

CELEBRATING 100 YEARS 1910 2010

RED HEAD

STS

S S PERSON S S PECA

XXXX

PRODUCT & RESOURCE GUIDE

Welcome to the RED HEAD[®] Product and Resource Book

Our Product and Resource Book is not just a catalog of the quality RED HEAD Anchoring Systems so many of you have come to rely on, but a resource guide to give you the information you need to help you work better, faster and easier.

This highly detailed Application Section allows you to look up your trade or specialty, view a variety of practical applications and receive simple product recommendations. Along with the product recommendations you'll notice page numbers for easy reference to the product selection and specifications pages.

We are continuing the consolidation of our Adhesive Anchoring System under the RED HEAD brand name. The **EPCON®** name is still prominent on our labels along with our RED HEAD logo. The adhesive anchoring products and formulas remain, providing versatile solutions.

As always this Product and Resource Book continues to provide a wealth of valuable information including: product approvals/listings, applications, selection charts, performance tables and installation steps.

Remember, if you ever need more information about ITW RED HEAD products, technology and service, contact your local distributor, or look on the back cover for a complete listing of ITW RED HEAD facilities. We welcome your calls and feedback, and look forward to answering any questions you might have.

www.itwredhead.com

Table of Contents

Fastening Applications Guide

Curtain Wall Applications	. 3
Electrical Contractor Applications	4
Mechanical Contractor Applications.	5
Drywall Contractor and Carpenter Applications	6
Acoustical Ceiling Installer Applications	7
Steel Erector Applications.	8
Concrete and Masonry Contractor Applications	9
Water & Waste Water Treatment Applications	10
Highway and Bridge Contractor Applications	11
General Contractor Applications	12
Material Handing Applications	13
Specialty Applications	14
	_

Anchoring Systems

RED HEAD®

Anchoring Working Principles	15
RED HEAD Adhesive Anchoring Systems	
Addressions American Calendian Calda	

Anchoring Working Principles

Adhesive Anchoring Selection Guide	18
A7 Adhesive	20
C6 Adhesive	31
G5 Adhesive	37
Umbrella Inserts and Stubby Screens	43
Screen Tubes	46
Accessories	49

RED HEAD Mechanical Anchoring Systems

	Mechanical Anchoring Selection Guide	50
	Trubolt Wedge Anchors	. 54
	Trubolt+ Seismic Wedge Anchors	60
	Trubolt+ OH (Overhead) Seismic Wedge Anchors	. 61
	Large Diameter Tapcon (LDT) Anchors	. 62
	Multi-Set II Drop-in Anchors	67
	Dynabolt Sleeve Anchors	71
	Stud Anchors	74
	Redi-Drive Anchors	76
	Tapcon Concrete and Masonry Anchors (Original & 410 SS)	80
	Tapcon Maxi-Set	. 84
	Tapcon SCOTS®	. 86
	Tapcon XL	. 88
	Tapcon StormGuard	. 90
	SAMMYS® Hurricane Protection Anchor	. 92
	Hammer-Set Anchors	93
	E-Z Ancor Anchors	94
	Poly-Set Anchors.	95
	Boa Coil Expansion Anchors	. 96
	Prima High Expansion Sleeve Anchors.	. 97
Perf	ormance values in accordance to 2006 IBC	. 98

The information and recommendations in this document are based on the best information available to us at the time of preparation. We make no other warranty, expressed or implied, as to its correctness or completeness, or as to the results or reliance of this document.

Fastening Applications Guide

This section highlights a variety of trade applications and provides information that will assist you in selecting the best fastening system for your application.

While these are not to be considered complete, they will give you an idea of how contractors use our products.

For example, on the Electrical Contractor page, you will find applications, such as junction box/panel boards and

suspended lighting. Next to the diagrams are the product name(s) and page number in this catalog where you will find complete information on these products needed for that particular application.

😓 RED HEAD"

3

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

Tw **Red Head**

Electrical Contractor Applications

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

4 🔫 RED HEAD

Mechanical Contractor Applications

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

冬 RED HEAD"

5

ITW Red Head

Drywall Contractor & Carpenter Applications

For seismic recognition, see ICC-ES evaluation reports.

冬 RED HEAD'

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

6

Acoustical Ceiling Installer Applications

For seismic recognition, see ICC-ES evaluation reports. For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

Steel Erector Applications

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

8

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

IT W Red Head

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

ITW Red Head®

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

RED HEAD 9

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

10 RED HEAD

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

Department of Transportation Approvals & Listings

For approvals contact local engineering on a per project basis. Call your local RED HEAD sales person for more information.

IT W/ Red Head

General Contractor Applications

Replacement of Misplaced Anchors

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

冬 RED HEAD"

13

IT W Red Head

Specialty Applications

Stadium Seating

Basement Wrap

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-899-7890.

Anchoring Working Principles

The Inside Story About Mechanical and Adhesive Anchors

Types, Base Materials, Installation Procedures and More

TYPES OF ANCHORS

Expansion Type—

Tension loads are transferred to the base material through a portion of the anchor that is expanded inside the drill hole.

Examples: Red Head Trubolts, Dynabolts, Multi-Set II Anchors and Hammer-Sets

Adhesive Type—

Resistance to tension loads is provided by the presence of an adhesive between the threaded rod (or rebar) and the inside walls of the drill hole.

Examples: A7, C6, and G5 Adhesives

Keying Type—

Holding strength comes from a portion of an anchor that is expanded into a hollow space in a base material that contains voids such as concrete block or brick.

Examples: Adhesives used in screen tubes or umbrella insert

Friction Type—

Load capacity is created by driving a fastener into a pre-drilled hole that is slightly smaller than the fastener itself.

Examples: Redi-Drives

Mechanical Interlocking Type—

Tension loads are resisted by threads on the fastener engaging with threads cut into the base material.

Examples: LDT, Tapcon and E-Z Ancors

For attachments to single face of block, see page 43 for information on "umbrella anchors" and "stubby screens"

HOLLOW CONCRETE BLOCK

Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.

Anchoring Working Principles

BASE MATERIALS

Concrete

Normal Weight Concrete is made from Portland cement, coarse and fine aggregates, water and various admixtures. The proportioning of these components controls the strength of the concrete. In the United States, concrete strength is specified by the compressive strength* of concrete test cylinders. These test cylinders measure six inches in diameter by 12 inches in length and are tested on the 28th day after they are produced.

Lightweight Concrete consists of the same components (cement, coarse and fine aggregates, water and admixtures) as normal weight concrete, except it is made with lightweight aggregate. One of the most common uses of lightweight concrete has been as a structural fill of steel decking in the construction of strong, yet light floor systems.

Typical fasteners for both normal weight and lightweight concrete include Trubolt Wedge Anchors, LDT Self-Threading Anchors, Dynabolt Sleeve Anchors, Multi-Set II Drop-In Anchors, Stud Anchors and Adhesive Anchoring Systems.

* Compressive strengths shown in this catalog were the actual strengths at the time of testing. The load values listed were determined by testing in un-reinforced concrete.

Masonry

Grout-Filled Concrete Block consists of three components: concrete, mortar and grout. The mortar is designed to join the units into an integral structure with predictable performance properties. Typical fasteners for grout-filled block include Dynabolt Sleeve Anchors, and C6 or A7 Adhesive Anchoring Systems.

Hollow Concrete Block, Brick and Clay Tile are grouped together because they require special anchoring products that can be installed into a substrate that contains voids and still provide reliable holding values. Typical fasteners used in hollow block, brick and clay tile include Dynabolt Sleeve Anchors, Tapcon Self-Tapping Concrete Anchors, Adhesives with Screen Tubes and Adhesives used with the Umbrella Insert.

INSTALLATION PROCEDURES

Anchor drill holes are typically produced using carbide tipped drill bits and rotary hammer drills. Look at the product sections of this catalog for the correct drill hole diameter and depth of each type of anchoring system.

Careful cleaning of the anchor drill hole is important in order to obtain the best possible functioning of the anchor system. For each product in this catalog, detailed installation instructions are provided. Suggested clamping torques and curing times (for adhesive anchors) are also provided.

Loading

Holding values for the following types of loading are provided in this catalog:

Tension loads—

when load is applied along the axis of the anchor

Shear loads—

when the loads are applied perpendicular to the axis of the anchor

Combined loads—

when both tension and shear loads are applied to an anchor, a combined loading equation is provided to determine the maximum loads that can be applied to the anchor at the same time

Anchoring Working Principles

MODES OF FAILURE

When anchors are loaded to their maximum capacity, several different types (modes) of failure are possible depending on the type of anchor, strength of the base material, embedment depth, location of the anchor, etc. Common modes of failure include:

Concrete Spall Cone—

Occurs at shallow embedments where the resistance of the base material is less than the resistance of the anchor and the base material fails.

Steel Breakage—

The capacity of the anchorage exceeds the tensile or shear strength of the steel anchor or rod material.

Base material adjacent to the extension portion of an anchor crushes, resulting in the anchor pulling out of the hole until the capacity of the spall cone is reached, at which point the concrete will spall. This type of failure happens more commonly when anchors are set with deep embedment depths.

Bond Failure—

Shear failure of the adhesive at rod-adhesive interface or adhesive-base material interface. Occurs more commonly in deep embedments using high strength steel rods.

Edge Distance and Spacing Reduction—

Reduces the holding values, when anchors are placed too close to the edge. This also occurs when two or more anchors are spaced closely together. See suggested edge distance, anchor spacing distances and reduction values in the product sections.

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-899-7890.

 \wedge

	•	EPCON		EPCON	6		EPCON G5			
ADHESIVE ANCHORING SPECIALISTS	5	Fast Dispensing, Fast Curing	Fas	t Curing for	All Conditio	ns Extended Working Time				
		10:1 ACRYLIC		1:1 EF	ΟΧΥ		1:1 EPOX	Ŷ		
Adhesive Anchoring	9	fast 35 minute cure time at 60°F 7 minute working time at 60°F	fast 1 hour cure time at 70°F 7 minute working time at 70°F			24 hour cure time per (AC308) PLUS extended				
Selection Guia	2	NSF STANDARD 61 Certified for drinking water applications	fo	NSF STANDARI r drinking wat) 61 Certified er application	ODORLESS for indoor applications				
COLD WEATHER USE HOT WEATHER US and lower 0°F 20°F 50°F 80°F 90°F 100°F and h	E iaher	COLD WEATHER no heating of cartridges required		Suitable fo temperatu	r extreme re ranges		HOT WEATHER time to install a	more anchors		
A7 - BEST FORMULA G5 - BEST FORMULA	A	18 month shelf life Damp holes		2 year sł Damp	elf life holes		18 month she Damp hol	elf life		
C6 and G5 C6 and A7		Underwater installations		Underwater i	nstallations	U	nderwater inst	allations		
2		Screens in hollow block and brick		Screens in block an	ı hollow d brick		Screens in ho	illow rick		
8		Oversized holes		Oversize	d holes		Oversized h	oles		
		will reduce loads		no redu	iction		no reducti	on		
Doweling into Concrete with Rebar	g to e with d Rod	will reduce load		no redu	iction	, in the second s	no reducti	ion		
Solid Concrete Ap	olic	ations		Best Formula	a Suitak	ole Formula	Not Suit	able		
						ULTIMA				
PRODUCT SYSTEMS	KEY I	FEATURES	PRC	PERTIES		PERFOR	MANCE '/2			
A7 Fast Dispensina,	So	lid or hollow base materials								
Fast Curing Acrylic	Dis	spenses easier and faster				(NSF.)				
Install more anchors	Da	mp holes or underwater	BAS			Certified to ANSI/NSF 61	1			
	Td:	stest cure (33 mm. dt ov F)	(F°/C) TIME	CURE TIME		1			
MADE IN USA	col	ld weather	100°/	38° 5 minutes	25 minutes					
E fluid oz (150 ml)	Ca	n be used in smaller diameter holes		7° 5.5 minutes 6° 7 minutes	30 minutes		26 500	48,210		
8 fluid oz. (235 ml)	No	-drip formula reduces clean-up time	40°/	4° 15 minutes	75 minutes	10,980	20,300			
10 fluid oz. (275 ml) and 28 fluid oz. (825 ml) cartridges	Ha Ha	nd dispensable 28-oz. cartridge	<u>20°/-</u>	7° 35 minutes	6 hours	3/8″ x 3-3/8	″ 5/8″ x 5-5/8″	1″ x 9″		
(see page 20)			07-1	8 4 HOUIS	24 nours					
		WI Pace Material Tomporature 15°E	BAS	F						
for All Conditions	(ca	artridge temperature must be \geq 70°F)	MATER (F°/C	IAL' WORKING	FULL CURE TIME	NSF.				
Consistently handles all	So	lid or hollow base materials	120°/	49° 4 minutes	1 hour	Certified to	Г			
applications	🔳 Ha	mmer drilled or diamond cored holes	90°/ 3	2° 5 minutes	1 nour 1 hour	ANSI/NSF 61]			
	0v	ersized holes	80°/2 70°/2	6° 6 minutes 1° 7 minutes	1 hour 1 hour			47,880		
MADE IN USA	Co	ld or warm weather	60°/ 1	6° 7 minutes 0° 7 minutes	2 hours		24,520			
and the second sec	Da	mp holes or underwater	40°/	4° 7 minutes	24 hours	8,440				
a	Fas	st curing enoxy (1 hour at 70°F)	Cartridge	9° 6 minutes must be \geq 70°F.	24 nours	3/8″ x 3-3/8	″ 5/8″ x 5-5/8″	1″ x 9″		
18 fluid oz. (530 ml) cartridges (see page 31)			Working when the be comp Gel Time pe	time is max time from th e insertion of the anchor leted. er ASTM D2471 = 10 mil	e end of mixing to nto the adhesive shall nutes at 72°F					
G5 High Strength	So	lid base materials				COGNIZED WOS	Internati Standard	ional I Fire		
Epoxy tested in accordance	Fir	e rated: tested up to 4hrs FKP				Tested BS476	Resistan	ce		
to ICC-ES AC308	un	derwater applications				4 Hrs FR	Performa	ince		
15 min. working time;	Giv	ves more time to install anchors	BASE							
(Per AC308) (70°F)	Eas	sier to install anchors in hot weather	MATERI (F°/C°)	AL WORKING TIME	FULL CURE TIME			F.3. 594		
Figh Strength Boxy	0d	lorless	110°/ 4	3° 9 minutes	24 hours		20 880	53,531		
MADE IN USA	00	ersized and cored holes	90°/ 32	° 9 minutes	24 hours	8,369	20,000			
22 fluid oz. (650 ml) cartridge	Re	sist wind loads	70°/20 50°/10	 15 minutes 15 minutes 	24 hours 24 hours	3/8″ x 3-3/8	″ 5/8″ x 5-5/8″	1″ x 9″		

¹Diameter x Embedment in 4000 psi concrete. ² All loads given in pounds.

ALL *Red Head Adhesive/Epoxies comply with Made in U.S.A. requirements for Government jobs.*

TW **Red Head**

Hollow Base Material Applications Use the following accessories with the A7

Use the following accessories with the A7 and C6 adhesive anchoring systems for all of your hollow base material applications.

Fastening to hollow concrete block

KEY FEATURES	PERFORMA	NCE (LBS)
 3/8" to 3/4" diameter sizes 30%-50% lower cost than stainless screens Special design makes screens easier to insert through block or brick Does not get bent or crushed Corrosion resistant 	A7 2,647 2,360 3/8" x 8" 3/4" x 8"	C6 3,487 2,800 3/8" x 8" 3/4" x 8"
 1/4" to 3/4" diameter sizes Corrosion resistant Available in multiple lengths to accommodate various material thicknesses 	A7 2,647 2,360 3/8" x 8" 3/4" x 8"	(6 3,487 2,800 3/8" x 8" 3/4" x 8"
 1/4", 3/8", 1/2", 5/8" diameter sizes Fasten to front face of block Anchor remains perpendicular in wall 	A7 2,543 1/2 " 5/8"	C6 1,970 1/2 " 5/8"
 1/4", 3/8", or 1/2" rods 3/8" internal inserts (HBU-FS) Fasten to front face of blocks Creates large bearing surface inside block to achieve high loads 	A7 3,558 3,558 3/8″ 1/2″	<u>C6</u> 1,875 1,875 3/8″ 1/2″
	 KEY FEATURES 3/8" to 3/4" diameter sizes 30%-50% lower cost than stainless screens Special design makes screens easier to insert through block or brick Does not get bent or crushed Corrosion resistant 1/4" to 3/4" diameter sizes Corrosion resistant Available in multiple lengths to accommodate various material thicknesses Fasten to front face of block Anchor remains perpendicular in wall 1/4", 3/8", or 1/2" rods 3/8" internal inserts (HBU-FS) Fasten to front face of blocks Creates large bearing surface inside block to achieve high loads 	KEY FEATURESPERFORMAN= 3/8" to 3/4" diameter sizes30%-50% lower cost than stainless screens= 30%-50% lower cost than stainless screens47= 30%-50% lower cost than stainless screens47= 0 boes not get bent or crushed2,360= 0 corrosion resistant3/8" x 8"= 1/4" to 3/4" diameter sizes67= 0 corrosion resistant47= 1/4", 3/4", diameter sizes67= 0 corrosion resistant2,647= 1/4", 3/8", 1/2", 5/8" diameter sizes67= 1/4", 3/8", 1/2", 5/8" diameter sizes67= 1/4", 3/8", 1/2", 5/8" diameter sizes67= 1/4", 3/8", nor 1/2" rods67= 1/4", 3/8", or 1/2" rods67= 1/4", 3/8", or 1/2" rods67= 1/4", 3/8", or 1/2" rods67= 3/8" internal inserts (HBU-FS)58"= 6 creates large bearing surface inside block to achieve high loads67= 3/8" internal inserts (HBU-FS)3,558= 3/8" internal inserts (HBU-FS)3,578= 3/8" internal inserts (HBU-FS)3,578= 3/8" internal inserts (HBU-FS)3,578 <tr <td="">= 3/8" internal inserts (HBU-FS</tr>

¹Testing performed in hollow concrete block.

²Diameter x Embedment.

Easy to Use— **A7 Saves You Time and Money**

A7-28

😓 RED HEAD°

DESCRIPTION/SUGGESTED SPECIFICATIONS*

*Suggested Specifications see pages 23

Fast Dispensing, Fast Curing Acrylic Adhesive

The acrylic resin and hardening agent are completely mixed as they are simultaneously dispensed from the dual cartridge through a static mixing nozzle, directly into the anchor hole. A7 can be used with threaded rod or rebar (for fastening to hollow base materials, see page 43 and 46).

ADVANTAGES

- All weather formula
- No drip, no sag, easy clean up
- Fast & easy dispensing, even 28 ounce cartridge can be hand dispensed
- Fast curing time, 35 minutes at 60°F
- Not mix ratio sensitive
- NSF 61 approved

C	urin	g	Tim	es
_				

2		MADE IN USA
BASE MATERIAL	WORKING	FULL
(F°/C°)	TIME	CURE TIME
100°/ 38°	5 minutes	25 minutes
80°/ 27°	5.5 minutes	30 minutes
60°/ 16°	7 minutes	35 minutes
40°/ 4°	15 minutes	75 minutes
20°/ -7°	35 minutes	6 hours
0°/-18°	4 hours	24 hours

How Can An Adhesive **Anchor Save** You Money?

- Incredibly fast dispensing and rod installation times
- Significantly faster curing times
- Easy to use (no-heating) even at freezing cold temperatures
- Requires less adhesive
- Rods are easier to insert into the hole with A7 compared with other adhesives
- Works in damp holes and underwater applications
- Requires less adhesive—can be used in 1/16" oversized or 1/8" oversized holes
- One formula for both hollow and solid base materials

APPLICATIONS

Stadium Seating

The fast dispensing, fast curing properties of A7 made it ideal for installing over 70,000 seats in this NFL football stadium and many others.

Roadway Doweling

A7 dispenses so quickly and rebar inserts so easily that contractors find installed costs are lower than many other products including grout for doweling.

Scaffolding Attachment

Fast curing adhesive in 28 ounce cartridges kept this project moving upwards without delays.

APPROVALS/LISTINGS

ICC Evaluation Service, Inc. – #ER-5560 Miami-Dade County – #06-0425.02 City of Los Angeles – RR#25379 DOT Approvals Florida Building Code NSF Standard 61 Certified for Drinking Water Components

5 1

INSTALLATION STEPS

 Drill 1/16" oversize diameter holes for 1/4"-1/2" diameter threaded rods and #3 rebar. Drill 1/8" oversize diameter holes for 5/8"-1-1/4" diameter threaded rods, #4 rebar, grout filled blocks and brick pinning. Clean out hole from bottom with forced air. Complete hole preparation with brush and repeat cleaning with forced air (leave no dust or slurry).

2. When starting new cartridge or new nozzle, dispense and discard enough adhesive until uniform light grey color is achieved. Insert the nozzle into the bottom of the hole and fill to 1/2 the hole depth.

 Insert rod slowly by hand into the bottom of the hole with a slow twisting motion. This insures adhesive fills voids and crevices and uniformly coats the anchor rod.

 See table for working times and curing times. After the suggested cure time is met, install and tighten fixture into place.

it **W Red Head**

Call our toll free number 800-899-7890 or visit our web site for the most

current product and technical information at www.itwredhead.com

ANCHORAGE TO SOLID CONCRETE

Threaded Rod (Carbon or Stainless Steel) or Rebar supplied by contractor; rod does not need to be chisel pointed

A7 adhesive completely fills area between rod and hole creating a stress free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

A7-28 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
A7-28	28 Fluid Ounce Cartridge A7	4	RH7010	EPCON DRIVE Cordless, battery powered dispensing tool for the A7-28 Cartridge	1
E55	Mixing Nozzle for A7-28 and G5-22 Cartridge Nozzle diameter fits 3/8" to 5/8" holes. (overall length of nozzle 14")	24	E25-6	6-Foot Straight Tubing (can cut to proper size) (.39 in l.D. x .43 in. O.D.)	6
A102	Largest hand dispensable cartridge— still easy to dispense Hand Dispenser for A7-28 Cartridge	1	A200	Pneumatic Dispenser for A7-28 Cartridge	1

Plunger Repair Kit Available for A102 Dispenser **Part No. A102RKIT**

ESTIMATING TABLE

A7 Number of Anchoring Installations per Cartridge* 28 Fluid Ounce Cartridge Using Reinforcing Bar with A7 Adhesive in Solid Concrete

REBAR	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	7/16	662.5	331.3	220.8	165.6	132.5	110.4	94.6	82.8	73.6	66.3	60.2	55.2	51.0	47.3	44.2
# 4	5/8	373.0	186.5	124.3	93.2	74.6	62.2	53.3	46.6	41.4	37.3	33.9	31.1	28.7	26.6	24.9
# 5	3/4	286.1	143.0	95.4	71.5	57.2	47.7	40.9	35.8	31.8	28.6	26.0	23.8	22.0	20.4	19.1
# 6	7/8	231.0	115.5	77.0	57.7	46.2	38.5	33.3	28.8	25.7	23.1	21.0	19.2	17.8	16.5	15.4
# 7	1	213.4	106.7	71.1	53.3	42.7	35.6	30.5	26.7	23.7	21.3	19.4	17.8	16.4	15.2	14.2
# 8	1-1/8	177.3	88.6	59.1	44.3	35.5	29.5	25.3	22.2	19.7	17.7	16.1	14.8	13.6	12.7	11.8
# 9	1-1/4	102.8	51.4	34.3	25.7	20.6	17.1	14.7	12.8	11.4	10.3	9.3	8.6	7.9	7.3	6.9
# 10	1-1/2	84.1	42.0	28.0	21.0	16.8	14.0	12.0	10.5	9.3	8.4	7.6	7.0	6.5	6.0	5.6
# 11	1-3/4	51.4	25.7	17.1	12.8	10.3	8.6	7.3	6.4	5.7	5.1	4.7	4.3	4.0	3.7	3.4

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ESTIMATING TABLE

CLAMPING FORCE PROVIDED ON PAGE 26

A7Number of Anchoring Installations per Cartridge*28 Fluid Ounce CartridgeUsing Threaded Rod with A7 Adhesive in Solid Concrete

ROD	DRILL	EMBEDMENT DEPTH IN INCHES (mm)														
ln. (mm)	HOLE DIA.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Inches	(25.4)	(50.8)	(76.2)	(101.6)	(127.0)	(152.4)	(177.8)	(203.2)	(228.6)	(254.0)	(279.4)	(304.8)	(330.2)	(355.6)	(381.0)
1/4 (6.4)	5/16	915.5	457.7	305.2	228.9	183.1	152.8	130.8	114.4	101.7	91.5	83.2	76.3	70.4	65.4	61.0
3/8 (9.5)	7/16	530.0	265.0	176.7	132.5	106.0	88.3	75.7	66.3	58.9	53.0	48.2	44.2	40.8	37.9	35.3
1/2 (12.7)	9/16	381.4	190.7	127.1	95.4	76.3	63.6	54.5	47.7	42.4	38.1	34.7	31.8	29.3	27.2	25.4
5/8 (15.9)	11/16	273.6	136.8	91.2	68.4	54.7	45.6	39.1	34.2	30.4	27.4	24.9	22.8	21.0	19.5	18.2
	3/4	195.6	97.8	65.1	48.8	39.0	32.5	27.9	24.4	21.7	19.5	17.7	16.3	15.0	13.9	13.0
3/4 (19.1)	13/16	192.9	96.5	64.3	48.2	38.6	32.2	27.6	24.1	21.4	19.3	17.5	16.1	14.8	13.8	12.9
	7/8	154.4	77.2	51.5	38.6	30.9	25.7	22.1	19.3	17.2	15.4	14.0	12.9	11.9	11.0	10.3
7/8 (22.2)	15/16	185.1	92.6	61.7	46.3	37.0	30.9	26.8	23.1	20.6	18.5	16.8	15.4	14.2	13.2	12.3
	1	128.0	64.0	42.8	32.0	25.6	21.4	18.3	16.0	14.2	12.8	11.6	10.7	9.9	9.2	8.5
1 (25.4)	1 -1/16	158.3	79.2	52.8	39.6	31.7	26.4	22.6	19.8	17.6	15.8	14.4	13.2	12.2	11.3	10.6
	1 -1/8	105.2	52.6	35.2	26.3	21.1	17.6	15.0	13.2	11.7	10.5	9.6	8.8	8.1	7.6	7.0
1-1/4 (31.8)	1 -5/16	101.3	50.7	33.8	25.3	20.3	16.9	14.5	12.7	11.3	10.1	9.2	8.4	7.8	7.2	6.8
	1 -3/8	80.0	40.0	26.6	20.0	15.9	13.3	11.4	10.0	8.9	8.0	7.2	6.6	6.1	5.7	5.3

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

A7–10 fl. oz. Ordering Information

9.3 Fluid Ounce Cartridge with Nozzle	6
Mixing Nozzle for A7-10 Cartridge Nozzle diameter fits 3/8" to 5/8" holes (overall length of nozzle 6-3/8")	24
Hand Dispenser Designed for A7-10 Cartridge	1
	9.3 Fluid Ounce Cartridge with Nozzle Mixing Nozzle for A7-10 Cartridge Nozzle diameter fits 3/8" to 5/8" holes (overall length of nozzle 6-3/8") Hand Dispenser Designed for A7-10 Cartridge Contractor Quality 26:1 Thrust Ratio

Refer to page 49 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

PACKAGING

- 1. Disposable, self-contained cartridge system capable of dispensing both components in the proper mixing ratio
- 2. Acrylic components dispensed through a static mixing nozzle that thoroughly mixes the material and places the material at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

ACRYLIC ADHESIVE:

High Strength ACRYLIC ADHESIVE: USA Made, ARRA Certified

- 1. Two component methyl methacrylate adhesive, non-sag paste, moisture insensitive when cured, dark gray in color, and early gel and cure times.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, submerged holes.
- 4. Shelf life: Best if used within 18 months.
- 5. All weather, cure time (35 min. at 60°F).
- 6. Dispenses easier and faster.
- 7. Dispenses and cures faster in cold weather, but works in hot weather.
- 8. Pumpable at 0°F without preheating.
- 9. Formula for use in solid and hollow base materials.
- 10. Suitable for oversized and diamond cored holes with increased depths.
- 11. Quick insertion time = less labor cost.

ESTIMATING TABLES

REBAR	DRILL	EMBEDMENT DEPTH IN INCHES (mm)							
	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)				
# 3	7/16	110	55	37	27				
# 4	5/8	63	31	20	14				
# 5	3/4	48	24	16	11				
# 6	7/8	39	18	13	9				
# 7	1	35	18	11	9				
# 8	1-1/8	29	14	9	7				

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ROD	DRILL	I	MBEDMENT DEP	TH IN INCHES (mi	m)
In (mm)	HOLE DIA.	2	4	6	8
	INCHES	(50.8)	(101.6)	(152.4)	(203.2)
3/8 (9.5)	7/16	88	44	28	22
1/2 (12.7)	9/16	65	31	22	16
5/8 (15.9)	11/16	46	22	14	11
	3/4	33	16	11	7
3/4 (19.1)	13/16	33	16	11	7
	7/8	26	13	9	7
7/8 (22.2)	15/16	31	14	11	7
	1	22	11	7	5
1 (25.4)	1-1/16 1-1/8	26 18	13 9	9 5	73

"TW Reci Head" Call our toll free number **800-899-7890** or visit our web site for the most

current product and technical information at www.itwredhead.com

A7-8 fl. oz. Ordering Information

Refer to page 49 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

ESTIMATING TABLE

A7 Number of Anchoring Installations per Cartridge* 8 Fluid Ounce Cartridge Using Reinforcing Bar with A7 Adhesive in Solid Concrete

REBAR	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	7/16	187.8	93.9	62.6	46.9	37.6	31.3	26.8	23.5	20.9	18.8	17.1	15.6	14.4	13.4	12.5
# 4	5/8	105.7	52.9	35.2	26.4	21.1	17.6	15.1	13.2	11.7	10.6	9.6	8.8	8.1	7.6	7.0
# 5	3/4	81.1	40.5	27.0	20.3	16.2	13.5	11.6	10.1	9.0	8.1	7.4	6.8	6.2	5.8	5.4
# 6	7/8	65.5	32.7	21.8	16.4	13.1	10.9	9.4	8.2	7.3	6.5	6.0	5.5	5.0	4.7	4.4
# 7	1	60.5	30.2	20.2	15.1	12.1	10.1	8.6	7.6	6.7	6.0	5.5	5.0	4.7	4.3	4.0
# 8	1-1/8	50.2	25.1	16.7	12.6	10.0	8.4	7.2	6.3	5.6	5.0	4.6	4.2	3.9	3.6	3.3
# 9	1-1/4	29.1	14.6	9.7	7.3	5.8	4.9	4.2	3.6	3.2	2.9	2.6	2.4	2.2	2.1	1.9
# 10	1-1/2	23.8	11.9	7.9	6.0	4.8	4.0	3.4	3.0	2.6	2.4	2.2	2.0	1.8	1.7	1.6
# 11	1-3/4	14.6	7.3	4.9	3.6	2.9	2.4	2.1	1.8	1.6	1.5	1.3	1.2	1.1	1.0	1.0

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ESTIMATING TABLE

CLAMPING FORCE PROVIDED ON PAGES 26

A7 Number of Anchoring Installations per Cartridge* 8 Fluid Ounce Cartridge Using Threaded Rod with A7 Adhesive in Solid Concrete

ROD	DRILL						E	MBEDMENT	DEPTH IN I	NCHES (mn	1)					
In. (mm)	HOLE DIA.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	INCHES	(25.4)	(50.8)	(76.2)	(101.6)	(127.0)	(152.4)	(177.8)	(203.2)	(228.6)	(254.0)	(279.4)	(304.8)	(330.2)	(355.6)	(381.0)
1/4 (6.4)	5/16	259.5	129.7	86.5	64.9	51.9	43.2	37.1	32.4	28.8	25.9	23.6	21.6	20.0	18.5	17.3
3/8 (9.5)	7/16	150.2	75.1	50.1	37.6	30.0	25.0	21.5	18.8	16.7	15.0	13.7	12.5	11.6	10.7	10.0
1/2 (12.7)	9/16	108.1	54.1	36.0	27.0	21.6	18.0	15.4	13.5	12.0	10.8	9.8	9.0	8.3	7.7	7.2
5/8 (15.9)	11/16	77.6	38.8	25.9	19.4	15.5	12.9	11.1	9.7	8.6	7.8	7.1	6.5	6.0	5.5	5.2
	3/4	55.4	27.7	18.4	13.8	11.1	9.2	7.9	6.9	6.1	5.5	5.0	4.6	4.3	4.0	3.7
3/4 (19.1)	13/16	54.7	27.3	18.2	13.7	10.9	9.1	7.8	6.8	6.1	5.5	5.0	4.6	4.2	3.9	3.6
	7/8	43.6	21.8	14.6	10.9	8.8	7.3	6.3	5.5	4.9	4.4	4.0	3.6	3.4	3.1	2.9
7/8 (22.2)	15/16	52.5	26.2	17.5	13.1	10.5	8.7	7.5	6.6	5.8	5.2	4.8	4.4	4.0	3.7	3.5
	1	36.4	18.2	12.2	9.1	7.3	6.1	5.2	4.5	4.0	3.6	3.3	3.0	2.8	2.6	2.4
1 (25.4)	1 -1/16	44.9	22.4	15.0	11.2	9.0	7.5	6.4	5.6	5.0	4.5	4.1	3.7	3.5	3.2	3.0
	1 -1/8	34.4	17.2	12.0	8.6	7.5	6.0	5.0	4.3	3.7	3.3	3.0	2.7	2.5	2.3	2.1
1-1/4 (31.8)	1 -5/16	28.7	14.4	9.6	7.2	5.7	4.8	4.1	3.6	3.2	2.9	2.6	2.4	2.2	2.1	1.9
	1 -3/8	22.4	11.2	7.6	5.6	4.5	3.8	3.2	2.8	2.5	2.3	2.1	1.9	1.7	1.6	1.5

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

A7-5 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
A7-5	5 Fluid Ounce Cartridge A7	12	A7-5	5 Fluid Ounce Cartridge A7	12
A 500	Reusable Plastic Dispenser	12	A501	Reusable Caulking Gun Adaptor	12
	Convenient Dispensing Kit Packaged in a Solid Plastic Shell with (1) A500 Plastic Dispenser (1) A7-5 Cartridge and (1) A24 Nozzle Nozzle diameter fits 3/8″ to 5/8″ holes	8		Convenient Dispensing Kit Packaged in a Solid Plastic Shell with (1) A501 Plastic Dispenser (1) A7-5 Cartridge and (1) A24 Nozzle Nozzle diameter fits 3/8″ to 5/8″ holes	8

AVAILABLE WITH YOUR CHOICE OF TWO, EASY DISPENSING SYSTEMS

A500 PLASTIC DISPENSER

Attaches directly to cartridge allowing for easy hand dispensing. No extra tools are required.

1. Twist-lock dispenser onto cartridge.

Simple Assembly and Dispensing

3. Turn lever in order to dispense adhesive.

EASY PACKAGING!

A500 and A501 kits are perfect for both counter or pegboard hanging display.

A501 Kit

A501 CAULKING GUN ADAPTOR

Allows cartridge to work with most standard caulking guns (caulking gun supplied by contractor).

5 Fluid Ounce Cartridge

1. Push adaptor tightly against back of cartridge.

2. Thread nozzle onto cartridge.

CF III

cartridge.

3. Place assembly in caulking gun and dispense adhesive.

ESTIMATING TABLES

Number of Anchoring Installations per Cartridge* Using Reinforcing Bar and Threaded Rod with A7 Adhesive in Solid Concrete

REBAR	DRILL	EMBEDMENT DEPTH IN INCHES (mm)								
	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)					
# 3	7/16	60	30	20	15					
# 4	5/8	34	17	11	8					
# 5	3/4	26	13	9	6					
# 6	7/8	21	10	7	5					
#7	1	19	10	6	5					
# 8	1-1/8	16	8	5	4					

The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

RO	D	DRILL	E	EMBEDMENT DEPTH IN INCHES (mm)							
In (m	im)	HOLE DIA. Inches	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)					
3/8	(9.5)	7/16	48	24	16	12					
1/2	(12.7)	9/16	35	17	12	9					
5/8	(15.9)	11/16 3/4	25 18	12 9	8 6	6 4					
3/4	(19.1)	13/16 7/8	18 14	9 7	6 5	4 4					
7/8	(22.2)	15/16 1	17 12	8 6	6 4	4 3					
1	(25.4)	1-1/16 1-1/8	14 10	7 5	5 3	4					

ITW Red Head

PERFORMANCE TABLE

A7 Average Ultimate Tension and Shear Loads^{1,2,3} for Threaded Rod Installed in Solid Concrete

THREADED	DRILL HOLE	MAX. CLAMPING FORCE	EMBEDMENT	2000 PSI (13.8	MPa) CONCRETE	4000 PSI (27.6	MPa) CONCRETE	
ROD DIA. In. (mm)	DIAMETER In. (mm)	AFTER PROPER CURE FtLbs. (Nm)	IN CONCRETE In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)	
3/8 (9.5)	7/16 (11.1)	13 - 18 (17-24)	1-1/2 (38.1) 3-3/8 (85.7)	N/A 5 852 (26 0)	N/A 5 220 (23 2)	3,734 (16.6) 10,977 (48.8)	4,126 (18.3) 5,220 (23.2)	
			4-1/2 (114.3)	7,729 (34.4)	5,220 (23.2)	11,661 (51.9)	5,220 (23.2)	
1/2 (12.7)	9/16 (14.3)	22 - 25 (29-33)	2 (50.8) 4-1/2 (114.3) 6 (152.4)	N/A 10,798 (48.0) 14,210 (63.2)	N/A 8,029 (35.7) 8,029 (35.7)	6,022 (26.8) 17,162 (76.3) 17,372 (77.3)	8,029 (35.7) 8,029 (35.7) 8,029 (35.7)	
5/8 (15.9)	11/16 (17.5) or	55 - 80 (74-108)	2-1/2 (63.5) 5-5/8 (142.9)	N/A 16,417 (73.0)	N/A 15,967 (71.0)	7,330 (32.6) 26,504 (117.9)	11,256 (50.1) 15,967 (71.0)	
2/4 (10.1)	3/4 (19.1)	106 160 (1/2 216)	7-1/2 (190.5)	18,/4/ (83.4) N/A	15,967 (71.0)	29,381 (130.7)	15,967 (71.0)	
5/4 (19.1)	or 7/8 (22.2)	100 - 100 (145-210)	6-3/4 (171.5) 9 (228.6)	18,618 (82.8) 23,934 (106.5)	20,126 (89.5) 20,126 (89.5)	29,727 (132.2) 37,728 (167.8)	20,126 (89.5) 20,126 (89.5) 20,126 (89.5)	
7/8 (22.2)	15/16 (23.8) or 1 (25.4)	185 - 250 (250-338)	3-1/2 (88.9) 7-7/8 (200.0) 10-1/2 (266.7)	N/A N/A 36,881 (164.1)	N/A 29,866 (132.9) 29,866 (132.9)	13,650 (60.7) 44,915 (199.8) 48,321 (215.0)	20,920 (92.9) 29,866 (132.9) 29,866 (132.9)	
1 (25.4)	1-1/16 (27.0) or 1-1/8 (28.6)	276 - 330 (374-447)	4 (101.6) 9 (228.6) 12 (304.8)	N/A 32,215 (143.3) 46,064 (204.9)	N/A 37,538 (167.0) 37,538 (167.0)	16,266 (72.2) 48,209 (214.5) 63,950 (284.5)	33,152 (147.5) 37,538 (167.0) 37,538 (167.0)	
1-1/4 (31.8)	1-5/16 (33.3) or 1-3/8 (34.9)	370 - 660 (501-894)	5 (127.0) 11-1/4 (285.8) 15 (381.0)	N/A 45,962 (204.5) 62,208 (276.7)	N/A 58,412 (259.8) 58,412 (259.8)	21,838 (97.1) 56,715 (252.3) 84,385 (375.4)	33,152 (147.5) 58,412 (259.8) 58,412 (259.8)	

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances (see pages 28-29).

PERFORMANCE TABLE

THREADED	DRILL HOLE	MIN. EMBEDMENT	ALLOWABLE TEN	ALLOWABLE TENSION LOAD BASED		OWABLE TENSION LOAD BA	ASED	
ROD DIA.	DIAMETER	DEPTH	ON ADHESIVE B	ON ADHESIVE BOND STRENGTH		ON STEEL STRENGTH		
In. (mm)	In. (mm)	In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)	
3/8 (9.5)	7/16 (11.1)	1-1/2 (38.1) 3-3/8 (85.7) 4-1/2 (114.3)	N/A 1,460 (6.5) 1,930 (8.6)	934 (4.2) 2,740 (12.2) 2,915 (13.0)	2,080 (9.3) 2,080 (9.3) 2,080 (9.3)	4,340 (19.3) 4,340 (19.3) 4,340 (19.3)	3,995 (17.8) 3,995 (17.8) 3,995 (17.8)	
1/2 (12.7)	9/16 (14.3)	2 (50.8) 4-1/2 (114.3) 6 (152.4)	N/A 2,700 (12.0) 3,550 (15.8)	1,505 (6.7) 4,290 (19.1) 4,340 (19.3)	3,730 (16.6) 3,730 (16.6) 3,730 (16.6)	7,780 (34.6) 7,780 (34.6) 7,780 (34.6)	7,155 (31.8) 7,155 (31.8) 7,155 (31.8)	
5/8 (15.9)	11/16 (17.5)	2-1/2 (63.5)	N/A	1,832 (8.2)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)	
	or	5-5/8 (142.9)	4,100 (18.3)	6,625 (29.5)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)	
	3/4 (19.1)	7-1/2 (190.5)	4,685 (20.8)	7,345 (32.7)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)	
3/4 (19.1)	13/16 (20.6)	3 (76.2)	N/A	2,158 (9.6)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)	
	or	6-3/4 (171.5)	4,655 (20.7)	7,430 (33.1)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)	
	7/8 (22.2)	9 (228.6)	5,980 (26.6)	9,430 (42.0)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)	
7/8 (22.2)	15/16 (23.8)	3-1/2 (88.9)	N/A	3,413 (15.2)	11,600 (51.6)	25,510 (113.5)	20,835 (92.7)	
	or	7-7/8 (200.0)	N/A	11,230 (49.9)	11,600 (51.6)	25,510 (113.5)	20,835 (92.7)	
	1 (25.4)	10-1/2 (266.7)	9,220 (41.0)	12,080 (53.7)	11,600 (51.6)	25,510 (113.5)	20,834 (92.7)	
1 (25.4)	1-1/16 (27.0)	4 (101.6)	N/A	4,067 (18.1)	15,180 (67.5)	31,620 (140.7)	26,560 (118.1)	
	or	9 (228.6)	8,050 (35.8)	12,050 (53.6)	15,180 (67.5)	31,620 (140.7)	26,560 (118.1)	
	1-1/8 (28.6)	12 (304.8)	11,515 (51.2)	15,985 (71.1)	15,180 (67.5)	31,620 (140.7)	26,560 (118.1)	
1-1/4 (31.8)	1-5/16 (33.3)	5 (127.0)	N/A	5,460 (24.3)	23,800 (105.9)	49,580 (220.6)	34,670 (154.2)	
	or	11-1/4 (285.8)	11,490 (51.1)	14,175 (63.1)	23,800 (105.9)	49,580 (220.6)	34,670 (154.2)	
	1-3/8 (34.9)	15 (381.0)	15,550 (69.2)	21,095 (93.8)	23,800 (105.9)	49,580 (220.6)	34,670 (154.2)	

1 Use lower value of either bond or steel strength for allowable tensile load.

PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGES 22, 24 AND 25

A7 Allowable Shear Loads¹ for Threaded Rod Installed in Acrylic Adhesive Solid Concrete

THREADED	DRILL HOLE	MIN.	MIN. ALLOWABLE SHEAR LOAD BASED		ALLOWABLE SHEAR LOAD BASED			
ROD DIA.	DIAMETER	EMBEDMENT	MBEDMENT ON CONCRETE STRENGTH		ON STEEL STRENGTH			
In. (mm)	ln. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)	
3/8 (9.5)	7/16 (11.1)	1-1/2 (38.1) 3-3/8 (85.7)	N/A 1,305 (5.8)	1,031 (4.6) 1,305 (5.8)	1,040 (4.6) 1,040 (4.6)	2,170 (9.7) 2,170 (9.7)	1,995 (8.9) 1,995 (8.9)	
1/2 (12.7)	9/16 (14.3)	2 (50.8) 4-1/2 (114.3)	N/A 2,005 (8.9)	2,005 (8.9) 2,005 (8.9)	1,870 (8.3) 1,870 (8.3)	3,895 (17.3) 3,895 (17.3)	3,585 (15.9) 3,585 (15.9)	
5/8 (15.9)	or 11/16 (17.5)	2-1/2 (63.5)	N/A	2,814 (12.5)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)	
	3/4 (19.1)	5-5/8 (142.9)	3,990 (17.8)	3,990 (17.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)	
3/4 (19.1)	or 13/16 (20.6)	3 (76.2)	N/A	5,030 (22.4)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)	
	7/8 (22.2)	6-3/4 (171.5)	5,030 (22.4)	5,030 (22.4)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)	
7/8 (22.2)	or 15/16 (23.8)	3-1/2 (88.9)	N/A	5,230 (23.3)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)	
	1 (25.4)	7-7/8 (200.0)	7,465 (33.2)	7,465 (33.2)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)	
1 (25.4)	1-1/16 (27.0)	4 (101.6)	N/A	8,288 (36.9)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)	
	or 1-1/8 (28.6)	9 (228.6)	9,385 (41.7)	9,385 (41.7)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)	
1-1/4 (31.8)	or 1-5/16 (33.3)	5 (127.0)	N/A	8,288 (36.9)	11,900 (52.9)	24,790 (100.3)	18,840 (83.8)	
	1-3/8 (34.9)	11-1/4 (285.8)	14,600 (64.9)	14,600 (64.9)	11,900 (52.9)	24,790 (100.3)	18,840 (83.8)	

1 Use lower value of either concrete or steel strength for allowable shear load.

PERFORMANCE TABLE

Average Ultimate Tension and Shear Loads^{1,2} for Threaded Acrylic Adhesive Rod Installed in Grout Filled Concrete Block

THREADED ROD DIA. In. (mm)	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR LOCATION	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
1/2 (12.7)	5/8 (15.9)	4-1/4 (108.0)	GROUTED CELL	5,170 (23.0)	8,500 (37.8)
5/8 (15.9)	3/4 (19.1)	5 (127.0)	GROUTED CELL	6,320 (28.1)	10,850 (48.3)
3/4 (19.1)	7/8 (22.2)	6-5/8 (168.3)	GROUTED CELL	10,910 (48.5)	17,075 (76.0)

1 Allowable working loads for the single installations should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

2 The tabulated values are for anchors installed at minimum 12 inch edge distance and minimum 8 inch spacing.

PERFORMANCE TABLE

Average Ultimate Tension and Shear Loads¹ for Threaded Rod Installed Acrylic Adhesive in Grouted² Brick Masonry Constructed of Solid Red Brick Units

THREADED ROD DIA. In. (mm)		DRILL HOLE DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR LOCATION	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)	
	1/4 (6.4)	3/8 (9.5)	3-1/2 (88.9) 6 (152.4)	CENTER OF BRICK FACE	2,130 (9.5) 3,575 (15.9)	1,165 (5.2) 1,550 (6.9)	
	3/8 (9.5)	1/2 (12.7)	3-1/2 (88.9) 6 (152.4)	CENTER OF BRICK FACE	2,130 (9.5) 8,875 (39.5)	4,150 (18.5) 6,950 (30.9)	
	1/2 (12.7)	5/8 (15.9)	3-1/2 (88.9)	CENTER OF BRICK FACE	2,130 (9.5) 12 155 (54 1)	3,090 (13.7) 7 910 (35.2)	

1 Allowable working loads for the single installations should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

2 Void between brick wythes was grouted solid; therefore the use of screens was not necessary.

For hollow block, see page 43.

Average Ultimate Tension Loads^{1,2,3} for Reinforcing Bar Acrylic Adhesive Installed in Solid Concrete

REINFORCING	EMBEDMENT	2000 PSI (13.8 MPa)	4000 PSI (27.6 MPa)	ULTIMATE TENSILE AND YIELD STRENGTH		
BAR DIA.	IN CONCRETE	CONCRETE	CONCRETE	GRADE 60 REBAR		
In. (mm)	ln. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE TENSION Lbs. (kN)	MINIMUM YIELD STRENGTH Lbs. (kN)	MINIMUM ULTIMATE TENSILE STRENGTH Lbs. (kN)	
# 3 (9.5)	3-3/8 (85.7)	6,180 (27.5)	8,324 (37.0)	6,600 (29.4)	9,900 (44.0)	
	4-1/2 (114.3)	7,560 (33.6)	11,418 (50.8)	6,600 (29.4)	9,900 (44.0)	
#4 (12.7)	4-1/2 (114.3)	9,949 (44.3)	16,657 (74.1)	12,000 (53.4)	18,000 (80.1)	
	6 (152.4)	15,038 (66.9)	17,828 (79.3)	12,000 (53.4)	18,000 (80.1)	
# 5 (15.9)	5-5/8 (142.9)	14,012 (62.3)	20,896 (93.0)	18,600 (82.7)	27,900 (124.1)	
	7-1/2 (190.5)	16,718 (74.4)	26,072 (116.0)	18,600 (82.7)	27,900 (124.1)	
#6 (19.1)	6-3/4 (171.5)	21,247 (94.5)	26,691 (118.7)	26,400 (117.4)	39,600 (176.2)	
	9 (228.6)	33,325 (148.2)	37,425 (166.5)	26,400 (117.4)	39,600 (176.2)	
# 7 (22.2)	7-7/8 (200.0)	N/A	40,374 (179.6)	36,000 (160.1)	54,000 (240.2)	
	10-1/2 (266.7)	38,975 (173.4)	46,050 (204.8)	36,000 (160.1)	54,000 (240.2)	
# 8 (25.4)	9 (228.6)	35,600 (158.4)	47,311 (210.5)	47,400 (210.9)	71,100 (316.3)	
	12 (304.8)	41,010 (182.4)	66,140 (294.2)	47,400 (210.9)	71,100 (316.3)	
# 9 (28.6)	10-1/8 (257.2)	N/A	57,221 (254.5)	60,000 (266.9)	90,000 (400.4)	
	13-1/2 (342.9)	N/A	79,966 (355.7)	60,000 (266.9)	90,000 (400.4)	
# 10 (31.8)	11-1/4 (285.8)	49,045 (218.2)	73,091 (325.1)	76,200 (339.0)	114,300 (508.5)	
	15 (381.0)	69,079 (307.3)	83,295 (370.5)	76,200 (339.0)	114,300 (508.5)	
# 11 (34.9)	12-3/8 (314.3)	63,397 (282.0)	75,047 (333.8)	93,600 (416.4)	140,400 (624.6)	
	16-1/2 (419.1)	81,707 (363.5)	91,989 (409.2)	93,600 (416.4)	140,400 (624.6)	

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

PERFORMANCE TABLE

A7 Recommended Edge Distance Requirements for Shear Acrylic Adhesive Loads Installed in Solid Concrete

ANCHOR DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	CRITICAL EDGE DISTANCE In. (mm) 100% LOAD CAPACITY)	INTERPOLATED EDGE DISTANCE In. (mm) (80% LOAD CAPACITY)	INTERPOLATED EDGE DISTANCE In. (mm) (50% LOAD CAPACITY)	MINIMUM EDGE DISTANCE In. (mm) (10% LOAD CAPACITY)	
3/8 (9.5)	3-3/8 (85.7)	4-3/16 (106.4)	3-7/16 (87.3)	2-5/16 (58.7)	13/16 (20.6)	
1/2 (12.7)	4-1/2 (114.3)	5-5/8 (142.9)	4-5/8 (117.5)	3-1/8 (79.4)	1-1/8 (28.6)	
5/8 (15.9)	5-5/8 (142.9)	7 (177.8)	5-3/4 (146.1)	3-1/8 (79.4)	1-3/8 (34.9)	
3/4 (19.1)	6-3/4 (171.5)	8-7/16 (214.2)	6-15/16 (176.2)	4-5/8 (117.5)	1-5/8 (41.3)	
1 (25.4)	9 (228.6)	11-1/4 (285.8)	9-1/4 (235.0)	6-1/4 (158.8)	2-1/4 (57.2)	
1-1/4 (31.8)	11-1/4 (285.8)	14-1/16 (357.2)	11-5/8 (295.3)	7-7/8 (200.0)	2-7/8 (73.0)	

Combined Tension and Shear Loading—for A7 Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

(<u>Na</u>) 5/3 +	$\left(\frac{Va}{2}\right)^{5/3} < 1$
Ns/	(Vs) [≤] '

- Na = Applied Service Tension Load
- Ns = Allowable Tension Load

- Va = Applied Service Shear Load
- Vs = Allowable Shear Load

PERFORMANCE TABLE

A7 Recommended Edge Distance Requirements for Acrylic Adhesive Tension Loads Installed in Solid Concrete

ANCHOR DIAMETER In. (mm)		EMBEDMENT DEPTH In. (mm)	CRITICAL EDGE DISTANCE In. (mm) (100% LOAD CAPACITY)	INTERPOLATED EDGE DISTANCE In. (mm) (90% LOAD CAPACITY)	INTERPOLATED EDGE DISTANCE In. (mm) (80% LOAD CAPACITY)	MINIMUM EDGE DISTANCE In. (mm) (70% LOAD CAPACITY)
3/8	(9.5)	3-3/8 (85.7) 4-1/2 (114.3)	2-1/2 (63.5) 3-3/8 (85.7)	1-15/16 (49.2) 2-5/8 (66.7)	1-3/8 (34.9) 1-7/8 (47.6)	13/16 (26.2) 1-1/8 (28.6)
1/2	(12.7)	4-1/2 (114.3) 6 (152.4)	3-3/8 (85.7) 4-1/2 (114.3)	2-5/8 (66.7) 3-1/2 (88.9)	1-7/8 (47.6) 2-1/2 (63.5)	1-1/8 (28.6) 1-1/2 (38.1)
5/8	(15.9)	5-5/8 (142.9) 7-1/2 (190.5)	4-3/16 (106.4) 5-5/8 (142.9)	3-1/4 (82.6) 4-3/8 (111.1)	2-5/16 (58.7) 3-1/8 (79.4)	1-3/8 (34.9) 1-7/8 (47.6)
3/4	(19.1)	6-3/4 (171.5) 9 (228.6)	5-1/16 (128.6) 6-3/4 (171.5)	3-15/16 (100.0) 5-1/4 (133.4)	2-13/16 (71.4) 3-3/4 (95.3)	1-5/8 (15.9) 2-1/4 (57.2)
1	(25.4)	9 (228.6) 12 (304.8)	6-3/4 (171.5) 9 (228.6)	5-1/4 (133.4) 7 (177.8)	3-3/4 (95.3) 5 (127.0)	2-1/4 (57.2) 3 (76.2)
1-1/4	(31.8)	11-1/4 (285.8) 15 (381.0)	8-7/16 (214.3) 11-1/4 (285.8)	6-9/16 (166.7) 8-3/4 (222.2)	4-3/4 (120.7) 6-1/4 158.8)	2-7/8 (73.0) 3-3/4 (95.3)

PERFORMANCE TABLE

A7 Recommended Spacing Requirements for Tension Loads Acrylic Adhesive Installed in Concrete, Lightweight Concrete and Hollow Block

ANCHOR DIAMETER In. (mm)		EMBEI DEI In. (1	DMENT PTH mm)	CRITICAL In. (1 (100% LOAI	SPACING nm)) CAPACITY)	INTERPOLA In. (90% LOA	TED SPACING (mm) D CAPACITY)	MINIMUM In. (n (80% LOAD	SPACING 1m) CAPACITY)
3/8	(9.5)	3-3/8 4-1/2	(85.7) (114.3)	4-3/16 5-5/8	(106.4) (142.9)	2-1/2 3-3/8	(63.5) (85.7)	13/16 1-1/8	(20.6) (28.6)
1/2	(12.7)	4-1/2 6	(114.3) (152.4)	5-5/8 7-1/2	(142.9) (190.5)	3-3/8 4-1/2	(85.7) (114.3)	1-1/8 1-1/2	(28.6) (38.1)
5/8	(15.9)	5-5/8 7-1/2	(142.9) (190.5)	7 9-3/8	(177.8) (238.1)	4-3/16 5-5/8	(106.4) (142.9)	1-3/8 1-7/8	(34.9) (47.6)
3/4	(19.1)	6-3/4 9	(171.5) (228.6)	8-7/16 11-1/4	(214.3) (285.8)	5 6-3/4	(127.0) (171.5)	1-5/8 2-1/4	(41.3) (57.2)
1	(25.4)	9 12	(228.6) (304.8)	11-1/4 15	(285.8) (381.0)	6-3/4 9	(171.5) (228.6)	2-1/4 3	(57.2) (76.2)
1-1/4	(31.8)	11-1/4 15	(285.8) (381.0)	14-1/16 18-3/4	(357.2) (476.3)	8-1/2 11-1/4	(215.9) (285.8)	2-7/8 3-3/4	(73.0) (95.5)

A7 Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar ^{1,2}

LOAD FACTOR	DISTANCE FROM EDGE OF CONCRETE
Critical Edge Distance—Tension	
100% Tension Load	 0.75 x Anchor Embedment
Minimum Edge Distance—Tension	
70% Tension Load	 0.25 x Anchor Embedment
Critical Edge Distance—Shear	
100% Shear Load	► 1.25 x Anchor Embedment
Minimum Edge Distance—Shear	
10% Shear Load	 0.25 x Anchor Embedment
LOAD FACTOR	DISTANCE FROM ANOTHER ANCHOR
<u>LOAD FACTOR</u> Critical Spacing—Tension	DISTANCE FROM ANOTHER ANCHOR
LOAD FACTOR Critical Spacing—Tension 100% Tension Load	DISTANCE FROM ANOTHER ANCHOR 1.25 x Anchor Embedment
LOAD FACTOR Critical Spacing—Tension 100% Tension Load Minimum Spacing—Tension	DISTANCE FROM ANOTHER ANCHOR ► 1.25 x Anchor Embedment
LOAD FACTOR Critical Spacing—Tension 100% Tension Load Minimum Spacing—Tension 80% Tension Load	DISTANCE FROM ANOTHER ANCHOR 1.25 x Anchor Embedment 0.25 x Anchor Embedment
LOAD FACTOR Critical Spacing—Tension 100% Tension Load Minimum Spacing—Tension 80% Tension Load Critical Spacing—Shear	DISTANCE FROM ANOTHER ANCHOR 1.25 x Anchor Embedment 0.25 x Anchor Embedment
LOAD FACTOR Critical Spacing—Tension 100% Tension Load Minimum Spacing—Tension 80% Tension Load Critical Spacing—Shear 100% Shear Load	DISTANCE FROM ANOTHER ANCHOR 1.25 x Anchor Embedment 0.25 x Anchor Embedment 1.25 x Anchor Embedment
LOAD FACTOR Critical Spacing—Tension 100% Tension Load Minimum Spacing—Tension 80% Tension Load Critical Spacing—Shear 100% Shear Load Minimum Spacing—Shear	DISTANCE FROM ANOTHER ANCHOR 1.25 x Anchor Embedment 0.25 x Anchor Embedment 1.25 x Anchor Embedment 1.25 x Anchor Embedment

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

ADHESIVE ANCHORING SPECIALISTS

A7 Adhesive for Sill Plate Attachments

HEAR HOICULAR HY SHEAR HY SHEAR HY SHEAR PRAILE

PERFORMANCE TABLE

A7 Average Ultimate Tension and Shear^{1,2,3} for Threaded Rods in Acrylic Adhesive Solid Concrete Floors and Stemwalls at 1-3/4" Edge Distance

ANCHOR	DRILL HOLE	EMBEDMENT	2000PSI (13.8 MPa) CONCRETE			
DIAMETER	DIAMETER In. (mm)	In. (mm)	SHEAR LOAD DIRECTION	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)	
1/2 (12.7)	9/16 (14.3)	4-1/2 (114.3)	Perpendicular	9,180 (40.8)	1,760 (7.8)	
			Parallel	9,180 (40.8)	7,240 (32.2)	
5/8 (15.9)	11/16 (17.5)	5-5/8 (142.9)	Perpendicular	13,620 (60.6)	2,540 (11.3)	
	or		Parallel	13,620 (60.6)	8,778 (39.0)	
	3/4 (19.1)	10 (254.0)	Perpendicular	20,700 (92.1)	2,540 (11.3)	
			Parallel	20,700 (92.1)	8,799 (39.1)	
3/4 (19.1)	13/16 (20.6) or 7/8 (22.2)	6-3/4 (171.4)	Perpendicular	15,080 (67.1)	2,080 (9.2)	
7/8 (22.2)	15/16 (23.8)	15 (381.0)	Perpendicular	29,940 (133.2)	2,080 (9.2)	
	or 1 (25.4)		Parallel	29,940 (133.2)	7,101 (31.6)	

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances (see pages 28-29).

A7 Allowable Tension Loads¹ at 1-3/4" Edge Distance for Acrylic Adhesive Threaded Rods in Solid Concrete Floors and Stemwalls

ANCHOR DIAMETER	R DRILL HOLE EMBEDMENT ER DIAMETER DEPTH		ALLOWABLE TENSION LOAD BASED ON ADHESIVE BOND STRENGTH		ALLOWABLE TENSION LOAD BASED ON STEEL STRENGTH			
In. (mm)	In. (mm)	In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)		
1/2 (12.7)	9/16 (14.3)	4-1/2 (114.3)	2,295 (10.2)	3,730 (16.6)	7,780 (34.6)	7,155 (31.8)		
5/8 (15.9)	11/16 (17.5)	5-5/8 (142.9)	3,405 (10.7)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)		
	or 3/4 (19.1)	10 (254.0)	5,175 (23.0)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)		
3/4 (19.1)	13/16 (20.6) or 7/8 (22.2)	6-3/4 (171.4)	3,770 (16.8)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)		
7/8 (22.2)	15/16 (23.8) or 1 (25.4)	15 (381.0)	7,485 (33.3)	11,600 (51.6)	25,510 (113.5)	20,835 (92.7)		

1 Use lower value of either bond or steel strength for allowable tensile load.

2 Linear interpolation may be used for intermediate spacing and edge distances (see pages 28-29).

A7 Allowable Shear Loads¹ at 1-3/4" Edge Distance for Acrylic Adhesive Threaded Rods in Solid Concrete Floors and Stemwalls

ANCHOR DIAMETER	DRILL HOLE DIAMETER	EMBEDMENT DEPTH	SHEAR LOAD DIRECTION	ALLOWABLE SHEAR LOADS BASED ON CONCRETE STRENGTH	ALLOWABLE SHEAR LOAD BASED ON STEEL STRENGTH		ASED	
In. (mm)	In. (mm)	In. (mm)		2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)	
1/2 (12.7)	9/16 (14.3)	4-1/2 (114.3)	Perpendicular	440 (1.9)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)	
			Parallel	1,810 (8.0)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)	
5/8 (15.9)		5-5/8 (142.9)	Perpendicular	635 (2.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)	
	11/16 (17.5)		Parallel	2,195 (9.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)	
	or 3/4(19.1)	10 (254.0)	Perpendicular	635 (2.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)	
			Parallel	2,200 (9.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)	
3/4 (19.1)	13/16 (20.6) or 7/8 (22.2)	6-3/4 (171.4)	Perpendicular	600 (2.7)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)	
7/8 (22.2)	15/16 (23.8)	15 (381.0)	Perpendicular	520 (2.3)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)	
	or 1 (25.4)		Parallel	1,775 (7.9)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)	

1 Use lower value of either concrete or steel strength for allowable shear load.

C6

Reliable Performance— Even Under the Most Severe Installation Conditions

C6-18

NEW! Base Material Temperature $15^{\circ}F$ (cartridge temperature must be $\geq 70^{\circ}F$)

DESCRIPTION/SUGGESTED SPECIFICATIONS*

*Suggested Specifications see page 34

Fast Curing Epoxy for All Conditions

The hardener and resin are completely mixed as they are dispensed from the dual cartridge through a static mixing nozzle. The pre-mixed adhesive is injected directly into the anchor hole. C6 can be used with threaded rod or rebar (for fastening to hollow base materials, see pages 43 and 46).

ADVANTAGES

- 1 hour cure time (see below)
- Works in damp holes and underwater applications
- Minimum shrinkage—can be used in oversized holes and diamond cored holes
- High heat deflection temperature: 139°F minimum
- One formula for both solid and hollow base materials
- NSF standard 61 certified for drinking water systems

Curing Times

- Extensively tested—earthquake, underwater, creep, freeze-thaw, radiation, fire, fatigue, electrical isolation, ozone and many more test programs have been conducted on C6
- Extensive use—C6 has been used on projects all over the world for almost 20 years

Easy to open, snap-off tip, no cutting required

MADE IN USA

BASE MATERIAL ¹	WORKING	FULL
(F°/C°)	TIME ²	CURE TIME
120°/ 49°	4 minutes	1 hour
110°/ 43°	4 minutes	1 hour
90°/ 32°	5 minutes	1 hour
80°/ 26°	6 minutes	1 hour
70°/ 21°	7 minutes	1 hour
60°/ 16°	7 minutes	2 hours
50°/ 10°	7 minutes	2 hours
40°/ 4°	7 minutes	24 hours
15°/ -9°	6 minutes	24 hours

¹ Cartridge must be \geq 70°F.

² Working time is max time from the end of mixing to when the insertion of the anchor into the adhesive shall be completed.

Gel Time per ASTM D2471 = 10 minutes at 72° F

EFECTION DIFINE RH7030 Cordless, battery powered dispensing tool for the C6-18 cartridge

APPLICATIONS

Tunnel Construction

Over 40,000 anchors were installed overhead in damp holes with water seeping through using C6 and our "dosage control" screens.

APPROVALS/LISTINGS

ICC Evaluation Service, Inc. - #ER4285

City of Los Angeles – RR#24975

City of Los Angeles – RR#24927

NSF Standard 61 Certified for Drinking Water Components

DOT Approvals

Water Treatment Plant

Skimmers and brackets with chain plates fastened with C6, which is **NSF approved** for potable drinking water systems.

Underwater Installations

C6 was used to install four 1-1/4" eye bolts underwater to lift this 37 ton block of concrete out of the ocean.

INSTALLATION STEPS

NSF

Certified to ANSI/NSF 61

RED HEAD

ANCHORAGE TO SOLID CONCRETE

Threaded Rod (Carbon or Stainless Steel) or Rebar supplied by contractor; rod does not need to be chisel pointed

C6 adhesive completely fills area between rod and hole creating a stress-free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

C6-18 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
C6-18	C6 Adhesive, 18 Fl. Oz. Cartridge	6			
	Mixing Nozzle for C6-18 Cartridge Nozzle diameter fits 9/16″ holes		RH7030	EPCON DRIVE Cordless, battery powered dispensing tool for the C6-18 Cartridge	1
E24XL	(overall length of nozzle 10-3/8")	24			
****	Hand Dispenser for C6-18 Cartridges	1			
/ E102	Dispenses both 18 oz. and 22 oz. Cartridges		E200	Pneumatic Dispenser for C6-18 Cartridge	1

Refer to page 49 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

ESTIMATING TABLE

C6 Number of Anchoring Installations Per Cartridge* 18 Fluid Ounce Cartridge Using Reinforcing Bar with C6 Adhesive in Solid Concrete

REBAR	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	1/2	316.7	158.4	105.6	79.2	63.3	52.8	45.2	39.6	35.2	31.7	28.8	26.4	24.4	22.6	21.1
# 4	5/8	239.3	119.6	79.8	59.8	47.9	39.9	34.2	29.9	26.6	23.9	21.8	19.9	18.4	17.1	16.0
# 5	3/4	183.5	91.8	61.2	45.9	36.7	30.6	26.2	22.9	20.4	18.4	16.7	15.3	14.1	13.1	12.2
# 6	7/8	148.2	74.1	49.4	37.0	29.6	24.7	21.2	18.5	16.5	14.8	13.5	12.3	11.4	10.6	9.9
#7	1-1/8	71.0	35.5	23.7	17.7	14.2	11.8	10.1	8.9	7.9	7.1	6.5	5.9	5.5	5.1	4.7
# 8	1-1/4	63.2	31.6	21.1	15.8	12.6	10.5	9.0	7.9	7.0	6.3	5.7	5.3	4.9	4.5	4.2
# 9	1-3/8	65.9	33.0	22.0	16.5	13.2	11.0	9.4	8.2	7.3	6.6	6.0	5.5	5.1	4.7	4.4
# 10	1-1/2	53.9	27.0	18.0	13.5	10.8	9.0	7.7	6.7	6.0	5.4	4.9	4.5	4.1	3.9	3.6
# 11	1-3/4	33.0	16.5	11.0	8.2	6.6	5.5	4.7	4.1	3.7	3.3	3.0	2.7	2.5	2.4	2.2

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

ESTIMATING TABLE

CLAMPING FORCE PROVIDED ON PAGE 34

C6 Number of Anchoring Installations Per Cartridge* 18 Fluid Ounce Cartridge Using Threaded Rod with C6 Adhesive in Solid Concrete

ROD		DRILL						EN	IBEDMENT D	EPTH IN IN	CHES (mm)						
In.	(mm)	HOLE DIA. Inches	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4	(6.4)	5/16	587.3	293.7	195.8	146.8	117.5	97.9	83.9	73.4	65.3	58.7	53.4	48.9	45.2	42.0	39.2
3/8	(9.5)	7/16	340.0	170.0	113.3	85.0	68.0	56.7	48.6	42.5	37.8	34.0	30.9	28.3	26.2	24.3	22.7
1/2	(12.7)	9/16	244.7	122.4	81.6	61.2	48.9	40.8	35.0	30.6	27.2	24.5	22.2	20.4	18.8	17.5	16.3
5/8	(15.9)	3/4	125.2	62.6	41.7	31.3	25.0	20.9	17.9	15.7	13.9	12.5	11.4	10.4	9.6	8.9	8.3
3/4	(19.1)	7/8	99.1	49.5	33.0	24.8	19.8	16.5	14.2	12.4	11.0	9.9	9.0	8.3	7.6	7.1	6.6
7/8	(22.2)	1	82.0	41.0	27.4	20.5	16.4	13.7	11.7	10.3	9.1	8.2	7.5	6.8	6.3	5.9	5.5
1	(25.4)	1-1/8	67.6	33.8	22.5	16.9	13.5	11.3	9.7	8.4	7.5	6.8	6.1	5.6	5.2	4.8	4.5
1-1/4	(31.8)	1-3/8	51.2	25.6	17.0	12.8	10.2	8.5	7.3	6.4	5.7	5.1	4.6	4.3	3.9	3.7	3.4

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

ITW **Red Head** Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at www.itwredhead.com

33

PACKAGING

- 1. Disposable, self-contained cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- 2. Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material, and places the epoxy at the base of the pre-drilled hole
- Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

EPOXY ADHESIVE

High Strength EPOXY ADHESIVE: USA Made, ARRA Certified

- 1. Two component resin and hardener, 100% solids (containing no solvents or VOC's), non-sag paste, insensitive to moisture, grey in color, early working time and gel time appropriate for sever installation conditions, suitable for extreme temperature ranges, for all conditions or substrate materials.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, and submerged hole.
- 4. Compressive strength, ASTM D695-02: 12,090 psi minimum.
- 5. Heat deflection temperature: 139°F minimum.
- 6. Extended Shelf life: Best if used within 2 years.
- 7. Reliable performance in solid or hollow base materials.
- 8. Oversized and/or diamond cored holes permitted.
- 9. Suitable for Cold Base material installation using warmed cartridge.

PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGE 33

C6 Average Ultimate Tension and Shear Loads^{1,2,3} for Epoxy Adhesive Threaded Rod Installed in Solid Concrete

THREADED MAX. CLAMPING FORCE ROD DIA. AFTER PROPER CURE		LAMPING FORCE EMBEDMENT R PROPER CURE IN CONCRETE		2000 PSI (13.8 MPa) CONCRETE				4000 PSI (27.6 MPa) CONCRETE				6000 PSI (41.4 MPa) CONCRETE				
In. (mm) FtLbs. (Nm)		In. (mm)		ULTIMATE TENSION Lbs. (kN)		ULTIMATE SHEAR Lbs. (kN)		ULTIMATE TENSION Lbs. (kN)		ULTIMATE SHEAR Lbs. (kN)		ULTIMATE TENSION Lbs. (kN)		ULTIMATE SHEAR Lbs. (kN)		
3/8 (9.5)	13 - 18	(17.6-24.4)	3-3/8	(85.7)	7,195	(32.0)	5,209	(23.2)	8,445	(37.6)	5,869	(26.1)	10,621	(47.2)	5,941	(26.4)
			4-1/2	(114.3)	8,317	(37.0)	5,209	(23.2)	10,021	(44.6)	5,869	(26.1)	10,603	(47.2)	5,941	(26.4)
1/2 (12.7)	22 - 25	(29.8-33.9)	4-1/2	(114.3)	13,271	(59.0)	11,427	(50.8)	17,684	(78.7)	12,585	(56.0)	17,684	(78.7)	12,585	(56.0)
			6	(152.4)	19,127	(85.1)	11,427	(50.8)	19,608	(87.2)	12,585	(56.0)	19,608	(87.2)	12,585	(56.0)
5/8 (15.9)	55 - 80	(74.6-108.5)	5-5/8	(142.9)	17,704	(78.8)	18,294	(81.4)	24,526	(109.1)	19,802	(88.1)	24,526	(109.1)	19,802	(88.1)
			7-1/2	(190.5)	22,642	(100.7)	18,294	(81.4)	28,766	(128.0)	19,802	(88.1)	29,456	(131.0)	19,802	(88.1)
3/4 (19.1)	106-160	(143.7-216.9)	6-3/4	(171.5)	28,779	(128.0)	25,723	(114.4)	31,521	(140.2)	25,723	(114.4)	33,759	(150.2)	25,723	(114.4)
			9	(228.6)	31,758	(141.3)	25,723	(114.4)	41,384	(184.0)	25,723	(114.4)	41,384	(184.0)	25,723	(114.4)
7/8 (22.2)	185-250	(250.8-338.9)	7-7/8	(200.0)	35,257	(156.8)	Consult F	actory	37,714	(167.8)	30,295	(134.8)	41,023	(182.5)	32,573	(144.9)
			10-1/2	(266.7)	Consult	Factory	Consult F	actory	51,211	(227.8)	30,295	(134.8)	51,211	(227.8)	32,573	(144.9)
1 (25.4)	276-330	(374.2-447.4)	9	(228.6)	40,334	(179.4)	38,519	(171.3)	47,886	(213.0)	40,341	(179.5)	47,886	(213.0)	46,416	(206.5)
			12	(304.8)	48,719	(216.7)	38,519	(171.3)	62,194	(276.7)	40,341	(179.5)	63,053	(280.5)	46,416	(206.5)
1-1/4 (31.8)	370-660	(501.6-894.8)	11-1/4	(285.8)	55,654	(247.6)	65,085	(289.5)	56,981	(253.5)	65,085	(289.5)	Consult	Factory	65,085	(289.5)
			15	(381.0)	65,728	(289.5)	65,085	(289.5)	79,726	(354.7)	65,085	(289.5)	Consult	Factory	65,085	(289.5)

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000, 4000, and 6000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances (see page 35).

C6 Average Ultimate Tension Loads^{1,2,3} for Threaded Rod Epoxy Adhesive Installed in Solid Concrete, Shallow Embedment

ANCHOR DIAMETER In. (mm)	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT IN CONCRETE In. (mm)	3500 PSI (24.2 MPa) ULTIMATE TENSION Lbs. (kN)			
1/4 (6.4)	5/16 (7.9)	1 (25.4)	1,653 (7.4)			
		2-1/4 (57.2)	2,818 (12.5)			
		3 (76.2)	3,599 (16.0)			
3/8 (9.5)	7/16 (11.1)	1-1/2 (38.1)	3,426 (15.2)			
1/2 (12.7)	9/16 (14.3)	2 (50.8)	6,100 (27.1)			
5/8 (15.9)	3/4 (19.1)	2-1/2 (63.5)	8,775 (39.0)			
3/4 (19.1)	7/8 (22.2)	3 (76.2)	12,625 (56.2)			
7/8 (22.2)	1 (25.4)	3-1/2 (88.9)	18,650 (83.0)			
1 (25.4)	1-1/8 (28.6)	4 (101.6)	25,034 (111.4)			
1-1/4 (31.8)	1-3/8 (34.9)	5 (127.0)	37,100 (165.0)			

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000, 4000, and 6000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances (see page 35).

PERFORMANCE TABLE

THREADED ROD DIA.	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR LOCATION In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
3/8 (9.5)	7/16 (11.1)	3 (76.2)	GROUTED CELL	4,862 (21.6)	N/A
1/2 (12.7)	5/8 (15.9)	3 (76.2)	GROUTED CELL	4,953 (22.0)	N/A
1/2 (12.7)	5/8 (15.9)	6 (152.4)	GROUTED CELL	8,214 (36.5)	N/A
5/8 (15.9)	3/4 (19.1)	5 (127.0)	GROUTED CELL	7,355 (32.7)	N/A
3/4 (19.1)	7/8 (22.2)	6 (152.4)	Note 1	17,404 (77.4)	19,588 (87.1)
3/4 (19.1)	7/8 (22.2)	6 (152.4)	Note 2	17,404 (77.4)	8,668 (38.6)

1 Anchor can be located in grouted cell, "T" joint, or bed joint.

2 Anchor can be located in first grouted cell from edge.

3 Allowable working loads for the single installations under static loading should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGE 33

C6 Allowable Tension Loads^{1,2,3} for Threaded Rod Installed Epoxy Adhesive in Solid Concrete

THREADED	EMBED	EMBEDMENT ALLOWABLE TENSION LOAD BASED								ALLOWABLE TENSION LOAD BASED						
ROD DIA.	DEP	DEPTH ON ADHESIVE BOND STRENGTH								ON STEEL STRENGTH						
ln. (mm)	In. (mm)		2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)		4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)		6000 PSI (41.4 MPa) IN CONCRETE Lbs. (kN)		ASTM A307 (SAE 1018) Lbs. (kN)		ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)		ASTM F593 AISI 304 SS Lbs. (kN)			
3/8 (9.5)	3-3/8	(85.7)	1,800	(8.0)	2,110	(9.4)	2,655	(11.8)	2,080	(9.3)	4,340	(19.3)	3,995	(17.8)		
	4-1/2	(114.3)	2,080	(9.2)	2,505	(11.1)	2,655	(11.8)	2,080	(9.3)	4,340	(19.3)	3,995	(17.8)		
1/2 (12.7)	4-1/2	(114.3)	3,315	(14.8)	4,420	(19.7)	4,420	(19.7)	3,730	(16.6)	7,780	(34.6)	7,155	(31.8)		
	6	(152.4)	4,780	(21.3)	4,900	(21.8)	4,900	(21.8)	3,730	(16.6)	7,780	(34.6)	7,155	(31.8)		
5/8 (15.9)	5-5/8	(142.9)	4,425	(19.7)	6,130	(27.3)	6,130	(27.3)	5,870	(26.1)	12,230	(54.4)	11,250	(50.0)		
	7-1/2	(190.5)	5,660	(25.2)	7,190	(32.0)	7,364	(32.8)	5,870	(26.1)	12,230	(54.4)	11,250	(50.0)		
3/4 (19.1)	6-3/4	(171.5)	7,195	(32.0)	7,885	(35.1)	8,440	(37.5)	8,490	(37.8)	17,690	(78.7)	14,860	(66.1)		
	9	(228.6)	7,940	(35.3)	10,345	(46.0)	10,345	(46.0)	8,490	(37.8)	17,690	(78.7)	14,860	(66.1)		
7/8 (22.2)	7-7/8	(200.0)	8,810	(39.2)	9,430	(41.9)	10,260	(45.6)	11,600	(51.6)	25,510	(113.5)	20,835	(92.7)		
	10-1/2	(266.7)	N/	A	12,080	(57.0)	12,805	(57.0)	11,600	(51.6)	25,510	(113.5)	20,835	(92.7)		
1 (25.4)	9	(228.6)	10,085	(44.9)	11,970	(53.3)	11,970	(53.0)	15,180	(67.5)	31,620	(140.7)	26,560	(118.1)		
	12	(304.8)	12,180	(54.2)	15,545	(69.2)	15,760	(70.1)	15,180	(67.5)	31,620	(140.7)	26,560	(118.1)		
1-1/4(31.8)	11-1/4	(285.8)	13,915	(61.9)	14,245	(63.4)	14,245	(63.4)	23,800	(105.9)	49,580	(220.6)	34,670	(154.2)		
	15	(381.0)	16,340	(72.7)	19,930	(88.7)	19,930	(88.7)	23,800	(105.9)	49,580	(220.6)	34,670	(154.2)		

1 Use lower value of either bond or steel strength for allowable tensile load.

2 Allowable loads taken from ICC Evaluation Report #4285 (formerly ICBO).

3 Linear interpolation may be used for intermediate spacing and edge distances (see below).

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

####
PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGE 33

C6 Allowable Shear Loads^{1,2,3} for Threaded Rod Installed Epoxy Adhesive in Solid Concrete

THREADED ROD DIA. In. (mm)	MINIMUM EMBEDMENT DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	ALLOWABLE SHEAR LOAD BA: ON CONCRETE STRENGTH 4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	LOWABLE SHEAR LOAD B. ON STEEL STRENGTH ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASED ASTM F593 AISI 304 SS Lbs. (kN)		
3/8 (9.5)	3-3/8 (85.7)	1,300 (5.8)	1,465 (6.5)	1,500 (6.7)	1,040 (4.6)	2,170 (9.7)	1,995 (8.9)
1/2 (12.7)	4-1/2 (114.3)	2,855 (12.7)	3,145 (14.0)	3,145 (14.0)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)
5/8 (15.9)	5-5/8 (142.9)	4,575 (20.3)	4,950 (22.0)	4,950 (22.0)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
3/4 (19.1)	6-3/4 (171.5)	6,430 (28.6)	6,430 (28.6)	6,430 (28.6)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)
7/8 (22.2)	7-7/8 (200.0)	N/A	7,575 (33.7)	8,140 (36.2)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)
1 (25.4)	9 (228.6)	9,630 (42.8)	10,085 (44.9)	11,600 (51.6)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)
1-1/4 (31.8)	11-1/4 (285.8)	16,270 (72.4)	16,270 (72.4)	16,270 (72.4)	11,900 (52.9)	24,790 (110.3)	18,840 (83.8)

1 Use lower value of either concrete or steel strength for allowable shear load.

2 Allowable loads taken from ICC Evaluation Report #4285 (formerly ICBO).

3 Linear interpolation may be used for intermediate spacing and edge distances (see page 35).

 PERFORMANCE TABLE
 DRILL HOLE DIAMETERS PROVIDED ON PAGE 33

C6 Average Ultimate Tension Loads^{1,2,3} for Reinforcing Bar Epoxy Adhesive Installed in Solid Concrete

REIN	IFORCING BAR	EM	BEDMENT CONCRETE	2000 PSI CONC	(13.8 MPa) CRETE	4000 PSI (CONC	27.6 MPa) RETE	ULTIM	ATE TENSILE AN Grade	D YIELD STRENGT 60 REBAR	LH
In	. (mm)	I	n. (mm)	ULTIMATI Lbs.	E TENSION (kN)	ULTIMATE TENSION Lbs. kN)		MINIMU STRE Lbs.	M YIELD NGTH (kN)	MINIMUM U TENSILE ST Lbs. (I	LTIMATE RENGTH «N)
# 3	(9.5)	3-3/8	(85.7)	7,020	(31.2)	9,200	(40.9)	6,600	(29.4)	9,900	(44.0)
		4-1/2	(114.3)	9,000	(40.1)	11,540	(51.3)	6,600	(29.4)	9,900	(44.0)
# 4	(12.7)	4-1/2	(114.3)	11,940	(53.1)	15,140	(67.3)	12,000	(53.4)	18,000	(80.1)
		6	(152.4)	16,703	(74.3)	18,880	(84.0)	12,000	(53.4)	18,000	(80.1)
# 5	(15.9)	5-5/8	(142.9)	14,120	(62.8)	27,740	(123.4)	18,600	(82.7)	27,900	(124.1)
		7-1/2	(190.5)	20,040	(89.1)	30,727	(136.7)	18,600	(82.7)	27,900	(124.1)
# 6	(19.1)	6-3/4	(171.5)	17,940	(79.8)	29,200	(129.9)	26,400	(117.4)	39,600	(176.2)
		9	(228.6)	25,520	(113.5)	41,640	(185.2)	26,400	(117.4)	39,600	(176.2)
		10	(254.0)	N/	A	45,000	(200.2)	26,400	(117.4)	39,600	(176.2)
#7	(22.2)	7-7/8	(200.0)	N/	A	45,850	(204.0)	36,000	(160.1)	54,000	(240.2)
		10-1/2	(266.7)	N/	'A	60,375	(268.6)	36,000	(160.1)	54,000	(240.2)
		13	(330.2)	N/	'A	65,300	(290.5)	36,000	(160.1)	54,000	(240.2)
# 8	(25.4)	9	(228.6)	30,960	(137.7)	54,180	(241.1)	47,400	(210.9)	71,100	(316.3)
		12	(304.8)	30,960	(137.7)	65,420	(291.0)	47,400	(210.9)	71,100	(316.3)
		16	(406.4)	N/	'A	86,700	(385.7)	47,400	(210.9)	71,100	(316.3)
# 9	(28.6)	10-1/8	(257.2)	N/	'A	61,530	(273.7)	60,000	(266.9)	90,000	(400.4)
		13-1/2	(342.9)	N/	'A	81,240	(361.4)	60,000	(266.9)	90,000	(400.4)
		19	(482.6)	N/	'A	108,000	(480.4)	60,000	(266.9)	90,000	(400.4)
# 10	(31.8)	11-1/4	(285.8)	44,600	(198.4)	76,500	(340.3)	76,200	(339.0)	114,300	(508.5)
		15	(381.0)	49,220	(218.9)	82,320	(366.2)	76,200	(339.0)	114,300	(508.5)
		19	(482.6)		N/A	120,000	(533.8)	76,200	(339.0)	114,300	(508.5)

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads.

The use of lower sciencycli rous will result ill lower ultimate tension and shear loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

Combined Tension and Shear Loading—for Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

Na = Applied Service Tension Load

Va = Applied Service Shear Load

Ns = Allowable Tension Load

Vs = Allowable Shear Load

36

G5

High Strength Epoxy tested in accordance to ICC-ES AC308

ITW Red Head^{*} Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

DESCRIPTION/SUGGESTED SPECIFICATIONS*

*Suggested Specifications see pages 40

The epoxy resin and hardener are completely mixed as they are dispensed from the dual cartridge through a static mixing nozzle, directly into the anchor hole. G5 can be used with threaded rod or rebar.

See Appendix A (see pages 98-100) for strength design performance values.

Compliant with 2003 IBC & 2006 IBC. Category 1 performance rating. One bond strength — no load reduction factors (ϕ) required for installation conditions such as dry, water-saturated, water-filled, underwater, and submerged applications.

ADVANTAGES

FORMULATED FOR HOT OR WARM WEATHER

- Fire rated: tested up to 4hrs FRP
- High strength Epoxy
- 15 minute nozzle life at 70° degrees F

International Standard Fire Resistance Performance

NON-OFFENSIVE ODOR

Virtually odorless, can be used indoors

Easy to open, snap-off tip, no cutting required

Curing Times

-		MADE IN USA
BASE MATERIAL	WORKING	FULL
(F°/C°)	TIME	CURE TIME
110°/ 43°	9 minutes	24 hours
90°/ 32°	9 minutes	24 hours
70°/ 20°	15 minutes	24 hours
50°/ 10°	15 minutes	24 hours

EPCON DAIYE

RH7020 Cordless, battery powered dispensing tool for the G5-22 cartridge

APPLICATIONS

Anchoring a concrete traffic barrier wall to concrete bridge deck.

APPROVALS/LISTINGS

ICC Evaluation Service, Inc.— No. ESR 1137 DOT Approvals Miami-Dade County # 04-0405.01 Florida Building Code Approved Patent No. 6,874,661

Doweling rebar into bridge deck and forming to pour new barrier wall using G5.

Doweling rebar into concrete foundation wall prior to building concrete block wall using G5.

INSTALLATION STEPS

*For ICC-ES cleaning method, please go online to <u>www.icc-es.org</u> or <u>www.itwredhead.com</u>.

FEATURES

RED HEAD

ANCHORAGE TO SOLID CONCRETE

Rebar (shown) or Threaded Rod (carbon or stainless steel) supplied by contractor

G5 adhesive completely fills area between rod and hole creating a stress-free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

G5–22 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
G5-22	G5 Adhesive, 22 Fl. Oz. Cartridge	6			
	Mixing Nozzle for G5-22 Cartridge Nozzle diameter fits 3/8" to 5/8" holes		RH7020	EPCON DRIVE Cordless, battery powered dispensing tool for the G5-22 Cartridge	1
E55	(overall length of nozzle 14")	24			
'索	Hand Dispenser for G5-22 Cartridges	1			
/ E102	Dispenses both 18 oz. and 22 oz. Cartridges		E202	Pneumatic Tool for G5-22 Cartridge	1

Refer to page 49 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

ESTIMATING TABLE

G5 22 Fluid Ounce Cartridge

Number of Anchoring Installations Per Cartridge* Using Reinforcing Bar with G5 Adhesive in Concrete

REBAR	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
#3	1/2	388.9	194.5	129.6	97.2	77.8	64.8	55.6	48.6	43.2	38.9	35.4	32.4	29.9	27.8	25.9
#4	5/8	293.8	146.9	97.9	73.5	58.5	49.0	42.0	36.7	32.6	29.4	26.7	24.5	22.6	21.0	19.6
# 5	3/4	225.4	112.7	75.1	56.3	45.1	37.6	32.2	28.2	25.0	22.5	20.5	18.8	17.3	16.1	15.0
#6	7/8	182.0	91.0	60.7	45.5	36.4	30.3	26.0	22.7	20.2	18.2	16.5	15.2	14.0	13.0	12.1
#7	1-1/8	87.2	43.6	29.1	21.8	17.4	14.5	12.5	10.9	9.7	8.7	7.9	7.3	6.7	6.2	5.8
# 8	1-1/4	77.6	38.8	25.9	19.4	15.5	12.9	11.1	9.7	8.6	7.8	7.1	6.5	6.0	5.5	5.2
# 9	1-3/8	81.0	40.5	27.0	20.2	16.2	13.5	11.6	10.1	9.0	8.1	7.4	6.7	6.2	5.8	5.4
# 10	1-1/2	66.2	33.1	22.1	16.6	13.2	11.0	9.5	8.3	7.4	6.6	6.0	5.5	5.1	4.7	4.4
# 11	1-3/4	40.5	20.2	13.5	10.1	8.1	6.7	5.8	5.1	4.5	4.0	3.7	3.4	3.1	2.9	2.7

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

ESTIMATING TABLE

CLAMPING FORCE PROVIDED ON PAGE 40

G5 22 Fluid Ounce Cartridge

Number of Anchoring Installations Per Cartridge* Using Threaded Rod with G5 Adhesive in Concrete

	RC	D	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	In.	(mm)	HOLE DIA. Inches	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
Γ	1/4	(6.4)	5/16	721.2	360.6	240.4	180.3	144.2	120.2	103.0	90.2	80.1	72.1	65.6	60.1	55.5	51.5	48.1
	3/8	(9.5)	7/16	417.6	208.8	139.2	104.4	83.5	69.6	59.7	52.2	46.4	41.8	38.0	34.8	32.1	29.8	27.8
Γ	1/2	(12.7)	9/16	300.5	150.3	100.2	75.1	60.1	50.1	42.9	37.6	33.4	30.1	27.3	25.0	23.1	21.5	20.0
	5/8	(15.9)	3/4	153.8	76.9	51.3	38.4	30.8	25.6	22.0	19.2	17.1	15.4	14.0	12.8	11.8	11.0	10.3
Γ	3/4	(19.1)	7/8	121.7	60.8	40.6	30.4	24.3	20.3	17.4	15.2	13.5	12.2	11.1	10.1	9.4	8.7	8.1
	7/8	(22.2)	1	100.9	50.5	33.6	25.2	20.2	16.8	14.4	12.6	11.2	10.1	9.2	8.4	7.8	7.2	6.7
	1	(25.4)	1-1/8	83.0	41.5	27.7	20.7	16.6	13.8	11.9	10.4	9.2	8.3	7.5	6.9	6.4	5.9	5.5
	1-1/4	(31.8)	1-3/8	62.8	31.4	20.9	15.7	12.6	10.5	9.0	7.8	7.0	6.3	5.7	5.2	4.8	4.5	4.2

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

PACKAGING

- 1. Disposable, self-contained 22 ounce cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- 2. Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material and places the epoxy at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

EPOXY ADHESIVE:

High Strength EPOXY ADHESIVE: USA Made, ARRA Certified

- 1. Odorless, two component resin and hardener, 100% solids (containing no solvents or VOC's), non-sag paste, insensitive to moisture, grey in color, extended working time, medium gel time for warm concrete.
- 2. Works in wet, damp, or submerged holes.
- 3. Compressive Strength, ASTM D695-02: 10,344 psi minimum.
- 4. Heat Deflection Temperature; 144°F minimum.
- 5. Shelf life: Best if used within 18 months.
- 6. Formulated for use in warmer concrete, solid grout-filled masonry, and solid brick.
- 7. Oversized and/or Core drilled holes permitted.
- 8. Fire-Resistance Performance of 4 Hours

PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGE 39

G5 Average Ultimate Tension and Shear Loads^{1,2,3} for Epoxy Adhesive Threaded Rod Installed in Solid Concrete

THREADED	MAX. CLAMPING FORCE	EMBEDMENT	2000 PSI (13.8	MPa) CONCRETE	4000 PSI (27.6	MPa) CONCRETE
ROD DIA. In. (mm)	AFTER PROPER CURE FtLbs. (Nm)	CONCRETE In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
3/8 (9.5)	9 (12.2)	3-3/8 (85.7)	5,060 (22.5)	6,227 (27.7)	8,396 (37.3)	6,227 (27.7)
		4-1/2 (114.3)	6,465 (28.8)	6,227 (27.7)	10,490 (46.7)	6,227 (27.7)
1/2 (12.7)	16 (21.6)	4-1/2 (114.3)	10,484 (46.6)	12,016 (53.5)	13,476 (59.9)	12,016 (53.5)
		6 (152.4)	12,392 (55.1)	12,016 (53.5)	19,166 (85.3)	12,016 (53.5)
		7-1/2 (190.5)	N/A	12,016 (53.5)	20,572 (91.5)	12,016 (53.5)
5/8 (15.9)	47 (63.5)	5-5/8 (142.9)	14,634 (65.1)	17,547 (78.1)	20,880 (92.9)	17,547 (78.1)
		7-1/2 (190.5)	20,182 (89.8)	17,547 (78.1)	27,939 (124.3)	17,547 (78.1)
		9-3/8 (238.1)	N/A	17,547 (78.1)	32,249 (143.5)	17,547 (78.1)
3/4 (19.1)	90 (121.5)	6-3/4 (171.5)	18,966 (84.4)	24,918 (110.8)	29,019 (129.1)	24,918 (110.8)
		9 (228.6)	25,988 (115.6)	24,918 (110.8)	43,812 (194.9)	24,918 (110.8)
		11-1/4 (285.8)	N/A	24,918 (110.8)	47,927 (213.2)	24,918 (110.8)
1 (25.4)	276 (372.6)	9 (228.6)	43,804 (194.9)	43,648 (194.2)	53,531 (238.1)	43,648 (194.2)
		12 (304.8)	45,351 (201.6)	43,648 (194.2)	64,022 (284.8)	43,648 (194.2)
		15 (381.0)	N/A	43,648 (194.2)	82,547 (367.2)	43,648 (194.2)

1 Allowable working loads for the single installations under static loading should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances. (See page 42)

PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGE 39

G5 Allowable Tension Loads¹ for Threaded Rod Installed in Epoxy Adhesive Solid Concrete

THREADED ROD DIA.	MIN. EMBEDMENT	ALLOWABLE 1 ON EPOXY B	TENSION LOAD BASED OND STRENGTH	ALLOWABLE TENSION LOAD BASED ON STEEL STRENGTH					
In. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)			
3/8 (9.5)	3-3/8 (85.7)	1,265 (5.6)	2,092 (9.3)	2,080 (9.3)	4,340 (19.3)	3,995 (17.8)			
	4-1/2 (114.3)	1,616 (7.2)	2,622 (11.7)	2,080 (9.3)	4,340 (19.3)	3,995 (17.8)			
1/2 (12.7)	4-1/2 (114.3)	3,004 (13.4)	3,369 (15.0)	3,730 (16.6)	7,780 (34.6)	7,155 (31.8)			
	6 (152.4)	3,098 (13.8)	4,791 (21.3)	3,730 (16.6)	7,780 (34.6)	7,155 (31.8)			
5/8 (15.9)	5-5/8 (142.9)	3,659 (16.3)	5,220 (23.2)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)			
	7-1/2 (190.5)	5,046 (22.4)	6,985 (31.1)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)			
3/4 (19.1)	6-3/4 (171.5)	4,742 (21.1)	7,255 (32.3)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)			
	9 (228.6)	6,497 (28.9)	10,057 (44.7)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)			
1 (25.4)	9 (228.6)	10,951 (48.7)	11,209 (49.9)	15,180 (67.5)	31,620 (140.6)	26,560 (118.1)			
	12 (304.8)	11,338 (50.4)	15,923 (70.8)	15,180 (67.5)	31,620 (140.6)	26,560 (118.1)			

1 Use lower value of either bond or steel strength for allowable tensile load.

2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 42)

PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGE 39

G5 Allowable Shear Loads^{1,2} for Threaded Rod Installed in Epoxy Adhesive Solid Concrete

THREADED MIN. ROD DIA. EMBEDMENT		ALLOWABLE SH ON CONCRE	EAR LOAD BASED TE STRENGTH	ALLOWABLE SHEAR LOAD BASED ON STEEL STRENGTH					
ln. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)			
3/8 (9.5)	3-3/8 (85.7)	1,557 (6.9)	1,557 (6.9)	1,040 (4.6)	2,170 (9.7)	1,995 (8.9)			
1/2 (12.7)	4-1/2 (114.3)	3,004 (13.4)	3,004 (13.4)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)			
5/8 (15.9)	5-5/8 (142.9)	4,387 (19.5)	4,387 (19.5)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)			
3/4 (19.1)	6-3/4 (171.5)	6,230 (27.7)	6,230 (27.7)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)			
1 (25.4)	9 (228.6)	10,912 (48.5)	10,912 (48.5)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)			

1 Use lower value of either concrete or steel strength for allowable shear load.

2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 42)

Combined Tension and Shear Loading—for G5 Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

(<u>Na</u>)	+	(<u>Va</u>)	< 1		
(Ns)		\ _{Vs} /			

Na = Applied Service Tension Load

Ns = Allowable Tension Load

Va = Applied Service Shear Load

Vs = Allowable Shear Load

PERFORMANCE TABLE

DRILL HOLE DIAMETERS PROVIDED ON PAGE 39

G5 Average Ultimate Tension Loads^{1,2,3} for Reinforcing Bar Epoxy Adhesive Installed in Solid Concrete

REINFORCING BAR	EMBEDMENT IN CONCRETE	2000 PSI (13.8 MPa) IN CONCRETE	4000 PSI (27.6 MPa) IN CONCRETE	ULTIMATE TENSILE GRADE 6	AND YIELD STRENGTH D REBAR			
In. (mm)	In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE TENSION Lbs. (kN)	MINIMUM YIELD STRENGTH Lbs. (kN)	MINIMUM ULTIMATE TENSILE STRENGTH Lbs. (kN)			
# 3 (9.5)	3-3/8 (85.7)	7,480 (33.3)	8,090 (35.9)	6,600 (29.4)	9,900 (44.0)			
	4-1/2 (114.3)	N/A	10,488 (46.6)	6,600 (29.4)	9,900 (44.0)			
# 4 (12.7)	4-1/2 (114.3)	N/A	14,471 (64.4)	12,000 (53.4)	18,000 (80.1)			
	6 (152.4)	11,235 (50.0)	20,396 (90.7)	12,000 (53.4)	18,000 (80.1)			
# 5 (15.9)	5-5/8 (142.9)	N/A	21,273 (94.6)	18,600 (82.7)	27,900 (124.1)			
	7-1/2 (190.5)	18,108 (80.6)	31,863 (141.7)	18,600 (82.7)	27,900 (124.1)			
#6 (19.1)	6-3/4 (171.5)	N/A	27,677 (123.1)	26,400 (117.4)	39,600 (176.2)			
	9 (228.6)	29,338 (130.5)	47,879 (212.9)	26,400 (117.4)	39,600 (176.2)			
# 7 (22.2)	7-7/8 (200.0)	N/A	43,905 (195.3)	36,000 (160.1)	54,000 (240.2)			
	10-1/2 (266.7)	N/A	52,046 (231.5)	36,000 (160.1)	54,000 (240.2)			
# 8 (25.4)	9 (228.6)	N/A	55,676 (247.7)	47,400 (210.9)	71,100 (316.3)			
	12 (304.8)	48,000 (213.5)	77,358 (344.1)	47,400 (210.9)	71,100 (316.3)			
# 9 (28.6)	10-1/8 (257.2)	N/A	62,443 (277.8)	60,000 (266.9)	90,000 (400.4)			
	13-1/2 (342.9)	N/A	71,959 (320.1)	60,000 (266.9)	90,000 (400.4)			
# 10 (31.8)	11-1/4 (285.8)	N/A	70,165 (312.1)	76,200 (339.0)	114,300 (508.5)			
	15 (381.0)	N/A	78,545 (349.4)	76,200 (339.0)	114,300 (508.5)			

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

G5 Average Ultimate Tension Loads^{1,2} for Threaded Rod Epoxy Adhesive Installed in Solid Concrete

THREADED ROD In. (mm)	HOLE DIAMETER In. (mm)	EMBEDMENT IN CONCRETE In. (mm)	≥ 3000 PSI (13.8 MPa) IN CONCRETE ULTIMATE TENSION Lbs. (kN)		
1-1/2 (38.1)	1-3/4 (44.5)	13 (330.2) 17 (431.8) 19 (482.6)	100,250(490.4)143,600(638.8)150,000(667.3)		
2 (50.8)	2-1/4 (57.2)	16 (406.4) 17 (431.8)	150,000 (667.3) 169,700 (754.9)		

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

2 Ultimate load values are ≥ 3000 psi in stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension loads. See chart below.

G5 Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar^{1,2}

LUAD FACTOR		DISTANCE FROM EDGE OF CONCRETE
Critical Edge Distance—Tensio	n	
100% Tension Load	>	1.25 x Anchor Embedment
Minimum Edge Distance—Ten	ision	
70% Tension Load		0.50 x Anchor Embedment
Critical Edge Distance—Shear		
100% Shear Load		1.25 x Anchor Embedment
Minimum Edge Distance—She	ear	
30% Shear Load		0.30 x Anchor Embedment
LOAD FACTOR		DISTANCE FROM ANOTHER ANCHOR
Critical Spacing—Tension		
100% Tension Load		
100/0 ICIDIOII LOdu	>	1.50 x Anchor Embedment
Minimum Spacing—Tension		1.50 x Anchor Embedment
Minimum Spacing—Tension 75% Tension Load	>	1.50 x Anchor Embedment 0.75 x Anchor Embedment
Minimum Spacing—Tension 75% Tension Load Critical Spacing—Shear	→ →	1.50 x Anchor Embedment 0.75 x Anchor Embedment
Minimum Spacing—Tension 75% Tension Load Critical Spacing—Shear 100% Shear Load	> > >	1.50 x Anchor Embedment 0.75 x Anchor Embedment 1.50 x Anchor Embedment
Minimum Spacing—Tension 75% Tension Load Critical Spacing—Shear 100% Shear Load Minimum Spacing—Shear	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1.50 x Anchor Embedment 0.75 x Anchor Embedment 1.50 x Anchor Embedment

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

Umbrella Inserts and Stubby Screens

High Performance Adhesive Systems for Fastening to Hollow Base Materials

HBU-FS

DESCRIPTION/ADVANTAGES

ITW Red Head^{*} Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Umbrella Inserts and Screens

INSTALLATION STEPS

SELECTION CHART

Stubby Screens

PART NO.	DESCRIPTION	QTY/BO	X
HB 14-2	1/4″ x 2″ Staiı	nless Screen 100	
HB 38-312	3/8″ x 3-1/2″ Stai	nless Screen 100	
HB 12-312	1/2" x 3-1/2" Stai	nless Screen 50	
HB 58-412	5/8″ x 4-1/2″ Stair	nless Screen 50	

- Drill 3/4" diameter hole, 3-3/4" deep using rotation only drilling mode and carbide tipped drill bit. Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with compressed air (leave no dust or slurry).
- Place umbrella on piece of threaded rod, stretch umbrella over the rod by pulling the white collar back approximately 1". Squeeze orange portion of umbrella and push umbrella into hole.
- 3. Push umbrella body through the hole and completely into void. Remove threaded rod. (Do not use in solid base materials. For anchoring into block web, ends and mortar joints, use screens.)
- 4. Dispense and discard a sufficient amount of adhesive from new cartridge until a uniform adhesive mix is achieved. Inject approximately 1-1/2 fl. oz. of adhesive into umbrella (7 to 8 pumps using manual dispenser) to completely fill umbrella.
- **5.** 3/8" rod uses a centering ring (supplied with inserts) to keep rod perpendicular to the wall.
- Insert rod into the filled umbrella using a slow, soft twisting motion until it contacts the back of umbrella.
- 7. Wait for appropriate temperature/cure time before tightening fixture to the recommended torque of 10 ft./lbs.

Installation instructions for stubby screens provided on page 46.

44

ESTIMATING TABLE

Umbrella Using Threaded Rod and Umbrella Inserts with A7 Inserts and C6 Adhesives in Hollow Base Material

ROD In (mm)	DRILL HOLE DIA. INCHES	VOLUME OF CARTRIDGE		UMBRELLA INSERT WITH EMBEDMENT OF 3-3/4"
3/8 (9.5)	3/4	A7	5 fluid oz.	3
		A7	8 fluid oz.	5
		A7	10 fluid oz.	6
		A7	28 fluid oz.	17
		C6	18 fluid oz.	11

* These estimates do not account for waste.

ESTIMATING TABLE

	Stubb Screen	Number of Anchorin Stubby Screens with	ng Installations Per A7 and C6 Adhesi	r Cartridge* Using 1 ives in Hollow Base	Threaded Rod and Material
ROD	DRILL HOLE DIA.	VOLUME OF		SCREEN LENGTH PLUS 1 DIAMETER (IN	ICHES)
ln (mm)	INCHES	CARTRIDGE	2″	3-1/2″	4-1/2″
1/4 (6.4)	3/8	A7 8 fluid oz.	39		
		A7 10 fluid oz.	48		
		A7 28 fluid oz.	135		
		C6 18 fluid oz.	87		
3/8 (9.5)	1/2	A7 8 fluid oz.		17	
		A7 10 fluid oz.		21	
		A7 28 fluid oz.		62	
		C6 18 fluid oz.		40	
1/2 (12.7)	5/8	A7 8 fluid oz.		12	
		A7 10 fluid oz.		15	
		A7 28 fluid oz.		43	
		C6 18 fluid oz.		28	
5/8 (15.9)	3/4	A7 8 fluid oz.			7
		A7 10 fluid oz.			11
		A7 28 fluid oz.			24
		C6 18 fluid oz.			16

* These estimates do not account for waste.

PERFORMANCE TABLE

Load Values^{1, 2} Using A7 in Hollow Concrete Block

	ROD DIA. MAX CLAMPING FORCE DRILL HOLE DIA. In. (mm) AFTER PROPER CURE In. (mm) FtLbs. (Nm) In. (mm) In. (mm)		EMBEDMENT (SCREEN LENGTH) In. (mm)	ULTIMATE TENSION Lbs. (Kn)	ULTIMATE SHEAR Lbs. (Kn)	
Umbrella	3/8 (9.5)	10 (13)	3/4 (19.1)	3-3/4 (95.3)	3,558 (15.8)	3,109 (13.8)
	1/4 (6.4)	4 (5)	3/8 (9.5)	2 -1/4 (57.1)	1,550 (6.9)	1,900 (8.5)
Stubby Scroops	3/8 (9.5)	7 (9)	1/2 (12.7)	3-7/8 (98.4)	1,661 (7.4)	2,071 (9.2)
Studdy Screens	1/2 (12.7)	10 (13)	5/8 (15.9)	4 (101.6)	2,458 (10.9)	4,467 (19.9)
	5/8 (15.9)	13 (17)	3/4 (19.1)	5-1/8 (130.2)	2,543 (10.9)	5,047 (22.4)

1 Allowable working loads should not exceed 25% ultimate capacity. Based upon testing using ASTM A193, Grade B7 rod.

2 The tabulated values are for anchors installed at a minimum 12 inch edge distance and minimum 8 inch spacing.

PERFORMANCE TABLE

Load Values^{1, 2} Using C6 in Hollow Concrete Block

		2				
	ROD DIA. In. (mm)	MAX CLAMPING FORCE AFTER PROPER CURE FtLbs. (Nm)	DRILL HOLE DIA. In. (mm)	EMBEDMENT (SCREEN LENGTH) In. (mm)	ULTIMATE TENSION Lbs. (Kn)	ULTIMATE SHEAR Lbs. (Kn)
Umbrella	3/8 (9.5)	10 (13)	3/4 (19.1)	3-3/4 (95.3)	1,875 (8.3)	2,200 (9.8)
	1/4 (6.4)	4 (5)	3/8 (9.5)	2 (50.8)	1,550 (6.9)	1,900 (8.5)
Stubby Screens	3/8 (9.5)	7 (9)	1/2 (12.7)	3-1/2 (88.9)	1,661 (7.4)	2,071 (9.2)
	1/2 (12.7)	10 (13)	5/8 (15.9)	3-1/2 (88.9)	1,873 (8.3)	2,242 (10.0)
	5/8 (15.9)	13 (17)	3/4 (19.1)	4-1/2 (114.3)	1,970 (8.8)	3,554 (15.8)

1 Allowable working loads should not exceed 25% ultimate capacity. Based upon testing using ASTM A193, Grade B7 rod.

2 The tabulated values are for anchors installed at a minimum 12 inch edge distance and minimum 8 inch spacing.

Screen Tubes

Quality Adhesive Systems for **Fastening Through Block and for Brick Pinning Applications**

Nylon Screens

> Stainless Screens

冬 RED HEAD°

DESCRIPTION/SUGGESTED SPECIFICATIONS

Screens Used with A7 and C6

HOLLOW CONCRETE BLOCK

Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.

For attachments to single face of block, see page 43 for information on 'umbrella anchors" and "stubby screens"

Brick Pinning or fastening to brick—

to accommodate site conditions.

Section

HB SERIES—STAINLESS SCREENS

Available in 1/4" to 3/4" diameters

Special version, "dosage control" available

for overhead and underwater installations

Corrosion resistant

Systems designed for Seismic Retrofit, various lengths and diameters available

The no-drip feature of A7 adhesive makes it particularly well suited for brick pinning applications.

ADVANTAGES

BRICK WALL

HBP SERIES—NYLON SCREENS

- 30%-50% savings from stainless steel screens
- Comparable performance values
- Easier to insert and span across voids
- Flexible material is less susceptible to damage from crushing

INSTALLATION STEPS

1. Drill hole to the length of the screen plus 1 diameter, using rotation-only drilling mode. Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with forced air (leave no dust or slurry).

3. Insert the filled screen completely into the hole (subflush).

While holding the tab of the screen against the wall, hand insert the selected rod slowly into the screen tube with a slow twisting motion. Pull screen flush to face and coat with adhesive. Wait for appropriate cure time before torquing fixture in place.

it W **Red Head** Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at www.itwredhead.com

46

Screen Tubes

SELECTION CHART

Scroon Tuba

HRP Nylon Screen

Screen Tubes		HB Stainless	Screen	HBP Nylon Screen		
ROD DIA.	SCREEN LENGTH	STAINLESS ST	TEEL SCREENS	NYLON SCREENS		
In. (mm)	In. (mm)	PART NO.	QTY/BOX	PART NO.	QTY/BOX	
1/4 (6.4)	6 (152.4)	HB 14-6	100	N/A	N/A	
1/4 (6.4)	8 (203.2)	HB 14-8	100	N/A	N/A	
1/4 (6.4)	10 (254.0)	HB 14-10	100	N/A	N/A	
3/8 (9.5)	6 (152.4)	HB 38-6	50	HBP 38-6	50	
3/8 (9.5)	8 (203.2)	HB 38-8	25	HBP 38-8	25	
3/8 (9.5)	10 (254.0)	HB 38-10	25	HBP 38-10	25	
1/2 (12.7)	6 (152.4)	HB 12-6	50	HBP 12-6	50	
1/2 (12.7)	8 (203.2)	HB 12-8	25	HBP 12-8	25	
1/2 (12.7)	10 (254.0)	HB 12-10	25	HBP 12-10	25	
5/8 (15.9)	6 (152.4)	HB 58-6	25	HBP 58-6	40	
5/8 (15.9)	8 (203.2)	HB 58-8	20	HBP 58-8	40	
5/8 (15.9)	10 (254.0)	HB 58-10	20	HBP 58-10	40	
3/4 (19.1)	8 (203.2)	HB 34-8	20	N/A	N/A	
3/4 (19.1)	10 (254.0)	HB 34-10	10	HBP 34-10	20	
3/4 (19.1)	13 (330.2)	HB 34-13	10	HBP 34-13	20	

*Not available in standard strength nylon screens. Longer screens available through specials.

ESTIMATING TABLE

Screen Tubes Screen Tubes with A7 and C6 Adhesives in Hollow Base Material

ROD	DRILL HOLE DIA.	VOLUME OF		SCREEN LEN	GTH (INCHES)	
In (mm)	INCHES	CARTRIDGE	6″	8″	10″	13″
1/4 (6.4)	3/8	A7 8 fluid oz.	13	10	8	
		A7 10 fluid oz.	16	12	10	
		A7 28 fluid oz.	45	35	28	
		C6 18 fluid oz.	29	22	18	
3/8 (9.5)	1/2	A7 8 fluid oz.	10	8	6	
		A7 10 fluid oz.	12	10	7.5	
		A7 28 fluid oz.	37	29	23	
		C6 18 fluid oz.	24	19	15	
1/2 (12.7)	5/8	A7 8 fluid oz.	7	5	4	_
		A7 10 fluid oz.	9	6	5	
		A7 28 fluid oz.	26	18	14	
		C6 18 fluid oz.	17	12	9	
5/8 (15.9)	3/4	A7 8 fluid oz.	5	4	3	
		A7 10 fluid oz.	6	5	4	
		A7 28 fluid oz.	18	14	10	
		C6 18 fluid oz.	12	9	7	
3/4 (19.1)	7/8	A7 8 fluid oz.			2	1
		A7 10 fluid oz.			2.5	1.75
		A7 28 fluid oz.			6	5
		C6 18 fluid oz.			4	3

* These estimates do not account for waste.

Screen Tubes

PERFORMANCE TABLE

Load Values or HE

Average Ultimate Loads for HBP (nylon) or HB (stainless) Screens Used with A7 in Hollow Concrete Block¹

ROI In.	D DIA. (mm)	DRILL H In.	IOLE DIA. (mm)	MAX CLAMPING FOR FtLl	CE AFTER PROPER CURE bs. (Nm)	SCREEN EMBEDMENT (LENGTH) In. (mm)		ULTIMATI Lbs.	TENSION (kN)	ULTIMAT Lbs.	'E SHEAR (kN)
1/4	(6.4)	3/8	(9.5)	5	(6)	8	(203.2)	2,072	(9.2)	2,264	(10.1)
3/8	(9.5)	1/2	(12.7)	12	(16)	8	(203.2)	2,360	(10.5)	2,668	(11.9)
1/2	(12.7)	5/8	(15.9)	19	(25)	8	(203.2)	2,647	(11.8)	2,668	(11.9)
5/8	(15.9)	3/4	(19.1)	26	(35)	8	(203.2)	2,647	(11.8)	3,578	(15.9)
3/4	(19.1)	7/8	(22.2)	28	(37)	8	(203.2)	2,647	(11.8)	4,573	(20.3)

1 Allowable working loads should not exceed 25% of ultimate capacity. Loads based upon testing with ASTM A193, Grade B7 rods.

For grout filled, concrete block or solid red brick units, see page 27.

PERFORMANCE TABLE

Average Ultimate Loads for HBP (nylon) or HB (stainless) Screens Used with C6 in Hollow Concrete Block ¹

ROD DIA. In. (mm)	DRILL HOLE DIA. In. (mm)	MAX CLAMPING FORCE AFTER PROPER CURE FtLbs. (Nm)	SCREEN EMBEDMENT (LENGTH) In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
1/4 (6.4)	3/8 (9.5)	5 (6)	8 (203.2)	2,072 (9.2)	2,264 (10.1)
3/8 (9.5)	1/2 (12.7)	12 (16)	8 (203.2)	2,800 (12.5)	2,466 (10.9)
1/2 (12.7)	5/8 (15.9)	19 (25)	8 (203.2)	3,487 (15.5)	2,668 (11.9)
5/8 (15.9)	3/4 (19.1)	26 (35)	8 (203.2)	3,487 (15.5)	3,578 (15.9)
3/4 (19.1)	7/8 (22.2)	28 (37)	8 (203.2)	3,487 (15.5)	4,573 (20.3)

1 Allowable working loads should not exceed 25% of ultimate capacity. Loads based upon testing with ASTM A193, Grade B7 rods.

PERFORMANCE TABLE

Load ValuesAverage Ultimate Loads for HBP (nylon) Screens Used with C6 in Brick and Concrete Block¹

NYLON SCREEN Part No.	DRILL HOLE DIA. In. (mm)	SINGLE BRICK ULTIMATE TENSION ULTIMATE SHEAR Lbs. (kN) Lbs. (kN)		DOUBL ULTIMATE TENSION Lbs. (kN)	E BRICK ULTIMATE SHEAR Lbs. (kN)	BRICK AND HOLLOW BLOCK ULTIMATE TENSION Lbs. (kN)
HBP 38-6	1/2 (12.7)	2,150 (9.6)	N/A	4,675 (20.8)	1,917 (8.5)	3,659 (16.3)
HBP 38-8	1/2 (12.7)	2,200 (9.8)	1,143 (5.1)	6,175 (27.5)	1,743 (7.8)	3,659 (16.3)
HBP 38-10	1/2 (12.7)	2,000 (8.9)	950 (4.2)	3,272 (14.6)	2,498 (11.1)	2,498 (11.1)
HBP 12-6	5/8 (15.9)	3,800 (16.9)	N/A	6,369 (28.3)	2,498 (11.1)	5,595 (24.9)
HBP 12-8	5/8 (15.9)	1,750 (7.8)	N/A	7,530 (33.5)	2,305 (10.3)	3,500 (15.6)
HBP 12-10	5/8 (15.9)	2,618 (11.6)	N/A	2,885 (12.8)	2,305 (10.3)	2,498 (11.1)

1 Allowable working loads should not exceed 25% of ultimate capacity. Loads based upon testing with ASTM A193, Grade B7 rods.

Accessories

centers rod in hole, and keeps adhesive off threads								
ROD DIAMETER	HOLE DIAMETER	PART #	QTY					
3/8″	7/16″	E038	25					
1/2″	9/16″	E012	25					
5/8″	3/4″	E058	20					
3/4″	7/8″	E034	20					
7/8″	1″	E078	10					
1″	1-1/8″	E010	10					

E114

10

1-3/8'

Special plugs make overhead installations easier,

Proper hole cleaning using a brush is essential to **Nylon Brushes** achieve optimum performance

1 - 1/4'

DESCRIPTION/ADVANTAGES

SIZE DIA.	DESCRIPTION	PART #	QTY
1/2″	Nylon Brush	B012	1
3/4″	Nylon Brush	B034	1
1″	Nylon Brush	B100	1
1-1/4″	Nylon Brush	B114	1
1-1/2″	Nylon Brush	B112	1

Proper hole cleaning using a brush is essential to

DRILL BIT DIA.

BRUSH DIA.

QTY/BAG

achieve optimum performance

REBAR

PART # ANCHOR DIA. SB038 3/8″ No. 3 7/16" 5/8″ 4 SB012 1/2' 9/16' 3/4' 4 Wire Brush Extensions SB058 5/8' No. 5 3/4″ 1″ 4 SB034 3/4″ 7/8″ 1-1/4 No. 6 4 SB078 7/8" 1″ 1-1/2 4 No. 7 SB010 1″ 1-1/8" 1-5/8" 4 SB125 1-1/4" 1-3/8 1-3/4" 4 ESDS-38 Wire brush 12" usable extension with SDS+ adaptor 1 1/8" NPT EHAN-38 Wire brush 12" usable extension with T-Handle 1 (National Pipe Thread Taper) Proper hole cleaning using a wire brush is essential to achieve optimum performance. Brush may be used up to 50 holes depending on concrete strength. ESDS-38 EHAN-38 Brushes required for installation of No. 4, No. 8 rebar and larger are available with lead time. **EXTENSION EXTENSION** WITH SDS+ WITH ADAPTOR* T-HANDLE* Plastic Attaches to Adhesive System nozzles for deep hole **Extension Tubing** installations DESCRIPTION PART # QTY 6-Foot Straight Tubing can cut to proper size (.39 in I.D. x .43 in. 0.D.) E25-6 6 **Blow Pump** DESCRIPTION PART # QTY/BAG Blow Pump BP-10 1 * USABLE LENGTH IS 12", Minimum hole 7/16". GOOD FOR ALL HOLES EXCEPT 7/16" DIAMETER

Wire Brushes

ITW **Red Head**

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at www.itwredhead.com

Anchors for Concrete Applications

Selection Guide

ANCHOR TYPE		KEY FEATURES	SIZE RANGE (Inches)
	Trubolt Wedge Anchors	 2006 IBC Compliant Seismic zone (A-B) approved Fully-threaded Length ID head stamped Stainless steel clip Through-fixture fastening 	Diameter: 1/4 – 1 Length: 1-3/4 – 12
	Trubolt + Seismic Wedge Anchors ID STAMP	 2006 IBC & 2009 IBC Compliant All seismic zone (A-F) and cracked concrete approved Fully-threaded Length ID head stamped Through-fixture fastening 	Diameter: 3/8, 1/2, 5/8 & 3/4 Length: 3 – 8-1/2
	OVERHEAD Trubolt+ Seismic Wedge Over Head Anchors	 2006 IBC & 2009 IBC Compliant All seismic zone (A-F) and cracked concrete approved Fully-threaded Through-fixture fastening 	Diameter: 3/8 Length: 2-1/2
	Large Diameter Tapcon (LDT) and LDT Self-Threading Anchor	Anti-rotation serrated washer Extra large hex washer head Length ID head stamped Through-fixture fastening	LDT with Zinc Plating Diameter: 3/8 – 3/4 Length: 1-3/4 – 6-1/4 LDTX with EnvireX Coating Diameter: 3/8 & 1/2 Length: 3 – 5
	Multi-Set II Drop-In Anchors RM RL RX CL	 RM: Flanged body to keep anchor flush with surface of concrete RL: Non-flanged body for recessed setting RX: Designed for hollow core and post tension concrete CL: Designed for one-sided forming, accepts coil rod 	Diameter: 1/4 - 3/4 Length: 1 - 3-3/16 Diameter: 1/4 - 3/4 Length: 1 - 3-3/16 Diameter: 3/8 & 1/2 Length: 3/4 Diameter: 1/2 & 3/4 Length: 2 & 3-3/16
	Dynabolt [®] Masonry Sleeve Anchors For both Hollow and Solid Concrete Applications	 Concrete, block and brick Many choices of head styles Through-fixture fastening Available in 304 stainless steel 	Diameter: 1/4 – 3/4 Length: 5/8 – 6-1/4

(see page 71)

Selection Guide

Trubolt 2 The plated carbon steel to ASTM 8633, SC1, Type III Ultimate Pullout Performance in 4000 pis Concrete up to 26, 540 lbs. (1° diameter) Hex nut Te-Wire version RC E Pulated carbon steel to ASTM 8633, SC1, Type III Trubolt+ Zine-plated carbon steel to ASTM 8633, SC1, Type III Pullout strength of 4,300 lbs in 2,500 pi Cacked Concrete (1/2° diameter) Hex nut RC E Pulates Service the 4582-233 (bit contents) Service the 4582-233 (carbon steel to ASTM 8633, SC1, Type III Trubolt+ Zine-plated carbon steel to ASTM 8633, SC1, Type III Pullout strength of 4,300 lbs in 2,500 pi Cacked Concrete (1/2° diameter). Hex nut RC E Pulates Service the 4582-237 (cacked Concrete (1/2° diameter). Trubolt+ Zine-plated carbon steel to ASTM 8633, SC1, Type III Pullout strength of 4,300 lbs in 2,500 pi Cacked Concrete (1/2° diameter). Hex nut RC E-Pulates ARD ASTM (C E-Pulates Service in c 458-247 (C E-Pulates APR 25867 (C E E-Pulates Service in c 458-247 (C E Pu		CO	RROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Turbolt+ ourd Zinc-plated carbon steel to ASTM 8633, SC1, Type III Pullout strength of 4,980 lbs in 2,500 psi (Graded Concrete (1/2" diameter). Hex nut If C Evaluation Service, Inc. # ESR-2427 -2006 IRC and 2000 IRC ompliant -ested in accordance with ACI3552 and ICC Scalabion Service, Inc. # ESR-2427 -1steel for use in section: conces, A, B, C, D, E, & F -3.87, 172, 587 and 347 detaility requirements -Isteel in accordance with ACI3552 and ICC Scalabion Service, Inc. # ESR-2427 -2006 IRC and 2000 IRC ompliant -Isteel for use in section: conces, A, B, C, D, E, & F -3.87, 172, 587 and 347 detaility requirements -Isteel A accordance with ACI3552 and ICC scalabion Service, Inc. # ESR-2427 -2016 IRC and 2000 IRC ompliant -2016 IRC and 2000 IRC ompliant IRC and 2000 I	Trubolt cont'd	-	Zinc-plated carbon steel to ASTM B633, SC1, Type III Hot dipped galvanized to ASTM A-153 Type 304 and 316 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 26,540 lbs. (1" diameter)	Hex nut Tie-Wire version	ICC Evaluation Service, Inc. # ESR-2251 (see page 55 for more details) Underwriters Laboratories Factory Mutual City of Los Angeles - #RR2748 California State Fire Marshall Caltrans Meets or exceeds U.S. Government G.S.A. Specification A-A-1923A Type 4 (formerly GSA: FF-S-325 Group II, Type 4, Class 1)
Trubolt+ formed = Zinc-plated carbon steel to ASTM B633, SC1, Type III Pullout strength of 4,980 lbs in 2,500 psi Cracked Concrete (1/2" diameter). Hex nut ICC Evaluation Service, Inc. # ESR-2427 -Gregory 1 performance rating 2006 BiG and 2009 IBC compliant -Meets A0 318 ducility requirements -Itested in accordance with A1535 2.a. and ICC 5 A C193 -Listed for use in seismic zones A, B, C, D, E, & F -3/8", 1/2", 5/8" and 3/4" diameter anchors listed in IESR-2427 Cry of Los Angeles - #RR25867 LDT conred = Zinc-plated carbon steel to ASTM B695 & B633 Type 410 stainless steel Ultimate Pullout Performance in 4,000 psi Concrete up to 23,266 lbs. (3/4" diameter) Finished bolt style Miami-Dade Courty - #04-1025.08 Florida Building Code Nulti-Sett II Drop-In word = Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 18-8 and 316 stainless steel Ultimate Pullout Performance in 4000 psi Concrete up to 9,480 lbs. (3/4" diameter) RM: Flanged body RL: Non-flanged body Use any bolt or threaded rod GSA: A-A-55614 Type 1 (formerly GSA: FFS-325 Group VIII) Underwriters Laboratories factory Witual (Ty of Los Angeles - #RR2748 Giffionia State Fire Marshal Caltrans Dynabolt conred = Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 304 stainless steel Ultimate Pullout Performance in 4000 psi Concrete up to 9,480 lbs. (3/4" diameter) Flat head Hex nut Flat head Hex nut R2: Non-flanged body Use any bolt or threaded rod GSA: A-1922A (formerly GSA: FFS-325 Group II, Type 3, Cass 3) factory Witual (GM or State Fire Marshal Caltorias	Trubolt+ cont'd	-	Zinc-plated carbon steel to ASTM B633, SC1, Type III	Pullout strength of 4,980 lbs in 2,500 psi Cracked Concrete (1/2" diameter).	Hex nut	ICC Evaluation Service, Inc. # ESR-2427 -Category 1 performance rating -2006 IBC and 2009 IBC compliant -Meets ACI 318 ductility requirements -Tested in accordance with ACI 355.2 and ICC-ES AC193 -Listed for use in seismic zones A, B, C, D, E, & F -3/8", 1/2", 5/8" and 3/4" diameter anchors listed in ESR-2427 City of Los Angeles - #RR25867
LDT cont d Zinc-plated carbon steel to ASTM 8695 & 8633 Ultimate Pullout Performance in 4,000 psi Concrete up to 23,266 lbs. (3/4" diameter) Finished bolt style Miami-Dade County - #04-1025.08 Florida Building Code Image: Description of the state of the sta	Trubolt+ OH cont'd	-	Zinc-plated carbon steel to ASTM B633, SC1, Type III	Pullout strength of 4,980 lbs in 2,500 psi Cracked Concrete (1/2" diameter).	Hex nut	ICC Evaluation Service, Inc. # ESR-2427 -Category 1 performance rating -2006 IBC and 2009 IBC compliant -Meets ACI 318 ductility requirements -Tested in accordance with ACI 355.2 and ICC-ES AC193 -Listed for use in seismic zones A, B, C, D, E, & F -3/8", 1/2", 5/8" and 3/4" diameter anchors listed in ESR-2427 City of Los Angeles - #RR25867
Image: Second state of the second s	LDT cont'd	-	Zinc-plated carbon steel to ASTM B695 & B633 Type 410 stainless steel	Ultimate Pullout Performance in 4,000 psi Concrete up to 23,266 lbs. (3/4" diameter)	Finished bolt style	Miami-Dade County — #04-1025.08 Florida Building Code
Multi-Set II Drop-In cont'd Zinc-plated carbon steel to ASTM B633, SC1, Type III Ultimate Pullout Performance in 4000 psi Concrete up to 9,480 lbs. (3/4" diameter) RM: Flanged body RL: Non-flanged body Use any bolt or threaded rod GSA: A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII) Underwriters Laboratories Factory Mutual City of Los Angeles – #RR2748 California State Fire Marshal Caltrans Dynabolt cont'd Zinc-plated carbon steel to ASTM B633, SC1, Type III Ultimate Pullout Performance in 4000 psi Concrete up to 8,900 lbs. (3/4" diameter) Flat head Hex nut Acorn nut Tie-Wire Round head Threshold flat head GSA: A-A-5525 Group II, Type 3, Class 3) Factory Mutual City of Los Angeles – #RR2748 California State Fire Marshal Caltrans			Now with Envire Coating Approved for use in ACQ and MCQ lun *Excessive content of copper in the ACQ a	nber* nd MCQ lumber may affect the anch	10r finish.	1,000 hours salt spray ASTM B117
Dynabolt cont'dZinc-plated carbon steel to ASTM B633, SC1, Type III Type 304 stainless steelUltimate Pullout Performance in 4000 psi Concrete up to 8,900 lbs. (3/4" diameter)Flat head Hex nut Acorn nut Tie-Wire Round head Threshold flat headGSA: A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual California State Fire Marshal	Multi-Set II Drop-In cont'd		Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 18-8 and 316 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 9,480 lbs. (3/4″ diameter)	RM: Flanged body RL: Non-flanged body Use any bolt or threaded rod	GSA: A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII) Underwriters Laboratories Factory Mutual City of Los Angeles — #RR2748 California State Fire Marshal Caltrans
	Dynabolt cont'd	-	Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 304 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 8,900 lbs. (3/4″ diameter)	Flat head Hex nut Acorn nut Tie-Wire Round head Threshold flat head	GSA: A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual California State Fire Marshal

TW Red Head^{*} Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Anchors for Concrete Applications

continued from pages 50-51

ANCHOR TYPE	KEY FEATURES	SIZE RANGE (Inches)
Stud Anchors	 Bottom bearing Hammer-driven Ideal for jacking or leveling Easy installation 	Diameter: 1/4 – 3/4 Length: 1-3/4 – 6-1/4
Redi-Drive® High performance Hammer-Drive Anchors (see page 76)	 Simple installation Small drill size No torque required Through-fixture fastening 	Diameter: 1/4 Length: 3/4 – 3
Tapcon® Concrete Anchors with Advanced Threadform Technology™ Original (see page 80)	S(OTS (see page 86) XI (see page 88)	StormGuard (see page 90)
SAMMYS Hurricane Protection Anchor (see page 92)	 Original Tapcon 1/4" dia. anchor with Blue Climaseal™ Quick and easy secure shutter installations 	Diameter: 1/4 Length: 1-1/4 – 6
Hammer-Set [™] Nail-drive Anchors (see page 93)	 Easy installation Low profile head Through-fixture fastening 	Diameter: 3/16 & 1/4 Length: 7/8 – 2
E-Z Ancor Drywall Anchors For Drywall Applications Only (see page 94)	 Fast, no pre-drilling Easy to use, just use #2 phillips bit Removable 	Accepts #8 and #10 screws
Poly-Set [®] All-purpose plastic plug anchors (see page 95) For Concrete, Hollow and Drywall Applications	 Unique twisting action Resistant to moisture, chemicals and atmospheric conditions Available in pre-packaged kits 	Diameter: 3/16 – 1/4 Length: 1-1/4 – 1-7/16 3/16 " uses #6 – 8 screw 1/4 " uses #10 – 12 screw
Boa [™] Coil Expansion Anchors Replacement coil available for easy re-use (see page 96)	 Heavy-Duty, Reusable Fastening Easy installation Removable High shear strength 	Diameter: 1/2 – 3/4 Length: 3 – 6
Prima High Expansion Sleeve Anchors	 Lightweight Concrete, and Masonry Fastening Easy installation Removable fastening 	Diameter: 1/4 – 1/2 Length: 2-3/8 – 3-9/16

Selection Guide cont'd

	CORROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Stud cont'd	Zinc-plated carbon steel to ASTM B633, SC1, Type III	Ultimate Pullout Performance in 4000 psi Concrete up to 7,520 lbs.	Hex nut	GSA: A-A-55614 Type 2 (Formerly GSA: FF-S-325 Group VIII, Type 2) Factory Mutual Underwriters Laboratories California State Fire Marshal
Redi-Drive	Zinc-plated carbon steel	Ultimate Pullout Performance in 4000 psi Concrete up to 2,300 lbs.	Mushroom head Pipe version (1/4" & 3/8") Tie-Wire version Form-drive	FF-S-325 Group VI Factory Mutual (3/8″ Pipe-Drive)
Tapcon cont [*] d	 Patented Climaseal[®] coating Type 410 stainless steel 	Ultimate Pullout Performance in 4000 psi Concrete up to 2,380 lbs.	Hex head Phillips flat head	ICC Evaluation Service, Inc.— #ESR-1671 ICC Evaluation Service, Inc.— #ESR-2202 Miami-Dade County — # 07-0315.03 Florida Building Code
	The above is for the Original and 410 SS T For data on other Tapcon products see th Tapcon Maxi-Set on page 84, Tapcon SCO	apcon only. eir product pages as follows: IS on page 86, Tapcon XL on page :	88, and Tapcon StormGuard on	page 90.
SAMMYS Anchor cont'd	■ Blue Climaseal [™]	Ultimate Pullout Performance in 4000 psi Concrete at 3,100 lbs. (2-1/4″ Embedment)	Nail	Miami Dade County # 06-0222.07
Hammer- Set cont'd	Zinc alloy	Ultimate Pullout Performance in 4000 psi Concrete up to 793 lbs.	Mushroom head	GSA: A-A-1925A Type 1 (zinc mushroom) (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)
E-ZAncor cont'd	Zinc plated steel/ engineered plastic (accepts corrosion resistant screw of your choice)	Ultimate Pullout Performance in 5/8" Gypsum wallboard up to 75 lbs.	Accepts screw style of your choice	
Poly-Set cont'd	Polyethylene Anchor (accepts corrosion resistant screw of your choice)		Kit comes with phillips head screw (accepts screv style of your choice)	N
Boa Coil cont'd	Zinc plated carbon steel to ASTM B633, SC1, Type III	Ultimate Pullout Performance in 4000 psi Concrete up to 38,500 lbs. (3/4" diameter)	Finished bolt style	
Prima cont'd	 Sleeve S300 Pb NFA 35561 Bolt Grade 5 1035 carbon steel Cone S300 Pb NFA 35561 Zinc coating NFE 25009, passivation NFA 91472 	Ultimate Pullout Performance in 4,000 psi Concrete up to 8,500 lbs. (1/2" diameter)	Finished bolt style	

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-899-7890.

Trubolt® Wedge Anchors

Dependable, Heavy-Duty, Inspectable, Wedge Type Expansion Anchor

Trubolt[®] Wedge Anchors

😓 RED HEAD'

DESCRIPTION/SUGGESTED SPECIFICATIONS

Wedge Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Trubolt Wedge anchors feature a stainless steel expansion clip, threaded stud body, nut and washer. Anchor bodies are made of plated carbon steel, hot-dipped galvanized carbon steel, type 304 stainless steel or type 316 stainless steel as identified in the drawings or other notations.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, UL, FM, City of Los Angeles, California State Fire Marshal and Caltrans.

See Appendix B (pages 101-102) for performance values in accordance to 2006 IBC.

ADVANTAGES

- 2006 International Building Code (IBC) Compliant
- Versatile fully threaded design is standard on sizes up to 3/4" diameter and 10" length
- Anchor diameter equals hole diameter
- Standard carbon and stainless steel anchors
- 360° contact with concrete assures full expansion for reliable working loads
- Non bottom-bearing, may be used in hole depth exceeding anchor length
- Can be installed through the work fixture, eliminating hole spotting
- Inspectable torque values, indicating proper installation

Fully Threaded Advantage

Trubolt's fully threaded feature eliminates subsurface obstruction problems.

Fully threaded design accommodates various material thicknesses at the same embedment. One anchor length saves time and money.

Trubolt Anchors

APPLICATIONS

Anchoring machinery and conveyors is a common wedge anchor application. The Trubolt is fully threaded to allow a large range of embedment and fixture thickness.

Seismic Wedge Anchor cracked concrete approval controls tension & shear simultaneously.

APPROVALS/LISTINGS Trubolt[®]

Wedge Anchors

ICC Evaluation Service, Inc. # ESR-2251

- Category 1 performance rating
- 2006 IBC compliant
- Meets ACI 318 ductility requirements
- Tested in accordance with ACI 355.2 and ICC-ES AC193
- For use in seismic zones A & B
- 1/4", 3/8" & 1/2" diameter anchors listed in ESR-2251

Underwriters Laboratories

Factory Mutual

City of Los Angeles - #RR2748

California State Fire Marshall

Caltrans

Meets or exceeds U.S. Government G.S.A. Specification A-A-1923A Type 4 (formerly GSA: FF-S-325 Group II, Type 4, Class 1)

LENGTH INDICATION CODE*

CODE	LENGT	H OF ANCHOR	CODE	LENG	TH OF ANCHOR
A	1-1/2 < 2	(38.1 < 50.8)	K	6-1/2 < 7	(165.1 < 177.8)
В	2 < 2-1/2	(50.8 < 63.5)	L	7 < 7-1/2	(177.8 < 190.5)
C	2-1/2 < 3	(63.5 < 76.2)	М	7-1/2 < 8	(190.5 < 203.2)
D	3 < 3-1/2	(76.2 < 88.9)	N	8 < 8-1/2	(203.2 < 215.9)
E	3-1/2 < 4	(88.9 < 101.6)	0	8-1/2 < 9	(215.9 < 228.6)
F	4 < 4-1/2	(101.6 < 114.3)	Р	9 < 9-1/2	(228.6 < 241.3)
G	4-1/2 < 5	(114.3 < 127.0)	Q	9-1/2 < 10	(241.3 < 254.0)
Н	5 < 5-1/2	(127.0 < 139.7)	R	10 < 11	(254.0 < 279.4)
I	5-1/2 < 6	(139.7 < 152.4)	S	11 < 12	(279.4 < 304.8)
J	6 < 6-1/2	(152.4 < 165.1)	T	12 < 13	(304.8 < 330.2)

*Located on top of anchor for easy inspection.

FEATURES

TRUBOLT° WEDGE ANCHOR

TW Red Head^{*} Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at **www.itwredhead.com** **Length ID Head Stamp**—provides for embedment inspection after installation

Fully Threaded Design

Cold-Formed—manufacturing process adds strength

Stainless steel split expansion ring

Anchor Body—available in zinc-plated steel, hot-dipped galvanized steel, 304 stainless steel and 316 stainless steel

INSTALLATION STEPS

- **1.** Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.
 - Clean hole or continue drilling additional depth to accommodate drill fines.
- Assemble washer and nut, leaving nut flush with end of anchor to protect threads. Drive anchor through material to be fastened until washer is flush to surface of material.
- Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.

SELECTION CHARTS

Trubolt Carbon Steel with Zinc Plating

Typical Applications— Structural Columns, Machinery, Equipment, etc. Environment—Interior (non-corrosive) Level of Corrosion—Low

DADT

NUMBER	LENGTH In. (mm)	& DRILL BIT SIZE (THREADS) PER INCH	LENGTH In. (mm)	OF MATERIAL TO BE FASTENED In. (mm)	PER BOX Ibs.	PER MASTER CARTON Ibs.
WS-1416	3/4 (19.1)	1/4″ - 20	1-3/4 (44.5)	3/8 (9.5)	100/ 3.1	1000/ 32
WS-1422	1-1/4 (31.8)		2-1/4 (57.2)	7/8 (22.2)	100/ 3.6	1000/ 37
WS-1432	2-1/4 (57.2)		3-1/4 (82.6)	1-7/8 (47.6)	100/ 4.7	800/ 39
WS-3822	1-1/8 (28.6)	3/8″ - 16	2-1/4 (57.2)	3/8 (9.5)	50/ 4.1	500/ 41
WS-3826	1-5/8 (41.3)		2-3/4 (69.9)	7/8 (22.2)	50/ 4.7	400/ 39
WS-3830	1-3/4 (44.5)		3 (76.2)	1-1/8 (28.6)	50/ 5.0	400/41
WS-3836	2-1/2 (63.5)		3-3/4 (95.3)	1-7/8 (47.6)	50/ 5.9	300/36
WS-3850	3-3/4 (95.2)		5 (127.0)	3-1/8 (79.4)	50/ 7.4	250/38
WS-3870	3-7/8 (98.4)		7 (177.8)	5-1/8 (130.2)	50/10.4	250/53
WS-1226	1-1/4 (31.8)	1/2″ - 13	2-3/4 (69.9)	1/8 (3.2)	25/ 4.6	200/ 38
WS-1236	2-1/4 (57.2)		3-3/4 (95.3)	1 (25.4)	25/ 5.7	150/35
WS-1242	2-3/4 (69.9)		4-1/4 (108.0)	1-1/2 (38.1)	25/ 6.2	150/38
WS-1244	3 (76.2)		4-1/2 (114.3)	1-3/4 (44.5)	25/ 6.5	150/39
WS-1254	4 (101.6)		5-1/2 (139.7)	2-3/4 (69.9)	25/ 7.7	150/47
WS-1270	5-1/2 (139.7)		7 (177.8)	4-1/4 (108.0)	25/ 9.3	150/57
WS-5834	1-3/4 (44.5)	5/8" - 11	3-1/2 (88.9)	1/8 (3.2)	10/ 3.6	100/ 37
WS-5842	2-1/2 (63.5)		4-1/4 (108.0)	7/8 (22.2)	10/ 4.1	100/ 42
WS-5850	3-1/4 (82.6)		5 (127.0)	1-5/8 (41.3)	10/ 4.7	100/48
WS-5860	4-1/4 (107.9)		6 (152.4)	2-5/8 (66.7)	10/ 5.4	50/28
WS-5870	5-1/4 (133.4)		7 (177.8)	3-5/8 (92.1)	10/ 6.2	30/19
WS-5884	5-3/4 (146.0)		8-1/2 (215.9)	5-1/8 (130.2)	10/ 8.0	30/25
WS-58100	5-3/4 (146.0)		10 (254.0)	6-5/8 (168.3)	10/ 9.4	30/29
WS-3442	2-3/8 (60.3)	3/4" - 10	4-1/4 (108.0)	1/4 (31.8)	10/ 6.8	60/42
WS-3446	2-7/8 (73.0)		4-3/4 (120.7)	3/4 (19.1)	10/ 7.4	60/45
WS-3454	3-5/8 (92.1)		5-1/2 (139.7)	1-1/2 (38.1)	10/ 8.1	50/41
WS-3462	4-3/8 (111.1)		6-1/4 (158.8)	2-1/4 (57.2)	10/ 9.1	30/28
WS-3470	5-1/8 (130.2)		7 (177.8)	3 (76.2)	10/ 9.7	30/ 30
WS-3484	5-3/4 (146.0)		8-1/2 (215.9)	4-1/2 (114.3)	10/12.3	30/38
WS-34100	5-3/4 (146.0)		10 (254.0)	6 (152.4)	10/14.0	30/43
WS-34120	1-3/4 (44.5)		12 (304.8)	8 (203.2)	10/ 16.6	30/51
WS-7860	2-1/2 (63.5)	7/8" - 9	6 (152.4)	1-3/8 (34.9)	5/ 6.3	25/32
WS-7880	2-1/2 (63.5)		8 (203.2)	3-3/8 (85.7)	5/ 8.1	15/25
WS-78100	2-1/2 (63.5)		10 (254.0)	5-3/8 (136.5)	5/ 9.8	15/ 30
WS-10060	2-1/2 (63.5)	1″ - 8	6 (152.4)	1/2 (12.7)	5/ 8.3	25/43
WS-10090	2-1/2 (63.5)		9 (228.6)	3-1/2 (88.9)	5/ 11.6	15/36
WS-100120	2-1/2 (63.5)		12 (304.8)	6-1/2 (165.1)	5/ 15.0	15/46
TIE WIRE						
TW-1400	N/A	1/4″	2-1/8 (54.0)	9/32-hole (7.1)	100/ 3.6	1000/ 36
TW-1400 K	N/A		2-1/8 (54.0)	9/32-hole (7.1)	BULK	1500/73

Meets ASTM B633 SC1, Type III specifications for electroplating of 5um = .0002" thickness.

OVERALL

MAX THICKNESS

OTV/WT

OTV/WT

This material is well suited for non-corrosive environments.

SELECTION CHARTS

Trubolt Carbon Steel with Hot-Dipped Galvanizing

Meets ASTM A153 Class specifications for hot-dipped galvanizing > 45um = .002". It is highly recommended for damp, humid environments near coastal regions. Hot-dipped galvanized Trubolts have a coating thickness of zinc that is almost 10 times as thick as electroplating. This creates greater corrosion resistance at a minimal cost.

Typical Applications — Railings, Signage, Awnings, etc.	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
Environment—Rural/ Suburban (exterior environ- ment— essentially unpolluted areas)	WS-1226G WS-1242G WS-1254G WS-1270G	1-1/4 (31.8) 2-3/4 (69.9) 4 (101.6) 5-1/2 (139.7)	1/2″ - 13	2-3/4 (69.9) 4-1/4 (108.0) 5-1/2 (139.7) 7 (177.8)	1/8 (3.2) 1-1/2 (38.1) 2-3/4 (69.9) 4-1/4 (108.0)	25/ 4.8 25/ 6.7 25/ 8.0 25/ 9.7	200/ 39 150/ 41 150/ 49 150/ 59
Level of Corrosion—	WS-5834G WS-5860G	1-3/4 (44.5) 4-1/4 (107.9)	5/8″ - 11	3-1/2 (88.9) 6 (152.4)	1/8 (3.2) 2-5/8 (66.7)	10/ 3.7 10/ 5.6	100/ 38 50/ 29
	WS-3446G WS-3454G WS-3484G	2-7/8 (73.0) 3-5/8 (92.1) 5-3/4 (146.0)	3/4″ - 10	4-3/4 (120.7) 5-1/2 (139.7) 8-1/2 (215.9)	3/4 (19.1) 1-1/2 (38.1) 4-1/2 (114.3)	10/ 7.5 10/ 8.4 10/ 12.5	60/ 46 50/ 42 30/ 38

SELECTION CHARTS

Trubolt Type 304 **Stainless Steel**

Serves many applications well. It withstands rusting in architectural and food processing environments and resists organic chemicals, dye stuffs and many inorganic chemicals.

Typical Applications— Cladding, Stadium Seating, etc. Environment—Urban	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
(slight to moderate degree of pollution)	WW-1416 WW-1422 WW-1432	3/4 (19.1) 1-1/4 (31.8) 2-1/4 (57.2)	1/4″ - 20	1-3/4 (44.5) 2-1/4 (57.2) 3-1/4 (82.6)	3/8 (9.5) 7/8 (22.2) 1-7/8 (47.6)	100/ 3.2 100/ 3.7 100/ 4.8	1000/ 32 1000/ 37 800/ 39
Level of Corrosion—medium	WW-3822 WW-3826 WW-3830 WW-3836 WW-3850	1-1/8 (28.6) 1-5/8 (41.3) 1-3/4 (44.5) 2-1/2 (63.5) 3-3/4 (95.3)	3/8″ - 16	2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2) 3-3/4 (95.3) 5 (127.0)	3/8 (9.5) 7/8 (22.2) 1-1/8 (28.6) 1-7/8 (47.6) 3-1/8 (79.4)	50/ 4.1 50/ 4.8 50/ 5.1 50/ 6.0 50/ 7.5	500/ 41 400/ 39 400/ 42 300/ 37 250/ 39
	WW-1226 WW-1236 WW-1242 WW-1254 WW-1270	1-1/4 (31.8) 2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2) 3-1/2 (88.9)	1/2″ - 13	2-3/4 (69.9) 3-3/4 (95.3) 4-1/4 (108.0) 5-1/2 (139.7) 7 (177.8)	1/8 (3.2) 1 (25.4) 1-1/2 (38.1) 2-3/4 (69.9) 4-1/4 (108.0)	25/ 4.7 25/ 5.8 25/ 6.3 25/ 7.7 25/ 9.4	200/ 38 150/ 36 150/ 39 150/ 47 150/ 57
	WW-5834 WW-5842 WW-5850 WW-5860 WW-5870 WW-5884	1-3/4 (44.5) 2-1/2 (63.5) 3-1/4 (82.6) 4-1/4 (107.9) 3-1/2 (88.9) 3-1/2 (88.9)	5/8″ - 11	3-1/2 (88.9) 4-1/4 (108.0) 5 (127.0) 6 (152.4) 7 (177.8) 8-1/2 (215.9)	1/8 (3.2) 7/8 (22.2) 1-5/8 (41.3) 2-5/8 (66.7) 3-5/8 (92.1) 5-1/8 (130.2)	10/ 3.6 10/ 4.2 10/ 4.8 10/ 5.5 10/ 6.2 10/ 8.0	100/ 37 100/ 43 100/ 49 50/ 28 30/ 20 30/ 25
	WW-3442 WW-3446 WW-3454 WW-3470 WW-3484 WW-34100	2-3/8 (60.3) 2-7/8 (73.0) 3-5/8 (92.1) 3-1/2 (88.9) 3-1/2 (88.9) 1-3/4 (44.5)	3/4" - 10	4-1/4 (108.0) 4-3/4 (120.7) 5-1/2 (139.7) 7 (177.8) 8-1/2 (215.9) 10 (254.0)	$\begin{array}{cccc} 1/4 & (1.6) \\ 3/4 & (19.1) \\ 1-1/2 & (38.1) \\ 3 & (76.2) \\ 4-1/2 & (114.3) \\ 6 & (152.4) \end{array}$	10/ 6.8 10/ 6.7 10/ 7.5 10/ 9.2 10/ 12.3 10/ 13.5	60/ 42 60/ 41 50/ 38 30/ 28 30/ 38 30/ 42
	WW-10060 WW-10090	2-1/2 (63.5) 2-1/2 (63.5)	1″ - 8	6 (152.4) 9 (228.6)	1/2 (12.7) 3-1/2 (88.9)	5/ 8.3 5/ 11.4	25/43 15/35

* For continuous extreme low temperature applications, use stainless steel.

SELECTION CHARTS

	Typical Applications – Pumps, Diffusers, Gates, Weir Plates, etc.
	Environment —Indust (moderate to heavy atmospheric pollution)
A CONTRACTOR	Level of Corrosion—

Trubolt Type 316 Stainless Steel

> eir Plates, etc. vironment—Indust noderate to heavy nospheric pollution) vel of Corrosion— Medium to High

Typical Applications-Tunnels, Dams, Tiles, Lighting Fixtures, etc. Environment— Marine (heavy atmosph pollution) Level of CorrosionContains more nickel and chromium than Type 304, and 2%-3% molybdenum, which gives it better corrosion resistance. It is especially more effective in chloride environments that tend to cause pitting.

,	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
rial	SWW-1422 SWW-1432	1-1/4 (31.8) 2-1/4 (57.2)	1/4″ - 20	2-1/4 (57.2) 3-1/4 (82.6)	7/8 (22.2) 1-1/8 (28.6)	100/ 3.7 100/ 4.8	1000/ 37 1000/ 39
	SWW-3822 SWW-3826 SWW-3830 SWW-3836 SWW-3850	1-1/8 (28.6) 1-5/8 (41.3) 1-3/4 (44.5) 2-1/2 (63.5) 3-3/4 (95.3)	3/8" - 16	2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2) 3-3/4 (95.5) 5 (127.0)	3/8 (9.5) 7/8 (22.2) 1-1/8 (28.6) 1-7/8 (47.6) 3-1/8 (79.4)	50/ 4.1 50/ 4.8 50/ 5.2 50/ 6.0 50/ 7.5	500/ 41 400/ 39 400/ 42 300/ 37 250/ 39
_	SWW-1226 SWW-1236 SWW-1242 SWW-1254	1-1/4 (31.8) 2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2)	1/2″ - 13	2-3/4 (69.9) 3-3/4 (95.3) 4-1/4 (108.0) 5-1/2 (139.7)	1/8 (3.2) 1 (25.4) 1-1/2 (38.1) 2-3/4 (69.9)	25/ 4.7 25/ 5.8 25/ 6.5 25/ 7.8	200/ 39 150/ 36 150/ 40 150/ 48
eric	SWW-5842 SWW-5850 SWW-5870	2-1/2 (63.5) 3-1/4 (82.6) 3-1/2 (88.9)	5/8" - 11	4-1/4 (108.0) 5 (127.0) 7 (177.8)	7/8 (22.2) 1-5/8 (41.3) 3-5/8 (92.1)	10/ 4.2 10/ 4.8 10/ 6.7	100/ 43 100/ 49 30/ 21
High	SWW-3446 SWW-3454	2-1/4 (57.2) 3 (76.2)	3/4" - 10	4-3/4 (120.7) 5-1/2 (139.7)	3/4 (19.1) 1-1/2 (38.1)	10/ 6.8 10/ 8.1	60/ 41 50/ 41

* For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLE

Trubolt

Wedge Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete*

				(2000 DCI (12 0 HD)		#- 4000 PCI (37.6 MP-)									
ANCHOR	INSTALLATION	EMBEDMENT	ANCHOR	fc	= 2000 I	21 (13.8 N	Pa)	TC = 4000 PSI (27.0 MPa)			a)	fc	= 6000 P	SI (41.4 M	ra)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DEPTH In. (mm)	TYPE	TENSI Lbs. (TENSION SHEAR		TENSION SHEAR Lbs. (kN) Lbs. (kN)			EAR (kN)	TENSION Lbs. (kN)		SHEAR Lbs. (kN)		
,		,			,		()		()		()		()		,
1/4 (6.4)	4 (5.4)	1-1/8 (28.6) 1-15/16 (49.2) 2-1/8 (54.0)		1,180 2,100 2,260	(5.2) (9.3) (10.1)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,780 3,300 3,300	(7.9) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,900 3,300 3,300	(8.5) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)
3/8 (9.5)	25 (33.9)	1-1/2 (38.1) 3 (76.2) 4 (101.6)		1,680 3,480 4,800	(7.5) (15.5) (21.4)	2,320 4,000 4,000	(10.3) (17.8) (17.8)	2,240 5,940 5,940	(10.0) (26.4) (26.4)	2,620 4,140 4,140	(11.7) (18.4) (18.4)	2,840 6,120 6,120	(12.6) (27.2) (27.2)	3,160 4,500 4,500	(14.1) (20.0) (20.0)
1/2 (12.7)	55 (74.6)	2-1/4 (57.2) 4-1/8 (104.8) 6 (152.4)	WS-Carbon or WS-G	4,660 4,660 5,340	(20.7) (20.7) (23.8)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	5,100 9,640 9,640	(22.7) (42.9) (42.9)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	7,040 10,820 10,820	(31.3) (48.1) (48.1)	7,040 8,160 8,160	(31.3) (36.3) (36.3)
5/8 (15.9)	90 (122.0)	2-3/4 (69.9) 5-1/8 (130.2) 7-1/2 (190.5)	Hot-Dipped Galvanized or WWW 304 S S	6,580 6,580 7,060	(29.3) (29.3) (31.4)	7,120 9,600 9,600	(31.7) (42.7) (42.7)	7,180 14,920 15,020	(31.9) (66.4) (66.8)	7,120 11,900 11,900	(31.7) (52.9) (52.9)	9,720 16,380 16,380	(43.2) (72.9) (72.9)	9,616 12,520 12,520	(42.8 (55.7) (55.7)
3/4 (19.1)	110 (149.2)	3-1/4 (82.6) 6-5/8 (168.3) 10 (254.0)	or SWW-316 S.S.	7,120 10,980 10,980	(31.7) (48.8) (48.8)	10,120 20,320 20,320	(45.0) (90.4) (90.4)	10,840 17,700 17,880	(48.2) (78.7) (79.5)	13,720 23,740 23,740	(61.0) (105.6) (105.6)	13,300 20,260 23,580	(59.2) (90.1) (104.9)	15,980 23,740 23,740	(71.1) (105.6) (105.6)
7/8 (22.2)	250 (339.0)	3-3/4 (95.3) 6-1/4 (158.8) 8 (203.2)		9,520 14,660 14,660	(42.3) (65.2) (65.2)	13,160 20,880 20,880	(58.5) (92.9) (92.9)	14,740 20,940 20,940	(65.6) (93.1) (93.1)	16,580 28,800 28,800	(73.8) (128.1) (128.1)	17,420 24,360 24,360	(77.5) (108.4) (108.4)	19,160 28,800 28,800	(85.2) (128.1) (128.1)
1 (25.4)	300 (406.7)	4-1/2 (114.3) 7-3/8 (187.3) 9-1/2 (241.3)		13,940 14,600 18,700	(62.0) (64.9) (83.2)	16,080 28,680 28,680	(71.5) (127.6) (127.6)	20,180 23,980 26,540	(89.8) (106.7) (118.1)	22,820 37,940 37,940	(101.5) (168.8) (168.8)	21,180 33,260 33,260	(94.2) (148.0) (148.0)	24,480 38,080 38,080	(108.9) (169.4) (169.4)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For Tie-Wire Wedge Anchor, TW-1400, use tension data from 1/4" diameter with 1-1/8" embedment.

* For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLE

TruboltUltimate Tension and Shear Values (Lbs/kN) inWedge AnchorsLightweight Concrete*

ANCHOR DIA. In. (mm)	INSTALLATION TORQUE Ft. Lbs. (Nm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	LIGHTWEIGH f'c = 3000 PS	T CONCRETE I (20.7 MPa)	LOWER FLUTE OF S LIGHTWEIGHT (f'c = 3000 PS	STEEL DECK WITH CONCRETE FILL I (20.7 MPa)
				TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/8 (9.5)	25 (33.9)	1-1/2 (38.1) 3 (76.2)	WS-Carbon or	1,175 (5.2) 2,825 (12.6)	1,480 (6.6) 2,440 (10.9)	1,900 (8.5) 2,840 (12.6)	3,160 (14.1) 4,000 (17.8)
1/2 (12.7)	55 (74.6)	2-1/4 (57.2) 3 (76.2) 4 (101.6)	WS-G Hot-Dipped Galvanized	2,925 (13.0) 3,470 (15.4) 4,290 (19.1)	2,855 (12.7) 3,450 (15.3) 3,450 (15.3)	3,400 (15.1) 4,480 (19.9) 4,800 (21.4)	5,380 (23.9) 6,620 (29.4) 6,440 (28.6)
5/8 (15.9)	90 (122.0)	3 (76.2) 5 (127.0)	or WW-304 S.S.	4,375 (19.5) 6,350 (28.2)	4,360 (19.4) 6,335 (28.2)	4,720 (21.0) 6,580 (29.3)	5,500 (24.5) 9,140 (40.7)
3/4 (19.1)	110 (149.2)	3-1/4 (82.6) 5-1/4 (133.4)	SWW-316 S.S.	5,390 (24.0) 7,295 (32.5)	7,150 (31.8) 10,750 (47.8)	5,840 (26.0) 7,040 (31.3)	8,880 (39.5) N/A

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

PERFORMANCE TABLE

Trubolt Recommended Edge and Spacing Distance Requirements for Shear Loads*

		VVE	uye /	1///////										
ANCHOR EMBEDMENT DIA. DEPTH In. (mm) In. (mm)		MENT 'TH nm)	ANCHOR TYPE	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		MIN. EDGE DISTANCE AT WHICH THE LOAD FACTOR APPLIED = .60 In. (mm)		MIN. EDGE AT WH LOAD F APPLIE In. (1	MIN. EDGE DISTANCE AT WHICH THE LOAD FACTOR APPLIED = .20 In. (mm)		SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		MIN. ALLOWABLE SPACING BETWEEN ANCHORS In. (mm) LOAD FACTOR APPLIED = .40	
1/4	(6.4)	1-1/8 1-15/16	(28.6) (49.2)		2 1-15/16	(50.8) (49.2)	1-5/16 1	(33.3) (25.4)	N// N//	A A	3-15/16 3-7/8	(100.0) (98.4)	2 1-15/16	(50.8) (49.2)
3/8	(9.5)	1-1/2 3	(38.1) (76.2)	WS-Carbon	2-5/8 3-3/4	(66.7) (95.3)	1-3/4 3	(44.5) (76.2)	N// 1-1/2	A (38.1)	5-1/4 6	(133.4) (152.4)	2-5/8 3	(66.7) (76.2)
1/2	(12.7)	2-1/4 4-1/8	(57.2) (104.8)	or WS-G	3-15/16 5-3/16	(100.0) (131.8)	2-9/16 3-1/8	(65.1) (79.4)	N// 1-9/16	A (39.7)	7-7/8 6-3/16	(200.0) (157.2)	3-15/16 3-1/8	(100.0) (79.4)
5/8	(15.9)	2-3/4 5-1/8	(69.9) (130.2)	Hot-Dipped Galvanized	4-13/16 6-7/16	(122.2) (163.5)	3-1/8 3-7/8	(79.4) (98.4)	N// 1-15/16	A (49.2)	9-5/8 7-11/16	(244.5) (195.3)	4-13/16 3-7/8	(122.2) (98.4)
3/4	(19.1)	3-1/4 6-5/8	(82.6) (168.3)	or WW-304 S.S.	5-11/16 6-5/16	(144.5) (160.3)	3-3/4 5	(95.3) (127.0)	N// 2-1/2	A (63.5)	11-3/8 9-15/16	(288.9) (252.4)	5-11/16 5	(144.5) (127.0)
7/8	(22.2)	3-3/4 6-1/4	(95.3) (158.8)	or SWW-316 S.S.	6-9/16 8-1/2	(166.7) (215.9)	4-5/16 6-1/4	(109.5) (158.8)	N// 3-1/8	A (79.4)	13-1/8 12-1/2	(333.4) (317.5)	6-9/16 6-1/4	(166.7) (158.8)
1	(25.4)	4-1/4 7-3/8	(108.0) (187.3)		7-7/8 10-1/16	(200.0) (255.6)	5-1/8 7-3/8	(130.2) (187.3)	N// 3-11/16	A (93.7)	15-3/4 14-3/4	(400.1) (374.7)	7-7/8 7-3/8	(200.0) (187.3)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

Trubolt Recommended Edge and Spacing Distance Requirements Wedge Anchors for Tension Loads*

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. ALLOWABLE EDGE DISTANCE AT WHICH THE LOAD FACTOR APPLIED = .65 In. (mm)	SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. ALLOWABLE SPACING AT WHICH THE LOAD FACTOR APPLIED = .70 In. (mm)
1/4 (6.4)	1-1/8 (28.6) 1-15/16 (49.2) 2-1/8 (54.0)		2 (50.8) 1-15/16 (49.2) 1-5/8 (41.3)	1 (25.4) 1 (25.4) 13/16 (20.6)	3-15/16 (100.0) 3-7/8 (98.4) 3-3/16 (81.0)	2 (50.8) 1-15/16 (49.2) 1-5/8 (41.3)
3/8 (9.5)	1-1/2 (38.1) 3 (76.2) 4 (101.6)		2-5/8 (66.7) 3 (76.2) 3 (76.2)	1-5/16 (33.3) 1-1/2 (38.1) 1-1/2 (38.1)	5-1/4 (133.4) 6 (152.4) 6 (152.4)	2-5/8 (66.7) 3 (76.2) 3 (76.2)
1/2 (12.7)	2-1/4 (57.2) 4-1/8 (104.8) 6 (152.4)	WS-Carbon or WS-G	3-15/16 (100.0) 3-1/8 (79.4) 4-1/2 (114.3)	2 (50.8) 1-9/16 (39.7) 2-1/4 (57.2)	7-7/8 (200.0) 6-3/16 (157.2) 9 (228.6)	3-15/16 (100.0) 3-1/8 (79.4) 4-1/2 (114.3)
5/8 (15.9)	2-3/4 (69.9) 5-1/8 (130.2) 7-1/2 (190.5)	Galvanized or	4-13/16 (122.2) 3-7/8 (98.4) 5-5/8 (142.9)	2-7/16 (61.9) 1-15/16 (49.2) 2-13/16 (71.4)	9-5/8 (244.5) 7-1/16 (195.3) 11-1/4 (285.8)	4-13/16 (122.2) 3-7/8 (98.4) 5-5/8 (142.9)
3/4 (19.1)	3-1/4 (82.6) 6-5/8 (168.3) 10 (254.0)	WW-304 S.S. or SWW-316 S.S.	5-11/16 (144.5) 5 (127.0) 7-1/2 (190.5)	2-7/8 (73.0) 2-1/2 (63.5) 3-3/4 (95.3)	11-3/8 (288.9) 9-15/16 (252.4) 15 (381.0)	5-11/16 (144.5) 5 (127.0) 7-1/2 (190.5)
7/8 (22.2)	3-3/4 (95.3) 6-1/4 (158.8) 8 (203.2)		6-9/16 (166.7) 6-1/4 (158.8) 6 (152.4)	3-5/16 (84.1) 3-1/8 (79.4) 3 (76.2)	13-1/8 (333.4) 12-1/2 (317.5) 12 (304.8)	6-9/16 (166.7) 6-1/4 (158.8) 6 (152.4)
1 (25.4)	4-1/2 (114.3) 7-3/8 (187.3) 9-1/2 (241.3)		7-7/8 (200.0) 7-3/8 (187.3) 7-1/8 (181.0)	3-15/16 (100.0) 3-11/16 (93.7) 3-9/16 (90.5)	15-3/4 (400.1) 14-3/4 (374.7) 14-1/4 (362.0)	7-7/8 (200.0) 7-3/8 (187.3) 7-1/8 (181.0)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

Combined Tension and Shear Loading—for Trubolt Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Ps = Applied tension load Vs = Applied shear load Pt = Allowable tension load Vt = Allowable shear load

Trubolt®+ Seismic Wedge Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS Seismic Wedge Type Anchors—

Trubolt+ Wedge anchors consist of a high-strength threaded stud body, expansion clip, nut and washer. Anchor bodies are made of plated carbon steel. The expansion clip consists of a split cylindrical ring with undercutting grooves.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, and City of Los Angeles.

See Appendix C (pages 103-104) for performance values in accordance to 2006 and 2009 IBC.

INSTALLATION STEPS

 Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.

3. Assemble washer and nut, leaving nut flush with end of anchor to protect threads. Drive anchor through material to be fastened until washer is flush to surface of material.

 Clean hole or continue drilling additional depth to accommodate drill fines.

4. Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.

APPROVALS/LISTINGS

- ICC Evaluation Service, Inc. # ESR-2427
- -Category 1 performance rating
- -2006 IBC and 2009 IBC compliant
- -Meets ACI 318 ductility requirements
- -Tested in accordance with ACI 355.2 and ICC-ES AC193
- -Listed for use in seismic zones A, B, C, D, E, & F
- -3/8", 1/2", 5/8" and 3/4" diameter anchors listed in ESR-2427
- City of Los Angeles #RR25867

LENGTH INDICATION CODE*

CODE	LENGTH OF ANCHOR	CODE	LENGTH OF ANCHOR
A	1-1/2 < 2 (38.1 < 50.8)	K	6-1/2 < 7 (165.1 < 177.8)
В	2 < 2-1/2 (50.8 < 63.5)	L	7 < 7-1/2 (177.8 < 190.5)
(2-1/2 < 3 (63.5 < 76.2)	М	7-1/2 < 8 (190.5 < 203.2)
D	3 < 3-1/2 (76.2 < 88.9)	Ν	8 < 8-1/2 (203.2 < 215.9)
E	3-1/2 < 4 (88.9 < 101.6)	0	8-1/2 < 9 (215.9 < 228.6)
F	4 < 4-1/2 (101.6 < 114.3)	Р	9 < 9-1/2 (228.6 < 241.3)
G	4-1/2 < 5 (114.3 < 127.0)	Q	9-1/2 < 10 (241.3 < 254.0)
Н	5 < 5-1/2 (127.0 < 139.7)	R	10 < 11 (254.0 < 279.4)
	5-1/2 < 6 (139.7 < 152.4)	S	11 < 12 (279.4 < 304.8)
J	6 < 6-1/2 (152.4 < 165.1)	T	12 < 13 (304.8 < 330.2)

*Located on top of anchor for easy inspection.

60

🔩 RED HEAD

SELECTION CHART

	Tru Seismic	bolt [®] + Wedge Anchors	Meets ASTM B633 S of 5um = .0002" thi	C1, Type III specifica ickness. This coating	tions for ele is well suite	ctroplating ed for non-
Carbon S	Steel with Zi	nc Plating	corrosive environm	ents.		
PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
CWS-3830	1-5/8 (41.3)	3/8″ - 16	3 (76.2)	5/8 (15.9)	50/ 5.3	400/42
CWS-3836	2-3/8 (60.3)	3/8″ - 16	3-3/4 (95.3)	1-3/8 (34.9)	50/ 5.9	300/ 35
CWS-3850	3-5/8 (92.1)	3/8″ - 16	5 (127.0)	2-5/8 (66.7)	50/ 7.3	250/37
CWS-1236	2-1/8 (54.0)	1/2″ - 13	3-3/4 (95.3)	3/4 (19.1)	25/ 5.7	150/34
CWS-1244	2-7/8 (73.0)	1/2″ - 13	4-1/2 (114.3)	1-1/2 (38.1)	25/ 7.0	150/40
CWS-1254	3-7/8 (98.4)	1/2″ - 13	5-1/2 (139.7)	2-1/2 (63.5)	25/ 8.0	150/49
CWS-1270	5-3/8 (136.5)	1/2″ - 13	7 (177.8)	4 (101.6)	25/ 9.2	150/55
CWS-5850	3-3/16 (81.0)	5/8″ - 11	5 (127.0)	1-1/8 (28.6)	10/ 4.7	100/48
CWS-5860	4-3/16 (106.4)	5/8″ - 11	6 (152.4)	2-1/8 (54.0)	10/ 5.4	50/28
CWS-5870	5-3/16 (131.8)	5/8″ - 11	7 (177.8)	3-1/8 (79.4)	10/ 6.2	30/19
CWS-5884	5-3/4 (146.0)	5/8″ - 11	8-1/2 (215.9)	4-5/8 (117.5)	10/ 8.0	30/25
CWS-3454	3-5/8 (92.1)	3/4" - 10	5-1/2 (139.7)	1-1/2 (38.1)	50/ 7.6	30/38
CWS-3462	4-3/8 (111.1)	3/4" - 10	6-1/4 (158.8)	2-1/4 (57.2)	10/ 8.5	30/26
CWS-3470	5-1/8 (130.2)	3/4" - 10	7 (177.8)	3 (76.2)	10/ 9.0	30/27
CWS-3484	5-3/4 (146.0)	3/4" - 10	8-1/2 (215.9)	4-1/2 (114.3)	10/10.5	30/32
CWS-34100	5-3/4 (146.0)	3/4" - 10	10 (254.0)	6 (152.4)	10/11.9	30/36

Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

OVERHEAD Trubolt®+ Seismic Wedge Anchors

2009 IBC Compliant

DESCRIPTION/SUGGESTED SPECIFICATIONS Seismic Wedge Type Anchors—

OVERHEAD Trubolt+ Wedge anchors consist of a high-strength threaded stud body, expansion clip, coupling nut and washer. Anchor bodies are made of plated carbon steel. The expansion clip consists of a split cylindrical ring with undercutting grooves.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, and City of Los Angeles.

See Appendix C (pages 103-104) for performance values in accordance to 2006 and 2009 IBC.

ADVANTAGES

- 2006 and 2009 International Building Code (IBC) Compliant
- Approved for Cracked Concrete/Seismic Applications in Concrete and Metal Deck
- Fast Installation Drive Anchor Assembly and Torque Coupling Nut

APPLICATIONS

- Metal Deck 3/8" Threaded Rod Applications
- Pipes/Plumbing

- Overhead Anchor Assembly Includes: Anchor, Coupling Nut and Washer — NO Additional Components Required
- High Performance Achieved Using Shallow Embedment
- ICC-ES ESR-2427

Heavy Electrical Lighting & Fixtures

SELECTION CHART OVERHI Trubo Seismic Wedge Carbon Steel with Zinc Ple

Carbor	n Steel with Z	inc Platin	g corrosive e	environments.			
PART NUMBER	ANCHOR DIAMETER / LENGTH	DRILL BIT SIZE In. (mm)	EMBEDMENT DEPTH In. (mm)	COUPLING NUT	SETTING TORQUE*	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER Ibs.
CWS-38N	3/8″ - 16 Thread 2-1/2″ Length	3/8 (9.5)	2 (50.8)	3/8" - 16 Thread	30 ft-lbs. 1-3/4" Length	40/7.6	320 / 45.4

* Setting torque only applies at the time of installation.

TORQUE

DRIVE

Large Diameter Tapcon (LDT) Anchors

Finished head, **Removable Anchor**

Sawtooth' 3/8" and 1/2" are available with *Envire* coating

Uses standard drill bitsno special drill bits to purchase or lose!

DESCRIPTION/SUGGESTED SPECIFICATIONS

Self-threading Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE

The LDT anchor is a high performance anchor that cuts its own threads into concrete.

Anchor bodies are made of hardened carbon steel and zinc plated, Grade 5.

The anchors shall have a finished hex washer head with anti-rotation serrations to prevent anchor back-out. The head of the anchor is stamped with a length identification code for easy inspection.

The anchor shall be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

ADVANTAGES

SAVE TIME

EASILY INSTALLED

- Installs in less than half the time of wedge anchors or adhesive anchors
- Simply drill a pilot hole and drive the LDT anchor by hand or impact

EASILY REMOVED

No torching or grinding required to remove anchors

SAVE MONEY

LOWER DRILL BIT COSTS

- Use standard ANSI bits instead of proprietary bits
- Single piece design, no nut and washer to assemble

USE STANDARD ANSI BITS

- No special proprietary bits to purchase or lose
- Reduce chances for anchor failure due to incorrect bit usage

Sawtooth Threads", now available on 5/8" and 3/4"

IMPROVED PERFORMANCE IN LARGE DIAMETER HOLES

- Superior performance to wedge anchor
- Higher loads in shallow embedments
- Closer edge/spacing distance than mechanical anchors
- More threads for better thread engagement and higher pullout resistance
- Durable induction-hardened tip

EASY INSTALLATION

- Easy 2-step installation, simply drill a pilot hole and drive
- Installs in less than half the time of a wedge anchor
- Efficient thread cutting
- Use standard drill bit sizes
- Single piece design—no nut and washer assembly
- Easily removed

(3/8" & 1/2")

LDT Anchors

APPLICATIONS

FEATURES

Racking, shelving and conveyors are just a few high volume applications ideal for Large Diameter Tapcon (LDT[™]). The ease and speed of installation of the LDT can reduce installation time to less than half the time of typical systems used today.

For installation speed, high performance and easy removability, LDT is the anchor of choice.

The LDT's finished head and lack of exposed threads virtually eliminates tire damage on fork lift trucks.

Easy Installation Installs into concrete by hand or impact wrench

Anti-rotation Serrated Washer — Prevents anchor back-out

Extra Large Hex Washer Head — With increased bearing surface

Length Identification Head Stamp — For embedment inspection after installation

Hi-Lo Threads — Cuts its own threads into concrete for greater pull-out resistance

LDT 3/8" and 1/2" are available with *Envire* coating 1,000 hours salt spray ASTM B117. Approved for use in ACQ and MCQ lumber*

*Excessive content of copper in the ACQ and MCQ lumber may affect the anchor finish.

Selection Chart

it W **Red Head**

LDT Size	ANSI Standard	(A) Anchor Head	Washer Diameter	(B) Minimum	© Hole		USE IN		
	Drill Bit	(Socket Size)		Embedment	Depth		C	MU	
	Diameter	Diameter			-	Concrete	Hollow	Grout-filled	
LDT 3/8"	5/16″	9/16″	13/16″	1-1/2″	2-1/2″	YES	YES	YES	
LDT 1/2"	7/16″	3/4″	1″	2-1/2″	3-1/2″	YES	NO	YES	
LDT 5/8"	1/2″	13/16″	1-3/16″	2-3/4″	3-3/4″	YES	NO	YES	
LDT 3/4"	5/8″	15/16″	1-5/16″	3-1/4″	4-1/4″	YES	NO	YES	

See catalog for effective lengths and length indication code.

APPROVALS/LISTINGS

Miami-Dade County – #04-1025.08 Florida Building Code

INSTALLATION STEPS

Installation Steps for Concrete, Lightweight Concrete and Metal Deck

 Using the proper size carbide bit (see chart) drill "a pilot hole at least 1" deeper than anchor embedment. ""

 Using an electric impact wrench, or socket wrench (hand install) insert anchor into hole and tighten anchor until fully seated. (see chart for socket size) (do not over tighten).

Installation Steps for Hollow or Grout-Filled CMU (3/8" and 1/2" diameter)

 Using a 5/16" (for 3/8" LDT) or 7/16" (for 1/2" LDT) carbide tipped bit, drill a pilot hole at least 1" deeper than anchor embedment. ""

 Using a socket wrench insert anchor into hole and hand tighten anchor until fully seated.
 (9/16" socket for 3/8" and 3/4" socket for 1/2") (do not over tighten).

LDT's can be installed by hand or with an impact wrench

Installation by hand—is easy, simply using a socket wrench

Installation by impact wrench—is recommended for faster installations or for high volume projects. Installation with impact wrench—is **not** recommended for hollow block.

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

SELECTION CHART

LDT Carbon and Stainless Steel

Carbon Steel with Zinc Plating: Meets ASTM B695 and B633 specifications for zinc plating of 5um = .0002" thickness. This coating is well suited for non-corrosive interior environments.

Carbon Steel with EnvireX Coating: Provides additional corrosion protection for outdoor applications.

PART NUMBER CARBON STEEL ZINC PLATED	PART NUMBER CARBON STEEL Envire COATING	PART NUMBER FOR 410 STAINLESS STEEL	DIA. In. (mm)		DRIL D In. (DIA. In. (mm)		LENGTH In. (mm) (see detail on left)		OF MATERIAL TO BE FASTENED In. (mm)		QTY/WT PER MASTER CARTON Ibs.
LDT-3816		SLDT-3816	3/8	(9.5)	5/16	(7.9)	1-3/4	(44.5)	1/4	(6.4)	50/ 3.0	400/ 24.0
LDT-3824		SLDT-3824	3/8	(9.5)	5/16	(7.9)	2-1/2	(63.5)	1	(25.4)	50/ 4.5	400/ 34.0
LDT-3830	LDT-3830X	SLDT-3830	3/8	(9.5)	5/16	(7.9)	3	(76.2)	1-1/2	(38.1)	50/ 5.0	400/ 40.0
LDT-3840	LDT-3840X	SLDT-3840	3/8	(9.5)	5/16	(7.9)	4	(101.6)	2-1/2	(63.5)	50/ 6.5	400/ 52.0
LDT-3850	LDT-3850X	SLDT-3850	3/8	(9.5)	5/16	(7.9)	5	(127.0)	3-1/2	(89.0)	40/ 7.5	320/ 60.0
LDT-1230	LDT-1230 X	SLDT-1230	1/2	(12.7)	7/16	(11.1)	3	(76.2)	1/2	(12.7)	25/ 4.5	150/ 27.0
LDT-1240	LDT-1240 X	SLDT-1240	1/2	(12.7)	7/16	(11.1)	4	(101.6)	1-1/2	(38.1)	25/ 6.0	150/36.6
LDT-1250	LDT-1250 X	SLDT-1250	1/2	(12.7)	7/16	(11.1)	5	(127.0)	2-1/2	(63.5)	25/ 7.6	150/45.6
LDT-1260			1/2	(12.7)	7/16	(11.1)	6	(152.4)	4	(101.6)	20/ 9.0	120/ 54.0
LDT-5830			5/8	(15.9)	1/2	(12.7)	3	(76.2)	1/4	(6.4)	10/3.5	100 / 35.0
LDT-5840			5/8	(15.9)	1/2	(12.7)	4	(101.6)	1-1/4	(31.8)	10/4.0	100 / 40.0
LDT-5850			5/8	(15.9)	1/2	(12.7)	5	(127.0)	2-1/4	(57.1)	10/4.7	100 / 47.0
LDT-5860			5/8	(15.9)	1/2	(12.7)	6	(152.4)	3-1/4	(82.6)	10/5.4	50 / 27.0
LDT-3444			3/4	(19.1)	5/8	(15.9)	4-1/2	(114.3)	1-1/4	(31.8)	10/7.4	50 / 37.0
LDT-3454			3/4	(19.1)	5/8	(15.9)	5-1/2	(139.7)	2-1/4	(57.1)	10/8.1	50 / 40.5
LDT-3462			3/4	(19.1)	5/8	(15.9)	6-1/4	(158.8)	3	(76.2)	10/9.1	30 / 27.3

* The stainless steel LDT's will be gold in color in order to differentiate them from the carbon steel anchors.

DESIGN GUIDE

For proper selection of anchor diameters based upon predrilled holes in base plates and fixtures.

HOLE DIAMETER IN FIXTURE In. (mm)	SUGGESTED LDT DIAMETER In. (mm)
7/16 (11.1)	3/8 (9.5)
1/2 (12.7)	3/8 (9.5)
9/16 (14.3)	1/2 (12.7)
5/8 (15.9)	1/2 (12.7)
3/4 (19.1)	5/8 (15.9)
7/8 (22.2)	3/4 (19.1)

LENGTH I ICATION CODEN

Xdenotes available with Envire Coating

١L	ICAI			
1	CODE	LENGTH O In. (mi		
r	Α	1-1/2 < 2	(38.1 <	50.8)
	В	2 < 2-1/2	(50.8 <	63.5)
	C	2-1/2 < 3	(63.5 <	76.2)
	D	3 < 3-1/2	(76.2 <	88.9)
100	E	3-1/2 < 4	(88.9 <	101.6)
1000	F	4 < 4-1/2	(101.6 <	114.3)
	G	4-1/2 < 5	(114.3 <	127.0)
	Н	5 < 5-1/2	(127.0 <	139.7)
	1	5-1/2 < 6	(139.7 <	152.4)
	J	6 < 6-1/2	(152.4 <	165.1)

* Located on top of anchor for easy inspection.

PERFORMANCE TABLE

LDT Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete

ANCHOR	EMBEDN	NENT		f′c = 2000	PSI (13.8 MPa)			f'c = 3000 Ps	5I (20.7 MPa)			f'c = 4000 P	SI (27.6 MPa)	
DIA.	DEPT	н	TEN	SION	SH	EAR	TEN	SION	SH	EAR	TEN	SION	SHE	AR
ln. (mm)	ln. (mi	m)	Lbs.	. (kN)	Lbs. (kN)		Lbs. (kN)		Lbs	. (kN)	Lbs. (kN)		Lbs. (kN)	
3/8 (9.5)	1-1/2 ((38.1)	1,336	(5.9)	2,108	(9.4)	1,652	(7.3)	2,764	(12.3)	1,968	(8.8)	3,416	(15.2)
	2 ((50.8)	1,492	(6.6)	3,036	(13.5)	2,024	(9.0)	3,228	(14.4)	2,552	(11.4)	3,420	(15.2)
	2-1/2 ((63.5)	3,732	(16.6)	3,312	(14.7)	3,748	(16.7)	3,364	(15.0)	3,760	(16.7)	3,424	(15.2)
	3-1/2 ((88.9)	5,396	(24.0)	3,312	(14.7)	6,624	(29.5)	3,368	(15.0)	7,852	(34.9)	3,428	(15.2)
1/2 (12.7)	2 ((50.8)	3,580	(15.9)	5,644	(25.1)	3,908	(17.4)	6,512	(29.0)	4,236	(18.8)	7,380	(32.8)
	3-1/2 ((88.9)	7,252	(32.3)	6,436	(28.6)	8,044	(35.8)	7,288	(32.4)	8,836	(39.3)	8,140	(36.2)
	4-1/2 (1	114.3)	10,176	(45.3)	7,384	(32.8)	10,332	(46.0)	7,968	(35.4)	10,488	(46.7)	8,552	(38.0)
5/8 (15.9)	2-3/4 ((69.9)	5,276	(23.5)	8,656	(38.5)	6,560	(29.2)	11,064	(49.2)	7,844	(34.8)	13,476	(59.9)
	3-1/2 ((88.9)	7,972	(35.5)	10,224	(45.5)	9,848	(43.8)	12,144	(54.0)	11,724	(52.2)	14,060	(62.5)
	4-1/2 (1	114.3)	11,568	(51.5)	12,316	(54.8)	13,432	(59.8)	13,580	(60.4)	16,892	(75.1)	14,840	(66.0)
3/4 (19.1)	3-1/4 ((82.6)	6,876	(30.6)	7,140	(31.8)	9,756	(43.4)	10,728	(47.7)	12,636	(56.2)	14,316	(63.6)
	4-1/2 (1	114.3)	10,304	(45.8)	13,120	(58.4)	14,424	(64.2)	16,868	(75.0)	18,540	(82.5)	20,612	(91.7)
	5-1/2 (1	139.7)	13,048	(58.0)	17,908	(79.7)	18,156	(80.8)	21,718	(96.9)	23,268	(130.5)	25,652	(114.1)

PERFORMANCE TABLE

Allowable Tension and Shear Values* (Lbs/kN) in Concrete LDT Anchors Carbon and Stainless Steel

ANCHOR	EMBEDME	NT		f′c = 2000	PSI (13.8 MPa)			f'c = 3000 P	SI (20.7 MPa)			f′c = 4000 PS	l (27.6 MPa)	
DIA. In. (mm)	DEPTH In. (mm))	TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TEN Lbs	TENSION Lbs. (kN)		SHEAR Lbs. (kN)		SION (kN)	SHEAR Lbs. (kN)	
3/8 (9.5)	1-1/2 (38	.1)	334	(1.5)	527	(2.3)	413	(1.8)	691	(3.1)	492	(2.1)	854	(3.8)
	2 (50	.8)	373	(1.7)	759	(3.4)	506	(2.2)	807	(3.6)	638	(2.8)	855	(3.8)
	2-1/2 (63	.5)	933	(4.2)	828	(3.7)	937	(4.2)	841	(3.7)	940	(4.2)	856	(3.8)
	3-1/2 (88	.9)	1,349	(6.0)	828	(3.7)	1,656	(7.4)	842	(3.7)	1,963	(8.7)	857	(3.8)
1/2 (12.7)	2 (50	.8)	895	(4.0)	1,411	(6.3)	977	(4.3)	1,628	(7.2)	1,059	(4.7)	1,845	(8.2)
	3-1/2 (88	.9)	1,813	(8.0)	1,609	(7.2)	2,011	(8.9)	1,822	(8.1)	2,209	(9.8)	2,035	(9.0)
	4-1/2 (114	.3)	2,544	(11.3)	1,846	(8.2)	2,583	(11.5)	1,992	(8.9)	2,622	(11.7)	2,138	(9.5)
5/8 (15.9)	2-3/4 (69	.9)	1,319	(5.9)	2,164	(9.7)	1,640	(7.3)	2,766	(12.3)	1,961	(8.7)	3,369	(15.0)
	3-1/2 (88	.9)	1,993	(8.9)	2,556	(11.4)	2,462	(10.9)	3,036	(13.5)	2,931	(13.0)	3,515	(15.6)
	4-1/2 (114	.3)	2,892	(12.9)	3,079	(13.7)	3,358	(14.9)	3,395	(15.1)	4,223	(18.8)	3,710	(16.5)
3/4 (19.1)	3-1/4 (82	.6)	1,719	(7.6)	1,785	(7.9)	2,439	(10.8)	2,682	(11.9)	3,159	(14.0)	3,579	(15.9)
	4-1/2 (114	.3)	2,576	(11.5)	3,280	(14.6)	3,606	(16.0)	4,217	(18.7)	4,635	(20.6)	5,153	(22.9)
	5-1/2 (139	.7)	3,262	(14.5)	4,477	(19.9)	4,539	(20.2)	5,445	(24.2)	5,817	(25.9)	6,413	(28.5)

* Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

PERFORMANCE TABLE

LDT Anchors Recommended Edge & Spacing Requirements for Tension Loads* Carbon and Stainless Steel

ANCHOR DIA. EMBEDMENT DEPTH In. (mm) In. (mm)		EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	SPACING DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)	
3/8 (9.5)	1-1/2 (38.1)	2 (50.8)	70%	6 (152.4)	44%	
	2 (50.8)	2 (50.8)	70%	6 (152.4)	44%	
	2-1/2 (63.5)	3 (76.2)	70%	6 (152.4)	44%	
	3-1/2 (88.9)	4 (101.6)	70%	6 (152.4)	44%	
1/2 (12.7)	2 (50.8)	2-1/4 (57.2)	65%	8 (203.2)	27%	
	3-1/2 (88.9)	3 (76.2)	65%	8 (203.2)	27%	
	4-1/2 (114.3)	4 (101.6)	65%	8 (203.2)	27%	

* Edge and spacing distance shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

For 5/8" and 3/4" LDT Anchors, the critical edge distance for these anchors is 10 times the anchor diameter. The edge distance of these anchors may be reduced to 1-3/4" provided a 0.65 load factor is used for tension loads, a 0.15 load factor is used for shear loads applied perpendicular to the edge, or a 0.60 load factor is used for shear loads applied parallel to the edge. Linear interpolation may be used for intermediate edge distances.

PERFORMANCE TABLE

LDT Anchors Recommended Edge & Spacing Requirements for Shear Loads*

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	SPACING DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)
3/8 (9.5)	1-1/2 (38.1)	3 (76.2)	25%	6 (152.4)	57%
	2 (50.8)	4 (101.6)	25%	6 (152.4)	57%
	2-1/2 (63.5)	5 (127.0)	25%	6 (152.4)	57%
	3-1/2 (88.9)	5 (127.0)	25%	6 (152.4)	57%
1/2 (12.7)	2 (50.8)	5 (127.0)	25%	8 (203.2)	60%
	3-1/2 (88.9)	5 (127.0)	25%	8 (203.2)	60%
	4-1/2 (114.3)	5-1/2 (139.7)	25%	8 (203.2)	60%

Edge and spacing distances shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLES

LDT Anchors (anchors should be installed by hand in hollow block)

ANCHOR DIA.	EMBEDMENT DEPTH	HOLLOW COM	ICRETE BLOCK	GROUT FILLED CONCRETE BLOCK						
In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)					
3/8 (9.5)	1-1/2 (38.1)	916 (4.1)	3,176 (14.1)	1,592 (7.1)	3,900 (17.3)					
1/2 (12.7)	2-1/2 (63.5)	N/A	N/A	5,924 (26.4)	6,680 (29.7)					

LDT Anchors

Allowable Tension and Shear* (Lbs/kN) in Concrete Block (anchors should be installed by hand in hollow block)

ANCHOR DIA.	EMBEDMENT DEPTH	HOLLOW CON	CRETE BLOCK	GROUT FILLED CONCRETE BLOCK			
	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
3/8 (9.5)	1-1/2 (38.1)	229 (1.0)	794 (3.5)	398 (1.8)	975 (4.3)		
1/2 (12.7)	2-1/2 (63.5)	N/A	N/A	1,481 (6.6)	1,670 (7.4)		

* Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

LDT Anchors Anchoring Overhead in 3000 PSI Lightweight Concrete On Metal Deck ANCHOR DRILL HOLE EMBEDMENT 3000PSI (20.7 MPa) C

ANCHOR	DRILL HOLE	DRILL HOLE EMBEDMENT 3000PSI (20.7 MPa) CONCRETE		CONCRETE		
	DIAMETER In. (mm)	In. (mm)	ULTIMATE TENSION LOAD Lbs. (kN)		ALLOWABLE WORKING LOAD Lbs. (kN)	
3/8″ LDT	5/16 (7.9)	1-1/2 (38.1)	Upper Flute	2,889 (12.9)	722 (3.2)	
			Lower Flute	1,862 (8.3)	465 (2.1)	

Multi-Set II[®] Drop-In Anchors

Internally Threaded Heavy-Duty Anchoring Systems

DESCRIPTION/SUGGESTED SPECIFICATIONS

Drop-In, Shell-Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Drop-In, shell-type anchors feature an internally threaded, all-steel shell with expansion cone insert and flush embedment lip. Anchors are manufactured from zinc-plated carbon steel, 18-8 stainless steel and 316 stainless steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994 specifications.

Anchors should be tested to ASTM E488 criteria and listed by ICC-ES. Anchors should also be listed by the following agencies as required by the local building code: UL, FM, City of Los Angeles, California State Fire Marshal and Caltrans.

ADVANTAGES

Multi-Set II Anchors

APPLICATIONS

ATURES

For use with threaded rods or headed bolts (supplied by contractor)

SELECTION CHART

De		
NUMBER	DESCRIPTION	
	FEATURE BENEFITS	

	FEATURE BENEFITS	DEPTH
DCX-138	3/8" Depth Charge Stop Drill	3/4″
DCX-112	1/2" Depth Charge Stop Drill	1″

Pumps and heavy piping are common applications for larger diameter Multi-Set Drop-In Anchors.

Cable tray and strut suspended from concrete ceilings are ideal Multi-Set applications. In post-tension or hollow-core slabs use the RX-38.

The Multi-Set Anchor is the standard for pipe-hanging. The RM version has a retainer lip to keep all anchors flush at the surface, keeping all your threaded rod the same length.

Expander Slots—allow for easy setting and superior performance

Cone Insert—that expands the anchor when driven with setting tool and hammer

Body—available in zinc-plated steel, 18-8 stainless steel, and 316 stainless steel

Easy Depth Inspection—keeps threaded rod drop lengths consistent

Retainer Lip—to keep anchor flush with surface

DRILLING

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII)

Underwriters Laboratories **Factory Mutual** City of Los Angeles – #RR2748 California State Fire Marshal Caltrans

INSTALLATION STEPS

- - **4.** Expand anchor with setting tool provided (see chart on page 69). Anchor is properly expanded when shoulder of setting tool is flush with top of anchor.

To set anchor below surface:

Drill hole deeper than anchor length. Thread bolt into anchor. Hammer anchor into hole until bolt head is at desired depth. Remove bolt and set anchor with setting tool.

- Shoulder prevents over drilling
- Less likely to hit reinforcing steel or post-tension cable in concrete

- No lost time or energy drilling farther than necessary
- Anchor is set at a specified depth, does not drop too far into hole

PART

SELECTION CHARTS

Multi-Set II Drop-In Anchors		et II chors	PART NUMBER RT-138 1 setting tool per master carton (See above for part numbers.)			PART NUMBER RTX-138 For use with RX-38 only.			PART NUMBER RTX-112 For use with RX-12 only.		
USER TYPE / APPLICATION	BASE MATERIAL	CORROSION RESISTANCE LEVEL	DROP-IN ANCHOR TYPE	PART NUMBER	SETTING TOOL PART NUMBER*	BOLT SIZE- Threads Per Inch	DRILL BIT DIA. In. (mm)	THREAD DEPTH In. (mm)	EMBEDMENT MIN. HOLE DEPTH In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CTN Ibs. *
HVAC/Fire Sprinkler Plumber (Pipe-fitter)	Solid concrete/ lightweight fill deck	Low	RM	RM-14 RM-38 RM-12 RM-58 RM-34	RT-114 RT-138 RT-112 RT-158 RT-134	1/4" - 20 3/8" - 16 1/2" - 13 5/8" - 11 3/4" - 10	3/8 (9.5) 1/2 (12.7) 5/8 (15.9) 7/8 (22.2) 1 (25.4)	3/8 (9.5) 1/2 (12.7) 3/4 (19.1) 1 (25.4) 1-1/4 (31.8)	1 (25.4) 1-5/8 (41.3) 2 (50.8) 2-1/2 (63.5) 3-3/16 (81.0)	100/ 2.6 50/ 3.4 50/ 5.8 25/ 7.8 25/11.9	1000/ 28 500/ 36 400/ 49 125/ 41 100/ 49
	Hollow-core pre-cast or Post- tension	Low	RX	RX-38 RX-12	RTX-138 RTX-112	3/8" - 16 1/2" - 13	1/2 (12.7) 5/8 (15.9)	3/8 (9.5) 1/2 (12.7)	3/4 (19.1) 1 (25.4)	100/ 3.5 50/ 3.0	1000/ 36 500/ 31
	Solid concrete/ lightweight fill deck	Medium	SRM** 18-8 S.S.	SRM-14 SRM-38 SRM-12 SRM-58 SRM-34	RT-114 RT-138 RT-112 RT-158 RT-134	1/4" - 20 3/8" - 16 1/2" - 13 5/8" - 11 3/4" - 10	3/8 (9.5) 1/2 (12.7) 5/8 (15.9) 7/8 (22.2) 1 (25.4)	3/8 (9.5) 1/2 (12.7) 3/4 (19.1) 1 (25.4) 1-1/4 (31.8)	1 (25.4) 1-5/8 (41.3) 2 (50.8) 2-1/2 (63.5) 3-3/16 (81.0)	100/ 2.7 50/ 3.4 50/ 6.0 25/ 7.9 25/12.0	1000/ 28 500/ 36 400/ 50 125/ 42 100/ 50
	Solid concrete	High	SSRM** 316 S.S.	SSRM-38 SSRM-12	RT-138 RT-112	3/8″ - 16 1/2″ - 13	1/2 (12.7) 5/8 (15.9)	1/2 (12.7) 3/4 (19.1)	1-5/8 (41.3) 2 (50.8)	50/ 3.4 50/ 6.0	500/ 36 400/ 50
Concrete Contractor, General Contractor, Highway	Solid concrete	Low	CL-Coil Threaded	CL-12 CL-34	RT-112 RT-134	1/2" - 6 3/4" - 4.5	5/8 (15.9) 1 (25.4)	3/4 (19.1) 1-1/4 (31.8)	2 (50.8) 3-3/16 (81.0)	50/ 5.7 25/11.9	400/ 47 100/ 49
Concrete Cutting/ Sawing Contractor/ Misc. Metal	Solid concrete/ lightweight fill deck	Low	RL (w/o lip)	RL-14 RL-38 RL-12 RL-58 RL-34	RT-114 RT-138 RT-112 RT-158 RT-134	1/4" - 20 3/8" - 16 1/2" - 13 5/8" - 11 3/4" - 10	3/8 (9.5) 1/2 (12.7) 5/8 (15.9) 7/8 (22.2) 1 (25.4)	3/8 (9.5) 1/2 (12.7) 3/4 (19.1) 1 (25.4) 1-1/4 (31.8)	1 (25.4) 1-5/8 (41.3) 2 (50.8) 2-1/2 (63.5) 3-3/16 (81.0)	100/ 2.6 50/ 3.4 50/ 5.8 25/ 7.8 25/11.9	1000/ 28 500/ 36 400/ 49 125/ 41 100/ 49

* 1 setting tool per master carton.

** For continuous extreme low temperature, use stainless steel.

Multi-Set II RX Drop-In Kits

Part No.	Description
RX-38	3/8" drop-in using 1/2" drill bit
RTX-138	Setting Tool
DCX-138	Depth Charge Stop Drill
RX-38KIT	Contains: 1,000 RX-38 Anchors, 5 RTX-138 Setting Tools and
	2 DCX-138 Depth Charge Stop Drills

Part No.	Description
RX-12	1/2" drop-in using 5/8" drill bit
RTX-112	Setting Tool
DCX-112	Depth Charge Stop Drill
RX-12KIT	Contains: 500 RX-12 Anchors, 3 RTX-112 Setting Tools and
	1 DCX-112 Depth Charge Stop Drill

PERFORMANCE TABLE

Multi-Set II Drop-In Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete*

BOLT	ANCHOR	MIN. EMBEDMENT	ANCHOR		SHEAR Lbs. (kN)		
DIA. In. (mm)	DIA. In. (mm)	DEPTH In. (mm)	ТҮРЕ	f'c = 2000 PSI (13.8 MPa)	f'c = 4000 PSI (27.6 MPa)	f′c = 6000 PSI (41.4 MPa)	ť c ≥2000 PSI (13.8 MPa)
1/4 (6.4)	3/8 (9.5)	1 (25.4)	PM PI	1,680 (7.5)	2,360 (10.5)	2,980 (13.3)	1,080 (4.8)
3/8 (9.5)	1/2 (12.7)	1-5/8 (41.3)	or CL-Carbon	2,980 (13.3)	3,800 (16.9)	6,240 (27.8)	3,160 (14.1)
1/2 (12.7)	5/8 (15.9)	2 (50.8)	or	3,300 (14.7)	5,840 (26.0)	8,300 (36.9)	4,580 (20.4)
5/8 (15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or	5,500 (24.5)	8,640 (38.4)	11,020 (49.0)	7,440 (33.1)
3/4 (19.1)	1 (25.4)	3-3/16 (81.0)	35KM-3165.5.	8,280 (36.8)	9,480 (42.2)	12,260 (54.5)	10,480 (46.6)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLES

Multi-Set IIUltimate Tension and Shear Values (Lbs/kN) in
Lightweight Concrete*

BOLT DIA. In. (mm)	ANCHOR DIA. In. (mm)	MINIMUM EMBEDMENT DEPTH	ANCHOR TYPE	INCHORLIGHTWEIGHT CONCRETETYPEf'c = 3000 PSI (20.7 MPa)		LOWER FLUTE OF S LIGHTWEIGHT C f'c = 3000 PS	STEEL DECK WITH ONCRETE FILL (20.7 MPa)
		In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/8 (9.5)	1/2 (12.7)	1-5/8 (39.7)	DM DI	2,035 (9.1)	1,895 (8.4)	3,340 (14.9)	4,420 (19.6)
1/2 (12.7)	5/8 (15.9)	2 (50.8)	or CL-Carbon or	2,740 (12.2)	2,750 (12.2)	3,200 (14.2)	4,940 (22.0)
5/8 (15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or	4,240 (18.9)	4,465 (19.9)	5,960 (26.5)	5,840 (26.0)
3/4 (19.1)	1 (25.4)	3-3/16 (81.0)	2.2 01 5-IVI	5,330 (23.7)	6,290 (28.0)	8,180 (36.4)	9,120 (40.6)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II Drop-In Anchors Recommended Edge and Spacing Distance Requirements*

BOLT DIA. In. (mm)	DRILL BIT SIZE In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		MIN. EDGE DISTANCE AT WHICH LOAD FACTOR APPLIED =.80 FOR TENSION =.70 FOR SHEAR In. (mm)		SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		MIN. ALLOWABLE SPACING BETWEEN ANCHORS LOAD FACTOR APPLIED =.80 FOR TENSION =.55 FOR SHEAR In. (mm)	
1/4 (6.4)	3/8 (9.5)	1 (25.4)		1-3/4	(44.5)	7/8	(22.2)	3-1/2	(88.9)	1-3/4	(44.5)
3/8 (9.5)	1/2 (12.7)	1-5/8 (41.3)	RM, RL or CL-Carbon	2-7/8	(73.0)	1-7/16	(36.5)	5-11/16	(144.5)	2-7/8	(73.0)
1/2(12.7)	5/8 (15.9)	2 (50.8)	or	3-1/2	(88.9)	1-3/4	(44.5)	7	(177.8)	3-1/2	(88.9)
5/8(15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or	4-3/8	(111.1)	2-3/16	(55.6)	8-3/4	(222.3)	4-3/8	(111.1)
3/4(19.1)	1 (25.4)	3-3/16 (81.0)]	5-5/8	(142.9)	2-13/16	(71.4)	11-3/16	(284.2)	5-5/8	(142.9)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

Multi-Set IIUltimate Tension and Shear Values (Lbs/kN) for RX-seriesDrop-In Anchors(3/4" and 1" Embedment)*

BOLT DIA.	DRILL BIT	EMBEDMENT	2500 PSI (17.2	MPa) CONCRETE	4000 PSI (27.6	6 MPa) CONCRETE	HOLLOW CORE	
ln. (mm)	SIZE In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/8 (9.5)	1/2 (12.7)	3/4 (19.1)	1,571 (7.0)	2,295 (10.2)	1,987 (8.8)	2,903 (12.9)	1,908 (8.5)	2,401 (10.7)
1/2 (12.7)	5/8 (15.9)	1 (25.4)	2,113 (9.4)	2,585 (11.5)	2,673 (11.9)	3,270 (14.5)	2,462 (11.0)	2,401 (10.7)

* The tabulated values are for RX anchors installed at a minimum of 12 diameters on center and minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameters spacing and 3 diameter edge distance provided the values are reduced 50 percent. Linear Interpolation may be used for intermediate spacings and edge margins.

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II Anchoring Overhead in 3000 PSI Drop-In Anchors Lightweight Concrete On Metal Deck

ANCHOR DRILL HOLE		EMBEDMENT	3000PSI (20.7 MPa) CONCRETE						
	DIAMETER In. (mm)	In. (mm)	ULTIMATE T Lbs	ENSION LOAD . (kN)	ALLOWABLE WORKING LOAD Lbs. (kN)				
RX-38 Drop-In	1/2 (12.7)	3/4 (19.1)	Upper Flute	1,410 (6.3)	353 (1.6)				
			Lower Flute	1,206 (5.4)	301 (1.3)				

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

😓 RED HEAD"

70

Dynabolt[®] Sleeve Anchors

Versatile, Medium-Duty Sleeve Anchor

Dynabolt Hex Nut Sleeve Anchor

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual California State Fire Marshal

DESCRIPTION/SUGGESTED SPECIFICATIONS

Sleeve Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE, GROUT-FILLED CONCRETE BLOCK, HOLLOW CONCRETE BLOCK AND BRICK

Dynabolt Masonry Sleeve Anchor Sleeve type anchors feature a split expansion sleeve over a threaded stud bolt body and integral expander, nut and washer.

Anchors are made of Plated Carbon Steel, or Type 18-8 Stainless Steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

Anchors are tested to ASTM E488 criteria.

ADVANTAGES

- Anchor diameter equals hole diameter
- Available in hex head and six other head styles
- Available 1/4 3/4" diameter up to 6-1/4" length
- Zinc plated carbon steel and 304 stainless steel
- Provides full 360° hole contact over large area and reduces concrete stress

Available Head Styles

Heavy-loading capacity Preassembled for faster, easier installations

- Dynabolt can be installed through object to be fastened
- Sleeve design improves holding power
- No pre-spotting of holes necessary

Full range of head style, corrosion protection, and sizes makes the Dynabolt Sleeve the right product for almost any application.

INSTALLATION STEPS

Use a bit with a diameter equal to the anchor. See selection chart to determine proper size bit for anchor used. Drill hole to any depth exceeding minimum embedment. Clean hole.

2. Insert assembled anchor into hole, so that washer or head is flush with materials to be fastened.

3. Expand anchor by tightening nut or head 2 to 3 turns.

APPLICATIONS

Electrical junction boxes are common applications for the Dynabolt Sleeve anchor because it works well in solid concrete, concrete block, and brick. It is also available in several finished head styles.

The Dynabolt Sleeve anchor works well in hollow materials like brick and block. It is available in zinc-plated carbon steel and 304 stainless steel.

Door and window frames are commonly attached to the structure with Dynabolt Sleeve anchors because of their finished & threshold head styles and performance in block & brick.

SELECTION CHART

Typical Applications— Shelf ledgers, electrical boxes, conduit Environment—Interior (non-corrosive) Level of Corrosion—Low

* Effective Anchor Length

HEAD STYLE	PART NUMBER	ANCHOR DIA. & DRILL BIT SIZE	EFFECTIVE ANCHOR LENGTH* In. (mm)	BOLT DIA./ Threads Per Inch	MIN. EMBEDMENT In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
ACORN NUT	AN-1405 AN-1413 AN-1422	1/4″	5/8 (15.9) 1-3/8 (34.9) 2-1/4 (57.2)	3/16" /24 3/16" /24 3/16" /24	1/2 (12.7) 1-1/8 (28.6) 1-1/8 (28.6)	1/8 (3.2) 1/4 (6.4) 1-1/8 (28.6)	100/ 1.9 100/ 2.6 100/ 3.7	1000/ 20 1000/ 27 1000/ 38
	HN-1413 HN-1422	1/4″	1-3/8 (34.9) 2-1/4 (57.2)	3/16″ /24 3/16″ /24	1-1/8 (28.6) 1-1/8 (28.6)	1/4 (6.4) 1-1/8 (28.6)	100/ 2.3 100/ 3.4	1000/ 24 1000/ 35
	HN-1614 HN-1624	5/16″	1-1/2 (38.1) 2-1/2 (63.5)	1/4″/20 1/4″/20	1-1/4 (31.8) 1-1/4 (31.8)	1/4 (6.4) 1-1/4 (31.8)	100/ 4.0 100/ 5.9	1000/ 41 800/ 47
	HN-3817 HN-3830	3/8″	1-7/8 (47.6) 3 (76.2)	5/16″ /18 5/16″ /18	1-1/2 (38.1) 1-1/2 (38.1)	3/8 (9.5) 1-1/2 (38.1)	50/ 3.5 50/ 4.9	500/36 400/40
HEX NUT	HN-1222 HN-1230 HN-1240	1/2″	2-1/4 (57.2) 3 (76.2) 4 (101.6)	3/8″/16 3/8″/16 3/8″/16	1-7/8 (47.6) 1-7/8 (47.6) 1-7/8 (47.6)	3/8 (9.5) 1-1/8 (28.6) 2-1/8 (54.0)	25/ 3.3 25/ 4.0 25/ 5.3	250/ 34 200/ 33 200/ 44
	HN-5822 HN-5830 HN-5842 HN-5860	5/8″	2-1/4 (57.2) 3 (76.2) 4-1/4 (108.0) 6 (152.4)	1/2" /13 1/2" /13 1/2" /13 1/2" /13	2 (50.8) 2 (50.8) 2 (50.8) 2 (50.8) 2 (50.8) 2 (50.8)	1/4 (6.4) 1 (25.4) 2-1/4 (57.2) 4 (101.6)	25/ 6.3 25/ 7.0 10/ 3.9 10/ 4.9	150/ 38 150/ 46 100/ 41 50/ 25
	HN-3424 HN-3440 HN-3462	3/4″	2-1/2 (63.5) 4 (101.6) 6-1/4 (158.8)	5/8"/11 5/8"/11 5/8"/11	2-1/4 (57.2) 2-1/4 (57.2) 2-1/4 (57.2)	1/4 (6.4) 1-3/4 (44.5) 4 (101.6)	10/ 4.7 5/ 3.2 5/ 4.3	50/ 25 50/ 33 50/ 44
LAT HEAD*	FS-1411 FS-1420 FS-1430 FS-1440	1/4″ (head dia477)	1-1/2 (38.1) 2-1/4 (57.2) 3-1/8 (79.4) 4 (101.6)	3/16" /24 3/16" /24 3/16" /24 3/16" /24	1-1/8 (28.6) 1-1/8 (28.6) 1-1/8 (28.6) 1-1/8 (28.6)	3/8 (9.5) 1-1/8 (28.6) 2 (50.8) 2-7/8 (73.0)	100/ 1.9 100/ 2.7 100/ 3.8 100/ 4.7	1000/21 1000/28 1000/38 1000/48
PHILLIPS F	FS-3826 FS-3840 FS-3850 FS-3860	3/8″ (head dia722)	2-7/8 (73.0) 4 (101.6) 5 (127.0) 6 (152.4)	5/16" /18 5/16" /18 5/16" /18 5/16" /18	1-1/2 (38.1) 1-1/2 (38.1) 1-1/2 (38.1) 1-1/2 (38.1)	1-3/8 (34.9) 2-1/2 (63.5) 3-1/2 (88.9) 4-1/2 (114.3)	50/ 3.8 50/ 5.3 50/ 5.6 50/ 8.0	500/ 40 400/ 44 300/ 40 300/ 48
THRESHOLD FLAT HEAD	TH-1420	1/4″ (head dia385)	2-1/4 (57.2)	3/16" /24	1-1/8 (28.6)	1-1/8 (28.6)	100/ 2.5	1000/25
ROUND HEAD	RS-1426	1/4″	2-7/8 (73.0)	3/16″ /24	1-1/8 (28.6)	1-3/4 (44.5)	100/ 3.7	1000/38
TIE WIRE	TW-1614	5/16″	1-1/2 (38.1)	1/4″/20	1-1/2 (38.1)	9/32 (7.1) hole	100/ 4.9	1000/ 50

* Phillips flat head uses a standard 80°-82° counter sink.

SELECTION CHART

Typical Applications— Cladding and Brick Ties Environment—Slight to moderate degree of pollution Level of Corrosion— Medium

HEAD STYLE	PART NUMBER	ANCHOR DIA. & DRILL BIT SIZE	EFFECTIVE ANCHOR LENGTH* In. (mm)	BOLT DIA./ THREADS PER INCH	MIN. EMBEDMENT In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
	SHN-1413	1/4″	1-3/8 (34.9)	3/16″/24	1-1/8 (28.6)	1/4 (6.4)	100/ 2.3	1000/24
5	SHN-3817 SHN-3830	3/8″	1-7/8 (47.6) 3 (76.2)	5/16"/18 5/16"/18	1-1/2 (38.1) 1-1/2 (38.1)	3/8 (9.5) 1-1/2 (38.1)	50/ 3.5 50/ 4.9	500/ 36 400/ 40
HEX N	SHN-1222 SHN-1230 SHN-1240	1/2″	2-1/4 (57.2) 3 (76.2) 4 (101.6)	3/8" /16 3/8" /16 3/8" /16	1-7/8 (47.6) 1-7/8 (47.6) 1-7/8 (47.6)	3/8 (9.5) 1-1/8 (28.6) 2-1/8 (54.0)	25/ 3.3 25/ 4.0 25/ 5.3	250/ 34 200/ 33 200/ 44
	SHN-5842	5/8″	4-1/4 (108.0)	1/2″/13	2 (50.8)	2-1/4 (57.2)	10/ 3.9	100/41
LIPS HEAD*	SFS-1420 SFS-1430	1/4″	2-1/4 (57.2) 3-1/8 (79.4)	3/16"/24 3/16"/24	1-1/8 (28.6) 1-1/8 (28.6)	1-1/8 (28.6) 3 (76.2)	100/ 2.7 100/ 3.8	1000/28 1000/38
FLAT	SFS-3826 SFS-3840	3/8″	2-7/8 (73.0) 4 (101.6)	5/16″/18 5/16″/18	1-1/2 (38.1) 1-1/2 (38.1)	1-3/8 (34.9) 2-1/2 (63.5)	50/ 3.8 50/ 5.3	500/ 40 400/ 44
ROUND HEAD	SRS-1420	1/4″	2 (50.8)	3/16″/24	1-1/8 (28.6)	7/8 (22.2)	100/ 2.7	1000/28

* Flat head uses a standard $80^\circ - 82^\circ$ counter sink.

For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLES

Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	f'c = 2000 P	5I (13.8 MPa)	f'c = 3000 P	SI (20.7 MPa)	f'c = 4000 P	SI (27.6 MPa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)		1,200 (5.3)	1,620 (7.2)	1,600 (7.1)	1,620 (7.2)	2,100 (9.3)	1,620 (7.2)
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,400 (6.2)	2,040 (9.1)	1,920 (8.5)	2,220 (9.9)	2,600 (11.6)	2,400 (10.7)
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,620 (7.2)	2,560 (11.4)	2,240 (10.0)	2,800 (12.5)	3,100 (13.8)	3,040 (13.5)
1/2 (12.7)	20 (27.1)	3/8 (9.5)	1-7/8 (47.6)	or Stainless	2,220 (9.9)	4,000 (17.8)	3,140 (14.0)	4,500 (20.0)	4,400 (19.6)	5,000 (22.2)
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)		3,080 (13.7)	6,440 (28.6)	4,400 (19.6)	7,240 (32.2)	6,120 (27.2)	8,080 (35.9)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)]	4,200 (18.7)	10,200 (45.4)	6,060 (27.0)	11,600 (51.6)	8,900 (39.6)	13,100 (58.3)

* For continuous extreme low temperature applications, use stainless steel. For AN-1405, Ultimate Pullout: 500 lbs. & Ultimate Shear: 1751 lbs. based on 4,000 psi.

Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Lightweight Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	f'c = 4000	PSI (27.6 MPa)	f'c = 6000 PSI (41.4 MPa)			
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)		1,080 (4.8)	1,160 (5.2)	1,220 (5.4)	1,940 (8.6)		
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,260 (5.6)	1,680 (7.5)	1,440 (6.4)	2,220 (9.9)		
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,620 (7.2)	2,300 (10.2)	2,240 (10.0)	2,800 (12.5)		
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	Stainless	2,600 (11.6)	3,920 (17.4)	3,160 (14.1)	4,840 (21.5)		
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)		3,240 (14.4)	5,600 (24.9)	4,300 (19.1)	7,840 (34.9)		
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)		3,640 (16.2)	8,640 (38.4)	5,800 (25.8)	12,480 (55.5)		

Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Concrete Masonry Units (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR		LIGHT	WEIGHT			MEDIUN	A WEIGHT	
DIA.	TORQUE	DIA.	EMBEDMENT	TYPE	HOLLO	V CORE	GROUT	FILLED	HOLLO	W CORE	GROU	T FILLED
In. (mm)	Ft. Lbs. (Nm)	ln. (mm)	DEPTH In. (mm)	(STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)						
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)	Carbon	1,120 (5.0)	1,360 (6.0)	1,120 (5.0)	1,360 (6.0)	1,120 (5.0)	1,620 (7.2)	1,120 (5.0)	1,360 (6.0)
				Stainless	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)
3/8 (9.5)	15 (20.3)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)
				Stainless	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	Carbon	N/A	N/A	2,220 (9.9)	4,000 (17.8)	N/A	N/A	2,220 (9.9)	4,000 (17.8)
				Stainless	N/A	N/A	2,100 (9.3)	4,000 (17.8)	N/A	N/A	2,100 (9.3)	4,000 (17.8)
5/8 (15.9)	55 (74.6)	1/2 (12.7)	2 (50.8)	Carbon	N/A	N/A	3,080 (13.7)	6,440 (28.6)	N/A	N/A	3,080 (13.7)	6,440 (28.6)
				Stainless	N/A	N/A	3,080 (13.7)	6,440 (28.6)	N/A	N/A	2,820 (12.5)	6,440 (28.6)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/2 (63.5)	Carbon	N/A	N/A	4,200 (18.7)	10,200 (45.4)	N/A	N/A	4,200 (18.7)	10,200 (45.4)

Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values. The tabulated values are for anchors installed in a minimum of 12 diameters on center and a minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameter spacing and 3 diameter edge distance, provided the values are reduced 50 percent. Linear interpolation may be used for intermediate spacings and edge distances.

ITW Red Head^{*} Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.ttwredhead.com</u>

RED HEAD[®] 73

Bottom-Bearing, Hammer-Driven Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

Stud Type Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Stud Anchors feature a bolt body and pre-assembled expander plug. Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

Anchors are tested to ASTM E488 criteria. Anchors are listed by the following agencies as required: UL and FM.

ADVANTAGES

- Fast and easy to install
- Same drill size as anchor size
- Bottom-bearing design is ideal for jacking and leveling applications

APPLICATIONS

- Install anchor directly through fixture
- Hammer-driven expansion design eliminates torque requirements, for dependable holding capacity

FEATURES

Stud Anchors are commonly used to anchor equipment to concrete slabs. The external studs make for easy jacking and leveling for easy cleanup in industrial settings.

External Threads for easy equipment setting

Stamped part number on body

Pre-assembled expander plug—easy anchor to set—drill and hammer in—anchor is bottom bearing

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. specification A-A-55614 Type 2 (Formerly GSA: FF-S-325 Group VIII, Type 2) Factory Mutual California State Fire Marshal Underwriters Laboratories

Stud Anchors

INSTALLATION STEPS

SELECTION CHART

 Drill hole same diameter as anchor to embedment specified in chart. Clean hole.

 Drive anchor with expander plug in bottom, through material to be fastened.

3. Expand anchor by driving anchor over plug with hammer.

Note: Recommended thickness of concrete for bottom-bearing anchors = embedment depth + three times anchor diameter

Stud Anchors

PART NUMBER	HOLE OR BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	STUD LENGTH In. (mm)	THREAD LENGTH In. (mm)	MIN. EMBEDMENT In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
JS-14C	1/4″ - 20	1-3/4 (44.5)	3/4 (19.1)	5/8 (15.9)	1-3/8 (34.9)	100/2.6	1000/26
JS-14H		2-1/4 (57.2)	1-1/8 (28.6)	7/8 (22.2)	1-3/8 (34.9)	100/3.1	1000/31
JS-14M		3-1/4 (82.6)	2-1/8 (54.0)	7/8 (22.2)	1-3/8 (34.9)	100/4.5	1000/45
JS-38C	3/8″ - 16	2-1/4 (57.2)	1 (25.4)	3/4 (19.1)	1-5/8 (41.3)	50/3.6	500/ 36
JS-38H		3 (76.2)	1-5/8 (41.3)	1-1/4 (31.8)	1-5/8 (41.3)	50/4.5	500/ 45
JS-38M		3-3/4 (95.3)	2-1/4 (57.2)	1-1/4 (31.8)	1-5/8 (41.3)	50/5.7	500/ 57
JS-12C	1/2″ - 13	2-3/4 (69.9)	1-1/8 (28.6)	7/8 (22.2)	1-7/8 (47.6)	25/3.9	250/ 39
JS-12H		4-1/4 (108.0)	2-1/2 (63.5)	2 (50.8)	1-7/8 (47.6)	25/5.6	250/ 56
JS-12M		5-1/4 (133.4)	3-5/8 (92.1)	2 (50.8)	1-7/8 (47.6)	25/7.0	250/ 70
JS-58H	5/8″ - 11	5 (127.0)	3 (76.2)	2-1/4 (57.2)	2-3/8 (60.3)	10/4.1	100/ 42
JS-34H	3/4" - 10	6-1/4 (158.8)	3-3/4 (95.3)	2-1/2 (63.5)	2-7/8 (73.0)	10/7.6	50/59

PERFORMANCE TABLE

Stud Anchors Ultimate Tension and Shear Values in Concrete (Lbs/kN)

ANCHOR	MINIMUM	f'c = 2000	PSI (13.8 MPa)	f'c = 4000	PSI (27.6 MPa)	
DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1-3/8 (34.9)	1,120 (5.0)	580 (2.6)	1,500 (6.7)	1,640 (7.3)	
3/8 (9.5)	1-5/8 (41.3)	1,740 (7.7)	2,280 (10.1)	3,160 (14.1)	3,360 (14.9)	
1/2 (12.7)	1-7/8 (47.6)	2,680 (11.9)	5,320 (23.7)	4,020 (17.9)	5,100 (22.7)	
5/8 (15.9)	2-3/8 (60.3)	3,200 (14.2)	5,460 (24.3)	5,520 (24.6)	6,820 (30.3)	
3/4 (19.1)	2-7/8 (73.0)	4,020 (17.9)	8,100 (36.0)	7,520 (33.5)	8,560 (38.1)	

Allowable loads are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

PERFORMANCE TABLE

 Stud Anchors
 Recommended Edge and Spacing Distance Requirements*

 R
 MINIMUM
 Edge DISTANCE
 MIN. Edge DISTANCE AT WHICH
 SPACING
 MIN. ALLOWABLE SPACING BETWEER

ANCHOR DIA. In. (mm)	MINIMUM EMBEDMENT DEPTH In. (mm)	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. EDGE DISTANCE AT WHICH LOAD FACTOR APPLIED = .90 FOR TENSION = .65 FOR SHEAR In. (mm)	SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. ALLOWABLE SPACING BETWEEN ANCHORS LOAD FACTOR APPLIED = .90 FOR TENSION = .50 FOR SHEAR In. (mm)		
1/4 (6.4)	1-3/8 (34.9)	2-7/16 (61.9)	1-1/4 (31.8)	4-13/16 (122.2)	2-7/16 (61.9)		
3/8 (9.5)	1-5/8 (41.3)	2-7/8 (73.0)	1-7/16 (36.5)	5-11/16 (144.5)	2-7/8 (73.0)		
1/2 (12.7)	1-7/8 (47.6)	3-5/16 (84.1)	1-11/16 (42.9)	6-9/16 (166.7)	3-5/16 (84.1)		
5/8 (15.9)	2-3/8 (60.3)	4-3/16 (106.4)	2-1/8 (54.0)	8-5/16 (211.1)	4-3/16 (106.4)		
3/4 (19.1)	2-7/8 (73.0)	5-1/16 (128.6)	2-9/16 (65.1)	10-1/16 (255.6)	5-1/16 (128.6)		

* Linear interpolation may be used for intermediate spacing and edge distances.

Combined Tension and Shear Loading—for Stud AnchorsAllowable loads for anchors subjected to combined shear and tension forces are determined by the following equation: $(Ps/Pt)^{53} + (Vs/Vt)^{53} \le 1$ Ps = Applied tension loadVs = Applied shear loadPt = Allowable tension loadVt = Allowable shear load

ITW Red Head^{*} Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Redi-Drive[®] Anchors

Redi-Drive Anchors—High Performance Without Torquing

DESCRIPTION/SUGGESTED SPECIFICATIONS

Light-Duty Hammer-Drive Masonry Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE, BLOCK AND BRICK

The Redi-Drive is a high performance small diameter one-piece hammer-drive anchor. The anchor holds based on a friction principle—the shank diameter is larger than the drill hole size. Anchors shall be

A	
	Redi-Drive High
	Performance
	Hammer-Drive
	Anchor
11	

installed with carbide-tipped hammer drill bits made in accordance to ANSI B212.15-1994.

The Redi-Drive is available in four types...mushroom head, pipe-hanging (1/4" & 3/8") FM approved (on 3/8"), Tie-Wire, and double-head forming versions. Anchor performance in solid concrete at one inch embedment shall exceed 400 lbs. allowable tension load and 750 lbs. allowable shear load.

and 3" lengths

Available in 3/4", 1-1/8", 1-5/8", 2", 2-1/2",

Most economical steel anchor available Provides fast, high performance drive-type

fastening without torguing or need for

ADVANTAGES

- High performance provides superior holding values in concrete and other masonry materials
- Fire resistant
- Tamper resistant
- Standard 3/16" drill hole size—cheaper bit and faster installation

As simple as using a nail—

drive into predrilled holes for tremendous holding strength in concrete. Compressive strength is created by forcing a larger diameter

fastener into a smaller size hole. The greater the degree of contact the greater the holding power.

are haldin

special setting equipment

Redi-Drive Anchors

APPLICATIONS

Signage and other light duty metal products are common applications for the Redi-Drive. It has superior performance in block, brick and solid concrete, and is tamper-proof.

Wood attachments to concrete are common Redi-Drive applications, whether permanent or temporary.

Electrical boxes and conduit clips that need permanent attachment are ideal applications for the Redi-Drive. It works well in all base materials and is fast and economical.

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification FF-S-325 Group VI

Factory Mutual (3/8" pipe-drive)

INSTALLATION STEPS FOR REDI-DRIVE & FORMING ANCHORS

1. Drill a proper-sized diameter hole at a minimum depth (see chart on page 84, ANSI B212.15-1994).

2. Clean hole. Please note hole is 3/16" but diameter of Redi -Drive is 1/4" (except for PD8-134 and FD8-234)

3. Insert anchor through material to be fastened (insert tie-wire or pipe version Redi-Drive anchors into drilled holes) and drive anchor with a 3-lb. hammer until the head is flush with surface or desired embedment.

Anchor is now set for **Redi-Drive** Anchor.

Anchor is now set for Forming Anchor.

FEATURES

Tamper-Proof — mushroom head

100% Hole Contact—.215 shank

Dog-Point—for easy insertion

INSTALLATION STEPS FOR REDI-DRIVE <u>TIE-WIRE</u> ANCHORS</u>

- **1.** Drill a proper-sized diameter hole at a minimum depth (see chart on page 78, ANSI B212.15-1994).
- 2. Clean hole. Please note hole is 3/16" but diameter of Redi -Drive is 1/4" (except for PD8-134 and FD8-234)
- **3.** Insert anchor through material to be fastened (insert tie-wire or pipe version Redi-Drive anchors into drilled holes) and drive anchor with a 3-lb. hammer until the head is flush with surface or desired embedment.

Anchor is now set.

INSTALLATION STEPS FOR REDI-PIPE-DRIVE ANCHORS

 Drill a proper-sized diameter hole at a minimum depth (see chart on page 84, ANSI B212.15–1994).

 Insert anchor through material to be fastened (insert tie-wire or pipe version Redi-Drive anchors into drilled holes) and drive anchor with a 3-lb. hammer until the head is flush with surface or desired embedment.

2. Clean hole.

Redi-Drive

Anchors

Anchor is now set.

SELECTION CHART

Typical Applications— Electrical boxes, conduit clins, and duct work	PART NUMBER	HEAD DIA. In. (mm)	DRILL BIT SIZE In. (mm)	TOTAL LENGTH In. (mm)	MIN. EMBEDMENT In. (mm)	MAX. FIXTURE THICKNESS In. (mm)	CLEARANCE HOLE SIZE In. (mm)	QTY/WT PER BX Ibs.	QTY/WT PER MASTER CARTON Ibs.
	RD4-034	7/16 (11.1)	3/16 (4.8)	3/4 (19.1)	11/16 (17.5)	1/16 (1.6)	1/4 (6.4)	100/ 1.4	1000/15
	RD4-118	7/16 (11.1)	3/16 (4.8)	1-1/8 (28.6)	3/4 (19.1)	3/8 (9.5)	1/4 (6.4)	100/ 1.6	1000/17
	RD4-158	7/16 (11.1)	3/16 (4.8)	1-5/8 (41.3)	3/4 (19.1)	7/8 (22.2)	1/4 (6.4)	100/ 2.2	1000/23
	RD4-200	7/16 (11.1)	3/16 (4.8)	2 (50.8)	3/4 (19.1)	1-1/4 (31.8)	1/4 (6.4)	100/ 2.6	1000/ 26
	RD4-212	7/16 (11.1)	3/16 (4.8)	2-1/2 (63.5)	3/4 (19.1)	1-3/4 (44.5)	1/4 (6.4)	100/ 3.2	1000/33
u	RD4-300	7/16 (11.1)	3/16 (4.8)	3 (76.2)	3/4 (19.1)	2-1/4 (57.2)	1/4 (6.4)	100/ 3.7	1000/37

Tie Wire Typical Applications— Acoustical ceilings, suspended electrical fixture, pencil rod

PART NUMBER	HEAD SIZE O.D. In. (mm)	DRILL BIT SIZE In. (mm)	TOTAL LENGTH In. (mm)	MIN. EMBEDMENT In. (mm)	HEAD HEIGHT In. (mm)	HEAD SIZE I.D.	QTY/WT PER BX Ibs.	QTY/WT PER MASTER CARTON Ibs.
TD4-112	3/16 (4.8)	3/16 (4.8)	2-1/8 (54.0)	1-1/4 (31.8)	5/8 (15.9)	9/32″ hole	100/3.5	1000/35

PART INTERNAL **DRILL BIT SIZE** TOTAL MIN. HEAD INTERNAL QTY/WT QTY/WT EMBEDMENT THREADED NUMBER THREAD SIZE LENGTH HEIGHT PER BX PER MASTER In. (mm) DIAMETER O.D. CARTON I.D. In. (mm) In. (mm) In. (mm) lbs. In. (mm) lbs. PD4-112 1/4 - 20" 3/16 (4.8) 2-1/8 (54.0) 1-1/4 (31.8) 5/8 (15.9) 13/32 (10.3) 100/3.0 1000/30 PD8-134 3/8 - 16" 2-1/2 (63.5) 1-3/4 (44.5) 3/4 (19.1) 9/16 (14.3) 100/ 6.0 1000/61 1/4 (6.4)

Forming Wood attachments to concrete are common Redi-Drive applications, whether permanent or temporary

PART NUMBER	HEAD SIZE O.D. In. (mm)	DRILL BIT SIZE In. (mm)	TOTAL LENGTH In. (mm)	MIN. EMBEDMENT In. (mm)	HEAD HEIGHT In. (mm)	HEAD SIZE I.D.	QTY/WT PER BX Ibs.	QTY/WT PER MASTER CARTON Ibs.
FD6-234	7/16 (11.1)	3/16 (4.8)	2-3/4 (69.9)	1-1/4 (31.8)	N/A	N/A	100/3.1	1000/ 31
FD8-234	7/16 (11.1)	1/4 (6.4)	2-3/4 (69.9)	1-1/4 (31.8)	N/A	N/A	100/5.6	1000/ 56

78

ACCESSORIES

Redi-Drive Setting Tool

PERFORMANCE TABLE

Installs Redi-Drive anchors in tight and hard to access areas—easily and quickly. Just place anchor in rubber "holding cap," place against work surface and hammer in anchors.

PART NUMBER	DESCRIPTION	QTY/WT PER BOX	QTY/WT PER MASTER CARTON
RDST	Redi-Drive Setting Tool	1/1	1/1

Redi-Drive Anchoring Overhead in 3000 PSI Anchors Lightweight Concrete On Metal Deck

ANCHOR	DRILL HOLE	EMBEDMENT	3000PSI (20.7 MPa) CONCRETE			
	DIAMETER In. (mm)	In. (mm)	ULTIMATE TENSION LOAD Lbs. (kN)		ALLOWABLE WORKING LOAD Lbs. (kN)	
3/8" Pipe Drive	1/4 (6.4)	1-1/2 (38.1)	Upper Flute	1,099 (4.9)	275 (1.2)	
			Lower Flute	994 (4.4)	249 (1.1)	

Safe working loads for single installations under static loading conditions should not exceed 25% of the ultimate capacity.

PERFORMANCE TABLE

Redi-Drive Ultimate Tension and Shear Values (Lbs/kN) in Concrete, Anchors Hollow Block and Grout Filled

SHANK DIA.	EMBEDMENT	4500 PS	51 (31.0 MPa)	CMU (HOLLOW I	BLOCK) PSI (MPa)	CMU (GROUT FI	CMU (GROUT FILLED) PSI (MPa)	
ANCHOR In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
Redi-Drive	3/4 (19.1)	1,215 (5.4)	1,857 (8.3)	382 (1.7)	683 (3.0)	731 (3.3)	1,614 (7.2)	
	1 (25.4)	1,667 (7.4)	3,112 (13.8)	392 (1.7)	987 (4.4)	870 (3.9)	1,766 (7.9)	
	1-1/4 (31.8)	2,373 (10.6)	3,355 (14.9)	398 (1.8)	1,381 (6.1)	1,543 (6.9)	2,778 (12.4)	
Tie-Drive or								
1/4" Pipe-Drive	1-1/4 (31.8)	2,372 (10.6)	N/A	N/A	N/A	N/A	N/A	
3/8" Pipe-Drive	1-1/2 (38.1)	2,090 (9.3)	N/A	N/A	N/A	N/A	N/A	

Safe working loads for single installations under static loading conditions should not exceed 25% of the ultimate capacity.

The tabulated values are for anchors installed in a minimum of 12 diameters on center and a minimum edge distance of 10 diameters for 100 percent anchor efficiency. Space and edge distance may be reduced to six diameters spacing and five diameter edge distance provided values are reduced 50%. Linear interpolation may be used for intermediate spacing and edge margins.

The Redi-Drive is the most versatile of all of these products. It can be used at all these embedment depths and is superior in pull-out performance to these competitive anchors.

*Rawl Spike' cannot be installed in 3/4" embedment Rawl Spike' is a registered trademark of Powers Fastening, Inc.

Tapcon[®] Concrete and Masonry Anchors

CORROSION RESISTANCE

Kesternich Results (DIN 40018 2.0L)

30 Cycles - 10% or less rust

Salt Spray Results (ASTM B117)

720 Hrs - 10% or less rust

DESCRIPTION/SUGGESTED SPECIFICATIONS

Tapcon Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE, BRICK OR BLOCK

The "original masonry" anchor that cuts its own threads into concrete, brick, or block. Maximum performance is achieved because the Tapcon Anchor, the Condrive Installation Tool, and the carbide-tipped Tapcon Drill Bits are designed to work as a system. It is essential to use the Condrive tool and the correct drill bit to assure consistent anchor performance.

ADVANTAGES

- Works in all masonry base materials.
- Fast and easy—3 anchors per minute.
- No hole spotting or inserts required.

Tapcon Anchors

Removable.

- Slotted hex and phillips flat head styles.
- Extended corrosion protection— Blue Climaseal[®].
- Available in 410 Stainless Steel.

Blue Climaseal[®] provides extended corrosion protection

Available in 410 Stainless Steel (see photo on left)

Hex Head style on Tapcon Anchors is available for majority of fixture anchoring needs

Phillips Flat Head style is available when flush seating is necessary in countersink applications

Advanced Threadform cuts into concrete and masonry for reduced installation torque and increased pullout performance

Lengths of Tapcon Anchors range from 1-1/4" to 4" in 3/16" and up to 6" in 1/4" diameters.

Nail-Type Point guides the anchor into the pre-drilled hole. Excellent for wood to concrete applications

Tapcon Starter Kit

Starter Kit Part Number: 7904050 Kit Contains: 1 Box HW4-114 (includes 1 drill bit) 1 Box HW4-134 (includes 1 drill bit) 1 Condrive 1000

Tapcon® is a registered trademark of Buildex, a divison of Illinois Tool Works, Inc.

Tapcon[®] Anchors

APPLICATIONS

The Tapcon Anchor is especially well suited for window and door frames because it performs well in block, is available in a flat head style, and is fast to install.

Many horizontal or "wall" applications are attached with Tapcon Anchor because it is removable and works well in block and brick.

The picture shows the Condrive 1000 Installation Kit in action. The kit makes for fast and easy change over from drill bit to driver and controls the driving torque to prevent thread stripping and head snapping in hard base materials.

APPROVAL/LISTINGS

Blue Climaseal™

ICC Evaluation Service, Inc. – #ESR-1671 ICC Evaluation Service, Inc. – #ESR-2202 Miami-Dade County – #07-0315.03 Florida Building Code

410 Stainless Steel

Miami-Dade County — #07-1126.10 Florida Building Code

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of WARNING: this product, please call our Technical Services Department at 1-800-899-7890. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded.
 Minimum anchor embedment: 1"

Maximum anchor embedment: 1-3/4"

3. Drive Anchor.

Head Styles

3/16" diameter has a 1/4" slotted hex washer head (HWH) 1/4" diameter has a 5/16" slotted hex washer head (HWH)

3/16" diameter uses a #2 phillips flat head (PFH) 1/4" diameter uses a #3 phillips flat head (PFH)

- Fixture Thickness—determine the fixture thickness to be anchored
- Anchor Embedment—with a minimum recommended embedment of 1", the correct Tapcon anchor choice can be made. Hole depth must be a minimum 1/4" deeper than the anchor embedment to allow for displaced material

Hole Diameter—proper hole diameter is very important to insure consistent performance and maximum pullout strength. 3/16" anchors require 5/32" diameter bits, and 1/4" anchors require 3/16" diameter bits

IT W Red Head Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

SELECTION CHARTS

Tapcon[®] Anchors

Diameter......3/16" and 1/4" Point Type.....Nail

Thread Form.....Advanced Threadform Technology™ Finish.....Blue Climaseal™

All boxes of ITW Tapcon come packaged with matching carbide-tipped bit. Tapcon is packaged 100 pieces per box and 500 with Blue Climaseal[™] pieces per master carton except HW4-600 and PF4-600 (400 in master carton). FIXTURE RECOMMENDED PART NO. PART NO. PART NO. STRAIGHT SHANK STRAIGHT SHANK PART NO. BIT THICKNESS **TAPCON LENGTH** 3/16" 1/4″ 3/16" 1/4″ LENGTH **BITS FOR BITS FOR** INCHES In. (mm) HEX HEAD HEX HEAD FLAT HEAD FLAT HEAD In. (mm) 3/16" TAPCON 1/4" TAPCON PART NO. PART NO. 0'' - 1/4''1-1/4 (31.8) HW3-114 HW4-114 PF3-114 PF4-114 3-1/2 (88.9) 7900814 7901014 1/4" - 3/4" 1-3/4 (44.5) HW3-134 HW4-134 PF3-134 PF4-134 3-1/2 (88.9) 7900814 7901014 3/4" - 1-1/4" 2-1/4 (57.2) HW3-214 HW4-214 PF3-214 PF4-214 4-1/2 (114.3) 7900818 7901018 1-1/4 " - 1-3/4" 2-3/4 (69.9) HW3-234 HW4-234 PF3-234 PF4-234 4-1/2 (114.3)7900818 7901018 1-3/4" - 2-1/4" HW3-314 HW4-314 PF3-314 PF4-314 5-1/2 7900822 7901022 3-1/4 (82.6) (139.7) 2-1/4" - 2-3/4" 3-3/4 (95.3) HW3-334 HW4-334 PF3-334 PF4-334 5-1/2 (139.7)7900822 7901022 2-1/2" - 3" 4 (101.6)HW3-400 HW4-400 PF3-400 PF4-400 5-1/2 (139.7) 7900822 7901022 3-1/2" - 4" 5 (127.0) N/A HW4-500 N/A PF4-500 6-1/2 N/A 7901026 (165.1)4-1/2" - 5" HW4-600 7901030 6 (152.4) N/A N/A PF4-600 7-1/2 (190.5) N/A

Additional Tapcon bits are available 10 per tube.

Tapcon® 410 SS Anchor

Diameter......3/16" and 1/4" Thread Form.....Original Notched Hi-Lo™ Point Type.....Nail Finish......410 Stainless Steel with Silver Climaseal™ All boxes of ITW Tapcon come packaged with matching carbide-tipped bit. Tapcon is packaged 100 pieces per box and 500 pieces per master carton except 3461907 (400 in master carton).

FIXTURE THICKNESS INCHES	RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" Hex head	PART NO. 3/16" Flat head	PART NO. 1/4" Flat head	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 3/16" TAPCON PART NO.	STRAIGHT SHANK BITS FOR 1/4" TAPCON PART NO.
0"-1/4"	1-1/4 (31.8)	SHW4-114	3434907	SPF4-114	3-1/2 (88.9)	7900814	7901014
1/4" - 3/4"	1-3/4 (44.5)	SHW4-134	3418907	SPF4-134	3-1/2 (88.9)	7900814	7901014
3/4" - 1-1/4"	2-1/4 (57.2)	SHW4-214	3419907	SPF4-214	4-1/2 (114.3)	7900818	7901018
1-1/4 - 1-3/4"	2-3/4 (69.9)	SHW4-234	3420907	SPF4-234	4-1/2 (114.3)	7900818	7901018
1-3/4" - 2-1/4"	3-1/4 (82.6)	SHW4-314	3421907	SPF4-314	5-1/2 (139.7)	7900822	7901022
2-1/4" - 2-3/4"	3-3/4 (95.3)	SHW4-334	3322907	SPF4-334	5-1/2 (139.7)	7900822	7901022
2-1/2" - 3"	4 (101.6)	3459907	N/A	N/A	5-1/2 (139.7)	N/A	3100910
3-1/2" - 4"	5 (127.0)	3460907	N/A	N/A	6-1/2 (165.1)	N/A	3102910
4-1/2" - 5"	6 (152.4)	3461907	N/A	N/A	7-1/2 (190.5)	N/A	3461907

Tapcon SDS Bits DESCRIPTION PART NUMBER 790059 7" (SDS Rotohammer Bits for use with 3/16" Tapcon) 5" (SDS Rotohammer Bits for use 7901060 with 1/4" Tapcon) 7" (SDS Rotohammer Bits for use 7901059 with 1/4" Tapcon)

it W **Red Head**

All SDS bits are sold individually.

PERFORMANCE TABLE

Tapcon®

Ultimate Tension and Shear Values (Lbs/kN) in Concrete Anchors

ANCHOR	MIN. DEPTH OF	f'c = 2000 P	SI (13.8 MPa)	f'c = 3000 P	SI (20.7 MPa)	f'c = 4000 P	SI (27.6 MPa)	f'c = 5000 P	SI (34.5 MPa)
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)						
3/16 (4.8)	1 (25.4)	600 (2.7)	720 (3.2)	625 (2.8)	720 (3.2)	650 (2.9)	720 (3.2)	800 (3.6)	860 (3.8)
	1-1/4 (31.8)	845 (3.7)	720 (3.2)	858 (3.8)	720 (3.2)	870 (3.9)	720 (3.2)	1,010 (4.5)	860 (3.8)
	1-1/2 (38.1)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,220 (5.4)	860 (3.8)
	1-3/4 (44.5)	1,450 (6.5)	870 (3.9)	1,455 (6.5)	870 (3.9)	1,460 (6.5)	990 (4.4)	1,730 (7.7)	990 (4.4)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

PERFORMANCE TABLES

Ultimate Tension and Shear Values(Lbs/kN) in Hollow Block

ANCHOR		ANCHOR	LIGHTWEI	GHT BLOCK	MEDIUM W	EIGHT BLOCK	
	DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	TENSION SHEAR Lbs. (kN) Lbs. (kN)		SHEAR Lbs. (kN)	
	3/16 (4.8)	1 (25.4)	220 (1.0)	400 (1.8)	340 (1.5)	730 (3.2)	
	1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®] Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	N	IORMAL WEIGHT CONCRE	ſE	CONCRETE MASONRY UNITS (CMU)			
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION Factor	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	
Spacing Between	3/16	3	1-1/2	0.73	3	1-1/2	1.00	
Anchors - Tension	1/4	4	2	0.66	4	2	0.84	
Spacing Between	3/16	3	1-1/2	0.83	3	1-1/2	1.00	
Anchors - Shear	1/4	4	2	0.82	4	2	0.81	
Edge Distance -	3/16	1-7/8	1	0.83	4	2	0.91	
Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88	
Edge Distance	3/16	2-1/4	1-1/8	0.70	4	2	0.93	
-Shear	1/4	3	1-1/2	0.59	4	2	0.80	

For SI: 1 inch = 25.4 mm

Tapcon[®] Condrive 1000 Tool Kit

DESCRIPTION/SUGGESTED SPECIFICATIONS

Condrive 1000 Installation Tool— SPECIFIED FOR ANCHORAGE INTO CONCRETE, BRICK OR BLOCK

The key to Tapcon's fast and easy installation is the multi-purpose Condrive Installation Tool. The drive sleeve, along with the hex head and phillips sockets provide the installer with the flexibility necessary for the complete variety of Tapcon applications (tool does not include drill bit).

Condrive[®] 1000 - A multi-purpose tool designed for installation of Tapcon hex head and Phillips flat head anchors up to 3-3/4" long. If driving hex head Tapcon, driver will automatically disengage. The Condrive 1000 has a reusable plastic case.

Condrive Tools are designed to specifically install Tapcon Anchors and to fit standard hammer drills.

ADVANTAGES

- Fast change from drilling to driving
- Eliminates need to change out chucks and bits
- Eliminates need for two tools
- Special nut driver is recessed for torque control to reduce head breakage

APPLICATIONS

The picture shows the Condrive 1000 Installation Kit in action. The kit makes for fast and easy change over from drill bit to driver and controls the driving torque to prevent thread stripping and head snapping in hard base materials.

Condrive 1000 Spare Parts

PART NO.	DESCRIPTION	QTY/WT
(A) 7901001	Drill Adapter	1/.06
(B) 7901002	Sleeve	1/.01
7901003	Black Band	1/.02
7901004	5/32" Ball Bearing	1/.02
(C) 7901006	3/16" Socket	1/.04
(D) 7901007	1/4″ Socket	1/.05
7901008	#2 Phillips bit for 3/16" anchor	1/.10
7901009	#3 Phillips bit for 1/4" anchor	1/.12
(E) 7901010	Phillips Socket	1/.44
7902006	Set Screw	1/.02
7902008	1/16" Ball Bearing	1/.02
7902010	1/8″ Hex Key	1/.10

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Tapcon[®] Maxi-Set Anchors

UltraShield

White UltraShield

DESCRIPTION/SUGGESTED SPECIFICATIONS

FOR TAPCON APPLICATIONS THAT REQUIRE MORE ANCHOR BEARING SURFACE.

ADVANTAGES

- Same reliable performance and speed of installation as regular Tapcon.
- Large 5/8" diameter flange provides more bearing surface and increases pullover resistance. High 5/16" hex head adds driving stability.
- Compatible with DrivTru[™] socket system. Improves installation. Protects paint finish.
- UltraShield[™] and White UltraShield[™] long-life finish deliver excellent corrosion resistance.

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

UltraShield 1100 Hrs 10% or less rust White UltraShield 1500 Hrs NO RED RUST

APPROVAL/LISTINGS

ICC Evaluation Service, Inc. – #ESR-1671

Miami-Dade County - #07-0315.03

Florida Building Code

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-899-7890. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded. Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"
- 3. Drive anchor using DrivTru HWH Socket.

WARNING:

DrivTru PART#	DESCRIPTION	APPLICATIONS
1513910	DrivTru Socket	All 5/16" across flats HWH fasteners

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

APPLICATIONS

pool enclosures. Various sheet metal flashings.

Decorative wrought iron.

Wood nailers and plywood attachment.

😓 RED HEAD"

Tapcon[®] Maxi-Set Anchors

SELECTION CHART

Tapcon[®] **Maxi-Set Anchors**

Diameter.....1/4" Point Type.....Nail

Thread Form..... Advanced Threadform Technology™ Finish.....UltraShield[™] or *White UltraShield[™] Head Style......5/16" across flats hex with 5/8" diameter flange.

RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	FINISH	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 1/4" TAPCON PART NO.
1-3/4 (44.5)	3294000	Ultra Shield	3-1/2 (88.9)	7901014
2-1/4 (57.2)	3295000	Ultra Shield	4-1/2 (114.3)	7901018
1-3/4 (44.5)	3383100*	White Ultra Shield	3-1/2 (88.9)	7901014*
2-1/4 (57.2)	3384100*	White Ultra Shield	4-1/2 (114.3)	7901018*
2-3/4 (69.9)	3408100*	White Ultra Shield	4-1/2 (114.3)	7901018*
3-1/4 (82.6)	3409100*	White Ultra Shield	5-1/2 (139.7)	7901022*

	SDS Bits
PART NUMBER	DESCRIPTION
790059	7" (SDS Rotohammer Bits for use with 3/16" Tapcon)
7901060	5" (SDS Rotohammer Bits for use with 1/4" Tapcon)
7901059	7" (SDS Rotohammer Bits for use with 1/4" Tapcon)

*Available with bronze painted head over White UltraShield™ NOTE: 2-3/4" and 3-1/4" lengths are special orders. Contact customer service for lead-times.

Maxi-Sets are packed 1,000 pieces per master carton except 3409100 is packed 750 pieces.

PERFORMANCE TABLES

	Тар А	CON [®] nchors	Ultimate	Tension d	and Shea	r Values	(Lbs/kN)	in Concre	ete
ANCHOR	MIN. DEPTH OF	f′c = 2000 F	PSI (13.8 MPa)	f′c = 3000 P	SI (20.7 MPa)	f'c = 4000 P	SI (27.6 MPa)	f′c = 5000 P	SI (34.5 MPa)
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Ultimate Tension and Shear Values Tapcon[®] Anchors (Lbs/kN) in Hollow Block

ANCHOR ANCHOR		LIGHTWEI	GHT BLOCK	MEDIUM WEIGHT BLOCK		
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®]Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	N	NORMAL WEIGHT CONCRETE		CONCRETE MASONRY UNITS (CMU)		
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR
Spacing Between Anchors - Tension	1/4	4	2	0.66	4	2	0.84
Spacing Between Anchors - Shear	1/4	4	2	0.82	4	2	0.81
Edge Distance - Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88
Edge Distance -Shear	1/4	3	1-1/2	0.59	4	2	0.80

For SI: 1 inch = 25.4 mm

ITW Red Head

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at www.itwredhead.com

Tapcon[®] SCOTS Anchors

Shutters - protective

Flexible flashings

😓 RED HEAD

CATIONS

DESCRIPTION/SUGGESTED SPECIFICATIONS

PREMIUM CONCRETE ANCHOR THAT COMBINES THE CORROSION PROTECTION **OF STAINLESS STEEL WITH THE PERFORMANCE OF TAPCON ANCHORS.**

ADVANTAGES

- 300 Series Stainless Steel head and Carbon Steel body.
- Integral washer design provides more bearing surface.
- Rubber EPDM sealing washer "locks-out" moisture from building interior.

ORROSION RESIST ANCE

Kesternich Results (DIN 50018, 2.0L)

Climaseal™

30 Cycles - 10% or less red rust

APPROVAL/LISTINGS

ICC Evaluation Service, Inc. - #ESR-1671

Miami-Dade County - #07-0315.03

Florida Building Code

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-899-7890. Failure to follow these instructions can result in serious personal injury.

Head paint available in white or bronze

Delivers the same holding performance as

Tapcon anchors with Blue Climaseal[™].

Reduces replacement of "weathered" fasteners.

(extra charge).

- 1. Select proper fastener diameter / head style / length. a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum 1/4" deeper than Tapcon Anchor to be embedded Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"
- 3. Drive anchor using DrivTru HWH Socket.

DrivTru PART#	DESCRIPTION	APPLICATIONS
1513910	DrivTru Socket	All 5/16" across flats HWH fasteners

Failure to wear safety glasses with side shields can result in serious personal WARNING: injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003). Using the wrong size drill bit will affect performance values and WARNING: may cause failure.

it W **Red Head**

Tapcon[®] SCOTS Anchors

79005

7901060

7901059

SELECTION CHART

Diameter.....1/4" Point Type.....Nail Head Style......5/16" HWH (300 Series Stainless)

Thread Form..... Advanced Threadform Technology™ Finish.....Silver Climaseal™

RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS For 1/4" Tapcon Part No.
1-3/4 (44.5)	3358407	3-1/2 (88.9)	7901014
2-1/4 (57.2)	3359407	4-1/2 (114.3)	7901018

*Available with bronze painted head over White UltraShield™ NOTE: 2-3/4" and 3-1/4" lengths are special orders. Contact customer service for lead-times. SCOTS are packed 1,000 pieces per master, 100 pieces per inner.

	Tapcon [®] SDS Bits
PART NUMBER	DESCRIPTION
790059	7" (SDS Rotohammer Bits for use with 3/16" Tapcon)

5" (SDS Rotohammer Bits for use with 1/4" Tapcon)

7" (SDS Rotohammer Bits

for use with 1/4" Tapcon)

PERFORMANCE TABLES

Tapcon[®] Ultimate Tension and Shear Values (Lbs/kN) in Concrete Anchors

ANCHOR MIN. DEPTH OF		ť c = 2000 PSI (13.8 MPa)		f'c = 3000 PSI (20.7 MPa)		ť c = 4000 PSI (27.6 MPa)		ť c = 5000 PSI (34.5 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)						
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Tapcon[®] Anchors

Ultimate Tension and Shear Values (Lbs/kN) in Hollow Block

ANCHOR ANCHOR		LIGHTWEI	GHT BLOCK	MEDIUM WEIGHT BLOCK		
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®]Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	NORMAL WEIGHT CONCRETE			CONCRETE MASONRY UNITS (CMU)			
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	
Spacing Between Anchors - Tension	1/4	4	2	0.66	4	2	0.84	
Spacing Between Anchors - Shear	1/4	4	2	0.82	4	2	0.81	
Edge Distance - Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88	
Edge Distance -Shear	1/4	3	1-1/2	0.59	4	2	0.80	

For SI: 1 inch = 25.4 mm

Tapcon[®] XL Anchors

UltraShield

White UltraShield

APPLICATIONS

Shutters - protective and decorative

Screened porch and pool enclosures. Railings

Mounted electrical equipment

Sill plates

RED HEAD

DESCRIPTION/SUGGESTED SPECIFICATIONS

EXTRA LARGE TAPCON FOR EXTRA LARGE CHALLENGES!

ADVANTAGES

- Internal TORX® T-40 drive assures easy installation.
- High button head resists cam-out during installation.
- Corrosion protection of UltraShield[™] and White UltraShield[™] to combat aggressive environments.
- Available in silver or white to complement standard fixtures.
- CORROSION RESISTANCE

Salt Spray Test (ASTM B117) UltraShield

1120 Hrs 10% or less rust

White UltraShield 1500 Hrs 10% or less rust

Delivers over 3,000 lbs. holding power in concrete.

1/4" SDS Tapcon drill bit for added convenience.

Condrive[®] XL with MegaGrip[™] bit holder for rapid

Alternative to sleeve anchors.

one-tool installation.

APPROVAL/LISTINGS

Miami-Dade County – #07-1126.10

Florida Building Code

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-899-7890. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded. Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"
- 3. Insert the adjustable MegaGrip bit tip holder in the small opening of sleeve. Slide the open end of the Condrive XL Installation Tool sleeve over the drill bit and snap in place.
- 4. Drive anchor using MegaGrip adjustable magnetic bit holder with TORX T-40 bit tip

MegaGrip PART#	DESCRIPTION
3400910	MegaGrip Bit Holder

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

Tapcon[®] XL Anchors

SELECTION CHART

T	apcon®DisplayKL AnchorsH	iameter5/16" oint TypeNail I ead StyleHigh button	Thread Form Reverse Hi- FinishUltraShield with TORX T-40 Drive	Lo® ™ or *White UltraShield™
RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	FINISH	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 1/4" TAPCON PART NO.
2-1/4 (57.2)	3395902	Ultra Shield	6-3/4" SDS drill bit with hex	3394910
2-1/4 (57.2)	3397902	*White Ultra Shield	6-3/4" SDS drill bit with hex	3394910
2-3/4 (69.9)	3398902	*White Ultra Shield	6-3/4" SDS drill bit with hex	3394910

XLs are packed 100 pieces per master carton.

* HEAD PAINT AVAILABLE

PART NO.	DESCRIPTION	CARTON QTY
3401910	Condrive® XL Installation Tool with MegaGrip™ Bit Holder with TORX® T-40 Bit Tip	10 per master carton
3400910	MegaGrip™ Magnetized Bit Holder with TORX T-40 Bit Tip	10 per bag
3394910	1/4" x 6-3/4" SDS Tapcon Drill Bit with Hex	1 piece per tube

Tapcon XL Anchors must be installed using all Red Head system components (Tapcon XL Anchors, Condrive XL Installation Tool and Tapcon Drill Bits) in order to qualify for ITW Red Head system support.

PERFORMANCE TABLES

	Tapcon [®] XL Anchors	Ultimate Ten (Lbs/kN) in C	sion and Shea oncrete	r Values
ANCHOR MIN. DEPTH OF		EDGE DISTANCE	f′c = 3000 P	SI (20.7 MPa)
DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)
5/16 (7.9)	1-1/4 (31.8)	1-9/16 (39.7)	1,050 (4.7)	1,330 (5.9)
		2-3/16 (55.6)	1,205 (5.4)	1,725 (7.7)
	1-3/4 (44.5)	1-9/16 (39.7)	2,020 (9.0)	1,530 (6.8)
		2-3/16 (55.6)	2,250 (10.0)	2,505 (11.1)
	2-1/4 (57.2)	1-9/16 (39.7)	2,850 (12.7)	1,955 (8.9)
		2-3/16 (55.6)	3,120 (13.9)	3,250 (14.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Tapcon[®]Ultimate Tension & Shear Values in
Concrete Masonry Units

ANCHOR MINIMUM		EDGE	HOLLO	W CORE ¹	GROUT-FILLED ²		
DIA. In. (mm)	DEPTH OF EMBEDMENT In. (mm)	DISTANCE (Inches)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
5/16 (7.9)	1-1/4 (31.8)	4	1,045 (4.6)	2,280 (10.1)	1,045 (4.6)	2,280 (10.1)	
	1-3/4 (44.5)	4	NOT RECOMMENDED	NOT RECOMMENDED	1,950 (8.7)	2,825 (12.6)	
	2-1/4 (57.2)	4	NOT RECOMMENDED	NOT RECOMMENDED	3,770 (16.8)	3,140 (14.0)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

1 CMU = 1,600 PSI minimum compressive strength.

2 CMU = 1,600 PSI minimum compressive strength with 2,000 PSI grout.

Tapcon[®] Storm Guard Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

DIRECT MOUNT PERMANENT ANCHORS FOR QUICK AND EASY INSTALLATIONS OF METAL AND PLYWOOD PANELS TO CONCRETE AND BLOCK.

ADVANTAGES

- Available in UltraShield[™] or White UltraShield[™] for corrosion protection in coastal environments.
- Available in 2-1/4" and 3-1/4" lengths.
- Both lengths have 1/4-20 x 7/8" external thread above collar.
- No caulking required.

- Threaded chamfered safety collar prevents overdriving.
- 3/16″ Hex Drive.
- Use with ANSI standard 3/16" carbide-tipped drill bit. (bit not included)

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

White UltraShield 1500 Hrs 10% or less red rust Silver UltraShield 1100 Hrs 10% or less rust

APPROVAL/LISTINGS

Miami-Dade County – #06-0222.07

INSTALLATION STEPS

Read installation instructions before using!

DO NOT BEND DRILL BIT. DO NOT FORCE THE DRILL BIT INTO BASE MATERIAL.

3/16" Nut Driver Installation Tool (Part # 3426910)

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

APPLICATIONS

Direct mount permanent anchors for quick and easy installations for metal and plywood panels to wood, hollow block and concrete.

RED HEAD

#TW Reci Head Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Tapcon[®] Storm Guard Anchors

Thread Form..... Original Notched Hi-Lo™ Finish......UltraShield™ or *White UltraShield™

PART NO.	DESCRIPTION	COATING	BOX QTY
3424000	1/4″ dia. x 2-1/4″	UltraShield	1,000
3424100	1/4″ dia. x 2-1/4″	White UltraShield	1,000
3425000	1/4″ dia. x 3-1/4″	UltraShield	500
3425100	1/4″ dia. x 3-1/4″	White UltraShield	500
3426910	3/16" Nut Driver		1
7900814	3/16" x 3-1/2" Carbide-tipped Drill Bit		1

PERFORMANCE TABLES

Tapcon[®] Ultimate Tension and Shear Values (Lbs/kN) in Concrete **Storm Guard Anchors** MIN. DEPTH OF f'c = 3000 PSI (20.7 MPa) ANCHOR EDGE DISTANCE DIA. EMBEDMENT TENSION SHEAR In. (mm) In. (mm) Lbs. (kN) Lbs. (kN) 1/4 (6.4) (25.4) 1-1/4 (31.8) 1,230 (5.5) 1,339 (6.0) 1 1 (25.4) 2-1/2 (63.5) 1,701 (7.6) 2,333 (10.4) 1-1/4 2,704 (12.0) 1,375 1-3/4 (44.5) (31.8) (6.1) 2-1/2 1-3/4 (44.5) (63.5) 2,844 (12.6) 2,618 (11.6)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Storm	Tapcon [®] Guard Anchors	Ultimate Tension and Shear Values (Lbs/kN) in Hollow Block			
ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	EDGE DISTANCE	f'c = 1500 PS	l (10.4 MPa)	
In. (mm)	In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1-1/4 (31.8)	1-1/4 (31.8)	1,955 (8.7)	536 (2.4)	
	1-1/4 (31.8)	2-1/2 (63.5)	1,940 (8.6)	1,088 (4.8)	

Storm	Tapcon Guard Anchor	[®] Ultimate T s (Lbs/kN) ir	Ultimate Tension and Shear Values (Lbs/kN) in Grout-Filled (CMU)		
ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	EDGE DISTANCE	GROUT-FILLED (CMU) f'c = 2000 PSI (13.8 MPa)		
In. (mm)	In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1-3/4 (44.5)	1-1/4 (31.8)	3,335 (14.8)	1,207 (5.4)	
	1-3/4 (44.5)	2-1/2 (63.5)	3,779 (16.8)	2,061 (9.2)	

SAMMYS® SSC Hurricane Protection Anchors

APPROVAL/LISTINGS

Miami Dade County # 06-0222.07

APPLICATIONS

Direct mount permanent anchors for quick and easy installations for metal and plywood panels to hollow block and concrete.

RED HEAD

DESCRIPTION/SUGGESTED SPECIFICATIONS

SPECIFIED FOR SECURING SHUTTERS

Low profile permanent anchors for quick and easy secure shutter installations.

ADVANTAGES

- Thread: 1/4-20 internal thread
- Thread Depth: 5/8"
- Head Diameter: 1/2"
- Head Length: 3/4"

SELECTION CHART

SAMMYS Diameter.....1/4" Thread Form.... Original Notched Hi-Lo™ Finish.....Blue Climaseal™ Point Type....Nail **Hurricane Protection Anchors** PART NO. ANCHOR LENGTH BOX QTY PART NO. ANCHOR LENGTH BOX OTY 8103957 1-1/4″ 125 8166957 3-3/4″ 125 8169957 1-3/4" 125 8162957 4″ 125 8164957 2-1/4" 125 8168957 5″ 125 2-3/4″ 125 8155957 6″ 125 8165957 8167957 3-1/4" 125 8182910 Installation Tool 1

PERFORMANCE TABLES

	SAMMYS
Hurricane Pro	tection Anchors

Ultimate Tension and Shear Values (Lbs/kN) in Concrete

Cap made of 304 stainless steel will never rust.

"Original" Tapcon® 1/4 dia. anchor with

T25 torx[®] driver for fast and easy installations.

Blue Climaseal[™].

ANCHOR	MIN. DEPTH OF	EDGE DISTANCE	f'c = 3295 PSI (22.7 MPa)		
DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1 (25.4)	1-1/4 (31.8)	1,533 (6.8)	1,166 (5.2)	
	1 (25.4)	2-1/2 (63.5)	2,024 (9.1)	1,264 (5.6)	
	2-1/4 (57.2)	1-1/4 (31.8)	2,972 (13.2)	1,342 (6.0)	
	2-1/4 (57.2)	2-1/2 (63.5)	3,099 (13.8)	1,906 (8.5)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Hurricane Pro	SAMMYS tection Anchors	Ultimate Te (Lbs/kN) in l	nsion and Shea Hollow Block	r Values	
ANCHOR	MIN. DEPTH OF	EDGE DISTANCE	f′c = 1500 F	PSI (10.4 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1-1/4 (31.8)	1-1/4 (31.8)	1,388 (6.2)	526 (2.3)	
	1-1/4 (31.8)	2-1/2 (63.5)	1,427 (6.3)	1,056 (4.7)	

Hurricane Pro	SAMMYS Direction Anchors	Ultimate Tei (Lbs/kN) in (nsion and Shear Grout-Filled (CN	Values IU)
ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	EDGE DISTANCE	Hollow Block f'c = 2000 PSI (13.8 MPa)	
In. (mm)	ln. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	2-1/2 (63.5)	1-1/4 (31.8)	3,011 (13.4)	1,086 (4.8)
	2-1/2 (63.5)	2-1/2 (63.5)	3,332 (14.8)	1,317 (5.9)

TW Reci Head Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Call our toll free current prod

Hammer-Set^{**} Anchors

Nail-Drive Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS Hammer-Set Nail Drive Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE, BLOCK OR BRICK

Hammer-Set **Nail-Drive** Anchor

The Hammer-Set one-piece zinc plated steel anchor consists of an expansion body and expander drive pin. Anchors meet or exceed GSA specification A-A-1925A Type 1. (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)

ADVANTAGES

- Fast, easy installation
- Works in concrete, block and brick
- Install through material to be fastened
- Low profile mushroom head style

APPROVALS/LISTINGS

Meets or exceeds GSA specification A-A-1925A Type 1 (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)

INSTALLATION STEPS

- 2 Drill proper size hole through material to be fastened into base material. (See Chart for bit size).
- 2. Clean hole.
- 3. Insert Hammer-Set into hole until head of anchor body is flush with material to be fastened. Tap the nail
 - until flush with head of anchor. Ensure minimum embedment is 1/4" deeper than anchor embedment. Be sure head is firmly against fixture
- 4. Anchor is now set. ** NOT RECOMMENDED FOR OVERHEAD **

SELECTION CHART Hammer-Set

Rulk Packaging Available

PART NUMBER	DESCRIPTION In. (mm)	DRILL SIZE In. (mm)	MAX. FIXTURE THICKNESS In. (mm)	MIN. EMBEDMENT In. (mm)	MIN. HOLE DEPTH In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CTN - Ibs.
HS-1607	3/16 x 7/8 (4.8 x 22.2)	3/16 (4.8)	1/4 (6.4)	5/8 (15.9)	1-1/8 (28.6)	100/ 2.0	1000/20
HS-1406	1/4 x 3/4 (6.4 x 19.1)	1/4 (6.4)	1/8 (3.2)	5/8 (15.9)	1 (25.4)	100/ 2.2	1000/22
HS-1410	1/4 x 1 (6.4 x 25.4)	1/4 (6.4)	1/4 (6.4)	3/4 (19.1)	1-1/4 (31.8)	100/ 2.4	1000/24
HS-1412	1/4 x 1-1/4 (6.4 x 31.8)	1/4 (6.4)	1/2 (12.7)	3/4 (19.1)	1-1/2 (38.1)	100/ 2.6	1000/26
HS-1414	1/4 x 1-1/2 (6.4 x 38.1)	1/4 (6.4)	3/4 (19.1)	3/4 (19.1)	1-3/4 (44.5)	100/ 2.8	1000/28
HS-1420	$1/4 \times 2$ (6.4 x 50.8)	1/4 (6.4)	1-1/4 (31.8)	3/4 (19.1)	2-1/4 (57.2)	100/35	1000/35

PERFORMANCE TABLE

Ultimate Tension and Shear Hammer-Set Values in Concrete (Lbs/kN)*

ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	4000 PSI	27.6 MPa)	
ln. (mm)	ln. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
3/16″ (4.8)	5/8" (15.9)	640 (2.8)	810 (3.6)	
1/4" (6.4)	3/4" (19.1)	880 (3.9)	970 (4.3)	
1/4" (6.4)	1″ (25.4)	950 (4.2)	970 (4.3)	
1/4″ (6.4)	1-1/4″ (31.8)	1,025 (4.6)	970 (4.3)	

Safe working loads for single installations under static loading conditions should not exceed 25% of the ultimate capacity.

IONS

*For overhead applications refer to page 85 for **Redi-Drive information** and performance data

NOT FOR USE IN OVERHEAD APPLICATIONS*

- Electrical boxes
- Conduit clips
- Drywall track
- Roof flashing

The Original Self-Drilling Drywall Anchor

E-Z Ancor Kits

Starter Kit Part Number: EZ25 Kit Contains: 25 Zinc Anchors 25 Screws

Starter Kit Part Number: EZP25 Kit Contains: 25 Plastic Anchors 25 Screws

DESCRIPTION/SUGGESTED SPECIFICATIONS

SPECIFIED FOR ANCHORAGE INTO GYPSUM WALLBOARD

The E-Z Ancor is a one-piece self-drilling anchor designed for optimal holding performance in gypsum wallboard. Available in zinc or high strength engineered plastic (non-conductive). Ideal anchor for 3/8", 1/2" and 5/8" gypsum wallboard.

ADVANTAGES

- Fast—no pre-drilling
- Easy—just use #2 phillips bit
- Clean and neat—tri-cut point drills a small hole and seats flush

APPLICATIONS

- Electrical fixturesHVAC fixtures
- Bathroom accessories

- Corrosion resistance
- Removable—easily backed out of wallboard
- Breakaway point for easy usage when cavity is shallow
 - Shelving
 - Closet organizers
 - Curtain rods
 - Signage

INSTALLATION STEPS

recess of E-Z Ancor.

Gypsum wallboard while turning the anchor clockwise until seated flush.

3. Place fixture in position over installed E-Z Ancor. Insert screw (#8A or AB screws are recommended). Tighten fixture into place.

SELECTION CHART

screwdriver (#2 phillips bit) into

	E-Z Ancor					
PART NUMBER	DESCRIPTION	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.			
EZ100	Zinc E-Z Ancor	100/ 1.6	1000/17.0			
EZPPL100	Plastic E-Z Ancor	100/ 0.1	1000/ 4.2			
EZP25	25 Plastic Anchors/25 Screws (#8 - 1-1/4" sheet metal screws)	1/ 0.9	10/ 3.0			
EZ25	25 Zinc Anchors/25 Screws (#8 – 1-1/4" sheet metal screw)	1/ 0.9	10/ 10			
* Not for ove	* Not for overhead					

PERFORMANCE TABLE =-Z Ancor ULTIMATE PULLOUT LBS. ULTIMATE SHEAR LBS. MAXIMUM **GYPSUM BOARD THICKNESS GYPSUM BOARD THICKNESS** FIXTURE THICKNESS 3/8″ 1/2" 5/8" 3/8" 1/2" 5/8" 3/4″ 40 50 75 135 150 200

Divide by 4 for allowable load values.

TW Rec Head Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

94

The Truly Versatile **Plug Anchor**

PS-0608SP

it W **Red Head** Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at www.itwredhead.com

DESCRIPTION/SUGGESTED SPECIFICATIONS **Plug Anchors** — SPECIFIED FOR ANCHORAGE INTO ALL BASE MATERIALS

The Poly-Set is a polyethylene expansion anchor designed for fastening into drywall, hollow block, brick and solid concrete.

ADVANTAGES

- Unique twisting action provides superior holding over standard plug anchors
- Resistant to moisture, chemicals or atmospheric conditions-can be used anywhere
- Pre-packaged in kits with matching screws and carbide-tipped drill bit
- Works well in *all* base materials

For Hollow Material

INSTALLATION STEPS For Solid Concrete

1. Drill hole at least 1/4" deeper than anchor length and insert anchor until flange is flush.

2. Fasten fixture by inserting sheet metal screw through fixture and into anchor.

5/8'

3/4"

3 -4 Turns

1 -2 Turns **2.** Fasten fixture by inserting sheet metal screw through fixture and

1. Drill hole and insert anchor until

flange is flush.

into anchor.

7 Turns

5 Turns

6 -

4 -

3. Expand anchor after screw head is against fixture, tighten screw the number of additional turns indicated on the chart below.

> Approximate number of additional turns after screw head is against fixture for indicated thickness of hollow wall.

SELECTION CHART

Poly-Set Anchors						
PART NUMBER	DRILL BIT Size	ANCHOR LENGTH	SCREW SIZE	GRIP RANGE	QTY/WT PER BOX (lbs.)	QTY/WT PER MASTER CTN (lbs.)
PS-0608SP	3/16	1-1/4	#6 - 8	3/8 - 3/4	100/ 0.9	1000/ 2
PS-1012SP	9/32	1-7/16	#10 - 12	1/2 - 1	100/ 1.8	1000/4

PERFORMANCE TABLES

Average Ultimate Tension Load in Various Base Materials

PART NUMBER	DRYWALL (1/2")	CONCRETE (2000 PSI)	CONCRETE (4000 PSI)	HOLLOW BLOCK (CMU)
PS-0608SP	110 lbs.	225 lbs.	265 lbs.	235 lbs
PS-1012SP	145 lbs.	355 lbs.	390 lbs.	385 lbs

Allowable load values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

	Р	oly-Set Kits			
PART NUMBER	DRILL BIT Size	KIT CONTAINS	GRIP RANGE	QTY/WT PER BOX (lbs.)	QTY/WT PER MASTER CTN (lbs.)
PS-0608SKP	3/16	100 1-1/4" anchors/100 #8 screws	3/8 - 3/4	1/ 1.0	10/ 11
PS-1012SKP	9/32	50 1-7/16" anchors/50 #12 screws	1/2 - 1	1/ 1.2	10/ 12

INSTALLATION STEPS

		Post-Torque
2	Pagh ar Mark 	

DESCRIPTION/SUGGESTED SPECIFICATIONS

SPECIFIED FOR ANCHORAGE INTO CONCRETE

The Boa[™] Coil is a high performance expansion anchor providing through fixture fastening and easy removal to keep the job moving. It's reusable with the coil replacement anchors making this anchor a low cost solution.

Ideal combination of value, performance and reusability make the Boa Coil the choice for Forming and tilt-wall contractors.

ADVANTAGES: Easy installation, removable, reusable, high shear strength, grade 5 bolt.

APPLICATIONS: Concrete formwork, load bearing angles, beams and columns, machinery holddown, Jersey barrier, glare screens, light rail/commuter work.

NOTE: To achieve maximum loads the installation process needs to be carried out as follows:

- 1. Using the fixture as a template, drill the correct diameter and depth hole.
- 2. Remove debris with vacuum or hand pump.
- 3. Insert the assembled Boa Coil anchor. (The coil anchor tab points up the anchor.) Tap anchor down to depth set mark and stop.
- 4. Tighten until washer is firmly held to the fixture and stop. Number of turns to set anchor: 1/2" 3-4 turns, 5/8" and 3/4" 4-5 turns. Ensure washer is tight and snug fit.
- 5. The anchor is ready to take load. (The bolt can be removed leaving the coil in the hole.) The Boa coil anchor can be reused up to 3 times in new holes.

SELECTION CHART

Boa Coil Anchors

PART NO.	ANCHOR DIA In. (mm)	SOCKET SIZE In.	DRILL BIT DIA. In. (mm)	HOLE DEPTH In. (mm)	FIXTURE THICKNESS AT MINIMUM EMBEDMENT TO BE FASTENED In. (mm)	QTY/WT PER BOX Lbs.	QTY/WT PER MASTER CTN Lbs.
RHCA-1230	1/2 (12.7)	3/4	1/2 (12.7)	3-1/2 (88.9)	3/8 (9.5)	25 / 4.5	150 / 27.2
RHCA-1240	1/2 (12.7)	3/4	1/2 (12.7)	4-1/2 (114.3)	1-3/8 (35.0)	25 / 5.9	150 / 35.6
RHCA-1254	1/2 (12.7)	3/4	1/2 (12.7)	6 (152.4)	2-7/8 (73.0)	25 / 7.8	150 / 46.9
RHCA-5834	5/8 (15.9)	15/16	5/8 (15.9)	4 (101.6)	3/8 (9.5)	20 / 8.8	120 / 52.5
RHCA-5850	5/8 (15.9)	15/16	5/8 (15.9)	5-1/2 (139.7)	1-7/8 (47.6)	15 / 8.5	90 / 51.0
RHCA-3444	3/4 (19.1)	1-1/8	3/4 (19.1)	5 (127.00)	1/4 (6.4)	10 / 6.4	60 / 38.3
RHCA-3460	3/4 (19.1)	1-1/8	3/4 (19.1)	6-1/2 (165.1)	1-3/4 (44.5)	10 / 8.2	60 / 49.1

Replacement coil available for easy re-use with Red Head Boa Coil Anchors only.

COIL REPLACEMENT PART NO.	QTY/WT PER BOX Lbs.	QTY/WT PER MASTER CTN Lbs.
RHC-12 (1/2")	100 / 2.8	600/16.9
RHC-58 (5/8")	100 / 2.2	600/13.1
RHC-34 (3/4")	100 / 1.3	600/7.5

PERFORMANCE TABLES

Boa Coil Anchors Ultimate concrete/steel capacity in concrete (1)

ANCHOR	HOLE DIA.	EFFECT	IVE	FIX	URE	TURNS		ULTIMATE CONCRETE CAPACITY (2) (3)								ULTIMATE STEEL STRENGTH (4)						
DIAMETER	In. (mm)	EMBEDN	NENT	HOLE	DIA.	TO SET		2,000 PSI (13.8 MPa)		4,000 PSI (27.6 MPa)		6,000 PSI (41.4 MPa)		a)	LBS. (kN)							
In. (mm)	DEPTH In. (mm)		mm)	ANCHOR	TENSI	ON (5)	SH	EAR	TENSI	ON (5)	SHE	AR	TENSIO	N (5)	SHE	AR	TENS	ION	SHE	AR		
		ln. (m	m)				Lbs.	(kN)	Lbs	. (kN)	Lbs.	(kN)	Lbs.	(kN)	Lbs. (kN)	Lbs. ((kN)	Lbs.	(kN)	Lbs. ((kN)
1/2 (12.7)	1/2 (12.7)	2 (50.8)	9/16	(14.3)	3-4	4,039	(17.9)	6,070	(27.0)	5,715	(25.4)	8,590	(38.2)	6,994	(31.1)	10,516	(46.8)	19,384	(86.2)	14,456	(64.3)
		3 (76.2)	9/16	(14.3)	3-4	7,403	(32.9)	12,082	(53.7)	10,471	(46.6)	17,089	(76.0)	12,822	(57.0)	20,937	(93.1)				
5/8 (15.9)	5/8 (15.9)	2-3/8 (60.3)	11/16	(17.5)	4-5	5,291	(23.5)	8,800	(39.1)	7,483	(33.3)	12,445	(55.4)	9,162	(40.8)	15,242	(67.8)	30,152	(134.1)	21,937	(97.6)
		3-7/8 (98.4)	11/16	(17.5)	4-5	10,855	(48.3)	19,999	(89.0)	15,355	(68.3)	28,285	(125.8)	18,802	(83.6)	34,636	(154.0)				
3/4 (19.1)	3/4 (19.1)	3-1/4 (82.6)	13/16	(20.6)	4-5	8,479	(37.7)	16,567	(73.7)	11,991	(53.3)	23,427	(104.2)	14,682	(65.3)	28,690	(127.6)	43,360	(192.9)	32,031	(142.5)
		4-1/2 (1	14.3)	13/16	(20.6)	4-5	13,555	(60.3)	27,239	(121.2)	19,171	(85.3)	38,518	(171.3)	23,478	(104.4)	47,173	(209.8)				

(1) Use lower value of either concrete or steel (2) Concrete capacity based on Concrete Capacity Design method and verified by test data (3) Influence factors must be applied to concrete strength values (4) Steel strength based on .57 Fu Ag for shear and 0.75 Fu Ag for tension (5) Test results when reused four times; maximum 20% reduction in tensile capacity; no reduction in shear

Boa Coil Anchors Allowable concrete/steel capacity in concrete (1)

ANCHOR	HOLE DIA.	EFFECTIVE	FIXTURE	TURNS		RECOMM		ALLOWABLE STE	EL STRENGTH (4)			
DIAMETER	In. (mm)	EMBEDMENT	HOLE DIA.	TO SET	2,000 PSI	(13.8 MPa)	4,000 PSI	(27.6 MPa)	6,000 PSI	(41.4 MPa)	LBS. (kN)	
ln. (mm)		DEPTH In. (mm)	ln. (mm)	ANCHOR	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/2 (12.7)	1/2 (12.7)	2 (50.8) 3 (76.2)	9/16 (14.3) 9/16 (14.3)	3-4 3-4	1,011 (4.5) 1,852 (8.2)	1,517 (6.7) 3,020 (13.4)	1,430 (6.4) 2,619 (11.6)	2,147 (9.5) 4,272 (19.0)	1,751 (7.8) 3,208 (14.3)	2,629 (11.7) 5,234 (23.3)	8,529 (37.9)	5,579 (24.8)
5/8 (15.9)	5/8 (15.9)	2-3/8 (60.3) 3-7/8 (98.4)	11/16 (17.5) 11/16 (17.5)	4-5 4-5	1,324 (5.9) 2,715 (12.1)	2,200 (9.8) 5,000 (22.2)	1,872 (8.3) 3,840 (17.1)	3,111 (13.8) 7,071 (31.5)	2,293 (10.2) 4,703 (20.9)	3,810 (16.9) 8,660 (38.5)	13,266 (59.0)	8,466 (37.7)
3/4 (19.1)	3/4 (19.1)	3-1/4 (82.6) 4-1/2 (114.3)	13/16 (20.6) 13/16 (20.6)	4-5 4-5	2,121 (9.4) 3,390 (15.1)	4,141 (18.4) 6,810 (30.3)	2,999 (13.3) 4,794 (21.3)	5,556 (24.7) 9,630 (42.8)	3,673 (16.3) 5,872 (26.2)	7,172 (31.9) 11,793 (52.4)	19,078 (84.9)	12,362 (55.0)

(1) Use lower value of either concrete or steel (2) Safety factor 4 (3) Influence factors must be applied to concrete strength values (4) Steel strength based on .22 Fu Ag for shear and 0.33 Fu Ag for tension (5) Test results when reused four times; maximum 20% reduction in tensile capacity; no reduction in shear

Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Prima High Expansion Sleeve Anchors

ADVANTAGES / APPLICATIONS

ADVANTAGES: Removable, finished hex head, grade 5 bolt, easy to install, solid and hollow base material.

APPLICATIONS: Industrial doors, storage racking, security shutters, signs, gate & fence posts, and spiral staircase and hand rail

SELECTION CHART

Prima Sleeve Anchors

PART NUMBER	BOLT DIA.	SOCKET SIZE	FIXTURE HOLE DIA.	DRILL BIT Dia.	EFFECTIVE EMBEDMENT DEPTH	DRILLED HOLE DEPTH ¹	MAXIMUM FIXTURE THICKNESS	BOLT LENGTH	QTY/WT PER BOX	QTY/WT PER MASTER
	ln. (mm)	In. (mm)	ln. (mm)	In. (mm)	In. (mm)	In. (mm)	ln. (mm)	In. (mm)	Lbs.	Lbs.
	d		d _r	ď	h _{ef}	h _{hole}	t _{fix}	L		
RHPA-1423	1/4 (6)	7/16 (12)	5/16 (8)	7/16 (12)	1-1/2 (38)	2-1/2 (64)	3/8 (10)	2-3/8 (60)	50/2.8	300 / 17.0
RHPA-1426	1/4 (6)	7/16 (12)	5/16 (8)	7/16 (12)	1-1/2 (38)	2-3/4 (70)	1 (25)	2-3/4 (70)	50/4.3	300 / 25.9
RHPA-3830	3/8 (10)	9/16 (14)	1/2 (12)	5/8 (16)	2 (51)	3 (76)	3/8 (10)	3 (76)	25/5.0	150 / 29.7
RHPA-3834	3/8 (10)	9/16 (14)	1/2 (12)	5/8 (16)	2 (51)	3 (76)	1 (25)	3-1/2 (89)	25/5.4	150 / 32.5
RHPA-3844	3/8 (10)	9/16 (14)	1/2 (12)	5/8 (16)	2 (51)	3 (76)	2 (51)	4-1/2 (114)	25/6.2	150/37.3
RHPA-1234	1/2 (12)	3/4 (19)	9/16 (14)	13/16 (20)	2-1/2 (64)	3-1/2 (89)	3/8 (10)	3-1/2 (89)	20/8.1	120/48.5

t_{fix}

Tinst

- 1. Drill a hole with the proper drill bit diameter (see selection chart). Clean hole thoroughly.
- 2. Insert the Prima sleeve entirely in the hole without the fixture.
- 3. Position the fixture to be anchored, twist the Prima bolt until it is flush with the fixture.
- Tighten the Prima bolt to the specified installation torque (see performance table).

¹ Drilled hole depth is based on maximum fixture thickness; if fixture thickness is less than the maximum, the Prima bolt might reach the bottom of the hole prior to proper installation. hole > L - t_{fix} (the drilled hole depth must be larger than the difference of the bolt length and the fixture thickness)

PERFORMANCE TABLE

Prima Sleeve Anchors Ultimate Tension and Shear Values in Concrete (Lbs/kN)¹⁻³

h۵

h_{hole}

INSTALLATION TOROUE	ANCHOR	EMBEDMENT	f′c = 2000	PSI (13.8 MPa)	f'c = 3000 P	SI (20.7 MPa)	f'c = 4000 F	SI (27.6 MPa)
TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	DEPTH In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
10 (14)	7/16 (12)	1-1/2 (38)	2,404 (10.7)	2,141 (9.5)	3,400 (15.1)	2,650 (11.8)	4,164 (18.5)	3,159 (14.1)
40 (54)	5/8 (16)	2 (51)	4,758 (21.2)	5,812 (25.9)	6,729 (29.9)	6,408 (28.5)	8,242 (36.7)	7,004 (31.2)
60 (81)	13/16 (20)	2-1/2 (63)	6,027 (26.8)	8,872 (39.5)	8,524 (37.9)	9,381 (41.7)	10,440 (46.4)	9,889 (44.0)
	INSTALLATION TORQUE Ft. Lbs. (Nm) 10 (14) 40 (54) 60 (81)	INSTALLATION TORQUE ANCHOR DIA. Ft. Lbs. (Nm) In. (mm) 10 (14) 7/16 (12) 40 (54) 5/8 (16) 60 (81) 13/16 (20)	INSTALLATION TORQUE ANCHOR DIA. EMBEDMENT DEPTH Ft. Lbs. (Nm) In. (mm) In. (mm) 10 (14) 7/16 (12) 1-1/2 (38) 40 (54) 5/8 (16) 2 (51) 60 (81) 13/16 (20) 2-1/2 (63)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	INSTALLATION TORQUE ANCHOR DIA. EMBEDMENT DEPTH fc = 2000 PSI (13.8 MPa) fc = 3000 PSI (20.7 MPa) Ft. Us. (Nm) DIA. DEPTH TENSION SHEAR TENSION SHEAR 10 (14) 7/16 (12) 1-1/2 (38) 2,404 (10.7) 2,141 (9.5) 3,400 (15.1) 2,650 (11.8) 40 (54) 5/8 (16) 2 (51) 4,758 (21.2) 5,812 (25.9) 6,729 (29.9) 6,408 (28.5) 60 (81) 13/16 (20) 2-1/2 (63) 6,027 (26.8) 8,872 (39.5) 8,524 (37.9) 9,381 (41.7)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Prima Sleeve Anchors Allowable Tension and Shear Values in Concrete (Lbs/kN)¹⁻³

BOLT	INSTALLATION	ANCHOR	EMBEDMENT	EMBEDMENT f'c = 2000 PSI (13.8 MPa) f'c = 3000 PSI (20.7 MPa)				f'c = 4000 PSI (27.6 MPa)		
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	DEPTH In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6)	10 (14)	7/16 (12)	1-1/2 (38)	601 (2.7)	535 (2.4)	850 (3.8)	663 (2.9)	1,041 (4.6)	790 (3.5)	
3/8 (10)	40 (54)	5/8 (16)	2 (51)	1,190 (5.3)	1,453 (6.5)	1,682 (7.5)	1,602 (7.1)	2,060 (9.2)	1,751 (7.8)	
1/2 (12)	60 (81)	13/16 (20)	2-1/2 (63)	1,507 (6.7)	2,218 (9.9)	2,131 (9.5)	2,345 (10.4)	2,610 (11.6)	2,472 (11.0)	
	as are based on a 4 to 1	cofety factor to the u	Itimata laada 2 Minimu	m clab thicknoss is A" for	1/4" and 2/9" halt diamat	arc 3 Minimum clab t	hicknoss is E" for 1/2" hal	t diamatar		

le load values are based on a 4 to 1 safety factor to the ultimate loads. ² Minimum slab thickness is 4" for 1/4" and 3/8" bolt diameters ³ Minimum slab thickness is 5" for 1/2" bolt diameter

Prima Sleeve Anchors Ultimate Tension and Shear Values in Concrete Block (Lbs/kN)^{1, 2}

BOLT	INSTALLATION	ANCHOR	EMBEDMENT	HOL	LOW	GROUT	FILLED	
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	DEPTH In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6)	5 (7)	7/16 (12)	1-1/2 (38)	996 (4.4)	1,894 (8.4)	3,162 (14.1)	2,459 (10.9)	
3/8 (10)	10 (13)	5/8 (16)	2 (51)	1,035 (4.6)	1,914 (8.5)	4,803 (21.4)	6,579 (29.3)	
1/2 (12)	17 (23)	13/16 (20)	2-1/2 (63)	1,379 (6.1)	2,390 (10.6)	6,209 (27.6)	8,711 (38.7)	

¹ Data was obtained from ASTM C 90 normal weight load bearing concrete masonry units. ² Grout data is based on a 28-day compressive strength of 2,500 psi.

Prima Sleeve Anchors Allowable Tension and Shear Values in Concrete Block (Lbs/kN)¹

BOLT	INSTALLATION	ANCHOR	EMBEDMENT	HOI	LOW	GROUT FILLED			
DIA.	TORQUE	DIA.	DEPTH		SHEAR	TENSION	SHEAR		
III. (IIIII <i>)</i>	FL. LDS. (NIII)	III. (IIIII)	III. (IIIII <i>)</i>	LDS. (KN)	LDS. (KIV)	LDS. (KN)	LDS. (KN)		
1/4 (6)	5 (7)	7/16 (12)	1-1/2 (38)	249 (1.1)	474 (2.1)	791 (3.5)	615 (2.7)		
3/8 (10)	10 (13)	5/8 (16)	2 (51)	259 (1.2)	479 (2.1)	1,201 (5.4)	1,645 (7.3)		
1/2 (12)	17 (23)	13/16 (20)	2-1/2 (63)	345 (1.5)	598 (2.7)	1,552 (6.9)	2,178 (9.7)		
1/4 (6) 3/8 (10) 1/2 (12)	5 (7) 10 (13) 17 (23)	//16 (12) 5/8 (16) 13/16 (20)	1-1/2 (38) 2 (51) 2-1/2 (63)	249 (1.1) 259 (1.2) 345 (1.5)	4/4 (2.1) 479 (2.1) 598 (2.7)	791 (3.5) 1,201 (5.4) 1,552 (6.9)	615 (2.7) 1,645 (7.3) 2,178 (9.7)		

¹ Allowable load values are based on a 4 to 1 safety factor to the ultimate loads.

TW **Red Head***

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX A: Strength Design Performance Values

TABLE 1: SPECIFICATIONS AND DETAILS FOR INSTALLATION OF ANCHORS IN CONCRETE WITH

Durante	_						Thre	eaded Roc	l Diamete	r (d)					
Property	/	3/	3/8″		1/2″		/8″	3/4″		7/8″		1	"	1-1	/4″
Tensile stress area of rod (in²)	A se	0.0	0.078		.142		.226		35	.462		.6	06	.9	69
Nominal carbide bit diameter size (in.)	d _o	7/	16	9/	9/16		3/4		7/8		1	1-1/8		1-3	3/8
Effective embedment depth (in.) ¹	h ef min/max	1-1/2	3-3/8	2	4-1/2	2-1/2	2-1/2 5-5/8		6-3/4	3-1/2	7-7/8	4	9	5	11-1/4
Min./Max. Hole depth (in.)	h ₀ min/max	1-11/16	3-9/16	2-3/16	4-11/16	2-11/16	2-11/16 5-13/16		6-15/16	3-3/4	8-1/8	4-1/8	9-1/4	5-1/4	11-1/2
Minimum Slab thickness (in.)	h _{min}	4	5	4	6	4	7	5	8-1/4	8	10	8	11	10	14
Maximum Tightening Torque for pretension Clamping (ft-lb)		9)	1	6	4	47		90		45	170		370	

For SI: 1 inch= 25.4mm, 1 lbf= 4.45N, 1ft-lbf=1.356N-m, 1psi= .006895MPa

1 Minimum and maximum depths are noted.

ANCHOR INSTALLATION

BRUSH SPECIFICATIONS

Brush color	Part #	(d) Anchor diameter (in.)	(dr) Rebar	(do) Drill bit diameter (in.)	(dbrushΦ) Brush diameter (in.)
Grey	SB038	3/8	# 3	7/16	5/8
Brown	SB012	1/2	•	9/16	3/4
Green	SB058	5/8	# 5	3/4	1
Yellow	SB034	3/4	# 6	7/8	1-1/4
Red	SB078	7/8	•	1	1-1/2
Purple	SB010	1	# 7	1-1/8	1-5/8
Blue	SB125	1-1/4	•	1-3/8	1 -3/4

For SI: 1 inch= 25.4mm \blacklozenge Available with lead time.

RECOMMENDED MINIMUM INITIAL WORKING TIME AND CURE TIME FOR EPEDAN G5 ADHESIVE 1,2,3

Minimum Concrete Temp. (°F) ¹	Working Time (minutes) ²	Cure Time (hours) ³
50	15	24
70	15	24
90	9	24
110	9	24

For SI: t°F-32 X .555 = t°C

1 Adhesives must be installed in substrates at temperatures of at least 50°F to 110°F.

Installations in substrates at temperatures below 50°F or above 110°F must be conditioned to proper temperatures during working time.

2 Anchors are to be undisturbed during the working time.

3 Cure times required prior to application of the strength design of tensile and shear loads.

APPENDIX A: Strength Design Performance Values

TABLE 2: EPEDIM G5 ADHESIVE ANCHOR SYSTEM FOR USE IN UNCRACKED CONCRETE IN ACCORDANCE WITH STEEL, CONCRETE BREAKOUT, AND BOND RESISTANCE DESIGN VALUES 1,2,3,4,5 1,2,3,4,5

	Characteristic		Symbol	Unite			Anchor r	nominal diar	neter (d)		
	Clidiacteristic		Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Maximum	Installation torque		T _{inst}	ft-lb	9	16	47	90	145	170	370
Effective I	polt tension area		A _{se}	in. ²	0.078	0.142	0.226	0.335	0.462	0.606	0.969
Strength	reduction factor for tension, stee	l failure modes	Ф		0.75 ¹						
Strength	reduction factor for shear, steel f	ailure modes	Ф		0.65 ¹						
A36	Min. specified yield strength		Fy	psi	36,000	36,000	36,000	36,000	36,000	36,000	36,000
TM	Min. specificed ultimate streng	th	F _{ut}	psi	58,000	58,000	58,000	58,000	58,000	58,000	58,000
AS' Non S	Nominal steel strength in tensi	on	N _{sa}	lb	4,500	8,230	13,110	19,400	26,780	35,130	56,210
Cart	Nominal steel strength in shea	r	v _{sa}	lb	2,700	4,940	7,870	11,640	16,070	21,080	33,730
-	Min. specified yield strength		Fy	psi	105,000	105,000	105,000	105,000	105,000	105,000	105,000
Stee 3 B7	Min. specificed ultimate streng	th	F _{ut}	psi	125,000	125,000	125,000	125,000	125,000	125,000	125,000
AS A193	Nominal steel strength in tensi	on	N _{sa}	lb	9,690	17,740	28,250	41,810	57,710	75,710	121,140
5	Nominal steel strength in shea	Nsa lb 9,690 17,740 28,250 41,810 57,710 75,710 121, 121, 121, 121, 121, 121, ar Vsa lb 5,810 10,640 16,950 25,090 34,630 45,430 72,00 Fy psi 30,000 <t< td=""><td>72,680</td></t<>					72,680				
ه ا	Min. specified yield strength		Fy	psi	30,000	30,000	30,000	30,000	30,000	30,000	30,000
S Ste	Min. specificed ultimate streng	th	F _{ut}	psi	75,000	75,000	75,000	75,000	75,000	75,000	75,000
AST Inles	Nominal steel strength in tensi	on	N _{sa}	lb	5,810	10,640	16,950	25,090	34,630	45,430	72,680
Sta	Nominal steel strength in shear	r	V sa	lb	3,490	6,390	10,170	15,050	20,780	27,260	43,610
Embedme	ent depth (min. to max) ²		h _{ef}	in.			See ta	ble 1 in Appe	ndix A		
Anchor ca	tegory periodic inspection				1	1	1	1	1	1	1
Nao (for 4	d/ for 9d)³				1,460/3,280	Note ³					
Effectiven ACI318-0	ess factor for uncracked concrete 5 Appendix D	e, used for	k uncr		24	27	30	30	30	30	30
Character	istic bond resistance in uncracke	d contrete⁴	$\tau \kappa_{uncr}$	psi	825	1495	1495	1495	1495	1495	1360
Strength	reduction for dry condition		Φ _d		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Strength	reduction for water saturated (da	amp)	Φ _{ws}		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Strength	reduction for water filled		Φ _{wf}		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Strength	reduction for underwater		Φ _{underwater}		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Coofficient	for privat strongth		Ŀ	h ef min	1	1	2	2	2	2	2
coement	ior pryout strength		⊾ср	h ef max	2	2	2	2	2	2	2
Strength	reduction factor for tension, con	crete failure	Ø	Cond A	N/A						
modes ¹			•	Cond B	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Strength reduction factor for shear, concrete failure		ete fallure	Ф	Cond A	N/A 0.70						
Minimum	concrete thickness	hef=4d	hmin	in.	4	4	4	5	8	8	10
	concrete uncared)	hef=9d	hmax	in.	5	6	7	8-1/4	10	11	14
Minimum	spacing		Smin	in.	See note 5 below					4	5
Minimum	edge distance		¢min	in.	15/16	1	2-1/2	6	3-1/2	4	5
	-			· · · · ·				-			

For SI: 1 inch= 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-m, 1 psi=0.006895 MPa

THE CRITICAL SPACING ($S_{cr,Na}$) AND CRITICAL EDGE ($C_{cr,Na}$) DISTANCE SHALL BE CALCULATED AS FOLLOWS:

$$S_{cr,Na} = 20 \cdot d \cdot \sqrt{\frac{\mathcal{T}_{\kappa,uncr}}{1.450}}$$

$$C_{cr,Na} = \frac{S_{cr,Na}}{2}$$
 Equation (D-14i)

1 Strength reduction factors are given for load combination determined according to ACI318-05 Appendix D D.4.4

2 For intermediate embedment depth the value of \mathbf{N}_{a0} may be interpolated

3 N_{a0} is calculated according to Equation (D-14j) in this report (N_{a0}= $\tau\kappa_{uncr} \cdot \pi \cdot d \cdot h_{ef}$)

4. The bond resistance is not affected by installation conditions such as water-saturated or water-filled hole. Therefore no reduction factors need to be applied for these types of conditions. 5 Minimum spacing shall be calculated using the value obtained from Equation (D-14h)

Equation (D-14h)

IT W **Red Head**

Call our toll free number 800-899-7890 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX A: Strength Design Performance Values

TABLE 3: ALLOWABLE STRESS DESIGN, ASD, USING LOW STRENGTH CARBON STEEL (A36) THREADED ROD ◆ INSTALLED IN f' c = 2,500 PSI – 8,000 PSI UNCRACKED CONCRETE WITH EFERN G5 ADHESIVE

Anchor	Embedment	* Characteristic		A	llowable Tension Load L	BS	
Diameter (d)	Depth, hef (in) (min./max)	Bond Strength $ au_{\kappa}$, uncr (psi)	2,500 PSI (Controlling Mode)	3,000 PSI (Controlling Mode)	4,000 PSI (Controlling Mode)	6,000 PSI (Controlling Mode)	8,000 PSI (Controlling Mode)
2/0	1-1/2	825	640 (BOND)				
5/8	3-3/8	825	1,440 (BOND)				
1/2	2	1,495	1,680 (CONCRETE)	1,840 (CONCRETE)	2,065 (BOND)	2,065 (BOND)	2,065 (BOND)
1/2	4-1/2	1,495	4,170 (STEEL)				
F /0	2-1/2	1,495	2,605 (CONCRETE)	2,855 (CONCRETE)	3,225 (BOND)	3,225 (BOND)	3,225 (BOND)
5/8	5-5/8	1,495	6,645 (STEEL)				
2/4	3	1,495	3,425 (CONCRETE)	3,750 (CONCRETE)	4,330 (CONCRETE)	4,640 (BOND)	4,640 (BOND)
3/4	6-3/4	1,495	9,830 (STEEL)				
7/0	3-1/2	1,495	4,315 (CONCRETE)	4,725 (CONCRETE)	5,460 (CONCRETE)	6,320 (BOND)	6,320 (BOND)
//8	7-7/8	1,495	13,570 (STEEL)				
	4	1,495	5,270 (CONCRETE)	5,775 (CONCRETE)	6,670 (CONCRETE)	8,165 (CONCRETE)	8,250 (BOND)
	9	1,495	17,780 (CONCRETE)	17,805 (STEEL)	17,805 (STEEL)	17,805 (STEEL)	17,805 (STEEL)
1 1/4	5	1,360	7,365 (CONCRETE)	8,070 (CONCRETE)	9,320 (CONCRETE)	11,410 (CONCRETE)	11,730 (BOND)
1-1/4	11-1/4	1,360	24,860 (CONCRETE)	26,390 (BOND)	26,390 (BOND)	26,390 (BOND)	26,390 (BOND)

For SI: 1 inch= 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-M, 1 psi=0.006895 MPa

No load reductions required for installation conditions such as dry, water-saturated, water-filled, and underwater applications.

◆ Call 800-899-7890 for controlling mode and loads using stainless steel or higher strength threaded rod.

Procedure to calculate allowable tension load

Example: 1/2" diameter anchor with embedment depth of 4-1/2" installed in 4,000 psi concrete

1. Calculate steel strength – tension (A36 steel) Φ Nsa = 0.75 * 8.230 = 6.173 lbs

2. Calculate concrete breakout strength – tension Φ kuncr $\sqrt{2,500}$ psi hef^{1.5} = 0.65 * 27 * $\sqrt{2,500}$ * 4-1/2^{1.5}

= 8,377 lbs Normalize load for 4,000 psi concrete = $8,377_{1/2}$

/<u>4,000</u> 2,500 = 10,596 lbs 3. Calculate bond strength – tension

 $\Phi * d * \pi * hef * \tau_{k,uncr} = 0.65 * 1/2 * 3.1415 * 4-1/2 * 1,495 = 6,869 lbs$

- 4. Determine load combination & conversion factor - Assume 30% dead load & 70% live load using load combination = 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48
- 5. Controlling strength is 6,173 lbs (steel) lowest load value amongst bond, concrete and steel controlling modes Divide by the conversion factor, 1.48, to obtain allowable tension load of 4,170 lbs

0

0

Ö

APPENDIX B: Strength Design Performance values in accordance to 2006 IBC

ITW RED HEAD TRUBOLT WEDGE ANCHOR

DESIGN INFORMATION TESTED TO ICC-ES AC193 AND ACI 355.2, IN ACCORDANCE WITH 2006 IBC

TRUBOLT WEDGE ANCHOR DESIGN INFORMATION^{1,2,3}

DESIGN INFORMATION Anchor O.D. Effective embedment Minimum member thickness Critical edge distance Minimum edge distance Minimum anchor spacing Min. Specified Yield Strength Min. Specified Ultimate Strength Effective tensile stress area Steel strength in tension Steel strength, uncracked concrete Anchor Category (All anchors are ductile Effectiveness factor k _{uncr} uncracked concre Axial stiffness in service load range Coefficient for variation for axial stiffnes Strength reduction factor ϕ for tension,	Symbol	Symbol Units				Ν	lominal Anc	hor Diamete	er										
	Symbol	Units	1	1/4		/8	1,	/2	5,	/8	3	/4							
Anchor O.D.	d _o	in	0.2	250	0.3	375	0.5	500	0.6	525	0.7	750							
Effective embedment	h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4							
Minimum member thickness	h _{min}	in	4	4	4	5	5	6	5	8	6	8							
Critical edge distance	c _{ac}	in	2-5/8	3	2-5/8	5-1/4	3-3/4	6-3/4	5	8	7	9							
Minimum edge distance	¢ _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2							
Minimum anchor spacing	s _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2							
Min. Specified Yield Strength	fy	lb/in ²	55,000																
Min. Specified Ultimate Strength	futa	lb/in ²	75,000																
Effective tensile stress area	A _{se}	in²	0.0	032	0.0)78	0.1	42	0.2	226	0.3	334							
Steel strength in tension	Ns	lb	2,3	385	5,8	315	10,	645	16,	050									
Steel strength in shear	Vs	lb	1,4	430	2,975	3,490	4,450	6,385	6,045	10,170	10,990	15,030							
Pullout strength, uncracked concrete	N _{p,uncr}	lb	1,392	1,706	2,198	3,469	2,400	4,168	4,155	6,638	8,031	10,561							
Anchor Category (All anchors are ductile)							1											
Effectiveness factor k _{uncr} uncracked concr	ete						2	4											
Axial stiffness in service load range	β	lb/in	14,651	9,385	17,515	26,424	32,483	26,136	42,899	21,749	43,576	28,697							
Coefficient for variation for axial stiffness	range	34	47	28	45	17	33	55	22	63	28								
Strength reduction factor $\boldsymbol{\varphi}$ for tension,	steel failure mo	des					0.	75											
Strength reduction factor $\boldsymbol{\varphi}$ for shear, ste	Strength reduction factor φ for shear, steel failure modes 0.65																		
Strength reduction factor ϕ for tension, co	oncrete failure m	odes, Condition B					0.	65											
Strength reduction factor ϕ for shear, cor	crete failure mo	des, Condition B					0.	70											

¹ Trubolt+ Anchor Design Strengths must be determined in accordance with ACI 318-05 Appendix D and this table

² The Trubolt+ Wedge Anchor is a ductile steel element as defined by ACI 318 D.1

³ 1/4", 3/8", & 1/2" diameter data is listed in ICC-ES ESR-2251.

TRUBOLT WEDGE ANCHOR (INSTALLED) TRUBOLT WEDGE INSTALLATION INFORMATION

Trubolt[®]

Trubolt[®]

Wedge Anchors

	Come had	11				Nomina	al Ancho	r Diame	ter (in.)				
	Symbol	Units	1/4		3,	/8	1,	/2	5,	5/8		3/4	
Anchor outer diameter	d ₀	in	0.	0.25		0.375		0.5		0.625		'50	
Nominal carbide bit diameter	d _{bit}	in	1	1/4		3/8		/2	5/8		3/4		
Effective embedment depth	h _{ef}	in	1-1/2	1-1/2 2		2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4	
Min hole depth	h ₀	in	2	2-1/2	2-1/2	3-3/8	2-3/4	4-1/4	3-3/4	5-1/4	4-3/4	6	
Min slab thickness	h _{min}	in		4	4	5	5	6	5	8	6	8	
Installation torque	T _{inst}	ft-lb		4		25		5	90		110		
Min hole diameter in fixture	dh	in	5/	5/16		7/16		9/16		11/16		13/16	

APPENDIX B: Strength Design Performance values in accordance to 2006 IBC

TRUBOLT WEDGE PULLOUT STRENGTH (Np. unc) (POUNDS) 1

	· •				
Nominal Anchor	Effective		Concrete Comp	ressive Strength	
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f'c = 3,000 psi	f'c = 4,000 psi	f′c = 6,500 psi
1/4	1-1/2	1,392	1,525	1,610	1,822
1/4	2	1,706	1,869	1,947	2,151
2/0	1-3/4	2,198	2,408	2,621	3,153
5/8	2-5/8	3,469	3,800	3,936	4,275
1/2	1-7/8	2,400	2,629	3,172	4,520
1/2	3-3/8	4,168	4,520	4,520	4,520
E /0	2-1/2	4,155	4,155	4,376	5,578
5/6	4	6,638	6,900	7,968	10,157
2/4	3-1/2	8,031	8,322	9,610	12,251
5/4	4-3/4	10.561	10,561	10,561	12,251

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

1 Values are for single anchors with no edge distance or spacing reduction.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC TENSION (ASD), NORMAL-WEIGHT UNCRACKED CONCRETE 1-6

Nominal Anchor	Effective		Concrete Compressive Strength										
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f′c = 3,000 psi	f′c = 4,000 psi	f′c = 6,500 psi								
1//	1-1/2	611	670	707	800								
1/4	2	749	821	855	945								
2/0	1-3/4	965	1,058	1,151	1,385								
3/0	2-5/8	1,524	1,669	1,729	1,878								
1/2	1-7/8	1,054	1,155	1,393	1,985								
1/2	3-3/8	1,831	1,985	1,985	1,985								
E /0	2-1/2	1,825	1,825	1,922	2,450								
3/6	4	2,915	3,030	3,499	4,461								
2//	3-1/2	3,527	3,655	4,221	5,381								
3/4	4-3/4	4,638	4,638	4,638	5,381								

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

¹ Single anchor with static tension load only.

² Concrete determined to remain uncracked for the life of the anchorage.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

⁴ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁵ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48

⁶ Values do not include edge distance or spacing reductions.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC SHEAR (ASD), STEEL (POUNDS)¹⁻⁵

Nominal Anchor Diameter (in.)	Effective Embedment Depth (in.)	Allowable Steel Capacity, Static Shear
1/4	1-1/2	628
	2	
3/8	1-3/4	1,307
	2-5/8	1,533
1/2	1-7/8	1,954
1/2	3-3/8	2,804
E /9	2-1/2	2,655
8/6	4	4,467
3/4	3-1/2	4,827
5/4	4-3/4	6,601

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa Design Assumptions:

¹ Single anchor with static shear load only.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

 4 $\,$ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48

⁵ Values do not include edge distance or spacing reductions.

Trubolt®

APPENDIX C: Strength Design Performance values in accordance to 2006 and 2009 IBC ITW RED HEAD TRUBOLT+ and TRUBOLT+ OH EDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC 193 AND ACI 355.2, IN ACCORDANCE WITH 2006 and 2009 IBC

TRUBOLT+ AND TRUBOLT+ OH WEDGE ANCHOR DESIGN INFORMATION¹

Chara staristic	Symbol	Ilnite		Nominal Anchor Diameter (inch) ⁴									
Characteristic	Symbol	Units	3/	8"		1/	2"		5/	8"	3/4	Ι"	
Anchor category	1, 2 or 3		1		1					1		1	
Minimum effective embedment depth	h _{ef}	in	1-5	5/8	2		3-1/4		2-3/4	4-1/4	3-3,	/4	
Minimum concrete member thickness	h _{min}	in	4	5	4	6	6	8	6	6-1/4	7	8	
Critical edge distance	c _{ac}	in	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	10	
		Dat	a for Steel	Strengths -	- Tension ar	nd Shear							
Minimum specified yield strength	fy	psi	60,0	000		55,	000		55,	000	55,0	00	
Minimum specified ultimate strength	f _{uta}	psi	75,0	000		75,	000		75,	000	75,0	00	
Effective tensile stress area (neck)	A _{se}	in ²	0.0	56		0.1	19		0.1	83	0.26	56	
Effective tensile stress area (thread)	A _{se}	in ²	0.0	75		0.1	42		0.2	.17	0.33	32	
Steel strength in tension	N _{sa}	lbf	4,2	00		8,9	925		13,	725	19,9	50	
Steel strength in shear, uncracked or cracked concrete ⁶	v _{sa}	lbf	1,8	30		5,1	75		8,9	955	14,9	70	
Steel strength in shear – seismic loads	V _{eq}	lbf	1,5	45		5,1	75		8,9	955	11,7	75	
Strength reduction factor f for tension, steel failure mod	les ²		0.3	75		0.75				0.75		0.75	
Strength reduction factor f for shear, steel failure modes	5 ²		0.0	50		0.	65		0.	65	0.6	5	
	Data for Co	oncrete B	Breakout Co	ncrete Pry	out Strengt	hs in Tensic	on and Shea	ar					
Effectiveness factor – uncracked concrete	k _{uncr}	-	2	4		2	4		2	4	24	Ļ	
Effectiveness factor – cracked concrete	k cr	—	1	7		1	7		17		17		
Modification factor for cracked and uncracked concrete ³	$\Psi_{c,N}$	_	1.	.0		1	.0		1.0		1.0		
Coefficient for pryout strength	к _{ср}	—	1.	.0	1	.0	2	.0	2	.0	2.0)	
Load-bearing length of anchor	۱ _e	in	1.6	25	2	.0	3.	25	2.75	4.25	3.7	5	
Strength reduction factor $\boldsymbol{\varphi}$ for tension, concrete failure m	odes, Condition B ²		0.0	65		0.	65		0.	65	0.6	5	
Strength reduction factor $\boldsymbol{\varphi}$ for shear, concrete failure mo	des, Condition B ²		0.3	70		0.	70		0.	70	0.7	0	
			Data	for Pullout	Strengths								
Pullout strength, uncracked concrete	N _{p,uncr}	lbf	See Foo	otnote ⁵	See Foo	otnote 5	6,5	40	5,430	8,900	See Foo	tnote ⁵	
Pullout strength, cracked concrete	N _{p,cr}	lbf	See Foo	otnote ⁵		See Foo	otnote ⁵		See Foo	otnote ⁵	See Foot	tnote ⁵	
Pullout strength for seismic loads Neq Ib			See Foo	tnote 5		See Foo	otnote ⁵		See Footnote ⁵	6,715	See Foot	tnote ⁵	
Strength reduction factor f for tension, pullout failure m		See Foo	tnote 5		0.	65		0.	65	See Foot	tnote ⁵		
			Add	itional And	hor Data								
Axial stiffness in service load range in uncracked concrete	b uncr	lbf/in	100,	000	250,000			250	,000	250,0	000		
Axial stiffness in service load range in cracked concrete	b cr	lbf/in	40,0	000		20,	000		20,	000	20,0	00	

For SI: 1 inch = 25.4 mm, 1 in2 = 645.16mm2, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa, 1 lbf • 102/in - 17,500 N/m.

The 1/2", 5/8" and 3/4" diameter Trubolt+ Wedge Anchors are ductile steel elements as defined by ACI 318 D.1. The 3/8" diameter Trubolt+ is considered ductile under tension loading and brittle under shear loading.
 All values of φ apply to the load combinations of IBC Section 1605.2, ACI 318 Section 9.2 or UBC Section 1612.2. If the load combinations of Appendix C or UBC Section 1909.2 are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.5. For installations where reinforcement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate φ factor must be determined in accordance with ACI 318 D.4.4.

³ For all design cases $\Psi_{C,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{CT}) or uncracked concrete (k_{uncT}) must be used.

⁴ The actual diameter for the 3/8" diameter anchor is 0.361" for the 5/8" diameter anchor is 0.615" and the 3/4" diameter anchor is 0.7482".

⁵ Anchor pullout strength does not control anchor design. Determine steel and concrete capacity only.

⁶ Steel strength in shear values are based on test results per ACI 355.2, Section 9.4 and must be used for design.

TRUBOLT + WEDGE ANCHOR (INSTALLED)

TRUBOLT + AND TRUBOLT+ OH WEDGE INSTALLATION INFORMATION

	Parameter	Notation	Units			-	Nomina	l Achor	Diamete	er (inch)			
				3	/8		1,	/2		5/8		3/4	
	Anchor outer diameter	d _o	inches	0.3	0.361 0.5			0.615		0.7482			
	Nominal carbide bit diameter	d _{bit}	inches	3/8			1/2			5/8		3/4	
	Effective embedment depth	nent depth h ef inches		1-5	5/8		2		1/4	2-3/4	4-1/4	3-3	3/4
Î	Minimum anchor embedment depth	nchor embedment depth h _{nom} inches 2		2-	1/2	3-3/4		3-1/4	4-3/4	4-3	3/8		
	Minimum hole depth ¹	h _o	inches	2-1	2-1/4		2-3/4		4		5	4-	5/8
	Minimum concrete member thickness ¹	h _{min}	inches	4	5	4	6	6	8	6	6-1/4	7	8
h _{nom} h _n	Critical edge distance ¹	с ас	In.	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	10
	Minimum anchor spacing ¹	s _{min}	In.	3-1/2	2-1/2	6	5-3/4	4	5-3/4	8	6	6	6
	Minimum edge distance ¹	c min	In.		3 2-1/2 30 1/2		(5		7-1/2	5	7-1/2	7-1/2
+	Minimum overall anchor length	I	inches	2-1			3/4	4-1	1/2	4-1/4	6	5-	1/2
	Installation torque	T _{inst}	ft-lb	3			4	5		90		110	
	Minimum diameter of hole in fastened part	dh	inches	1,			5/8				3/4		7/8

tuly threaded stud

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

current product and technical information at www.itwredhead.com

APPENDIX C: Strength Design Performance values in accordance to 2006 and 2009 IBC

Anchor Notation	Anchor Embedment Depth	Effective Embedment Depth	Allowable Tension Load		
	(inches), h _{nom}	(inches), h _{ef}	(lbs)		
3/8	2	1-5/8	1,090		
1/2	2-1/2	2	1,490		
	3-3/4	3-1/4	2,870		
5/8	3-1/4	2-3/4	2,385		
	4-3/4	4-1/4	3,910		
3/4	4-3/8	3-3/4	3,825		

TRUBOLT AND TRUBOLT + OH WEDGE ANCHOR ALLOWABLE STRESS DESIGN (ASD) VALUES FOR ILLUSTRATIVE PURPOSES

For SI: 1 inch = 25.4 mm, 1 ft-lb = 4.45N.

Design Assumptions:

1 Single anchor with static shear load only.

² Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48

⁵ Values do not include edge distance or spacing reductions.

ITW RED HEAD TRUBOLT+ and TRUBOLT+ OH WEDGE ANCHOR DESIGN INFORMATION FOR INSTALLATION IN THE SOFFIT OF CONCRETE FILL ON METAL DECK FLOOR AND ROOF ASSEMBLIES

TRUBOLT+ AND TRUBOLT+ OH WEDGE ANCHOR DESIGN INFORMATION

	Symbol	Units	Nominal Anchor Diameter					
			3/8"	1/2"		5/8"		
Characteristic			Upper /Lower	Upper /Lower	Lower Only	Lower Only	Lower Only	
			h _{ef} = 1-5/8"	h _{ef} = 2"	h _{ef} = 3-1/4"	$h_{ef} = 2-3/4"$	$h_{ef} = 4 - 1/4''$	
Pullout strength, uncracked concrete over metal deck	Np, deck, uncr	lbf	2,170	2,515	5,285	3,365	6,005	
Pullout strength, cracked concrete over metal deck	N _{p, deck, cr}	lbf	1,650	1,780	4,025	2,405	5,025	
Reduction factor for pullout strength in tension, Condition B	φ		0.65					
Shear strength, uncracked concrete over metal deck	Vp, deck, uncr	lbf	1,640	2,200	3,790	2,890	6,560	
Reduction factor for steel strength in shear	φ		0.60	0.60 0.65				
Anchor embedment depth	h _{nom}	in	2.0	2.5	3.75	3.25	4.75	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N

ITW Reci Head Call our toll free number **800-899-7890** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

National Headquarters

2171 Executive Drive, Suite 100 Addison, IL 60101 Phone: 630-350-0370 Fax: 630-495-6158 www.itwredhead.com

Technical Support

Phone: 800-899-7890 Fax: 630-495-6204

Customer Service Locations

1919 E. U.S. Hwy 12 Michigan City, IN 46360 800-348-3231 FAX: 800-368-3844

Regional Warehouses

- Itasca (Chicago), IL
- City of Commerce (Los Angeles), CA
- Forest Park, GA
- Cranbury, NJ
- Dallas, TX
- Houston, TX

ITW Construction Products Canada

120 Travail Road Markham, Ontario. L3S 3J1 905-471-7403 800-387-9692 FAX: 800-668-8688 www.itwconstruction.ca

Take Advantage of these Contractor Services from ITW RED HEAD

From job sites to engineering firms, from Safety Seminars to on-site services, we hope you take advantage of our many contractor services—at no charge! After all, it's one thing to offer the quality products you need to do your job. It's another to provide you with superior service, engineering expertise and total product support.

At ITW RED HEAD, we are proud of the partnerships we have built through the years with our distributor network and contractors. Thanks to quality products, innovative services and on-time delivery, we will continue to build new relationships and strengthen existing ones today...and into the next century.

Factory representatives with years of training and service experience will go out to your job site to provide you with product, service and technical assistance.

We provide architects and engineers with complete submittal packages which gives them the technical data needed to specify ITW RED HEAD products. Contact your ITW RED HEAD Distributor or your nearest Customer Service location to request submittal packages.

Technical Application Assistance:

Our staff of application specialists are ready to assist you with any type of application or code approval question during any phase of your project. Call 1-800-899-7890 between 8:00 a.m. and 5:00 p.m. CST, Monday through Friday.

24-hour Product and Performance Information:

The most frequently requested ITW RED HEAD product and technical information, performance data, approvals, MSDS, etc. are available on our website at <u>www.itwredhead.com</u>. If additional assistance is required, our application specialists can be reached at 1-800-899-7890 between 8:00 a.m. and 5:00 p.m. CST, Monday through Friday.

A7, Boa, C6, Condrive, Dynabolt, E-Z Ancor, G5, Hammer-Set, LDT, Multi-Set II, Poly Set, Red Head, Redi-Drive, Tapcon, and Trubolt are trademarks of ITW RED HEAD and Illinois Tool Works, Inc. Hilti" is a registered trademark of Hilti, Corp. Rawl Spike" is a registered trademark of Powers Fastening, Inc.

© 2010 Illinois Tool Works, Inc. Form No. RHC-11/10