

Reference Manual Please read the Important Notice and Warnings at the end of this document Revision 2.12

www.infineon.com/iMOTION 2009-12-16

IRMCx311, x312, x341, x343, x371

Reference Manual

 iMOTION™ Motor Control IC integrating the Motion Control Engine (MCE) with

a Microcontroller

Quality Requirement Category: Industry

Features

 Motion Control Engine (MCE) with 120MHz
Field proven computation engine for high efficiency sinusoidal sensor less motor control

o Ready-to-use solution for high efficiency variable speed drives

o Sensor less field oriented control (FOC) of permanent magnet synchronous motors (PMSM)

o Built-in support for single or two shunt current feedback

o Integrated protection features

 MCU: 8051 with up to 120MHz

o Built-in digital & analog peripherals: oscillator, A/D converter, OP amps & comparators

o UART, I2C & SPI serial interfaces

o Multiple additional analog & digital application IOs

o JTAG interface

 Up to 64 KB OTP memory (IRMCK3xx)

o RAM versions for development (IRMCF3xx)

 Packages : QFP-48, QFP64, QFP-100

Applications

 Major & small home appliances

 Pumps & fans

 Any other PMSM drive

Description

The IRMCx300 series combines the iMOTION™ motion control
engine (MCE) with an additional microcontroller (MCU) to
improve application flexibility. The MCE does not require

algorithm programming and can be combined with a µIPM™ or
a discrete power stage for FOC control of a PMSM.

The industry standard 8051 MCU can be programmed by the
customer to control the MCE and to implement additional
functionality running almost independently from the motion
control algorithm on the MCE.

www.irf.com

User Guide #0609

UG#0609

IRMCx300
Reference Manual

16 December 2009
Version 2.12

IRMCx300 Reference Manual

www.irf.com 2

 TABLE OF CONTENTS

User Guide #0609 ... 1
1. Overview... 9

1.1 System Components.. 11
1.2 Memory Map... 12
1.3 Byte Ordering.. 13

2 Reset Mechanism and Boot Process.. 14
2.1 Power Sequencing at Startup... 16
2.2 EEPROM Data Format.. 18

3 8051 Microcontroller... 20
3.1 Instruction Set ... 20
3.2 Special Function Registers .. 24

3.2.1 Processor Registers.. 27
3.2.2 General Purpose I/O .. 29
3.2.3 Clock Selection and PLL Frequency Configuration.. 33
3.2.4 Miscellaneous Functions ... 36

3.3 Interrupts ... 39
3.3.1 Standard Interrupts .. 39
3.3.2 Extended Interrupts ... 40
3.3.3 P4 Interrupts .. 40
3.3.4 Enabling Interrupts .. 40
3.3.5 Interrupt Priority.. 42
3.3.6 Service Order... 43
3.3.7 Interrupt Latency ... 44
3.3.8 Interrupt Vectors ... 44

3.4 Timers ... 45
3.4.1 Timer Prescaler ... 45
3.4.2 General-Purpose Timer/Counters .. 45

3.4.2.1 Modes of Operation... 48
3.4.2.2 Configuring the Timers ... 48
3.4.2.3 Using the Timers to Measure a Time Interval ... 48
3.4.2.4 Using the Timers to Signal When a Defined Period Has Elapsed... 49
3.4.2.5 Using the Timers as Event Counters ... 49
3.4.2.6 Reading the Timers ... 49

3.4.3 Periodic Timer... 49
3.4.4 Watchdog Timer.. 50
3.4.5 Capture Timer ... 51

3.5 UARTs .. 53
3.6 D/A PWM ... 56
3.7 I2C / SPI Serial Interface ... 57

3.7.1 Command Descriptions for the I2C Interface .. 59
3.7.1.1 Reset Command .. 59
3.7.1.2 Read and Write Commands... 59

3.7.2 Command Descriptions for the SPI Interface.. 60
3.7.2.1 Read Instructions... 60
3.7.2.2 Write Instructions .. 61

4 Motion Control Engine.. 62
4.1 Rotating Frame Notation and Conventions ... 64
4.2 Control Blocks .. 65

4.2.1 Frequency Domain Blocks .. 65
4.2.1.1 PI – Proportional Plus Integral .. 65
4.2.1.2 LOWPASS_FILT – First Order Low Pass Filter .. 68
4.2.1.3 HIGHPASS_FILT – First Order High Pass Filter ... 70

4.2.2 Coordinate Transformation Blocks ... 72

UG#0609

IRMCx300 Reference Manual

www.irf.com 3

4.2.2.1 VECROT – Vector Rotation ... 72
4.2.2.2 CLARK – Inverse Clark Transformation .. 73

4.2.3 Utility Blocks .. 75
4.2.3.1 LIMIT.. 75
4.2.3.2 RAMP – Linear Ramp... 76
4.2.3.3 ATAN – Arc Tangent block .. 78
4.2.3.4 FUNCTION_BLOCK ... 79
4.2.3.5 COMPARATOR ... 81
4.2.3.6 SWITCH.. 81
4.2.3.7 BIT_LATCH ... 82
4.2.3.8 PEAK_DETECT ... 83
4.2.3.9 TRANSITION – One Shot Pulse Generator.. 84
4.2.3.10 INTEGRAL2 – Integral with Limit... 85
4.2.3.11 PFC_FFD .. 87

4.2.4 Math .. 88
4.2.4.1 DIFF – Subtraction.. 88
4.2.4.2 SUM – Addition .. 89
4.2.4.3 ACCUMULATOR .. 89
4.2.4.4 COUNTER.. 91
4.2.4.5 SHIFT – Multiply by a Power of Two .. 91
4.2.4.6 MUL_DIV – Signed / Unsigned Multiplier with Extraction ... 92
4.2.4.7 DIVIDE ... 94
4.2.4.8 NOT – Bitwise Inversion... 95
4.2.4.9 NEGATE – Two’s Complement ... 96
4.2.4.10 AND – Bitwise Logical AND ... 96
4.2.4.11 OR – Bitwise Logical OR.. 97
4.2.4.12 XOR – Bitwise Logical Exclusive OR.. 97

4.3 Motion Peripherals .. 98
4.3.1 SENSORLESS_FOC... 98

4.3.1.1 Current Control ... 101
4.3.1.2 Rotor Position Estimation.. 102
4.3.1.3 Startup Control .. 104

4.3.2 SINGLE_I_SHUNT .. 106
4.3.3 DC_BUS_VOLTAGE... 109
4.3.4 A_D – A/D Converter ... 110
4.3.5 Low Loss Space Vector PWM .. 112

4.3.5.1 SVPWM Transfer Characteristics ... 115
4.3.5.2 Deadtime Insertion Logic .. 116
4.3.5.3 Three-Phase and Two-Phase Modulation.. 117
4.3.5.4 Guard Band ... 117
4.3.5.5 PWM Pre-Charge Control ... 118
4.3.5.6 Duty Ratio Control Mode.. 119

4.3.6 FAULTS Block ... 120
4.3.7 MCE_FAULT Generator .. 121
4.3.8 PFC_PWM .. 122

4.3.8.1 PFC PWM Generation... 124
4.3.8.2 PFC PWM Blanking.. 125

4.3.9 PFC_SENSE.. 127
4.4 Motion Peripheral Registers.. 129

4.4.1 System Write Register Group.. 129
4.4.2 PWM Configuration Write Register Group... 132
4.4.3 Current Feedback Configuration Write Register Group.. 136
4.4.4 System Control Write Register Group... 137
4.4.5 Torque Loop Configuration Write Register Group ... 138
4.4.6 Velocity Control Write Register Group... 140

UG#0609

IRMCx300 Reference Manual

www.irf.com 4

4.4.7 Closed Loop Angle Estimator Write Register Group.. 142
4.4.8 Open Loop Angle Estimator Write Register Group .. 147
4.4.9 Startup Angle Estimator Write Register Group... 148
4.4.10 Startup Retrial Write Register Group .. 151
4.4.11 Phase Loss Detect Write Register Group .. 153
4.4.12 Single Shunt Write Register Group... 154
4.4.13 Start/Stop Sequencing Write Register Group .. 156
4.4.14 Catch Spin Write Register Group.. 157
4.4.15 User Control Write Register Group... 160
4.4.16 Field Weakening Control Write Register Group ... 162
4.4.17 Protection Write Register Group ... 163
4.4.18 External Signals Write Register Group ... 165
4.4.19 PFC Control Write Register Group ... 167
4.4.20 System Read Register Group... 172
4.4.21 System Status Read Register Group.. 174
4.4.22 DC Bus Voltage Read Register Group .. 175
4.4.23 FOC Diagnostic Data Read Register Group.. 176
4.4.24 Velocity Status Read Register Group.. 179
4.4.25 Current Feedback Offset Read Register Group ... 180
4.4.26 PFC Status Read Register Group .. 181

5 8051 / MCE Interface.. 183
5.1 The Shared RAM .. 183

5.1.1 Reading and Writing Shared RAM ... 183
5.1.2 Arbitration ... 184

5.2 MCE Processor Registers.. 185
5.3 Motion Peripheral Register Interface .. 186
5.4 Interrupts from the MCE to the 8051 .. 187

6 The MCE Development Process ... 189
6.1 MCE Design Generation ... 190
6.2 Creating an MCE Design Using Simulink .. 191

6.2.1 Creating a Complete System Design... 191
6.2.2 Creating a Macro Block Definition ... 192

6.3 Simulink MCE Design Components ... 194
6.3.1 The MCE Library .. 194

6.3.1.1 Configuration .. 194
6.3.1.2 Registers .. 194
6.3.1.3 Control... 194
6.3.1.4 Math .. 194
6.3.1.5 Tools.. 195
6.3.1.6 Motion Peripherals .. 195
6.3.1.7 Designs .. 195

6.3.2 Standard Simulink Library Components ... 195
6.3.2.1 Enabled Subsystem.. 195
6.3.2.2 Constant... 195
6.3.2.3 Scope ... 195
6.3.2.4 Input Port... 195
6.3.2.5 Output Port .. 195
6.3.2.6 Goto and From .. 195
6.3.2.7 Unit Delay ... 196

6.4 The MCE Compiler ... 197
6.5 The Host Register Summary Utility .. 200
6.6 Customizing Motion Peripheral Library Blocks ... 201
6.7 MCE Design Hierarchical Format... 203

7 The 8051 Development Process .. 205
7.1 Source Code Samples.. 205

UG#0609

IRMCx300 Reference Manual

www.irf.com 5

7.1.1 EEPROM Programming.. 205
7.1.2 Register Interface .. 205
7.1.3 UART Driver... 205
7.1.4 MCE Initialization... 206
7.1.5 Motor Control.. 207
7.1.6 Other Operations ... 208

7.2 The Keil and FS2 Tools... 209
7.2.1 Software Installation.. 209
7.2.2 Software Setup .. 209
7.2.3 The Keil Compiler... 209
7.2.4 Debugging ... 210

7.3 Storing 8051 and MCE Code in EEPROM ... 211

LIST OF FIGURES

Figure 1. Typical Application Block Diagram Using IRMCF312 ... 9
Figure 2. IRMCF312 Internal Block Diagram ... 11
Figure 3. Memory Map of IRMCF300... 12
Figure 4. Reset Module .. 14
Figure 5. Reset and Boot Process for F-version ... 15
Figure 6. Reset and Boot Process for K-version. .. 16
Figure 7. Exact power sequence for IRMCF341 – Obtained in IRMCS3041 reference demo board 17
Figure 8. Detail of power supply circuit in IRMCS3041 reference demo board... 18
Figure 9. Port Structure of IRMCF300 .. 30
Figure 10. PWM Frequency Limit ... 35
Figure 11. Periodic Timer .. 50
Figure 12. Watchdog Timer ... 51
Figure 13. Capture Timer ... 52
Figure 14. D/A PWM Output... 56
Figure 15. I2C Pin Structure ... 60
Figure 16. PI Block .. 65
Figure 17. LOWPASS_FILT Block... 68
Figure 18. LOWPASS_FILT frequency response.. 69
Figure 19. HIGHPASS_FILT Block .. 70
Figure 20. HIGHPASS_FILT frequency response... 71
Figure 21. VECROT Block.. 72
Figure 22. VECROT vector interpretation ... 72
Figure 23. CLARK Block .. 73
Figure 24. CLARK vector interpretation.. 74
Figure 25. LIMIT Block... 75
Figure 26. RAMP Block .. 76
Figure 27. ATAN Block... 78
Figure 28. FUNCTION_BLOCK Block .. 79
Figure 29. FUNCTION_BLOCK Example.. 80
Figure 30. COMPARATOR Block .. 81
Figure 31. SWITCH Block... 81
Figure 32. BIT_LATCH Block .. 82
Figure 33. PEAK_DETECT Block .. 83
Figure 34. TRANSITION Block.. 84
Figure 35. INTEGRAL2 Block.. 85
Figure 36. PFC_FFD Block ... 87
Figure 37. Block Diagram of PFC_FFD ... 87

UG#0609

IRMCx300 Reference Manual

www.irf.com 6

Figure 38. DIFF Block ... 88
Figure 39. SUM Block ... 89
Figure 40. ACCUMULATOR Block ... 89
Figure 41. COUNTER Block ... 91
Figure 42. SHIFT Block... 91
Figure 43. MUL_DIV Block.. 92
Figure 44. DIVIDE Block .. 94
Figure 45. NOT Block.. 95
Figure 46. NEGATE Block.. 96
Figure 47. AND Block ... 96
Figure 48. OR Block .. 97
Figure 49. XOR Block ... 97
Figure 50. SENSORLESS_FOC Block.. 98
Figure 51. SENSORLESS_FOC Block Diagram... 103
Figure 52. Drive Control Modes .. 104
Figure 53. Flux and Current vector displacement .. 104
Figure 54. 2-Stage Parking... 105
Figure 55. SINGLE_I_SHUNT Block ... 106
Figure 56. Single Shunt Current Sense Timing.. 107
Figure 57. Single Current Shunt Registers (TCntMin2Phs, TCntMin3Phs) .. 108
Figure 58. DC_BUS_VOLTAGE Block.. 109
Figure 59. A/D Interface Blocks .. 110
Figure 60. IRMCx312 A/D Converter Structure.. 111
Figure 61. Low Loss SVPWM Block .. 112
Figure 62. SVPWM Internal Block Diagram... 114
Figure 63. Space Vector Diagram .. 115
Figure 64. Voltage Vector Rescaling ... 116
Figure 65. Deadtime Insertion.. 116
Figure 66. Three-Phase and Two-Phase Modulation ... 117
Figure 67. Types of Space Vector PWM ... 117
Figure 68. Guard Band Insertion.. 118
Figure 69. Bootstrap Pre-Charge Sequence.. 118
Figure 70. Timing of Bootstrap Capacitor Charging.. 119
Figure 71. Duty Ratio Control.. 119
Figure 72. FAULTS Block... 120
Figure 73. MCE_FAULT Block .. 121
Figure 74. PFC_PWM Block ... 122
Figure 75. PFC_PWM Internal Block Diagram... 123
Figure 76. Generation of PFC PWM output and ADC timing (PFC_sync_divider = 0).. 124
Figure 77. Generation of PFC PWM output and ADC timing (PFC_sync_divider = 1).. 125
Figure 78. PFC_SENSE Block... 127
Figure 79. Detail scaling of PLL.. 145
Figure 80. Calculation of VdcRcp.. 163
Figure 81. PFCPhasing Example ... 171
Figure 82. Timing of Sync and MCE Computation ... 187
Figure 83. MCE Simulink Library ... 194
Figure 84. MCE Compiler Input Screen .. 197
Figure 85. MCE Compiler Results Example.. 199
Figure 86. The Host Register Summary Utility.. 200
Figure 87. The CustomMotPer Utility ... 201
Figure 88. MCE Design Hierarchy... 203

UG#0609

IRMCx300 Reference Manual

www.irf.com 7

LIST OF TABLES

Table 1. IRMCF300 Comparison Table... 10
Table 2. Boot EEPROM Memory Map.. 19
Table 3. 8051 Instructions.. 23
Table 4. Special Function Register Memory Map.. 24
Table 5. Special Function Registers ... 26
Table 6. Discrete I/Os from Ports 1 – 5.. 29
Table 7. Interrupt Source Summary ... 39
Table 8. Interrupt Service Order... 44
Table 9. SFRs for I2C ... 57
Table 10. SFRs for SPI... 57
Table 11. MCE Library Elements .. 63
Table 12. PI User Inputs and Outputs .. 67
Table 13. PI System Inputs and Outputs .. 67
Table 14. PI Execution Time.. 67
Table 15. LOWPASS_FILT User Inputs and Outputs ... 69
Table 16. LOWPASS_FILT Execution Time .. 69
Table 17. HIGHPASS_FILT User Inputs and Outputs .. 71
Table 18. HIGHPASS_FILT Execution Time ... 71
Table 19. VECROT Inputs and Outputs .. 72
Table 20. VECROT Execution Time ... 73
Table 21. CLARK Inputs and Outputs... 74
Table 22. CLARK Execution Time.. 74
Table 23. LIMIT Inputs and Outputs ... 75
Table 24. LIMIT Execution Time .. 75
Table 25. RAMP User Inputs and Outputs... 77
Table 26. RAMP Execution Time.. 77
Table 27. ATAN Inputs and Outputs ... 78
Table 28. ATAN Execution Time .. 78
Table 29. FUNCTION_BLOCK Inputs and Outputs... 80
Table 30. FUNCTION_BLOCK Execution Time.. 80
Table 31. COMPARATOR Inputs and Outputs... 81
Table 32. COMPARATOR Execution Time.. 81
Table 33. SWITCH Inputs and Outputs ... 82
Table 34. SWITCH Execution Time.. 82
Table 35. BIT_LATCH User Inputs and Outputs .. 83
Table 36. BIT_LATCH Execution Time ... 83
Table 37. PEAK_DETECT User Inputs and Outputs .. 83
Table 38. PEAK_DETECT Execution Time.. 84
Table 39. TRANSITION User Inputs and Outputs .. 85
Table 40. TRANSITION Execution Time ... 85
Table 41. INTEGRAL2 User Inputs and Outputs .. 86
Table 42. INTEGRAL2 Execution Time ... 86
Table 43. PFC_FFD Inputs and Outputs .. 87
Table 44. PFC_FFD Execution Time... 87
Table 45. DIFF Inputs and Outputs.. 88
Table 46. DIFF Execution Time .. 88
Table 47. SUM Inputs and Outputs.. 89
Table 48. SUM Execution Time .. 89
Table 49. ACCUMULATOR User Inputs and Outputs ... 90
Table 50. ACCUMULATOR Execution Time .. 90
Table 51. COUNTER User Inputs and Outputs ... 91
Table 52. COUNTER Execution Time .. 91

UG#0609

IRMCx300 Reference Manual

www.irf.com 8

Table 53. SHIFT Inputs and Outputs ... 92
Table 54. SHIFT Execution Time .. 92
Table 55. MUL_DIV Inputs and Outputs... 93
Table 56. MUL_DIV Execution Time ... 93
Table 57. DIVIDE Inputs and Outputs... 94
Table 58. DIVIDE Execution Time ... 95
Table 59. NOT Inputs and Outputs .. 95
Table 60. NOT Execution Time... 95
Table 61. NEGATE Inputs and Outputs .. 96
Table 62. NEGATE Execution Time ... 96
Table 63. AND Inputs and Outputs.. 96
Table 64. AND Execution Time... 96
Table 65. OR Inputs and Outputs... 97
Table 66. OR Execution Time.. 97
Table 67. XOR Inputs and Outputs .. 97
Table 68. XOR Execution Time... 97
Table 69. SENSORLESS_FOC Available Inputs and Outputs.. 100
Table 70. SINGLE_I_SHUNT Available Inputs and Outputs ... 106
Table 71. DC_BUS_VOLTAGE Outputs .. 109
Table 72. A_D Outputs .. 110
Table 73. SVPWM Available Inputs and Outputs ... 113
Table 74. FAULTS Block Outputs... 120
Table 75. MCE_FAULT Block Inputs... 121
Table 76. PFC_PWM Inputs and Outputs.. 122
Table 77. PFC_SENSE Outputs... 127
Table 78. MCE Processor Registers... 185

UG#0609

IRMCx300 Reference Manual

www.irf.com 9

1. Overview

The IRMCF300 series is a new family of International Rectifier integrated circuit devices primarily designed as one-
chip solutions for inverter controlled appliance motor control applications. This includes the IRMCF312, IRMCF311,
IRMCF343, IRMCF341 and IRMCF371. Throughout this document, the IRMCF300 will refer to any one of the five
digital control IC’s in the IRMCF300 family.
Unlike a traditional microcontroller or DSP, the IRMCF300 provides a built-in closed loop sensorless control
algorithm using the unique Motion Control Engine (MCETM) for permanent magnet motors. The MCETM consists of
control elements, motion peripherals, a dedicated motion control sequencer and a dual port RAM to map internal signal
nodes. The IRMCF300 also employs a unique single shunt current reconstruction circuit to eliminate additional
analog/digital circuitry and enables a direct shunt resistor interface to the IC. Some of the IRMCF300 has a digital
PFC control for both boost and bridgeless mode. Motion control programming is achieved by using a dedicated
graphical compiler integrated into the MATLAB/SimulinkTM development environment. Sequencing, user interface,
host communication, and upper layer control tasks can be implemented in the built-in 8051 high-speed 8-bit
microcontroller. The 8051 microcontroller is equipped with a JTAG port to facilitate emulation and debugging tools.
Figure 1 shows a typical application schematic using the IRMCF312. Two permanent magnet motors and PFC can be
controlled by a single chip without requiring motor position sensors.

Figure 1. Typical Application Block Diagram Using IRMCF312

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 10

IRMCF300 contains 48K bytes of RAM for instruction storage, which can be loaded from external EEPROM for 8051
program execution. The IRMCF300 is intended for development purposes. For high volume production, the
IRMCK300 contains one-time-programmable (OTP) memory in place of program RAM. IRMCK300 also includes 8K
bytes of data RAM. The “F” and “K” versions of each part have identical pin configurations to facilitate PC board

out and transition to mass production. lay
Table 1 shows differences among IRMCF300 IC’s.

 312 311 343 341 371

Motor Control 2 2 1 1 1

PFC Yes Yes Yes No No

Package QFP100 QFP64 QFP64 QFP64 QFP48

8051 Program Memory 48KByte 48KByte 48KByte 48KByte 48KByte

RAM 8KByte 8KByte 8KByte 8KByte 8KByte

I/O (max) 36 14 23 24 13

A/D Channels
Total /Buffered 11 / 5 6 / 4 5 / 3 8 / 1 4 / 1

D/A Channels 3 2 3 3 1

UART 2 2 1 1 1

General Purpose Counter
Pin (T0, T1, T2) 3 - 1 2 1

Table 1. IRMCF300 Comparison Table

UG#0609

IRMCx300 Reference Manual

www.irf.com 11

A block diagram of the IRMCF312, a superset of other IRMCF300 IC, is shown in Figure 2. For details of the pin out
and typical application connections, please refer to the datasheets of each IC’s.

8b
it

uP
 A

dd
re

ss
/D

at
a

bu
s

M
ot

io
n

C
on

tr
ol

 B
us

Figure 2. IRMCF312 Internal Block Diagram

1.1 System Components

The IRMCF300 can be divided into four main components, shown color-coded in Figure 2. The components are:

• The 8051 microcontroller, shown at the far left in purple
• RAM for program and data storage, shown at the center of the diagram in green
• The Motion Control Engine (MCE), shown at right in blue
• Hardware interface or “motion peripheral” modules, shown at the far right in yellow

UG#0609

IRMCx300 Reference Manual

www.irf.com 12

1.2 Memory Map

Figure 3 shows the memory map of the IRMCF300 RAM. The 48K bytes of program RAM shown in the figure (at
8051 external RAM addresses 0x0000 – 0xBFFF) are present only in the IRMCF300 for software development
purposes. In the IRMCK300, the RAM is replaced with one-time-programmable (OTP) memory in the same address
range, except with 56K available for the 8051 program. Data RAM for the 8051 is located at external RAM addresses
0xF800 – 0xFFFF. The shared RAM (at 8051 external RAM addresses 0xE000 – 0xF7FF) is described more fully in
Section 5.1.

Figure 3. Memory Map of IRMCF300

UG#0609

IRMCx300 Reference Manual

www.irf.com 13

1.3 Byte Ordering
Byte ordering refers to the convention used to store 16-bit and 32-bit values in memory using a processor, such as the
8051, that has a native addressing mode of 8 bits. The two standard byte ordering conventions are “big endian” or
“Motorola” byte ordering and “little endian” or “Intel” byte ordering.

In big endian byte ordering, the “big end” of a value is stored first. That is, the high order byte is stored at the lowest
memory address and the low-order byte is stored at the highest memory address. In little endian byte ordering, the
“little end” is stored first, with the low-order byte at the lowest memory address.

For example, suppose the 16-bit value 0x2345 is to be stored in memory at address 0x1000. Using big endian byte
ordering, 0x23 is stored at address 0x1000 and 0x45 is stored at address 0x1001. Using little endian byte ordering,
0x45 is stored at address 0x1000 and 0x23 is stored at address 0x1001.

The table below shows how the value 0x456789AB would be stored at address 0x1000 using each of the byte ordering
conventions.

Address Big Endian Little Endian
0x1000 0x45 0xAB
0x1001 0x67 0x89
0x1002 0x89 0x67
0x1003 0xAB 0x45

The Keil compiler used for 8051 software development generates code that uses big endian byte ordering to store
16-bit and 32-bit values in memory.

The MCE is a 16-bit processor and uses little endian byte ordering for data storage. The smallest unit of data storage
on the MCE processor is 16 bits (it cannot access a single byte in memory). The shared RAM used to exchange
information between the 8051 and MCE processors is 8-bit addressable to the 8051, but 16-bit addressable to the
MCE.

All data shared between the 8051 and MCE processors is expected to be in little endian byte ordering. This means that
the 8051 must swap bytes before writing to shared RAM and swap bytes after reading from shared RAM. The table
below shows how the value 0x456789AB would be stored at address 0xE200 in 8051 RAM, which corresponds to
address 0x0100 in MCE RAM. Note that the 8051 reads and writes a byte at a time, but the MCE always accesses the
memory a word (16 bits) at a time.

8051 Address 8051 Bytes MCE Address MCE Words
0xE200 0xAB
0xE201 0x89

0x0100 0x89AB

0xE202 0x67
0xE203 0x45

0x0101 0x4567

UG#0609

IRMCx300 Reference Manual

www.irf.com 14

2 Reset Mechanism and Boot Process

A power on reset does not require any assertion of reset signal from an external circuit. The IRMCF300 contains an
analog power on reset (POR) circuit which issues reset to all internal circuits. Therefore no filter other than a pull-up
resistor is required at the reset pin. The reset pin is bidirectional and becomes output when one of the following
conditions occurs.

1) The watchdog timer times out.
2) Under voltage lockout (UVCC) circuit detects low voltage on AVDD (1.8V).
3) Power on reset (POR) circuit becomes alive at the power up.

Among these, cases (2) and (3) pull down RESET for 2048 periods of crystal clock (XCLK). When the watchdog
timeout occurs, RESET low assertion time becomes about 31 μsec.

When the RESET input is asserted from an external source, minimum 10 μsec low level assertion pulse is required to
ensure the internal reset.
Figure 4 shows the Reset Module, which contains two analog circuits, namely Under Voltage Lockout (UVCC) and
Power-On Reset (POR), and a 12-bit ripple counter to stretch the Reset pulse width. This module is one of the blocks
in Figure 5 and Figure 6.

Figure 4. Reset Module

The reset and boot processes are closely tied together in the IRMCF300. The boot process is automatically
accomplished following a proper reset sequence, which is triggered by power on or external RESET. Therefore, a user
application cannot intervene during the reset and boot process. The main task of the boot process is to copy the user
application program stored in an external serial EEPROM to program RAM, initialize the program counter and transfer
control to the 8051 CPU. The block diagram of the reset and boot process is shown in Figure 5.

UG#0609

IRMCx300 Reference Manual

www.irf.com 15

Figure 5. Reset and Boot Process for F-version

A reset of the IRMCF300 is accomplished by asserting low on the RESET input pin for a minimum of 10 μsec. The
RESET is a Schmitt trigger type input with hysteresis to avoid any multiple triggers to the system. Once the reset is
recognized in the system, the reset module counts up to 2048 clocks at the crystal frequency (i.e. 4 MHz, 512 μsec) to
ensure that the internal PLL becomes stable for generation of the internal system clock. When this waiting period is
complete, the boot module begins copying the user program from external EEPROM to program RAM via the I2C or
SPI port. The boot module is clocked off of the external oscillator (which is 4Mhz in IR’s Reference Kits). The time
to complete the copy process depends on the size of the user program. The following example shows the time required
to copy 48Kbytes of 8051 program and 6Kbytes of MCE program.

Total user program to be copied: (48 + 6) * 1024 bytes
Number of bit periods to transfer one byte: 9 bits
I2C clock speed: 333 kHz, for a transfer time of 3 μsec per bit

Total transfer time = 54 * 1024 * 9 * 3 μsec = 1.5 sec

The IC pin P1.3 determines whether the controller performs an I2C or SPI boot load. Pull up the pin to VDD1 (3.3V)
for I2C boot load.

The boot module holds the internal Reset active for the 8051 microcontroller while data transfer takes place, then it
releases the internal Reset and I2C port control upon completion of the copy process. Immediately after the copy
process completes, the 8051 application program begins execution. The MCE processor is not held in reset state

UG#0609

IRMCx300 Reference Manual

www.irf.com 16

during the copy process, but it does not begin execution until the 8051 application sets bit 0 of the MCE Control
register equal to 1 (see Section 5.2).

The time to complete the copy process varies depending on the actual size of the application program and the I2C clock
speed, which can be modified to accommodate various types of I2C EEPROM devices.

The boot process and clock generation are somewhat different in the K-version, as shown in Figure 6. Since the K-
version contains OTP memory, it does not download from the EEPROM. Instead, the highest address 8Kbytes
(0xE000 to 0xFFFF) of the OTP are copied into the IRMCK300 IC’s RAM. Also, the K-version provides for the 8051
and MCE to have different clock rates since the OTP program memory is limited to 33MHz.

Note that the MCE processor registers are mapped to the beginning of RAM (as described in Section 5.2) and are,
therefore, initialized as part of the K-version copy process. Since the MCE processor is not held in reset state during
the copy process, it is important to ensure that its registers are initialized to appropriate values. In particular, the MCE
Control register must be initialized to zero so that the MCE does not begin execution before the boot process
completes.

Figure 6. Reset and Boot Process for K-version.

In the K-version, the boot loading from the OTP to the RAM takes 10 clock cycles per byte, with the clock provide by
the external oscillator. From this the boot time can be calculated (assuming a 4Mhz clock):

8192 bytes * 10 clocks/byte / 4Mhz clock freq = 20.48 ms

2.1 Power Sequencing at Startup
This section defines the sequence of power supply voltage ramps that must be followed when starting up the IR
IRMCx3xx controller ICs. The IRMCS3041 (IRMCF341 reference demo board) is presented as reference for the
schematic and the scope pictures, but the same applies to the whole family of ICs (IRMCF/K371, 341, 343, 311 and
312).

UG#0609

IRMCx300 Reference Manual

www.irf.com 17

The IRMCF341 needs two different voltages power supplies:

• 1.8V used for the PLL, A/D converter and digital core;
• 3.3V used for Input/Output pins.

The correct sequence to have good startup of the IRMCx3xx is obtained when:
1.8V power supply line voltage lags the 3.3V power supply line voltage and the actual value of the voltage of the
1.8V line is always lower than the actual value of the 3.3V line during ramp up.

An example of the correct power sequencing is shown in Figure 7. The green trace is the 1.8V power supply voltage
and the yellow trace is the 3.3V power supply voltage.

Figure 7. Exact power sequence for IRMCF341 – Obtained in IRMCS3041 reference demo board

The traces in Fig.1 have been obtained using the IRMCS3041 reference demo board, where the 1.8V power supply is
obtained directly from 3.3V power supply with a low dropout linear regulator. The detail of the IRMCS3041 schematic
is shown in Fig.2.

UG#0609

IRMCx300 Reference Manual

www.irf.com 18

Figure 8. Detail of power supply circuit in IRMCS3041 reference demo board

If the power sequencing is guaranteed by design, the IRMCx3xx start up is successful and the proper operation is
obtained.

If the sequence is not followed, a proper IRMCx3xx startup is not guaranteed. However in case of an incorrect power
supply ramp up sequence, the IRMCx3xx functionality can be recovered by asserting the RESET line and then
releasing it. If the right power sequence cannot be guaranteed by design, a dual voltage supervisor IC from a third
party can easily solve the problem.

2.2 EEPROM Data Format
To support variable-length application programs and variable speed of the I2C EEPROM transfer, the first four bytes of
EEPROM and the last two bytes in EEPROM are dedicated for the boot process. The EEPROM data is divided into
256-byte pages with an address byte (page number) for each page. This allows the EEPROM to store any number of
program segments. The boot module copies each page to its specified destination address in RAM independently.
There is no requirement for pages to be stored in sequential or ascending order.

The page number is the high-order byte of the 16-bit RAM destination address. For example, page number 0x34 is
copied to address 0x3400. All pages except the last must contain exactly 256 bytes of data. The last page may contain
fewer than 256 bytes, with the total byte count in the EEPROM header determining the number of bytes in that page.

If the application program consists of n pages and len is the number of bytes of data in the last page, the total byte
count stored in the first two bytes of EEPROM can be calculated as follows:

Byte count = 4 + (257 * (n – 1)) + 1 + len + 2

The EEPROM header is four bytes. Each page before the last is 257 bytes (one byte page number and 256 bytes of
data). The last page has a 1-byte page number and len data bytes, and the 2-byte checksum is included at the end.

UG#0609

IRMCx300 Reference Manual

www.irf.com 19

Table 2 shows the EEPROM data format. The four-byte header, two-byte checksum and the page number preceding
each 256-byte page are not copied to RAM.

Offset byte
address

Data Note

0 Byte Count Low
1 Byte Count High

Total byte count including the four header bytes, all of the 8051 and
MCE program, and two checksum bytes

2 Baud Rate Low
3 Baud Rate High

12-bit baud rate time constant

4 First page number
5 First page starting data

… …

260 First page ending data

261 Second page number
262 Second page starting data
… …

517 Second page ending data
… …

8051 and MCE program

Last – 1 Checksum Low 16-bit checksum
Last Checksum High

Table 2. Boot EEPROM Memory Map

The first two bytes of the header are a 16-bit count value representing the total number of bytes in EEPROM including
the four header bytes, the application program pages and the last two bytes of checksum. The remaining two bytes of
the header have the I2C baud rate value in the lower 12 bits. Given the crystal clock (XClk) and the desired baud rate
(fSCL), use the formula below to set the baud rate time constant to go into the EEPROM header. MCEDesigner sets this
value to 0x04. (Note that the power-up value of the baud rate time constant is 0x50, so that the first four bytes have a
baud rate of 24.7 kHz.)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅
= 1

2 SCLf
XClknstBaudRateCo

The 16-bit checksum follows the last byte of application program data, low-order byte first. The checksum is
calculated on all preceding bytes in EEPROM, including the four-byte header. To calculate the checksum, sum all the
bytes (a byte at a time, ignoring any overflow beyond 16 bits) and then negate (two’s complement) the resulting value.

When the IRMCF300 validates the checksum by adding all bytes including the first four bytes and the last two bytes of
checksum itself, the 16-bit result should be zero. If it is not zero, the system halts with a checksum error and does not
transfer control to the 8051 application program. There is no external indication of the error and no further operations
are performed until the device is reset. To diagnose such an issue, check the I2C bus during boot (right after a reset).
The SCL pin should show clock pulses, as data is transferred from the EEPROM to the control IC, which should cease
after the transfer. This indicates that the IC is not damaged and is working properly. Next, use the JTAG interface to
reprogram the EEPROM with a known good image. If this image operates correctly, then there is strong likelihood
that there is a checksum error with the original image.

UG#0609

IRMCx300 Reference Manual

www.irf.com 20

3 8051 Microcontroller
This section describes IRMCF300 features and functions that are specific to the 8051 microcontroller. The interface
between the 8051 and the MCE is covered in Section 5.

The instruction set and basic operation of the IRMCF300 8051 microcontroller is consistent with the standard Intel
8051 processor. A number of peripheral devices and special functions have been added to customize the operation for
the intended application.

3.1 Instruction Set
The instructions of the 8051 microcontroller are 1, 2 or 3 bytes long as listed in the ‘Bytes’ column below. Each
instruction takes either 1, 2 or 4 machine cycles to execute as listed in the following table. 1 machine cycle comprises 2
SYSCLK cycles.

Table 3 lists the 8051 instructions. In the table, an entry such as E8-EF indicates a continuous block of hex opcodes
used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding
code. Non-continuous blocks of codes, shown as 11→F1 (for example), are used for absolute jumps and calls, with the
top 3 bits of the code being used to store the top three bits of the destination address.

The CJNE instructions use the abbreviation #d for immediate data; other instructions use #data.

ARITHMETIC

Mnemonic Description Bytes Cycles Hex code
ADD A,Rn Add register to A 1 1 28-2F
ADD A,dir Add direct byte to A 2 1 25
ADD A,@Ri Add indirect memory to A 1 1 26-27
ADD A,#data Add immediate to A 2 1 24
ADDC A,Rn Add register to A with carry 1 1 38-3F
ADDC A,dir Add direct byte to A with carry 2 1 35
ADDC A,@Ri Add indirect memory to A with carry 1 1 36-37
ADDC A,#data Add immediate to A with carry 2 1 34
SUBB A,Rn Subtract register from A with borrow 1 1 98-9F
SUBB A,dir Subtract direct byte from A with borrow 2 1 95
SUBB A,@Ri Subtract indirect memory from A with borrow 1 1 96-97
SUBB A,#data Subtract immediate from A with borrow 2 1 94
INC A Increment A 1 1 04
INC Rn Increment register 1 1 08-0F
INC dir Increment direct byte 2 1 05
INC @Ri Increment indirect memory 1 1 06-07
DEC A Decrement A 1 1 14
DEC Rn Decrement register 1 1 18-1F
DEC dir Decrement direct byte 2 1 15
DEC @Ri Decrement indirect memory 1 1 16-17
INC DPTR Increment data pointer 1 2 A3
MUL AB Multiply A by B 1 4 A4
DIV AB Divide A by B 1 4 84
DA A Decimal Adjust A 1 1 D4

UG#0609

IRMCx300 Reference Manual

www.irf.com 21

LOGICAL

Mnemonic Description Bytes Cycles Hex code
ANL A,Rn AND register to A 1 1 58-5F
ANL A,dir AND direct byte to A 2 1 55
ANL A,@Ri AND indirect memory to A 1 1 56-57
ANL A,#data AND immediate to A 2 1 54
ANL dir,A AND A to direct byte 2 1 52
ANL dir,#data AND immediate to direct byte 3 2 53
ORL A,Rn OR register to A 1 1 48-4F
ORL A,dir OR direct byte to A 2 1 45
ORL A,@Ri OR indirect memory to A 1 1 46-47
ORL A,#data OR immediate to A 2 1 44
ORL dir,A OR A to direct byte 2 1 42
ORL dir,#data OR immediate to direct byte 3 2 43
XRL A,Rn Exclusive-OR register to A 1 1 68-6F
XRL A,dir Exclusive-OR direct byte to A 2 1 65
XRL A,@Ri Exclusive-OR indirect memory to A 1 1 66-67
XRL A,#data Exclusive-OR immediate to A 2 1 64
XRL dir,A Exclusive-OR A to direct byte 2 1 62
XRL dir,#data Exclusive-OR immediate to direct byte 3 2 63
CLR A Clear A 1 1 E4
CPL A Complement A 1 1 F4
SWAP A Swap Nibbles of A 1 1 C4
RL A Rotate A left 1 1 23
RLC A Rotate A left through carry 1 1 33
RR A Rotate A right 1 1 03
RRC A Rotate A right through carry 1 1 13

DATA TRANSFER

Mnemonic Description Bytes Cycles Hex code
MOV A,Rn Move register to A 1 1 E8-EF
MOV A,dir Move direct byte to A 2 1 E5
MOV A,@Ri Move indirect memory to A 1 1 E6-E7
MOV A,#data Move immediate to A 2 1 74
MOV Rn,A Move A to register 1 1 F8-FF
MOV Rn,dir Move direct byte to register 2 2 A8-AF
MOV Rn,#data Move immediate to register 2 1 78-7F
MOV dir,A Move A to direct byte 2 1 F5
MOV dir,Rn Move register to direct byte 2 2 88-8F
MOV dir,dir Move direct byte to direct byte 3 2 85
MOV dir,@Ri Move indirect memory to direct byte 2 2 86-87
MOV dir,#data Move immediate to direct byte 3 2 75
MOV @Ri,A Move A to indirect memory 1 1 F6-F7
MOV @Ri,dir Move direct byte to indirect memory 2 2 A6-A7
MOV @Ri,#data Move immediate to indirect memory 2 1 76-77
MOV DPTR,#data Move immediate to data pointer 3 2 90
MOVC A,@A+DPTR Move code byte relative DPTR to A 1 2 93
MOVC A,@A+PC Move code byte relative PC to A 1 2 83
MOVX A,@Ri Move external data(A8) to A 1 2 E2-E3
MOVX A,@DPTR Move external data(A16) to A 1 2 E0

UG#0609

IRMCx300 Reference Manual

www.irf.com 22

DATA TRANSFER

MOVX @Ri,A Move A to external data(A8) 1 2 F2-F3
MOVX @DPTR,A Move A to external data(A16) 1 2 F0
PUSH dir Push direct byte onto stack 2 2 C0
POP dir Pop direct byte from stack 2 2 D0
XCH A,Rn Exchange A and register 1 1 C8-CF
XCH A,dir Exchange A and direct byte 2 1 C5
XCH A,@Ri Exchange A and indirect memory 1 1 C6-C7
XCHD A,@Ri Exchange A and indirect memory nibble 1 1 D6-D7

BOOLEAN

Mnemonic Description Bytes Cycles Hex code
CLR C Clear carry 1 1 C3
CLR bit Clear direct bit 2 1 C2
SETB C Set carry 1 1 D3
SETB bit Set direct bit 2 1 D2
CPL C Complement carry 1 1 B3
CPL bit Complement direct bit 2 1 B2
ANL C,bit AND direct bit to carry 2 2 82
ANL C,/bit AND direct bit inverse to carry 2 2 B0
ORL C,bit OR direct bit to carry 2 2 72
ORL C,/bit OR direct bit inverse to carry 2 2 A0
MOV C,bit Move direct bit to carry 2 1 A2
MOV bit,C Move carry to direct bit 2 2 92

BRANCHING

Mnemonic Description Bytes Cycles Hex code
ACALL addr 11 Absolute jump to subroutine 2 2 11→F1
LCALL addr 16 Long jump to subroutine 3 2 12
RET Return from subroutine 1 2 22
RETI Return from interrupt 1 2 32
AJMP addr 11 Absolute jump unconditional 2 2 01→E1
LJMP addr 16 Long jump unconditional 3 2 02
SJMP rel Short jump (relative address) 2 2 80
JC rel Jump on carry = 1 2 2 40
JNC rel Jump on carry = 0 2 2 50
JB bit,rel Jump on direct bit = 1 3 2 20
JNB bit,rel Jump on direct bit = 0 3 2 30
JBC bit,rel Jump on direct bit = 1 and clear 3 2 10
JMP @A+DPTR Jump indirect relative DPTR 1 2 73
JZ rel Jump on accumulator = 0 2 2 60
JNZ rel Jump on accumulator ≠ 0 2 2 70
CJNE A,dir,rel Compare A,direct jne relative 3 2 B5
CJNE A,#d,rel Compare A,immediate jne relative 3 2 B4
CJNE Rn,#d,rel Compare register, immediate jne relative 3 2 B8-BF
CJNE @Ri,#d,rel Compare indirect, immediate jne relative 3 2 B6-B7
DJNZ Rn,rel Decrement register, jnz relative 2 2 D8-DF
DJNZ dir,rel Decrement direct byte, jnz relative 3 2 D5

UG#0609

IRMCx300 Reference Manual

www.irf.com 23

MISCELLANEOUS

Mnemonic Description Bytes Cycles Hex code
NOP No operation 1 1 00

ADDITIONAL INSTRUCTIONS (selected through EO[4])

Mnemonic Description Bytes Cycles Hex code
MOVC @(DPTR++),A IRMCF300-specific instruction supporting

software download into program memory
(see Section 3.2.4)

1 2 A5

TRAP Software break command
(IRMCF300-specific : see Section 3.2.4)

1 1 A5

Table 3. 8051 Instructions

UG#0609

IRMCx300 Reference Manual

www.irf.com 24

3.2 Special Function Registers
All I/O, timer/counter, D/A PWM, UARTs and some MCE operations are accessed via Special Function Registers
(SFRs). These registers occupy direct Internal Data Memory space locations in the range 80h to FFh.

Table 4 shows a summary of the SFR memory map and identifies the bit-addressable registers. Table 5 lists each
register individually and shows its value on reset.

Some general SFRs are described in detail later in this section. Others associated with specific functions such as
UARTs, timers and the MCE interface are defined later in the document.

 0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)
80 P0 SP DPL DPH
88 TCON TMOD TL0 TL1 TH0 TH1
90 P1 P1DIR U0CTL U0STAT U0BUF U0BR
98 U1CTL U1STAT U1BUF U1BR
A0 P2 P2DIR EO DAD3 WDTL WDTH TL3 TH3
A8 IE PSCL IOCON0 IOCON1 DAD0 DAD1 DAD2
B0 P3 P3DIR HWCFG RSTRSN CLASTL CLASTH CPREVL CPREVH
B8 IP I2CAL I2CAH I2CTD I2CCD I2CDA I2CBC I2CNF
C0 IS P4IS P4IM0 P4IM1
C8 T2CON RCP2L RCP2H TL2 TH2
D0 PSW MCEAD0 MCEAD1 MCEAD2 MCEAD3 PLLF0 PLLF1 PLLF2
D8 MCEBL MCEBH PLLF3 HWREV MCESS SYNCS
E0 ACC P4DIR P4 MCESL MCESH STOPS P5DIR P5
E8 IE1 MCECD0 MCECD1 MCECD2 MCECD3 MCEAAH MCEAAL
F0 B
F8 IP1

 Bit
Addressable

Table 4. Special Function Register Memory Map

Address

(hex)

Label

Description

Reset
Value
(hex)

Bit
Address-

able

Notes

Document

Section
80 P0 Port 0 FF * Not used
81 SP Stack Pointer 07 3.2.1
82 DPL Data Pointer Low Byte 00 3.2.1
83 DPH Data Pointer High Byte 00 3.2.1 3.2.1
88 TCON Timer/Counter Control 00 * 3.4.2
89 TMOD Timer/Counter Mode

Control
00 3.4.2

8A TL0 Timer/Counter 0 Low Byte 00 3.4.2
8B TL1 Timer/Counter 1 Low Byte 00 3.4.2
8C TH0 Timer/Counter 0 High Byte 00 3.4.2
8D TH1 Timer/Counter 1 High Byte 00 3.4.2
90 P1 Port 1 FF * 3.2.2
91 P1DIR Port 1 Direction Register 00 3.2.2
94 U0CTL UART 0 Control Register 00 3.5
95 U0STAT UART 0 Status Register 00 3.5
96 U0BUF UART 0 Buffer Register Undefined 3.5
97 U0BR UART 0 Buadrate 30 3.5

UG#0609

IRMCx300 Reference Manual

www.irf.com 25

Address

(hex)

Label

Description

Reset
Value
(hex)

Bit
Address-

able

Notes

Document

Section
9C U1CTL UART 1 Control Register 00 3.5
9D U1STAT UART 1 Status Register 00 3.5
9E U1BUF UART 1 Buffer Register Undefined 3.5
9F U1BR UART 1 Buadrate 30 3.5
A0 P2 Port 2 FF * 3.2.2
A1 P2DIR Port 2 Direction Register 00 3.2.2
A2 EO Extended Operation

Register
00 3.2.4

A3 DAD3 D/A PWM 3 Data 00 Internal use
A4 WDTL Watchdog Timer Limit Low 00 3.4.4
A5 WDTH Watchdog Timer Limit

High
00 3.4.4

A6 TL3 Timer 3 Low 00 3.4.3
A7 TH3 Timer 3 High 00 3.4.3
A8 IE Interrupt Enable Register 0 00 * 3.3.4
A9 PSCL Prescaler Control 00 3.4.1
AA IOCON0 I/O Control Register 0 00 3.2.2
AB IOCON1 I/O Control Register 1 00 3.2.2
AD DAD0 D/A PWM 0 Data 00 3.6
AE DAD1 D/A PWM 1 Data 00 3.6
AF DAD2 D/A PWM 2 Data 00 3.6
B0 P3 Port 3 FF * 3.2.2
B1 P3DIR Port 3 Direction Register 00 3.2.2
B2 HWCFG Hardware Configuration C1 3.2.4
B3 RSTRSN Auto-Reset Reason Code 00 Read only 3.2.4
B4 CLASTL Capture Last Time Low undefined Read only 3.4.5
B5 CLASTH Capture Last Time High undefined Read only 3.4.5
B6 CPREVL Capture Prev. Time Low undefined Read only 3.4.5
B7 CPREVH Capture Prev. Time High undefined Read only 3.4.5
B8 IP Interrupt Priority Register 0 00 * 3.3.5
B9 I2CAL I2C Transaction Address

Low
00 3.7

BA I2CAH I2C Transaction Address
High

00 3.7

BB I2CTD I2C Transaction Data 00 3.7
BC I2CCD I2C Command Data 00 3.7
BD I2CDA I2C Device Address A6 3.7
BE I2CBC I2C Baudrate Control C8 Default

320kHz with
4MHz crystal

3.7

BF I2CNF I2C Noise Filter 14 3.7
C0 IS Interrupt Status &

Acknowledge
00 * 3.3.4

C1 P4IS Port 4 Interrupt Status &
Acknowledge

00 3.3.4

C2 P4IM0 Port 4 Interrupt Mode 0 FF 3.3.4
C3 P4IM1 Port 4 Interrupt Mode 1 FF 3.3.4
C8 T2CON Timer /Counter 2 Control 00 * 3.4.2
CA RCP2L Timer 2 Capture Register

Low
00 3.4.2

CB RCP2H Timer 2 Capture Register 00 3.4.2

UG#0609

IRMCx300 Reference Manual

www.irf.com 26

Address

(hex)

Label

Description

Reset
Value
(hex)

Bit
Address-

able

Notes

Document

Section
High

CC TL2 Timer /Counter 2 Low Byte 00 3.4.2
CD TH2 Timer /Counter 2 High Byte 00 3.4.2
D0 PSW Program Status Word 00 * 3.2.1
D1 MCEAD0 MCE Access Data 0 00 5.3
D2 MCEAD1 MCE Access Data 1 00 5.3
D3 MCEAD2 MCE Access Data 2 00 5.3
D4 MCEAD3 MCE Access Data 3 00 5.3
D5 PLLF0 PLL Frequency Factor

bits 0 – 7
7E 3.2.3

D6 PLLF1 PLL Frequency Factor
bits 8 – 15

C0 3.2.3

D7 PLLF2 PLL Frequency Factor
bits 16 – 23

00 3.2.3

D9 MCEBL MCE Sequencer Breakpoint
Address Low

00 Internal use

DA MCEBH MCE Sequencer Breakpoint
Address High

00 Internal use

DB PLLF3 PLL Frequency Factor
bits 24 – 31

00 3.2.3

DC HWREV Hardware Model and
Revision

Device
dependent

 Read only 3.2.4

DD MCESS MCE Sequencer Status
Word

00 Read only 5.3

DE SYNCS Sync Status Register 00 5.4
E0 ACC Accumulator 00 * 3.2.1
E1 P4DIR Port 4 Direction Register 00 IRMCx312

only
3.2.2

E2 P4 Port 4 00 IRMCx312
only

3.2.2

E3 MCESL MCE Sequencer Stack Low 00 Read only
Internal use

E4 MCESH MCE Sequencer Stack High 00 Read only
Internal use

E5 STOPS GATEKILL Configuration 00 3.2.4
E6 P5DIR Port 5 Direction Register 00 3.2.2
E7 P5 Port 5 00 3.2.2
E8 IE1 Interrupt Enable Register 1 00 * 3.3.4
E9 MCECD0 MCE Coherent Data 0 00 5.1.1
EA MCECD1 MCE Coherent Data 1 00 5.1.1
EB MCECD2 MCE Coherent Data 2 00 5.1.1
EC MCECD3 MCE Coherent Data 3 00 5.1.1
EE MCEAAH MCE Access Address Low 00 5.3
EF MCEAAL MCE Access Address Low 00 5.3
F0 B B Register 00 * 3.2.1
F8 IP1 Interrupt Priority Register 1 00 * 3.3.5

Table 5. Special Function Registers

UG#0609

IRMCx300 Reference Manual

www.irf.com 27

3.2.1 Processor Registers
Some of the 8051 processor registers can be accessed as SFRs. These include the stack pointer (SP), data pointer
(DPTR), program status word (PSW), accumulator (A or ACC) and the B register.

STACK POINTER (SP)
Address: 81h Not Bit Addressable Reset value: 07h

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into Internal Data
Memory during LCALL and ACALL instructions and to retrieve the program counter from memory during RET and
RETI instructions.

Data may also be saved on or retrieved from the stack using PUSH and POP instructions. Instructions that use the stack
automatically pre-increment or post-decrement the Stack Pointer so that the Stack Pointer always points to the last byte
written to the stack, i.e. the top of the stack. On reset the Stack Pointer is set to 07h.

It falls to the programmer to ensure that the location of the stack in Internal Data Memory does not interfere with other
data stored therein.

CT SPEC.
DATA POINTER (DPTR)
Address: 82h (DPL), 83h (DPH) Not Bit Addressable Reset value: 0000h

The Data Pointer (DPTR) is a 16-bit register that is used to form 16-bit addresses for External Data Memory accesses
(MOVX A,@DPTR and MOVX @DPTR,A), for program byte moves (MOVC A,@A+DPTR) and for indirect
program jumps (JMP @A+DPTR).
Two true 16-bit operations are allowed on the Data Pointer – load immediate (MOV DPTR,#data) and increment (INC
DPTR).

On reset all data pointers are set to 00h.

PROGRAM STATUS WORD (PSW)
Address: D0h Bit Addressable Reset value: 00000000b

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0
CY AC F0 RS1 RS0 OV F1 P
R/W R/W R/W R/W R/W R/W R/W R

This register contains status information resulting from CPU and ALU operation. The bit definitions are given below:

PSW.7 CY ALU carry flag.
PSW.6 AC ALU auxiliary carry flag.
PSW.5 F0 General-purpose user-definable flag.
PSW.4 RS1 Register Bank Select bit 1.
PSW.3 RS0 Register Bank Select bit 0.
PSW.2 OV ALU overflow flag.
PSW.1 F1 User-definable flag.
PSW.0 P Parity flag. Set each instruction cycle to indicate odd/even parity in the accumulator.

UG#0609

IRMCx300 Reference Manual

www.irf.com 28

The Register Bank Select bits PSW[4:3] operate as follows.

RS1 RS0 Register Bank Select
0 0 RB0. Registers from 00 – 07 hex.
0 1 RB1. Registers from 08 – 0F hex.
1 0 RB2. Registers from 10 – 17 hex.
1 1 RB3. Registers from 18 – 1F hex.

On reset this register returns 00h.

ACCUMULATOR (ACC)
Address: E0h Bit Addressable Reset value: 00h

This register provides one of the operands for most ALU operations. It is denoted as ‘A’ in the instruction set summary
(Table 3).

On reset this register returns 00h.

B REGISTER (B)
Address: F0h Bit Addressable Reset value: 00h

This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch
pad register.

On reset this register returns 00h.

UG#0609

IRMCx300 Reference Manual

www.irf.com 29

3.2.2 General Purpose I/O

I/O PORTS (P1, P2, P3, P4, P5)
Address: 90h (P1), A0h (P2), B0h (P3),

E2h (P4), E7h (P5)
Bit Addressable Reset value: FFh (P0 – P3),

00h (P4 – P5)
P1 – P5 are latches used to drive the quasi-bidirectional I/O lines. On reset, P1 – P3 are set to the value FF hex, and P4
– P5 are set to 00 hex. Some of the ports have dual functions as shown in the following list. Port P0 (at address 0x80)
is not used. The external pin number associated with each port is dependent on the pinout for the specific IC, and
some ports are not available on all ICs.

Pin Number Function Port Name
311 312 341 343 371

P1.0/T2 - 3 3 3 3 Discrete I/O, or Timer/Counter 2 input
P1.1/RXD 3 4 4 4 4 Discrete I/O, or UART0 RXD input
P1.2/TXD 4 5 5 5 5 Discrete I/O, or UART0 TXD output

P1.3/ SYNC/SCK 5 6 6 6 6 Discrete I/O, or SYNC output, or SPI clock output
P1.4/CAP 6 7 7 7 7 Discrete I/O, or Capture Timer input

P1.5 - 8 8 8 - Discrete I/O
P1.6 - 9 9 9 - Discrete I/O
P1.7 - 10 10 10 - Discrete I/O

P2.0/NMI - 23 14 14 11 Discrete I/O, or Non-maskable interrupt input
P2.1 - 24 15 15 12 Discrete I/O
P2.2 - 25 16 16 - Discrete I/O
P2.3 - 26 17 17 - Discrete I/O
P2.4 - 27 18 18 - Discrete I/O
P2.5 - 28 19 19 - Discrete I/O

P2.6/AOPWM0 17 29 20 20 13 Discrete I/O, or AOPWM0 output
P2.7/AOPWM1 18 30 21 21 - Discrete I/O, or AOPWM1 output
P3.0/INT2/CS1 48 75 48 48 36 Discrete I/O, or INT2 input, or SPI chip select 0
P3.1/AOPWM2 - 78 49 51 - Discrete I/O, or AOPWM2 output

P3.2/INT0 51 79 50 52 37 Discrete I/O, or INT0 input
P3.3/INT1 - 80 51 - - Discrete I/O, or INT1 input

P3.4/T0 - 81 - - - Discrete I/O, or Timer/Counter 0 input
P3.5/T1 - 82 52 - - Discrete I/O, or Timer/Counter 1 input

P3.6/RXD1 52 83 - - - Discrete I/O, or UART1 RXD input
P3.7/TXD1 53 84 - - - Discrete I/O, or UART1 TXD output
P4.0/INT3 - 35 - - - Discrete I/O, or INT3 input
P4.1/INT4 - 64 - - - Discrete I/O, or INT4 input
P4.2/INT5 - 88 - - - Discrete I/O, or INT5 input
P4.3/INT6 - 11 - - - Discrete I/O, or INT6 input
P4.4/INT7 - 36 - - - Discrete I/O, or INT7 input
P4.5/INT8 - 63 - - - Discrete I/O, or INT8 input
P4.6/INT9 - 89 - - - Discrete I/O, or INT9 input

P4.7/INT10 - 12 - - - Discrete I/O, or INT10 input
P5.0/PFCGKILL 49 76 - 49 - Discrete I/O, or PFC GATEKILL

P5.1/TDI 59 94 59 59 43 Discrete I/O, or JTAG test data input
In K-version, P5.1 is input only.

P5.2/TMS 57 92 57 57 41 Discrete I/O, or JTAG test mode select
In K-version, P5.2 is input only.

P5.3/TDO 58 93 58 58 42 Discrete I/O, or JTAG test data output
P5.3 not available in K-version.

Table 6. Discrete I/Os from Ports 1 – 5

UG#0609

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 30

If the discrete I/O function is selected, any port has a bi-directional I/O shown in Figure 9. The input buffer has
Schmitt trigger type input with hysteresis and a 70k ohm pull-up resistor.

Port Direction registers (P1DIR – P5DIR) configure the direction (input or output).

PORT 1 DIRECTION (P1DIR)
Address: 91h Not Bit Addressable Reset value: 00000000b

P1DIR.7 P1DIR.6 P1DIR.5 P1DIR.4 P1DIR.3 P1DIR.2 P1DIR.1 P1DIR.0
P1.7D P1.6D P1.5D P1.4D P1.3D P1.2D P1.1D P1.0D
R/W R/W R/W R/W R/W R/W R/W R/W

P1DIR.7 – P1DIR.0 P1.xD 0: input, 1: output

Figure 9. Port Structure of IRMCF300

PORT 2 DIRECTION (P2DIR)
Address: A1h Not Bit Addressable Reset value: 00000000b

P2DIR.7 P2DIR.6 P2DIR.5 P2DIR.4 P2DIR.3 P2DIR.2 P2DIR.1 P2DIR.0
P2.7D P2.6D P2.5D P2.4D P2.3D P2.2D P2.1D P2.0D
R/W R/W R/W R/W R/W R/W R/W R/W

P2DIR.7 - P2DIR.0 P2.xD 0: input, 1: output

UG#0609

IRMCx300 Reference Manual

www.irf.com 31

PORT 3 DIRECTION (P3DIR)
Address: B1h Not Bit Addressable Reset value: 00000000b

P3DIR.7 P3DIR.6 P3DIR.5 P3DIR.4 P3DIR.3 P3DIR.2 P3DIR.1 P3DIR.0
P3.7D P3.6D P3.5D P3.4D P3.3D P3.2D P3.1D P3.0D
R/W R/W R/W R/W R/W R/W R/W R/W

P3DIR.7 - P3DIR.0 P3.xD 0: input, 1: output

PORT 4 DIRECTION (P4DIR)
Address: E6h Not Bit Addressable Reset value: 00000000b

P4DIR.7 P4DIR.6 P4DIR.5 P4DIR.4 P4DIR.3 P4DIR.2 P4DIR.1 P4DIR.0
P4.7D P4.6D P4.5D P4.4D P4.3D P4.2D P4.1D P4.0D
R/W R/W R/W R/W R/W R/W R/W R/W

P4DIR.7 – P4DIR.0 P4.xD 0: input, 1: output

PORT 5 DIRECTION (P5DIR)
Address: E6h Not Bit Addressable Reset value: 00000000b

P5DIR.7 P5DIR.6 P5DIR.5 P5DIR.4 P5DIR.3 P5DIR.2 P5DIR.1 P5DIR.0
- - - - P5.3D P5.2D P5.1D P5.0D
 R/W R/W R/W R/W

P5DIR.7 – P5DIR.4 - Unused
P5DIR.3 P5.3D 0: input, 1: output; In K-version, Unused
P5DIR.2 – P5DIR.1 P5.xD 0: input, 1: output; In K-version, P5.1, P5.2 are always input
P5DIR.0 P5.0D 0: input, 1: output

I/O CONTROL 0 (IOCON0)
Address: AAh Not Bit Addressable Reset value: 00000000b

IOCON0.7 IOCON0.6 IOCON0.5 IOCON0.4 IOCON0.3 IOCON0.2 IOCON0.1 IOCON0.0
UART1E UART0E AOPWM2 AOPWM1 AOPWM0 AOPWMF SYNC NMI

R/W R/W R/W R/W R/W R/W R/W R/W

UG#0609

IRMCx300 Reference Manual

www.irf.com 32

The bit definitions for this register are as follows:

IOCON0.7 UART1E UART1 Enable.
1: P3.6 is RXD1 input and P3.7 is TXD1 output.
0: P3.6 and P3.7 are general purpose I/Os.

IOCON0.6 UART0E UART0 Enable.
1: P1.1 is RXD input and P1.2 is TXD output.
0: P1.1 and P1.2 are general purpose I/Os.

IOCON0.5 AOPWM2 AOPWM2 Enable. 1: P3.1 is AOPWM2 output, 0: P3.1 is a general purpose I/O
IOCON0.4 AOPWM1 AOPWM1 Enable. 1: P2.7 is AOPWM1 output, 0: P2.7 is a general purpose I/O
IOCON0.3 AOPWM0 AOPWM0 Enable. 1: P2.6 is AOPWM0 output, 0: P2.6 is a general purpose I/O
IOCON0.2 AOPWMF Frequency selection for AOPWM output. 1: PCLK/4096, 0: PCLK/1048
IOCON0.1 SYNC SYNC output select. 1: P1.3 is SYNC output, 0: P1.3 is a general purpose I/O
IOCON0.0 NMI NMI input select. 1: P2.0 is NMI input, 0: P2.0 is a general purpose I/O

I/O CONTROL 1 (IOCON1)
Address: ABh Not Bit Addressable Reset value: 00000000b

IOCON1.7 IOCON1.6 IOCON1.5 IOCON1.4 IOCON1.3 IOCON1.2 IOCON1.1 IOCON1.0
CAPR CAPM CAPE SYNCSEL INT2M1 INT2M0 SYNCE IOMODE
R/W R/W R/W R R/W R/W R R/W

The bit definitions for this register are as follows:

IOCON1.7 CAPR Capture Timer (T4) Resolution. 1: PCLK, 0: PCLK/1024
IOCON1.6 CAPM Capture Timer (T4) Interrupt Mode select. 1: Rising edge, 0: Falling edge
IOCON1.5 CAPE Capture Timer input select. 1: P1.4 is Capture input, 0: P1.4 is a general purpose

I/O
IOCON1.4 SYNCSEL Sync signal select. 1: P1.3 is motor 1 sync output, 0: P1.3 is motor 2 sync output
IOCON1.3 INT2M1 Interrupt 2 Mode selection bit 1.
IOCON1.2 INT2M0 Interrupt 2 Mode selection bit 0.
IOCON1.1 SYNCE Sync Status edge select. 1: SYNCS(DEh) is set at the rising edge of each signal, 0:

SYNCS is set at the falling edge.
IOCON1.0 IOMODE Controls the direction mode of all general purpose I/Os.

1: PxDIR determines the direction.
0: 8051 compatibility mode.
In 8051 compatibility mode (default at power-up), all I/Os are open drain. Writing
0 to a bit drives the output to 0. Writing 1 causes the output to float.

Interrupt 2 mode selection (INT2M1, IN2M0) is encoded as follows:

INT2M1 INT2M0 Operating Mode
0 0 Interrupt 2 is level sensitive (low signal generates the interrupt)
0 1 Positive edge sensitive
1 0 Negative edge sensitive
1 1 Both Positive and Negative edge sensitive

UG#0609

IRMCx300 Reference Manual

www.irf.com 33

3.2.3 Clock Selection and PLL Frequency Configuration

PLL FREQUENCY CONFIGURATION – PLLF3
Address: DBh Not Bit Addressable Reset value: 00000000b

PLLF3.7 PLLF3.6 PLLF3.5 PLLF3.4 PLLF3.3 PLLF3.2 PLLF3.1 PLLF3.0
LT7 LT6 LT5 LT4 LT3 LT2 LT1 LT0
W W W W W W W W

PLL FREQUENCY CONFIGURATION – PLLF2
Address: D7h Not Bit Addressable Reset value: 00000000b

PLLF2.7 PLLF2.6 PLLF2.5 PLLF2.4 PLLF2.3 PLLF2.2 PLLF2.1 PLLF2.0
- CD1 CD0 - - SC2 SC1 SC0
R R/W R/W R R R/W R/W R/W

PLL FREQUENCY CONFIGURATION – PLLF1
Address: D6h Not Bit Addressable Reset value: 11000000b

PLLF1.7 PLLF1.6 PLLF1.5 PLLF1.4 PLLF1.3 PLLF1.2 PLLF1.1 PLLF1.0
OR1 OR0 PS4 PS3 PS2 PS1 PS0 FM8
R/W R/W R/W R/W R/W R/W R/W R/W

PLL FREQUENCY CONFIGURATION – PLLF0
Address: D5h Not Bit Addressable Reset value: 01111110b

PLLF0.7 PLLF0.6 PLLF0.5 PLLF0.4 PLLF0.3 PLLF0.2 PLLF0.1 PLLF0.0
FM7 FM6 FM5 FM4 FM3 FM2 FM1 FM0
R/W R/W R/W R/W R/W R/W R/W R/W

The bit definitions for registers PLLF0 – PLLF3 are as follows:

PLLF3.7 –
PLLF3.0

LT7 –
LT0

A write of any value to this register latches the values written to PLLF2 – PLLF0.
Values written to those registers do not take effect until PLLF3 is written.

PLLF2.7 Not implemented. Returns 0 when read.
PLLF2.6 –
PLLF2.5

CD1 –
CD0

Clock divider bits (see table below)
These bits are only valid in the K-version of the IC. In the F-version, do no write.

PLLF2.4 –
PLLF2.3

 Not implemented. Returns 0 when read.

PLLF2.2 –
PLLF2.0

SC2 –
SC0

System clock configuration bits (see table below).

PLLF1.7 –
PLLF1.6

OR1 –
OR0

PLL output reduction (see table below).

PLLF1.5 –
PLLF1.1

PS4 –
PS0

PLL prescaler (a 5-bit unsigned value in the range 0 – 31).

PLLF1.0 –
PLLF0.0

FM8 –
FM0

PLL frequency multiplier (a 9-bit unsigned value in the range 0 – 511).

UG#0609

IRMCx300 Reference Manual

www.irf.com 34

The clock select bits SC2 – SC0 are used to configure the system clock, as follows:

SC2 SC1 SC0 System Clock
0 0 0 Input clock
0 0 1 PLL clock
0 1 0 Input clock / 8
0 1 1 Input clock / 16
1 0 0 Input clock / 32
1 0 1 Input clock / 64
1 1 0 Input clock / 128
1 1 1 Input clock / 256

The PLL output reduction bits OR1 – OR0 are used to select the output divider value NO, as follows:

OR1 OR0 Output Divider
0 0 NO = 1
0 1 NO = 2
1 0 NO = 2
1 1 NO = 4

The values in the PLL frequency configuration registers are used to calculate the output frequency of the PLL clock
generator, using the following formula:

FOUT = [FIN * (NF * 2)] / [(NR * 2) * NO]

where:

FIN = input clock frequency
NF = FM(frequency multiplier) + 2
NR = PS(prescaler) + 2
NO = output divider
FOUT = PLL output frequency (system clock)

For example, with a 4 MHz input clock, the default power-up values for the PLL frequency configuration registers
produce the following result:

FIN = 4,000,000
NF = 126 + 2 = 128
NR = 0 + 2 = 2
NO = 4 (power-up value of OR1 – OR0 = 11b)

FOUT = [4,000,000 * (128 * 2)] / [(2 * 2) * 4] = [4,000,000 * 256] / [4 * 4] = 64 MHz system clock

The PLL clock generator requires that the values of FIN, NF and NR satisfy the following restrictions:

• FIN must be greater than 3.2 MHz
• FIN / (NR * 2) must be greater than 800 KHz and less than 8 MHz
• FIN * (NF * 2) / (NR * 2) must be greater than 128 MHz and less than 500 MHz

In the K-version (OTP) of the IC, the OTP memory limits the 8051 clock speed to 33MHz. Two bits (PLLF2[6:5])
control a clock divider which creates a reduced frequency clock signal from the output of the PLL. The PLL output
becomes the MCE clock, while the output of the divider is the 8051 clock. The clock divider ratio can be set as
described in the following table:

UG#0609

IRMCx300 Reference Manual

www.irf.com 35

CD1 CD0 MCE Clock Frequency /
8051 Clock Frequency

0 0 1
0 1 2
1 0 3
1 1 4

The PWM frequency required by the application must also be considered when configuring the system clock rate
(FOUT). The relationship is shown in Figure 10. The intersection of system clock rate and PWM frequency must fall
above the diagonal line shown in the figure. This limitation is due to a counter overflow in the F-version of the IC.
This problem is not present in the K-version of the IC.

Figure 10. PWM Frequency Limit

UG#0609

IRMCx300 Reference Manual

www.irf.com 36

3.2.4 Miscellaneous Functions

EXTENDED OPERATION (EO)
Address: A2h Not Bit Addressable Reset value: 00000000b

EO.7 EO.6 EO.5 EO.4 EO.3 EO.2 EO.1 EO.0
- - - TRAP_EN 0 - - -
R R R R/W R R R R

EO.4 is used to select the instruction executed with the opcode A5h (which is unused in the standard 8051), with bits 0
– 2 and bits 5 – 7 reserved for future expansion of this feature.

Bit definitions for this register are as follows:

EO.7 – EO.5 - Reserved for future use.
EO.4 TRAP_EN Selects the instruction to be executed by opcode A5h as follows:

1 Selects software TRAP instruction.
0 Selects MOVC @(DPTR++),A – a specific instruction that supports software
download into program memory implemented as RAM (see Section 3.1).

EO.3 - Always returns 0.
EO.2 – EO.0 Reserved for future use. -

HARDWARE CONFIGURATION (HWCFG)
Address: B2h Not Bit Addressable Reset value: 11000001b

HWCFG.7 HWCFG.6 HWCFG.5 HWCFG.4 HWCFG.3 HWCFG.2 HWCFG.1 HWCFG.0
ADCP1 ADCP0 VFSSEL OP5 OP4 OP3 OP2 OP1

R/W R/W R/W R/W R/W R/W R/W R/W

The bit definitions for this register are as follows:

HWCFG.7 ADCP1 ADC power control bit 1.
HWCFG.6 ADCP0 ADC power control bit 0.
HWCFG.5 VFSSEL For internal use only. Always write 0 to this bit.
HWCFG.4 OP5 OP amp 5 control. If 1, OP amp 5 (VAC) is enabled.
HWCFG.3 OP4 OP amp 4 control (IRMCx312 only). If 1, OP amp 4 (VDC) is enabled.
HWCFG.2 OP3 OP amp 3 control. If 1, OP amp 3 (PFC current) is enabled.
HWCFG.1 OP2 OP amp 2 control. If 1, OP amp 2 (Motor 2 current) is enabled.
HWCFG.0 OP1 OP amp 1 control. If 1, OP amp 1 (Motor 1 current) is enabled.

The ADC power control bits are defined as follows:

ADCP1 ADCP0 ADC Power Mode
0 0 Power down: lowest current
0 1 Sleep: low power, fast wakeup
1 0 Standby: less current than active
1 1 Active: full current, full functionality

For normal operation, the ADC power control bits should be set to 11b (active). The ADC should be disabled before
selecting one of the low power modes.

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 37

RESET REASON CODE (RSTRSN)
Address: B3h Not Bit Addressable Reset value: 00000000b

RSTRSN.7 RSTRSN.6 RSTRSN.5 RSTRSN.4 RSTRSN.3 RSTRSN.2 RSTRSN.1 RSTRSN.0
- - - WDACT WDEXP RSN2 RSN1 RSN0
R R R R R R R R

The bit definitions for this register are as follows:

RSTRSN.7 - Not implemented. Returns zero when read.
RSTRSN.6 - Not implemented. Returns zero when read.
RSTRSN.5 - Not implemented. Returns zero when read.
RSTRSN.4 WDACT Watchdog active status. If 1, watchdog timer is enabled.
RSTRSN.3 WDEXP Watchdog expiration status. If 1, watchdog timer has expired.
RSTRSN.2 RSN2 Reset reason code bit 2.
RSTRSN.1 RSN1 Reset reason code bit 1.
RSTRSN.0 RSN0 Reset reason code bit 0.

The reset reason code bits are defined as follows:

RSN2 RSN1 RSN0 Reset Reason
0 0 0 Power-on reset
0 0 1 Checksum error on boot
0 1 0 Undervoltage detection
0 1 1 Watchdog timer expiration
1 0 0 External reset

HARDWARE REVISION (HWREV)
Address: DCh Not Bit Addressable Reset value: Revision code

The hardware revision register identifies the hardware revision level. The value is fixed and the register is read-only.

HWREV Revision Level
1 A
3 C

UG#0609

IRMCx300 Reference Manual

www.irf.com 38

GATEKILL CONFIGURATION (STOPS)
Address: E5h Not Bit Addressable Reset value: 00000000b

STOPS.7 STOPS.6 STOPS.5 STOPS.4 STOPS.3 STOPS.2 STOPS.1 STOPS.0
- - - - - KP KF KC
R R R R R R/W R/W R/W

The bit definitions for this register are as follows:

STOPS.7 –
STOPS.3

- Not implemented. Returns zero when read.

STOPS.2 KP PFC Gatekill source. If 0, PFC pwm shutdown signal comes from the PFCGKILL
pin. If 1, PFC pwm shutdown signal comes from the CGATEKILL pin and the
PFCGKILL pin is configured as general purpose I/O (P5.0).

STOPS.1 KF Always set to 1. Otherwise, FGATEKILL pin will be driven internally.
STOPS.0 KC Motor 1 Gatekill source. If 0, CGATEKILL or GATEKILL is driven to 0. If 1,

motor 1 pwm shutdown signal comes from the CGATEKILL or GATEKILL pin.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 39

3.3 Interrupts
The IRMCF300 supports various interrupt sources. These comprise the standard 8051/8052 internal interrupts and an
additional eight interrupts. The standard and extended interrupts each have separate SFR enable bits associated with
them, allowing full software control. There are two levels of interrupt priority. The non-maskable interrupt source is
always enabled as long as the NMI bit is set (IOCON0.0). NMI has a higher priority than any other interrupt source,
and is not controllable by software.

Table 7 provides a summary of all the supported interrupts. The first column shows the interrupt number and the
second column shows the 8051 interrupt vector address at the base of 8051 internal data RAM. The third column
identifies the interrupt source. The forth and fifth columns indicate which interrupt enable bit, in either register IE or
IE1, is associated with the interrupt. (See Section 3.3.4 for more information about the interrupt enable registers.)

Interrupt
Number

Vector Address
(hex)

Interrupt
Source

IE
Bit Number

IE1
Bit Number

0 0003 INT0 0
1 000B Timer 0 1
2 0013 INT1 2
3 001B Timer 1 3
4 0023 UART 0 4
5 002B Timer 2 5
6 0033 INT2 0
7 003B Sync 1
8 0043 Timer 3 2
9 004B UART1 3

10 0053 MCE 4
11 005B Capture 5
12 0063 INT3 – INT10

(IRMCx312 only)
- -

13 006B Unused - -
14 0073 NMI - -

Note: Interrupts INT3 – INT10 are all tied to the same vector and are enabled using the P4IM0 and P4IM1
registers.

Table 7. Interrupt Source Summary

3.3.1 Standard Interrupts
The standard interrupts comprise three timer (Timer/Counter 0, 1 and 2) overflow interrupts, an interrupt associated
with the core’s built-in serial interface, and two maskable external interrupts (INT0 and INT1).

The Timer overflow interrupts, TF0, TF1, and TF2, are set whenever Timers 0, 1, and 2, respectively, rollover to zero.
The states of these interrupts are stored in the TCON and T2CON registers. TF0 and TF1 (but not TF2) are
automatically cleared by hardware on entry to the corresponding interrupt service routine.

The legacy external interrupts, INT0 and INT1, are driven from inputs P3.2 and P3.3 respectively. These interrupts
may be either edge or level sensitive, depending on settings within the TCON register. Two further TCON register
bits, IE0 and IE1, act as interrupt flags. If the external interrupt is set to edge-triggered, the corresponding register bit
IE0/1 is set by a falling edge on INT0/1 and cleared by hardware on entry to the corresponding interrupt service
routine. If the interrupt is set to be level sensitive, IE0/1 reflects the logic level on INT0/1.

Note: All events on INT0 and INT1, whether level-triggered or edge-triggered, are detected by sampling the relevant
interrupt line on the rising edge of SCLK at the end of Phase 1 of every machine cycle. Where INT0/INT1 is level-
triggered, a response is made to the signal being sampled low and, to ensure detection, the external source needs to
hold the line low until the resulting interrupt is generated. (It also needs to ensure that the request is deactivated before
the end of the associated service routine.) Where INT0/INT1 is edge-triggered, the response is made to a transition on

UG#0609

IRMCx300 Reference Manual

www.irf.com 40

the signal from high to low between successive samples. This means that, to ensure detection, INT0/INT1 needs to
have been high for at least two clocks before it goes low and then needs to be held low for at least two clocks after this
transition.

3.3.2 Extended Interrupts
The extended interrupts include external interrupt 2 (INT2), the SYNC interrupt, Timer 3 (Periodic Timer), UART1,
MCE interrupt, Timer 4 (Capture Timer). These interrupts are level-sensitive (low true) except External Interrupt 2
(INT2), which is configured using register IOCON1 (Section 3.2.2).

The internal interrupt line is sampled on the rising edge of PCLK at the beginning of Phase 2 of the last cycle of the
current instruction.

See Section 5.4 for a description of the SYNC and MCE interrupts, which are generated by the MCE.

3.3.3 P4 Interrupts
The P4 general-purpose I/O pins can optionally generate external interrupts (INT4.0 – INT4.7). These eight interrupts
are all tied to the same interrupt vector (interrupt number 12, shown in Table 7). The P4 interrupts are configured and
serviced using the P4IM0, P4IM1 and P4IS registers.

3.3.4 Enabling Interrupts
The Non-Maskable Interrupt is always enabled. The maskable interrupts are enabled through a pair of bit-addressable
Interrupt Enable registers (IE and IE1).

For the standard and extended interrupts, bits 0 to 5 of the IE register and bits 0 to 7 of the IE1 register each
individually enable/disable a particular interrupt source. For the eight P4 interrupts, mode registers P4IM0 and P4IM1
are used to enable and select an operational mode for each interrupt individually.

Overall control is provided by bit 7 of IE (EA). When EA is set to ‘0’, all interrupts (except the NMI) are disabled:
when EA is set to ‘1’, interrupts are individually enabled or disabled through the other bits of the Interrupt Enable and
P4 mode Registers.

Both IE and IE1 are bit-addressable. The details of the registers are given below.

INTERRUPT ENABLE 0 (IE)
Address: A8h Bit Addressable Reset value: 00000000b

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0
EA - ET2 EU0 ET1 EX1 ET0 EX0

R/W R R/W R/W R/W R/W R/W R/W

For each bit in this register, “1” enables the corresponding interrupt and “0” disables it. The allocation of interrupts to
bits is as follows:

IE.7 EA Enable or disable all interrupt bits.
IE.6 - Not implemented. Returns zero when read.
IE.5 ET2 Enable Timer 2 overflow interrupt.
IE.4 EU0 Enable UART 0 interrupt.
IE.3 ET1 Enable Timer 1 overflow interrupt.
IE.2 EX1 Enable External Interrupt 1 (INT1, P3.3)
IE.1 ET0 Enable Timer 0 overflow interrupt.
IE.0 EX0 Enable External Interrupt 0 (INT0, P3.2)

UG#0609

IRMCx300 Reference Manual

www.irf.com 41

INTERRUPT ENABLE 1 (IE1)
Address: E8h Bit Addressable Reset value: 00000000b

IE1.7 IE1.6 IE1.5 IE1.4 IE1.3 IE1.2 IE1.1 IE1.0
- - ET4 EMCE EU1 ET3 ESYNC EINT2
R R R/W R/W R/W R/W R/W R/W

For each bit in this register, a 1 enables the corresponding interrupt, and a 0 disables it. The allocation of interrupts to
bits is as follows:

IE1.7 - Not implemented. Returns zero when read.
IE1.6 - Not implemented. Returns zero when read.
IE1.5 ET4 Enable Timer 4 (Capture Timer) interrupt
IE1.4 EMCE Enable MCE interrupt
IE1.3 EU1 Enable UART 1 interrupt.
IE1.2 ET3 Enable Timer 3 (Periodic Timer) interrupt.
IE1.1 ESYNC Enable SYNC Interrupt
IE1.0 EINT2 Enable External Interrupt 2 (INT2, P3.0)

P4 INTERRUPT MODE 0 (P4IM0)
Address: C2h Not Bit Addressable Reset value: 11111111b

P4IM0.7 P4IM0.6 P4IM0.5 P4IM0.4 P4IM0.3 P4IM0.2 P4IM01 P4IM0.0
INT10(0) INT9(0) INT8(0) INT7(0) INT6(0) INT5(0) INT4(0) INT3(0)

R/W R/W R/W R/W R/W R/W R/W R/W

P4 INTERRUPT MODE 1 (P4IM1)
Address: C3h Not Bit Addressable Reset value: 11111111b

P4IM1.7 P4IM1.6 P4IM1.5 P4IM1.4 P4IM1.3 P4IM1.2 P4IM11 P4IM1.0
INT10(1) INT9(1) INT8(1) INT7(1) INT6(1) INT5(1) INT4(1) INT3(1)

R/W R/W R/W R/W R/W R/W R/W R/W

Each pair of bits from registers P4IM0 and P4IM1 define the interrupt mode for the corresponding P4 general-purpose
I/O pin, as follows:

INTx(1) INTx(0) Interrupt Mode for INTx
0 0 Interrupt is disabled
0 1 Rising edge sensitive
1 0 Falling edge sensitive
1 1 Level sensitive (low signal generates an interrupt)

For example, if bit INT6(1) in P4IM1 is set to 1 and INT6(0) in P4IM0 is set to 0, then an interrupt is generated on the
falling edge of input P4.3.

UG#0609

IRMCx300 Reference Manual

www.irf.com 42

INTERRUPT STATUS AND ACKNOWLEDGE (IS)
Address: C0h Bit Addressable Reset value: 00000000b

IS.7 IS.6 IS.5 IS.4 IS.3 IS.2 IS.1 IS.0
- - T4S MCES U1S T3S SYNCS INT2S

R/W R/W R/W R/W R R/W R/W R/W

For each bit in this register, a 1 indicates that the associated interrupt has occurred and is pending. When written 0, the
pending interrupt is cleared. (Note that in general it is not necessary to write to this register since most interrupts are
cleared automatically when the interrupt is serviced.)

The allocation of status and acknowledge bits is as follows:

IS.7 - Not implemented. Returns zero when read.
IS.6 - Not implemented. Returns zero when read.
IS.5 T4S Timer 4 (Capture Timer) interrupt is pending. Write 0 to reset.
IS.4 MCES MCE interrupt is pending. Write 0 to reset.
IS.3 U1S UART1 interrupt is pending. Write 0 to reset.
IS.2 T3S Timer 3 (Periodic Timer) Interrupt is pending. Write 0 to reset.
IS.1 SYNCS SYNC interrupt is pending. Write 0 to reset.
IS.0 INT2S External Interrupt 2 (INT2) is pending. Write 0 to reset.

P4 INTERRUPT STATUS AND ACKNOWLEDGE (P4IS)
Address: C1h Bit Addressable Reset value: 00000000b

P4IS.7 P4IS.6 P4IS.5 P4IS.4 P4IS.3 P4IS.2 P4IS.1 P4IS.0
IS10 IS9 IS8 IS7 IS6 IS5 IS4 IS3
R/W R/W R/W R/W R/W R/W R/W R/W

For each bit in the P4IS register, a 1 indicates that the associated interrupt has occurred and is pending. When a bit
written to 0, the pending interrupt is cleared. The P4 interrupts are not automatically cleared when they are serviced.
The appropriate P4IS bit must be written to clear the pending interrupt.

P4IS.7 IS10 External interrupt INT10 is pending. Write 0 to reset.
P4IS.6 IS9 External interrupt INT9 is pending. Write 0 to reset.
P4IS.5 IS8 External interrupt INT8 is pending. Write 0 to reset.
P4IS.4 IS7 External interrupt INT7 is pending. Write 0 to reset.
P4IS.3 IS6 External interrupt INT6 is pending. Write 0 to reset.
P4IS.2 IS5 External interrupt INT5 is pending. Write 0 to reset.
P4IS.1 IS4 External interrupt INT4 is pending. Write 0 to reset.
P4IS.0 IS3 External interrupt INT3 is pending. Write 0 to reset.

3.3.5 Interrupt Priority
The standard 8051 architecture supports a two-level interrupt priority scheme. Under the two-level priority scheme, the
priority level is decided solely on the IP and IP1 value.

Details of the registers are given below. IP and IP1 are bit-addressable.

Note: No priority level is assigned to the NMI. It simply takes precedence over all other interrupts.

UG#0609

IRMCx300 Reference Manual

www.irf.com 43

INTERRUPT PRIORITY (IP)
Address: B8h Bit Addressable Reset value: 00000000b

IP.7 IP.6 IP.5 IP.4 IP.3 IP.2 IP.1 IP.0
- - PT2 PU0 PT1 PX1 PT0 PX0
R R R/W R/W R/W R/W R/W R/W

For each bit of the IP register, “1” selects high priority for the interrupt enabled by the corresponding bit of the IE
register, while “0” selects low priority for this interrupt.

The allocation of interrupts to bits is as follows:

IP.7 - Reserved.
IP.6 - Reserved.
IP.5 PT2 Select priority for Timer 2 overflow Interrupt.
IP.4 PU0 Select priority for UART 0 Interrupt.
IP.3 PT1 Select priority for Timer 1 overflow Interrupt.
IP.2 PX1 Select priority for External Interrupt 1. (P3.3)
IP.1 PT0 Select priority for Timer 0 overflow Interrupt.
IP.0 PX0 Select priority for External Interrupt 0. (P3.2)

INTERRUPT PRIORITY 1 (IP1)
Address: F8h Bit Addressable Reset value: 00000000b

IP1.7 IP1.6 IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0
- - PT4 PMCE PU1 PT3 PSYNC PINT2

R/W R/W R/W R/W R/W R/W R/W R/W

For each bit of the IP1 register, “1” selects high priority for the interrupt enabled by the corresponding bit of the IE1
register, while “0” selects low priority for this interrupt.

The allocation of interrupts to bits is as follows:

IP1.7 - Not implemented. Returns zero when read.
IP1.6 - Not implemented. Returns zero when read.
IP1.5 PT4 Select priority for Timer 4 (Capture Timer) Interrupt.
IP1.4 PMCE Select priority for MCE Interrupt.
IP1.3 PU1 Select priority for UART1 Interrupt.
IP1.2 PT3 Select priority for Timer 3 (Periodic Timer) Interrupt.
IP1.1 PSYNC Select priority for SYNC Interrupt.
IP1.0 PX2 Select priority for External Interrupt 2. (P3.0)

3.3.6 Service Order
An interrupt service routine may only be interrupted by an interrupt of higher priority and, if two interrupts of different
priority occur at the same time, the higher level interrupt will be serviced first. An interrupt cannot be interrupted by
another interrupt of the same or a lower priority level.

If two interrupts of the same priority level occur simultaneously, a polling sequence is observed as follows:

UG#0609

IRMCx300 Reference Manual

www.irf.com 44

Source Level Description

NMI 0 (Highest) Non-Maskable Interrupt
IE0 1 External Interrupt 0 from P3.2/INT0
TF0 2 Timer/Counter 0 Interrupt
IE1 3 External Interrupt 1 from P3.3/INT1
TF1 4 Timer/Counter 1 Interrupt
U0 5 UART 0 Interrupt
TF2 6 Timer/Counter 2 Interrupt

INT2 7 External Interrupt 2 from P3.0/INT2
SYNC 8 SYNC Interrupt

T3 9 Timer 3 (Periodic Timer) Interrupt
U1 10 UART 1 Interrupt

MCE 11 MCE Interrupt
T4 12 (Lowest) Timer 4 (Capture Timer) Interrupt

Table 8. Interrupt Service Order

3.3.7 Interrupt Latency
The response time in a single interrupt system is between 3 and 9 machine cycles.

3.3.8 Interrupt Vectors
When an interrupt is serviced, a long call instruction is executed to an interrupt vector address determined by the
source of the interrupt. The vector associated with each interrupt source is shown in Table 7.

UG#0609

IRMCx300 Reference Manual

www.irf.com 45

3.4 Timers
This section describes the three general-purpose timer/counter devices and the three additional special-purpose timers:
a periodic timer, a watchdog timer and a capture timer.

3.4.1 Timer Prescaler
A prescaler register PSCL can be configured to divide the clock on input to the three general-purpose timers and the
periodic timer. The clock rate on input to each of the four timers can be individually configured as described below.

The clock input to the watchdog timer and capture timer cannot be prescaled.

TIMER PRESCALER (PSCL)
Address: A9h Not Bit Addressable Reset value: 00000000b

PSCL.7 PSCL.6 PSCL.5 PSCL.4 PSCL.3 PSCL.2 PSCL.1 PSCL.0
P1(3) P0(3) P1(2) P0(2) P1(1) P0(1) P1(0) P0(0)
R/W R/W R/W R/W R/W R/W R/W R/W

The bit definitions for the PSCL register are as follows:

PSCL.7 P1(3) Periodic timer prescale control bit P1.
PSCL.6 P0(3) Periodic timer prescale control bit P0.
PSCL.5 P1(2) Timer 2 prescale control bit P1.
PSCL.4 P0(2) Timer 2 prescale control bit P0.
PSCL.3 P1(1) Timer 1 prescale control bit P1.
PSCL.2 P0(1) Timer 1 prescale control bit P0.
PSCL.1 P1(0) Timer 0 prescale control bit P1.
PSCL.0 P0(0) Timer 0 prescale control bit P0.

For all four timers, the prescale bits P0 and P1 apply as follows:

P1 P0 Function
0 0 No prescaler. The counting clock is PCLK, half the SYSCLK.
0 1 PCLK is divided by 16 (or SYSCLK divided by 32).
1 0 PCLK is divided by 256 (or SYSCLK divided by 512).
1 1 PCLK is divided by 4096 (or SYSCLK divided by 8192).

3.4.2 General-Purpose Timer/Counters
Two 16-bit timer/counters are provided, Timer 0 and Timer 1. The TCON and TMOD registers are used to set the
mode of operation and to control the running and interrupt generation of these two devices, with the timer/counter
values stored in two pairs of 8-bit registers (TL0, TH0 and TL1, TH1).
SPEC.
TIMER /COUNTER CONTROL (TCON)
Address: 88h Bit Addressable Reset value: 00000000b

TCON.7 TCON.6 TCON.5 TCON.4 TCON.3 TCON.2 TCON.1 TCON.0
TF1 TR1 TF0 TR0 IEDG1 IT1 IEDG0 IT0
R/W R/W R/W R/W R/W R/W R/W R/W

UG#0609

IRMCx300 Reference Manual

www.irf.com 46

The bit definitions for this register are as follows:

TCON.7 TF1 Timer 1 overflow flag. Set by hardware when Timer/Counter 1 overflows.
Cleared by hardware when the processor calls the interrupt service routine.

TR1 TCON.6 Timer 1 run control. If 1, timer runs; if 0, timer is halted.
TF0 TCON.5 Timer 0 overflow flag. Set by hardware when Timer/Counter 0 overflows.

Cleared by hardware when the processor calls the interrupt service routine.
TR0 TCON.4 Timer 0 run control. If 1, timer runs; if 0, timer is halted.
IEDG1 TCON.3 External Interrupt 1 edge flag. Set by hardware when an External Interrupt 1 edge

is detected.
IT1 TCON.2 External Interrupt 1 control bit. If 1, External Interrupt 1 is “edge-triggered”; if 0,

External Interrupt 1 is “level triggered” (see Section 3.3).
IEDG0 TCON.1 External Interrupt 0 edge flag. Set by hardware when an External Interrupt 0 edge

is detected.
IT0 TCON.0 External Interrupt 0 control bit. If 1, External Interrupt 0 is “edge-triggered”; if 0,

External Interrupt 0 is “level triggered” (see Section 3.3).

TIMER /COUNTER MODE (TMOD)
Address: 89h Not Bit Addressable Reset value: 00000000b

TMOD.7 TMOD.6 TMOD.5 TMOD.4 TMOD.3 TMOD.2 TMOD.1 TMOD.0
GATE1 C/NT1 M1(1) M0(1) GATE0 C/NT0 M1(0) M0(0)

R/W R/W R/W R/W R/W R/W R/W R/W

The bit definitions for this register are as follows:

GATE1 TMOD.7 Timer 1 gate flag. When TCON.6 is set and GATE1 = 1, Timer/Counter 1 will
only run if INT1 pin is 1 (hardware control). When GATE1 = 0, Timer/Counter 1
will only run if TCON.6 = 1(software control).

C/NT1 TMOD.6 Timer/Counter 1 selector. If 0, input is from internal system clock; if 1, input is
from T1 pin.

M1(1) TMOD.5 Timer 1 Mode control bit M1.
M0(1) TMOD.4 Timer 1 Mode control bit M0.
GATE0 TMOD.3 Timer 0 gate flag. When TCON.4 is set and GATE0 = 1, Timer/Counter 0 will

only run if INT0 pin is 1 (hardware control). When GATE0 = 0, Timer/Counter 0
will only run if TCON.4 = 1(software control).

TMOD.2 C/NT0 Timer/Counter 0 selector. If 0, input is from internal system clock; if 1, input is
from T0 pin.

TMOD.1 M1(0) Timer 0 Mode control bit M1.
TMOD.0 M0(0) Timer 0 Mode control bit M0.

For both timer/counters, the mode bits M0 and M1 apply as follows:

M1 M0 Operating Mode
0 0 Mode 0: 13-bit timer/counter (M8048 compatible mode).
0 1 Mode 1: 16-bit timer/counter.
1 0 Mode 2: 8-bit auto-reload timer/counter.
1 1 Mode 3: Timer 0 is split into two halves. TL0 is an 8-bit timer/counter controlled by the

standard Timer 0 control bits. TH0 is an 8-bit timer/counter controlled by the standard Timer 1
control bits. In this mode, the prescaler will have no effect on TH0. TH1 and TL1 are held
(Timer 1 is stopped).

UG#0609

IRMCx300 Reference Manual

www.irf.com 47

TIMER / COUNTER DATA (TL0, TL1, TH0, TH1)
Address: 8Ah (TL0), 8Bh (TL1),

8Ch (TH0), 8Dh (TH1)
Not Bit Addressable Reset value: 00h

TL0 and TH0 are the low and high bytes of Timer/Counter 0 respectively. TL1 and TH1 are the low and high bytes of
Timer/Counter 1 respectively. In Mode 2, the TL register is an 8-bit counter while TH stores the reload value. In
Mode 2, if the prescaler is used, then the timer will not generate an interrupt.

On reset, all timer/counter registers are 00h.

TIMER / COUNTER 2 CONTROL (T2CON)
Address: C8h Bit Addressable Reset value: 00000000b

T2CON.7 T2CON.6 T2CON.5 T2CON.4 T2CON.3 T2CON.2 T2CON.1 T2CON.0
TF2 EXF2 RCLK2 TCLK2 EXEN2 TR2 C/NT2 CP/NRL2
R/W R/W R/W R/W R/W R/W R/W R/W

Bit definitions for this register are as follows:

T2CON.7 TF2 Timer 2 overflow flag. Set by hardware when Timer/Counter 2 overflows unless
either RCLK or TCLK is set to 1. This bit is not cleared by hardware when the
processor calls the interrupt service routine.

T2CON.6 EXF2 Timer 2 external flag. This bit is set when a capture or reload is triggered by a
negative transition on T2EX and EXEN2 is set to 1. If the Timer 2 interrupt is
enabled, setting this bit will cause an interrupt to the Timer 2 vector.

T2CON.5 RCLK2 If this bit is set, the Serial Port receive clock is driven from the overflow pulses
of Timer 2.

T2CON.4 TCLK2 If this bit is set, the Serial Port transmit clock is driven from the overflow pulses
of Timer 2.

T2CON.3 EXEN2 Timer 2 External interrupt enable flag. When set, a negative edge on T2EX will
trigger a capture or auto-reload.

T2CON.2 TR2 Run control bit for Timer 2. If set to 1, the timer is enabled.
T2CON.1 CT2 Timer/Counter select. A 0 selects internal timer mode; a 1 selects external

counter mode.
T2CON.0 CPRL2 Capture/Reload control. When set, captures occur on negative transitions of

T2EX (if EXEN2 is set). When 0, auto-reloads are performed on timer
overflows or on negative transitions of T2EX(if EXEN2 is set). If either RCLK
or TCLK is 1, this bit is ignored and auto-reloads are performed on timer
overflows.

TIMER / COUNTER 2 DATA (RCP2L, RCP2H, TL2, TH2)
Address: CAh (RCP2L), CBh (RCP2H),

CCh (TL2), CDh (TH2)
Not Bit Addressable Reset value: 00h

TL2 and TH2 are the low and high bytes of Timer/Counter 2 data. RCP2L and RCP2H are the low and high bytes of
the Timer 2 capture registers. These registers are also used for auto-reload.

On reset all these registers are 00h.

UG#0609

IRMCx300 Reference Manual

www.irf.com 48

3.4.2.1 Modes of Operation
IRMCF300 includes three general-purpose counter/timers (Timers 0, 1 and 2). For each timer’s counter value, there are
two 8-bit special function registers (SFRs), one providing the low byte of the timer/counter value and the other the
high byte. Further SFRs are used to configure and control the timers.

In Timer mode, the counter/timers count machine cycles; in Counter mode, the counter/timers count high-to-low
transitions on the corresponding input pin (T0, T1, T2). Applications for the timers include measuring the time interval
between events, counting events and generating a signal at regular intervals.

Timers 0 and 1 can each be configured either as a 16-bit counter/timer, a 13-bit counter/timer, or an 8-bit auto-reload
counter/timer. (The auto-reload option allows automatic resetting in a counter counting up to 256.) Alternatively,
Timer 0 can be split into two 8-bit timers. (The 13-bit mode provides an 8-bit counter with a divide-by-32 prescaler
and is included solely for compatibility with Intel 8048 devices.)

Timer 2 has two modes of operation: a capture mode in which the current value of the timer is captured into the
RCP2L and RCP2H registers; and an auto-reload mode in which Timer 2 is automatically reloaded with the contents of
RCP2L and RCP2H.

3.4.2.2 Configuring the Timers
Timers 0 and 1 are configured by writing to the TMOD register. The high-order nibble of the register controls Timer 1
while the lower nibble controls Timer 0.

The controls included comprise a GATE flag which sets whether the timer is under hardware or software control (Bits
7 and 3 respectively); a Counter/Timer selector which controls whether the timer is to be triggered by the internal
system clock or from the corresponding input pin (Bits 6 and 2 respectively) and a pair of bits which select the mode in
which the timer is used (Bits 5 & 4 and 1 & 0, respectively).

Once the mode is configured, the operation of Timers 0 and 1 is controlled using the TCON register.

3.4.2.3 Using the Timers to Measure a Time Interval
When triggered by the internal system clock, the timers are incremented once every machine cycle (i.e. once every two
CLKs). That is, the clock input to the timers is PCLK, which is equal to SYSCLK / 2. (See Section 3.2.3 for system
clock configuration.)

To use any of the timers to measure a time interval, you therefore need to:

1. Set the timer you propose to use into the required timer mode by setting the appropriate mode bits.
2. Set the corresponding C/NT bit to 0 so that the timer is triggered by the internal system clock.
3. Use the GATE bit to put the running of the timer under hardware or software control as appropriate.
4. Set the required initial value for the timer by writing to the associated SFRs.
5. Start timing by setting the appropriate Run bit with an instruction such as SETB TR1.
6. Stop timing by clearing the Run bit (CLR TR1)
7. Calculate the elapsed time by dividing the difference between the initial and the final setting by PCLK (half of

the system clock frequency).

Note: In 16-bit mode, a timer can count up to 65,536, which is equivalent to 65,536x2/fosc seconds (where fosc is the
input clock frequency). In 13-bit mode, it can count up to 8,192 or 8,192x2/fosc seconds, while in an 8-bit mode, it can
count up to 256 or 256x2/fosc seconds. To measure longer periods than these, a count must be kept of the number of
times the timer overflows.

Note also that the total of a number of separate time intervals, for example the total time that some device is switched
on, can be determined simply by stopping and starting the timer at the appropriate points during the period over which
the time is measured.

Each time the timer is restarted, it will continue counting from the value at which it was previously halted, giving the
required cumulative total.

UG#0609

IRMCx300 Reference Manual

www.irf.com 49

3.4.2.4 Using the Timers to Signal When a Defined Period Has Elapsed
A timer can be used to signal when a defined period has elapsed by letting the timers count machine cycles. There are
two approaches that can be taken.

The first option is to calculate the value that you will require the timer to count up to (either once or many times) and
use a CJNE instruction, for example, to watch for when the timer reaches the required value.

The alternative approach is to set the initial value of the timer equal to its maximum setting minus the value you
calculate and use the corresponding overflow flag to signal when the required time has elapsed. In particular, you may
be able to use a timer in its Auto-Reload mode to count from this initial value up to overflow as many times as are
required. The application just needs to keep track of the number of times the timer has overflowed.

Note: The overflow flags for Timer 0 and Timer 1 (TF0 and TF1) are in the TCON register. The overflow flag for
Timer 2 (TF2) is included in the T2CON register.

3.4.2.5 Using the Timers as Event Counters
To use any of the timers as an event counter, you need to put it into counter mode by setting the corresponding C/NT
bit to 1. Then, rather than counting machine cycles, the timer will count high-to-low transitions on the corresponding
timer input line (T0, T1 or T2).

Note: T0, T1 and T2 are alternate uses of PORT3.4, PORT3.5, and PORT1.0 respectively. You should also note that
the timer input lines are sampled once every machine cycle (at the end of the second phase) and the count is
incremented when the samples record a high in one cycle and a low in the following cycle. Recognizing a transition
therefore takes two machine cycles or 4 SYSCLK periods. Events that have a shorter time period will be
undersampled and will therefore be not recognized reliably.

3.4.2.6 Reading the Timers
Timers 0 and 1 are straightforward to read when they are operating in one of their 8-bit modes as all that is required is
a simple read of the appropriate SFR. Reading a timer that is operating in either a 13-bit or a 16-bit mode, however,
takes two cycles – leaving you open to the risk that the timer may change its value between the two reads.

Two strategies may help here. One approach is to read the high byte, then read the low byte, then read the high byte
again. If the high byte hasn’t changed, the readings made correctly record the value of the timer at the time the low
byte was read. If the high byte has changed, however, the readings should be made again as the values read give an
uncertain result.

The other option is to stop the timer by clearing the appropriate Run bit while the reading is made. However, this
approach should only be taken if the application for which the IRMCF300 is being used can tolerate the timer being
stopped for a short while.

3.4.3 Periodic Timer
The periodic timer is used to produce interrupts at preprogrammed intervals. It consists of a 16-bit counter and a 16-bit
period (limit) register. The period register can be read or written at any time, but the counter cannot be read or
modified. The period is accessed as two 8-bit registers (high byte at A7h and low byte at A6h).

The period register determines the timer period. The counter counts down from the period register value to “1”. When
the counter reaches “1”, an interrupt is generated and the timer automatically begins counting down again from the
period register value. In order to activate the counter, a non-zero value should be written into the period register. If
the period register is zero, the counter stops and no interrupts are generated. The periodic timer is inactive (period set
to zero) on hardware reset.

The timer runs at PCLK, which is a half of the SYSCLK. (See Section 3.2.3 for system clock configuration.)

UG#0609

IRMCx300 Reference Manual

www.irf.com 50

TIMER 3 PERIOD REGISTER (TL3, TH3)
Address: A6h (TL3), A7h (TH3) Not Bit Addressable Reset value: 0000h

COMP
T3 Interrupt1

TH3(A7h)

WRITE

Reload

16-bit Down
Counter

PCLK

16-bit Limit Register

TL3(A6h)

WRITE

Figure 11. Periodic Timer

3.4.4 Watchdog Timer
The watchdog timer is a fail-safe mechanism that generates an automatic chip reset if the 8051 software fails to
execute its intended program sequence for any reason. As with typical watchdog timers, the program must reset a
counter on a regular basis to maintain normal operation; if the software fails to reset the counter (the program is not
operating properly) the watchdog “times out” and resets the device. Unlike a typical watchdog timer, however, the
IRMCF300 watchdog is driven by an internal analog oscillator so the timer will continue to run even if the external
oscillator fails. In this case software execution halts, but the watchdog times out as it should and generates a chip reset
so that all signals are reset to their initial power-on values and the motor drive reverts to an idle state.

The watchdog timer is a 16-bit timer with an associated 16-bit watchdog limit register. The clock is taken directly
from a special on-chip independent 1 MHz (approximate) analog oscillator, divided by 16 and fed to the watchdog
timer. When the 16-bit watchdog counter reaches (counts up to) the value in the 16-bit watchdog limit, an internal
reset is generated. Whenever a user program writes or reads the high byte of the 16-bit watchdog limit register, the 16-
bit watchdog counter is reset to zero and starts counting again toward the specified value in the limit register. The
block diagram is shown in Figure 12.

After power-on reset, the watchdog limit register is set to the maximum value (FFFFh) and the watchdog timer is
enabled. Every time the high byte of the limit register is read the counter starts again from zero. Writing a non-zero
value to the high byte of the limit register also starts the counter from zero. Writing “0” to both bytes of the limit
register disables the watchdog timer.

With the watchdog enabled and the limit register set to the maximum value, the counter reaches the limit value in
approximately one second (2^16 * 1/62.5kHz). Therefore, the user program must reset the counter (by reading or
writing the high byte of the limit register) at regular intervals of less than one second to avoid a system reset. If it is
desirable to detect a software “hang” in less than one second, the value in the limit register can be adjusted
accordingly.

The watchdog timer is always disabled when the system is in the debug mode (the JTAG debug port is active).

UG#0609

IRMCx300 Reference Manual

www.irf.com 51

16-BIT
 Watchdog LIMIT

WDTH(A5h), WDTL(A4h)

Divide by 16
prescaler

COMP

1 MHz

READ

WRITE

RESET

RESET

COUNT
Analog

Oscillator
62.5 kHz

16-BIT
 Watchdog TIMER

Figure 12. Watchdog Timer

WATCHDOG LIMIT REGISTER (WDTL, WDTH)
Address: A4h (WDTL), A5h (WDTH) Not Bit Addressable Reset value: 0000h

The limit register is read/write. When the limit register is read, the 16-bit watchdog counter is cleared to zero and
begins counting up again. When the limit register is written, a new value is stored into the limit register and at the same
time the 16-bit watchdog timer is cleared and begins counting up again.

3.4.5 Capture Timer
The capture timer (Timer 4) is used to measure the duty cycle and frequency period of an external signal. P1.4 can be
assigned to capture timer input through bit 5 of I/O Control register 1 (CAPE, IOCON1.5). The counting frequency
resolution is selected using bit 7 of I/O Control register 1 (CAPR, IOCON1.7). It can be set to either PCLK (SYSCLK
/ 2) or PCLK scaled by a fixed 10-bit prescaler (SYSCLK / 2048).

Two 16-bit counter values are latched into the CPREVH/CPREVL (previous pulse time) and CLASTH/CLASTL (last
pulse time) registers as the pulse times are measured. The interrupt polarity setup through bit 6 of I/O Control register
1 (CAPM, IOCON1.6) determines at which edge an interrupt is generated, and also which waveform segment is
considered the “last pulse time” and which is considered the “previous pulse time”.

Figure 13 shows the behavior of the capture timer for both rising-edge and falling-edge configuration.

The pulse time registers must be read in the following order: CLASTL, CLASTH, CPREVL, CPREVH. When
CLASTL is read, the values in all four registers are held (no new values are latched into the registers). This ensures
that coherent data from a single duty cycle can be retrieved. When CPREVH is read, the registers are released and the
timer begins to sample new values. CPREVH must be read in order to re-enable the timer.

UG#0609

IRMCx300 Reference Manual

www.irf.com 52

Figure 13. Capture Timer

CAPTURE LAST TIME DATA (CLASTL, CLASTH)
Address: B4h(CLASTL),

B5h(CLASTH)
Not Bit Addressable Reset value: Undefined

The read-only Capture Last Time data register is used to read the 16-bit counter value for the most recent pulse time
period measured by the capture timer. CLASTL should be read first to hold the current values in the capture timer data
registers.

CAPTURE PREVIOUS TIME DATA (CPREVL, CPREVH)
Address: B6h(CPREVL),

B7h(CPREVH)
Not Bit Addressable Reset value: Undefined

The read-only Capture Previous Time data register is used to read the 16-bit counter value for the pulse time period
immediately preceding the “last time” period. CPREVH should be read last to release the capture timer data registers,
and must be read to re-enable the capture timer.

UG#0609

IRMCx300 Reference Manual

www.irf.com 53

3.5 UARTs
The IRMCF300 has up to two UARTs which are different from standard 8051 UART. There are four SFRs to operate
each UART:
 For UART0: U0CTL, U0STAT, U0BUF, and U0BR
 For UART1: U1CTL, U1STAT, U1BUF, and U1BR

Both UARTs offer the same features, which can be summarized as follows:

• Programmable to 8-bit or 9-bit parity (odd/even) or 9-bit data operation.
• Programmable 8-bit baud rate. SYSCLK divided by the baud rate value (U0BR/U1BR) gives the sampling

clock frequency, which is 16 times the UART bit clock.
• The 16 times clock samples three times in the middle of each bit. If the data is different, a noisy indication is

set. This noisy bit is sticky across the whole character.
• The receive and transmit data buffers each hold two characters.
• An overrun error is detected if new data cannot be stored in the receive buffer because the buffer is full.
• A framing error is detected if no stop bit present.
• In discard mode bytes with errors are simply discarded so the CPU doesn’t have to process them.
• An interrupt is issued when the receive buffer contains data or when the transmit buffer has available space.
• When the hunt mode bit is set, the UART generates an interrupt only when the ninth bit is equal to the

U0CTL.2/U1CTL.2 bit. This feature may be used to hunt for the start of a message.
• In case the UART receives a constant input of "0", it will generate an interrupt at a byte interval. (The number

of bits per byte depends on the parity setting.) This interval includes a start bit, data (8/9) bits and a stop bit.
Then, because the stop bit is '0', a framing error will occur.

UART0 CONTROL (U0CTL)
Address: 94h Not Bit Addressable Reset value: 00000000b

U0CTL.7 U0CTL.6 U0CTL.5 U0CTL.4 U0CTL.3 U0CTL.2 U0CTL.1 U0CTL.0
- U0XINTE U0HUNT U0EN U0DISC U0DATA U0M1 U0M0
 R/W R/W R/W R/W R/W R/W R/W

The bit definitions for this register are as follows:

U0CTL.7 - Reserved
U0CTL.6 U0XINTE UART0 transmit interrupt enable.
U0CTL.5 U0HUNT When this bit is set, the UART hunts for a byte with bit 9 set as specified by

U0CTL.2 (U0DATA) and only then generates a receive interrupt. All bytes
before that are ignored. The “hunt” feature is only available in UART Mode
3 (U0M1=1, U0M0=1).

U0CTL.4 U0EN Enables the activity of UART0.
U0CTL.3 U0DISC Setting the “discard” bit causes UART0 to discard data received with errors

such as framing error, parity error or noise error.
U0CTL.2 U0DATA In UART Mode 3 (U0M1=1, U0M0=1), this bit is the data for bit 9.
U0CTL.1 U0M1 UART0 Mode 1 (see below)
U0CTL.0 U0M0 UART0 Mode 0 (see below)

UG#0609

IRMCx300 Reference Manual

www.irf.com 54

UART1 CONTROL (U1CTL)
Address: 9Ch Not Bit Addressable Reset value: 00000000b

U1CTL.7 U1CTL.6 U1CTL.5 U1CTL.4 U1CTL.3 U1CTL.2 U1CTL.1 U1CTL.0
- U1XINTE U1HUNT U1EN U1DISC U1DATA U1M1 U1M0
 R/W R/W R/W R/W R/W R/W R/W

The bit definitions for this register are as follows:

U1CTL.7 - Reserved
U1CTL.6 U1XINTE UART1 transmit interrupt enable.
U1CTL.5 U1HUNT When this bit is set, the UART hunts for a byte with bit 9 set as specified by

U1CTL.2 (U1DATA) and only then generates a receive interrupt. All bytes
before that are ignored. The “hunt” feature is only available in UART Mode
3 (U1M1=1, U1M0=1).

U1CTL.4 U1EN Enables the activity of UART1.
U1CTL.3 U1DISC Setting the “discard” bit causes UART1 to discard data received with errors

such as framing error, parity error or noise error.
U1CTL.2 U1DATA In UART Mode 3 (U1M1=1, U1M0=1), this bit is the data for bit 9.
U1CTL.1 U1M1 UART1 Mode 1 (see below)
U1CTL.0 U1M0 UART1 Mode 0 (see below)

For both U0CTL and U1CTL the mode control bits operate as follows:

U0M1,
U1M1

U0M0,
U1M0

Operating Mode Parity

0 0 Mode 0: 8-bit UART No Parity
0 1 Mode 1: 9-bit UART Odd Parity
1 0 Mode 2: 9-bit UART Even Parity
1 1 Mode 3: 9-bit UART Data Parity

The UART receive interrupt is asserted whenever a character has been received and is ready to be read out of the
UART Buffer (U0BUF/U1BUF). The interrupt is no longer asserted after the 8051 reads the character out of the
UART Buffer (U0BUF/U1BUF).

The UART transmit interrupt is asserted whenever there is room in the UART Buffer (U0BUF/U1BUF) for another
character to be transmitted. The 8051 software must disable this interrupt by writing “0” to the U0XINTE/U1XINTE
bit in the control register (U0CTL.6/U1CTL.6) when there are no characters to be sent.

UART0 STATUS (U0STAT)
Address: 95h Not Bit Addressable Reset value: 00000000b

U0STAT.7 U0STAT.6 U0STAT.5 U0STAT.4 U0STAT.3 U0STAT.2 U0STAT.1 U0STAT.0
- U0BIT9 U0OE U0PE U0FE U0NE U0TXEM U0RXV
 R R R R R R R

UG#0609

IRMCx300 Reference Manual

www.irf.com 55

The bit definitions for this register are as follows:

U0STAT.7 - Reserved
U0STAT.6 U0BIT9 Ninth bit of received data
U0STAT.5 U0OE Current reception buffer was over-run
U0STAT.4 U0PE Current reception buffer had parity error
U0STAT.3 U0FE Current reception buffer had framing error
U0STAT.2 U0NE Current reception buffer had noise
U0STAT.1 U0TXEM Transmission buffer is empty
U0STAT.0 U0RXV Reception buffer has data

UART1 STATUS (U1STAT)
Address: 9Dh Not Bit Addressable Reset value: 00000000b

U1STAT.7 U1STAT.6 U1STAT.5 U1STAT.4 U1STAT.3 U1STAT.2 U1STAT.1 U1STAT.0
- U1BIT9 U1OE U1PE U1FE U1NE U1TXEM U1RXV
 R R R R R R R

The bit definitions for this register are as follows:

U1STAT.7 - Reserved
U1STAT.6 U1BIT9 Ninth bit of received data
U1STAT.5 U1OE Current reception buffer was over-run
U1STAT.4 U1PE Current reception buffer had parity error
U1STAT.3 U1FE Current reception buffer had framing error
U1STAT.2 U1NE Current reception buffer had noise
U1STAT.1 U1TXEM Transmission buffer is empty
U1STAT.0 U1RXV Reception buffer has data

UART BAUD RATE (U0BR, U0BRH, U1BR, U1BRH)
Address: 97h (U0BR),93h (U0BRH)

9Fh (U1BR)9Bh (U1BRH)
Not Bit Addressable Reset value: 00h

The value in the baud rate register divides the system clock (SYSCLK) to create the sampling clock. The sampling
clock is 16 times faster than the bit rate. The formula for calculating the baud rate register value is:

value = (SysClk / (baud rate * 16)) - 1

U0BRH and U1BRH are the high bytes of the UART0 and UART1 baud rate, respectively. These registers are only
valid for the K-version of the IC and allow for very low baud rates, if desired.

UART DATA BUFFER (U0BUF, U1BUF)
Address: 96h (U0BUF),

9Eh (U1BUF)
Not Bit Addressable Reset value: 00h

To transmit an 8-bit character, write it to the U0BUF/U1BUF register. For UART0, a character should be written to
U0BUF only when the U0TXEM (U0STAT.1) is “1” (transmit buffer is empty). For UART1, a character should be
written to U1BUF only when the U1TXEM (U1STAT.1) is “1”.

For UART0, when the U0RXV (U0STAT.0) bit is “1” (receive buffer has data), read the U0BUF register to read an 8-
bit character from the UART0 receive buffer. For UART1, when the U1RXV (U1STAT.0) bit is “1”, read the U1BUF
register to read an 8-bit character from the UART1 receive buffer. Prior to reading the received data, the error status
bits in the status register (U0STAT/U1STAT) should be examined.

UG#0609

IRMCx300 Reference Manual

www.irf.com 56

3.6 D/A PWM
The IRMCF300 has up to three digital-to-analog PWM output ports. All of them are based on 8-bit data with a
resolution of 256 counts. Each D/A PWM has an 8-bit data register and an 8-bit timer. The value written into the 8-bit
data register sets the modulation index of the PWM output. On reset, the data registers are set to zero, which
effectively disables the PWM. Writing any value other than zero enables the PWM and produces the desired
waveform.

The I/O Control Register 0 bit 2 (AOPWMF , IOCON0.2) determines the carrier frequency. It can be PCLK/4096 (if
IOCON0.2 = 1) or PCLK/1024 (if IOCON0.2 = 0). The period of the PWM is fixed to 256 clock cycles. The data
register determines the duty cycle.

D/A PWM OUTPUT DATA (DAD0, DAD1, DAD2)
Address: ADh (DAD0), AEh (DAD1),

AFh (DAD2)
Not Bit Addressable Reset value: 00h

COMP

COMP

COMP

Port 2.6

Port 2.7

Port 3.1

P2.6/AOPWM0

P2.7/AOPWM1

P3.1/AOPWM3

IOCON0.3 = 1

IOCON0.4 = 1

IOCON0.5 = 1

DAD0(ADh)

DAD1(AEh)

DAD2(AFh)

WRITE

WRITE

WRITE

8-bit
Counter

12-bit
Prescaler

PCLK

IOCON0.2 0 : /1024
1 : /4096

Figure 14. D/A PWM Output

UG#0609

IRMCx300 Reference Manual

www.irf.com 57

3.7 I2C / SPI Serial Interface
The I2C / SPI interface is used for communication with the external EEPROMs and has a dual purpose. One is to
interface to the application data EEPROM. The other is to download the 8051 application program from EEPROM to
internal RAM in case of IRMCF300. The function of downloading the 8051 program is described in Section 2. The
SFRs used for the I2C interface are summarized in Table 9 and the SFRs used for the SPI interface are summarized in
Table 10.

Note that the user must choose between the two interfaces. The SFRs and I/O pins for the I2C and SPI interfaces are
shared and only one type of device can be supported for a given application.

Register Address Description Reset Value
I2CAL, I2CAH B9h, BAh I2C Transaction address low, high 00h

I2CTD BBh I2C Transaction data 00h
I2CCD BCh I2C Command data 00h
I2CDA BDh I2C Device address A2h
I2CBC BEh I2C Baud rate control C8h
I2CNF BFh I2C Schmitt trigger noise filter 33h

Table 9. SFRs for I2C

Register Address Description Reset Value
I2CTD BBh SPI Transaction data 00h
I2CCD BCh SPI Command data 00h
I2CBC BEh SPI Baud rate control C8h

Table 10. SFRs for SPI

I2C TRANSACTION ADDRESS REGISTER (I2CAL, I2CAH)
Address: B9h (I2CAL), BAh (I2CAH) Not Bit Addressable Reset value: 0000h

The transaction address register is read/write and is used only for the I2C interface. Two-byte consecutive data forms a
16-bit address (offset) within an EEPROM and specifies the location to be accessed for a read or write operation. For
an EEPROM with 256 bytes or fewer, only the low byte address register (I2CAL) is used.

I2C / SPI TRANSACTION DATA REGISTER (I2CTD)
Address: BBh Not Bit Addressable Reset value: 00h

The transaction data register is read/write. This register is used for both I2C and SPI to transfer the data to or from the
target EEPROM.

I2C / SPI COMMAND REGISTER (I2CCD)
Address: BCh Not Bit Addressable Reset value: 00000000b

I2CCD.7 I2CCD.6 I2CCD.5 I2CCD.4 I2CCD.3 I2CCD.2 I2CCD.1 I2CCD.0
BUSY - - SPISEL SPIEN CMD2 CMD1 CMD0

R R/W R/W R/W R/W R/W

The bit definitions for this register are as follows:

UG#0609

IRMCx300 Reference Manual

www.irf.com 58

I2CCD.7 BUSY This bit is set to “1” when the I2C or SPI interface is busy with an operation.
I2CCD.6 - Reserved.
I2CCD.5 - Reserved.
I2CCD.4 SPICS1 SPI CS1 enable. 0: CS1 is not used, 1: CS1 is used. If an SPI device is

configured at CS1, this bit should always be set to 1, even when issuing
commands for the device at CS0. Always set this bit to 0 for I2C.

I2CCD.3 SPIEN SPI interface enable. 0: enable I2C, 1: enable SPI.
I2CCD.2 CMD2 SPI / I2C command bit 2.
I2CCD.1 CMD1 SPI / I2C command bit 1.
I2CCD.0 SPI / I2C command bit 0. CMD0

SPI / I2C commands are initiated by writing to the command register. The command type is encoded in bits CMD2 –
CMD0, as follows:

CMD2 CMD1 CMD0 I2C Command Description SPI Command Description
0 0 0 I2C reset Byte write CS0, CS0 low on completion
0 0 1 8-bit address random write Byte read CS0, CS0 low on completion
0 1 0 8-bit address random read Byte write CS1, CS1 low on completion
0 1 1 16-bit address random write Byte read CS1, CS1 low on completion
1 0 0 16-bit address random read Byte write CS0, CS0 high on completion
1 0 1 Current address read Byte read CS0, CS0 high on completion
1 1 0 Next address read Byte write CS1, CS1 high on completion
1 1 1 Previous address read Byte read CS1, CS1 high on completion

I2C DEVICE ADDRESS REGISTER (I2CDA)
Address: BDh Not Bit Addressable Reset value: 10100010b

I2CDA.7 I2CDA.6 I2CDA.5 I2CDA.4 I2CDA.3 I2CDA.2 I2CDA.1 I2CDA.0
A6 A5 A4 A3 A2 A1 A0 -

R/W R/W R/W R/W R/W R/W R/W R

This register is used for the I2C interface only. Bits A6 through A3 must always be set to “1010” in order to address
any EEPROM device on the I2C bus. Bits A2, A1, and A0 select an individual EEPROM device.

For proper operation of the 8051 boot sequence at power up, a 32k byte or 64k byte device (e.g., 24C256 or 24C512)
must be provided with IRMCF300. These devices typically have the upper five bits of address hard-wired to “10100”
and have two configurable address pins A1 and A0. The device must be configured so that the device address A1 pin
is pulled down (A1 = 0) and A0 is pulled up (A0 = 1). This sets the device address to match the default value of the
I2CDA register.

Up to three additional EEPROM devices can be connected to the same I2C bus. These are typically used for storage of
application specific data (e.g., motor tuning parameters). These EEPROM devices can be configured for any 3-bit
address except 001. Before accessing an EEPROM device, the 8051 software must select the appropriate device
address by writing to bits A2, A1 and A0 of the I2CDA register.

A2 A1 A0 Device
0 0 1 Default 64k byte device for 8051 program storage, (e.g., 24C512)
0 or 1 0 0
0 or 1 1 0

Any other device for user parameter storage.

0 or 1 1 1

UG#0609

IRMCx300 Reference Manual

www.irf.com 59

I2C / SPI BAUD RATE CONTROL (I2CBC)
Address: BEh Not Bit Addressable Reset value: 00010000b

The baud rate control register configures the bit rate for I2C or SPI serial communication. The clock frequency of the
SCL pin is determined by this register value. The value in this register feeds the high-order 8 bits of a 12 bit frequency
divider and can be calculated using the equation:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅
⋅= 1

216
12

SCLf
SysClkCBCI

where SysClk is the system clock rate and fSCL is the SCL frequency

The default value is 16 (0x10), which generates a 97 kHz bit rate at the default clock rate of 50 MHz. For the boot
procedure performed at power up this SFR is not used (see Section 2 for details).

I2C NOISE FILTER (I2CNF)
Address: BFh Not Bit Addressable Reset value: 00010100b

The noise filter register configures the I2C noise filter time constant and is not used for the SPI interface. The valid
range of values is: 0 – 31 (5 bits). The filter is a one bit FIR filter clocked by the system clock. Maximum filter delay
is calculated as follows:

Delay time = I2CNF value * 15 nanoseconds

The default value is 20 (0x14), which provides a 300 nanoseconds filter time constant and delay. Any noise with a
pulse width smaller than 300 nanoseconds will be rejected.

3.7.1 Command Descriptions for the I2C Interface
This section describes how to use the I2C interface to read and write typical I2C EEPROM devices.

3.7.1.1 Reset Command
After power-on or reset, a reset command should be issued to the I2C interface before performing any read or write
operations. The I2C reset can also be used to force a device on the bus to a known state after an error condition such as
a power drop (brown-out), strong electrical noise, or a hardware reset during an I2C operation. An I2C reset is
automatically generated if the boot procedure (Section 2) fails.

The I2C reset operation executes a Start, nine clock cycles with high data, and then a Stop. If a device has failed to
relinquish the I2C bus, this sequence should bring the device to a stopped state and allow the bus to function normally.

3.7.1.2 Read and Write Commands
Use the 8-bit address commands for 256 byte EEPROM devices and the 16-bit address commands for larger devices.
The current address read command is a no-address transaction, where the address is automatically incremented from
the previous transaction.

Note: After issuing any read command, software must wait for the data in the I2CTD register to become valid before
reading that register. Valid data in the I2CTD register is indicated by a “0” value in the BUSY bit of the I2CCD
register.

UG#0609

IRMCx300 Reference Manual

www.irf.com 60

The typical sequence used from the 8051 to write to EEPROM is as follows:

1. Reset the I2C bus by writing “0” to the command register (I2CCD).
2. Select the device address by writing to the I2CDA register.
3. Wait for the BUSY bit to be cleared in the I2CCD register.
4. Write the desired EEPROM offset to the transaction address high and low registers (I2CAL, I2CAH).
5. Write the data byte into the transaction data register (I2CTD)
6. Select an 8-bit or 16-bit write operation by writing the appropriate value to the command register (I2CCD).
7. Wait for the BUSY bit to be cleared in the I2CCD register.
8. Repeat steps 4 – 7 to write additional data bytes.

The typical sequence used from the 8051 to read from EEPROM is as follows:

1. Reset the I2C bus by writing “0” to the command register (I2CCD).
2. Select the device address by writing to the I2CDA register.
3. Wait for the BUSY bit to be cleared in the I2CCD register.
4. Write the desired EEPROM offset to the transaction address high and low registers (I2CAL, I2CAH).
5. Select an 8-bit or 16-bit read operation by writing the appropriate value to the command register (I2CCD).
6. Wait for the BUSY bit to be cleared in the I2CCD register.
7. Read the data byte from the transaction data register (I2CTD)
8. Repeat steps 4 – 7 to read additional data bytes.

Figure 15. I2C Pin Structure

3.7.2 Command Descriptions for the SPI Interface
This section describes how to use the SPI interface to read and write typical SPI EEPROM devices.

Each SPI command reads or writes a single byte of data. Typical SPI devices define instruction sequences composed
of multiple bytes. A series of SPI commands is required to issue a single multi-byte instruction sequence to an SPI
device. When issuing multi-byte instructions, use the set of command codes that specifies “CSn low on completion”
for all but the last command of the sequence. For the last command, use a command code from the set that specifies
“CSn high on completion”. The SPI device recognizes the end of the instruction sequence when the CS signal returns
to the high state. For single-byte instructions (such as write enable), always use a command code that sets CS high on
completion.

3.7.2.1 Read Instructions
Reading a byte of data from an SPI EEPROM device typically requires a sequence of four commands to be issued to
the SPI interface: three write commands are issued to send the read instruction and the 16-byte address, followed by a
read command to read the data. Reading multiple bytes of data from sequential locations can usually be accomplished
by writing the read instruction and 16-byte starting address, followed by a series of read commands, one for each data
byte. Only the last read command sets the CS signal high on completion.

UG#0609

IRMCx300 Reference Manual

www.irf.com 61

Note: After issuing any read command, software must wait for the data in the I2CTD register to become valid before
reading that register. Valid data in the I2CTD register is indicated by a “0” value in the BUSY bit of the I2CCD
register.

The typical sequence used from the 8051 to read from an SPI EEPROM is as follows:

1. Write a Read instruction code (specific to the SPI device) to the I2CTD register.
2. Write a byte write command code (CS low on completion) to the I2CCD register.
3. Wait for the BUSY bit to be cleared in the I2CCD register .
4. Write the high byte of the 16-bit EEPROM address to the I2CTD register.
5. Write a byte write command code (CS low on completion) to the I2CCD register.
6. Wait for the BUSY bit to be cleared in the I2CCD register .
7. Write the low byte of the 16-bit EEPROM address to the I2CTD register.
8. Write a byte write command code (CS low on completion) to the I2CCD register.
9. Wait for the BUSY bit to be cleared in the I2CCD register.
10. Write a byte read command code (CS high on completion) to the I2CCD register.
11. Wait for the BUSY bit to be cleared in the I2CCD register.
12. Read the data byte from the I2CTD register.

To read more than one byte, follow the steps above, but use a read command code with CS low on completion at step
10. Repeat steps 10 - 12 for each additional data byte to be read. For the last read only, use the read command code
with CS high on completion.

3.7.2.2 Write Instructions
Writing to an SPI EEPROM device typically requires the device to be write enabled first as a separate instruction
(setting the CS signal high on completion). The write instruction follows, which typically requires a sequence of four
write command to send the write instruction, the 16-bit address and the data byte. Writing multiple bytes of data to
sequential locations can usually be accomplished by sending the write instruction and 16-byte starting address,
followed by a series of write commands, one for each data byte. Only the last write command sets the CS signal high
on completion.

Note: After issuing any write command, software must wait for the command to complete before writing another data
byte to the I2CTD register. Command completion is indicated by a “0” value in the BUSY bit of the I2CCD register.

The typical sequence used from the 8051 to write to an SPI EEPROM is as follows:

1. Write a Write Enable instruction code (specific to the SPI device) to the I2CTD register.
2. Write a byte write command code (CS high on completion) to the I2CCD register.
3. Wait for the BUSY bit to be cleared in the I2CCD register .
4. Write a Write instruction code (specific to the SPI device) to the I2CTD register.
5. Write a byte write command code (CS low on completion) to the I2CCD register.
6. Wait for the BUSY bit to be cleared in the I2CCD register .
7. Write the high byte of the 16-bit EEPROM address to the I2CTD register.
8. Write a byte write command code (CS low on completion) to the I2CCD register.
9. Wait for the BUSY bit to be cleared in the I2CCD register .
10. Write the low byte of the 16-bit EEPROM address to the I2CTD register.
11. Write a byte write command code (CS low on completion) to the I2CCD register.
12. Wait for the BUSY bit to be cleared in the I2CCD register.
13. Write the data byte to the I2CTD register.
14. Write a byte write command code (CS high on completion) to the I2CCD register.

To write more than one byte, follow the steps above, but use a write command code with CS low on completion at step
14. Repeat steps 12 - 14 for each additional data byte to be written. For the last write only, use the write command
code with CS high on completion.

UG#0609

IRMCx300 Reference Manual

www.irf.com 62

4 Motion Control Engine
The Motion Control Engine (MCE) is a collection of hardware modules—the building blocks necessary to implement
high efficiency sinusoidal sensorless control for Permanent Magnet motors. The MCE Library provides a graphical
representation of these modules.

The MCE library contains various control block modules specific to motor control applications as well as a number of
general-purpose modules for miscellaneous operations and support functions. The user can select and connect the
library blocks to form a control algorithm. Using the MCE library in the MATLAB/SimulinkTM environment, the user
can design custom control loops (closed loop sensorless current control, closed loop speed control, etc.) based on
application requirements. A graphic compiler analyses the completed design and automatically translates it into a
sequence of MCE-specific machine code for integration with the IRMCx300. Operating on the IRMCF300 , the MCE
machine code essentially customizes the device for the user’s specific application requirements.

The two basic types of hardware resources available on the IRMCF300 are Motion Peripherals and Control blocks.

Motion peripherals process analog and digital signals and interface to “the outside world”—hardware external to the
IRMCF300 IC. Examples are the Low Loss Space Vector PWM module, A/D converter module, and single shunt
current reconstruction module. These modules are colored yellow throughout this document and the design entry tool
(Matlab/SimulinkTM) to distinguish them from other hardware elements. Each motion peripheral module is used only
once in an application design (or once for each motor) since it corresponds to a single hardware resource. The motion
peripheral blocks are described in Section 4.3. Registers used to configure and monitor the operation of the motion
peripheral blocks from an 8051 application or a host system are described in Section 4.4.

Control Blocks are the math, control, and logic elements implemented in hardware. These modules can be used in an
application design as many times as needed. Control block signals can be connected to another Control Block or to a
Motion Peripheral module. Control Blocks are colored green (for math) or blue (all others) throughout this document
and the design entry tool (MATLAB/SimulinkTM) to distinguish them from the Motion Peripherals. The control blocks
are described in Section 4.2. There are no pre-defined registers for control block configuration and monitoring as there
are for the motion peripherals.

Additional blocks are provided for support functions such as data initialization and monitoring, signal delays and page-
to-page connections. Some support functions are implemented using standard Simulink library components. The
support blocks are described in Section 6.3.

Table 11 summarizes all the blocks in the MCE library. For each block, the table entry references the document
section that describes the block in detail. For more information about using the MCE library in MATLAB/Simulink,
refer to Section 6.3.

All blocks are based on 16-bit signed or unsigned integer input and output.

Module
Category

Module Name Description Document
Section

PI Proportional plus integral 4.2.1.1
LOWPASS_FILT First order low pass filter 4.2.1.2

Control Blocks –
Frequency Domain HIGHPASS_FILT First order high pass filter (differentiator

and lag)
4.2.1.3

VECROT Vector rotator 4.2.2.1Control Blocks –
Coordinate Transformation CLARK Inverse Clark transformation 4.2.2.2

RAMP Linear ramp function 4.2.3.2
ATAN Arc tangent lookup table 4.2.3.3
LIMIT Limit function 4.2.3.1
FUNCTION_BLOCK Five-input two-dimensional function 4.2.3.4

Control Blocks –
Utility

 COMPARATOR Compare two inputs 4.2.3.5

UG#0609

IRMCx300 Reference Manual

www.irf.com 63

Module
Category

Module Name Description Document
Section

SWITCH Switch between two inputs based on a
third

4.2.3.6

BIT_LATCH Bit latch 4.2.3.7
PEAK_DETECT Peak detect 4.2.3.8
TRANSITION One shot pulse generator 4.2.3.9
INTEGRAL2 Integral with limit 4.2.3.10

Control Blocks –
Utility

PFC_FFD PFC Feed Forward 4.2.3.11
MUL_DIV Multiply with extraction

(signed/unsigned)
4.2.4.6

DIVIDE Divide (signed/unsigned) 4.2.4.7
SUM Adder 4.2.4.2
ACCUMULATOR Accumulator 4.2.4.3
COUNTER Counter with limit 4.2.4.4
DIFF Difference 4.2.4.1
SHIFT Multiply by a power of two 4.2.3.6
AND Logical AND (16 bit) 4.2.4.10
OR Logical OR (16 bit) 4.2.4.11
XOR Logical XOR (16 bit) 4.2.4.12
NOT Logical NOT (16 bit) 4.2.4.8

Control Blocks –
Math

NEGATE Logical NEGATE (16 bit) 4.2.4.9
SENSORLESS_FOC Sensorless field orientation control 4.3.1
LOWLOSS_SVPWM Low loss space vector modulator 4.3.5
SINGLE_I_SHUNT Single shunt current reconstruction 4.3.2
DC_BUS_VOLTAGE DC bus voltage monitor 4.3.3
A_D A/D converters 4.3.4
FAULTS Drive fault status 4.3.6
MCE_FAULT MCE fault generator 4.3.7
PFC_PWM PFC pulse width modulator 4.3.8

Motion Peripheral Blocks

PFC_SENSE PFC current/voltage reconstruction 4.3.9
Configure PWM Hierarchical connection to PWM 6.3.1.1
Configure Control Loop Hierarchical connection to control loops 6.3.1.1
Read Register Output to host/8051 interface 6.3.1.2
Write Register Inputs from host/8051 interface 6.3.1.2
MCE Compiler Shortcut to the MCE Compiler 6.3.1.5

Custom Support Blocks

Host Register Summary Read and Write register summary display 6.3.1.5
Enabled Subsystem Hierarchical organization block 6.3.2.1
Constant Defines a constant input value 6.3.2.2
Scope Defines an output for MCEDEsigner trace

function
6.3.2.3

Input Port Defines an input for a custom macro
block

6.3.2.4

Output Port Defines an output for a custom macro
block

6.3.2.5

Goto Off-page connector (output) 6.3.2.6
From Off-page connector (input) 6.3.2.6

Standard Simulink Support
Blocks

Unit Delay PWM cycle signal delay 6.3.2.7
Table 11. MCE Library Elements

UG#0609

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 64

4.1 Rotating Frame Notation and Conventions
Throughout this document, the following convention is used to describe input and output notation with regard to the
rotating frame for field orientation control.

The stationary frame variables “alpha” and “beta” are orthogonal. The three-phase stationary frame variables “u”, “v”,
and “w” are 120 degree apart. “alpha” is aligned to “u”. The synchronously rotating frame variables “d” and “q” are
relative to the moving angle of θ.

Forward Vector Rotation:

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
q
d

beta
alpha

θθ
θθ

cossin
sincos

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
beta

alpha
v
u

2
3

2
1

01

Inverse Vector Rotation:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡

w
v
u

beta
alpha

3
1

3
10

001

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
beta

alpha
q
d

θθ
θθ

cossin
sincos

UG#0609

IRMCx300 Reference Manual

www.irf.com 65

4.2 Control Blocks
This section describes the MCE control blocks, which include frequency domain and coordinate transformation
modules, general utility functions and math operations. In the Simulink MCE libraries, the math blocks are found in
the Math library and the remaining control blocks are located in the Control library.

The connections between the various control blocks in the MCE design determine their order of execution, and they
execute sequentially (not in parallel). A worst case timing estimate is shown for each control block. The designer
should take care to ensure that the total execution time for all control blocks in the design does not exceed the
configured PWM preiod.

4.2.1 Frequency Domain Blocks

4.2.1.1 PI – Proportional Plus Integral
The PI block performs the following function in the s-domain:

s
KiKp

Input
Output

+=

Figure 16. PI Block

And in the discrete domain:

UG#0609

IRMCx300 Reference Manual

www.irf.com 66

In terms of pseudo code, the PI regulator can be represented by:

KP_Prod(n) = INPUT1(n) x KP
[s31:0] [s15:0] [s15:0]
KP_Prod(n) = KP_Prod(n) right shift KP_SCALE
[s31:0] [s31:0]

 If((INPUT2(n) > 0 and HOLD_P) or (INPUT2(n) < 0 and HOLD_M)) // antiwindup
 [s15:0] [1] [s15:0] [1]
 KI_Prod(n) = 0
 [s31:0]
 Else
 KI_Prod(n) = INPUT2(n) x KI
 [s31:0] [s15:0] [s15:0]

 If(ENABLE)
 Int(n) = KI_Prod(n) + Int(n-1)
 [s31:0] [s31:0] [s31:0]
 Protect sign 32-bit overflow on Int(n)
 Else
 Int(n) = 0
 [s31:0]

 KI_Int(n) = Int(n) right shift KI_SCALE
 [s31:0] [s31:0]

 Temp1(n) = KP_Prod(n) + KI_Int(n)
 [s31:0] [s31:0] [s31:0]
 Protect 32 bit overflow on Temp1(n)
 Temp2(n) = Limit Temp1(n) to [s15:0]
 [s15:0]

 If(ENABLE)
 OUTPUT = Temp2(n)
 [s15:0] [s15:0]
 Else
 OUTPUT = 0

The scalers (KP_Scaler, KI_Scaler) are accessible by double clicking the PI block in the MODEL file. The scalers
must be from 0 – 31. Note: The scalers can only be updated during compile time (MCE compiler).

Also note that when the output limits at the maximum or minimum 16-bit number, the internal 32-bit recursive register
(I_output) continues to accumulate. To prevent this “wind-up” action, the PI block should be used in conjunction with
the LIMIT block. The integration can be halted by feeding the SATP or SATM outputs of LIMIT back to HOLD_P
and HOLD_M inputs of PI, respectively.

Signal name Description I/O Type
Input1 Input for proportional path Input 16 bit, signed integer
Input2 Input for integral path Input 16 bit, signed integer

KP Proportional gain Input 16 bit, signed integer 1

KI Integral gain Input 16 bit, signed integer 1

HOLD_P Hold Integrator Positive going Input Boolean,
0 = no hold
1 = hold integrator positive going

HOLD_M Hold Integrator Negative going Input Boolean,

UG#0609

IRMCx300 Reference Manual

www.irf.com 67

0 = no hold
1 = hold integrator negative going

ENABLE Enable/Reset Input Boolean,
0 = reset all recursive data and
output
1 = normal operation

Output Output Output 16 bit, signed integer
Table 12. PI User Inputs and Outputs

Signal name Description I/O Type

KP_Scale Scale factor for Kp gain Input 8 bit scaler 1

KI_Scale Scale factor for Ki gain 8 bit scaler 1Input
Table 13. PI System Inputs and Outputs

Note 1. The range of KP and KI is from 0 to 32767 and can be interpreted as simple floating format. For KP
and KI, the system uses a simple floating point format as shown below. The mantissa is a 16-bit
unsigned integer and scaler is an 8-bit value, however only 5 LSB is being used (0 – 31 range). The
scaler represents a negative power of two applied to the mantissa.

Mantissa:

Scaler:

Data range:

 1 * 2-31 – 65,535

Status Clock cycles
Min. case
Max. case

34
63

Table 14. PI Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 68

4.2.1.2 LOWPASS_FILT – First Order Low Pass Filter
The low pass filter block performs the following function:

TauSInput
Output

•+
=

1
1

 where Tau is the filter time constant (1/Wc).

Output >

> ENABLE

LOWPASS_FILT

> Input

> WC Output >

> ENABLE

LOWPASS_FILT

> Input

> WC

Figure 17. LOWPASS_FILT Block

Realization in the discrete domain:

+

-

-1Z

8

WC2limit
- 1

- 2
limit

+

+
2-16 OutputInput

0 Enable

2 <= limit <= 15

2-16

In terms of Psuedo code, the lowpass filter can be realized as:

 Temp1(n) = Input(n) - Output(n-1)
 [s15:0] [s15:0] [s15:0]
 Overflow protect Temp1(n) to 16-bit signed
 Temp1(n) = Temp1(n) x WC
 [s31:0] [s15:0] [s15:0]
 Temp1(n) = Shift Temp1(n) left 3 bit
 [s31:0] [s31:0]

 If (ENABLE)
 Int(n) = Int(n) + Temp1(n)
 [s31:0] [s31:0] [s31:0]
 Overflow protected to 32 bit sign
 Else
 Int(n) = 0

 Output(n) = Int(n) [s31:16]
 [s15:0]

Double clicking on the block in the Simulink model file will allow the designer to access a limit value parameter. The
parameter restricts the difference between the filtered output and the new input to the range [-2LIMIT, 2LIMIT – 1]. The
parameter can be any value between 2 and 15, with default value of 15. Note: The LIMIT value parameter can only be
updated during compile time (MCE compiler).

Relationship between the actual filter time constant (sec.) and the configurable parameter WC (input) is given by:

UG#0609

IRMCx300 Reference Manual

www.irf.com 69

132×=

WC
DeltaTTau [sec]

where: Tau is defined as the filter time constant in sec. which also correpsonds to 1/Wc as shown in

 Figure 17.
WC (in digital counts) is the configurable input of the filter block (Figure 17).
DeltaT is the sampling time of the filter in sec..

Note: Theorectically, the minimum filter time constant should be larger than 2 times the filter sampling time to prevent
digital filter instability. The filter gain and phase characteristics is shown in Figure 18 where the normalized frequency
1 corresponds to 1/Tau (rad./sec).

Normalized Frequency

Gain (db)

Normalized Frequency

Phase
(Deg.)

Figure 18. LOWPASS_FILT frequency response

Signal name Description I/O Type

ENABLE 1 – enable filter
0 – disable filter, output = 0

Input Boolean,

WC Filter bandwidth in digital
counts.

Input 16 bit, signed integer 1

Input Filter input Input 16 bit, signed integer
Output Filter Output

(rounding)
Output 16 bit, signed integer

Table 15. LOWPASS_FILT User Inputs and Outputs

 Note 1: The allowable data range of WC is 0 to . Numerical overflow will occur if WC is outside the

specified range. To pass Input unchanged to Output (turn off filter action), set WC to 2

132
13.

Status Clock cycles

 Max. case –33
Table 16. LOWPASS_FILT Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 70

4.2.1.3 HIGHPASS_FILT – First Order High Pass Filter
The HIGHPASS_FILT block performs the following S-domian function:

Taus
Taus

Input
Output

•+
•

=
1

 where Tau = 1/Wc

Output >

> ENABLE

HIGHPASS_FILT

> Input

> WC Output >

> ENABLE

HIGHPASS_FILT

> Input

> WC

Figure 19. HIGHPASS_FILT Block

The highpass filter can be realized by the following psuedo code:

Temp1(n) = Input(n) - Output(n-1)
 [s15:0] [s15:0] [s15:0]
 Overflow protect Temp1(n) to 16-bit signed
 Temp1(n) = Temp1(n) x WC
 [s31:0] [s15:0] [s15:0]
 Temp1(n) = Shift Temp1(n) left 3 bit
 [s31:0] [s31:0]

 If (ENABLE)
 Int(n) = Int(n) + Temp1(n)
 [s31:0] [s31:0] [s31:0]
 Overflow protected to 32 bit sign
 Else
 Int(n) = 0

 Temp2(n) = Input(n) – Int(n)[s31:16]
 [s15:0] [s15:0] [s15:0]
 Temp3(n) = Overflow protect Temp2 to 16-bit signed
 If(ENABLE)
 Output(n) = Temp3(n)
 [s15:0] [s15:0]
 Else
 Output(n) = 0

When the ENABLE signal is low, the output of the block is zero. In order for the Output to pass the Input signal
unchanged, set WC = 0 and pulse the ENABLE input to clear any recursive data. WC should be in the range [0, 213],
otherwise Output could have over/under shoot spikes or even large oscillations.
The high pass filter is constructed by a low pass filter and a summing as shown in Figure 19. The low pass filter time
contant (Tau) determines the high pass filter cutoff frequency (Wc).
Relationship between the actual filter time constant (sec.) and the configurable parameter WC (input) is given by:

132×=
WC

DeltaTTau [sec]

where: Tau is defined as the low pass filter time constant in sec.

WC (in digital counts) is the configurable input of the filter block (Figure 19).

UG#0609

IRMCx300 Reference Manual

www.irf.com 71

DeltaT is the sampling time of the filter in sec..

Note: Theorectically, the minimum filter time constant should be larger than 2 times the filter sampling time
to prevent digital filter instability.

Wc Wc

Figure 20. HIGHPASS_FILT frequency response

Figure 20 shows the frequency response of the high pass filter, the filter cutoff frequency (Wc in rad./sec) corresponds
to 1/Tau.

Signal name Description I/O Type
Input Filter input Input 16 bit, signed integer
WC Filter bandwidth Input 16 bit, unsigned integer 1

ENABLE 1 – enable filter
0 – disable filter, output = 0

Input Boolean,

Output Filter output Output 16 bit, signed integer
Table 17. HIGHPASS_FILT User Inputs and Outputs

Note 1: The allowable data range of WC is 0 to . Numerical overflow will occur if WC is outside the
specified range. To pass Input unchanged to Output (turn off filter action), set WC to 0.

132

Status Clock cycles
Max. case 87

Table 18. HIGHPASS_FILT Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 72

4.2.2 Coordinate Transformation Blocks

4.2.2.1 VECROT – Vector Rotation
The VECROT block performs the following function in the discrete domain:

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡ −
⋅=⎥

⎦

⎤
⎢
⎣

⎡
)(2
)(1

)(cos)(sin
)(sin)(cos

64676.1
)(2
)(1

nInput
nInput

nn
nn

nOutput
nOutput

θθ
θθ

Where πθ 2)(0 ≤≤ n ,)(nθ = THETA(n) 40962π× .
The VECROT block follows 3xx series vector rotation convention which is described in section 4.1.

> Input1

> Input2

> THETA

Output1 >

Output2 >

VECROT

> Input1

> Input2

> THETA

Output1 >

Output2 >

VECROT
Figure 21. VECROT Block

Figure 22. VECROT vector interpretation

Signal
name

Description I/O Type

Input1 Input1 aligns with d axis of
Figure 22

Input 16 bit, signed integer 1

Input2 Input 2 aligns with q axis of
Figure 22.

Input 16 bit, signed integer 1

THETA Rotator angle (4096 digital
counts = π2)

Input 16 bit, signed integer 2

Output1 Output1 aligns with alpha axis
of Figure 22.

Output 16 bit, signed integer

Output2 Output2 aligns with beta axis
of Figure 22.

Output 16 bit, signed integer

Table 19. VECROT Inputs and Outputs

UG#0609

IRMCx300 Reference Manual

www.irf.com 73

 Note 1: range of input 1 and 2 is less than 16-bit: , 1212 212 ≤≤− Input 1212 222 ≤≤− Input
 Note 2: THETA mapping: 40960 ≤≤ THETA digital counts maps to 2π

Status Clock cycles
 Nominal 45
Table 20. VECROT Execution Time

4.2.2.2 CLARK – Inverse Clark Transformation

The inverse Clark block is a 3-phase to 2-phase transformation.

U

V

W

A

B

U

V

W

A

B

CLARK
Figure 23. CLARK Block

The module implements the following equation in the discrete domain:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡

)(
)(
)(

3
1

3
10

001

)(
)(

nW
nV
nU

nB
nA

Pseudo code for Inverse clark is realized by:

 A(n) = U(n)
 [s11:0] [s11:0]
 Temp1(n) = V(n) – W(n)
 [s12:0] [s11:0] [s11:0]
 Temp2(n) = shift right 11 (Temp1(n) * 2365)
 [s14:0] [s12:0] [s12:0]
 B(n) = Temp2(n) [12:1]
 [s11:0]

Figure 24 shows the CLARK vector operation, the relationship (2/3 scaler) of B and B”is used to preserve power
invariant transformation.

UG#0609

IRMCx300 Reference Manual

www.irf.com 74

alpha

beta

V

- W

30

A or U

B”

B” = V cos30 – W cos 30
 = sqrt(3)/2 (V – W)

B = 2/3 * B”
 = 1/sqrt(3) (V – W)

30

120

Figure 24. CLARK vector interpretation

Signal Name Description I/O Type
U Phase U (one of 3-phase) Input 16 bit, signed integer 1
V Phase V (one of 3-phase) Input 16 bit, signed integer 1
W Phase W (one of 3-phase) Input 16 bit, signed integer 1
A A (orthogonal set with B) Output 16 bit, signed integer
B B (orthogonal set with A) Output 16 bit, signed integer

Table 21. CLARK Inputs and Outputs

Note 1: range of U, V and W should be restricted between 122± .

Status Clock cycles
Nominal 21

Table 22. CLARK Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 75

4.2.3 Utility Blocks

4.2.3.1 LIMIT
Figure 25 shows the inputs and outputs of the LIMIT block, which are also described in Table 23. Note that if
LIMIT_P < LIMIT_M then OUT = LIMIT_M and SATM = 1 for all values of Input. Also, if LIMIT_P = LIMIT M,
then OUT = LIMIT_M and SATM = SATP = 1 for all values of Input.

> Input

> LIMIT_P

> LIMIT_M

Output >

SATP >

SATM >

LIMIT

> Input

> LIMIT_P

> LIMIT_M

Output >

SATP >

SATM >

LIMIT
Figure 25. LIMIT Block

The LIMIT block performs the following function:

 Output = Input
 SATM = 0
 SATP = 0

If (Input <= LIMIT_M) then
 Output = LIMIT_M
 SATM = 1
 SATP = 0
If (Input >= LIMIT_P) then
 Output = LIMIT_P
 SATP = 1
 SATM = 0

 Note: Input, Output, LIMIT_M and LIMIT_P are [s15:0].

 Signal name Description I/O Type
Input Input Input 16 bit, signed integer

LIMIT_P Positive Limit Threshold Input 16 bit, signed integer
LIMIT_M Negative Limit Threshold Input 16 bit, signed integer

SATP Status flag for indicating
upper limit (Limit_P)
saturation

Output Boolean,
0 = not saturated
1 = saturated

SATM Status flag for indicating
lower limit (Limit_M)
saturation

Output Boolean,
0 = not saturated
1 = saturated

Output Output Output 16bit, signed integer
Table 23. LIMIT Inputs and Outputs

Status Clock cycles
Max. case 24

Table 24. LIMIT Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 76

4.2.3.2 RAMP – Linear Ramp

> Input

> ACC_RATE

> SCALER

> DEC_RATE

> ENABLE

> INIT

Output >

RAMP

> Input

> ACC_RATE

> SCALER

> DEC_RATE

> ENABLE

> INIT

Output >

RAMP
Figure 26. RAMP Block

The RAMP block provides rate limiting function. The rate of change of input is limited by configurable parameters
ACC_RATE and DEC_RATE of the RAMP block inputs. Figure below illustrates (ACC_RATE = 4x DCC_RATE)
the application of rate limiting under step changes of the input.

0

0

Input

Output

A – apply ACC_RATE
D - apply DCC_RATE

Example: ACC_RATE = 4 x DCC_RATE

A

A

A
D

D

D

D

time

time

 The scaling of ACC_RATE and DEC_RATE is given by:

 Rate limit =
T

RATEACC
Scaler Δ×2

_
 [digital counts per sec.]

 or =
T

RATEDEC
Scaler Δ×2

_
 [digital counts per sec.]

 Where = sampling time of the RAMP block TΔ

Note: It is not recommend to change SCALER when the RAMP block is enabled. Doing so could result in a
discontinuous jump of the Output value.

The ramp function can be realized by the following Pseudo code:

if(ENABLE)
 Delta = Input x 2^SCALER – Int32(n)

UG#0609

IRMCx300 Reference Manual

www.irf.com 77

 [s31:0] [s15:0] [s31:0]
 If((Int32(n)>0 and Delta>0) or (Int32(n)<0 and Delta<0))
 RATE = ACC_RATE
 Elseif((Int32(n)<0 and Delta>0) or (Int32(n)>0 and Delta<0))
 RATE = DCC_RATE

 If(Delta > RATE) Delta = RATE
 Elseif (Delta < -RATE) Delta = -RATE

 Int32(n)= Int32(n-1) + RATE
 [s31:0] [s31:0] [s31:0]
 Temp(n) = Int32(n) x 2^(-SCALER)
 [s31:0] [s31:0]
 Output = temp[s15:0]
 [s15:0]
else
 Int32(n) = 2^SCALER x INIT
 [s31:0] [s15:0]
 Output = INIT
 [s15:0] [s15:0]
endif

Signal name Description I/O Type
Input Input Input 16-bit, signed integer

ACC_RATE Acceleration rate
limit

Input 16-bit, signed integer. (range: 0 – 32767)

DEC_RATE Decceleration rate
limit

Input 16-bit, signed integer. (range: 0 – 32767).

SCALER scaler for ramp rate
range accomodation

Input 8-bit unsigned integer 1

ENABLE Block enable
control bit

Input Boolean,
0 = ramp function disabled (output = INIT)
1 = ramp function enabled

INIT Reset value of
block output

Input 16-bit, signed integer
If(ENABLE = 0) Output = INIT

Output Output Output 16-bit, signed integer
Table 25. RAMP User Inputs and Outputs

Note 1: Although SCALER is an 8-bit unsigned interger, in order to avoid integer arithmetic overflow, the maximum
value of SCALER should be restricted to 16.

Status Clock cycles
Min. case
Max. case

58
68

Table 26. RAMP Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 78

4.2.3.3 ATAN – Arc Tangent block
The ATAN block performs an arc tangent function. In order to optimize memory utilization, instead of using look-up
table, the arc tangent function is implemented by Cordic algorithm inside the 300 series control IC. The block symbol
and its mathematical approximation are shown in Figure 27.

Figure 27. ATAN Block

Signal name Description I/O Type
INPUT Input Input 16bit, signed integer

OUTPUT Angle
 4095 = 2π

Output 16bit, signed integer

Table 27. ATAN Inputs and Outputs

Status Clock cycles
Nominal 24

Table 28. ATAN Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 79

4.2.3.4 FUNCTION_BLOCK
The FUNCTION_BLOCK block maps a 16-bit signed input into a 16-bit signed integer output. The shape of the
function is defined by the user providing six points (p0 – p5 of Figure 29) in two dimensional space. The six points are
literal (constant) values provided at compile time. Figure 28 shows the FUNCTION_BLOCK symbol and Figure 29
shows a sample function in which the values between points are linearly interpolated. Table 29 describes all the inputs
and the output.

>>

FUNCTION_BLOCK

>>

FUNCTION_BLOCK

Figure 28. FUNCTION_BLOCK Block

The user provides six pairs of literal integer values, entered using a Simulink custom mask dialog, which is accessed
by double-clicking the Function block: (X0,Y0) (X1,Y1) ….. (X5,Y5). It is the user’s responsibility to ensure that no
overflow can occur over the usable function range, or the results may be unpredictable. Outside the six points, the
function is extrapolated. For input values less than point1, the slope p0-p1 is used. For inputs greater than point4, the
slope p4-p5 is used.

Internally the function is represented by four coordinates (p1 – p4) and five slopes. (Points p0 and p5 are used only to
determine the slope of the function outside the defined range.) These coordinates and slopes are computed by the
MCE compiler and the thirteen values (four coordinate pairs and five slopes) are packed into ten input registers (each
16 bits wide). All values are signed.

The coordinates are represented internally by the high-order 12 bits of the input coordinate value appended with 4
binary zeroes, so the minimal X resolution is 16 while the minimal Y resolution is 16*slope. Slopes are represented by
a 13-bit signed integer (except the p0 – p1 slope, which has only 12 bits) with a valid range of –4096 to 4095 (–2048 to
2047 for the p0 – p1slope). Slopes are normalized per 256 X distance, so the slope value is how much the Y changes
when X increments by 256. In practice, this limits the slopes to –16 to 15.996 (–8 to 7.996 for the p0 – p1 slope). The
accuracy of slopes is enough for practical cases.

In addition, the user provides a single (variable) input value, which the compiler passes directly to the MCE
FUNCTION_BLOCK module. The module returns a signed 16-bit integer, which is the Y value corresponding to the
input X value for the user defined function.

UG#0609

IRMCx300 Reference Manual

www.irf.com 80

Figure 29. FUNCTION_BLOCK Example

Signal name Description I/O Type
Input x-coordinate input Input 16 bit, signed integer
X0 1st point x-coordinate Input 16 bit, signed integer
X1 2nd point x-coordinate Input 16 bit, signed integer
X2 3rd point x-coordinate Input 16 bit, signed integer
X3 4th point x-coordinate Input 16 bit, signed integer
X4 5th point x-coordinate Input 16 bit, signed integer
X5 6th point x-coordinate Input 16 bit, signed integer
Y0 1st point y-coordinate Input 16 bit, signed integer
Y1 2nd point y-coordinate Input 16 bit, signed integer
Y2 3rd point y-coordinate Input 16 bit, signed integer
Y3 4th point y-coordinate Input 16 bit, signed integer
Y4 5th point y-coordinate Input 16 bit, signed integer
Y5 6th point y-coordinate Input 16 bit, signed integer

Output y-coordinate interpolated output Output 16 bit, signed integer
Table 29. FUNCTION_BLOCK Inputs and Outputs

Status Clock cycles
Nominal 49

Table 30. FUNCTION_BLOCK Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 81

4.2.3.5 COMPARATOR

> Output

Input 1 >

COMPARATOR

Input 2 >

> Output

Input 1 >

COMPARATOR

Input 2 >

Figure 30. COMPARATOR Block

The following pseudo-code describes the function of the COMPARATOR block:

If (Input1 > = Input2) then
 [s15:0] [s15:0]
 Output = 1
Else
 Output = 0

Signal name Description I/O Type
Input1 Input 1 Input 16 bit, signed integer
Input2 Input 2 Input 16 bit, signed integer
Output Output Output Boolean,

0 if Input1 < Input2
1 if Input1 >= Input2

Table 31. COMPARATOR Inputs and Outputs

Status Clock cycles
Max. case 12

Table 32. COMPARATOR Execution Time

4.2.3.6 SWITCH

> Input1

> Input2

> SELECT

Output >

SWITCH

> Input1

> Input2

> SELECT

Output >

SWITCH
Figure 31. SWITCH Block

The operation of the SWITCH block can be described with the following psuedo-code:

If (SELECT = 0) then
 Output = Input1
Else
 Output = Input2

UG#0609

IRMCx300 Reference Manual

www.irf.com 82

Note: if the SELECT input is non-Boolean, the LSB of the SELECT input will be used for logic decision.

Signal name Description I/O Type
Input1 Input 1 Input 16 bit, signed integer
Input2 Input 2 Input 16 bit, signed integer

SELECT Select between
Input 1 or 2

Input Boolean
0 = select input1
1 = select input2

Output Output Output 16 bit, signed integer
Table 33. SWITCH Inputs and Outputs

Status Clock cycles
Max. case –8

Table 34. SWITCH Execution Time

4.2.3.7 BIT_LATCH

SET

RESET

OUT

BIT_LATCH

Figure 32. BIT_LATCH Block

The following pseudo-code describes the operation of the BIT_LATCH block:

If (positive edge (0 to 1) transition on RESET) then
 OUT = 0
 Elseif (positive edge (0 to 1) transition on SET) then
 OUT = 1
 Else no change on OUT

A Bit latch example is shown below to demonstrate the operation of the block:

The minimum duration of SET and RESET pulses should be larger than or equal to the execution rate of the
BIT_LATCH block. In case inputs are connected by mistake to non-Boolean signals, the LSB of the non-Boolean
signals will be used to determine logic operation.

UG#0609

IRMCx300 Reference Manual

www.irf.com 83

Signal name Description I/O Type

SET Positive edge triggered
input

Input Boolean

RESET Positive edge triggered
input

Input Boolean

OUT Latched output Output Boolean
Table 35. BIT_LATCH User Inputs and Outputs

Status Clock cycles
Max. case 26

Table 36. BIT_LATCH Execution Time

4.2.3.8 PEAK_DETECT

IN

RESET

RVAL

OUT

PEAK_DETECT

Figure 33. PEAK_DETECT Block

When RESET changes from a low to high value, the peak value of the input (IN) will appear at the output (OUT) for
one block execution cycle. Thereafter, if RESET persists, the output will change to RVAL (OUT = RVAL). When
RESET goes low, the input will be scanned for peak value again. It is recommended that the designer use the
TRANSITION block to generate the RESET signal for continuous peak detection.

The following pseudo-code describes the operation of the PEAK_DETECT block:

If (RESET == 1)
OUT = Store_Max
[s15:0] [s15:0]
Store_Max = RVAL
[s15:0] [s15:0]

else
if (IN >= Store_Max)
 [s15:0]

 Store_Max = IN
endif

Signal name Description I/O Type
IN Input Input 16 bit, signed integer

RESET Reset Input Boolean
0 = scan max. value of input
1 = output max and reset

RVAL Reset Value Input 16 bit, signed integer
OUT Output Output 16 bit, signed integer

Table 37. PEAK_DETECT User Inputs and Outputs

UG#0609

IRMCx300 Reference Manual

www.irf.com 84

Status Clock cycles
 RESET = 0 13

RESET = 1 16
Table 38. PEAK_DETECT Execution Time

4.2.3.9 TRANSITION – One Shot Pulse Generator

The TRANSITION block provides transition detection of a Boolean input signal (IN). Transition detection format
(positive and/or negative edge) can be configured by input POL (see Table 39).

IN

POL

OUT

TRANSITION

Figure 34. TRANSITION Block

The following pseudo-code describes the function of the TRANSITION block:

If (POL > 0) // case positive transition detection
{

 If (IN = 1 and IN_old = 0) OUT = 1
 Else OUT = 0

 }
Elseif (POL = 0) // case positive or negative transition detection
{

 If (IN not equal to IN_OLD) OUT = 1
 Else OUT = 0

 }
Elseif (POL < 0) // case negative transition detection
{

 If (IN= 0 and IN_old = 1) OUT = 1
 Else OUT = 0

 }

IN_old = IN

Note: IN_old is the previous sample of IN (input).

 Examples of transition detection

UG#0609

IRMCx300 Reference Manual

www.irf.com 85

Signal
name

Description I/O Type

IN Input signal Input Boolean
POL Configure detection format Input

00 detects (+ & -) ↑↓
01 detects (+) ↑
10 detects (-) ↓
11 detects (-) ↓

2-bit, signed
integer

OUT One pulse output for an edge
being detected on the input.

Output Boolean

Table 39. TRANSITION User Inputs and Outputs

Status Clock cycles
Min. case
Max. case

16
27

Table 40. TRANSITION Execution Time

4.2.3.10 INTEGRAL2 – Integral with Limit

This blocks performs integration with configurable limits.

Input

KX

LIMH

SHFTH

LIML

SHFTL

ENABLE

Output

INTEGRAL2
Figure 35. INTEGRAL2 Block

The following pseudo-code describes the function of the INTEGRAL2 block:

If ENABLE == 0
Int(n) = 0

 [s31:0]
else

Temp1(n) = KX x Input
[s31:0] [s15:0] [s15:0]
Int(n) = Temp1(n) + Int(n-1)
[s31:0] [s31:0] [s31:0]
Limit Int(n) to 32-bit signed value

Temp1(n) = Shift left LIMH by SHIFTH bits
[s31:0] [s31:0]
Temp2(n) = Shift left LIML by SHIFTL bits
[s31:0] [s31:0]

UG#0609

IRMCx300 Reference Manual

www.irf.com 86

If Int(n) > Temp1(n)

[s31:0] [s31:0]
Int(n) = Temp1(n)

If Int(n) < Temp2(n)
[s31:0] [s31:0]

Int(n) = Temp2(n)

 Output(n) = Int(n) [s31:16]
 [s15:0]

SHIFTH and SHIFTL are 5-bit unsigned integers with valid range of 0 – 31. Choosing SHIFTH and SHIFTL outside
this range could overflow internal registers. Please ensure that LIMH * 2SHIFTH > LIML * 2 SHIFTL for proper block
utilization.

Signal name Description I/O Type
Input Input Input 16 bit, signed integer
KX Input Gain Input 16 bit, signed integer

LIMH Upper limit Input 16 bit, signed integer
SHIFTH Scaler for LIMH Input 5 bit, unsigned integer

LIML Lower limit Input 16 bit, signed integer
SHIFTL Scaler for LIML Input 5 bit, unsigned integer

ENABLE Enable/reset Input Boolean
0 = Reset recursive data
1 = Normal operation

Output Output Output 16 bit, signed integer
Table 41. INTEGRAL2 User Inputs and Outputs

Status Clock cycles
Min. case
Max. case

44
 74

Table 42. INTEGRAL2 Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 87

4.2.3.11 PFC_FFD
The PFC Feed Forward (PFC_FFD) module provides a unique feed-forward function for digital PFC control. It can
substantially improve the PFC current control performance, especially when operating with a low A/D sampling rate.
Figure 37 shows a block diagram of the internal calculation of the PFC_FFD block. The MCEWizard provides proper
parameters for the inputs to this block based on the user’s application parameters.

Figure 36. PFC_FFD Block

Figure 37. Block Diagram of PFC_FFD

Signal name Description I/O Type
IN_VAC VAC Input Input 16 bit, signed integer
IN_VDC VDC Input Input 16 bit, signed integer
SCALE1 First scaler Input 16 bit, signed integer
SCALE2 Secondary scaler Input 16 bit, signed integer
LIMIT Positive limit Input 16 bit, signed integer
ADD DC constant Input 16 bit, signed integer
OUT Output Output 16 bit, signed integer

Table 43. PFC_FFD Inputs and Outputs

Status Clock cycles
Normal Operation 95
Table 44. PFC_FFD Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 88

4.2.4 Math

4.2.4.1 DIFF – Subtraction

>

>Input2 >

Input1 >

DIFF

>

>Input2 >

Input1 > >

>Input2 >

Input1 >

DIFF

Figure 38. DIFF Block

The following pseudo-code describes the function of the DIFF block:

Temp = Input1 – Input2
[s15:0] [s15:0] [s15:0]
If Temp overflow then

Temp = 32,767
OV = 1

Elseif Temp underflow then
 Temp = -32,768
 OV = 1

Else
 OV = 0

 OUT = Temp
 [s15:0]

Signal name Description I/O Type
Input1 DIFF block 1st input Input 16 bit, signed integer
Input2 DIFF block 2nd input Input 16 bit, signed integer
OUT DIFF block output Output 16 bit, signed integer
OV overflow/underflow

status bit
Output Boolean,

1 16-bit signed integer overflow
0 no overflow

Table 45. DIFF Inputs and Outputs

Status Clock cycles
Max. case 18

Table 46. DIFF Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 89

4.2.4.2 SUM – Addition
The function of the SUM block can be described using the following pseudo-code:

Temp = IN1 + IN2
[s15:0] [s15:0] [s15:0]
If Temp positive overflow (greater than 32,767) then

 Temp = 32,767
 OV = 1

Elseif OUT negative underflow (less than -32,768) then
 Temp = -32,768
 OV = 1

Else
 OV = 0

 OUT = Temp
 [s15:0]

IN1

IN2

OUT

OV

SUM
Figure 39. SUM Block

Signal name Description I/O Type
IN1 SUM block 1st input Input 16 bit, signed integer
IN2 SUM block 2nd input Input 16 bit, signed integer

OUT SUM block output Output 16 bit, signed integer
OV overflow/underflow

status flag
Output Boolean

1 16-bit signed integer overflow
0 no overflow

Table 47. SUM Inputs and Outputs

Status Clock cycles
Max. case 22

Table 48. SUM Execution Time

4.2.4.3 ACCUMULATOR

This accumulator block is an integrator without overflow protect. This block can be used to build counters.

IN

LOBIT

HIBIT

ENABLE

INIT

OUT

ACCUMULATOR
Figure 40. ACCUMULATOR Block

UG#0609

IRMCx300 Reference Manual

www.irf.com 90

The following pseudo-code describes the operation of the ACCUMULATOR block:

If (ENABLE == 0)
 Sign extend INIT to 32 bits

Output32 = INIT * 2 LOBIT

 [s31:0] [s15:0]

Output32 = Output32 + IN
[31:0] [31:0] [s15:0]

If (HIBIT – LOBIT) > 15

OUT = Output32 [LOBIT +15 : LOBIT]
[15:0]

Else
OUT = Output32 [HIBIT : LOBIT]

 [15:0]

If HIBIT or LOBIT are outside of the allowed range (0 <= LO/HIBIT <= 31) or LOBIT > HIBIT, then the OUT signal
will be invalid. When HIBIT – LOBIT is less than 15, unfilled MSBs of the output will be zero.
Note: When enable = 0, the output of accumulator block is equal to (INIT + IN/2 LOBIT).

Signal Name Description I/O Type
IN Accumulator input Input 16 bit, signed integer

LOBIT Output extraction
low bit.

Input 5 bit, unsigned integer

HIBIT Output extraction
high bit.

Input 5 bit, unsigned integer

ENABLE Enable control bit Input Boolean,
0 freeze output
 Out = INIT + IN
1 normal accumulating

INIT Reset value Input 16 bit, unsigned integer
OUT Output Output 16 bit, unsigned integer

Table 49. ACCUMULATOR User Inputs and Outputs

Status Clock cycles
Normal Operation 50

Table 50. ACCUMULATOR Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 91

4.2.4.4 COUNTER

IN

RESET

ENABLE

OUT

COUNTER
Figure 41. COUNTER Block

The pseudo-code shown below describes the operation of the COUNTER block.

If (RESET == 1)
OUT(n) = 0
 [s15:0]

Else
 If (ENABLE == 1)

 OUT(n) = OUT(n-1) + IN(n)
 [s15:0] [s15:0] [s15:0]
 Overflow protect OUT(n) to 16-bit signed interger

 Endif
 Endif

For example, if ENABLE = 1 and IN = 1, OUT will count up by 1 for each block execution until it reaches 32,767.
The output (OUT) will remain at 32,767 until a negative integer is supplied at IN, or RESET = 1.

Signal name Description I/O Type
IN Counter Input Input 16 bit, signed integer

RESET Reset counter
control bit

Input Boolean
0 = normal operation,
1 = initialize output to 0

ENABLE Enable Count
control bit

Input Boolean
0 = freeze output value
1 = unfreeze output

OUT Output Output 16-bit signed integer
Table 51. COUNTER User Inputs and Outputs

Status Clock cycles

Nominal 17
Table 52. COUNTER Execution Time

4.2.4.5 SHIFT – Multiply by a Power of Two

IN

EXP

OUT

SHIFT

Figure 42. SHIFT Block

UG#0609

IRMCx300 Reference Manual

www.irf.com 92

The SHIFT block multiplies an input by a power of two, as shown below.

 OUT = IN x 2EXP

 [s15:0] [s15:0]

This operation can also be viewed as a binary shift left or right, where EXP specifies the number of bits to shift the IN
value. A positive value for EXP shifts left and a negative value shifts right. The SHIFT block retains the sign bit of
the input when shifting right (negative EXP).

Note:Please ensure that -32768 <= IN * 2EXP <= 32767 to avoid output overflow

Signal name Description I/O Type
IN Input Input 16-bit signed integer

EXP Exponent Input -15 < EXP < 15
OUT Output Output 16-bit signed integer

Table 53. SHIFT Inputs and Outputs

Status Clock cycles
Nominal 5

Table 54. SHIFT Execution Time

4.2.4.6 MUL_DIV – Signed / Unsigned Multiplier with Extraction

> IN1

> IN2

> SIGNED

> LOBIT

MUL_DIV

OUT >

> HIBIT

> IN1

> IN2

> SIGNED

> LOBIT

MUL_DIV

OUT >

> HIBIT

Figure 43. MUL_DIV Block

Pseudo code for MUL_DIV is given by:

If (SIGNED == 1)
 Temp = IN1 x IN2
 [s31:0] [s15:0] [s15:0]
 OUT = Temp[HIBIT : LOBIT]
 [s15:0]
 Overflow protect OUT to 16-bit signed interger
else
 Temp = IN1 x IN2
 [31:0] [15:0] [15:0]
 OUT = Temp[HIBIT : LOBIT]
 [15:0]
 Overflow protect OUT to 16-bit unsigned interger
End

UG#0609

IRMCx300 Reference Manual

www.irf.com 93

Note:
If(HIBIT – LOBIT) < 15, say if LOBIT = 2, HIBIT = 13, only 12-bit will be extracted from Temp (OUT[11 :0] =
Temp[13: 2]). The upper significant bits of OUT (OUT[15:12] will be filled with zeros.

If (HIBIT – LOBIT) > 15, MCE compiler will issue an error.

In the case that the 32-bit result overflows HIBIT, the output will be the largest integer for an N-bit signed or unsigned
integer, depending on the mode, where N = (HIBIT – LOBIT + 1). For signed underflow, the output will be the most
negative N-bit signed integer.

SIGNED, LOBIT and HIBIT are compile time parameters and should be connected to Simulink Constant blocks rather
than variables.

Signal name Description I/O Type
IN1 Input1 Input 16 bit, signed integer
IN2 Input2 Input 16 bit, signed integer

SIGNED Signed / Unsigned Input Boolean constant,
0 = unsigned,
1 = signed

LOBIT Starting bit Input 5 bit, unsigned (0 – 31)
HIBIT Ending bit Input 5 bit, unsigned (0 – 31)
OUT Output Output 16bit, signed integer

Table 55. MUL_DIV Inputs and Outputs

Status Clock cycles
Signed 10

Unsigned 17
Table 56. MUL_DIV Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 94

4.2.4.7 DIVIDE

OUT >

OV >

> IN1

> IN2

> SIGNED

> SCALER
DIVIDE

OUT >

OV >

> IN1

> IN2

> SIGNED

> SCALER
DIVIDE

Figure 44. DIVIDE Block

The following pseudo-code describes the operation of the DIVIDE block:

If (IN2 == 0)
 Output = 0
 OV = 1
Else
 Temp = IN1 x 2SCALER

 [s31:0] [s15:0] [4:0]
 Output = Temp / IN2
 [s31:0] [s31:0] [s15:0]
 If SIGNED = 0
 If (Output > 65535)
 Output = 65535
 OV = 1

 Else
 If (Output > 32767)
 Output = 32767
 OV = 1
 Elseif (Output < -32768)
 Output = -32768
 OV = 1
 Else OV = 0

 Endif
Endif

 OUT = Output[15:0]

In the case of signed division, if (IN1*2SCALER)/IN2 overflows the 32-bit signed internal register (Output), the output
may have incorrect sign and the overflow (OV) bit will not be set.

Signal name Description I/O Type
IN1 Dividend Input 16 bit, signed integer
IN2 Divisor Input 16 bit, signed integer

SCALER Dividend scale factor Input 5 bit, unsigned integer (0 – 16)
SIGNED Signed / Unsigned

selector
Input Boolean

0 = unsigned
1 = signed

OUT Output Output 16 bit, signed integer
OV Overflow flag Output Boolean

0 = no overflow
1 = overflow

Table 57. DIVIDE Inputs and Outputs

UG#0609

IRMCx300 Reference Manual

www.irf.com 95

Status Clock cycles
Signed 41

Unsigned 43
Table 58. DIVIDE Execution Time

4.2.4.8 NOT – Bitwise Inversion
The NOT block performs a bitwise (logical) inversion of the unsigned 16-bit input value. That is, all 0 bits are set to 1
and all 1 bits are set to 0. For example, for Input = 30764, Output = 2003

>>

NOT

>>

NOT

Figure 45. NOT Block

Signal name Description I/O Type
Input Input Input 16 bit, unsigned integer

Output Output Output 16 bit, unsigned integer
Table 59. NOT Inputs and Outputs

Status Clock cycles
Nominal 5

Table 60. NOT Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 96

4.2.4.9 NEGATE – Two’s Complement

>>

NEGATE

>>

NEGATE

Figure 46. NEGATE Block

The NEGATE block performs a two’s complement of the signed 16-bit input value.

 Output = - Input
 [s15:0] [s15:0]

Note: 16-bit signed input range excludes -32768 (-32767 <= Input <= 32767). If input = –32768, output = –32768.

Signal name Description I/O Type
Input Input Input 16 bit signed integer

Output Output Output 16 bit,signed integer
Table 61. NEGATE Inputs and Outputs

Status Clock cycles
Nominal 5

Table 62. NEGATE Execution Time

4.2.4.10 AND – Bitwise Logical AND
The AND block performs a bitwise logical AND operation on two 16-bit unsigned input values. For example,
INPUT1 = 5319 and INPUT2 = 30764 yeilds OUTPUT = 4100.

>
>

>

AND

>
>

>

AND

Figure 47. AND Block

Signal name Description I/O Type
INPUT1 Input1 Input 16 bit, unsigned integer
INPUT2 Input2 Input 16 bit, unsigned integer

OUTPUT Output Output 16 bit, unsigned integer
Table 63. AND Inputs and Outputs

Status Clock cycles
Nominal 6

Table 64. AND Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 97

4.2.4.11 OR – Bitwise Logical OR
The OR block performs a bitwise logical OR operation on two 16-bit unsigned input values. For example, INPUT1 =
5319 and INPUT2 = 30764 yeilds OUTPUT = 31983.

Figure 48. OR Block

Signal name Description I/O Type
INPUT1 Input 1 Input 16 bit, unsigned integer
INPUT2 Input 2 Input 16 bit, unsigned integer

OUTPUT Output Output 16 bit, unsigned integer
Table 65. OR Inputs and Outputs

Status Clock cycles
Nominal 6

Table 66. OR Execution Time

4.2.4.12 XOR – Bitwise Logical Exclusive OR
The XOR block performs a bitwise logical exclusive OR operation on two 16-bit unsigned input values. For example,
INPUT1 = 5319 and INPUT2 = 30764 yeilds OUTPUT = 27883.

Figure 49. XOR Block

Signal name Description I/O Type
INPUT1 Input 1 Input 16 bit, unsigned integer
INPUT2 Input 2 Input 16 bit, unsigned integer

OUTPUT Output Output 16 bit, unsigned integer
Table 67. XOR Inputs and Outputs

Status Clock cycles
Nominal 6

Table 68. XOR Execution Time

UG#0609

IRMCx300 Reference Manual

www.irf.com 98

4.3 Motion Peripherals
This section describes the motion peripheral blocks of the MCE library. Each motion peripheral block provides an
interface to fixed elements of the IRMCx300 hardware. Therefore, unlike other blocks in the library, the motion
peripherals may be used only once in a design, or once for each motor, where noted.

Motion peripherals differ from control blocks in their manner of execution. The connections to motion peripherals
within the design do not determine the order of module execution. Motion peripheral inputs and outputs simply
provide an interface to the registers that configure, control and monitor the associated hardware elements. Since
motion peripherals are tied directly to IRMCx300 hardware elements, they run in parallel with the MCE and execute
whether or not they are included in the MCE design. Timing estimates for the motion peripherals are included for
informational purposes only. It is not necessary to include motion peripherals when determining the total execution
time for the design.

4.3.1 SENSORLESS_FOC
The SENSORLESS_FOC module consists of current regulators, rotor angle estimator and startup control logic. These
components forms the Sensorless Field-Oriented current regulated drive of the 300 series control IC. These
components will be described in the subsequent sections.

For maximum configuration of the 300 series control IC, 2 motor drive controls (Motor1 and Motor2) and a PFC
control can be realized simultaneously. The SENSORLESS_FOC module can be used once in the Motor1 portion of
the MCE design and once in the Motor2 portion. The inputs and outputs of this block can be customized using the
CustomMotPer utility described in Section 6.6. Figure 50 shows the block’s inputs and outputs in the default
configuration. The entire list of available inputs and outputs is presented in alphabetical order in Table 69.

FOC

TrqRef

Rotation

Vdc_Fbk

ClosedLoop

Rtr_Freq

ParkingDone

StartOk

Id_Decoupler

Dv

Qv

Figure 50. SENSORLESS_FOC Block

The SENSORLESS_FOC library block provides an interface to a subset of the IRMCx300 motion peripheral registers.
All registers that control and monitor the operation of the sensorless field orientation control are accessible through the
SENSORLESS_FOC block (with customization). Note that many of these registers values are calculated using the
IRMCx31x MCEWizard tool and are typically initialized only once at system startup from an 8051 or host application.
It is normally not necessary to update these registers from within the MCE design and they are, therefore, rarely
customized as inputs to the SENSORLESS_FOC block. These inputs are identified by the term “Config Input” in the
“I/O” column of Table 69.

Each signal listed in the table corresponds directly to one of the motion peripheral registers described in Section 4.4 or,
where noted, to a bit field within a motion peripheral register. The signal name is the same as the register or bit field
name. The rightmost column of Table 69 provides a reference to the document section that describes the associated
register.

Execution time for the SENSORLESS_FOC block is 318 system clock cycles for each of the two motors.

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 99

Signal name

Description

I/O

Reference for
Detailed

Description and
Scaling

AngDel Gain adjustment for current angle Config Input 4.4.7
AngLim Maximum limit on current angle phase Config Input 4.4.7
AtanTau Angle compensation for phase shift Config Input 4.4.7
CatchEnb Enable catch spin (MtrCtrlBits_S, bit 0) Config Input 4.4.9

ClosedLoop Closed loop mode (StatusFlags, bit 3) Output 4.4.21
Di Flux current (d-axis) feedback Output 4.4.23

DiagSelect Select diagnostic (MtrCtrlBits, bits 0 – 3) Config Input 4.4.9
Dv D-axis command modulation index Output 4.4.23

ExtFwdAngle Angle sum into forward rotating angle Input 4.4.18
ExtRevAngle Angle sum into reverse rotating angle Input 4.4.18

Ext_Flx_Alpha External Alpha flux input Input 4.4.18
Ext_Flx_Beta External Beta flux input Input 4.4.18

FlxThrH Upper flux threshold level for drive startup Config Input 4.4.10
FlxThrL Lower flux threshold level for drive startup Config Input 4.4.10

Flx_Alpha Estimated motor flux of Alpha axis Output 4.4.23
FlxAInit Initial Alpha flux level Config Input 4.4.7
FlxBInit Initial Beta flux level Config Input 4.4.7
Flx_M Fundamental amplitude of Flx_Alpha Output 4.4.23
FlxTau Adjustment for flux estimator bandwidth Config Input 4.4.7

FocEnable FOC regulators enabled (StatusFlags, bit 1) Output 4.4.21
FreqBW Filter bandwidth for motor frequency Config Input 4.4.7
I_Alpha Alpha phase current Output 4.4.23
I_Beta Beta phase current Output 4.4.23

IdRefExt Command d-axis motor current, normal operation Input 4.4.16
IdRef_C d-axis command current Output 4.4.23

Id_Decoupler d-axis Current Decoupler output Output 4.4.25
IfbkScl Current gain Config Input 4.4.3

IqRef_C q-axis command current Output 4.4.23
IregCompEnb dc bus compensation (MtrCtrlBits_S, bit 4) Config Input 4.4.9

IScl Current gain scaler for flux estimator Config Input 4.4.7
KpIreg Proportional gain of q-axis current regulator Config Input 4.4.5

KpIregD Proportional gain of d-axis current regulator Config Input 4.4.5
KxIreg Integral gain of d- and q-axis current regulator Config Input 4.4.5

KTorque Gain used in open-loop startup mode Config Input 4.4.8
L0 Apparent inductance of the motor Config Input 4.4.7

LSlncy Apparent saliency inductance of the motor Config Input 4.4.7
Min_Spd Minimum permissible drive operating speed Config Input 4.4.6

NumRetries Number of startup retries Config Input 4.4.10
ParkAng Second angle for parking stage Config Input 4.4.9
ParkAng1 First angle for parking stage Config Input 4.4.9

ParkI dc current injection for parking stage Config Input 4.4.9
ParkingDone Parking complete (StatusFlags, bit 4) Output 4.4.21
ParkingOne Parking first stage complete (StatusFlags, bit 5) Output 4.4.21

ParkIRet dc current injection during retry parking Config Input 4.4.10
ParkTm Total parking duration Config Input 4.4.9

ParkTmRet Total retry parking duration Config Input 4.4.10
PhsLosDisable Disable phase loss detection (MtrCtrlBits, bit 4) Config Input 4.4.9

UG#0609

IRMCx300 Reference Manual

www.irf.com 100

Signal name

Description

I/O

Reference for
Detailed

Description and
Scaling

PllFreqLim Frequency limit of the PLL integral gain output Config Input 4.4.14
PllIntLim PLL frequency limit during catch spin Config Input 4.4.14

PllKi PLL tracking integral gain Config Input 4.4.7
PllKp PLL tracking proportional gain Config Input 4.4.7

PwmEnable PWM gatings enabled (StatusFlags, bit 2) Output 4.4.21
Qi q-axis current feedback Output 4.4.23
Qv q-axis command modulation Output 4.4.23

RetryOccurred Startup retry has occurred Input 4.4.13
RetryTm Startup flux sampling instant Config Input 4.4.10
Rotation Direction of rotation Input 4.4.6

RotatorAngle Estimated rotor angle Output 4.4.23
Rs Motor per phase resistance Config Input 4.4.7

Rtr_Freq Estimated unfiltered rotor electrical frequency Output 4.4.24
Search_Ang Rotor angle search command Input 4.4.14

StartFail Startup failed (StatusFlags, bit 6) Output 4.4.21
Start_Lim Desired startup current Config Input 4.4.6
StartOk Startup succeeded (StatusFlags, bit 7) Output 4.4.21
TrqRef Command current input Input 4.4.6

TwoPhsEnable Two-phase modulation enabled (StatusFlags, bit 0) Output 4.4.21
TwoRetries Two startup retries have occurred Input 4.4.13
UdFeedFwd d-axis modulation feedforward Input 4.4.18
UqFeedFwd q-axis modulation feedforward Input 4.4.18
Use2xFrqScl Use 2x frequency scale (MtrCtrlBits, bit 5) Config Input 4.4.9
Use4xFrqScl Use 4x frequency scale (MtrCtrlBits_S, bit 1) Config Input 4.4.9
Use2xMagScl Use 8x or 16x (applies only when Use4xMagScl=0)

flux attenuation for PLL (MtrCtrlBits_S, bit 2).
Config Input 4.4.9

Use4xMagScl Use 4x flux attenuation for PLL (MtrCtrlBits_S, bit
3)

Config Input 4.4.9

UseExtFlux Use external fluxes for PLL (MtrCtrlBits_S, bit 5) Config Input 4.4.9
Vdc_Fbk Filtered dc bus voltage feedback Input 4.4.17
VdcRcp Reciprocal of DC bus voltage feedback

** Note 1
Input 4.4.17

VdLim d-axis current regulator output limit Config Input 4.4.5
VFFreq Volts/Hertz frequency for open-loop diagnostic Input 4.4.6
VFGain Volts per Hertz gain scaler for open-loop diagnostic Input 4.4.8
VoltScl Internal voltage scaling gain Config Input 4.4.7
VqLim q-axis current regulator output limit Config Input 4.4.5

V_Alpha Alpha motor phase voltage Output 4.4.23
WeThr Transition level for closed-loop operation Config Input 4.4.9

ZeroSpdDisable Zero speed fault disable (MtrCtrlBits, bit 6) Config Input 4.4.9
Zero_Vec_Req Zero output voltage command Input 4.4.14

Note 1. The VdcRcp input is a special case. This input can be added to at most one SENSORLESS_FOC
block in the design (either motor 1 or motor 2), since it corresponds to a register that is not duplicated
for the two motors.

Table 69. SENSORLESS_FOC Available Inputs and Outputs

UG#0609

IRMCx300 Reference Manual

www.irf.com 101

The outputs of the SENSORLESS_FOC block are valid immediately at the start of each PWM cycle and represent the
values calculated during the previous cycle.

Figure 51 shows a block diagram of the sensorless field orientation control functions. There are three main
components to the Sensorless FOC block. These components are Current Control, Rotor Position estimation and
Startup Control.

4.3.1.1 Current Control
The current control system consists of two PI regulators, two Vector Rotators (forward and backward), a Current
Decoupler, a Clark transformation (3 2 phase) and a dc bus compensation.

Two Proportional plus Integral (PI) type current regulators with output limits and Anti-windup control are provided for
torque and flux current control of motors. These two PI regulators operate in conjunction with a forward and a
backward vector rotator to form a synchronously rotating frame current control system. The rotor magnet position is
chosen to be the frame of reference for the current control. This is done to achieve “Field-Orientation Control”. The
rotor position is supplied by an angle estimator.

The motor torque developed by a permanent magnet motor is given by:

()()qdqdq IILLIFluxM
2
PTorque ⋅⋅−+⋅⋅=

Reluctance
Torque

Cylindrical
Torque

Where

P number of rotor poles
Ld, Lq d and q-axis inductance (d axis aligns to rotor magnet).
Id, Iq d and q-axis current components.
FluxM Flux linkage of permanent magnet

There are two torque components associated with the motor torque equation. The first component (Cylindrical torque)
is due to interaction between rotor magnet flux and stator q-axis current. The second component (reluctance torque) is
due to motor saliency (difference in d and q inductance). This saliency term is negligible (Ld = Lq) in Surface
Mounted Permanent magnet (SPM) motors. In the case of an Interior Permanent Magnet Motor (IPM) where Lq not
equal to Ld, the torque per ampere rating is boosted by the saliency torque term. In motoring operation, a negative Id
injection will contribute to the increase in reluctance torque. A larger negative Id is required for higher motor loading
in order to maintain maximum Torque per Ampere performance.

The current controller receives current commands (d-q) from a Current decoupler. This current decoupler is
implemented for the purpose of providing optimum q-axis and d-axis (rotor magnet) command current to achieve
maximum motor Torque per Ampere generation. The current command output (Id_Decoupler) of the decoupler will be
a negative value in the case of motor with saliency (Ld not equal Lq). More detail explaination on the current trajectory
profiling of the current decoupler can be found in the Application Developer’s Guide, under the Interior Permanent
Magnet Motor Control section.

The d-axis command current (IdRefExt) is an input to the Sensorless FOC (Figure 51). This flux current input should
be fed from the d-axis output (Id_Decoupler) of the Current decoupler. If a more elaborate d-axis current control
regime (for instance: Field-Weakening Control) is desired, the d-axis command current can be further processed prior
to feeding the d-axis command current input (IdRefExt) of the Sensorless FOC block. The Field-Weakening Control
regime is done in the MCE application layer of the reference design platform.

The d-q current regulator outputs can be compensated by dc bus voltage if a large variation of dc bus voltage is
expected. (This option is disabled by default.) The inputs to the forward Vector Rotator (converts dc to ac

UG#0609

IRMCx300 Reference Manual

www.irf.com 102UG#0609

waveforms) are PWM modulation depths. These signals are fed to a Space Vector PWM (SVPWM) modulator for
inverter firing control.

4.3.1.2 Rotor Position Estimation
The rotor position estimation consists of a flux estimator and an Angle-Frequency generator. The flux component
generated by the motor rotor magnet is computed by a flux estimator. The fundamental principle of the flux estimator
utilizes integration of motor BEMF voltages. Due to inherent dc offset problems, pure integration cannot be used.
Therefore a non-ideal integrator (high-pass filter) is used instead. The motor BEMF voltage is computed by motor
model which uses motor resistance and inductance parameters, current feedbacks (I_Alpha and I_Beta) and estimated
motor terminal voltages (constructed by Av, Bv and VdcFbk) as the model inputs. The output of the flux estimator
represents rotor magnet fluxes in Alpha-Beta (stationary orthogonal frame, u-phase aligned with Alpha) two-phase
quantities. The outputs of the flux estimator are a pair of quadrature flux signals. In order to extract the rotor position
and frequency out of this pair of quadrature signals, an Angle-Frequency generator (Figure 51) is employed. The
Angle-Frequency generator computes position and frequency from the Alpha-Beta flux inputs. However, users can
also have the flexibility of using external fluxes (Ext_Flx_Alpha and Ext_Flx_Beta) instead of internally generated
fluxes. This allows implementation of a Field-oriented control scheme using enhanced position sensing or flux sensing
methods to achieve very low speed operations.

Another level of flexibility is provided with the option to completely replace the estimated rotor angle by external
signals (ExtFwdAngle, ExtRevAngle).

IRMCx300 Reference Manual

www.irf.com 103

StatusFlags
(bit 3 - 7)

Av
Bv
(to SVPWM)

Vector
Rotator

(Backward)
+

Fdbk
Scaling

PI
Reg

PI
Reg

VdLim

VqLim

KpIreg

KpIreg_D

KxIregCurrent
Decoupler

AngDel AngLim

Flux
Estimator

VdcFbk

Ext_Flx_Alpha
Ext_Flx_Beta

Angle-
Frequency
Generator

FreqBw

PllKi

PllFreqLim

PllKp

PllIntLim
KTorque

AtanTau

MtrCtrlBits_S[5]

Flx_Alpha

ExtFwdAngle
ExtRevAngle

3 -> 2
Phase

TrqRef

IfbU, IfbV, IfbW
(From
Single_I_Shunt
Module)

UdFeedFwd
UqFeedFwd

Rotation

IdRefExt

Id_Decoupler

IdRef_C
IqRef_CStartup

Control
(Parking,

Open-loop,
Closed-

loop)

Rtr_Freq

Di

Qi

IfbkScl

FlxAInit
FlxBInit
FlxTau

L0
LSlncy

Rs
VoltScl

IScl

Av, Bv
I_Alpha, I_Beta

I_Alpha

I_Beta

Bit 4

ParkI
ParkTm
WeThr

MtrCtrlBits

ParkIRet
ParkTmRet

ParkAng1
ParkAng

StatusFlags

Flx_M

FlxThrH
FlxThrL

MtrCtrlBits_S

NumRetries
RetryTm

SearchAng

TwoRetries

0

Zero_Vec_Req

V_Alpha

StartLim

Vector
Rotator

(Forward)

Dv
Qv

RotatorAngle

0

VFGain
VFFreq

MtrCtrlBits [3:0]

MtrCtrlBits[1]

+

+

+

+

+

+

+

+

+

+

MtrCtrlBits_S[4]
VdcRcp

dc bus
Comp

Figure 51. SENSORLESS_FOC Block Diagram

UG#0609

IRMCx300 Reference Manual

www.irf.com 104

4.3.1.3 Startup Control
The motor control is performed without a shaft encoder (Sensorless). As mentioned in the previous section (4.3.1.2),
the flux estimator utilizes integration of motor BEMF, which imposes a lower speed limit to motor torque control at
low speeds (typically less than 5% rated rpm). Due to fact that motor BEMF signal is small at low speeds and
eventually disappears at zero speed, it is impractical to track motor flux at startup. Therefore, a special startup
sequence is implemented to provide robust startup. Startup control components inside the Sensorless FOC block are
provided to assist drive startup with the ability to configure the controller dynamically to three unique operating states
(Parking, Open-loop or Closed-loop). These three states are illustrated in Figure 52 and described below.

Sp
ee

d

(3) Closed-Loop

(2) Open-Loop(1) Parking

10%

100%

Figure 52. Drive Control Modes

State 1: Parking
The initial rotor angle is identified by forcing DC current into the motor winding and hence forcing the motor shaft to
park at a certain prescribed angle. During initial inverter startup, a dc current is impressed in the stator winding. Since
the initial rotor position is unknown, the relative position between rotor and the current vector is arbitrary. In most
cases, the rotor will pull towards the current vector and form alignment as shown in Figure 53a and b. However, there
are situations where the rotor flux is 180 degrees out of phase with the applied current vector (Figure 53c). This
condition will cause a failure in flux current alignment.

Rotor Flux

Current Vector

Rotor Flux

Current Vector

Rotor FluxCurrent Vector

 (a) (b) (c)

Figure 53. Flux and Current vector displacement

In order to avoid the condition of Figure 53c, in the 300 series controller, dc injection is applied to the motor in 2
stages as shown in Figure 54. In the first stage, a current vector (Figure 54) is applied with configurable amplitude
(ParkI) and angle (ParkAng_1). In the second stage (happens at time equal to ParkTm/4), a second current vector of
the same amplitude but different angle (at ParkAng) is applied. The 2 stages are used to avoid misalignment of
magnetic polarity. The effectiveness of pulling rotor to the prescribed current vector position is improved as a
consequence of 2-stage parking. For instance, in Figure 54, stage 1 dc current injection uses 120 degree (ParkAng_1)
and stage 2 uses 90 degree (ParkAng), these are default values for the 300 series MCEWizard setup.

UG#0609

IRMCx300 Reference Manual

www.irf.com 105

Time
ParkTm

ParkAng
ParkAng_1 U

V

W

1

2

ParkAng1

I

ParkAng

Figure 54. 2-Stage Parking

State 2: Open-loop Angle Estimation
At zero speed or low speed (<10%) conditions, it is difficult to accurately measure or estimate motor voltages due to
the low amplitude of motor back EMF (BEMF). In most Sensorless (no shaft encoder) control drives, the tracking of
rotor angle based on BEMF normally fails at low speeds (< 5%). Therefore, Sensorless control of a permanent magnet
motor drive requires some means of starting the motor. In most cases, the motor is started in an open-loop fashion. As
soon as the motor speed picks up (typically >10%), the drive switches to closed-loop (uses current and/or voltage
feedback) control mode. However, during the switchover from open-loop to closed-loop mode, torque and current
pulsation may occur due to mode transitioning. In 300 series controller, a unique switch-over algorithm (patented) has
been implemented to suppress torque pulsation during mode transitioning.

Immediately after parking, the drive controller enters a quasi open-loop mode. The rotor angle is estimated in an open-
loop fashion, which utilizes a simple (one model parameter KTorque) motor-load mechanical model to estimate the
rotor angle. However, unlike the traditional open-loop control which does not uses feedback signals, in the quasi open-
loop control mode, current regulation is preserved. This ensures limitation on the maximum current capability imposed
by the power inverter. If mismatch between external load characteristics and the internal motor-load model is
exceedingly large, start-up performance will suffer. Generally, minor tuning may be required to achieve optimal (max
torque per ampere) startup performance, this tuning is described in the IRMCx300 application developer’s guide.

State 3: Closed-loop Angle Estimation
Motor speed increases during start-up; the motor voltage also builds up due to the increase in speed. Useful
information for rotor angle estimation can be then be extracted from the motor voltage (estimated by using PWM
modulation depth and DC bus voltage) as motor speed increases. The drive will enter Closed-loop control mode as
shown in Figure 52.

During a Sensorless motor drive start-up, the motor torque has to overcome drive stiction and friction in order to
successfully increase speed. However, the motor shaft stiction and friction may vary (increase dramatically) due to
applied load characteristics. For instance, the stiction of an outdoor pump under colder temperature is higher. In some
cases, motor shaft may even be partially jammed. Under such circumstance, careful tuning (refer to IRMCx300
application developer’s guide) of open-loop startup parameter (KTorque) and parking current may avoid a startup
problem. However, startup failure may persist. This startup failure normally occurs and can be detected during mode
transition (open-loop to closed-loop). In the Sensorless FOC block, a start fail detection signal (Statusflags bit 6) is
provided for startup failure detection. This signal can be used by a master Motor control sequencer to carry appropriate
actions (for instance: startup retry) upon drive startup failure.

UG#0609

IRMCx300 Reference Manual

www.irf.com 106

4.3.2 SINGLE_I_SHUNT
The SINGLE_I_SHUNT module can be used once in the Motor1 portion of the MCE design and once in the Motor2
portion. The inputs and outputs of this block can be customized using the CustomMotPer utility described in Section
6.6. Figure 55 shows the block’s outputs in the default configuration. (There are no inputs in the default
configuration.) The entire list of available inputs and outputs is presented in alphabetical order in Table 70.

The SINGLE_I_SHUNT library block provides an interface to a subset of the IRMCx300 motion peripheral registers.
All registers that control and monitor the operation of the single current shunt are accessible through the
SINGLE_I_SHUNT block (with customization). Note that some of these registers values are calculated using the
IRMCx300 MCEWizard tool and are typically initialized only once at system startup from an 8051 or host application.
It is normally not necessary to update these registers from within the MCE design and they are, therefore, rarely
customized as inputs to the SINGLE_I_SHUNT block. These inputs are identified by the term “Config Input” in the
“I/O” column of Table 70. The current feedback outputs (IfbV and IfbW) of this module are internally connected to the
Sensorless FOC module (Figure 51) to achieve current regulation and rotor angle estimation.

Each signal listed in Table 70 corresponds directly to one of the motion peripheral registers described in Section 4.4 or,
where noted, to a bit field within a motion peripheral register. The signal name is the same as the register or bit field
name. The rightmost column of Table 70 provides a reference to the document section that describes the associated
register.

Execution time for the SINGLE_I_SHUNT block is approximately 7.33 microseconds for each of the two motors,
independent of the system clock rate.

Figure 55. SINGLE_I_SHUNT Block

Signal name

Description

I/O

Reference
for detailed
description
and scaling

IfbOffset Current feedback dc offset compensation Output 4.4.25
IfbOffsetCalc Current feedback dc offset control line Input 4.4.13

IfbV Reconstructed motor phase V current Output 4.4.23
IfbW Reconstructed motor phase V current Output 4.4.23

ScsSamples Setup for adaptive current feedback sampling Config Input 4.4.12
SHDelay Hardware PWM gate propagation delay Config Input 4.4.12

TCntMin2Phs Minimum PWM pulse width for 2-phase modulation mode Config Input 4.4.12
TCntMin3Phs minimum PWM pulse width for 3-phase modulation mode Config Input 4.4.12

Table 70. SINGLE_I_SHUNT Available Inputs and Outputs

The outputs of the SINGLE_I_SHUNT block are valid immediately at the start of each PWM cycle and represent the
values calculated during the previous cycle.

A two-level inverter can produce eight possible basis voltage vectors; any desired (command) voltage vector can be
formed by these eight vectors, up to the inverter maximum output voltage limit (determined by the dc bus voltage

UG#0609

IRMCx300 Reference Manual

www.irf.com 107

level). In a PWM inverter drive system, the information of motor phase can be observed from the dc bus current when
non-zero basis vectors are used. Each basis vector is assigned a specific time in a PWM cycle in order to generate the
command voltage vector. However, if the time spent on a basis vector is not long enough, the motor current cannot be
observed.

The dc link current consists of high frequency (PWM switching) current pulses. These current pulses coupled with
circuit layout parasitic and reverse recovery diode current cause ringing in the dc link feedback current as illustrated in
Figure 56. This figure displays a snap shot of the dc link current and the current sampling instances. In this case, the
sampling instances are placed at the center of the corresponding active pulse. As can be seen in this figure, if the
current pulse width reduces (occurs at low modulation index or sector crossing), the sampling instances will migrate
into the current ringing area (beginning of the current step) and erroneous current feedback sampling will result.
Therefore, minimum pulse constraints have to be inserted to allow reliable dc link current feedback sampling.

Figure 56. Single Shunt Current Sense Timing

Figure 57 shows the insertion of minimum time constraints (TCntMin3Phs, TCntMin2Phs) with the sampling instances
(S1 to S4) corresponding to idealized PWM command gatings. Two active vectors (100, 110) are shown in Figure 57.
As the voltage vector rotates from vector 100 to 110, the time duration of active vector 100 will decrease while vector
110 will increase as illustrated in Figure 57a and Figure 57b. The minimum pulse constraint has been reached for
active vector 100 and 110 (Figure 57a and b). A Similar situation occurs in the case of 2-phase modulation.

Due to gate propagation delay between command gatings and actual power devices firing, a time shift parameter
(SHDelay, section 4.4.12) is provided for fine tuning of the actual sampling instances (S1 to S4). This tuning
procedure is described in the IRMCx300 Application Developer’s Guide.

UG#0609

IRMCx300 Reference Manual

www.irf.com 108

The current sensing channel contains the operational amplifier and two parallel sample/hold circuits. The operational
amplifier can be used for adjusting analog input voltage developed across the shunt resister. The operational amplifier
is powered by 1.8V (AVDD) and the output common mode voltage of the operational amplifier should be mapped to 0
– 1.2V. Typical application connection is a differential mode amplifier, which can be realized using the external
resistors and capacitor as shown in Figure 60.

Two parallel sample/hold circuits are designed to capture two motor phase chopped current signals by synchronizing to
the PWM switching pattern. It is designed to hold for a maximum 10 microseconds and is able to charge to half of the
common mode voltage (0.6V) within 250 nanoseconds. The sample/hold switch is normally closed and opened at the
center point of a new active voltage vector, as shown in Figure 56.

Figure 57. Single Current Shunt Registers (TCntMin2Phs, TCntMin3Phs)

The minimum pulse width constraints have the disadvantage of creating harmonics in the drive current waveform.
These harmonics can lead to acoustic noise at low modulation (generally low speed) where the motor spends a high
proportion of time under the minimum pulse constraint. The register ScsSamples allows one to enter an
undersampling mode when the drive enters the regions of minimum pulse constraint. The register specifies the
umdersampling rate (1/2, 1/4, 1/8, etc), so that the minimum pulse width (and current sampling) is applied only in the
specified fraction of the PWM cycles which are in a region of minimum pulse constraint. By reducing the number of
PWM cycles which are under minimum pulse constraint, harmonics and acoustic noise can be reduced. The
disadvantage of the undersampling is slower dynamic response.

UG#0609

IRMCx300 Reference Manual

www.irf.com 109

4.3.3 DC_BUS_VOLTAGE
The DC_BUS_VOLTAGE module is shown in Figure 58. Its outputs are listed in Table 71. The block has no inputs.

Execution time for the DC_BUS_VOLTAGE block is approximately 1.83 microseconds, independent of the system
clock rate.

Figure 58. DC_BUS_VOLTAGE Block

Signal name Description I/O Type
DC_BUS_VOLTS DC bus voltage Output 16 bit, signed integer

DC_BUS_VOLTS_FILT Filtered DC bus voltage Output 16 bit, signed integer
Table 71. DC_BUS_VOLTAGE Outputs

The outputs of the DC_BUS_VOLTAGE block are valid immediately at the start of each PWM cycle and represent the
values calculated during the previous cycle. Output DC_BUS_VOLTS corresponds to the DcBusVolts register
(Section 4.4.22) and output DC_BUS_VOLTS_FILT corresponds to register DcBusVoltsFilt (Section 4.4.20). Note;
filtered dc bus signal (DC_BUS_VOLTS_FILT) is generated by first order low pass filtering (0.49 msec filter time
constant) of raw dc bus signal (DC_BUS_VOLTS).

UG#0609

IRMCx300 Reference Manual

www.irf.com 110

4.3.4 A_D – A/D Converter
Each of the IRMCx300 Series products has at least one general purpose analog input and one analog input dedicated to
dc bus sensing. (In the IRMCx312, the dc bus channel contains an op-amp.) Access to the general-purpose converted
outputs is provided through the A_D library blocks. Because each product has a different number of analog inputs,
separate blocks are provided for interface to each, as shown in Figure 59. The outputs of the the A_D blocks are listed
in Table 72. The A_D blocks have no inputs.

Figure 59. A/D Interface Blocks

Signal name Description I/O Type
VDC/AO0 A/D converter raw output for operational

amplifier VDC
Output 12 bit, signed integer

AO1 A/D converter raw output for input AIN1 Output 12 bit, signed integer
AO2

(312, 341, 371 only)
A/D converter raw output for input AIN2 Output 12 bit, signed integer

AO3
(312, 341 only)

A/D converter raw output for input AIN3 Output 12 bit, signed integer

AO4
(312, 341 only)

A/D converter raw output for input AIN4 Output 12 bit, signed integer

AO5
(312, 341 only)

A/D converter raw output for input AIN5 Output 12 bit, signed integer

AO6
(312, 341 only)

A/D converter raw output for input AIN6 Output 12 bit, signed integer

Table 72. A_D Outputs

Conversion time for each channel is a maximum of 2.0 microseconds. Unlike a traditional A/D converter in a
microcontroller, the conversion process and associated timing of the sample/hold and multiplexer are automated by

UG#0609

IRMCx300 Reference Manual

www.irf.com 111

internal hardware logic. This is due to the fact that there is a dedicated analog input channel for single shunt current
feedback and it requires specific timing combined with sample/hold (See 4.3.2).

The input circuit and application connections are shown in Figure 60 for the maximum input case of the 300 series
A/D input structure. The number of inputs is reduced for some of the 300 series ICs with reduced pin counts. For
instance, AIN2 – AIN6 are not available on the IRMCx311. Only in the IRMCx312 are the VDC op-amp inputs
accessible; in other versions, AIN0 is equivalent to VDCO and VDC+ and VDC– do not exist.

 All analog circuitry is referenced to AVDD (1.8V) and AGND. Besides the current sensing channel, there are up to
six unbuffered analog inputs with a 0 – 1.2V input range. The A/D data update rate is synchronous to the PWM carrier
frequency. One of the unbuffered A/D channels (AIN1 – AIN6) is updated on each PWM cycle, so that each channel
is updated once every six cycles, regardless of how many channels are available in the particular IRMCx300 product.

IRMCK3xx

AIN1
AIN2
AIN3
AIN4
AIN5
AIN6

Figure 60. IRMCx312 A/D Converter Structure

UG#0609

IRMCx300 Reference Manual

www.irf.com 112

4.3.5 Low Loss Space Vector PWM
The Low Loss Space Vector PWM (LOWLOSS_SVPWM) module accepts modulation index commands and
generates the appropriate gating waveforms for each PWM cycle. The inputs (Alpha-Beta modulation depth) of the
Space Vector modulator are normally connected internally to the outputs (Av, Bv of Figure 51) of the
SENSORLESS_FOC module. However, users can utilize the LOWLOSS_SVPWM without SENSORLESS_FOC.
When register UserVabEn (Figure 62) is set to 1, the LOWLOSS_SVPWM module accepts user generated modulation
index commands (User_Alpha and User_Beta).

Execution time for the LOWLOSS_SVPWM block is 79 system clock cycles for each motor without over modulation
or 106 system clock cycles for each motor with over modulation. (See Section 4.3.5.1 for a description of over
modulation.)

The LOWLOSS_SVPWM module can be used once in the Motor1 portion of the MCE design and once in the Motor2
portion. The inputs and outputs of this block can be customized using the CustomMotPer utility described in Section
6.6. Figure 61 shows the block’s inputs in the default configuration (the default configuration has no outputs). The
entire list of available inputs and outputs is presented in alphabetical order in Table 73.

Figure 61. Low Loss SVPWM Block

The LOWLOSS_SVPWM library block provides an interface to a subset of the IRMCx300 motion peripheral
registers. All registers that control and monitor the operation of the LOWLOSS_SVPWM module are accessible
through the LOWLOSS_SVPWM block (with customization). Note that many of these register values are calculated
using the IRMCx300 MCEWizard tool and are typically initialized only once at system startup from an 8051 or host
application. It is normally not necessary to update these registers from within the MCE design and they are, therefore,
rarely customized as inputs to the LOWLOSS_SVPWM block. These inputs are identified by the term “Config Input”
in the “I/O” column of Table 73.

Each signal listed in the table corresponds directly to one of the motion peripheral registers described in Section 4.4 or,
where noted, to a bit field within a motion peripheral register. The signal name is the same as the register or bit field
name. The rightmost column of Table 73 provides a reference to the document section where the associated register is
described. The utilization of these registers within the low loss SVPWM block is shown in Figure 62.

UG#0609

IRMCx300 Reference Manual

www.irf.com 113UG#0609

Signal name

Description

I/O

Reference for
Detailed

Description
and Scaling

CfgPWMUH U phase high side pwm configuration
(port_ctrl0 or port_ctrl1, bits 0 – 1)

Input 4.4.1

CfgPWMUL U phase low side pwm configuration
(port_ctrl0 or port_ctrl1, bits 2 –3)

Input 4.4.1

CfgPWMVH V phase high side pwm configuration
(port_ctrl0 or port_ctrl1, bits 4 – 5)

Input 4.4.1

CfgPWMVL V phase low side pwm configuration
(port_ctrl0 or port_ctrl1, bits 6 – 7)

Input 4.4.1

CfgPWMWH W phase high side pwm configuration
(port_ctrl0 or port_ctrl1, bits 8 – 9)

Input 4.4.1

CfgPWMWL W phase low side pwm configuration
(port_ctrl0 or port_ctrl1, bits 10 – 11)

Input 4.4.1

CriticalOv Activate zero vector PWM state Input 4.4.16
FocEnable FOC enable command (pwmctrl, bit 1) Input 4.4.4

GateSenGateKill Configure Gate kill sense (pwmcfg, bit 4) Config Input 4.4.2
GateSenHigh Configure Gate Sense high side (pwmcfg, bit 3) Config Input 4.4.2
GateSenLow Configure Gate Sense low side (pwmcfg, bit 2) Config Input 4.4.2
GCChargePD Number of charging pulses between motor phases Config Input 4.4.2
GCChargePW Gate Pre-charge duration Config Input 4.4.2

ModScl Space Vector PWM scaling Config Input 4.4.2
MotorSpeed Filtered motor speed Input 4.4.6
Precharge Gating pre-charge command (pwmctrl, bit 2) Input 4.4.4

Pwm2HiThr 3-phase to 2-phase PWM high threshold Config Input 4.4.2
Pwm2LowThr 3-phase to 2-phase PWM low threshold Config Input 4.4.2
PwmDeadTm Inverter blanking time Config Input 4.4.2
PwmEnable Pwm enable command (pwmctrl, bit 0) Input 4.4.4

PwmGateEnb Enable pwm gating (pwmctrl, bit 3) Input 4.4.4
PwmGuardBand Pwm guard band Config Input 4.4.2

PwmPeriodConfig PWM carrier period configuration Config Input 4.4.2
PWMUH U phase high side output (pwm_lines, bit 6 or 0) Output 4.4.20
PWMUL U phase low side output (pwm_lines, bit 7 or 1) Output 4.4.20
PWMVH V phase high side output (pwm_lines, bit 8 or 2) Output 4.4.20
PWMVL V phase low side output (pwm_lines, bit 9 or 3) Output 4.4.20
PWMWH W phase high side output (pwm_lines, bit 10 or 4) Output 4.4.20
PWMWL W phase low side output (pwm_lines, bit 11 or 5) Output 4.4.20

TwoPhsEnb Select 2-phase modulation (TwoPhsCtrl, bit 0) Config Input 4.4.2
TwoPhsType 2-phase modulation type (TwoPhsCtrl, bit 1) Config Input 4.4.2
User_Alpha User Alpha modulation index Input 4.4.15
User_Beta User Beta modulation index Input 4.4.15

User_U User U-phase duty ratio control Input 4.4.15
UserVabEn SVPWM modulation input selector Input 4.4.15

UserVuvwEn PWM pattern selector Input 4.4.15
User_V User V-phase duty ratio control Input 4.4.15
User_W User W-phase duty ratio control Input 4.4.15

Table 73. SVPWM Available Inputs and Outputs

IRMCx300 Reference Manual

www.irf.com 114

Duty
Ratio

Modulator

Space
Vector

Modulator
(SVPWM)

User_Alpha

User_Beta

UserVabEn

From Sensorless FOC

From Sensorless FOC

TwoPhsEnb

CriticalOv

2-phase
PWM

Enable
Logic

MotorSpeed
Pwm2HiThr

Pwm2LowThr

PwmPeriodConfig

User_U

User_V

User_W

Guard
Band

Protect

Gate
Mux

Guard
Band

Protect

Gate
Mux

Guard
Band

Protect

Gate
Mux

UserVuvwEn

u

v

w

u

v

w PwmGuardBand

PwmDeadTm
GateSenLow

GateSenHigh

Bootstrap
Precharge

GCChargePW
GCChargePD

pwmCtrl

= input
= "Z"
= "0"
= "1"

00
01
10
11

port_Ctrl0/1 [PWMUL]

= input
= "Z"
= "0"
= "1"

00
01
10
11

port_Ctrl0/1 [PWMUH]

= input
= "Z"
= "0"
= "1"

00
01
10
11

port_Ctrl0/1 [PWMVH]

= input
= "Z"
= "0"
= "1"

00
01
10
11

port_Ctrl0/1 [PWMVL]

= input
= "Z"
= "0"
= "1"

00
01
10
11

port_Ctrl0/1 [PWMWH]

= input
= "Z"
= "0"
= "1"

00
01
10
11

port_Ctrl0/1 [PWMWL]

PWMUH

PWMUL

PWMVH

PWMVL

PWMWH

PWMWL

UL

UH

VH
VL

WL

WH
u
v
w

pwm_lines [PWMUH]

pwm_lines
[PWMVH]

pwm_lines [PWMUL]

pwm_lines
[PWMVL]

pwm_lines
[PWMWH]

pwm_lines [PWMWL]

ModScl
TwoPhsType

PwmPeriodConfig

Figure 62. SVPWM Internal Block Diagram

UG#0609

IRMCx300 Reference Manual

www.irf.com 115

4.3.5.1 SVPWM Transfer Characteristics
A three-phase two-level inverter with dc link configuration can have eight possible switching states, which generates
the output voltage of the inverter. Each inverter switching state generates a voltage Space Vector (V1 to V6 active
vectors, V0 and V7 zero voltage vectors) in the Space Vector plane, as shown in Figure 63. The magnitude of each
active vector (V1 to V6) is 2/3 Vdc (dc bus voltage).

The user modulation inputs U_Alpha and U_Beta are related to the modulation depth by:

)__(22 BetaUAlphaUUmag +=

The maximum achievable modulation in the linear operating range occurs when modulation (Umag) reaches
Mod_Pk (default: 2355). Under such circumstance, the voltage vector touches the unit circle (Figure 63). The
corresponding inverter line rms voltage is Vdc / sqrt (2) (Vdc – dc bus voltage). It is best to operate the PWM
inverter in the linear range to minimize current harmonics.

Within the linear modulation range where Umag < 2355, the theorectical relationship between inverter output
voltage (Vllrms) and modulation depth (Umag) is given by:

2_ ×

×
=

PkMod
VdcUmagVllrms [line-to-line volts rms]

 where 2355_ =PkMod

Note: In practice, when Umag = 2355, the inverter output voltage will be slightly lower than the theoretical value
(2Vdc) due to inverter losses, switching devices voltage drop and inverter blanking time insertion.

U_Alpha

U_Beta

V1

V2V3

V4

V5 V6
2 zero vectors V0, V7

sector 1

sector 2

sector 3

sector 4

sector 5

sector 6

V

U-phase

Figure 63. Space Vector Diagram

UG#0609

IRMCx300 Reference Manual

www.irf.com 116

Over modulation occurs when modulation Umag > Mod_Pk. This corresponds to the condition where the voltage
vector in 2 increases beyond the hexagon boundary. Under such circumstance, the Space Vector PWM algorithm
will rescale the magnitude of the voltage vector to fit within the Hexagon limit. The magnitude of the voltage vector
is restricted within the Hexagon; however, the phase angle (θ) is always preserved. The transfer gain of the PWM
modulator reduces and becomes non-linear in the over modulation region. Voltage vector rescaling is illustrated in
Figure 64

V1

V2V3

V4

V5 V6

sector 1

sector 2

sector 3

sector 4

sector 5

sector 6

U-phase

Requested
Voltage Vector

Generated
Voltage Vector

Figure 64. Voltage Vector Rescaling

4.3.5.2 Deadtime Insertion Logic
Blanking time is inserted to avoid shoot through between top and bottom devices of the same inverter leg. Register
PwmDeadTm specifies the amount of inverter blanking time (dead time).

The deadtime insertion logic chops off the high side commanded volt*seconds by the amount of deadtime and adds
the same amount of volt*seconds to the low side signal. Thus, it eliminates the complete high side turn on pulse if
the commanded volt*seconds is less than the programmed deadtime.

PhaseU

PWMUH

PWMUL

Deadtime Deadtime

Figure 65. Deadtime Insertion

The deadtime insertion logic inserts the programmed deadtime between the high and low side gate signals within a
phase, as shown in Figure 65. The deadtime register is also double buffered to allow “on the fly” deadtime change
and control while PWM logic is active.

UG#0609

IRMCx300 Reference Manual

www.irf.com 117

4.3.5.3 Three-Phase and Two-Phase Modulation
Three-phase and Two-phase Space Vector PWM modulation options are provided.

The Volt-sec generated by the two PWM schemes is identical under the same modulation depth input. However
with two-phase modulation the switching instances per PWM cycle is reduced as shown in Figure 66. Therefore,
total inverter loss is reduced and the loss reduction is significant especially when higher switching frequencies
(>10KHz) are employed. Figure 66 shows the switching pattern for one PWM cycle when the voltage vector is
inside sector 1.

PhaseU

PhaseV

PhaseW

3-phase modulation

PhaseU

PhaseV

PhaseW

2-phase modulation

V1

V2V3

V4

V5 V6
2 zero vectors V7, V8

sector 1

sector 2

sector 3

sector 4

sector 5

sector 6

V

U-phase

Figure 66. Three-Phase and Two-Phase Modulation

Two types of two-phase modulation schemes are provided. TwoPhsType (register TwoPhsCtrl, bit 1) specifies the
selection. Figure 67 illustrates the inverter Pole voltage and motor current of various types of PWM schemes.

(a) Three-phase PWM (b) Two-phase (type 1) PWM (c) Two-phase (type 2) PWM

Figure 67. Types of Space Vector PWM

When control bit TwoPhsEnb (register TwoPhsCtrl, bit 0) is set to 1, the SVPWM algorithm permits the
transitioning of Three-phase to Two-Phase SVPWM when motor speed exceeds speed threshold Pwm2HiThr.
Three-phase SVPWM will resume when motor speed drops below speed threshold Pwm2LowThr.

4.3.5.4 Guard Band
PWM Guard band (PwmGuardBand) protection can be applied such that PWM switching at high modulation cannot
migrate into the beginning and end of a PWM cycle (Figure 68). In some cases (depends on hardware design such as
PCB layout), guard band insertion can improve feedback noise immunity for signals sampled near the beginning and
end of a PWM cycle. However, Guard band insertion will reduce maximum achievable inverter output voltage. The
default value of PwmGuardBand is zero.

UG#0609

IRMCx300 Reference Manual

www.irf.com 118

U

V

W

U

V

W

U

V

W

one pwm cycle

PwmGuardBand

Figure 68. Guard Band Insertion

4.3.5.5 PWM Pre-Charge Control
Zero vector (low side devices on) is normally applied for the initial turn-on of the PWM inverter output. If a
Bootstrap gate driver is used, the Bootstrap capacitors (u, v, w phase) will all be charged simultaneously. In some
applications, the bootstrap capacitor charging current can be significantly higher than the motor rated current. This
will cause a nuisance Itrip as soon as the inverter firing begins. The Bootstrap capacitor charging current can be
significantly reduced by the built-in Pre-charge control function of the SVPWM module (Figure 62).

Instead of turning on all low side devices simultaneously for a prolonged duration, the gate Pre-charge control
(register pwmctrl, bit 2) will schedule an alternating (u, v, w phase) charging sequence with programmable
(GCChargePW) charging pulse duration. Figure 69 illustrates the pre-charge sequence and the corresponding dc
link current. This current represents the charging current of the bootstrap capacitors (U, V, W phases). As can be
seen from this figure, the charging current reduces significantly after two charging cycles (U V W).

PWMUL

PWMVL

PWMWL

Dc link
current

Figure 69. Bootstrap Pre-Charge Sequence

As shown in Figure 70, register GCChargePW controls the charging pulse duration while register GCChargePD
controls the spacing between u, v and w phase charging. The spacing (GCChargePD) between consecutive charging
is specified as number of charge pulses.

UG#0609

IRMCx300 Reference Manual

www.irf.com 119

U phase
low gate

"ON"

V phase
low gate

"ON"

W phase
low gate

"ON"

GCC Pulse Width =
Master Clock Period *(GCChargePW+1)

GCC Inter-pulse delay =
GCC Pulse Width *GCChargePD

Figure 70. Timing of Bootstrap Capacitor Charging

4.3.5.6 Duty Ratio Control Mode
In order to provide increased pwm flexibility, a different type of PWM modulation (duty ratio) rather than Space
Vector modulation can be realized in the SVPWM module. Users can bypass (Figure 62) the Space Vector
modulator and apply duty ratio control for each motor phase. If register UserVuvwEn is set to one, SVPWM is
bypassed and the duty ratio modulation mode is selected. In this mode, the duty ratio of each inverter phase can be
independently controlled via User_U, User_V and User_W. Figure 71 illustrates the duty ratio control for U phase.
Register PwmPeriodConfig is the number of digital counts corresponding to half of a PWM cycle. When User_U
equals PwmPeriodConfig, 100% duty is achieved.

U phase

one pwm cycle

PwmPeriodConfig

User_U

Figure 71. Duty Ratio Control

UG#0609

IRMCx300 Reference Manual

www.irf.com 120

4.3.6 FAULTS Block
The FAULTS block provides outputs associated with the FaultFlags motion peripheral register defined in Section
4.4.20. Figure 72 shows the FAULTS block and its outputs are listed in Table 74. All outputs are Boolean values,
with 0 indicating no fault condition and 1 indicating that the fault condition is present. The block has no inputs.

There is no execution time associated with the FAULTS block; it simply provides an interface to fault status
information produced by other modules within the system.

Figure 72. FAULTS Block

Signal name Description I/O Type
OvFault dc bus over voltage fault Output Boolean
LvFault dc bus low voltage fault Output Boolean

PwmSyncErr PWM synchronization error Output Boolean
PFCGateKill PFC Gate kill fault Output Boolean
GateKill_1 Motor 1 Gate kill fault Output Boolean

PhsLossFlt_1 Motor 1 Phase loss fault Output Boolean
ZeroSpdFlt_1 Motor 1 Zero speed fault Output Boolean

GateKill_2 Motor 2 Gate kill fault Output Boolean
PhsLossFlt_2 Motor 2 Phase loss fault Output Boolean
ZeroSpdFlt_2 Motor 2 Zero speed fault Output Boolean

MCEFlt MCE-generated fault Output Boolean
Table 74. FAULTS Block Outputs

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 121

4.3.7 MCE_FAULT Generator
The MCE_FAULT block is used to generate a fault condition from within the MCE design. Figure 73 shows the
block. It has a single input, as described in Table 75. The Boolean input corresponds directly to the MceFault bit of
the FaultClear register.

There is no execution time associated with the FAULTS block; it simply provides an interface to the MceFault bit.

Figure 73. MCE_FAULT Block

Signal name Description I/O Type
MceFault MCE Fault condition Input Boolean

0 = No fault condition;
1 = Generate fault

Table 75. MCE_FAULT Block Inputs

UG#0609

IRMCx300 Reference Manual

www.irf.com 122

4.3.8 PFC_PWM
This block generates the PFC PWM control pulses to the gate driver based on the duty cycle command produced in
the PFC control loop, which is implemented in the MCE or 8051. Meanwhile, with a built-in PWM Blanking
function, it provides a protection against a nuisance over-current fault situation when the AC input voltage becomes
higher than the DC bus voltage under normal PFC operation. The PFC_PWM block also provides the flexibility of
designing the circuit to operate as either full-mode boost PFC or partial-mode high-frequency boost PFC (IR
patented).

The PFC_PWM library block provides an interface to a subset of the IRMCx31x motion peripheral registers that
control and monitor the operation of the PFC_PWM module. Only some of these registers are accessible through
the PFC_PWM block. Those that are typically initialized only once at system startup from an 8051 or host
application are not provided since it is not necessary to update these registers from within the MCE design.

Figure 74 shows the PFC_PWM block and Table 76 lists its inputs and outputs.

Figure 74. PFC_PWM Block

Signal name Description I/O Type
VcPFC PFC PWM duty cycle

command
Input 16 bit, unsigned integer

IREF Reference command
of PFC current loop

Input 12 bit, unsigned integer

PFC_GK_RESET PFC Gate kill reset Input Boolean,
0 = latch PFCGateKill fault
1 = clear latched PFCGateKill
fault

ENABLE PFC PWM enable
status

Output Boolean,
0 = PFC PWM output
disabled
1 = PFC PWM output enabled

SHUTDOWN ShutDown signal
status

Output Boolean,
0 = Shutdown inactive
1 = Shutdown active

Table 76. PFC_PWM Inputs and Outputs

UG#0609

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 123

Each of the PFC_PWM inputs and outputs corresponds to a motion control register or bit field within a register, as
follows:

• Input VcPFC corresponds to write register VcPfcScaled (Section 4.4.19).
• Input IREF corresponds to write register True_IRef (Section 4.4.19).
• Input PFC_GK_RESET corresponds to bit field PFCGKReset in write register PFC_Ctrl (Section 4.4.19).
• Output ENABLE is a “mirror” of the value written to register PFCEnable (Section 4.4.19).
• Output SHUTDOWN corresponds to read register ShutDown (Section 4.4.26).

Note that outputs ENABLE and SHUTDOWN must be used in combination to determine whether PFC PWM output
is enabled or disabled.

The internal block diagram in Figure 75 shows the two main components of the PFC PWM block: PWM Generation
and PWM Blanking. This diagram shows all the motion peripheral registsers that are associated with the operation
of the PFC PWM block. Those that are accessible through the PFC_PWM library block are shown in bold type.
Those that are written from a host or 8051 application are shown in italic type.

PWM
Generation

PWM
Blanking

PFCGKILL
(From IC input pin)

Vin, Vdc, IPFC
(From ADC Module)

PWM Output
(To PFCPWM

output pin)

Figure 75. PFC_PWM Internal Block Diagram

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 124

4.3.8.1 PFC PWM Generation
The generation of the PWM output is based on a comparison between the duty cycle command VcPFC and a
triangle PWM carrier. The PWM carrier frequency is set up by the register PFCPwmPeriod. The data update
coherence is guaranteed by a SyncPulse-buffered design. A PFCPWM_Synpulse is generated based on the set up of
the PWM carrier frequency. At every PFCPWM_Syncpulse, the latest VcPFC that is produced in the control loop is
latched into the PWM Generation block. Prior to the arrival of the next PFCPWM_Syncpulse, this latched VcPFC
signal is compared with the triangle PWM carrier. When the latched VcPFC is higher than the carrier, the PWM
Output is High; when the latched VcPFC is lower than the carrier, the PWM Output is Low.

Figure 76. Generation of PFC PWM output and ADC timing (PFC_sync_divider = 0)

In addition to the PFCPWM_Syncpulse, there is a PFCControl_Syncpulse, which is synchronized with the
PFCPWM_Syncpulse. The PFCControl_Syncpulse starts the A-to-D conversion of the PFC current and voltage
signals, and then the execution of the PFC control loop. As can be seen from Figure 76 and Figure 77, the A/D
sampling point occurs at the center of the period during which the PWM Output is High, which is the ON time of the
PFC switching devices (IGBTs, MOSFETs), and is the center of the inductor current upslope (In Figure 76 and
Figure 77, the step change in VcPFC is just for illustration. In reality, the duty cycle changes in two adjacent PWM
cycles are very small). As a result, basically the average value of the PFC inductor current is sampled and converted
to a digital signal for the control loop execution, and the switching noise has minimum influence on the ADC
process. Normally for PFC designs, the choice of switching frequency, which is the PWM carrier frequency,
involves many factors and trade-offs: control performance, current ripples, inductor size, switching losses, EMI
noises, etc. This block provides users the flexibility to configure the ADC sampling rate to have different ratios with
the PWM carrier frequency, using register PFC_sync_divider, as follows:

PFC_ADC Sampling Rate = PFC_PWM Carrier Freq. / (PFC_sync_divider[0:3] + 1)

Figure 77 shows the relationship between the ADC sampling rate and the PWM carrier frequency when
PFC_sync_divider[0:3] = 1. By using the SyncDivider a high PFC carrier frequency can be achieved without
increasing the computational load upon the Motion Control Engine.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 125

There is one important restriction on the selection of the SyncDivider usage: The PFC_ADC Sampling Rate must be
an integer multiple of the master PWM frequency (usually Motor 1). If this constraint is not met, then the actual
frequency of the A/D sampling and control loop will vary between the PFC_ADC Sampling Rate and the PWM
carrier frequency over the course of one master PWM cycle.

Figure 77. Generation of PFC PWM output and ADC timing (PFC_sync_divider = 1)

A further extension of the SyncDivider is called PFC Phasing. The PFC phasing offsets the PFC ADC sampling
from the Master PWM Sync pulse (usually Motor 1). The value of PFCPhasing (PFC_sync_divider[4:7]) specifies
the number of PWM cycles the PFC A/D sampling is delayed following the master motor control sync pulse. The
value of PFCPhasing must be less than (PFCSyncRatio + 1), or else the PFC will not run at all.

Whenever a PFC GateKill occurs, the PWM Output is disabled. Meanwhile, the PWM Output is enabled/disabled
by the combination of PFCEnable input and the ShutDown signal, which is the output the PWM_Blanking block:
when PFCEnable = 1 and ShutDown = 0, enable PWM; when PFCEnable = 0 or ShutDown = 1, disable PWM.

4.3.8.2 PFC PWM Blanking
The full-mode boost PFC operation, including the conventional single-switch boost PFC circuit and the bridgeless
PFC circuit, requires that the DC bus voltage must be higher than the peak of the AC input voltage. However,
during input voltage transients or a sudden large increase in load, the peak of the AC input voltage can be higher
than the DC bus voltage. If the PWM switching continues, the boost inductor could go to saturation because its
volt-seconds can not be balanced. Consequently, high current can be generated and cause a nuisance over-current
fault. The PWM_Blanking block provides protection by generating an output ShutDown signal.

This block instantly compares the DC bus voltage Vdc and AC input voltage Vin. The registers PFC_OffsetDC,
PFC_OffsetVin and Blanking_Gap provide offset and adjustment for the comparison, and are used to calculate
signals Vdc_Compare and Vin_Compare (as described in Section 4.4.19).

Turn on/off conditions:

1) If Vin_Compare > Vdc_Compare + Blanking_Gap then Shutdown = 1

UG#0609

IRMCx300 Reference Manual

www.irf.com 126

2) If Vin_comp > Vdc_comp & Blanking off for > 80 PWM cycles then Shutdown = 1

3) If CountTwoSet has expired & IPFC < IREF & Vin_Compare < Vdc_Compare + ¾*Blanking_Gap then
Shutdown = 0

CountOneSet provides a minimum on time, in terms of PWM cycles, for the Shutdown signal. Once the minimum
time has expired then CountTwo is incremented every PWM cycle only if IPFC is decreasing or near zero, otherwise
CountTwo is reset to zero. CountTwo is the timer which determines if CountTwoSet has expired.

The PFC Blanking feature provides fast and smooth transitions between the PWM enable and disable modes. Note
also that the integral component of the PFC current controller is reset on Shutdown. Users may also use this
ShutDown output signal to enable and disable the PFC control loop (voltage, current, etc.), which can be
implemented in either MCE or 8051.

UG#0609

IRMCx300 Reference Manual

www.irf.com 127

4.3.9 PFC_SENSE
The PFC_SENSE module provides the ADC feedback signals that are used for the PFC control loop. Figure 78
shows the PFC_SENSE block and Table 77 lists its outputs. The PFC_SENSE block has no inputs.

The PFC_SENSE library block provides an interface to a subset of the IRMCx31x motion peripheral registers. All
registers associated with the operation of the PFC_SENSE module are accessible through the PFC_SENSE block.

Each signal listed in the table corresponds directly to one of the motion peripheral registers described in Section 4.4.
The register name associated with the signal is shown in the “Associated Register” column of the table. The
rightmost column of the table provides a reference to the document section where the register is described. Each of
the output signals can be traced through MCEDesigner. Each of these signals can be traced in MCEDesigner under
the Signal name found in the leftmost colum.

Figure 78. PFC_SENSE Block

Signal name

Description

I/O

Associated

register

Reference for
detailed

description and
scaling

IPFC A/D feedback signal of AC
input current, processed data

Output I_IN 4.4.26

VPFC_REC A/D feedback signal of AC
input voltage, absolute value

Output V_IN 4.4.26

VPFC_AC A/D feedback signal of AC
input voltage, bi-polar

Output VinSense 4.4.26

DC_BUS_VOLTS dc bus voltage feedback Output DcBusVolts 4.4.22
RAW_VIN_SENSE Raw A/D feedback singal of

AC input voltage, unprocessed
Output RawVinSense 4.4.26

Table 77. PFC_SENSE Outputs

The PFC_SENSE block provides the ADC feedback signals that are used for the PFC control loop, in 12-bit digital
counts: DC bus voltage, AC input current (IPFC), and AC input voltage. The AC input voltage is provided three
times:

• VPFC_REC the absolute value, or rectified half-wave AC input voltage (register V_IN).
• VPFC_AC the bi-polar value, or bi-polar full-wave AC input voltage, offset corrected so that the

average value corresponds to 2048 (register VinSense)
• RAW_VIN_SENSE Raw, unprocessed AC input signal from A/D converter (register RawVinSense)

For PFC control designs, VPFC_REC generates the half-wave sinusoidal reference for the current control loop, and
VPFC_AC provides additional information such as line-voltage zero-crossing and timing. The RAW_VIN_SENSE
signal is provided for use when the rectified AC voltage is sensed instead of the full bi-polar signal.

The AC input current (IPFC) is provided as corrected current feedback (register I_IN).

UG#0609

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 128

PFC sensing is synchronized with PFC PWM pulse generation, and the ADC sampling points of IPFC and VPFC
occur at the center of the period during which the PWM Output is High. With this built-in feature, basically the
average value of the PFC inductor current in every switching cycle is sampled and converted to a digital signal for
the control loop execution, and the switching noise has minimum influence on the ADC process. For detailed ADC
timing, refer to Figure 76 and Figure 77.

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 129

4.4 Motion Peripheral Registers
Certain aspects of IRMCx31x operation can be configured and monitored from an 8051 application or the
MCEDesigner tool using a pre-defined register interface. These registers reside in MCE internal memory (not in the
shared RAM). A special mechanism, defined in Section 5.3, is provided for reading and writing the registers. The
sections below categorize the registers into functional groups and describe the purpose and format of each register.

4.4.1 System Write Register Group

port_ctrl0, port_ctrl1
Address: port_ctrl0: 04h

port_ctrl1: 05h

Range: Unsigned input
with bit field definitions

Reset value: 0

Scaling or Notation: See description.
Description: This parameter provides configuration of PWM output pins for the IC. Each PWM IC output

pin can be configured independently to one of four different states, as follows:

 00 – normal pwm state (connect to normal PWM pattern)
 01 – “Z” high impedance state
 10 – “0” zero state
 11 – “1” one state

 Each PWM IC output pin is controlled by writing one of the values defined above to a two-bit

field of the port_ctrl0 or port_ctrl1 register. The port_ctrl0 register controls motor 1 and the
port_ctrl1 register controls motor 2, with the bit fields defined as follows:

Bits 0 – 1 CfgPWMUH Configure U phase high side
Bits 2 – 3 CfgPWMUL Configure U phase low side
Bits 4 – 5 CfgPWMVH Configure V phase high side
Bits 6 – 7 CfgPWMVL Configure V phase low side
Bits 8 – 9 CfgPWMWH Configure W phase high side
Bits 10 – 11 CfgPWMWL Configure W phase low side

The PFC PWM output is controlled by writing one of the values defined above to a two-bit
field of register port_ctrl0, as follows:

Bits 12 – 13 CfgPFCPWM Configure PFC PWM

Bits 14 and 15 of port_ctrl0 and bits 12 – 15 of port_ctrl1 are unused and should be set to
zero.

PwmMasterSel
Address: 00h Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = Select Motor 1 as master
 1 = Select Motor 2 as master
Description: This parameter selects the master for PWM synchronization in multi-motor (Motor 1, motor 2

and PFC) systems. It is applied when PWM synchronization is enabled (register
PwmSyncEnb). The slowest switching frequency pwm should be selected as master. When
PwmSyncEnb = 1, the controller will check (on-line) whether all pwms are synchronized to
the master. iMotion MCEWizard enforced synchronization by calculating appropriate pwm
counter values (PwmPeriodConfig for both motor 1, 2 and PFCPwmPeriod). In practice, there
should not be synchronization problem due to pwm counters being set by MCEWizard.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 130

However, if users manually override pwm counter values that causes loss of synchronization,
a synchronization fault (FaultFlags: PwmSyncErr) will be generated.

PwmSyncEnb
Address: 01h Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 – Disable PWM synchronization
 1 – Enable PWM synchronization
Description: This parameter enables PWM synchronization between motor 1, motor 2 and PFC. It is

recommended to enable PWM synchronization for multi-motor systems. iMotion
MCEWizard determines this parameter based on user’s inputs.

AdcBaudDiv
Address: 03h Range: Unsigned input

0 – 63
Reset value: 11

Scaling or Notation: SysClk / 6 MHz
 where SysClk is the system clock frequency in MHz.
Description: This parameter specifies the counter reset value in maintaining fixed time strobes (for the A/D

converter) when a system clock value (SysClk) other than the default is used. iMotion
MCEWizard calculates this parameter.

FaultClear
Address: 07h Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This register can be used to clear latched drive faults generated inside the Faults module. It is

also used for setting a fault condition generated from the MCE processor. The bit fields are
defined as follows:

 Bit 0 FaultClear
 0 No action
 1 Clear all faults
 Bit 1 MceFault
 0 No action
 1 Set an MCE fault condition
 Bits 2 – 15 Unused; set to zero

SyncStDiv
Address: 02h Range: Unsigned input

0 – 4095
Reset value: 1842

Scaling or Notation: Time strobe duration = SyncStDiv / SysClk [usec]
 where SysClk is the system clock frequency in MHz.
Description: This parameter specifies a counter reset value for deriving fixed time strobes (for execution of

modules inside Sensorless FOC block) when a system clock rate (SysClk) other than the
default is selected.

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 131

syscfg
Address: 06h Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This register is used to configure system-wide options. The bit fields are defined as follows:

 Bit 0 DcMonitorEn
 0 Disable dc bus overvoltage and undervoltage protection
 1 Enable dc bus overvoltage and undervoltage protection
 Bit 1 PfcSampleDisable
 0 Enable PFC feedback sample
 1 Disable PFC feedback sample
 Bit 2 Mtr2SampleDisable
 0 Enable motor 2 feedback sample
 1 Disable motor 2 feedback sample
 Bits 3 – 15 Unused; set to zero

 iMotion MCEWizard sets up system configuration bits (syscfg) based on user’s inputs. For

instance: if single motor reference design platoform is selected, bit 1 and 2 will be set to 1.

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 132

4.4.2 PWM Configuration Write Register Group

GCChargePD
Address: 13h (Motor1)

5Ch (Motor2)
Range: Unsigned input

0 – 255
Reset value: 255

Scaling or Notation: Number of charge pulse spacing = GCChargePD.
Description: This parameter specifies the number of charging pulses spacing between motor phases (u, v,

w) for the Bootstrap Pre-charge function.

 Zero vector (low side devices on) is normally applied for the initial turn-on of the PWM

inverter output. If the Bootstrap gate driver is used, the Bootstrap capacitors (u, v, w phase)
will all be charged simultaneously. This charging current can be significantly reduced by the
built-in Pre-charge control function.

 Instead of charging all low side devices simultaneously, the gate Pre-charge control (activated

using the Precharge bit of register pwmctrl, see Section 4.4.4) will schedule an alternating (u,
v, w phase) charging sequence with programmable charging pulse duration (register
GCChargePW).

 Parameter GCChargePW controls the charging pulse duration while parameter GCChargePD

controls the spacing between u, v and w phase charging. The spacing (GCChargePD)
between consecutive charging is specified as number of charge pulses. Figure 70 illustrates
this relationship.

GCChargePW
Address: 12h (Motor1)

5Bh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 255

Scaling or Notation: Gate Precharge duration =
SysClk

ePWGCCh 1arg + [usec]

 where SysClk is the system clock frequency in MHz.
Description: This parameter specifies the Gate Pre-charge duration. Zero vector (low side devices on) is

normally applied for the initial turn-on of the PWM inverter output. If the Bootstrap gate
driver is used, the Bootstrap capacitors (u, v, w phase) will all be charged simultaneously.
This charging current can be reduced by the built-in Pre-charge control function.

 Instead of charging all low side devices simultaneously, the gate Pre-charge control (activated

using the Precharge bit of register pwmctrl, see Section 4.4.4) will schedule an alternating (u,
v, w phase) charging sequence with programmable charging pulse duration.

 Parameter GCChargePW controls the charging pulse duration while parameter GCChargePD

controls the spacing between u, v and w phase charging. Figure 70 illustrates this
relationship.

UG#0609

IRMCx300 Reference Manual

www.irf.com 133

ModScl
Address: 10h (Motor1)

59h (Motor2)
Range: Unsigned input

0 – 65535
Reset value: 0

Scaling or Notation: See description.
Description: This parameter provides scaling (between modulation depth in digital count to inverter output

voltage in voltages rms) for the Space Vector PWM. In 300-series iMOTION products, the
setting of ModScl is calculated by iMotion MCEWizard to target an inverter line-to-line
output voltage of 2Vdc rms volts at 2355 digital count of modulation depth (input to the

Space Vector modulator, 22 __ BetaUAlphaU +). For instance, if U_Alpha = 2355 and

U_Beta = 0, then the inverter output line-to-line voltage is equal to 2Vdc volts rms. If
users reduce the value of ModScl by 50%, then the inverter output voltage will be half
(25.0 Vdc×) at the same modulation (U_Alpha = 2355 and U_Beta = 0).

pwmcfg
Address: 15h (Motor1)

5Eh (Motor2)
Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This parameter configures the logic sense of the gate signal. The setting of each Gate Sense

bit (bits 2 – 4) is defined as follows:

 0 = low true gating convention
 1 = high true gating convention

 The bit fields are defined as follows:

 Bits 0 – 1 Unused; set to zero
 Bit 2 GateSenLow Gate sense low side devices
 Bit 3 GateSenHigh Gate sense high side devices
 Bit 4 GateSenGateKill Sense for Gate kill
 Bits 5 – 15 Unused; set to zero

PwmDeadTm
Address: 0Fh (Motor1)

58h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 60

Scaling or Notation: Inverter blanking time = PwmDeadTm / SysClk [usec]
 where SysClk is the system clock frequency in MHz.
Description: Inverter blanking time for avoiding shoot through between high side and low side devices.

The blanking time setting is power device and application dependent. In some applications,
power device switching is intentionally slowed down to reduce EMI noise. Hence inverter
blanking time is extended to accommodate slower switching profile.

PwmGuardBand
Address: 0Eh (Motor1)

57h (Motor2)
Range: Unsigned input

0 – 1023
Reset value: 0

Scaling or Notation: Guard band duration = PwmGuardBand / SysClk [usec]
 where SysClk is the system clock frequency in MHz.
Description: This parameter provides a guard band such that PWM switching at high modulation cannot

migrate into the beginning and end of a PWM cycle. The guard band insertion can improve
feedback noise immunity for signals sampled near the beginning and end of a PWM cycle.
The parameter only applies to the 3-phase Space Vector modulation scheme. The guard band
duration is independent of PWM carrier frequency.

UG#0609

IRMCx300 Reference Manual

www.irf.com 134

 Note: Guard band insertion will reduce the maximum achievable inverter output voltage.

PwmPeriodConfig
Address: 11h (Motor1)

5Ah (Motor2)
Range: Unsigned input

0 – 16383
Reset value: 5999

Scaling or Notation: See description.
Description: This parameter specifies the number of digital counts of the SVPWM counter for half of a

pwm cycle. The resolution of pwm is affected by the system clock (SysClk) being used. And
this parameter is directly related to the system clock and the inverter switching frequency
being chosen. The relationship is given by:

 PwmPeriodConfig =
FreqPwm

SysClk
×

×
2

1000 – 1

 where:
 is the system clock in MHz and SysClk
 is the inverter switching frequency in KHz. FreqPwm

There is a restriction regarding the relationship between system clock rate (SysClk) and PWM frequency
(FreqPwm). Refer to Section 3.2.3 and Figure 10 for more information.

Pwm2HiThr
Address: 0Ch (Motor1)

55h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

HiThrPwmMaxRpm 2007813.0Scaling or Notation: Speed threshold = ×× [rpm]
 where MaxRpm is the maximum application speed in rpm. It is a required entry (“Max

RPM”) in the MCEWizard.
Description: This parameter defines the upper speed threshold for switching from 3-phase to 2-phase

PWM. The transition between 3-phase and 2-phase PWM is done using a hysteresis band on
speed.

Pwm2LowThr
Address: 0Dh (Motor1)

56h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

LowThrPwmMaxRpm 2007813.0Scaling or Notation: Speed threshold = ×× [rpm]
 where MaxRpm is the maximum application speed in rpm. It is a required entry (“Max

RPM”) in the MCEWizard.
Description: This parameter defines the lower speed threshold for switching from 2-phase to 3-phase

PWM. The transition between 3-phase and 2-phase PWM is done using a hysteresis band on
speed.

UG#0609

IRMCx300 Reference Manual

www.irf.com 135

TwoPhsCtrl
Address: FCh (Motor1)

FDh (Motor2)
Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the setup for 2-phase modulation. If bit TwoPhsEnb = 0, 3-phase

modulation will always be used. If bit TwoPhsEnb = 1, inverter PWM will transition from 3-
phase to 2-phase PWM modulation whenever the absolute motor speed exceeds the threshold
specified by register Pwm2HiThr and transitions back to 3-phase mode whenever the motor
speed falls below the threshold specified by register Pwm2LowThr. Refer to Section 4.3.5.3
for a discussion of PWM modulation types.

 Bit 0 TwoPhsEnb
 0 Disable 2-phase modulation
 1 Enable 2-phase modulation
 Bit 1 TwoPhsType
 0 Select 2-phase modulation type 1
 1 Select 2-phase modulation type 2

GkillFiltCnt
Address: 14h (Motor1)

5Dh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 59

Scaling or Notation: Number of system clock cycles for gatekill fault = GkillFiltCnt (see description)

Description: Parameter GkillFiltCnt defines the number of system clock cycles that the Gatekill signal (IC

input pin GATEKILL) must persist before a latched fault (pwm shut down) is generated. This
is done to avoid nuisance drive shut down due to noise. .

UG#0609

IRMCx300 Reference Manual

www.irf.com 136

4.4.3 Current Feedback Configuration Write Register Group

IfbkScl
Address: 16h (Motor1)

5Fh (Motor2)
Range: Signed input

-16384 – 16383
Reset value: 0

Scaling or Notation: See description.
Description: This parameter provides current gain such that 4095 digital counts of d-axis or q-axis current

represents rated motor current. IfbkScl is calculated in the MCEWizard and is a function of
motor rated Amps and analog current scaling (how many amps per volt of A/D input). The
following block diagram shows the motor current feedback path of the iMotion controller IC
and the involvement of this gain parameter (IfbkScl). The current feedback path involves
Shunt resistor, analog signal conditioning (OP-Amp), A/D converter, Single shunt current
reconstruction, Clark transformation and Vector rotator. Each component of the feedback path
has its associate gain scaling which is shown in the figure. The scaling of IfbkScl is calculated
such that at I_Shunt = Rated motor Amps, the value of current magnitude (22 DiQi +)is
equal to 4095 digital counts. For instance: if Di (d-axis current) is regulated to zero (SPM
motors) value, Qi will be equal to 4095 when I_Shunt = Rated motor Amps. As shown in the
diagram below, based on the target objective of obtaining 4095 digital counts for rated motor
current, the current feedback gain (IfbkScl) can be calculated by:

IfbkScl =
2647.1

10244095
×××

×
AmpsRatedMotorAiBiScale

Where: RatedMotorAmps is in rms Amps. This calculation for the current feedback gain is
embedded in the iMotion MCEWizard.

UG#0609

IRMCx300 Reference Manual

www.irf.com 137

4.4.4 System Control Write Register Group

pwmctrl
Address: 17h (Motor1)

60h (Motor2)
Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This register is used to configure drive control parameters. These control bits are normally

manipulated by a master drive sequencer to perform startup control and shut down control.

 Bit 0 PwmEnable
 0 Disable PWM
 1 Enable PWM
 Bit 1 FocEnable
 0 Disable Field-Oriented Control regulators
 1 Enable Field-Oriented Control regulators
 Bit 2 Precharge
 0 Disable gating pre-charge for Bootstrap capacitors
 1 Enable gating pre-charge for Bootstrap capacitors
 Bit 3 PwmGateEnb
 0 Disable PWM gatings
 1 Enable PWM gatings
 Bits 4 – 15 Unused; set to zero

UG#0609

IRMCx300 Reference Manual

www.irf.com 138

4.4.5 Torque Loop Configuration Write Register Group

KpIreg
Address: 18h (Motor1)

61h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: % modulation index = KpIreg × 0.01748 × IqErr / RatedMotorAmps [%]
 Where: is absolute current error (abs(command – feedback)) of q-axis in Amps IqErr
Description: This parameter specifies the proportional gain of the q-axis current regulator. The parameter

relates current error to modulation index. 100% modulation corresponds to the maximum
achievable value of the SVPWM linear range. The corresponding theoretical rms motor line
voltage at 100% modulation is 2Vdc .

The d-axis channel current regulator gain scaling is shown in the figure below. Q-axis current
regulator structure is identical (replace gain KpIregD with KpIreg) to the d-axis. This figure
illustrates the gain scaling starting from current error (IdRef_C – Di) up to the input of the
Space Vector Modulator. Note: Only gain scalings are illustrated in the figure, antiwindup, dc
bus compensation and preservation of numerical truncation are not shown.

KpIregD
Address: 19h (Motor1)

62h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: % modulation index = KpIregD × 0.01748 × IdErr / RatedMotorAmps [%]
 Where: is absolute current error (Abs(command – feedback)) of q-axis in Amps IdErr
Description: This parameter specifies the proportional gain of the d-axis current regulator. The parameter

relates current error to modulation index. 100% modulation corresponds to the maximum
achievable value of the SVPWM linear range. The corresponding theoretical rms motor line
voltage at 100% modulation is 2Vdc . (see also KpIreg for internal scaling).

KxIreg
Address: 1Ah (Motor1)

63h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the integral gain of the d-axis and q-axis current regulator. The

parameter relates current error second (current error integration) to modulation index. The
scaling depends on the current regulator execution rate which is directly related to the pwm
frequency.

UG#0609

IRMCx300 Reference Manual

www.irf.com 139

 Scaling: Time duration =
KxIregIerr
PwmPeriod

×
×× 1921430

 [sec.]

 where Ierr is the current error in digital count (4095 = rated motor current) and PwmPeriod is

the pwm period in sec. The above scaling defines the time required to reach full (100%)
modulation (Dv or Qv) when a fixed current error (Ierr) is present. 100% modulation
corresponds to the maximum achievable value of the SVPWM linear range. The
corresponding theoretical rms motor line voltage at 100% modulation is 2Vdc . As can be
seen from this scaling, when PwmPeriod increases (lower pwm switching frequency), KxIreg
has to be increased to maintain integral gain strength (time duration to reach 100%
modulation). (see KpIreg for internal scaling diagram).

VdLim
Address: 1Ch (Motor1)

65h (Motor2)
Range: Unsigned input

0 – 2047
Reset value: 0

Scaling or Notation: 1430 = 100 [% modulation]
Description: This parameter specifies the d-axis current regulator output limit. 100% modulation

corresponds to the maximum achievable value of the SVPWM linear range. The
corresponding theoretical rms motor line voltage at 100% modulation is 2Vdc .

VqLim
Address: 1Bh (Motor1)

64h (Motor2)
Range: Unsigned input

0 – 2047
Reset value: 0

Scaling or Notation: 1430 = 100 [% modulation]
Description: This parameter specifies the q-axis current regulator output limit. 100% modulation

corresponds to the maximum achievable value of the SVPWM linear range. The
corresponding theoretical rms motor line voltage at 100% modulation is 2Vdc .

UG#0609

IRMCx300 Reference Manual

www.irf.com 140

4.4.6 Velocity Control Write Register Group

Rotation
Address: 42h (Motor1)

8Bh (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = positive rotation (u-v-w) ; 1 = negative rotation (u-w-v)
Description: This parameter defines the direction of rotation.

Start_Lim
Address: 3Dh (Motor1)

86h (Motor2)
Range: Unsigned input

0 – 16383
Reset value: 0

Scaling or Notation: 4095 = 100 [% motor Amps]
Description: This parameter specifies the desired Startup current when the Startup diagnostic mode is

selected (MtrCtrlBits[1]). The motor will be accelerated using this startup current until a
successful startup has been detected (StartOk bit in register StatusFlags; see Section 4.4.21).
Typical settings for this parameter range from 50 to 120% (application dependent) of rated
motor Amps. If the Startup diagnostic mode is not selected, then the current will be set by the
TrqRef parameter.

TrqRef
Address: 3Eh (Motor1)

87h (Motor2)
Range: Signed input

-16384 – 16383
Reset value: 0

Scaling or Notation: 4095 = 100 [% rated motor Amps]
Description: Command current input to inner-loop regulator (inside Sensorless FOC block, Figure 51). In

practice, this signal is fed by the output of a speed regulator.

MotorSpeed
Address: 3Fh (Motor1)

88h (Motor2)
Range: Signed input

-16384 – 16383
Reset value: 0

Scaling or Notation: 16383 = MaxRpm [rpm]
Description: This speed input is used by the SVPWM block for determining switchover between 3-phase

and 2-phase PWM modulation scheme. In the 300 series reference design, the raw motor
frequency (Rtr_Freq) output of the Sensorless FOC block is scaled and filtered (typically 3 –
7 msec.) to form a filtered speed signal which is used for speed regulation and to drive the
MotorSpeed input of the SVPWM block.

Min_Spd
Address: 40h (Motor1)

89h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Minimum speed =
2048

_ MaxRPMSpdMin × [rpm]

 where MaxRPM is the maximum application speed, entered in the MCEWizard (“Max
RPM”).

Description: This parameter defines the minimum permissible drive operating speed level. It is used to
detect a zero speed trip fault and also for minimum command speed clamping (in MCE
application software). A zero speed fault will be generated if motor speed falls below half of
the value of minimum drive speed for a time duration of more than two seconds. The check
for zero speed fault can be disabled through bit field ZeroSpdDisable of register MtrCtrlBits
(Section 4.4.9).

VFFreq
Address: 41h (Motor1)

8Ah (Motor2)
Range: Unsigned input

-16384 – 16383
Reset value: 0

Scaling or Notation: Frequency = VFFreq × 0.01552583 [Hz]

UG#0609

IRMCx300 Reference Manual

www.irf.com 141

Description: This parameter specifies the Volts per Hertz frequency command for the purpose of the open-
loop diagnostic. In this diagnostic mode, the command target frequency (VFFreq) is
multiplied by VFGain (see Section 4.4.8) to generate a modulation index, thereby maintaining
a constant Volts/Hz ratio under constant dc bus operation. This mode of operation generates
prescribed inverter voltages without requiring current feedbacks. Therefore, it can be used to
drive passive load or Induction motor load for troubleshooting hardware (feedback and PWM)
related issues.

UG#0609

IRMCx300 Reference Manual

www.irf.com 142

4.4.7 Closed Loop Angle Estimator Write Register Group

AngDel
Address: 34h (Motor1)

7Dh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Angle advancement = AngDel × 0.35156 × I_Motor / Rated Motor Amps [Deg]
 Where I_Motor is the operating motor current in Amps
Description: This parameter provides gain adjustment for current angle advancement. The current angle

advancement is added to a fixed defaulted phase (90 Deg) and the rotor angle to form the
relative phasing of the current vector. Current angle advancement is required for Permanent
Magnet motor with rotor saliency (Interior Permanent Magnet Motors). A value of zero
represents zero angle advancement and therefore the current vector is placed at 90 degrees
with respect to the rotor angle. Details on angle advancement function are given in the
Application Developer’s Guide under the Interior Permanent Magnet Motor Control section.
Diagram below shows the implementation of the angle advancement function and the related
controller parameters.

Id_Decoupler
AngDel

K

Vector
Rotator

0

IqRef_C

90 Deg

+

AngLim

-AngLim

+

To current
 regulator

 commands

TrqRef

AngLim
Address: 35h (Motor1)

7Eh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Angle limit = AngLim × 0.17578 [Deg.]
Description: This parameter provides the maximum limit on the current angle phase advancement specified

by register AngDel. Details on angle advancement function are given in the Application
Developer’s Guide (Interior Permanent magnet motors). (see also AngDel).

AtanTau
Address: 32h (Motor1)

7Bh (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter provides angle compensation (frequency dependent) for the phase shift

introduced by flux integration time constant (register FlxTau; see Section 4.4.7). Inside the
Sensorless FOC module (Figure 51 Angle Frequency generator) , frequency (Rtr_Freq) is
multiplied by a time contant (AtanTau) to form a compensating angle. This angle represents
the phase shift introduced by the non-ideal flux integrators (low pass filter). Pure (ideal)
integrator cannot be used due to dc offset problem. The flux integration time constant is an
entry of the iMotion MCEWizard. Typical range of integrator time constant is in the range of
0.01 to 0.025 sec.

 Scaling: Time constant =
FreqSclPI
PwmPeriodTauA

××
×

2
tan [sec.]

where is determined by: FreqScl
if (Use4xFreqScl = 1) FreqScl = 4
else if (Use2xFreqScl = 1) FreqScl = 2

UG#0609

IRMCx300 Reference Manual

www.irf.com 143

else FreqScl = 1
(Use4xFreqScl and Use2xFreqScl are bit fields of the MtrCtrlBits_S and MtrCtrlBits
registers, respectively. See Section 4.4.9.). Both MtrCtrlBits_S and MtrCtrlBits are populated
by iMotion MCEWizard. (see Figure 79 for details)

FlxAInit
Address: 28h (Motor1)

71h (Motor2)
Range: Signed input

-128 – 127
Reset value: 0

Scaling or Notation: Initial Alpha flux = FlxAInit × 100 / 78 [% rated flux]
Description: This parameter specifies the initial Alpha flux level right after parking stage of motor startup.

The initial Alpha flux level dependents on the parking angle (ParkAng). MCEWizard
calculates this parameter based on the parking angle setup.

FlxBInit
Address: 29h (Motor1)

72h (Motor2)
Range: Signed input

-128 – 127
Reset value: 0

Scaling or Notation: Initial Beta flux = FlxBInit × 100 / 78 [% rated flux]
Description: This parameter specifies the initial Beta flux level right after parking stage of motor startup.

The initial Beta flux level dependents on the parking angle (ParkAng). MCEWizard calculates
this parameter based on the parking angle setup.

FlxTau
Address: 2Ch (Motor1)

75h (Motor2)
Range: Unsigned input

0 – 8191
Reset value: 0

Scaling or Notation: See description.
Description: Motor flux is calculated by integration of estimated voltages. Pure (ideal) integrator cannot be

used due to dc offset problem. The integration is done using non-ideal integrator (low pass
filter) as shown in the diagram below. The flux integration time constant (Tau) is an entry of
the iMotion MCEWizard. Typical range of non-ideal integrator time constant is in the range
of 0.01 to 0.025 sec.

This parameter provides the adjustment for the integrator time constant. FlxTau is inversely
proportional to the “Flux estimator time constant” entered in the MCEWizard. The
relationship of the Flux estimator time constant and FlxTau is given by:

 Flux estimator time constant = PwmPeriod
FlxTau
PwmPeriod

−
×182 [sec.]

 where PwmPeriod = 1/(PWM switching frequency) [sec].

FreqBW
Address: 33h (Motor1)

7Ch (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Filter bandwidth = FreqBW / (8192 × pwm cycle time) [rad/sec]
 Where: pwm cycle time is the pwm period in sec.

UG#0609

IRMCx300 Reference Manual

www.irf.com 144

Description: This parameter specifies the filter (first order) bandwidth for estimated motor frequency. This
filtered motor frequency is applied to correct the phase shift introduced by the flux integration
time constant (register FlxTau). The phase correction is done by taking arctan of filtered
frequency x integrator time constant Tau. Since the flux integrator is a first order low pass
filter, its phase shift can be easily compensated by arctan of frequency x Tau (see also Figure
79 for details).

IScl
Address: 2Eh (Motor1)

77h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the current gain scaler for the flux estimator. The MCEWizard

calculates this parameter to provide appropriate drive current scaling. This current scaling is
inside the flux estimator.

L0
Address: 2Bh (Motor1)

74h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the apparent inductance of the motor and it is used by the flux

estimator (Figure 51) for calculating motor flux. It is proportional to:

(Ld + Lq) / 2

where Ld and Lq are the d and q axis motor inductance.

The scaling constant between the actual inductance in Henry and this parameter is provided in
the MCEWizard tool .

LSlncy
Address: 2Fh (Motor1)

78h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the apparent saliency inductance of the motor and it is used by the

flux estimator (Figure 51) for calculating motor flux. It is proportional to:

 (Lq – Ld) / 2

 where Ld and Lq are the d and q axis motor inductance. Typically, 0.95 < Lq/Ld < 1.05 for

Surface PM motors and 1.2 < Lq/Ld < 2.5 for Interior Permanent magnet motors.

The scaling between the actual inductance in Henry and this parameter is provided in the
MCEWizard tool.

PllKi
Address: 31h (Motor1)

7Ah (Motor2)
Range: Unsigned input

0 – 8191
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the Angle Frequency Generator (Figure 51) tracking integral gain.

The Angle Frequency Generator is mainly a phase lock loop (PLL) device. Diagrams below
shows a simplified and a detailed PLL architecture (Figure 79). As can be seen in this
diagram, PLLKi relates internal PLL tracking error (q) to frequency (Rtr_Freq). A larger
value of PllKi will increase tracking bandwidth at the expense of increasing speed or
frequency ripple.

UG#0609

IRMCx300 Reference Manual

www.irf.com 145

 MCEWizard calculates this gain based on the selected PLL bandwidth.

Figure 79. Detail scaling of PLL

PllKp
Address: 30h (Motor1)

79h (Motor2)
Range: Unsigned input

0 – 8191
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the Angle Frequency Generator (Figure 51) tracking proportional

gain. The Angle Frequency Generator is mainly a phase lock loop (PLL) device. A larger
value of PllKp will increase tracking bandwidth at the expense of increasing speed or
frequency ripple. (See Figure 79)

 The MCEWizard calculates this gain based on the selected PLL bandwidth.

Rs
Address: 2Ah (Motor1)

73h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the motor per phase equivalent (motor + cable) resistance at 25 Deg

C. The scaling between the actual motor resistance and this parameter depends on drive

UG#0609

IRMCx300 Reference Manual

www.irf.com 146

voltage and current scaling. The relationship between the actual resistance in ohms and Rs is
formulated in the MCEWizard.

VoltScl
Address: 2Dh (Motor1)

76h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the gain scaler for translating voltage to internal voltage scaling of

the flux estimator. The MCEWizard calculates this parameter for appropriate internal drive
voltage scaling.

UG#0609

IRMCx300 Reference Manual

www.irf.com 147

4.4.8 Open Loop Angle Estimator Write Register Group

KTorque
Address: 38h (Motor1)

81h (Motor2)
Range: Unsigned input

0 – 65535
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the motor mechanical model gain used in Open-loop startup mode.

KTorque relates motor developed torque to drive acceleration. This gain plays an important
role in robust startup. The acceleration scaling is given by:

 Drive acceleration =
29

2

2×
××

AmpsRatedMotor
FreqPwmIMotorKTorque [Hz/sec]

 where FreqPwm is the inverter switching frequency in Hz.
 is the motor current in Amps IMotor

 For instance: At rated motor Amps (IMotor = RatedMotorAmps) and 10KHz inverter pwm

frequency, setting KTorque = 100 will yield a 18.63 Hz/sec acceleration rate. At 50% rated
motor Amps, the acceleration will reduce by 50%.

VFGain
Address: 39h (Motor1)

82h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the Volts per Hertz gain scaler for the purpose of the open-loop

diagnostic. In this diagnostic mode, the command target frequency (VFFreq; see Section
4.4.6) is multiplied by VFGain to generate a modulation index, thereby maintaining a constant
Volts/Hz ratio under constant dc bus operation. This mode of operation generates prescribed
inverter voltages without requiring current feedbacks. Therefore, it can be used to drive
passive load or Induction motor load for troubleshooting hardware (feedback and PWM)
related issues.

 The scaling relationship is given by:

 Modulation Index = VFGain × VFFreq / [digital count of modulation] 82

 where 1430 represents 100% Modulation Index (VLine = 2Vdc) and VFFreq is the

frequency command (the value of register VFFreq, as described in Section 4.4.6).

UG#0609

IRMCx300 Reference Manual

www.irf.com 148

4.4.9 Startup Angle Estimator Write Register Group

MtrCtrlBits
Address: 0Ah (Motor1)

53h (Motor2)
Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the configuration of various motor control functions.

 Bits 0 – 3 DiagSelect
 0000 No diagnostic enabled
 0001 Enable parking diagnostic
 0010 Enable start-up diagnostic
 0101 Enable current regulator diagnostic
 1001 Enable Volts/Hz diagnostic
 Bit 4 PhsLosDisable
 0 Enable phase loss detection
 1 Disable phase loss detection
 Bit 5 Use2xFrqScl (see Figure 79)
 0 Do not use 2x frequency scale
 1 Use 2x frequency scale
 Bit 6 ZeroSpdDisable
 0 Enabled zero speed fault detection
 1 Disable zero speed fault detection
 Bits 7 – 15 Unused; set to zero

MtrCtrlBits_S
Address: 0Bh (Motor1)

54h (Motor2)
Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the configuration of various motor control functions. This parameter

is a bit-packed parameter which serves as software jumpers for turning on and off certain
motor control functions. Certain bits (for instance: Bit 2 and 3) in this parameter provide
internal scaling adjustment such that data scaling can be managed within the specified range
(16-bit signed). For instance: Bit 2 and 3 (flux attenuation jumpers for PLL) are used to scale
the inputs (Flx_Alpha and Flx_Beta of Figure 79) of the PLL such that the PLL gains (PllKp
and PllKi of Figure 79) can always stay within range for different operating conditions
(frequency range). These 2 bits are configured by MCE wizard. With these 2 bits, the inputs
(Flx_Alpha and Flx_Beta) can be attenuated by 4, 8 and 16 times as shown in Figure 79.

 Bit 0 CatchEnb
 0 Disable catch spin function
 1 Enable catch spin function
 Bit 1 Use4xFrqScl (see Figure 79)
 0 Do not use 4x frequency scale
 1 Use 4x frequency scale
 Bit 2 Use2xMagScl (see Figure 79) (Note: this bit only applies when bit 3 = 0)
 0 Attenuate 16x flux amplitude.
 1 Attenuate 8x flux amplitude.
 Bit 3 Use4xMagScl (see Figure 79)
 0 Attenuate 8x or 16x (depends on Bit 2) flux amplitude for PLL inputs
 1 Attenuate 4x flux amplitude for PLL inputs
 Bit 4 IregCompEnb
 0 Disable dc bus compensation for current regulators
 1 Enable dc bus compensation for current regulators

UG#0609

IRMCx300 Reference Manual

www.irf.com 149

 Bit 5 UseExtFlux
 0 Use internal fluxes for PLL

1 Use external fluxes fluxes (Ext_Flx_Alpha, Ext_Flx_Beta, Section
4.4.18) for PLL

 Bits 6 - 15 Unused; set to zero

ParkAng1, ParkAng
Address: ParkAng1:

21h (Motor1)
6Ah (Motor2)
ParkAng:
20h (Motor1)
69h (Motor2)

Range: Unsigned input
0 – 255

Reset value: 0

Scaling or Notation: Angle = ParkAng / 64 × 90 [Deg]
Description: These parameters specify the angle to be used in the parking stage of startup. During parking,

two parking angles are used. This angle is between motor U-phase and the applied current
vector. The drive will first use ParkAng1 for a short duration (25% of total parking duration);
thereafter, the parking angle will switch to ParkAng to complete the parking duration.

ParkI
Address: 1Dh (Motor1)

66h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: see description
Description: This parameter specifies the amount of dc current injection during startup parking stage.
 The relationship of ParkI and actual W-phase motor current (Iw) during parking is given by:
 Iw = ParkI × 0.003399 × 2 × rated motor Amp × cos(Angle - 60°) [peak Amps]

ParkTm
Address: 1Eh (Motor1)

67h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Parking Time duration = ParkTm × 0.01568627 [sec.]
Description: This parameter specifies the total parking duration.

 The maximum parking duration that can be set directly using this register is four seconds. It

is possible to manually configure an extended parking duration by forcing the drive into
parking mode. This is done by enabling the Parking Diagnostic through bit field DiagSelect
of register MtrCtrlBits (see Section 4.4.9). The Parking Diagnostic overrides control of
parking duration using the ParkTm register.

 The following example illustrates this procedure. In the example, parking time is extended to

ten seconds by activating the Parking Diagnostic for ten seconds (steps 1 – 4) and then
resuming normal drive operation with zero parking time (steps 5 – 7).

1. DiagSelect field of MtrCtrlBits = 1 (enable Parking Diagnostic).
2. Start drive.
3. Delay ten seconds.
4. Stop drive.
5. DiagSelect field of MtrCtrlBits = 0 (disable Parking Diagnostic).
6. ParkTm = 0 (zero parking time since parking is already established).
7. Start drive.

UG#0609

IRMCx300 Reference Manual

www.irf.com 150

WeThr
Address: 1Fh (Motor1)

68h (Motor2)
Range: Unsigned input

0 – 32767
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the transition level (frequency) from Open-loop to Closed-loop mode

operation. The scaling between We_Thr and actual switch over frequency in Hz is given by:

 Switch over frequency = We_Thr × FreqScl × FreqPwm / [Hz] 202
 where:
 FreqPwm is the inverter pwm frequency in Hz; and

FreqScl is the frequency scaler, determined as:
if (Use4xFreqScl = 1) FreqScl = 4
else if (Use2xFreqScl = 1) FreqScl = 2
else FreqScl = 1

(Use4xFreqScl and Use2xFreqScl are bit fields of the MtrCtrlBits_S and MtrCtrlBits
registers, respectively. See Section 4.4.9.). These registers are calculated by MCEWizard.

UG#0609

IRMCx300 Reference Manual

www.irf.com 151

4.4.10 Startup Retrial Write Register Group

FlxThrH
Address: 26h (Motor1)

6Fh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Upper Flux threshold =
MuntsRatedFlxCo

FlxThrH
×× 647.1

128× x 100 [% rated flux]

 where: RatedFlxCounts = 5000 (default by MCEWizard)
 if (Use4xMagScl = 1) M = 4
 Elseif (Use2xMagScl = 1) M = 2
 Else M = 1

Description: In the Sensorless FOC block, a start fail detection signal (Statusflags bit 6) is provided for

startup failure detection. This signal can be used by a master motor control sequencer to carry
appropriate actions (for instance: startup retry) upon drive startup failure. A successful startup
detection is determined by comparing two flux threshold levels (FlxThrH and FlxThrL) and
the calculated motor flux (Flx_M). This parameter specifies the upper flux threshold level for
determining a successful drive startup.

FlxThrL
Address: 25h (Motor1)

6Eh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Lower Flux thershold =
MuntsRatedFlxCo

FlxThrL
×× 647.1

64× x 100 [% rated flux]

 where: RatedFlxCounts = 5000 (default by MCEWizard)
 if (Use4xMagScl = 1) M = 4
 Elseif (Use2xMagScl = 1) M = 2
 Else M = 1

Description: In the Sensorless FOC block, a start fail detection signal (Statusflags bit 6) is provided for

startup failure detection. This signal can be used by a master motor control sequencer to carry
appropriate actions (for instance: startup retry) upon drive startup failure. A successful startup
detection is determined by comparing two flux threshold levels (FlxThrH and FlxThrL) and
the calculated motor flux (Flx_M). This parameter specifies the lower flux threshold level for
determining a successful drive startup.

NumRetries
Address: 27h (Motor1)

70h (Motor2)
Range: Unsigned input

0 – 15
Reset value: 0

Scaling or Notation: Number of retries = NumRetries
Description: This parameter is intented for specifying the allowable number of startup retries. In the

Sensorless FOC block, parameter NumRetries only affacets the enabling of disabling of the
start failure detection function. If NumRetries = 0, startup fail detection is disabled, otherwise
it is enabled, allowing the use of the StartFail bit of the StatusFlags register. Inside the
Sensorless FOC block, only start fail detection logic is implemented. A master control
sequencer should be in place to implement the actual startup retry sequence (start retry and
generate retry fault) according to the user’s requirement.

ParkIRet
Address: 22h (Motor1)

6Bh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: see description

UG#0609

IRMCx300 Reference Manual

www.irf.com 152

Description: This parameter specifies the amount of dc current injection during Retry startup parking stage.
The Retry parking stage is identified by TwoRetries bit (Sensorless FOC block input). When
TwoRetries = 1, Parking current employes ParkIRet, otherwise ParkI will be used. A master
control sequencer should be in place to implement the actual startup retry sequence (start retry
and generate retry fault) according to the user’s requirement. This master control sequencer
should manipulate TwoRetries bit to signal the Sensorless FOC block to use different parking
configuration (ParkIRet, ParkTmRet) during a retry startup.

The relationship of ParkIRet and W-phase motor current (Iw) during parking is given by:

 Iw = ParkIRet × 0.003399 × 2 × rated motor Amp [peak Amps]

ParkTmRet
Address: 23h (Motor1)

6Ch (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Parking time duration = ParkTmRet × 0.01568627 [sec.]
Description: This parameter specifies the total parking duration in the startup Retry mode. Startup Retry

mode is identified by TwoRetries bit (Sensorless FOC block input). When TwoRetries = 1,
Parking time employes ParkTmRet, otherwise ParkTm will be used. A master control
sequencer should be in place to implement the actual startup retry sequence (start retry and
generate retry fault) according to the user’s requirement. This master control sequencer should
manipulate TwoRetries bit to signal the Sensorless FOC block to use different parking
configuration (ParkIRet, ParkTmRet) during a retry startup. Users may want to increase
parking current and parking duration during a retry startup.

 The maximum parking duration is four seconds but can be extended using the Parking

Diagnostic. Please refer to register ParkTm in Section 4.4.9 for a description of the
procedure.

RetryTm
Address: 24h (Motor1)

6Dh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Startup flux sampling instance = RetryTm × 1.966 [msec.]
Description: In the Sensorless FOC block, a successful start detection is determined by comparing two flux

band levels (FlxThrH and FlxThrL) and the calculated motor flux (Flx_M). The comparison is
done at a certain time duration (RetryTm) after open-loop startup is accomplished. This
parameter specifies the sampling instant of motor flux (Flx_M) for determination of a
successful startup. RetryTm is measured from the time Closed-loop is activated. This
sampling delay is required to ensure a valid flux establishment in the drive.

UG#0609

IRMCx300 Reference Manual

www.irf.com 153

4.4.11 Phase Loss Detect Write Register Group

AdjPark1, AdjPark2
Address: AdjPark1:

43h (Motor1)
8Ch (Motor2)
AdjPark2:
44h (Motor1)
8Dh (Motor2)

Range: Unsigned input
0 – 255

Reset value: 0

Scaling or Notation: See description.
Description: These two parameters specify the Phase loss detection current gain scalers.

During parking stage of drive startup, W-phase motor current is compared against anticipated
parking current levels (2-stage parking) to determine whether a phase loss (connection
between inverter and motor) is presented. Since, current regulation is enforced during parking,
the motor current will track command current under normal circumstances. If the current error
is larger than a certain threshold (PhsLosThr), a phase loss condition is generated. The
command current levels are computed using the parking current (ParkI, see Section 4.4.9) .
The value of ParkI is multiplied by a scaler of either AdjPark1 (first stage of parking) or
AdjPark2 (second stage of parking) for proper current comparison between command and
actual w-phase current (see section 4.4.24 register IDiff_Fil for phase loss detection diagram)

In MCEWizard, these current gain scalers are calculated such that proper scaling is applied to
parking current (ParkI) for comparison to the scaled feedback current Iw (see section 4.4.24
register IDiff_Fil for more details) .

Phase loss detection can be disabled through bit PhsLosDisable in register MtrCtrlBits (see
Section 4.4.9).

PhsLosThr
Address: 45h (Motor1)

8Eh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: Phase loss Current thershold = PhsLosThr / Iv_Iw_Scl [Amps peak]
where Iv_Iw_Scl is the Current Feedback Scaling (counts/Amp peak as given in the “Verify
& Save Page” of the MCEWizard).

Description: This parameter configures the phase loss detection current error threshold level. During
parking stage of drive startup, w-phase motor current is compared against anticipated current
levels to determine whether a phase loss (connection between inverter and motor) is
presented. If the absolute current error is larger than the threshold determined by PhsLosThr,
a phase loss fault is generated. (see section 4.4.24 IDiff_Fil for diagram)

UG#0609

IRMCx300 Reference Manual

www.irf.com 154

4.4.12 Single Shunt Write Register Group

ScsSamples
Address: F4h (Motor1)

FBh (Motor2)
Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the setup for adaptive current feedback sampling. In the region of

minimum pulse constraint (registers TCntMin3Phs or TCntMin2Phs), the frequency of
feedback sampling can be reduced (undersampling) in order to minimize the occurrence of
minimum pulse clamping. This is done to suppress audible noise for noise-sensitive
applications.

 Bits 0 – 3 FbkSampleRate

This value provides setup for feedback sampling rate in the region of minimum
pulse constraint, as follows:

Feedback sample rate = FbkSampleRate + 1 [Pwm cycles/feedback]

Bits 4 – 7 GainAtten

This value provides setup for current regulator gain attenuation, as follows:

Gain attenuation = 1/ (2 ^ GainAtten)

 Bits 8 – 15 Unused; set to 0.

 For instance, a value of 35 (00100011b) in ScsSamples implies 4 Pwm cycles/feedback and 4

times current regulator gain attenuation.

 In practice, the gain attenuation should be set equal to the number of Pwm cycles/feedback. It

is preferred to use a minimum possible value of Pwm cycles/feedback to satisfy an application
in terms of audible noise. The default setting of ScsSamples is 0 (1 PWM cycle/feedback).

SHDelay
Address: 4Bh (Motor1)

94h (Motor2)
Range: Unsigned input

1 – 1023
Reset value: 120

Scaling or Notation: Delay time = SHDelay / SysClk [usec.]
 where SysClk is the system clock frequency in MHz.
Description: This parameter specifies the hardware PWM gate propagation delay. It is measured from IC

gating output to the actual turn-on of the power-switching device. It is used by the
SINGLE_I_SHUNT module to schedule current sampling instants. In practice, the total
PWM gate propagation delay is dominated by gate driver IC for the 300 series reference
design platforms.

UG#0609

IRMCx300 Reference Manual

www.irf.com 155

TCntMin2Phs
Address: 49h (Motor1)

92h (Motor2)
Range: Unsigned input

3 – 1023
Reset value: 180

Scaling or Notation: Minimum pulse width = TCntMin2Phs / SysClk [usec.]
 where SysClk is the system clock frequency in MHz.
Description: This parameter specifies the minimum PWM pulse width to be used when 2-phase modulation

mode is allowed (bit field TwoPhsEnb in register TwoPhsCtrl; see Section 4.4.2).

 Figure 57 (c) and (d) illustrate minimum pulse clamping of a 2-phase modulation scheme.

TCntMin3Phs
Address: 4Ah (Motor1)

93h (Motor2)
Range: Unsigned input

3 – 1023
Reset value: 359

Scaling or Notation: Minimum pulse width = TCntMin3Phs / SysClk [usec.]
 where SysClk is the system clock frequency in MHz.
Description: This parameter specifies the minimum PWM pulse width to be used in 3-phase modulation

mode. Figure 57 (a) and (b) illustrate minimum pulse clamping of a 3-phase modulation
scheme.

UG#0609

IRMCx300 Reference Manual

www.irf.com 156

4.4.13 Start/Stop Sequencing Write Register Group

RetryOccurred
Address: 47h (Motor1)

90h (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = no retry; 1 = startup retry occurred
Description: The motor control startup sequencing is implemented outside the RTL in order to provide

sequencing flexibility. This status line (RetryOccured) signals the RTL that a startup retry has
occurred. Upon receiving this signal, the Sensorless FOC module will prohibit phase loss
detection. This is done to avoid nusance phase loss trip during retry where large parking
current (ParkIRet) may cause excessive motor shaft movement during parking.

TwoRetries
Address: 46h (Motor1)

8Fh (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = two retries have not yet occurred; 1 = two retries have occurred
Description: This status bit signals that two startup retries have occurred, primarily for use in the startup

retry function. Retry parking stage is identified by TwoRetries bit (Sensorless FOC block
input). When TwoRetries = 1, this signals the Sensorless FOC module to employe a different
set of parking configuration (ParkIRet, ParkTmRet), otherwise the normal configuration
(ParkI, Parktm) will be used.

IfbOffsetCalc
Address: 48h (Motor1)

91h (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = deactivate dc current adjustment; 1 = activate dc current adjustment
Description: Current feedback dc offset control line.

 During dc current adjustment (IfbOffsetCalc = 1), the motor feedback current will be

averaged. The average value is stored in register IfbOffset (see Section 4.4.25). This control
line should be deactivated as soon as the inverter run command is issued. When IfbOffsetcalc
= 1, 4096 samples of current feedback will be acquired and averaged. Each sample
corresponds to one PWM cycle time duration, therefore for lower inverter switching
frequency (longer PWM cycle time), the time require for current averaging will be longer.
For instance, (4096 x 0.1) msec will be required to accomplish current averaging for 10 KHz
inverter switching frequency. It is crucial to allow sufficient timing to finish current
averaging before running motor. If IfbOffsetcalc goes low before 4096 PWM cycles, the
averaging will be aborted. Motor Control sequencer should handle the sequencing of this
control line.

UG#0609

IRMCx300 Reference Manual

www.irf.com 157

4.4.14 Catch Spin Write Register Group

PllFreqLim
Address: 36h (Motor1)

7Fh (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the frequency limit of the PLL integral gain output. The relationship

between the actual frequency in Hz and this parameter is given by:

 Frequency limit = PllFreqLim x FreqPwm x FreqScl / 2^13

 where:
 A is the actual frequency in Hz;
 FreqPwm is the inverter pwm frequency in Hz; and

FreqScl is the frequency scaler, determined as:
if (Use4xFreqScl = 1) FreqScl = 4
else if (Use2xFreqScl = 1) FreqScl = 2
else FreqScl = 1

(Use4xFreqScl and Use2xFreqScl are bit fields of the MtrCtrlBits_S and MtrCtrlBits
registers, respectively. See Section 4.4.9. and Figure 79)

PllIntLim
Address: 3Ah (Motor1)

83h (Motor2)
Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the frequency limit of the PLL integral gain output during Catch-

Spin mode. The relationship between the actual frequency in Hz and this parameter is given
by:

 Frequency limit = PllIntLim x FreqPwm x FreqScl /2^13 [Hz]

 where:
 FreqPwm is the inverter pwm frequency in Hz; and

FreqScl is the frequency scaler, determined as:
if (Use4xFreqScl = 1) FreqScl = 4
else if (Use2xFreqScl = 1) FreqScl = 2
else FreqScl = 1

(Use4xFreqScl and Use2xFreqScl are bit fields of the MtrCtrlBits_S and MtrCtrlBits
registers, respectively. See Section 4.4.9 and Figure 79.)

Search_Ang
Address: 3Bh (Motor1)

84h (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = Skip searching for rotor angle;
 1 = Search for rotor angle before applying torque
Description: This control bit commands the Sensorless FOC to search for the rotor angle before enabling

torque. This is done to ensure smooth start into a spinning motor. In practice, the motor
control sequencer will issue this control bit at the very beginning of the run command if the
Catch-Spin function is enabled (CatchEnb bit in register MtrCtrlBits_S; see Section 4.4.9).
SearchAng bit is set and reset by a motor control sequencer (typically locate in 8051 code) to
allow implementation of Catch-Spin function. It affects MCE application layer of the
reference design and RTL (Sensorless FOC block) of the 300 series. The following describes
how SearchAng bit affects MCE application layer and the Sensorless FOC block.

UG#0609

IRMCx300 Reference Manual

www.irf.com 158

MCE Application layer

- The motor and regen limit are set to zero. These force a zero current command on Iq and Id. This
is the first stage of Catch-Spin, attempting to force zero motor current. When zero motor current is
forced, the motor inverter output voltage will match up with motor BEMF to achieve zero motor
current and synchronization between inverter voltage and motor BEMF.

- The Speed Ramp is preconditioned to SpdFbk (see diagram below). This is done to allow smooth

transfer when speed regulator is released for the forward catch case.

SearchAng

SearchAng bit in MCE application layer (reference design only)

SearhAng bit manipulation inside Sensorless FOC module (RTL) (see also Figure 79)

1) Parking_Done and Closed_Loop bits are affected by the SearchAng bit.

 Normally when SearchAng = 0 and drive start command issued (FOCEnable = 1), Parking_Done
is set when parking time (ParkTm) expires. And Closed-loop bit are set when estimated frequency
from PLL > WeThr (switchover frequency Threshold). However, when SearchAng = 1, both
Parking_Done and Closed-loop bit are immediately set to 1 and latched on. This is done to allow
Flux PLL to track flux immediately without going through parking and open-loop start.

2) PLL frequency integral limit is affected by SearchAng

UG#0609

IRMCx300 Reference Manual

www.irf.com 159

The output frequency of the PLL is normally (SearchAng = 0) limited to PllFreqLi (MCEWizard
default to 105% of max speed/frequency). However, when SearchAng =1, the maximum output
frequency will be limited by PllIntLim (MCEWizard defaults to 75% of rated motor frequency).
This is done to allow a faster angle search if user already know the possible catch speed range
under consideration. For instance, for an outdoor fan, the maximum catch speed is specify at +/-
400rpm and the fan rated speed is 1000 to 1200rpm, one can use a lower PllIntLim (say 60%)
value to allow a faster angle convergence. This implementation is shown in Figure 79.

 3) PLL output frequency protection is affected by SearchAng.

Normally (SearchAng = 0) if speed rotation command (rotation) is set to positive, the PLL output
frequency is protected to go opposite direction. Similarly, if speed rotation command is set to
negative, the PLL output frequency is protected to go opposite direction. When SearchAng = 1,
this PLL frequency protection is removed. It is done to allow forward and reverse catch-spin. For
instance in an outdoor fan, initially, one cannot determine whether speed is forward or reverse.
Therefore, one has to allow the PLL frequency to go both negative and positive to find the correct
frequency polarity. This implementation is also shown in Figure 79.

Zero_Vec_Req
Address: 3Ch (Motor1)

85h (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = Current regulator output limits (d and q) resumes normal value;
 1 = Current regulator output limits (d and q) are set to zero
Description: This control bit commands the Sensorless controller to issue zero output voltage (zero

modulation). When this register value is set high, the outputs of the current regulators (d-q)
are clamped to zero. When the register value is set low, the current regulator output limits
resume their normal values, determined by the settings of registers VdLim and VqLim (see
Section 4.4.5 and Figure 51).

UG#0609

IRMCx300 Reference Manual

www.irf.com 160

4.4.15 User Control Write Register Group

UserVabEn
Address: 4Ch (Motor1)

95h (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = Select Sensorless FOC to drive SVPWM input modulation
 1 = Select User_Alpha to drive SVPWM input modulation
Description: This parameter selects the SVPWM modulation input (see Figure 51).

UserVuvwEn
Address: 4Dh (Motor1)

96h (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = Select gating control from SVPWM;
 1 = Select gating control from duty ratio modulator.
Description: PWM pattern selector. Setting UserVuvwEn to 1 selects gating pattern generation from duty

ratio control. The built-in SVPWM will be bypassed and registers User_U, User_V and
User_W are used instead (see Figure 51).

User_Alpha
Address: 4Eh (Motor1)

97h (Motor2)
Range: Signed input

-32768 – 32767
Reset value: 0

Scaling or Notation: 2355 = 100% modulation
Description: This parameter provides the User Alpha (align with U phase) modulation index.

 The Space Vector modulator is normally driven by a modulation index generated by the

Sensorless FOC. When register UserVabEn = 1, users can bypass the Sensorless FOC and
drive Alpha and Beta modulation directly to the inputs of the SVPWM (see Figure 51). 100%
modulation provides inverter line-to-line theoretical rms output voltage of 2Vdc .

User_Beta
Address: 4Fh (Motor1)

98h (Motor2)
Range: Signed input

-32768 – 32767
Reset value: 0

Scaling or Notation: 2355 = 100% modulation
Description: This parameter provides the User Beta (Orthogonal to U phase) modulation index.

 The Space Vector modulator is normally driven by a modulation index generated by the

Sensorless FOC. When register UserVabEn = 1, users can bypass the Sensorless FOC and
drive Alpha and Beta modulation directly to the inputs of the SVPWM (see Figure 51). 100%
modulation provides inverter line-to-line theoretical rms output voltage of 2Vdc .

UG#0609

IRMCx300 Reference Manual

www.irf.com 161

User_U
Address: 50h (Motor1)

99h (Motor2)
Range: Unsigned input

0 – 65535
Reset value: 0

Scaling or Notation: U phase duty ratio = User_U / PwmPeriodConfig [duty ratio]
 where PwmPeriodConfig is the value of register PwmPeriodConfig (see Section 4.4.2).
Description: This parameter provides the User U-phase duty ratio control.

 The inverter-gating pattern is normally generated by the Space Vector Modulator (SVPWM).

By setting register UserVuvwEn = 1, users can bypass SVPWM and directly control u-phase
gating duty ratio (symmetrically centered) via User_U (see Figure 51).

User_V
Address: 51h (Motor1)

9Ah (Motor2)
Range: Unsigned input

0 – 65535
Reset value: 0

Scaling or Notation: V phase duty ratio = User_V / PwmPeriodConfig [duty ratio]
 where PwmPeriodConfig is the value of register PwmPeriodConfig (see Section 4.4.2).
Description: This parameter provides the User V-phase duty ratio control.

 The inverter-gating pattern is normally generated by the Space Vector Modulator (SVPWM).

By setting register UserVuvwEn = 1, users can bypass SVPWM and directly control v-phase
gating duty ratio (symmetrically centered) via User_V (see Figure 51).

User_W
Address: 52h (Motor1)

9Bh (Motor2)
Range: Unsigned input

0 – 65535
Reset value: 0

Scaling or Notation: W phase duty ratio = User_W / PwmPeriodConfig [duty ratio]
 where PwmPeriodConfig is the value of register PwmPeriodConfig (see Section 4.4.2).
Description: This parameter provides the User W-phase duty ratio control.

 The inverter-gating pattern is normally generated by the Space Vector Modulator (SVPWM).

By setting register UserVuvwEn = 1, users can bypass SVPWM and directly control w-phase
gating duty ratio (symmetrically centered) via User_W (see Figure 51).

UG#0609

IRMCx300 Reference Manual

www.irf.com 162

4.4.16 Field Weakening Control Write Register Group

IdRefExt
Address: 37h (Motor1)

80h (Motor2)
Range: Signed input

-16384 – 16383
Reset value: 0

Scaling or Notation: 4095 = 100 [% rated motor current]
Description: This parameter specifies the command d-axis motor current in normal operation (excluding

parking). The purpose of d-axis current control is to obtain optimal torque per ampere and
field-weakening control.

CriticalOv
Address: FEh (Motor1)

FFh (Motor2)
Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = deactivate; 1 = activate
Description: This signal activates zero vector (low side devices turn-on) PWM state independent of any

condition (including faults). This is particularly useful for implementing dc bus over voltage
protection in a non-regenerative drive application. The figure below illustrates a critical
overvoltage condition in the Field-Weakening range.

Inverter
shunt down

M
ot

or
 F

lu
x

Speed

M
ot

or
 V

ol
ta

ge

Inverter
voltage

Limit

Voltage
increase

Speed

UG#0609

IRMCx300 Reference Manual

www.irf.com 163

4.4.17 Protection Write Register Group

VdcRcp
Address: ECh Range: Unsigned input

0 – 5589
Reset value: 4096

Scaling or Notation: 4096 = Nominal dc bus
Description: This signal represents the reciprocal of dc bus voltage feedback. It can be used for current

regulator dc bus compensation. If dc bus compensation is enabled (bit IregCompEnb of
register MtrCtrlBits_S; see Section 4.4.9), the current regulator will use this signal to perform
dc bus compensation. Figure 80 shows how VdcRcp is calculated.

Figure 80. Calculation of VdcRcp

Note that the VdcRcp calculation is not implemented in the factory installed MCE program,
so dc bus compensation will not work. The diagram below shows an implementation of dc
bus compensation in Simulink (with all the other connections and blocks stripped away).

One final consideration for robust and effective DC Bus compensation is that the Vdc_Fbk
input to the FOC must be the same signal as the one used to create the input to VdcRcp. In
this example, DC_BUS_VOLTS should be connected to Vdc_Fbk.

UG#0609

IRMCx300 Reference Manual

www.irf.com 164

Vdc_Fbk
Address: E9h (Motor1)

EDh (Motor2)
Range: Unsigned input

0 – 4095
Reset value: 0

Scaling or Notation: See description.
Description: Filtered (0.25 to 0.5 msec time constant) Dc bus voltage feedback. This is the filtered version

of the raw dc bus voltage feedback. It is used by the Sensorless motor controller for motor
phase voltage reconstruction (modulation index and dc bus voltage). Normally, this should be
driven by DcBusVoltsFilt of the dc bus feedback module output of the MCE.

 Scaling: Dc bus feedback = Vdc_Fbk / VdcScl [Volts]

 where VdcScl is the dc bus scaling in digital counts per volt. VdcScl relates the actual

voltage to the raw A/D counts. VdcScl (“DC Bus feedback Scaling”) is entered in the
MCEWizard.

DcBusOvLevel
Address: 08h Range: Unsigned input

0 – 255
Reset value: 210

Scaling or Notation: Dc bus over voltage trip level = DcBusOvLevel × 16 / VdcScl [volts]
 where VdcScl is the dc bus scale (entered as “dc bus Scale” in the MCEWizard) in counts per

volt.
Description: This parameter defines the dc bus over voltage trip level. A dc bus over voltage fault will be

generated if dc bus voltage exceeds this threshold. Refer to the description of the FaultFlags
register in Section 4.4.20 for more information.

DcBusLvLevel
Address: 09h Range: Unsigned input

0 – 255
Reset value: 61

Scaling or Notation: Dc bus under voltage trip level = DcBusLvLevel ×16 / VdcScl [volts]
 where VdcScl is the dc bus scale (entered as “dc bus Scale” in the MCEWizard) in counts per

volt.
Description: This parameter defines the dc bus under voltage trip level. A dc bus under trip voltage fault

will be generated if dc bus voltage falls below this threshold. Refer to the description of the
FaultFlags register in Section 4.4.20 for more information.

UG#0609

IRMCx300 Reference Manual

www.irf.com 165

4.4.18 External Signals Write Register Group

ExtFwdAngle
Address: F1h (Motor1)

F8h (Motor2)
Range: Unsigned input

0 – 4095
Reset value: 0

Scaling or Notation: 1024 = 90 [Degs]
Description: This parameter provides an angle sum into the forward rotating angle (can be set to zero by

gain adjustment) of the current regulator. Users have the flexibility of providing their own
angle calculation for improved controller performance. The ability to employ an external
angle also provides the flexibility of implementing Field-Oriented Control for various types of
rotating field motors.

ExtRevAngle
Address: F0h (Motor1)

F7h (Motor2)
Range: Unsigned input

0 – 4095
Reset value: 0

Scaling or Notation: 1024 = 90 [Degs]
Description: This parameter provides an angle sum into the reverse rotating angle (can be set to zero by

gain adjustment) of the current regulator. Users have the flexibility of providing their own
angle calculation for improved controller performance. The ability to employ an external
angle also provides the flexibility of implementing Field-Oriented Control for various types of
rotating field motors.

Ext_Flx_Alpha, Ext_Flx_Beta
Address: Ext_Flx_Alpha:

F2h (Motor1)
F9h (Motor2)
Ext_Flx_Beta:
F3h (Motor1)
FAh (Motor2)

Range: Signed input
-32768 – 32767

Reset value: 0

Scaling or Notation: 5000 = rated motor flux [Volt-sec]
Description: The Sensorless FOC block calculates estimated fluxes (Alpha and Beta pair) internally.

These internally generated fluxes can be replaced by external fluxes (Ext_Flx_Alpha and
Ext_Flx_Beta). This allows users to substitute appropriate fluxes for implementing Field-
Oriented Control of various types of rotating field motors. Setting UseExtFlux = 1 selects
these external fluxes. (UseExtFlux is a bit field of register MtrCtrlBits_S; see Section 4.4.9.)

UdFeedFwd
Address: EFh (Motor1)

F6h (Motor2)
Range: Signed input

-2048 – 2047
Reset value: 0

Scaling or Notation: 1430 = 100 [% modulation]
Description: This parameter provides d-axis modulation feedforward. This signal sums into the output of

the d-axis current regulator.

 100% modulation corresponds to the maximum achievable value of the SVPWM linear range.

The corresponding theoretical rms motor line voltage at 100% modulation is 2Vdc .

UG#0609

IRMCx300 Reference Manual

www.irf.com 166

UqFeedFwd
Address: EEh (Motor1)

F5h (Motor2)
Range: Signed input

-2048 – 2047
Reset value: 0

Scaling or Notation: 1430 = 100 [% modulation]
Description: This parameter provides q-axis modulation feedforward. This signal sums into the output of

the q-axis current regulator.

 100% modulation corresponds to the maximum achievable value of the SVPWM linear range.

The corresponding theoretical rms motor line voltage at 100% modulation is Vdc / sqrt (2).

UG#0609

IRMCx300 Reference Manual

www.irf.com 167

4.4.19 PFC Control Write Register Group

PFC_Ctrl
Address: 9Ch Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This parameter controls the operation of the PFC.

 Bit 0 Unused; set to 0
 Bit 1 PFCGateSense
 0 = low true gating convention
 1 = high true gating convention
 Bit 2 PFCGKReset
 0 = allow the PFCGateKill fault to be latched
 1 = clear the latched PFCGateKill fault
 Bit 3 Reserved; must be set to 1
 Bits 4 – 15 Unused; set to 0

When a PFC over current GateKill fault occurs, the PFC PWM output is disabled
immediately, regardless of the setting of the PFCGKReset bit. When PFCGKReset is set to 0,
it allows the PFCGateKill fault to be latched for further diagnosis and processing, even if the
PFC current itself has reduced to below the threshold level. When PFCGKReset is set to 1,
the latched PFCGateKill fault is cleared.

GkillFiltCnt_PFC
Address: 9Dh Range: Unsigned input

0 – 255
Reset value: 59

Scaling or Notation: See description.
Description: This parameter specifies the PFC GateKill Filter delay, given by:

 GkillFiltCnt_PFC (in digital counts) = (SysClk * DelayTime) – 1

 where SysClk is the system clock frequency in MHz and DelayTime is in μsec.

PFCPwmPeriod
Address: 9Eh Range: Unsigned input

0 – 65535
Reset value: 416

Scaling or Notation: See description.
Description: This parameter specifies the PFC PWM carrier frequency. The register value can be

calculated by:

 PFCPwmPeriod = 1000 * SysClk / (2 * PFC PWM Carrier Frequency) – 1

 where SysClk is the system clock frequency in MHz and the PFC PWM carrier frequency is

in kHz.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 168

Iref
Address: 9Fh Range: Unsigned input

0 – 2047
Reset value: 0

Scaling or Notation: 2047 = Maximum IPFC [Amps]
Description: This parameter provides the reference command of PFC current loop. This signal is normally

obtained from the PFC multiplier that produces the reference command to the current loop. It
is the responsibility of the hardware designer to ensure that maximum IPFC corresponds to an
Iref value of 2047.

PFC_OffsetDC
Address: A0h Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: See description.
Description: This parameter represents the manual offset on DC bus voltage Vdc. It is used to instantly

compare Vdc and AC input voltage Vin in order to generate the ShutDown signal. The value
is given by:

 PFC_OffsetDC = Vdc_Compare – Vdc_ADC

 where Vdc_ADC is the ADC feedback result of Vdc (in the range 0 – 4095), and

Vdc_Compare is the actual signal used for the comparison.

PFC_OffsetVin
Address: A1h Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: See description.
Description: This parameter represents the Manual offset on AC input voltage Vin. It is used to instantly

compare Vdc and Vin in order to generate the ShutDown signal. The value is given by:

 PFC_OffsetVin = Vin_Compare – 2 * Vin_ADC

 where Vin_ADC is the ADC feedback result of AC input voltage Vin (an absolute value, or

rectified half-wave input voltage, in the range 0 – 2047), and Vin_Compare is the actual
signal used for the comparison.

Blanking_Gap
Address: A2h Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: 1 count = (1 / 4095) * Maximum Vdc [Volt]
Description: This parameter defines the hysteresis gap for instantly comparing Vdc and Vin. It is the

responsibility of the hardware designer to ensure that Maximum Vdc corresponds to a count
of 4095. Typically, Vdc = 492V matches a count of 4095, and Blanking_Gap is set to be
around 50 counts. See Section 4.3.8.2 for detailed information on how this register is used.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 169

CountOneSet
Address: A3h Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: See description.
Description: In the PFCPWM Blanking function of the PFC_PWM block, once the Shutdown signal is

asserted to High, the PWM output is disabled immediately. This parameter provides a
minimum limit of the time width during which the Shutdown signal will stay at High. The
actual time width (in msec) is given by:

 TimeWidth = CountOneSet / PFC_PWM Carrier Frequency

 where the PFC_PWM Carrier Frequency is in kHz.

CountTwoSet
Address: A4h Range: Unsigned input

0 – 255
Reset value: 0

Scaling or Notation: See description.
Description: This parameter sets up a filter delay for the PFC current feedback signal, which is used in the

PFCPWM Blanking function of the PFC_PWM block. Recommend values for CountTwoSet
are between 3 and 5. See Section 4.3.8.2 for detailed information on how this register is
used.The actual delay time (in msec) is given by:

 DelayTime = CountTwoSet / PFC_PWM Carrier Frequency

 where the PFC_PWM Carrier Frequency is in kHz.

VcPFC
Address: A6h Range: Unsigned input

0 – 65535
Reset value: 0

Scaling or Notation: See description.
Description: This parameter specifies the PFC PWM duty cycle command. The value represents the PFC

PWM duty cycle (ratio of switch ON time over switching period) with respect to the value of
register PFCPwmPeriod, as follows:

% Duty Cycle = (VcPFC / PFCPwmPeriod) * 100.

This value is normally generated from the PFC control loop, which is implemented in the
MCE microprocessor.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 170

PFCEnable
Address: A7h Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: 0 = Disable PFC PWM output and enable offset correction of PFC current feedback;
 1 = Enable PFC PWM output and disable offset correction of PFC current feedback.

Description: This parameter, in combination with the ShutDown signal, enables or disabled the PFC PWM

output. (The ShutDown signal is generated internally to the PFC Blanking module of the
PFC_PWM block. See register ShutDown, Section 4.4.26.) When PFCEnable is set to 1,
PFC PWM output is enabled if ShutDown is 0. When PFCEnable is set to 0, PFC PWM
output is disabled regardless of the value of ShutDown.

 The PFCEnable register also enables and disables the offset correction of PFC current

feedback, as follows: When PFCEnable is set to 1, offset correction is disabled; when
PFCEnable is set to 0, offset correction is enabled. Note that offset correction of PFC current
feedback should only be conducted under no load conditions.

GKSense_PFC
Address: A8h Range: Boolean input

0 or 1
Reset value: 0

Scaling or Notation: See description.
Description: This parameter sets the logic sense of the PFC gate kill fault, as follows:

0 = If the IC’s PGateKill pin becomes 0, the GateKill fault occurs and the PFC PWM is
disabled instantly. (This setting is used for most designs.)

1 = If the IC’s PGateKill pin becomes 1, the GateKill fault occurs, and the PFC PWM is
disabled instantly.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 171

PFC_sync_divider
Address: A9h Range: Unsigned input

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This parameter configures PFC synchronization and phasing.

 Bits 0 – 3 PFCSyncRatio

This parameter provides a ratio between the PFC PWM carrier frequency and
the PFC A/D sampling frequency (which is also the PFC control loop execution
rate), as follows:

PFC_A/D Sampling Freq. = PFC_PWM Carrier Freq. / (PFCSyncRatio + 1)

PFCSyncRatio can have values in the range 0 – 15.

 Bits 4 – 7 PFCPhasing
This parameter determines the phase of the PFC A/D sampling period relative to
the master PWM sync pulse. (The master is configured using register
PwmMasterSel, Section 4.4.1.) The value of PFCPhasing specifies the number
of cycles PFC A/D sampling is delayed following the master motor control sync
pulse. As an example, assume the following settings:

• PwmMasterSel it set to 0, selecting Motor 1 as the master;
• Motor 1 PWM frequency is 5 KHz and PFC PWM frequency is 40

KHz, so that a Motor 1 sync pulse occurs on every eigth PFC PWM
cycle.

• PFCSyncRatio is set to 3, configuring PFC A/D sampling on every
fourth PFC PWM cycle (10 KHz).

Then, if PFCPhasing is set to 0, PFC A/D sampling is synchronized to the Motor
1 sync pulse. If PFCPhasing is set to 1, PFC A/D sampling is delayed one cycle
following the Motor 1 sync pulse, and so on. Figure 81 illustrates the timing of
PFC A/D sampling when PFCPhasing is set to 2.

The PFC A/D sampling frequency should be a multiple of the master frequency.
If it is not, then the actual A/D frequency will not be correct and the phase
relative to Motor 1 will not be predictable. One final constraint when using the
phasing is that the value of PFCPhasing must be less than (PFCSyncRatio + 1),
or else the PFC will not run at all.

 Bits 8 – 15 Unused; set to 0

Figure 81. PFCPhasing Example

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 172

4.4.20 System Read Register Group

pwm_lines
Address: B4h Range: Unsigned output

with bit field definitions
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides internal PWM Gating bits. The IC PWM output pins are related to

these bits as configured using registers port_ctrl0 and port_ctrl1 (see Section 4.4.1). (Note
that Motor1 bit order is correct as listed below.)

 Motor1 Motor2

Bit 7 Bit 0 PWMUH U phase high side output
Bit 6 Bit 1 PWMUL U phase low side output
Bit 8 Bit 2 PWMVH V phase high side output
Bit 9 Bit 3 PWMVL V phase low side output
Bit 10 Bit 4 PWMWH W phase high side output
Bit 11 Bit 5 PWMWL W phase low side output

Bit 12 PWMPFC PFC gating
Bits 13 – 15 Unused

AIN1, AIN2, AIN3, AIN4, AIN5, AIN6
Address: ABh (AIN1) –

B0h (AIN6)
Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: 0 – 1.2V maps to 0 – 4095 digital counts
Description: A/D converter raw output for IC pin inputs AIN1 – AIN6. These signals are sampled once

every six PWM cycles of Motor 1. AIN2 – AIN6 are not available on the IRMCx311.

AIN_TEST
Address: B1h Range: Unsigned output

0 – 4095
Reset value: undefined

Description: This register is reserved for future use.

DcBusVolts_DG
Address: B5h Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: DC bus voltage = DcBusVolts_DG / VdcScl [Volts]
where VdcScl is the dc bus scaling in digital counts per volt. VdcScl relates the actual
voltage to the raw A/D counts. VdcScl is an entry (“dc bus Scale”) in the MCEWizard.

Description: This register provides synchronized dc bus voltage feedback. This signal is synchronized to

PWM cycle data transfer. It is generated from DcBusVolts (see Section 4.4.22).

DcBusVoltsFilt
Address: B2h Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: Dc bus voltage = DcBusVoltsFilt / VdcScl [Volts]
where VdcScl is the dc bus scaling in digital counts per volt. VdcScl relates the actual
voltage to the raw A/D counts. VdcScl is an entry (“dc bus Scale”) in the MCEWizard.

Description: This register provides filtered (0.492 msec time constant) dc bus voltage feedback. This is the
filtered version of the raw dc bus voltage feedback (see register DcBusVolts in Section
4.4.22).

UG#0609

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 173

FaultFlags
Address: B3h Range: Unsigned output

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This register provides drive fault status. Most faults are handled outside the Faults module by

a fault handling routine (2 msec execution rate on the 8051 processor) with the exception of
Gate Kill faults. Gate Kill faults are handled within the Faults module and will instantly
initiate inverter and regulator shutdown.. The FaultFlags register indicates currently pending
fault conditions. The FaultClear register (Section 4.4.1) is used to reset fault conditions.

 For all bit fields defined below, a value of 1 indicates that the corresponding fault condition is

pending.

Bit 0 OvFault dc bus over voltage trip fault. For more information, refer to
Section 4.4.17 (DcBusOvLevel) and 4.4.1 (bit DcMonitorEn
in registesr syscfg).

Bit 1 LvFault dc bus under voltage trip fault. For more information, refer to
Section 4.4.17 (DcBusLvLevel) and 4.4.1 (bit DcMonitorEn in
registesr syscfg).

Bit 2 PwmSyncErr Pwm synchronization error fault. This fault indicates that
Motor 1, 2 and PFC are out of synchronization. Values for
registers PwmPeriodConfig (Section 4.4.2) and
PFCPwmPeriod (Section 4.4.19) must be calculated correctly
to achieve PWM synchronization. Refer to Section 4.4.1
(PwmSyncEnb) for more information.

Bit 3 PFCGateKill PFC Gate Kill fault. Refer to Section 4.4.19
(GkillFiltCnt_PFC) for more information.

Bit 4 GateKill_2 Motor 2 Gate Kill fault. Refer to Section 4.4.2 (GkillFiltCnt)
for more information.

Bit 5 Unused (reserved)
Bit 6 PhsLossFlt_2 Motor 2 phase loss fault. Refer to Sections 4.4.11

(PhsLosThr) and 4.4.9 (bit PhsLosDisable in register
MtrCtrlBits) for more information.

Bit 7 ZeroSpdFlt_2 Motor 2 zero speed fault. Refer to Sections 4.4.6 (Min_Spd)
and 4.4.9 (bit ZeroSpdDisable in register MtrCtrlBits) for
more information.

Bit 8 GateKill_1 Motor 1 Gate Kill fault. Refer to Section 4.4.2 (GkillFiltCnt)
for more information.

Bit 9 Unused (reserved)
Bit 10 PhsLossFlt_1 Motor 1 phase loss fault. Refer to Sections 4.4.11

(PhsLosThr) and 4.4.9 (bit PhsLosDisable in register
MtrCtrlBits) for more information.

Bit 11 ZeroSpdFlt_1 Motor 1 zero speed fault. Refer to Sections 4.4.6 (Min_Spd)
and 4.4.9 (bit ZeroSpdDisable in register MtrCtrlBits) for
more information.

Bit 12 MCEFlt The MCE has generated a fault condition.
Bits 13 – 15 Unused (reserved)

UG#0609

IRMCx300 Reference Manual

www.irf.com 174

4.4.21 System Status Read Register Group

StatusFlags
Address: C8h (Motor1)

DBh (Motor2)
Range: Unsigned output

with bit field definitions
Reset value: 0

Scaling or Notation: See description.
Description: This register provides status of the motor controller.

 Bit 0 TwoPhsEnable
 0 Two phase modulation is not enabled
 1 Two phase modulation is enabled
 Bit 1 FocEnable
 0 Field-Oriented Control regulators are not enabled
 1 Field-Oriented Control regulators are enabled
 Bit 2 PwmEnable
 0 PWM gatings are not enabled
 1 PWM gatings are enabled
 Bit 3 ClosedLoop
 0 Closed-loop mode is not enabled
 1 Closed-loop mode is enabled
 Bit 4 ParkingDone
 0 Parking stage is not complete.
 1 Parking done; Parking stage has been accomplished.
 Bit 5 ParkingOne

 0 First stage of Parking is not complete
 1 First stage (25% of the total parking duration) of Parking has been

accomplished
 Bit 6 StartFail
 0 No startup failure
 1 Startup has failed (latched until drive restart occurs).
 Bit 7 StartOk
 0 Startup in progress or drive stopped
 1 Startup has succeeded (cleared whenever drive stops)
 Bits 8 – 15 Unused

UG#0609

IRMCx300 Reference Manual

www.irf.com 175

4.4.22 DC Bus Voltage Read Register Group

DcBusVolts
Address: E4h Range: Unsigned output

0 - 4095
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides dc bus voltage feedback.

 Scaling: Dc bus voltage = DcBusVolts / VdcScl [Volts]

 where VdcScl is the dc bus scaling in digital counts per volt. VdcScl relates the actual

voltage to the raw A/D counts. VdcScl is an entry (“dc bus Scale”) in the MCEWizard.

 The value of this register can be traced in MCEDesigner under the name DC_BUS_VOLTS.

UG#0609

IRMCx300 Reference Manual

www.irf.com 176

4.4.23 FOC Diagnostic Data Read Register Group

Di
Address: C0h (Motor1)

D3h (Motor2)
Range: Signed output

-16384 – 16383
Reset value: undefined

Scaling or Notation: 4095 = rated motor current [Amps]
Description: This register provides flux current (d-axis) feedback. This signal is reconstructed from single

current shunt current feedback.

Dv
Address: C2h (Motor1)

D5h (Motor2)
Range: Signed output

-2048 – 2047
Reset value: undefined

Scaling or Notation: 1430 = 100 [% modulation]
Description: This register provides d-axis command modulation index (output of d-axis current regulator).

Flx_Alpha
Address: BCh (Motor1)

CFh (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: 5000 = 100 [% rated flux]
Description: This register provides estimated motor flux of Alpha axis. This signal is calculated by the

flux estimator. At speeds less than 5% rated, the estimated flux amplitude will start to
decrease gradually. This is a consequence of the transfer characteristics of the flux estimator
to reject dc offset.

Flx_M
Address: BBh (Motor1)

CEh (Motor2)
Range: Unsigned output

0 – 8191
Reset value: undefined

Scaling or Notation: % rated flux =
MuntsRatedFlxCo

MFlx
××

×
647.1

16_ x 100 [%]

 where: RatedFlxCounts = 5000 (default of MCEWizard)
 if (Use4xMagScl = 1) M = 4
 Elseif (Use2xMagScl = 1) M = 2
 Else M = 1

Description: This signal represents the fundamental flux amplitude. (see Figure 79 for the generation of

Flx_M).

I_Alpha
Address: BEh (Motor1)

D1h (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides Alpha phase current of the Alpha-Beta orthogonal frame (Alpha

aligned with u-phase). This current is calculated from the dc bus link current feedback.

 The scaling of this variable depends on the analog gain setup of the current feedback path

(“Current Amp. gain” setting in the MCEWizard). Ai_Bi_scale (“Ai Bi scale” setting in the
MCEWizard) specifies 8-times scaling in digital counts/Amps peak for this variable.

 Scaling = 8 * Ai_Bi_scale [digital counts/Amps peak]

UG#0609

IRMCx300 Reference Manual

www.irf.com 177

I_Beta
Address: BFh (Motor1)

D2h (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides Beta phase current of the Alpha-Beta orthogonal frame (Alpha aligned

with u-phase). This current is calculated from the dc bus link current feedback.

 The scaling of this variable depends on the analog gain setup of the current feedback path

(“Current Amp. gain” setting in the MCEWizard). Ai_Bi_scale (“Ai Bi scale” setting in the
MCEWizard) specifies 8-times scaling in digital counts/Amps peak for this variable.

 Scaling = 8 * Ai_Bi_scale [digital counts/Amps peak]

IdRef_C
Address: C5h (Motor1)

D8h (Motor2)
Range: Signed output

-16384 – 16383
Reset value: undefined

Scaling or Notation: 4095 = 100 [% rated motor current]
Description: This register provides d-axis command current. This is the current command being used by

the d-axis current regulator.

IqRef_C
Address: C4h (Motor1)

D7h (Motor2)
Range: Signed output

-16384 – 16383
Reset value: undefined

Scaling or Notation: 4095 = 100 [% rated motor current]
Description: This register provides q-axis command current. This is the current command being used by

the q-axis current regulator.

Qi
Address: C1h (Motor1)

D4h (Motor2)
Range: Signed output

-16384 – 16383
Reset value: undefined

Scaling or Notation: 4095 = 100 [% rated motor Amps]
Description: This register provides torque current (q-axis) current feedback.

Qv
Address: C3h (Motor1)

D6h (Motor2)
Range: Signed output

-2048 – 2047
Reset value: undefined

Scaling or Notation: 1430 = 100 [% modulation]
Description: This register provides q-axis command modulation (output of q-axis current regulator).

RotatorAngle
Address: C6h (Motor1)

D9h (Motor2)
Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: 1024 = 90 [Deg.]
Description: This is the estimated rotor angle. It is used for the Field-Oriented control reference frame.

UG#0609

IRMCx300 Reference Manual

www.irf.com 178

V_Alpha
Address: BDh (Motor1)

D0h (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides Alpha motor phase voltage. This signal is constructed by dc bus

voltage feedback and modulation index (input of SVPWM).

 The scaling of this signal depends on motor parameters and application settings and is entered

in the MCEWizard (“V_Alpha Scale”).

IfbV
Address: B9h (Motor1)

CCh (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides reconstructed motor phase V current (offset eliminated). This current

is calculated from the dc bus link current feedback, sampled on every PWM cycle of the
corresponding motor (motor 1 or motor 2).

 The scaling of this variable depends on the analog gain setup of the current feedback path

(“Current Amp. gain” entry in the MCEWizard). The entry “Ai Bi scale” in the MCEWizard
specifies the scaling in digital counts/Amps peak for this variable.

IfbW
Address: BAh (Motor1)

CDh (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides reconstructed motor phase W current (offset eliminated). This current

is calculated from the dc bus link current feedback, sampled on every PWM cycle of the
corresponding motor (motor 1 or motor 2).

 The scaling of this variable depends on the analog gain setup of the current feedback path

(“Current Amp. gain” entry in the MCEWizard). The entry “Ai Bi scale” in the MCEWizard
specifies the scaling in digital counts/Amps peak for this variable.

SpdFbk
Address: C7h (Motor1)

DAh (Motor2)
Range: Signed output

-16384 – 16383
Reset value: undefined

Scaling or Notation: 16383 = MaxRpm [rpm]
 where MaxRpm is the maximum application speed (entry “Max RPM” in the MCEWizard).
Description: This register provides filtered (typically 3 to 7 msec) motor speed. This signal is generated

by write register MotorSpeed (Section 4.4.6). It is synchronously sampled to coordinate with
other output signals (Alpha-Beta currents).

UG#0609

IRMCx300 Reference Manual

www.irf.com 179

4.4.24 Velocity Status Read Register Group

Rtr_Freq
Address: B7h (Motor1)

CAh (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: See description.
Description: This register provides estimated unfiltered rotor electrical frequency. The rotor electrical

frequency is the same as the stator fundamental frequency for synchronous motors.

 Rotor electrical frequency = Rtr_Freq * FreqPwm * FreqScl / 2^20 [Hz]

 where:
 FreqPwm is the inverter pwm switching frequency in Hz; and

FreqScl is the frequency scaler, determined as:
if (Use4xFreqScl = 1) FreqScl = 4
else if (Use2xFreqScl = 1) FreqScl = 2
else FreqScl = 1

(Use4xFreqScl and Use2xFreqScl are bit fields of the MtrCtrlBits_S and MtrCtrlBits
registers, respectively. See Section 4.4.9.)

IDiff_Fil
Address: B8h (Motor1)

CBh (Motor2)
Range: Unsigned output

0 - 4095
Reset value: undefined

Scaling or Notation: Parking current error = IDiff_Fil × / Ai_Bi_Scl [Amps peak]
 where Ai_Bi_Scl is the current scaling (counts/Amp peak calculated (AiBiScale) and

displayed in the MCEWizard).
Description: This register provides absolute parking current error for Phase Loss detection. This signal

represents the absolute current error between anticipated w-phase current (calculated from
parking current and the actual w-phase feedback current. During parking, if the anticipated w-
phase current should match up with the actual w-phase current at the end of the parking
duration. If the absolute difference is larger than a certain threshold (PhsLosThr), phase loss
is assumed. This register is output for diagnostic purposes. Diagram below shows how
IDiff_Fil is calculated.

UG#0609

IRMCx300 Reference Manual

www.irf.com 180

4.4.25 Current Feedback Offset Read Register Group

Id_Decoupler
Address: EAh (Motor1)

EBh (Motor2)
Range: Signed output

-16384 – 16383
Reset value: undefined

Scaling or Notation: 4095 = 100 [% rated motor current]
Description: This register provides d-axis Current Decoupler output. The Current Decoupler provides the

optimal current angle for maximum torque per ampere control. In practice, IdRefExt input
(see Section 4.4.16) should include Id_Decoupler.

IfbOffset
Address: B6h (Motor1)

C9h (Motor2)
Range: Signed output

-32768 – 32767
Reset value: undefined

Scaling or Notation: See description
Description: This register provides current feedback dc offset compensation. The scaling of this variable

depends on the analog gain setup of the current feedback path (“Current Amp. gain” in the
MCEWizard). The entry “Ai Bi scale” in the MCEWizard specifies the scaling in digital
counts/Amps peak for this variable.

UG#0609

IRMCx300 Reference Manual

www.irf.com 181

4.4.26 PFC Status Read Register Group

V_IN
Address: DCh Range: Unsigned output

0 – 2047
Reset value: undefined

Scaling or Notation: See description.
Description: This parameter provides the A/D feedback signal of AC input voltage, as an absolute value, or

rectified half-wave AC input voltage. The following table shows how the input voltage
correlates to values of the V_IN register.

ADC Input Voltage V_IN Digital Count

0 V 2047
0.3 V 1023
0.6 V 0
0.9 V 1023
1.2 V 2047

 This register can be traced in MCEDesigner under the name VPFC_REC.
VinSense
Address: DDh Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: See description.
Description: This parameter provides the A/D feedback signal of the bi-polar AC input voltage, shifted by

the average value to remove offset. The RawVinSense signal is averaged and shifted so that
the average corresponds to 2048 (the midpoint of the A/D range).

 This register can be traced in MCEDesigner under the name VPFC_AC.

RawVinSense
Address: DEh Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: See description.
Description: This parameter provides the raw A/D feedback signal of the AC input voltage, as a bi-polar

value, or bi-polar full-wave AC input voltage. The following table shows how the input
voltage correlates to values of the RawVinSense register.

ADC Input Voltage RawVinSense Digital Count

0 V 0
0.3 V 1023
0.6 V 2048
0.9 V 3071
1.2 V 4095

I_IN
Address: E0h Range: Unsigned output

0 – 2047
Reset value: undefined

Scaling or Notation: See description.
Description: This parameter provides the A/D feedback signal of AC input current. In order to achieve the

correct current feedback, the IPFC operational amplifier must be set up for inverting input.
The following table shows how the input voltage correlates to values of the I_IN register.

ADC Input Voltage V_IN Digital Count

0 V 2047
0.3 V 1023

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 182

0.6 V 0

> 0.6 V
0

(the sensed PFC current is uni-directional)

 This register can be traced in MCEDesigner under the name IPFC.

ShutDown
Address: E5h Range: Boolean output

0 or 1
Reset value: undefined

Scaling or Notation: 0 = PFC PWM output is enabled; 1 = PFC PWM output is disabled.
Description: This parameter is an output signal of the PFC_PWM block’s Blanking module. ShutDown,

together with the PFCEnable input (Section 4.4.19), enables or disables the PFC PWM
output. When Shutdown is 0, PFC PWM output is enabled if PFCEnable is set to 1. When
ShutDown is 1, PFC PWM output is disabled regardless of the value of PFCEnable. For
detailed information on the setting and clearing of Shutdown, see Section 4.3.8.2.

 This output can be used in an MCE design or 8051 application code to enable, disable or reset

the PFC control loop (voltage, current, etc.).

PfcOffsetV
Address: E6h Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: 1 count = (1 / 4095) * Maximum Vdc [Volt]
Description: This parameter provides the offset digital count of AC input voltage feedback,

corresponding to the range of Vdc ADC feedback digital count (0 – 4095). It is the
responsibility of the hardware designer to ensure that Maximum Vdc corresponds to a count
of 4095. Typically, Vdc = 492V matches a count of 4095.

PfcOffsetI
Address: E7h Range: Unsigned output

0 – 4095
Reset value: undefined

Scaling or Notation: 2047 = Maximum IPFC [Amps]
Description: This parameter provides the offset digital count of AC input current feedback. It is the

responsibility of the hardware designer to ensure that maximum IPFC matches the value of
2047 in PfcOffsetI.

UG#0609

IRMCx300 Reference Manual

www.irf.com 183

5 8051 / MCE Interface
This section describes the methods by which the 8051 processor and MCE communicate. This communication can
be divided into three categories:

• Shared RAM
• MCE motion peripheral configuration register interface
• Interrupts from the MCE to the 8051

5.1 The Shared RAM
The IRMCF300 contains 8192 bytes of RAM, all of which is accessible to both the 8051 processor and the MCE.
(The IRMCF300 also contains 48K bytes of 8051 private program RAM for software development, described in
Section 1.2.) From the 8051 processor, the shared RAM is accessed as external data RAM at address range 0xE000
– 0xFFFF. The shared RAM is logically divided into three regions:

• MCE data RAM
• MCE program RAM
• 8051 data RAM

Typically 512 bytes are allocated for MCE data. These locations are used for MCE private storage and for
information passed between the MCE and the 8051. Both the 8051 and the MCE access this area of RAM for
reading and writing.

Up to an additional 5632 bytes are allocated for MCE instruction (program) space. The hardware loads the MCE
program into this area of RAM at power up (as described in Section 2). The 8051 does not read or write this area of
RAM.

The upper 2k bytes of RAM are available for 8051 data storage. The MCE does not access this area.

The boundaries between the three sections of RAM are dynamic and determined by the MCE compiler at
compilation time. The compiler always reserves 512 bytes for MCE data at address 0xE000, beginning the MCE
program at address 0xE200. Depending on the size of the MCE application program, the compiler may allocate less
than the allotted 5632 bytes for MCE program, in which case more memory could be used for 8051 data RAM. For
example, if the MCE program is smaller than 3584 bytes, 8051 data could begin at address 0xF000 instead of
0xF800. The 8051 data space is defined in the 8051 compiler used to generate the code (in Keil uVision, it is found
in “Options for Target”). Note that the compiler displays the total MCE program size in words, so the displayed size
must be multiplied by two to determine the program size in bytes.

5.1.1 Reading and Writing Shared RAM
The MCE is based on 16-bit processing. All of its memory accesses are on 16-bit boundaries and it always reads
and writes 16-bit words. However, the 8051 is an 8-bit processor and reads and writes only 8-bit words. This could
potentially lead to a race hazard when the two processors access shared RAM, since the 8051 requires two memory
accesses to read or write a 16-bit word. The 8051 could potentially read the first byte of a word and the MCE could
modify the word before the 8051 reads the second byte, resulting in corrupted data.

To prevent data corruption in shared RAM when reading and writing 16-bit values, special hardware assistance is
implemented using an extension register defined as a group of 8051 special function registers (SFRs). Whenever an
8051 application reads or writes a 16-bit or 32-bit value that is shared with the MCE processor, it should use this
special “coherent data” mechanism to insure data integrity. This mechanism need not be used for 8-bit accesses or
when the 8051 is accessing data in shared RAM that is not shared with the MCE.

The coherent data mechanism also allows 32-bit reads and writes to be performed from the 8051 processor without
data corruption. However, all MCE shared data is defined as 16-bit values so this operation is not described here.

UG#0609

IRMCx300 Reference Manual

www.irf.com 184

MCE COHERENT DATA (MCECD0, MCECD1, MCECD2, MCECD3)
Address: E9h (MCECD0),

EAh (MCECD1),
EBh (MCECD2,
ECh (MCECD3)

Not Bit Addressable Reset value: 00000000b

Since the MCE uses 16-bit addressing and the 8051 uses 8-bit addressing, all MCE data are aligned at even
addresses in 8051 memory space. The MCE stores data in little-endian (Intel) byte ordering, so within each 16-bit
value, the low-order byte is at the lower (even) 8051 address and the high-order byte is located at the upper (odd)
8051 address.

To write a 16-bit value to shared RAM at address N, use the following procedure:

1. Disable interrupts if necessary to prevent other 8051 accesses to shared memory while the operation is in
progress.

2. Write the low-order byte of data to register MCECD2.
3. Write the high-order byte of data to the odd address (N + 1).
4. Re-enable interrupts if they were disabled at step 1.

The procedure for reading a 16-bit value from shared RAM depends on whether the address to be read is at a
longword (32-bit) boundary. An address is at a longword boundary if it is evenly divisible by four. When all values
are aligned at even addresses (as they are in MCE shared memory), an easy way to check for a longword boundary
is to test bit 1 of the address. If bit 1 is zero, the address is at a longword boundary.

Use the following procedure to read a 16-bit value from shared RAM at address N:

1. Disable interrupts if necessary to prevent other 8051 accesses to shared memory while the operation is in
progress.

2. Read the low-order byte from the even address (N).
3. If the address N is at a longword boundary, read the high-order byte from register MCECD1. Otherwise,

read the high-order byte from register MCECD3.
4. Re-enable interrupts if they were disabled at step 1.

The sample 8051 code included with the Reference Design Kits, IRSamples, contains predefined functions to
correctly handle the shared RAM access from the 8051.

5.1.2 Arbitration
RAM arbitration is required because both processors (the 8051 and the MCE) can attempt simultaneous access to the
shared RAM. In general, the arbiter gives the MCE sequencer precedence over the 8051. Since the 8051 program
and internal data RAM are not shared the 8051 can generally execute instructions without restriction. 8051
instruction execution is held off only when the instruction accesses shared RAM and an MCE RAM access is
pending or in progress. The MCE, on the other hand, fetches its instructions from shared RAM and stores all of its
data there. In addition, the MCE performs many time critical operations that cannot be delayed. MCE instruction
execution is held off only if an 8051 RAM access is already in progress or if the 8051 has been stalled for more than
five clock cycles due to continued MCE RAM access.

UG#0609

IRMCx300 Reference Manual

www.irf.com 185

5.2 MCE Processor Registers
The MCE processor registers are mapped to shared RAM at addresses 0xE000 – 0xE01F. Each register is 16 or 32
bits and appears in memory in little-endian byte order (low-order byte at the lowest address). The registers are
defined as shown in Table 78, below.

Register Size
(bits)

MCE address
(hex)

8051 address
(hex)

Description

FLAGS 16 000 E000 Status bits, including MCE interrupt status
PC 16 001 E002 MCE program counter
ACC 16 002 E004 MCE accumulator, lower 16 bits
ACC_EXT 16 003 E006 MCE accumulator, upper 16 bits
INDR0_ADDR 16 004 E008 Used as a pointer for indirect reads/writes
INDR1_ADDR 16 005 E00A Used as a pointer for indirect reads/writes
INDR0_DATA 32 006 E00C Used as access portal for indirect data
INDR1_DATA 32 008 E010 Used as access portal for indirect data
CTRL 16 00A E014 Control bits, used to stop and enable the processor
MUL64_RESL 32 00C E018 Lower 32 bits of 64-bit multiplier result
MUL64_RESH 32 00E E01C Upper 32 bits of 64-bit multiplier result

Table 78. MCE Processor Registers

Most of the registers are intended for the exclusive use of the MCE processor. The 8051 application may perform
the following operations on these registers:

• Read and write the high-order byte of the FLAGS register, which indicates and controls MCE interrupt
status.

• Write to the control register to start or halt the MCE processor.
• While the MCE processor is halted, write to other registers to initialize their values. In particular, the 8051

must initialize the MCE program counter (PC) before starting the MCE processor.

The bits of the FLAGS register are defined as follows:

Bits 0 – 7 Internal MCE processor status flags
Bits 8 – 15 Reserved MCE interrupts

MCE interrupts are currently unused.

The bits of the CTRL register are defined as follows:

Bit 0 Used to control MCE execution. Write “0” to halt the processor or “1” to run.
Bit 1 Indicates MCE status while running. “0” indicates that the processor is currently

running; “1” indicates that the processor is suspended until the next SYNC
pulse.

Bit 2 Reserved
Bits 3 – 4 Indicate MCE execution status. A binary value of “00” indicates that the

processor is running; a binary value of “01” indicates that the processor has been
halted. Other values are reserved.

Bits 5 – 15 Unused

UG#0609

IRMCx300 Reference Manual

www.irf.com 186

5.3 Motion Peripheral Register Interface
To read and write the motion peripheral registers described in Section 4.4, an 8051 application must follow a
specific procedure using the MCE Access SFRs as described below.

MCE ACCESS ADDRESS (MCEAAH, MCEAAL)
Address: EEh (MCEAAH),

EFh (MCEAAL)
Not Bit Addressable Reset value: 00000000b

MCE ACCESS DATA (MCEAD0, MCEAD1, MCEAD2, MCEAD3)
Address: D1h (MCEAD0),

D2h (MCEAD1),
D3h (MCEAD2,
D4h (MCEAD3)

Not Bit Addressable Reset value: 00000000b

MCE STATUS REGISTER (MCESS)
Address: DDh Not Bit Addressable Reset value: 00000000b

MCESS.7 MCESS.6 MCESS.5 MCESS.4 MCESS.3 MCESS.2 MCESS.1 MCESS.0
BUSY STALL - - - - - -

R R

SYNC.7 BUSY SFR access indication. This bit will be set during any SFR access.
SYNC.6 STALL MCE stall indication. This bit is set while a green block is executing or while the

MCE is busy reading data from the data memory.
MCESS.5 -
MCESS.0

Not implemented. Returns zero when read. -

All MCE motion peripheral configuration registers are 16-bit values. An address is assigned to each register.
(These correspond to locations in MCE private address space. They are not shared RAM addresses.) The MCE
access mechanism also allows 32-bit registers to be read and written but that operation is not described here since
the MCE defines no 32-bit registers.

To write to a 16-bit motion peripheral configuration register, use the following procedure:

1. Disable interrupts if necessary to prevent other 8051 accesses to the configuration registers while the
operation is in progress.

2. Write the low-order byte of the register address to MCEAAL.
3. Write the high-order byte of the register address to MCEAAH.
4. Write the low-order byte of the data value to MCEAD2.
5. Write the high-order byte of the data value to MCDAD3.
6. Re-enable interrupts if they were disabled at step 1.

To read a 16-bit motion peripheral configuration register, use the following procedure:

1. Disable interrupts if necessary to prevent other 8051 accesses to the configuration registers while the
operation is in progress.

2. Write the low-order byte of the register address to MCEAAL.
3. Write the high-order byte of the register address to MCEAAH.
4. Read the MCESS register and wait if necessary for the BUSY bit (MCESS.7) to be cleared (zero).
5. Read the low-order byte of the data value from MCEAD0.
6. Read the high-order byte of the data value from MCDAD1.
7. Re-enable interrupts if they were disabled at step 1.

The sample 8051 code included with the Reference Design Kits, IRSamples, contains predefined functions to
correctly handle the reading and writing of motion peripheral registers from the 8051.

UG#0609

IRMCx300 Reference Manual

www.irf.com 187

5.4 Interrupts from the MCE to the 8051
Two interrupt sources are defined for communication between the MCE and the 8051. The first is the general-
purpose MCE interrupt, which can be generated from the MCE, but is currently unused. The second is the SYNC
interrupt, which is generated from the MCE to signal the 8051 that a SYNC pulse has occurred.

The SYNC interrupt is a periodic event signal generated by the MCE. Its timing is illustrated in Figure 82. This is
the most important signal used for synchronization between the 8051 (CPU side) and the MCE (motion control
side). An 8051 application software task that needs to pass commands to the MCE and/or receive updated data from
the MCE may require specific synchronization with the MCE. This is due to the fact that MCE computation is
initiated and triggered by the SYNC pulse at every PWM carrier frequency period. It is also true that six PWM
outputs to the power device gate drive will occur at exactly one clock moment of the system clock at the beginning
of the SYNC event. If synchronization is not implemented and the 8051 application software writes multiple data
items to the MCE via the shared RAM, it is possible that some of the data are written in the previous MCE scan
period while the rest of data are written in the current MCE scan period.

Therefore, an 8051 application software should use the SYNC signal for synchronization to insure that multiple data
items are updated or read coherently within a particular scan period.

The SYNC signal is also generated in an execution overrun fault condition, which occurs if the MCE does not
complete its processing (indicated by the bar labeled “MCE computation” in Figure 82) before the end of the PWM
period (i.e., before the next SYNC pulse).

Figure 82. Timing of Sync and MCE Computation

When a SYNC interrupt occurs, the SYNC Status register can be read to determine the cause of the interrupt as
shown below. To clear the SYNCS register after servicing the interrupt, write zero to the appropriate bit(s).

SYNC STATUS REGISTER (SYNCS)
Address: DEh Not Bit Addressable Reset value: 00000000b

SYNC.7 SYNC.6 SYNC.5 SYNC.4 SYNC.3 SYNC.2 SYNC.1 SYNC.0
- - EXEF2 EXEF1 EXEFP SYNC2 SYNC1 SYNCP

UG#0609

IRMCx300 Reference Manual

www.irf.com 188

Bit definitions for this register are as follows:

SYNC.7 - Not implemented. Returns zero when read.
SYNC.6 - Not implemented. Returns zero when read.
SYNC.5 EXEF2 If this bit is set, the interrupt was caused by a Motor 2 execution overrun fault.
SYNC.4 EXEF1 If this bit is set, the interrupt was caused by a Motor 1 execution overrun fault.
SYNC.3 EXEFP If this bit is set, the interrupt was caused by a PFC execution overrun fault.
SYNC.2 SYNC2 If this bit is set, the interrupt was caused by a Motor 2 SYNC pulse.
SYNC.1 SYNC1 If this bit is set, the interrupt was caused by a Motor 1 SYNC pulse.
SYNC.0 SYNCP If this bit is set, the interrupt was caused by a PFC SYNC pulse.

UG#0609

IRMCx300 Reference Manual

www.irf.com 189

6 The MCE Development Process
This section describes how to use the MCE compiler, which allows engineers to easily realize a design using
MATLAB’s Simulink graphical user interface. Motion control blocks provided by International Rectifier in the
form of a Simulink library represent the available IRMCF300 functions.

The MCE development environment consists of the following components:

• A library of graphically-represented Simulink control blocks to be used in the design of a motor
control system.

• The MCE compiler, which analyzes the Simulink design and generates a corresponding file that is
executed by the MCE processor on the IRMCx3xx.

• MCEDesigner, which provides a graphical user interface to the IRCMx3xx to allow download of the
MCE executable file, control of MCE operation, and analysis of system function and performance.
MCEDesigner is described in a separate document.

The MCE development tools software distribution is organized beneath a main directory named MCE Compiler.
The main directory contains three subdirectories: Simulink Library, which contains the Simulink library
blocks; Matlab, which contains the MATLAB scripts that implement the graphical interfaces described in Sections
6.4 and 6.5; and bin, which contains the executable files and linkable object files for the MCE compiler.

The modules of the Simulink library are grouped into seven main categories, with a library model file in the
Simulink Library directory for each category. These are:

• Configuration
• Registers
• Control
• Math
• Tools
• Motion Peripherals
• Designs

Simulink library files have a .mdl filename extension (same as Simulink model files). For example, the Math
library file is named Math.mdl.

The MCE development tools are designed to operate with MATLAB version 6.1 and later. They may not function
correctly with older versions of MATLAB.

UG#0609

IRMCx300 Reference Manual

www.irf.com 190

6.1 MCE Design Generation
A Simulink model (.mdl) file defines a graphical Simulink model, or design, using a proprietary syntax in text
format. The basic elements of the definition syntax are Systems, Blocks, Ports and Lines. A System is a functional
collection of Blocks and Lines. A Block is an individual design component or a representation of a subsystem.
Ports define the inputs and outputs of a Block or a System, and Lines are the connections between Blocks. Using a
Block to represent a subsystem enables the creation of a hierarchical, or layered, design.

The MCE compiler analyzes the graphical elements defined in a model file to generate MCE instructions to
implement the represented design. The compiler has two modes of operation: it can process a model file that
represents a complete IRMCK3xx system; or it can process a model that represents a subsystem or “macro block” to
be used within a system design.

The MCE compiler analyzes a Simulink model file and uses information in the database to determine inputs and
outputs for each Block and an execution sequence for the Blocks. It then creates an MCE executable file for a
complete system build or a linkable (intermediate) object file for a macro block (subsystem) definition. For a
complete system build, the compiler can also create the following optional output files:

• A register map file that can be imported into MCEDesigner so host read and write registers defined in the
design can be accessed through MCEDesigner at runtime.

• A header file in C source code format that defines the host read and write registers so they can be accessed
from an 8051 application resident on the IRMCx31x.

UG#0609

IRMCx300 Reference Manual

www.irf.com 191

6.2 Creating an MCE Design Using Simulink
This section describes how to create, test and compile MCE designs in the MATLAB/Simulink environment.

Section 6.2.1 describes how to create a complete system design for execution on the IRMCK3xx. Section 6.2.2
describes how to create a macro block (subsystem) design that you can use as a building block in your system
designs.

Before You Start

The very first time you use the MCE design tools with MATLAB, you need to create a MATLAB
search path for MCE so that MATLAB knows where to find the MCE Libraries and utilities. To
set the search path, you’ll need to know the location of the main MCE directory within your
iMOTION software installation. (The default path is C:\Program Files\iMOTION\MCE
Compiler, but a different location can be selected during installation.) If you’re not sure where
the software is installed on your computer, open an MS-DOS command prompt window and type
the following command:
 echo %MCEBASE%
This command displays the full pathname of the MCE base directory.

To set the search path, start MATLAB and select Set Path… from the File menu. In the Set Path
dialog box, click the Add Folder… button and browse for the main MCE directory. Click OK in
the Browse for Folder dialog box and then click Save in the Set Path dialog box. Click Close to
close the dialog box. (If you don’t click Save before you click Close, you’ll need to add the
search path again next time you run MATLAB.)

6.2.1 Creating a Complete System Design
This section describes how to create a complete system design for execution on the IRMCx31x. If you want to
create a macro block that you can use in your system designs, refer to Section 6.2.2.

Step 1.
Start MATLAB, and in the MATLAB command window, type mceinit to open the MCE Simulink Libraries.
Open the standard libraries supplied with Simulink by typing simulink in the command window.

Step 2.
Create a new Simulink model file with the appropriate MCE subsystem hierarchy. The easiest way to do this is to
make a copy of the model file template.mdl in the main MCE directory and open it in MATLAB. If you want to
create your own MCE model template, refer to the description in Section 6.7.

Step 3.
Compose the design of each control loop subsystem within your model. You can drag and drop blocks from the
MCE libraries into the control loop subsystems. (Do not add blocks to the top level or the PWM subsystems.) Use
Simulink’s graphical design features to arrange, size and connect the blocks appropriately. To document your
design you can add annotations and, if you wish, assign a descriptive name to each line and block. Refer to Section
6.3 for more information about the MCE library blocks and other design components.

UG#0609

IRMCx300 Reference Manual

www.irf.com 192

Step 4.
Customize your read and write register blocks. Write register blocks define configurable parameters that you want
to be able to set through the host interface at runtime. Read register blocks define output values that you want to be
able to view through the host interface. To customize a register block, double click it. In the Parameters section of
the Mask Parameters dialog box, follow the prompts to enter the desired values. This information is exported to
MCEDesigner.

Step 5.
When you are satisfied with your Simulink design, it’s time to run the compiler. This procedure is detailed in
Section 6.4.

6.2.2 Creating a Macro Block Definition
This section describes how to create a macro block, or subsystem block, that you can use in your system designs. If
you want to create a complete system design for execution on the IRMCx31x, refer to Section 6.2.1.

Step 1.
Start MATLAB, and in the MATLAB command window, type mceinit to open the MCE Simulink Libraries.
Open the standard libraries supplied with Simulink by typing simulink in the command window.

Step 2.
Create a new (empty) Simulink model file. Macro block definitions do not use the MCE subsystem hierarchy
required for complete system designs.

Step 3.
Compose the design of your macro block. You can drag and drop blocks from the MCE libraries into the model.
Use Simulink’s graphical design features to arrange, size and connect the blocks appropriately. To document your
design you can add annotations and, if you wish, assign a descriptive name to each line and block. Refer to Section
6.3 for more information about the MCE library blocks and other design components.

To define inputs and outputs for your macro block, use Simulink input and output port elements. (Refer to Section
6.3.2 for details.)

Macro blocks may not include the following MCE and Simulink design elements:

• “Configure PWM” and “Configure Control Loop” blocks
• “Read Register” and “Write Register” blocks
• Other macro blocks
• Simulink Scope blocks
• Simulink Unit Delay blocks
• Subsystems

Step 4.
Encapsulate your macro block design elements in a masked subsystem. To create a subsystem, select all the
components of the design and then select “Create subsystem” from the Simulink Edit menu. Simulink creates a
subsystem block with input and output ports connected to it. Delete the input and output ports and the lines that
connect them to the subsystem block so that only the subsystem block itself remains. The components of your
design are inside the subsystem block and can be accessed by double clicking it. Do not delete the input and
output ports inside the subsystem.

To mask the subsystem, click on the subsystem block and then select “Mask subsystem…” from the Edit menu. In
the Mask Editor window, enter the name of your macro block as the “Mask type” and then click OK.

Once you have created a masked subsystem for your design, you can edit the components of the design by double-
clicking the subsystem or by right-clicking on the subsystem and selecting “Look under mask” from the menu.

UG#0609

IRMCx300 Reference Manual

www.irf.com 193

Step 5.
Enter the string IR_MACRO in the Tag field of your masked subsystem’s block properties. To access the Block
Properties window, right click on the subsystem block and select “Block Properties” from the menu. When you use
the macro block in a system design, the compiler uses the IR_MACRO string to recognize the block as a macro,
which requires special processing.

Step 6.
When you are satisfied with your Simulink design, it’s time to run the compiler. This procedure is detailed in
Section 6.4.

Step 7.
When your macro block is successfully compiled and ready to use, you can add it to the MCE “Designs” library
group (see Section 6.3.1) so it’s easy to drag the macro block into your system designs.

Note: When you add your macro block to the Designs library, the block definition is copied into the library model
file, Designs.mdl. The library does not simply reference the original macro block model file. If you make
changes to the original macro block model file, the macro block definition in the library file is not affected. To
modify your macro block after you’ve added it to the Designs library, you should do one of the following: either
edit the macro block by opening it directly from the Designs library; or edit the original macro block model file, then
delete the old macro block from the Designs library and drag the newly modified block back into the library.

UG#0609

IRMCx300 Reference Manual

www.irf.com 194

6.3 Simulink MCE Design Components
This section describes the components of an MCE Simulink design. Most of your design components will be taken
from the MCE library, but some components of the standard Simulink library are also used.

6.3.1 The MCE Library
The main window of MCE Simulink library is shown in Figure 83.

Figure 83. MCE Simulink Library

There are seven library groups, described below.

6.3.1.1 Configuration
The Configuration group contains the Configure PWM and Configure Control Loop blocks that are used in the
formation of the MCE hierarchical design for a complete system. If you create your system design using the MCE
design template file template.mdl, these blocks are already included at the appropriate locations in the
subsystem hierarchy. (See Section 6.7 for more information.) These blocks cannot be used in macro block
definitions.

6.3.1.2 Registers
The Registers group contains host read and write register blocks, which you can use in any of your control loop
subsystems. If you want to define a configurable parameter that can be set from the MCEDesigner tool (or other
host interface) or from an 8051 application, drag a write register block into your design and connect its output to the
input of the appropriate module(s) that will use the configurable parameter. If you want to monitor a module output
from MCEDesigner or an 8051 application, drag a read register block into your design and connect the module
output to it. These blocks cannot be used in macro block definitions.

6.3.1.3 Control
The Control group contains the special-function motion control blocks that are used to implement your motion
control algorithms. You can drag these blocks into any of your control loop subsystems. Control blocks can also be
used in macro block definitions.

6.3.1.4 Math
The Math group contains general-purpose math blocks that you can use in any of your control loop subsystems or in
a macro block definition.

UG#0609

IRMCx300 Reference Manual

www.irf.com 195

6.3.1.5 Tools
The Tools group contains the MCE Compiler block, which you can add to your design to simplify access to the
MCE compiler (see Section 6.4 for more information). The Tools group also includes a Host Register Summary
block, which you can add to your design and use to view and modify the read and write host register blocks you’ve
included in your design (see Section 6.5) and a tool that allows you to customize the inputs and outputs of certain
motion peripheral blocks (described in Section 6.6).

6.3.1.6 Motion Peripherals
The Motion Peripherals group contains the special-function motion peripheral blocks that can be included in your
control loop subsystems and macro block definitions.

6.3.1.7 Designs
The Designs group contains sample designs shipped with the product, as well as the system template design that you
can copy and use as a basis for your system designs. You can add your custom system designs and macro blocks to
this library group if you wish.

6.3.2 Standard Simulink Library Components
The standard Simulink library components described below can be included in your design. Enter simulink in
the MATLAB command window to open the Simulink library.

6.3.2.1 Enabled Subsystem
Use this block to create PWM and control loop subsystems for your system design. If you start with the MCE
design template file template.mdl, the appropriate subsystem blocks are already present in the design. Refer to
Section 6.7 for more information about the use of the Enabled Subsystem block in the MCE design hierarchy.
Enabled subsystem blocks cannot be used in macro block definitions.

6.3.2.2 Constant
Use this block to define a constant value as an input to a block in any of your control loop subsystems or macro
block definition. Double click the constant block to set a value for the constant.

6.3.2.3 Scope
If you want a module output in a control loop subsystem to have the capability of being traced (using
MCEDesigner’s trace monitor feature), drag a Scope block into your design and connect the module output to it.
The name you assign to the Scope block will be used in MCEDesigner so you can recognize the trace item. Scope
blocks cannot be used in macro block definitions.

6.3.2.4 Input Port
To create an input to a macro block, drag an In1 block into the macro block definition and give it a unique name to
identify the input. When you encapsulate the design into a subsystem, Simulink creates an input port for the
subsystem to represent each In1 block in the design. In1 blocks cannot be used in a complete system design. (A
complete system is self-contained and has no external connections.)

6.3.2.5 Output Port
To create an output from a macro block, drag an Out1 block into the macro block definition and give it a unique
name to identify the output. When you encapsulate the design into a subsystem, Simulink creates an output port for
the subsystem to represent each Out1 block in the design. Out1 blocks cannot be used in a complete system design.
(A complete system is self-contained and has no external connections.)

6.3.2.6 Goto and From
If you need to connect elements in two different subsystems of your design, you can use a Goto block at the source
of the signal and a From block at the destination. To avoid cluttering your diagram with long and circuitous lines,
you can also use Goto and From blocks to connect elements at distant points within the same subsystem or in a
macro block definition.

UG#0609

IRMCx300 Reference Manual

www.irf.com 196

After dragging a Goto into your design, double click it to set its parameters. Set the tag field to a unique name,
which is used to match the Goto with one or more From blocks. Set tag visibility to “global” if any matching From
blocks are in other subsystems or “local” if all matching From blocks are in the same subsystem as the Goto.
(Visibility type “scoped” is not used.) Double click each From block to set its goto tag. This tag identifies the
matching Goto block and must match the tag you specified in the Goto block.

6.3.2.7 Unit Delay
You can use the Unit Delay block to introduce a signal delay of one or more PWM cycles. In certain situations, a
delay is required to identify a feedback signal (an input data value obtained from a previous cycle). For example,
suppose an output of block A is used as an input to block B and an output from block B is used as an input to block
A. Both inputs cannot be generated on the current cycle since one block must execute before the other. A Unit
Delay block must be inserted in one of the two paths (between block A’s output and block B’s input or between
block B’s output and block A’s input) to identify which signal is obtained from a previous cycle. The compiler uses
this information to sequence the blocks correctly.

After dragging a Unit Delay block into your design, double click it to set its parameters. The initial condition
defines the value of the signal used for the initial cycles until stored values (from previous cycles) are available. The
sample time defines the number of cycles to delay. (Note that the MCE Compiler’s use of the sample time
parameter differs from Simulink’s definition.)

UG#0609

IRMCx300 Reference Manual

www.irf.com 197

6.4 The MCE Compiler

Before You Start

The MCE compiler uses the Simulink model file as input. If your design is open in Simulink
when you run the compiler, be sure to save your changes before running the compiler.

The Tools group of the MCE Simulink library contains a block called “MCE Compiler”. You can also access the
compiler by copying that block into your design and double-clicking it. If you start with the MCE design
template file template.mdl, the MCE Compiler block is already present at the top level.

When you double-click the MCE Compiler block, the MCE Compiler input screen appears as shown in Figure 84.

Figure 84. MCE Compiler Input Screen

UG#0609

IRMCx300 Reference Manual

www.irf.com 198

Step 1.
To compile a complete system design, click the “Full System Build” radio button. To compile a macro block
definition, click “Create Macro Block” instead. For a complete system, you can select optional output files:

 If you want the compiler to generate a register map file for use with MCEDesigner, check “create
MCEDesigner Map File”.

 If you want the compiler to generate C-language register definitions in a header file for use with your 8051
application, check “create C Header File”.

The optional output files don’t apply to a macro block compilation.

Step 2.
Select your product type from the pulldown menu.

Step 3.
Enter the pathname of your Simulink model file in the ”Upload Design file (.mdl)” edit box, or browse for the file
by clicking the browse button to the right of the edit box.

Step 4.
Check the “Listing file” checkbox if you want the compiler to generate an output text file that lists the order of block
execution and all the block connections within your design. This file can be generated for either a full system or
macro block compilation. You can use it as an aid in testing and verifying your design.

Step 5.
Select the compiler version you want to use. The most recent version is selected by default.

Step 6.
When you’re ready, click the compile button to run the compiler. When compilation is complete, the MCE
Compiler input screen is redrawn and you can scroll to the bottom of the window to see the output messages from
the compiler. An example is shown in Figure 85.

The compiler output includes execution time estimates (in system clock cycles) for each control loop as well as the
total size of the MCE program and data. You should review this information carefully. The compiler displays a
warning message if your code and/or data is too large to fit in the available memory. (Refer to Section 1.2 for
information on memory size.) However, the compiler cannot warn you if the execution time of your control loops is
too long, because the time available for control loop execution depends on the PWM frequencies configured at run
time.

Note that the compiler produces worst-case time estimates based on cycle counts for all MCE instructions it
generates, including those that may be executed only under certain conditions. The execution time estimates
documented for each block in Section 4.2 are more accurate and provide a range of cycle counts when execution
time varies depending on conditions. For this reason, the compiler’s execution time estimate will generally exceed
the estimate you would obtain by summing the documented execution times for each block in the design.

UG#0609

IRMCx300 Reference Manual

www.irf.com 199

Figure 85. MCE Compiler Results Example

UG#0609

IRMCx300 Reference Manual

www.irf.com 200

6.5 The Host Register Summary Utility
The Tools group of the MCE Simulink library contains a block called “Host Register Summary”. This utility allows
you to view a list of the host read and write registers in your design. To use it, you must first drag the Host Register
Summary block into your design. If you start with the MCE design template file template.mdl, the Host
Register Summary block is already present at the top level.

Once you have added the block to your design, double-click the block to display a summary of your host read and
write registers. If you click on a register in the list, you can view and modify the register settings.

The main window of the Host Register Summary utility is shown in Figure 86.

Figure 86. The Host Register Summary Utility

The list box in the top section of the main window lists the full “path” of all the registers in your design. The path
identifies the model name and the subsystem in which the register is defined in addition to the register name. In the
example, the path of the selected register is “Sample/Motor1/Speed Loop/TargetDir”. This means that the model
name is “Sample,” the register is defined in PWM subsystem “Motor1” and control loop subsystem “Speed Loop.”
The register name is “TargetDir.”

The detailed information in the lower section of the window shows the settings defined for the register that’s
selected in the list box. (Just click on a register to select it.) You can modify any of the settings except the register
type (read or write). Changes take effect as soon as they are entered.

Note that macro block definitions don’t include host read and write registers, so the Host Register Summary utility is
used only with full system designs.

UG#0609

IRMCx300 Reference Manual

www.irf.com 201

6.6 Customizing Motion Peripheral Library Blocks
The CustomMotPer tool allows you to modify the inputs and outputs of certain motion peripheral library blocks.
You can add and remove inputs and outputs selecting from lists of available signals.

To customize a motion peripheral block, first drag it from the library into your design. Then drag the
CustomMotPer block from the Tools library into your design and double-click it.

When you double-click the CustomMotPer block, it starts the Customize Motion Peripheral Block GUI, as shown in
Figure 87. The GUI has a single screen, at the top of which is a pull-down list of the customizable blocks in your
design. Once you’ve selected the block you want to customize, the current-defined inputs for the block are shown in
the list on the left-hand side of the window and the currently-defined outputs are shown on the right.

Figure 87. The CustomMotPer Utility

Summary of the display:

• The pull-down list labeled “Select a Block to Customize” lets you choose any one of the customizable
blocks in the design that’s currently open in Simulink.

• The Inputs and Outputs list boxes show the inputs and outputs (respectively) that are currently defined for
the selected block.

• The pull-down list labeled “Select an Input to Add” lets you choose from a list of inputs available for
addition to the selected block.

• The pull-down list labeled “Select an Output to Add” lets you choose from a list of outputs available for
addition to the selected block.

• Click the ADD button after selecting an input or output from the appropriate “available” list.
• Click the DELETE button after selecting an existing input or output.
• Click the Restore Defaults button to restore the entire block (inputs and outputs) to the standard default

settings (as defined in the Motion Peripherals library).
• When you click DELETE or Restore Defaults, a confirmation message with CANCEL and OK buttons is

displayed in red in the upper portion of the window. Click the CANCEL button to abort the operation or
OK to proceed.

UG#0609

IRMCx300 Reference Manual

www.irf.com 202

To delete an existing input or output:
In the Inputs or Outputs list box, click on the item you want to delete and then click the DELETE button. In the
upper part of the window, click the red OK button to confirm the operation.

To add a new input or output:
Select an available input or output from the appropriate pull-down list. Click the ADD button to add the new
input/output.

To restore the default inputs and outputs:
Click the Restore Defaults button. In the upper part of the window, click the red OK button to confirm the
operation. This restores all inputs and outputs to the default configuration. (You can’t restore only inputs or only
outputs.)

Once you’ve customized a block in your design, you can copy it to another location in the design (if the block is
intended to be used once for each motor) or drag it into another design. For blocks that can be used once for each
motor, you can customize each usage of the block with different inputs and outputs.

UG#0609

IRMCx300 Reference Manual

www.irf.com 203

6.7 MCE Design Hierarchical Format
This section describes the hierarchical structure of a complete MCE system and provides instructions for creating a
new MCE model template

The MCE design hierarchy has the structure shown in Figure 88.

Figure 88. MCE Design Hierarchy

The top level of the system design contains a Configure PWM block and three PWM subsystem blocks, which
are implemented using standard Simulink Enabled Subsystem blocks. The Configure PWM block has three
outputs, labeled Motor 1, Motor 2 and PFC. Each PWM subsystem is identified by connecting the appropriate
Configure PWM block output to the Enable input of a PWM subsystem block. There are no other blocks or
connections at the top level of the design.

Each of the PWM subsystems contains a Configure Control Loop block and two control loop subsystem
blocks, which are implemented using standard Simulink Enabled Subsystem blocks. The Configure Control
Loop block has three outputs, labeled Current, Speed and Voltage. Each control loop subsystem is identified
by connecting the appropriate Configure Control Loop block output to the Enable input of a Configure Control
Loop subsystem block. In the Motor 1 and Motor 2 PWM subsystems, the Current and Speed outputs are
connected and the Voltage output is left unconnected. In the PFC subsystem, the Current and Voltage outputs
are connected and the Speed output is left unconnected. There are no other blocks or connections at the top
level of the PWM subsystems.

The procedure described below can be used to create an empty MCE design in the correct hierarchical format.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 204

Step 1.
Create a new (empty) Simulink model. (From the MATLAB File menu, select New and then Model.) Right
click in the new window and select Model Properties. On the Summary tab of the Model Properties dialog,
you can enter a text description of the design and save your name as its creator.

Step 2.
From the Configuration group of the MCE library, drag a Configure PWM block into the model. From the
standard Simulink library’s Subsystems group, drag three Enabled Subsystem blocks into the model. Connect
each output of the Configure PWM block to the Enable input of one of the subsystem blocks. Double click the
label under each subsystem block to enter a name of your choice for the PWM subsystem.

Step 3.
Double click the Motor 1 PWM subsystem to open it. Delete the default input and output ports and the line that
connects them. From the Configuration group of the MCE library, drag a Configure Control Loop block into
the model. From the standard Simulink library’s Subsystems group, drag two Enabled Subsystem blocks into
the model. Connect the Current and Speed outputs of the Configure Control Loop block to the Enable input of
each of the subsystem blocks. Double click the label under each subsystem block to enter a name of your
choice for the control loop subsystem.

Step 4.
Repeat Step 3 to create control loop subsystems for the Motor 2 and PFC PWM subsystems. In the PFC
subsystem, remember to connect the Voltage output of the Configure Control Loop block instead of the Speed
output.

Step 5.
The hierarchical structure is now complete, and you can begin designing your motion control algorithms by
adding and connecting MCE library blocks in each of the control loop subsystems.

UG#0609

shaxjl
Highlight

shaxjl
Highlight

IRMCx300 Reference Manual

www.irf.com 205

7 The 8051 Development Process
The IRMCx31x includes an 8051 microprocessor that can be used for motor control applications as well as more
general applications such as an interface to a user control panel.

To support MCE development, International Rectifier provides the MCEDesigner tool, which allows a user to
control and monitor the operation of the MCE by reading and writing host registers. MCEDesigner has two
components: a user interface running on a PC and a helper application or “agent” running on the 8051
microprocessor. The agent software is supplied as an executable image that is stored in external EEPROM and
loaded to IRMCx31x program RAM at power-up.

To assist the development of custom application software for the 8051, International Rectifier provides a number of
source-code programming examples, such as interrupt handlers, UART driver and interface to the MCE shared
RAM and RTL registers.

7.1 Source Code Samples
IR provides a sample Keil uVision2 project, the contents of which are described in the following sections. The
project can be used to build a standalone 8051 executable image that performs simple operations and can
communicate with a terminal emulation program such as Microsoft’s Hyperterminal. The name of the uVision2
project file is IRsamples.Uv2.

Remember that you cannot use MCEDesigner to communicate with the IRMCx31x while you’re running the
sample code or custom software on the 8051.

7.1.1 EEPROM Programming
The files EepromI2C.c and EepromI2C.h show how to read and write EEPROM using the I2C interface. Functions
are provided to initialize the I2C interface, read a byte from EEPROM and write a byte to EEPROM.

7.1.2 Register Interface
The following source files are provided to show how to interface to the MCE’s shared RAM and RTL configuration
registers:
regIf.c Sample code to read and write RAM and RTL configuration registers.
regif.h Sample register definitions used by regIf.c.
Coherent.SRC Assembly language functions to read and write RAM registers using the coherent access

SFRs (see Section 5.1.1).
SfrRegs.SRC Assembly language functions to read and write RTL configuration registers using the

MCE Access SFRs (see Section 5.3).

7.1.3 UART Driver
The files asyncDriver.c and asyncDriver.h provide a driver for the UART and a small sample application showing
how to interface to the driver. The driver sets up the UART for standard 8-bit operation, handles transmit and
receive interrupts, and buffers data using send and receive FIFOs (first-in-first-out buffers). The following functions
are included:

UG#0609

IRMCx300 Reference Manual

www.irf.com 206

asyncDriver This is a test function that uses the UART read/write functions to read characters from the serial

line, convert them from upper to lower case (or from lower to upper case) and write them back to
the serial line. You can use this test with a Hyperterminal (or equivalent) connection. Each
character you type in the Hyperterminal window should be echoed back to the window.
Alphabetic characters a - z will echo as A - Z and characters A - Z will echo as a - z. Other
characters are echoed exactly as entered.

sioIsr This is the UART interrupt service routine, which handles transmit and receive interrupts.
Received characters are placed in the receive FIFO. Characters to be transmitted are taken from
the transmit FIFO.

sioInit This function initializes the transmit and receive data structures and the SFRs that control the
UART.

flushTx This function initializes the transmit FIFO.
flushRx This function initializes the receive FIFO.
setBaudRate This function initializes the baud rate SFR for 57,600 bps, based on the default clock rate of 64

MHz.
putChar_ This function is called from a higher level (such as the asyncDriver test function) to transmit a

character. If the transmitter is currently busy, it adds the character to the transmit FIFO. If no
transmission is already in progress, it writes the character directly to the UART transmit buffer.
The function returns 0 if the transmit FIFO is full (character cannot be accepted for transmission);
or 1 if successful.

getChar_ This function is called from a higher level to read a received character from the receive FIFO. It
returns 0 if the receive FIFO is empty (no character available) or 1 if successful.

xFifoRoom This function is called from putChar_ to check the status of the transmit FIFO. It returns 0 if the
transmit FIFO is full; 1 otherwise.

xFifoPutChar This function is called from putChar_ to add a character to the transmit FIFO. It returns 0 if the
transmit FIFO is full; 1 if the character was successfully added to the FIFO.

xFifoGetChar This function is called from sioIsr to get the oldest character from the transmit FIFO. It returns 0
if the transmit FIFO is empty; 1 if a character is removed from the FIFO.

rFifoRoom This function is called from sioIsr to check the status of the receive FIFO. It returns 0 if the FIFO
is full; 1 if the received character was successfully added to the FIFO.

rFifoPutChar This function is called from sioIsr to add a character to the receive FIFO. It returns 0 if the receive
FIFO is full; 1 if the character was successfully added to the FIFO.

rFifoGetChar This function is called from getChar_ to get the oldest character from the receive FIFO. It returns
0 if the receive FIFO is empty; 1 if a character is removed from the FIFO.

IMPORTANT NOTE
The transmit and receive FIFOs are manipulated from both the interrupt level and the "task" (non-interrupt) level.
For this reason, it is very important to ensure that UART interrupts are disabled while characters are added to and
removed from the FIFOs at the task level.

7.1.4 MCE Initialization
The files MceBoot.c MceBoot.h contain functions and definitions to initialize the MCE using data that has been
programmed to EEPROM by the MCEDesigner tool. It assumes that the automatic boot process has copied the
MCE code from EEPROM to shared RAM and an "MCE Info" structure from EEPROM to a fixed location in 8051
program RAM.

The function StartMce first copies the "MCE Info" structure from 8051 program RAM to a location in data RAM
and verifies the validation field in the structure. If the validation field is incorrect, the entire structure is assumed to
be invalid and the MCE is not initialized. Otherwise, the MCE Info structure provides the starting load address in
RAM and the MCE execution address. The StartMce function uses this information to zero the MCE data area
preceding the start of the MCE program. The function doMceBoot is called to initialize the MCE special registers
and begin MCE execution.

UG#0609

IRMCx300 Reference Manual

www.irf.com 207

7.1.5 Motor Control
The files MotorCtrl.c and MotorCtrl.h contain a simple example of motor drive configuration andcontrol. The main
function MotorCtrl reads character commands from the serial port using the functions provided by the UART driver.
You can use a Hyperterminal (or equivalent) connection to send commands and read responses. All commands
control motor 1 only.

The sample code treats the motor as a state machine, with three states: DRIVE_IDLE, DRIVE_RUN and
DRIVE_FAULT. The function MotorCtrl takes input commands from the serial port and passes valid ones to
MotorSeq. Based on the current motor state, MotorSeq calls appropriate functions to implement the command or
returns an error indicating that the command was invalid. If an invalid command is entered, ‘Invalid Command’ is
returned to the HyperTerminal display. Listed below are the commands supported from the function MotorCtrl, with
explanations of their operation.

C or c
Configure motor drive and clear faults. ‘Configured’ will be echoed back on the UART if successful. If the motor is
running, the command is ignored and ‘Invalid Command’ is returned instead. See section Error! Reference source
not found. above.

+
Set forward direction. ‘Forward’ is echoed when the operation is complete. If the motor is running or in a fault
condition, the command is ignored and 'Invalid Command' is sent instead.

-
Set reverse direction. ‘Reverse’ is echoed when the operation is complete. If the motor is running or in a fault
condition, the command is ignored and 'Invalid Command' is sent instead.

F or f
Clear fault condition. ‘Fault Clear’ is echoed when the operation is complete. If the drive is not in a fault condition,
the command is ignored and 'Invalid Command' is sent instead.

G or g
Run motor. The motor is placed in run state and turns in the configured direction at a low speed. ‘Started’ is echoed
when the operation is complete. If the motor is already running or in a fault condition, the command is ignored and
'Invalid Command' is sent instead.

S or s
Stop motor. The motor is stopped and ‘Stopped’ is echoed when the operation is complete. If the motor is already
stopped or in a fault condition, the command is ignored and 'Invalid Command' is sent instead.

R or r
Set motor speed. This is a multi-character command. The command character must be followed by exactly four
decimal digits (0 - 9) defining the target speed in rotor RPM. If the motor is not running the command is ignored and
'Invalid Command' is echoed. If the requested speed is out of range for the motor (according to the value of “#define
Mtr_Max_Speed”) then the Mtr_Max_Speed value will be used. Otherwise, the operation is performed after all four
digits have been received, at which point ‘Speed Set’ is echoed. If a character other than a digit is received, an 'X' is
echoed and the command is aborted.

?
(1) Get motor speed. This command returns the motor speed when the drive is running. The current speed is output
in motor RPM. This RPM calculation relies on the parameters generated by the parameter configurator.
(2) Read FaultFlags. When the drive is in a fault state, this returns the value of the FaultFlags register. The register
value is displayed in hexadecimal format.

H or h

UG#0609

IRMCx300 Reference Manual

www.irf.com 208

Catch-Spin Start. This begins the catch-spin startup sequence for the motor. The system will monitor the speed and
direction of the motor to determine if the motor should be stopped and reversed, or if the motor is already going in
the correct direction and catch it. This startup mode is suitable for an instance where the motor may already be in
motion due to outside forces (such as wind blowing a fan). This command is allowable only in the idle state,
otherwise ‘Invalid Command’ is echoed. At the end of the sequence, ‘CatchSpin Complete’ is echoed.

T or t
Ramp Stop. This function will slowly ramp the motor down to zero speed. This is opposed to simply stopping the
motor by halting the PWM. Upon successful stopping of the motor ‘Ramp Stop Complete’ will be echoed. The rate
is determined by the rampTime variable, which is the time in seconds to ramp to zero.

Z or z
Zero Vector Brake. This function will turn on the zero vector brake command for 20 seconds, then halt the PWM
and turn off zero vector brake. In the case of a fault, the function will break out the 20 second wait time and halt the
PWM.

7.1.6 Other Operations
The file Timer.c contains a function that initializes timer 1 to generate interrupts at 20 millisecond intervals. A
global variable "systicks" is incremented on each interrupt. Timer setup assumes the clock is running at the default
rate of 64 MHz. Related definitions are provided in the file Timer.h.

The file utils.c contains utility functions to enable and disable a specified interrupt.

The file irmcx3xx.h contains definitions for all of the byte- and bit-addressable SFRs.

Execution begins at the function main in the file main.c. This function initiates each of the sample operations. The
last is the UART sample, which does not return.

UG#0609

IRMCx300 Reference Manual

www.irf.com 209

7.2 The Keil and FS2 Tools
It is strongly recommended that you use the following tools for 8051 software development:

• Keil Software PK51 Professional Developer’s Kit (includes 8051 compiler, assembler, linker, debugger and
uVision2 integrated development environment)

• First Silicon Solutions (FS2) ISA-M8051EW In-Target System Analyzer for the Mentor Graphics
M8051EW Microprocessor Core. This product includes a debug pod and device driver that provides an
interface between the Keil debugger and the IRMCF3xx for debugging.

This document and all 8051 software provided by IR for the IRMCx31x assumes that you are using these tools.

7.2.1 Software Installation
Install the Keil tools first, then FS2 according to the instructions provided with the installation media. When
requested to select options for FS2 setup, leave all settings at the default values.

7.2.2 Software Setup
The software release for the IRMCF3xx provides several sample uVision2 projects that are set up appropriately for
the IRMCx31x . Project files have the extension .uv2 (for example, SampleRegIf.uv2). When creating your own
uVision2 project, it’s recommended that you start with the settings in one of the sample projects.

Once you have set up a uVision project, click on the Debug tab in the project settings window (Options for
Target…). Click the Use radio button in the top right-hand section of the display and select Fs2/Keil ISA-
M8051EW Driver from the pull-down menu. If you don’t see that option in the menu, the Fs2 driver is not installed
properly.

7.2.3 The Keil Compiler
The Keil optimizing Cx51 compiler includes a number of enhancements specifically for the 8051 processor and
embedded programming environments. It is recommended that you read the Cx51 Compiler User’s Guide carefully.

The following tips may ease your software development effort:

• While debugging, use a fairly low level of compiler optimization, such as level 3. Using high optimization
levels can give unexpected results in the debugger (breakpoints not hit when expected, for example). When
your code is working properly, increase the optimization level and verify operation again.

• The compiler supports several types of pointers. Avoid using generic (three-byte) pointers, which produce
larger and slower code and can be confusing when viewing memory locations with the debugger.

• The compiler supports several memory models. Due to the extensive external RAM included in the
IRMCx31x , the large model should be used.

• The compiler supports special “sfr” and “sbit” keywords for accessing byte- and bit-addressable SFRs. See
the IR sample file IRMCX3XX .h for SFR definitions using these keywords. There are many examples of
their use in the source code.

• The special “interrupt” keyword must be used when defining an interrupt service routine. The functions
Timer1 in SysCtrlSeq.c, sioIsr in asyncDriver.c are examples.

• The 8051 has very little stack space and the compiler does not normally store function parameters and local
variables on the stack. For this reason, the special “reentrant” keyword must be used to define functions
that may be reentrant or called recursively.

• Refer to the functions in the files Coherent.SRC and SfrRegs.SRC for examples of interfacing C and
assembly language.

UG#0609

IRMCx300 Reference Manual

www.irf.com 210

7.2.4 Debugging
Debugging 8051 code on the IRMCF3xx requires connection of the Fs2 pod to the JTAG connector on the
development board. Once the pod is connected, use the following procedure to download the 8051 code to
IRMCF3xx RAM. The steps must be executed in the order shown below.

1. On the host PC, run the Keil uVision2 application.
2. Apply power to the Fs2 pod.
3. Apply power to the development board.
4. From the uVision II Debug menu, select Start/Stop Debug Session.
5. Wait for the code to be downloaded to the target processor. A progress bar is shown in the lower left

corner of the uVision2 window and disappears when download is complete.
6. Set breakpoints as desired and then select Go from the Debug menu (or click the Go toolbar button).

Restrictions while debugging:

• The single step operation cannot be used unless all interrupts are disabled.
• After stopping at a breakpoint, you must disable or delete the breakpoint before continuing unless all

interrupts are disabled.

When you have finished debugging, select Stop Running from the Debug menu (or click the Stop toolbar button)
and then select Start/Stop Debug Session from the Debug menu. Do not power off the development board or the Fs2
pod until you’ve terminated the uVision2 debug session.

UG#0609

IRMCx300 Reference Manual

www.irf.com 211

7.3 Storing 8051 and MCE Code in EEPROM
When you debug your 8051 code using uVision2, the program loads the code into RAM each time you start a debug
session. When you power off the development board, the code stored in RAM is lost.

You can use MCEDesigner to store your 8051 and MCE code in EEPROM. Refer to the MCEDesigner User’s
Guide for complete instructions.

Once you’ve programmed the 8051 and MCE code to EEPROM, the IRMCF3xx automatically loads both the 8051
and MCE code into RAM at power-up and reset. The IRMCF3xx boot process executes the 8051 code
automatically after it loads the 8051 and MCE code into RAM. It does not execute the MCE code; the MCE
remains in a stopped state while the 8051 begins executing. If you’re using MCEDesigner (running the
MCEDesigner agent code on the 8051), the agent starts MCE execution during its initialization, before it begins to
communicate with MCEDesigner. If you’re not using the MCEDesigner agent, your custom 8051 code is
responsible for starting MCE execution.

UG#0609

IRMCx300 Reference Manual

www.irf.com 212

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105
Data and specifications subject to change without notice. 11/17/2006

www.irf.com

UG#0609

Published by

Infineon Technologies AG

81726 München, Germany

© 2016 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.

Edition 2009-12-16

ifx1

Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

ifx1owners.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	IRMCx300 Reference Manual
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. Overview
	1.1 System Components
	1.2 Memory Map
	1.3 Byte Ordering

	2 Reset Mechanism and Boot Process
	2.1 Power Sequencing at Startup
	2.2 EEPROM Data Format

	3 8051 Microcontroller
	3.1 Instruction Set
	3.2 Special Function Registers
	3.2.1 Processor Registers
	3.2.2 General Purpose I/O
	3.2.3 Clock Selection and PLL Frequency Configuration
	3.2.4 Miscellaneous Functions

	3.3 Interrupts
	3.3.1 Standard Interrupts
	3.3.2 Extended Interrupts
	3.3.3 P4 Interrupts
	3.3.4 Enabling Interrupts
	3.3.5 Interrupt Priority
	3.3.6 Service Order
	3.3.7 Interrupt Latency
	3.3.8 Interrupt Vectors

	3.4 Timers
	3.4.1 Timer Prescaler
	3.4.2 General-Purpose Timer/Counters
	3.4.2.1 Modes of Operation
	3.4.2.2 Configuring the Timers
	3.4.2.3 Using the Timers to Measure a Time Interval
	3.4.2.4 Using the Timers to Signal When a Defined Period Has Elapsed
	3.4.2.5 Using the Timers as Event Counters
	3.4.2.6 Reading the Timers

	3.4.3 Periodic Timer
	3.4.4 Watchdog Timer
	3.4.5 Capture Timer

	3.5 UARTs
	3.6 D/A PWM
	3.7 I2C / SPI Serial Interface
	3.7.1 Command Descriptions for the I2C Interface
	3.7.1.1 Reset Command
	3.7.1.2 Read and Write Commands

	3.7.2 Command Descriptions for the SPI Interface
	3.7.2.1 Read Instructions
	3.7.2.2 Write Instructions

	4 Motion Control Engine
	4.1 Rotating Frame Notation and Conventions
	4.2 Control Blocks
	4.2.1 Frequency Domain Blocks
	4.2.1.1 PI – Proportional Plus Integral
	4.2.1.2 LOWPASS_FILT – First Order Low Pass Filter
	4.2.1.3 HIGHPASS_FILT – First Order High Pass Filter

	4.2.2 Coordinate Transformation Blocks
	4.2.2.1 VECROT – Vector Rotation
	4.2.2.2 CLARK – Inverse Clark Transformation

	4.2.3 Utility Blocks
	4.2.3.1 LIMIT
	4.2.3.2 RAMP – Linear Ramp
	4.2.3.3 ATAN – Arc Tangent block
	4.2.3.4 FUNCTION_BLOCK
	4.2.3.5 COMPARATOR
	4.2.3.6 SWITCH
	4.2.3.7 BIT_LATCH
	4.2.3.8 PEAK_DETECT
	4.2.3.9 TRANSITION – One Shot Pulse Generator
	4.2.3.10 INTEGRAL2 – Integral with Limit
	4.2.3.11 PFC_FFD

	4.2.4 Math
	4.2.4.1 DIFF – Subtraction
	4.2.4.2 SUM – Addition
	4.2.4.3 ACCUMULATOR
	4.2.4.4 COUNTER
	4.2.4.5 SHIFT – Multiply by a Power of Two
	4.2.4.6 MUL_DIV – Signed / Unsigned Multiplier with Extraction
	4.2.4.7 DIVIDE
	4.2.4.8 NOT – Bitwise Inversion
	4.2.4.9 NEGATE – Two’s Complement
	4.2.4.10 AND – Bitwise Logical AND
	4.2.4.11 OR – Bitwise Logical OR
	4.2.4.12 XOR – Bitwise Logical Exclusive OR

	4.3 Motion Peripherals
	4.3.1 SENSORLESS_FOC
	4.3.1.1 Current Control
	4.3.1.2 Rotor Position Estimation
	4.3.1.3 Startup Control

	4.3.2 SINGLE_I_SHUNT
	4.3.3 DC_BUS_VOLTAGE
	4.3.4 A_D – A/D Converter
	4.3.5 Low Loss Space Vector PWM
	4.3.5.1 SVPWM Transfer Characteristics
	4.3.5.2 Deadtime Insertion Logic
	4.3.5.3 Three-Phase and Two-Phase Modulation
	4.3.5.4 Guard Band
	4.3.5.5 PWM Pre-Charge Control
	4.3.5.6 Duty Ratio Control Mode

	4.3.6 FAULTS Block
	4.3.7 MCE_FAULT Generator
	4.3.8 PFC_PWM
	4.3.8.1 PFC PWM Generation
	4.3.8.2 PFC PWM Blanking

	4.3.9 PFC_SENSE

	4.4 Motion Peripheral Registers
	4.4.1 System Write Register Group
	4.4.2 PWM Configuration Write Register Group
	4.4.3 Current Feedback Configuration Write Register Group
	4.4.4 System Control Write Register Group
	4.4.5 Torque Loop Configuration Write Register Group
	4.4.6 Velocity Control Write Register Group
	4.4.7 Closed Loop Angle Estimator Write Register Group
	4.4.8 Open Loop Angle Estimator Write Register Group
	4.4.9 Startup Angle Estimator Write Register Group
	4.4.10 Startup Retrial Write Register Group
	4.4.11 Phase Loss Detect Write Register Group
	4.4.12 Single Shunt Write Register Group
	4.4.13 Start/Stop Sequencing Write Register Group
	4.4.14 Catch Spin Write Register Group
	4.4.15 User Control Write Register Group
	4.4.16 Field Weakening Control Write Register Group
	4.4.17 Protection Write Register Group
	4.4.18 External Signals Write Register Group
	4.4.19 PFC Control Write Register Group
	4.4.20 System Read Register Group
	4.4.21 System Status Read Register Group
	4.4.22 DC Bus Voltage Read Register Group
	4.4.23 FOC Diagnostic Data Read Register Group
	4.4.24 Velocity Status Read Register Group
	4.4.25 Current Feedback Offset Read Register Group
	4.4.26 PFC Status Read Register Group

	5 8051 / MCE Interface
	5.1 The Shared RAM
	5.1.1 Reading and Writing Shared RAM
	5.1.2 Arbitration

	5.2 MCE Processor Registers
	5.3 Motion Peripheral Register Interface
	5.4 Interrupts from the MCE to the 8051

	6 The MCE Development Process
	6.1 MCE Design Generation
	6.2 Creating an MCE Design Using Simulink
	6.2.1 Creating a Complete System Design
	6.2.2 Creating a Macro Block Definition

	6.3 Simulink MCE Design Components
	6.3.1 The MCE Library
	6.3.1.1 Configuration
	6.3.1.2 Registers
	6.3.1.3 Control
	6.3.1.4 Math
	6.3.1.5 Tools
	6.3.1.6 Motion Peripherals
	6.3.1.7 Designs

	6.3.2 Standard Simulink Library Components
	6.3.2.1 Enabled Subsystem
	6.3.2.2 Constant
	6.3.2.3 Scope
	6.3.2.4 Input Port
	6.3.2.5 Output Port
	6.3.2.6 Goto and From
	6.3.2.7 Unit Delay

	6.4 The MCE Compiler
	6.5 The Host Register Summary Utility
	6.6 Customizing Motion Peripheral Library Blocks
	6.7 MCE Design Hierarchical Format

	7 The 8051 Development Process
	7.1 Source Code Samples
	7.1.1 EEPROM Programming
	7.1.2 Register Interface
	7.1.3 UART Driver
	7.1.4 MCE Initialization
	7.1.5 Motor Control
	7.1.6 Other Operations

	7.2 The Keil and FS2 Tools
	7.2.1 Software Installation
	7.2.2 Software Setup
	7.2.3 The Keil Compiler
	7.2.4 Debugging

	7.3 Storing 8051 and MCE Code in EEPROM

