
Huawei LiteOS LwIP Developer Guide

Issue 01

Date 2017-10-21

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2017. All rights reserved.
No part of this document may be reproduced or transmitted in any form or by any means without prior written
consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and the
customer. All or part of the products, services and features described in this document may not be within the
purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information,
and recommendations in this document are provided "AS IS" without warranties, guarantees or
representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: http://www.huawei.com

Email: support@huawei.com

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

i

http://www.huawei.com
mailto:support@huawei.com

Contents

1 Huawei LiteOS lwIP Developer Guide.. 1
1.1 About This Document.. 1
1.1.1 Scope of the Document..1
1.1.2 Intended Audience...1
1.1.3 Revision History.. 2
1.1.4 Contact Us... 3
1.1.5 Copyright... 4
1.2 Introduction to Huawei LiteOS lwIP..5
1.2.1 Background..5
1.2.2 Purpose.. 5
1.2.3 Scope... 5
1.2.4 Third Party References.. 5
1.2.5 Standard Compliance...6
1.3 Huawei LiteOS lwIP Features.. 6
1.3.1 System Requirements.. 6
1.3.2 Supported Features.. 6
1.3.3 Unsupported Features.. 10
1.4 Developing Applications.. 11
1.4.1 Prerequisites...11
1.4.2 Dependencies... 11
1.4.3 Structure of Release Package...11
1.4.4 Using lwIP... 12
1.4.5 Integration Steps.. 12
1.4.6 Optimizing Huawei LiteOS lwIP.. 15
1.4.6.1 Throughput Optimizations..15
1.4.6.2 Memory Optimizations...15
1.4.6.3 Customization...16
1.4.6.4 Huawei LiteOS lwIP Macros..16
1.4.7 Sample Codes.. 23
1.4.7.1 Sample Code for UDP.. 23
1.4.7.2 Sample Code for TCP Client.. 26
1.4.7.3 Sample Code for TCP Server... 29
1.4.7.4 Sample Code for DNS.. 32

Huawei LiteOS LwIP Developer Guide Contents

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

ii

1.4.7.5 Sample Code for SNTP.. 34
1.4.7.6 Sample Code for DHCP Client...34
1.4.7.7 Sample Code for DHCP Server.. 35
1.4.7.8 Sample Code for PPPoE Client.. 36
1.4.8 Limitations...36
1.4.9 Design Specification and Constraints..37
1.5 Huawei LiteOS lwIP-BSD Compatibility.. 37
1.6 Network Security Redline Description...64
1.6.1 Network Security Risk Rectification...64
1.6.2 Network Security Declaration... 65
1.7 lwIP Version Building.. 66
1.8 FAQs... 67
1.9 Glossary.. 67

Huawei LiteOS LwIP Developer Guide Contents

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

iii

1 Huawei LiteOS lwIP Developer Guide

The Huawei lwIP Developer Guide provides information about the Huawei LiteOS lwIP. It
includes programming information, sample codes, descriptions for functions, structures,
callback functions, constants, and a brief introduction to the lwIP protocol.

This document is for Huawei LiteOS lwIP V100R001C20.

This guide is organized as follows:

1.1 About This Document

1.2 Introduction to Huawei LiteOS lwIP

1.3 Huawei LiteOS lwIP Features

1.4 Developing Applications

1.5 Huawei LiteOS lwIP-BSD Compatibility

1.6 Network Security Redline Description

1.7 lwIP Version Building

1.8 FAQs

1.9 Glossary

1.1 About This Document
This chapter describes the scope, intended audience, and revision history of the document. It
also provides the contact details for technical support.

1.1.1 Scope of the Document
The main focus of Huawei LiteOS lwIP development is to adapt lwIP to work with Huawei
LiteOS and also to implement some additional features like DNS client, DHCP server and
shell command.

1.1.2 Intended Audience
The intended audience of this document are:

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

1

l Developers developing applications on Huawei LiteOS.
l Module Leads
l Testers
l Test Leads
l System Engineers
l Test System Engineers
l Members of the Cooperating Teams
l Documentation Developers

These users will be primarily developing applications on top of the various supported
features.

1.1.3 Revision History
This topic describes the revision history of the document.

Revision History Date Change Description Author

VPP V100R001C00
(lwIP)

10-May-2016 l Initial Version VPP IDG Team

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

2

Revision History Date Change Description Author

VPP V100R001C10
(lwIP)

27-Jul-2016 l [VPPTECH-26]:
BSD like socket
interface (support
multi-thread
bidirectional data
transfer).

l [VPPTECH-161]:
lwIP provides API for
getting the TCP/IP,
UDP/IP connect
information.
Refer to the document
Huawei LiteOS lwIP
API Reference.chm

l [VPPTECH-159]:
lwIP provides an API
for configuring the
pbuf RAM size.
Refer to the document
Huawei LiteOS lwIP
API Reference.chm

l [VPPTECH-160]:
lwIP provides API for
setting the wifi driver
status.
Refer to the document
Huawei LiteOS lwIP
API Reference.chm

l lwIP provides a
secure SSP callback
registration API for
registering mandatory
user secure functions.

VPP IDG Team

VPP V100R001C20
(lwIP)

24-Oct-2016 l [VPPTECH-238]:
lwIP provides
PF_PACKET option
on SOCK_RAW.

VPP IDG Team

1.1.4 Contact Us
This topic gives the detail information about the contact person.

How to contact us

You can contact us by sending an email to ashutosh.prakash@huawei.com.

Services

You may contact the above mentioned account for any queries relating to the usage of the
application. We will reply to you within two working days. In order to help us answer your

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

3

questions in time, Kindly submit your questions with as many details as possible, such as
providing the information about the version, the OS adopted, and so on.This ,will help us to
address your queries quickly and more effectively.

Defect

In case of any defects, kindly mail your feedback to the respective developer. For IDG related
issues you can send mail to ayan.dutta@huawei.com.

Requirements

You are welcome to submit your requirements of lwIP algorithm to Huawei Customer
Requirement Electronic Flow.

Technical Communication

Our lwIP team is willing to share the technical achievements with any other product
developers and is hoping to borrow your valuable experiences as well. If necessary, contact us
through this account.

Training

This mainly includes the knowledge for beginners and introduction to the subject on lwIP
algorithm.

Others

Our lwIP team is always open to any opinions, suggestions and comments to meet your
expectations.

1.1.5 Copyright
This topic gives information about the copyright.

Copyright © 2016 Huawei Technologies Co., Ltd. All Rights Reserved

No part of this document can be reproduced or transmitted in any form or by any means
without prior written consent from Huawei Technologies Co., pvt Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the trademarks or registered trademarks of Huawei
Technologies Co., Pvt Ltd. in the People's Republic of China and certain other countries.

All other trademarks and trade names mentioned in this manual are the property of their
respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between
Huawei and the customer. All or part of the products, services and features described in this
document may not be within the purchase scope or the usage scope. Unless otherwise
specified in the contract, all statements, information, and recommendations in this document
are provided "AS IS" without warranties, guarantees or representations of any kind, either
express or implied.

The information in this document is subject to change without notice. Every effort has been
made in the preparation of this document to ensure accuracy of the contents, but all

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

4

statements, information, and recommendations in this document do not constitute a warranty
of any kind, express or implied.

1.2 Introduction to Huawei LiteOS lwIP
This chapter provides a brief description about Huawei LiteOS lwIP.

1.2.1 Background
Over the last few years, the interest for connecting computers and computer supported devices
to wireless networks has steadily increased. Computers are becoming more and more
seamlessly integrated with everyday equipments, and prices are dropping. At the same time,
wireless networking technologies such as Bluetooth and IEEE 802.11b/g (WiFi), have become
common. This creates many new fascinating scenarios in areas such as healthcare, safety and
security, transportation, and processing. Small devices such as sensors can be connected to an
existing network infrastructure such as the global Internet, and monitored from anywhere.

Huawei is entering this IoT (Internet of Things) technology with connected sensors and
monitoring devices. The main challenge in connected devices is to implement the light weight
OS and protocol stacks, which helps in reduction of manufacturing cost. And also Huawei is
going to migrate all existing conected device to light weight protocol stack. For example
existing Huawei's product IP camera (IPC) uses Embedded Linux OS and BSD Linux TCP/IP
stack. This requires huge memory (RAM and ROM) for its execution. Huawei wanted to find
an alternate light weight OS and TCP/IP stack for IPC (without compromising performance),
which can reduce the memory requirement by half and it saves 20 RMB per device from
manufacturing perspective.

1.2.2 Purpose
Huawei was using Embedded Linux and BSD TCP/IP stack on the IP camera product. To
migrate the IP camera product to a lighe weight OS and TCP/IP stack, the Huawei Euler team
developed the Huawei LiteOS, and Huawei VPP team had to implement a light weight
TCP/IP stack. VPP analyzed and concluded that the open source lwIP TCP/IP stack suits this
requirement and ported the lwIP TCP/IP stacke to Huawei LiteOS for the IP camera product.

lwIP is a light-weight implementation of the TCP/IP protocol suite. The main goal of this
TCP/IP implementation is to reduce the RAM usage with full feature of TCP. This light-
weight IP stack is customized to run on top of Huawei LiteOS and is optimized to deliver a
high throughput. lwIP also implements some additional features like DHCP server and
network shell commands (for example, ping, arp, ifconfig).

1.2.3 Scope
The main focus of Huawei LiteOS lwIP development is to adapt lwIP to work with LiteOS.
Some additional features like DNS client, DHCP server, and shell command support are
implemented.

1.2.4 Third Party References
The following third party references are used for Huawei LiteOS lwIP development:

l SNTP is not part of lwIP TCP/IP stack. There is an implementation available for SNTP
in lwIP contrib, that has been used in our Huawei LiteOS lwIP.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

5

l For OS adaptation layer implementation, lwIP contrib has a Linux adapter code that has
been used for LiteOS integration, because LiteOS also supports most of the POSIX-
based system calls.

1.2.5 Standard Compliance
Huawei LiteOS lwIP implements the following RFCs:

l RFC 791 (IPv4 Standard)
l RFC 768 (UDP)
l RFC 793 (TCP)
l RFC 792 (ICMP)
l RFC 826 (ARP)
l RFC 2131 (DHCP)
l RFC 854 (Telnet)
l RFC 2018 (SACK)
l RFC 7323 (Window Scaling)
l RFC 6675 (SACK for TCP)
l RFC 3927(Autoip) Dynamic Configuration of IPv4 Link-Local Addresses
l RFC 2236 (IGMP) Internet Group Management Protocol, Version 2

1.3 Huawei LiteOS lwIP Features

This chapter provides a brief description about the supported features of Huawei LiteOS lwIP.

1.3.1 System Requirements
Huawei LiteOS lwIP requires the following:

l Lite-OS on HiSilicon IP Camera or compatible board.
l arm-hisiv300-linux-gcc or arm-hisiv500-linux-gcc for compiling Huawei LiteOS lwIP.

Huawei LiteOS lwIP supports Huawei LiteOS on the following platforms:

l hi3516a
l hi3518ev200
l hi3519_cortex-a7
l hi3519_cortex-a17

1.3.2 Supported Features
Huawei LiteOS lwIP supports the following features:

IPv4 (Internet Protocol version 4)

IPv4 is the fourth version in the development of Internet Protocol (IP). IPv4 is one of the core
protocols of standards-based working methods in the Internet, and was the first version
deployed for production in the ARPANET in 1983. IPv4 is a connectionless protocol for use

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

6

on packet-switched networks. IPv4 operates on a best effort delivery model, in that it does not
guarantee delivery, nor does it assure proper sequencing or avoidance of duplicate delivery.

ICMP (Internet Control Message Protocol)

ICMP is a core protocol of the Internet Protocol Suite. ICMP is used to send notification
messages such as "host not reachable", and also to send ping messages such as "ECHO
Request" and "ECHO Reply".

UDP (User Datagram Protocol)

UDP is a core protocol of the Internet Protocol Suite. UDP uses a simple connectionless
transmission model with a minimal protocol mechanism. It has no handshaking dialogues, and
thus exposes any unreliability of the underlying network protocol to the user's program. There
is no guarantee of delivery, ordering, or duplicate protection. UDP provides checksums for
data integrity, and port numbers for addressing different functions at the source and
destination of the datagram.

TCP (Transmission Control Protocol)

TCP is a core protocol of the Internet Protocol Suite. TCP originated in the initial network
implementation in which it complemented IP. Therefore, the entire suite is commonly referred
to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets
between applications running on hosts communicating over an IP network. Applications that
do not require reliable data stream service may use UDP, which provides a connectionless
datagram service that emphasizes reduced latency over reliability.

DNS (Domain names resolver) client

DNS is a hierarchical distributed naming system for computers, services, or any resource
connected to the Internet or a private network. DNS client with minimal feature (support for a
name resolution) based on RFC 1035 is supported in Huawei LiteOS lwIP.

DHCP (Dynamic Host Configuration Protocol) both client and server

DHCP is a standardized network protocol used on IP networks for dynamically distributing
network configuration parameters, such as IP addresses for interfaces and services. With
DHCP, computers request IP addresses and networking parameters automatically from a
DHCP server, reducing the need for a network administrator or a user to configure these
settings manually. Huawei LiteOS lwIP supports both client and server of DHCP protocol
based on RFC 2131.

ARP (Address Resolution Protocol) for Ethernet

ARP is a telecommunication protocol used for resolution of network layer addresses into link
layer addresses, a critical function in multiple-access networks.

Huawei LiteOS lwIP supports ARP protocol based on RFC 826 with a configurable ARP
table.

PPPoE (Point to Point Protocol over Ethernet) client

PPPoE provides a standard for connecting multiple clients on an Ethernet local area network
(LAN) network to a remote broadband access server (BAS). Ethernet is used to connect
multiple PPPoE clients and form a LAN. Through the remote BAS, the clients can be
connected to the Internet. Identity authentication and charging for each accessed client are
achieved by using the PPP.

IGMP（Internet Group Management Protocol）

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

7

IGMP is used for communicating the information of the multicast group members between
the host and the local router.

Huawei LiteOS lwIP supports IGMP v2 protocol based on RFC 2236.

Although the RFC 2236 requires IGMP v1 AND v2 capability we will only support v2 since
now v1 is very old (August 1989)

Shell commands

Huawei LiteOS lwIP provides APIs for some of the commonly used networking shell
commands such as ping, ifconfig, arp, ifup, ifdown, and dns. This module provides shell
command handler function based on the LiteOS shell command module.

Socket API Types

Huawei LiteOS lwIP provides the following types of socket APIs.

l Low-level APIs for using without thread.
l Netconn APIs with thread
l BSD styled APIs which internally calls netconn APIs. Providing BSD styled APIs help

the application for smooth migration from Linux TCP/IP stack to the lwIP TCP/IP stack.

SNTP (Simple Network Time Protocol)

SNTP is a networking protocol for clock synchronization between computer systems over
packet-switched, variable-latency data networks. Huawei LiteOS lwIP supports SNTP version
4 based on RFC 2030.

TCP Window Scaling Option

Huawei LiteOS lwIP supports Window Scaling option in TCP as per RFC 7323. Window
Scaling option in TCP allows you to use a 30-bit window size value in a TCP connection,
instead of 16-bit value. The window scale extension expands the definition of the TCP
window to 30 bits and then uses an implicit scale factor to carry this 30-bit value in the 16-bit
window field of the TCP header. The exponent of the scale factor is carried in a TCP option
named Window Scale.

TCP SACK (Selective Acknowledgement) Option

This option is used to acknowledge out of sequence segments received by the stack so that
you can skip these sacked segments for retransmission during loss recovery.

The following features are developed based on PDT requirements:

l lwIP supports AutoIP and IGMP modules .
l Performance optimization changes with the DMA allocation change for zero copy.
l [BVT OR:201602239352]: lwIP supports Multi-threading for BSD styled sockets.
l [LiteOS OR:201606029490]: lwip provides API for setting the wifi driver status.

lwip provides API for setting the wifi driver status to lwip stack. When the wifi driver is
busy, lwip stack stop to send message, when the wifi driver is ready, lwip stack continue
to send the message. If the driver does not wake up from busy state before the expiry of
DRIVER_WAKEUP_INTERVAL, then all the exisiting TCP connections using this netif
driver are purged and removed. Hence, a blocking connect call will wait till the netif
driver wakes up and a SYN retransmission occurs or till the TCP connection is purged
due to the above timeout.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

8

l [LiteOS OR:201607265325]: lwip provides PF_PACKET option on SOCK_RAW.
LWIP supports SOCK_RAW for PF_PACKET family. Application can use this feature to
create link layer level sockets. So, the lwip stack expects packets with link layer headers
included in application for sending them out. SOCK_RAW packets are passed to and
from the device driver without any changes in the packet data.
By default all packets of the specified protocol type are passed to a packet socket. To
only get packets from a specific interface, bind the socket to a specific interface. The
sll_protocol and the sll_ifindex address fields are used for purposes of binding. When
application sends packets it is enough to specify sll_family, sll_addr, sll_halen,
sll_ifindex. The other fields should be 0. sll_hatype and sll_pkttype are set on received
packets.

PF_PACKET supports the following APIs:

l lwip_socket
l lwip_bind
l lwip_recvfrom
l lwip_sendto
l lwip_close
l lwip_ioctl
l lwip_setsockopt
l lwip_getsockopt
l lwip_fnct

NOTE

Refer VPP2.0 V100R001C20 Huawei LiteOS lwIP API Reference for descriptions of these APIs.

The following options are supported for PF_PACKET socket s lwip_getsockopt() and
lwip_setsockopt() APIs:

l SO_RCVTIMEO
l SO_RCVBUF
l SO_TYPE

The following socket options are supported for PF_PACKET socket under lwip_ioctl() API:

l FIONREAD
l FIONBIO
l SIOCGIFADDR
l SIOCSIFADDR
l SIOCGIFNETMASK,
l SIOCSIFNETMASK
l SIOCSIFHWADDR
l SIOCGIFHWADDR
l SIOCGIFFLAGS
l SIOCSIFFLAGS
l SIOCGIFNAME
l SIOCSIFNAME

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

9

l SIOCGIFINDEX
l SIOCGIFCONF

The following socket options are supported for PF_PACKET socket under the lwip_fcntl API:

l F_GETFL
l F_SETFL

1.3.3 Unsupported Features
The following features/protocols supported either partially or fully by lwIP will not be
supported by Huawei LiteOS lwIP.

l IPv6 (Full Support not available in lwIP itself)
l PPPoS
l SNMP Agent (Only Private MIB Support present in lwIP).
l IP forwarding over multiple network interfaces.
l No Router based (Routing) functionalities will be supported. (Only End Device

Functionalities will be supported).
l PF_PACKET does not supports the following APIs :

– lwip_listen
– lwip_accept
– lwip_shutdown
– lwip_getpeername
– lwip_getsockname
The unsupported APIs will return EOPNOTSUPP error code.

NOTE

Refer VPP2.0 V100R001C20 Huawei LiteOS lwIP API Reference.chm document for description
of the above APIs.

The following socket options can not be set for PF_PACKET sockets.
The lwip_getsockopt() and lwip_setsockopt APIs do not support the following socket
options:
– SO_BROADCAST
– SO_KEEPALIVE
– SO_SNDTIMEO
– SO_REUSEADDR
– SO_REUSEPORT
– SO_NO_CHECK
– IP_TTL
– IP_TOS
– IP_HDRINCL
– IP_MULTICAST_TTL
– IP_MULTICAST_IF
– IP_MULTICAST_LOOP

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

10

– IP_ADD_MEMBERSHIP
– IP_DROP_MEMBERSHIP
– TCP_NODELAY
– TCP_KEEPIDLE
– TCP_KEEPALIVE
– TCP_KEEPINTVL
– TCP_KEEPCNT
– UDPLITE_SEND_CSCOV
– UDPLITE_RECV_CSCOV
– SO_ACCEPTCONN
– SO_ERROR
The lwip_ioctl() does not support the following socket option:
- SIOCADDRT

The unsupported options set ENOPROTOOPT as error code.

1.4 Developing Applications
Light weight IP stack can run on Huawei LiteOS either using ethernet or WiFi. Application
needs to configure the driver with lwIP.

1.4.1 Prerequisites
Following are the prerequisites of using Huawei LiteOS lwIP stack:

l The Huawei LiteOS lwIP stack is modified to run on Huawei LiteOS. So, it does not run
on any other operating system at present.
– Before using Huawei LiteOS lwIP, update your driver code with Huawei LiteOS

lwIP related configurations. This is explained with a pseudo code in the
"Integration Steps" section.

– Register SSP secure functions before lwIP stack initialization. Please refer to
pseudo code in "Integration Steps" section.

1.4.2 Dependencies
Dependencies of Huawei LiteOS lwIP are listed below:

l Huawei LiteOS lwIP depends on Huawei LiteOS system calls.
l Huawei LiteOS lwIP requires ethernet or WiFi driver module to send and receive data on

physical layer.

1.4.3 Structure of Release Package
The release package contains the source code of Huawei LiteOS in the following structure:

lwIP/src - Contains all source file of Huawei LiteOS lwIP

lwIP/include - Contains all include file of Huawei LiteOS lwIP

lwIP/src/api - Contains the Netconn API, Socket API, and the tcpip thread

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

11

lwIP/src/core - Contains core implementation of DHCP, TCP, UDP, DNS, SNTP, and support
code (for example, memory, netif)

lwIP/src/core/ipv4 - Contains IPv4 and ICMP implementation

lwIP/src/netif - Contains ARP, PPPoE, and ethernet driver abstraction

lwIP/src/arch - Contains OS abstraction

1.4.4 Using lwIP
Huawei LiteOS lwIP provides BSD style TCP/IP socket APIs, which can be used by an
application for making socket connections. The main advantage of this stack is that the legacy
application code which runs on BSD TCP/IP stack can be directly ported to this Huawei
LiteOS lwIP TCP/IP stack. Huawei LiteOS lwIP supports the DHCP client feature, using
which dynamic IP can be configured. Huawei LiteOS lwIP also supports the DNS client
feature, using which, the application can resolve the domain name. Huawei LiteOS lwIP
supports PPPoE clients, which can be connected to the Internet through a remote BAS.

1.4.5 Integration Steps
Huawei LiteOS lwIP stack can run on Huawei LiteOS either using ethernet or WiFi.
Application needs to configure the driver with lwIP.

Pseudo code for driver (ethernet or WiFi) code abstraction layer for using lwIP is given
below:
/* Global variable for lwIP Network interface should be declared */
struct netif g_netif;

/* user_memset mentioned below is the pseudocode for the */
/* MemSet function. It explains the prototype for the secure MemSet. */
/* User should implement this function based on their requirements */
int user_memset(void *pvDest,unsigned int ulDestMax, int Char, unsigned int
ulCount)
{
 memset(pvDest, Char, ulCount);
 return 0;
}

/* user_memcpy mentioned below is the pseudocode for the */
/* secure memcopy function. It explains the prototype for the secure memcopy. */
/* User should implement this function based on their requirements */
int user_memcpy(void *pvDest,unsigned int ulDestMax, const void *Src, unsigned
int ulCount)
{
 memcpy(pvDest, Src, ulCount);
 return 0;
}

/* user_strncpy mentioned below is the pseudocode for the */
/* secure strncpy function. It explains the prototype for the secure strncpy. */
/* User should implement this function based on their requirements */
int user_strncpy(char *pcDest, unsigned int ulDestMax, const char * pcSrc,
unsigned int ulCount)
{
 strncpy(pcDest, pcSrc, ulCount);
 return 0;
}

/* user_strncat mentioned below is the pseudocode for the */
/* secure strncat function. It explains the prototype for the secure strncat. */
/* User should implement this function based on their requirements */
int user_strncat(char *pcDest, unsigned int ulDestMax,const char *pcSrc,
unsigned int ulCount)

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

12

{
 strncat(pcDest, pcSrc, ulCount);
 return 0;
}

/* user_strcat mentioned below is the pseudocode for the */
/* secure strcat function. It explains the prototype for the secure strcat. */
/* User should implement this function based on their requirements */
int user_strcat(char *pcDest, unsigned int ulDestMax,const char *pcSrc)
{
 strcat(pcDest, pcSrc);
 return 0;
}

/* user_memmove mentioned below is the pseudocode for the */
/* secure memmove function. It explains the prototype for the secure memmove. */
/* User should implement this function based on their requirements */
int user_memmove(void *pcDest,unsigned int ulDestMax, const void *pcSrc, unsigned
int ulCount)
{
 memmove(pcDest, pcSrc, ulCount) ;
 return 0;
}

/* user_snprintf mentioned below is the pseudocode for the */
/* secure snprintf function. It explains the prototype for the secure snprintf.
*/
/* User should implement this function based on their requirements */
int user_snprintf(char* pcStrDest, unsigned int ulDestMax,
 unsigned int ulCount, const char* pszFormat, ...)
{
 int ret = 0;
 va_list arglist;

 va_start(arglist, pszFormat);
 ret = vsnprintf(pcStrDest, ulCount, pszFormat, arglist);
 va_end(arglist);
 return ret;
}

/* user_rand mentioned below is the pseudocode for the */
/* secure rand function. It explains the prototype for the secure rand. */
/* User should implement this function based on their requirements */
int user_rand(void)
{
 return rand();
}

/* user_driver_init_func mentioned below is the pseudocode for the */
/* driver init function. It explains the lwIP configuration which needs to be */
/* done along with driver init. User should implement this function based on
their driver */
void user_driver_init_func()
{
 ip_addr_t ipaddr, netmask, gw;

 /* After performing user driver init operation here */
 /* lwIP driver configuration needs to be done*/

#ifndef lwIP_WITH_DHCP_CLIENT
 IP4_ADDR(&gw, 192, 168, 2, 1);
 IP4_ADDR(&ipaddr, 192, 168, 2, 5);
 IP4_ADDR(&netmask, 255, 255, 255, 0);
#endif

 g_netif.link_layer_type = ETHERNET_DRIVER_IF;
 g_netif.hwaddr_len = ETHARP_HWADDR_LEN;
 g_netif.drv_send = user_driver_send;
 memcpy(g_netif.hwaddr, driver_mac_address, ETHER_ADDR_LEN);

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

13

#ifndef lwIP_WITH_DHCP_CLIENT
 netifapi_netif_add(&g_netif, &ipaddr, &netmask, &gw);
#else
 netifapi_netif_add(&g_netif, 0, 0, 0);
#endif
 /* lwIP configuratin ends */
}

/* user_driver_send mentioned below is the pseudocode for the */
/* driver send function. It explains the prototype for the driver send function.
*/
/* User should implement this function based on their driver */
void user_driver_send(struct netif *netif, struct pbuf *p)
{
 /* This will be the send function of the driver */
 /* It should send the data in pbuf p->payload of size p->tot_len */
}

/* user_driver_recv mentioned below is the pseudocode for the */
/* driver receive function. It explains how it should create pbuf */
/* and copy the incoming packets. User should implement this function */
/* based on their driver */
void user_driver_recv(char * data, int len)
{
 /* This should be the receive function of the user driver */
 /* Once it receives the data it should do the below */
 struct pbuf *p, *q;
 p = pbuf_alloc(PBUF_RAW, (len + ETH_PAD_SIZE), PBUF_RAM);
 if (p == NULL) {
 printf("user_driver_recv : pbuf_alloc failed\n");
 return;
 }
#if ETH_PAD_SIZE
 pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif

 mempcy(p->payload, data, len);
#if ETH_PAD_SIZE
 pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
 driverif_input(&gnetif,p);
}

/* This is the init function to bring up lwIP and driver */
int init_func()
{
 STlwIPSecFuncSsp stlwIPSspCbk= {0};

 /*Register below user specific secure functions*/
 stlwIPSspCbk.pfMemset_s = user_memset;
 stlwIPSspCbk.pfMemcpy_s = user_memcpy;
 stlwIPSspCbk.pfStrNCpy_s = user_strncpy;
 stlwIPSspCbk.pfStrNCat_s = Stub_StrnCat;
 stlwIPSspCbk.pfStrCat_s = user_strcat;
 stlwIPSspCbk.pfMemMove_s = user_memmove;
 stlwIPSspCbk.pfSnprintf_s = user_snprintf;
 stlwIPSspCbk.pfRand = user_rand;

 /* Register Secure SSP callback functions*/
 if(lwIPRegSecSspCbk(&stlwIPSspCbk) != 0) {
 printf("Failed to register Secure callback functions \n");
 return -1;
 }

 /* Call lwIP tcpip_init before driver init*/
 tcpip_init(NULL, NULL);
 user_driver_init_func();

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

14

#ifndef lwIP_WITH_DHCP_CLIENT
 netifapi_dhcp_start(&g_netif);
 do {
 msleep(20);
 } while (netifapi_dhcp_is_bound(&g_netif) != ERR_OK);
 netifapi_netif_set_up(&g_netif);
#endif
 printf("Network is up !!!\n");
}

1.4.6 Optimizing Huawei LiteOS lwIP
This contain the following topics:

1.4.6.1 Throughput Optimizations

The following optimizations are suggested for achieving better throughput in lwIP:

1. Configure the required number of UDP connections in MEMP_NUM_UDP_PCB.
DHCP also creates one UDP connection, so consider this also while configuring this
macro.

2. Configure the required number of TCP connections in MEMP_NUM_TCP_PCB.
3. Configure the required number of RAW connections in MEMP_NUM_RAW_PCB. The

lwIP_ENABLE_LOS_SHELL_CMD module uses one RAW connection for the ping
command.

4. Configure the required value in MEMP_NUM_NETCONN. This value is the total
number of required UDP, TCP, and RAW connections.

5. If lwIP_ENABLE_LOS_SHELL_CMD is not used and RAW connection is not used
separately also, then disable lwIP_RAW.

6. Similarly, UDP is not used at all then disable lwIP_UDP and if TCP is not used at all,
then disable lwIP_TCP.

7. In driver receive function, if pbuf_alloc() on PBUF_RAM failed, then increase the
MEM_SIZE.

8. Increase TCPIP_MBOX_SIZE and MEMP_NUM_TCPIP_MSG_INPKT values, if
driverif_input() fails due to unavailability of space in TCPIP mbox for incoming packets.
This can happen if the driver module is too fast in receiving upcoming packets.

9. Disable all debugging options and do not define lwIP_DEBUG.
10. If the word size of the architecture is 4, keep ETH_PAD_SIZE as 2.

1.4.6.2 Memory Optimizations

To achieve less footprint in lwIP, some of the optimizations are suggested below:

1. Use PBUF_POOL with pbuf_alloc() in driver receive function. And also configure
required amount of pbuf in PBUF_POOL_SIZE. And also configure the
PBUF_POOL_BUFSIZE based on the MTU.

2. Configure MEMP_NUM_TCP_PCB, MEMP_NUM_UDP_PCB,
MEMP_NUM_RAW_PCB and MEMP_NUM_NETCONN, based on the required
amount of TCP, UDP and RAW connections.

3. Reduce the TCPIP_MBOX_SIZE and MEMP_NUM_TCPIP_MSG_INPKT values, by
considering the amount of traffic comes from peer.

4. Disable all debugging options and do not define lwIP_DEBUG.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

15

5. Disable ETHARP_TRUST_IP_MAC. This updates the ARP table based on all incoming
packets. If its disabled, only required entity's entry will get updated by doing specific
ARP query.

1.4.6.3 Customization

The new macros defined in Huawei LiteOS lwIP to suit our usage are listed below:

l Generally, all lwIP APIs are with the prefix of "lwIP_" (for example lwIP_connect,
lwIP_bind and so on). Also, there is macro definition to replace BSD style API names
(connect, bind etc) to lwIP style API names (lwIP_connect, lwIP_bind and so on). This
helps to change BSD style API names to lwIP style API names in application code. But,
if user wants to make lwIP to expose BSD style API (without lwIP_ prefix), then user
need to enable lwIP_BSD_API macro. Also, this macro defines struct sockaddr similar
to BSD.

l lwIP definition of the structure sockaddr_in is different from BSD. It has one additional
member length. If user wants BSD style definition for structure sockaddr_in, then macro
lwIP_BSD_SOCKADDR_IN needs to be defined.

l For enabling DHCP sever, user need to enable the macro lwIP_DHCPS. If lwIP_DHCPS
is enabled, then lwIP_DHCP also should be enabled.

l Generally, lwIP creates socket file descriptor from 0. If user wants to change this file
descriptor starting number, then it needs to be configured in macro
lwIP_SOCKET_START_NUM.

l In sockets.h, lwIP defines SO_ macros (for example SO_DEBUG, SO_REUSEADDR
and so on) as similar to BSD. But, if user wants to keep ARM BSD linux based macro
values, then macro lwIP_ENABLE_ARM_BASED_SO_MACROS needs to be enabled.

l In lwIP, inet_addr is a macro which redirects to the lwIP specific function. But, if user
wants inet_addr as an API, then lwIP_INET_ADDR_FUNC needs to be defined.

l In lwIP, inet_ntoa is a macro which redirects to the lwIP specific function. But, if user
wants inet_ntoa as an API, then lwIP_INET_NTOA_FUNC needs to be defined.

l Generally, DHCP server sends the offer message as broadcast or unicast based on the
flag set by client in its discover message. But, if user wants to always broadcast the offer
message, then the macro lwIP_DHCPS_DISCOVER_BROADCAST needs to be
enabled.

1.4.6.4 Huawei LiteOS lwIP Macros

This section lists the Huawei LiteOS lwIP macros. Configure these macros based on usage.

Default values for lwIP macros are defined in the opt.h and lwIPopts.h header files. Macros
defined in lwIPopts.h overwrite the definition in opt.h.

Table 1-1 List of Macros

Macros Description

LWIP_AUTOIP This is macro To Enable/Disable AUTOIP
Module

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

16

Macros Description

MEM_SIZE lwIP maintains a heap memory management
(mem_malloc and mem_free), all dynamic
memory allocation is handled by this module.
There will not be any call made to system
malloc() or free(). This macro is to define the
size for the Heap memory management in lwIP.

MEM_LIBC_MALLOC If this macro is enabled, then all dynamic
memory allocation call will go to system
malloc() and free(). And also it will disable the
heap memory management module code in lwIP.

MEMP_MEM_MALLOC lwIP maintains a pool memory management
(memp_malloc and memp_free) for frequently
used structures.

MEM_ALIGNMENT Memory alignment in bytes needs to be
configured based on the architecture. For
example 4 should be configured if its 32 bit
architecture.

MEMP_NUM_TCP_PCB This macro is used to configure the required
number of simultaneous TCP connections.

MEMP_NUM_UDP_PCB This macro is used to configure the required
number of simultaneous UDP connections.
While configuring this user should consider the
internal modules of lwIP like DNS, DHCP which
creates UDP connection for its communication.

MEMP_NUM_RAW_PCB This macro is used to configure the required
number of simultaneous RAW connections.

MEMP_NUM_NETCONN This macro is used to configure the total number
of TCP, UDP and Raw connections. This should
be sum of MEMP_NUM_TCP_PCB,
MEMP_NUM_UDP_PCB and
MEMP_NUM_RAW_PCB.

MEMP_NUM_TCP_PCB_LISTEN This macro is used to configure the required
number of simultaneous listening TCP
connections.

MEMP_NUM_REASSDATA This macro is used to configure the number of IP
packets simultaneously queued for reassembly
(whole packets, not fragments!)

MEMP_NUM_FRAG_PBUF This macro is used to configure the number of IP
fragments simultaneously sent (fragments, not
whole packets!)

ARP_TABLE_SIZE This macro is used to configure the ARP cache
table size.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

17

Macros Description

ARP_QUEUEING If this macro is enabled, then multiple outgoing
packets are getting queued during ARP
resolution. If this macro is not enabled, then it
will only keep the recent packet which is sent by
upper layer for each destination address.

MEMP_NUM_ARP_QUEUE This macro is used to configure the number of
simulateously queued outgoing packets (pbufs)
that are waiting for an ARP response to resolve
their destination address. This macro is
applicable only if ARP_QUEUEING is enabled.

ETHARP_TRUST_IP_MAC If this macro is enabled, then source IP address
and source MAC address from all incoming
packets get updated in ARP cache table. If this
macro is disabled, then entry in ARP cache is
updated only by its own ARP query.

ETH_PAD_SIZE This macro is used to configure the number of
bytes added before the ethernet header to ensure
alignment of payload after that header. Since the
header is 14 bytes long, without this padding
addresses in the IP header will not be aligned.
For example, in a 32 bit architecture setting this
to 2 can make IP header as 4 byte aligned and
also it can speed up.

ETHARP_SUPPORT_STATIC_ENTR
IES

This macro is used to enable the support for
updating ARP cache table statically using the
etharp_add_static_entry() and
etharp_remove_static_entry() API from
application.

IP_REASSEMBLY This macro is used to enable the support for
reassemble the fragmented IP packets.

IP_FRAG This macro is used to enable the support for IP
level fragmentation on all outgoing packets.

IP_REASS_MAXAGE This macro is used to configure the timeout for
fragmented incoming IP packets. lwIP maintains
the fragmented packets for
IP_REASS_MAXAGE seconds, if its not able to
reassemble the packet within that time then it
will drop those fragmented packets.

IP_REASS_MAX_PBUFS This macro is used to configure the maximum
amount of fragmentation allowed for an
incoming IP packet.

IP_FRAG_USES_STATIC_BUF If this macro is enabled, static buffer is used for
IP fragmentation. Otherwise dynamic memory is
allocated.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

18

Macros Description

IP_FRAG_MAX_MTU Maximum MTU size needs to be configured in
this macro.

IP_DEFAULT_TTL Default value for Time-To-Live used by
transport layers.

LWIP_RANDOMIZE_INITIAL_LOC
AL_PORTS

This macro is used to enable the support for
randomize the local port for the first local
TCP/UDP pcb (default==0). This can prevent
creating predictable port numbers after booting a
device. For this LWIP_RAND macro also needs
to be configured with a strong random number
generator function. This is because lwIP depends
on system for random genertor function.

LWIP_RAND LWIP_RAND macro to be configured with a
strong random number generator function. This
is because lwIP depends on system for random
generator function. Random numbers are used
for generating random client ports in DNS and
user TCP/UDP connections. And also its used
for creating transaction IDs in DHCP and DNS
and for the ISS value in TCP.

LWIP_ICMP To enable ICMP module.

ICMP_TTL To configure TTL value for ICMP messages.

LWIP_RAW To enable RAW socket support in lwIP.

RAW_TTL To configure TTL value for RAW socket
messages.

LWIP_UDP To enable the UDP connection support in lwIP.

UDP_TTL To configure TTL value for UDP socket
messages.

LWIP_TCP To enable the TCP connection support in lwIP.

TCP_TTL To configure the TTL value for TCP socket
messages.

TCP_WND To configure the TCP window size.

TCP_MAXRTX To configure the maximum retransmission of
TCP data segments.

TCP_SYNMAXRTX To configure the maximum retransmission of
TCP SYN segments.

TCP_FW1MAXRTX To configure the maximum retransmission of
TCP data segments in FIN_WAIT_1 state.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

19

Macros Description

TCP_QUEUE_OOSEQ This is to enable support for queuing segments
that arrive out of order. Define it to 0 if your
device is low on memory.

TCP_MSS To configure Maximum Segment Size for TCP
connections.

TCP_SND_BUF To configure Send buffer size of TCP.

TCP_SND_QUEUELEN To configure send queue length of TCP.

TCP_OOSEQ_MAX_BYTES To configure the maximum number of bytes
queued on ooseq per pcb. Default is 0 (no limit).
Only valid for TCP_QUEUE_OOSEQ==0.

TCP_OOSEQ_MAX_PBUFS To configure the maximum number of pbufs
queued on ooseq per pcb. Default is 0 (no limit).
Only valid for TCP_QUEUE_OOSEQ==0.

TCP_LISTEN_BACKLOG To enable the backlog support in TCP listen.

LWIP_DHCP To enable DHCP client module.

LWIP_DHCPS To enable DHCP server module.

LWIP_IGMP To enable IGMP module.

LWIP_SNTP To enable SNTP client module.

SNTP_MAX_REQUEST_RETRANS
MIT

This macro is used to configure maximum SNTP
client retries to SNTP server, default is set to 3
that is retransmission will happen thrice after
first original transmission.

LWIP_DNS To enable DNS client module.

DNS_TABLE_SIZE To configure the size of the DNS cache table
size.

DNS_MAX_NAME_LENGTH To configure the supported maximum length for
domain name. This is configured to 255 as per
DNS RFC. Its recommeded to not modify this.

DNS_MAX_SERVERS To configure the number of DNS servers.

DNS_MAX_LABLE_LENGTH To configure the maximum length of each sub
domain name in a domain name. This is
configured to 63 as per DNS RFC. Its
recommended to not modify this.

DNS_MAX_IPADDR To configure the maximum IP address that DNS
client can cache.

PBUF_LINK_HLEN To configure the number of bytes that should be
allocated for link level header. This should
include the actual length plus ETH_PAD_SIZE.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

20

Macros Description

LWIP_NETIF_API To enable the thread safe netif module
(netiapi_*).

TCPIP_THREAD_NAME To configure a name for TCP IP thread.

DEFAULT_RAW_RECVMBOX_SIZE Each raw connection maintains a queue for
incoming packets, to buffer the incoming packets
till a receive call is made from application layer.
This macro is used to configure the size of the
receive message box queue.

DEFAULT_UDP_RECVMBOX_SIZE Each UDP connection maintains a queue for
incoming packets, to buffer the incoming packets
till a receive call is made from application layer.
This macro is used to configure the size of the
receive message box queue.

DEFAULT_TCP_RECVMBOX_SIZE Each TCP connection maintains a queue for
incoming packets, to buffer the incoming packets
till a receive call is made from application layer.
This macro is used to configure the size of the
receive message box queue.

DEFAULT_ACCEPTMBOX_SIZE This macro is used to configure the size of the
message box queue to maintain incoming TCP
connections.

TCPIP_MBOX_SIZE This macro is used to configure the message box
queue of the TCP IP thread. This queue
maintains all the operation request from
application thread and driver thread.

LWIP_TCPIP_TIMEOUT This macro enables the feature for running a user
defined timer handler function on lwIP tcpip
thread.

LWIP_SOCKET_START_NUM This macro is used to configure the start number
for the socket file descriptor created by lwIP.

LWIP_BSD_API This macro helps to expose the socket API
similar to linux API name.

LWIP_BSD_SOCKADDR_IN This exposes the BDS style socketaddr_in
structure.

LWIP_ENABLE_ARM_BASED_SO_
MACROS

This macro defines the ARM values for all SO_*
macros. By default BSD values are defined in all
SO_* macros.

LWIP_COMPAT_SOCKETS This creates a linux BSD style name macro for
all socket APIs.

LWIP_POSIX_SOCKETS_IO_NAME
S

This creates a POSIX style macro for read, write,
fcntl and close.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

21

Macros Description

LWIP_STATS This measures the statistics of all ongoing
connections.

LWIP_SACK This macro is used to enabled /disable SACK
fucntionality in LWIP stack. This macro needs to
be enabled for enabling both sender and receiver
SACK functionality.

LWIP_SACK_DATA_SEG_PIGGYB
ACK

This macro is used to enable sending of SACK
Options if any in the segments with ACK flag set
and carrying data too. If this macro is disabled,
then SACK Options will be sent only in empty
ACK segments and not in segments carrying
data as well as ACK in case of bidirectional data
transfer

LWIP_WND_SCALE This macro is used to enable/disable the Window
Scaling functionality in LWIP stack.

TCP_WND_MIN If window scaling is enabled then this minimum
receive window also should be configured. So
that if peer is not supporting window scaling
option, then this minimum receive window will
be considered .This value should not be greater
than 0XFFFF and this value should not
be more than TCP_WND.

MEM_PBUF_RAM_SIZE_LIMIT This is to enable/disable limiting of RAM
memory size for pbuf allocations for
PBUF_RAM type. This limits the operating
system memory to be allocated for PBUF_RAM
and not for allocation of internal buf memory.
This is applicable only if
MEM_LIBC_MALLOC is enabled

LWIP_PBUF_STATS This is used to enable/disable the debug prints
for PBUF_RAM memory allocation statistics
when MEM_PBUF_RAM_SIZE_LIMIT is
enabled.

PBUF_RAM_SIZE_MIN The minimum RAM memory required to be set
through the API pbuf_ram_size_set.

DRIVER_STATUS_CHECK This macro is for enabling the driver send buffer
status intimation to the stack using
netifapi_stop_queue and netifapi_wake_queue
APIs.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

22

Macros Description

DRIVER_WAKEUP_INTERVAL When the netif driver status is changed to Busy
and does not change back to Ready state before
the expiry of this timer, then all TCP connections
linked to this netif are flushed. Value is 120000
msec by default.

PBUF_LINK_CHKSUM_LEN This macro gives the length of the link layer
checksum which will be filled by ethernet driver.

LWIP_DEV_DEBUG This macro is for developer debugging only. This
must not be enabled in customer environment.

LWIP_PPPOE This macro is used to enable or disable the
PPPoE module.

PPP_SUPPORT This macro controls whether to support PPP.

PPPOE_SUPPORT This macro controls whether to support PPPoE

CHAP_SUPPORT This macro controls whether to support
Challenge-Handshake Authentication Protocol
(CHAP) in PPP.

1.4.7 Sample Codes
Some of the sample code of lwIP are listed below, which explains the usage of lwIP. It has a
pseudo code which explains the changes which need to be done on the driver (ethernet or
WiFi) module. This sample code can be compilable with lwIP and Huawei LiteOS on
Hisilicon board cross compiler.

1.4.7.1 Sample Code for UDP
#include "lwIP/sockets.h"
#include "lwIP/err.h"
#include "lwIP/ip.h"
#include "lwIP/tcpip.h"
#include "lwIP/netif.h"
#include "lwIP/dhcp.h"

#define STACK_IP "192.168.2.5"
#define STACK_PORT 2277
#define PEER_PORT 3377
#define PEER_IP "192.168.2.2"

#define MSG "Hi, I am lwIP"

#define BUF_SIZE (1024 * 8)
u8_t g_buf[BUF_SIZE+1] = {0}

/* Global variable for lwIP Network interface */
struct netif g_netif;

/* user_driver_init_func mentioned below is the pseudocode for the */
/* driver init function. Its explains the lwIP configuration which needs to be */
/* done along with driver init. User should implement this function based on
their driver */

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

23

void user_driver_init_func()
{
 ip_addr_t ipaddr, netmask, gw;

 /* After performing user driver init operation */
 /* lwIP driver configuration needs to be done*/

 /* lwIP configuration starts */
 IP4_ADDR(&gw, 192, 168, 2, 1);
 IP4_ADDR(&ipaddr, 192, 168, 2, 5);
 IP4_ADDR(&netmask, 255, 255, 255, 0);

 g_netif.link_layer_type = ETHERNET_DRIVER_IF;
 g_netif.hwaddr_len = ETHARP_HWADDR_LEN;
 g_netif.drv_send = user_driver_send;
 memcpy(g_netif.hwaddr, driver_mac_address, ETHER_ADDR_LEN);

 netifapi_netif_add(&g_netif, &ipaddr, &netmask, &gw);
 netifapi_netif_set_default(&g_netif);
 /* lwIP configuratin ends */
}

/* user_driver_send mentioned below is the pseudocode for the */
/* driver send function. It explains the prototype for the driver send function.
*/
/* User should implement this function based on their driver */

void user_driver_send(struct netif *netif, struct pbuf *p)
{
 /* This will be the send function of the driver */
 /* It should send the data in pbuf p->payload of size p->tot_len */
}

/* user_driver_recv mentioned below is the pseudocode for the */
/* driver receive function. It explains how it should create pbuf */
/* and copy the incoming packets. User should implement this function */
/* based on their driver */

void user_driver_recv(char * data, int len)
{
 /* This should be the receive function of the user driver */
 /* Once it receives the data it should do the below */
 struct pbuf *p, *q;

 p = pbuf_alloc(PBUF_RAW, (len + ETH_PAD_SIZE), PBUF_RAM);

 if (p == NULL) {
 printf("user_driver_recv : pbuf_alloc failed\n");
 return;
 }

#if ETH_PAD_SIZE
 pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif

 mempcy(p->payload, data, len);

#if ETH_PAD_SIZE
 pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif

 driverif_input(&gnetif,p);
}

int sample_init_func()
{
 /* Call lwIP tcpip_init before driver init*/
 tcpip_init(NULL, NULL);

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

24

 user_driver_init_func();
}

int sample_udp()
{
 s32_t sfd;
 struct sockaddr_in srv_addr = {0};
 struct sockaddr_in cln_addr = {0};
 socklen_t cln_addr_len = sizeof(cln_addr);
 s32_t ret = 0, i = 0;

 /* socket creation */
 printf("going to call lwIP_socket\n");
 sfd = lwIP_socket(AF_INET,SOCK_DGRAM,0);
 if (sfd == -1)
 {
 printf("lwIP_socket failed, return is %d\n", sfd);
 goto FAILURE;
 }

 printf("lwIP_socket succeeded\n");

 srv_addr.sin_family = AF_INET;
 srv_addr.sin_addr.s_addr=inet_addr(STACK_IP);
 srv_addr.sin_port=htons(STACK_PORT);

 printf("going to call lwIP_bind\n");
 ret = lwIP_bind(sfd,(struct sockaddr *)&srv_addr,sizeof(srv_addr));
 if (ret != 0)
 {
 printf("lwIP_bind failed, return is %d\n", ret);
 goto FAILURE;
 }

 printf("lwIP_bind succeeded\n");
 /* socket creation */

 /* send */
 cln_addr.sin_family = AF_INET;
 cln_addr.sin_addr.s_addr=inet_addr(PEER_IP);
 cln_addr.sin_port=htons(PEER_PORT);

 printf("calling lwIP_sendto...\n");
 memset(g_buf, 0, BUF_SIZE);
 strcpy(g_buf, MSG);

 ret = lwIP_sendto(sfd, g_buf, strlen(MSG), 0, (struct sockaddr *)&cln_addr,
(socklen_t)sizeof(cln_addr));
 if (ret <= 0)
 {
 printf("lwIP_sendto failed, return is %d\n", ret);
 goto FAILURE;
 }
 printf("lwIP_sendto succeeded, return is %d\n", ret);
 /* send */

 /* recv */
 printf("going to call lwIP_recvfrom\n");
 memset(g_buf, 0, BUF_SIZE);
 ret = lwIP_recvfrom(sfd, g_buf, sizeof(g_buf), 0, (struct sockaddr
*)&cln_addr, &cln_addr_len);
 if (ret <= 0)
 {
 printf("lwIP_recvfrom failed, return is %d\n", ret);
 goto FAILURE;
 }

 printf("lwIP_recvfrom succeeded, return is %d\n", ret);
 printf("received msg is : %s\n", g_buf);

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

25

 printf("client ip %x, port %d\n", cln_addr.sin_addr.s_addr,
cln_addr.sin_port);
 /* recv */

 lwIP_close(sfd);
 return 0;

FAILURE:
 printf("failed, errno is %d\n", errno);
 lwIP_close(sfd);
 return -1;
}

int main()
{
 int ret;
 ret = sample_init_func();
 if (ret != 0)
 {
 printf("init failed\n");
 exit(0);
 }

 ret = sample_udp()
 if (ret != 0)
 {
 printf("Sample Test case failed\n");
 exit(0);
 }

 return 0;
}

1.4.7.2 Sample Code for TCP Client
#include "lwIP/sockets.h"
#include "lwIP/err.h"
#include "lwIP/ip.h"
#include "lwIP/tcpip.h"
#include "lwIP/netif.h"
#include "lwIP/dhcp.h"

#define STACK_IP "192.168.2.5"
#define STACK_PORT 2277
#define PEER_PORT 3377
#define PEER_IP "192.168.2.2"

#define MSG "Hi, I am lwIP"

#define BUF_SIZE (1024 * 8)
u8_t g_buf[BUF_SIZE+1] = {0}

/* Global variable for lwIP Network interface */
struct netif g_netif;

/* user_driver_init_func mentioned below is the pseudocode for the */
/* driver init function. Its explains the lwIP configuration which needs to be */
/* done along with driver init. User should implement this function based on
their driver */

void user_driver_init_func()
{
 ip_addr_t ipaddr, netmask, gw;

 /* After performing user driver init operation */
 /* lwIP driver configuration needs to be done*/

 /* lwIP configuration starts */

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

26

 IP4_ADDR(&gw, 192, 168, 2, 1);
 IP4_ADDR(&ipaddr, 192, 168, 2, 5);
 IP4_ADDR(&netmask, 255, 255, 255, 0);

 g_netif.link_layer_type = ETHERNET_DRIVER_IF;
 g_netif.hwaddr_len = ETHARP_HWADDR_LEN;
 g_netif.drv_send = user_driver_send;
 memcpy(g_netif.hwaddr, driver_mac_address, ETHER_ADDR_LEN);

 netifapi_netif_add(&g_netif, &ipaddr, &netmask, &gw);
 netifapi_netif_set_default(&g_netif);
 /* lwIP configuratin ends */
}

/* user_driver_send mentioned below is the pseudocode for the */
/* driver send function. It explains the prototype for the driver send function.
*/
/* User should implement this function based on their driver */

void user_driver_send(struct netif *netif, struct pbuf *p)
{
 /* This will be the send function of the driver */
 /* It should send the data in pbuf p->payload of size p->tot_len */
}

/* user_driver_recv mentioned below is the pseudocode for the */
/* driver receive function. It explains how it should create pbuf */
/* and copy the incoming packets. User should implement this function */
/* based on their driver */

void user_driver_recv(char * data, int len)
{
 /* This should be the receive function of the user driver */
 /* Once it receives the data it should do the below */
 struct pbuf *p, *q;

 p = pbuf_alloc(PBUF_RAW, (len + ETH_PAD_SIZE), PBUF_RAM);

 if (p == NULL) {
 printf("user_driver_recv : pbuf_alloc failed\n");
 return;
 }

#if ETH_PAD_SIZE
 pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif

 mempcy(p->payload, data, len);

#if ETH_PAD_SIZE
 pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif

 driverif_input(&gnetif,p);
}

int sample_init_func()
{
 /* Call lwIP tcpip_init before driver init*/
 tcpip_init(NULL, NULL);

 user_driver_init_func();
}

int sample_tcp_client()
{
 s32_t sfd = -1;
 struct sockaddr_in srv_addr = {0};
 struct sockaddr_in cln_addr = {0};

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

27

 socklen_t cln_addr_len = sizeof(cln_addr);
 s32_t ret = 0, i = 0;

 /* tcp client connection */
 printf("going to call lwIP_socket\n");
 sfd = lwIP_socket(AF_INET,SOCK_STREAM,0);
 if (sfd == -1)
 {
 printf("lwIP_socket failed, return is %d\n", sfd);
 goto FAILURE;
 }

 printf("lwIP_socket succeeded, sfd %d\n", sfd);

 srv_addr.sin_family = AF_INET;
 srv_addr.sin_addr.s_addr=inet_addr(PEER_IP);
 srv_addr.sin_port=htons(PEER_PORT);

 printf("going to call lwIP_connect\n");
 ret = lwIP_connect(sfd, (struct sockaddr *)&srv_addr, sizeof(srv_addr));
 if (ret != 0)
 {
 printf("lwIP_connect failed, return is %d\n", ret);
 goto FAILURE;
 }
 printf("lwIP_connec succeeded, return is %d\n", ret);
 /* tcp client connection */

 /* send */
 memset(g_buf, 0, BUF_SIZE);
 strcpy(g_buf, MSG);

 printf("calling send...\n");
 ret = lwIP_send(sfd, g_buf, sizeof(MSG), 0);

 if (ret <= 0)
 {
 printf("lwIP_send failed, return is %d, i is %d\n", ret, i);
 goto FAILURE;
 }

 printf("send finished ret is %d\n", ret);
 /* send */

 /* recv */
 memset(g_buf, 0, BUF_SIZE);
 printf("going to call recv\n");
 ret = lwIP_recv(sfd, g_buf, sizeof(g_buf), 0);
 if (ret <= 0)
 {
 printf("lwIP_recv failed, return is %d\n", ret);
 goto FAILURE;
 }

 printf("lwIP_recv succeeded, return is %d\n", ret);
 printf("received msg is : %s\n", g_buf);
 /* recv */

 lwIP_close(sfd);
 return 0;

FAILURE:
 lwIP_close(sfd);
 printf("errno is %d\n", errno);
 return -1;
}

int main()
{

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

28

 int ret;
 ret = sample_init_func();
 if (ret != 0)
 {
 printf("init failed\n");
 exit(0);
 }

 ret = sample_tcp_client()
 if (ret != 0)
 {
 printf("Sample Test case failed\n");
 exit(0);
 }

 return 0;
}

1.4.7.3 Sample Code for TCP Server
#include "lwIP/sockets.h"
#include "lwIP/err.h"
#include "lwIP/ip.h"
#include "lwIP/tcpip.h"
#include "lwIP/netif.h"
#include "lwIP/dhcp.h"

#define STACK_IP "192.168.2.5"
#define STACK_PORT 2277
#define PEER_PORT 3377
#define PEER_IP "192.168.2.2"

#define MSG "Hi, I am lwIP"

#define BUF_SIZE (1024 * 8)
u8_t g_buf[BUF_SIZE+1] = {0}

/* Global variable for lwIP Network interface */
struct netif g_netif;

/* user_driver_init_func mentioned below is the pseudocode for the */
/* driver init function. Its explains the lwIP configuration which needs to be */
/* done along with driver init. User should implement this function based on
their driver */

void user_driver_init_func()
{
 ip_addr_t ipaddr, netmask, gw;

 /* After performing user driver init operation */
 /* lwIP driver configuration needs to be done*/

 /* lwIP configuration starts */
 IP4_ADDR(&gw, 192, 168, 2, 1);
 IP4_ADDR(&ipaddr, 192, 168, 2, 5);
 IP4_ADDR(&netmask, 255, 255, 255, 0);

 g_netif.link_layer_type = ETHERNET_DRIVER_IF;
 g_netif.hwaddr_len = ETHARP_HWADDR_LEN;
 g_netif.drv_send = user_driver_send;
 memcpy(g_netif.hwaddr, driver_mac_address, ETHER_ADDR_LEN);

 netifapi_netif_add(&g_netif, &ipaddr, &netmask, &gw);
 netifapi_netif_set_default(&g_netif);
 /* lwIP configuratin ends */
}

/* user_driver_send mentioned below is the pseudocode for the */
/* driver send function. It explains the prototype for the driver send function.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

29

*/
/* User should implement this function based on their driver */

void user_driver_send(struct netif *netif, struct pbuf *p)
{
 /* This will be the send function of the driver */
 /* It should send the data in pbuf p->payload of size p->tot_len */
}

/* user_driver_recv mentioned below is the pseudocode for the */
/* driver receive function. It explains how it should create pbuf */
/* and copy the incoming packets. User should implement this function */
/* based on their driver */

void user_driver_recv(char * data, int len)
{
 /* This should be the receive function of the user driver */
 /* Once it receives the data it should do the below */
 struct pbuf *p, *q;

 p = pbuf_alloc(PBUF_RAW, (len + ETH_PAD_SIZE), PBUF_RAM);

 if (p == NULL) {
 printf("user_driver_recv : pbuf_alloc failed\n");
 return;
 }

#if ETH_PAD_SIZE
 pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif

 mempcy(p->payload, data, len);

#if ETH_PAD_SIZE
 pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif

 driverif_input(&gnetif,p);
}

int sample_init_func()
{
 /* Call lwIP tcpip_init before driver init*/
 tcpip_init(NULL, NULL);

 user_driver_init_func();
}

int sample_tcp_server()
{
 s32_t sfd = -1, lsfd = -1;
 struct sockaddr_in srv_addr = {0};
 struct sockaddr_in cln_addr = {0};
 socklen_t cln_addr_len = sizeof(cln_addr);
 s32_t ret = 0, i = 0;

 /* tcp server */
 printf("going to call lwIP_socket\n");
 lsfd = lwIP_socket(AF_INET,SOCK_STREAM,0);
 if (lsfd == -1)
 {
 printf("lwIP_socket failed, return is %d\n", lsfd);
 goto FAILURE;
 }

 printf("lwIP_socket succeeded\n");

 srv_addr.sin_family = AF_INET;

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

30

 srv_addr.sin_addr.s_addr=inet_addr(STACK_IP);
 srv_addr.sin_port=htons(STACK_PORT);

 ret = lwIP_bind(lsfd, (struct sockaddr *)&srv_addr,sizeof(srv_addr));
 if (ret != 0)
 {
 printf("lwIP_bind failed, return is %d\n", ret);
 goto FAILURE;
 }

 ret = lwIP_listen(lsfd, 0);
 if (ret != 0)
 {
 printf("lwIP_listen failed, return is %d\n", ret);
 goto FAILURE;
 }

 printf("lwIP_listen succeeded, return is %d\n", ret);

 printf("going to call lwIP_accept\n");
 sfd = lwIP_accept(lsfd, (struct sockaddr *)&cln_addr, &cln_addr_len);
 if (sfd < 0)
 {
 printf("lwIP_accept failed, return is %d\n", sfd);
 }
 printf("lwIP_accept succeeded, return is %d\n", sfd);
 /* tcp server */

 /* send */
 memset(g_buf, 0, BUF_SIZE);
 strcpy(g_buf, MSG);

 printf("calling send...\n");
 ret = lwIP_send(sfd, g_buf, sizeof(MSG), 0);

 if (ret <= 0)
 {
 printf("lwIP_send failed, return is %d, i is %d\n", ret, i);
 goto FAILURE;
 }

 printf("send finished ret is %d\n", ret);
 /* send */

 /* recv */
 memset(g_buf, 0, BUF_SIZE);
 printf("going to call recv\n");
 ret = lwIP_recv(sfd, g_buf, sizeof(g_buf), 0);
 if (ret <= 0)
 {
 printf("lwIP_recv failed, return is %d\n", ret);
 goto FAILURE;
 }

 printf("lwIP_recv succeeded, return is %d\n", ret);
 printf("received msg is : %s\n", g_buf);
 /* recv */

 lwIP_close(sfd);
 lwIP_close(lsfd);
 return 0;

FAILURE:
 lwIP_close(sfd);
 lwIP_close(lsfd);
 printf("errno is %d\n", errno);
 return -1;
}

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

31

int main()
{
 int ret;
 ret = sample_init_func();
 if (ret != 0)
 {
 printf("init failed\n");
 exit(0);
 }

 ret = sample_tcp_server()
 if (ret != 0)
 {
 printf("Sample Test case failed\n");
 exit(0);
 }

 return 0;
}

1.4.7.4 Sample Code for DNS
#include "lwIP/opt.h"
#include "lwIP/sockets.h"
#include "lwIP/netdb.h"
#include "lwIP/err.h"
#include "lwIP/inet.h"

void dns_call_with_unsafe_api()
{
 struct hostent *result;
 int i = 0;
 ip_addr_t *addr;
 char addrString[20] = {0};
 char *hostname;
 char *dns_server_ip;
 ip_addr_t dns_server_ipaddr;

 hostname = "www.huawei.com";

 dns_server_ip = "192.168.0.2";
 inet_aton(dns_server_ip, &dns_server_ipaddr);
 lwIP_dns_setserver(0, &dns_server_ipaddr);

 result = lwIP_gethostbyname(hostname);

 if (result)
 {
 while (1)
 {
 addr = *(((ip_addr_t **)result->h_addr_list) + i);
 if (addr == NULL)
 {
 break;
 }

 inet_ntoa_r(*addr, addrString, 20);
 printf("dns call for %s, returns %s\n", hostname, addrString);
 i++;
 }
 }
 else
 {
 printf("dns call failed\n");
 }
}

void dns_call_with_safe_api()
{

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

32

 int i = 0;
 ip_addr_t *addr;
 char addrString[20] = {0};
 char *buf;
 int buflen;
 char *hostname;
 char *dns_server_ip;
 ip_addr_t dns_server_ipaddr;
 struct hostent ret;
 struct hostent *result = NULL;
 int h_errnop;

 hostname = "www.huawei.com";

 dns_server_ip = "192.168.0.2";
 inet_aton(dns_server_ip, &dns_server_ipaddr);
 lwIP_dns_setserver(0, &dns_server_ipaddr);

 buflen = sizeof(struct gethostbyname_r_helper) + strlen(hostname) +
MEM_ALIGNMENT;
 buf = malloc(buflen);

 lwIP_gethostbyname_r(hostname, &ret, buf, buflen, &result, &h_errnop);

 if (result)
 {
 while (1)
 {
 addr = *(((ip_addr_t **)result->h_addr_list) + i);
 if (addr == NULL)
 {
 break;
 }

 inet_ntoa_r(*addr, addrString, 20);
 printf("dns call for %s, returns %s\n", hostname, addrString);
 i++;
 }
 }
 else
 {
 printf("dns call failed\n");
 }
 free(buf);
}

/* To get the dns server address configured in lwIP */
/* Application can call lwIP_dns_getserver() API and then decide whether to
change it */
/* If application needs to change it then, it needs */
void display_dns_server_address()
{
 int i;
 ip_addr_t addr;
 int ret;
 char addrString[20] = {0};

 for (i = 0; i < DNS_MAX_SERVERS; i++)
 {
 ret = lwIP_dns_getserver(i, &addr);
 if (ret != ERR_OK) {
 printf("lwIP_dns_getserver failed\n");
 return;
 }

 memset(addrString, 0, sizeof(addrString));
 inet_ntoa_r(addr, addrString, 20);
 printf("dns server address configured at index %d, is %s\n", i,
addrString);

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

33

 }

 return;
}

int main()
{
 /* after doing lwIP init, driver init and netifapi_netif_add */
 display_dns_server_address();
 dns_call_with_unsafe_api();
 dns_call_with_safe_api();

 return 0;
}

1.4.7.5 Sample Code for SNTP
#include "lwIP/opt.h"
#include "lwIP/sntp.h"

/*
 * Compile time configuration for SNTP
 * 1) Configure SNTP server address
*/

int start_sntp()
{
 int ret;
 /* If NULL is passed to lwIP_sntp_start, then sntp server configured
 * in macro SNTP_SERVER_ADDRESS will be used by this API. If application
 * wants to do this with different SNTP server means, it can be passed as
argument
 * to below API instead of NULL. */
 ret = lwIP_sntp_start(NULL);

 if (ret == ERR_OK) {
 printf("sntp started successfully\n");
 } else {
 printf("sntp start failed\n");
 }

 /* After doing this it will preiodically sends SNTP request message
 * for every 1 hour (SNTP_UPDATE_DELAY) and keeps updating system time
 * by calling the function configured in macro SNTP_SET_SYSTEM_TIME(t) */

 /* after startding SNTP, application code can continue its other task
 * once application decides to stop the application need to call
 * the API lwIP_sntp_stop() */
}

int main()
{
 /* after doing lwIP init, driver init and netifapi_netif_add */
 start_sntp();
 return 0;
}

1.4.7.6 Sample Code for DHCP Client
#include "lwIP/opt.h"
#include "lwIP/netifapi.h"
#include "lwIP/inet.h"
#include "lwIP/netif.h"

struct netif g_netif;

int dhcp_client_start(struct netif *pnetif)
{
 int ret;

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

34

 char addrString[20] = {0};

 /* Calling netifapi_dhcp_start() will start initiating DHCP configuration
 * process by sending DHCP messages */
 ret = netifapi_dhcp_start(pnetif);

 if (ret == ERR_OK) {
 printf("dhcp client started successfully\n");
 } else {
 printf("dhcp client start failed\n");
 }

 /* After doing this it will get the IP and update to netif, once it finishes
 * the process with DHCP server. Application need to call
netifapi_dhcp_is_bound()
 * API to check whether DHCP process is finished or not */

 do {
 sleep(1); /* sleep for sometime, like 1 sec */
 ret = netifapi_dhcp_is_bound(pnetif);
 } while(ret != ERR_OK);

 memset(addrString, 0, sizeof(addrString));
 inet_ntoa_r(pnetif->ip_addr, addrString, 20);
 printf("ipaddr %s\n", addrString);
 memset(addrString, 0, sizeof(addrString));
 inet_ntoa_r(pnetif->netmask, addrString, 20);
 printf("netmask %s\n", addrString);
 memset(addrString, 0, sizeof(addrString));
 inet_ntoa_r(pnetif->gw, addrString, 20);
 printf("gw %s\n", addrString);
}

int main()
{
 /* after doing lwIP init, driver init and netifapi_netif_add */
 dhcp_client_start(&g_netif);

 /* Later if application wants to stop the DHCP client then it should
 * call netifapi_dhcp_stop() and netifapi_dhcp_cleanup() */
 /* netifapi_dhcp_stop(&g_netif); */
 /* netifapi_dhcp_cleanup(&g_netif); */
 return 0;
}

1.4.7.7 Sample Code for DHCP Server
#include "lwIP/opt.h"
#include "lwIP/netifapi.h"
#include "lwIP/inet.h"
#include "lwIP/netif.h"

struct netif g_netif;

int dhcp_server_start(struct netif *pnetif)
{
 int ret;
 char addrString[20] = {0};

 /* Calling netifapi_dhcps_start() will start DHCP server */
 ret = netifapi_dhcps_start(pnetif);

 if (ret == ERR_OK) {
 printf("dhcp server started successfully\n");
 } else {
 printf("dhcp server start failed\n");
 }

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

35

}

int main()
{
 /* after doing lwIP init, driver init and netifapi_netif_add */
 dhcp_server_start(&g_netif);

 /* Later if application wants to stop the DHCP client then it should
 * call netifapi_dhcps_stop()*/
 /*netifapi_dhcps_stop(&g_netif);*/
 return 0;
}

1.4.7.8 Sample Code for PPPoE Client
#if LWIP_PPPOE
#include "netif/ppp.h"

extern struct netif *pnetif_hi3516cv300;

u32_t osShellPPPoE(int argc, char **argv)
{
 if (0 == tcpip_init_finish)
 {
 PRINTK("%s: tcpip_init have not been called\n", __FUNCTION__);
 return LOS_NOK;
 }

 ret = lwip_pppoe_start(pnetif_hi3516cv300, "username", "123456");
 if(ret < 0)
 {
 PRINTK("pppoe : start pppoe failed: %d\n", ret);
 lwip_pppoe_stop(netif);
 return LOS_NOK;
 }
 return LOS_OK;}
}
#endif /* LWIP_PPPOE */

1.4.8 Limitations
Following limitations need to be considered before using Huawei LiteOS lwIP:

l Huawei LiteOS lwIP runs only on top of Huawei LiteOS, because the OS adaptation
layer written on Huawei LiteOS lwIP is tightly coupled with Huawei LiteOS system
interfaces.

l Huawei LiteOS lwIP can simultaneously run with two network interface (using ethernet
and WiFi) but DHCP client cannot be used with both. Because DHCP client binds the
UDP socket on DHCP client port, Huawei LiteOS lwIP does not allow multiple network
interfaces (struct netif of ethernet and WiFi) to bind on same port.

l DNS client supports only A type resource record in response. While parsing the multiple
answer records in DNS response message, if it encounters any malformed answer record
then it stops parsing and returns success if it has any successfully parsed record or else it
returns failure.

l lwIP provides the following types of socket APIs:

– BSD style APIs

These APIs are thread safe.

– Netconn APIs

These APIs are thread safe.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

36

– Low level APIs.
Low level APIs are not thread safe and its not recommended to use this API. If you
use low level APIs, the application thread and driver thread needs to take care of
locking the core TCPIP thread functionality.

l Multithread usage of lwIP has the following limitations:
– The lwIP core is not thread safe. If application wants to use Huawei LiteOS lwIP in

a multithread environment, it should use "upper" API layers (netconn or sockets). If
application uses low level API, it should protect the lwIP core.

– Socket file descriptor created using Huawei LiteOS lwIP should not be used in
multiple application threads. It should be used only in one application thread.

– netif_xxx and dhcp_xxx are not thread safe APIs. So application should use the
thread safe APIs available in netifapi module as netifapi_netif_xxx and
netifapi_dhcp_xxx.

l Application must not create more than 254 network interfaces because the interface
index maintained for network interfaces varies from 1 to 254.

1.4.9 Design Specification and Constraints
Below listed constraints needs to be considered before using this lwIP:

1. Huawei LiteOS lwIP runs only on top of Huawei LiteOS, because the OS adaptation
layer written on lwIP is tightly coupled with Huawei LiteOS system interfaces.

2. Huawei LiteOS lwIP can simultaneously run with two network interfaces (using ethernet
and WiFi) but the DHCP client cannot be used with both. Because DHCP client binds
the UDP socket on DHCP client port, lwIP does not allow multiple network interfaces
(struct netif of ethernet and WiFi) to bind on same port.

1.5 Huawei LiteOS lwIP-BSD Compatibility
The following table explains the BSD compatibility details of lwIP socket APIs :

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

37

Table 1-2

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

Linux
Compatibili
ty APIs

int
lwIP_accept(
int s, struct
sockaddr
*addr,
socklen_t
*addrlen);

int accept(int
sockfd,
struct
sockaddr
*addr,
socklen_t
*addrlen);

None If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

38

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_bind(i
nt s, const
struct
sockaddr
*name,
socklen_t
namelen);

int bind(int
socket, const
struct
sockaddr
*address,
socklen_t
address_len)
;

None If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

39

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_shutdo
wn(int s, int
how);

int
shutdown(in
t sockfd, int
how);

None If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

The
"SHUT_R
D" macro
should not
have been
defined
previously

Only
"SHUT_RD
WR" is
supported
for "how"
parameter in
this API.
Closing one
end of the
full-duplex
connection
is not
supported in
lwIP.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

40

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_connec
t(int s, const
struct
sockaddr
*name,
socklen_t
namelen);

int
connect(int
socket, const
struct
sockaddr
*address,
socklen_t
address_len)
;

None If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

41

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_getsoc
kname (int s,
struct
sockaddr
*name,
socklen_t
*namelen);

int
getsocknam
e(int sockfd,
struct
sockaddr
*addr,
socklen_t
*addrlen);

None If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

42

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_getpee
rname (int s,
struct
sockaddr
*name,
socklen_t
*namelen);

int
getpeernam
e(int socket,
struct
sockaddr
*restrict
address,
socklen_t
*restrict
address_len)
;

None If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

43

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_setsoc
kopt(int s,
int level, int
optname,
const void
*optval,
socklen_t
optlen)

int
setsockopt(i
nt socket, int
level, int
option_name
,
const void
*option_val
ue,
socklen_t
option_len);

1. For "level"
parameter,
only
SOL_SOC
KET,
IPPROTO
_IP,
IPPROTO
_TCP are
supported.

2. Under
SOL_SOC
KET the
options
supported
are:
SO_BROA
DCAST,
SO_KEEP
ALIVE,
SO_SNDT
IMEO,
SO_RCVT
IMEO,
SO_RCVB
UF,
SO_REUS
EADDR,
SO_REUS
EPORT,SO
_NO_CHE
CK. For
SO_SNDT
IMEO,
SO_RCVT
IMEO,
SO_RCVB
UF, the
macros
lwIP_SO_
SNDTIME
O,
lwIP_SO_
RCVTIME
O and
lwIP_SO_
RCVBUF
should

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

44

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

have been
defined at
compile
time. For
SO_REUS
EADDR,
SO_REUS
EPORT,
the macro
SO_REUS
E should
have been
defined at
compile
time.

3. Under
IPPROTO
_IP the
options
supported
are:
IP_TTL,
IP_TOS.

4. Under
IPPROTO
_TCP the
options
supported
are:
TCP_NOD
ELAY,
TCP_KEE
PALIVE,
TCP_KEE
PIDLE,
TCP_KEE
PINTVL,
TCP_KEE
PCNT. For
TCP_KEE
PIDLE,
TCP_KEE
PINTVL,
TCP_KEE
PCNT, the
macro
lwIP_TCP

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

45

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

_KEEPALI
VE should
have been
defined at
compile
time.

NOTE
Options not
mentioned
above are not
supported.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

46

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_getsoc
kopt (int s,
int level, int
optname,
void
*optval,
socklen_t
*optlen);

int
getsockopt(i
nt socket, int
level, int
option_name
,
void
*restrict
option_value
, socklen_t
*restrict
option_len);

1. For "level"
parameter,
only
SOL_SOC
KET,
IPPROTO
_IP,
IPPROTO
_TCP are
supported.

2. Under
SOL_SOC
KET the
options
supported
are:
SO_ACCE
PTCONN,
SO_BROA
DCAST,
SO_ERRO
R,
SO_KEEP
ALIVE,
SO_SNDT
IMEO,
SO_RCVT
IMEO,
SO_RCVB
UF,
SO_REUS
EADDR,
SO_REUS
EPORT,
SO_TYPE,
SO_NO_C
HECK. For
SO_SNDT
IMEO,
SO_RCVT
IMEO,
SO_RCVB
UF, the
macros
lwIP_SO_
SNDTIME
O,
lwIP_SO_

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

47

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

RCVTIME
O and
lwIP_SO_
RCVBUF
should
have been
defined at
compile
time. For
SO_REUS
EADDR,
SO_REUS
EPORT,
the macro
SO_REUS
E should
have been
defined at
compile
time.

3. Under
IPPROTO
_IP the
options
supported
are:
IP_TTL,
IP_TOS.

4. Under
IPPROTO
_TCP the
options
supported
are:
TCP_NOD
ELAY,
TCP_KEE
PALIVE,
TCP_KEE
PIDLE,
TCP_KEE
PINTVL,
TCP_KEE
PCNT,
TCP_QUE
UE_SEQ.
For

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

48

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

TCP_KEE
PIDLE,
TCP_KEE
PINTVL,
TCP_KEE
PCNT, the
macro
lwIP_TCP
_KEEPALI
VE should
have been
defined at
compile
time.

NOTE
Options not
mentioned
above are not
supported.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

49

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_listen(i
nt s, int
backlog);

int listen(int
socket, int
backlog);

For the
"backlog"
parameter to
be used, the
macro
"TCP_LISTE
N_BACKLO
G" should
have been
enabled at
compile time.

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

50

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_recv(in
t s, void
*mem,
size_t len,
int flags);

ssize_t
recv(int
socket, void
*buffer,
size_t
length, int
flags);

For the "flags"
parameter,
only
"MSG_DONT
WAIT" &
"MSG_PEEK"
are supported.
Other options
are not
supported.

Return value
type is
different
between lwIP
(int) and
Linux API
(ssize_t).

Note: Some
linux flavours
do seem to
support "int"
as the return
value type.
But, most
common
seems to
ssize_t based
on Posix
Standard.

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

51

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_recvfr
om(int s,
void *mem,
size_t len,
int flags,
struct
sockaddr
*from,
socklen_t
*fromlen);

ssize_t
recvfrom(int
s, void *buf,
size_t len,
int flags,
struct
sockaddr *
restrict from,
socklen_t *
restrict
fromlen);

For the "flags"
parameter,
only
"MSG_DONT
WAIT" &
"MSG_PEEK"
are supported.
Other options
are not
supported.
Return value
type is
different
between lwIP
(int) and
Linux API
(ssize_t).

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

52

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_send(i
nt s, const
void
*dataptr,
size_t size,
int flags);

ssize_t
send(int
sockfd,
const void
*buf, size_t
len, int
flags);

For the "flags"
parameter,
only
"MSG_MORE
" &
"MSG_DONT
WAIT" are
supported.
Other options
are not
supported.

Return value
type is
different
between lwIP
(int) and
Linux
API(ssize_t)

NOTE
Some linux
flavours do
seem to
support "int"
as the return
value type.
But, most
common
seems to
ssize_t based
on Posix
Standard.

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

53

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_sendt
o(int s, const
void
*dataptr,
size_t size,
int flags,
const struct
sockaddr
*to,
socklen_t
tolen);

ssize_t
sendto(int
sockfd,
const void
*buf, size_t
len, int flags,
const struct
sockaddr
*dest_addr,
socklen_t
addrlen);

For the "flags"
parameter,
only
"MSG_MORE
" &
"MSG_DONT
WAIT" are
supported.
Other options
are not
supported.

Return value
type is
different
between lwIP
(int) and
Linux
API(ssize_t)

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

54

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_socke
t(int domain,
int type, int
protocol);

int socket(int
domain, int
type, int
protocol);

In lwIP:
1. For

AF_INET
socket,
type
SOCK_RA
W|
SOCK_DG
RAM|
SOCK_ST
REAM is
supported.

2. For
AF_PACK
ET socket,
only type
SOCK_RA
W is
supported

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

If the
macro
"lwIP_BS
D_API" is
defined at
compile
time of
lwIP, then
lwIP will
expose
API
similar to
linux
function
name.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

55

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_select(
int maxfdp1,
fd_set
*readset,
fd_set
*writeset,
fd_set
*exceptset,
struct
timeval
*timeout);

int select(int
nfds, fd_set
*restrict
readfds,
fd_set
*restrict
writefds,
fd_set
*restrict
errorfds,
struct
timeval
*restrict
timeout);

None If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

56

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

struct
hostent*
lwIP_gethos
tbyname(con
st char
*name)

struct
hostent
*gethostbyn
ame(const
char *name);

Resolves the
name to
address. But,
doesn't
provide the
list of aliases
in the struct
hostent as a
part of result.

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

Macro
"lwIP_DN
S_API_DE
CLARE_S
TRUCTS"
should be
defined at
compile
time.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

57

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_gethos
tbyname_r(c
onst char
*name,
struct
hostent *ret,
char *buf,
size_t
buflen,
struct
hostent
**result, int
*h_errnop)

int
gethostbyna
me_r(const
char *name,
struct
hostent *ret,
char *buf,
size_t
buflen,
struct
hostent
**result, int
*h_errnop);

Behaves same
as linux
function
except for the
fact that it
doesn't
provide the
list of aliases
in the struct
hostent as a
part of result.

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

Macro
"lwIP_DN
S_API_DE
CLARE_S
TRUCTS"
should be
defined at
compile
time.

int
getifaddrs(st
ruct ifaddrs
**ifap);

int
getifaddrs(st
ruct ifaddrs
**ifap);

If a_data of
struct ifaddrs
is unused
member in
lwIP.

lwIP
initializatio
nneeds to
be
completed
before
calling this
API.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

58

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

void
freeifaddrs(s
truct ifaddrs
*ifa);

void
freeifaddrs(s
truct ifaddrs
*ifa);

None Only the
buffer
allocated
by
getifaddrs
needs to be
passed to
this API.

Posix
Compatibili
ty APIs

int
lwIP_read(in
t s, void
*mem,
size_t len);

ssize_t
read(int
fildes, void
*buf, size_t
nbyte);

Return type is
different.
Supports only
Sockets and
not all the file
descriptors

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

59

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_write(i
nt s, const
void
*dataptr,
size_t size);

ssize_t
write(int
fildes, const
void *buf,
size_t
nbyte);

Return type is
different.
Supports only
Sockets and
not all the file
descriptors

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

60

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_close(i
nt s);

int close(int
fildes);

Supports only
Sockets and
not all file
descriptors

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

61

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_fcntl(i
nt s, int cmd,
int val);

int fcntl(int
fildes, int
cmd, ...);

1. Function
prototype
doesn't
support
variable
arguments.

2. Only
F_GETFL
&
F_SETFL
commands
are
supported.
For
F_SETFL,
only
O_NONB
LOCK is
supported
for val.

If the
macro
"lwIP_CO
MPAT_SO
CKETS" is
defined at
compile
time, then
it will
create a
macro
similar to
that of
linux
function
name. This
will help
the
application
code
written
using linux
function
names to
compile.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

62

Category lwIP API Linux API Difference Pre-
Requisite
s

Remarks

int
lwIP_ioctl(i
nt s, long
cmd, void
*argp);

int ioctl(int
fd, unsigned
long
request, ...);

Linux API
supports
variable
argument
support. But
lwIP API
supports only
one void * as
3rd argument.
And also it
supports only
the below
listed options.
l SIOCADD

RT
l SIOCGIFA

DDR
l SIOCSIFA

DDR
l SIOCGIFN

ETMASK
l SIOCSIFN

ETMASK
l SIOCSIFH

WADDR
l SIOCGIFH

WADDR
l SIOCGIFF

LAGS
l SIOCSIFF

LAGS
l SIOCGIFN

AME
l SIOCSIFN

AME
l SIOCGIFC

ONF
l SIOCGIFI

NDEX
l FIONBIO

None

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

63

1.6 Network Security Redline Description

This chapter provides the network security declaration and risk rectification.

1.6.1 Network Security Risk Rectification

Security Redline Tool used to scan and fix issues:

All issues related with CodeDEX are fixed

Security of Management Channel:

NA

Security of Operation System:

NA

Protocol and Interface against Attack:

lwIP is tested with Codenomicon and the below listed defects are fixed:

[DTS2015060309169]: Core dump on receiving fragmented IP packet with length field set to
less than 20.

[DTS2015020203052]: Core dump on receiving IP packet with length field set to less than
20.

[DTS2015020503372]: Core dump on receiving TCP packet with data offset field set to
greater than 5.

[DTS2016041406653]: Invalid memory read while parsing TCP packet with SACK option
longer than 40.

[DTS2016071303586]: Running codenomicon suite gives a memory leak.

Web Security:

NA

Security of Product Development, Release, and Installation:

l Anti-Virus Scan tool: Refer to the Release Notes.

Security of Database:

NA

Protection of Sensitive Data:

NA

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

64

Security of System Management and Maintenance:
NA

Monitor Interface and Prevent Illegal Monitoring:
NA

Third party component security design
Included in Security Threat & Vulnerability Requirement Analysis

1.6.2 Network Security Declaration
This section lists the network security related declarations

User should take care of the following security considerations in order to avoid printing of
user sensitive information:

Debug Log :

1.The DebugFlag can be enabled or disabled using Macros in opt.h header file by setting to
the flag LWIP_DBG_ON By default, Debug Flag is Disabled.

Option Code Recommended Value Impact

LWIP_DEBUGF LWIP_DBG_OFF If value is set to
LWIP_DBG_ON(1)
[Enabled], then it may
expose some user sensitive
information.

It is important to understand the declarations to eliminate any related and consequential
security risks. User should take care for the following security considerations:

l LWIP_RAND macro is expected to be registered by the user by invoking SSP
registration function, which is used in DHCP and DNS to generate random numbers for
Transaction ID. Application need to register suitable random number generator function
with this callback.

l Application need to register suitable random number generator function with this
callback.

l Application data given to lwIP for transmitting with the help of UDP or TCP will be
temporarily kept in lwIP buffer, later memory cleaning is not done explicitly before
freeing the buffer. This is based on the assumption that, application will not provide user
sensitive data as plain text to lwIP. As it generally uses transport security protocol (like
TLS or DTLS) and sends encrypted message to lwIP, in case of user sensitive data.

l [VPPTECH-262]: Provided solution for following security issues:
- Provided fix for event indication callback locking mechanism.
- Provided fix for not allowing IP packet greater than 65535 length.
- Initialization of dhcps callback.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

65

1.7 lwIP Version Building
The purpose of this is to provide details information for compiling VPP lwIP libraries.

Compilation Dependency:

1. Remove the read only attribute of the entire directory.
2. Cross compilers are installed correctly.
3. The Code of VPP components is downloaded from SVN properly.

Environment setup:

l Hardware requirements

Following Hardware systems required to compile below lwIP Platforms.

Any UbuntuX86 64 bit PC with at least 5GB data disk.

l Software requirements

Following software tools used for LWIP Compilation

1. Compiler : arm-hisiv500-linux

Version Compilation flow

Modify compile script and compile

l Download the code from SVN
l Transfer the code to the compile Environment

cd to code/trunk/CI/script

Chmod +x build_lwIP_tcp_hi3516a.sh build_lwIP_tcp_hi3518ev200.sh
build_lwIP_tcp_hi3519_cortex-a17.sh build_lwIP_tcp_hi3519_cortex-a7.sh

dos2unix build_lwIP_tcp_hi3516a.sh build_lwIP_tcp_hi3518ev200.sh
build_lwIP_tcp_hi3519_cortex-a17.sh build_lwIP_tcp_hi3519_cortex-a7.sh

Execute as sh <script name> or ./<Script name>

Example :

1. build_lwIP_tcp_hi3516a.sh
2. build_lwIP_tcp_hi3518ev200.sh
3. build_lwIP_tcp_hi3519_cortex-a17.sh
4. build_lwIP_tcp_hi3519_cortex-a7.sh

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

66

Or

1. Sh build_lwIP_tcp_hi3516a.sh

2. Sh build_lwIP_tcp_hi3518ev200.sh

3. Sh build_lwIP_tcp_hi3519_cortex-a17.sh

4. Sh build_lwIP_tcp_hi3519_cortex-a7.sh

Find the lib

Lib will be stored in the below path : /code/trunk/src/lwip/bin

Preparing the Include files.

Include will be present in following directory

…/code/trunk/src/lwip/include.

1.8 FAQs
l How do we solve compilation errors?

Solution: Please see setting compilation environment section and ensure the correct compiler
is set according to the environment you are using.

1.9 Glossary

Term Abbreviation Description

Address Resolution Protocol ARP Address Resolution Protocol
is a network protocol used
to convert an IP Address to
a Physical Address.

Dynamic Host
Configuration Protocol

DHCP Dynamic Host
Configuration Protocol is a
standardized networking
protocol used on IP
networks for dynamically
distributing network
configuration parameters
such as IP Addresses for
interfaces and services.

Lightweight IP lwIP lwIP (lightweight IP) is a
widely used open source
TCP/IP stack designed for
embedded systems.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

67

Term Abbreviation Description

Lite-OS - Lite-OS is an operating
system developed inside
Huawei based on CMSIS
software standard.

Internet Control Message
Protocol

ICMP The Internet Control
Message Protocol (ICMP) is
used by network devices,
like routers, to send error
messages indicating a
requested service is not
available or a host could not
be reached.

Internet Protocol IP The protocol within TCP/IP
that governs the breakup of
data messages into packets,
the routing of the packets
from sender to destination
network and station, and the
reassembly of the packets
into the original data
messages at the destination.
IP runs at the internetwork
layer in the TCP/IP model
equivalent to the network
layer in the ISO/OSI
reference model.

Internet of Things IoT The Internet of Things is a
computing concept that
describes a scenario where
everyday physical objects
will be connected to the
Internet and be able to
identify themselves to other
devices.

Transmission Control
Protocol

TCP The protocol within TCP/IP
that governs the breakup of
data messages into packets
to be sent using Internet
Protocol, and the reassembly
and verification of the
complete messages from
packets received by IP. A
connection-oriented, reliable
protocol £¨reliable in the
sense of ensuring error-free
delivery, TCP corresponds
to the transport layer in the
ISO/OSI reference model.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

68

Term Abbreviation Description

User Datagram Protocol UDP A TCP/IP standard protocol
that allows an application
program on one device to
send a datagram to an
application program on
another. UDP uses IP to
deliver datagrams. UDP
provides application
programs with the unreliable
connectionless packet
delivery service. That is,
UDP messages may be lost,
duplicated, delayed, or
delivered out of order. The
destination device does not
actively confirm whether the
correct data packet is
received.

Point to Point Protocol over
Ethernet

PPPoE PPPoE provides a standard
for connecting multiple
clients on an Ethernet local
area network (LAN)
network to a remote
broadband access server
(BAS). Ethernet is used to
connect multiple PPPoE
clients and form a LAN.
Through the remote BAS,
the clients can be connected
to the Internet. Identity
authentication and charging
for each accessed client are
achieved by using the PPP.

Huawei LiteOS LwIP Developer Guide 1 Huawei LiteOS lwIP Developer Guide

Issue 01 (2017-10-21) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

69

	Contents
	1 Huawei LiteOS lwIP Developer Guide
	1.1 About This Document
	1.1.1 Scope of the Document
	1.1.2 Intended Audience
	1.1.3 Revision History
	1.1.4 Contact Us
	1.1.5 Copyright

	1.2 Introduction to Huawei LiteOS lwIP
	1.2.1 Background
	1.2.2 Purpose
	1.2.3 Scope
	1.2.4 Third Party References
	1.2.5 Standard Compliance

	1.3 Huawei LiteOS lwIP Features
	1.3.1 System Requirements
	1.3.2 Supported Features
	1.3.3 Unsupported Features

	1.4 Developing Applications
	1.4.1 Prerequisites
	1.4.2 Dependencies
	1.4.3 Structure of Release Package
	1.4.4 Using lwIP
	1.4.5 Integration Steps
	1.4.6 Optimizing Huawei LiteOS lwIP
	1.4.6.1 Throughput Optimizations
	1.4.6.2 Memory Optimizations
	1.4.6.3 Customization
	1.4.6.4 Huawei LiteOS lwIP Macros

	1.4.7 Sample Codes
	1.4.7.1 Sample Code for UDP
	1.4.7.2 Sample Code for TCP Client
	1.4.7.3 Sample Code for TCP Server
	1.4.7.4 Sample Code for DNS
	1.4.7.5 Sample Code for SNTP
	1.4.7.6 Sample Code for DHCP Client
	1.4.7.7 Sample Code for DHCP Server
	1.4.7.8 Sample Code for PPPoE Client

	1.4.8 Limitations
	1.4.9 Design Specification and Constraints

	1.5 Huawei LiteOS lwIP-BSD Compatibility
	1.6 Network Security Redline Description
	1.6.1 Network Security Risk Rectification
	1.6.2 Network Security Declaration

	1.7 lwIP Version Building
	1.8 FAQs
	1.9 Glossary

