5/28/2019 Lab 2

Lab 2

Due Feb 23 by 8am Points 10 Submitting a file upload File Types pdfand tgz
Available until Feb 23 at 8am

This assignment was locked Feb 23 at 8am.

For this lab we are comparing the timing of two algorithms. Typically, to find a median, we would sort the data, then
take the middle element if the number of elements (n) are odd, and the average of the two middle elements if n is
even.

Implement this first using the built in sort algorithm, then compare the time that takes in milliseconds with this idea (we
are developing the partition function together in class)

The median m of a sequence of n elements is the element that would fall in the middle if the sequence was sorted.
That is, e = m for half the elements, and m = e for the others. Clearly, one can obtain the median by sorting the
sequence, but one can do quite a bit better with the following algorithm that finds the kth element of a sequence
between a (inclusive) and b (exclusive). (For the median, use k = n/2,a =0,and b = n.)

select(k, a, b)
Pick a pivot p in the subseguence between a and b.
Partition the subseguence elements into three subsequences: the elements <p, =p, >p
Let nl, n2, n3 be the sizes of each of these subseguences.
ifk <nl
retum select(k, 0, ).
else if (k > nl + n2
retum select(k, nl +n2, n).
else
retum p.

Implement this algorithm and measure how much faster it is for computing the median of a random large
sequence, when compared to sorting the sequence and taking the middle element.

If your program takes less than a millisecond, then use a larger array of numbers until it does take at least a
millisecond. Otherwise you can't see any difference in the timings!

e.g. In Linux shell, you can generate numbers like this:
seq 10 | shuf

Use Catch2 (https://github.com/catchorg/Catch2/blob/master/docs/tutorial.md)_to unit test the results of each of these

two algorithms.

Run your program with the options -s and -d yes and capture the output into a png file. Then include that image in
block comments of your program using the Latex includegraphics command. Or redirect the output into a text file and
include it using the Verbatimlnput command. Add comments to each function of your program explaining what the
function does. The idea is to help the reader understand the code so do not simply paraphrase the code, but instead
add explanations with illustrations and/or drawings clarifying the change of state that the program produces.

Use cpp2pdf to create the PDF that will have all source, code, images and comments nicely formatted and easy to
read. Use the Latex newline command where needed to make logical breaks in the program structure. Change author
to your name, not mine.

https://ohlone.instructure.com/courses/6963/assignments/141215 1/2


https://github.com/catchorg/Catch2/blob/master/docs/tutorial.md

5/28/2019 Lab 2

Save your work by using this command in the working directory (lab2), retrieve the tgz and pdf file using the web
server, and upload and submit to Canvas.

save . *.pdf

https://ohlone.instructure.com/courses/6963/assignments/141215 2/2



