51 Data Flow

51-1

51 Data Flow

Iz

- - - - -
M
[|
PATCH PANEL - - - - - - - - - - -
e 9 | FEB l | MPM' l MPM
—0 ~0—o DATA cLock wain
[IDLE T 40236
')) ' —- surpR [PEHCOOE FIEQ DATA B P E cru | | IBee .
MODE WUR €4 [PPECODES VER
CONTR A 6
el) 3
. Jeonte 568 . prve
' ' SCH 32 811 DRAM
¢ 1L ' @ TMER | BounTER] | BUPFER @ 1M (]
EN/DE
l_ - - - - o cooer | | LEAD y
TiM BUS COMNIR [
- - - - - - . .
' < GBM l @ L—;" Y BANK
1‘ v I l [] CONTR ADDR []
§ ' - - - - - REG
[MUK "z l ——
RESEY G BUS
T L TiIM BUS MUR CONTR REITOR]
1 rans s I I ' LoGIc CONTR o
MITTER MUR e -
cH. A <] I wx! l ¥ $] I
y h
y - - - -
eeee | | BAVD Leap | | LeaD Fed MUK ' ' 3 E
™ RATE CONTR | ISENSOR) CONTR| [CONTR
' CON GEN PoRT | | PORT PORT | | PORT | 4
MPM BUS
¥ 1 ¥ 1 v 1
[] 3]
GBUS OWER] JCLOCK REAL RANS
o] ESH- BITOR OoN GEN ? TME | | mTTER ftb————31 !
CONIR RESET | |10 MH2 CLOCK | IcH. B
I GLOEAL BUS
- - - - - L - CPM BUS EXPANSION
ry p 4
W v v v + GLOBAL BUS
- - - - - - - - - - § L - - - - -
|._..) _—I r_ _M_| I__ o
Y I l I
'] SOFI=
' L s2en |1 son Nt | vare Geus | [geus '
& N | || ||| A [i
) LOGIC
3 —~ T % 3 —f—
1 oo/ ¢ rﬁiﬁ’f« INT " - - :
cLOCK P BUS
CONTR CONTR ! U | oisk acH | | cset0 wains | {orock '
GEN CONTR areiron| |ORam | leproM
7 CONTR| | oMa | | cFU |Foontr | | 28 | | 126k | | (B | | semse e
¥ l l | I
- L - - - - -
. v ¥ — .
MUK CONTR
FONT e {
!?K“:s‘- oK ::; | MUX ATTR PLLY
' K10 Fan eyl man L oA @ ot corinl 1 .
I wris| [en 16 LOGIC Figure 51-1 Block diagram of INTERVIEW
c " 1 l 7000 Series hardware architecture.
color| [mono OVERLINE j KEY
| ATIR M4 ATIR > INE NCODE
CONTR | |cONTR STRIKE POWER
SUPPLY
L- 00py
L - - - - - - - - T
: 3 " CORRIECTOR
(o) | genar (R (i) (o) [0] elbttod o

51 Data Flow

51 Data Flow

Figure 51-1 is a block diagram showing the components on each of the six types of logic
board in the INTERVIEW 7000 Series. The components on the TIM (Test Interface Module)
also are shown. Figure 51-2 indicates the flow of data among the various functional
components of the unit.

51.1 Two Types of CPU

The brain of the INTERVIEW is the Motorola 68010 processor on the CPM (Central
Processing Module). See Figure 51-1. The 68010 processor controls operations in
the unit not directly under control of the user program. 68010 operations include
fetching power-up software and initialization routines from the EPROM, controlling
disk I/0, and maintaining setup and statistics screens. The operating system in the
68010 is pSOS.

An Intel 80286 processor controls the operation of the MPM (Main Processor
Module). The MPM does all higher level processing of receive data. The board
also generates the transmit data to be sent out in emulate mode. The 80286 uses a
basic, multitasking real-time executive operating system.

An INTERVIEW 7000 and 7200 TURBO may have from one to three MPMs, each
with its own 80286 CPU. The INTERVIEW 7500 and 7700 TURBO always have
three MPMs.

51-3

INTERVIEW 7000 Serigs Advanced Programming: ATLC-107-951-108

DTE/DCE

Bit-image

Data
and
control
leads

data playback

Record
bit-image
data, control

leads (if

buffered),
and time

A\

Y

Character
data,
control
leads, and
time
ticks:
record or
transfer

ticks (if
enabled)

Character-data
playback

Data, control
leads (if
buffered),
and time ticks
(if enabled)

—V-

Transmitted
data and
control
leads

TRIGGER LOGIC

80286 processor(s)
MPM boards)

Program
and
setup
OPERATOR
> INTERFACE
68010 processor
CPM board
<« Display [Keyboard| Printer | Remote

Figure 51-2 INTERVIEW 7000 Series functional diagram.

51-4

51 Data Flow

51.2

The 80286 operates on software located in the DRAM on the MPM. See

Figure S1-1. This software is the user program—setups, trigger menus, protocol
spreadsheet, and protocol state machines (layer packages)—translated and compiled
by the CPM and loaded into the MPM. The program will tell the MPM how to
process the data, what trigger conditions to look for in the data stream, etc.

The CPM polls the MPM continuously to see if data is available to be output to the
printer or the plasma display. This data includes character data, trace data, prompts,
and values to be posted to the statistics screens.

While the CPM accesses the MPM on a regular basis, there is no access in the
reverse direction. That is, the user program running on the MPM has no direct
access to the CPM. The user cannot write to one of the menu screens, for example.

Front-End Buffer

Note in Figure 51-2 that the front-end buffer (FEB) lies squarely between the line
interface and (1) the recording medium and (2) the program logic on the MPM.
This means that control leads may or may not be recorded and may or may not be
seen by the trigger-menu and spreadsheet conditions—depending on the FEB setup
(see Section 7).

Once control leads and time ticks (that is, the original timing values) are recorded
alongside character data, they are locked in. Since the FEB is not on the playback
path for character data, FEB selections do not apply.

Bit-image data, however, does pass through the FEB during playback. Except for
the Idle Suppress field, FEB selections apply. This means that control leads and time
ticks, if recorded with the data, must be enabled in order for the program logic to
detect them.

Not only characters but also leads and time ticks, if enabled in the FEB setup, are
captured automatically in the display buffer (that is, the screen buffer or character
RAM).

Data, time ticks, and control leads are encoded in a special storage format by a
data-encoder chip on the FEB board. See Figure 51-1. The encoded data is
buffered to be sent to the PCM (Peripheral Control Module) for recording and to the
MPM for processing.

The encoding process is driven by clock pulses on the line interface. This means that
in the absence of external clock (or, if the INTERVIEW is emulating DCE, in the
absence of internal clock), neither line data, time ticks nor EIA leads will be
recorded or presented to the receivers and to the program logic.

51-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

52 Program Main

52 Program Main

Softkey-selectable programming “tokens” entered by the user on the Protocol Spreadsheet are
translated automatically into C during the initial compiler phases after is pressed. Trigger
Menu setups also are translated into C. When the translation is complete, the compiler takes
over and converts the C code into object code. The C variables and routines used by the
translator are documented throughout this volume.

Briefly, the translator makes the following conversions: it turns TESTs into tasks; STATE names
into labels; STATEs into waitfor clauses; CONDITIONS into waitfor expressions that include
event variables; and ACTIONS into statements and routines, also inside of waitfor clauses.

Then the translator creates a program main function that calls every task in the program.

52.1 Translating a Simple Test into C

Suppose that the following simple program, intended to sound the INTERVIEW's
alarm at 1 P.M., has been entered on the Protocol Spreadsheet.

STATE: sample1
CONDITIONS: TIME 1300
ACTIONS: ALARM

When the user presses [w], roughly the following C coding (with some extraneous
code removed for clarity) is generated and then compiled:

extern fast_event fevar_time_of_day;
extern volatile unsigned short crnt_time_of_day;
task

main ()

state_samplel:
waitfor

fevar_time_of_day && (crnt_time_of_day == 1300):

sound_alarm ();
}
}

}
} dtest_0;
main ()

dtest_0 ();

52-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

52.2

Note that the translator has assigned state_samplel to a default TEST named dtest_0.
It converted the TEST into a task and placed state_samplel inside of the task. Then
it created a program main function and used the program main to call every test/task
in the program. The tasks appear in the task list in the same order in which they
appear in the spreadsheet program. In this instance there was only one task to call.

If you try to enter the program above on the spreadsheet entirely in C, in the first
place you will have to surround it with a pair of curly braces. Then it will not
compile. The translator does not look inside of curly braces (except to expand
constants). It simply lifts up the braced C regions and places them intact into its
translation of the softkey portion of the program, before adding a program
main—even when, as in this instance, a program main already is included in a C
region. The two main functions conflict here, and the compiler issues the error
message, “Error 109: Function main redefined.”

If we were to remove the main function from our C version, the program would
compile but it still would not work. Here’s why. When the translator looks at a
program made up entirely of C code, it doesn’t see anything. So it creates a
program main with a task-list that is empty. The task that is declared in the program
above (dtest_0) is never called.

The rule, then, is that a Protocol Spreadsheet program containing tasks written in C
must always have at least one softkey STATE (with its implied task) that calls all the
tasks.

A Minimum of One Softkey State

Here is a Protocol Spreadsheet test that works and yet has the minimum number of
softkey tokens—one. Note that we have given the task dtest_0 a new name, since
the translator will declare the task-name dtesz_0 as the default test for our new
softkey state, task_list.

{
extern fast_event fevar_time_of day;
extern volatile unsigned short crnt_time_of_day;
task
main ()

state_samplel:
waitfor

fevar_time_of_day && (crnt_time_of day == 1300):
{
sound_alarm ();
}
}
} c_test;
STATE: task_list
{

c_test ();

52-2

52 Program Main

And here is the program as it is actually compiled. Note that the translator has
added a program main that calls dtest_0 (which in turn calls c_test).

extern fast_event fevar_time_of_day;
extern volatile unsigned short crnt_time_of _day;
task

main ()

state_samplel:
waitfor

fevar_time_of day && (crnt_time_of day == 1300):
{

sound_alarm ();
}
}
}
} c_test;
task

main ()

state_task_list:

c_test ();
waitfor /* This empty waitfor is automatically generated in any state
{ that does not contain a waitfor. */
}
}
}
} dtest_0;
main ()
dtest_0 ();

52.3 Writing the Test Entirely in C

The INTERVIEW is equipped with tools—namely, the #pragma hook 0 preprocessor
directive and linkable-object (LOBJ) files—that make it possible to write a version of
the test completely in C.

NOTE: For more information on #pragma hook directives, see
Section 56.4. Refer also to Section 13.3(P) on linkable-object
files.

Write the following C code to an ASCII file (hook_ctest.s) using the Protocol
Spreadsheet editor’s WRITE/U command. Then delete the code from the spreadsheet.
Go to the File Maintenance screen and and create a linkable-object file ‘
(hook_ctest.o) using the Compile command.

52-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

#pragma hook 0 “c_test();”

extern fast_event fevar_time_of_day;

extern volatile unsigned short crnt_time_of_day;
task

{

main()
{
state_samplel:
waitfor
{
fevar_time_of day && (crnt_time_of day == 1300):
{
sound_alarm();
}
}
}
} c_test_task;
c_test()

{

c_test_task();

}

Notice that the “hook” is a call to the routine c_test. This routine’s only purpose is
to start the task, c_test_task. A task name is always local to a linkable-object file
and never directly copied from it. If you try to call the task directly in the #pragma
hook 0 directive, therefore, the spreadsheet program (shown below) will not compile.
Since the task name is local to the file, the following error message will be displayed:
“Error 140: Unresolved reference c_test_task.” The rule for including tasks in a
linkable-object file, then, is to let the #pragma hook O directive call a routine which
starts the task(s).

NOTE: Since task names are local to a file, the definition of
c_test_task also cannot be located in a referenced LOBIJ file
different from the one in which it is called.

The Protocol Spreadsheet program required to execute the test consists of a single
line:

OBJECT: “hook_ctest.o”
When translated, the program looks like this:

#pragma object “hook_ctest.0”
main()

{

c_test();

}

Notice that the routine c_test is located within the top-level program main. The
hook text from a #pragma hook O directive is always put at the end of main’s task
list. At this point, since c_test has not been previously declared, it is assumed to be
an extern function (not a task) that returns an int. The linkable-object file(s)
referenced in the spreadsheet program will be searched for the routine’s definition.

52-4

53 Regions in Spreadsheet

53 Regions in Spreadsheet

C language can be embedded in a Protocol Spreadsheet program at several access points. A
C region can be opened at the top of the program, or in an OBJECT, CONSTANTS, LAYER,
TEST, STATE, CONDITIONS, or ACTIONS block.

At these points, simply begin the C region with an opening curly brace. Make your entry and
terminate it with a closing curly brace.

The remainder of this section describes C code blocks related to the spreadsheet components,
from largest to smallest.

53.1

Layer and Test

The main function of a task is the highest level function that may be programmed by
the user of the INTERVIEW 7000 Series. The keyword task in a C region
corresponds to the TEST: softkey token on the Protocol Spreadsheet. Typing TEST:
keyboard_alarm on the spreadsheet is the equivalent of the following C coding:

task

{
#pragma layer 1
main()

/* declarations, state-labels, and statements go here */
}
}
layer_1_test_keyboard_alarm;

The INTERVIEW is multitasking, so more than one task/test may be defined. All
tasks/tests run concurrently if they are included in the task list created by the
translator when it generates the program main function. See Section 52, Program
Main, for an explanation of how this automatic program main is created.

Layers have no existence in C independent of the tasks that they contain. When a
user enters the LAYER: token on the spreadsheet followed by a layer number, the C
translator prefixes that number to the name of each task that follows. Note in the
example above that the test name keyboard_alarm was given a layer_I_test prefix.

The C translator also issued the preprocessor directive #pragma layer 1. The compiler
uses this layer declaration to distribute tasks efficiently among 80286 processors. This
pragma is an optimizing feature and is not strictly required in the body of the task.

The C translator does nothing else with the layer number other than convert it into a
prefix to the task name and construct the #pragma directive.

53-1

INTERVIEW 7000 Series Advanced Programming. ATLC-107-951-108

53.2

The layer number does, of course, determine many of the branching softkey
selections that will be available to the user who is not programming in C. The C
programmer will find that none of the variables or routines mentioned in this manual
is specific to a particular layer. A variable or routine that is supplied, for example, by
the X.25 Layer 3 personality package (at the time that the package is loaded in via
the Layer Setup screen) will still be available inside of a task that nominally belongs
to Layer 1 or Layer 2.

Test » task
{

main ()

{
static label current_state;
States declared here —»

}

} layer_n_test_ name ;

Figure 53-1 C equivalent of a spreadsheet test.

State, Enter State, and Next State

A STATE on the Protocol Spreadsheet is a label in C, used as a target of a goto
statement. Typing STATE: alarm_on on the spreadsheet is the equivalent of this C
coding, placed inside of the braces that follow the task main:

static label current_state;
state_alarm_on:
current_state = state_alarm_on_loop;

{

/* statements go here */
goto (current_state);
state_alarm_on_loop:
waitfor

/* condition clauses go here, each comprised of expression, colon(:), and statements */

goto (current_state);
}
Note that the C translator has taken STATE: alarm_on on the Protocol Spreadsheet
and produced two state labels, state_alarm_on and state_alarm_on_loop. The first
state label is followed by statements that will be executed immediately upon entering
the state. The “loop”-state label always introduces a waitfor construction. Both states

end in a statement to goto (current_state).

53-2

53 Regions in Spreadsheet

The translator’s version of a state includes overhead to cover all cases, including
special cases. The loop state is not strictly required, and a streamlined version of the
basic state coding that eliminates the extra state will work in most instances:

static label current_state;
state_alarm_on:

{

/* declarations and statements go here */
waitfor

!* condition clauses go here, each comprised of expression, colon(:), and statement(s) */

goto (current_state);

}
Note these points about states created entirely by the programmer:
A goto statement cannot be used inside of a waitfor construction.
You must use a break statement to exit the waitfor construction.

You may dispense with the current_state variable and goto a state label, in which
case the opening and closing parens may be omitted.

(A) Declaring States

The state name followed by the colon (:) is itself a label declaration and does
not require an additional declaration.

(B) Enter State

The C translator puts a waitfor construction into every “loop” state. If you want
a statement to be executed immediately without waiting for an event, you may
place that statement in the nonloop state, outside of the waitfor statement. The
following is an example of a state in which the sound_alarm routine is executed
immediately.

static label current_state;
state_alarm_on:
current_state = state_alarm_on_loop;

{

sound_alarm();

goto (current_state);
state_alarm_on_loop:
waitfor

}

. goto (current_state);
}
The example above is the equivalent of this spreadsheet entry:

STATE: alarm_on
CONDITIONS: ENTER_STATE
ACTIONS: ALARM

A hybrid version also may be created:
| STATE: alarm_on
A

sound_alarm();

}

53-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(€)

The sound_alarm function is executed immediately, since the translator places it
above the waitfor. When you enter a CONDITIONS: block on the spreadsheet, you

move inside a waitfor—unless you place your C region immediately following an
ENTER_STATE.

An ENTER_STATE condition may cause the translator to generate an if statement
in the nonloop state (above the waitfor state). Here is a spreadsheet example:

STATE: alarm_on
CONDITIONS: ENTER_STATE
COUNTER anyname EQ 3
ACTIONS: ALARM

This is the C version:

Static label current_state;
State_alarm_on:
current_state = state_alarm_on_loop;

{
if (counter_anyname.current == 3) sound_alarm();
goto (current_state);
state_alarm_on_loop:
waitfor
{
} N

goto (current_state);

And here is a hybrid version:

STATE: alarm_on

if (counter_anyname.current == 3) sound_alarm();

Next State

The C translator supplies the statement “goto (current_state)” at the bottom of
every state that it codes. If current_state has been redefined and if the program
reaches the bottom of the state, the goto statement will redirect the program
toward a new state label. That is how the program is redirected into
state_alarm_on_loop in this translator’s version of STATE: alarm_on:

static label current_state;
state_alarm_on:
current_state = state_alarm_on_loop;
{
goto (current_state);
state_alarm_on_loop:
waitfor

}

goto (current_state);

53-4

53 Regions in Spreadsheet

State a » state_a:
current_state = state_a_loop;
nonloop {
state a Declare variables
& functions here —»
Enter_State . if (expression) statement;
e /xetion goto (current_state);
state_a_loop:
waitfor
Event-related { .
Conditon ——> expression:
| {
oop . .
state a Action —— statement;
Next State current_state = state_z;
— break;
}
}
goto (current_state);

Figure 53-2 Basic C structure of a spreadsheet state.

If the user wants to redefine current_state, he may do so in the nonloop state,
in which case the loop (waitfor) state will be bypassed:

static label current_state;
state_alarm_on:
current_state = state_alarm_on_loop;
{ current_state = state_alarm_off;
goto (current_state);
state_alarm_on_loop:
waitfor
{
}

goto (current_state);

state_alarm_off:
/* etc. */

563-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The example above is the equivalent of this spreadsheet entry:

STATE: alarm_on
CONDITIONS: ENTER_STATE
NEXT_STATE: alarm_off
STATE: alarm_off

The following hybrid code also will produce the same result. No break is
necessary, since the translator will place the C region above the waitfor.

STATE: alarm_on
{ .

current_state = state_alarm_off;

}
STATE: alarm_off

Or the user may redefine current_state in the waitfor statement itself, inside the
loop state. The only way out of a waiifor statement is a break, so the translator
must furnish a break whenever it converts a NEXT_STATE action into C (unless,
as in the example above, the condition that triggered the NEXT_STATE action was
ENTER_STATE, and consequently the program never entered the waitfor loop).
The following example uses NEXT_STATE:

STATE: alarm_on
CONDITIONS: KEYBOARD “ "
ACTIONS: ALARM
PROMPT “press space bar--alarm now disabled”
NEXT_STATE: alarm_off
STATE: alarm_off
CONDITIONS: KEYBOARD “ " -
ACTIONS: PROMPT “press space bar--alarm is activated”
NEXT_STATE: alarm_on

Here is the C version:

static label current_state;
state_alarm_on:
current_state = state_alarm_on_loop;

goto (current_state);
state_alarm_on_loop:

waitfor

keyboard_new_any_key && (keyboard_any_key == * ’):

¢ sound_alarm();
display_prompt (“press space bar--alarm now disabled”);
current_state = state_alarm_off;
break;

}

goto (current_state);

53-6

53 Regions in Spreadsheet

state_alarm_off:
current_state = state_alarm_off_loop;

goto (current_state);
state_alarm_off loop:
waitfor

keyboard_new_any_key && (keyboard_any_key == ‘ ’):
{
display_prompt (“press space bar--alarm is activated”);

current_state = state_alarm_on;
break;

}
}

goto (current_state);

Various hybrid versions are possible. Here is one:

STATE: alarm_on
CONDITIONS:
{

y keyboard_new_any_key && (keyboard_any_key == ‘ ’)
ACTIONS:
{

sound_alarm();

display_prompt (“press space bar--alarm now disabled”);
current_state = state_alarm_off;

break;

}
STATE: alarm_off
CONDITIONS:

keyboard_new_any_key && (keyboard_any key == ‘’)
}
ACTIONS:
{
display_prompt (“press space bar--alarm is activated”);
current_state = state_alarm_on;

break;

}

53.3 Conditions and Actions

When a condition is translated into C code by the INTERVIEW, the resulting
expression is enclosed in braces at the top of a waitfor statement. The only exception
to this rule is the ENTER_STATE condition—see Section 53.2(B), above.

The conditional expression is followed by a colon and then by the statement that
constitutes the action to be taken when the condition is true. If more than one action
is coded, braces must be used to form a statement block. See Figure 53-3.

Typing CONDITIONS: KEYBOARD “ * on the spreadsheet is the equivalent of this C
coding, placed inside of the braces that follow the reserved word waitfor:

keyboard_new_any_key && (keyboard_any_key == * ’):
{

/* action-statements or routines go here */

}

53-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

CONDITIONS: —>» expression:
{

ACTIONS: 5 Sstatementa;
statement b;

}

condition
clause

Figure 53-3 The translator converts the Condition-and-Action “trigger” into a
condition clause inside of a waitfor statement.

(A) Multiple Condition Clauses

Following the semicolon that terminates the statement (or following the statement
block), you may enter another condition clause. These clauses correspond to
triggers on the Trigger menus or conditions—and-actions blocks inside a state on
the Protocol Spreadsheet. Multiple condition clauses may be placed inside of one
waitfor construction. (There is only one waitfor statement per state.)

Here is an example of a state with two “triggers”:

STATE: keyboard_prompt
CONDITIONS: KEYBOARD “1"
ACTIONS: ALARM
PROMPT “You have pressed the 1 key.”
CONDITIONS: KEYBOARD “2”
ACTIONS: ALARM
PROMPT “You have pressed the 2 key."

A version in C would have two condition clauses:

state_keyboard_prompt:
waitfor

keyboard_new_any_key && (keyboard_any_key == ‘1’):
{

sound_alarm();
display_prompt (“You have pressed the 1 key.”);

keyboard_new_any_key && (keyboard_any_key == ‘2’):

sound_alarm();
display_prompt (“You have pressed the 2 key.”);

}

If you are mixing spreadsheet tokens with C, place condition clauses inside of
STATE: blocks. Any C region at the top of a State block is placed above the
automatic waitfor statement. You must therefore supply your own waitfor word,
since a condition clause is syntactically valid only inside of a waitfor. An
example follows.

53-8

53 Regions in Spreadsheet

STATE: keyboard_prompt
{

waitfor
keyboard_new_any_key && (keyboard_any_key == ‘I1’):
{

sound_alarm();
display_prompt (“You have pressed the 1 key.”);

keyboard_new_any_key &d& (keyboard_any_key == ‘2’):
{

sound_alarm();
display_prompt (“You have pressed the 2 key.”);

A word of warning is in order. When your program executes this code, it will
find itself stuck in a waitfor staterment beneath the label state_keyboard_prompt.
If you want to exit this waitfor, you must execute a break in a statement block
in one of the condition clauses. Once you have broken outside of the waitfor,
you may goto another state.

If you add softkey CONDITIONS, ACTIONS, or NEXT_STATE blocks to the state
above, they will be placed inside a different waitfor statement, the one that is
created automatically inside a state called state _keyboard_prompt_loop. See
Section 53.2 (particularly Figure 53-2). What may look like a single state on the
spreadsheet really will be two different states which never are active at the same
time.

(B) Multiple Expressions

Expressions may be logically anded (&&) or ored (||) together inside a condition
clause. Here is the spreadsheet version of a CONDITIONS block with two
expressions:

CONDITIONS: KEYBOARD “2"
FLAG keyboard_disabled 0
ACTIONS: PROMPT “You have pressed the 2 key.”

Inside the condition clause in C, the translator supplies a double ampersand
(&&) to connect the keyboard expressions with the flag expression:

" keyboard_new_any_key && (keyboard_any_key == ‘2’)
| && (flag_keyboard_disabled.current == 0):
A

display_prompt (“You have pressed the 2 key.”);

53-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Inside a CONDITIONS block, the translator is able to and a softkey condition
correctly with a C expression. Note that the user types the C expression without
a terminating colon. The translator will supply one later:

CONDITIONS: KEYBOARD “2"
flag_keyboard_disabled. current ==
ACTIONS: PROMPT “You have pressed the 2 key.”

The anding is also successful when the C expression is placed above the softkey
condition inside the CONDITIONS block:

CONDITIONS:

flag_keyboard_disabled.current == 0

KEYBOARD “2"
ACTIONS: PROMPT “You have pressed the 2 key."

If you want to insert a comment into a Conditions block, remember that the
translator does not look inside of C regions (except to expand constants). It will
take the comment and and it with the rest of the expressions in the Conditions
block. Since a comment is not a C expression, the program will not compile: see
Section 53.3(D). Note in the following example that a 1 has been inserted inside
the C region along with the comment in order to make the code compile and in
order to make the expression “true.”

CONDITIONS:

/* This comment will be anded with the keyboard expression. */ 1

KEYBOARD *2"
ACTIONS: PROMPT “You have pressed the 2 key.”

- (C) Event Variables

The translator converts most Conditions blocks on the Protocol Spreadsheet into
two or more expressions linked by the logical and operator (&&). The keyboard
condition in the examples above was typical: KEYBOARD “2” on the spreadsheet
became a pair of expressions logically anded in C.

The first expression, keyboard_new_any_key, is an event variable. Event
variables are very important in the INTERVIEW implementation of C, and the
programmer should observe the following rules of thumb:

1. An event variable usually is paired with a nonevent variable. At the
moment an event variable comes true in a waitfor construction, all nonevent
(or “status”) variables attached to that event variable are evaluated for truth
or falsity. Whenever any keyboard key is struck, the event variable
keyboard_new_any_key comes true. At that moment, the nonevent
expression keyboard_any_key == ‘2’ is evaluated to determine whether it is
true or false.

53—10

53 Regions in Spreadsheet

A waitfor statement must include at least one event expression. A waitfor
statement without an event variable will not compile. There must be some
event that might transpire to cause the nonevent expressions to be evaluated.

An event variable may appear alone in an expression. It is possible (though
unusual) to have an event expression that is not anded with a nonevent
expression. When the translator converts CONDITIONS: DTE GOOD_BCC into C,
for example, the resulting expression is this simple event variable:

fevar_gd_bec_td:

A nonevent variable also may appear alone. It also is possible (though the
translator does not do this inside of waitfor statements) to have a nonevent
expression that is not anded with an event expression—as long as there is an
event expression somewhere in the waitfor construction. The following
program will compile and work:

{
extern fast_event keyboard_new_any_key;
extern volatile unsigned short keyboard_any_key;

}
STATE: keyboard_prompt
CONDITIONS:
{

keyboard_new_any_key && (keyboard_any_key == ‘1’)

}
ACTIONS: PROMPT “You have pressed the 1 key.”
CONDITIONS:

keyboard_any_key == 9
)
ACTIONS: PROMPT “You have pressed the 2 key.”

In this example, keyboard_any key == ‘2’ is not anded with an event
variable. As a result, it is attached automatically to the event variable
keyboard_new_any_key in the Conditions block above. If there had
happened to be other event variables in the state, it would have been
attached to them as well; so that when any event in the state came true,
keyboard_any_key == ‘2’ would be evaluated.

NOTE: Other event variables in the state would cause
keyboard_any_key to be evaluated, but would not necessarily
cause it to be updated. Event variables are guaranteed to update
only their associated nonevent variables. In the example above,
keyboard_any_key is an associated nonevent variable for the event
variable keyboard_new_any_key.

Two event variables may not be combined. Two event variables may never
be combined in a condition clause, since two events never are simultaneous.
Since all spreadsheet conditions have event variables associated with
them—counter conditions have the counter_name_change event variable, for
example—it might seem impossible to combine a counter with another

53-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

condition in a single CONDITIONS block. In fact, in the case of a few special
combinable conditions—buffer-full, counter, flag, and EIA are examples—the
translator will sometimes omit the event variable. When two or more
combinable conditions are combined, the translator uses a first come, first
served rule that is explained in Section 54.3, Programming Considerations.

(D) Evaluating Nonevent Expressions

Nonevent expressions are true if they have a nonzero value. In the following
program, the “trigger” will sound the alarm when any keyboard key is struck
because all of the nonevent expressions are nonzero:

extern fast_event keyboard_new_any_key;

STATE: boolean
CONDITIONS:
{

keyboard_new_any_key && 1 && 99 && 10003
}
ACTIONS: ALARM

This version never will sound the alarm, because one of the anded components
is zero:

extern fast_event keyboard_new_any_key;

STATE: boolean
CONDITIONS:

keyboard_new_any_key && 1 && 0 && 10003
}
ACTIONS: ALARM
Relational expressions like keyboard_any_key == ‘2’ and logical expressions

connected by && (like those above) and || are defined automatically to have the
value 1 if true and 0 if false.

(E) Multiple Statements
Statements may be blocked together inside a condition clause. Here is the

spreadsheet version of an ACTIONS block with two statements:

CONDITIONS: KEYBOARD “2"
ACTIONS: PROMPT “You have pressed the 2 key.”
ALARM

The C version is a condition clause with two routines, display_prompt and
sound_alarm, inside a block or compound statement:

keyboard_new_any_key && (keyboard_any_key == ‘2°):
display_prompt (“You have pressed the 2 key.”);
sound_alarm();

}

53-12

53 Regions in Spreadsheet

A hybrid version, part spreadsheet language and part C language, will work:

CONDITIONS: KEYBOARD “2"
ACTIONS: PROMPT “You have pressed the 2 key."”
{

sound_alarm();

The hybrid example as it stands will not allow you to declare routines and
variables, because the translator will place these declarations in a statement block
beneath the display_prompt routine. For declarations, move the C region to the
top of the Actions block; or use double braces to open a new statement block
lower down, since declarations are legal following the left brace that introduces
any compound statement.

53.4 Example of Complete C Program

Some of the examples in the previous pages of this section were incomplete, in that
they included variables that were not declared, or they lacked a softkey STATE that
could generate a proper program main. The following is an extended example that
compiles and runs. It includes many of the pieces that formed the shorter examples
in this section. It is written for the Protocol Spreadsheet as completely as possible in
C. (See Section 52.3 on how to write a program completely in C.)

{
extern fast_event keyboard_new_any_key;
extern volatile unsigned short keyboard_any_key;
task

main()
static label current_state;

State_alarm_on:
current_state = state_alarm_on_loop;

goto (current_state);
state_alarm_on_loop:

waitfor

keyboard_new_any key && (keyboard_any_key == ‘’):

{
sound_alarm();
display_prompt (“press space bar--alarm now disabled”);
current_state = state_alarm_off;
break;

}

goto (current_state);

state_alarm_off:
current_state = state_alarm_off_loop;

{ goto (current_state);
| state_alarm_off loop:
| waitfor

| {
| keyboard_new_any_key && (keyboard_any_key == * ’):

§3-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

{

display_prompt (“press space bar--alarm is activated”);
current_state = state_alarm_on;
break;

}

goto (current_state);
}
layer_1_test_keyboard_alarm;
{STATE: task_list

layer_1_test_keyboard_alarm();

53.5 Summary of C Regions

The translator removes the outer braces from a C region and places it into one of the
six basic levels of source code shown in Figure 53-4.

(A) Declarations

Declare your variables and routines in a C region, delimited by curly braces {

and }, at the top of your program or at the top of a Constants, Layer, Test,
State, or Actions block. Declare a variable preceded by its type descriptors and
followed by a semicolon, as in these examples:
{

extern fast_event keyboard_new_key;

extern fast_event keyboard_new_any_key;

extern fast_event fevar_time_of_day;

short minutes;

}

We have not bothered to declare routines in most of the examples in the
manual, since it is not necessary. In the absence of a declaration, the compiler
assumes that the routine is external and that it returns an integer. In nearly all
cases, this assumption works. In the few cases where a routine returns a long
(get_68k_phys_addr is an example), it must be declared.

1. Automatic declaration. In cases where the translator declares a variable
automatically, the user does not have to declare the variable himself. For
example, a KEYBOARD condition, when entered via softkey, will declare the
variable keyboard_new_key automatically for the entire program. When a
variable has been declared twice in a program block, the program may not
run. Instead, the compiler will put up a message such as the following: Error
110: keyboard_new_key redeclared. In software version 5.00 and in earlier
software, the compiler flagged double declarations and aborted the
compilation.

Sometimes it is difficult to keep track of the exact version of a variable that
the translator is declaring. Some external variables have been improved for
the use of C programmers, and we have documented the newer version in

53-14

53 Regions in Spreadsheet

our tables and in many of our examples. The translator may still use an
older version of the variable.

In an earlier software release, for example, the variable extern event
keyboard_new_key was speeded up and renamed extern fast_event
keyboard_new_key. The translator still uses the older name to declare the
variable.

The variable keyboard_new_any_key is a still more recent improved version
of keyboard_new_key—improved in that it detects the striking of non-ASCII
keys as well as the ASCII set. The translator never declares
keyboard_new_any_key automatically.

Similarly, the translator uses an older version of extern fast_event
fevar_eia_changed. The older version is extern event evar_eia_changed. In
the earlier software, compiler error messages such as “keyboard_new_key
redeclared” and “Variable fevar_eia_changed undeclared” will inform you
what the translator is doing in each instance.

Legal declaration. Declarations are legal following the left brace that
introduces any compound statement. Figure 53-4 shows that when the user
opens a braced C region following a TEST:, STATE:, or ACTIONS: keyword,
the translator removes the outer braces from the C region and plants the C
code just inside the left brace at Level 2, 4, and 6 of the source code.
Declarations therefore are valid at the top of these regions.

Declarations should be grouped at the top of any region, since they are not
allowed in a statement block below an executable statement. This program
will not compile, because the sound_alarm routine precedes a declaration:

extern fast_event fevar_eia_changed;

STATE: lead_changes
CONDITIONS:
{

fevar_eia_changed
}
ACTIONS:
{

sound_alarm();
int lead_changes;
lead_changes ++;

}

Declarations never are legal at Level 5 (Figure 53-4)—that is, preceding the
colon in a condition clause inside a waitfor statement. Declarations always

~are legal at Level 1, since there are no executable statements at that level.

' The set of variables listed as extern cannot be declared below Level 1.
- Extern has a specialized meaning at the task level or lower: it is used to

“forward-declare” a variable without actually reserving storage space. The

' variable must be declared again (but not as extern) in the body of the task.

53-15

Level 2

Level 1 Level 3 Level 4 Level 5 Level 6
Braced C region at top of
spreadsheet, following an
OBJECT block, following
program CONSTANTS: , i
following first LAYER:number, Braced C region
or following first layer following TEST:name
CONSTANTS: inserted here inserted here
T 4 "
task 4 #pragma layer 1 Braced C region i
main() following STATE:name || Braced C 1 Braced C

layer_1_test_name;

Braced C region following
subsequent LAYER:number
or subsequent layer
CONSTANTS: inserted here

main()

{ layer_1_test_name();

{ static label current_state; -

State_name:
current_state =

state_name_loop;

|| inserted here

Ly
goto (current_state);

state_name_loop:
waitfor

goto (current_state);

-] region following |
‘| CONDITIONS:

inserted here

region following
ACTIONS:

| inserted here

e

expression , ;

‘ Braced C

region following
spreadsheet-
condition token

| inserted here

with connect-
Ing and (&&)
operator

4

statement;

B

Braced C
region following
spreadsheet-
action token

‘| inserted here

Figure 53-4 The translator removes the outer braces from a C region and places it into one of six basic levels
of source code. The “telescoping” of the braces indicates the scope of declarations. A variable or routine
declared for Level 1 is declared for the remainder of Level 1 and across all levels to the right.

53 Regions in Spreadsheet

Scope. The “telescoping” of the braces in Figure 53-4 indicates the scope of
declarations. A variable or routine declared for Level 1 is declared for the
remainder of Level 1 and across all levels to the right. This means that a
variable or routine declared at the top of Level 1 will be global throughout
the program. You can force a declaration to the top of Level 1 by placing it
in braces (1) at the top of the Protocol Spreadsheet; (2) before or after an
OBJECT block; (3) inside a CONSTANTS block above the Layer level; (4)
inside the first LAYER block on the spreadsheet; or (5) inside the
CONSTANTS block in the first LAYER block.

Here is an example of a global declaration:

{

extern fast_event fevar_eia_changed;

}
LAYER: 1
TEST: leads
STATE: init
({ZONDITIONS:

fevar_eia_changed

}
ACTIONS: PROMPT “Status of a lead has changed.”

A variable or routine declared at Level 1 (Figure 53-4) is declared for
subsequent layers and tests, whether the subsequent layer is higher or lower.
The concept of higher and lower layers is relevant to softkey entry on the
Protocol Spreadsheet, but is not carried over into the source code. To the
compiler, a TEST in Layer 2 and a TEST in Layer 3 are simply concurrent
tasks. The task that is first in the program is compiled first. That is the only
meaning of “higher” and “lower” to the compiler.

A variable or routine may have its scope limited to a particular Test, State,
or Actions block. A variable or routine also may be redeclared at different
levels. Given more than one valid declaration, the lower or nearer one
applies.

Initialization. A variable must be of the static storage class to pass its value
into a waitfor statement. Declarations at Level 1 of the source code

(Figure 53-4) are always static, whether or not they are declared so. A
variable that is initialized at Level 4 (Figure 53-4) must be declared as static
by the programmer if the initialized value is to be used inside a waitfor.

(B) Statements

Executable statements may occur at four levels (Figure 53-4) in the source code:
at Level 2 of the program main function, where the function is defined; at

Levels 3 and 4, where the task main function is defined; and at Level 6, inside
a waitfor statement. The programmer has no access to Level 3. To access Level

53-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

4, the programmer may open a C region just beneath the STATE: name identifier.
He may access Level 6 by opening a braced C region below the ACTIONS:
keyword.

Levels 1 and 2 are reserved for declarations. The program main function
executes statements at Level 2 (see the bottom of Figure 53-4), but this function
is accessible only to the translator.

53-18

54 Events

54 Events .

In Run mode, the user program in the INTERVIEW moves from program STATE to program
STATE. In each state a set of conditions is tested, with one or more actions the result of a
particular condition coming true.

In the INTERVIEW’s implementation of C, a “state” is a special control structure called a
waitfor clause that is placed in the program directly following a label named for the state.
Program movement is controlled by goto statements that reference these labels.

Each waitfor clause defines a set of interrupts (“events”) that it is waiting for. When a waitfor
clause is active and an interrupt/event occurs that is defined in that clause, the entire clause is
processed. All of the conditions in the clause are tested and appropriate actions (statements,
operations, routines) are executed.

The waitfor clause is a mechanism designed specifically for the data-communications testing
environment, in which the program must interact at high speed with a variety of unpredictable
inputs. '

54.1 Example of Event: fevar_time_of_day

In the waitfor clause in an earlier example (Section 52 of this volume), the condition
was this:

fevar_time_of_day && (crnt_time_of_day == 1300)

Once every minute, the CPM sends an interrupt to the MPM. This interrupt takes
the form of a fevar_time_of_day event.

If the program includes a fevar_time_of_day condition, the interrupt each minute will
cause the variable crnt_time_of_day to be updated.

If the current state includes a fevar_time_of_day condition, the interrupt each minute
will satisfy that condition. At the same time all other conditions in the clause,
including non-event (that is, non-interrupt-driven) conditions such as
crnt_time_of_day == 1300, will be tested.

The relationship between an event variable such as fevar_time_of_day and its
associated nonevent variable (in this case, crnt_time_of_day) can be summarized as
follows: the event variable anywhere in the program causes the nonevent variable to
be updated each time the event occurs. The event variable in the currently active
waitfor loop causes the nonevent condition to be tested each time the event occurs.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Figure 54-1 illustrates this relationship, as well as the relationship between an event
and a nonassociated variable. The figure shows, for example, how an EIA event
might cause the time-of-day variable to be checked but not updated; and how a
time-of-day event might cause the EIA-status variable to be checked but not
updated. “Event” in the figure means event variable, while “variable” means
nonevent variable.

event A event B
occurs occurs

variable A

variable B
evi‘;tesd%n& 8 updated; updated;
program variable B variable A
g not updated not updated
events A & B
used in all all
currently active conditions conditions
state tested tested
s

Figure 54-1 This figure is meant to show the effect of event A on its associated variable (variable
A) as well as its effect on a nonassociated variable (variable B).

54.2 Various Origins of waitfor Events

Interrupts sent to the MPM from the CPM include fevar_time_of_day and
keyboard_new_key. Interrupts sent to the MPM by the SCC (Serial Communications
Controller) chip in the FEB include fevar_rcvd_char_td, fevar_gd bcc_rd, and
fevar_eia_changed. Some interrupts are sent to the user program by the protocol state
machines in the layer packages. Examples are dce_frame and dte_packet.

Interrupts also can be generated by the program itself. The program sends an
interrupt in the form of a “signal.” counter_name_change and flag_name_change are
events that are signaled by the program itself, since the program is in charge of all
counter and flag increments, decrements, and sets.

54 Events

54.3 Programming Considerations

By itself in a waitfor clause, crnt_time_of _day == 1300 never can be true, since only
interrupts/events cause the nonevent conditions in the clause to be processed. On the
other hand, counter_name_change && flag_name_change never can return true, since
two events cannot occur simultaneously.

Because two events never are simultaneous, the programmer (and the built—in
translator) has a decision to make whenever two nonevent conditions, such as
counter_name.current == 3 and flag_name.current == 5, are anded together. If the
programmer writes counter_name_change && (counter_name.current == 3) &&
(flag_name.current == 5), the condition may be true when counter_name.current
transitions to 3 but it never will be true when flag_name.current transitions to S,
since there is no interrupt to cause the condition to be checked at that moment. If
an interrupt (flag_name_change) is tied to flag_name.current, then
counter_name.current transitioning to 3 will not be detected.

When the user combines a flag condition with a counter condition on a single Trigger
Setup menu, the translator solves the dilemma of which event to “wait for” by
generating a two-pronged waitfor condition that is approximately the following:

(counter_name_change && (counter_name.current == 3) &&
(flag_name.current == 5)) || (flag_name_change &&
(counter_name.current == 3) && (flag_name.current == 5)):

On the Protocol Spreadsheet, the translator simply attaches the appropriate event
variable to the first softkey condition listed. If the user enters

CONDITIONS: COUNTER name EQ 3
FLAG name 101

the translator converts this to (counter_name_change && (counter_name.current ==
3) && (flag_name.current == 5). The user is then free to repeat the combined
condition, reversing the order of the elements (and therefore invoking the
flag_name_change interrupt) the second time around.

NOTE: The examples in Section 54.3 above are somewhat
simplified. The actual translator versions are made more
complicated by the inclusion of counter_name.old and
flag_name.old variables that are explained in Section 62.

54-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

54-4

55 Receiving and Transmitting Data

55 Receiving and Transmitting Data

As the INTERVIEW monitors the data source (line or disk), it signals the arrival of each
character by an event variable (fevar_rcvd_char_rd or fevar_rcvd_char_td) and it stores each
character momentarily in a variable (rcvd_char_rd or rcvd_char_td) accessible by the user.
Data can be taken from the line in this form and copied into memory or into an interlayer
message buffer. BOP-framed data is copied automatically into an interlayer (“IL”) buffer.

The user transmits data from the INTERVIEW by creating a transmit-data structure and then
referencing the structure in an lJ_transmit routine. Or the user may copy the data into an
interlayer buffer (or simply reference the data in the buffer) and then call out the buffer in
an !1_il_transmit routine.

The IL buffers have several advantages as a storage medium for data. First, they are reusable.

They are allocated dynamically and erased automatically unless the user takes steps to

maintain them. Without these reusable buffers, data in Run mode would quickly eat up all of
~ the memory in the unit.

Second, IL buffers support linked lists. There are routines that will start a list, insert data at
the top of a list, and append data to the bottom of a list. Linked lists are well suited to
layered-protocol transmissions, where the transmit string is built incrementally as the
transmission moves down the layers.

55.1 Locating Data in an IL Buffer

When a BOP frame is placed automatically in an IL buffer, a data primitive is
created automatically and the event variable m_lo_ph_prmtv is signaled. The segment
number of the IL buffer is recorded in the variable m_lo_ph_il_buff. The offset from
the start of the buffer to the start of the data is recorded in the variable
m_lo_ph_sdu_offset. This offset is always 32 bytes. What is considered data at higher
layers may have a larger offset, since each layer’s data begins farther into the frame.
See Figure 55-1 for an illustration of a gradually shrinking “service data unit” (SDU)
and a gradually expanding SDU offset.

The first memory location in the first of the sixteen IL buffers is 03280000, the first
location in the second buffer is 03b00000, the first location in buffer #3 is 03b80000,
buffer #4 starts at 03c00000, and so on through 04200000. Each of these addresses
is 32 bits. The high-order 16 bits is the 80286 segment number (0328, 03b0, 03b8,
03¢0, etc., through 0420). This is the number that the software passes around when

55-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

it wants to identify an IL buffer, simply because 16 bits are easier and faster to pass
around than 32 bits, the low-order 16 of which are always zero when we are
discussing the starting location of each buffer.

When we want to look at data in the buffer, we need to reference not a 16-bit
segment number but a 32-bit address. So we cast the segment number (always a -
short, 16 bits) into a long and move the number over to its high-order position,
sixteen bits to the left. We add 32 to the number to bypass the header information
for the buffer. Then we cast the new long as a character pointer. Here, for example,
is m_lo_ph_il_buff converted into a pointer to the first byte in a frame:

char * m_frame_ptr;
m_frame_ptr = (void™®) (((long)m_lo_ph_il_buff << 16) + 32);

PDU
- ____ Data-Character ‘
il_buffer_number }—— =~_IL_BUFFER data_start_offset:
N
data_start_offset T ———
data_length N
ata_lengt N \\\
AN N HEADER
N\ \ DATA
L
,\‘ T T— : <« —- at Layer 2
| (lemiesiciie)]|
R ~ " at Layer 3
SDU Size | ;{
SDU Size |
Layer 3 %

Figure 55-1 When an IL buffer is passed upward, the data offset changes and the data length

changes, but the buffer itself does not change.

55-2

55 Receiving and Transmitting Data

55.2

556.3

Monitor Path vs. Receive Path

The variables m_lo_ph_prmtv, m_lo_ph_il_buff, and m_lo_ph_sdu_offset are part of a
set of monitor services that handle IL buffers in both monitor and emulate modes.
These variables are updated for data on either data lead. The layer packages use
these variables to generate the protocol traces. The translator uses them to implement
spreadsheet condition-tokens such as PH_TD_DATA IND and DTE INFO.

Another set of variables are maintained in emulate mode and are updated for data
on the receive side only. These variables have names that reveal their obvious
relationship to the monitor set: lo_ph_prmtv, lo_ph_il_buff, lo_ph_sdu, etc. These
receive-side variables are used by the translator to implement spreadsheet
condition-tokens such as PH_DATA IND and RCV INFO.

Whenever a BOP frame is placed automatically in an IL buffer during an emulate
run, events m_lo_ph_prmtv and lo_ph_prmtv both are signaled. The segment number
of the same IL buffer is recorded in two variables, m_lo_ph_il_buff and
lo_ph_il_buff.

Passing a Buffer Upwards

Layer 1 stores data in IL buffers and passes these buffers to Layer 2 automatically,
as we have seen. If a Layer 2 personality package is loaded in from the Layer Setup
screen, the second data byte in the buffer (the 34th byte overall) is checked to
determine the frame type. If the contents of the buffer is an Info frame, a data
primitive is created automatically and the event variable m_lo_dIl_prmtv is signaled.
The segment number of the IL buffer is recorded in the variable m_lo_dI_il_buff.
This is the same segment number that was stored previously in m_lo_ph_il_buff.

The offset from the start of the buffer to the start of the data—Layer 2 or data link
(DL) data—is recorded in the variable m_lo_dl_sdu_offset. This offset is always 34 in
MOD 8. This number represents the 32-byte buffer header plus a 2-byte frame

“header that is of no interest to Layer 3, which will use m_lo_dI_il_buff and

m_lo_dl_sdu_offset to construct its packet trace.

The size of the data component in the buffer is stored in the variable
m_lo_dl_sdu_size. This number will be 2 bytes smaller than the variable
m_lo_ph_sdu_size.

If no layer packages are loaded, none of the buffer-handling services are provided
automatically at Layer 2 or higher. The programmer can provide the services
“manually” as indicated above.

If layer packages are loaded, monitor-path variables (those variables whose names
begin with m_) are updated automatically in order to drive the protocol traces.
Receive-path variables such as lo_dI_prmtv, lo_d!_il_buff, and lo_dl_sdu are

55-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

generated as needed by GIVE_DATA actions entered by the user on the Protocol
Spreadsheet. Otherwise it is up to the C programmer to maintain these variables. For
example, the user passing an IL buffer up to Layer 3 might write this code:

lo_dl_il_buff = lo_ph_il_buff;

lo_dl_sdu = (lo_ph_sdu + 2);

pdu_ptr->data_length = (pdu_ptr->data_length - 2);
signal (lo_dl_prmtv);

The same updates of variables and the same signal would be generated if the user
called a send_dl_prmtv_above routine, as follows:

_set_maint_buff bit (lo_ph_il_buff, &I2_relay_baton);
send_dl_prmtv_above (lo_ph_il_buff, 12_relay_baton, lo_ph_sdu + 2, pdu_ptr->data_length - 2,
0x45);

The send_dl_prmtv_above routine requires an SDU size value. There is no
receive-path variable (equivalent to m_lo_ph_sdu_size on the monitor path) that
maintains this value. Determine the SDU size from the data_length variable located
in the pdu-structure. In the examples above, pdu_ptr is a structure pointer. The
SDU size, therefore, is referenced as pdu_ptr->data_length. Refer to Section 63.1
for more information on the pdu structure.

NOTE: Do not use m_Ilo_ph_sdu_size for receive-path routines such
as send_dl_prmtv_above. It is not updated reliably at the same
moment that other receive-path variables are updated.

0x45 is the code for a DL_DATA IND primitive.

55.4 Layer 1 Transmit

Line transmissions are accomplished through L1 transmit routines. Shown below is a

program that ends in an /I_il_transmit routine. This routine puts the data contents

(the service data unit or “SDU,” not the buffer header) of an IL buffer out onto the
line.

Note that there is a set of routines leading up to the transmit routine. This set of
routines is necessary to get a buffer, to start a linked list inside the buffer, and finally
to insert several chunks of data into the list before it is transmitted.

{

unsigned short bufnum;

unsigned short baton;

unsigned short list_hd_offset;

static unsigned char data[] = “CUFOX)"”;

static unsigned char pkt_hdr(3] = {0x10,0x07,0};
static unsigned char frm_hdr(2] = {0x03, 0};

int length;

unsigned short transmit_tag = 1;

55-4

55 Receiving and Transmitting Data

STATE: fox

CONDITIONS: ‘KEYBOARD “ »

ACTIONS:

{
_get_il_msg_buff(&bufnum, &baton);
_start_il_buff_list(bufnum, &list_hd_offset);
length = sizeof(data) -1;
_insert_il_buff_list_cnt(bufnum,list_hd_offset, &data[0],length);
_insert_il_buff_list_cnt(bufnum,list_hd_offset, &pkt_hdr[0],3);
_insert_il_buff_list_cnt(bufnum,list_hd_offset, &frm_hdr[0],2);
11_il_transmit(bufnum,baton,list_hd_offset,transmit_tag);

}
The transmit string will look like this on the INTERVIEW'’s data display:

5% % L% THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789 [G]

(A) Segment Number

The 11_il_transmit routine required four arguments as input. First, it required
the segment number of the IL buffer that was intended to be transmitted. This
number was supplied by the _ger_il_msg_buff routine, and we called the number
bufnum. There are a total of sixteen numbered IL buffers available to the
program.

(B) Relay Baton

The second argument was the number of the “relay baton” or “maintain bit.”
This relay baton was supplied by the _get_il_msg_buff routine, and we called the
variable that held the number baton. A relay baton is passed down automatically
with every send or transmit routine and serves to hold the buffer until it has

been processed by the next layer (or transmitted by Layer 1). Then the baton is
freed.

There are sixteen numbered relay batons available for each IL buffer. At the
moment that all sixteen batons (or maintain bits) are free, the buffer is returned
automatically to the pool of free IL buffers and its contents are no longer
available to the program.

In many applications—X.25 Layer 2 and Layer 3 personality packages, for
example—an extra maintain bit is reserved (via the _set_maint_buff_bit routine)
each time a buffer is sent down. This extra maintain bit is held onto in case a
frame or packet must be resent, and is not freed (in a _free_il_msg_buff
routine) until the outstanding frame or packet has been acknowledged.

(C) List-Header Offset

In addition to buffer number and baton number, the !I_ii_transmit routine also
requires as input the offset from the start of the buffer to the linked-list header.
This offset is supplied at the moment the linked list is started by the
_start_il_buff_list routine. In the program above we called this offset
list_hd_offset.

556-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

PDU
il_buffer_number RN
data_start_offset - \\ Pointer-List
start ~) IL_BUFFER
\
A
B] Y
\
\ HEADER
‘ DATA
l list_header list_node
first_node_offset |'—*| data_pointer L
N
_J last_node_offset data_length \\
/
—_— \
// s~ next_node_offset |
/ list_node ¢]
/ /
l data_pointer /
{ \ Internal '/
nterna
“ data_length \\ data
\ next_node_offset |\ \\ (Layer 2
\ RN protocol info)
\ o
AN list_node) \\
1 data_pointer V \ internal
— |
// data
/ data_length (Layer 3
/ protocol info)
lI next —qffset
|
\
\
\ External
data

(User data)

Figure 55-2 When an IL buffer is passed downward, the data-start offset gives the
location of the list header. This list header and the various pieces of the
transmission (the list nodes) are threaded together.

55-6

55 Receiving and Transmitting Data

55.5

Figure 55-2 illustrates how the list header ties the linked list together by
identifying the offsets to the first and last nodes. A list node is created by each
_insert_il_buff list_cnt or _append_il_buff_list_cnt routine. The program in
Section 55.4 has three _insert_il_buff list_cnt routines. The IL buffer that is
transmitted therefore has three list nodes.

(D) Transmit Tag

The fourth argument in the /I_il_transmit routine is a “transmit tag” that
determines the type of BCC to be appended to the transmission. This variable is
stored in the 32-byte header of each IL buffer. Refer to the structure il_buffer
in the table of OSI structures, Table 63-1.

A transmit tag of 1 means a good BCC and 2 means a bad BCC. 3 causes an
aborted transmission.

Passing a Buffer Between Tasks

At this point we need to modify our /1_il_transmit program to allow different
layers—which are simply separate concurrent tasks in the programming
architecture—to contribute list nodes to the IL buffer intended for transmission. The
resulting transmit string will be the same as before, but three different tasks will have
contributed data components to the transmitted buffer. In our new program, a Layer
4 task will provide the fox message, Layer 3 will provide the _insert_il_buff list_cnt
routine that references the 3-byte packet header, and Layer 2 will provide the insert
routine that references the 2-byte frame header.

How do the separate layer tasks communicate with each other so that the right buffer
is accepted at the moment it is handed down? They relay information in the same
way that tasks always communicate, by signals that are detected throughout the
program as event variables. When Layer 4 sends an IL buffer down in a
send_n_prmtv_below routine, an event variable at Layer 3 (up_n_prmtv, not shown in
the program below but implied nevertheless in the N_DATA REQ condition) comes
true and at the same time updates the variables up_n_il_buff and up_n_sdu. Layer 3
can use these variables to identify the new IL buffer and to determine the offset to
the list header in that buffer. With this information, Layer 3 can insert its own list
node into the buffer before passing it down to layer 2.

Here is the program, followed by a few explanatory comments:

{
unsigned short bufnum;
unsigned short 14_baton;
unsigned short 13_baton;
unsigned short 12_baton;
unsigned short list_hd_offset;
static unsigned char data[] = “CFOX)”;
static unsigned char pkt_hdr([3] = {0x10,0x07,0};

55-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

static unsigned char frm_hdr([2] = {0x03,0};
int length;
extern volatile unsigned short up_n_il_buff;
extern volatile unsigned short up_d!_il_buff;
extern volatile unsigned short up_n_sdu;
extern volatile unsigned short up_di_sdu;

}

LAYER: 4
STATE: fox

CONDITIONS: KEYBOARD *“

ACTIONS:

{ .
_get_il_msg_buff(&bufnum, &i4_baton);
_start_il_buff_list(bufnum, &list_hd_offset);
length = sizeof(data) -1;
_insert_il_buff_list_cnt(bufnum,list_hd_offset, &data[0],length);
send_n_prmtv_below (bufnum,14_baton,list_hd_offset,0,0x64,0);

)

LAYER: 3
STATE: packet_header
CONDITIONS: N_DATA REQ
ACTIONS:

{
_insert_il_buff_list_cnt(up_n_il_buff,up_n_sdu, &pkt_hdr[0],3);
_set_maint_buff bit(up_n_il_buff, &I13_baton);
send_dl_prmtv_below (up_n_il_buff,13_baton,up_n_sdu,0,0x44,0);

}
LAYER: 2
STATE: frame_header
CONDITIONS: DL_DATA REQ
ACTIONS:

{ :
_insert_il_buff_list_cnt(up_di_il_buff,up_dl_sdu, &frm_hdr[0],2);
_Set_maint_buff bit(up_dl_il_buff, &I2_baton);
send_ph_prmtv_below (up_d!l_il_buff,12_baton,up_di_sdu,0,0x24,0);

In the send-primitive routines, the hex values 64, 44, and 24 identify the primitives
as data requests. See, for example, the values of up_n_prmtv_code in Table 63-4.

Note that there is no longer an l/_il_transmit routine in the program. When Layer 2
executes a send_ph_prmtv_below routine, Layer 1 handles the transmit function
automatically.

The send_ph_prmtv_below routine does not have a transmit-tag argument that allows
us to specify the BCC. Since the l/_il_transmit routine, which has a transmit-tag
input, is being handled automatically, it is not immediately clear how you would send
the transmit string with a bad BCC. Here is one way. Instead of the
send_ph_prmtv_below routine at Layer 2, use the /l_il_transmit routine as follows:

11_il_transmit(up_di_il_buff,12_baton,up_dl_sdu, 2);

The 2 in the argument represents the transmit tag for a bad BCC.

55-8

55 Receiving and Transmitting Data

55.6

If it seems strange to be using an /I_il_transmit routine at Layer 2, remember that
none of the variables or routines is really layer-specific. In C, layers are simply
concurrent tasks.

A “realistic” implementation of this program might be made somewhat more
complicated by two additional elements. One or more _open_space_in_il_buff
routines might be used so that, as far as possible, text data could be copied into the
buffer where it would then be erased when the buffer was freed. (One of the
advantages of IL buffers is that the space inside them can be recycled.)

Another complication is that for the same transmission, more than one linked list
might be started in a single buffer. The example under the _insert_il_buff_list_cnt
routine in Section 63.3(A) shows Layer 2 accepting a buffer from Layer 3 and
starting a new linked list. This allows Layer 3 to reconstruct its original linked list in
case a packet-resend is needed.

Sample Transmit Program: Sync or Async Echo

This application monitors incoming data for text strings bounded by % and % or &%. It
copies these strings into an IL buffer and then echoes them back out onto the line,
preceded by two ASCII sync characters. The program will work in most data formats
as long as ASCII % and % are included.

The program may be modified for EBCDIC %, %, %, and %. Use received-character
variables fevar_rcvd_char_rd and rcvd_char_rd for data received on RD.

{
extern fast_event fevar_rcvd_char_td;
extern volatile unsigned short rcvd_char_td;
unsigned short number, length;
unsigned short il_buffer_number, relay_baton, data_start_offset;
unsigned char echo_string[100] = {’%’, '%’};
}

STATE: look_for_stx
CONDITIONS:

{
fevar_rcvd_char_td && revd_char_td == *%’

}
ACTIONS:
{

number = 2;
echo_string[number] = revd_char_td;
number++;

}

NEXT_STATE: construct_echo_string
STATE: construct_echo_string

CONDITIONS:

fevar_revd_char_td
}
ACTIONS:
{

echo_string[(number] = rcvd_char_td;

55-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

55.7

number++;
if ((revd_char_td == *%’) || (revd_char_td == *%’))

length = number;

)

CONDITIONS: RECEIVE GOOD_BCC

NEXT_STATE: transmit_echo_string

STATE: transmit_echo_string

CONDITIONS: ENTER_STATE

ACTIONS:

{
_get_il_msg_buff(&il_buffer_number, &relay_baton);
_start_il_buff list(il_buffer_number, &data_start_offset);
_insert_il_buff _list_cnt(il_buffer_number, data_start_offset, echo_string, length);
{1_il_transmit(il_buffer_number, relay_baton, data_start_offset, 1);

}
NEXT_STATE: look_for_stx

Sample Transmit Program: BOP Echo

When Format: is selected on the Line Setup screen, every frame that is
received at the line interface is placed in an IL buffer and passed up to Layer 2.
This sample program makes a pointer to the I-field in the most recent IL buffer
received at Layer 2, and then it echoes the data back out in the C equivalent of a
SEND INFO action. If you try this program, be sure to load the X.25 or SDLC package
at Layer 2.

{
char * data_ptr;
extern volatile unsigned short revd_frame_buff_seg;
extern volatile unsigned short revd_frame_sdu_offset;
extern volatile unsigned short rcvd_frame_sdu_size;
struct send_frame_structure
{
unsigned char addr_type;
unsigned char frame_type;
unsigned char nr_type;
unsigned char ns_type;
unsigned char p_f_type;
unsigned char bcc_type;
unsigned char addr_value;
unsigned char cntrl_byte;
unsigned char nr_value;
unsigned char ns_value;
b
struct send_frame_structure frame;
unsigned short number, baton, offset;

}
LAYER: 2
STATE: echo
CONDITIONS: RCV INFO
ACTIONS:
{
data_ptr = (void *)(((long)rcvd_frame_buff _seg << 16) + rcvd_frame_sdu_offset);
_get_il_msg_buff(&number, &baton);
start_il_buff list(number, &offset);
:insert_il_buff_list_cnt(number, offset, data_ptr + 2, revd_frame_sdu_size - 2);
frame.bcc_type = 1;
send_frame(number, baton, offset, &frame);

55-10

56 C Basics

56-1

56 C Basics

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

-

*k Protocol Spreadsheet x
LAYER: 1
TEST: bsc_-one
{static label prev_state;)}
STATE: polling
CONDITIONS: RECEIVE ONE_OF "&&"

ACTIONS: SEND "%%%/" GOOD_BCC
{prev_state = state_polling;}
NEXT_STATE: ack@

STATE: ack®
CONDITIONS: RECEIVE ONE_OF 'E&B&"
ACTIONS: SEND "$%%%" GOOD_BCC
{current_state =

prev_state;
break;
}
\LQYER: TEST: STATE: CONDS: NEXTST:)}

Figure 56-1 Using C to return to the previous state.

56-2

56 C Basics

56 C Basics

C programming language as implemented in the INTERVIEW 7000 Series is based on the
current ANSI recommendations. It contains several extensions to the language which enhance
its utility in protocol testing, notably multi-tasking.

C is intended as an aid to INTERVIEW users who have advanced programming knowledge.

A sophisticated programming tool, C can be applied to testing requirements which are not met
by Protocol Spreadsheet selections. C is useful, for instance, in the analysis and “intelligent”
manipulation of variable data strings anticipated within a complex protocol. Additional
applications of C are the creation of customized protocol and program trace displays.

Figure 56-1 provides a means of returning to whatever state was the former state, without you
the programmer knowing which state was previously active. This “go to previous state”
function is not a standard spreadsheet feature. The example employs Bisync protocol to
demonstrate the usefulness of this capability. The test begins in a state called polling. Here,
an ACKI1 is sent whenever the end of any received data is encountered, and the test passes to
the state called ack0. This time when the end of received data is encountered, an ACKO is
sent, and the test returns to whatever state it was in formerly.

The first C region is the declaration of the variable prev_state, which allows the variable to be
used anywhere within the test. In the second C region, the variable prev_state is initialized to
the name of the active state. The third C region shows the transition of the test to the
previously active state. Depending on the contents of the prev_state variable, the former state
could be one of any number of states. This capability means that, as the programmer
expands the simple test, the state ack0 can be used again and again as a utility state from
which the test returns to the former state, removing the need for repetitive spreadsheet entry.

56.1 Notable Variations in C

The AR version of C varies in certain respects from the ANSI standard. Notable
exceptions to the standard are outlined below. A full set of implementation-defined
variations appear in Appendix K.

(A) Reserved Words

The following two reserved words, in addition to those covered in the ANSI
standard, are included in C:

task

walitfor

56-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

56.2

56.3

(B) Predeclared identifiers

The following type identifiers are always predeclared. They are not defined in
any #include files, nor are their definitions required in any program. Thus they
are part of the INTERVIEW C lexicon, even though they are not reserved words
and therefore do not appear in the language summary in Appendix K.

event
fast_event

label

(C) Floating Point Notation

Since Floating Point Notation is not required in the protocol testing environment
and since corresponding calculations could degrade processing speed, floating
point notation is omitted from the AR implementation of C. Fixed point
calculations, however, are performed.

(D) Values Returned from C Functions

Functions declared within AR’s implementation of C may only return values for
data types which are 1, 2, or 4 bytes long. Consequently, a function cannot
legally return most structure or union types.

Editing a C Program
Entries in C are made on the Protocol Spreadsheet, accessed from the Main Program

screen. All editing functions available on the spreadsheet can be applied to C
coding. Refer to Section 26 for a description of these editing functions.

Error Reporting in C

" Most syntax errors made on the Protocol Spreadsheet are indicated by strike-through

of the text where the error occurs. This facilitates correction of entries as you create
a test.

Errors which appear in C coding are not indicated by the editor. However, when the
program is compiled (when you press (w]), the errors will be noted. If there are
errors in the program, the INTERVIEW will automatically revert to the Protocol
Spreadsheet rather than run the program.

(A) Locating Errors

The cursor is automatically positioned near the first error when the INTERVIEW
reverts to the Protocol Spreadsheet. A diagnostic message about the error will
be displayed at the top (second line) of the screen. Errors pertaining to the

56-4

56 C Basics

general syntax of the spreadsheet are explained in text. Errors noted by the C
pre-processor or compiler are displayed as numbers, with explanatory text if the
filename sys/error_text is accessible at the moment on a disk. (The file should
always be accessible in units with hard disks.) These numbered messages are
listed in Appendix A3.

Press GO-ERR again to move down through the spreadsheet to the next error.
When you press GO-ERR and there are no more errors, the message “No More
Errors” will be displayed.

56.4 Preprocessor Directives

The INTERVIEW supports preprocessor directives #define and #include. The full set
of ANSI preprocessor directives are supported on the INTERVIEW. Included among
these directives are #if, #else, #ifdef, #ifndef, and #undef. (Refer to the ANSI
Recommendation for a discussion of these directives.) Implementation-defined
#pragmas are also preprocessor directives. #pragma object and #pragma hook are
two of the AR #pragmas. As the name implies, preprocessor directives are processed
before the program in which they appear is compiled.

Preprocessor directives are easy to recognize, since they are always preceded by a
pound sign (#). Spaces are significant to the meaning of the directives, since other
delimiters are generally not used. Note also that a semi~colon cannot be used to
terminate a preprocessor directive. Instead, a directive is terminated by a hard
Carriage Return or some indicator of line continuation. Press pw to terminate the
directive (no indication of the Return will appear on the screen). Type \ (backslash)
and press pm» at the end of the line on the screen to indicate that the directive
continues on the next line. You may also allow text to wrap to the next line by
continuing to type. (Wrapped lines are indicated on the screen by the highlighted
symbol [.) '

(A) #define

The #define directive gives you the convenience of replacing frequently
referenced items with a text string of any length.

1. Placement. A #define directive may be placed at the beginning of a logical
line anywhere in a legal C region. The eight valid positions for C regions on
the Protocol Spreadsheet are shown in Figure 53-4. The #define directive
may also be placed in a separate #include file. Use the #include directive as
explained in (B) to invoke the file and make the macro-substitutions it
indicates in your main program file.

56-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

2. Format. The directive follows this format:

#define identifier string

For example, if you enter the following line of code,

#define message The quick brown fox12345

the identifier message (wherever it appears exactly as written in the file being
acted upon) is replaced in subsequent lines of code by the string The quick
brown fox12345. The replacement, the macro-substitution, is performed
before the code is compiled. When you enter the #define directive, leave a
space between the directive (#define) and the identifier. There should be
no spaces in the identifier. The space following the identifier indicates that
the next ASCII character (or blank) starts the replacement string. Spaces
are allowed and are considered part of the string. Terminate the string (and
the directive) as described at the beginning of this sub-section.

3. Nesting. #define substitutions may be nested. Of course, the nested
replacements must be described by a #define directive which precedes the
#define for the replacement text which contains them:.

There is one exception to nesting identifiers—the macro substitution will not
be performed when the identifier occurs in a string. In the example below,
the programmer tries to nest MAXTRIES within the definition of
MESSAGE:

#define MAXTRIES 3
#define MESSAGE “Maximum retransmissions is MAXTRIES."

A call to displayf(MESSAGE); causes the following to be displayed:
Maximum retransmissions is MAXTRIES.

This is certainly not what the programmer intended.

(B) #include

#include files, when invoked in a program, are read into the program file before
the program is compiled. As a result, your program has access to commonly
used items such as subroutines (input/output and string operations, for example),
global variables, constants, and structures without your having to enter or modify
the required code repeatedly.

1. Format. The format for the directive is as follows:
#include <filename>
or

#include “filename”

56-6

56 C Basics

#include files follow standard naming conventions. See Section 13.2(E). As

an added convention, the suffix .k is appended to the end of the name (as
in the filename stdio.h).

Search rules for #include files. The delimiters you use to surround the
filename determine how the INTERVIEW searches its filing system for the

file.

® The <> delimiters are intended for files which are supplied by AR.
When these delimiters are used, the following directories—and only the
following directories—are searched, in the order given:

1.

O 003 O W

Isyslinclude on current drive (indicated on File Maintenance
screen)

The directory named as the current directory on the File
Maintenance screen (provided that the current directory is not the
root directory for FD1, FD2, or hard disk)

lusrlinclude on current drive (indicated on File Maintenance
screen)

FDl/syslinclude

FD2/syslinclude

HRD/syslinclude

FDI1/usrlinclude

FD2/usrlinclude

HRD/usrlinclude

NOTE: The directory names are given in the format which the
INTERVIEW interprets as the absolute path from the root
directory of the disk named before the first slash. So
HRD/syslinclude means /sys/include on the hard disk.

® The “ ” delimiters are intended for user-created files. The same
directories are searched for the filename, but they are searched in the
following order:

1.

RIS

The directory named as the current directory on the File
Maintenance screen (provided that the current directory is not the
root directory for FD1, FD2, or hard disk)

fusrlinclude on current drive (indicated on File Maintenance
screen)

Isyslinclude on current drive (indicated on File Maintenance
screen)

FD1/lusrlinclude

FD2/usrlinclude

HRD/usrlinclude

FDI1/syslinclude

FD2/syslinclude

HRD/syslinclude

56-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

If you have used the same filename for an include file in more than one
directory, the file which is actually read in as a result of an #include directive
will be from the first directory searched which contains that filename. The
delimiters you use, then, can make a difference in the file selected for inclusion.

The filename enclosed in <> or “ ” delimiters may be a relative pathname. The
highest directory in the pathname must reside in the current directory or in one
of the /include directories. In response to an #include “disk_io/stdio.h”
directive, for example, the INTERVIEW first looks for a disk_io subdirectory in
the current directory on the File Maintenance screen and then for an stdio.h file
in that subdirectory. If the file is not found, the search for the relative
pathname continues according to the sequence designated for “ ” delimiters.

If the file is not located in any of these directories, an error message is returned
to the operator.

(C) #pragma object

Use the #pragma object directive to access the compiled routine definitions in a
linkable-object file. The OBJECT block-identifier discussed in Section 24.4 may
also be used for this purpose. (Also see Section 13.3(P) on creating a
linkable-object file—displayed as type LOBJ in the directory listings on the File
Maintenance screen).

1. Placement. Place the #pragma object directive inside any legal C region on
the Protocol Spreadsheet. Except for those containing the static attribute,
routine definitions from an LOBJ file always have global scope. It makes
sense, therefore, to position the directive at the top of your spreadsheet
program along with other global declarations and definitions.

2. Format. The format for the #pragma object directive is as follows:
#pragma object “filename.o”

A #pragma object directive references only one LOBJ filename, but you may
include as many directives as you wish.

The relative or absolute pathname of the linkable-object file is enclosed in
quotation marks.

3. Search rules for linkable-object files. As your spreadsheet program
compiles, the INTERVIEW’s filing system is searched for the linkable-object
files referenced in #pragma object directives.

e If the referenced LOBJ filename begins with FD1/, FD2/, or HRD/, the
INTERVIEW interprets it as the absolute pathname and makes only that
one search.

e Pathnames beginning with a / indicate that the root directory on each
drive should be the beginning point of the search. The drives are
searched in the following order: current drive, FD1, FD2, and HRD.

56-8

56 C Basics

® Otherwise, the name may be a one-word filename, or a relative
pathname which includes the directories leading to the file. The highest
directory in a relative pathname must reside in the current directory or
in one of the /lib subdirectories. The following directories—and only the
following directories—are searched, in the order given:

1. current directory on the current drive (indicated on the File -
Maintenance screen)

/usr/lib on the current drive

/sys/lib on the current drive

FDI1/usrllib

FD2/usrl/lib

HRD/usrllib

FD1/sysllib

FD2/sys/lib

HRD/sysllib

O 00 IO L Hh W

If the pathname is not located in any of these directories, the program will
not compile and an error message will be returned to the operator.

How #pragma object works. When the source of code for the Compile
command is , the LOBJ which results usually defines
user-created routines. These routine definitions may be “linked,” or
combined, as needed with your spreadsheet program. This means that
routines called within your active program do not always have to be defined
on the Protocol Spreadsheet or in #include files.

NOTE: An LOBJ file may also contain #pragma hook directives.
See Section (D) below. If a #pragma object directive references
an LOBJ file which contains #pragma hook directives, the
“hooks” within that file are ignored. Since Compile i
always generates #pragma hooks, use the OBJECT block-identifier
to reference the resulting LOBJ file.

(a) Referenced linkable-object files searched for routine definitions. If a
spreadsheet program calls a routine for which no definition is provided,
the LOBYJ files referenced in #pragma object directives are searched in
the order in which they appear on the Protocol Spreadsheet. If a
routine is defined in more than one referenced LOBIJ file, the definition
in the first LOBJ file listed on the Protocol Spreadsheet will be used.

If the routine definition is not found in the spreadsheet program or in
any referenced linkable-object file, the compilation will abort. When
you go to the Protocol Spreadsheet and look for error messages, the
routine name will appear as an unresolved reference.

56-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(b) Compiled routine definition combined with compiled spreadsheet. When

(c)

the routine’s definition is located, the compiled code is copied from the
LOBIJ file and combined with the compiled code of the spreadsheet
program.

Routine definitions in an LOBJ file may reference additional routines not
defined within the same file. If these indirectly-referenced routines also
are not defined on the Protocol Spreadsheet, the LOBJ files are
searched again.

Routine definitions containing the static attribute are local to the LOBJ
file. A static routine will be copied from the file only if it is included in
the definition of another routine.

NOTE: Use #pragma object directives in your active spreadsheet
program only. Do no incorporate them in code that will be
compiled and saved as an LOBJ file. Although the code will
compile, no search fro routine definitions in referenced LOBJ
files will be performed.

Efficiently uses memory. Using #pragma object to reference routines in
linkable-object files, assists in using the INTERVIEW’s memory and
spreadsheet buffer efficiently.

® Only the definitions for routines actually called within the current
spreadsheet program are copied into memory from the LOBJ file.
All other code within the file is ignored.

e When commonly utilized routines are defined in linkable-object
files, space in the spreadsheet buffer otherwise dedicated to this
purpose can be used for additional programming.

e Since the code in LOBJ files has already been compiled, the
INTERVIEW can support a larger program without a corresponding
increase in compilation time.

NOTE: Additional #pragma preprocessor directives utilized by
the INTERVIEW are discussed in other sections of the manual.
Refer to Section 61 on Display Window and Trace, for example,
for information on the #pragma tracebuf directive. Except for
#pragma hook (below), these other #pragmas should be part of
the active spreadsheet program, not part of a linkable-object file.

56-10

56 C Basics

(D) #pragma hook

The #pragma hook directive allows compiled C code within a referenced
linkable-object file to be automatically combined with the compiled code of an
active spreadsheet program. There are eight types of #pragma hook
directives—hook_types zero through seven. All types may be system—generated

during the Compile operation when the source of code is :
resulting linkable-object file always contains at least one hook_type zero.

:, but the

The programmer also uses hook_type zero (#pragma hook 0). For this reason,
#pragma hook 0 will be the focus of the following discussion. The primary
purpose of #pragma hook 0 is to “force” a routine to be called and executed as
part of a spreadsheet program, even though no explicit call to the routine is
made on the Protocol Spreadsheet. The spreadsheet program may also call the
routine, but keep in mind that it will be executed twice—once because of the call

on the spreadsheet and once because of the call made via the #pragma hook 0
directive.

1.

Format. Create hooks on the Protocol Spreadsheet and then write them to
a file using the WRITE/U editor command. Before typing your hook on the
spreadsheet, press to prevent the editor from placing a strike-through
over the text.

The format for the #pragma hook 0 directive is as follows:
#pragma hook hook_type “routine_name();”

Follow the directive with a space and enter a decimal (not hexa_decimal)
constant to identify the hook_type.

After the hook_type, enter another space, and then the hook text—C code
that calls the routine you want combined with your spreadsheet program.
The call to the routine is placed inside quotation marks and includes
required syntax—parentheses for the arguments and a semi-colon to
complete statement punctuation.

NOTE: Task names are always local to a linkable-object file and
never directly copied from it. The hook text, therefore, cannot
reference a task. The rule for exporting tasks from a
linkable—-object file is to let the #pragma hook O directive call a
routine which starts the task(s). See Section 5. following and
Section 52 for examples.

More than one #pragma hook 0 directive may be present in a single LOBJ
file, but each directive calls only one routine.

56-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

2. Routine definitions. Typically, the definition for the routine called in the
directive is located within the same linkable-object file. It may, however, be
in another LOBJ file as long as both files are referenced via OBJECT
block-identifiers on the Protocol Spreadsheet.

The definition of the hook-text routine may also reference a task (which
must be defined in the same file) or it may reference additional routines not
defined within the same file. The rules in Section (C) above for indirectly
referencing routines apply.

Definitions for most of the extern routines included in this manual are not
strictly required. ’

3. Accessing hooks. If you want the hook text combined with your program,
use the OBJECT block-identifier to reference the LOBJ file. If you use the
#pragma object directive to reference the file, the “hooks” within that file
will be ignored.

4. Hooks are added to task list of program main. As your program compiles,
referenced linkable-object files are searched for hooks. When a hook_type
zero directive is found in the file, the hook text is automatically added to
the bottom of the task-list in the top-level main. If a referenced LOBJ file
contains more than one “hook,” they will be added to the task list in the
order in which they appear in the file.

NOTE: The order of tasks and hooks in the task-list indicates
the order in which main initiates tasks and executes hook
routines. It does not necessarily indicate the order in which_the
actions in tasks or hooks are processed.

5. Execution of hooks. Recall that the main function is system-created during
compilation. Refer to Section 52, Program Main. Because main simply
initiates the execution of each task listed, the (hook-text) routine essentially
runs concurrently with the tests in your spreadsheet program.

Since the hook text is a routine, and not a task, it must actually be executed
by main, not simply started. The definition of the routine determines when,
or whether, any subsequent hooks will be executed by main.

e If the routine’s definition references a task, as in the example below,
main returns quickly, leaving the routine to execute the task. Then
main begins execution of the next hook in the task list.

#pragma hook 0 “example();”
extern fast_event fevar_time_of_day;
extern volatile unsigned short crnt_time_of_day;

56-12

56 C Basics

56.5

task

{

main()
{
State_alarm_at_one:
waitfor
{
fevar_time_of _day && (crnt_time_of day == 1300):
{

sound_alarm();
}
}
}
} example_task;
example()

{

example_task();

}

e If the routine’s purpose is not to start a task (or tasks), then main has to
execute all the code. The more code there is, the longer it will be
before main can return to execute the next hook.

If the definition includes a waitfor, as in the following example, any
subsequent hooks will never get executed. Instead, main will continue to
wait for the specified event.

#pragma hook 0 “example();”
extern fast_event fevar_time_of day;
extern volatile unsigned short crnt_time_of_day;
example()
{
waitfor
{
fevar_time_of day && (crnt_time_of day == 1300):
{

sound_alarm();
}
}
}

Data Types

(A) Precisions

When a variable is declared, the compiler allocates space in memory according
to the type declaration that precedes the variable name. There are three sizes
(or precisions) of data allowable in 80286 memory, and three corresponding
data types. A char is allotted one byte of memory. A short is given two bytes,
while a long reserves four bytes of memory. Shorts and longs are varieties of int
or integer, and the type descriptions short int and long int are permitted. The
type int used by itself is the same as short int.

56-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(B) Signed and Unsigned Types

All three precision types may be signed or unsigned. Signed and unsigned data
types are stored identically, but treated differently in arithmetic operations.
Specifically, they differ in the way they undergo type conversion, comparison,
division, and right shifting.

1.

Type conversion. The following declarations store the same value in
memory:

signed char a = -6;

unsigned char b = -6;
In both cases, the byte stored in memory will be the two’s complement of
00000110, or 11111010. (The two’s complement is the one’s complement +

1.) This bit pattern translates as hex fa or ASCII z. The displayf routine in
the following program will write two z’s to the screen:

signed char a = -6;
unsigned char b = -6;

STATE: data_type
CONDITIONS: ENTER_STATE
ACTIONS:

displayf (“%c%c” , a, b);

When you lengthen the chars to shorts, however, they behave differently.
The unsigned char is left~padded with zeroes. The signed char, having a
leftmost bit equaling 1, is left-padded with ones. This left-padding with ones
is called “sign extension.” '

A char is converted to a short automatically when a %d, %u, or %x
conversion is applied to it, so the following example illustrates the difference
between the conversion of signed and unsigned types:

signed char a = -6;
unsigned char b = -6;

STATE: data_type
CONDITIONS: ENTER_STATE
ACTIONS:

displayf (“%x%x ", a, b);

The variable a will be seen to extend to hex fffa, which is fa left-padded
with eight ones. The unsigned variable b will have been extended by eight
zeroes and will appear unchanged as fa.

If the %x conversion specifiers in the example above are replaced by %d,
the resulting signed-decimal conversion will show a equaling -6, b equaling
250. The signed char will have survived the type-lengthening with its original
negative value intact.

56-14

56 C Basics

Because they can be lengthened without changing their values, signed
variables should be used for any arithmetic operations. Other differences
between signed and unsigned variables, not reflected in Table 56-1, are the
following:

Comparison. If the leftmost bit of a signed variable is 1, then the variable
has a negative value and the expression variable > 0 is false. If the leftmost
bit of an unsigned variable is 1, the variable is positive and variable > 0 is
true.

Division and modulus. If the leftmost bit of a signed variable is 1, the two’s
complement of the variable rather the stored value will be used in any
division or modulus operation.

Right shifting. When a right-shift (>>) operator is used on a signed
variable, a 1-bit is shifted in at the left. When the same operation is
performed on an unsigned variable, a 0-bit is shifted in.

Table 56-1 shows the ranges of values that are produced by displayf and
printf routines when the valid conversion specifiers—%c, %d, %Id, and so
on—are applied to the various signed and unsigned data types. Frequently it
makes no difference whether a variable is declared as signed or unsigned.
When a variable undergoes type conversion, however, as in the case of a
char given a decimal or hex conversion, there is a significant difference.

56-15

Table 56-1

Data Types: Ranges of Values Displayed and Printed

hex conversion
short (%x) long (%Ix)

(%c) short (%d) long (%Id) shor%u) long (%lu)
char! N to % 0 to 255 - 0 to 255 - 0 to ff -
signed char’ % to % -128 to 127 - 0 to 127 - 0 to 7f -
65408 ?g %5535 ffBOatr:)dffff

unsigned char! N to % 0 to 255 - 0 to 255 - 0 to ff -
Int - -32768 to 32767 - 0 to 65535 - 0 to ffff -
signed int - -32768 to 32767 - 0 to 65535 - 0 to ffff -
unsigned int - -32768 to 32767 - 0 to 65535 - 0 to ffff -
short - -32768 to 32767 - 0.to 65535 - 0 to ffff -
signed short - -32768 to 32767 - 0 to 65535 - 0 to ffff -
- -32768 to 32767 - 0 to 65535 - 0 to ffff -

unsigned short
long
signed long

unsigned long

-2147483648 to 2147483647
-2147483648 to 2147483647
-2147483648 to 2147483647

0 to 4294967295
0 to 4294967295
0 to 4294967295

0 to fffffffff
0 to fffffffff

0 to fffffffff

! Through “integral promotion,”

char Is converted automatically to int in a %d, %u, or %x conversion.

56 C Basics

(C) Static Storage Class

A variable must be of the static storage class to pass its value into a waitfor
statement. Declarations at the Program, Layer, or Test level (Level 1 in the
source code diagram in Figure 52-4) are static even if they are not explicitly
declared so. The same is true of a character array initialized by a string (see
Section 56.7).

A variable that is initialized at the State level must be declared as static by the
programmer if the initialized value is to be used inside a waitfor.

The following program will display a value of 8 on the prompt line when the
operator presses the spacebar:

STATE: pass_initialized_value
{

static int initialized = 8;

CONDITIONS: KEYBOARD *“ "
ACTIONS:

displayf (“%d ”, initialized);

If you removed the word static from the declaration, the initialized value would
not be passed into the condition clause and the program would display 0 or a
“garbage” number instead of 8.

56.6 Operator Precedence

In an expression with more than one operator, operations are prioritized according to
the ranking of operator precedence in Table 56-2. The operator with the highest
precedence is at the top of the table. Precedence decreases as you move down.

Consider this example:

STATE: precedence
{

int a;
a=3%"4+2;
displayf (“%d”, a);

Because multiplicative operators (*, /, and %) have higher precedence than additive
operators (+ and -), the 3 * 4 operation is performed first. Then 2 is added to the
product of 3 and 4, and finally the sum is assigned to the variable a. (Assignment
operators have very low precedence.) The result of the program is that a is displayed
as 14. Compare this example:

STATE: precedence
{
int a;
a=3"*(4+2);
displayf (“%d”, a);

56-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 56-2
Operator Precedence’

Operator Type of Operator Associativity
0 primary expression left to right
. - + - postfix left to right
++ —— sizeof & * + - - | unary right to left
(type) cast left to right
* ! % multiplicative left to right
+ - additive left to right
<< >> bitwise shift left to right
< ><= >= relational left to right
= I= equality left to right
& bitwise AND left to right
" bitwise exclusive OR left to right
I bitwise inclusive OR left to right
&& logical AND left to right
I logical OR left to right
?: conditional right to left
= *z= /= %= 4= -= <<= >>= &= "= |= assignment right to left
) comma left to right

' Operators on the same line have the same precedence; rows are In order of decreasing precedence.

Here the additive operation is performed before the multiplicative, since the
parentheses that denote a primary expression (see Table 56-2) have the highest
precedence of all. The result of this program is that decimal 18 is displayed.

Given operations with the same precedence, left-to-right or right-to-left
“associativity” (see the right column in Table 56-2) indicates which is performed first.
This order of processing is significant for an expression such as 36 / 6 / 2, where the
associativity is left to right.

Associativity is very important in assignment operations, which are always interpreted
in a right-to-left direction. Consider this example:

STATE: right_to_left_associativity
{
int a
int b’
= b;
displayf (“%d"”, a);

4;
1;

56-18

56 C Basics

56.7

The result of this program is that 1 is displayed, not 4. Right-to-left associativity also
explains why the following program does not compile.

STATE: right_to_left_associativity
{

inta = 3;
3=a;
displayf (“%d”, a);

A constant never can have a value assigned to it, even if the value equals the
constant.

Strings
A string is a sequence of characters enclosed in double quotes. This is an example of
a string:

“hello”

A string is an expression of the type pointer, and may be used anyplace in the
program that is appropriate for a pointer. For example, a pointer is appropriate as
the argument of a displays routine:

displays (“hello”);

The string in this statement does two things during compilation: it writes the character
string “hello” in memory, and it points to the first character in the string. The string
“hello” becomes a 4-byte address that you can examine by displaying it as a long
hexadecimal:

displayf (“%I1x”, “hello”);

(A) Using a String to Initialize an Array

Note that the pointer represented by “hello” in the examples above is not stored
anywhere and therefore can be used only once. The string pointer “hello” could
have been stored as a pointer to the first character in an array, as in this
example:

char string_array [] = “hello”;
displayf (string_array);

Stored in this manner, the pointer can be used repeatedly.

An array like string_array that has been “initialized” by a string shares many of
the traits of standard arrays, but it has unique characteristics as well.

1. Data type. A string may only initialize an array whose elements are of the
type char.

2. Null termination. A string is always terminated by a null character. This null
terminator is appended by the compiler, not the programmer.

56-19

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Size. All arrays must declare their size, in any of three ways. The
programmer may declare the length inside of brackets, as in this example:

char array [5];

Or he may leave the brackets empty and provide a list of initializers, inside
of curly braces, from which the compiler can determine the size of the
array:

char initializer_list_array [] = {‘h’, ‘e’, ‘I’, Ox6¢c, ‘0’} ;

The third method of indicating size is to leave the brackets empty and
initialize the array with a string, as in our original example of a string
initializer:

char string_array [] = “hello”;

The compiler will add a terminating null-character to this string, and
calculate an array size of six. To verify that the compiler counts one more
character than the user has entered, you may try the following test. Note
that the sizeof operator will return the length of any array:

STATE: display_size_of_string
{

char string_array [] = “hello”;
int compiler_count = sizeof(string_array);
displayf (“%d”,compiler_count);

One-dimensional array. Whereas arrays in general can be multidimensional,
a string-initialized array always has one dimension.

(B) Valid Strings

1.

ASCII and control. With a few exceptions, all ASCII characters, including
control characters, are valid in a string. The exceptions are %, ¥, ”, and \.
These characters are liable to be misinterpreted by the compiler. Null (%)
and linefeed (+) will be taken to indicate a new logical line in the program.
Double-quote (") will be mistaken for the end of the string. Backslash (\)
will be misinterpreted as the start of an escape sequence.

If one of these characters is included in a string, the program may not
compile. If not, you will be returned to the Protocol Spreadsheet. The
following message will be displayed for nulls or linefeeds: “Error 718:
Newline inside string.” For quotation marks, the message is “Unclosed AR
“C” region.” Depending on their placement in the string, backslashes may
or may not generate an error. Even when compilation succeeds, however,
they will not be interpreted correctly.

56-20

: 56 C Basics

Table 56-3
C String Non-Literals

Non-literal Meaning ASCII character Hex character
\a bell | %
\b backspace & %
\f form feed e %
\n " linefeed % ¥ %a
\r carriage return X %
\t horizontal tab H Oq
\v vertical tab % %

\! single quote ' %
\" double quote % " 2%
\\ backslash + \ S
\#H#HE octal representation any ASCII character % - "¢
\X### hex representation any ASCII character % -Fr

1t These characters require non-literal entries in INTERVIEW strings. The others may be
entered as ASCIlI characters, non-literals, or hexadecimal characters.

2. Non-literals. Most characters in strings are interpreted literally. Each of
the invalid characters listed above, therefore, needs a non-literal
representation. Non-literals are preceded by a backslash. The compiler
converts these non-literals to their one-byte numeric value.

‘To include a null (or any ASCII) character in a string, use the octal or
hexadecimal representation shown in Table 56-3. Hex and octal numbers
take up to three digits, so use leading zeroes if necessary. Otherwise, a
subsequent digit may be interpreted as part of the value. Suppose, for
example, you want to create the string “abc”. You initialize an array as
follows:

char string[] = “\x0abc”;

The string will be stored as “+c” (hexadecimal characters %%). The correct
declaration was char string[] = “\x000abc”. In octal, the null would be
written \000.

Please note that a string that has a null character somewhere other than at
the end will be difficult to display or print completely. Display and print
routines that take strings as input typically begin at the pointer position and
continue until they encounter a terminating null. If, as in the last example, a
null is encountered at the beginning of the string, execution of the routine
will end before anything has been displayed or printed.

Provide precision to the %H conversion specifier to override null termination
of a string while displaying a string in hex: see Section 60.3(C).

56-21

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

56.8

Constqpts. Spreadsheet constants may be included in strings. An example of
a spreadsheet constant is the fox message represented as (FOX) . See Section
25 on Constants.

The C translator expands constants both inside and outside of C regions
before the code is preprocessed.

Hexadecimal characters. ASCII characters, including the control characters,
may be entered in strings as hexadecimal characters via the [%=] key. Hex
representation is considered literal. That is, you may not enter ASCII
characters which require non-literal representation in strings as hexadecimal
characters. The sequence of characters comprising a non-literal may be
entered as hexadecimal characters. Double backslash (\\), for example, may
be entered as %c5c.

(C) String Routines

There are several C routines in the INTERVIEW that display or print strings.
See Section 63 on “Print” and Section 60 on “Display Window and Trace” for
detailed descriptions of the prints, displays, and traces routines, as well as other
display and print routines that use the %s conversion specifier.

There is also a pair of routines, index and rindex, that search inside of strings
for particular characters. These routines are defined (with examples) in Section

Recommended Sources

The following sources provide accurate, in-depth information on C Programming
Language:

ANSI Document X3J11/86-098. Proposed American National Standard for
Information Systems—Programming Language C.

NOTE: When approved, the number for the ANSI document
will change to: ANSI Standard X3.159-198X.

2. Darnell, Peter A., and Margolis, Philip E. Software Engineering in C. New
York: Springer-Verlag, 1988.

3. Harbison, Samuel P., and Steele, Guy L., Jr. C: A Reference Manual. 2d ed.
Englewood Cliffs: Prentice-Hall 1987.

4. Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language.
2d ed. Englewood Cliffs: Prentice-Hall, 1988.

56-22

57 Variables

57 Variables

57.1 Creating or Accessing C Variables

Softkey-selectable programming “tokens” entered by the user on the Protocol
Spreadsheet are translated automatically into C during the initial compiler phases after
[w] is pressed. (Then the C code in turn is compiled into object code.) The C
variables used by the translator are documented throughout this volume.

C regions available to the user at every level of spreadsheet programming (see Section
53) provide direct access to these variables.

An example of a user-accessible variable is keyboard_new_key, used in the following
program to sound an alarm whenever any ASCII-keyboard key is pressed.

extern fast_event keyboard_new_key;

STATE: anykey
CONDITIONS:

keyboard_new_key
}
ACTIONS: ALARM

The C regions also allow the user to work with variables of his own creation.

Here is an example of a user-created variable named minutes that is used to count
minutes elapsed since the beginning of Run mode. The C program displays this
“counter” on the prompt line of the Run-mode screen.

{
extern fast_event fevar_time_of day;
short minutes;

STATE: run_mode_minutes
CONDITIONS:

fevar_time_of_day

}
ACTIONS:
{

minutes++;
pos_cursor (0,0);)
displayf (“Duration of run = %4d minutes”, minutes);

57-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

57.2

The first C region in the example “declares” the variables fevar_time_of_day and
minutes. The first of these variables is an event variable that is built into the system
software. All event variables in an active State-block are polled constantly. Once
every minute, fevar_time_of_day returns true.

The second variable, minutes, is created by the program itself—that is, by the user.
The declaration in effect creates the variable: it causes 16 bits in memory (“short” =
16 bits) to be dedicated to information stored under the name minutes.

The second C region in the example is placed inside the Actions block. The
statement minutes++ causes the value that is stored in the 16 bits dedicated to
minutes to increment. The function pos_cursor (0,0) places the cursor in the leftmost
column on the second line of the display screen (the Prompt line). The displayf
function writes a text message to the display screen, beginning at the current cursor
position. In the text message itself, “%” will be replaced by the current value of the
variable minutes. “4” means that four columns on the screen will be dedicated to the
value, and “d” means that the value will be expressed in a decimal number.

Declaring Variables

Declare your variables and routines in a C region, delimited by curly braces { and },
at the top of your program or at the top of a Constants, Layer, Test, State, or
Actions block. Declare a variable preceded by its type descriptors and followed by a
semicolon, as in these examples:

{
extern fast_event keyboard_new_key;
extern fast_event keyboard_new_any_key;
extern fast_event fevar_time_of_day;
short minutes;

}

A variable may have its scope limited to a particular Test, State, or Actions block. A
variable also may be redeclared at different levels. (In software revision 5.00 or
earlier, it may not be redeclared at the same level.) Given more than one valid
declaration, the lower or nearer one applies.

The rules governing the placement of variable declarations are laid out in detail in
Section 53.5(A).

(A) Naming Variables

1. Legal names. The first letter of a variable name may be either a letter or an
underscore. Following characters may be letters, numbers, underscores, or
dollar signs.

Reserved words (indicated in boldface type in Appendix K) may not be
used as variable names.

57-2

57 Variables

2. Naming conventions. Generally speaking, variables that begin with dte_ or
dce_ are used by the software to test DTE and DCE conditions. Variables
that begin rcvd_ are used to test RECEIVE (or RCV) conditions. Variables
that begin m_ are used by the layer packages to construct the protocol
traces.

(B) Modifiers

1. Data type. The data type for each variable precedes the variable name in
the declaration. All standard data types except float are supported in the
INTERVIEW 7000 Series. Standard data types and their sizes and ranges
are given in Table 56-1.

2. Preassigned modifiers. When you declare a user-accessible external variable,
be sure to use the modifiers which precede the data type for that variable as
listed in variable tables throughout this volume.

57.3 Comparing a Variable to a Value

User-accessible and user-created variables may be tested as part of any standard C
expression.

The following is an example of a user-invented variable called anykey that is declared
with a default value of zero, incremented by the operator pressing any
ASCII-keyboard key, and checked for a value of 3 by an if statement after each
depression of a key. An alarm will sound on the third keystroke.

{
extern fast_event keyboard_new_key;
short anykey;

STATE: press_key
CONDITIONS:

keyboard_new_key

ACTIONS:
{

anykey++;
if (anykey == 3) sound_alarm ();

The next example uses a built-in, user-accessible variable called crnt_time_of_day
and checks it for a particular value. This 16-bit variable stores the time of day in
hours and minutes. The Condition in the program (the event variable
fevar_time_of_day) is true once per minute. The Action each time the condition is
true is to check crnt_time_of_day for a value of 1129. At 11:29 AM, an alarm will
sound.

57-3

INTERVIEW 7000 Series Advanced Programming. ATLC-107-951-108

{
extern fast_event fevar_time_of_day;
extern volatile unsigned short crnt_time_of_day;

STATE: alarm_clock
CONDITIONS:

fevar_time_of day
ACTIONS:

if (crnt_time_of _day == 1129) sound_alarm();

57.4 Checking a Variable in a Waitfor Clause

Please note that the following variation on the preceding example does not produce
the same result. The alarm will never sound if this version of the program is run:

{

extern volatile unsigned short crnt_time_of day;

STATE: alarm_clock
CONDITIONS:

crnt_time_of_day == 1129
}
ACTIONS:
{

sound_alarm();

}

Note that the time-of-day condition that was lodged in an if statement in the
previous example has now been placed in a Conditions block. Conditions blocks on
the Protocol Spreadsheet are converted to waitfor clauses (see Section 53.3), not if
statements, when the program is translated automatically into C coding.

Waitfor clauses work very differently from if statements and other conditional control
structures in C.

(A) Event vs. Nonevent Variables

Two kinds of variables may be used inside of these waitfor clauses—event
variables and nonevent variables. When a state is active, event variables in that
state are checked regularly during routine polling by the CPU. When an event
variable (such as fevar_time_of_day) is polled and returns a value of true,
conditional statements containing nonevent variables (such as crnt_time_of_day)
also are checked for truth or falsity. In the absence of an event variable being
polled and returning a value of true, a statement about a nonevent variable
inside of a Conditions block (waitfor clause) never can be true.

Since there is no event variable in the Conditions block (waitfor clause) above,
the nonevent variable crnt_time_of_day is never even checked.

57-4

57 Variables

(B) Translation of Softkey Tokens Into Variables

You could have written the “alarm clock” program using only softkey entries, as
follows:

STATE: alarm_clock
CONDITIONS: TIME 1129
ACTIONS: ALARM

In this case, the C translator will convert the Conditions block into a waitfor
clause that uses the event variable fevar_time_of_day to check the nonevent
variable crnt_time_of_day once a minute. Here is the translator’s version of the
Conditions and Actions blocks:

{
waitfor
{
fevar_time_of day && (crnt_time_of_day == 1129):
{

sound_alarm();
}
}
}

(C) Example of A Nonevent Condition “Waiting For” An Event

The next example illustrates the interplay of event variables and nonevent
variables in a waitfor clause. :

{
extern fast_event keyboard_new_key;
short anykey;

STATE: press_key
CONDITIONS:

keyboard_new_key
LCT!ONS:
{ anykey++;
CONDITIONS:
{ anykey ==
ACTIONS: ALARM

This program looks similar to a previous one in which the operator hit three
keys and the alarm sounded. Here, however, the alarm does not sound until the
fourth keystroke. The variable anykey begins the test at zero, and increments
(anykey++) with every keystroke. But remember what a condition such as
anykey == 3 in a waitfor clause really means. It means that the condition will be
true when the variable equals three and an event (such as a keystroke) occurs
that causes the variable to be checked. On these terms, the condition is not
satisfied until the fourth event.

57-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(D) User-Created Event Variables

(E)

The user can create his own event variable simply by declaring a new variable
with the modifiers extern event. Once the event variable has been declared, he
can use the signal function to indicate that the event has occurred. Here is an
example of an event variable called check_number that causes the nonevent
variable number to be checked—and sounds the alarm when the value of number
satisfies the condition.

{
short number = 3;
extern event check_number;

STATE: user_created_event
signal (check_number);
CONDITIONS:

{

check_number && (number == 3)

}
ACTIONS: ALARM

Rules and Cautions

To sum up the discussion of event and nonevent variables, here are a few rules
of thumb:

If statements, for loops, while loops, and other conditional control structures
may not be used in Conditions blocks (that is, in waitfor clauses). They may
be used in State blocks, above (or in the absence of) Conditions blocks; and
they may be used in Actions blocks.

(Placing an if statement at the top of the State block, above any waitfor
clauses, is how the translator converts ENTER_STATE softkey conditions into
C.)

Event variables are designed for use in Conditions blocks (waitfor clauses)
only. It makes no sense to use an event variable in an if statement, while
loop, etc., since there is no possibility that the event will be true at the
precise moment the statement is being processed.

A Conditions block (waitfor clause) that lacks an event variable can never
come true.

One other word of caution about the importance of event variables: please note
that the following program will not sound the alarm even if the operator presses
a key while the time is 11:29 AM.

57-6

57 Variables

{
extern fast_event keyboard_new_key;
extern volatile unsigned short crnt_time_of_day;

STATE: alarm_clock
CONDITIONS:

keyboard_new_key && (crnt_time_of day == 1129)
}
ACTIONS: ALARM

The reason this program doesn’t “work” is that all variables begin Run mode at
zero. Often a particular event variable must return true before a particular
nonevent variable will be updated. The nonevent variable crnt_time_of_day is
updated only when the event variable fevar_time_of day is entered in the waitfor
clause and returns true. In the example above, the operator pressing the key will
cause crnt_time_of_day to be checked; but in the absence of fevar_time_of_day,
the value of crnt_time_of_day remains always at zero.

57.5 Checking and Displaying Equivalent Values of a Variable

Variables may be checked and displayed as octal, decimal, hexadecimal, and
ASCII-character values. Decimal comparison and display is the default.

(A) Checking Equivalent Values

To compare a variable to an octal value, precede the value with a zero (0). No
prefix is necessary to make a decimal comparison. To compare a variable to a
hexadecimal value, precede the value with 0x or 0X. To check whether a
variable matches an ASCII character, enter the character in between single
quotes.

The alarm will sound in the example below, since all of the values entered to
the right of the equal signs are equivalent.

char foxtrot = ’f’;

STATE: compare_equivalent_values

{
if ((foxtrot == 0146) && (foxtrot == 102) && (foxtrot == 0x66) && (foxtrot ==
’f’)) sound_alarm();

Note that the data type char in the declaration simply means that the variable is
composed of 8 bits. The designation char does not say anything about the
comparison mode or the display mode. (Data types short and int = 16 bits;

long = 32 bits.)

57-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

57.6

(B) Displaying Equivalent Values

Variables may be displayed in a variety of data formats via the displayf

function. The full set of display conversions is given in Table 61-7. The program
below generates a representative sample of display formats. When the program is
run, the prompt line on the display screen will look like this: 152 106 6a 6A j

%a.

char juliet = ’j’;

STATE: display_equivalent_values

{
displayf (“%o0 %d %x %X %c %#u ”, juliet, juliet, juliet, juliet, juliet,
Juliet);

Isolating Bits from a Variable Value

Some variables are bit-oriented. That is, one bit (or perhaps a small field of bits)
may have significance that is independent of the surrounding bit values. The variable
current_eia_leads (refer to Table 60-1), for example, uses 7 bits to store the on/off
status of seven separate EIA leads, plus an eighth bit to store the status of any lead
that is patched to the UA input jack (see Section 10.3). If you want to check this
variable to determine the status of DTR (for example) you need to determine
whether the bit that represents DTR (the fifth bit from the right or the fifth least
significant bit in the variable) is set to 1 (DTR off) or zero (DTR on). How can you
isolate this bit from the surrounding bits in order to determine its status?

The tool for isolating a bit in a C variable is the “care mask,” a group of bits (usually
expressed in hexadecimal) in which the bit(s) under scrutiny is set to 1 and all other
bits to zero. The care mask for DTR is 0x10 (or 16 in decimal notation). The binary
version, 00010000, shows that only the DTR bit is set to 1. When this care mask is
anded (via the “&" operator) with the variable current_eia_leads, only two results
are possible, depending on whether the DTR bit in current_eia_leads is 1 or 0.

With DTR on, suppose that the combination of all lead statuses gives
current_eia_leads a value of e6 in hex—11100110 in binary. The effect of anding this
variable with the care mask for DTR will be as follows:

11100110

& 00010000
00000000

Now turn DTR off, and the result of the anding will be this:
11110110

& 00010000
00010000

57-8

57 Variables

The seven “don’t care” zeroes in the care mask guarantee seven zero-bits in the
result (because 0 & 1 =0 and 0 & 0 = 0). So the result of the anding must be either
0 if the DTR bit is 0 (on), or hex 10 (decimal 16, binary 00010000) if the DTR bit
is 1 (off).

This C program will detect DTR on:
{

extern fast_event fevar_eia_changed;
extern const volatile unsigned short current_eia_leads;

STATE: check_dtr_on
CONDITIONS:
{
fevar_eia_changed
}
ACTIONS:
{

if ((current_eia_leads & Ox10) == 0) sound_alarm();

If you try to run this program, make sure of the following:

1. The Front-End Buffer Setup menu should be configured to buffer control
leads.

2. 1If you are not connected to a device that provides clock, the Line Setup
menu should be configured to provide internal clock. EIA leads are clocked
through the front-end buffer before they reach the program logic.

3. After the program enters Run mode, use a single-wire patch cord to connect
the +12V output pin on the test-interface module to the DTR lead. The
alarm should sound as soon as the patch is made.

A slightly different condition inside of the if statement will detect DTR off:

if ((current_eia_leads & 0x10) == 0x10) sound_alarm();

- The DSR bit is the fourth least significant bit in the current_eia_leads variable, so

the care mask for DSR is 0x08 (binary 00001000). The following if statement will
detect DSR on:

if ((current_eia_leads & 0x08) == 0) sound_alarm();
This if statement will detect DTR on and DSR on:

if ((current_eia_leads & Ox18) == 0) sound_alarm();
This if statement will detect DTR off and DSR on:

if ((current_eia_leads & 0x18) == 0x10) sound_alarm();

The last condition simply means that you care (1=care) about DTR and DSR and you
want DTR to be 1 (off) and DSR to be 0 (on).

57-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

57.7 Pointing to an Address

Some routines require an address as input. The displays (display-string) routine, for
example, requires a CPU memory address as its argument. When executed, the
routine will begin to display characters that it finds at the specified address and at
subsequent addresses, one by one, until a null is encountered. A memory address is
four bytes (32 bits) and is declared as a long.

{

Im;tg any_cpu_address;
STATE: display_string

displays (any_cpu_address);

Many of the important addresses needed by the user and by the program can be
found inside of interlayer (“IL”) message buffers. When BOP-framed data is
monitored, it is copied automatically into IL buffers. Each time a frame is buffered, a
data primitive is created automatically and the event variable m_lo_ph_prmtv is
signaled. The segment number of the IL buffer is recorded in the variable
m_lo_ph_il_buff. This segment number can be converted into an address.

Here, for example, is a program that looks for a DTE data packet, converts
m_lo_ph_il_buff into a four-byte address that points to the first data position, and
displays the data contents of the packet.

{
long first_data_address;
extern volatile unsigned short m_lo_ph_il_buff;

}
LAYER: 3
STATE: display_data
CONDITIONS: DTE DATA
ACTIONS:

first_data_address = ((long) m_lo_ph_il_buff << 16) + 37;
displays (first_data_address);

The IL buffer is illustrated in Section 63 of this manual, and the procedure for
converting the buffer-segment number into a memory address is explained in detail in
Section 63.1(C). Briefly, we have cast the segment number (a short, 16 bits) into a
long and moved the number over to its high-order position in the CPU address,
sixteen bits to the left. Then we added 37 to the number to bypass the header
information for the buffer (32 bits) and the frame and packet headers (5 bits).

Each address in memory stores 8 bits, so the second byte in the data field of the

data packet would be first_data_address + 1, the fourteenth byte would be
first_data_address + 13, and so on.

57-10

57 Variables

57.8

Creating a Character Pointer

For most of the variables in a C program, the address is not important to the user or
to the program. The user does not need to know the address in order to declare the
variable, perform operations on it, and compare its value to other values. In general,
addresses of variables are solely the concern of the compiler.

In the case of a routine such as displays, the address is what is important. The value
that is stored at the address is not so important, since the routine will go to the
address and begin displaying the data whatever the value (as long as the value is
displayable).

There is another kind of variable for which both the address and the value stored at
the address are important. These variables are called pointers. The user creates a

pointer by typing an asterisk (*) just following the data type in a declaration, as in
this example:

char * packet_type_ptr;

The variable packet_type_ptr is a four-byte memory address just as
first_data_address, declared as a long in the previous example, was a four-byte
address—even though packet_type_ptr is declared as a char. The data type char
preceding the asterisk simply means that the amount of data pointed to is eight bits.

Once you use an asterisk to declare the variable a pointer, you can access the
address directly as packet_type_ptr or you can access the value stored at that address
as * packet_type_ptr. A displays routine would accept packet_type_ptr as input, while
a displayc or displayf routine would expect * packet_type_ptr.

With the X.25 personality package loaded at Layers 2 and 3 (via the Layer Setup
screen), the following program goes to the memory location pointed to by
packet_type_ptr and checks its value to determine whether the packet in the buffer is
a Clear request.

extern volatile unsigned short m_lo_ph_il_buff;
extern event dte_packet;
char * packet_type_ptr;

STATE: search_for_dte_clear
CONDITIONS:
{

dte_packet
}
ACTIONS:
{

packet_type_ptr = (void *) (((long) m_lo_ph_il_buff << 16) + 36);
if (*packet_type_ptr == 0x13) sound_alarm();

57-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The pointer packet_type_ptr is a char, but you could just as easily point to a short
(16 bits) or a long (32 bits). If you increment an address, you get the next address,
8 bits farther in memory. If you increment a char pointer, you also get the next
address. If you increment a short pointer, you add two increments to the memory
address. In effect you move the pointer two places. If you increment a long pointer,
you move the pointer by four addresses, 32 bits.

In the example above, the integer m_lo_ph_il_buff is cast as a pointer (void *) after
it is cast as a long. This is to avoid a compiler error (“Warning 31: Illegal implicit
integer~to-pointer conversion”) when the new value of m_lo_ph_il_buff is assigned to
packet_type_ptr.

57.9 Pointing with Subscripts

When it is preceded by an asterisk (*), the pointer packet_type_ptr returns the
character value that it points to, as we have just seen. Another way to return this
value is to omit the asterisk and add a subscript: packet_type_ptr[0]. This mechanism
allows you to access an array of values without moving the pointer.

For example, the transmission header (“TH”) in a FID2 SNA information field is six
bytes long. If you establish a pointer to the first TH byte (THO), you can use
subscripts to access any other byte in the field without moving the pointer. The
following program checks the values of two bytes in the TH field (corresponding to
“DAF” and “OAF”) before freezing the data display and sounding an alarm.

{
extern volatile unsigned short m_lo_ph_il_buff;
char * th;

}
LAYER: 2
STATE: th_pointer
CONDITIONS: DTE INFO
ACTIONS:

th = (void *) (((long) m_lo_ph_il_buff << 16) + 34);
if ((th[2] == 5) && (th[3] == 1))
{

ctl_capture_td (0x10);
ctl_capture_rd (0x100);
sound_alarm ();
}
}

57.10 Creating a String

Strings are used in INTERVIEW programming mainly for transmissions and for
messages to the operator (“prompts”). In the following program, the compiler
decodes the string “QWERTYUIOP” from ASCII to hex, stores it in memory as a
series of contiguous values, adds a null to it, returns the address of the first
character, “Q,” and then assigns this address to the variable keyrow:

57-12

57 Variables

{

long keyrow;
STATE: assign_string_address_to_variable

keyrow = “QWERTYUIOP”;

The variable keyrow now is the four-byte address of “Q” in the string. You can see
this address for yourself by using either “QWERTYUIOP” or keyrow as the argument
in a displayf routine:

displayf (“%Ix ”, “QWERTYUIOP”);
or
displayf (“%lx ”, keyrow);

Either version will display a CPU address (hex 04400000) on the second line of the
Run-mode screen.

The string can be displayed in a simple displays routine, since that routine expects a
four-byte address as input:

displays (“QWERTYUIOP”);

or
displays (keyrow);

If you want to access individual characters in the string, declare a pointer:
char * keyrow = “QWERTYUIOP”;

With a pointer you can display the entire string or a single character—the seventh
character, “U,” in this example:

displays (keyrow);
displayc (keyrow[6]);

Declaring the string an array has virtually the same effect as declaring it a pointer:
char keyrow [] = “QWERTYUIOP”;

The name of the array still is the address of the first character in the string and so
may be used in a displays routine; and individual characters still may be specified by
a subscript:

displays (keyrow);
displayc (keyrow[6]);

The only difference is that the array name is a constant whose value is assigned in a
declaration and cannot be changed, while the pointer is a variable and may be
incremented, assigned a new value, and so forth, while the program is running.

57-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

57.11 Comparing Strings

A string comparison in C may be conducted as follows. First, create a pointer in the
manner described in Section 57.8, or else simply declare one of the pointers to line
data that is provided in the set of user-accessible variables. Example: extern volatile
unsigned char * m_packet_ptr.

Next, create an array that represents the search string you will try to match against
the line data. For example:

char search_string (] = “\xa"”;

Create a trigger to look for a line event (such as the event variable dte_packet) that
will initialize the pointer.

{

extern volatile unsigned char * m_packet_ptr;
char search_string [] = { 0x10, 0x04, 0x0b };
extern event dte_packet;

}
LAYER: 3
STATE: match_packet_string
CONDITIONS:

{
dte_packet

Compare the pointer-value with the first element of the search string. If a match is
found, increment the pointer and compare the new value to the second element of
the search string; and so on. If a match is found for every element of the string,
take an appropriate action.

ACTIONS:

if (search_string [0] == * m_packet_ptr)
{
m_packet_ptr ++;
if (search_string [1] == * m_packet_ptr)
{
m_packet_ptr ++;
if (search_string [2] == * m_packet_ptr) sound_alarm ();

Here is the same Actions block, only this time the variable element replaces the
numeral in the subscript to search_string, and the same variable is added as a
subscript to m_packet_ptr. This coding may be modified easily for any length string.
For a 9-byte string, for example, simply change the 3 in the if statement to 9.

57-14

57 Variables

ACTIONS:
{

element = 0;
while (search_string [element] == m_packet_ptr [element])

if (search_string[element++] == 3)

sound_alarm();
break; -
}
}
}

57.12 Accessing a Variable Inside of a Structure

A structure is a mechanism that makes repetitive declarations of similar variables
unnecessary. For example, there are twelve variables associated with any given
counter created in the program. One variable is the current value of the counter,
one is the last sampled value, another is the highest sampled count, another the total
of all the sampled values, another the number of samples taken, and so forth. If the
user creates four counters via the spreadsheet softkeys, the C translator does not
declare 48 separate variables (4 x 12). Instead the translator declares a structure for

counters—called counter_struct—that declares each of the twelve variables once, as
follows: .

{

struct counter_struct
{

unsigned long current;

unsigned long last;

unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short out_of range;
unsigned short changed;
unsigned long prev;

unsigned long old;

h

Then the translator declares each of the user’s four counters as having the structure
counter_struct:

struct counter_struct dte_good_bcc, dte_bad_bcc, dce_good_bce, dce_bad_bcc,

In effect the translator has declared all 48 variables. Suppose the user wants to
access one of these variables. He may wish to display the total value of a counter
whose current value no longer is the total value (since the counter may have been
sampled—and therefore cleared—several times). As long as the total is less than
65,536, the entire number will reside in the seventh variable in the counter_struct
structure, total_low_low. If the counter in question is dce_good_bcc, he will access
this “total” variable under the name dce_good_bcc.total_low_low.

57-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

57.13

Here is a sample trigger that displays this variable whenever the operator presses (1:

STATE: display_total_dce_good_bcc
CONDITIONS: KEYBOARD “Tt"
ACTIONS:

displayf (“Total DCE good BCC’s = %d”, dce_good_bcc.total_low_low);
Refer to Section 62.1 for more detail on the structure of counters.

Creating a Structure Pointer

We have just seen how a structure can be created to store and access data
conveniently. A structure can also be used as a multibyte pointer that is
superimposed on data that has been stored previously.

In our example we will declare the structure of an IL buffer and then point this
structure at a newly received IL buffer.

The precise structure of an IL buffer is given in the following declaration. Note that
there are 32 bytes devoted to header information and the remaining 4K bytes are
available for data.

struct il_buffer

unsigned short lock;
unsigned short maintain_bits;
unsigned short buffer_size;
unsigned short transmit_tag;
unsigned short receive_tag;
unsigned long char_buff_frame_start;
unsigned long char_buff frame_end;
unsigned short tick_count_high;
unsigned short tick_count_mid;
unsigned short tick_count_low;
unsigned short available_space_offset;
unsigned short bytes_remaining;
unsigned long bec_indicator;
unsigned char data [4064];

h

The next step is to create a pointer that has the structure of il_buffer. First, declare
the structure of il_buffer, as indicated above. Then declare buffer_ptr as a
structure-pointer, as follows:

struct il_buffer * buffer_ptr;

The next step is to wait for an INFO frame to be monitored. When the the frame
data has been buffered and m_lo_ph_il_buff has been updated with the new
buffer-segment number, assign the first address of this buffer to buffer_ptr.

buffer_ptr = (void *) ((long) m_lo_ph_il_buff << 16);

57-16

57 Variables

Now a structure has been created around the most recent upward-moving IL buffer.
This means that rather than moving a pointer around in the IL buffer, you can
access elements in the buffer directly. The tick_count_low variable, for example,
would be called buffer_ptr->tick_count_low. (The -> operator is used in place of the
dot operator in structure-pointers.)

The first element of the data string would be called buffer_ptr ~>data[0]. Here is a
program that displays on the prompt line the fifth data element (the packet-type
byte) in the IL buffer for Info frames monitored on DTE.

{

extern volatile unsigned short m_lo_ph_il_buff;
struct il_buffer

unsigned short lock;
unsigned short maintain_bits;
unsigned short buffer_size;
unsigned short transmit_tag;
unsigned short receive_tag;
unsigned long char_buff frame_start;
unsigned long char_buff frame_end;
unsigned short tick_count_high;
unsigned short tick_count_mid;
unsigned short tick_count_low;
unsigned short available_space_offset;
unsigned short bytes_remaining;
unsigned long bec_indicator;
unsigned char data [4064]);

Y

struct il_buffer * buffer_ptr;

LAYER: 2
STATE: monitor_ii_buffers
CONDITIONS: DTE INFO
ACTIONS:

buffer_ptr = (void *) ((long) m_lo_ph_il_buff <<16);

pos_cursor (0,0);
displayf (“%02x ", buffer_ptr->data[4]);

57-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

57-18

58 Routines

58 Routines

This manual documents the C routines that are “external” to the C program—that is, defined
elsewhere than in the program. Most of these routines are used by the C translator when it
converts softkey-selectable programming “tokens”—most commonly those tokens that are
appropriate to Actions blocks—entered by the user on the Protocol Spreadsheet. Some, like
the Disk I/0 routines, are associated with no spreadsheet conditions or actions and can be
accessed only in C regions on the spreadsheet.

58.1

58.2

Declarations

In most of the examples in the manual, we have not bothered to declare routines
since it is not necessary. In the absence of a declaration, the compiler assumes that
the routine is external and that it returns an integer. In nearly all cases, this
assumption works. In those rare cases when the routine returns another data type
(the stats—display routine get_68k_phys_addr, for example, returns a long) it must be
declared.

Arguments

An argument is an input that the user provides when he calls a routine. Arguments
are placed inside of parentheses just following the routine name, as in this call to the
pos_cursor routine: pos_cursor (1,5);

This routine requires two arguments in order to position the cursor in one of 1,088
possible character positions. The first argument selects one of the seventeen
horizontal rows. The second argument selects one of the sixty-four vertical columns.

Many routines in the INTERVIEW library have arguments whose names end in the
letters ptr or pointer. 1f you look at the synopsis for the displays routine, for
example, you will see that the only argument is something called string_ptr. This is
an address argument. The user enters a four-byte address as argument when he calls
the displays routine, and the routine goes to this address and begins displaying data
until a null (or other nondisplayable character) is encountered.

Pointers are four-byte addresses. The following call to the displays routine will go to
the location of m_packet_info_ptr (the first byte of user data in a packet) and begin
displaying data until a nondisplayable character is encountered:

displays (m_packet_info_ptr);

58-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

58.3

Array names also are four-byte addresses. The following example will display the
characters in the array string:

char string [] = “QWERTY”;
displays (string);

A string of characters declared inside of double-quotation marks is really a four-byte
address that points to the first character in the string. In the function call displays
(“qwertyuiop”), “qwertyuiop” qualifies as a string pointer and therefore satisfies the
formal definition of the routine.

Many routines have no arguments and are called with empty parentheses:
sound_alarm();

Do not omit the parentheses. Without them, sound_alarm is a variable instead of a
routine.

Returns

In addition to performing various operations, many routines include a return function
that, at the end of the routine, stores a user-defined value ir a memory location. As
an example, we will look at an X.25 routine called /3_window_full.

The I3_window_full routine is declared automatically by the translator after the user
has made a WINDOW FULL softkey entry. The synopsis for /3_window_full shows how
it is declared:

extern unsigned char 13_window_full (path_number);

The routine is declared as a char because at the end of the routine, a return function
will store a char-sized value (8 bits) in memory. If the packet window is full, the
stored value will be nonzero. If the packet window is not full, the value will be zero.

The stored value is accessed any time you call the routine in your program. If you
want to test for the window being full, you can enter this line of code:

if (13_window_full(path_number) != 0) sound_alarm();
Here is a simpler coding for the same test:

if (13_window_full (path_number)) sound_alarm();

This coding works for the same reason that if (1) sound_alarm(); or if (!0)
sound_alarm(); will sound the alarm. Nonzero constants, variables, and expressions
are true in C and cause statements to be executed inside of if, while, and other
control constructions. Constants, variables, and expressions that equal zero are false
and prevent statements in control structures from being executed.

58-2

58 Routines

58.4

If a routine is declared as a short, a short will be set aside in memory and any value

returned by the routine (via a return function) will be stored there. If the routine is

declared a long, a long will be reserved. If the routine is declared void, no space will
be reserved in memory and a call to return a value will not be successful.

User-Defined Routines -

The following coding will blank out the prompt line near the top of the INTERVIEW
run-mode display.

pos_cursor(0,0);
displays (“ ”);

If you code these two routines each time you display a user-prompt, you can always
be sure that the prompt line will be blank and that each prompt will overwrite the

previous prompt completely. The only problem is that the two routines are laborious
to type in.

A better way is to declare a routine that executes the two “subroutines”
automatically.

Declare a routine with its arguments inside parentheses and its body—the list of
statements or subroutines that the routine is intended to perform—inside a pair of
curly braces.

void blank_prompt_line()

pos_cursor(0,0);
displays (“ ”);

Now you can blank out the line simply by typing this:
blank_prompt_line();

Suppose you wanted a routine that blanked the prompt line and generated a new
prompt. The new prompt will be the argument for the routine:

void new_prompt (string_pointer)
char string_pointer [];

pos_cursor(0,0);

displays (“ ”);
pos_cursor(0,0);

displays (string_pointer);

}
Now you can generate a prompt against a blank background with this simple routine:

new_prompt (“This prompt will overwrite any previous prompt”);

58-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

NOTE: User routines may be declared and defined outside of
the current spreadsheet program—in include files or
linkable-object files. See Section 56.4.

58.5 Example Routines

We will provide three examples that will help illustrate how routines are created.

(A) Example Routine: Temporary Prompt

Here is a user-defined routine that blanks the prompt line, displays a new
user—defined prompt, and then waits a user-defined interval before blanking the
prompt line again. The routine is called temporary_prompt. The two inputs are
1) the new prompt, and 2) the number of seconds that you want the prompt to
remain on the display.

The routine incorporates one external routine, timeout_restart_action, discussed
in Section 69.3 of the section titled “Other Library Tools,” and one internal
routine, blank_prompt_line, discussed above.

struct
{
unsigned long event_id;
unsigned short event_id_uid;
}
timeout_prompt;
void blank_prompt_line()
{
pos_cursor(0,0);
displays (“ ”);

void temporary_prompt (string_pointer, seconds)
char string_pointer [];
char seconds;
{
blank_prompt_line();
pos_cursor(0,0);
displays(string_pointer);
timeout_restart_action (&timeout_prompt, seconds * 1000, blank_prompt_line);

}

}

STATE: test_temporary_prompt
CONDITIONS: KEYBOARD “ "
ACTIONS:

{

temporary_prompt(“This prompt will self-destruct in 4 seconds.”, 4);

Note that the blank_prompt_line routine is embedded inside the
timeout_restart_action routine, which in turn is embedded inside the
temporary_prompt routine.

58-4

58 Routines

(B)

Note also:

L.

The structure timeout_prompt is needed by the timeout_restart_action routine.
The structure is explained in Table 69-1.

The two arguments in the temporary_prompt routine are declared outside the
body of the routine (that is, outside of the curly braces). As a result, they are
not redeclared each time the routine is called.

Timeout timers increment in milliseconds, so the user’s seconds entry is
multiplied by 1,000.

Example Routine: Display Binary Value of Byte

The next sample routine takes a user—defined 8-bit value as input and expands
it into a binary display of ASCII 1’s and 0’s. The routine, called

display binary, uses the & (“and”) operator to isolate each bit and turn it into a
“1” or “0” in an ASCII string called binary_string. See Section 57.6 for a
discussion of the & operator.

The condition-and-action program that follows the declaration of display_binary
uses the routine to expand the packet-type byte in each DCE packet.

extern volatile unsigned char * m_packet_ptr;

extern event dce_packet;

char binary_string [8];

void display_binary (hex_value)

char hex_value;

{
if ((hex_value & 0x80) == 0) binary_string[0] = ‘0’;
else binary_string[0] = ‘1’;
if ((hex_value & 0x40) == 0) binary_string[1] = ‘0’;
else binary_string[1] = ‘1’;
if ((hex_value & 0x20) == 0) binary_string[2] = ‘0’;
else binary_string(2] = ‘1°;
if ((hex_value & Ox10) == 0) binary_string[3] = ‘0’;
else binary_string(3] = ‘1’;
if ((hex_value & 0x08) == 0) binary_string[4] = ‘0’;
else binary_string[4] = ‘1°;
if ((hex_value & 0x04) == 0) binary_string[5] = ‘0’;
else binary_string[5] = ‘1°;
if ((hex_value & 0x02) == 0) binary_string[6] = ‘0’;
else binary_string[6] = ‘1’;
if ((hex_value & 0x01) == 0) binary_string[7] = ‘0’;
else binary_string[7] = ‘1’;
displayf (“\n%s”, binary_string),;

STATE: binary
CONDITIONS: { dce_packet }
ACTIONS:

display_binary (m_packet_ptr[2]);

58-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(C) Example Routine: Compare String Against Line Data

Here is a routine called strcmp that matches a user-entered string to line data,
beginning at a point in the line data that the user specifies. The arguments are
the string itself and a pointer to the beginning of the line data.

When the user enters his string inside double quotes, the compiler writes the
string into memory, appends a zero (null), and returns a pointer to the first
character in the string. The strcmp routine uses this zero to determine when the
match is complete.

If a complete match is found, the return(l) routine breaks out of the while loop,
so the return(0) never is executed. A routine that returns 1 (or nonzero) inside
of an if condition will make the condition true. :

The sample program that uses the strcmp routine looks on the DCE side for a
data packet with a user—data field that begins “&S*PASSWORD.” This string
occurs on the “HDLC/X.25 Data Sample” diskette, DSK-951-007-1, shipped
with your INTERVIEW. Be sure to load in the Layer 2 and Layer 3 X.25
packages if you try out this program. The Layer 3 package will provide you with
your line-data pointer (m_packet_info_ptr).

{
extern volatile unsigned char *m_packet_info_ptr;
int element;
int stremp (user_string_ptr, line_data_ptr)
char user_string_ptr [];
char * line_data_ptr;

element = 0;
while (user_string_ptr[element] == line_data_ptr[element])

if (user_string_ptr(++telement] == 0)
return (1);

return(0);
}
LAYER: 3
STATE: match_user_data_field
CONDITIONS: DCE DATA
ACTIONS:

if (strcmp(“\de\anPASSWORD", m_packet_info_ptr))
sound_alarm();

58-6

59 Monitor/Transmit Line Data

59 Monitor/Transmit Line Data

The external variables and routines in this section are available for use by the programmer to
monitor and transmit data. Their use on the Protocol Spreadsheet is not limited to any
particular layer, though normally they belong at Layer 1.

The variables and routines approximate Layer 1 spreadsheet-generated conditions and actions.
Refer to Section 28 for more detailed explanations of the purposes of specific conditions and
actions. Sometimes the name of the variable or routine is sufficient for identifying its related
spreadsheet token. When this is not the case, the information is provided below.

59.1 Structures

Use the structure xmit_list, shown in Table 59-1, when transmitting line data via the
11_transmit routine. Refer to /I_transmit in Section 59.3(B) for an example of how
to use this structure.

Table 59-1
Transmit Structures

Type Variable Value (hex/decimal) Meaning
Structure Name: xmit_list Structure of a transmit list for /1_transmit

routine. Declared as type struct. Reference
member variables of the structure as follows:
xmit_list.string_length.

unsigned char * string pointer to the location of the transmit string—the
transmit string is declared separately

unsigned short string_length O-ffffl0-65535 length of the transmit string

59-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

59.2 Variables

(A) Monitoring Events

1.

Emulate or monitor mode. Layer 1 events include characters received, good
or bad BCC’s, aborts, parity errors, and framing errors. All event variables
in Table 59-2 containing a _td or _rd suffix are valid in either emulate or
monitor mode. These event variables are fevar_rcvd_char_rd,
fevar_rcvd_char_td, fevar_gd_bcc_rd, fevar_gd_bcc_td, fevar_bd_bcc_rd,
fevar_bd_bcc_td, fevar_abort_rd, fevar_abort_td, fevar_parity_rd,
fevar_parity_td, fevar_frm_error_rd, fevar_frm_error_td, and
fevar_rcv_buffer_full. The variable fevar_frm_error_rd, for example,
equates to DCE FRAMING_ERROR (or RECEIVE FRAMING_ERROR when you are
emulating DTE).

You can use both ¢td and rd variables relating to the same event in one
conditions block. Suppose you want count all bad BCC'’s, from either side
of the line. Enter the following CONDITIONS/ACTIONS block:

CONDITIONS:

{
fevar_bd_bcc_td || fevar_bd_bcc_rd

}
ACTIONS: COUNTER bad_bcc INC

Using spreadsheet tokens, the same test needs two CONDITIONS/ACTIONS
blocks:

CONDITIONS: DTE BAD_BCC
ACTIONS: COUNTER bad_bcc INC
CONDITIONS: DCE BAD_BCC
ACTIONS: COUNTER bad_bcc INC

Use fevar_rcv_buffer_full and its associated status variable, rcv_buffer_full,
to monitor the status of the character buffer. The moment the buffer is full,
fevar_rcv_buffer_full comes true and the value of rcv_buffer_full transitions
from zero to a non-zero value. Then, new data begins to overwrite the old
data. The softkey equivalent of fevar_rcv_buffer_full is the
layer-independent condition BUFFER_FULL when it appears alone in a
conditions block. When BUFFER_FULL is combined with another condition,
in most cases the other condition will supply the event variable and only the
status test will be used. See Section 27 for a discussion of this and other
layer-independent conditions and actions.

59-2

59 Monitor/Transmit Line Data

Table 59-2
Monitor/Transmit Variables

Type

Variable

Value (hex/decimal) Meaning

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

fevar_rcvd_char_rd

fevar_rcvd_char_td

fevar_gd_bcc_rd

fevar_gd_bcc_td

fevar_bd_bcc_rd

fevar_bd_bcc_td

fevar_abort_rd

fevar_abort_td

fevar_parity_rd

fevar_parity_td

fevar_frm_error_rd

fevar_frm_error_td

59-3

True for each character
received on RD. Line Setup
configured for emulate or
monitor mode.

True for each character
received on TD. Line Setup
configured for emulate or
monitor mode.

True when a good BCC is

calculated for an RD block or
frame. Line Setup configured
for emulate or monitor mode.

True when a good BCC is
calculated for a TD block or
frame. Line Setup configured
for emulate or monitor mode.

True when a bad BCC is

calculated for an RD block or
frame. Line Setup configured
for emulate or monitor mode.

True when a bad BCC is
calculated for a TD block or
frame. Line Setup configured
for emulate or monitor mode.

True when an abort is detected
in an RD frame. Line Setup
configured for emulate or
monitor mode.

True when an abort is detected
in a TD frame. Line Setup
configured for emulate or
monitor mode.

True when a parity error is
detected for an RD byte. Line
Setup configured for emulate or
monitor mode.

True when a parity error is
detected for a TD byte. Line
Setup configured for emulate or
monitor mode.

True when an async framing
error is detected for an RD
byte. Line Setup configured for
emulate or monitor mode.

True when an async framing
error Is detected for a TD byte.
Line Setup configured for
emulate or monitor mode.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 59-2 (continued)

Type Variable Value (hex/decimal) Meaning

. extern fast_event fevar_xmit_cmplt True when the INTERVIEW puts
a transmission out onto the
link. Line Setup configured for
emulate mode only.

extern fast_event fevar_rcv_buffer_full Returns true at the moment the
character buffer fills with data
and will begin to overwrite
existing data. Line Setup
configured for emulate or
monitor mode.

extern volatile unsigned short rev_buffer_full 0 not full
1 full
Line Setup configured for
emulate or monitor mode.

extern unsigned short revd_char_td Most recent TD character is
stored in this variable. Line
Setup configured for emulate or
monitor mode.

0-ff10-255 data character (lower byte in
16-bit data word in data buffer)
100/256 good or bad BCC
101/257 flag
102/258 sync
103/258 abort
extern unsigned short revd_char_rd Most recent RD character is

stored in this variable. Line
Setup configured for emulate or
monitor mode.

0-ff10-255 data character (lower byte in
16-bit data word in data buffer)
100/256 good or bad BCC
101/257 flag
102/258 sync
103/259 abort
extern unsigned char td_modifier Most recent modifier byte for a

TD data character. This is the
upper byte in the 16-bit data
word reserved for each data
character in the data buffer.
Line Setup configured for
emulate or monitor mode.

1 data—initial value (always
inciuded In value of td_modifier)

2 alternate code set

4 underiine (rd character)

8 reverse image

10/16 hexadecimal

20/32 low intensity

40/64 blink

80/128 strike-thru (parity error)

59-4

59 Monitor/Transmit Line Data

Table 59-2 (continued)

Type

Variable Value (hex/decimal) Meaning

extern unsigned char

rd_modifier Most recent modifier byte for an
RD data character. This Is the
upper byte in the 16-bit data
word reserved for each data
character in the data buffer.
Line Setup configured for
emulate or monitor mode.

1 data (always included in value of
rd_modifier)

2 alternate code set

4 underline (rd character)—initial
value of rd_modifier

8 reverse image

10/16 hexadecimal

20/32 low intensity

40/64 blink

80/128 strike-thru (parity error)

Emulate mode only. One variable is valid in emulate mode only, since it
monitors an emulate action. “SENDing” a transmission means queuing a
transmission to send. The layer protocol (the RTS-CTS handshake, for
example, at Layer 1) may delay the actual transmission. The fast-event
variable fevar_xmit_cmplt will not come true until the transmission actually
has been sent. Use this condition to start accurate response-time
measurements.

If you try to use fevar_xmit_cmplt in monitor mode, you will be returned to
the main program menu. When you go to the Protocol Spreadsheet and
search for errors, the following message will be displayed: “Error 140:
Unresolved reference fevar_xmit_cmplt.”

(B) Status Variables

Status variables are those in Table 59-2 that do not include event in the Type
column. Their associated event variables guarantee that they are updated and
tested.

1.

Distinguishing character types. Suppose you’re monitoring the DCE side of
the link. Every time a character is detected, the event fevar_rcvd_char_rd
comes true, regardless of whether or not the character will be stored in the
character buffer. Not all characters are “data” characters. A character also
may be a flag or the second byte in a block-check, for example.
fevar_rcvd_char_rd (or fevar_rcvd_char_td) does not distinguish character
types.

Character type is stored in the high byte of rcvd_char_rd or rcvd_char_td.
For data characters, the high byte is zero. The low byte contains the actual
value of the character.

59-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

For a “non-data” character, hereafter referenced as a special symbol, the
high byte of rcvd_char_rd is a non-zero value. The low byte specifies a
special symbol to be displayed on the data screen, overwriting or replacing
the character. The special symbols are [S] (sync), [€] (good BCC), B (bad
BCC), B (abort), and [[] (flag). See Table 59-2.

Notice on Table 59-2 that the value for good BCC and bad BCC is the
same. Use fevar_gd bcc_rd and fevar_bd_bcc_rd event variables to
distinguish between good and bad BCC'’s (or data BCC’s in DDCMP).
Likewise, use fevar_gd_bcc2_rd and fevar_bd_bcc2_rd to differentiate
between good and bad header BCC’s in DDCMP. Refer to Section 75 for
DDCMP variables.

Aborts are not automatically reflected in rcvd_char_rd and rcvd_char_td.
When seven consecutive 1-bits are received in 7E-framed protocols, the
controller chip generates an interrupt. The bits, however, are not stored in
memory. In this case, use fevar_abort_rd or fevar_abort_td to detect the
interrupt. When this event variable transitions to true, it updates
rcvd_char_rd (or revd_char_td) to indicate an abort.

Use rcvd_char_td and rcvd_char_rd to monitor received characters,
independent of whether or not they will be buffered. The following
condition detects RD data characters only:

CONDITIONS:

{
fevar_revd_char_rd && (!(revd_char_rd & 0x100))

}

2. Attributes. Data characters and special symbols in the character buffer are
available for normal or enhanced display on the data display-screen. Access
the data display by pressing DATA on the first rack of Run-mode softkeys, or
by selecting it as the initial Run-mode display on the Display Setup menu.

The current attributes for RD data are stored in rd_modifier. Table 59-2
shows how the various attributes are coded. The initial value of rd_modifier
is always five. This value means that the character is data (1) on the RD
(4) side. RD data is always underlined. TD data is never underlined. The
initial value of ¢td_modifier, therefore, is one.

You may change some attributes by using spreadsheet tokens (or their
equivalent C routines). The Layer 1 ENHANCE action allows you to control
reverse-image, blink, hexadecimal, and low intensity enhancements. This
action also updates rd_modifier, td_modifier, or both.

When an RD data character is written to the character buffer, the value of
rd_modifier is written to the high byte of a two-byte data event-word. The
data character, found in rcvd_char_rd, is written to the low byte. See
Section 59.3(C) on the format of character-buffer event words.

59-6

59 Monitor/Transmit Line Data

NOTE: The attributes in rd_modifier and td_modifier do not
apply to special symbols. rd_modifier and td_modifier always
reflect the attributes last assigned to data. Underlining applied to
(RD) special symbols on the data display-screen comes from a bit
in the special receive-event word. See Table 59-3.

59.3 Routines

Unless noted otherwise, the routines discussed below apply when the Line Setup
menu shows either emulate or monitor mode.

(A) Controlling Data Display
ctl_enhance_td
Synopsis

extern void ctl_enhance_td(enhance_type_status);
unsigned short enhance_type_status;

E . . ‘
This routine turns various enhancements of the data display on and off on the

DTE side. It also updates the variable td_modifier. The softkey equivalent of
this routine is the ENHANCE DTE action on the Protocol Spreadsheet.

Inputs

There is one two-byte parameter. The high byte identifies the type of
enhancement to be controlled: blink (40), low intensity (20), hexadecimal
representation (10), and reverse image (08). The low-order byte indicates the
status of the enhancement. To indicate a given enhancement is on, the second
byte has the same value as the first. If the enhancement is to be turned off, the
value of the second byte is zero. For example, if you want to turn blink on, the
parameter value is 0x4040. To turn blink off, it is 0x4000.

Multiple enhancements can be controlled with one action by using hexadecimal
addition of the parameters, as in the example for cti_enhance_rd.

Example

Assume X.25 protocol for this example. You want to enhance the packet type
byte on the DTE side with a blinking, reverse image.

LAYER: 1
STATE: enhance_packet_type
CONDITIONS: DTE STRING “FE(XXXXXXXONKK] "
ACTIONS:

{
ctl_enhance_td (0x4040);
ctl_enhance_td(0x0808);

}

59-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

CONDITIONS: DTE STRING ‘FIHXXXXXXX0DXKXIX] "
ACTIONS:

{
ctl_enhance_td (0x4000);
ctl_enhance_td (0x0800);

}

ctl_enhance_rd
Synopsis

extern void ctl_enhance_rd(enhance_type_status);
unsigned short enhance_type_status;

Descripti

This routine turns various enhancements of the data display on and off on the
DCE side. It also updates the variable rd_modifier. The softkey equivalent of
this routine is the ENHANCE DCE action on the Protocol Spreadsheet.

Inputs

See ctl_enhance_td.

Example

Assume X.25 protocol for this example. You want to enhance the packet type
byte on the DCE side with a blinking, reverse image.
LAYER: 1

STATE: enhance_packet_type
CONDITIONS: DCE STRING “‘FH(XXXXXXX0DKK] "

ACTIONS:
{
ctl_enhance_rd (0x4848);
}
CONDITIONS: DCE STRING ‘FH(XXXXXXX0DKXX] "
ACTIONS:

{
ctl_enhance_rd (0x4800);

}

ctl_capture_td
Synopsis

extern void cti_capture_td (status);
unsigned short status;

D .
This routine turns on and off the presentation of DTE data to the screen—that

is, it stops or “freezes” the display—and capture of data to the screen buffer
(character RAM). Unlike the Manual Freeze mode initiated by the key,

59-8

59 Monitor/Transmit Line Data

however, the “capture off” action does not allow you to scroll through the buffer
while the test continues. The softkey equivalent of this routine is the CAPTURE
DTE action on the Protocol Spreadsheet.

Inputs

The only parameter is the status of capture, on (0x00) or off (0x10). Turning
capture off freezes the display.

Example

Assume X.25 protocol for this example. You want to turn capture off as soon
as the cause byte is displayed in a Clear packet on the DTE side. Capture will
be resumed when the spacebar is pressed.
LAYER: 1

STATE: find_cause

CONDITIONS: DTE STRING “FFHUXXXXXXXODKIX] 5x] "
ACTIONS:

{
ctl_capture_td(0x10);

}
CONDITIONS: KEYBOARD “ "
ACTIONS:

{
ctl_capture_td(0x00);

}

ctl_capture_rd

Synopsis

extern void ctl_capture_rd (status);
unsigned short status;

D P
This routine turns on and off the presentation of DCE data to the screen—that
is, it stops or “freezes” the display—and capture of data to the screen buffer
(character RAM). Unlike the Manual Freeze mode initiated by the key,
however, the “capture off” action does not allow you to scroll through the buffer

while the test continues. The softkey equivalent of this routine is the CAPTURE
DCE action on the Protocol Spreadsheet.

Inputs

The only parameter is the status of capture, on (0x00) or off (0x100). Turning
capture off freezes the display.

Example

Assume X.25 protocol for this example. You want to turn capture off as soon
as the cause byte is displayed in a Clear packet on the DCE side. Capture will
be resumed when the spacebar is pressed.

59-8

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(B)

LAYER: 1
STATE: find_cause

CONDITIONS: DCE STRING ‘FFHUXXXXXXX0NXIX] 5] "
ACTIONS:

{
ctl_capture_rd(0x100);

}
CONDITIONS: KEYBOARD “ "
ACTIONS:

{
ctl_capture_rd(0x00);
}

outsync_action
mopsi

extern void outsync_action (side);
unsigned short side;

Descrinti

The outsync_action routine applies to synchronous format only. This routine
sends one of the receivers (TD or RD) out of sync and initiates a search for
sync. The softkey equivalent of this routine is the (PROTOCL) OUT_SYN action on
the Protocol Spreadsheet.

Inputs

The only parameter identifies which side of the line is to go out of sync, 0 for
the DTE side, 1 for the DCE side.

Example

To display DTE-protocol information only, initiate sync each time a start-of-text
character is found. The results of this routine are similar to turning capture off
and on, but here the display does not have to be turned on again. It resumes
automatically with sync.
LAYER: 1
STATE: go_out_of_sync

CONDITIONS: DTE STRING “% "

ACTIONS:

{

outsync_action(0);

}

Transmitting

Use the following routines in emulate mode only. If you try to call one of these
routines in monitor mode, you will be returned to the main program menu.
When you go to the Protocol Spreadsheet and search for errors, a message like
the following will be displayed: “Error 140: Unresolved reference
11_il_transmit.”

59-10

59 Monitor/Transmit Line Data

11_transmit
Synopsis

extern void l1_transmit(count, struct_send_string_ptr, xmit_tag);
unsigned short count;
Struct xmit_list

{
unsigned char * string_ptr;
unsigned short string_length;
Iy
struct xmit_list * struct_send_string_ptr;
unsigned short xmit_tag;

Descripti

The /I_transmit routine sends a specified string with a user-determined BCC.

Inputs

The first parameter is the number of strings to be sent.

The second parameter is a pointer to a structure which in turn identifies the
location and length of each string.

The third parameter is a transmit tag which includes a BCC in bits 0-2: good
(001), bad (010), or abort (011). Bits 3-7 are reserved for future use.
Integers may be used to indicate the value of the transmit tag: good (1), bad
(2), and abort (3).

Example

Assume you want to send a fox message at Layer 1 inside of an X.25 data
packet with a good block check. You might have 2 strings, one with the Layers
2 and 3 header information, and one with the fox message. You would send
these strings as follows:

{
unsigned char headers [] = {0x01, 0x00, 0x10, 0x04, 0x00};

unsigned char message [] = “CFOX)”;
struct xmit_list

{
unsigned char * string;
unsigned short string_length;

}

struct xmit_list ‘send_string [] = {&headers[0], 5, &message[0], sizeof(message) - 1};

}

59-11

INTERVIEW 7000 Series Advanced Programming.: ATLC-107-951-108

LAYER: 1
STATE: send_message
CONDITIONS: KEYBOARD “ "
ACTIONS:

{
!1_transmit(2, &send_string[0], 1);
}

11_il_transmit
Synopsis

extern void 11_il_transmit(il_buffer_number, relay_baton, data_start_offset, transmit_tag);
unsigned short il_buffer_number;

unsigned short relay_baton;

unsigned short data_start_offset;

unsigned short transmit_tag;

Descripti

This routine sends a designated interlayer message buffer out onto the line.

Inputs

The first parameter is the interlayer message buffer number.

The second parameter is the maintain bit used to hold the buffer while the send
operation is performed at Layer 1.

The third parameter is the offset from the beginning of the buffer to the service
data unit (SDU). "

The fourth parameter is a transmit tag which includes a BCC in bits 0-2: good
(001), bad (010), or abort (011). Bits 3-7 are reserved for future use.
Integers may be used to indicate the value of the transmit tag: good (1), bad
(2), and abort (3).

Example

Send the same text as in the example for //_transmit. The softkey equivalent of
this routine is the SEND action on the Protocol Spreadsheet. Refer to Section
63.3(A) for a description of the _ger_il_msg_buff, _start_il_buff_list, and
_insert_il_buff_list_cnt routines.

{

unsigned short il_buffer_number;

unsigned short relay_baton;

unsigned short data_start_offset;

unsigned char message [] = “°1\x000%°4\x000(FOX) ";

}

59-12

59 Monitor/Transmit Line Data

LAYER: 1
STATE: send_message
CONDITIONS: KEYBOARD “ "
ACTIONS:
{
_get_il_msg_buff(&il_buffer_number, &relay baton);
_start_il_buff list(il_buffer_number, &data_start_offset);
_insert_il_buff list_cnt(il_buffer_number, data_start_offset, &message[0],
(sizeof(message) - 1));
11_il_transmit(il_buffer_number, relay_baton, data_start_offset, 1);

}

idle_action
Synopsis

extern void idle_action (character);
unsigned char character;

Description

Only for format SYNC, the idle_action routine allows you to change the idle-line
condition applied by the INTERVIEW. The softkey equivalent of this routine is
the (PROTOCL) IDLE_LN action on the Protocol Spreadsheet.

Inputs

The only parameter is a character or numeric value representing the idle
character.

Example

X.21 or X.21BIS idles different characters in various states, r, %, +, for

example. To signal a change in protocol state, you might change the idle
character to +:

LAYER: 1
STATE: change_idle_character
CONDITIONS: KEYBOARD “ "
ACTIONS:
{
idle_action(’+’);

}

59-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

set_ter_b
Synopsis

extern void set_tcr_b (tcr_register_mask, tcr_register_value);
unsigned char tcr_register_mask;
unsigned char ter_register_value;

Description

This routine clamps the transmit line to 0 (space) or 1 (mark), or unclamps it so
that ¢transmit routines may be executed. In X.21, steady zero will signal a clear
request/indication or a clear confirm, while steady 1 will indicate one of the
call-ready or call-setup states. In other contexts, the routine simply initiates and
terminates a break.

Inputs

The first parameter is the mask that is anded with the current TCR register to
turn the current values of bits 3 and 4 (counting 1-8 from the right) to zero.
This mask is always O0xf3.

The second parameter contains the new values of bits 3 and 4 that will be
written to the register. The three available parameters are 0x08 to clamp the line
to zero, 0x0Oc to clamp the line to 1, and 0x04 to unclamp the line and permit
data transmissions.

Example

This program will generate a 250-millisecond break when the operator presses
the (=] key.

{

extern fast_event keyboard_new_any_key;
extern volatile unsigned short keyboard_any_key;

STATE: generate_break
CONDITIONS:

{
keyboard_new_any_key && (keyboard_any_key == Oxle3)

}

ACTIONS: TIMEOUT break RESTART 0.250
{

set_tcr_b (0xf3, 0x08);

}

CONDITIONS: TIMEOUT break
ACTIONS:

{

set_ter_b (0xf3, 0x04);

}

59-14

59 Monitor/Transmit Line Data

(C) Writing to Character RAM

For the sake of speed, the 64-Kbyte character buffer uses a shorter data word
than the 32-bit word in the Display Window and traces. Refer to Table 61-4.
A sixteen-bit event word is reserved for each character in the 64-Kbyte
character buffer.

Table 59-3 shows the format of event words. Two kinds of event word should be
distinguished: data and special receive.

1. Data Event-Words. Data event-words may contain enhancement attributes
in the high byte. Whereas attributes comprise 24 bits of a long in the
Display Window and the traces, in the character buffer they are contained in
only 8 bits. Data words in the character buffer, therefore, include a less
flexible set of attributes. Color attributes, for example, are not directly
available in words written to the character buffer. See Section 16, Color
Display, for an explanation of how reverse, blink, and low enhancements in
the character buffer may be mapped to colors in the RGB output.

Table 59-3 lists the available attributes.

The character is located in the low 8 bits. Its value can range from
hexadecimal 0 through FF.

2. Special-Receive Words. The high byte in special-receive words determines
the symbol (from the special graphic character font) that will overlay the
character contained in the low byte. The symbols that may be written to the
character buffer are good BCC’s, bad BCC’s, aborts, flags, and sync. One
bit, the td/rd indicator, controls on which side the symbol will be displayed.
Symbols on the RD side are underlined, as all RD data is. Notice in
Table 59-3 that the td/rd indicator bit is the same one that controls the
underline enhancement in data event-words.

The value in the low byte is meaningless in the context of special-receive
words. The special symbol will overlay or replace the character. Its value,
nevertheless, can range from hexadecimal 0 through FF.

59-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 59-3

Character Buffer 16-Bit Word

Type Mask (hex) Input (hex) Meaning
data data-event word:
0100 0100 the low byte contains data
0500 add 0100 to the following: td/rd indicator:
0000 td character
0400 rd character (underlined)
00 add modified value of td/rd T

special receive

8300

8700

bf00
reserved 0700
reserved 0f00

indicator to one (or a combi-
nation) of the following:

0000
0200
0800
1000
2000
4000
8000

0200
8200

add 0200 to the following:

0000
0400

add modified value of td/rd
indicator to one of the
following:

0800
1000
1800
2000
2800
3000
3800

0400

0800

(enhancementé apply to data
indicated in low byte)

normal

alternate code set

reverse image

hexadecimal

low intensity

blink

strike-thru (parity error on character)

special receive-event word:

special receive-event word
reserved

td/rd indicator:

td character
rd character (underlined)

special event:
(symbols for these events overlay the
data indicated in low byte)

good CRC

bad CRC

abort

flag

sync

bad CRC2 (DDCMP)
good CRC2 (DDCMP)

reserved

reserved

+ Selecting rd (0400) for the td/rd indicator results in the data being underlined. The underiine enhancement shares
the same bit. It has been omitted from the list of enhancements to avoid an error from double counting.

59—16

59 Monitor/Transmit Line Data

The routines for writing 16-bit event words to the character buffer are

add_event_to_buff and add_array_to_buff. These routines may be used when
the Line Setup menu shows either emulate or monitor mode.

add_event_to_buff

Synopsis

extern unsigned int add_event_to_buff(event_word);
unsigned int event_word;

Descripti

The add_event_to_buff routine writes the specified input to the 64-Kbyte
character buffer.

Inputs

The only input is a 16-bit event-word to be written to the buffer. Table 59-3
lists the coding of event words.

Returns

A one is returned if the event was successfully added to the character buffer. If
the routine failed, zero is returned.

Example

To display only SDLC frames with an address of hexadecimal c2, enter the
following spreadsheet program:

LAYER: 1
{
extern unsigned short rcvd_char_td;
extern unsigned short revd_char_rd;
}
STATE: Init
CONDITIONS: ENTER_STATE
ACTIONS: CAPTURE BOTH OFF
NEXT_STATE: address
STATE: address
CONDITIONS: DTE STRING ‘FH”
ACTIONS:
{
if(revd_char_td == Oxc2)
{
add_event_to_buff (((short)td_modifier << 8) + rcvd_char_td);
ctl_capture_td (0x00);
}
}
CONDITIONS: DTE STRING ‘HE"
ACTIONS: CAPTURE DTE OFF

59-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

CONDITIONS: DCE STRING ‘FH"
ACTIONS:
{
if(revd_char_rd == 0xc2)
{
add_event_to_buff (((short)rd_modifier << 8) + revd_char_rd);
ctl_capture_rd (0x00);
}
}
CONDITIONS: DCE STRING ‘HF]"
ACTIONS: CAPTURE DCE OFF

add_array_to_buff
Synopsis

extern unsigned int add_array_to_buff(array_ptr, count);
unsigned short * array_ptr;
unsigned char count;

Description
The add_array_to_buff routine writes specified elements of an array to the

64-Kbyte character buffer.

Inputs

The first parameter is the location of the array to be written to the character
buffer. The array consists of 16-bit shorts.

The second parameter is the number of elements in the array to be written.

The number of elements which can be written to the buffer must be in the range
0-16. Elements in the array must adhere to the format of event words shown in
Table 59-3.

Returns

The result of the add_array_to_buff routine is all or nothing. A one is returned
when all requested elements of the array are successfully added to the character
buffer. If the routine fails, zero is returned and nothing is written to the buffer.

Example
To display on the Data Screen only X.25 packets with an LCN of 004, enter the

following spreadsheet program. (This program displays the DTE side of the line
only. Additional programming similar to that entered would include DCE data.)

59-18

59

Monitor/Transmit Line Data

LAYER: 1
{
unsigned short dte_array (100];
unsigned short Icn;
extern unsigned short revd_char_td;
}
STATE: init
CONDITIONS: ENTER_STATE
ACTIONS: CAPTURE BOTH OFF
NEXT_STATE: address
STATE: address
CONDITIONS: DTE STRING ‘FH"
ACTIONS:
{
dte_array [0] = (0x0100 + revd_char_td);
}
NEXT_STATE: frame_type
STATE: frame_type
CONDITIONS: DTE STRING “({(XXXXXXX0) "
ACTIONS:

{
dte_array [1] = (0x0100 + revd_char_td);

}
NEXT_STATE: dfi
CONDITIONS: DTE STRING “UXXXXXXX1) "
NEXT_STATE: address
STATE: dfi
CONDITIONS: DTE STRING “X]"
ACTIONS: -
{
dte_array [2] = (0x0100 + rcvd_char_td);
len = ((unsigned int)rcevd_char_td & 0x0f) << §;
}
NEXT_STATE: lcn
STATE: lcn
CONDITIONS: DTE STRING “X]"
ACTIONS:
{
dte_array [3] = (0x0100 + revd_char_td);
len += revd_char_td;
if(len == 0x0004)
{
add_array_to_buff(dte_array, 4);
ctl_capture_td(0x00);
current_state = state_eof;
}
else
current_state = state_address;
break;
}
STATE: eof
CONDITIONS: DTE STRING ‘Hf"
ACTIONS: CAPTURE DTE OFF
NEXT_STATE: address

59-189

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

59-20

60 EIA

60 EIA

The Test Interface Module (TIM) located in the rear of the INTERVIEW determines the EIA
leads available for monitoring and control (Section 10). The variables and routines in this
section apply to RS-232, V.35, and RS-449 interface modules. The X.21 module is treated
separately in Section 70.

To use the C variables and routines explained in this section, enable EIA leads by selecting
Buffer Control Leads on the FEB Setup menu. See Section 7.1(B). If no other source
for clock is provided, use internal clock (Line Setup menu).

The variables and routines approximate Layer 1 EIA spreadsheét—generated conditions and
actions. Their use on the Protocol Spreadsheet is not limited to any particular layer, though
normally they belong at Layer 1. ’

60.1 Variables

With an RS-232, V.35, or RS-449 TIM installed, you may monitor RI, DSR, DTR,
CD, CTS, RTS, and UA. The lead names in RS-449 are slightly different: see
Table 60-1.

The fast-event variable fevar_eia_changed detects a change in EIA leads. It does
not establish which lead(s) has changed. Two associated variables, current_eia_leads
and previous_eia_leads, indicate the status of the seven leads. These are two-byte
(short) variables. Each lead is represented by a different bit in the short. Some bits
are unused. Table 60-1 lists the mask that can be used to isolate each lead.

Whenever a lead changes, the value in current_eia_leads is written to
previous_eia_leads. Then current_eia_leads is updated.

(A) Masking To Detect a Change in a Given Lead

To test whether or not a given lead changed, RTS for example, while
disregarding its status, enter the following condition on the Protocol Spreadsheet:

CONDITIONS:
{

fevar_eia_changed && (((current_eia_leads = previous_eia_leads) & 0x80) == 0x80)

}

Select a mask value from the list in Table 60-1 to indicate which lead you care
about. Specify multiple leads with a mask derived via hexadecimal addition.

60-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 60-1
EIA Variables
Type Variable Value (hex/decimal) Meaning
extern fast_event fevar_eia_changed True when the status changes
for an EIA lead (non-data).
Line Setup configured for
emulate or monitor mode.
BS-232/V.35: (RS-449)
extern const volatile unsigned short current_eia_leads 4 Rl (IC)
8 DSR (DM)
10/16 DTR (TR)
20/32 CD (RR)
40/64 CTS (CS)
80/128 RTS (RS)
200/512 UA

A value in this list, when anded
(&) with current_eia_leads,
equals zero if the lead is on.
Example:

STATE: rts_on

{ If ((current_eia_leads & 0x80)
== 0) sound_alarm(); }

Note: This variable will store EIA
status if (1) internal or external
clock is supplied and (2) EIA
leads are enabled on FEB
Setup. Line Setup configured
for emulate or monitor mode.

extern const volatile unsigned short previous_ela_leads Same values as
current_eia_leads. Updated
only after logic has had a
chance to compare current and
previous leads. Line Setup
configured for emulate or
monitor mode.

The mask for RTS is 0x80. In the example, the event fevar_eia_changed
updated current_eia_leads. The new current_eia_leads was
bitwise—exclusive-ORed with previous_eia_leads to identify all the leads that
changed. Then the result was bitwise ANDed with the RTS mask to determine if
RTS was among the leads that changed. If this result was equal to the mask,
the lead changed.

(B) Masking For the Status of a Lead

You may also test the current status of a lead, independent of any change. And
the mask with current_eia_leads, as in this if statement testing for RTS “on”:

STATE: test_for_rts_on
{

if ((current_eia_leads & 0x80) == 0) sound_alarm ();

}

60-2

60 EIA

60.2

If the result is zero, the lead is on. If the result equals the mask, the lead is
off. “On” means that a lead is more positive than +3 volts with respect to signal
ground. “Off” implies only that a lead is not at or above the “on” threshold,
not necessarily that a minus threshold has been attained.

(C) Detect Change and Current Status

The two examples shown above could be combined to test for RTS changing
from off to on:

CONDITIONS:

{

(fevar_eia_changed && (((current_eia_leads = previous_eia_leads) & 0x80) == 0x80) &&
((current_eia_leads & 0x80) == 0))
}

This example approximates the translator’s version of the spreadsheet-token
condition EIA RTS ON when it appears alone in a conditions block. When an EIA
condition is combined with another condition, in most cases the other condition
will supply the event variable and only the EIA status test will be used.

Routines

You may control RS-232 EIA leads in emulate mode only. When the Line Setup
menu shows Mode: you control CTS, CD, and DSR. An #
selection gives you control over RTS and DTR. Entries on the Interface Control
menu may be used to set the leads’ initial status (Section 10.6).

ctl_eia
Synopsis
extern void ctl_eia(on_mask, off_mask);

unsigned short on_mask;
unsigned short off_mask;

Descripti

The ctl_eia routine allows you to control the status of up to three of nine possible
leads. Which leads you control depends on your emulation mode. The softkey
equivalent of this routine is the EIA action on the Protocol Spreadsheet.

Inputs

The first parameter indicates which leads you want to turn on. Each bit in the
parameter controls a given lead: RTS/CTS (01), DTR/DSR (02), CD (04), AUXO0
(10), AUX1 (20), AUX2 (40), AUX3 (80). Wherever there is a zero in the first

60-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

parameter, the corresponding lead will be turned on. A one in this parameter will
not cause any lead to be turned off. A value of Oxff will mean don’t care (no
action).

The second parameter indicates which leads you want in the “off” condition. Each
bit in the parameter controls a given lead: RTS/CTS (01), DTR/DSR (02), CD (04),
AUXO0 (10), AUX1 (20), AUX2 (40), AUX3 (80). Wherever there is a one in the
second parameter, the corresponding lead will be turned off. Zeroes in this parameter
do not turn leads on. A value of 0 will mean don’t care (no action).

NOTE: If both bytes are attempting to control the same lead, the
off parameter will override the on parameter.

Example

Suppose your emulate mode is As a DCE, you control the CTS, DSR,
and CD leads. (An attempt to control the status of RTS or DTR will fail, since the
DTE controls these leads.) When RTS is raised, you want to turn CTS on; when RTS
drops, turn CTS off.

LAYER: 1
STATE: control_cts
CONDITIONS: EIA RTS ON
ACTIONS:
{
ctl_eia(Oxfe, 0x00);
}
CONDITIONS: EIA RTS OFF
ACTIONS:
{
ctl_eia(Oxff, 0x01);
}

60-4

61

61 Display Window and Trace

Display Window and Trace -

The C structures, variables, and routines detailed in this section control the type and location
of certain displays on the INTERVIEW. These displays can be grouped into three categories.

The first display area is the prompt line, the second line on all Run-mode screens.

The second type of display utilizes the Display Window, available as a selection on the Display
Setup portion of the Line Setup menu, or conditionally accessible via softkey during Run
mode. To write to the Display Window, use the pos_cursor (or restore_cursor) and displayc,
displayf, or displays routines. When using Display Window, you may position the cursor
before output is generated on the screen.

The third type of display utilizes one or a combination of the eight available trace buffers.
Trace screens are conditionally accessible via softkey during Run mode. Seven user-traces
appear as choices under the User Trace selection on the Display Setup'menu. The remaining
trace is Program Trace, also an option on Display Setup. Program Trace enables you to track
any or all layers, one or all tests, and movement between states. To write to any of the eight
trace-screens, use the tracec, tracef, and traces routines.

NOTE: You may not use the pos_cursor routine to position the
cursor on any trace screen. New lines (or blank lines) may be
generated via the “\n” specifier.

Attributes—color, underlining, and font, for example—may be assigned to characters in the
Display Window and all of the Trace buffers.

NOTE: Color attributes are applied to the RGB output signal,
not to the plasma screen.

61.1 Current Display Mode

A group of variables keeps track of softkey movement from one display screen to
another (see Table 61-1). When you move from the Display Window to the Program
Trace screen, for example, the fast—event variable display_screen_changed indicates
the change of display. The coded value for Display Window now is stored in
prev_display_screen, and the value for Program Trace can be found in
crnt_display_screen.

61-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

These variables also distinguish between Run mode and Freeze mode. This
distinction is important since some keys on the keyboard are mode-dependent. In
Freeze mode, for instance, cursor keys automatically become operational for scrolling
through the buffer. The programmer will want to avoid using these keys as
user—-input when crnt_display_screen indicates that the unit is in Freeze mode.

Table 61-1
Current Display Variables

Type Variable Value (hex/decimal) Meaning

extern fast_event display_screen_changed True when Run-mode
display-screen Is changed, or
when Run/Freeze mode Is
changed. Value in
crnt_display_screen is stored in
prev_display_screen, and
crnt_display-screen is updated.
Line Setup configured for
emulate or monitor mode.

extern unsigned short crnt_display_screen Contains current display screen
(low byte) and indicates whether
unit is in Run mode or Freeze
mode (high byte). Line Setup
configured for emulate or
monitor mode.

display-screen

0 no display

1 single-line data

2 dual-line data

3 single-line data with leads

4 dual-iine data with leads

11/17 tabular statistics

12/18 graphic statistics

21/33 Display Window

31/49 Program Trace

41/65 Layer 1 Protocol Trace

42/66 Layer 2 Protocol Trace

43/67 Layer 3 Protocol Trace

44/68 Layer 4 Protocol Trace

45/69 Layer § Protocol Trace

46/70 Layer 6 Protocol Trace

47/71 Layer 7 Protocol Trace

51/81 User Trace 1

52/82 User Trace 2

53/83 User Trace 3

54/84 User Trace 4

55/85 User Trace §

56/86 User Trace 6

57/87 User Trace 7

61/97 TIM package standard stats

62/98 TIM package aux
Runl/Freeze mode (bit 9)

100/256 Freeze mode

0 Run mode

61-2

61 Display Window and Trace

Table 61-1 (continued)

Type Variable Value (hex/decimal) Meaning

extern unsigned short prev_display_screen Contains previous display screen
(low byte) and indicates whether -
unit was in Run mode or Freeze
mode (high byte). Line Setup
configured for emulate or
monitor mode.

display-screen

0 no display

1 single-line data

2 dual-line data

3 single-line data with leads

4 dual-line data with leads

11/17 tabular statistics

12/18 graphic statistics

21/33 Display Window

31/49 Program Trace

41/65 Layer 1 Protocol Trace

42/66 Layer 2 Protocol Trace

43/67 Layer 3 Protocol Trace

44/68 Layer 4 Protocol Trace

45/69 Layer 5 Protocol Trace

46/70 Layer 6 Protocol Trace

47171 Layer 7 Protocol Trace

51/81 User Trace 1

52/82 User Trace 2

53/83 User Trace 3

54/84 User Trace 4

55/85 User Trace §

56/86 User Trace 6

57/87 User Trace 7

61/97 TIM package standard stats

62/98 TIM package aux
Runl/Freeze mode (bit 9)

100/256 Freeze mode

0 Run mode

61.2 Prompt Line

Access to the prompt line is always available via the display_prompt routine, or its
softkey equivalent, the PROMPT action. Attributes may not be assigned to a prompt
created via either of these methods. (To create a prompt with attributes, use the
pos_cursor and displayf routines.) Prompts appear on whatever screen is active at
the time the prompt is written, including trace screens. With one exception,
movement to another display erases the prompt. The only screen which retains the
most recent prompt is the Display Window.

You may also position the cursor to the prompt line in the Display Window via the
pos_cursor routine. The initial position of the cursor in the Display Window is at the
beginning of the prompt line—row zero, column zero. Anything written to this cursor

61-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

61.3

position in the Display Window will appear as a prompt on any one of the other
display screens (assuming one of them is active at the time the message is written).
Position the cursor below the prompt line for messages intended for the Display
Window only.

Trace buffers retain no record of prompts. When you write to a trace screen, the
initial position of the cursor is the line immediately below the prompt line—row one.
Since you may not position the cursor in trace buffers, all messages written to trace
buffers are appended at the end of the buffer. You may never access the prompt
line via tracef (or tracec or traces) routines.

Display Window

The Display Window preserves one screen, including the prompt line, of user-entered
messages. When the end of the display screen is reached, the previous messages are
overwritten, beginning at row one (the line below the prompt line).

NOTE: Use the keyboard variables and the send_key routine
explained in Section 69, Other Library Tools, to program the
Run-mode use of (J and (0 in the Display Window. (For other
Run-mode screens, these keys control the playback speed of disk
data.)

(A) Variables

There are variables accessible to the user which provide information about the
Display Window. Table 61-2 lists the variables and their possible values. Two
variables indicate the current position of the cursor: current_line stores the row
number and current_col stores the column number. To find out which attributes
are active in the Display Window, check the values stored in window_color and
window_modifier. Color is stored in the high byte of the two-byte variable
window_color. Enhancements are stored in the low byte. The current font code
can be found in window_modifier.

NOTE: Attributes assigned via the %m conversion specifier
(refer to tracef-routine input) to characters in trace buffers will
not alter the values of window_color and window_modifier. These
variables refer to the Display Window only.

The variable display_window_buffer provides the user with access to the
display-window buffer. This variable is an array of 1,088 Jongs. Each element
in the array contains one byte of character data and three bytes of attributes.
The attributes are determined by the current values of window_color and
window_modifier.

61-4

61 _Display Window and Trace

Table 61-2
Display Window Variables

Type

Variable

Value (hex/decimal)

Meaning

extern unsigned short

extern unsigned short

extern unsigned short

current_line

current_col

window_color

61-5

0-10/0-16

0-3f/0-63

~NoOndbwON-—-O

10/16
18/24
20/32
28/40
30/48
38/56

Contains the current row
number of the cursor position in
the Display Window. Line Setup
configured for emulate or
monitor mode.

Contains the current column
number of the cursor position in
the Display Window. Line Setup
configured for emulate or
monitor mode.

Two-byte variable. Current
color selections are indicated in
the low byte. Current
enhancements are indicated in
the high byte. Written to by %m
conversions. Attributes are
copied into data words in
Display Window. Line Setup
configured for emulate or
monitor mode.

Isolate bits of interest via
bitwise anding (&) of mask with
variable. Compare result to
value column. For example,
underline attribute mask =
0x100. Therefore window_color
& 0x100 equals 0 (underline cff)
or 0x100 (underline on). Line
Setup configured for emulate or
monitor mode.

background color mask = 7 (bits
1-3):

black
blue
green
cyan

red
magenta
yellow
white

foreground color mask = 0x38
(bits 4-6):

black
blue
green
cyan

red
magenta
yellow
white

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-2 (continued)

Type Variable Value (hex/decimal) Meaning
(window_color continued) color blink mask = 0x40 (bit 7):

0 no blink

40/64 blink
color strike~thru mask = 0x80
(bit 8):

0 no strike-thru

80/128 strike-thru

overline mask = 0x100 (bit 9):

0 no overline
100/256 overline

blank mask = 0x200 (bit 10):

0 no bilank
200/512 blank
underline mask = 0x400 (bit
11):
0 no ur{derline
400/1024 underline
reverse image mask = 0x800 (bit
12):
0 no reverse image
800/2048 reverse image

hex mask = 0x1000 (bit 13):

0 no hex

1000/4096 hex
low intensity mask = 0x2000 (bit
14):

0 no low intensity

2000/8192 low intensity (RS-170 output)

monochrome blink mask =
0x4000 (bit 15):

0 no monochrome blink
4000/16384 monochrome blink

monochrome strike-thru mask =
0x8000 (bit 16):

0 no monochrome strike-thru
8000/32768 monochrome strike-thru

61-6

61 Display Window and Trace

Table 61-2 (continued)

Type

Variable Value (hex/decimal) Meaning

extern unsigned char

extern unsigned long

window_modifier Contains the current modifiers.
Line Setup configured for
emulate or monitor mode.

font mask = 7 (bits 1-3):

ASCII

special graphic character set
(refer to Table 61-5)

primary font—code selected on
Line Setup :
alternate font—current
implementation is for call-setup
phase in X.21 (ASCII)

7 hexadecimal

display_window_buffer [1088] Array of 32-bit words that make
up the one-screen Display
Window. Each word contains
three bytes of attributes and a
one-byte character. Refer to
Table 61-4. Line Setup
configured for emulate or
monitor mode.

- O

w N

(B) Structures

Once the data word is written to the buffer as an element in the
display_window_buffer array, it can be accessed and written to—and therefore
changed—the same as any other location in memory. There is an extern array,
display_window_index_buffer[17], which provides a method of informing the
display controller on the CPM card that the display needs to be updated. The
structure of this array is shown in Table 61-3.

Each element in the display_window_index_buffer array represents a horizontal
row or line in the Display Window. Each element is a structure with two
variables, mpm and cpm. The first variable in the structure, mpm, increments
automatically whenever a line in the display-window buffer is updated by a
display routine. (If you write to the buffer directly without using one of the
display routines, you must increment this variable “manually.”) Its particular
value at any moment is not important. What is significant is whether or not the
value of the second variable in the structure, cpm, is the same as mpm. The
processor on the CPM compares these two variables (for each line) periodically
to determine if a line in the Display Window needs to be rewritten. If the
values of the two variables do not match, it means that a line updated in
memory now needs to be updated by the CPM display-controller software.
After the display is changed, the value of mpm is copied automatically into cpm.

61-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-3
Display Window Buffer Structures

Type Variable Value (hex/decimal) Meaning

Structure Name: display_window_index_buffer [17] An array of structures used for detecting
changes to the display-window buffer. There are
seventeen elements in the array, one for each
line in the Display Window. When a change is
made to a line in the display-window buffer, the
corresponding element in the array is accessed.
If a displayf routine changes line 3,
display_window_ index_buffer[3].mpm is
automatically incremented. The CPM detects
the difference between
display_window_index_buffer [3].mpm and
display_window_index_buffer [3].cpm and
updates line 3 in the Display Window. Declared
as type extern struct.

You must increment an mpm variable manually
when you write directly (not via a displayf routine)
to the Display Window.

unsigned char mpm 0-ff10-255 When the MPM updates a line in the
display-window buffer, this variable is
incremented.

unsigned char cpm 0-ff10-255 The CPM checks the value of this variable against

the value of mpm. If they are different, the
value in mpm is copied into com. The updated
line in MPM is then presented on the
display-window screen.

(C) Routines

You may position the cursor before output is generated on the screen via the

pos_cursor and restore_cursor routines. The pos_cursor routine positions the

cursor at the row and column you specify. The restore_cursor routine returns
the cursor to a previous location.

One routine, displayf, allows you to add attributes to messages in the Display
Window, including the prompt line. These attributes are listed in Table 61-4.

61 Display Window and Trace

displayc
Synopsis

extern void displayc(character);
const char character;

Description

The displayc routine outputs a single ASCII character to the Display Window
screen. The placement of the output on the screen may be controlled via the
pos_cursor routine. Attributes may not be used in displayc.

Inputs

The parameter value may be given as a hexadecimal, octal, or decimal constant;
as an alphanumeric constant inside of single quotes; or as a variable. A
hexadecimal value must be preceded by the prefix 0x or 0X; an octal value must
be preceded by the prefix 0. If no prefix appears before the input, the number
is assumed to be decimal. Valid numeric entries are 00 to 127, decimal. An
alphanumeric character placed between single quotes will be output as is to the
display.

Example

The displayc entries on the left output the character given on the right, at the
cursor location on the Display Window screen:

displayc(‘a’); a
displayc(65); A
displayc(0x65); e
displayc(065); 5

displayf
Synopsis

extern int displayf(format_ptr, . . .);
const char * format_ptr;

Descripti

The displayf routine writes output to the Display Window screen, under control
of the string pointed to by format_ptr that specifies how subsequent arguments
are converted for output. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated but otherwise ignored. The displayf routine
returns when the end of the format string is encountered. The placement of the
output on the screen may be controlled via the pos_cursor routine.

61-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Inputs

The format is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion
specifications, each of which results in fetching zero or more subsequent
arguments. Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

® Zero or more flags that modify the meaning of the conversion specification.
The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a plus or
minus sign.

space If the first character of a signed conversion is not a sign, a space will
be prepended to the result. If the space and + flags both appear, the
space flag will be ignored.

The result is to be converted to an “alternate form.” For d and i
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or
X) conversion, a nonzero result will have 0x (or 0X) prepended to it.
For u conversions, the argument is displayed in small hex characters.
For example, displayf (“%#u”, 258); yields %%. For c and s
conversions, if the argument contains a newline character, it is
displayed as +.

® An optional decimal integer specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left adjustment flag, described above, has been
given) to the field width. The padding is with spaces unless the field width
integer starts with a zero, in which case the padding is with zeros.

® An optional precision that gives the minimum number of digits to appear for
the d, i, o, u, x, and X conversions, the maximum number of characters to
be written from an array in an s conversion, or the number of characters to
be written from an array in an H conversion (overriding the usual
null-termination of strings). The precision takes the form of a period (.)
followed by an optional decimal integer; if the integer is omitted, it is treated
as zero. The amount of padding specified by the precision overrides that
specified by the field width.

61-10

61 Display Window and Trace

An optional h specifying that a following d, i, o, u, x, or X conversion
specifier applies to a short int or unsigned short int argument (the argument
will have been promoted according to the integral promotions, and its value
shall be converted to short int or unsigned short int before printing); or an
optional 1 specifying that a following d, i, o, u, x, or X conversion specifier
applies to a long int or unsigned long int argument. If an h or | appears
with any other conversion specifier, it is ignored.

A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings
are:

d, i, o, u, x, X_

The int argument is converted to signed decimal (d or i), unsigned
octal (o), unsigned decimal (u), or unsigned hexadecimal notation (x
or X); the letters abcdef are used for x conversion and the letters
ABCDETF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
a precision of zero is no characters.

c The int argument is converted to an unsigned char, and the resulting
character is written.

s The argument shall be a pointer to a null-terminated array of 8-bit
chars. Characters from the string are written up to (but not including)
the terminating null character: if the precision is specified, no more
than that many characters are written. The string may be an array
into which output was written via the sprintf routine. (If the string
pointed to is an array which has been written via the stracef routine,
you must use %b rather than %s to display it.)

p The argument shall be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the
colon. The number of digits to the left of the colon is determined by
the pointer’s value and the precision specified. Use this conversion to
display 80286 memory addresses. The 16-bit segment number will
appear to the left of the colon and the 16-bit offset to the right.

% A % is written. No argument is converted.
\n Displays *. No argument is converted.

H displays a character array (pointed to by the argument) as small hex
characters. If precision is specified, it is used as the length of the
array (overriding the usual null-termination of strings).

61-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

b The argument shall be a pointer to an array of 32-bit words.
Characters from the string are written up to (but not including) the
terminating word containing a null character: if the precision is
specified, no more than that many words are written. If the string
pointed to is an array into which output was written via the stracef
routine, you must use %b rather than %s to display it. (To display
the information in an array written to via sprintf, use %s.)

m The argument is a long integer that indicates attributes to be assigned
to subsequent characters. Attributes stay “on” until they are
specifically turned “off” with another %m conversion specifier. The
lowest-order byte contains primarily font code. The next higher byte
is not used to set attributes. (In the display-window buffer, this
second byte is reserved for character coding.) The third byte holds
color information. The high byte indicates which enhancements
should be invoked.

Attributes are written automatically to window_color and
window_modifier variables, then copied into subsequent 32-bit data
words in the Display Window. Table 61-4 shows the format of this
32-bit word.

Attributes may not be assigned as a one-byte value. Even if you want
to alter only one attribute setting, color for example, you must include
it as part of a long. Append an “L” at the end of the hexadecimal
code specifying attributes to indicate the value is a long.

NOTE: If you are specifying an attribute in a lower-order byte of the
long, color for example, and you want the high byte (or bytes) to be
zero, you may omit the high byte provided you have the “L”
appended at the end of the hexadecimal code. The high byte (or
bytes) will be left-padded with zeroes. For example, 0x200000L is
converted to 0x00200000L. Associated characters will be displayed
on a color monitor as green on a black background, as dictated by the
hexadecimal 20 in the third byte. Enhancements are controlled in the
high byte, now assigned a value of zero. Any enhancements
previously turned “on” will be turned “off.”

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an aggregate (except for an array of characters
using %s conversion or any pointer using %p conversion), the behavior is
undefined.

In no case does a nonexistent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is expanded to
contain the conversion result.

61-12

61 Display Window and Trace

Returns

The displayf routine returns the number of characters displayed.

Example

To display a date and time in the form “Sunday, July 3, 10:02,” where weekday
and month are pointers to strings:

LAYER: 1
{ .
unsigned char weekday [10];
unsigned char month [10];
unsigned short day;
unsigned char hour;
unsigned char min;

}
STATE: output_to_display_window
CONDITIONS: KEYBOARD “ "
ACTIONS:
{
displayf(“%s, %s %d, %.2d:%.2d\n"”, weekday, month, day, hour, min);
sprintf

The sprintf routine is similar to the displayf routine. displayf writes output with
or without attributes directly to the Display Window. sprintf, fully documented
in Section 64.3, writes output to a character array in which attributes are not
supported. This routine is useful for writing formatted output to a display,
printer, or file.

See also stracef in Section 61.4(C).

61-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

. Table 61-4
Display Window/Trace Buffer 32-Bit Data Word

Bit

Mask (hex)¥ Input (hex) ¥ Meaning

1-3

5-8

Modifier attributes, font for example,
are contained in the low byte of the
32-bit word.

00000007L Font:

00000000L ASCII

000000Q1L special graphic character set (refer to
Table 61-5)

00000002L primary font—code selected on Line
Setup

00000003L alternate font—current implementation
is for call-setup phase in X.21 (ASCII)

00000007L hexadecimal

00000008L :
(used in trace buffer only; should not
be altered by user)

000000Q0L only value In modifier in trace buffer
header

00000008L Character is not displayable but
contains control info used internally by
the trace logic. When a “\n" is
included in a tracef routine, for
example, a new line is generated, but
nothing Is displayed on the trace
screen. The tracef routine
automatically sets this bit before the
32-bit word Is written into
trace_buf.array.

000000f0L 00000000L unused, but should be zero

9-16 0000ffO0L 00000000L Character data is contained in the

second byte of the long word. Input
should be 00 in all %m conversions.

-‘.

Use the masks to change attributes of characters in the Display Window or trace buffer. in the Display Window,
characters are represented in the second byte of the longs that comprise the 1,088 array elements in
display_window_buffer. In the trace_buf structure, the characters are represented In the second byte of the
longs that make up the trace_buf.array. To change one attribute of a character while leaving the others
unchanged:

display_window_buffer[position] = ((display_window_buffer[position] & (-attribute-mask)) | input);

To change only the font of the twenty-first character in the trace buffer from its current setting to the special
graphic font, for example:

12_trbuf.array[20] = ((trace_buf.array[20] & (~0x00000007L)) | Ox00000001L);
Anding the character with the mask will indicate the current setting of an attribute:

If (12_trbuf.array[20] & 0x00000007L) equals 2, then the 21st character in the Trace 2 user-trace buffer is
being displayed in the font selected on the Line Setup menu.

+% In displayf routines, the %m conversion specifier writes input to the window_color and window_modifier

variables. These variables are copied into subsequent data words in the Display Window. In tracef routines, the
%m conversion specifier writes input to trace_buffer_header. The header is then copied into each subsequent
data word in the buffer. Combine attributes via hexadecimal addition.

61-14

61 Display Window and Trace

Table 61-4 (continued)

Bit Mask (hex) Input (hex) Meaning
Color is contained in the third byte of
the long. Combine color attributes via
hexadecimal addition.
17-19 00070000L Background color:
00000000L black
00010000L blue
00020000L green
00030000L cyan
00040000L red
00050000L magenta
00060000L yellow
00070000L white
20-22 00380000L Eoreground color:
00000000L black
00080000L blue
00100000L green
00180000L cyan
00200000L red
00280000L magenta
00300000L yeliow
00380000L white
23 00400000L Color blink:
00000000L no blink
00400000L blink
24 00800000L Color strike-thru:
00000000L no strike-thru
00800000L strike-thru
Enhance attributes, underlining for
example, are contained in the high
byte of the long. Combine
enhancements via hexadecimal
addition.
25 01000000L :
(for monochrome and color)
00000000L no overline
01000000L overline
26 02000000L Blank:
00000000L monochrome display, color display
02000000L monochrome no display, color display
000000L :
27 o (for monochrome and color)
00000000L no underline
04000000L underline

61-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-4 (continued)

Bit Mask (hex) Input (hex) Meaning

28 08000000L Monochrome reverse image:
00000000L no reverse image
08000000L reverse image

29 10000000L Hex:
00000000L no hex
10000000L hex

30 20000000L Monochrome low intensity:
00000000L no low Intensity
20000000L low intensity (RS-170 interface)

31 40000000L Monochrome blink:
00000000L no blink
40000000L blink

32 80000000L Monochrome strike-thru:
00000000L no strike-thru
80000000L strike-thru

61-16

N 61 Display Window and Trace

Table 61-5
Special Graphic Character Sett

Display Input (hex/decimal) Display ‘ Input (hex/decimal)

1 0 1 1a/26
I 1 + 1b/27
- 2 - 1c/28
- 3 | 1d/29
D) 4 T 1e/30
« 5 L 1£/31
i 6 1 20/32
B 7 - 21/33
& 8 N 22/34
B 9 g 23/35

P Q a/10 [| 24/36

\\ E " b1 N 25/37
a c/12 g 26/38
d,11/13,17 | 27/39
2 e/14 N 28/40
£/15 i 29/41
. 10/16 | 2a/42
1 12/18 N 2b/43
I 13/19 w 2c/44
- 14/20 - 2d/45
_ 15/21 = 2e/46
16/22 u 2f/47
4 17123 - 30/48
L 18/24 (space) 31/49
r 19/25

m 4+ Written to the Display Window or a trace buffer when low (modifier) byte of 32-bit data word = 0x01.

61-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-5 (continued)

Display Input (hex/decimal) Display Input (hex/decimal)
¥ 80/128 | 9a/154
o 81/129 Vi 9b/155
r _ 82/130 z 9¢/156
J 83/131 R 9d/157
N 84/132 t 9e/158
. 85/133) 9f/159
3 86/134 5 a0/160
7 87/135 ¥ a1/161
< 88/136 P a2/162
) 89/137 b2 a3/163
I 8a/138 h a4/164
8b/139 v a5/165
+ 8c/140 = a6/166
a 8d/141 2 a7/167
a 8e/142 d a8/168
Y 8f/143 J a9/169
- 90/144 I aa/170
P 91/145 E ab/171
A 92/146 J ac/172
2 93/147 ~ ad/173
I 94/148 b ae/174
95/149 K af/175
» 96/150 R b0/176
F 97/151 IS b1/177
Y 98/152 X b2/178
s 99/153 £ b3/179 B

61-18

61 Display Window and Trace

Tabl§ 61-5 (continued)

Display Input (hex/decimal) Display Input (hex/decimal)
P b4/180 a ce/206
2 b5/181 A cf/207
3 b6/182 E do/208
> b7/183] d1/209
] b8/184 € d2/210
b b9/185 s] d3/211
L ba/186 o d4/212
] bb/187 o d5/213
) bc/188 a d6/214
J bd/189 u d7/215
" be/190 g ds/216
* bf/191 0 d9/217
¢ c0/192 u da/218
u c1/193 ¢ db/219
é c2/194 £ dc/220
a ©3/195 B dd/221
a c4/196 R de/222
a c5/197 k) df/223
a c6/198 a €0/224
¢ c7/199 i e1/225
e ©8/200 a] ©2/226
e ©9/201 a e3/227
e ca/202 A e4/228
1 cb/203 N e5/229
i cc/204 a e6/230
i cd/205 =] e7/231

61-18

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-5 (continued)

Display Input (hex/decimal) Display Input (hex/decimal)
é ©8/232 i ed/237
- ©9/233 o ee/238
- ea/234 § ef/239
‘% eb/235 * 0/240
4 ec/236
displays
Synopsis

extern void displays(string_ptr);
const char * string_ptr;

Description

The displays routine writes output to the Display Window screen, under control
of the string that is pointed to by string_ptr. The displays routine returns when
the end of the string is encountered. The placement of the output on the screen
may be controlled via the-pos_cursor routine. Attributes may not be used in
displays.

Inputs

The input is a pointer to a string composed of zero or more ordinary characters.
Octal or hexadecimal values also may be included in the string, with octal
preceded by \ and hex by \x. Pad each value to three integers with leading
zeroes.

Example
The following entry

pos_cursor(0, 0);
displays(“End of test.”);

produces the following output on the prompt line:
End of test.

The following coding produces the same output:

pos_cursor(0, 0);

const char * string_ptr;
string_ptr = “End of test.”;
displays (string_ptr);

61-20

61 Display Window and Trace

display_prompt
Synopsis
extern void display_prompt(string_ptr);
const char * string_ptr;
ription

The display_prompt routine displays a designated string at the beginning of the
prompt line. The cursor is automatically positioned at row zero, column zero.
Once the prompt is written, the cursor is returned to its previous position. The
softkey equivalent of this routine is the PROMPT action. The prompt is visible on
whichever display screen is active at the time the prompt is written. The most
recent prompt is retained in the Display Window. Attributes may not be used in
display_prompt.

Inputs

The input is a pointer to a string composed of zero or more ordinary characters.
Octal or hexadecimal values also may be included in the string, with octal
preceded by \ and hex by \x. Pad each value to three integers with leading
zeroes.

Example

Refer to the example provided for the displays routine. The same string could
be output to the same position without calling the pos_cursor routine:

display_prompt(“End of test.”);
or
const char * string_ptr;

string_ptr = “End of test.”;
display_prompt (string_ptr);

pos_cursor
Synopsis
extern unsigned int pos_cursor(row, column);

unsigned char row;
unsigned char column;

L e
This routine positions the cursor on the Display Window screen by row and
column numbers.

NOTE: The pos_cursor routine may not be used to position the
cursor on trace screens.

61-21

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Inputs

The first parameter is the row number. Possible values: 0-16. (The top line of
the screen is reserved for header information and cannot be written to.)

The second parameter is the column number. Possible values: 0-63.

Returns

The pos_cursor routine returns the previous cursor position in the form of an
unsigned int. The high byte contains the row number; the low byte identifies the
column number.

Example

To position the cursor at the far left edge of the prompt line on the Display
Window, enter zero for both parameters.

LAYER: 4
STATE: write_to_display
CONDITIONS: KEYBOARD “ "
ACTIONS:
{

pos_cursor(0,0);
displays(“Display on prompt line.”);
} .

restore_cursor

Synopsis

extern void restore_cursor(position);

unsigned int position; -

Description

The restore_cursor routine returns the cursor to a previous position.

NOTE: The restore_cursor routine may not be used to position
the cursor on trace screens.

Inputs

The only input is an unsigned int in the same form that is used by the returned
value of the pos_cursor routine. The high byte identifies the row number. The
low byte identifies the column number.

Example

Suppose the cursor is located in the middle of the Display Window. You want
to write a message to the prompt line, but return to your previous location on -
the screen to continue your display.

61-22

61 Display Window and Trace

{

unsigned int previous;
}
STATE: display
CONDITIONS: KEYBOARD * "
ACTIONS:

{

pos_cursor(8,0);

displays (“This line begins on row 8, column 0 of the Display Window.”);
previous = pos_cursor(0,0);

displays(“This sentence is on the prompt line.”);

restore_cursor(previous);

displays(“This sentence begins on row 8, column 58 of the Display Window, the
position of the cursor at the time pos_cursor(0,0) was called.”);

61.4 Program and User Traces

Unless their sizes are increased, Program Trace and the User Traces retain a
maximum of 4096 characters, equivalent to four full screens when every character
space is used. (See Section (B)2. below on increasing the size of trace buffers.)
When a buffer’s limit is reached, new characters written to the end of the buffer
force out the same number of characters from the beginning of the buffer. The
prompt line is not part of these buffers. Messages are appended to the end of the
buffers. In Freeze mode you may scroll through the buffer using the cursor keys.

You write messages to the User Traces only by using C routines. The Run-mode
softkeys for User Traces—USER TR, TRACE 1, TRACE 2, TRACE 3, TRACE 4, TRACE 5,
TRACE 6, TRACE 7—appear when the buffers are used in a program.

(A) Variables

There are no extern variables associated exclusively with Traces.
(B) Structures

1. Declaring trace buffers. The trace routines that write to any of the trace
buffers require a pointer to the appropriate trace buffer as input. To point
to one of the trace buffers, you must first have declared it as a structure.
The structure that is common to trace buffers is named trace_buf. This
structure is already declared in a file called trace_buf.h located in the
HRD/syslinclude directory. The trace_buf structure contains another
structure, trace_buffer_header, which also is declared in the trace_buf.h file.
(These structures are explained in Table 61-6.) Use the #include
pre—processor directive to include both declarations in your program.

There are eight trace buffers available (including the Program Trace), each
one having its own display screen. All are instances of the trace_buf
structure. Declare each one you use as an extern struct, as in this example:

extern struct trace_buf 11_trbuf;

The names of all the trace buffers are listed in Table 61-6.

61-23

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-6

Trace Buffer Structures

Type

Variable

Value (hex/decimal)

Meaning

Structure Name: trace_buffer_header

unsigned short

unsigned short

unsigned char

unsigned char
unsigned char

unsigned short

unsigned short
unsigned char

unsigned char

logical_end

logical_end_wrap_count

modifier

color
enhance

write_lock

array_size
line_size

spare

Structure Name: trace_buf

struct trace_buffer_header hdr

unsigned long

array [4096]

0-fff10-4095

0
non-zero

0-ff10-255

0-ff10-255

0-fffffl0-65535

1000/4096
0-3f10-63
0

61-24

Structure of a header for trace buffers.
Declared as type extern struct. Declared
automatically if a softkey-entered TRACE action
is taken. Contained in the structure of the trace
buffer. Declaration contained in file named
HRD!syslincludel/trace_buf.h. Written to by %m
conversion specifier.

Because it is an extern structure, values of
component variables should not be altered
directly by the user. In some instances, e.g.,
altering array size, the result could be a crash.

end of data within the buffer. Maximum value is
one less than the array_size.

trace buffer Is not full

trace buffer is full. As new lines are written to
the end of the trace buffer, lines at the beginning
of the buffer are removed. ’

Special-character indicator bit and bit 8 must be
zero. For other specific values and their
meanings,see Table 61-4.

For specific values and their meanings, see
Table 61-4.

For specific values and their meanings, see
Table 61-4.

prevents two processes from writing to the same
buffer at the same time. Should not be altered
by user or future access to the trace buffers
may be locked out.

size of buffer; at present only one value
number of characters in last line in buffer

reserved for future use

Structure of a trace buffer. Declared as type
extern struct. Declared automatically if a
softkey-entered TRACE action is taken.
Declaration contained Iin file named
HRD/syslincludeltrace_buf.h.

structure of the trace-buffer header described
above

array of data words in the buffer

61 Display Window and Trace

Table 61-6 {(continued)

Type Variable

Value (hex/decimal)

Meaning

Structure Name: prog_trbuf

struct trace_buffer_header hdr
unsigned long array [4096]

Structure Name: I1_trbuf

struct trace_buffer_header hdr
unsigned long array [4096]

Structure Name: 12_trbuf

struct trace_buffer_header hdr
unsigned long array [4096]

Structure Name: I13_trbuf

struct traca__Buffer__header hdr

unsigned long

Structure Name: 14_trbuf

array [4096]

struct trace_buffer_header hdr

unsigned long array [4096]

61-25

Structure of the Program Trace buffer, an
instance of the trace_buf structure declared in
file named HRD/sys/includeltrace_buf.h.
Declared as type extern struct trace_buf.
Declared automatically if a softkey-entered
TRACE action is taken. Writing to this buffer
makes the Run-mode PROG TR softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

Structure of one of seven user trace buffers, an
instance of the trace_buf structure declared in
file named HRD/syslincludeltrace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 1 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

Structure of one of seven user trace buffers, an
instance of the trace_buf structure declared in
file named HRD/sysl/includeltrace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 2 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

Structure of one of seven user trace buffers, an
instance of the trace_buf structure declared in
file named HRD/sysl/includeltrace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 3 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

Structure of one of seven user trace buffers, an
instance of the trace_buf structure declared in
file named HRD/syslinclude/trace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 4 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-6 (continued)

Type. Variable

Value (hex/decimal)

Meaning

Structure Name: I5_trbuf

struct trace_buffer_header hdr

unsigned long array [4096]

Structure of one of seven user trace buffers, an
instance of the trace_buf structure declared in
file named HRD/sys/include/trace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 5 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

tr

struct trace_buffer_header

unsigned long

tr

struct trace_buffer_header

unsigned long

: 16_trbuf Structure of one of seven user trace buffers, an

instance of the trace_buf structure declared in
file named HRD/sysl/include/trace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 6 softkey appear.

hdr structure of the trace-buffer header described
above
array [4096] array of data words in the buffer
17_trbuf Structure of one of seven user trace buffers, an

instance of the trace_buf structure declared in
file named HRD/sys/includeltrace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 7 softkey appear.

hdr ' structure of the trace-buffer header described
above
array [4096] array of data words in the buffer

Sizing trace buffers. There is a preprocessor #pragma which allows the user
to configure the size of the data array in each user trace buffer. The syntax
is TRACE-NUMBER SIZE TRACE-NUMBER SIZE. . . . Trace number 0
refers to the Program Trace buffer, and trace-number “*” allows all
trace-buffer arrays to be set at once. All sizes are given in terms of
four-byte array elements.

The example below first sets all trace-buffer arrays to 16,000 elements, and
then down-sizes array number 3 to 2,048 elements.

#pragma tracebuf * 16000 3 2048

When a trace buffer is declared, its array will have the size specified in the
#pragma tracebuf directive. If the buffer was not referenced in a #pragma
tracebuf directive, its array size will default to 4,096. The maximum size for
a trace-buffer array is 16,381 elements. If you specify a size that is too
small or too large, an error message will be displayed.

61-26

61 _Display Window and Trace

(C) Routines

The four trace routines are tracec, tracef, stracef, and traces. These routines
are defined below. The softkey TRACE action is built on the tracef routine.

The first argument in three of the trace routines is the address of the trace
buffer into which you want output written. Each time you call a trace routine,
tracef for example, variables in the named trace-buffer structure are updated.
Those variables which store attributes are updated when the %m conversion
specifier is used in the tracef routine parameter. When %m is not present, the
routine applies the attributes currently stored in the color, modifier, and enhance
variables.

The second argument in all trace routines is the character, string, or format
pointer to the data that will be written to the selected trace buffer.

The tracef routine allows you to add attributes to messages on the Program
Trace screen and User Traces. These attributes are listed in Table 61-4.

Each trace operation appends output to the end of the trace buffer. You may
not use the pos_cursor routine to position the cursor on any trace screen. New
lines (or blank lines) may be generated via the “\n” nonliteral. Put the “\n”
nonliteral at the end of the string to generate a leading blank line on the
selected trace screen:

tracef(&prog_trbuf, “This trace message will generate a leading blank line.\n”);

During real-time display, this line moves just ahead of the freshest trace message
and continuously overwrites the oldest one. If you put the “\n” sequence at the
beginning of the format string, no leading blank line will help you distinguish
new messages from the old:

tracef (&prog_trbuf, “\nThis message will not generate a leading blank line.”);

tracec
Synopsis
extern void tracec(trace_buffer_ptr, character);

extern struct trace_buf * trace_buffer_ptr;
const char character;

D Lo
The tracec routine outputs a single ASCII character to the trace screen
indicated.

Inputs

The first parameter is a pointer to the trace buffer into which the character will
be written.

For the second parameter, see the displayc routine.

61-27

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example

In this instance, output will be written to the Program Trace screen.

{
#include <trace_buf.h>
extern struct trace_buf prog_trbuf;
} -
LAYER: 2
STATE: display_to_prog_tr
CONDITIONS: KEYBOARD * "
ACTIONS:
{
tracec(&prog_trbuf, ‘a’);
tracec(&prog_trbuf, ‘\n’);
tracec(&prog_trbuf,65);
tracec(&prog_trbuf, ‘\n’);
tracec(&prog_trbuf,0x65);
tracec(&prog_trbuf, ‘\n’);
tracec(&prog_trbuf,065);

When the user views the PROG TR screen, the output will look like this:

o >N

tracef
Synopsis
extern int tracef(trace_buffer_ptr, format_ptr, . . .);

extern struct trace_buf * trace_buffer_ptr;
const char * format_ptr;

D o
The tracef routine writes output to a specified trace screen, under control of the
string, pointed to by format_ptr, that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated but otherwise ignored. The tracef routine
returns when the end of the format string is encountered.

Inputs

The first parameter is a pointer to the trace buffer into which the output will be
written.

For the second parameter, see the displayf routine. Placement of “\n” in the
format string of a call to tracef generates a blank new line on the selected trace
screen. (In a displayf routine, the newline character does not blank the new
line.)

61-28

61 Display Window and Trace

Attributes are written via the %m conversion specifier to trace_buf.hdr.modifier,

trace_buf.hdr.color, and trace_buf.hdr.enhance. The attributes are copied from
these variables into subsequent 32-bit data words in the Program Trace and User
Traces. Table 61-4 shows the format of this 32-bit word.

Returns

The tracef routine returns the number of characters displayed, or a negative
value if the unit is in freeze mode.

Example

This program traces X.29 PAD-control messages in DTE and DCE data packets.
The letters “DCE” are underlined in the DCE trace lines.

LAYER: 3

{
#include <trace_buf. h>
extern struct trace_buf [3_trbuf;
extern unsigned char * m_packet_info_ptr;
extern unsigned short m_packet_lcn;
unsigned char pad_ctrl_msg;

STATE: packet_type
CONDITIONS: DTE DATA Q=1
ACTIONS:

{
pad_ctrl_msg = m_packet_info_ptr[0];
tracef (&I3_trbuf, “DTE LCN:%.3x PAD MSG:%.2x\n”, m_packet_lcn,
pad_ctrl_msg);

}
CONDITIONS: DCE DATA Q=1
ACTIONS:

pad_ctrl_msg = m_packet_info_ptr[0];
tracef (&I13_trbuf, “%mDCE%m LCN:%.3x PAD MSG:%.2x\n”, 0x04000000L,
0x00000000L, m_packet_Icn, pad_ctrl_msg);

stracef
Synopsis
extern void stracef(array_ptr, string_ptr);

unsigned long array_ptr;
const char * string_ptr;

Descripti

The stracef routine is similar to the tracef routine, except that stracef writes
output to a variable, while tracef writes output to a trace screen. The output is
under control of the string pointed to by string_ptr that specifies how subsequent
arguments are converted for output. If there are insufficient arguments for the
format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The stracef
routine returns when the end of the format string is encountered.

61-29

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The stracef routine differs from sprintf in that it generates an array of longs,
whereas sprintf generates an array of chars. When the stracef array is written to
a trace buffer (or to the Display Window) it carries its predefined attributes
along with it. An sprintf array, by contrast, will receive the attributes that are
active in the buffer at the moment.

At the end of the output string, there will be a null character with the Special
Character Indicator bit set in its modifier attribute-byte.

Inputs

The first parameter is a pointer to the variable into which output will be written.
The array which will hold output must be declared as a long. By allocating 32
bits for each element, the array may accommodate attributes assigned via the
%m conversion specifier. Attributes comprise 24 bits of the long. The preferred
form of the declaration is unsigned long name [100]. The size and name of the
array are user-determined.

For the second parameter, see the displayf routine.

Example

This program traces X.29 PAD-control messages for DTE and DCE data
packets. The resulting trace is identical to the one generated by the example
under tracef. Note that attributes that are turned on in an stracef array do not
need to be turned off after the array has been brought, via the %b conversion
specifier, into a tracef format string.

LAYER: 3

{
#include <trace_buf.h>
extern struct trace_buf 13_trbuf;
extern unsigned char * m_packet_info_ptr;
extern unsigned short m_packet_lcn;
unsigned char pad_ctrl_msg;
unsigned long source(4];

STATE: packet_type
CONDITIONS: DTE DATA Q=1
ACTIONS:

stracef (source, “%s”, “DTE”);
}
NEXT_STATE: pad_msg_trace
CONDITIONS: DCE DATA Q=1
ACTIONS:
stracef (source, “%m%s”, 0x04000000L, “DCE”);
NEXT_STATE: pad_msg_trace
STATE: pad_msg_trace
CONDITIONS: ENTER_STATE
ACTIONS:
pad_ctri_msg = m_packet_info_ptr[0];
tracef (&13_trbuf, “%b LCN:%.3x PAD MSG:%.2x\n", source, m _packet_lcn,
pad_ctrl_msg);

}
NEXT_STATE: packet_type

61-30

61 Display Window and Trace

traces
Synopsis
extern void traces(trace_buffer_ptr, string_ptr);

extern struct trace_buf trace_buffer_ptr;
const char * string_ptr;

D L
The traces routine writes output to a specified trace screen, under control of the

string that is referenced by string_ptr. The traces routine returns when the end
of the string is encountered.

Inputs

The first parameter is a pointer to the trace buffer into which the output will be
written.

For the second parameter, see the displays routine.

Example
In this instance, output will be written to the TRACE 1 screen.

The following entry

{
#include <trace_buf. h>
extern struct trace_buf 11_trbuf;
}
LAYER: 1
STATE: any
CONDITIONS: KEYBOARD “ ”
ACTIONS:
{ ')
traces(&l1_trbuf, “End of test.”);
}

produces the following output on the TRACE 1 trace screen:
End of test.

The following coding produces the same output:

{
#include <trace_buf.h>
extern struct trace_buf 11_trbuf;

}
LAYER: 1
STATE: any
CONDITIONS: KEYBOARD “ "
ACTIONS:
{

const char * string_ptr;
string_ptr = “End of test.”;
traces (&l11_trbuf, string_ptr);
} .

61-31

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

61.5 Attributes

Attributes are written to the Display Window and to the trace buffers in 32-bit words
that include 8 bits of character data (the second-lowest byte) and 24 bits of
attributes. The format of the 32-bit data word, given in Table 61-4, is the same for
the Display Window and for the trace buffers.

In displayf routines, the %m conversion specifier writes input to window_color and
window_modifier variables. These variables are then copied into data words written to
the Display Window by string pointers in this and subsequent displayf routines. See
Figure 61-1. :

In tracef routines, the %m conversion specifier writes input to the
trace_buffer_header structure for a particular user-trace buffer. The header is then
copied into each data word written to the particular user buffer by string pointers in
this and subsequent tracef routines. See Figure 61-2.

(A) Applying Attributes As Data Is Buffered

There are two ways an attribute may be assigned to a character in the Display
Window. One way uses the %m conversion specifier to assign attributes to the
window_color and window_modifier variables. This program, for example,
includes a displayf routine that uses the %m conversion specifier to write
underlined data to the Display Window:

STATE: apply_attribute_to_window_color_variable
CONDITIONS: ENTER_STATE
ACTIONS:
{

pos_cursor (1,0);
displayf (“%mThis data is underlined in the Display Window.”, 0x04000000L);

}

The chart in Table 61-4 shows the hex value 04000000L in the “input” column
alongside the underline attribute. This means that when the value 0x04000000L
is input to the conversion specifier %m, an underline attribute is applied to the
current displayf string and any that follow until the attribute is turned off. The
underline attribute actually is applied to the external window_color variable. See
Table 61-2. The window_color and window_modifier variables lend their
attributes to every character that is written in a format string to the Display
Window. In Run mode if the user presses the softkey for DSP WND, he will see
his underlined string. Subsequent characters or strings written to the Display
Window also will be underlined.

61-32

"~

61 Display Window and Trace

display_window_buffer[0]

- —

display_window_buffer[1]

o —

display_window_buffer[2]

- —

display_window_buffer[3]

- —

displayf(“%mDATA”, 0xQ8100000L);

-
/,/

|
|

-~ /7
- rd l
-
‘// ’/ Y
(enhance) (color) window_modifier
I O T
16 8 1 Bits i
|
) |
window_color !
|
| | |
| | |
i | |
| |]
| \J Y
(enhance) (color) (character) (modifier)
% 1 D %
HENEREE EN R AR N RN
32 24 16 8 1 Bits
% R A %
AR NN R |
32 24 16 8 1 Bits
% 1 T %
HEEENEE NN NN AR
32 24 16 8 1 Bits
%) A %
EEEBEEEREEREEREN EEEEEEER RN
32 24 16 8 1 Bits

display_window_buffer [1088]

Figure 61-1 When a displayf routine is called, the attributes assigned via the %m
conversion specifier are stored in two extern variables, accessible to the user. Both
color and enhance attributes are contained in window_color. The low byte in
window_color indicates the color; the high byte contains enhancements. In this
example, the following attributes will be assigned to characters written to the

Display Window: reverse-image enhancement, green-on-black color, and ASCII

font. Before a character is written to the Display Window, it is combined in a long
with its attributes, as mapped in the figure.

61-33

INTERVIEW 7000 Series Advanced Programming:

ATLC-107-951-108

tracef(&/1_trbuf, “%mDATA”, 0xQ81000Q90L);

11_trbuf.hdr

11_trbuf.array[0]

I1_trbuf.array[1]

11_trbuf.array[2]

I1_trbuf.array[3]

7,0 7
/
/////
g/
117
/ III/ 11_trbuf
!
e
Py
\ \ \‘——----——'—--——_-—-—---———-—‘-
\ \\ X modifier '
\ e G G I G G G G GUS G SN G G G G SN S SN S — — — s w—
\ [l
L l | enhance r
| | |
]] |
| | |
\j v \j
(enhance) (color) (character) (modifier)
- o 0') D °o
HEREREE NN RN RN
32 24 16 8 1 Bits
> % Yo A %
HEEEEEE NN NN AN
32 24 16 8 1 Bits
-— % % T %
HEEEEERE R RN AN AR
32 24 16 8 1 Bits
- — O' ‘0 A 00
NEEEREE EEEEEE RN RN
32 24 16 8 1 Bits
I11_trbuf.array [4096]

Figure 61-2 When a tracef routine is called, the attributes assigned via the %m
conversion specifier are stored in three variables in the trace-buffer header of a
designated buffer. In this example, !I_trbuf. hdr holds the following attributes:
reverse~image enhancement, green-on-black color, and ASCII font. Before a
character is written to the buffer, it is combined in a long with its attributes, as

mapped in the figure.

61-34

61 _Display Window and Trace

The same attribute could be applied to a string in any of the user-trace buffers,
as follows:

{
#include <trace_buf. h>
extern struct trace_buf 11_trbuf;

}
STATE: apply_attribute_to_header
CONDITIONS: ENTER_STATE
ACTIONS:

{
tracef (&11_trbuf, “%mThis data is underlined.”, 0x04000000L);
}

Only the header for the TRACE 1 display is affected by this %m conversion.
Only the TRACE 1 buffer is written to. When other trace buffers are
subsequently written to, the strings will not receive underlining as a result of the
attributes applied above to the TRACE 1 header.

(B) Applying Attributes to Buffered Data

The Display Window is an array of 1,088 long integers, each including one byte
of character data and three bytes of attributes. The character data is generated
by strings in display routines. The attributes for each character are derived from
the current window_color and window_modifier values at the time the character
is written to the display-window buffer.

Once the data word is written to the buffer as an element in the array, it can be
accessed and written to—and therefore changed—the same as any other location
in memory. In the example that follows, a string is written to the Display
Window without underlining. Then, as a result of a keyboard input from the
operator, the first 32-bit word in the string (containing the first character, the
letter “T”) is given a new value that includes the underline attribute.

{
extern unsigned long display_window_buffer[1088];
extern struct
{
unsigned char mpm;
unsigned char cpm;
}
display_window_index_buffer[17];
}
STATE: apply_attribute_directly_to_display_window
CONDITIONS: ENTER_STATE
ACTIONS:
{
pos_cursor(1,0);
displayf (“This data is not underlined.”);
}

61-35

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

CONDITIONS: KEYBOARD “ "

ACTIONS:
{
display_window_buffer[64] = ((display_window_buffer(64] & ~0x04000000L) |
0x04000000L);
display_window_index_buffer[1].mpm ++;

}

Incrementing display_window_index_buffer. mpm is necessary to alert the
processor on the CPM card (containing the display—controller software) that the
program has changed the contents of the Display Window. Refer to Table 61-3
for an explanation of this structure.

The bitwise anding and oring in the example are necessary if you want to change
certain bits in the word without affecting others. Note that the value whose
complement (~) is anded with display_window_buffer element #64 is the “mask”
for the underline attribute in Table 61-4; and the value to the right of the or
operator (]) is the “input” value for the underline attribute.

61-36

61 Display Window and Trace

Table 61-7

Conversion Specifiers

Specifier

Argument type

Conversion Type

%b

%l
%cC
%#c

%d
%ld
%H

%0
%lo
%#0

%#l0

%p

%S

%#s

%U
%lu
%#u

%#lu

integer-array pointer

integer
unsigned character

unsigned character

integer
integer

character-array pointer

integer

integer
integer

integer
integer

integer

character-array pointer

character-array pointer

integer
integer

integer

integer

61-37

array of long integers. 2nd byte of each
long is displayed as character. 1st, 3rd, and
4th bytes interpreted as attributes. Array
begins at pointer, ends at element containing
null character and Special Character bit = 1.

signed decimal representing 15-bit value

unsigned character

newline character displayed as v rather than
acted on

signed decimal representing 15-bit value
signed decimal representing 31-bit value

character array indicated by argument
appears as small hex characters.
(Precision as to number of characters
becomes length of the array, overriding
usual null-termination of strings.)

long integer not displayed or printed, but
written to attribute header-variable for Display
Window or for one of the trace buffers

unsigned octal representing 16-bit value
unsigned octal representing 32-bit value

unsigned octal representing 16-bit value,
preceded by 0

unsigned octal representing 32-bit value,
preceded by 0

unsigned hexadecimal (lower-case letters)
representing 32-bit value, with a minimum §
digits displayed and a colon between the 4
right-hand digits and the 1-4 left-hand digits.
Useful for displaying CPU segment number and
offset.

array of characters beginning at pointer and
ending at null terminator or at array-length
precision, whichever occurs first

newline character displayed as ' rather than
acted on

unsigned decimal representing 16-bit value
unsigned decimal representing 32-bit value

hex characters (example: ®:%s) representing
16-bit value

hex characters (example: %%5%';)
representing 32-bit value

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-7 (continued)

Specifier Argument type Conversion Type

%X integer unsigned hexadecimal (lower-case letters)
representing 16-bit value

%Ix integer unsigned hexadecimal (lower-case letters)
representing 32-bit value

%#X integer unsigned hexadecimal (lower-case letters)
representing 16-bit value, preceded by 0x

% #lx integer unsigned hexadecimal (lower-case letters)
representing 32-bit value, preceded by 0x

%X integer unsigned hexadecimal (upper-case letters)
representing 16-bit value

%IX integer unsigned hexadecimal (upper-case letters)
representing 32-bit value

%#X integer unsigned hexadecimal (upper-case letters)
representing 16-bit value, preceded by 0x

%#IX integer unsigned hexadecimal (upper-case letters)
representing 32-bit value, preceded by Ox

%\n none displays an ‘v

% % none displays a % e

61.6 Protocol Trace Buffers

There are two Protocol Trace buffers, one dedicated to Layer 2 and the other to
Layer 3 data. Run-mode softkeys for accessing these traces—PROTOCL, L2TRACE,
and L3TRACE—appear when personality packages are loaded in at Layers 2 and 3.
The prompt line is not part of these buffers.

The size of each Protocol Trace buffer is 65,536 bytes. Of this total, two bytes are
dedicated to the buffer header and two bytes to the trailer. The usable size of a
Protocol Trace buffer, therefore, is 65,532 bytes. When a buffer’s limit is reached,
new characters written to the end of the buffer force out the same number of
characters from the beginning of the buffer. In Freeze mode you may scroll through
the buffer using the cursor keys.

You cannot write directly to the Protocol Trace buffers. Monitor the position within
the buffers, as well as the wrap count, using the variables and structures discussed
below.

(A) Variables

The addresses of the variables in Table 61-8 identify the physical location of the
beginning and end of each Protocol Trace buffer. The beginning position is at i
the first data byte in the buffer. The end is just after the last data byte.

61-38

61 Display Window and Trace

Table 61-8
Protocol Trace Buffer Variables

Type Variable Value (hex/decimal) Meaning

extern unsigned char 12pp_trbuff ' First data byte in the Layer 2
Protocol Trace buffer. Address
of this variable—segment
number plus offset—will indicate
the physical location of the first
data byte, two bytes from the
beginning of the buffer. Line
Setup configured for emulate or
monitor mode.

extern unsigned long 12pp_trbuff_end First byte in the two-byte trailer
of the Layer 2 Protocol Trace
buffer—i.e., after the last data
byte. Address of this
variable—segment number plus
offset—will indicate the physical
location of the end of the data
area, hexadecimal FFFE bytes
from the beginning of the
buffer. Line Setup configured
for emulate or monitor mode.

extern unsigned char 13pp_trbuff First data byte in the Layer 3
Protocol Trace buffer. Address
of this variable—segment
number plus offset—will indicate
the physical location of the first
data byte, two bytes from the
beginning of the buffer. Line
Setup configured for emulate or
monitor mode.

extern unsigned long 13pp_trbuff_end First byte in the two-byte trailer
of the Layer 3 Protocol Trace
buffer—i.e., after the last data
byte. Address of this
variable—segment number plus
offset—will indicate the physical
location of the end of the data
area, hexadecimal FFFE bytes
from the beginning of the
buffer. Line Setup configured
for emulate or monitor mode.

61-39

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(B) Structures

The structure variables in Table 61-9 contain the high and low bytes of a
beginning and ending offset and wrap-count in the Layer 2 and Layer 3
Protocol Trace buffers. Create a logical beginning (or ending) offset within a
buffer by combining the two offset-variables relating to a beginning (or ending)
position into a single, two-byte offset. Add the resulting offset to the address of
13_trbuff to identify the physical address of a logical location.

The example below uses #define preprocessor directives for determining
beginning and ending offsets in the Layer 3 Protocol Trace buffer. When
get_I3pp_value_end is encountered in a program, for example, each of the two
“end” offset-variables is cast into a long and, if necessary, shifted left to its
appropriate position in an offset. Then the two variables are added together.

#define get_13pp_value_begin
(((unsigned long) (13pp_trbuff_ctl.begin_off hi) << 8) +
((unsigned long) (13pp_trbuff ctl.begin _off lo)))

#define get _13pp_value_end
(((unsigned long) (13pp_trbuff_ctl.end_off_hi) << 8) +
((unsigned long) (I13pp_trbuff ctl.end_off_lo)))

When the ending offset, in this example, is added to the address of I3_trbuff,
the result is the address of the logical end in the buffer:

unsigned long end_address;
end_address = &I3_trbuff + get_I3pp_value_end;

You may also use the offsets and wrap counts to determine how much data is
currently in the buffer. Include the wrap count in the high two bytes of a
four-byte offset. Then subtract the beginning offset from the ending offset.

#define get_13pp_value_begin

(((unsigned long) (13pp_trbuff_ctl.begin_wrap_hi) << 24) +
((unsigned long) (13pp_trbuff_ctl.begin_wrap_lo) << 16) +
((unsigned long) (13pp_trbuff_ctl. begin_off_hi) << 8) +
((unsigned long) (13pp_trbuff ctl.begin_off lo)))

#define get_13pp_value_end

(((unsigned long) (13pp_trbuff ctl.end_wrap_hi) << 24) +
((unsigned long) (13pp_trbuff _ctl.end_wrap_lo) << 16) +
{(unsigned long) (13pp_trbuff_ctl.end_off_hi) << 8) +
((unsigned long) (13pp_trbuff_ctl.end_off l0)))

unsigned long end, begin, count;
end = get_I3pp value_end;

begin = get_I3pp_value_begin;
count = end - begin;

61-40

61 Display Window and Trace

Table 61-9
Protocol Trace Buffer Structures

Value (hex/decimal)

Meaning

Type Variable
Structure Name: Ipp_trbuff_ctl
unsigned char begin_off_hi
unsigned char begin_off_lo
unsigned char begin_wrap_hi

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

begin_wrap_lo

end_off_hi

end_off_lo

end_wrap_hi

end_wrap_lo

Structure Name: [2pp_trbuff_ctl

0-ff10-255

0-1f10-255

0-ff10-255

0-ff10-255

0-ff10-255

0-ff10-255

0-ff10-255

0-ff10-255

61-41

Declared as type struct. The variables contained
in this structure monitor logical location in a
Protocol Trace buffer. Reference structure
variables as follows: Ipp_trbuff_ctl.begin_off_hi.

High byte of a 2-byte offset from the physical
beginning of the Protocol Trace buffer to a
logical beginning in the buffer. Range of the
two-byte offset is 2 through hexadecimal FFFE.

Low byte of a 2-byte offset from the physical
beginning of the Protocol Trace buffer to a
logical beginning in the buffer. Range of the
two-byte offset is 2 through hexadecimal FFFE.

High byte of a 2-byte count of the number of
times a /logical beginning has wrapped through
the Protocol Trace buffer.

Low byte of a 2-byte count of the humber of
times a logical beginning has wrapped through
the Protocol Trace buffer. It will have a value of
zero only once. Once the count reaches
hexadecimal FFFF, it will wrap to one.

High byte of a 2-byte offset from the physical
beginning of the Protocol Trace buffer to a
logical end in the buffer. Range of the two-byte
offset is 2 through hexadecimal FFFE.

Low byte of a 2-byte offset from the physical
beginning of the Protocol Trace buffer to a
logical end in the buffer. Range of the two-byte
offset Is 2 through hexadecimal FFFE.

High byte of a 2-byte count of the number of
times a logical end has wrapped through the
Protocol Trace buffer.

Low byte of a 2-byte count of the number of
times a /ogical end has wrapped through the
Protocol Trace buffer. It will have a value of zero
only once. Once the count reaches hexadecimal
FFFF, it will wrap to one.

An instance of the Ipp_trbuff_ctl structure,
declared as type extern struct lpp_trbuff_ctl.
The variables contained in this structure monitor
logical location in the Layer 2 Protocol Trace
buffer. Has the same structure as
Ipp_trbuff_ctl. Reference structure variables as
follows: [2pp_trbuff_ctl.begin_off_h.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 61-9 (continued)

Type Variable Value (hex/decimal)

Meaning

Structure Name: [3pp_trbuff_ctl

An Instance of the lpp_trbuff_ctl structure,
declared as type extern struct Ipp_trbuff_ctl.
The variables contained in this structure monitor
logical location in the Layer 3 Protocol Trace
buffer. Has the same structure as
Ipp_trbuff_ctl. Reference structure variables as
follows: [3pp_trbuff_ctl.begin_off_h.

(C) Routines

There are no routines associated exclusively with Protocol Traces.

61-42

62 Counters, Timers, and Accumulators

62 Counters, Timers, and Accumulators

62.1

Counters

The translator declares the following structure for counters that are entered as softkey
tokens on the Protocol Spreadsheet:

struct counter_struct

{
unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short out_of range;
unsigned short changed;
unsigned long prev;
unsigned long old;

Y

struct counter_struct counter_name={0,0,0,~0ul};

The first eight counter variables in the structure are used to calculate statistical values
whenever the counter is sampled. See Table 62-1. Three of the

.variables—counter_name.current, counter_name.prev, and counter_name.old—come

into play each time the counter is incremented, decremented, or set to a particular
value.

Counters are internal program variables and counter interrupts are strictly
program-generated signals, so the C programmer is free to ignore this structure and
maintain counts and statistics in a different way. Please note, however, that the
68010 CPU expects this counter structure when it polls the 80286 periodically for
statistical values to display in columns on the tabular and graphic stats screens.

(A) Current, Previous, and Old Values

When a counter is incremented, decremented, or set to a specific value on the
Protocol Spreadsheet, the program does not signal a counter_name_change
interrupt automatically. First it verifies that the new value of the counter really
is a change from the previous value. See Table 62-2. For this comparison, the
program needs to maintain two variables, counter_name.current and
counter_name.prev.

62-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 62-1

Counter Structures

Type

Variable

Meaning

Structure Name: counter_struct

unsigned long
unsigned long
unsigned long
unsigned long
unsigned short

unsigned long
unsigned short

unsigned short
unsigned short

unsigned short
unsigned long

unsigned long

current

last

maximum
minimum
sample_count

total_high
total_low_low

total_low_high
out_of_range

changed
prev

old

Structure of a counter. Declared as type struct.
Declared automatically if a program counter is
used. Program counters assigned to structure
as follows: struct counter_struct counter_name.
Reference a structure variable as follows:
counter_name.current.

This value of the counter is acted on directly by
program actions.

Last sampled value; displayed on the tabular
statistics screen.

Maximum value of all samples; displayed on the
tabular statistics screen.

Minimum value of all samples; displayed on the
tabular statistics screen. Should be initialized as
~Qul.

Number of samples.
High four bytes of an eight-byte counter total.

Low two bytes of an eight-byte counter total.
This two-byte variable counts to 65,535.

Bytes 3 and 4 of an eight-byte counter total.

Number Is out of range, either incremented
beyond the range or decremented below 0;
should not be factored into averages.

For future use.

When converting a counter action to C, the
translator compares prev with current to
determine whether counter has changed. Then
prev is updated to current and
counter_name_change is signaled.

When converting a counter condition to C, the
translator compares o/d with current to
determine whether true condition is new
(transitional). After program logic has examined
counter, old is updated to prev.

Here, for example, is the C translation of the simple action COUNTER example

SET S.

counter_example.current = 5;
if (counter_example.prev = counter_example.current)

{

counter_example.old = counter_example. prev;
counter_example.prev = counter_example.current;
signal (counter_example_change);

}

62-2

62 Counters, Timers, and Accumulators

Table 62-2
Counter Variables

Type Variable Meaning

extern event counter_name_change True when the named counter is
incremented, decremented, or
set to new value. This event will
not be triggered unless a
spreadsheet condition names
the counter. Line Setup
configured for emulate or
monitor mode.

It is clear from the translation that the variable counter_example.prev is used to
limit the number of counter_example_change interrupts to those cases where the
current value of the counter really has changed.

What is counter_name.old used for? We will preface the answer by citing the
behavior of the counter in the following spreadsheet example.

STATE: threshold_condition
CONDITIONS: KEYBOARD “ "
ACTIONS: COUNTER spacebar INC
CONDITIONS: COUNTER spacebar GE 7
ACTIONS: ALARM

Each time you press the space bar while this program is running, the counter will
increment, but no matter how many times you press the space bar the alarm will
only sound once. It will sound on the seventh keystroke, the first time the
counter is greater than or equal to 7. If the program had a decrement or set
action that lowered the counter to less than 7, the alarm would sound again
when the counter reached the 7 threshold.

The translator accomplishes this threshold condition by coding the waitfor clause
as follows:

counter_spacebar_change && (! (counter_spacebar.old >= 7)) && (counter_spacebar.current >= 7):
Since counter_spacebar.prev was used (and then updated to “current”) in the if
statement that sent the counter_spacebar_change interrupt, the “old” value is

required in the waitfor condition to insure a “transitional” or “threshold”
counter condition.

62-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(B) Sampling a Counter

Here is the translator’s version of a counter sample action:

counter_name.last = counter_name.current;
if (counter_name.current > counter_name.maximum)
counter_name.maximum = counter_name.current;

if (counter_name.current < counter_name.minimum)
counter_name.minimum = counter_name.current;

}

counter_name. sample__coun t++;

{
unsigned long temp;
temp = (counter_name.current & 0x0000ffff) + counter_name.total_low_low;
counter_name.total_low_low = temp;
temp = (counter_name.current >> 16) + counter_name.total_low_high + (temp >> 16);
counter_name.total_low_high = temp;
counter_name.total_high += temp >> 16;

}

counter_name.current = 0;

In order to establish an average value for all samples, a grand total for current
values at the time of each sampling must be maintained. Since an ordinary
INTERVIEW current counter is 32 bits, the counter that maintains the grand
total of current counts must be larger (64 bits). There is no data type this large
in C, and so the “total” counter is distributed among three variables and the
somewhat complicated coding involving the temp variable is required to add the
current counter to this composite counter.

(C) Updating the Statistics Screen

The CPM polls the MPM continuously to see if data is available to be output to
the printer or the plasma display. This data includes character data, trace data,
prompts, and values to be posted to the statistics screens.

In order to know where on the statistics screens the values for the particular
counters (and timers and accumulators) should be placed, the 68010 CPU on
the CPM needs some help from the program (that is, from the MPM). This
help is in the form of a “stat message” that the translator (or the programmer)
codes once at the beginning of the program. The stat message is a structure that
the MPM sends to the CPM. See Table 62-3. The stat message says, in effect,
“Here is the address of a counter structure. When you access this structure
during the running of the program in order to pull out the current, last,
maximum, minimum, total, and sample-count values, display those values on the
row of the tabular stats screen where the user has typed spacebar” (for
example).

62-4

62 Counters, Timers, and Accumulators

Table 62-3

Counter, Timer, and Accumulator Structures

Type Variable

Value (hex/decimal)

Meaning

Structure Name: stat_msg

unsigned short op_type

unsigned short type

! unsigned long object_name

unsigned long object_address

0a00/2560

0
0100/256
0200/512

Structure of a stat message. A stat message is
sent once for each named counter, timer, or
accumulator. Declared as type struct. Declared
automatically if a softkey-entered COUNTER is
used as a condition, or if softkey-entered
COUNTER, TIMER, or ACCUMUL action is taken.
Program stat messages assigned to structure as
follows: struct stat_msg name. You must
assign values to the elements of the structure.
Reference a structure variable as follows:
name.type.

Register statistics objects from the MPM to the
CPM. Other values and meanings for future use.

accumulator
counter
timer

The MPM (80286) address of a counter, timer,
or accumulator name, converted to CPM (68010)
format. To get an object_name address, enter:
name .object_name =
get_68k_phys_addr(“name_of_counter”);

The MPM (80286) address of a counter, timer,
or accumulator structure, converted to CPM
(68010) format. To get a structure address for
a counter, enter: name.object_address =
get_68k_phys_addr(&counter_name_of_counter);

Here is a C program that causes the current value of a counter named “key” to
increment on the tabular-statistics screen each time an ASCII-keyboard key is

struck.

{

Struct

{

unsigned short op_type;
unsigned short type;

unsigned long object_name;
unsigned long object_address;

} stat_msg;
q\ extern unsigned long get_68k_phys_addr();

62-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

struct counter_struct
{
unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short out_of range;
unsigned short changed;
unsigned long prev;
unsigned long old;
b
struct counter_structure counter_key;
extern fast_event keyboard_new_key;

STATE: update_stat_screen

{
stat_msg.op_type = 2560;
stat_msg.type = 256;
stat_msg.object_name = get_68k_phys_addr(“key”);
stat_msg.object_address = get_68k_phys_addr(&counter_key);
send_stat_message(&stat_msg);
waitfor

{

keyboard_new_key:
{

counter_key.current++;

}
}

The variable stat_msg.object_name is a pointer to the name of the counter that
the user has entered on the protocol spreadsheet. The program gives this name
to the CPM, and expects the CPM to locate the name among the names that
the user has entered on the tabular or graphic statistics menu. The delivery to
the CPM of a pointer to the stats-menu name and a pointer to the counter
structure is the purpose of the stat message. The message allows the CPM to
correlate a line on the statistics results screen with an actual program counter (or
timer or accumulator).

62-6

62 Counters, Timers, and Accumulators

NOTE TO C PROGRAMMERS: When the translator creates a
counter variable it adds the prefix counter_ to the spreadsheet
name, but the programmer who is working primarily in C and is
not making use of spreadsheet counters can name the counter
any way he wishes, with or without the prefix. Similarly, the
string that is communicated to the CPM in stat_msg.object_name
(“key” in the example above) must agree with the name on the
stats menu, but it need not bear any resemblance to the name of
the counter structure.

NOTE ALSO: In most of the examples in this manual, we have
not bothered to declare routines since it is not necessary. In the
absence of a declaration, the compiler assumes that the routine is
external and that it returns an integer. In nearly all cases, this

assumption works. get_68k_phys_addr() returns a long, however,
and must be declared.

62-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

62.2

Timers

The translator declares the following structure for timers that are entered as softkey
tokens on the Protocol Spreadsheet:

Struct timer_struct

{
unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned long start_tick_value;
unsigned short running;
unsigned short changed;

};

There are no timer conditions in the software (since timeouts provide the
time-triggering function), and therefore all of the variables in the structure serve as
data for the CPM when it updates the stats screens. See Table 62-4. A stat message
must be sent so the CPM can correlate a line on the statistics results screen with the
correct program timer. The stat message is documented in the previous section on
counters. The timer stat message is different only in respect that the stat_msg.type
element should be set to 512 instead of 256.

Timer restart, continue, and stop actions are explained in this section. The clear
action is simply a matter of changing the elements in the structure to zero (except for
timer_name.minimum, which becomes the one’s complement of zero).

(A) Time Ticks

Time ticks are timed increments of either of two hardware counters in the
INTERVIEW. The programmer can select which of the two timing mechanisms
to use for a given timer.

One tick—-counter is on the FEB card and is used to time-stamp incoming data
and EIA leads. The intervals between ticks is determined on the FEB Setup
menu. Ticks can be enabled/disabled on the same menu. The current value of
this counter is available in a variable called /I_tick_count. See Table 62-5. The
current value always reflects the number of ticks since the program entered Run
mode. The number of ticks may or may not equate to the amount of time in
Run mode, since ticks are also encoded in playback data and the playback rate
is subject to “local conditions” such as playback speed and idle suppression.

FEB time ticks are the most precise timing mechanism in that they have a
resolution to 10 microseconds. They also represent the most durable method of
timekeeping, since they preserve the original data timings even during playback.

62-8

62 Counters, Timers, and Accumulators

Table 62-4

Timer Structures

Value (hex/decimal)

Meaning

Type Variable
Structure Name: timer_struct
unsigned long current
unsigned long last
unsigned long maximum
unsigned long minimum

unsigned short
unsigned long

unsigned short
unsigned short

unsigned long

unsigned short

unsigned short

sample_count
total_high
total_low_low
total_low_high
start_tick_value

running

changed

Structure of a timer. Declared as type struct.
Declared automatically if a program timer is
used. Program timers assigned to structure as
follows: struct timer_struct timer_name.
Reference a structure variable as follows:
timer_name.current.

Current value of timer, not updated while timer is
running. Values are in microseconds rounded to
tick-unit on FEB Setup screen.

Value of last sample; displayed on the tabular
statistics screen.

Maximum value of all samples; displayed on the
tabular statistics screen.

Minimum value of all samples; displayed on the
tabular statistics screen. Should be initialized as
~Qul. .

Number of samples.

High four bytes of an eight-byte timer total.
Low two bytes of an eight-byte timer total.
Bytes 3 and 4 of an eight-byte timer total.

Tick-count in microseconds when timer was
started, restarted, or continued. For
line-related conditions at Layer 1, this value is
stored in /1_tick_count; for non-line conditions,
use get_wall_time_286_ticks routine.

Stopped. This variable is polled and a zero stops
the timer from incrementing and sets the current
value to timer_name.current (understood as
microseconds}).

Running. All 1's in this variable causes the timer
to increment, showing a value that equals
(wall-time ticks - timer_name.start_tick_value} +
timer_name.current.

For future use.

62-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 62-5
Timer Variables

Type Variable Meaning

extern unsigned long 11_tick_count This variable counts ticks from
the start of Run mode.
Tick=sec, msec, etc.,
depending on FEB setup.
Subtract early value from later
value to create a timer.
ACTIONS:
{ displayf (“ %Ild msecs ",
(/1_tick_count -
timer_name.start_tick_value));}

Add to start_of_run_time to
determine more precise current
time for time-stamping events.
Line Setup configured for
emulate or monitor mode.

extern unsigned long start_of_run_date Date when Run mode entered.
! Byte 1 (low byte) indicates day;
byte 2 stores month; and bytes
3 and 4 indicates year. May be
used to time-stamp events.
See also start_of_run_time.
. Line Setup configured for
emulate or monitor mode.

extern unsigned long start_of_run_time Time when Run mode entered.
Byte 1 (low byte) indicates
seconds; byte 2 stores minutes;
and byte 3 indicates hours.
May be used to time-stamp
events. See also
start_of_run_date and
11_tick_count. %
Line Setup configured for
emulate or monitor mode.

% In the example below, the displayf (or tracef) routine uses timer variables to time-stamp good BCCs on the DCE
side. (Similar programming could determine the current date.) The tick unit selected on the FEB Setup menu is
seconds. Adjust the program as needed for other tick units.

{
extern unsigned long start_of_run_date, start_of_run_time, l1_tick_count;
unsigned short seconds, hours, minutes, tick_mins, tick_secs, tick_hours;
#define SECS(run_time) (unsigned short)(run_time & Oxff)
#define MINS (run_time) ((unsigned short) (run_time >> 8) & Oxff)
}
STATE: time
CONDITIONS: DCE GOOD_BCC
ACTIONS:
{
tick_secs = 11_tick_count % 60;
tick_mins = (11_tick_count + SECS(start_of_run_time)) / 60;
tick_hours = (tick_mins + MINS (start_of _run_time)) / 60;
displayf(“Time: %.2d:%.2d:%.2d\n",
(unsigned short) (((start_of_run_time >> 16) & Oxff) + tick_hours) %24,
(MINS (start_of _run_time) + tick_mins) %60,
(SECS (start_of _run_time) + tick_secs) %60);

62-10

62 Counters, Timers, and Accumulators

(B)

(©)

The other tick-counter is on the MPM and is referred to as the wall-time clock.
This clock ticks once per millisecond and drives the timers displayed on the
statistics results screens—at least while they are incrementing. At the moment a
timer stops incrementing, the programmer can reach in and replace the
incremented value with a timer value based the FEB tick-counter instead.

The current value of this wall-time tick-counter is available to the program via
the get_wall_time_286_ticks routine. The current value always reflects both the
number of ticks and the actual elapsed time (“wall time”) since the program
entered Run mode.

Running

While it increments on the stats screen, a timer always is driven by wall-time
ticks. To start a current timer incrementing, first you must have sent a stat
message to correlate the timer structure with a timer line on the stats screen. At
that point the simple statement timer_name.running = -0 will start the timer.

The value of the timer at any given time while it is running will be the MPM
(wall-time) ticks minus the timer_name.start_tick_value plus any
timer_name.current value.

To stop a timer, change timer_name.running to zero. The current column of
the timer will immediately display the value of timer_name.current (zero, unless
you have done something in your program to calculate the current value of the
timer). The stats display will interpret timer_name.current as a value in
microseconds and convert it to the unit selected for that timer line.

Restart

The translator has two different versions of the timer restart action, depending
on what condition precipitated the action. The first version is used if the
condition was data-related (or EIA-related) and time ticks are enabled on the
FEB Setup menu. Here is this data-timer version:

unsigned long temp;

convert_tick_count (l1_tick_count, &temp);
timer_name.current = 0;
timer_name.start_tick_value = temp;
timer_name.running = ~0;

The convert_tick_count routine converts /I _tick_count into microseconds and
stores the result in temp. The value of temp is assigned immediately to
timer_name.start_tick_value. When the 68010 sees that timer_name.running
equals the one’s complement of zero, it subtracts the start-tick value from the
11-tick count and displays the difference in the current column of the timer line.
Since the start-tick value was derived a moment before from the 11-tick count,
the difference will be zero. The current column on the stats screen should begin
a timer at zero following a restart.

62-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

A slightly different version of the program is used if the condition was
nondata-related or if time ticks are disabled in the FEB. The
convert_tick_count routine is not used and the following routine is used in its
place:

get_wall_time_286_ticks (&temp);

" This routine returns the current value of the wall-time tick-counter, in
milliseconds zero-padded to microseconds. It stores the value in temp and the
program proceeds as above.

(D) Continue

The timer—continue action is very similar to the restart. There are just two
differences. One, the action is enclosed in an if statement that verifies that
timer_name.running equals zero—that the timer actually is stopped, in other
words; and two, timer_name.current is not set to zero, but retains the value it
received the last time the timer stopped.

(E) Stop
Here is one of the two versions of a timer stop action:

if (timer_name.running != 0)

{
unsigned long temp;
convert_tick_count (11_tick_count, &temp);
timer_name.current += temp - timer_name.start_tick_value;
timer_name.running = 0;

}
In this translation, the start-tick value is subtracted from the current tick count,
and any pending current value (held over if the timer was continued) is added

in. The result is a new timer_name.current value. This value is posted to the
stats screen as soon as the 68010 sees timer_name.running = 0.

The other version of the stop action uses get_wall_time_286_ticks instead of
convert_tick_count.

(F) Sample Action

The code that produces the sample action is identical to the code that sampled a
counter. See Section 62.1(B). The timer_name.sample_count variable’s not
equaling zero causes minimum, maximum, and average values to be displayed.

62.3 Accumulators

Shown below is the structure of an accumulator as the translator declares it (and
as the 68010 accesses it to update the statistics screens). Also refer to

Table 62-6. Note that there is no current value, since an accumulator neither
counts nor times. There are no “previous” and “old” values, because in its
spreadsheet implementation an accumulator never is tested in a Conditions
block.

62-12

62 Counters, Timers, and Accumulators

struct accumulator_struct

{
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short changed;

b

struct accumulator_struct accumulator_name={0,0,~0ul};

Here is the translator’s version of an accumulate action when the object of the
accumulation (selected by the user) was the maximum sampled value of a
counter named framechar.

accumulator_name.last = accumulator_framechar. maximum;
if (accumulator_name.last > accumulator_name.maximum)

{

accumulator_name.maximum = accumulator_name.last;

}

if (accumulator_name.last < accumulator_name.minimum)

{

accumulator_name.minimum = accumulator_name.last;

}

accumulator_name.sample_count++;
{
unsigned long temp;
temp = (accumulator_name.last & 0x0000ffff) + accumulator_name.total_low_low;
accumulator_name.total_low_low = temp;
temp = (accumulator_name.last >> 16) + accumulator_name.total_low_high + (temp >> 16);
accumulator_name.total_low_high = temp;
accumulator_name.total_high += temp >> 16;

}

accumulator_name.changed = -0;

A stat message must be sent so the CPM can correlate a line on the statistics
results screen with the correct accumulator. The stat message is documented in
the previous section on counters. The accumulator stat message is different only
in respect that the stat_msg.type element should be set to 0 instead of 256.

The accumulator_name.sample_count variable’s not equaling zero causes
minimum, maximum, and average values to be displayed.

62-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 62-6
Accumulator Structures

Type Variable Meaning
Structure Name: accumulator_struct Structure of an accumulator. Declared as type

unsigned long

unsigned long

unsigned long

unsigned short

unsigned long

unsigned short

unsigned short

unsigned short

struct. Declared automatically by program when
the user softkey-enters an ACCUMULATE
action. Specific accumulator assigned to
structure as follows: struct accumulator_struct
accumulator_name. Reference a structure
variable as follows: accumulator_name.last.

last Value of last sample; displayed on the tabular
statistics screen.

maximum ' Maximum value of all samples; displayed on the
tabular statistics screen.

minimum Minimum value of all samples; displayed on the
tabular statistics screen. Should be initialized as
~Qul. -

sample_count Number of samples.

total_high High four bytes of an-eight-byte accumulator
total.

total_low_low Low two bytes of an eight-byte accumulator
total.

total_low_high Bytes 3 and 4 of an eight-byte accumulator total.

changed For future use.

62.4 Routines

get_68k_phys_addr
Synopsis

extern unsigned long get_68k_phys_addr(variable_ptr);
unsigned char * variable_ptr;

Description
This routine converts the address of a specified variable in the 80286 processors
(MPM boards) to 68010 (CPM) format. This routine must be declared.

Inputs

The only parameter is the address to be converted.

62-14

62 Counters, Timers, and Accumulators

Returns

The get_68k_phys_addr routine returns the converted address.

Example

See send_stat_message routine.

send_stat_message
Synopsis

extern void send_stat_message (struct_stat_msg_ptr);
struct stat_msg

{

unsigned short op_type;
unsigned short type;

unsigned long object_name;
unsigned long object_address;

Y

struct stat_msg * struct_stat_msg_ptr;

Description

The send_stat_message routine sends the stat message structure to the 68010
CPU (CPM board). The current use of this routine sends the addresses of
program counters, timers, and accumulators in the 80286 processors (MPM

boards) to the CPM board where the tabular and graphic statistics displays are
located.

The routine is called only one time in a program for each named counter, timer,
or accumulator. Entering COUNTER as a condition or action (or TIMER or
ACCUMUL as actions) via softkey on the Protocol Spreadsheet automatically
declares the counter named and sends the stat message.

Inputs

The only parameter is a pointer to the structure of the stat message. For an
explanation of the elements of the stat message, see Table 62-3.

Example

You plan on incrementing a counter named “dte_info” when a DTE Info frame
is detected.

{

struct
{
unsigned short op_type;
unsigned short type;
unsigned long object_name;
unsigned long object_address;
} stat_msg;

62-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

struct counter_structure
{
unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short out_of_range;
unsigned short changed;
unsigned long prev;
unsigned long old;
Iy
struct counter_structure counter_dte_info = {0, 0, 0, ~Oul};
extern unsigned long get_68k_phys_addr();
}
LAYER: 2
STATE:send_stat_message
CONDITIONS: ENTER_STATE
ACTIONS:
{
stat_msg.op_type = 2560;
stat_msg.type = 256;
stat_msg.object_name = get_68k_phys_addr(“dte_info”);
stat_msg.object_address = get_68k_phys_addr(&counter_dte_info);
send_stat_message(&stat_msg);
}
NEXT_STATE: count_info
STATE: count_info
CONDITIONS: DTE INFO
ACTIONS:
{

counter_dte_info.current++;

)
get_wall_time_ticks
Synopsis

extern void get_wall_time_ticks(ticks_68k_format_ptr);
unsigned long * ticks_68k_format_ptr;

Descripti

The get_wall_time_ticks routine gets the number of wall-time ticks (in CPM
storage format) from the time (] was hit. The wall clock gives millisecond
resolution rounded to microseconds.

Inputs

The only input is a pointer to the location where the returned time-tick value
will be stored.

62-16

62 Counters, Timers, and Accumulators

Example

{

unsigned long ticks;

}
LAYER: 2

STATE: get_ticks
CONDITIONS: KEYBOARD “ "
ACTIONS:

{
get_wall_time_ticks(&ticks);

}

get_wall_time_286_ticks
Synopsis

extern void get_wall_time_286_ticks(ticks_286_format_ptr);
unsigned long * ticks_286_format_ptr;

Descripti

The get_wall_time_286_ticks routine gets the number of wall-time ticks (in
MPM storage format) from the time [w] was hit. The wall clock gives millisecond
readings rounded to microseconds. Use this routine prior to setting the
start_tick_value in a timer action when Time Ticks: has been selected on
the Front-End Buffer Setup screen. Also use this routine to derive the
start_tick_value if the condition is not line-related, e.g., KEYBOARD, even when
time ticks are enabled on the FEB Setup menu. - '

Inputs

The only input is a pointer to the location where the returned time-tick value
will be stored.

Example

{
unsigned long ticks_286;

}

LAYER: 3
STATE: get_ticks
CONDITIONS: KEYBOARD “ "
ACTIONS:
{
get_wall_time_286_ticks(&ticks_286);
displayf (“%lu”, ticks_286);
}

62-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

convert_tick_count
Synopsis

extern void convert_tick_count(mpm_format_ticks, converted_ticks_ptr);
unsigned long mpm_format_ticks;
unsigned long * converted_ticks_ptr;

Description

The convert_tick_count routine converts a designated tick count into
microseconds.

Use this routine to derive the start_tick_value for a timer action if ticks are
enabled on the FEB Setup menu and the condition is line-related, e.g., RCV
INFO.

Inputs

The first parameter is a designated tick count as long as it is in MPM storage
format. It may be any of the layer tick counts. The unit of the //_tick_count
(and other layers’ tick counts) value is determined on the Front End Buffer
menu.

The second parameter is a pointer to the location where the returned tick count
converted to microseconds will be stored.

Example

{
extern unsigned long 11_tick_count;
unsigned long converted_ticks;
}
LAYER: 1
STATE: convert_ticks
CONDITIONS: RECEIVE GOOD_BCC
ACTIONS:
{
convert_tick_count(11_tick_count, &converted_ticks);
displayf (“%Iu”, converted_ticks);
}

62-18

63 OS/

63 OSI

63-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

PDU

il_buffer_number

data_start_offset

oo

AN Pointer-List
TN \ IL_BUFFER
\
N
\
\
\ HEADER
‘ DATA
l list_header list_node
first_node_offset | —*| data_pointer
_ 4 last_node_offset data_length \\
. \
/ g next_node_offset |
/ list_node y /l
/ —
/ data_pointer /
: d I h \\ Internal /
“ ata_lengt \\ data
\ next_node_offset | \\] (tLayelr' 2f
\ NI protocol info)
\ . Vo
~ list &de) \\
1 data_pointer \ Internal
. data
/ data_length (Layer 3
/ protocol info)
II next —Qffset
|
A
\
\\ External
data

(User data)

Figure 63-1 Primitive Data Unit and sample Pointer-List Buffer being passed down
the layers.

63-2

63 OS/

63 OSI

The most convenient tools for handling protocol headers while data is moving down and up
the layers in the INTERVIEW are the spreadsheet SEND and GIVE_DATA actions in the various
protocol packages. For instances when a protocol package is not loaded, such as when you
are developing a new protocol or simply using a protocol that is not yet an option on the
Layer Setup screen, OSI structures, variables, and routines in C become essential tools also.

63.1 Structures

The programmer may access the information in primitive data units conveniently by
using a C structure as a multibyte pointer that is superimposed on data in the PDU’s.
Before using a structure-pointer, it is necessary to understand the contents of IL
buffers and primitive data units. All structures referenced may be found in

Table 63-1.

(A) Interlayer Message Buffers

There are a maximum sixteen IL buffers in use at a given time. These buffers
may be one of two kinds: data-character or pointer-list. In buffers being
passed up the layers, data-character buffers (Figure 63-2) are always used. In
buffers going down the layers, pointer-list buffers (Figure 63-1) are primarily
used. The difference is that pointer-list buffers contain list-nodes which provide
information about the location of data (or “lists”) inserted or referenced in the
buffer, while data-character buffers do not.

1.

Header. Each IL buffer contains a header that stores useful information
such as the status of the maintain bits that prevent the buffer from being
returned to the general pool; the position of the buffered data in the
INTERVIEW’s display buffer; and the tick count (time) when the data was
buffered from the line. (See il_buffer structure.)

Service Data Unit. The IL buffer also contains the data itself. This data
component, the service data unit (or “SDU”), is added to as the buffer is
passed down the layers, and subtracted from as a buffer travels up the
layers. A data-character IL buffer includes all the data that was present
when the data was first buffered, and the contents of this buffer do not
change as the buffer is passed up the layers. What changes is the service
data unit, derived from the data-start offset in the PDU.

63-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The first part of the SDU in a pointer-list buffer is a list—-header node
(structure il_list_header) which contains information about the location of
the first and last text nodes. As a buffer is passed down from Layer 3 to
Layer 2 in X.25 (see Figure 63-1), a new text node containing a Layer 3
protocol header is inserted in buffer. Since the Layer 3 data will precede
user data, the list node for the protocol information is referenced ahead of
any other list nodes, changing the first-node reference in the list header. (If
text is appended to the end of existing data, the list node referenced as last
will change.)

The SDU in a pointer-list buffer also includes list nodes (structure
il_list_node) which give a pointer to data, the length of the data pointed to,
and the offset from the start of the buffer to the next list node.

Finally, the service data unit in all buffers includes data, whether copied into
the buffer (usually protocol information) or located in memory outside of the
buffer (usually user data).

PDU
Data-Character
il_buffer_number 1=~ "7~ =<_ IL_BUFFER data_start_offset:
data_start_offset [T~ »
data_length | _E:-\-i AN ,
N S HEADER

) \ DATA

SDU Size
Layer 2

SDU Size
Layer 3

\ \
\

.:.f:‘:”; pH
o l(La ayer 2 protocol info)

1=—- at Layer 2

<—- at Layer 3

e

P
E

Figure 63-2 Primitive Data Unit and sample Data-Character Buiffer being passed up

the layers.

63-4

63 OS/

(B) Primitive Data Units

Like interlayer message buffers, PDU’s have a format that is dependent on
which direction the primitive is being passed. Refer again to Figure 63-1 and
Figure 63-2.

1.

IL buffer number. The buffer number to be passed with the primitive is
always stored in the primitive. This buffer number is actually an
80286-processor segment number.

Data-start offset. The offset to the beginning of the service data unit for a
given layer is different for the two types of buffers. In a pointer-list buffer
going down the layers, the data-start offset will indicate the offset from the
beginning of the buffer to the list-header node. This offset will vary if
different linked lists have been started at different layers. Each list will have
its own list header. In a data-character buffer going up the layers, the
data-start offset will change from layer to layer. For example, a buffer
containing X.25 data that is being passed from Layer 2 to Layer 3 will have
an offset at Layer 3 two bytes beyond the offset at Layer 2.

Data length. The size of the SDU in a data-character buffer also varies
from layer to layer. In the example just given, the SDU will be smaller by
two bytes at Layer 3 than it was at Layer 2. In pointer-list buffers, the
length of all data is unknown at any given layer.

(C) Accessing Information in Structures

There are two stages that are preliminary to accessing the information in these
structures. The first step is to convert the 80286-processor segment number into
a 32-bit address. The second stage is to place a pointer, in the shape of an IL
buffer structure, at that address. Let’s use an IL buffer as an example.

1.

Converting a segment number. The IL-buffer segment number is returned
any time you access one of the external, protocol-independent il_buffer
variables listed in Table 63-1. These variables have names like
m_lo_dl_il_buff and up_n_il_buff.

To make a pointer to an IL buffer, (1) shift the 80286 segment number to
the left sixteen bits, since a full address in the 80286 is 32 bits long; (2) cast
it as a long, so that the segment number is in the high 16 bits and the offset
to a buffer for that segment is zero (the low 16 bits); and (3) cast it as a
pointer. The following expression will take care of all three requirements:

(void *) ((long) m_lo_di_il_buff <<I6);

Now you have a pointer to the first memory location of the most recent
monitor-mode IL buffer passed up from Layer 2 to Layer 3. An
upward-moving IL buffer was illustrated in Figure 63-2. The precise
structure of both the IL buffer is given in the following declaration.

63-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

{

struct il_buffer

unsigned short lock;
unsigned short maintain_bits;
unsigned short buffer_size;
unsigned short transmit_tag;
unsigned short receive_tag;
unsigned long char_buff_frame_start;
unsigned long char_buff frame_end;
unsigned short tick_count_high;
unsigned short tick_count_mid;
unsigned short tick_count_low;
unsigned short available_space_offset;
unsigned short bytes_remaining;
unsigned long bec_indicator;
unsigned char data [4064];

Y

2. Create a structure-pointer at a given address. First, declare the structure of
il_buffer, as indicated above. Then declare il_buffer_pointer as a
structure-pointer, as follows:
struct il_buffer * il_buffer_pointer;

Converting the segment number and assigning it to i/_buffer_pointer may be
accomplished with this one statement:

il_buffer_pointer = (void *) ((long) m_lo_di_il_buff <<16);

Now a structure has been created around the most recent upward-moving IL
buffer at Layer 3. This means that rather than moving a pointer around in
the IL buffer, you can access elements in the buffer directly. The
tick_count_low variable, for example, would be called
il_buffer_pointer->tick_count_low. (The -> operator is used in place of the
dot operator in structure—pointers.)

The first element of the data string would be called
il_buffer_pointer->data[0]. Here is a program that displays on the prompt
line the fifth data element, the packet-type byte, in every IL buffer that is
monitored at Layer 3.

63-6

63

0S!

{

extern event m_lo_dl_prmtv;)

extern volatile unsigned short m_lo_dl_il_buff;

struct il_buffer

{
unsigned short lock;
unsigned short maintain_bits;
unsigned short buffer_size;
unsigned short transmit_tag;
unsigned short receive_tag;
unsigned long char_buff frame_start;
unsigned long char_buff frame_end;
unsigned short tick_count_high;
unsigned short tick_count_mid;
unsigned short tick_count_low;
unsigned short available_space_offset;
unsigned short bytes_remaining;
unsigned long bcc_indicator;
unsigned char data [4064];
b
struct il_buffer * il_buffer_pointer;

}
LAYER: 3
STATE: monitor_il_buffers
"CONDITIONS:

{
m_lo_dl_prmty

}

ACTIONS:

{ .
il_buffer_pointer = (void *) ((long) m_lo_dl_il_buff <<16);
pos_cursor (0,0);

displayf (“%02x ", il_buffer_pointer->data[4]);

If you run this program, be sure to load in the Layer 2 and Layer 3

personality packages for X.25. These packages will take care of delivery of

the monitor primitives to Layer 3.

63-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-1
OSI Structures

Type

Variable

Value (hex/decimal)

Meaning

Structure Name: pdu

unsigned char

unsigned char

unsigned long

unsigned short

unsigned short

unsigned char

unsigned short

unsigned short

primitive_code

path

parameter

relay_baton

il_buffer_number

buffer_contents

data_start_offset

data_length

63-8

Structure of an OS| primitive data unit (PDU).
Declared as type struct. Use this structure as follows.
Declare the entire structure. Make a pointer to a PDU
by shifting m_lo_d/_pdu_seg (or up_n_pdu_seg) 16 bits
to the left. Then convert this pointer to a pointer to a
PDU structure: struct pdu * pdu_pointer

pdu_pointer =(void *)((long)m_lo_dI_pdu_seg << 16).
Reference a structure-pointer variable as follows:
pdu_pointer->primitive_code.

Codes for OSI variables are listed in Table 63-2
through Table 63-8. For Layer 3 primitive codes,
for example, refer to Table 63-4. The value of this
variable Is also stored in external variable
m_lo_dl_prmtv_code (or up_n_prmtv_code).

Path number, both directions. The value of this
variable is also stored in external variable
m_lo_dl_prmtv_path (or up_n_prmtv_path).

For future use. At present, under user control.

Maintain bit passed with an interlayer-message
buffer, both directions. Zero in this variable
identifies maintain bit.

Segment number of the interlayer-message
buffer, both directions. The value of this variable
is also stored in external variable m_lo_d/_il_buff
(or up_n_Ii_buff).

Contains data-character buffer type. Must be
used for buffer being passed up.

Contains pointer-list buffer type. May be used
for buffers being passed up, but is currently used
primarily for buffers being passed down.

Offset from the beginning of the buffer to the
header node in the SDU of an interlayer-message
buffer in an OSI primitive being sent down from a
layer above. In a primitive being sent up from a
layer below, It is the offset to the SDU. Varies
according to the layer at which the buffer is
located. For example, in a buffer passed up to
Layer 3 from Layer 2, the offset would be to the
beginning of the Layer 3 header, bypassing Layer
2 header information. The value of this variable
is also stored In external variable
m_lo_d!_sdu_offset (or up_n_sdu).

Length of the service data unit, including headers
and user data. Only for primitives sent up from
layer below. Varies with the layer where the
buffer is located. For example, at Layer 3,
length would exclude Layer 2 header (or trailer)
information. The value of this variable is also
stored in external variable m_lo_d/_sdu_size.

63 OS/

Table 63-1 (continued)

Type Variable Value (hex/decimal) Meaning

tructur me: il_buffer Structure of an interlayer-message buffer, both
directions. Declared as type struct. Use this
structure as follows. Declare the entire structure.
Make a pointer to an il_buffer by shifting
m_lo_dI_il_buff (or up_n_il_buff) 16 bits to the left:
Ii_buffer_pointer = (void *)((long) (lo_di_il_buff << 16).
Then convert this pointer to a pointer to an il_buffer
structure: struct il_buffer * il_buffer_pointer.
Reference a structure-pointer variable as follows:
il_buffer_pointer->tick_count_low.

unsigned short lock 0 Internal variable which prevents structure from
being updated by more than one program at the
same time.

unsigned short maintain_bits Two-byte variable which provides the status of
the maintain bits. A bit with a value of 1 is in
use.

unsigned short buffer_size 1000/4096 Currently, the only value.
unsigned short transmit_tag Bits 1-3 define bee indication:

no bce

good bce

bad bee

abort

half bad becc (DDCMP)

HLN4O

Bits 4-8 for future use.
unsigned short receive_tag Bits 1-3 define bec indication: -

no bee

good bcc

bad becc

abort

half bad bcc (DDCMP)

HBWN-O

Bit 4 identifies side of the line:

td
rd

-0

Bit 5—message buffer overflow:

0 frame fits in buffer
1 frame too large for the buffer

Bits 6-8 for future use.

unsigned long char_buff_frame_start Location in the character buffer of the start of
the buffered data.

unsigned long char_buff_frame_end Location in the character buffer of the end of the
T buffered data.

(il_buffer structure continued on next page)

63-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-1 (continued)

Type

Variable

Value (hex/decimal)

Meaning

il_buffer (continued)

unsigned short

unsigned short
unsigned short

unsigned short

unsigned short
unsigned long

unsigned char

tructure Name:

unsigned short

unsigned short

unsigned long

tick_count_high

tick_count_mid
tick_count_low

available_space_offset

bytes_remaining
bee_Indicator

data [4064)

il_list_header

first_node_offset

last_node_offset

reserved

63-10

Value of internal variable that counts the number
of times /1_tick_count has reached its maximum
value. Together, the three i/_buffer tick-count
variables preserve at each layer the original time
when the end of the data (BCC) was clocked into
the buffer.

16 high-order bits of 32-bit /1_tick_count.
16 low-order bits of 32-bit /1_tick_count.

Offset to the next available space in the
interlayer-message buffer.

Avallable number of bytes remaining in the buffer.
reserved

Contains all data including each layer’s header
information, as well as the first of two block
check characters. Does not vary from layer to
layer.

Structure of the header node in an
interlayer-message buffer. Only for primitives
sent down from the layer above. Declared as
type struct. Use this structure as follows.
Declare the entire structure. Make a pointer to
an il_list_header by shifting up_n_lII_buff (or
m_lo_d/_il_buff) 16 bits to the left and adding the
data_start_offset from the PDU structure (also
stored as external variable up_n_sdu or
m_lo_dl_sdu_offset):

il_list_header_pointer =

(void *) (((long)up_n_lil_buff) << 16) + up_n_sdu).
Then convert this pointer into a pointer to an
Il_list_header structure:

struct il_list_header * il_list_header_pointer.
Reference a structure-pointer variable as follows:
Il_list_header_pointer->last_node_offset.

Offset from the beginning of the buffer to the
first text node in the buffer. Varies according to
the layer at which the buffer Is located. At Layer
2, the offset would be to different starting node
than at Layer 3.

Offset to the location of the last text node in the
buffer, from the beginning of the buffer.

reserved

63 OS/

Table 63-1 (continued)

Type Variable

Value (hex/decimal)

Meaning

Name: il_list_node

unsigned char * data_pointer
unsigned short data_length

unsigned short next_node_offset

Structure of text nodes in an interlayer-message
buffer. Only for primitives sent down from the
layer above. Declared as type struct. Use this
structure as follows. Declare the entire
structure. Make a pointer to an il_list_node by
shifting up_n_il_buff (or m_lo_d/_il buff) 16 bits to
the left and adding the ﬂrst node offset (or
last_node_offset) from the [_list_| ‘header
structure: il_list_node polntar =

(void *)(((bnq)up n_il_buff << 16) +
ii_list_header_pointer->first_node_offset). Point
to the next node as follows:

next_node_pointer = (il_list_node_pointer +
li_list_node_pointer->next_node_offset).

Pointer to the data in a text node.
Length of the data in a text node.

Offset to the location of the next text node in the
buffer, from the beginning of the buffer.

Generally, there is a text node for each layer’'s
header information and one for the user data. A
buffer that started at Layer 3 would have two
text nodes, one for Layer 3 header information
and one for user data (if any). At Layer 2, the
buffer would acquire an additional text node.

63-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

63.2

LAYER 3:

Variables

OSI variables are layer-specific. The information stored in the OSI variables may be
obtained by using the structure~pointer to IL buffers and primitives. But rather than
requiring the user to repeat this process at each layer as a buffer moves through the
layers, monitor and emulate variables have been made available at Layers 2-7 to
store layer—specific, as well as general, information: the interlayer-buffer number,
the offset to the service data unit, the path number, the size of the SDU, the
segment number of the PDU, etc. There are also event variables which indicate that
a primitive has been received at a given layer. Table 63-2 through Table 63-8 give
the current OSI variables and their meanings.

The exchange of connect primitives shown primarily in Figure 30-4 is demonstrated in
Figure 63-3 using C variables and routines. The SEND actions insert data in a buffer
and send the buffer in a DATA REQ primitive. See Section 63.3 for an explanation of
the _insert_il_buff list_cnt and send primitive routines. The conditions use event
variables to detect primitives and non-event variables to identify specific primitive
types.

ENTER_STATE

{send_dI_prmtv_below {lo_dl_prmtv &&
(l!_bug:{a_n:trgn egﬁrse;tay,obaton. (lo_di _prﬁ‘t\;_'_‘:;ode == 0x43)} f SEND RESTART
0x40, path);}

DL_CONNECT
DL_CONNECT CONF '{J DLDATA I_/_,
REQ < P
s
SN

LAYER 2: etc.
{up_dI_prmtv && (I buttor AurAbor reiay bat
up_gai_| er_number, reia aton,
(up_dI_prmtv_code == 0x40)} f SEND SABM RCV UA ~ datastart_offset, gﬁe‘
Dx43, path);}

PH_DATA
PHﬁlégTA o

Figure 63-3 Layer 3 uses connect primitives to be sure that the Layer 2 entity below has
established a link.

63-12

r I“w , 63 OSI

Table 63-2
Layer 1 OSl Variables

Type Variable Value (hex/decimal) Meaning
extern volatile unsigned char ph_prmtv_type 20/32 ph activate req
21/33 ph activate ind
22/34 ph activate resp
23/35 ph activate conf
24/36 ph data req
25/37 ph data ind
2a/42 ph reset req
2b/43 ph reset ind
2c/44 ph reset resp
2d/45 ph reset conf
2e/46 ph deactivate req
2f/47 ph deactivate ind
30/48 ph debug req
31/49 ph debug ind
33/51 ph error report ind
34/52 ph xmit req
35/53 ph set idle req
38/56 ph mgt facllity req
39/57 ph mgt facllity ind
. OSI primitive code for primitives
moving between Layers 1 and 2.
] Line Setup configured for
emulate mode only.

63-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-3
Layer 2 OSI Variables

Type Variable Value (hex/decimal) Meaning

extern event lo_ph_prmtv True when an OSI primitive is
received at Layer 2 from Layer
1. Line Setup configured for
emulate mode only.

extern event m_lo_ph_prmtv True when an OSI primitive Is
received at Layer 2 from Layer
1. Line Setup configured for
emulate or monitor mode.

extern event up_di_prmtv True when an OSI primitive is
received at Layer 2 from Layer
3. Line Setup configured for
emulate mode only.

extern volatile unsigned short lo_ph_pdu_seg OSl primitive data unit (PDU)
IAPX-286 segment number
received at Layer 2 from Layer
1. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line

-~ Setup configured for emulate

mode only.

extern volatile unsigned short m_lo_ph_pdu_seg OSl primitive data unit (PDU)
IAPX-286 segment number
recelved at Layer 2 from Layer
1. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate or
monitor mode.

extern volatile const unsigned char lo_ph_prmtv_code 21/33 ph activate ind
23/35 ph activate conf
25/37 ph data ind
2b/43 ph reset ind
2d/45 ph reset conf
2f/47 ph deactivate ind
31/49 ph debug ind
33/51 ph error report ind
39/57 ph mgt facility ind

OSI primitive code received at
Layer 2 in a PDU from Layer 1.
Line Setup configured for
emulate mode only.

extern volatile const unsigned char m_lo_ph_prmtv_code 24/36 td ph data ind
25/37 rd ph data ind

OSI primitive code received at
Layer 2 in a PDU from Layer 1.
Line Setup configured for
emulate or monitor mode.

63-14

63 OS/

Table 63-3 (continued)

Type

Variable

Value (hex/decimal) Meaning

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

lo_ph_prmtv_path

m_lo_ph_prmtv_path

lo_ph_il_buff

m_lo_ph_il_buff

lo_ph_sdu

m_lo_ph_sdu_offset

m_lo_ph_sdu_size

up_dl_pdu_seg

63-15

0-8

0-8

Path number received at Layer
2 in a PDU from Layer 1. Line
Setup configured for emulate
mode only.

Path number received at Layer

2 in a PDU from Layer 1. Line

Setup configured for emulate or
monitor mode.

interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 2 in a PDU
from Layer 1. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 2 in a PDU
from Layer 1. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate or monitor mode.

In OSI primitive received at
Layer 2 from Layer 1, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In OSI primitive received at
Layer 2 from Layer 1, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

Size of the service data unit in
an interlayer-message buffer,
displayed as SIZE on the Layer
2 trace screen. Received at
Layer 2 from Layer 1. Same as
data_length in a PDU. Line
Setup configured for emulate or
monitor mode.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 2 from Layer
3. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-3 (continued)

Type Variable Value (hex/decimal) Meaning

extern volatile const unsigned char up_dl_prmtv_code 40/64 dl conn req
42/66 dl conn resp
44/68 dl data req
48/72 dl expd data req
4a/74 dl reset req
4¢/76 dl reset resp
4e/78 dl disconn req
50/80 dl debug req
52/82 dl unit data req
58/88 dl mgt facility req

OSI primitive code received at
Layer 2 in a PDU from Layer 3.
Line Setup configured for
emulate mode only.

extern volatile const unsigned char up_dl_prmtv_path 0-8 Path number received at Layer
2 in a PDU from Layer 3. Line
Setup configured for emulate
mode only.

extern volatile unsigned short up_dl_Il_buff Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 2 in a PDU
from Layer 3. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

extern volatile unsigned short up_dl_sdu Offset to the start (header
node) of the service data unit in
an interlayer-message buffer.
Received at Layer 2 from Layer
3. Same as data_start_offset in
a PDU. Line Setup configured
for emulate mode only.

extern unsigned long 12_tick_count 32-bit /1_tick_count stored in
header of most recent IL buffer
passed up to Layer 2.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emulate or
monitor mode.

63-16

63 OSI

Table 63-4

Layer 3 OSI Variables

Type

Variable

Value (hex/decimal) Meaning

extern event

extern event

extern event

extern volatile unsigned short

extern volatile unsigned short

extern volatile const unsigned char

lo_di_prmtv

m_lo_dl_prmtv

up_n_prmtv

lo_di_pdu_seg

m_lo_dl_pdu_seg

lo_dl_prmtv_code

63-17

41/65
43/67
45/69
49/73
4b/75
4d/77
4£/79

51/81
53/83
55/85
59/89

True when an OSI primitive is
received at Layer 3 from Layer
2. Line Setup configured for
emulate mode only.

True when an OSI primitive is
received at Layer 3 from Layer
2. Line Setup configured for
emulate or monitor mode.

True when an OSI primitive is
received at Layer 3 from Layer
4. Line Setup configured for
emulate mode only.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 3 from Layer
2. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 3 from Layer
2. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate or
monitor mode.

dl conn ind

dl conn conf

dl data ind

dl expd data ind
dl reset ind

dl reset conf

dl disconn ind

dl debug ind

dl unit data ind
dl error report ind
di mgt facility ind

OSI primitive code received at
Layer 3 in a PDU from Layer 2.
Line Setup configured for
emulate mode only.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-4 (continued)

Type Variable Value (hex/decimal) Meaning
extern volatile const unsigned char m_lo_dl_prmtv_code 44/68 td dl data ind
45/69 rd dl data ind
48/72 td dl expd data ind
49/73 rd dl expd data ind
54/84 td dl unit data ind
55/85 rd di unit data ind

OSI primitive code received at
Layer 3 in a PDU from Layer 2.
Line Setup configured for
emulate or monitor mode.

extern volatile const unsigned char lo_dl_prmtv_path 0-8 Path number received at Layer
3 in a PDU from Layer 2. Line
Setup configured for emulate
mode only.

extern volatile const unsigned char m_lo_dl_prmtv_path 0-8 Path number received at Layer
3 in a PDU from Layer 2. Line
Setup configured for emulate or
monitor mode.

extern volatile unsigned short lo_dl_il_buff Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 3 in a PDU
from Layer 2. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

extern volatile unsigned short m_lo_dI_il_buff Interlayer-buffer number (an
~ IAPX-286 segment number)

received at Layer-3 in a PDU
from Layer 2. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate or monitor mode.

extern volatile unsigned short lo_dI_sdu . In OSI primitive received at
Layer 3 from Layer 2, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

extern volatile unsigned short m_lo_dl_sdu_offset In OSI primitive received at
Layer 3 from Layer 2, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

extern volatile unsigned short m_lo_dl_sdu_size Size of the service data unit in
an interlayer-message buffer,
displayed as SIZE on the Layer
3 trace screen. Received at
Layer 3 from Layer 2. Same as
data_length in a PDU. Line
Setup configured for emulate or
monitor mode.

63-18

63 OS!

Table 63-4 (continued)

Type

Variable

Value (hex/decimal) Meaning

extern volatile unsigned short

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern unsigned long

up_n_pdu_seg

up_n_prmtv_code

up_n_prmtv_path

up_n_il_buff

up_n_sdu

13_tick_count

60/96

62/98

64/100
66/102
68/104
6a/106
6c/108
6e/110
70/112
72/114
74/116
76/118
78/120

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 3 from Layer
4. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

n conn req

n conn resp

n data req

n data ack req

n expd data req
n reset req

n reset resp

n disconn req

n debug req

n unit data req

n qual data req
n qual data ack req
n mgt facility req

OSI primitive code received at
Layer 3 in a PDU from Layer 4.
Line Setup configured for
emulate mode only.

Path number received at Layer
3 in a PDU from Layer 4. Line
Setup configured for emulate
mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 3 in a PDU
from Layer 4. This segment
number can be converted to a
pointer by .shifting it left 16 bits.
Line Setup configured for
emulate mode only.

Offset to the start (header
node) of the service data unit in
an interlayer-message buffer.
Received at Layer 3 from Layer
4. Same as data_start_offset in
a PDU. Line Setup configured
for emulate mode only.

32-bit 11_tick_count stored in
header of most recent IL buffer
passed up to Layer 3.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emulate or
monitor mode.

63-19

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-5
Layer 4 OSI Variables

Type Variable Value (hex/decimal) Meaning

extern event lo_n_prmtv True when an OSlI primitive is
received at Layer 4 from Layer
3. Line Setup configured for
emulate mode only.

extern event m_lo_n_prmtv True when an OSI primitive is
received at Layer 4 from Layer
3. Line Setup configured for
emulate or monitor mode.

extern event up_t_prmtv True when an OSI primitive is
received at Layer 4 from Layer
5. Line Setup configured for
emulate mode only.

extern volatile unsigned short lo_n_pdu_seg OSI primitive data unit (PDU)
) IAPX~-286 segment number

received at Layer 4 from Layer
3. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

extern volatile unsigned short m_lo_n_pdu_seg OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 4 from Layer
3. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate or
monitor mode.

extern volatile const unsigned char lo_n_prmtv_code 61/97 n conn ind

63/99 n conn conf
65/101 n data ind

67/103 n data ack ind
69/105 n expd data ind
6b/107 n reset ind
6d/109 n reset conf
6f/111 n disconn ind
71/113 n debug ind
73/115 n unit data ind
75/117 n qual data ind
77/119 n qual data ack ind
79/121 n mgt facility ind
7a/122 n error report ind

OSI primitive code received at
Layer 4 in a PDU from Layer 3.
Line Setup configured for
emulate mode only.

63-20

63 OS/

Table 63-5 (continued)

Type Variable Value (hex/decimal) Meaning
extern volatile const unsigned char m_lo_n_prmtv_code 64/100 td n data ind
65/101 rd n data ind
68/102 td n expd data ind
69/103 rd n expd data ind
74/116 td n unit data ind
75/117 rd n unit data ind
OSI primitive code received at
Layer 4 in a PDU from Layer 3.
Line Setup configured for
emulate or monitor mode.
extern volatile const unsigned char lo_n_prmtv_path 0-8 Path number received at Layer
4 In a PDU from Layer 3. Line
Setup configured for emulate
mode only.
extern volatile const unsigned char m_lo_n_prmtv_path 0-8 Path number received at Layer

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

lo_n_il_buff

m_lo_n_lI_buff

lo_n_sdu

m_lo_n_sdu_offset

m_lo_n_sdu_size

63-21

4 in a PDU from Layer 3. Line
Setup configured for emulate or
monitor mode.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 4 in a PDU
from Layer 3. This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 4 in a PDU
from Layer 3. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate or monitor mode.

In OSI primitive received at
Layer 4 from Layer 3, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In OSI primitive received at
Layer 4 from Layer 3, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

Size of the service data unit in
an interlayer-message buffer.
Received at Layer 4 from Layer
3. Same as data_length in a
PDU. Line Setup configured for
emulate or monitor mode.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-5 (continued)

Type Variable Value (hex/decimal) Meaning

extern volatile unsigned short up_t_pdu_seg OSl primitive data unit (PDU)
IAPX-286 segment number
received at Layer 4 from Layer
5. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate

mode only.
extern volatile const unsigned char up_t_prmtv_code 80/128 t conn req
82/130 t conn resp
84/132 t data req
88/136 t expd data req
B8e/142 t disconn req
90/144 t debug req
92/146 t unit data req
98/152 t mgt facility req

OSI primitive code received at
Layer 4 in a PDU from Layer 5.
Line Setup configured for
emulate mode only.

extern volatile const unsigned char up_t_prmtv_path 0-8 Path number received at Layer
4 in a PDU from Layer 5. Line
Setup configured for emulate
mode only.

extern volatile unsigned short up_t_II_buff Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 4 in a PDU
from Layer 5. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

extern volatlle unsigned short up_t_sdu Offset to the start (header
node) of the service data unit in
an Interlayer-message buffer.
Recelved at Layer 4 from Layer
5. Same as data_start_offset in
a PDU. Line Setup configured
for emulate mode only.

extern unsigned long 14_tick_count 32-bit 11_tick_count stored in
header of most recent IL buffer
passed up to Layer 4.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emulate or
monitor mode.

63-22

63 OS/

Table 63-6

Layer 5 OSI Variables

Type

Variable

Value (hex/decimal) Meaning

extern event

extern event

extern event

extern volatile unsigned short

extern volatile unsigned short

extern volatile const unsigned char

extern volatile const unsigned char

lo_t_prmtv

m_lo_t_prmtv

up_s_prmtv

lo_t_pdu_seg

m_lo_t_pdu_seg

lo_t_prmtv_code

m_lo_t_prmtv_code

63-23

81/129
83/131
85/133
89/137
8f/143
91/145
93/147
95/149
99/153

84/132
85/133
88/136
89/137
94/148
95/149

True when an OSI primitive is
received at Layer 5§ from Layer
4. Line Setup configured for
emulate mode only.

True when an OSI primitive is
received at Layer 5 from Layer
4. Line Setup configured for
emulate or monitor mode.

True when an OSI primitive is
received at Layer 5 from Layer
6. Line Setup configured for
emulate mode only.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 5 from Layer
4. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 5§ from Layer
4. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate or
monitor mode.

t conn ind

t conn conf

t data ind

t expd data ind

t disconn ind

t debug ind

t unit data ind

t error report ind
t mgt facility ind

OSI primitive code received at
Layer 5 in a PDU from Layer 4.
Line Setup configured for
emulate mode only.

td t data ind

rd t data ind

td t expd data ind
rd t expd data ind
td t unit data ind
rd t unit data ind

OSI primitive code received at
Layer 5 in a PDU from Layer 4.
Line Setup configured for
emulate or monitor mode.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-6 (continued)

Type Variable Value (hex/decimal) Meaning

extern volatile const unsigned char lo_t_prmtv_path 0-8 Path number received at Layer
5in a PDU from Layer 4. Line
Setup configured for emulate
mode only.

extern volatile const unsigned char m_lo_t_prmtv_path 0-8 Path number received at Layer
5 in a PDU from Layer 4. Line
Setup configured for emulate or
monitor mode.

extern volatile unsigned short lo_t_il_buff Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 5 in a PDU
from Layer 4. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

extern volatile unsigned short m_lo_t_il_buff Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 5 in a PDU
from Layer 4. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate or monitor mode.

extern volatile unsigned short lo_t_sdu In OSI primitive received at
Layer 5 from Layer 4, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

extern volatile unsigned short m_lo_t_sdu_offset In OSI primitive received at
Layer 5 from Layer 4, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

extern volatile unsigned short m_lo_t_sdu_size Size of the service data unit in
an interlayer-message buffer.
Received at Layer 5 from Layer
4. Same as data_length in a
PDU. Line Setup configured for
emulate or monitor mode.

extern volatile unsigned short up_s_pdu_seg OSI primitive data unit (PDU)
IAPX~-286 segment number
received at Layer 5§ from Layer
6. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

63-24)

63 0S8/

Table 63-6 (continued)

Type

Variable

Value (hex/decimal) Meaning

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern unsigned long

up_s_prmtv_code

up_s_prmtv_path

up_s_il_buff

up_s_sdu

15_tick_count

a0/160
a2/162
a4/164
aB/168
ac/172
ae/174
b0/176
b2/178
b8/184

s conn req

§ conn resp -
s data req

s expd data req

s release req

s release resp

s debug req

s unit data req

s mgt facility req

OSI primitive code received at
Layer 5 in a PDU from Layer 6.
Line Setup configured for
emulate mode only.

Path number received at Layer
5 in a PDU from Layer 6. Line
Setup configured for emulate
mode only.

Interiayer-buffer number (an
IAPX-286 segment number)
recelved at Layer 5 in a PDU
from Layer 6. This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup configured for
emulate mode only.

Offset to the start (header
node) of the service data unit in
an interlayer-message buffer.
Received at Layer 5 from Layer
6. Same as data_start_offset in
a PDU. Line Setup configured
for emulate mode only.

32-bit /1_tick_count stored in
header of most recent IL buffer
passed up to Layer 5.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emulate or
monitor mode.

63-25

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-7
Layer 6 OS! Variables

Type Variable Value (hex/decimal) Meaning

extern event lo_s_prmtv True when an OSI primitive is
received at Layer 6 from Layer
5. Line Setup configured for
emulate mode only.

extern event m_lo_s_prmtv True when an OSI primitive is
received at Layer 6 from Layer
5. Line Setup configured for
emulate or monitor mode.

extern event up_p_prmtv True when an OSI primitive Is
received at Layer 6 from Layer
7. Line Setup configured for
emulate mode only.

extern volatlle unsigned short lo_s_pdu_seg OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 6 from Layer
5. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

extern volatile unsigned short m_lo_s_pdu_seg OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 6 from Layer
5. This segment number can
be converted to a pointer by
shifting It left 16 bits. Line
Setup configured for emulate or
monitor mode.

extern volatile const unsigned char lo_s_prmtv_code al/161 s conn ind
a3/163 s conn conf
a5/165 s data ind
a9/169 s expd data ind
ad/173 s release ind
af/175 s release conf
b1/177 s debug ind
b3/179 s unit data ind
b5/181 s error report ind
b9/185 s mgt facility ind

OSI primitive code received at
Layer 6 in a PDU from Layer 5.
Line Setup configured for
emulate mode only.

extern volatile const unsigned char m_lo_s_prmtv_code a4/164 td s data ind
a5/165 rd s data ind
ag/168 td s expd data ind
a9/169 rd s expd data ind
b4/180 td s unit data ind
b5/181 rd s unit data ind

OSI primitive code received at
Layer 6 in a PDU from Layer 5.
Line Setup configured for
emulate or monitor mode.

63-26

63 OS/

Table 63-7 (continued)

Type

Variable

Value (hex/decimal) Meaning

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

lo_s_prmtv_path

m_lo_s_prmtv_path

lo_s_il_buff

m_lo_s_il_buff

lo_s_sdu

m_lo_s_sdu_offset

m_lo_s_sdu_size

up_p_pdu_seg

63-27

0-8

Path number received at Layer
6 in a PDU from Layer 5. Line
Setup configured for emulate
mode only.

Path number recelved at Layer

6 in a PDU from Layer 5. Line

Setup configured for emuiate or
monitor mode.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 6 in a PDU
from Layer 5. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 6 in a PDU
from Layer 5. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate or monitor mode.

In OSI primitive received at
Layer 6 from Layer §, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In OSI primitive received at
Layer 6 from Layer 5, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

Size of the service data unit in
an interlayer-message buffer.
Received at Layer 6 from Layer
5. Same as data_length in a
PDU. Line Setup configured for
emulate or monitor mode.

OSl primitive data unit (PDU)
IAPX-286 segment number
received at Layer 6 from Layer
7. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-7 (continued)

Type Variable Value (hex/decimal) Meaning

extern volatile const unsigned char up_p_prmtv_code c0/192 p conn req
c2/194 p conn resp
c4/196 p data req
¢c8/200 p expd data req
cc/204 p release req
ce/206 p release resp
d0/208 p debug req
d2/210 p unit data req
d8/216 p magt facility req

0S| primitive code received at
Layer 6 from Layer 7 in a PDU.
Line Setup configured for
emulate mode only.

extern volatile const unsigned char up_p_prmtv_path 0-8 Path number received at Layer
6 from Layer 7 in a PDU. Line
Setup configured for emulate
mode only. ‘

extern volatile unsigned short up_p_Il_buff Interlayer-buffer number (an
‘ IAPX-286 segment number)

received at Layer 6 from Layer .
7 in a PDU. This segment)
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

extern volatile unsigned short up_p_sdu Offset to the start (header
node) of the service data unit in
an Interlayer-message buffer.
Received at Layer 6 from Layer
7. Same as data_start_offset in
a PDU. Line Setup configured
for emulate mode only.

extern unsigned long 16_tick_count 32-bit /1_tick_count stored in
header of most recent IL buffer
passed up to Layer 6.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emulate or
monitor mode.

63-28

63 OSI

Table 63-8

Layer 7 OSI Variables

Value (hex/decimal) Meaning

Type Variable
" extern event lo_p_prmtv

extern event m_lo_p_prmtv
extern volatile unsigned short lo_p_pdu_seg
extern volatile unsigned short m_lo_p_pdu_seg
extern volatile const unsigned char lo_p_prmtv_code
extern volatile const unsigned char m_lo_p_prmtv_code
extern volatile const unsigned char lo_p_prmtv_path

63-29

c1/183
c3/195
c5/197
¢9/201
cd/205
cf/207
d1/209
d3/211
d5/213
d9/217

c4/196
c5/197
c8/200
c9/201
d4/212
d5/213

0-8

True when an OSI primitive is
received at Layer 7 from Layer
6. Line Setup configured for
emulate mode only.

True when an OSI primitive is
received at Layer 7 from Layer
6. Line Setup configured for
emulate or monitor mode.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 7 from Layer
6. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate
mode only.

0S| primitive data unit (PDU)
IAPX-286 segment number
received at Layer 7 from Layer
6. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate or
monitor mode.

p conn ind

p conn conf

p data ind

p expd data ind
p release ind

p release conf

p debug ind

p unit data ind

p error report ind
p mgt facility ind

OSI primitive code received at
Layer 7 in a PDU from Layer 6.
Line Setup configured for
emulate mode only.

td p data ind

rd p data ind

td p expd data ind
rd p expd data ind
td p unit data ind
rd p unit data ind

OSI primitive code received at
Layer 7 in a PDU from Layer 6.
Line Setup configured for
emulate or monitor mode.

Path number received at Layer
7 in a PDU from Layer 6. Line
Setup configured for emulate
mode only.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 63-8 (continued)

Type Variable Value (hex/decimal) Meaning

extern volatile const unsigned char m_lo_p_prmtv_path 0-8 Path number received at Layer
7 in a PDU from Layer 6. Line
Setup configured for emulate or
monitor mode.

extern volatile unsigned short lo_p_il_buff Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 7 in a PDU
from Layer 6. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

extern volatile unsigned short m_lo_p_lil_buff Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 7 in a PDU
from Layer 6. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate or monitor mode.

extern volatile unsigned short lo_p_sdu In OSI primitive received at
Layer 7 from Layer 6, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

extern volatile unsigned short m_lo_p_sdu_offset In OSI primitive received at
Layer 7 from Layer 6, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

extern volatile unsigned short m_lo_p_sdu_size Size of the service data unit in
an interlayer-message buffer.
Received at Layer 7 from Layer
6. Same as data_length in a
PDU. Line Setup configured for
emulate or monitor mode.

extern unsigned long I7_tick_count 32-bit /1_tick_count stored In
header of most recent IL buffer
passed up to Layer 7.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emulate or
monitor mode.

63.3 Routines

OSI routines available at each layer make sending primitives to a layer above or
below possible (see Figure 63-3). The routine name and its arguments provide the
same information as the softkey selections on the Protocol Spreadsheet. (In the early
phases of compiling the program, the C translator uses the routines to convert the
spreadsheet softkey-token primitives into C.) All routines are protocol-independent.

63-30

63 0OS!

(A) Layer-Independent OSI Routines

The following interlayer buffer service routines operate at any layer, regardless of
protocol (or in the absence of a protocol package).

_get_il_msg_buff
Synopsis
extern void _get_il_msg_buff(buffer_number_ptr, maintain_bit_ptr);

unsigned short * buffer_number_ptr;
unsigned short * maintain_bit_ptr;

Descripti

The _get_il_msg_buff routine gets a free interlayer message buffer from the pool
and returns the buffer number to the caller for use in subsequent calls to other
interlayer buffer services. It also returns a maintain bit for use in the freeing
operation.

Inputs

The first parameter is a pointer to the location where the buffer number is to be
stored. The buffer number that is returned is actually an iAPX-286 segment
number which can be converted to a pointer by shifting it 16 bits to the left. If
there is no free buffer available, the routine will wait for one to become
available.

The second parameter is a pointer to the location where the maintain bit will be
stored. Since it must be used in the freeing operation, the maintain bit value
should not be modified. The zero bit in this variable indicates your maintain
bit.

Example

The variables in which the returned buffer number and maintain bit will be
stored must be declared. When calling the routine, reference the addresses of
these variables.

{

unsigned short il_buffer_number;

unsigned short relay_baton;

}

LAYER: 4

STATE: get_a_buffer

CONDITIONS: KEYBOARD “ "
ACTIONS:
{
_get_il_msg_buff(&il_buffer_number, &relay_baton);
}

The routine will get a buffer number and store it in variable il_buffer_number.
It will also return a maintain bit and store it in variable relay_baton.

63-31

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

_start_il_buff_list

Synopsis

extern void _start_il_buff list(il_buffer_number, start_offset_ptr);
unsigned short il_buffer_number;
unsigned short * start_offset_ptr;

Descripti

The _start_il_buff list routine starts a linked list of text inside an interlayer
message buffer. The list is made up of a header node and text nodes. The
header node contains offsets to the first and last text nodes. Each text node
contains a pointer to the actual text, the length of the text, and the offset to the
next text node. This routine actually creates the header node inside the
interlayer message buffer and initializes the first and last text node offsets to
zero, indicating an empty list. It will return the offset to the list header node for
use in subsequent list service calls.

Inputs

The first parameter is the interlayer message buffer number that will contain the
list.

The second parameter is a pointer to the location where the offset to the list
header will be stored. The returned offset will be zero if there is insufficient
room in the buffer for the header node and one text node. Otherwise, it is the
offset from the beginning of the message buffer to the start of the header node.

To convert the offset into a pointer, shift the buffer number 16 bits to the left
and add the offset:

(void *)(((long)il_buffer_number << 16) + data_start_offset);

Example

Get a buffer and start a linked list. The variable in which the returned offset
will be stored must be declared. When calling the routine, reference the address
of this variable.

{

unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short data_start_offset;

}

63-32

63 0OS!

STATE: start_a_list
CONDITIONS: KEYBOARD *“ "
ACTIONS:

{
_get_il_msg_buff(&il_buffer_number, &relay baton);
_start_il_buff list(il_buffer_number, &data_start_offset);
/* See _insert_il_buff_list_cnt routine on how information is inserted in the buffer. */

}

The routine will get the offset to the header node and store it in variable
data_start_offset.

_dup_il_buff_list_start

Synopsis

extern unsigned short _dup_il_buff list_start(il_buffer_number, start_offset,
new_start_offset_ptr);

unsigned short il_buffer_number;

unsigned short start_offset;

unsigned short * new_start_offset_ptr;

Descripti

This routine duplicates the header node of a pointer list. In order for a layer to
retain the ability to resend a buffer—that is, to reference again the same list
header with the same first-node offset—it must keep its own linked list safe from
data inserted at a layer below. The _dup_il_buff list_start routine allows the
lower layer to start its own list.

If the lower layer will insert data into the buffer, it need duplicate only the list
header (“list_start”), not the entire list. If the layer will append data to the
end of the buffer, it must duplicate the complete linked list via the
_dup_il_buff_list routine.

Inputs

The first parameter is the interlayer message buffer number in which the header
node will be duplicated.

The second parameter is the offset to the header node to be duplicated.

The third parameter is a pointer to the location where the offset to the new
header node will be stored.

Returns

This routine returns zero if there is not enough room in the buffer for the
duplicated header node and at least one list node.

63-33

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example

Duplicate the header node of a buffer passed down from Layer 3.

{

extern volatile unsigned short up_dl_il_buff;
extern volatile unsigned short up_dl_sdu;
unsigned short 12_data_start_offset;

}
LAYER: 3

STATE: message
CONDITIONS: KEYBOARD “ "

ACTIONS: DL_DATA REQ “L&NU(FOX) "
LAYER: 2
STATE: duplicate_header
CONDITIONS: DL_DATA REQ
ACTIONS:

{
_dup_il_buff_list_start(up_dl_il_buff, up_dl_sdu, &I2_data_start_offset);

/* See _insert_il_buff list_cnt routine on how information is inserted in the buffer. */

}
_dup_il_buff_list

Synopsis
extern unsigned short _dup_il_buff_list(il_buffer_number, start_offset, new_start_offset_ptr);
unsigned short il_buffer_number;

unsigned short start_offset;
unsigned short * new_start_offset_ptr;

Descripti

This routine duplicates an entire pointer list. In order for a layer to be able to
retain the ability to resend a buffer—that is, to reference again the same list
header with the same first- and last-node offsets—it must keep its own linked
list safe from data inserted and appended at a layer below. The
_dup_il_buff list routine allows the lower layer to have its own list.

If the lower layer will append data to the buffer, it should duplicate the entire
linked list. If the layer will only insert data into the buffer, it need only
duplicate the header node via the _dup_il_buff_list_start routine.

Inputs

The first parameter is the interlayer message buffer number in which the list will
be duplicated.

The second parameter is the offset to the header node of the list to be
duplicated.

63-34

63 0SI

The third parameter is a pointer to the location where the offset to the header
node for the new list will be stored.

Returns

This routine returns zero if the duplication is successful. If there is not enough
room in the buffer to duplicate the list, one is returned.

Example

Duplicate the entire pointer list of a buffer passed down from Layer 3.

{

extern volatile unsigned short up_di_il_buff;
extern volatile unsigned short up_dl_sdu;
unsigned short 12_data_start_offset;

}
LAYER: 3
STATE: message
CONDITIONS: KEYBOARD “
ACTIONS: DL_DATA REQ “8. 5N (FOX) "
LAYER: 2
STATE: duplicate_list
CONDITIONS: DL_DATA REQ
ACTIONS:

{
_dup_il_buff list(up_dl_il_buff, up_dl_sdu, &I2_data_start_offset);

/* See _append_il_buff_list_cnt routine on how information is appended to the buffer. */

}
_open_space_in_il_buff

Synopsis

extern void _open_space_in_il_buff(il_buffer_number, length, space_offset_ptr);

unsigned short il_buffer_number;
unsigned short length;
unsigned short * space_offset_ptr;

Descripti

The _open_space_in_il_buff routine opens up the requested amount of space in
the specified interlayer message buffer. It returns an offset from the beginning
of the buffer to the start of the open space.

Inputs

The first parameter is the interlayer message buffer number in which space is to
be made.

63-35

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The second parameter is the amount of space (number of bytes) requested.

The third parameter is a pointer to the location where the returned offset will be
stored. The returned offset will be zero if there is insufficient room in the
buffer.

To convert the offset into a pointer, shift the buffer number 16 bits to the left
and add the offset:

(void *)(((long)il_buffer_number << 16) + available_space_offset);

Example

Always open space in the buffer if you are going to copy data (usually header
information) into the buffer. If you are not going to copy data into the buffer,
but reference its location in memory outside the buffer (usually user data), you
do not need to open space.

The variable in which the returned offset will be stored must be declared. When
calling the routine, reference the address of this variable. The length may be
entered as a numeric value, in which case a length variable need not be
declared.

For example, a buffer at Layer 3 will have three X.25-header bytes inserted.
The call for space to hold the header would look like this:

{
unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short data_start_offset;
unsigned short available_space_offset; -
}
STATE: get_space
CONDITIONS: KEYBOARD “ "
ACTIONS:

{
_get_il_msg_buff(&il_buffer_number, &relay_baton);
_start_il_buff_list(il_buffer_number, &data_start_offset);
_open_space_in_il_buff(il_buffer_number, 3, &available_space_offset);

/* See _insert_il_buff list_cnt routine on how information is inserted in the buffer. */

}

The routine will get the offset to the next available space in the buffer and store
it in variable available_space_offset.

Once space has been opened, the buffer-number and available-space variables
can be converted into an open-space pointer. With this pointer, data can be
copied into the space. The pointer can then be referenced in an
_insert_il_buff_list_cnt routine, so that the opened space becomes threaded onto
the linked list in the IL buffer. See the programming example under
_insert_il_buff_list_cnt.

63-36

63 OSI

_free_il_msg_buff

Synopsis

extern void _free_il_msg_buff(il_buffer_number, relay_baton);
unsigned short il_buffer_number;
unsigned short relay_baton;

Descripti

The _free_il_msg_buff routine returns an interlayer message buffer to the pool of
free buffers. Before actually returning the buffer to the pool, this routine
verifies that all maintain bits have been reset, assuring that all users have freed
this buffer.

Inputs

The first parameter is the interlayer—bﬁffer number to be freed.

The second parameter is the maintain bit associated with the buffer user to be
freed.

Example

See _set_maint_buff_bit routine.

_set_maint_buff_bit

extern void _set_maint_buff bit(il_buffer_number, new_bit_ptr);

unsigried short il_buffer_number;
unsigned short * new_bit_ptr;

Descripti

The _set_maint_buff_bit routine sets a new maintain bit for a given interlayer
message buffer. It returns that bit to the caller to be used in the freeing
operation.

The maintain bit allocated in the _get_il_msg_buff routine should be considered
valid only for the layer at which it was obtained. Once you pass a buffer, the
maintain bit will hold the buffer at the next layer only until action on it has been
processed. (In Spreadsheet terms, the buffer will be held until the ACTIONS
block has been processed in response to the first CONDITIONS block identifying
the buffer. In any other CONDITIONS block referring to the buffer, the buffer
will not be found unless an additional maintain bit was set.) The maintain bit

63-37

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

eventually will be freed automatically whether or not any action is taken on it at
the next layer. To hold a buffer at a particular layer, or to continue passing the
buffer (in either direction), a new maintain bit must be set. The same maintain
bit cannot be used continuously, since it will be freed after the first process on it
(an ACTION to send, for example).

If you wish to keep a buffer available for your use while also sending it to
another layer, set two maintain bits. One will be used to pass the buffer; the
other will “maintain” the buffer for other processes. The latter will have to be
freed via the _free_il_msg_buff routine.

Inputs

The first parameter is the interlayer-buffer number in which the new bit will be
set.

The second parameter is a pointer to the location where the returned maintain
bit will be stored. There are sixteen maintain bits reserved for each interlayer
buffer. Each bit is identified by a two-byte variable with a single zero. The first
maintain bit allocated is the least significant, so the value returned is
hexadecimal FFFE (binary 11111111 11111110). The last maintain bit
allocated is 7FFF (01111111 11111111). If all the maintain bits are already in
use, FFFF will be returned.

The maintain bit value should not be modified. It must be used in the freeing
operation to make sure the buffer is returned to the free buffer pool.

Example

The variable in which the returned maintain bit will be stored must be declared.
When calling the routine, reference the address of this variable. For example,
you receive a buffer at Layer 2 from Layer 3 (up_dl_il_buff) and insert
information into it. Before passing the buffer to Layer 1, set two maintain bits.
The one stored in variable maintain_bit will hold the buffer for the purpose of
repeated resends of the frame, if necessary, and will have to be freed via the
_free_il_msg_buff routine. When you pass the buffer down, use the bit in
variable I2_relay_baton. When you resend the frame, set a new resend_baton
bit and pass that down, still holding maintain_bit in reserve for subsequent
resends. C

{

unsigned short 12_relay_baton;

unsigned short resend_baton;

unsigned short maintain_bit;

extern volatile unsigned short up_dl_il_buff;
extern volatile unsigned short up_d!_sdu;
unsigned short 12_data_start_offset;

unsigned short available_space_offset;

static unsigned char 12_data[2] = {0x01, 0x00};
int i;

unsigned char * ptr_12;

63-38

63 OS!

#define make_ptr(number, offset) ((void *)(((long)number << 16) + offset))
}
LAYER: 3
STATE: send_fox_message
CONDITIONS: KEYBOARD “ "

ACTIONS: DL_DATA REQ “L &N (FOX)”
LAYER: 2
STATE: send_a_buffer
CONDITIONS: DL_DATA REQ
ACTIONS:
{

/* See _insert_il_buff_list_cnt routine for an explanation of how information is inserted in the
buffer. */

_dup_il_buff_list_start (up_di_il_buff, up_dl_sdu, &I2_data_start_offset);
_open_space_in_il_buff(up_d!_il_buff, 2, &available_space_offset);
ptr_I2 = make_ptr(up_di_il_buff, available_space_offset);
for(i = 0; i<2; i++)

{

*ptr_I2 = data_l2[i];

ptr_12++;

}
ptr_12 -=2;
_insert_il_buff_list_cnt(up_d!_il_buff, 12_data_start_offset, ptr_I2, 2);
_set_maint_buff_bit(up_dI_il_buff, &maintain_bit);
_set_maint_buff_ bit(up_di_il_buff, &I2_relay_baton);

send_ph_prmtv_below (up_dl_il_buff, 12_relay_baton, 12_data_start_offset, 0, 0x24, 0);

LAYER: 1
STATE: resend_buffer
CONDITIONS: RECEIVE STRING “F]%(XXXX1001) "
ACTIONS:
{
_set_maint_buff bit(up_dl_il_buff, &resend_baton);
11_il_transmit(up_dl_il_buff, resend_baton, 12_data_start_offset, 1);

/* See Section 59, Monitor/Transmit Line Data, for an explanation of the /1_il_transmit
routine. */

}

CONDITIONS: RECEIVE STRING fEJH(XXXX0001) "
ACTIONS:

{

_free_il_msg_buff(up_dl_il_buff, maintain_bit);
/* See _free_il_msg_buff for an explanation of this routine. */
}

_insert_il_buff_list_cnt

Synopsis

extern unsigned short _insert_il_buff list_cnt(il_buffer_number, data_start_offset, text_ptr,
text_length);

unsigned short il_buffer_number;

unsigned short data_start_offset;

unsigned char * text_ptr;

unsigned short text_length;

63-39

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Descripti

The _insert_il_buff_list_cnt routine inserts a text node at the beginning of a
linked list of text inside of an interlayer message buffer. It will set the text
pointer and byte-count in the text node to the values specified.

Inputs

The first parameter is the interlayer-buffer number in which the linked list will
be inserted.

The second parameter is the offset to the header node for the linked list, from
the beginning of the buffer. ’

The third parameter is a pointer to a text.

The fourth parameter is the length of the text.

Returns

If the insert is successful, a value of 0 is returned; if it is not successful, a value
of 1 is returned. If you want to check the returned value, do so at the time the
routine is called, as in the following example at Layers 2 and 3.

Example

If text is to be copied into the buffer, a pointer to the text must be declared. If
not, when calling the _insert_il_buff_list_cnt routine, reference the address of
the text. The length of the text may be entered as an integer, in which case a
length variable need not be declared.

Always open space in the buffer if you are going to copy data (usually header
information) into the buffer. If you are not going to copy data into the buffer,
but reference its location in memory outside the buffer (usually user data), you
do not need to open space.

In the following spreadsheet example, an interlayer-buffer number is obtained at
Layer 5, a header node is created in the buffer, and the address of a fox
message text (located in memory outside of the buffer) is inserted into a text
node in the buffer.

unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short 14_relay_baton
unsigned short 13_relay_baton;
unsigned short 12_relay_baton;
unsigned short data_start_offset;
unsigned short 12_data_start_offset;

63-40

63 OS!

unsigned short available_space_offset;

static unsigned char data[] = “UFOX)”;

static unsigned char 13_data[3] = {0x10, 0x04, 0x00};
static unsigned char 12_data[2] = {0x01, 0x00};
int i;

int length;

extern volatile unsigned short up_t_il_buff;
extern volatile unsigned short up_n_il_buff;
extern volatile unsigned short up_di_il_buff;
extern volatile unsigned short up_n_sdu;

extern volatile unsigned short up_dl_sdu;

extern volatile unsigned short up_t_sdu;
unsigned char * ptr_13, * ptr_I2;

/* Whenever make_ptr is encountered, the first parameter will be shifted 16 bits to the left. .
The second parameter will be added, and the result cast into a pointer. */

#define make_ptr(number,offset) ((void *)(((long)number << 16) + offset))
}
LAYER: 5
STATE: begin_message
CONDITIONS: KEYBOARD “ "
ACTIONS:

{
_get_il_msg_buff(&il_buffer_number, &relay_baton);
_start_il_buff_list(il_buffer_number, &data_start_offset);

/* Do not include the terminating null character in the length determination of a string. */
length = sizeof(data) - 1;

/* The address of data outside of the buffer is given for insertion. The data itself is not copied
into the buffer. The buffer is then passed down to Layer 4 (see send_t_prmtv_below for an
explanation of this routine). */
_insert_il_buff_list_cnt(il_buffer_number, data_start_offset, &data[0], length);
send_t_prmtv_below (il_buffer_number, relay_baton, data_start_offset, 0, 0x84, 0);

}

At Layer 4 a new maintain bit is set to use in passing the buffer to Layer 3.
Since no data is inserted, the same data_start_offset is used (in the form of the
variable up_t_sdu). The buffer is then passed down to Layer 3 (see
send_n_prmtv_below for an explanation of this routine).

LAYER: 4
STATE: pass
CONDITIONS: T_DATA_REQ
ACTIONS:

{

_set_maint_buff_bit(up_t_il_buff, &I4_relay_baton);

send_n_prmtv_below (up_t_il_buff, 14_relay_baton, up_t_sdu, 0, 0x64, 0);
}

At Layer 3, space is opened for an X.25 packet header. A pointer to the
opened space is created and the data is inserted into the linked list passed down
from Layer 4.

63-41

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

LAYER: 3
STATE: Insert_and_send
CONDITIONS: N_DATA_REQ
ACTIONS:
{
_open_space_in_il_buff(up_n_il_buff, 3, &available_space_offset);

ptr_I3 = make _prr(up_n_il:b;ff,— available_space_offset);
for(i=0; i<3; i++)

{

*ptr_13 = 13_datafi];

ptr_I3++;

}

/* The location of the data in the buffer is referenced in the insert routine, so the pointer must
be moved back to the beginning of the opened space. The offset to the Layer 3 header node is
given in the insert routine. If the insertion is not successful, an alarm will sound and a message
will be displayed on the prompt line of the screen. */

ptr_13 -=3;

if(_insert_il_buff list_cnt(up_n_il_buff, up_n_sdu, ptr_13, 3) != 0)
{
sound_alarm(); .
display_prompt(“Insert failed at Layer 3.”);

/* A new maintain bit is set for passing the buffer. The buffer is then passed down to Layer 2
(see send_dl_prmtv_below for an explanation of this routine). */

_set_maint_buff bit(up_n_il_buff, &I3_relay_baton);

send_d!_prmtv_below (up_n_il_buff, 13_relay_baton, up_n_sdu, 0, O0x44, 0);

}

At Layer 2, a new linked list is started. The Layer 2 header could be inserted
into the linked list passed down from Layer 3; but if Layer 3 wants to retain the
ability to resend a buffer—that is, to reference again the same list header with
the same first-node offset—it must keep its own linked list safe from data
inserted at Layer 2.

LAYER: 2
STATE: Insert_more
CONDITIONS: DL_DATA_REQ
ACTIONS:
{

/* The _dup_il_buff_list_start routine allows Layer 2 to start its own list. Part of this routine
copies the Layer 3 header into the Layer 2 header node. */

_dup_il_buff list_start(up_di_il_buff, up_d!_sdu, &I2_data_start_offset);

/* Space is opened in the buffer. A pointer to this location is created and the data is copied
into the buffer. */

_open_space_in_il_buff(up_dl_il_buff, 2, &available_space_offset);

ptr_12 = make_ptr(up_dl_il_buff, available_space_offset);
Sor(i = 0; i <2; i+t)

*ptr_12 = 12_data[i];
ptr_12++;
}
/* The location of the data in the buffer is referenced in the insert routine, so the pointer must
be moved back to the beginning of the opened space. The offset to the Layer 2 header node is
given in the insert routine. If the insertion is not successful, an alarm will sound and a message
will be displayed on the prompt line of the screen. */

63-42

63 O8I

ptr_12 -=2;
if(_insert_il_buff_list_cnt(up_dl_il_buff, 12_data_start_offset, ptr_12, 2) I= 0)
{

sound_alarm();

pos_cursor(0,30);

displays(“Insert failed at Layer 2.”');
}

/* A new maintain bit is set for passing the buffer. The buffer is then passed down to Layé} 1
(see send_ph_prmtv_below for an explanation of this routine). */

_set_maint_buff bit(up_dl_il_buff, &I2_relay_baton);

send_ph_prmtv_below (up_di_il_buff, 12_relay_baton, 12_data_start_offset, 0, 0x24, 0);
}

The following text will be sent out onto the line and displayed as line data:

L& THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789Ng]
_append_il_buff_list_cnt

Synopsis

extern unsigned short _append_il_buff list_cnt(il_buffer_number, data_start_offset, text_ptr,
text_length);

unsigned short il_buffer_number;

unsigned short data_start_offset;

unsigned char * text_ptr;

unsigned short text_length;

Descrinti

The _append_il_buff_list_cnt routine appends a text node at the end of a linked
list of text inside of an interlayer message buffer. It will set the text pointer and
count in the text node to the information provided.

Inputs

See _insert_il_buff_list_cnt routine.

Returns

See _insert_il_buff_list_cnt routine.

Example

Two modifications to the program shown for the _insert_il_buff_list_cnt routine
are all that is required to make the program work for appending data. The
changes primarily involve Layer 2 in the example, so we will replicate only that
portion of the program below. Substitute _append_il_buff_list_cnt for every
occurrence _insert_il_buff_list_cnt. When data is to be appended in a buffer,
you should duplicate the entire linked list received from the layer above, not just
the header node. So also substitute _dup_il_buff_list for _dup_il_buff_list_start.

63-43

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(B)

LAYER: 2
STATE: insert_more
CONDITIONS: DL_DATA_REQ
ACTIONS:
{
_dup_il_buff list(up_dl_il_buff, up_dl_sdu, &I2_data_start_offset);
_open_space_in_il_buff(up_dl_il_buff, 2, &available_space_offset);

ptr_12 = make_ptr(up_dl_il_buff, available_space_offset);

for(i = 0; i<2; i++)
{
*ptr_12 = I2_data[i];
ptr_12++;

}

ptr_12 -=2;

if(_append_il_buff list_cnt(up_dl_il_buff, 12_data_start_offset, ptr_I2, 2) I= 0)
{

sound_alarm();
pos_cursor(0,30);
displays(“Insert failed at Layer 2.”);

_set_maint_buff_bit(up_dl_il_buff, &I2_relay_baton);
send_ph_prmtv_below (up_dl_il_buff, 12_relay_baton, I12_data_start_offset, 0, 0x24, 0);
}

The following text will be sent out onto the line and displayed as line data:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 01234567892 & %4 #[G)

Layer 1 OSI Routines

OSI data primitives are handled automatically between Layers 1 and 2. In the
“up” direction, line data is placed in an IL buffer and the associated data
primitive is given automatically to Layer 2. In the “down” direction, data
primitives are received at Layer 1 and put out automatically onto the line.

In the absence of line data, if you want to originate a buffer at Layer 1 and
send it upward, use the following routine. In primitives being sent down the
layers, Layer 1 will automatically send the primitive out onto the line.

send_ph_to_above

Synopsis

extern void send_ph_to_above(il_buffer_number, relay_baton, data_start_offset, size, code,
path);
unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short data_start_offset;
unsigned short size;
unsigned char code; e
unsigned char path;

63-44

63 OS!/

Descripti

The send_ph_to_above emulate routine passes a specified interlayer message
buffer from Layer 1 to Layer 2 in an OSI primitive. Received line data is
placed in an IL buffer and passed automatically to Layer 2. If you wish to get a
buffer “manually” at Layer 1 and then pass it up, use this routine.

Inputs

The first parameter is the interlayer buffer number returned by the
_get_il_msg_buff routine.

The second parameter is the returned maintain bit from the _get_il_msg_buff
routine. As soon as Layer 2 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the returned offset (from the call to _start_il_buff list) to
the Layer 1 service data unit in a buffer.

The fourth parameter is the length of the data in the buffer.

The fifth parameter is the code specifying the iype of primitive in which the
buffer will be sent. Refer to variable lo_ph_prmtv_code in Table 63-3 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent.

Example

Get a buffer at Layer 1. Assuming X.25 protocol, insert data into the buffer
and pass it up to Layer 2.

{
unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short data_start_offset;
unsigned short available_space_offset;
int length;
int i;
static unsigned char data[] = {0x01, 0x00, 0x10, 0x04, 0x00, 0x02, 0x01, 0x01};
unsigned char * ptr;
}
LAYER: 1
STATE: get_buffer
CONDITIONS: KEYBOARD “
ACTIONS:
{
_get_il_msg_buff(&il_buffer_number, &relay_baton);
_start_il_buff_list(il_buffer_number, &data_start_offset);
length = sizeof(data);
_open_space_in_il_buff(il_buffer_number, length, &available_space_offset);
ptr = (void *)(((long)il_buffer_number << 16) + available_space_offset);

63-45

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

for(i = 0; i <length; i++)

{

*ptr = data[i];

ptri+t;

}
ptr-=length;
_insert_il_buff_list_cnt(il_buffer_number, data_start_offset, ptr, length);
send_ph_to_above(il_buffer_number, relay_baton, data_start_offset, length, 0x25, 0);

}

(C) Layer 2 OSI Routines

The following routines pass OSI primitives from Layer 2 to either Layer 3 or
Layer 1.

send_dl_prmtv_above

Synopsis

extern void send_dl_prmtv_above(il_buffer_number, 12_relay_baton, 12_data_start_offset, size,
12_code, path);

unsigned short il_buffer_number;

unsigned short 12_relay_baton;

unsigned short 12_data_start_offset;

unsigned short size;

unsigned char 12_code;

unsigned char path;

Descripti

The send_di_prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 2 to Layer 3 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 2 from Layer 1, the variable lo_ph_il_buff
may be used to identify the buffer number.

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 2 to
Layer 3. As soon as Layer 3 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 2 service data unit in a received
buffer. The variable lo_ph_sdu contains the offset to the service data unit when
the buffer reached Layer 2. The offset must be incremented by the length of
the Layer 2 header.

63-46

63 OSI/

NOTE: In general, do not modify extern variables, such as
lo_ph_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_ph_sdu has been named in the
argument of the send routine, add the length of the Layer 2
header, as in the example below.

The fourth parameter is the length of the data in the buffer. Use the length

indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 2 header.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_dI_prmtv_code in Table 63-4 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 2 from Layer 1, the variable
lo_ph_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 2 from Layer 1. Assuming X.25 protocol, the
data specific to Layer 2 (the frame header) begins at the SDU offset
(lo_ph_sdu) and consists of two bytes. Before the buffer is passed up to Layer 3,
the offset to the SDU and the size of the SDU will be adjusted by two bytes and
a new maintain bit will be set.

{

struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short il_buffer_number;
unsigned char buffer_contents;
unsigned short data_start_offset;

unsigned short data_length;

b

struct pdu * pdu_ptr;

extern volatile unsigned short lo_ph_pdu_seg;

extern volatile const unsigned char lo_ph_prmtv_path;

extern volatile unsigned short lo_ph_il_buff;

extern volatile unsigned short lo_ph_sdu;

unsigned short 12_relay_baton;

63-47

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

LAYER: 2
STATE: send_buffer_up
CONDITIONS: PH_DATA IND
ACTIONS:
{
pdu_ptr = (void *)((long)lo_ph_pdu_seg << 16);
_set_maint_buff_bit(lo_ph_il_buff, &I2_relay_baton);
send_dl_prmtv_above(lo_ph_il_buff, 12_relay_baton, lo_ph_sdu + 2, -
pdu_ptr->data_length - 2, 0x45, lo_ph_prmtv_path);
}

send_m_dIl_prmtv_above

Synopsis

extern void send_m_d!_prmtv_above(il_buffer_number, 12_relay_baton, 12_data_start_offset,
size, 12_code, path);

unsigned short il_buffer_number;

unsigned short 12_relay_baton;

unsigned short 12_data_start_offset;

unsigned short size;

unsigned char 12_code;

unsigned char path;

Descripti

The send_m_dl_prmtv_above monitor routine passes a specified interlayer
message buffer from Layer 2 to Layer 3 in an OSI monitor primitive.

Inputs

See send_dl_prmtv_above. Use the monitor variables m_lo_ph_il_buff,
m_lo_ph_sdu_offset, and m_lo_ph_sdu_size as input. Refer to variable
m_lo_dl_prmtv_code in Table 63-4 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 2 programming block should look like this:

LAYER: 2
STATE: send_buffer_up
CONDITIONS: PH_RD_DATA IND
ACTIONS:
{
_set_maint_buff_bit(m_lo_ph_il_buff, &I2_relay_baton);
send_m_dl_prmtv_above(m_lo_ph_il_buff, 12_relay_baton,m_ lo_ph_sdu_offset + 2,
m_lo_ph_sdu_size - 2, Ox45, m_lo_ph_prmtv_path);
}

63-48

63 0OSI

send_ph_prmtv_below

Synopsis

extern void send_ph_prmtv_below (il_buffer_number, 12_relay_baton, 12_data_start_offset, size,
12_code, path);

unsigned short il_buffer_number;

unsigned short 12_relay_baton;

unsigned short 12_data_start_offset;

unsigned short size;

unsigned char 12_code;

unsigned char path;

Descriti

The send_ph_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 2 to Layer 1 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 2 from Layer 3, the variable up_d!_il_buff
may be used to identify the buffer number. If the buffer originated at Layer 2,
use the buffer-number variable named in the _get_il_msg_buff routine. (See
_insert_il_buff_list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 2 to
Layer 1. As soon as Layer 1 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 2, use the maintain bit
variable named in the _get_il_msg_buff routine. (See _insert_il_buff list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 2 list header node in the buffer.
For a buffer which has been received at Layer 2 from Layer 3, the variable
up_dl_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable ph_prmtv_type in Table 63-2 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 2 from Layer 3, the variable
up_dl_prmtv_path may be used to specify the path number.

63-49

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(D)

Example

A buffer is received at Layer 2 from Layer 3. No text will be inserted at Layer
2. (For information on inserting text, see _insert_il_buff_list_cnt routine.) The
buffer will be passed to Layer 1, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

{
extern volatile unsigned short up_dl_il_buff;
extern volatile unsigned short up_dl_sdu;
unsigned short 12_relay_baton;
}
LAYER: 2 .
STATE: pass_buffer_down
CONDITIONS: DL_DATA REQ
ACTIONS:

{

_set_maint_buff bit(up_dl_il_buff, &I2_relay_baton);

send_ph_prmtv_below (up_dl_il_buff, 12_relay_baton, up_d!_sdu, 0, 0x24, 0);
}

Layer 3 OSI Routines

The following routines pass OSI primitives from Layer 3 to either Layer 4 or
Layer 2.

send_n_prmtv_above

Synopsis

extern void send_n_prmtv_above(il_buffer_number, 13_relay_baton, 13_data_start_offset, size,
13_code, path);

unsigned short il_buffer_number;

unsigned short 13_relay_baton;

unsigned short 13_data_start_offset;

unsigned short size;

unsigned char 13_code;

unsigned char path;

Descripti

The send_n_prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 3 to Layer 4 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 3 from Layer 2, the variable lo_d!I_il_buff may
be used to identify the buffer number.

63-50

63 0OSI

The second parameter is the returned maintain bit from a call to
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 3 to
Layer 4. As soon as Layer 4 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 3 service data unit in a received
buffer. The variable lo_dI_sdu contains the offset to the service data unit when

the buffer reached Layer 3. The offset must be incremented by the length of
the Layer 3 header.

NOTE: In general, do not modify extern variables, such as
lo_dl_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_dl_sdu has been named in the
argument of the send routine, add the length of the Layer 3
header, as in the example below.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 3 header.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_n_prmtv_code in Table 63-5 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 3 from Layer 2, the variable
lo_dl_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 3 from Layer 2. Assuming X.25 protocol, the
header consists of three bytes. The offset to and size of the service data unit
will be adjusted by three bytes, a new maintain bit will be set, and the buffer will
be passed up to Layer 4.

{
struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short il_buffer_number;
unsigned char buffer_contents;
unsigned short data_start_offset;
unsigned short data_length;

}’

63-51

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

struct pdu * pdu_ptr;

extern volatile unsigned short lo_d!_pdu_seg;

extern volatile const unsigned char lo_dl_prmtv_path;
extern volatile unsigned short lo_d!_il_buff;

extern volatile unsigned short lo_dl_sdu;

unsigned short 13_relay_baton;

}
LAYER: 3
STATE: send_buffer_up
CONDITIONS: DL_DATA IND
ACTIONS:
{
pdu_ptr = (void *)((long)lo_d!_pdu_seg << 16);
_set_maint_buff_bit(lo_dl_il_buff, &I3_relay_baton);
send_n_prmtv_above(lo_dl_il_buff, 13_relay_baton, lo_dl_sdu + 3,
pdu_ptr->data_length - 3, 0x65, lo_dl_prmtv_path);
}

send_m_n_prmtv_above

Synopsis

extern void send_m_n_prmtv_above(il_buffer_number, 13_relay_baton, 13_data_start_offset,
size, 13_code, path);

unsigned short il_buffer_number;

unsigned short 13_relay_baton;

unsigned short 13_data_start_offset;

unsigned short size;

unsigned char 13_code;

unsigned char path;

D A
The send_m_n_prmtv_above monitor routine passes a specified interlayer
message buffer from Layer 3 to Layer 4 in an OSI monitor primitive.

Inputs

See send_n_prmtv_above. Use the monitor variables m_lo_d!_il_buff,
m_lo_dl_sdu_offset, and m_lo_dl_sdu_size as input. Refer to variable
m_lo_n_prmtv_code in Table 63-5 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 3 programming block should look like this:

LAYER: 3
STATE: send_buffer_up
CONDITIONS: DL_RD_DATA IND
ACTIONS:
{
_set_maint_buff_bit(m_lo_dl_il_buff, &I3_relay_baton 'H
send_m_n_prmtv_above(m_lo_di_il_buff, 13_relay_baton, m_lo_d!_sdu_offset + 3,
m_lo_dl_sdu_size - 3, 0x65, m_lo_dl_prmtv_path);
}

63-52

63 0OSI

send_dl_prmtv_below

Synopsis

extern void send_dl_prmtv_below (il_buffer_number, 13_relay_baton, 13_data_start_offset, size,
13_code, path);

unsigned short il_buffer_number;

unsigned short 13_relay_baton;

unsigned short 13_data_start_offset;

unsigned short size;

unsigned char 13_code;

unsigned char path;

Descripti

The send_dl_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 3 to Layer 2 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 3 from Layer 4, the variable up_n_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 3, use
the buffer-number variable named in the _get_il_msg_buff routine. (See
_insert_il_buff list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_Set_maint_buff_bit. It is used only to pass a received buffer from Layer 3 to
Layer 2. As soon as Layer 2 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 3, use the maintain bit
variable named in the _get_il_msg_buff routine. (See _insert_il_buff list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 3 list header node in the buffer.
For a buffer which has been received at Layer 3 from Layer 4, the variable
up_n_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_dl_prmtv_code in Table 63-3 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 3 from Layer 4, the variable
up_n_prmtv_path may be used to specify the path number.

63-53

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example

A buffer is received at Layer 3 from Layer 4. No text will be inserted at Layer
3. (For information on inserting text, see _insert_il_buff list_cnt routine.) The
buffer will be passed to Layer 2, requiring a new maintain bit to be set. If

values are entered for the code and path, these variables need not be declared.

{
extern volatile unsigned short up_n_il_buff;
extern volatile unsigned short up_n_sdu;
unsigned short 13_relay_baton;
}
LAYER: 3
STATE: pass_buffer_down
CONDITIONS: N_DATA REQ
ACTIONS:

{
_set_maint_buff bit(up_n_il_buff, &I3_relay_baton);

send_dl_prmtv_below (up_n_il_buff, 13_relay_baton, up_n_sdu, 0, 0x44, 0);
}

(E) Layer 4 OSI Routines

The following routines pass OSI primitives from Layer 4 to either Layer 5 or
Layer 3.

send_t_prmtv_above

Synopsis

extern void send_t_prmtv_above(il_buffer_number, 14_relay_baton, 14_data_start_offset, size,
14_code, path);

unsigned short il_buffer_number;

unsigned short 14_relay_baton;

unsigned short 14_data_start_offset;

unsigned short size;

unsigned char 14_code;

unsigned char path;

Descripti

The send_t_prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 4 to Layer 5 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 4 from Layer 3, the variable lo_n_il_buff may
be used to identify the buffer number.

63-54

63 OSI

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 4 to
Layer 5. As soon as Layer 5 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 4 service data unit in a received
buffer. The variable lo_n_sdu contains the offset to the service data unit when
the buffer reached Layer 4. The offset must be incremented by the length of

the Layer 4 header, if any.

NOTE: In general, do not modify extern variables, such as
lo_n_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_n_sdu has been named in the
argument of the send routine, add the length of the Layer 4
header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 4 header, if any.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_t_prmtv_code in Table 63-6 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 4 from Layer 3, the variable
lo_n_prmtv_path may be used to specify the path number.

-

Example

A buffer is received at Layer 4 from Layer 3. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 5.

{
struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short il_buffer_number;
unsigned char buffer_contents;
unsigned short data_start_offset;
unsigned short data_length;
Y
struct pdu * pdu_ptr;
extern volatile unsigned short lo_n_pdu_seg;
extern volatile const unsigned char lo_n_prmtv_path;

63-55

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

extern volatile unsigned short lo_n_il_buff;
extern volatile unsigned short lo_n_sdu;
unsigned short 14_relay_baton;

}
LAYER: 4
STATE: send_buffer_up
CONDITIONS: N_DATA IND
ACTIONS:
{
pdu_ptr = (void *)((long)lo_n_pdu_seg << 16);
_set_maint_buff bit(lo_n_il_buff, &I4_relay_baton);
send_t_prmtv_above(lo_n_il_buff, 14_relay_baton, lo_n_sdu,pdu_ptr->data_length,
0x85, lo_n_prmtv_path);
}
send_m_t_prmtv_above
Synopsis

extern void send_m_t_prmtv_above(il_buffer_number, 14_relay_baton, 14_data_start_offset,
size, 14_code, path);

unsigned short il_buffer_number;

unsigned short 14_relay_baton;

unsigned short 14_data_start_offset;

unsigned short size;

unsigned char 14_code;

unsigned char path;

Descriti

The send_m_t_prmtv_above monitor routine passes a specified interlayer message
buffer from Layer 4 to Layer 5 in an OSI monitor primitive.

Inputs

See send_t_prmtv_above. Use the monitor variables m_lo_n_il_buff,
m_lo_n_sdu_offset, and m_lo_n_sdu_size as input. Refer to variable
m_lo_t_prmtv_code in Table 63-6 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 4 programming block should look like this:

LAYER: 4
STATE: send_buffer_up
CONDITIONS: N_RD_DATA IND
ACTIONS:
{
_set_maint_buff_bit(m_lo_n_il_buff, &l4_relay_baton);
send_m_t_prmtv_above(m_lo_n_il_buff, 14_relay_baton,m_ lo_n_sdu_offset ,
m_lo_n_sdu_size, 0x85, m_lo_n_prmtv_path);

}

63-56

63 OSI

send_n_prmtv_below

Synopsis

extern void send_n_prmtv_below (il_buffer_number, 14_relay_baton, 14_data_start_offset, size,
l4_code, path);

unsigned short il_buffer_number;

unsigned short 14_relay_baton;

unsigned short 14_data_start_offset;

unsigned short size;

unsigned char 14_code;

unsigned char path;

Description

The send_n_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 4 to Layer 3 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 4 from Layer S, the variable up_t_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 4, use
the buffer-number variable named in the _get_il_msg_buff routine. (See

_insert_il_buff_list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_Set_maint_buff_bit. It is used only to pass a received buffer from Layer 4 to
Layer 3. As soon as Layer 3 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 4, use the maintain bit
variable named in the _get_il_msg_buff routine. (See _insert_il_buff list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 4 list header node in the buffer.
For a buffer which has been received at Layer 4 from Layer 5, the variable
up_t_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_n_prmtv_code in Table 63-4 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 4 from Layer S, the variable
up_t_prmtv_path may be used to specify the path number.

63-57

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(F)

Example

A buffer is received at Layer 4 from Layer 5. No text will be inserted at Layer
4. (For information on inserting text, see _insert_il_buff_list_cnt routine.) The
buffer will be passed to Layer 3, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

{
extern volatile unsigned short up_t_il_buff;
extern volatile unsigned short up_t_sdu;
unsigned short 14_relay_baton;
}
LAYER: 4
STATE: pass_buffer_down
CONDITIONS: T_DATA REQ
ACTIONS:

{
_set_maint_buff bit(up_t_il_buff, &I4_relay_baton);

send_n_prmtv_below (up_t_il_buff, 14_relay_baton, up_t_sdu, 0, 0x64, 0);
}

Layer 5 OSI Routines

The following routines pass OSI primitives from Layer 5 to either Layer 6 or
Layer 4.

send_s_prmtv_above

Synopsis

extern void send_s_prmtv_above(il_buffer_number, 15_relay_baton, 15_data_start_offset, size,
15_code, path);

unsigned short il_buffer_number;

unsigned short 15_relay_baton;

unsigned short 15_data_start_offset;

unsigned short size;

unsigned char 15_code;

unsigned char path;

Descripti

The send_s_prmtv_above emulate routine passes a specified inter-layer message
buffer from Layer 5 to Layer 6 in an OSI primitive.

Inputs

The first parameter is the inter-layer buffer number to be sent. For a buffer
which has been received at Layer 5 from Layer 4, the variable lo_t_il_buff may
be used to identify the buffer number.

63-58

63 OSI/

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer S to
Layer 6. As soon as Layer 6 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 5 service data unit in a received
buffer. The variable lo_t_sdu contains the offset to the service data unit when
the buffer reached Layer 5. The offset must be incremented by the length of
the Layer 5 header, if any.

NOTE: In general, do not modify extern variables, such as
lo_t_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_t_sdu has been named in the argument
of the send routine, add the length of the Layer 5 header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 5 header, if any.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_s_prmtv_code in Table 63-7 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 5 from Layer 4, the variable
lo_t_prmtv_path may be used to specify the path number.

Example

A buffer is received-at Layer S from Layer 4. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 6.

{
struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short il_buffer_number;
unsigned char buffer_contents;
unsigned short data_start_offset;
unsigned short data_length;
b
struct pdu * pdu_ptr;
extern volatile unsigned short lo_t_pdu_seg;
extern volatile const unsigned char lo_t_prmtv_path;
extern volatile unsigned short lo_t_il_buff;
extern volatile unsigned short lo_t_sdu;
unsigned short 15_relay_baton;

63-59

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

LAYER: §
STATE: send_buffer_up
CONDITIONS: T_DATA IND
ACTIONS:
{
pdu_ptr = (void *)((long)lo_t_pdu_seg << 16);
_set_maint_buff bit(lo_t_il_buff, &!5_relay_baton);
send_s_prmtv_above(lo_t_il_buff, 15_relay_baton, lo_t_sdu, pdu_ptr->data_length,
Oxa5, lo_t_prmtv_path);
}

send_m_s_prmtv_above

Synopsis

extern void send_m_s_prmtv_above(il_buffer_number, 15_relay_baton, 15_data_start_offset,
size, 15_code, path);

unsigned short il_buffer_number;

unsigned short 15_relay_baton;

unsigned short 15_data_start_offset;

unsigned short size;

unsigned char 15_code;

unsigned char path;

Descripti

The send_m_s_prmtv_above monitor routine passes a specified inter-layer
message buffer from Layer 5 to Layer 6 in an OSI monitor primitive.

Inputs
See send_s_prmtv_above. Use the monitor m_lo_t_il_buff, m_lo_t_sdu_offset,

and m_lo_t_sdu_size variables as input. Refer to variable m_lo_s_prmtv_code in
Table 63-7 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 5 programming block should look like this:

LAYER: §
STATE: send_buffer_up
CONDITIONS: T_RD_DATA IND
ACTIONS:
{
_set_maint_buff_bit(m_lo_t_il_buff, &15_relay_baton);
send_m_s_prmtv_above(m_lo_t_il_buff, I5_relay_baton,m_ lo_t_sdu_offset,
m_lo_t_sdu_size, Oxa5, m_lo_t_prmtv_path);

}

63-60

63 0OS!

send_t_prmtv_below

Synopsis

extern void send_t_prmtv_below (il_buffer_number, 15_relay_baton, 15_data_start_offset, size,
15_code, path);

unsigned short il_buffer_number;

unsigned short 15_relay_baton;

unsigned short 15_data_start_offset;

unsigned short size;

unsigned char 15_code;

unsigned char path;

Descripti

The send_t_prmtv_below emulate routine passes a specified inter-layer message
buffer from Layer 5 to Layer 4 in an OSI primitive.

Inputs

The first parameter is the inter-layer buffer number to be sent. For a buffer
which has been received at Layer 5 from Layer 6, the variable up_s_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 5, use
the buffer-number variable named in the _get_il_msg_buff routine. = (See
_insert_il_buff _list_cnt routine example at Layer §.)

The second parameter is the returned maintain bit from a call to
_set_maint_buff _bit. It is used only to pass a received buffer from Layer 5 to
Layer 4. As soon as Layer 4 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 5, use the maintain bit
variable named in the _get_il_msg_buff routine. (See _insert_il_buff list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer S list header node in the buffer.
For a buffer which has been received at Layer 5 from Layer 6, the variable
up_s_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_t_prmtv_code in Table 63-5 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 5 from Layer 6, the variable
up_s_prmtv_path may be used to specify the path number.

63-61

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example

A buffer is received at Layer 5 from Layer 6. No text will be inserted at Layer
5. (For information on inserting text, see _insert_il_buff_list_cnt routine.) The
buffer will be passed to Layer 4, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

{

extern volatile unsigned short up_s_il_buff;
extern volatile unsigned short up_s_sdu;
unsigned short 15_relay_baton;

}
LAYER: §
STATE: pass_buffer_down
CONDITIONS: S_DATA REQ
ACTIONS:

{
_set_maint_buff_bit(up_s_il_buff, &I5_relay_baton);

send_t_prmtv_below (up_s_il_buff, 15_relay_baton, up_s_sdu, 0, 0x84, 0);
}

(G) Layer 6 OSI Routines

The following routines pass OSI primitives from Layer 6 to either Layer 7 or
Layer S.

send_p_prmtv_above

Synopsis

extern void send_p_prmtv_above(il_buffer_number, 16_relay_baton, 16_data_start_offset, size,
16_code, path);

unsigned short il_buffer_number;

unsigned short 16_relay_baton;

unsigned short 16_data_start_offset;

unsigned short size;

unsigned char 16_code;

unsigned char path;

Descripti

The send_p_prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 6 to Layer 7 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 6 from Layer 5, the variable lo_s_il_buff may
be used to identify the buffer number.

63-62

63 Os/

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 6 to

Layer 7. As soon as Layer 7 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 6 service data unit in a received
buffer. The variable lo_s_sdu contains the offset to the service data unit when

the buffer reached Layer 6. The offset must be incremented by the length of
the Layer 6 header, if any.

NOTE: In general, do not modify extern variables, such as
lo_s_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_s_sdu has been named in the
argument of the send routine, add the length of the Layer 6
header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 6 header, if any.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_p_prmtv_code in Table 63-8 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 6 from Layer 5, the variable
lo_s_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 6 from Layer 5. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 7.

{
struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short il_buffer_number;
unsigned char buffer_contents;
unsigned short data_start_offset;
unsigned short data_length;
b
struct pdu * pdu_ptr;
extern volatile unsigned short lo_s_pdu_seg;
extern volatile const unsigned char lo_s_prmtv_path;

63-63

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

extern volatile unsigned short lo_s_il_buff;
extern volatile unsigned short lo_s_sdu;
unsigned short 16_relay_baton;

}
LAYER: 6

STATE: send_buffer_up
CONDITIONS: S_DATA IND
ACTIONS:
{
pdu_ptr = (void *)((long)lo_s_pdu_seg << 16);
_set_maint_buff_bit(lo_s_il_buff, &I6_relay baton);
send_p_prmtv_above(lo_s_il_buff, 16_relay_baton, lo_s_sdu, pdu_ptr->data_length,

Oxc5, lo_s __prmtv__pa—t}J;
}

send_m_p_prmtv_above

Synopsis

extern void send_m_p_prmtv_above(il_buffer_number, 16_relay_baton, 16_data_start_offset,
size, 16_code, path);

unsigned short il_buffer_number;

unsigned short 16_relay_baton;

unsigned short 16_data_start_offset;

unsigned short size;

unsigned char 16_code;
unsigned char path;

Descripti

The send_m_p_prmtv_above monitor routine passes a specified interlayer
message buffer from Layer 6 to Layer 7 in an OSI monitor primitive.

Inputs

See send_p_prmtv_above. Use the monitor variables m_lo_s_il_buff,
m_lo_s_sdu_offset, and m_lo_s_sdu_size as input. Refer to variable
m_lo_p_prmtv_code in Table 63-8 for the appropriate primitive code.

Example

Make the appropriaie variable declarations. For a condition monitoring RD data
primitives, the Layer 6 programming block should look like this:

LAYER: 6
STATE: send_buffer_up
CONDITIONS: S_RD_DATA IND
ACTIONS:

{
_set_maint_buff_bit(m_lo_s_il_buff, &I6_relay_baton);

send_m_p. _prmtv_abov;(m:l_:)_s_il_bujf, 16_relay_baton,m_ lo_s_sdu_offset,
m_lo_s_sdu_size, Oxc5, m_lo_s_prmtv_path);

}

63-64

63 0OSI

send_s_prmtv_below

Synopsis

extern void send_s_prmtv_below (il_buffer_number, 16_relay_baton, 16_data_start_offset, size,
16_code, path);

unsigned short il_buffer_number;

unsigned short 16_relay_baton;

unsigned short 16_data_start_offset;

unsigned short size;

unsigned char 16_code;

unsigned char path;

Descripti

The send_s_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 6 to Layer 5 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 6 from Layer 7, the variable up _p_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 6, use
the buffer-number variable named in the _ger_il_msg_buff routine. (See
_insert_il_buff_list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 6 to
Layer 5. As soon as_Layer 5 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 6, use the maintain bit
variable named in the _get_il_msg_buff routine. (See _insert_il_buff list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 6 list header node in the buffer.
For a buffer which has been received at Layer 6 from Layer 7, the variable
up_p_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_s_prmtv_code in Table 63-6 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 6 from Layer 7, the variable
up_p_prmtv_path may be used to specify the path number.

63-65

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example

A buffer is received at Layer 6 from Layer 7. No text will be inserted at Layer
6. (For information on inserting text, see _insert_il_buff_list_cnt routine.) The
buffer will be passed to Layer 5, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

{

extern volatile unsigned short up_p_il_buff;

extern volatile unsigned short up_p_sdu;

unsigned short 16_relay_baton;

}

LAYER: 6

STATE: pass_buffer_down

CONDITIONS: P_DATA REQ
ACTIONS:
{
_set_maint_buff bit(up_p_il_buff, &I6_relay_baton);
send_s_prmtv_below (up_p_il_buff, 16_relay_baton, up_p_sdu, 0, Oxa4, 0);
}

(H) Layer 7 OSI Routines

send_p_prmtv_below

Synopsis
extern void send_p_prmtv_below (il_buffer_number, relay_baton, data_start_offset, size, code,
path);
unsigned short il_buffer_number;
" unsigned short relay_baton;
unsigned short data_start_offset;
unsigned short size;
unsigned char code;
unsigned char path;

Descripti

The send_p_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 7 to Layer 6 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. Use the
buffer-number variable named in the _get_il_msg_buff routine. (See
_insert_il_buff_list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from the call to
_get_il_msg_buff.

63-66

63 0OSI

The third parameter is the returned offset (from a call to _start il_buff_list) to
the Layer 7 list header node in the buffer.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_p_prmtv_code in Table 63-7 for the
appropriate code.

The sixth parameter is the path number along which the buffer will be sent.

Example

A buffer is obtained at Layer 7. The buffer will be passed to Layer 6, without
any data inserted. (For information on inserting text, see _insert_il_buff_list_cnt
routine.) If values are entered for the code and path, variables for code and
path need not be declared.

{
unsigned short il_buffer_number;
unsigned short data_start_offset;
unsigned short relay_baton;
}
LAYER: 7
STATE: pass_buffer_down
CONDITIONS: KEYBOARD “ "
ACTIONS:
{
_get_il_msg_buff(&il_buffer_number, &relay_baton);
_start_il_buff_list(il_buffer_number, &data_start_offset);
send_p_prmtv_below (il_buffer_number, relay_baton, data_start_offset, 0, Oxc4, 0);

63-67

INTERVIEW 7000 Series Advanced Programming. ATLC-107-951-108

63-68

64 Print

64 Print

The PRINTER port is a serial interface through which the programmer may direct output from
the INTERVIEW to a printer. The printer port is located at the rear of the INTERVIEW
between the REMOTE RS-232 and AUXILIARY ports.

NOTE: Before directing output to the printer port, configure the
Printer Setup menu as explained in Section 14.2.

Each spreadsheet PRINT action or call to one of the C print routines causes output to be
added to a queue of unprinted text in the print buffer. If not doing so already, the print
server also begins to poll the print buffer for text to print. As long as there is unprinted text
in the buffer, the print server polls the buffer, removes text, and sends it to the printer port
of the INTERVIEW. Use the _print_buffer structure to monitor the flow of text in and out
of the print buffer.

Use any of the four C print routines explained in this section to add text to the print buffer.
Three of them—printc, printf, and prints—are similar to the displayc, displayf, and displays
routines which direct output to the Display Window. See Section 61.3(C). With the
set_print_header routine, you determine the heading which will appear at the top of each
printed page. One other routine, sprintf, writes output to a string. The string can then be
referenced in subsequent calls to printf. (You may also use the string named in sprintf in
calls to- displayf, tracef, or fprintf.)

64.1 Structures

Refer to Table 64-1 for the structure of the print buffer. Compare _print_buffer.in
with _print_buffer.out to determine whether or not the print buffer has emptied.
When the values of these two variables are equal, the buffer is empty.

NOTE: Consider the variables in the _print_buffer structure
read-only variables. In general, do not modify extern structures
or variables which may be updated by other processes.

At times, processes may add transactions to the print buffer more quickly than the
print server takes them out. If a process cannot add to the buffer without overwriting
unprinted text, a buffer overrun occurs. When your INTERVIEW is configured for

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

data playback, you can minimize print-buffer overruns by periodically suspending
playback and allowing the print server to empty the buffer. In judging how often to
suspend playback, keep in mind the following points: 1) In general, the more
conditions a program has that trigger print actions, the more frequently playback
should be suspended. 2) When planning to print Run-mode buffers, remember that
the faster the playback speed, the quicker the print buffer fills.

Table 64-1
Print Structures

Type Variable Value (hex/decimal) Meaning
Structure Name: print_buffer Structure of the print buffer. Declared as type
struct.
unsigned short in a-207!/10-8199 offset into the print buffer (from the physical

unsigned short

unsigned short

unsigned short

beginning of the buffer) to the location where
next transaction text will be added. Advances
with each spreadsheet PRINT action or call to a
C print routine. When in equals out, the print
buffer is empty.

out a-207/10-8199 offset into the print buffer (from the physical
beginning of the buffer) to the last transaction
text printed from the buffer. Advances each
time text Is actually sent out the printer port of
the INTERVIEW. When out equals in, the print
buffer is empty.

buffer_end 209/8201 offset to the physical end of the print
buffer—i.e., to the end of the array named
buffer (see below)

lock when process is printing, locks out other
processes from accessing the print buffer

char polling 0 print server is not polling
non-zero print server is polling print buffer for text to print
char overrun 0 print buffer is not in overrun state
non-zero print buffer is in overrun state—i.e., a process
attempting to add text to the print buffer can't
because unprinted text in the buffer would be
overwritten. Following message will appear on
printout: “print buffer overrun has occurred.”
char buffer [8192] array of text transactions
Structure Name: _print_buffer An instance of the print_buffer structure,

declared as type extern struct print_buffer. Use
the variables contained in this structure to
monitor flow of text in and out of the print buffer.
Reference structure variables as follows:
_print_buffer.in.

64-2

64 Print

64.2

The following example shows how you might use a TIMEOUT condition to check the
print buffer periodically. Each time the timeout expires, the program determines
whether or not the buffer is half full. If so, playback is suspended. If the buffer is
only one—quarter full, playback is resumed. (Other conditions in the program, not
illustrated here, would cause print actions to send output to the print buffer.)

{

#define PRINT_BUFFER_SZ 8192

#define STOP_POINT (PRINT_BUFFER_SZ/2)
#define START_POINT (PRINT_BUFFER_SZ/4)

}
LAYER: 1
{
struct print_buffer
{
unsigned short in;
unsigned short out;
unsigned short buffer_end;
unsigned short lock;
char polling;
char overrun;
Y
extern struct print_buffer _print_buffer;
int crnt_buffer_sz;
}
STATE: check_print_buffer
CONDITIONS: ENTER_STATE
ACTIONS: TIMEOUT RESTART ck_buffer 0.01
CONDITIONS: TIMEOUT ck_buffer
ACTIONS:
{
crnt_buffer_sz = ((_print_buffer.in + PRINT_BUFFER_SZ) - _print_buffer.out) %
PRINT_BUFFER_SZ;
if (crnt_buffer_sz > STOP_POINT)
suspend_rcrd_play();
else if(crnt_buffer_sz < START_POINT)
start_rerd_play();
}
TIMEOUT RESTART ck_buffer 0.01
Variables

There are no variables associated exclusively with print functions.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

64.3

Routines

printc
Synopsis

extern void printc(character);
const char character;

Descripti

The printc routine outputs a single ASCII character to the print buffer for printing,
converting the value provided as the argument into its ASCII equivalent. Decimal
and octal values are converted to hexadecimal format before the ASCII equivalent is
sought.

Inputs

The only parameter is a numerical value. The value may be given as a hexadecimal,

octal, or decimal constant; as an alphanumeric constant inside of single quotes; or as

a variable. A hexadecimal value must be preceded by the prefix 0x or 0X; an octal

value must be preceded by the prefix 0. If no prefix appears before the input, the
number is assumed to be decimal. Valid numeric entries are 00 to 127, decimal. An
alphanumeric character placed between single quotes will be output as is to the

printer.

Example
The printc entries on the left output the printed character given on the right:

printc(‘a’);
printc(65);
printc(0x65);
printc(065);

an}m

printf
Synopsis

extern int printf(format_ptr, . . .);
const char * format_ptr;

Description
The printf routine writes output to the print buffer for printing, under control of the

string pointed to by format_ptr that specifies how subsequent arguments are converted
for output. If there are insufficient arguments for the format, the behavior is

64-4

64 Print

undefined. If the format is exhausted while arguments remain, the excess arguments

are evaluated but otherwise ignored. The printf routine returns when the end of the
format string is encountered.

Inputs

The format is composed of zero or more directives: ordinary characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each
of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags that modify the meaning of the conversion specification.
The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a plus or minus
sign.

space If the first character of a signed conversion is not a sign, a space will be
prepended to the result. If the space and + flags both appear, the space
flag will be ignored.

The result is to be converted to an “alternate form.” For d, i, u, ¢, and
s conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X)
conversion, a nonzero result will have 0x (or 0X) prepended to it.

An optional decimal integer specifying a minimum field width. If the converted
value has fewer characters than the field width, it will be padded on the left (or
right, if the left adjustment flag, described above, has been given) to the field
width. The padding is with spaces unless the field width integer starts with a
zero, in which case the padding is with zeros.

An optional precision that gives the minimum number of digits to appear for the
d, i, o, u, x, and X conversions, or the maximum number of characters to be
written from an array in an s conversion. The precision takes the form of a
period (.) followed by an optional decimal integer; if the integer is omitted, it is
treated as zero. The amount of padding specified by the precision overrides that
specified by the field width.

An optional h specifying that a following d, i, o, u, x, or X conversion specifier
applies to a short int or unsigned short int argument (the argument will have
been promoted according to the integral promotions, and its value shall be
converted to short int or unsigned short int before printing); or an optional 1
specifying that a following d, i, 0, u, x, or X conversion specifier applies to a
long int or unsigned long int argument. If an h or 1 appears with any other
conversion specifier, it is ignored.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

® A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings are:

d, i, o, u, X, X

%
\n

The int argument is converted to signed decimal (d or i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x or X); the
letters abcdef are used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is no characters.

The int argument is converted to an unsigned char, and the resulting
character is written.

The argument shall be a pointer to a null-terminated array of 8-bit chars.
Characters from the string are printed up to (but not including) the
terminating null character: if the precision is specified, no more than that
many characters are printed. The string may be an array into which
output was written via the sprintf routine.

The argument shall be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the colon.
The number of digits to the left of the colon is determined by the
pointer’s value and the precision specified. Use this conversion to print
80286 memory addresses. The segment number will appear to the left of
the colon and the offset to the right.

A % is written. No argument is converted.

Writes hexadecimal 0D 0A, the ASCII carriage-return and linefeed
characters. No argument is converted.

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an aggregate (except for an array of characters using
%s conversion or any pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Returns

The printf routine returns the number of characters output.

Example

To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and
month are pointers to strings:

64-6

64 Print

LAYER: 1

{

unsigned char date_time [100];
unsigned char weekday [10];
unsigned char month [10];
unsigned short day;

unsigned char hour;

unsigned char min;

}
STATE: output_to_printer
CONDITIONS: KEYBOARD “ "
ACTIONS:
{
printf(“%s, %s %d, %.2d:%.2d\n”, weekday, month, day, hour, min);
}
sprintf
Synopsis

extern int sprintf(string_ptr, format_ptr);
unsigned char string [128];
const char * format_ptr;

Descrinti

The sprintf routine is similar to the printf routine, except that sprintf writes output to
a string, while printf writes output directly to the print buffer for printing. The sprintf
routine is useful for writing formatted output to a display, printer, or file.

The output is under control of the string pointed to by format_ptr that specifies how
subsequent arguments are converted for output. If there are insufficient arguments
for the format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The sprintf
routine returns when the end of the format string is encountered.

. Inputs
The first parameter is a pointer to the array to which output will be written.

For the second parameter, see printf routine.

Returns

This routine returns the number of characters written into the array, not counting the
added null terminating character.

Example

Refer again to the sample program for the displayf routine in Section 61.3(C). This
time you also want to send the output to a printer. By using the sprintf routine, you
only have to enter the format string once.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

LAYER: 1
{

unsigned char date_time [100];
unsigned char weekday [10];
unsigned char month [10];
unsigned short day;

unsigned char hour;

unsigned char min;

STATE: output_to_display_window_and_printer
CONDITIONS: KEYBOARD “ "
ACTIONS:

{

sprintf(date_time, “%s, %s %d, %.2d: %.2d\n”, weekday, month, day, hour,
min);

displayf(“%s”, date_time);

printf(“%s”, date_time);

}

set_print_header
Synopsis

extern int set_print_header(format_ptr);
const char * format_ptr;

Descripti

This routine writes output to the print buffer, to be printed after each form feed,
under control of the string pointed to by format_ptr. Paging is done automatically by
the INTERVIEW. The set_print_header routine returns when the end of the format
string is encountered.

Inputs

The format is composed of zero or more ordinary characters. Octal or hexadecimal
values also may be input, with octal preceded by \ and hex by \x. Pad each value
to three integers with leading zeroes.

The status information shown above the prompt line on the display screens of the
INTERVIEW can be sent to a printer with the following inputs:

#d date (mm/dd/yy)

#t time (hh:mm)

#p page (not shown on the display screens)
#b block number

#

Returns

The set_print_header routine returns the length of the header (0-255), or a -1 if the
header exceeds the buffer size.

64 Print

Example

If you want the date, time, and page number to appear in the heading on each page
sent to a printer, enter the following:

LAYER: 2
STATE: header h
CONDITIONS: ENTER_STATE
ACTIONS:
{
set_print_header(“#### #d #t #p #H#\n”);
}

The printer output will look like this:

09/01/89 09:30 Page : 1
09/01/89 09:31 Page : 2
prints

extern void prints(string_ptr);
const char * string_ptr;

Descripti

The prints routine is similar to the displays routines, except that prints writes output
to the print buffer for printing while displays writes output to the Display Window.
The output is under control of the string pointed to by the argument. The prints
routine returns when the end of the string is encountered. The softkey equivalent of
this routine is the PRINT PROMPT action on the Protocol Spreadsheet. A PRINT
PROMPT action automatically time-stamps the output. Although prints does not, you
can create your own time or date stamp with set_print_header.

Inputs

The input is a pointer to a string composed of zero or more ordinary characters.
The newline nonliteral sequence “\n” writes hex 0D 0A (ASCII %) to the output
string. Octal or hexadecimal values also may be included in the string, with octal
preceded by \ and hex by \x. Pad each value to three integers with leading zeroes.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example

The following entry

prints(“End of test.”);

produces the following output to a printer:

End of test.

64-10

65 Disk 110

65 Disk I/O

The disk I/0 routines explained in this section allow disk files to be read from and written to
during Run mode. “Streams” describes how most of the routines operate on a data stream
rather than the actual file. Under “Routines,” all the disk I/0O routines are explained. These
routines perform read and write functions as well as other file maintenance tasks in Run
mode, such as creating directories, renaming files, and deleting files.

65.1

Streams

Most disk I/0 routines are not executed on the actual disk file, but on a stream
which includes a copy of the file’s data. Opening a disk file for reading or writing
associates a stream with the file. A stream may be input or output. Input streams
are read-only. Output streams are write~only. In either case, the stream remains
associated with a disk file until the file is closed.

You may have more than one stream associated with a given file. (A maximum of
ten streams may be open at one time.) For example, to read from and write to an
existing file, you must open the file twice, once to create an input stream and once
to create an output stream.

(A) Stream Components

A stream contains everything needed to perform disk I/O functions on a file.

1. Buffer. A buffer containing a copy of the data in a disk file is part of the
stream. When a disk file is opened for reading, sectors of the disk
containing the file are copied to this buffer.

Sometimes a file's size may exceed the maximum size (512 bytes) of the
buffer. In this instance, as much data from the file as will fit in the buffer is
copied. As each character is read from the input stream, it is removed.
(The ungetc routine may temporarily return a removed character to an input
stream.) Each call to fread, fgetc, or fgets further empties the buffer, while
leaving the contents of the disk file unchanged. When the buffer is empty,
the next sector (or sectors) of the disk file is (are) automatically copied into
the buffer.

Similarly, when a file is opened for writing, the empty buffer is filled as
fwrite or other output routines are invoked. Characters written to the output
stream are not transferred to the disk file until there is a call to fflush.
Fflush is automatic in fclose or when the stream buffer is full.

65-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

2. File-position indicator. The file-position indicator keeps track of

progression through the disk file. For files opened in read mode, the
indicator is initially located at the first character (character zero) in the file.
As characters are read from the input stream, the indicator advances through
the file.

For existing files opened in append mode, the indicator is positioned after
the last character in the file. For newly created files or files opened in
overwrite mode, it is located at the beginning of the file. Every time an
output routine is executed, the file-position indicator is advanced by the
number of characters successfully written to the stream.

Buffer pointer. The stream also contains a pointer into the associated buffer
of a file. In input streams, it points to the next character to be read. In
output streams, it points to the next empty byte.

EOF indicator. If the end-of-file (EOF) indicator is set in a input stream,
it means that a read operation encountered the end of the file. The EOF
indicator is cleared via calls to fopen, fseek, rewind, clearerr, or ungetc.

Error indicator. In input streams, this indicator gets set when an fread,
fgetc, or fgets routine does not successfully execute. Attempting to execute
these input routines (or ungetc) on an output stream sets the error indicator.
In output streams, the error indicator gets set when the fflush, fwrite, fputc,
fputs, or fprintf routine does not successfully execute, or when output
routines try to execute on an input stream. A call to fopen, clearerr, or
fseek, clears the error indicator in either input or output streams. A rewind
operation on an input stream also clears the indicator.

(B) Stream Pointer

(€)

The fopen routine returns a pointer to the stream. Disk I/O routines which
perform operations on a stream require the stream pointer as an argument. It
has been named stream_ptr in the routines discussed below.

Locking Streams

Each file stream is locked internally during operations on it. If the user program
is executing different conditions on multiple processors and both actions require
writing to the same file stream, internally the stdio library will allow the first task
that requests to write to execute until completion and the second task will be
locked out. All processes that are locked out are temporarily put to sleep and
removed from the tasking queues for that CPU. When the first process
completes its operations on the stream, the locked-out processes are woken up
‘and may try to claim the lock. Deadlock or deadly embrace situations can
never arise internally to the stdio library.

65-2

65 Disk 110

65.2

If two or more file streams are associated with a single file, processes on each
stream may try to operate on the file concurrently. Internal locking does not
apply in this situation, so use the locking routines.

Routines

Disk 1/0 routines fall into four categories. The first category includes routines valid
for both input and output streams, including the two locking routines (not exclusive
to disk I/0). The remaining groups are routines valid for input streams only, routines
applicable to output streams only, and routines which handle other file maintenance
functions.

The routines and their descriptions closely conform to the ANSI specification for the
Programming Language C, as defined in the draft document published July 9, 1986.
Discrepancies with the ANSI standard are noted. The document number is
X3J11-86-098. Refer to pages 107-129.

Use the #include <stdio.h> pre-processor directive with all disk I/O routines. The
stdio.h file contains type definitions and function prototypes, making declarations of
the routines unnecessary.

When a filename is required as an argument, give the absolute pathname of the file,
prefixed by the device name. Valid device names are FD1, FD2, or HRD. See
Section 13.2(B) for a discussion of absolute pathnames. The disk filename is
requiréd as an argument for the fopen routine, which opens a file for reading or
writing. From that point on, disk I/O routines relating to that file use the stream
pointer, explained above, as input. File maintenance routines, such as rename or
remove, use the filename as input.

NOTE: A single program can perform disk I/O functions as well
as data playback or recording. Disk 1/0, however, must be
suspended while disk recording (or playback) proceeds, and vice
versa. RAM recording, on the other hand, may occur
simultaneously with disk I/O operations. Refer to the
start_rcrd_play and suspend_rcrd_play routines in Section 69 for
more information on the interaction between disk I/O and
recording/playback.

(A) Input/Output-Stream Routines

Several disk I/0 routines may be executed on either input or output streams.
fopen opens an existing disk file for reading or writing, or creates a new file. In
each case, a stream is associated with the file until there is a call to fclose.
fclose or a specific call to fflush delivers any output written to a stream to the
host environment where it will be written to the disk file.

NOTE: Always include a call to fclose in your program to make
sure output is written to the file.

65-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Test the end-of-file and error indicators with the feof and ferror routines,
respectively. These same indicators may be cleared via the clearerr routine.

The fseek and rewind routines manipulate the file-position indicator and erase
any memory of a character put into the stream via ungetc.

The lock and unlock routines prevent deadlock from occurring when processes
on multiple streams try to operate concurrently on a single file.

fopen

Synopsis

#include <stdio.h>

extern FILE * fopen(filename_ptr, mode_ptr);

const char * filename_ptr;
const char * mode_ptr;

Descripti

The fopen routine opens a file for access. Depending on the open mode, a file
can be opened for reading (via an input stream) or for writing (via an output
stream). For existing files, this routine also clears the end-of-file and error
indicators.

Inputs

The first parameter is a pointer to the file to be opened, represented as the
name of the file, placed inside double quotation marks. The filename must be
the absolute pathname, prefixed by the device name (HRD, FD1, or FD2).

The second parameter is a pointer to a string (represented as a character inside
double quotation marks) which identifies the type of open to be performed. Of
the ANSI standard open modes, the following are supported:

r Open an existing file for reading only. The file-position indicator is
located at the start (character zero) of the file.

w Create a file, or open an existing file, for writing only. For an existing
file, truncate its length to zero and discard the contents.

a Create a file, or open an existing file, for writing only. For an existing
file, retain the contents and locate the file-position indicator at the
end of the file. Append new data to the end of existing data, unless
a call to fseek or rewind has repositioned the file-position indicator.
In this instance, overwrite existing data. (This implementation is
different from the ANSI specification which appends new data to the -
end of existing data regardless of any previous calls to fseek.)

65-4

65 Disk 110

rb Currently implemented the same as “r.” Use “rb” for the fseek
routine.
wb Currently implemented the same as “w.” Use “wb” for the fseek
routine.
ab Currently implemented the same as “a.” Use “ab” for the fseek
routine.
Returns

This routine returns a pointer to the stream, with a type definition FILE
(defined in the stdio.h file).

If the open fails (for example, the file does not exist), zero is returned.

Example

Open a file called “buff0I1” in the /usr directory on a disk in floppy drive 2.
Store the pointer to the stream in stream_ptr. Indicate whether or not the open
is successful on the prompt line.

{
#include <stdio.h>
FILE * stream_ptr;

}
LAYER: 1
STATE: open_a_file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00”
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buff01”, “r”)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened. ok

fclose
Synopsis
#include <stdio.h>

extern int fclose(stream_ptr);
FILE * stream_ptr;

Deseripti

All opened files must be closed. If the disk file to be closed is an input file,
then any data remaining in the stream buffer is discarded. If the file is an
output file, any data written to the stream is written to the file. (In other words,
fclose automatically calls fflush.) The stream is freed from its association with
the disk file, and the disk file is closed.

65-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Inputs

The only parameter is the stream pointer.

Returns

If the stream is successfully closed, zero is returned. If errors are detected, or if
the stream is already closed, a non-zero value is returned.

Example

Close the file that was opened in the fopen example. Indicate whether or not
the close is successful on the prompt line. :

{
#include <stdio.h>

FILE * stream_ptr;

}
LAYER: 1
STATE: open_and_close_a_file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00”
ACTIONS:

{
if((stream_ptr = fopen(“FD2/usr/buff01”, “r”)) == 0)

display_prompt(“Cannot open file. ”):
else

display_prompt(“File opened. ”);

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if(fclose(stream_ptr) I= 0) .
display_prompt(“Either file is already closed, or close cannot be executed. ”);
else
display_prompt(“File closed. . ”);

}

fflush
Synopsis
#include <stdio.h>

extern int fflush(stream_ptr)
FILE * stream_ptr;

D .
If stream_ptr points to an output stream, the fflush routine causes any unwritten
data for that stream to be delivered to the host environment where it will be
written to the file. If stream_ptr points to an input stream, the fflush routine
undoes the effect of any preceding ungetc operation on the stream.

Inputs

The only parameter is the stream pointer.

65-6

65 Disk 110

Returns _

If a write error occurs, non-zero is returned and the error indicator is set.

Example

Assume the X.25 personality package has been loaded in at Layer 2. Whenever
you receive a frame type “unknown,” write the actual value of the control byte
to an output file stream and to the disk file.

{

#include <stdio.h>

FILE * stream_ptr;

extern volatile const unsigned char revd_frame_cntrl_byte_1;

}
LAYER: 2
STATE: write_then_fflush
CONDITIONS: ENTER_STATE

ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/frame_unkwn”, “a”)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened. ")

pos_cursor(1,0);

}
CONDITIONS: RCV UNKNOWN
ACTIONS: ‘
{
if(fprintf(stream_ptr, “%02x\n ”, rcvd_frame_cntrl_byte_1) < 0)

displayf(“Error in printing to stream. \n”);
else

displayf(“Print to stream completed. \n”);
if(fflush (stream_ptr) != 0)

display_prompt(“Write error. . ”);
else

display_prompt(“Write to file completed. Press C to close file. ”):

}
CONDITIONS: KEYBOARD “cC”

ACTIONS:
{
if(fclose(stream_ptr) != 0)
display_prompt(“Either file is already closed, or close cannot be executed. ”);
else
display_prompt(“File closed. ”);
}
feof
Synopsis

#include <stdio.h>
extern int feof(stream_ptr);
FILE * stream_ptr;

Description

This routine tests the end-of-file indicator for an associated stream.

65-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Inputs

The only parameter is the stream pointer.

Returns

The feof routine returns a non-zero value if the end-of-file indicator is set for
the stream.

Example

Get a character from a file. If it is not at the end of the file, display it;
otherwise prompt with “End of file.”

{
#include <stdio.h>
FILE * stream_ptr;
int character;
}
LAYER: 1
STATE: test_for_eof
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00”
ACTIONS:
{
if((stream_ptr = fopen(“FD2tusribuff01”, “rb”)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened., Press G to get character. ”);
pos_cursor(1,0);
}
CONDITIONS: KEYBOARD “gG"
ACTIONS:
{
character = fgetc(stream_ptr);
if(feof (stream_ptr) != 0)
display_prompt(“End of file. Press C to close file. ”);
else
displayf(“%c”, character);

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if (fclose(stream_ptr) 1= 0)
display_prompt(“Either file is already closed, or close cannot be executed. ”);
else
display_prompt(“File closed. ”);
}

ferror
Synopsis
#include <stdio.h>

extern int ferror(stream_ptr); A R
FILE * stream_ptr;

65-8

65 Disk 110

Descripti

This routine tests the error indicator for a stream.

Inputs

~ The only parameter is the stream pointer.

Returns

The ferror routine returns a non-zero value if the error indicator is set for the
stream.

Example

Read a file called “buff01” from the /usr directory on the disk in drive 2. If
the number of elements read is less than the number designated to be read,
determine whether an end-of-file was encountered or a read error occurred.

{
#include <stdio.h>
FILE * stream_ptr;
char data [6091];
size_t n;
}
LAYER: 1
STATE: read_a_file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00”"
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buffol1”, “r’)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened. Press R to read the file. ”)s

}

CONDITIONS: KEYBOARD “rR”
ACTIONS:

{

n = fread(data, 1, 6091, stream_ptr);
if(n 1= 6091)

{
if(ferror(stream_ptr) 1= 0)
display_prompt(“Read error. ”);
else if(feof (stream_ptr) != 0)
display_prompt(“End-of-file encountered. ”);
else
displayf(“\n%.6091s”, data);
display_prompt(“Press C to close the file. ”);

}

65-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

CONDITIONS: KEYBOARD “cC”

ACTIONS:
{
if (fclose(stream_ptr) != 0)
display_prompt(“Either file is already closed, or close cannot be executed. ”);
else
display_prompt(“File closed. ")
}
clearerr
Synopsis

#include <stdio.h>
extern void clearerr(stream_ptr);
FILE * stream_ptr;

Descripti

This routine clears the end-of-file and error indicators for a stream. When an
error occurs, no further operations are allowed until the error indicators are
explicitly cleared. (These indicators are also cleared by a fopen or rewind
operation.)

Inputs

The only parameter is the stream pointer.

Example

If a write error occurs, clear the indicators.

{
#include <stdio.h>
FILE * stream_ptr;
int character;
}
LAYER: 1
STATE: clear_indicators
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buff01”, “wb”)) == 0)
display_prompt(“Cannot open file. ")
else
display_prompt(“File opened. Press P to write character. ”);

}

65-10

65 Disk 1/0

CONDITIONS: KEYBOARD “pP”"
ACTIONS:

{

character = fputc(‘h’, stream_ptr);
if(character == EOF)

{
display_prompt(“Write error. All indicators will be cleared. ”);
clearerr(stream_ptr);
}
else
display_prompt(“Write completed. Press C to close the file. ”);

}
CONDITIONS: KEYBOARD “cC"

ACTIONS:
{
if(fclose(stream_ptr) != 0)
display_prompt(“Either file is already closed, or close cannot be executed. ”);
else
display_prompt(“File closed. wh
}
fseek
Synopsis

#include <stdio.h>

extern int fseek (stream_ptr, bytes, reference);
FILE * stream_ptr;

long int bytes;

int reference;

Descrinti

This routine manipulates the file-position indicator, according to the ANSI
specification for binary files. Future read operations will be referenced from that
point. fseek clears the end-of-file indicator and resets the ungetc variable.

NOTE: The ANSI specification for text files is not currently
implemented. To ensure proper execution of fseek if future
releases include the ANSI specification for text files, open files
for fseek as binary (“rb,” “wb,” or “ab”).

Inputs
The first parameter is the stream pointer.

The second parameter is the number of characters the file-position indicator
should be moved from a specified position. A positive number advances the
file-position indicator forward in the file; a negative number moves it backward.

65-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The third parameter specifies the location of the file-position indicator.
SEEK__SET'}wiH move the file-position indicator from the beginning of the file;
SEEK_END will move the file-position indicator from the end-of-file; and
SEEK_CUR will move the file-position indicator from its current position.

Returns

This routine returns non-zero for an improper request; otherwise it returns zero.

Example

Open a file and move the file-position indicator 4 characters from the beginning
of the file. Each time the [§) key is pressed, move the indicator one character

backward from its current position. After 4 executions, the indicator will be
back at the beginning of the file.

{
#include <stdio.h>
FILE * stream_ptr;
int character;
}
LAYER: 1
STATE: move_indicator
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buff01”, “rb”)) == 0)
display_prompt(“Cannot open file. ”);
else ’
{
display_prompt(“File opened. ”);
pos_cursor(0,14);
if (fseek (stream_ptr, 4, SEEK_SET) != 0)

displays (“Improper fseek request. ”);
else
displays(“Fseek completed. Press S to seek new position. ”);
}
}
CONDITIONS: KEYBOARD “sS”
ACTIONS:
{
if (fseek (stream_ptr, -1, SEEK_CUR) != 0)
display_prompt(“Improper fseek request. Press C to close file. ”);
else
display_prompt(“Fseek completed. Press C to close file. ”);
} .

65-12

65 Disk 110

CONDITIONS: KEYBOARD “cC”

ACTIONS:
{if(fclose(stream _ptr) !=0)
display_prompt(“Either file is already closed, or close cannot be executed. ”);
eludisplay _prompt(“File closed. ”);
rewind
Synopsis

#include <stdio.h>
extern void rewind(stream_ptr);
FILE * stream_ptr;

Descrinti

This routine returns the file-position indicator to the beginning of the file (i.e., it
is equivalent to an fseek with the number of characters to move set as zero and
the specified position SEEK_SET). The rewind operation also clears the
end-of-file and error indicators and erases any memory of the character in a
previous ungetc operation.

Inputs

The only parameter is the stream pointer.

Example

In this example, the first call to fgetc following the rewind operation will read the
first character in the file.

{
#include <stdio.h>
FILE * stream_ptr;
int character;
}
LAYER: 1
STATE: move_lindicator
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buff01”, “rb”)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened. Press S to fseek. ”);

65-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

CONDITIONS: KEYBOARD “sS”
ACTIONS:
{
if (fseek (stream_ptr, 4, SEEK_SET) != 0)
display_prompt(“Improper fseek request. ”);
else
display_prompt(“Fseek completed. Press spacebar to rewind. ”);

}
CONDITIONS: KEYBOARD * "
ACTIONS:

{
rewind (stream_ptr);
display_prompt(“Press G to get a character. ”);

}
CONDITIONS: KEYBOARD “gG"
ACTIONS:

{
character =fgetc(stream_ptr);
display _prompt(“Press C to close file. ”);

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if(fclose(stream_ptr) != 0)

display_prompt(“Either file is already closed, or close cannot be executed. ”);
else

display_prompt(“File closed. ”)

lock

E _ .

#include <stdio. h>
extern void lock(lock_variable_ptr);
int * lock_variable_ptr;

Descripti

The lock routine implements a lock using the integer variable pointed to by the
routine parameter. If the lock variable is currently locked, the task goes to
sleep. When an unlock on the same variable occurs (within an independent
task), the task invoking the lock function will attempt to claim the lock. If
successful, the task is executed; otherwise, it goes back to sleep until the next
unlock.

NOTE: If locking is used at any place in the program, all related
or possibly concurrent routines must also use the locking
functions.

65-14

65 Disk I/10

NOTE: The lock variable should always be defined as a global
integer, never as local to a function. The lock variable should
never be altered by the user program or deadlock can occur.
Deadlock also results if the lock is invoked twice within the same
task without an intervening unlock.

Inputs

The only parameter is a pointer to the lock variable.

Example

Two tasks concurrently write to their own file streams. The file streams are local
to the routine write_fox, making them independent of each other even though
both are referenced by stream_ptr. During the fclose operation (which
automatically calls fflush), however, both tasks need to write to the same file.
The locking routines ensure that the writes to the file occur sequentially, not
concurrently.

{
#include <stdio.h>
const char data [] = “UFOXD\n”;
int key;
void write_fox()
{
FILE * stream_ptr;
size_t n;
lock (&key);
if((stream_ptr = fopen(“FD2/usr/buff01”, “a”)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened.)
n = fwrite(data, 1, sizeof(data)-1, stream_ptr);
pos_cursor(1,0);
if(n != (sizeof(data)-1))
displayf(“Write error. \n”);
else
displayf(“Write completed. \n”);
if (fclose(stream_ptr) != 0)
displayf(“Either file is already closed, or close cannot be executed. ”);
else
displayf(“File closed. ”);
unlock (&key);
}

}
LAYER: 1
TEST: a
STATE: write_and_signal
CONDITIONS: RECEIVE STRING “THE QUICK BROWN FOX”
ACTIONS: SIGNAL xyz
{
write_fox();

}

65-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

TEST: b
STATE: write_only
CONDITIONS: ON_SIGNAL xyz
ACTIONS:

{
write_fox();

unlock
Synopsis
#include <stdio.h>

extern void unlock(lock_variable_ptr);
int * lock_variable_ptr;

L -
The unlock routine implements the inverse of the lock routine using the same
integer variable. Sleeping tasks will be woken up to retry their attempt to claim

the lock. One will succeed, and the rest will go back to sleep. See also lock
routine.

Inputs

The only parameter is a pointer to the lock variable.

Example

See lock routine.

(B) Input-Stream Routines

The following routines are valid for input streams only. An attempt to apply
them to output streams results in a read error. The error indicator for the input
stream will be set.

Three routines read characters from the input stream. The fread and fgets
routines transfer a specified number of characters from the stream buffer into a
user-defined array. fgetc reads the next character from the input stream. The
ungetc routine temporarily forces a designated character back into the input
stream.

fread

Synopsis

#include <stdio.h>

extern size_t fread(data_ptr, size, number, stream_ptr);
void * data_ptr;

size_t size;

size_t number;

FILE * stream_ptr;

65-16

65 Disk 110

Description

This routine reads elements from the input-stream buffer and puts them into a
user-defined buffer. The file-position indicator is advanced by the number of
characters successfully read. The fread routine can read a file whose elements
are more than eight bits each, 16-bit shorts or 32-bit longs, for example. The
fgets routine is similar to fread. fgets, however, reads only 8-bit characters.
The primary use of fread is to read the entire contents of a file, whereas the
primary purpose of fgets is to read from a file one line at a time.

Inputs

The first parameter is a pointer to an array in which the incoming data should
be placed.

The second parameter is the number of bytes in each element to be read. If
the value of this parameter is zero, the contents of the array and the stream
remain unchanged.

The third parameter is the number of elements to be read. If the value of this
parameter is zero, the contents of the array and the stream remain unchanged.

The fourth parameter is the stream pointer.

Returns

The fread routine returns the total number of elements read. If the number of
elements read is less than the number of elements designated to be read, an
end-of-file has been encountered or a read error has occurred. Use the feof
and ferror routines to distinguish an end-of-file from a read error. If an error
occurs, the location of the file-position indicator is indeterminate.

Example

Read in a file called “buff01” from the /usr directory on the disk in drive 2 and
display it on the Program Trace screen. (See Section 61.4 for information on
using trace buffers in C.) Determine the size of the array data from the file size
indicated on the File Maintenance screen.

{

#include <trace_buf.h>

#include <stdio.h>

FILE * stream_ptr;

char data [6091);

size_t n;

extern struct trace_buf prog_trbuf;

}

65-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

LAYER: 1
STATE: read_a_file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buff01”, “r”)) == 0)
display_prompt(“Cannot open file. H
else
display_prompt(“File opened. Press R to read the file. ”);
}
CONDITIONS: KEYBOARD “rR"
ACTIONS:
{
n = fread(data, 1, 6091, stream_ptr);
if(n 1= 6091)
display_prompt(“Either a read error has occurred, or an EOF has been
encountered. ”);
else
{
tracef(&prog_trbuf, “%.6091s”, data);
display_prompt(“Press C to close the file. ”);
}

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if(fclose(stream_ptr) != 0)

display_prompt(“Either file is already closed, or close cannot be executed.)
else

display_prompt(“File closed. ”);

fgets

Synopsis

#include <stdio.h>

extern char * fgets(string_ptr, max_number, stream_ptr);
char * string_ptr;

int max_number;
FILE * stream_ptr;

Descripti

This routine gets at the most one less than the specified number of characters
from an input stream and puts them in an array. If an EOF, newline, or null is
encountered in the stream, no more characters will be read, even if the specified
number of characters has not yet been read. The newline will be retained. A
terminating null character is written after the last character read into the array.
The file—position indicator is advanced by the number of characters successfully
read. The fgets routine is similar to fread. The fread routine can read a file

65-18

65 Disk /10

whose elements are more than eight bits each, 16-bit shorts or 32-bit longs, for
example. fgets, however, reads only 8-bit characters. The primary use of fgets
is to read from a file one line at a time.

Inputs

The first parameter is a pointer to the array into which the characters will be
put.

The second parameter is the maximum number of characters (minus one) to be
read.

The third parameter is the stream pointer.

Returns

If the routine is successful, a pointer to the array is returned. If end-of-file is
encountered before any characters have been read into the array or if a read
error occurs, a null pointer is returned. The contents of the array are
indeterminate when a read error occurs.

Example

Five characters, at the most, from a disk file will be put into an array called
data and displayed on the screen.

{
#include <stdio.h>
FILE * stream_ptr;
char data [10];
}
LAYER: 1
STATE: read_characters
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buff01”, “r”)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened. Press G to get string. ")

}
CONDITIONS: KEYBOARD “gG”
ACTIONS:

{

fgets(data, 6, stream_ptr);

displayf(“\n%.6s”, data);

display_prompt(“Press C to close the file. ”);
}

65-19

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

CONDITIONS: KEYBOARD “cC”

ACTIONS:
{
if(fclose(stream_ptr) != 0)
display_prompt(“Either file is already closed, or close cannot be executed. ”);
else
display_prompt(“File closed. ”);
}
fgetc
Synopsis

#include <stdio.h>

extern int fgetc(stream_ptr);

FILE * stream_ptr;

D istion

The fgetc routine gets the next character (if present) from the input stream.

The character is an unsigned char cast-to an int (stored in the least-significant
byte of the int). The file-position indicator advances by one character.

Inputs

The only parameter is the stream pointer.

Returns

This routine returns the next character in the input stream. EOF is returned if
an end-of-file is encountered or if a read error occurs. The stdio.h file defines
the macro EOF as —1. Use the feof and ferror routines to determine the reason
for a returned EOF.

Example

In the following example, open an input file for reading. Each time the [@ key
is pressed, display the next character in the file.

{
#include <stdio.h>
FILE * stream_ptr;
int character, end;
}
LAYER: 1
STATE: get_next_character
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_ptr = fopen(“FD2/usr/buffo1”, “r”)) == 0)
display_prompt(“Cannot open file. ”);
else
display_prompt(“File opened. Press G to get a character. N
displayf(“\n”);
}

65-20

65 Disk 110

CONDITIONS: KEYBOARD “gG”
ACTIONS:
{
character = fgetc(stream_ptr);
if(character == EOF)
{
end = feof(stream_ptr);
if(end != 0)
display_prompt(“EOF encountered.
else
display_prompt(“Read error.

else
displayf(“%c”, character);

CONDITIONS: KEYBOARD “cC”
ACTIONS:

{

if(fclose(stream_ptr) != 0)

display_prompt(“Either file is already closed, or close cannot be executed. ”);

else
display_prompt(“File closed.

ungetc
Synopsis

#include

<stdio.h>

extern int ungetc(character, stream_ptr);
int character;
FILE * stream_ptr;

Descripti

This routine temporarily forces a specified character into a variable associated
with the input stream, overwriting the previous ungetc variable. The routine
does not affect the location of the file-position indicator. The next fgetc will
read the ungetc variable, not the stream. An intervening fflush, fseek, or rewind
erases memory of the character. If the ungetc function is called too many times
on the same stream without an intervening read, fflush, fseek, or rewind
operation on that stream, the operation may fail. Ungetc also clears the
end-of-file indicator.

Inputs

The first parameter is the character to be put into the input stream.

The second parameter is the stream pointer.

Returns

This routine returns the specified character.

u),
»

If the operation fails, EOF is

returned and the input stream remains unchanged. It will fail if the values of

the specified character and the macro EOF are equal.

65-21

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example

Read a character from the stream. Press the [U key when you want to return
the last character read to the stream. The next call to fgetc will read the
returned character.

{
#include <stdio.h>
FILE * stream_ptr;
int character;
}
LAYER: 1
STATE: get_next_character
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file.
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_ptr = fopen (“FD2/usr/buff01”, “r”)) == 0)
display_prompt(“Cannot open file.
else
display_prompt(“File opened. Press G to get a character.
}
CONDITIONS: KEYBOARD “gG”
ACTIONS:
{
character = fgetc(stream_ptr);
if(character == EOF)
display_prompt(“End of file or read error.
else
{
pos_cursor(0,0);
displayf(“character = %c Press U to return character to stream.”, character);
} .

}
CONDITIONS: KEYBOARD “uuU”

ACTIONS:
{
if((ungetc(character, stream_ptr)) == EOF)
display_prompt(“Character not returned.
else
display_prompt(“Character returned.

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:
{
if (fclose(stream_ptr) 1= 0)
display_prompt(“Either file is already closed, or close cannot be executed.
else
display_prompt(“File closed.

65-22

!P);
")

”);
,1) ’,

65 Disk IIO

(C) Output-Stream Routines

The following routines are valid for output streams only. An attempt to apply
them to input streams will result in a write error. The error indicator for the
output stream will be set.

Four routines write to output streams. The fwrite and fputs routines transfer a
specified number of characters from a user-defined array into the stream buffer.
fputc writes a character to the next empty byte in an output-stream buffer.
Jprintf writes formatted output to an output stream similar to the way displayf
writes output to the Display Window.

fwrite

#include <stdio.h> _
extern size_t fwrite(output_ptr, size, number, stream_ptr);
const void * output_ptr;

size_t size;

size_t number;
FILE * stream_ptr;

Descripti

This routine writes elements from a user-defined array to the output-stream
buffer. The file-position indicator is advanced by the number of characters
successfully written. ’

Inputs

The first parameter is a pointer to an array from which the data should be
taken. Declare it as const if it is read-only. In cases where the array will be
written to, as in the example below, do not include const as part of the
declaration.

.
The second parameter is the number of bytes in each element to be written.
The third parameter is the number of elements to be written.

The fourth parameter is the stream pointer.

Returns

The fwrite routine returns the total number of elements written. If the number
of elements written is less than the number of elements designated to be written,
a write error has occurred. If an error occurs, the location of the file-position
indicator is indeterminate.

65-23

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Example
Read the contents of a file, and write them to a new file.

{
#include <stdio.h>
FILE * read_stream;
FILE * write_stream;
char output [6091];
size_t n;
}
LAYER: 1
STATE: write_to_a_file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open files. "
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((read_stream = fopen(“FD2/usr/buff01”, “r’)) == 0)
{
display_prompt(“Cannot open buffo1. ”);
pos_cursor(0,21);
}
else
{
display_prompt(“Buff0l opened. ”);
pos_cursor(0,16);

}
if((write_stream = fopen(“FD2/usrinew_file”, “w”)) == 0)
displays(“Cannot open new_file. ”);
else
displays(“New_file opened. Press R to read buff0l. ”);
}
CONDITIONS: KEYBOARD *“rR" -
ACTIONS:
{

n = fread(output, 1, 6091, read_stream);
if(n 1= 6091)
display_prompt(“Either a read error has occurred, or an EOF has been
encountered. ”);
else
display_prompt(“Press W to write to new_file. ”);

}

CONDITIONS: KEYBOARD “wW"
ACTIONS:

{

n = fwrite(output, 1, 6091, write_stream);
if(n 1= 6091)

display_prompt(“Write error. Press C to close files. ”);
else
display_prompt(“Write completed. Press C to close files. ”);

}

65-24

65 Disk 110

CONDITIONS: KEYBOARD “cC”
ACTIONS:
{
if(fclose(read_stream) != 0)
{
display_prompt(“Either buff01 is already closed, or close cannot be executed. ”);
pos_cursor(0,0);
}
else
{
display_prompt(“Buff01 closed. ”);
pos_cursor(0,16);

}
if(fclose(write_stream) != 0)
displays(“Either new_file is already closed, or close cannot be executed. ”);
else
displays(“New_file closed. ”);
}
fputs
Synopsis

#include <stdio.h>

extern int fputs(string_ptr, stream_ptr);
const char * string_ptr;

FILE * stream_ptr;

Descripti

This routine writes a string of characters from an array, excluding the
terminating null character, to the output stream. The file-position indicator is
advanced by the number of characters successfully written.

Inputs

The first parameter is a pointer to the string to be written.

The second parameter is the stream pointer.

Returns

This routine returns zero if it is successful; it returns a non-zero value if a write
error occurs.

Example

Write a fox message at the end of existing data in a file.

{

#include <stdio.h>
FILE * stream_ptr;
char data [] = “UFOXD\n”;

}

65-25

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

LAYER: 1
STATE: write_a_string

CONDITIONS: ENTER_STATE

ACTIONS: PROMPT “Press O to open file.

CONDITIONS: KEYBOARD “00"

ACTIONS:

{

if((stream_ptr = fopen(“FD2/usr/buff01”, “a”)) == 0)
display_prompt(“Cannot open file.

else
display_prompt(“File opened. Press P to write string.

CONDITIONS: KEYBOARD “pP"
ACTIONS:
{
if(fputs(data, stream_ptr) != 0)
display_prompt(“Write error. Press C to close file.
else
display_prompt(“Write completed. Press C to close file.

CONDITIONS: KEYBOARD “cC"

ACTIONS:

{

if(fclose(stream_ptr) != 0)
display_prompt(“Either file is already closed, or close cannot be executed.

else)

display_prompt(“File closed.

fputc

Synopsis

#include <stdio.h>

extern int fputc(character, stream_ptr);

int character;
FILE * stream_ptr;

Descripti

This routine writes a given character (cast to an unsigned char) to an output

stream. The file-position indicator advances one character.

Inputs

")
’I) ;

”);
”);

The first parameter is the character to be written to the output stream. It may

be given as a hexadecimal, octal, or decimal constant; as an alphanumeric
constant inside single quotes; or as a variable. A hexadecimal value must be

preceded by the prefix 0x or 0X; an octal value must be preceded by the prefix
0. If no prefix appears before the input, the number is assumed to be- decimal.

The second parameter is the stream pointer.

65-26

D

65 Disk 110

Returns

If the character is successfully written to the output stream, the routine returns
that character. If a write error occurs, EOF is returned and the error indicator
is set.

E I -

Open the named file. If the file does not already exist, create it. If it does
exist, truncate its length to zero, thereby deleting its contents. Put the character
read from the input stream pointed to by read_stream into the output stream
pointed to by write_stream. This example is similar to the one given for fwrite,
except that in this case, each time the [F) key is pressed, only one character is
copied, rather than the entire file.

{
#include <stdio.h>
FILE * read_stream;
FILE * write_stream;
int character;
}
LAYER: 1
STATE: copy_a_character
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open files. "
CONDITIONS: KEYBOARD “00”
ACTIONS:
{
if((read_stream = fopen(“FD2/usribuff01”, “r”)) == 0)
{
display_prompt(“Cannot open buff01. ”);
pos_cursor(0,21);
}
else
{
display_prompt(“Buff0l opened. ”);
pos_cursor(0,16);
}
if((write_stream = fopen(“FD2/usr/buff01_copy”, “w”)) == 0)
displays(“Cannot open buff0I_copy. ”)s
else)
displays(“Buff01_copy opened. Press P to copy a character. ”);
}
CONDITIONS: KEYBOARD “pP”
ACTIONS:
{
character = fgetc(read_stream);
if(character == EOF)

{
if(feof (read_stream) = 0)

display_prompt(“EOF encountered. Press C to close files. ”);
else

display_prompt(“Read error. Press C to close files. ”);
}

65-27

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

else
fputc(character, write_stream);

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{

if(fclose(read_stream) != 0)
{
display_prompt(“Either buff01 is already closed, or close cannot be executed. ”);
pos_cursor(0,0);
}

else

{

display_prompt (“Buff01 closed. ”);

pos_cursor(0,16);

}
if(fclose(write_stream) = 0)

displayf(“Either buff0l_copy is already closed, or close cannot be executed. ”);
else

display (“Buff01_copy closed. ”);

fprintf
Synopsis

#include <stdio.h>

extern int fprintf(stream_ptr, format_ptr, ...);
FILE ™ stream_ptr; ’
char * format_ptr;

Descripti

The fprintf routine is similar to the sprintf routine, except that fprintf writes
output to an output stream, while sprintf writes output to an array. The output
is under control of the string pointed to by format_ptr that specifies how
subsequent arguments are converted for output. If there a