
In-Order BST Traversal (3 methods) 

Cpt S 321 Homework Assignment 

Washington State University 

 

Submission Instructions:(see syllabus) 

Assignment Instructions: 

Read ALL the instructions carefully before you write any code. 

Create a console application that builds and displays contents of a binary search tree. You may 

use integers as the data values in the nodes (consider using BitInteger instead if you want). Build the 

tree with 20 to 30 random values, each between 0 and 100. Implement three different algorithms to 

display the contents of the tree in order and demo each of them after the tree is constructed: 

1. In-order traversal using 2 recursive calls. This should be trivial and is mainly included in this 

assignment to help you verify accuracy of parts 2 and 3. 

2. In-order traversal without using recursion and instead using a single Stack<T> data structure. You 

should only need 1 stack to do this and cannot modify tree contents in any way during the process. 

3. In-order traversal without using recursion and without using a stack. This method must have constant 

space complexity. You should never need more than a couple node references to implement this 

method. This method can temporarily alter the tree, and in fact that’s required to make it work, but it 

must have it back to its original form after the traversal is complete. 

• Do this without removing nodes entirely from the tree and then adding them back. You must 

leave all nodes in their original starting place in the tree at all times. 

• Think about what aspects of tree you can alter/utilize if you can’t remove items from the tree. 

These requirements should narrow it down to the one thing that you are able to do in order to 

implement the traversal algorithm. 

 

All methods must run in worst case O(n) time!!!! 

Display the results from part 3 first, then part 2 then part 1. This is to ensure that the tree 

contents are preserved by the operations in parts 2 and 3. Do NOT rebuild the tree between traversals. 

Execute all 3 in sequence. 

Provide the option for the user to have another tree generated and traversed after the 3 

traversal outcomes are displayed. See the demo image below as an example of this, where 3 different 

trees were built and each had 3 different traversal methods execute on it. 

http://msdn.microsoft.com/en-us/library/3278tedw(v=vs.110).aspx


 

The grader (TA or instructor depending on the semester) will examine your code to ensure that 

each method is obeying the requirements. Any recursive calls in parts 2 or 3 will render those 

implementations worth 0 points. Incorrect output produced by any algorithm also renders it worth 0 

points. 


