
 

 
 

 
 
 
 

Zendesk  
Integration 

 

 
 

 
  

 



 

 

Index 
 
Introduction 4 

Features 4 

Setting up a Zendesk app 5 
Step 1: Create a Zendesk page 5 
Step 2: Download the Inbenta Search for Zendesk template 5 
Step 3: Configuring the Inbenta template 6 

General configuration 6 
Common components 7 
Search 7 
Results 8 
Autocompleter 8 

Integration 9 
Search Integration 9 

Go to guide theming in the admin panel 9 
Add the needed files and include them in the desired page 12 

Deflection Integration 14 
In the Guide admin view, add the needed files and include them in the desired page 14 

Autocompleter Integration 17 
Follow the same steps as the Search Integration but with the autocompleter configuration 17 
Include the scripts and CSS at the top of the file 17 
Start typing in the search bar and check that the autocompleter is shown 17 
Zendesk styles modified 18 
All the components activated 19 

Live examples 21 

 
 
 
Document history 
Version Number Modification Date 

1.0 02/26/2019 

 

2 



 

 
 

  

3 



 

Introduction  

The purpose of this documentation is to define the integration of a search SDK in a Zendesk portal. 
Zendesk uses a template to create or modify all the pages. The following SDK setup was done using 
the basic template "Zendesk Copenhagen" because it is the default template.  

More info about the Zendesk Templates. 

Features  
This application uses the Inbenta search SDK with the following used and supported components: 

● Autocompleter 
● Instants 
● Last Chance 
● Loader 
● No Results 
● Pagination 
● Refinement Lists 
● Refinement Tabs 
● Results 
● Results per Page Selector 
● Router 
● Sort By Selector 
● Stats 

  

4 

https://developer.zendesk.com/apps/docs/help-center-templates/introduction
https://developers.inbenta.io/search/javascript-sdk/sdk-components
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/autocompleter
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/instants
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/last-chance
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/loader
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/no-results
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/pagination
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/refinement-lists
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/refinement-tabs
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/results
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/results-per-page-selector
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/router
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/sort-by-selector
https://developers.inbenta.io/search/javascript-sdk/sdk-setup/components/stats


 

Setting up a Zendesk app 
The purpose of this section is to showcase how a Zendesk Free Trial can be. 

Step 1: Create a Zendesk page  
 
Follow this step only if you don’t have an available Zendesk Sandbox where the Inbenta Search 
could be tested in.  

1. Go to the Zendesk main page and click on the "Free trial" option. 
 

 
 

2. Register an account and follow the Zendesk registration guide to obtain it. 

Step 2: Download the Inbenta Search for Zendesk template  

All of the code provided by Inbenta is located in a GIT repository. Download the Inbenta code from 
https://github.com/inbenta-integrations/zendesk_search_template and move it into the UI 
repository. 

 

5 

https://www.zendesk.com/
https://github.com/inbenta-integrations/zendesk_search_template


 

Step 3: Configuring the Inbenta template  
Although this template is designed with most of the search components, it also allows for their 
deactivation (except for the results components). Modify the conf files to activate/deactivate the 
different components in order to adapt the application to fit your requirements. To deactivate a 
component remove the whole component from the config file.  

 In order for the application to work properly, only one conf file should be loaded per 
page. 

General configuration 
The config file has some general configuration that is not related to the components. 
 

sdkVersion: '1.22.0', 
sdkIntegrity: 

"sha384-ifuG86EAWx0kUeqJZTJxHpdJDFlKrXW0JcaBz2UsA5hdIXbvM9OmBQt6I98payUv", 
sdkAuth: { 

    publicKey: " ---------------- ", 
    domainKey: " ---------------- " 
}, 

// Inbenta standard SDK configuration - Check inbenta API/SDK documentation 

<https://apidocs.inbenta.io/> for more information 

sdkConfig: { 

    // Environments => "development"/"preproduction"/"production" 
    environment: "production",  
    userType: 0 
}, 

userTypes: { 

    anonymous: 0, 
    end_user: 0, 
    agent: 0, 
    manager: 0 
}, 

// List of the paths where this script shouldn't be loaded (results and deflection 

pages) 

resultsDeflectionPaths: { 

    paths: ['/search', 'requests/new', 'community/posts/new'] 
}, 

 

 

● sdkVersion: The version of the SDK that will be used.  
● sdkIntegrity: Each SDK version has a SRI. This is a security feature that enables 

browsers to verify that the resources they fetch are delivered without unexpected 
manipulation. Changing the version might need a change of the inbenta-core.js to adapt 
it with the new features 

6 

https://developers.inbenta.io/knowledge-management/javascript-sdk/sdk-subresource-integrity


 

● sdkAuth: Introduce the public key and domain key of the Backstage instance that will be 
used. More info. 

● sdkConfig: Standard SDK configuration. More info. 
● userTypes: This configuration sets the Inbenta User Types that will be used for each 

Zendesk user role. This configuration will look for the variable “HelpCenter.user.role”, 
and assign the corresponding Inbenta User Type IDChange the numbers to assign the 
desired Inbenta User Type to each Zendesk role. 

● resultsDeflectionPaths: This configuration has an array of the paths where the 
'inbenta-conf-autocompleter.js' shouldn't be loaded. This configuration is only available 
in the autocompleter configuration file to be able to load the Inbenta files that only use 
the autocompleter component in the header in order to avoid conflicts in pages like 
results or deflections where the files are loaded again. 
 

Common components 
Most components have the following configuration: 

<component-name>: { 

    target: '#component-name', 
    conf: { 

        <component-configuration-options>  

    } 

} 

●  
● target: Id or class of the HTML element that this component will use. The application will 

add this div and replace it with the corresponding component. 
● conf: Object with the configuration of the component. This object can be empty and it 

will use the default configuration. 

 Check the components page to learn about all the available options. To remove 
a component, remove it and all its configuration options from the config file. 
 

The results and search configuration are special as they can't be deactivated and have 
additional options. 

Search 
If this option is activated, the Zendesk search bar will be replaced and the Inbenta Search 
results will load on that page.  
If this option is inactive,  the script will load  an Autocompleter component or deflection tools 
components only, and any existing search bar on the page will redirect to the search results 
page. 
 

7 

https://help.inbenta.io/general/administration/finding-your-api-credentials/
https://developers.inbenta.io/search/javascript-sdk/sdk-setup#configuration-options
https://developers.inbenta.io/search/javascript-sdk/sdk-components


 

search: { 

    active: true 
} 

Results 

results: { 

    container: '#inbenta-container', // Div where inbenta will be loaded 
    target: '#inbenta-results', 
    conf: {} 

} 

 
● container: Id or class where the application will be loaded. The application will add the 

needed elements above this div and will hide it when a search is performed. 
● target: Id or class of the HTML element that this component will use. The application will 

add this div to the page and then replace it with the ‘results’ component. 
● conf: Object with the configuration of the component. If the object is empty, it will use the 

default configuration.  

 If this element doesn't exist, the application will launch an error. This component 
is required for the application to work. Do not remove it. 

Autocompleter 

autocompleter: { 

    input: '#query', // Input to be linked to the autocompleter 
    target: '#inbenta-autocompleter', 
    conf: { 

        showViewAllButton: false 
    } 

} 

 
● input: Id or class of the input to be linked. The autocomplete component will listen to 

changes in this input. The input will only be replaced if the search is active. 
● target: Id or class of the HTML element that this component will use. The application will 

add this div to the page and then replace it with the ‘autocomplete’ component. 
● conf: Object with the configuration of the component. This object can be empty and it 

will use the default configuration.  

 The linked HTML input must have the attribute autocomplete="off", to avoid 
the browser’s autocomplete from loading.  

8 



 

Integration 
This section is a guide for knowing how to integrate the Inbenta Search SDK into the Zendesk 
page. There are many possible options for integrating the SDK. In this document, only a search 
,autocompleter and ‘New Request’ deflection integration will be exemplified  as those are the 
most common use-cases. 

Search Integration 
This integration will link the search to the search bar and show the results in the same page. 
Remember to modify the configuration file to select the components, where the application 
should be loaded, the input id or class to be linked... 

Go to guide theming in the admin panel 
 

1. Select the Guide view 

 

9 



 

2. Go to the Guide admin  

 
3. Select the theming option on the left menu 

 

10 



 

4. Select the theme to change it. 

 
 

5. Select Search settings and disable Instant search to avoid conflicts with Inbenta 
autocompleter. 

 

11 



 

6. Click on the three dots and select edit code. 

 

Add the needed files and include them in the desired page 
1. Add the “inbenta-core.js”, “inbenta-core.css” and the conf files (i.e: 

inbenta-conf-results.js) as a resource. 

 
  

12 



 

2. Include them in the desired pages. 
a. Include the scripts and CSS at the top of the file. The conf files must be added 

before the “inbenta-core.js”. 
b. Add the needed div or modify the conf file to use an existing one and load the 

application 
 

 
 

3. Perform a search on the integrated page to check that everything went well 

 

13 



 

Deflection Integration 
This integration is designed for a page with a form where the user sends an email or ticket. 
Remember to modify the configuration file to select the components, inputs id or class... 

In the Guide admin view, add the needed files and include them in the 

desired page 

1. Follow the same steps as the Search Integration but with the deflection configuration 
a. Go to the contact page to include the scripts and CSS at the top of the file 
b. Remember to add the needed div to load the application 

 

14 



 

2. Fill the form and check that the instant answers and/or last chance are shown 

 
 

3. Add a script to control the form submission and show the last chance 

 The id and classes used can be different so be sure to change them to use the same 
ones as the integrated page. 

 

  /*-------------------------------------------------- 
   |      EXAMPLE CODE TO BE ADDED BY CUSTOMER 

   |-------------------------------------------------- 

   | 

   | This is just an example code of how to use the Deflection tools. 

   | We provided the functions window.inbentaEventTrigger() and 

   | window.inbentaEventListener(), but we will be firing/listening events 

   | so feel free to do the solution that fits better 

  */  

 

  // We are capturing submit event, but lastChanceShow should be called  
  // before submitting and after doing any validation on the form 
 

  var canSubmit, hasSubmitted = false; 
  var formSelector = "#new_request"; 
  var submitButtonSelector = formSelector + " input[type=submit]"; 
  

  if (window.inbentaEventTrigger) { 
 // Clone the submit button to use inbenta 

    var originalSubmit = $(submitButtonSelector); 
    var inbentaSubmit = $(originalSubmit).clone(false); 

15 



 

 

    $(originalSubmit).hide(); 

    $(inbentaSubmit).insertAfter(originalSubmit); 

  

 $(inbentaSubmit).on('click', function(e) { 
      if (!canSubmit) { 
        e.preventDefault(); 

        // These Events have to be called when inbenta has already loaded,  
        // doing it here should be a good idea 

        window.inbentaEventTrigger(document, 'lastChanceShow'); 
      } 

      // Check if the form has been already submitted to avoid multiple submits 
      else if (hasSubmitted) { 
        e.preventDefault(); 

      } 

    }); 

  

 window.inbentaEventListener(document, 'lastChanceSubmit', function(e) { 
      canSubmit = true; 
      // Check if the form has been already submitted to avoid multiple submits 
      if (!hasSubmitted) { 
        // Submit the form 
        $(originalSubmit).click(); 

        hasSubmitted = true; 
      } 

    }); 

  }  

  

16 



 

Autocompleter Integration 
This integration is designed for a page with a search bar that will only use the autocompleter 
component. This search bar should redirect to the results page as this redirection won't be done 
by Inbenta. In the Guide admin view, add the needed files and include them in the header page 

1. Follow the same steps as the Search Integration but with the autocompleter configuration 
a. Include the scripts and CSS at the top of the file 

 

 
b. Start typing in the search bar and check that the autocompleter is shown

 
17 



 

Zendesk styles modified 
To avoid style conflicts with Inbenta and Zendesk template, we changed some of the Zendesk 
styles. This change is to show the autocompleter component properly. The styles changed are: 
 

.section.hero{ 
z-index: 9; 
position: relative; 

} 

 
  

18 



 

All the components activated 
This is an example of a configuration file with all the possible components of the search SDK 
that this application allows. Use it as a guide to add any component needed. 
 

{ 

    appConfig: { 

autocompleter: { 

input: '#query', // Input to be linked to the autocompleter 
target: '#inbenta-autocompleter', 
conf: { 

showViewAllButton: false 
} 

}, 

loader: { 

target: '#inbenta-loader', 
conf: {} 

}, 

noResults: { 

target: '#inbenta-no-results', 
conf: {} 

}, 

pagination: { 

target: '#inbenta-pagination', 
conf: { 

padding: 1 // pages before and after the actual 
} 

}, 

filters: { 

target: '#inbenta-filters', 
conf: { 

         refinements: [ 

           { 

               attributeName: 'CATEGORY', 
           } 

         ] 

} 

}, 

tabs: { 

target: '#inbenta-tabs', 
conf: { 

attributeName: 'CONTENT_TYPE' 
} 

}, 

results: { 

                   // Div where inbenta will be loaded 
container: '#inbenta-container',  
target: '#inbenta-results', 

19 



 

conf: {} 

}, 

search: { 

                  // Activate/Deactivate the search engine in the page,  
     // If deactivated is recommended to disable the router too. 

                 active: true 
}, 

resultsPerPageSelector: { 

target: '#inbenta-results-per-page', 
conf: { 

 options: [5, 10, 15] 
} 

}, 

router: { 

target: '#inbenta-router', 
conf: {} 

}, 

stats: { 

target: '#inbenta-stats', 
conf: {} 

}, 

sortBy: { 

target: '#inbenta-sort-by', 
conf: { 

attributes: [ 

              {name: 'desc(_relevance)', label: 'Relevance'}, 
              {name: 'desc(Source)', label: 'Source - Descending'}, 
              {name: 'asc(Source)', label: 'Source - Ascending'}, 
            ], 

} 

}, 

resultsPerPage: { 

target: '#inbenta-results-per-page', 
conf: {} 

}, 

instants: { 

target: '#inbenta-instants', 
input: ['#request_subject', '#request_description'], 
conf: {} 

}, 

lastChance: { 

target: '#inbenta-last-chance', 
input: ['#request_subject', '#request_description'], 
conf: {} 

} 

} 

} 

 

20 



 

Live examples 
Here you can find a list of Inbenta Search and Deflection integration examples for a Zendesk 
Help Center, using the default configuration options explained in this document. You can use 
these examples to review how a vanila example looks in a basic Zendesk template: 

● Autocompleter page 
● Deflection page 
● Community Deflection page 
● Results page 

21 

https://inbenta-ps.zendesk.com/hc/en-us
https://inbenta-ps.zendesk.com/hc/en-us/requests
https://inbenta-ps.zendesk.com/hc/en-us/community/posts/new
https://inbenta-ps.zendesk.com/hc/en-us/search

