Beautiful Binary String

Alice has a binary string, B, of length n. She thinks a binary string is beautiful if and only if it doesn't contain the substring "010".

In one step, Alice can change a $\bf 0$ to a $\bf 1$ (or vice-versa). Count and print the minimum number of steps needed to make Alice see the string as beautiful.

Input Format

The first line contains an integer, \emph{n} (the length of binary string $\emph{\textbf{B}}$).

The second line contains a single binary string, B, of length n.

Constraints

- $1 \le n \le 100$
- Each character in $B \in \{0,1\}$.

Output Format

Print the minimum number of steps needed to make the string beautiful.

Sample Input 0

0101010

Sample Output 0

2

Sample Input 1

5 01100

Sample Output 1

0

Sample Input 2

10 0100101010

Sample Output 2

3

Explanation

Sample Case 0:

In this sample, B="0101010"

The figure below shows a way to get rid of each instance of "010":

Because we were able to make the string beautiful by changing 2 characters (B_2 and B_5), we print 2.

Sample Case 1:

In this sample B="01100"

The substring "010" does not occur in \emph{B} , so the string is already beautiful and we print 0.