

IQML User Guide

Version 2.11

November 28, 2018

Fully compatible with:

Windows, Linux, Mac OS

DTN IQFeed 5.0 - 6.0

MATLAB R2008a - R2018b

© Yair Altman, Octahedron Ltd.

http://IQML.net

Undocumented Matlab
unbelievable features; unbelievable quality; unbelievable cost effectiveness; unbelievable service

http://iqml.net/

2 IQML User Guide

Table of Contents

DISCLAIMER .. 4

1 Introduction ... 5

2 Installation and licensing ... 6
2.1 Installing IQML .. 6
2.2 Licensing and activation... 7
2.3 Switching activated computers ... 9
2.4 Updating the installed version .. 9

3 Using IQML .. 10
3.1 General usage... 10
3.2 General properties ... 13
3.3 Blocking & non-blocking modes... 13
3.4 Common causes of confusion ... 14
3.5 Returned data format .. 16
3.6 Run-time performance .. 17

4 Querying the latest market data ... 20
4.1 Snapshot (top of book) quotes .. 20
4.2 Fundamental information ... 29
4.3 Interval bars ... 31
4.4 Market depth (Level 2) ... 34
4.5 Greeks, fair value, and implied volatility ... 35

5 Historical and intra-day data .. 40
5.1 Daily data ... 40
5.2 Weekly data .. 44
5.3 Monthly data .. 46
5.4 Interval data ... 48
5.5 Tick data ... 53

6 Streaming data ... 58
6.1 Streaming quotes .. 58
6.2 Regional updates .. 63
6.3 Interval bars ... 67
6.4 Market depth (Level 2) ... 71

7 News .. 74
7.1 Configuration ... 74
7.2 Story headlines ... 75
7.3 Story text ... 79
7.4 Story count .. 81
7.5 Streaming news headlines .. 83

8 Lookup of symbols and codes ... 87
8.1 Symbols lookup ... 87
8.2 Options/futures chain ... 92
8.3 Markets lookup ... 97
8.4 Security types lookup .. 99
8.5 SIC codes lookup .. 101
8.6 NAICS codes lookup ... 103
8.7 Trade condition codes lookup .. 105

3 IQML User Guide

9 Connection, administration and other special commands.. 107
9.1 Connecting & disconnecting from IQFeed ... 107
9.2 Server time .. 109
9.3 Client stats .. 110
9.4 Sending a custom command to IQFeed .. 113

10 Attaching user callbacks to IQFeed messages ... 114
10.1 Processing IQFeed messages in IQML .. 114
10.2 Run-time performance implications ... 118
10.3 Usage example – using callbacks to parse options/futures chains 119
10.4 Usage example – using callbacks for realtime quotes GUI updates 120
10.5 Usage example – using callbacks for realtime order-book GUI updates 121

11 Alerts ... 124
11.1 General Usage .. 124
11.2 Alert Configuration .. 126
11.3 Alerts Query ... 130
11.4 Alert Editing or Deletion .. 130

12 Messages and logging .. 131

13 Frequently-asked questions (FAQ) .. 134

14 Troubleshooting ... 137

15 Professional services .. 139
15.1 Sample program screenshots .. 140
15.2 About the author ... 143

Appendix A – online resources ... 144

Appendix B – change log ... 145

4 IQML User Guide

DISCLAIMER

THIS SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR

NONINFRINGEMENT.

THIS SOFTWARE IS NOT OFFICIALLY APPROVED OR ENDORSED BY ANY

REGULATORY, GOVERNING OR COMMERCIAL BODY, INCLUDING SEC, FINRA,

MATHWORKS AND/OR DTN.

MUCH EFFORT WAS INVESTED TO ENSURE THE CORRECTNESS, ACCURACY

AND USEFULNESS OF THE INFORMATION PRESENTED IN THIS DOCUMENT

AND THE SOFTWARE. HOWEVER, THERE IS NEITHER A GUARANTEE THAT THE

INFORMATION IS COMPLETE OR ERROR-FREE, NOR THAT IT MEETS THE

USER’S NEEDS. THE AUTHOR AND COPYRIGHT HOLDERS TAKE ABSOLUTELY

NO RESPONSIBILITY FOR POSSIBLE CONSEQUENCES DUE TO THIS DOCUMENT

OR USE OF THE SOFTWARE.

THE FUNCTIONALITY OF THE SOFTWARE DEPENDS, IN PART, ON THE

FUNCTIONALITY OF OTHER SOFTWARE, HARDWARE, SYSTEMS AND SERVICES

BEYOND OUR CONTROL. SUCH EXTERNAL COMPONENTS MAY CHANGE OR

STOP TO FUNCTION AT ANY TIME, WITHOUT PRIOR NOTICE AND WITHOUT

OUR CONTROL. THEREFORE, THERE CAN BE NO ASSURANCE THAT THE

SOFTWARE WOULD WORK, AS EXPECTED OR AT ALL, AT ANY GIVEN TIME.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY CLAIM, DAMAGES, LOSS, OR OTHER LIABILITY, WHETHER IN ACTION OF

CONTRACT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE,

REGARDLESS OF FORM OF CLAIM OR WHETHER THE AUTHORS WERE

ADVISED OF SUCH LIABILITIES.

WHEN USING THIS DOCUMENT AND SOFTWARE, USERS MUST VERIFY THE

BEHAVIOR CAREFULLY ON THEIR SYSTEM BEFORE USING THE SAME

FUNCTIONALITY FOR LIVE TRADES. USERS SHOULD EITHER USE THIS

DOCUMENT AND SOFTWARE AT THEIR OWN RISK, OR NOT AT ALL.

ALL TRADING SYMBOLS AND TRADING ORDERS DISPLAYED IN THE

DOCUMENTATION ARE FOR ILLUSTRATIVE PURPOSES ONLY AND ARE NOT

INTENDED TO PORTRAY A TRADING RECOMMENDATION.

5 IQML User Guide

1 Introduction

DTN provides financial data-feed services via its IQFeed service (www.iqfeed.net).

IQFeed customers use its services using a specialized application (“client”) that can

be installed on the user’s computer.1 User programs can interface to IQFeed’s client

application in order to retrieve market data from the IQFeed servers.

Matlab is a programming platform that is widely-used in the financial sector. Matlab

enables users to quickly analyze data, display results in graphs or interactive user

interfaces, and to develop decision-support and automated trading programs.

IQFeed does not come with an official Matlab API connector. This is the role of

IQML (www.IQML.net). IQML uses IQFeed’s API to connect Matlab with IQFeed’s

client application, providing a seamless interface within Matlab to IQFeed data. Users

can access IQFeed’s data using simple Matlab commands, without needing to know

the intricacies of the underlying API.

IQML consists of three software components (in addition to this User Guide):

1. A Java package (IQML.jar) that connects Matlab to the IQFeed client.

2. A Matlab function (IQML.p) that provides IQFeed’s data in an easy-to-use

manner, without needing to know anything about the underlying connector.

3. A Matlab file (IQML.m) that serves as a help file. This file contains no code,

just the help comment; the code itself is contained in the two other software

components. The help text is displayed when you run Matlab’s help function.

IQFeed queries (for trades and tick quotes, historical data, market info etc.) can be

initiated with simple one-line Matlab code, using the Matlab function (IQML.p).

Users can easily attach Matlab code (callbacks) to incoming IQFeed messages. This

enables users to trigger special operations (for example, adding an entry in an Excel

file, sending an email or text message, sending a trade order to an OMS application)

whenever a certain condition is detected, for example if a specified price is reached.

This document explains how to install and use IQML. Depending on the date that you

have installed IQML, your version may be missing some features discussed in this

document. You can always download the latest version of IQML from its webpage:

http://IQML.net, or directly from http://IQML.net/files/IQML.zip.

1 IQConnect.exe on Windows, IQFeed application on MacOS. or ran as a Windows app on Mac/Linux using Parallels/Wine.

Note: some MacOS users have reported problems with the “native” app (which is basically just a bottled Wine installation)
compared to a standard Wine install. This is a pure IQFeed/Mac issue, and not an IQML one; using Wine seems to solve it. In

any case, only the IQFeed client needs to run under Wine - Matlab itself can run natively.

http://www.iqfeed.net/
http://www.iqml.net/
http://iqml.net/
http://iqml.net/files/IQML.zip

6 IQML User Guide

2 Installation and licensing

2.1 Installing IQML

IQML requires the following in order to work:

1. An active account at DTN IQFeed

2. An installation of the IQFeed client (IQConnect)

3. An installation of Matlab R2008a or a newer release

On older Matlab releases, some IQML functionality may still be available.

Contact info@IQML.net for details.

Installing IQML is simple:

1. Read IQML’s license agreement.2 This is required even for the trial version of

IQML. If you do not accept the agreement you cannot use IQML.

2. Download http://IQML.net/files/IQML.zip to a local folder (e.g.: C:\IQML\).

3. Unzip the downloaded IQML.zip file in this local folder.

4. Add the local folder to your Matlab path using the path tool (in the Matlab

Desktop’s toolstrip, click HOME / ENVIRONMENT / Set path… and save).

The folder needs to be in your Matlab path whenever you run IQML.

5. If you are running the Production (non-trial) version of IQML, you will need

to activate your license at this point. When you purchase your license you will

be given specific instructions for this. See §2.2 below for licensing details.

6. Ensure that the IQFeed client is working and can be used to log-in to IQFeed.3

7. You can now run IQML within Matlab. To verify that IQML is properly

installed, retrieve the latest IQFeed server time, as follows (see §9.2 below):4
>> t = IQML('time');

8. You can query the installed version using IQML’s 'version' action, as follows:
>> disp(IQML('version'))

 Version: 1.0

 Release: '23-Feb-2018'

 License: 'Professional'

 Expiry: '16-Jun-2018'

9. Once the IQML product is installed, you will be notified in the Matlab console

(Command Window) whenever there is a new version available. You can

always update your installation to the latest version, as follows:
>> IQML('update')

Downloading the latest IQML version from http://IQML.net/files/IQML.zip

 into C:\IQML\...

Download complete - installing...

Installation of the latest IQML version is now complete.

2 http://IQML.net/files/IQML_License_Agreement.pdf
3 IQConnect.exe on Windows, IQFeed application on MacOS. or ran as a Windows app on Mac/Linux using Parallels/Wine.

Note: some MacOS users have reported problems with the “native” app (which is basically just a bottled Wine installation)

compared to a standard Wine install. This is a pure IQFeed/Mac issue, and not an IQML one; using Wine seems to solve it. In
any case, only the IQFeed client needs to run under Wine - Matlab itself can run natively.

4 In some cases, you may need (or want) to specify the IQFeed Username,Password for the initial connection – see §9.1 below

mailto:info@IQML.net
http://iqml.net/files/IQML.zip
http://iqml.net/files/IQML.zip
http://iqml.net/files/IQML_License_Agreement.pdf

7 IQML User Guide

2.2 Licensing and activation

IQML’s license uses an activation that is specific to the installed computer. This uses

a unique fingerprint hash-code that is reported by the Operating System, which

includes the Windows ID (on Windows systems), computer name, and the list of

hardware MAC addresses used by the computer.

Once the computer’s license is activated, the activation key is stored on the IQML.net

webserver. This activation key automatically validates online whenever IQML

connects to IQFeed (i.e., at the beginning of an IQFeed session), and once every few

hours while it is connected. Validating the license online only takes a second or two.

Since it is only done at the initial connection to the IQFeed client and once every few

hours, it does not affect IQML’s run-time performance. If you have a special concern

regarding the online activation, please contact us for clarifications.

A corollary of the computer fingerprint is that whenever you modify components that

affect the fingerprint, IQML will stop working. This could happen if you reinstall the

operating system (OS), modify the computer name, change network adapters (e.g.,

switch between wifi/cellular/wired connection, or use a new USB networking device),

modify MAC addresses, or use software that creates dynamic MACs. In such cases,

you might see an error message such as the following when you try to use IQML:

Error using IQML

IQML is not activated on this computer.

Some additional information may be presented to help you diagnose the problem.

To fix such cases, simply revert back to the original hardware/networking

configuration, and then IQML will resume working. If you wish to make the

configuration change permanent, you can contact us for an activation switch to the

new configuration (see the following section (§2.3) for details).

Computer fingerprints are typically stable, and are not supposed to change

dynamically. However, some software programs (especially on MacOS, but also

sometimes on Windows) create dynamic MAC addresses and/or dynamically modify

the computer name (hostname). This may then be reflected in the OS-reported

fingerprint, possibly causing IQML to stop working. The solution is to find a way to

keep the fingerprint components static, with the same values as the activated

fingerprint.5 You can determine the nature of the OS-reported fingerprint as follows:

>> IQML('license', 'debug',1)

Using the output from this command, you can determine which fingerprint

component was changed / added / deleted, and then take the appropriate action to fix

it so that the reported fingerprint will match the activated fingerprint. If you decide

that the fingerprint changes are permanent, contact us to change the activated

fingerprint (see §2.3 below).

5 For example, the computer’s name can be set using the OS hostname command, or the following method on Mac OS:

https://knowledge.autodesk.com/support/smoke/learn-explore/caas/sfdcarticles/sfdcarticles/Setting-the-Mac-hostname-or-

computer-name-from-the-terminal.html

https://knowledge.autodesk.com/support/smoke/learn-explore/caas/sfdcarticles/sfdcarticles/Setting-the-Mac-hostname-or-computer-name-from-the-terminal.html
https://knowledge.autodesk.com/support/smoke/learn-explore/caas/sfdcarticles/sfdcarticles/Setting-the-Mac-hostname-or-computer-name-from-the-terminal.html

8 IQML User Guide

A short time before you license term is over, you will start to see a notification

message in your Matlab console (Command Window) alerting you about this:
*** Your IQML license will expire in 3 days (10-Mar-2018).

*** To extend your license please email info@IQML.net

This informational message will only appear during the initial connection to IQFeed,

so it will not affect your regular trading session.

When the license term is over, IQML will stop working and display a corresponding

error message:
*** Your IQML license has expired on 10-Mar-2018.

*** To extend your license please email info@IQML.net

You can always renew or extend your license using the payment links on

http://IQML.net. If you wish to be independent of such annual renewals, you can

purchase a discounted multi-year license.

You can query the installed version using IQML’s 'version' action, as follows:
>> data = IQML('version')

data =

 Version: 1.0

 Release: '23-Feb-2018'

 License: 'Professional'

 Expiry: '16-Jun-2018'

Multiple IQML license options are available for purchase on http://IQML.net – longer

license terms are naturally more cost-effective than shorter ones. At the end of any

license term you can decide to renew the same term, or purchase any other term:

 1, 3 or 6-months license: these short-term licenses can be repeatedly renewed,

for short-term evaluation or program development beyond the free trial.

 1-year license: this is the standard, most popular license term.

 Multi-year license: 2-year, 3-year or 5-year extended license terms will work

for much longer than the standard license year, as long as you keep your

hardware and software stable and IQFeed continues to provide its API service.

 Volume (multi-computer) license: the same license as for a single computer,

but when you purchase multiple licenses at once, you get a volume discount.

 Site license: enables to run IQML on an unlimited number of computers

within the same Windows Domain. This license does not require activation by

end-users, only a single centralized activation. It enables deploying IQML to a

cloud service, where computer hardware fingerprints often change.

 Deployment (compiled or OEM) license: enables to use IQML within a

compiled program that runs on an unlimited number of computers, in any site

or domain. This license does not require any end-user activation, only a single

centralized activation of the parent executable to which the license is tied.

 Source-code license: unlimited in duration, can be installed on an unlimited

number of computers within the organization, and requires no activation. This

license requires signing a dedicated NDA agreement.

http://iqml.net/
http://iqml.net/

9 IQML User Guide

2.3 Switching activated computers

You can switch the IQML license activation between computers or computer

hardware configurations (i.e., fingerprint hash-code) up to 3 times a year at no cost. A

handling fee will be incurred for additional re-activations, following the initial three.

In order to change the activation fingerprint, simply email us the new configuration’s

fingerprint and we will make the switch on IQML’s activation server.

Activation switches can take up to two business days to process, but typically

complete within a few hours during regular European business hours. You will

receive a confirmation email when the activation switch is complete.

2.4 Updating the installed version

Once the IQML product is installed, you will be notified in the Matlab console

(Command Window) whenever there is a new version available. An example of such

a notification is:

>> IQML(...) % some IQML command

A newer version of IQML (1.09) is available. Updates include:

 1.09 (2018-04-16)

 - Added Interval Bars functionality

To display the latest online User Guide, click here.

To install the new version, click here, or run IQML('update'), or download

IQML.zip from http://IQML.net/files/IQML.zip and then unzip it in C:\IQML.

You can decide to ignore this notification and keep using your existing IQML version,

or to follow the notification’s advice and upgrade your version – the choice is yours.

You can update your installation to the latest version, at any time during your license

term, as follows:

>> IQML('update')

Downloading the latest IQML version from http://IQML.net/files/IQML.zip

 into C:\IQML\...

Download complete - installing...

Installation of the latest IQML version is now complete.

Following the update, you can check the new release’s version as follows:

>> data = IQML('version')

data =

 Version: 1.9

 Release: '16-Apr-2018'

 License: 'Professional'

 Expiry: '16-Jun-2018'

After installing the latest version, if you discover that this version does not work well,

you can always revert back to the previous version by downloading and installing

http://iqml.net/files/IQML_previous.zip: simply unzip this file in your IQML folder,

then restart Matlab and run data=IQML('version') to verify the installation. If you

decide to revert your installed version for whatever reason, please email us to let us

know why, so that we could correct the issue that you found in upcoming versions.

http://iqml.net/files/IQML_User_Guide.pdf
file:///C:/Users/USER/AppData/Roaming/Microsoft/Word/
http://iqml.net/files/IQML.zip
http://iqml.net/files/IQML.zip
http://iqml.net/files/IQML_previous.zip

10 IQML User Guide

3 Using IQML

3.1 General usage

IQML uses the IQFeed client6 to connect to the IQFeed server. If an active IQFeed

client is not detected, IQML will automatically attempt to start the IQFeed client and

to connect to it. Note that this may not work for some IQFeed client installations. You

can always start the IQFeed client manually, before running IQML. In any case, if an

IQFeed connection is unsuccessful, IQML will error.

IQML’s Matlab wrapper function is called IQML, contained within the IQML.p file.

Its accompanying IQML.m file provides basic usage documentation using standard

Matlab syntax, e.g.:
>> help('IQML')

>> help IQML % equivalent alternative

>> doc IQML

The IQML function accepts a variable number of input parameters, and returns data in

a single output argument, with an optional errorMsg output. The general syntax is:

>> [data, errorMsg] = IQML(action, parameters);

where:

 data is the output value. If this output value is requested, then Matlab

processing will block data until the result is available; if the output data is not

requested then the Matlab processing will proceed immediately (non-

blocking) – the IQFeed data will stream asynchronously (see below).

 errorMsg is the latest error message that was reported (if any); see §3.5 below.

 action is a string that denotes the requested query type (mandatory input)

 parameters can be specified, depending on the requested action. There are

several ways to specify parameters, which are described below.

For example:
>> data = IQML('time'); %'time' action (blocking), 0 parameters

>> IQML('quotes', 'Symbol','IBM'); %streaming 'quotes' action, 1 parameter

>> IQML('command', 'String',command, 'PortName','Admin'); %2 parameters

Note that when an output data is requested, IQML treats the request as blocking

(synchronous), meaning that Matlab processing will wait for IQFeed’s data (or a

timeout) before proceeding with the next Matlab command. For example:

>> t = IQML('time'); % blocking until data is available

When an output data is not requested, IQML treats the request as streaming (non-

blocking, a-synchronous) and Matlab processing will proceed immediately. This non-

blocking mode is typically useful for sending IQFeed requests (for example, to start

streaming trades/ticks), without waiting for a response from IQFeed. The streamed

data is accumulated by IQML in the background, and can later be retrieved using the

mechanism that is discussed in §6 below. Examples of such non-blocking commands:
>> IQML('quotes', 'Symbol','IBM'); %start non-blocking IBM quotes stream

>> IQML('command', 'String',command); %asynchronous/non-blocking command

6 IQConnect.exe on Windows, IQFeed application on MacOS. or ran as a Windows app on Mac/Linux using Parallels/Wine

11 IQML User Guide

Here are the action values recognized by IQML, in the Professional and Standard

(non-pro) licenses; trial licenses have the full functionality of a Professional license:

Action Description Section
Non-

Pro

Pro &

trial

'version' Display product version information §2.1 Yes Yes
'license' Display the license fingerprint & activation key §2.2 Yes Yes
'update' Update the IQML installation to the latest version §2.4 Yes Yes
'doc' Display this User Guide in a separate window - Yes Yes
'quotes' Fetch quotes/trades information on a ticker §4.1, §6.1 Yes Yes
'fundamental' Fetch fundamental information on a ticker §4.2 Yes Yes
'intervalbars' Fetch custom streaming interval bars on a ticker §4.3, §6.3 Yes Yes
'marketdepth' Fetch level 2 market depth information on a ticker §4.4, §6.4 - Yes
'greeks' Greeks, fair value and implied vol. of options/futures §4.5 - Yes
'history' Fetch historical data bars from IQFeed §5 Yes Yes
'regional' Fetch regional update information on a ticker §6.2 - Yes
'news' Fetch news headlines or stories from IQFeed §7 - Yes
'lookup' Fetch list of symbols/codes matching set of criteria §8 Yes Yes
'chain' Fetch futures/options chain matching set of criteria §8.2 - Yes
'disconnect' Disconnect IQML from IQFeed §9.1 Yes Yes
'reconnect' Disconnect and then re-connect IQML to IQFeed §9.1 Yes Yes
'time' Retrieve the latest IQFeed server & message times §9.2 Yes Yes
'stats' Retrieve connection and network traffic statistics §9.3 Yes Yes
'command' Send a custom command to IQFeed §9.4 Yes Yes
'alert' Alert the users upon IQFeed streaming events §11 - Yes

IQML accepts input parameters in several alternative formats, which are equivalent –

you can use whichever format that you prefer:

 As name-value pairs – for example:
>> IQML('command', 'String',command, 'PortName','Admin'); %2 parameters

 As a struct (or struct array) of parameters – for example:
>> params = []; % initialize

>> params.String = command;

>> params.PortName = 'Admin';

>> IQML('command', params);

 As a table of parameters, with the parameter names as the table field names

 As field-separated rows in an Excel input file – for example:

>> IQML('command', 'C:\MyData\inputFile.xlsx');

Where:

o Each column of the file contains a separate parameter

o Row #1 contains the parameter names, and rows 2+ contain their

corresponding values, one row per command

o All commands must have the same action

For example:

12 IQML User Guide

Each parameter must have an associated value. The value’s data type depends on the

specific parameter: it could be numeric, a string, a function handle etc. The definition

of all the parameters and their expected data types is listed in the appropriate section

in this User Guide that explains the usage for the associated action.

Note that if you choose to use the struct format and then to reuse this struct for

different IQML commands (by altering a few of the parameters), then the entire set of

struct parameters is used, possibly including some leftover parameters from previous

IQML commands, that may lead to unexpected results. For example:
% 1st IQML command – stop streaming timestamp messages every 1 second

>> params = []; % initialize

>> params.String = 'S,TIMESTAMPSOFF';

>> params.PortName = 'Level1';

>> IQML('command', params);

% 2nd IQML command – stop streaming client stats messages every 1 sec

>> params.String = 'S,CLIENTSTATS OFF'; %reuse existing params struct

>> IQML('command', params);

% 3rd IQML command – start streaming quotes messages for IBM

>> params.Symbol = 'IBM'; %reuse existing params struct

>> IQML('quotes', params);

In this example, the 2nd IQML command above will have no effect, because the

PortName parameter in the params struct from the 1st IQML command will be reused

in the 2nd command, sending it to the Level1 port, instead of to the Admin port.

Similarly, the 3rd IQML command will result in an error, because the 'quotes' action

does not expect the String and PortName parameters that were carried over (reused)

from the 2nd command.

To avoid such unexpected results, I therefore advise to re-initialize the params struct

(params=[]) before preparing each IQML command.

IQML is quite tolerant of user input: parameter names (but generally not their values)

are case-insensitive, parameter order does not matter, non-numeric parameter values

can be specified as either char arrays ('abc') or strings ("abc"), and some of these can

be shortened. For example, the following commands are all equivalent:
>> IQML('quotes', 'Symbol','IBM');

>> IQML('quotes', 'symbol','IBM');

>> IQML('Quotes', "Symbol","IBM");

>> IQML('Quotes', 'Symbol','IBM');

>> IQML('QUOTES', 'symbol',"IBM");

The full list of acceptable input parameters, and their expected values, is listed in the

following sections, grouped by usage classification.

When using IQML, there is no need to worry about connecting or disconnecting from

the IQFeed client – IQML handles these activities automatically, without requiring

user intervention. Users only need to ensure that the IQFeed client is active and

logged-in when the IQML command is invoked in Matlab.

IQML reads data using the IQFeed account to which the IQFeed client is connected.

In other words, the IQFeed account type is transparent to IQML: the only way to

control which IQFeed data is available to IQML is to login to the IQFeed client using

the appropriate username/password. Refer to §9.1 below for additional details.

13 IQML User Guide

3.2 General properties

The following general properties can be specified in IQML, with most actions:

Parameter
Data

type
Default Description

Symbol or
Symbols 7

string (none) The asset symbol, as known by IQFeed.8

Timeout number 5.0
Max number of seconds (0-9000) to wait for
data in a blocking request (0 means infinite).

Debug logical false or 0 If true or 1, additional information is displayed.

MsgParsingLevel number 2

One of:

 2 – parse all the data in incoming IQFeed
messages (default; most verbose, slowest)

 1 – do not parse lookup codes (e.g. trade
condition, price formats, market id).
The corresponding Description fields will
either be missing, or contain empty strings.
The codes can be parsed separately (see §8).

 0 – do not parse lookup code; also do not
convert string data into numeric values (i.e.
all data fields will remain strings: ‘3.14’).
This is the fastest but least verbose option.

RaiseErrorMsgs logical true or 1 9
If true or 1, IQFeed error messages raise a Matlab

error in blocking (non-streaming) mode (see §12)

ProcessFunc
function

handle
[]

Custom user callback function to process
incoming IQFeed data messages (see §10).

NumOfEvents integer inf The maximal number of messages to process.

Additional properties are request-specific and are listed below in the relevant

sections. For example, the 'history' action has additional properties that control the

parameters of the historic data request (start/end date, data type, etc.).

3.3 Blocking & non-blocking modes

Whenever you specify an output parameter in a call to IQML, the program will block

until a response is available (i.e., a synchronous request). If no output parameter is

specified, IQML will immediately return (non-blocking, a-synchronous) and

additional Matlab commands can immediately be issued. This non-blocking mode is

typically useful for sending IQFeed requests to start streaming data (for example,

streaming trades/ticks or news headlines), without waiting for any response from

IQFeed. The streamed data is accumulated by IQML in the background, and can later

be retrieved using the mechanism that is discussed in §6 below. For example:

>> t = IQML('time'); % blocking until data is available

>> IQML('quotes', 'Symbol','IBM'); %start non-blocking IBM quotes stream

>> IQML('command', 'String',command); %asynchronous/non-blocking command

7 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization.
8 https://iqfeed.net/symbolguide

9 Using the 2nd (optional) output parameter of IQML implies a default value of false (0) for RaiseErrorMsgs (see §3.5 below)

https://iqfeed.net/symbolguide

14 IQML User Guide

3.4 Common causes of confusion

1. A common cause of confusion is specifying symbols incorrectly: IQFeed is

very particular about the way that symbols should be specified. If the

specified symbol is invalid, or if your account does not have the

corresponding market subscription, IQFeed will report an error:
>> IQML('quotes', 'Symbol','xyz123')

Symbol 'XYZ123' was not found!

If the request was blocking, an error (exception) will be thrown back to the

caller, which can be trapped and handled by the user, using a Matlab try-

catch construct:
try

 data = IQML('fundamental', 'Symbol','xyz123');

catch err

 % do something intelligent here...

end

IQFeed’s website includes a detailed symbol-lookup search engine.10
 If you are

still unsure about a symbol name, please contact IQFeed’s customer support.

2. Another cause of confusion is due to specifying numeric values as strings or

vice versa. For example, IQML(...,'Timeout','10') rather than

IQML(...,'Timeout',10). Each parameter expects a value of a specific data

type, which is listed in the parameter tables in this user guide. In some cases,

IQML is smart enough to automatically convert to the correct data type, but

you should not rely on this: it is better to always use the correct data type.

Otherwise, Matlab might get confused when trying to interpret the string '10'

as a number, and odd results might happen.

3. While most of IQML’s functionality is available in all license types, some

actions/functionality are only available in the Professional IQML license:

 Parallelized queries (§3.6)

 Customizable data fields in quotes data (§4.1, §6.1)

 Level 2 market depth quotes (§4.4, §6.4, §10.5)

 Option Greeks, Fair Value and Implied Volatility (§4.5)

 Regional updates (§6.2)

 News (§7)

 Options/futures chain lookup (§8.2)

 Alerts (§11)

If you have a Standard license and try to access one of the Professional-only

actions, you will receive a run-time error message:
>> data = IQML('news');

Error using IQML:

The 'news' action is not available in your Standard license of IQML,

only in the Professional license. Please contact info@iqml.net to

upgrade your license.

10 https://iqfeed.net/symbolguide

mailto:info@iqml.net
https://iqfeed.net/symbolguide

15 IQML User Guide

4. IQFeed reports dates in different formats, depending on the specific query:

either in the standard American mm/dd/yyyy format (for example:

'01/29/2018'), or in yyyymmdd format (for example: '2018-01-29' or

'20180129 12:29:48'). Dates are usually reported as strings. In some cases, a

corresponding Matlab datenum value is also reported, for example (§5.5, §6.1):
 Symbol: 'IBM'

 Timestamp: '2018-03-07 13:23:02.036440'

 Datenum: 737126.557662458

 ...

 Symbol: '@VX#'

 LatestEventDatenum: 737128.637260451

 LatestEventTimestamp: '20180309 15:17:39'

 ...

5. By default, Matlab displays data in the console (“Command Window”) using

“short” format, which displays numbers rounded to 4 digits after the decimal.

The data actually has higher precision, so when you use it in a calculation the

full precision is used, but this is simply not displayed in the console.

IQML does not truncate/round/modify the IQFeed data in any manner!

To display the full numeric precision in the Matlab console, change your

Command Window’s Numeric Format from “short” to “long” (or “long g”) in

Matlab’s Preferences window, or use the “format long” Matlab command:
>> data = IQML('quotes', 'symbol','ONLIB.X'); %overnight LIBOR rate

>> data.Close % short format (only 4 digits after decimal)

ans =

 1.4463

>> format long g % long format (full precision displayed)

>> data.Close

ans =

 1.44625

16 IQML User Guide

3.5 Returned data format

Many queries in IQML return their data in the form of a struct-array (a Matlab array

of structs), for example (see §8.6):
>> data = IQML('lookup', 'DataType','NAICS')

data =

 1175×1 struct array with fields:

 id

 description

>> data(1)

ans =

 id: 111110

 description: 'Soybean Farming'

>> data(2)

ans =

 id: 111120

 description: 'Oilseed (except Soybean) Farming'

For various purposes (readability, maintainability, performance, usability), users may
wish to modify this data structure. You can easily convert the data using Matlab’s
builtin functions struct2cell() (which converts the struct-array into a cell-array), or
struct2table() (which converts the struct-array into a Matlab table object):

>> disp(struct2cell(data)')

 [111110] 'Soybean Farming'

 [111120] 'Oilseed (except Soybean) Farming'

 [111130] 'Dry Pea and Bean Farming'

 [111140] 'Wheat Farming'

 [111150] 'Corn Farming'

 [111160] 'Rice Farming'

 ...

>> disp(struct2table(data))

 id description

 ______ ___

 111110 'Soybean Farming'

 111120 'Oilseed (except Soybean) Farming'

 111130 'Dry Pea and Bean Farming'

 111140 'Wheat Farming'

 111150 'Corn Farming'

 111160 'Rice Farming'

 ...

Note that empty data cannot be converted using struct2table() or struct2cell():
>> data = IQML('lookup', 'DataType','NAICS', 'Description','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

>> struct2table(data)

Error using struct2table (line 26)

S must be a scalar structure, or a structure array with one column or one row.

A second, optional, output parameter of IQML returns the latest error message (if any):11
>> [data, errorMsg] = IQML('quotes', 'Symbol','IBM', 'Timeout',0.1)

data =

 []

errorMsg =

 'IQML timeout: either IQFeed has no data for this query, or the Timeout

parameter should be set to a value larger than 0.1'

11 Using the 2nd (optional) output parameter of IQML implies a default value of false (0) for the RaiseErrorMsgs parameter.

17 IQML User Guide

3.6 Run-time performance

IQML’s standard processing has an overhead of 1-2 milliseconds per IQFeed

message, depending on several factors:

 Message type/complexity – simple messages such as the periodic timestamp

updates are simpler to process than complex messages (e.g. fundamental data).

 The Debug parameter (see §3.2) – A value of 1/true is ~1 msec slower per

message, compared to the default value of 0/false (depending on message type).

 The MsgParsingLevel parameter (§3.2) – A value of 0 is ~1 msec faster per

message, compared to the default value of 2 (depending on message type).

 The UseParallel parameter (see below) enables query parallelization (faster).

 The Fields parameter in quotes queries (§4.1, §6.1) – fewer fields are faster.

 User-defined callbacks (§10) add their own processing time per message.

 Each active alert (§11) uses 1-2 msecs per message (depending on alert type, and

only for the alert’s corresponding message type). If the alert action is

triggered, then its processing time is added. For example, displaying a popup

message might take 1 sec, and sending an email might take a few seconds.

 Computer capabilities – faster CPU and memory (RAM) enable faster

processing, if your computer has enough physical memory to avoid swapping.

Adding memory is typically much more cost-effective than upgrading the CPU.

This means that without any defined alert or user-specified callback, nor any other

code running in the background (for example, a Matlab data analysis program), we

can expect IQML to process up to 500-1000 IQFeed messages per second by default.

This is a relatively fast throughput, but if you stream real-time quotes for hundreds of

liquid securities concurrently then you might reach this limit. When this happens,

Matlab may be so bogged-down from the flood of incoming messages that it will

become unresponsive, and you may need to restart IQConnect and/or Matlab.

Similarly, if you request a blocking (non-streaming) request with multiple data items

(for example, thousands of historical data or news items), the query may take a while

to process, requiring us to set a higher-than-default Timeout parameter value. For

example, if you issue a blocking request for 20K data bars, IQFeed will send 20K

data messages (one message per bar). If each of these messages takes 1-2 msecs to

process, the total processing time for the IQML query will be 20-40 secs.

When IQFeed is connected, it continuously sends messages to IQML: periodic

“heartbeat” and status messages, and messages for any active streaming quotes or news

events that you requested. These messages are automatically processed by IQML in the

background, reducing the CPU time that is left available to process other IQML queries

(e.g., a blocking historical data query) or Matlab analysis functions. It is therefore

advisable to stop streaming IQFeed data when not needed, even if only temporarily.

18 IQML User Guide

In the Professional IQML license, you can use Matlab’s Parallel Computing Toolbox to

parallelize IQFeed queries. This can be done both externally (placing IQML commands

in parfor/spmd blocks, so that they will run independently), and internally in some IQML

query types (using the UseParallel parameter). If you have the Standard IQML license,

or if you do not have Matlab’s Parallel Computing Toolbox, you can still run

concurrent IQML commands in separate Matlab sessions, just not in the same session.

IQML automatically tries to parallelize queries when the UseParallel parameter value

(default: false) is set to 1 or true. The list of parallelizable queries includes:

 Requests resulting in multiple blocking queries in a single IQML command

(for example, historical data for multiple symbols or a date range – see §5)

 Requests for full news-story of all returned news headlines in a blocking query,

using the GetStory parameter (see §7.2)

 Requests for fundamental/quotes data on all symbols in an options-chain or

futures-chain, using the WhatToShow parameter (see §8.2)

When setting UseParallel to 1 or true, IQML will use parallel Matlab tasks (so-called

‘headless workers’ or ‘labs’) from the currently-active parallel pool created by the Parallel

Computing Toolbox. If no pool is active, the default local pool is automatically started.

IQML parallelization has several performance implications:

 Starting the parallel pool can take some time (a few seconds, up to a minute or

two, depending on configuration). It is therefore best to start the parallel pool

before time-critical operations, to avoid this startup time upon the first parallel

query. Starting the pool can be done using Matlab’s parpool function.

 The default pool uses the same number of workers as the number of physical

cores on your computer. This makes sense for CPU-intensive programs, but

IQML queries are limited by I/O, not CPU. Therefore, unless you also use the

parallel pool for CPU-intensive computations in your program, it makes sense

to start a pool that has more workers than the number of CPU cores. You can

configure your local cluster for this.12 Note that the parallel pool size should

be set to ≤14, since IQFeed limits the number of concurrent connections.13

 In addition to the workers startup time, each worker independently connects to

IQFeed upon the first IQML command it encounters, taking an extra few secs.

 It is only possible to parallelize workers on the local computer, not on other

(distributed) computers in a grid/cluster/cloud. This is due to IQFeed/exchange

limitations, which prohibit distribution of data to other computers.

 Due to parallelization overheads, inter-task memory transfers, and CPU task-

switches (especially in a case of more workers than cores), speedup will always

be smaller than the number of workers. The actual speedup will depend on query

type and computer/OS configuration. Parallelization may even cause slowdown

in some cases (e.g. quote queries, due to waiting for market events, not CPU).

12 https://www.mathworks.com/help/distcomp/discover-clusters-and-use-cluster-profiles.html#f5-16540

13 IQFeed’s actual limit is 15, but one connection is used by the main (non-parallel) Matlab process, in addition to the workers.

https://www.mathworks.com/help/distcomp/discover-clusters-and-use-cluster-profiles.html#f5-16540

19 IQML User Guide

Here is a run-time example showing the effect of using a 4-worker pool to parallelize

a news-story query, resulting in a 3.5x speedup (not 4x, due to parallelization overheads):

>> tic, data = IQML('news', 'DataType','headlines', 'MaxItems',100, ...

 'GetStory',1); toc

Elapsed time is 56.311768 seconds.

>> parpool('local',4) % start 4 workers in parallel pool (optional)

>> tic, data = IQML('news', 'DataType','headlines', 'MaxItems',100, ...

 'GetStory',1, 'UseParallel',1); toc

Elapsed time is 15.799185 seconds.

Also in the Professional IQML license, you can customize the fields reported by

IQFeed for market data. The Fields parameter can be set to a cell-array of strings

({'Bid','Ask','Last'}), or a comma-separated string ('Bid,Ask,Last'). All subsequent

quotes queries, either for the latest snapshot (§4.1) or for streaming quotes (§6.1), will

report just the requested fields. For example:

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields',{'Bid','Ask','Last'})

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Bid,Ask,Last') %equivalent

data =

 Symbol: 'AAPL'

 Bid: 222.71

 Ask: 222.91

 Last: 222.11

Note: the more fields that you request, the longer the required processing time, by both

IQFeed and IQML. By default, IQFeed reports 16 data fields, but ~50 additional

fields can be requested. Requesting fewer fields (as in the example above, which only

requests 3 fields) implies faster run-time processing. To improve run-time

performance and reduce latency, request only those data fields that are actually

required by your program.

20 IQML User Guide

4 Querying the latest market data

4.1 Snapshot (top of book) quotes

We start with a simple example to retrieve the latest market information for Alphabet

Inc. Class C, which trades using the GOOG symbol, using IQML’s 'quotes' action:

>> data = IQML('quotes', 'Symbol','GOOG')

data =

 Symbol: 'GOOG'

 Most_Recent_Trade: 1092.14

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '09:46:31.960276'

 Most_Recent_Trade_Market_Center: 25

 Total_Volume: 113677

 Bid: 1092.13

 Bid_Size: 100

 Ask: 1092.99

 Ask_Size: 100

 Open: 1099.22

 High: 1099.22

 Low: 1092.38

 Close: 1090.93

 Message_Contents: 'Cbaohlc'

 Message_Description: 'Last qualified trade; A bid update

 occurred, An ask update occurred; An open

 declaration occurred; A high declaration

 occurred; A low declaration occurred; A

 close declaration occurred'

 Most_Recent_Trade_Conditions: '3D87'

 Trade_Conditions_Description: 'Intramaket Sweep; Odd lot trade'

 Most_Recent_Market_Name: 'Direct Edge A (EDGA)'

As can be seen, the returned data object is a Matlab struct with self-explanatory fields.14

To access any specific field, use the standard Matlab dot-notation:
>> bidPrice = data.Bid; %=1092.13 in this specific case

If the symbol is not currently trading, some fields return empty values:

>> data = IQML('quotes', 'Symbol','GOOG')

data =

 Symbol: 'GOOG'

 Most_Recent_Trade: 1078.99

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '19:58:47.052099'

 Most_Recent_Trade_Market_Center: 26

 Total_Volume: 0

 Bid: 1077.6

 Bid_Size: 100

 Ask: 1079.89

 Ask_Size: 200

 Open: []

 High: []

 Low: []

 Close: 1078.92

 Message_Contents: 'Cbav'

 Message_Description: 'Last qualified trade; A bid update

 occurred; An ask update occurred;

 A volume update occurred'

 Most_Recent_Trade_Conditions: '0517'

 Trade_Conditions_Description: 'Average Price Trade; Form-T Trade'

 Most_Recent_Market_Name: 'Direct Edge X (EDGX)'

14 The textual Description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2 and §8)

21 IQML User Guide

In this example, the query was sent outside regular trading hours (on Sunday) so Open,

High and Low are empty. As expected, the data indicates this was a “Form-T” trade.

Other fields may sometimes be empty. For example, overnight LIBOR rate (Symbol=

'ONLIB.X') reports empty Bid, Ask, Most_Recent_Trade_Size (and Total_Volume=0).

In rare cases, you might see invalid field values (e.g. 0), which may indicate a data

error. IQML does not modify the data reported by IQFeed, so if you see this problem

consistently for a certain security or exchange, please contact IQFeed’s support.

If you specify an incorrect security name or classification properties, or if you do not

have the necessary market subscription, then no data is returned, and an error

message is displayed (see discussion in §3.4).

>> IQML('quotes', 'Symbol','xyz123')

Symbol 'XYZ123' was not found!

You may request more than a single snapshot quote: To get the next N real-time

quotes, specify the NumOfEvents parameter. The result is an array of structs in the

same format as above (or an empty array if no data is available):15

>> data = IQML('quotes', 'Symbol','IBM', 'NumOfEvents',4)

data =

 4×1 struct array with fields:

 Symbol

 Most_Recent_Trade

 Most_Recent_Trade_Size

 ...

>> data(1)

ans =

 Symbol: 'IBM'

 Most_Recent_Trade: 159.16

 Most_Recent_Trade_Size: 75

 Most_Recent_Trade_Time: '09:36:15.534201'

 Most_Recent_Trade_Market_Center: 24

 Total_Volume: 135267

 ...

Note that it is possible that not all the requested quotes will be received before

IQML’s timeout (default value: 5 secs) returns the results:

>> data = IQML('quotes', 'Symbol','IBM', 'NumOfEvents',4)

Warning: IQML timeout: only partial data is returned: the Timeout parameter

should be set to a value larger than 5

data =

 2×1 struct array with fields:

 Symbol

 Most_Recent_Trade

 Most_Recent_Trade_Size

 ...

To control the maximal duration that IQML will wait for the data, set the Timeout

parameter. For example, to wait up to 60 secs to collect the next 4 upcoming quotes:

>> data = IQML('quotes', 'Symbol','IBM', 'NumOfEvents',4, 'timeout',60);

15 Some older versions of IQML returned a different form struct (the same as that reported by streaming quotes - §6.1). This was

corrected to match the documentation starting in IQML version 2.00.

22 IQML User Guide

You can request quotes for multiple symbols at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

>> data = IQML('quotes', 'symbols',{'IBM','GOOG','AAPL'});

>> data = IQML('quotes', 'symbols','IBM:GOOG:AAPL'); % equivalent

The result will be an array of Matlab structs that correspond to the requested symbols:

data =

 1×3 struct array with fields:

 Symbol

 Most_Recent_Trade

 Most_Recent_Trade_Size

 Most_Recent_Trade_Time

 Most_Recent_Trade_Market_Center

 Total_Volume

 Bid

 ...

>> data(2)

ans =

 struct with fields:

 Symbol: 'GOOG'

 Most_Recent_Trade: 1078.99

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '19:58:47.052099'

 Most_Recent_Trade_Market_Center: 26

 Total_Volume: 0

 Bid: 1077.6

 Bid_Size: 100

 Ask: 1079.89

 Ask_Size: 200

 Open: []

 High: []

 Low: []

 Close: 1078.92

 Message_Contents: 'Cbav'

 Message_Description: 'Last qualified trade; A bid update

 occurred; An ask update occurred;

 A volume update occurred'

 Most_Recent_Trade_Conditions: '0517'

 Trade_Conditions_Description: 'Average Price Trade; Form-T Trade'

 Most_Recent_Market_Name: 'Direct Edge X (EDGX)'

If you have the Professional license of IQML and also Matlab’s Parallel Computing

Toolbox, then setting the UseParallel parameter to true (or 1) will process the quotes

query for all the specified symbols in parallel (see discussion in §3.6). Note that in the

case of quote queries, there is often little or no speedup in parallelization, because the

delay is caused by waiting for market quote events, not due to CPU processing:

>> data = IQML('quotes', 'symbols',{'IBM','GOOG','AAPL'}, 'UseParallel',true);

Note that if you request quotes for a very large number of symbols in a single IQML

command, and especially if you set UseParallel to true, you might run into your IQFeed

account’s symbols-limit (MaxSymbols; see §9.3). In such a case, IQFeed-generated

error messages such as the following will be displayed on the Matlab console:

Warning: Requesting 3258 symbol quotes, which is more than your IQFeed account's

concurrent symbols limit (500) - quotes for some symbols may not be available.

(Type "warning off IQML:MaxSymbols" to suppress this warning.)

Level1 symbol limit reached - symbol 'IBM' not serviced!

23 IQML User Guide

By default, IQFeed reports 16 data fields for each quote: Symbol, Most Recent Trade,

Most Recent Trade Size, Most Recent Trade Time, Most Recent Trade Market

Center, Total Volume, Bid, Bid Size, Ask, Ask Size, Open, High, Low, Close,

Message Contents, and Most Recent Trade Conditions.16

If the Fields parameter is set to an empty value ({} or ''), the current set of fields and the

full list of available fields, are reported (in this case, a Symbol parameter is unnecessary):

>> data = IQML('quotes', 'fields',{})

data =

 CurrentFields: {1×16 cell}

 AvailableFields: {1×68 cell}

>> data.AvailableFields

ans =

 1×68 cell array

 Columns 1 through 5

 {'Symbol'} {'Exchange ID'} {'Last'} {'Change'} {'Percent Change'}

 Columns 6 through 11

 {'Total Volume'} {'High'} {'Low'} {'Bid'} {'Ask'} {'Bid Size'}

 Columns 12 through 17

 {'Ask Size'} {'Tick'} {'Range'} {'Open Interest'} {'Open'} {'Close'}

 Columns 18 through 22

 {'Spread'} {'Settle'} {'Delay'} {'Restricted Code'} {'Net Asset Value'}

 ...

If you have the Professional (or trial) IQML license, you can request IQFeed to report

more than 50 additional data fields, as well as to set the reported fields order, using

the optional Fields parameter, as follows:

We can set Fields to 'All' (or 'all') to request all available data fields in reported quotes:17

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','all')

data =

 Symbol: 'AAPL'

 x7_Day_Yield: []

 Ask: 222.91

 Ask_Change: []

 Ask_Market_Center: 28

 Ask_Size: 100

 Ask_Time: '19:59:42.031900'

 Available_Regions: []

 Average_Maturity: []

 Bid: 222.71

 ...

The field names in the reported Matlab struct are the same as the IQField field names,

except that spaces are replaced by ‘_’ and an ‘x’ is prefixed to fields that start with a

number, in order to create valid Matlab field identifiers (e.g., '7 Day Yield' is

converted into 'x7_Day_Yield').

A complete table of available fields is provided for convenience at the bottom of this

section. If you are uncertain about the meaning of a certain field, or wish to know

16 The additional textual fields Message_Description, Trade_Conditions_Description and Most_Recent_Market_Name are

IQML-generated textual interpretations of the codes in the IQFeed-generated Message_Contents, Trade_Conditions and

Most_Recent_Trade_Market_Center fields, respectively, as governed by the MsgParsingLevel parameter (§3.2).
17 Additional description fields will be generated by IQML for those fields that report value codes (for example, the Fraction

Display Code and Financial Status Indicator fields), as governed by the MsgParsingLevel parameter (§3.2).

24 IQML User Guide

which field reports certain data, please ask your DTN IQFeed representative (after all,

IQML just reports the data as provided by IQFeed).

Some of the reported field values may be empty. For example, AAPL’s

Average_Maturity value is empty since this field is only valid for bonds. Similarly,

EURUSD.FXCM’s Market_Capitalization value is empty because Forex securities

have no market cap. Likewise, Net_Asset_Value is only valid for funds. Delay=[]

indicates a real-time quote, whereas Delay=15 indicates that the quote was delayed 15

minutes by the exchange (presumably because you do not possess a real-time data

subscription for this exchange/security-type).

The Fields parameter can be set to any subset of AvailableFields,18 as either a cell-

array of strings, or as a comma-separated string. In this case, any subsequent quotes

query will report the requested fields, in the specified order. For example:

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields',{'Bid','Ask','Last'})

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Bid,Ask,Last') %equivalent

data =

 Symbol: 'AAPL'

 Bid: 222.71

 Ask: 222.91

 Last: 222.11

The order of the specified Fields indicates the order in which the data fields will be

reported. For example, to change the order of the reported data fields above:

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Last,Ask,Bid')

data =

 Symbol: 'AAPL'

 Last: 222.11

 Ask: 222.91

 Bid: 222.71

Note that the Symbol field is always reported in the first position, regardless of whether

or not it was specified in the Fields list, or of its specified position order in the Fields

list (also note the optional spaces between the comma-separated field names):

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Bid, Ask, Last, Symbol')

data =

 Symbol: 'AAPL'

 Bid: 222.71

 Ask: 222.91

 Last: 222.11

As noted, Fields can be set to any subset of the AvailableFields. If a bad field is

specified (one which is not available in IQFeed), an error message will be displayed:

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Bid, Ask, xyz')

Error using IQML

Bad field 'xyz' was requested in IQML quotes command (check the

capitalization/spelling).

Available fields are: 7 Day Yield, Ask, Ask Change, Ask Market Center, ...

Note: the more fields that you request, the longer the required processing time, by both

IQFeed and IQML. To improve run-time performance and reduce latency, request

only those data fields that are actually needed by your program.

18 AvailableFields is reported by an IQML('quotes','fields',{}) command – see the previous page in this User Guide.

25 IQML User Guide

The following parameters affect quotes data queries:

Parameter Data type Default Description

Symbol or

Symbols 19

colon-
delimited
string, or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

NumEvents integer 1 Returns up to the specified number of quotes

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying multiple

symbols will be done in parallel (see §3.6;

Professional IQML license only).

Fields

comma-

separated

string, or

cell-array

of strings

'Symbol, Most

Recent Trade,

Most Recent Trade

Size, Most Recent

Trade Time, Most

Recent Trade

Market Center,

Total Volume, Bid,

Bid Size, Ask, Ask

Size, Open, High,

Low, Close,

Message Contents,

Most Recent Trade

Conditions'

Sets the list of data fields reported by IQFeed

for each quote. IQFeed’s default set has 16

fields; 50+ additional fields can be specified

(a detailed list of fields is provided below).

If Fields is set to an empty value ({} or ''),

the list of current, available fields is returned.

If Fields is not empty, subsequent quotes

queries will return the specified fields, in

the specified order (Professional IQML

license only). The Symbol field is always

returned first, even if not specified.

Examples:

 {'Bid', 'Ask', 'Last'}

 'Bid, Ask, Last'

 'All' (indicates all available fields)

The full list of available fields in IQFeed is listed below. Note that some of these

fields may not be available, and IQFeed may also add/modify this list at any time.

The list of fields that are actually available cen be retrieved in IQML using the

IQML('quotes','fields',{}) command, as explained above. For details about any of

these fields, please contact your DTN/IQFeed representative (IQML just reports the

data, it has no control over the reported values or definition of the data fields).

19 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

26 IQML User Guide

 Field Name Field Type Description Data origin 20

1 7 Day Yield float Value of a Money Market fund over past 7 days. Exchange/other

2 Ask float Min price a market maker/broker accepts for a security. Exchange/other

3 Ask Change float Change in Ask since last offer. IQConnect

4 Ask Market Center integer Market Center that sent the ask information (see §8.3). Exchange/other

5 Ask Size integer The share size available for the ask price Exchange/other

6 Ask Time hh:mm:ss.ffffff The time of the last ask. Exchange/other

7 Available Regions string Dash-delimited list of available regional exchanges. IQConnect

8 Average Maturity float Average number of days until maturity of a Money

Market Fund’s assets.

Exchange/other

9 Bid float Max price a market maker/broker will pay for a security. Exchange/other

10 Bid Change float Change in Bid since last offer. IQConnect

11 Bid Market Center integer Market Center that sent the bid information (see §8.3). Exchange/other

12 Bid Size integer The share size available for the bid price. Exchange/other

13 Bid Time hh:mm:ss.ffffff The time of the last bid. Exchange/other

14 Change float Today's change (Last - Close) IQConnect

15 Change From Open float Change in last price since last open. IQConnect

16 Close float The closing price of the day. For commodities this will

be the last trade price of the session.

Exchange/other

17 Close Range 1 float For commodities only. Range value for closing trades

that aren’t reported individually.

Exchange/other

18 Close Range 2 float For commodities only. Range value for closing trades

that aren’t reported individually.

Exchange/other

19 Days to Expiration string Number of days to contract expiration. IQConnect

20 Decimal Precision string Last Precision used. DTN

21 Delay integer The number of minutes a quote is delayed when not

authorized for real-time data.

Exchange/other

22 Exchange ID hexidecimal The Exchange Group ID. DTN

23 Extended Trade float Price of the most recent extended trade (last qualified

trades + Form T trades).

Exchange/other

24 Extended Trade

Date

MM/DD/CCYY Date of the extended trade. Exchange/other

25 Extended Trade

Market Center

integer Market Center of the most recent extended trade (last

qualified trades + Form T trades); see §8.3.

Exchange/other

26 Extended Trade

Size

integer Size of the most recent extended trade (last qualified

trades + Form T trades).

Exchange/other

27 Extended Trade

Time

hh:mm:ss.ffffff Time (including microseconds) of the most recent

extended trade (last qualified trades + Form T trades).

Exchange/other

28 Extended Trading

Change

float Extended Trade minus Yesterday's close. IQConnect

29 Extended Trading

Difference

float Extended Trade minus Last. IQConnect

30 Financial Status

Indicator

char Denotes if an issuer has failed to submit its regulatory

filings on a timely basis, has failed to meet the

exchange's continuing listing standards and/or filed for

bankruptcy. A corresponding description field will be

generated by IQML for this field when

MsgParsingLevel ≥ 2 (see §3.2)

Exchange/other

20 In this table, “exchange/other” means either the exchange, or some other 3rd-party that provides data to DTN/IQFeed.

27 IQML User Guide

 Field Name Field Type Description Data origin 20

31 Fraction Display

Code

string Display formatting code. A corresponding description

field will be generated by IQML for this field when

MsgParsingLevel ≥ 2 (see §3.2)

DTN

32 High float Today's highest trade price. Exchange/other

33 Last float Last trade price from the regular trading session. Exchange/other

34 Last Date MM/DD/CCYY Date of the last qualified trade. Exchange/other

35 Last Market Center integer Market Center of most recent last qualified trade. Exchange/other

36 Last Size integer Size of the most recent last qualified trade. Exchange/other

37 Last Time hh:mm:ss.ffffff Time (including microseconds) of the most recent last

qualified trade.

Exchange/other

38 Last Trade Date MM/DD/YYYY Date of last trade. Exchange/other

39 Low float Today's lowest trade price. Exchange/other

40 Market

Capitalization

float Real-time calculated market cap (Last price * Common

Shares Outstanding).

IQConnect

41 Market Open integer 1 = market open, 0 = market closed.

Note: valid for Futures and Future Options only.

DTN

42 Message Contents non-delimited

string of single

character

message

identification

codes

Possible single character values include:

 C - Last Qualified Trade.

 E - Extended Trade = Form T trade.

 O - Other Trade = Any trade not

 accounted for by C or E.

 b - A bid update occurred.

 a - An ask update occurred.

 o - An Open occurred.

 h - A High occurred.

 l - A Low occurred.

 c - A Close occurred.

 s - A Settlement occurred.

 v - A volume update occurred.

Notes: you can get multiple codes in a single message

but you will only get one trade identifier per message.

It is also possible to receive no codes in a message if

the fields that updated were not trade or quote related.

A corresponding description field is generated by IQML

for this field when MsgParsingLevel ≥ 2 (see §3.2)

IQConnect

43 Most Recent Trade float Price of most recent trade (inc. non-last-qualified trades). Exchange/other

44 Most Recent Trade

Conditions

string of 2digit

hex numbers.

Conditions that identify the type of most recent trade. A

corresponding description field is generated by IQML for

this field when MsgParsingLevel ≥ 2 (see §3.2, §8.7)

Exchange/other

45 Most Recent Trade

Date

MM/DD/CCYY Date of most recent trade. Exchange/other

46 Most Recent Trade

Market Center

integer Market Center of most recent trade. A corresponding

description field will be generated by IQML for this

field when MsgParsingLevel ≥ 2 (see §3.2, §8.3)

Exchange/other

47 Most Recent Trade

Size

integer Size of most recent trade. Exchange/other

48 Most Recent Trade

Time

hh:mm:ss.ffffff Time (including microseconds) of most recent trade. Exchange/other

49 Net Asset Value float The market value of a mutual fund share. Equal to net

assets / total number of shares outstanding. Duplicates

the Bid field. Valid for Mutual Funds only.

Exchange/other

50 Number of Trades

Today

integer The number of trades for the current day. IQConnect/DTN

28 IQML User Guide

 Field Name Field Type Description Data origin 20

51 Open float The opening price of the day. For commodities this will

be the first trade of the session.

Exchange/other

52 Open Interest integer IEOptions, Futures, FutureOptions, SSFutures only. Exchange/other

53 Open Range 1 float For commodities only. Range value for opening trades

that aren’t reported individually.

Exchange/other

54 Open Range 2 float For commodities only. Range value for opening trades

that aren’t reported individually.

Exchange/other

55 Percent Change float = Change / Close IQConnect

56 Percent Off

Average Volume

float Current Total Volume / Average Volume IQConnect

57 Previous Day

Volume

integer Previous Day's Volume. Exchange/other

58 Price-Earnings

Ratio

float Real-time calculated PE (Last / Earnings Per Share). IQConnect

59 Range float Trading range for the current day (high - low) IQConnect

60 Restricted Code string "N"=Short Sale is not restricted, "R"=Restricted. Exchange/other

61 Settle float Settle price (Futures or FutureOptions only). Exchange/other

62 Settlement Date MM/DD/YYYY The date that the Settle field is valid for. Exchange/other

63 Spread float The difference between Bid and Ask prices. IQConnect

64 Symbol string The symbol name of the security IQConnect

65 Tick integer 173=Up, 175=Down, 183=No Change. Based on the

previous trade. Only valid for Last qualified trades.

IQConnect

66 TickID integer Identifier for tick (not necessarily sequential). DTN

67 Total Volume integer Today's cumulative volume in number of shares. IQConnect, DTN

or exchange

68 Type string “Q”=Update message, “P”=Summary Message. IQConnect

69 Volatility float Real-time calculated volatility: (High - Low) / Last. IQConnect

70 VWAP float Volume Weighted Average Price. IQConnect/DTN

29 IQML User Guide

4.2 Fundamental information

Fundamental data on a symbol can be fetched using a 'fundamental' action, as follows:
>> data = IQML('fundamental', 'symbols','IBM')

data =

 Symbol: 'IBM'

 Exchange_ID: 7

 PE: 25.7

 Average_Volume: 4588000

 x52_Week_High: 180.95

 x52_Week_Low: 139.13

 Calendar_Year_High: 171.13

 Calendar_Year_Low: 144.395

 Dividend_Yield: 3.79

 Dividend_Amount: 1.5

 Dividend_Rate: 6

 Pay_Date: '03/10/2018'

 Ex_dividend_Date: '02/08/2018'

 Short_Interest: 17484332

 Current_Year_EPS: 6.17

 Next_Year_EPS: []

 Five_year_Growth_Percentage: -0.16

 Fiscal_Year_End: 12

 Company_Name: 'INTERNATIONAL BUSINESS MACHINE'

 Root_Option_Symbol: 'IBM'

 Percent_Held_By_Institutions: 59.9

 Beta: 1.05

 Leaps: []

 Current_Assets: 49735

 Current_Liabilities: 37363

 Balance_Sheet_Date: '12/31/2017'

 Long_term_Debt: 39837

 Common_Shares_Outstanding: 921168

 Split_Factor_1: '0.50 05/27/1999'

 Split_Factor_2: '0.50 05/28/1997'

 Market_Center: []

 Format_Code: 14

 Precision: 4

 SIC: 7373

 Historical_Volatility: 25.79

 Security_Type: 1

 Listed_Market: 7

 x52_Week_High_Date: '03/08/2017'

 x52_Week_Low_Date: '08/21/2017'

 Calendar_Year_High_Date: '01/18/2018'

 Calendar_Year_Low_Date: '02/09/2018'

 Year_End_Close: 153.42

 Maturity_Date: []

 Coupon_Rate: []

 Expiration_Date: []

 Strike_Price: []

 NAICS: 541512

 Exchange_Root: []

 Option_Premium_Multiplier: []

 Option_Multiple_Deliverable: []

 Price_Format_Description: 'Four decimal places'

 Exchange_Description: 'New York Stock Exchange (NYSE)'

 Security_Type_Description: 'Equity'

 SIC_Description: 'COMPUTER INTEGRATED SYSTEMS DESIGN'

 NAICS_Description: 'Computer Systems Design Services'

Note that the naming, interpretation and order of returned data fields is controlled by

IQFeed, not IQML – DTN might change these fields in the future.

30 IQML User Guide

Also note that the inclusion of the *_Description fields (Price_Format_Description,

Exchange_Description, etc.) depends on the MsgParsingLevel parameter having

value of 2 or higher (see §3.2 for details). When MsgParsingLevel is 1 or 0, these

fields will not be part of the returned data struct.

It is possible to fetch fundamental data of multiple symbols in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols:

>> data = IQML('fundamental', 'symbols','AAPL:GOOG') %or: {'AAPL','GOOG'}

data =

 1×2 struct array with fields:

 Symbol

 Exchange_ID

 PE

 Average_Volume

 ...

>> data(1)

ans =

 Symbol: 'AAPL'

 Exchange_ID: 5

 PE: 20.4

 Average_Volume: 26900000

 x52_Week_High: 228.87

 x52_Week_Low: 149.16

 Calendar_Year_High: 228.87

 Calendar_Year_Low: 150.24

 ...

>> data(2)

ans =

 Symbol: 'GOOG'

 Exchange_ID: 5

 PE: 51.9

 Average_Volume: 1239000

 x52_Week_High: 1273.89

 x52_Week_Low: 909.7

 Calendar_Year_High: 1273.89

 Calendar_Year_Low: 980.64

 ...

31 IQML User Guide

4.3 Interval bars

Interval bars data for one or more symbols can be fetched using the 'intervalbars' action.

For example, to fetch the latest 60-second interval bar for the current E-Mini contract:

>> data = IQML('intervalbars', 'Symbol','@ES#')

data =

 Symbol: '@ES#'

 BarType: 'Complete interval bar from history'

 Timestamp: '2018-09-05 12:57:00'

 Open: 2887.75

 High: 2888.25

 Low: 2887.5

 Close: 2888.25

 CummlativeVolume: 1117565

 IntervalVolume: 913

 NumberOfTrades: 0

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 BarType – typically ‘Complete interval bar from history’, but in some cases

might be ‘Complete interval bar from stream’ or ‘Updated interval bar’.

 Timestamp – server timestamp (string format) for this interval bar. The

timestamp is of the end of the bar, not the beginning.

 Open – price at the start of this interval bar.

 High – highest price during this interval bar.

 Low – lowest price during this interval bar.

 Close – price at the end of this interval bar.

 CummlativeVolume – total trade volume since start of the current trading day.

 IntervalVolume – trade volume during this interval bar.

 NumberOfTrades – number of trades during this interval bar. Relevant only

when IntervalType is set to 'ticks'/'trades'.

The IntervalType (default: 'secs') and IntervalSize (default: 60) parameters should

typically be specified together. Note that IntervalSize must be a positive integer

value (i.e. its value cannot be 4.5 or 0). If IntervalType is 'ticks'/'trades', IntervalSize

must be 2 or higher. If IntervalType is 'volume', IntervalSize must be 100 or higher.

If IntervalType is 'secs', IntervalSize must be any integer between 1-300 (5 minutes),

or any multiple of 60 (1 minute) between 300-3600 (1 hour), or 7200 (2 hours).21

We can ask for multiple bars by setting NumOfEvents or MaxItems to a positive integer,

resulting in an array of structs in the format above (empty array if no data is available):

>> data = IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',4)

data =

 4×1 struct array with fields:

 Symbol

 BarType

 ...

21 Note that IQFeed’s limitations on live 'secs' interval bars are stricter than the limitations on historical interval bars (§5.4):

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

32 IQML User Guide

>> data(1)

ans =

 Symbol: '@VX#'

 BarType: 'Complete interval bar from history'

 Timestamp: '2018-09-05 12:36:00'

 Open: 14.45

 High: 14.5

 Low: 14.45

 Close: 14.45

 CummlativeVolume: 57077

 IntervalVolume: 17

 NumberOfTrades: 0

IQFeed only returns interval bars that had market ‘action’. Other bars are not sent

from IQFeed – they will appear in IQML’s returned data as gaps in the Timestamp.

Also note that it is possible that not all the requested bars will be received before

IQML’s timeout (default value: 5 secs) returns the results:
>> data = IQML('intervalbars', 'Symbol','IBM', 'NumOfEvents',4)

Warning: IQML timeout: only partial data is returned: the Timeout parameter

should be set to a value larger than 5

data =

 2×1 struct array with fields:

 Symbol

 BarType

 ...

To control the maximal duration that IQML will wait for the data, set the Timeout

parameter. For example, to wait up to 60 secs to collect 4 bars:
>> data = IQML('intervalbars', 'Symbol','IBM', 'NumOfEvents',4, 'timeout',60);

Interval bars query fetches historical bars data, starting from the date/time that is set by

the BeginDateTime parameter (see the parameters table below). This is similar to

(and subject to the same limitations as) fetching historical interval data (see §5.4), but

with no specified end point. IQML will return both the historical bars, as well as new

(live) real-time streaming interval bars, as they become available. BeginDateTime’s

default value is 00:00:00 today (server time), so you will almost always get historical

bars before live streaming bars. If you run the query at mid-day, you may get hundreds

of historical bars before you get the first live streaming bar. So, if you set NumOfEvents

to a low value, you might receive only historical bars, without any live streaming bars.

Unlike quotes (§4.1), when you specify NumOfEvents > 1, IQML does not wait for

new bars to arrive; instead, it returns previous (historic) bars, as long as this does not

conflict with the specified BeginDateTime. For example, if you set NumOfEvents=5,

you will receive the latest 5 bars: 4 complete historic bars, as well as the current

(incomplete) bar. If you require live (future) interval bars, then set BeginDateTime,

or use the streaming mechanism that is described in §6.3. For example, if you set

BeginDateTime to 5 bars ago and NumOfEvents=15, then IQFeed will return the 5

historic bars and wait for 10 additional future bars (subject to the specified Timeout).

Additional data filtering parameters: MaxDays, BeginFilterTime and EndFilterTime.

You can query multiple symbols at the same time, in a single IQML command, by

specifying a colon-delimited or cell-array list of symbols. For example:
>> data = IQML('intervalbars', 'symbols',{'IBM','GOOG','AAPL'});

>> data = IQML('intervalbars', 'symbols','IBM:GOOG:AAPL'); % equivalent

33 IQML User Guide

The following parameters affect interval bars data queries:

Parameter Data type Default Description

Symbol or

Symbols 22

colon-

delimited

string or

cell-array

of strings

(none)

Limits the request to the specified

symbol(s). Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid
symbol name(s) when NumOfEvents>0

NumOfEvents integer Inf

One of:

 inf – continuous endless streaming

interval bars for specified symbol(s)

 N>1 – stream only N interval bars

 1 – get only a single interval bar

 0 – stop streaming interval bars

 -1 – return latest interval bars data

while continuing to stream new bars

MaxItems integer 100
Returns up to the specified number of

bars (if available).

MaxDays integer 1 Max number of trading days to retrieve

IntervalType string 'secs'

Sets the type of interval size. One of the
following values:
 's' or 'secs' – time [seconds] (default)
 'v' or 'volume' – traded volume

 't' or 'ticks' – number of ticks

IntervalSize integer 60
Size of bars in IntervalType units. Must be

≥1 for secs, ≥2 for ticks, ≥100 for volume.

BeginFilterTime string '00:00:00'

Only return bars that begin after this time

of day (US Eastern time-zone).

Format: ‘hhmm’, ‘hh:mm’, ‘hhmmss’ or

‘hh:mm:ss’.

EndFilterTime string '23:59:59'

Only return bars that end before this time

of day (US Eastern time-zone).

Format: ‘hhmm’, ‘hh:mm’, ‘hhmmss’ or

‘hh:mm:ss’.

BeginDateTime

integer or

string or

datetime
object

''

(empty string)

meaning today

at 00:00:00

Only return bars that begin after this

date/time (US Eastern time-zone).

Format: Matlab datenum, ‘yyyymmdd

hhmmss’ or ‘yyyy-mm-dd hh:mm:ss’.

Timeout number 5.0
Max number of seconds to wait (0-9000)
for data in blocking mode (0 means infinite)

22 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

34 IQML User Guide

4.4 Market depth (Level 2)

Market depth data on a symbol can be fetched using a 'marketdepth' action.

Each incoming market depth message gives information on a single market depth

row. The messages from IQFeed are not sorted by their market depth row; they arrive

at a random, unpredicted order. This is true for the initial market-depth table report,

as well as for row updates, depending on when the corresponding traders update their

bid/ask. The NumOfEvents input parameter, which specifies how many incoming

messages from IQFeed to process, should be set to at least the total number of market

depth rows, in order to get data for all market depth rows.

>> data = IQML('marketdepth', 'symbol','@ES#', 'NumOfEvents',50)

data =

 10×1 struct array with fields:

 Symbol

 Bid

 Ask

 BidSize

 AskSize

 ...

The latest data (i.e., state of the market-depth table) is returned as a Matlab struct array,

whose elements correspond to the market-depth rows. For example, to see the data for

row #3 (i.e., 2 rows below the top-of-book row), you can access array element #3:

>> data(3)

ans =

 Symbol: '@ES#'

 Bid: 2723.75

 Ask: 2725

 BidSize: 102

 AskSize: 154

 BidTime: '07:26:08.060172'

 Date: '2018-05-15'

 AskTime: '07:26:12.948046'

 BidInfoValid: 1

 AskInfoValid: 1

 Condition: 52

 Condition_Description: 'regular'

BidInfoValid and AskInfoValid values are logical (true/false) values, which appear

as 1 or 0, respectively, in the struct display above.

If your IQFeed account is not authorized for Level 2 data, you will see the following

warning message in the Matlab console upon the initial connection to IQFeed

(IQML’s first request) – note that this is only an informational message, not an error:

Account not authorized for Level II

If your IQFeed account is authorized for Level 2 data but not for a certain exchange, you

will receive an error message when requesting market depth info from that exchange:

>> data = IQML('marketdepth', 'Symbol','IBM') % not subscribed to NYSE L2

Error using IQML

Symbol 'IBM' was not found!

Note: Market Depth (Level 2) data is only available in the Professional IQML license.

35 IQML User Guide

4.5 Greeks, fair value, and implied volatility

Extra data can be fetched (calculated) for asset options using the 'greeks' action:

 Greeks (Delta, Vega, Theta, Rho, Gamma etc.)

 Fair value for the derivative and the difference vs. actual trading price

 Implied volatility based on the fair vs. trading prices

>> data = IQML('greeks', 'symbol','IBM1814L116')

data =

 Symbol: 'IBM1814L116'

 Asset_Name: 'IBM DEC 2018 C 116.00'

 Strike_Price: 116

 Expiration_Date: '12/14/2018'

 Days_To_Expiration: 30

 Inferred_Asset_Side: 'Call'

 Underlying_Symbol: 'IBM'

 Underlying_Spot: 121.3

 Underlying_Historic_Volatility: 37.1

 Assumed_Risk_Free_Rate: 0

 Assumed_Dividend_Yield: 0

 Asset_Fair_Value: 8.1193

 Asset_Latest_Price: 7.05

 Asset_Price_Diff: 1.0693

 Implied_Volatility: 0.28242

 Delta: 0.68197

 Vega: 0.12404

 Theta: -0.076697

 Rho: 6.1318

 CRho: 6.7992

 Omega: 10.189

 Lambda: 10.189

 Gamma: 0.027646

 Vanna: -0.3527

 Charm: 0.0021809

 Vomma: 5.8043

 Veta: 2.4262

 Speed: -0.0012419

 Zomma: -0.061581

 Color: -0.00038078

 Ultima: -45.238

 Annual_Factor_Used: 365

 This_Asset_Latest_Quote: [1×1 struct]

 Underlying_Latest_Quote: [1×1 struct]

 This_Asset_Fundamentals: [1×1 struct]

 Underlying_Fundamentals: [1×1 struct]

The results are reported in a Matlab struct: the first few fields provide basic information

on the derivative asset and its underlying security, followed by fair-value information,

implied volatility and a list of Greek values. Finally, four sub-structs are included to

provide direct access to the asset’s and the underlying’s latest quotes (§4.1) and

fundamenta data (§4.2, for example, data.Underlying_Fundamentals.Average_Volume).

You can request quotes for multiple symbols at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

>> data = IQML('greeks', 'symbols',{'IBM1814L116','IBM1814X116'});

>> data = IQML('greeks', 'symbols','IBM1814L116:IBM1814X116'); % equivalent

36 IQML User Guide

The result will be an array of Matlab structs that correspond to the requested symbols:

data =

 2×1 struct array with fields:

 Symbol

 Asset_Name

 Strike_Price

 ...

If you have Matlab’s Parallel Computing Toolbox, setting the UseParallel parameter

to true (or 1) will process the Greeks query for all the specified symbols in parallel

(see discussion in §3.6):

>> data = IQML('greeks', 'symbols',{'IBM1814L116','IBM1814X116'}, ...

 'UseParallel',true);

Notes:

1. Greeks and related derivative data (the the 'greeks' action in general) is only

available in the Professional IQML (or trial) license.

2. The values are NOT provided by IQFeed but rather computed by IQML on

your local computer. This means that the values do NOT have DTN IQFeed’s

official approval. It also means there is a performance impact: The calculation

and required data fetches for each query may take up to 0.3-1 secs, depending

on your CPU, IQFeed round-trip latency, and the specific option parameters.

3. The calculations assume vanilla European-style options using Black-Scholes-

Merton’s model.23
 Using IQML’s calculations with other derivatives (American/

Asian/barrier/exotic options etc.) may result in incorrect/misleading values.

4. There are various possible ways to estimate Implied Volatility from the option’s

trading price and fair value. IQML uses a standard Newton-Raphson iterative

approximation method; other methods may result in slightly different values.

5. In some cases, some fields may contain obviously-bad values. For example,

the Implied_Volatility field may contain –Inf or +Inf when the Newton

algorithm fails to converge to a valid value. Likewise, some Greeks may

contain a value of NaN in certain cases (for example, a contract that is so far

out-of-the-money that it has no trading price).

6. Some of the Greeks are also known by other names. For example, Vega is

reported as Kappa by some authors; some sources refer to Vomma as Volga or

vega convexity; Omega is sometimes called Lambda or elasticity; Charm is

also known as delta decay, and Color as gamma decay.

7. Various sources/systems calculate Greeks in different manners. For example,

the reported Vega, Rho, Veta and Ultima values are sometimes divided by 100

(IQML does not); Theta, Charm, Veta and Color are sometimes annualized

and sometimes divided by some representative number of days per year

(365/364/360/253/252) to provide 1-day estimates (this factor is customizable

in IQML, 365 by default).24 The foreign rate/dividends yield is ignored by

some sources and included by others in the calculations. Some sources report

the Color as the positive rate of change of Gamma relative to maturity time,

23 Support for American options is planned in a future release of IQML; there are no current plans to support Asian/exotic options.
24 For example, Matlab’s Financial Toolbox, NAG and Maple report annualized values; to get corresponding values in IQML, set

the AnnualFactor parameter to 1.

37 IQML User Guide

and others report them as the negative rate of change.25 In addition, some

sources apparently have buggy math implementations.26 The result is that

different sources provide different Greek values for the very same inputs.

IQML’s values are basically identical to those of Matlab’s Financial Toolbox,

NAG and Maple.27 Unfortunately, IQFeed’s standalone Option Chains utility

reports different values. IQML adheres to the core math formulae28 and we

believe that IQML provides accurate results. However, the discrepancy

between the values reported by different systems means that you must carefully

ensure that IQML’s reported values fit your needs and expectations.

The following Greek values are reported by IQML:

Field Symbol
Derivative

order
Definition Description

Delta Δ 1 ∂V/∂S
Sensitivity of fair value to changes in the

underlying asset’s spot price

Vega ν 1 ∂V/∂σ
Sensitivity of fair value to changes in the

underlying asset’s volatility

Theta Θ 1 -∂V/∂τ Sensitivity of fair value to maturity time

Rho ρ 1 ∂V/∂r Sensitivity of fair value to risk-free rate

CRho 1 ∂V/∂b Sensitivity of fair value to the cary-rate

Omega,

Lambda

Ω

λ
1 Δ × S/V

% change in fair value to a 1% change in the

underlying asset’s price (these are synonym

fields, both are reported for convenience)

Gamma Γ 2 ∂Δ/∂S
Sensitivity of Delta to changes in the

underlying asset’s spot price

Vanna - 2 ∂Δ/∂σ
Sensitivity of Delta to changes in the

underlying asset’s volatility

Charm - 2 -∂Δ/∂τ Sensitivity of Delta to maturity time

Vomma - 2 ∂ν/∂σ
Sensitivity of Vega to changes in the

underlying asset’s volatility

Veta - 2 ∂ν/∂τ Sensitivity of Vega to the maturity time

Speed - 3 ∂Γ/∂S
Sensitivity of Gamma to changes in the

underlying asset’s spot price

Zomma - 3 ∂Γ/∂σ
Sensitivity of Gamma to changes in the

underlying asset’s volatility

Color - 3 ∂Γ/∂τ Sensitivity of Gamma to maturity time

Ultima - 3 ∂3V/∂σ3
Sensitivity of Vomma to changes in the

underlying asset’s volatility

25 For example, the reported Color value is negative in NAG compared to IQML and Maple.

26 This does not imply that there are no calculation bugs in IQML’s implementation. The Greeks calculation is not trivial.

27 Excluding a few quirks, such as a negative Color value reported by NAG, or Maple’s Lambda calculation, or the default
AnnualFactor of 1 used by both. Also compare the very similar values reported by the online calculator http://option-price.com

28 John Hull, Options, Futures, and Other Derivatives (ISBN 9780134472089); https://en.wikipedia.org/wiki/Greeks_(finance)

http://option-price.com/
https://en.wikipedia.org/wiki/Greeks_(finance)

38 IQML User Guide

By default, IQML uses the derivative’s fundamental data and default 0% rates in its

calculations. You can override these defaults using the following optional parameters:

 UnderlyingSymbol – this is the Asset_Name’s first string token by default. For

example, for IBM1814L116, Asset_Name='IBM DEC 2018 C 116.00' so

Underlying_Symbol is set to 'IBM'. This value can be overrriden using the

UnderlyingSymbol parameter. For example, you might wish to specify that

the underlying symbol for Greeks computation of GOOG1816K1000 is not

the default 'GOOG' (Alphabet Inc Class C), but rather 'GOOGL' (Class A).

 HistoricVolatility – this is usually reported by IQFeed in the underlying

asset’s fundamental data (data.Underlying_Fundamentals.Historical_Volatility)

and is used in IQML by default. Instead of this reported value, you can specify

another value (for example, the S&P 500 volatility), as a fixed percent value.

 RiskFreeRate – this is the domestic risk-free rate. IQML uses 0% by default; you

can specify any other fixed percentage rate (based on e.g. LIBOR29 or T-bill30).

 DividendsYield – this is the underlying’s dividend yield, assumed by IQML

to be 0% by default; you can specify any other fixed percentage value. In the

context of Forex currencies, this value may represent the foreign risk-free rate.

 Side – by default, the option side ('Call' or 'Put') is determined by IQML from

the derivative contract’s name. You can override this for contracts that have

non-standard names that IQML cannot properly analyze.

 DaysToExpiration – by default, IQML determines the number of days until

contract expiration (maturity) based on the contract’s reported Expiration_Date.

This maturity time can be overridden to any positive value. Note that the value

is specified in days, not years.

 AnnualFactor – by default, IQML normalizes the reported Theta, Charm,

Veta and Color values by dividing the computed annualized value by 365 in

order to provide 1-day estimates. You can override this scaling factor to any

positive number. Setting a value of 1 provides annualized results (i.e., not 1-

day estimates), as reported by Matlab’s Financial Toolbox, NAG and Maple.

For example:

>> data = IQML('greeks', 'symbol','IBM1814L116', 'UnderlyingSymbol','IBM', ...

 'Duration',13.7, 'RiskFreeRate',2.5, 'DividendsYield',3.2)

29 You can query the current LIBOR rate with IQML, for example using symbol ONLIB.X (overnight rate), 1MLIB.X (1 month),

3MLIB.X (3 months), or 1YLIB.X (1 year). Additional durations are also available

(http://iqfeed.net/symbolguide/index.cfm?pick=indexRATES&guide=mktindices), but a 1-month rate is often used even for

shorter or longer option durations, for consistency. Also see http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387.
30 You can query the current T-bill rate with IQML, for example using symbol TB30.X (30-day rate), IRX.XO (91 days),

TB180.X (180 days), or 1YCMY.X (1 year). Also see http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387.

http://iqfeed.net/symbolguide/index.cfm?pick=indexRATES&guide=mktindices
http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387
http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387

39 IQML User Guide

The following parameters affect Greeks data queries:

Parameter Data type Default Description

Symbol or

Symbols 31

colon-
delimited
string, or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 'GOOG1816K1000'

 'IBM1814L116:GOOG1816K1000'

 {'IBM1814L116', 'GOOG1816K1000'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying multiple

symbols will be done in parallel (see §3.6).

Underlying

Symbol
string

'' (which means it’s

taken from the

contract’s name)

Symbol of the derivative’s underlying asset

HistoricVol

atility
number

-1 (which means

it’s taken from the

underlying asset’s

reported value)

Value that represents the underlying’s price

volatility (in percent). 1.0 means 1%;

-1 means a dynamic value based on the

underlying asset’s reported historic volatility.

RiskFreeR

ate
number 0.0

Domestic risk-free rate

Specified in percent; 1.0 means 1%.

DividendsY

ield
number 0.0

Underlying’s dividends yield (for stocks) or

foreign risk-free rate (for currencies).

Specified in percent; 1.0 means 1%.

Side string

''

(which means it’s

taken from the

contract’s name)

Either 'Call' or 'Put'

DaysToExp

iration
number

-1 (which means

it’s taken from the

contract’s

expiration date)

Number of days until the contract expires

(matures)

AnnualFac

tor
number 365

The computed Theta, Charm, Veta and

Color values are divided by this factor

before being reported.

Note: The Greeks functionality is only available in the Professional IQML license.

31 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

40 IQML User Guide

5 Historical and intra-day data

Historical data can be retrieved via the 'history' action, subject to your account

subscription rights, and IQFeed’s pacing limitations. Several data-types are available,

which can be set using the DataType parameter (default: 'day').32

5.1 Daily data

To retrieve historic daily data bars, set DataType to 'd' or 'day' (or just leave this

parameter out, since 'day' is the default data type), and set the asset’s Symbol:
>> data = IQML('history', 'symbol','IBM');

>> data = IQML('history', 'symbol','IBM', 'dataType','day') %equivalent

data =

 100×1 struct array with fields:

 Symbol

 Datestamp

 Datenum

 High

 Low

 Open

 Close

 PeriodVolume

 OpenInterest

We received an array of Matlab structs containing daily bars, one per each of the last

N trading days (excluding the currently-trading bar). By default, we receive up to

N=100 data bars, ordered from oldest to newest. In the example above, we ran the

query on March 6, 2018 so we received daily data from 2017-10-10 until 2018-03-05:
>> data(1)

ans =

 Symbol: 'IBM'

 Datestamp: '2017-10-10'

 Datenum: 736978

 High: 148.95

 Low: 147.65

 Open: 147.71

 Close: 148.5

 PeriodVolume: 4032601

 OpenInterest: 0

>> data(end)

ans =

 Symbol: 'IBM'

 Datestamp: '2018-03-05'

 Datenum: 737124

 High: 157.49

 Low: 153.75

 Open: 154.12

 Close: 156.95

 PeriodVolume: 3670630

 OpenInterest: 0

You can aggregate the numeric values into Matlab arrays as follows:
dates = {data.Datestamp}; % cell-array of strings

closes = [data.Close]; % array of numeric values

You can then use these arrays for vectorized processing, plotting etc. For example:
dates2 = datetime(dates); % array of datetime objects

[maxVal, maxIdx] = max(closes); % maximal value and location index

[minVal, minIdx] = min(closes); % minimal value and location index

32 http://iqfeed.net/dev/api/docs/HistoricalviaTCPIP.cfm

http://iqfeed.net/dev/api/docs/HistoricalviaTCPIP.cfm

41 IQML User Guide

plot(dates2, closes); hold on;

plot(dates2(maxIdx), maxVal, '^g'); % maximal data point – green ▲

plot(dates2(minIdx), minVal, 'vr'); % minimal data point – red ▼

You can change the order at which the data bars are reported, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest):
>> data = IQML('history', 'symbol','IBM', 'dataDirection',-1);

>> data(1)

ans =

 Symbol: 'IBM'

 Datestamp: '2018-03-05'

 Datenum: 737124

 High: 157.49

 Low: 153.75

 Open: 154.12

 Close: 156.95

 PeriodVolume: 3670630

 OpenInterest: 0

It is possible that there may be fewer than N=100 daily bars for an asset. For example,

the symbol @EMF19 (1-month Euro-Dollar Jan 2019 future on CME) started trading

on 2018-01-12, so we only get 35 daily bars when we run the query on 2018-03-06:
>> data = IQML('history', 'symbol','@EMF19');

data =

 35×1 struct array with fields:

 Symbol

 ...

You can ask IQFeed to limit the maximal number of data bars (N) using the

MaxItems parameter:
>> data = IQML('history', 'symbol','IBM', 'maxItems',20)

data =

 20×1 struct array with fields:

 Symbol

 ...

In this example, data(1).Datestamp='2018-02-05', i.e. 20 trading days ago.

Note that the MaxItems parameter only has an effect if the additional data bars

actually exist. In other words, it controls the maximum number of returned data bars –

the actual number of bars may be less than this value.33

33 For example, IQFeed’s trial account is limited to 1-year of daily data points; IQFeed automatically trims trial-account queries

down to this limit: http://forums.dtn.com/index.cfm?page=topic&topicID=5535

http://forums.dtn.com/index.cfm?page=topic&topicID=5535

42 IQML User Guide

When the number of data bars that IQFeed sends is very large, it could take a while

for the information to be sent. In such a case, IQML might time-out on the request and

return only partial data. Such a case is detected and reported by IQML:
>> data = IQML('history', 'symbol','IBM', 'maxItems',-1)

Warning: IQML timeout: only partial data is returned: the Timeout parameter

should be set to a value larger than 5

data =

 1274×1 struct array with fields:

 Symbol

 ...

As suggested by the message, you can set the Timeout parameter to a high value in

order to allow IQML more time to gather the data before returning the results:
>> data = IQML('history', 'symbol','IBM', 'maxItems',-1, 'timeout',60) %oldest:1/2/96

data =

 5577×1 struct array with fields:

 Symbol

 ...

You can also specify a BeginDate/EndDate interval for the returned data. Dates can be

specified in several formats: numeric Matlab datenum (737089), Matlab datetime

object, numeric yyyymmdd (20180129), string ('2018/01/29', '2018-01-29', '20180129').

Note that MaxItems takes precedence over BeginDate, regardless of DataDirection.

For example, if MaxItems=5, you will only get the 5 latest bars, for any BeginDate.

You can request historical data for multiple symbols at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):
data =

 20×3 struct array with fields:

 Symbol

 ...

>> data(1,2) % 2nd index (column) is the symbol; GOOG data is in data(:,2)

ans =

 struct with fields:

 Symbol: 'GOOG'

 Datestamp: '2018-07-10'

 Datenum: 737251

 High: 1159.59

 Low: 1149.59

 Open: 1156.98

 Close: 1152.84

 PeriodVolume: 798412

 OpenInterest: 0

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:
data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

43 IQML User Guide

IQML queries for multiple symbols or dates (if BeginDate and EndDate are specified)

can be parallelized using the UseParallel parameter, if you have a Professional IQML

license and Matlab’s Parallel Computing Toolbox (§3.6):

>> data = IQML('history', 'UseParallel',true, 'symbol',symbols) %multi-symbols

>> data = IQML('history', 'UseParallel',true, 'symbol','IBM',...

 'BeginDate',19900102, 'EndDate',20181028) %date range

The following parameters affect daily history data queries:

Parameter Data type Default Description

Symbol or

Symbols 34

colon-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).
Examples:
 '@VX#'
 'IBM:AAPL:GOOG'
 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol
name(s). Multiple symbols can be parallelized
using the UseParallel parameter (see below).

DataDirection integer

1

meaning

oldest first,

newest last

Sets the order of data bars in the returned
struct array. One of the following values:
 1 means oldest-to-newest (default)
 -1 means newest-to-oldest

MaxItems integer 100
Returns up to the specified number of data
bars (if available). -1 means all available.

BeginDate

integer or

string or

datetime

object

'1900/01/01'

(i.e., from

as early as

data is

available)

Earliest bar date. Examples:
 737089 (Matlab datenum format)
 20180129 (yyyymmdd format)
 '20180129'
 '2018/01/29'
 '2018-01-29'

Note: MaxItems has precedence over
BeginDate: If there are more data points
than MaxItems between BeginDate–
EndDate, only the last MaxItems data
points (from EndDate backward) will be
returned, regardless of BeginDate.

EndDate

integer or

string or

datetime

object

'2099/12/31'

(i.e., until

now)

Latest bar date.

See BeginDate above for details.

Timeout number 5.0
Max # of seconds to wait for incoming data
(0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing
Toolbox is installed, then querying multiple
symbols or dates will be done in parallel
(see §3.6; Professional IQML license only).

34 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

44 IQML User Guide

5.2 Weekly data

To retrieve historic weekly data bars, set DataType to 'w' or 'week', and set the

asset’s Symbol:

>> data = IQML('history', 'symbol','FB', 'dataType','week')

data =

 100×1 struct array with fields:

 Symbol

 Datestamp

 Datenum

 High

 Low

 Open

 Close

 PeriodVolume

 OpenInterest

As with the daily bars, we received an array of Matlab structs containing weekly bars,

one per each of the last N weeks (excluding the currently-trading day). By default we

receive up to N=100 data bars (~2 years), ordered from oldest to newest. In the

example above, we ran the query on March 6, 2018 so we received weekly data from

2016-04-15 (the data bar for April 11-15, 2016) until 2018-03-05 (the data bar for

March 5, 2018 only). Each bar’s Datestamp indicates the end-date of the bar.

As with the daily bars, you can change the data bars order, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest).

>> data = IQML('history', 'symbol','FB', 'dataType','week', 'dataDirection',-1);

As with the daily bars, you can ask IQFeed to limit the maximal number of data bars

(N) using the MaxItems parameter:

>> data = IQML('history', 'symbol','FB', 'dataType','week', 'maxItems',20);

In this example, data(1).Datestamp='2017-10-27', i.e. 20 weeks ago.

As with the daily bars, you can set the Timeout parameter to a high value in order to

allow IQML more time to gather data before returning the results. This is typically not

necessary for weekly data requests, because of the relatively low amount of data.

Note: unlike daily data requests, you cannot specify a BeginDate/EndDate interval

in a request for historic weekly data bars.

As with daily data requests, you can request historical data for multiple symbols at the

same time, in a single IQML command, by specifying a colon-delimited or cell-array

list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','week', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','week', 'maxItems',20) %equivalent

45 IQML User Guide

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):

data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:

data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols can be parallelized using the UseParallel parameter, if

you have a Professional IQML license and Matlab’s Parallel Computing Toolbox (§3.6):

>> data = IQML('history', 'symbol',symbols, 'UseParallel',true, ...

 'dataType','week', 'maxItems',20)

The following parameters affect weekly history data queries:

Parameter Data type Default Description

Symbol or

Symbols 35

colon-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

DataDirection integer

1

meaning

oldest bar is

first, newest

is last

Sets the order of data bars in the returned

struct array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

MaxItems integer 100
Returns up to the specified number of data

bars (if available). -1 means all available.

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying multiple

symbols will be done in parallel (see §3.6;

Professional IQML license only).

35 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

46 IQML User Guide

5.3 Monthly data

To retrieve historic monthly data bars, set DataType to 'm' or 'month', and set the

asset’s Symbol:

>> data = IQML('history', 'symbol','FB', 'dataType','month')

data =

 100×1 struct array with fields:

 Symbol

 Datestamp

 Datenum

 High

 Low

 Open

 Close

 PeriodVolume

 OpenInterest

As with the daily bars, we received an array of Matlab structs containing monthly

bars, one per each of the last N months (excluding the currently-trading day). By

default we receive up to N=100 data bars (~8 years), ordered from oldest to newest.

We ran the example query above on March 6, 2018 so we received monthly data from

2009-12-31 (the data bar for 12/2009) until 2018-03-05 (the data bar for March 2018).

As with the daily bars, you can change the data bars order, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest).

>> data = IQML('history', 'symbol','FB', 'dataType','month', ...

 'dataDirection',-1);

As with the daily bars, you can ask IQFeed to limit the maximal number of data bars

(N) using the MaxItems parameter:

>> data = IQML('history', 'symbol','FB', 'dataType','month', 'maxItems',20);

In this example, data(1).Datestamp='2016-08-31', i.e. 20 months ago.

As with the daily bars, you can set the Timeout parameter to a high value in order to

allow IQML more time to gather data before returning the results. This is typically not

necessary for monthly data requests, because of the relatively low amount of data.

Note: unlike daily data requests, you cannot specify a BeginDate/EndDate interval

in a request for historic monthly data bars.

As with daily data requests, you can request historical data for multiple symbols at the

same time, in a single IQML command, by specifying a colon-delimited or cell-array

list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','month', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','month', 'maxItems',20) %equivalent

47 IQML User Guide

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):

data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:

data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols can be parallelized using the UseParallel parameter, if

you have a Professional IQML license and Matlab’s Parallel Computing Toolbox (§3.6):

>> data = IQML('history', 'symbol',symbols, 'UseParallel',true, ...

 'dataType','month', 'maxItems',20)

The following parameters affect monthly history data queries:

Parameter Data type Default Description

Symbol or

Symbols 36

colon-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

DataDirection integer

1

meaning

oldest bar is

first, newest

is last

Sets the order of data bars in the returned

struct array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

MaxItems integer 100
Returns up to the specified number of data

bars (if available). -1 means all available.

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying multiple

symbols will be done in parallel (see §3.6;

Professional IQML license only).

36 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

48 IQML User Guide

5.4 Interval data

To retrieve historic data bars having a custom width, possibly as short as a single

second, set DataType to 'i' or 'interval', and set the asset’s Symbol:

>> data = IQML('history', 'symbol','FB', 'dataType','interval')

data =

 100×1 struct array with fields:

 Symbol

 Timestamp

 Datenum

 High

 Low

 Open

 Close

 TotalVolume

 PeriodVolume

 NumberOfTrades

>> data(end)

ans =

 Symbol: 'IBM'

 Timestamp: '2018-03-07 09:43:00'

 Datenum: 737126.404861111

 High: 156.97

 Low: 156.77

 Open: 156.83

 Close: 156.77

 TotalVolume: 215082

 PeriodVolume: 16080

 NumberOfTrades: 0

The returned data struct here is similar to the struct returned by the daily, weekly and

monthly historical data queries. Unlike those queries, interval-query result does not

include an OpenInterest field, but does include two new fields: TotalVolume (which

indicates the total daily volume up to that bar), and NumberOfTrades. Also note that we

get a Timestamp field (US Eastern time-zone), not Datestamp as with the other queries.

Bars that had no trading action are not reported. In the example query above, we see

the following Timestamp values, where we clearly see a gap during non-trading hours:

>> {data.Timestamp}'

ans =

 100×1 cell array

 {'2018-03-06 14:59:00'}

 {'2018-03-06 15:00:00'}

 {'2018-03-06 15:01:00'}

 ... % contiguous data bars

 {'2018-03-06 15:59:00'}

 {'2018-03-06 16:00:00'}

 {'2018-03-06 16:03:00'}

 {'2018-03-06 16:11:00'}

 ...

 {'2018-03-07 08:33:00'}

 {'2018-03-07 08:45:00'}

 {'2018-03-07 09:22:00'}

 {'2018-03-07 09:31:00'}

 {'2018-03-07 09:32:00'}

 ... % contiguous data bars

 {'2018-03-07 09:43:00'}

 {'2018-03-07 09:44:00'}

49 IQML User Guide

As with the other queries, the current (unclosed) interval bar is never reported, nor

bars that have no data (e.g., 16:04-16:10, 8:34-8:44, 8:46-9:21 in the example above).

The default interval size is 60 secs (1 minute, aligned on the full-minute mark). You

can specify a different interval size using the IntervalSize parameter. For example, to

set a 15-sec interval:

>> data=IQML('history','symbol','FB','dataType','interval','intervalSize',15);

IQFeed is smart enough to automatically align the data bars to full minutes/hours

when the requested IntervalSize enables this (as is the case for 15 or 60-sec

intervals). For example, with a 15-sec IntervalSize we may get bars for 10:04:15,

10:04:30, 10:04:45, 10:05:00.

When such alignment is not possible, you will get non-aligned bars. For example,

with a 13-sec IntervalSize: 09:59:18, 09:59:31, 09:59:57, 10:00:10.

By default, IntervalSize specifies the interval’s size in seconds and all the bars have

this same duration. You can change this by setting the IntervalType parameter

(default: 'secs') to 'volume' or 'ticks'/'trades'. Naturally, if you change IntervalType,

the data bars will now have non-equal durations.

>> data = IQML('history', 'symbol','FB', 'dataType','interval', ...

 'intervalType','ticks');

The IntervalType (default: 'secs') and IntervalSize (default: 60) parameters should

typically be specified together. Note that IntervalSize must be a positive integer

value (i.e. its value cannot be 4.5 or 0). If IntervalType is 'ticks'/'trades', IntervalSize

must be 2 or higher; If IntervalType is 'volume', IntervalSize must be 100 or higher;

If IntervalType is 'secs', IntervalSize must be between 1 and 86400 (1 day).37

By default, IQML only reports interval data from today. You can ask to see additional

(older) calendar days by specifying a positive Days parameter value. If you set Days

to -1, then all available information will be reported, subject to the other filter criteria.

In addition, you can specify a daily time-window: only bars between BeginFilterTime

and EndFilterTime in each day (US Eastern time-zone) will be reported. This could

be useful, for example, to limit the results only to the regular trading hours.

Similarly, you can specify a date/time window for all the data bars: only bars that

start after the specified BeginDateTime and end before the specified EndDateTime

(both of them US Eastern time-zone) will be reported.

As with the daily bars, you can change the data bars order, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest).

>> data=IQML('history','symbol','FB','dataType','interval','dataDirection',-1);

37 Note that IQFeed’s limitations on live 'secs' interval bars (§4.3, §6.3) are stricter than the limitations on historical interval bars:

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

50 IQML User Guide

As with the daily bars, you can ask IQFeed to limit the maximal number of data bars

(N) using the MaxItems parameter:

>> data = IQML('history', 'symbol','FB', 'dataType','interval', 'maxItems',20);

Note that MaxItems takes precedence over BeginDateTime, regardless of

DataDirection. For example, if MaxItems=5, you will only get the 5 latest bars

(before EndDateTime), regardless of the specified BeginDateTime.

As with the daily bars, you can set the Timeout parameter to a high value in order to

allow IQML more time to gather data before returning the results.

As with daily data requests, you can request historical data for multiple symbols at the

same time, in a single IQML command, by specifying a colon-delimited or cell-array

list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','interval', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','interval', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):
data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:
data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols or a date/time range (if BeginDateTime and

EndDateTime are specified) can be parallelized using the UseParallel parameter, if you

have a Professional IQML license and Matlab’s Parallel Computing Toolbox (see §3.6):

>> data = IQML('history', 'dataType','interval', 'UseParallel',true, ...

 'symbol',symbols) % multiple symbols parallelized

>> data = IQML('history', 'dataType','interval', 'UseParallel',true, ...

 'symbol','IBM' ,... % single-symbol date-range parallelized

 'BeginDateTime',20181026100000, ...

 'EndDateTime', 20181026110000)

In some cases, users may be tempted to use the historical data mechanism to retrieve

real-time data. This is relatively easy to set-up. For example, using an endless Matlab

loop that sleeps for 60 seconds, requests the latest historical data for the past minute

and then goes to sleep again, or using a periodic timer object that wakes up every

minute. In such cases, consider using streaming rather than historical queries (see §6).

Some software vendors make a distinction between intra-day and historical

information. However, as far as IQFeed and IQML are concerned, this is merely a

semantic difference and there is no practical difference.

51 IQML User Guide

Note: by default IQFeed limits interval data to the past 180 calendar days if you make

the request outside trading hours, but just past 8 days for requests during US trading

hours (9:30-16:30 US Eastern time). This means that if during trading hours you

request historic data from a month ago, you will get none (empty results), even if the

request was just for a single hour of data.

The only exception to the 8/180-day limitation are interval bars of full minutes

(IntervalType='secs' and IntervalSize a multiple of 60), since these bars are pre-

computed and have a lesser impact on IQFeed’s servers. The other interval types are

computed on-the-fly from tick data, and so are limited in duration in order not to

overload IQFeed’s servers, especially during trading hours when server load is high.

An additional limitation imposed by IQFeed is that minute interval data is only

available since 2005-2007.38 Longer intervals (daily/weekly/monthly) have 10+ years

of data.

Also note that IQFeed’s interval data typically exclude “O” trades (see §5.5).

The following parameters affect interval history data queries:

Parameter Data type Default Description

Symbol or

Symbols 39

colon-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

DataDirection integer

1

meaning

oldest bar is

first, newest

is last

Sets the order of data bars in the returned

struct array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

MaxItems integer 100
Returns up to the specified number of data

bars (if available). -1 means all available.

Days integer

1

meaning

today only

Number of preceding calendar days to

process. -1 means unlimited (all available

data, subject to the other criteria), 1 means

today, 2 means today & yesterday, etc.

38 Specifically for minute (60 sec) intervals, IQFeed’s developer FAQ indicates that “Minute interval data dating back to mid

2005 for select contracts and mid 2007 for all others [is available]”.

39 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

52 IQML User Guide

Parameter Data type Default Description

IntervalType string 'secs'

Sets the type of interval size. One of the

following values:

 's' or 'secs' – time [seconds] (default)

 'v' or 'volume' – traded volume

 't', 'trades' or 'ticks' – number of ticks

IntervalSize integer 60
Size of bars in IntervalType units. Must be

≥1 for secs, ≥2 for ticks, ≥100 for volume bars

BeginFilterTime string '00:00:00'

Only return bars that begin after this time of

day (US Eastern time-zone). Only relevant

when Days>0 or BeginDateTime is not ''.

Format: hhmm, hh:mm, hhmmss or hh:mm:ss

EndFilterTime string '23:59:59'

Only return bars that end before this time of

day (US Eastern time-zone). Only relevant

when Days>0 or BeginDateTime is not ''.

Format: hhmm, hh:mm, hhmmss or hh:mm:ss

BeginDateTime

integer or

string or

datetime

object

''

(empty

string)
meaning

from as

early as

data is

available

Only return bars that begin after this

date/time (US Eastern time-zone).

Only relevant when Days<0.

Format: Matlab datenum, ‘yyyymmdd

hhmmss’ or ‘yyyy-mm-dd hh:mm:ss’.

Note: MaxItems has precedence over

BeginDateTime: If there are more data

points than MaxItems between Begin/

EndDateTime, only the last MaxItems

data points (from EndDateTime backward)

are returned, regardless of BeginDateTime.

EndDateTime

integer or

string or

datetime
object

''

(empty

string)

meaning

now

Only return bars that end before this

date/time (US Eastern time-zone)

Only relevant when Days<0.

Format: Matlab datenum, ‘yyyymmdd

hhmmss’ or ‘yyyy-mm-dd hh:mm:ss’.

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying multiple

symbols or a date/time range will be done

in parallel (see §3.6; Professional IQML

license only).

53 IQML User Guide

5.5 Tick data

Unlike data bars, which aggregate ticks and provide summary information, it is also

possible to retrieve historic individual trades (“ticks”). To retrieve this data, set

DataType to 't' or 'ticks', and set the asset’s Symbol:

>> data = IQML('history', 'symbol','IBM', 'dataType','ticks')

data =

 100×1 struct array with fields:

 Symbol

 Timestamp

 Datenum

 Last

 LastSize

 TotalVolume

 Bid

 Ask

 TickID

 BasisForLast

 BasisDescription

 TradeMarketCenter

 TradeMarketName

 TradeConditions

 TradeDescription

>> data(end)

ans =

 Symbol: 'IBM'

 Timestamp: '2018-03-07 13:23:02.036440'

 Datenum: 737126.557662458

 Last: 156.72

 LastSize: 8

 TotalVolume: 1698707

 Bid: 156.72

 Ask: 156.76

 TickID: 808996961

 BasisForLast: 'O'

 BasisDescription: 'Last qualified trade'

 TradeMarketCenter: 18

 TradeMarketName: 'Better Alternative Trading System (BATS)'

 TradeConditions: '3D87'

 TradeDescription: 'Intramaket Sweep; Odd lot trade'

The data struct here is quite different than the historical bar queries above. Notice the

Timestamp field, specified in micro-second precision (US Eastern time-zone). See a

discussion of the time resolution in the next page.

Note that the textual Description fields depend on the MsgParsingLevel parameter

having a value of 2 or higher (see §3.2 and §8)

Also note that only trade ticks are provided, along with the Bid and Ask prices at the

time of the trade. IQFeed does not report historic non-trading ticks (i.e., Bid/Ask

changes that occurred between the trades).

The Last and LastSize fields typically refer to the last trade. The type (“basis”) of

data in these fields is determined according to the BasisForLast field, which is

explained in the BasisDescription field for convenience.40 Possible basis values are:41

40 Note that the textual Description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2)

54 IQML User Guide

 C – Last qualified trade.

 E – Extended trade = form T trade.

 O – Other trade = any trade not accounted for by C or E.

 S – Settle = daily settle (only applicable to commodities).

In general, algo-trading should rely only on “C” trades, and potentially also “E”

trades. “O” trades often have wide price swings (i.e. large variation from mainstream

trading prices); this adds noise to charts and may confuse data analytics.42 IQFeed’s

interval data (§5.4) typically exclude “O” trades.

Note that TickID values are not always increasing, and almost never contiguous. They

are generally provided by the exchange as unique trade identifiers and so should not

be used as an indicator of missing data, and their order is not quarantined. Instead, it

is better to rely on the Timestamp or Datenum fields.

In some cases, implied ticks are reported. For example, note the following tick that

was retrieved for the VIX index continuous future (@VX#):

>> data = IQML('history', 'symbol','@VX#', 'dataType','ticks');

>> data(1)

ans =

 Symbol: '@VX#'

 Timestamp: '2018-03-09 06:47:57.899000'

 Datenum: 737128.283309016

 Last: 17.12

 LastSize: 1

 TotalVolume: 3605

 Bid: 17.1

 Ask: 17.15

 TickID: 4377589

 BasisForLast: 'O'

 BasisDescription: 'Other trade = any trade not accounted for by C or E'

 TradeMarketCenter: 32

 TradeMarketName: 'CBOE Futures Exchange (CFE)'

 TradeConditions: '4D'

 TradeDescription: 'Implied'

Note that in the case of @VX# on CBOE, the ticks are only reported in millisecond

resolution, not microseconds as for IBM. In this case, Timestamp still shows 6 digits

after the seconds decimal, but they always end in 000 (…:57.899000). The actual

time resolution of reported ticks depends on the specific exchange and security type.43

You can limit the data that is returned, as with the historical-bars queries above:

By default, IQML only reports ticks data from today. You can ask to see additional

(older) calendar days by specifying a positive Days parameter value. If you set Days

to -1, then all available information will be reported, subject to the other filter criteria.

In addition, you can specify a daily time-window: only ticks between BeginFilterTime

and EndFilterTime in each day (US Eastern time-zone) will be reported. This could

be useful, for example, to limit the results only to the regular trading hours.

41 Additional basis codes may be added by IQFeed in the future.

42 http://forums.iqfeed.net/index.cfm?page=topic&topicID=3898
43 Micro-second resolution is only available with IQFeed client 5.2 or newer, and only in certain setups (e.g. CMEGroup and

equity markets). Contact IQFeed support if you are unsure about the resolution provided by a certain setup configuration.

http://forums.iqfeed.net/index.cfm?page=topic&topicID=3898

55 IQML User Guide

Similarly, you can specify an overall date/time window: only ticks that start after the

specified BeginDateTime and end before the specified EndDateTime (both of them

US Eastern time-zone) will be reported.

You can also limit the maximal number of ticks using the MaxItems parameter.

Note: by default IQFeed limits ticks data to the past 180 calendar days if you make

the request outside trading hours, but just past 8 days for requests during US trading

hours (9:30-16:30 US Eastern time).44 This means that if during trading hours you

request historic data from a month ago, you will get none (empty results), even if the

request was just for a single hour of data.

You can change the order of the reported ticks, using the DataDirection parameter (1

means oldest-to-newest (default); -1 means newest-to-oldest). MaxItems has precedence

over BeginDateTime, regardless of DataDirection. For example, if MaxItems=5,

we’ll only get the 5 latest ticks (before EndDateTime), regardless of BeginDateTime.

As with daily data requests, you can request historical data for multiple symbols at the

same time, in a single IQML command, by specifying a colon-delimited or cell-array

list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','ticks', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','ticks', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):

data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:
data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols or a date/time range (if BeginDateTime and

EndDateTime are specified) can be parallelized using the UseParallel parameter, if you

have a Professional IQML license and Matlab’s Parallel Computing Toolbox (see §3.6):

>> data = IQML('history', 'dataType','ticks', 'UseParallel',true, ...

 'symbol',symbols) % multiple symbols parallelized

>> data = IQML('history', 'dataType','ticks', 'UseParallel',true, ...

 'symbol','IBM' ,... % single-symbol date-range parallelized

 'BeginDateTime',20181026100000, ...

 'EndDateTime', 20181026110000)

44 Historic ticks older than 180 days can be purchased from DTN – http://forums.iqfeed.net/index.cfm?page=topic&topicID=4376

http://forums.iqfeed.net/index.cfm?page=topic&topicID=4376

56 IQML User Guide

Finally, as with other IQML commands, you can set the Timeout parameter to a high

value in order to allow IQML more time to gather data before returning the results.

The following parameters affect ticks history data queries:

Parameter Data type Default Description

Symbol or

Symbols 45

colon-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

DataDirection integer

1

meaning

oldest tick

is first,

newest last

Sets the order of ticks in the returned struct

array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

MaxItems integer 100
Returns up to the specified number of ticks

(if available). -1 means all available.

Days integer

1

meaning

today only

Number of preceding calendar days to

process. -1 means unlimited (all available

data, subject to the other criteria), 1 means

today, 2 means today & yesterday, etc.

BeginFilterTime string '00:00:00'

Only return ticks that begin after this time of

day (US Eastern). Only relevant when Days>0

or BeginDateTime is not ''. Format:

‘hhmm’, ‘hh:mm’, ‘hhmmss’ or ‘hh:mm:ss’.

EndFilterTime string '23:59:59'

Only return ticks that end before this time of

day (US Eastern). Only relevant when Days>0

or BeginDateTime is not ''. Format:

‘hhmm’, ‘hh:mm’, ‘hhmmss’ or ‘hh:mm:ss’.

45 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

57 IQML User Guide

Parameter Data type Default Description

BeginDateTime

integer or

string or

datetime
object

''

(empty

string)

meaning

from as

early as

data is

available

Only return ticks that begin after this

date/time (US Eastern time-zone).

Only relevant when Days<0.

Format: Matlab datenum, ‘yyyymmdd

hhmmss’ or ‘yyyy-mm-dd hh:mm:ss’.

Note: MaxItems has precedence over

BeginDateTime: If there are more data

points than MaxItems between

BeginDateTime–EndDateTime, only the

last MaxItems data points (from

EndDateTime backward) will be returned,

regardless of BeginDateTime.

EndDateTime

integer or

string or

datetime

object

''

(empty

string)

meaning

now

Only return ticks that end before this

date/time (US Eastern time-zone)

Only relevant when Days<0.

Format: Matlab datenum, ‘yyyymmdd

hhmmss’ or ‘yyyy-mm-dd hh:mm:ss’.

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying multiple

symbols or a date/time range will be done

in parallel (see §3.6; Professional IQML

license only).

58 IQML User Guide

6 Streaming data

Streaming data is a near-real-time mechanism, where IQFeed sends ongoing

asynchronous update messages to IQML of tick (quote and trade) and news events.

These messages can either be queried asynchronously (via ad-hoc queries, as shown

in §6.1-§6.4 below), or handled synchronously (using callbacks (§10) or alerts (§11)).

6.1 Streaming quotes

The streaming quotes mechanism has two distinct parts:

1. Request IQFeed to start sending a stream of quotes for a specified security.

This is done by using the 'quotes' action and setting a NumOfEvents

parameter to a positive >1 value.

2. Later, whenever you wish to process the latest quote(s), simply use the

'quotes' action and NumOfEvents of -1 (minus one). This will return the latest

information (a data struct), without stopping the background streaming.

For example, let’s request 100 streaming quotes for a continuous VIX future contract:

IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100)

This causes IQFeed to start sending quotes to IQML in the background, up to the

specified NumOfEvents, without affecting normal Matlab processing. This means

that you can continue to work with Matlab, process data, display information etc.

Quotes will only stream in the background in non-blocking mode. If you assign the

IQML command results to a variable, the request is treated as blocking and IQML will

wait for all the events to accumulate (or Timeout to occur), as described in §4.1:

IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100); % streaming, non-blocking

data = IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100); % blocking

NumOfEvents can be any number higher than 1 for streaming to work (a value of 1

is the standard snapshot market-query request described in §4.1). To collect streaming

quotes endlessly, set NumOfEvents to the value inf. Note that in Matlab, inf is a

number (not a string), so do not enclose it in quotes ('inf').

The quotes are collected into an internal data buffer in IQML. A different buffer is

maintained for each symbol. The buffer size can be controlled using the MaxItems

parameter, which has a default value of 1. This means that by default only the latest

streaming quote of each type (bid/ask) is stored, along with high/low/close data.

If you set a higher value for MaxItems,46 then up to the specified number of latest

quotes will be stored:

IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100, 'MaxItems',3)

Note that using a large MaxItems increases memory usage, which could have an

adverse effect if you use a very large buffer size (many thousands) and/or streaming

for a large number of different securities.47

46 MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)
47 Quotes use ~3KB of Matlab memory. So, if MaxItems=1500, then for 80 symbols IQML would need 80*1500*3KB =

360MB of Matlab memory when all 80 buffers become full (which could take a while).

59 IQML User Guide

Subsequent requests to retrieve the latest accumulated quotes buffer data, without

stopping the background streaming, should use NumOfEvents = -1 (minus one).

These requests return a Matlab data struct similar to the following:

>> data = IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',-1)

data =

 Symbol: '@VX#'

 Command: 'w@VX#'

 isActive: 0

 EventsToProcess: 10

 EventsProcessed: 10

 LatestEventDatenum: 737128.637260451

 LatestEventTimestamp: '20180309 15:17:39'

 DataType: 'quotes and trades'

 ProcessType: 'stream'

 BufferSize: 3

 Buffer: [3×1 struct]

 LatestData: [1×1 struct]

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 isActive – logical flag indicating whether quotes are currently streamed for this

security. When NumOfEvents ticks are received, this flag is set to false (0).

 EventsToProcess – total number of streaming ticks requested for the security

(using the NumOfEvents parameter).

 EventsProcessed – number of streaming ticks received for this security. When

EventsProcessed >= EventsToProcess, streaming quotes are turned off and

isActive is set to false (0). Note that it is possible that EventsProcessed >

EventsToProcess, since it takes a while for the streaming cancellation request

to reach IQFeed, and during this time a few additional ticks may have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp.

 LatestEventTimestamp – local timestamp (string format) when this quote was

received by IQML.

 DataType – type of data to stream (set by DataType parameter, see below).

 ProcessType – always equal to 'stream' for streaming quotes.

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest quote updates.

 LatestData – latest quote event received from IQFeed.

Different quotes are sent independently from IQFeed server with a unique timestamp.

Note: data.LatestEventDatenum and data.LatestEventTimestamp are specified in local

time-zone. In contrast, data.LatestData.Most_Recent_Trade_Time and data.Buffer.-

Most_Recent_Trade_Time use the server time-zone, typically US Eastern.

60 IQML User Guide

To get the quotes data, simply read the fields of the returned data struct, for example:48
>> data.LatestData

ans =

 Symbol: '@VX#'

 Most_Recent_Trade: 17.08

 Most_Recent_Trade_Size: []

 Most_Recent_Trade_Time: '08:06:20.716000'

 Most_Recent_Trade_Market_Center: 32

 Total_Volume: 4507

 Bid: 17.05

 Bid_Size: 63

 Ask: 17.1

 Ask_Size: 244

 Open: 17.2

 High: 17.35

 Low: 17

 Close: 17.23

 Message_Contents: 'Cbasohlcv'

 Message_Description: 'Last qualified trade; A bid update

 occurred; An ask update occurred; A

 settlement occurred; An open declaration

 occurred; A high declaration occurred; A

 low declaration occurred; A close

 declaration occurred; A volume update

 occurred'

 Most_Recent_Trade_Conditions: '4D'

 Trade_Conditions_Description: 'Implied'

 Most_Recent_Market_Name: 'CBOE Futures Exchange (CFE)'

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.49

To stop collecting streaming quotes for a security, simply send the request again, this

time with NumOfEvents=0.

IQFeed reports 16 standard data fields by default. If you have the Professional (or

trial) IQML license, you can customize the returned data fields by requesting up to 50+

additional fields, removing standard fields, and setting the order of the reported fields.

This can be done using the Fields parameter, as explained in §4.1. For example:

IQML('quotes', 'symbol','AAPL', 'fields','Last,Ask,Bid', 'numOfEvents',6);

When DataType is 'q' or 'quotes', whenever any of the requested data fields (either

the standard 16 fields, or a customized set) gets updated (not necessarily to a different

value), a new tick (update/quote) message is sent/streamed. Adding data fields means

a corresponding increase in tick messages. It is not possible in IQFeed to request data

fields without the corresponding update messages for these fields (or vice versa). The

only exception to this rule is setting DataType to 't' or 'trades': in this case only trade

updates (containing all the requested fields) will be streamed, but no field updates.

In summary, the fewer data fields that are requested, the faster the run-time processing,

and the lower the corresponding tick message rate, thus enabling a larger number of

usable quotes to be streamed and processed by your Matlab program each second.

48 The textual description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2 and §8)
49 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but some update messages

may already be on their way from IQFeed before streaming actually stops. These extra update messages are not accumulated

in the Buffer, but the latest of these messages will be reflected in LatestData field.

61 IQML User Guide

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

IQML('quotes', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('quotes', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

And similarly, when retrieving the accumulated streaming data:

>> data = IQML('quotes', 'symbol','IBM:GOOG:AAPL', 'numOfEvents',-1);

data =

 1×3 struct array with fields:

 Symbol

 Command

 isActive

 EventsToProcess

 EventsProcessed

 LatestEventDatenum

 LatestEventTimestamp

 DataType

 ProcessType

 BufferSize

 Buffer

 LatestData

>> data(1).LatestData

ans =

 struct with fields:

 Symbol: 'IBM'

 Most_Recent_Trade: 142.48

 Most_Recent_Trade_Size: 41149

 Most_Recent_Trade_Time: '17:33:40.531781'

 Most_Recent_Trade_Market_Center: 19

 ...

To get the latest data for all streamed symbols, omit the Symbol parameter (or set it to

empty ['']) in the IQML command. Note: this will return both active and non-active streams:

 >> data = IQML('quotes', 'numOfEvents',-1); % no symbol: return ALL streams
data =

 1×5 struct array with fields:

 Symbol

 Command

 isActive

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):50

>> IQML('quotes', 'numOfEvents',0); % no symbol: stop ALL streams

IQFeed typically allows streaming up to 500 symbols. This limit can be increased by

paying IQFeed extra. In any case, the actual maximal number of concurrently-

streaming symbols is limited by performance considerations (see §3.6).

50 Note that cancelling all active streams cancels streaming regional updates (§6.2) in addition to streaming quotes.

62 IQML User Guide

Here is a summary of the IQML parameters that directly affect streaming quotes:

Parameter Data type Default Description

Symbol or

Symbols 51

colon-

delimited

string, or

cell-array

of strings

(none)

Limits the request to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol
name(s) when NumOfEvents>0

NumOfEvents integer 1

One of:

 inf – continuous endless streaming quotes for

the specified security

 N>1 – stream only N quotes

 1 – get only a single quote (default)

 0 – stop streaming quotes

 -1 – return latest accumulated quotes data

while continuing to stream new quotes data

MaxItems integer 1

Number of streaming quotes stored in a cyclic

buffer. Once this number of quotes are received,

old quotes are discarded when new quotes arrive.

DataType string 'q'

One of:

 'q' or 'quotes' (default) – stream both trades &

quote events (top-of-book bid/ask updates)

 't' or 'trades' – stream trade events only

Fields

comma-

separated

string, or

cell-array

of strings

'Symbol,

Most

Recent

Trade,

Most

Recent

Trade

Size,

Most

Recent

Trade

Time,

…'

(see

§4.1)

Sets the list of data fields reported by IQFeed for

each quote. IQFeed’s default set has 16 fields;

50+ additional fields can be specified.

If Fields is set to an empty value ({} or ''), the list

of current, available fields is returned.

If Fields is not empty, subsequent quotes queries

will return the specified fields, in the specified

order (Professional IQML license only). The

Symbol field is always returned first, even if not

specified.

Examples:

 {'Bid', 'Ask', 'Last'}

 'Bid, Ask, Last'

 'All' (indicates all available fields)

51 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

63 IQML User Guide

6.2 Regional updates

The streaming regional market updates mechanism also has two parts, just like

streaming ticks (§6.1):

1. Request IQFeed to start sending a stream of regional updates. This is done by

using the 'regional' action and setting a NumOfEvents parameter to a positive >1

value. You must specify the Symbol(s) for which regional updates will stream.

2. Later, whenever you wish to process the latest regional update(s), simply use

the 'regional' action and NumOfEvents of -1 (minus one). This will return the

latest information (a data struct), without stopping the background streaming.

For example, let’s request 100 streaming regional updates for Facebook:

IQML('regional', 'Symbol','FB', 'NumOfEvents',100)

This causes IQFeed to start sending regional updates to IQML in the background, up

to the specified NumOfEvents, without affecting normal Matlab processing. This

means that you can continue to work with Matlab, process and display information etc.

Regional updates will only stream in the background in non-blocking mode. If you

assign the IQML command results to a variable, the request is treated as blocking and

IQML will wait for all data to accumulate (or Timeout to occur), as described in §7.2:

IQML('regional', 'Symbol','FB', 'NumOfEvents',100); % streaming, non-blocking

data = IQML('regional', 'Symbol','FB', 'NumOfEvents',100); % blocking

NumOfEvents can be any number higher than 1 for streaming to work (a value of 1

is the standard snapshot regional-update request described in §7.2). To collect

streaming regional updates endlessly, set NumOfEvents to the value inf. Note that in

Matlab, inf is a number (not a string), so do not enclose it in quotes ('inf').

The regional updates are collected into an internal data buffer in IQML. A different

buffer is maintained for each symbol. The buffer size can be controlled using the

MaxItems parameter, which has a default value of 152. This means that by default

only the latest streaming regional update that affect the specified symbols will be

stored in the buffer and become accessible for later processing.

If you set a higher value for MaxItems, then up to the specified number of latest

regional update items will be stored. For example, to store the latest 50 updates:

IQML('regional', 'Symbol','FB', 'NumOfEvents',100, 'MaxItems',50)

Note that using a large MaxItems increases memory usage, which could have an

adverse effect if you set a very large buffer size (many thousands) and/or streaming

for a large number of different securities.53

52 Note that MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)

53 Each regional update item uses 2KB of Matlab memory. During trading hours, there could be dozens of updates per second for
highly liquid symbols (i.e., 500MB or more per hour, if all updates are saved). Limiting MaxItems to some finite value

ensures that memory usage and performance impact remain low.

64 IQML User Guide

Subsequent requests to retrieve the latest accumulated regional updates buffer data,

without stopping the background streaming, should use NumOfEvents = -1 (minus

one). These requests return a Matlab data struct similar to the following:

>> data = IQML('regional', 'Symbol','FB', 'NumOfEvents',-1)

data =

 Symbol: 'FB'

 Command: 'S,REGON,FB'

 isActive: 0

 EventsToProcess: 100

 EventsProcessed: 100

 LatestEventDatenum: 737146.784037153

 LatestEventTimestamp: '20180327 18:49:00'

 DataType: 'regional'

 ProcessType: 'stream'

 BufferSize: 50

 Buffer: [50×1 struct]

 LatestData: [1×1 struct]

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 isActive – a logical flag indicating whether regional updates are currently

being streamed for this security. When NumOfEvents ticks have been

received, this flag is set to false (0).

 EventsToProcess – total number of streaming regional updates requested

(using the NumOfEvents parameter).

 EventsProcessed – number of streaming regional updates received. When

EventsProcessed >= EventsToProcess, streaming updates are turned off and

isActive is set to false (0). Note that it is possible that EventsProcessed >

EventsToProcess, since it takes a while for the streaming cancellation request

to reach IQFeed and during this time a few additional update messages may

have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp.

 LatestEventTimestamp – local timestamp (string format) when this update was

received by IQML.

 DataType – always equal to 'regional' for streaming regional updates.

 ProcessType – always equal to 'stream' for streaming regional updates.

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest regional updates.

 LatestData – latest regional update event received from IQFeed.

65 IQML User Guide

To get the regional updates data, simply read the fields of the returned data struct:54

>> data.LatestData

ans =

 RegionalBid: 155.34

 RegionalBidSize: 100

 RegionalBidTime: '12:29:45'

 RegionalAsk: 155.55

 RegionalAskSize: 200

 RegionalAskTime: '12:29:45'

 FractionDisplayCode: 14

 DecimalPrecision: 4

 FractionDisplayDescription: 'Four decimal places'

 MarketCenter: 11

 MarketCenterDescription: 'NYSE Archipelago (NYSE_ARCA)'

Each update has an associated timestamp, since different regional updates are sent

separately and independently from IQFeed server.

Note: data.LatestEventDatenum and data.LatestEventTimestamp are specified in the

local time-zone; in contrast, data.LatestData.RegionalBidTime and .RegionalAskTime

are specified in the server’s time-zone (typically US Eastern time zone).

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.55

To stop collecting streaming regional updates for a security, simply send the request

again, this time with NumOfEvents=0.

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

IQML('regional', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('regional', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

As with streaming quotes (§6.1), to get the latest data for all streamed symbols, omit

the Symbol parameter or set it to empty ['']. This returns all streams (both active/not):

 >> data = IQML('regional', 'numOfEvents',-1); % no symbol: get ALL streams
data =

 5×1 struct array with fields:

 Symbol

 Command

 isActive

 EventsToProcess

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):56

>> IQML('regional', 'numOfEvents',0); % no symbol: ALL streams are stopped

54 The textual Description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2 and §8)

55 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but one or more update
messages may already be on their way from IQFeed before streaming actually stops. These extra update messages are not

accumulated in the Buffer, but the latest of these messages will be reflected in LatestData field.

56 Note that cancelling all active streams cancels streaming quotes (§6.1) in addition to streaming regional updates.

66 IQML User Guide

Here is a summary of the IQML parameters that affect streaming regional updates:

Parameter Data type Default Description

Symbol or

Symbols 57

colon-

delimited

string or

cell-array

of strings

(none)

Limits the request to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name/names when NumOfEvents>0.

NumOfEvents integer Inf

One of:

 inf – continuous endless streaming

regional updates for specified security

 N>1 – stream only N regional updates

 1 – get only a single update (default)

 0 – stop streaming regional updates

 -1 – return the latest accumulated

regional updates data while continuing

to stream new regional updates data

MaxItems integer 1

Number of streaming regional updates stored

in a cyclic buffer. Once this number of

updates has been received, the oldest update

is discarded whenever a new update arrives.

Note: Regional updates data is only available in the Professional IQML license.

57 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

67 IQML User Guide

6.3 Interval bars

The streaming interval bars feature has two parts, just like streaming ticks (§6.1):

1. Request IQFeed to start sending a stream of interval bars for a specified

security. This is done by using the 'intervalbars' action and setting a

NumOfEvents parameter to a positive >1 value.

2. Later, whenever you wish to process the latest interval bar(s), simply use the

'intervalbars' action and NumOfEvents of -1 (minus one). This will return the

latest information (a data struct), without stopping the background streaming.

For example, request 600 streaming interval bars of a continuous VIX future contract:

IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',600)

This causes IQFeed to start sending interval bars to IQML in the background, up to

the specified NumOfEvents, without affecting normal Matlab processing. This

means you can continue to work with Matlab, process data, display information etc.

Quotes will only stream in the background in non-blocking mode. If you assign the

IQML command results to a variable, the request is treated as blocking and IQML will

wait for all the events to accumulate (or Timeout to occur), as described in §4.1:

IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',600); % streaming, non-blocking

data = IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',600); % blocking

NumOfEvents can be any number higher than 1 for streaming to work. To collect

streaming quotes endlessly, set NumOfEvents to the value inf. Note that in Matlab,

inf is a number (not a string), so do not enclose it in quotes ('inf').

The quotes are collected into an internal data buffer in IQML. A different buffer is

maintained for each symbol. The buffer size can be controlled using the MaxItems

parameter, which has a default value of 1. This means that by default only the latest

streaming interval bar is stored.

If you set a higher value for MaxItems,58 then up to the specified number of latest

quotes will be stored, subject to IQFeed server limitations:59

IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',600, 'MaxItems',3)

Note that using a large MaxItems increases memory usage, which could have an

adverse effect if you use a very large buffer size (many thousands) and/or streaming

for a large number of different securities.60

Subsequent requests to retrieve the latest accumulated interval bars buffer data,

without stopping the background streaming, should use NumOfEvents = -1 (minus

one). These requests return a Matlab data struct similar to the following:

58 MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)

59 The number of reported bars may possibly be limited by the IQFeed server, depending on your data subscriptions and exchange.
60 Interval bars use ~2KB of Matlab memory. So, if MaxItems=1500, then for 80 symbols IQML would need 80*1500*2KB =

240MB of Matlab memory when all 80 buffers become full (which could take a while).

68 IQML User Guide

>> data = IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',-1)

data =

 Symbol: '@VX#'

 Command: 'BW,@VX#,60,,1,3,,,B'

 isActive: 0

 EventsToProcess: 600

 EventsProcessed: 600

 LatestEventDatenum: 737128.637260451

 LatestEventTimestamp: '20180309 15:17:39'

 DataType: 'intervalbars'

 ProcessType: 'stream'

 BufferSize: 3

 Buffer: [3×1 struct]

 LatestData: [1×1 struct]

 MaxDaysToProcess: 1

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 isActive – logical flag indicating whether interval bars are currently streamed for

the security. Once NumOfEvents bars are received this flag is set to false (0).

 EventsToProcess – total number of streaming interval bars requested for the

security (using the NumOfEvents parameter).

 EventsProcessed – number of streaming interval bars received for this security.

When EventsProcessed>=EventsToProcess, streaming is turned off and isActive

is set to false (0). Note: it is possible that EventsProcessed > EventsToProcess,

since it takes a while for the streaming cancellation request to reach IQFeed,

and during this time a few additional bars may have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp.

 LatestEventTimestamp – local timestamp (string format) when this bar was

received by IQML.

 DataType – type of data to stream (set by DataType parameter, see below).

 ProcessType – always equal to 'stream' for streaming interval bars.

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest quote updates.

 LatestData – single latest interval bar received from IQFeed.

 MaxDaysToProcess – maximal number of days with intervals data to process.

To retrieve the interval bars data, simply read the fields of the returned data struct:
>> data.LatestData

ans =

 Symbol: '@VX#'

 BarType: 'Complete interval bar from history'

 Timestamp: '2018-03-09 15:17:39'

 Open: 17.55

 High: 17.6

 Low: 17.55

 Close: 17.6

 CummlativeVolume: 4550

 IntervalVolume: 11

 NumberOfTrades: 0

69 IQML User Guide

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.61

Different interval bars are sent independently from IQFeed server with a unique

timestamp. Note that data.LatestEventDatenum and data.LatestEventTimestamp are

specified in the local time-zone.

The data.LatestData.BarType field indicates whether this is a historic bar, or a bar

from the live (real-time) stream, or an updated interval bar.

The data.LatestData.NumberOfTrades field indicates the number of trades that occurred

within this bar (i.e., not cumulative), relevant only when IntervalType is 'ticks'/'trades'.

The IntervalType (default: 'secs') and IntervalSize (default: 60) parameters should

typically be specified together. Note that IntervalSize must be a positive integer

value (i.e. its value cannot be 4.5 or 0). If IntervalType is 'ticks'/'trades', IntervalSize

must be 2 or higher. If IntervalType is 'volume', IntervalSize must be 100 or higher.

If IntervalType is 'secs', IntervalSize must be any integer between 1-300 (5 minutes),

or any multiple of 60 (1 minute) between 300-3600 (1 hour), or 7200 (2 hours).62

To stop collecting streaming interval bars for a security, simply send the request

again, this time with NumOfEvents=0.

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:
IQML('intervalbars', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('intervalbars', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

As with streaming quotes (§6.1), to get the latest data for all streamed symbols, omit

the Symbol parameter or set it to empty ['']. This returns all streams (both active/not):
 >> data = IQML('intervalbars', 'numOfEvents',-1); % no symbol: get ALL streams
data =

 5×1 struct array with fields:

 Symbol

 Command

 isActive

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):
>> IQML('intervalbars', 'numOfEvents',0); % no symbol: stop ALL streams

Interval bars can also fetch historical bars data, starting from the date/time that is set

by the BeginDateTime parameter (see the parameters table below). This is similar to

(and subject to the same limitations as) fetching historical interval data (see §5.4), but

with no specified end point. IQML will return both the historical bars, as well as new

real-time streaming interval bars, as they become available. BeginDateTime’s default

value is 00:00:00 today (server time), so you will almost always get historical bars

before live streaming bars. If you run the query at mid-day, you may get hundreds of

historical bars before you get the first live streaming bar. So, if you set NumOfEvents

to a low value, you might receive only historical bars, without any live streaming bars.

61 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but one or more update

messages may already be on their way from IQFeed before streaming actually stops. These extra update messages are not

accumulated in the Buffer, but the latest of these messages will be reflected in LatestData field.

62 Note that IQFeed’s limitations on live 'secs' interval bars are stricter than the limitations on historical interval bars (§5.4):

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

70 IQML User Guide

The following parameters affect interval bars data queries:

Parameter Data type Default Description

Symbol or

Symbols 63

colon-

delimited

string or

cell-array

of strings

(none)

Limits the request to the specified

symbol(s). Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid
symbol name(s) when NumOfEvents>0

NumOfEvents integer Inf

One of:

 inf – continuous endless streaming

interval bars for specified symbol(s)

 N>1 – stream only N interval bars

 1 – get only a single interval bar

 0 – stop streaming interval bars

 -1 – return latest interval bars data

while continuing to stream new bars

MaxItems integer 100
Returns up to the specified number of

bars (if available).

MaxDays integer 1 Max number of trading days to retrieve

IntervalType string 'secs'

Sets the type of interval size. One of the
following values:
 's' or 'secs' – time [seconds] (default)
 'v' or 'volume' – traded volume

 't' or 'ticks' – number of ticks

IntervalSize integer 60
Size of bars in IntervalType units. Must be

≥1 for secs, ≥2 for ticks, ≥100 for volume.

BeginFilterTime string '00:00:00'

Only return bars that begin after this time

of day (US Eastern time-zone).

Format: ‘hhmm’, ‘hh:mm’, ‘hhmmss’ or

‘hh:mm:ss’.

EndFilterTime string '23:59:59'

Only return bars that end before this time

of day (US Eastern time-zone).

Format: ‘hhmm’, ‘hh:mm’, ‘hhmmss’ or

‘hh:mm:ss’.

BeginDateTime

integer or

string or

datetime
object

''

(empty string)

meaning today

at 00:00:00

Only return bars that begin after this

date/time (US Eastern time-zone).

Format: Matlab datenum, ‘yyyymmdd

hhmmss’ or ‘yyyy-mm-dd hh:mm:ss’.

Timeout number 5.0
Max number of seconds to wait (0-9000)
for data in blocking mode (0 means infinite)

63 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

71 IQML User Guide

6.4 Market depth (Level 2)

The streaming market depth mechanism also has two distinct parts, just like

streaming level 1 quotes (§6.1):

1. Request IQFeed to start sending a stream of market depth quotes for a

specified security. This is done by using the 'marketdepth' action.

2. Later, whenever you wish to process the latest market depth data, simply use

the 'marketdepth' action and NumOfEvents of -1 (minus one). This will

return the latest information (a data struct), without stopping the background

streaming.

For example, let’s request market depth quotes for a continuous E-mini contract:

IQML('marketdepth', 'Symbol','@ES#')

This causes IQFeed to start sending market depth updates to IQML in the background,

up to the specified NumOfEvents, if defined, without affecting normal Matlab

processing. This means you can continue to work with Matlab, process data, display

information etc.

Note that each incoming quote message updates the data for a single market depth

row. The market depth row cannot be specified nor predicted by the user, and the

order of messages is unrelated to the market depth row, for example, an update for

row #3 can follow an update of row #5.

Market depth data will only stream in the background in non-blocking mode. If you assign

the IQML command results to a variable, the request is treated as blocking and IQML

will wait for all the events to accumulate (or Timeout to occur), as described in §4.1:

IQML('marketdepth', 'Symbol','@ES#', 'NumOfEvents',600); % streaming, non-blocking

data = IQML('marketdepth', 'Symbol','@ES#', 'NumOfEvents',600); % blocking

NumOfEvents is an optional input parameter and can be any number higher than 1

for streaming to work. To collect market depth data endlessly, set NumOfEvents to

the value inf. Note that in Matlab, inf is a number (not a string), so do not enclose it

in quotes ('inf').

The quotes are collected into an internal data structure in IQML. A different structure

is maintained for each symbol.

Subsequent requests to retrieve the latest accumulated interval bars buffer data,

without stopping the background streaming, should use NumOfEvents = -1 (minus

one). These requests return a Matlab data struct similar to the following:

>> data = IQML('marketdepth', 'Symbol','@ES#', 'NumOfEvents',-1)

data =

 Symbol: '@ES#'

 Command: 'w@ES#'

 EventsToProcess: 600

 EventsProcessed: 437

 LatestData: [1×10 struct]

 LatestEventDatenum: 737195.518211377

 LatestEventTimestamp: '20180515 12:26:13'

72 IQML User Guide

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 EventsToProcess – total number of streaming interval bars requested for the

security (using the NumOfEvents parameter).

 EventsProcessed – number of streaming market depth data quotes received for

this security. When EventsProcessed >= EventsToProcess, streaming market

depth data for this security is turned off.

 LatestData – latest data received by IQFeed for each market depth row.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp.

 LatestEventTimestamp – local timestamp (string format) when latest market

depth quote was received by IQML.

 ProcessType – 'stream' to collect data in the background or 'block' to wait for

data to come in and return it.

To retrieve the market depth data at the nth market depth row, simply read the fields of

the LatestData at the nth location, for example:

>> data.LatestData(4)

ans =

 Bid: 2725.5

 Ask: 2727.25

 BidSize: 65

 AskSize: 148

 BidTime: '05:25:59.761191'

 Date: '2018-05-15'

 AskTime: '05:25:59.760278'

 BidInfoValid: 1

 AskInfoValid: 1

 Condition: 52

 Condition_Description: 'regular'

BidInfoValid and AskInfoValid values are logical (true/false) values, which appear

as 1 or 0, respectively, in the struct display above.

Different market depth quotes are sent independently from IQFeed server with a

unique timestamp. Note that data.LatestEventDatenum and data.LatestEventTimestamp

are specified in the local time-zone.

To stop collecting market depth quotes for a security, simply send the request again,

this time with NumOfEvents=0.

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

IQML('marketdepth', 'symbols',{'IBM','GOOG','AAPL'});

IQML('marketdepth', 'symbols','IBM:GOOG:AAPL'); % equivalent

73 IQML User Guide

As with the blocking request (§4.4), you’ll receive an error message when requesting

market depth info from an exchange for which you have no Level 2 data subscription:

>> data = IQML('marketdepth', 'Symbol','IBM', ...) %not subscribed to NYSE L2

Error using IQML

Symbol 'IBM' was not found!

As with streaming quotes (§6.1), to get the latest data for all streamed symbols, omit

the Symbol parameter or set it to empty ['']. This returns all streams (both active/not):

 >> data = IQML('marketdepth', 'numOfEvents',-1); % no symbol: get ALL streams
data =

 5×1 struct array with fields:

 Symbol

 Command

 isActive

 EventsToProcess

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):

>> IQML('marketdepth', 'numOfEvents',0); % no symbol: ALL streams are stopped

The following parameters affect market depth data queries:

Parameter Data type Default Description

Symbol or

Symbols 64

colon-

delimited

string or

cell-array

of strings

(none)

Limits the request to the specified symbol(s).

Examples:

 '@ES#'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s) when NumOfEvents>0

NumOfEvents integer Inf

One of:

 inf – continuous endless streaming

market depth data for specified

symbol(s)

 N>1 – stream only N incoming market

depth quotes

 1 – get only a single quote

 0 – stop streaming market depth data

 -1 – return the latest data while

continuing to stream new data

Note: Market Depth (Level 2) data is only available in the Professional IQML license.

64 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

74 IQML User Guide

7 News

News headlines and stories can be retrieved via the 'news' action. Several data-types

are available, which can be set using the DataType parameter.

Note: News data is only available in the Professional IQML license.

7.1 Configuration

To retrieve the news configuration for your account, set DataType to 'config':
>> data = IQML('news', 'DataType','config')

data =

 Category: 'All News'

 Majors: [1×7 struct]

>> {data.Majors.Source}

ans =

 1×7 cell array

 {'DTN'} {'CPR'} {'CBW'} {'RTT'} {'CPZ'} {'CIW'} {'BEN'}

>> {data.Majors.Description}

ans =

 1×7 cell array

 {'DTN News'} {'PR Newswire'} {'Business Wire'} {'Real-Time Trader'}

 {'GlobeNewswire Inc'} {'Marketwire'} {'Benzinga Pro'}

This shows that we are connected to 7 major news sources. We can drill-down for

details about these news sources:
>> data.Majors(1)

ans =

 Source: 'DTN'

 Description: 'DTN News'

 AuthenticationCode: '1D'

 IconID: 10

 Minors: [1×4 struct]

>> data.Majors(1).Minors(1)

ans =

 Source: 'DT5'

 Description: 'Treasuries, Most Actives, Gainers, Losers'

 AuthenticationCode: '1D'

>> c.Majors(1).Minors(2)

ans =

 Source: 'RTL'

 Description: 'Derivatives - Selected Futures and Options'

 AuthenticationCode: '2Ab'

 IconID: 10

Note that some news sources have no “Minor” news-sources:
>> data.Majors(2)

ans =

 Source: 'CPR'

 Description: 'PR Newswire'

 AuthenticationCode: '1X'

 IconID: 5

 Minors: [1×0 struct]

>> data.Majors(7)

ans =

 Source: 'BEN'

 Description: 'Benzinga Pro'

 AuthenticationCode: '1a'

 IconID: 10

 Minors: [1×0 struct]

News configuration queries do not have any user-settable parameters.

75 IQML User Guide

7.2 Story headlines

To retrieve the latest news headlines (in blocking mode), set DataType to 'headlines':
>> data = IQML('news', 'DataType','headlines')

data =

 1000×1 struct array with fields:

 Source

 ID

 Symbols

 Timestamp

 Text

 Story

>> data(1)

ans =

 Source: 'CPR'

 ID: 21988707473

 Symbols: {}

 Timestamp: 20180305064553

 Text: 'The Surface Disinfectants Market is Expected to Grow at a CAGR

 of 8.3% to a USD '

 Story: ''

>> data(2)

ans =

 Source: 'BEN'

 ID: 21988707468

 Symbols: {'BZFDA' 'CVRS'}

 Timestamp: 20180305064533

 Text: 'Corindus Receives FDA Clearance for First Automated Robotic

 Movemen...'

 Story: ''

>> data(3)

ans =

 Source: 'RTB'

 ID: 21988701358

 Symbols: {'BSX'}

 Timestamp: 20180305064233

 Text: 'Boston Scientific Corp Q4 adjusted earnings Miss Estimates'

 Story: ''

As can be seen, some stories are specific to particular symbols (BZFDA and CVRS in

story #21988707468, BSX in #21988701358), while others are not (#21988707473).

Also note that the news stories’ Timestamp is reported in yyyymmddHHMMSS

format, where the time is specified in US Eastern time-zone.

When you retrieve news headlines, you might run into a timeout problem: by default,

IQFeed send the latest 1000 news headlines and only some of them might be received

by IQML before the built-in Timeout (default: 5 secs) forces IQML to return the data

to the user (remember, this is blocking mode, where a timeout applies):
>> data = IQML('news', 'DataType','headlines')

Warning: IQML timeout: only partial data is returned: the Timeout parameter

should be set to a value larger than 5

data =

 738×1 struct array with fields:

 Source

 ID

 Symbols

 Timestamp

 Text

76 IQML User Guide

As suggested by the message, you can set the Timeout parameter to a high value in

order to allow IQML more time to gather the data before returning the results:

>> data = IQML('news', 'DataType','headlines', 'Timeout',10)

data =

 1000×1 struct array with fields:

 Source

 ID

 ...

You can filter the headlines to a specific set of symbols by specifying Symbols as a

colon-delimited or cell-array list of symbols. For example, to filter only headlines that

relate to symbols BSX, BSX/AAPL, and BSX/AAPL/GOOG, respectively:

>> data = IQML('news', 'DataType','headlines', 'Symbols','BSX')

data =

 60×1 struct array with fields:

 Source

 ID

 ...

>> data = IQML('news', 'DataType','headlines', 'Symbols',{'BSX','AAPL'})

data =

 677×1 struct array with fields:

 Source

 ID

 ...

>> data = IQML('news', 'DataType','headlines', 'Symbols','BSX:AAPL:GOOG')

data =

 841×1 struct array with fields:

 Source

 ID

 ...

You can also limit the search to specific news sources, by specifying a colon-

separated or cell-array list of sources in the Sources parameter. For example:

>> data = IQML('news', 'DataType','headlines', 'Symbols','BSX:GOOG:AAPL', ...

 'Sources','DTN:CPR:BEN')

data =

 745×1 struct array with fields:

 Source

 ID

 ...

In this example, we see that when we limit our search to DTN (DTN News), CPR (PR

Newswire), and BEN (Benzinga Pro), we only get 745 headlines, compared to 841

headlines from all the news sources. The news source names are the ones reported by

the Majors.Source field, in the news configuration query (see §7.1 above).

In addition to limiting the search to a certain news source, you can also limit it to

certain meta-tags that are assigned by some news sources, using the Symbols

parameter. For example, to limit the search to “Benzinga Ratings”:

>> data = IQML('news', 'DataType','headlines', 'Symbols','BZRatings');

77 IQML User Guide

You can limit the reported headlines to only a specific date, using the Date parameter:

>> data = IQML('news', 'DataType','headlines', 'Date',20180304, ...

 'Symbols',{'BSX','AAPL'})

data =

 14×1 struct array with fields:

 Source

 ID

 ...

Date can be specified in multiple formats: as a Matlab datetime object, a numeric

Matlab datenum (737089), a numeric yyyymmdd value (20180129), or a string

('2018/01/29', '2018-01-29' or '20180129').

You can also limit the maximal number of reported headlines using the MaxItems

parameter. This will report the latest MaxItems news headlines (fewer headlines may

actually be reported, depending on their availability):

>> data = IQML('news', 'DataType','headlines', 'MaxItems',50)

data =

 50×1 struct array with fields:

 Source

 ID

 ...

By default, only the headline text is returned. To automatically fetch the full story text

that is associated with each headline, set GetStory to true:

>> data = IQML('news', 'DataType','headlines', 'GetStory',true);

>> data(1)

ans = Source: 'CBW'

 ID: 22017456356

 Symbols: {}

 Timestamp: '20180524 092926'

 Text: 'Global Barium Nitrate Market - Emergence of Environment-

Friendly Ox...'

 Story: '09:28 Thursday, May 24, 2018. (RTTNews.com) - Babcock & Wilcox

Enterprises, Inc. (BW) confirmed that it had received a non-binding indication

of interest from Steel Partners to acquire B&W in a transaction in which B&W

shareholders would receive between $3.00 and $3.50 per share in cash. ...

For comments and feedback: contact editorial@rttnews.com ↵Copyright(c) 2018
RTTNews.com All Rights Reserved'

Querying the story text for multiple headlines could take a long time. A rough

estimate is that 2-3 full news stories can be retrieved sequentially each second. So for

example, with 100 headlines, a news query with GetStory=true might take ~50 secs.

If you have the Professional IQML license and Matlab’s Parallel Computing Toolbox,

you can parallelize this news query by setting UseParallel to true:

>> tic

>> data = IQML('news', 'DataType','headlines', 'MaxItems',100, 'GetStory',1);

>> toc

Elapsed time is 56.311768 seconds.

>> parpool('local',4) % start 4 workers in parallel pool (optional)

>> tic

>> data = IQML('news', 'DataType','headlines', 'MaxItems',100, 'GetStory',1,...

 'UseParallel',1);

>> toc

Elapsed time is 15.799185 seconds.

78 IQML User Guide

The following parameters affect (filter) news headlines queries:

Parameter Data type Default Description

Symbol or

Symbols 65

colon-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits the query to the specified symbols

and meta-tags only (or to all symbols, if

empty). Examples:

 'IBM'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

 'BZRatings:BZTradingIdeas'

Sources

colon-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits the query to the specified news

sources only (or to all sources, if empty).

Examples:

 'DTN'

 'DTN:CPR:BEN'

 {'DTN', 'CPR', 'BEN'}

Date

integer or

string or

datetime
object

[]

meaning all

Date at which the news headline was

published (or all dates, if empty). Examples:

 737089 (Matlab datenum format)

 20180129 (yyyymmdd format)

 '20180129'

 '2018/01/29'

 '2018-01-29'

MaxItems integer 1000

Maximal # of headlines to be reported by

IQFeed. Note that a lower number of

headlines may be reported, depending on

their availability, based on the other filters.

GetStory
logical

(true/false)
false

If false (default), only store the incoming

headline messages.

If true or 1, automatically fetch and store

the full story text for each incoming headline.

This can be parallelized using the

UseParallel parameter (see below).

Timeout number 5.0
Max # of seconds to wait for incoming data

(0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying stories

for headlines using GetStory=true will be

done in parallel (see §3.6; Professional

IQML license only).

65 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

79 IQML User Guide

7.3 Story text

To read a particular story in full (blocking mode), specify DataType = 'story' and ID

(numeric ID, as provided in the story-headlines query, §7.2 above). Different news

sources provide their news stories in different formats, for example:

>> data = IQML('news', 'DataType','story', 'ID',21988707468)

data =

 ID: 21988707468

 Symbols: {'BZFDA' 'CVRS'}

 Text: 'Corindus Receives FDA Clearance for First Automated Robotic

 Movement in technIQ Series for CorPath GRX Platform.'

>> data = IQML('news', 'DataType','story', 'ID',21988701358)

data =

 ID: 21988701358

 Symbols: {'BSX'}

 Text: '06:42 Monday, March 05, 2018. (RTTNews.com) - Boston Scientific

 Corp (BSX) released earnings for fourth quarter that declined

 from the same period last year... % full text redacted here

 Read the original article on RTTNews

 (http://alpha.rttnews.com/9583/boston-scientific-corp-q4-

 adjusted-earnings-miss-estimates.aspx) For comments and

 feedback: contact editorial@rttnews.com. Copyright(c) 2018

 RTTNews.com All Rights Reserved.'

In many cases, the news story is not specifically related to any particular symbol:

>> data = IQML('news', 'DataType','story', 'ID',21991159700)

data =

 ID: 21991159700

 Symbols: {}

 Text: 'Global Nanocatalysts Strategic Business Report 2018: Market

 Trends, Growth Drivers & Issues 2016-2024 -

 ResearchAndMarkets.com. Mar. 12, 2018. Business Editors. DUBLIN-

 -(BUSINESS WIRE)--Mar. 12, 2018--The Nanocatalysts – Global

 Strategic Business Report... % full text redacted here

 View source version on businesswire.com:

 http://www.businesswire.com/news/home/20180312005490/en/ ...

 For GMT Office Hours Call +353-1-416-8900. Related Topics:

 Nanotechnology, Nanomaterials'

In some cases, the story may be assigned one or more meta-symbol tags. For

example, the following story is tagged for “Benzinga Ratings”:

>> data = IQML('news', 'DataType','story', 'ID',21991162633)

data =

 ID: 21991162633

 Symbols: {'BZRatings' 'MNTX'}

 Text: 'Manitex International Sees Q4 Sales $64.40M vs $64.45M Est.

 Manitex International (NASDAQ: MNTX) sees Q4 sales of $64.40M

 vs $64.45M estimate.'

Note that separate paragraphs in the news story text are separated by a newline

(char(10)) in the reported data.Text field. This enables display of the story text in a

human-readable format, when you output the text to the Matlab console or GUI.

80 IQML User Guide

If the requested ID is invalid or does not exist, the returned data will be empty (no

error is reported):

>> IQML('news', 'DataType','story', 'ID',123456) % non-existing headline ID

ans =

 []

Aside from ID, the news story-text query does not have any user-settable parameters.

You can specify multiple IDs in a single IQML query command, by specifying an

array of values. For example:

>> data = IQML('news', 'DataType','story', 'ID',[22018991229,22018991585])

data =

 2×1 struct array with fields:

 ID

 Symbols

 Text

>> data(1)

ans =

 ID: 22018991229

 Symbols: {}

 Text: 'May 29, 2018 ↵Dublin, May 29, 2018 (GLOBE NEWSWIRE) -- The
European Financing in Cleantech Innovation report...

>> data(2)

ans =

 ID: 22018991585

 Symbols: {'BZEarnings' 'MOMO'}

 Text: 'Momo Inc. Earlier Reported Q1 EPS $0.69 Beat $0.50 Estimate,

Sales $435.129M Beat $396.17M Estimate ↵Momo Inc. ...

81 IQML User Guide

7.4 Story count

It is sometimes useful to know the number of distinct news stories, from all news sources

(even those to which you are not subscribed), that relate to different symbols, indicating

level of news interest in those symbols. Set DataType to 'number' and the Symbols,

Sources and/or dates, to receive a Matlab struct with a numeric count for each symbol:
>> data = IQML('news', 'DataType','number', 'Symbols','BSX')

data =

 BSX: 14

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:HP:AAPL:GOOG')

data =

 AAPL: 7

 BSX: 14

 GOOG: 2

 HP: 0

In this example, we see that BSX has a higher news-count today than AAPL or GOOG.

Symbols having no news items will appear at the bottom of the struct with a count of 0.

You can limit the search to specific news sources, by specifying a colon-separated or

cell-array list of sources in the Sources parameter. For example:
>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...

 'Sources','DTN:CPR:BEN')

data =

 AAPL: 2

 BSX: 3

In this example, we see that when we limit our search to DTN (DTN News), CPR (PR

Newswire), and BEN (Benzinga Pro), AAPL and BSX have fewer news items, and

GOOG has none. The news source names are the ones reported by the Majors.Source

field, in the news configuration query (see §7.1 above).

You can also filter the search to only look at news items published at specific dates,

by specifying the BeginDate, EndDate and/or Date parameters. Dates can be specified

in several formats: as a Matlab datetime object, Matlab numeric datenum (737089),

numeric yyyymmdd (20180129), or string ('2018/01/29', '2018-01-29', '20180129'):
>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'BeginDate',20180301)

data =

 AAPL: 45

 BSX: 19

 GOOG: 15

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'BeginDate',20180301, 'EndDate',20180303)

data =

 AAPL: 37

 BSX: 3

 GOOG: 13

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'EndDate',20180305)

data =

 AAPL: 2038

 BSX: 191

 GOOG: 996

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'Date',20180301)

data =

 AAPL: 16

 BSX: 1

 GOOG: 3

82 IQML User Guide

IQML returns a Matlab struct, so the reported symbols need to be valid field names,

and non-alphanumeric characters are automatically converted. For example:
>> data = IQML('news', 'DataType','number', 'Symbols','BOL.ST:BOL@SS:0QLL.L')

data =

 x0QLL_L: 3

 BOL_ST: 1

 BOLxSS: 1

The following parameters affect (filter) news story-count queries:

Parameter Data type Default Description

Symbol or

Symbols 66

colon-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits the query to the specified symbols

and meta-tags only (or to all symbols, if

empty). Examples:

 'IBM'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

 'BZRatings:BZTradingIdeas'

Sources

colon-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits the query to the specified news

sources only (or to all sources, if empty).

Examples:

 'DTN'

 'DTN:CPR:BEN'

 {'DTN', 'CPR', 'BEN'}

Date

integer or

string or

datetime

object

[]

meaning today

Specific date at which the news items were

published. Examples:

 737089 (Matlab datenum format)

 20180129 (yyyymmdd format)

 '20180129'

 '2018/01/29'

 '2018-01-29'

Note: Date overrides BeginDate, EndDate

BeginDate

integer or

string or

datetime

object

'1900/01/01'

(i.e., from as

early as data is

available)

Earliest date at which the news items were

published. Examples:

 737089 (Matlab datenum format)

 20180129 (yyyymmdd format)

 '20180129'

 '2018/01/29'

 '2018-01-29'

EndDate

integer or

string or

datetime
object

'2099/12/31'

(i.e., until now)

Latest date at which the news items were

published. Examples:

 737089 (Matlab datenum format)

 20180129 (yyyymmdd format)

 '20180129'

 '2018/01/29'

 '2018-01-29'

66 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

83 IQML User Guide

7.5 Streaming news headlines

The streaming news mechanism has two parts, just like streaming ticks (§6.1):

1. Request IQFeed to start sending a stream of news headlines. This is done by

using the 'news' action and setting a NumOfEvents parameter to a positive >1

value. You can limit the headlines to certain news source(s) using the Sources

parameter, and/or to certain symbol(s) using the Symbols parameter.

2. Later, whenever you wish to process the latest news headline(s), simply use

the 'news' action and NumOfEvents of -1 (minus one). This will return the

latest information (a data struct), without stopping the background streaming.

For example, let’s request 100 streaming headlines for Facebook and Apple:

IQML('news', 'Symbols','FB:AAPL', 'NumOfEvents',100)

This causes IQFeed to start sending news headlines to IQML in the background, up to

the specified NumOfEvents, without affecting normal Matlab processing. This

means that you can continue to work with Matlab, process and display information etc.

Headlines will only stream in the background in non-blocking mode. If you assign the

IQML command results to a variable, the request is treated as blocking and IQML will

wait for all the events to accumulate (or Timeout to occur), as described in §7.2:

IQML('news', 'NumOfEvents',100); % streaming, non-blocking

data = IQML('news', 'NumOfEvents',100); % blocking

NumOfEvents can be any number higher than 1 for streaming to work (a value of 1

is the standard snapshot news-headline request described in §7.2). To collect

streaming headlines endlessly, set NumOfEvents to the value inf. Note that in

Matlab, inf is a number (not a string), so do not enclose it in quotes ('inf').

The headlines are collected into an internal data buffer in IQML. Unlike streaming

quotes, all headlines, for all symbols, are collected in a single buffer. The buffer size

can be controlled using the MaxItems parameter, which has a default value of inf67.

This means that by default all the streaming headlines that affect the specified

symbols will be stored in the buffer and become accessible for later processing.68

If you set a higher value for MaxItems, then up to the specified number of latest

news headline items will be stored. For example, to store the latest 50 headlines:

IQML('news', 'NumOfEvents',100, 'MaxItems',50)

Note that using a large MaxItems increases memory usage, which could have an

adverse effect if you set a very large buffer size (many thousands) and/or streaming

for a large number of different securities.69

67 Note that this too is different from the streaming quotes mechanism, where the default MaxItems value is 1. Note that

MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)
68 This might have a memory and performance implication if you leave streaming news on for a long time, for a large number of

symbols. See the discussion of memory and performance implications further below.

69 Each news headline item uses 1-2KB of Matlab memory. During trading hours, there could be 10-20 headlines per minute for
all symbols (i.e., 1K headlines, or 1-2MB per hour, unless you limit Symbols to certain symbols). Limiting Symbols to certain

symbols and/or setting MaxItems to some finite value, ensures that memory usage and performance impact remain low.

84 IQML User Guide

Subsequent requests to retrieve the latest accumulated headlines buffer data, without

stopping the background streaming, should use NumOfEvents = -1 (minus one).

These requests return a Matlab data struct similar to the following:
>> data = IQML('news', 'NumOfEvents',-1)

data =

 Command: 'S,NEWSON'

 isActive: 1

 EventsToProcess: 100

 EventsProcessed: 13

 LatestEventDatenum: 737146.726041343

 LatestEventTimestamp: '20180327 17:25:29'

 DataType: 'news'

 ProcessType: 'stream'

 Sources: {}

 Symbols: {}

 BufferSize: 50

 Buffer: [13×1 struct]

 LatestData: [1×1 struct]

In the returned data struct, we can see the following fields:

 Command – the command sent to IQFeed.70

 isActive – a flag indicating whether headlines are currently being streamed.

When NumOfEvents ticks have been received, this flag is set to false (0).

 EventsToProcess – total number of streaming headlines requested (using the

NumOfEvents parameter).

 EventsProcessed – number of streaming headlines received. When

EventsProcessed >= EventsToProcess, streaming headlines are turned off and

isActive is set to false (0). Note that it is possible that EventsProcessed >

EventsToProcess, since it takes a while for the streaming cancellation request

to reach IQFeed and during this time a few additional items may have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp.

 LatestEventTimestamp – local timestamp (string format) when this headline

was received by IQML.

 DataType – always equal to 'news' for streaming headlines.

 ProcessType – always equal to 'stream' for streaming headlines.

 Sources – cell array of acceptable news sources, set by the Sources parameter.

Headline events from all other sources are ignored. When Sources is empty,

no headline is ignored based on its source.

 Symbols – cell array of acceptable symbols, set by the Symbols parameter.

Headline events that affect all other symbols are ignored. When Symbols is

empty, no headline is ignored based on its related symbol(s).

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest headline updates.

 LatestData – latest headline event received from IQFeed.

70 Note that this is not specific to symbols/sources: filtering based on symbol/source is done on the incoming headline messages.

85 IQML User Guide

To get the headline data, read the fields of the returned data struct, for example:

>> data.LatestData

ans =

 Source: 'BEN'

 ID: 21996096022

 Symbols: {'BZRatings' 'FB'}

 Timestamp: '20180326 083326'

 Text: 'Baird Maintains Outperform on Facebook Lowers Price Target to $210'

 Story: ''

Each headline has an associated timestamp, since different headlines are sent

separately and independently from IQFeed server.

By default, GetStory is set to false, resulting in empty data.LatestData.Story. To

automatically retrieve the full story text associated with each streamed headline, set

GetStory to true (see §7.2). In any case, it is always possible to retrieve individual

story texts using their headline ID (see §7.3).

Note: while data.LatestEventDatenum and data.LatestEventTimestamp are specified

in the local time-zone, data.LatestData.Timestamp is specified in the server’s time-zone.

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.71

To stop collecting streaming headlines for a security, simply send the request again,

this time with NumOfEvents=0.

You can specify one or more symbols for streaming, by specifying a colon-delimited

or cell-array list of symbols. If Symbols is specified, then any headline that does not

relate to one or more of the specified Symbols will be ignored (skipped). For example:
IQML('news', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('news', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

You can also specify meta-tags assigned by some news sources. For example, to limit

streaming headlines to “Benzinga Ratings” and anything related to Facebook or Apple:

IQML('news', 'Symbols','BZRatings:FB:AAPL', 'numOfEvents',6);

Note: if you omit the Symbols parameter in your IQML command, no filtering of

headlines based on affected symbols is performed, and all headlines will be collected.

Similarly, you can specify one or more news sources, by specifying a colon-delimited

or cell-array list of sources. If Sources is specified, then any headline that does not

originate from one of the specified Sources will be ignored and will not be recorded:

IQML('news', 'sources',{'DTN','CPR','BEN'}, 'numOfEvents',6);

IQML('news', 'sources','DTN:CPR:BEN', 'numOfEvents',6); % equivalent

71 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but one or more update

messages may already be on their way from IQFeed before streaming actually stops. These extra update messages are not

accumulated in the Buffer, but the latest of these messages will be reflected in LatestData field.

86 IQML User Guide

As before, if you omit the Sources parameter in your IQML command, no filtering of

headlines based on their source will be performed, and all headlines will be collected.

Here is a summary of the IQML parameters that affect streaming news headlines:

Parameter Data type Default Description

Symbol or

Symbols 72

colon-

delimited

string or

cell-array

of strings

''

(empty

string),

meaning

all

Limits the query to the specified symbols and

meta-tags only (or to all symbols, if empty).

Examples:

 'IBM'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

 'BZRatings:BZTradingIdeas'

Sources

colon-

delimited

string or

cell-array

of strings

''

(empty

string),

meaning

all

Limits the query to the specified news sources

only (or to all sources, if empty). Examples:

 'DTN'

 'DTN:CPR:BEN'

 {'DTN', 'CPR', 'BEN'}

NumOfEvents integer Inf

One of:

 inf – continuous endless streaming
headlines for the specified security

 N>1 – stream only N headlines

 1 – get only a single headline (default)

 0 – stop streaming headlines

 -1 – return the latest accumulated
headlines data while continuing to
stream new headlines data

MaxItems integer Inf

Number of streaming headlines stored in a

cyclic buffer. Once this number of headlines

has been received, the oldest headline is

discarded whenever a new headline arrives.

DataType string 'headline' Ignored – only headlines can be streamed

GetStory
logical

(true/false)
false

If false (default), only store the incoming

headline messages.

If true or 1, automatically fetch and store the

full story text for each incoming headline.

72 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

87 IQML User Guide

8 Lookup of symbols and codes

A list of symbols and lookup codes that match a specified set of criteria can be

retrieved using the 'lookup' and 'chain' actions. Various different lookups can be

requested, which differ by the DataType parameter.

8.1 Symbols lookup

To retrieve a list of symbols that match certain criteria, set the action to 'lookup',

DataType to 'symbols' and add one or more filtering criteria: Name, Description,

Market, SecType, SIC, and/or NAICS:
>> data = IQML('lookup', 'DataType','symbols', 'Name','IBM')

data =

 1086×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

>> data(1)

ans =

 Symbol: 'IBM'

 Description: 'INTERNATIONAL BUSINESS MACHINE'

 Market_ID: 7

 Market_Name: 'New York Stock Exchange (NYSE)'

 Sec_Type_ID: 1

 Sec_Type: 'Equity'

>> data(2)

ans =

 Symbol: 'IBMG'

 Description: 'ISHARES IBONDS SEP 2018 MUNI BOND'

 Market_ID: 11

 Market_Name: 'NYSE Archipelago (NYSE_ARCA)'

 Sec_Type_ID: 1

 Sec_Type: 'Equity'

>> data(9)

ans =

 Symbol: 'IBM1804E120'

 Description: 'IBM MAY 2018 C 120.00'

 Market_ID: 14

 Market_Name: 'OPRA System'

 Sec_Type_ID: 2

 Sec_Type: 'Index/Equity Option'

>> data(end)

ans =

 Symbol: 'IBZ18-IBM19'

 Description: '30 DAY INTERBANK CASH RATE DEC 18/JUN 19'

 Market_ID: 64

 Market_Name: 'ASX24 Commodities Exchange (ASXCM)'

 Sec_Type_ID: 10

 Sec_Type: 'Future Spread'

IQFeed returns a list of symbols whose symbol name contains (not necessarily begins

with) the term 'IBM', from different markets (exchanges) and different security types.

Note that the Name and Description filtering criteria are case-insensitive (so 'IBM',

'Ibm' and 'ibm' would all result in the same list of symbols), and also that they match

their string value anywhere within the corresponding asset field.

88 IQML User Guide

You can narrow-down the results by entering more-specific parameter values (e.g.

'IBM180' rather than 'IBM'), or by specifying additional filtering parameters. For

example, to filter the IBM list just to assets that include ‘business’ in their Description:

>> data = IQML('lookup', 'DataType','symbols', 'name','ibm', ...

 'Description','business')

data =

 8×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

>> data = struct2table(data)

data =

 8×6 table

Unlike the Name and Description (which match strings), the SIC and NAICS

parameters are numeric and match the beginning of the corresponding SIC/NAICS

sector/industry code. For example, the following query returns all assets that have

'inc' in their Description and belong to any sector whose SIC code begins with 83:73
>> data = IQML('lookup', 'DataType','symbols', 'Description','inc', 'SIC',83)

data =

 6×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

 SIC_ID

 SIC_Desc

>> data(1)

ans =

 Symbol: 'HQGE'

 Description: 'HQ GLOBAL ED INC'

 Market_ID: 3

 Market_Name: 'Nasdaq other OTC'

 Sec_Type_ID: 1

 Sec_Type: 'Equity'

 SIC_ID: 8331

 SIC_Desc: 'JOB TRAINING AND VOCATIONAL REHABILITATION SERVICES'

>> disp({data.Symbol; data.Description; data.SIC_ID; data.SIC_Desc}')

 'HQGE' 'HQ GLOBAL ED INC' [8331] 'JOB TRAINING AND ...'

 'KVIL' 'KIDVILLE INC' [8351] 'CHILD DAY CARE SERVICES'

 'DRWN' 'A CLEAN SLATE INC.' [8361] 'RESIDENTIAL CARE'

 'NVOS' 'NOVO INTEGRATED SCIENCES INC...' [8361] 'RESIDENTIAL CARE'

 'SPRV' 'SUPURVA HEALTHCARE GROUP INC...' [8361] 'RESIDENTIAL CARE'

 'TLIF' 'TOCCA LIFE HOLDINGS INC. COMM' [8361] 'RESIDENTIAL CARE'

73 In this example, the matching SIC codes were 8331 (for HQGE), 8351 (KVIL), and 8361 (DRWN, NVOS, SPRV and TLIF)

89 IQML User Guide

When you specify a SIC or NAICS filtering criteria, the result contains two

additional fields (either SIC_ID and SIC_Desc, or NAICS_ID and NAICS_Desc,

respectively), in addition to the standard fields (Symbol, Description, Market_ID,

Market_Name, Sec_Type_ID and Sec_Type).74

Note that it is possible that not all the requested symbols will be received before

IQML’s timeout (default value: 5 secs) returns the results:75

>> data = IQML('lookup', 'DataType','symbols', 'Name','GOOG')

Warning: IQML timeout: only partial data is returned: the Timeout parameter

should be set to a value larger than 5

data =

 3848×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

To control the maximal duration that IQML will wait for the data, set the Timeout

parameter. For example, to wait up to 30 secs to collect the complete list of symbols:

>> data = IQML('lookup', 'DataType','symbols', 'Name','GOOG', 'timeout',30)

data =

 6812×1 struct array with fields:

 ...

Naturally, it is quite possible that no symbol is found that matches the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','symbols', 'Description','inc', 'NAICS',83)

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

An error message will result if you try to specify both SIC and NAICS filtering

criteria – only one (or none) of them is permitted in a lookup query:

>> data = IQML('lookup', 'DataType','symbols', 'NAICS',1234, 'SIC',83)

You can specify either SIC or NAICS parameter, but not both of them, in a

symbol lookup query

An error message will also result if you do not specify at least one of the filtering

criteria Name, Description, SIC, NAICS:

>> data = IQML('lookup', 'DataType','symbols')

Either Name, Description, SIC or NAICS parameters must be specified in a

symbol lookup query

74 The description of the various numeric codes for Market_ID, Sec_Type_ID, SIC and NAICS can be fetched separately – see

§8.3-§8.6 below for details
75 IQML can process ~1000 symbols per second; coupled with the network and server-processing latencies we can expect ~4000

symbols to accumulate before the default timeout of 5 seconds kicks in.

90 IQML User Guide

You can filter the results based on one or more markets, and/or security types, using

the Market and SecType parameters (see §8.3, §8.4 for valid values). For example:
>> struct2table(IQML('lookup', 'datatype','symbols', 'name','GOOG', 'SecType','Equity'))

ans =

 2×6 table

 Symbol Description Market_ID Market_Name Sec_Type_ID Sec_Type

 _______ ______________________ _________ ________________ ___________ ________

 'GOOG' 'ALPHABET INC CLASS C' 21 'Nasdaq Global Select Market (NGSM)' 1 'Equity'

 'GOOGL' 'ALPHABET INC CLASS A' 21 'Nasdaq Global Select Market (NGSM)' 1 'Equity'

>> data = IQML('lookup', 'datatype','symbols', 'name','GOOG', 'Market','NGSM');

Multiple Markets and/or SecTypes76 can be specified using a cell array. For

example, to get the list of all active (non-expired) GOOG equities and options:77

>> data = IQML('lookup', 'datatype','symbols', 'name','GOOG', ...

 'SecTypes',{'Equity','IEOption'}, 'Timeout',20)

data =

 8056×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

You can specify both Market(s) and SecType(s) to get an even more granular

filtering. For example, to lookup only future options traded on CBOT:

>> data = IQML('lookup', 'datatype','symbols', 'name',symbol, ...

 'SecTypes','FOption', ‘Markets','CBOT');

Similarly, to lookup VIX (volatility) futures and future-spreads (but not combined

future volume OI symbols such as @VX1.OI.Z) on the CBOE Futures Exchange (CFE):

>> data = IQML('lookup', 'datatype','symbols', 'name','vx', ...

 'SecTypes',{'Future','Spread'}, 'Markets','CFE');

If you specify one or more invalid Market(s) or SecType(s), you will get an error.

For example, a typical error is to specify a SecType of 'Option' instead of 'IEOption':

>> d = IQML('lookup','datatype','symbols','name','GOOG','SecTypes',{'Equity','Option'})

Invalid SecType(s) "OPTION". Allowed values: ARGUS, ARGUSFC, BONDS, CALC,

COMBINED_FOPTION, COMBINED_FUTURE, COMM3, EQUITY, FAST_RACKS, FOPTION,

FOPTION_IV, FOREX, FORWARD, FUTURE, ICSPREAD, IEOPTION, INDEX, ISO, JACOBSEN,

MKTRPT, MKTSTATS, MONEY, MUTUAL, NP_CAPACITY, NP_FLOW, NP_POWER,

PETROCHEMWIRE, PRECMTL, RACKS, RFSPOT, SNL_ELEC, SNL_NG, SPOT, SPREAD,

STRATSPREAD, STRIP, SWAPS, TREASURIES

Instead of Market name(s) or SecType name(s), you can specify their corresponding

numeric codes,78 as a scalar integer value or as a numeric array of integers:

>> data = IQML('lookup','datatype','symbols','name','GOOG','SecTypes',1);

>> data = IQML('lookup','datatype','symbols','name','GOOG','SecTypes',[1,2]);

>> data = IQML('lookup','datatype','symbols','name','GOOG','Markets',21);

>> data = IQML('lookup','datatype','symbols','name','GOOG',’Markets',[21,14]);

76 Note that you can use either Market or Markets as the parameter name, and similarly, either SecType or SecTypes.
77 IQFeed only returns the symbols of active (non-expired) options/futures. See §8.2 below for details about expired contracts.

78 See §8.3 and §8.4 for the list of numeric codes that correspond to each market and security type

91 IQML User Guide

Here is a summary of the IQML parameters that affect symbols lookup:

Parameter Data type Default Description

Name string

''

(empty

string)

Limits the query to assets that contain the

specified string in their symbol name (case

insensitive, anywhere within the symbol name)

Description string

''

(empty

string)

Limits the query to assets that contain the

specified string in their description (case

insensitive, anywhere within the description)

Market or

Markets 79

integer,

numeric array,

string, or cell-

array of strings

[]

(empty)

Limits the query to assets that belong to the

specified market code(s) (scalar integer or

numeric array), or market name(s) (case-

insensitive string or cell-array of strings).

See §8.3 for details on valid values.

SecType or

SecTypes 80

integer,

numeric array,

string, or cell-

array of strings

[]

(empty)

Limits the query to assets that have the

specified security type code(s) (scalar integer

or numeric array), or security type name(s)

(case-insensitive string or cell-array of strings).

See §8.4 for details on valid values.

SIC integer
[]

(empty)

Limits the query to assets that belong to the

specified SIC sector/industry

(matches the beginning of the SIC number)

See §8.5 for details on valid values.

NAICS integer
[]

(empty)

Limits the query to assets that belong to the

specified NAICS sector/industry

(matches the beginning of the NAICS number)

See §8.6 for details on valid values.

Timeout number 5.0
Max # of seconds to wait for incoming data

(0-9000, where 0 means infinite)

79 In IQML, the Market and Markets parameters are synonymous – you can use either of them, in any capitalization

80 In IQML, the SecType and SecTypes parameters are synonymous – you can use either of them, in any capitalization

92 IQML User Guide

8.2 Options/futures chain

To retrieve a list of symbols that belong to a certain options/futures chain and match

certain criteria, set the action to 'chain'; DataType to one of 'options' (default),

'futures', 'foptions' (future options), or 'spreads'; Symbol to the underlying contract’s

symbol; and then add optional filtering criteria. For example:81

>> symbols = IQML('chain', 'Symbol','GOOG')' % options chain for GOOG

symbols =

 1×1454 cell array

 Columns 1 through 4

 'GOOG1803H1000' 'GOOG1803H1010' 'GOOG1803H1020' 'GOOG1803H1030'

 Columns 5 through 8

 'GOOG1803H1040' 'GOOG1803H1050' 'GOOG1803H1055' 'GOOG1803H1060'

 Columns 9 through 12

 'GOOG1803H1065' 'GOOG1803H1070' 'GOOG1803H1075' 'GOOG1803H1077.5'

 ...

All chain queries support the Symbol, Months, Years, and NearMonths parameters

(filtering criteria – see table below). The options-related chain queries (DataType=

'options' or 'foptions') also support a Side parameter ('cp' (default), 'c' or 'p' – to limit

the reported options to calls and/or puts). In addition, the index/equity options chain

query (DataType='options') also supports IncludeBinary, MinStrike/MaxStrike

and NumInMoney/NumOutOfMoney filtering parameters. For example:

% Report GOOG options having strike price between $1000-$1010 in next 4 months

>> symbols = IQML('chain', 'symbol','goog', 'NearMonths',4, ...

 'MinStrike',1000, 'MaxStrike',1010)'

symbols =

 1×58 cell array

 Columns 1 through 4

 'GOOG1803H1000' 'GOOG1803H1010' 'GOOG1810H1000' 'GOOG1810H1005'

 Columns 5 through 8

 'GOOG1810H1010' 'GOOG1813G1000' 'GOOG1813G1002.5' 'GOOG1813G1005'

 Columns 9 through 12

 'GOOG1813G1007.5' 'GOOG1813G1010' 'GOOG1817H1000' 'GOOG1817H1005'

 ...

Note that if you filter by MinStrike and/or MaxStrike, you cannot also filter by

NumInMoney/ NumOutOfMoney (and vice versa):

>> IQML('chain', 'symbol','FB','NumInMoney',2,'NumOutOfMoney',2,'MinStrike',90)

You cannot specify both a strike range and number of contracts in/out of money

in 'chain' query - choose only one set

Similarly, you can only specify one of the Months, NearMonths parameters, not both:

>> IQML('chain', 'symbol','FB', 'Months',2:6, 'NearMonths',3)

Either the Months or the NearMonths parameter can be specified, but not both,

in a 'chain' query

If no symbols match the specified criteria, or if you do not have the necessary market

permissions (subscription), then the IQML query will return an empty cell array:

>> symbols = IQML('chain', 'datatype','spreads','symbol','C','years',2010:2019)

symbols =

 0×0 empty cell array

81 The option contract names in IQFeed use a variant of the OPRA OSI format. See

http://www.iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support%C2%A7ion=guide&web=iqfeed
&guide=options&web=IQFeed&type=stock. Note that the name might change when corporate actions (such as splits) occur,

for example: BBD1918A15 vs. BBD11918A15.45 (http://forums.iqfeed.net/index.cfm?page=topic&topicID=5495).

http://www.iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support%C2%A7ion=guide&web=iqfeed&guide=options&web=IQFeed&type=stock
http://www.iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support%C2%A7ion=guide&web=iqfeed&guide=options&web=IQFeed&type=stock
http://forums.iqfeed.net/index.cfm?page=topic&topicID=5495

93 IQML User Guide

Note: IQFeed only returns active (non-expired) contracts. IQFeed does not currently

provide similar lookup functionality for expired options/futures. However, a [huge] static

text file containing a [very long] list of expired symbols is available for download.82

If you set the optional WhatToShow parameter to 'quotes', you will receive an array

of structs that contain the corresponding latest (top-of-market) quotes data for the

corresponding symbols. For example:

>> data = IQML('chain', 'symbol','GOOG', 'NearMonths',4, ...

 'MinStrike',1000, 'MaxStrike',1010, ...

 'WhatToShow','quotes')

data =

 58×1 struct array with fields:

 Symbol

 Most_Recent_Trade

 Most_Recent_Trade_Size

 Most_Recent_Trade_Time

 Most_Recent_Trade_Market_Center

 Total_Volume

 Bid

 Bid_Size

 Ask

 Ask_Size

 Open

 High

 Low

 Close

 ...

>> data(1)

ans =

 struct with fields:

 Symbol: 'GOOG1803H1000'

 Most_Recent_Trade: 120

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '15:57:12.930497'

 Most_Recent_Trade_Market_Center: 156

 Total_Volume: 0

 Bid: 140.5

 Bid_Size: 3

 Ask: 150.1

 Ask_Size: 1

 Open: []

 High: []

 Low: []

 Close: 120

 Message_Contents: 'Cbacv'

 Message_Description: 'Last qualified trade; A bid update occurred;

An ask update occurred; A close declaration occurred; A volume update occurred'

 Most_Recent_Trade_Conditions: 1

 Trade_Conditions_Description: 'Normal Trade'

 Most_Recent_Market_Name: 'MIAX PEARL Options exchange'

>> symbols = {data.Symbol}

symbols =

 1×58 cell array

 Columns 1 through 4

 'GOOG1803H1000' 'GOOG1803H1010' 'GOOG1810H1000' 'GOOG1810H1005'

 Columns 5 through 8

 'GOOG1810H1010' 'GOOG1813G1000' 'GOOG1813G1002.5' 'GOOG1813G1005'

 ...

82 ftp://www.dtniq.com/beta/IEOPTION.zip. See http://forums.iqfeed.net/index.cfm?page=topic&topicID=3326 for details.

ftp://www.dtniq.com/beta/IEOPTION.zip
http://forums.iqfeed.net/index.cfm?page=topic&topicID=3326

94 IQML User Guide

Note: if you request quotes for multiple chain symbols, especially if you set UseParallel

to true, you might reach your IQFeed account’s symbols-limit (MaxSymbols; see §9.3).

In such cases, IQFeed-generated error messages will be displayed on the Matlab console:

Level1 symbol limit reached - symbol 'GOOG2019R600' not serviced!

Also note that some of these structs (especially for out-of-money contracts) may contain

empty/invalid data, since their corresponding contract was never traded. For example:

>> data(7)

ans =

 struct with fields:

 Symbol: 'GOOG1813G1002.5'

 Most_Recent_Trade: []

 Most_Recent_Trade_Size: []

 Most_Recent_Trade_Time: []

 Most_Recent_Trade_Market_Center: []

 Total_Volume: 0

 Bid: 133.4

 Bid_Size: 2

 Ask: 140.2

 Ask_Size: 1

 Open: []

 High: []

 Low: []

 Close: []

 Message_Contents: 'bav'

 Message_Description: 'A bid update occurred; An ask update

occurred; A volume update occurred'

 Most_Recent_Trade_Conditions: 1

 Trade_Conditions_Description: 'Normal Trade'

 Most_Recent_Market_Name: ''

For this reason, you should be careful when concatenating the struct array’s data into

numeric arrays. In this example, only 40 of the 58 contracts had a Close price, so

concatenating into a numeric array results in an array that only has 40 data items:

>> [data.Close]

ans =

 Columns 1 through 8

 120 130.7 140.67 131.99 150.1 138.8 139.5 99.47

 Columns 9 through 16

 103.28 130.9 179.5 137.5 190.17 89.3 145 3.84

 Columns 17 through 24

 6 7.5 5.3 7.14 0.3 0.3 1.1 1.32

 Columns 25 through 32

 1.05 5.56 9.9 6.35 0.67 0.75 1.23 10

 Columns 33 through 40

 15.43 16.33 27.21 32.3 33.4 6.49 2.5 3.37

…instead, it is better in most cases to use cell arrays, where we can see empty cells:

>> {data.Close}

ans =

 1×58 cell array

 Columns 1 through 8

 [120] [] [130.7] [] [] [140.67] [] []

 Columns 9 through 16

 [] [] [131.99] [150.1] [138.8] [139.5] [] [99.47]

 Columns 17 through 24

 [] [103.28] [130.9] [179.5] [137.5] [190.17] [] [89.3]

 Columns 25 through 33

 ...

95 IQML User Guide

Similarly, set WhatToShow='fundamental' to get the fundamental data for all

symbols in the requested chain. For example:

>> data = IQML('chain', 'symbol','GOOG', 'NearMonths',4, ...

 'MinStrike',1000, 'MaxStrike',1010, ...

 'WhatToShow','fundamental')

data =

 58×1 struct array with fields:

 Symbol

 Exchange_ID

 PE

 Average_Volume

 x52_Week_High

 x52_Week_Low

 Calendar_Year_High

 Calendar_Year_Low

 ...

>> data(1)

ans =

 struct with fields:

 Symbol: 'GOOG1803H1000'

 Exchange_ID: 'E'

 PE: []

 Average_Volume: []

 x52_Week_High: 120

 x52_Week_Low: 120

 Calendar_Year_High: []

 Calendar_Year_Low: []

 ...

 Fiscal_Year_End: []

 Company_Name: 'GOOG AUG 2018 C 1000.00'

 ...

 Expiration_Date: '08/03/2018'

 Strike_Price: 1000

 NAICS: []

 Exchange_Root: []

 Option_Premium_Multiplier: 100

 Option_Multiple_Deliverable: 0

 Price_Format_Description: 'Two decimal places'

 Exchange_Description: 'Euronext Index Derivatives (ENID)'

 Listed_Market_Description: 'OPRA System'

 Security_Type_Description: 'Index/Equity Option'

 SIC_Description: ''

 NAICS_Description: ''

>> [data.Strike_Price]

ans =

 Columns 1 through 8

 1000 1010 1000 1005 1010 1000 1002.5 1005

 Columns 9 through 16

 1007.5 1010 1000 1005 1010 1000 1002.5 1005

 Columns 17 through 24

 1007.5 1010 1000 1005 1010 1000 1005 1010

 Columns 25 through 32

 1000 1005 1010 1000 1010 1000 1010 1000

 Columns 33 through 40

 1005 1010 1000 1002.5 1005 1007.5 1010 1000

 Columns 41 through 48

 1005 1010 1000 1002.5 1005 1007.5 1010 1000

 Columns 49 through 56

 1005 1010 1000 1005 1010 1000 1005 1010

 Columns 57 through 58

 1000 1010

96 IQML User Guide

Here is a summary of the IQML parameters that affect chain symbols lookup:

Parameter Data type Default Description

Symbol string
''

must be set!

Symbol name of the underlying contract.
This is a mandatory parameter – it must be set.
Note: Multiple symbols are NOT supported.

DataType string 'options'

One of:
 'options' (default) – on index/equity
 'future'
 'spread' – future calendar spreads
 'foptions' – options on future

Side string

'cp'

(meaning

both calls

and puts)

One of:
 'cp' (default) – both calls and puts
 'c' – calls only
 'p' – puts only

Only relevant if DataType='options'/'foptions'

WhatToShow string 'symbols'

One of:
 'symbols' (default) – list of symbols in chain
 'quotes' – return the latest quotes data
 'fundamental' – return fundamental data

Months various
[] meaning

all

One of:
 Numeric month value(s) between 1-12

(e.g.: 4, 2:5, [1,4,7])
 English month name (e.g. 'August', 'Apr')
 English month names in cell array (e.g.

{'Apr', 'July', 'September', 'Dec'})
 Financial month codes from the list

FGHJKMNQUVXZ (e.g. 'JKMN')
Cannot be specified together with NearMonths

NearMonths
integer

(0-99)
[]

Number of nearby contract months to report.83

Cannot be specified together with Months.

Years
integer

scalar/array
[] meaning

current year
One or more years (e.g. 2013:2019).
Default = current year.

IncludeBinary logical true or 1
If true (default), then binary options are
reported, otherwise not. This parameter is
only relevant when DataType='options'.

MinStrike number []
Only report options having a higher strike price;
only relevant when DataType='options'.

MaxStrike number []
Only report options having a lower strike price;
only relevant when DataType='options'.

NumInMoney integer []
Only report this number of options in the
money; only relevant if DataType='options'.

NumOutOf

Money
integer []

Only report this number of options out of
money; only relevant if DataType='options'.

UseParallel
logical

(true/false)
false

If set to true or 1, then querying chain quotes
will be done in parallel if possible (see §3.6).

Note: Options/futures chain lookup is only available in the Professional IQML license.

83 IQFeed officially supports only 0-4, but in practice higher values are accepted, reporting contracts that expire farther out in the

future (for example, 2.5 years for SPX). Note that this is undocumented IQFeed behavior, so specifying a value of 5 or higher

may possibly not work properly (or at all) in certain cases. See http://forums.iqfeed.net/index.cfm?page=topic&topicID=5508

http://forums.iqfeed.net/index.cfm?page=topic&topicID=5508

97 IQML User Guide

8.3 Markets lookup

To retrieve a list of markets (exchanges), set the action to 'lookup' and DataType to

'markets':

>> data = IQML('lookup', 'DataType','markets')

data =

 474×1 struct array with fields:

 id

 name

 description

 groupId

 groupName

>> data(1)

ans =

 id: 1

 name: 'NGM'

 description: 'Nasdaq Global Market'

 groupId: 5

 groupName: 'NASDAQ'

>> data(2)

ans =

 id: 2

 name: 'NCM'

 description: 'National Capital Market'

 groupId: 5

 groupName: 'NASDAQ'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions:

>> struct2cell(data)'

ans =

 9×5 cell array

 [1] 'NGM' 'Nasdaq Global Market' [5] 'NASDAQ'

 [2] 'NCM' 'National Capital Market' [5] 'NASDAQ'

 [3] 'OTC' 'Nasdaq other OTC' [5] 'NASDAQ'

 [4] 'OTCBB' 'Nasdaq OTC Bulletin Board' [5] 'NASDAQ'

 [5] 'NASDAQ' 'Nasdaq' [5] 'NASDAQ'

 [6] 'NYSE_AMERICAN' 'NYSE American (Equities and Bonds)' [6] 'NYSE_AMERICAN'

 [7] 'NYSE' 'New York Stock Exchange' [7] 'NYSE'

 [8] 'CHX' 'Chicago Stock Exchange' [0] 'NONE'

 [9] 'PHLX' 'Philadelphia Stock Exchange' [0] 'NONE'

 ...

>> struct2table(data)

ans =

 9×5 table

 id name description groupId groupName

 __ _______________ ____________________________________ _______ _____________

 1 'NGM' 'Nasdaq Global Market' 5 'NASDAQ'

 2 'NCM' 'National Capital Market' 5 'NASDAQ'

 3 'OTC' 'Nasdaq other OTC' 5 'NASDAQ'

 4 'OTCBB' 'Nasdaq OTC Bulletin Board' 5 'NASDAQ'

 5 'NASDAQ' 'Nasdaq' 5 'NASDAQ'

 6 'NYSE_AMERICAN' 'NYSE American (Equities and Bonds)' 6 'NYSE_AMERICAN'

 7 'NYSE' 'New York Stock Exchange' 7 'NYSE'

 8 'CHX' 'Chicago Stock Exchange' 0 'NONE'

 9 'PHLX' 'Philadelphia Stock Exchange' 0 'NONE'

98 IQML User Guide

You can narrow-down the results by specifying the Name and/or the Description

filtering parameters. For example, let’s display only the markets that have ‘Nasdaq’ in

their Description:

>> data = IQML('lookup', 'DataType','markets', 'Description','Nasdaq')

data =

 10×1 struct array with fields:

 id

 name

 description

 groupId

 groupName

>> disp(struct2cell(data)')

 [1] 'NGM' 'Nasdaq Global Market' [5] 'NASDAQ'

 [3] 'OTC' 'Nasdaq other OTC' [5] 'NASDAQ'

 [4] 'OTCBB' 'Nasdaq OTC Bulletin Board' [5] 'NASDAQ'

 [5] 'NASDAQ' 'Nasdaq' [5] 'NASDAQ'

 [15] 'NASD_ADF' 'Nasdaq Alternate Display facility' [5] 'NASDAQ'

 [19] 'NTRF' 'Nasdaq Trade Reporting Facility' [5] 'NASDAQ'

 [21] 'NGSM' 'Nasdaq Global Select Market' [5] 'NASDAQ'

 [105] 'PK_NASDAQ' 'Pink Sheets - NASDAQ Listed' [90] 'PK_SHEETS'

 [134] 'N2EX' 'NASDAQ OMX-Nord Pool' [134] 'N2EX'

 [139] 'NFX' 'NASDAQ OMX Futures' [139] 'NFX'

Naturally, it is quite possible that no markets exist that match the requested criteria. In

such a case, the result will be empty (and cannot be displayed using Matlab’s

struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','markets', 'Name','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

Here is a summary of the IQML parameters that affect markets lookup:

Parameter Data type Default Description

Name string

''

(empty

string)

Limits the query to markets that contain the

specified string in their name or groupName

(case insensitive, anywhere within the name)

Description string

''

(empty

string)

Limits the query to markets that contain the

specified string in their description (case

insensitive, anywhere within the description)

99 IQML User Guide

8.4 Security types lookup

To retrieve a list of security types, set action to 'lookup' and DataType to 'sectypes':

>> data = IQML('lookup', 'DataType','sectypes')

data =

 38×1 struct array with fields:

 id

 name

>> data(1)

ans =

 id: 1

 name: 'EQUITY'

 description: 'Equity'

>> data(2)

ans =

 id: 2

 name: 'IEOPTION'

 description: 'Index/Equity Option'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions:

>> disp(struct2cell(data)')

 [1] 'EQUITY' 'Equity'

 [2] 'IEOPTION' 'Index/Equity Option'

 [3] 'MUTUAL' 'Mutual Fund'

 [4] 'MONEY' 'Money Market Fund'

 [5] 'BONDS' 'Bond'

 [6] 'INDEX' 'Index'

 [7] 'MKTSTATS' 'Market Statistic'

 [8] 'FUTURE' 'Future'

 [9] 'FOPTION' 'Future Option'

 [10] 'SPREAD' 'Future Spread'

 [11] 'SPOT' 'Spot'

 [12] 'FORWARD' 'Forward'

 [13] 'CALC' 'DTN Calculated Statistic'

 [14] 'STRIP' 'Calculated Future Strip'

 [16] 'FOREX' 'Foreign Monetary Exchange'

 [17] 'ARGUS' 'Argus Energy'

 [18] 'PRECMTL' 'Precious Metals'

 [19] 'RACKS' 'Racks Energy'

 [20] 'RFSPOT' 'Refined Fuel Spot'

 [21] 'ICSPREAD' 'Inter-Commodity Future Spread'

 [22] 'STRATSPREAD' 'Strategy Spread'

 [23] 'TREASURIES' 'Treasuries'

 [24] 'SWAPS' 'Interest Rate Swap'

 [25] 'MKTRPT' 'Market Reports'

 [26] 'SNL_NG' 'SNL Natural Gas'

 [27] 'SNL_ELEC' 'SNL Electricity'

 [28] 'NP_CAPACITY' 'Nord Pool-N2EX Capacity'

 [29] 'NP_FLOW' 'Nord Pool-N2EX Flow'

 [30] 'NP_POWER' 'Nord Pool-N2EX Power Prices'

 [31] 'COMM3' 'Commodity 3'

 [32] 'JACOBSEN' 'The Jacobsen'

 [33] 'ISO' 'Independent Systems Operator Data (Genscape)'

 [34] 'FAST_RACKS' 'Fast Racks (Racks On Wheels)'

 [35] 'COMBINED_FUTURE' 'Combined Future Volume OI'

 [36] 'COMBINED_FOPTION' 'Combined FOption Volume OI'

 [37] 'ARGUSFC' 'Argus Forward Curve'

 [38] 'PETROCHEMWIRE' 'PetroChemWire'

 [39] 'FOPTION_IV' 'FOption Implied Volatility'

100 IQML User Guide

>> disp(struct2table(data))

 id name description

 __ __________________ __

 1 'EQUITY' 'Equity'

 2 'IEOPTION' 'Index/Equity Option'

 3 'MUTUAL' 'Mutual Fund'

 4 'MONEY' 'Money Market Fund'

 5 'BONDS' 'Bond'

 6 'INDEX' 'Index'

 7 'MKTSTATS' 'Market Statistic'

 8 'FUTURE' 'Future'

 9 'FOPTION' 'Future Option'

 10 'SPREAD' 'Future Spread'

 11 'SPOT' 'Spot'

 12 'FORWARD' 'Forward'

 ...

You can narrow-down the results by specifying the Name and/or the Description

filtering parameters. For example, let’s display only security types that have ‘Option’

in their Description:

>> struct2table(IQML('lookup', 'DataType','sectypes', 'Description','option'))

ans =

 4×3 table

 id name description

 __ __________________ ____________________________

 2 'IEOPTION' 'Index/Equity Option'

 9 'FOPTION' 'Future Option'

 36 'COMBINED_FOPTION' 'Combined FOption Volume OI'

 39 'FOPTION_IV' 'FOption Implied Volatility'

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','sectypes', 'Name','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

Here is a summary of the IQML parameters that affect security types lookup:

Parameter Data type Default Description

Name string

''

(empty

string)

Limits the query to secTypes that contain the

specified string in their name

(case insensitive, anywhere within the name)

Description string

''

(empty

string)

Limits the query to secTypes that contain the

specified string in their description (case

insensitive, anywhere within the description)

101 IQML User Guide

8.5 SIC codes lookup

To retrieve a list of SIC sectors/industries, set action to 'lookup' and DataType to 'SIC':

>> data = IQML('lookup', 'DataType','SIC')

data =

 1009×1 struct array with fields:

 id

 description

>> data(1)

ans =

 id: 111

 description: 'WHEAT'

>> data(2)

ans =

 id: 112

 description: 'RICE'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions:

>> disp(struct2cell(data)')

 [111] 'WHEAT'

 [112] 'RICE'

 [115] 'CORN'

 [116] 'SOYBEANS'

 [119] 'CASH GRAINS, NOT ELSEWHERE CLASSIFIED'

 [131] 'COTTON'

 [132] 'TOBACCO'

 [133] 'SUGARCANE AND SUGAR BEETS'

 [134] 'IRISH POTATOES'

 [139] 'FIELD CROPS, EXCEPT CASH GRAINS, NOT ELSEWHERE CLASSIFIED'

 [161] 'VEGETABLES AND MELONS'

 [171] 'BERRY CROPS'

 [172] 'GRAPES'

 [173] 'TREE NUTS'

 [174] 'CITRUS FRUITS'

 [175] 'DECIDUOUS TREE FRUITS'

 [179] 'FRUITS AND TREE NUTS, NOT ELSEWHERE CLASSIFIED'

 ...

>> disp(struct2table(data))

 id description

 ___ ___

 111 'WHEAT'

 112 'RICE'

 115 'CORN'

 116 'SOYBEANS'

 119 'CASH GRAINS, NOT ELSEWHERE CLASSIFIED'

 131 'COTTON'

 132 'TOBACCO'

 133 'SUGARCANE AND SUGAR BEETS'

 134 'IRISH POTATOES'

 139 'FIELD CROPS, EXCEPT CASH GRAINS, NOT ELSEWHERE CLASSIFIED'

 161 'VEGETABLES AND MELONS'

 171 'BERRY CROPS'

 172 'GRAPES'

 173 'TREE NUTS'

 174 'CITRUS FRUITS'

 175 'DECIDUOUS TREE FRUITS'

 179 'FRUITS AND TREE NUTS, NOT ELSEWHERE CLASSIFIED'

 ...

102 IQML User Guide

You can narrow-down the results by specifying the Description filtering parameter.

For example, let’s display only security types that have ‘Oil’ in their Description:

>> struct2table(IQML('lookup', 'DataType','SIC', 'Description','oil'))

ans =

 22×2 table

 id description

 ____ ___

 251 'BROILER, FRYER, AND ROASTER CHICKENS'

 711 'SOIL PREPARATION SERVICES'

 1381 'DRILLING OIL AND GAS WELLS'

 1382 'OIL AND GAS FIELD EXPLORATION SERVICES'

 1389 'OIL AND GAS FIELD SERVICES, NOT ELSEWHERE CLASSIFIED'

 2074 'COTTONSEED OIL MILLS'

 2075 'SOYBEAN OIL MILLS'

 2076 'VEGETABLE OIL MILLS, EXCEPT CORN, COTTONSEED, AND SOYBEAN'

 2077 'ANIMAL AND MARINE FATS AND OILS'

 2079 'SHORTENING, TABLE OILS, MARGARINE, AND OTHER EDIBLE FATS AND OILS'

 2673 'PLASTICS, FOIL, AND COATED PAPER BAGS'

 2843 'SURFACE ACTIVE AGENTS, FINISHING AGENTS, SULFONATED OILS, AND ASS'

 2844 'PERFUMES, COSMETICS, AND OTHER TOILET PREPARATIONS'

 2992 'LUBRICATING OILS AND GREASES'

 3353 'ALUMINUM SHEET, PLATE, AND FOIL'

 3443 'FABRICATED PLATE WORK (BOILER SHOPS)'

 3497 'METAL FOIL AND LEAF'

 3532 'MINING MACHINERY AND EQUIPMENT, EXCEPT OIL AND GAS FIELD MACHINER'

 3533 'OIL AND GAS FIELD MACHINERY AND EQUIPMENT'

 3677 'ELECTRONIC COILS, TRANSFORMERS, AND OTHER INDUCTORS'

 5983 'FUEL OIL DEALERS'

 6792 'OIL ROYALTY TRADERS'

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','SIC', 'Description','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

Here is a summary of the IQML parameters that affect SIC codes lookup:

Parameter Data type Default Description

Description string

''

(empty

string)

Limits the query to SIC entries that contain the

specified string in their description (case

insensitive, anywhere within the description)

103 IQML User Guide

8.6 NAICS codes lookup

To retrieve a list of NAICS sectors/industries, set the action to 'lookup' and DataType

to 'NAICS':
>> data = IQML('lookup', 'DataType','NAICS')

data =

 1175×1 struct array with fields:

 id

 description

>> data(1)

ans =

 id: 111110

 description: 'Soybean Farming'

>> data(2)

ans =

 id: 111120

 description: 'Oilseed (except Soybean) Farming'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions:

>> disp(struct2cell(data)')

 [111110] 'Soybean Farming'

 [111120] 'Oilseed (except Soybean) Farming'

 [111130] 'Dry Pea and Bean Farming'

 [111140] 'Wheat Farming'

 [111150] 'Corn Farming'

 [111160] 'Rice Farming'

 [111191] 'Oilseed and Grain Combination Farming'

 [111199] 'All Other Grain Farming'

 [111211] 'Potato Farming'

 [111219] 'Other Vegetable (except Potato) and Melon Farming'

 [111310] 'Orange Groves'

 [111320] 'Citrus (except Orange) Groves'

 [111331] 'Apple Orchards'

 [111332] 'Grape Vineyards'

 [111333] 'Strawberry Farming'

 [111334] 'Berry (except Strawberry) Farming'

 [111335] 'Tree Nut Farming'

 ...

>> disp(struct2table(data))

 id description

 ______ ___

 111110 'Soybean Farming'

 111120 'Oilseed (except Soybean) Farming'

 111130 'Dry Pea and Bean Farming'

 111140 'Wheat Farming'

 111150 'Corn Farming'

 111160 'Rice Farming'

 111191 'Oilseed and Grain Combination Farming'

 111199 'All Other Grain Farming'

 111211 'Potato Farming'

 111219 'Other Vegetable (except Potato) and Melon Farming'

 111310 'Orange Groves'

 111320 'Citrus (except Orange) Groves'

 111331 'Apple Orchards'

 111332 'Grape Vineyards'

 111333 'Strawberry Farming'

 111334 'Berry (except Strawberry) Farming'

 111335 'Tree Nut Farming'

 ...

104 IQML User Guide

You can narrow-down the results by specifying the Description filtering parameter.

For example, let’s display only security types that have ‘Oil’ in their Description:

>> struct2table(IQML('lookup', 'DataType','NAICS', 'Description','oil'))

ans =

 20×2 table

 id description

 ______ __

 111120 'Oilseed (except Soybean) Farming'

 111191 'Oilseed and Grain Combination Farming'

 112320 'Broilers and Other Meat Type Chicken Production'

 115112 'Soil Preparation, Planting, and Cultivating'

 213111 'Drilling Oil and Gas Wells'

 213112 'Support Activities for Oil and Gas Operations'

 237120 'Oil and Gas Pipeline and Related Structures Construction'

 311223 'Other Oilseed Processing'

 311225 'Fats and Oils Refining and Blending'

 322225 'Laminated Aluminum Foil Manufacturing for Flexible Packaging Uses'

 324191 'Petroleum Lubricating Oil and Grease Manufacturing'

 325620 'Toilet Preparation Manufacturing'

 331315 ' Aluminum Sheet, Plate, and Foil Manufacturing'
84

 332410 'Power Boiler and Heat Exchanger Manufacturing'

 333132 'Oil and Gas Field Machinery and Equipment Manufacturing'

 334416 'Electronic Coil, Transformer, and Other Inductor Manufacturing'

 423810 'Construction and Mining (except Oil Well) Machinery and Equipment…'

 454311 'Heating Oil Dealers'

 486110 'Pipeline Transportation of Crude Oil'

 811191 'Automotive Oil Change and Lubrication Shops'

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','NAICS', 'Description','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

Here is a summary of the IQML parameters that affect NAICS codes lookup:

Parameter Data type Default Description

Description string

''

(empty

string)

Limits the query to NAICS entries that contain

the specified string in their description (case

insensitive, anywhere within the description)

84 The extra space at the beginning of the description here is a typo in IQFeed’s data

105 IQML User Guide

8.7 Trade condition codes lookup

To retrieve a list of trade condition codes, set the action to 'lookup' and DataType to

'conditions':
>> data = IQML('lookup', 'DataType','conditions')

data =

 155×1 struct array with fields:

 id

 name

 description

>> data(1)

ans =

 id: 1

 name: 'REGULAR'

 description: 'Normal Trade'

>> data(2)

ans =

 id: 2

 name: 'ACQ'

 description: 'Acquisition'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions:
>> disp(struct2cell(data)')

 [1] 'REGULAR' 'Normal Trade'

 [2] 'ACQ' 'Acquisition'

 [3] 'CASHM' 'Cash Only Market'

 [4] 'BUNCHED' 'Bunched Trade'

 [5] 'AVGPRI' 'Average Price Trade'

 [6] 'CASH' 'Cash Trade (same day clearing)'

 [7] 'DIST' 'Distribution'

 [8] 'NEXTDAY' 'Next Day Market'

 [9] 'BURSTBSKT' 'Burst Basket Execution'

 [10] 'BUNCHEDSOLD' 'Bunched Sold Trade'

 [11] 'ORDETAIL' 'Opening/Reopening Trade Detail'

 [12] 'INTERDAY' 'Intraday Trade Detail'

 [13] 'BSKTONCLOSE' 'Basket Index on Close'

 [14] 'RULE127' 'Rule - 127 Trade NYSE'

 [15] 'RULE155' 'Rule - 155 Trade AMEX'

 [16] 'SOLDLAST' 'Sold Last (late reporting)'

 ...

>> disp(struct2table(data))

 id name description

 __ _____________ ________________________________

 1 'REGULAR' 'Normal Trade'

 2 'ACQ' 'Acquisition'

 3 'CASHM' 'Cash Only Market'

 4 'BUNCHED' 'Bunched Trade'

 5 'AVGPRI' 'Average Price Trade'

 6 'CASH' 'Cash Trade (same day clearing)'

 7 'DIST' 'Distribution'

 8 'NEXTDAY' 'Next Day Market'

 9 'BURSTBSKT' 'Burst Basket Execution'

 10 'BUNCHEDSOLD' 'Bunched Sold Trade'

 11 'ORDETAIL' 'Opening/Reopening Trade Detail'

 12 'INTERDAY' 'Intraday Trade Detail'

 13 'BSKTONCLOSE' 'Basket Index on Close'

 14 'RULE127' 'Rule - 127 Trade NYSE'

 15 'RULE155' 'Rule - 155 Trade AMEX'

 16 'SOLDLAST' 'Sold Last (late reporting)'

 ...

106 IQML User Guide

You can narrow-down the results by specifying the Name and/or the Description

filtering parameters. For example, let’s display only security types that have ‘Option’

in their Description:

>> struct2table(IQML('lookup', 'DataType','conditions', 'Description','option'))

ans =

 7×3 table

 id name description

 __ ______________ ___

 39 'SPRD' 'Spread - Trade in Two Options in the Same Class

 (a buy and a sell in the same class)'

 40 'STDL' 'Straddle - Trade in Two Options in the Same Class

 (a buy and a sell in a put and a call)'

 43 'BWRT' 'Option Portion of a Buy/Write'

 44 'CMBO' 'Combo - Trade in Two Options in the Same Options

 Class (a buy and a sell in the same class)'

 68 'STKOPT_TRADE' 'Stock-Option Trade'

 82 'OPTION_EX' 'Option Exercise'

 96 'OPT_ADDON' 'Short Option Add-On'

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','conditions', 'Name','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

Note that the trade condition codes are typically reported by IQFeed as a string of one

or more 2-digit hexadecimal values.85 For example (see §4.1):

>> data = IQML('quotes', 'Symbol','GOOG')

data =

 ...

 Most_Recent_Trade_Conditions: '3D87'

 Trade_Conditions_Description: 'Intramaket Sweep; Odd lot trade'

In this example, the reported last trade had 2 trade conditions: hexadecimal 3D (=61,

meaning 'Intramaket Sweep')86 and hexadecimal 87 (=135, meaning 'Odd lot trade').

Here is a summary of the IQML parameters that affect trade conditions lookup:

Parameter Data type Default Description

Name string

''

(empty

string)

Limits the query to trade conditions that

contain the specified string in their name

(case insensitive, anywhere within the name)

Description string

''

(empty

string)

Limits the query to trade conditions that

contain the specified string in their description

(case insensitive, anywhere in the description)

85 Trade condition codes 15 or lower are reported with a leading 0, e.g. 05 or 0E

86 The missing “r” in “Intramarket” is a typo in IQFeed’s data

107 IQML User Guide

9 Connection, administration and other special commands

9.1 Connecting & disconnecting from IQFeed

When using IQML, there is no need to worry about connecting or disconnecting from

IQFeed – IQML handles these activities automatically, without requiring user

intervention. The user only needs to ensure that IQFeed is active and logged-in when

the IQML command is invoked in Matlab.

IQML does not require any special configuration when connecting to IQFeed. It uses

whatever setting was previously set in the DTN IQConnect client application. You

might be prompted to enter a username/password, if IQConnect was not set up to

automatically connect using saved login/password information:

In addition to entering the login credentials in the client window, you can also specify

them programmatically. This could be useful when you have several IQFeed accounts

and wish to switch between them programmatically, or if you use IQFeed’s non-

Windows client installer on MacOs (which prevents user-entry in the login window):
>> IQML('time', 'Username','123456-1', 'Password','OpenSesame')

Note that the Username and Password parameters must be specified together, and

that they are only meaningful in the first IQML command that starts the connection –

they are ignored once a connection to IQFeed is already established.

If you enter an invalid set of Username/Password, an error message will be thrown.

A different error will be thrown if IQML fails to connect to IQFeed within 10 seconds.

108 IQML User Guide

IQML can connect to a running IQFeed client, that was already started by another

process on the current computer (e.g. charting app or another Matlab process that runs

IQML), even without Username and Password in the initial IQML connection. IQML

will bypass login, connecting directly to the client process.

You will be able to retrieve information in Matlab as soon as IQML connects to the

IQFeed client and [if necessary] the client finishes the login process and synchronizes

with the IQFeed servers. This process typically takes a few short seconds.

In some cases, users may wish to disrupt a live connection. You can disconnect from

IQFeed using IQML’s 'disconnect' action, which has no settable parameters:

>> IQML('disconnect')

This command disconnects IQML from the IQFeed client. If IQML was the only

application that was connected to the client, then the client will silently exit after

several seconds, if a new connection to it is not established during this time.

There is no need for a corresponding connect action, because connection is

automatically (re-)established whenever this is required by a new IQML command.

IQML and IQConnect automatically try to recover from connection losses during

normal operation. You may see in the Matlab console one or more IQConnect error

messages such as the following, which indicate such a connection loss:

20180410 20:03:06.371 Level1 server disconnected!

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10051

Error Msg: A socket operation was attempted to an unreachable network.

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10065

Error Msg: A socket operation was attempted to an unreachable host.

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10053

Error Msg: An established connection was aborted by the software in your host

machine.

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10060

Error Msg: A connection attempt failed because the connected party did not

properly respond after a period of time

You can safely ignore such messages in most cases, since IQConnect will

automatically re-establish connection with IQFeed’s servers as soon as they become

accessible again, and show an appropriate informational message in Matlab’s console:

20180410 20:04:16.497 Level1 server is connected

In some cases, users may wish to actively re-connect (disconnect and then connect) to

IQFeed. This can be done with the 'reconnect' action (no settable parameters):

>> IQML('reconnect')

Note that after reconnecting to IQFeed, you will need to request any and all streaming

data again (see §6), since IQFeed resets data streaming after a client disconnect.

109 IQML User Guide

9.2 Server time

You can request the latest IQFeed server time using the 'time' action:

>> data = IQML('time')

data =

 latestEventDatenum: 737114.660205451

 latestEventTimeStamp: '20180223 15:50:41'

 latestServerDatenum: 737114.368518519

 latestServerTimestamp: '20180223 08:50:40'

The returned data struct includes the following data fields:

 latestEventDatenum – a Matlab numeric datenum value that corresponds to

the local time in which the very latest message has arrived from IQFeed.

 latestEventTimeStamp – a human-readable format of latestEventDatenum

 latestServerDatenum – a Matlab numeric datenum value that corresponds to

the latest server time that was received from IQFeed.

 latestServerTimeStamp – a human-readable format of latestServerDatenum

Note that the server time may be off by up to a full second from the current time,

depending on when the last timestamp message was received from IQFeed. IQFeed

sends server time messages once every second, so latestServerDatenum lags by 0.5

secs behind the current time on average.

Similarly, latestEventDatenum reports the time at which the last message was

received from IQFeed. This message could be a timestamp message, or any other data

message. For this reason, the lag here is typically much lower than the lag of

latestServerDatenum.

The 'time' action has no settable properties.

110 IQML User Guide

9.3 Client stats

You can retrieve the updated IQFeed connection traffic stats using the 'stats' action:
>> data = IQML('stats')

data =

 ServerIP: '66.112.148.226'

 ServerPort: 60002

 MaxSymbols: 1300

 NumOfStreamingSymbols: 0

 NumOfClientsConnected: 3

 SecondsSinceLastUpdate: 1

 NumOfReconnections: 0

 NumOfAttemptedReconnections: 0

 StartTime: 'Mar 07 11:03AM'

 MarketTime: 'Mar 07 04:34AM'

 ConnectionStatus: 'Connected'

 IQFeedVersion: '5.2.7.0'

 LoginID: '123456-1'

 TotalKBsRecv: 42.98

 KBsRecvLastSecond: 0.02

 AvgKBsPerSecRecv: 0.02

 TotalKBsSent: 361.62

 KBsSentLastSecond: 0.22

 AvgKBsPerSecSent: 0.19

 Exchanges: {1×16 cell}

 ServerVersion: '6.0.0.5'

 ServiceType: 'real_time'

The returned data struct includes the following data fields:87

 ServerIP – IP address of the least loaded IQFeed Quote Server

 ServerPort – Port number for least loaded IQFeed Quote Server

 MaxSymbols – The maximum # of symbols that can be streamed simultaneously

 NumOfStreamingSymbols – The # of symbols that are currently being streamed

 NumOfClientsConnected – The # of clients that are currently connected

 SecondsSinceLastUpdate – The # of seconds since the last update from the

Quote Server

 NumOfReconnections – The # of times that IQFeed successfully reconnected

 NumOfAttemptedReconnections – The # of times that IQFeed has attempted to

reconnect, but failed

 StartTime – Time of latest connection/reconnection to IQFeed (local timezone)

 MarketTime – Current time of the market (market’s time-zone)

 ConnectionStatus – Represents whether IQFeed is connected or not

 IQFeedVersion – Represents the version of IQFeed that is running

 LoginID – The Login ID that is currently logged into IQFeed

 TotalKBsRecv – Total # of Kilobytes received by IQFeed from IQML (i.e.,

IQML commands/requests to IQFeed). Found in the “Internet Bandwidth”

section of the IQConnection Manager. Formula: total bytes received / 1024

87 http://iqfeed.net/dev/api/docs/AdminSystemMessages.cfm

http://iqfeed.net/dev/api/docs/AdminSystemMessages.cfm

111 IQML User Guide

 KBsRecvLastSecond – Found in the “Internet Bandwidth” section of the

IQConnection Manager. Formula: bytes received in the past second / 1024

 AvgKBsPerSecRecv – Found in the “Internet Bandwidth” section of the

IQConnection Manager. Formula: total KB's received / total seconds

 TotalKBsSent – Total # of Kilobytes sent from IQFeed to IQML (i.e., IQFeed

messages to IQML). Found in the “Local Bandwidth” section of the

IQConnection Manager. Formula: total bytes sent / 1024

 KBsSentLastSecond – Found in the “Local Bandwidth” section of the

IQConnection Manager. Formula: bytes sent in the past second / 1024

 AvgKBsPerSecSent – Found in the “Local Bandwidth” section of the

IQConnection Manager. Formula: total KB's sent / total seconds.

 Exchanges – The list of exchanges for which this IQFeed account is subscribed

 ServerVersion – The current version of IQFeed that the server supports. This

is always the same or higher than your locally-installed IQFeedVersion.

 ServiceType – Type of data provided for this account (delayed or real-time)

The 'stats' action has a single settable property: AddPortStats (default=0). If you set

this property to 1 or true, then additional stats will be returned, with extra

information on the various data ports (see the highlighted fields below):

>> data = IQML('stats', 'AddPortStats',1)

data =

 ServerIP: '66.112.148.224'

 ServerPort: 60005

 MaxSymbols: 1300

 NumOfStreamingSymbols: 0

 NumOfClientsConnected: 4

 SecondsSinceLastUpdate: 0

 NumOfReconnections: 0

 NumOfAttemptedReconnections: 0

 StartTime: 'Apr 01 8:21PM'

 MarketTime: 'Apr 01 02:12PM'

 ConnectionStatus: 'Connected'

 IQFeedVersion: '5.2.7.0'

 LoginID: '464720-1'

 TotalKBsRecv: 69.44

 KBsRecvLastSecond: 0.04

 AvgKBsPerSecRecv: 0.02

 TotalKBsSent: 1470.32

 KBsSentLastSecond: 0.47

 AvgKBsPerSecSent: 0.48

 Exchanges: {1×16 cell}

 ServerVersion: '6.0.0.5'

 ServiceType: 'real_time'

 Level2: [1×1 struct]

 Level2SymbolsWatched: 2

 Lookup: [1×1 struct]

 RegionalSymbolsWatched: 2

 Admin: [1×1 struct]

 Level1: [1×1 struct]

 Level1SymbolsWatched: 0

112 IQML User Guide

>> data.Level1

ans =

 ConnectTime: '20180401 202111'

 KBsReceived: 0.74

 KBsSent: 70.58

 KBsQueued: 0

>> data.Admin

ans =

 ConnectTime: '20180401 202108'

 KBsReceived: 0.43

 KBsSent: 1516.74

 KBsQueued: 0

Note that it might take a few seconds for the stats to arrive after the initial command.

If you don’t see the expected results immediately simply re-query them after 1-2 secs.

113 IQML User Guide

9.4 Sending a custom command to IQFeed

You can send any custom command to IQFeed’s API, using the 'command' action.

For example, to send the 'S,TIMESTAMPSOFF' command,88 which stops IQFeed

from sending server timestamp messages every second:

>> IQML('command', 'String','S,TIMESTAMPSOFF')

IQFeed expects that users send commands to its API via specific channels (“ports”).

Each command is typically accepted only by the port for which it is defined. For

example, the 'S,TIMESTAMPSOFF' command is defined for the Level1 port,89

whereas the 'S,CLIENTSTATS OFF' command (which stops the IQFeed server from

streaming client stats messages) is defined for the Admin port.90 When you use

IQML’s standard actions you do not need to worry about which port handles which

command – this is automatically handled by IQML. But when you send a custom

command to IQFeed, you need to specify the port, if it is different from the default

('Level1'). In this specific example:

>> IQML('command', 'String','S,CLIENTSTATS OFF', 'PortName','Admin')

IQFeed is very picky about the spelling of the commands, including spaces and

casing. If the spelling is not exactly right, the command will be rejected by IQFeed,

possibly even without an error message. Unfortunately, IQFeed are not entirely

consistent in the format of the various commands. For example, the

'S,TIMESTAMPSOFF' command has no space, whereas the 'S,CLIENTSTATS OFF'

command does have a space; also, both of these commands are all-uppercase, yet the

'S,SET AUTOCONNECT,On' Admin command spells On/Off with lowercase letters

(and uses a comma instead of a second space).

In some cases, the command that is sent to IQFeed may result in data messages that

will be sent back from IQFeed, which should be received and processed. To do this,

you can set the ProcessFunc property to a custom callback function that will handle

these messages (see §10).

The following properties can be specified in IQML with the 'command' action:

Parameter Data type Default Description

String string (none) The IQFeed command string.

PortName string 'Level1'

The IQFeed port that will process the command.

Must be one of the following:

 'Level1' (default)

 'Level2'

 'Lookup'

 'Admin'

ProcessFunc
function

handle
[]

Custom user callback function to process

incoming IQFeed data messages (see §10).

88 http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm
89 http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm

90 http://iqfeed.net/dev/api/docs/AdminviaTCPIP.cfm

http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm
http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm
http://iqfeed.net/dev/api/docs/AdminviaTCPIP.cfm

114 IQML User Guide

10 Attaching user callbacks to IQFeed messages

10.1 Processing IQFeed messages in IQML

IQFeed uses an asynchronous event-based mechanism for sending information to

clients. This means that we do not simply send a request to IQFeed and wait for the

answer. Instead, we send a request, and when IQFeed is ready it will send us one or

more (or zero) messages in response. Each of these messages evoke an event that

carry data (the message content and the originating IQFeed channel/port-name). By

analyzing the event data we (hopefully) receive the answer that we were waiting for.

Matlab has built-in support for asynchronous events, called callbacks in Matlab

jargon.91 Whereas Matlab callbacks are normally used in conjunction with Graphical

User Interfaces (GUI), they are also used with IQML, which automatically converts

all the IQFeed events into a Matlab callback invocation.

The callback that processes incoming IQFeed messages is constantly being “fired”

(i.e., invoked) by asynchronous messages from IQFeed, ranging from client stats and

time messages (once per second, for each of IQFeed’s 3 channels/ports), to system

messages (e.g. connection losses and reconnections), to error messages and responses

to market queries. Some of the events are triggered by user actions (market or

portfolio queries, for example), while others are triggered by IQFeed (e.g., client stats

once a second).

In addition to the regular IQML callback that processes all incoming IQFeed message

events, you can assign your own custom Matlab function that will be triggered

whenever a certain IQFeed message arrives. In all cases, the parameter controlling

this callback in IQML is called ProcessFunc.

There are two types of callbacks that you can use in IQML:

 Generic callback – this is a catch-all callback function that is triggered upon

any IQFeed message event. Within this callback, you would need to write

some code to distinguish between the different event types in order to process

the events’ data. A skeleton for this is given below.

 Specific callback – this is a callback function that is only triggered when the

specific event type is received from IQFeed. Since the event type is known,

you can process its event data more easily than in the generic callback case.

You can specify a different specific callback for each of the event types that

you wish to process, as well as a default callback that will be used for any

other event that was not assigned a specific callback.

When you specify any callback function to IQML, the command/action does not need

to be related to the callback. For example:

data = IQML('time', 'ProcessFunc',@IQML_Callback);

where IQML_Callback() is a Matlab function created by you that accepts two input

arguments, which are automatically populated in run-time:

91 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html

http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html

115 IQML User Guide

 iqObject – this is currently an empty array. Future versions of IQML may

place an actual object in this argument.

 eventData – a Matlab struct that contains the event’s data in separate fields.

This struct includes the following fields:

o Timestamp – local time in Matlab numeric datenum format.

o MessagePort – the name of the IQFeed port that sent the message:

'Level1', 'Level2', 'Lookup' or 'Admin'.

o MessageType – the event type, which corresponds to the custom fields

that can be set in the ProcessFunc parameter for specific callbacks.

o MessageHeader – the first part of the message text string, that identified

the message type. This is typically used to set the MessageType field.

o MessageString – the message text string as received from IQFeed.

o MessageParts – processed parts of MessageString, as a cell-array.

An example of defining a Matlab callback function is:
function IQML_Callback(iqObject, eventData)

 % do callback processing here using the info in eventData

end

You can pass external data to your callback functions using the callback cell-array

format.92 For example, to pass two extra data values:
callbackDefinition = {@IQML_Callback, 123, 'abc'};

IQML('time', 'ProcessFunc',callbackDefinition);

function IQML_Callback(iqObject,eventData,extra1,extra2)

 % do callback processing here using the info in eventData, extra1, extra2

end

Here are examples of the eventData for two different IQFeed messages – a timestamp

message (sent from IQFeed once every second on the Level1 and Level2 ports), and a

connection stats message (sent from IQFeed once a second on the Admin port).

IQFeed messages always begin with a single character indicating the message type:
 Timestamp: 737128.675475417

 MessagePort: 'Level1'

 MessageType: 'Time'

 MessageHeader: 'T'

 MessageString: 'T,20180309 09:12:39'

 MessageParts: {'T' '20180309 09:12:39'}

 Timestamp: 737128.675479248

 MessagePort: 'Admin'

 MessageType: 'System'

 MessageHeader: 'S'

 MessageString: 'S,STATS,66.112.148.225,60002,1300,0,4,0,0,0,Mar 09

 3:10PM,Mar 09 09:12AM,Connected,5.2.7.0,464720-

 1,86.43,0.04,0.02,759.37,0.20,0.20'

 MessageParts: {1×20 cell}

All IQFeed messages typically begin with a single character followed by ‘,’, which

we call the MessageHeader, and which identify the MessageType. For example,

MessageHeader of 'T' identifies a Time message, and 'S' identifies a System message.93

92 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p

93 An exception to this rule may happen if you send custom commands to IQFeed using the mechanism in §7.4. In such case, it is

possible that MessageHeader will not be a recognized or even a single character. It will have a MessageType of 'Other'.

http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p

116 IQML User Guide

All the callbacks examples so far have set a generic callback that is used for all

incoming IQFeed messages. As noted above, you can also set specific callbacks for

specific messages. For example:

% Alternative #1: using the struct() function:

>> callbacks = struct('Time','disp TIME!', ...

 'System',@(h,e)disp(e.MessageString));

% Alternative #2: using direct field assignments:

>> callbacks.Time = 'disp TIME!';

>> callbacks.System = @(h,e)disp(e.MessageString);

>> IQML('time','processFunc',callbacks);

TIME!

TIME!

S,STATS,66.112.156.228,60002,1300,0,4,0,0,1,Mar 11 12:36PM,Mar 11

07:14AM,Connected,5.2.7.0,464720-1,51.51,0.04,0.02,516.30,0.23,0.23

TIME!

TIME!

S,STATS,66.112.156.228,60002,1300,0,4,0,0,1,Mar 11 12:36PM,Mar 11

07:14AM,Connected,5.2.7.0,464720-1,51.54,0.04,0.02,516.48,0.23,0.23

TIME!

In this example, we have set two separate custom callbacks for two different IQFeed

messages: the periodic timestamp messages and the periodic system update messages.

In addition to specific callbacks for specific message types, you can also set a

“Default” callback that will be invoked for each incoming IQFeed message that does

not have a specific callback assigned to it.

The following message types can be trapped, corresponding to the eventData’s

MessageType field (e.MessageType):

MessageType
Message

Header
Description

See

section

Fundamental F Fundamental asset data 4.2

Quote_summary P Quote summary message 4.1

Quote_update Q Quote update (tick) message 6.1

Market_depth Z Level2 market-depth update message 4.4,6.4

Market_maker M Market maker information 4.4,6.4

History H Historical data (one msg per bar/tick) 5

Regional R Regional update message 6.2

News N News data (one message per item) 7

End_of_data !ENDMSG! Indicates end of the data with multiple

data items (e.g., history or news)

5, 7

Lookup s Lookup information message 8.1

Chain : Options/Futures chain 8.2

Time T Timestamp message (once a second) 9.2

System S System message (stats, once a sec) 9.3

Symbol_not_found_error n Indicates a symbol-not-found error 3.4

General_error E All other IQFeed-generated errors

Other All other IQFeed messages

Default Any IQFeed message that does not

have a specific callback assigned to it

117 IQML User Guide

You can set individual callbacks to any of these MessageType values, by using the

MessageType value as a field-name in the ProcessFunc parameter. For example, to

process quote-update (tick) messages in a dedicated callback function:

>> callbacks.Quote_update = @IQML_Quote_Update_Callback;

>> IQML('time','ProcessFunc',callbacks);

Here is a more elaborate example, were we set different callbacks for different

message types, along with a default callback for all other message types:

% Alternative #1: using the struct() function:

>> callbacks = struct('Time','disp TIME!', ...

 'System',[], ... % ignore System messages

 'Quote_update',@IQML_Quote_Update_Callback, ...

 'Default',@IQML_Default_Callback);

% Alternative #2: using direct field assignments:

>> callbacks.Time = 'disp TIME!';

>> callbacks.System = []; % ignore System messages

>> callbacks.Quote_update = @IQML_Quote_Update_Callback;

>> callbacks.Default = @IQML_Default_Callback);

>> IQML('time','processFunc',callbacks);

When you specify any callback function to IQML, you only need to set it once, in any

IQML command. Unlike most IQML parameters, which are not remembered across

IQML commands and need to be re-specified, callbacks do not need to be re-

specified. They are remembered from the moment they are first set, until such time as

Matlab exits or the callback parameter is changed.

Note that it is not an error to re-specify the callbacks in each IQML command, it is

simply useless and makes the code less readable.

To reset all callbacks (i.e., remove any callback invocation), simply set the

ProcessFunc parameter value to [] (empty square brackets):

IQML('time', 'ProcessFunc',[]);

You can also set individual message callbacks to an empty value, in order to ignore

just these specific messages but not the other messages:

>> callbacks.Time = 'disp TIME!';

>> callbacks.System = []; % ignore System messages

>> callbacks.Default = @IQML_Default_Callback);

>> IQML('time','ProcessFunc',callbacks);

Matlab callbacks are invoked even if you issue a custom IQFeed command (see §9.4).

This is actually very useful: you can use the command to send a request to IQFeed,

and then process the results in a Matlab callback function. However, note that in such

a case, it is possible that the returned message will contain a MessageHeader that will

not be a recognized or even a single character. Such messages will be assigned a

MessageType of 'Other'.

118 IQML User Guide

10.2 Run-time performance implications

It is very important to ensure that any callback function that you assign in IQML

completes in the fastest possible time. This is important for programming in general,

but it is especially important for IQML callbacks, which are invoked (executed) every

time that a new message arrives from IQFeed, numerous times each second.

As explained in §3.6, IQML’s standard callback processing has an overhead of 1-2

milliseconds per IQFeed message. This means that without any user-specified

callbacks, and without any other Matlab or other code running, IQML can process up

to 500-1000 IQFeed messages per second.

When you add your own user-defined callbacks, their processing time is added to

IQML’s. For example, if your callback takes an average of just 3 msecs to process

(which is quite fast), then the total average message processing time will be 4-5

msecs, lowering IQML’s effective maximal processing rate from 500-1000 to just

200-250 messages/second. The more callbacks and alerts that you define, and the

longer each of them takes to process, the lower will IQML’s message processing rate be.

The following specific tips may assist you to reduce the callback performance impact:

1. Ensure that you have enough physical memory to avoid memory swapping to

disk. This is probably the single most important tip to improve performance

2. Avoid setting user callbacks and alerts, or at least disable them when not needed.

3. Avoid setting a Default callback or a general ProcessFunc, but rather specific

callbacks only for the messages that you need (e.g. for News or Regional).

4. Limit the streaming data to just those events and symbols that are of interest to

you. For example, if you are only interested in the GOOG symbol, and set a

Quote_update callback, this callback will also be processed for streaming

quotes for other symbols, so it’s better to stop streaming those other symbols.

5. Minimize disk access: disk I/O is much slower than memory access. Save data

to memory and flush it to disk at the end of the trading day, or once in a while

(e.g. every 5 minutes), but not in each callback.

6. If you need to access a disk, use SSD (solid-state disk) rather than a spinning

hard-disk.

7. If you need to load data from disk, do it once and preserve the data in memory

using Matlab persistent or global variables, to be reused in callback calls.

8. Instead of re-computing values that are based on static data in each callback

call, compute once and cache results in Matlab persistent or global variables.

9. Use Matlab’s built-in Profiler tool94 to check your callback code for run-time

performance hotspots that can be optimized to run faster.

10. Read the textbook “Accelerating MATLAB Performance”,95 authored by

IQML’s creator (see §15.2), for numerous tips on improving Matlab run-time.

94 https://mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html

95 https://undocumentedmatlab.com/books/matlab-performance

https://mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://undocumentedmatlab.com/books/matlab-performance

119 IQML User Guide

10.3 Usage example – using callbacks to parse options/futures chains

In this example, we request IQFeed to send the list of symbols in an options/futures

chain, then parse the incoming results to retrieve the symbols in the chain (see §8.2).

We first send the relevant command to IQFeed using IQML’s custom command

functionality (§9.4), specifying a custom callback function for the 'Chain'

MessageType:96

% Equity options chain for GOOG:

processFunc.Chain = @IQML_Chain_Callback;

>> IQML('command', 'String','CEO,GOOG,p,,1', 'PortName','lookup', ...

 'debug',1, 'ProcessFunc',processFunc)

 => 20180405 13:13:00.063 (lookup) CEO,GOOG,p,,1

 <= 20180405 13:13:00.574 (lookup) :,GOOG1806P1000,GOOG1806P1002.5,GOOG1806P1

005,GOOG1806P1007.5,GOOG1806P1010,GOOG1806P1012.5,GOOG1806P1015,GOOG1806P1017

.5,GOOG1806P1020,GOOG1806P1022.5,GOOG1806P1025,GOOG1806P1027.5,GOOG1806P1030,

GOOG1806P1032.5,GOOG1806P1035,GOOG1806P1037.5,GOOG1806P1040,GOOG1806P1042.5,G

OOG1806P1045,GOOG1806P1047.5,GOOG1806P1050,…,

 <= 20180405 13:13:00.578 (lookup) !ENDMSG!

% Future options chain for C:

>> IQML('command', 'String','CFO,C,p,,9,1', 'PortName','lookup', ...

 'debug',1, 'ProcessFunc',processFunc)

 => 20180405 13:31:48.677 (lookup) CFO,C,p,,9,1

 <= 20180405 13:31:49.149 (lookup) :,CH19P2000,CH19P2100,CH19P2200,CH19P2300,CH19

P2400,CH19P2500,CH19P2600,CH19P2700,CH19P2800,CH19P2900,CH19P3000,CH19P3100,CH19P

3200,CH19P3300,CH19P3400,CH19P3500,CH19P3600,CH19P3700,CH19P3800,CH19P3900,CH19P4

000,CH19P4100,CH19P4200,CH19P4300,CH19P4400,CH19P4500,CH19P4600,CH19P4700,CH19P48

00,CH19P4900,CH19P5000,CH19P5100,CH19P5200,CH19P5300,CH19P5400,CH19P5500,CH19P560

0,CH19P5700,CH19P5800,CH19P5900,CH19P6000,CH19P6100,CH19P6200,CH19P6300,CH19P6400

 <= 20180405 13:31:49.158 (lookup) !ENDMSG!

The custom callback function may look something like this:

function IQML_Chain_Callback(iqObject,eventData)

 symbols = eventData.MessageParts(2:end); %discard the ':' message header

 % now do something useful with the reported symbols...

end

96 Note that we have set Debug=1 in this example purely to illustrate the incoming IQFeed message format; it would not be used

in a typical run-time program.

120 IQML User Guide

10.4 Usage example – using callbacks for realtime quotes GUI updates

In this example, we wish to update a real-time ticker window with the latest

streaming quotes data. The idea is to create a minimalistic window and update its title

with the symbol name and latest trade price, whenever a new tick arrives.

The code relies on the format of IQFeed’s Quote_update (Q) message, which by default

is a 16-element cell array: {Symbol, Most_Recent_Trade, Most_Recent_Trade_Size,

Most_Recent_Trade_Time, Most_Recent_Trade_Market_Center, Total_Volume, Bid, Bid_Size, Ask,

Ask_Size, Open, High, Low, Close, Message_Contents, Most_Recent_Trade_Conditions}:
>> processFunc = struct('Quote_Update', @Quote_Update_Callback);

>> IQML('quotes', 'symbol','@VX#', 'numofevents',100, ...

 'ProcessFunc',processFunc, 'debug',1)

 => 20180411 12:03:40.131 (Level1) w@VX#

 <= 20180411 12:03:40.391 (Level1) F,@VX#,20,,,28.05,12.85,,,,,,,,,,,,,,,,,,CBOE …

 <= 20180411 12:03:40.409 (Level1) P,@VX#,20.61,,04:52:29.711000,32,5668,20.60,50,

 20.65,87,20.20,20.70,20.15,20.18,Cbasohlcv,4D

 <= 20180411 12:03:44.887 (Level1) Q,@VX#,20.61,,04:52:29.711000,32,5668,20.60,50,

 20.65,86,20.20,20.70,20.15,20.18,a,4D

In our case, we are only interested in the 1st (Symbol) and 2nd (Most_Recent_Trade)

elements of the 'Q' update messages:
eventData =

 Timestamp: 737161.502602859

 MessagePort: 'Level1'

 MessageType: 'Quote_Buffer'

 MessageHeader: 'Q'

 MessageString: 'Q,@VX#,20.61,,04:52:29.711000,32,5668,20.60,50,20.65,86,

 20.20,20.70,20.15,20.18,a,4D'

 MessageParts: {'@VX#' 20.61 [] '04:52:29.711000' 32 5668 20.6 50

 20.65 86 20.2 20.7 20.15 20.18 'a' '4D'}

The corresponding callback function will be:
function Quote_Update_Callback(iqObject, eventData)

 % Symbol is 1st data element of IQFeed 'Q' messages
 symbol = eventData.MessageParts{1};

 % Last trade price is 2nd data element of the IQFeed 'Q' messages

 latestTrade = eventData.MessageParts{2};

 % Get the handle for this symbol's ticker window

 hFig = findall(0, 'Tag',symbol, '-depth',1);

 if isempty(hFig)

 % Ticker window not found, so create it

 hFig = figure('Tag',symbol, 'Position',[300,300,250,1], ...

 'Resize','off', 'NumberTitle','off', ...

 'Menu','none', 'Toolbar','none',);

 end

 % Update the ticker window's title

 hFig.Name = sprintf('%s: %.2f', symbol, latestTrade);

end

And the resulting ticker window will look like this:

As noted in §6.1 above, tick events may be sent at a very high rate from the IQFeed

server. So instead of updating the GUI with each tick, you may want to use a periodic

Matlab timer having a Period of 0.5 [secs], that will invoke a timer callback, which

will call IQML(…,'NumOfEvents',-1) to fetch the latest data and update the GUI.

121 IQML User Guide

10.5 Usage example – using callbacks for realtime order-book GUI updates

In this example, we wish to update a real-time GUI display of the order-book (at least

the top few rows of the book).

Note: Market Depth (Level 2) data is only available in the Professional IQML license.

As noted in §6.4 above, market-depth events may be sent at a very high rate from the

IQFeed server, and so it is not feasible or useful to update the Matlab GUI for each

update. Instead, we update the GUI with the latest data at a steady rate of 2 Hz (twice

a second). This can be achieved in two different ways: one alternative is to set-up a

periodic timer that will run our GUI-update callback every 0.5 secs, which will call

IQML(…,'NumOfEvents',-1) to fetch the latest data and update the GUI.

Another alternative, shown here below (also downloadable97), is to attach a user

callback function to Level 2 market-depth messages, updating an internal data struct,

but only updating the GUI if 0.5 secs or more have passed since the last GUI update:

% IQML_MktDepth - sample Market-Depth usage function

function IQML_MktDepth(symbol)

 % Initialize data

 numRows = 10;

 depthData = cell(numRows,8);

 lastUpdateTime = -1;

 GUI_refresh_period = 0.5 * 1/24/60/60; % =0.5 secs

 % Prepare the GUI

 hFig = figure('Name','IQML market-depth example', ...

 'NumberTitle','off','CloseReq',@figClosedCallback,...

 'Menubar','none', 'Toolbar','none', ...

 'Resize','off', 'Pos',[100,200,660,260]);

 color = get(hFig,'Color');

 headers = {'Ask valid','Ask time','Ask size','Ask price', ...

 'Bid price','Bid size','Bid time','Bid valid'};

 formats = {'logical','char','numeric','long', ...

 'long','numeric','char','logical'};

 hTable = uitable('Parent',hFig, 'Pos',[10,40,635,203], ...

 'Data',depthData, 'ColumnName',headers, ...

 'ColumnFormat',formats, ...

 'ColumnWidth',{60,100,80,80,80,80,100,60});

 hButton = uicontrol('Parent',hFig, 'Pos',[50,10,60,20], ...

 'String','Start', 'Callback',@buttonCallback);

 hLabel1 = uicontrol('Parent',hFig, 'Pos',[120,10,100,17], ...

 'Style','text', 'String','Last updated:', ...

 'Horizontal','right', 'Background',color);

 hLabelTime = uicontrol('Parent',hFig, 'Pos',[225,10,100,17], ...

 'Style','text', 'String','(not yet)', ...

 'Horizontal','left', 'Background',color);

 % Send the market-depth request to IQFeed using IQML

 contractParams = {'symbol',symbol}; % symbol='@ES#'

 callbacks = struct('Market_depth',@mktDepthCallbackFcn);

 IQML('marketdepth', contractParams{:}, 'processFunc',callbacks);

97 http://IQML.net/files/IQML_MktDepth.m

http://iqml.net/files/IQML_MktDepth.m

122 IQML User Guide

 % Figure close callback function - stop market-depth streaming

 function figClosedCallback(hFig, ~)

 % Delete figure window and stop any pending data streaming

 delete(hFig);

 IQML('marketdepth', contractParams{:}, 'numofevents',0);

 end % figClosedCallback

 % Start/stop button callback function

 function buttonCallback(hButton, ~)

 currentString = get(hButton,'String');

 if strcmp(currentString,'Start')

 set(hButton,'String','Stop');

 else

 set(hButton,'String','Start');

 end

 end % buttonCallback

 % Callback functions to handle IQFeed Market Depth update events

 function mktDepthCallbackFcn(~, eventData)

 % Ensure that it's the correct MktDepth event

 allMsgParts = strsplit(eventData.MessageString,',');

 allMsgParts(strcmpi(allMsgParts,'T')) = {true};

 allMsgParts(strcmpi(allMsgParts,'F')) = {false};

 if strcmp(eventData.MessagePort,'Level2') && ...

 strcmp(allMsgParts{2},symbol)

 % These are the field names of the IQFeed messages

 inputParams = {'Intro','Symbol','MMID',...

 'Bid','Ask','BidSize','AskSize',...

 'BidTime','Date','ConditionCode',...

 'AskTime','BidInfoValid',...

 'AskInfoValid','EndOfMsgGroup'};

 % Get the updated data row

 % Note: Java indices start at 0, Matlab starts at 1

 mmid = allMsgParts{strcmpi(inputParams,'MMID')};

 row = sscanf(mmid,'%*c%*c%d');

 % Get the size & price data fields from the event's data

 bidValid = allMsgParts{strcmpi(inputParams,'BidInfoValid')};

 askValid = allMsgParts{strcmpi(inputParams,'AskInfoValid')};

 bidTime = allMsgParts{strcmpi(inputParams,'BidTime')};

 askTime = allMsgParts{strcmpi(inputParams,'AskTime')};

 bidSize = allMsgParts{strcmpi(inputParams,'BidSize')};

 askSize = allMsgParts{strcmpi(inputParams,'AskSize')};

 bidPrice = allMsgParts{strcmpi(inputParams,'Bid')};

 askPrice = allMsgParts{strcmpi(inputParams,'Ask')};

 thisRowsData = {askValid,askTime,askSize,askPrice,...

 bidPrice,bidSize,bidTime,bidValid};

 depthData(row,:) = thisRowsData;

 % Update the GUI if more than 0.5 secs have passed and

 % the <Stop> button was not pressed

 if ~isvalid(hButton), return, end

 isStopped = strcmp(get(hButton,'String'),'Start');

 if now - lastUpdateTime > GUI_refresh_period && ~isStopped

 set(hTable,'Data',depthData);

 set(hLabelTime,'String',datestr(now,'HH:MM:SS'));

 lastUpdateTime = now;

 end

 end

 end % mktDepthCallbackFcn

end % IQML_MktDepth

123 IQML User Guide

124 IQML User Guide

11 Alerts

11.1 General Usage

In cases where certain events in steaming data are of interest to the user, IQML can

generate alerts of these events as they arrive from IQFeed. The user can define the

event data type, the trigger condition, and the type of alert to generate when the

condition is met. For example, users may configure an alert on quotes, such that when

a symbol’s bid price is higher than some threshold, an email will be sent.

Each alert contains 3 components:

 Data type – quote, intervalbar, regional or news

 Trigger – a condition (typically a comparison between a field and a value)

 Action – what IQML should do when the trigger condition is met

Alerts are created using the 'alert' action. Each new alert is assigned a unique

numeric ID. Using this ID, users can query, delete or edit the alert after it was created.

The following parameters affect the alerts. Detailed explanations and usage examples

are listed in the following sections.

Parameter Data type Default Description

Symbol or

Symbols 98

colon-

delimited

string or

cell-array

of strings

(none)

Limits the alert to the specified symbols

and meta-tags only. Examples:

 'IBM'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

Optional parameter for news alerts;
mandatory for quote/intervalbar alerts

Trigger

string

describing

the alert

trigger

(none)

– must be

defined for

new alerts!

A string composed of the data type,

triggering parameter, trigger operator and

triggering value, separated by spaces.

Examples:

 'quote bid >= 100'

 'intervalbar close < 80'

 'news text contains IPO'

AlertAction string

(none)

– must be

defined for

new alerts!

Type of alert to generate. Options: 99

 'display'

 'popup'

 'email' (requires specifying the
EmailRecipients parameter)

 @myCallbackFcn

 {@myFcn, data1, data2, …}

98 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

99 Note the performance implications that are discussed in §3.6 and §10.2 above

125 IQML User Guide

Parameter Data type Default Description

NumOfEvents integer 1

Maximal # of times to be alerted of the

defined event. NumOfEvents = -1 returns

a list of all existing alerts.

StartStream
logical

(true/false)
false

If false (default), data streaming needs to be

started by the user in a separate command.

If true and relevant data streaming is not

currently active, IQML starts the data

streaming automatically (see §11.2).

AlertID

integer

(scalar or

array)

[]

(empty

array)

Unique ID generated and returned by

IQML when new alert is defined.

AlertID is relevant (and mandatory) only

for querying, editing or deletion of

existing alerts. See §11.3, §11.4 below.

GetStory
logical

(true/false)
true

If true (default), the full story text is

fetched and reported with each news alert

via email/callback;

if false, only headline data will be reported.

GetStory is relevant only for news alerts

with AlertAction='email' or callback.

EmailRecipients

comma-

delimited

string or

cell-array

of strings

''

(empty

string)

Email addresses to which email alerts will

be sent. This parameter is relevant (and

mandatory) only for email alerts. Examples:
 'john@doe.com'

 'john@doe.com, jane@doe.com'

 {'john@doe.com', 'jane@doe.com'}

SmtpEmail string
'iqml.alerts@

gmail.com'

SMTP e-mail address from which alert

emails will be sent.

This parameter is relevant only for

specifying a non-default email sender.

SmtpEmail only needs to be set once,

and is used by all future IQML alert events.

SmtpServer string (none)

SMTP server that will send alert emails.

This parameter is relevant only for

specifying a non-default email sender.

SmtpServer only needs to be set once,

and is used by all future IQML alert events.

SmtpPassword string (confidential)

Password of the sender’s e-mail account.

This parameter is relevant only for

specifying a non-default email sender.

SmtpPassword only needs to be set once,

and is used by all future IQML alert events.

Note: Alerts are only available in the Professional IQML license.

126 IQML User Guide

11.2 Alert Configuration

Alerts can be configured by the user using the 'alert' action, using the properties in

the table above. Users can configure the data type, event trigger, maximal number of

alert reports, and the type of alert to generate (email, pop-up message, etc.). For email

alerts, users can also specify the recipients and the sender email account.

The Trigger parameter is the most important input, and is unique to the 'alert'

action. It is a string describing the alert trigger event, so it is very important that it be

composed properly. The Trigger string has 4 elements:

1. Data type ('quote', 'intervalbar' or 'news')

2. Trigger field: case-insensitive name of a field in the latestData struct of the

source data specified by the Data type (see §6.1, §6.3). For example: 'bid',

'ask', 'total_volume', 'Most_Recent_Trade', 'intervalVolume', 'text', etc.

3. Trigger operator ('>', '<', '=', '>=', '<=', 'contains').100

 '>', '<', '=', '>=', '<=' are relevant for quote/intervalbar alerts

 '=' and 'contains' are relevant for news alerts

4. Trigger value: either numeric (for a >,<,=,>=,<= operator) or string (for a

=,contains operator)

For example:

alertId = IQML('alert', 'Symbol','IBM', 'Trigger','quote ask < 145', ...);

alertId = IQML('alert', 'Symbol','IBM', 'Trigger','quote Total_Volume >= 10', ...);

alertId = IQML('alert', 'Symbol','IBM', 'Trigger','news text contains IPO', ...);

By default, alerts are only triggered and reported once. This can be changed by setting

the NumOfEvents parameter to an integer value. For example, the following alert

will be reported up to 5 times, and will then be deleted from the list of alerts:
alertId = IQML('alert', 'Symbol','IBM', ..., 'NumOfEvents',5);

IQML does NOT automatically start streaming data when alerts are defined. This

enables users to start and stop streaming data at will, and the alerts will only be

evaluated when streaming data messages arrive from IQFeed.

It is sometimes convenient to start streaming immediately when the alert is created.

This can be done by setting the StartStream parameter (default: false). Setting a

value of true starts the streaming for the corresponding data type (e.g., streaming

quotes for a symbol) automatically, unless the streaming is already active.

Note that with StartStream=true, the streaming is started automatically, using the

default parameters. If you wish to control the streaming parameters (for example,

NumOfEvents or DataType), leave StartStream in its default false value, and start

the streaming in a separate IQML command.

100 Additional trigger operators are planned in future IQML releases.

127 IQML User Guide

The AlertAction defines the action to be performed when a triggering event is detected

(i.e., when the trigger condition is met). There are 4 possible AlertAction values:

'popup', 'display', 'email', and callback (note the performance discussion in §3.6, §10.2):

1. 'Popup' announces the triggered event in a pop-up a message-box:

alertId = IQML('alert', 'Symbol','@VX#', 'Trigger','quote bid > 14.75', ...

 'AlertAction','popup');

2. 'Display' announces the event in Matlab’s console (Command Window):

alertId = IQML('alert', 'Symbol','@VX#', 'Trigger','quote bid > 14.75', ...

 'AlertAction','display');

04:50:11.099000 IQML alert: @VX# bid (14.8) > 14.75

Or, as another example of regional update alert:

alertId = IQML('alert', 'Symbol','IBM', 'AlertAction','display', ...

 'Trigger', 'regional regionalbid > 140');

20180524 16:57:13.689 IQML alert: IBM regionalbid (143.75) > 140

3. 'Email' – an email with the alert event’s details will be sent to the specified

EmailRecipients, a mandatory parameter for email alerts. EmailRecipients

must be set as a comma/semi-colon/colon delimited string, or a cell array of

email addresses; it cannot be left empty.

For example, the following alert will send an email to two email recipients:

alertId = IQML('alert', 'Symbol','@VX#', 'Trigger','quote bid > 14.75', ...

 'AlertAction','email', ...

 'EmailRecipients',{'john@a.com','jane@b.com'});

which results in an email similar to this:

From: iqml.alerts@gmail.com

Subject: IQML alert: @VX# bid (14.8) > 14.75

Body:

 Symbol: '@VX#'

 Most_Recent_Trade: 14.82

 Most_Recent_Trade_Size: 10

 Most_Recent_Trade_Time: '08:40:02.926510'

 Most_Recent_Trade_Market_Center: 32

 Total_Volume: 6890

 Bid: 14.8

 ...

or similarly, in the case of a news alert:

mailto:iqml.alerts@gmail.com

128 IQML User Guide

From: iqml.alerts@gmail.com

Subject: IQML alert: United Technologies Plans To Hire 35,000 People, Make

$15 B... (RTB)

Body:

 ID: 22017029634

 Symbols: {'UTX'}

 Text: '09:31 Wednesday, May 23, 2018. (RTTNews) - United Technologies

Plans To Hire 35,000 People, Make $15 Bln Investment In U.S. Over Next 5 Years

For comments and feedback: contact editorial@rttnews.com. Copyright(c) 2018

RTTNews.com. All Rights Reserved'

For news alerts, the full story text is fetched by default. It is possible to skip

fetching the full story by setting GetStory to false. This speeds up processing

by skipping the news-fetch query, and reports only the headline information:

From: iqml.alerts@gmail.com

Subject: IQML alert: United Technologies Plans To Hire 35,000 People, Make

$15 B... (RTB)

Body:

 Source: 'RTB'

 ID: 22017029634

 Symbols: {'UTX'}

 Timestamp: '20180523 093143'

 Text: 'United Technologies Plans To Hire 35,000 People, Make $15 B...'

As noted, EmailRecipients can be specified in various manners. For example,

all the following are equivalent:

 'EmailRecipients','john@a.com,jane@b.com'

 'EmailRecipients','john@a.com;jane@b.com'

 'EmailRecipients',{'john@a.com','jane@b.com'}

Alert emails are sent from an IQML email address (iqml.alerts@gmail.com)

by default. To send the alert emails from another sender (for example, a

corporate email account), specify the SmtpEmail, SmtpServer and

SmtpPassword.101 These parameters are saved in your local machine’s

Matlab settings, and will be used by all future IQML email alerts (even after

you restart the computer), so you only need to set them once. For example:

alertId = IQML('alert', 'Symbol','GOOG', 'Trigger','quote ask < 1090', ...

 'AlertAction','email', 'Recipients','JohnDoe@gmail.com', ...

 'SmtpServer','smtp.gmail.com', ...

 'SmtpEmail','senderEmail@gmail.com', ...

 'SmtpPassword','mypassword123');

On modern smartphones, text (SMS) messages have generally been replaced

with push notifications of incoming emails. Still, for some users text alerts

may be useful. Some mobile operators enable users to receive text messages

by sending the messages to a specially-formed email address.102 For example,

to send a text message alert to T-Mobile number 123-456-7890 in the USA,

simply email the alert to 1234567890@tmomail.net. To receive alerts via such

text messages, you just need to determine your mobile carrier’s email gateway

for SMS messages, and set EmailRecipients accordingly.

101 The SMTP port is automatically assumed to be 465

102 https://en.wikipedia.org/wiki/SMS_gateway#Email_clients. Note that carrier charges for these SMS messages might apply.

mailto:iqml.alerts@gmail.com
mailto:editorial@rttnews.com
mailto:iqml.alerts@gmail.com
mailto:iqml.alerts@gmail.com
mailto:1234567890@tmomail.net
https://en.wikipedia.org/wiki/SMS_gateway#Email_clients

129 IQML User Guide

4. Callback: a personalized callback function for an event can be specified using

a Matlab function handle. For example:

alertId = IQML('alert', 'Symbol','GOOG', 'Trigger','…', 'AlertAction',@myFunc);

The callback function (myFunc in this example) should accept two or more

inputs, as customary for Matlab callbacks:103

function myFunc(alertObject, eventData)

 alertObject – a struct with the alert’s configuration (see §11.3 below)

 eventData – a struct with the triggered event’s local time (in Matlab

datenum format) and the trigger data.

For example, for quote data alerts, eventData might look like this:

>> eventData =

 triggerTime: 737202.663148947

 triggerData: [1×1 struct]

>> eventData.triggerData

ans =

 Symbol: 'GOOG'

 Most_Recent_Trade: 1083

 Most_Recent_Trade_Size: 30

 Most_Recent_Trade_Time: '08:54:53.159809'

 Most_Recent_Trade_Market_Center: 11

 Total_Volume: 1957

 ...

To specify additional input parameters to your callback function, set

AlertAction to a cell array in which the first cell is the function handle and

the rest are additional inputs. For example:

callback = {@myFunc, data1, data2};

alertId = IQML('alert', 'Symbol','GOOG', 'Trigger','…', 'AlertAction',callback);

function myFunc(alertObject, eventData, data1, data2)

 ... % data processing done here

end

103 https://www.mathworks.com/help/matlab/creating_plots/callback-definition.html;

https://www.mathworks.com/help/matlab/creating_guis/write-callbacks-using-the-programmatic-workflow.html#f16-1001315

https://www.mathworks.com/help/matlab/creating_plots/callback-definition.html
https://www.mathworks.com/help/matlab/creating_guis/write-callbacks-using-the-programmatic-workflow.html#f16-1001315

130 IQML User Guide

11.3 Alerts Query

IQML can be queried for the list of all existing alerts, or just a single specific alert.

Alerts are returned in this case as Matlab structs containing the alerts’ specifications.

Specific alerts may be queried by specifying their unique AlertID (which was

returned by the command that created the alert), and setting NumOfEvents to -1:

>> alertID = IQML('alert', 'Symbol','IBM', 'Trigger','quote bid > 200',…);

>> alert = IQML('alert', 'AlertID',alertID, 'NumOfEvents',-1)

alert =

 struct with fields:

 AlertID: 22120136109

 isActive: 1

 DataType: 'quote'

 Trigger: 'bid > 200'

 TriggerType: 'bid'

 TriggerOp: '>'

 TriggerValue: '200'

 Symbol: {'IBM'}

 AlertAction: 'popup'

 EmailRecipients: {}

 EventsProcessed: 0

 EventsToProcess: 1

 LatestValue: []

The AlertID parameter can be an array of alert IDs, resulting in an array of structs.

To retrieve the list of all the existing alerts, simply set NumOfEvents to -1, without

specifying the AlertID parameter:

>> allAlerts = IQML('alert', 'NumOfEvents',-1)

allAlerts =

 3×1 struct array with fields:

 AlertID

 isActive

 DataType

 Trigger

 TriggerType

 TriggerOp

 TriggerValue

 Symbol

 AlertAction

 EmailRecipients

 EventsProcessed

 EventsToProcess

 LatestValue

11.4 Alert Editing or Deletion

An existing alert can be edited or deleted by specifying its AlertID:

To delete an alert, set NumOfEvents to 0 as follows:

IQML('alert', 'AlertID',alertID, 'NumOfEvents',0);

To update/edit an alert, specify AlertID with one or more of the alert configuration

parameters: Symbols, Trigger, AlertAction, EmailRecipients, NumOfEvents (>1).

IQML('alert', 'AlertID',alertID, 'AlertAction','email', 'EmailRecipients','john@a.com');

As above, the AlertID input can be an array of IDs, affecting multiple alerts at once.

131 IQML User Guide

12 Messages and logging

To display detailed information, you can set IQML’s Debug parameter to 1 or true

(default=0). This will display in the Matlab console (Command Window) additional

information that may help diagnose problems.

For example, setting Debug to 1 (or true) displays the outgoing commands from

IQML to IQFeed (“=>”), and incoming messages from IQFeed to IQML (“<=”), along

with the message’s local timestamp and port channel:104
>> data = IQML('news' ,'DataType','headlines', 'MaxItems',4, 'debug',1)

 => 20180401 15:14:00.010 (Lookup) NHL,,:,t,5,,

 <= 20180401 15:14:01.082 (Lookup) N,CPR,21998204468,,20180401080059,

Following Is a Test Release

 <= 20180401 15:14:01.086 (Lookup) N,RTI,10134529069,,20180401080029,

Quarterly Corporate Earnings (04/01/18)

 <= 20180401 15:14:01.092 (Lookup) N,CPR,21998201110,,20180401073059,

Following Is a Test Release

 <= 20180401 15:14:01.098 (Lookup) N,CPR,21998197500,,20180401070059,

April 1 Alert: Introducing, Duty Not Free: Pay-as-you-go toilet time

 <= 20180401 15:14:01.107 (Lookup) !ENDMSG!

>> data = IQML('quotes', 'symbol','FB', 'debug',1)

 => 20180401 17:20:29.189 (Level1) wFB

 <= 20180401 17:20:29.450 (Level1)

F,FB,5,29.1,50158000,195.3200,138.8100,195.3200,149.0200,0.0000,,,,,,

,,,,5.49,,2.52,12,,FACEBOOK,FB,47.600,0.63,,48563.0,3760.0,12/31/2017

,,2905001,,,,,,14,4,7375,36.25,1,21,02/01/2018,04/11/2017,02/01/2018,

03/26/2018,176.4600,,,,,519190,,,

 <= 20180401 17:20:29.462 (Level1)

P,FB,160.0500,50000,19:59:56.263577,11,0,160.0500,4600,160.0600,200,,

,,159.7900,Cbacv,8801

 => 20180401 17:20:29.471 (Level1) rFB

A detailed log of all outgoing and incoming IQFeed messages, as well as IQFeed

events, can be found in IQFeed’s log, which is a text file called “IQConnect.txt” in

the \DTN\IQFeed subfolder, in the “My Documents” folder. For example,

C:\Users\<xyz>\Documents\DTN\IQFeed\IQConnectLog.txt (replace <xyz> with the

actual user name). You can control logging in IQFeed’s Diagnostic Utility:

104 Periodic IQFeed timestamp and client-stats messages (once every second) are not displayed, even Debug is 1 or true

132 IQML User Guide

In certain cases, IQML reports messages as red error messages on the Matlab console.

Such messages can be handled by analyzing IQML’s second (optional) output

argument, which is typically an empty string, except when an error is reported:
>> [data, errorMsg] = IQML('quotes', 'Symbol','IBM', 'Timeout',0.1)

IQML timeout: either IQFeed has no data for this query, or the Timeout

parameter should be set to a value larger than 0.1

data =

 []

errorMsg =

 'IQML timeout: either IQFeed has no data for this query, or the Timeout

parameter should be set to a value larger than 0.1'

Users can control whether such error messages from IQFeed should raise a Matlab

error (exception) in blocking (non-streaming) mode, using the RaiseErrorMsgs

parameter (default: true).

>> [data, errorMsg] = IQML('quotes', 'Symbol','IBM', 'RaiseErrorMsgs',false);

In addition to IQFeed messages, your program must handle cases of IQML errors. In

most cases, these are due to invalid IQML input parameters (an invalid action or

parameter name, or an invalid parameter value). Errors might also happen due to

network problems, or even an internal bug due to an unhandled edge-case situation.

To trap and handle such programmatic exceptions, wrap your calls to IQML within a

try-catch block, as follows:
try

 data = IQML('action','query', ...);

catch

 % process the exception here

end

Try-catch blocks have very small performance or memory overhead and are a very

effective way to handle programmatic errors. We recommend that you use them in

your program, not just to wrap IQML calls but also for other processing tasks. I/O sections

in particular (reading/writing files) are prone to errors, so they are prime candidates

for such exception handling. The same applies for code that handles user inputs (we

can never really be too sure what invalid junk a user might enter in there, can we?).

Very common causes of errors when using IQML are relying on default parameter

values, and specifying numeric parameter values within string quotes (e.g., ‘1’ rather

than 1). Users of IQML should take extra precaution in their programs to ensure that

these common mistakes do not occur. See discussion in §3.4 above.

Matlab “out of memory” errors might occur when receiving and storing a huge

amount of streaming or historic data. They can be fixed by running IQML on a

computer having more memory, or by reducing the amount of stored data.105

Java memory errors are recognized by the message “java.lang.OutOfMemoryError:

Java heap space”. They can be solved by running Matlab with more allocated Java

heap memory than the default value of 64MB or 128MB (depending on Matlab

105 Also see: http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html

http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html

133 IQML User Guide

release). This value can be increased in Matlab’s preferences, or via a java.opts

file.106

106 https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-

r12-and-later-versions

https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-r12-and-later-versions
https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-r12-and-later-versions

134 IQML User Guide

13 Frequently-asked questions (FAQ)

1. Can IQML be used with other data-feed providers?

IQML only connects to DTN IQFeed. It can be adapted for other data providers, but

some development is obviously required since other providers have different APIs.

Contact us by email to see if we can help.

2. Does IQML impose limitations on historical data or streaming quotes?

IQML does not impose any limitations, but the IQFeed server does impose limitations

on the frequency of the requests and the amount of returned data. The limitations

depend on your specific IQFeed subscription. For example, your account might be

limited to a maximum of 1000 concurrently-streaming (“watched”) symbols. These

limitations are imposed by the IQFeed server based on your account; IQML supports

whatever subscription your account has, and does not limit the information in any

manner.

3. Can I see a demo of IQML?

You are most welcome to request a fully-functional trial version of IQML, to try the

product at no risk.

4. How does IQML compare to alternative products?

We believe that of all the currently available alternatives for connecting Matlab to

IQFeed, IQML provides by far the best functionality, value and cost-effectiveness.

You are most welcome to test all this using IQML’s free trial.

5. Does IQML come with an IQFeed or market subscription?

No – IQML connects to an existing IQFeed account. You will need to purchase the

IQFeed and market subscriptions separately from DTN.

6. Does IQML send you any information?

No – IQML only communicates with IQFeed. The only communication that is done

with IQML’s server is a verification of the license activation (a single hash-code).

7. How can I be sure IQML does not contain bugs that will affect my trades?

Well, there is never a 100% guarantee. The product is rigorously tested. So far

nothing major has been reported. IQML is a very stable and robust product, despite

the fact that new functionality is being added on a constant basis.

8. Is IQML being maintained? supported?

Yes, actively. Features and improvements are added on a regular basis, and I support

the users personally. You can see the list of ongoing improvements in IQML’s

change-log, listed in Appendix B of the IQML User Guide (this document). You can

see the very latest updates in the online version of this guide.107

107 http://IQML.net/files/IQML_User_Guide.pdf

http://iqml.net/files/IQML_User_Guide.pdf

135 IQML User Guide

9. I saw a nice new feature in the online User Guide – can I get it?

Once the IQML product is installed, you will be notified in the Matlab console

(Command Window) whenever a new version is available. You can always update

your installation to the latest version, directly from the Matlab console, as follows:

>> IQML('update')

Downloading the latest IQML version from http://IQML.net/files/IQML.zip

 into C:\IQML\...

Download complete - installing...

Installation of the latest IQML version is now complete.

Please restart Matlab for the new version to take effect.

In addition, you can always download the latest version of IQML at any time from

http://IQML.net/files/IQML.zip.

10. What happens when the license term is over?

A short time before your license term is over, you will start to see a notification

message in your Matlab console (Command Window) alerting you about this:

*** Your IQML license will expire in 3 days (10-Mar-2018).

*** To extend your license please email info@IQML.net

This message will only appear during the initial connection to IQFeed, so it will not

affect your regular trading session. When the license term is over, IQML will stop

working. You can always renew or extend your license using the payment links on

http://IQML.net. If you wish to be independent of such annual renewals, you can

purchase a discounted multi-year license.

11. Can I transfer my IQML license to another computer?

Yes, simply email us and we will make the activation switch for you. At any one

time, each IQML license will only be activated on a single computer (unless you

purchase a site license). You can make up to 3 license activations per year at no extra

cost; additional switches will incur a small handling fee.

12. I have a laptop and desktop – can I use IQML on both?

Yes, but you will need to purchase two separate IQML licenses. IQML’s license is

tied to a specific computer (unless you purchase a site license).

13. Can IQML be compiled and deployed?

Yes, IQML can indeed be compiled. You do not need a separate license for the

compiled application on your development computer, since this computer is already

licensed. However, any other deployed computer will require a separate IQML

license, otherwise IQML will not run. If you wish to deploy IQML on a large scale, to

multiple computers, then contact me to discuss alternatives.

14. Is IQML provided in source-code format?

IQML is provided in encrypted binary form, like any other commercial software. If

you wish to get the source-code, then this is possible, subject to signing a separate

agreement and a higher cost. The benefit is that the source-code version has no

license fees and is not tied to any specific computer – you can install it on as many

computers as you wish within your organization. Contact me for details.

http://iqml.net/files/IQML.zip
http://iqml.net/files/IQML.zip
http://iqml.net/

136 IQML User Guide

15. Do you provide an escrow service for IQML’s source-code?

Yes. There are two alternative levels of escrow that you can select:

1. At safe-keeping with a Wall-Street lawyer

2. Using NCC Group’s108 independent escrow service

Escrow services incur a non-negligible usage fee, but you may decide that it may be

worth it for ensuring business continuity. The choice is entirely yours.

If you wish to ensure business continuity, consider purchasing multi-year renewals in

advance, for a reduced cost. This will ensure that your license will be independent of

annual renewals for as many years as you select.

16. Is feature ABC available in IQML?

IQML supports the entire IQFeed API. This means that all the functionality that

IQFeed exposes in its API, is available in IQML. In most cases, this functionality is

available using an easy-to-use Matlab wrapper function. This includes all the

important trading and query functionalities. Some additional functionalities, which

are less commonly used, are supported by sending IQFeed the corresponding custom

command (see §9.4) and then processing the incoming IQFeed data (see §10). To

check whether a specific feature is available in the IQFeed API (and by extension, in

IQML), please refer to IQML’s User Guide (this document), IQFeed’s online

reference, or contact IQFeed customer service.

17. Can you add feature ABC in IQML for me?

I will be happy to do so, for a reasonable development fee that will be agreed with

you in advance. After the development, this feature will be available to all others who

purchase (or renew) the latest version of IQML, at no extra cost. Contact me by email

if you have such a request, to get a proposed quote.

18. Can you develop a trading strategy for me?

I will be happy to do so, for a reasonable development fee that will be agreed with

you in advance. Unlike development of IQML features, strategy development will

never be disclosed to others, and will not be integrated in IQML. It will be developed

privately for you, and will be kept secret. See §15 below for additional details. If you

have such a request, contact me by email to get a proposed quote.

19. Does IQML include back-testing/charting/data analysis/algo-trading?

No. IQML is only used for communication with the IQFeed server (retrieving data

from IQFeed servers), it does not include any data analysis, charting or back-testing

functionalities. Matlab is great at data analysis and visualization, so you can easily

develop your own analysis programs in Matlab, using the data from IQML. I have

extensive experience in developing complete backtesting and real-time trading

applications - see §15 below for additional details. I will be happy to either develop a

new application based on your specifications, or to integrate IQML into your existing

application, under a consulting contract.

108 http://nccgroup.com/en/our-services/software-escrow-and-verification/software-escrow

http://nccgroup.com/en/our-services/software-escrow-and-verification/software-escrow

137 IQML User Guide

14 Troubleshooting

Error Description / solution Sections

NullPointerException

com.mathworks.jmi.bean.

MatlabBeanInterface.-

addCallback

IQML cannot work properly unless its Java file

(IQML.jar) is added to Matlab’s static Java

classpath. Contact us to solve the problem.

2.1

IQFeed is not properly

installed

IQFeed is not installed properly on the local

computer so IQML cannot connect to it.
2.1

IQFeed cannot be

connected or started

or:
Cannot connect to

IQFeed

IQML cannot connect to an active (running)

IQFeed client process, nor start one. Try to start

IQFeed’s client manually and then retry.

2.1

IQML is not activated

on this computer

Some component of your activated computer

fingerprint has changed. Revert this change, or

contact us to modify the activated fingerprint.

2.2

Your IQML license will

expire in 4 days (1-

Mar-2018)

This is an alert on upcoming license expiration.

It is not an error, and does not affect IQML’s

operation. Contact us to extend your license.

2.2

Your IQML license has

expired on 1-Jun-2018

IQML’s license is limited in duration. When the

license term expires, contact us to renew it.
2.2

Cannot connect to

IQML.net to validate

your IQML license

IQML validates its license on the IQML.net

server. Your internet connection may be down, or

this domain may be blocked by your firewall

(your IT admin can unblock it).

2.2

Action 'xyz' is not [yet]

supported

The specified action is not [yet] a valid IQML

action, although it is planned for a future version.
2.4

Unrecognized IQML action

'xyz'

The specified action is invalid in IQML. Refer to

the User Guide for a list of acceptable actions.
3.1

Missing parameter value:

all parameters must have a

value

No value was provided for the specified

parameter. IQML parameters must be specified as

name-value pairs that have both name and value.

3.1

Value for parameter 'abc'

should be a <xyz> data

type

The specified parameter value provided in your

IQML command has an incorrect data type. Refer

to the User Guide for a list of acceptable values.

3.1

Value for parameter 'abc'

should be a scalar number

The specified parameter value must be a single

scalar value, not a numeric array. Refer to the

User Guide for a list of acceptable values.

3.1

'abc' is not a valid

parameter for the 'xyz'

action

The specified parameter name is not valid for the

specified IQML action. Refer to the User Guide

for a list of acceptable parameter names.

3.1

IQML timeout: either

IQFeed has no data for

this query, or the Timeout

parameter should be set to

a value larger than 5

The query took longer than expected to return

data from IQFeed before IQML timed-out. Try to

set the Timeout parameter to a larger value.

3.2

138 IQML User Guide

Error Description / solution Sections

Warning: IQML timeout:

only partial data is

returned: the Timeout

parameter should be set to

a value larger than 5

The query took longer than expected to return

data, so only partial results have arrived from

IQFeed before the IQML timed-out. To get all

results set the Timeout parameter to a larger value.

4.1, 5.1,

7.2, 8.1

The 'news' action is not

available in your Standard

license of IQML

The specified action is only available in the

IQML Professional license and free trial. Contact

us to upgrade your license to access this feature.

3.4

Symbol 'XYZ' was not found
Either you have no permission to access this

Symbol, or this symbol is unknown by IQFeed.
3.4

(Missing digits in Matlab

Command Window)

Matlab’s display format is possibly set to “short”

instead of “long”.
3.4

Undefined function

'struct2cell' for input

arguments of type 'double'

An empty result was returned, and this cannot be

converted into a Matlab cell-array.
3.5

Error using struct2table

(line 26) - S must be a

scalar structure, or a

structure array ...

An empty result was returned, and this cannot be

converted into a Matlab table object.
3.5

The Symbol parameter must

be specified for an XYZ

query when NumOfEvents>0

Queries that have NumOfEvents>0 must be

specified with a non-empty Symbol/Symbols.
4, 6

Date parameter value must

be either a string

(YYYYMMDD, YYYY-MM-DD or

YYYY/MM/DD) or datenum

The date/time format of one or more of the query

parameters is incorrect. Refer to the User Guide

for a description of the acceptable formats.

5

IQML historic data query

error: !NO_DATA!

No data is available for the specified query.

Try to modify the query parameters.
5

Symbol "XYZ" is not

currently streaming

Start data streaming (by sending a query with

NumOfEvents>0) before querying streamed data
6

(IQML stops receiving

IQFeed streaming data)

Try to actively disconnect and reconnect to

IQFeed, or to restart the IQConnect application.
9.1

Unable to connect to L2IP

server. Error Code: 10065

Error Msg: A socket

operation was attempted to

an unreachable host.

(or a similar variant)

IQConnect lost the connection to IQFeed’s servers.

IQConnect will automatically reconnect as soon

as possible, and in most cases you can ignore this

message. You can also try to actively reconnect

to IQFeed, or to check your internet connection.

9.1

Out of memory

or:
Maximum variable size

allowed by the program is
exceeded

or:
Requested array exceeds

maximum array size
preference

This Matlab error might occur when receiving

huge amounts of streaming/historic data.

Different Matlab releases display different

messages having the same basic idea.

Run IQML on a computer with more memory,

or reduce the amount of stored/processed data.

12

java.lang.OutOfMemory

Error: Java heap space

Set Matlab to use a larger Java heap memory size

than the default value. This can be set in Matlab’s

preferences, or via a java.opts file.

12

139 IQML User Guide

15 Professional services

In addition to IQML being offered as an off-the-shelf software program, advanced

Matlab consulting, training, and development are being offered. With over 25 years

of professional Matlab programming experience, including extensive finance/trading-

related development in the past decade, I offer top-of-class Matlab consulting, with a

particular emphasis on the financial sector.

In particular, I have experience integrating quality production-grade Matlab programs

with online brokers such as IB (Interactive Brokers) and CQG; data-feed providers

such as DTN IQFeed, Bloomberg and Reuters; and websites such as finviz.com and

Nasdaq.com. The programs interfaced with various databases such as SQL Server,

MySQL, SQLite and Oracle, as well as Excel and raw-format data files. Programs

were developed on multiple Matlab releases, and on all Matlab-supported platforms:

Windows, Mac and Linux.

I have completed countless life-cycles of software requirements definition, design,

development, documentation, integration, testing, deployment, handover, maintenance

and support.

Much of my work derives from the financial sector. For example, I developed custom

software for a commodities fund in a Geneva bank; a backtesting and analysis

program for a large bank in Chicago; a currencies trading program for a hedge-fund

in Malta; data-analysis products for financial services firms in New-York; a portfolio

risk/exposure analysis program for an Israeli investment advisor; a charting GUI for a

San-Francisco hedge fund; and semi- and fully-automated algo-trading programs for

multiple clients around the globe.

Most of my revenue comes from repeat clients. I will be happy to provide references

of satisfied clients in US or Europe. With such an impressive track record, you

probably know some of them.

Development is typically done remotely; onsite consulting/development is also possible

upon request.

You can see a small sample of programs that I have developed below. Additional

samples can be seen on my consulting webpage.109

Anything developed under private consulting will be kept confidential and will not be

disclosed to others.

Contact us by email (info@IQML.net) to receive a proposal.

109 http://undocumentedmatlab.com/consulting

mailto:info@IQML.net
http://undocumentedmatlab.com/consulting

140 IQML User Guide

15.1 Sample program screenshots

141 IQML User Guide

142 IQML User Guide

143 IQML User Guide

15.2 About the author

With 25 years of professional software programming

experience, Yair Altman offers top-notch Matlab

consulting and training services.

Yair has worked extensively with Matlab and other

programming languages (Java, C#, C, C++ and others).

He has developed many programs with SQL and a variety

of databases, operating systems and hardware platforms.

Matlab community developers, and even MathWorks themselves, consider Yair to be

a top Matlab expert, as any simple online search will show. His website

UndocumentedMatlab.com is by far the largest and most active independent Matlab

site. Yair is also well-known from numerous submissions on the Matlab forums and

File Exchange; a MathWorks study determined110 that Yair is the third most influential

submitter in the entire Matlab user community. He regularly advises MathWorks, and

is a member of their Community Advisory Board, along with a handful of other members.

Yair has a specific experience in the finance sector, developing quality professional

Matlab programs that integrate with OMSes such as IB and CQG; data-feed providers

such as DTN IQFeed, Bloomberg and Reuters; websites such as finviz.com and

Nasdaq.com; databases such as SQL Server, MySQL, SQLite and Oracle, as well as

Excel and raw-format data files. These programs were developed on multiple Matlab

releases, and on all Matlab-supported platforms: Windows, MacOS and Linux.

Yair published two extensive highly-acclaimed textbooks

on advanced Matlab: MATLAB-Java programming111 in

2011 and Accelerating MATLAB Performance112 in 2014.

Both are considered the top references in their field.

Yair provides professional, cost

effective consulting and contract

work.113 He can do stuff that few

other Matlab programmers

know is even possible,

delivering great value: top

quality code at reasonable cost.

Yair offers customized Matlab
training courses,114 in a variety of topics and levels, from
introductory to highly advanced. By combining a proven
track-record of 25 years of quality professional industry
programming, Matlab knowledge that few others possess,
and hands-on workshop, Yair’s training is highly effective.

110 http://blogs.mathworks.com/community/2013/01/15/giving-by-taking-file-exchange-acknowledgment-trees

111 http://undocumentedmatlab.com/books/matlab-java

112 http://undocumentedmatlab.com/books/matlab-performance
113 http://undocumentedmatlab.com/consulting

114 http://undocumentedmatlab.com/training

http://undocumentedmatlab.com/
http://blogs.mathworks.com/community/2013/01/15/giving-by-taking-file-exchange-acknowledgment-trees
http://undocumentedmatlab.com/books/matlab-java
http://undocumentedmatlab.com/books/matlab-performance
http://undocumentedmatlab.com/consulting
http://undocumentedmatlab.com/training

144 IQML User Guide

Appendix A – online resources

A.1 Official DTN IQFeed resources

 IQFeed homepage – http://iqfeed.net

 IQFeed API homepage – http://www.iqfeed.net/dev/api/docs

 IQFeed symbol guide –

http://iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support

§ion=guide&web=iqfeed

 IQFeed symbol lookup –

http://iqfeed.net/symbolguide/index.cfm?symbolguide=lookup&displayaction=support

§ion=guide&web=iqfeed

 IQFeed users forum – http://forums.iqfeed.net

 IQFeed live chat –

http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=chat

 API customer service and technical support – support@iqfeed.net or

http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=contact

(please let them know that you are using IQML)

A.2 MathWorks webinars/presentation

 MathWorks algorithmic-trading portal –

http://mathworks.com/discovery/algorithmic-trading.html,

http://mathworks.com/financial-services/algorithmic-trading.html

(includes Yair’s webinar “Real-Time Trading System in MATLAB”)

 Algorithmic Trading Strategies with MATLAB Examples –

https://mathworks.com/videos/algorithmic-trading-strategies-with-matlab-

examples-92899.html

 Energy Trading & Risk Management with MATLAB –

https://mathworks.com/videos/energy-trading-risk-management-with-matlab-

81745.html

 Cointegration and Pairs Trading with the Econometrics Toolbox –

https://mathworks.com/videos/cointegration-and-pairs-trading-with-econometrics-

toolbox-81799.html

 Commodities Trading with MATLAB –

https://mathworks.com/videos/commodities-trading-with-matlab-81986.html

 Creating professional-quality applications with MATLAB –

(Yair’s keynote presentation in the 2016 Munich MATLAB Expo using IQFeed)

https://undocumentedmatlab.com/blog/upcoming-public-matlab-presentations

A.3 Additional open-source Matlab resources

 Spatial Econometrics Toolbox for Matlab – http://spatial-econometrics.com

 Algorithmic trading code in the Matlab File Exchange –

http://www.mathworks.com/matlabcentral/fileexchange/?term=trading

http://iqfeed.net/
http://www.iqfeed.net/dev/api/docs
http://iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support§ion=guide&web=iqfeed
http://iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support§ion=guide&web=iqfeed
http://iqfeed.net/symbolguide/index.cfm?symbolguide=lookup&displayaction=support§ion=guide&web=iqfeed
http://iqfeed.net/symbolguide/index.cfm?symbolguide=lookup&displayaction=support§ion=guide&web=iqfeed
http://forums.iqfeed.net/
http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=chat
mailto:support@iqfeed.net
http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=contact
http://mathworks.com/discovery/algorithmic-trading.html
http://mathworks.com/financial-services/algorithmic-trading.html
https://mathworks.com/videos/algorithmic-trading-strategies-with-matlab-examples-92899.html
https://mathworks.com/videos/algorithmic-trading-strategies-with-matlab-examples-92899.html
https://mathworks.com/videos/energy-trading-risk-management-with-matlab-81745.html
https://mathworks.com/videos/energy-trading-risk-management-with-matlab-81745.html
https://mathworks.com/videos/cointegration-and-pairs-trading-with-econometrics-toolbox-81799.html
https://mathworks.com/videos/cointegration-and-pairs-trading-with-econometrics-toolbox-81799.html
https://mathworks.com/videos/commodities-trading-with-matlab-81986.html
https://undocumentedmatlab.com/blog/upcoming-public-matlab-presentations
http://spatial-econometrics.com/
http://www.mathworks.com/matlabcentral/fileexchange/?term=trading

145 IQML User Guide

Appendix B – change log
Changelog

The following table lists changes done to this document and IQML. Depending on the

date that you have installed IQML, your version may be missing some features

discussed in this document. You can always update to the latest version – see §2.4.

Note: The last column indicates the change type: F=functional; D=documentation.

Version Date Section Description

0.80 2017-10-17 - Beta integration of IQML in a user trading program F

1.00 2018-02-26 - First commercial release of IQML F

1.01 2018-03-11 8.1
Enabled message-specific user callbacks;

Added additional information to callback eventData
F

1.02 2018-03-12

4.3.2 Clarified filtering meta-symbols such as 'BZRatings' D

4.3.3 Added relevant symbols list in returned news story data F
7.1, 11 Clarified automatic connection re-establishment D

1.03 2018-03-19

3.2 Enabled Symbol and Symbols as synonymous params F

4.1, 6.1 Improved ticks request logic & the returned data fields F

6.1
Enabled requesting streaming ticks/quotes for multiple
symbols at once, in a single IQML command

F

1.04 2018-04-01

1, 2.1
Clarified that IQFeed client can run on Linux/Mac via
Parallels/Wine, as well as natively on Windows/Mac

D

2.1 Added support for native Mac IQFeed client (untested) F

3.2
Added new MsgParsingLevel general parameter, for
improved callback run-time performance

F

5 MaxDataItems input parameter is renamed MaxItems F

6.1

Some result output fields renamed for consistency;
BufferSize input parameter is renamed MaxItems for
consistency; clarified the documentation text

F

6.2 Added new streaming regional updates functionality F

4.37 Moved the news functionality into a new chapter (#7) D

7.3
Added newline characters between separate paragraphs
in the reported news-story text, for better readability

F

7.4
Clarified that default Date is today; clarified that story
count also includes non-subscribed news sources

D

7.5 Added new streaming news functionality F

8-13
Renumbered chapters 7-12 as 8-13, to make room for
the new chapter (7) on the news functionality

D

8.2 Added new section on callback run-time performance D

10 Added timestamp and channel info to debug printouts F

A.2 Added an online MathWorks resource D

146 IQML User Guide

Version Date Section Description

1.05 2018-04-05

2.1
Added note that in some cases users may need/want to

specify the IQFeed connection Username, Password
D

3.1, 8
Added new symbols and numeric market codes lookup

functionality
F

3.2, 4.1

5, 7.2
Modified the default Timeout value from 3 to 5 [secs] F

3.5 Added new section on handling returned data format D

5.5
Clarified that micro-sec time resolution depends on the
IQFeed client version, the market, and the security type

D

8.2, 10.3
Added basic support for options-chain and futures-chain

symbol lookup (better support is planned for next version)
F

9-14
Renumbered chapters 8-13 as 9-14, to make room for

the new chapter (8) on the lookup functionality
D

9.1
Enabled specifying IQFeed Username and Password;
Added a 10-sec timeout on IQFeed connection attempts

F

9.3 Added extra port-specific stats when AddPortStats=1 D

1.06 2018-04-08 8.2 Added options/futures chain lookup functionality F

1.07 2018-04-10 9.1 Added info msgs on server connections/disconnections F

1.08 2018-04-11
4.1, 6.1 Added the Symbol field to returned quotes data struct F

10.4 Added usage example of realtime quotes user callback D

1.09 2018-04-16 6.3 Added Interval Bars functionality F

1.10 2018-05-04 2.4 Added example of update notification on a new version D

1.11 2018-05-16

4.3, 6.4,

10.5
Added Market Depth (Level 2) functionality F

6.3

Indicated that IQFeed server may possibly limit reported
interval bars depending on exchange, data subscriptions;

Clarified that IntervalSize must be >1 for volume/ticks

D

1.12 2018-05-23

3.4, 4.3,

6.2, 6.4,

7, 8.2,

10.5, 12

Clarified that news, level 2 (market depth), alerts,
options/futures chain lookup, and regional updates are

only available in the Professional license and free trial

D

12 Added alerts functionality F

13-15
Renumbered chapters 12-14 as 13-15, to make room
for a new chapter (12) on the alerts functionality

D

1.13 2018-05-25

7.2
Enabled auto-fetch of full news story in news headlines
query (streaming/blocking) using GetStory parameter

F

11-12 Switched between sections 11,12 in the User Guide D

11.2
Enabled reporting the full news story (in addition to
headline) in news alerts using GetStory parameter

F

11.1,

11.2

Added regional updates alert functionality (in addition
to news/quote/intervalbar alerts)

F

1.131 2018-05-28

3.1 Fixed bug in accepting struct-based input parameters F

5.4 Clarified that IntervalSize must be >1 for vol/tick bars D

6.2 Fixed typo in regional update action (should be 'regional') D

7.2 Fixed bug in the news headlines functionality F

147 IQML User Guide

Version Date Section Description

1.14 2018-05-30

4.2
Enabled specifying multiple Symbols in a single

Fundamental-data query
F

6.2
Enabled specifying multiple Symbols in a single

streaming Regional updates query
F

7.3
Enabled specifying multiple news headline ID values

in a single news story query
F

1.15 2018-07-08

- Updated compatibility notice for Matlab release R2018b D

4.1, 6.1,

14

Enabled querying snapshot (top of market) & streaming

data of multiple symbols at once, in a single IQML query
F

4.2
Fixed: querying multi-symbol fundamental data

sometimes returned empty results
F

6.1-6.3
Fixed: debug data was displayed when streaming queries

were requested (now only displayed if Debug=1)
F

8.2
Enabled querying fundamental data of all symbols in an

options/futures chain at once, in a single IQML query
F

8.2
Enabled querying snapshot (top of market) data of

entire options/futures chain at once, in a single query
F

9.1
Fixed: IQML query during IQFeed connection

sometimes returned empty/error results
F

1.16 2018-07-09

3.6 Added new section on general run-time performance D

5.1-5.5 Improved performance (speed) of historical data queries F

10.2 Updated the section on callback-related performance D

1.17 2018-07-30

5.4, 5.5
Clarified that IQFeed limits ticks/interval data to 8 days

during US trading hours, 180 calendar days outside them
D

6.1
Clarified that IQFeed allows up to 500 concurrently-

streaming symbols, unless you pay DTN for more symbols
D

6.3
Clarified that IntervalSize must be >1 for interval bars

that use IntervalType = 'ticks' or 'volume'
D

6.1-6.4
Enabled retrieval and cancellation of streaming data for

multiple/all streamed symbols in a single IQML command
F

8.2
Clarified that option/future chain name might change

when corporate actions (such as splits) occur
D

1.18 2018-08-03

3.1, 3.5 Added optional errorMsg output for IQML commands F

9.1 Fixed problem of duplicate fields during initial connection F

9.1
Improved the reliability of a programmatic IQFeed

disconnect/reconnect
F

1.19 2018-08-06

3.2, 12
Added the RaiseErrorMsgs parameter to control

whether IQFeed errors should raise a Matlab error
F

4.1, 5.1,

7.2, 8.1

Message about partial data received due to Timeout is

now a Matlab warning message, not an error message
F

1.20 2018-08-07

5.1-5.5

14

Enabled requesting history data for multiple symbols in

a single IQML command
F

5.1, 5.4,

5.5

Automatically convert BeginDateBeginDateTime,

EndDateEndDateTime (i.e. try to fix usage error) F

148 IQML User Guide

Version Date Section Description

1.21 2018-08-10

8.1 Enabled looking up symbols by market(s), sec-type(s) F

8.2
Clarified that IQFeed only enables lookup of active
(non-expired) options; a list of expired options is
available separately as a downloadable text file.

D

1.22 2018-08-13
8.2

Enabled NearMonths values of 0-12, not just 0-4, for
options/futures chain. Note: this is based on undocumented
IQFeed functionality, so might not work in some cases.

F

3.2 etc. Limited the Timeout parameter values to 0-3000 [secs] F

1.23 2018-08-14
5.4

Clarified regarding historical intervals data limitations;
Clarified that IQFeed’s interval data typically exclude
“O” trades (see §5.5).

D

9.1
Fixed a problem of possible bad connection to IQFeed
during the initial connection by IQML F

1.24 2018-08-31

3.2 etc.
Limited the Timeout parameter values to 0-9000 [secs],
with 0 indicating infinite (i.e. no-limit) timeout F

5.5
Clarified that while IQFeed typically limits historic tick
data to 180 days (outside trading hours), extended (older)
tick data can possibly be purchased from DTN

D

8.2
Enabled NearMonths values of 0-99, not just 0-12, for
options/futures chain. Note: this is based on undocumented
IQFeed functionality, so might not work in some cases.

F

9.1
Enabled multiple Matlab processes on the same computer
to run IQML concurrently (Beta)

F

149 IQML User Guide

Version Date Section Description

2.00

(major

update)

2018-09-05

This is a major update. Highlights: query parallelization
and multiple usability/functionality fixes/improvements

(all)

Enabled parallel processing of IQML commands within
parfor/spmd blocks, and parallel internal processing via
the UseParallel parameter (Professional license only)

F

2.1-2.4 Added the license type to the output of IQML('version') F

3.1 Clarified the actions available in Pro vs. non-Pro license D

3.5 All returned data arrays are now column vectors F

3.5
Using the 2nd (optional) output of IQML (errorMsgs)
now implies a default value of false for RaiseErrorMsgs F

3.5,
8.2-8.7

Fixed various typos in code snippets, that would have
resulted in errors or bad data if used as-is

D

4.1-4.4 Modified reported data format when NumOfEvents >1 F

4.1, 8.2
Issued a warning when requesting more symbol quotes
than your IQFeed account limit F

4.3 Added new section on blocking interval bars functionality F

4.3, 5.4,

6.3

Clarified that IntervalSize must be ≥100 for volume
bars (a new limitation of IQFeed) F

4.3, 5,

6.3, 7.4

Enabled specifying dates and date-times using Matlab

datetime objects (in addition to datenums and strings) F

4.34.4 Moved the blocking market-depth section to §4.4 D

5.1, 5.4,

5.5

Clarified that MaxItems has precedence over BeginDate
/Time when more data items are available than MaxItems

D

5.4, 5.5 Clarified that in IQFeed and IQML, 'ticks' = 'trades' D

6.1-6.4 Added Symbol field to returned streaming data struct F

7.4
Story count for symbols that have no related news story
is reported as 0 (such symbols were previously skipped)

F

9.3
Added Exchanges, ServerVersion, ServiceType fields to
the returned client stats data

F

11 Fixed various things with the Alerts functionality F

11.2 Reorganized & clarified the Alerts Configuration section D

2.02 2018-09-13

4.3, 5.4,

6.3

Clarified that IntervalSize must be < 86400 for secs
bars (a new limitation of IQFeed); added warning when
user attempts to use an invalid IntervalSize value.

F

4.3, 6.3
Clarified that streaming/latest interval bars are subject to
the same limitations as those imposed on historical bars

D

5.4
Clarified that full-minute interval bars are excempt from
the 8/180-day limitation imposed by IQFeed’s servers

D

9.1
Added detection & report for a case of a non-
communicative background IQConnect process

F

2.03 2018-09-30 9.1
Fixed a problem with the license check that caused
IQFeed disconnections

F

2.04 2018-10-02

5 Improved download speed of historical data queries F

6, 7.5,

9.2

LatestEventTimestamp is now reported in seconds (not
msecs) resolution by default, unless Debug is 1 or true

F

150 IQML User Guide

Version Date Section Description

2.05 2018-10-13 4.1, 6.1 Added Fields parameter to enable dynamic fields-set F

2.06 2018-10-15
4.1 Added some clarifications on the new Fields parameter D

6.1 Minor fixes, performance speedup of streaming quotes F

2.07 2018-10-21

3.4 Minor text clarifications; added timestamp examples D

4.3, 5.4,

6.3

Clarified that IQFeed’s limitations on live 'secs' interval
bars are stricter than limitations on historical intervals

D

5.4
Enabled using MaxDays as synonym for the Days
parameter in historic interval queries

F

9.1
Fixed a problem with the license validation that
prevented connection in certain cases

F

9.4
Fixed a few small edge-cases with sending custom
commands to IQFeed

F

2.08 2018-10-28

3.6 Added clarifications on the use of query parallelization D

5.1, 5.4,

5.5

Enabled parallelized historic data queries (daily/interval/
ticks) that have date/time range (Professional license only)

F

A.1 Added IQFeed’s users forum to list of online resources D

2.09 2018-11-07

3.1 Fixed a bug in parsing input parameters in struct format F

3.6
Added explanation on how to use a customized Fields

parameter to improve the query speed of market quotes
D

2.10 2018-11-14

2.4
Added ability to revert back to the previous IQML

version at any time.
F

4.1
Added a table listing all the available quote data fields

(customizable via the Fields parameter)
D

4.1

Added description fields for the Bid_Market_Center,

Ask_Market_Center and Last_Market_Center fields,

when reported in a quotes message from IQFeed.
F

4.5

Added a new Greeks action, to calculate Greeks, fair

value price and implied volatility for options

(Professional license only)
F

5.1

Clarified that DTN limits historical data retrieval in

IQFeed’s trial account. Historical data queries in such

accounts may yield fewer data points than requested.
D

6.1
Clarified that tick (update/quote) messages are streamed

whenever any of the requested Fields gets updated.
D

2.11 2018-11-22 4.5

DaysPerYear parameter was renamed AnnualFactor;

Duration parameter was renamed DaysToExpiration;

Vega, Rho, Veta, Ultima are no longer divided by 100 by

default (compatibility with Matlab Financial Toolbox,

Maple & NAG); minor fix for Veta (negative value);

added new fields in the reported data struct: Omega +

Lambda (synonyms), CRho, Color, Annual_Factor_Used.

Clarified differences of IQML’s Greek values vs.

Matlab’s Trading Toolbox, NAG, and Maple.

Added a table explaining all the reported Greek values.

F

	DISCLAIMER
	1 Introduction
	2 Installation and licensing
	2.1 Installing IQML
	2.2 Licensing and activation
	2.3 Switching activated computers
	2.4 Updating the installed version

	3 Using IQML
	3.1 General usage
	3.2 General properties
	3.3 Blocking & non-blocking modes
	3.4 Common causes of confusion
	3.5 Returned data format
	3.6 Run-time performance

	4 Querying the latest market data
	4.1 Snapshot (top of book) quotes
	4.2 Fundamental information
	4.3 Interval bars
	4.4 Market depth (Level 2)
	4.5 Greeks, fair value, and implied volatility

	5 Historical and intra-day data
	5.1 Daily data
	5.2 Weekly data
	5.3 Monthly data
	5.4 Interval data
	5.5 Tick data

	6 Streaming data
	6.1 Streaming quotes
	6.2 Regional updates
	6.3 Interval bars
	6.4 Market depth (Level 2)

	7 News
	7.1 Configuration
	7.2 Story headlines
	7.3 Story text
	7.4 Story count
	7.5 Streaming news headlines

	8 Lookup of symbols and codes
	8.1 Symbols lookup
	8.2 Options/futures chain
	8.3 Markets lookup
	8.4 Security types lookup
	8.5 SIC codes lookup
	8.6 NAICS codes lookup
	8.7 Trade condition codes lookup

	9 Connection, administration and other special commands
	9.1 Connecting & disconnecting from IQFeed
	9.2 Server time
	9.3 Client stats
	9.4 Sending a custom command to IQFeed

	10 Attaching user callbacks to IQFeed messages
	10.1 Processing IQFeed messages in IQML
	10.2 Run-time performance implications
	10.3 Usage example – using callbacks to parse options/futures chains
	10.4 Usage example – using callbacks for realtime quotes GUI updates
	10.5 Usage example – using callbacks for realtime order-book GUI updates

	11 Alerts
	11.1 General Usage
	11.2 Alert Configuration
	11.3 Alerts Query
	11.4 Alert Editing or Deletion

	12 Messages and logging
	13 Frequently-asked questions (FAQ)
	1. Can IQML be used with other data-feed providers?
	2. Does IQML impose limitations on historical data or streaming quotes?
	3. Can I see a demo of IQML?
	4. How does IQML compare to alternative products?
	5. Does IQML come with an IQFeed or market subscription?
	6. Does IQML send you any information?
	7. How can I be sure IQML does not contain bugs that will affect my trades?
	8. Is IQML being maintained? supported?
	9. I saw a nice new feature in the online User Guide – can I get it?
	10. What happens when the license term is over?
	11. Can I transfer my IQML license to another computer?
	12. I have a laptop and desktop – can I use IQML on both?
	13. Can IQML be compiled and deployed?
	14. Is IQML provided in source-code format?
	15. Do you provide an escrow service for IQML’s source-code?
	16. Is feature ABC available in IQML?
	17. Can you add feature ABC in IQML for me?
	18. Can you develop a trading strategy for me?
	19. Does IQML include back-testing/charting/data analysis/algo-trading?

	14 Troubleshooting
	15 Professional services
	15.1 Sample program screenshots
	15.2 About the author

	Appendix A – online resources
	Appendix B – change log
	Changelog

