AppleScript

R

» Automate tasks with scripts
* Save time and effort

* Use AppleScript with
Mac 0S X 10.6 Snow Leopard

AppleScript:
A Beginner's Guide

About the Author

Guy Hart-Davis is the author of Mac OS X Leopard
QuickSteps, How to Do Everything: iPod, iPhone, & iTunes,
HTML, XHTML & CSS QuickSteps, and several other equally
fine computer books.

About the Technical Editor

Greg Kettell is a Windows programmer by day, but by night
loves his Mac. Greg has served as an author, contributing
author, and/or technical editor for an ever-increasing number
of technical books.

AppleScript:
A Beginner's Guide

Guy Hart-Davis

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

ISBN: 978-0-07-163955-2
MHID: 0-07-163955-1
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163954-5, MHID: 0-07-163954-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of
this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial
and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill
has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its
licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

This book is dedicated to Teddy,
who helped develop some of the sample scripts.

This page intentionally left blank

© W 0 N O 0 b~ 0>

Contents at a Glance

Grasping the Essentials of AppleScriptccciiiiiiiiiiiiiiiiiiiiianenss 3
Up to Speed with AppleScript Editorccoiiiiiiiiiiiiiiiiiiiiiae.. 11
Creating Your First Script ccoiiiiiiiiiiiiiiiieeesesesesesesessssnsnss 27
Working with Variables, Classes, Operators, and Coercions 61
Working with Text, Numbers, and Datesccceceivinnecesesesecnnass 81
Working with the Finder, Files, and Folderscccceiieieieienennnss 101
Making Decisions in Your Scriptsciviiiiiiiiieiericnsecesesesessnenss 129
Using Dialog Boxes to Get User Input cociiiiiiiiiiiiiiiiinninnn. 137
Repeating Actions in Your Scriptsccoieiiiiiiiiiinensesesenenenenenss 179
Debugging and Handling Errorsccoiiiiiiiiinincnnennsenenenennnss 195

vii

viii

AppleScript: A Beginner's Guide

11 Running Scripts Automaticallyccoeiiiiiiiiiiiiiiiiiiiiiiiiienenns 219
12 Automating iTunes and iPhotoccciiiiiiiiiiiiiiiiiiieiinencnnnns 249
13 Automating Apple Mailciiiiiiiiiiiiiiiiiiiiiiiiiieteccncscncscnnns 271
14 Automating Microsoft Wordcoiiveiinieiinresinsescnsesrossscnonns 291
15 Automating Microsoft Excelccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinan, 337
16 Automating Microsoft Entourageccoviiiiiiiiiiiiineiiineennnees 377

Contents

ACKNOWLEDGMENTS ..o e Xix
INTRODUCTION o XXi

PART | Getting Started with AppleScript

1 Grasping the Essentials of AppleScriptcccviiiiiiiiiiiiiiiiiieannenns

Knowing What AppleScript Is and What You Can Do with It
What You Can Do with Scripts —ooiiii e
Why AppleScript Is Easy to Learn ...
Understanding What SCripts Ar€ o.iintint it
What a Script Is ..o
Where Scripts Are Storedt
How You Create SCIIPLS ...ttt ettt
How You Run Scripts ..o
Understanding Objects, Keywords, Commands, and Properties
WHhat ObJects AI€ ...ttt e e e e e
What Keywords A€ttt e
What Commands ATe ouutiii e
What Properties and Values Are oouiiiiiniii i

Nl N B e e NV, IV, BV, BV, I SN S 6

X AppleScript: A Beginner's Guide

2 Up to Speed with AppleScript Editorccciiiiiiiiiiiiiiiiiiiinne.. 11
Launching AppleScript Editor i 12
Meeting the AppleScript Editor Window i 13
Setting Up AppleScript Editor for Working Comfortablyc...... 16

Choosing General Preferencescooooiiiiiiiiiiiniii i 16
Choosing Editing Preferencesot 18
Choosing Formatting Preferences —o i 20
Choosing History Preferences —.......... ..o 22
Choosing Plug-ins Preferences —......... ... 23
Putting the Script Menu on the Menu Bar in Leopard cooioa... 23
Running a Script from the Script Menu ... 25

3 Creating Your First Script ...ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieenee 27
Opening AppleScript Editor 28
Creating tell Statements iiniiii e 29
Try This: Opening a Finder Window Showing the Documents Folder 30
SaVING @ SCIIPL oo 31
Try This: Saving YOUur SCript oiuiii e 31
Creating tell Blocks o 32

Creating a tell Block Manually i i 32
Try This: Using atell Block 32
Using the Tell Application Pop-Up Menu coiiiiiiiiiint 33
Adding Comments to Your Code ooiiiiiiiiii i 34
Creating End-of-Line Commentsot 35
Try This: Commenting OutaLine i 36
Creating Block Comments i 36
Try This: Creating a Comment Block i 37
Recording Actions into @ SCHPtouiinii i e 37
Try This: Recording Actions: Repositioning and Resizing the Finder Window 38
Examining the Recorded Code i 39
Activating an AppliCation ooiiiiii i 39
Selecting the Finder Window i 39
Setting the Position of the Window 39
Resizing the Window 40
Changing the VIiew 41
Try This: Editing the Script ... 41
Dealing with Brrors ... o 43
Try This: Resolving an Error in Your Code 43
Wrapping aLine of Code i 44
Try This: Breaking Lines of Code Manually, 45
Opening a Dictionary File 46

Try This: Opening the Dictionary File for TextEdit 46

Contents
Finding the Terms You Needo e 48
Try This: Using the Dictionary File i 48
Turning a Script into an Application ..ottt e 55
Try This: Making an Application from Your Script and Adding It to the Dock 56
PART Il Learning Essential AppleScript Programming Techniques

4 Working with Variables, Classes, Operators, and Coercions 61
Working with Variables ... 62
Understanding the Seven Data Types —oiiiiiiin i 62
Creating a Variable ... o 63
Understanding the Scope and Persistence of Variables 67

Try This: Using a Global Variable i 69
Using Script Properties to Store Data Permanently in the Script — 71
Try This: Using a Script Property ..o e 73
Performing Operations with Operators —c.veiiiniiiiiiniiniinnenaennn. 74
Understanding CIaSSESs ...ttt ittt e e 77
Converting Data with COBICIONS c.tittin it 78
Try This: Creating a Variable and Applying a Coercion ccocoviienien... 80
5 Working with Text, Numbers, and Datescceveveveneneneseneanneass 81
Working with TeXt ... 82
Entering Normal Text in a Text Objectt 82
Joining Two or More Strings of Text —ooiiiiiiii i 83
Adding Spaces, Tabs, Line Feeds, and Returns c..cooiiia.. 83
Using Backslash and Double-Quote Characters —coooiiiinaon.. 85
Returning Parts of a Text Object —oiiiiiii e 86
Trimming a StrNG ... o e 88
Finding a String Within Another String i 88
Finding Out Whether One Text Object Contains Another Text Object 89
Choosing What to Ignore When Comparing Text ..., 90
Transferring Text from One Application to Another — 91

Try This: Using the Clipboard ..ot 92
Working with Numbers ... e 93
Performing Arithmetic with Numbers —co i, 93
Coercing Numbers to Other Data Types —coiiiiiiiiiiiiiiiininn. 93
Coercing Other Data Types to Numbers —ooiiiiiiiiiiiiiinn.. 94
Working with Dates ..o e 94
Understanding How AppleScript Handles Dates ccooiiin. 94
Working with the month Property of the Date Object 96
Working with the weekday Property of the Date Object 97
Coercing a Date Object to a String oiiuiiiiii e 97
Changing aDate ...t 97

xi

xii

AppleScript: A Beginner's Guide

Calculating Hours, Minutes, Days, and Weeks —ot 98
Finding Out How Far Off GMT Your MacIsc..ciiiiiiiiiat 98
Comparing Dates and Times —o.ioiiiiii i 98
Try This: Working with Dates and Times —t 99
Working with the Finder, Files, and Foldersc..ccociiaaetn. 101
Working with Finder Windows i 102
Referring to the Objects You Need —c.oiniiiiiiiniii i 102
Try This: Using Special Folders —...........o i 107
Opening a Finder Window 110
Try This: Using Nested References, Path References, and Alias References 110
Changing the View in a Finder Window ot 111
Changing the Position of a Finder Window co oot 112
Changing the Size of a Finder Window oo it 113
Minimizing and Restoring a Finder Window , 113
Changing the Width of the Sidebar i 113
Showing and Hiding the Toolbar i, 114
Hiding All Finder Windows ..ot 115
Closing Finder Windows ...t 115
Try This: Opening, Configuring, and Closing Finder Windows — 116
Working with Folders ... o 117
Creating a Folder oo 118
Copying a Folder ... 119
Duplicating a Folder 119
Renaming a Foldero i 119
Moving a Folder ... 119
Deleting a Folder ... oo 120
Try This: Creating, Renaming, and Moving a Folder 120
Working with Files ... 121
Creating Files from the Finder i 121
Copying a File ... o 123
Duplicating a File ... 123
Deleting a File ... oo 124
Renaming a File ... 124
Moving a File ..o o 124
Try This: Creating a File and Opening It i 125
Mounting and Unmounting VOIUMES ouuiuinninii i 125
Mounting @ VOIUIMEottt 126
Unmounting a VOIUME ..o 128
Making Decisions in Your Scriptsciviiiiiiiiiiecncnsecesesesessseans 129
Checking a Single Condition with an if... then Statement — 131

Try This: Using an if... then Statement to Launch
an Application If It’s Not Running i 131

Contents
Deciding Between Two Courses of Action with an if... then... else Statement 132
Try This: Using an if... then... else Statement c.coiiiiiiiiiiiiinon... 133
Choose Among Multiple Courses of Action with
anif... then... else if... else Statement o 134
Try This: Using an if... then... else if... else Statement ~ooiiia... 135
Using Dialog Boxes to Get User Input ccciiviiiiiiiiiiiiiiiennne.. 137
Using Dialog BOXES ...ttt 138
Displaying Multiple Paragraphs of Text in a Dialog Box 139
Adding a Title to a Dialog BOX ..ottt 140
Choosing the Buttons Displayed in the Dialog Box 141
Setting a Default Button in a Dialog Box ... 142
Creating a Cancel Button That’s Not Called “Cancel”c...... 143
Seeing Which Button the User Clicked in a Dialog Box — 144
Adding an Icon to a Dialog Box 145
Try This: Adding a Custom Dialog Box to the Set Up Finder and TextEdit Script 147
Creating a Dialog Box That Closes Itself it 149
Getting Text Input from the User ... 149
Try This: Returning Text from a Text-Entry Field — 150
USING ALBIES oottt e e e e 151
Understanding How Alerts Differ from Standard Dialog Boxes 151
Choosing the Icon for an Alert ...ttt 152
Try This: Creating an Alert ... it e 153
Choosing the Name Under Which to SaveaFile ... 154
Adding a Custom Prompt to the Choose File Name Dialog Box 154
Setting a Default Location and Filename — oo, 155
Letting the User Choose from a Listof Items c. o ... 156
Creating the List of Items ..o it e 156
Seeing Which Item the User Chose ...t 156
Adding a Title and Custom Prompt to the Choose From List Dialog Box 157
Changing the Buttons on the Choose From List Dialog Box 158
Choosing One or More Default Itemst 158
Letting the User Select Multiple Items or No Items c..c.coiiat 159
Try This: Creating a Choose From List Dialog Box ...l 160
Letting the User Choose Files, Folders, Applications, and URLs 161
Letting the User Choose a Fileo 162
Try This: Letting the User Choose aFile c..co ... 169
Letting the User Choose a Folder —ot 170
Letting the User Choose an Application c.ccoveiiiniiniiiinennenaen.s 172
Try This: Using the Choose Application Dialog Box
to Open a Document in a Particular Application coociiiiiiiiin. 174
Letting the User Choose a URL i 175

xiii

Xiv AppleScript: A Beginner’s Guide

9

10

11

Repeating Actions in Your Scriptsccevviiiiiiiiiiiiiiieiienieecennens 179
Getting an Overview of the Types of Loops That AppleScript Provides — 180
Understanding What Hard-Coding Is and Whento Use It 181
Repeating Actions Until a Termination Condition Becomes True — 181
Try This: Using a repeat Loop to Close All Open Finder Windows Except One 183
Repeating Actions a Set Number of Times —t 184
Try This: Using a repeat... times Loop Controlled by a Dialog Box 185
Repeating Actions Using a Loop Controlled by a Loop Variable 186
Try This: Using a Loop Controlled by a Loop Variable — 188
Repeating Actions for Each Itemina List o i 189
Try This: Using a repeat with list Command to Close Some Finder Windows — 189
Repeating Actions as Long as a Condition Remains True 190
Try This: Using arepeat while Loopot 191
Repeating Actions Until a Condition Becomes True ...t 192
Try This: Using arepeat until Loop —oooiiiii i 193
Debugging and Handling Errorsccoiiiiiiiiinincnnecesesesesnsnass 195
Understanding What Happens When an Error Occurs co.ooiiiiiia.. 196
Try This: Causing Errors Deliberately o i 197
Suppressing an Error with a Try Blocko i 198
Try This: Adding a Try Block to a Script 199
Creating an Error Handler 201
Understanding the Basics of Error Handlers, 201
Returning the Error Number and Error Messagecocooiiint 201
Dealing with the Error 202
Try This: Building an Error Handler — i 204
Finding Out Which Errors You Need i 204
Handling a Cancel Button in a Dialog Box ...t 205
Identifying Errors by Running a Script ... 205
Looking Up Errors in the Application’s Documentation — 206
Creating Your Own Errors ... o 206
Making Your Scripts Resistant to Errors — i 209
Verifying That an Item Exists Before You Use It 209
Referring to an Application by Its Formal Name 210
Breaking Up a Script into Subroutines — 213
Try This: Creating a Subroutine — oottt 214
Running Scripts Automaticallyccoeiiiiiiiiiiiiiiiiiiiiiiiciiiens. 219
Running a Script Automatically Using a Droplet —ccoiiiiiiiiinin... 220
Turning a Scriptinto a Droplet ... 221
Saving the Droplet as an Application covuiiiiniiiiiinineennenennn. 223

Try This: Creating and Running a Droplet ... 224

Contents

Running a Script Automatically with a Folder Action 225
Turning On Folder ACtIONS ooninini e 226
Writing a Folder Action SCript —o.iiiiiiii e 227
Attaching a Folder Action ScripttoaFoldert 233

Try This: Creating and Using a Folder Action Script cooiiiiiiiiinien... 240

Running a Script at Login ... 243

Running a Script Repeatedly at Intervals o i 243

Try This: Creating an Application That Uses an Idle Handler 244

Running a Script Automatically at Specific Times ...t 245

PART lll Automating Major Applications with AppleScript

12

13

Automating iTunes and iPhotocoiiviiiiiiiiiiiiiiiiiiiine., 249
Working with iTunes ... e 250
Working with Tracksoooi i i 250
Working with Playlists ... e 256
Try This: Dealing with All the Songs That Have an Intermediate Rating 258
Working with iPhoto e 263
Working with Albums and Photos o 263
Working with Photos ... 265
Working with Keywords ... 267
Try This: Creating an Album and Adding Photosto It 269
Automating Apple Mailcoiiiiiiiiiiiiiiiiiiiiiiii it 271
Working with Mail ACCOUNES io i 272
Understanding the Four Types of Accounts —cooiiiiiiiiiiiiinaen.. 273
Checking and Changing the Settings for an E-mail Account 275
Working with Mailboxeso e 278
Creating a New MailboX ... oo 278
Renaming a MailboX 278
Deleting a MailboX —ooiii i 279
Try This: Finding the Number of New Messages for Only Some Accounts 279
Creating and Sending MeSSagesc.tutineinein et 281
Creating an Outgoing MeSSAZeiuittitt ittt 281
Attaching a File to an Outgoing Message cooeiiiiiiiiiiiniaenaen.. 283
Sending the MeSSage uiiniuitei it 284
Dealing with Incoming Messages —oouiuiuiitniti i 284
Opening a Message in a Separate Window —, 285
Deleting a MeSSAZe .. euinti ettt e e 285
Moving a Message toa Folder 285
Dealing with Incoming Attachments — oo, 286

Working with Tasks o 287

XV

XVi AppleScript: A Beginner’s Guide

14 Automating Microsoft Wordc.cooiiiiiiiiiiiiiiiiiiiiiiiieeiiennnns 291
Launching Word—and Quitting Word — 292
Understanding the Key Word Objects for AppleScript —ccooiiiiiiiiiininn... 293
Working with Documents —ot 294

Creating a New Document ..ottt 294
Working with the Template Attached to a Document 295
Opening an Existing Document ...ttt 298
Saving aDocument ... 298
Making a Document the Active Document —coiiiiiiiiiiiiiiin.. 300
Closing @ DOCUMENT ...ttt e e e 301
Identifying the Document You Want to Work With 302
Printing a Document e 303
Try This: Creating, Saving, and Closing a Document c.coiiioa... 304
Working with Windows and VIEWs i 306
Working with Windows ... 306
Working with VIEWs ... o 308
Working with TeXt ... 310
Returning a Text Object and Reaching Its Contents cooiin.. 310
Working with the Selection Object ..ot 311
Creating a TeXt Range ioiiiii e 317
Extending, Shortening, or Moving aRange ... 319
Entering Textin a Document —ot 319
Formatting TeXtc.ini e 320
Try This: Entering and Formatting Text in a Document 322
Using Sections, Page Setup, and Headers and Footers cocoioa.t. 325
Breaking a Document into SECHONS vuitiittinein et 325
Choosing Page Setup ..ot 326
Adding Headers, Footers, and Page Numbers —coocoiiiiat 326
Displaying Word’s Built-in Dialog Boxes —o 329
Try This: Adding a Header, Adjusting Margins, and Displaying a Dialog Box 331
Running Your Scripts from Word 333
Adding a Script to Word’s Script Menu ... 333
Creating a Keyboard Shortcut to Run a Script it 334

15 Automating Microsoft Excelccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinen, 337
Understanding Excel’s Main Objects 338
Launching and Quitting Excel 339
Working with Workbooks 340

Creating a New Blank Workbook — i 340
Creating a New Workbook Based on a Template — 341
Saving a Workbook 341
Opening an Existing Workbook — i 344
Closing a Workbook o 344
Sharing a Workbook with Others i i, 345

Contents
Protecting a Workbook Against Changes —cooiiiiiiiiiiiiiiiniiinnennn, 346
Using the active workbook Class —coiiiiiiiii i 347
Try This: Creating, Saving, and Closing a Workbook 348
Working with Worksheets and Other Sheets 349
Inserting a Worksheet in a Workbook oo 350
Renaming a Worksheet o 351
Deleting a Worksheet ... i 351
Moving or Copying a Worksheet i 352
Finding Out Which Kind of Sheet You’re Dealing With 353
Protecting a Worksheet oo e 354
Using the active worksheet Class ... 355
Printing a Worksheet oo 355
Try This: Opening a Workbook and Adding a Worksheetto It 356
Creating and Using Ranges of Cells 357
Working with the Active Cell or the Selectionc.oo... 358
Referring to a Range of Cellso i 359
Using Named Ranges for Easy Referenceot 359
Working with a Worksheet’s Used Range c.coiiiiiiiiiiiiiiiin 359
Using Excel’s Special Cells ...t 360
Inserting a Formulaina Cell e 361
Try This: Adding Data to a Workbook i 361
Using Charts in Your Workbooks ... 363
Understanding How to Create a Chart from AppleScript c.cooiil 363
Adding a Chart Sheet to a Workbook 363
Adding a Chart Object to a Worksheet — 364
Setting the Chart Type . ..ooinii e 365
Add a Series tothe Chart ... o 366
Adding a Caption to an AXIS ...eutntttt e 366
Adding a Chart Title ..ot e 367
Adding alegend ... 367
Try This: Creating a Chart ...t e 368
Working with Excel Windows and Views —t 371
Opening a New Window ... e 371
Activating a WIndow ... 371
Closing a WINAOW ..ottt e 372
Repositioning and Resizing Windowst 372
Rearranging Excel Windows ... 373
Changing the VIeW ... i e e e 374
Zooming a WIndOW ...t e 374
Using Find and Replace in Your Scripts —c.ouiiiiiiiii i 374
Using find to Search for Datao 374
Continuing a Search ... 375

Using replace to Replace Data ... 376

xvii

xviii AppleScript: A Beginner’s Guide

16 Automating Microsoft Entouragecccciiiiiiiiiiiiiieiiniinnnnn. 377
Creating Entourage ACCOUNTSo.itttn ittt e e e 378
Creating an Exchange Account —ot 380
Creating an IMAP Account ... ittt 382
Creating a POP ACCOUNt ..ottt 384
Creating a Hotmail Account ... i 386
Creating and Sending E-mail Messages —ooiiiiiiiiiiiiiiiniiiiinaenn.. 387
Understanding the message Object c.oiuiiiiiiin i 387
Creating and Sending an E-mail Message c.coiiiiiiiiiiiiiiin.. 388
Creating an E-mail Message for the User to Work With 391
Setting a Signature for an E-mail Message —ccooiiiiiiiiiiin 393
Attaching a File to a MeSSage ooiuiiiiiiiiiiiiiii i 394
Dealing with Incoming E-mail Messagesc..oviuiiiiiiiiiiiiniiininnnennn.. 395
Forwarding a Message oouuiiiiiiniii it 395
Moving a Message toa Folder o i 396
Deleting a MeSSage oouuiintit e 396
Receiving an Attachment — i 397
Working with CONtacts —oiiuiiii e 398
Creating a New CONtaCt iuniuiitt e 401
Adding E-mail Addresses to a Contact —coiiiiiiiiiiiiiiiii i 401
Getting a vCard of Contact Data ot 404
Deleting a CONtaCt iuiit ettt et e 404
Working with Events o 405
Working with Taskso 407
Working with NOteS ...t e 408

Acknowledgments

My thanks go to the following people for their help with this book:

Roger Stewart for getting the book approved and pulling strings.
Joya Anthony for managing the acquisitions end of the process.

Greg Kettell for reviewing the book for technical accuracy and contributing many
helpful suggestions.

Lisa McCoy for editing the book with a light touch and a good sense of proportion.
Vipra Fauzdar for coordinating the production of the book.
Glyph International’s skillful typesetters for laying out the book.

Jack Lewis for creating the index.

XiX

This page intentionally left blank

Introduction

This book shows you how to harness the power of AppleScript to make your Mac do
your work for you.

AppleScript not only comes for free, built into every copy of Mac OS X, but it works
across all Mac OS X applications, so you can automate almost any operation you can
think of.

s This Book for You?

Yes.

If you want to get more done on your Mac—at work, at home, on the road, or all
three—then this book is for you.

This book takes you from knowing nothing about AppleScript to using it confidently
to manipulate all the applications you use.

The book is clear and easy to read, and it moves along at a rapid pace. As you
progress, the Try This sections give you step-by-step practice in the essential skills for
using AppleScript effectively.

xxii

AppleScript: A Beginner's Guide

What Does This Book Cover?

This book shows you how to get started with AppleScript and how to achieve impressive
results in minimal time.

Here is a chapter-by-chapter breakdown of what you will learn:

Chapter 1, “Grasping the Essentials of AppleScript,” makes sure you know what
AppleScript is and what you can do with it. You learn about the key terms for working
with AppleScript: objects, keywords, commands, and properties.

Chapter 2, “Up to Speed with AppleScript Editor,” teaches you to use AppleScript
Editor, the tool that Mac OS X includes for creating and editing scripts. You learn how
to launch AppleScript Editor, understand its user interface, and customize AppleScript
Editor to suit your needs. You also learn how to put the Mac OS X Script menu on
your Mac’s menu bar and run scripts instantly from it.

Chapter 3, “Creating Your First Script,” walks you through creating a script in
AppleScript Editor. You create and save a script, build tell statements and tell blocks,
and compile and run the script. Along the way, you learn how to open and arrange
Finder windows, and how to launch, manipulate, and close other applications.

Chapter 4, “Working with Variables, Classes, Operators, and Coercions,” explains
how to store data temporarily in your scripts for later use. You learn how to create
variables, assign data to them, and retrieve the data; how to use AppleScript’s
operators to perform operations (such as addition or division) or to make comparisons;
and how to use different classes of objects and change data from one type to another.

Chapter 5, “Working with Text, Numbers, and Dates,” teaches you how to work with
three essential types of content: text (such as words and paragraphs), AppleScript’s
two different types of numbers, and dates.

Chapter 6, “Working with the Finder, Files, and Folders,” shows you how to use
AppleScript to control the Finder and to manipulate files and folders. For example,
you learn how to create folders, rename them, move them, and delete them.

Chapter 7, “Making Decisions in Your Scripts,” explains how to make decisions
by using the three If structures that AppleScript provides. Making decisions is vital
to creating powerful and flexible scripts—and AppleScript makes the language of
decisions as easy and natural as it can be.

Introduction

Chapter 8, “Using Dialog Boxes to Get User Input,” covers using dialog boxes to let
the user control your scripts and provide input to them. You learn about AppleScript’s
dialog box, its alerts, and the special commands it provides for displaying dialog
boxes that enable the user to choose files, folders, or other items.

Chapter 9, “Repeating Actions in Your Scripts,” teaches you how to repeat actions in
your code—either once, or a fixed number of times, or exactly however many times
turns out to be necessary. AppleScript provides a handful of different kinds of loops
for repeating actions, but you will find it easy to get the hang of them.

Chapter 10, “Debugging Scripts and Handling Errors,” shows you how to write code
that either suppresses errors or handles them neatly. Even if you keep your scripts
simple, errors can easily occur, so handling them is a vital skill.

Chapter 11, “Running Scripts Automatically,” explains the different options that
AppleScript offers for running scripts automatically rather than running them
manually. For example, you can create a “droplet” application that runs when you drop
a file on it, attach a script to a folder as a Folder Action, or set it to run automatically
when you log in. Then there are other possibilities... .

Chapter 12, “Automating iTunes and iPhoto,” shows you how to let AppleScript loose
on the Mac’s multimedia marvels. You learn how to work with tracks and playlists in
iTunes, and how to work with albums, photos, and keywords in iPhoto.

Chapter 13, “Automating Apple Mail,” teaches you how to script Apple’s Mail
application. Coverage includes creating and configuring mail accounts, creating and
sending messages, dealing with incoming messages, and working with tasks.

Chapter 14, “Automating Microsoft Word,” explains how to manipulate Microsoft
Word 2008 via AppleScript. Word is a big application, and this is a big chapter,
teaching you how to work with documents, windows, and views; insert and
manipulate text; and set up your documents using sections and headers and footers.
You even learn how to corral Word’s built-in dialog boxes and use them in your
scripts.

Chapter 15, “Automating Microsoft Excel,” digs into using AppleScript with
Microsoft Excel 2008. You learn to launch and quit Excel; create, save, open, and
close workbooks; work with worksheets, ranges, and charts; and much more.

Chapter 16, “Automating Microsoft Entourage,” teaches you to use AppleScript to
automate essential tasks in Microsoft Entourage. Among other things, this chapter
shows you how to create and send e-mail messages and attachments, deal with

incoming e-mail messages (with or without attachments), and work with contacts.

XX

XXV AppleScript: A Beginner’s Guide

What Are Those Lines, and
What Are the Funny Fonts For?

To make its meaning clear but concise, this book uses a number of conventions, four of
which are worth mentioning here:

The pipe character, or vertical bar, indicates choosing an item from the menus. For
example, “choose File | Open Dictionary” means that you should click the File menu
on the Mac OS X menu bar to open the menu, and then click the Open Dictionary
command on it.

Terms in boldface in regular text are AppleScript terms. The boldface is just there to
make the terms stand out and help the sentences make sense.

The code lines show examples of AppleScript code. Here is how such a code snippet
looks:

display dialog "Keep playing this version, or play the next?" -
buttons {"Keep Playing This Version", "Play the Next Version", =
"Cancel"} with title "Gimme Shelter"

if the button returned of the result is "Play the Next Version" then
next track

else
return

end if

The — characters at the end of the code lines are continuation characters that indicate
the same line of code continues on the same line of text.

Turn the page, and we will get started.

Part

Getting Started
with AppleScript

This page intentionally left blank

Chapter 1

Grasping the Essentials
of AppleScript

4 AppleScript: A Beginner's Guide

Key Skills & Concepts

Knowing what AppleScript is and what you can do with it
Understanding what scripts are

Understanding objects, keywords, commands, and properties

Welcome to automating your Mac with AppleScript! This short chapter brings you

up to speed on what AppleScript is and what you can do with it. The chapter then
covers the essentials you need to know about scripts before you start working with them,
and then explains key terms—objects, keywords, commands, and properties—for working
in AppleScript.

Knowing What AppleScript Is
and What You Can Do with It

AppleScript is a power-packed programming language that comes with Mac OS X. You
can use AppleScript to automate almost any repetitive task on your Mac, saving you time
and effort.

AppleScript works both with Mac OS X and its built-in components (such as the
Finder and Spotlight) and with most applications that run on Mac OS X. For example,
you can automate tasks in Apple applications such as TextEdit, Apple Mail, iPhoto,
iTunes, and the iWork applications—not to mention essential third-party applications such
as the Microsoft Office applications (Word, Excel, PowerPoint, and Entourage), Adobe
Photoshop, and FileMaker Pro.

What You Can Do with Scripts

A script can do anything from a single action (such as automatically emptying the Trash
securely) to running as a complete application—for example, opening Microsoft Excel,
using it to create a spreadsheet file, drawing in data from existing files and inserting it in
the worksheets, saving the file, and generating a Portable Document Format (PDF) file
from it for distribution.

Chapter 1: Grasping the Essentials of AppleScript 5

Why AppleScript Is Easy to Learn

Many programming languages are hard to learn because they use not only complicated

concepts, but also abstruse syntax that looks like an explosion in a punctuation factory.
By contrast, AppleScript is easy to read and understand, so you can get moving with

it immediately. For example, if you read the following AppleScript command, you can

immediately understand what it does:

tell the application "Microsoft Excel" to make new document

When you run that command, Microsoft Excel creates a new workbook. (If Excel isn’t
running, Mac OS X launches it automatically.)

Yes, AppleScript is that English-like and straightforward. That doesn’t mean AppleScript
isn’t powerful, just that its power is delivered in a friendly and easy-to-use way.

Understanding What Scripts Are

This section runs you quickly through essential concepts you need to grasp before you get
started with AppleScript.

What a Script Is

A script is a document that contains a sequence of commands. For example, a script can
contain commands to do the following:

1. Open the TextEdit application and create a new document.
2. Type some text in the document.
3. Save the document.

4, Quit TextEdit.

Normally, Mac OS X executes the script’s commands in order from first to last, but
you can build control structures to repeat or skip sections of code. For example, you can
create a loop that runs for a certain number of repetitions or until a condition is met.

Where Scripts Are Stored

Mac OS X comes with various scripts that are installed in the /Library/Scripts/ folder and
its subfolders. These scripts are available to all the users of your Mac.

Your own scripts are stored in the ~/Library/Scripts/ folder (where ~ represents your
home folder) and are available only to you. You can move them to other folders as needed.

6

AppleScript: A Beginner's Guide

Ask the Expert

Q: Can 1 record scripts the way I can record macros in Microsoft Office?

A: AppleScript Editor lets you record actions in some applications, such as the Finder and

iChat—but very few applications have this capability.

You open the script to which you want to add the actions, turn on recording, and
then perform the actions in the application (for example, the Finder). AppleScript Editor
records what you do and writes down the commands for the actions. When you’ve
finished, you turn off recording and polish up the recorded code in AppleScript Editor.

How You Create Scripts

To create scripts, you open the AppleScript Editor application (as described in Chapter 2)
and type commands into it. You save a script as you would most any other document, giving
it a name of your choice and using one of the Scripts folders explained in the previous
section. You can also save a script to a different folder if you prefer.

How You Run Scripts

You can run a script in any of these ways:

From AppleScript Editor When you’re creating a script, you can run it by clicking
the Run button on the toolbar in AppleScript Editor, by pressing #-r, or by choosing
Script | Run. If the script works, great; if not, you’re in the right place to change it.

NOTE

You can run any script at any time by opening it in AppleScript Editor and using one

of the Run commands described in the main text, but usually, other ways of running

a finished script are more convenient unless you need to open a script for another

reason—for example, to change it.
From the Script menu If you add the Script menu to the Mac OS X menu bar, you
can instantly run any script stored in your Mac’s /Library/Scripts/ folder or in your
~/Library/Scripts/ folder. See Chapter 2 for details.

From the Finder If you save a script to a different folder than your Mac’s /Library/
Scripts/ folder or in your ~/Library/Scripts/ folder, you can run the script by opening
the folder and double-clicking the script file.

From the Dock If you save a script as an application, you can add it to the left side
of the Dock and run it as you would any other application.

Chapter 1: Grasping the Essentials of AppleScript

Understanding Objects, Keywords,
Commands, and Properties

This section introduces four essential terms for working with AppleScript: objects,
keywords, commands, and properties.

What Objects Are

To take actions in AppleScript, you work with objects. An object is simply an identifiable
item on your Mac—for example:

Your Mac itself is an object.

Each disk on the Mac is an object.

Each folder on the Mac’s disks is an object.
Each file in each folder is an object.

The items in each file are objects—for instance, an image object on a slide in a
presentation or a paragraph object in a word-processing document.

Each application is an object.

The objects are arranged in an organizational structure called an object hierarchy. That
term sounds complex, but the object hierarchy is simply a map that shows you how to
reach the objects you need.

At the top of the hierarchy are objects that are directly accessible to AppleScript—
objects you can get at directly, such as the computer and your home folder. Those objects
contain other objects that you can reach by going through the directly accessible objects.
For example, you can get to your Documents folder by going through your home folder
(because the home folder contains the Documents folder).

What Keywords Are

In AppleScript, a keyword is a predefined term with a special meaning. For example:

before and after are keywords used to describe the position of an item in a range of
items—for instance, in a range of open Finder windows, you may need to work with
the window after the front window or the window before the last window.

first, second, third, and so on through tenth are keywords used to describe the position
of an object in a container object—for instance, the second item in the Documents folder.

me is a keyword that refers to the current script.

8

AppleScript: A Beginner's Guide

Ask the Expert
Q: Can you give an example to help me understand the object hierarchy?

A: The object hierarchy can be difficult to picture, but it works in much the same way as

when you’re working interactively with your Mac.

For example, the Desktop is right there, so you can access it directly with your
mouse. By contrast, if you want to apply boldface to a character in a paragraph in a
Word document, you normally proceed like this:

1. Open Word.

2. Open the document in Word.

3. Go to the paragraph in the document.
4. Find the character.

5. Apply the boldface.

In the same way, AppleScript can access your Desktop directly. But if you want to
make a change to that character using AppleScript, you need to work like this:

1. Tell AppleScript to open Word.
2. Tell Word to open the document.

3. Tell Word which paragraph contains the character and which character it is (for
example, the fifth character in the third paragraph).

4. Tell Word to apply the boldface.

When you use a keyword in a script, it’s important to use it only in its AppleScript
sense. Avoid creating variable names that conflict with AppleScript’s keywords, because
this is a recipe for errors and confusion.

What Commands Are

A command is an action that you can take with an object. Here are three examples:

activate This command brings the specified application to the front. If the
application isn’t running, Mac OS X launches it and then brings it to the front.

Chapter 1: Grasping the Essentials of AppleScript 9

mount volume This command mounts an AppleShare volume in the Mac’s file system.

choose file This command displays the Choose A File dialog box so that the user can
choose a file.

What Properties and Values Are
Each object has properties—attributes—that describe what the object is and control how it
behaves. Each property is set to a value; the type of value depends on the type of property.

Some properties are read-only, which means that you can get (return) the value but not
change it. But most properties are read-write, which means that you can set their values as
well as get them.

For example, you’re probably familiar with the View Options window for Finder
windows in List view (see Figure 1-1). The Text Size pop-up menu is the interactive
means of setting the text size to use in List view; the AppleScript way is to change the
value of the text size property. Similarly, you can set the icon size property to large icon
or small icon—this is the AppleScript equivalent of choosing the small option button or
the large option button in the Icon Size area of the window.

] Documents

[C] Always open in list view

Icon size: e }”4
e O
et size

Show columns:

E Date Modified
[] Date Created
E Size

™ Kind

[] Version

[] Comments
[Label

E Use relative dates
E Calculate all sizes
[C] Show icon preview

Use as Defaults

Figure 1-1 AppleScript provides properties for the List view options settings you can choose
in this window.

This page intentionally left blank

Chapter 2

Up to Speed with
AppleScript Editor

11

12 AppleScript: A Beginner's Guide

Key Skills & Concepts

Launching AppleScript Editor

Meeting the AppleScript Editor window

Setting up AppleScript Editor for working comfortably
Putting the Script menu on the menu bar in Leopard

Running a script from the Script menu

Your tool for creating AppleScript is AppleScript Editor, which is included with Mac

OS X. This chapter shows you how to launch AppleScript Editor, understand its user
interface, and customize AppleScript Editor to suit your needs. You’ll also learn how to
put the Mac OS X Script menu on your Mac’s menu bar and run scripts instantly from it.

Launching AppleScript Editor

AppleScript Editor lives in the Utilities folder in your Applications folder, so you can
launch it like this:

1. Activate the Finder by clicking the Finder icon on the Dock or clicking open space on
your Desktop.

2. Choose Go | Utilities to open a Finder window showing the Utilities folder. Alternatively,
press #-SHIFT-U.

3. Double-click the AppleScript Editor icon.

NOTE

In Mac OS X version 10.5 (Leopard) and earlier versions, Script Editor is in the
Applications/AppleScript/ folder rather than in the Utilities folder. Activate the Finder,
choose Go | Applications to open a Finder window showing the Applications folder,
double-click the AppleScript folder, and then double-click the Script Editor icon.

Once you’ve launched AppleScript Editor, make its icon stay in the Dock so that you
can launch it instantly. cTrL-click or right-click the AppleScript Editor icon in the Dock,
click or highlight Options, and then choose Keep In Dock from the shortcut menu.

Chapter 2: Up to Speed with AppleScript Editor 13

Ask the Expert

Q: Why is my editor named Script Editor rather than AppleScript Editor?

A: 1n Snow Leopard, Apple changed the editor’s name from Script Editor to AppleScript
Editor. So if you’re using Leopard or an earlier version of Mac OS X, your editor is
named Script Editor.

You’ll find that Script Editor behaves in almost exactly the same way as AppleScript
Editor described in this book but that the interface is different—in particular, that the
lower pane is laid out differently, and that AppleScript Editor’s preferences contain
settings that used to be in AppleScript Utility in earlier versions of Mac OS X. You’ll
see the main differences later in this chapter.

Meeting the AppleScript Editor Window

Figure 2-1 shows AppleScript Editor window with its key components labeled.
As you can see, AppleScript Editor has a straightforward interface.

Toolbar The toolbar contains buttons for recording, running, and compiling scripts,
and for bundling their contents into an application bundle or script bundle (a package
that contains not only the script, but also any other items it needs, such as documents
and images).

TIP

You can toggle the display of the toolbar by clicking the jellybean button at the right end

of the AppleScript Editor title bar or by choosing View | Hide Toolbar or View | Show

Toolbar. If you want fo change the selection of buttons on the toolbar, choose View |

Customize Toolbar and then work in the dialog box that appears.
Navigation bar The navigation bar is the thin horizontal strip under the toolbar. At
its left end, the language pop-up menu lets you switch between AppleScript and other
scripting languages that AppleScript Editor supports; normally, you’ll want to leave
this menu set to AppleScript. To the right of the language pop-up menu is the elements
pop-up menu, which you can use to select elements (such as variables or properties)
that you’ve defined in the script. Until you select an element, the elements pop-up
menu shows “<No selected element>,” as shown in the figure.

14

AppleScript: A Beginner's Guide

Toolbar —

Script text

Language Navigation Elements
pop-up menu bar pop-up menu
@00 Untitled =
O @&/ N i3
Record Stop I Runy Compile Bundle Contents

AppleScript :| <Mo selected element> :|
tell the application "Microsoft Excel” to make new docurment

display dialog "Close Excel?"

pane

Display

control

Lower

pane

\j

=

—»@ZZ550 Replies | Result

[Description |~ Event Log]

Figure 2-1 AppleScript Editor has a streamlined interface that enables you to create code

V]

quickly and easily.

Script text pane

Lower pane This pane displays two main different types of information, depending
on which of the tabs at the bottom of the window is selected. When the Description tab
is selected, the pane displays the description of the script—text you write to explain
what the script is and what it does. When the Event Log tab is selected, the pane

displays the event

This pane is where you create and edit each script.

log. The event log contains three different categories of information,

which you can switch among by clicking the three visibility buttons.

Events Click this visibility button to see the events the script has sent. This helps

you keep track of exactly what’s happening in the script.

Replies Click this visibility button to see the values the script has returned for
the events. This information helps you see the information the script is getting.

Result Click this visibility button to see the result of running the script—for

example, which button in a dialog box the user clicked.

Chapter 2: Up to Speed with AppleScript Editor 15

If you’re using Mac OS X Leopard (10.5) or an earlier version, your AppleScript tool
is named Script Editor rather than AppleScript Editor. As you can see in Figure 2-2, the
Script Editor window has three tabs at the bottom—Description, Result, and Event Log—
instead of the two that AppleScript Editor has, and it does not have the three visibility
buttons.

tell the application "Microsoft Excel” to rnake new document
display dialog "Close Excel?”

[Description [Result [Event Log | >
“

Figure 2-2 In Leopard or earlier versions of Mac OS X, you use Script Editor rather than
AppleScript Editor to create your code. The differences are minor.

16 AppleScript: A Beginner's Guide

Setting Up AppleScript Editor
for Working Comfortably

To make sure you can work swiftly and comfortably in AppleScript Editor, spend a few
minutes setting its preferences.

With AppleScript Editor open, press %-, (% and the comma key) or choose AppleScript
Editor | Preferences to open the Preferences window. This window’s title bar shows the
category of preferences you’re setting—General, Editing, Formatting, History, or Plug-
ins—rather than the word “Preferences.” If the title bar doesn’t show General at first, click
the General button to open the General preferences pane.

Choosing General Preferences

The General preferences pane (see Figure 2-3) enables you to choose your default script
editor and default language for scripting, decide whether to show inherited items in the
dictionary viewer, and choose whether (and if so, how) to display the Script menu in the
menu bar.

NOTE

In Script Editor in Leopard and earlier versions of Mac OS X, the General preferences
pane contains only the Default Language pop-up menu and the Show inherited items in
dictionary viewer check box. The other controls appear in AppleScript Utility, discussed in
the section “Putting the Script Menu on the Menu Bar in Leopard,” later in this chapter.

anon General =

2 O e

Editing Formatting History Plug-ins

Default Script Editor:) AppleScript Editor (2.3) |

Ak

Default Language: (AppleScript (2.1) |

[E Show inherited items in dictionary viewer

EShow Script menu in menu bar
™ Show Computer scripts

Show application scripts at: (=) top
() bottom

Figure 2-3 In the General preferences pane, make sure AppleScript Editor is set to use
AppleScript.

Chapter 2: Up to Speed with AppleScript Editor 17

Here’s what you need to know:

Default Script Editor In this pop-up menu, pick the script editor you want to use
for AppleScript. Make sure AppleScript Editor is selected, unless you’ve installed
another AppleScript-capable script editor, such as Smile, Script Debugger, or Xcode.

Default Language In this pop-up menu, choose the language you’ll use in
AppleScript Editor. For this book, you’ll want AppleScript. Depending on how your
Mac is set up, this may be your only choice.

NOTE

AppleScript Editor supports the Open Scripting Architecture (OSA for short), which

enables AppleScript Editor to handle other scripting languages, such as UserTalk,

JavaScript, or QuicKeys (http://startly.com).
Show Inherited Items In Dictionary Viewer This check box lets you decide,
when viewing a dictionary file, whether to view only the items that belong to the
object itself or to also view the objects it inherits from the class above it in the object
hierarchy. Turn this setting on for now, because it’s usually helpful. You’ll work with
inherited items extensively throughout the course of this book.

NOTE

In the AppleScript sense, a dictionary is a file that contains all the AppleScript terms

associated with an application. For example, to browse the list of objects, commands,

and properties available for scripting Safari, you open the Safari dictionary.
Show Script Menu In Menu Bar Select this check box to make the Script menu
appear on the menu bar. It appears as a stylized S that looks like a scroll, as shown on
the left here.

$ M) 2 O = 1112aM Q

Show Computer Scripts Select this check box if you want the scripts stored in
your Mac’s /Library/Scripts/ folder to appear in the Script menu. Having these scripts
appear is usually helpful at first, especially when you’re learning to use AppleScript,
so select this check box. Later, when you’ve stuffed the Script menu with essential
scripts you’ve created, you may want to suppress the display of the computer scripts
so that the Script menu is easy to use.

http://startly.com

18 AppleScript: A Beginner's Guide

NOTE

The /Library/Scripts/ folder is referred to either as the “computer scripts folder” or the
“local scripts folder.” Your own scripts folder is the “user scripts folder.”

Show Application Scripts At In this area, select the Top option button or the
Bottom option button to choose where to display application scripts on the Script
menu. These are scripts that you place in a folder named Applications in your
~/Library/Scripts/ folder. Usually, you’ll want to select the Top option button, as it
makes the scripts easier to access.

Choosing Editing Preferences

The Editing preferences (see Figure 2-4) can help you work more quickly and accurately
in AppleScript Editor, so it’s important to set them to suit your needs. This section
explains the preferences and offers suggestions on how to set them.

Choosing Wrapping and Tabs Preferences

Lines of code can become much longer than the width of AppleScript Editor, so normally

it’s a good idea to select the Wrap Lines check box. When this setting is on, AppleScript

Editor automatically wraps lines of code to fit in the window so you can see each entire line.
The alternative is to clear the Wrap Lines check box and then scroll to the right as

needed to see the hidden part of the line and then scroll back to see the beginning of the

next line. Some people prefer working this way.

Editing =

WC

liting ' Formatting History Plug-ins

Line Wrap: EWrap lines
™ Indent wrapped lines by: 4

Tabs: Tab width: 4

Script Assistant: E Use Script Assistant

Advanced: EEscape tabs and line breaks in strings

Develop: [_| Show “tell” application pop-up menu

Figure 2-4 Editing preferences let you control line wrap, tabs, and whether the Script
Assistant offers you its help.

Chapter 2: Up to Speed with AppleScript Editor

When you wrap a line of code, normal practice is to indent each line after the first
so that you can easily see what’s a starting line and what’s a wrapped line. Usually, it’s
helpful to have AppleScript Editor indent the lines for you, so you’ll probably want to
select the Indent Wrapped Lines By check box. The normal indentation is 4 spaces, but
you can change this number if you want more indentation or less.

NOTE

You can also break your lines of code manually so that they don’t become too long. See
Chapter 3 for details.

You can indent code manually by typing spaces, but it’s quicker to press TAB and have
AppleScript Editor automatically enter a group of spaces for you. Use the Tab Width box
to set the number of spaces AppleScript Editor enters for a tab. Normally, you’ll want the
tab width to match your Indent Wrapped Lines By setting so that you can press TAB to
indent lines to the same level; the default setting is again 4 spaces.

Choosing Whether to Use the Script Assistant

The Script Assistant feature watches as you type in AppleScript Editor and tries to
save you time by either completing code items for you or displaying suggestions for
completing your code. Here are the details:

When Script Assistant identifies enough of a word to be able to Yole

suggest ways to complete the word, it displays an ellipsis (...) ‘ @ ‘ %:J

to let you know, as shown here. e

AppleScript = | <No

To see the suggestions, press Fs. In the pop-up list that appears e

(as shown here), you can enter it in your code. Either double-
click the item you want, or press DOWN ARROW OF UP ARROW tO
reach the term, and then press RETURN.

@00

L

Recard Stop Run

AppleScript :| <Mo
teL..
B tell

terms

text

text area
text field

text frame

19

20

AppleScript: A Beginner's Guide

When Script Assistant has uniquely identified the term you’re typing, or has identified
the most likely term, it enters the term in your code without asking you. The part that
Script Assistant has entered appears in gray, and the insertion point remains after the
last character you typed. You can accept the suggestion by pressing ESC or F5, or reject
the suggestion by typing through it.

Choosing Whether to Escape Tabs and Line Breaks
Near the bottom of the Editing preferences, the Escape Tabs And Line Breaks Strings
check box sounds bewildering, but it’s straightforward enough.

A string is a sequence of text characters, such as your name. Normally, when you enter
a string, AppleScript Editor shows it as text, and any tabs, line breaks, or carriage returns
appear in the normal way they do on screen—for example, a tab appears as a chunk of
white space in AppleScript Editor, and a carriage return makes the text wrap down to a
new line.

To make your code more compact, AppleScript Editor can automatically replace tabs
with the \t code and line breaks and carriage returns with the \n code. AppleScript Editor
replaces these items when you compile or run your code rather than when you type it in.
Your code appears more compact as a result, but it’s harder to read because of the escaped
characters—for example, documents.\nChoose indicates the word “documents.” followed
by a carriage return and the word “Choose.”

NOTE

A line-feed is the character created when you press SHIFT-RETURN. A carriage return is
the character created when you press RETURN.

Choosing Whether to Show the Tell Application Pop-up Menu

Right at the bottom of the Editing preferences is the Show “Tell” Application Pop-up
Menu check box. This appears only in AppleScript Editor (in Snow Leopard), not in
Script Editor in Leopard or earlier versions of Mac OS X.

Select this check box to add to the navigation bar a pop-up menu that lets you direct a
tell block to the current application or a particular application. Briefly, a tell block is what
you use to direct a command to an application rather than to AppleScript itself; you’ll start
using tell blocks in the next chapter, after which you’ll never stop.

Choosing Formatting Preferences

The Formatting preferences (see Figure 2-5) let you control how code looks in
AppleScript Editor. AppleScript Editor by default uses the typewriter-like Courier font for
uncompiled new text, so you can easily distinguish what’s new from the compiled items,

Chapter 2: Up to Speed with AppleScript Editor 21

800 Formatting (=]
| Category Font Size |Color
New text (uncompiled Courier 13 &

(sncompiied "
Operators, etc. (+ & ,) Verdana 13 -
Language keywords Verdana Bold 13 R
Application keywords Verdana 13 -
Comments Verdana 13 -
Values (numbers, data) Verdana 13 -
Variables and subroutine Verdana 13 -
Strings Verdana 12

-
Command names Verdana Bold 12 -
Parameter names Verdana 12 -
Classes Verdana Italic 12 -
Properties Verdana 12 -
- WL Vardamn 1o Y
Use Defaults Revert _' W

Figure 2-5 In the Formatting preferences, choose fonts and colors for different types of text in
AppleScript Editor.

which appear in the Verdana font in different colors according to their type. For example,
operators (such as + and ,) appear in black and regular weight, while language keywords
appear in bold blue, making them stand out.

To change a category’s font, size, or color, double-click the category, and then work
in the Font panel that AppleScript Editor opens. Click the Apply button in the Formatting
preferences when you want to apply the font formatting; click the Revert button if you
find yourself regretting the change. And if you want to restore AppleScript Editor’s
standard fonts and colors, click the Use Defaults button.

TIP

If you want to change several categories at once, select them by clicking the first
category and then se-clicking each of the others. You can also select a range of
categories by clicking the first and then swiFr-clicking the last. Then double-click
anywhere in the selection to open the Fonts panel. This trick is useful when you want
to change the font family or size of several different categories at once—for example,
when you grow tired of the Verdana font.

22 AppleScript: A Beginner's Guide

Choosing History Preferences
The History preferences (see Figure 2-6) let you choose how many items of the results and
the Event Log to keep to hand.

To keep Event Log items, select the Enable Event Log History check box, and then
choose between the Unlimited Entries option button and the Maximum Entries option
button; again, if you choose Maximum Entries, type the number you want in the text box
(the default number is 10).

NOTE

In Script Editor in Leopard and earlier versions of Mac OS X, the History preferences
pane also includes an Enable Result History check box. If you select this check box,
you can choose between the Unlimited Entries option button and the Maximum Entries
option button; if you choose the latter, type the number you want in the text box (the
default number is again 10).

For Event Log items, you can also select or clear the Log Only When Visible check
box. When selected, this check box makes AppleScript Editor log only the Event Log
items that occur when the Event Log pane is displayed. When this check box is cleared,
AppleScript Editor logs the items whether or not the Event Log pane is displayed.

NOTE

Usually, you'll do best to select the Enable Event Log History check box, because you
can save time and effort by having this information available. Whether to log all entries
or just the last few depends on the types of scripts you create and how you create them,
so experiment with the different seftings and find out what suits you best.

800 History ™
I 1 " T

A =

General Editing Formatting | History | Plug-ins

Event Log History: [Enable Event Log History
() Unlimited entries
®) Maximum entries: 10

™ Log only when visible

Figure 2-6 In the History preferences, choose how many Result History items and Event Log
items to keep.

Chapter 2: Up to Speed with AppleScript Editor 23

800 Plug-ins =)

Lo G (D fe -

General Editing Formatting History | Plug-

Name Description

™ LibrarysE

Figure 2-7 The Plug-ins preferences pane lets you turn off plug-ins when you don’t want to
use them.

Choosing Plug-ins Preferences
The Plug-ins preferences pane (see Figure 2-7) shows the plug-ins (add-on software items)
installed for AppleScript Editor on your Mac.

If you (or whoever administers your Mac) haven’t installed any plug-ins yet, the Plug-ins
preferences pane will be empty. That’s just fine—you don’t need to install any plug-ins to
start harnessing the power of AppleScript.

Putting the Script Menu on the Menu Bar in Leopard
As you’ve seen earlier in this chapter, AppleScript Editor in Snow Leopard lets you put
the Script menu on the menu bar directly from General Preferences. In Leopard, you have
to use AppleScript Utility to put the Script menu there (if it’s not there already). Follow
these steps:

1. Activate the Finder by clicking the Finder icon on the Dock or clicking open space on
your Desktop.

2. Choose Go | Applications to open a Finder window showing the Applications folder.
Alternatively, press -SHIFT-A.

3. Display the contents of the AppleScript folder by clicking its icon (in Columns view)
or double-clicking its icon (in any of the other three views).

4. Double-click the AppleScript Utility icon to launch AppleScript Utility (see Figure 2-8).

24 AppleScript: A Beginner's Guide

Default Script Editor: | |1 Seript Editor (2.2.1) 3)

GUI Scripting: ™ Enable GUI Scripting

Enabling GUI Scripting will also enable access
for assistive devices. See Universal Access
preferences for more information.

Folder Actions: Set Up Actions...

EShaw Script menu in menu bar
™ Show Computer scripts

Show application scripts at: () top
® bottom

Figure 2-8 AppleScript Utility lets you control whether the Script menu appears on the menu
bar in Leopard and earlier versions of Mac OS X.

5. Select the Show Script Menu In Menu Bar check box. The Script menu icon appears on
the menu bar.

6. Select the Show Computer Scripts check box if you want the scripts stored in your
Mac’s /Library/Scripts/ folder to appear in the Script menu. This is usually helpful until
you pack the Script menu with scripts of your own.

NOTE

The /Library/Scripts/ folder is referred to either as the “computer scripts folder” or the

“local scripts folder.” Your own scripts folder is the “user scripts folder.”

7. In the Show Application Scripts At area, select the Top option button or the Bottom
option button to choose where to display application scripts on the Script menu. Most
people find placing these scripts at the top makes them easier to access, but you may be
the exception.

8. Press #-Q or choose AppleScript Utility | Quit AppleScript Utility to quit AppleScript
Utility.

Chapter 2: Up to Speed with AppleScript Editor

Ask the Expert

Q: What are the other settings in AppleScript Utility in Leopard for?

A: Apart from the Script menu-related settings discussed in the main text, AppleScript
Utility in Leopard also provides the following settings:

Default Script Editor In this pop-up menu, pick the script editor you want to use
for AppleScript. Make sure Script Editor is selected, unless you’ve installed another
AppleScript-capable script editor, such as Smile, Script Debugger, or Xcode. As
you’ve seen, the General preferences of AppleScript Editor now include this pop-up
menu.

Enable GUI Scripting Select this check box if you want to be able to use
AppleScript to control applications that aren’t directly accessible to AppleScript.
Instead of controlling such an application by reaching into its objects, you control

it by using its graphical user interface (GUI)—for example, by making AppleScript
click a button in the GUI just as you would click it with your mouse. The Enable GUI
Scripting check box is cleared by default unless you’ve selected the Enable Access
For Assistive Devices check box at the bottom of the Universal Access pane in System
Preferences. Unless you’ve turned on assistive devices, leave the Enable GUI Scripting
check box cleared for the moment.

Set Up Actions Click this button to display the Folder Actions Setup window, which
you use to create folder actions by attaching a script to a particular folder. The script
can then run when you add an item to that folder (or when you remove an item).

Running a Script from the Script Menu

Now that you’ve put the Script menu on the menu bar, try running one of Mac OS X’s

sample scripts from it. Follow these steps:

1.

Click the Script Menu icon on the menu
bar to display the Script menu.

. Highlight the Info Scripts item, and then
click the Font Sampler item (see Figure 2_9)' This script will use the TextEdit application to

. Mac OS X runs the Font Sampler script,

box shown here.

Font Sampler

create a document containing a sample of each
installed typeface.

which displays the informational dialog ("cancel) (" Continue)

25

26 AppleScript: A Beginner's Guide

1>

[5 sl e E)
Open Scripts Folder
Open AppleScript Utility

v

7 Address Book Scripts

¥ Current Date & Time Info Scripts

B Font sampler ' Interner services
| Mail Scripts

[Navigation Scripts
| Printing Scripts

[# Script Editor Scripts
I Ul Element Scripts
URLs

[virtual PC Scripts

YV Y VY Y VY YRAY V Y Y Y YYY

v

{7 iPhoto Scripts
[iPod >

Figure 2-9 You can quickly run a script from the Script menu on the Mac OS X menu bar.

4. Click the Continue button. The script launches TextEdit (or activates TextEdit, if it is
already open), creates a new document, inserts sample paragraphs, and then formats
them with different fonts.

5. Close the document without saving changes, and then quit TextEdit, unless you were
using it.

You’re now read to start creating scripts with AppleScript. Turn the page.

Chapter3

Creating Your
First Script

27

28

AppleScript: A Beginner's Guide

Key Skills & Concepts

Creating, editing, and saving a script

Creating tell statements and tell blocks

Adding comment lines and comment blocks

Recording actions into a script

Dealing with errors

Wrapping lines of code

Using a dictionary file to find the AppleScript terms you need

Creating an application from a script

n this chapter, you’ll create your first script. You’ll learn how to work in AppleScript
Editor, create and save a script, build tell statements and tell blocks, and compile and run
the script. In creating the script, you’ll also learn how to open and arrange Finder windows
and how to launch, manipulate, and close other applications, using the TextEdit text editor
that comes with Mac OS X as the example.

The script you create opens a Finder window, resizes and repositions the window, and
changes it to show your preferred view and the contents of the Applications folder. The
script then launches TextEdit, makes it create a document, enters some standard text in it,
and displays the Save As dialog box so that you can name and save the document.

The chances that this script performs exactly the actions you want are slim and none
(and Slim’s out of the country just now), but you can use the techniques you learn in this
chapter to create a script that opens the folders and applications you want and positions
the windows where you prefer to have them on your Mac’s Desktop. So treat this script as
just a start, and modify it to meet your needs.

Opening AppleScript Editor

To get started creating the script, open AppleScript Editor. If you’ve added the AppleScript
Editor icon to the Dock, click the icon; otherwise, open the Applications folder, expand
the contents of the AppleScript folder, and then double-click the AppleScript Editor icon.

Chapter 3: Creating Your First Script

Creating tell Statements

To take an action in AppleScript, you use tell statements. A tell statement starts with the
verb tell, identifies the application or object, and then tells it what to do.

For example, the following statement tells the application Microsoft PowerPoint to
create a new document (a new presentation):

tell the application "Microsoft PowerPoint" to make new presentation

TIP

One peculiarity of AppleScript is that it allows you to use the word “the” freely in your
scripts. For example, the fell statement tell the application “Finder” to open the desktop has the
same effect as tell application “Finder” to open desktop. AppleScript ignores the word “the,”
so you can add it wherever you want if you find it helps you structure the commands.
(You can even go wild—the statement tell the application the “Finder” the to the open the
desktop has the same effect.) Technically, AppleScript uses “the” as a syntactic no-op
keyword—in other words, a keyword that does nothing except make the syntax more
natural.

You can also tell the application or object you’re addressing first to tell another
application or object to do something. For example, the following statement makes the
Finder apply column view in the front (foremost) Finder window:

tell application "Finder" to tell the front Finder window to set the
current view to column view

NOTE

The “front” Finder window is the one that's foremost. If you click the Finder icon on

the Dock, Mac OS X displays all the open Finder windows that aren’t minimized. The
window that has the focus is the front window. If the windows overlap one another, you
can see that the front window is at the front.

TIP

AppleScript isn't case-sensitive, so it doesn’t matter if you capitalize the commands and
names correctly. Generally, though, most people find scripts easier to read and edit if
they use standard capitalization or something close to it.

29

30 AppleScript: A Beginner's Guide

Opening a Finder Window

Showing the Documents Folder

In AppleScript Editor, enter a tell statement that opens the Documents folder. Follow these steps:

1.

10.

Type the following and then pause:
tell the ap

When Script Assistant suggests “application” for “ap,” press ESc or F5 (whichever you
find easier) to accept the suggestion.

Continue typing the following statement:
tell the application "Finder" to open home

Click the Compile button on the toolbar or press %-K to compile the script. (You can
also choose Script | Compile if you prefer to use the menus.) You’ll see the text of the
statement change from the New Text (Uncompiled) font and color (which by default
is magenta Courier) to the fonts and colors for compiled text. By default, the language
keywords (“tell,” “the,” and “to”) appear in blue Verdana Bold, the application

open,” and “home”) appear in blue Verdana, and the value
(“Finder”) appears in black Verdana.

2 ¢

keywords (“application,

Click the Run button or press %-R to run the script. AppleScript Editor opens a Finder
window displaying the contents of your home folder. Admire the window briefly, and
then close it.

Edit the tell statement by adding the text shown in bold here so that it opens the
Documents folder in your home folder:

tell the application "Finder" to open folder "Documents" of home
Click the Run button on the toolbar or press %-R to run the script. This time, the script

opens a Finder window showing the contents of your Documents folder. When you run
an uncompiled script like this, AppleScript Editor automatically compiles it.

Run the script again. Notice that AppleScript Editor doesn’t open another window to the
Documents folder because the window you opened before is already showing this folder.

Now add another tell statement that closes all the open Finder windows. Press RETURN
to create a new line in AppleScript Editor, and then type this statement:
tell the application "Finder" to close every window

Click the Run button or press #-R to run the script. AppleScript Editor closes all the
Finder windows that are open.

Chapter 3: Creating Your First Script 31

Saving a Script
As with most applications, you need to save your work in AppleScript Editor. The first
time you save a script, you choose the folder in which to save it, give the script a name,
and choose the file format and other options.
We’ll look at the file formats later in this chapter, but for now, save your script as
described in the Try This section.

Saving Your Script

Follow these steps to save your script:

1. Choose File | Save or press s-s to display the Save As dialog box (see Figure 3-1).
2. In the Save As text box, type the name for the script: Arrange Desktop.

3. Make sure the Where pop-up menu is set to your Scripts folder. If you need to check,
you may have to expand the dialog box by clicking the button to the right of the Save
As text box.

4. Choose Script in the File Format pop-up menu.
5. Make sure the Run Only check box is cleared. (It should be cleared by default.)

6. Click the Save button to save the script.

Save As: IArrange Desktop.scpt I B
Where: [[Scripts F
File Format: [Seri pt |+!
Line Endings: | Unix (LF) 2

Options: [JRun Only [Startup Screen
[T stay Open

Figure 3-1 AppleScript Editor’s Save As dialog box lets you choose from among different file
formats. You can also choose to save a script as run-only (discussed later in this
chapter).

32

AppleScript: A Beginner's Guide

Creating tell Blocks

When you need to tell the same application or object to take two or more actions, as your
script does with the Finder, you can use a fell block rather than a series of tell statements.
A tell block is simply an easier way of giving a sequence of commands to the same
application or object.

Creating a fell Block Manually
A tell block starts with the tell verb and the application or object to which you’re giving
the instructions, and ends with the statement end tell:

tell application "Finder"

end tell

Between the tell statement and the end tell statement, you enter each command on
its own line. You’ve already told AppleScript which application or object you’re working
with, so you don’t need to tell it again. You also don’t need to include the “to” part of the
instruction. For example, this tell block tells the Finder to open a window showing the
contents of your Documents folder and then tells it to close every Finder window:

tell the application "Finder"
open folder "Documents" of home
close every window

end tell

NOTE

Often, it's handy to turn a tell statement into a tell block by pressing rerurn after the
name of the application or object and then adding the end tell statement at the end. If
AppleScript Editor gives the message “Syntax Error: Expected end of line but found end
of script” when you try to compile or run a script, it usually means you've missed out an
end tell statement.

Using a tell Block

Change the two tell statements in your script into a tell block. You can edit the statements
however you prefer, but here’s an example:

1. To start with, the statements look like this:

tell the application "Finder" to open folder "Documents" of home
tell the application "Finder" to close every window

Chapter 3: Creating Your First Script

2. Double-click the word to in the first statement to select it.

3. Press RETURN to replace the selected word with a carriage return so that the
statements look like this:

tell the application "Finder"
open folder "Documents" of home
tell the application "Finder" to close every window
4. In the second statement, select tell the application “Finder” to, and then press
DELETE.

tell the application "Finder"
open folder "Documents" of home
close every window

5. On anew line after the second statement, type end tell.

tell the application "Finder"
open folder "Documents" of home
close every window

end tell

6. Press %-K to compile the script. AppleScript Editor automatically indents the
statements in the tell block to make it easily readable:

tell the application "Finder"
open folder "Documents" of home
close every window

end tell

NOTE

You can place one tell block inside another tell block as needed. This is called
nesting tell blocks, and is useful for structuring your scripts clearly. AppleScript
Editor automatically indents each nested block farther so that you can distinguish
the blocks easily.

Using the Tell Application Pop-Up Menu
In AppleScript Editor in Snow Leopard, Apple introduced a new feature for creating tell
blocks, the Tell Application pop-up menu.

Once you have enabled this pop-up menu by selecting the Show “Tell” Application
Pop-Up Menu in Editing preferences, the Tell Application pop-up menu appears in the
navigation bar (see Figure 3-2).

33

34 AppleScript: A Beginner's Guide

®@Nnn Untitled =
AppIeScrlpr | teII currenl appllcatmn :I <No selecred element> :i
make new document at the front
Events Replies | @S0
Description | Event Log]
A

Figure 3-2 You can place the Tell Application pop-up menu in the navigation bar by selecting
the Show “Tell” Application Pop-Up Menu in Editing preferences.

You can then click this pop-up menu and choose the application to which you want to
direct the script (see Figure 3-3). This saves you from having to write a tell block around
your whole script while you’re working in AppleScript Editor.

NOTE

The Tell Application pop-up menu shows the applications you have added to
the Library window.

Adding Comments to Your Code

Often, it’s helpful to add notes to your code as you write a script—for example, noting
what works and what doesn’t, what you need to do next, and other approaches you’re
considering to getting the job done. When a script is complete, it’s a good idea to write
notes that make the script easy to understand for someone who’s never seen it before.

AppleScript calls such notes comments and lets you add them to your scripts in two
ways: as end-of-line comments and block comments.

Chapter 3: Creating Your First Script 35

@eNnn Untitled =

AppleScript + tell current application <No selected element>

make new dof Library
|| Address Book

-4 Database Events

@. DVD Player

K Finder

‘s Font Book

i ical

D iChat

& iovp

i 4 Image Events E

Events <+ iMovie

B iPhoto
&) isync
,Q iTunes
& iweb

! Keychain Scripting
& Mail | 4
%4 Microsoft Excel
s Microsoft Word
@l Quicktime Player

@ Safari

4 Speech Recognition Server

4 System Events

Figure 3-3 Choose the application to which you want the script to apply.

Creating End-of-Line Comments
The first way of creating a comment is to tell AppleScript that it has reached the end of the
line of code. This type of comment is called an end-of-line comment.

To create an end-of-line comment, type two hyphens at the beginning of a comment
line; add a space, if you like, to keep your code easy to read. For example:

-- this line is a comment

You can also use two hyphens to “comment out” a statement that you don’t want
AppleScript to execute. This is useful when you’re experimenting with code and need to
be able to prevent a command from running without actually deleting it from your code.
In the following example, everything after “Finder” is commented out because you’ve told
AppleScript that the end of the line occurs there.

tell application "Finder" -- to open folder "Documents" of home

36 AppleScript: A Beginner's Guide

Commenting Out a Line

Comment out the close every window statement in your script.

1.
2.

Click to place the insertion point at the beginning of the second line inside the tell block.
Type two hyphens and a space:
-- close every window

Press -k or click the Compile button to compile the script. AppleScript Editor changes
the line to the comments color set in the Formatting preferences; by default, this color
is gray.

Press %-r or click the Run button to run the script. The script opens a Finder window
showing the Documents folder. Because the close every window statement is commented
out, it does not run.

Creating Block Comments

Instead of an end-of-line comment, you can create a block comment. A block comment is

a comment that appears as its own block—normally on multiple lines rather than a single

line, although you can create single-line block comments if you want. Block comments

are good for presenting chunks of information without the distraction of having the two

hyphens at the beginning of each line.

To create a block comment, type an opening parenthesis and an asterisk, the text of the

comment, and another asterisk and a closing parenthesis. For example:

(* Start a tell block to the Finder.
Open a window to the Documents folder.
Set the view to Cover Flow. *)

Ask the Expert

Q: 1sit okay to use several end-of-line comments instead of a block comment?

A: Yes, it’s fine—although purists may look down at you.

If you prefer to use several end-of-line comments in sequence rather than create a
block comment, by all means do so. Generally, though, a block comment is easier to read.

One other thing while we’re talking about comments—you can start a block comment
after a statement of code on the same line if you like, but usually it’s much clearer if you
start the block comment on its own line.

Chapter 3: Creating Your First Script

Creating a Comment Block

In your sample script, create a comment block at the beginning of the script.

1. Click before the beginning of the tell block and type this comment:

(* Start a tell block to the Finder.
Open a window to the Documents folder.
Set the view to Column view. *)
2. Press -k or click the Compile button to compile the script. AppleScript Editor
changes the line to the comments color set in the Formatting preferences.

3. Press 3-Rr or click the Run button to run the script. AppleScript Editor ignores the
comment and executes only the open folder '""Documents' of home statement.

Recording Actions into a Script

To quickly create parts of a script, you can record actions into AppleScript Editor. You
open the script to which you want to add the actions, turn on recording, and then perform
the actions in the relevant application. AppleScript Editor writes down the AppleScript
commands for the actions.

Recording sounds like the perfect way to create scripts quickly, as it enables you to
perform the actions the usual way—interactively in the application—and either simply use
the resulting commands in AppleScript Editor or learn them easily and adapt them to your
needs. The problem is that only a few applications generate the necessary Apple Events
for recording to work.

Finder is one application that is recordable, and you’ll use it in a moment. Another
recordable application is BBEdit, the powerful text editor from Bare Bones software
(www.barebones.com).

Ask the Expert

Q: How can I find out whether an application is recordable by AppleScript Editor?

A: i you suspect an application may be recordable but don’t know for sure, you can find
out quickly enough: Just turn on recording in AppleScript Editor, and then perform a few
actions in the application—for example, clicking buttons on the toolbar or choosing menu
commands. If AppleScript Editor doesn’t notice that you’re performing actions in the other
application, you’ll know that you can’t record the actions.

37

www.barebones.com

38 AppleScript: A Beginner's Guide

RecordingLActions: Repositioning and
t

Resizing the Finder Window

Record actions into AppleScript Editor by turning on recording and then resizing and

repositioning the Finder window. Follow these steps:

1.
2.

In AppleScript Editor, click on a new line after the end tell statement.

Click the Record button on the toolbar to start recording. You can also press s-SHIFT-R
or choose Script | Record.

Click the Finder window to activate it. You’ll see AppleScript Editor begin a tell block
and register commands for activating Finder, selecting the window, and establishing
where the Finder window is:
tell application "Finder"

activate

select Finder window 1

set position of Finder window 1 to {899, 152}
Drag the Finder window so that its upper-left corner is positioned where you want it.
This example uses the upper-left corner of the Mac’s screen, just below the menu bar.

Drag the resize handle in the lower-right corner of the Finder window to make the
window the size and shape you prefer.

Click the View button on the toolbar for whichever view you want to apply. This
example uses Column view. (Click the button even if the Finder window is already
showing the view you want.)

Click the Applications folder in the sidebar (or choose Go | Applications) to display the
Applications folder.

In the AppleScript Editor window, click the Stop button on the toolbar to stop
recording. You can also press s-. (s¢ and the PERIOD key) or choose Script | Stop. When
you issue the Stop command, AppleScript Editor adds the end tell statement to close
the tell block.

The tell block you’ve recorded should look something like this:

tell application "Finder"
activate
select Finder window 1
set position of Finder window 1 to {899, 152}
set position of Finder window 1 to {1, 44}

Chapter 3: Creating Your First Script 39

set bounds of Finder window 1 to {1, 44, 800, 605}
set current view of Finder window 1 to column view
set target of Finder window 1 to folder "Applications" of
startup disk
end tell
10. Delete any extra statements that you’ve recorded accidentally. AppleScript Editor tries

to follow everything you do, so any extra click shows up as a command.

Examining the Recorded Code

Let’s look quickly at what happens in the code you recorded so that we know which parts
to keep and which parts to delete.

Activating an Application
The activate statement activates the Finder in AppleScript. This is the AppleScript
equivalent of you clicking the Finder button on the toolbar.

Because the Finder will already be activated by this point in the script, you can get rid
of this statement. (You’ll make this change in the next Try This section.)

Selecting the Finder Window

The select Finder window 1 statement selects the first Finder window. AppleScript
considers the open Finder windows to be arranged in a stack from front to back, numbered
by their index position. That means the frontmost Finder window is the first window, the
one behind it is the second, the next the third, and so on.

When you select a Finder window, you bring it to the front of the stack, making it the
first window; the previously first window is now second, and so forth. Similarly, if you
open a new Finder window, the Finder automatically puts that window at the front. So it’s
easy for things to get complicated when selecting Finder windows in scripts.

Because your script opens a Finder window, that window will already be at the top of
the stack, so you can delete this statement too.

Setting the Position of the Window

The set position of Finder window 1 to {899,152} statement positions the Finder window
by defining where its upper-left corner appears: 899 pixels from the left edge of the screen
and 152 pixels from the top edge (but see the nearby Caution for a complication).

40 AppleScript: A Beginner's Guide

CAUTION

There are two complications when positioning Finder windows. First, the vertical
measurement is not from the top edge of the Finder window itself, as you'd expect,

but from the bottom edge of the Finder window's title bar. This means you must add

22 pixels (the depth of the title bar) to the top measurement to place the Finder window
correctly. Second, if you're placing the Finder window on the Mac’s primary screen, you
must also allow another 22 pixels at the top of the screen for the Mac OS X menu bar.
So normally you need to add 44 pixels (22 + 22) to the vertical offset measurement to
place a Finder window at the top of the screen.

In fact, that first set position statement is the Finder registering the window’s initial
position in case you want to be able to duplicate it; you can delete this statement. The
second set position statement (set position of Finder window 1 to {1, 44}) is the one that
positions the Finder window where you want it.

Ask the Expert

Q: What happens to the positioning if my Mac has a second monitor attached?

A: The coordinates start from the upper-left corner of your Mac’s primary monitor—the
monitor on which the menu bar and the Dock appear. You can change which monitor
is the primary monitor by dragging the menu bar from one monitor to the other on the
Arrangement tab of Displays preferences.

If you have a secondary monitor positioned to the left of the primary monitor, use
negative horizontal values to position windows on it (for example, —800 is 800 pixels to
the left of the O position). If you have a secondary monitor positioned above the primary
monitor, use negative vertical values to position windows on it.

Resizing the Window
To resize a window, you tell the Finder to set its bounds. So the set bounds of Finder
window 1 to {1, 44, 800, 605} statement positions the window like this:

The window’s left border appears 1 pixel from the left edge of the screen.

The window’s top border appears just below the bottom edge of the Mac OS
X menu bar (allowing 22 pixels for the menu bar and 22 pixels for the Finder
window’s title bar).

The window’s right border appears 800 pixels across the screen from the left edge.

The window’s bottom border appears 605 pixels down the screen from the top edge.

Chapter 3: Creating Your First Script

View Finder Command Finder Shortcut Term
Icon view View | As Icons 31 icon view
List view View | As List 36-2 list view
Column view View | As Columns $-3 column view
Cover Flow view View | As Cover Flow -4 flow view

Table 3-1 AppleScript Terms for the Finder’s Four Views

Changing the View

Each Finder window can be in any of four views: Icon view, List view, Column view,
or Cover Flow view. To set the view, you use a set current view to statement and the
appropriate view term from Table 3-1. For example, a set current view to column view
statement sets the view to Column view.

NOTE

Sefting a window’s bounds lets you both resize and reposition the window. Just position
the borders in the appropriate places.

Editing the Script

Now edit your script to integrate the recorded statements from the second tell block
into the first tell block and to create a nested tell block that works with the front Finder
window. Follow these steps:

1. To start with, your script should look like this, with minor variations for the window
positions and the view you chose:

(*Start a tell block to the Finder.
Open a window to the Documents folder.
Set the view to Column view. *)
tell the application "Finder"
open folder "Documents" of home
--close every window
end tell
tell application "Finder"
activate
select Finder window 1
set position of Finder window 1 to {899, 152}
set position of Finder window 1 to {1, 44} (conﬁnued)

42

AppleScript: A Beginner's Guide

set bounds of Finder window 1 to {1, 44, 800, 605}

set current view of Finder window 1 to column view

set target of Finder window 1 to folder "Applications" of
startup disk
end tell

. Delete the lines shown in boldface (from the --close every window comment to the

first set position of Finder window 1 statement) to collapse the script to a single tell
block:

(*Start a tell block to the Finder.
Open a window to the Documents folder.
Set the view to Column view. *)
tell the application "Finder"
open folder "Documents" of home
set position of Finder window 1 to {1, 44}
set bounds of Finder window 1 to {1, 44, 800, 605}
set current view of Finder window 1 to column view
set target of Finder window 1 to folder "Applications" of
startup disk
end tell

. Delete the set position of Finder window 1 statement as well. You don’t need this

statement because the set bounds of Finder window 1 statement both resizes and
positions the window.

Create a nested tell block to deal more neatly with all the statements that manipulate
Finder window 1. The boldfaced statements are the ones that have changed:

(*Start a tell block to the Finder.
Open a window to the Documents folder.
Set the view to Column view. *)
tell the application "Finder"

open folder "Documents" of home
tell the front Finder window
set bounds to {1, 44, 800, 605}
set current view to column view
set target to folder "Applications" of startup disk
end tell
end tell

. Press -k or click the Compile button on the toolbar to compile the script. AppleScript

Editor automatically indents the nested tell block so that it is easy to read:

(*Start a tell block to the Finder.
Open a window to the Documents folder.
Set the view to Column view. *)

tell the application "Finder"

Chapter 3: Creating Your First Script 43

open folder "Documents" of home
tell the front Finder window
set bounds to {1, 44, 800, 605}
set current view to column view
set target to folder "Applications" of startup disk
end tell
end tell

6. Save the script (press 3-s), but don’t run it just yet.

Dealing with Errors

When you tell AppleScript exactly what to do, and it is able to interpret each of your
commands correctly, your script runs perfectly. But all too often, you’ll run into a problem
that causes an error. When you do, AppleScript displays an error message telling you

that a problem has occurred. You’ll then need to correct the code to make the script run
correctly.

ALY Resolving an Error in Your Code

Try dealing with an error that occurs in a script. Follow these steps:

1. Click the Run button or press %-R to run your script. The Finder window opens, moves
to the specified position, and changes to your chosen view—but then an error occurs
(see Figure 3-4).

AppleScript Error

L Finder got an error: Can't set startup disk of Finder
window id 7244 to folder "Applications” of startup
disk of Finder window 1.

o)

Figure 3-4 AppleScript warns you when an error occurs in a script you're running.

(continued)

44

AppleScript: A Beginner's Guide

2. Read the error message—for example: Can’t set startup disk of Finder window id 7429
to folder “Applications” of startup disk of Finder window 1. Note its contents and
where it occurs. The problem is that the tell statement needs to go to the Finder rather
than to the front window.

3. Click the OK button to dismiss the dialog box.

4. Edit the problem statement. You will often need to look up the solution to errors;
Chapter 10 offers suggestions on where to look. For now, move the set target to
folder "Applications' of startup disk statement out of the nested tell block, put it
in the outer tell block, and spell out the window that it is to affect. The moved and
revised statement is shown in boldface in the next listing.

(*Start a tell block to the Finder.
Open a window to the Documents folder.
Set the view to Column view. *)
tell the application "Finder"
open folder "Documents" of home
tell the front Finder window
set position to {1, 44}
set bounds to {1, 44, 800, 605}
set current view to column view
end tell
set target of the front Finder window to folder "Applications"

of startup disk
end tell

5. Compile the script, run it, and make sure it works without raising an error.

6. Save the changes to the script (for example, press -S).

Wrapping a Line of Code

Lines of code can easily grow longer than the width of the AppleScript Editor window—
but AppleScript Editor gives you an easy way to avoid scrolling left and right to see your
statements in their entirety.

If you’ve selected the Wrap Lines check box in Editing preferences, AppleScript
Editor automatically wraps lines of code to fit within the window. And if you selected
the Indent Wrapped Lines By check box, AppleScript Editor automatically indents the
wrapped lines by however many spaces you chose. This enables you to see instantly
which lines of code are wrapped.

Chapter 3: Creating Your First Script

If you’ve cleared the Wrap Lines check box, you can break a line of code manually
by placing the insertion point where you want to break the line and then pressing OPTION-
RETURN. AppleScript Editor inserts the continuation character to show that the line has
been broken visually but continues logically. The continuation character appears as a “not
sign” symbol, a horizontal line with a downward hook at the right end: the — character. If
you want to insert this character without breaking the line, press OPTION-L instead.

TIP

Even if you've turned wrapping on, you can break lines of code manually as needed.
For example, you may find it better to break a line of code at the most logical point
rather than have AppleScript Editor break it at the point dictated by the window width.

Breaking Lines of Code Manually

Try breaking the long set target statement near the end of the script onto two lines.

Position the insertion point at a handy place, such as after the front Finder window,
and then press OPTION-RETURN. AppleScript Editor inserts the continuation character and
breaks the line, indenting it to the same level:

end tell

set target of the front Finder window -

to folder "applications" of startup disk
end tell

Press -k or click the Compile button to compile the script, and AppleScript Editor
indents the continued line to the next level so that you can more easily see that it is
continued:

end tell
set target of the front Finder window -
to folder "applications" of startup disk
end tell

So far, the script opens a Finder window, resizes and repositions it, changes the view,
and then displays the contents of another folder. Now let’s make the script open TextEdit,
create a new document, add some text to it, and save it automatically. To find the commands
needed, we’ll open the AppleScript dictionary file for TextEdit.

45

46 AppleScript: A Beginner's Guide

Opening a Dictionary File

To find out the AppleScript verbs, classes, and properties you need to control an

application, you open the application’s AppleScript dictionary. The dictionary explains the

AppleScript structure of the application and how to use it.
You can open an application’s dictionary file in either of two ways:

Use the File | Open Dictionary command from AppleScript Editor. This is the
normal and more formal way. You’ll probably want to use this way most of the time.

Drag the application’s icon and drop it on the AppleScript Editor icon. This way works
well when the AppleScript Editor icon appears on the Dock (as it does when AppleScript
Editor is open) and you’ve got a Finder window open to the Applications folder.

Opening the Dictionary File for TextEdit

To open the dictionary file for TextEdit, follow these steps:

1. In AppleScript Editor, choose File | Open Dictionary or press %-SHIFT-0 to display the

Open Dictionary dialog box (see Figure 3-5).

Select items o open their diclivnaries.

Nam Kind [vesion [patn
o SuperDuper Application Wersion 1.5.5 ,‘Applications.."Su,.‘
o SuperDuper Application Wersion 1.5.5 PMolume s/ My B oo
A yncuid Application 4.2 fsystemfLibrary /1
A System bvents Application 132 fuystem fLibrary /
@5 System Preferences Application 5.0 Solume s by D oo
System Prefersnces HApplication 52 Fhpplications, Sy
w System Profiler Application 1057 fApplications, Uti
i Terminal Application 202 fapplications/Uti
’.. Te xtEdit Application SfApplications/Te
=) TextEdit Application 1.5 Solume s/ Iy B oo
@ TextWrangler Application 213 HMolume sy B oo
@’ lextWrangler Application 2.3 Applicationsy e
URL Aviess Sriplinng Applicdliun 1.10 fEysiem fLibirary
@ URL Access Scripting Application (Classic) 2.5 FSystem FolderfS
24 |R Printer Sharing Appliratinn (Classic) inz fSystem Frlderf o)
A VerifiedDownloadtgent Application 1.1 ijslemjLihrarwm
\¥ irtual PC Application 7.0.2 fApplications/Win ¥
1€ : J >

[Cancel } E 0K 3

4

Figure 3-5 In the Open Dictionary dialog box, either pick the application from the list or click

the Browse button to locate it elsewhere.

Chapter 3: Creating Your First Script

NOTE

If you find two or more listings for the application, choose the one with the highest

version number (in the Version column). If two or more versions have the same number,

pick the one in your Applications folder over any others.

2. Select the entry for TextEdit, and then click the OK button. The TextEdit dictionary
file opens in a AppleScript Editor window that bears the application’s name, so you
can easily see which dictionary it is (see Figure 3-6).

TIP

You can open multiple dictionary files at once from the Open Dictionary dialog box.
Click the first dictionary file, and then s¢-click each of the others you want; click the OK
button when you've finished choosing. Alternatively, click the first dictionary file and
then sHiFT-click the last to select a range of files.

Like iTunes, the Dictionary Viewer window has three columns in the upper part of
the window for browsing through its contents. The main section of the window is the
dictionary pane, which shows the definition for the selected term.

oD on oos =

&] Standard Suite (@ close

[Text Suite (@ count

[TextEdit suite (@ delete
Type Definitions (@ duplicate
(@ exists
(@ get
(® make
(® move
(@ open
(@ print
@ quit

9 save v

7

close v : Close an object.

close specifier : the object for the command
[saving ask/nofyes] : Specifies whether changes should be saved before closing.
[saving in alias] : The file in which to save the object.

count v : Return the number of elements of a particular class within an object.

count specifier : the object for the command
[each type] : The class of objects to be counted.
-+ integer

NELS

Figure 3-6 Once you've opened the TextEdit dictionary file, you can look up the commands,
classes, and properties you need.
(continued)

48 AppleScript: A Beginner's Guide

If AppleScript Editor opens the dictionary file in a small window, expand it to a decent
size so that you can see what you’re doing. Zoom it to fill the screen if you prefer.

You can resize the different areas of the window by dragging the divider bars that
separate them. For example, if you want to have more space in the browsing area, click
the separator bar above the dictionary pane and drag it downward.

Finding the Terms You Need

As you’ll probably remember from the PowerPoint example near the beginning of this
chapter, all you need to do to launch an application and create a new document is give the
command to make a new document—for example:

tell application "TextEdit" to make new document

Sure enough, when you run this command in a script, AppleScript activates TextEdit,
if it’s already running; if TextEdit isn’t running, AppleScript launches TextEdit and then
activates it.

But to get beyond this, we’ll use the dictionary. Let’s start by looking up the make
command.

Using the Dictionary File

We’ll look at dictionary files in more detail in the upcoming chapters. For now, follow
these steps to find the commands needed and to enter them in the script:

1. Make sure Standard Suite is selected in the left column of the three and that the
leftmost of the three View buttons on the toolbar is selected.

2. In the second column, click the make command to display its information in the
dictionary pane (see Figure 3-7), which tells us this:

The new parameter is what we need to make a new object, such as the new
document we want to create. This parameter has no brackets around it, which
means that it’s required.

The at parameter lets you choose where to insert the new object—for example, at
the front or at the back of the TextEdit stack of windows. This parameter appears
in brackets, which means it’s not required; we’ll just let TextEdit place the new
document in a window at the front.

Chapter 3: Creating Your First Script 49

00 9] TextEdit B

Q- Terminology

@ close

|- Standard Suite

[S
[Text Suite » | (@ count
[TextEdit suite » | (@ delete
& Type Definitions * (@ duplicate
(@ exists

(@ ger

(@ open
@ print
(@ quit

(@ save

IEL

make v : Make a new object.

make
new type : The class of the new object.
[at location specifier] | The location at which to insert the object.
[with data any] : The initial data for the object.
[with properties record] : The initial values for properties of the object.
— specifier

A

Figure 3-7 The dictionary viewer shows the selected item’s information in the dictionary pane.

The with data parameter lets you place initial data in the object. This parameter is
optional, too, and we won’t use it either.

The with properties parameter lets you set properties for the new object. This
parameter is also optional and one we won’t use right now.

3. Click in the main AppleScript Editor window and comment out all the Finder
commands by entering (* (an opening parenthesis and an asterisk) before the first
tell statement and *) (an asterisk and a closing parenthesis) after the last end tell
statement. You’re commenting out these statements so that they don’t run while you’re
creating and testing the TextEdit part of the script.

4. Now create a tell block for TextEdit at the end of your script:

tell the application "TextEdit"

end tell

5. Inside the tell block, add a make new document statement, as shown in boldface here:

tell the application "TextEdit"
make new document

end tell (continued)

50 AppleScript: A Beginner's Guide

6. Now click the TextEdit Suite item in the left column of the dictionary viewer, and
then click the document item in the second column to display information about the
document class. Figure 3-8 shows the information you’ll see.

7. The property we’re interested in here is the text property, which contains the text of
the document. Set the text property to assign text to the front document. The text you
assign is a string that includes two return characters, which break the text into three
paragraphs.
set the text of the front document to "Latest Report" & return -

& "Here is the latest news from the front." & return & "Sales
have doubled!"

8. Next we need to look up the properties for the paragraph class to see how TextEdit
lets us manipulate it. Click in the Search box in the upper-left corner of the dictionary
viewer window and type parag. The dictionary viewer window displays results as you
type.

9. In the list of results, click the paragraph class—the one with the white C in a purple box
to its left. The dictionary pane displays the information on the class (see Figure 3-9). As
you can see, there’s a color property that sets the font’s color, a font property that sets
the font’s name (for example, Arial or Times New Roman), and a size property that sets
the font size in points.

8eo0o [¢] TextEdit =)

Q- Terminology

[application [

tandard Suite
ext Suite
extEdit suite
ype Definitions

TV yYvVY

-

document » [inh. document = item; see also Standard Suite] : A TextEdit docurment.

ELEMENTS [SEE STANDARD SULTE]
contained by application, application.

PROPERTIES
text (text) : The text of the document.

PROPERTIES [SEE STANDARD SULTE]

modified (boolean, rfo) | Has the document been modified since the last save?
name (fext) : The document's name.

path (text) : The document's path.

A

Figure 3-8 The document class includes a text property that contains the text of the document.

Chapter 3: Creating Your First Script

800 TextEdit ©

a4 |» A A = =, g Q. parag Q
Kind Suite Description

I3 paragraph Element Text Suite

I3 paragraph Element Text Suite

I3 paragraph Element Text Suite

€ paragraph Text Suite This subdivides the text into paragraphs.

I3 paragraph Element Text Suite

I3 paragraph Element Text Suite

paragraph » [inh. item] : This subdivides the text into paragraphs.

ELEMENTS
contains attachments, attribute runs, characters, paragraphs, words; contained by attribute runs,
characters, paragraphs, texts, words.

PROPERTLES

color {color) : The colar of the first character.

font (text) : The name of the font of the first character.
slze (integer) : The size in points of the first character,

A

Figure 3-9 The paragraph class contains information on the properties of the paragraph in
TextEdit.

10. Start a tell block to the front document like this:

tell application "TextEdit"
make new document
set the text of the front document to "Latest Report" & return -
& "Here is the latest news from the front." & return -
& "Sales have doubled!"
tell the front document
end tell

11. Within the tell block to the front document, insert a nested tell block to the first
paragraph that sets the font property and the size property, as shown in boldface here:

tell application "TextEdit"
make new document
set the text of the front document to "Latest Report" & return -
& "Here is the latest news from the front." & return -
& "Sales have doubled!"
tell the front document
tell the first paragraph
set the font to "Arial Bold"
set the size to 18
end tell
end tell
end tell
(continued)

51

52 AppleScript: A Beginner's Guide

12. After the end tell statement for the first paragraph, insert another nested tell block
to the second paragraph that sets the font property and the size property, as shown in

boldface here:

tell application "TextEdit"
make new document
set the text of the front document to
& "Here is the latest news from the front.
& "Sales have doubled!"
tell the front document
tell the first paragraph
set the font to "Arial Bold"
set the size to 18
end tell
tell the second paragraph
set the font to "Arial"
set the size to 12
end tell
end tell
end tell

13. Set the bounds of the front TextEdit window by using the same technique you learned
earlier in this chapter for the Finder window, as shown in boldface here:

"Latest Report" & return -
" & return -

tell application "TextEdit"
make new document
set the text of the front document to
& "Here is the latest news from the front." & return -

"Latest Report" & return -

& "Sales have doubled!"
tell the front document

tell the first paragraph
set the font to "Arial Bold"
set the size to 18

end tell

tell the second paragraph
set the font to "Arial"
set the size to 12

end tell

end tell
set the bounds of the front window to {800, 22, 1400, 822}

end tell

14. Now all that remains is to save the document. Type save into the Search box in the
dictionary viewer window to find the information about the save verb. As you can see
in Figure 3-10, save takes an optional as parameter to specify which file type to use
and an optional in parameter to specify the filename (and the folder path).

Chapter 3: Creating Your First Script 53

600 [¢) TextEdit =)
4> ALANE — Q- save| %)
Kind Suite Description
@ save Command Standard Suite Save an object.

save v ! Save an object.

save specifier : the object for the command
[as text] : The file type in which to save the data.
[In alias] : The file in which to save the object.

A

Figure 3-10 The TextEdit dictionary shows that the save verb takes two parameters, both of
which are optional.

15. Both of these parameters are optional, so you can use the save verb without either,
in which case TextEdit prompts the user to enter the filename and choose the folder
path if the document has never been saved. That’s the behavior we’ll use here, so add
a save the front document statement before the final end tell statement in the script,
as shown in boldface here:

tell application "TextEdit"
make new document
set the text of the front document to "Latest Report" & return -
& "Here is the latest news from the front." & return -
& "Sales have doubled!"
tell the front document
tell the first paragraph
set the font to "Arial Bold"
set the size to 18
end tell
tell the second paragraph
set the font to "Arial"
set the size to 12
end tell
end tell
set the bounds of the front window to {800, 22, 1400, 822}
save the front document
end tell
(continued)

54 AppleScript: A Beginner's Guide

16. Uncomment the Finder part of the script by removing the (* from before the first tell
statement and the *) from after the last Finder-related end tell statement. Your script
should now look like this (with minor variations in the bounds of the windows and the
view used in the Finder):

tell the application "Finder"
open folder "Documents" of home
tell the front Finder window
set bounds to {1, 44, 836, 605}
set current view to column view
end tell
set target of the front Finder window to -
folder "Applications" of startup disk
end tell
tell application "TextEdit"
make new document
set the text of the front document to "Latest Report" & return -
& "Here is the latest news from the front." & return -
& "Sales have doubled!"
tell the front document
tell the first paragraph
set the font to "Arial Bold"
set the size to 18
end tell
tell the second paragraph
set the font to "Arial"
set the size to 12
end tell
end tell
set the bounds of the front window to {800, 22, 1400, 822}
save the front document
end tell

17. Press %-s to save your changes to the script.

18. Press %-R to run the script. When TextEdit displays the Save As dialog box, type a
name for the document and choose the folder in which to save it.

NOTE

If you click the Cancel button in the Save As dialog box, AppleScript displays an error
message. We'll look at how to handle errors in Chapter 10.

Chapter 3:

Creating Your First Script 55

Turning a Script into an Application

To make your script easy to run, you can turn it into a usable application and put an icon

for it somewhere handy—for example, on the Dock.
AppleScript Editor enables you to save a script in the five different formats explained

in Table 3-2.

Script Format

Explanation

Use This Format When

Script This is the basic format for scripts You're creating a script, or you
you run in AppleScript Editor or have a finished script that you want
from the Scripts menu. to run from the Scripts menu.

Application This creates an executable You've created a script that doesn’t
application that you can run use any external components (such
on any Mac. You can include a as documents or graphics) and are
startup screen showing the script's | ready to distribute it.
description, make the script read-
only, and choose to leave it open
after it finishes running.

Script Bundle This creates a script that includes You've created a script that needs

any external components needed,

such as graphics, sounds, or movies.

external components but that you
want to run from the Script menu
rather than as an executable
application.

Application Bundle

This creates an executable
application that you can run on any
Mac. The application includes an
external components needed, sucﬁ
as graphics, movies, or sounds.

You've created a script that uses
external components, and you're
ready to distribute it.

Text

This contains the uncompiled text of
the script.

You need to create a text-only
version of the script so that you can
edit it in a word processor or text
editor.

Table 3-2 File Formats in Which AppleScript Editor Can Save Scripts

56 AppleScript: A Beginner's Guide

Ask the Expert

Q:
A:

When I’m saving a script in the Script format, what happens if I select the Run Only
check box?

The code vanishes into thin air...

More seriously: When you save a script in the Script format, select the Run Only
check box if you want to prevent the commands in the script from being visible.

This sounds odd, but it’s useful when you need to distribute a script but you don’t
want anybody to be able to see how it works. Use this run-only option only for versions of
scripts that are ready for distribution, not for working versions or reference versions that
you need to be able to read and edit.

Making an Application from Your Script

and Adding It to the Dock

Follow these steps to add a description to your script, make an application from it, and add
the application to the Dock so that you can run it easily:

1.

N o 0o s~

In AppleScript Editor, click the Description button at the bottom (unless it’s selected
already) to display the Description pane.

Type a description of what the script does, such as this:

This application opens, positions, and resizes a Finder window, and
then creates a document in TextEdit.

Press -s or choose File | Save to save the script with the description.
Press -sHIFT-S or choose File | Save As to display the Save As dialog box.
Open the File Format pop-up menu and choose Application.

Select the Startup Screen check box.

Make sure that the Run Only check box and the Stay Open check box are both cleared.
(These check boxes will normally be cleared by default.)

If you want, choose the folder in which to save your scripts. AppleScript Editor
automatically suggests the current folder, which will normally be your ~/Library/
Scripts/ folder, but you may prefer to use another folder.

10.
11.

12.

13.

Chapter 3: Creating Your First Script

Click the Save button. AppleScript Editor closes the Save As dialog box and creates
the application.

Open a Finder window to the folder in which you saved the script.

Drag the icon for the script to the applications area of the Dock (the area to the left of
the divider bar, or above the divider bar if you’ve positioned the Dock on the left side
or right side of the screen).

Click the new Dock icon to run the application. The application displays its startup
screen (see Figure 3-11).

Click the Run button to run the application.

This application opens, pesitions, and resizes a Finder window, and then
creates a document in TextEdit

Caur) Ehun

Figure 3-11 The startup screen for a script application lets the user choose whether to run the

script or quit it.

57

This page intentionally left blank

Part ” _

Learning Essential
AppleScript Programming
Techniques

This page intentionally left blank

Chapter4

Working with Variables,
Classes, Operators,
and Coercions

61

62

AppleScript: A Beginner's Guide

Key Skills & Concepts

Working with variables

Understanding AppleScript’s data types

Using operators to perform operations and comparisons
Understanding AppleScript’s classes

Changing data from one type to another

Often, you’ll need to store data temporarily in your scripts so that you can use it later.
To do so, you use variables. For example, instead of asking the user to input his or her
name at each point you need it in the script, you can ask for the user’s name one time via an
input box, store the result in a variable, and then insert that variable throughout the script.
In this chapter, you’ll learn how to declare variables, assign data to them, and use them
in your code. You’ll also learn how to use AppleScript’s operators to perform operations
(such as addition or division) or to make comparisons (such as checking whether one
value is greater than or equal to another value). Finally, I’'ll explain about the different
classes of objects that AppleScript provides and teach you to change data from one type to
another.

Working with Variables

A variable is a named area in memory in which you can store an item of data—for example,
your company’s name, the date two months ago, or the hundreds of thousands of dollars
your company has lost since that date.

When you need to store data during a script, use a variable. You can then retrieve
the contents of the variable whenever you need to use the information, or overwrite the
contents of the variable with new information if needed.

Understanding the Seven Data Types
When you create a variable, you can assign to it any of seven types of data. Table 4-1
explains these data types with examples.

Chapter 4. Working with Variables, Classes, Operators, and Coercions

63

Data Type | Data in the Variable Example or Explanation

Boolean Only true or false true

Integer A whole number (with no decimal places) | 10

Real A double-precision number (with decimal | 39282.87270
places)

Date A floating-point number that has the date | AppleScript lets you retrieve various parts
before the decimal point and the time oﬁhe date—for example, the year, the
after it month, the day, or the time.

List Any quantities that you enter between {"San Francisco”, "Oakland", "Hayward",
braces and separate with commas "San Jose"}

Record A list of pairs of keys and values set client to {name:"Industrial Amalgams",

dty:"City of Industry"}

String Text enclosed within double quotation set prompt to "Save the document?"
marks ("")

Table 4-1 AppleScript Data Types for Variables

When you’re working with AppleScript, you don’t normally need to specify the data
type of a variable explicitly. Instead, AppleScript automatically works out the data type
from the data you assign to the variable and assigns the appropriate data type.

For example, say you create a variable like this:

set IsUserSane to true

From the true value that you assign to the variable, AppleScript infers that the variable
should be Boolean—either true or false—and so gives the variable the Boolean type.

NOTE

If you want to assign the literal string “True” or “False” to a variable, put the string in
quotes. AppleScript then infers that the variable should be a string variable.

Similarly, if you assign a string of text to a variable, AppleScript automatically makes

it a string variable:

set myUsername to "Bill"

Creating a Variable

All you have to do to create a variable is to use a set command to specify a name for it

and assign the data to it. For example, the following statement creates the variable named

myGreeting and assigns the string '"Good morning!" to it:

set myGreeting to "Good morning!"

64 AppleScript: A Beginner's Guide

After you create a variable in a script, the variable retains its contents—the data you
assign it—unless you change the contents by assigning other data. You can do this in
several ways, as you’ll see later in this chapter.

Understanding the Difference Between
the set Command and the copy Command
The examples shown so far in this chapter have used the set command to create a variable
and assign data to it. But there’s also another command you can use to create a variable
and shovel data into it—the copy command.

For most purposes, the copy command has the same effect as the set command, but it
has a different syntax—in effect, it’s the set command’s syntax in reverse. For example,
instead of using set myGreeting to '"Hello"', you can use the copy command, like this:

copy "Hello" to myGreeting

The result of this copy command is to create a variable named myGreeting whose
contents are the string '""Hello"'. For general instances like these, you can use the set
command and the copy command more or less interchangeably.

But the difference between the two commands becomes important when you’re creating
a variable that contains a date, a list, a record, or a script object. Here’s the difference:

If you use a set command, AppleScript assigns to the variable a reference to the object.
The reference is a pointer that means the variable contains whatever the object contains.

If you use a copy command, AppleScript assigns to the variable a separate copy of the
object. This copy is independent of the original—so if the original object changes after
you use the copy command, the variable contains an object with different values than
the original object.

This can lead to confusion if you set two or more variables to point to the same object.
For example, the following code snippet creates a variable named CompanyOffices and
assigns a list of three cities to it: Little Rock, Paris, and Albuquerque. It then creates a
variable named Destinations and uses a set command to assign to it the CompanyOffices
object. It then changes the first item in the Destinations variable and displays a dialog box
showing the first item in the CompanyOffices variable. You’ll learn about dialog boxes in
detail in Chapter 8.

set CompanyOffices to {"Little Rock", "Paris", "Albuguerque"}
set Destinations to CompanyOffices

tell Destinations to set {item 1} to {"Cincinnati"}

display dialog item 1 of CompanyOffices

Chapter 4. Working with Variables, Classes, Operators, and Coercions 65

When you run this code, the dialog box shows Cincinnati rather than Little Rock.
Changing the Destinations variable also changes the CompanyOffices variable, because
both variables point to the same object as a result of the set command.

To prevent the Destinations variable from trampling the CompanyOffices variable
like this, use a copy command to create a separate copy of the CompanyOffices variable
rather than a set command. The code (shown here with the change in boldface) then
displays Little Rock in the dialog box, as you would expect.

set CompanyOffices to {"Little Rock", "Paris", "Albuguerque"}
copy CompanyOffices to Destinations

tell Destinations to set {item 1} to {"Cincinnati"}

display dialog item 1 of CompanyOffices

Understanding the Rules for Naming Variables

AppleScript has several rules for creating the names for variables. These rules aren’t very
restrictive, so you can create a wide variety of variable names without running afoul of
them. Here are the details:

Start with a letter Each variable name must start with a letter.

Use letters, numbers, and underscores only After the first letter, you can use
any combination of letters, numbers, and underscores. Many people use underscores
to separate different words in variable names, as you can’t use spaces or other
punctuation. For example, the variable name first_name is easier to read than the
variable name firstname. You can also use capital letters to separate the parts (for
example, FirstName) or both (for example, First_Name)—it’s your choice.

Don’t worry about capitalization Names are not case-sensitive, but AppleScript
enforces the first capitalization you use. The first time you enter a variable name,
AppleScript takes that to be the way you want to capitalize the variable. So if you
create a variable with the name myCompany, you can enter the name thereafter as
mycompany (or any other variation of capitalization—for example, MYCOmpaNY),
and AppleScript will apply the original capitalization when you compile the script.

TIP

AppleScript's trick of enforcing the first capitalization you use for variables is usually
helpful, but it can be awkward when you realize you want to improve on that initial
capitalization after you’ve compiled the code. In these cases, you need to quit and
restart AppleScript Editor before you can persuade it fo accept your new capitalization.

66

AppleScript: A Beginner's Guide

Avoid reserved words Don’t use any of AppleScript’s reserved words—any of
the words defined as terms in AppleScript. For example, don’t call a variable result
or error, because AppleScript uses those words. This is one of those things that’s
apparently forehead-slapping obvious but in practice easy enough to trip up on,
because most people can’t reel off every single AppleScript keyword. If AppleScript
gives you an unexpected syntax error, see whether you’ve inadvertently stepped on a
reserved word.

NOTE

If you truly must, you can use a reserved word as a variable name by putting it between
vertical bar characters (| characters). For example, if you feel compelled to name a
variable error, use |error| to do so. There’s normally no good reason to do this. You can
also use this syntax to create a variable name that contains characters you otherwise
can’t use, such as spaces or symbols. There's no good reason to do this either unless
you take joy in doing so.

Creating a Variable That Refers to Another Object
Instead of assigning to a variable the contents of an object, you can assign a reference to
the object. Doing this lets you get the current contents of the object whenever you use the
variable rather than what the contents were when you created the variable. This is useful
when the object you’re referring to may change value during the course of a script.

To create a reference, create the variable using the a reference to operator. For
example, the following tell block makes the Finder create a variable named myWin as
a reference to the front Finder window. It then sets the position property of myWin to
position the front Finder window.

tell the application "Finder"
set myWin to a reference to the front window
set the position of myWin to {800, 44}

end tell

That’s all straightforward. But where using the reference makes a difference is when
the object changes. The following expanded tell block (with changes in boldface) opens
another Finder window, this one to the startup disk. Because this new window is now
the front window, the myWin variable now refers to it, so the second set the position of
myWin command repositions the new window rather than the first window.

tell the application "Finder"
set myWin to a reference to the front window
set the position of myWin to {800, 44}
open startup disk
set the position of myWin to {0, 44}
end tell

Chapter 4. Working with Variables, Classes, Operators, and Coercions

Understanding the Scope and Persistence of Variables
AppleScript lets you use two different types of variables: local variables and global variables.

The normal way of using variables is to simply create them as you need them in your
scripts, as the examples so far in this chapter have done. When you create a variable like
this, you get a local variable, one that is available only in the part of the script that creates
the variable and that retains its value only as long as the script is executing.

When you create scripts that consist of only a single part, local variables are all
you need to store data. But when you create scripts that contain multiple subroutines
(a subroutine is a separate section of code that performs a specific function), you may also
need global variables. A global variable is one that is available to all the subroutines in the
script and to the main body of the script. By contrast, a local variable that you create in
one subroutine is available only in that subroutine, not in any of the other subroutines or
in the main body of the script.

The area within which a variable is available is called its scope, so global variables
have global scope and local variables have local scope.

To create a global variable, you need to declare it ahead of time so that your script
knows about it. You declare it by using the term global and the name you want to give the
variable. For example, the following statement declares the global variable myCity:

global myCity

Normally, you declare each global variable at the top level of a script rather than in
one of the subroutines, as in the following example, where the declaration of the global
variable myUserName appears in boldface. This makes the global variable available to
the main body of the script and to each subroutine, which is what you normally want. The
script first calls the get_user_name subroutine, which displays a dialog box prompting
the user to enter his or her name and stores it in myUserName, and then calls the show_
user_name subroutine, which displays the contents of myUserName in a dialog box.

global myUserName

get user name ()
show user name ()

on get user name ()
display dialog "Please type your name:" default answer ""
set myUserName to text returned of the result

end get user name

on show user name ()
display dialog myUserName
end show user name

67

68

AppleScript: A Beginner's Guide

An approach you may need to use sometimes is to declare a global variable in only the
subroutines that need it. The following script declares the global variable myUserName in
the get_user_name subroutine (again, in boldface), making it available to that subroutine
and to the main body of the script but not to the show_user_name subroutine:

get user name ()
show_user name ()

on get user name ()
global myUserName
display dialog "Please type your name:" default answer ""
set myUserName to text returned of the result

end get user name

on show user name ()
display dialog myUserName
end show user name

In this case, moving the declaration to the get_user_name subroutine isn’t a good
idea, as it causes the show_user_name subroutine to fail with an error. This is because
the show_user_name subroutine doesn’t know about the variable myUserName whose
contents the display dialog command tells it to display.

To fix this problem, you need to declare the global variable myUserName in the
show_user_name subroutine as well, as shown here in boldface:

get user name ()
show_user name ()

on get user name ()
global myUserName
display dialog "Please type your name:" default answer ""
set myUserName to text returned of the result

end get user name

on show user name ()
global myUserName
display dialog myUserName
end show user name

NOTE

Within a script, each global variable name must be unique. Each local variable name
must be unique within its scope, but you can use the same local variable names in
different scopes if you want. Generally speaking, it's best not to reuse local variable
names in the same script because having multiple variables with the same name tends
to be confusing.

Chapter 4. Working with Variables, Classes, Operators, and Coercions 69

You can also declare local variables ahead of time by using the term local and the
name you want to give the variable. For example, the following statement declares the
local variable Boss:

local Boss

Each local declaration must appear in the part of the script in which you will use it—in
the main body of the script (if it’s not in a subroutine) or in the subroutine that uses it.

Ask the Expert

Q: Do I need to declare local variables ahead of time using the local term?

A: 1n a word: No.

Even when you start declaring global variables, you don’t need to declare local
variables ahead of time by using the local term: You can continue to create your local
variables by using set statements at any point in your code.

But—you sensed a “but” coming, didn’t you?—when you use global variables, you
may find it helpful to use local declarations so that your code is absolutely clear about the
scope of each variable.

You may also benefit from declaring local variables ahead of time so that you can
place all the local variable declarations for a subroutine together in the same place, where
you can easily see all the variables the subroutine uses. This is helpful both when you
revisit your code after a while and when someone else is trying to come to grips with
your code.

Using a Global Variable

In this example, you use a global variable to make information available to different

subroutines in a script. This example uses a script shown earlier in the chapter. The script

includes several features you haven’t learned about in detail, including creating and

calling subroutines and displaying dialog boxes, but you’ll find it easy to work through.
To create the script, follow these steps:

1. In AppleScript Editor, press %-N or choose File | New to create a new script.

2. Create the global variable myUserName at the beginning of the script by typing the
global term and the variable’s name:

global myUserName
(continued)

70 AppleScript: A Beginner's Guide

3. Call the get_user_name subroutine by typing its name and putting empty parentheses
after it, as shown in boldface here. This makes AppleScript run the get_user_name
subroutine.
global myUserName
get user name ()

4. On the next line, call the show_user_name subroutine in the same way, as shown in
boldface here:
global myUserName
get user name ()
show user name ()

5. Create the get_user_name subroutine by typing an on command, the subroutine’s
name, and a pair of parentheses. Then, on a new line, type the end keyword to end the
subroutine. These changes appear in boldface here:
global myUserName

get_user name ()
show user name ()

on get user name ()

end

6. Press -k or click the Compile button on the toolbar to compile the script. You’ll
notice that AppleScript automatically adds the get_user_name subroutine’s name to
the end statement, as shown in boldface here:
global myUserName

get user name ()
show_user name ()

on get user name ()

end get user name

7. Inside the get_user_name subroutine, add a display dialog command that prompts
the user to type his or her name in a text-entry field that is empty at first (the default
answer "' "' parameter). Set the myUserName global variable to the text returned by
the text-entry field. The changes appear in boldface here:
global myUserName

get user name ()
show_user name ()

on get user name ()

Chapter 4. Working with Variables, Classes, Operators, and Coercions 71

display dialog "Please type your name:" default answer ""
set myUserName to text returned of the result
end get_ user name
8. Create the show_user_name subroutine and give it a display dialog command that
displays the contents of the myUserName variable. The changes appear in boldface
here:
global myUserName

get user name ()
show_user name ()

on get_user_name ()
display dialog "Please type your name:" default answer ""
set myUserName to text returned of the result

end get user name

on show user name ()
display dialog myUserName
end show user name
9. Press %-R or click the Run button on the toolbar to run the script. When the first dialog
box appears, type a name in the text-entry field, and then click the OK button. Verify
that the text you typed appears in the second dialog box.

10. Save the script under a name of your choice.

Using Script Properties to Store Data
Permanently in the Script

When you need to store data from one time you run a script to the next time, use a script
property rather than a variable. A script property is a piece of data stored in the script that
you can get and set as needed.

Script properties largely follow the same naming rules you learned for variables earlier
in this chapter:

Each name must be unique within the script. (Script properties are global to the script;
you can’t restrict them to certain areas of it.)

Each name must start with a letter.

After that first letter, you can use letters, numbers, and underscores as you wish, but
no spaces or symbols.

72

AppleScript: A Beginner's Guide

You should avoid stepping on AppleScript’s reserved words. But if you really want,
you can use a reserved word by cordoning it off with vertical bar characters (for
example, Idialogl if you want to name a property “dialog”). You can also use vertical
bars to create property names featuring spaces and symbols.

To declare a script property, you use the term property, the name you want to assign
the property, a space, a colon, another space, and then the property’s initial value. You
can’t declare a property without assigning an initial value—a notable difference from

variables. But that initial value can be empty—for example, an empty string ("'"") or an

empty list ({}).

NOTE

You can initialize a property with any AppleScript data type or object. For example,
you can initialize a property with a list, a window, or a document.

For example, the following statement declares the script property committee_name
and assigns the string '"Management Steering Committee'' to it.

property committee name : "Management Steering Committee"

The best place to declare your script properties is right at the beginning of a script,
where anyone reading your code will notice the declarations immediately. There’s no
obligation to put property declarations here, though—you can place them anywhere in the
top level of the script. You can’t put them in a tell block or in a subroutine handler.

If you like, you can use script properties for storing information that doesn’t change,
but in many cases, you’re better off simply hard-coding the information into the script.
What you’ll usually find more useful is using script properties to store information that
does change. For example, you can store the folder in which the user last ran the script,
and then use that folder as the default folder the next time, as shown here. This example
uses the choose folder command, which you’ll meet in detail in Chapter 8.

property starting folder : "/"
set starting folder to choose folder default location starting folder

CAUTION

Here's one thing you need to be careful about with script properties—once you've set
a property correctly in a script and compiled the script, don’t run the script so that you
change the value before distributing the script—otherwise, the script will start with the
data you left in it. Instead, compile the script, and check to make sure it's fine. Then
make a trivial change (for example, edit a comment) and compile the script again so
that it remains as you wrote it.

Chapter 4. Working with Variables, Classes, Operators, and Coercions 73

Using a Script Property

In this example, you declare a script property that contains a committee name, display a
dialog box that prompts the user to confirm the name, and then set the property to the result
of the dialog box. You’ll learn all the details of how to use dialog boxes in Chapter 8,
but you’ll find this preview straightforward.

Follow these steps to create the script:

1. In AppleScript Editor, press %-N or choose File | New to create a new script.

2. Declare a property named committee_name and set its initial value to '"Management
Steering Committee'':

property committee name : "Management Steering Committee™

3. Add the display dialog statement shown in boldface here, which displays the value of
the committee_name property as its default value and prompts the user to change or
accept it:
property committee name : "Management Steering Committee™
display dialog "Please confirm the committee name:" default answer
committee_name

4. Add a set statement that sets the committee_name property to the text returned from
the dialog box’s text-entry field, as shown in boldface here:
property committee name : "Management Steering Committee™
display dialog "Please confirm the committee name:" default answer
committee name
set committee name to text returned of the result

5. Press #-s or click the Run button on the toolbar to run the script. The dialog box shown
in Figure 4-1 appears.

Please confirm the committee name:

IManage ment Steering Committee I

Figure 4-1 Change the committee name displayed in the dialog box to change the property’s
value in the script.

(continued)

74

AppleScript: A Beginner's Guide

6. Type a different name in the text entry field, and then click the OK button to close the
dialog box. AppleScript stores the name you entered in the script.

7. Run the script again. This time, the name you entered appears in the dialog box.

8. Save the script under a name of your choice.

Performing Operations with Operators

An operator in AppleScript is an expression or a character that performs an operation on
specified data. Some operators are peculiar to AppleScript, but you’ll already be familiar
with others that have more general usage. For example, in the expression 100-50, the —
sign is a subtraction operator that tells you (or AppleScript) to subtract the second value
(50) from the first value (100).

Like that subtraction operator, most operators work on two values, or operands. These
operators are known as binary operators. The other kind of operator is a unitary operator,
one that works on a single operand.

Table 4-2 explains AppleScript operators by category and gives examples of them in use.

Operator Explanation or Details Example
Arithmetic Operators
+ Addition 5+3=8
- Subtraction 5-3=2
- Unary negation (making a number negative) | -3
* Multiplication 5*3=15
/ Division 6/3=2
Div Integral division (returning the integer value 27 div 7 returns 3
from division and ignoring any remainder) 28 div 7 returns 4
Mod Modoulus (returning the remainder from 9 mod 2 returns 1
dividing the first number by the second 10 mod 2 returns 0
number) 24 mod 7 returns 3
A Exponentiation (raising fo the power) 273 returns 8
274 returns 16
275 returns 32
Table 4-2 AppleScript's Operators

Chapter 4:

Operator

Working with Variables, Classes, Operators, and Coercions

‘ Explanation or Details

75

‘ Example

Logical Operators

And Inclusion (this one and that one) name hegins with "T" and size is
greater than 10000000

Or Alternation (this one or that one) name begins with "T" or name
begins with "W"

Not Exclusion (this one but not that one) name begins with "T" not name

begins with "W"

Concatenation Operator

&

Concatenation (joining two strings of data
together info a single string)

"Good morning, " & "Universe!"
creates the string Good morning,
Universe!

Containment Operators

begin[s] with/start(s]
with

Finds the specified item at the beginning
of the target

name begins with "A"

end[s] with

Finds the specified item at the end of the target

name ends with "tion"

contains

Finds the specified item in the target

name contains "test"

does not contain/
doesn’t contain

Finds a target without the specified item

name does not contain "Project”

is in Finds a target that matches one of the name extension is in {"doc",
specified items "docx"
is not in Finds a target that doesn’t match any of the name extension is not in {"doc",

specified items

“do‘x"

is contained by

Checks whether an item is contained by
another item

{"Tokyo", "Paris"} contains
{"Paris"} returns true

is not contained by/
isn't contained by

Checks whether an item is not contained by
another item

{"Tokyo", "Paris"} does not contain
{"Seoul"} returns true

Comparison Operators for Equality

is equal to

You can also use =, equal, equals, or equal to.
AppleScript automatically changes any of the
text variations to is equal to when you compile
the script.

1is equal to 2 returns false

is not equal to

You can also use /=, does not equal, doesn’t
equal, or is not equal (without "to"). AppleScript
automatically changes /= to # (the not-equal
sign) and the text variations fo is not equal to
when you compile the script.

"cheese" is not equal to "burger"
returns true

Returns true if the first item is the same as
or equal fo the second item; otherwise,
returns false

Table 4-2 AppleScript's Operators (continued)

object1 is object2

76

Operator

AppleScript: A Beginner's Guide

Explanation or Details

Example

is not

Returns true if the first item is not the same as or
equal to the second item; otherwise, returns false

object] is not object?2

Comparison Operators for Precedence

is less than

You can also use < or less than. AppleScript
automatically changes less than to is less than
when you compile ie script. Returns true if the
first item is less than the second item.

1 is less than 2

is greater than

You can also use > or greater than. AppleScript
automatically changes greater than to is greater
than when you compile the script.

"bun"is greater than "burger"
returns false

is greater than or
equal to

You can also use > or is greater than or equal.
AppleScript automatically changes the fext
version to is greater than or equal to when you
compile the script.

4 is greater than or equal to 5
returns false

is not greater than or
equal to

You can also use is not greater than or equal, isn’t
greater than or equal, or isn’t greater than or equal
to. AppleScript automatically changes the text
versions to is not greater than or equal to when
you compile the script.

4 is not greater than or equal to 5
returns true

is less than or equal
to

You can also use < or is less than or equal.
AppleScript automatically changes is less
than or equal to is less than or equal to when you
compile the script.

10 is less than or equal to 10
returns true

is not less than or
equal to

You can also use is not less than or equal, isn’t
less than or equal, or isn’t less than or equal to.
AppleScript automatically changes the text
versions to is not less than or equal to when you
compile the script.

10 is not less than or equal to 10
returns false

comes before

Tests whether a number or a string comes
before another number or string

1 comes before 2 returns true

does not come before

Tests whether a number or string doesn’t
come before another number or string. You
can also use doesn’t come before. AppleScript
automatically changes this to does not come
before when you compile the script.

1 does not come hefore 2 returns
false

comes after

Tests whether a number or string comes after
another number or string

"steak" comes after "fries"
returns true

does not come after

Tests whether a number or string does not
come after another number or string

You can also use doesn’t come after. AppleScript
automatically changes this to does not come after
when you compile the script.

Table 4-2 AppleScript's Operators (continued)

"fries" does not come after "ice
cream" returns true

Chapter 4. Working with Variables, Classes, Operators, and Coercions

NOTE

77

To enter the v symbol, type >=; AppleScript substitutes the symbol when you compile the
script. Similarly, type <= to enter the I symbol, and type /= to produce the # symbol.

Understanding Classes

In AppleScript, a class is a category for objects that have similar characteristics. For
example, the file class consists of a reference to an object in the file system—a file, a
folder, or a volume. Each object of the file class is typically different because it points to

a different file (or folder, or volume), but each object is the same kind of thing.
Table 4-3 explains the classes built into AppleScript. Each scriptable application
also has its own classes. For example, as you saw in the previous chapter, the TextEdit

application has a document class that represents document objects and a paragraph class
that represents paragraph objects.

Class Explanation Example or Details
alias A reference to an existing file, folder, or set myAlias to "Macintosh HD:Users:" as alias
volume in the Mac’s file system. You can’t
create an alias to an object that doesn’t exist.
application | An application on the Mac or on a server to | tell application "TextEdit" to quit
which the Mac is connected
boolean A Boolean value, either true or false set docExists to true
class The class of an object or a value dass of 123.45 returns real
constant A term with a value predefined by AppleScript includes text constants, such
AppleScript or by an application. You can’t | as tab, space, return, linefeed, and quote,
create your own constants in scrips. for working with text.
date The day of the week, the date (month, day, | current date returns the current date—for
year), and the time (hours, minutes, seconds) | example, date "Thursday, April 1, 2010
9:48:16 AM"
file A reference to a file, folder, or volume in the | set myFile to choose file name uses the choose
Mac’s file system. You can create a file object | file name command (see Chapter 8) fo let
that refers to an object that doesn't exist. the user specify a filename
integer A whole number (a number without any set mylnteger to 7
fraction)
list A collection of items in order set myList to {"bacon", "eggs", "kidneys"}
number Either an integer number or a real number | This is an abstract class; any number’s
actual class must always be either integer
or real.
Table 4-3 AppleScript’s Built-in Classes

78 AppleScript: A Beginner's Guide

Class Explanation Example or Details
POSIX file | A pseudo-class that returns a file object. set fileName to POSIX file " /System" returns
This is not a class; rather, it enables you to a file object such as file "Macintosh HD:
evaluate a POSIX file specifier. System"
real A number that can include a fractional part | set myReal to 1.43
record A collection of labeled properties that you set myDog to {name:"Roofer", animal:"Dog",
access by label rather tﬁan by position breed:"Terrier"}
reference An obiject that refers to another object set docWin to a reference to the front window
of the application "TextEdit"
RGB A three-item list of integer values in the {65535, 0, 0} produces a full-intensity red
range 0-65535 giving the red, green, and
blue components of a color
script An AppleScript script This script shows the current date:
script DateScript display dialog (current date)
as string end script
text A string of Unicode characters set headline to "Special Offers"
unit types A collection of unit type classes for working | set distance to 200 as miles

with measurements—for example, the feet
class and the miles class

Table 4-3 AppleScript’s Built-in Classes (continued)

Converting Data with Coercions

In most of life, coercion is such a bad thing it’s often illegal, but it’s not only a positive
thing, but also a highly welcome one in AppleScript, where a coercion is an expression
that changes one type of data to another type. For example, when you need to change a
real number or an integer number to a string, you use a coercion to make the change.

In many cases, AppleScript performs any necessary coercion for you automatically,
drawing your attention to it only if an error occurs—for example, because your code needs
to coerce data into a data type in which it will not fit.

You can also coerce data manually to a particular data type whenever you need to. To
apply a coercion, you use the as operator and the data type you want. For example, the
following commands create an integer variable named myInteger with the value 100,
and then use as string to coerce the value of myInteger to a string. The result is "'100"
(including the double quotation marks that indicate a string).

set myInteger to 100
myInteger as string

Table 4-4 shows the full list of coercions you can perform, with explanations and examples.

79

Chapter 4. Working with Variables, Classes, Operators, and Coercions

Original Class | Coerce to Class | Explanation or Notes

alias List Returns a single-item list

alias Text Returns a fext string

boolean Integer Returns 1 for true and 0 for false

boolean List Returns a single-item list, either {true} or {false}

boolean Text Returns a string, either "true" or "false"

class List Returns a single-item list

class Text Returns a string

constant List Returns a single-item list

constant Text Returns a string

date List Returns a single-item list using the format shown in International
preferences—for example, {date "Thursday, April 1, 2010 6:44:03 AM"}

date Text Returns a string using the format shown in International
preferences—for example, "Thursday, April 1, 2010 6:44:03 AM"

file List Returns a single-item list

file Text Returns a fext string

integer List Returns a single item list—for example, {150}

integer Real Returns a real number—for example, 150.0

integer Text Returns a string containing the integer’s value—for example, "150"

item from list [various] You can coerce the list item to any class to which you can
coerce an individual item of that class. For example, if you have
a list of aliases, you can coerce them to text.

list Text {"Morning", "Afternoon", "Night"} as string returns
MorningAfternoonNight

number Integer Returns the integer portion of the number

number List Returns a single-item list containing the number—for example,
{178.24}

number Real Returns a real number—for example, 178.24

number Text Returns a string containing the number—for example, "178.24"

POSIX file List Returns a single-item list

POSIX file Text Returns a string

real Integer Returns the integer part of the number—for example, 178.24 as
integer returns 179

real List Returns a single-item list—for example, {178.24}

record List Returns a list with the labels removed. For example,

Table 4-4 AppleScript Coercions

{name:"Roofer", animal:"Dog", breed:"Terrier"} as list returns
{"Roofer", "Dog", "Terrier"}.

80 AppleScript:

A Beginner's Guide

Original Class | Coerce to Class | Explanation or Notes

reference [various] You can coerce the reference to any class to which you can
coerce the object referenced.

script List Returns a single-item list

text Integer Returns an integer from a string that contains a number. For
example, "150.5" as integer returns 150.

text List Returns a single-item list containing a string—for example,
"Yellowstone" as list returns {"Yellowstone"}

text Real Returns a real number from a string that contains a number. For
example, "150.5" as real returns 150.5.

unit types Integer Returns an integer containing the integer part of the number of
the specified item (for example, liters)

unit types List Returns a single-item list containing the number of the specified
item (for example, miles)

unit types Real Returns a real number containing the number of the specified
item (for example, centimeters)

unit types Text Returns a string containing the number of the specified item (for
example, degrees Celsivs)

Table 4-4 AppleScript Coercions (continued)

Creating a Variable and Applying

a Coercion

In this example, you create a variable using one of AppleScript’s classes and assign data to

it. You then apply a coercion to return the data in a different format.

1. In AppleScript Editor, press -N or choose File | New to create a new script.

2. Use a set command to create a variable named ThisDay and assign the current date to it:

set ThisDay to current date

3. Add a display dialog command to display the contents of the ThisDay variable in a
dialog box, coercing it to a string so that the dialog box can display it:

display dialog ThisDay as string

4. Press %-R or click the Run button on the toolbar to run the script. AppleScript displays

a dialog box showing the current date.

5. Save the script under a name of your choice.

Chapter 5

Working with Text,
Numbers, and Dates

81

82

AppleScript: A Beginner's Guide

Key Skills & Concepts

Working with Text
Working with Numbers
Working with Dates

n this chapter, you learn a core set of skills for working with three essential types of
content: text, numbers, and dates.

Text is the most complicated of the three. We’ll start by entering normal text in a text
object, and then move along to joining two text strings together, adding white space, and
adding special characters. We’ll then look at how to return different parts of a text object
(for example, a word or a paragraph), how to trim white space off a text string, and how
to find a text string within a text object. Finally, for text, I'll show you how to move text
from one application to another.

Compared to text, numbers are straightforward—but you still need to know the
difference between AppleScript’s real numbers and integer numbers, when to use each,
and how to convert data to and from numeric data types.

Dates are vital to many procedures, and AppleScript deals with them in a smart way
that enables you to enter dates easily, return exactly the parts of them you need (for
example, the year or the month), and perform arithmetic with them.

Working with Text

For dealing with text, AppleScript provides the text object, which contains a series of
Unicode characters in a particular order. This series of characters is often referred to as a
string of text.

Entering Normal Text in a Text Object

To enter a string of text in a text object, you put it between double-quote characters. For
example, the following statement creates the variable myCity and assigns the text San
Francisco to it:

set myCity to "San Francisco"

Chapter 5: Working with Text, Numbers, and Dates 83

You can also create a text object by passing to it a text object from a document. For
example, the following code tells TextEdit to create the variable myString and assign to it
the text from the front document:

tell the application "TextEdit"
set myString to text of front document
end tell

You can then return different parts of the text object as needed—for example, you can
return the first character, the second word, or the third paragraph. We’ll look at how to do
this later in this chapter.

Joining Two or More Strings of Text

To join two or more strings of text together, you use &, the concatenation operator.
For example, the following statements declare two string variables, myopically named
Stringl and String2, and then join them together into a third string variable logically
named String3:

set Stringl to "Five boxing wizards"
set String2 to " jump quickly"
set String3 to Stringl & String2

As a result, String3 contains Five boxing wizards jump quickly, one of the all-
alphabet phrases for testing keyboards whose fidelity you doubt.

Notice that the second string variable includes a leading space to produce a readable
result. Without the leading space, AppleScript smashes the two strings together, because
that’s what you’ve told it to do.

Adding Spaces, Tabs, Line Feeds, and Returns
When you’re entering a string of text, you can include any spaces, tabs, or returns it needs
to make sense. Just press SPACEBAR, TAB, OF RETURN as you would in a text document.
When you press RETURN, AppleScript Editor actually enters a linefeed character rather
than a carriage return.

For example, the following statement creates the variable strTC and assigns four lines
of text to it, the second line being blank space:

set strTC to "New terms and conditions:

1. The bank now owns all your money.
2. The country owns all the banks."

84 AppleScript: A Beginner's Guide

If you’ve selected the Escape Tabs And Line Breaks In Strings check box in Editing
Preferences, AppleScript Editor automatically changes a tab from a chunk of white
space to the \t value and a line feed to the \n value when you compile the script. So after
compilation, the preceding example looks like this:

set strTC to "New terms and conditions:\n\n\tl.\tThe bank now owns all
your money.\n\t2.\tThe country owns all the banks."

With the tab and line feed values, the statements are harder to read, but they still work
just the same. For example, if you display the strTC variable in a dialog box, you see the
four lines (see Figure 5-1).

If you prefer, you can type the values directly into a string in AppleScript Editor.

You can also use the constants shown in Table 5-1. These are useful when you’re putting
together a string from different components.

For example, the following statements declare string variables for the different
components of an address, build from them a string containing the full address, and then
display the string in a dialog box:

set FirstName to "Megg"

set MiddleInitial to "A"

set LastName to "Byte"

set strAddressl to "8192 Giggs St."
set strAddress2 to "Apt. AF"

set strCity to "City of Industry"
set Zip to "CA 91745"

set FullAddress to FirstName & space & MiddleInitial & space & -
LastName & linefeed & strAddressl & linefeed & strAddress2 & -
linefeed & strCity & tab & Zip

display dialog FullAddress

New terms and conditions:

1. The bank now owns all your money.
2. The country owns all the banks.

(Gnee) @06

Figure 5-1 You can use spaces, tabs, and carriage returns in strings.

Chapter 5: Working with Text, Numbers, and Dates

White Space Character Constant Value
Space Space "

Tab Tab "\
Carriage return return "
Linefeed linefeed "

Table 5-1 AppleScript Constants for White Space Characters

Ask the Expert

Q: OKkay, I’ll bite: What is the “‘carriage return” character that Table 5-1 mentions?

A: Quick warning: You may regret that you asked this...

When you press RETURN in AppleScript Editor, you get a linefeed character—so what’s
a carriage return character?

In ASCII, a linefeed character has the value 10, and a carriage-return character has the
value 13. In many applications, these two characters have the same effect, and you can use
the two interchangeably—which is handy but continues the confusion.

But you’ll find that other applications treat a carriage return differently from a
linefeed—so if your code isn’t able to identify the end of a paragraph, you may need to
use the other character. Some Windows programs even use both a carriage return and a
linefeed at the end of paragraphs.

Using Backslash and Double-Quote Characters
Because AppleScript uses the backslash character (\) to denote the tab character (\t),
linefeed character (\l), and carriage-return character (\r), you can’t use a backslash on its
own in text. Instead, use \\ to represent a single backslash.

Similarly, AppleScript uses the double-quote character (") to mark the beginning
or end of a string, so you can’t use a double-quote character as itself. Instead, use the
constant quote or the two-character sequence \'' to represent a double-quote character. For
example, each of the following statements displays a dialog box showing the sentence He
said “How do you pronounce the \ symbol?”:

display dialog "He said " & quote & "How do you pronounce the \\
symbol?" & quote
display dialog "He said \"How do you pronounce the \\ symbol?\""

Both work; neither is pretty.

86

AppleScript: A Beginner's Guide

Returning Parts of a Text Object
What’s often useful is getting just part of a text object. For example, if you store the
contents of a TextEdit document in a variable, as shown earlier in this chapter, you may
need to pull out parts of it.

To do so, you can use the different elements of the text object—text itself, paragraph,
character, and word. Table 5-2 explains these elements.

Before we get into examples of how to pull the different elements out of a text object,
we need to go over the reference forms shown in Table 5-2. The next table, Table 5-3,
explains the five reference forms shown there (Arbitrary, Every, Index, Middle, and
Range), together with the other five reference forms AppleScript supports.

Element | Reference Forms Explanation

Text Every, Name All of the text in the text object, including characters such
as spaces, tabs, and returns. You can use this item when
you need to return a range of contiguous characters in the
text object.

paragraph Arbitrary, Every, Index, A paragraph of text as most of us understand it: All the
Middle, Range text from the beginning of the document to the character
that ends the first paragroph, from the character after
the end of a paragraph to the character that ends the
next paragraph, or from the character after the end of a
paragraph fo the end of the document.

character Arbitrary, Every, Index, A character in the text. AppleScript uses Unicode
Middle, Range characters, which means that even combining characters
(such as &) count as one character. This is unremarkable,
but in some encodings, combining characters count as
two characters (the base character—here, a—and the
combining mark).

Word Arbitrary, Every, Index, A word in the text. This seems straightforward, but you
Middle, Range need to be careful with words because the setting in

the Word Break pop-up menu on the Language tab of
International PreEerences can trip you up. For example, if
Word Break is set to Standard, word 1 of "Steak:Fries" returns
"Steak:Fries" because the separator between the words isn't
a space. But if Word Break is set to English (United States,
Computer), word 1 of "Steak:Fries" returns only "Steak"the
Atkins version of the classic meal.

Table 5-2 Elements of AppleScript Text Objects

Chapter 5: Working with Text, Numbers, and Dates

Reference | Keywords or

Form Usage Explanation

Arbitrary some Returns a random object from whatever you're referring to—for
example, some word or other in the document. This is seldom
useful for working with text, but can be useful for other objects (for
example, numbers).

Every every Returns a list containing every object from the collection. For example,
every word of "How are you?" returns the list {"How", "are", "you"}.

Filter whose, where, that | Returns a list of items that match the specified condition. For
example, tell the application "Finder" folders of home whose name starts with
"D" returns a list of folders with names that start with D.

ID [the ID property] Returns the obiject specified by the id property. This works only with
application objects that have an id property.

Index A cardinal integer | Returns the object specified by the index position. For example,
(1,2), an ordinal | the first character of the 2nd word of paragraph 3 of the front document
integer (1, 2%), an | of application "TextEdit". Cardinal integers are usudlly easiest to
ordinal word (first, | understand, but AppleScript Editor automatically corrects any bogus
second, up to tenth), | ordinal integers you produce—for example, it changes 25 to 25%.
or a positional word
(last, front, back)

Middle middle Returns the middle item in the object. This is sometimes useful with
lists that contain an odd number of objects. (If the object contains an
even number of objects, middle returns the object before the middle—
for example, the fourth object out of eight objects.)

If you use middle with a string, specify the item you want (for
example, middle word of "one two three"); otherwise, AppleScript gives
you the middle character, which is seldom helpful.

Name named Returns the item specified by name. Use this reference form with
objects that have names. For example, tell the application "Finder" folder
named "Documents” of home returns the Documents folder. You can
usually refer to an object more simply by its name (for example,
folder "Documents" of home).

Property A property of the | Returns the property or properties you specify of the object. For

object example, tell the application "TextEdit" properties of the front window
returns a list of the properties for the front window.

Range from start to finish, | Returns a list containing the specified range of objects contained by
start through finish | the target object. For example, words 1 through 3 of "The quick brown fox

jumped over the lazy dog" returns {"The", "quick", "brown"}. You can use
thru instead of through.

Relative before, in front of, Returns the object you specify in relation to another object (the base

after, behind, in
back of

object) in the same container. For example, tell the application "TextEdit
to set doc_process to text of the document behind the front document assigns
the text of the second document in the stack (the document behind
the front document) to the variable doc_process.

Table 5-3 AppleScript's Reference Forms

87

88

AppleScript: A Beginner's Guide

NOTE

You can dlso use the plural of the class instead of using the every keyword. For example,
you can use tell application "Finder"every folder of home or tell application "Finder" folders of home
to return a list of the folders in the current user’s home folder.

With that in mind, here are examples of using the text, paragraph, character, and
word elements of the text object. Each example uses the text object doc_process:

To get the whole of the text, use the text element:
set allText to text of doc process

To get the first paragraph, use the first paragraph or a similar formulation (for
example, paragraph 1):

set firstPara to the first paragraph of doc process

To get a list containing the first five characters, use characters 1 through 5:
set fiveChars to characters 1 through 5 of doc process

To get the second word, use the second word:

set secondWord to the second word of doc process

To find out how many of an item a text object contains, get the count of the item. For
example, use count of paragraphs in doc_process to return the number of paragraphs in
doc_process.

Trimming a String
Sometimes, a string may have leading spaces or trailing spaces that you need to get rid
of, especially if you receive the string from another application (for example, a database
application). For example, if you get the string "' Minneapolis ' (with several spaces
before it and several more after it), you may need to trim it down to '""Minneapolis'' so
that you can use it without inserting extra spaces in text.

AppleScript doesn’t provide a command for trimming off leading spaces or trailing
spaces (as some other programming languages do), so you need to create a subroutine
to remove them. Chapter 10 gives an example of using a subroutine to remove leading
spaces and trailing spaces from a string.

Finding a String Within Another String

When you need to find where one string is within another string, use the offset command.
This command takes two parameters, as you’d expect: the string you’re looking for,

Chapter 5: Working with Text, Numbers, and Dates

preceded by the of keyword, and the string in which you’re looking for it, preceded by the
in keyword.

The offset command returns the position of the first character in the search string
within the target string. For example, the following statement return the offset position of
the string ""back" in the string "'T’ll be back"":

offset of "back" in "I'll be back"

This statement returns 9, because the word back starts at the ninth character in the
string I’ll be back—in lay terms, the b of back is the ninth letter. (If AppleScript doesn’t
find the search string in the target string, it returns 0.)

CAUTION

In Mac OS X 10.3 (Panther) and later versions, the offset command ignores case when
searching for one string inside another string. Usually, this is what you want—but

it's as well to know what you're getting rather than to be surprised. If you need your
comparisons to be case-sensitive, add considering case, as discussed later in this chapter.

Often, finding out whether the search string is within the target string (and, if so,
where it starts) is enough. But what if the search string occurs two or more times in the
target string? In this case, AppleScript returns only the first instance. To find the next
instance, you need to search again from after the end of the first string found.

Finding Out Whether One Text Object
Contains Another Text Object

AppleScript makes it easy to find whether one text object contains another text object. To
find out whether the text string ""quick' is in the text object myString, just check like this:

"quick" is in myString

If the text string is in the text object, AppleScript returns true; if it’s not, AppleScript
returns false.

If you want to make the comparison the other way around, check whether the text
object contains the text string. For example, to find out whether ""quicksilver'' contains
"silver", use the contains operator like this:

"quicksilver" contains "silver"

This example returns true; if the first string doesn’t contain the second, the
comparison returns false.

89

90

AppleScript: A Beginner's Guide

Choosing What to Ignore When Comparing Text

When you’re comparing text objects, you may need to tell AppleScript to ignore some
attributes of the text to perform the comparison—or to consider some attributes that it
automatically ignores.

To control which attributes AppleScript uses, you add an ignoring statement, a
considering statement, or both to the comparison.
Table 5-4 explains the attributes you can use.

To use a considering statement, set up a considering block like this:

considering case
-- make the comparison here
end considering

Similarly, to use an ignoring statement, create an ignoring block like this:

ignoring diacriticals

-- make the comparison here
end ignoring

Considering
Atiribute | Explanation Default Setting | Example Ignoring Example
Case Uppercase and ignoring Ais different from o | Tis the same as t
lowercase letters
diacriticals | The accent marks | considering & is different fromo | & is the same as e
over letters
hyphens — characters considering dog-food is different | play-pen is the same
from dogfood as playpen
numeric Whether text ignoring "2.20.3" is greater than | "2.20.3" is greater than
strings strings (such "2.8.4" returns true "2.8.4" returns false
as "1.4.3") are
evaluated as
text or by their
character values
punctuation | Punctuation marks | considering won't is different from | can'tis the same as
such as , .0+ wont cant
n ?
White Spaces, tabs, considering stand alone is no one is the same as
space linefeeds, and different from noone

carriage returns

standalone

Table 5-4 AppleScript Attributes for Considering Statements and Ignoring Statements

Chapter 5: Working with Text, Numbers, and Dates

To use two considering items or two ignoring items together, use and like this:

considering case and numeric strings
-- make the comparison here
end considering

To combine considering and ignoring statements, put the considering statement first,
then but, and then the ignoring statement. End the block with end considering, as shown
here:

considering case and diacriticals but ignoring hyphens
--make the comparison here
end considering

NOTE

You can also nest considering and ignoring statements.

Transferring Text from One Application to Another
The easiest way to transfer text from one application to another in a script is to store the
data in a variable from the first application and then use the data from the variable in the
other application.

The following example grabs the text from a TextEdit document, stores it in a variable,
chops it down to the first paragraph, and then slaps that paragraph into a new Microsoft
Word document:

tell the application "TextEdit"
set myText to the text of the front document
end tell

set myText to the first paragraph of myText

tell the application "Microsoft Word"
make new document at the front
set the content of the text object of the first paragraph -
of the front document to myText

end tell

You can also place text on the clipboard from one application and then insert it from
the clipboard in the other application.

To place text on the clipboard, use the set the clipboard to command. This command
takes a single required parameter, anything, which is the data you’re placing on the
clipboard.

91

92 AppleScript: A Beginner's Guide

For example, the following statement places the text Vital Mac Software on the clipboard:

set the clipboard to "Vital Mac Software"

To return text from the clipboard, use the command the clipboard. The following

statement assigns the contents of the clipboard to myClip:

set myClip to the clipboard

Using the Clipboard

In this example, you place a string of text on the clipboard, and then insert it in a TextEdit
document. Follow these steps:

1.
2.

In AppleScript Editor, press s-N or choose File | New to create a new script.

Create a tell block to the TextEdit application:

tell the application "TextEdit"

end tell

Inside the tell block, add text to the clipboard, as shown in boldface here:
tell the application "TextEdit"

set the clipboard to "Essential Mac Software"
end tell
Tell TextEdit to make a new document at the front, as shown in boldface here:

tell the application "TextEdit"
set the clipboard to "Essential Mac Software"
make new document at the front

end tell

Assign the contents of the clipboard to the text property of the front document, as
shown in boldface here:

tell the application "TextEdit"
set the clipboard to "Essential Mac Software"
make new document at the front
set the text of the front document to the clipboard
end tell
Press -r or click the Run button on the toolbar to run the script. You’ll see TextEdit

create a new document and add the text to it.

Close the document without saving it (unless you happen to need a list of essential
Mac software—in which case, start typing).

Save the script under a name of your choice.

Chapter 5: Working with Text, Numbers, and Dates 93

Working with Numbers

As you saw in the previous chapter, AppleScript uses two types of numbers: integer
numbers (with no fractional part) and real numbers (with fractional parts as needed).
Both integer numbers and real numbers belong to the abstract number class, though in
practice the class of every number is either the integer class or the real class.

Performing Arithmetic with Numbers
You can perform arithmetic by using the arithmetic operators discussed in Chapter 3. Here
is a brief summary:

Use + for addition and — for subtraction.

Use * for multiplication and / for straightforward division.
Use div for integral division (ignoring the remainder).
Use mod for modulus (returning the remainder).

Use # for exponentiation.

You can use these operators with either integer numbers or real numbers. The type
of result depends on the numbers you use. For example, if you multiply two integers, you
get an integer; but if you multiply an integer by a real number, or a real number by another
real number, you get a real number.

If necessary, you can coerce the result of a calculation to another data type, as
discussed next.

Coercing Numbers to Other Data Types
You can easily coerce a number to the other type—real number to integer number, or vice
versa—or to a list or a string.

To coerce a real number to an integer number—in effect, rounding it to the nearest
number—use as integer. For example, 1.5 as integer returns 2.

To coerce an integer number to a real number, use as real. AppleScript adds a
decimal point and a 0 to the end of the integer number to create the real number. For
example, 100 as real returns 100.0.

To coerce an integer number or real number to a string, use as string. The string
contains the same number as the integer number or real number used. For example,
254 as string returns ''254'"'; 255.693 as string returns ''255.693"'.

To coerce an integer number or real number to a list, use as list. The result is a single-
item list. For example, 189 as list returns the list {189}.

94

AppleScript: A Beginner's Guide

Coercing Other Data Types to Numbers

You can coerce two data types to numbers.

boolean You can coerce a boolean value to an integer number by using as integer.
The result is 1 for true or 0 for false.

NOTE

AppleScript doesn't let you coerce a hoolean value directly to a real value, but there’s

nothing to stop you from coercing the boolean value to an integer value and then coercing

the result to a real value (for example, myBool as integer as real). You'll end up with 1.0 for

a true value and 0.0 for a false value.
string If you have a string that contains a number, you can coerce it to either
an integer number or a real number. Unless you know that the string contains no
fractional part, or you want the result to be an integer number, coercing the string to a
real number is usually the safer choice.

If you try to coerce a string that contains non-numeric data to a number, AppleScript
returns an error.

Working with Dates

In your scripts, you’ll often need to work with dates, doing everything from returning the
current date and time to calculating the number of days or weeks between two dates.

In this section, you’ll come to grips with the powerful set of tools that AppleScript
provides for working with dates.

Understanding How AppleScript Handles Dates

To work with dates, AppleScript uses the date object. The date object is a floating-
point number with the integer portion representing the date and the fractional portion
representing the time within the day.

NOTE

The date object puts the Pope firmly above Caesar, using the Gregorian calendar and
ignoring the Julian calendar.

Treating dates as numbers enables AppleScript (and computers in general) to calculate
them easily. But AppleScript lets you return any of the components of the date—the year,
the month, the hour, and so on—simply enough.

Chapter 5: Working with Text, Numbers, and Dates

The date object returns the date in a standard format such as this:

date "Thursday, April 1,

What you’ll normally want to do is get at one or more of the separate parts of the date.

2010 6:14:47 AM"

To do so, use the properties of the date object. Table 5-5 explains these properties.

As you can see in the table, the properties return three types of data: text strings,

integer numbers, and weird things (weekday and month).

The text strings are great for when you need to insert a date as text (for example, in a

document) or display it in a dialog box. For example, the following statement returns the

day and date from a date object:

date string of date "1 December 2010"

When you compile a script, AppleScript changes a date entered like this into its

standard format, including the time, which it sets to midnight if you haven’t specified any

other time. Here’s what the compiled statement looks like:

date string of date "Wednesday,

December 01,

2010 12:00:00 AM"

Example Using 4/15/2010

Property Data Type | Explanation 2:23:45 PM
date string text The day and date as a string “Thursday, April 15, 2010”
short date string | text The date as a string “4/15/2010”
time string text The time as a string "2:23:45 PM’
Day integer The day of the month as a 15

number
weekday weekday The name of the day of the week | Thursday
Month month The month April
Year integer The year as a four-digit number | 2010
Time integer The number of seconds elapsed | 51825

since midnight
Hours integer The hour of the date’s time 14
minutes integer The minutes of the date’s time 23
seconds integer The seconds of the date’s time 45

Table 5-5 Properties of the AppleScript Date Object

95

96

AppleScript: A Beginner's Guide

NOTE

AppleScript lets you enter dates in a variety of formats as strings after the date keyword.
For example, date "2/2/11", date "2 feb 11", date "February 02 11", and date "2-feb-2011" all
compile to "Wednesday, February 02, 2011 12:00:00 AM". This friendly flexibility means you
don’t need to worry about how you enter dates—you can simply hammer in dates using
whichever format you find most natural.

When you need to perform date and time arithmetic, the strings are about as much use as
a cheerful grin in an earthquake. Instead, use the integer numbers provided by the day, year,
time, hours, minutes, and seconds properties of the date object. For example, the following
statements use the year of (current date) integer to calculate an item’s age in years:

set YearNow to year of (current date)
set YearThen to 2000
set AgeInYears to YearNow - YearThen

TIP

When you enter a time in a script, always enter the date as well. If you don't,
App|eScript clufomqticq”y adds the current date for you when you compi|e the script.
This can be useful, but for clarity, you should enter the dates explicitly.

Working with the month Property of the Date Obiject

Calculating with integers is easy enough, but you’ll have noticed that the month property
doesn’t return an integer between 1 and 12: Instead, it returns a month class that contains
a month constant, such as June for the month of June.

Each month constant has a corresponding integer value, so you can perform
arithmetic with the month constants. For example, if you subtract a date that returns the
month constant February from a date that returns the month constant June, as in the
following example, you get 4, the number of months between February and June.

set monthl to month of date "Monday, February 22, 2010 12:00:00 AM"
set month2 to month of date "Thursday, June 24, 2010 12:00:00 AM"
set monthDiff to month2 - monthl

But what you’ll often want to do is coerce a month constant to an integer so that you
can see what you’re working with. For example, the following statement returns 6, the
integer value for June:

set intMonth to month of date "Tuesday, June 22, 2010 12:00:00 AM" as
integer

Chapter 5: Working with Text, Numbers, and Dates

Working with the weekday Property of the Date Object

Just as the month property of the date object returns a month constant, so the weekday
property of the date object returns a weekday constant containing the name of the day of
the week—Saturday, Sunday, or one of the five less friendly days.

You can use the weekday constants to perform calculations if you want. For example,
(Saturday) — (Wednesday) returns 3, the number you get if you subtract 4 (Wednesday’s
integer value) from 7 (Saturday’s integer value).

You can also coerce the weekday constants to their corresponding integers. For
example, Sunday as integer returns 1, Monday as integer returns 2, and Tuesday as
integer returns 3.

Coercing a Date Object to a String

If you need the full date and time, you can coerce a date object to a string. For example,
the following statement displays a dialog box showing the full current date and time, as
shown in Figure 5-2:

display dialog (current date) as string

Changing a Date

Once you’ve stored a date in a date object, you can alter the date by setting its properties.
For example, the following statements declare the variable myDate and assign to it the
current date, but then move the date out to 14 November 2025:

set myDate to current date

set month of myDate to November
set year of myDate to 2025

set day of myDate to 14

CAUTION

You can’t set the weekday property of a date object, because that would involve damage
to the space-time continuum.

Thursday, April 15, 2010 2:23:45 PM

(Gonee) @06

Figure 5-2 On the rare occasions you need the full date and time, you can coerce d date

object to a string.

97

98

AppleScript: A Beginner's Guide

Calculating Hours, Minutes, Days, and Weeks
As you saw earlier in this chapter, the time property of the date object returns the number
of seconds since midnight. This is nice and precise, but most of us fuzzy-brained humans

find hours and minutes easier units to deal in.
To break down a time in seconds into hours, minutes, or larger units, use the date

constants shown in Table 5-6. For example, the following statement returns the number of

hours that have passed so far in the day:

(time of (current date)) div hours

Finding Out How Far Off GMT Your Mac Is

Finding the current date and time is useful, but in many cases, you also need to know
where your Mac’s clock is set in relation to Greenwich Mean Time (GMT). To do so, use
the time to GMT command, which returns the time in seconds between your Mac’s time

zone and GMT.

For example, if you’re stuck outside of Memphis with a mobile Mac, time to GMT
typically returns —18000, which is five hours behind GMT, whereas if you’re in New
Zealand, time to GMT typically returns 43200, or twelve hours ahead of GMT.

To get the number of hours, divide the result of time to GMT by the hours constant:

set ZuluHours to time to GMT / hours

Comparing Dates and Times
You can use the standard operators discussed in Chapter 4 to compare dates and times.

For example, each of the following comparisons works for finding out whether the current
date lies before Independence Day 2012:

(current date) comes before date "Wednesday,
< date "Wednesday, July 04, 2012 12:00:00 AM"

(current date)
(current date)

is less than date "Wednesday,

July 04, 2012 12:00:00 AM"

July 04, 2012 12:00:00 AM"

Date Constant Returns Number of Seconds
Minutes The number of minutes 60

Hours The number of hours 3600

Days The number of days 86,400

Weeks The number of weeks 604,800

Table 5-6 Date Constants for Converting Seconds to Larger Units of Time

Chapter 5: Working with Text, Numbers, and Dates 99

AppleScript’s natural-language formulations (comes before, does not come before, comes
after, and does not come after) are usually the easiest way of making date comparisons, but
you can use the regular operators instead if you prefer. For example, the does not come before
operator gives the same result as the is not less than or equal to operator.

Working with Dates and Times

In this example, you create a short script that calculates the number of hours and minutes
that have passed so far in the day and displays the results in a dialog box.

1. In AppleScript Editor, press %-N or choose File | New to create a new script.

2. Type a statement that creates a variable named mySeconds and assigns to it the
number of seconds in the time property of the current date object:

set mySeconds to time of (current date)

3. On the next line, type a statement that creates a variable named myHours and assigns
to it the value of mySeconds divided by the hours constant (using div, which ignores
the remainder). The new statement appears in boldface here:

set mySeconds to time of (current date)
set myHours to mySeconds div hours

4. On the next line, type a statement that creates a variable named myMinutes and
assigns to it the value of the remainder from dividing mySeconds by the hours
constant (mySeconds mod hours) and then converting the result to minutes
(mySeconds mod hours div minutes). The new statement appears in boldface here:
set mySeconds to time of (current date)
set myHours to mySeconds div hours
set myMinutes to mySeconds mod hours div minutes

display dialog "Hour:" & tab & myHours & return & Minutes:" -
& tab & myMinutes

5. On the next line, type a statement (shown in boldface here) that displays a dialog box
showing the hours and minutes stored in the variables:

set mySeconds to time of (current date)

set myHours to mySeconds div hours

set myMinutes to mySeconds mod hours div minutes

display dialog "Hour:" & tab & myHours & return & Minutes:" -
& tab & myMinutes buttons {"OK"}

(continued)

100 AppleScript: A Beginner's Guide

Hours: 16
Minutes: 55

Figure 5-3 This dialog box shows the number of hours and minutes that have elapsed since
midnight.

6. Press %-r or click the Run button on the toolbar to run the script. A dialog box such as
that shown in Figure 5-3 appears.

7. Click the OK button to close the dialog box.

8. Save the script under a name of your choice.

Chapter 6

Working with the
Finder, Files, and
Folders

101

102

AppleScript: A Beginner's Guide

Key Skills & Concepts

Referring to files and folders

Opening and manipulating Finder windows
Working with folders

Working with files

Mounting and unmounting volumes

Pretty much everything you do on your Mac involves files and folders, so the chances
are that you’ll need to work with both of them in your scripts. As when working
interactively, your main tool for manipulating files and folders in AppleScript is the Finder.
This chapter starts by explaining how to refer to the files and folders you need by using
AppleScript’s various types of references. You will then learn how to open, configure, and
close Finder windows; create, rename, move, and delete folders; and perform essential
actions with files, such as creating aliases, copying and duplicating files, and renaming them.
You will also learn how to mount a network volume on a Mac’s file system via
AppleScript—and how to unmount the volume when you no longer need it.

Working with Finder Windows

You saw some basic maneuvers for Finder windows in Chapter 3, when you created your
first script. In this section, we’ll dig more deeply into how to control Finder windows. First,
though, we need to go over how to refer to the objects you want in your Mac’s file system.

Referring to the Objects You Need

To reach files and folders in your Mac’s file system, you need to describe where they are.
AppleScript gives you several ways to reach the objects you need, starting with directly
accessible objects (such as your home folder) and special folders whose location Mac OS
X tracks for you.

Using Directly Accessible Obijects

The easiest way to get into your Mac’s file system is to use one of the handy reference
points that AppleScript provides. Table 6-1 provides a list of the reference points that are
most widely useful in scripts.

Folder or ltem

Chapter 6: Working with the Finder, Files, and Folders

AppleScript Name

103

Notes

Your Mac

computer container

This reaches the contents of your Mac as you

see them if you click your Mac’s entry in the
Devices list in the sidebar of a Finder window. The
computer container contains your Mac’s internal
hard disk or disks, any external hard disks, your
iDisk (if you have one), the Network item, and
any mounted network drives.

Your Mac’s current
startup disk

startup disk

The disk from which your Mac has started on this
boot. You can change startup disk from Startup
Disk preferences in System Preferences.

Your home folder home The folder represented by ~ (a tilde}—for
example, if your short user name is joan,
the /Users/joan/ folder.
Your Desktop folder desktop Your Desktop folder is the ~/Desktop folder (the
Desktop Foldir in your home folder).
Trash trash The Trash folder
Table 6-1 Useful Mac OS X Locations You Can Open Directly from AppleScript

Using the path to Command to Reach Special Folders

Each Mac has various special folders, many of which you’ll be familiar with from using

the operating system (OS) interactively—the System folder, the various Library folders,

the Applications folder, your Documents folder, and so on. Mac OS X keeps track of
where these folders are, even if the operating system is customized, and you can get the
path to these folders by using the path to command.

These special folders fall into four different domains, or areas of the operating system.

user This domain contains folders that belong in the user account—for example, the

user’s own Documents folder or Movies folder.

local This domain contains files and preferences that are available to all users—for

example, the Applications folder is in the local domain.

system This domain contains operating system components.

network This domain contains items Mac OS X uses over networks.

NOTE

Older versions of Mac OS X also recognize « fifth domain, the classic domain. Leopard
and Snow Leopard no longer use this domain. Follow their lead.

104

AppleScript: A Beginner's Guide

Some folders belong to only a single domain, but most of them belong to two or three
domains; some folders even belong to all four domains.

When a folder belongs to more than one domain, one of the domains is almost always
the default domain—the domain that AppleScript gives you if you don’t specify one of
the other domains. For example, the Library folder belongs to the user domain, the local
domain, and the system domain. The system domain is the default domain, so if you give
the path to library folder command without specifying the user domain or the local
domain, you get the system domain. To get the Library folder from the user domain (the
~/Library folder), add from user domain to the command like this:

path to library folder from user domain

Each special folder has a name, which is usually the name under which it appears in
the operating system (for example, Applications). Each folder also has a four-character
code that you can use to identify the folder uniquely—for example, apps for the
Applications folder. Some of the more widely used folders also have constants that you
can use instead of the codes to refer to them in more natural language—for example, you
can refer to the Applications folder as applications folder.

Table 6-2 lists the special folders that are normally most useful in scripts. The table
breaks down the folders by default domain for the user domain, local domain, and system
domain, but also shows which other domains they belong to. No special folders belong to
the network domain by default, so the table has no section for the network domain.

For example, the following command tells the Finder to open a window showing the
contents of the Applications folder:

tell the application "Finder" to open (path to Applications folder)

TIP

To type the mu (p) character used in paths such as the Music path (pdoc), press oprion-m.
To type the f character used in paths such as the Desktop Pictures path (dtpf),
press OPTION-F.

You can also use the path to command to return the path to the reference points
explained in Table 6-2. For example, the following command tells the Finder to open a
window showing the contents of the computer container object:

tell the application "Finder" to open (path to computer container)

Chapter 6: Working with the Finder, Files, and Folders

Folder Folder Other
Folder Name | Constant | Code |Explanation Sample Location Domains
Special Folders That Default to the User Domain
Desktop Desktop desk | The Desktop folder | ~/Desktop/ —
in the current user’s
account
Documents documents docs The Documents ~/Documents/ —
folder folder in the current
user’s account
Downloads downloads down The Downloads ~/Downloads/ local
folder folder in the current
user’s account
Favorites favorites favs The Favorites folder | ~/Library/Favorites/ local
folder in the Library folder
in the current user’s
account
Home Home folder | cusr The home folder in | ~ local,
the current user’s system,
account network
Movies Movies folder | mdoc The Movies folder ~/Movies/ —
in the current user’s
account
Music Music folder | pdoc | The Music folder in | ~/Music/ —
the current user’s
account
Pictures pictures pdoc | The Pictures folder | ~/Pictures/ —
folder in the current user’s
account
Preferences Freferences pref The Preferences ~/Library/Preferences/ | local
older folder in the current
user account’s
library
Public public folder | pubb | The Public folder | ~/ —
in the current user
account
Sites sites folder site The Sites folder in | ~/Sites/ —
the current user’s
account
Users users folder | usrs The Users folder on | /Users/ local,
the Mac system,
network

Table 6-2 Mac OS X Special Folders You Can Reach with the path to Command

105

AppleScript: A Beginner's Guide

Folder Folder Other
Folder Name | Constant | Code | Explanation Sample Location Domains
Special Folders That Default to the Local Domain
Applications applications | apps | The Applications /Applications/ user,
folder folder on the Mac system
Desktop Pictures | desktop dipf The Desktop /Library/Desktop user
Fictures Pictures folder on | Pictures/
older the Mac
Startup ltems startup items | empz | The Mac’s /Library/Startupltems/ | user,
Startupltems folder system
Utilities utilities folder | utif The Utilities folder | /Applications/Utilities/ | user,
on the Mac system
Special Folders That Default to the System Domain
Fonts fonts font The Fonts folder on | /System/Library/ user, local
the Mac Fonts/
Library library folder | dlib The Library folder | /Library/ user, local
on the Mac
Printers — impr | The Printers folder | /System/Library/ user, local
in the System Printers/
library
Root — root The System folder | /System/ user, local
(the root folder)
System system folder | dtop | The System folder | /System user,
on the Mac’s network
startup disk
System system sprf The /System/Library/ user, local
Preference preferences PreferencePanes PreferencePanes/
panes folder in the System

library

Table 6-2 Mac OS X Special Folders You Can Reach with the path to Command (continued)

TIP

To identify the foreground application, use the path to foremost application command.
To refer to the application running the script or to the script itself, use the path to me

command.

From these special folders, you can easily reach other folders by using nested

references, as described in the next section.

Chapter 6: Working with the Finder, Files, and Folders

Using Special Folders

In this example, you open Finder windows to two special folders. Follow these steps:

1. In AppleScript Editor, press -N or choose File | New to create a new script.
2. Create a tell block to the Finder application:

tell the application "Finder"

end tell

3. In the tell block, add a statement to open the Public folder in your user account by
using its constant, as shown in boldface here:
tell the application "Finder"
open (path to public folder)
end tell
4. Add a statement to open the Utilities folder in the local domain (the default domain) by
using its folder code, as shown in boldface here:
tell the application "Finder"
open (path to public folder)

open (path to "utif")
end tell

5. Press 3-r or click the Run button on the toolbar to run the script.

6. Save the script under a name of your choice.

Referring to Objects with Nested References and Path References

In AppleScript, you reach the objects you need by using references to them. This works
the same for all scriptable objects, so you can use it in the Finder. For example, to refer
to the /Library/Audio/Apple Loops/Apple/Apple Loops for GarageBand/ folder on your
Mac’s hard disk, you can use a reference such as this:

folder "Apple Loops for GarageBand" of folder "Apple" -
of folder "Apple Loops"
of folder "Audio" -

of folder "Library" of startup disk

If you can stand the relentless repetition of the word “of,” the reference is completely
clear, as it goes all the way from the startup disk to the folder. This type of reference is
called a nested reference, because each folder specified is within the next: The Apple

107

108

AppleScript: A Beginner's Guide

Loops for GarageBand folder is inside the Apple folder, which is inside the Apple Loops
folder, and... I'll spare you the rest. The nested reference starts at the end of the chain of
references—in this case, with the Apple Loops for GarageBand folder.

In the Finder, you can also use path references to access objects more concisely.
A path reference is one that starts at the beginning of the chain of objects to the object
you want to reach. For example, to refer to that same Apple Loops for GarageBand
folder with a path reference:

folder "Macintosh HD:Library:Audio:Apple Loops:Apple:Apple Loops for
GarageBand:"

You place the path reference within double quotation marks to indicate that it’s not a
command, and identify the class of object before it (in this case, folder). A path reference
to a folder ends with a colon, like the previous example, whereas a path reference to a file
ends with the file’s extension, like this:

document file "Macintosh HD:Library:Audio:Apple Loops:Apple:
Apple Loops for GarageBand:70s Ballad Drums 0l.caf"

NOTE

When you're referring to an object in AppleScript like this, include its class—for example,
folder or document file. If you don't know the class, use the generic class name item
instead.

Referring to Obijects with Alias References
Nested references and path references work great in the Finder, but not in most other
applications, which simply don’t understand them. You also can’t pass a nested reference
from one application to another.

So to refer to files and folders in most applications, or to pass references from
one application to another, you need to use a different type of reference. This is the
alias reference, and all applications understand it. An alias reference is nothing more
complicated than a path reference with the word alias before it, like this:

alias "Macintosh HD:Users:angela:Music:"

You can create an alias reference by putting the path together yourself or by reading it
from the path bar at the bottom of a Finder window, but what’s easier is to use AppleScript
Editor to make the Finder create an alias reference for you. To do so, add the as alias
coercion to a command that returns the object like this:

tell application "Finder" to get folder "Mail" of folder "Library" of
startup disk as alias

Chapter 6: Working with the Finder, Files, and Folders 109

This command returns this alias:

alias "Macintosh HD:Library:Mail:"

CAUTION

In Tiger (Mac OS X 10.4) and earlier versions of AppleScript, each dlias reference must
refer to an existing item; a script won’t compile if it refers to an object that doesn’t exist.
In Leopard, an alias reference can refer to an object that doesn’t yet exist (for example,
one that you're about to create) until the point at which you run the code, when you will
get an error if the object doesnt exist.

Understanding and Using POSIX References

With AppleScript, you can also use POSIX references, ones that are constructed as
POSIX paths delimited with forward slash (/) characters rather than colons. (POSIX is
the contraction for Portable Operating System for Unix.) In POSIX, the first forward
slash refers to the startup disk. For example, the following POSIX path refers to the
Users:jane:Documents:Reference:BeatingSpyware.pdf file:

"/Users/jane/Documents/Reference/BeatingSpyware.pdf"

To get a POSIX path from an alias reference, use the get POSIX path command
like this:

tell application "Finder"
get POSIX path of (folder "Mail" of folder "Library" of startup
disk as alias)
end tell

This command returns the following POSIX path:
"/Library/Mail/"

To get an alias reference from a POSIX path, add as POSIX file after the path
reference like this:

"/Library/Audio" as POSIX file as alias

This command returns the following alias:

alias "Macintosh HD:Library:Audio:"

110 AppleScript: A Beginner's Guide

Opening a Finder Window
To open a Finder window, you use the open command and a reference to the folder you
want the Finder window to show. Here are four examples:

To open the startup disk in the simplest way possible:

tell the application "Finder"
open the startup disk
end tell

To open the /Library/Fonts/ folder by using a nested reference:

tell the application "Finder"
open the folder "Fonts" of the folder "Library" of the
startup disk
end tell

To open the /Library/Fonts/ folder by using a path reference:

tell the application "Finder"
open folder "Macintosh HD:Library:Fonts:"
end tell

To open the /Library/Fonts/ folder by using an alias reference:

tell the application "Finder" to open alias "Macintosh HD:Library:
Fonts:"

Using Nested References, Path References,
and Alias References

In this example, you use a nested reference, a path reference, and an alias reference to
open folders and files. Follow these steps:

1. With the previous script you created still open, press -sHIFT-s or choose File | Save As
to open the Save As dialog box. Specify a different name for the new script, and then
click the Save button.

2. Delete the two open commands from the script.

3. Add an open command that uses a nested reference to open the /Library/Desktop
Pictures/Nature/ folder, as shown in boldface here:

tell the application "Finder"
open folder "Nature" of folder "Desktop Pictures" -
of folder "Library" of startup disk
end tell

Chapter 6: Working with the Finder, Files, and Folders 111

4. Add an open command that uses a path reference to open the document file named
Aurora.jpg in the /Library/Desktop Pictures/Nature/ folder, as shown in boldface here:
tell the application "Finder"
open folder "Nature" of folder "Desktop Pictures" =
of folder "Library" of startup disk
open document file -
"Macintosh HD:Library:Desktop Pictures:Nature:Aurora.jpg"
end tell
5. Add an open command that uses an alias reference to open the document file named
Mojave.jpg in the /Library/Desktop Pictures/Black & White/ folder, as shown in

boldface here:
tell the application "Finder"
open folder "Nature" of folder "Desktop Pictures" =
of folder "Library" of startup disk
open document file =
"Macintosh HD:Library:Desktop Pictures:Nature:Aurora.jpg"
open document file alias -
"Macintosh HD:Library:Desktop Pictures:Black & White:
Mojave.jpg"
end tell
6. Press #-r or click the Run button on the toolbar to run the script. The Finder opens
a Finder window showing the Desktop Pictures folder and then opens the Aurora.
jpg desktop picture and the Mojave.jpg desktop picture in your default JPG viewer

application (for example, Preview).
7. Close the windows the script has opened.

8. Save the script under a name of your choice.

Changing the View in a Finder Window
When you open a Finder window, you’ll often want to make sure it’s in the best view for
whoever is using it.

To find out which view a Finder window is in, check the current view property of the
window. As you’ll remember from Chapter 3, there are four views (see Table 6-3).

For example, the following tell block tests whether the current view is Column view.
If it is, the code changes the view to Cover Flow view.

tell the application "Finder"
tell the front window
if the current view is column view then

112

AppleScript: A Beginner's Guide

View Finder Command Finder Shortcut Term

Icon view View | As Icons 3-1 icon view
List view View | As List 38-2 list view
Column view View | As Columns 38-3 column view
Cover Flow view View | As Cover Flow 38-4 flow view

Table 6-3 AppleScript Terms for the Finder’s Four Views

set the current view to flow view
end if
end tell
end tell

Changing the Position of a Finder Window

To find out where a Finder window is positioned, get its position property. AppleScript
returns a list showing the horizontal and vertical coordinates from the upper-left corner of
the primary monitor (the monitor on which the menu bar appears)—for example:

{800, 44}

NOTE

As discussed in Chapter 3, the reference point isn’t actually the upper-left corner of the
Finder window—it's the leftmost point below the title bar. Ideally, you should allow

22 pixels for the depth of the Finder window’s title bar. You should also allow 22 pixels
for the depth of the menu bar if you're positioning the Finder window near the top of a
Mac’s primary monitor. However, if you try to position a Finder window on top of the
menu bar (for example, by using a vertical position of 0), Mac OS X forces the Finder
window below the title bar without comment.

To change the position of a Finder window, set its position property and provide a
list of the coordinates of where you want to put the upper-left corner. For example, the
following statement positions the front Finder window in the upper-left corner of the
primary monitor:

tell the application "Finder"
set the position of the front Finder window to {0, 44}
end tell

You can also change the position of a Finder window by setting its bounds, as
described next.

Chapter 6: Working with the Finder, Files, and Folders 113

Changing the Size of a Finder Window

To discover how big a Finder window is, get its bounds property. AppleScript returns a
list showing the positions of the left edge, top edge (below the title bar), right edge, and
bottom edge of the window—for example:

{o, 44, 752, 870}

To change the size of a Finder window, set its bounds to the appropriate positions. For
example, the following tell block positions the Finder window named Documents in the
upper-left corner of the primary monitor and makes it 800 pixels high by 800 pixels wide:

tell the application "Finder"
set the bounds of the Finder window "Documents" to {0, 44, 800, 822}
end tell

Minimizing and Restoring a Finder Window
To minimize a Finder window to an icon on the Dock, you set its collapsed property to
true. For example, the following statement minimizes the front Finder window:

tell application "Finder" to set collapsed of front Finder window to
true

NOTE

The property for minimizing a Finder window is called "collapsed" because Mac System 9
used to allow you to collapse a window to just its tifle bar. Most other applications use the
miniaturized property for minimizing windows. For example, the statement tell application
"iPhoto" to set miniaturized of window 1 to true minimizes the first iPhoto window.

To restore a minimized Finder window to its previous position, set the collapsed
property to false like this:

tell application "Finder" to set collapsed of front Finder window to
false

Changing the Width of the Sidebar

To find out how wide the sidebar is in a Finder window, get the sidebar width property of
the window. AppleScript returns an integer showing the number of pixels. The minimum
width is 135 pixels; AppleScript ignores any smaller value you care to suggest.

114

AppleScript: A Beginner's Guide

To change the width of the sidebar, set the sidebar width property of the window.
For example, the following tell block makes the sidebar in the front Finder window
160 pixels wide:

tell the application "Finder"
set the sidebar width of the front Finder window to 160
end tell

NOTE

Two quick things here. First, if you need to hide the sidebar, hide the toolbar as
described next; the sidebar disappears at the same time. Second, after you set the
sidebar width, Mac OS X uses that width for each new Finder window you open—so
don't set the sidebar as wide as the flares you're hiding in your closet.

Showing and Hiding the Toolbar

To find out whether the toolbar is visible in a Finder window, get the toolbar visible property
of the window. This is a Boolean property, so AppleScript returns true if the toolbar and the
sidebar are displayed and false if they’re hidden.

Hiding the Front Application
or All Background Applications

You can use the System Events application to hide either the front application or all
other applications apart from the front application. To do so, you tell System Events to
issue the keystrokes you use for hiding when working interactively.

Hide the front application %-H

tell application "System Events" to keystroke =
"h" using command down

Hide all other applications $-OPTION-H

tell application "System Events" to keystroke =
"h" using {command down, option down}

Chapter 6: Working with the Finder, Files, and Folders

To hide the toolbar and the sidebar, set the toolbar visible property to false, as in this
example:

tell the application "Finder"
set toolbar visible of the front Finder window to false
end tell

To show the toolbar and the sidebar again, set the toolbar visible property to true.

Hiding All Finder Windows

You can’t hide a single Finder window, but you can hide the entire application. You need
to use the System Events application to hide the application in question rather than simply
telling the application straight to its face.

For example, the following statement hides all open Finder windows:

tell application "System Events" to tell -
process "Finder" to set visible to false

To display the Finder windows again, set the visible property to true like this:

tell application "System Events" to tell =
process "Finder" to set visible to true

NOTE

This technique of hiding an application works for other applications as well as the
Finder. For examp|e, to hide all the open Microsoft Word windows, you can use tell
application “System Events” to tell process “Microsoft Word” to set visible to false.

Closing Finder Windows
To close a Finder window, use a close command and identify the window. For example,
the following tell block closes the Finder window at the back of the stack:

tell the application "Finder"
close the back Finder window
end tell

If you want to close every open Finder window, you need only specify every window:

tell the application "Finder"
close every Finder window
end tell

115

116 AppleScript: A Beginner's Guide

Opening, Configuring,
and Closing Finder Windows

In this example, you open a Finder window, reposition and resize it, make sure the toolbar
is visible, and then close the window after a pause.
To create this script, follow these steps:

1. In AppleScript Editor, press #-N or choose File | New to create a new script.
2. Create a tell block to the Finder application:

tell the application "Finder"

end tell

3. Add an open command to open the Documents folder in the current user’s account, as
shown in boldface here:

tell the application "Finder"
open folder "documents" of home
end tell

4. Create a nested tell block that works with the front Finder window (the window the
open command opens), as shown in boldface here:

tell the application "Finder"
open folder "documents" of home
tell the front Finder window

end tell
end tell

5. Inside the nested tell block, set the current view property to column view, the position
property to {0, 44}, and the bounds property to {0, 44, 800, 844}, as shown in boldface
here:

tell the application "Finder"
open folder "documents" of home
tell the front Finder window
set the current view to column view
set the position to {0, 44}
set the bounds to {0, 44, 800, 844}
end tell
end tell

6. Still inside the nested tell block, set the sidebar width property to 150 pixels and the
toolbar visible property to true, as shown in boldface here:

tell the application "Finder"
open folder "documents" of home

Chapter 6: Working with the Finder, Files, and Folders 117

tell the front Finder window

set
set
set
set
set

end tell

end tell

the current view to column view
the position to {0, 44}

the bounds to {0, 44, 800, 844}
the sidebar width to 140
toolbar visible to true

7. After the nested tell block, but still within the outer tell block, add a delay 5 statement
to insert a five-second pause when the script runs, and then add a close command to

close the front Finder window. The additions are shown in boldface here:

tell the application "Finder"
open folder "documents" of home
tell the front Finder window

set
set
set
set
set

end tell

delay 5

the current view to column view
the position to {0, 44}

the bounds to {0, 44, 800, 844}
the sidebar width to 150
toolbar visible to true

close the front Finder window

end tell

8. Press #-r or click the Run button on the toolbar to run the script. You’ll see a Finder
window open; change to the position, size, and configuration you specified; pause to

take a curtain call; and then close.

9. Save the script under a name of your choice.

Working with Folders

Mac OS X’s Spotlight feature is a wonderful technology for hunting down lost files and
folders, but it’s still no excuse for not keeping tight organization of the file system of your
Mac—or whoever’s Mac your script is running on.

To keep the file system in apple-pie order, your scripts will often need to create,
modify, or delete folders. In this section, we’ll look at the essential maneuvers you’ll need
to be able to perform with folders—creating them, renaming them, moving them, lobbing

them in the Trash, and so on.

118 AppleScript: A Beginner's Guide

Creating a Folder
To create a folder using AppleScript, use a make command. The make command is a
widely used command that takes two required parameters.

new fype You use the new parameter to tell AppleScript which class of object you
want to create. So to create a new folder, you use a make new folder command.

at location You use the at parameter to tell AppleScript where you want to create the
new object. For example, when you use a make new folder command, you can use the
parameter at desktop to tell Mac OS X to create the new folder on the Desktop. If you
need to reach a folder within the Mac’s file system, use one of the means discussed
earlier in this chapter. For example, use the alias keyword and provide the path to the
folder—such as “Macintosh HD:Users:ben:Documents” or a similar path.

When you’re using the make command to create a folder, you also use the with properties
parameter to provide essential information for the folder you’re creating. The essential nugget
of information you need to give AppleScript is the name item. If you don’t provide a name for
the new folder, Mac OS X obligingly gives it the default name of untitled folder for you. (If
that name is already taken—which does happen, especially if you mess around with scripts—
Mac OS X uses untitled folder 2, untitled folder 3, or the next available name.)

The following example creates a folder named Test Folder on the Desktop:

tell application "Finder"
make new folder at desktop with properties {name:"Test Folder"}
end tell

This example creates a folder named Sample Files within the Temp subfolder of the
user’s Documents folder. The Documents folder is a standard Mac OS X system folder,
but you will need to create the Temp subfolder (or verify that it already exists) if you want
to make this example work on your Mac.

tell application "Finder"
make new folder at folder "Temp" -
of folder "Documents" of home -
with properties {name:"Sample Files"}
end tell

If you want to open the folder you’ve just created, all you need do is add an open the
result command to the tell block like this:

tell application "Finder"
make new folder at folder "Temp" -
of folder "Documents" of home -

Chapter 6: Working with the Finder, Files, and Folders

with properties {name:"Sample Files"} -
open the result
end tell

Copying a Folder

To copy a folder, use the copy command, identify the folder to copy, and tell AppleScript
where to place the copy. For example, the following tell block copies the ~/Documents/
Shift/ folder to the Loading Zone folder on the Desktop:

tell application "Finder"
copy folder "Shift" of folder "Documents" of home =
to folder "Loading Zone" of desktop
end tell

Duplicating a Folder
Instead of copying a folder, you can duplicate it by using the duplicate command. As when you
use the command interactively, duplicate is like a single-minded version of the copy command:
It creates a copy of the folder in the same containing folder and gives the copy the same name
as the original but with copy added (or copy 2 if copy is already taken). For example, when you
duplicate a folder named Samples, Finder names the duplicate Samples copy.

The following statement duplicates the folder named Loading Zone on the desktop:

tell application "Finder" to duplicate folder "Loading Zone" of desktop

Renaming a Folder

To rename a folder, use the set command to change the name property of the folder. The
following tell block changes the name of the folder named Current, which is located on
the Desktop, to Old:

tell application "Finder"
set name of folder "Current" of desktop to "Old"
end tell

Moving a Folder

To move a folder, use the move command, identify the folder you’re moving, and tell
AppleScript where to move it. For example, the following tell block moves the ~/Desktop/
Video/ folder to the ~/Movies/Files/ folder:

tell application "Finder"
move folder "Video" of desktop to folder "Files" -
of (path to movies folder)
end tell

119

120

AppleScript: A Beginner's Guide

Deleting a Folder
To delete a folder, use the delete command and specify the victim folder. For example, the
following statement deletes the ~/Documents/Temp/Sample Files/ folder:

tell application "Finder"
delete folder "Sample Files" of folder "Temp" -
of folder "Documents" of home
end tell

Creating, Renaming, and Moving a Folder

In this example, you create a folder, rename it, and then move it to a different location.
The script opens a Finder window so that you can see the folder has been created and then
changes the window’s target so that you can verify that the folder has been moved. You
get to delete the folder manually, unless it happens to be just what you need.

Follow these steps to create the script:

1. In AppleScript Editor, press #-N or choose File | New to create a new script.

2. Create a tell block to the Finder application:

tell the application "Finder"

end tell

3. Inside the tell block, add a make new folder command to create a folder named Templ1 in
the current user account’s Documents folder. Follow up with an open the result command
to open the new folder in a Finder window. The commands appear in boldface here:

tell application "Finder"
make new folder at folder "Documents" of home -
with properties {name:"Templ"}
open the result
end tell

4. Next, add a two-second delay to give you a breath to see the new folder in place, and
then follow with a set name command to change the new folder’s name to Temp2.
Then add another two-second delay for you to see the change. The new commands
appear in boldface here:

tell application "Finder"
make new folder at folder "Documents" of home -
with properties {name:"Templ"}
open the result
delay 2

Chapter 6: Working with the Finder, Files, and Folders 121

set name of folder "Templ" of folder "Documents" -
of home to "Temp2"
delay 2
end tell
5. Now add a move command to move the Temp2 folder from the Documents folder to
the Desktop, and then set the front Finder window’s target to show the Desktop so that
you can see the moved folder. Again, the new commands appear in boldface:

tell application "Finder"
make new folder at folder "Documents" of home -
with properties {name:"Templ"}
open the result
delay 2
set name of folder "Templ" of folder "Documents" -
of home to "Temp2"
delay 2
move folder "Temp2" of folder "Documents" of home to desktop
set the target of the front Finder window to folder "Desktop"
of home
end tell
6. Press %-r or click the Run button on the toolbar to run the script. When the Finder
window opens, look for the Temp 1 folder, marvel as its name changes to Temp2, and

then sigh with satisfaction as it migrates to the desktop.
7. Save the script under a name of your choice.

8. Delete the Temp2 folder from your Desktop.

Working with Files

To work with files, you can use techniques similar to those for working with folders.
This section shows you how to create files from the Finder; copy, duplicate, and move files;
and rename and delete files.

Creating Files from the Finder

To create a file via AppleScript, you use a make new command, as you did when creating
a new folder earlier in this chapter. The make new command works in most scriptable
applications, and normally you’ll want to create a file by using the application with which
you’ll manipulate it. For example, to create a Microsoft Excel workbook, you use Excel,
which handles the details of the file format for you. You don’t tell the Finder to “make a new
file of the Excel workbook type” or something like that.

122

AppleScript: A Beginner's Guide

From the Finder, you can create folders (as you’ve seen) and three different types of
files: aliases, Internet link files, and text files. Aliases tend to be the most useful of these
file types, so we’ll start with them.

Creating an Alias File
Another type of file you may want to create using Finder is an alias file—a file that the
user can double-click to open an object that’s located elsewhere in the Mac’s file system.
For example, you can create an alias to a file or folder that’s hard to reach, or place an
alias for an obscure application within easy view.

To create an alias file, use the make new command like this:

1. Specify the alias file type and provide the path to the file or folder.
2. Use the at folder parameter to tell the Finder which folder to create the alias in.

3. Set the name property to the name you want the alias file to have.

Here’s an example of creating an alias file to the Public folder on the volume named
Server:

tell application "Finder"
make new alias file to folder "Server:Public:" -
at folder "Test Folder" of desktop -
with properties {name:"Public Folder on Server"}
end tell

Creating an Internet Link File

Often, it’s useful to create an Internet link file—a file that the user can double-click to
open a website using his or her default browser. To create an Internet link file, use the
make new command like this:

1. Specify the internet location file type and supply the URL.
2. Use the at folder parameter to tell the Finder where to create the link.

3. Set the name property to the name you want the link file to bear.

Here’s an example of creating an Internet link file to the www.mhprofessional.com
website:

tell application "Finder"
make new internet location file to "http://www.mhprofessional.com" =

www.mhprofessional.com

Chapter 6: Working with the Finder, Files, and Folders 123

at folder "Key Links" of desktop -
with properties {name:"McGraw-Hill Professional website"}
end tell

Creating a Plain-Text File
The third type of file you can create from the Finder is a plain-text file—one that contains
only text, with no formatting and no objects (such as graphics). This capability is
occasionally useful, but you may prefer to create your text files from TextEdit or another
application, or to create rich-text format documents rather than plain-text ones.

To create a plain-text file, use the make new command like this:

1. Specify the document file type.
2. Use the at folder parameter to tell the Finder the folder in which to create the text file.

3. Set the name property to the name you want to give the text file.

For example, the following tell block creates a text file named Log File.txt in the ~/
Desktop/Loading Zone/ folder:

tell application "Finder"
make new document file at folder "Loading Zone" of desktop -
with properties {name:"Log File.txt"}
end tell

Copying a File

To copy a file, use the copy command, identify the target file by name and folder, and tell
AppleScript where to place the copy. For example, the following tell block copies the ~/
Desktop/Stuff/Sample.tiff file to the user’s Pictures folder:

tell application "Finder"
copy file "Picture 1" of folder "Stuff" of desktop -
to folder (path to pictures folder)
end tell

Duplicating a File

As with a folder, you can duplicate a file by using the duplicate command. The Finder
creates a copy of the original file in the same folder and gives the copy the original’s name
with copy added (or copy 2 if copy is already in use).

124

AppleScript: A Beginner's Guide

The following example duplicates the file named Picture 1 on the Desktop, creating a
file named Picture 1 copy:

tell application "Finder"
duplicate file "Picture 1" of desktop
end tell

Deleting a File

To delete a file, use the delete command and specify your target file (by using document
file and the file’s name) and the folder that contains it. For example, the following
statement deletes the file named Red Bull.doc stored in the ~/Documents/Temp/ folder:

tell application "Finder"
delete document file "Red Bull.doc" of folder "Temp" -
of folder "Documents" of home
end tell

Renaming a File

You can rename a file in the same way as you rename a folder, by using a set name command,
telling the Finder which folder the file is in, and specifying the new name. For example,
the following tell block renames the file named Bills in the ~/Documents/Money/ folder
to Invoices:

tell application "Finder"
set name of file "Bills" of folder "Money" -
of folder "Documents" of home to "Invoices"
end tell

Moving a File

To move a file, use the move command, identify the file you’re moving by its name and
folder, and tell AppleScript where you want to put it. For example, the following tell block
moves the file named Invoices from the ~/Documents/Money/ folder to the ~/Desktop/
Sort/ folder:

tell application "Finder"
move file "Invoices" of folder "Money" of folder "Documents" -
of home to folder "Sort" of desktop
end tell

Chapter 6: Working with the Finder, Files, and Folders

Creating a File and Opening It

In this short example, you create a new Internet location file and then tell Safari to open it.

Follow these steps:

1. In AppleScript Editor, press #-N or choose File | New to create a new script.
2. Create a tell block to the Finder:

tell the application "Finder"

end tell

3. Declare a variable named myWebLoc and assign to it the result of a make new
internet location file command. This example (shown in boldface) uses Amazon.com,
since the site seems likely to survive the Credit Crunch, but substitute your preferred
URL if you like:

tell application "Finder"
set myWebLoc to make new internet location file -
to "http://www.amazon.com" -
at desktop -

with properties {name:"Amazon.com"}
end tell

4. Add a tell statement that tells Safari to open myWebLoc, as shown in boldface here:

tell application "Finder"
set myWebLoc to make new internet location file -
to "http://www.amazon.com" -
at desktop -
with properties {name:"Amazon.com"}
end tell
tell the application "Safari" to open myWebLoc
5. Press #-r or click the Run button on the toolbar to run the script. You’ll see Safari

launch (or become active) and open the Internet location file.
6. Save the script under a name of your choice.

7. Delete the Internet location file from your Desktop.

Mounting and Unmounting Volumes

To give users of your scripts access to all the files they need, you may have to mount
volumes located in servers. When the users have finished using files on a volume, you can
eject the volume to unmount it from the Mac’s file system.

125

126 AppleScript: A Beginner's Guide

Mounting a Volume
To mount a network volume in a script, use the mount volume command. This command
takes the following parameters:

volume_name This required parameter gives the name or URL of the volume—for
example, smb://10.0.0.7/ or afp://server/public/.

on server This optional parameter gives details of the server that contains the
volume. If volume_name contains the full network path or URL to the server, you can
omit the on server parameter.

in AppleTalk zone This optional parameter specifies the AppleTalk zone in which to
find the server. As with on server, if volume_name contains the full network path, you
can omit in AppleTalk zone.

as user name This optional parameter specifies the user name under which to log on
to the server. If you omit this parameter, Mac OS X tries to log on as a guest user; if
the server doesn’t allow guest access, Mac OS X will be unable to mount the volume.

with password This parameter specifies the password to use for authenticating the
user name. This parameter is optional in the sense that when you use the as user name
parameter, you use this parameter with it to supply the password; if you don’t supply
the password, the server prompts the user for it, as shown in Figure 6-1.

If you specify a server but not which volume on it to mount, Mac OS X prompts the
user to choose from among the available volumes (see Figure 6-2).

: Enter your user name and password to access
VAN the file server “10.0.0.20".

Connect as: () Guest
@ Registered User

Name: [billp| I

Password:

["1 Remember this password in my keychain

L&J (Cancel) (Connect)

Figure 6-1 If you don’t include the password when mounting a volume, the user has the
choice of entering the password or trying to connect as a guest user.

Chapter 6: Working with the Finder, Files, and Folders

Ask the Expert

Q: rm using the with password parameter, but the server is still bugging the user for the

A

password. What can I do to get around this?

When you’re mounting a server with the mount volume command, you may find that the
server demands a password even if you use the with password parameter to supply the
correct password.

To avoid being prompted for the password, place the name and password in the URL
like this: smb://username:password @ server.domain.com/volume, where each of the italic
items is a placeholder for the details you’ll supply.

For example, the following command mounts the volume named Shared on the server
with the IP address 10.0.0.7 using the Server Message Block (SMB) protocol:

mount volume "smb://10.0.0.7/Shared"

The following command mounts the volume named Spreads on the server with the IP
address 10.0.0.20, authenticating with the user name dfinkel and the password drowssap:

mount volume "afp://10.0.0.20/spreads" as user name "dfinkel" with
password "drowssap"

M Select the volumes to mount:

docs
presents
spreads

(Gonee) @06

A

Figure 6-2 If necessary, Mac OS X prompts the user to choose from among the available

volumes on the server.

127

128 AppleScript: A Beginner's Guide

Unmounting a Volume

When you no longer need to have a volume mounted on the Mac’s file system, unmount
it by telling the Finder to eject it. For example, the following statement ejects the volume

named “spreads”:

tell application "Finder" to eject alias "spreads"

Chapter 7

Making Decisions
In Your Scripts

129

130 AppleScript: A Beginner's Guide

Key Skills & Concepts

Making a decision with an if... then statement
Using if... then... else statements

Using if... then... else if... else statements

n some scripts, you’ll always need to take the same actions—for example, running
the same application, creating the same document, or manipulating the same files in a
particular way. But more often, you’ll need to make decisions in your scripts and take
action accordingly.

This short chapter shows you how to make decisions by using the three If structures
that AppleScript provides.

if... then This structure lets you test whether a condition is true and take actions if
it is. If the condition is false, the script takes no actions.

if... then... else This structure lets you test whether a condition is true, take actions
if it 1s, and take other actions if it is not.

if... then... else if... else This structure lets you test whether multiple conditions
are true, taking actions for whichever of the conditions turns out to be true. If all the
conditions return false, the else code runs.

The various kinds of if statements are so vital to programming in AppleScript that
you’ve already seen some of them in action earlier in this book.

NOTE

The if statements are great for taking decisions in your scripts, but AppleScript also
provides other ways of taking decisions. For example, the next chapter shows you how
to display dialog boxes that enable the user to choose from among different courses of
action or to pick one or more choices from a list that you present to them.

Chapter 7 Making Decisions in Your Scripts 131

Checking a Single Condition
with an if... then Statement

To check a single condition, use an if... then statement. You normally write it as a block
of code like this, starting with the if statement and its condition, and ending with the end
if statement:

if condition then
statements
end if

NOTE

You can also use a single-line if statement that reads if condition then statement—for
example, if myNumber = 10 then display dialog "The value of myNumber is 10.".
This type of if statement is more compact and has no end if line. But laying your code
out in block if statements makes it easier to read and to debug, so it’s usually a better
idea.

Here’s an example of an if... then statement:

tell application "Finder"

if (count of Finder windows) = 0 then
open folder "Documents" of home
end if
end tell

Inside the tell block that addresses the Finder, the if statement compares the count of
Finder windows to 0 to see if no Finder windows are open. If that’s the case, the open
folder '""Documents' of home statement runs, opening a Finder window showing the
contents of the Documents folder.

Using an if... then Statement to Launch
an Application If It's Not Running

In this example, you write a script that checks whether TextEdit is running, and launches
and activates it if it is not. Follow these steps:

1. If TextEdit is open, quit it. Save any unsaved changes that you want to keep.

2. In AppleScript Editor, press #-N or choose File | New to create a new script.

(continued)

132 AppleScript: A Beginner's Guide

3. Type in the following if... then block:

if (get running of application "TextEdit") is false then
activate application "TextEdit"
end if

4. Press #-r or click the Run button on the toolbar to run the script. The script launches
and activates TextEdit so that TextEdit is the frontmost window.

5. Run the script again with TextEdit still open. Verify that the script doesn’t open another
TextEdit document window.

Deciding Between Two Courses of Action
with an if... then... else Statement

Often, you’ll need to decide between two paths in your code: If a condition is true, do
this; if it’s not true (in other words, if it’s false), do something else instead.
In AppleScript, you use an if... then... else statement to make this kind of decision:

if condition then
statementsl
else
statements2
end if

If the condition is true, AppleScript runs statementsl, the statements before the else
keyword. If the condition is false, AppleScript runs statements2, the statements after the
else keyword. Both these sets of statements are optional, though you’ll always want to
have one or the other (with neither, the if statement does nothing), and usually you’ll want
to have both (if you have only one, you might as well use an if... then statement instead).

Here’s a brief example of an if... then... else statement. If the number stored in the
variable myHour is less than 12, the script sets the text in the myGreeting variable to
Good morning!; otherwise (if the number is 12 or greater), the script sets the text in
myGreeting to Good afternoon!.

if myHour is less than 12 then

set myGreeting to "Good morning!"
else

set myGreeting to "Good afternoon!"
end if

Chapter 7 Making Decisions in Your Scripts 133

Using an if... then... else Statement

In this example, you write a script that checks the hour of the day, assigns an appropriate
greeting (“Good morning!”, “Good afternoon!”, or “Good evening!”, depending on the
time) to the variable myGreeting, and then displays myGreeting in a dialog box. You’ll
meet dialog boxes in detail in the next chapter, but in this example, you’ll use the display
dialog command in its simplest form.

Follow these steps to create the script:

1. In AppleScript Editor, press #-N or choose File | New to create a new script.

2. Type the following statement that assigns the hours property of the current date class
to the variable myHour:

set myHour to hours of (current date)

3. Create the if... then... else statement from the previous example, as shown in boldface
here:

set myHour to hours of (current date)
if myHour is less than 12 then

set myGreeting to "Good morning!"
else

set myGreeting to "Good afternoon!"
end if

4. Adapt the else section by adding another if... then... else statement to make it
distinguish between the afternoon and the evening, as shown in boldface here:

set myHour to hours of (current date)
if myHour is less than 12 then
set myGreeting to "Good morning!"
else
if myHour is less than 18 then
set myGreeting to "Good afternoon!"
else
set myGreeting to "Good evening!"
end if
end if

5. Add a display dialog statement at the end to display a dialog box containing the text in
myGreeting, as shown in boldface here:

set myHour to hours of (current date)
if myHour is less than 12 then
set myGreeting to "Good morning!"

(continued)

134 AppleScript: A Beginner's Guide

else
if myHour is less than 18 then
set myGreeting to "Good afternoon!"
else
set myGreeting to "Good evening!"
end if
end if
display dialog myGreeting

6. Press %-r or click the Run button on the toolbar to run the script. Make sure the dialog
box that appears shows the appropriate greeting for the time.

7. Save the script under a name of your choice so that you can work with it again later in
this chapter.

Choose Among Multiple Courses of Action
with an if... then... else if... else Statement

When you need to choose among three or more courses of action in a script, you can use
an if... then... else if... else statement. Here’s how this statement looks logically:

if conditionl then
statementsl
else if condition2 then
statements2
[other else if statements here as needed]
else
statements3
end if

As you can see, this works in the same way as the if... then... else statement except
that it also has one or more else if statements between the if line and the else line.

Here’s an example of an if... then... else if... else statement that assigns to the
variable myGreeting the text Good morning!, Good afternoon!, Good evening!, or
Goodnight! as appropriate to the hour in many western civilizations:

set myHour to hours of (current date)

if myHour is less than 12 then
set myGreeting to "Good morning!"

else if myHour is greater than or equal to 12
and myHour is less than 18 then
set myGreeting to "Good afternoon!"

Chapter 7 Making Decisions in Your Scripts 135

else if myHour is greater than or equal to 12
and myHour is less than 22 then
set myGreeting to "Good evening!"

else
set myGreeting to "Goodnight!"

end if

display dialog myGreeting

Using an if... then... else if... else Statement

In this example, you adapt the script you created in the last Try This example so that it
uses an if... then... else if... else statement as shown previously. Follow these steps:

1. In AppleScript Editor, open the script you created in the previous section if it’s not still
open.

2. Press #-sHIFT-s or choose File | Save As, and then save the script under a name of your
choice.

3. Edit the script so that it reads as follows:

set myHour to hours of (current date)

if myHour is less than 12 then
set myGreeting to "Good morning!"

else if myHour is greater than or equal to 12 -
and myHour is less than 18 then
set myGreeting to "Good afternoon!"

else if myHour is greater than or equal to 12 -
and myHour is less than 22 then
set myGreeting to "Good evening!"

else
set myGreeting to "Goodnight!"

end if

display dialog myGreeting

4. Press #-r or click the Run button on the toolbar to run the script.

5. Press #-s or choose File | Save to save the changes to the script.

This page intentionally left blank

Chapter8

Using Dialog Boxes
to Get User Input

137

138

AppleScript: A Beginner's Guide

Key Skills & Concepts

Getting user input with dialog boxes
Communicating with the user via alerts

Asking the user to choose a filename and location
Letting the user choose from a list of items

Letting the user choose files, folders, applications, and URLs

n this chapter, you’ll learn how to use dialog boxes to let the user control your scripts and
provide input to them.

AppleScript provides a display dialog command that lets you display custom dialog
boxes containing a prompt, one to three action buttons, and an icon. You can also add
a text-entry box to get input from the user for use in your scripts or the documents they
create.

For more emphasis, you can use the display alert command to display an informative
message and an icon. You can give alerts different buttons to allow the user to choose
from among different actions.

In many scripts, you’ll need to present the user with a list of items from which they
can make one or more selections. To do so, you use the choose from list command. You
may also need to have the user choose the name and folder in which to save a file you
create. You can do this by using the choose file name command.

AppleScript also gives you commands for letting the user choose files, folders,
applications, and URLs via built-in dialog boxes while a script is running. These commands
make it easy to perform actions such as manipulating files and folders using the Mac OS X
interface items with which the user is already familiar.

Using Dialog Boxes

When you need to communicate information with the user of a script, or enable them to
make a choice between two or three alternatives, use a dialog box.

In AppleScript, you use the display dialog command to display a dialog box. This
command requires only one parameter: the text that appears in the dialog box as the prompt.
When you give the display dialog command like this, as in the next example, you get

Chapter 8: Using Dialog Boxes to Get User Input 139

This script will set up your Desktop for fast work.

(Goneel) @06

Figure 8-1 A basic dialog box contains a prompt and one or more buttons.

a dialog box with an empty title bar, the prompt in the body of the dialog box, and an OK
button and a Cancel button (see Figure 8-1).

display dialog "This script will set up your Desktop for fast work."

Displaying Multiple Paragraphs of Text in a Dialog Box
When you need to put a large amount of text in the prompt, you can make the dialog box easier
to digest by breaking it up into multiple paragraphs. To do so, create the prompt as separate
strings joined with the & concatenation operator. Place a return character where you want to
start a new line; place two return characters where you want to start a new paragraph.

For example, the following command creates the dialog box shown in Figure 8-2:

set myPrompt to "This script helps you open a text file in the
TextEdit application." & return & return

set myPrompt to myPrompt & "First, you will see the Choose a File
dialog box. Click the text file you want and click Choose." & return &
return

set myPrompt to myPrompt & "Second, you will see the Choose an
Application dialog box. Click the TextEdit application, and then click
Choose." & return & return

set myPrompt to myPrompt & "OK to proceed?"

display dialog myPrompt

This script helps you open a text file in the
TextEdit application.

First, you will see the Choose a File dialog box.
Click the text file you want and click Choose.

Second, you will see the Choose an Application
dialog box. Click the TextEdit application, and
then click Choose.

OK to proceed?

Figure 8-2 You can break up a dialog box’s prompt into multiple paragraphs to make it
easier to read.

140

AppleScript: A Beginner's Guide

Before you run this script, please make sure your
Mac is set up correctly:

* Open TextEdit.
Create two new documents.
* Type a word in one document.

Click OK when you're ready.

Figure 8-3 You can also create bulleted-style lists or lay out text with tabs in your dialog boxes.

You can also use tab characters, spaces, or other characters to improve the layout of
the prompt and to convey your message more clearly. The following command produces
the dialog box shown in Figure 8-3:

set myText to -
"Before you run this script, please make sure your Mac is set up
correctly:" =
& return & return
set myText to myText & -
Mm% n & tab & -
"Open TextEdit." & return
set myText to myText & -
Mm% n & tab & -
"Create two new documents." & return
set myText to myText & -
Mm% n & tab & -
"Type a word in one document." & return & return
set myText to myText & tab & tab & tab & tab & -
"Click OK when you're ready."
display dialog myText

TIP

If you need to display a short paragraph of heading-like text before your prompt,
consider using an alert rather than a dialog box. See the discussion of dlerts later in
this chapter.

Adding a Title to a Dialog Box

To make your dialog boxes easier to understand, you’ll usually want to use the add title
parameter to put custom text in the title bar. The following statement displays the dialog
box shown in Figure 8-4:

display dialog "This script will set up your Desktop for fast work." -
with title "Desktop Setup: Continue?"

Chapter 8: Using Dialog Boxes to Get User Input 141

This script will set up your Desktop for fast work.

Figure 8-4 Add a descriptive title to make your dialog boxes easier to recognize and
understand.

TIP

Name your dialog boxes consistently to make them easy to recognize. For example,

if a script displays several dialog boxes at different times, put the script’s name first,
followed by a short name for the dialog box—for example, “Desktop Setup: Continue?,”
“Desktop Setup: Choose Number of Windows,” and so on. Given how many
applications most people run these days, it's easy to lose track of which application a
particular dialog box belongs to.

Choosing the Buttons Displayed in the Dialog Box

The display dialog command’s default set of buttons—OK and Cancel—are fine for
many dialog boxes, but you’ll often do better to customize the buttons. With AppleScript,
you can have one, two, or three buttons in a dialog, and you can set their names to
whatever you need.

To control which buttons the display dialog command displays, add the buttons
parameter, and then provide the list of button names as strings within a pair of braces. Put
a comma between each string. The buttons appear from left to right in the order in which
you list them.

For example, sometimes you may need a single-button dialog box to present
information, such as the fact that a script has finished running. The following statement
displays the dialog box shown in Figure 8-5:

display dialog "The Desktop Setup script has finished running." -
with title "Desktop Setup: Complete" buttons {"OK"}

Desktop Setup: Complete

The Desktop Setup script has finished running.

Figure 8-5 When presenting information without a choice, all you need is an OK button.

142 AppleScript: A Beginner's Guide

Figure 8-6 In a two-button dialog box, Yes and No are often clearer than OK and Cancel.

Two buttons are great for giving the user a binary choice. This example uses a Yes
button and a No button (see Figure 8-6) instead of the default OK button and Cancel
button:

display dialog "Do you want to close the extra Finder windows?" -
with title "Desktop Setup: Close Extra Finder Windows?" -
buttons {"Yes", "No"}

When the user needs to choose among three paths of action (or inaction), add three
buttons to the dialog box, as in this example (see Figure 8-7):

display dialog "How many Word windows do you want to open?" -
with title "Desktop Setup: Open Word Windows?" -
buttons {"One Window", "Two Windows", "No Windows"}

Setting a Default Button in a Dialog Box

As you’ll probably have noticed in the last few figures, none of the dialog boxes has a
default button—the one that appears with the blue highlight (or gray highlight if the Mac
is using the Graphite look in Appearance preferences) and that receives the press of the
RETURN key. Usually, you’ll want to make one of the buttons in any dialog box the default
button to shepherd the user toward the choice that’s appropriate more often than the other
choices. Omit a default button only when the choice between the buttons is too close to
recommend one over the other.

How many Word windows do you want to open?

(One Window) (Two Windows) (No Windows)

Figure 8-7 A three-button dialog box lets you make more complex choices in your scripts.

Chapter 8: Using Dialog Boxes to Get User Input 143

To set the default button, add to the display dialog command the default button
parameter followed by the button’s name. The following statement makes the One
Window button the default, as you can see in Figure 8-8:

display dialog "How many Word windows do you want to open?" -
with title "Desktop Setup: Open Word Windows?" -
buttons {"One Window", "Two Windows", "No Windows"} -
default button "One Window"

You can also set the default button by number, counting from left to right. For example, the
following statement makes the second button (the Two Windows button) the default button:

display dialog "How many Word windows do you want to open?" -
with title "Desktop Setup: Open Word Windows?" -
buttons {"One Window", "Two Windows", "No Windows"} -
default button 2

TIP

In many cases, you'll want the “action” button for the dialog box to be the default
button. For example, when you display an OK/Cancel dialog box, you'll often want to
make the OK button the default button so that the user can proceed by simply pressing
ReTURN. But if the dialog box asks for confirmation of a wide-ranging or destructive
action (such as deleting files or folders), it's better to make the “cancel” button the
default. (The button may have a name other than “Cancel”—for example, “No,” “Keep
Files,” or “Keep My Current Settings.”)

Creating a Cancel Button That's Not Called “Cancel”

In any dialog box with two or three buttons, it’s usually a good idea to have one button be a
cancel button—a button that lets the user stop running the script or refuse the action the dialog
box suggests. The button isn’t necessarily called “Cancel,” but that’s the function it fulfills.

NOTE

The cancel button captures a press of the esc key, so you'll usually want fo set it to
allow the user to dismiss the dialog box using the keyboard. If you don't set a cancel
button, the user must press 148 (or sHIFT-TAB) to put the selection ring around the
appropriate button, and then press spacesar to “click” it (when using only the keyboard).

How many Word windows do you want to open?

(One Window) (Two Windows) (No Windows)

Figure 8-8 You'll normally want to set a default button in each dialog box to help the user
make the best choice.

144

AppleScript: A Beginner's Guide

You can create a cancel button in three ways:

Use the default buttons If you don’t set the buttons parameter, AppleScript
automatically gives you a cancel button named Cancel, which is nice and clear. You
also get an OK button, which is clear, too, if not inspiring.

Create a button named “Cancel” If you do set the buttons parameter, you can
name a button “Cancel.” AppleScript then treats it as a cancel button, which is handy.

Tell AppleScript which button is the cancel button If you don’t want to give the
cancel button a different name, use the cancel button parameter to tell AppleScript
which button to treat as the cancel button. As with the default button parameter, you
can use either the button’s name or the button’s number to identify the cancel button.
The following example uses the button’s name:
display dialog "Do you want to set up your desktop?" -

buttons {"Yes", "No"} =

default button "Yes" -
cancel button "No"

NOTE

The cancel button is special in AppleScript because it returns an error that you can use
to tell the user wants to cancel the action. You'll learn how to use this error (error -128)
in Chapter 10.

Seeing Which Button the User Clicked in a Dialog Box

If you use a single-button dialog box, you don’t need to check which button the user
clicked, because you’re not giving them any choice. But when you use a two- or three-
button dialog box, you must check which button the user clicked so that you can direct the
flow of the script in the corresponding way.

When the user clicks a button in a dialog box, AppleScript stores the details in the
dialog record. To find out the button, you check the button returned property of the
result, where result is a predefined variable that automatically grabs the details of what
the user chose in the dialog box. For example, the following if block checks the result of
the Desktop Setup: Open Word Windows? dialog box shown in Figure 8-7 earlier in this
chapter. The comments indicate where the script would take the appropriate action based
on the button the user chose.

if the button returned of the result is "Two Windows" then
-- open two Word windows here

else if the button returned of the result is "One Window" then
-- open one Word window here

end if

Chapter 8: Using Dialog Boxes to Get User Input 145

Adding an Icon to a Dialog Box
To pack more meaning into a dialog box, you can add an icon to it. AppleScript lets you
use any of three built-in icons or a custom icon of your own.

Adding a Built-in Icon to a Dialog Box

To add a built-in icon to a dialog box, add the with icon parameter and specify the

appropriate icon. Table 8-1 shows the three built-in icons and suggests when to use them.
For example, the following statement causes the Finder to display a two-button dialog

box that includes a Caution icon (see Figure 8-9):

tell the application "Finder" to display dialog -
"Do you want to delete this document?" -
& return & return & tab & docName -
with title "Workflow Streamliner: Delete Document" =
buttons {"Delete File", "Keep File"} =
default button 2 -
cancel button 2 -
with icon caution

Creating and Using Custom lcons

To give your scripts a custom look or to convey exactly the information required, you
can make your dialog boxes display custom icons. This is great when you need to use a
company logo or other standard icon in your dialog boxes.

Icon Picture |Icon Name | Icon Number | When to Use This Icon

Stop 0 When a major problem has arisen with the script.
Don't waste this icon on trivial problems, as doing so
reduces the icon’s effect when you genuinely need it.

or dangerous is happening. The icon shown is
the default icon for the application you're using.
For example, if your script makes Microsoft Word
display a dialog box, the Word icon appears; if
you're using Finder, the Finder icon appears.

‘ Note 1 For general dialog boxes where nothing unexpected

Caution 2 When the user needs to pay exira attention fo a
" decision—for example, because the script is about to
- delete a file or folder.

Table 8-1 Built-in Icons for Dialog Boxes

146

AppleScript: A Beginner's Guide

Do you want to delete this document?

‘-:\ Report 2010-05-13.doc

(" Delete File) (" KeepFile)

Figure 8-9 Add an icon to a dialog box to make its impact clearer.

First, create an icon file using the Apple icon image format and the .icns file extension.

Follow these guidelines:

1.

2.

Use either an icon editor such as the Icon Composer tool included in the Apple Developer
Tools or the IconBuilder plug-in for Adobe Photoshop, Adobe Photoshop Elements, or
Macromedia Fireworks. Some other applications can also create Apple icon image files.

Make the file 512 pixels high by 512 pixels wide and 72 dpi resolution.
Use RGB color rather than CMYK color.

If the icon occupies only part of the square (as most icons do), apply alpha to make the
empty parts see-through so that the dialog box’s background can appear through them.

Now save your script as a script bundle and add the icon file to it. Follow these steps:

In AppleScript Editor, press se-sHIFT-s or choose File | Save As to display the Save As
dialog box.

In the File Format pop-up menu, choose Script Bundle.

NOTE

You can also add custom icons to a script you save as an application bundle.

3.

Change the filename and folder as needed, and then click the Save button to save the
script bundle.

. Click the Bundle Contents button on the toolbar. AppleScript Editor displays the

Bundle Contents drawer at the side of the window (usually on the right, unless
AppleScript Editor is too near the right edge of your Mac’s screen).

. Open a Finder window to the folder that contains the icon file, and then drag it to the

Bundle Contents drawer (see Figure 8-10).

Chapter 8: Using Dialog Boxes to Get User Input 147

o

[CN@) Dialog box with custom icon 2.scptd =)
— ON E°R @
| Record Stop Run : Compile Bundle Contents
Contents AppleScript 4 <MNo selected element>
“a Uesuriplion.auid -
» Bl Scripts
— _- [Descriptivn | Result | Event Luy]

A

Figure 8-10 Drag your icon to the Bundle Contents drawer at the side of the AppleScript
Editor window.

Now that the icon file is in place, use the path to command to specify the icon’s alias
in the display dialog command, as in the last line of the statement here:

display dialog "This script will set up your Desktop for fast work." =
with title "Desktop Setup: Continue?" -
buttons {"Yes", "No"} -
default button 1 -
cancel button 2 -

with icon file ((path to me) & "Contents:Resources:Acme.icns" -
as string)

The path to me part returns the path to the script itself, and the Contents:Resources:
Acme.icns part specifies the file named Acme.icns in the Resources folder in the
Contents folder of the script.

Adding a Custom Dialog Box to the Set Up
Finder and TextEdit Script

In this example, you’ll add a custom dialog box to the Set Up Finder and TextEdit script
you created in Chapter 3. The dialog box tells the user what the script will do and lets the
user choose between running the script and stopping it in its tracks. Follow these steps:

1. In AppleScript Editor, press -0 or choose File | Open to display the Open dialog box.

2. Choose the Set Up Finder and TextEdit script you created in Chapter 3, and then click
the Open button.

(continued)

148

AppleScript: A Beginner's Guide

10.
11.

12.

. Press se-sHIFT-s or choose File | Save As to display the Save As dialog box.

. Change the name to “Set Up Finder and TextEdit with Opening Dialog” and then click

the Save button to save the script.

. Click at the beginning of the script (before the tell the application '"Finder"

statement), and press RETURN to create a new paragraph.

. Add the display dialog command shown here and its prompt:

display dialog -
"This script will set up your Desktop for fast work." -
& return & return & -
"Do you want to continue?"

. Add a custom title to the dialog box, as shown in boldface here:

display dialog -
"This script will set up your Desktop for fast work." =
& return & return & -
"Do you want to continue?" -
with title "Desktop Setup"

. Add the note icon to the dialog box, as shown in boldface here:

display dialog -
"This script will set up your Desktop for fast work." -
& return & return & -
"Do you want to continue?" -
with title "Desktop Setup" -
with icon note

. Specify Yes and No buttons for the dialog box, with the Yes button the default button

and the No button the cancel button, as shown in boldface here:

display dialog =
"This script will set up your Desktop for fast work." -
& return & return & -
"Do you want to continue?" -
with title "Desktop Setup" -
with icon note -
buttons {"Yes", "No"} -
default button "Yes" -
cancel button "No"

Press -s to save the script.

Press %-r or click the Run button to run the script. On the first run, click the No button
to make sure that canceling the dialog box stops the script from running further.

Run the script again. This time, click the Yes button so that the script continues running
and sets up the Finder window and the TextEdit window.

Chapter 8: Using Dialog Boxes to Get User Input 149

Creating a Dialog Box That Closes ltself
By using the giving up after parameter with the display dialog command, you can create
a dialog box that closes itself after a number of seconds. This is great for displaying
progress information or for occasions when the user’s input is optional rather than
essential: If the user has left the script running, you can make the dialog box dismiss itself
automatically after an interval, allowing the script to continue running rather than waiting
for the user to return.

The giving up after parameter takes an integer number that specifies the number of
seconds to wait. For example, the following dialog box closes itself after 2 seconds:

display dialog "10 files created... 10 files to go!" =
with title "File Creator Script: Status" giving up after 2

When you use the giving up after parameter, the dialog reply record includes the
button returned property as usual and the gave up parameter. The gave up parameter
is Boolean, so it is true if the dialog box dismissed itself and false if the user clicked a
button. When gave up is true, button returned is blank, because the user didn’t click a
button.

Getting Text Input from the User

Dialog boxes are great for asking the user what to do, as you’ve seen so far in this chapter.
But often, you’ll need to get a piece of information from the user—for example, their
name or the quantity of widgets their company wants to order.

To add a text-entry field to a dialog, add the optional default answer parameter to the
display dialog command. If you want to provide a default answer in the text-entry field,
add the appropriate string after the default answer parameter; if you want to leave the
text-entry field blank, just place """ (two pairs of double quotation marks indicating an
empty string) after the parameter instead.

For example, the following statement produces the dialog box shown in Figure 8-11:

display dialog "Please enter your employee code:" =
default answer "CZ 1234" -
with title "Employee Code"

When you add the default answer parameter, the dialog reply record includes a
text returned property containing the text in the text-entry field as well as the button
returned property containing the button clicked. For example, the dialog box shown in
Figure 8-11 returns a dialog reply record like this:

{text returned:"CZ 9288", button returned:"OK"}

150

AppleScript: A Beginner's Guide

Em, Cor

Please enter your employee code:

|cz 1234 |

[Cancel)

Figure 8-11 You can add a text-entry field to any dialog box. This dialog box includes a

default value to show the user a sample response.

To store the user’s input, you can assign it to a variable, like this:

set the employee code to the text returned of the result

Even if you assign an empty string to the default answer parameter, the OK button
(or its equivalent) is still available for the user to click without entering text in the text-entry
field. So if you need the user to enter text, you’ll need to check that the field isn’t blank.
We’ll look at an example of how to do this in the next chapter.

TIP

If the information the user is typing in the text-entry field needs to be protected from
casual snooping, add the with hidden answer parameter to the display dialog statement. This
parameter makes Mac OS X display the user’s input as bullet characters rather than
actual characters for security.

Returning Text from a Text-Entry Field

Try this example of adding a text-entry field to a dialog box and returning the user’s input.

1. In AppleScript Editor, press -N to create a new script.

2. Create a display dialog statement that includes the default answer parameter with
sample text as shown here:

display dialog "How old are you?" default answer "25"

3. Add a set statement that assigns the text returned property of the result to a variable:
set userAge to the text returned of the result

4. Display a dialog that shows a string including the variable:
display dialog "Your age is " & userBAge & "."

5. Run the script and verify that it works as expected.

Chapter 8: Using Dialog Boxes to Get User Input 151

Using Alerts

Instead of displaying a dialog box, you can display an aler—a window that notifies the
user that there’s a problem and offers information or different buttons for solving the
problem.

There’s a wide overlap between dialog boxes and alerts, so it can sometimes be hard
to choose which to use. That means our first order of business is to sort out what the
differences are between alerts and standard dialog boxes.

TIP

The difference between dlerts and dialog boxes may be clear to Apple’s human
interface design experts, but most users treat alerts in the same way as dialog boxes—
as something to deal with and dismiss as quickly as possible. This means it's not worth
agonizing over whether to use a dialog box or an dlert in cases where either will work;
just make sure your code works, and all will be well.

Understanding How Alerts Differ
from Standorg Dialog Boxes

Like a standard dialog box, an alert contains one, two, or three buttons, which you can set
using the buttons parameter. As with a standard dialog box, you use the default button
parameter to set the default button for an alert and the cancel button parameter to set the
cancel button. You can also use the giving up after parameter to automatically dismiss an
alert after the number of seconds you choose.

So far, so similar. But an alert differs from a standard dialog box in five important
ways:

An alert contains bold alert text at the top The alert text appears in boldface at

the top of the alert window. You use this line to present a summary of the problem—

preferably using few enough words that the user can grasp it at a glance. This bold text
works as a kind of headline for the alert.

An alert’s title bar is blank It’s tempting to try to add text to the title bar of an alert
window by using the with title parameter, but this doesn’t work.

An alert always contains an icon As you’ll see shortly, you can put either of two
different icons in an alert. But even if you don’t specify an icon, the alert window
contains an icon—so your choice is limited.

An alert has no text-entry field You can’t add a text-entry field to an alert.

152 AppleScript: A Beginner's Guide

= Sync conflict with MobileMe database
The data in your local database could not be synchronized with
the copy of the database on the MobileMe server.

Figure 8-12 An alert has a blank title bar, a paragraph of bold text, a prompt, and your
choice of buttons. The application’s icon appears on an dlert to identify the
perpetrator.

An alert doesn’t register a custom button named “Cancel” As you saw earlier in
this chapter, if you create custom buttons in a dialog box, you can make one a cancel
button by simply naming it “Cancel.” In an alert, this doesn’t work; instead, you need
to use the cancel button parameter explicitly to turn a button into a cancel button.
Figure 8-12 shows an alert for the OmniFocus organizer application.

Choosing the Icon for an Alert
In theory, AppleScript lets you use three different icons for alerts: You can set the optional
as parameter to as critical, to as informational, or to as warning. But because critical
and informational both display the application’s own icon (for example, the OmniFocus
icon shown in Figure 8-12 if you’re scripting OmniFocus), there’s little point in using
them, because this icon is what you get anyway if you omit the as parameter.

When you use the as warning parameter, you get the yellow-triangle-with-white-
exclamation-point icon shown in Figure 8-13, with a smaller version of the application’s icon
superimposed on it so that you can see immediately which application is raising the alert.

Incorrect Time Zone Detected

Your Mac's clock appears to be set to the wrong time zone.

«y
_\;., Using the wrong time zone may result in synchronization
errors with network files.

Do you want to open Date & Time preferences to change the
time zone?

G (v)

Figure 8-13 The as warning parameter displays an exclamation-point icon that's good for
getting the user’s attention. The application’s icon (here, AppleScript Editor’s own
icon) appears in miniature to identify the perpetrator.

Chapter 8: Using Dialog Boxes to Get User Input

Creating an Alert

In this example, you write a script that creates a folder on the Desktop, displays an alert
warning (see Figure 8-14) that the script is about to delete that folder, and then deletes it.
Follow these steps:

1. In AppleScript Editor, press -N to create a new script.

2. Create a tell statement that tells the Finder to create a new folder named “Test Folder”
on the desktop:

tell the application "Finder" to -
make new folder at desktop with properties {name:"Test Folder"}

3. Start a display alert statement and add the prompt:

display alert -
"Delete the Test Foldexr?"

4. Add the as warning parameter, as shown in boldface here:

display alert -
"Delete the Test Folder?" as warning

5. Add the message parameter and a string giving more detail, as shown in boldface here:

display alert =

"Delete the Test Folder?" as warning -

message "The script will delete the folder named Test Folder on
your Desktop.

6. Add the buttons parameter with a confirmation button and a cancel button called Cancel.
Make the cancel button the default button for the alert, as shown in boldface here:

display alert -

"Delete the Test Folder?" as warning -

message "The script will delete the folder named Test Folder on
your Desktop." =

buttons {"Delete the Test Folder", "Cancel"} -

cancel button "Cancel" =

default button "Cancel"

Delete the Test Folder?

The script will delete the folder named Test Folder on your

h & Desktop.
Sey7)

(Delete the Test Folder) (-Cancel)

Figure 8-14 The sample alert warns that the script will delete a folder.)
(continued)

153

154

AppleScript: A Beginner's Guide

7. Create another tell statement that makes the Finder delete the Test Folder:

tell the application "Finder" to delete folder "Test Folder" of
desktop

8. Run the script and click the Delete The Test Folder button in the alert. The Finder
deletes the folder that it has just created.

Choosing the Name Under
Which to Save a File

Chances are you’ll often need to create documents in your scripts. Most scriptable
applications let you manipulate their save commands via AppleScript, just as you did
with TextEdit in Chapter 3. But with some other applications, you may need to save a
document in different ways. For these cases, AppleScript provides the choose file name
command, which you’ll learn to use in this section.

The choose file name command does what it says on the tin: It lets the user choose
the name for a file, but it doesn’t actually save the file. So you normally use the choose
file name command to create a file reference that you pass to a variable, and then use the
contents of the variable when you need to save the file.

set myDocName to choose file name

NOTE

The file reference isn’t a string, but you can coerce it to a string if you need to display it
in a dialog box or dlert.

Adding a Custom Prompt to the
Choose File Name Dialog Box

The choose file name dialog box always shows Choose File Name in the title bar. By
default, the dialog box shows the prompt Choose new file name and location, but you can
customize this by adding the with prompt parameter and a suitable text string. Here’s an
example:

choose file name with prompt -
"Choose the folder and name for the document the script will
create:"

Chapter 8: Using Dialog Boxes to Get User Input 155

Setting a Default Location and Filename

To encourage the user to create a file reference in a suitable location, you can set

the default location by setting the default location parameter. This makes the choose
file name dialog box show that folder first. The user can choose another folder if
they wish.

Often, it’s a good idea to provide a default filename for the file reference so that the
files have a good chance of getting standard names. To do so, add the default name
parameter to the choose file name command and supply a text string for the name.

Here’s an example of setting a default location and name (see Figure 8-15):

choose file name with prompt -

"Choose the folder and name for the document the script will
create:" -

default location (path to documents folder) -

default name "Head Office Report.doc"

Choose the folder and name for the document the script will create:
Save As: IHead Office Report.doc I @
[4 o] [EEiéHﬂ] [2 Documents M (Q search p
» DEVICES 23 Accounts »
P aiARED = Expenses s
{3 Finals S
» PLACES (& images "
3 Market S
=] Ops [
[Present Lo
il Raw_Text [
[Spreads >
Il
|
A

Figure 8-15 You can customize the Choose File Name dialog box by adding a prompt and
specifying the default location and filename.

156 AppleScript: A Beginner's Guide

Letting the User Choose from a List of ltems

AppleScript’s dialog boxes are great for making choices from among two or three courses
of action, but often, you’ll need to present the user with a list of choices so that they can
choose one or more items. To do so, you use the choose from list command.

Creating the List of ltems

The only essential part of the choose from list command is the list of items. To create the
list, you type an opening brace, each item within double quotation marks and separated
by commas, and then the closing brace. For example, the following choose from list
command displays a list containing the cities Madrid, Paris, and San Francisco:

choose from list {"Madrid", "Paris", "San Francisco"}

When you run this command, the basic form of the choose from list dialog box
appears. As you can see in Figure 8-16, the dialog box has no title bar, a bland “Please
make your selection” prompt, and an OK button and a Cancel button. You can change the
prompt and the buttons, and add a title bar, as you’ll see shortly.

Seeing Which ltem the User Chose

After the user picks an item in the list, the choose from list command returns a list of
the items they chose. Returning a list of items seems weird, but the command does this
because you can set up the list so that the user can select multiple items. Unless you
specifically allow multiple selections, AppleScript gives you a single-selection list, which
means that the command returns a “list” containing a single item.

So if the user chooses the Paris item and clicks the OK button in the example dialog
box, the command returns a list containing the item "Paris", like this:

{"Paris"}
To get an item from the list, you can specify it by its item position—for example:

item 1 of result

Please make your selection:

Madrid

5an Francisco

Figure 8-16 The Choose From List dialog box enables you to let the user choose from among
several predefined options.

Chapter 8: Using Dialog Boxes to Get User Input 157

But when you’re dealing with a single-item list, you can simply coerce the list into a
string by putting the choose from list command and list into parentheses and adding as
string after the list, like this:

(choose from list {"Madrid", "Paris", "San Francisco"}) as string

Coercing the list into a string makes the command return a string that you can
manipulate without further ado.

If the user clicks the Cancel button in the choose from list dialog box, the dialog
box returns the value false rather than returning the standard AppleScript cancel error
(error number —128). Because clicking the Cancel button means that the user didn’t make
a choice in the choose from list dialog box, it’s best to check for a false return before
seeing which item (or items) the user chose. The following example displays a dialog box
containing the first item in the result list, as long as the result is not false:

choose from list {"Madrid", "Paris", "San Francisco"}
if result is not false then

display dialog item 1 of result
end if

Adding a Title and Custom Prompt
to the Choose From List Dialog Box

To make a choose from list dialog box easier to grasp immediately, you can add a title
and customize the prompt. It’s usually a good idea to do both of these.

To add a title, use the with title parameter and provide the text string for the title.
Similarly, to customize the prompt from the default (“Please make your selection”), use
the with prompt parameter and a text string.

For example, the following choose from list statement produces the dialog box shown
in Figure 8-17:
choose from list {"Madrid", "Paris", "San Francisco"} -

with title "Choose Your Destination" -
with prompt "Click the office you will wvisit:"

choose Your Destinat

Click the office you will visit:

M aciricd
5an Francisco

Figure 8-17 Adding a title and customizing the prompt makes the Choose From List dialog
box clearer to users.

158

AppleScript: A Beginner's Guide

Changing the Buttons on the
Choose From List Dialog Box

The choose from list dialog box comes with a Cancel button on the left and an OK button
on the right. You can’t change the behavior or position of these buttons, but you can change
their names to make their function more obvious (though OK and Cancel are pretty clear)
or to make the dialog box conform to your company’s or organization’s house style.

To change the button names, use the OK button name parameter and the Cancel
button name parameter, as in this example and Figure 8-18:

choose from list -
{"FREE! Deluxe airline bag", -
"FREE! Return train ticket", =
"FREE! Manicure and root canal voucher"} =
OK button name "Send Me My Choice" =
cancel button name "No, Thanks"

Choosing One or More Default ltems
In many choose from list dialog boxes, you’ll want to allow the user free rein to select
the item that suits him or her. But in others, it will make more sense to select a default
item—or, for a choose from list dialog box that allows multiple selections, multiple items.
To set a default item in a choose from list dialog box, add the default items parameter
with the list of default items. This parameter has the same name whether the dialog
box lets the user select one item or multiple items—there’s no singular version such as
“default item” without an s. As with the result of a single-item choose from list dialog
box, you simply supply a single-item list if you want to use a single default item.
Here’s an example of setting a single default item:

choose from list {"Madrid", "Paris", "San Francisco"} -
default items {"Paris"}

Please make your selection:

FREE! Deluxe airline hag
FREE! Return train ticket
FREE! Manicure and root canal woucher

(No, Thanks) (Send Me My Choice |

Figure 8-18 You can change the names of the buttons on the Choose From List dialog box.

Chapter 8: Using Dialog Boxes to Get User Input

Here’s an example of setting two default items:

(choose from list {"Madrid", "Paris", "San Francisco", "Wasilla"} -
default items {"Paris", "Wasilla"} -
with multiple selections allowed

NOTE

When you set one or more default items, the user can select one of the other items but
can’t deselect all items. So there’s no point in allowing no selection (as discussed next) if
you set one or more default items.

Letting the User Select Multiple ltems or No ltems

To allow the user to select multiple items in a choose from list dialog box, add the with
multiple selections allowed parameter. You don’t need to set this to true or false; if you
add this parameter to your code, it’s true, and if you omit the parameter, it’s false. Here’s
an example:

choose from list {"Madrid", "Paris", "San Francisco"} -
with multiple selections allowed

Normally, the OK button in the choose from list dialog box is disabled until the user
selects an item. This prevents the user from clicking the OK button without making a
selection; if they want to dismiss the dialog box without making a selection, they must
click the Cancel button (and generate a false value).

When you allow multiple selections like this, the choose from list command returns
a list of items as usual. You can retrieve the items by specifying their position in the
list (item 1 of result, item 2 of result, and so on). Don’t coerce them to a string, or
AppleScript simply smashes them together (for example, MadridSan Francisco).

You may sometimes need to allow the user to select no items and click the OK button
anyway, as in the choose from list dialog box shown in Figure 8-19. To do so, add the
with empty selection allowed parameter like this:

choose from list {"Fruitarian", "Vegetarian", "Ovo-Vegetarian", -
"Ovo-Lacto Vegetarian", "Pesco-Ovo-Lacto Vegetarian", -
"Pullo-Pesco-Ovo-Lacto-Vegetarian", "Vegan", "Kosher"} =
with prompt "Choose a dietary preference (leave blank for none):" -

with title "Menu Selection" -
with empty selection allowed

159

160 AppleScript: A Beginner's Guide

[T

Choose a dietary preference (leave blank for none):

Fruitarian

Vegetarian

Crvo-Vegetarian

Crvo-Lacto Vegetarian
Pesco-Ovwo-Lacto Vegetarian
Pulla-Pesco-Cwo-Lacto-Yeget arian
Yegan

Kosher

Figure 8-19 Sometimes you may need to allow the user to click the OK button in a choose from
list dialog box without making a selection.

Creating a Choose From List Dialog Box

In this example, you will create the Choose From List dialog box shown in Figure §-20
and display the user’s choice in a dialog box.

1. Start a choose from list command:
choose from list
2. Add the list of items, as shown in boldface here:

choose from list -
{"Mendocino", "Big Sur", "Las Vegas", "Cancun", "Tijuana"}

3. Set a default item in the list, as shown in boldface here:

choose from list =
{"Mendocino", "Big Sur", "Las Vegas", "Cancun", "Tijuana"} -
default items {"Mendocino"}

Holiday Destinat

Choose your destination:

Big Sur
Las vYegas
Cancun
Tijuana

(Ganee) 06

Figure 8-20 The Choose From List dialog box you create in this example.

Chapter 8: Using Dialog Boxes to Get User Input

4. Add atitle and a prompt, as shown in boldface here:

choose from list =

5. Now put the whole command in parentheses and add as string to coerce the result to a

{"Mendocino", "Big Sur", "Las Vegas", "Cancun", "Tijuana"} -
default items {"Mendocino"} -

with title "Holiday Destination" -

with prompt "Choose your destination:"

string, as shown in boldface here:

(choose from list -

{"Mendocino", "Big Sur", "Las Vegas", "Cancun", "Tijuana"} -
default items {"Mendocino"} -

with title "Holiday Destination" -

with prompt "Choose your destination:") as string

6. Add a display dialog command at the beginning with the first part of a prompt, add
the result of the choose from list command, and then a period at the end, as shown in
boldface here:

display dialog ("You chose " & (choose from list -

{"Mendocino", "Big Sur", "Las Vegas", "Cancun", "Tijuana"} -
default items {"Mendocino"} -

with title "Holiday Destination" =

with prompt "Choose your destination:") as string) -

& II.II

7. Press #-Rr or click the Run button on the toolbar to run the script. When the Holiday
Destination dialog box appears, click one of the items, and then click the OK button.

The script then displays your choice in a dialog box.

8. Save the script under a name of your choice.

Letting the User Choose Files, Folders,
Applications, and URLs

AppleScript includes commands for displaying a dialog box so that the user can quickly

choose a file, a folder, an application, or a URL. This section shows you how to use these

commands in your scripts.

NOTE

You can use the choose file command, choose folder command, choose application command,
and choose URL command either inside a tell block or outside one. These commands are
part of AppleScript's Standard Additions.

161

162

AppleScript: A Beginner's Guide

Letting the User Choose a File
Often, you’ll need to let the user choose a file—for example, to tell your script exactly
which document to slice, dice, or spice. To do so, use the choose file command.

On its own, the choose file command displays the Choose A File dialog box shown in
Figure 8-21. The dialog box opens to the current working directory (which may be helpful
or otherwise) and shows every single file in it, including invisible ones. The user can
navigate to any other folder in the file system, pick any file they want, and then click the
Choose button to tell the script that this is the file he or she wants to open.

Adding a Prompt to the Choose A File Dialog Box
In most cases, it’s a good idea to display a prompt in the Choose A File dialog box to make
clear to the user what type of file you’re expecting them to choose. This may be blindingly
obvious to you as you write the script, and indeed may be clear to the user when he or she
runs it, but the Choose A File dialog box can look supremely uninformative if the user
comes back to their Mac after a break and finds the dialog box still patiently waiting for
their attention.

To display a prompt, add the with prompt parameter to the Choose A File dialog box,
followed by the string of text. Here’s an example:

choose file with prompt -
"Choose the source document for the Latest News report."

[4 o] [EE é E] [Excel H (Q search D!
¥ DEVICES 4| |4 [2) Everywhere a...re at Once.mht e [7] 2007 Budget - Final.xls |4
=] imac "4 Everywhere a...ere at Once.rtf [¥ 2007 Budget - Final.zip
B ipisk [7) Example Document 01.doc [™ 2007 Budge...ent - HR.xls
Elmys. & [T Example Document 44.doc = 2007 Q1 Re... review.xlsx
Bl Macinto... [7) Example Doc... and Food.doc m [™ 2007 Q2 Re...P review.xls
=) untitled [7] Example File for Routing.doc |~ [] 2008 Budge... Finance.xls
[o0 2 == Example Presentation.pptx [7] 2008 Budge...acturing.xls
EETE) 2008 Budge...arketing.xls
¥ SHARED [% Expensestatementl.xml [T 2008 Budge...- Master.xls
B0 & 3 Fax = [T 2008 Budge...t - Sales.xls
[netvista [filelist.xml [7] 2008 Budge... Strategy.xls
¥ PLACES {3 Fonts = [T 2008 Budge.. jections.xls
5 Documents | P LI Form Lxmi _ & 4614 schedule 3.xIsx |
v v b -
Bouaw |) o D Koo e
ﬁ Applicati... v [« (= 3
P

Figure 8-21 Without any parameters, the Choose A File dialog box shows every file in the

current working directory.

Chapter 8: Using Dialog Boxes to Get User Input 163

Setting the Default Location for the Choose A File Dialog Box
In many scripts, it’s helpful to make the Choose A File dialog box show the folder that
contains the files the user will likely need rather than let him flounder through his Mac’s
plethora of folders. To do so, add the default location parameter to the choose file command
followed by an alias to the folder. Normally, you’ll want to use the path to command to
return a standard path within the Mac OS X file system rather than hard-coding the path to a
particular folder, as that folder may be in a different place on other Macs.

Here’s an example of using the choose file command with the default location
parameter. The command uses the Documents folder.

choose file with prompt -
"Choose the source document for the Latest News report." -
default location (path to the documents folder)

Choosing Whether to Display Invisible Files

By default, the choose file command displays every file in the folder to which it opens.
This includes any files (and folders) set to be invisible to the user, such as the .DS_Store
file that Mac OS X creates in every folder you open to store details such as the position of
icons, the size of the Finder window you’re using, and other view options.

Only seldom will you need the user to be able to choose an invisible file, so normally,
you’ll want to keep them invisible. To do so, add the parameter without invisibles to the
choose file command. (To display invisible files, you can either add the parameter with
invisibles or omit the invisibles parameter altogether.)

Here’s an example of using the choose file command and hiding invisible files:

choose file with prompt -
"Choose the source document for the Latest News report." -
default location (path to the documents folder) -
without invisibles

Displaying Only the Right Type of Files

Even if you hide invisible files, it’s likely that the folder shown in the Choose A File
dialog box will contain files of different types. When you need the user to be able to select
only files of a particular type suitable for whatever the script is doing—for example, only
rich-text documents for opening in TextEdit, or only Excel workbooks for processing in
Microsoft Excel—add the of type parameter to specify which kinds of files to display. The
files that match the parameter appear listed in black as usual in the Choose A File dialog
box, while other files are listed in the dimmed gray that indicates they’re not available.

164 AppleScript: A Beginner's Guide

To display only files of a particular type, use Uniform Type Identifiers (UTIs) to identify
the file type or types. A Uniform Type Identifier is a Mac OS X means of identifying the file
type by its contents rather than just by its file type code (for example, TIFF).

Table 8-2 provides a short list of the UTTs that are normally most useful in scripts.

To see a full list of UTIs together with enough detail to numb your brain, steer your web
browser to the Apple Developer Connection website (http://developer.apple.com) and
search for the document named “Uniform Type Identifiers Overview.”

For example, the first of the following two commands displays the Choose A File
dialog box showing Keynote presentations without invisibles in the //Server/Presentations/
folder. The second command tells Keynote to open the chosen presentation.

set myKey to choose file -
default location (alias "Server:Presentations:") =
of type "com.apple.iwork.keynote.sffkey" -
with prompt "Choose the presentation you want to open:" -
without invisibles
tell the application "Keynote" to open myKey

CAUTION

UTls work only with Mac OS X 10.4 (Tiger) and later versions. If you need to make
sure your scripts work with Panther (10.3) or earlier versions of Mac OS X, use file type
codes to identify the file types instead of UTls.

When you need to display two or more file types, use the of type parameter with
a list of the types inside braces. The following statement displays Microsoft Word
documents (with the .doc file extension) and Microsoft Excel workbooks (with the .xIs
file extension):

choose file -
default location (path to the documents folder) -
of type {"com.microsoft.word.doc", "com.microsoft.excel.xls"} -
without invisibles

NOTE

The of type parameter always takes a list. But when you provide a single type,
AppleScript automatically coerces it to a list for you, so you don’t need to enter it
within braces.

NOTE

The old-style means of choosing which files to display in the Choose A File dialog box
is fo use their file type codes. This means is no longer recommended for Mac OS X 10.4
or later versions—so if you find this means used in legacy code you're maintaining,
update the code to use UTls instead.

http://developer.apple.com

uTi UTI Constant ‘ Conforms to Type | Tags Explanation
Text Files
public.plain-text kUTTypePlainText public.text txt, text/plain Text with no specific
encoding (such as UTF-
8) and with no markup
public.rtf kUTTypeRTF public.text 'RTF !, .rif, text/rif, NeXT Rich Rich fext (text with
Text Format 1.0 pasteboard type, | formatting)
NSRTFPBoardType
public.html kUTTypeHTML public.text 'HTML', .html, .htm, text/html, HTML file
Apple HTML pasteboard type
Image Files
public.jpeg kUTTypeJPEG public.image 'JPEG', .jpg, -ipeg, image/jpeg | JPEG image (not JPEG
2000) file
public.jpeg-2000 kUTTypeJPEG2000 public.image 'ip2', .ip2, image/jp2 JPEG 2000 image file
public iff kUTTTypeTIFF public.image 'TIFF', .tif, .tiff, image/tiff, NeXT | TIFF image file
TIFF v4.0 pasteboard type,
NSTIFFPBoardType
public.camera-raw- | N/A public.image N/A RAW digital camera
image image (base type)
public.png kUTTypePNG public.image 'PNGf', .png, image/png PNG image file
com.apple kUTTypeQuickTimelmage | public.image 'qtif', .quf, qtif, image/ QuickTime image file
.quicktime-image x-QuickTime
com.adobe.pdf kUTTypePDF public.data, public | 'PDF ', .pdf, application/pdf, PDF file
.composite-content | Apple PDF pasteboard type
com.compuserve.gif | kUTTypeGIF public.image 'GIFF', .gif, image/git GIF image file
com.microsoft.bmp | kUTTypeBMP public.image 'BMP', 'BMPF', .bmp Windows bitmap image

Table 8-2 Uniform Type Identifiers (UTls) for Widely Useful File Types

file

indu| Jesn 185y of sexog Bojpig Buisn 18 JejdoyD

G91

UTI UTI Constant Conforms to Type | Tags Explanation

Movie Files

com.apple kUTTypeQuickTimeMovie | public.movie '"MooV', .mov, .qt, video/ QuickTime movie

.quicktime-movie quickfime

public.avi N/A public.movie .avi, viw, 'Viw', video/avi, AVI file
video/msvideo, video/x