
Advanced Methods in NLP Lecturer: Jonathan Berant

Home Assignment 5: Syntactic Parsing

Due Date: June 9, 2018

This assignment is heavily adapted from Yoav Goldberg who adapted it from Jason Eisner.

In this home assignment you will write grammars and implement a toy syntactic parser.
You can copy the basic grammar and supporting code from ~omrikosh/advanced_nlp/

assignment5/code.

Your code should run properly on Python 2.7 on linux (it doesn’t have to run on Python 3
and above). It must run on nova.cs.tau.ac.il using /usr/bin/python.

To submit your solution, create a directory at ~omrikosh/advanced_nlp/assignment5/

submissions/<id1>_<id2> (where id1 refers to the ID of the first student) and put all
relevant files in this directory. The submission directory should include the code necessary
for running the tests provided out-of-the-box, as well as a written solution, and a text file
including an e-mail of one of the students.

1 Basic grammar

We provide you with python source files PCFG.py and generate.py, and a basic grammar
file grammar.txt. Each line in the grammar file describes a grammar rule:

• The rule’s weight.

• The rule’s left hand side - a non-terminal symbol.

• The rule’s right hand side - a sequence of one or more non-terminal and terminal
symbols.

You can generate sentences from the grammar using the generate.py program: python

generate.py grammar.txt. Note that you can generate multiple sentences at once by
running: python generate.py grammar.txt -n <#generated sentences>. Make sure
you understand the code and the basic grammar.

(a) Why does the program generate so many long sentences? Specifically, what grammar
rule is responsible and why? What is special about this rule?

(b) The grammar allows multiple adjectives, as in ”the fine perplexed pickle”. Why do
the generated sentences do this so rarely?

(c) The grammar format allows specifying different weights to different rules. Which
numbers should you modify to fix the problems in (a) and (b), making the sentences
shorter and the adjectives more frequent? Verify your answer by generating from the
grammar. Discuss your solution (which rules and why). Submit your new grammar
as grammar1.txt.

1



(d) Implement the function gentree in PCFG.py. The function receives a symbol and
generates a derivation tree from that symbol.

Once you implemented this function, given the switch -t in commandline, the program
generate.py should not generate sentences, but the tree structures that generated
the sentences. For example, when invoked as: python generate.py grammar.txt

-n 1 -t instead of just printing ”the floor kissed the delicious chief of staff” it should
print the more elaborate version:

(ROOT (S (NP (Det the) (Noun floor)) (VP (Verb kissed) (NP (Det the) (Noun

(Adj delicious) (Noun chief of staff))))) .)

The bracketed expression can be visualized in tree form using web-based visualizers
like http://christos-c.com/treeviewer/. This sort of output can be useful when
debugging your grammar – understanding which rules are responsible for what struc-
tures.

Hint: You don’t have to represent a tree as an object in memory, only print the
parentheses and nonterminals correctly.

2 CKY parser

(a) Implement the CKY algorithm (CKY slides, slide 30). The algorithm receives a
sentence to parse and a grammar, and returns the derivation of the sentence with the
highest probability. The derivation returned by the function should be in the format
described in question (d) in the section above. In case a sentence cannot be parsed
by the grammar, the function should return the string ”FAILED TO PARSE!”. Fill
your implementation in the function cky in cky.py. The algorithm should assume
that the input grammar is in Chomsky Normal Form (CNF).

3 Extending the Grammar

In this section you will extend your grammar to support more linguistic phenomena.

While developing your grammar you can debug it with your CKY parser: run the parser
with your grammar on a set of sentences. The parser should parse the correct sentences, and
fail to parse incorrect ones. Since the CKY parser assumes the grammar is in CNF, your
grammars should be written in this form. Note that we will test your grammar by running
them on such sentences, so make sure your submission includes your grammars in CNF form.

Advice 1: It is easier to write non-CNF grammars, and then convert them to CNF (See
syntactic parsing slides, slides 20-22).

Advice 2: If you want to see the effect of grammar rules, you can upweight their probability
so that they trigger more often.

2

http://christos-c.com/treeviewer/


(a) Extend your grammar so it can also generate the types of phenomena illustrated in
the following sentences (it must still parse all of the sentences it could parse before):

(a) Sally ate a sandwich .

(b) Sally and the president wanted and ate a sandwich .

(c) the president sighed .

(d) the president thought that a sandwich sighed .

(e) it perplexed the president that a sandwich ate Sally .

(f) the very very very perplexed president ate a sandwich .

(g) the president worked on every proposal on the desk .

(h) Sally is lazy .

(i) Sally is eating a sandwich .

(j) the president thought that sally is a sandwich .

You want to end up with a single grammar that can generate all of these sentences as
well as grammatically similar ones. An important part of the problem is to generalize
from the sentences above. For example, (b) is an invitation to think through the
ways that conjunctions (”and”, ”or”) can be used in English. (g) is an invitation to
think about prepositional phrases (”on the desk”,”over the rainbow”, ”of the United
States”) and how they can be used.

While your new grammar may generate some very silly sentences, it should not gener-
ate any that are obviously ungrammatical. For example, your grammar must be able
to generate (d) but not:

the president thought that a sandwich sighed a pickle .

Submit the CNF version of your new grammar in grammar2-CNF.txt. If you wrote
a non binary grammar, please submit it as well in grammar2.txt. Explain your
modifications.

(b) Think about the following phenomena, and extend your grammar to handle them:

• Relative clauses. Examples:

– the pickle kissed the president that ate the sandwich .

– the pickle kissed the sandwich that the president ate .

– the pickle kissed the sandwich that the president thought that Sally ate .

Hint: These sentences have something in common with (d) in the previous ques-
tion.

• Singular vs. plural agreement. For this, you will need to use a present-tense verb
since past tense verbs in English do not show agreement. Examples:

– the citizens choose the president .

– the president chooses the chief of staff .

– the president and the chief of staff choose the sandwich .

3



Be sure you can handle the particular examples suggested, which means among other
things your grammar must include the words in those examples. You should also
generalize appropriately beyond these examples. Your final grammar should handle
everything from the previous questions as well.

Submit the CNF version of your new grammar in grammar3-CNF.txt. If you wrote
a non binary grammar, please submit it as well in grammar3.txt. Explain your
modifications.

(c) Test your modified grammar with the CKY parser (see full explanation at the begin-
ning of this section). Submit some of your test results.

4


	Basic grammar
	CKY parser
	Extending the Grammar

