
2. homework assignment; JAVA, Academic year 2017/2018; FER

In order to solve this homework, you are expected to read (with understanding) chapters 5 and 6 in book.
After that you can proceed with this homework. This homework consists of five problems. During the
semester we will return to this code, modify it, polish it and use it to implement some very cool stuff. You
will have to reuse the code you write here, so write it smart. Be patient and please, don't panic. Breathe
deeply. OK, here we go…

Start by creating a blank Maven project, just as you did for 1. homework assignment: in Eclipse workspace
directory create directory hw02-0000000000 (replace zeros with your JMBAG) and inside setup Maven
project hr.fer.zemris.java.jmbag0000000000:hw02-0000000000 (replace zeros with your JMBAG)
and add dependency for junit:junit:4.12. Import it into Eclipse. Now you can start solving actual
problems.

Problem 1.

All of the following classes should be placed in package hr.fer.zemris.java.custom.collections.

Define a class Processor. It must define a single method:

public void process(Object value);

with empty body (its implementation exists but does nothing).

Then define a class Collection which represents some general collection of objects. This class should
provide only a protected default constructor. Class Collection must provide following public methods.

boolean isEmpty();
Returns true if collection contains no objects and false otherwise. Implement it here to determine result
by utilizing method size().

int size();
Returns the number of currently stored objects in this collections. Implement it here to always return 0.
void add(Object value);

Adds the given object into this collection. Implement it here to do nothing.
boolean contains(Object value);

Returns true only if the collection contains given value, as determined by equals method. Implement it
here to always return false. It is OK to ask if collection contains null.

boolean remove(Object value);

Returns true only if the collection contains given value as determined by equals method and removes
one occurrence of it (in this class it is not specified which one). Implement it here to always return false.

Object[] toArray();

Allocates new array with size equals to the size of this collections, fills it with collection content and
returns the array. This method never returns null. Implement it here to throw
UnsupportedOperationException.

void forEach(Processor processor);

Method calls processor.process(.) for each element of this collection. The order in which elements
will be sent is undefined in this class. Implement it here as an empty method.

void addAll(Collection other);

Method adds into the current collection all elements from the given collection. This other collection
remains unchanged. Implement it here to define a local processor class (read about Local classes in book)
whose method process will add each item into the current collection by calling method add, and then call
forEach on the other collection with this processor as argument. You must define this new class directly in
the method addAll (such classes are called local classes).

void clear();

Removes all elements from this collection. Implement it here as an empty method.

Since this class does not actually have any storage capabilities, you wont be able to test it yet.

Problem 2.

Write an implementation of resizable array-backed collection of objects denoted as
ArrayIndexedCollection which extends class Collection from previous problem.
Put it also in package hr.fer.zemris.java.custom.collections. Each instance of this class should
manage three private variables:

• size – current size of collection (number of elements actually stored),
• capacity – current capacity of allocated array of object references, and
• elements – an array of object references which length is determined by capacity variable.

General contract of this collection is: duplicate elements are allowed; storage of null references is not
allowed.

You should provide four constructors. The default constructor should create an instance with capacity set
to 16 (this also means that constructor should preallocate the elements array of that size). The second
constructor should have a single integer parameter: initialCapacity and should set the capacity to that
value, as well as preallocate the elements array of that size. If initial capacity is less then 1, an
IllegalArgumentException should be thrown. Other two constructors are variation of the previous two,
but they accept additional parameter (as first argument): reference to some other Collection which
elements are copied into this newly constructed collection; if the initialCapacity is smaller than the
given collection size, given collection size should be used for elements array preallocation. If the given
collection is null, NullPointerException should be thrown. Please implement the simpler constructors so
that they delegate the construction process to the more complex constructors (read section “Delegiranje
zadaće konstrukcije objekta” in book, chapter 5).

This class should override empty method definitions inherited from the Collection class with an
appropriate implementation.

This class should also have all of the methods given below. Please note that some methods are copied from
the previous problem but have better specified behavior.

void add(Object value);

Adds the given object into this collection (reference is added into first empty place in the elements array;
if the elements array is full, it should be reallocated by doubling its size). The method should refuse to
add null as element by throwing the appropriate exception (NullPointerException). What is the average
complexity of this method?

Object get(int index);
Returns the object that is stored in backing array at position index. Valid indexes are 0 to size-1. If index
is invalid, the implementation should throw the appropriate exception (IndexOutOfBoundsException).
What is the average complexity of this method?

void clear();
Removes all elements from the collection. The allocated array is left at current capacity. Do not just set size
to 0; write null references into the backing array so that objects which became unreferenced become
eligible for garbage collection. Do not allocate new array.

void insert(Object value, int position);
Inserts (does not overwrite) the given value at the given position in array (observe that before actual
insertion elements at position and at greater positions must be shifted one place toward the end, so that an
empty place is created at position). The legal positions are 0 to size (both are included). If position is

invalid, an appropriate exception should be thrown (IndexOutOfBoundsException). Except the difference
in position at witch the given object will be inserted, everything else should be in conformance with the
method add. What is the average complexity of this method?

int indexOf(Object value);
Searches the collection and returns the index of the first occurrence of the given value or -1 if the value is
not found. Argument can be null and the result must be that this element is not found (since the collection
can not contain null). The equality should be determined using the equals method. What is the average
complexity of this method?

void remove(int index);
Removes element at specified index from collection. Element that was previously at location index+1
after this operation is on location index, etc. Legal indexes are 0 to size-1. In case of invalid index throw
an appropriate exception (IndexOutOfBoundsException).

You are expected to write junit tests for all methods
described in the previous table.

Problem 3.

Write an implementation of linked list-backed collection of objects denoted as
LinkedListIndexedCollection which extends class Collection from previous problem.
Put it also in package hr.fer.zemris.java.custom.collections.
This class should define private static class ListNode with pointers to previous and next list node and
additional reference for value storage.

Each instance of this class should manage three private variables:

• size – current size of collection (number of elements actually stored; number of nodes in list),
• first – reference to the first node of the linked list,
• last – reference to the last node of the linked list.

General contract of this collection is: duplicate elements are allowed (each of those element will be held in
different list node); storage of null references is not allowed.

You should provide two constructors. The default constructor should create an empty collection with
first=last=null. The second constructor should have a single parameter: reference to some other
Collection whose elements are copied into this newly constructed collection.

This class should override empty method definitions inherited from Collection class with appropriate
implementation.

This class should also have all of the methods given below. Please note that some methods are copied from
the previous problem but have better specified behavior.

void add(Object value);

Adds the given object into this collection at the end of collection; newly added element becomes the
element at the biggest index. Implement it with complexity O(1). The method should refuse to add null as
element by throwing the appropriate exception (NullPointerException).

Object get(int index);
Returns the object that is stored in linked list at position index. Valid indexes are 0 to size-1. If index is
invalid, the implementation should throw the appropriate exception (IndexOutOfBoundsException).
Implement this method so that it never has the complexity greater than n/2+1.

void clear();
Removes all elements from the collection. Collection “forgets” about current linked list.

void insert(Object value, int position);
Inserts (does not overwrite) the given value at the given position in linked-list. Elements starting from
this position are shifted one position. The legal positions are 0 to size. If position is invalid, an
appropriate exception should be thrown. Except the difference in position at witch the given object will be
inserted, everything else should be in conformance with the method add. What is the average complexity
of this method?

int indexOf(Object value);
Searches the collection and returns the index of the first occurrence of the given value or -1 if the value is
not found. null is valid argument. The equality should be determined using the equals method. What is
the average complexity of this method?

void remove(int index);
Removes element at specified index from collection. Element that was previously at location index+1
after this operation is on location index, etc. Legal indexes are 0 to size-1. In case of invalid index throw

an appropriate exception (and document it!).

Example of usage for problems 1, 2 and 3 (you will have to import java.util.Arrays;):

ArrayIndexedCollection col = new ArrayIndexedCollection(2);
col.add(new Integer(20));
col.add("New York");
col.add("San Francisco"); // here the internal array is reallocated to 4
System.out.println(col.contains("New York")); // writes: true
col.remove(1); // removes "New York"; shifts "San Francisco" to position 1
System.out.println(col.get(1)); // writes: "San Francisco"
System.out.println(col.size()); // writes: 2
col.add("Los Angeles");

LinkedListIndexedCollection col2 = new LinkedListIndexedCollection(col);

// This is local class representing a Processor which writes objects to System.out
class P extends Processor {
 public void process(Object o) {
 System.out.println(o);
 }
};

System.out.println("col elements:");
col.forEach(new P());

System.out.println("col elements again:");
System.out.println(Arrays.toString(col.toArray()));

System.out.println("col2 elements:");
col2.forEach(new P());

System.out.println("col2 elements again:");
System.out.println(Arrays.toString(col2.toArray()));

System.out.println(col.contains(col2.get(1))); // true
System.out.println(col2.contains(col.get(1))); // true

col.remove(new Integer(20)); // removes 20 from collection (at position 0).

In order to solve this, consult lecture presentation, chapters 5 and 6 in book as well as the Lesson: Exception
from the official Java Tutorial (see: http://docs.oracle.com/javase/tutorial/essential/exceptions/).

http://docs.oracle.com/javase/tutorial/essential/exceptions/

Problem 4.

Soon we will need an implementation of the stack-like collection. The collection
ArrayIndexedCollection you already implemented could be used for that purpose; however, the interface
(in a sense how users interact with it) of that collection is inappropriate. If the collection is a stack, you
would expect it to have methods such as push, pop and peek, and not insert, add etc. which can be
confusing for user. There is well known design pattern that can be employed to solve this mismatch:
Adapter pattern1 which is illustrated in the following figure.

In this case the Adaptee is the ArrayIndexedCollection class with its methods add, insert etc. It is the
class with “wrong” interface toward the user. Your task will be to write ObjectStack class (it is top level
class – it does not extends Collection class we defined previously) that is the Adaptor in used design
pattern (place the class in the package from previous problem). This class must provide to user the methods
which are natural for a stack and hide everything else. The ObjectStack class should provide the following
methods:

boolean isEmpty(); – same as ArrayIndexedCollection.isEmpty()

int size(); – same as ArrayIndexedCollection.size()

void push(Object value); – pushes given value on the stack. null value must not be allowed to be
placed on stack.

Object pop(); – removes last value pushed on stack from stack and returns it. If the stack is empty when
method pop is called, the method should throw EmptyStackException. This exception is not part of JRE
libraries; you should provide an implementation of EmptyStackException class (put the class in the same
package as all of collections you implemented and let it inherit from RuntimeException).

Object peek(); – similar as pop; returns last element placed on stack but does not delete it from stack.
Handle an empty stack as described in pop method.

void clear(); – removes all elements from stack.

1 Please see: http://en.wikipedia.org/wiki/Adapter_pattern

The goal that ObjectStack should provide for it users appropriate interface but at the same time avoid code
duplication will be accomplished by using delegation (remember this term). Each ObjectStack instance
will create and manage its own private instance of ArrayIndexedCollection and use it for actual element
storage. This way, the methods of ObjectStack will be the methods user expects to exist in stack, and those
methods will implement its functionality by calling (i.e. delegating) methods of its internal collection of
type ArrayIndexedCollection. The fact that our implementation of stack internally uses an instance of
ArrayIndexedCollection is an implementation detail of which the final user is unaware. Additional
benefit of this approach is the fact that actual implementation of element storage can be changed at any time
(for example, we can decide to use LinkedListIndexedCollection) and without any consequences for
clients of our stack class: we will not have to adjust or modify any of these clients – they are isolated from
this change.

The methods push and pop should be implemented so that they have o (1) average complexity (except when
the underlying array in used collection is reallocated).

Now create class StackDemo in subpackage demo. This should be command-line application which accepts a
single command-line argument: expression which should be evaluated. Expression must be in postfix
representation. When starting program from console, you will enclose whole expression into quotation
marks, so that your program always gets just one argument (args.length should be 1 and the args[0]
should be the whole expression).

Example 1: “8 2 /” means apply / on 8 and 2, so 8/2=4.
Example 2: “-1 8 2 / +” means apply / on 8 and 2, so 8/2=4, then apply + on -1 and 4, so the result is 3.

In expressions, you can assume that everything is separated by one (or more) spaces.
Each operator takes two preceding numbers and replaces them with operation result. You must support only
+, -, /, * and % (remainder of integer division). All operators work with and produce integer results. So it is
expected that 3/2=1. The calculation process can be solved by using the stack you just developed. Split the
expression by spaces, and then do the following:

stack = empty
for each element of expression
 if element is number, push it on stack and continue
 else pop two elements from stack, perform operation and push result back on stack
end for
if stack size different from 1, write error
else syso stack.pop()

Ensure that you terminate the evaluation if user tries to divide by zero (write appropriate message to user; do
not dump a stack trace on user). Also, if expression is invalid, write appropriate message to user.

Usage example:

D:\java> java -cp . hr.fer.zemris.java.custom.collections.demo.StackDemo "8 -2 / -1 *"
Expression evaluates to 4.

Please observe: the whole argument is enclosed in quotes so that it is given to your program as a single
argument. It is your responsibility to split it.

Problem 5.

Implement a support for working with complex numbers. Your task is to create a class ComplexNumber
which represents an unmodifiable complex number. Place the class in the package
hr.fer.zemris.java.hw02. Each method which performs some kind of modification must return a new
instance which represents modified number. This class must have:

• public constructor which accepts two arguments: real part and imaginary part (use double for both),
• public static factory methods:

◦ fromReal(double real): ComplexNumber,
◦ fromImaginary(double imaginary): ComplexNumber,
◦ fromMagnitudeAndAngle(double magnitude, double angle): ComplexNumber,

◦ parse(String s): ComplexNumber (accepts strings such as: "3.51", "-3.17", "-2.71i", "i", "1",
"-2.71-3.15i"),

• public instance methods for information retrieval (the function should be clear for method names):
◦ getReal(): double
◦ getImaginary(): double
◦ getMagnitude(): double

◦ getAngle(): double (angle is in radians, from 0 to 2 Pi)
• public instance methods which allow calculations:

◦ add(ComplexNumber c): ComplexNumber,
◦ sub(ComplexNumber c): ComplexNumber,
◦ mul(ComplexNumber c): ComplexNumber,
◦ div(ComplexNumber c): ComplexNumber,

◦ power(int n): ComplexNumber; n>=0,
◦ root(int n): ComplexNumber[]; n > 0,

• public method for conversion to string:
◦ toString(): String.

Create a subpackage demo and place inside program ComplexDemo with the following code in the main
method.

ComplexNumber c1 = new ComplexNumber(2, 3);
ComplexNumber c2 = ComplexNumber.parse("2.5-3i");
ComplexNumber c3 = c1.add(ComplexNumber.fromMagnitudeAndAngle(2, 1.57))

.div(c2).power(3).root(2)[1];
System.out.println(c3);

Where needed, throw an appropriate exception. For parsing decimal numbers always use
Double.parseDouble(…) so that decimal symbol is always dot (‘.’) and never comma (‘,’).

You are expected to write junit tests for all methods of
ComplexNumber class.

Please note. You can consult with your peers and exchange ideas about this homework before you start
actual coding. Once you open you IDE and start coding, consultations with others (except with me) will be
regarded as cheating. You can not use any of preexisting code or libraries for this homework (whether it is
yours old code or someones else). Additionally, for this homework you can not use any of Java Collection
Framework classes which represent collections or its derivatives (its OK to use Arrays class if you find it
suitable). Document your code!

All source files must be written using UTF-8 encoding. All classes, methods and fields (public, private or
otherwise) must have appropriate javadoc.

You must write junit tests for problem 2 and problem 5. Junit tests for other problems are encouraged but
not mandatory.

When your homework is done, pack it in zip archive with name hw02-0000000000.zip (replace zeros with
your JMBAG). Upload this archive to Ferko before the deadline. Do not forget to lock your upload or
upload will not be accepted. Deadline is March 22th 2018. at 07:00 AM.

	2. homework assignment; JAVA, Academic year 2017/2018; FER
	Problem 1.
	Problem 2.
	Problem 3.
	Problem 4.
	Problem 5.

