
1

CAB431 Tutorial (Week 3): Pre-Processing: Parsing,
Tokenizing and Stopping words removal

**

TASK 1: Parsing - read files from RCV1v2, find the documentID and record it to

a collection of BowDocument Objects.

• The documentID is simply assigned by the ‘itemid’ in <newsitem>

• In this step, the created BowDocument can be initialed with found

documentID and an empty Map (e.g., dictionary, or HashMap) of key-value

pair of (String term: int frequency).

• Build up a collection of BowDocument for given dataset, this collection

should be a map structure with documentID as key and BowDocument object

as value.

• Create a method (or function) to print out all documentIDs by iterating above

collection and calling BowDocument’s method getDocId().

TASK 2: Tokenizing – update Task 1 program to fill term:freq map for every

document.

• You only need to tokenize the ‘<text>…</text>’ part of document, exclude all

tags, and discard punctuations, numbers.

• Use addTerm() of BowDocument to add new term to term map or increase

term frequency when the term occur again.

• Create a method displayDocInfo(int aDocId) to display term list with a given

docuemntID, by searching collection of BowDocument in Task 1, and calling

getTermFreqMap() of found document. The output should be like:

 Doc docId has termCount different terms:

Term1, 3

Term2, 1

Term3, 4

….

2

• Please think about the terms with high frequency, which may be some useful

words for describing the document in the future.

TASK 3: Stopping words – use given stopping words list to ignore/remove all

stopping words from the term list of documents.

• Download the stopping words list from QUT Blackboard, read through first,

compare with your notes of high frequency terms.

• Update your program to read in given stopping words list and store to a list

stopWordsList.

• Update your program, when adding term to term map, check the term if or

not exist in stopping words list, ignore such term if it is in.

• Call the method displayDocInfo() again and compare the output with Task 2.

TASK 4: Sort and display document term:freq list by term or/and by frequency.

You may do this after you have finished and passed all the above 3 tasks in

week 3 tutorial.

3

Examples of output

Document 741200 contains 50 terms and have total 100 words.

quot:4

lead:3

car:3

german:2

over:2

soper:2

victori:2

dalma:1

merced:1

steve:1

austrian:1

fifth:1

han:1

downpour:1

handl:1

…

Document 741000 contains 42 terms and have total 110 words.

under:7

over:4

tee:2

peter:2

trinidad:1

par:1

lehman:1

scotland:1

sunday:1

darren:1

mark:1

…

4

APPENDIX

Create a “Wrapper Class” of Bag-of-Words representation of a

document.

The BowDocument class should have properties of documentID and a

HashMap in which terms are keys and their frequencies are values.

The BowDocument class should have the following methods

(functions) besides a constructor of BowDocument class:

 private String docId;

 private HashMap<String, Integer> termFreqMap;

 /**

 * Constructor

 * Set the ID of the document, and initiate an empty

term:frequency map.

 * call addTerm to add terms to map

 * @param docId

 */

public BowDocument(String docId){

 //your code here

}

 /**

 * Add a term occurrence to the BOW representation

 * @param term

 */

public void addTerm(String term){

//your code here

}

 /**

 *

 * @param term

5

 * @return the term occurrence count for the given term

 * return 0 if the term does not appear in the document

 */

public int getTermCount(String term){

//your code here

 }

 /**

 *

 * @return sorted list of all terms occurring in the document

 */

public ArrayList<String> getSortedTermList(){

//your code here

 }

 /**

 * @return map of term:freq pairs.

 */

public HashMap<String, Integer> getTermFreqMap(){

 //your code here

 }

 /**

 *

 * @return the ID of this document

 */

 public String getDocId(){

 //your code here

 }

