
Linguagens Formais e Autómatos
Trabalho Prático

Departamento de Electrónica, Telecomunicações e Informática
Universidade de Aveiro

2017–2018, 2o semestre

1 Introdução

Um compilador pode ser encarado como sendo um tradutor da linguagem fonte (i.e. da
linguagem a compilar), para uma linguagem destino. A linguagem destino pode ser próxima
da linguagem fonte, ou muito distante (por exemplo, assembly ou linguagem máquina).
Neste processo de tradução o compilador deve não só garantir a validade sintáctica do
programa, com também a sua correcção semântica (i.e. uma utilização com significado das
instruções da linguagem).

2 Objectivos

O trabalho a desenvolver deve envolver, pelo menos, duas linguagens: uma para um compi-
lador (com a linguagem objectivo do trabalho) e outra para ler informação estruturada (por
exemplo, um ficheiro de configuração, ou uma linguagem de especificação complementar à
linguagem principal).

O desenvolvimento do compilador deve envolver, tanto quanto posśıvel, todas as fases
de construção de linguagens de programação:

1. Concepção e definição de uma linguagem de programação (sintaxe e semântica).

2. Implementação em ANTLR4 da análise léxica e da análise sintáctica de um compilador
para a linguagem;

3. Definição das regras semânticas a aplicar à linguagem, e sua implementação no con-
texto do ponto anterior.

4. Escrever um documento que descreva a linguagem (instruções existentes e o seu
significado; exemplos de programas; etc.).

1



5. Escolha criteriosa de uma linguagem destino, onde se possa implementar a śıntese
(backend) do compilador.

6. Definição dos padrões de geração de código para as instruções da linguagem.

7. Implementação completa do compilador.

3 Temas

O tema para a linguagem de programação a desenvolver pode ser proposto pelos alunos
(sendo que, neste caso, antes de ser aceite terá de passar pelo “crivo” do docente das
práticas). Alternativamente, pode ser escolhido um tema da seguinte lista:

1. Linguagem para manipulação de tabelas (adaptação do problema do bloco 3 para
um compilador). Gerar código em Java.

2. Linguagem para criptografia (ver secção 3.1).

3. Linguagem para manipulação de figuras gráficas (desenho, composição, . . . ). Gerar
código em Java, PostScript, ou pdf.

4. Linguagem para análise dimensional (f́ısica). A especificação das unidades (metros,
segundos, nano, micro, . . . ) pode ser feita numa linguagem separada, sendo o com-
pilador aplicável a uma linguagem de programação que se aproxime qb. de uma
linguagem de uso genérico.

5. Linguagem para manipulação de imagens (processamento de imagem, zoom, crop, de-
tecção de contornos, . . . ). Gerar código em OpenCV, ou noutra biblioteca/linguagem
que suporte minimamente as funcionalidades pretendidas.

As escolhas a tomar no desenvolvimento das linguagens e respectivas gramáticas são li-
vres (e sujeitas a avaliação). Sugere-se a implementação de algumas das seguintes operações:

• Definição de variáveis;

• Operações interactivas com o utilizador;

• Definição de expressões que definam uma álgebra sobre elementos da linguagem
(números, figuras, tabelas, imagens, . . . );

• Instruções iterativas;

• Expressões booleanas (predicados) e instruções condicionais;

• Funções.

Para além do documento que descreve as linguagens desenvolvidas, tem de fazer parte
da entrega do trabalho um conjunto adequado de programas (funcionais) de exemplo das
linguagens.

2



3.1 Linguagem para criptografia

As cifras são funções de transformam dados ditos em claro em algo ininteliǵıvel (cripto-
grama), e vice-versa, usando para o efeito um algoritmo bem conhecido e um valor secreto,
designado por chave. Os dados em claro, os criptogramas e as chaves são tratadas pelo
algoritmo como conjuntos de bits com um comprimento fixo. Estes conjuntos de bits são
processados pelo algoritmo usando operações que operam sobre blocos de bits de várias
dimensões. Essas operações incluem, por exemplo, rotações, deslocamentos, permutações,
concatenações, substituições, etc. Normalmente estas operações são muito fastidiosas de
programar, tanto em linguagens de alto ńıvel como em linguagem máquina, o que complica
o desenvolvimento de novos algoritmos.

Pretende-se com este trabalho desenvolver uma linguagem para descrever a operação de
um algoritmo de cifra (e decifra). A linguagem deverá suportar a definição de operandos
com dimensão, de forma a permitir uma validação semântica e a balizar os tipos necessários
na geração de código. Para obter uma lista de operadores a concretizar, pode-se ver como
exemplo os algoritmos do DES, IDEA, AES, SHA-1, SHA-2, SHA-3 e A5.

Existem também os chamados modos de cifra, que são formas genéricas de aplicação de
cifras a volumes de dados arbitrários. Estes modos também permitem definir novas cifras
à custa de outras cifras. Neste sentido, a linguagem deverá permitir o desenvolvimento de
uma cifra recorrendo a outra.

Outro aspeto interessante é a definição, através de uma linguagem, de padrões de
teste de um algoritmo. Por exemplo, certas cifras produzem sequências de bits que se
assemelham a sequências aleatórias (em termos estat́ısticos), outras possuem o chamado
efeito de avalanche: a mudança de 1 bit no input causa uma alteração na sáıda que seguirá
uma distribuição Gaussiana, centrada nos 50%. Outras ainda podem ter valores internos
que terão desejavelmente uma distribuição normal.

Outro aspeto interessante é a definição, através de uma linguagem, do modelo de
aplicação de uma cifra a dados estruturados, onde se pode definir que dados permane-
cem alterados, que dados devem ser cifrados e que envelope se dá aos dados cifrados para
serem corretamente interpretados pelo receptor. Esse envelope tipicamente indica o cripto-
grama e meta-informação relativa a sua geração (quais o(s) algoritmo(s) usado(s), o modo
de cifra, o alinhamento, etc.). Existem várias formas padrão de realizar este empacota-
mento (e.g. PKCS #7, PKCS #12), os quais poderão ser sumariamente concretizados com a
linguagem a desenvolver (está fora de questão a realização completa destes padrões).

4 Grupos

O trabalho deve ser realizado por grupos de 4/5 elementos. Os grupos devem ser formados
preferencialmente por elementos da mesma turma. Poderão ser consideradas excepções
desde que previamente sancionadas pelos docentes envolvidos. Serão criados projetos na
plataforma code.ua para suporte da atividade dos grupos, sendo o código colocado num
repositório em git. Os projetos serão criados pelo docente durante as aulas práticas.

3



Alerta-se desde já que as atualizações feitas ao repositório devem ser executadas por quem
desenvolve o código, usando mensagens adequadas. Serão mal toleradas situações do tipo
“tive que pedir ao meu colega para o fazer”.

A entrega do trabalho será feita recorrendo a estes repositórios.

5 Avaliação

A avaliação terá em consideração o trabalho desenvolvido pelo grupo. Serão realizadas
reuniões com cada grupo com a presença de dois docentes onde se fará uma avaliação
prática com o trabalho realizado (onde se espera que o grupo demonstre o trabalho feito e
responda a eventuais dúvidas e questões).

No que diz respeito à distribuição da nota pelos elementos do grupo, cada grupo terá de
distribuir o trabalho feito pelos elementos do grupo (se o grupo tiver 5 elementos, existirão
500 pontos a ser distribúıdos pelos elementos do grupo). Esta distribuição de pontos tem
ser definida aquando da entrega do trabalho (no próprio email que formaliza a entrega).

Na avaliação vão pesar a qualidade da solução desenvolvida e os objetivos parcelares
por ela cobertos. Fazem parte dos objectivos parcelares os seguintes pontos:

1. Concepção da linguagem. A simplicidade e expressividade da linguagem definida
serão aspectos a valorizar.

2. Gramáticas desenvolvidas.

3. Análise semântica.

4. Gestão de erros.

5. Legibilidade do código e documentação.

6. Geração de código (será valorizada o uso de uma linguagem destino mais “baixo
ńıvel”).

O grau de ambição do trabalho desenvolvido, confrontado com os resultados obtidos,
será também tido em conta.

6 Execução do trabalho e prazos de entrega

As aulas práticas que decorrem até ao fim do semestre serão dedicadas ao trabalho prático.
No entanto, é expectável que não sejam suficientes (principalmente aos grupos que preten-
dem uma melhor classificação). Espera-se por isso que uma parte do trabalho seja feita
fora das aulas.

O prazo limite de entrega do trabalho será uma semana antes da data do exame da
época de exames respectiva (11 de junho na época normal e 28 de junho para recurso).
Relembra-se que, como definido no guião da unidade curricular no ińıcio do semestre, o
trabalho prático tem uma única entrega (ou para a época normal ou para recurso).

4


	Introdução
	Objectivos
	Temas
	Linguagem para criptografia

	Grupos
	Avaliação
	Execução do trabalho e prazos de entrega

