
HIGH LEVEL AEROSPACE COMPUTER
PROGRAMMING LANGUAGE CONFERENCE

Naval Research Laboratory
Washington, D.C.

29 and 30 June 1970

Sponsored by the Naval Air Systems Command
Washington, D. C.

INDEX

INTRODUCTORY REMARKS

Disi tal COJI!?uters I A Decade of .Advancement

Bernard J.. Zempolich

The Advanced Avionic DiSi tal Computer
i

Ronald S. Entner

The Inclusion of Tei!ni::e Instructions
In High Level ~ Syntax

Roger W. Peretti

Page)

7

1$

ProvicU.ns An Efficient Match Between a High Level ••
Prosr8Jllll1ng Language and. a COJl!)uter Instruction
Repertoire

Ralph Jenkins

ILASP - Its Role in AADC Software Development

Edward H. Barsoff

Space Progmmi ng Language: Flight Software
Co_s of AGE

Robert E. Jlimenslc:y

A Technical Overview of COJ!)iler Monitor System 2

John P. O'Brien

P LS

HiE Level Language Compatibility

Computer /Compiler Standardization

APPINDIX Al CMS-2 Compiler Design

APPENDIX BI List of Attendees

- 1 -

81

10)

ill

151.

171

202

241

THIS PAGE IHrENTIOHALLY lEFT BLANK

- 2 -

IRrIUDUCTatY REMARKS

As digital qstems grow in size and complexitY', and as their

applications increase 1». scope and dJnatIics, the need for an inclusiw

high level progr8JIIII.i.Dg language beCOll'l8S increasinP1 desirable. Untortun

atelT, digital computers procured 'or avionic and aerospace applications

are seldom used in JIIOre than a single host STste., there,.,. militating

against general high level progr&1Ding languages and the large, coqaex

cpmpilers required to efficiently translate programs into object code.

This circlDlStance often results in one or .ore ot the follov1ng

situations;

a. Programmers are required to work with lower lwvwl assembly

or machine languages, resulting in long lead times, high cost, high

error rates, inflexible programs and. poor documentation.

b .. ProgramJl9rs are required to use limited cOllpiler languages,

resulting in iDe.tficient problem definition and, hence, inefficient

object code which often requires tedious baM correction and recoding.

This, again, leads to high cost, low flexibility and poor documentation.

c. The computer system purchaser, i. e. the Gowrmnent, lIlUat

defray the de"felopment costs of an adequate high level language and

compiler which, in turn, leads to long lead tiMs and tremendous ex

pense. In addition, it is now necessary to train personnel to use the

new language, as 11811 as find a suitable cOllputer upon which to run

the new compiler.

The &bow situations are particularly striking whan one considers

the coding efficiency required for avionic applications. Aerospace

computers haw historicallT been memorJ limited. It is unlikelT, there

fore, that any compiler with a coding efficiencY' which is mch less

than haM coded efficiencies would be considered acceptable for such

- 3 -

applications. A sui table aerospace compiler, therefore, must, by defin

ition, be both extensive and e:zpensive. Several organizations have attempted

to approach this problem by establishing a high level language compat

ibility requirement. The chief advantages of this approach reside in the

areas of documentatbn and format, and to some extent, in the compiler

dlront end, or "syntax analyser". This approach does not, however, con-

tribute signiiillaDtly toward the standardization of the larger body of the

compiler itself. This portion of the compiler, which fits the operational

program to the architecture and control structure of the object machine,

greatly depends on the structural vagaries of the interfacing object

computer. The metacompiler concept was developed to cope wi th th~s

complication.

A metacompiler accepts, in addition to a high level language

program, a definition of an object machine's architecture and control

structure, thereby perDd:tting the metacompiler to "adapt" to alternate

object computers. While this approach permits the compiler to aceoJllllK)date

more than a single computer design, the metacompiler can be significantly

more eJq>ensive to develop and implement than a conventional compiler.

On 29 and 30 June, 1910 a High r.e.un. Aerospace Computer PrograBlling

Language Conterence was held at the Naval Research Laboratory, Washington,

D.C •• The languages discussed at the conterence were CO!!!?iler Monitor

System -2, Space Programming Language, and Computer Language for Aero

nautics and. Space Programming. The purpose ot the conference was to

address the relative merits of each language with respect to avionic

applications, as well as discuss high level aerospace pregraaning lang

uage compatibility and computer hardware requirements (i.e. common

instruction repertoires., staaiard 1iDrd fir_ts, etc.) which could lead

to some measure ot compiler standardization.

These proceedings provide a record of that conterence. It is

- 4 -

hoped that this document w1l1 be reviewed with an eye toward tuture

digital cOJl¥)uter technology' and requirements. A-q attempt to remed1

the problems ot the past withouD atteupting to prevent new problems

in the future is, undoubtably, an inappropriate moc:lus operandi.

The participation ot the following parties is greattul.l1

acknowledged:

-- the authors tor their papers and presentations

-- the panelists and panel chairmen tor their tm and cooperation

-- the Haval Research Laboratory tor providing IIOre than adequate

facilities

-- the HaV1' personnel who graciously contributed toward coftee

and donuts.

,tJJ)~
RONALD S. EmBER

Conference Coordinator

- s -

THIS PAGE DfrENTIONALLY lEFT BLANK

- 6 -

DIGITAL COMPUTERS: A DECADE OF ADVANCEMENT

By Bernard A. Zempolich
Head, Tactical Computer Section

Avionics Division
Naval Air Systems Command

The digital computer is playing an increasing important role in

Naval Aviation, the forces afloat, and all shore activities. The A-6

Intruder is a good example of the use of a digital computer in Naval

Aviation and serves as an indicator of the progress made in the compu-

ter technology in recent years. A digital computer was first introduced

as part of the A-6 system in the late 1950's. This computer had a limi-

ted functional capacity when compared with the computers of today but it

played an important part in the increased operational capability which

the A-6 system brought to the fleet. Now, nearly 10 years later, a

second-generation digital computer with a much greater functional capa-

city and performance capability is being developed for the current A-6

system.

Digital computers of varying degrees of complexity were similarly in-

troduced in a variety of naval aircraft applications and significant ad-

vances in computer capabilities have been made in succeeding years. These

advances are due to the substantial progress made in the overall computer

technology in recent years and particularly to the advances made in digi-

tal micro-electronic circuits. The ability of today's computers to han-

dle more functions and operate at higher speeds has resulted in an "ex-

plosion" of applications for many different types of naval aircraft.

- 7 -

The paper presents an overview of this advancing computer technology

as it relates to tactical functions, applications~ test and evaluation,

training and simulation. The reasons for the prol:i,feration of many dif

ferent kinds of computers of special design are also presented.

Tactical Functions:

The basic tactical functions performed by naval aircraft that incor

porate general-purpose, progr8JllIllable, digital computers as part of the

avionics system are:

• Fleet air defense.

• Distant air superiority.

• Airborne early warning and control.

• Reconnaissance.

• Antisubmarine warfare (ASW)

• Attack.

• Ground support"",tactical.

• Transportation.

• Medical evacuation.

• Test and checkout equipment.

• Countermeasures.

• Intelligence processing.

In each of these functions the computer is used for extremely fast

calculations of arithmetic operations performed on input data, storage of

data, and transfer of either raw or "operated upon" data. The digital

computer used to perform these operations varies from system to system.

- 8 -

Applications:

The data-processing applications performed by computers in processing

the functional tasks described previously are:

(1) Navigation

Doppler navigation
Flight control
Autopilot
Air data computations
Terrain-following
Stationkeeping

(2) System test

Built-in self-test
In-flight performance monitor
Automatic fault-detection
Operator training

(3) Weapons delivery and control

Weapon assignment
Ballistics data storage
Intercept solutions
Air-to-Air
Air-to-Ground
Air-to-Subsurface

(4) Target data processing

(5) Threat evaluation

(6) IFF

(7) IR

(8) Radar

(9) Signal processing

(10) Data display

(11) Sensor correlation

(12) Data link

(13) Intelligence generation

- 9 -

Depending on the specific program, any given computer system may

perform more than one of the aforementioned "task area" groups. It can

be expected that with future aircraft, computers will be responsible for

more multimode applications. Applications that are not listed but which

are contained within current planning are: (1) low-light-Ievel television

(LLLTV) , (2) laser target designation (LTD), (3) battle-damage assessment

(BDA) , (4) airframe-performance monitoring (APM), and (5) recording of

in-flight voice communications.

Test and Calibration:

The sophistication and complexity of the newer avionics systems have

led to test and calibration methods which require the automaticity and

speed of a programmable, general-purpose digital computer. Present sys-
,

tems being developed to provide the important task of test and calibration

are: (1) versatile avionics shop test (VAST) for CVA avionics support; (2)

The Naval Air Rework Facility NARF-550 test station for depot repair; and

(3) computer-controlled test stations for specific systEmS such as the

Carrier Aircraft Inertial Navigation System (CAINS) and certain electronic

countermeasures (ECM) applications

Training:

The same factors that led to the incorporation of computers in avionics

systems have created the need for computer-controlled trainers such as the

operational flight trainers (OFT) and weapons ~ystem trainers (WST). Al-

though the number of OFTs and WSTs that now use computers is small, it

is reasonable to expect that most weapons systems currently being develope~

- 10 -

and most certainly future systems - will utilize WSTs with general

purpose digital computers. A recent example is that of the WST for

the Phoenix Missile System AN/AWG-9 Airborne Missile Control System

(AMCS) •

The utility of computers in naval aircraft maintenance trainers

(NAMrs) is somewhat undefined at this time. However, again it is reasonable

to expect that computers may very well be used to help train personnel

in automatic fault-isolation of troubles. It would appear that this

application would be a direct outgrowth of the on-board built-in test

and automatic fault-detection capabilities now being incorporated into

certain weapons systems.

Simulation:

Digital computers are being used extensively at a number of NAVAIR

field activities as well as in private industry to simulate a myriad of

operational environments in which the system will be employed. In general,

most of these computers are commercial in nature except for those being

used for operational programming (software) by the Fleet Computer Centers

(FCPCs).

Proliferation:

The many advances made in tbe general computer technology and the

realization that these devices have the potential for widespread appli

cation have created a demand for the development of a variety of digital

computers to meet specific operational needs. This has resulted in a

proliferation of computer designs which do not have a general utility

-11-

but instead are "tailored" for a apeciJi.c purpos.e. in a ape.ciJic filYfilte.Ill

The reasons for this proliferation of computers throughout the fleet in

the last decade are:

a. Different memory capacity required. The data-processing require

ments differ widely among systems and subsystems. Each single computer

is normally designed to contain sufficient memory capacity to fulfill

the specific weapons system operational requirements.

b. Use in different. Vehicles. The space and weight restrictions im-

posed on each system have led to new and/or repackaged designs. In addition,

maintenance factors (i.e., human factors) and on-board turnaround times

have also created the need for new design and development.

c. Different procurement methods. Under the total package procurement

plan, the Navy does not necessarily have direct control over all components

which go to make up the total weapons system.

d. Equipment procured at different periods. Computers procured for

a 1961 development obviously will not be the machines wanted for a project

starting development in 1971.

e. Urgency to implement systems to meet operation al requirements. In

many cases, the urgency of the operational requirement dictates quick-re

action capability (QRC) procurement and use of whatever is available, from

all sources, that will do the job.

f. Procurement by different activities. No two separate engineering

groups can be expected to reach identical technical conclusions on every

problem. In addition, it was only recently that within the Naval Air

Systems Command (NAVAIR) cognizance for digital computer development has

been vested in one section.

- 12 -

EffbDts are being made to reduce the proliferation of computers of

special design. General p~ose-type computer designs are being utilized

when possible and certain common elements of the computer systems such

as program formats, circuits, and packaging are being developed as

standardized elements for use in new digital computer designs.

Summary:

During the past 10 years there has been a dramatic growth in the

application of general-purpose programmable digital computers in Naval

Aviation. Their inherent advantages--speed of calculation and storage

capability for voluminous data in limited space--are responsible for

their increasing use in various weapons systems. An equally significant

factor is the ease with which the microelectronic technology has been

successfully incorporated in new computer systems designs.

- 1) -

THIS PAGE INrEN'l'IONALLY LEFT BLANK

- 14 -

THE ADVANCED AVIONIC DIGITAL COMPUTER

By Ronald S. Entner
Naval Air Systems Command

Washington, D.C.

The Naval Air Systems Command hopes to develop a digital

computer system which will optimize avionic subsystem per

formance through improved systems integration. This system

should be responsive to dynamic operational requirements.

The system should employ modular hardware and software and

provide the means to utilize new magnetic and semiconductor

technologies, which could lead to improved performance at

reduced cost. Examples of these technologies are: Large

Scale Integration, Medium Scale Integration, Electron Mask

&eneration, Ferroacoustics, etc ..

The AADC program is, in essence, the outgrowth of a

search for a cost-effective application of LSI technology

in the area of computer systems. To that effect, it is hoped

that an appropriate level of system modularity can be established

to optimize on this new technology. Furthermore, since the

computer will be more than the sum of its logic and storage,

an approach to component interface is also an essential de-

velopment.

Because the design and set-up costs for LSI production

may actually exceed the cost of fabrication, itself, it would

be useful to develop a system which utilizes a minimum of LSI

types. This goal, in turn, requires that these types be general

purpose enough to be used in a collection of larger systems.

By quantizing at the byte-functional or functional levels, it

is believed that the necessary goal of universality can be

-1, -

realistically achieved. Byte-functional modularity is addition

ally compatible with LSI design requirements for partitioning

and interconnection.

NAVAIR is currently developing the necessary package to

support monolithic LSI wafers up to three inches in diameter,

operating within a military aircraft enviro~ment (i.e. MIL

E-54oo Class 4). The package will support multichip and

hybrid technologies, as well. The package is about four inches

square, a half inch thick, provides three hundred pOints of

electrical contact, and will disSipate 25 watts. Hopefully,

prototype packages will undergo environmental testing by the

end of fiscal year 1971.

The second level of packaging employs a zero force module

insertion methodology. This approach will prevent undue stress

during module insertion from fracturing the delicate, single

crystal wafer. This capability is provided by a cam actuated

contact mechanism which couples to the modules electrical

contacts with sufficient force to meet military specifications.

Two years ago, when it was decided to proceed with a hard

ware development, it was necessary to chose a system architec

ture which would provide performance and permit modularity.

Two design roads were open: the first, to establish basic

computer functions, which could then be translated into LSI

hardware and ultimately assembled into large macrosystems;

the second, to begin with a worst case estimate and partition

down to elemental modules. The latter road was chosen, as it

provided assurance of meeting worst case processing require

ments, as well as they could be predicted. Several computer

architectures were analyzed in the attempt to define the

- 16 -

worst case design. After consider~ble design and analysis,

the AADC Baseline Organization evolved.

The Qptimized §implex frocessor (OSP), while chronologically

out of order, does help explain the memory partitioning and

hierarchy techniques used in some of the more complex AADC

structures, of which the Baseline Organization is one. Briefly,

there are three memory elements found in the OSP: Bulk Store,

Main Store and Task Memory. The Bulk Store is a Block Organized

Random Access Memory (BORAM) employing ferroacoustic technology.

Ferroacoustics provides NDRO readout, 1 usec block access time,

70 nsec word cycle time, and non-volatility. This memory is

used to store invariant programs and data, which constitute as

much as 90% of an aerospace computer1s storage burden. This,

in turn, results in paged software structures. The Random

Access Main-store Memory is NDRO or protected DRO, exhibits

an approximately 250 nsec cycle time (due to system interfaces),

and is non-volatile. The RAMM is used for variable data and

Input/Output buffer storage. The Task Memory is a high speed

random access memory with a cycle time small enough to permit

unbuffered transmission from BOHAM. This memory provides

random access to Program Modules (PM1s) transfered from Bulk

Storage. In operation, tasks which are stored as pages in

BORAM are transfered into Task Memory, followed by data trans

fers from Main Store. The processor then executes directly from

Task Memory. The capability is provided, however, to operate

directly from Main Store in the event that large volumes of

variable data are encountered (e.g. matrix computations).

The Time Division Multiplex Block Transfer Multiprocessor

is, essentially, a cluster of OSpis on a shared bus system.

- 17 -

In this architecture, each OSP operates asynchronously. A

program is brought down just as before from Bulk store to Task

Memory, the variable data accessed from the Main Store, and

then computation begins, after which the next processor is

loaded, etc .. The primary advantages of this approach are 1)

a significant reduction in memory conflicts, assuming correct

scheduling, 2) the ability to share data and routines with

out resorting to multiple storage areas and 3) the locations

of programs and data are non-critical since multiple simul

taneous accesses are nearly non-existant, which, in turn,

leads to 4) the ability to dynamica1ly reconfigure software

in the on-line system. Among the disadvantages of this appro

ach are 1) time loss due to memory transfers, 2) storage

problems for tasks generating or utilizing large volumes of

variable data, which is compounded by the fact that there are

now multiple subscribers to the Main Store and 3) optimal

resource utilization.

To improve the transfer to processing time ratio, AADC

will attempt to employ multiple addressing, macro instruc

tions and, when necessary, wide intermemory buses. To reduce

the problem of operating with large volumes of variable data,

a Matrix-Parallel Processor (MPP) has been postulated. The

MPP consists of an Associative or Array Processor, an

Associative or Pseudo-Associative Memory and some form of

frequency analysis and synthesis device. All these elements

are modular.

The Master Executive Control (MEC) component of the

AADC is, essentially, respaEible for schduling and system

resource utilization. Depending on the sophistication of a

- ~ -

particular version of the AADC, the MEC may be implemented

as software, hardware or some suitable combination. The TDM

multiprocessor would use a software, floating executive, for

example.

The AADC Baseline Organization illustrates an architecture

employing all hardware elements embodied in the AADC develop

ment. The Baseline combines the TDM multiprocessor, the Matrix

Parallel Processor, a hardware Master Executive Control and

two I/O systems: a high speed multiplexed I/O and additional

dedicated channels for special I/O requirements.

The Processing Elements used in the Baseline are configur

ed along functional and byte-functional lines. The arithmetic

function is partioned by byte, permitting whole and part word

operations, as well as providing a convienent means of develop

ing independent hardware mantissa and exponent processors for

floating point operations. The control unit, however, would

not be enhanced by byte partitioning, as only whole instruc

tion words are meaningful (half word control is not currently

anticipated for AADC). Task Memory is configured by byte and

numbers of words. The Task Memory byte may be an integral

number of bytes greater than the arithmetic unit byte. Optimal

byte size will be determined by simulation. Ultimately, byte

size may very well be determined by available technology.

While the MPP will functionally consist of the three items

already addressed, work is in progress to provide the capability

to perform matrix operations within the AP itself. This will,

hopefully, eliminate the need for a frequency analysis (i.e.

FFP) element.

The AADC will interface with a Generalized Multiplexed

- D -

Communication System. This system will be under Master Executive

Control, thereby permitting dynamic reallocation of communica

tion resources. The approach will, in addition, extend AADC

processing availability to each system on the communication

bus. This situation could be used to provide back-up computation

al and control capability in the event of certain subsystem

malfunctions.

The Master Executive Control element found in the Baseline

Organization consists of an executive processor and an associa

tive memory for task and resource status keeping. In its final

implementation, the MEC processor may be the same control unit

used in the Processing Element. The reliability of the MEC need

only be a few times greater than the PE reliability to provide

adequate operation at minimal risk to overall system reliabil

ity when compared to a floated executive implementation. In

any event, the use of a hardware executive should only be con

sidered as a worst case alternative, the necessity of which

is currently under study.

By coordinating the development of AADC hardware and soft

ware, it is believed that both hardware and software goals can

be more easily achieved. An important element in the develop

ment of both is the availability of an algorithm bank. The

algorithms stored in such a bank can be used to judge the

applicability of various programming languages, can be used

to establish the throughput and special features required of

the hardware, and can be used to write application and

simulation programs.

The AADC program addresses the use of a metacompiler

system f~r translating source code into object code for

-~-

various system configurations. This element will be part of a

system synthesizer which, in turn, will hopefully be part of

an Automated Design Facility (ADF). It is hoped that the ADF

will be able to reduc.e a Specific Operational Requirement

(SOR) into useful hardware and software in a fraction of the

time required by conventional proceedures. In addition to com

piling applications programs, the synthesizer will generate

the necessary executive parameters to enable the MEC of a

particular version of the AADC to schedule the execution of

the problem oriented tasks. Scheduling will occur on-line and

in real time.

Microprogramming, it is believed, will prove a useful

attribute in AADC. It will be possible, through the use of

microprogramming techniques, to modify, on a task to task

basi~ the instruction repertoire of each AADC Processing

Element. This will permit the use of high level instructions

which will provide a better match between object and source

code than heretofore possible. Microprogramming may also

lead to some measure of computer emulation capability, there

by permitting the use of old, but nevertheless useful soft

ware. The exact means of achieving cost-effective microprogram

control is currently under study.

The AADC program presently straddles a region between

system design and hardware/software considerations. Memory and

packaging work are about to enter a hardware development stage.

Current plans are to build the Optimized Simplex Processor as

a first milestone. It is projected that this first version of

the OSP will be, effectively, a two millon operations per

second machine, based on a 30:70 long to short instruction

- 21 -

mix. This ratio is based on analysis of conventional avionic

program instruction mixes. Future programs will probably

exhibit a greater preponderance of long instructions due, in

part, to the use of microprogrammed control. The execution

time of these long instructions will probably be less than

conventional long instruction execution times, however, because

of the nature of microprogramming.

- 22 -

ADVANCED LSI/MSI PAC'KAGING

\ CONNECTOR PADS
75 TYP TOP & BOTTOM
EACH OF TWO EDGES

RESISTANCE
WELDED FLANGE

ATTACHMENT OF PROBE RING TO PRINTED
CONDUCTORS (TYP)

CIRCUIT ISOLATION AREAS

WAFER FLA T WITH LOCATION SHOULDER

COVER

ALUMINA BASE

SEAL RING

BRAZE

PRINTED SEAL RING OVER
PRINTED DIELECTRIC

SILICON WAFER

PROBE RING

SPRI NG LOCATION SHOULDER

SPRING MEMBERS INTEGRAL WITH
PROBE RING (SUPPORT FOR WAFER
IN VI AXIS)"

pm. 1

INPUT/

OUTP U T

... .. RAM M

v

...

PROCESSOR

(A 8 C)

TASK

MEMORY

BU L K
STORAGE

OPTIMIZED SIMPLEX PROCESSOR.
FI G. 2

r---~:- RAMM BULK
STOR AGE

I.

f-- ---,

~1/O~~~l~! __ D_A_T_A_~~~~I_N_S_T_R_U_C_T_I_~~~_B_U_S ____ ~~~=
'r

MATRIX
PARALLEL

PROCESSOR

PROCESSOR
-
PROCESSOR PROCESSOR

I ,
I f TASK TASK TASK I

I, M EMORY MEMORY MEMORY I
I I
I ~ ~ ~ I
I I I I I

, I I

L-----+-------b---- ---~----J
TOM BLOCK TRANSFER MULTIPROCESSOR.

FI'G . .)

x
UJUJ
..JU
Il.<t
- u..
t-a::
..J w
=>t-
~z

0
UJ ..J

I\) UJ<t

'" Il.t-
(/l _

::t:~
<.!>o
::t:

RAMM

r- --,
I I
I I
I I FAST ASSOCIATIVE
I I FOURIER PROCESSOR

PROCESSOR

PSEUDO- ASSOCIATIVE

I
I
I MEMORY

I I
~ATRIX-PARALLEL ~QCES~~

AADC BASELINE
ORGANIZATION.

FIG.4

POWER SUPPLY

MASTER
EXECUTIVE
CONTROL

~-
ARITH .
UNIT

CONTROL
UNIT

TASK
MEMOR't

I I
ARITH. I I

I
UNIT I I I I

I CONTROL I I ~~
I UNIT ~ I I
I I I
I TASK I I I I
I MEMORY I I I I
L.: -_ ~ L..: ____ J u

ARITH.
UNIT

CONTROL
UNIT

TASK
MEMORY

JJH AEDC OCT.20,1969

-,
I
I
I
I
I

A I TH ME TIC Ufl ItS

u j~ ~ ~ ~;. ~ rs ~~

0 , ,'1 ~,

S
.A I I I I

-v I I I

I)
I CONTROL UNllT

-t> I I I I (
I

I. l ~ ~

~ , ~ ~ ~~ ~ , "
fOO~ 2K WORDS

(HI G HE S T VA LU E
TECHNOLOGY PER MITS) . I I I

I I I I
I

:TASK IMEMORt I
I I

I I I

--0 l.,.. I BYTE

L ~ J. I.

7 ,
" n .,

TO CHA NNEL SELECTOR SWITCH

PROCESSING ELEMENT DETAIL.

FIG· 2

HIGHLY
RELIABlE
mc PROGRAM
STrnE ASSOCIATIVE

STATUS

KEEPnn
~ ,.

STORE

LOGIC
AND 1 ~

CONrROL "'
,

EXECUTIVE BUS DATA BUS

FIGURE 6: Baseline Master Executive Control Hardware Elements

I\)
\()

_ -.One.way
bus

...... Two.way
bus

SOR

Software
Optimizer

I
I
I

I I L_?_
I

Problem·
Oriented

Algorithms

Operational

Executive

Interface

AlgoritlllH Bank

Executive
or I/O

Algorithms

Diagnostic
Algorithms

-----l

Mission·
Mode Models

Hardware/
Softw.lre
Accessor

rt
J I

L

--------'

-

On·line
Diagnostic
Generator

AADC
Component

Specifications
Rules and
Options

Interconnect
Generator

Hardware
Optimizer

Outputs

o Hardware
Specifications

® Program Modules
Circuits

© Performance
Parameters

@ Interconnections

FIG. 7: Preliminary AADC Automated Design Facility Functional

Block Diagram

THIS PAGE DftElfrIOHALLY IDT BLAHK

- 30 -

GRUMMAN pP" ..

THE INCLlISION OF
TEST-TYPE INSTRUCTIONS

I ~\J II

HIGH LEVEL LANGUAGE SYNTAX

__ r_NT_RO_D_lIC_TI_or_~ __ PAGE# a

ROGER WI PERETTI

29 JUNE 1970

GRUI.'f'.AN AIRCRAFt f.NGINfEf,ING Ct":,i',If'A1I('lN

~l.~
Roger W. Peretti

NAME

Computer
Engineerins

DEPT. NAME

35
PLANT NO.

SUBJECT: USER ORIEJI:'l'ED AEROSPACE LAHGUAGE DEVELOPMENT

o INTP.ODUCTION.M"'D smWJlRY

"-

1083

EX1.

DATE

In general, language development can be broken dO~l into three phases

de~inition, interpretation, implementation. ~~ere are at least two major

steps involved in the de~inition phase, namely:

(1) Performing a detailed analysis of the presumed language requirements.

(2) Development of the actual statements and syntax* for the language.

Once the syntax has been defined and found to be unambiguous, we are prepared

to determine the semal1tica1 interpretation vlhich is to be associated with
\

each statement. The final step in developing a language involve implementation

and testing. Each of these tasks can be monumental.

During.May 1969, an A.D. program was ·initiated in order to develop a

user oriented aerospace language. The primary goal of this program was to

analyze the O.B.C. sofb/are requirements for the 1975-80 time period, and

either incorporate these requirements (in the form o~ statements) into the

repertoire of an existing language, or, develop a new language which would

incorporate them. The criteria for going one wa:y or the other are explained

at the end of this memo, and lW'eely depend on bnguage efficiency. Ranked

according to their presumed import."'-nce, the featm"er. to be :i.ncorporated into

these statements include:

* A language consists of a set of valid or admissible strings, and the
meanings or interpretation a"sociated "lith these strings. The synt&ctical
de~ini tion of a language r(>~ers to the rules that define the structm'e
of valid statemer"ts ana programs.

Gl'OO RE:V.2,12-6B 700

- 32 ...

Rogcr H. Perettl
CE-IOI,~-69-23

7 August J.969
Page 2

(A) Must have English-liJ;:e input statements -- to make routines

accessible to non-programmer2.

(B) Must produce efficient code -- to optimize speed and storage.

(c) Should be flexible -- to allow for future expansion.

(D) Should contain hardHare implemented routines -- requ:ir ed for code

optilPizution.

The A.D. project is still in the definition phase. Corresponding to (1),

several test-type languages''" were examined in order to take advantage of the

ana]jrsi~ that was involved in their devclopment. Each le.nguage 1\"8.S determined

to be too hardvTare oriented, too "ground-based'" oriented, and in general,

too coraplex for the intended airborne application. Using the F-ll~ O.B.C.

system as a baseline, and projecting into the 1975-80 time frame, we see

a requirement for statements which TEST the Go/rW-GO status of an avionic

system, and DISPLAY failure information. other statements would be available

to perform a LI~rrT TEST, and TRENDing ANALYsis**.

After a preliminary analysis it was determined that CMS-II and METAPL.IIJ,{

should be examined, to determine vlhether either of these languages could

be used as a base language in which to incorporate the O.B.C. statements.

METAPLAN was chosen because:

(A) There was an ilP~ediate need for these changes. Experience on the

F-14 has shown that METAPLAN's instruction repertoire is insufficient

to perform the O.B.C. :f'unctionR.

* Including A'fLAS, BAGLES, DIMATE, GAELIC, PI.1.flCE, UTEC and V'l'RAN. (cf. App.B)

~* As the reader may already have inferred, these statements would take
the form TES'f (), DISPLAY (), LHITT TEST (), and TREND ANALYZ()

- 33 -

Roger \Y. Peretti
CE-IOM-69-23

7 Augm;t 1969
Page 3

--~----------------------------

(n) elliS-II is less user oriented and less English-like in structure,

thereby defeating the goal of this program.

The second part of this memo examines. problem (2) in the definition

phase with respect to the language 1IffiTAPLAN. In that part, a syntax is

developed whjch allows for the incorporation of the statements:

TEST - - -

DISPLA -

where the unspecified letters refer to the acronym for the equipment in

question.

The interpretation phase has not been started and therefore, although

we have defined the two statements, we have not incorporated the meaning to

be associated with these statements, nor~have we defined the recognizer

which will make these staterc,ents legal utterances in METAPLAN. This is the

next step in the program.

One of the main problems involved with adding statements to an existing

language concerns the possibility of introducing ambiguity into that language.

This problem is deqlt with in great detail in the following section. In

summary form, the items which were concluded from the work involved in

expanding the syntax of METAPLAN to include test-type instructions, are:

(1) ME1~PLAN is not a simple precedence language*, and therefore,

,..re are unable to determine 'whether it is unambiguous in its present

form.

* To date, the only way a grammar can be proven unambiguous, is if it
falls into the simple precedence category. Precedence grammars and
matrices will be developed in the remainder of this appendix.

- 3h -

Rof,Cl' H. Peretti
CE-IOT.1-b9-23

7 August 1969
Page 4

(2) We can redefine M.E'l'APLAN such that it is a simple precedence

grann-Har, '"ut that 'vould involve generating the precedence matrix

for the entire 18IJguoge (a tremendous undertaldng).

(3) The effect of changing a small pa.rt of METAPIAN such that it

becoy';cs simple precedence in form, cannot be evaluated without

further investigation.

(4) The overall efficiency of the resulting language w~ll be an

important factor in determining whether a new language is

needed.

The . problems posed by the above conclusions will be resolved before

entering the interpretation phase.

o EXPlillDING THE SYNTAX OF METAPMN TO HICWDE TEST-TYPE INSTRUCTIONS

The problem at hand is that of introducing new statements into the

}''LETAPLAN language. In part, this is handled by introducing a series of

productions which syntactically define* the additional statements (the meaning

to be associated with these statements is within the realm of semantics and

"nll not be discussed here). Specifications of the form <Sf' ::= <a)with

only one alternative on the right-hand side are referred to as productions.

The syrabol on the left-hand side is referred to as the defined symbol

associated with the production. The symbols which appear on the right-hand

* Reiterating, a language consists of a set of valid or admissible strings
and the meanings or interpretation associated with these strings. The
syntactical definition of a language refers to the rule~ that define
the structure of valid statements and programs.

-)$ -

Roger W. Peretti
CE-IOM-69-23

rr August 1969
Pc:.lEC 5

side of a production may be classified into terminal symbols, ·which are symbols

of the language being specified, and nonterminal symbols, which are names of

sets used in specifying the language. When adding new productions to a given

language, one of the prime concerns is that the structure of the language is

unaltered, ana ambiguities* are not introduced.

Experience has shovm that the follovnng instructions should"be added to

the METAPLAN language:

(1) IJ:'EST

(2) DISPLA ---

The three (or more) unspeci.fied symbols are the programmer-defined name vlhich

refers to the equipment being either tested or displayed. When dealing "nth

METAPIAN, this name can be from one to six alphanu.meric characters in length,

the first character of which must be alphabetic. In general, these two commands

will respectively test the GO/NO-GO status of a piece of equipment, and display

'failed equipment.

Although not dealt with from a recognition point of view· vnthin this.

paper, the following commands will be defined and could easily be incorporated

into the METAPL~ repertoire.

(1 r) STA'ruS TEST ---

(2 r) DISPLA STAmS

C:3) LIMIT TEST _ .. -

(1+) DISPI,.l\. TEST DATA ---

(5) TEST ROC ---

* For our purposes, ambiguities may be thought of in the same light as not
knowing whether to interpret A + B/C as (A + B)/C or A + (B/C), or worse,
hoping to get one, while actually gettin ~ the other.

- 36 -

ROGer W. Peretti
CE-IOM-69-?3

7 August 1969
Page 6

The last two, "rhich presumably are the only commands requiring explanation,

deal with displaying the numeric result of a specified test, and testing based

The set of productions P which define these conrruands are as follows*:

(1) (test)::= <TEST)(blank)<symbol)<plank)~eoc>

(2) 4lisplay)::= <nISPLAXblank,>(symbolXblank)<ceoc)

(1 t) (test 1) :: = <}jTATUS> <blank)(TEST) (blank) <SymbolXblanlV (ceoc,

(2') 4lisplay 1) ::= <DISPLA)(blank)(STATUS)(blank)<symbol)(blank)<ceoc>

(3) (test 2) ::= <uMrT}<blank)<TEST><blank)(symbol)(blank)<ceoc)

(4) (display 2) ::= <DISPT.A)(blank)<TEST){blank)<DATA}{blanJ.9(symbolXblank)<ce09

(5) <test 3'! ::= <TEST~lanl0<.Rcexblank)~ymbol)<blarJ9<ceo~)

The essent.ial backbone in this definition is "symbol" which derives its inter-

pretation from the following productions:

<symbol) ::= (letterXfrtlfnuml)

<alfnum) :: = (J_etter)l(digi t)

This read3 as: Symbol cons is ts of a letter, follo""ecl by from zero to 5 aJ_pha-

numeric characters, 1-There an alphanumeric chaxacter is defined as either a

let~er or a digit. A defining-tree respresentation of these two productions

looks like:

* Production specification is not according to the notation of Prograrmnatics
but rather according to the original specification of Algol 60.

- 37 -

ROf,t2r W. Peretti
CE- J m·;-69-23

7 August 1969
Page '7

An initial aim in performing our additions, vTD.s to make certain that the

structure of the language is unaltered, and ambiguities are not introduced.

In order to determine vlhether or not the language (grammar) is ambiguous, we

first test to see if it is a simple precedence [?,raJl1.mar. If tk grammar is

not of simple precedence type, then there are no formal rules for determining-

a'rllbigui ty, and we are merely guided by the fact that: A grammar G is

unrunbigudus if it has precisely one canonical generating"sequence for every

string vlhich it generates. It is said to be ambiguous if there is at least

one terminal string of the language for which there is more than one canonical

"generating sequence. For a language that is as involved as METAPLAN, it is

an impossibl'e task to generate and perform canonical parses on every terminal

string 'which the la.Tlguage generates.

It might do well to stop for a moment and exandne the idea of ambiguity

a little more closely. If vie define a grammar i-,here:

<8) :: =' (a){b)

(s) :: = (a}(x)

(x) ::= <b)

~d we attempt to parse the string (a) (b), we find that the follovring blO

canonical parses produce (0.)< b) :

Therefore, the grammar which i'le have just "defined* is ambiguous. Ambiguity is

to be avoided because if the terminal string has two canonical generating

* From this example it should be obvious that the class of sentences S that
belong to this gramrr.ar consist of ab and ax. 1'he replacement rules which
exercise a set of prodlIctions are" demon"'trated in this exwnple, and should
be underst·")od before continuing.

-)8 -

'{ocer 1\1'. Peretti
CE-IOM-69-23

7 August 1969
Page 8

sequences, it vrill be associated vlith two dif'f'erent sets of semantic actions,

a...'1d wlD_ therefore be semantically ambiguous.

vlhen, we talk about gra:mmars, it is usually in terms of bounded context,

context-free, or simple precedence. In a context-free gre.mmar, when w'e apply

any production, we don't care what context it is in. Therefore, we have a

free choice in choosing a production in forrrLi .. ng or reducing strings. A

context-free grammar is said. to be of bounded context (m,n) if' it is aJ .. ways

possible to avoid backtracking* by examinin~ the m characters preceding the

matched string and the n characters f'ollovling the matched string**. A simple

12rec~denc_~ grammar is an unambiguous grannnar in which not more than one

relation holds between each pair of symbols vlithin a precedence matrix.

In o:l'.'der to deterr,jine whether the instructions just added to MEl'APIAN

have an undesirable eff'ect on the overall structure of the language, it is

neeessaxy to determ...i.ne whether the expanded METAPLAN grammar is a simple

~-** precedence grammar •

In detecting a simple precedence grannnar, 'Ire must list the set of

produetionl3 P which are ~f'fected by the additions. In our case, the set P is

as follows:

(1) «teGt):: = <rEST).(blank)(symboi)~lank)<ceoc)

(2) <displaY/::= <DISPL!'~ (blank) <Symbol'Xblank) (c eoc>

* Backtracking occurs when 'Vle arbitrarily apply "productions. If at some
time vTG ap}?ly the wrong one, we are forced to "back-up" and try available
alternatives.

** In the examples which follow, when we form a context matrix, we wilJ. be
dealing 'TtTith a bounded context (1,1) grammar.

*** Simultaneously, we will perform the same evaluation on the unexpanded METAPLAN.

Roger W. Peretti
CE-IOM-69-23

7 August 1969
Page 9

(3) (ceoc)::= (eoc)

<eeoc) :: = <blank)

(4) (symbol)::= {letter)

< symbol, : : = <letter)(alfuum)

(symbol) :: = (letter) <alfuum)(alf'num)

(symbol) :: = {letter> < alfuum} {alfuum) < alfuum)

(symbol> :: = ¢.etter';(alfuum><alfnum)<alfnum}(a.J..f'num)

(symboJ) :: = <letter>(alfuum){alfuum)(all'num)<alfuum)(alfuum)

(5) <alfuum): : = <letter) *

,alfuum/::= {digit,*

The next step is to produce the leftmost and rightmost symbols of a non-

basic_ symbol U, "There L (U) and R (U) are defined as:

L C U) = f S J;1 z C U..!....;. Sz) J
R CU) = {sl 3 z cu...!4.zs»)

Translating this, we find that if X is a leftmost symbol of a prqduction U,

then leftmost symbols of X are also leftmost symbols of U. The following table

gives L (U) and R (U) for the gra.m:mar defined above, and is probably best

understood if it is read from the bottom~up.

U L CU) R U)

test TEST eeoc, eoc, blank

display DISPLAY eeoc, e9c , blank

ceoc eoc, blank eoc, blank

symbol letter alfuum, letter, d:tgit

alfuum letter, digit letter, digit

* Letter and digit are as we suspect, i.e., letter = A,B,C, ••• Y,Z
and digit = 0, 1, 2, .•• 9.

- 40 -

Roger H. Peretti

CE- 101'1-69-23

7 August 1969
Page 10

Using this inforn;3.-c.:i.on (i.e., leftmost &'1d rightmost derivatives of a

symbol U), the next step is to generate a precedence matrix in ,·rhich the

follmvlng rules hold true:

(i) The relation ~ holds between aLl adjacent s;ymbols within a

string which is directly reducible.

(ii) 1'he relation ~ holds between the symbol immediately preceding

a reduc:i.ble string, and the leftmost symbol of that string.

(iii) The relo.tion ~ holds between the r~ghtmost symbol of a

reducible string, f:'W1d the syrribol irrnnediately follOivlng the

string.

In more explicit terms, the relation ~ holds betvreen any two symbols

appearing next to each other ,in the set of productions.

<letter) <alfmm;') ~ <J..ettel~ ;;, <alfnu.rn)

The relation <. holds in the case where the left-hand symbol is any symbol,

and the right-hand symbol belongs to the set U. <- i~ then applied to the

left-ha.nd symbol and the leftmost derivatives of the element of U,

(lettery <a~fn1W. ') =} <;Letter) <:: <letter)

qetteJ:'l ~ ,digit)

The relation y holds in the case where the right-hand syr0.bol is any symbol,

and the left-hand symbol belong::; to the set U. :;> is then applied to the

right-:b..and symbol and the rightmost derivatives of the elements of U.

<a~fnum)<alfnum(~ ~etter) ~ <~nunv

~digit) ~ <alfU1lJll)

-41-

Roger W. Peretti
CE- I0)\1-69-23

7 August 1969
Page 11

Applying these rules to the set of productions P, we arrive at the

following precedence matrix:

~ r-I § ;:s ~1

~ 0 !=) ..!4 (l) .p
.p (J i ~ E-i m P. -p 'rl
tf.I tf.I 0 ft3 w (J .p b.()
(l) 'rl (l) ';l r-l H 0 Q) :8 .p 'l:l (J tf.I E-t P A Q) r-I

---f-I-i--

test

display - .- --
eeoc

. .
symbol --1-- - f----. .> L.: ~: alfuum --
TEST -- ---
blank --- - L:. ~.: L.:

- -- --.
DISPLA -_.

eoc -_. ..
.>

letter = ~ L: L.:
--

d:igit .> ~

If we look at the relation which holds between J.etter followed by alfuum

we can see that either of the following two reJ.aU ons is acceptable:

<letter) => < alfnurn)

<letter) :::.: (alfnWu)

Since this dual relationship occurs within the unexpended portion of METAPLAN,

and not betireen any of the relations in the ezpru1ded version, we can conclude

that METAPIAN is not of sjrnple precedence type, and unfortunately, there are

no rules for determining whether this grammar is unambiguous.

- 42 -

Rogel' H. Peretti

CE- IOli[.·G9-23
7 AtJ.[';llst 19G9

iJace 12

In order to gain an appreciation for the problems involved ,'lith having two

relations holding betH8en adjacent S;)I1!lbols, vIe wilJ. atterrIp'c to reduce the

string:

TEST APe

Translatinz this into the nutation Yle Ive been l1.sing, He have:

Examining our precedence matrix, and inserting the relations which exist

betvreen the adjacent symbols vre have:

~ TEST == blan1\: 4: letter <.: letter <:. letter -> blank ~ blank~

In the reduction process, 've scan the string from left to right and attempt

to reduce the first (and innermos t) sub-string ellclosed in <. -:-,
Examining this string, we find that we should first reduce <: letter·> •

'I'he foliovr:irJg replacement would be performed:

<.TEST == blank 41etter ~ letter <: letter=> blaYlk <- bla11k?
\.:.-.-..",..-.......

< TEST .,; blank <: letter ~ letter t alfnum ~ blank <.: blanl()

At this point, v1e don f t know whether to reduce <.: letter~) to alfnum or

<: letter'; alfnum -:-, to symbol. Reducing <: bhnl'::~ to ceoc doesn t t solve our

problem, and the wrong decision I-:ouJd lead to baclrtracking.

In order to make the correct substitution, vie must develop a set of context;

relations based on the precedence I!lr'1trix. If vre examine the productiOllS

(eeoc)

<eeoc,)

Zeoc)

<tlanl~>

in light of the precedence matrix, we find that eeoc must have a bl&n)(011 its

left~- 'I'herefore, eoc or blank ca11 only be reduced to eeoc if, after performing

------ .. _-------_._---------------
-lEo In actual }?ractiee , it IIDlst also be follovred by a strIng terininal-\

- 43 -

Ro~er F .. Peretti
CE- Im~-69-23

7 August 1969
Page 13

the reduction, ceoc 'is preceded by a blank. We can represent-this reduction as

(blank ••• -\ J
Similarly, we can develop context relations for the complete set of

productions. The follo\~lng relatiqns represent the result of this work:

(1) Production #1 can be applied whenever we encounter the string

TJiST = blank =- symbol: blank::::: eeoc

(2) Production #2 can be applied Whenever we encounter the string

DISPLA:i- blank"; symbol -=blank -="ceoc

(3) Production #3 can be applied whenever the right si-de appears in

the context:

lblank ... -I)
(4) Production #J+ can be applied-Whenever the :r;ight side appears

in the context:

l blank ••• blank 3
(5) Production #5 can be applied whenever the right side appears

in the context:

{

a.J..f'nUID

letter

digit

blank

digit

From (4) above, we see that <- letter .;.. alf'num? can r t be reduced to

synlbol because this string is not in the context: bla."lk ••• blank. Therefore,

4 letter ~ is reduced to aJ.i'num, and the entire reduction results in the

following:

-hb-

Roger W. Peretti
CE-IOM-69-23

7 August 1969
Page 14

(. TEST == blank <. letter 4 letter <. letter·) blank ~ blank:;>
'----v---J

~ TEST .: blank <. letter <: letter ~ alfuum :;. blank <. blank ~
~

~ TEST :,. blank ~ letter ~ alfnum ..; alfnum ~ blank 4 blank;>
"- --- ./

~ TEST -= blank: symbol == blank <. blank=>
'----..,,-.J

~ TEST -= blank == symbol :: blank - ceoc !)--.......-- --'
test

The end result, is that we recognize the string TES1' AFC belongs to the

syntactic class <. test) and is therefore a legal utterance within the expanded

METAPLAN language.

A~ an interesting aside, had the original syntax of METAPLAN been defined

in a slightly different m.'9.nner, the' portion of the gra,111nar which we have been

exarrduing would be simple precedence in form. The alteration is not difficult,

and the set of productions pI which satisfy this condition are as follows:

(1) <test):: == (TEST) (blank) (symbol) (blank) (ceoc)

(2) (display) ::== (DISPLA) (blank) <'Symbol) (blank) <ceoc)

(3) (eeoc) : : = <eoc)

<ceoc) - (blank>

(4) <symbol> · .- (letter>

(symbol) :: = {lettel1 < alf'num) *.

(alfuum) - <letter)

(al:enum) · .- <let·ter,) < alf'nmn)*

< ali'lJurn) .. - (digit) · .-
\alfnurnl · .- <digit) <alf'n~l · .-

* Although the right-hand side of the productions for < symbol) and <,8.+fnum)
are identica.l, the context for application is different.

- bS -

Roger W. Peretti
CB-IOM-69-23

Preceding as before, L (U) and R (U) are defined as:

7 A~.st 1969
Page 15

U L U ---- --~--"--~---..;:;;.~;;..{...----~.
R (UJ ___ _

test TEST eeoc, eoe> blfU1k

display DISPJ.A eeoc, eoe, blan .. ~

eeoc eoe, bla.nk eoe, blank

s;ymbol 1.etter letter, alfnurn, digit

digit, l<2;tter_ digit, ~lf'num, letter

Based on the above information, the foLlovdng precedence matrix is developed:

"J 'dl ~ ;:S ~I J rl ~
.p C)

~
E-l s:1 p.. +'1 .~ t2 L'l 0 ~ f;3 cU U2 C) .p

$l_~. ~ rl H 0 ClJ I .r!
if) ('3 E-I P t=l ClJ rl 'd .. _1= test -..

display _ .. -
eeoc

symbol -
al:fnum

,.
.. -'._'-

TEST -

blank = - <: <: <:

-DISPIl-I. -

eoe [
-
letter

.:.. ~ <: <: -..

~ ____ ~-8 aigit .> ~ .(

- h6 -

Roger W. Peretti
CE-IOM-69-23

7 August 1969
Page 16

Because not more than one relation holds bet\veen e&.ch pair of symbols,

the gJ.~alllllla.r described by p' is an unambiguous simple precedence grarru))n.r. The

context relations for the first four productions are identical to those for

the previous gra.rnr!k'U'. However, a significant change is noted in appJying

pi (5) • The complete list of context relations is as i'o.llows:

(1) (test) ::= (TEST) (blanJt) (symbol) (blank) (eeoc)

tt-···--\J
(2) (display} :::;;; (DISPLA) ,blank) (symbo1)< blank) <ceoc)

it- ... -\ 1
(3) <ceoc) "= (eoc)

(4)

(5)

(ceoc) :.: = ~lank)

(blank ... -l}
<Symbol)

(symbol)

(alf'num)

<.a1fnum)

<a1fnum}

<a1fnum)

.. -· .-
: :=

· .-· .-
: : =

: : =

: : ==

¢.etter)

(letter) «alfnum)

(blank ••• blank J
<letter)

~etter) (alfnum)

<digit)

(digit} (alfnum)

(letter) digit' •• blank

- 47 -

Roger \-l. Peretti
CE-IOM-69-23

Applying these :r~.lles to the string TEST APe yields:

<TEST) <blaJll~ <lett(:r> <let tel? < let ter) < blanl2> < blank>

<-TEST =- blank..(letter <.: letter< letter> blank <: blank).
~ .

~ TEST ~ blank <.: letter -<- letter :: alfmuu >- blank < blanl\: 7-
'----v-... -------..-/

<: TEST;:; blank -< letter -==- nlfrmm .> blank <- blank >-'-----....,.... ...-'

< TEST ~ blank = symbol -= bla...'11\: ~ blank>
~

<- TEST -== blank =- synlbol == blank ~ ceoc >-
"- --- -/ test

'(August 1969
PaGe 17

Therefore, the TEST string is recognized as belonging to the class test.

In pI, we find that if we encounter ~ letter"; alfnum ::> vle still must

rely em the context relations in orcler to reduce the string to either < sJrrrlbol '>
or (alfnum,)-. Of significant importance, however, is the fact that we noVl"

have an unambiguous gr&mmar. This property insures the occurrence of predicted

results. A similar analysis performed on the five test-type statemellts

presented at the beginning of this report will show that their addition 1'Till not

add ambiguity to the existing MErAPLAN langua~e.

The problem 1'Thich necessitated production redefinition concerns th:: lengt."fJ.

of symbol strings. We have seen that the original specification of < sylllbol >
led to a gralTilllar which vTaS not of simple precedence type. If we don t t ,vorry

about the length of symbol strings, vre find t!l.at the original syntax of METAPLAN

is unacceptable. That is, if vle atteT.lpt to reduce the st:cing:

<letter) <digit) <letter> (letter>

- 48 -

Roe;er Vl. Peretl.i
CE-IOM-69-23

using the productions:

< symbol> : ::c <letter> <alfnum>

<alfmun> ::== <letter>

<alfnwn} ::= (digit>

we arrive at the follovling:

<letter) (digit! <letter> (letter)
~

<letter) <digit) <letter} (alfnum)
.... • _ J

(letter> <digit) <symboJ)
'---v---J

<letter> < alfnum>
~----v----~

<symbol)

(symboJ/

(symbol>

7 August 1969
Pac;e 18

Using tllcse productions, a string which represents the class (symbol) is

reduced to the class <symbol)<syrnbol> •

If we apply the productions pI to this same string, we find the following

reduction:

<letter) <digit) <letter) (letter>

(letter) (digit) ¢'et ter) (aJ.fnum)
~-.........- .J

<letter> <digi-9 <alfmlll~
'---------'

<letter) ~alfnum>
'------....-- ./

<symbOl)

- 49 -

Roeer IV. Peretti
Cg-IOH-69-23

7 August 1969
Page 19

The problem with accepting thip set of productions, is that the right-hand

side of the production for -\ sYl~bol) and < alfnUIYl) are identical, i. e., in pI

and

<symbol) :: == < letter)

<alfnum) ::== <letter>

<symboJ} ::== <letter> <alfnum>

(alfnum) ::= <letter) <alfnum>

This condition is kn01m as indeterminancy, and should be avoided. Without the

context relations, ,.re wou~d not kno"'r whether to reduce <letter) <alfnum) or

<letter) to <symbol) or <alfnum). Thus, the grammar pI is of bounded

context form. By a slight redefinition of pI vlC can eliminate this indeter-

minancy, and generate a context free grammar. The affected productions wi thin

the modified granunar pI! are as follovlS:

<symbol) ::== <letter;>

<symbol} ::== <letter) <alfnun9

< alfnum) :: == (symbol)

<alfnum) ::== <digit>

(alfnum) ::= <digit) <alfnum)

Using pIt to reduce the same string, we have:

(letter) <digit> (letter; <letter)
~

<letter> <digit> (Letter> <symbol)
~

<letter) <digit) <letter) <alfnum~
~

<letter> <digit) <symbo~
~

<letter) <digit) (alfnum)
\.. _ .J

<letter) <alfnum)
'-- J

<sY;bOl)

- So -

Roger W. Peretti
CE-IOM-69- 23

7 August 1969
Page 20

The advantage of pI! over pI is that we have eliminated the indeterminancies.

The left and right derivatives for pI! are:

U I~ U R~V~ .. _.

symbol letter letter, alfnum, symbol, digit

alfnum s~nbol, digit, letter letter, alfnum, symbol, digit

These lead to the following precedence matrix:

-
.-t H 8 0- Q) +"

t +" 'r4 ~ +" .:f -4 Q) crl ~ r"rl 'd
~

s.vmbol ~ - --,

letter <.:. <.; <: - ~

digit .(<.: .(. -)-

~)JIll ->
r- ._-.:-- .

~ < .(<: <:
"

Examining the precedence matrix, we "find that P" is a shuple precedew::e

grammar. Using the relations found in this matrix, we have the basis for

reduping the string in a right-to-left fashion. Applying these relations to

the previous example, we have:

I- {letter <. digit <: letter <- letter)-\
~

J- {letter <: digit <.. letter <. symbol) --4
"------'

I-.Hetter <.. digit <. letter == alfnum ~ -I
'---~

I- <-letter <.. digit <:. symbol':;> --t
""-----v-.J

l--('letter <.. digit - alfnmn;>-I
,,--,~.....J

J- <. letter..(· symbol)-I
~-..... ---_--./

I- <.. letter - alfnum ~ -4

--------~-....../
1-<: symbol)--I

- S1 -

Roger W. Peretti
CE-IOM-69-23

7 AU§,'1.lst 1969
Puge 21

Thus, p" is not only a simple precedence grarmnar, but because the context

relations are not necessary in order to reduce a strine, p" is also a context

free granunar. Context free is a desirable quality because it allm;s the rules

for reduction to be more lenient.

Further examination of the instruction repertoire yields the fact that

maybe the conditional If command could use modification. Currently, if we want

to perform an operation only if the value of a boolean e}.1?ression is true (or

false), we must repre sent the value "true II in memory, &'1d compare the boolean

expression with the stored "true" value. The reason for this, is that the

first non-arith.'11etic command follmring the IF command must be a relational* command.

I believe METAPLAl'J should allow sta,tements of the form:

IF < expressionil<relational expression> THEN

which is essentially defining:

< if Clause) IF < expression>l(relational expression) THEN

In addition to expa,'1ding the syntax of METAPLAN, an attempt "rill be made

to produce a simple precedence grruamar through syntactical redefinition. The

semantic specification for these changes "Till then be attacked and the need

for-a new language will be evaluated. This evaluation will be strongly

dependen t on the flexibility of ~JETAPL.Alj' s sema-'1tics.

* EQ" LT, GE, NE, NL, and NG

-S2-

Roger ,,]. Peretti
CE-IOH-69-23

7 August 1969
Page 22

In conclusion, t.1ETAFIJAN is being thoroughly investigated, and "patched-up"

to include pertinent test-type instruction:::. If the resulting language proves

to be undesirable, or overly inefficient, other avenues i'rill be explored,

.Lncluding that of language definition from scratch. The end product~ in any

event, will be a language intended for operation in the 1975-80 time frame

which includes English-like test-type instructions.

RHP:sn

- 53 -

THIS PAGE DlrEMrIONALLY lEFT BLAH

- S4 -

Providing an Efficient Match

Between a High Level Programming Language

and Computer Instruction Repertoire

A paper given at the High Level Aerospace Computer Pro
gra~~ing Language Conference on 29 June 1970.

By

Ralph Jenkins

SYSTEMS CONSULTANTS, INC.
1050 31st STREET, N.W.

WASHINGTON, D. C. 20007

- 55 -

1.0

Providing an Efficient Match

Between a High Level Programming Language

and Computer Instruction Repertoire

Introduction

Historically, computers have not incorporated in

struction repertoires that were related to the implementation

of any particular high level programming language. Typi

cally, the logical designer selects the repertoire, and the

compiler writer must create a compiler using the available

repertoire. Consequently, compilers have employed consider

able software logic to translate the intent of the high level

programming language statements into executable computer in

structions. In addition, instruction repertoirfls have been

designed to meet a broad class of applications such as scien

tific or business uses, and the generality reduces efficiency

in both the compiler and the application programs. Because

the range of problems to be solved by the avionics computer

can be established reasonably well, it should be possible to

design an instruction repertoire which facilitates both the

development of efficiently operating application programs and

a high "level language in which these programs can be easily

written. An instruction repertoire having such properties

would result in the following:

- " -

Efficient Compilation

Because the instruction repertoire would be designed

with the tasks of translating source language to objeqt code

in mind, a more efficient compiler could be developed. Such

a compiler would require fewer pqsses through the source lan

guage and would create objeGt code in an efficient manner.

Efficient Object Code

By having an instruction repertoire matched to

avionics problems and -to the higher level language, the ob

ject code generated by the compiler would be very ~fficient.

This would be due to a high degree of correspondence between

the statements used in the high level language to describe

problems and the actual machine repertoire used to implement

the program.

New Compiling Techniques

Because the instruction repertoire would be both

problem and compiler oriented, the possibility for the de

velopment of new techniques of compiling exists. In the

past many compiler techniques arose to bridge the gap be

tween the high level language and the machine instruction

repertoire. Removal of this gap should result in a reexami

nation of these techniques and hopefully the development of

new compiler techniques, such as micro-programs to implement

new language requirements.

- S7 -

1.1 Past Efforts to Match the H~gh Level Language and

the Machine Instruction Repertoire

Though limited, there have been previous efforts

in matching language and instruction repertoires. The most

concerted previous effort to match a machine instruction rep

ertoire and a high level language was the effort involved in

the design of the Burroughs BSOOO. The basic approach was

to implement certain of the compiler techniques (for ALGOL-

60) in the hardware. The BSOOO and its successors the BSSOO,

B6S00, and B7S00 have the capability to perform the evalua

tion of parsed or "Polish notation h expressions through the

use of hardware push-down/pop-up stacks. This approach

greatly speeds the process of compilation but may result in

inefficient generation of the object code.

Matching of instruction repertoires to the appli

cations programs is achieved to some extent in all computers,

but is usually not highly successful due to the wide range

of applications faced by most machines.

1.2 Area of Interest

From the previous it can be seen that it is de

sirable to develop a computer instruction repertoire which

leads to both efficient object code and to the easy trans

lation of high level languages. In the case of the Advanced

Avionics Digital Computer (AADC) we are in an enviable posi

tion in that the conceptualization of the computer has in

volved both hardware and software specialists. As a result

-$8-

it has been possible to design an instruction repertoire to

meet these goals.

- $9 -

2.0 The AADC Instruction Repertoire

Systems Consultants was contracted by the Naval

Air Development Center to specify the instruction repertoire

for the AADC. The following is a description of the approach

used in specifying the instruction repertoire.

2.1 Technical Approach

The technical approach in specifying the instruc

tion repertoire for the AADC was to examine and analyze

selected avionic missions to determine computer requirements.

From this analysis it was possible to determine the usage

of specific computer operations for each mission, which in

turn defines their importance. The approach consisted of the

following three phases:

I. Determination of the computational and computer

operation requirements for a selected group of

digital avionics systems used in current air

craft.

II. Combining the individual sets of computer

operations for each avionic system into one

complete set which defined the present AADC

requirements.

III. Specifying the AADC instruction repertoire

based on the usage of specific computer oper

ations for the present-day avionic systems,

AADC hardware requirements, and projected

- 60-

future additional processing requirements, i.e.,

increased computation for additional tasks and

data handling.

These phases are illustrated in Figure 2-1 and are discussed

in detail in the following paragraphs.

Determination of the Computational and Computer

Operatipns Requirements for Selected Digital Avionic Systems

To determine the computational and computer oper

ations requirements for existing digital avionic systems,

a representative cross-section of Naval airborne missions

was chosen, i.e., large tracking problems (AEW) , weapons de

livery (attack) and navigation and intercept (fighter). This

cross-section of missions provided a representative sample

of the current computational requirements for onboard digital

avionic systems. The systems selected for examination were

as follows:

(1) E-2B

(2) F-14/F-lllB (Phoenix)

(3) A-6E

(4) P-3C

(5) A-7D/E

The procedure of determining the computer operations

requirements consisted of progre~sively defining the structure

of the requirements from a broad or mission requirement level

down to specific computational and computer operations require

ments necessary to accomplish the mission. Figure 2-2

- 61 •

PHASE 1

DETERMINATION OF
COMPUTATIONAL AND
COMPUTER OPERATIONS
FOR SELECTED, DIGITAL
AVIONIC SYSTEMS

-

I
I
I
I
,I
I
I
I
t .. , ,.
I
I
I
I
I
I
I

PHASE 2

CONSOLIDATION OF
WE I GHTED COMPUTE R
OPERATIONS

1
1

I
I -
I
I
I
I
I
I
I
I
I
I
I

PHASE 3

AADC
BASELINE
REQUI REMENTS

~ ,. ..
,.

, iJI-

FUTURE
AVIONIC DIGITAL
COMPUTER
REQUI REMENTS

AADC
INSTRUCTION
REPERTOIRE

...

FIGURE 2-1. ANALYSIS OF THE AADC INSTRUCTION REPERTOIRE REQUIREMENTS

I

e

FIGURE 2-2 SEQUENCE TO DETERMINE COMPUTER OPERATIONS

illustrates the broad-to-specific structure, which begins with

a selected aircraft, its misssion, computational requirements,

major programs and sub-programs, and culminates with the com

puter operations.

The analysis for de~ermining the computer oper-

ations was accomplished in two parts: (1) computational

requirements; and (2) computer operations requirements. A

description of each process is discussed in the following

paragraphs.

Determination of Computational Requirements for

a Selected Avionic System (Part 1)

The analysis consisted of determining the com

putational requirements of a selected aircraft, by examin

ing the mission requirements to ascertain those computations

that contribute significantly to the mission. Once the com

putational requirements were identified along with their

major programs and sub-programs, they were categorized for

a more exacting definition into the following three types:

o Functional

Functional computations are those computations

that are non-mathematical and contribute signifi

cantly to mission effectiveness; i.e., track

control and display processing.

o Mathematical

Mathematical computations are those computations

that deal with numeric computations; i.e.,

velocity calculations.

o Remaining

The remaining computations' are those that are

not included in the functional and mathematical

computations; i.e., Inflight Performance Mon-

i tor (IFPM).

These categories were chosen because avionic com-

puter programs typically involve these three general types

of computations; hence, they were ,very useful for establish-

ing a common point of reference for comparing the selected

aircraft computing requirements.

The Determination of the Computer Operations for

Selected Avionic Systems (Part 2)
.

Once the computational requirements were determined,

further analysis was conducted to determine the computer oper-

ations used by a particular aircraft system. The computer

operations were taken from the flow charts of the individual

avionic system programs and not the listings. By u~ing this

method the computer operations were program or problem re-

lated which was the goal of the instruction repertoire speci-

fication study. The first step in the process was to deter-

mine how often a particular major program is referenced in

some time period, e.g., iteration rate per second. This was

accomplished for periodic functions by assigning a value equal

to the number of periodic references during the time interval,

i.e., 4 times per second; ~or non-periodic references, an

-~-

assumed worst case value was assigned.

Once the "iteration rates" for all the major pro

grams were established, the usage of the computer operations

within the major programs were then determined. This was

accomplished by thorough analysis of the major program and

numerous sub-program flows which yielded the type and usage

of computer operations for the particular aircraft. There

fore, the number of times a particular computer operation

such as branching occurred within a major program or sub

program flow, defined a "usage weight" assigned to that

particular operation. The "usage weight" determined the

importance of each computer operation relative to the others.

The avionic computer programs selected for evaluation mayor

may not represent the most efficient usage of computer oper

ations. However, by investigating a wide range of systems,

a representative set of computer operations was determined.

Once both the "iteration rate" for each major pro

gram and the "usage weight" for all the computer operations

were determined, the "total weight" for each computer oper

ation for each of the three types of computations (Functional,

Mathematical and Remaining) was determined. The "total weight"

was accomplished by multiplying the iteration rate times the

usage weight. The resultant values defined the relative use

of each computer operation during a mission. This phase of

the analysis was completed for one aircraft when the computer

operations for each computational task were combined to define

-66-

one set of computer operations for the particular aircraft.

Consolidation of the Present Computer Operations

This Phase (II) of the analysis was the combining

of the computer operations for each aircraft into one set

of computer operations for the AADC system. Since the time

periods used to determine iteration rates differed for each

aircraft, the iteration rates for all the selected aircraft

were converted to a common time reference. These computer

oper~tions were then combined by weight, and, where dupli

cation existed, the computer operation weights were added

to form the total computer operations requirements of the

AADC based on present requirements.

Specification of the AADC Instruction Repertoire

This was the final phase in the analysis and com

pleted the task of defining an instruction repertoire for

the AADC. The computer operations derived from Phase I and

II dictated a particular set of instructions for present.

avionic digital computer systems. However, the instruction

repertoire must be powerful enough to meet the requirements

of new systems to be developed between now and the 1980's.

Therefore, future projected computational requirements to

be placed on the AADC were considered. Such areas of con

cern included increased inputs from phased array radar; hand

ling of more tracks; increased need for display processing;

improved navigation in the areas of terrain avoidance and

terrain following; compiler generation; and executive con

trol over such areas as tracking, communications, I/O, etc.

Also, the effects of the AADC hardware concept were con

sidered to determine their instruction repertoire ramifi

cations. After these areas were discussed their effects

were weighted with the requirements derived in Phase I and II

to define and specify the AADC instruction repertoire.

2.2 Results of the Analysis

The analysis qf computer operations provided a

definite indication of the type of operations required for

avionic applications. It should be noted that computer oper

ations are not computer instructions. Therefore, computer

operations are indicative of high level language functions.

This led to the specification of instructions that performed

the following:

Transmission - the transmission capabilities pro

vide a means of transferring data between,registers, storage,

and register and storage utilizing both single and multiple

addressing variations.

Branching - the branching instructions provide

transfer of program control. This capability is provided by

a variety of decision dependent operations that test the con

tents of any portion of a register or memory location, or

compare the contents of a register or memory location against

another data element.

Arithmetic - the arithmetic instructions provide

both a fixed and floating point capability that includes

single and double precision operations for the add, sub

tract, multiply, divide and square root. A multiple ad

dress capability was included to provide for fast inter

mediate storage and retrieval of results.

Input/Output - the input/output instructions pro

vide efficient control and monitoring of all input/output

operations, i.e., buffer, external control and I/O decision.

Bit Manipulation - the bit manipulation instructions

provide an efficient means for operation upon portions of

words. Multiple addressing was also specified.

Indexing - the indexing capabilities provide a

powerful addressing scheme defined by a direct, index, in

direct and index indirect capability, along with the neces

sary instructions to provide for various decision controlled

iterative operations.

In addition matrix and bulk processing instructions

were specified for operation of the AADC matrix parallel pro

cessing, i.e., filter operations and list functions. The pre

liminary specification of the AADC instruction repertoire is

shown in Table 2-1.

- 69 -

INSTRUCTION OPERAND NOTE I DESCRIPTION NOTE 2

• ~
INDEX JUMP ZERO IMPlICIT/IMMEDIATE IF INDEX t ZERO, DECREMENT INDEX BY ONE, TRANSFER TO OPERAND

IF INDEX" ZERO, EXECUTE N.1.

INDEX JUMP VALUE IMPLICIT/IMMEDIATE IF INDEX "OPERAND, INCREMENT INDEX BY ONE, EXECUTE N.I.
IF INDEX = OPERAND SET INDEX TO ZERO EXECUTE N.I.

REPEAT IMPLICIT/IMMEDIATE REPEATS N.!. A SPECIFIED NUMBER OF TIMES

INCREMENT IMPLICIT THIS CAPABILITY IS PROVIDED FOR BY THE FIXED POINT MULTI-ADDRESS
ARITHMETIC INSTRUCTIONS

DECREMENT IMPLICIT THIS CAPABILITY IS PROVIDED FOR BY FIXED POINT MULTI-ADDRESS
ARITHMETIC INSTRUCTIONS

• TRANSMISSION

LOAD SINGLE REGISTER IMPLlCIT/lMMEDIA TE OPERAND -+ REGISTER

LOAD DOUBLE REGISTER IMPLlCIT/lMMEDIATE OPERAND.,OPERAND ... ,-+- REGISTER., REGISTER ... ,

STORE SINGLE REGISTER IMMEDIATE REGISTER -+ STORAGE

STORE DOUBLE REGISTER IMMEDIATE REGISTER., REGISTER •• , -+ STORAGE., STORAGE ... ,

EXCHANGE REGISTER IMMEDIATE REGIS TERm -+ REGISTER.

N REGISTER STORAGE IMMEDIATE REGISTERn " STORAGE.' REG,STER , .. STORAGE .+1 etc.

READ CLOCK IMMEDIATE CLOCK VALUE" REGISTER

SET CLOCK IMMEDIATE REGISTER" CLOCK

NO-OP PERFORM NO OPERATION
'EXCHANGE MEMORY IMPLICIT OPERANDm -+ STORAGE •

• BRANCHING

TRANSFER UNCONDITIONAL IMPLICIT/IMMEDIATE TRANSFER TO OPERAND

TEST .,T N TRANSFER IMPLICIT/IMMEDIATE IF REGISTER BIT N " I, TRANSFER TO OPERAND
IF REGISTER BIT N " 0, EXECUTE N.1.

TRANSFER REGISTER POSITIVE IMPLICIT/IMMEDIATE IF REGISTER."" 0, TRANSFER TO OPERAND
IF REGISTER NOT ~ 0, EXECUTE N.I.

TRANSFER REGISTER NEGATIVE IMPLICIT/IMMEDIATE IF REGISTER. < 0, TRANSFER TO OPERAND
IF REGISTER NOT < 0, EXECUTE N.I.

TRANSFER REGIS TER ZERO IMPLICIT/IMMEDIATE IF REGISTER. " 0, TRANSFER TO OPERAND
IF REGISTER NOT = 0, EXECUTE N.!.

TRANSFER REGISTER NOT ZERO IMPLICIT/IMMEDIATE IF REGISTERn ;. 0, TRANSFER TO OPERAND

IF REGISTER = 0, EXECUTE N .1.

TRANSFER ON OVERFLOW IMPLICIT/IMMEDIATE IF OVERFLOW DESIGNATOR SET, TRANSFER TO OPERAND
IF OVERFLO~D~SIGN~.:rOR NOT SET, EXECUTE N.I.

TRANSFER RETURN IMPLICIT/IMMEDIATE SAVE ADDRESS OF NEXT INSTRUCTION
THEN TRANSFER TO OPERAND

MASTER EXECUTIVE REFERENCE IMPLICIT/IMMEDIATE NOTIFY MEC OF REQUEST

• TRANSFER EQUAL, TO IMPLICIT/IMMEDIATE IF OPERANDI" OPERAN~, TRANSFER TO OPERAND3
IF OPERAND, ;. OPERAND2, EXECUTE N.1.

'TRANSFER LESS THAN IMPLlCIT/lMMEDIATE IF OPERAND, < OPERAND2, TRANSFER TO OPERAND3
IF OPERAND, NOT <OPERAND2 EXECUTE N.I.

"TRANSFER GREATER THAN IMPLICIT/IMMEDIATE IF OPERAND, >OPERAND2, TRANSFER TO OPERAND3
IF OPERAND, NOT>OPERAND2, EXECUTE N.I.

• TRANSFER LESS THAN OR IMPLICIT/IMMEDIATE IF OPERANDI SOPERAND2, TRANSFER TO OPERAND3
EQUAL TO IF OPERANDI NOT SOPERAND2, EXECUTE N.1.

"TRANSFER GREATER THAN OR IMPLICIT/IMMEDIATE IF OPERANDI~OPERAN~, TRANSFER TO OPERAND3
EQUAL TO

IF OPERANDI NOT ~OPERAND2, EXECUTE N .1. --

TABLE 2-1 INSTRUCTION REPERTOIRE FOR THE AADC
(SHEET 1 of 5)

- 10-

INSTRUCTION OPERAND NOTE I DESCRIPTION NOTE 2

·COMPARE BRANCH EQUAL TO IMPLICIT/IMMED lATE IF REGISTERn = OPERANDI' TRANSFER TO OPERAND2
IF REGISTERn ~ OPERANDI. EXECUTE N.I.

·COMPARE BRANCH lESS THAN IMPLICIT/IMMEDIATE IF REGISTERn < OPERANDI' TRANSFER TO OPERAND2
IF REGISTERn NOT < OPERANDI' EXECUTE N.I.

·COMPARE BRANCH GREATER THAN IMPLICIT/IMMEDIATE IF REGISTERn '" OPERANDI. TRANSFER TO OPERAND2
IF REGISTERn NOT >OPERANDI. EXECUTE N.I.

·COMPARE BRANCH LESS THAN OR IMPLICIT/IMMEDIA TE IF REGISTERn :5 OPERANDI. TRANSFER TO OPERAND2
EQUAL TO IF REGISTERn NOT :50PERAND I• EXECUTE N.!.

·COMPARE BRANCH GREATER THAN OR IMPLICIT/IMMEDIATE IF REGISTERn "" OPERANDI' TRANSFER TO OPERAND2
EQUAL TO IF REGISTERn NOT ""OPERANDI. EXECUTE N.I.

·COMPARE BRANCH LE SS THAN OR IMPLICIT/IMMEDIATE IF REGISTERn ""OPERANDI AND:5 OPERAND 2 TRANSFER TO OPERAND3
EQUAL TO AND GREATER THAN OR IF REGISTERn < OPERANDI OR> OPERAND 2' EXECUTE N.I.
EOUALTO

• ARITHMETIC NOTE 3

ADO FIXED POINT IMPLICIT/IMMEDIATE REGIS TERn - OPERAND+REGISTERn

SUBTRACT FI~ED POINT IMPLICIT/IMMEDIATE REGISTER. - OPERAND.REGISTERn

MULTIPLY FIXED POINT IMPLICIT/IMMEDIA TE REGISTER. • OPERAND.PEGISTERn• REGISTE"'I

DIVIDE FIXED POINT IMPLICIT/IMMEDIATE REGISTERn • R~GISTERn.l- OPERAND+REGISTER. • REMAINDER+REGISTERn.)

SQUARE ROOT FIXED POINT IMMEDIATE J I REGISTERn• REGISTER~_)+REGISTER"
ADO nOATING POINT IMPLICIT REGISTER.. REGIST~Rn'l - OP'PANDn• OPERAND ... I+REGISTERn• REGISTERn.)

SUBTRACT FLOATING POINT IMPLICIT REGISTERn• REGISTEP ... I-OPERANDn• OPERAND ... I+REGISTERn• REGISTER ...)

MULTIPLY FLOATING POINT IMPLICIT REGISTERn• REGISTER ...) • OPERANDn• OPERAND ...)+REGISTERn• REGISTERn.)

DIVIDE nOATING POINT IMPLICIT REGISTER.. REGISTER"., +OPERANDn• OPERAND ... r+REGISTERn. REGISTER .. ,

SQUARE ROOT flOATING POINT IMMEDIATE II REGIS TERn. REGISTER,.., I + REGISTER". REGISTERn_,

FIXED TO FLOAT IMMEDIATE REGISTERn• REGISTERn_, (FX. PT.) -+ REGISTER.. REGISTERn_1 (FL. PT.)

FLOAT TO FIXED IMMEDIATE REGISTER.. PEG ISTE'\,_, (FL.PT.) -+ REGISTERn• REGISTE"" (FX. PT.)

COMPLEMENT IMMEDIATE REGISTER~ -+ PEGISER.

·LOAD - ADD(FX. PT.) - STORE IMPLICIT/IMMEDIA TE OPERAND, • OPERAND2.0PERAND3
NOTE 4

"LOAD - SUBTRACT(FX. PT.) - STORE 'MPLICIT/IMMEDIA TE OPERANDr - OP~ou.ND2+0PERAND3
NOTE 4

"LOAD - MULTIPLY(FX. PT.) - STORE IMPLIC IT /I MMED IA TE OPERAND, • OPERAND2 + OPERAND". OPERAND ..)
NOTE 4

·LOAD - DIVIDE{FX. PT.) - STORE IMPLICIT/IMMEDIATE OPERANDn• OPERAND ... ,+OPERANDm ... OPERANDq
NOTE 4

• LOAD-ADD(Fl.PT .)-STORE 'MPLICIT/IMMmIATE (OPERAND •• OPERAND •• ,) + (OPE RANDy. OPERANDy+,)-+(OPERANO •• OPERAND ••))
NOTE 4

• LOAD-SUBTRACT(Fl. PT.)-STORE IMPLICIT/lMMWIATE . (OPE~AND •• OPERAND)) - (OPERANDy' OPERANDy' l) (OPERAND •• OPERAND •• ,)
NOTE 4

• LOAD-MULTIPLY(FL.PT.J. STORE IMPlICIT/IMMEDIAT~ (OPERAND •• OPERAND •• ,). (OPERANDy' OPERANDy+II+(OPERAND •• OPERAND •• ,)
NOTE 4

• LOAD-OIVIDE(FL. PT .)-STORE IMPLICIT/IMMEDIATE (OPERAND •• OPERAND ••)) + (OPE RANDy. OPERANDy+,) (OPERAND •• OPERAND •• 1)
NOTE 4

TABLE 2-' INSTRUCTION REPERTOIRE FOR THE AADC

(SHEET 2 OF 5)

- n -

INSTRUCTION OPERAND DESCRI PTION

•• SINE MICRO PROGRAM SELF DEFIN ING NOTE 5

.. COSINE MICRO PROGRAM SElf DEFINING NOTE 5

.. TANGENT MICRO PROGRAM SELF DEFINING NOTE 5

.. ARCSINE MICRO PROGRAM SELF DEFINING NOTE 5

.. ARCOSINE MICRO PROGRAM SELF DEFINING NOTE 5

.. ARCTANGENT MICRO PROGRAM SELF DEFINING NOTE 5

.. HYPERBOLIC SINE MICRO PROGRAM SELF DEFINING NOTE 5

•• HYPERBOLIC COSINE MICRO PROGRAM SElf DEFINING NOTE 5

•• HYPERBOLIC TANGENT MICRO PROGRAM SElf DEFINING NOTE 5

•• HYPERBOLIC ARCSINE MICRO PROGRAM SELF DEFINING NOTE 5

.. HYPERBOLIC ARCOSINE MICRO PROGRAM SElf DEFINING NOTE 5

.. HYPERBOLIC ARCTANGENT MICRO PROGRAM SElf DEFINING NOTE 5

.. MATRIX ADD MICRO PROGRAM SELF DEFINING NOTE 5

.. MATRIX MULTIPLY MICRO PROGRAM SElf DEFINING NOTE 5

.. MATRIX INVERT MICRO PROGRAM SELF DEFINING NOTE S •

.. VECTOR DOT PRODUCT MICRO PROGRAM SELF DEFINING NOTE 5

.. VECTOR CROSS PRODUCT MICRO PROGRAM SELF DEFINING NOTE 5

.. VECTOR ADDITION MICRO PROGRAM SELF DEFINING NOTE 5

.. SQ. ROOT SUM OF SQUARES MICRO PROGRAM SElf DEFINING NOTE 5

.. ARITHMETIC SCALE MICRO PROGRAM SELF DEFIN ING NOTE 5

.. ARITHMETIC ROUND MICRO PROGRAM SELF DEFINING NOTE 5

.. COMPLEX ADD MICRO PROGRAM SELF DEFINING NOTE 5

•• COMPLEX MULTIPLY MICRO PROGRAM SElf DEFINING NOTE 5 -
.. COMPLEX CONJUGATE MICRO PROGRAM SELF DEFINING NOTE 5

.. HYPERBOLIC, POLAR,
MICRO PROGRAM SElf DEFINING NOTE 5 CARTESIAN CONVERSION

•• BCD TO OCTAL MICRO PROGRAM SELF DEFINING NOTE 5
.. OCTAL TO BCD MICRO PROGRAM SELF DEFINING NOTE 5

.. UNITS CONVERSION MICRO PROGRAM SElf DEFINING NOTE 5

.. lOGMITHM FOR ANY BASE N MICRO PROGRAM SELF DEFINING NOTE 5

.. ANTILOGARITHM FOR ANY BASE N MICRO PROGRAM SELF DEFINING NOTE 5

TABLE 2- I INSTRUCTION REPERTOIRE FOR THE AADC

(SHEET 3 OF 5)

-ft-

INSTRUCTION

• BIT MANIPUlATION

AND

OR

EXCLUSIVl OR

"LOAD AND

"STORE AND

"LOAD OR

"STORE OR

"LOAD EXCLUSIVE OR

"STORE EXCLUSIVE OR

REVERSE BIT ORDER

SHIFT LEFT CIRCUlAR

SHIFT LEFT DOUBLE CIRCUlAR

SHIFT RIGHT ZERO FILL

SHIFT RIGHT DOUBLE ZERO FILL

SHIFT RIGHT SIGN FILL

SHIFT RIGHT DOUBLE SIGN FILL

SET BIT N ME MORY

CLEAR BIT N MEMORY

SET BIT N REGISTER

CLEAR BIT N REGISTER

• IN PUT/OUT PUT

INITIATE INPUT

INITIATE OUTPUT

TERMINATE INPUT

TERM INATE OUT Pl!T

TEST I/O

ENABLE INTERRUPT

DISABLE INTfRRUPT

EXTERNAL EQUIPMENT COMMAND

TABLE 2-1

OPERAND NOTE 1 DESCRI PTiON NOTE 2

IMPLICIT REGISTER • OPERAND" REGISTER n n

IMPLICIT REGISTER + OPERAND" REGISTER n n

IMPLICIT REGISTERn ~OPERAND "REGISTERn

IMPLICIT/IMMEDIATE OPE~ANDn. OPERANDm REGI STERn

IMPLICIT/IMMED lATE OPERANDn • REGISTERn OPERANDm

IMPLICIT/IMMEDIATE SET OPERANDn FOR OPERANDm EQUAL TO ONE~EGISTERn

IMPLICIT/IMMEDIATE SCT OPERANDn FOR REG1STE~n E(,UAL TO ONE+OPERAND m

IMPliCIT/IMMEDIATE COMPLEMENT OPERANDn FOR OPERAND., E(,UAL TO ONE"REGISTERn

IMPLIC IT/IMMED lATE COMPLEMENT OPERANDn FOR REGISTER" E(,UAL TO ONE+OPERANDm

IMMEDIATE MIRROR IMAGE OF REGISTER REGISTER

IMPLICIT/IMMEDIATE SHIFT REGISTeRn LEFT, END AROUND

IMPLICIT/IMMEDIATE SHIFT REGISTERn, REGISTERn_1 LEfT, END AROUND

IMPLICIT/IMMEDIATE SHIFT REGISTERn RIGHT, FILL ZEROS TO THE LEFT, TRUNCATE
" "

IMPLIClT/IMMEDiATE SHIFT REGISTERn, REGISTERn_1 RIGHT, FILL ZEROS TO THE LEFT, TRUNCATE
-~~-~---~---

IMPLICIT/IMMEDIATE SHI FT REGISTERn RIGHT, FILL SIGN TO THE LEFT, TRUNCATE -------
IMPLIC IT/I MMED lATE SHIFT REGISTER n, REGISTER n-I RIGHT, FILL SIGN TO THE LEFT, TRUNCATE

IMPLICIT/IMMED lATE SET BIT N OF THE OPERAND WHERE N IS ANY BIT OF A WORD
-

IMPLICIT/IMMEDIATE CLEAR BIT N OF THE OPERAND WHERE N IS ANY BIT OF A WORD

IMMEDIATE SET BIT N OF THE REGISTER WHERE N IS ANY BIT OF THE REGISTER

IMMEDIATE CLEAR BIT N OF THE REGISTER WHERE N IS ANY BIT OF THE REGISTER

IMPLIC IT/IMMED lATE INITIATES INPUT OF DATA OVER AN I/O CHANNEL INTO THE SPECIFIED
AREA OF MEMORY

IMPLIC IT/I MMED lATE INITIATES OUTPUT OF DATA OVER AN I/O CHANNEL FROM A SPECIFIED
AREA OF MEMORY

IMPLICIT/IMMED lATE TERMINATES AN INPUT PROCESS ON A SPECIFIED CHANNEL

IMPLICIT/IMMEDIA TE TCRMINATES AN OUTPUT PROCESS ON A SPECIFIED CHANNEL

IMPLIC IT/I MMED lATE IF THE SPECIFIED I/O CHANNEL IS ACTIVE, TRANSFER TO OPERAND
IF THE SPECIFIED I/O CHANNEL IS NOT ACTIVE, EXECUTE N.I.

IMPLIC IT /I MMED lATE SELECTIVELY ALLOWS INTERRUPTS TO OCCUR OVER SPECIFIED
CHANNELS

IMPLICIT/IMMEDIATE SELECTIVELY PREVENTS INTERRUPTS FROM OCCURRING
OVER THE SPECIFIED CHANNELS

IMPLICIT/IMMEDIATE SPECIFIES COMMANDS FOR CONTROL OF EXTERNAL EQUIPMENT

INSTRUCTION REPERTOIRE FOR THE AADC

(SHEET 4 OF 5)

- 13 -

•
INSTRUCTION OPERAND

MATRIX AND BULK PROCESSING

INITIATE TRANSFORM MICRO PROGRAM

INITIATE INVERSE TRANSFORM MICRO PROGRAM

INITIATE FillER MICRO PROGRAM

INTERROGATE FILTER MICRO PROGRAM

TERMINATE FILTER MICRO PROGRAM

MATRIX MANIPULATION MICRO PROGRAM

SEARCH LIST MICRO PROGRAM

SORT LIST MICRO PROGRAM

MODIFY LIST MICRO PROGRAM

COMPUTE LIST MICRO PROGRAM

ENCODE MICRO PROGRAM

DECODE MICRO PROGRAM

MULTIPLEX MICRO PROGRAM

NOTE I

IMMEDIATE OPERAND IS A SELF DEFINING VARIABLE

IMPLICIT OPERANDS DEFINE THE LOCA~ION OF THE OPERAND
AND WILL INCLUDE AN INDEXING CAPABILITY

NOTE 2

N.I. = NEXT INSTRUCTION

NOTE 3

THE FIXED POINT OPERATIONS ILLUSTRATE THE SINGLE PRECISION
FORM, AND THE FLOATING POINT OPERATIONS ILLUSTRATE THE
DOUBLE PRECISION FORM; HOWEVER ALL ARITHMETIC OPERATIONS
INCLUDE 80TH A SINGLE AND DOUBLE PRECISION CAPABILITY

DESCRIPTION

NOTE S

NOTE S

NOTE S

NOTE S

NOTE S

NOTE S

NOTE S

SEU' DEFINING NOTE S

SEU' DEFINING NOTE 5

SEU' DEFINING NOTE 5

SELF DEFINING NOTE 5

SEU' DEFINING NOTE 5

SEU' DEFINING NOTE 5

NOTf4

OPERAND THREE IS EITHER IMPLICIT OR IMMEDIATE
AND OPERAND ONE AND TWO ARE IMPLICIT

NOTE 5

THIS INS TRUCTION WILL SPECIFY THE LOCATION OF
THE DESIRED INPUTS AND OUTPUTS

MULTIPLE ADDRESS INSTRUCTION

SUPPLEMENTARY JNSTRUCTIONS

TABLE 2- f INSTRUCTION REPERTOIRE FOR THE AADC

(SHEET 5 0 F 5)

3.0 Relation of the AADC Instruction Repertoire to a

High Level Programming Language

Applied to Compiler Operation

A compiler used for generation of object programs

for avionic applications must be capable of processing com

plex arithmetic operations (tracking equations, matrix mani

pulation, etc.) as well as numerous control functions (dis

play, communications operator interface, etc). These func

tions stated in the high level language must be translated

to a series of instructions executed ?y the computer. To do

this, the compiler usually processes a source high level lan

guage statement by a series of "passes". Theie passes "crack"

(sometimes called parsing) the statement into an internal

form that can be interpreted by further passes in order to

generate the object program instructions that will accomplish

the original source statement.

An instruction repertoire that is similar to the

high level language can reduce compiler passes. For example,

Figure 3-1 illustrates the pseudo compiler generation for

three different computer instruction repertoires (Burroughs

B5500, a conventional class machine and the AADC). The

source expression has been "parsed" in a format that is typi

cal an~ favorable for instruction generation for either com

puter repertoire. The Burroughs B5500 will "unstring" the

statement using an expression evaluation sequence which

- 75 -

• ARITHMETIC EXPRESSION
H = A+(B-C) (D/E+F)

• CMS-2 STATEMENT
SET H EO A+(B+C)*(D/E+F)

• PARSED POLISH NOTATION
- HABC-DE/F+*+=

BURROUGHS B5500

ENTER ADDRESS H

ENTER A

ENTER B

ENTER C

SUBTRACT

ENTER D

ENTER E

DIVIDE

ENTER F

ADD

MULTIPLY

ADD

EXCHANGE

STORE IN H

- CONVENTIONAL (OPTIMIZED)

ENTER B

SUBTRACT C

STORE B-C

ENTER D

DIVIDE E

ADD F

MULTIPLY (B-C)

ADD A

STORE IN H

AADC

LOAD-SUB-STORE B-C - T 1

LOAD-DIV-STORE DIE +T 2

LOAD-ADD-STORE T 2+F _T 2

LOAD-MUL-STORE TlxT2-Tl

LOAD-ADO-STORE Tl+A-H"

FIGURE 3-1. INSTRUCTION REQUIREMENTS COMPARISON

-76 ..

utilizes a "tripling" technique (two operands and a one oper

ator). The sequence yields a near one-for-one generation

(one operand = one instruction and one operation = one in

struction). The sequence is simple with respect to compiler

logic because the instruction generation logic only needs to

provide operand moves into the logic portion of the computer

and execute each operation in the proper order. However,

it is inefficient in object instruction generation and pro

cessing time and requires additional hardware logic in the

object computer.

The conventional class machine requires fewer in

structions but will require a more complex compiler logic in

order to keep track of intermediate oper"ands and provide

optimization of code generation. Because the AADC instruc

tion repertoire has been optimized to perform multiple oper

ations, the AADC design requires even fewer instructions

while simplifying compiler logic."

Another area of matching instruction repertoire to

a language is the ability to provide various programmable

micro-instructions. This enables the computer to be adapt

able in providing high usage operations that cannot normally

be accomplished with one instruction, i.e., sine, cosine,

simple matrix manipulation, etc. The AADC instruction rep

ertoire provides this capability.

-1'r-

Applied to Object Program Operations

The matching of instruction repertoire to high

level statements has been demonstrated to produce more

efficient instruction generation. Another example of effi

ciency is shown in Figure 3-2. In this case the conven

tional instruction sequence will require three instructions

to perform the operations. For the AADC, the entire process

has been reduced to one instruction which, in this case, is

an exact match to the high-level statement.

• CMS-2 STATEMENT

IF A EQ B THEN GOTO C

CONVENTIONAL

ENTER A

SUBTRACT B

BRANCH C

AADC

TRANSFER EQ TO A=B BRANCH C

FIGURE 3-2 DECISION EXAMPLE

- ?'I,p

4.0 Summary

In the earlier part of the presentation it was in

dicated that the selection of a computer's instruction rep

ertoire has many implications for computer software. The

instruction repertoire has an impact upon both the execut

able programs and upon the compiler which translates a higher

level language into such programs. The approach taken \vas

to analyze the computing needs of a wide range of avionics

computer applications to specify an instruction repertoire

which was problem oriented. As a result, the AADC instruc

tions are those underlying avionic problem solutions. At

the same time they facilitate compiler development, as high

level language operators and the instruction repertoire are

well matched. This match results in more efficient object

code, simpler, hence more effective compilers, and achieves

the flexibility required by the AADC design concepts.

CLASP - ITS ROLE IN AADC SOFTWARE DEVELOPMENT

Background

Edward H. Bersoff
Logicon, Inc.

Falls Church, Va. 22044

"By properly coordinating the concurrent development of AADC
hardware and software, it is believed that both system elements can be
combined to create an 'integrated package'. II These words, written in
the NAVAIR document "AADC Software Considerations" dated December 1,
1969, serve to define the problem facing NAVAIR today. The "integrated
package ll results from some facility which will automatically translate
operational requirements into a hardware configuration and a set of pro
gram modules together with an executive. For purposes of this paper
this automated facility will be called a Synthesizer.

It is clear that the Synthesizer must be prepared to function some
time before the AADC becomes operational. To be sure that t~e goal is
reached on time it is necessary to formulate a software plan which takes
into account the orderly evolution of the Synthesizer system. Figure 1
offers one possible approach to a Synthesizer design. Each block in the
figure represents a software development task which must be performed
in order for the system to operate. What is immediately obvious is that
the Job Model either directly or indirectly provides an input to every
critical portion of the Synthesizer and represents a first step in its devel
opment. It therefore becomes clear that the construction of the Job Model
should be the first software task considered. This is currently being done
by the Naval Air Development Center.

Figure 2 gives a recommended overall software plan. Its pyra-
midal shape accentuates the critical nature of early studies which have a
profound effect on future ones. Ancillary studies appear outside the pyramid.
These are either hardware studies which "have an impact on the software or
software studies already underway. For example, the instruction set already
developed might also have been "defined after a functional simulator had been
developed and concurrently with benchmark program specification. The Job
Model arso affects the nature of the MEC so this study too could have been
done at a later time. However, what is s{gnificant, is that software prob
lems are being considered, and t~is con~ideration is taking place before
hardware design is fixed. In any event," the overall plan should incorporate
the results of these ancilla"rY studies into the Synthesizer design.

- 81 -

c!D
N •

SOR --iI- Task Definition -_-----1.-1
(Job Model)

Mission and
Algorithm
Library

Software
Configurator

Functional
Simulator!
Hardware

Configurator

Executive
Constraints

Compiler

Interpretive
Simulator/
Validator

Validated
Flight Program

-

Available
Hardware
Resources

Figure 1. Synthesizer Functional Block Diagram

Hardware
Definition

I

co
\01

Current Studies
Requirements

Outputs

I A8tC Design II-----------. I-____________ ~.; Computational Requirements/
Job Model Statistics

I--___ ~ _____________ _.j Optimum AADC

r-__ .L-__ H----,ardware Configurator \ Configurations

MEC Hypothetical Sample Program
Analysis Mis sion I------------~

MEeD.slgn /

Evaluation Definition '---=~ _____ ...J

. Instruction
I-....:-~-t

Instruction Set
Evaluation/Modification

~
Specification

Benchmark Programming/I-_"':" ___ ~-I ---.-..., Language Selection
Set Study

MEC
Refinement

Language Evaluation

AADC /Simulator
Performance

Analysis

Interpreti ve
Simulator /Validator

Development

Synthesizer Development

Language

~erence Manual

Figure 2. Software Development Plan

A critical decision point in the software development cycle with both
technical and non-technical implications is the selection of a programming
language. Until now the Navy has not played a significant role in the defini
tion of an airborne programming language. The Navy candidate language,
CMS-2, is ostensibly a fully compatible superset of CS-1. Recognizing the
deficiencies of the CS-1/MS-1 system the Navy in 1967 tasked CSC, the
designers of CS-1/MS-1to create anew, more useful language. This lan
guage was called CMS-2. The CMS-2 compiler-monitor system presently
operates on CP-642 series computers, and generates code for either these
computers or for the CP-879. A version which will operate on, and generate
code for, the AN/UYK-7 is under development. The system is very powerful,
but relatively new and unexercised. It is intended to provide a tool for the
development of all types of programs. From a NAVAIR point of view, how
ever, CMS-2 has yet to be tested as to its suitability for airborne missions.
This test can be performed only when it is known exactly what tasks are being
carried out in the AADC. This information should be made available during
the course of a Job Model development.

In summary the immediate questions that NAV AIR must answer are:

• What tasks must be performed by future Navy aircraft?

• What are the computational requirements of these tasks?

• What is a typical "worst case" operational program specifi
cation?

• Can CMS-2 satisfy program.ming requirements?

• What changes, if any, are required to CMS-2?

- This paper is concerned with an approach intended to answer these questions
and a description of CLASP, a programming language which should be c~n-
side red along with CMS-2 for possible NAVAIR use." . - -

Which Programming Language?

There is little doubt at the p~esent ti:me that some high order language
will be used to program the AADC. From among the many candidates, two
appear a priori most suitable for that effort, CMS-2 and SPL/CLASP. It is
possible that one of the languages may prove to be far superior to the othe-r.
If this is so it should be selected as a base for future AADC programming.
It is more likely, however, that neither will be significantly better than the
other. The reason for this is that while CMS-2 is Navy oriented, it was not
designed for avionics applications. The opposite may be said for SPL/CLASP.
Thus in the event that no one language has a clear technical superiority it would

- 84 -

seem reasonable to adopt some form of CMS-2 for AADC use. This xecom
mendation is made because of the significant amount of resources the Navy
has already invested in the language. What is required now is a rational
study of AADC needs as they relate to the capabilities of the two candidate
languages. This may be done through a four phase plan as follows:

• Job Model Design

• Problern Specification

• Benchmark Programming/Language Evaluation

• Language Selection/Specification

The Job Model represents the results of a detailed analysis of the
computational requirernents of all possible AADC configurations. These
requirements are rnanifested as tasks based on aircraft missions. Figure
3 defines some of these tasks. Although the figure shows that navigation
is performed by all aircraft computers, the algorithm used for this task
will likely be unique to a particular mission. For example, a fighter air
craft need not know his position as accurately as a reconnaissance aircraft,
so it makes sense to use a less sophisticated algorithm for fighter naviga
tion and concentrate the computational effort on a more important task like
missile delivery. What this points out is that algorithrns as well as tasks
affect the Job Model Design. Much data can be gathered through a judicious
study of the Job Model. - 'I'h~~e data should be used to answer questions such
as:

• Which tasks, if any, will require paging? (This will depend
on the algorithms us ed.)

• Can these large tasks be paged?

• How many instructions on the average are executed per task?
What is the variance of this statistic?

• What is the extent of cross -referencing between tasks? How
does this vary with time?

• What portions of which tasks rnay be executed in parallel?

• What tasks mayor should be executed sirnultaneously?

The answers to these questions can be used in a variety of ways.
First they will provide an essential input for any future Functional Sirnulator/
Hardware Configurator developrnent. The purpose of this simulator I configu
rator will be to iterate through various AADC configurations to deterrnine if

- 8S -

Aircraft CARRIER BASED LAND BASED

Type FIXED WING ROTARY

COlnputer \ SEA~CH/ PAT ROL/ RECON/

Task Fighter Attack AEW
I ASW ECM ELINT RECON ASW RESCUE ASW ELINT ECM

Navigation X X X X X X X X X X X X

Automatic Flight
Control X X X X X X X X X X X X

On-Board Checkout X X X X X X X X X X X X

En vironmental
Control X X X X X X X X X X X X

Radar Signal
Processing X X X X X X X X X X X X

Executive X X X X X X X X X X X X

Target Signal
Recognition X X X X

Target Tracking X X X X X X

Sensor Monitor &
Control X X X X X X X X X

Sensor Correlation X X X X X

Data Compression X X X X X X X X X

Countermeasure
Monitor & Control X X X X X X X X X

Display Signal
Format & Control X X X X X X X X X

Conununication
Format & Control X X X X X X X X X

Figure 3. Computer Tasks by Aircraft

Aircraft CARRIER BASED LAND BASED

Type FIXED WING ROTARY
Computer \ SEARCH! PATROL! RECON!,

Task Fighter Attack AEW ASW ECM ELINT. RECON ASW RESCUE ASW ELINT ECM .

Acoustic Signal
Processing X X X

Bomb Delivery X X X X X X

Missile Delivery X X X X

Torpedo Delivery X X X

I,

t

Figure 3. (cont'd.)

they can adequately perform the computations described by the input param
eters. Allowing for some margin of safety the simulator/configurator should
produce as output an appropriate AADC architecture. This use of the Job
Model statistics produced by NADC will be studied by NRL. However they
also provide a vital input to Problem Specification.

In order to evaluate programming languages one must program with
them. Too often language studies are performed in a vacuum without regard
to the application. As a result the conclusions drawn from the study are
necessairly vacuous. It is therefore imperative that a representative AADC
mission be specified based on the k..."'lowledg~ gained through the Job Model
Design: This should be done in three steps as follows:

• Task selection

• Algorithm selection

• Detailed programming specification

During task selection, it should be decided which tasks might typically
be performed by a multiprocessor version of the AADC. This configuration
should be used as a baseline since it represents the most severe test of a pro
gramming language. The full AADC system, including the Matrix-Parallel
Processor, will ultimately simplify the problem since many of the more
arduous tasks will be done by the MPP. The next step will be to select appro
priate computational algorithms for each task selected. In order to tax the
system, the most sophisticated algorithms available for each task should be
used. The last step is the production of a detailed programming specification.
It should include flowcharts, accuracy and timing requirements, and data
descriptions that will be required for the next phase, Benchmark Programming/
Language Evaluation.

With respect to programming language selection, the Navy now finds
itself in a rahter unique position. Both the Air Force and NASA have devel
oped essentially compatible languages (SPL and CLASP) without the benefit of
knowing the nature of their target computers. NAVAIR has a computer design
and an existing language (CMS-2) not specifically tailored to airborne applica
tions. That there is some doubt as to the present suitability of CMS-2 is
evidenced by statements made by Computer Sciences Corporation in a report
concerning the language. * They say that CMS-2 was developed purely as a
stopgap measure and to satisfy imposed CS-1 compatibility requirements.

* Recommendations for an Improved Compilation System, esc Formal
Report FR 3099, 30 November 1967.

- 88 -

11 However, a newly conceived, tailored language has
several advantages •••• Because of the time constraints, the
current operational systems compatibility problem, and the
present loading on the center [FCPCP], a new system, new
language implementati<;m effort is not recommended to solve
the im.m.ediate problems [1967]. It is recommended on a
longer term basis •••• The implementation plan formulated
and recommended for CMS-3 [the new language] is responsive
to the long range objectives of FCPCP and the Chief of Naval
Operations (CNO). The acquisition of this system will provide
the Navy with a state-of-the-art cOIr?-pilation system that can
be kept in the forefront of the technology. The acquisition of
CMS-3 is not restricted to fulfilling the requirement of CS-1
compatibility. All new Navy systems that enter the system
acquisition phase following the implementation of CMS-3 sys
tem will us e it as the program production tool. Existing sys
tem compiled in the CMS-2 system will only be translated to
CMS-3 System when the cost effectiveness formula results are
favorable. "

It may be, however, that CSC was wrong and the CMS-2 will prove ade
quate for AADC needs. It is obviously imperative that the Navy find out.

Using the detailed flight program specification programming should
begin in both CMS-2 and SPL/CLASP; one programmer coding in CMS-2
and one in SPL/CLASP. As inadequacies in the candidate languages are
discovered, they should be fully documented. If a new language feature
might prove useful it should be fully defined. Upon completion of the bench
mark programming, the participating programmers could report on their
results. Data may be collected from the prograiruners through question
naires containing such questions as those given in Figure 4. In addition
users of both CMS-2 and SPL/CLASP should be interviewed in order to
obtain their com.m.ents via the same questionnaire. This will allow NAV -
AIR to capitalize on the knowledge of those with in-depth experience.

The data gathered during the programming/ evaluation task should
then be used to establish a capabilities -deficiencies matrix. This matrix
will clearly show in what ways CMS-2 and SPL/CLASP were suitable for
the given problem and in what ways they each proved inadequate. Using
the matrix and its supporting documentation a meaningful comparison may
be made between the two languages and thereby a selection based on facts
rather than speculation.

Whichever language is chosen the next step should be the prepara
tion of language specification. This specification will strip away any un
necessary features of the ba.se language. and will add those capabilities not

.- 89' -

PRELIMINARY LANGUAGE EVALUATION QUESTIONNAIRE

1. What elements or features of this language seemed to be especially
suited for this problem?

2. What elements or features of this language seem to be weak and/or
difficult to use for this problem?

3. Discuss the generality of this language in its ability to apply directly
and effectively to many problems in this application area.

4. Dis cus s the simplicity of this language in its ease of learning and
using.

5. Discuss the consistency of this language in terms of the constant
application of the sam.e rules in the sam.e way.

6. Dlscuss the efficiency of this language in terms of your productivity
of applying the rules of this language to writing the statements.

7. Discuss any specific and strict rules which you have found tend to
make the user error prone in writing statements.

8. Discuss your feeling about using this language for nearly all prob
lems which might occur in this particular application area.

9. Which areas of this language seem to be easiest to learn and apply?

10. Which areas seem to be the most difficult?

11. Discuss any features of this language which might tend to make parts
of it machine dependent, such as I/O control, word length, precision,
bits or characters per word, etc.

12. Discuss the possibility of using a natural subset of this language for
your application.

Figure 4.

- 90--

included in the base. After the preparation of a preliminary specification,
portions of the problem may be reprogrammed in the modified base lan
guage. This should be done by the progrp.mmer who used the other candi
date language in the previous task. The purpose -of this switch is to obtain
a fresh point of view and to assess the readability and understandability of
the documentation produced. The goal of this reprogramming effort will
be to "fine tune" the language specification. At the conclusion of this task
a programmer's reference manual should be produced which will fully docu
ment modifications to the base language. An outline of this study approach
is given in Figure 5.

What is CLASP?

Until very recently, computer programs for aeronautic and space
applications had always been written in assembly language. Programmers
in other areas had been continually rewarded with significant advances in
their programming languages to simplify the coding task, but the aerospace
programmer had been neglected to the point that his burden was too great to
bear. It had been argued that there was no solution to the problem, that all
aerospace programs must be written in assembly language. Those who have
taken this stand maintained that there are too many different aerospace com
puters to justify the cost of developing a compiler for each. In addition, they
have claimed that no compiler could produce code that was efficient enough to
solve real-time guidance and navigation problems, and the advent of strap
down inertial sensors, with their increased computational requirements,
tended to lend credence to this reasoning. Finally, mere mention of "the
fixed-point problem" was always sufficient to silence anyone who continued
to argue in favor of higher level languages. Almost all aerospace computers
were fixed point, that is, a binary point was assumed between the first and
second bits of a data word, and all numerical quantities represented as some
fraction times a suitable power of 2. Seemingly, one had only to observe an
aerospace programmer at work, constantly shifting bits and keeping track of
binary points, to know that a compiler could never do the job.

There is no question that these arguments were valid. . But it now
appears that they can be challenged, as indeed they have been. The first
important step taken to progress beyond assembly language coding was Sys
tem Development Corporation's SPL (Space Programming Language), devel
oped for the Air Force early in 1967. However, many observers, NASA
among them, thought that a giant step had been taken when something smaller
had been called for: SPL as originally defined was very large and included
capabilities of questionable importance. NASA felt that what was needed was
a concise, readily implementable language - - one that was oriented to the
fixed-point computers of the near future, a language that, once having been
proven satisfactory, could later be extended to accommodate more sophisti
cated computers and auxiliary support software functions. Accordingly, in

- ''-1. -

CMS-2
Programming

I

Generalized

r -a.- Job Model
Design

~------~------~

I
L- Specific

Job Model
1m plem entation

Problem
Specification

Language
User

Survey

Evaluation
& Analysis

Language
Selection

Preliminary
Updated Specification

Problem - Reprogramming

SPL/CLASP
Programming

Evaluation &
Analysis

Final
Language

Specification

Figure 5. Proposed Work Flow
- 92-

mid-1968 NASA and Logicon undertook a study with the goal of dey-eloping
such a language.

Having been intended to be of immediate, practical benefit, the
study was oriented toward computers and applications of the present and
near future. While not considered a special-purpose machine, the typical
present aerospace computer has a relatively small memory and a fairly
limited instruction set, with no hardware floating-point operations and
minimal instructions for logical decision functions and internal index
regis ter manipulation. With regard to the problems to be solved, these
consist principally of arithmetic calculations and logical decisions, with
significantly fewer text manipulation and table look-up operations. Gui
dance and navigation functions are performed by repeating the appropriate
calculations at a relatively slow major cycle frequency; other functions
such as input/ output processing and control are performed at much higher
minor cycle frequencies. The required response times between input and
output, which are functions of the overall vehicle system design, are gen
erally very short - - on the order of a few seconds at most.

The study plan itself consisted of using two candidate languages to
code portions of a representative problem designed to be solved on a cur
rent computer; analyzing the resultant programs to select a base language
for further definition; using the language thus defined to reprogram the
same problem; and analyzing the second set of programs to enable further
language definition and refinement. Thus the first step to be taken was to
choose the candidate languages. SPL, which had been defined for the appli
cation area, was selected, as was PL/I, the latter because it included many
of the real-time capabilities found in SPL. Other possible candidates were
eliminated, FORTRAN, for example, because mo-st of its functions can be
accomplished using the richer PL/I,' and JQVIAL because- the developers of
SPL had already indicated that it was inadequate and had found it necessary
to make many extensions to basic JOVIAL in the definition of SPL. Then,
to serve as the benchmark problem, portions of the Titan nIC programming
specification developed by The Aerospace Corporation were selected. These
consisted of a set of typical guidance equations, program blocks for engine
output command calculations and staging sequencing, and a portion of the
main control logic flow diagram, this last to enable determining the languages
suitability for coding executive functions. The overall 1-second major cycle
logic was specified, along with the executive program to control proper pha
sing of the major cycle and 5-, 10-, and 20-millisecond minor cycle functions,
As is typical of aerospace programming, specifications, also included was
complete information specifying the range and accuracy required for all pro
gram parameters, including where extended precision was to be used, and
the critical timing requirements to be met.

Four programmers independently coded the representative problem,
two in each language. They were instructed to spend as much time as

- 93 -

possible on its more difficult and aerospace-peculiar aspects, avoiding
repetitive operations that would not lead to meaningful conclusions or that
could be handled in some way not provided for in the assigned language.
None of the programmers was able to code the entire benchmark problem
in the two weeks allotted, but each succeeded in coding substantially more
than would have been possible using assembly language. Thus both SPL
and PL/I were shown to offer significant benefits, chiefly through their
relatively simple assignment and control statements. Nevertheless, both
languages had serious deficiencies which prevented complete, direct solu
tion of the problem. It was clear that the tricks and circumlocutions neces
sary to overcome these deficiencies would negate the hoped-for benefits of
using a higher level language.

While the programmers were able to specify the equations easily,
describing the data attributes necessary to control precision throughout the
steps of a calculation presented difficult problems. This reflects the fact
that both languages are oriented to having the bulk of the calculations done
in floating rather than fixed point. Many of the fixed-point difficulties were
similar in that the relatively simple way of doing an operation in assembly
language was not available in either SPL or PL/I; to overcome these prob
lems, the prograrn.rn.er would have to break the program into steps almost
as numerous and as detailed as he would when coding in assembly language.
For example, one operation the prograrn.rn.ers needed to be able to do but
could not, at least not without a great deal of difficulty, was to define a
fixed-point variable with the binary point outside the number of bits actually
allocated to the item. This may be desirable for variables having either
very small or very large values; as a hypothetical example of tlle latter, if
the coordinates of a vehicle's position are measured in feet and it is sufficient
to maintain each to a precision of only 16 feet, the prograrn.rn.er would wish
to scale the coordinates so that the binary point is four places to the right of
the computer word's least significant bit in order to allow the greatest range
of values for position.

Another problem arose when it was necessary to give a variable one
scaling for a particula~ mission phase and another scaling for a subsequent
phase. For example, it may be necessary to maintain a vehicle's position
to one precision during near-earth maneuvers and to a much less accurate
precision subsequently. However, neither PL/I nor SPL offered a means
of dynamically rescaling variables without a great deal of coding duplication.

A third problem came about with the use of double-precision accumu
lation of products. To exemplify the mechanism involved, the multiply opera
tion in the typical aerospace computer will generate a double length for the
intermediate products of the following equation:

(V)2 = (V)(V) + (V)(V) + (V)(V)
x x y y' z z

- 9L -

Making use of the double-precision addition command available in many
computers enables accumulating the sum in double precision to obtain im
proved accuracy; however, this requires one more instruction per term
and causes some increase in execution time. In some cases it is not de
sirable to pay this penalty to achieve improved accuracy; in other cases
using double precision is mandatory, such as in matrix operations when
the intermediate products are of opposite sign but nearly equal in magni
tude. The programmers required control over the choice -- something
that neither PL/I nor SPL offered simply and directly.

A fourth problem area concerned the temporary saving of inter
mediate results in common locations. Neithe r language provided a con
venient mechanism for doing this with fixed-point quantities.

These, then were a few of the problems encountered with fixed-
point variables in coding the test problem. Turning now to constants, a
peculiarity of aerospace programming is found in the existence of two
distinct types of constants: absolute and modifiable. Absolute constants,
such as the coefficients in a polynomial approximation for the sine of an
angle, are those which are very unlikely to be altered when the program
itself is changed to accommodate it to a new mission. Modifiable con-
stants, for example, accelerometer nonlinearity compensation terms,
are those which are expected to be different for different missions. The
program is written and checked out using nominal values for such mission
dependent constants, and the actual values are loaded directly into memory
when they become known, often shortly before the mission. To permit this
to be done, the programmer must be able to specify the attributes of such
constants (required precison and maximum value as well as the nominal
numeric value) as completely as he can those of variables. That is, he
needs to be able to specify enough information so that modifiable constants
could be treated similarly to variables in the automatic scaling algorithms
of a compiler; if he could not do so, the program would have to be recom
piled every time the value of a single mission-dependent constant was changed.
The alternative provided in PL/I and SPL -- defining such constants as vari
ables having preset values -- was found undesirable because it would hinder
any compiler optimization functions. Also pointed up by an analysis of the
test problem programming was the need for an ability to define the value of
a constant as a function of other constants; this would simplify programming
in many cases and, by enabling automatic change of such dependent constants,
would help to reduce errors introduced when constants are modified.

Other language deficiencies were found in many areas. While the
aerospace programmer is concerned chiefly with incremental inputs, telem
etry, and discrete output commands, the input/output capabilities of both
languages were not easily related to the requirements of the benchmark prob
lem, instead emphasizing files, records, and peripheral devices. Similarly,

- J!-

review of the limited debugging capabilities showed that they were not
oriented to aerospace programs, for which much of the debugging is done
using computer simulators rather than the actual computers. Also, neither
language pr ovided sufficient programmer control over object code optimi
zation; however, PL/I contained a built-in possibility for extending its
existing capabilities in this area.

Both languages were discovered to have numerous features that were
not required for coding the representative benchmark problem. That there
should be many features in PL/I that were not particularly useful for the
application area was expected, but SPL also had a great many features of
little or no utility, among them complex array declarations, table declara
tions, alternative forms of many statement types, text manipulation, and
automatic and controlled storage. Both provided many needed capabilities,
and both were deficient in the areas of fixed-point data declaration and arith
metic control. PL/I was superior as regards optimization control but lacked
desirable features of SPL, such as built-in matrix operations, decision
tables, and a simple method of interfacing with direct code.

Overall, SPL was found to have more features that might be useful
and fewer that were clearly unsuitable; hence it was selected as the base for
development into a concise aerospace programming language. The choice
was influenced by the fact that the Air Force and System Development Cor
poration were proceeding with the development of SPL, and it was expected
that continuing cooperation alnong the two government agencies and their
contractors might result in further modification of SPL to make it more
suitable and at the same time compatible with the corresponding NASA lan
guage. The NASA language developed on the basis of this work and the sub
sequent study phases was given a distinct name, CLASP (Computer Language
for Aeronautics and Space Programming), to minimize confusion between it
and the continually evolving SPL. Many modifications to SPL have been
initiated by System Development Corporation as a result of the work discussed
here, and most of the deficiencies discussed above no longer exist in SPL.
The objective of having CLASP be a proper subset of SPL has been achieved
in large part. In the absence of a standardization control authority, however,
the compatibility of various compiler implementations will almost certainly
vary, particularly with regard to semantic differences.

While CLASP's basic structure is similar to that of other higher order
languages -- the assignment and logical control statements, for example,
would not be surprising to a FORTRAN programmer -- it provides many fea
tures that are either unique in themselves or are used in unique ways. Only
these unique capabilities will be discussed here.

CLASP allows the programmer to declare the attributes of fixed-point
data items such that the code generated by a compiler will perform the indicated

-'ti -

arithITletic with the required accuracy and without excessive penalities in
object code size or execution tiITle. The CLASP prograITlITlercan specify
the ITliniITluITl total nUITlber of bits and the ITliniITluITl nUITlber of fractional
bits to be allocated to each fixed-point iteITl. In practice, he should specify
for each data iteITl only the ITliniITluITl nUITlber of bits to be allocated for the
expected range of values and the necessary accuracy. While the total bits
needed to allow data storage at the required precision might not be a ITlul
tiple of the nUITlber of bits per word, it would require fewer instructions
and less execution time to allocate storage for the item in increments of
full words. The present CLASP compiler does not use any excess bits to
allocate more than one data item to a single, computer word unless explicitly
directed to do so, but instead uses theITl to generate a consistent set of
scalings that miniITlizes intermediate shifting.

As mentioned in the discussion of the base language selection,
another fixed-point probleITl existed with regard to the use of registers
or data words for teITlporary storage. Normally, when a fixed-point
assignITlent of the form a. = 13 is made, before storage takes place the COITl
puted value of 13 must be adjusted by shifting in order that the binary points
of a a. and 13 will be aligned. Such a readjustITlent should not be made, how
ever, if a. is a temporary variable that might be used in many places in the
prograITl and with different attributes desired for each place. The solution
provided for this problem in CLASP is to declare such temporary variables
as data items having the attribute TEMP. Doing this has the result that
such a variable will assume the temporary attributes of the expression to
the right of the equals sign until such time as a new temporary assignITlent
is made to that variable.

To solve the problems relating to modifiable constants, CLASP allows
.them to be specified as parameters; absolute constants are specified simply
as constants. Parameters may be changed before program execution without
requiring recompilation, while constants are fixed at compile time. Both
are . likely to be assigned to read-only storage if the aerospace computer has
such a structure.

The fact that a constant's value does not change without recompilation
means that a CLASP compiler will be able to determine the permitted range
of scalings solely from the value given. If, for example, a constant's value
is established as 2.5, only two bits would need to be allocated for the integer
part and one for the fractional part, greatly increasing the flexibility avail
able to the scaling heuristics and algorithms in finding an optimum set of
scalings. Constants might not even appear explicitly in the program; for
example, a multiplication by a constant might be replaced by a shift. Param
eters, on the other hand, must appear and must be declared with attributes
such as the range of values and the precision required, just as variables are
declared.

-,., -

In cases where the ·scalings derived through the use of the scaling
algorithms may be undesirable, CLASP provides a scaling operator to make
it possible for the programmer to specify the total number of bits and the
number of fractional bits for any intermediate result, just as he can for de
clared items. Thus in the expression

A + (B - C) • S (10, 9) + D

the scaling operator. S(10, 9) specifies that the size of the intermediate
result (B - C) is 10 bits, nine of which must be fractional. This capability
has been provided for occasions when the pr,ogrammer has information about
intermediate results - - such as the fact that Band C are always about the
same size - - which is not supplied in the data declaration but which may be
required to generate code that produc~s results of the required precision.
An abbreviated form of the scaling operator can also be used- when the pro
grammer wishes to accumulate products in double precision and assign the
result to a single-precision variable.

Obj ect code efficiency is of great interest because of the small mem
ory size of the present typical aerospace computer and the strict real-time
requirements to be achieved by the typical program. Accordingly, many
features are incorporated to enable the generation of such efficient object
code by a CLASP compiler. Primary among these are three optimization
directives that can be applied to any desired area of code: OPTIMIZE
SPACE (n), OPTIMIZE TIME (n), and SIC. The last of these is provided
for indicating that no optimization is to be attempted by the compiler; it is
included for use primarily in early stages when the programmer is interested
in getting a rough idea about program correctness. By placing a SIC at the
beginning of a program area, the programmer can direct that all other optimi
zation directives within that area are to be ignored.

For the space and time optimization directives, the parameter n
serves to specify the degree or level of optimization. Recall that most
aerospace programs have functions which must be performed at a high fre
quency and others which are performed at lower frequencies. Clearly, it
is very important to optimize the execution time of the higher frequency
functions, and proportionately less important as the frequency becomes
lower. For example, if a control function is to be performed 20 times each
second and a guidance function but once each second, tne programmer could
specify OPTIMIZE TIME (20) for the former function and OPTIMIZE TIME (1)
for the latter. In the event that program areas included in the higher frequency
functions are to be executed only under special conditions, the programmer
can assign to them a relatively low degree of time optimization. With regard
to space optimization, this is most likely to be specified for compiling the
lower frequency functions.

- 98 ...

Among the CLASP features that also have a marked effect on the
degree of optimization obtained is the· nonscalar subscript, (*), by means
of which all elements of a row, column, or plane of an array can be suc
cessively referenced. Consider the following set of equations:

P = k11 Vx + k12 V~ + k13 V~ x ,.
P = k21 Vy + k22 V~ + k23 V~ Y

P = k31 Vz +k32 V~ +k33 V~ z

If variables V x' V y' ••• , V~ and the constants k 11' k 12' ••• , k33 are de
c1ared as elements of arrays, the single CLASP statement

P(*) = K (*, 1) * V(*) + K(*, 2) * VP(*) + K(*, 3) * VPP(*)

will accomplish the computations for all three equations. This CLASP
statement could be translated by a compiler in two ways. First, it could
be replaced by an equivalent statement with normal, single-valued sub
scripts, and this statem.ent preceded by a loop control statement that would
cause it to be executed three times, with the subscript value, initially 0,
incremented each time. This would result in compiled c-ode of size s and
execution time t 1. Alternatively, three statements could be generated. from.
the single state:ment written; these statements would be similar to the given
equations (with no subscripting). This alternative would result in compiled
code of size s2 and execution time t Z• If S were the level of space opti:mi
zation and T tIle level of ti:me optinuzation specified in the appropriate
optimization directive state:ments, the best choice would be the first :method
if S· s 1 + T • t 1 were less than S· s2 + T • t2 and the second method if not.

The optimization directives are also used in the generation of fixed
point code. In the absence of any other information (e. g., fro:m the scaling
operator), the inter:mediate rescalings that may be required during arith:metic
expression evaluation to resolve otherwise conflicting scalings should be
chosen such as to minimize the function

where

n

T.
1

T.r.
1 1

= total nu:mber of rescaling operations

= time optimization para:meter n in effect
for the ith rescaling operation

r. = execution time for the ith rescaling operation
1

- ",.-

This function states that scaling readjustments should be done in the region
where the degree of time optimization specified is the least. A similar
function could be written for the effect of rescaling on size optimization. In
a practical case, it will not be necessary to evaluate all possible scaling re
adjustments to determine the minimum T because the problem can be par
titioned and individual scaling readjustmlnts determined for individual
variables or small groups of variables.

CLASP contains features which some might think of as retrograde
steps to machine dependency. These features were added to promote effi
ciency and because an aerospace computer program of necessity has a close
interrelationship with it~L1J.ardware environment. It is possible in CLASP to
assign an identifier to a machine register and declare the attributes (e. g. ,
data type, number of integer and fractional bits) of that register when it is
referenced by that identifier. For example, the statement

DECLARE HARDWARE INTEGER, INDEX1=2

would assign the identification INDEX 1 to hardware address 2 and specify
that it contained integer values. In conjunction with these hardware declar
ations, the prograrn.rn.er has the capability of reserving the use of registers
for his own special purposes. The directive LOCK 2 would prevent the com
piler from generating code using the indicated hardware register 2 except
where the programmer explicitly referenced it by the declared identifier.
He would return the use of that register to the compiler by the directive
UNLOCK 2.

Several in-line arithmetic functions are provided for doing elementary
operations such as absolute value, rounding, and limiting to a specified range.
Logical operators are included for performing logical product, logical sum,
exclusive OR, and shifting operations. In the event that the programmer can
not accomplish his objectives using these machine-like operations, he can
lapse into in-line assembly code without any attendant inefficiencies due to
linkages. The interrupt capability of the computer, utilized for most aero
space program executives, is handled in CLASP by means of the ON state
ment; this allows the programmer to declare the means by which the interrupt
routine is entered and exited. After the entry mechanism has. been declared,
interrupt processing is handled by means similar to the normal subroutine
capability of the language; thus the executive can be considered as a special
case of a subroutine. The LOCK and UNLOCK statements used to reserve and
restore the use of machine registers can also be used to inhibit or activate
interrupts.

Some of the things that CLASP does not contain may seem surprising.
Any superfluous features would be likely to make the language harder to learn
and use, to make it more costly to implement, and, most important, to result

- 100 -

in concomitant losses in the efficiency of the generated object code. Much
attention was therefore paid to the specification of a "bare bones" language
adequate to do the job efficiently but containing no frills.

CLASP does not have any built-in input/output operations because of
the wide differences in the input/ output characteristics of aerospace com
puters, together with their very application-dependent nature. Their absence
is justified by experience with other special-purpose higher level languages:
regardless of what may have been specified in the language, actual implemen
tations differ widely because of differing application needs. Input/output
operations are accomplished in CLASP by l~psing into direct code and making
use of hardware declarations.

CLASP does not have the built-in mathematical functions sine,
arctangent, etc. -- common to other languages. Although these are present
in the bas.e language, SPL, they were eliminated in defining CLASP because
they would introduce unacceptable inefficiencies: to implement them, it
would be necessary to prepare either a general subroutine package contain-
ing all functions or individual subroutines for each function. The general
package would be inefficient if only a few functions were required by a par
ticular application program, and the individual subroutines inefficient if most
functions were required. These inefficiencies are further compounded when
such subroutines are required with fixed-point input and output parameters.
For example, the fixed-point arctangent function satisfactory in one aero-
space application. program may be unsuitable in another because of differences
in the permitted ranges of arguments, accuracy req'1ired, and allowable execu
tion time. In CLASP, mathematical functions may be defined by the same
means as any other subroutine; the programmer, however, must supply the
procedure specifying how the function is to be calculated, including the pre
cision, range of values, etc., for its arguments. In practice, a library of
such functions will be maintained, to be drawn from as required for any
specific program with additions to the library being made as a need for function
subroutines with particular properties occurs.

Compared with SPL, CLASP has many other, although less significant
simplifications. Such things as status variables, table declarations, qualified
named variables, matrix inversion, and notational substitution directives have
been deleted. The conditional statements, allowable subscript expressions,
and assignment rules have been greatly simplified. Together with the additions
discussed above, these simplifications make CLASP a language than can do the
job in the aerospace programming area and can be implemented for the com
puters of today and the near future without great expense.

- 101 -

THIS PAGE IS INTElfl'IOHALLY lEFT BLANK

- 102 -

SPACE PROGRAMMING LANGUAGE:

FLIGHT SOFTWARE COMES OF AGE

Robert E. Nimensky
System Development Corporation

Abstract

This paper describes SPL/J6, a Space Program
ming Language designed to rep 1 ace machine
language programming in the flight software devel
opment process. This language is shown to be
capable of expressing the complex vector mathe
matics and decision controlof guidance and naviga
tion equations by integrating the hardware charac
teristics of the computer into SPL/J6. The flight
programs produced by SPL/J6 compilers are shown
to be time and space competitive with comparable
machine language programs. Finally, the paper
describes SPLIT, an SPL Implementation Tool.
SPLIT makes SPL/J6 compilers cost effective by
reducing their cost and lead time. The SPL/UNIVAC
1824 Compiler became operational in less than six
months at less than half the cost of a conventional
compiler.

INTRODUCTION

Few television viewers were aware of one of the
anachronisms of the Apollo 11 space mission. The
most sophisticated space mission of our era em
ployed software development techniques that were
primitive by comparison with the flight hardware
techniques. Specifically, the software techniques
employed machine language programming· rather
than higher-level programming languages such as
FORTRAN, ALGOL, JOVIAL, or PL/I. The fail
ure to adopt one of these languages or to develop a
space programming language has tended to cause
increasingly longer delays in space missions. The
increasing complexity of space missions and space
borne hardware increases the difficulty of machine
language programs meeting scheduled launch dates.

Three basic reasons have deterred the aerospace
industry from adopting one of these higher-level
languages or developing their own aerospace pro
gramming language:

1. Currentlyavai.lable higher level languages
cannot express the aerospace problem in
its real-time, fixed-point, small word size
environment.

2. Since object code optimization has not been
the primary concern of most commercially
developed compilers, the r e is a fairly
widespread belief that inefficient object
code is an inherent attribute of higher
level languages.

3. The cost and lead time for building com
pilers (the programs that translate higher
level languages to machine language) by
conventional techniques have been too high
to be cost effective.

The Air Force System Command's Space and Mis
sile Systems Organization believes it has solved
these three problems by developing SPL/ J6 and
SPLIT. SPL/J6 is the higher-level language
specifically designed to accommodate the vector
equations of flight programs and the real-time,
fixed-point hardware characteristics of aerospace
hardware. SPLIT is an acronym for SPL Imple
mentation Tool, which is a meta-compiling tech
nique used to build SPL compilers for different
computers. This compiler building technique has
enhanced the code optimization of SPL compilers
and made SPL compilers cost-effective. In less
than 6 months the SPL/UNIV AC 1824 compiler was
built using SPLIT, and at less than half the cost of
an equivalent compiler built using conventional
techniques.

This pap e r describes the unique capabilities of
SPL-SPLIT that contribute to cost-effective flight
software development.

LANGUAGE REQUIREMENTS

A flight programming language is a tool for ex
pressing mission specifications as a flight pro
gram. This program is a set of instructions that
controls the flight computer throughout a mission.
A typical flight program may perform navigation,
guidance, attitude control, fir e control, event
sequencing, data management, and/or hardware
evaluation. These functions can change with the
objectives of the mission, such as research and
development or operational; support or tactical; and
command control or subsystem control.

- 10) -

Since navigation, guidance, and attitude control are
mathematical functions, a flight programming lan
guage should approximate standard mathematical
notation to facilitate translating the mathematical
specifications into flj.ght programs. Also, since
logic flow is usually expressed in flowchart nota
tion, the language should embody a powerful deci
sion logic form to ease translating decision logic
into a flight program. Finally, the language should
be capable of fn~egrating ~the machine character
istics of the target compu er into the language of
mathematics and sequenc\control. How well a
machine-independent flight program language inte
grates all the machine-dependent characteristics
of a computer is the real measure of its success
(whereas the coding efficiency is the measure of
the compiler's success).

SPL MATHEMATICAL NOTATION

FORTRAN, JOVIAL and PL/I are procedure
oriented programming languages capable of com
municating algorithms in a mathematical-like nota
tion. SPL/ J6 is a newcomer to this family of
languages and embodies most of their features and
mathematical notation. In fact, J6 represents the
JOVIAL lineage of SPL. Since SPL was developed
by the Air Force, compatibility with the Air Force
Standard JOVIAL was an objective; the necessary
aerospace extensions to JOVIAL g i v e SPL its
unique character and the designation Space Pro
gramming Language.

As an introduction to SPL, the SPL/J6 program
'INTERGUIDE' depicted in Figure 2 returns four
parameters from nine guidance equations. The pro
grammer usually receives these equations in con
ventional mathematicai notation. They are readily
expressible in SPL, which can be understood by
the computer, as well as by the mission planners
who write the guidance equations.

The SPL/J6 program consists of statements, which
are instructions to, and the only part of the pro
gram actually read by, the computer; and com
ments, which are enclosed in quotation marks ("),
ignored by the computer, and meant only for the
human reader.

The program is identified by lines 1 through 5.
Lines 6 through 18 represent data declarations--all
data are declared to be fixed-point with 12 binary
place precision; initial values are set within the
standard declarations; and the "overlay" declara
tion (line 10) equates a list of vector elements to a
vector. The mode declaration (line 9) causes all
undeclared variables found between this statement
and the next mode declaration to be declared fixed
point with 12 binary place precision. Thus, JP,
SP, QP, J, S, Q, PSI.X4P, Y4P, Z4P, and even
the output values SINX, COSX, SINY, COSY are

fixed pOint 12 binary preCISIon variables. The
executable statements encoded on lines 21-24 are
based on the original equations, and are part of a
declared "close" routine (lines 20-25). This close
is called at lines 27 and 36. Line 26 begins a loop
that continues until "time" exceeds "maxt." At
that time, the statement following line 40 (the end
of the loop) is exe~uted. System functions "log"
(line 21), "atan" (line 30), "cos" (line 38), and
"sin" (line 39) are called up by Simple statements
as shown. Lines 28-29 and 38-39 show nonscalar
and multiple assignments, respectively; 48 repre
sents the e x it from the program, and line 49
denotes the end of the program.

The line numbers are merely mnemonic entries
included for reference in this example, and are not
input to the computer. Also they do not necessarily
indicate a one-to-one relationship with the state
ments and comments, and some may be left blank.

Vehicle guidance, navigation, and attitude control
equations are based on gravitational, navigational,
and inertial coordinate systems, which are three
element vectors. The use of vectors and matrices
is clearly seen in equations E, F, and I in Figure
1. How easily these computations are expressed
in SPL are shown by lines 28, 29, 38, and 39
(Figure 2).

A.

B.

C.

D.

E.

F.

G.

H.

L = 1 n T/ (T - T)

J' = TL - T

S' = J' - TL

Q' = (T2/2) + TS'

I ~I = V I~: I Q ex Q'

I I X'" 'I I X V'''~ = G V
Z"" Z

lji= tan- 1 (X'" '/V'" ')

ljiT = lji + -1. VT - S + K T2
'1T 9"

1. IljiT I = CljiT -SljiT 0

o

o 0

Figure 1. Typical Guidance Equations.

- 104 -

OlOO-STARTllliTERGUIDEI "BEGINNIIIG OF PRQGR4II"___ _ __
OZOo-PROC .INTERGUIOEC -51 HI,COSI ,5 INY ,COSY I
0)00-"5,,"'1 E SET OF GUIOANCE EQUATIONS COOED IN SPL. THE
0400-PRDCEDURE liAME IS INTERGUIOE AND IT RETURNS THE VALue
050o-0F THE SINE AND COSINE (J= X ANJ V. II

06,)O-DEClARE fiXED 12, ,.,U-O, MAXI- ,1.0000. TAU, I. L, JSQ'CJI.
0100- VEX,DGI'J t ,XV Z nl, MAX-l.3659,CET A,
080~ y,KGN,DP\1 Ie 3, 3) ... 8e 0) ,11
0900-l40DE F IX EO IZ
lOCO-OVERLAY JSQP-JP,SP,QP
1100-DISPLAY. OECURE FIlE 01 spun,

f gg~: ~:~~~;;~:~ z,
'14!lO-DISPlAY2. DECLARE TEKT,Kl 4-'PHI-' ,PHI 12 FixED"

15I)O-SIGNAl. DECLARE FilE SIGNALl.
1600-- DE VI CE • THRUSTCONTROL.
1100- ERROR- ERRI
laOO-DECLARE aDDLE"" ,5 IGNALI
191)0-' 'CLOSE PROCEDURE CALC DEFINED NExT"
ZOOI)-CLOSE CAL C
ZlOO- L •• LOGlTAU/CTAU - TIl
2200- JP .. TAU * l - ,
2300- SP • JP - T • L
21t00- QP .. C' •• 21/2 + TAU. SP
2S00-eXIT

"EQUATION .. ,.
"EQUATION B"
"EQUATION c."
., EQUA' I ON 0"

2600-WHILE TIME LS "AXT "BEGIN EXECUTABLE STATEMENT IN LOOP"-
2100- GOTO CALC
2800- '&,S,Q ,. VEX. J5QP
2900- XItP,Y4P,ZltP .. OG. IC.YI
)000- PSI' .ATAN""'/Y4PI
3100- IF PSI GR HAX
3200- THEN WRITE OISPLAY
))00- EL SE SIGNALl = ON
3"00- OR IT E 5 I GNAL
3500- END
3600- GOTD CALC

"EOUI Tl ON E"
"EQUATION F"
"EQUATION G"

3100- PSIT • PSI. CETA • V • T - S • KGN • ' •• 2 "EQUATION H"
3BOO- OPSITlO.Ot-OPSITU.ll-.C.OSCPSlTt "EQUATlDN 1"-- -
3900- DPSITCO.U--OPSIJ(l.OI-.SINCPSITt "EQUATION t"
"OOO-END "END OF WHILE LOOP INITIATED ON LINE 26"
".100-
"ZOO-
4)OQ-
4400-"REST OF PROGRAM USED TO CALCULATE SINE AliD COSINE
"'500- OF X AND V."
4600-
4100-
"aoo-EIIT
4900-T ERM I) "END Of PROGRAN"

-.STO'

Figure 2. 1 Sample SPL Program.

SPL DECISION LOGIC

Elementary decision logic is demonstrated in lines
31 through 34 where file DISPLAY2 will be written
on an output device if pm > MAX. If PHI < MAX
then SIGNAL1 will be set to ON and its value will
be output with the WRITE command. This condi
tional statement may contain other conditional
statements and thus be nested to any level. Very
complex logic can be represented with this state
ment form; however, alter a few levels of nesting
the logic becomes difficult to read and is prone to
programming errors because of misplaced clauses
and ENDs. For these complex decision processes
SPL has implemented decision tables as part of its
structure.

1Levi J. Carey and Walter A.
ware: At the Crossroads",
pp. 62-69, December 1968.

Sturm, "Space Soft
Space/ Aeronautics,

- 105

Figure 3 is a decision table divided into upper and
lower sections by a horizontal double line. The
conditions (Boolean formulas) appear in the upper
half and the actions (THEN statements) in the lower
half. The double vertical line divides the table into
two more sections. The left side is called the stub
and the right side contains entries. Each set of
conditions and actions is called a rule.

Rule 1 is read: If A equals Band Q is less than R
and ZR is greater than 100, then set SIGNAL equal
to FALSE and finally go to ABLE. If the conditions
do not satisfy rule 1, then rule 2 is tried, and then
rule 3; if none of the rules apply, then the ELSE
rule is invoked and control transferred to ERROR.

Problem 1 converts to SPL format with no loss in
the tabular form, as the comma separators sub
stitute for the table lines (see Figure 4). The
ELSE rule has been moved so that the entry list
for all conditions and actions does not have to code
for the ELSE rule. Since ALERT was not to be set
in rule 1, a blank followed by a comma was needed
to place RED and CLEAR in the proper columns.

PROBLEM 1

STUB ENTRIES

Rule 1 Rule 2 Rule 3

A EQ B 19 C/O

CONDITIONS Q LS R Z J*9

ZR GR 100 150 5

SIGNAL • FALSE FALSE TRUE

ACTIONS ALERT = RED CLEAR

GOTO ABLE ABLE ABLE

Figure 3. Decision Table Program_

PROBLEM 1

CONDITIONS A EQ [,9 , C/O 1

Q LS [R , Z ,J*g 1

ZR GR [100 , 150. 5 1

ACTIONS SIGNAL = [FALSE ,FALSE ,TRUE 1

ELSE

ALERT , RED ,CLEAR 1

GOTO [ABLE ,ABLE ,ABLE 1

GOTO

END

ERROR

Else

ERROR

Figure 4. Usage of SPL Decision Logic.

SPL HARDWARE INTERFACE

The SPL forms discussed so far are more or less
machine independent and do not involve the hard
ware characteristics of a target computer. SPL's
treatment of I/O, interrupt processing, bit and
byte manipulation, arithmetic logical operations,
fixed-point scaling operators and data declarations,
hardware operands, and direct code give complete
control of the hardware to the SPL programmer.
To illustrate how these machine characteristics
are handled in a machine-independent language two
hardware-oriented SPL forms are described.

The SPL CHRONIC statement for interrupt pro
ceSSing was implemented on the UNIVAC 1824 for
data and timing interrupts. The form also was used
for the AGC Master Reset condition. Though the
interrupts are peculiar to the UNIVAC 1824, the
SPL compiler generates all the code necessary for
saving registers and returning control to the in
struction following the location where the interrupt
occurred after the routine coded by the SPL pro
grammer is executed.

The UNIVAC 1824 I/O is referenced by channel
number and is governed by a direct, indirect, or
incremental mode. All these features 'have been
implemented in a machine-independent form. Thus,
the SPL syntax can accept pairs of attributes de
scribing an I/O file, though only the code generator
pass can analyze these pairs to determine if they
apply to the UNIVAC 1824 before using them to
generate I/O commands.

There is nothing that a higher order language and
its compiler can do to eliminate the hardware de
ficiencies of a given computer. It can, however,
make coding "around" the hardware as painless and
as efficient as possible. The fixed-point arith
metic in SPL cannot eliminate the shifting inherent
in scaling fixed-point numbers but, it can ensure
accuracy and do all the shifting for the program
mer. In SPL the data declarations assign fractional
bits and integer bits. This information is stored
in a symbol table and used whenever fixed-point
operations are performed.

A REAL PROBLEM

The UNIVAC 1824C computer for the Titan mc
vehicle is a good illustration 0 f the software
hardware interface. 2 Translating flight equations
into the machine language of this computer is a

2Raymond J. Rubey, R. Dean Hartwick, William
C. Nie lsen and otis F. Tabler, "Definition and
Evaluation 0 f Merit in Spaceborne Software",
SAMSO-TR-68-268, June 1968.

constant battle against time, memory, and hard
ware constraints. This computer has a read-only,
random-access, thin-film memory of 4096 48-bit
words, each word being divided into three 16-bit
instructions or two 24-bit data words. A read/write
memory of 512 24-bit data words is provided for
storage of intermediate results and the I/O buffer.
The computer has three index registers: fixed
point arithmetic commands (table precision add
and subtract), real-time interrupts, and input/output
commands.

Some of the problems encountered in coding for
this computer are:

1. Limited me m 0 r y addressing by 8-bit
operand. A single extension register is
added to this operand to give a complete
15-bit address. About 10% of the opera
tional program is devoted to setting this
extension register.

2. Shifting because of fixed-point arithmetic
accounts for about 6% of the total code.

3. The 512 read/write memory locations
cannot hold the 900 computed intermedi
ate results. This problem is solved by
time-sharing the memory locations so that
new results replace ones not required for
future computations.

Many intricate coding techniques were employed,
but a reduction in mission capability was still re
quired to meet the tight timing and memory con
straints of the Titan mc. How did SPL/ J6 and its
first operational compiler on the UNIVAC 1824
attack these problems?

SPL/UNIV AC 1824

In the Titan IIlC the extension register manipula
tion accounted for 10% of the coding effort. SPL
cannot eliminate extension registers but it can
automatically set the extension register; so, on the
UNIVAC 1824, this one feature eliminates 10% of
the code a programmer has to write.

Assigning 900 intermediate results to a space that
holds less than 512 is readily handled by SPL.
There is a language feature, an ephemeral data
type, which allows an SPL programmer to change
the attributes of a variable during the course of a
program Each time a value is stored in an ephem
eral variable, the variable takes on the attributes
of the value currently stored. Thus, if a fixed
point number, scaled with 15 fractional bits, is
stored in ephemeral A, the next time A is used in
an equation it will be used with a scaling factor of
15. Subsequently, if a value scaled 10 is stored in
A, the next time it is used in an equation a scaling

- 106 -

of 10 will be used. In addition to this data type, the
SPL overlay statement allows the programmer to
equate several res u It s to the same memory
location.

Another way the SPL compiler allows multiple use
of the limited read/write memory is by using a
push down stack for storing all input parameters
and local variables for procedures. Thus, as each
procedure is completed, the intermediate storage
for all the variables used in the procedure is re
leased and becomes available for another procedure.

SPL OPTIMIZATION

Language Features That Aid Optimization

The major responsibility for efficient object code
belongs to the compiler, not the language itself,
but SPL forms were designed to provide informa
tion which could be used by the compiler to gener
ate good code. These language features include
the following:

1. Preset value declaration allows the com
piler to generate initial values at compile
time rather than at run time.

2. The constant attribute allows the compiler
to use immediate instructions when avail
able. An immediate instruction contains
the data in the instruction rather than in
a memory location.

3. The declare index declaration tells the

SOME COMPILER OPTIMIZATIONS

The SPL/UNIV AC 1824 Code Generator performs
the following local optimizations (statement by state
ment):

Statement

A= A+B

A=O

A= A+1

AGRB

A (1+3) + B (1+3)

Optimization

An. 'add to me"mory' instruc
tion is used.

A 'clear memory' is used.

An increment instruction is
used.

The operand which needs to be
scaled is loaded first to save
storing into, and restoring
from, a temporary register.

Relationals are done by a sub
traction followed by a branch
on the value in the accumula
tor. If B needs to be scaled,
the operands are reversed and
the branch logic is changed to
LE to save storing into, and
restoring from, a temporary
register.

Register memory is used so
that only one computation of
the index is required.

compiler to maintain values as indices These optimizations have all been implemented on
thereby reducing setting and resetting of the UNIVAC 1824. Although SDC has been unable
index registers. to measure the quality of the object code, analytical

studies indicate that the compiler generated code is
4. The free-form, multiple-line, arithmetic within 10% of the theoretical optimum code. The

assignment statement allows the compiler theoretical optimum code is calculated by coding a
to optimize storage of intermediate re- sequence in assembly language using every known
sults. coding trick to minimize code. The quantitative

measure of SPL's efficiency is currently being per-
5. The decision table allows the compiler to formed by Aerospace Corporation, which is coding

optimize conditions and actions over a part of the Titan IIIC guidance program in SPL.
large segment of code. The code generated by the UNIVAC 1824 compiler

will then be compared to the hand-coded version
6. The inclusion of logical operations, shift- that employed intricate coding techniques.

ing, bit and byte manipulation, hardware
operands, and direct code permits the SPL COST EFFECTIVENESS
programmer to solve his problem directly
in SPL; whereas in other higher-level The SPL Compilers built by SPLIT have three logi-
languages which lack these features in- cal passes: 1) SPL Syntax Analyzer, 2) SPL Se-
efficient coding techniques are used to mantics, and 3) SPL Code Generator. The SPL
simulate these operations. Syntax Analyzer parses SPL statements into'state

ment trees and declared data into dictionary trees.
7. Item and table data structures allow pack- These two sets of trees are input to the SPL Seman-

ing of data to optimize memory allocation. tics in a tree pruning pass. Scaling, mixed mode
conversions, and reduction of complex tree forms

8. Arrays and tables optimize the use of index to Simpler forms constitute the semantics func-
registers for setting multiple values. tions. The first two passes are machine indepen-

- 107 -

dent, whereas the last pass, the code generator,
produces assembly language and is thus machine
dependent.

The first cost saving factor of the SPL technique
is the machine independence of the first two com
piler passes. Since they can be used for any ma
chine, only the code generator need be constructed
for each new computer requiring an SPL Compiler.
By placing the two machine-independent passes on
a host machine such as a CDC 6600 or an IBM 360/
65, a complete compiler is available for every com
puter already having a code generator.

The second cost saving factor is inherent in the
SPLIT Compiler building technique. The use of
SPLIT to build the SPL/UNIV AC 1824 compiler
significantly reduced the time and cost as com
pared to building the same compiler with conven
tional coding techniques. This cost reduction was
achieved by automating the compiler building pro
cess with the SPLIT metacompiler, which is one
of the most advanced production techni!J:~es for
translating a higher-order language to m'a,chine
code. '

The SPL compilers are written in the SPLIT lan
guage, a problem-oriented language in which com
piler building is the problem. In problem-oriented
languages, the user deals directly with his problem
rather than with the details of a particular machine.
Thus, SPLIT's Syntax Language is ideally suited
for describing the syntax of any programming lan
guage. This problem-oriented language allows the
programmer to think about the syntax of the language
in the same language in which he codes his syntax
equations. The code generator pass is also a de
scriptive graphical language which allows the pro
grammer to 'see' the statement trees produced in
syntax and then to'see' the code generated directly
from that tree. Again, the most Significant attrib
ute of this problem-oriented language is that the
programmer can think about his problem in the
same terms in which he codes the solution to his
problem.

BENEFITS OF METATECHNlQUE

A compiler written in a higher-order language
inherits the same benefits as any other program
written i8 a higher-order language. The time and
cost of building a compiler are greatly reduced by

,using JOVIAL instead of an assembly language. By
the same token, time and costs are even further
reduced by using a procedure-oriented language
such as JOVIAL. As a measure of this savings, the
syntax of SPL requires 528 lines of SPLIT language
to parse a language more complex than JOVIAL.
These 528 lines of code generate a compiler of some
35, 000 machine language instructions. The syntax

analyzer of JOVIAL, written in JOVIAL to run on
the IBM 360, required 8192 lines of code to generate
25,000 lines of machine-language code.

The ratios of source statements to machine code
are impressive but the real benefit lies in the nature
of the SPLIT language. It allows the compiler
writer to deal with the syntax and semantics of the
source language rather than deal ,with all the tedi
ous program tasks associated with building a com
piler such as, how to write the scan program, how
to build the symbol table, what attributes go where.
He writes the syntax description in a language which
readily lends itself to describing formal languages.
He writes the code generator, again, in a language
designed speCifically for generating strings of code.
Using languages which are natural to the problem
actually assists the compiler writer in designing
solutions for complex compiler problems.

Having a compiler (syntax and generator) completely
described in 20 pages reduces the problem of com
piler maintenance to such small proportions that
one programmer can easily maintain a compiler.

OBJECT- PROGRAM OPTIMIZATION

The SPLIT generator's language, which pictures
the statement tree, allows the compiler writer to
'see' all the relationships between the operators
and operands in a particular statement. With these
pictures at hand it is relatively easy for the com
piler writer to produce localized optimum code. As
noted earlier, this has been proven in comparisons
between code produced by the SPL SPLIT - built com
piler version and the maChine-language version of
the Titan In missile guidance computer program for
the UNIVAC 1824.

When the statement trees are connected to form a
program tree the latter becomes a directed graph
in which each edge represents a flow path and each
node represents a 'basic block'; that is, a set of
instructions in which if one instruction is executed,
all are. By analyzing the strongly connected regions,
basic blocks which dominate others, and basic
blocks which can occur on a path from one basic
block to another, we find that entire programs can
be optimized.

The kinds of global program optimization that can
be done are:3

3

1. Eliminating redundant instructions.

F. E. Allen, "Program Optimization", 5th Annual
Review of Automatic Programming, pp. 239-307,
1969.

- l08 -

2. Removing invariant instructions from in
side loops.

3. Replacing or modifying test sequence to
produce better code.

4. Eliminating unused definitions and com
putations upon which they depend.

5. Optimizing resource allocation, minimiz
ing use of temporary storage, saving re
computed values, etc.

SDC is currently under contract with ARPA to imple
ment these optimizations using the graph represen
tation of a program.

SUMMARY

A Space Programming Language has been developed
by the System Development Corporation for the Air
Force Space and Missile Systems Organization.
The SPL/J6 language has resolved most of the prob
lems that prevented higher-order languages from
being used in the flight software development pro-

cess. SPL/J6 is suited to space and avionics appli
cations by virtue of its powerful mathematical deci
sion control language, which is supported by many
machine-oriented features. The space problem is
readily expressed in the SPL language and efficient
object code is evident in the object flight program.

The cost effectiveness of the SPL-SPLIT compiling
system has been demonstrated by the time and cost
reductions achieved in the building of the SPL/
UNIVAC 1824 Compiler.

It should also be apparent that by implementing the
global optimizations described earlier, more effi
cient code can be produced. The amount of optimi
zation that can finally be achieved will be determined
largely by the money spent to get the additional
optimization required. Training programmers in
the use of SPL will probably bring about the greatest
optimization of object code at the least cost.

The operational use of SPL is thus far somewhat
limited and has been restricted to spaceborne pro
grams; however, new uses of SPL in avionics are
being studied.

- 109 -

THIS PAGE IS IHl'ENrIONALLY lEFT BLANK

- 110 -

A TECHNICAL OVERVIEW

OF

COMPILER MONITOR ~ST~M 2 (CMS-2)

Prepared by

Systems Technology Department
Computer Sciences Corporation
3065 Rosecrans Place, Suite 201

San Diego, California 92110

- III -

CSC-STD70-009

September 1970

CSC-STD70-009

TABLE OF CONTENTS

Section Page

1 Introduction . • • . • • . . . • • . . •• 1

2 Background and Design Development•••....•.•••. 2

3 Basic Features of the CMS-2 System .•........•...•••. 7

4 A Description of the CMS-2 Language • . . . • . . • • . • . • 15

5 System Operation .•.•.•.• ~ •.• ~ ~.~~ .. ~.. • • •.. . • . • • • . 28

- 112 -

CSC-STD70-009

Section 1

INTRODUCTION

CMS-2 is the abbreviation for Compiler Monitor System 2, a computer pro

gramming system designed and implemented for the U. S. Navy by Computer

Sciences Corporation.

The programming language of the system is also called CMS-2, and represents

a state-of-the-art combination of the most desirable capabilities of such widely

used languages as JOVIAL, CS-l, ALGOL and FOBTUAN.

The purpose of this report is to provide a broad overview of the CMS-2 language

features and system capabilities. This overview is presented at a level of

detail which will allow evaluation of its adaptability to advanced avionics sys

tems requirements.

CMS-2 is not a theoretical system but rather an operational system which

exists in the Navy today. CMS-2 is not merely a high level language, but

encompasses the complete scope of a computational system including a batch

processing monitor for controlling the production of tactical programs and

optimizing throughput, a librarian for reduction of input handling and source

program storage, loaders to load and link the generated object programs,

debug aids for maximum ease in debugging, and a flowcharter for a built-in

documentation capability.

Section 2 of this report provides a brief background of CMS-2 development.

Section 3 describes the components of the CMS-2 system and their functions.

Section 4 contains a description of the CMS-2 high level language while

Section 5 provides a description of the control operators for the various system

components.

While this report is limited to providing a broad technical description of the

elements of the CMS-2 system, in-depth details of the CMS-2 design are

available through the Fleet Computer Programming Center, Pacific.

- 113 -

CSC-STD70-009

Section 2

BACKGROUND AND DESIGN DEVELOPMENT

Since the early 1960's, the Navy has developed many tactical data systems

using the CS-l compiler and the MS-l monitor system. In 1966, because of the

rapid advances in compiler design coupled with the impending arrival of third

generation computers, the Chief of Naval Operations assigned the Fleet

Computer Programming Center Pacific (FCPCP) the responsibility for updating

the Navy's computational facilities to meet the needs· of the fleet into the future.

FCPCP, in turn, tasked Computer Sciences Corporation to perform an evalua

tion of these requirements.

CSC conducted an in-depth analysis of existing Navy programming capabilities,

proposed future Navy computer systems, and existing compiler languages.

Based upon the results of this study, authorization for implementation was given

by the Chief of Naval Operations and CSC was tasked to implement the CMS-2

system.

The CMS-2 capability has now been developed and expanded to produce exec

utable object code for five different military computers in use on various Navy

and Marine Corps projects. These computers are:

Target Computers

CP642A and CP642B

Litton L304 (CP879)

AN/UYK-7

UNIVAC 1830A

UNIVAC 1218/1219

Major Applications

NTDS, ASWSC&CS, TACDEW, TACS/TADS

ATDS, E2C

AEGIS (ASMS), DX, DXGN, LHA, S3A

A-NEW

Fire Control Systems

The CMS-2 language has already been specified for use by the Navy for several

advanced projects, including DXGN, AEGIS, LHA, and S3A.

- 114 ..

CSC-STD70-009

DESIGN CRITERIA

In order to develop an advanced system while retaining the many existing

tactical data systems written in CS-l, the objectives of the new system were

established:

• To combine the best features of the existing CS-l/MS-l and other

new languages for new and future requirements

• To allow salvage of the maximum value from previously developed

CS-l programs, or facilitate -their. r~ady translation

• To provide generation of object code for existing and future

computers without changing system tapes

• To include program debugging and testing features needed for

quality and efficient performance

During the design phase of CMS-2, CSC studied the features of such languages

as CS-l, JOVIAL, FORTRAN, and ALGOL. The most desirable features of

these languages as they best suited the particular needs of Navy applications

were incorporated into CMS-2.

The significant features thus incorporated into CMS-2 include the following:

Procedure -Orienta tion

Forward- and backward linking to procedures

Local and global ranges of definitions

Inter-system name linking within construct of language

Communication pool processing

Source language debugging capability

Absolute or relocatable output allocation

Free format source statements

- 11S -

CSC-STD70-009

Expanded data types and structures

Fixed Point, floating point, character, Boolean, and status

elements

Multi-dimensional array structures

Complex equivalencing of storage areas

Procedure, index, and item switches

Definition of table lengths at load time-

Selective data pooling

Flexible Processing statements

Powerful arithmetic-exponentiation, mixed mode

Intrinsic or user-developed functions

Algebraic evaluation of expressions

Indirect referencing of table structures

Bit and character string referencing

User-Specified or automatic scaling

Sophisticated Input/Output Capabilities

High level file structures

Record and stream processing

Extensive formatting of data

Centralized I/o processing

ADAPTABILITY

As noted earlier, the development of CMS-2 was precipitated for the most part •

by the inability of the CS-l system to adapt to the needs of the Navy within a

- 116 -

CSC-STD70-009

changing environment. Thus, adaptability was made one of the prime consider

ations of CMS-2 design.

Adaptability within CMS-2 is attained in two ways:

• Adaptability of the CMS-2 compiler system to run on many

machines

• Adaptability of the CMS-2 compiler to generate code for many

machines and many applications

Adaptability of the CMS:-2 System

CMS-2 is composed of discrete passes to perform the functions of source code

cracking, intermediate language generation and local optimization, and finally

listing and object code generation. This modular approach allows the compiler

to be modified to generate for a new target machine by replacing the machine

dependent portions of the compiler.

Within certain limitations, the compiler itself can be transcribed into its own

language, compiled through a CMS-2 compiler generating code for a target

machine, and the resultant code run on the target machine to give CMS-2

compilation capability on any machine for which there is a code generator.

While this procedure requires program modification for the machine dependent

monitor interfaces and any other machine dependent areas of the compiler

- itself, this procedure is far superior to the process of rewriting a total

compiler system.

Finally, the sub-modular structure of the compiler itself makes it adaptable

for modification to run in a multi-pass overlay environment when space

requirements dictate.

Adaptability of CMS-2 Generated Programs

While the modular structure of the CMS-2 program structure can be used to

advantage to provide adaptability and flexibility within the compiler system

- 117 -

CSC-STD70-009

itself, these features are of even more importance to the users in regard to

obj ect programs.

The procedure concept of CMS-2 coupled with the linking capability of the

CMS-2loader allows the user maximum freedom in coding. Existing segments can

be combined to create new systems. When changes are required only the

modified segments need be recompiled. Finally, the CMS-2 librarian system

allows input data for compilation to be maintained safely on a mass storage

thus eliminating the time consuming task of deck manipulation and associated

problems such as dropped card decks.

Finally, like CS-l, CMS-2 allows the insertion of direct machine code,

properly bracketed, within the high level statements. This technique allows

existing or specially written procedures to be included within CMS-2 programs

by merely bracketing them with appropriate high level statements.

- liB -

CSC-STD70-009

Section 3

BASIC FEATURES OF THE CMS-2 SYSTEM

A CMS-2 system is currently operational at the Fleet Computer Programming

Center, Pacific (FCPCP), and at other Navy project sites, on the Univac

CP-642B/USQ-20 computer. A CMS-2 system is also being developed to

operate on the Univac AN/UYK-7 computer. The present CMS-2 system at

FCPCP includes a monitor system (MS-2), the CMS-2 compiler, a·librarian,

loaders for CP-642 object code, tape utility routines-;- and-a flowcharter.

THE MS-2 MONITOR SYSTEM

The MS-2 monitor system is a batch processing operating system designed .to

control execution of CMS-2 components and user's jobs being run on the CP-642

computer. The monitor coordinates all system job requests, and provides the

external communication for all programs running under its direction. This

communication includes a control card processor, an input/output system,

operator communication package, and a debug package providing dump, patch,

and snap capabilities. In addition, MS-2 maintains a library of system

programs, which can be called upon request. Job accounting information is

maintained and output for computer center use and a priority scheduling

algorithm is available for job processing.

THE CMS-2 COMPILER

The compiler is a three-phased language processor that analyzes a dual syntax

source program and generates object code for anyone of five different c.om

puters used in military projects today. The three phases of the compiler are

described below and illustrated in Figure 3-1.

a. Syntax Analyzer - A user's source program, conSisting of high

level CMS-2 or CS-l language statements and properly-bracketed

machine code instructions, is input into the syntax analyzer phase.

The source statements are checked for validity, and an internal

- 119 -

CMS-2 CS-l
MACHINE

CODE

SYNTAX
ANALYZER

r---:'-,
GLOBAL

OPTIMIZER
L __ ..J

CP-642
CODE

GENERATOR

L-304
CODe

GENERATOR

AN/UYK-7
CODE

GENERATOR

1830A
CODE

GENERATOR

1218/1219
CODE

GENERATOR

. 3 1 The CMS-2 Compiler Figure - •

OBJECT
CODE

OBJECT
CODE

. OBJECT
CODE

OBJECT
CODE

n
Ul
n
I

Ul
~

~
o
I
o
o
c.o

CSC-STD70-009

language (IL) and symbol table are generated. The IL and symbol

table are completely independent of the target computer for which

machine code will be generated.

b. Global Optimizer - The IL and symbol tables generated by the

syntax analyzer phase can next be processed by the global optimizer

phase. This phase identifies areas of the program which can be

reorganized to reduce the program's memory requirements and

execution time. Checks are ~a<le (o~ i~provement, simplifi

cation of arithmetic and logical computations, removal of arithmetic

redundancies, and packing of data. No changes are maqe to the

program structure. Instead, messages are printed so the pro

grammer can make modifications if desired.

The modular design of the compiler permits the global optimizer

phase to be deleted if desired, and in fact this phase has not yet

been implemented for the FCPCP CMS-2 system.

c. Code Generator - The code generator phase processes the IL and

symbol tables to produce the final output listings and object code

for the target computer. A separate code generator phase is used

for each target computer. The CMS-2 system at FCPCP now

includes code generators for the CP-642A and B, Litton L-304

(CP879), AN/UYK-7, Univac 1830A (CP-901), and 1218/1219

computers.

Object code is produced in a format compatible with the loaders used on each

machine. Each code generator locally optimizes the object code. This includes

utilization of instructions unique to the target computer, efficient register

usage, and continuous analysis of object code strings for unnecessary or

redundant instructions.

- l21 -

CSC-STD70-009

The code generators produce object code in one of two compilation modes:

ab.solute or relocatable. In an absolute compilation, all instructions and data

uni1J> are assigned absolute memory locations. The resulting object code

,rep, resents an executable program. In the relocatable mode, each system

cl.e.ment .being c.ompiled is given a starting address of zero. All memory

~ and :sym,bolic references between system elements must be assigned

~ :r.e.s.o~:v.ed -by.a linking loader program. The loader itself joins various

$fs.tem elements., p.erhaps generated by separate compilations, to produce the

iiJJ.al ~~.table pl'Qg-rams.

THE C~-2 LIBRARIAN

'fne UbraJ'ian is a file management system that provides storage, retrieval,

~d cot'J'ection functions for a programmer's source programs and object

cQde~ Ubrary QPerations are performed by three different routines.

a. The library maintenance or executive routine (LIBEXEC) is used

to ~:reate, modify, or reproduce libraries for CMS-2 programmers.

A 91\16-2 library is placed on magnetic tape and may contain

8~urce programs, object code or predefined data pools (compools).

Library
f---c-t Maintenance

- 122 -

Source Programs
Compools
Object Code

CSC-STD70-009

b. The library search routine is responsible for retrieving'data from

a previously created CMS-2 library. Source program and compool

elements may be retrieved for input to the CMS-2 compiler.

CP-642 object code can be retrieved when requested by the CP-642

loader.

Library
\-----c:>t Search

Source Programs

Compools

Obj~ct Cod~ __

--~-.,...---

Compiler
Compiler

Loader

c. A library translator routine (LIBTRAN) is used to convert existing

CS-l program decks or libraries into a CMS-2 library format.

Most CS-llanguage statements are acceptable to the CMS-2

compiler; others are converted by LIBTRAN to equivalent accept

able statements. Those CS-l statements that cannot be processed

by the CMS-2 system are identified by LIBTRAN and must be

changed by the programmer.

Library
Translator

THE CP-642 OBJECT CODE LOADERS

The CMS-2 system includes two loader programs for CP-642 object code

produced by the CMS-2 compiler. The absolute loader accepts object code

generated by a compilation in the absolute mode. All instructions and data

are loaded into computer memory at the addresses assigned during the

compilation.

- 123 -

CSC-S TD7 0-009

The relocatable loader processes only outputs from a relocatable compilation.

Relocatable object code can come directly from the compiler or from a CMS-2

library. The relocatable loader assigns all memory addresses and links the

program segments together to produce an executable object program.

TAPE UTILITY ROUTINES

The CMS-2 system provides a set of utility routines to assist a programmer

with the manipulation of data recorded on magnetic tape. The routines provide

the capability to construct, duplicate, compare; l~ and-reformat data files on

tape.

THE CMS-2 FLOWCHARTER

The flowcharter is designed to process specific statements in a user's CMS-2

source program and output to the high speed printer a flowchart of the program

logic.

CMS-2 JOB FLOW

To use the components of the CMS-2 system, a programmer must construct a

job input deck to describe his requirements. The control cards in the job deck

are processed by the MS-2 monitor. Based on the instructions specified on the

control cards, the monitor can retrieve a CMS-2 component program from the

CMS-2 system library and pass control to the component for further processing.

Figure 3-2 illustrates the possible paths of job control.

Within a single job, several components of the CMS-2 system may be executed.

Examples include:

a. Retrieving a source program from a user's library for transmittal

to the CMS-2 compiler, and subsequent updating of the source

program on the library (Utilizing the Library Search, Compiler,

and Library Maintenance components).

- 124 -

LIBRARY
TRANSLATOR

LIBRARY
MAINTENANC

FLOWCHARTER

MS-2
MONITOR

Figure 3-2. CMS-2 Job Flow

EXECUTE
USER'S

PROGRAM

TAPE
UTILITY

ROUTINES

n
til
n
I
til
I-j

S
o
I
o
o
to

CSC-STp70-009

b. Compiling a source program for the CP-642 computer, producing

a flowchart output, and loading the object code into the computer

for execution (utilizing the Compiler, Flowcharter, and Loader).

c. Converting a CS-l user's library into a CMS-2 user's library then

listing the contents of the CS-l library (utilizing the library

translator and the tape utility routines).

- 126 -

CSC-STD70-009

Section 4

A DESCRIPTION OF THE CMS-2 LANGUAGE

The machine-independent, high-level language of CMS-2 has evolved from such

well-used languages as JOVIAL, CS-l, and FORTRAN. The syntax includes.a

variety of operators and features to provide flexibility and capability to the

experienced programmer. At the same time, the language is easy to

understand and quickly learned by the novice.

A complete description of the language is found in Volume I of the CMS-2 Users

Reference Manual (M-5012), published by the Fleet Computer Programming

Center, Pacific. Below is a brief description of the CMS-2 syntax processed

on the CP-642 CMS-2 system now operational at FCPCP. The CMS-2 compiler

being developed to operate on the AN/UYK-7 computer will have expanded

language features to better utilize the new capabilities of more sophisticated

computers. These enhancements include reentrant procedures and their

associated data structures, extensive program reallocation capabilities using

address base registers, and other advanced language features.

LANGUAGE STRUCTURE

The CMS-2 language is composed of an orderly set of statements, or sentences.

The statements are composed of various symbols that are separated by

delimiters. Three categories of symbols are processed: operato.rs, identifiers,

and constants. The operators are language primitives assigned by the compiler

to indicate specific operations or definitions within a program. Identifiers are

the unique names assigned by the programmer to data units, program

elements, and statement labels. Constants are known values, and may be

numeric (octal, decimal, or hexadecimal), Hollerith codes, status values, or

Boolean.

- 127 -

CSC-STD70-009

CMS-2 statements are written in a free format and terminated by a dollar sign.

Several statements may be written on one card, or one statement may cover

many cards. A statement label (followed by a period) may be placed at the

beginning of a statement for reference purposes.

SOURCE PROGRAM STRU CTURE

The collection of program statements developed by the programmer for input

to the CMS-2 compiler for compilation as a entity is identified as a compile-time

SYSTEM. Those declarative statements withlp.-!lieSystem that define data to be

manipulated are generally grouped into packages called Data Designs. The

dynamic statements that cause manipulation of data or express calculations to

solve the programmer's problems are grouped into procedures.

The two categories of system elements within a compile time system are the

System Procedure (SYS-PROC) and System Data Design (SYS-DD). SYS-PROCs

contain all procedure packages and may also include local data designs

(LOC-DD) whose declaratives are "local" definitions. Local definitions may

only be referenced within the SYS-PROC boundaries, unless flagged by external

definition identifiers. SYS-DDs contain data declaratives valid throughout the

compile-time system ("global" definitions). A typical compile-time system,

therefore, may be represented as illustrated in Figure 4-1.

SYS-DDs A and D contain data which can be referenced throughout the system.

The local data in SYS-PROC-C, however, cannot be referenced outside of C.

A SYS-PROC may be entered through its "Prime procedure, '~ whose name is

automatically global to the system.

The system structure illustrated in Figure 4-1, may represent an entire

tactical or application program. It can be compiled as an entity or in

individual segments. For example, SYS-DD "D" and SYS-PROC "E" may be

modified and recompiled separately from the other elements. References to

data or symbols in elements A, B, or C can be processed by use of external

- 128 -

CSC-STD70-009

SYS-DD A "Global" Data Declarati ves

SYS-PROC B P roeedul'eft

I
"Local" Data Declaratives

Procedures

SYS-PROC C

"Local" Data Declarati ves

Procedures

,
! •

SYS-DD D "Global" Data Declaratives

"Local: Data Declaratives

SYS-PROC E

Procedures

,~--------------------------------------

Figure 4-1. Representation of a Compile-Time System

- 129 -

CSC -STD7 0-009

reference declaratives during the compilations of D and E. These external

references must be resolved and linked by the loader program when D and E

are rejoined with A, B, and C for execution.

Procedures may be augmented by user-defined or compiler-intrinsic functions.

Functions are called implicitly from CMS-2 dynamic statements which

reference the function name in the same manner as a data unit.

DATA DECLARATIVES

The structure and size of data to be used in a program is defined by the

programmer within the data design packages. The three major CMS-2 data

types are variables, tables, and switches.

Variables contain a single quantity of data, irrespective of the target computer's

word size. CMS-2 variables fall into six classes:

Integer

Fixed Point

Floating Point

Boolean

Status

Hollerith

Signed or unsigned

With scaling specified

(True or false states)

Compiler-assigned values for

user-defined mnemonics

Strings of character codes

A CMS-2 variable may be preset to a desired value within the definition

statement. A shorthand notation permits simultaneous definition of multiple

variables whose classifications are the same.

Tables hold ordered sets of information. The unit of data in a table is the item,

whieh may include any number of computer words. CMS-2 tables may be

one-dimensional (a "column" of items), or two- or three-dimensional arrays

- 130 -

CSC-STD70-009

(rows, columns, and planes of items). Items are subdivided into fields.

Fields may be defined into the same type classifications described above for

variables. The CMS-2 table structure also allows the programmer to

.' Define a subset of adjacent items as a SUB-TABLE

• Allocate an ITEM AREA working storage area outside

the table with the same field format as one item of

the table

• Defer specification of the number-of-iteffi8 in the

table until load time

• Declare a LIKE-TABLE to automatically contain the

same field structure as a previously-defined table

• Dynamically reallocate table data during program

execution by use of indirect table addressing

• Pack field information across word boundaries or

invoke a compiler algorithm to perform the packing

Switches contain a set of identifiers, or switch points, to facilitate program

transfers and branches. The switch points represent program addresses of

statement labels (S-SWITCH) or procedure names (P-SWITCH). Transfer of

control to a particular switch point is usually determined by the value of a

user-supplied index. In addition, an S-SWITCH may be declared as an

Item-switch, with a specified constant defined with each switch point. Transfer

is made to the switch point whose corresponding constant value matches an

input value.

DYNAMIC STATEMENTS

CMS-2 dynamic s,tatemertts specify processing operations or manipulate

expressions. Algebraic expressions may include standard addition, subtraction,

multiplication, and division_operators, as well as exponentiation, mixed mode

. 131 -

CSC-STD70-009

values, and in-line redefinition of the scaling of fixed-point numbers. A true

algebraic hierarchy of operation evaluation is used. Logical expressions use

the operators EQ, NOT, LT, GT, LTEQ, and GTEQ. Boolean operators are

AND, OR, and NOT. A single CMS-2 expression may include algebraic,

logical, and Boolean operators.

special operators are provided in CMS-2 to facilitate references to data

structures and operations on them. These are:

BIT

CHAR

CORAD

ABS

COMP

POS

LENGTH

DISCAD

DRUMAD

To reference a strillK of bits in a data

element

To reference a character string

To specify the core address

To obtain the absolute value of an

expression

To complement a Boolean expression

To position a magnetic tape file

To obtain an input/output file length

To specify an address on a disk

To specify an address on a drum

The CMS-2 Statement operators allow the programmer to write his program in

a machine-independent, easy to learn, problem-oriented language. Major

CMS-2 operators are

SET Performs all calculations or assigns a value

to one or more data units. The assignment

may be arithmetic, Hollerith, status, Boolean,

or multiword.

- 132 -

SWAP

GOTO

IF

VARY

FIND

CSC-STD70-009

Exchanges the contents of two data units.

Alters program flow or calls upon an S-SWITCH.

Expresses a logical decision to provide

conditional execution of one or more statements.

Establishes a program loop to repeat execution

of a specified group of statements.

Searches a table for data-that satisfies specified

end conditions.

CMS-2 Input/Output Statements allow the program to communicate with various

hardware devices while running in a non real-time environment under a

monitor system. When CMS-2 I/o statements are used by the programmer,

the compiler generates specific calls to Object TUne Routines that must be

loaded with the user's program. The Object Time Routines are designed to

link with the monitor system and communicate with its I/O drivers. I/O

declarative and statement features are briefly described below.

FILE

OPEN

CLOSE

INPUT

OUTPUT

Defines the environment and pertinent

information concerning an input or output

operation, and reserves a buffer area for

record transmission.

Prepares an external device for I/O operations.

Deactivates a specified file and its external

device, if appropriate.

Directs an input operation from an external

device to a FILE buffer area.

Directs an output operation from a FILE

buffer area to an external device.

- 1)) -

FORMAT

ENCODE

DECODE

ENDFILE

CSC-STD70-009

Describes the desired conversion

between external data blocks and internal

data definitions.

Directs transformation of data elements

into a common area, with conversion in

accordance with a specified FORMAT.

Directs unpacking of a common area and

transmittal to data units as J3pecified by a

FORMA T declaration.

Places an end-of-file mark on appropriate

recording mediums.

COMPILE-TIME HEADER INFORMATION

Certain CMS-2 declarative statements specify controlling information to the

compiler to direct the interpretation and code generation processes. These

declarative statements are contained in the major header if the data concerns

the entire compile time system. Control data pertaining only to one system

element (SYS-DD or SYS-PROC) is placed in a minor header which immediately

precedes the system element. Header statements and their functions are

described here briefly.

MACHINE A major header statement that specifies the

target computer for which code is desired,

such as the CP-642B, AN/UYK-7, or L-304.

- 1~4 -

OPTIONS

CSC-STD70-009

A major header statement that designates the

compilation mode and listings desired. Some

of these options are:

ABS Object code is produced with

program addresses allocated

absolutely over the entire

compile time system.

REL Starting addresses for each

system element are reset to

zero, and relocatable object

code is produced.

CMP A compool output is produced

for a SYS-DD. The compool

consists of data definitions

decoded into compiler format.

Compools may be placed on a

user library and retrieved during

subsequent compiles. This

procedure reduces compilation

time significantly and speeds

turnaround time.

SY A symbolic listing is produced

which lists the user's source

statements together with octal

and mnemonic representations

of the machine code instructions

that are generated.

- 13$ -

BASE

DATAPOOL

EQUALS

NITEMS

CSC-STD70-009

CR An alphabetical cross-reference

listing is produced that includes

all data names and statement

labels, their locations, and the

locations of instructions that

reference them.

SA A symbolic analysis listing

summarizes all-data definitions

by declarative type and includes

the data attributes.

FC A flowchart printout is generated

from specific statements placed

in the source program.

In an absolute compilation, the BASE value

specifies the starting address of the program base,

to which instructions and data are normally

allocated.

Specifies that all data is to be allocated to a data

base, separate and apart from the program base.

Pooling of selected data definitions is provided

by LOCDDPOOL and TABLEPOOL declarations.

The address allocation of a specific identifier

may be established by the user at a fixed

address or relative to another identifier.

The length (number of items) of a CMS-2 table

is represented by an identifier to allow final

length assignment to be made at program load

time.

- 136 -

CSC-STD70-009

A complete description of these statements and other header statements (such

as INDR-ALLOC, SYS-INDEX, MEANS, DEBUG, LOCALIZE, DEP,

EXTERNAL, SPILL, MONITOR, and SOURCE) can be found in CMS-2 Users

Reference Manual (M-5012).

PROGRAM CHECKOUT

CMS-2 debug statements may be placed in the source language of a user's

program to facilitate rapid program checkout. These statements may reference

any data units defined within the system. Machine code is generated by the

compiler to call on object-time debug routines. The debug routines

communicate with the monitor system during program execution to print the

desired checkout data onto the system output.

Five program checkout statements are provided. Output code is generated only

if the corresponding statements are enabled in the program header information.

The object time routines are selectively activated at load time by a monitor

control card. A programmer may then control and select the debug tools as

needed.

DISPLAY

SNAP

RANGE

Causes the contents of machine registers

and/or specified data units to be formatted

and printed on the system output.

The contents of a data unit are printed and

stored. Subsequent exef'utions cause a

printout only when the data contents are

modified.

A high and low value are specified for a

data unit. Each time the data is modified in

the program, a message is printed if the

value falls outside the range.

- 137 -

TRACE

PTRACE

CSC-STD70-009

A printout is generated for the execution

of each CMS-2 statement between TRACE

and END-TRACE boundaries.

Each CMS-2 procedure call encountered in

the program being executed is identified by

calling and called procedure names.

THE CMS-2 FLOWCHAR TER

To obtain a printed CMS-2 flowchart output, the-useI includes specific flowchart

statements in his source program and selects the FC parameter on the OPTIONS

. header statement. The flowchart ou.tput contains two columns of logic symbols

and associated labels, identification, references, narration, and comments.

Eight CMS-2 operators control the flowchart output. These operators are

ignored during code generation.

FCI

FCC

FCT

FCD

FCP

Imperative operator - causes the narrative

to be placed in rectangular command symbol.

Procedure call - the narrative and called

procedure name are printed within a hexagon

symbol.

Transfer - causes exit from previous symbol

to identifier of next specified symbol.

Decision - generates a two- or three-way branch

from a diamond shaped symboi that contains a

question narration.

Procedure entry point - identifies start of a

procedure package, puts the procedure name in

a small rectangular symbol.

- 138 -

FCS

FCE

FCM

CSC-STD70-009

Switch definitions - defines a statement

or procedure switch referenced by flowchart

statements but not included in the CMS-2

data designs.

End procedure or End Switch - delimits the

definition of a flowchart procedure or switch.

Comment - gives additional information to

clarify program flow. Comments are printed

at the right hand side of the flowchart.

- 139 -

Section 5

SYSTEM OPERATION

CSC-STD70-009

Effective utilization of the capabilities of the CMS-2 system requires a

familarization with the features and control statements of the various

components. Operations of the monitor, librarian, loader, and tape utility

programs are described briefly below. A complete description of these

components may be found in Volume II of the CMS-2 Users Reference ~anual

(M-5012).

THE MS-2 MONITOR SYSTEM

MS-2 is an operating system designed to control the batch processing of

CMS-2 system jobs on the CP-642 computer. The monitor controls execution

of CMS-2 compilations, CMS-2 library operations, the absolute and

relocatable CP-642 loaders, and the tape utility routines.

User's programs written in the CMS-2 language and compiled for the CP-642

computer can also be executed under control of MS-2. For these programs

the following features of MS-2 are available:

Control of input/output to peripheral equipment

Debugging capabilities

Initialization of computer registers and keys

Communications to the computer operator

During the operation of the CMS-2 system in the CP-642 computer, the

memory area is divided into three segments. The resident monitor area

occupies a small portion of lower memory and contains control card

processing and input/output routines of MS-2. The nonresident monitor area

is utilized by other MS-2 routines called from the system tape only when

- 140 -

CSC-STD70-009

needed. The user's area is reserved for CMS-2 component programs (the

compiler, librarian, loader) or execution of a user's CMS-2 program.

Control Card Operations

The programmer's instructions to the monitor system are conveyed on MS-2

control cards. Each MS-2 control card begins with a dollar sign ($) in

column 1, followed by a control card identifier that specifies the operator or

action desired. Other parameters follow, if needed, and are separated by

commas.

MS-2 control cards are divided into five general categories:

1. Job definition

2. Operator communication

3. Processor calling

4. Debug statements

5. Miscellaneous

Figure 5-1 illustrates control card functions and the division of core into

three segments.

Job definition control cards ($SEQUENCE, $PRIORITY, $JOB, $ENDJOB,

$EOI) define the beginning and end of a user's job and provide accounting and

scheduling information. Operator communication control cards ($TYPE,

$HALT, $MTAPE, $UNLOAD) cause messages to be typed on the

typewriter and in some cases, wait for a response. Processor calling control

cards ($CMS-2, $LIBEXEC, $LOAD, $UTILITY) retrieve CMS-2 system

components from the System Tape for execution. Processor calling cards

are followed by card decks in the format required for the specific component.

Control returns to the monitor when the component has completed its

processing.

- 141 -

TRANSFERS BINARY CODE DECKS

DEFINES JOB LIMITS ON
SYSTEM INPUT TAPE

$SEQUENCE
$PRIORITY
$JOB
$ENDJ.oB
$EOI

LOADS DEBUG AIDS FOR USE
IN PROGRAM EXECUTIONS
$SNAP
$DUMP
$PATCH

LOADS CMS-2 SUBPROCESSORS
INTO,USERS AREA FOR EXECUTION
$CMS-2
$LlBEXEC
,$LOAD
$UTILITY

TO CCOMN TAPE

$BINARY

SETS UP COMPUTER FOR
USER JOB EXECUTION
$KEYSET
$REGSET

RESIDENT MONITOR

NON-RESIDENT
MONITOR

USER'S
AREA

CP-642 COMPUTER

Figure 5-1. MS-2 Control Card Functions

TELETYPE

TYPES MESSAGES
TO OPERATOR
$TYPE
$MTAPE
$HALT
$STOP

TRANSFERS CONTROL
TO USER'S PROGRAM ----
$CALL

CONTROLS 1/0 TO
USER'S TAPE UNITS
$READ
$WRITE
$REWIND
$UNLOAD

(")
00
(")
I

00

t3
-.;J
o
I
o
o
~

CSC-STD70-009

Debug statement control cards ($DUMP, $SNAP, $PATCH) call debugging

routines into the non-resident monitor area for use during execution of a

user's CMS-2 program. The miscellaneous control cards provide a variety

of other functions to the user. These cards include $BINARY, $CALL,

$KEYSET, $REGSET, $READ, $WRITE, $REMARK, and $REWIND.

THE CMS-2 LIBRARIAN

The CMS-2 librarian can maintain program file information on magnetic tape

in a format which provides for rapid and easy maintenance and retrieval.

These libraries contain data used as input to the CMS-2 compiler or CP-642

loaders.

A CMS-2 library is a tape that contains system data designs (SYS-DDs), system

procedures (SYS-PROCs) and header information. These elements may exist

in any of three formats: CMS-2 source language written in a modified

card-image form, relocatable object code binary card images produced by the

CMS-2 compiler, or compools. Compools are tabular outputs of the CMS-2

compiler generated from the compilation of a SYS-DD. The compool may be

retrieved as input to the compiler in lieu of the SYS-DD source statements.

This eliminates the repeated recompilation of essentially stable and often used

common system data designs.

The library maintenance routine (LIBEXEC) provides three basic functions:

library creation, maintenance or updating, and listing. Only one of these

functions is performed at a time. The librarian program is called with the

MS-2 control card $LIBEXEC.

- 143 -

CSC-STD70-009

This card is followed by a set of control cards defining the operations to be

performed. The following list contains major control cards that are used with

library maintenance operations.

IPREPARE

IEDIT

ILIST

ITAPID

ICOpy

ICOpyc

II

ID

IR

IRFILE

IPRINT

IENDLIB

Requests that a new CMS-2 library be

created from source cards or an existing

CMS-2 or CS-l library

Requests that an existing CMS-2 library be

updated and written onto a new tape

Requests printout of specified library

elements from an existing CMS-2 library

Identifies source of library data

Specifies elements to be copied intact

Specifies elements to be copied and corrected

Inserts new statement(s)

Deletes statement(s)

Replaces statement(s)

starts the relocatable code file

Generates a listing of library elements

Specifies the end of the library run

Retrieval of library elements for subsequent compilations is accomplished by

including appropriate control cards in the CMS-2 program source deck. These

control cards and their basic functions are listed below.

LIBS

SEL-ELEM

Identifies the library to be used

Selects a specified element

- 144 -

SEL-SYS

SEL-HEAD

SEL-POOL

CORRECT

II

ID

IR

Selects a specific group of elements

Selects a header element

Selects a compool

CSC-STD70-009

Initiates corrections to an element being

retrieved

Inserts new statement(s)

Deletes statement(s)

Replaces statement(s)

CMS-2 LOADERS FOR THE CP-642

The CMS-2 system includes two loader programs for CP-642 machine code

produced by the CMS-2 compiler. The absolute loader processes code

compiled in the absolut~ mode. The relocatable loader loads code compiled

in the relocatable mode, and performs address allocation and reference

linkages to produce the executable program.

The CMS-2 compiler generates CP-642 object code in SO-column card

format. For the ABS or REL parameter on the CMS-2 OPTIONS statement,

card images are written onto the CCOMN output tape and may be input

directly to the loader for immediate execution. REL code may also be

placed on a CMS-2 user's library. For the parameters ABS(P) and REL(P),

punched cards are produced. The parameters ABS(SV) and REL(SV) cause

the card images to be written on the magnetic tape named COBJT, which is

unloaded and saved at the end of job. The COBJT tape, punched cards, or

REL code on a user's library may be input to the loader during a

subsequent job.

- 14S -

CSC-STD70-009

Loader Control Cards

The loaders are requested when the MS-2 control card $LOAD is encountered

in the job deck.

$LOAD

$LOAD,A

Requests the relocatable loader

Requests the absolute loader

The parameters D, S, R, T, P may be added individually or in any combination

to activate the CMS-2 debug routines for DISPLAY, SNAP, RANGE, TRACE,

and PTRACE, respectively. The parameter F may also be used to FORCE the

load of object code that includes compiler errors.

The $LOAD card causes the appropriate loader to be called into memory, and

MS-2 passes control to the loader. The loader then processes loader control

cards in the job deck to direct the load operation. The six loader control cards

are:

TAPE

LIBS

SELB

BASE

To specify which input tape contains the

binary object code to be loaded

To designate a user's library which

contains binary object code to be

loaded

To specify which object code elements

are to be selected from a tape or

library for loading

To establish program and data base

locations for relocatable code

- 146 -

CSC-STD70-009

TSD To modify the length of variable-length

tables in relocatable code

ENTRY To designate the program entrance

location for program execution

Loading Absolute CP-642 Code

The absolute loader accepts absolute object pode input from j-""ry cards on

the system input, CCOMN tape, or an output tape lCOBJT) fro ... a previous

job. Only the ENTRY and TAPE loader control cards are processed by the

absolute loader; both are optional. The only output of the absolute loader is

the object program loaded into memory and ready for execution. Figure 5-2

illustrates operation of the CP-642 absolute loader.

Relocatable object code may be input to the relocatable loader from four sources:

binary card decks in the system input, CCOMN or saved tapes, or from a CMS-2

library. All six loader control cards may be used to direct the relocatable

loader. At the completion of loading, the loader prints out a relocatable load

map that includes the absolute address assigned to all global identifiers.

Figure 5-3 illustrates operation of the relocatable loader.

THE MS-2 TAPE UTILITY PACKAGE

The MS-2 monitor system contains a group of magnetic tape handling routines

which are requested by the MS-2 control card $UTILITY. The routines can

perform such tasks as constructing, duplicating, comparing, listing, and

reformatting data files on magnetic tape. These tasks are performed under

the direction of a set of tape utility control cards.

- 147 -

t

CARD SEQUENCE

$LOAD, A

ENTRY

(BINARY DECK)

g TAPE, CCOMN

TAPE, EXTERNAL-ID

$DUMP

$PATCH

$SNAP

$CALL

BINARY
CODE DECK

Figure 5-2. The CP-642 Absolute Loader

ABSOLUTE
LOADER

PROGRAM
LOADED

AND READY
FOR

EXECUTION

n
rJl
(')
I
til

t3
-::J
o
I

o
o
to

CARD SEQUENCE

$LOAD
ENTRY
BASE
TSD
(BINARY DECK)

TAPE, CCOMN
BASE
SELB

TAPE, EXTERNAL-ID
BASE
SELB

LIBS, NAME (10)
BASE
SELB

$DUMP
$PATCH
$SNAP

$CALt.

BINARY
CARD DECK

.....t ... RELOCATABLE
LOADER 1--..

PROGRAM
LOADED

AND READY
FOR

EXECUTION

Figure 5-3. The CP-642 Relocatable Loader

LOAD MAP

C1
til
C1
I
til

~
-;r
o
I

o
o
co

CSC-STD70-009

The 12 tape utility control card operators are classified as follows:

Major Functions

FORMAT TAPE

DUPLICATE

COMPARE

LIST

END FILE

Tape Positioning

SKIP

BACKSPACE

REWIND

UNLOAD TAPE

- 150 -

Messages to Operator

TYPE

HALT

MOUNT TAPE

PANEL III

SUBJECT: High Level Programming Language Compatibility

CHAIRMAN: Dr. Edward Berso!!
Logicon Corporation

PANELISTS: Mr. Vint Car!
University o! California at Los Angeles

Capt. Bruce Engilbach, U.S.A.F.
Space and Missle Systems Organization

Mr. Robert E. Nimensk;y
Systems Development Corporation

Mr. John P. O'Brien
Computer Sciences Corporation

Mr. Lynn Shirley
Informatics

- IS! -

Introduction

Entner: Before we begin our panel session, It d like to steal a few
cycles to mention a point which I think is important. Most cfthe people
here today are software oriented and do understand the full meaning
of the word "compiler". I have to say that I'. not one of these people.
I don't understand software that well. I consider 1I\1selt more hardware
oriented than software oriented, and so I would like to discuss what
I believe the word "compiler" means and give Y'ou an indication of the
direction in which the AADC program is moving. Perhaps, in this manner,
we can address these views, to an extent, within the panel sessions.

First off, I consider a compiler to be a sottware device which
translates languages--a device which translates high level language
into object code for a specific computer. Not a terriblY' intelligent
device, necessarily. As part of our development program we hope
to develop something we call a Program Synthesizer. I believe that
some oF the people here today who, as I, are more hardware oriented
than software oriented are thinking in terms of what we call a Synthe
sizer when they think of a compiler. EssentiallY', when I saY' Synthesizer,
what I mean is a device which has as an input mission requirements,
hardware system definition, and let's say, objectives and constraints.
Oub of this device comes a definition ot the specific computer hard-
ware one would need to meet the requirellEnts and the object code to
run on the specific computer. Jowl that, I believe, is quime difterent
trom the generally accepted concept ot a compiler. I -think an important
point made this morning and yesterday is that we would like to see
sOJll9thing that permits the system engineer to, in a veI'7 gross senseI
define his requirements; define his objectives and come up with the
object code for a specific computer. I think this is aore in line
with our thinking. Another interesting area which eDIIBS a; when we
address a mechanism which translates a Specific Operational Require-
ment (SCR) into a program, and let's say for the moment, the output
appears in an intermediate language, it is not necessarily a program
which has to be handled by people. It it goes directly trom some sort
of Synthesizer to a coq>iler, the task otwriting the program has been
balIrm out of the hands ot the engineer and the progratlllBr and has
been handed over to a machine. The point is, how does automating the
programming process using, tor instance, the AlgorithDl Bank which I
discussed yesterday--how does that Iiodif'y requirements for high
order languages?

With that, let lIE introduce our .first panel chaired by Dr.
Edward H. Bersott ot Logicon.

- lS2 -

Panel 1: Software Commonality

Bersoff: The first thing I would like to d~ is introduce the panel. starting
at one end is Capt. Bruce Engelbach, who works for the Guidance Division
of the Space Guidance Branch for the Deputy of Technology of the Space and
Missile Systems Organization (SAMSO) of the Air Force. He has been active
in the area of advanced development of aerospace computing systems since
1967. His prime interest is in the production of real time software.
He's been monitoring the design and development of SPL/J6 and the SPLIT
Compiler for the Air Force. Bob Nimensky is with the System Development
Corporation of santa Monica. He's in the Space and Range Department and
is the author of SPL. He is currently working on the Meta Compiler.
John O'Brien got his Bachelor's and Master's at Rutgers. Did graduate
studies in physics and computer science. He spent four years at Bell
Labs in Murry Hill working in solid state physics and low temperature
physics. For the last three and one half years, he's been with the
Computer Sciences Corporation and has worked on a Navy air traffic control
program and, for the last two and a half years, he's been working on CMS-2.
Currently, he's the Project Manager in charge of development and delivery
of the CMS-2 system for FCPCPAC. Lynn Shirley is with Informatics. He
partiCipated in the iniital development of JOVIAL. He developed compilers
for special purpose languages and COBOL. He created a dialect of PL-l and
a compiler for it. He's a former member of USASI Committee X3426E for
JCVIAL prestandardization. He's currently a member of the Air Force com
mittee. Vint Cerf has a BS in Math from Stanford, an MS in Computer
Science from UCLA. He is now working on his PhD in Computer Science at
UCLA. He worked at North American Aviation, IBM, where he worked on the
QUICKTRAN time sharing system, Jacobi System's MINITS Time Sharing System.
At the UCLA Computer Science Department, he is working on the ARPA Network
Project. Multiprocessing architecture and operating system design study
and the Meta 5 Compiler Computer System. His present interest is memory
architecture and storage allocation algorithms for multiprocessing systems.
I went to school at New York University. From there I went to NASA's
Electronic Research Center where I participated in the development of
CLASP. For the past six months, I've been with Logicon.

About two years ago, I sat in on a panel which was essentially the
same (as this one)--Capt. Engelbach was on it--we discussed languages
then, at the time, the question was not which language should we use for
airborne programming; but can we use a (high level) language at all?
And not do we need fixed pOint in our machine but can we get floating
pOint? It seems that in the past two years things have changed consider
ably. I know this conversation is going to go off in many directions .••
I want to address compatibility first. So, I would like to ask the panel
is it important that the AADC language be compatible with any others?
iVhy? And if so, which one? Let's start with our man from SPL.

Nimensky: There are several assumptions one has to make. I know most of the
military systems users are the ones who originally brought up most of the
problems concerning compatibility. SPL has a compatibility problem with
CLASP. We spent many, many man months of effort trying to get CLASP and
SPL so that we'd only have one language for spaceborne computers. I think
that (attempt) has basically failed. As we said this morning, we have

- 153 -

FORTRAN which is probably the most universally used language in the world
today, and no two FORTRAN's are the same ••• it just doesn't work. There
are many different versions of FORTRAN. Every manufacturer puts on his
little "trinket" which he thinks is good for his system. Basically, I
think compatibility doesn't work at all.

O'Brien: I think it's a very real problem, especially in the military with
large systems. One of the problems you face is that a contractor and a
group of people will develop a system for their customer, the Navy, Air
Force, whoever it may be. Then the system is turned over to the customer.
NOW, if the customer is going to maintain that system, he has to know the
language in which that system is written to be able to do some meaningful
work--making changes and keeping that system running. If we don't have
some sort of compatibility, look at the problem our customer has.

Bersoff: Compatibility with what for the AADC?

O'Brien: The AADC is a Navy project, right? It'll have Navy programmers
maintaining that system when it's turned over to the Navy. Where are you
going to train these programmers. You have a training problem. If we
could adopt one standard language, it would simplify that training prob
lem. Navy officers could get transferred from one assignment to another
assignment, hopefully, without the retraining cycle.

Bersoff: Let me ask this: Is there a ••• I'd like to get an admission that
there is no real technical reason to use CMS-2, or SPL or CLASP~-

O'Brien: It's true.

Bersoff: It's more of a management decision.

O'Brien: It's a management decision. There was a technical reason •••
well, I guess there was a management reason for using CMS-2 in the
existing NTDS system environment. NTDS has many, many programs written
in the old CS-I language. For that system to be rewritten in a new
language would have just been out of the question. You'd have to throw
away all the work that had been done over a period of time ••• all the
money that was spent for all these programs would have been scrapped in
a start-from-scratch effort. CMS-2 attempts to be compatible with CS-l
so that upward compatibility •.• and it isn't 100%. It's going to be a lot
of work converting CS-l programs to CMS-2 programs, but there is that
attempt, and it's going to cut down the total cost. To go to another
language would be impossible for NTDS.

Bersoff: OK, now let's say that within five to ten years capt. Engelbach
wants to buy an AADC for his system, and his people learn SPL, or perhaps
NASA decides to buy one for some launch vehicle, and they know CLASP.
Bruce, what do you think the problems are?

Engelbach: Well, I personally believe the problem is not one of constraining
a language to be upwardly compatible, because, as we mentioned here, just
the secretarial problems of attempting to keep one language document

- 154 -

consistent with the other isn't meaningful. I think the real problem
which the Navy should recognize, and that the Air Force is also guilty
of not recognizing, is that they don't want upward compatibility. They
simply want a way in which they can economically utilize the programs
they currently have now. Allowing for growth within the system, while
the system contains the computer and all the software. So, as we're
presently thinking of it, the upward compatibility, re-useability of the
software is more of one compiler •.. say it's the newest one ..• in some
manner or other being able to swallow the old program. NOw, this does
two thing~. It means you can, in some fashion, use your old programs
until that point in time when their utility goes below some threshold
and you can say, well, let's throw them away. And, at the same time, you
can use that same compiler, or compiling system to create new programs to
take care of the increasing requirements that the system has to meet.
And, at the same time, you're not constraining, or building in inconsis
tencies .•• roadblocks into the new language. The new language is the one
you're going to live with from now for ten years, whereas this compati
bility problem is going to be wiped out in a few years because the old
programs, the old systems, are no longer with us.

Bersoff: If you do your programming in SPL, and you'd like them to run on
the AADC at some time.

Engelbach: I think .•• there's no reason in the world we couldn't build an
SPL compiler to function within the hardware of AADC, whatever that hard
ware might be at some point in time. And if you had a lot of software
that was applicable for my mission, written in CMS-2, I don't see any
reason why I couldn't use both ••• the old software in the AADC hardware,
and use SPL to construct any new software I need. Admittedly, it's not
the cleanest way •.• we'd like to say one or the other, but it's the most
economical way I can think of right now.

Floor: I'd like to ask Mr. Nimensky a question. Since he's developed his
Meta Compiler, does this not remove the compatibility problem? Shouldn't
it be easy to build a subset translater that would be able to handle your
problems?

Nimensky: Well .•• it depends upon what assumptions you're working under.
If we're talking about the Meta Compiler technique, and for one where
it's relatively inexpensive to build compilers, then it's more suitable
to design a language very definitely tailored to your problem, rather
than use some general purpose language which really is all things to all
people, but (nothing) to anybody in particular. It doesn't solve every
body's problem the way it should. If we can get compilers to be built
fast and cheaply, then it's better to design your own language, because
you know your problem best. It's best to have a language you can think
in. If you can write your programs in the same language that you think
about them, that's what I call an ideal programming language.

Bersoff: I can't agree with that, because somebody else will think about
the same problem in a different way and want a different programming
language. The idea is that the syntax should be the same for everybody

l~

using the programming language so that there wouldn't be this variation
of trying to read somebody else's program.

Nimensky: I didn't mean thinking about the problem. I'm talking about my
problem oriented language for compilers, where I'm just thinking about
the syntax. This is a language designed for thinking about syntax. I'~

not thinking about all the other problems that a general purpose language
(addresses). My generator language allows me to think just about the
problem of producing code. This is what I meant by a language tailored
to solve my particular problem.

Bersoff: Somebodyelse building a compiler might have a different syntax
language and a different code generating language.

Nimensky: That's fine.

Bersoff: Except when he goes to work for SDC.

Nimensky: There's still no problem.

Bersoff: But he has to convert what he knows to the way you do things.

Nimensky: Take a for-instance. Number one, we talked about CMS-2/CS-I
compatibility. NOw, any language which is larger ••• if JOVIAL is larger
than FORTRAN, I can write a translator with my Meta Compiler which will
translate a FORTRAN program into JOVIAL. If CMS-2 is bigger than CS-I,
I can write a translator which will translate all the CS-I programs into
CMS-2. Conversely, I can take all my JOVIAL programs and map them into
SPL. So, the clear question is, should I take JOVIAL and bastardize it
so that it becomes difficult to add new features, or should I write a
much more powerful language, and have a one time translation into my more
powerful language, and from then on use it, or should I go along saying,
"be standard, and everybody has to write in this language" and continue
making the language worse and worse and worse. The more things you add
on to a bad language ••• if your language has problems, it's very difficult.

Bersoff: In the discussion of CMS-2, I noticed the statement DIRECT,
followed by $, followed by direct code. Couldn't there be in CMS-2 a
statement, "SPL $", which would call in the SPL compiler, which would be
part of the whole system, so that someone writing in SPL could use CMS-2~

O'Brien: That's very possible.

Cerf: Personally, I think that the right way to do (it), if you're going to
----start out designing a new language, which is what (has) happened for two

or three iterations, anyway, that the design should be very carefully done.
SPL is, as near as I can tell, pretty careful in the definition of the
syntax of the language, so that it is extensible. I fully agree that if
you start with a bad language it gets worse as you add more verbs to the
language, but one of the strongest reasons for starting with a new one at
this point is that most of the old languages that are around have very
poor syntax. They can't be expanded very well; FORTRAN is a notable

-1S6 -

example. PL-l is rather a large language. It's syntax can be modified.
It's been carefully examined. If anyone has seen the IBM Vienna documents,
which are about that (several inches) thick, they describe the semantics
of the language. But that's too much capability, I think, for the kind of
programming we're going to need to do. So, the strongest thing to do, is
start with a clean language which has a well defined syntax that's easily
modifiable, and continue to live with (it). The AADC concept is supposed
to span something like ten years, and, as nearly as I can tell, the ••.
range of architectures that can be built with the modular AADC units is
not going to be very different. The range is all in terms of capability
and not in terms of structure. The instruction sets are pretty much the
same for all the various spectra. So, one language should suffice.

Shirley: I think you mentioned really what part of the key point of this
is--(it was) the word semantics. I'm kind of surprised that I hadn't
heard it before, because the syntax structure only tells you how to follow
a form to write something down so that something else can decipher what
you wrote down, but the real key to any language, of course, is what it
means when you write down a particular structure, or the syntax. That
great fact is one, that I say, prevents, to the greatest extent, the kind
of thing that was talked about: of being able to provide SPL to CLASP
translators, or JOVIAL to SPL ••• that one may not be as difficult. In fact,
there's a problem within the same languages themselves. To try and give
you one very simple example .•• I'm the JOVIAL language, for instance, there
is the case that you have both an integer •.. in fixed point language you
may have an integer item which is operated on within fixed point hardware,
and you can have an A-type item, which is really a mixed value, and what
it means is, I want to add an integer item to a mixed item. Turns out it
has never been clearly specified. Various compiler writers have written
different things. In one case, people have chosen it to mean the result
should be in integer and in another case they have chosen it to mean the
result should be a mixed quantity. So you can have the example that you
can add 3 and 1.5 and in one case you get the answer 4 and in the other
case you get the answer 4.5. That kind of thing actually exists through
out almost any programming language .. There's a tremendous area of varia
bility that you can have in the semantics for whatever structures you
choose to put into the language. And you'll always create a tremendous
problem in compatibility, if compatibility means, "How do I translate
programs from one language system to another language system?"

Bersoff: Maybe there's a way to get around compatibility by asking: Is
there a need to program AADC in a high level language, given that its
instruction set is so rich, or, on the other side, why can't the AADC
handle high level language statements?

Floor: To start off with a personal opinion, if tbe machine is going to be
---as complicated as it is, ~nd it's going to have the Synthesizer, I don't

see any good reason to write in assembly.languages. All you're dOing is
defeating the purpose of the Synthesizer, and defeating the purpose of
having the richness of the machine by having John Doe off the street
attempt to program it.

- 157 -

Bersoff: If you have an algorithm library you can program all your tasks in
assembly language separately, and have the Synthesizer put it together.
You don't, necessarily, need the compiler as part of the synthesizer.

Floor: Most of the people who program the machine aren't going to be PhD's.

Bersoff: I don't know how to program, if you're refering to me.

Floor: Not really. I'm just saying it's going to take a very intelligent
---person to be able to program efficiently (for) a machine with t~e kind of

architecture and the kind of capabilities this machine may have.

Nimensky: You have a good example (in) the IBM 360. You have a bunch of
users who are used to the 1401 computer, which is a very easy machine to
program. It has a very small instruction set and, in business applications,
has worked wonderously for years. Then, all of a sudden, they come out
with the 360, and those programmers just cannot hack that machine. They
had to go to COBOL because they could not understand the instruction (set).
(The 360) has the richest instruction set of just about any machine. It's
just so complicated~ that the average programmer cannot code in that machine
language.

Floor (Eva Lee): Thi~ brings up one of my pet peeves ••• we want to have the
best engineer on the electrical system, the best engineer on the propulsion
system and one (uses intelligence) in building the computer and then we turn
around and say we can't have intelligent people programming it. I think
that one gets in the field of avionics, and when putting a computer in a
plane or spaceship or what have you, where there's a man in the loop in
volved, it's every bit as important that the person who is programming that
(computer) have some scientific and avionics background as the man who builds
the propulsion system and all the rest of them. I believe this is one of
the things that contributes to the cost of avionic software. We still have
this idea of building this million dollar machine and hiring the guy from
behind the counter of the grocery store to program it. This is a fallacy,

-because you can take a few well-trained people and come up with something
much better than you can by taking a roomful of coders, 1401 types or what
ever you want to call them. rhey don't belong programming an avionics
computer. They don't fit the picture.

O'Brien: I.agree with you 100%, but in defense of programmers, let me say that
they don't all come from behind the grocery counter. I think it's been
demonstrated, not only in military systems, but commercially that given a
good programmer, one of the best people you can possibly find, he'll be more
productive using a good compiler than he will be if he has to use assembly
language.

Lee: He may be a good programmer, but you still can't take a History or English
---major with a degree and put him into avionics programming. You cannot program

an avionics computer without knowing something about the engineering systems •••
at least you cannot do it economically.

-~-

Cerf: Nobody's going to argue about that; the point is. what language do you
program in? You certainly get a lot more done if you program in a high
level language. The machine doesn't make the kind of stupid. little mis
takes that are easy to make in assembly language. just because you don't
have to keep track of 40,000 lines of code that you would in assembly lang
uage. (As) for the understanding of program .•• Mr. Nimensky brought th~t up •••
a 500 statement compiler vs a 35,000 instruction compiler (is) so much
easier to understand. And I can regenerate that compiler if there are errors
in it in a lot less time. So, the bright guy who knows about avionics wins
all the way if he gets to work in a high level language.

Nimensky: Don't knock English Literature ••• that's my major ••• when you get down
to it, programming is language.

Shirley: I don't know whether we all want to sit up here and try to sell this
pOint that has already been sold .•• the thing I'd be interested in is a show
of hands of how many people in the audience think we should only have an
assembler for machine language. Maybe we'll find out there's no point in
discussing it any further.

Bersoff: Is there anyone who strongly feels we should program in assembly
language only? That you can solve the airborne problem without assembly
language.

Floor: Right now? No.

Bersoff: I'd like to hear a reason why.

Floor (Alan Deerfield): I think you can solve it without an assembly language
tomorrow. Today, with the state that your languages are in, you cannot solve
it (with resorting to assemb~y language programming).

Bersoff: I guess we'd all agree to that. Now let's assume that SPL. CLASP. and
CMS-2 all have working compilers, is there reason to assume one language
would do the job better?

Floor: What problems do you envision using their languages for? We've heard
----a-wide spectrum of languages. For example, I'd like to ask Capt. Engelbach

what he thinks. He's the guy who's going to suffer with these languages.

Engelbach: I'd like to dispute your statement and, I guess, the general concensus
of the audience, in that every day, literally every day, we do the aerospace
problem .•• this is producing launch tapes for the TITAN III vehicle and for
Atlas vehicles. We do it in FORTRAN. Now •.•• the problem is producing real
time control and calculations to gain information necessary to provide that
real time control. We do it in assembly language or in machine language on
the 1824, which is a ridiculous. antiquated. little machine. But we also do
the identical problem on the (CDC) 6600 in FORTRAN IV. NOW, I ask you ••. I
can solve the problem if given the right tool, and I tell you, if I have a
6600. I can do it in FORTRAN IV.

Bersoff: Do you respond to hardware interrupts on the 6600. or software interrupts?

- 1.$9 -

Engelbach: I can do both. The reason I say I can do both is because I have a
bastardized "chipawah" operating system on the 6600. You didn't restrict me
to standard commercial software. The question here, and more germain,-is
given a class of aerospace computers ••• pair that with a higher order language •••
can I still solve the problem? Not only as most people in this room wanted
it to be solved in a nice, very sophisticated engineering manner, but can I
also do it within the cost and the dollars; and I say, yes I can.

Bersoff: You said a good high level language, but you didn't say CLASP, or SPL
or CMS-2.

Engelbach: SPL has five implementation subsets, and the smallest implementation
subset is CLASP. If we want to have a language argument we can get down and
discuss whether it's ".S" or "S.". Okay, so there are trivial problems in
the compatibility between CLASP and SPL. So, I say, either of those two
languages. There is also an unidentified IBM subset of PL-l. It's called
PL-I/M for militarized. Taking that subject, and doing the augmentation
that that subset specifies and you can use PL-I. I'm not saying there's any
thing unique about the language. And I dare make very clear as to the lang
uage I'm talking about. There's no difference. I can use any of those •••
when you add on to that, the economic factors which I'm sure my associates
in the Navy are more aware of than most of us, you not only, when you talk
about language, have to say, "Can I get a compiler for it? Can I get an
operating system that can match the compiler output? Can I live with it?"
Then I have to say, there aren't many languages that can do it. PL-l cannot.
FORTRAN cannot. SPL can.

Floor: Do these things run on the machines you already have? In general, I
think the thing that you're overlooking is that we're all taxpayers ••• we're
all writing different compilers to run on different machines, presumably with
flexible rear ends that can feed out to any computer, and yet, we're dupli
cating this cost over and over and over. There's the basic reason for com
patibility. (Let's) decide what it is we want, what machines it must run on
for you to be able to use it so that everybody doesn't have to go out and buy
a new machine, or if you're going to get a new machine, try to, look around
and see that everyone is going to get something similar.

Bersoff: Who's going to be able to enforce the compatibility between the
languages?

Floor: I think we're talking U. S. Government money, in general.

Bersoff: Exactly, and yet it seems that the Government hasn't forced compati
bility on the contractor. That is .•• CMS-2 was started around 1967, about
the time SPL was begun, about a year before CLASP was begun. Now, why?

Floor: Because of other economic factors. There are a whole range of them.
Most of them are economic. I really think that very few of them are the
kinds of things that you're discussing. The letter by letter, bit by bit
compatibility.

- 160 -

Engelbach: The problems I face on a management level on compatibility have been
made by two things. I don't want to point fingers at individuals because
most individuals are very cooperative. It's been on a level of Drganization
that says, lilt wasn't built here. I have no confidence in it. So, don't
bother me with it." The second half of this question is, if I acknowledge
that somebody else has a good step forward in solving the problem, then I
stand a very high probability of losing my next year's funding. In which
case, not only does my major effort, which this language might be, but all
my secondary and smaller efforts go down the tubes with it. What I'd rather
do, either by default, or aclmowledgement of the situation .•• is duplicate
the major effort to preserve my secondary efforts. I don't want to connote
minor ..• secondary. For example, in the Air Force today, we have a hardware
project which was to build a prototype .•• a breadboard .••• of the next gener
ation hardware. Well, they said, without examining it on the level necessary
to who the differences and advantages of it, "This appears to be a duplication
of a NASA effort." Therefore, zero funds ••• it's lamentable. The major part
of that program was not a duplication. It was a supplementary effort, and,
at some point in time, the two efforts could have been merged to come up with
a system far better than we have now. I think these are two reasons why we
in the Air Force, NASA, and Navy have not been able to get together and say,
"Let's go with one." A few exceptions: COBOL, and that was a dictate of
high enough up. And, NASA, with Ed Bersoff and I, on a personal relationship,
were able for a period of time .•• have a very decent commonality between the
NASA language and the Air Force language. My personal opinion is, that if I
knew enough people, that could personally go out and talk to then on a first
name basis, I feel we could get a heck of a lot further than we are now.

Bersoff: A large part of the difficulty is finding your counterpart in the
various Government a~encies who are doing something similar to what you're
doing ••• to know who to work with is a major problem.

Nimensky: Let's look at the hardware, though. How many computers does the
Navy have? How many different types of computers does the Navy have? All
computers are basically the same. They al~~o the same thing. I can prob
ably solve any problem on anyone of them. So we say, if someone comes out
with a new supercomputer, if you want to have it, you'll buy it. If I come
out with a new superlanguage, you should treat it the same way. If it's a
better language, let's use it. You treat hardware that way, but you don't
say, "Oh, he's got a new supercomputer, let's force him to be compatible with
IBM and so on."

Floor (Bruce Wald): I'd like to ask Mr. O'Brien (this). I assume that many of
the system monitoring programs you're writing now, you are writing in CMS-2.

O'Brien: Correct.

Wald: Do you permit your programmers to use direct code, and if so, why?

O'Brien: We do, if they have a need to use it.

Wald: So, in your organization, which should be the expert on higher level
languages, you can't write the monitor without breaking into assembly language.

- 161 -

O'Brien: That's true in many cases.

Wald: Is that a defect in CMS-2, or is there something wrong with higher level
languages in general.

O'Brien: I don't think it's either. If you want to do a given job, you have
to pick the right tool to do it ••• one of the basic philosophies of CMS-2 is
not to inhibit the programmer from getting at any of the features of th~
computer he's programming for. When we don't provide him the tool'to address
a feature of the hardware, he can always use ••• machine code. The capability
is there and it's needed. (That's not to) say the higher level language has
defects. We talk about apples and oranges ••• they're two different things.

Wald: ••• which the computer is capable of doing, which would be awkward or
----impossible to express in your high level language.

O'Brien: This is true, and this is usually in the area of executive, interrupt
processing, that type of thing.

Floor: Isn't that exactly what we'r~ talking about, though, in avionics and
---aerospace (applications). If you will, you identified the problem, and

although I don't want to come on any stronger, you just said high level
languages can't (do the job).

O'Brien: You take any large system. You have an executive, real time inter
faces, interrupt processing, but the bulk of YGur programming can be done in
a higher order language ••• (it is) a very effective tool ••• the executive and
1/0 drivers are particular to the hardware anf for those particular applica
tions you're going to have to get into the hardware and use hardware instruc
tions ••• that may be 2% of your entire problem.

Floor: In any case, you've just answered the question why in some cases you
---really have to resort to assembly language.

OtBrien: Certainly.

Floor: If all hardware were the same, we would never have to go out of high
---revel language. We could write some macros to handle that one interface'with

that one piece of hardware. But, since they're all different, you have to go
to the hardware level, which means the bit level, which means the machine
code or assembly level.

Floor: The implication is that you can't write the real time controls in higher
---revel languages.

Bersoff: That's not tr.ue.

Floor (McGonagle): You've got to. We have a living example in the B5500,
where the whole thing is written in a subset of ALGOL. But, there is a
strong point made here that you have to go to the hardware. The transition
from the language to the hardware is made for code generators. It is not
necessarily made by escaping to machine language. We have had the same

problem within the Company (Burroughs) of stopping people from writing in
Polish notation. It's not an easy thing to do, but it can be done, and you
can stop it. Now, note when we went from the 5500 to the 6500, we extended
the language of ALGOL to take care of those problems. We made the mistake
in the 5500 of providing an escape to machine language. We'll never do it
again.

Floor: The hardware I'm talking about is not the computer hardware, it's the
---peripherals, the interface between the machine and the peripherals. The

peripherals are all different. You need different disk packs to get certain
control software.

Cerf: There's no problem. You can generate the bit patterns. That should not
be a problem at all.

McGonagle: You can generate bit patterns. I'm generating micro-logic control
to a printer with no electronic interface .•. and a disk pack control. It can
be done.

Cerf: Was it very hard to do?

McGonagle: It took about a year to design the language to the point where we
can now design an interface .••

Wald: He's not from a charitable organization. It must be cheaper in the long
run or he wouldn't be doing it.

McGonagle: And it's a small company that can't afford large masses of people.

Floor: Take the biggest reason why most people, based on looking at CMS-2, I
---can't see any reason for dropping down to the bit level on first glance.

The only reason I can see why they would do it is from habit. I've been
theoretical programming for CS-l for tnirteen months now; I'm writing my
first program in high level language in CMS-2 because I found it gives me
the capability to do something in a higher level language that I had to do
in assembly code before.

Nimensky: You do have things like there are certain instuctions that are nice
on the 360 and that you could put in a particular high level language and
it's more equipment to do, say, a conversion or some test and compare with
that machine instruction ••• if you're very interested in getting the one
instruction to do a job, that a reason for using machine code. Like, on the
1824, I think, through our code generator, by using SPL they can get an
instruction in the machine. There is absolutely no reason to direct code.
In fact, we have a hardware operant feature ••• but we don't even use it
because there's no need to address the accumulators or anything else.

Bersoff: I've been asked to ask the language people if any of the languages
we're talking about can provide the capabilities required for all the possible
AADC configurations? I would assume you're asking about the multiprocessor,
in particular.

- 163 -

Nimensky: I think SPL has all the potentials. For parallel processing, it has
a DO Statement for multiprocessing. You can segment your program. It has
all the ability to get at any machine-type instruction (such as) we've been
talking about, without having to go to direct code. It has hardware operants,
so if any special machine features are used, the programmer can directly
address them.

Bersoff: How would CMS-2 handle parallel operations? Would it be the compiler's
job to recognize parallelism?

O'Brien: Right now, the existing CMS-2 will not, but we're in the process of
writing CMS-2 for a contract with Univac that will operate on the ANtUYK 7
for the UYK 7. That will be a multiprocessor machine. We will be including
capabilities in the language to handle that problem. Though, I don't see
any problem for the AADC, once we know exactly what the AADC is and what's
desired, we can write the system to handle the problem.

Floor: Are you talking about multiple, independent data streams, or a parallel
~ta stream?

Bersoff: The AADC is organized in a lot of different ways. There is a parallel
processor ••. the Matrix-Parallel Processor •.. then there is the multiprocessor
portion, which might take a long program, segment it, and operate on the two
sections in parallel. And, then you might operate on two different programs
in two processors, all that could be going on at the same time. So, one of
the jobs of the compiler might be to break up a large program into parallel
parts, so that they can be operated on together.

McGonagle: You'll have to re-do that whole conception of scope. We did a study
for Fort Monmouth on the detection of parallelism in program structure •••
there's a great deal of difficulty in this ••• everyone points to the DO Loop,
(NOISE) it's not easy to detect. In fact, it's a very small percentage of
your parallelism.

Bersoff: Shouldn't the programmer be able to recognize parallelism in his
program.

McGonagle: What we did in the 825 was to allow the programmer to create the
parallel path.

Bersoff: That's what SPL has wi~-h-the_ir "parallel" and "Join" operations.

McGonagle: We had a problem with it, in ~hat we found ~~st programmers tended
not to use it. The difficulty is not in using the parallel path, but in
creating the monito."' functions which adequately describe the relationships
between parallel prucessors. Apparently, there's very little research being
done anywhere in the country on parallel process structure.

Cerf: Just to answer that question, UCLA is doing a lot of work in that partic
ular problem. There have been studies for the last six years describing
models of programs ..• trying to describe what goes on when problems are runn.ng
in parallel. Two aims of the studies have been to take sequential programming

-~
\

languages and extract from them their parallel paths. That has only been
partially successful because a lot of the parallelism is hidden by the nature
of the language. It's implicit that if you don't say otherwise that the next
statement is the one to be executed. Partly because of that, and partly
because of data dependencies that are hidden you don't get all of the para
llelism out through an analysis of sequential program. So, although we
worked with FORTRAN, and Burroughs has worked in ALGOL, and some people are
trying to work in PL-I to create graphs or models of these parallel programs,
that hasn't been very successful. So, we're in the middle of trying to design
a parallel processing language, and the main element that is in that language
that is missing from all others that we know about is that the programmer
specifies three different things about his program, rather than two. In the
current sequential languages he describe.s data structures and he describes
computations. You get a little bit on control over how things get executed
through the use of GO TO Statements and such things as that. In the case of
a parallel processor language, you have to specify a third thing, which is
the structure of the graph .•• or the order and dependencies of the various
tasks to be executed. So, a third sublanguage has been added to something
like FORTRAN, although we don't insist that computations be described in
FORTRAN. The third language is a control sublanguage and the programmer
actually tells us which things can be done in parallel and which things are
dependent and must be done sequentially. Taldng that information .•. the infor
mation about all the space that's needed by each task and so on, it's possible
to, apriori, decide how to schedule that particular system on a multiprocessor
system.

Floor: In kind of large systems, this raises another problem in that you tend
~ look at a small component of that large system at any point in time. When

compiling a program, and the program is going to go into a library, and using
pieces out of that library, and we don't always have enough description of
the pieces that we're pulling. It's more than just a process that we're
writing right now, it's that process as it fits into the total structure of
the total system. It's that p'roces,s plus a hundred or two hundred others. And
the information on all of those must be known in order to determine the order
of scheduling. It's not a simple thing.

Nimensky: Besides the do and join, you need the locl{ and unlock to protect the
memory.

Bersoff: I think the conclusion we can reach initially is that, from a management
point of View, I don't think there's any question that CMS-2 should be the
language used to program the AADC. The question then becomes what should be
done to change it? To modify CMS-2 .•• to increase the capability we talked
about •.. uh, let me hear your objection before we go on.

Cerf: Well, I don't think CMS-2 does the job completely because it seems to
----leave out all the information about handling interrupts and so on ••• enable,

disable and a few other things seem to be needed in CMS-2.

Bersoff: Exactly. That's what I was driving at.

- 16$ -

Cerf: Second, you need to have considerable more control over the scheduling of
---t-asks if we're going to write programs which are suitable for a multiprocessor

configuration. I don t necessarily advocate a whole control sublanguage,
although that happens to be my opinion at the moment. So, I think that's
missing. And, finally, I think we need to be able to write something like an
operating system in the language, whatever it is, because if we want to have
re-structurable computers, things that degrade nicely and understand what's
going on about them, we re going to need to write some sort of operating system
which runs along with this little program which controls firing and radar and
all this sort of stuff.

Shirley: I'd lUte to go back to the point capt. Engelbach made before. If you
want to talk about the technical facility of the language, we have identified
that there are a substantial number of languages which you can beef up to
provide the kind of technical facility that has just been mentioned. And so
the point of the question, "what particular language it should be?" then has
to turn on the points made before, which are transferrability of personalities,
ease of training of personnel, availability of compilers, what the costs of
developing these new compilers possibly are? Those are the questions it turns
on and not really the technical facility that exists in the language today.

Bersoff: So, it gets back to not being a technical question as to which language
to use for the AADC, but a management question. Now, if my assumptions right
that CMS-2 will be used in some form, what does that do to language compati
bility? We're back where we began, I guess.

Engelbach: If CMS-2 were used, it would be the one that we're talking about
today, it would be a beefed up one; so you might as well call it CMS-2 Prime.
Your compatibility with CMS-2 as it stands today is zero. I should say it is
whatever you would have with any other language. They're procedure oriented
languages so that anybody who is familiar to a certain extent with JOVIAL, PL-I,
ALGOL, SPL, they'll have the same familiarity.of going from that background
into CMS-2'. If you built CMS-2', you would be starting from the position NASA
was in a year ago and the Air Force was in two and a half years ago, of con
structing all of the system generating software. The things that prepare you
for building the operational systems, the compilers, the intelligence, the
people who built these compilers. For instance, Logicon has built a CLASP
compiler for NASA. Okay, so you have right there within the community of
software people a group that understands some of the problem, not all, but
some of the problems inherent in building CLASP compilers. You also have one
example to play with. The same way with SPL--you already have several examples.
You have a body of people who have been through the mill. That's what you lose
if you choose CMS-2'. What you gain, regrettably I have to admit that it's a
pretty large gain, complete immunity from the upper echelons. You don't have
to fight headquarters because you'~e choosing SPL. That's .an Air Force language
and that's not the thing you do if you're with NASA or when you're in the Navy,
or in the Army, or in the Marine Corps, or anyplace else. You take CMS-2
because that's what everybody upstairs knows about. If you want to take some
thing else, then you've got a massive education problem. I speak from brutal
experience, because I did it.

- 166 -

Floor (Capt. R. Dunning): I don't think I quite agree with you in the Navy.
I feel that in my position at the Programming Center (FCPCPAC), I could
probably sell any compiler to the Navy, because my responsibility is
compilers for, at least, a portion of the Navy. To my bosses I could sell
that. Which leads to my next question, do you own SPLIT and can you give
it to us?

Engelbach: On January 15, I can give it to you. I own it ••• what I mean is
that the Air Force has contracted for a deliverable item entitled SPLIT,
along with four code generators.

Dunning: You're about the political a~pects of it. There would be some
problem in selling ••• but, there isn't the problem with the Navy as there
appears to be with the Air Force.

Engelbach: You're very much more fortunate than we are ••• let our hair down
here a little. If you wanted to take the technology of building compilers,
one example would be the SPLIT. There are several others. If you wanted
to just pick it up, and if we could all vote on a new name, just give any
arbitrary name that is not connected with anything else, we'd take it.
Now, if that would circumvent some of the political problems that I have,
that you have, that othe~ people may have, then I say fine. I'm not tied
to the name.

Bersoff: It turns out, in fact, that the three languages are pretty nearly
identical to begin with.

Engelbach: They all have a common ancestor. ALGOL 58.

Be r ·soff : Right now we call SPL and CLASP SPL/CLASP. Maybe we could call
(them) SPL/CLASP/CMS-2?

Floor: You know, this might be a real step forward, to just call them
SPL 1, 2, 3, 4, and so forth.

Engelbach: Maybe we should be like IBM and take out a trade mark on aI"l of
PL-l, 1 to 100 ••• that way, nobody else can call their language PL-l or
PL-2 or PL-3, all the way to 100.

Floor: Certainly if you took your Meta Compiler and constructed a language
---of whatever you wanted and called it CMS-2', it woul~ make it easier to

sell than if you called it the next language, or whatever you wanted to
call it.

Bersoff: But, there are three different names now, so which one do you choose?

Nimensky: A rose is a rose ••• if you call SPL CMS-2', it's still SPL and it's
still CMS-2'.

Engelbach: And, if you could get one document, and, if the Navy published it,
let them put their title on it, and all we'd do for the Air Force is take
your title page off and put our title page on and then we would at least

- 1&1-

circumvent the problem Ed and I have been buried up to our eyeballs in,
(of) "Okay, friends, is it a typographical or is it a print'!ing"error, or
did we really mean something when we said, dot S or S dot?" So, once
there are masters, and everyone puts on his cover sheet •••

Floor: There is a real reason for this, of course, and that is ••• program
maintenance. You get several different compilers (and) you do have some
trouble with your program maintenance. Provided this is reduced, however,
using the Meta Compiler technique ••. may I hear some comment on that.

Engelbach: Well, you derive using a production tool, it's just like automating
and producing hardware ••• uniformity of products. I didn't say standardi
zation. Uniformity across products and from product to product, which is
not achievable using hand tooling methods ..• lf we use the same tooling,
then the uniformity between your product and mine is much higher than if we
arbitrarily gave a contract to SDC and said, "build us a compiler," or
(gave) another contract to esc and said, "build us a compiler," ... Hand
tooling can be used for variations in the final product.

Bersoff: I think what you need is a syntax analyzer that will recognize a
set of syntax and produce code for any machine from there on.

Nimensky: Talking about maintenance, in the last two years we've had one
individual on the syntax analyzer; and that's for correcting errors and
bringing it from what we call Mark II up to Mark IV. We're constantly
increasing it, correcting errors, and there's only one man who has made
all the corrections and maintained the syntax analyzer. I say .•• one indi
vidual could maintain three or four code generators for different machines.

O'Brien: I would say that that's the experience we've had, too, in CMS-2.

Cerf: What happens if you have to move the Meta Compiler to another machine?

Nimensky: When we
SPLIT is making
transferrable.
we will be able
We built an SPL

mentioned SPLIT ••• that is, by definition, what SPLIT is.
the implementation tool of SPL machine independent and
Our first step is to move it from the 360 to the 6600 and
to operate on any machine we write a code generator for.
code generator for the 1108.

Cerf: Is the Meta Compiler an interpretive system, or does it always compile? ••
---You're redoing the code generator when you make this move?

Nimensky: We write a code generator to run on a 360 host machine, on which we
can write a code generator for any machine using our Meta tool.

Cerf: What's the advantage of that over the conventional bootstrapping tech
---n-ique of moving it through a higher level language?

Engelbach: You're actually moving the tool that constructs the compilers, as
well as the compiler itself. You're not bootstrapping the compiler, you're
bootstrapping the Meta Compiler.

- 168 -

Shirley: You made a point which I think is very important to all of us, which
was that the chances the compiler comes out somewhat different in this sit
uation has been proved; In other words, it is not as likely to come up
different as it has in the past ••• Eventhough you're using the same tools,
it's not clear if you're going to really be right ••• that you're still not
going to get a different compiler at that point.

Engelbach: Let me put it this way, if you had a code generator for a given
machine, and one section of the Government, me, I will have a" code generator
for the 6600 Scope 3.2. If the Navy had been able to reconcile itself to
using the Meta tool, then I would be very surprised if they just didn't
take my code generator and use it rather than duplicating the code generator.
It exists. Just plain use it ••• ln that sense, not only would we have uni
formity, it would be identical ••• The uniformity of the tool not only helps
us in this case, but if they use the tool and build a code generator for
the ANIUYK 7 or the AADC, and if I should pick up the hardware, either of
those machines, I would of course pick up their code generator because, of
course, I'm not going to do it. The uniformity I gain is, if we're both
using the same tool, the front ends are going to be the same. The syntax
analyzers are going to be the same. The semantics that you brought up
earlier are going to have a high probability of being more similar because
I now can constrain not only the interpretation of the semantics of SPL or
CMS-2' into a binary form for a particular piece of hardwareJ but I also
have a framework in which to perform that transla~ion process. That frame
work would be the code generator language of the SPLIT tool ••• if you build
a code generator for the 6600, when you are building a code generator for
a machine of a very similar nature, the 6400, the 6000 Series, the similar
ity not only in the syntax, the front end, but the semantics, the part the
code generator produces, will be ••• let's say, there would be a higher
probability of their being similar. The interpretations would be made (in)
the same (manner), enhancing, in the long run, the problem of portability.

Bersoff: I think we all agree that we should have compatibility. I think
we ought to go back and do it. Thank you,

-~-

THIS PAGE IIrENTIONALLY IUT BLANK

- 170 -

Panel *2

Subj ect : Computer/Compiler Standardization

Chairman: Dr. Bruce Wald
Naval Research Laboratory

Panelists: Mr. Alan Deerfield
Raytheon Corporation

Mr. Vi Henderson
Logicon Corporation

Mr. J. David McGonagle
Burroughs Corporation

Mr. Robert Samtmann
Naval Air Development Center

- 171 -

Introduction

Entner: What can be done to standardize on elements of a computer to,
in turn, standardize on a compiler's object code generator? This brings
us to a point which was raised earlier today -- in the case of CMS-2 ~
a unique object code generator is required for each computer to be serv
iced. What can be done to reduce this requirement for uniqueness?
This, in a sense, is the subject of our next panel session on Computer/
Compiler Interface Requirements.

Wald: The title of this session has changed from "Standardization" to
"Requirements." I don't know what to read into that •.. I'm going to
deviate from the procedure of the last panel. I'm going to ask each of
the members, in turn, after I II:lake my opening remarks to state their name
and qualifications. The reason for that is so they can include or hide
the fact that they are English majors ..• Seriously, though, these computer
languages are languages, and I would suggest that you might want to
consider the aes.thetic component. If the listings are ugly to look at,
there is probably something wrong with the language ... Now, I'll start
by stating three disqualifications of myself to be on this panel. The
first is that I am not an avionics expert. I wrote my first program in
absolute hexadecimal in 1954. The only higher level language I've used
extensively is NELIAC, which is another dialect of ALGOL 58. The pro
grammers who worked under my direction always escaped into machine
language when they had tricky things to do. My second disqualification
is that I am not Jim Ward. My name is Bruce Wald. Jim, unfortunately,
had a conflict this afternoon, although he left me some material, which
I will quote. The third disqualification is like they say on "Meet the
Press," I am going to try to bring out a story. I am going to try to focus
debate or start some arguments, so the prejudices I'm about to state
are not necessarily those of CBS, the Department of the Navy or even
myself. So, let me state my prejudices, then I'll retire and let the members
of the panel interact .•• The first one is that I'm rather disappointed.
We seem to have lost sight of the reason for this conference, and the
problems that were stated in the invitations to the conference. To put
it crudely, all of us in this industry have been guilty of playing a" game
••• a game that we might entitle, "Proliferation for Fun and Profit," or
"Job Security for High Priests of Software." I won't comment on the
profit part since balance sheets have been going up and down, but DOD
is finding this ride less and less fUn. In 1966, and these figures were
collected by Jim Ward by a methodology which understates the problem,
a hundred and three different models of computers were delivered to DOD

- 172 -

as components in weapon systems. I am not counting the commercial
computers and I am not counting the computers delivered to the "Spooks."
In 1967, one hundred and thirteen different models were delivered. Of
course, there's some overlays, but in both those years there are over
a hundred different models of computers being delivered, and each of
them had some support software -- at least an assembler and a simulator.
Well, if we can't do something about this proliferation problem, we are
going to get standardization by fiat. It may be from the Department of
Defense, it may be from the Bureau of the Budget, it may be from the
Government Accounting Office, but those people who pay our bills are
getting very tired of taking a ride. Now, the real problem, as far as
the financial aspect, is that this software, which is so expensive to
produce, is not reuseable. In 1960, Maurice Halstead published a book
entitled, "Machine Independent Computer Software." It was sort of a
do-it-yourself manual on how to build a NELIAC compiler. For those
of you who are not familiar with NELIAC compilers, it's a dialect' of
ALGOL 58, transition table technique used; self-compilation time about
30 seconds, compile and go -- not the most elegant code in the world,
but you can make them better. That was ten years ago, but I think we'll
agree that we don't have machine independence yet. We can't take an
applications program written on a 7090 and move it to a 6600. We have
trouble taking an applications program written on a USQ-17 and moving
it to a USQ-20, and I'm sure we won't be able to move it to a UYK-7.
I suspect that there are two ~dentical USQ-20's on the same ship, pro
grammed by two different organizations reporting to the same Admiral
or, at least, to the same eNO, and an applications program can reside
in one of those computers and can't reside in another, identical USQ-20.
A couple of weeks ago we had occasion to get a metacompiler operating
on our local machine; and this metacompiler, partially self":compiling,
was running on a 3600 and we had to move it to (another) 3600. That
job took two or three unnecessary weeks because in one case the operating
system used tape for logical peripherals I and in the other case, it used
drum for logical peripherals •.. I don't think I was too happy with the
language presentations I heard today and yesterday. You know, syntax
crackers cost $1.98, or that's what they tell us. If they only cost $1.98,
we ought to be running some controlled scientific experiments about what
makes a good language for avionics for real time applications. I haven't
seen the scientific experiment to tell me whether blanks should be ignored
or blanks should be used as a delimiter. I haven't seen the experiment
to say whether it's better to use LET and SET or use an equal sign. Ap
parently, people, because of history or personal opinion have just gO!1e
ahead and done it. I don't know whether it's better to describe a matrix

- 173 -

in something as concise as Iverson, or to spell it out in painful detail.
Where is the evidence? We've heard about global and local optimization;
now, I'd like you to focus on a different kind of global and local opti
mization, and that is Program Management. The fellow who is responsible
for delivering a system has an optimization job to do. He wants to get
the best system at the least cost within his time constraints. Nobody
forces him to look at the global situation. He may solve, in an" exemplary
fashion, the problems of his particular system, but because of logistic
incompatibilities with the rest of the Navy, or the other services I or those
one hundred and sixty computer types, he's not done a good job of global
optimization. Unless that man starts thinking globally, he's going to
have standardization, by imperial fiat I forced down his throat ••• We
heard alot about metacompilers, and their good I automatic techniques
for syntax cracking, but for code generators. Code generators are written
by hand. Now, if there were a standard metalanguage in which one could
describe the addressing structure and operation codes of the machine,
and then the system would produce a compiler automatically, then we'd
have a metacompiler. Right now, all we have are syntax analyzers •••
Ron talked about a somewhat different metacompiler, or System Synthesizer
Something which you would approach with a problem. Now I wfth what
language would you approach Ron's Synthesizer. You certainly wouldn't
approach it in CMS-2. You wouldn't approach it in SPL. Those languages
describe a solution to a problem, not the problem itself. What about
the poor gentleman who is trying to get Shortstop to work. How would
he approach the problem? What language would he use to describe his
problem to the System Synthesizer? Bear in mind that we are all servants,
except for a few of us in the academic community, we don't exist for our
own sake. The hardware people exist so that the hardware can solve
problems. The software people exist so that people with military problems
can use the hardware to solve problems. Finally, I'd like you to remember
what Nimensky said about why compilers weren't used more. He gave
three reasons. He said, first, the languages were not appropriate.
Second, that the compilers were too expensive and, third, that what the
compilers produced was too inefficient .•• Now, there are some hardware
people around who say that you software people have had ten years to
deliver machine independent, transferable programs and you haven't done
it and, maybe, now it's their tum. Suppose they deliver to you a FORTRAN
machine. We would have to extend the language a little to explicitly
declare the data types, to explicitly declare the semantics, but it would
be a FORTRAN machine. You wouldn't know the addressing structure,
you wouldn't know the internal word length, no compiler would be nec
essary, there would be no machine language; would this machine answer
Nimensky's objections? Can we build it? If we can build it, what would

- 1?J. -

you system programmers do for a living? With that statement of prej
udices, I will tum to the panel, ask them to introduce themselves, and
speak for five minutes, if they wish, on their view of the problem, state
their qualifications, and then maybe we'll get an argument going.

Samtmann: I'm Bob Samtmann from the Naval Air Development Center.
I'm an engineer. I've been associated with the computer subsystem devel
opment for the F-lll over the past five years. While my work has been
associated primarily with hardware development, I've picked up an interest
in software by osmosis. Just recently I've been assigned to the F-14
program computer subsystem development. Also, recently, live been
getting active on the AADC program where I've been working with Systems
Consultants Corporation on the instruction repertoire development. I
will be taking an active lead in the compiler development -- whatever
it will be ... I came to this meeting hoping I would gain a better insight
into what path we should take .•• not being too knowledgeable in the
area of compilers ..• I must admit, I really haven't gathered that much
from this meeting. I've heard alot of discus sion of whether we should
go CMS-2 or some other way. Once again, it might be a matter of sales
manship, as was mentioned earlier, should we choose something other
than CMS-2. I've had some real world experience in incompatibility
between hardware and software. I could fill you in (on them) in about
an hour ... There is definitely a problem, as everybody knows, in com
patibility of languages, in compatibility of compilers running on host
machines. Problems in efficiency .•• Right now, we'll probably have
to go back and do some additional thinking ..• probe the problem some
more ... Thats' about all I can say right now.

Henderson: I'm Vi Henderson of Logicon. I've been working in the aero
space field for approximately fifteen years; mainly with Air Force and
NASA applications. I consider myself a software engineer. That is,
I sympathize with the applications side ... The first thing I would like to
do is echo what Bruce has said, that we have lost sight, somewhat, of
the whole problem. I've sat in language conferences a number of times
and I typically, the one thing that is missing is attention to the application
area. live heard the comment that system programmers have become system
programmers because they're expert programmers. I tend to think that
they've become system programmers because they have forgotten, or
have not addressed themselves to becoming expert in the application
area. They haven't learned the guidance and control problem. They haven't
learned the dynamics of a system, and that sort of thing. Therefore I

they leave that field and work in an area they can handle technically.
We've talked a great I and yet I it's ironical to me, the problem of coding

- 175--

for an avionic system is relatively low cost, if we just talk about the coding
itself. The major cost lie in getting to good specification and, second,
taking the raw code and checking it out, testing it, validating it. We
seem to continuously ignore those two sides of the problem. I consider
them to be far more significant than a programming language problem.
We need programming languages, but we should not forget that programming
languages do not solve problems in themselves. They're only a means,
a tool, an aid to solving the problem. Similarly, the compiler problem •..
I wish we could ge'~ rid of compilers. I heard Bruce, yesterday, say
let's open up, take a new view, and take a language that can be executed
directly by the machine. We continually look at the front end and the
back end. Somehow or another, I think, to make progress, we have to
look in between .•• this intermediate language which separates the code
generator from the syntax analyzer. I believe we ought to get the engineer,
the programmer, and everybody else together and try to define an inter
mediate language in which we can bring the computer and the source
language together. That should be addre s sed, in my opinion. •. Ron
raised the point about the synthesizer ... No one has really addressed
that. I know the Air Force is also looking at that problem and is under
taking an effort. There are two things to consider with respect to the syn
thesizer. The Air Force's side is more mis sion oriented and as we see
the AADC development., we're talking about a synthesizer that is applied
to a particular computer system, or a family of computers. We are not
planning at this point, as I see it, designing a synthesizer to meet a
particular mission requirement or set of missions. I believe that the
synthesizer can only evolve •.. It will be a long, long time before it be
comes an on-line tool. The development cycle has been, for software,
a long tortuo,:, .. s road; particularly, the check-out side of it. For those
applications, such as the Apollo ..• some very high cost system where
you can't affort to buy the system to begin with ..• you get the tail-wagging
the-dog situation, where the amount of check out, redundancy, resources
required to really test the software becomes enormous. We don't pay
enough attention to that part of the problem, in building languages, building
the application programs, and disciplining the whole management process.

Deerfield: I'm Alan Deerfield from the Raytheon Company. I'm a con
sulting scientist. live been in the computer business for about twenty
years. I'm a designer of computers. I'm not a software man. I think,
to some extent, I understand software people. I'm very unhappy with
you, just as I'm very unhappy with most computer designers. I suspect
a software man would be unhappy with another type of compiler designer
and other software people. I have the same kind of prejudices against
my own types as I have against, I think, this group. I'd like to get a
little antagonistic in a friendly way, so that you might feel a little freer

- 176 -

to throw one at me during the course of the conversations. I won 't get
angry. I probably won 't be able to answer your questions either. lid
like to go on record with a couple of my views. Most of what Bruce
Wald mentioned I agree with, although 1'm sure if we got down to inter
preting, our formal agreement would probably be different. Yes, I be
lieve I can make a computer, for example, without very many problems,
that would handle FORTRAN directly. I don 't see any need for that type
of computer. I don 't see that it IS a really difficult job, even. On the
other side of the fence, though, 1'm in favor of compilers. 1'm not op
posed to them. I think you people have concentrated on the wrong thing.
I think syptax is necessary, but I could care less what type of syntax
you use. Once you Ive defined your syntax and can handle it, I think
that IS great. The purpose of a language is not syntax; it I S getting purpose
and meaning across. For my own, lid rather see a language that was
strictly mathematical. As an engineer, as a person with mathematical
problems, lid be very happy if I could write my problems down and let
the machine solve them. As far as JOVIAL, FORTRAN, or any of those
things, I don It really have that kind of an opinion. Frankly, I did enjoy
the comments on metacompilers, but principally, I enjoyed them because
perhaps what follows the metacompiler I can eliminate. I like the idea
of stopping at a metacompiler with a very small structure. But, I don It
think you people should be spending your time on syntax. I think that
it IS neces sary, but I don It think it I s worth quibbling about. There are
two other reasons why I think compilers are necessary in the military,
or, at least, problems with them that I think should be attacked. The first
is efficiency of the language. Efficiency, in my mind, comes down to
how much memory do I need to carry ,with me -- and also speed. How
fast does the product which you produce operate in my computer? •..
If it takes me ten words of memory, for example, to express a subroutine
in final machine language for something like a square root, and if I recog
nize that those ten words are always in the machine, then 11m paying
ten words of physical hardware cost, which says 1 might compare that
against a hardwired square root routine. There is a legitimate hardware,
not software, tradeoff of your using ten words to program that square
root for me. Even if you Ire as fast. Consequently, if I build a com'puter
that has something like a sine or cosine in it, I trade my hardware cost
against the hardware cost necessary for me to carry that sine routine
in core, or in memory. I expect, for example, that if you have a compiler
that has a sine or cosine or any other form of instruction that I build
a computer to handle directly, that you ought to be able to modify your
language so that you can accept my machine language instruction (in
place of the software subroutine). Today, for example, I can take all
your algebraic statements I and I can build a computer that will handle

- 177 -

your algebra directly. The thing I object to, then, is the fact that you
spend an a~fully lot of time developing algebraic handling. Let me just
briefly elaborate. Suppose, for example, that (going step by step) I
go from one accumulator to two accumulators. One reason for going
to two accumulators is to eliminate unnecessary load and store orders.
If I build such a machine, I expect the compiler designer to go in and
modify his compiler to take advantage of those two accumulators and get
rid Qf load and store orders that I don It need. When you do an analysis,
and tell me that 50% load/store orders are used, and perhaps half of
those are unnecessary, 11m carrying one heck of a lot of memory on-board
I don It need, and that comes out in cost. If your compiler does not use
my two accumulators, or my eight accumulators, or my sixteen accumula
tors, something is wrong. Also, if I can handle your algebra entirely,
I expect you to drop it out of your compiler. I expect you to simply trans
late the algebraic statement into my machine language. I don It expect
you to apply a method of saying, for example, 11m going to go into the
innermost parenthesis and reorder my language. I like the machine to
handle the algrbraic statement in the exact form the user wrote in. lid
like the printouts and the programs to be in a form he understands. The
rearranged products of a compiler aren It very useful to me. I don It think
they Ire very useful to the user. So I sit back and I say, one of the problems
is that the best machine designers in this country never work with the
best compiler designers in this country. I find that there isn It a company
in the world that will really intimately, and I know they work together,
but really, intimately take their software people, the compiler designers,
for example, and have them, intimately, work with their designers.
This is probably one of the worst things thatls true about this business.
Not just the separation, but even to the extent of getting you to work
with us. It IS almost impossible to get your interests up. And, it works
both ways. Itls almost impossible to get my hardware people interested
in working with you. So, I sit back and I say this, every time I see the
fact that you have methods for solving problems, and I don It care what
those methods are, they become obsolete when I design a new machine.
If I look at a machine, and the AADC, for example, is one ..• If I can It
design a machine to be a 1975 - 1980 machine simply because your com
pilers won It use the features, 11m wasting my time. For you to settle
upon any particular compiler right now, I think is nonsense. For you
to base your entire existence upon extending things that were obsolete
when you started, I think is to avoid the issue of why we Ire doing an
AADC. Further than that, I guess you can explore my views as the dis
cussion progresses, but basically I think live gone on record as really
saying, I don It think you Ire solving my userls problem at all. The user,
to me, is the man who has the mission and not the programmer.

- 1'18 -

McGonagle: My name is Dave McGonagle, and I'm an english major,
and I come from Burroughs Corporation, where hardware and software types
exist on the same design team. The last two machines to come out of
Burroughs have had, amazingly enough, a software man as a Program
Manager. We do design machines with compilers in mind ..• As far as
background is concerned, incidentally, I started in this business in
1951 at Wright Field, on CPC 's, if there's anyone around who can re
member them, and passed through the university computer environment
as an applications programmer, and passed from there to Westinghouse
with SOLOMON, and eventually to parallel proceSSing and then wound
up at Burroughs. I've known Bruce for a number of years. We've lived
together, you might say, trying to get a multiprocessing operating system
to work. Currently, I've just completed an as signment to design an
avionic multiprocessor implementation in LSI, and we're now going to go
ahead and build it. But, Mr. Nimensky said earlier about the transfer
ability from the 360 to the SPECTRA ... I'd like to remind you that the
RCA people forgot something. You don't transfer software unless you
also transfer the operating system interface. Therefore, 360 programs
do not run on the SPECTRA 70. No one can guarantee OS 360 interface,
unles s they're willing to run OS 360 •.• A problem raised here ..• the
FORTRAN machine .•• A FORTRAN machine couldn't begin to solve the
problem, because FORTRAN, itself, as a language, would not be satis
factory. We've built, in the last eight years, machines specifically
designed for two different languages. The 5500, in which the machine
language was reversed Polish, essentially the intermediate language
put out by practically everybody's compiler. It was geared toward ALGOL.
We've come out with a 3500, which is geared toward COBOL. I'm sure,
if the Navy bought enough of them, we would come out with a different
machine geared to CMS-2, or another one geared to SPL. They wouldn't
be the same machine. They don't come out the same .•• Trouble with
idiotic things, like COBOL's requirement that you don't store the result
of an arithmetic operation until after you know there's no overflow. This
causes you to design an adder that goes from left to right instead of
right to left. Clever. Saves you a little time. Saves some memory
space. Lots of little things like this happen. Reversed Polish ..• for
that we implemented an automatic index register operation called a "stack."
If someone asked me if the 5500 had an index register, I'd have to say,
"Yes, it does, but it's dedicated in its use as a stack pOinter. II Do
we do subscripting? Yes, we do, but we do subscripting from the top
of the stack. Why? Because we looked at our compilers and found that
90% of the time we just finished computing the subscript at the time
we wanted to use it. So the place where it already was was in the ac
cumulator •.• Therefore, languages do impact on the machine design, and
I think each language will get its own machine. Now, the time has come

- 179 -

when we can give you a different machine for each language. At this
pOint I think we Ire talking about the same general idea. With the advent
of LSI, the control logic for a machine will be stored in microprogram
memory of one kind or another. Two things are going to happen: You Ire
going to get the compatibility Bruce was leaning towards by emulating
someone else IS machine; in which you will emulate a machine completely,
including the control mode instructions. You will also ... emulate a
COBOL machine in a ALGOL machine. You dynamically move from one
machine description to another. Your machine for, essentially, direct
execution of algorithmic statements, I expect, by the end of the year
to have a demonstrable piece of hardware which is a direct execution
APL machine. APL, very strongly, is an algorithmic language. It has
some other features which interest me a great deal that I think begin
to move in the directions I think hardware ought to be going. All we 've
done for twenty years is to reproduce the adding machine. We haven 't
done another stinking thing. If I go back and look at the CPC, its addres
Sing structure was almost exactly the addressing structure of a 360.
And, yet, many times we talk about arrays, we talk about lists, we talk
about tree structures •.• We don 't talk about addressing to a single cell
in memory. Who, in their hardware, has built addressing algorithms
for list structures. Who, in their hardware, has built addres sing algorithms
for trees. Yet those of you who are interested in information retreaval
systems had better get interested in that problem. The AADC machine
only incidentally is going to work in the F-14, just as incidentally is
the airborne multiprocessor for Wright Field going to work in a bomber,
or whatever is around right now. The problem comes up for an airborne
command and control system, where your Ire talking about putting a big
system in the air. This isn't peanuts anymore. You 've got a space sta
tion thats out there and going to stay there for life. Are you going to
put a programmer up there to write in SPL? Or does it just happen to
be an engineer who would like to write in engineering english? APL happens
to come much closer to that. Now, 1'm not trying to sell APL. All 1'm
saying is that Ken Iverson made a long step toward making a programming.
language which human beings could use. He did something else, he
said that human beings should be interactive with the computer. If I
don 't understand an APL operator, I can find out by default, by trying ...
As long as I can program, I can now go to an ALGOL, or any other terminal
without getting a syntax error. I take people out of our product manage
ment group, who, God knows, don 't know anything about programming,
and take them down to a terminal, and set them down ••. they can do
useful work. Think about that in terms of your space applications.
For every programmer you put up there, you have to put two ..• redundancy.
There are a lot of things going forth ••• I would have the guts to ask the

- 180 -

company to go this way, i. e. (microprogramming), it just happened LSI
came along and the hardware people said, "That's the way we'd like to
do it, " and so I sat back and said, "Great, that's the way I'd like to have
it." Now, I can begin to design a machine the way it ought to be designed.
We have yet in this Country ... this is probably a stronger statement than
it ought to be ... to have intellectual honesty in the computer world.
Whether it's my company which has a thing on one-pass compilers ...
JOVIAL vs. CMS .•. I don't care what it is ... There is no honest, intel
lectual effort made to find out what is gOing on inside a computer. For
years people argued that you couldn't measure the instruction utilization
of a computer because you could only measure them statically. Well,
just out of curiosity we took some static measurements. Would you
believe last week I got some dynamic measurements off a B6500, and they're
within 1 % of my static measurements? Sid Fernback, who's been preaching
he must have an extremely fast multiply ..• Would you believe, multiply
is less than 6% of his problem? This is the guy who made us build the
STRETCH and the LARK. This is the guy who said I must have a 20 nsec
multiply to do my problem. Baloney! Six instructions in the 5500 make
up 85% of all the instructions executed. Six instructions can be coded
with three bits. Find me a machine with a three hit op code. Any address
space ..• 50% of the hits, I'll guarantee you, are wasted 50% of the
time. In a 360, thats 25% of your core which contains programs .•• the
same thing is true of a B3500. Thank God it's not true of the 5500 because
we used a smaller address space. Not because we understood anything
more of what we were doing. There's a real need, a plea, that we stop
taking the Government's money, or our company's money I and doing what
we think we ought to be doing by the seat-of-the-pants. It's about time
we started to honestly ask questions. What is computing all about?
Now I there are at least three people here who have been honest enough
to say, "We don 't know." And, we're des'igning the computers. Why
don't we know? Let's take a look at the last proposal I answered. Thou
shalt execute 250 thousand instructions/second. What in the hell does
that mean? Can anyone tell me? We go back to the original statement
that there will be ten adds per multiply I and 10 and behold I we go back
to the latest RFP I and that's what it says I ten adds per multiply. That
was made by von Neuman . And I we don't know any more? Two hundred
and fifty thousand short adds per second. By the same token I if I took
my microprogrammed machine and make it look like a single address ma
chine and meet their 250 K ops/sec requirement I which is what I did.
I microcoded the thing to look like a 360 I because that's what they under
stood; and if it took ten megacycle logic to make that speed I that's what
I did; and if it took a half mic memory to meet that speed, that's what
I did. By the same token, I'm executing a million instructions per second

- 181 -

per processor! If I can harness it ••• This is no longer funny. This is
bucks you're throwing away ••• You guys, when you write these specs,
have patience with people who have questions to ask. Because, some
of us have questions concerning the organizations of the computers we're
building. The ILLIAC IV came into existence because of people like
Fernbach and the Weather Bureau. And, 10 and behold, I think that they
are finding out that neither they, nor the STAR, nor any of these machines
are really going to do them that much good ••• There was talk this morning
about detecting parallelism. In the ILLIAC IV ••• Now, Illinois will prob
ably argue this one ... from my SOLOMON experience I carefully avoided
the ILLIAC .•• I had enough at Westinghouse ••• From my SOLOMON expe
rience, if they can keep 20% of those PE's going at a time, I'll be floored,
because I don't believe it. There is room. There's work to be done in
languages, and it isn't the improvement of CMS-2. It might be a little
more honest in a discussion of languages to call it CS-2, and compare
monitors with monitors and languages with languages. I like the fact
that you've incorporated the recognition that a programmer works with
a total system, but there's a hell of a lot missing from your system, be
cause until a programmer works interactively, he never really has use
of your library. He can't really build a procedure by asking what he did,
or what someone else did in front of him. He's got to go back to a folder
and find out. The problems which came up when we bid TACFIRE. We
were going to use JOVIAL. I had been a great hands-off man with JOVIAL.
I didn't like it. And, I suddenly realized I was gOing to have 120 appli
cations programmers on my hands. I had 300 ,000 lines of code to write
in 12 months. I suddenly realized I was going to have to build a system
which detected the procedure that had been declared but not yet written.
That remembered the subroutine that you thought you were going to write,
that was only four lines long, that you hadn't done. All this belongs
in that debugging package as well. I") think you should seriously consider
the addition of simulators. Being a'software man turned hardware designer,
I brought a little different background into this thing. I lived through
the problem of writing large systems. I had the great privilege of spending
a week with Prof. Deichster about two months ago. When he first got
off on his kick about programming languages without having GOTO in
them, my immediate reactio~ was, my God, I can't live with this! And,
then I got to thinking, what do GOTO statements do for me? Number one',
they create a path in the program which I cannot (absolutely) debug all
the cases for. Because, invariably, they're conditional. The thought
of that, and the thought of being the pilot of the F-lS up there on terrain
following radar scared the living hell out of me. I think it might be cheaper,
even if it cost more, to buy the memory without GOTOs. However, I'm
not saying it will. Bruce and I learned a lesson together. Programs

- 182 -

should be small. They should be logical. And, any program with more
than 50 ALGOL - like statements in them are too damn long. I have been
preaching this. Alan Baxter when on his 5500 at Virginia last year decided
to find out what the world of students looked like. Lo and behold, the
average segment in his system was 30 statements long. So, this is not
unreasonable; There's a university doing all their programming, and
the average segment is only 30 instructions long. Turns out data segments
aren't much longer. And, this turns out not to be too different from those
figures IBM has leaked out about their paging problems. That under
200 instructions were being executed on the model 67 between page calls.
And it took 700 instructions to satisfy the page call. That's a snicker,
but that's a triviality, which can be fixed. What can't be fixed is the
ignoring of that 200 instruction limit. What can't be fixed is that people
want to hold on to old thing s like GOTO' s and JUMP's. It would have
been very little trouble for you in CS-2 to have made the programs reentrant.
I think it would also be worth your while to take a look if you really want
multiple entry and exit pOints. All these things add to the problems of
debugging, checking out and validating the modules. Now, Deichster
with three other people wrote a multiprogramming operating system and
check it out. Now I other than key punching errors, it ran the first time
it was on the hardware. It is impossible for there to be any unexpected
event in that system. Logically inconsistant for it to be. There is no
program module larger than a single logical event, and every module
is debugged logically. Now, we can build hardware that will do this .••
I think that is about what I have to say.

Wald: Surely, there must be an argument.

Deerfield: They're overwhelmed.

Wald: Will Dave then ... I hate to give you the floor again, but you said
something which seemed a little inconsistant. You said that different
languages would imply different machines ••• The ALGOL machine, the
COBOL machine, and so forth ... but you also said they would have dif
ferent bells and whistles; but you also said the compilers and compiler
writers aren't taking advantage of the bells and whistles you already
have on the machine. Now, these stupid compiler writers are going to
have to become microprogrammers. Are they going to be any smarter?

McGonagle: Where did I say that, Bruce? The small number of instruc
tions that are used?

- 183 -

Wald: Well, perhaps I made a mistake taking notes I but my notes say I
"Compiler writers aren't taking advantage of machines. "

McGonagle: I would not say compiler writers are not taking advantage
of machines. When I discussed my comments on the small numbet of
instructions which constitute the bulk of instructions executed I that's
a function of the machine organization we have I and not of the compiler.

Wald: In the last issue of the monthly news magazine of the IEEE Com
puter Group I there was a challenge. It said, "I challenge you to give
me an example of a compiler you have written that takes advantage of
sophisticated instructions in your machine." Instructions like fancy
index register control instructions I or repeat instructions of wide scope.
Do you have any comment on that?

McGonagle: Maybe that ties in with the question of why am I in love
with APL? APL narrows down the scope for me I considerably. APL lets
me talk about A+B into C and not care if it's an array or a simple variable.
Now, how does that affect me. Number one I borrowing from JOVIAL I

it seems to me that the COMPOOL descriptions that we have should not
be dropped at compile time. We are binding with those descriptions at
compile time in a form that binding should not take place. We are trying
to use those descriptions to generate code. Keep in mind I also I that
in the systems we build I 90% of the memory accesses are through an in
direct address that we happen to call a descriptor. If you look at an in
direct address in anybody's machine, it's sixteen or "M" odd bits that
get used I and the rest are empty. Some bright programmer may use them
to generate a constant I in which case I as Bruce will remember, I come
along with the operating system and clobber it. But, the rest of that
word is available to me. That word can tell me whether I have an array
or a simple variable. What does this mean? It means that when I go
down that address path to fetch I at execution time I I pick up a word which
I have to look at anyway to get the indirect address. When I look at
it, I detect that it's an array. At that pOint I can substitute array multiply
for simple variable multiply. The scope of my instruction I from the pro
gramming point of view I is one instruction. The compiler has not been
complicated. From a hardware execution standpoint I I now execute that
matrix multiply at microprogram'speed. Once I build the absolute ad
dresses for the three operands I I can retain them because I know I will
not take an interrupt I or if I do, it will be at my leisure. So I I don't
have to go to the address building mechanism every time. I go to it
once I and I roll through there. I can now do a matrix multiply I effec
tively, at memory access speeds. What else does this give me? It

- 184 -

lets me write an algorithm. I debug it on s"imple variants, and know
it will be executed correctly on arrays. Suppose the two arrays are of
dimensions so that they don't ... Question?

Floor (Cerf): I'm sorry, it turns out that multiplication is not commutative
in arrays, so one has to be careful about that debugging technique.

McGonagle: Yes. Using the APL rules for default conditions, I effectively
get defaults when I work in array spaces or complex arithmetic, which
is comparable to an adder overflow. And I can give it back to you in the
same way. It's an invalid operation. There are tricks such as the non
commutative matrix multiply w.hich you should be aware of. But, generally,
you can write the same program and have it work on complex arithmetic,
double preciSion floating point or any type of data you wanted to, and
it wouldn't change your program at all.

Cerf: I dare you to sort a bunch of complex numbers ••• I just want people
to be careful when they make those' generalizations.

McGonagle: Right. I screamed this morning about someone else's gen
eralizations. I guess what Irm trying to say is that by transferring the
scope of definition, by, taking advantage in the hardware of all the infor
mation we have, we can take advantage of this to increase throughput
and Simplify programming text.

Wald: Let me break in, Dave, and ask a practical question or two.
Suppose we standardized on an intermediate language. Some people like
Polish strings with operator prefixed, some like infixes and some like
trees. But, suppose we standardize at this pOint and a new machine
appears and it has some microprogramming capability; at least 360 ca
pability, if not complete emulation capabilities. Now, we have a little
race. The race is to build code generators for that machine or to micro
program it for the intermediate language. Would some people in the
audience want to bid that job, would want to tell me about the pro's
and con's?

Floor: May I ask for a clarification? Do you mean that you're going
to take this intermediate language and execute it directly on the machine
compared against an existing compiler with a syntax cracker. All you'd
have left to do is build a code generator •.•

Wald: The syntax is already cracked. We've gone from a Problem Oriented
Language to something which, by a miracle, we've agreed on is a standard

- las -

intermediate language and we changed its name so there Id be no inter
service rivalry. Now, we have the option of letting Dave microprogram
it so that his machine will execute this intermediate language, or building
the second half of the compiler to translate it into a form closer to the
structure of the machine. What are the pro I s and con IS?

Floor (Engelbac~): I think lid like to extend Davels argument along this
line a little further. There IS been a lot of work done by the ALGOL Com
mittee in Europe, which has really been to solve the problem that were
facing rather to (sneeze) the hardware· that already exists to help. Dave
mentioned carrying all this information. He used the word descriptors.
Therels an article written on the implementation of ALGOL 60 'which was
never "conquertized II by making hardware of it, but it contains in it a
couple of concepts, one which I suppose, you directly execute the data

i declarations. In this sense, it enables you only to declare only that
working space that you need at the time your talking about it. It also

I allows you to do mode arithmetic without a lot of fancy pre-
processing.

McGonagle: We do that now, Bruce.

EngelbacJ.t: I understand you do that, Dave, on the 5500. What 11m
saying is let I s extend that concept •.• We have- really scribed a problem
in a language, (followed by) a process of mulching this to an intermediate
form. . . Then you give me the option of creating a code generator which
is another piece of software, or do I want to microprogram in the inter
mediate form. I will counter by saying, I would prefer to eliminate the
intermediate form and microprogram in the Original source. Now, 11m
sure Mr. Deerfield will pound on top of my head, but the object here
is to solve the problem. The fewer preprocessing steps that I have to
go through, the more efficient the total system is going to be. To bril1g
in the example of the SPL Implementation Tool, which Dave seemed to
like: the smaller the amount of code, the fewer the decision paths I
have to look at, the higher the probability that I will have error free
software. I III never be (writing) that FFT, but I pity the guy that is ,
because that software can be very complex. With that in mind, I say
let I s put everything in the hardware, becaus e I can make the hardware
tester that turns itself into that system generator. And, if I make the
software simple enough, then I stand a chance of coming near to error
free software. I would say, let IS not even bother with the intermediate
language, go ahead and write the program store in the original source,
be it CMS-2, or SPL or ALGOL. Like the 5500, which comes pretty close

- 186 -

to (executing) ALGOL.

McGonagle: Actually ,our execution language is reverse Polish. This
is the point ••. you have to go through a first pass in order to get rid
of the noise ••. There's a lot of noise in an input language.

Engelbac)a: That's for the people to understand the language, but I have
a fancy loader .•• So, I'm not compiling. I'm simply checking my source
statements on whatever media -- a card, tape -- and I'm going to eat
them. And this idiot loader is not going to do anything that is not re
versible. In other words I I can take a program in source form, strip out
the buzz words, put it in memory and execute it directly. As a converse,
I can take that same program from the same memory, come back through
the reverse process and reproduce the source, losing no meaning, neither
syntax nor semantics.

Wald: You'll have to lose some buzz words. Also, there are some people
who would argue ...

Engelbacn: I can have a whole set of buzz words which I don't lose the
meaning (of). I may change two buzz words, but if they're buzz words,
I can substitute the same meaning.

Floor: I'd like to counter your argument with a question. I believe it
was in 1948 that the- first, hardwired digital compute) came out. Ever
since that time we've gone to more general purpose computer. Perhaps,
the reason why we've gone to general purpose computers is because one I

nobody has ever been able to decide upon a language and two, decide
upon how they were going to solve the problem and three, once they dis
cover the problem it seems to continually change. Therefore, this is
why we have the creation of compilers and general purpose computers.
I'm curious as to how you're going to microprogram a continually changing
system ..• CMS-2 may not be the best, but at least it's being modularized
to accommodate change. How are you going to do this in the hardware?
Change is really the name of the game.

Engelbacn: It gets back to saying, the only thing to remain the same
yesterday, today and tomorrow is change. Therefore, I must make avail
able to me a facility which gives me the most powerful tool with which
to make that change. As you've mentioned, the trend is away from hard
wiring, where you cannot change anything, into general purpose software,
where things can be changed a little easier .•• The trend now is toward

- 187 -

microprogramming. I can build a very powerful tool. It's a microprogram
store. Generally, we're talking two thousand words of microprogram,
which is a heck of a lot less program logic to change than is an operating
system like OS 360, which takes up a quarter of a million bytes.

Floor (Bersoff): It bothers me that the people on the left side of the panel
have alluded to the fact that software people want to perpetuate them
selves, and that all that great hardware is there, but they don't want to
use it. Just six months ago I was envolved in specifying the NASA space
shuttle data management system. We had contractor people come into
us who didn't want to give us a hardware floating pOint capability. We've
been dying for that capability. Why hasn't it been offered? It's not that
we don't want to use it, it's that no one is giving it to us. I think that's
been the problem with aeros pace for the past ten years. We can't get
a hardware floating point multiply.

McGonagle: I can't comment about the last ten years, because this is
our first venture into avionics.

Deerfield: I'd like to comment. .. It's been at least ten years since my
discussions with Jim Ward and the people at Wright Field, when we
identified the fact that anybody who didn't build a computer with floating
point had rocks in his head. I'll tell you why I think it's not being built.
In fact, I used to make a statement that anyone of the computer companies
who built these nothing-type machines, which I think most of these little
computers are, are nothing-type machines. In fact, I think that people
who design new machines when the old ones can certainly do most of the
jobs are wasting their own time as well as everybody else's money.
Companies seem to think that if they can get contracts, they ought to
design a new machine ... Two reasons are true why people don't make
floating point computers. One is, it used to be, and it's not true anymore,
that people used to think that floating point cost a lot of money to put
into the hardware. And, there have been notable examples of companies
that aren't really computer design companies, attempting to design floating
point algorithms, and finding out they knew nothing about it, and it grew
like topsy. They ended up, very often, saying it's too expensive. The
truth is that floating point isn't all that complicated. The other thing
turns out to be, and I used to say that anyone of these little companies
that built a computer with a floating point set would suddenly find the
Air Force and the Navy and everyone else suddenly jumping up and down,
saying, "I'll buy it!" Even without software and compilers. It turns
out that the branches of the military have simply not specified floating
point for their machines. They've been cost conscious. Only, they've

- 188 -

put the cost in the wrong place. People have argued, for example, that
a fixed point word is smaller than a required floating point word. It
turns out not to be true if you do an analysis, because you can get as
much precision and accuracy in a floating point word of the same size
as you can with a fixed point number. But, people have argued that the
amount of memory and other things. Subsequently, contracts have been
let without this spec in them. I think that's the only reason you don't
have it, because you don't ask for it. Or, if you ask for it, you ask
for it sort-of-like, it would be nice, if. I think all you have to do is
ask for it, and everybody will break their back to give it to you.

Bersoff: When I asked for it, I was looked at as if I had two heads.

Deerfield: Well, that's true. I'll concede .that I can make an argument
to prove that in any given application you don't need it. But, that doesn't
say you shouldn't have it •.• just because you' don't need it.

Bersoff: What do you mean by "don't need?"

Deerfield: I can show you that a judicious combination of scaling and
a lot of other will handle your problem. And, probably handle
it efficiently ••• There was another reason why you don't get it. People
used to think that the sp~ed of a machine was slower to do floating point.
Ies obviously true that floating point multiplies and divides are faster
than fixed point, simply because the speed is conditioned upon the number
of bits in the mantissa. The floating point adds and subtracts takes a
long time. You have to take an add order, for example, and compare the
exponents, and you have to shift right and shift left. You have to normalize
your instructions. It takes a lot longer, except for one thing. If your
numbers happen to be already normalized, and if you don't insist on
normalizing every answer you get, which is generally a mistake to do,
what you discover is that in the cases where the numbers are, in fact,
in the same exponent range, just as they are in fixed point, that the prob
lem runs just as fast in the computer, and, consequently, it's a misanalysis.
On the other hand, my own argument is that anyone who doesn't have
floating point is really ridiculous. As a matter of fact, the question
which was raised of whether we need fixed point ••• what you ought to
have, but you wouldn't want to waste the bits, is a fixed point systems,
which is precisely the size of your fixed point mantissa. Where numbers
-are entered as fixed point numbers I and let the machine treat them as
floating point numbers by effectively having the agreed upon range in
which you would normally be functioning as an exponent. So I that in the
event of overflow, instead of having an overflow indicator, let the machine

- 189 -

act as though it were floating point in the first place. There won 't be
any problem at all.

Wald: Is anyone experienced with the G20?

Floor: That machine was built and sold commercially five years ago
and didn't have any outstanding success.

McGonagle': It was built in America eight years ago and didn't have
any outstanding financial success until a year and a half ago. It's called
the B 5500.

Wald: Is that the way it treats fixed pOint?

McGonagle: That's why it does mixed arithmetic without any problem.

Deerfield: The only reason you Ire not getting these things is because
you just don 't ask for them.

Engelbacn: I have to agree with you I but we Ire chasing the chicken and
egg. Characteristically speaking I the Government -- at the risk of throw
ing mud on myself and a few of my associate"s -- doesn't know what the
hell it IS doing. It relies tremendously on consultant corporations like
MITRE and Aerospace Corporation I and these people really don 't have our
problems I they don't have the profit motives that people like yourselves
have. So I we get a hybrid. They're very conservative because they
don't want to create a ruckus. They don 't want to make a big mistake.
The Air Force doesn't know what it's dOing I so we come out with inane
statements like I "If we had something that looked like ••• I " or "if we
had something that performed like a floating point machine I but we really
don 't want it I because we know its going to cost more money and be
bigger I etc." What does it really mean? It means your people on your
side are looking at that statement of work and are calculating down to
the eyeball how much it's going to produce to that s,pecification. And
you say I the Air Force obviously doesn't want floating point so we're
not even going to bid it as an option. Now I here's the Air Force on the
other side I saying I "If industry doesn't propose floating point they must
really think it's not worth taking the time to propose." Now I which
comes first? I have to admit that occasionally I the Air Force lucks out
and hires a good consultant and we get something done I but 41ormall~
we have our run-of-the-mill luck and we don't get a good consultant.

- 190 -

McGonagle: You have consultants and we have product management.
One is as bad as the other.

Wald: Before we relegate compilers/code generators to the past decade,
would someone support the argument that isn't it better to translate those
semantics once in the compiler than to force the microprogram interpreter
to do it every time?

Deerfield: At the risk of talking too much .•. The two of you have said
things which I really disagree with. I would like to make another brief
comment here. First, I am not in favor of microprogramming. I think
I've been through that for too many years.

Wald: You've put those childish things behind you?

Deerfield: I'd like to go on record that I have, although that's not quite
true. There are some cases where I still feel it's the right way to go.
l'm not in favor of complicating the computer hardware, eithet. I'm not
in favor of eliminating compilers. What I'm saying is that in the hardware,
we ought to put the mechanisms which are common to all your compilers.
All the ones which you no longer even talk about. When I say I for example,
handle the algebra, I simply mean ..• every one of your compilers has
a routine which it goes through which does such things as locating the
center of your parenthesis. I think these methods should be put in the
hardware. In this manner, you still have the syntax and you still have
all the variability and you can still write all your compiler programs and
vary them. I think the hardware ought to take the burden. The other
thing I want to say is the cost of hardware today, now that we're going
to LSI, the gate cost is so low I that we're really not talking ... The
cost is now interconnection, rather than the number of gates on a chip.
The cost of gates has gone so low that to not do these things, I think I
is to miss the boat. So, again, when I say I'm against microprogramming,
its for the reason that with the high speed scratch pads and task memories
that we have, that I can write you a macroprogram which is just about
as fast as your micro. A macro subroutine, if it competes with my micro
subroutines, is probably not worth translating from my machine language.
into my micro-language, and I think, we're getting too many levels of
language here.

Floor: It seems to me what you're saying is that the difference between
microprogramming and macroprogramming is basically a matter of memory
speed and, perhaps, (turn around time) .

- 191 -

I Ii"J I

Deerfield: I think what I'm really trying to, tell you is that when micropro
gramming came in, one of the things it did was attempt to order the control
unit of a computer so that one could subject it to ordered, step-by-step
programming. Once you can get to every control line of the computer inter
nally, which is what the control memory did for you, and order it, and make
these lines evailable to a high speed control or task memory, you've erased
the distinction, I think.

Wald: May I redirect you to another thought. And that is, we seemed to
come to the conclusion a little earlier that there were some things that
a programmer did that you had to escape to machine language to perform.
Are those part of the problem the programmer is trying to solve, or are they
artifacts of the machines that we can get rid of?

Deerfield' Are they problems that the user is trying to solve. He is neither
the artifact designer who throws in gimmicks, features, bells and whistles,
nor is he the programmer ... Dave made the comment that 'he's never seen
a machine which did list structuring within the machine. That's not quite
true. We've recently built a multiprocessor that does some very fancy
list searching within the hardware, which is structured after lists which
are really part of the software problem. One of the interesting things was
we looked at the customer's problem, and it happens to be a weapon delivery
type problem. But, one of the things we looked out was that he went through
tables of data that had been accumulated, and he did this process, which
really took only a few instructions, but he did it some ten thousand times
every major cycle of his machine, resulting in the fact that a considerable
portion of machine time was occupied (unnecessarily). What we did was
look at the specific problem, and we said" "What is it, as a user, you
really want to do?" Let us make a list search specifically dedicated to
your problem. It's not a general purpose listing or search, and we built
in the bells and the whistles. As a matter of fact, it cut that particular
problem down fantastically. And, then we built the JOVIAL. We asked
the JOVIAL people to include this whistle because it's very important to
our customer. The JOVIAL people, in this particular case, left it out.
Hopefully, they provide a technique, though, whereby we can revert back
to machine language, at least for the one function, which is one of the
reasons why I'm adamant about the fact that occasionally you design some
thing into your computer for your customer. I think your compiler ought
to be able to use it. •• I've designed lots of bells and whistles into my
computers which I thought were great, only nobody ever used them. I
don't expect the compiler people to use them either.

Floor (Nimensky): I'd like to make several comments, before I forget,
about what Dave said about GOTO statements. The entire meta system

- 192 -

is built without a single GOTO. Secondly, I think the problem is that
industry does not meet more often like this, where we can sit down and
hash these things out. Everybody is doing everything secretly and every
one is trying to one up everyone else, since they know better. I think the
biggest problem is there is no free and open exchange. This floating point
problem where everybody makes crazy as sumptions. Floating point is
more expensive than fixed point. Everyone knows all the answers. No-
body talks about it. When we have conferences, people take out their
slides, talk and go away, instead of putting everything on the table and
finding out what is the problem. Engineers very rarely talk to software
people and software people rarely talk to engineers, except in these rare
cases. What can you expect? •• As far as getting to microprogramming,
the software people look at it as an extension .•• Who is it who should
design the software system for the computer? The engineer or the soft-
ware man? This is where that problem resides •.• The engineer who builds
the computer doesn't know how the software person wants to use it. He
may want to program a sine routine. If there are ten programmers, they
might want to program the sine ten different ways. Ten different users
could have these ten different routines microprogrammed the way they
want to. Just like one guy at IBM took the EULER language, took the ROS
memory and built a list processor. He made the 360 look like a list machine.

McGonagle: He made it look like a 5500.

Nimensky: Microprogramming is certainly more flexible. It allows you
to build a hard machine to use whatever language you want. That is,
why not let the compiler writer design the instruction set he needs. If
he only needs six instructions, why bother with the other 125 that AADC
has if they are not needed.

Wald: How about the data declarations? Do you think there should be
a translation process in mapping the memory or should we interpret the
data declaration each time we pick up an operand?

Nimensky: That depends upon what the problem is. Any type of list proc
essing, LIST, EULER, all these, you can mix data up in any way ... You
never know what it is. They have to be self-identifying. Either it has
to be self-identifying by, some pointer or some bit size or whatever. Again,
in a microprogram would b'e lovely if we could microprogram the word length,
the address fields and all these things. So we can structure the machine.
In other words, give us a piece of hardware that programs the hardware and
you can build the instruction set, you can build the addres sing scheme

- 193 -

to suit your problem. Now, you've got the ideal match between the problem
and the machine. This allows the user to write in a language in which
he can think. This is the biggest problem. A programming language should
approximate the language I'm solving the problem in. If I program a chess
game, I want to use a language that looks like a chess board. If I'm pro
gramming matrices, I'll add matrix notation.

Wald: Vint, you look worried.

Floor (Cerf): I agree. I think you can write a program and let the compiler
write the machine description you need. Then you walk away with a special
purpose machine which solves your problem eventually. But, my impres
sion is that, for airborne computer, there isn't enough room to store away
a different computer for every function that has to be provided. So I wind
up building a more general purpose machine.

Wald: Well, it's not out of the question in AADC. A's you load a routine
you load the microprogram and change the nature of the machine as it's
executing that routine.

McGonagle: As part of a process description, there should come a defini
tion of the machine ••• Part of the (task) state vector should be definition
of the machine upon which it executes.

Wald: Let me sketch something on the blackboard. (See Figure 1.) We
talked about problem oriented languages. And, we talked about procedure
languages. And, this is, per chance, the language of ECM. This is CMS-2.
Then we talk about some sort of intermediate languages. I guess the only
reason we talk about intermediate languages is because we know very well
how to build translators. There's a lot of academic interest in this process,
therefore we talk about this one that's composed by human beings and trans
lated into this form which is particularly easy to translate further or, in
the case of the 5500, execute. But there's a potential translation process
here. Then we have another translation process in which, somehow, a
machine description has to be fed in. We have no standard language for
this machine description. These are the code generators we're talking
about. And, then we have the machine language. I'll put this in quotation
marks. I don't know what machine language is for our microprogrammed
machine, but let's take as a working definition, that form in which the
program lives in mainstore. Then, finally, we have some hardware. We
may very well have a microprogram, which is involved in some sort of
algorithmic translation of the machine language into the control Signals
to operate the hardware. And, the name of this panel is Computer/Compiler
Compatibility ReqUirements or Standardization, which of these steps along
the way are candidates for standardization? Does anyone want to make

a recommendation?

Floor: Can you write an objective for why you want standardization or
compatability?

Wald: Yes. Program reusability. Reusability of both our systems programs
and our applications programs.

Floor: Just to make life easier for the programmer.

:wJll.d: No. Just so the military can get its job done with zero declining
budget.

Floor: And programmer trainability ?

Wald: That would be nice, too.

Floor: Didn't you just compound our problem? In putting a problem
oriented language up there, you immediately drew the arrows to a pro
cedure oriented language. There is no reason for that to happen. We
don't have a problem oriented language yet.

Wald: That's true. And, I do want to offer the option of eliminating as
many of these translators as possible.

Floor: Let's go from the problem oriented language to the hardware.

Wald: Will either Raytheon or Burroughs give us a finn' fixed price for
the job?

Deerfield: One of your problems is that you're calling language things
which are nothing more than your nouns and verbs. For example, when
you say machine language, you're missing the point. I think you're
missing the point when you say six instructions are all you need, because
we're not talking about the instruction set at all. I think the point is
that the nouns and the verbs aren't the thing at all. Up here, when you
define your procedure, you've got a real language. When you said yes
terday that you first have to recognize your "if" and then check if a
boolean follows. You do a whole flock of things. I think that's a large
percentage of your program. Those are the things that have nothing to do
with whether it's an add, or a function like sine. I'm talking about the
hardware literally picking up the procedures. Then, I think you'll have
a hardware language. The hardware itself has its own built-in procedures

- 195 -

for trivialities. But, unless you talk about a special purpose computer,
which builds in the procedure to solve the beam steering equations, or
some specific function which the problem oriented user would like to
solve. He would like to enter an item like compute fast Fourier transform,
for example. Down at the computer end, there is a language, but it's· on
trivialities. I'm saying, nows the time when we can build into a computer
the language which doesn't deal with how do you do a sine or cosine, but
the language of how you proceed really to compile. .. The method which
you program a solution today may be, in one case, the only way we know
how to solve it, and, indeed, we will.have to program at the microprogram
level. On the other hand, the method you use to solve the problem may not
be the way we want to build it into the machine. I think my example turns
out to be the one I've given before, which says, basically, you write an
algebraic statement and, now, you have a procedure. By following cer
tain rules locate and rearrange the sequence of events under which you
solve the algebraic problem in the final analysis.

Floor: In the Afl.DC, can you eliminate from the intermediate language on
down? It seems like the obvious thing to do.

Wald: I would suspect that would be the general direction the AADC would
move in. Bear in mind there's the additional requirement in the AADC, that
the form that is resident in main store be a very concise form. Because of
the bussing problems to and size of Task Memory, that might be the con
trolling factor. There may be more time available within the PE to interpret
than there is time on the bus to get non-concise versions into Task Memory.

Cerf: ~ay I suggest that it's not clear yet that you need a Task Memory.
I think we want to show that we want a local memory attached to the Pro
cessing Elements. The second thing is, there must b~ a certain amount
of uniformity which is to be imposed upon the architectures of the machines
because of the modularity of the LSI. So, at some joint there has to be
compatability. I'm not sure where that goes on the diagram up there. If
anyone on the panel cares to comment, I'd appreciate it.

Wald: Would, for the sake of argument, could we think about having the
place at which uniformity applies as the intermediate language wifh data
type declarations?

Cerf: I'm noysure how to respond" to that.

- 196 -

Wald: I tossed a coin and came up with a place. Now, let's see what's
wrong with it.

Floor: Some of the criticism of that has been that you have to have a much
wider because of the necessary descriptive information that has
to be carried. Also, the cost in the logic to decipher the compatability of
descriptors for a particular operation jacks the cost up to the point where
it is not as e'conomical as using conventional techniques.

Wald: The data descriptions can be concise. You could have defaults;
you could have the length of the code inversely proportional to the proba
bility that that data descriptor is used.

Floor: But I it's nevertheless something greater than the value. There has
to be something there.

Floor: Isn't a lot of that cost for just the size of the bus and execution
time?

Wald: I'd almost want to buck that one to Ron Entner.

Entner: I wouldn't be terribly concerned with the gate cost at this point I

if that's where the problem is. Our major cost item will be the Main Store
Memory. To that end I I would like to see whatever we do lead in the. di
rection which would reduce the total amount of Main Store Memory required.
That's one of the reasons for using the Task Memories. They're simply a
convienent (random access) storage location which permits us to use the
BORAM memory I which is at least an order-of-magnitude less expensive than
a conventional main memory.

McGonagle: Our feeling is that the cost of gates in todays world is rela
tively cheap. I can buy from TI I now I enough parts to build five processors
than what it used to cost me to build one AN/GYK. But I my total manu
facturing costs for the AN/GYK was twice I going on three times I what it
cost me to buy the LSI parts to build five machines. Now I microprogram
store is still fairly expensive. But I by using overlay of the microprogram
store I I can keep that cost fairly small. Again, using default conditions I

256 words/16 bit microprogram store will contain most of the interpretation
and most of the instructions for 90% of any machine definition for emulation
purposes. That means I haven't paid any great penalty for the majority of
the cases. Thirty-two bits of information allows me a 16 bit address and
16 descriptor bits I which will tell me whether you've got one I two I four. •

- 197 -

I give myself three bits for describing item field size. I can tell whether
something is complex, simple, arrays, double precision, integer or
floating. Whether or not it should be subscript. Whether or not there
are more descriptors envoI ved. Acces s information. Lock and unlock.
This is something which most of us tend to leave out. We've learned
from bitter experience that, particularly as you go to parallel processing,
it becomes absolutely essential to be able to insert monitor information
into the access path to get at any piece of data in that memory, because
you can't control that access path. So, I don't feel I'm paying a great
price. I think I got this in the 16 bits that are already there free anyway.

Wald: I 'wonder if anyone would care to predict, just to see how cloudy the
crystal ball is, when AADC finally eXists, if we will be standardizing at
problem languages, at languages like CMS-2, at intermediate languages,
or if we're going to wipe out the whole translation proces s. I'll go down
the panel.

Samtmann: If I had to take my pick right now. . . I had the opportunity
to review several report9 pertaining to SPL, CLASP and CMS-2. Once
again, my experience is very limited ••• Once again, it seems to be the
general concensus that CMS-2 will do the job. Right now it looks like a
modified CMS-2 .

Henderson· Ideally, we hope to ultimately see the whole translation process
disappear. At least, by the user. The user wants to solve a problem in the
most effective way possible. At this point in time, all system type software
compilers and translators have just inhibited us. Reality suggests that there
will be some compromise. Whatever t!1e procedure oriented language chosen,
that I don't think is really important. The important thing is to minimize
the distance between that point and the hardware, itself. I would hope the
AADC would make some major contribution in this area.

Deerfield: In terms of problem oriented languages, I don't think we Ire
gOing to have enough people to get together to really be able to define a
problem oriented language solution. Consequently, as much as I think every
one would really like that. Being a realist, I don't think you'll have it at
all. In terms of a procedure oriented language, it's my prediction you won't
have any of the languages you presently have at all, because I think that
the AADC computer system will be Significantly different from any other com
puter system ever built before by the time it gets finished, that you will,
in fact, want to write a new procedure oriented language. At least that's
my fond hope and prediction. . •• On the final end of it, I think that the
solutions will be partly carried down the line. Namely, I think there will
be some measure of microprogramming, some measure of variations from the
procedure oriented language.

McGonagle: I find myself pretty much in agreement with AI. I'd like to
hope that standardization, if there is any, will take place, in actuality,
at the intermediate language level. I strongly suspect that in the next
few years, as studies progress, gotten beyond the point of having to be
in agreement as to 128 instructions, or whatever the magic number might
be today. I think, instead, there will evolve an intermediate language which
is convienent for the compiler writers and which is a reasonable language
into which to escape for those people who feel they must escape into machine
language, and that this will be considered the machine language of the AADC.

Wald: Thah!< You.

- 199 -

- 200 -

APPENDIX A

- 201 -

C!e-2 COMPILER DESIGN

Systems Consultants" Inc.

Washington" D.C. 20007

6 August 1970

- 202 -

This paper is an emerpt tro. a s,stema Conaultants, Inc. report

entitled, Interi1ll Report on the Feasibility ot I!ple_nti. the CMS-2

COlIJ)Uer on the AclTanced AnoDic Disi tal CO!IIJ?uter, prepared uncler Ia'f'al

Air Dnelop_nt Center Contract 10. 162269-10-0-0214.

- 20) -

3.0 CMS-2 Compiler Design

The purpose of this section is to.provide insight into

the concepts and methods employed by the CMS-2 compiler program

for translating the high level CMS-2 compiler language, called

source language, into executable computer instructions called

the target or object code. The following paragraphs include a

general discussion of the CMS-2 compiler structure and the major

processing sections that comprise the compiler design. Each

,major processing section is further discussed in detail de-

fining the overall methodology and compilation techniques employed

as well as, identifying the inherent program design of the pro

cessing components of each major processing section.

3.1 General CMS-2 Processing

In order to better understand the compilation process

as performed by the CMS-2 compiler, it is advantageous to first

understand the basic structure of source programs to be compiled.

A source program is defined for this report as the logical sequence

of source statements necessary to solve a problem. The basic

structure of a source program, as illustrated by Figure 3-1 can

_be comprised of up to three levels. In terms of hierarchy the

highest level is the "System" which is made up of one or more

'elements. The elements represent the second level called "System

Procedures", wherein the system procedures are comprised of the

third level called "pro~edures". This tri-Ievel source structure

is further characterized by "global" and "local" elements. The

global elements are those elements that are referenceable by the

- 204 -

COMPILE - TIME
SYSTEM

SYSTEM DATA
DESIGN

LOCAL DATA
DESIGN

ONE OR MORE
PROCEDURES

LOCAL DATA
DESIGN

ONE OR MORE
PROCEDURES

"'--....
~

~- --. -
ONE OR MORE
PROCEDURES

.........

FIGURE 3-1 COMPI LE - TIME SYSTEM

- 20S -

SYSTEM PROCEDURE
(ELEMENT A)

SYSTEM PROCEDURE
(ELEMENT B)

SYSTEM PROCEDURE
(ELEMENT N)

entire system, such as the "System Data Design" and "System Pro

cedures." However, the global elements are.made up of functional

units, scich as the "Local Data Designs"' that are not global to the

system, but are referenceable only within the element in which they

are contained. The non-global elements then are called local ele

ments.

The CMS-2 compiler program that translates the above

defined source programs into executable object code, processes

the source string of language (source programs) one statement at

a time in a contiguous manner. The basic design of the current

CMS-2 compiler as illustrated by Figure 3-2 consists of a Master

Controller that acts as the upper level executive, and two phases

that perform the actual compilation process. Before further dis

cussion it should be noted that the CMS-2 compiler was originally

designed to be a three phase operation, but Phase 2 that was to

perform code optimization has not been implemented and therefore

is not a topic of this report.

Phase 1, shown in Figure 3-2, is controlled by the Master

Controller and consists of a Director that acts as the Phase 1

executive, statement processors that perform the syntactic analysis

function of Phase 1, and utility routines which support the state

ment processors by performing specialized operations. The Phase

1 operation accepts the source program and performs a syntactic

analysis that produces the machine independent intermediate langu

age (IL). The IL form of the program being compiled consists of

the sequence of basic computer operations necessa~y to represent

§
•

MASTER CONTROLLER

PHASE 1 PHASE 3 r---------------lr--------------,---------------,
I I PASS 1 ~ ~ I PASS 2 .

.. ~ I

I ,
" I

I
DIRECTOR

I
I
I

A

'"
I

, ,. I
.. .. I

~ ..
I

~ ,. ~
,. I

I
STATEMENT UTILITY I
PROCESSORS ROUTINES I

J
I

' .,
~ 10

~ "
PASS t

CONTROLLER

~ ,...

~ r
..

'"
.. ,..

~
,.

~ II'

CODE UTILITY
GENERATORS ROUTINES

I

PASS 2
CONTROLLER

.. ~

OUTPUT
PROCESSORS

UTILITY
ROUTINES

L ______ ~--------~L--------------~----------------~

FIGURE 3-2 COMPILER STRUCTURE

the high level logic of the source program in a form best suited

for object code generation performed by Phase 3.

Phase 3 (See Figure 3-2) of the compiler is a two pass

oper.ation, wherein Pass 1 consists of a Controller, code generators

and utility routines. The Pass 1 Controller ~cts as the executive~

controlling the various code generators that produce the actual

object code from the IL generated by Phase 1. Each of the code

. generators is supported by the Pass 1 utility routines. Pass 2 of

Phase 3, which produces the final object and hard copy outputs

from the compilation process, consists of a Controller, output

generators and utility routines. The Pass 2 Controller coordinates

the output operations by initiating the appropriate output gene

rators which format the final output~ and transfer the output data

to the appropriate peripheral devices. The utility routines of

Pass 2 support the processing of the output generators.

The inputs and outputs of each section of the compiler

described above are illustrated by Figure 3-3. In this ~igure

the source input to Phase 1 of the compilation process consists

of source programs from card decks, system and user libraries

and common pool (COMPOOL) processing. The outputs of the Phase 1

process are the IL form of the program being compiled (magnetic

tape) t local Constant and Identifier Symbol Tables (CIST) and

minor System Communications Tables (SCOT) (magnetic tape), and

global CIST and major SCOT (co~puter memory). The~e Phase lout

puts are the inputs to the Phase 3, Pass 1 operation which pro

duces' the final object code generation for the program being

compiled. The outputs from the Phase 3 process are the final

-·208 -

SOURCE
INPUT

LIBRARY
SEARCH

o
GLOBAL
~
MAJOR
SCOT

MONrrOR

MASTER
CONTROLLER

PHASE 3
PASS 1

GLOBAL
CIST ---

MINOR
SCOT

FIGURE 3-3 CMS-2 COMPILER PROCESSING

PHASE 3
PASS 2

OBJECT
OlJTPUT

OUTPUT
LISTING

intermediate language (ILl) tape which contains the generated ob

ject code, the local CIST and minor SCOT tapes with final allo

cation of constants and identifiers for the target computer, and

the global CIST and major SCOT tables. The Pass 1 outputs become

the inputs for the final output generation performed by Pass 2.

The outputs of Pass 2 are final object and hardcopy outputs as

well as, COMPOOL definitions for use in future compilations.

3.2 CMS-2 Compiler Components and Processing

CMS-2 is an algebraic compiler that utilizes a multi

table-driven technique to perform the syntactical analysis and

partical code generation of the source input. A multitable-

driven technique involves the use of internal compiler tables

that contain the source language primitives and operator hier

arachies that are used to verify the input source statement for

correctness and control statement parsing. There are various

methods of parsing used to deconstruct the source statements in

a·manner such that its syntactic correctness is verified accord

ing to the grammatical rules of the language. CMS-2 uses the

common pars~ng p.lgorithm called, "Reverse Polish Parsing" This

particular algorithm not only verifies the syntactic correctness

of a source statement, it also arranges the sourc~ statement into

a string that allows orderly code generation.

The following subsections further discuss the three

major sections of the CMS-2 compiler (Master Contr~ller, Phase 1,

and Phase 3). The discussions include defining the relationship be

tween various components and associated sub-components, wherein the

- 210 -

memory requirements for all sub-components are tabulated (where

.possible) for that version of CMS-2 running on and generating

code for the CP642B computer.

3.2.1 Master Controller

The Master Controller performs two distinct functions as

the general upper level executive of the CMS-2 compiler. The first

is that of interfacing with the "Resident Monitor Program (MS-II)"

that provides control of all batch processing operations and the

loading of the Master Controller when a compilation task is en

countered. The second function of the Master Controller is that

of compiler phase coordination generally discussed in sub-section

3.1. The following paragraphs provide a more explicit discussion

of the Master Controller and its functional coordination of the

two phase compilation process.

The MS-II program loads the Master Controller for coor

dination of the compiling process upon encountering a compilation

task. At this time the Master Controller, as illustrated in Figure

3~4, performs all pre-compiler setups, including the selection of

magnetic tape units to be used by the compiler and the loading and

initialization of the Phase I section. After the initialization is

complete, the Master Controller passes control to the Director of

Phase I for syntactic analysis and intermediate language gener

ation which is further discussed in Pa.ragraph 3.2.2 of this report.

When the Phase I processing is completed 'and control is

returned to the Master Controller, Phase 3, Pass I is loaded and

initialized. The Phase 3 initialization includes the preservation

- 211 -

ASSIGN TAPE
UNITS FOR PHASE 1

INITIATE
PHASE 1

ASSIGN TAPE
UNITS FOR
PHASE 3, PASS 1

INITIATE
PHASE 3, PASS 1

ASSIGN TAPE
UNITS FOR
PHASE 3, PASS 2

INITIATE
PHASE 3, PASS. 2

RELEASE COMPLETED
TAPES FOR THIS TASK

NO RELEASE _ALL
TAPES

FIGURE 3-4 MASTER CONTROLLER PROCESSING

- 212 -

of the system data resident in computer memory and on magnetic

tape for Phase 3 generation of the final intermediate language

(ILl) tapes. When the initialization process is complete, the

Master Controller passes control to the Phase 3, Pass 1 Con-

troller.

Following the completion of Pass 1, the Master Controller

loads and initiates Phase 3, Pass 2 which generates final outputs

(source and object) for the compiled program. After the out

putting process is complete, the Master Controller checks for

a subsequent compilation process following the one just completed.

If there is another program to compile, the Master Controller

begins the compilation sequence again. If there are no further

compilations to be performed, the Master Controller returns con

trol to MS-II for continued batch processing.

3.2.2 Phase 1 Syntactic Analysis

The Phase 1 process performs the syntactic analysis of

the source input language for the program being compiled, and

generates the .intermediate language (IL) of the program based up-

on the syntactic analysis. The syntactic analysis of the source

input string is accomplished using a multi table-driven technique

which implies that both the language primitives, such as, the

"SET", "IF", and "FIND" statements, as well as the grarrunatical

rules are defined by compiler tables. For example, as the source

string is input a syntactic term is extracted and qlassified

according to the language definition tables. The corresponding

IL item is then generated depending upon this classification.

The scanning of the source string is in a left-to-right manner

with the source language statements all having the same general

- '-11)--

form of Verb - Operand. In this form, the verb determines that

portion of the language to be processed, and the operand supplies

the necessary parameters to support the-operation indicated by

the verb.

The Phase 1 process is accomnlished by three major

components: the Director for Phase 1 Control; a set of State

ment Processors for syntactic analysis and parsing to the IL;

and utility routines which perform specific operations common

to two or more statement processors. The following paragraphs

define each Phase 1 component as well as the data base and IL

for the Phase 1 process.

3.2.2.1 Phase 1 Control

The control routine of Phase 1, ·called the Director,

coordinates the process of the syntactic analysis of the source

input. The Director begins with the initial scanning of each

statement from the source input string. The scanning process

is accomplished by a utility routine which extracts a single

syntactic term from the input string. As the Director ~eceives

the first syntaGtic term of a source statement, it attempts to

identifify the term using a table of syntactic language primi

tives containing the verbs (such as, SET, IF, and FIND) and oper

ators (such as mathematical or relational operatprs) of the langu

age. If the syntactic unit is identified as a language verb,

the Director switches control to the appropriate statement pro

cessor which completes parsing and IL generation of that state

ment. If the Director is unable to identify the syntactic term

as a language primitive, a special directive statement, identifier,

-~-

or a direct coded instruction (mnemonic or machine language), then

·an error has occurred and a utility routine is called to register

a syntax error on the IL for that statement and further processing

of that statement is aborted. This process is continued until

the Director encounters the source program terminate statement,

at which time the Director "wraps up" the Phase 1 operation and

returns control to the Master Controller program.

It is noted that the previously mentioned statement

processors which perform all parsing are actually a part of the

Director program in the current CMS-2 design. However, most

statement processors are independent of all others and therefore,

for purposes of design analysis, the statement processors are

discussed as a major component of the compiler in the following

paragraphs.

3.2.2.2 Phase 1 Statement Processors

The statement processors of Phase 1 are called by the

Director to complete parsing and IL generation for the source

statement being processed. The statement processor called by the

Director is determined by the verb of the statement which the

Director identifies during preliminary analysis. There lS a

statement processor for each verb in the CMS-2 or CS-l languages,

each of which performs specific parsing of a source statement.

Table 3-1 lists the Phase 1 statement _processors of the current

CMS-2 Compiler showing the mnemonic name, and the text name of

each, as well as the associated utilities. Explicit memory require

ments for the statement processors are not available for this' re

port and are not shown in Table 3-1.

-~-

... , ... -..
' ... _·w

..... , ..
-·11 - .. --

10.' ••

_r
1.0("· M

-...

, - ...

-..
Note: Sizes for the statement processors are nat available.

TABLE 3-1 ST.AT.EMENT PROCESSORS/UTILITIES CROSS CORRElATION

... 2h6-

After a statement processor receives control from the

Director it begins syntactic analysis of the operands of the in

put source statement. This analysis is accomplished by extract

ing syntactic terms in a left-to-right scan. As each syntactic

term of the operand is extracted from the source string, the

statement processor attempts identification of the term based

upon the range of grammatical choices possible dictated by any~

previously successful term identification for that statement.

For example, if a simple assignment statement verb is recognized

by the Director as the language primitive "SET", the SET state-

ment processor is given contr6l. The next syntactic term ex-

pected is either a defined data receptacle or an index; if it

cannot be identified as such, a statement error has occurred. An
-'-.. '

error message is then generated to the IL a~d processing of that

statement is aborted. If the syntactic term is identified as

a data receptacle, then the appropriate IL entry is generated,

and the next syntactic term is extracted. Because.a data recep-

tacle or index has been identified, the next expected syntactic

term may be another data receptacle, index, or the language primi-

tive "TO". This type of statement analysis, based upon syntactic

dependencies, is continued until statement parsing is completed,

i.e., an end of statement is encountered, or a syntax error is

located; at which time control is returned to the Director.

All statement processors rely upon sub-routine calls

to utility routines that perform specialized operations such as

number conversions, error proces~ing~ source string scanning, and

-ru-

special parsing. The following paragraphs describe the role of the

utility routines for Phase 1 and relates each utility routine to

the statement processors requiring the use of the routine.

3.2.2.3 Phase 1 Utilities

The utility routines of Phase 1 are used in common by

two or more statement processors to perform specific operations in

support of syntactic analysis and statement parsing. Table 3-1

provides a list of the statement processors and the utility rou-

tines required by each processor. The size of the utility rou-

tines are attached to provide the total number of instructions re-

quired by the current CMS-2 compiler to process each possible

statement of the CMS-2 language into the IL form of the language.

3.2.2.4 Phase 1 Data Base .
The Phase I data base provides the syntactic analysis

tables as well as storage areas for saving information about the

program being compiled. The saved information generally consists

of the defined names and format parameters of all·declared data

designs, statement labels, and formal sub-routine definitions of

the CMS-2 language called procedures or functions. Table 3-2'

provides a list of the data structures for the data base used in

processing the source input.

In addition to the previously mentioned' data designs,

Phase 1 also generates three other data tables that are maintained

on magnetic tape, These tables are: non-global Constant and

Identifier Symbol Table (local CIST), minor Systems Communications

Table (minor SCOT) and the .Phase 1 generated IL form of the source

program. These tables are defined as follows:

-m-
I

MNEMONIC TEXT NAME

CIST* Constant-and-Identifier Symbol table

DIMIT* Dimension table

FPRAM* Formal Parameters

GLTBL* Generated Label table

HOLOV* Hollerith Overflow table

MJSCOT* Major Systems Communications table

ABMTl Abort Message 1

ABMT2 Abort Message 2

CARD Hollerith Card Image

CLRT Clear and Set Codes

CNVRT 8090 to CMS-2 Internal Code Conversion

CPLTB Unhashed CrST Codes

CRKTl Data Unit Codes

CRKT2 Fractional Modifiers

CS20T Object-time Routines

CSWTG Global CSWITCH Parameters

CSWTL Local CSWITCH Parameters

DATCT Data CIST Codes (Sub-table of LMTRX)

DBT Debug Parameters

DB VAL Debug Values (Sub-table of LMTRX)

DELIM CMS-2 Delimiters

DELMF Format Delimiters (Sub-table of LMTRX)

DELMS Special Characters

* Common to all phases of 'the Compiler

TABLE 3-2 Phase 1 Data Base

Sheet 1 of 4

- W-

MEM.
REQ.

10,000

180

180

30

180

N/A

9

10

16

10

64

15

37

10

58

40

40

7

156

10

MNEMONIC

DISH

DIXB

DMCHT

DOTl

DOT2

DSTRG

DSTRT

DTXXT

DUSWK

FILTB

FINT

FLACT·

FRMDS

FRMTB

GOTB

ILBUF

ILBUFC

IMPBF

IMPCC

IMPMC

INCHR

I VAL

LMTRX

.TEXT NAME

Directory Assisted CIST Pointers

System Index Registers (Sub-table of LMTRX)

Machine Types

Options Parameters

Print Options

Binary to Decimal (Sub-table of DSTRT)

~orking Storage Area for Number Conversion

TXXT Codes (Sub-table of LMTRX)

Data Unit Sortable Code

File Hardware

Table Element CIST Codes

File Actions

Format Descriptions (Sub-table of LMTRX)

Format TXXT Codes (Sub-table of L¥TRX)

GoTo CIST Codes (Sub-table of LMTRX)

Intermediate Language Buffer

(Sub-table of ILBUF)

Field/Variable Mode Buffer

IMP CIST Codes

Mode CIST Codes

Input Characters

~ORM Table Limits

LEVEL Matrix

TABLE 3-2 Phase 1 Data Base

Sheet 2 of 4

- 220 -

-y.mM.
REO.

1,800

63

9

13

N/A

2

7

15

6

100

4

26

26

64

2

55

MNEMONIC

LOOPS

LSTTB

LVLPT

MATRX

MFORM

MODT

NMBR

NMBRT·

PREGS

PRMT

PRNVL

PRTBI

RANGC

RELOG

RQMJH

RTOP

SCB3T

SCNTP

SCOUT

SETB

SPCND

STRNG

SUBTB

TEXT NAME

Vary Loop Pointers

Status CIST Codes

LEVEL Paren table

CS-l Delimiters (Sub-table of LMTRX)

MODE Format

Implied or User's Mode

Converted Decimal Number Storage

Converted Decimal Number Storage

Display Registers Format

Primitive table

Mixed Expression Paren Value·

Director Parent table

Range Exceeded Format

Relational Logical Operators

Required Major Headers

IL Operator Codes

Procedure Linkage CIST Codes

Numeric Work Area

Syntactic Term Storage

Ranges on SETs

Special Conditions

Unpacked Card Images

Subsript CIST Codes·

TABLE 3-2 Phase 1 Data Base

Sheet 3 of 4

- 221 -

MEM.
REQ.

11

4

6

-
16

4

2

2

13

18

24

12

12

23

6

24

6

4

8

25

16

160

14

MNEMONIC

SYST

TBCD

TBLDS

TBLPK

TBOVT

TEMP

TONTO

TOP

TREG

TRGT

VARTB

WDLST

WDTP

WOTPD

WRK

·
TEXT NAME

System Identifiers

Table Varying CIST Codes

Table Delimiters

Packing Descriptors

Table Overflow Names

Temporary Numeric Working Area

Overlay Table SCOUT

Operator Push-Down Stack

Machine Register Codes

Mixed Expression Target

VARY Operator Values

Word or Less CIST Codes

Word Type

Word Type Indicator

Hashing Work Area

TABLE 3-2 Phase 1 Data Base

Sheet 4 of 4
-tH-

MEM.
REQ.

12

4

3

3

4

4

-
100

25

48

25

34

1

1

1

o

o

Non-global CIST and Minor SCOT. The non-global or

local definitions of data structures, sub-routine

names, and statement labels of each program element

being compiled are placed in files on magnetic tape.

These files are referenced during subsequent passes

of the compiler as the associated program element

is processed; i.e., as each subsequent program

element is processed the non-global data for the

previously processed element is overlaid by the

data necessary for processing the current element.

This technique reduces computer memory required by

the compiler by providing only that data negessary

to process the curren~ program element.

Intermediate Language (IL). The IL is generated on

magnetic tape by the Phase I statement processors.

The IL generated for any source program represents

the program in a parsed machine independent format

that allows any CMS-2 Phase 3 generator, for a speci

fic computer, to generate the associated language

-for that computer.

The IL consists of control words and

operand words. The control words are subdivided

into fields used to designate the class of computer

operation desired such as store, branch, Boolean

test, and logical test. Also, control words give

the mode of interpretation of the operand words

following the control word, and pointers to items

of the compiler identifier tables defining selected

- 223 -

operand references of the parsed source statement.

The operand words primarily consist of operand in

terpretation cues supporting the control words of

the IL. The combination of control and operand

words of the IL describe the basic machine indepen

dent computer operations to be performed and allow

the object generators of Phase 3 to select the

actual machine instructions necessary to perform

the indIcated operation. It is this combination

of machine instructions that represents the object

language form of the compiled source program.

An example of the IL generation is as follows:

Sou~ce Statement:

SET A TO B+C $

IL generation

1. Add

2. CIST pointer to B

3. CIST pointer to C

4. Store

5. CIST pointer to A

- control

- operand

- operand

- control

sult as

- operand

word

word, first operand

word, second operand

word, previous re-

second operand.

word, first operand

The IL shown above represents the parsed form of the

source statement. The first operation performed is the addition

of variables Band C. The next operation is the storage of the

result of the addition in variable A. The general operations,

ADD and STORE indicated in the IL, are then resolved by the Phase

- 224 -

3 process into the actual machine instructions necessary to per

form the operation on the target computer

3.2.3 Phase 3, Pass I Object Code Selection

Phase 3 for the CMS-2 compiler generates the final

machine code of the program being compiled. The current CMS-2

compiler has several ?hase 3 code generators, i.e., one for

each type of computer on which CMS-2 language programs are used.

When a source program is submitted to the CMS-2 compiler, the

target or object computer is named. The appropriate Phase 3

generator for that computer is then used during the compile.

The code generator (Phase 3) referenced in the balance of this

section is for the UNIVAC CP642B computer.

Phase 3 for the CP642B computer· is a two-pass operation.

The first pass generates partial object code instructions and per

forms ·all allocations of the object code. The second pass then

completes the object instructions and then generates the selected

outputs. Figure 3-5 illustrates the processing flow of Phase 3.

Phase 3, Pass I produces partial object code generation

of the program being compiled from the IL form of the program and

definitive data collected by the Phase I syntactic analysis. The

inputs to the Phase 3, Pass I process are as follows:

o Local Constant and Identifier Symbol Table (CIST)

and minor Systems Communications Table (SCOT) for

each element of the program being compiled (magnetic

tape).

- 22; -

PHASE

!.
MEMORY

GLOBAL
CIST

&
MAJOR

SCOT

PASS J - CODE
SELECTION AND
ALLOCATION

MEMORY

GLOBAL
CIST

&
MAJOR

SCOT

PASS 2 - FINAL
INSTRUCTION

AND
OUTPUT GENERATION

FIGURE 3-5 PHASE 3 PROCESSING

- 226 -

o

o

Global CIST and major SCOT for all elements of the

program being compiled (computer memory) .

Intermediate Language (IL) form of all elements

of the program being compiled (magnetic tape).

The outputs from Phase 3, Pass 1 are as follows:

~ Local CIST and minor SCOT for each element of

o

o

o

o

the program being compiled (magnetic tape).

Global CIST and major SCOT for all. elements of

the program being compiled (computer memory).

Final Intermediate Language (ILl) for all elements

of the program being compiled (magnetic tape).

System output containing generated error messages

(magnetic tape).

Source images of the program being compiled

(magnetic tape).

The CIST data generated by Phase 3, Pass 1 is the same as that

received from Phase 1 with the appropriate allocation for all

constants and identifiers now attached. Further discussion of

Phase 3, Pass 1 data and ILl is given in Subsection 3.2.3.4.

The Phase 3, Pass 1 (CP642B version) of the CMS-2

compiler consists of four.major components: Pass 1 Control,

code processors, utility routines, and the Phase 3 data base.

The following paragraphs describe each of the above components

of Phase 3, Pass 1.

3.2.3.1 Pass 1 Control

The Phase 3, Pass 1 Control routine is entered upon

completipn of Phase 1 processing. The control routine then ini

tializes Phase 3, Pass I processing by loading the local CIST

- 221 -

and minor SCOT tables into computer memory. The IL tape is read

and the appropriate processor is called to generate the partial

machine codes and address allocations for the IL item. If

source output of the program being compiled was requested, the

card image corresponding to the IL item is dumped on a magnetic

tape. As each IL item is processed the partial machine instruc

tions are placed on the ILl tape and another IL item is extracted.

When the end of the current element is reached, the completed

local CIST and minor SCOT tables are dumped to magnetic tape,

and the local CIST and minor SCOT for the next element are placed

in computer memeory for the processing of the IL items correspond

ing to the element. The Pass 1 process continues until the end

of the IL tape is reached at which time control is returned to

the Master Controller of CMS-2. Figure 3-6 illustrates the

functional flow of the Phase 3, Pass 1 processing described above.

3.2.3.2 Pass 1 Code Processors

The Pass 1 code processors are called by the control

routine to process specific IL items. There are three basic

classes of code processors defined as follows:

o

o

o

Declarative Code processors - which process IL

items corresponding to the declaration state

ments of the CMS-2 language.

Imperative Statement processors - which process

IL items corresponding to the imperative state

ments of the CMS-2 language.

Machine Code processors - which process IL items

corresponding to direct (machine code), or mnemonic

-~-

r--------------------~--------------------, PHASE 3, PASS 1

PHASE 3, PASS 1
CONTROL

~C-O--------------------------,
I (DE PROCESSORS •
I ~-------. !/ M; I P------~-, .-:a __ -=:;.rnI, __ ,=>:!E1" - .. ----s
I "'~ I i'£- V i.:j). ,~ I * ~7

UTILITIES
I DECLARATIVE IMPERATIVE MACHINE CODE I
I CODE PROCESSOR STATEMENT PROCESSOR I
I (DCP) PROCESSOR (ISP) (MCP) I
I ~ " 'I. I I V ·V' ,,. I
L ___________________________ J

._--..
"

FIGURE 3-6 PHASE 3, PASS 1 PROCESSING

statements which appeared in the source program

being compiled.

Each of the above mentioned processors have several

associated routines which in turn utilize the provided utility

routines for Phase 3, Pass 1. Table 3-3 provides a list of the

Phase 3, Pass 1 code processors and the size of each. In addi

tion, the utility routines used by each processor are also given.

Where memory requirements were not available, it is denoted in

the table by N/A.

3~2.3.3 Pass 1 Utilities

The Phase 3 utility routines support the code processor

operations. The utility routines perform such operations as ex

tracting IL items, formatting and writing the ILl, table searches,

and miscellaneous computations. Table 3~3 lists the code pro

cessors and the required utility routines to support the code

processing operation.

3.2.3.4 Pass 1 Data Base

The data base for the Phase 3 process is basically the

same as for Phase 1. The Phase 3 process utilizes the data to

complete the allocation process and for final object code gene

ration. The primary data tables are the previously described

eIST and SCOT tables for storage of constant and identifier sym

bol storage and system communication respectively. As the con

stants and symbols in eIST are encountered during the Phase 3,

Pass 1 process the appropriate final allocation of the constant

or identifier is calculated and placed in the eIST item. Table

3-4 lists the major data structures referenced during th~ Phase

3, Pass 1 process.

- 230 ..

CDOUT- ~ x
Wllll- 163 x x x x x x x
CDENO- 1. x x
,esCR - 29 x x
500Cl10 - 5 x x x
PR(n- 123 x
DlMEA .. 16 x
GLAI- 47 x
C5CRIO - 5 x x
ClCRCI5T -:J) x
IASEINIT- 19 x x
AISDINIT - NIl. x x I X
AlSPlNI1- 53 X ! X
IlllNIT .. 9 X x I X
DUM'QUE - 38 X I X I X

PlECON - 39 X J X
5CANCl5T - 77 X I X I
"ECONILL" 36 X

WRILIENO .. 17 X X

GCL- 21 X X X x x x X
DCPOOL -45

DCPSIZ - 55 X

IEORG -I X X

Wl110RG- 7 X x X X X x
GUIL-", x X x X x X X x X

IDESIG - 23

ICVI OESIG .. 21'

MONOUNDO ... 43 x i
,KERl- :J) x I
nUBN -21

nUCN .. 170 x I
QUElItK - 12 I X X x X X x x x x x
I1NOCT- 26 X I
SE CHT - 56

'ACK - 71 x I
LOCAT - 62 X

PST T - 52

PEND .. 167

PEXIT- 10< X

PU'ACKL-13 x
"PACKC - 6

GETlAI- 15 x x x
PACKILl .. 13

PRlESETI -I ! X I
PRACKL - 13 X I
G!TMlClV - 23 x X
CKCON-29 x
I'KILOUE -4 x I x X x x x x X X

"OIG- 5 x·
GUCISTI-2$ x X x X

S"CI5TI- 24 x x
I.JCON5T- 97 X X X X

DUQUE - 25 X X X

AQUASE - 15 x X! x X x X X I X x x
ISPINIT- 29 I I I X X x X

5OCP-643 I X x ! X x
SHIFTA .. 28 ! X X

1AN0PS - 50 X

IADD- 115

,AGPRE .. 123 I
IAGINCR-63 I
.... G -29

GITO'- 106 X X X X

NOTE. NIA MEANS NOT AVAILABLE

TABLE 3-3
PHASE 3, PASS 1 CODE GENERATORS/UTILITIES CROSS CORRELATION

SHEET 1 OF 3

- 231 -

x

x

x

x

x
X

x

x

x X

x

fF12fX - 17 X

ffX2fl- 7 x x x x
RAntiNG - 18

G£1EM'WD - 7 x X

l$ntK·63 X .X

G£11t£G-l1

RfADIL4 - 7
IEAD£NDO' - 25

WRILtOUT - 43

PWAITLA8 - 58

UPDATE - 13

flLl- 58

WlIUK - 16

IPKllQS - .01

IPKILQ-84
CKSUOC - 39

GETSUOII- 35

SMEGI - 15

ICKRPT - '11
$QAC-l1

CHNGAQI- 321

AQMOVE - 20

AQCL£AR·16

CLOaAQ - 21
'KAQSUB - 39

$UOCLOI- 37

QPROCSEG - 15

COMlAQW - 17

COMPAQI· .1

CKAQSUt- 51

QXfRCRD - 11
QXfRIN$T - 32

QUPIfGPNT· 61

QMOVE - 19

SIRCISTA - 2.

GCKCON- 69

x x
X

x X

x X

X X

X

X

X

x

x
x
X

X

X

x X x
X X X x
x X X

X X X x
x X x

x

X

x
x
X

X

x

X

X

X

X

x
X

X

X

X

x
X

X

X

X

x

X

X

x
X

X

x
X

x

x I
x

I X X

X

x
X ,

X

X

X X

x X

X X

X X

X X

X X
x • X

X X

X x

x

X

X

AlIGN-29 X

'KfUNCT - " I X X
lAGate-6 I X

ISUlT-127 I , X

x

x
X

X

X

X

X

X' X

X X

X X
X X

X x
x X

X x

X

X X

x X

x

x x x X x
X x X x X

X X X X x
X X x x x
X x X X x
X x x X X

X x x x
X X X X X

X X X X

X X X x
X X X X

X X X X X

x x x X

x
x
X

X

X

X

X. X X

x
x

x
x
X

x
X

x
x
x

x
x
x
x
x
X

x
x
X

x
x
x
X

x

x
x

X

X

X

X

x
X

X

X

X

X

x
x
X

X

I
I
!

X !
X I

X I

X :

X ,

X :
, Z '

: X

I X

: X

, X

I

i
I

X

$OCPMOD- 17 'I I X X X X X X X X X
~5OC~~=--~I=. ____ ~ __ +-__ +-__ +i ___ ~!. __ -+ __ -+ __ -+ __ -+ __ -+ __ -+ __ -+ __ -+~X~~X~~X~~X~~X~ __ -1~X~~-1~X~ __ -i~X~ __ -1 __ -i~X~,. SWMG- 21 I X X X X X X X X X
soalC ... 74 I X)(X X X X X X X I

SUIG-213 J i X X X X X X X X X I

,ACKSUI-32 ! I : X X X X X X X X X
5OCP1IIS-D I I , ' X X X X X X X X X
~G~ETOP~AD~_~1~2---t--+---T:---t:--~--~I---t---tI---r--f---+---+---I~x~--~X~~X-t~-t~-r---r~;---+-~+-~~~---t---t~-.

~K~MO~DC~.~I~I---t--+---t-i--+-~,---;---t---t,---r--~'---~'--+-~'~~~X~~X-t---t---r---r--1---t---t-~~~---t---t---1
~KMO~~~~_~6~---r--+---~I---t---+I---t---t---+---+---+---4,---t---+--~~'~X~~X~--~---t---1r--1r--1r-~--~--~--~-1~-1--'

ICMODOP-43 I I I I i X X

ICMODS - 158 I I X X

I!CMT£MI-1 i : X X I
~1S~ftAD~~-~ui----1~-+---+I---+-I--~'---+---+---+---+---+--~:---+---+---+-=X-+-=X-+r-X-+---+---i~X-i---i-:X-i---t---t---i----I~_

NOTE. NIl. MEANS NOT AVAILABU

TABLE 3-3
PHASE 3, PASS 1 CODE GENERATORS/UTILITIES CROSS CORRELATION

SHEET 2 OF 3

- 232 -

,

1111 ~ t " • , .~. • I f ~ -/ RrJ"~;!i~e;;o~ "., -'j' ...
PHASE 3. PASS I ----... 8 ., ,~ ~ 8 a ~ ~ ff (f i' t .I ~ , ~ I (j .f ~ IP (;=".P'
CODE G[NERATORS f ~.... ~''i ;:~ ~ ; 6 .,Tcf f Q~ ~ ~~ ~~ ~ /,0 .p~ ~,... ~f ~;;. ~ .J...rf f~ -t? ~

./ ./ ,~:?:{~jZ~~;%;:f.V~;1 ~.;1,*?tij/~~!/!j~."lI;:"l UTILITY ROUTlNES ,.... "i Q e,;:.... ~~~ ~ £::o~ ~ ~.':?.:~ ~ $' "~/:-";;'O ~/"" C:R ~~ ~ ~,fJ..o- ~A;.!1" ~~.Q

l ;-! I ;q,~j""~t;TQ6 :; ~8.f lf~f~~?(j~ ~(jf J'~~ lot $ ~ ~ ... ~ ~o
'MUL~ 49 x
lAG" .. 37 X

IDIII .. 87 X

ISTIlA.O- 27 x
IAGnMp .. 28 X

ICPL .. 32 x
lEX' .. 76 X

lABS .. 71 X

IFLOAT .. 81 X

CONOPM-n x
COMAQ-66 X X X x X

IAOPS- 50 X X X

IfPCI'L" 32 X

GETfl'M-- 10 X

IFrAas .. 36 X

nASEO'-1 X X x
ICMOO- 51 x x
GEHMP- 26 X X

AltGNe- 39 x X X
POCTXC .. 7 X X X
SAVE 6 X

SAVES-II X

ISGPRE .. 51 X

STRAlIGN .. 26 X

snop .. 51 X X X X X

ISGRPl- 117 X
GETSKOES .. 7 X X

ellOp .. 41 X X

l'iGMW- 54 X

MWlOOP- 320 X X

ISGETMI' .. 8 X

ISGTMPR .. 6 X

RElJP .. 36 X X X X X
ISPINIT .. 29 X X X X X
COMPOPS .. 27 X X
POCTXPC .. 8 X X

RESA- 6 X X
RESB .. 11 X X
ISG8ARS .. 73 x
FKVRBl- 39 X x x x x x x x x x x x x X
GETCON -4 X x X X X
AlIGNH .. 9 X
lIGAND .. XI X
I8OOR .. 36 X
IIGCP- 19 x
IBGREl- 212 X
laGope - N/A X
PKCltT "'''8 X X X X X X X X
MKFUNCT ... 31 X X X X X X X X
ITGV- 99 I X
l$PROC - N/A X X X X X
wiens - 76 X X X
GETCISTA - 25 x X x x x x x x ~- x x x X
IFllESV - 29

X
IDUSTl- " X
IOFORMA T - 65

X
tOGNAME - 121

X
ITOUSTl- 59

X
IlOUSll- 116

X
IFOUSTl- 9S I

IVDUSTL - 404
i x

X

NOTE, N/A MEANS NOT /.VAllABLE

TABLE 3-3
PHASE 3, PASS 1 CODE GENERATORS/UTILITIES CROSS CORRELATION

SHEET 3 OF 3

- 233 -

MNEMONIC TEXT NAME

CIST* Constant-and-Identifier Symbol table

DIMIT* Dimension table

FPRAM* Formal Parameters table

GLTBL* Generated Label table

HOLOV* Hollerith Overflow table

MJSCOT* Major Systems Communications table

WILIT Write ILl Input table

CILT Current IL table

POCT Parsed Operand Control table

ILQUE ILl Code Outputs

TWST Temporary Word Status taBle

AQTBL Accumulator Status table

BRTBL Index Register Status table

TOPT Optimization Pointer table

RELJT Relative Jump table

CCONJ Converse J

SUBGT Subscript Generator table

STRT Store table

ITGT Test Generator table

INDXT Index table

CSITP Table Parameter table

VTAB Vary table

CUIR Compiler Use table

* Common to all phases of the Compiler

TABLE 3-4 Phase 3, Pass 1 Data Base

-2,.-

MEM.
REQ.

10,000

180

180

30

180

N/A

4

120

54

42

The Phase 3, Pass 1 process also generates the final

IL machine dependent form of the program being compiled. This

IL called ILl consists of data strings representing card images,

statement labels, machine instructions or words of data. There

are several formats for the ILl items, but basically each pro

vides the output processors of Phase 3 with the information

necessary to produce the final outputs.

3.2.4 Phase 3, Pass 2 Output Generation

The Phase 3, Pass 2 of the CMS-2 compiler is the out

put phase. The processing receives as input the previously

described local and. global CIST tables, major and minor SCOT

tables and the ILl form of the program being compiled. From

these inputs Pass 2 processing formats various object code

(machine executable instructions), and p~ogram compilation list

ings. The actual outputs produced by Pass 2 are selected using

a source header card read and processed by Phase 1. Figure 3-7

illustrates the structure of Phase 3, Pass 2.

Phase 3, Pass 2 is composed of a control routine, out

put processors, and utility routines. The following paragraphs

describe the processing of each of the components.

3.2.4.1 Pass 2 Control

The Phase 3, Pass 2 Control routine receives control

from the Master Controller upon completion of Phase 3, Pass 1

processing. The control routine then calls the individual out

put processors to produce the selected outputs for the program

being compiled. Upon completion. of all output generation, control

is returned to the Master Controller for post-compile house

keeping.

-~-

--

PASS 2 ~ _
CONTROL ., r

.A.
-y

EXTRACT
~ • CIST ...

ELEMENT

j".
~,..

-'" - -r

EXTRACT
~ ., IL 1 .,

ITEM

i>

PASS 2 '"'- -..
UTILITIES ... ,

1+

COMMON
POOL

PROCESSOR

SYMBOLIC
ANALYSIS
PROCESSOR

SOURCE
LISTING

PROCESSOR

CROSS
REFERENCE
PROCESSOR

ABSOLUTE
BIOCTAL
OBJECT

PROCESSOR

RELATIVE
OBJECT

PROCESSOR

RELATIVE
BINARY

PROCESSOR

- -

- - SYMBOL
ANALYSIS

SOURCE
LISTING

GLOBAL CR

- LOCAL CROSS
REFERENCE

-
- CMS-2

BI NARY CAR DS

FIGURE 3-7 PHASE.3, PASS 2 PROCESSING

.. ~)6 -

3.2.4.2 Pass 2 Output Processors

The Phase 3, Pass 2 output processors generate the hard

copy and object (machine instructions) output for the CMS-2 com-

piler. The output processor for each selected output is initiated

by the Pass 2 Control routine. Once control is +eceived, each

processor runs to completion using the generated data from the

other phases of the compiler to produce the desired output. Each

processor is dependent on the utility routines described in the

following paragraphs for specialized computation. Table 3-5 .lists

each processor of Phase 3, Pass 2 identifying the utility routines

necessary in support of the specific output process. Explicit

memory requirements for the Pass 2 output processor are not avail

able for this report and therefore are not included in the table.

3.2.4.3 Pass 2 Utilities

The Phase 3, Pass 2 utility routines support the out

put processors by performing operations such as extracting ILl

items, extracting CIST items, output to magnetic tape, and code

conversions. Table 3-5 identifies the utilities required by each

output processor. The memory requirements for the utilities of

Pass 2 are not listed in Table 3-5 because they were unavailable

for this report.

3.2.4.4 Pass 2 Data Base

The Phase 3, Pass 2 data base consists of tables con

taining the accumulated data from the previous compiler passes.

The data includes the completed global and local CIST, major and

minor SCOT, and the ILl from Phase 3, Pass 1. Table 3-6 lists

- 237 -

OUTPUT GfNERATORS
II- ... p..\0'l- ,~

I r. ... p..\0 O,<"'~ ,;:,\~ OU

UTILITY ROUTINES <. 0'<"" ,S\,,,,O "",0 \,,,,0,;:,\ ~. 0 ~\~'< ~~
{< \.<,. ,,,,~,;:,\ O~\,O" \."S ~ ... c..'< \.'s ,,6 \.'s 0 oU\~ p..\'''\.'< ~,,,v. "''''cJo\O''' ~\, ... '< '"

1
... \~ \p.~'< oo\. ~,,~ ,,0'" "-~,< ... ,,, c..~'" c..ott-~ ott-~~ \.\.0 '-~~~

, ~."o~ ,'\.\,,(Jo, <.ott-~ " tt-"o~ ~"o <. ... 0"" ~ "',,"' , c..'" ~ <.'" \ c c.."'\' ~, ... '< ' I'
~.,,<. \,'\.\ ~tt-'\. !>",' !> ' ~ ... ' - <c.'I> if"''' '<'\. '!t'\.'\.0 ~p..'I1r-

o'<~ 0'< ~."., ~."., ~.,,'I; ~., ~.,,'11' ~."., ~.""" ~., p.\!i

PYERR - PAIlITY ERROR CHECK X

PAIROF - PAIlITY ERROR CHECK X

COJJ - MAP TAI'£ OUTPUT CONTROLLER X X X X X

LABHCONV - INTERNAL TO 8090 CODE CONVERT X X X X X

SPLASH - OUTPUT CIST FOR COM POOL X

P3BHEADER - LIST MAJOR HEADER X X X

PTAPR - PRINT BUFFER PRESETTER X

flLESPR - fiLES PROCESSOR X

PTA - PRINT ONE SA BUFfER X

PTONC - PRINT DfCIMAL NUM8£R X

PTHfO - SA CLASS HEAOI'R PRINTER X

nSHC - PRINT SHORT MESSAGE X

fORMATSPR - FORMATS PROCESSOR X

fROMTWO - POSITION CHARACTERS X

TABLESPR - TABLES PROCESSOR X

PTOIM - TAnE DIMENSION X

PTIND - MAJOR INOEX PRINTER X

STRING - CHAR STRING MOVING X X X X

SWiTCHESPR - SWITCHES PROCESSOR X

AIlEA - FORMAL PARAMETER LOCATOR X

AIlEAPR - PARAMETER PRESETTER X

VARIABlEPR - VARIABLE PROCESSOR X

PROCFUNCPR - PROChUNC PROCESSOR X

LOCINDEXPR - LOC-IN DEX PROCESSOR X

ADDPOS - LISTING ADDRESS POSITIONER X

BlNOCT - BINARY TO OCTAL 8090 CODE X X X

fORMATTER - CARD IMAGE PRINTOUT FORMAT X

HOLCONV - HOLLERITH CODE CONVERSION X X X X

ILIOPADR - OPERAND ADDRESS EVALUATOR X X X X X X

ILIOPSCAN - OPERAND ADDRESS LOCATOR X X X X X X

REMNEGEN - REVERSE MNEMONIC GEN. X

YOPPOS - POSITION OPERAND X

TEMPOV - OVER flOW MESSAGE PRINTER X

CISTEQFND - EQUALS LABEl FINDFR X --
BOPOUT - BINARY OUTPUT X

CLEARTABI - CLEAR TABLE X

DACOUT - OAC CARD FORMATTER X

EDePROC - EDC CARD FORMATTER X

ERCOUT - ERC CARD FORMATTER X

EXTERNAL - EXTERNAL REFERENCE CHECKS X

GETNXT - GET NEXT CIST ENTRY X

INSTC - PARAMETER PRESETTER X

RELOCPROC - RELOCATION BIT POSITIONER X

TSSUB - TSF CARD FORMATTER X

P3BINST - OUTPUT INS TR. IMAGE GEN. X X X

EXTERNPROC - ERC CARD PROCESSOR X

P3BCOMPC - CS-I COMPATIBLE HEADER & EOF X X

P3BCS lOUT - CS-I OUTPUT CONTROLLER X X

RELCHAIlSET - RELOCATION CODE POSITIONER X

GENERLAB- GENERATED OI'£RANDADDRESS X X X X X X

ALPHABETER - INTERMEDIATE CIST ALPHABETIZER X X

CNVRTSRT - CONVERT TO SORTABLE CODE X

CNVRFSRT - CONVERT FROM SORTABLE CODE X

Note: Memory requirements for generators and utilities are unavailable.

TABLE 3-5 PHASE 3, PASS 2 OUTPUT GENERATORS/UTiLITIES CROSS CORRELATION

MEM.
MNEMONIC TEXT NAME REQ.

CIST* Constant-and-Identifier Symbol table 10,000

DIMIT* Dimension table 180

FPRAM* Formal Parameter table 180

GLTBL* Generated Label table 30

HOLOV* Hollerith Overflow table 180

MJSCOT* Major Systems Communications table N/A

DELTA CIST Codes for SA Class -
CHR Character table -

ARET -
FILTB File table -
NAMEQ -
FLCNQ -
USESQ -
EMBRO -
CSITA -

* Common to all phases of the Comp1ler

TABLE 3-6 Phase 3, Pass 2 Data Base

- 239 -

the tables referenced by each output processor during the associ

ated generation. The memory requirement for the Pass 2 tables

was unavailable for this report.

3.3 Summary

The CMS-2 compiler is a multi table-driven compiler

that uses internal tables to control syntactic analysis and

parsing of the source input statements. The parsing algorithm

used in the compiler is "Reverse-Polish String Notation" which

allows machine instructions to be generated in the correct order.

This means that the computer operations necessary to evaluate

complex expressions from a source statement are generated in the

correct logical sequence according to standard algebraic rules.

The CMS-2 compiler is a two phase compiler, where the

first phase (Phase 1) performs syntactic analysis and parsing

of the source input producing an intermediate language (IL).

The second phase (Phase 3) performs actual machine code gene

ration and produces the compilation outputs. (Phase? ~f

the compiler is a proposed optimization pass that has not been

implemented) .

The tables presented in this section indicate the

component breakdown of the CMS-2 compiler and show the inter

dependent relationships existing between the major operations

(processors) and supporting operations (utilities) and data

designs. In the following section these tables are used to

show if and how the CMS-2 compiler design can be implemented

on the AADC.

- 240 -

APPEJlDIX B

- 21.1 -

LIST OF ATTENDEES

1. P. Andrews - NA VSHIPS

2. D. D. Achterberg - Hughes Aitcraft

3. R. Balestra - NAVAIR

4. R. Y. Beesburg - NADC

5. E. Bersoff - Logicon

6. B. Blair - FCPCP

7. P. Brady - NADC

8. C. R. Bremer - NAVCOSSACT

9. C. D. Caposell - NAVAIR

10. V. Cerf - UCLA

11. M. Cove - SYSCON

12. LCDR J. L. Grandall, Jr. - NAVORD

13. A. J. Deerfield - Raytheon

14. CDR R. M. Dove, Jr. - OPNAV

15. CAPT R. A. Dunning - FCPCPAC

16. L. D. Egan - Logicon

17. M. Ellis - PRD

18. R. B. Engelbach - SAMSO

19. R. S. Entner - NAVAIR

20. R. G. Estell - FCPCPAC

21. R. S. Firey - NAVMAT

22. LT J. R. Foster - AFAL

23. N. Frost - ASNAG

- 242 -

LIST OF ATTENDEES - continued

2~. G. G. GaJ.lagher - SAMSO

25. R. Gauthier - RLG Associates

26. A. Glista - NAVAIR

27. D. Haratz - USAECON

28. J. Henderson - Logicon

29. R. Hong - Grumman Aerospace Corp.

30. J. Ihn~ - NRL

31. R. Jenkins - SYSCON

32. R. Kazerman - ITT

33. S. G. Kennedy - NAVMISCEN

34. E. Kitterman - NAVCOSSACT-

35. J. J. Lavoie - CSC

36. E. Lee - NASA/MSC

37. F. J. Lueking - NAVAIR

38. C. F. Mattes - NADC

39. LT(jg) L.C.G. Miller - FCPCLANT

40. J. D. McGonagle - Burroughs

41. R. E. Nimeilsky _.- SDC

42. J. P. O'Brien - CSC

43. Y. Patt - ECOM

44. C. B. Peters - Informatics

45. CAPT D. C. Peterson - USAF!AFSC

46. R. Peretti-- Grumman Aerospace Corporation

- 2h3 -

LIST OF ATTENDEES - continued

47. F. R. Reinert - NADC

48. G. A. Rischall - Hughes Aircraft Co.

49. R. L. Samtmann - NADC

50. B • H. Scheff - PRD
.
51. B. Shay - NRL

52. L. Shirley - Infor.matics

53. C. F. Showaiter - HAVAIR

54. J. F. Smith - Honeywell

55. W. Smith -. NRL

56. J. ·Stiles - PRD

57. K. P. Thompson - NRL

58. K. L. Thurber - Honeywell

59. J. Trimble - ONR

60. B. Wald - NRL

61- J •. A. Ward - HAVORD

62. A. Wenk - Westinghouse

63. B. A. Zempolich - NAVAIR

- 2la4 -

lIarES

- 24S -

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245

