Version : 2.2
Date: 17-08-2015

Innovative Solutions In Space

ISIS-OBC Quickstart Guide

Important Notice: Before performing the hardware related steps described in the 1SIS-OBC Quickstart
Guide, please read through the 1SIS-OBC Datasheet for information on safety instructions
related to the handling of the ISIS-OBC hardware.

ISIS-OBC Quickstart Guide Page 1 of 24

Table of Contents

R [01 o To 1¥ o3 1 o o ISP 3
2 Embedded Systems SoOftware DESIQNccooiiiiiiiiiii it e e e eaana 4
3 Setting up the Integrated Development ENVIFONMENToiiiiiiiiiiiiiiiiiie e e e eeeeens 5
3.1 Install Programmer Hardware Driver: JLINK from SEQQEr.......ccoiiiiiiiiiii it e e 5
3.2 Install USB-to-Serial Hardware Driver: FTDI.....cccooi oo s s e e e e et a e e e eaaeennnes 6
3.3 INSLAIl ISIS-OBEC SDK ... e 6
3.4 EXIract ISIS-OBC FirSt-PrOJECTuuuui it e e eeiieeeiiie e e e et e e e ettt e e e e e e e e e e ae et e e e e eaaeeeaastanaaaaeaeeeennnes 6
3.5 EXtract ISIS-OBC LIBIari@scuuuuiiii et e e e e ettt a s e e e e e e e e aatt e e e e e e e e eennnes 7

4 Setting-UP the HardWarEcooooiiiiiii e e et e e e e e e e e e e et e e e e e e eeeannnes 8
5 ConfiguUring ECHPSE IDE......ccci oot e e e e e e e et e e e e e e e e eeaa e e aaeeeeeennnes 9
5.1 Import the ‘sis-0bC-first-project’ iNtO ECHPSEccove et e et e e e e e eannes 9
5.2 Configure the J-Link GDB Server Configurationccooiiioiiiiiiiiiiiii et e e e e eeanees 11
5.3 Check/Add the Debug Launch ConfiguIationcooooooooiiiieeie e 13

6 Code Development and Debug/Release BUildsSccoovviiiiiiiiiii e 15
200 R o o] 1 11 To [O o Lo = O SUSUPPPPRPN 15
6.2 ISIS-OBC First-project as TEMPIALEoouuuuiiiiiiiieiiee e e e e e e et e e e e e e e aaanee 15
6.2.1 Creating a New Project USiNg the TEMPIALEcvviiiiiiiiiiiiieiiiieieeeeeeeeeeeee et eeeaeaesesesasesesesesessseserennnes 15
6.2.2 [o] = 1 YA I 0 = Vo [PP PPTT R POPUPPPPPPT 16
6.2.3 Linking an Additional LIDrary ... 16

SRS T =Tl 1o LYo =TT [o @] o1 T 01 =14 o] ISR 18
6.3.1 DeBUG BUIIA ... 18
6.3.2 REIEASE BUII ...ttt e e oottt e e e e e e o aa bbb et e e e e e e e e ab bbb ee e e e e e aaannnbeeeeeeeeeeaanne 18
6.3.3 Changing the Active BuUild CONFIQUIALIONviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee et e e eeeeeaeeesasesesesssesesesssssssesssennnes 18

A R 0o T L aTo IR YoYU L = fe T | &= 11 4 T 19
% R B 1= o 10 o o[aTo Yo 10 G @Xo o [TSSO UUSRPPPPRPPIR 19
7.1.1 SEAIM T GDB SEIVET ...ttt oottt et e e e e e oo b bbbttt e e e e e o a b b be e et e e e e e e e nbbbbeeeeaeeeeanbnbbeeeaaaeeas 19
7.1.2 Start PUTTY for the USB-t0o-Serial INTEICONNECTooiiiiiiiiieie ettt ee e e 19
7.1.3 Starting @ DEDUG SESSIONcoiiiiiiiiiiiiiie ettt e e e ettt e e e e e s e b e be et e e e e e e s aabbbbeeeeaeeeeanbnbaeeeaaaaaan 21
7.1.4 Debugging the APPHCALION ...ttt e e e e ettt e e e e e s s s bbbt e e e e e e e s e e annbbeeeaaaeeeaannne 21

S T o = 1] YT g Yo T (oYU 1 @ Yo L= R 22
S 70t R S IS @] =1 O =T o [0 = T [OSSPSR 23
8.2 Backing-Up and Restoring FIashed COOe........cooooioiiiieeeeeeeeee e 23

LS T 1 1 0] Lo] TP 24

ISIS-OBC Quickstart Guide

Page 2 of 24

1 Introduction

The ISIS On Board Computer (ISIS-OBC) is a general purpose computing board that adheres to the Cubesat
standard. It provides powerful processing capabilities and comes with an extensive set of software tailored
specifically for space applications. The basic interfaces are standardized improving robustness, while a high
level of customization can be provided through the daughterboard concept without the need to sacrifice additional
volume.

This document provides aid for getting started with embedded software development for the ISIS-OBC hardware.
Chapter 2 provides a general discussion on embedded systems that provides a primer for people unfamiliar with
embedded systems and embedded software development. Chapter 3 dives into the details of installing drivers
and the ISIS-OBC Software Development Kit (SDK). Chapter 4 describes how to connect the ISIS-OBC
hardware to the development machine. Eclipse configuration in Chapter 5 concludes the setup of the IDE. Code
development and compiling/running/debugging application code is discussed in Chapters 6 and 7. Chapter 8
provides information on flashing code to the non-volatile memory. Chapter 9 describes how to get support.

ISIS-OBC Quickstart Guide Page 3 of 24

2 Embedded Systems Software Design
This section provides a primer to embedded systems design. It can be skipped without loss of information.

An embedded system is a generic term that refers to any computer system that is located along with the hardware
it controls. The main control unit of the system is referred to as the controller, and has historically been carefully
selected to supply just enough processing power to perform their controller function while keeping cost and
power consumption to a minimum. These carefully selected controllers are referred to as micro-controllers. With
processing power becoming less expensive in terms of power consumption and cost, increasing amounts of
embedded systems employ a more generic and much more powerful controller unit referred to as a central
processing unit (CPU). The ISIS-OBC uses an ARM architecture based processing unit.

A computer running Microsoft Windows is used to develop and deploy embedded software to the ISIS-OBC
controller hardware. This machine will be referred to as the development machine. The development machine
requires drivers to be installed to allow interfacing with attached hardware, as well as programs that use the
drivers to perform various tasks. ISIS provides a Software Development Kit (SDK) to provide all required
programs.

To interact with the 1SIS-OBC hardware two types of equipment are used: a programmer to deploy and debug
embedded programs running on the ISIS-OBC processor, and an USB-to-Serial converter which provides a
separate full-duplex data channel between the development machine and the ISIS-OBC controller. Hardware
interfaces to the serial data connection lines are usually provided for in Electronic Ground Support Equipment
(EGSE), and provide a mechanism for relaying debug messages, commanding of embedded programs during
ground testing and setting final configurations before flight.

Programs that control the hardware attached to the development machine by interacting with the installed drivers
are contained within the I1SIS-OBC Software Development Kit (SDK) installer package, along with applications
that provide translation of program code to machine instructions (the compiler/linker toolchain) and a
programming environment that aids an embedded developer in efficiently producing embeddable software. The
collection of these programs is usually brought together and controlled from within a single application, which is
referred to as the Integrated Development Environment (IDE).

Once coding of an embeddable program has been completed, the IDE is instructed to perform a build using the
toolchain programs. A successful build produces a file that contains machine instructions specific to the
embedded processor architecture. The IDE can then instruct the programmer hardware to transfer the machine
code to the embedded processor and execute the program. The embedded software developer has included
code within the program that emits debug trace and/or error messages, which are relayed over the USB-to-Serial
interface to the development machine. The debug messages are received and displayed in a terminal
application, which allows the developer or e.g. test conductor to verify the program’s behavior. The terminal
application also allows sending data over the USB-to-Serial interface to the embedded processor, at which point
code included by the embedded software developer can take appropriate action.

Once correct program behavior has been verified by using the programming hardware, the program is ‘burned’
into embedded memory using some type of non-volatile memory. Frequently used non-volatile memory are
NAND- or NOR-FLASH, while FRAM is a near-future contender due to the many improvements it provides. From
this point onwards the hardware can perform its functions without the need for an attached development
machine.

ISIS-OBC Quickstart Guide Page 4 of 24

3 Setting up the Integrated Development Environment

To set up the integrated development environment on the development machine several software items must
be installed and configured. The installation is comprised of the following steps:

Install J-Link driver of the SAM-ICE programmer/debugger

Install driver of the FTDI USB-to-Serial device

Install the 1SIS-OBC SDK containing required IDE application software
Extract the ISIS-OBC libraries.

Extract the ISIS-OBC first-project.

aprwneE

Each of the installation steps will be described in the following sections.

3.1 Install Programmer Hardware Driver: JLink from Segger

Download and install the Jlink drivers for the programmer/debugger, shown in Figure 1. The newest driver
version can be installed from:

https://www.seqgger.com/jlink-software.html

Older versions can be downloaded from:

https://www.seqgger.com/j-link-older-versions.html

Note: version 4.52 of the JLink driver software has been extensively used during testing. Use of other/newer
versions could provide different behavior and might not work properly. Several versions of the driver can be
installed on a development machine and will be able to run independently according to Segger. The driver
version used during debugging is set using the GDB Server configuration explained in Section 5.2

The serial number can be found on the bottom of the SAM-ICE debugger as shown in Figure 2.

SAM-ICE

8.0 10-37
Versi

fizmegRoHS 2C €

compliant ac

Figure 1: SEGGER SAM-ICE Figure 2: SAM-ICE S/N is located on the bottom
Programmer/Debugger Atmel (src: segger.com)
OEM version (src: segger.com)

ISIS-OBC Quickstart Guide Page 5 of 24

https://www.segger.com/jlink-software.html
https://www.segger.com/j-link-older-versions.html

3.2 Install USB-to-Serial Hardware Driver: FTDI
Download and install drivers for the FTDI USB-to-Serial adapter from:

http://www.ftdichip.com/Drivers/\VCP.htm.

Locate the setup executable that matches the Windows architecture used on the development machine.

3.3 Install ISIS-OBC SDK

Install the 1SIS-OBC SDK (Software Development Kit) provided by ISIS. The installer ‘ISIS-OBC SDK.exe’ can
be found with the board’s software package.

The installer allows optional install of the following applications:

e Eclipse IDE

¢ Atmel SAM-BA for interfacing with ARM processor/FLASH memory hardware
e PuTTY Terminal Client

e MinGW GNU compiler/linkers for Windows

¢ ARM Toolchain for compiling code for the ARM processor architecture

Note: All software is installed into a fixed directory with path: C:\ISIS\

i ¥ - [y
; e
() ISIS-OBC SDK Setup L= =
Installing % '_}
Flease wait while ISIS-0BC 5DK is being installed. b)
Extract: ibpowrprof.a
T
|
Extract: iboledi32.a... 100% -
Extract: liboledlg.a... 100%:
Extract: ibolepro32.a... 100% I
Extract: ibolesvr32.a... 100% |
Extract: ibopcodes.a... 100% i

Extract: libopcodes.la... 100%
Extract: ibopengl32.a... 100%
Extract: ibpenwin32.a... 100%
Extract: libpkpd32.a... 100%:

Figure 3: The ISIS-OBC SDK installer

3.4 Extract ISIS-OBC First-project

The ISIS-OBC first-project is an Eclipse project that serves as a template for new ISIS-OBC code development
projects. Each new project can be started by making a copy-of the template project after which search-and-
replace is performed to update project name and file linkage to that of the new project.

Simply extract the ‘isis-obc-first-project.zip’ contents into e.g. a subfolder of the ISIS root folder
located at C:\ISIS\. For our purposes we'll use the folder C:\ISIS\ISIS-OBC\ to place new ISIS-OBC
development projects in. However any other location will do.

ISIS-OBC Quickstart Guide Page 6 of 24

http://www.ftdichip.com/Drivers/VCP.htm

3.5 Extract ISIS-OBC Libraries

The ISIS-OBC libraries provide means for rapid application development by acting as a layer
between the low-level hardware and the developed application.

There are three different modules available at the time of writing:

e Hardware Abstraction Layer (HAL): provides low level generic drivers for the SAMG20
processor peripherals

e Satellite Subsystems (SSU): provides control functions for commonly used satellite
subsystems such as ISIS-MTQ, ISIS-TRXUV/VU. It uses the HAL library for performing lower
level operations.

e Mission Support (MIS): provides higher level application functions. It uses the HAL library
for performing lower level operations.

Depending on the purchased package, either only the HAL, HAL+SSU or the HAL+SSU+MIS
libraries have been provided as versioned zip files. The content of these zip files should be
extracted to the same folder as where the ‘isis-obc-first-project’ resides.

The default location that is used within this document is C:\ISIS\ISIS-OBC\ (see Section 3.4). The
resulting directory structure for the HAL+SSU option looks as is shown in Figure 4.

hal 17-8-201512:28 File folder
isis-obc-first-project 7-8-201511:52 File folder
satellite-subsystemns 7-8-201512:28 File folder
e isis-icbe-hal-0.1.8.zip 2-3-201514:10 zip Archive
g isis-iobc-satellite-subsystems-0.1.0.zip 13-3-2015 16:16 zip Archive
e isis-obc-first-project.zip 17-8-201512:31 zip Archive

Figure 4: Final file structure of the C:\ISIS\ISIS-OBC\ main project folder. Keeping the zip files is optional.

ISIS-OBC Quickstart Guide Page 7 of 24

4 Setting-up the Hardware
This section will provide instructions on how to set up the ISIS-OBC hardware and related tooling.

Important Notice: Before performing the hardware related steps described in this section, please read
through the ISIS-OBC Datasheet for information on safety instructions related to the
handling of the ISIS-OBC hardware.

The following steps outline the required connections to setting up the ISIS-OBC hardware.

e Connect the programming adapter to the ISIS-OBC.

o Connect the SAM-ICE programmer/debugger to the programming cable.

o Connect the ISIS-OBC to the 3.3V Wall Adapter, and then to the power socket. When a separate power
supply is used, it is recommended to set the current limit to 150 mA for safety.

o Connect the USB cable to the SAM-ICE and to your computer.

e Connect the Debug port (USB-to-Serial) cable to your computer.

Wall Adapter / | [] Power GSE
Power
3.3V Power
Socket
Supply
iOBC
Programming
Adapter |
SAM-ICE
Debugger
USB to
Serial
/

Figure 5: ISIS-OBC embedded software development hardware configuration

ISIS-OBC Quickstart Guide Page 8 of 24

5 Configuring Eclipse IDE

The Eclipse IDE application can now be opened using the start menu links.

To do this navigate to and open:
Start > All Programs > ISIS-OBC SDK > Eclipse IDE

An empty Eclipse IDE window is shown similar to that shown in Figure 6 (left). The initial welcome
screen can be closed straight away with the x symbol on the ‘Welcome’ tab. The default project
screen will appear as shown in Figure 6 (right).

™, R —

Ele fde Souce Refactor Navigate Seych Project Bun Mindow Melp

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 6: Eclipse IDE welcome screen (left) and project screen (right) shown after closing the welcome screen

The following first-time configuration steps need to be performed to allow development within the
Eclipse environment:

1. Import “isis-obc-first-project” into Eclipse

2. Add the Jlink GDB server launch configuration to Eclipse
3. Configure path to J-Link GDB server executable

4. Add the Debug/Release launch configurations to Eclipse

These steps will be described in the following sections.

5.1 Import the ‘isis-obc-first-project’ into Eclipse

To import the ‘isis-obc-first-project’ into Eclipse, which was copied as described in section 3.5, the
following steps need to be performed:

1. Right click in Eclipse Project Explorer and click ‘Import ..."

The Eclipse Project Explorer is found on the left of the Eclipse application window as shown
in Figure 7.

2. Select ‘General’ > ‘Existing Projects into Workspace’ and click Next. See Figure 8.

3. Select ‘Choose root directory’ and select the location of the ‘isis-obc-first-project’ folder.
Default used in this document: C:\ISIS\ISIS-OBC\.

ISIS-OBC Quickstart Guide Page 9 of 24

4. The ‘isis-obc-first-project’ should be selected automatically. See Figure 9.
5. Click ‘Finish’ to complete the import

[File Edit Source Refactor Mavigate Search Project Run Window Hep |
IR e s R O =
[@-#-0-q-ime v+~ - o o]

Quick Access g

B | [ETEm) oo

yp| = O = B8 oz = O
&l @ I
- An outline is not

available.
Mew 3
gay Import...
e Export..
& Refresh F5 lofms 42 Tasks B Console 53 %5 Debug HEB~rir=0o
No condbles to display at this time.

i)
Figure 7: Select Eclipse Project Explorer import function

EEEE .

Select
E\A q
Create new projects from an archive file or directery,

Select an import source:
| type filter text |

4 = General -

m

|12 Existing Projects into Workspace |
i
L Preferences I

o= GG+
b= CVS

® [

Figure 8: (import ...) Select General > ‘Existing Projects into Workspace’

ISIS-OBC Quickstart Guide Page 10 of 24

= Import

Import Projects

Select a directory to search for existing Eclipse projects.

@) Select root directory: CNISISVISIS-0BC « -

Select archive file:

Projects:

V| hal-demo (CAISISVISIS-OBChhal\demo) Select All
/| isis-obc-first-project (CAISIS\ISIS- OB Chisis-obe-first-project) —
V| satellite-subsystems-demo (CAISIS\ISIS- OB C\satellite- subsystemshdemao) Deselect All
Refresh
Options
Search for nested projects
LCopy projects into workspace «
Working sets
Add project to working sets
I I
I@:l < Back Mext > [Finish] ‘ Cancel |

Figure 9: isis-obc-first-project and any library demo projects are selected for import. IMPORTANT: ‘Copy projects
into workspace’ should be deselected, to make sure the project source files are not copied into the workspace.

5.2 Configure the J-Link GDB Server Configuration

Debugging services are provided for using a GDB server application, for which an executable is
installed by the JLink installer. The following steps should be completed to make sure Eclipse can
find the GDB server executable that should have been installed as described in Section 3.1.

To add the launch configuration do the following:
1. Select the Jlink-samg20-GDB.launch file in the Eclipse Project Explorer window
@

2. Click the small down arrow next to the debug-tools icon, expand ‘Run As’ and click

Jlink-samg20-GDB
The Jlink GDB debug launch configuration is now added to Eclipse.

The steps to update the path to the JLink GDB server application are as follows:

1. Locate the JLink installation directory.
The defaultis (on win32) C:\Program Files\SEGGER
(on win64) C:\Program Files (x86)\SEGGER

2. Make a note of the folder name within the installation folder. It has a format such as JLInkARM_Vxxxx
(e.g. JLInkARM_V478c).

ISIS-OBC Quickstart Guide Page 11 of 24

3. Click the small down arrow next to the debug-tools “@ icon and choose ‘External Tools Configurations

...”as shown in Figure 11.
4. Select the ‘Jlink-samg20-GDB'.

Note: This is the only configuration that needs to be updated when this configuration is the only one

that will be used during debugging.

5. Make sure the ‘Location’ string contains the correct path using the JLink version installed on the

system. Copy/paste the path to an explorer for quick verification. See Figure 12.

E.g. the location string with JLinkARM_V478c on Windows 32-bit using the default install path

becomes:

C:\Program Files\SEGGER\JLinkARM_V478c\JLinkGDBServerCL .exe

The Windows 64-bit has a different 32-bit program files folder name and becomes:

C:\Program Files (x86)\SEGGER\JLinkARM_V478c\JLinkGDBServerCL .exe

= ¢/C++ - Eclipse - oo e e
— - . -
File Edit Source Refactor Navigate Search Project Run Window Help
. | %~ &« [G G E @ - B O @ g A=
@ 1link | B | [@E o]
@ 2link
. = & v o Oz =
[T Project Explorer 537 = | 8 @, 3Jlink-samg20-GDB o= O B8
. £ hal-demo =
a 125 isis-obc-first-project * Run As 4 Q 1 Jlink-samg20-GDB
- [t Includes External Tools Configurations...
» B sre Organize Favorites...
isis-obc-first-project-debug.launch
isis-obc-first-project-release.launch
Jlink-s3mg20-GDB.Jaunch «
25 satellite-subsystems-demo
B Console &2 x 3&| &l | =t ~f-= 0
<terminated> Jlink [Pregram] C:\Program Files (x86)\SEGGER\LinkARM_V478 c\JLinkGDBServer.exe
4 T 3 b
isis-obc-first-project/Jlink-samg20-GDB.launch

Figure 10: Verify/Add the GDB launch configuration

ISIS-OBC Quickstart Guide

Page 12 of 24

= (/C++ - Eclipse

."|_|

#0 launch history) i | 133 Debug
Run As = 7 E; om = 8

-

I External Tools Configurations...

An outline is not
available.

Organize Favorites...

Problems] Tasks ' Bl Console 53 ' %¥ Debug

Mo consoles te display at this time.

Figure 11: Opening Eclipse external tools configuration window

r —— ™
St ==

Create, manage, and run configurations 0

Run a program -

E X | =3~ Name: Jlink-samg20-GDB
type filter text =] Main > s Refresh) |t Build} 2] Environmenq == Qommon}
4 @ Program Location:
Q, Jink I CAP Files (x86)\ SEGGER\LinkARM_V4TEINLinkGDES CL. I
Q, Jlink M\Program Files in | in erverCl.exe
|$ JIink—sangU-GDB| ’Bmwse Worksgace...] ’Bmwsg File System...] ’ Variables...]
' Working Directory:
BmwseWorkspace...] ’Bmwse FiI.eSystem...] ’ Variables...] I
Arguments:
-select USE -device AT91SAMIG20 -if JTAG -speed adaptive -

-

Mote: Enclose an argument containing spaces using double-quotes ().

)) Apply Revert
Filter matched 4 of 4 items

@ I Run I ’ Close]

Figure 12: Update/Verify that the correct path to the GBD server executable is in place for the ‘JLink-samg20-GDB’
launch configuration.

5.3 Check/Add the Debug Launch Configuration

The debug launch configuration should be added to the debug list by performing the following
steps.

1. Select isis-obc-first-project-debug.launch in the project explorer.

ISIS-OBC Quickstart Guide Page 13 of 24

2. Click the small down arrow next to the debug % icon
3. Expand ‘Debug As’

4. Click isis-obc-first-project-debug.

This adds the debug launch configuration to the list. The same can be performed for the release
config. See Figure 13.

- - F
= /C++ - Eclipse _E £
| File Edit Source Refactor Mavigate Search Project Run Window Help
e ERES T CEmING I E e G e Eor A E Wi e
1 isis-obe-first-project-debug Quick Access i :2 1 | [Eoc+] ||
2 isis-obc-first-project-release
[Project Explorer 52 B&|le =8 = 5 Den e G ? = H
b S hal-demo Debug As [c] 1 isis-obc-first-project-debug -
4 (=% isis-obe-first-project Debug Configurations... A neis not available.
& [l Includes Organize Favorites..,
b sre
I (= Debug
|5 isis-obc-first-project-debug.launch|
|5 isis-obc-first-project-release.launch
|=| Jlink-samg20-GDB.launch
b 125 satellite-subsystems-demo
Problems J%| Tasks Bl Console 82 Properties % Debug JL G| AER = |:_"|| = EB-ri-= 8
CDT Build Console [satellite-subsystemns-demao]
< i] 3 -

Figure 13: Adding the debug launch configuration

1SIS-OBC Quickstart Guide

Page 14 of 24

6 Code Development and Debug/Release Builds

With the IDE set-up as described in the previous sections, the code provided in the isis-obc-first-project can be
build and used for checking correct IDE behaviour. The main.c starts up a main task that enters an infinite loop
and blinks the ISIS-OBC LEDs in specific patterns.

6.1 Compiling Code

To compile the project do the following:

e Make sure the project is selected by clicking on its name in the Project Explorer window, which is
located on the left-hand side of the window.

%

e Click the build icon.
This is shown in Figure 14.
= C/C++ - isis-obe-first-project/src/main.c - Eclipse =NESN X
File Edit Source Refactor Mavigate Search Project Run Window Help
i G SR @ EiEg-ard-er@ - B0 Qr®me F~
LN - bl Quick Access Ej| g C/C++
|75 Project Explorer 232 <‘==={>| ¥ =8 lg] main.c &2 = & =oxm ™ = 8
- 125 hal-demo & * main.c[] - S AR e |
4 =% isis-obc-first-project =
= Includes prel #include <freertos/FreeRTOS.h> 3 = |
. lﬂl& arc #include <freertos/semphr.h> 8] freertos/Free «
. I
(B #include <freertos/task.h> =1 freertos/sem
. l'c'g Debug #include <hal/Timing/WatchDogTimer.h> L | freert.os_a.'taslnc":
isis-obc-first-project-debug.launch #include <hal/Drivers/LED.h> o hal/Timing,"
-) . #include <hal/boclean.h> = hal/Drivers/L
isis-obe-first-project-releaselaunch =) hal/bool
. al/boolean.
Jlink-=amg20-GDB-launch #include <at9l/utility/util.h> 0 sty
- I satellite-subsystems-demo #include <atdl/utility/trace.h> W a1 utilite/
I #include <at3l/peripherals/cpl5/cplS.h> o 3 "{Ut'!t:’”t
#include <at9l/utility/exithandler.h> . i atdl/periphe _
.;‘I . ‘ - _”-[‘ - [4 -f-” T r'
El Console 52 = 8
LB B = 2B
CDT Build Consele [isis-obc-first-project]
I5:i5Z:59 ~~—~ LLean-only DUild OT CONT1gUration UEDUg Tor project 1515-0DC-TirsST-proj
Writable Srmart Insert 45:1

Figure 14: isis-obc-first-project opened in the Eclipse IDE, with the red arrow indicating the Build icon

6.2 ISIS-OBC First-project as Template

The ISIS-OBC first-project can be used as a template for new projects by a simple copy/paste operation. This
can be directly performed from the Project Explorer. The Project Explorer also allows seamless copy and paste
operations to/from the Windows (file) explorer.

6.2.1 Creating a New Project Using the Template
To create a new project using the template the following steps should be performed:

1. Create a copy-in-place of the isis-obc-first-project directory

ISIS-OBC Quickstart Guide Page 15 of 24

2. Open each of the Eclipse files located in the new project directory (.cproject, .project and *.launch)
using a text editor (e.g. notepad) and perform a rename of all occurrences of isis-obc-first-project to the
new project name.

6.2.2 Library Linkage

The linkage to the libraries within a project make use of relative paths, and expect the library folder in the same
folder as the project root directory. This means the library root directories must be in the same directory as the
project root directory.

An example of a directory structure is shown in Figure 15. The example shows the isis-obc-hal-0.1.8 zip and
the ‘hal’ directory that was extracted from this zip. The first-project can now find the ‘hal’ library and will
successfully build. Note that the zip file is not used and could optionally be removed.

4 | I8I5-0BC
hal
isis-obc-first-project
(@ isis-iobc-hal-0.1.8.zip

Figure 15: Relative file locations. The library directory should be in the same directory as the project.

Library updates are simple: just replace the existing library directory with the new version of the library. The
projects will automatically use the new libraries during the next build.

6.2.3 Linking an Additional Library

Several libraries are available through ISIS. To use an additional library the path to the library
directory should be set up properly. This involves setting include paths and adding the library name
in Eclipse project properties. In this example the satellite-subsystems library will be added.

1. First the new library is extracted to the directory that also includes the project. The directory
is shown in Figure 16.

4 | ISIS-0BC
hal
isis-obc-first-project
satellite-subsystems
[isis-iobc-hal-0.1.8.zip
(12 isis-iobc-satellite-subsystems-0.1.0.zip

Figure 16: Satellite-subsystems library added to the directory.

2. Add the include path to the library: Open Eclipse, right click the first project and open
project properties. Navigate to C/C++ Build > Settings. Under Tool Settings choose Cross ARM
C Compiler > Includes. Add the path to the include folder of the library. For satellite subsystems
this is "${external-dependencies}/satellite-subsystems/satellite-subsystems/include". See
Figure 17.

ISIS-OBC Quickstart Guide Page 16 of 24

| ‘
.
; Settings

[Resource

Builders o

4 C/Ce+ Build Configuration: Debug [Active]

Build Variables
Environment

= - -

~ | [Manage Configurations...

Logging i Tool Settings | &5 Toolchains | # Build Steps | /" Build Artifact | [sih Binary Parsers | @ Error Parsers|
Settings
Tool Chain Editor (2 Target Processor Include paths (-1 8885
C/C++ General 5 Optimization
" pf - R:fnera g WP "S{workspace_loc:/isis-obc-first-project/src}”
roject References =4 ammg.s "S{external-dependenciesi/hal/freertos/include”
Run/Debug Settings (# Debugging .

"${external-dependenciesl/hal/hal/include”
-dependencies}/hal/atdl/includ

[» Task Repository

[N

83 Cross ARM GNU Assembler
WikiText (& Preprocessor "S{external- e tellite
B Includes
& Warmings
(& Miscellsneous
1 Cross ARM C Compiler
(2 Preprocessor
(2 Includes
(2 Optimization
(2 Warnings
(% Miscellaneous < n]
B é":::: © Linker Include files (-include) 88 8 5 &
(# Libraries
(# Miscellaneous
3 Cross ARM GNU Create Flash Image
(# General
3 Cross ARM GNU Print Size
(% General

mn

S

S

S

S

o

Figure 17: Adding the library include path

3. Add the library to the linker settings: Select Cross ARM C Linker > Libraries. Add the library

name with a capital D at the end to the Libraries list. Add the path to the Jib directory to the
Library search path list. See Figure 18.

75 propertistor i coc ot e
| type filter text e
|| > Resource - -
Builders &= TargEtIPm(ESSDr Libraries (- 8885 .
4 C/C++ Build (# Optimization
gue)
Build Variables %‘ Wamings
Environment (22 Debugging FreeRTOSD |
Logging 3 Cross ARM GNU Assembler At91D
Settings (%% Preprocessor
)
Tool Chain Editor % Includes
» C/C++ General (£2 Warnings
Project References (8 Miscellaneous
Run/Debug Settings i Cross ARM C Compiler
i (£ Preprocessor
» Task Repository
WikiText (% Includes
@ Optimization
(2 Warnings
@ Miscellaneous
) Cross ARM C Linker = =
(3 General Library search path (-L) 28 8 § &
(2 Libraries "S{external-dependencies)/hal/at91/lib"
g Miscellanecus "S{external-dependencies)/hal/freertos/lib"
i) Cross ARM GNU Create Flash Image || -dependencies)/hal/hal/lib
@ General
3 Cross ARM GNU Print Size
(% General

- v v

[N

[N

[N

1

[N

[N

< " | »

Capcel

Figure 18: Add the library to the linker settings

Click ok. The library can now be used from within the project.

ISIS-OBC Quickstart Guide Page 17 of 24

6.3 Eclipse Build Configuration

Eclipse provides so called ‘Build Configurations’. The active build configuration is used when code is build. The
standard configurations provided are Debug and Release.

6.3.1 Debug Build

A Debug Build is a non-optimal compilation of the embedded software to facilitate efficient debugging. The IDE
instructs the compiler to not use code optimization and to add debug symbols within the compiled program.
This allows the debugging service to perform its duty of providing the developer with program state information.
The ISIS-OBC code also adds additional code that allows debug messages to be emitted. The Debug
Configuration is therefore larger and slower than necessary for unattended execution of the program.

6.3.2 Release Build

A Release Build is an optimized compilation of the embedded software targeted at unattended/autonomous
execution of the program. This configuration should be used once the code performs to satisfaction using the
Debug Build, and the program is to be officially put through verification test procedures.

Note: Due to code optimizations applied by the compiler and excluding debug related functions from the build,
the resulting machine code can be quite different. The functional aspect should remain the same, however in
some particular cases differences might still occur. It is therefore very important to use the release build for
verification purposes, to be able to catch any problems arising from release build optimizations.

6.3.3 Changing the Active Build Configuration

The current Build Configuration used by Build can be set through the context menu by right clicking the project
and choosing ‘Build Configurations’ as shown in Figure 19.

Figure 19:

= C/C++ - FirstProject/main.c - Eclipse = | B ||
File Edit Sou He '
T Golnte R T At e - - v | =t
Open in New Window Quick Access . [| [FEc/Ces) %5 Debug
|7 Project Explo| (2 Copy Cirl+C = 8|[EFor = B
Paste CulsV > . 018 W e
4[5 FirstProjs 3 Delete Delete = =
> [l Inclu Remove from Context Ctrl+Alt+Shift+ Down 51 FreeRTOS.
?ATQI Source » u taskh
> = Env; o M semphrh (=
> &5 Free S o 2 stddef.h
& iobell Lace.h> U stdlibh
G libran . Import.. fchDogTimer.h> o stdio.h
(= Stora brort {h> o utilh
e 5 Export.. iD.h>
(& Testy | U string.h
+ (= Timin Build Project - o utility/trac ~
[1] boole Cloan Prorect v <m v
[ched ean Projec
[F comi &1 Refresh F5 jnsole 32 *fi-= 108
[h] inters Close Project =
> el main Close Unrelated Projects |
S » Build Configurations » Set Active » | v 1Debug
EE Make Targets 3 Manage... 2 Release
FirstH - R
Firsth Build All
sdrar] Show in Remote Systems view Clean All
S FirstProject Prefiling Tools » Build Selected...
Convert To... E

Setting the build configuration

ISIS-OBC Quickstart Guide

Page 18 of 24

7 Running your Program

After a program has been successfully build the code can be transferred to the embedded processor and
executed on the embedded hardware. Setup the hardware as described in Chapter 4.

For debugging purposes the programmer/debugger hardware and software takes care of setting up the
embedded processor so it will run the code build within the IDE. It provides functionality to pause code
execution, using a so called breakpoint, and read-out memory on the embedded processor. The code itself is
directly copied to the volatile memory of the processor, such that the write-cycles of the non-volatile flash
based program memory remain intact.

For release purposes the build code will be stored in the non-volatile flash based program memory using a
dedicated program called sam-ba. The I1SIS-OBC controller will then able to execute the stored program
autonomously and independent from the development machine.

In both cases the USB-to-Serial data interface is available to transfer commands and data between the ISIS-
OBC processor and a computer which has at least the FTDI driver installed.

7.1 Debugging your Code

To perform code debugging at least the programmer/debugger must be connected. Generally also the USB-to-
serial connection is used in parallel that is used to emit debug and program state messages. The debugging
services are provided by the widely used GNU DeBugger (GDB).

7.1.1 Start the GDB Server

To start the GDB server, click on the small down pointing arrow next to the External Tools % icon and then on
Jlink-samg20-GDB. This launch item has been configured in chapter 5.

7.1.2 Start PuTTY for the USB-to-Serial Interconnect
For usage of the serial interface the PuTTY application is provided.

e Start the putty executable found via Start > All Programs > ISIS-OBC SDK > PuTTY. A window similar
to Figure 20 is shown. Select Serial and set the speed to 2000000 (2MHz).

e Set the COM port that has been assigned to the FTDI USB-to-Serial device as COM##, where the ## is
the com port number used. This can be found in the windows device manager. Go to start and right
click Computer. Select properties. Select device manager and expand to the Ports section. The device
is USB Serial Port (COM##). See Figure 21.

e Optionally provide a name in the ‘saved sessions’ textbox and click ‘Save’ to save the configuration.
This can be loaded later by clicking the name and then clicking ‘Load’.

e Click Open.

ISIS-OBC Quickstart Guide Page 19 of 24

ﬁ PuTTY Cenfiguraticn (Save mode : File)

Category:
2- Sga-ssion | Basic options for your PuTTY session |
EI Specify the destination you want to connect to
Seral line Speed
comzq 2000000
Connection type:
=) Raw () Telnet (2 Rlogin @ 5SH @ Seqal
() Cygterm
5 Window Load, save or delete a stored session
- Bppearance Saved Sessions
- Behaviour QBC @ COMZ0
T'EHSI_EMQH Default Settings Load
- Selection OBC @ COM12
- Colours OBC @ COM13
- Hyperinks 0BC @ COM14 =
= Conpect 05 & Colia
= Cnan]edmn OBC @ COM1 Delete
- Data OBC @ COM17
- Progy DBC @ COM17 @38400
- Telnet QBC @ COM17 @57600
... Blogi OBC @ COM18
ssH OBC @ COM13
0BC @ COM20
- Serial
o
ygem Close window on egxit:
(71 Aways () Mever (@ Only on clean exit
() Never, Auto-Connect
About [CQpen] [Cancel

Figure 20: Putty configuration window

) Device Manager

) Remote settings

Documents) System protection

) Advanced system settings
Pictures

Music

Open
Manage
Scan with AVG

Map network drive...
Disconnect network drive...

Seealso

Show on Desktop

Rename

Properties

Action Center
Windows Update

Performance Infermation and
Teols

| ———————

=@ = |

) [controtPane » 555 J Security » Sys 43| [Search Contrat Panet |
bl = 1F » Control Panel » System and Security » System v| ,H earch Control Panel 2
Control Panel Home 1

r
5 Device Manager

File Action View Help

=7 EH BE 8 F &S

4% SSLAPTOP42

49 Batteries

& 18 Computer

I Disk drives

& Display adapters

L} DVD/CD-ROM drives
{55 Human Interface Devices
%5 Imaging devices

5 & Jungo Connectivity

2= Keyboards

54 Mice and other pointing devices
» M Monitors

i Nebuode adapter

4.7 Ports (COM &LPT)

¢ 73 ECP Printer Port (LPT1)

[T USE Serial Port (COM20) |
=

5T Smart card readers

5% Sound, video and game controllers
1 &G Storage controllers

8 System devices

5§ Universal Serial Bus controllers

Figure 21: Retrieve the COM port assigned to the USB-to-Serial from the device manager

1SIS-OBC Quickstart Guide

Page 20 of 24

7.1.3 Starting a Debug Session

Launch the Debug of your project by clicking on the small down pointing arrow next to the debug % icon.
Then click the name of the debug configuration. See Figure 22.

Optionally the demo project for a library (e.g. hal-demo) can be run in debug or release mode. To do this first
select the project and then select the debug/release launch. This will launch demo/test applications for that
particular library.

IMPORTANT NOTICE: the demol/test code serves as simple examples of how to use the library functionality
but is by no means guaranteed to have high quality/flight quality nor uses all available functionality. The
demoltest code should only be used as a first directional hint when starting to use a new part of the library.
Always refer to the library documentation for a full explanation and overview of all available functions, and
carefully structure the code according to your preferred coding style. It is highly discouraged to directly
copy/paste blocks of code from the demol/test software during development.

r

= C/C++ - isis-obec-first-project/src/main.c - Eclipse . [=NESN X
File Edit Source Refactor Mavigate Search Project Run Window Help
TR ENEN =T R SRS SR N E R R R @-0 D= =
b e > - - | ;«' 1 isis-obc-first-project-debug
[€] 2 isis-obc-first-project-release

[75 Project Explorer 52 = <‘}=='(>| ¥ =8 [€ main.c &2 9

- 25 hal-demo ® * main.c] Debug As

4 =% isis-obc-first-project Debug Configurations...

#include <freertos/FreeRTOS.h> . .
+ [l Includes Organize Favorites...

#include <freertos/semphr.h>

4 15' ;lc i #include <freertos/task.h> BN freertos/sem
I . [] ;- E
. 2£ Debug #include <hal/Timing/WatchDogTimer.h> ul freertos/task
. . - | | 1 1 il
isis-obc-first-project-debug.launch #include <hal/Drivers/LED.h> o |"IE|,-"—|—II’.T'III"Ig_-’
- ’ ; #include <hal/boolean.h> = hal/Drivers/L
isis-obc-first-project-releaselaunch o halfbool
. al/boolean,
Jlink-samg20-GDB.launch #include <at9l/utility/util.h> 0 at91/utiliyfe
125 satellite-subsystems-demo #include <at9l/utility/trace.h> - tﬂll' i y
#include <at9l/peripherals/cpl5/cpl5.h> o a _-'I.Itl!t)‘_-'t
#include <at9l/utility/exithandler.h> L H at91/periphe _
-;'I = - - _"-f - - F L) -f-” T r’
&=l Console 52 =8 |
CoB BB 2B -
CDT Build Censole [isis-obc-first-project]
L5i15£159 ~7 7 L_Lean-only BuUila OT CONTLgUratlon Uebug Tor project 1515-0DC-TIFsT-proj
Writable Smart Insert 48:1

Figure 22: Start Debug session

7.1.4 Debugging the Application
Now you can control the execution of your code by setting breakpoints; clicking play and pause. You can also

inspect local variables and add watchpoints for specific variables. You can also see the debug output of your
program (such as printf's) using PuTTY.

ISIS-OBC Quickstart Guide Page 21 of 24

8 Flashing Your Code

Once you have debugged your code, you can save the code into the Flash memory of the OBC. This is done
using the SAM-BA program that is started through Start > All Programs > ISIS-OBC SDK > Atmel SAM-BA.

Size in byte(s) : |0:100
0x00200000 OxERQQ0020
0x00200010 Ox0020122C
0x00200020 0x00000000
0x00200030 0x00000000

nnnnnnnnnnnnnnnnnnnnnn

MorFlash | SDRAM | SRAM | SRAM 2
Download / Upload File
Send File Name :

Receive File Name:

Scripts

OXFFFFFFEFF
0x00000000
0x00000000
0x00000000

nnnnnnnnnnn

Address ;| 0xA000 Size (For Receive File) : |0:1000

0x00000000
0x00000000
0x00000000
0x00000000

nnnnnnnnnnn

|Enab|e MNaorFlash

byte(s)

j Execute

0x04000000
0x00000020
0x00000000
0x00000000

nnnnnnnnnnn

[SAM-BA2.12 - at01:am0q20-ISIS0BC =)
File ScriptFile Help
at91sam9g20 Memeory Display
Start Address : [015200000 Refresh Display format Applet traces on DBGU
 ascii 8-bit 16-bit & 32-bit infos ~| Apply

-

Send File

Receive File

Compare sent file with memory

loading history file ... 0 events added

(ISIS) 1 %
(ISIS) 1 %]

SAM-BA console display active (Tcl8.5.9 / Tk8.5.9)

Ajlink\ARMO| Board : at31sam9g20-ISISOBC|

e Make sure you have set up the hardware as indicated earlier.
e Make sure you have closed any running debug session within Eclipse

e Launch SAM-BA
e Select the at91sam9g20-ISISOBC board under boards and click "Connect"
e Under the NOR-Flash tab of SAM-BA, click on "Execute" to enable NOR-Flash.

e Browse for a file using the folder icon next to the "Send File" button.
e The Address field is set to 0XA000 which is the default value where the application code should be flashed
to. The bootloader occupies address range 0x0000 through 0xA000 and is write-protected when using
the at91sam9g20-ISISOBC board selection. See Section 8.1 if the bootloader memory needs to be

updated.

e Click "Send File" and wait for your program to upload.
e Click "Compare sent file with memory", SAM-BA will read back the contents of the flash and verify that
the firmware is flashed correctly. If the process was successful, it will display a message indicating that
the sent file and memory match exactly.
e Close SAM-BA, remove power from the OBC and power it up again.
e Your code will now be running on the OBC. You can see the output of your program (such as printf's)

using PuTTY.

Note: It is advised to use "Compare sent file with memory" to verify that your firmware was uploaded correctly.

ISIS-OBC Quickstart Guide

Page 22 of 24

8.1 ISIS-OBC Bootloader

The NOR-Flash of an ISIS-OBC contains a bootloader memory space that starts at address 0 and extends
until address 0xA000. The bootloader prepares the board so programs stored from OXA000 onwards are
loaded into SDRAM and started. You should not overwrite the bootloader memory area under regular
circumstances. However the bootloader memory can be written to by selecting the at91sam9g20-1SISOBC-
UpdateBootloader board when starting SAM-BA.

To update the bootloader memory area:

e Launch SAM-BA
o Select the at91sam9g20-I1SISOBC-UpdateBootloader board under boards and click "Connect"
e Follow the steps for flashing code to NOR-Flash

NOTE: A backup of the standard bootloader binary is provided along with the SDK installer and can be used to
update the board when the original bootloader flash memory area is accidently overwritten.

8.2 Backing-Up and Restoring Flashed Code

It is possible to backup code flashed to the ISIS-OBC hardware. Make sure you have set up the hardware as
indicated earlier.

e Launch SAM-BA and click "Connect".
e Under the NOR-Flash tab of SAM-BA, click on "Execute" to enable NOR-Flash.
e (option 1) Backup of program excluding bootloader:
o Enter "0xA000" next to “Address”.
o Enter "0xF6000" next to "Size (For Receive File)".
e (option 2) Backup of program including bootloader:
o Enter "0x0" next to “Address”.
o Enter "0x100000" next to "Size (For Receive File)".
e Browse to the location where you want to save the backup using the folder icon next to the "Receive
File" button.
o Click "Receive File" and wait for the operation to finish.

The file you specified now contains a backup of the contents of the NOR-Flash of the OBC.

To restore backups follow the procedure of flashing code described in Section 8.1 for backups taken from start
address 0xA000 (option 1), and Section 8.2 for backups taken from start address 0x0 (option 2).

ISIS-OBC Quickstart Guide Page 23 of 24

9 Support

In case of issues, please contact ISIS (support@isispace.nl).

ISIS-OBC Quickstart Guide Page 24 of 24

mailto:support@isispace.nl

