instance="localnost. 3090" job="prometheus"} 1
prometheus_http_request_duration_seconds_count{handler="/static/*filepath” instance="localhost 9090" job="prometheus"} 16
prometheus_http_request_duration_seconds_ceunt{handler="/targets" instance="localnost:9090" job="prometheus"} 1

Remove Graph

Add Graph

Toggle to the Graph tab to see the evolution over time for this metric — for each of the label
combinations. At this point, only the handler label has different values for this metric.

O Enable guery history

prometheus_http_request_duration_seconds_count
r

Load time: 16ms
Resolution: 145
Total time series” 9

m prometheus_http_request. ~

Graph Console

= 1h - « | Until » Res. (s)

You can toggle between stacked and unstacked presentation of the data.

Feel free to explore some of the other metrics published by Prometheus — although | fear most are
only meaningful to Prometheus experts.

At http://192.168.188.112:9090/config you can inspect the contents of the prometheus.yml
configuration file.

http://192.168.188.112:9090/config

Configuration

global:
scrape_interval: 15s
scrape_timeout: 1@s
evaluation_interval: 15s

alerting:
alertmanagers:

- static_configs:
- targets: []
scheme: http
timeout: 1@s
scrape_configs:

- job_name: prometheus
scrape_interval: 15s
scrape_timeout: 1@s
metrics_path: /metrics
scheme: http
static_configs:

- targets:
- localhost:90%0

At http://192.168.188.112:9090/status you will see details on this instance of Prometheus - exact
version, current runtime status etc.

Stop Prometheus for now — simply by typing CTRL+C in the command line window.

http://192.168.188.112:9090/status

Make Prometheus scrape Linux server metrics

It is of limited interest at this point to be looking with Prometheus at how Prometheus is doing.

More interesting is to monitor a more pressing component, say our Linux server. The Linux operating
system sits on any many status indicators and operational metrics — but does not expose them out of
the box in a format that Prometheus understands.

The Node Exporter is a component that acts as the adapter between the Linux operating system and
Prometheus. When the Node Exporter is running on a Linux system, it exposes an HTTP endpoint (by
default this will be /metrics on port 9100) where Prometheus can come to collect all available
metrics. It exposes machine-level metrics, largely from your operating system’s kernel, such as CPU,
memory, disk space, disk I/O, network bandwidth, and motherboard temperature.

Let’s monitor the Virtual Machine using Prometheus. First, let’s run Node Exporter in a Docker
container (in order to scrape metrics for the Linux system):

docker run -d -p 9100:9100 -v "/proc:/host/proc" -v "/sys:/host/sys" -v
"/:/rootfs" --net="host" --name=prometheus quay.io/prometheus/node-
exporter:v0.13.0 -collector.procfs /host/proc -collector.sysfs /host/sys
-collector.filesystem.ignored-mount-points
"A/(sys|proc|dev|host]|etc) ($]/)"

You can check with docker ps that the node_exporter container is indeed running in the
background.

In the browser on the laptop host machine, navigate to

http://192.168.188.112:9100/metrics

This is the endpoint at which the Prometheus Node exporter for Linux publishes its metrics — for
Prometheus to scrape. If we can see the raw metrics at this end point, we can now proceed to
configure our Prometheus instance to start scraping these metrics.

Return to the command line in the VM. Change directory to ~/prometheus-2.3.2.linux-amd64.
Edit the configuration file prometheus.yml. Add the following snippet under scrape-configs:
- job_name: linux-server-node
static_configs:
- targets:
- localhost:9100

This entry instructs Prometheus to start scraping metrics from the endpoint localhost:9100/metrics
— using the global time interval (since no specific interval is specified for this job). This endpoint — as
we have seen for ourselves — is the endpoint where the node_exporter publishes the Linux metrics
for the Linux host on which Prometheus is running.

Now start Prometheus Server

./prometheus

http://192.168.188.112:9100/metrics

In the browser on your laptop, navigate to http://192.168.188.112:9090/targets . You will see the
targets from which your Prometheus instance is scraping metrics. In addition to Prometheus target
that we saw before, we now also should see the linux-server-node.

Open the Graph tab — or navigate to http://192.168.188.112:9090/graph . Open the dropdown next
to the Execute button. You will now see a list of all the metrics currently available in the metrics
store of your Prometheus instance.

O Enable guery history

node_network_receive_by N

nodefnetstatﬁTcpExtﬁListe'ﬁbverﬂows -
Graph C{ node_netstat_TcpExt_SyncookiesFailed
node_netstat_TcpExt_SyncookiesRecv
Element node_netstat_TcpExt_SyncookiesSent
node_netstat_Tcp_ActiveOpens
node_netstat_Tcp_CurrEstab
node_netstat_Tcp_InErrs
node_netstat_Tcp_PassiveOpens
node_netstat_Tcp_RetransSegs
node_netstat_Udp6_InDatagrams
node_netstat_Udp6_InErrors
node_netstat_Udp6_NoPorts
node_netstat_Udp6_OutDatagrams
node_netstat_UdpLite6_InErrors
node_netstat_UdpLite_InErrors
node_netstat_Udp_InDatagrams
node_netstat_Udp_InErrors
node_netstat_Udp_NoPorts
node_netstat_Udp_OutDatagrams

node_network_receive_bytes total -

Select the metric called node_network_receive_bytes or node_network_receive_bytes_total and
press Execute.

This will list the total number bytes received over each of the network devices for the Linux server in
the VM.

http://192.168.188.112:9090/targets
http://192.168.188.112:9090/graph

O Enable query history

Load time: 12ms
Resolution: 3s
Total time series: 4

node_network_receive_bytes_total

node_network_receive_by v

Graph = Console

Element Value
node_network_receive_byles_total{device="dockerd".instance="localhost 9100" job="linux-server-node"} Q
node_network_receive_bytes_total{device="enp0s3".instance="localhost:9100" job="linux-server-node"} 185726
node_network_receive_bytes_total{device="enp0s&".instance="localhost:9100" job="linux-server-node"} 85960
node_network_receive_bytes_total{device="lo" instance="localhost:2100" job="linux-server-node"} 1575486

Remove Graph

Add Graph

Press Graph to get a graphical representation of these values and their evolution over time:

O Enatie query history

node_network_receive_bytes_total

B oerevonsconeny -

Graph = Console

= | 15m + “ nt » Res. (s O stackea

Sk Wed, 05 Sep 2018 16,0217 GMT
node_network_receive_bytes._total: 1244562

evice: Io
instance: lCalost 9100
Job inux-serves-nose

0" instance="loc:

Using wget to download some additional files should have an effect on this metric.
Feel free to inspect some of the other metrics available from the Linux system — such as

e node_cpu_seconds_total (a counter indicating how much time each CPU spent in each
mode)

e node_filesystem_size_bytes and node_filesystem_avail_bytes (gauges indicating the total
filesystem size and the available sizes).

e node_memory_MemFree_bytes - the amount of memory that isn’t used by anything

Quick intro to PromQL

In addition to inspecting and visualizing the values of metrics, the Prometheus Web Ul also allows us
to use PromQL — the Prometheus query language. This allows us to perform calculations with metrics
— resulting in more meaningful values than just the bare metrics themselves.

For example, enter the following PromQL expression in the input field
time() - node_boot_time_seconds

and press execute. The resulting value is how long the kernel has been up. The result of an
expression can both be presented in tabular format and as a graph.

Try this expression
rate(node_network_receive_bytes_total[1m])

It tells you about the bandwidth used up by each network device — by calculating the change rate in
the total number of bytes received. Do another wget operation to create some network traffic.

And :
avg without(cpu, mode) (rate(node_cpu_seconds_total{mode="1idle"}[1m]))

the proportion of idle time across all CPUs . This works as it calculates the idle time per second per
CPU and then averages that across all the CPUs in the machine.

If you want to know the proportion of idle time for each CPU, then remove cpu from the without
expression:

avg without(mode) (rate(node_cpu_seconds_total{mode="id1e"}[1m]))

See https://prometheus.io/docs/prometheus/latest/querying/basics/ for more details on PromQL
and the operators and functions at our disposal.

See https://prometheus.io/docs/guides/node-exporter/ for details on the Node Exporter and all
metrics it exposes.

MySQL Exporter

To give you a taste of what using Exporters for third party applications and platform components
looks like, we will now run a MySQL server instance in a Docker container, then attach a MySQL
Exporter for Prometheus to this instance and scrape the MySQL metrics in our Prometheus server.

On the command line in the VM, stop Prometheus. Then, to run the MySQL server instance, execute
this command:

docker run --name mysql-db -e MYSQL_ROOT_PASSWORD=my-secret -d mysql:8

Note: this will cause quite some network traffic - if you started with a fresh image using Vagrant—
which you can easily verify in the Prometheus Console later on by inspecting the metric
node_network_receive_bytes_total.

Note: you could connect to this MySQL instance using this command — but for the purpose
of these practice steps you do not have to:

docker run -it --Tink mysql-db:mysql --rm mysql sh -c 'exec mysql -
h" $MYSQL_PORT_3306_TCP_ADDR" -P"$MYSQL_PORT_3306_TCP_PORT" -uroot -
p"my-secret"'

and execute MySQL command line statements such as:

show databases;

Next, run the Prometheus Exporter for MySQL, in its own Docker container:
docker run --name mysqgl-exporter -d \

-p 9104:9104 \

--Tink mysql-db:mysql \

-e DATA_SOURCE_NAME="root:my-secret@(mysql:3306)/" \

prom/mysqld-exporter

To make the Prometheus server scrape the metrics from the MySQL Exporter, we have to add the
following entry to the prometheus.yml file:

- job_name: 'mysqgld'
static_configs:
- targets:
- TocaTlhost:9104

This instructs Prometheus to check the /metrics endpoint at port 9104 on the localhost — which is
mapped to port 9104 in the container running the MySQL Exporter.

Note: Prometheus can reload the configuration file while it continues to run; you have to send a
POST request to the /-/reload endpoint. Alternatively, when you restart Prometheus it will of course
also pick up the changes in the prometheus.yml file.

After restarting the Prometheus server, you will find that MySQL has been added as a target:

Targets

Al Unhealthy

linux-server-node (1/1 up) EXNEY

Endpoint State

http://localhost:9100/metrics up

Labels

instance="localhost:9100™

Last Scrape

9.218s ago

mysqld (1/1 up)

Endpoint State

http://localhost:9104/metrics upP

Labels

instance="localhost:9104™

Last Scrape

8.383s ago

nodejs-example-application (1/1 up) EXN=Y
Endpoint State

hitp://127.0.0.1:3001/metrics upP

prometheus (1/1 up)

Endpoint State

http://localhost:9090/metrics UP

And that now MySQL Metrics are available in the Prometheus Ul.

Labels

instance="127.0.0.1:3001"

Labels

instance="localhost:9090"

O Enable query history

mysgl

mysql_exporter_collector_duration_seconds

mysql_exporter_last_scrape_error
mysql_exporter_scrapes_total
mysql_global_status_aborted_clients
mysql_global_status_aborted_connects
mysql_global_status_acl_cache_items_count
mysql_global_status_binlog_cache_disk_use
mysql_global_status_binlog_cache_use
mysql_global_status_binlog_stmt_cache_disk_use
mysql_global_status_binlog_stmt_cache_use
mysql_global_status_buffer_pool_page_changes_total
mysql_global_status_buffer_pool_pages
mysql_global_status_bytes_received
mysql_global_status_bytes_sent
mysql_global_status_commands_total
mysql_global_status_connection_errors_total
mysql_global_status_connections
mysql_global_status_created_tmp_disk_tables
mysql_global_status_created_tmp_files
mysql_global_status_created_tmp_tables
mysql_global_status_delayed_errors

mysql_global_status_delayed_insert_threads

Check for example the number of connections:

Last Scrape

1.92s ago

Last Scrape

4.821s ago

Error

Error

Error

Error

alus_connections

@ - insert metric af cursor -

Graph ~ Console

It seems that all these connections are created for the MySQL exporter itself. Some tuning may be in
order.

On the command line in the VM, stop the Docker container with the MySQL Exporter.
docker stop mysql-exporter
Now check on the targets page in the Prometheus Ul:

Targets

Al Unhealthy

linux-server-node (1/1 up) ey

Endpoint State Labels Last Scrape Error

http:/flocalhost:8100/metrics uP 50585 ago

mysqld (0/1 up) T

Endpoint State Labels Last Scrape Error

http://localhost:9104/metrics DOWN 4.212s ago Get http:/flocalhost:9104/metrics: dial tep 127.0.0.1:9104: connect: co

nnection refused

nodejs-example-application (1/1 up) [

Endpoint State Labels Last Scrape Error
hitpi/127.0.0.1:300imetics wp 2751 ago

prometheus (1/1 up)
Endpoint State Labels Last Scrape Error

hitp:ilocalnost:9090metrics up 654ms ago

It should be obvious that the MySQL target is no longer available.

When you check under Alerts, you will find no alerts — because none have been configured yet.

Application Specific metrics from a NodelJS application

Prometheus can be used to monitor any metric — produced by any type of component.
Infrastructure components — such as Linux servers — and platform components such as Databases
and Messaging Systems — are commonly monitored. Even more important is monitoring business
applications for the aspects that really matter to end users. For that to happen, metrics that are
indicative of those aspects should be exposed by the business applications.

Developers creating business applications should make sure that meaningful, functional metrics are
exposed by their application. Generic exporters generally not be able to extract metrics that
translate directly into meaningful business indicators. Prometheus Client Libraries are available for
all prominent programming languages. Using such libraries, it becomes straightforward to add
metric exposing capabilities to an application. Note: defining what those metrics should be is still the
responsibility of the DevOps team.

We will now take a look at a simple Node JS application that has been instrumented: it exposes
application specific metrics that are deemed relevant for observing application behaviour.
Additionally, the client libraries expose generic metrics for their specific runtime technology stack.

First you need to install Node JS —if it is not already set up in your VM (you can check this by
executing “node --version"). To install Node JS, execute

sudo apt install nodejs

Answer yes when asked ‘Do you want to continue?’ during the package installation.
Do the same for NPM:

sudo apt install npm

Note: this will take considerable time, probably several minutes.

If you now execute

node --version

you should get the version label for he the installed version of the Node JS runtime.
And with

npm --version

you should get the version label for he the installed version of the NPM runtime.

From the command line, navigate to the user’s home directory.

cd ~

Then clone a GitHub repo:

git clone https://github.com/Tucasjellema/example-prometheus-nodejs
This will copy the sources of an instrumented NodelS application to the VM.

Navigate into the directory example-prometheus-nodejs and execute

npm install

to install the library dependencies for this application.

Inspect the source code of the Node application at this URL:
https://github.com/lucasjellema/example-prometheus-nodejs/blob/master/src/server.js . You will
see how the /metrics endpoint is exposed and how GET requests are handled by
Prometheus.register.metrics(). This generic function returns the proper Prometheus format — and
injects all generic NodelS metrics as well as all application specific metrics: checkoutsTotal and
httpRequestDurationMicroseconds.

Run the NodelS application using
nohup npm start &

You can now access the NodelS application at http://192.168.188.112:3001/ and invoke its most
special functionality at: http://192.168.188.112:3001/checkout . This resource will return a
payment_method; a Prometheus counter metric keeps track of the number of instances for each
payment_method.

Note: a query parameter payment_method can be added to the URL request — to force a specific
payment_method, like this:

http://192.168.188.112:3001/checkout?payment method=cash

Every payment_method you introduce will result in additional metric values — for the
payment_method label value.

The Prometheus metrics exposed by the application —through the use of the NodelS Client Library -
can be read at: http://192.168.188.112:3001/metrics. The custom — application specific — metrics
can be found at the bottom of the document. See documentation on prom-client -
https://www.npmjs.com/package/prom-client - for details on the standard metrics.

In order to make Prometheus scrape the metrics from the NodelS example application, you should
add another scrape-job in the prometheus.yml file:

- job_name: nodejs-example-application
scrape_interval: 5s
static_configs:
- targets:

- 127.0.0.1:3001

Restart the Prometheus server — or: have the configuration file reloaded by sending a HTTP POST to
the /-/reload endpoint:

curl -X POST http://Tocalhost:9090/-/reload
Note: this reload action is only allowed if the Prometheus server has been started with this flag:
--web.enable-11ifecycle

Verify if the NodelS Example application is now added as a target :
http://192.168.188.112:9090/targets

https://github.com/lucasjellema/example-prometheus-nodejs/blob/master/src/server.js
http://192.168.188.112:3001/
http://192.168.188.112:3001/checkout
http://192.168.188.112:3001/checkout?payment_method=cash
http://192.168.188.112:3001/metrics
http://192.168.188.112:9090/targets

Prometheus

Targets

Al Unhealthy

linux-server-node (1/1 up) EE=Y

Endpoint State Labels Last Scrape Error
http:/flocalhost:9100/metrics up 7.381s ago

nodejs-example-application (1/1 up)

Endpoint State Labels Last Scrape Error
http://127.0.0.1:3001/metrics UP 73ms ago

prometheus (1/1 up)

Endpoint State Labels Last Scrape Error
http://localhost:9090/metrics uP 2.976s ago

Go to the graph tab. Type check in the input field. The auto suggest option should now list
checkouts_total as a metric available for inspection. This is one of the two custom metrics defined in
the NodelS application, through the Prometheus Client Application for NodelS .

O Enable guery history

check

checkouts_total

prometheus_tsdb_compaction_chunk_range bucket

prometheus_tsdb_compaction_chunk_samples_bucket

prometheus_tsdb_compaction_chunk_size_bucket

no data

Add Graph

Select checkouts_total and press the Execute button:

O Enable query history

Load time: 11ms
checkouts_total Resolution: 14s

Total time series: 2
m - insert metric at cursor - v

Graph Console

Element Value
checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application" payment_method="paypal"} 4
checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application" payment_method="stripe"} 5

Remove Graph

Add Graph

Make a few more calls to http://192.168.188.112:3001/checkout .

Press Execute again in the Graph tab of the Prometheus console. The values for the checkout_totals
metric for each of the payment_method dimension values are probably updated.

Switch to the Graph tab to a visual representation of the metric over time:

O Enable query history

checkouts total

Execute - insert metric at cursor - v

Graph Console

- 15m + “ Until » Res. (s) O stacked

Wed, 05 Sep 2018 17:06:44 GMT

checkouts_total- 9 | |
instance: 127.0.0.1:3001

job: nodejs-example-application
]paymentfmemug! sln%%

B checkouts_totalfinstance 7.0.0.1:3001" job="nodejs-example-application", payment_method="stripe"}

http://192.168.188.112:3001/checkout

Another custom metric defined by the Node JS Example application is http_request_duration_ms.
This metric is available as bucket, count and sum

Prometheus

O Enable guery history
http_request_duration_ms

http_request_duration_ms_bucket
http_request_duration_ms_count

http_request_duration_ms_sum

Select the http_request_duration_ms_bucket entry and press Execute. On the Console tab, you will
get an overview for each of the predefined buckets (each one specifying a certain duration in
microseconds of handling the request) how many requests were in that bucket (or in a lower one). In
the example, 16 requests were handled within 0.1 milisecond and 27 were handled within 5 ms.

O Enable query history

Load time: 9ms
Resolution: 145
Total time series: 10

hitp_request_duration_ms_bucket

@ | http_request_duration_ms

Graph ~ Console

Element Value
hitp_request_duration_ms_bucket{code="304".instance="127.0.0.1:3001" job="nodejs-example-application" le="+Inf". method="GET", route="/checkout"} 28
hitp_request_duration_ms_bucket{code="304",instance="127.0.0.1:3001" job="nodejs-example-application"le="0.1" method="GET" route="/checkout"} 16
hitp_request_duration_ms_bucket{code="304" instance="127.0.0.1:3001" job="nodejs-example-application" le="100".method="GET" route="/checkout"} 28
hitp_request_duration_ms_bucket{code="304".instance="127.0.0.1:3001" job="nodejs-example-application" le="15" method="GET" route="/checkout"} 28
hitp_request_duration_ms_bucket{code="304",instance="127.0.0.1:3001" job="nodejs-example-application" le="200", method="GET" route="/checkoLt"} 28
hitp_request_duration_ms_bucket{code="304".instance="127.0.0.1:3001" job="nodejs-example-application" le="300".method="GET" route="/checkout"} 28
hitp_request_duration_ms_bucket{code="304".instance="127.0.0.1:3001" job="node|s-example-application" le="400". method="GET" route="/checkout"} 28
hitp_request_duration_ms_bucket{code="304" instance="127.0.0.1:3001" job="nodejs-example-application” le="5" method="GET" route="/checkout"} 27
hitp_request_duration_ms_bucket{code="304".instance="127.0.0.1:3001" job="nodejs-example-application" le="50" method="GET" route="/checkout"} 28

hitp_request_duration_ms_bucket{code="304",instance="127.0.0.1:3001" job="node|s-example-application" le="300",method="GET" route="/checkout"} 28
Remove Graph

Add Graph

Note: the value for this Histogram metric is set in the server.js file in lines 63 through 71.

cAdvisor — The Docker Container Exporter

In the same way the Node exporter provides metrics about the machine, cAdvisor is an exporter that
provides metrics about cgroups. CGroups are a Linux kernel isolation feature that are usually used to
implement containers on Linux. cAdvisor (short for container Advisor) analyzes and exposes
resource usage and performance data from running containers. cAdvisor exposes Prometheus
metrics out of the box.

cAdvisor itself can easily be run as a Docker container. Use the following statement to run a Docker
container with cAdvisor inside it; this cAdvisor instance will start observing the Docker Engine it is
running in and it will publish metrics for Prometheus to scrape:

docker run \

—-—volume=/:/rootfs:ro \

——volume=/var/run:/var/run:rw \

--volume=/sys:/sys:ro \

——volume=/var/lib/docker/:/var/lib/docker:ro \

——volume=/dev/disk/:/dev/disk:ro \

—-publish=8080:8080 \

--detach=true \

—-—name=cadvisor \

google/cadvisor:v0.28.3

Once the container is running, you can see the metrics produced by cAdvisor at
http://192.168.188.112:8080/metrics. (check http://192.168.188.112:8080/containers for the
normal Ul for cAdvisor).

192.168.188.112:80: ontainers/docker/044cfe570d3b56f2015d54cabae569f4e5eal 7de8337974303e8230e36dbi360

User PID PPID Start Time CPU% = MEM% RSS Virtual Size Status Running Time Command
root 8,046 2,023 12:2 6 30 B 346 i cadviso

2:24 3.60 1.3 MiB Sssl1 bl cadviso L3

B 35.84 MiB

ps

Cores
o
3

2:27:15PM 2:27:30 PM 2:27:45PM 2:28:00 PM 2:28:15PM 2:28:30 PM
—— Total

Usage per Core

In order for Prometheus to scrape the metrics from cAdvisor, we have to add cAdvisor as target in
the prometheus.yml file.

http://192.168.188.112:8080/metrics
http://192.168.188.112:8080/containers

Open prometheus.yml in an editor and add this snippet:
- job_name: 'cadvisor_ubl8_vm'
scrape_interval: 5s
static_configs:
- targets:
- 127.0.0.1:8080

Save the changes. Restart Prometheus.

Now check the list of targets. The cAdvisor should be added:

Targets

Al Unhealthy

cadvisor_ub18_vm (1/1 up) EENY

Endpoint State Labels Last Scrape Error

hitp://127.0.0.1:8080/metrics UP instance="127.0.0.1:8080" 2.322s ago

The metrics from cAdvisor are prefixed with container_. All container specific metrics have labels id
and name — referring to the unique identifier and name of the Docker container.

In the Graph tab of the Prometheus web ui, start by exploring
the container_start_time_seconds metric, which records the start time of containers (in seconds).

The table below lists some other example expressions

Expression Description

rate(container_cpu_usage_seconds_total{name="grafana"}[1m]) The cgroup's CPU usage in
the last minute (split up by
core)

container_memory_usage_bytes{name="mysql-db"} The cgroup's total memory
usage (in bytes)

rate(container_network_transmit_bytes_total[1m]) Bytes transmitted over the
network by the container per
second in the last minute

http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_cpu_usage_seconds_total%7Bname%3D%22redis%22%7D%5B1m%5D)&g0.tab=1
https://en.wikipedia.org/wiki/Cgroups
http://localhost:9090/graph?g0.range_input=1h&g0.expr=container_memory_usage_bytes%7Bname%3D%22redis%22%7D&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_network_transmit_bytes_total%5B1m%5D)&g0.tab=1

Expression Description

rate(container_network_receive_bytes_total[1m]) Bytes received over the
network by the container per
second in the last minute

Resource: documentation on cadvisor - https://prometheus.io/docs/guides/cadvisor/ .

http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_network_receive_bytes_total%5B1m%5D)&g0.tab=1
https://prometheus.io/docs/guides/cadvisor/

Observing the Unobservable - the BlackBox Exporter

Mostly, metrics are exported from within or at least very close the system that is to be monitored.
Metrics are exported by an application itself or exporters are running on the same system to tap into
the observed component.

This is however not always the case. Sometimes we cannot get into the application or even close to
it. Or sometimes we do not want to observe from within the system but rather from much farther
away, just like a business user would.

The BlackBox Exporter can be used in general — and therefore also in these two cases —to perform
ICMP, TCP, HTTP, and DNS probing. The results of this probing are exported as regular Prometheus
metrics.

In order to try out the Black Box Exporter, you can run the Docker Container Image:

docker run -d -p 9115:9115 --name blackbox_exporter -v “pwd’:/config
prom/blackbox-exporter

You can access the Ul for the Black Box Exporterat: http://192.168.188.112:9115/.

Try out the probing mechanism of the Black Box Exporter —and the Prometheus metrics format it
returns — by entering a URL like this one in your browser:

http://192.168.188.112:9115/probe?target=github.com&module=http 2xx

Make a deliberate mistake in the url —for example:
http://192.168.188.112:9115/probe?target=github.comx&module=http 2xx — and see how the
metrics change.

Black Box Exporter can be configured with all the endpoints it should watch and check the health of.
This can be done from a scrape-config in the prometheus.yml file. Edit the file and add this snippet:

- job_name: blackbox
metrics_path: /probe
params:

module: [http_2xx]
static_configs:

- targets:

http://www.prometheus.io

http://github.com

https://hub.docker.com

http://my.own.domain

relabel_configs:

- source_labels: [__address__]
target_label: __param_target

- source_labels: [__param_target]

http://192.168.188.112:9115/
http://192.168.188.112:9115/probe?target=github.com&module=http_2xx
http://192.168.188.112:9115/probe?target=github.comx&module=http_2xx

target_label: instance
- target_label: __address__
replacement: 127.0.0.1:9115

Save changes. Then restart Prometheus.

Check the Prometheus targets:

Targets

Al Unhealthy
blackbox (3/4 up) TS
Endpoint State Labels Last Scrape Error
http://127.0.0.1:9115/probe UP 6.615s ago
http://127.0.0.1:9115/probe UNKNOWN Never
http://127.0.0.1:9115/probe uprP instance="http:/fwww_ prometheus.io™ 4.726s ago
http://127.0.0.1:9115/probe uP 3.436s ago

module="http_2xx" | target="https:/hub.docker.com"

One target is added — blackbox — with four endpoints. After a little while, three are probably,
hopefully up. The last one will probably be up eventually — although the UP-ness of the
my.own.domain probe only indicates that the probe is up (the Black Box Exporter) — but not that the
endpoint my.own.domain could be reached.

The blackbox exporter produced metrics with the prefix probe_. Check in the Graph tab for these
metrics:

O Enable guery history

probe. |

probe_dns_lookup_time_seconds

probe_duration_seconds
probe_failed_due to_regex
probe_http_content_length
probe_http_duration_seconds
probe_http_redirects
probe_http_ssl
probe_http_status_code
probe_http_version
probe_ip_protacol
probe_ss|_earliest_cert_expiry

probe_success

And inspect for example the metric probe_http_duration_seconds.

Resource: details on the Black Box exporter:
https://github.com/prometheus/blackbox exporter/blob/master/README.md .

https://github.com/prometheus/blackbox_exporter/blob/master/README.md

Alerts

There are two parts to alerting. First, adding alerting rules to Prometheus, defining the logic of what
constitutes an alert. Secondly, configuring the Alertmanager to convert firing alerts into
notifications, such as emails, pages, and chat messages.

Prometheus

Prometheus Alerts » Alertmanager Notlﬁcatlons> Email, PagerDuty,
Chat, etc.

Prometheus

Configure Alert Rules on Prometheus
Alert Rules can be configured in yml files that are referenced from prometheus.yml. In the home
directory for Prometheus, create a new file called rules.yml:

cd ~ /prometheus-2.3.2.1inux-amd64
vi rules.yml
and enter the following content into this new file:
groups:
- name: target_rules
rules:
- alert: InstanceDown
expr: up ==
for: 1m
Save the change.

This configures an alert called InstanceDown that should fire if the metric up — which for each scrape
job indicates of the corresponding target is available — equals 0 and does so for at least 1 minute.
This condition is true if the target is not available.

Stop Prometheus if it is running.
Edit prometheus.yml:

vi prometheus.yml

and type

- "rules.yml"

under “rule_files:” . Save the change.
Start Prometheus again.

If you now check under Alerts in the Prometheus console, you should find one alert active — because
the MySQL target can still not be scraped:

Prometheus Alerts

Alerts

O Show annotations

InstanceDown (1 active)

alert: InstanceDown

expr: up == 0

for: 1m
Labels State Active Since Value
instance="localhost:9104" FIRING 2018-09-05 18:05:39.456891295 +0000 UTC 0

The InstanceDown alert — which is automatically configured — is firing because one of the target
instances has been down for at least one minute.

No notification is sent and no automatic remediation is performed. This alert will continue to fire
until the MySQL Exporter is back on line — or the Prometheus configuration has been changed.

Define a Business Alert Rule

Alerts can be defined on any metric — to watch out for technical conditions, related to infrastructure
and platform errors, or to guard business conditions. We will look at a more functional, business
oriented alert now — although the example is somewhat farfetched.

Define the following entry in the rules.yml file under the groups entry:
- name: my_custom_rules
rules:
- alert: CheckOutsOdd
expr: checkouts_total{job="nodejs-example-application"} % 2 ==

Here we specify that an alert should be fired if the checkouts _total metric — exposed by the example
Node JS application - has an odd (not even) value.

After saving this change to rule.yml, restart the Prometheus server. Check in the Status | Rules page
if the new custom rule is loaded correctly.

Prometheus Status ~

Runtime & Build Information

RU |eS Command-Line Flags

Configuration

example e
p Targets

Service Discovery
Rule

alert: InstanceDown
expr: up ==
for: im

my_custom_rules

Rule

alert: Checkoutsodd
expr: checkouﬁ_total[job:"nodejs—example—application"}
%2 ==1

Now you can check the current values for the checkouts_total metric (note: there is one value for
each payment type) in the Prometheus Ul:

O Enable query history

Load time: 23ms
Resolution: 14s
Total time series: 2

checkouts_total

Execute - insert metric at cursor - v

Graph =~ Console

Element Value
checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application”, payment_method="paypal"} 32
checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application”,payment_method="stripe"} 34

Remove Graph

Add Graph

In the Alerts tab, you can check if the CheckOutsOdd alert is firing:

Prometheus Alerts Graph

Alerts

O Show annotations
InstanceDown (1 active)

CheckOutsOdd (0 active)

alert: CheckOutsOdd
expr: checkouts total{job="nodejs-example-application"}
2 ==1

If it is not firing, make one or two requests to http://192.168.188.112:3001/checkout . Before too
long, the alert will fire — or will stop firing.

Prometheus Alerts

Alerts

O Show annotations
InstanceDown (1 active)

CheckOutsOdd (0 active)

alert: CheckOutsOdd
expr: checkolts_total{joE“rocej s-example-application™}
%2 ==1

Note: The expression used in the rules.yml entry can also be tested in PromQL field in the web ui, ,
simply by clicking on the expression in the alert rule:

http://192.168.188.112:3001/checkout

Prometheus

QO Enable query history

Load time: 6ms
Resolution: 145
Total time series: 1

checkouts_total{job="nodejs-example-application"} % 2 == 1|

m - insert metric at cursor - v

Graph ~ Console

Element Value

{instance="127.0.0.1:3001" job="nodejs-example-application”,payment_method="stripe"} 1

Remove Graph

Optional: Add Annotations to Alerts

The Alert definition in the rules file can be further enhanced with labels and annotations. Labels can
be used later on for routing alerts and annotations provided human-oriented context for an alert.
Labels are for example used to indicate the severity of an alert, its business domain or to suggest the
team or specialism required to investigate.

Edit the rules.yml file and extend the alert node with:
Tabels:
severity: purple

service: finance

Annotations provide context that are available to human staff. They consist of a combination of
static text and dynamically evaluated expressions. The expression Svalue can be used to include the
value of the alert expression in an annotation and the expression Slabels returns an map with the
labels from which an individual label can be retrieved like this: {{Slabels.job}}.

Specify annotations for the CheckOutsOdd alert like this:
annotations:

descriptions: 'The number of checkouts is odd for payment method
{{$1abels.payment_method}} . This has been recognized as a business oddity
that deserves notification'

summary: 'Odd number of Checkouts for payment method
{{$1abels.payment_method}}'

Restart Prometheus.

When the alert conditions are satisfied, you will find the values for the newly defined labels as well
as the annotation in the Alert page of the Prometheus console:

Alerts

O show annotations

CheckOutsQdd (2 active)

alert: CheckOutsOdd

expr: checkouts_total{job="nodejs-example-application"}
%2 ==1

labels:
service: finance
severity: purple

nnotations:

descriptions: The number of checkouts is odd for payment method {{$labels.payment_method}}

. This has been recognized as a business oddity that deserves notification

summary: Odd number of Checkouts for payment method {{$labels.payment method}}

Labels State

i el splstot FRING
alertname="CheckOutsOdd" | instance="127.0.0.1:3001" | job="nodejs-example-application” | payment_method="stripe" severity="purple” FIRING

payment_method="paypal”

service="finance™

InstanceDown (1 active)

In a little while, you will see the actual values of the annotations in the Alertmanager — with the
expressions resolved.

Documentation: see https://prometheus.io/docs/prometheus/latest/configuration/alerting rules/
and https://petargitnik.github.io/blog/2018/01/04/how-to-write-rules-for-prometheus

Turning Alerts into Notifications

The alert manager keeps track of all firing alerts from one or even multiple Prometheus instances.
Based on rules setup in the file alertmanager.yml in directory ~/alertmanager-0.15.2.linux-amd64, it
decides if notifications should be sent and if so where to. Channels for sending notifications include
email, PagerDuty, HipChat, Slack, WeChat and Web Hook.

Note: The alert manager should already be installed in your environment. Either it was set up in the
prepared VM — or you installed it yourself just after starting up the VM through downloading and
unpacking the tar-file.

In this section, we will use a Slack channel as our notification target. We will configure the
alertmanager to send notifications to a selected channel in a Slack Workspace. We will leverage the
‘Incoming WebHooks’ app in Slack — that takes the HTTP request from the Alert Manager and
interprets it as a Slack message.

Prepare Slack Workspace
You can either create and/or configure your own Slack Worksapce or make use of a predefined one.

Your own Slack Workspace
Create your own new Slack Workspace — through https://slack.com/create .

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://petargitnik.github.io/blog/2018/01/04/how-to-write-rules-for-prometheus
https://slack.com/create

Follow the instructions to create and log in to your own new workspace.

Create the channel into which Alert notifications should be sent — this can also be the general
channel.

When done, add the “Incoming WebHooks App” from App Directory to your workspace.

Browse Apps View App Directory

Q inco o

Incoming WebHooks
I
Idncone P
Slack®* 52 77 F#A~ 27 LkinconeD{| WA TEET
Cincopa
il
() iy Install
n MisheardGIF T
Mishears /gif commands and ponds with hilariously incorrect GIF

- Ca"”’?g‘;) Install

out incoming cal

< Browse Apps
Incoming WebHooks
App Info Settings

Incoming Webhooks are a simple way to post messages from external sources into Slack. They make use of
normal HTTP requests with a JSON payload, which includes the message and a few other optional details
described later.

Message Attachments can also be used in Incoming Webhooks to display richly-formatted messages that

stand out from regular chat messages.
Add Congguration

App Homepage

App help
Terms

Categories:

Report this app to Slack for

inannranriate Fanfant Ar hahaviar

Configure the Incoming WebHooks app for the specific channel:

App Directory Q Search App Directory Browse Manage Build ’

Message Attachments can also be used in Incoming Webhooks to display richly-formatted messages that stand out from regular chat

messages.

/N New to Slack integrations?
Check out our Getting Started guide to familiarize yourself with the most common types of integrations, and tips to keep in
mind while building your own. You can also register as a developer to let us know what you're working on, and to receive future

updates to our APls.

Post to Channel

Start by choosing a channel where | #prom-notifications .
your Incoming Webhook will post L

messages to. or create a new channel

Add Incoming WebHooks integratikon

By creating an incoming webhook, you agree to the Slack API Terms of Service.

And click on ‘Add Incoming WebHooks integration’.

Get the WebHook URL

pp Directory Q Search App Directory Browse Manage

Browse Apps > Custom Integrations > Incoming WebHooks > Edit configuration

é‘}g Incoming WebHooks Bimufle O (i

Added by Lucas Jellema on September 5th, 2018

Incoming Webhooks are a simple way to post messages from external sources into Slack. They make use of normal HTTP requests with a
JSON payload, which includes the message and a few other optional details described later.
Message Attachments can also be used in Incoming Webhooks to display richly-formatted messages that stand out from regular chat

messages.

/N New to Slack integrations?
Check out our Getting Started guide to familiarize yourself with the most common types of integrations, and tips to keep in mind
while building your own. You can also register as a developer to let us know what you're working on, and to receive future updates

to our APls.

Setup Instructions

We'll guide you through the steps necessary to configure an Incoming Webhook so you can start sending data to Slack.

close

Webhook URL https: //hooks .slack.com/services/TCN213DQV/BCMPEER2P/g1iJQLhLLNdbxweLxydx0A]

We will configure this URL in the alert manager’s configuration.

Leverage a Predefined Workspace
Open this URL in your browser: https://amis-prometheus.slack.com . Sign in with credentials
lucasjellema@gmail.com and password 123321.

https://amis-prometheus.slack.com/
mailto:lucasjellema@gmail.com

Click on Apps in the lower left hand corner.

PrometheusMo... - /i #general
¥ 22 %0 Com

All Threa

els

general

nith

le

Browse apps

general

You created this c

Apl;g

Click on View for the incoming-webhook app:

BI’OWSE Ap ps View App Directory

[Q Eearch by name or category (e.g. productivity, sales)

Add apps to get things done
Schedule meetings, share docs, and more — straight from Slack. See app suggestions

.@t

In your workspace (1)

@1 incoming-webhook View
Click on Settings for the app to inspect the details:

About this Incoming Webhook X

incoming-webhook e

Settings

About this Incoming Webhook
Created by @Lucas Jellema on September 5, 2018.

And when the app details are shown:

. App Directory Q, Search App Directory B e Manage Bui Prometheu... »
g

Apj

ps > Custom Integrations > Incoming WebHooks

Browse
(}.S;) Incoming WebHooks Disable = Remove

Added by Lucas Jellema on September 5th, 2018

Incoming Webhooks are a simple way to post messages from external sources into Slack. They make use of normal HTTP requests with a
JSON payload, which includes the message and a few other optional details described later.

Message Attachments can also be used in Incoming Webhooks to display richly-formatted messages that stand out from regular chat
messages.

Scroll down to locate the webhook url:

Webhook URL

Send your JSON payloads to this URL. https://hooks.slack.com/services/ TCN213DQV/BCMPEER2P/gJiJQLhLLNdbxwe)
Show setup instructions

CU%U RL # Regenerate

And copy this URL. You need it to configure the (Prometheus) Alert Manager.

Configure Alert Manager to Send Notifications to Slack
Navigate to directory ~/alertmanager-0.15.2.linux-amd64/:

cd ~/alertmanager-0.15.2.Tinux-amd64/
Configure alertmanager.yml
Add this entry under the receivers node, just after web.hook:
- name: slack_alerts

slack_configs:

- api_url: <the WebHook URL for STack>

channel: '#prom-notifications'

Change the value of the receiver property under the route root node from ‘web.hook’ to
‘slack_alerts’:

route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h

receiver: 'slack_alerts'

Start Alertmanager

nohup ./alertmanager &

The Alert Manager also has a Web Ul, which is available at: http://192.168.188.112:9093 .

Test — have an alert raised directly, not from Prometheus:

curl -d "[{"T1abels": {"alertname": "MySpecialAlertTest"}}]"'
http://Tocalhost:9093/api/vl/alerts

Alertmanager Alerts Silences Status

Filter Group Receiver: All Silenced Inhibited

Custom matcher, e.g. env="production"

alertname="MySpecialAlertTest"
12:01:27, 2018-09-08

And in Slack:

= Slack - PrometheusMonitoring

PrometheusMo... #prom-notifications
Lucas Jellema W &1 %0 | & Adda topic

All Threads

Channels # prom-notifications
general

e ——— You created this channel on September 5th. This is the very beginning of the # prom-notificatii

random + Addanapp 2 Invite others to this channel

Direct Messages Today

slackbot
tAJ AlertManager APP 2:00 PM

| [FIRING:1] MySpecialAlertTest
K

Configure Prometheus to Forward Alerts to Alert Manager
Now let’s try to get the alerts identified by Prometheus into the Alert Manager.

Invite People

Edit prometheus.yml. Configure the locally active Alert Manager in the alerting node by specifying
the end point 127.0.0.1:9093 as target;

http://192.168.188.112:9093/
http://localhost:9093/api/v1/alerts

alerting:
alertmanagers:
- static_configs:
- targets:
- 127.0.0.1:9093

Save the changes and restart Prometheus.

The Alerts that are visible on the Alerts tab in the Prometheus Console

Alerts

O Shaw annatasons

CheckQutsOdd (1 active)

Labels State Active Since Value
Lovanieckonsoss Drmurcemaras tnor T ross o sasor prment mevor-wive FIRING 20160608 123842 177622548 40000 TG 1
InstanceDown (1 active)
Labels State Active Since Value
i

FIRING 2018-08-08 12:38:50.782333327 +0000 UTC

are now also visible in the Web Ul of the Alert Manager:

AIertmanager Alerts Silences Status

Filter Group

Receiver: slack_alerts Silenced

Custom matcher, e.g. env="production"

alertname="CheckOutsOdd"

12:32:42, 2018-09-08

payment_method="stripe" Jjob="nodejs-example-application” instance="127.0.0.1:3001"
alertname="InstanceDown"

12:31:50, 2018-09-08

job="mysqld" instance="localhost:9104"

Inhibited

These alerts are sent as notification to the Slack channel, as per the configuration you have just

created in the alertmanager.yml file:

(O AN #prom-notifications

Lucas Jellema W 21| R0 | & Addatopic
TOU LICALEU LIS CHANTIED N SEPLETUET DU TTHS 1S LI VETY DEZHITNINE Ol LHE +# Pron-nouincauy
All Threads + Addanapp & Invite others to this channel
Channels
e Today
general
prom-notifications tﬂj AlertManager APP 2:00 PM

random
l [FIRING:1] MySpecialAlertTest
(‘J AlertManager APP 2:31pPM

Direct Messages

slackbot

I [FIRING:1] InstanceDown (localhost:9104 mysqld)
I [FIRING:1] CheckOutsOdd (127.0.0.1:3001 nodejs-example-application stripe)

Optional: Create Pretty Notification Messages using Templates

The notifications in Slack are a little unrefined. Our core technical staff may be fine with this, but
some engineers may prefer a little more refined message. That can be done — using notification
templates configured for the Alert Manager in alertmanager.yml.

First create a special route for the CheckOutsOdd alert in a routes node under the route root.
routes:
- receiver: businessticket
group_by: [service]
match:
alertname: CheckOutsOdd

In this route, we can also add instructions for [more complex] grouping, throttling and repeating
notifications.

Then, create a new receiver entry in this same file, called businessticket and defined like this:
- name: businessticket
slack_configs:
- api_url: <Incoming WebHook URL STack Workspace>
channel: '#prom-notifications'
title: 'Alerts in Service {{ .GrouplLabels.service }}'
text: >

{{ .Alerts | len }} alerts:

{{ range .Alerts }}
{{ range .Labels.SortedPairs }}{{ .Name }}={{ .value }} {{ end }}

Context:

{{ range .Annotations.SortedPairs}}{{ .Name }}:{{ .Value }} {{ end
3}

Wiki: http://wiki.mycompany/{{ .Labels.alertname }}

{{ end }}

Note: the blank lines are intentional. Simply using \n did not create the new line characters | was
hoping for.

Save the file alertmanager.yml with these changes and restart the alertmanager. This configuration
file is reloaded. When next you trigger alerts, the notification shown in Slack will be extended with
the information configured in the template:

Alerts in Service finance
2 alerts:

alertname=CheckOutsOdd instance=127.0.0.1:3001 job=nodejs-example-
application payment_method=paypal service=finance severity=purple

Context:

descriptions:The number of checkouts is odd for payment method paypal . This has
been recognized as a business oddity that deserves notification summary:Odd
number of Checkouts for payment method paypal Wiki:

http: /wiki.mycompany/CheckOutsOdd

alertname=CheckOutsOdd instance=127.0.0.1:3001 job=nodejs-example-
application payment_method=stripe service=finance severity=purple

Context:

descriptions:The number of checkouts is odd for payment method stripe . This has
been recognized as a business oddity that deserves notification summary:Odd
number... Show more

Resources

Using the Slack notification channel with the Alert Manager https://www.robustperception.io/using-
slack-with-the-alertmanager

Documentation on Notification Templates:
https://prometheus.io/docs/alerting/notification examples/

https://www.robustperception.io/using-slack-with-the-alertmanager
https://www.robustperception.io/using-slack-with-the-alertmanager
https://prometheus.io/docs/alerting/notification_examples/

Dashboards with Grafana

A lot of information about the metrics gathered by Prometheus can already be learned from the
Prometheus Web Ul. The alert rules in combination with the Alert Manager’s capability of translating
firing alerts into notifications into virtually any channel allow us to take action when undesirable
conditions occur. What then do we need a dashboard for?

A well-designed dashboard — and that is a stiff challenge right there — can support engineers acting
on alerts by providing contextual information about the alert itself and the components from which
the alert originated and their recent history. The dashboard also provides insight — both for incident
analysis as well as for more tactical insight — in trends over time, such as slowly increasing load or
decreasing remaining capacity.

A common companion to Prometheus for Dashboarding — although both play with others too —is
Grafana. We will now take a quick look on how we can use Grafana to visualize the metrics gathered
and preprocessed by Prometheus.

Try out Grafana On Line
Navigate in your browser to: https://grafana.com/grafana#visualize . You can scroll to get a quick
introduction to all main features of Grafana.

To play with a number of fancy live dashboards and have real interaction, navigate to
https://play.grafana.org :

L G 88 Grafana Play Home -

Foature s
o
L]

Get Going with Grafana on your laptop
Run Grafana in a Docker container using the following command:

docker run -d --name=grafana -p 3000:3000 grafana/grafana:5.2.3

When the container is running — this will take a few minutes because the Grafana Docker Container
Images needs to be downloaded -, the Grafana Ul can be accessed on your laptop at
http://192.168.188.112:3000.

Default credentials are: admin/admin.

Note: when logging in for the first time, you are prompted to change the password. In this workshop
environment you can safely change to admin (so not really change at all).

https://grafana.com/grafana#visualize
https://play.grafana.org/
http://192.168.188.112:3000/

€ C | ® Not secure | 192.168.188.111 o Yr| &

28 Home -

Home Dashboard

Grafana uses data sources to fetch information used for graphs. There are a variety of types of data
sources supported out of the box, including MySQL, CloudWatch, Elastic Search, OpenTSDB,
PostgreSQL, and of course, Prometheus. A Grafana dashboard can have graphs from variety of
sources, and you can even mix sources in a graph panel.

Let’s now add a Data Source for your Prometheus instance.

Click on Add data source and add a data source with a Name of Prometheus, a Type of Prometheus,
and a URL of http://192.168.188.112:9090

Data Sources / Prometheus

= Settings 22 Dashboards

Prometheus

Prometheus

http://192.168.188.111:9090

Server (Default)

Auth

Basic Auth O With Credentials o

TLS Client Auth O With CA Cert)

Skip TLS Verification (Insecure)

Press Save & Test.

TLS Client Auth UJ With CA Cert

Skip TLS Verification (Insecure)

Advanced HTTP Settings

Whitelisted Cookies

Scrape interval
Query timeout (]

HTTP Method GET A1)

« Data source is working

Save & Test Delete

DEE

Toggle to the tab Dashbaords and click to import the Prometheus 2.0 Stats dashboard.

Data Sources / Prometheus

= Settings

BE Prometheus Stats
BE Prometheus 2.0 Stats

BE Grafana metrics

This will import the definition of this dashboard to quickly get us going with a dashboard that
displays various metrics on the operational condition of our Prometheus instance, supporting those
engineers that have a responsibility for keeping Prometheus in good working order.

Data Sources / Prometheus »
S S Dashboard Imported

v Prometheus 2.0 Stats

%= Settings 22 Dashboards

i Prometheus Stats Import

g8 Prometheus 2.C*Stats Re-import i

88 Grafana metrics Import

When the dashboard is imported, click on the name of the dashboard — which is a hyperlink to now
open the dashboard.

The dashboard appears:

88 Prometheus 2.0 Stats -

i GrafanaDoes i Prometheus Docs

Samples Appended Scrape Duration Memory Profile WAL Corruptions
143 MiB

0830 0840

pplication = prometheus 2 e tual memary

Active Appenders Blocks Loaded Head Chunks Head Block GC Activity

0B10 0820 083

= ch

Reload Count Query Durations

It shows a little of what Grafana is capable of, in terms of visualizing and organizing data. Hover over
the graphs with your mouse for example.

Click on the time window widget in the upper right hand corner, to zoom in and out over a time
range:

®Last 1 hour Refresh every Tm

2018-09-09 07:48:53
to
2018-09-09 08:48:53 pninutes

Custom range Quick ranges

From: Last 2 days Yesterday Today

now-1h Last 7 days Day before yesterday Today so far Last 15 minutes

S Last 30 days This day last week This week Last 30 minutes
Last 90 days Previous week This week so far Last 1 hour

now i i
Last 6 months Previous month This month Last 3 hours

Refreshing every: Last 1 year Previous year This month so far L E T
Last 12 hours

Last 24 hours

Last 2 years This year
Last 5 years This year so far

Creating a New Dashboard
To create your own new dashboard, click on the plus icon in the upper left hand area of the page
and select the create a new Dashboard:

{LH 88 Prometheus 2.0 Stats -

Create
amples Appended
% Dashboarr

Folder

8 Import
25

07:50 0800 0810 08:20

Click on Graph:

88 New dashboard ~

thf#+ New Panel

il b

Graphk Singlestat

1

Heatmap Alert List

Dashboard list Plugin list

A new Panel with an initial graph appears. Click on Edit in the dropdown menu under Panel Title.
{ 88 New dashboard -

Panel Title
® View
Edit
Share

1 More...

Remove

05:00 08:00

Set the Data Source for the Graph to Prometheus.

Then start typing the name of metric A. Type check and that should bring up a list of applicable
metrics. Select checkouts_total.

88 New dashboard

Panel Title

glob
global

» Options » Query Inspector

Legend format Li i} Resolution 1/1 ~ Formatas Time seri Instant

Add Query

The graph will start to show.

Switch to the General tab and update the title of the graph, for example to Checkout Total (per
payment type):

L GY 88 New dashboard

Checkouts Total (per payment type) ~

00 04:30 3 06:00 08:00

= checkouts_total{instanc 0.0.1:300 example-application payment_meth

General Metrics xes Legend
rapl

Info Repeat

Title Checko For each value of

Description

Transparent

Click on the save icon to save the current state of the dashboard.

3\

Save dashboard
CTRL+S

Checkouts Total (per payment type)

07:20 07:30 07:40 07:50 08:00 08:10 08:20 08:30

checkouts_total{instance="127.0.0.1:3001",job="nodejs-example-application’,payment_method="stripe"}

Provide a name for your dashboard

€5 SaveAs...

New name My Company Overview

Folder General ~

Save Cancel

And click on Save.

You now may want to make some calls to http://192.168.188.112:3001/checkout to influence the
checkouts_total metric that this dashboard is proudly visualizing. If you do so, this should result in a
visible step in the chart. Because of a user action in a business application, and because that
business application publishes Prometheus metrics, and because Prometheus periodically scrapes
and process and stores those metrics and because Grafana periodically collects those stored data
and visualizes them, we - with our Ops engineer hat on - are aware of that activity. And could
respond to it.

http://192.168.188.112:3001/checkout

2% My Company Overview -

Checkouts Total (per payment type)

0

06:30 07:00 07:30 08:00 08:30 09:00
== checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application’,payment_method="paypal"}
== checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application’,payment_method="stripe"}

Extend the Dashboard

Adding additional metrics in a graph is dead easy. They can come from the same or a different data
source and they can be related or totally unrelated. And they can also be calculated using the
expression engine in Grafana.

Add Sum of Checkout Totals [over all payment methods]
Click on the panel title for the graph. Click on edit in the dropdown menu:

Checkouts Total (per payment type)

Switch to the metrics tab and click on Add Query

G raph General Metrinks Axes Legend Display Alert

Data Source Prometheus ~

checkouts_total

Legend format Min step

Add Query

Type sum(ch and select checkouts_total from the suggestion list:

G raph General Metrics Axes Legend Display Alert

(=] Data Source Prometheus ~

changes()

checkouts_total

checkout_total_ amount

che Process_heap_bytes

mysql_info_schema_table_version

mysql_info_schema_table_size

mysql_info_schema_table_rows
ndles total

(checkouts total)

When you tab out of the field, the graph is immediately updated. It now shows the sum over all
checkouts_total values:
G} 88 My Company Overview

Checkouts Total (per payment type)

tai(in

Graph General Metrics Axes Legend Display Alert Time range

= Data Source Prometheus * Query Inspector

checkouts_total
Legend format Min step Resoltion 1/1 ~ Formatas Timy s~ Instant
sum{checkouts_total)

Legend format Min step Resolution 1/1 -~ Formatas Time « Instant

Click on the Save icon to save the updated dashboard definition.

Add Panel to Show Current Value of Total of Checkout Totals
Grafana panels can be crated for displaying one single value that needs to be highlighted.

As a quick example:
Add a panel, of type Single Stat.

88 My Company Overview ~

thi# New Panel Add

ilidl b 2

Graph Singlestat k

1

Heatmap Alert List

Dashboard list Plugin list

Click on Panel Title | Edit.
Switch to Metrics tab. Type
sum(checkouts_total)

Switch to Time Range tab. Set override relative time to 1m — to get only the most recent value for
the sum.

Singles‘[at General Metrics Options Value Mappings Time range

@ Override relative time

@ Add time shift

@ Hide time override info

Switch to tab General and set a more meaningful title for the panel.
Save your changes and return to the dashboard.
Finally resize this panel to a more proper size.

88 My Company Overview ~

Total of Checkout Totals @ Last 1 minute

194

Checkouts Total (per payment type)

50
08:20 08:30 08:40 08:50 09:00 09:10

== checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application’ payment_method="paypal"}
== checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application’,payment_method="stripe”} == sum(checkouts_total)

Note: in the Single Stat panel editor is the Options tab where you can define display options — for
example to associate specials colors with values or value ranges. In the Value Mappings tab, you can
define labels that should be displayed for specific value ranges — for example labels such as low,
medium, high or relax, watch out and go crazy.

Sing|es‘ta‘t General Metrics Options Value Mappings Time range

Type rangetotext -~

Set range mappings

x Fom 100 Text medium

X Fom 0 Text low

+ Add a range mapping

Using the Alert Mechanism in Grafana
Grafana contains an alert mechanism, somewhat similar to that in Prometheus. Note: there is no
direct connection to the Alertmanager or the Alert rules in Prometheus.

Alerts can be defined on panels. Click on the panel title for the checkout totals chart and open the
panel editor.

Click on the Alert tab. Then click on Create Alert.

Define a name — for example Checkouts Total Surprisingly High alert. Then specify the alert condition
— for example:

WHEN sum() OF query(A,1m,now) IS ABOVE 25

Checkouts Total (per payment typa)

08:50 9:05 [5 09:2 09:45

= checkouts_total{ins 3001"jo s-example application’, payment_method="paypal’} == ¢ 0.1:3001°} ation =*stripe heckouts_total)

Graph General Metrics Axes Legend Display AIE* Time range

Checkouts Total Surprisingly High alert Evaluateevery 60s

query (A, 1m, now)

When you scroll down a little, you will find the Test Rule button. When you press this button, the
rule is evaluated and info is shown:

Save your changes and return to the dashboard.

A little icon is shown on the Panel title to indicate that alerts have been defined for this panel.

88 My Company Overview -

Total of Checkout Totals

194

@ (heckouts Total (per payment type)

09:20 09:30 09:40 09:50
== checkouts. tota{instance="127.0.0.1 odejs-example-application” payment_method="paypal”}
== checkouts_total{instance="127.0.0.1:30 odejs-example-application” payment_method="stripe”} == sum{checkouts_total)

When the alert is active, the heart icon will turn red. You may have make a few more call to the

/checkout endpoint to make this alert fire.
There are several ways to inspect a firing alert:

drill down to the Panel editor
check the Alert Rules option from the main dashboard menu

ss My Company Overview -

w

Total of Checkout Totals

194

Checkouts Total (per payment type)

Alerting

i= Alert Rules

A, Notification channels

add a panel of type Alert List

Do the latter:

88 My Company Overview ~

thl# New Panel

11 b 2

Graph Singlestat

1

Heatmap Alert isisi

Dashboard list Plugin list

And when the alert is firing, you will see this:
88 My Company Overview -

Total of Checkout Totals « Panel Title

1 94 Checkouts Total Surprisingly High alert

3

Checkouts Total (per payment type)

09:00 09:10 09:20 09:40 09:50

== checkouts_total{instance="127.0.0.1:3001" odejs-example-appli yment_method="paypal’}
== checkouts_total{instance="127.0.0.1:3001" odejs-example-appli payment_method="stripe’} == sum(checkouts_total)

When you click on the active alert, you drill down to the alert definition in the panel editor:

88 My Company Overview

Checkouts Total (per payment type)

50
07:00 07:10 07:20 07:30 07:40 07:50 08:00 08:10 08:20 08:30 08:40 = 09:10

== checkouts_total{instance="127.0.0.1:3001" job="nodejs-example-application”,payment_method="paypal”} == checkouts total{instance="127.0.0.1:3001"job="nodejs-example-application’,payment_meth|
& raph General Metrics Axes Legend Display Alert Time range

Alert Config State history

Notifications checkouts_total{instance="127.0.0.1:3001", job="nodejs-example-application®,

payment_method="paypal”}=445, checkouts_total{instance="127.0.0.1:3001", job="nodejs-

State history example-application®, payment_method="stripe"}=525

Delete

Here you can inspect details and check the history of the alert.

Note: just like in the Prometheus Alert Manager, you can configure notification channels and
associate them with the alerts.

The Notification Channels are set up from the Alerting | Notification Channels option on the main
menu.

88 My Company Overview -

Total of Checkout Totals minute

194

Checkouts Total (per payment type)

Alerting

i= Alert Rules

A, Notification channels

Notify on Alerts from Grafana

Grafana has out of the box support for a substantial number of notification and communication
channels:

i= Alert Rules A, Notification channels

New Notification Channel
Name

Type Email -
HipChat

Send on all alerts 9 | Microsoft Teams
VictorOps

Include image ® | webhook

DingDing

Discord

Email

LINE

Telegram

Prometheus Alertmanager

Kafka REST Proxy

OpsGenie

PagerDuty

Pushover

Sensu

Slack
You can enter multiple email Threema Gateway

Email addresses

Send Test

Feel free to configure the Slack notification channel — using the same Slack WebHook endpoint as
before with the Prometheus alert manager — and make Grafana send notifications to Slack — or one
of the other channels.

