

PROGRAM NAME: ETABS REVISION NO.: 0

IS 800-2007 Example 001

WIDE FLANGE MEMBER UNDER COMPRESSION

EXAMPLE DESCRIPTION

The frame object axial strengths are tested in this example.

A continuous column is subjected to factored load N = 1 kN. This example was tested using the Indian IS 800:2007 steel frame design code. The design capacities are compared with independent hand calculated results.

GEOMETRY, PROPERTIES AND LOADING

TECHNICAL FEATURES TESTED

- Section compactness check (column)
- Member compression capacity

PROGRAM NAME:	ETABS
REVISION NO.:	0

RESULTS COMPARISON

Independent results are taken from hand calculations based on the CSI steel design documentation contained in the file "SFD-IS-800-2007.pdf," which is available through the program "Help" menu. The example was taken from Example 9.2 on pp. 765-766 in "Design of Steel Structures" by N. Subramanian.

Output Parameter	ETABS	Independent	Percent Difference
Compactness	Plastic	Plastic	0.00%
Design Axial Strength, N _{crd}	733.85	734.07	-0.03%

COMPUTER FILE: IS 800-2007 Ex001

CONCLUSION

The results show an acceptable comparison with the independent results.

PROGRAM NAME:	ETABS
REVISION NO.:	0

HAND CALCULATION

Properties:

Material: Fe 250

E = 200,000 MPa

 $f_y = 250 \text{ MPa}$

Section: ISMB 350

$$A = 6670 \text{ mm}^2$$

$$b = 140 \text{ mm}, t_f = 14.2 \text{ mm}, d = 350 \text{ mm}, t_w = 8.1 \text{ mm}, r = 1.8 \text{ mm}$$

$$h = d - 2(t_f + r) = 350 - 2(14.2 + 1.8) = 318 \text{ mm}$$

$$r_y = 28.4 \text{ mm}, r_z = 143 \text{ mm}$$

Member:

 $KL_y = KL_z = 3,000 \text{ mm}$ (unbraced length) $\gamma_{M0} = 1.1$

Loadings:

$$N_{Ed} = 1 \,\mathrm{kN}$$

Section Compactness:

$$\varepsilon = \sqrt{\frac{250}{f_y}} = \sqrt{\frac{250}{250}} = 1$$

Localized Buckling for Flange:

$$\lambda_{p} = 8.4\varepsilon = 8.4 \bullet 1 = 8.4$$
$$\lambda_{e} = \frac{b}{t_{f}} = \frac{70}{14.2} = 4.93$$
$$\lambda_{e} = 4.93 < \lambda_{p} = 8.40$$

So Flange is Plastic in compression

PROGRAM NAME: ETABS REVISION NO.: 0

Localized Buckling for Web:

 $\lambda_p = N / A \quad \& \quad \lambda_s = 42\varepsilon = 42 \text{ for compression}$ $\lambda_e = \frac{d}{t_w} = \frac{318}{8.1} = 39.26$ $\lambda_e = 39.26 < \lambda_s = 42$ So Web is Plastic in compression

Since Flange & Web are Plastic, Section is Plastic.

Member Compression Capacity:

Non-Dimensional Slenderness Ratio:

$$\frac{h}{b_f} = \frac{350}{140} = 2.5 > 1.2$$

and

 $t_f = 14.2 \,\mathrm{mm} < 40 \,\mathrm{mm}$

So we should use the Buckling Curve 'a' for the z-z axis and Buckling Curve 'b' for the y-y axis (IS 7.1.1, 7.1.2.1, Table 7).

Z-Z Axis Parameters:

For buckling curve a, $\alpha = 0.21$ (IS 7.1.1, 7.1.2.1, Table 7)

Euler Buckling Stress:
$$f_{cc} = \frac{\pi^2 E}{\left(\frac{K_z L_z}{r_z}\right)^2} = \frac{\pi^2 200,000}{\left(\frac{3,000}{143}\right)^2} = 4485 \text{ MPa}$$

$$\lambda_z = \sqrt{\frac{f_y}{f_{cc}}} = \sqrt{\frac{250}{4485}} = 0.2361$$

PROGRAM NAME:	ETABS
REVISION NO.:	0

$$\phi = 0.5 \left[1 + \alpha \left(\lambda - 0.2 \right) + \lambda^2 \right] = 0.5 \left[1 + 0.21 \left(0.2361 - 0.2 \right) + 0.2361^2 \right]$$

 $\phi = 0.532$

Stress Reduction Factor: $\chi = \frac{1}{\phi + \sqrt{\phi^2 - \lambda^2}} = \frac{1}{0.532 + \sqrt{0.532^2 - 0.2361^2}} = 0.9920$

$$f_{cd,z} = \chi \frac{f_y}{\gamma_{M0}} = 0.992 \bullet \frac{250}{1.1} = 255.5 \,\text{MPa}$$

Y-Y Axis Parameters:

For buckling curve b, $\alpha = 0.34$ (IS 7.1.1, 7.1.2.1, Table 7)

Euler Buckling Stress:
$$f_{cc} = \frac{\pi^2 E}{\left(\frac{K_z L_z}{r_z}\right)^2} = \frac{\pi^2 200,000}{\left(\frac{3,000}{28.4}\right)^2} = 177 \text{ MPa}$$

$$\lambda_{y} = \sqrt{\frac{f_{y}}{f_{cc}}} = \sqrt{\frac{250}{177}} = 1.189$$

$$\phi = 0.5 \left[1 + \alpha \left(\lambda - 0.2 \right) + \lambda^{2} \right] = 0.5 \left[1 + 0.34 \left(1.189 - 0.2 \right) + 1.189^{2} \right]$$

$$\phi = 1.375$$

Stress Reduction Factor: $\chi = \frac{1}{\phi + \sqrt{\phi^2 - \lambda^2}} = \frac{1}{1.375 + \sqrt{1.375^2 - 1.189^2}} = 0.4842$

$$f_{cd,y} = \chi \frac{f_y}{\gamma_{M0}} = 0.4842 \bullet \frac{250}{1.1} = 110.1 \text{ MPa}$$
 Governs
 $P_d = A f_{cd,y} = 6670 \bullet 110.1$

$$P_d = 734.07 \,\mathrm{kN}$$