

Getting Started with Apple Pay
In-App Provisioning
Version 1.23

March 2017 

 1

Version Information

 2

Date Version Changes

08/31/2015 Draft Initial

01/06/2016 1.1 Added language regarding Adam ID submission

01/27/2016 1.11 Added FPAN/DPAN suffix, passesOfType,
remotePaymentPasses as methods to determine
whether to present the Add to Apple Wallet button

07/14/2016 1.2 Updated In-App Provisioning Flow to include
cryptography details and added to/formatted the
issuer host development step

Updated the testing process section for clarity,
payment data configuration table, references to
PNO to include service provider

Added description for
PKAddPaymentPassRequestConfiguration, details
to cryptography section, Appendix A for the
provisioning flow sample, pass metadata to
prerequisites, description of test vector usage, and
additional details on entitlements

10/03/2016 1.21 Added advice on replacing Add to Apple Wallet
Button after a payment pass is provisioned

Also added “name” to payment data configuration
3 - encrypted FPAN

Added language to clarify Enterprise Team IDs
aren’t supported, and clarified numeric nature of
Adam ID

02/21/2017 1.22 Added clarification on Crypto OTP formats, sample
JSON dictionary, alternative to Add to Apple Wallet
button

Updated font, formatting

03/02/2017 1.23 Added link to Apple Pay acceptance mark and
cleaned up version information

I. Overview

Apple Pay In-App Provisioning provides a credit or debit card issuer the ability to initiate
the card provisioning process for Apple Pay directly from the issuer’s iOS app.

Cardholders will find the In-App Provisioning feature an extremely convenient method
to provision their payment details into their iOS devices by avoiding the need to input
card details manually.

Issuers will also find In-App Provisioning an effective component of a seamless mobile
banking experience. By driving the provisioning of cards via their iOS mobile apps,
issuers can create a unified interface for card provisioning and their other banking
services.

Finally, for certain card products issued globally, account details may not be embossed
on the actual plastic carried by cardmembers. In-App Provisioning would serve as the
sole channel for initiating a card provisioning request for those portfolios as the account
details would be provided directly by the issuer to the iOS device.

II. Prerequisites

To implement In-App Provisioning within your iOS app, you must:

1. Support Apple Pay for your card portfolio
2. Develop the app for iOS 9 or later
3. Build the capability on the issuer host system to:

A. Receive Apple public certificates (ECC) from your iOS app
B. Generate an ephemeral key pair (ECC)
C. Utilize the public certificates and ephemeral key pair to generate a shared

secret and derive a shared key to encrypt a payment data payload
D. Transmit encrypted payment data and ephemeral public key back to your iOS

app

4. Adhere to the Apple Pay In-App Provisioning security guidelines including support
for Multiple Factor Authentication (MFA). For details, please refer to the Apple Pay
In-App Provisioning Security Entitlement Guidelines document.

5. Ensure your PNO or service provider populates the following keys within the
DPANCardDescriptor array of the LinkAndProvisionResponse API as
follows:  

 3

A. associatedApplicationIdentifiers
• Allows the respective app to see, access and activate your payment passes
• This key needs to match your developer account Team ID and app Bundle

ID; look here for more information
• If you use an explicit App ID, it may not match your developer account Team

ID

B. associatedStoreIdentifiers
• Links to your iOS app or redirects users to download your iOS mobile app

from the App Store, in case it is not yet installed on the user’s device
• This key needs to match the Adam ID of the iOS mobile app

III. Best Practices

Authenticate the user via One Time Password (OTP) when the user first installs
your mobile banking app onto his or her device.
By having the user authenticate when he or she first installs the app, you satisfy Apple
Pay MFA requirements and avoid the need to introduce additional authentication steps
within the In-App Provisioning flow after the user selects “Add to Apple Wallet.” This will
save your cardholders time and effort and will result in a more positive user experience.

Use the “Add to Apple Wallet” button in all relevant locations.
Be sure to include the “Add to Apple Wallet” button within your app wherever card or
account management features are presented. This will serve to integrate Apple Pay as a
central feature of your product offering. See Section VI for more details.

Once the pass is provisioned, you can replace the button with text such as “Added to
Apple Wallet” or “Available in Apple Wallet.”

Display the “Add to Apple Wallet” button for a particular card until it has been
added to all associated devices.
You can use the canAddPaymentPassWithPrimaryAccountIdentifier method
to ensure the button is presented until the pass in question can no longer be
provisioned on the device or the Apple Watch, if paired. In the event the issuer iOS app
does not have access to the FPAN ID, you can make use of the passesOfType and
remotePaymentPasses methods to obtain the DPAN/FPAN ID and DPAN/FPAN suffix
to determine whether to present the “Add to Apple Wallet” button.

Provide key elements within PKAddPaymentPassRequestConfiguration
which drive the user experience for the In-App Provisioning view controller.
The issuer can provide the following keys to support a positive user experience:

 4

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html

1. CH_NAME - The cardholder name to be displayed is defined within the
cardholderName key [Figure 1].

2. FPAN_SUFFIX - The funding PAN suffix to be displayed is defined within the
primaryAccountNumberSuffix key [Figure 1]. This value should be 4 digits and
will have dots prepended to indicate that it is a suffix.

3. Localized_Description - The card product description to be displayed is defined
within the localizedDescription key [Figure 2].

4. Funding PAN Identifier (optional) - If the FPAN ID is passed to Wallet within the
primaryAccountIdentifier key, Wallet will present only the devices on which
the payment pass can still be provisioned [Figure 2]. This screen appears only on an
iPhone with a paired Apple Watch.

5. Payment Network (optional) - If a value is provided within paymentNetwork key,
Wallet will show only the artwork for this specific payment network on the
introductory page of the In-App Provisioning Flow. This screen only appears if no
card has previously been provisioned within Apple Wallet.

 5

Figure 1 Figure 2

!

"

#

Announce the availability of Apple Pay In-App Provisioning to users.
Encourage new users to get the most from their card through the use of splash screens/
interstitials or clear calls to action.

Link to the Apple Pay setup flow in case you’re not able to develop full issuer
application based provisioning support within your iOS mobile app and issuer
host system.
Developers can leverage the openPaymentSetup API within the PassKit programming
framework to direct users from the app to the wallet provisioning flow to provision a
payment card. For more details, see the Add to Apple Wallet section of this document.

IV. Provisioning Profiles for your App

You will need to submit a request to enable your developer Team ID for the appropriate
Apple Pay In-App Provisioning entitlements. Enterprise Team IDs are not supported.
Provide your app name, Team ID, and Adam ID via e-mail to apple-pay-
provisioning@apple.com.

Once the entitlements have been granted, you’ll need to include the distribution
entitlement into a provisioning profile and ensure you are leveraging the same profile to
develop the app within Xcode. Please follow these steps:

1. Head to the Apple Developer Website and proceed to login
2. Select Certificates, Identifiers & Profiles
3. Select “Distribution” underneath the “Provisioning Profiles” heading on the sidebar
4. On the right, select the distribution iOS provisioning profile that you'll use to deploy

your App to the App Store
5. Click “edit" and, from the ensuing entitlements drop down, select “ApplePay In-App

Provisioning Distribution” to add the entitlement to the profile. See Figure 3 for
details.

Once you’ve generated a profile which has been assigned the entitlement for In-App
Provisioning, within Xcode, head to the Preferences > Accounts > (Your Account) >
View Details pane where you can then find and download the profile you generated.

Lastly, in build settings, you can then adjust the Provisioning Profile to the newly
generated profile. See Figure 4 for details.

 6

https://developer.apple.com/library/ios/documentation/PassKit/Reference/PKPassLibrary_Ref/#//apple_ref/occ/instm/PKPassLibrary/openPaymentSetup
mailto:apple-pay-provisioning@apple.com
mailto:apple-pay-provisioning@apple.com
https://developer.apple.com/account
https://developer.apple.com/account/ios/profile/profileList.action?type=limited

 7

Figure 3

Figure 4

V. In-App Provisioning Flow

Please find below a description and diagram [Figure 5] of the In-App Provisioning
process (ECC):

1. User initiates the In-App Provisioning process by selecting the “Add to Apple
Wallet” button

2. Apple Wallet requests the public certificates under which the issuer host should
encrypt the payment data payload

3. The public certificates and nonce are provided to Apple Wallet. Apple Wallet passes
the nonce to the secure element for signing. nonceSignature is returned to
Wallet

4. Wallet then passes the public certificates, nonce, and the nonceSignature to
the iOS app

5. The app passes the public certificates, nonce, and nonceSignature to the issuer
host

6. The issuer host will then:

A. Prepare the payment data payload for the user
B. Generate an ephemeral key pair,
C. Encrypt the payload with a shared key derived from the Apple public

certificates and generated private ephemeral key
D. Deliver the encrypted payload and ephemeral public key back to the app. The

issuer host will also generate a cryptographic OTP per the Payment Network
Operator (PNO) or service provider specifications and pass that to the iOS
app as well

7. The app passes the encrypted payment data payload [encryptedPassData], the
ephemeral public key assigned to the ephemeral private key used to encrypt the
payment data payload [ephemeralPublicKey], and the cryptographic OTP value
[activationData] to Wallet through the PKAddPaymentPassRequest class

8. Apple Wallet passes the details to the Apple Server where validation checks are
performed

9. Payment data is passed to the PNO or service provider and the regular provisioning
flow commences

 8

Figure 5

VI. The Add to Apple Wallet Button

To offer In-App provisioning, it is recommended that developers invoke the the
PKAddPassButton which is available in iOS 9. The use of this button within your app
must comply with the Apple guidelines.

Alternatively, you can leverage the Apple Pay logo within a row selector. See directly
below for an example. Note that the font for the text “Add to Apple Wallet” can be
selected to match your iOS app. See here for the Apple Pay acceptance mark.

In case you are unable to develop the full In-App Provisioning capability, you can also
leverage the OpenPaymentSetup method as well as the PKPaymentButton class
with PKPaymentButtonTypeSetUp to expose the “Setup up Apple Pay” button
which can link to the Wallet provisioning flow.

VII. Provisioning Path Recommendations

Just as with the regular provisioning process, Apple will provide a path recommendation
along with any applicable reason codes to issuers. Through In-App Provisioning, an
issuer has the option to promote a yellow path recommendation from Apple to the green
path with the exception of Reason Code 0G - Orange Path.

In case Apple recommends Orange Path for a provisioning request, an issuer can utilize
the existing process for Orange Path validation including OTP to a tenured channel with
one notable exception: In-App Verification can not be presented as an authentication
option for provisioning requests initiated within the issuer iOS app.

For more information, please see the Apple Pay In-App Provisioning Security
Entitlement Guidelines.

 9

https://developer.apple.com/go/?id=pkaddpassbutton-class
https://developer.apple.com/wallet/Add-to-Apple-Wallet-Guidelines.pdf
https://developer.apple.com/devcenter/download.action?path=/ios/apple_pay_resources/Apple_Pay_Resources.zip
https://developer.apple.com/library/ios/documentation/PassKit/Reference/PKPassLibrary_Ref/#//apple_ref/occ/instm/PKPassLibrary/openPaymentSetup
https://developer.apple.com/library/ios/documentation/PassKit/Reference/PKPaymentButton_Class/index.html#//apple_ref/occ/cl/PKPaymentButton

VIII. Cryptography

No cryptographic operations to support the transmission of payment data to Apple
Wallet should be performed on the iOS device. Rather, the cryptographic functions
should be performed by the issuer host.

Via PKAddPaymentPassViewController, ECC public certificates will be provided
to the iOS app which should then be passed to the issuer host. The issuer host must
first verify that the certificate chain is rooted in the Apple Certificate Authority.
Subsequently, the issuer host can extract the static public key and generate an ECC
ephemeral key pair. The issuer host will then utilize the static public key from Apple and
the generated ephemeral private key to derive a shared secret. The shared secret will
be inputted into a KDF to calculate the shared key. Details for generating the shared key
can be found in Appendix B of the the Issuer Application Based Provisioning
specification.

The issuer host uses the derived shared key to encrypt the payment details
(encryptedPassData), and provide it to the iOS app along with the
ephemeralPublicKey and cryptographic OTP (activationData).

IX. Payment Data Configurations

In-App Provisioning supports three configurations for the payment data payload
generated by your issuer host (Table 9-1). As the supported configuration(s) vary by
PNO or service provider, please reach out to your PNO or service provider relationship
manager to confirm which of the following configurations your issuer host should
support.

For more information on payment data format, please see the
“PKAddPaymentPassRequest” section of the Issuer Application Based Provisioning
specification.

For informational purposes, please see directly below for a sample JSON dictionary
which contains all the keys enumerated in the chart above. Please note that in the
specific payload you will generate, only the keys applicable for the particular
configuration you are using should be present.

{“nonce":"9c023092",
“nonceSignature":"4082f883ae62d0700c283e225ee9d286713ef74456ba1f07376c
f17d71bf0be013f926d486619394060ced56030f41f84df916eaab5504e456a8530dc9
c821f6ed3e3af62b5d8f3e4a22ca2018670fee4e",
"name":"Tester Bob”,
“expiration":"12\/15",
“primaryAccountNumber”:"9876543210",
“encryptedPrimaryAccountNumber”:”XXXXXXXXXXXXX”,
“networkName”:”Visa”,

 10

“productType”:”XXXXXXXXX”,
"primaryAccountNumberPrefix": “483692046”,
“primaryAccountIdentifier”:”XXXXXXXXXXX”}

Note that, within the JSON dictionary prior to encryption, nonce and nonce signature
should be included after hex encoding. If you are provisioning Visa cards via VTS, the
encrypted FPAN should be Base 64 encoded within the JSON dictionary.

X. Cryptographic OTP

In addition to the encrypted payment data payload, the issuer host must also provide a
cryptographic OTP value within the activationData property of the
PKAddPaymentPassRequest. This value is defined by the PNO or service provider to
facilitate the verification of the provisioning request.

For more information on the format of the activationData field, please see the
“PKAddPaymentPassRequest” section of the Issuer Application Based Provisioning
specification. For any questions relating to the generation or validation of cryptographic
OTP, please refer to the specifications from your respective PNO or service provider.

As a final note, please be advised that Apple will Base64 encode the cryptographic OTP
prior to passing it to the PNO or service provider for validation. Please take this into

 11

Table 9-1

Configurations

1 2 3

FPAN FPAN ID eFPAN

Name Nonce Name*

Expiration Date Nonce
Signature

FPAN Prefix

Nonce Product
Type

Network Name

Nonce Signature Nonce

Product Type Nonce Signature

Product Type

* Name is required in payment data configuration 3 unless otherwise
specified by Apple, your PNO, or your service provider. Also note, cells in

blue are optional. Product Type will be provided by Apple, if required.

consideration during development as well as when testing this feature with the PNO or
service provider.

The data used to define the activationData object, which is later passed to iOS via
the APIs, should appear as follows:

For Visa:
MBPAD-1-FK-123456.1--TDEA-7AF291C91F3ED4EF92C1D45EFF127C1F9ABC12347E

For MasterCard:
{“tokenUniqueReferenceIncluded":"XXXXX",
“signatureAlgorithm":"XXXXXXXX",
“signature":"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
“expirationDateIncluded":"XXXX",
"version":"X"}

XI. Sample Payment Data

To help you test your issuer host encryption as well as your iOS app’s interface to Apple
Wallet, Apple has provided test vectors including a sample set of public certificates,
plaintext, ephemeral key pair, shared secret, shared key, and cipher text. To obtain these
vectors, please contact apple-pay-provisioning@apple.com.

To use the test vectors:

1. Validate the certificate chain and extract the static public key from the certificates
and compare to the static public key listed within the encryptionlog.txt file

2. Instead of generating an ephemeral key pair, you can use the ephemeral key pair
provided within the encryptionlog.txt file

3. Use the static public key and ephemeral private key to derive the shared secret
using the ECDH protocol; compare the derived shared secret to the value listed in
the encryptionlog.txt file

4. Generate the other info as specified in NIST SP 800-56A, Section 5.8.1 as well as
Appendix B of the Issuer Application Based Provisioning Specification; compare with
the other info value listed within the encryptionlog.txt file

5. Input the shared secret and other info into the key derivation function specified in
NIST SP 800-56A, Section 5.8.1 to generate the shared key; compare the shared
key to the shared key listed within the encryptionlog.txt file

6. Encrypt the JSON payload within the cleartext file with the shared key derived in
Step 5; compare the resulting cipher text with the cipher text listed within the
encryptionlog.txt file

Once you have validated your ability to generate each data point, you have successfully
validated your cryptography with the test vectors.

 12

mailto:apple-pay-provisioning@apple.com
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

XII. Testing Prior to Release on the App Store

It is the responsibility of the issuer to ensure the In-App Provisioning functionality is
thoroughly tested in the app across all supported iOS versions and devices prior to
releasing to the general public for download.

Testing will occur through the use of the production environments. The iOS app will be
distributed for testing purposes via the production App Store after the necessary
approvals. A few points to note:

• The issuer must also provide the Adam ID, the numeric Apple ID of the
application, to apple-pay-provisioning@apple.com prior to testing.

• The distribution of the app for testing purposes must be through the use of
Promo Codes. Please look here for more information on the use of Promo
Codes for limiting the distribution of an app via the App Store.

• Be sure to select “Manual Release” when submitting your app for App Review,
otherwise you may inadvertently release the test app to the general public.

• Once testing is complete, the app can be made available for public download
by selecting “Release This Version” within iTunes Connect. In case changes
have been made to the app after inclusion on the App Store for testing, you will
need to “Cancel This Release” within iTunes Connect. You can then re-submit
your corrected app to the App Store for approval. Please click here for
additional information on this part of the process.

Please note that Test Flight can not currently be used to distribute apps for In-App
Provisioning testing.  

 13

mailto:apple-pay-provisioning@apple.com
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/ProvidingPromoCodes.html#//apple_ref/doc/uid/TP40011225-CH5-SW1
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/ReplacingYourAppWithANewVersion.html#//apple_ref/doc/uid/TP40011225-CH14-SW2

Appendix A - Sample Flows

 14

3

54

1. Present buttons within app 2. Wallet Flow Invoked

6. Upon completion, return user
to the app

