coursera

<Back to Week 4 Xlessons Prev Next

Programming Assignment: Calculator

You have not submitted. You must earn 8/10 points to pass.

— Q

Deadline Pass this assignment by May 6, 11:59 PM PDT

Instructions
My submission

Discussions

Note: If you have paid for the Certificate, please make sure you are
submitting to the required assessment and not the optional assessment. If
you mistakenly use the token from the wrong assignment, your grades will
not appear

Attention: You are allowed to submit an unlimited number of times. Once you
have submitted your solution, you should see your grade and a feedback about
your code on the Coursera website within 20 minutes. If you want to improve your
grade, just submit an improved solution. The best of all your submissions will count
as the final grade.

To start, first download the assignment: calculator.zip.

In this assignment, you will use Function Reactive Programming (FRP), with the
Signal[A] class that you have seen in the lectures, to implement a spreadsheet-like
calculator. In this calculator, cells can depend on the value of other cells, and are
recomputed automatically when the latter change.

The User Interface (Ul) for the programs in this assignment are Web-based, i.e.,

they run in an HTML page in your Web browser. To compile your code to runnable
JavaScript, we use Scala.js, the Scala to JavaScript compiler. We have all set it up for
you in the assignment template, but this will change the way you run the program.

Tweet length monitoring

As you probably know, Tweets (messages on Twitter) are limited to 140 characters.
When typing a Tweet, it is very helpful to receive instantaneous visual feedback on
the number of characters you have left.


https://www.coursera.org/learn/progfun2/lecture/8sWjl/conclusion
https://www.coursera.org/learn/progfun2/programming/Qovtr/calculator
https://www.coursera.org/learn/progfun2/programming/sO8Cf/calculator
https://www.coursera.org/learn/progfun2/programming/sO8Cf/calculator/submission
https://www.coursera.org/learn/progfun2/programming/sO8Cf/calculator/discussions
http://alaska.epfl.ch/~dockermoocs/progfun2/calculator.zip
http://www.scala-js.org/
https://twitter.com/
https://www.coursera.org/

The traditional way of implementing this visual feedback is to set up an onchange
event handler (a callback) on the {&OAES EEkvent handler, we imperatively
ask for the text, compute the length, then write back the computed remaining
characters.

In FRP, we use Signals to abstract away the mutable nature of the Ul (both inputs
and outputs) while working on the logic that binds output to input, which is
functional.

From Tweet text to remaining char count

Your first task is to implement the function tweetRemainingCharsCount in
TweetlLength.scala. This function takes a Signal[String] of the text of a Tweet being
typed, and returns a Signal[Int] with the corresponding number of characters that
are left.

Note that the Tweet length is not text.length, as this would not properly handle
supplementary characters. Use the provided function tweetLength to correctly
compute the length of a given text.

(Actually, even this is a simplification from reality. The complete specification,
which we do not implement in this assignment, can be found here.)

Note that the remaining number of characters could very well be negative, if the
Tweet text currently contains more than MaxTweetLength characters.

Running the application so far

Now that you have implemented the first function, you can start running the Web
Ul. To do so, you need to compile the Ul to JavaScript from sbt (you cannot do this
from your IDE).

In sbt, run:

1 > webUI/fastOptls

If your code compiles, this will produce the JavaScript necessary to run the HTML
page in the browser. You can now open the file web-ui/index.html in your favorite
browser, and enter text in the first text area.

If you implemented tweetRemainingCharsCount correctly, the remaining number

of characters should automatically update.

From remaining char count to "warning" color

For better visual feedback, we also want to display the remaining character count
in colors indicating how "safe" we are:

« |If there are 15 or more characters left, the color "green"


http://www.oracle.com/us/technologies/java/supplementary-142654.html
https://dev.twitter.com/overview/api/counting-characters
https://www.coursera.org/

« If there are between 0 and 14 characters left, included, the color "orange"

» Otherwise (if the remaining coun%g!;@gﬁg color "red"

(these are HTML colors).

Implement the function colorForRemainingCharsCount, which uses the signal of
remaining char count to compute the signal of color.

You can now re-run webUI/fastOptJS and refresh your browser. You should see the
number of remaining characters changing color accordingly.

Root solver for 2nd degree polynomial

The second part of the assignment is similar, for a different application: find the
real root(s) of a 2nd degree polynomial of the form ax? + bx + ¢, where a is a non-
zero value.

We explicitly ask for the intermediary discriminant, which we call A:

1 A =Db2 - 4ac

which you should compute in the function computeDelta, from the signals for the
coefficients a, b and c. Note that in this case, your output signal depends on several
input signals.

Then, use A to compute the set of roots of the polynomial in computeSolutions.
Recall that there can be 0 (when A is negative), 1 or 2 roots to such a polynomial,
and that can be computed with the formula:

1 (-b tva) / 2a

After compiling with webUI/fastOptJS and refreshing your brower, you can play
with the root solver.

Spreadsheet-like calculator

Now that you are warmed up manipulating Signals, it is time to proceed with the
original goal of this assignment: the spreadsheet-like calculator.

To simplify things a bit, we use a /ist of named variables, rather than a 2-
dimensional table of cells. In the Web Ul, there is a fixed list of 10 variables, but
your code should be able to handle an arbitrary number of variables.

The main function is the following:

1 def computeValues(namedExpressions: Map[String, Signal[Expr]])
2 : Map[String, Signal[Double]]


https://www.coursera.org/

This function takes as input a map from variable name to expressions of their
values. Since the expression is de (USINHIPEEECIxt entered by the user, itis a
Signal. The Expr abstract data type is defined as follows:

sealed abstract class Expr

final case class Literal(v: Double) extends Expr

final case class Ref(name: String) extends Expr

final case class Plus(a: Expr, b: Expr) extends Expr
final case class Minus(a: Expr, b: Expr) extends Expr
final case class Times(a: Expr, b: Expr) extends Expr
final case class Divide(a: Expr, b: Expr) extends Expr

NoOoupbhwNnER

The Ref(name) case class represents a reference to another variable in the map
namedExpressions. The other kinds of expressions have the obvious meaning.

The function should return another map from the same set of variable names to
their actual values, computed from their expressions.

Implement the function computeValues, and its helper eval, while keeping the
following things in mind:

« Refs to other variables could cause cyclic dependencies (e.g.,a=b+1andb=2"*
a. Such cyclic dependencies are considered as errors (failing to detect this will
cause infinite loops).

« Referencing a variable that is not in the map is an error.
Such errors should be handled by returning Double.NaN, the Not-a-Number value.

It is not asked that, when given an expression for a =b + 1, you compute the
resulting value signal for a in terms of the value signal for b. It is OK to compute it
from the expression signal for b.

Once all of this is done, you can, once again, compile to JavaScript with
webUl/fastOptJS and refresh your browser. You can now play with the simplified
spreadsheet. Observe that, when you type in some expression, the values
recomputed as a result are highlighted for 1.5s. If all ten values are highlighted
every time you modify something, then something is wrong with the way you
construct your signals.

Notice that, as you modify dependencies between variables in the expressions, the
dependencies between signals adapt dynamically.

How to submit

Copy the token below and run the submission script included in the
assignment download. When prompted, use your email address
adaickalavan@gmail.com.


https://www.coursera.org/

Generate new token

Your submission token is uniqggyy';ﬁgié%ould not be shared with

anyone. You may submit as many times as you like.

O Q

=


https://www.coursera.org/

