Hummer—Bot—2. 0

Instruction Manual
V.2.0

Github https://github. com/keywish/keywish—hummer—-bot-v2. 0

Revised Version Of History

Version Description Author

2017/9/16 V.1.0 Create Baron.li

https://github.com/keywish/keywish-hummer-bot-v2.0

EEywish

2017/9/23 V.11 modify Ken.chen
2017/10/18 V.1.2 Review Ken.chen
2017/11/15 V.13 Review Zach.zhou
2017/12/8 V.14 Review Baron.li
2018/3/11 V.15 Modifyir/blutooth module Ken.chen
2018/4/20 V.1.6 Add device instructions Baron.li
2018/5/3 V.17 Add installation details picture Baron.li
2018/7/1 V.18 Update component list Ken.chen
2019/1/3 V.19 Update component list Abbott.chen
2019/1/15 V.2.0 Modify installation of steering servo Carl,du

Table Of Contents

CRAPLErL INTFOUUCTION ...ttt bbbt bbbt e et e b b e b bbbt et e e e e e 1
T Vo T o To ST SR 1

I (oo 1 ot 11 oo L1 T3 ([o PSPPSR 1

(@8 T T] 2 o =T oo T L4 o] SR OS 3
ADOUL ATAUING UNO F3 ...ttt sttt e st e st et e e s e sbe e beese e et e e b e eneesbeesbeeneeabeebeeneenreas 3

2.1 Development environment Arduing IDE.............cooiioiiiieiie e 4
2.1.1 INSTAITNE IDE ..ottt sttt e s s te e teene e beebe e nre s 4

(O T] T T oLt [=10 €SSO PRSI 13
3.1 ASSEMDIY OF the Car....ceeiiieiecie ettt et re e sbe e e sreenteeneeenes 13

3. 1.1 MOOr INSTAITATIONcvviiieccee et bbbt 13

3.1.2 Wheel and drive module inStallationcccoeiiieieiie e 16

3.1.3 Tracking module INStAllAtioNcccoiiiiiice e s 18

3.1.4 Lower acrylic plate copper column installation and motor Wiringcccceeeeviveresienvereene 20

3.1.5 Keywish Uno R3 board inStallation.............cccccvveiieiiiiie i 22

3.1.6 Battery DOX INSTAHATIONciiiiiieiee e 23

3. L7 SEIVO INSTAHATION ..ottt st b e neas 24

3.1.8 Infrared obstacle avoidance module inStallation.............ccooveiiiiiiiiiee e 26

3.1.9 Voltage display module and DC head installation.............ccccooeiieiiiiiiiicscccceece e 27

3.1.10 Infrared remote control receiver INStallation............ccccoviveviniinieie s 29

3.1.11 OVErall @SSEMDIYcciiiieiece e e 30

3.1.15 Expansion board Wiring QIagTamcoeieiiiiiieieieiesie et 31

3.2 Hummer Bot Module EXPEIIMENTccieiiiiieie ettt te e sre e sre e anes 33
3.2.1 Walking PrinCiple OF the Car ..o 33

3.2.2 Infrared ODStaCIE AVOIUANCEeoiiiiieiieie sttt 40

3.2.3 INTrared TTACING «..eeueeueeieteiee ettt bbbttt b et b et 51

3.2.4 Ultrasonic ODStACIE AVOIGANCE.couiiieriiiiiieeeieee ettt ettt 60

3.2.5 Infrared REMOLE CONTIOL........ooiiiieieee ettt sre e enes 74

3.2.6 Mobile Phone BIUEtOOth CONIOL.........ccoiiiiiiiiicieee e 86

3.2.7 PS2 Handle (OPLIONAI)c.oiiiiiiiieieie st 98

EEywish

Chapterl Introduction

1.1 Writing Purpose

The purpose of this manual is to create a fast, practical and convenient development learning platform
for the vast number of electronic enthusiasts and let them grasp the Arduino and its extended system design
methods and design principles, as well as the corresponding hardware debugging methods.

This manual will lead you to learn every function of "Hummer-Bot" step by step and open a new
"Hummer-Bot" journey for you. It is divided into two parts:

1, Preparation chapter, which mainly introduces the use of common Arduino development software
and some downloading and debugging skills.

2, Experiment chapter, which contains hardware and software, the former mainly introduces the
function and principle of each module; the latter mainly introduces each part of the program and leads you to
understand and grasp the principle of Arduino and the car development through written examples step by
step.

This manual is a specifications for "Hummer-Bot" , the file whose format is PDF which is in the CD
along with our product requires the corresponding software to open. It contains detailed schematic diagrams
and complete source codes for all instances, the codes won't have any mistake under our strict test. In
addition, the library files used in the source codes are put into the corresponding path, you only need to see
corresponding phenomenon of the car and personally experience the process of experiment by downloading
the source codes to Arduino via the serial port emulator.

This manual is very suitable for students and electronic enthusiasts to learn, all course videos will be
synchronized to https://github.com/keywish/keywish-hummer-bot-v2.0 , please real-time synchronization of

the latest information

1.2 Product Introduction

"Hummer-Bot" is a multifunctional car based on the Arduino UNO and L298N motor. Compared with
the traditional car, "Hummer-Bot" is also equipped with wireless control (Bluetooth, infrared, WIFI and so
on); ultrasonic; infrared. It can trace and avoid obstacles automatically, of course, makers can also
automatically control the car with wireless and make full use of each module, as well as integrate all kinds
of related sensors to make the car more intelligent, which is more challenging. "Hummer-Bot" has various
types of information, technical manuals, routines, etc., which can teach you step by step. Each electronic fan
can use it easily to achieve their desired function.

Product Features
@ Three groups of black line infrared tracing module
@ Two groups of infrared obstacle avoidance module

https://github.com/keywish/keywish-hummer-bot-v2.0

Engish

L R R R R K R 2

Ultrasonic obstacle avoidance
Four DC motor drive

Infrared remote control
Bluetooth app control
PS2 handle control (optional)

Product Device List

Remaining capacity of battery real-time detection

Two 3000mZzh, 3.7V rechargeable lithium battery with longer endurance

2 x smart car Board

1 x CD-ROM with
tutorial

4 x DC geared motor

-

1 x USB Cable

1 x IR remote control

1 x Keywish UNO R3
MainBoard

1 x Arduino extension
board

1 x JDY-16 Bluetooth
module

1 x Ultrasound Module

2 x Infrared obstacle
avoidance module

1 x L298N motor drive
board

1 x Infrared receiver
module

3 x Infrared line
tracking module

1 x Power indicator
digital tube

1 x 18650 li-battery box

4 x 65mm wheel core

&

1 x SG90 servo

1 x 18650 battery
charger

e
((',g

10pin-20cm
DuPont line

A e
N

1 x TELESKY 3P
DuPont Line

5 x 3pin-20cm
DuPont line

e

5 x red Welding wire
5 x black Welding wire|

Il

1 x Power DC head

Several Cable Tie

1 x SG90 Servo
fixed plate

1 x Ultrasonic Holder

4 x Motor aluminum
alloy holder

1 x 3.0-7.5mm Phillips
screwdriver

=

1 x Cross wrench

6 x M3*30mm Dual
channel copper posts

4 x M3*5+6mm Single

I

25 x M3*10mm
10 x M3 *12mm Socket

channel copper pillar

head cap screws

i

8 x M3x8 Round

head screw

)

J

L {

-~

o,

~N

38 x M3-Hex nuts

4 x M2-Hex nuts

8 x M3*30MM
Crosshead screws

Il

4 x M3*8MM
4 x M2*12MM
Crosshead screws

EEywish

Chapter2 Preparations

About Arduino uno r3

€ In"Aurora-Racing", we used the Arduino uno r3 as the main control board, which has 14 digital
input/output pins (6 of which can be used as PWM output), 6 analog inputs, and a 16 MHz ceramic
resonator, 1 USB connection, 1 power socket, 1 ICSP head and 1 reset button. It contains everything
that supports the microcontroller; You just need to connect it to a computer via a USB cable or start
with an AC-DC adapter or battery.

M
DIGITAL(PUM~) ¥ &

. L e >
) Cam)) o) o0 o

2
il
C-Bal

Technical specifications:

Working voltage: 5V

Input voltage: USB powered or external 7V~12V DC input

Output voltage: 5V DC output and 3.3V DC output and external power input
Microprocessor: ATmega328 (Chip data sheet is in the documentation)
Bootloader: Arduino Uno

Clock frequency: 16 MHz

Support USB interface protocol and power supply (without external power supply)
Support ISP download function

Digital 1/0 port: 14 (4 PWM output ports)

Analog input port: 6

DC Current 1/0 Port: 40mA

DC Current 3.3V Port: 50mA

Flash memory: 32 KB (ATmega328) (0.5 KB for bootloader)

SRAM : 2 KB (ATmega328)

EEPROM: 1 KB (ATmega328)

Size: 75x55x15mm

EEywish

2.1 Development environment Arduino IDE

AduinolDE is an open source software and hardware tool written by open source software such as Java,
Processing, and avr-gcc. It is an integrated development environment that runs on a computer. It can write
and transfer programs to the board. The major feature of the IDE is cross-platform compatibility for
Windows, MaxOSX, and Linux. Only a simple code base is needed, and the creators can create personalized
home internet solutions through the platform, such as remote home monitoring and constant temperature
control and so on.

In this tutorial, we use the version is 1.6.0, download address
is:https://www.arduino.cc/en/Main/OldSoftwareReleases#previous, After opening the link, we can see the

interface as shown in Figure 2.1.1. In this interface, we can see the different versions of the IDE and
different operating environments. Everyone can download according to their own computer system, of
course, There will be a downloaded installation package on our companion CD, but only the Windows
version, because this tutorial is all running under Windows system.

Linux 32 Bit
Windows Source code
1.81 MAC OS X Linux 64 Bit .
Windows Installer on Github
Linux ARM
Linux 32 Bit
Windows Source code
1.8.0 MAC OS X Linux 64 Bit
Windows Installer on Github
Linux ARM
Linux 32 Bit
Windows Source code
1.6.13 MAC OS X Linux 64 Bit .
Windows Installer on Github
Linux ARM
Linux 32 Bit
Windows Source code
1.6.12 MAC OS X Linux 64 Bit .
Windows Installer on Github
Linux ARM
Linux 32 Bit
Windows Source code
161 MAC OS X Linux 64 Bit
Windows Installer on Github
Linux ARM
Linux 32 Bit
Windows Source code
1.6.10 ‘ MAC OS X Linux 64 Bit)
Windows Installer on Github
Linux ARM
Linux 32 Bit
Windows Source code
1.6.9 ‘ MAC OS X Linux 64 Bit
Windows Installer on Github
Linux ARM
Windows Linux 32 Bit Source code
16.8 MAC OS X .
Windows Installer Linux 64 Bit on Github
Windows Linux 32 Bit Source code
16.7 MAC OS X .
Windows Installer Linux 64 Bit on Github

Figure 2.1.1 ArduinolDE download interface
After the downloading, we will get a compressed package as shown in Figure 2.1.2. The compressed
package will be decompressed. After decompression, the files in Figure 2.1.3 are extracted. The “drivers” is
the driver software. When the “Arduino.exe” is installed, it will be Install the driver automatically. Because
the installation of "arduino.exe™ is very simple, it will not be explained here. It is recommended to exit the
anti-virus software during the installation process, otherwise it may affect the installation of the IDE. After

https://www.arduino.cc/en/Main/OldSoftwareReleases#previous

EEywish

the installation is complete, click "arduino.exe™ again to enter the IDE programming interface.

. EB

arduine-1. | arduino-1.
6.0-windo | 6.0-windo

WS 'I'\l"’S.ZiFl

Figure 2.1.2 Arduino IDE Installation Package

-l'.
]]]]]]]]] @ ¢ &
drivers examples hardware java lib libraries reference tools tools-buil | arduinc.ex | arduino.l4] arduino_d
der e .ini ebug.exe
— e]) | <@>
SN -3 -3 o | =
=]
arduino_d arduino-b libusbO.dll mswcpl00. msverl00. rewvisionst wrapper-
ebug.ldjini uilder.exe dll dll xt manifest.x
ml

Figure 2.1.3 Extracted files
When finish the installation of the IDE, connect to the Arduino motherboard, click “My Computer”
- “Properties” = “Device Manager” - “Viewing Ports (COM and LTP)” , If you can see as the Figure
2.1.4

File Action View Help

ke ARz 7 Bl

a4 = PC-20180429UK0G
>-3 Batteries
> 1M Computer
g Disk drives
- M Display adapters
>-ﬂg—“'| Human Interface Devices
>y IDE ATA/ATAPI controllers
o -2 Keyboards
> --B Mice and other pointing devices
> .| Monitors
> ¥ Network adapters
4 75 Ports (COM & LPT)

- T Arduine Uno (COMlS]I
>-E roOCessors

b -% Sound, video and game controllers

> -JM| System devices
o i Universal Serial Bus controllers

Figure 2.1.4 Driver installation success interface
that indicates the driver has been installed successfully, At this time we open the IDE, select the
corresponding development board model and port in the toolbar to use normally. If you see Figure 2.1.5, it
means that the computer does not recognize the development board and you need to install the driver
yourself.

Notice:

File Action View Help
e B HE &

4= PC-20180428UK0G

> 3 Batteries

b M Computer

:» - Disk drives

.My Display adapters

b UF‘, Human Interface Devices

b ‘g IDE ATA/ATAPI controllers
b Keyboards

b B Mice and other pointing devices
» | Monitors

b &Y Network adapters

45 Other devices
i Unknown devicel
. |2} Processors

» -3 Sound, video and game controllers

b M System devices
- a Universal Serial Bus controllers

Figure 2.1.5 Driver is not successfully installed interface

EEywish

1) If you connect the controller board to the computer, the computer does not respond. Right-click "My
Computer" and select Open Device Manager then find viewing port (com & Ipt). If there is no com or Ipt, or

only an unknown device, there is a problem with the controller board or the USB cable.

2) Right-click "My Computer" and select Device Manager, find the viewing ports (COM and LPT). If there

is a yellow Arduino UNO exclamation point, this means you need to install the driver yourself.

3) If you install the driver again and again, it eventually fails. Please uninstall the driver and re-install>

install the driver automatically> restart the computer.

If your computer is a Windows 7 system
1) Right-click on "My Computer" and open the Device Manager, find viewing the ports (COM and LPT). At
this point you will see a "USB Serial Port", right-click "USB Serial Port" and select the "Update Driver

Software™ option.

il ActionmaMiewsnHeln
e | F|E BHE| 8 RS

4 = PC-20180429UKOG
b 49 Batteries
b g Computer
, a Disk drives
;B Display adapters
b L"§', Human Interface Devices
b £ IDE ATA/ATAPI controllers
b & Keyboards
b --ﬂ Mice and other pointing devices
» B4l Monitors
: Q‘ Network adapters
p -|[l3) Other devices
E»-i{lﬂ‘ﬂi}nl(nown device|

» Y% Ports (COM &LPT Update Driver Software...
[} B Processors Disable

»-% Sound, video and
1} M System devices

b~ @ Universal Serial Bu Scan for hardware changes

Uninstall

Properties

Launches the Update Driver Software Wizard for the selected device.

Figure 2.1.6 Updated Driver Interface
2) Next, select the "Browse my computer for driver software" option.

Ikx“:/j Il Update Driver Software - Arduino Mega 2560 (COM10)

How do you want to search for driver software?

< Search automatically for updated driver software

Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation
settings.

'* O SE Ty CUHTIRMALET T UNive!l sUlividil ©

Locate and install driver software manually.

Cancel

Figure 2.1.7 Driver Update Selection Screen
7

EEywish

3) Finally select the driver file named "FTDI USB Drivers" located in the "Drivers" folder of the Arduino
software download.

@ |l Update Driver Software - Arduine Mega 2560 (COM10)

-

Browse for driver software on your computer

Search for driver software in this location:

D lunatarduino'drivers -

[#]Include subfolders

= Let me pick from a list of device drivers on my computer

This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

I Mext I[Cancel]

Browse For Folder ==

Select the folder that contams drivers for your hardware.

L. drivers

J. exampjes
y. hardwage
o java

. hib

.. hibranes

.. reference

i. tools

- Arduino =

L

I oK | cancel

-

.

Figure 2.1.8 Driver file selection interface

-

4) If you have already installed, the following figure will automatically inform you that the driver was

successful.

2 |l Update Diriver Software - Arduino Uno (COM21)

Windows has successfully updated your driver software

Windows has finished installing the driver software for this device:

Arduino Uno

Figure 2.1.9 Driver Installation Successful Interface

At this time, we return to the "Device Manager" interface, the computer has successfully identified Arduino,

as shown in the below Figure 2.1.10 .then open the Arduino compilation environment, you can open the

Arduino trip.

File Action View Help

&= 5 HE =

a2 PC-20180429UK0G

E-% Batteries

E--;-;u Computer

E-u Disk drives

|>'a" Display adapters

E-Cﬁ Human Interface Devices

g IDE ATAFATAPI controllers

b &2 Keyboards

E--B Mice and other pointing devices
|>l,-;| Meonitors

Dl_lﬂ‘ Metwork adapters

4.7 Ports (COM & LP
. [N Processars

|>li| Sound, video and game controllers
M System devices

[i Universal Serial Bus controllers

Figure 2.1.10 Driver Success Recognition Interface

EEywish

Notice In Win10 system, some Arduino are connected to the computer (non-genuine chips are difficult to

identify), the system will automatically download the corresponding driver, so you can not install the driver
yourself, but in the Win7 system, you have to do it yourself.

In addition, we can see that the USB serial port is identified as COM15 in the above figure, but it may
be different with different computer, you may be COM4, COMS, etc., but USB-SERIAL CH340, this must
be the same. If you do not find the USB serial port, you may have installed it incorrectly or the system is
incompatible.

2. If your computer is a Windows 8 system: Before installing the driver, you should save the files you are
editing because there will be several shutdowns during the operation.

1) Press "Windows key" + "R"

2) lput shutdown.exe /r/o/f/t00

3) Click the "OK" button.

4) The system will reboot to the "Select an option" screen

5) Select "Troubleshooting” from the "Select an option™ screen

6) Select "Advanced Options" from the "Troubleshoot" screen

7) Select “Windows startup settings screen” from “Advanced Options”

8) Click the "Restart" button

9) The system will reboot to the “Advanced Boot Options” screen

10) Select "Disable Driver Signature Enforcement"

11) Once the system is booted, you can install Arduino driver the same as Windows7

3. If your computer is a Windows XP system: The installation steps are basically the same as for Windows 7,
please refer to the above Windows 7 installation steps.

Nextly,we introduce the Arduino IDE interface, firstly enter the software directory. Then you can see the
arduino.exe file and double-click to open the IDE. As shown in Figure 2.1.11.

drivers examples hardware java lib libraries reference tools tools-buil | arduinc.ex |arduinc.4j arduino_d

der e Jini ebug.exe
fo —))) = [
Cd et et -

ar;::luino_d arduino-b libusb0O.dll mswepl00. msverl00. revisionst wrapper-
ebug.l4jini uilder.exe dll dll xt manifest.x
ml

Figure 2.1.11 Software Catalog
1. The first thing you can see is the interface of the following figure. The functions of the toolbar buttons are
"Compile™ - "Upload" - "New Program” - "Open Program™ - "Save Program" - "Serial Monitor" , as shown
in Figure 2.1.12.

10

EEywish

'File Edit Sketch Tools Help

sketqh_jurj0ga

Save program

Open program
Serial Monitor

New program

Upload

Compiled

Figure 2.1.12 Arduino IDE Interface
2.There are 5 menus on the menu bar, but we mainly introduce File and Tools. Click File, the interface as
shown in Figure 2.1.13 will be displayed, you can see the Examples and Preference options. The Examples
are some of the Arduino's own programs, these are compiled without errors, the normal use of the program,
a great help for beginners. The Preference option, It’s mainly about the parameter settings, such as language,
fonts and so on.

Edit Sketch Tools Help -
New Cerl+N

Open.. Cerli+ O

Sketchbook »
| Examples » |

Close Ctri+ W

Save Ctrl+S

Save As... Cerl+Shift+S

Upload CerieU

Upload Using Programmer Ctrl+Shift+U

Page Setup Ctrl+Shift+P
Print Ctris P
Preferences Ctrl+Comma
Quit Crrl+ Q

J

Figure 2.1.13 File Menu Bar Options
3. Click Tools, the interface shown in Figure 2.1.14 will pop up. Here we can see two options: Board and
Port. In the board option, we can see the commonly used Arduino development board model, we only need
to choose according to their own development board. In the Port option, the USB serial port is mainly
selected, as shown in Figure 2.1.15. If you are not sure, you can check it in the "Device Manager" and select
the corresponding COM port.

11

EEywish

1 l(:m;a() {

\ Auto Format
Archive Sketch

sketch_sep07a Fix Encoding & Reload
1 v i Serial Monitor

Ctrl+Shift+M

Burn Bootloader

Arduino Nano

Arduino Leonardo
Arduino Micro
Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT

' Arduino AVR Boards
Port ' Arduino Yan
© Arduino Uno
} Programmer .

Arduino Duemilanove or Diecimila

Arduino Mega or Mega 2560
Arduino Mega ADK

LilyPad Arduino USB

LilyPad Arduino

Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor

Arduin <

ARM (32-bits)

Boards

Arduino Due (Programming Port)
Arduino Due (Native USB Port)

Figure 2.1.14 Tools interface

sketch_jun13a | Arduino 1.8.1

File Edit Sketch [Toolsl Help

sketch_jun13a

void setu

" put

void loop

// put

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload
Serial Monitor Ctrl+Shift+ M

Serial Plotter Ctrl+Shift+L

WiFi101 Firmware Updater

Board: "Arduino/Genuinc Uno" 4
Port: "COM15 (Arduino/Genuino Uno)" '

Get Board Info

Programmer: "USBtinyISP" 4

Burn Bootloader

Serial ports
v COMI15 (Arduino/Genuino Uno)

tedly:

- ¥ Metwork adapters
4 Y3 Ports (COM & LPT)

l_]‘? Arduino Uno (COMLS) |

Figure 2.1.15 USB serial port selection

So far, we have basically completed all the work. The next step is actual experiments. Open any program in

Examples. First compile the program. If it is compiled correctly, it can be directly downloaded to the

development board and the corresponding device of the connection number. With wires, you can see the

corresponding phenomenon.

12

&ywish
Chapter3 Experiments

3.1 Assembly of the Car

3.1.1 Motor installation

Stepl: You need to install the motor mount.

positive

|
q
|
|

s

[ansavp—
B rrrennsa s oo

Figure 3.1.1 Schematic diagram of motor mounting
Note: You need to use the screw to pass through the front hole of the motor, the motor holder corresponds to
the opposite position and use the nut to fix the motor holder.

kit

Figure 3.1.2 Effect diagram of motor mounting

13

Step2: You need to solder the wire to the motor.

negative
electrode

positive negative
electrode electrode

positive negative
electrode electrode

positive negative positive

electrode electrode electrode

Figure 3.1.3 Effect diagram of solder the wire

Step3: You need to fix the wire with a cable tie.

Figure 3.1.4 Effect diagram of fixing the wire

14

EEywish

Step4: You need to install motors.

M3 * 8

Figure 3.1.6 Effect diagram of motor installation

15

EEywish

Figure 3.1.8 Effect diagram of wheel installation
16

EEywish

Step2:You need to install motor driver module.

Figure 3.1.10 Shematic diagram of fixing motor driver board

17

EEywish

Figure 3.1.12 Effect diagram of copper column of tracking moduble installation

18

EEywish

[T 11
R
|) e

3Pin - Dupont Line *3

Figure 3.1.13 Shematic diagram of tracking moduble installation
Note: You need to screw the M3 nut to the bottom of the M3*10 screw and install it.

Figure 3.1.14 Effect diagram of copper column of tracking moduble installation
19

Engish

v @ = |
2 &

® 000 = @

+12V GND +5V

Figure 3.1.15 Shematic diagram of motor wiring
Note: You need to insert the 4Pin DuPont cable into the motor drive board input.

Figure 3.1.16 Effect diagram of motor wiring

20

EEywish

Figure 3.1.18 Effect diagram of copper column installstion

21

EEywish

Figure 3.1.20 Effect diagram of Keywish Uno R3 board installation

22

EEywish

Figure 3.1.22 Effect diagram of battery box installation

23

EEywish

Figure 3.1.24 Effect diagram of servo installation

In order to reduce the angle adjustment of the servo, we need to adjust the servo to 90 degrees.

First, we should copy the following program (Lesson\ModuleDemo\Servo\ServoCorrect\ ServoCorrect.ino)
into the compilation environment. Then, we need to make the signal line of servo(orange) be connected to
port 13 of Arduino board. Finally, we need to fix rudder wing by screws, and fix the ultrasonic bracket on

the rudder wing.
24

EEywish

#include <Servo.h>

Servo myservo;// create servo object to control a servo
int pos = ; // variable to store the servo position
void setup() {

myservo.attach(13);// attaches the servo on pin 13 to the servo object

}
void loop() {

myservo.write(pos);// tell servo to go to position in variable 'pos'

delay(15);// waits 15ms for the servo to reach the position

Figure 3.1.26 Effect diagram of rudder wing and ultrasonic bracket installation

25

EEywish

Figure 3.1.28 Effect diagram of infrared obstacle module installation

26

EEywish

Figure 3.1.29 Shematic diagram of voltage display module and DC head installation
We need to use two power cables (the same as the wires used by the motor, one red and one black), and
connect the two wires to the DC power supply head. DC power supply head as shown in Figure 3.1.30.
You need to remove the rubber ring at the "1" mark to open the caser and solder the wire to +12V and GND,
as shown in Figure 3.1.31.

Figure 3.1.30 Shematic diagram of solder DC power supply head

27

EEywish

Figure 3.1.31 Effect diagram of solder DC power supply head

Figure 3.1.32 Effect diagram of voltage display module and DC head installation

28

gwwSh

REFeNDI313 Til6o 6 7. 654 372
Ar duino Sensor Shield v5.0
RESET —— TXRX -
: 3 S0 '*cor{

S S,«;gsm___

‘A0 AL A2 A3 A4 AS) § 8 o

POUWER ﬁNﬁLOG IN .
SUGNDUVIN O 1 2

uprou{_ ST

il] R () e
AREFGNDI3I2 111098 7654 3210
vo. O
1A R G e e g IXDX~ 4
- ‘(COV
« . SCLSDA- 4

A0 Al A2 A3 A4 AS IIC . .

-
3 o
W >
(24

POWER ANALOG IN
V VIN 01 23 4 ‘

S

Figure 3.1.34 Effect diagram of infrared remote control receiver installation

29

EEywish

You should screw the battery box , the voltage display module and the DC head wire together (as shown in
Figure 3.1.35), and connect the positive (red wire) to the +12V negative (black wire) to GND.

Figure 3.1.35 Shematic diagram of Overall assembly

Note: you need to take the infrared tracking wire and the driver board wire from the upper acrylic plate hole
1, plug the expansion board into the UNO R3 board and wire it.

30

EEywish

Figure 3.1.36 Effect diagram of Overall assembly

Through the previous steps, we have completed the installation of the main structure of the car. Now we
wire the car to connect the cable. The connection method is as shown in the following figure. For the
specific experiment of a certain module, we will introduce it in detail through the following chapters.

Motor
Control interface

SG90
Servo interface

Ultrasound
module interface

Infrared receiver

Bluetooth

;! SDA- + (. module interface

Infrared
tracking interface

l él___.._ BARIE
o9 AC Al A2 A3 A1 NS IICJ_ .-

ke

Infrared obstacle <!

avoidance interface

Figure 3.1.37 Expansion Board Connection Diagram

31

EEywish

The full installation of the car is as shown below

3.1.38 Assembly Connection Diagram
So far, the basic assembly of car has been completed.We believe you have some basic knowledge of

your car’s structure, function and some modules through a short period of time, then you can achieve the
corresponding functions only by downloading the program to the development board, each function has a
corresponding program in CD , so please enjoy playing. However, if you can read the program and write
your own program, there will be more fun, now let's go to the software section!

32

EEywish

3.2 Hummer Bot Module experiment

In the "Hummer-Bot™ car, we choose the L298N as the motor driver chip for it is a high voltage and
current full-bridge driver chip, the chip uses 15 pins package. It is a special motor driven integrated circuit
(two H bridges) with high voltage and current full-bridge driver. And it contains 4 channel logic drive circuit,
basically belongs to a kind of two-phase and four-phase special motor drive which contains two H bridges of
high voltage large current. The output current is 2A, the maximum current is 4A, the maximum working
voltage is 50V, which can drive the load under 46V and 2A, such as high power DC motor, stepper motor,
solenoid valve and so on. The chip with two enable control terminals uses the standard logic level to control
signals, allows or prohibits the device to work when the input signal is not interfered, it has a logic power
input terminal which can enable the internal logic circuit to work under low voltage, and feedback the
variation to the control circuit. Especially, the input can be connected directly with the MCU and easily
controlled. When the DC motor is driven, the stepper motor can be directly controlled, and it can be turned
forward and reversely, which only needs to change the logic level of the input. The pin arrangement is
shown in Fig.3.2.1. The pin 1 and 15 can separately connect to the current sampling resistor and form the
current sensing signal.

15 2 CURRENT SENSING B

e |

@ (

CUTPUT 4
B3y 3 CUTPUT 2
12 J INPUT 4
"Ml > EMABLE 8
10 D INPUT 3
. =1 LOGIC SUFPPLY VOLTAGE Vgs
Multiwatt15 3 s SR

T ——— INPUT 2

2 ENABLE A

| — INPUT 1

SUPPLY VOLTAGE V

/i\ D OUTPUT 2
\V J OUTPUT 1

[E— CURRENT SENSING A

Figure .3.2.1 Arrangement of Chip Pins
L298N can drive 2 motors which are connected between OUTI, OUT2 and OUT3, OUT4. 5, 7, 10 and
12 pin are connected to input control level for controlling the positive and negative rotation of the motor,

o
-

- N W kO
\J

ENA, ENB are connected to control enable terminal for controlling the running and shutdown of the motor.
Its characteristics:

33

EEywish

4 Signal indicator

@ The speed is adjustable

€ The strong anti-interference ability with photoelectric isolation

© Overvoltage and overcurrent protection

4 Controlling of two motors separately

© Controlling the stepper motor

@ The speed control with PWM pulse width

© Positive and negative rotation

ENA IN1 IN2 Motor status

H H L Forward
H L H Reversal
H IN2 IN1 Quick stop
L X X Stop

Figure .3.2.2 Logic Function Chart

12V GND

Fig.3.2.3 Module Physical Map

Detailed L298N chip data please refer to “hummer-bot\Document\L.298N_datasheet.pdf”

34

EEywish

VCC_12v
U3 RT 4y
1 3 Py . AN)
IN_GND_|oUT_T) o
——Csé -
.||| o s 104 5
PowerIN | 6V 4700t %

1

P :LC4
2 It - ~-c3
c1 ~L-c2 100uf 0.4uf
o———

) 0.tuf [1o0uf .

&

P1 P2 é P3 P4
7N * "

EC1 u1
ul! 5Pt vss |2 vee 12y *
) PIN2 VS u
3 10 [
e — 5 PIN3 2
® P IN4 OUT1 |3
— 6 OUT2 33
® 1 11 >ENA ouT3 14
L PENB OUT4
'I|I 8 1 M2
| GND ISENA 45

ISENB P5 P6 P7 P °®
|
298N-1

Figure .3.2.4 Schematic Diagram of Motor Drive

Four DC motors with high power L298N drive enable "Hummer-Bot" to run faster than conventional
two-wheel car, the acceleration time is shorter and the structure is more stable. However, in the actual
application, we need to adjust the speed of the car because of environmental or other factors, yet this does
not affect the forward, backward, stop, flexible steering of the car, so we use PWM to control the speed of
the motor(Note: PWM is a way to simulate the simulation output via square waves with different duty
cycles.), Arduino PWM port outputs a series of square waves with fixed frequency, the power and current of
the motor can be amplified after receiving the signal, thereby changing the motor’s speed. The speed
coordination of two motors on the right and left wheels can achieve the forward, backward, turning and
other functions of the car. Figure 2.4.5 shows the sequence diagram of PWM duty cycles.

0% duty cycle

I [[[M | 10% duty cycle
[] []]]] | 25% duty cycle
L L L L sy
| L L || || || B0% duty cycle

100% duty cycle

Figure .3.2.5 Sequence Diagram of PWM Duty Cycles
In Arduino, analog voltage can’t be output, only 0 or 5V digital voltage value, we can use high

resolution counter and the duty cycles of the square wave modulation method to encode a specific level of
35

EEywish

analog signal. The PWM signal is still digital, because at any given time, the full amplitude of DC power
supply is either 5V (ON) or OV (OFF). The voltage or current source is added to the analog load with a ON
or OFF repetitive pulse sequence. When the DC power supply is added to the load, the power supply is on,
otherwise the power supply is off. As long as the bandwidth is enough, any analog value can use PWM to
encode. The output voltage value is calculated by the on and off time. Output voltage = (turn-on time / pulse
time) * maximum voltage. Fig.2.4.6 shows the corresponding voltage to the pulse change.

bV

0V

bV

ov

bV

oV

75%

50%

.......................

25% 75% 25% V5% 25%

50%

50% 50% 50% 50%

________ N | '

20%

Figure .2.4.6 Relation between Pulse and Voltage

80%

20% 80% 20% 80%

In the "Hummer-Bot" car experiment, we use Arduino UNO R3 as the main control board. By referring
to the chip data, we will know that Arduino UNO has 6 PWM pins, namely digital interfaces 3, 5, 6, 9, 10,
11, and we select 5, 6, 9, 10 as the motor control 10, the connection is shown in Fig.2.4.7.

The following table shows the correspondence between L298N and Uno board:

L298N Arduino Uno
IN1 D6
IN2 D10
IN3 D5
IN4 D9

Figure .2.4.7 Arduino and L298N driver board connection diagram and connection table

36

EEywish

The L298N and Arduino expansion board wiring is as follows:

Motor
Control interface

S > = & B » |«@- « S a |o@e -‘*\' Ay Jee .l
ARETGNDI31Z 111088 7684 3210
v5.0
TXRX~- +

SSILSQﬁ— +
m A A2a3nems IIC) - .

Figure.3.2.8 L298N and Arduino Expansion Board Connection Diagram

After the connection, we do not know whether the motor can work normally or not, so we need to do a
simple test by copying the following code (You can also open the program in the CD directly.) into the IDE
development environment and downloading to the development board. And turning on the power (power
connection is introduced the tenth and eleventh steps in 3.1.2) to observe the wheels rotation, if "going
forward 5s----stopping 1s---- going back 5s---- stopping 1s----turning left 3s----stop 1s----turning right 3s"
are normal, the connection is correct, otherwise the polarities of the motor may be reversed, then you need to
adjust slightly.
Program flow chart is as follows:

L298N Arduino Uno
IN1 D6
IN2 D10
IN3 D5
IN4 D9

37

EEywish

Go forward ,
delay5s

l

Stop , delayls

'

Recede , delay5s

'

Stop , delayls

Turn right , dela
y3s

T

Stop , delayls

i

Turn left , dela
y3s

Figure 3.2.9 Motor Test Flow Chart
Note: This test and 10 selection are only for reference, you can choose other 10 ports or use other

wiring methods according to your own ideas.

38

EEywish

int E1 5; //PWMA

int M1 9; //PWMA

int E2 = 6; //PWMB

int M2 = 10; //PWMB

void setup() {

}

void loop() {
analogWrite (M1, 0);
analogWrite(E1l, 150); //the speed value of motorA is 150
analogWrite (M2, 0);
analogWrite(E2, 150); //the speed value of motorB is 150
delay (5000) ;
//******** ******************************//forward
analogWrite (M1, 0);
analogWrite(E1l, 0); //the speed value of motorA is 0
analogWrite (M2, 0);
analogWrite(E2, 0); //the speed value of motorB is 0

delay(1000) ;

39

EEywish

//**//Stop

analogWrite (M1,) ;//the speed value of motorA is 150
analogWrite(E1l, 0);

analogWrite (M2,);//the speed value of motorA is 150
analogWrite(E2, 0);

delay() 5/] KKK KKK KKK K KK KKK KR KKK KKK KR KKK KKK KR KKK xR *K [[hack
analogWrite (M1, 0);

analogWrite(El, 0); //the speed value of motorA is 0
analogWrite (M2, 0);

analogWrite(E2, 0); //the speed value of motorB is 0
delay()

//******* ***************************************//Stop
analogWrite (M1, 0);

analogWrite (E1,); //the speed value of motorA is 180
analogWrite (M2,);//the speed value of motorB is 180
analogWrite(E2, 0);

delay()

//***//left

analogWrite (M1, 0);
analogWrite(El, 0); //the speed value of motorA is 0
analogWrite (M2, 0);
analogWrite(E2, 0); //the speed value of motorB is 0

delay() ;

//***** **************************************//Stop

analogWrite (M1,); //the speed value of motorA is 200
analogWrite(E1l, 0);
analogWrite (M2, 0);

analogWrite (E2,); //the speed value of motorB is 200

delay();//*** ***************************************//right

By now, the car can move normally, next we will add several common sensor modules.

3.2.2.1 Introduction of Infrared Obstacle Avoidance Sensor

Infrared obstacle avoidance module is a pair of infrared transmitting and receiving tubes, the former
launches a certain frequency infrared, the receiving tube will receive the reflected infrared when the infrared
detects the obstacles. After the signal is processed by the comparator circuit, the green LED lights, and the
signal output port outputs digital signal at the same time (a low level signal). The detection distance can be
adjusted through the potentiometer knob, the effective distance range is 2-30cm, the working voltage is
3.3V-5V. The sensor uses infrared, so the anti-interference ability is very strong, the measurement accuracy

is very high when the distance is moderate. In addition, the module can be assembled easily and used
40

EEywish

conveniently, it can be widely used in robot obstacle avoidance, car obstacle avoidance and the black&white

line tracing and many other occasions.
3.2.2.2 Working Principle

1, The module output port OUT can be directly connected with the 10 port of the microcontroller, and
directly drive a 5V relay; the connection mode is: VCC-VCC; GND-GND; OUT-IO (A3 and A4), as shown
in Fig.3.2.9 and Chart 3.2.1.

2, The module uses the 3-5V DC power as power supply. When the power is on, the indicator will
light.

3, The diameter of installation hole is 3mm, you can use the same size screws (screws in the Kit).

Pin wiring definition (only for reference, you can define according to your own ideas):

arduino Uno Infrared Obstacle Avoidance Module
VCC VCC
GND GND
A3 The left module
A4 The right module

Chart 3.2.1 Pin Wiring Definition
3.2.2.3 Module Parameters

The working principle of infrared obstacle avoidance sensor is very simple, that is the reflection
property of objects. In a certain range, if there is no obstacle, the infrared ray emitted will gradually weaken
because of the farther distance of transmission, and finally disappear. If there are obstacles, the infrared will
be reflected to the receiving head. As soon as the sensor detects the signal, it can confirm that there are
obstacles in front of the circuit board, the green indicator will light, the OUT port continuously outputs low
level signal to MCU at the same time, the MCU conducts a series of analysis to ensure that the two wheels
of car works properly and avoids the obstacle beautifully. The schematic diagram of the sensor is shown in
Fig.3.2.8. Infrared detector can be divided into active and passive according to its working mode.

Active infrared detector is equipped with infrared light source, it can detect the location of the object
through covering the light source, reflection, refraction and other optical means.

Passive infrared detector has no light source, and it can measure the position, temperature, or infrared
imaging of the detected object by receiving the characteristic spectral radiation of the detected object.

41

EEywish

OUT-LED com P10
N/‘/ [Ooi0)
— ||
. 4
10K R5 R6 R
AN K
SAE) S 10K
c7||
cs R2 104 |
e 1K 1 3 !
104 | :)
AN ouT1
) V4Y I 4 g bIN-1 OUT2 —g
i PIN+T IN-24—¢
] IN+24—
0
i w R7 | 10K Us LM393-1
v i »
@]
Py n

Figure .3.2.11 Connection of Arduino and Sensor
Note: This module can adjust the detection distance by the potentiometer, the detection distance is
2-30cm, if it is found that the distance detection is not very sensitive, you can use the potentiometer to

achieve the desired results (rotating the potentiometer clockwise will increase the detection distance;
counterclockwise will decrease), it is shown in Fig.3.2.12.

Manual adjustment is shown in the following diagram:

42

EEywish

Adjustable
Potentiometer

Figure .3.2.12 Diagram of Distance Detection Adjustment
3.2.2.4 Wire connection

As the figure shown below, the upper column is the "GND" interface, the middle column is the "VCC"
interface, and the lower column is the "OUT" interface, where "A3" corresponds to the "OUT" of the left
infrared obstacle avoidance, and "A4" corresponds to the right infrared obstacle avoidance. "OUT".

S' »” » « » » 0 » "~ - » - .“\”
AREFBNDIZ1Z 111088 7 65 7
v

. TXRX~ +
1COM

Infrared obstacle z - <t
avoidance interface

POUER ﬁNﬁLOG IN .
SUGBNDVIN 01 2 3

Figure 3.2.13 Wire connection diagram

43

EEywish

3.2.2.5 Experimental Procedures

1, Fixing the two sensors on the car and connecting them to Arduino with wires.(Already done)

2, Testing the sensitivity of module, namely opening the switch on the battery box and the indicator
will light, placing obstacles the 10cm away from the infrared tubes, adjusting the potentiometer until the
output indicator lights up.

3, Module test. Copying the following code to the IDE compiler environment (you can also open the
program directly in the CD), downloading it to the development board, opening the serial port monitor (baud
rate is 9600) and observing the changes of data when there is an obstacle (Figure 3.2.14) and no obstacle
(Figure 3.2.15).

Note: Here we connect the infrared obstacle avoidance signal output port to the analog port on Arduino
(A0-Ab), so the serial port prints out analog value, you can connect it to digital port (2-13), and the serial
port will only print out "0" and "1".

Program flow chart is as follows:

Open the serial
port

l

Read the value of
infrared obstacle
avoidance

!

Print the read value
to the serial port

44

EEwa#J

const int leftPin = A3;

const int rightPin = A4;

int dl;

int dr;

void setup() {
Serial.begin(9600) ;
pinMode (leftPin, INPUT) ;
pinMode (rightPin, INPUT) ;
delay (1000);

}

void loop() {
dl = analogRead(leftPin) ;
dr = analogRead(rightPin) ;
Serial.print("left:");
Serial.print(dl);
Serial.print (" ")
Serial.print("right:");

Serial.println(dr) ;

}
25 COMLE (Arduine/Genuine Una) =-|-=
[i)
left:32 right:30 1
left:32 right:30
left:32 right:29
left: 32 right:30
left:32 right:30
left: 32 right:30
left:32 right:30
left:32 right:30
left:32 right:29
left:32 right:30
left:32 right:30
left:32 right:30
left:32 right:30
left:32 right:30
left:32 right:30 E|
left:32 right:30 il
7] tutosere_L Do _1ns erdine v 9600 bacd

Figure .3.2.14 Diagram of Data with Obstacles

45

[2 COML6 (Arduino/Genuino Uno) b B e
; IEE!.
left:1020 right:1021 i
left:1020 1right:1020
left:1020 right:1020
left:1021 right:1020
left:1021 right:1020
left:1021 right:1020
left:1020 1right:1020 =
left:1021 right:1020
left:1020 right:1020
left:1021 right:1020
left:1020 right:1021
left:1020 right:1021
left:1020 right:1020
left:1020 right:1021
left:1020 1right:1021
Teft:1020 right: 1020
[7] fezam el {Fu ins ecding ,I Wi Eacd v

Figure .3.2.15 Diagram of Data without Obstacles

46

EEywish

3.2.2.5 Software Design

3.2.2.5.1 Program flow chart

Read two infrared
analog values and
assign them to dl and
dr

t22

Turn right Go forward Turn left Go back

:

delay 1s

3.2.2.5.2 Program code

In the above steps, we have tested the car’s driving and obstacle avoidance module respectively, they
have achieved the desired results, here the "infrared obstacle avoidance™ actually has been explained in this
section, but we have not put the programs of two parts together, so we now integrate the program of the two
parts and complete this great "infrared obstacle avoidance™ project. Firstly, let's read the complete program:

47

EEywish

int E1 = 5; //PWMA

int M1 = O; //DIRAX**xkkkkkkkhkkhkxkhkhkkxkkkkkkxkkkxkkxkk*kx] o ft
int E2 = 6; //PWMB
int M2 = 10; //DIRB**right
/*Define 4 motor control terminals, connected to IN1-IN4 on the motor drive board. */
const int leftPin = A3;
const int rightPin = A4; // Define the two signal receiving ends of the sensor
float dl;
float dr;// Define two margins to store the values read by both sensors
void setup() {
Serial.begin(9600); // Set the serial port baud rate to 9600,
pinMode (leftPin, INPUT);
pinMode (rightPin, INPUT);// Set the working mode of two sensor pins, namely "input"

delay (1000);

void loop () {
dl = analogRead(leftPin);
dr = analogRead(rightPin); // Read the values collected by both sensors and assign them
to the defined variables.
if (dl >= 38 && dr <= 38) {/*If the value collected by the left sensor is greater than
or equal to 38 and the right value is less than or equal to 38, the following program in {}
is executed (dl1> = 38, there is no obstacle on the left, dr<= 38 shows that there is an obstacle
on the right, so at this time the car is turning to the side without obstacles (ie, turning
to the left). From Figure 3.2.11, we know that the simulated value will drop below about 35
in the event of an obstacle , But in order to reduce the error, we set the threshold at 38
to prevent the car from judging the error because of the error. We can also customize other
values. If we use the digital port to receive the value of the sensor, we only return "0"
and "1" ", But the same way to judge. The reason why I did not use digital IO, because we
use the digital IO port in other places.*/
analogWrite (M1, 0);
analogWrite(E1l, 180); //the speed value of motorA is 180
analogWrite (M2, 180); //the speed value of motorB is 180
analogWrite(E2, 0); /*Set a PWM value, the maximum PWM is 255, but the speed of the
car should not be too fast when walking, otherwise it can not hit the obstacle in time when

the obstacles are suddenly encountered.*/

48

EEywish

Serial.print(dl);

Serial.print (" ");

Serial.print (dr);

Serial.print (" ");

Serial.println("Turning left"); /*Through the "Serial Monitor" print the current
status of the car and the value collected by the sensor*/

delay (200);

analogWrite (M1,0);

analogWrite(E1,0);

analogWrite (M2,0);

analogWrite(E2,0);/*As the car left after about 300ms stop, after measuring, 300ms
time car just can rotate about 90 degrees, because the DC motor does not like the steering
angle can be precisely controlled, so can only give a rough estimate, of course, different
motor speed is not Similarly, the time used is not the same, so everyone in the experiment
can be based on their own ideas, but the angle of 90, but also other values.*/

delay(]@@@) ,-//************************************//Turning left

if (dl <= 38 && dr <= 38) {/*If the value collected by the left sensor is less than or

equal to 38 and the right value is less than or equal to 38, the following program in {} is
executed (dl <= 38, indicating that there is an obstacle on the left and dr<= 38 shows that
there is an obstacle on the right, so at this time the car is rotated 180 degrees backwards.
In the experiment, the car can just turn around 180 degrees after 500ms of rotation. Because
the DC motor can not precisely control the angle like the steering gear, An approximate value,
of course, different motor speed is not the same, the time used is not the same, so everyone
in the experiment can be based on the circumstances may be.)*/

analogWrite (M1, 255); //the speed value of motorA is 255

analogWrite(E1l, O

analogWrite (M2, O

analogWrite(E2, 255); //the speed value of motorB is 255

Serial.print(dl);

Serial.print (" ");

Serial.print(dr);

Serial.print (" ")

Serial.println("Turning around");/*Through the "Serial Monitor" print the current
status of the car and the value collected by the sensor.*/

delay (500) ;

analogWrite (M1, 0);

analogWrite (E1, 0);

analogWrite (M2, 0);

analogWrite (E2, 0); /*Rotate 180 degrees and stop*/

delay(/‘ COC) ,-//*********************************//Turning around

49

EEywish

if (dl <= 38 && dr >= 38) /*If the left sensor is less than or equal to 38 and the right
value is greater than or equal to 38, the following program in {} is executed (dl <= 38, indicating
that there is an obstacle on the left, dr> = 38 shows that there is no obstacle on the left,
so at this moment the car is turning to the side without obstacle, that is, turning to the
right) */
{

analogWrite (M1, 180);//the speed value of motorA is val

analogWrite(El, 0);

analogWrite (M2, 0);

analogWrite (E2, 180);//the speed value of motorA is val

Serial.print(dl);

Serial.print (" ");

Serial.print(dr);

Serial.print (" ");

Serial.println("Turning right");

delay (300) ;

analogWrite (M1, 0);

analogWrite(E1l, 0);

analogWrite (M2, 0);

analogWrite (E2, 0);/*Car must stop after each rotation, if you do not stop there will
be the phenomenon of rotating around. */

delay(l\;@(/) ,-//*********************************Turning rlght

if (dl >= 38 && dr >= 38) {/* Judge two values collected by the sensor. If the value collected

by the left sensor is greater than or equal to 38 and the right value is greater than or equal
to 38, execute the following program in {} (dl > = 38, indicating that there is no obstacle
on the left and dr > = 38 that there is no obstacle on the left, so the car at this time straight
*/

intval = 150; /*When the straight line has a PWM value of 150, if the value is too
large, the speed of the car will be very fast, which may lead to the car can not hit the obstacle
in time when it encounters the obstacle. */

analogWrite (M1, 0);

analogWrite(E1l, val);//the speed value of motorA is val

analogWrite (M2, 0);

analogWrite(E2, val);//the speed value of motorB is val

Serial.print(dl);

Serial.print (" ");

Serial.print(dr);

Serial.print (" ")

Serial'println("qo");//**********************************/ / forward

50

EEywish

In the above program, we made comments on some part of the program in order to make you to learn
and understand the program easily, the program is relatively simple, you can write your own programs to
give the car more skills. Of course, if you want to use it directly, we have the corresponding source program
in the CD.

3.2.3.1 Introduction of Infrared Tracing Sensor

After infrared obstacle avoidance, let us learn the infrared tracing, their nature of work is the same,
using basically the same module, just in different ways, to achieve different functions. In this section when
we study, we have to pay attention to the color of the line we trace (the black line or white line), if your floor
is black, you should trace the white line (pasting white line on the floor); if it is white, then you should trace
the black line (pasting black line on the floor); you just need to make a distinct difference between the track
and the ground environment.

Black line tracking refers to the car drives along the black line on the white floor, it can know where to
drive according to the received reflected light due to the different light reflection coefficient on the black
and white floor.

White line tracking refers to the car drives along the white line on the black floor, it can know where to
drive according to the received reflected light due to the different light reflection coefficient on the white
and black floor.

In the "Hummer-Bot" car, we use the TCRT5000 sensor as tracing module, TCRT5000 infrared
reflection sensor is a photoelectric sensor which consists of an infrared emitting diode and an NPN infrared
photoelectric transistor. The detectable reflective distance is Imm-25mm, the sensor is specially equipped
with M3 fixed installation holes, so it is easy to adjust the direction, it also has the 74HC14 Schmidt trigger
inverter which ensure the clean signal, the good wave shape and the strong driving ability. It can be applied
to robot obstacle avoidance, robot tracing (detecting black line in white background and detecting white line
in black background), which is the necessary sensor for tracing line robot and other occasions. The PCB size
is 3.5cm*1cm, and the physical map is shown in Fig.3.2.16.

51

EEywish

o
.
=]

L

be be

Top view

Figure .3.2.16 Physical Map of the Module

In the above, we talked about two patterns of tracing-the white line and the black line. In fact, either the
black line or the white line, we usually adopt the infrared detection method.

Infrared detection method means that different objects with different colors have the different infrared
reflection characteristics. The car launches the infrared to the ground continually during driving process, the
infrared receiving tube will be in a shutdown state and the output of the module is low level when the
emitted infrared is not reflected or the reflected infrared is not strong enough, and indicating diode will be
off; when the diffuse reflection occurred on a white floor, the intense reflected infrared will be received by
the receiving tube on the car, the photosensitive triode will be saturated, the output end of the module is high
level and the indicating diode will light.

As is shown in the schematic diagram 3.2.17 (U1 is comparator, such as LM358, LM324, LM393,
LM339 and a series of comparators, we use the 74HC14D comparator in TCRT5000), A and C are
connected to the light emitting diode, C and E to the receiving diode, as shown in Fig.3.2.16. In the
"Hummer-Bot" car, we use three modules, two in the left and right sides, one in the middle. Its installation is
shown in Fig.3.2.18,the tracing sensors are in a straight line.

52

EEywish

'-.-"EC-
. 3 :
R1 R2
g 5103 20K wh
|
. signaly []] e N .
| »> = 1 F u f u
a 2 2 I i P
1T .0 G14 ’ . P
CON3 ' i i i
i EK c1 == I i | i [
104 | H 1 E B .
o = | eft i i | : i Rlﬁht
* whee H . i | Wwhee
L : P S
- | | | | I B
| [— ¢ | p— -
|
o1 d Left sensor Right sensor
na | A
al A 1) 2—)i
fan LED

Figure .3.2.17 Schematic Diagram of Tracing Module Figure. 3.2.18 Diagram of Tracing Module
Installation

The X1 and Y1 are the first direction control sensors, and the width of the two sensors on the same side
of the black line must not be greater than the width of the black line. When the car is moving forward, the
driving track is always between the two first level sensors X1 and Y1 (the black track as shown in Fig.
3.2.18), when the car deviates from the black line:

If the left X1 detects the black line which can’t be detected by the right Y1 and intermediate sensors,
the the car has shifted to the right, then the car will turn left slightly, and keeping intermediate sensor always
detecting the black line; if the right Y1 detects the black line which can’t be detected by the left X1 and
intermediate sensors, the the car has shifted to the left, then the car will turn right slightly, and keeping
intermediate sensor always detecting the black line; if the car turns back on the track driving along the black
line, X1 and Y1 can all detect the white line, and send high level to the microcontroller.

3.2.3.3 Module Parameters

€ Using TCRT5000 infrared reflection sensor

@ The detection distance: 1mm~25mm, the focal distance is 2.5mm

€ The comparator output signal waveform is clean, good-shape and it has more than 15mA strong drive
ability.

€ The working voltage: 3.3V-5V

Using wide voltage comparator 74HC14D, digital output (0 and 1)

2

€ Easy-to-install fixed bolt holes

Detailed parameters please refer to “hummer-bot\Document\ TCRT5000.pdf”
Note:

Correct wiring! The mainboard and electronic device may burn up if you have reverse connection
between positive and negative poles. Connecting the VCC to 3.3V or 5V, the OUT output port to the

53

EEywish

microcontroller 10 port directly. The 1/0 port on Arduino should be set for input mode / receiving mode,
otherwise it can’t be used. As for other MCU, such as ARM or more advanced control boards, if the 1/O
ports need to be used as the input and output mode, they have to be set to the input mode / receiving mode.
The 51 series microcontrollers can be used directly, there is no need to set the input and output mode.

3.2.3.4 Wire connection

As shown in the below figure, the upper column is the "GND" interface, the middle column is the "VCC"
interface, and the lower column is the "OUT" interface, where "AQ" corresponds to the "OUT" of the left
trace, and "Al1" corresponds to the "OUT" of the intermediate trace. "A2" corresponds to the "OUT" of the
right trarce.

mtremmz 088 7657 3‘7’T‘p‘
vo.0
TXRX- +

+

1CoM

Infrared
tracking interface

o
<

POUWER ﬂNﬂLOG IN .
5UGNDUIN 012345

Figure .3.2.19 Wire connection diagram

3.2.3.5 Experimental Procedures

1, Fixing the sensor on the car (the assembly is completed) and connecting it to the Arduino as shown
in Fig.3.2.19.

2, Making the track.If your floor is white, then you could stick a black tape to form a loop, otherwise
stick a white tape, the shape of track is based on your own desires, the best width of the tape is 13-18mm. In
this manual, we use the black track, as shown in Fig.3.2.20.

3, Module test. Copying the following codes to the IDE compiler environment (you can also open the

program in the CD directly) and downloading to the development board, opening the serial port monitor
54

EEywish

(baud rate is 9600) to observe the changes of data when there is the white line (Fig. 3.2.21) and is not the
white line (Figure 3.2.22).
Program flow chart is as follows:

Read the value
returned by the |
infrared sensor

'

Print the read
value to the serial
port

Note: Here we connect the signal output port of infrared obstacle avoidance to the analog port on
Arduino (A0-A5), so the serial port monitor prints analog values, you can connect it to the digital port (2-13),
then the serial port monitor will print out only 0™ and "1".

void setup() {
Serial.begin(9600) ;

}

void loop () {
int left, centre, right;
left = analogRead(A0) ;
centre = analogRead(Al) ;
right = analogRead(A2);
Serial.print("right:");
Serial.print(right);
Serial.print (" ");
Serial.print("centre:");
Serial.print (centre);
Serial.print (" ");
Serial.print("left:");
Serial.print (left);

Serial.println(" ")

55

EEywish

Figure .3.2.20 Example of the Black Track

right:100Z centre: 1004 Teft:1004 -
right:1002 centre:1004 left:1003
right:1002 centre:1004 1left:1004
right:1002 centre:1004 1left:1004
right:1002 centre:1004 1left:1004
right:1002 centre:1004 1left:1004
right:1002 centre:1004 left:1003
right:1002 centre:1004 1left:1004
right:1002 centre:1004 1left:1004 il
right:1002 centre:1004 1left:1004
right:1002 centre:1004 1left:1004
right:1002 centre:1004 left:1003
right:1002 centre:1004 1left:1004
right:1002 centre:1004 left:1003
right:1002 centre:1004 1left:1004
right:1002 centre:1004 left:1003
right:1002 centre:1004 1left:1004
right:1001 centre:1004 1left:1004
right:1002 centre:1004 1left:1004
right:1001 centre:1004 1left:1004
right:1002 centre:1004 1left:1004
right:1002 centre:1004 1left:1004 -
right:1002 centre:1004 left:1004 il

[Antoszerell o line ending v |sauu baud v

Fig. 3.2.21 The Data When the Sensor Does Not Detect the Black Line

56

ool COM16 (Arduine U

right:0 centre:0 left:0
right:0 centre:0 1left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0 Ul
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre: 0 left:0
right:0 centre:0 left:0
right:0 centre: 0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 left:0
right:0 centre:0 1left:0
right:0 centre:0 left:0
right:0 centre:0 1left:0 il

fntaseroill Mo line ending v | |9600 baud v

Figure 3.2.22 The Data When the Sensor Detects the Black Line
From Fig.3.2.21 and Fig.3.2.22 we can see that the output is high level when the sensor does not detect
the black line, low level when detects the black line. We use the analog port to collect the sensor’s signal, so
the printed value is analog that, the high level is reaching 1024, the low level is 0. After we master the
working principle of the sensor, our tracing car in this section comes to an end, then let us open a car
journey.

3.2.3.5 Software Design

3.2.3.5.1 Program flow chart

When the car enters the tracing mode, it keeps scanning the 1/0 port of the MCU connected to the
sensors, once detecting the changes in signal at the 1/0O port, the corresponding procedure will be
implemented, the corresponding signal will be sent to the motor so as to correct the status of the car.

When the car enters the tracing mode, it keeps scanning the 1/0 port of the MCU
connected to the sensors, once detecting the changes in signal at the 1/O port, the corresponding procedure
will be implemented. If the left sensor detects the black line (the left half of the car walked across the black
line, the car body is trended right), the car should turn the left; If the right sensor detects the black line (the
right half of the car walked across the black line, the car body is trended left), the car should turn the right.
After the direction adjustment, the car walks forward, and continues to detect the black line repeatedly. The
tracing flow chart is shown in Fig.3.2.23.

57

EEywish

Read three
sensor -}
values
e Go forward Turn right

Figure .3.2.23 the Tracing Flow Chart

3.2.3.5.2 Program Code

int E1 5; //PWMA

int M1

O/ /DIRAK * Kk % ko ok %k ok %k k% kK& A kKK A KKK XKk & x kR xk k%] @t
int E2 = 6; //PWMB
int M2 = 10; //DIRB**right
/*Define 4 motor control terminals, connected to IN1-IN4 on the motor drive board.*/
void setup() {
Serial.begin(9600); /*Set the baud rate to 9600 */
}
void loop()
{
int leftl, centre, rightl; /*Define 3 sensors */
leftl = analogRead(A0) ;
centre = analogRead(Al);
rightl = analogRead(A2); /*Read the value collected by 3 sensors */
if ((rightl >= 975) && (centre <= 3) && (leftl >= 975)) {/* Judge the collected value, if rightl >

the sensor captures a value that is low and reads 0 after analog IO. However, to reduce the error,

we set the threshold In 8, to prevent the error caused by the car to determine the wrong, we can

58

EEywish

customize the other values, if the use of digital port to receive the value of the sensor returns
only "0" and "1", but to determine the same way. The reason why I did not use digital IO, because
we use the digital IO port in other places. */
intval = 150; /*Set a PWM value, the maximum value of PWM is 255, but the speed should not
be too fast when tracing the car, otherwise the car will shake more in the tracing process.*/
analogWrite (M1, 0);
analogWrite(E1l, val); //the speed value of motorA is val
analogWrite (M2, 0);
analogWrite(E2, val); //the speed value of motorB is val
}
else if((rightl <= 8) && (centre >= 975) && (leftl >= 975)) {/* The value collected to Jjudge,
if the center > = 975 and leftl > = 975 are greater than 975, indicating that the middle and left
sensors did not detect the black line, rightl <= 8 shows the right sensor detects a black line, then
the car Has left to the left, or the black line has been turning to the right, so the car should
turn to the right. */
intval = 150;
analogWrite (E1, 0);
analogWrite (M1, val); //the speed value of motorA is val
analogWrite (M2, 0);
analogWrite(E2, val); //the speed value of motorB is val
}
else if ((rightl >= 975) && (centre >= 975) && (leftl <= 8)) {/* Judge the collected value, if

center > = 975 and rightl >

975 are greater than 975, indicating that the middle and right sensors
did not detect the black line, leftl <= 8 shows that the left sensor detects the black line, then
the car Has been to the right deviation, or the black line has turned to the left, so the car should
turn left at this time. */
intval = 130;
analogWrite (M1, 0);
analogWrite (E1l, val); //the speed value of motorA is val
analogWrite (E2, 0);
analogWrite (M2, val); //the speed value of motorB is val
}
if ((rightl <= 8) && (centre <= 8) && (leftl <= 8)) {/* The value collected to judge, if the
center <= 8, leftl <= 8 and rightl <= 8 are greater than 8, indicating 3 sensors have detected a
black line, then the car has reached the "ten" intersection, because We have only 3 sensors, no way
to make more sophisticated judgments, so only let the car choose to go straight. */
intval = 130;
analogWrite (M1, 0);
analogWrite(E1l, val); //the speed value of motorA is val
analogWrite (M2, 0);

analogWrite (E2, val); //the speed value of motorB is val

59

EEywish

In this product, we will integrate the ultrasonic module and steering engine together and make the two
parts working at the same time, which greatly increases the effectiveness of the data and the flexibility of the
car, the main working flow: When the power is on, steering engine will automatically rotates to 90 degrees,
the MCU will read data from the reflected ultrasonic. If the data is greater than the security value, the car
will continue to drive forward, otherwise the car will stop, then the steering engine will rotate 90 degrees to
the right. After that, the MCU reads data from the reflected ultrasonic again, the steering engine rotates 180
degrees to the left, then reading data again, the steering engine rotate 90 degrees, the MCU will contrast the
two detected data, if the left data is greater than the right data, the car will turn left, otherwise turn right, if
the two data are both less than the safety value, the car will turn around.

3.2.4.1 Suite Introduction

1. The steering gear

The steering gear is also called servo motor which is originally used in ships, since it can control the
angle continuously through the program, so it has been widely used in intelligent steering robot to achieve
all kinds of joint movement, the characteristics steering gear are small volume, large torque, high stability,
simple external mechanical design. Either in hardware or software design, the design of steering engine is an
important part of car controlling, the steering gear is mainly composed of the following parts in general,
steering wheels, gear group, position feedback potentiometer, DC motor and control circuit (shown in
Fig.3.2.24). Fig.3.2.25 shows the most commonly used 9G steering gear now.

‘ ﬁransmission
< .

gear set
Adjustable
Small DC motor potentiometer

- Control

/1 circuit

Figure .3.2.24 Diagram of Steering Gear

60

EEywish

SG90

e | |

GND

Figure .3.2.25 Physical Map of Steering Gear

2. The ultrasonic

An ultrasonic sensor is a device that transforms other forms of energies into ultrasonic energy with
desired frequency or transforms the ultrasonic energy into other forms of energy with the same frequency.
The ultrasonic sensors are commonly classified into two categories, the acoustic type and the hydrodynamic
type. Acoustic type mainly has: 1, piezoelectric sensor; 2, magneto strictive sensor sensor; 3, electrostatic
sensor. The hydrodynamic type includes the gas whistle and the liquid whistle. At present most of the
ultrasonic sensors are working using piezoelectric sensors. Distance measurement with the ultrasonic is also
a hot spot.

In the "Hummer-Bot" car, we use HC-SR04 ultrasonic module which has the 2cm-400cm non-contact
distance sensing function, the measurement accuracy can achieve to 3mm; the temperature sensor can
correct the measured results using the GPIO communication mode, the module has a stable and reliable
watchdog. The module includes an ultrasonic transmitter, receiver and control circuit, which can measure
distance and steer like in some projects. The smart car can detect obstacles in front of itself, so that the smart
car can change direction in time, avoid obstacles. A common ultrasonic sensor is shown in Fig.3.2.26.

61

EEywish

Figure 3.2.26 Physical Map of Ultrasonic Module

3.2.4.2 Suite Parameters

1. Steering gear

The steering gear has three input wires as shown in Fig.3.2.25, the red is power wire, while the brown
is the ground, which guarantee the basic energy supply for the steering gear. The power supply has two
kinds of specifications (one is 4.8V, the other is 6.0V)which are corresponding to different torque standards,
the 6.0V torque is higher than the 4.8V torque; and the another one is the signal control wire, which is
generally white in Futaba, orange in JR. Noticing that some of the SANWA's power wires are on the edge
rather than the middle which need to be identified, so you need to remember that the red is power wire, the
brown is ground wire.

2. Ultrasonic wave

1, Working voltage: 4.5V~5.5V. In particular, voltage above 5.5V is not allowed definitely

2, Power consumption current: the minimum is ImA, the maximum is 20mA

3, Resonant frequency: 40KHz;

4, Detection range: 4 mm to 4 meters. Error: 4%. In particular, the nearest distance is 4mm, the longest
distance is 4 meters, and the data outputs continuously without setting anything. 5, Temperature
measurement range: 0°Cto +100°C; precision: 1°C

6, lllumination measurement range: bright and dark;

7, Data output mode: icc and uart (57600bps), users can choose any of them; UART mode uses 7 bytes
as a group, and the 3 data stared with 0x55 are the distance values; the 2 data started with 0x66 are the
temperature value; the 2 data started with Ox77 are the illumination values. 0x55\0x66\0x77 are the data
headers in order to distinguish the 3 data;

62

EEywish

8, Supporting the following 2 detection methods: 1, continuous detection; 2, controlled intermittent
detection;

9, Distance data format: using mm as the smallest data unit, double byte 16 hexadecimal transmission;

10, Temperature data format: using Celsius degree as the smallest unit, single byte hexadecimal
transmission;

11, Light data format: single byte 16 hexadecimal transmission; the value is big when it is dark, small
when it is bright;

12, Working temperature: 0°C~+100°C

13, storage temperature: -40 to +120 degrees Celsius

14, Size: 48mm*39mm*22mm (H)

15, The size of fixing holes: 3*®3mm; Gap:10mm

1. Steering gear

The control signal enters the signal modulation chip by the receiver channel, gets the DC bias voltage.
The steering gear has a reference circuit which generates a reference signal with a period of 20ms and a
width of 1.5ms. Comparing the obtained DC bias voltage with the voltage of the potentiometer and
obtaining the output voltage difference. Finally, the positive and negative output voltage difference in the
motor driver chip decide the positive and negative rotation of motor. When the speed of motor is certain, the
cascade reducer gear will drive potentiometer to rotate so that the voltage difference is reducing to 0, the
motor will stop rotating.

When the control circuit receives the control signal, the motor will rotate and drive a series of gear sets,
the signal will move to the output steering wheel when the motor decelerates. The the output shaft of
steering gear is connected with the position feedback potentiometer, the potentiometer will output a voltage
signal to the control circuit board to feedback when the steering gear rotates, then the control circuit board
decides the rotation direction and speed of the motor according to the position, so as to achieve the goal. The
working process is as follows: control signal—control circuit board—motor rotation—gear sets deceleration
—steering wheel rotation— position feedback potentiometer—control circuit board feedback.

The control signal is 20MS pulse width modulation (PWM), in which the pulse width varies linearly
from 0.5-2.5MS, the corresponding steering wheel position varies from 0-180 degrees, which means the
output shaft will maintain certain corresponding degrees if providing the steering gear with certain pulse
width. No matter how the external torque changes, it only changes position until a signal with different is
provided as shown in Fig.3.2.27. The steering gear has an internal reference circuit which can produce
reference signal with 20MS period and 1.5MS width, there is a comparator which can detect the magnitude
and direction of the external signal and the reference signal, thereby produce the motor rotation signal.

63

EEywish

T'he Min pulse width |-—| | I I | o

T'he pulse width 1ms

The medium pulse width

I'he pulse width 1.5ms

I'he Max pulse width

180

|
olelo

T'he pulse width 2ms

Figure .3.2.27 Relationship between the Motor Output Angle and Input Pulse

2. The ultrasonic

The most commonly used method of ultrasonic distance measurement is echo detection method, the
ultrasonic transmitter launches ultrasonic toward a direction and starting the time counter at the same time,
the ultrasonic will reflect back immediately when encountering a blocking obstacle and stopping the counter
immediately as soon as the reflected ultrasonic is received by the receiver. The working sequence diagram is
shown in Fig.3.2.28. The velocity of the ultrasonic in the air is 340m/s, we can calculate the distance
between the transmitting position and the blocking obstacle according to the time t recorded by the time
counters, that is: s=340*t/2.

10us high lewvel

Trig pin

Eight 40khz ultrasonic pulse

Ultrasonic Sender |H‘”‘H‘H‘H‘H

Echo Pin

Neasuring result high level

Figure .3.2.28 the Ultrasonic Working Sequence
Let us analyze the working sequence, first the trigger signal starts the HC-RS04 distance measurement
module, which means the MCU sends an at least 10us high level to trigger the HC-RS04,the signal sent
inside of the module is responded automatically by the module, so we do not have to manage it, the output
signal is what we need to pay attention to. The output high level of the signal is the transmitting and

64

EEywish
receiving time interval of the ultrasonic, which can be recorded with the time counter, and don't forget to

divided it with 2.
The ultrasonic is a sound wave which will be influenced by temperature. If the temperature changes

little, it can be approximately considered that the ultrasonic velocity is almost unchanged in the transmission
process. If the required accuracy of measurement is very high, the measurement results should be to
corrected with the temperature compensation. Once the velocity is determined, the distance can be obtained.
This is the basic principle of ultrasonic distance measurement module which is shown in Fig.3.2.29:

I

| Or |

Ultrasound j—">
v N A p a! —
transmission s S

—— obstacle
H \\\J P4 .

Ultrasound -~
reception
cel <}

Figure .3.2.29 the Principle of Ultrasonic Distance Measurement Module

The ultrasonic is mainly divided into two parts, one is the transmitting circuit and the other is the
receiving circuit, as shown in Fig.3.2.30. The transmitting circuit is mainly composed of by the inverter
741L.S04 and ultrasonic transducer T40, the first 40kHz square wave from the Arduino port is transmitted
through the reverser to the one electrode on the ultrasonic transducer, the second wave is transmitted to
another electrode on ultrasonic transducer, this will enhance the ultrasonic emission intensity. The output
end adopts two parallel inverters in order to improve the driving ability. the resistance R1 and R2 on the one
hand can improve the drive ability of the 74LS04 outputting high level, on the other hand, it can increase the
damping effect of the ultrasonic transducer and shorten the free oscillation time.

The receiving circuit is composed of the ultrasonic sensor, two-stage amplifier circuit and a PLL circuit.
The reflected signal received by the ultrasonic sensor is very weak, which can be and amplified by the
two-stage amplifier. PLL circuit will send the interrupt request to the microcontroller when receiving the
signal with required frequency. The center frequency of internal VCO in the PLL LM567 is

fo =1/(1.1R-1C2) , the locking bandwidth is associated with C3. Because the transmitted ultrasonic

frequency is 40kHz, the center frequency of the PLL is 40kHz, which only respond to the frequency of the
signal, so that the interference of other frequency signals can be avoided.

The ultrasonic sensor will send the received the signal to the two-stage amplifier, the amplified signal
will be sent into the PLL for demodulation, if the frequency is 40kHz, then the 8 pins will send low level
interrupt request signal to the microcontroller P3.3, the Arduino will stop the time counter when detecting

low level.

65

EEywish

+5V
o o T
P
. PNP
MAX232
R9D 100N C12_ [
EC2 ROB O 10K o 2 Co[100N
ol 10K STC11 o Q’/SS" 6 ([[A00N_]
2 Trig 1 14 [c10 100N * - AR
ol o >¥ P50 P51 =3 I c2-
® il 22p 3| P67 P52 55 11 14
™ 1 P66 P53 | o T1IN TI0UT |5 | x
vCC T2IN T20UT
) cifl22p 5 10
§ T 6 | P65 P60 g 12 13
o =ue =1 P64 P61 5 —| R1OUT R1IN [3
|
Ao BA8C
C. 120K +5V
RIG JK A T c20 Hmo
Q2 Cai
P Q03 REONK 118 6.8k
Q .
x > | 4 R2AC 33M 5
2K c18[10n
1 oKk [c21 |[10N TLO74 R128 M7k |
< i ; 10UT 40UT];
39K R25C Ri7¢ 20k 31 1IN- 4IN- =5 VT R14B
i L 1
VT
E2yome aine gl RIRBAIRO
2IN- 3IN-
BT eR 71 %ut 3out RBR ~JRE | C16 H—"‘—o
c19 ||1n R13B. 10K c17 ||1n
10 11

Figure .3.2.30 Schematic Diagram of Ultrasonic Transmitting and Receiving
3.2.4.4 Experimental Procedures

1, Installing the steering gear, ultrasonic module to the car which has been completed in fourth step to the
seventh step in 3.1.2) as shown in Fig.3.2.31.

2. Connecting the steering gear and ultrasonic module to the Arduino motherboard as shown in Fig.3.2.32.
(you can choose other 10 ports according to your own ideas).

66

EEywish

Figure .3.2.32 Wiring of the Steering Gear and Ultrasonic Module

67

EEywish

3.2.4.5 Wire connection

As shown in the below figure, the servo's "S" is connected to pin 13, the ultrasonic "Trlg™ is
connected to pin 2, the "Echo" is connected to pin 3, the "VCC" pin is connected to VCC, and the "GND"
pin is connected to GND.

Ultrasound
module interface

SG90 . « « o VA § -
Servo interface Sl» » ~ » * s oGl s s & ST oo .
ARETGNDI312 {11098 765% 32 T0

vo. 0
IXBX;,. +

anFGmi'QlZ iililoe 8 7685+ 3271 o N
vB.0

9 TXRX~ +
oM

S;LSDﬁ

L. 5;1.5[1&-
moa masmme IIC) - .

F "
SEL . PUR !
[E) @ o pousn ﬂNﬁLOG n@
¥ tx o 012345

—a] URFOL# o o o «

OUWER ANALOG IN .
GNDUI 01 2 3 5

peees] [eloceaes
.+~ s URFO14. .

Figure 3.2.33 Wiring diagram of steering gear, ultrasonic wave and expansion board
3.2.4.6 Software design

68

EEywish

3.2.4.6.1 Program flow chart

*®

=

Get sensor values
and handle

o
slow down
Steering gear
measuring left
and right
distance

.
N N

4
delay |

Code path “hummer-bot\Lesson\ModuleDemo\UltrasonicAvoidance\UltrasonicAvoidance.ino”

y
| Turn right |

69

EEywish

3.2.4.6.2 Program Code

#include <Servo.h>/* In this section, we use the steering gear, so we need to call the steering gear
library file. As for what is in the library file, we will not study it. Interested friends can drive
for research. We have put this library files on the CD-ROM, we need to copy this folder to the Arduino
IDE installation path "libraries" folder, otherwise the program can not compile. */
Servo head;
int E1 = 5; //PWMA
int M1 = O; //DIRAX**xkkkkkkkhkkhkxkhkhkkxkhkkkkkkkkkkkxkk*kx] o ft
int E2 = 6; //PWMB
int M2 = 10; //DIRB**right
/*Define 4 motor control terminals, connected to IN1-IN4 on the motor drive board. */
const int TrigPin = 2;
const int EchoPin = 3; /* Define the sensor's 2 control pins to connect to pins 2 and 3 on the Arduino.*/
const int leftPin = A3;
const int rightPin = A4;
float da;
float dl;
float dr;/* Define three variables, used to store the servo at 0,90,180 degrees, the value collected
by the ultrasonic module, da is the value collected by the ultrasonic 90 degrees servo, dl is the
steering servo 180 degrees ultrasonic acquisition To the value, at this point the steering gear has
turned to the left of the car. da for the servo 0 degrees ultrasonic collected value, then the steering
gear has turned to the right side of the car. */
float left;
float right;
void setup() {

Serial.begin(9600);/*Set the baud rate to 9600,use "Serial Monitor" to check the data during
debugging*/

head.attach(13);/* Define the control pin of the servo as pin 13*/

pinMode (E2, OUTPUT) ;

pinMode (E1, OUTPUT) ;

pinMode (M1, OUTPUT) ;

pinMode (M2, OUTPUT) ;

pinMode (leftPin, INPUT) ;

pinMode (rightPin, INPUT) ;

pinMode (TrigPin, OUTPUT) ;

pinMode (EchoPin, INPUT);/* Define two ultrasonic working mode. */

head.write(90);/* The servos swivel to 90 (center) during initialization, because some servos may
have errors, so they are not necessarily centered at 90 degrees, so be fine - tuned where the servos
are centered at 90 degrees. */

delay (1000) ;
}
void loop() {

left = analogRead(leftPin);

70

EEywish

right = analogRead(rightPin) ;
analogWrite(TrigPin, 0); // Low high and low send a short pulse to TrigPin)
delayMicroseconds (2) ;
analogWrite (TrigPin, 255);
delayMicroseconds (10) ;
analogWrite (TrigPin, 0);
da = pulseIn(EchoPin, HIGH) / 58.0; // Convert the echo time to cm
if (da >= 50 && da <= 2000 && (left >= 38) && (right >= 38)) {/* Judge the collected value, da>
= 50 && da <= 2000, meaning that when the distance between the current obstacle and the car is greater
than or equal to 50, and less than or equal to 2000cm, execute the following program in {} */
int val = 150;/* When the straight line has a PWM value of 150, if the value is too high, the
speed of the car will be very fast, which may lead to the car can not hit the obstacle in time when
it encounters the obstacle. */
digitalWrite (M1, 0);
analogWrite(El, val); //the speed value of motorA is val
digitalWrite (M2, 0);
analogWrite(E2, val); //the speed value of motorB is val
Serial.print("Distance = ");
Serial.print(da);
Serial.print (" ")
Serial.println("Moving advance 50");
//delay (500);/* If the distance is more than 50cm, move forward and output "Moving advance 50",
indicating that the obstacle is more than 50cm from the car*/
}
if (da < 40 && da > 30 && (left >= 38) && (right >= 38)) {/* Judge the collected value, da < 50
&& da > 30, meaning that when the distance between the frontal obstacle and the car is greater than
30, and less than 40cm, execute the following program in {} */
int val = 130;
digitalWrite (M1, 0);
analogWrite(El, val); //the speed value of motorA is val
digitalWrite (M2, 0);
analogWrite(E2, val); //the speed value of motorB is val
Serial.print("Distance = ");
Serial.print(da);
Serial.print (" ")
Serial.println("Moving advanced0") ;
//delay (500);/* If the distance is more than 40cm, move forward and output "Moving advance 40",
indicating that the obstacle is more than 40cm from the car*/
}
if ((left <= 38) && (right >= 38) && (da >= 20 && da <= 1000)) {
digitalWrite (M1, HIGH);
analogWrite(El, 0); //the speed value of motorA is val
analogWrite (M2, 0);

analogWrite(E2, 250); //the speed value of motorA is val

71

EEywish

Serial.println("Turning right");
delay (200) ;
analogWrite (M1, 0);
analogWrite(E1l, 0);
analogWrite (M2, 0);
analogWrite(E2, 0);
//delay<1ooo), //**//Turning rlght
}
if ((left >= 38) && (right <= 38) && (da >= 30 && da <= 1000)) {
analogWrite (M1, 0);
analogWrite(El, 250); //the speed value of motorA is 180
digitalWrite (M2, HIGH);
analogWrite(E2, 0); //the speed value of motorB is 180
Serial.println("Turning left");
delay (200);
analogWrite (M1, 0);
analogWrite(E1l, 0);
analogWrite (M2, 0);
analogWrite(E2, 0);
// delay(looo); //**//Turning left
}
else if (da <= 25) {/* The collected value is judged, da <= 25, meaning that when the current obstacle
and the car is less than 20cm, execute the following program in {}, the distance between the car and
the obstacle has exceeded the safety value, So the car stopped forward */
int val = 0;
digitalWrite (M1, 0);
analogWrite(El, val); //the speed value of motorA is O
digitalWrite (M2, 0);
analogWrite(E2, val); //the speed value of motorB is 0
Serial.print("Distance = ");
Serial.print(da);
Serial.print (" ")
Serial.println("Stopped");// If the distance is less than 20cm, the car will stop and output
"Stopped"
delay (500);
head.write (180);/* Servo rotated 90 degrees from the original to 180 degrees, the left side of
the car */
delay (1000) ;
analogWrite(TrigPin, 0); // Low high and low send a short pulse to TrigPin
delayMicroseconds (2) ;
analogWrite (TrigPin, 255);
delayMicroseconds (10) ;
analogWrite (TrigPin, 0);

dl = pulseIn(EchoPin, HIGH) / 58.0; // Convert the echo time to cm

72

EEywish

Serial.print("Left distance = ");
Serial.print(dl);
Serial.print (" ");/* Ultrasonic acquisition of the left side of the car and obstacles distance,
and then assigned to dl, then print on the "Serial Monitor" */
head.write(0);/* Servo steering from the original 180 degrees to 0 degrees, the right side of
the car */
delay (1000);
analogWrite(TrigPin, 0); // Low high and low send a short pulse to TrigPin
delayMicroseconds (2) ;
analogWrite (TrigPin, 255);
delayMicroseconds (10) ;
analogWrite(TrigPin, 0);
dr = pulseIn(EchoPin, HIGH) / 58.0; // Convert the echo time to cm
Serial.print("Right distance = ");
Serial.print(dr);
Serial.print (" ");
Serial.println();/*Ultrasonic acquisition of the distance between the right side of the car and
the obstacle, and then assigned to dr, and then print the distance on the "Serial Monitor" */
head.write(80);// head steering back, that is, when the initialization 80 degrees position
if (dl >= 20 && dl <= 1000 && dl > dr) {
digitalWrite (M1, 0);
analogWrite(E1l, 180); //the speed value of motorA is 180
digitalWrite (M2, 180); //the speed value of motorB is 180
analogWrite(E2, 0);
Serial.println("Turning leftl");
delay(200);// determine the left and right distance if the left is larger than the left
}
else if (dl >= 1000) {
digitalWrite(M1, 180); //the speed value of motorA is 180
analogWrite(E1, 0);
digitalWrite (M2, 0);
analogWrite(E2, 180); //the speed value of motorB is 180
Serial.println("Turning rightl");
delay (200) ;
// Special case If the left return distance is greater than 1000, the probe is blocked and turn
right at this moment
}
else if (dr >= 20 && dr <= 1000 && dr > dl) {
digitalWrite(M1, 180); //the speed value of motorA is 180
analogWrite(E1l, 0);
digitalWrite (M2, 0);
analogWrite(E2, 180); //the speed value of motorB is 180
Serial.println("Turning right2");

delay(200);// Judge about the distance if the right side then turn right

73

EEywish

else if (dr >=) |
digitalWrite (M1, 0);
analogWrite(E1,); //the speed value of motorA is 180
digitalWrite (M2,); //the speed value of motorB is 180
analogWrite(E2, 0);
Serial.println("Turning left2");
delay(200);
// Special case If the return distance on the right is more than 1000, then the probe is blocked

and turn left at this moment

}

else if (dr <= && dl <=) {
digitalWrite (M1,); //the speed value of motorA is 255
analogWrite (E1, 0);
digitalWrite (M2, 0);
analogWrite (E2,); //the speed value of motorB is 255
Serial.println("Turning around");
delay(700);

// turn around if both sides are less than 20cm in distance

In front the sections, we focus on the "automatic driving", and they are obstacle avoidance experiments.
We didn't seem to have relationship with the car, it is lack of fun. Now in the next few sections, we will
develop the car from other aspects to make sure that we are able to control the car personally, then we will
start from the "infrared remote control”, followed by "2.4G handle remote control” and the last is "mobile
phone Bluetooth control™.

Infrared remote control is widely used in every field which is known to everyone, since it can control
other electrical appliances, naturally it can control the Hummer-Bot car. Let us take a look at the infrared
remote control first:

Infrared wireless remote control kit consists of Mini ultra-thin infrared remote controller and 38KHz
infrared receiver module, the remote controller has 17 function keys, the transmission distance is up to 8
meters which is very suitable for controlling equipment indoor. The infrared receiving module can receive
38KHz modulation remote control signal. Through the Arduino programming, the decoding operation of
Infrared wireless remote control signal can be realized so as to produce all kinds of remote control robot and
interactive works. The suite is shown in Fig.3.2.34.

74

EEywish

Figure .3.2.34 Physical Map of Remote Control Suite

Infrared remote control system is mainly divided into modulation, transmitting and receiving parts. The
transmitting part is mainly composed of keyboard, remote control specific integrated circuit, exciter and
infrared light emitting diode. The integrated circuit is the core part of the launch system which consists
internal oscillation circuit, timing circuit, scanning signal generator, key input encoder, instruction decoder,
user code converter, digital modulation circuit and buffer amplifier and so on. It can produce a key scanning
pulse signal, translate the key code, then obtain remote control commands of the keys by telecommand
encoder (remote control encoding pulse). Through pulse amplitude modulation of the 38KHZ carrier signal,
the infrared diode can transmit infrared remote control signal.

In the infrared receiver, photoelectric converter (usually a photodiode or photoelectric triode, here we
use PIN photodiode) converts the received infrared light instruction signal into a corresponding electrical
signal. The received signal is very weak and interference is particularly large, in order to achieve the
accurate detection and signal conversion, in addition to the infrared photoelectric conversion device with
high performance, choosing the reasonable circuit design with good performance is also required. The most
common photoelectric conversion device is a photodiode. When the photosensitive surface of the PN
junction is irradiated by light, the semiconductor material of PN junction absorbs light energy and converts
the light energy into electric energy. When the reverse voltage is added to the photodiode, the reverse
current in the diode will change with the change of the incident light intensity. The larger the radiation
intensity is, the larger the reverse current will be, the reverse current of the photoelectric varies with the
incident light pulse.

75

EEywish
In the Hummer-Bot car, the integrated infrared receiving head has three pins, including the power
supply pin, grounding and signal output pin. The circuit is shown in Fig.3.2.35. Ceramic capacitors is a
decoupling capacitor which can filter the output signal interference. The 1 end is the output of the
demodulation signal which is directly connected to the number 2 port on the Arduino. When the infrared
coded signal is transmitted, it will be processed by the infrared joint, then outputs the square wave signal,
and directly supplied to the Arduino, and the corresponding operation is carried out to control the motor.

YCC

\

)

Y ~C
s
\o_

g EP32 4

e b =

CON3

—
BB -\ \

\ \

\" \ \
— GND |\ dUT
- vkc \

Figure .3.2.35 Circuit Diagram and Physical Map of Infrared Receiving Head

The remote control system in general composed of the remote controller (transmitter), and receiver,
when you press any button on the remote control, it will generate the corresponding encoding pulse and
output various control pulse signals based on the infrared, infrared monitor diode sends the signal to the the
amplifier and the pulse amplitude limiter, the limiter controls the pulse amplitude at a certain level,
regardless of the distance of infrared transmitter and receiver. AC signal enters the band-pass filter which
can pass the 30KHZ to the load wave 60KHZ and enters the comparator through the demodulation circuit.
The comparator outputs high or low level and restores the output signal waveform. The system procedure
diagram is shown in Fig.3.2.36.

v

—>» Keyboard Code Modulation » LED |—

Remote Control Transmitter

—+ Light/electronic Amplification —+ Demodulation Decode »

Remote Control Receiver

Fig.3.2.36 Remote Control System Diagram

76

EEywish

3.2.5.3 Experimental Procedures

1, Installing the infrared receiving head on the development board (if it has been installed in the the eighth
step in "3.1.2", please ignore. The complete installation is shown in Fig.3.1.37.

2, Referring to Fig.3.2.37 and connecting the infrared receiving module to the Arduino board (you can
choose other 10 ports according to your own ideas)

Note: Do not reverse power line, otherwise the receiving head will burn up.

Figure .3.1.37 Infrared Module Connection Diagram
3, Copying the following program to IDE (you can also directly open the matching program in the CD), and
downloading to the development board, pulled out the transparent plastic sheet marked as "1" in the
Fig.3.2.33. Then opening the serial port monitor, observing and recording the values on it while pressing
keys on the remote control towards the receiving head as shown in Fig.3.2.38.
Program flow chart is as follows:

77

EEywish

Open the serial
port

Read the infrared
received value

l

Print the read value
to the serial port

Code Path : “hummer-bot\Lesson\ModuleDemo\lrkeyPressed\ IrkeyPressed.ino”

78

EEywish

#include "IRremote.h"
IRremote ir(12);
unsigned char keycode;
char str[1;
void setup() {
Serial.begin()
ir.begin () ;
}
void loop ()
{
if (keycode = ir.getCode()) {
String key name = ir.getKeyMap (keycode) ;
sprintf(str, "Get ir code: 0x%x key name: %s \n", keycode, (char
*)key name.c _str());
Serial.println(str);
} else {

// Serial.println("no key");

}
delay (),
}
® COM19 (Arduino/Genuino Uno) - u] X | @ cOM19 (Arduino/Genuino Uno) -] X
| Send Send
Get ir code: 0x45 key name: 1 Get ir code: 0x16 key name: *
Get ir code: O0x46 key name: 2 Get ir code: 0x19 key name: 0
Get ir code: 0x47 key name: 3 Get ir code: 0xd key name: #
Get ir code: 0x44 key name: 4 Get ir code: 0x18 key name: up
Get ir code: 0x40 key name: 5 Get ir code: 0x8 key name: left
Get ir code: 0x43 key name: 6 Get ir code: Oxlc key name: ok
Get ir code: 0x7 key name: 7 Get ir code: 0Oxba key name: right
Get ir code: 0x15 key name: 8 Get ir code: 0x52 key name: down
[“]autoseroll No line ending + 9600 baud v | Clear output [“] auteseroll Wo line ending ~ 9600 baud v | Clear output

Figure .3.2.38 Remote Encoding Query
In Figure 3.2.38, we can see two values of Ir Code "0x45" and keyname "1", where "0x45" is the code of a
key of the remote controller, and "1™ is the name of the key function of the remote controller.

79

EEywish

The key mapping table is as
follows:

ST KEY MAP irkeymap[KEY MAX]
{"1", 0x45},
{"2", O0x46},
{"3", 0x47},
{"4", O0x44},
{"5", 0x40},
{"e"™, 0x43},
{"7", 0x07},
{"8", 0x15},
{"9", 0x09},
{"0", 0x19},
{"~", O0x16},
{"#", 0x0D},

0x18%},

0x52},

{"up",
{"down",
{rox",
{"left",

{"right",

0x1C},
0x08},

0x5A}
bi

3.2.5.4 Wire connection

As shown in the below figure, the infrared receiver's “s” pin is connected to “12” pin, the
connected to “GND”, and the middle pin is connected to “VCC”.

{

Infrared receiver

Bl's » s |4
ARETGNDT3 15

7TT
vS.0
TXRX~- +

{11088 76857 \
~ 1COM

. SELSDA- + ¢
70 AL AZ A3 A4 B IIC| . . .

Q.
-

2 _POUER ~ ANALOS N &
SUGNDVIN 01 2 3 4

80

(132

-7 pin is

EEywish

3.2.5.5 Software Design

3.2.5.5.1 Program flow chart

Read the data
acquired by the
sensor

A

Speed up Turn left Go back Stop Go forward Turn right %ﬁ:

A

Print received
value

Code Path : “hummer-bot\Lesson\Advanced Experiment\Hummerbot_IR\Hummerbot_IR.ino”

81

EEywish

3.2.5.5.2 Program code

#include <IRremote.h>*/In this section, we use infrared remote control, so we need to
call the corresponding library file, as for what is in the library file, we will not
study, and interested friends can drive research. We have put this library files on the
CD-ROM, we need to copy this folder to the Arduino IDE installation path "libraries"

folder, otherwise the program can not compile. */

int E1 = 5;//PWMA

int Ml = 9;//DIRA**left
int E2 = 6;//PWMB

int M2 = 10;//DIRB**right

int RECV_PIN = 12;

long expeditel = 0xFF6897;/* Define a long integer expeditel variable, and assign this
variable 0xFF689, FF689 is the infrared remote control button encoding */

long expedite2 = OxFFRO4E;

long advance = 0xFEF18ET7;

long back = OxFF4ABS;
long stop = OxFE38C7;
long left = OxFFIO0EF;

long right = O0xFEFLHAAS;

82

EEywish

IRrecvirrecv (RECV_PIN) ;
decode results results;
void setup() {
Serial.begin(9600) ;
irrecv.enableIRIn();// Initialize the infrared receiver
}
void loop () {
if (irrecv.decode (&results)) {/* Read the value received by the infrared */
if (results.value == advence) {/* Judgment on the received value, if this value
is advence, execute the following {} command, here is the forward instruction. */
int val = 150;
analogWrite (M1, 0);
analogWrite(El, val);//the speed value of motorA is val
analogWrite (M2, 0);
analogWrite(E2, val);//the speed value of motorB is val
delay (500) ;irrecv.resume();// Receive the next value
}
if (results.value == expeditel) {/*Judgment on the value received, if this value

is expeditel, execute the command in {} below, here is the acceleration 1 command.

*/
int val = 200;
analogWrite (M1, 0);
analogWrite(E1l, val);//the speed value of motorA is val
analogWrite (M2, 0);
analogWrite(E2, val);//the speed value of motorB is val
delay (500) ;irrecv.resume() ;
}
if (results.value == expedite?) {/*Judgment on the received value, if the value

is expedite2,execute the command {} below,here for the acceleration 2 command. */
int val = 255;
analogWrite (M1, 0);
analogWrite (E1l, val);//the speed value of motorA is val
analogWrite (M2, 0);
analogWrite (E2, val);//the speed value of motorB is val
delay (500) ;irrecv.resume() ;
}

if (results.value== stop) {/* To judge the value received, if this value is stop,

execute the command in the followina {}. here is the stoo instruction. */

83

EEywish

int val = 0;

analogWrite (M1, 0);

analogWrite(E1l, val);//the speed value of motorA is val

analogWrite (M2, 0);

analogWrite (E2, val);//the speed value of motorB is wval

delay (500) ;

irrecv.resume () ;
}
if (results.value == left) {/* Judgment on the received value, 1if the value is left,
execute the command in the following {}, here is the instruction to the left. */

int val = 150;

analogWrite (M1, 0);

analogWrite(El, val);//the speed value of motorA is val

analogWrite (E2, 0);

analogWrite (M2, val);//the speed value of motorB is wval

delay(500) ;/* Rotate 500ms to the left and stop, otherwise the car will always

be spinning around. */

analogWrite (M1, 0);

analogWrite(E1l, 0);//the speed value of motorA is O

analogWrite (M2 ,0);

analogWrite(E2, 0);//the speed value of motorB is 0

analogWrite (Al, 180);

irrecv.resume () ;
}
if (results.value == right) {/* Judgment on the received value, if the value is
right, execute the command in the following {}, here is the command to the right.
*/

int val = 150;

analogWrite (E1, 0);

analogWrite (M1, val);//the speed value of motorA is wval

analogWrite (M2, 0);

analogWrite (E2, val);//the speed value of motorA is val

delay (500);

analogWrite (M1, 0);

analogWrite(El, 0);//the speed value of motorA is 0

analogWrite (M2, 0);

84

EEywish

analogWrite(E2, 0);//the speed value of motorB is 0
analogWrite (A2,)
irrecv.resume () ;

}

if (results.value == back) {/* Judgment on the received value, if the value
is back, execute the command {} below, here for the back instruction. */
int val = ;
analogWrite (E1, 0);
analogWrite (M1, val);//the speed value of motorA is val
analogWrite (E2, 0);
analogWrite (M2, val);//the speed value of motorA is val
delay (500) ;
irrecv.resume();// #HWCF M
}

Serial.println(results.value, HEX);// Output the receive code in hexadecimal
Serial.println();// Add a blank line for easy viewing of the output

irrecv.resume () ;

The above is the infrared remote reference program, you can open it in the CD and download to the

development board, the instructions of remote control in shown in Fig.3.2.39.

left expeditel

stop right HVERCS expedite2

Fig.3.2.39. Infrared Remote Control Instructions
85

EEywish

3.2.6.1 Suite Introduction

Hummer-Bot supports Bluetooth mobile phone Bluetooth remote control function is JDY-16 BLE
(Bluetooth Low Energy).JDY-16 transparent transmission module is based on the Bluetooth 4.2 protocol
standard, operating frequency range is 2.4GHZ range, modulation mode is GFSK, maximum transmission
power is Odb, maximum transmission distance is 80 meters, adopts original imported chip design, and
supports users to modify device by AT command. Names, service UUIDs, transmit power, pairing
passwords, and other instructions are convenient and quick to use. For module information, see
aurora-racing\Document\JDY-16-V1.2(English manual).pdf

The physical diagram of module is shown in Fig.3.2.40.

Fig.3.2.40 JDY-16 Module
1) JDY-16 function introduction
1: BLE high speed transparent transmission supports 8K Bytes rate communication.
2: Send and receive data without byte limit, support 115200 baud rate continuously send
and receive data.
Support 3 modes of work (see the description of AT+STARTEN instruction function).
Support (serial port, 10, APP) sleep wake up.
Support WeChat Airsync, WeChat applet and APP communication.
Support 4 channel 10 port control.
Support high precision RTC clock.
Support PWM function (can be controlled by UART, IIC, APP, etc.).
Support UART and 11C communication mode, default to UART communication.

© 00 N o o b W

10: iBeacon mode (support WeChat shake protocol and Apple iBeacon protocol).
11: Host transparent transmission mode (transmission of data between application modules, host and

slave communication).

86

EEywish

3.2.7.1 Use app to communicate with the serial port

1) Install “hummer-bot\JDY-16\BLETestToos.apk”, then turn on Bluetooth.
2) Open app, you will be asked to allow location permission at first, please allow.

BLE test tools

App:
3) If Bluetooth information is not displayed, please pull down to refresh, if it still don’t work,please close and
reopen it.

Device List

C

BLE test tools requires access ta the follawing
permission: Your location. Allow?

Never ask again after denying permission

ey Aon /

4) Select the JDY-16 Bluetooth model.

4106l "l 1% 1 19:10

Device List

Unknow Device
f0d0044DA2C-C1:5F-DT:DE

5) There will pop up a window which indicate connection success and jump to the operation interface:

87

EEywish

Service list

GenericAccess
00001800-0000-1000-8000-00805f9b34fb
Instance Id: 1

Type : primary

SK Service
0000ffe0-0000-1000-8000-008059b34fb
Instance Id: 8

Type : primary

Unknown Service
0000fee7-0000-1000-8000-00805f3b34fb
Instance Id: 18

Type : primary

Device connection successful !

Caatura liet

Service list

SK_KEYPRESSED
0000ffe1-0000-1000-8000-00805f9b34fb
Instance ID: 10

Property: 28

GenericAccess
00007800-0000-1000-8000-00805f9b34fb
Instance Id: 1

SK Service
10000ffe0-0000-1000-8000-00805f9b34fb
Instance Id: 8

o - primary

Instance ID: 13
Property: 28

Unknown S Unknown Characteristics
0000fee7-0000-1000-80 0b34fb 0000ffe3-0000-1000-8000-00805f9b34fb
Instance Id: 18 Instance ID: 16

Type : primary Property: 12

Device connection successful |

7) In the end you will jump to the user interface,click “WRITING” to send.

88

EEywish

=40 % il 902 e 19:10

Feature operation :

Description list:

Eigenvalues:

I WRITING l START NOTIFICATION
play the value of t \

Bytes:0 EMPTY SAVE

@ String O Hexadecimal

@ String O Hexadecimal

SEND REGULARLY 100

01

it the value of button 1

Serial port display as follow:

89

[0 coms i [T
] Send
+CONNECTED
I
I
0123
[¥] Autoseroll Bo line ending v 9500 band v

9)

an also send date through Arduino serial port to app.
@ COM1S5 (Arduis h .

+CONNECTED

0123

[¥] Autoscrall

No line ending v 9600 bad v

10) The result as below:

90

EEywish

%30t @ = “all *.all 90% w1 19:12

Feature operation

Description list:

Eigenvalues:

WRITING START NOTIFICATION

07123
123

bytes: 11 EMPTY SAVE

@ String O Hexadecimal

v O O v
Picture. 3.2.28
During above test, both the PC and Android can send and receive data normally, indicating that the
Bluetooth module communicates normally and achieves the expect effect. Next, it can be used as a bridge
between "Aurora" and the APP to control "Aurora" to realize the desired features.

3.2.6.3 Bluetooth protocol

Using Bluetooth to control the car means we use the Android app to control the Bluetooth sending
instructions to the Arduino serial port, so as to control the motor's forwarding, reversing, speed and so on.
Since the wireless communication is involved, one of the essential issues is the communication problem
between the two terminals. But there is no common "language™ between them, so designing communication
protocols are required to ensure a perfect interaction between Android and Arduino. The main process is: the
Android identification terminal packs the detected commands into the corresponding data packets, and then
sends them to the Bluetooth module (JDY-16). When JDY-16 receives the packets, it will transmit them to
Arduino through the serial port, then Arduino to analyze the data packets and execute the corresponding
actions. The data format sent by the upper computer end (Android) is as follows, which mainly contains 8
fields, we use a structure to represent it.

Protocol Data |Device Typel Device Function | Control | Check | Protocol
Header Length Address Code Data Sum |[End Code

In the 8 fields above, we use a structural body to represent.

91

EEywish

typedef struct

{

unsigned char start code; // 8bit 0xAA
unsigned char len;

unsigned char type;

unsigned char addr;

unsigned short int function; // 16 bit
unsigned char *data; // n bit
unsigned short int sum; // check sum

unsigned char end code; // 8bit 0x55

}ST protocol;

“Protocol Header” means the beginning of the packet, such as the uniform designation of OXAA.

Data length” means except the valid data length of the start and end codes of the data.

“Device type” means the type of device equipment

“Device address” means the address that is set for control

“Function code” means the type of equipment functions that need to be controlled, the function types we
currently support is as follows:

typedef enum

{
E BATTERY = 1,

E LED = 2,
E BUZZER = 3,
E_INFO = 4,
E_ROBOT CONTROL = 5,
E_ROBOT_ CONTROL SPEED = ¢,
E_TEMPERATURE = 7,
E_IR _TRACKING = &,
E_ULTRASONIC = 9,
E VERSION = 10,
E _UPGRADE = 11,
}E_CONTOROL_FUNC ;

The data means the specific control value of a car, such as speed, angle.
“Checksum? is the result of different or calculated data bits of the control instruction.
“Protocol end code ” is the end part of the data bag when receiving this data ,it means that the data pack has
been sent, and is ready for receiving the next data pack, here we specified it as 0x55.
For example, a complete packet can be such as "AA 070101065000 5F55", in which:
"07" is Transmission Data Length 7 bytes.
"06" is the "function code"”, The 06 here refers to the transmission speed.

92

EEywish

"50 (or 0050)" is the controlling data, 0x50 in hexadecimal is 80 when converted to binary, which means the
speed value is 80. If the data is 05, it means the controlling direction, that is 80 degrees (forward).

"005F" is the check sum, that is, 0x07+0x01+0x01+0x06+0x50 = Ox5F.

"55" is the tail of the protocol, indicating the end of data transmission.

JDY-16:connected
send
AA01010650005855
received

current speed:80

Gravity Sensing Switch

Fig.3.2.50 the Interface of Android APP

In the above Figure.3.2.50:
The "A, B" sections are the acceleration and deceleration buttons.
The "C" section includes the dashboard and the digital display area, and the two parts displaying
synchronously. They represent the current speed.
The "D" section is a gravity remote sensing switch which can be switched to the gravity remote sensing
mode.
The "E" section represents the Bluetooth name that is currently connected.
The "F" section indicates Bluetooth connection state. If the Bluetooth is not connected, the "disconnected™ is
displayed here.
The "G" section is a manual rocker, and sliding it allows the car to rotate.
The "I" section is a data return area, such as the current state, speed of the car, etc. The "H" section is the
data packet, for example, the data is "AA 01 01 06 23 00 2B 55". At this time, the speed is 35 (23 is 16
hexadecimal data, which means 35 when converted to 10 hexadecimal).

If the transmitted data is "AA 01 01 05 00 5B 00 62 55", it means that the car is moving forward (05 is
the direction control instruction, and the 005B means 91 when converted to binary number. By the
Figure.3.2.48 we can know that 91 degree means the car is moving forward).

93

EEywish

3.2.6.4 Experimental Procedures

Connect the Bluetooth module of the wire to 1" marked in Fig.3.2.51 Connection mode: JDY-16 VCC port
on Bluetooth module is connected to Arduino 3.6V~6V DC power anode, GND port is connected to the
cathode of the DC power, the RXD port is connected to the TXD port on Arduino extended board, TXD port
is connected to RXD port on the board, as shown in Fig.3.2.52.

Note: Since Arduino UNO has only one serial port, the Bluetooth must be disconnected from the serial port
when downloading the program, otherwise the download will fail.

Figure .3.2.51 Wiring Positions of Bluetooth

94

EEywish

e are e el St
aomnznomn.llc 3

[

(=%

-<

OUER =~ ANALOS .
1" "

Figure .3.2.52 Installation of Bluetooth Module
2, Open the mobile phone Bluetooth and the APP (There is a software installation package on the CD, latter
we will launch the 10S version.) You will see that the flashing of the Bluetooth module indicator slows
down after successful connection. If you have downloaded the program to the development board before,

you can use the phone to control the car directly, as shown in Fig.3.2.52.

95

v1.0-build-20180524-4 JDY-16:connected

send:

received:

current speed:default

Gravity Sensing Switch

Figure .3.2.53. Diagram of APP Control
In Fig.3.2.53, we can see the logo "1™ and "2". When the Bluetooth connection is successful, sliding

green dot marked as "1" in any direction, the car will move towards the corresponding direction. Switching
on the gravity sensor marked in "2", the APP is switched to the gravity induction mode, and you can control
the movement direction of the car by shaking the mobile phone.

3.2.6.5Wire connection

Bluetooth wire connection location as shown below:

ARETGNOT31Z 111088 7654 3210
v5. 0

<

1 COT“‘ Bluetooth

} TXRX- +
module interface

SSILSD)J ot

0 AL A2 A3 A4 AB IIC|

<«

DLJR
POWER ANALOG IN .

™
EEJ susuwu 0123465

96

EEywish

3.2.6.6 Software Design

3.2.6.6.1 Program flow chart

Read
Bluetooth |[=&
data

Get speed/direc
tion values and
execute
Direction
Speed mode mode

Read dat | I

-

Read
completed

3.2.6.6.2 Program Code

Code path hummer-bot\Lesson\Advanced Experiment\Hummerbot_Bluetooth\Hummerbot_Bluetooth\

97

EEywish

3.2.7.1 Suite Introduction

PS2 handle is SONY game remote control handle, SONY series game host is very popular in the world.
Someone has come up with the idea of the PS2 handle, cracked the communication protocol, so that the
handle can be connected to other devices for remote control, such as remote control of our familiar four
wheeled vehicles and robots. Its outstanding features are cost-effective, rich buttons and easy to extend to
other applications, Fig.3.2.54 shows a commonly used PS2 wireless handle.

Figure .3.2.54 PS2 Wireless Handle
The PS2 handle is composed of the handle and the receiver, the handle uses two AAA batteries as

power supply. The controller and receiver use the same power supply whose voltage range is 3~5V,
overvoltage, reverse connection will cause the receiver to burn out. There is a power switch on the handle,
ON /OFF, when you switch it to ON, the light on handle will not stop flashing until the receiver is searched.
In a certain period of time, if the receiver can’t be find, the handle will enter the standby mode and the light
will burn out, you can press "START" button to wake up the handle.

The receiver is powered by the Arduino as shown in Fig.3.2.55, in the absence of pairing, the green
light flashes. When the handle switch is opened, the handle and receiver will pair automatically, and the

98

Engish
light will be always on, and the handle is matched successfully. Button "MODE" (The above logo may be
"ANALOG" in different handles, but it will not affect the usefulness), you can choose "red light mode" or

"green light mode".

Some users see that the handle and receiver cannot match properly! Most of the problems are the
incorrect wiring of the receiver and the program problems.

Solution: The receiver should only be connected with power supply (power line must be connected
correctly), not any data lines and clock lines. The handle light will be always on when pairing is successful.
Then checking whether the wiring and program transplantation are correct again.

Figure .3.2.55 Remote Control Receiver Module

There are 9 interfaces at the end of the receiving head, each of which is shown in the following table:

1

2

3

4

5

6

7

8

9

DI/DAT

DO/CMD

NC

GND

VDD

CS/SEL

CLK

NC

ACK

Note: The appearance of the receiver will be different due to different batches, some with a power light,
some without, but the use and definition of the pins are the same.

DI/DAT: The signal flows from the handle to the host. This signal is a serial 8-bit data which is transmitted
synchronously to the falling edge of the clock. The read of the signal is completed in the process of clock
changing from high to low;

DO/CMD: The signal flows from the host to the handle. The signal is similar to the DI, a serial 8-bit data,
which is transmitted synchronously to the falling edge of the clock;

NC: Empty port; .

GND: Ground:;

VDD: The 3~5V power supply;

CS/SEL.: Providing trigger signals for handles, the level is low during communication;

CLK: The clock signal is sent by the host to maintain data synchronization;

NC: Empty port;

99

EEywish
ACK: The response signal from the handle to the host. This signal changes to low in the last cycle of each

8-bit data sending, and the CS remains low. If the CS signal do not remain low, the PS host will try another
device in about 60 microseconds. The ACK port is not used in programming.

3.2.6.2 Experimental Procedure

1. Inorder to wire simply, we use the PS2 receiver head adapter board and Arduino connection as follows:

As shown in the below figure, the six lines of the receiving head are connected to the following places
respectively. “CLK” is connected to 11 pins, “CS” is connected to 8 pins, “CMD” is connected to pin 7,

“DAT” is connected to 4 pins, and “VCC” is connected to 5V., "GND" is grounded.

L> = == - « SCLSDA-+ &
amoam2a3nens IIC) - . . - %

ANALOG IN.
012345

Ps2 Arduino Uno
DAT 4
CMD 7

CS 8
CLK 11

100

EEywish

Fix the receiver head to the cart with a cable tie (red frame area in Figure 3.2.55), as shown in Figure 2.3.56.

Figure 3.2.55 Receive Head Fixed Bit

Figure 3.2.56 Receiving head fixing diagram

101

EEywish

3. Lead the wire according to the hole marked “1” in Figure 3.2.57, and connect the wire to the Aruino

expansion board with reference to Figure 2.3.58. After the completion, as shown as Figure 2.3.57.

aaa
anND

ON
awd/od
1va/ia

S
14
€
©
L

Figure 3.2.58 Connection of Arduino and Receiving Head Wires
4. Open “Lesson\ModuleDemo\PS2X\PS2X.ino”
Finally, download the program to the Arduino development board and turn on the PS2 remote control. If the
receiver head is connected to the remote controller (or the pairing is successful), the indicator light on the

receiver head is long, and the LED light is blinking. Finally, we open the "serial monitor"”, press any button

102

EEywish

on the remote control, you can see the corresponding data on the "serial monitor", as shown in Figure 3.2.59.

@ COM27 (Arduino/Genuino Una) - o X 2)
| Send Send
rumble = false “IStick Values:255, 128, 127, 128)
Try out all the buttons, X will vibrate the controller, faste[Stick Values:255,128,127, 128
holding L1 or Rl will print out the analog stick values. Stick Values:127,128, 127, 128
Note: Go to www. hillporter. info for updates and to report bu Stick Values:127,128, 127, 128
DualShock Controller found Stick Values:127, 128, 127, 128
X just changed Stick Values:16, 128, 127, 128
Square just released Stick Values:4, 128, 127, 128
Up held this hard: 0 Stick Values:0, 135, 127, 128
Up held this hard: 0 Stick Values:75, 132, 127, 128
DOWN held this hard: 0 Stick Values:127, 128, 127, 128
LEFT held this hard: 0 Stick Values:127, 135, 127, 128
Right held this hard: 0 Stick Values:127, 146, 127, 128
Triangle pressed Stick Values:127, 146, 127, 128
Circle just pressed Stick Values:127, 146, 127, 128
Square just released Stick Values:127, 149, 127, 128
X just changed Stick Values:127, 149, 255, 128
X Jjust changed Stick Values:127, 149, 255, 128
_IStick Values:127, 147, 127, 255 .
I‘Z,\u(us(rull No line ending | 9800 baud | | Clear auu:m Aumscroll Wo line ending | 9800 baud ~ Clear autn:n |

103

EEywish

Figure 3.2.59 "serial monitor" data display

3.2.6.3 Software Design

#include "PS2X lib.h" //for v1.6

/**

* set pins connected to PS2 controller:
* - le column: original
* - 2e colmun: Stef?

* replace pin numbers by the ones you use

**/

#define PS2 DAT 4
#define PS2 CMD 7
#define PS2 SEL 8
#define PS2 CLK 11

/**

* select modes of PS2 controller:

* - pressures = analog reading of push-butttons

* - rumble = motor rumbling

* uncomment 1 of the lines for each mode selection
**/
//#define pressures true

#define pressures false

//#define rumble true

#define rumble false
PS2X ps2x; // create PS2 Controller Class
//right now, the library does NOT support hot pluggable controllers, meaning

//you must always either restart your Arduino after you connect the controller,

//or call config gamepad(pins) again after connecting the controller.

0;
0;

int error

byte type
byte vibrate = 0;

// Reset func

void (* resetFunc) (void) = 0;

104

EEywish

void setup() {

Serial.begin(9600) ;

delay(500); //added delay to give wireless ps2 module some time to startup, before
configuring it

//CHANGES for v1.6 HERE!!! ***kkkdkdddssksxpPAYy ATTENTIONR * * % *xkkkkkkk

//setup pins and settings: GamePad(clock, command, attention, data, Pressures?,
Rumble?) check for error

error = ps2x.config gamepad(PS2 CLK, PS2 CMD, PS2 SEL, PS2 DAT, pressures, rumble);

if (error == 0){
Serial.print("Found Controller, configured successful ");
Serial.print("pressures = ");
if (pressures)
Serial.println("true ");
else
Serial.println("false");
Serial.print("rumble = ");
if (rumble)
Serial.println("true)");
else
Serial.println("false");
Serial.println("Try out all the buttons, X will vibrate the controller, faster as
you press harder;");
Serial.println("holding L1 or Rl will print out the analog stick values.");
Serial.println("Note: Go to www.billporter.info for updates and to report bugs.");
}
else if(error == 1)
Serial.println("No controller found, check wiring, see readme.txt to enable debug.

visit www.billporter.info for troubleshooting tips");
else if(error == 2)
Serial.println("Controller found but not accepting commands. see readme.txt to enable

debug. Visit www.billporter.info for troubleshooting tips");

else if(error == 3)

Serial.println("Controller refusing to enter Pressures mode, may not support it. ");

type = ps2x.readType();

105

EEywish

switch(type) {

case 0:
Serial.println("Unknown Controller type found ");
break;

case 1:
Serial.println("DualShock Controller found ");
break;

case 2:
Serial.println("GuitarHero Controller found ") ;
break;

case 3:
Serial.println("Wireless Sony DualShock Controller found ");

break;

void loop() {

/* You must Read Gamepad to get new values and set vibration values
ps2x.read gamepad(small motor on/off, larger motor strenght from 0-255)
if you don't enable the rumble, use ps2x.read gamepad(); with no values
You should call this at least once a second

*/

if (error == 1){ //skip loop if no controller found
resetFunc () ;

}

if (type == 2){ //Guitar Hero Controller

ps2x.read gamepad() ; //read controller

if (ps2x.ButtonPressed (GREEN FRET))
Serial.println("Green Fret Pressed");

if (ps2x.ButtonPressed(RED_FRET))
Serial.println("Red Fret Pressed");

if (ps2x.ButtonPressed (YELLOW FRET))
Serial.println("Yellow Fret Pressed");

if (ps2x.ButtonPressed(BLUE FRET))
Serial.println("Blue Fret Pressed");

if (ps2x.ButtonPressed (ORANGE FRET))
Serial.println("Orange Fret Pressed");

if (ps2x.ButtonPressed (STAR_POWER))

Serial.println("Star Power Command") ;

106

EEywish

if (ps2x.Button (UP_STRUM)) //will be TRUE as long as button is pressed
Serial.println("Up Strum');

if (ps2x.Button (DOWN_STRUM))
Serial.println ("DOWN Strum");

if (ps2x.Button(PSB_START)) //will be TRUE as long as button is pressed
Serial.println("Start is being held");

if (ps2x.Button(PSB_SELECT))
Serial.println("Select is being held");

if (ps2x.Button (ORANGE FRET)) { // print stick value IF TRUE
Serial.print ("Wammy Bar Position:");

Serial.println(ps2x.Analog(WHAMMY BAR), DEC);

}
else { //DualShock Controller
ps2x.read gamepad(false, vibrate); //read controller and set large motor to spin at
'vibrate' speed
if (ps2x.Button(PSB_START)) //will be TRUE as long as button is pressed
Serial.println("Start is being held");
if (ps2x.Button(PSB_SELECT))
Serial.println("Select is being held");

if (ps2x.Button(PSB_PAD UP)) { //will be TRUE as long as button is pressed
Serial.print("Up held this hard: ");
Serial.println(ps2x.Analog(PSAB PAD UP), DEC);

}

if (ps2x.Button(PSB_PAD RIGHT)) {
Serial.print ("Right held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD RIGHT), DEC);

}

if (ps2x.Button(PSB_PAD LEFT)){
Serial.print ("LEFT held this hard: ");
Serial.println(ps2x.Analog(PSAB PAD LEFT), DEC);

}

if (ps2x.Button(PSB_PAD DOWN)) {
Serial.print ("DOWN held this hard: ");
Serial.println(ps2x.Analog(PSAB _PAD DOWN), DEC);

107

EEywish

vibrate

based on how hard you press the blue (X) button

if (ps2x
off, or off

if (ps2x.Button(PSB _L3))
Serial.println("L3 pressed");
if (ps2x.Button(PSB_R3))
Serial.println("R3 pressed");
if (ps2x.Button(PSB_L2))
Serial.println("L2 pressed");
if (ps2x.Button(PSB_R2))
Serial.println("R2 pressed");
if (ps2x.Button (PSB_TRIANGLE))

Serial.println("Triangle pressed");

if (ps2x.
pressed
Serial

if (ps2x.

pressed OR released

Serial
if (ps2x.
released

Serial

if (ps2x.
TRUE

Serial

Serial.

RY, RX

Serial.
Serial.
Serial.
Serial.
Serial.

Serial.

delay (50);

= ps2x.Analog(PSAB CROSS); //this will set the large motor vibrate speed

.NewButtonState()) { //will be TRUE if any button changes state (on to

to on)

ButtonPressed (PSB_CIRCLE)) //will be TRUE if button was JUST

.println("Circle just pressed");

NewButtonState (PSB_CROSS)) //will be TRUE if button was JUST

.println ("X Jjust changed");

ButtonReleased (PSB_SQUARE)) //will be TRUE if button was JUST

.println("Square just released");

Button(PSB L1) || ps2x.Button(PSB R1)) { //print stick values if either is
.print ("Stick Values:");

print (ps2x.Analog(PSS_LY), DEC); //Left stick, Y axis. Other options: LX,
print(", H) ;

print (ps2x.Analog (PSS LX), DEC);

print(", ll) ;

print (ps2x.Analog (PSS RY), DEC);

print(", ll) ;

println(ps2x.Analog (PSS _RX), DEC);

108

EEywish

In the above program, we instructed to read the test button. In this experiment we want to implement the
PS2 remote control car function. We firstly define all the button functions as follows:

SELECT

POWER MODE LED

Figure .3.2.60 Functions of PS2 Handle Buttons

Mark UP: move forward

Mark DOWN: move backward

Mark LEFT: turn left

Mark RIGHT: right

Mark A: speed up

Mark B: servo turns left

Mark C: slow down

Mark D: servo turns right

Mark 3: Right joystick (mark 5) control key, only when you press R1, the Right joystick will work.
Mark 4: Left joystick (mark 6) control key, only when you press L1, the Left joystick will work.
Joystick left: joystick remotes control direction

Joystick Right: joystick remotes control speed

Ps2 Control program in “hummer-bot\Lesson\Comprehensive
Experiment\Hummerbot_PS2\Hummerbot_PS2\ Hummerbot_PS2.ino”

109

EEywish

The program flow chart is as follows:

Read the data
acquired by the
sensor

Speed up Turn left Go back Stop Go forward Turn right ZF:::
4
Print received
value

110

	Chapter1 Introduction
	1.1 Writing Purpose
	1.2 Product Introduction

	Chapter2 Preparations
	About Arduino uno r3
	2.1 Development environment Arduino IDE
	2.1.1 Install the IDE

	Chapter3 Experiments
	3.1 Assembly of the Car
	3.1.1 Motor installation
	3.1.2 Wheel and drive module installation
	3.1.3 Tracking module installation
	3.1.4 Lower acrylic plate copper column installation and motor wiring
	3.1.5 Keywish Uno R3 board installation
	3.1.6 Battery box installation
	3.1.7 Servo installation
	3.1.8 Infrared obstacle avoidance module installation
	3.1.9 Voltage display module and DC head installation
	3.1.10 Infrared remote control receiver installation
	3.1.11 Overall assembly
	3.1.15 Expansion board wiring diagram

	3.2 Hummer Bot Module experiment
	3.2.1 Walking Principle of the Car
	3.2.2 Infrared Obstacle Avoidance
	3.2.2.1 Introduction of Infrared Obstacle Avoidance Sensor
	3.2.2.2 Working Principle
	3.2.2.3 Module Parameters
	3.2.2.4 Wire connection
	3.2.2.5 Experimental Procedures
	3.2.2.5 Software Design
	3.2.2.5.1 Program flow chart
	3.2.2.5.2 Program code

	3.2.3 Infrared Tracing
	3.2.3.1 Introduction of Infrared Tracing Sensor
	3.2.3.2 Working Principle
	3.2.3.3 Module Parameters
	3.2.3.4 Wire connection
	3.2.3.5 Experimental Procedures
	3.2.3.5 Software Design
	3.2.3.5.1 Program flow chart
	3.2.3.5.2 Program Code

	3.2.4 Ultrasonic Obstacle Avoidance
	3.2.4.1 Suite Introduction
	3.2.4.2 Suite Parameters
	3.2.4.3 Working Principle
	3.2.4.4 Experimental Procedures
	3.2.4.5 Wire connection
	3.2.4.6.1 Program flow chart
	3.2.4.6.2 Program Code

	3.2.5 Infrared Remote Control
	3.2.5.1 Suite Introduction
	3.2.5.2 Working Principle
	3.2.5.3 Experimental Procedures
	3.2.5.4 Wire connection
	3.2.5.5 Software Design
	3.2.5.5.1 Program flow chart
	3.2.5.5.2 Program code

	3.2.6 Mobile Phone Bluetooth Control
	3.2.6.1 Suite Introduction
	3.2.7.1 Use app to communicate with the serial port
	3.2.6.3 Bluetooth protocol
	3.2.6.4 Experimental Procedures
	3.2.6.5 Wire connection
	3.2.6.6 Software Design
	3.2.6.6.1 Program flow chart
	3.2.6.6.2 Program Code

	3.2.7 PS2 Handle (Optional)
	3.2.7.1 Suite Introduction
	3.2.6.2 Experimental Procedure
	Figure 3.2.59 "serial monitor" data display
	3.2.6.3 Software Design

