N
%
| <

The ITK Software Guide

The Insight Toolkit (ITK) is an open-source, cross-platform system for medical image processing. It
provides medical imaging researchers with an extensive suite of leading-edge algorithms for
registering, segmenting, analyzing, and quantifying medical data. It is used in thousands of research
and commercial applications, from major labs to individual innovators.

This ITK Software Guide is the handbook for developing software with ITK. It is divided into two
companion books.

The first book covers building and installation, general architecture and design, as well as the process
of contributing in the ITK community.

The second book covers detailed design and functionality for reading and writing images, filtering,
registration, segmentation, and performing statistical analysis.

NOTICE: This PDF is a concatenation of both Book 1 and Book 2 of the ITK Software Guide into a
single document.

The ITK Software Guide

Book 1: Introduction and Development Guidelines Pages 2- 424
Book 2: Design and Functionality Pages 425-1001

https://itk.org/
https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2.html
https://itk.org/ITKSoftwareGuide/html/Book1/ITKSoftwareGuide-Book1.html

The ITK Software Guide

Book 1: Introduction and Development
Guidelines

Fourth Edition

Updated for ITK version 5.0.0

Hans J. Johnson, Matthew M. McCormick, Luis Ibanez,

and the Insight Software Consortium

January 18, 2019

https://itk.org
https://discourse.itk.org/

https://itk.org
https://discourse.itk.org/

ITK

The purpose of computing is Insight, not numbers.

Richard Hamming

ABSTRACT

The National Library of Medicine Insight Segmentation and Registration Toolkit, shortened as the
Insight Toolkit (ITK), is an open-source software toolkit for performing registration and segmenta-
tion. Segmentation is the process of identifying and classifying data found in a digitally sampled
representation. Typically the sampled representation is an image acquired from such medical instru-
mentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences
between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan
in order to combine the information contained in both.

ITK is a cross-platform software. It uses a build environment known as CMake to manage platform-
specific project generation and compilation process in a platform-independent way. ITK is imple-
mented in C++. ITK’s implementation style employs generic programming, which involves the
use of templates to generate, at compile-time, code that can be applied generically to any class or
data-type that supports the operations used by the template. The use of C++ templating means that
the code is highly efficient and many issues are discovered at compile-time, rather than at run-time
during program execution. It also means that many of ITK’s algorithms can be applied to arbitrary
spatial dimensions and pixel types.

An automated wrapping system integrated with ITK generates an interface between C++ and a high-
level programming language Python. This enables rapid prototyping and faster exploration of ideas
by shortening the edit-compile-execute cycle. In addition to automated wrapping, the SimpleITK
project provides a streamlined interface to ITK that is available for C++, Python, Java, CSharp, R,
Tcl and Ruby.

Developers from around the world can use, debug, maintain, and extend the software because ITK
is an open-source project. ITK uses a model of software development known as Extreme Program-
ming. Extreme Programming collapses the usual software development methodology into a simulta-
neous iterative process of design-implement-test-release. The key features of Extreme Programming
are communication and testing. Communication among the members of the ITK community is what
helps manage the rapid evolution of the software. Testing is what keeps the software stable. An
extensive testing process supported by the system known as CDash measures the quality of ITK

https://itk.org
https://cmake.org
http://www.python.org
https://www.itk.org/Wiki/SimpleITK
http://open.cdash.org/index.php?project=Insight

code on a daily basis. The ITK Testing Dashboard is updated continuously, reflecting the quality of
the code at any moment.

The most recent version of this document s available online at
https://itk.org/ItkSoftwareGuide.pdf. This book is a guide for developing software
with ITK; it is the first of two companion books. This book covers building and installation, general
architecture and design, as well as the process of contributing in the ITK community. The second
book covers detailed design and functionality for reading and writing images, filtering, registration,
segmentation, and performing statistical analysis.

https://itk.org/ItkSoftwareGuide.pdf

CONTRIBUTORS

The Insight Toolkit (ITK) has been created by the efforts of many talented individuals and presti-
gious organizations. It is also due in great part to the vision of the program established by Dr. Terry
Yoo and Dr. Michael Ackerman at the National Library of Medicine.

This book lists a few of these contributors in the following paragraphs. Not all developers of ITK are
credited here, so please visit the Web pages at https://itk.org/ITK/project/parti.html for the names of
additional contributors, as well as checking the GIT source logs for code contributions.

The following is a brief description of the contributors to this software guide and their contributions.

Luis Ibaiiez is principal author of this text. He assisted in the design and layout of the text, im-
plemented the bulk of the I&TgX and CMake build process, and was responsible for the bulk of the
content. He also developed most of the example code found in the Insight /Examples directory.

Will Schroeder helped design and establish the organization of this text and the Insight /Examples
directory. He is principal content editor, and has authored several chapters.

Lydia Ng authored the description for the registration framework and its components, the section
on the multiresolution framework, and the section on deformable registration methods. She also
edited the section on the resampling image filter and the sections on various level set segmentation
algorithms.

Joshua Cates authored the iterators chapter and the text and examples describing watershed seg-
mentation. He also co-authored the level-set segmentation material.

Jisung Kim authored the chapter on the statistics framework.

Julien Jomier contributed the chapter on spatial objects and examples on model-based registration
using spatial objects.

Karthik Krishnan reconfigured the process for automatically generating images from all the exam-
ples. Added a large number of new examples and updated the Filtering and Segmentation chapters

https://itk.org
https://itk.org/ITK/project/parti.html

Vi

for the second edition.

Stephen Aylward contributed material describing spatial objects and their application.

Tessa Sundaram contributed the section on deformable registration using the finite element method.
Mark Foskey contributed the examples on the itk::AutomaticTopologyMeshSource class.

Mathieu Malaterre contributed the entire section on the description and use of DICOM readers and
writers based on the GDCM library. He also contributed an example on the use of the VTKImagelO
class.

Gavin Baker contributed the section on how to write composite filters. Also known as minipipeline
filters.

Since the software guide is generated in part from the ITK source code itself, many ITK developers
have been involved in updating and extending the ITK documentation. These include David Doria,
Bradley Lowekamp, Mark Foskey, Gaétan Lehmann, Andreas Schuh, Tom Vercauteren, Cory
Quammen, Daniel Blezek, Paul Hughett, Matthew McCormick, Josh Cates, Arnaud Gelas,
Jim Miller, Brad King, Gabe Hart, Hans Johnson.

Hans Johnson, Kent Williams, Constantine Zakkaroff, Xiaoxiao Liu, Ali Ghayoor, and
Matthew McCormick updated the documentation for the initial ITK Version 4 release.

Luis Ibafiez and Sébastien Barré designed the original Book 1 cover. Matthew McCormick and
Brad King updated the code to produce the Book 1 cover for ITK 4 and VTK 6. Xiaoxiao Liu, Bill
Lorensen, Luis Ibafiez, and Matthew McCormick created the 3D printed anatomical objects that
were photographed by Sébastien Barré for the Book 2 cover. Steve Jordan designed the layout of
the covers.

Lisa Avila, Hans Johnson, Matthew McCormick, Sandy McKenzie, Christopher Mullins,
Katie Osterdahl, and Michka Popoff prepared the book for the 4.7 print release.

https://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html

CONTENTS

I Introduction 1
1 Welcome 3
L1 Organization v v vt 4

1.2 HowtoLearnITK e 4

1.3 Software Organization e 5

1.4 The Insight Community and Support 7

1.5 ABriefHistory of ITK 8

2 Configuring and Building ITK 9
2.1 Obtaining the Software e e e 10
2.1.1 Downloading Packaged Releases 11

2.1.2 Downloading From Git 11

213 Data 12

2.2 Using CMake for Configuring and Building ITK 12
221 PreparingCMake 12

222 Configuring ITK o 14

2.2.3 Advanced Module Configuration 15

2.2.4 Static and Shared Libraries L 18

225 CompilingITK o o 18

2.2.6 Installing ITKon Your System 19

viii

CONTENTS

23
24
2.5

Cross compiling ITK
Getting Started With ITK

Using ITK as an External Library

25.1

Hello World!

II Architecture

3 System Overview

3.1
32

33
3.4
35
3.6
3.7

System Organization

Essential System Concepts

3.2.1 Generic Programming

3.2.2 Include Files and Class Definitions
3.2.3 Object Factories

324

3.2.5 Error Handling and Exceptions
3.2.6 Event Handling

3.2.7 Multi-Threading

Numerics

Data Representation
Data Processing Pipeline
Spatial Objects
Wrapping

3.7.1

Smart Pointers and Memory Management

PythonSetup
Install Stable Python Packages
Install Latest Python Packages

Build Python Packages from Source

4 Data Representation

4.1

4.1.1
4.1.2
4.1.3

Creating an Image
Reading an Image from a File

Accessing Pixel Data

CONTENTS ix

4.1.4 Defining Origin and Spacing o 48

4.1.5 RGBImages e 53

4.1.6 VectorImages 55

4.1.7 Importing Image Data fromaBuffer 56

42 PointSet. e 59
4.2.1 CreatingaPointSet 59

422 Getting AccesstoPoints Lo 61

4.2.3 Getting Accessto DatainPoints 63

424 RGBasPixel Type e 66

425 VectorsasPixel Type 67

42.6 NormalsasPixel Type e 70

43 Mesh . . . 72
43.1 CreatingaMesh. 72

432 Inmserting Cells. e 74

433 ManagingDatainCells 77

434 CustomizingtheMesh 80

4.3.5 Topology and the K-Complex 83

43.6 RepresentingaPolyLine 90

4.3.7 Simplifying Mesh Creation 93

4.3.8 Iterating Through Cells 95

439 Visiting Cells oL 98
43.10 Moreon Visiting Cells 100

44 Path 104
44.1 Creating a PolyLineParametricPath 104

45 Containerso 105
5 Spatial Objects 111
5.1 Introduction 111
5.2 Hierarchy e e 112
5.3 SpatialObject Tree Containerttt 114
54 Transformations 115
5.5 Typesof Spatial Objects e e e 119

CONTENTS

5.5.1 ArrowSpatialObject e e 120

5.52 BlobSpatialObject. 120

5.53 CylinderSpatialObject 122

5.54 EllipseSpatialObject o e e e e e e 123

5.5.5 GaussianSpatialObject e e e 125

5.5.6 GroupSpatialObject 126

5.577 ImageSpatialObject 127

5.5.8 ImageMaskSpatialObject 128

5.59 LandmarkSpatialObject 130
5.5.10 LineSpatialObject 131
5.5.11 MeshSpatialObject e e e e 133
5.5.12 SurfaceSpatialObject 136

5.5.13 TubeSpatialObject 137
VesselTubeSpatialObject 139
DTITubeSpatialObject oo 142

5.6 SceneSpatialObject 144
5.7 Read/Write SpatialObjects 146
5.8 Statistics Computation via SpatialObjects o Lo 147
Iterators 149
6.1 Introduction 149
6.2 Programming Interface L 150
6.2.1 Creating Iterators L 150

6.2.2 Moving Iterators 150

6.23 AccessingData e 152

6.24 Tteration Loops e e 153

6.3 Image Iterators e 154
6.3.1 ImageRegionlterator 154

6.3.2 ImageRegionlteratorWithlndex 156

6.3.3 ImageLinearlteratorWithIndex 158

6.3.4 ImageSlicelteratorWithIndex 162

6.3.5 ImageRandomConstlteratorWithIndex 166

CONTENTS Xi
6.4 Neighborhood Iterators e 167
6.4.1 Neighborhoodlterator 174

Basic neighborhood techniques: edge detection 174

Convolution filtering: Sobel operator L. 177

Optimizing iteration speedo Lo oo e e e e 179

Separable convolution: Gaussian filtering 180

Slicing the neighborhood Lo L 182

Random access iteration L Lo 184

6.4.2 ShapedNeighborhoodlterator, 186

Shaped neighborhoods: morphological operations 187

7 Image Adaptors 191
7.1 Image Casting i e 192
7.2 Adapting RGBImages e 194
7.3 Adapting Vector Images L e e 197
7.4 Adaptors for Simple Computation 199
7.5 Adaptorsand Writerso o L e e e e 201
III Development Guidelines 203
8 How To Write A Filter 205
8.1 Terminology e 205

8.2 Overview of Filter Creation 206

83 Streaming Large Data o 207
8.3.1 Overview of Pipeline Execution 208

8.3.2 Details of Pipeline Execution 210
UpdateOutputInformation() 210
PropagateRequestedRegion() L o 211
UpdateOutputData() o oo vt e e e 212

8.4 Threaded Filter Execution 212

8.5 Filter Conventions 213
85.1 Optional o 214

Xii

CONTENTS

8.5.2

8.6 How To Write A Composite Filter

8.6.1
8.6.2

9 How To Create A Module

9.1 Name and dependencies

9.1.1

9.2 Headers
9.3 Libraries

9.4 Tests

9.5 Wrapping

9.5.1
952

9.6 Third-Party Dependencies

9.6.1
9.6.2

9.7 Contributing with a Remote Module

9.7.1
9.7.2

10 Software Process
10.1 Git Source Code Repository
10.2 CDash Regression Testing System

10.2.1
10.3 Working The Process

10.4 The Effectiveness of the Process

Appendices

Useful Macros

Implementing a Composite Filter

A Simple Example

CMakelLists.txt

CMakeLists.txt
Class wrap files
Wrapping Variables
Wrapping Macros

itk-module-init.cmake

CMakelList.txt

Policy for Adding and Removing Remote Modules

Procedure for Adding a Remote Module

Developing tests

CONTENTS

xiii

A Licenses

A.l Insight Toolkit License e

A.2 Third Party Licenses e e

A2.1 DICOMParser i i e e e

A.2.2 Double Conversion i i i e e e e

A23 Expat

A24 GDCM

A25 GIFTI

A26 HDFES

A27 JPEG e e
A2.8 KWSys . .
A29 MetalO e

A2.10 Netlib’s SLATEC

A211 NIFTI . .. oo

A2.12 NrrdIO ... Lo

A213 OpenJPEG

A214 PNGo

A2.15 TIFF

A2.16 VNL

A217 ZLIB

B ITK Git Workflow

B.1 Git Setup

B.I.1 WIndows e e e e

B.1.2 macOS e e e

B.1.3 Linux e e e e

B.2 Workflow

251
251
256
256
257
258
258
259
259
262
263
264
266
266
266
269
270
273
273
274

Xiv CONTENTS
B.2.1 APrimer 279

B22 ATopic 280
Motivation oo e e e e e e e e e e e e e e e e e 280

Design e 280

Notation. 281

Published Branches 281
Development e 282

Discussion 292
Troubleshooting 295

Conflicts e 304

B.23 Publish 312

Push Access L 312

Patches e 314

B.2.4 Hooks 316

SEtUP . . . e e e e e e e e e e e e e e 316

Local e 316

SEIVEL o 319

B.2.5 TipsAndTricks e e e e e 319
Editor support.. e e e 319

Shell Customization i i 319

C Coding Style Guide 321
C.l Purpose 321
C2 OVerVIEW o 321
C.3 System Overview & Philosophy 323
C3.1 Kitware Style e e e e e 323

C.3.2 Implementation Language 323

C33 Constants 324

C.3.4 Generic Programming and the STL 324

C3.5 Portability 325

C.3.6 Multi-Layer Architecture L L 325

C.3.7 CMake Build Environment 325

CONTENTS XV

C4
C5
C.6

C.7

C.3.8 Doxygen Documentation System oo 326
C39 wvnlMathLibrary 326
C.3.10 Reference Counting e 326
Copyright o e e e e e e 327
Citations 327
Naming Conventionst i it e 329
C.6.1 ITK . . 329
C.6.2 Naming Namespaces v v v v v v v vt ittt et e e e e 329
C.63 Naming Classes o vt i it 330
C.6.4 NamingFiles 332

Naming Tests o o o e e e e 332
C.6.5 Examples e e e e e 334
C.6.6 Naming Methods and Functions 334
C.6.7 Naming Class DataMembers 334
C.6.8 NamingEnums 335
C.6.9 Naming Local Variables, 335

Temporary Variable Naming 336

Variable Initialization Lo oL 336

Control Statement Variable Naming, 338

Variable Scope 338
C.6.10 Naming Template Parameters 339
C.6.11 Naming Typedefs e 339
C.6.12 Naming Constantst i ittt 340
C.6.13 Using Operatorsto Pointers 340
C.6.14 Using Operators t0 ATTayS v v v v v v vt bttt e e e e e e e e e e 341
C.6.15 Using Underscores o v v i i it ittt ittt e e 341
C.6.16 Include Guards e 341
C.6.17 Preprocessor Directives 342
C.6.18 HeaderIncludes 342
C.6.19 ConstCOITectness vt v ittt 342

Namespaces e e e e 343

XVi CONTENTS
C.8 Aliasing Template Parameter Typenames 344
C.O Pipelines 345
C.10 Theauto Keyword 345
C.11 Initialization and ASSIgNment oo et e e e e e e e e e e e 346
C.12 Accessing Members o oo e e e e e e e 347
C.13 Code Layout and Indentation 348

C.13.1 General Layout 348
C.13.2 ClassLayout 349
C.13.3 Method Definition L 353
C.134 Useof Braces i i 353
Braces in Control Sequences oo et e 353

Braces in Arrayso oo e e e e e e e e 354

C.13.5 Indentationand Tabs 355
C.13.6 White Spaces 356
C.13.7 Grouping o ot e e e e e e e e e e e e e e 358
Conditional Expressions 358

ASSIGNMENES e e e e 358

Return Statements 359

C.I3.8 Alignmento e e e e e e e e e e e e 360
C.13.9 Line Splitting Policy 363
C.I3.10 Empty Lines o 364
C.13.11 New Line Character 370
C.13.12 End Of File Character it e 370

C.14 Increment/decrement Operators ittt i e e 370
C.15 Empty Argumentsin Methods oo L L 371
C.16 Ternary Operator v it ittt ittt e e e e e e e e e e e e e 371
C.17 Using Standard Macros e 373
C.18 Exception Handling 375
C.18.1 ErrorsinPipelines 371

C19 MeSSaZeS . . . v v v v e e e e e e e e e e e e 378

C.19.1 Messages in Macroso e 378

CONTENTS Xvii

C.20
C.21
C.22
C.23

C.24
C.25

C.26
C.27

C.19.2 MessagesinTests oo oo i e e e e e 378
Concept Checking 380
Printing Variables 380
Checking for Null o o e e 381
Writing Tests o o e e e e e 382
C.23.1 CodeLayoutinTests ittt 382
C.232 RegressionsinTests. L 382
C.23.3 Argumentsin Tests e e e e e 384
C234 TestReturn Value 385
Writing Examples 385
Doxygen Documentation Systemo e e e e e 386
C.25.1 General Principles e e e 386
C.25.2 Documenting Classes i 387
C.25.3 Documenting Methods L 387
C.25.4 Documenting Data Members 388
C.25.5 Documenting Macros oo e e 389
C.25.6 Documenting Tests e 390
CMake Style e e e e e 390

Documentation Style e e e e e e e 390

2.1
22
23

4.1
4.2

5.1
52

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

LIST OF FIGURES

CMake userinterface 13
ITK Group Configuration o v v ittt et e e e e e e e 16
Default ITK Configuration 16
ITK Image Geometrical Concepts oo v v v i ittt 48
PointSet with Vectors as PixelType o 68
SpatialObject Transformationso Lo o e e 116
SpatialObject Transform Computations 119
ITKimage iteration o o ittt e e e e e e e e e e e e 151
Copying an image subregion using ImageRegionlterator 157
Using the ImageRegionlteratorWithIndex 159
Maximum intensity projection using ImageSlicelteratorWithIndex 166
Neighborhood iterator o o e 169
Some possible neighborhood iterator shapes oL 170
Sobel edge detectionresultso e e e e e 177
Gaussian blurring by convolution filtering L 182
Finding local minima L 185

6.10 Binary image morphology 190

XX List of Figures
7.1 ImageAdaptor CONCEPt o i it e e e e e e e e e e e e e e e 192
7.2 Image AdaptortoRGBImage 196
7.3 Image Adaptor to VectorImage o o o o 199
7.4 Image Adaptor for performing computations o e e e e 201
8.1 Relationship between DataObjects and ProcessObjects 206
82 TheDataPipeline 208
8.3 Sequence of the Data Pipeline updating mechanism 209
8.4 Composite Filter Concept 215
8.5 Composite Filter Example 216

10.1 CDash Quality Dashboard o0 oo 245

2.1

6.1

9.1
9.2
9.3
9.4

B.1

LIST OF TABLES

ITK Compiler Support Timeline 10
ImageRandomConstlteratorWithIndex usage 168
Wrapping Configuration Variables 230
Wrapping CMake Mangling Variables forPODs 233
Wrapping CMake Mangling Variables for other ITK pixel types. 234
Wrapping CMake Mangling Variables for Basic ITK types. 235

Git DAG notation e e e e e e e e e 281

Part I

Introduction

CHAPTER

ONE

WELCOME

Welcome to the Insight Segmentation and Registration Toolkit (ITK) Software Guide. This book has
been updated for ITK 5.0.0 and later versions of the Insight Toolkit software.

ITK is an open-source, object-oriented software system for image processing, segmentation, and
registration. Although it is large and complex, ITK is designed to be easy to use once you learn
about its basic object-oriented and implementation methodology. The purpose of this Software
Guide is to help you learn just this, plus to familiarize you with the important algorithms and data
representations found throughout the toolkit.

ITK is a large system. As a result, it is not possible to completely document all ITK objects and
their methods in this text. Instead, this guide will introduce you to important system concepts and
lead you up the learning curve as fast and efficiently as possible. Once you master the basics, take
advantage of the many resources available !, including example materials, which provide cookbook
recipes that concisely demonstrate how to achieve a given task, the Doxygen pages, which document
the specific algorithm parameters, and the knowledge of the many ITK community members (see
Section 1.4 on page 7.)

The Insight Toolkit is an open-source software system. This means that the community surround-
ing ITK has a great impact on the evolution of the software. The community can make significant
contributions to ITK by providing code reviews, bug patches, feature patches, new classes, docu-
mentation, and discussions. Please feel free to contribute your ideas through the ITK community
discussion.

The Insight Toolkit is built on the principle that patents are undesirable in an open-source software.
Thus, the community strives to keep the Insight Toolkit free from any patented code, algorithm or
method.

"https://www.itk.org/ITK/help/documentation.html

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

https://www.itk.org/ITK/help/documentation.html

4 Chapter 1. Welcome

1.1 Organization

This software guide is divided into three parts. Part I is a general introduction to ITK, with a
description of how to install the Insight Toolkit on your computer. This includes how to build the
library from its source code. Part II introduces basic system concepts such as an overview of the
system architecture, and how to build applications in the C++ and Python programming languages.
Part II also describes the design of data structures and application of analysis methods within the
system. Part III is for the ITK contributor and explains how to create your own classes, extend the
system, and be an active participant in the project.

1.2 Howto Learn ITK

The key to learning how to use ITK is to become familiar with its palette of objects and the ways to

combine them. There are three categories of documentation to help with the learning process: high

level guidance material (the Software Guide), "cookbook” demonstrations on how to achieve con-

crete objectives (the examples), and detailed descriptions of the application programming interface ﬁ
(the Doxygen” documentation). These resources are combined in the three recommended stages for

learning ITK.

In the first stage, thoroughly read this introduction, which provides an overview of some of the key
concepts of the system. It also provides guidance on how to build and install the software. After
running your first “hello world” program, you are well on your way to advanced computational
image analysis!

The next stage is to execute a few examples and gain familiarity with the available documenta-
tion. By running the examples, one can gain confidence in achieving results and is introduced the
mechanics of the software system. There are three example resources,

1. the Examples directory of the ITK source code repository 3.
2. the Examples pages on the ITK Wiki *

3. the Sphinx documented ITK Examples °

To gain familiarity with the available documentation, browse the sections available in Part IT and Part
III of this guide. Also, browse the Doxygen application programming interface (API) documentation
for the classes applied in the examples.

Finally, mastery of ITK involves integration of information from multiple sources. the second com-
panion book is a reference to algorithms available, and Part III introduces how to extend them to your

Zhttps://itk.org/Doxygen/index.html
3See Section Obtaining the Software on page 10)
“https://itk.org/Wiki/ITK/Examples
Shttps://itk.org/ITKExamples

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

https://itk.org/Doxygen/index.html
https://itk.org/Wiki/ITK/Examples
https://itk.org/ITKExamples

1.3. Software Organization 5

needs and participate in the community. Individual examples are a detailed starting point to achieve
certain tasks. In practice, the Doxygen documentation becomes a frequent reference as an index of
the classes available, their descriptions, and the syntax and descriptions of their methods. When ex-
amples and Doxygen documentation are insufficient, the software unit tests thoroughly demonstrate
how the code is utilized. Last, but not least, the source code itself is an extremely valuable resource.
The code is the most detailed, up-to-date, and definitive description of the software. A great deal of
attention and effort is directed to the code’s readability, and its value cannot be understated.

The following sections describe how to obtain the software, summarize the software functionality in
each directory, and how to locate data.

1.3 Software Organization

To begin your ITK odyssey, you will first need to know something about ITK’s software organization
and directory structure. It is helpful to know enough to navigate through the code base to find
examples, code, and documentation. \g_{

17K I

ITK resources are organized into multiple Git repositories. The ITK library source code are in the
ITK® Git repository. The Sphinx Examples are in the ITKExamples’ repository. The sources for this
guide are in the ITKSoftwareGuide® repository.

The ITK repository contains the following subdirectories:

* ITK/Modules — the heart of the software; the location of the majority of the source code.
* ITK/Documentation — migration guides and Doxygen infrastructure.

* ITK/Examples — a suite of simple, well-documented examples used by this guide, illustrat-
ing important ITK concepts.

e ITK/Testing — a collection of the MD5 files, which are used to link with the ITK data
servers to download test data. This test data is used by tests in ITK/Modules to produce the
ITK Quality Dashboard using CDash. (see Section 10.2 on page 244.)

e Insight/Utilities — the scripts that support source code development. For example,
CTest and Doxygen support.

* Insight/Wrapping — the wrapping code to build interfaces between the C++ library and
various interpreted languages (currently Python is supported).

The source code directory structure—found in ITK/Modules—is the most important to understand.

Shttps://github.com/InsightSoftwareConsortium/ITK.git
Thttps://github.com/InsightSoftwareConsortium/ITKExamples.git
8https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide.git

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
注释框
注意：ITK多个代码资源存储的仓库

Administrator
下划线

Administrator
高亮

https://github.com/InsightSoftwareConsortium/ITK.git
https://github.com/InsightSoftwareConsortium/ITKExamples.git
https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide.git

6 Chapter 1. Welcome

e ITK/Modules/Core — core classes, macro definitions, type aliases, and other software con-
structs central to ITK. The classes in Core are the only ones always compiled as part of ITK.

* ITK/Modules/ThirdParty — various third-party libraries that are used to implement image
file I/O and mathematical algorithms. (Note: ITK’s mathematical library is based on the
VXL/VNL software packageg.@

* ITK/Modules/Filtering — image processing filters.

* ITK/Modules/IO — classes that support the reading and writing of images, transforms, and
geometry.

* ITK/Modules/Bridge — classes used to connect with the other analysis libraries or visual-
ization libraries, such as OpenCV!? and VTK!!.

* ITK/Modules/Registration — classes for registration of images or other data structures to
each other.

* ITK/Modules/Segmentation — classes for segmentation of images or other data structures.

* ITK/Modules/Video — classes for input, output and processing of static and real-time data
with temporal components.

* ITK/Modules/Compatibility — collects together classes for backwards compatibility with
ITK Version 3, and classes that are deprecated — i.e. scheduled for removal from future ver-
sions of ITK.

e ITK/Modules/Remote — a group of modules distributed outside of the main ITK source
repository (most of them are hosted on github.com) whose source code can be downloaded
via CMake when configuring ITK.

* ITK/Modules/External — a directory to place in development or non-publicized modules.

e ITK/Modules/Numerics — a collection of numeric modules, including FEM, Optimization,
Statistics, Neural Networks, etc.

The Doxygen documentation is an essential resource when working with ITK, but it i§ Aot contained
in a separate repository. Each ITK class is implemented with a .h and . cxx/.hxx file (. hxx file for
templated classes). All methods found in the .h header files are documented and provide a quick
way to find documentation for a particular method. Doxygen uses this header documentation to
produce its HTML output.

The extensive Doxygen web pages describe in detail every class and method in the system. It also
contains inheritance and collaboration diagrams, listing of event invocations, and data members.

http://vxl.sourceforge.net
Onttp://opencyv.org
Uhttp://www.vtk.org

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

github.com
http://vxl.sourceforge.net
http://opencv.org
http://www.vtk.org

1.4. The Insight Community and Support 7

heavily hyper-linked to other classes and to the source code. The nightly generated Doxygen doc-
umentation is online at https://itk.org/Doxygen/html/. Archived versions for each feature
release are also available online; for example, the documentation for the 4.4.0 release are available
at https://itk.org/Doxygend4/html/.

1.4 The Insight Community and Support

Joining the community discussion is strongly recommended. This is one of the primary resources
for guidance and help regarding the use of the toolkit. You can subscribe to the community list
online at

https://discourse.itk.org/

ITK transitioned to Discourse on September 2017. Discourse is a next generation, open source
discussion platform that functions as a mailing list, discussion forum, and long-form chat room.
Discourse is a simple, modern, and fun platform that facilitates civilized discussions.

ITK maintainers developed a Getting Started Guide to help people joining the discussion, subscrib-
ing to updates, or setting their preferences.

The previous mailing list resources can be reached at https: //itk.org/ITK/help/mailing.html.

ITK was created from its inception as a collaborative, community effort. Research, teaching, and
commercial uses of the toolkit are expected. If you would like to participate in the community, there
are a number of possibilities. For details on participation, see Part III of this book.

* Interaction with other community members is encouraged on the ITK discussion by both ask-
ing as answering questions. When issues are discovered, patches submitted to the code review
system are welcome. Performing code reviews, even by novice members, is encouraged. Im-
provements and extensions to the documentation are also welcome.

* Research partnerships with members of the Insight Software Consortium are encouraged.
Both NIH and NLM will likely provide limited funding over the next few years and will
encourage the use of ITK in proposed work.

* For those developing commercial applications with ITK, support and consulting are available
from Kitware '>. Kitware also offers short ITK courses either at a site of your choice or
periodically at Kitware offices.

* Educators may wish to use ITK in courses. Materials are being developed for this purpose,
e.g., a one-day, conference course and semester-long graduate courses. Check the Wiki'3 for
a listing.

2http://www.kitware.com
Bhttps://itk.org/Wiki/ITK/Documentation

Administrator
下划线

https://itk.org/Doxygen/html/
https://itk.org/Doxygen44/html/
https://discourse.itk.org/
https://www.discourse.org/
https://www.discourse.org/
https://discourse.itk.org/t/getting-started-with-discourse/22
http://www.kitware.com
https://itk.org/Wiki/ITK/Documentation

8 Chapter 1. Welcome

1.5 A Brief History of ITK

In 1999 the US National Library of Medicine of the National Institutes of Health awarded six
three-year contracts to develop an open-source registration and segmentation toolkit, that eventu-
ally came to be known as the Insight Toolkit (ITK) and formed the basis of the Insight Software
Consortium. ITK’s NIH/NLM Project Manager was Dr. Terry Yoo, who coordinated the six prime
contractors composing the Insight consortium. These consortium members included three com-
mercial partners—GE Corporate R&D, Kitware, Inc., and MathSoft (the company name is now
Insightful)—and three academic partners—University of North Carolina (UNC), University of Ten-
nessee (UT) (Ross Whitaker subsequently moved to University of Utah), and University of Penn-
sylvania (UPenn). The Principle Investigators for these partners were, respectively, Bill Lorensen
at GE CRD, Will Schroeder at Kitware, Vikram Chalana at Insightful, Stephen Aylward with Luis
Ibafiez at UNC (Luis is now at Google), Ross Whitaker with Josh Cates at UT (both now at Utah),
and Dimitri Metaxas at UPenn (now at Rutgers). In addition, several subcontractors rounded out the
consortium including Peter Raitu at Brigham & Women’s Hospital, Celina Imielinska and Pat Mol-
holt at Columbia University, Jim Gee at UPenn’s Grasp Lab, and George Stetten at the University of
Pittsburgh.

In 2002 the first official public release of ITK was made available. In addition, the National Library
of Medicine awarded thirteen contracts to several organizations to extend ITK’s capabilities. The
NLM has funded maintenance of the toolkit over the years, and a major funding effort was started in
July 2010 that culminated with the release of ITK 4.0.0 in December 2011. If you are interested in
potential funding opportunities, we suggest that you contact Dr. Terry Yoo at the National Library
of Medicine for more information.

Administrator
线条

CHAPTER

TWO

CONFIGURING AND BUILDING ITK

This chapter describes the process for configuring and compiling ITK on your system. Keep in
mind that ITK is a toolkit, and as such, once it is installed on your computer it does not provide an
application to run. What ITK does provide is a large set of libraries which can be used to create
your own applications. Besides the toolkit proper, ITK also includes an extensive set of examples
and tests that introduce ITK concepts and show how to use ITK in your own projects.

Some of the examples distributed with ITK depend on third party libraries, some of which may need
to be installed separately. For the initial build of ITK, you may want to ignore these extra libraries
and just compile the toolkit itself.

ITK has been developed and tested across different combinations of operating systems, compil-
ers, and hardware platforms including Microsoft Windows, Linux on various architectures, UNIX,
macOS, and Cygwin. Dedicated community members and Kitware are committed to providing long-
term support of the most prevalent development environments (Visual Studio, macOS, and Linux)
for building ITK:

Compiler variants will be supported for the duration that the associated operating system vendors
commiit to in their long-term stable platforms. For example the gcc compilers supported will mirror
the compiler support in the RedHat lifecycle, the apple clang compilers will mirror the support life-
cycle of the compiler by Apple, and the Visual Studio series support will follow lifecycle deprecation
of the compiler versions.

For example as of 2018 the following time schedule is expected for supporting these compiler envi-
ronments.

e GCC
— 4.8.2 (From 2015-until 2020)
¢ Visual Studio

— 2010 [v10.0] (From 2010 - until 2020)
— 2012 [v11.0] (From 2012 - until 2022)

10 Chapter 2. Configuring and Building ITK

— 2013 [v12.0] (From 2013 - until 2023)
* Apple Clang

— Apple clang-600.0.56 (From 2013 - until 2019)
— Apple LLVM version 8.1.0 (clang-802.0.42) (From 2016 - until 2021)

* Clang
— 3.3 (From 2013 - until 2018)

Table 2.1 prints the compiler support timeline in ITK at the time of writing this guide.

Compiler 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
Visual Studio 10

GCC4.2

GCC44

GCC 4.9]

Table 2.1: ITK Compiler Support Timeline.

Legend:

Phase out

If you are currently using an outdated compiler this may be an excellent excuse for upgrading this
old piece of software! Support for different platforms is evident on the ITK quality dashboard (see
Section 10.2 on page 244).

2.1 Obtaining the Software

There are two different ways to access the ITK source code:

Periodic releases Official releases are available on the ITK web site'. They are released twice a
year, and announced on the ITK web pages and discussion. However, they may not provide
the latest and greatest features of the toolkit.

Continuous repository checkout Direct access to the Git source code repository” provides imme-
diate availability to the latest toolkit additions. But, on any given day the source code may not
be stable as compared to the official releases.

I'https://itk.org/ITK/resources/software.html
Zhttps://itk.org/ITK.git

https://itk.org/ITK/resources/software.html
https://itk.org/ITK.git

2.1. Obtaining the Software 11

This software guide assumes that you are using the current released version of ITK, available on the
ITK web site. If you are a new user, we recommend the released version of the software. It is more
consistent than the code available from the Git repository (see Section 2.1.2). When working from
the repository, please be aware of the ITK quality testing dashboard. The Insight Toolkit is heavily
tested using the open-source CDash regression testing system®. Before updating the repository,
make sure that the dashboard is green, indicating stable code. (Learn more about the ITK dashboard

and quality assurance process in Section 10.2 on page 244.)

2.1.1 Downloading Packaged Releases
ITK can be downloaded without cost from the following web site:
https://www.itk.org/ITK/resources/software.html

On the web page, choose the tarball that better fits your system. The options are .zip and .tar.gz
files. The first type is better suited for Microsoft-Windows, while the second one is the preferred
format for UNIX systems.

Once you unzip or untar the file a directory called InsightToolkit-5.0.0 will be created in your
disk and you will be ready to start the configuration process described in Section 2.2.1 on page 12.

2.1.2 Downloading From Git

Git is a free and open source distributed version control system. For more information about Git
please see Section 10.1 on page 243. (Note: please make sure that you access the software via Git
only when the ITK quality dashboard indicates that the code is stable.)

Access ITK via Git using the following commands (under a Git Bash shell):

git clone git://itk.org/ITK.git

This will trigger the download of the software into a directory named ITK. Any time you want to
update your version, it will be enough to change into this directory, ITX, and type:

git pull

Once you obtain the software you are ready to configure and compile it (see Section 2.2.1 on page
12). First, however, we recommend reading the following sections that describe the organization of
the software and joining the discussion.

3http://open.cdash.org/index.php?project=Insight

https://www.itk.org/ITK/resources/software.html
http://open.cdash.org/index.php?project=Insight

12 Chapter 2. Configuring and Building ITK

2.1.3 Data

The Insight Toolkit was designed to support the Visible Human Project and its as-
sociated data. This data is available from the National Library of Medicine at
http://www.nlm.nih.gov/research/visible/visible_human.html.

Another source of data can be obtained from the ITK Web site at either of the following:

https://www.itk.org/ITK/resources/links.html
ftp://public.kitware.com/pub/itk/Data/.

2.2 Using CMake for Configuring and Building ITK

The challenge of supporting ITK across platforms has been solved through the use of CMake*, a
cross-platform, open-source build system. CMake controls the software compilation process with
simple platform and compiler-independent configuration files. CMake is quite sophisticated—it
supports complex environments requiring system introspection, compiler feature testing, and code
generation.

CMake generates native Makefiles or workspaces to be used with the corresponding development
environment of your choice. For example, on UNIX and Cygwin systems, CMake generates Make-
files; under Microsoft Windows CMake generates Visual Studio workspaces; CMake is also capable
of generating appropriate build files for other development environments, e.g., Eclipse. The infor-
mation used by CMake is provided in CMakeLists.txt files that are present in every directory of
the ITK source tree. Along with the specification of project structure and code dependencies these
files specify the information that need to be provided to CMake by the user during project config-
uration stage. Typical configuration options specified by the user include paths to utilities installed
on your system and selection of software features to be included.

An ITK build requires only CMake and a C++ compiler. ITK ships with all the third party library
dependencies required, and these dependencies are used during compilation unless the use of a
system version is requested during CMake configuration.

2.2.1 Preparing CMake
CMake can be downloaded at no cost from
https://cmake.org/download/

You can download binary versions for most of the popular platforms including Microsoft Windows,
macOS, Linux, PowerPC and IRIX. Alternatively you can download the source code and build

4www.cmake.org

http://www.nlm.nih.gov/research/visible/visible_human.html
https://www.itk.org/ITK/resources/links.html
ftp://public.kitware.com/pub/itk/Data/
https://cmake.org/download/
www.cmake.org

2.2. Using CMake for Configuring and Building ITK

CMake on your system. Follow the instructions provided on the CMake web page for downloading
and installing the software. The minimum version of CMake has been evolving along with the ver-
sion of ITK. For example, the current version of ITK (5.0.0) requires the minimum CMake version

to be 3.9.5.

CMake provides a terminal-based interface (Figure 2.1) on platforms support the curses library.
For most platforms CMake also provides a GUI based on the Qt library. Figure 2.1 shows the

terminal-based CMake interface for Linux and CMake GUI for Microsoft Windows.

JI"P cslin-gps.csunix.comp.leeds.ac.uk - PuTTyY

UILD EXAMPLES: Build the Examples directory.

=] ||

m

A CMake 2.8.12 - Cy/InsightToolkit-4.5.0-Bin-x64

= | B ||

File Tools Options Help

WWhere is the source code: C:/fInsightToolkit-4.5.0

Search:

|[TKV3_ COMPATIBILITY

| ITK_BUILD_DEFAULT_MODULES
“WRAP_PYTHON

Checking IF correctly con
Checking IF correctly co
Checking IF alignment r
Filter ZLIB is ON

Configuring done

Where to build the binaries: C:/InsightToolkit-4.5.0-Bin-x64

rerting long double to

|Brnwse Source... |

- |Br0wse§ui|d... i

7| Grouped | Advanced | gF AddEntry |

Value
H

I Configure ‘ | Generate ‘ Current Generator: Visual Studio 8 2008 Wing4

Checking IF overflows normally converting floating-point to integer values. ..
{unsigned) long long values...
rting (unsigned) long long to long double values...
ictions are strictly enforced. . yes

Found Perl: C:/Perléd/bin/perl._exe (found versicm "5.10.0™)

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Figure 2.1: CMake user interfaces: at the top is the interface based on the curses library supported by
UNIX/Linux systems, below is the Microsoft Windows version of the CMake GUI based on the Qt library (CMake

GUI is also available on UNIX/Linux systems).

14 Chapter 2. Configuring and Building ITK

Running CMake to configure and prepare for compilation a new project initially requires two pieces
of information: where the source code directory is located, and where the compiled code is to be
produced. These are referred to as the source directory and the binary directory respectively. We
recommend setting the binary directory to be different than the source directory in order to produce
an out-of-source build.

If you choose to use the terminal-based version of CMake (ccmake) the binary directory needs to
be created first and then CMake is invoked from the binary directory with the path to the source
directory. For example:

mkdir ITK-build
cd ITK-build
ccmake ../ITK

In the GUI version of CMake (cmake-gui) the source and binary directories are specified in the
appropriate input fields (Figure 2.1) and the application will request a confirmation to create a new
binary directory if it does not exist.

CMake runs in an interactive mode which allows iterative selection of options followed by con-
figuration according to the updated options. This iterative process proceeds until no more options
remain to be specified. At this point, a generation step produces the appropriate build files for your
configuration.

This interactive configuration process can be better understood by imagining the traversal of a path
in a decision tree. Every selected option introduces the possibility that new, dependent options may
become relevant. These new options are presented by CMake at the top of the options list in its
interface. Only when no new options appear after a configuration iteration can you be sure that
the necessary decisions have all been made. At this point build files are generated for the current
configuration.

2.2.2 Configuring ITK

Start terminal-based CMake interface ccmake on Linux and UNIX, or the graphical user interface
cmake-gui on Microsoft Windows. Remember to run ccmake from the binary directory on Linux
and UNIX. On Windows, specify the source and binary directories in the GUI, then set and modify
the configuration and build option in the interface as necessary.

The examples distributed with the toolkit provide a helpful resource for learning how to use ITK
components but are not essential for compiling the toolkit itself. The testing section of the source
tree includes a large number of small programs that exercise the capabilities of ITK classes. Enabling
the compilation of the examples and unit tests will considerably increase the build time. In order to
speed up the build process, you can disable the compilation of the unit tests and examples. This is
done by setting the variables BUILD_TESTING and BUILD_EXAMPLES to OFF.

Most CMake variables in ITK have sensible default values. Each time a CMake variable is changed,
it is necessary to re-run the configuration step. In the terminal-based version of the interface the

Administrator
下划线

2.2. Using CMake for Configuring and Building ITK 15

configuration step is triggered by hitting the “c” key. In the GUI version this is done by clicking on
the “Configure” button.

When no new options appear highlighted in CMake, you can proceed to generate Makefiles, a Visual
Studio workspace, or other appropriate build files depending on your preferred development environ-
ment. This is done in the GUI interface by clicking on the “Generate” button. In the terminal-based
version this is done by hitting the “g” key. After the generation process the terminal-based version
of CMake will quit silently. The GUI window of CMake can be left open for further refinement of
configuration options as described in the next section. With this scenario it is important to generate
new build files to reflect the latest configuration changes. In addition, the new build files need to be
reloaded if the project is open in the integrated development environment such as Visual Studio or

Eclipse.

2.2.3 Advanced Module Configuration"_'

Following the default configuration introduced in 2.2.2, the majority of the toolkit will be built. The
modern modular structure of the toolkit makes it possible to customize the ITK library by choosing
which modules to include in the build. ITK was officially modularized in version 4.0.0 released in
December of 2011. Developers have been testing and improving the modular structure since then.
The toolkit currently contains more than 100 regular/internal modules and many remote modules,
while new ITK modules are being developed.

ITK_BUILD_DEFAULT_MODULES is the CMake option to build all default modules in the toolkit,
by default this option is ON as shown in Figure 2.1. The default modules include most internal
ITK modules except the ones that depend on external third party libraries (such as ITKVtkGlue,
ITKVideoBridgeOpenCV, ITKVideoBridgeVXL, etc.) and several modules containing legacy code
(ITKReview, ITKDeprecated and ITKV3Compatibility).

Apart from the default mode of selecting the modules for building the ITK library there are two
other approaches module selection: the group mode, and the advanced module mode. When ITK_-
BUILD_DEFAULT_MODULES is set to OFF, the selection of modules to be included in the ITK library
can be customized by changing the variables enabling group and advanced module selection.

ITKGroup—_{group name} variables for group module selection are visible when ITK_BUILD_-
DEFAULT_MODULES is OFF. The ITK source code tree is organized in such way that a group of mod-
ules characterised by close relationships or similar functionalities stay in one subdirectory. Currently
there are 11 groups (excluding the External and Remote groups). The CMake ITKGroup_{group
name} options are created for the convenient enabling or disabling of multiple modules at once. The
ITKGroup_Core group is selected by default as shown in Figure 2.2. When a group is selected, all
modules in the group and their depending modules are enabled. When a group variable is set to OFF,
all modules in the group, except the ones that are required by other enabled modules, are disabled.

If you are not sure about which groups to turn on, but you do have a list of specific modules to
be included in your ITK library, you can certainly skip the Group options and use the Module_-
{module name} options only. Whatever modules you select, their dependent modules are automat-

Administrator
注释框
注意：编译中可以选择的是否要编译的模块

Administrator
下划线

16 Chapter 2. Configuring and Building ITK

OE LT LLTT T] 5

o
2

ebugReleaseMinSizeRetReWithDebinfo
0

Figure 2.2: CMake GUI shows the ITK Group options.

ically enabled. In the advanced mode of the CMake GUI, you can manually toggle the build of the
non-default modules via the Module_{module name} variables. In Figure 2.3 all default modules’
Module_{module name} variables are shown disabled for toggling since they are enabled via the
ITK_BUILD_DEFAULT_MODULES set to ON variable.

rowse source..

] orovse gk

f] @ asaeny | s

DooooooCEopnoooooon(s

Figure 2.3: CMake GUI for configuring ITK: the advanced mode shows options for non-default ITK Modules.

However, not all modules will be visible in the CMake GUI at all times due to the various levels
of controls in the previous two modes. If some modules are already enabled by other modes, these
modules are set as internal variables and are hidden in the CMake GUI. For example, Module_-
ITKFoo variable is hidden when the module ITKFoo is enabled in either of the following scenarios:

2.2. Using CMake for Configuring and Building ITK 17

1. module ITKBar is enabled and depends on ITKFoo,
2. ITKFoo belongs to the group ITKGroup_FooAndBar and the group is enabled

3. ITK_BUILD_DEFAULT_MODULES is ON and ITKFoo is a default module.

To find out why a particular module is enabled, check the CMake configuration messages where the
information about enabling or disabling the modules is displayed (Figure 2.3); these messages are
sorted in alphabetical order by module names.

Those who prefer to build ITK using the command line are referred to the online cmake command-
line tool documentation®. Only some typical use cases are shown here for reference.

e Example 1: Build all default modules.
cmake [-DITK_BUILD_DEFAULT_MODULES : BOOL=ON]

../ITK-build

As ITK_BUILD_DEFAULT_MODULES is ON by default, the above can also be accomplished by

cmake ../ITK-build

« Example 2: Enable specific group(s) of modules.

cmake -DITK_BUILD_DEFAULT_MODULES:BOOL=OFF
-DBUILD_EXAMPLES :BOOL=0OFF
-DITKGroup_{Groupl}:BOOL=0ON
[-DITKGroup_{Group2} :BOOL=ON]
../ITK-build

where ITKGroup_GroupN could be, for example, ITKGroup_Filtering or ITKGroup_-
Registration for the Filtering and Registration groups, respectively.

« Example 3: Enable specific modules.

cmake -DITK_BUILD_DEFAULT_MODULES:BOOL=OFF
—-DBUILD_EXAMPLES:BOOL=CFF
-DModule_ {Modulel} :BOOL=0ON
[-DModule_{Module2} :BOOL=0ON]
../ITK-build

where Module_Modulel could be, for example, Module_ITKFEM for the non-default, built-in
FEM module, or Module_Cuberille for the Cuberille remote module.

* Example 4: Enable examples.

Shttps://cmake.org/cmake/help/latest/manual/cmake.l.html

https://cmake.org/cmake/help/latest/manual/cmake.1.html

18 Chapter 2. Configuring and Building ITK

cmake -DITK_BUILD_DEFAULT_MODULES:BOOL=0ON
-DBUILD_EXAMPLES :BOOL=0ON
../ITK-build

Note that BUILD_EXAMPLES is OFF by default, and BUILD_EXAMPLES=ON requires ITK_-
BUILD_DEFAULT_MODULES=ON.

2.2.4 Static and Shared Libraries

ITK libraries can be built as static libraries, i.e. files whose functions and variables are included in
a binary during the link phase of the build cycle. Alternatively, ITK libraries can be built as shared
libraries, where libraries are dynamically linked to a binary. In this case, functions and variables are
shared at runtime according to their symbols.

By enabling the standard CMake configuration variable, BUILD_SHARED_LIBS, ITK modules with
the ENABLE_SHARED option (see Section 9.1) will be built as shared libraries.

Static libraries are preferred when creating a stand-alone executable. An application can be dis-
tributed as a single file when statically linked. Additional effort is not required to package library
dependencies, configure the system to find library dependencies at runtime, or define symbol export
specifications. However, care should be taken to only link static libraries once into the binaries used
by an application. Failure to due so can result in duplicated global variables and, consequently,
undefined or undesirable behavior.

Shared libraries should be used when ITK is linked to more than one binary in an application. This
reduces binary size and ensures that singleton variables are unique across the application.

An advanced CMake configuration variable, ITK_TEMPLATE_VISIBILITY_DEFAULT defines the
symbol visibility attribute on template classes to default on systems that require it to perform
dynamic_cast’s on pointers passed across binaries. The default value can be disabled only when it
is known that template classes are not implicitly instantiated and passed across binaries.

2.2.5 Compiling ITK

To initiate the build process after generating the build files on Linux or UNIX, simply type make
in the terminal if the current directory is set to the ITK binary directory. If using Visual Studio,
first load the workspace named ITK. s1ln from the binary directory specified in the CMake GUI and
then start the build by selecting “Build Solution” from the “Build” menu or right-clicking on the
ALL_BUILD target in the Solution Explorer pane and selecting the “Build” context menu item.

The build process can take anywhere from 15 minutes to a couple of hours, depending on the build
configuration and the performance of your system. If testing is enabled as part of the normal build
process, about 2400 test programs will be compiled. In this case, you will then need to run ctest to
verify that all the components of ITK have been correctly built on your system.

Administrator
高亮

2.3. Cross compiling ITK 19

2.2.6 Installing ITK on Your System

When the build process is complete an ITK binary distribution package can be generated for instal-
lation on your system or on a system with compatible specifications (such as hardware platform and
operating system) as well as suitable development environment components (such as C++ compiler
and CMake). The default prefix for installation destination directory needs to be specified during
CMake configuration process prior to compiling ITK. The installation destination prefix can to be
set through the CMake cache variable CMAKE_INSTALL_PREFIX.

Typically distribution packages are generated to provide a “clean” form of the software which is
isolated from the details of the build process (separate from the source and build trees). Due to
the intended use of ITK as a toolkit for software development the step of generating ITK binary
packages for installing ITK on other systems has limited application and thus it can be treated as
optional. However, the step for generating binary distribution packages has a much wide application
for distributing software developed with ITK. Further details on configuring and generating binary
packages with CMake can be found in the CMake tutorial.

2.3 Cross compiling ITK

This section describes the procedure to follow to cross compile ITK for another system. Cross
compiling involves a build system, the system where the executables are built, and the target system,
the system where the executables are intended to run.

Currently, the best way to cross-compile ITK is to use dockcross.

For example, the commands to build for Linux-ARMV7 are:

git clone https://github.com/InsightSoftwareConsortium/ITK
docker run --rm dockcross/linux-armv7 > ./dockcross-linux-armv7
chmod +x ./dockcross-linux-armv7

mkdir ITK-build

./dockcross-linux-armv7 cmake -BITK-build -HITK -GNinja
./dockcross-linux-armv7 ninja -CITK-build

2.4 Getting Started With ITK

The simplest way to create a new project with ITK is to create two new directories somewhere in
your disk, one to hold the source code and one to hold the binaries and other files that are created
in the build process. For this example, create a HelloWorldITK directory to hold the source and a
HelloWorldITK-build directory to hold the binaries. The first file to place in the source directory
is a CMakeLists.txt file that will be used by CMake to generate a Makefile (if you are using Linux

https://cmake.org/cmake-tutorial/

Administrator
高亮

https://github.com/dockcross/dockcross
https://cmake.org/cmake-tutorial/

20 Chapter 2. Configuring and Building ITK

or UNIX) or a Visual Studio workspace (if you are using Microsoft Windows). The second source
file to be created is an actual C++ program that will exercise some of the large number of classes
available in ITK. The details of these files are described in the following section.

Once both files are in your directory you can run CMake in order to configure your project. Un-
der UNIX/Linux, you can cd to your newly created binary directory and launch the terminal-based
version of CMake by entering “ccmake ../HelloWorldITK” in the terminal. Note the “../Hel-
loWorldITK” in the command line to indicate that the CMakeLists.txt file is up one directory and
in HelloWor1dITK. In CMake GUI which can be used under Microsoft Windows and UNIX/Linux,
the source and binary directories will have to be specified prior to the configuration and build file
generation process.

Both the terminal-based and GUI versions of CMake will require you to specify the directory where
ITK was built in the CMake variable ITK_DIR. The ITK binary directory will contain a file named
ITKConfig.cmake generated during ITK configuration process with CMake. From this file, CMake
will recover all information required to configure your new ITK project.

After generating the build files, on UNIX/Linux systems the project can be compiled by typing
make in the terminal provided the current directory is set to the project’s binary directory. In
Visual Studio on Microsoft Windows the project can be built by loading the workspace named
HelloWorldITK.sln from the binary directory specified in the CMake GUI and selecting “Build
Solution” from the “Build” menu or by right-clicking on the ALL_BUILD target in the Solution Ex-
plorer pane and selecting the “Build” context menu item.

The resulting executable, which will be called HelloWorld, can be executed on the command line.
If on Microsoft Windows, please note that double-clicking on the icon of the executable will quickly
launch a command line window, run the executable and close the window right away, not giving you
time to see the output. It is therefore preferable to run the executable from the DOS command line
by starting the cmd. exe shell first.

itk CmakeList

2.5 Using ITK as an External Library/—|

For a project that uses ITK as an external library, it is recommended to specify the individual ITK
modules in the COMPONENTS argument in the find_package CMake command:

find_package (ITK REQUIRED COMPONENTS Modulel Module2)
include (\${ITK_USE_FILE})

e.g.

find_package (ITK REQUIRED
COMPONENTS
MorphologicalContourInterpolation
ITKSmoothing
ITKIOImageBase

Administrator
注释框
注意：itk用作第三方库，CmakeList设置

2.5. Using ITK as an External Library 21

ITKIONRRD

)
include (\${ITK_USE_FILE})

If you would like to use the CMake ExternalProject Module’ to download ITK source code when
building your ITK application (a.k.a. Superbuild ITK), here is a basic CMake snippet for setting up
a Superbuild in an ITK application project using CMake:

ExternalProject_Add (ITK
GIT_REPOSITORY \${git_protocol}://github.com/InsightSoftwareConsortium/ITK.git"
GIT_TAG "<tag id>" # specify the commit id or the tag id
SOURCE_DIR <ITK source tree path>
BINARY_DIR <ITK build tree path>
CMAKE_GENERATOR ${gen}
CMAKE_ARGS
${ep_common_args}
—-DBUILD_SHARED_LIBS:BOOL=CFF
—-DBUILD_EXAMPLES:BOOL=0CFF
—-DBUILD_TESTING:BOOL=0FF
-DITK_BUILD_DEFAULT_MODULES:BOOL=0ON
[-DModule_LevelSetv4Visualization:BOOL=0N]
INSTALL_COMMAND "™
DEPENDS
[VTK] [DCMIK] # if some of the modules requested require extra third party libraries

)

More exemplary configurations for superbuild ITK projects can be found in: Slicer®, BrainsTools’,
ITK Wiki Examples!?, ITK Sphinx Examples'!, and ITK Software Guide'?.

2.5.1 Hello World!

This section provides and explains the contents of the two files which need to be created for your
new project. These two files can be found in the ITK/Examples/Installation directory.

The CMakeLists.txt file contains the following lines:
project (HelloWorld)

find_package (ITK REQUIRED)
include (S{ITK_USE_FILE})

Thttps://cmake.org/cmake/help/latest/module/ExternalProject.html
8https://github.com/Slicer/Slicer
https://github.com/BRAINSia/BRAINSToo0LS
Onttps://github.com/InsightSoftwareConsortium/ITKWikiExamples
Uhttps://github.com/InsightSoftwareConsortium/ITKExamples
2https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide

Administrator
高亮

https://cmake.org/cmake/help/latest/module/ExternalProject.html
https://github.com/Slicer/Slicer
https://github.com/BRAINSia/BRAINSTools
https://github.com/InsightSoftwareConsortium/ITKWikiExamples
https://github.com/InsightSoftwareConsortium/ITKExamples
https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide

22 Chapter 2. Configuring and Building ITK

add_executable (HelloWorld HelloWorld.cxx)

target_link_libraries (HelloWorld ${ITK_LIBRARIES})

The first line defines the name of your project as it appears in Visual Studio or Eclipse; this line will
have no effect with UNIX/Linux Makefiles. The second line loads a CMake file with a predefined
strategy for finding ITK. If the strategy for finding ITK fails, CMake will report an error which
can be corrected by providing the location of the directory where ITK was compiled or installed on
your system. In this case the path to the ITK’s binary/installation directory needs to be specified
as the value of the ITK_DIR CMake variable. The line include (S{USE_ITK_FILE}) loads the
UseITK.cmake file which contains the configuration information about the specified ITK build. The
line starting with add_executable call defines as its first argument the name of the executable
that will be produced as result of this project. The remaining argument(s) of add_executable are
the names of the source files to be compiled. Finally, the target_link_libraries call specifies
which ITK libraries will be linked against this project. Further details on creating and configuring

CMake projects can be found in the CMake tutorial'* and CMake online documentation'?.

The source code for this section can be found in the file
HelloWorld.cxx.

The following code is an implementation of a small ITK program. It tests including header files and
linking with ITK libraries.

#include "itkImage.h"
#include <iostream>

int main()

{
using ImageType = itk::Image< unsigned short, 3 >;
ImageType: :Pointer image = ImageType: :New();

std::cout << "ITK Hello World !" << std::endl;

return EXIT_SUCCESS;
}

This code instantiates a 3D image'> whose pixels are represented with type unsigned short. The
image is then constructed and assigned to a itk::SmartPointer. Although later in the text we
will discuss SmartPointers in detail, for now think of it as a handle on an instance of an object (see
section 3.2.4 for more information). The itk::Image class will be described in Section 4.1.

By this point you have successfully configured and compiled ITK, and created your first simple

3 https://cmake.org/cmake-tutorial/
Yhttps://cmake.org/documentation/
15 Also known as a volume.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://cmake.org/cmake-tutorial/
https://cmake.org/documentation/

2.5. Using ITK as an External Library 23

program! If you have experienced any difficulties while following the instructions provided in this
section, please join the community discussion (see Section 1.4 on page 7) and post questions there.

Part 11

Architecture

CHAPTER

THREE

SYSTEM OVERVIEW

The purpose of this chapter is to provide you with an overview of the Insight Toolkit system. We
recommend that you read this chapter to gain an appreciation for the breadth and area of application
of ITK.

3.1 System Organization

The Insight Toolkit consists of several subsystems. A brief description of these subsystems follows.
Later sections in this chapter—and in some cases additional chapters—cover these concepts in more
detail.

Essential System Concepts. Like any software system, ITK is built around some core design con-
cepts. Some of the more important concepts include generic programming, smart pointers for
memory management, object factories for adaptable object instantiation, event management
using the command/observer design paradigm, and multi-threading support.

Numerics. ITK uses VXL’s VNL numerics libraries. These are easy-to-use C++ wrappers around
1

the Netlib Fortran numerical analysis routines .

Data Representation and Access. Two principal classes are used to represent data: the
itk::Image and itk::Mesh classes. In addition, various types of iterators and contain-
ers are used to hold and traverse the data. Other important but less popular classes are also
used to represent data such as itk::Histogram and itk::SpatialObject.

Data Processing Pipeline. The data representation classes (known as data objects) are operated on
by filters that in turn may be organized into data flow pipelines. These pipelines maintain
state and therefore execute only when necessary. They also support multi-threading, and are
streaming capable (i.e., can operate on pieces of data to minimize the memory footprint).

"http://www.netlib.org

1

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1Histogram.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
http://www.netlib.org

28 Chapter 3. System Overview

IO Framework. Associated with the data processing pipeline are sources, filters that initiate the
pipeline, and mappers, filters that terminate the pipeline. The standard examples of sources
and mappers are readers and writers respectively. Readers input data (typically from a file),
and writers output data from the pipeline.

Spatial Objects. Geometric shapes are represented in ITK using the spatial object hierarchy. These
classes are intended to support modeling of anatomical structures. Using a common basic
interface, the spatial objects are capable of representing regions of space in a variety of dif-
ferent ways. For example: mesh structures, image masks, and implicit equations may be used
as the underlying representation scheme. Spatial objects are a natural data structure for com-
municating the results of segmentation methods and for introducing anatomical priors in both
segmentation and registration methods.

Registration Framework. A flexible framework for registration supports four different types of
registration: image registration, multiresolution registration, PDE-based registration, and
FEM (finite element method) registration.

FEM Framework. ITK includes a subsystem for solving general FEM problems, in particular non-
rigid registration. The FEM package includes mesh definition (nodes and elements), loads,
and boundary conditions.

Level Set Framework. The level set framework is a set of classes for creating filters to solve partial
differential equations on images using an iterative, finite difference update scheme. The level
set framework consists of finite difference solvers including a sparse level set solver, a generic
level set segmentation filter, and several specific subclasses including threshold, Canny, and
Laplacian based methods.

Wrapping. ITK uses a unique, powerful system for producing interfaces (i.e., “wrappers”) to inter-
preted languages such as Python. The CastXML? tool is used to produce an XML description
of arbitrarily complex C++ code. An interface generator script is then used to transform the
XML description into wrappers using the SWIG? package.

3.2 Essential System Concepts

This section describes some of the core concepts and implementation features found in ITK.

3.2.1 Generic Programming

Generic programming is a method of organizing libraries consisting of generic—or reusable—
software components [8]. The idea is to make software that is capable of “plugging together” in

Zhttps://github.com/CastXML/Cast XML
3http://www.swig.org/

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://github.com/CastXML/CastXML
http://www.swig.org/

3.2. Essential System Concepts 29

an efficient, adaptable manner. The essential ideas of generic programming are containers to hold
data, iterators to access the data, and generic algorithms that use containers and iterators to create
efficient, fundamental algorithms such as sorting. Generic programming is implemented in C++
with the template programming mechanism and the use of the STL Standard Template Library [1].

C++ templating is a programming technique allowing users to write software in terms of one or
more unknown types T. To create executable code, the user of the software must specify all types T
(known as template instantiation) and successfully process the code with the compiler. The T may
be a native type such as float or int, or T may be a user-defined type (e.g., a class). At compile-
time, the compiler makes sure that the templated types are compatible with the instantiated code and
that the types are supported by the necessary methods and operators.

ITK uses the techniques of generic programming in its implementation. The advantage of this
approach is that an almost unlimited variety of data types are supported simply by defining the
appropriate template types. For example, in ITK it is possible to create images consisting of almost
any type of pixel. In addition, the type resolution is performed at compile time, so the compiler
can optimize the code to deliver maximal performance. The disadvantage of generic programming
is that the analysis performed at compile time increases the time to build an application. Also, the
increased complexity may produce difficult to decipher error messages due to even the simplest
syntax errors. For those unfamiliar with templated code and generic programming, we recommend
the two books cited above.

3.2.2 Include Files and Class Definitions

In ITK, classes are defined by a maximum of two files: a header file (.h) and an implementation file
(.cxx) if defining a non-templated class, and a .hxx file if defining a templated class. The header
files contain class declarations and formatted comments that are used by the Doxygen documentation
system to automatically produce HTML manual pages.

In addition to class headers, there are a few other important header files.

itkMacro.h is found in the Modules/Core/Common/include directory and defines standard
system-wide macros (such as Set/Get, constants, and other parameters).

itkNumericTraits.h is found in the Modules/Core/Common/include directory and defines
numeric characteristics for native types such as its maximum and minimum possible values.

3.2.3 Object Factories Ttk

Most classes in ITK are instantiated through an object factory mechanism. That is, rather than using
the standard C++ class constructor and destructor, instances of an ITK class are created with the
static class New () method. In fact, the constructor and destructor are protected: so it is generally
not possible to construct an ITK instance on the stack. (Note: this behavior pertains to classes
that are derived from itk::LightObject. In some cases the need for speed or reduced memory

itk::LightObject
I1TK stack 1TK

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：基础操作的宏定义

Administrator
下划线

Administrator
注释框
注意：itk中大部分类都是通过对象工厂机制进行实例化的

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：继承至itk::LightObject的派生ITK类不能在stack上构建ITK实例

https://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

30 Chapter 3. System Overview

footprint dictates that a class is not derived from LightObject. In this case instances may be created
on the stack. An example of such a class is the itk::EventObject.)

The object factory enables users to control run-time instantiation of classes by registering one or
more factories with itk::0bjectFactoryBase. These registered factories support the method
CreateInstance (classname) which takes as input the name of a class to create. The factory can
choose to create the class based on a number of factors including the computer system configuration

and environment variables. For example, a particular application may wish to deploy its own class
implemented using specialized image processing hardware (i.e., to realize a performance gain). BY

using the object factory mechanism, it is possible to replace the creation of a particular ITK filter at
run-time with such a custom class. (Of course, the class must provide the exact same API as the one
it is replacing.). For this, the user compiles his class (using the same compiler, build options, etc.)
and inserts the object code into a shared library or DLL. The library is then placed in a directory

referred to by the ITK_AUTOLOAD_PATH environment variable. On instantiation, the object factory
will locate the library, determine that it can create a class of a particular name with the factoryand—

use the factory to create the instance. (Note: if the CreateInstance () method cannot find a factory
that can create the named class, then the instantiation of the class falls back to the usual constructor.)

In practice, object factories are used mainly (and generally transparently) by the ITK input/output
(I0) classes. For most users the greatest impact is on the use of the New () method to create a class.
Generally the New () method is declared and implemented via the macro itkNewMacro () found in
Modules/Core/Common/include/itkMacro.h.

3.2.4 Smart Pointers and Memory Management

By their nature, object-oriented systems represent and operate on data through a variety of object
types, or classes. When a particular class is instantiated, memory allocation occurs so that the in-
stance can store data attribute values and method pointers (i.e., the vtable). This object may then
be referenced by other classes or data structures during normal operation of the program. Typically,
during program execution, all references to the instance may disappear at which point the instance
must be deleted to recover memory resources. Knowing when to delete an instance, however, is
difficult. Deleting the instance too soon results in program crashes; deleting it too late causes mem-
ory leaks (or excessive memory consumption). This process of allocating and releasing memory is
known as memory management.] T I

In ITK, memory management is implemented through reference counting. This compares to another
popular approach—garbage collection—used by many systems, including Java. In reference count-
ing, a count of the number of references to each instance is kept. When the reference goes to zero,
the object destroys itself. In garbage collection, a background process sweeps the system identifying
instances no longer referenced in the system and deletes them. The problem with garbage collection
is that the actual point in time at which memory is deleted is variable. This is unacceptable when
an object size may be gigantic (think of a large 3D volume gigabytes in size). Reference counting
deletes memory immediately (once all references to an object disappear).

Reference counting is implemented through a Register ()/Delete () member function interface.

Administrator
下划线

Administrator
注释框
注意：为了性能，使用自定义的类将ITK中的类进行替换；使用的对象工厂机制

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：创建对象实例化的过程：类与工厂对象绑定--由工厂创建实例化对象--再解除绑定

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
注释框
注意：ITK运用的是引用计数

https://www.itk.org/Doxygen/html/classitk_1_1EventObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ObjectFactoryBase.html

3.2. Essential System Concepts 31

All instances of an ITK object have a Register () method invoked on them by any other object
that references them. The Register () method increments the instances’ reference count. When the
reference to the instance disappears, a Delete () method is invoked on the instance that decrements
the reference count—this is equivalent to an UnRegister () method. When the reference count
returns to zero, the instance is destroyed.

This protocol is greatly simplified by using a helper class called a itk::SmartPointer. The smart
pointer acts like a regular pointer (e.g. supports operators —> and *) but automagically performs a
Register () when referring to an instance, and an UnRegister () when it no longer points to the

instance. Unlike most other instances in ITK, SmartPointers can be allocated on the program stacks__|

and are automatically deleted when the scope that the SmartPointer was created in is closed. As a
result, you should rarely if ever call Register() or Delete() in ITK. For example:

MyRegistrationFunction ()
{ /# <————~ Start of scope */

// here an interpolator is created and associated to the
// "interp" SmartPointer.
InterpolatorType::Pointer interp = InterpolatorType::New();

} A < End of scope */

In this example, reference counted objects are created (with the New () method) with a reference
count of one. Assignment to the SmartPointer interp does not change the reference count. At the
end of scope, interp is destroyed, the reference count of the actual interpolator object (referred to
by interp) is decremented, and if it reaches zero, then the interpolator is also destroyed.

Note that in ITK SmartPointers are always used to refer to instances of classes derived from
itk::LightObject. Method invocations and function calls often return “real” pointers to instances,
but they are immediately assigned to a SmartPointer. Raw pointers are used for non-LightObject
classes when the need for speed and/or memory demands a smaller, faster class. Raw pointers are

preferred for multi-threaded sections of code.] raw
pointers

3.2.5 Error Handling and Exceptions

In general, ITK uses exception handling to manage errors during program execution. Exception
handling is a standard part of the C++ language and generally takes the form as illustrated below:

try
{

//...try executing some code here...
}
catch (itk::ExceptionObject & exp
{
//...1f an exception is thrown catch it here

}

SmartPointer

reference
count - 1

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：超出创建SmartPointer的作用域，其将自动删除（即reference count - 1）

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：特殊需求时才会使用raw pointers

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

32 Chapter 3. System Overview

A particular class may throw an exception as demonstrated below (this code snippet is taken from
itk::ByteSwapper:

switch (sizeof (T))

{
//non-error cases go here followed by error case
default:
ByteSwapperError e(___FILE_ , _ LINE_);
e.SetLocation ("SwapBE");
e.SetDescription("Cannot swap number of bytes requested");
throw ¢;

o BN

Note that itk::ByteSwapperError is asubclass of itk::ExceptionObject. In fact, all ITK ex-
ceptions derive from ExceptionObject. In this example a special constructor and C++ preprocessor
variables __FILE__ and __LINE__ are used to instantiate the exception object and provide addi-
tional information to the user. You can choose to catch a particular exception and hence a specific
ITK error, or you can trap any ITK exception by catching ExceptionObject.

3.2.6 Event Handlinglé_:l

Event handling in ITK is implemented using the Subject/Observer design pattern [3] (sometimes re-
ferred to as the Command/Observer design pattern). In this approach, objects indicate that they are
watching for a particular event—invoked by a particular instance—by registering with the instance
that they are watching. For example, filters in ITK periodically invoke the itk::ProgressEvent.
Objects that have registered their interest in this event are notified when the event occurs. The notifi-
cation occurs via an invocation of a command (i.e., function callback, method invocation, etc.) that
is specified during the registration process. (Note that events in ITK are subclasses of EventObject;
look in itkEventObject.h to determine which events are available.)

To recap using an example: various objects in ITK will invoke specific events as they execute (from
ProcessObject):

this->InvokeEvent (ProgressEvent ());

To watch for such an event, registration is required that associates a command (e.g., callback func-
tion) with the event: Object : : AddObserver () method:

unsigned long progressTag =
filter->AddObserver (ProgressEvent (), itk::Command*);

When the event occurs, all registered observers are notified via invocation of the associ-
ated Command::Execute() method. Note that several subclasses of Command are available
supporting const and non-const member functions as well as C-style functions. (Look in

Administrator
注释框
注意：异常种类

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：设计模式

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：比如按左键什么的

Administrator
注释框
注意：：

https://www.itk.org/Doxygen/html/classitk_1_1ByteSwapper.html
https://www.itk.org/Doxygen/html/classitk_1_1ByteSwapperError.html
https://www.itk.org/Doxygen/html/classitk_1_1ExceptionObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ProgressEvent.html

3.2. Essential System Concepts 33

Modules/Core/Common/include/itkCommand.h to find pre-defined subclasses of Command. If
nothing suitable is found, derivation is another possibility.)

3.2.7 Multi-Threading

Multi-threading is handled in ITK through a high-level design abstraction. This approach pro-
vides portable multi-threading and hides the complexity of differing thread implementations on the
many systems supported by ITK. For example, the class itk::PlatformMultiThreader pro-
vides support for multi-threaded execution by directly using platform-specific primitives such as
pthread_create. itk::TBBMultiThreader uses Intel’s Thread Building Blocks cross-platform
library, which can do dynamic workload balancing across multiple processes. This means that
outputRegionForThread might have different sizes which change over time, depending on overall
processor load. All multi-threader implementations derive from itk::MultiThreaderBase.

Multi-threading is typically employed by an algorithm during its execution phase. For example, in

the class itk::ImageSource (asuperclass for most image processing filters) the GenerateData ()
method uses the following methods: v ;_Lu erclass

this->GetMultiThreader () ->template ParallelizeImageRegion<OutputImageDimension> (
this->GetOutput () ->GetRequestedRegion(),
[this] (const OutputImageRegionType & outputRegionForThread)
{ this->DynamicThreadedGenerateData (outputRegionForThread); }, this);

In this example each thread invokes DynamicThreadedGenerateData method of the derived fil-
ter. The ParallelizeImageRegion method takes care to divide the image into different re-
gions that do not overlap for write operations. ImageSource’s GenerateData() passes this
pointer to ParallelizeImageRegion, which allows ParallelizeImageRegion to update the fil-
ter’s progress after each region has been processed.

If a filter has some serial part in the middle, in addition to initialization done in
BeforeThreadedGenerateData () and finalization done in AfterThreadedGenerateData (), it
can parallelize more than one method in its own version of GenerateData (), such as done by
itk::CannyEdgeDetectionImageFilter:

:GenerateData () | -

this->UpdateProgress (0.0f);
Superclass::AllocateOutputs();
// Small serial section
this->UpdateProgress(0.01f);

ProgressTransformer progressl(0.01f, 0.45f, this);

// Calculate 2nd order directional derivative

this->GetMultiThreader () ->template ParallelizeImageRegion<TOutputImage::ImageDimension> (
this->GetOutput () ->GetRequestedRegion(),
[this] (const OutputImageRegionType & outputRegionForThread)
{ this->ThreadedCompute2ndDerivative (outputRegionForThread); },

Administrator
注释框
注意：进行高层封装

Administrator
下划线

Administrator
注释框
注意：大部分图像处理滤波器的superclass

Administrator
注释框
注意：其执行算法都是用的多线程？？--其底层的实际实现都是用的多线程

Administrator
高亮

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1PlatformMultiThreader.html
https://www.itk.org/Doxygen/html/classitk_1_1TBBMultiThreader.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiThreaderBase.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html

34 Chapter 3. System Overview

progressl.GetProcessObject ());

ProgressTransformer progress2(0.45f, 0.9f, this);
// Calculate the gradient of the second derivative
this->GetMultiThreader () ->template ParallelizeImageRegion<TOutputImage::ImageDimension> (
this->GetOutput () ->GetRequestedRegion ()
[this] (const OutputImageRegionType & outputRegionForThread)
{ this->ThreadedCompute2ndDerivativePos (outputRegionForThread); },
progress2.GetProcessObject ());

// More processing
this->UpdateProgress (1.0f);

0-100 |

When invoking ParallelizeImageRegion multiple times from GenerateData (), either nullptr
ora itk::ProgressTransformer object should be passed instead of this, otherwise progress will
go from 0% to 100% more than once. And this will at least confuse any other class watching the
filter’s progress events, even if it does not cause a crash. So the filter’s author should estimate how
long each part of GenerateData () takes, and construct and pass ProgressTransformer objects as
in the example above.

With ITK version 5.0, the Multi-Threading mechanism has been refactored. What was previously
itk::MultiThreader, is now a hierarchy of classes. itk::PlatformMultiThreader is aslightly
cleaned-up version of the old class - MultipleMethodExecute and SpawnThread methods have
been deprecated. But much of its content has been moved to itk::MultiThreaderBase. And
classes should use the multi-threaders via MultiThreaderBase interface, to allow the end user the
flexibility to select the multi-threader at run time. This also allows the filter to benefit from future
improvements in threading such as addition of a new multi-threader implementation.

The backwards compatible ThreadedGenerateData (Region, ThreadId) method signature has

been kept, for use in filters that must know their thread number. To use this signa-z_:l
ture, a filter must invoke this->DynamicMultiThreadingOff (); before Update(); is called

by the filter’s user or downstream filter in the pipeline. @ The best place for invoking
this->DynamicMultiThreadingOff (); is the filter’s constructor.

In image filters and other descendants of ProcessObject, method SetNumberOfiWorkUnits con-
trols the level of parallelism. Load balancing is possible when NumberOfWorkUnits is greater than
the number of threads. In most places where developer would like to restrict number of threads,
work units should be changed instead. itk::MultiThreaderBase’s MaximumNumberOfThreads
should not generally be changed, except when testing performance and scalability, profiling and
sometimes debugging code.

The general philosophy in ITK regarding thread safety is that accessing different instances of a class
(and its methods) is a thread-safe operation. Invoking methods on the same instance in different
threads is to be avoided.

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：是为了不让进度条从0-100出现超过一次

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1ProgressTransformer.html
https://www.itk.org/Doxygen/html/classitk_1_1PlatformMultiThreader.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiThreaderBase.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiThreaderBase.html

3.3. Numerics 35

3.3 Numerics

ITK uses the VNL numerics library to provide resources for numerical programming combining the
ease of use of packages like Mathematica and Matlab with the speed of C and the elegance of C++.
It provides a C++ interface to the high-quality Fortran routines made available in the public domain
by numerical analysis researchers. ITK extends the functionality of VNL by including interface

classes between VNL and ITK proper. i

The VNL numerics library includes classes for:

Matrices and vectors. Standard matrix and vector support and operations on these types.

Specialized matrix and vector classes. Several special matrix and vector classes with special nu-
merical properties are available. Class vnl_diagonal_matrix provides a fast and convenient
diagonal matrix, while fixed size matrices and vectors allow “fast-as-C” computations (see
vnl_matrix_fixed<T,n,m> and example subclasses vnl_double_3x3 and vnl_double_-
3).

Matrix decompositions. Classes vnl_svd<T>, vnl_symmetric_eigensystem<T>, and vnl_-
generalized_eigensystem.

Real polynomials. Class vnl_real_polynomial stores the coefficients of a real polynomial, and
provides methods of evaluation of the polynomial at any x, while class vnl_rpoly_roots
provides a root finder.

Optimization. Classes vnl_levenberg_marquardt, vnl_amoeba, vnl_conjugate_gradient,

vnl_1bfgs allow optimization of user-supplied functions either with or without user-supplied

derivatives.

Standardized functions and constants. Class vnl_math defines constants (pi, e, eps...) and sim-
ple functions (sqr, abs, rnd...). Class numeric_limits is from the ISO standard doc-
ument, and provides a way to access basic limits of a type. For example numeric_-
limits<short>::max () returns the maximum value of a short.

Most VNL routines are implemented as wrappers around the high-quality Fortran routines that have
been developed by the numerical analysis community over the last forty years and placed in the pub-
lic domain. The central repository for these programs is the “netlib” server.* The National Institute
of Standards and Technology (NIST) provides an excellent search interface to this repository in its
Guide to Available Mathematical Software (GAMS),> both as a decision tree and a text search.

m ITK also provides additional numerics functionality. A suite of optimizers, that use VNL under
the hood and integrate with the registration framework are available. A large collection of statistics
functions—not available from VNL—are also provided in the Insight/Numerics/Statistics
directory. In addition, a complete finite element (FEM) package is available, primarily to support
the deformable registration in ITK.

“http://www.netlib.org/
Shttp://gams.nist.gov

Administrator
下划线

Administrator
注释框
注意：ITK的数值计算是封装的VNL数值库--是不是一些矩阵运算？？？

Administrator
高亮

Administrator
注释框
注意：以前接触过bfgs

Administrator
下划线

Administrator
高亮

Administrator
注释框
注意：

Administrator
下划线

Administrator
下划线

http://www.netlib.org/
http://gams.nist.gov

36 Chapter 3. System Overview

3.4 Data Representation

There are two principle types of data represented in ITK: images and meshes. This functional-
ity is implemented in the classes itk::Image and itk::Mesh, both of which are subclasses of
itk::DataObject. In ITK, data objects are classes that are meant to be passed around the system
and may participate in data flow pipelines (see Section 3.5 on page 37 for more information).

itk::Image represents an n-dimensional, regular sampling of data. The sampling direction is par-

allel to direction matrix axes, and the origin of the sampling, inter-pixel spacing, and the number

of samples in each direction (i.e., image dimension) can be specified. The sample, or pixel, type in

ITK is arbitrary—a template parameter TPixel specifies the type upon template instantiation. (The

dimensionality of the image must also be specified when the image class is instantiated.) The key ig—:I
that the pixel type must support certain operations (for example, addition or difference) if the code is

to compile in all cases (for example, to be processed by a particular filter that uses these operations).

In practice, most applications will use a C++ primitive type (e.g., int, float) or a pre-defined pixel

type and will rarely create a new type of pixel class.

One of the important ITK concepts regarding images is that rectangular, continuous pieces of the
image are known as regions. Regions are used to specify which part of an image to process, for
example in multi-threading, or which part to hold in memory. In ITK there are three common types
of regions: K ROl

1. LargestPossibleRegion—the image in its entirety.
2. BufferedRegion—the portion of the image retained in memory.

3. RequestedRegion—the portion of the region requested by a filter or other class when oper-
ating on the image.

cell mesh

The itk::Mesh class represents an n-dimensional, unstructured,grid. The topology of the mesh is
represented by a set of cells defined by a type and connectivity list; the connectivity list in turn refers

to points. The geometry of the mesh is defined by the n-dimensional points in combination with
associated cell interpolation functions. Mesh is designed as an adaptive representational structure
that changes depending on the operations performed on it. At a minimum, points and cells are
required in order to represent a mesh; but it is possible to add additional topological information.z—|:|
For example, links from the points to the cells that use each point can be added; this provides implicit
neighborhood information assuming the implied topology is the desired one. It is also possible to
specify boundary cells explicitly, to indicate different connectivity from the implied neighborhood
relationships, or to store information on the boundaries of cells. points cells

The mesh is defined in terms of three template parameters: 1) a pixel type associated with the
points, cells, and cell boundaries; 2) the dimension of the points (which in turn limits the maximum
dimension of the cells); and 3) a “mesh traits” template parameter that specifies the types of the
containers and identifiers used to access the points, cells, and/or boundaries. By using the mesh
traits carefully, it is possible to create meshes better suited for editing, or those better suited for
“read-only” operations, allowing a trade-off between representation flexibility, memory, and speed.

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：像素类型应当支持一定的操作

Administrator
下划线

Administrator
注释框
注意：在ITK中的ROI

Administrator
下划线

Administrator
注释框
注意：由一个类型以及连接列表所定义的cell集来表示mesh的拓扑结构

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：隐含的连接关系

Administrator
注释框
注意：points？？cells？？？

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

3.5. Data Processing Pipeline 37

Mesh is a subclass of itk::PointSet. The PointSet class can be used to represent point clouds or
randomly distributed landmarks, etc. The PointSet class has no associated topology.

3.5 Data Processing Pipeline

While data objects (e.g., images and meshes) are used to represent data, process objects are classes
that operate on data objects and may produce new data objects. Process objects are classed as
sources, filter objects, or mappers. Sources (such as readers) produce data, filter objects take in data
and process it to produce new data, and mappers accept data for output either to a file or some other
system. Sometimes the term filter is used broadly to refer to all three types.

The data processing pipeline ties together data objects (e.g., images and meshes) and process objects.
The pipeline supports an automatic updating mechanism that causes a filter to execute if and only
if its input or its internal state changes. Further, the data pipeline supports streaming, the ability
to automatically break data into smaller pieces, process the pieces one by one, and reassemble the
processed data into a final result. _' |

Typically data objects and process objects are connected together using the SetInput () and
GetOutput () methods as follows:

using FloatImage2DType = itk::Image<float,?2>;

itk::RandomImageSource<FloatImage2DType>::Pointer random;
random = itk::RandomImageSource<FloatImage2DIype>::New();
random->SetMin (0.0) ;
random->SetMax (1.0) ;

itk::ShrinkImageFilter<FloatImage2DType,FloatImage2DType>: :Pointer shrink;
shrink = itk::ShrinkImageFilter<FloatImage2DIype,FloatImage2DType>::New();
shrink->SetInput (random->GetOutput ());

shrink->SetShrinkFactors (2);

itk::ImageFileWriter<FloatImage2DType>::Pointer writer;
writer = itk::ImageFileWriter<FloatImage2DType>: :New();
writer->SetInput (shrink->GetOutput());
writer->SetFileName ("test.raw");

writer->Update();

In this example the source object itk::RandomImageSource is connected to
the itk::ShrinkImageFilter, and the shrink filter is connected to the mapper
itk::ImageFileWriter. When the Update() method is invoked on the writer, the data
processing pipeline causes each of these filters to execute in order, culminating in writing the final

data to a file on disk. A—:]

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：数据管道支持流处理

Administrator
高亮

Administrator
注释框
注意：

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

38 Chapter 3. System Overview

3.6 Spatial Objects

The ITK spatial object framework supports the philosophy that the task of image segmentation and
registration is actually the task of object processing. The image is but one medium for representing
objects of interest, and much processing and data analysis can and should occur at the object level

and not based on the medium used to represent the object. |

ITK spatial objects provide a common interface for accessing the physical location and geometricg
properties of and the relationship between objects in a scene that is independent of the form used

to represent those objects. That is, the internal representation maintained by a spatial object may

be a list of points internal to an object, the surface mesh of the object, a continuous or parametric
representation of the object’s internal points or surfaces, and so forth.

The capabilities provided by the spatial objects framework supports their use in object segmentation,
registration, surface/volume rendering, and other display and analysis functions. The spatial object
framework extends the concept of a “scene graph” that is common to computer rendering packages
so as to support these new functions. With the spatial objects framework you can:

1. Specify a spatial object’s parent and children objects. In this way, a liver may contain vessels
and those vessels can be organized in a tree structure.

2. Query if a physical point is inside an object or (optionally) any of its children.

3. Request the value and derivatives, at a physical point, of an associated intensity function, as
specified by an object or (optionally) its children.

4. Specify the coordinate transformation that maps a parent object’s coordinate system into a
child object’s coordinate system.

5. Compute the bounding box of a spatial object and (optionally) its children.

6. Query the resolution at which the object was originally computed. For example, you can
query the resolution (i.e., voxel spacing) of the image used to generate a particular instance of
a itk::BlobSpatialObject.

Currently implemented types of spatial objects include: Blob, Ellipse, Group, Image, Line, Surface,
and Tube. The itk::Scene object is used to hold a list of spatial objects that may in turn have
children. Each spatial object can be assigned a color property. Each spatial object type has its own
capabilities. For example, the itk::TubeSpatialObject indicates the point where it is connected
with its parent tube.

There are a limited number of spatial objects in ITK, but their number is growing and their potential
is huge. Using the nominal spatial object capabilities, methods such as marching cubes or mutual
information registration can be applied to objects regardless of their internal representation. By
having a common API, the same method can be used to register a parametric representation of a
heart with an individual’s CT data or to register two segmentations of a liver. |

Administrator
下划线

Administrator
注释框
注意：无论表示数据的形式，可以获取物理位置以及集合属性

Administrator
下划线

Administrator
注释框
注意：

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
注释框
注意：不是很明白？？？？

https://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Scene.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

3.7. Wrapping 39

3.7 Wrapping

While the core of ITK is implemented in C++, Python bindings can be automatically generated and
ITK programs can be created using Python. The wrapping process in ITK is capable of handling
generic programming (i.e., extensive use of C++ templates). Systems like VTK, which use their
own wrapping facility, are non-templated and customized to the coding methodology found in the
system, like object ownership conventions. Even systems like SWIG that are designed for general
wrapper generation have difficulty with ITK code because general C++ is difficult to parse. As a
result, the ITK wrapper generator uses a combination of tools to produce language bindings.

ITK Python
bindings

1. CastXML is a Clang-based tool that produces an XML description of an input C++ program.

2. The igenerator.py script in the ITK source tree processes XML information produced by
CastXML and generates standard input files (*. 1 files) to the next tool (SWIG), indicating
what is to be wrapped and how to wrap it.

3. SWIG produces the appropriate Python bindings.

To learn more about the wrapping process, please see the section on module wrapping, Section 9.5.
The wrapping process is orchestrated by a number of CMake macros found in the Wrapping direc-
tory. The result of the wrapping process is a set of shared libraries (.so in Linux or .dlls on Windows)
that can be used by interpreted languages.

There is almost a direct translation from C++, with the differences being the particular syntactical
requirements of each language. For example, to dilate an image using a custom structuring element
using the Python wrapping:

C++

inputImage = sys.argv[l]
outputImage = sys.argv[2]
radiusValue = int (sys.argv[3])

PixelType = itk.UC
Dimension 2
ImageType = itk.Image[PixelType, Dimension]

reader = itk.ImageFileReader[ImageType] .New ()
reader.SetFileName (inputImage)

StructuringElementType = itk.FlatStructuringElement [Dimension]
structuringElement = StructuringElementType.Ball (radiusValue)

dilateFilter = itk.BinaryDilateImageFilter|

ImageType, ImageType, StructuringElementType].New ()
dilateFilter.SetInput (reader.GetOutput ())
dilateFilter.SetKernel (structuringElement)

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
注释框
注意：ITK封装成Python bindings的过程

Administrator
下划线

Administrator
注释框
注意：不同语言存在差异，但是可以直接将C++的代码转换为具有特定语法要求的每一个语言（编程）

40 Chapter 3. System Overview

The same code in C++ would appear as follows:

const char * inputImage = argv[l];
const char * outputImage = argv[2];
const unsigned int radiusValue = atoi(argv([3]);

using PixelType = unsigned char;
constexpr unsigned int Dimension = 2;

using ImageType = itk::Image< PixelType, Dimension >;
using ReaderType = itk::ImageFileReader< ImageType >;
ReaderType: :Pointer reader = ReaderType: :New();
reader->SetFileName (inputImage);

using StructuringElementType = itk::FlatStructuringElement< Dimension >;

StructuringElementType: :RadiusType radius;

radius.Fill (radiusValue);

StructuringElementType structuringElement =
StructuringElementType: :Ball(radius);

using BinaryDilateImageFilterType = itk::BinaryDilateImageFilter< ImageType,
ImageType, StructuringElementType >;

BinaryDilateImageFilterType: :Pointer dilateFilter =
BinaryDilateImageFilterType: :New();

dilateFilter->SetInput (reader->GetOutput ());

dilateFilter->SetKernel (structuringElement);

This example demonstrates an important difference between C++ and a wrapped language such
as Python. Templated classes must be instantiated prior to wrapping. That is, the template
parameters must be specified as part of the wrapping process. In the example above, the
ImageFileReader [ImageType] indicates that this class, implementing an image source, has been
instantiated using an input and output image type of two-dimensional unsigned char values (i.e., UC).
To see the types available for a given filter, use the .GetTypes () method.

print (itk.ImageFileReader.GetTypes())

Typically just a few common types are selected for the wrapping process to avoid an explosion
of types and hence, library size. To add a new type, re-run the wrapping process to produce new

libraries. Some high-level options for these types, such as common pixels types and image di-,—

mensions, are specified during CMake configuration. The types of specific classes that should be
instantiated, based on these basic options, are defined by the * . wrap files in the wrapping directory
of a module.

Conversion of common, basic wrapped ITK classes to native Python types is supported. For exam-

ple, conversion between the itk::Index and Python list or tuple is possible:

Dimesion = 3
index = itk.Index[Dimension] ()

wrapping
*_wrap

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：内置的类型由wrapping目录中的*.wrap文件定义？？

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

3.7. Wrapping 41

index_as_tuple = tuple(index)
index_as_list = list (index)

region = itk.ImageRegion[Dimension] ()
region.SetIndex ((0, 2, 0))

The advantage of interpreted languages is that they do not require the lengthy compile/link cycle of
a compiled language like C++. Moreover, they typically come with a suite of packages that provide
useful functionalities. For example, the Python ecosystem provides a variety of powerful tools for
creating sophisticated user interfaces. In the future it is likely that more applications and tests will
be implemented in the various interpreted languages supported by ITK. Other languages like Java,
Ruby, Tcl could also be wrapped in the future.

3.7.1 Python Setup
Install Stable Python Packages

Binary python packages are available in PyPI and can be installed in Python distributions down-
loaded from Python.org, from system package managers like apt or homebrew, or from distributions
like Anaconda.

To install the ITK Python package, run:

python -m pip install --upgrade pip
python -m pip install itk

Install Latest Python Packages

Binary python packages are built nightly from the Git master branch, and they can be installed by
running:

python -m pip install --upgrade pip
python -m pip install itk \
-f https://github.com/InsightSoftwareConsortium/ITKPythonPackage/releases/tag/latest

Build Python Packages from Source

In order to access the Python interface of ITK, make sure to compile with the CMake ITK_WRAP_ -
PYTHON option. In addition, choose which pixel types and dimensions to build into the wrapped in-
terface. Supported pixel types are represented in the CMake configuration as variables named ITK_-
WRAP_<pixel type>. Supported image dimensions are enumerated in the semicolon-delimited list
ITK_WRAP_DIMS, the default value of which is 2; 3 indicating support for 2- and 3-dimensional

images. The Release CMake build configuration is recommended. e

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：一些Cmake时可以选择的像素类型以及维度设置

42 Chapter 3. System Overview

After configuration, check to make sure that the values of the following variables are set correctly:

¢ PYTHON_INCLUDE_DIR
¢ PYTHON_LIBRARY

¢ PYTHON_EXECUTABLE

particularly if there are multiple Python installations on the system.

Python wrappers can be accessed from the build tree without installing the library. An environment
to access the itk Python module can be configured using the Python virtualenv tool, which provides
an isolated working copy of Python without interfering with Python installed at the system level.
Once the virtualenv package is installed on your system, create the virtual environment within the
directory ITK was built in. Copy the WrapITK.pth file to the 1ib/python2.7/site-packages on
Unix and Lib/site-packages on Windows, of the virtualenv. For example,

virtualenv --system-site-packages wrapitk-venv

cd wrapitk-venv/lib/python2.7/site-packages

cp /path/to/ITK-Wrapped/Wrapping/Generators/Python/WrapITK.pth
cd ../../../../wrapitk-venv/bin

./python /usr/bin/ipython

import itk

di |

On Windows, it is also necessary to add the ITK build directory containing the .dll files to your
PATH environmental variable if ITK is built with the CMake option BUILD_SHARED_LIBS enabled.
For example, the directory containing .dll files for an ITK build at C:\ITK-build when built with
Visual Studio in the Release configurationis C:\ITK-build\bin\Release.

Administrator
下划线

Administrator
注释框
注意：虚拟环境工具？？

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：dll需添加至环境变量

CHAPTER

FOUR

DATA REPRESENTATION

This chapter introduces the basic classes responsible for representing data in ITK. The most common
classes are itk::Image, itk::Mesh and itk::PointSet.

4.1 Image

The itk::Image class follows the spirit of Generic Programming, where types are separated from
the algorithmic behavior of the class. ITK supports images with any pixel type and any spatial
dimension.

4.1.1 Creating an Image
The source code for this section can be found in the file
Imagel.cxx.

This example illustrates how to manually construct an itk::Image class. The following is the
minimal code needed to instantiate, declare and create the Image class.

First, the header file of the Image class must be included.

#include "itkImage.h"

Then we must decide with what type to represent the pixels and what the dimension of the image
will be. With these two parameters we can instantiate the Image class. Here we create a 3D image
with unsigned short pixel data.

using ImageType = itk::Image< unsigned short, 3 >;

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
http://www.boost.org/more/generic_programming.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

44 Chapter 4. Data Representation

The image can then be created by invoking the New () operator from the corresponding image type
and assigning the resulttoa itk::SmartPointer.

ImageType: :Pointer image = ImageType: :New();

In ITK, images exist in combination with one or more regions. A region is a subset of the image and
indicates a portion of the image that may be processed by other classes in the system. One of the
most common regions is the LargestPossibleRegion, which defines the image in its entirety. Other
important regions found in ITK are the BufferedRegion, which is the portion of the image actually
maintained in memory, and the RequestedRegion, which is the region requested by a filter or other

class when operating on the image. M':]
In ITK, manually creating an image requires that the image is instantiated as previously shown, and
that regions describing the image are then associated with it. “—‘ 2 ™ Legions |

A region is defined by two classes: the itk::Index and itk::Size classes. The origin of the
region within the image is defined by the Index. The extent, or size, of the region is defined by the
Size. When an image is created manually, the user is responsible for defining the image size and
the index at which the image grid starts. These two parameters make it possible to process selected
regions.

The Index is represented by a n-dimensional array where each component is an integer indicating—
in topological image coordinates—the initial pixel of the image.

ImageType: :IndexType start;

start[0] = 0; // first index on X
start[1] 0; // first index on Y
start[2] 0; // first index on Z

The region size is represented by an array of the same dimension as the image (using the itk::Size
class). The components of the array are unsigned integers indicating the extent in pixels of the image
along every dimension.

ImageType: :SizeType size;

size[0] = 200; // size along X
size[l] = 200; // size along Y
size[2] = 200; // size along Z

Having defined the starting index and the image size, these two parameters are used to create an
itk::ImageRegion object which basically encapsulates both concepts. The region is initialized
with the starting index and size of the image.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

Administrator
注释框
注意：手动创建image需要1、如前的实例化2、与其相关联的regions

Administrator
高亮

Administrator
高亮

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html
https://www.itk.org/Doxygen/html/classitk_1_1Size.html
https://www.itk.org/Doxygen/html/classitk_1_1Size.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

4.1. Image 45

ImageType: :RegionType region;

region.SetSize(size);
region.SetIndex(start);

Finally, the region is passed to the Image object in order to define its extent and origin. The
SetRegions method sets the LargestPossibleRegion, BufferedRegion, and RequestedRegion simul-
taneously. Note that none of the operations performed to this point have allocated memory for the
image pixel data. It is necessary to invoke the Allocate () method to do this. Allocate does not
require any arguments since all the information needed for memory allocatioinhas already been
provided by the region.

image->SetRegions (region);
image->Allocate();

In practice it is rare to allocate and initialize an image directly. Images are typically read from a
source, such a file or data acquisition hardware. The following example illustrates how an image
can be read from a file.

4.1.2 Reading an Image from a File
The source code for this section can be found in the file
Image2.Ccxx.

The first thing required to read an image from a file is to include the header file of the
itk::ImageFileReader class.

#include "itkImageFileReader.h"

Then, the image type should be defined by specifying the type used to represent pixels and the
dimensions of the image.

using PixelType = unsigned char;
constexpr unsigned int Dimension = 3;

using ImageType = itk::Image< PixelType, Dimension >;

Using the image type, it is now possible to instantiate the image reader class. The image type is used
as a template parameter to define how the data will be represented once it is loaded into memory.
This type does not have to correspond exactly to the type stored in the file. However, a conversion
K based on C-style type casting is used, so the type chosen to represent the data on disk must be

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
注释框
注意：这个类型是加载数据之后在内存中表示像素的类型，不是必须与存储于文件中的类型相对应；两者之间应当可以基于C风格类型转换

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

46 Chapter 4. Data Representation

sufficient to characterize it accurately. Readers do not apply any transformation to the pixel data
other than casting from the pixel type of the file to the pixel type of the ImageFileReader. The
following illustrates a typical instantiation of the ImageFileReader type.

using ReaderType = itk::ImageFileReader< ImageType >;

The reader type can now be used to create one reader object. A itk::SmartPointer (defined by
the : :Pointer notation) is used to receive the reference to the newly created reader. The New ()
method is invoked to create an instance of the image reader.

ReaderType: :Pointer reader = ReaderType::New();

The minimal information required by the reader is the filename of the image to be loaded in memory.
This is provided through the SetFileName () method. The file format here is inferred from the file-
name extension. The user may also explicitly specify the data format using the itk::ImageIOBase

class (a list of possibilities can be found in the inheritance diagram of this class.). _|

const char * filename = argv[l];
reader->SetFileName (filename);

Reader objects are referred to as pipeline source objects; they respond to pipeline update requests
and initiate the data flow in the pipeline. The pipeline update mechanism ensures that the reader
only executes when a data request is made to the reader and the reader has not read any data. In the
current example we explicitly invoke the Update () method because the output of the reader is not
connected to other filters. In normal application the reader’s output is connected to the input of an
image filter and the update invocation on the filter triggers an update of the reader. The following
line illustrates how an explicit update is invoked on the reader.

reader->Update () ;

Access to the newly read image can be gained by calling the GetOutput () method on the reader.
This method can also be called before the update request is sent to the reader. The reference to the
image will be valid even though the image will be empty until the reader actually executes.

ImageType: :Pointer image = reader->GetOutput ();

Any attempt to access image data before the reader executes will yield an image with no pixel data.
It is likely that a program crash will result since the image will not have been properly initialized.

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：指定需要读取的数据格式

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html

4.1. Image 47

4.1.3 Accessing Pixel Data

The source code for this section can be found in the file
Image3.cxx.

This example illustrates the use of the SetPixel () and GetPixel () methods. These two methods
provide direct access to the pixel data contained in the image. Note that these two methods aré—

relatively slow and should not be used in situations where high-performance access is required.
Image iterators are the appropriate mechanism to efficiently access image pixel data. (See Chapter 6
on page 149 for information about image iterators.)

The individual position of a pixel inside the image is identified by a unique index. An index is
an array of integers that defines the position of the pixel along each dimension of the image. The
IndexType is automatically defined by the image and can be accessed using the scope operator
itk::Index. The length of the array will match the dimensions of the associated image.

The following code illustrates the declaration of an index variable and the assignment of values to

each of its components. Please note that no SmartPointer is used to access the Index. EThis is :]
because Index is a lightweight object that is not intended to be shared between objects. It is more
efficient to produce multiple copies of these small objects than to share them using the SmartPointer
mechanism.

The following lines declare an instance of the index type and initialize its content in order to associate
it with a pixel position in the image.

const ImageTlype::IndexType pixellIndex = {{27,29,37}}; // Position of {X,Y,Z}

Having defined a pixel position with an index, it is then possible to access the content of the pixel in
the image. The GetPixel () method allows us to get the value of the pixels.

ImageType: :PixelType pixelValue = image->GetPixel(pixelIndex);

The SetPixel () method allows us to set the value of the pixel.

image->SetPixel (pixelIndex, pixelvValuetl);

Please note that GetPixel () returns the pixel value using copy and not reference semantics. Hence,
the method cannot be used to modify image data values.

Remember that both SetPixel () and GetPixel () are inefficient and should only be used for de-
bugging or for supporting interactions like querying pixel values by clicking with the mouse.

Administrator
下划线

Administrator
注释框
注意：这两个访问方式是比较慢的，在由性能要求时，应避免使用；可以使用图像迭代器以及指针

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
注释框
注意：

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：这两个方法是低效的，不应该常用

Administrator
下划线

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

48 Chapter 4. Data Representation

Size=7x6
200+ Spac.ing:(20.0,30.0) Spacing[0]
Physical extent=(140.0, 180.0) \]
-
€ 20.0 ! ! Linear Interpolation Region
250 i | | p g
L f = @) fﬂPierComerCentered Reg
O|0|0|0|0|0|0t-f = /
200+ @ 30.0 5)
olololololo|ot- g Kﬂ Pixel Coverage
0 Pixel Centered Region
lom a
O|0|0|0|0|0 |0 < O O
150 1
O]0|0|0|0|0 |0
S
100+ ololololololo [) O O Pixel Coordinates
SRR '®@/O|0|O0|0|0|O f
50 T \

| Image Origin
| Origin=(60.0,70.0)

0 50 100 150 200

Figure 4.1: Geometrical concepts associated with the ITK image.

4.1.4 Defining Origin and Spacing

The source code for this section can be found in the file
Imaged.cxx.

Even though ITK can be used to perform general image processing tasks, the primary purpose of
the toolkit is the processing of medical image data. In that respect, additional information about the
images is considered mandatory. In particular the information associated with the physical spacing
between pixels and the position of the image in space with respect to some world coordinate system
are extremely important.

Image origin, voxel directions (i.e. orientation), and spacing are fundamental to many applications.
Registration, for example, is performed in physical coordinates. Improperly defined spacing, direc-
tion, and origins will result in inconsistent results in such processes. Medical images with no spatial
information should not be used for medical diagnosis, image analysis, feature extraction, assisted ra-
diation therapy or image guided surgery. In other words, medical images lacking spatial information
are not only useless but also hazardous.

Figure 4.1 illustrates the main geometrical concepts associated with the itk::Image. In this figure,
circles are used to represent the center of pixels. The value of the pixel is assumed to exist as a
Dirac delta function located at the pixel center. Pixel spacing is measured between the pixel centers
and can be different along each dimension. The image origin is associated with the coordinates of
the first pixel in the image. For this simplified example, the voxel lattice is perfectly aligned with
physical space orientation, and the image direction is therefore an identity mapping. If the voxel
lattice samples were rotated with respect to physical space, then the image direction would contain

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

4.1. Image 49

a rotation matrix.
A pixel is considered to be the rectangular region surrounding the pixel center holding the data value.

Image spacing is represented in a FixedArray whose size matches the dimension of the image. In
order to manually set the spacing of the image, an array of the corresponding type must be created.
The elements of the array should then be initialized with the spacing between the centers of adjacent
pixels. The following code illustrates the methods available in the itk::Image class for dealing
with spacing and origin.

ImageType: :SpacingType spacing;

// Units (e.g., mm, inches, etc.) are defined by the application.

spacing[0] = 0.33; // spacing along X
spacing[l] = 0.33; // spacing along Y
spacing[2] = 1.20; // spacing along Z

The array can be assigned to the image using the SetSpacing () method.

image->SetSpacing(spacing);

=]

The spacing information can be retrieved from an image by using the GetSpacing () method. This
method returns a reference to a FixedArray. The returned object can then be used to read the
contents of the array. Note the use of the const keyword to indicate that the array will not be
modified.

const Imagelype::SpacingType& sp = image->GetSpacing();

.
’

std::cout << "Spacing =
std::cout << sp[0] << ", " << sp[l] << ", " << sp[2] << std::endl;

The image origin is managed in a similar way to the spacing. A Point of the appropriate dimension
must first be allocated. The coordinates of the origin can then be assigned to every component. These
coordinates correspond to the position of the first pixel of the image with respect to an arbitrary
reference system in physical space. It is the user’s responsibility to make sure that multiple images
used in the same application are using a consistent reference system. This is extremely important in
image registration applications.

The following code illustrates the creation and assignment of a variable suitable for initializing the
image origin.

// coordinates of the center of the first pixel in N-D
ImageType: :PointType newOrigin;

newOrigin.Fill (0.0);

image->SetOrigin(newOrigin);

Administrator
下划线

Administrator
注释框
注意：返回的是一个引用类型

Administrator
高亮

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

50 Chapter 4. Data Representation

The origin can also be retrieved from an image by using the GetOrigin () method. This will return
a reference to a Point. The reference can be used to read the contents of the array. Note again the
use of the const keyword to indicate that the array contents will not be modified.

const Imagelype::PointType & origin = image->GetOrigin();

.

std::cout << "Origin =
std::cout << origin[0] << ", "

<< origin[l] << ", "

<< origin[2] << std::endl;

The image direction matrix represents the orientation relationships between the image samples and
physical space coordinate systems. The image direction matrix is an orthonormal matrix that de-
scribes the possible permutation of image index values and the rotational aspects that are needed
to properly reconcile image index organization with physical space axis. The image directions is
a NxN matrix where N is the dimension of the image. An identity image direction indicates that
increasing values of the Ist, 2nd, 3rd index element corresponds to increasing values of the 1st, 2nd
and 3rd physical space axis respectively, and that the voxel samples are perfectly aligned with the
physical space axis.

The following code illustrates the creation and assignment of a variable suitable for initializing the
image direction with an identity.

// coordinates of the center of the first pixel in N-D
ImageType::DirectionType direction;

direction.SetIdentity();

image->SetDirection(direction);

The direction can also be retrieved from an image by using the GetDirection () method. This will
return a reference to a Matrix. The reference can be used to read the contents of the array. Note
again the use of the const keyword to indicate that the matrix contents can not be modified.

const ImageType::DirectionType& direct = image->GetDirection();

std::cout << "Direction = " << std::endl;
std::cout << direct << std::endl;

Once the spacing, origin, and direction of the image samples have been initialized, the image will
correctly map pixel indices to and from physical space coordinates. The following code illustrates
how a point in physical space can be mapped into an image index for the purpose of reading the
content of the closest pixel.

First, a itk::Point type must be declared. The point type is templated over the type used to
represent coordinates and over the dimension of the space. In this particular case, the dimension of
the point must match the dimension of the image.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

https://www.itk.org/Doxygen/html/classitk_1_1Point.html

4.1. Image 51

using PointType = itk::Point< double, ImageType::ImageDimension >;

The itk::Point class, like an itk::Index, is a relatively small and simple object. This means
thatno itk::SmartPointer is used here and the objects are simply declared as instances, like any
other C++ class. Once the point is declared, its components can be accessed using traditional array
notation. In particular, the [] operator is available. For efficiency reasons, no bounds checking is
performed on the index used to access a particular point component. It is the user’s responsibility to
make sure that the index is in the range {0, Dimension — 1}.

PointType point;

point [0] = 1.45; // x coordinate
point[1] = 7.21; // vy coordinate
point[2] = 9.28; // z coordinate

The image will map the point to an index using the values of the current spacing and origin. An index
object must be provided to receive the results of the mapping. The index object can be instantiated
by using the IndexType defined in the image type.

ImageType: : IndexType pixelIndex;

The TransformPhysicalPointToIndex () method of the image class will compute the pixel index
closest to the point provided. The method checks for this index to be contained inside the current
buffered pixel data. The method returns a boolean indicating whether the resulting index falls inside
the buffered region or not. The output index should not be used when the returned value of the
method is false.

The following lines illustrate the point to index mapping and the subsequent use of the pixel index
for accessing pixel data from the image.

const bool isInside =
image->TransformPhysicalPointToIndex (point, pixelIndex);
if (isInside
{
ImageType: :PixelType pixelValue = image->GetPixel (pixelIndex);
pixelValue += 5;
image->SetPixel (pixelIndex, pixelValue);

}

Remember that GetPixel () and SetPixel () are very inefficient methods for accessing pixel data.
Image iterators should be used when massive access to pixel data is required.

The following example illustrates the mathematical relationships between image index locations and
its corresponding physical point representation for a given Image.

Let us imagine that a graphical user interface exists where the end user manually selects the voxel

index location of the left eye in a volume with a mouse interface. We need to convert that in-

index GUI <--->points
physical

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
注释框
注意：index（GUI中）<--->points（physical）

https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

52 Chapter 4. Data Representation

dex location to a physical location so that laser guided surgery can be accurately performed. The
TransformIndexToPhysicalPoint method can be used for this.

const ImageType::IndexType LeftEyeIndex = GetIndexFromMouseClick ();
ImageType: :PointType LeftEyePoint;
image->TransformIndexToPhysicalPoint (LeftEyeIndex, LeftEyePoint);

For a given index I3y, the physical location Psx is calculated as following:

/—:

P3x1 = Osx1 + Dax3 * diag(S3x1)3x * bixi 4.1
where D is an orthonormal direction cosines matrix and S is the image spacing diagonal matrix.

In matlab syntax the conversions are:

o)

% Non-identity Spacing and Direction

spacing=diag([0.9375, 0.9375, 1.5]);
direction=[0.998189, 0.0569345, -0.0194113;
0.0194429, -7.38061e-08, 0.999811;

0.0569237, -0.998378, -0.001107047;

point = origin + direction * spacing * LeftEyelIndex

A corresponding mathematical expansion of the C/C++ code is:

using MatrixType = itk::Matrix<double, Dimension, Dimension>;
MatrixType SpacingMatrix;
SpacingMatrix.Fill(0.0F);

const ImageType::SpacingIype & ImageSpacing = image->GetSpacing();
SpacingMatrix(0,0) = ImageSpacing[0];
SpacingMatrix(1,1) ImageSpacing[1];
SpacingMatrix(2,2) = ImageSpacing[2];

const ImageType::DirectionType & ImageDirectionCosines =
image->GetDirection();
const ImageType::PointType &¢ImageOrigin = image->GetOrigin();

using VectorType = itk::Vector< double, Dimension >;
VectorType LeftEyeIndexVector;

LeftEyeIndexVector[0]= LeftEyeIndex[0];
LeftEyeIndexVector[l]= LeftEyeIndex[1];
LeftEyeIndexVector[2]= LeftEyelIndex[2];

ImageType: :PointType LeftEyePointByHand =
ImageOrigin + ImageDirectionCosines * SpacingMatrix * LeftEyeIndexVector;

Administrator
注释框
注意：重要！！！

4.1. Image 53

4.1.5 RGB Images

The term RGB (Red, Green, Blue) stands for a color representation commonly used in digital imag-

ing. RGB is a representation of the human physiological capability to analyze visual light using
|_three spectral-selective sensors [7, 9]. The human retina possess different types of light sensitive
cells. Three of them, known as cones, are sensitive to color [5] and their regions of sensitivity

loosely match regions of the spectrum that will be perceived as red, green and blue respectively. The
rods on the other hand provide no color discrimination and favor high resolution and high sensitiv-
ity.! A fifth type of receptors, the ganglion cells, also known as circadian® receptors are sensitive
to the lighting conditions that differentiate day from night. These receptors evolved as a mechanism
for synchronizing the physiology with the time of the day. Cellular controls for circadian rythms are
present in every cell of an organism and are known to be exquisitively precise [6].

The RGB space has been constructed as a representation of a physiological response to light by the
three types of cones in the human eye. RGB is not a Vector space. For example, negative numbers
are not appropriate in a color space because they will be the equivalent of “negative stimulation” on
the human eye. In the context of colorimetry, negative color values are used as an artificial construct
for color comparison in the sense that

ColorA = ColorB — ColorC 4.2)

is just a way of saying that we can produce ColorB by combining ColorA and ColorC. However, we
must be aware that (at least in emitted light) it is not possible to subtract light. So when we mention
Equation 4.2 we actually mean

ColorB = ColorA + ColorC “4.3)

On the other hand, when dealing with printed color and with paint, as opposed to emitted light like
in computer screens, the physical behavior of color allows for subtraction. This is because strictly
speaking the objects that we see as red are those that absorb all light frequencies except those in the
red section of the spectrum [9].

The concept of addition and subtraction of colors has to be carefully interpreted. In fact, RGB has a
different definition regarding whether we are talking about the channels associated to the three color
sensors of the human eye, or to the three phosphors found in most computer monitors or to the color
inks that are used for printing reproduction. Color spaces are usually non linear and do not even
from a group. For example, not all visible colors can be represented in RGB space [9].

ITK introduces the itk::RGBPixel type as a support for representing the values of an RGB color
space. As such, the RGBPixel class embodies a different concept from the one of an itk::Vector
in space. For this reason, the RGBPixel lacks many of the operators that may be naively expected

from it. In particular, there are no defined operations for subtraction or addition. K [ftk:zReaPixel itk::Vector
itk::Vector

'The human eye is capable of perceiving a single isolated photon.
2The term Circadian refers to the cycle of day and night, that is, events that are repeated with 24 hours intervals.

Administrator
下划线

Administrator
注释框
注意：RGB是人类使用三个光谱选择传感器来分析可见光的生理能力的一种表示

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
itk::RGBPixel从itk::Vector中实现的，但是缺少很多itk::Vector的许多基本操作

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

54 Chapter 4. Data Representation

When you intend to find the “Mean” of two RGBType pixels, you are assuming that the color in
the visual “middle” of the two input pixels can be calculated through a linear operation on their
numerical representation. This is unfortunately not the case in color spaces due to the fact that they
are based on a human physiological response [7].

If you decide to interpret RGB images as simply three independent channels then you should rather
use the itk::Vector type as pixel type. In this way, you will have access to the set of operations
that are defined in Vector spaces. The current implementation of the RGBPixel in ITK presumes
that RGB color images are intended to be used in applications where a formal interpretation of color
is desired, therefore only the operations that are valid in a color space are available in the RGBPixel

class. l; color space

The following example illustrates how RGB images can be represented in ITK.

The source code for this section can be found in the file
RGBImage.cxx.

Thanks to the flexibility offered by the Generic Programming style on which ITK is based, it is
possible to instantiate images of arbitrary pixel type. The following example illustrates how a color
image with RGB pixels can be defined.

A class intended to support the RGB pixel type is available in ITK. You could also define your own
pixel class and use it to instantiate a custom image type. In order to use the itk::RGBPixel class,
it is necessary to include its header file.

#include "itkRGBPixel.h"

The RGB pixel class is templated over a type used to represent each one of the red, green and blue
pixel components. A typical instantiation of the templated class is as follows.

using PixelType = itk::RGBPixel< unsigned char >;

The type is then used as the pixel template parameter of the image.

using ImageType = itk::Image< PixelType, 3 >;

The image type can be used to instantiate other filter, for example, an itk::ImageFileReader
object that will read the image from a file.

using ReaderType = itk::ImageFileReader< ImageType >;

Access to the color components of the pixels can now be performed using the methods provided by
the RGBPixel class.

Administrator
下划线

Administrator
注释框
注意：实际的color space操作不同于类型中定义的操作

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.boost.org/more/generic_programming.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

4.1. Image 55

PixelType onePixel = image->GetPixel(pixelIndex);

PixelType::ValueType red = onePixel.GetRed();
PixelType::ValueType green = onePixel.GetGreen();
PixelType: :ValueType blue = onePixel.GetBlue ();

The subindex notation can also be used since the itk::RGBPixel inherits the [] operator from the
itk::FixedArray class.

red = onePixel[0]; // extract Red component
green = onePixel[l]; // extract Green component
blue = onePixel[2]; // extract Blue component

std::cout << "Pixel values:" << std::endl;

std::cout << "Red = "
<< itk::NumericTraits<PixelType::ValueType>::PrintType (red)
<< std::endl;

std::cout << "Green = "
<< itk::NumericTraits<PixelType: :ValueType>: :PrintType (green)
<< std::endl;

std::cout << "Blue = "
<< itk::NumericTraits<PixelType: :ValueType>: :PrintType (blue)
<< std::endl;

4.1.6 Vector Images

The source code for this section can be found in the file

VectorImage.Cxx. ‘/—:l

Many image processing tasks require images of non-scalar pixel type. A typical example is an image
of vectors. This is the image type required to represent the gradient of a scalar image. The following

code illustrates how to instantiate and use an image whose pixels are of vector type. ector ot ST

For convenience we use the itk::Vector class to define the pixel type. The Vector class is intended
to represent a geometrical vector in space. It is not intended to be used as an array container like the
std::vector in STL. If you are interested in containers, the itk::VectorContainer class may
provide the functionality you want.

The first step is to include the header file of the Vector class.

#include "itkVector.h"

The Vector class is templated over the type used to represent the coordinate in space and over the
dimension of the space. In this example, we want the vector dimension to match the image dimen-

Administrator
下划线

Administrator
注释框
注意：向量图像

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：Vector与STL 中的数组容器vector不一样

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/
https://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html

56 Chapter 4. Data Representation

sion, but this is by no means a requirement. We could have defined a four-dimensional image with
three-dimensional vectors as pixels.

using PixelType = itk::Vector< float, 3

>;
using ImageType = itk::Image< PixelType, 3 >;

The Vector class inherits the operator [] from the itk::FixedArray class. This makes it possible
to access the Vector’s components using index notation.

ImageType: :PixelType pixelValue;

pixelValue[0] = 1.345; // x component
pixelValue([l] = 6.841; // y component
pixelValue[2] = 3.295; // x component

We can now store this vector in one of the image pixels by defining an index and invoking the
SetPixel () method.

image->SetPixel (pixellIndex, pixelvValue);

4.1.7 Importing Image Data from a Buffer

The source code for this section can be found in the file
Imageb.cxx.

This example illustrates how to import data into the itk::Image class. This is particularly useful
for interfacing with other software systems. Many systems use a contiguous block of memory as a
buffer for image pixel data. The current example assumes this is the case and feeds the buffer into
an itk::ImportImageFilter, thereby producing an image as output.

Here we create a synthetic image with a centered sphere in a locally allocated buffer and pass this
block of memory to the Import ImageFilter. This example is set up so that on execution, the user
must provide the name of an output file as a command-line argument.

First, the header file of the itk::ImportImageFilter class must be included.
#include "itkImage.h"

#include "itkImportImageFilter.h"

Next, we select the data type used to represent the image pixels. We assume that the external block
of memory uses the same data type to represent the pixels.

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1ImportImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImportImageFilter.html

4.1. Image 57

using PixelType = unsigned char;
constexpr unsigned int Dimension = 3;

using ImageType = itk::Image< PixelType, Dimension >;

The type of the ImportImageFilter is instantiated in the following line.

using ImportFilterType = itk::ImportImageFilter< PixelType, Dimension >;

A filter object created using the New () method is then assigned to a SmartPointer.

ImportFilterType::Pointer importFilter = ImportFilterType::New();

This filter requires the user to specify the size of the image to be produced as output. The
SetRegion () method is used to this end. The image size should exactly match the number of
pixels available in the locally allocated buffer.

ImportFilterType::SizeType size;

size[0] = 200; // size along X
size[l] = 200; // size along Y
size[2] = 200; // size along Z

ImportFilterType: :IndexType start;
start.Fill(0);

ImportFilterType: :RegionType region;
region.SetIndex(start);

region.SetSize(size);

importFilter->SetRegion(region);

The origin of the output image is specified with the SetOrigin () method.

const itk::SpacePrecisionType origin[Dimension] = { 0.0, 0.0, 0.0 };
importFilter->SetOrigin(origin);

The spacing of the image is passed with the SetSpacing () method.
// spacing isotropic volumes to 1.0

const itk::SpacePrecisionType spacing[Dimension] = { 1.0, 1.0, 1.0 };
importFilter->SetSpacing(spacing);

Next we allocate the memory block containing the pixel data to be passed to the
ImportImageFilter. Note that we use exactly the same size that was specified with the

58 Chapter 4. Data Representation

SetRegion () method. In a practical application, you may get this buffer from some other library
using a different data structure to represent the images.

const unsigned int numberOfPixels = size[0] * size[l] * size[2];
auto * localBuffer = new PixelType[numberOfPixels];

Here we fill up the buffer with a binary sphere. We use simple for () loops here, similar to

those found in the C or FORTRAN programming languages. Note that ITK does not use for ()

loops in its internal code to access pixels. All pixel access tasks are instead performed using anm
itk::Imagelterator that supports the management of n-dimensional images.

constexpr double radius2 = radius * radius;
PixelType * it = localBuffer;

for (unsigned int z=0; z < size[2]; z++)
{
const double dz = static_cast<double>(z)
- static_cast<double> (size[2])/2.0;
for (unsigned int y=0; y < size[l]; y++)
{
const double dy = static_cast<double>(y)
- static_cast<double> (size[l1])/2.0;
for (unsigned int x=0; x < size[0]; x++
{
const double dx = static_cast<double>(x)
- static_cast<double> (size[0])/2.0;
const double d2 = dx*dx + dy*dy + dz*dz;
Fit++ = (d2 < radius2) ? 255 : 0;
}
}
}

The buffer is passed to the Import ImageFilter with the Set ImportPointer () method. Note that
the last argument of this method specifies who will be responsible for deleting the memory block
once it is no longer in use. A false value indicates that the ImportImageFilter will not try to
delete the buffer when its destructor is called. A true value, on the other hand, will allow the filter
to delete the memory block upon destruction of the import filter.

For the ImportImageFilter to appropriately delete the memory block, the memory must be allo-
cated with the C++ new () operator. Memory allocated with other memory allocation mechanisms,
such as C malloc or calloc, will not be deleted properly by the ImportImageFilter. In other
words, it is the application programmer’s responsibility to ensure that Import ImageFilter is only
given permission to delete the C++ new operator-allocated memory.

const bool importImageFilterWillOwnTheBuffer = true;
importFilter->SetImportPointer (localBuffer, numberOfPixels,
importImageFilterWillOwnTheBuffer);

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
注释框
注意：谁负责释放buffer

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1ImageIterator.html

4.2. PointSet 59

Finally, we can connect the output of this filter to a pipeline. For simplicity we just use a writer here,
but it could be any other filter.

using WriterType = itk::ImageFileWriter< ImageType >;
WriterType::Pointer writer = WriterType: :New();

writer->SetFileName(argv([l]);
writer->SetInput (importFilter->GetOutput ());

Note that we do not call delete on the buffer since we pass true as the last argument of
SetImportPointer (). Now the buffer is owned by the ImportImageFilter.

4.2 PointSet

4.2.1 Creating a PointSet

The source code for this section can be found in the file

The itk::PointSet is a basic class intended to represent geometry in the form of a set of points
in N-dimensional space. It is the base class for the itk::Mesh providing the methods necessary to
manipulate sets of points. Points can have values associated with them. The type of such values is
defined by a template parameter of the itk::PointSet class (i.e., TPixelType). Two basic inter-
action styles of PointSets are available in ITK. These styles are referred to as static and dynamic.
The first style is used when the number of points in the set is known in advance and is not expected
to change as a consequence of the manipulations performed on the set. The dynamic style, on the
other hand, is intended to support insertion and removal of points in an efficient manner. Distin-
guishing between the two styles is meant to facilitate the fine tuning of a PointSet’s behavior while
optimizing performance and memory management.

In order to use the PointSet class, its header file should be included.

#include "itkPointSet.h"

Then we must decide what type of value to associate with the points. This is generally called the
PixelType in order to make the terminology consistent with the itk::Image. The PointSet is
also templated over the dimension of the space in which the points are represented. The following
declaration illustrates a typical instantiation of the PointSet class.

using PointSetType = itk::PointSet< unsigned short, 3 >;

A PointSet objectis created by invoking the New () method on its type. The resulting object must be
assigned to a SmartPointer. The PointSet is then reference-counted and can be shared by multiple

Administrator
下划线

Administrator
注释框
注意：PointSet-->Mesh

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

60 Chapter 4. Data Representation

objects. The memory allocated for the PointSet will be released when the number of references to
the object is reduced to zero. This simply means that the user does not need to be concerned with
invoking the Delete () method on this class. In fact, the Delete () method should never be called
directly within any of the reference-counted ITK classes.

PointSetType: :Pointer pointsSet = PointSetType: :New();

Following the principles of Generic Programming, the PointSet class has a set of associated de-
fined types to ensure that interacting objects can be declared with compatible types. This set of
type definitions is commonly known as a set of traits. Among the traits of the PointSet class is
PointType, which is used by the point set to represent points in space. The following declaration
takes the point type as defined in the PointSet traits and renames it to be conveniently used in the
global namespace.

using PointType = PointSetType::PointType;

The PointType can now be used to declare point objects to be inserted in the Point Set. Points are
fairly small objects, so it is inconvenient to manage them with reference counting and smart pointers.
They are simply instantiated as typical C++ classes. The Point class inherits the [] operator from
the itk::Array class. This makes it possible to access its components using index notation. For
efficiency’s sake no bounds checking is performed during index access. It is the user’s responsibility
to ensure that the index used is in the range {0, Dimension — 1}. Each of the components in the point
is associated with space coordinates. The following code illustrates how to instantiate a point and
initialize its components.

PointType p0;

p0[0] = -1.0; // x coordinate
pO[1] = // y coordinate
p0[2] = // z coordinate

Points 1D
key

Points are inserted in the PointSet by using the SetPoint () method. This method requires the user
to provide a unique identifier for the point. The identifier is typically an unsigned integer that will
enumerate the points as they are being inserted. The following code shows how three points are
inserted into the PointSet.

pointsSet->SetPoint (0, p0);
pointsSet->SetPoint (1, pl);
pointsSet->SetPoint (2, p2);

It is possible to query the PointSet in order to determine how many points have been inserted into it.
This is done with the GetNumberOfPoints () method as illustrated below.

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：需要提供Points的唯一ID（即key）

4.2. PointSet 61

const unsigned int numberOfPoints = pointsSet->GetNumberOfPoints();
std::cout << numberOfPoints << std::endl;

Points can be read from the PointSet by using the GetPoint () method and the integer identifier. The
point is stored in a pointer provided by the user. If the identifier provided does not match an existing
point, the method will return false and the contents of the point will be invalid. The following code
illustrates point access using defensive programming.

PointType pp;
bool pointExists = pointsSet->GetPoint(1, & pp);

if (pointExists)
{
std::cout << "Point is = " << pp << std::endl;

}

GetPoint () and SetPoint () are not the most efficient methods to access points in the PointSet. It
is preferable to get direct access to the internal point container defined by the #raits and use iterators
to walk sequentially over the list of points (as shown in the following example).

4.2.2 Getting Access to Points

The source code for this section can be found in the file
PointSet2.cxx.

The itk::PointSet class uses an internal container to manage the storage of itk::Points. Itis
more efficient, in general, to manage points by using the access methods provided directly on the
points container. The following example illustrates how to interact with the point container and how
to use point iterators.

The type is defined by the traits of the PointSet class. The following line conveniently takes the
PointsContainer type from the PointSet traits and declares it in the global namespace.

using PointsContainer = PointSetType: :PointsContainer;k_D

The actual type of PointsContainer depends on what style of PointSet 1is being
used. The dynamic PointSet uses itk::MapContainer while the static PointSet uses
itk::VectorContainer. The vector and map containers are basically ITK wrappers around the
STL classes std::map and std::vector. By default, PointSet uses a static style, and there-
fore the default type of point container is VectorContainer. Both map and vector contain-
ers are templated over the type of element they contain. In this case they are templated over
PointType. Containers are reference counted objects, created with the New () method and assigned
toa itk::SmartPointer. The following line creates a point container compatible with the type of

the PointSet from which the trait has been taken.
PointSet

| — dynamic MapContainer— stl map
S~— PointsContainer|

| — static VectorContainer— stl vector
Points PointType objects

Administrator
下划线

Administrator
注释框
注意：返回的是一个指针

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：凡是这种方式都不是最高效的；迭代器以及直接访问才是最高效的

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：PointSet
 | —— dynamic：MapContainer—— 封装了stl：map
 PointsContainer|
 | —— static：VectorContainer—— 封装了stl：vector（常用）
 Points（PointType objects）

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

62 Chapter 4. Data Representation

PointsContainer::Pointer points = PointsContainer::New();

Points can now be defined using the PointType trait from the PointSet.

using PointType = PointSetType::PointType;
PointType p0;
PointType pl;
p0[0] = -1.0; pO[1] 0; po[2] = 0.0;
pl[0] = 1.0; pl[1l] = 0.0; pl[2] = 0.0;

RIS

/ Point 0 = {-
/ Point 1 = {

~
—

LY
~
S O
~
S O

~

The created points can be inserted in the PointsContainer using the generic method
InsertElement () which requires an identifier to be provided for each point.

unsigned int pointId = 0;
points->InsertElement (pointId++ , p0);
points->InsertElement (pointId++ , pl);

Finally, the PointsContainer can be assigned to the PointSet. This will substitute any previ-
ously existing PointsContainer assigned to the PointSet. The assignment is done using the
SetPoints () method.

pointSet->SetPoints(points);

The PointsContainer object can be obtained from the PointSet using the GetPoints () method.
This method returns a pointer to the actual container owned by the PointSet which is then assigned
to a SmartPointer.

PointsContainer::Pointer points2 = pointSet->GetPoints();

1]

The most efficient way to sequentially visit the points is to use the iterators provided by PointsCon-
tainer. The Iterator type belongs to the traits of the PointsContainer classes. It behaves pretty
much like the STL iterators.> The Points iterator is not a reference counted class, so it is created
directly from the traits without using SmartPointers.

using PointsIterator = PointsContainer::Iterator;

The subsequent use of the iterator follows what you may expect from a STL iterator. The iterator
to the first point is obtained from the container with the Begin () method and assigned to another
iterator.

3If you dig deep enough into the code, you will discover that these iterators are actually ITK wrappers around STL
iterators.

Administrator
下划线

Administrator
高亮

Administrator
注释框
注意：

Administrator
高亮

4.2. PointSet 63

PointsIterator pointIterator = points->Begin();

The ++ operator on the iterator can be used to advance from one point to the next. The actual value
of the Point to which the iterator is pointing can be obtained with the Value () method. The loop for
walking through all the points can be controlled by comparing the current iterator with the iterator
returned by the End () method of the PointsContainer. The following lines illustrate the typical loop
for walking through the points.

PointsIterator end = points->End();

while(pointIterator != end)
{
PointType p = pointIterator.Value(); // access the point
std::cout << p << std::endl; // print the point
++pointIterator; // advance to next point

}

Note that as in STL, the iterator returned by the End () method is not a valid iterator. This is called
a past-end iterator in order to indicate that it is the value resulting from advancing one step after
visiting the last element in the container.

The number of elements stored in a container can be queried with the Size () method. In the case
of the PointSet, the following two lines of code are equivalent, both of them returning the number
of points in the PointSet.

std::cout << pointSet->GetNumberOfPoints() << std::endl;
std::cout << pointSet->GetPoints()->Size() << std::endl;

4.2.3 Getting Access to Data in Points

The source code for this section can be found in the file
PointSet3.cxx.

The itk::PointSet class was designed to interact with the Image class. For this reason it was
found convenient to allow the points in the set to hold values that could be computed from images.
The value associated with the point is referred as PixelType in order to make it consistent with
image terminology. Users can define the type as they please thanks to the flexibility offered by the
Generic Programming approach used in the toolkit. The PixelType is the first template parameter
of the PointSet.

The following code defines a particular type for a pixel type and instantiates a PointSet class with it.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

64 Chapter 4. Data Representation

using PixelType = unsigned short;
using PointSetType = itk::PointSet< PixelType, 3 >;

Data can be inserted into the PointSet using the SetPointData () method. This method requires the
user to provide an identifier. The data in question will be associated to the point holding the same
identifier. It is the user’s responsibility to verify the appropriate matching between inserted data and
inserted points. The following line illustrates the use of the SetPointData () method.

unsigned int datald = 0;
PixelType value = 79;
pointSet->SetPointData (dataId++, value);

Data associated with points can be read from the PointSet using the GetPointData () method. This
method requires the user to provide the identifier to the point and a valid pointer to a location where
the pixel data can be safely written. In case the identifier does not match any existing identifier on
the PointSet the method will return false and the pixel value returned will be invalid. It is the user’s
responsibility to check the returned boolean value before attempting to use it.

const bool found = pointSet->GetPointData(dataIld, & value);
if(found

{

std::cout << "Pixel value = " << value << std::endl;

}

The SetPointData () and GetPointData () methods are not the most efficient way to get access
to point data. It is far more efficient to use the Iterators provided by the PointDataContainer.

:}N Data associated with points is internally stored in PointDataContainers. In the same way as
with points, the actual container type used depend on whether the style of the PointSet is static
or dynamic. Static point sets will use an itk::VectorContainer while dynamic point sets will
use an itk::MapContainer. The type of the data container is defined as one of the traits in the
PointSet. The following declaration illustrates how the type can be taken from the traits and used to
conveniently declare a similar type on the global namespace.

using PointDataContainer = PointSetType::PointDataContainer;

Using the type it is now possible to create an instance of the data container. This is a standard
reference counted object, henceforth it uses the New () method for creation and assigns the newly
created object to a SmartPointer.

PointDataContainer::Pointer pointData = PointDataContainer::New();

Pixel data can be inserted in the container with the method InsertElement (). This method requires
an identified to be provided for each point data.

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
https://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

4.2. PointSet 65

unsigned int pointId = 0;

PixelType value(= 34

i
PixelType valuel = 67;

pointData->InsertElement (pointId++ , value0);
pointData->InsertElement (pointId++ , valuel);

Finally the PointDataContainer can be assigned to the PointSet. This will substitute any previously
existing PointDataContainer on the PointSet. The assignment is done using the SetPointData ()
method.

pointSet->SetPointData(pointData);

The PointDataContainer can be obtained from the PointSet using the GetPointData () method.
This method returns a pointer (assigned to a SmartPointer) to the actual container owned by the
PointSet.

PointDataContainer::Pointer pointData2 = pointSet->GetPointData();

The most efficient way to sequentially visit the data associated with points is to use the iterators
provided by PointDataContainer. The Iterator type belongs to the traits of the PointsContainer
classes. The iterator is not a reference counted class, so it is just created directly from the traits
without using SmartPointers.

using PointDatalterator = PointDataContainer::Iterator;

The subsequent use of the iterator follows what you may expect from a STL iterator. The iterator
to the first point is obtained from the container with the Begin () method and assigned to another
iterator.

PointDatalterator pointDatalterator = pointData2->Begin();

The ++ operator on the iterator can be used to advance from one data point to the next. The actual
value of the PixelType to which the iterator is pointing can be obtained with the Value () method.
The loop for walking through all the point data can be controlled by comparing the current iterator
with the iterator returned by the End () method of the PointsContainer. The following lines illustrate
the typical loop for walking through the point data.

PointDatalterator end = pointData2->End();
while(pointDatalterator != end)
{
PixelType p = pointDatalterator.Value(); // access the pixel data

66 Chapter 4. Data Representation

std::cout << p << std::endl; // print the pixel data
++pointDatalterator; // advance to next pixel/point

}

Note that as in STL, the iterator returned by the End () method is not a valid iterator. This is called
a past-end iterator in order to indicate that it is the value resulting from advancing one step after

visiting the last element in the container. POIESSE _ ynamic WapContainer— st map
PointDataContainer|
— static VectorContainer— stl vector
PixelType value

4.2.4 RGB as Pixel Type

The source code for this section can be found in the file
RGBPointSet.cxx.

The following example illustrates how a point set can be parameterized to manage a particular pixel
type. In this case, pixels of RGB type are used. The first step is then to include the header files of
the itk::RGBPixel and itk::PointSet classes.

#include "itkRGBPixel.h"
#include "itkPointSet.h"

Then, the pixel type can be defined by selecting the type to be used to represent each one of the RGB
components.

using PixelType = itk::RGBPixel< float >;

The newly defined pixel type is now used to instantiate the PointSet type and subsequently create a
point set object.

using PointSetType = itk::PointSet< PixelType, 3 >;
PointSetType: :Pointer pointSet = PointSetType: :New();

The following code generates a circle and assigns RGB values to the points. The components of the
RGB values in this example are computed to represent the position of the points.

PointSetType::PixelType pixel;
PointSetType: :PointType point;
unsigned int pointId = 0;

constexpr double radius = 3.0;

for (unsigned int i=0; 1<360; i++)
{
const double angle = i * itk::Math::pi / 180.0;
point [0] = radius * std::sin(angle);
point[1] = radius * std::cos(angle);

Administrator
注释框
注意：PointSet
 | —— dynamic：MapContainer—— 封装了stl：map
PointDataContainer|
 | —— static：VectorContainer—— 封装了stl：vector（常用）
 PixelType（value）（前面的是存放点数据，现在这个是直接存放值数据）

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

4.2. PointSet 67

point[2] = 1.0;
pixel.SetRed(point[0] * 2.0);
pixel.SetGreen(point[l] * 2.0);

pixel.SetBlue (point[2] * 2.0);
pointSet->SetPoint (pointId, point);
pointSet->SetPointData(pointId, pixel);
pointId++;

}

All the points on the PointSet are visited using the following code.

using PointIterator = PointSetType::PointsContainer::ConstIterator;
PointIterator pointIterator = pointSet->GetPoints()->Begin();
PointIterator pointEnd = pointSet->GetPoints ()->End();
while (pointIterator != pointEnd)

{

point = pointIterator.Value();

std::cout << point << std::endl;

++pointIterator;

}

Note that here the ConstIterator was used instead of the Iterator since the pixel values are not
expected to be modified. ITK supports const-correctness at the API level.

All the pixel values on the PointSet are visited using the following code.

using PointDatalterator = PointSetType::PointDataContainer::ConstIterator;
PointDatalterator pixellterator = pointSet->GetPointData ()->Begin();
PointDatalterator pixelEnd = pointSet->GetPointData()->End();
while (pixelIterator != pixelEnd)

{

pixel = pixellterator.Value();

std::cout << pixel << std::endl;

++pixellterator;

}

Again, please note the use of the ConstIterator instead of the Iterator.

4.2.5 Vectors as Pixel Type

The source code for this section can be found in the file
PointSetWithVectors.cxx.

This example illustrates how a point set can be parameterized to manage a particular pixel type.
It is quite common to associate vector values with points for producing geometric representations.
The following code shows how vector values can be used as the pixel type on the PointSet class.

Administrator
高亮

68

Chapter 4. Data Representation

The itk::Vector class is used here as the pixel type. This class is appropriate for representing the
relative position between two points. It could then be used to manage displacements, for example.

In order to use the vector class it is necessary to include its header file along with the header of the

point set.

"itkVector.h"
"itkPointSet.h"

#include
#include

Figure 4.2: Vectors as PixelType.

constexpr unsigned int Dimension = 3;
using PixelType =

ector

The Vector class is templated over <the]
type used to represent the spatial co-
ordinates and over the space dimen-
sion. Since the PixelType 1is indepen-
dent of the PointType, we are free to se-
lect any dimension for the vectors to
be used as pixel type. However, for
the sake of producing an interesting ex-
ample, we will use vectors that repre-
sent displacements of the points in the
PointSet. Those vectors are then se-
lected to be of the same dimension as the
PointSet.

itk::Vector< float, Dimension >;

Then we use the PixelType (which are actually Vectors) to instantiate the PointSet type and subse-

quently create a PointSet object.

using PointSetType = itk::PointSet< PixelType, Dimension >;

PointSetType::Pointer pointSet =

PointSetType: :New () ;

The following code is generating a sphere and assigning vector values to the points. The components
of the vectors in this example are computed to represent the tangents to the circle as shown in

Figure 4.2.
PointSetType: :PixelType tangent;
PointSetType::PointType point;
unsigned int pointId = 0;
constexpr double radius = 300.0;

for (unsigned int i=0; i<360; i++

Administrator
注释框
注意：vector中存储的是位移

Administrator
下划线

Administrator
注释框
注意：存储点，上面还可以存储点的值

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

4.2. PointSet 69

{
const double angle = i * itk::Math::pi / 180.0;
point [0] = radius * std::sin(angle);

point[1] = radius * std::cos(angle);
point[2] = 1.0; // flat on the Z plane
tangent [0] = std::cos(angle);

tangent [1] = -std::sin(angle);

tangent[2] = 0.0; // flat on the Z plane
pointSet->SetPoint (pointId, point);
pointSet->SetPointData(pointId, tangent);
pointId++;

}

We can now visit all the points and use the vector on the pixel values to apply a displacement on the
points. This is along the spirit of what a deformable model could do at each one of its iterations.

using PointDatalterator = PointSetType::PointDataContainer::ConstIterator;
PointDatalterator pixellterator = pointSet->GetPointData ()->Begin();
PointDatalterator pixelEnd = pointSet->GetPointData()->End();

using PointIterator = PointSetType::PointsContainer::Iterator;
PointIterator pointIterator = pointSet->GetPoints () ->Begin();

PointIterator pointEnd = pointSet->GetPoints ()->End();
while(pixelIterator != pixelEnd && pointIterator != pointEnd
{
pointIterator.Value() = pointIterator.Value() + pixelIterator.Value();
++pixellterator;
++pointIterator;

}

Note that the ConstIterator was used here instead of the normal Iterator since the pixel values
are only intended to be read and not modified. ITK supports const-correctness at the API level.

The itk::Vector class has overloaded the + operator with the itk::Point. In other words,
vectors can be added to points in order to produce new points. This property is exploited in the
center of the loop in order to update the points positions with a single statement.

We can finally visit all the points and print out the new values

pointIterator = pointSet->GetPoints () ->Begin();
pointEnd = pointSet->GetPoints ()->End();
while(pointIterator != pointEnd)

{

std::cout << pointIterator.Value() << std::endl;
++pointIterator;

}

Note that itk::Vector is not the appropriate class for representing normals to surfaces and gradi-
ents of functions. This is due to the way vectors behave under affine transforms. ITK has a specific

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

70 Chapter 4. Data Representation

class for representing normals and function gradients. This is the itk::CovariantVector class.

4.2.6 Normals as Pixel Type

The source code for this section can be found in the file
PointSetWithCovariantVectors.cxx.

It is common to represent geometric objects by using points on their surfaces and normals associated
with those points. This structure can be easily instantiated with the itk::PointSet class.

|:l_\/The natural class for representing normals to surfaces and gradients of functions is the
itk::CovariantVector. A covariant vector differs from a vector in the way it behaves under
affine transforms, in particular under anisotropic scaling. If a covariant vector represents the gradi-

ent of a function, the transformed covariant vector will still be the valid gradient of the transformed
function, a property which would not hold with a regular vector.

The following example demonstrates how a CovariantVector can be used as the PixelType for the
PointSet class. The example illustrates how a deformable model could move under the influence
of the gradient of a potential function.

In order to use the CovariantVector class it is necessary to include its header file along with the
header of the point set.

#include "itkCovariantVector.h"
#include "itkPointSet.h"

The CovariantVector class is templated over the type used to represent the spatial coordinates and
over the space dimension. Since the PixelType is independent of the PointType, we are free to select
any dimension for the covariant vectors to be used as pixel type. However, we want to illustrate here
the spirit of a deformable model. It is then required for the vectors representing gradients to be of
the same dimension as the points in space.

constexpr unsigned int Dimension = 3;
using PixelType = itk::CovariantVector< f£loat, Dimension >;

Then we use the PixelType (which are actually CovariantVectors) to instantiate the PointSet type
and subsequently create a PointSet object.

using PointSetType = itk::PointSet< PixelType, Dimension >;

PointSetType::Pointer pointSet = PointSetType::New();

The following code generates a circle and assigns gradient values to the points. The components of
the CovariantVectors in this example are computed to represent the normals to the circle.

Administrator
下划线

Administrator
注释框
注意：用于表示法向量以及函数梯度的类

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：用于表示梯度以及法向量

https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

4.2. PointSet 71

PointSetType::PixelType gradient;
PointSetType::PointType point;

unsigned int pointId = O0;

constexpr double radius = 300.0;

for (unsigned int i=0; 1<360; i++)
{
const double angle = i * std::atan(1.0) / 45.0;
point [0] = radius * std::sin(angle);
point[1] = radius * std::cos(angle);
point[2] 1.0; // flat on the Z plane
gradient [0] = std::sin(angle);
gradient[1] std::cos(angle);
gradient [2] 0.0; // flat on the Z plane
pointSet->SetPoint (pointId, point);
pointSet->SetPointData(pointId, gradient);
pointId++;
}

We can now visit all the points and use the vector on the pixel values to apply a deformation on the
points by following the gradient of the function. This is along the spirit of what a deformable model
could do at each one of its iterations. To be more formal we should use the function gradients as
forces and multiply them by local stress tensors in order to obtain local deformations. The resulting
deformations would finally be used to apply displacements on the points. However, to shorten the
example, we will ignore this complexity for the moment.

using PointDatalterator = PointSetType::PointDataContainer::ConstIterator;
PointDatalterator pixellterator = pointSet->GetPointData ()->Begin();
PointDatalterator pixelEnd = pointSet->GetPointData () ->End() ;

using PointIterator = PointSetType::PointsContainer::Iterator;
PointIterator pointIterator = pointSet->GetPoints () ->Begin();

PointIterator pointEnd = pointSet->GetPoints ()->End();
while(pixelIterator != pixelEnd && pointIterator != pointEnd
{
point = pointIterator.Value ();

gradient = pixelIterator.Value();
for (unsigned int i=0; i<Dimension; i++

{

point[i] += gradient[i];

}
pointIterator.Value() = point;
++pixellterator;
++pointIterator;

}

The CovariantVector class does not overload the + operator with the itk::Point. In other words,
CovariantVectors can not be added to points in order to get new points. Further, since we are

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Point.html

72 Chapter 4. Data Representation

ignoring physics in the example, we are also forced to do the illegal addition manually between
the components of the gradient and the coordinates of the points.

Note that the absence of some basic operators on the ITK geometry classes is completely intentional
with the aim of preventing the incorrect use of the mathematical concepts they represent.

4.3 Mesh

4.3.1 Creating a Mesh

The source code for this section can be found in the file
Meshl.cxx.

The itk::Mesh class is intended to represent shapes in space. It derives from the itk::PointSet
class and hence inherits all the functionality related to points and access to the pixel-data associated
with the points. The mesh class is also N-dimensional which allows a great flexibility in its use.

In practice a Mesh class can be seen as a PointSet to which cells (also known as elements) of many
different dimensions and shapes have been added. Cells in the mesh are defined in terms of the
existing points using their point-identifiers.

As with PointSet, a Mesh object may be static or dynamic. The first is used when the number of
points in the set is known in advance and not expected to change as a consequence of the manipula-
tions performed on the set. The dynamic style, on the other hand, is intended to support insertion and
removal of points in an efficient manner. In addition to point management, the distinction facilitates
optimization of performance and memory management of cells.

In order to use the Mesh class, its header file should be included.

#include "itkMesh.h"

Then, the type associated with the points must be selected and used for instantiating the Mesh type.

using PixelType = float;

The Mesh type extensively uses the capabilities provided by Generic Programming. In particular,
the Mesh class is parameterized over PixelType, spatial dimension, and (optionally) a parameter set
called MeshTraits. PixelType is the type of the value associated with each point (just as is done
with PointSet). The following illustrates a typical instantiation of Mesh.

constexpr unsigned int Dimension = 3;

using MeshType = itk::Mesh< PixelType, Dimension >;

Meshes typically require large amounts of memory. For this reason, they are reference counted

]

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
http://www.boost.org/more/generic_programming.html

4.3. Mesh 73

objects, managed using itk::SmartPointers. The following line illustrates how a mesh is created
by invoking the New () method on MeshType and assigning the result to a SmartPointer.

MeshType: :Pointer mesh = MeshType::New();

Management of points in a Mesh is identical to that in a PointSet. The type of point associated with
the mesh can be obtained through the PointType trait. The following code shows the creation of
points compatible with the mesh type defined above and the assignment of values to its coordinates.

MeshType: :PointType p0;
MeshType: :PointType pl;
MeshType: :PointType p2;
MeshType: :PointType p3;

p0[0]= -1.0; pO[l]= -1.0; pO[2]= 0.0; // first point (-1, -1, 0)
pl(0]= 1.0; pl[l]l= -1.0; pl[2]= 0.0; // second point (, -1, 0)
p2[0]= 1.0; p2[1]= 1.0; p2[2]= 0. third point (1, 1, 0)
p3[(0]= -1.0; p3[1]1= 1.0; p3[2]= 0.0; // fourth point (-1, 1, 0)

The points can now be inserted into the Mesh using the SetPoint () method. &ote that points are
copied into the mesh structure, meaning that the local instances of the points can now be modified
without affecting the Mesh content.
mesh->SetPoint (0, p0
mesh->SetPoint (1, pl

mesh->SetPoint (2, p2
mesh->SetPoint (3, p3

The current number of points in a mesh can be queried with the GetNumberOfPoints () method.

std::cout << "Points = " << mesh->GetNumberOfPoints() << std::endl;

The points can now be efficiently accessed using the Iterator to the PointsContainer as was done
in the previous section for the PointSet.

using PointsIterator = MeshType::PointsContainer::Iterator;

A point iterator is initialized to the first point with the Begin () method of the PointsContainer.

PointsIterator pointIterator = mesh->GetPoints()->Begin();

The ++ operator is used to advance the iterator from one point to the next. The value associated
with the Point to which the iterator is pointing is obtained with the Value () method. The loop

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointers.html

74 Chapter 4. Data Representation

for walking through all the points is controlled by comparing the current iterator with the iterator
returned by the End () method of the PointsContainer. The following illustrates the typical loop
for walking through the points of a mesh.

PointsIterator end = mesh->GetPoints () ->End();

while(pointIterator != end)
{
MeshType: :PointType p = pointIterator.Value(); // access the point
std::cout << p << std::endl; // print the point
++pointIterator; // advance to next point

}

4.3.2 Inserting Cells

The source code for this section can be found in the file
Mesh2.cxx. M_| cells mesh |

A itk::Mesh can contain a variety of cell types. Typical cells are the itk::LineCell,
itk::TriangleCell, itk::QuadrilateralCell, itk::TetrahedronCell, and
itk::PolygonCell. Additional flexibility is provided for managing cells at the price of a
bit more of complexity than in the case of point management.

The following code creates a polygonal line in order to illustrate the simplest case of cell manage-
ment in a mesh. The only cell type used here is the LineCell. The header file of this class must be
included.

#include "itkLineCell.h"

For consistency with Mesh, cell types have to be configured with a number of custom types taken
from the mesh traits. The set of traits relevant to cells are packaged by the Mesh class into the
CellType trait. This trait needs to be passed to the actual cell types at the moment of their instanti-
ation. The following line shows how to extract the Cell traits from the Mesh type.

using CellType = MeshType::CellType;

The LineCell type can now be instantiated using the traits taken from the Mesh.

using LineType = itk::LineCell< CellType >;

points cells

The main difference in the way cells and points are managed by the Mesh is that points are stored
by copy on the PointsContainer while cells are stored as pointers in the CellsContainer. The
reason for using pointers is that cells use C++ polymorphism on the mesh. This means that the mesh

Administrator
注释框
注意：可以插入cells，在mesh中

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：points与cells两者的存储差异

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
https://www.itk.org/Doxygen/html/classitk_1_1TriangleCell.html
https://www.itk.org/Doxygen/html/classitk_1_1QuadrilateralCell.html
https://www.itk.org/Doxygen/html/classitk_1_1TetrahedronCell.html
https://www.itk.org/Doxygen/html/classitk_1_1PolygonCell.html

4.3. Mesh 75

is only aware of having pointers to a generic cell which is the base class of all the specific cell types.
This architecture makes it possible to combine different cell types in the same mesh. Points, on the
other hand, are of a single type and have a small memory footprint, which makes it efficient to copy
them directly into the container.

Managing cells by pointers adds another level of complexity to the Mesh since it is now necessary to
establish a protocol to make clear who is responsible for allocating and releasing the cells’ memory.
This protocol is implemented in the form of a specific type of pointer called the Cel1AutoPointer.
This pointer, based on the itk::AutoPointer, differs in many respects from the SmartPointer.
The CellAutoPointer has an internal pointer to the actual object and a boolean flag that indicates
whether the CellAutoPointer is responsible for releasing the cell memory when the time comes
for its own destruction. It is said that a Cel1lAutoPointer owns the cell when it is responsible for
its destruction. At any given time many CellAutoPointers can point to the same cell, but only one
CellAutoPointer can own the cell.

The CellAutoPointer trait is defined in the MeshType and can be extracted as follows.

using CellAutoPointer = CellType::CellAutoPointer;

Note that the Cel1AutoPointer points to a generic cell type. It is not aware of the actual type of
the cell, which could be (for example) a LineCell, TriangleCell or TetrahedronCell. This fact
will influence the way in which we access cells later on.

At this point we can actually create a mesh and insert some points on it.
MeshType: :Pointer mesh = MeshType::New();
MeshType: :PointType p0;

MeshType: :PointType pl;
MeshType: :PointType p2;

p0[0] = -1.0; pO[1] = 0.0; p0[2] = 0.0;
pli0] = 1.0; pl[l] = 0.0; pl[2] = 0.0;
p2[(0] = 1.0; p2[1l] = 1.0; p2[2] = 0.0;
mesh->SetPoint (0, p0);
mesh->SetPoint (1, pl);

12

mesh->SetPoint (2, p2

The following code creates two CellAutoPointers and initializes them with newly created cell
objects. The actual cell type created in this case is LineType. Note that cells are created with the
normal new C++ operator. The CellAutoPointer takes ownership of the received pointer by using the
method TakeOwnership (). Even though this may seem verbose, it is necessary in order to make it
explicit that the responsibility of memory release is assumed by the AutoPointer.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html

76 Chapter 4. Data Representation

CellAutoPointer 1ine0;
CellAutoPointer linel;

line0.TakeOwnership(new LineType) ;
linel.TakeOwnership(new LineType);

The LineCells should now be associated with points in the mesh. This is done using the identifiers as-
signed to points when they were inserted in the mesh. Every cell type has a specific number of points
that must be associated with it.* For example, a LineCell requires two points, a TriangleCell
requires three, and a TetrahedronCell requires four. Cells use an internal numbering system for
points. It is simply an index in the range {0, NumberO f Points — 1}. The association of points and
cells is done by the SetPointId () method, which requires the user to provide the internal index of
the point in the cell and the corresponding PointIdentifier in the Mesh. The internal cell index
is the first parameter of SetPointId () while the mesh point-identifier is the second.

line0->SetPointId(0, 0); // line between points 0 and 1
line0->SetPointId(1, 1);

linel->SetPointId(0, 1); // line between points 1 and 2
linel->SetPointId(1, 2);

Cells are inserted in the mesh using the SetCell () method. It requires an identifier and the Au-
toPointer to the cell. The Mesh will take ownership of the cell to which the CellAutoPointer
is pointing. This is done internally by the SetCell () method. In this way, the destruction of the
CellAutoPointer will not induce the destruction of the associated cell.

mesh->SetCell(0, 1line0);
mesh->SetCell(1, linel);

SetCell
CellAutoPointer cell
cell

After serving as an argument of the SetCell () method, a CellAutoPointer no longer holds own-
ership of the cell. It is important not to use this same CellAutoPointer again as argument to
SetCell () without first securing ownership of another cell.

The number of Cells currently inserted in the mesh can be queried with the GetNumberOfCells ()
method.

std::cout << "Cells = " << mesh->GetNumberOfCells() << std::endl;

In a way analogous to points, cells can be accessed using Iterators to the CellsContainer in the
mesh. The trait for the cell iterator can be extracted from the mesh and used to define a local type.

“Some cell types like polygons have a variable number of points associated with them.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：调用完SetCell（）方法之后，CellAutoPointer不在拥有cell的所有权；即不负责释放cell内存

4.3. Mesh 77

using CellIterator = MeshType::CellsContainer::Iterator;

Then the iterators to the first and past-end cell in the mesh can be obtained respectively with the
Begin() and End() methods of the CellsContainer. The CellsContainer of the mesh is re-
turned by the GetCells () method.

Celllterator celllterator = mesh->GetCells()->Begin();
CellIterator end = mesh->GetCells () ->End () ;

Finally, a standard loop is used to iterate over all the cells. Note the use of the Value () method used
to get the actual pointer to the cell from the Celllterator. Note also that the value returned is a pointer
to the generic CellType. This pointer must be downcast in order to be used as actual LineCell types.
Safe down-casting is performed with the dynamic_cast operator, which will throw an exception if
the conversion cannot be safely performed.

while(celllterator != end
{
MeshType::CellType * cellptr = cellIterator.Value();
auto * line = dynamic_cast<LineType *>(cellptr);
if(line == nullptr)
{

continue;

}
std::cout << line->GetNumberOfPoints() << std::endl;
++celllterator;

}

4.3.3 Managing Data in Cells

The source code for this section can be found in the file
Mesh3.cxx.

Just as custom data can be associated with points in the mesh, it is also possible to associate custom
data with cells. The type of the data associated with the cells can be different from the data type
associated with points. By default, however, these two types are the same. The following example
illustrates how to access data associated with cells. The approach is analogous to the one used to
access point data.

Consider the example of a mesh containing lines on which values are associated with each line. The
mesh and cell header files should be included first.

Administrator
下划线

Administrator
下划线

78 Chapter 4. Data Representation

#include "itkMesh.h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instantiated with it.
using PixelType = float;
using MeshType = itk::Mesh< PixelType, 2 >;
The itk::LineCell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshType::CellType;
using LineType = itk::LineCell< CellType >;

Let’s now create a Mesh and insert some points into it. Note that the dimension of the points matches
the dimension of the Mesh. Here we insert a sequence of points that look like a plot of the log()
function. We add the vnl_math: :eps value in order to avoid numerical errors when the point id is
zero. The value of vnl_math: :eps is the difference between 1.0 and the least value greater than
1.0 that is representable in this computer.

MeshType::Pointer mesh = MeshType::New();

using PointType = MeshType::PointTIype;
PointType point;

constexpr unsigned int numberOfPoints = 10;
for (unsigned int id=0; id<numberOfPoints; id++)
{
point [0] = static_cast<PointType::ValueType>(id); // x
point[1] = std::log(static_cast<double>(id) + itk::Math::eps); /)y
mesh->SetPoint (id, point);
}

A set of line cells is created and associated with the existing points by using point identifiers. In this
simple case, the point identifiers can be deduced from cell identifiers since the line cells are ordered

in the same way.

CellType::CellAutoPointer line;

const unsigned int numberOfCells = numberOfPoints-1;

for (unsigned int cellId=0; cellId<numberOfCells; cellId++)
{
line.TakeOwnership(new LineType);
line->SetPointId(0, cellId); // first point
line->SetPointId(1, cellId+l); // second point
mesh->SetCell (cellld, line); // insert the cell

}

https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

4.3. Mesh 79

Data associated with cells is inserted in the itk::Mesh by using the SetCellData () method. It
requires the user to provide an identifier and the value to be inserted. The identifier should match
one of the inserted cells. In this simple example, the square of the cell identifier is used as cell data.
Note the use of static_cast to PixelType in the assignment.

for (unsigned int cellId=0; cellId<numberOfCells; cellId++
{
mesh->SetCellData(cellld, static_cast<PixelType>(cellld * cellld));
}

Cell data can be read from the Mesh with the GetCellData () method. It requires the user to provide
the identifier of the cell for which the data is to be retrieved. The user should provide also a valid
pointer to a location where the data can be copied.

for (unsigned int cellId=0; cellId<numberOfCells; ++cellld
{
auto value = static_cast<PixelType> (0.0);
mesh->GetCellData(cellld, &value);
std::cout << "Cell " << cellIld << " = " << value << std::endl;

}

Neither SetCellData () or GetCellData () are efficient ways to access cell data. More efficient
access to cell data can be achieved by using the Iterators built into the Cel1lDataContainer.

using CellDatalterator = MeshType::CellDataContainer::ConstIterator;

Note that the ConstIterator is used here because the data is only going to be read. This approach
is exactly the same already illustrated for getting access to point data. The iterator to the first cell
data item can be obtained with the Begin () method of the CellDataContainer. The past-end
iterator is returned by the End () method. The cell data container itself can be obtained from the
mesh with the method GetCellData ().

CellDatalterator cellDatalterator = mesh->GetCellData()->Begin();
CellDatalterator end mesh->GetCellData () —>End() ;

Finally, a standard loop is used to iterate over all the cell data entries. Note the use of the Value ()
method to get the value associated with the data entry. PixelType elements are copied into the local
variable cellValue.

while(cellDatalterator != end
{
PixelType cellValue = cellDatalterator.Value();
std::cout << cellValue << std::endl;
++cellDatalterator;

}

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

80 Chapter 4. Data Representation

4.3.4 Customizing the Mesh

The source code for this section can be found in the file
MeshTraits.cxx.

This section illustrates the full power of Generic Programming. This is sometimes perceived as foo
much of a good thing!

The toolkit has been designed to offer flexibility while keeping the complexity of the code to a mod-
erate level. This is achieved in the Mesh by hiding most of its parameters and defining reasonable
defaults for them.

The generic concept of a mesh integrates many different elements. It is possible in principle to use
independent types for every one of such elements. The mechanism used in generic programming for
specifying the many different types involved in a concept is called fraits. They are basically the list
of all types that interact with the current class.

The itk::Mesh is templated over three parameters. So far only two of them have been discussed,
namely the PixelType and the Dimension. The third parameter is a class providing the set of traits
required by the mesh. When the third parameter is omitted a default class is used. This default class
isthe itk::DefaultStaticMeshTraits. If you want to customize the types used by the mesh, the
way to proceed is to modify the default traits and provide them as the third parameter of the Mesh

class instantiation. I mesh

There are two ways of achieving this. The first is to use the existing
itk::DefaultStaticMeshTraits class. This class is itself templated over six parameters.
Customizing those parameters could provide enough flexibility to define a very specific kind of
mesh. The second way is to write a traits class from scratch, in which case the easiest way to
proceed is to copy the DefaultStaticMeshTraits into another file and edit its content. Only the
first approach is illustrated here. The second is discouraged unless you are familiar with Generic
Programming, feel comfortable with C++ templates, and have access to an abundant supply of
(Columbian) coffee.

The first step in customizing the mesh is to include the header file of the Mesh and its static traits.

#include "itkMesh.h"
#include "itkDefaultStaticMeshTraits.h"

Then the MeshTraits class is instantiated by selecting the types of each one of its six template
arguments. They are in order

PixelType. The value type associated with every point.

PointDimension. The dimension of the space in which the mesh is embedded.

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

Administrator
注释框
注意：自定义mesh所使用的类型

http://www.boost.org/more/generic_programming.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html
https://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html

4.3. Mesh 81

MaxTopologicalDimension. The highest dimension of the mesh cells.
CoordRepType. The type used to represent spacial coordinates.
InterpolationWeightType. The type used to represent interpolation weights.

CellPixelType. The value type associated with every cell.

Let’s define types and values for each one of those elements. For example, the following code
uses points in 3D space as nodes of the Mesh. The maximum dimension of the cells will be two,
meaning that this is a 2D manifold better know as a surface. The data type associated with points is
defined to be a four-dimensional vector. This type could represent values of membership for a four-
class segmentation method. The value selected for the cells are 4 x 3 matrices, which could have
for example the derivative of the membership values with respect to coordinates in space. Finally,
a double type is selected for representing space coordinates on the mesh points and also for the
weight used for interpolating values.

/— A mesh
constexpr unsigned int PointDimension = 3; typelist
constexpr unsigned int MaxTopologicalDimension = 2;

using PixelType = itk::Vector<double, 4>;
using CellDataType = itk::Matrix<double,4,3>;

using CoordinateIype = double;
using InterpolationWeightType = double;

using MeshTraits = itk::DefaultStaticMeshTraits<
PixelType, PointDimension, MaxTopologicalDimension,

CoordinateType, InterpolationWeightType, CellDataTlype >;

using MeshType = itk::Mesh< PixelType, PointDimension, MeshTraits >;

The itk::LineCell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshTIype::CellType;
using LineType = itk::LineCell< CellType >;

Let’s now create an Mesh and insert some points on it. Note that the dimension of the points matches
the dimension of the Mesh. Here we insert a sequence of points that look like a plot of the log()
function.

MeshType: :Pointer mesh = MeshType: :New();

using PointType = MeshType::PointType;
PointType point;

constexpr unsigned int numberOfPoints = 10;
for (unsigned int id=0; id<numberOfPoints; id++)

Administrator
注释框
注意：重新定义上述几个mesh特化的类型，就可以自定义一个新的mesh类型；维持的是一个typelist吧？？？

https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

82

Chapter 4. Data Representation

{

point [0] = 1
point[1] =
point[2] = 4.129;
mesh->SetPoint (id, point);

}

// Initialize points here
// with arbitrary values

65;
4

w F
o Ur
J o1

Iy

o

A set of line cells is created and associated with the existing points by using point identifiers. In this
simple case, the point identifiers can be deduced from cell identifiers since the line cells are ordered
in the same way. Note that in the code above, the values assigned to point components are arbitrary.
In a more realistic example, those values would be computed from another source.

CellType::CellAutoPointer line;

const unsigned int numberOfCells = numberOfPoints-1;

for (unsigned int cellId=0; cellId<numberOfCells; cellId++
{
line.TakeOwnership(new LineType);
line->SetPointId(0, cellld); // first point
line->SetPointId(1, cellld+l); // second point
mesh->SetCell(cellld, line); // insert the cell

}

Data associated with cells is inserted in the Mesh by using the SetCellData () method. It requires
the user to provide an identifier and the value to be inserted. The identifier should match one of the
inserted cells. In this example, we simply store a CellDataType dummy variable named value.

for (unsigned int cellId=0; cellId<numberOfCells; cellId++

{
CellDataType value;
mesh->SetCellData(cellld, value);

}

Cell data can be read from the Mesh with the GetCellData () method. It requires the user to provide
the identifier of the cell for which the data is to be retrieved. The user should provide also a valid

pointer to a location where the data can be copied.

for (unsigned int cellId=0; cellId<numberOfCells; ++cellld
{
CellDataType value;
mesh->GetCellData(cellld, &value);
std::cout << "Cell " << cellld << " = " << value << std::endl;

}

| Set Get

Neither SetCellData () or GetCellData () are efficient ways to ac€ess cell data. Efficient access
to cell data can be achieved by using the Iterators built into the CellDataContainer.

Administrator
注释框
注意：这几个Set以及Get函数都不是最效率的；迭代器才是

4.3. Mesh 83

using CellDatalterator = MeshType::CellDataContainer::ConstIterator;

Note that the ConstIterator is used here because the data is only going to be read. This approach
is identical to that already illustrated for accessing point data. The iterator to the first cell data item
can be obtained with the Begin () method of the CellDataContainer. The past-end iterator is
returned by the End () method. The cell data container itself can be obtained from the mesh with the
method GetCellDatal().

CellDatalterator cellDatalterator = mesh->GetCellData()->Begin();
CellDatalterator end mesh->GetCellData () —>End();

Finally a standard loop is used to iterate over all the cell data entries. Note the use of the Value ()
method used to get the actual value of the data entry. PixelType elements are returned by copy.

while(cellDatalterator != end

{

CellDataType cellValue = cellDatalterator.Value();
std::cout << cellValue << std::endl;
++cellDatalterator;

}

4.3.5 Topology and the K-Complex

The source code for this section can be found in the file
MeshKComplex.cxx.

The itk::Mesh class supports the representation of formal topologies. In particular the concept
of K-Complex can be correctly represented in the Mesh. An informal definition of K-Complex may
be as follows: a K-Complex is a topological structure in which for every cell of dimension N, its
boundary faces (which are cells of dimension N — 1) also belong to the structure.

This section illustrates how to instantiate a K-Complex structure using the mesh. The example stru

ture is composed of one tetrahedron, its four triangle faces, its six line edges and its four vertices.

The header files of all the cell types involved should be loaded along with the header file of the mesh
class.

#include "itkMesh.h"
#include "itkLineCell.h"
#include "itkTetrahedronCell.h"

Then the PixelType is defined and the mesh type is instantiated with it. Note that the dimension of
the space is three in this case.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：K-Complex结构

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

84

Chapter 4.

Data Representation

using PixelType =

using MeshType = itk::Mesh< PixelType, 3 >;

float;

The cell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshTIype::CellType;
using VertexType =

itk::VertexCell< CellType >;

using LineType = itk::LineCell< CellType >;

using TriangleType = itk::TriangleCell< CellType >;
using TetrahedronType = itk::TetrahedronCell< CellType >;

The mesh is created and the points associated with the vertices are inserted. Note that there is
an important distinction between the points in the mesh and the itk::VertexCell concept. A
VertexCell is a cell of dimension zero. Its main difference as compared to a point is that the cell
can be aware of neighborhood relationships with other cells. Points are not aware of the existence
of cells. In fact, from the pure topological point of view, the coordinates of points in the mesh are
completely irrelevant. They may as well be absent from the mesh structure altogether. VertexCells
on the other hand are necessary to represent the full set of neighborhood relationships on the K-

Complex.

The geometrical coordinates of the nodes of a regular tetrahedron can be obtained by taking every
other node from a regular cube.

MeshType: :

MeshType:
MeshType:
MeshType:
MeshType:

point0[0]
pointl1[0]
point2[0]
point3[0]

Pointer

:PointType
:PointType
:PointType
:PointType

-1; poi
1; poi
= 1; poi
= -1; poi

mesh->SetPoint (0,

mesh->SetPoint (1
mesh->SetPoint (2,
mesh->SetPoint (3

’

mesh = MeshType: :New();

point0;
pointl;
point2;
point3;

nt0[1] = -1;
ntl[l] = 1;
nt2[1] = -1;
nt3[1] = 1;

point0);
pointl);
point2);

, point3);

point0[2] =

pointl[2]
point2[2]
point3[2]

We proceed now to create the cells, associate them with the points and insert them on the mesh.

Starting with the tetrahedron we write the following code.

CellType::CellAutoPointer cellpointer;

cellpointer.TakeOwnership (new TetrahedronType);

cellpointer->SetPointId(0, 0);

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh

85

cellpointer->SetPointId(1, 1);
cellpointer->SetPointId(2, 2);
cellpointer->SetPointId(3, 3);
mesh->SetCell(0, cellpointer);

Four triangular faces are created and associated with the mesh now. The first triangle connects points

0,1,2.

cellpointer.TakeOwnership (new TriangleType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
cellpointer->SetPointId(2, 2);
mesh->SetCell(1, cellpointer);

The second triangle connects points 0, 2, 3 .

cellpointer.TakeOwnership (new TriangleType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 2);
cellpointer->SetPointId(2, 3);
mesh->SetCell(2, cellpointer);

The third triangle connects points 0, 3, 1 .

cellpointer.TakeOwnership (new TriangleType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 3);
cellpointer->SetPointId(2, 1);
mesh->SetCell (3, cellpointer);

The fourth triangle connects points 3,2, 1.

cellpointer.TakeOwnership (new TriangleType);
cellpointer->SetPointId(0, 3);
cellpointer->SetPointId(1, 2);
cellpointer->SetPointId(2, 1);
mesh->SetCell (4, cellpointer);

AutoPointer

cell

SetCell

Note how the CellAutoPointer is reused every time. Reminder: the itk::AutoPointer loses
ownership of the cell when it is passed as an argument of the SetCell () method. The AutoPointer

is attached to a new cell by using the TakeOwnership () method.

The construction of the K-Complex continues now with the creation of the six lines on the tetrahe-

dron edges.

Administrator
下划线

Administrator
注释框
注意：当AutoPointer传递给SetCell函数之后，就失去了cell的拥有权；即可以复用

https://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html

86

Chapter 4. Data Representation

cellpointer.TakeOwnership (new LineType
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
mesh->SetCell(5, cellpointer);

cellpointer.TakeOwnership (new LineType
cellpointer->SetPointId(0, 1);
cellpointer->SetPointId(1, 2);
mesh->SetCell(6, cellpointer);

cellpointer.TakeOwnership (new LineType
cellpointer->SetPointId(0, 2);
cellpointer->SetPointId(1, 0);
mesh->SetCell(7, cellpointer);

cellpointer.TakeOwnership (new LineType
cellpointer->SetPointId(0, 1);
cellpointer->SetPointId(1, 3);
mesh->SetCell(8, cellpointer);

cellpointer.TakeOwnership (new LineType
cellpointer->SetPointId(0, 3);
cellpointer->SetPointId(1, 2);
mesh->SetCell(9, cellpointer);

cellpointer.TakeOwnership (new LineType
cellpointer->SetPointId(0, 3);
cellpointer->SetPointId(1, 0);
mesh->SetCell(10, cellpointer);

Finally the zero dimensional cells represented by the itk::VertexCell are created and inserted in
the mesh.

cellpointer.TakeOwnership (new VertexType
cellpointer->SetPointId(0, 0);
mesh->SetCell(11, cellpointer);

cellpointer.TakeOwnership (new VertexType
cellpointer->SetPointId(0, 1);
mesh->SetCell(12, cellpointer);

cellpointer.TakeOwnership (new VertexType
cellpointer->SetPointId(0, 2);
mesh->SetCell(13, cellpointer);

cellpointer.TakeOwnership (new VertexType
cellpointer->SetPointId(0, 3);
mesh->SetCell (14, cellpointer);

At this point the Mesh contains four points and fifteen cells enumerated from O to 14. The points
can be visited using PointContainer iterators.

https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 87

using PointIterator = MeshType::PointsContainer::ConstIterator;
PointIterator pointIterator = mesh->GetPoints()->Begin();
PointIterator pointEnd = mesh->GetPoints () ->End () ;

while(pointIterator != pointEnd)
{
std::cout << pointIterator.Value() << std::endl;
++pointIterator;

}

The cells can be visited using CellsContainer iterators.
using CellIterator = MeshType::CellsContainer::ConstIterator;

Celllterator celllterator = mesh->GetCells()->Begin();
CellIterator cellEnd = mesh->GetCells () ->End();

while(celllterator != cellEnd
{
CellType * cell = cellIterator.Value();
std::cout << cell->GetNumberOfPoints() << std::endl;
t++celllterator;

}

Note that cells are stored as pointer to a generic cell type that is the base class of all the specific cell
classes. This means that at this level we can only have access to the virtual methods defined in the
CellType.

The point identifiers to which the cells have been associated can be visited using iterators de-
fined in the CellType trait. The following code illustrates the use of the PointldIterators.
The PointIdsBegin() method returns the iterator to the first point-identifier in the cell. The
PointIdsEnd () method returns the iterator to the past-end point-identifier in the cell.

using PointIdIterator = CellType::PointIdIterator;

PointIdIterator pointIditer = cell->PointIdsBegin();
PointIdIterator pointIdend = cell->PointIdsEnd();

while(pointIditer != pointIdend)
{
std::cout << *pointIditer << std::endl;
++pointIditer;

}

Note that the point-identifier is obtained from the iterator using the more traditional *iterator
notation instead the Value () notation used by cell-iterators.

Up to here, the topology of the K-Complex is not completely defined since we have only introduced
the cells. ITK allows the user to define explicitly the neighborhood relationships between cells. It

88

Chapter 4. Data Representation

is clear that a clever exploration of the point identifiers could have allowed a user to figure out the
neighborhood relationships. For example, two triangle cells sharing the same two point identifiers
will probably be neighbor cells. Some of the drawbacks on this implicit discovery of neighborhood
relationships is that it takes computing time and that some applications may not accept the same
assumptions. A specific case is surgery simulation. This application typically simulates bistoury
cuts in a mesh representing an organ. A small cut in the surface may be made by specifying that two

triangles are not considered to be neighbors any more.

Neighborhood relationships are represented in the mesh by the notion of BoundaryFeature.]W
cell has an internal list of cell-identifiers pointing to other cells that are considered to be its neigh-
bors. Boundary features are classified by dimension. For example, a line will have two boundary
features of dimension zero corresponding to its two vertices. A tetrahedron will have boundary fea-
tures of dimension zero, one and two, corresponding to its four vertices, six edges and four triangular

faces. It is up to the user to specify the connections between the cells.

Let’s take in our current example the tetrahedron cell that was associated with the cell-identifier 0
and assign to it the four vertices as boundaries of dimension zero. This is done by invoking the

SetBoundaryAssignment () method on the Mesh class.

The featureId is simply a number associated with the sequence of the boundary cells of the same
dimension in a specific cell. For example, the zero-dimensional features of a tetrahedron are its four
vertices. Then the zero-dimensional feature-Ids for this cell will range from zero to three. The one-
dimensional features of the tetrahedron are its six edges, hence its one-dimensional feature-Ids will
range from zero to five. The two-dimensional features of the tetrahedron are its four triangular faces.
The two-dimensional feature ids will then range from zero to three. The following table summarizes

MeshType::CellIdentifier cellld = 0;

int dimension = 0;

mesh->SetBoundaryAssignment (dimension,
mesh->SetBoundaryAssignment (dimension,
mesh->SetBoundaryAssignment (dimension,
mesh->SetBoundaryAssignment (dimension,

// the tetrahedron

// vertices

MeshType: :CellFeatureldentifier featureId = 0;

the use on indices for boundary assignments.

In the code example above, the values of featureld range from zero to three. The cell identifiers of
the triangle cells in this example are the numbers {1,2,3,4}, while the cell identifiers of the vertex

cellld,
cellld,
cellld,
cellld,

featureId++, 11
featurelId++, 12
featurelId++, 13
featurelId++, 14

)i
)i
)i
)i

| Dimension || CellType | Featureld range | Cell Ids |
0 VertexCell [0:3] {11,12,13,14}
1 LineCell [0:5] {5,6,7,8,9,10}
2 TriangleCell [0:3] {1,2,3,4}

cells are the numbers {11,12,13,14}.

cell 1D

cell

cell

Administrator
下划线

Administrator
注释框
注意：如何表示相互之间的关系

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：每一个cell都有一个内置的指向其他邻居cell的cell ID链表

4.3. Mesh 89

Let’s now assign one-dimensional boundary features of the tetrahedron. Those are the line cells with
identifiers {5,6,7,8,9,10}. Note that the feature identifier is reinitialized to zero since the count is
independent for each dimension.

cellld =0; // still the tetrahedron
dimension = 1; // one-dimensional features = edges
featureld = 0; // reinitialize the count

mesh->SetBoundaryAssignment (dimension, cellId, featureIdt+,
mesh->SetBoundaryAssignment (dimension, cellld, featureId++,
mesh->SetBoundaryAssignment (dimension, cellId, featureIdt+,
mesh->SetBoundaryAssignment (dimension, cellld, featureId++,
mesh->SetBoundaryAssignment (dimension, cellld, featureId++,
mesh->SetBoundaryAssignment (dimension, cellld, featureId++, 1

)i
)i

- o U

)i
)i
)i

o © ©

Finally we assign the two-dimensional boundary features of the tetrahedron. These are the four trian-
gular cells with identifiers {1,2,3,4}. The featureld is reset to zero since feature-Ids are independent
on each dimension.

cellld =0; // still the tetrahedron
dimension = 2; // two-dimensional features = triangles
featureld = 0; // reinitialize the count

mesh->SetBoundaryAssignment (dimension, cellId, featureId+t+,
mesh->SetBoundaryAssignment (dimension, cellld, featureId++,
mesh->SetBoundaryAssignment (dimension, cellId, featureId++,
mesh->SetBoundaryAssignment (dimension, cellId, featureId+t+,

=W N

At this point we can query the tetrahedron cell for information about its boundary features. For
example, the number of boundary features of each dimension can be obtained with the method
GetNumberOfBoundaryFeatures ().

cellld = 0; // still the tetrahedron

MeshType: :CellFeatureCount n0; // number of zero-dimensional features
MeshType: :CellFeatureCount nl; // number of one-dimensional features
MeshType: :CellFeatureCount n2; // number of two-dimensional features

n0 = mesh->GetNumberOfCellBoundaryFeatures(0, cellld);
nl = mesh->GetNumberOfCellBoundaryFeatures(1, cellld);
n2 = mesh->GetNumberOfCellBoundaryFeatures(2, cellld);

The boundary assignments can be recovered with the method GetBoundaryAssigment (). For ex-
ample, the zero-dimensional features of the tetrahedron can be obtained with the following code.

dimension = 0;
for (unsigned int b0=0; b0 < n0; b0++)
{

90 Chapter 4. Data Representation

MeshType::Cellldentifier id;

bool found = mesh->GetBoundaryAssignment (dimension, cellld, b0, &id);
if(found) std::cout << id << std::endl;

}

The following code illustrates how to set the edge boundaries for one of the triangular faces.

cellld = 2; // one of the triangles
dimension = 1; // boundary edges
featureld = 0; // start the count of features

mesh->SetBoundaryAssignment (dimension, cellld, featureId++, 7);
mesh->SetBoundaryAssignment (dimension, cellld, featureIdt++, 9);
0

mesh->SetBoundaryAssignment (dimension, cellld, featureId++, 1
API

4.3.6 Representing a PolyLine

The source code for this section can be found in the file

MeshPolyLine.cxx.

This section illustrates how to represent a classical PolyLine structure using the itk::Mesh

A PolyLine only involves zero and one dimensional cells, which are represented by the
itk::VertexCell and the itk::LineCell.

#include "itkMesh.h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instantiated with it. Note that the dimension of
the space is two in this case.

using PixelType = float;
using MeshIype = itk::Mesh< PixelType, 2 >;

The cell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshType::CellType;
using VertexType = itk::VertexCell< CellType >;
using LineType = itk::LineCell< CellType >;

The mesh is created and the points associated with the vertices are inserted. Note that there is an
important distinction between the points in the mesh and the itk::VertexCell concept. A Ver-
texCell is a cell of dimension zero. Its main difference as compared to a point is that the cell can be

Administrator
注释框
注意：熟悉上述API

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html
https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 91

aware of neighborhood relationships with other cells. Points are not aware of the existence of cells.
In fact, from the pure topological point of view, the coordinates of points in the mesh are completely
irrelevant. They may as well be absent from the mesh structure altogether. VertexCells on the other
hand are necessary to represent the full set of neighborhood relationships on the Polyline.

In this example we create a polyline connecting the four vertices of a square by using three of the
square sides.

MeshType: :Pointer mesh = MeshType::New();

MeshType: :PointType point0;
MeshType: :PointType pointl;
MeshType: :PointType point2;
MeshType: :PointType point3;

point0[0] = -1; point0[1l] = -1;
pointl[0] = 1; pointl[l] = -1;
point2[0] = 1; point2[l] = 1;
point3[0] = -1; point3[1] = 1;

mesh->SetPoint (0, point0);
mesh->SetPoint (1, pointl);
mesh->SetPoint (2, point2);
mesh->SetPoint (3, point3);

We proceed now to create the cells, associate them with the points and insert them on the mesh.
CellType::CellAutoPointer cellpointer;

cellpointer.TakeOwnership (new LineType);
cellpointer->SetPointId(0, 0);
cellpointer->SetPointId(1, 1);
mesh->SetCell(0, cellpointer);

cellpointer.TakeOwnership (new LineType);
cellpointer->SetPointId(0, 1);

cellpointer->SetPointId(1, 2);
mesh->SetCell(1, cellpointer);

cellpointer.TakeOwnership (new LineType);
cellpointer->SetPointId(0, 2);
cellpointer->SetPointId(1, 0);
mesh->SetCell(2, cellpointer);

Finally the zero dimensional cells represented by the itk::VertexCell are created and inserted in
the mesh.

cellpointer.TakeOwnership (new VertexType) ;
cellpointer->SetPointId(0, 0);
mesh->SetCell(3, cellpointer);

https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

92 Chapter 4. Data Representation

cellpointer.TakeOwnership (new VertexType) ;
cellpointer->SetPointId(0, 1);
mesh->SetCell (4, cellpointer);

cellpointer.TakeOwnership (new VertexType) ;
cellpointer->SetPointId(0, 2);
mesh->SetCell(5, cellpointer);

cellpointer.TakeOwnership (new VertexType) ;
cellpointer->SetPointId(0, 3);
mesh->SetCell(6, cellpointer);

At this point the Mesh contains four points and three cells. The points can be visited using Point-
Container iterators.

using PointIterator = MeshType::PointsContainer::ConstIterator;
PointIterator pointIterator = mesh->GetPoints ()->Begin();
PointIterator pointEnd = mesh->GetPoints () ->End () ;

while (pointIterator != pointEnd)
{

std::cout << pointIterator.Value() << std::endl;
t+pointIterator;

}
The cells can be visited using CellsContainer iterators.

using CelllIterator = MeshType::CellsContainer::ConstIterator;

Celllterator celllIterator = mesh->GetCells()->Begin();
CellIterator cellEnd = mesh->GetCells () ->End();

while(celllterator != cellEnd

{

CellType * cell = cellIterator.Value();

std::cout << cell->GetNumberOfPoints() << std::endl;
t++celllterator;

}

Note that cells are stored as pointer to a generic cell type that is the base class of all the specific cell
classes. This means that at this level we can only have access to the virtual methods defined in the
CellType.

The point identifiers to which the cells have been associated can be visited using iterators
defined in the CellType trait. The following code illustrates the use of the PointldIterator.
The PointIdsBegin() method returns the iterator to the first point-identifier in the cell. The
PointIdsEnd () method returns the iterator to the past-end point-identifier in the cell.

4.3. Mesh 93

using PointIdIterator = CellType::PointIdIterator;

PointIdIterator pointIditer = cell->PointIdsBegin();
PointIdIterator pointIdend = cell->PointIdsEnd();

while(pointIditer != pointIdend)
{
std::cout << *pointIditer << std::endl;
++pointIditer;
}

Note that the point-identifier is obtained from the iterator using the more traditional *iterator
notation instead the Value () notation used by cell-iterators.

4.3.7 Simplifying Mesh Creation

The source code for this section can be found in the file
AutomaticMesh.cxx.

The itk::Mesh class is extremely general and flexible, but there is some cost to convenience. If
convenience is exactly what you need, then it is possible to get it, in exchange for some of that
flexibility, by means of the itk::AutomaticTopologyMeshSource class. This class automatically
generates an explicit K-Complex, based on the cells you add. It explicitly includes all boundary
information, so that the resulting mesh can be easily traversed. It merges all shared edges, vertices,
and faces, so no geometric feature appears more than once.

This section shows how you can use the AutomaticTopologyMeshSource to ifstantiate a mesh rep-
resenting a K-Complex. We will first generate the same tetrahedron from Section 4.3.5, after which
we will add a hollow one to illustrate some additional features of the mesh source.

The header files of all the cell types involved should be loaded along with the header file of the mesh
class.

#include "itkTriangleCell.h"
#include "itkAutomaticTopologyMeshSource.h"

We then define the necessary types and instantiate the mesh source. Two new types are
IdentifierType and IdentifierArrayType. Every cell in a mesh has an identifier, whose type
is determined by the mesh traits. AutomaticTopologyMeshSource requires that the identifier type of
all vertices and cells be unsigned long, which is already the default. However, if you created a new
mesh traits class to use string tags as identifiers, the resulting mesh would not be compatible with
itk::AutomaticTopologyMeshSource. An IdentifierArrayType is simply an itk::Array of
IdentifierType objects.

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
https://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
https://www.itk.org/Doxygen/html/classitk_1_1Array.html

94 Chapter 4. Data Representation

using PixelType = float;
using MeshType = itk::Mesh< PixelType, 3 >;

using PointType = MeshType::PointTIype;

using MeshSourceIype = itk::AutomaticTopologyMeshSource< MeshType >;
using IdentifierArrayType = MeshSourceType::IdentifierArrayType;

MeshSourceType: :Pointer meshSource;

meshSource = MeshSourceType: :New () ;

Now let us generate the tetrahedron. The following line of code generates all the vertices, edges,
and faces, along with the tetrahedral solid, and adds them to the mesh along with the connectivity
information.

meshSource->AddTetrahedron (

meshSource->AddPoint (-1, -1, -1),
meshSource->AddPoint (1, 1, -1),
meshSource->AddPoint (1, -1, 1),

(- 1)

meshSource->AddPoint
)i

1/ ll

The function AutomaticTopologyMeshSource::AddTetrahedron() takes point identifiers
as parameters; the identifiers must correspond to points that have already been added.
AutomaticTopologyMeshSource: :AddPoint () returns the appropriate identifier type for the point
being added. It first checks to see if the point is already in the mesh. If so, it returns the ID of the
point in the mesh, and if not, it generates a new unique ID, adds the point with that ID, and returns
the ID.

Actually, AddTetrahedron () behaves in the same way. If the tetrahedron has already been added,
it leaves the mesh unchanged and returns the ID that the tetrahedron already has. If not, it adds the
tetrahedron (and all its faces, edges, and vertices), and generates a new ID, which it returns.

It is also possible to add all the points first, and then add a number of cells using the point IDs
directly. This approach corresponds with the way the data is stored in many file formats for 3D
polygonal models.

First we add the points (in this case the vertices of a larger tetrahedron). This example also illustrates
that AddPoint () can take a single PointType as a parameter if desired, rather than a sequence of
floats. Another possibility (not illustrated) is to pass in a C-style array.

PointType p;
IdentifierArrayType idArray(4);

pl 01 =-2;
pl 1] =-2;
pl 21 =-2;

4.3. Mesh 95

idArray[0] = meshSource->AddPoint(p);
pl 01 = 2;
pl11= 2;
pl 21 =-2;
idArray[1] = meshSource->AddPoint(p);
pl 01 = 2;
pl 11 =-2;
pl 2 1= 2;
idArray[2] = meshSource->AddPoint(p);
pl 01 =-2;
pl11= 25
pl 21 = 2;
idArray[3] = meshSource->AddPoint(p);

Now we add the cells. This time we are just going to create the boundary of a tetrahedron, so we
must add each face separately.

meshSource->AddTriangle (idArray[0], idArray[l], idArray([2]);
meshSource->AddTriangle (idArray[l], idArray[2], idArray[3]);
meshSource->AddTriangle (idArray[2], idArray[3], idArray([0]);
meshSource->AddTriangle (idArray[3], idArray[0], idArray[l]);

Actually, we could have called, e.g., AddTriangle(4, 5, 6), since IDs are assigned sequen-
tially starting at zero, and idArray[0] contains the ID for the fifth point added. But you should
only do this if you are confident that you know what the IDs are. If you add the same point twice
and don’t realize it, your count will differ from that of the mesh source.

You may be wondering what happens if you call, say, AddEdge (0, 1) followed by AddEdge (1,
0). The answer is that they do count as the same edge, and so only one edge is added. The order of
the vertices determines an orientation, and the first orientation specified is the one that is kept.

Once you have built the mesh you want, you can access it by calling GetOutput (). Here we send it
to cout, which prints some summary data for the mesh.

In contrast to the case with typical filters, GetOutput () does not trigger an update process. The
mesh is always maintained in a valid state as cells are added, and can be accessed at any time. It
would, however, be a mistake to modify the mesh by some other means until AutomaticTopolo-
gyMeshSource is done with it, since the mesh source would then have an inaccurate record of which
points and cells are currently in the mesh. /L

JAutomaticTopologyMeshSource
mesh

4.3.8 lIterating Through Cells

The source code for this section can be found in the file
MeshCellsIteration.cxx.

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：AutomaticTopologyMeshSource 完成之前；访问mesh是会获取错误数据

96 Chapter 4. Data Representation

Cells are stored in the itk::Mesh as pointers to a generic cell itk::CellInterface. Thisimplies
that only the virtual methods defined on this base cell class can be invoked. In order to use methods
that are specific to each cell type it is necessary to down-cast the pointer to the actual type of the
cell. This can be done safely by taking advantage of the Get Type () method that allows to identify
the actual type of a cell.

Let’s start by assuming a mesh defined with one tetrahedron and all its boundary faces. That is, four
triangles, six edges and four vertices.

The cells can be visited using CellsContainer iterators . The iterator Value () corresponds to a raw
pointer to the CellType base class.

using Celllterator = MeshType::CellsContainer::ConstIterator;

CellIterator celllterator
CellIterator cellEnd

= mesh->GetCells () —>Begin();
= mesh->GetCells () ->End();
while(celllterator != cellEnd

{

CellType * cell = cellIterator.Value();

std::cout << cell->GetNumberOfPoints() << std::endl;

++cellIterator;

}

In order to perform down-casting in a safe manner, the cell type can be queried first using
the GetType () method. Codes for the cell types have been defined with an enum type on the
itkCellInterface.h header file. These codes are :

VERTEX_CELL
* LINE_CELL

TRIANGLE_CELL

QUADRILATERAL_CELL

POLYGON_CELL

TETRAHEDRON_CELL

HEXAHEDRON_CELL
* QUADRATIC_EDGE_CELL
* QUADRATIC_TRIANGLE_CELL

The method GetType () returns one of these codes. It is then possible to test the type of the cell

before down-casting its pointer to the actual type. For example, the following code visits all the

cell
type GetType

Administrator
下划线

Administrator
注释框
注意：不同的cell可能存在不同的type；所以要进行GetType（）操作

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1CellInterface.html

4.3. Mesh

97

cells in the mesh and tests which ones are actually of type LINE_CELL. Only those cells are down-
casted to LineType cells and a method specific for the LineType is invoked.

celllterator = mesh->GetCells()->Begin();
cellEnd = mesh->GetCells () ->End();

while(celllterator != cellEnd

{

CellType * cell = cellIterator.Value();
if(cell->GetType() == CellType::LINE_CELL

{

auto * line =

std::cout << "

static_cast<LineType *>(cell);

std::cout << "dimension = " << line->GetDimension();
points = " << line->GetNumberOfPoints();
td::endl;

std::cout << s

}

t++celllterator;

}

In order to perform different actions on different cell types a switch statement can be used with
cases for every cell type. The following code illustrates an iteration over the cells and the invocation
of different methods on each cell type.

celllterator = mesh->GetCells()->Begin();
cellEnd = mesh->GetCells () ->End();

while(celllterator != cellEnd

{

CellType * cell
switch(cell->GetType())

{

case CellType
{
std::cout <<
auto * line
std::cout <<
std::cout <<
break;
}

case CellType
{
std::cout <<
auto * line
std::cout <<
std::cout <<
break;

}

case CellType::

{

std::cout <<
auto * line
std::cout <<

= celllterator

: :VERTEX_CELL:

"VertexCell :

.Value () ;

" << std::endl;

= dynamic_cast<VertexType *>(cell);

"dimension =
"# points =

: :LINE_CELL:

"LineCell : "

" << line->GetDimension ()
" << line->GetNumberOfPoints ()

<< std::endl;

= dynamic_cast<LineType *>(cell);

"dimension =
"# points =

"TriangleCell

" << line->GetDimension ()
" << line->GetNumberOfPoints ()

TRIANGLE_CELL:

" << std::endl;

= dynamic_cast<TriangleType *>(cell);

"dimension =

" << line->GetDimension ()

std:
std:

std:
std:

std:

:endl;
:endl;

:endl;
:endl;

:endl;

Administrator
高亮

98 Chapter 4. Data Representation

std::cout << "# points = " << line->GetNumberOfPoints() << std::endl;
break;
}
default:
{

std::cout << "Cell with more than three points" << std::endl;

std::cout << "dimension = " << cell->GetDimension () << std::endl;
std::cout << "# points = " << cell->GetNumberOfPoints() << std::endl;
break;
}
}
++cellIterator;

}

4.3.9 Visiting Cells

The source code for this section can be found in the file
MeshCellVisitor.cxx.

In order to facilitate access to particular cell types, a convenience mechanism has been built-in on
the itk::Mesh. This mechanism is based on the Visifor Pattern presented in [3]. The visitor pattern
is designed to facilitate the process of walking through an heterogeneous list of objects sharing a
common base class.

The first requirement for using the CellVisitor mechanism it to include the
CelllInterfaceVisitor header file.

#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared.

using PixelType = float;
using MeshIype = itk::Mesh< PixelType, 3 >;

using CellType = MeshTIype::CellType;

using VertexType = itk::VertexCell< CellType >;

using LineType = itk::LineCell< CellType >;

using TriangleType = itk::TriangleCell< CellType >;
using TetrahedronType = itk::TetrahedronCell< CellType >;

Then, a custom CellVisitor class should be declared. In this particular example, the visitor class is
intended to act only on TriangleType cells. The only requirement on the declaration of the visitor
class is that it must provide a method named Visit (). This method expects as arguments a cell
identifier and a pointer to the specific cell type for which this visitor is intended. Nothing prevents a

Administrator
高亮

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

4.3. Mesh 99

visitor class from providing Visit () methods for several different cell types. The multiple methods
will be differentiated by the natural C++ mechanism of function overload. The following code
illustrates a minimal cell visitor class.

class CustomTriangleVisitor
{
public:
using TriangleType = itk::TriangleCell<CellType>;
void Visit (unsigned long cellld, TriangleType * t)
{
std::cout << "Cell # " << cellld << " is a TriangleType ";
std::cout << t->GetNumberOfPoints () << std::endl;
}
CustomTriangleVisitor () = default;
virtual "“CustomTriangleVisitor() = default;

}i

This newly defined class will now be used to instantiate a cell visitor. In this particular example we
create a class CustomTriangleVisitor which will be invoked each time a triangle cell is found
while the mesh iterates over the cells.

using TriangleVisitorInterfaceType = itk::CellInterfaceVisitorImplementation<
PixelType,
MeshType::CellTraits,
TriangleType,
CustomTriangleVisitor >;

Note that the actual CellInterfaceVisitorImplementation is templated over the PixelType, the
CellTraits, the CellType to be visited and the Visitor class that defines with will be done with the
cell.

A visitor implementation class can now be created using the normal invocation to its New () method
and assigning the resultto a itk::SmartPointer.

TriangleVisitorInterfaceType: :Pointer triangleVisitor =
TriangleVisitorInterfaceType: :New();

Many different visitors can be configured in this way. The set of all visitors can be registered with
the MultiVisitor class provided for the mesh. An instance of the MultiVisitor class will walk through
the cells and delegate action to every registered visitor when the appropriate cell type is encountered.

using CellMultiVisitorType = CellType::MultiVisitor;
CellMultiVisitorType: :Pointer multiVisitor = CellMultiVisitorType: :New();

The visitor is registered with the Mesh using the Addvisitor () method.

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

100 Chapter 4. Data Representation

multiVisitor->AddVisitor(triangleVisitor);

Finally, the iteration over the cells is triggered by calling the method Accept () on the itk: :Mesh.

mesh->Accept (multiVisitor);

The Accept () method will iterate over all the cells and for each one will invite the MultiVisitor to
attempt an action on the cell. If no visitor is interested on the current cell type the cell is just ignored
and skipped.

MultiVisitors make it possible to add behavior to the cells without having to create new methods on
the cell types or creating a complex visitor class that knows about every CellType.

MultiVisitors

4.3.10 More on Visiting Cells

The source code for this section can be found in the file
MeshCellVisitor2.cxx.

The following section illustrates a realistic example of the use of Cell visitors on the itk::Mesh. A
set of different visitors is defined here, each visitor associated with a particular type of cell. All the
visitors are registered with a MultiVisitor class which is passed to the mesh.

The first step is to include the CellInterfaceVisitor header file.

#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared.

using PixelType = float;
using MeshIype = itk::Mesh< PixelType, 3 >;

using CellType = MeshTIype::CellType;

using VertexType = itk::VertexCell< CellType >;

using LineType = itk::LineCell< CellType >;

using TriangleType = itk::TriangleCell< CellType >;
using TetrahedronType = itk::TetrahedronCell< CellType >;

Then, custom CellVisitor classes should be declared. The only requirement on the declaration of
each visitor class is to provide a method named Visit (). This method expects as arguments a cell
identifier and a pointer to the specific cell type for which this visitor is intended.

The following Vertex visitor simply prints out the identifier of the point with which the cell is
associated. Note that the cell uses the method GetPointId () without any arguments. This method
is only defined on the VertexCell.

Administrator
注释框
注意：MultiVisitors的重要性

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

4.3. Mesh

101

class CustomVertexVisitor

{
public:

void Visit (unsigned long cellld, VertexType * t)

{

std::cout << "cell

std::cout << "

" << cellld << " is a Vertex " << std::endl;
associated with point id = ";

std::cout << t->GetPointId() << std::endl;

}

virtual “CustomVertexVisitor() = default;

}i

visit

methods

The following Line visitor computes the length of the line. Note that this visitor is slightly more
complicated since it needs to get access to the actual mesh in order to get point coordinates from the
point identifiers returned by the line cell. This is done by holding a pointer to the mesh and querying
the mesh each time point coordinates are required. The mesh pointer is set up in this case with the

SetMesh () method.

class CustomLineVisitor

{

public:
CustomLineVisitor () :m_Mesh(nullptr) {}
virtual "“CustomLineVisitor() = default;

void SetMesh(MeshType * mesh) { m_Mesh = mesh; }

void Visit (unsigned long cellld, LineType * t)

{

std::cout << "cell

" << cellld << " is a Line " << std::endl;

LineType::PointIdIterator pit = t->PointIdsBegin();
MeshType: :PointType p0;
MeshType: :PointType pl;

m_Mesh->GetPoint (
m_Mesh->GetPoint (

*pit++, &p0);
pit++, &pl);

const double length = p0.EuclideanDistanceTo(pl);
std::cout << " length = " << length << std::endl;

}

private:

}I

The Triangle visitor below prints out the identifiers of its points.

MeshType: :Pointer m_Mesh;

Note the use of the

PointIdIterator and the PointIdsBegin() and PointIdsEnd () methods.

class CustomTriangleVisitor

{
public:

void Visit (unsigned long cellld, TriangleType * t)

{

Administrator
注释框
注意：也就是在类型自定义一个visit方法而不用去改变类的内部methods

102 Chapter 4. Data Representation

std::cout << "cell " << cellld << " is a Triangle " << std::endl;
LineType::PointIdIterator pit = t->PointIdsBegin();
LineType: :PointIdIterator end = t->PointIdsEnd();
while(pit != end)
{

std::cout << " point id = " << *pit << std::endl;
++pit;
}
}
virtual "“CustomTriangleVisitor() = default;

bi
The TetrahedronVisitor below simply returns the number of faces on this figure. Note that
GetNumberOfFaces () is a method exclusive of 3D cells.

class CustomTetrahedronVisitor

{

public:
void Visit (unsigned long cellld, TetrahedronType * t)
{
std::cout << "cell " << cellld << " is a Tetrahedron " << std::endl;
std::cout << " number of faces = ";

std::cout << t->GetNumberOfFaces () << std::endl;
}

virtual "“CustomTetrahedronVisitor () = default;
}i

With the cell visitors we proceed now to instantiate CellVisitor implementations. The visitor classes
defined above are used as template arguments of the cell visitor implementation.

using VertexVisitorInterfaceIype = itk::CellInterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, VertexType,
CustomVertexVisitor >;

using LineVisitorInterfaceType = itk::CelllnterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, LineType,
CustomLineVisitor >;

using TriangleVisitorInterfaceType = itk::CellInterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, TriangleType,
CustomIriangleVisitor >;

using TetrahedronVisitorInterfaceType =
itk::CellInterfaceVisitorImplementation<
PixelType, MeshType::CellTraits, TetrahedronType,
CustomTetrahedronVisitor >;

Note that the actual CellInterfaceVisitorImplementation is templated over the PixelType, the
CellTraits, the CellType to be visited and the Visitor class defining what to do with the cell.

Administrator
下划线

4.3. Mesh 103

A visitor implementation class can now be created using the normal invocation to its New () method
and assigning the resulttoa itk::SmartPointer.

VertexVisitorInterfaceType::Pointer vertexVisitor =
VertexVisitorInterfaceType: :New () ;

LineVisitorInterfaceType::Pointer 1lineVisitor =
LineVisitorInterfaceType: :New();

TriangleVisitorInterfaceType: :Pointer triangleVisitor =
TriangleVisitorInterfaceType: :New();

TetrahedronVisitorInterfaceType::Pointer tetrahedronVisitor =
TetrahedronVisitorInterfaceType: :New();

Remember that the LineVisitor requires the pointer to the mesh object since it needs to get access to
actual point coordinates. This is done by invoking the SetMesh () method defined above.

lineVisitor->SetMesh (mesh);

Looking carefully you will notice that the SetMesh () method is declared in CustomLineVisitor

but we are invoking it on LineVisitorInterfaceType. This is possible thanks to the way in which

the VisitorInterfacelmplementation is defined. This class derives from the visitor type provided by

the user as the fourth template parameter. LineVisitorInterfaceType is then a derived clags of |:|
CustomLineVisitor.

The set of visitors should now be registered with the MultiVisitor class that will walk through the
cells and delegate action to every registered visitor when the appropriate cell type is encountered.
The following lines create a MultiVisitor object.

using CellMultiVisitorType = CellType::MultiVisitor;
CellMultiVisitorType: :Pointer multiVisitor = CellMultiVisitorType: :New();

Every visitor implementation is registered with the Mesh using the Addvisitor () method.

multiVisitor->AddvVisitor(vertexVisitor) o
multiVisitor->AddVisitor(lineVisitor D e
multiVisitor->AddVisitor(triangleVisitor) o

multiVisitor->AddVisitor (tetrahedronVisitor);

Finally, the iteration over the cells is triggered by calling the method Accept () on the Mesh class.

mesh->Accept (multiVisitor);

The Accept () method will iterate over all the cells and for each one will invite the MultiVisitor to

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

104 Chapter 4. Data Representation

attempt an action on the cell. If no visitor is interested on the current cell type, the cell is just ignored
and skipped.

4.4 Path

4.41 Creating a PolyLineParametricPath
The source code for this section can be found in the file
PolyLineParametricPathl.cxx.

This example illustrates how to use the itk::PolyLineParametricPath. This class will typically
be used for representing in a concise way the output of an image segmentation algorithm in 2D. The
PolyLineParametricPath however could also be used for representing any open or close curve in
N-Dimensions as a linear piece-wise approximation.

First, the header file of the PolyLineParametricPath class must be included.

#include "itkPolyLineParametricPath.h"

The path is instantiated over the dimension of the image. In this example the image and path are
two-dimensional.

constexpr unsigned int Dimension = 2;
using ImageType = itk::Image< unsigned char, Dimension >;

using PathType = itk::PolyLineParametricPath< Dimension >;

ImageType: :ConstPointer image = reader->GetOutput () ;
PathType::Pointer path = PathType::New();
path->Initialize();

using ContinuousIndexType = PathType::ContinuousIndexType;
ContinuousIndexType cindex;

using ImagePointType = ImageType::PointType;
ImagePointType origin = image->GetOrigin();

ImageType: :SpacingType spacing = image->GetSpacing();
ImageType: :SizeType size = image->GetBufferedRegion () .GetSize();

ImagePointType point;

point [0]
point[1]

origin[0] + spacing[0] * size[0];
origin[l] + spacing[l] * size[l];

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1PolyLineParametricPath.html

:W

4.5. Containers 105

image->TransformPhysicalPointToContinuousIndex (origin, cindex);
path->AddVertex (cindex);
image->TransformPhysicalPointToContinuousIndex (point, cindex);
path->AddVertex (cindex);

4.5 Containers

The source code for this section can be found in the file
TreeContainer.cxx.

This example demonstrates use of the itk::TreeContainer class and associated TreeIterators.
TreeContainer implements the notion of a tree, which is a branching data structure composed of
nodes and edges, where the edges indicate a parent/child relationship between nodes. Each node may
have exactly one parent, except for the root node, which has none. A tree must have exactly one root
node, and a node may not be its own parent. To round out the vocabulary used to discuss this data
structure, two nodes sharing the same parent node are called “siblings,” a childless node is termed a
“leaf,” and a “forest” is a collection of disjoint trees. Note that in the present implementation, it is
the user’s responsibility to enforce these relationships, as no checking is done to ensure a cycle-free
tree. TreeContainer is templated over the type of node, affording the user great flexibility in using
the structure for their particular problem.

Let’s begin by including the appropriate header files.

#include "itkTreeContainer.h"

#include "itkChildTreelterator.h"
#include "itkLeafTreelterator.h"
#include "itkLevelOrderTreelterator.h"
#include "itkInOrderTreelterator.h"
#include "itkPostOrderTreelterator.h"
#include "itkRootTreelterator.h"
#include "itkTreelteratorClone.h"

We first instantiate a tree with int node type.
using NodeTIype = int;

using Treelype = itk::TreeContainer<NodeType>;
TreeType: :Pointer tree = TreeType::New();

Next we set the value of the root node using SetRoot ().

Administrator
下划线

Administrator
注释框
注意：实现了树结构

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1TreeContainer.html

106 Chapter 4. Data Representation

tree->SetRoot (0) ;

Nodes may be added to the tree using the Add () method, where the first argument is the value of the
new node, and the second argument is the value of the parent node.

tree->Add(1,0);
tree->Add (2,0);
tree->Add (3,0);
tree->Add (4,2);
tree->Add (5,2);
tree->Add (6,5);
tree->Add(7,1);

If two nodes have the same value, it is ambiguous which node is intended to be the parent of the new
node; in this case, the first node with that value is selected. As will be demonstrated shortly, this
ambiguity can be avoided by constructing the tree with TreeIterators.

Let’s begin by defininga itk::ChildTreelterator.

itk::ChildTreelterator<TreeType> childIt (tree);

Before discussing the particular features of this iterator, however, we will illustrate features com-
mon to all TreeIterators, which inherit from itk::TreelteratorBase. Basic use follows the
convention of other iterators in ITK, relying on the GoToBegin () and IsAtEnd() methods. The
iterator is advanced using the prefix increment ++ operator, whose behavior naturally depends on
the particular iterator being used.

for (childIt.GoToBegin(); !childIt.IsAtEnd(); ++childIt)

{
std::cout << childIt.Get () << std::endl;

}
std::cout << std::endl;

Note that, though not illustrated here, trees may also be traversed using the GoToParent () and
GoToChild () methods.

Treelterators have a number of useful functions for testing properties of the current node. For
example, Get Type () returns an enumerated type corresponding to the type of the particular iterator
being used. These types are as follows:

UNDEFIND, PREORDER, INORDER, POSTORDER, LEVELORDER, CHILD, ROOT, and LEAF.

In the following snippet, we test whether the iterator is of type CHILD, and return from the program
indicating failure if the test returns false.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1ChildTreeIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1TreeIteratorBase.html

4.5. Containers 107

if (childIt.GetType() != itk::TreelteratorBase<TreeType>::CHILD)
{
std::cerr << "Error: The iterator was not of type CHILD." << std::endl;
return EXIT_FAILURE;
}

The value associated with the node can be retrieved and modified using Get () and Set () methods:

int oldvValue = childIt.Get();

std::cout << "The node's value is " << oldValue << std::endl;

int newValue = 2;

childIt.Set (newValue);

std::cout << "Now, the node's value is " << childIt.Get () << std::endl;

A number of member functions are defined allowing the user to query information about the current
node’s parent/child relationships:

std::cout << "Is this a leaf node? " << childIt.IsLeaf() << std::endl;
std::cout << "Is this the root node? " << childIt.IsRoot () << std::endl;
std::cout << "Does this node have a parent? " << childIt.HasParent ()

<< std::endl;
std::cout << "How many children does this node have? "

<< childIt.CountChildren() << std::endl;
std::cout << "Does this node have a child 1? " << childIt.HasChild(1)

<< std::endl;

In addition to traversing the tree and querying for information, TreeIterators can alter the struc-
ture of the tree itself. For example, a node can be added using the Add () methods, child nodes
can be removed using the RemoveChild () method, and the current node can be removed using
the Remove () method. Each of these methods returns a bool indicating whether the alteration was
successful.

To illustrate this, in the following snippet we clear the tree of all nodes, and then repopulate it using
the iterator.

tree->Clear();
itk::PreOrderTreelterator<TreeType> it (tree);
it.GoToBegin () ;

it.Add (0);
it.Add(1);
it.Add(2);
it.Add(3);
it.GoToChild(2);
it.Add (4);
it.Add (5);

Administrator
下划线

108 Chapter 4. Data Representation

Every TreelIterator hasaClone () function which returns a copy of the current iterator. Note that
the user should delete the created iterator by hand.

itk::TreelteratorBase<TreeType>* childItClone = childIt.Clone();
delete childItClone;

Alternatively, itk::TreelteratorClone can be used to create a generic copy of an iterator.

using IteratorType = itk::TreelteratorBase<TreeType>;
using IteratorCloneType = itk::TreelteratorClone<IteratorType>;
IteratorCloneType anotherChildItClone = childIt;

We now turn our attention to features of the specific TreeIterator specializations.
ChildTreeIterator, for example, provides a way to iterate through all the children of a node.

for (childIt.GoToBegin(); !childIt.IsAtEnd(); ++childIt)
{
std::cout << childIt.Get();

}
std::cout << std::endl;

The itk::LeafTreelterator iterates through the leaves of the tree.

itk::LeafTreelterator<TreeType> leaflt (tree);

for (leafIt.GoToBegin(); !leafIt.IsAtEnd(); ++leaflt)
{
std::cout << leafIt.Get () << std::endl;

}
std::cout << std::endl;

itk::LevelOrderTreelterator takes three arguments in its constructor: the tree to be traversed,
the maximum depth (or ‘level’), and the starting node. Naturally, this iterator provides a method for
returning the current level.

itk::LevelOrderTreelterator<TreeType> levellt (tree,10,tree->GetNode (0));
for (levelIt.GoToBegin(); !levellt.IsAtEnd(); ++levellt)
{
std::cout << levellt.Get ()
<< " ("<< levellt.GetLevel() << ")"
<< std::endl;
}
std::cout << std::endl;

itk::InOrderTreelterator iterates through the tree from left to right.

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1TreeIteratorClone.html
https://www.itk.org/Doxygen/html/classitk_1_1LeafTreeIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1LevelOrderTreeIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1InOrderTreeIterator.html

4.5. Containers 109

itk::InOrderTreelterator<TreeType> inOrderIt (tree);

for (inOrderIt.GoToBegin(); !inOrderIt.IsAtEnd(); ++inOrderIt)
{
std::cout << inOrderIt.Get () << std::endl;

}
std::cout << std::endl;

o |

itk::PreOrderTreelterator iterates through the tree from left to right but do a depth first search.

itk::PreOrderTreelterator<TreeType> preOrderIt (tree);
for (preOrderIt.GoToBegin(); !preOrderIt.IsAtEnd(); ++preOrderIt)

{
std::cout << preOrderIt.Get () << std::endl;

}
std::cout << std::endl;

The itk::PostOrderTreelterator iterates through the tree from left to right but goes from the
leaves to the root in the search.

itk::PostOrderTreelterator<TreeType> postOrderIt (tree);
for (postOrderIt.GoToBegin(); !postOrderIt.IsAtEnd(); ++postOrderIt)

{
std::cout << postOrderIt.Get () << std::endl;

}
std::cout << std::endl;

The itk::RootTreelterator goes from one node to the root. The second arguments is the starting
node. Here we go from the leaf node (value = 6) up to the root.

itk::RootTreelterator<TreeType> rootIt (tree,tree->GetNode (4));
for (rootIt.GoToBegin(); !rootIt.IsAtEnd(); ++rootIt)

{

std::cout << rootIt.Get () << std::endl;

}
std::cout << std::endl;

Administrator
注释框
注意：树的前序以及后序遍历

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1PreOrderTreeIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1PostOrderTreeIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1RootTreeIterator.html

CHAPTER

FIVE

SPATIAL OBJECTS

This chapter introduces the basic classes that describe itk::SpatialObjects.

5.1 Introduction

We promote the philosophy that many of the goals of medical image processing are more effectively
addressed if we consider them in the broader context of object processing. ITK’s Spatial Object
class hierarchy provides a consistent API for querying, manipulating, and interconnecting objects
in physical space. Via this API, methods can be coded to be invariant to the data structure used
to store the objects being processed. By abstracting the representations of objects to support their
representation by data structures other than images, a broad range of medical image analysis research
is supported; key examples are described in the following. |

Model-to-image registration. A mathematical instance of an object can be registered with an im-
age to localize the instance of that object in the image. Using SpatialObjects, mutual informa-
tion, cross-correlation, and boundary-to-image metrics can be applied without modification to
perform spatial object-to-image registration.

Model-to-model registration. Iterative closest point, landmark, and surface distance minimization
methods can be used with any ITK transform, to rigidly and non-rigidly register image, FEM,
and Fourier descriptor-based representations of objects as SpatialObjects.

Atlas formation. Collections of images or SpatialObjects can be integrated to represent expected
object characteristics and their common modes of variation. Labels can be associated with the
objects of an atlas.

Storing segmentation results from one or multiple scans. Results of segmentations are best
stored in physical/world coordinates so that they can be combined and compared with other
segmentations from other images taken at other resolutions. Segmentation results from hand
drawn contours, pixel labelings, or model-to-image registrations are treated consistently.

Administrator
下划线

Administrator
注释框
注意：类型适应性比较强？

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

112 Chapter 5. Spatial Objects

Capturing functional and logical relationships between objects. SpatialObjects can have parent
and children objects. Queries made of an object (such as to determine if a point is inside of
the object) can be made to integrate the responses from the children object. Transformations
applied to a parent can also be propagated to the children. Thus, for example, when a liver
model is moved, its vessels move with it.

Conversion to and from images. Basic functions are provided to render any SpatialObject (or col-
lection of SpatialObjects) into an image.

I0. SpatialObject reading and writing to disk is independent of the SpatialObject class hierarchy.
Meta object IO (through itk::MetaImageIO) methods are provided, and others are easily
defined.

Tubes, blobs, images, surfaces. Are a few of the many SpatialObject data containers and types
provided. New types can be added, generally by only defining one or two member functions
in a derived class.

In the remainder of this chapter several examples are used to demonstrate the many spatial objects
found in ITK and how they can be organized into hierarchies using itk::SceneSpatialObject.
Further the examples illustrate how to use SpatialObject transformations to control and calculate the
position of objects in space.

5.2 Hierarchy

treel

Spatial objects can be combined to form a hierarchy as a tree. By design, a SpatialObject can
have one parent and only one. Moreover, each transform is stored within each object, therefore the
hierarchy cannot be described as a Directed Acyclic Graph (DAG) but effectively as a tree. The user
is responsible for maintaining the tree structure, no checking is done to ensure a cycle-free tree.

The source code for this section can be found in the file _‘

SpatialObjectHierarchy.cxx.

This example describes how itk::SpatialObject can form a hierarchy. This first example also
shows how to create and manipulate spatial objects.

#include "itkSpatialObject.h"

First, we create two spatial objects and give them the names First Object and Second Object,
respectively.

using SpatialObjectIype = itk::SpatialObject<3>;

SpatialObjectType: :Pointer objectl = SpatialObjectType ::New();
objectl->GetProperty () ->SetName ("First Object");

Administrator
下划线

Administrator
注释框
注意：附属关系

Administrator
注释框
注意：可以将空间对象组合成tree

Administrator
下划线

Administrator
注释框
注意：用户负责维护树形结构

https://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.2. Hierarchy 113

SpatialObjectType: :Pointer object2 = SpatialObjectType ::New();
object2->GetProperty () ->SetName ("Second Object");

We then add the second object to the first one by using the AddSpatialObject () method. As a
result object2 becomes a child of objectl.

objectl->AddSpatialObject (object2);

We can query if an object has a parent by using the HasParent() method. If it has one, the
GetParent () method returns a constant pointer to the parent. In our case, if we ask the parent’s
name of the object2 we should obtain: First Object.

if (object2->HasParent ())
{
std::cout << "Name of the parent of the object2: ";
std::cout << object2->GetParent () ->GetProperty () ->GetName () << std::endl;
}

To access the list of children of the object, the GetChildren () method returns a pointer to the (STL)
list of children.

SpatialObjectType::ChildrenListType * childrenList = objectl->GetChildren();
std::cout << "objectl has " << childrenList->size() << " child" << std::endl;

SpatialObjectType: :ChildrenListType: :const_iterator it
= childrenList->begin();

while (it != childrenList->end())
{
std::cout << "Name of the child of the object 1: ";
std::cout << (*it)->GetProperty()->GetName () << std::endl;
++it;

}
Do NOT forget to delete the list of children since the GetChildren () function creates an internal
list.

delete childrenlList;

An object can also be removed by using the RemoveSpatialObject () method.

objectl->RemoveSpatialObject (object2);

We can query the number of children an object has with the GetNumberOfChildren () method.

Administrator
注释框
注意：使用树形结构对空间对象进行组织

114 Chapter 5. Spatial Objects

std::cout << "Number of children for objectl: ";
std::cout << objectl->GetNumberOfChildren() << std::endl;

The Clear () method erases all the information regarding the object as well as the data. This method
is usually overloaded by derived classes.

objectl->Clear();

The output of this first example looks like the following:

Name of the parent of the object2: First Object
objectl has 1 child

Name of the child of the object 1: Second Object
Number of children for objectl: 0

5.3 SpatialObject Tree Container

The source code for this section can be found in the file
SpatialObjectTreeContainer.cxx.

This example describes how to use the itk::SpatialObjectTreeContainer to form a hierarchy
of SpatialObjects. First we include the appropriate header file.

#include "itkSpatialObjectTreeContainer.h"

Next we define the type of node and the type of tree we plan to use. Both are templated over the
dimensionality of the space. Let’s create a 2-dimensional tree.

using NodeType = itk::GroupSpatialObject< 2 >;
using TreeType = itk::SpatialObjectTreeContainer< 2 >;

Then, we can create three nodes and set their corresponding identification numbers (using Set Id).

NodeType: :Pointer object0 = NodeType: :New () ;
object0->SetId(0);
NodeType: :Pointer objectl = NodeType: :New () ;
objectl->SetId(1);
NodeType: :Pointer object2 = NodeType: :New () ;
object2->SetId(2);

The hierarchy is formed using the AddSpatialObject () function.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectTreeContainer.html

5.4. Transformations 115

object0->AddSpatialObject (objectl);
objectl->AddSpatialObject (object2);

After instantiation of the tree we set its root using the SetRoot () function.

TreeType: :Pointer tree = TreeType::New();
tree->SetRoot (object0) ;

The tree iterators described in a previous section of this guide can be used to parse the hierarchy. For
example, viaan itk::LevelOrderTreelterator templated over the type of tree, we can parse the
hierarchy of SpatialObjects. We set the maximum level to 10 which is enough in this case since our
hierarchy is only 2 deep.

itk::LevelOrderTreelterator<TreeType> levellt (tree,10);
levellt.GoToBegin();
while (!levellt.IsAtEnd())

{

std::cout << levelIt.Get()->GetId() << " ("<< levelIt.GetLevel (

<< ")" << std::endl;
++levellt;
}

Tree iterators can also be used to add spatial objects to the hierarchy. Here we show how to use the
itk::PreOrderTreelterator to add a fourth object to the tree.

NodeType: :Pointer object4 = NodeType: :New () ;
itk::PreOrderTreelterator<TreeType> prelt (tree);
prelt.Add (objectd);

5.4 Transformations

The source code for this section can be found in the file
SpatialObjectTransforms.cxx.

This example describes the different transformations associated with a spatial object.
Figure 5.1 shows our set of transformations.

Like the first example, we create two spatial objects and give them the names First Object and
Second Object, respectively.

Administrator
注释框
注意：深度优先遍历？？

https://www.itk.org/Doxygen/html/classitk_1_1LevelOrderTreeIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1PreOrderTreeIterator.html

116 Chapter 5. Spatial Objects

World IndexToWorld
Transform
ObjectToWorld
Transform
Parent Node ObjectToParent
Transform
NodeToParentNode
Transform
ObjectToNode IndexToObject
Node
Transform Transform
Object Index

Figure 5.1: Set of transformations associated with a Spatial Object

using SpatialObjectIype = itk::SpatialObject<2>;
using TransformIype = SpatialObjectType::TransformType;

SpatialObjectType: :Pointer objectl = SpatialObjectType ::New();
objectl->GetProperty () ->SetName ("First Object");

SpatialObjectType: :Pointer object2 = SpatialObjectType ::New();
object2->GetProperty () ->SetName ("Second Object");
objectl->AddSpatialObject (object2) ;

Instances of itk::SpatialObject maintain three transformations internally that can be used to/
compute the position and orientation of data and objects. These transformations are: an IndexToOb
jectTransform, an ObjectToParentTransform, and an ObjectToWorldTransform. As a convenience

to the user, the global transformation IndexToWorldTransform and its inverse, WorldToIndexTrans-
form, are also maintained by the class. Methods are provided by SpatialObject to access and manip-
ulate these transforms.

The two main transformations, IndexToObjectTransform and ObjectToParentTransform, are applied
successively. ObjectToParentTransform is applied to children.

The IndexToObjectTransform transforms points from the internal data coordinate system of the
object (typically the indices of the image from which the object was defined) to “physical” space
(which accounts for the spacing, orientation, and offset of the indices).

-=>
\spacing orientation offset

of the indices

Administrator
下划线

Administrator
注释框
注意：空间对象维护的三个内置转换

Administrator
注释框
注意：图像索引-->（根据spacing、orientation、offset of the indices）物理位置

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.4. Transformations 117

The ObjectToParentTransform transforms points from the object-specific “physical” space to the
“physical” space of its parent object. As one can see from the figure 5.1, the ObjectToParentTrans-
form is composed of two transforms: ObjectToNodeTransform and NodeToParentNodeTransform.
The ObjectToNodeTransformis not applied to the children, but the NodeToParentNodeTransformis.
Therefore, if one sets the ObjectToParentTransform, the NodeToParentNodeTransform is actually
set.

The ObjectToWorldTransform maps points from the reference system of the SpatialObject into the
global coordinate system. This is useful when the position of the object is known only in the global
coordinate frame. Note that by setting this transform, the ObjectToParent transform is recomputed.

These transformations use the itk::FixedCenterOfRotationAffineTransform. They are cre-
ated in the constructor of the spatial itk::SpatialObject.

First we define an index scaling factor of 2 for the object2. This is done by setting the Scale of the
IndexToObjectTransform.

double scale[2];

scale[0]=2;

scale[l]=2;
object2->GetIndexToObjectTransform()->SetScale (scale);

Next, we apply an offset on the ObjectToParentTransform of the child object. Therefore, object2
is now translated by a vector [4,3] regarding to its parent.

TransformType: :0ffsetType Object2ToObjectlOffset;
Object2ToObject10ffset [0] = 4;

Object2ToObjectlOffset[1] = 3;
object2->GetObjectToParentTransform() ->SetOffset (Object2ToObjectlOffset);

To realize the previous operations on the transformations, we should invoke the
ComputeObjectToWorldTransform() that recomputes all dependent transformations.

object2->ComputeObjectToWorldTransform() ;

We can now display the ObjectToWorldTransform for both objects. One should notice that the
FixedCenterOfRotationAffineTransform derives from itk::AffineTransform and therefore the
only valid members of the transformation are a Matrix and an Offset. For instance, when we invoke
the Scale () method the internal Matrix is recomputed to reflect this change.

The FixedCenterOfRotationAffineTransform performs the following computation

X' =R-(S-X-C)+C+V 3.1

Where R is the rotation matrix, S is a scaling factor, C is the center of rotation and V is a translation

Administrator
下划线

Administrator
高亮

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1FixedCenterOfRotationAffineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

118 Chapter 5. Spatial Objects

vector or offset. Therefore the affine matrix M and the affine offset 7 are defined as:

M=R-S (5.2)

T=C+V—-R-C (5.3)

This means that GetScale () and GetOffset () as well as the GetMatrix () might not be set to the
expected value, especially if the transformation results from a composition with another transforma-
tion since the composition is done using the Matrix and the Offset of the affine transformation.

Next, we show the two affine transformations corresponding to the two objects.

std::cout << "object2 IndexToObject Matrix: " << std::endl;

std::cout << object2->GetIndexToObjectTransform()->GetMatrix () << std::endl;
std::cout << "object2 IndexToObject Offset: ";

std::cout << object2->GetIndexToObjectTransform()->GetOffset () << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;

std::cout << object2->GetIndexToWorldTransform()->GetMatrix () << std::endl;
std::cout << "object2 IndexToWorld Offset: ";

std::cout << object2->GetIndexToWorldTransform()->GetOffset () << std::endl;

Then, we decide to translate the first object which is the parent of the second by a vector [3,3].
This is still done by setting the offset of the ObjectToParentTransform. This can also be done by
setting the ObjectToWorldTransform because the first object does not have any parent and therefore
is attached to the world coordinate frame.

TransformType: :0ffsetType ObjectlToWorldOffset;
Objectl1ToWorldOffset [0] 38
Objectl1ToWorldOffset[1] 3

2

objectl->GetObjectToParentTransform() ->SetOffset (Object1lToWorldOffset) ;

Next we invoke ComputeObjectToWorldTransform() on the modified object. This will propagate
the transformation through all its children.

objectl->ComputeObjectToWorldTransform() ;

Figure 5.2 shows our set of transformations.

Finally, we display the resulting affine transformations.

std::cout << "objectl IndexToWorld Matrix: " << std::endl;

std::cout << objectl->GetIndexToWorldTransform()->GetMatrix () << std::endl;
std::cout << "objectl IndexToWorld Offset: ";

std::cout << objectl->GetIndexToWorldTransform()->GetOffset () << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;

std::cout << object2->GetIndexToWorldTransform()->GetMatrix () << std::endl;

Administrator
注释框
注意：子节点的形变转换依赖于父节点的形变转换？？

Administrator
下划线

5.5. Types of Spatial Objects 119

e Object 2

Object 1

Figure 5.2: Physical positions of the two objects in the world frame (shapes are merely for illustration purposes).

std::cout << "object2 IndexToWorld Offset: ";
std::cout << object2->GetIndexToWorldTransform()->GetOffset () << std::endl;

The output of this second example looks like the following:

object?2
20
02
object?2
object?2
20
02
object?2
objectl
10
01
objectl
object?2
20
02
object?2

IndexToObject Matrix:

IndexToObject Offset: 0 0
IndexToWorld Matrix:

IndexToWorld Offset: 4 3
IndexToWorld Matrix:

IndexToWorld Offset: 3 3
IndexToWorld Matrix:

IndexToWorld Offset: 7 6

5.5 Types of Spatial Objects

This section describes in detail the variety of spatial objects implemented in ITK.

120 Chapter 5. Spatial Objects

5.5.1 ArrowSpatialObject

The source code for this section can be found in the file
ArrowSpatialObject.cxx.

This example shows how to create an itk::ArrowSpatialObject. Let’s begin by including the
appropriate header file.

#include "itkArrowSpatialObject.h"

The itk::ArrowSpatialObject, like many SpatialObjects, is templated over the dimensionality
of the object.

using ArrowType = itk::ArrowSpatialObject<3>;
ArrowType: :Pointer myArrow = ArrowIype::New();

The length of the arrow in the local coordinate frame is done using the SetLength () method. By
default the length is set to 1.

myArrow->SetLength (2) ;

The direction of the arrow can be set using the SetDirection () method. Calling SetDirection ()
modifies the ObjectToParentTransform (not the IndexToObjectTransform). By default the
direction is set along the X axis (first direction).

ArrowType: :VectorType direction;
direction.Fill (0);

direction[1l] = 1.0;
myArrow->SetDirection (direction);

5.5.2 BlobSpatialObject
The source code for this section can be found in the file
BlobSpatialObject.cxx.

itk::BlobSpatialObject defines an N-dimensional blob. Like other SpatialObjects this class
derives from itk::itkSpatialObject. A blob is defined as a list of points which compose the
object.

Let’s start by including the appropriate header file.

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1itkSpatialObject.html

5.5. Types of Spatial Objects 121

#include "itkBlobSpatialObject.h"

BlobSpatialObject is templated over the dimension of the space. A BlobSpatialObject contains a list
of SpatialObjectPoints. Basically, a SpatialObjectPoint has a position and a color.

#include "itkSpatialObjectPoint.h"

First we declare some type definitions.

using BlobTIype = itk::BlobSpatialObject<3>;
using BlobPointer = BlobType::Pointer;
using BlobPointType = itk::SpatialObjectPoint<3>;

Then, we create a list of points and we set the position of each point in the local coordinate system
using the SetPosition () method. We also set the color of each point to be red.

BlobType: :PointListType list;

for(unsigned int i=0; i<4; i++
{
BlobPointType p;
p.SetPosition(i,i+1,1+2);
p.SetRed (1) ;
p.SetGreen(0);
p.SetBlue (0) ;
p.SetAlpha(1.0);
list.push_back(p);

Next, we create the blob and set its name using the SetName () function. We also set its Identification
number with SetId () and we add the list of points previously created.

BlobPointer blob = BlobType::New();
blob->GetProperty () —>SetName ("My Blob");
blob->SetId(1);

blob->SetPoints(list);

The GetPoints () method returns a reference to the internal list of points of the object.

BlobType: :PointListType pointList = blob->GetPoints();
std::cout << "The blob contains " << pointList.size();
std::cout << " points" << std::endl;

Then we can access the points using standard STL iterators and GetPosition () and GetColor ()
functions return respectively the position and the color of the point.

Administrator
下划线

Administrator
高亮

122 Chapter 5. Spatial Objects

BlobType: :PointListType::const_iterator it = blob->GetPoints () .begin();
while (it != blob->GetPoints () .end())
{

std::cout << "Position = " << (*it).GetPosition() << std::endl;
std::cout << "Color = " << (*it).GetColor () << std::endl;
Trralic g

}

5.5.3 CylinderSpatialObject

The source code for this section can be found in the file
CylinderSpatialObject.cxx.

This example shows how to create a itk::CylinderSpatialObject. Let’s begin by including the
appropriate header file.

#include "itkCylinderSpatialObject.h"

An itk::CylinderSpatialObject exists only in 3D, therefore, it is not templated.

using CylinderType = itk::CylinderSpatialObject;

We create a cylinder using the standard smart pointers.

CylinderType::Pointer myCylinder = CylinderType: :New();

The radius of the cylinder is set using the SetRadius () function. By default the radius is set to 1.

double radius = 3.0;
myCylinder->SetRadius (radius);

The height of the cylinder is set using the SetHeight () function. By default the cylinder is defined
along the X axis (first dimension).

double height = 12.0;
myCylinder->SetHeight (height);

Like any other itk::SpatialObjects, the IsInside () function can be used to query if a point is
inside or outside the cylinder.

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1CylinderSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1CylinderSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.5. Types of Spatial Objects 123

itk::Point<double, 3> insidePoint;
insidePoint [0]=1;

insidePoint [1]=2;
insidePoint [2]=0;
std::cout << "Is my point "<< insidePoint << " inside the cylinder? : "

<< myCylinder->IsInside (insidePoint) << std::endl;

We can print the cylinder information using the Print () function.

myCylinder->Print (std::cout);

5.5.4 EllipseSpatialObject

The source code for this section can be found in the file
EllipseSpatialObject.cxx.

itk::EllipseSpatialObject defines an n-Dimensional ellipse. Like other spatial objects this
class derives from itk::SpatialObject. Let’s start by including the appropriate header file.

#include "itkEllipseSpatialObject.h"

Like most of the SpatialObjects, the itk::EllipseSpatialObject is templated over the dimen-
sion of the space. In this example we create a 3-dimensional ellipse.

using EllipseType = itk::EllipseSpatialObject<3>;
EllipseType: :Pointer myEllipse = EllipseType: :New();
Then we set a radius for each dimension. By default the radius is set to 1.
EllipseType: :ArrayType radius;
for (unsigned int i = 0; i<3; ++i)
{
radius[i] = 1i;

}

myEllipse->SetRadius (radius);

Or if we have the same radius in each dimension we can do

myEllipse->SetRadius (2.0);

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

124 Chapter 5. Spatial Objects

We can then display the current radius by using the GetRadius () function:

EllipseType: :ArrayType myCurrentRadius = myEllipse->GetRadius () ;
std::cout << "Current radius is " << myCurrentRadius << std::endl;

Like other SpatialObjects, we can query the object if a point is inside the object by using the IsIn-
side(itk::Point) function. This function expects the point to be in world coordinates.

itk::Point<double, 3> insidePoint;
insidePoint.Fill (1.0);
if (myEllipse->IsInside(insidePoint))
{
std::cout << "The point " << insidePoint;
std::cout << " is really inside the ellipse" << std::endl;

}

itk::Point<double, 3> outsidePoint;
outsidePoint.Fill(3.0);
if (!myEllipse->IsInside (outsidePoint))
{
std::cout << "The point " << outsidePoint;
std::cout << " is really outside the ellipse" << std::endl;

}

All spatial objects can be queried for a value at a point. The IsEvaluableAt () function returns a
boolean to know if the object is evaluable at a particular point.

if (myEllipse->IsEvaluableAt (insidePoint))
{

std::cout << "The point " << insidePoint;
std::cout << " is evaluable at the point " << insidePoint << std::endl;

}

If the object is evaluable at that point, the ValueAt () function returns the current value at that
position. Most of the objects returns a boolean value which is set to true when the point is inside
the object and false when it is outside. However, for some objects, it is more interesting to return a
value representing, for instance, the distance from the center of the object or the distance from from
the boundary.

double value;
myEllipse->ValueAt (insidePoint,value);
std::cout << "The value inside the ellipse is: " << value << std::endl;

Like other spatial objects, we can also query the bounding box of the object by using
GetBoundingBox (). The resulting bounding box is expressed in the local frame.

Administrator
注释框
注意：查询点是否在对象内部

Administrator
下划线

Administrator
下划线

5.5. Types of Spatial Objects 125

myEllipse->ComputeBoundingBox () ;
EllipseType: :BoundingBoxType * boundingBox = myEllipse->GetBoundingBox () ;
std::cout << "Bounding Box: " << boundingBox->GetBounds () << std::endl;

5.5.5 GaussianSpatialObject

The source code for this section can be found in the file
GaussianSpatialObject.cxx.

This example shows how to create a itk::GaussianSpatialObject which defines a Gaussian in
a N-dimensional space. This object is particularly useful to query the value at a point in physical
space. Let’s begin by including the appropriate header file. /L:l

#include "itkGaussianSpatialObject.h"

The itk::GaussianSpatialObject is templated over the dimensionality of the object.
using GaussianType = itk::GaussianSpatialObject<3>;
GaussianType: :Pointer myGaussian = GaussianType: :New();

The SetMaximum () function is used to set the maximum value of the Gaussian.

myGaussian->SetMaximum(2) ;

The radius of the Gaussian is defined by the SetRadius () method. By default the radius is set to
1.0.

myGaussian->SetRadius (3) ;

The standard ValueAt () function is used to determine the value of the Gaussian at a particular point
in physical space.

itk::Point<double, 3> pt;

pt [0]=1;
pt[1]=2;
pt[2]=1;

double value;
myGaussian->ValueAt (pt, value);
std::cout << "ValueAt (" << pt << ") =" << value << std::endl;

Administrator
下划线

Administrator
注释框
注意：

https://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html

126 Chapter 5. Spatial Objects

5.5.6 GroupSpatialObject

The source code for this section can be found in the file
GroupSpatialObject.cxx.

A itk::GroupSpatialObject does not have any data associated with it. It can be used to group
objects or to add transforms to a current object. In this example we show how to use a GroupSpa-
tialObject.

Let’s begin by including the appropriate header file.

#include "itkGroupSpatialObject.h"

The itk::GroupSpatialObject is templated over the dimensionality of the object.

using GroupType = itk::GroupSpatialObject<3>;
GroupType: :Pointer myGroup = GroupType: :New();

Next, we create an itk::EllipseSpatialObject and add it to the group.

using EllipseType = itk::EllipseSpatialObject<3>;
EllipseType::Pointer myEllipse = EllipseTIype: :New();
myEllipse->SetRadius (2);

myGroup->AddSpatialObject (myEllipse) ;

We then translate the group by 10mm in each direction. Therefore the ellipse is translated in physical
space at the same time.

GroupType: :VectorType offset;

offset.Fill(10); Z_|
)i

myGroup->GetObjectToParentTransform()->SetOffset (offset
myGroup->ComputeObjectToWorldTransform() ;

We can then query if a point is inside the group using the IsInside () function. We need to specify
in this case that we want to consider all the hierarchy, therefore we set the depth to 2.

GroupType: :PointType point;

point.Fill (10);

std::cout << "Is my point " << point << " inside?: "
<< myGroup->IsInside(point,2) << std::endl;

Like any other SpatialObjects we can remove the ellipse from the group using the
RemoveSpatialObject () method.

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：该类的作用

Administrator
注释框
注意：可以统一执行某个操作？？

https://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

5.5. Types of Spatial Objects 127

myGroup->RemoveSpatialObject (myEllipse);

5.5.7 ImageSpatialObject

The source code for this section can be found in the file
ImageSpatialObject.cxx.

An itk::ImageSpatialObject contains an itk::Image but adds the notion of spatial trans-
formations and parent-child hierarchy. Let’s begin the next example by including the appropriate
header file.

#include "itkImageSpatialObject.h"

We first create a simple 2D image of size 10 by 10 pixels.

using Image = itk::Image<short,2>;
Image: :Pointer image = Image::New();
Image: :SizeType size = {{ 10, 10 }};
Image: :RegionType region;
region.SetSize (size);
image->SetRegions (region);
image->Allocate();

Next we fill the image with increasing values.

using Iterator = itk::ImageRegionIterator<Image>;
Iterator it (image,region);
short pixelValue =0;

for (it.GoToBegin(); !it.IsAtEnd(); ++it, ++pixelValue)
{
it.Set (pixelValue);
}

We can now define the ImageSpatialObject which is templated over the dimension and the pixel type
of the image.

using ImageSpatialObject = itk::ImageSpatialObject<2,short>;
ImageSpatialObiject: :Pointer imageSO = ImageSpatialObject::New();

Then we set the itkImage to the ImageSpatialObject by using the Set Image () function.

Administrator
下划线

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

128 Chapter 5. Spatial Objects

imageSO->SetImage (image) ;

At this point we can use IsInside (), ValueAt () and DerivativeAt () functions inherent in Spa-
tialObjects. The IsInside () value can be useful when dealing with registration.

using Point = itk::Point<double, 2>;
Point insidePoint;
insidePoint.Fill (9);

if(imageSO->IsInside(insidePoint))
{
std::cout << insidePoint << " is inside the image." << std::endl;

}

The ValueAt () returns the value of the closest pixel, i.e no interpolation, to a given physical point.

double returnedValue;

imageSO->ValueAt (insidePoint, returnedvalue) ;

std::cout << "ValueAt (" << insidePoint << ") = " << returnedValue
<< std::endl;

The derivative at a specified position in space can be computed using the DerivativeAt () function.
The first argument is the point in physical coordinates where we are evaluating the derivatives. The
second argument is the order of the derivation, and the third argument is the result expressed as a
itk::Vector. Derivatives are computed iteratively using finite differences and, like the ValueAt (),
no interpolator is used. R_| |

ImageSpatialObject: :OutputVectorType returnedDerivative;
imageSO->DerivativeAt (insidePoint, 1, returnedDerivative) ;
std::cout << "First derivative at " << insidePoint;
std::cout << " = " << returnedDerivative << std::endl;

5.5.8 ImageMaskSpatialObject

The source code for this section can be found in the file
ImageMaskSpatialObject.cxx.

An itk::ImageMaskSpatialObject is similar to the itk::ImageSpatialObject and derived
from it. However, the main difference is that the IsInside () returns true if the pixel intensity in
the image is not zero.

The supported pixel types does not include itk::RGBPixel, itk::RGBAPixel, etc. So far it only
allows to manage images of simple types like unsigned short, unsigned int, or itk::Vector. Let’s
begin by including the appropriate header file.

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：计算特定点的梯度

Administrator
下划线

Administrator
注释框
注意：梯度的计算使用的是有限差分

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBAPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.5. Types of Spatial Objects 129

#include "itkImageMaskSpatialObject.h"

The ImageMaskSpatialObject is templated over the dimensionality.

using ImageMaskSpatialObject = itk::ImageMaskSpatialObject<3>;

Next we create an itk::Image of size 50x50x50 filled with zeros except a bright square in the
middle which defines the mask.

using PixelType = ImageMaskSpatialObject::PixelType;
using ImageType = ImageMaskSpatialObject::ImageType;
using Iterator = itk::ImageRegionIterator< ImageType >;

ImageType: :Pointer image = ImageType: :New();
ImageType::SizeType size = {{ 50, 50, 50 }};
ImageType: :IndexType index = {{ 0, 0, 0 }};

ImageType: :RegionType region;

region.SetSize (size);
region.SetIndex (index) ;

image->SetRegions(region);
image->Allocate (true); // initialize buffer to zero

ImageType: :RegionType insideRegion;
ImageType::SizeType insideSize = {{ 30, 30, 30 }};
ImageType: : IndexType insideIndex = {{ 10, 10, 10 }};
insideRegion.SetSize(insideSize);
insideRegion.SetIndex (insideIndex);

Iterator it (image, insideRegion);
it.GoToBegin () ;

while(!'it.IsAtEnd())
{
it.Set (itk::NumericTraits< PixelType >::max());
Trralic g

}

Then, we create an ImageMaskSpatialObject.

ImageMaskSpatialObject: :Pointer maskSO = ImageMaskSpatialObject: :New () ;

We then pass the corresponding pointer to the image.

maskSO->SetImage (image) ;

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

130 Chapter 5. Spatial Objects

We can then test if a physical itk::Point is inside or outside the mask image. This is particularly
useful during the registration process when only a part of the image should be used to compute the

metric.

ImageMaskSpatialObject::PointType inside;

inside.Fil1(20);

std::cout << "Is my point " << inside << " inside my mask? "
<< maskSO->IsInside (inside) << std::endl;

ImageMaskSpatialObject::PointType outside;

outside.Fill (45);

std::cout << "Is my point " << outside << " outside my mask? "
<< !maskSO->IsInside (outside) << std::endl;

5.5.9 LandmarkSpatialObject

The source code for this section can be found in the file
LandmarkSpatialObject.cxx.

itk::LandmarkSpatialObject contains a list of itk::SpatialObjectPoints which have a po-
sition and a color. Let’s begin this example by including the appropriate header file.

#include "itkLandmarkSpatialObject.h"

LandmarkSpatialObject is templated over the dimension of the space.

Here we create a 3-dimensional landmark.
using LandmarkType = itk::LandmarkSpatialObject<3>;
using LandmarkPointer = LandmarkType::Pointer;

using LandmarkPointType = itk::SpatialObjectPoint<3>;

LandmarkPointer landmark = LandmarkType::New();

Next, we set some properties of the object like its name and its identification number.

landmark->GetProperty () -—>SetName ("Landmarkl") ;
landmark->SetId(1);

We are now ready to add points into the landmark. We first create a list of SpatialObjectPoint and
for each point we set the position and the color.

LandmarkType: :PointListType list;

Administrator
注释框
注意：ROI

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1LandmarkSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectPoint.html

5.5. Types of Spatial Objects 131

for (unsigned int i=0; i<5; ++i
{
LandmarkPointType p;
p.SetPosition(i,i+1,1i+2);
p.SetColor(1,0,0,1);
list.push_back(p);
}

Then we add the list to the object using the SetPoints () method.

landmark->SetPoints (list);

The current point list can be accessed using the GetPoints () method. The method returns a refer-
ence to the (STL) list.

size_ t nPoints = landmark->GetPoints().size();
std::cout << "Number of Points in the landmark: " << nPoints << std::endl;

LandmarkType: :PointListType: :const_iterator it
= landmark->GetPoints () .begin();

while (it != landmark->GetPoints().end())
{
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Color: " << (*it).GetColor() << std::endl;
++it;

}

5.5.10 LineSpatialObject

The source code for this section can be found in the file
LineSpatialObject.cxx.

itk::LineSpatialObject defines a line in an n-dimensional space. A line is defined as a list of
points which compose the line, i.e a polyline. We begin the example by including the appropriate
header files.

#include "itkLineSpatialObject.h"

LineSpatialObject is templated over the dimension of the space. A LineSpatialObject contains a list
of LineSpatialObjectPoints. A LineSpatialObjectPoint has a position, n — 1 normals and a color.
Each normal is expressed as a itk::CovariantVector of size N.

First, we define some type definitions and we create our line.

Administrator
高亮

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1LineSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

132 Chapter 5. Spatial Objects

using LineType = itk::LineSpatialObject<3>;

using LinePointer = LineType::Pointer;

using LinePointType = itk::LineSpatialObjectPoint<3>;
using VectorType = itk::CovariantVector<double, 3>;

LinePointer Line = LineType::New();

We create a point list and we set the position of each point in the local coordinate system using the
SetPosition () method. We also set the color of each point to red.

The two normals are set using the SetNormal () function; the first argument is the normal itself and
the second argument is the index of the normal.

LineType: :PointListType list;

for (unsigned int i=0; i<3; ++i)
{
LinePointType p;
p.SetPosition(i,i+1,1+2);
p.SetColor(1,0,0,1);

VectorType normall;
VectorType normal2;
for (unsigned int j=0; j<3; ++j)
{
normall([j]=7;
normal2[j]=3*2;
}

p.SetNormal (normall, 0);
p.SetNormal (normal2,1);
list.push_back(p);

}

Next, we set the name of the object using SetName (). We also set its identification number with
SetId() and we set the list of points previously created.

Line->GetProperty () —>SetName ("Linel");
Line->SetId(1);
Line->SetPoints (list);

The GetPoints () method returns a reference to the internal list of points of the object.

LineType: :PointListType pointList = Line->GetPoints();

std::cout << "Number of points representing the line: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iterators. The GetPosition () and GetColor ()

Administrator
下划线

5.5. Types of Spatial Objects 133

functions return respectively the position and the color of the point. Using the GetNormal(unsigned
int) function we can access each normal.

LineType: :PointListType: :const_iterator it = Line->GetPoints () .begin();

while (it != Line->GetPoints () .end())
{
std::cout << "Position = " << (*it).GetPosition() << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
std::cout << "First normal = " << (*it).GetNormal (0) << std::endl;
std::cout << "Second normal = " << (*it).GetNormal (1) << std::endl;
std::cout << std::endl;
++it;

5.5.11 MeshSpatialObject

The source code for this section can be found in the file
MeshSpatialObject.cxx.

A itk::MeshSpatialObject contains a pointer to an itk::Mesh but adds the notion of
spatial transformations and parent-child hierarchy. This example shows how to create an
itk::MeshSpatialObject, use it to form a binary image, and write the mesh to disk.

Let’s begin by including the appropriate header file.

#include "itkSpatialObjectToImageFilter.h"
#include "itkMeshSpatialObject.h"

#include "itkSpatialObjectReader.h"
#include "itkSpatialObjectWriter.h"

The MeshSpatialObject wraps an itk: :Mesh, therefore we first create a mesh.

using MeshTrait = itk::DefaultDynamicMeshTraits< float, 3, 3 >; Mf"{::::::]

using MeshType = itk::Mesh< float, 3, MeshTrait >;

using CellTraits = MeshType::CellTraits;

using CellInterfaceType = itk::CellInterface< float, CellTraits >;
using TetraCellType = itk::TetrahedronCell< CelllInterfaceType >;
using PointType = MeshType::PointTIype;

using CellType = MeshType::CellType;

using CellAutoPointer = CellType::CellAutoPointer;

MeshType: :Pointer myMesh = MeshType: :New();

MeshType: :CoordRepType testPointCoords[4] [3]

Administrator
下划线

Administrator
注释框
注意：？？

https://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

134 Chapter 5. Spatial Objects

= { {0,0,0}, {9,0,0}, {9,9,0}, {0,0,9} };
MeshType: :PointIdentifier tetraPoints[4] = {0,1,2,4};

int i;

for (i=0; i < 4; ++i)
{
myMesh->SetPoint (i, PointType (testPointCoords([i]));
}

myMesh->SetCellsAllocationMethod (

MeshType: :CellsAllocatedDynamicallyCellByCell);
CellAutoPointer testCelll;
testCelll.TakeOwnership(new TetraCellType);
testCelll->SetPointIds (tetraPoints);

myMesh->SetCell (0, testCelll);

We then create a MeshSpatialObject which is templated over the type of mesh previously defined...

using MeshSpatialObjectType = itk::MeshSpatialObject< MeshType >;
MeshSpatialObjectType: :Pointer myMeshSpatialObject =
MeshSpatialObjectType: :New();

... and pass the Mesh pointer to the MeshSpatialObject

myMeshSpatialObject->SetMesh (myMesh) ;

The actual pointer to the passed mesh can be retrieved using the GetMesh () function, just like any
other SpatialObjects.

myMeshSpatialObject->GetMesh () ;

The GetBoundingBox (), ValueAt (), IsInside () functions can be used to access important infor-
mation.

std::cout << "Mesh bounds : " <<
myMeshSpatialObject->GetBoundingBox () —>GetBounds () << std::endl;

MeshSpatialObjectType: :PointType myPhysicalPoint;

myPhysicalPoint.Fill (1) ;

std::cout << "Is my physical point inside? : " <<
myMeshSpatialObject->IsInside (myPhysicalPoint) << std::endl;

5.5. Types of Spatial Objects 135

Now that we have defined the MeshSpatialObject, we can save the actual mesh using the
itk::SpatialObjectWriter. In order to do so, we need to specify the type of Mesh we are
writing.

using WriterType = itk::SpatialObjectWriter< 3, float, MeshTrait >;
WriterType::Pointer writer = WriterType::New();

Then we set the mesh spatial object and the name of the file and call the the Update () function.
writer->SetInput (myMeshSpatialObject);

writer->SetFileName ("myMesh.meta");
writer->Update () ;

Reading the saved mesh is done using the itk::SpatialObjectReader. Once again we need to
specify the type of mesh we intend to read.

using ReaderType = itk::SpatialObjectReader< 3, float, MeshTrait >;
ReaderType: :Pointer reader = ReaderType: :New();

We set the name of the file we want to read and call update
reader->SetFileName ("myMesh.meta");

reader—>Update () ;

Next, we show how to create a binary image of a MeshSpatialObject using the
itk::SpatialObjectToImageFilter. The resulting image will have ones inside and zeros outside

the mesh. First we define and instantiate the SpatialObjectToImageFilter. ﬂ_| mesh ,

mesh

using ImageType = itk::Image< unsigned char, 3 >;
using GroupType = itk::GroupSpatialObject< 3 >;
using SpatialObjectToImageFilterType =
itk::SpatialObjectToImageFilter< GroupType, ImageType >;
SpatialObjectToImageFilterType: :Pointer imageFilter =
SpatialObjectToImageFilterType: :New();

Then we pass the output of the reader, i.e the MeshSpatialObject, to the filter.

imageFilter->SetInput (reader->GetGroup());

Finally we trigger the execution of the filter by calling the Update () method. Note that depending
on the size of the mesh, the computation time can increase significantly.

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：mesh转换为二值图像，mesh内部全为1，外部全为0 --有用--

Administrator
下划线

Administrator
注释框
注意：时间效率低下

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html

136 Chapter 5. Spatial Objects

imageFilter->Update () ;

Then we can get the resulting binary image using the GetOutput () function.

ImageType: :Pointer myBinaryMeshImage = imageFilter->GetOutput () ;

5.5.12 SurfaceSpatialObject

The source code for this section can be found in the file
SurfaceSpatialObject.cxx.

itk::SurfaceSpatialObject defines a surface in n-dimensional space. A SurfaceSpatialObject
is defined by a list of points which lie on the surface. Each point has a position and a unique normal.
The example begins by including the appropriate header file.

#include "itkSurfaceSpatialObject.h"

SurfaceSpatialObject is templated over the dimension of the space. A SurfaceSpatialObject contains
a list of SurfaceSpatialObjectPoints. A SurfaceSpatialObjectPoint has a position, a normal and a
color.

First we define some type definitions

using SurfaceType = itk::SurfaceSpatialObject<3>;

using SurfacePointer = SurfaceTlype::Pointer;

using SurfacePointType = itk::SurfaceSpatialObjectPoint<3>;
using VectorType = itk::CovariantVector<double, 3>;

SurfacePointer Surface = SurfaceType::New();

We create a point list and we set the position of each point in the local coordinate system using the
SetPosition () method. We also set the color of each point to red.

SurfaceType: :PointListType list;

for(unsigned int i=0; i<3; i++
{
SurfacePointType p;
p.SetPosition(i,i+1,1+2);
p.SetColor(1,0,0,1);
VectorType normal;
for (unsigned int j=0; j<3; j++)

{

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1SurfaceSpatialObject.html

5.5. Types of Spatial Objects 137

normal [j]=73;

}
p.SetNormal (normal) ;
list.push_back(p);
}

Next, we create the surface and set his name using SetName (). We also set its Identification number
with SetId () and we add the list of points previously created.

Surface->GetProperty () ->SetName ("Surfacel");
Surface->SetId (1) ;
Surface->SetPoints (list);

The GetPoints () method returns a reference to the internal list of points of the object.

SurfaceType: :PointListType pointList = Surface->GetPoints();
std::cout << "Number of points representing the surface: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iterators. GetPosition() and GetColor ()
functions return respectively the position and the color of the point. GetNormal () returns the normal
asa itk::CovariantVector.

SurfaceType: :PointListType: :const_iterator it
= Surface->GetPoints () .begin();

while (it != Surface->GetPoints().end())
{
std::cout << "Position = " << (*it).GetPosition() << std::endl;
std::cout << "Normal = " << (*it).GetNormal () << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
std::cout << std::endl;
it++;

}

5.5.13 TubeSpatialObject

itk::TubeSpatialObject represents a base class for tﬁe representation of tubular

structures using SpatialObjects. The classes itk::VesselTubeSpatialObject and
itk::DTITubeSpatialObject derive from this base class. VesselTubeSpatialObject repre-
sents blood vessels extracted for an image and DTITubeSpatialObject is used to represent fiber
tracts from diffusion tensor images.

The source code for this section can be found in the file
TubeSpatialObject.cxx.

Administrator
下划线

Administrator
注释框
注意：表示管状结构

https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1VesselTubeSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html

138 Chapter 5. Spatial Objects

itk::TubeSpatialObject defines an n-dimensional tube. A tube is defined as a list of centerline
points which have a position, a radius, some normals and other properties. Let’s start by including
the appropriate header file.

#include "itkTubeSpatialObject.h"

TubeSpatialObject is templated over the dimension of the space. A TubeSpatialObject contains a
list of TubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

using TubeType = itk::TubeSpatialObject<3>;

using TubePointer = TubeTIype::Pointer;

using TubePointType = itk::TubeSpatialObjectPoint<3>;
using VectorType = TubePointType::CovariantVectorType;

TubePointer tube = TubeType::New();

We create a point list and we set:

1. The position of each point in the local coordinate system using the SetPosition () method.
2. The radius of the tube at this position using SetRadius ().
3. The two normals at the tube is set using SetNormall () and SetNormal2 ().

4. The color of the point is set to red in our case.

TubeType: :PointListType list;
for (i=0; i<5; ++i)
{
TubePointType p;
p.SetPosition(i,i+1,1i+2);
p.SetRadius (1) ;
VectorType normall;
VectorType normal2;
for (unsigned int j=0; j<3; ++j)
{
normall([j]=73;
normal2[j]=3*2;
}

p.SetNormall (normall);
p.SetNormal2 (normal2);
p.SetColor(1,0,0,1);

list.push_back (p);
}

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

5.5. Types of Spatial Objects 139

Next, we create the tube and set its name using SetName (). We also set its identification number
with SetId() and, at the end, we add the list of points previously created.

tube->GetProperty () ->SetName ("Tubel") ;
tube->SetId(1);
tube->SetPoints (list);

The GetPoints () method return a reference to the internal list of points of the object.

TubeType: :PointListType pointList = tube->GetPoints();
std::cout << "Number of points representing the tube: ";
std::cout << pointList.size() << std::endl;

The ComputeTangentAndNormals () function computes the normals and the tangent for each point
using finite differences.

tube->ComputeTangentAndNormals () ;

Then we can access the points using STL iterators. GetPosition () and GetColor () functions re-
turn respectively the position and the color of the point. GetRadius () returns the radius at that point.
GetNormall () and GetNormall () functionsreturna itk::CovariantVector and GetTangent ()
returns a itk::Vector.

TubeType: :PointListType::const_iterator it = tube->GetPoints () .begin();
i=0;
while (it != tube->GetPoints().end())

{

std::cout << std::endl;

std::cout << "Point #" << i << std::endl;

std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "Tangent: " << (*it).GetTangent () << std::endl;
std::cout << "First Normal: " << (*it).GetNormall () << std::endl;
std::cout << "Second Normal: " << (*it).GetNormal2() << std::endl;
std::cout << "Color = " << (*it).GetColor () << std::endl;
igdrp
it+;
}

VesselTubeSpatialObject

The source code for this section can be found in the file
VesselTubeSpatialObject.cxx.

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

140 Chapter 5. Spatial Objects

itk::VesselTubeSpatialObject derivesfrom itk::TubeSpatialObject. It represents a blood
vessel segmented from an image. A VesselTubeSpatialObject is described as a list of centerline
points which have a position, a radius, and normals.

Let’s start by including the appropriate header file.

#include "itkVesselTubeSpatialObject.h"

VesselTubeSpatialObject is templated over the dimension of the space. A VesselTubeSpatialObject
contains a list of VesselTubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

using VesselTubeIype = itk::VesselTubeSpatialObject<3>;
using VesselTubePointType = itk::VesselTubeSpatialObjectPoint<3>;

VesselTubeType: :Pointer VesselTube = VesselTubeType: :New();

We create a point list and we set:

1. The position of each point in the local coordinate system using the SetPosition () method.
2. The radius of the tube at this position using SetRadius ().

3. The medialness value describing how the point lies in the middle of the vessel using
SetMedialness ().

4. The ridgeness value describing how the point lies on the ridge using SetRidgeness ().
5. The branchness value describing if the point is a branch point using SetBranchness ().

6. The three alpha values corresponding to the eigenvalues of the Hessian using
SetAlphal (),SetAlpha2 () and SetAlpha3(). N_' Hessian |

7. The mark value using SetMark ().

8. The color of the point is set to red in this example with an opacity of 1.

VesselTubeType: :PointListType list;
for (i=0; i<5; ++1i)
{
VesselTubePointType p;
p.SetPosition(i,i+1,1i+2);
.SetRadius (1) ;
.SetAlphal(i);
.SetAlpha2 (i+1);
.SetAlpha3(i+2);
.SetMedialness (i) ;

s ‘s 'O 'O 'O

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：与管状结构相关的Hessian矩阵

https://www.itk.org/Doxygen/html/classitk_1_1VesselTubeSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

5.5. Types of Spatial Objects 141

p.SetRidgeness (i) ;
p.SetBranchness (i) ;
p.SetMark (true);
p.SetColor(1,0,0,1);
list.push_back (p);

}

Next, we create the tube and set its name using SetName (). We also set its identification number
with SetId () and, at the end, we add the list of points previously created.

VesselTube->GetProperty () ->SetName ("VesselTube") ;
VesselTube->SetId (1) ;
VesselTube->SetPoints (list);

The GetPoints () method return a reference to the internal list of points of the object.

VesselTubeType: :PointListType pointList = VesselTube->GetPoints();
std::cout << "Number of points representing the blood vessel: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using STL iterators. GetPosition() and GetColor () functions
return respectively the position and the color of the point.

VesselTubeType: :PointListType: :const_iterator
it = VesselTube->GetPoints () .begin();
i=0;
while (it != VesselTube->GetPoints().end())
{
std::cout << std::endl;
std::cout << "Point #" << i << std::endl;

std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it).GetRadius() << std::endl;
std::cout << "Medialness: " << (*it).GetMedialness() << std::endl;
std::cout << "Ridgeness: " << (*it).GetRidgeness() << std::endl;
std::cout << "Branchness: " << (*it).GetBranchness() << std::endl;
std::cout << "Mark: " << (*it).GetMark() << std::endl;

std::cout << "Alphal: " << (*it).GetAlphal() << std::endl;

std::cout << "Alpha2: " << (*it).GetAlpha2() << std::endl;
std::cout << "Alpha3: " << (*it).GetAlpha3() << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
Trralic g
Tl g

}

142 Chapter 5. Spatial Objects

DTITubeSpatialObject

The source code for this section can be found in the file
DTITubeSpatialObject.cxx.

itk::DTITubeSpatialObject derives from itk::TubeSpatialObject. It represents a fiber
tracts from Diffusion Tensor Imaging. A DTITubeSpatialObject is described as a list of center-
line points which have a position, a radius, normals, the fractional anisotropy (FA) value, the ADC
value, the geodesic anisotropy (GA) value, the eigenvalues and vectors as well as the full tensor
matrix.

Let’s start by including the appropriate header file.

#include "itkDTITubeSpatialObject.h"

DTITubeSpatialObject is templated over the dimension of the space. A DTITubeSpatialObject con-
tains a list of DTITubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

using DIITubeIype = itk::DTITubeSpatialObject<3>;
using DTITubePointType = itk::DTITubeSpatialObjectPoint<3>;

DTITubeType: :Pointer dtiTube = DTITubeType: :New();

We create a point list and we set:

1. The position of each point in the local coordinate system using the SetPosition () method.
2. The radius of the tube at this position using SetRadius ().

3. The FA value using AddField (DTITubePointType: :FA).

. The ADC value using AddField (DTITubePointType: :ADC).

. The GA value using AddField (DTITubePointType: :GA).

AN n A

. The full tensor matrix supposed to be symmetric definite positive value using
SetTensorMatrix ().

7. The color of the point is set to red in our case.

DTITubeType: :PointListType list;
for (i=0; i<5; ++1i)
{
DTITubePointType p;
p.SetPosition(i,i+1,1i+2);

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

5.5. Types of Spatial Objects 143

.SetRadius (1) ;
.AddField(DTITubePointType: :FA,1i);
.AddField (DTITubePointType: :ADC,2*1);
.AddField(DTITubePointType: :GA, 3*1);
.AddField("Lambdal", 4*1i);
.AddField("Lambda2",5*1);
.AddField("Lambda3", 6*1i);

auto * v = new float[6];

for (unsigned int k=0;k<6;k++)

's 's 'O 'O 'O 'O 'O

p.SetTensorMatrix (v);
delete]] v;
p.SetColor(1,0,0,1);
list.push_back(p);

}

Next, we create the tube and set its name using SetName (). We also set its identification number
with SetId () and, at the end, we add the list of points previously created.

dtiTube->GetProperty () ->SetName ("DTITube") ;
dtiTube->SetId(1);
dtiTube->SetPoints (list);

The GetPoints () method return a reference to the internal list of points of the object.

DTITubeType: :PointListType pointList = dtiTube->GetPoints();
std::cout << "Number of points representing the fiber tract: ";
std::cout << pointList.size() << std::endl;

Then we can access the points using STL iterators. GetPosition() and GetColor () functions
return respectively the position and the color of the point.

DTITubeType: :PointListType::const_iterator it = dtiTube->GetPoints () .begin();
i=0;
while (it != dtiTube->GetPoints () .end())
{
std::cout << std::endl;
std::cout << "Point #" << i << std::endl;
std::cout << "Position: " << (*it).GetPosition() << std::endl;
std::cout << "Radius: " << (*it) .GetRadius() << std::endl;
std::cout << "FA: " << (*it).GetField (DTITubePointType::FA) << std::endl;
std::cout << "ADC: " << (*it).GetField(DTITubePointType::ADC) << std::endl;
std::cout << "GA: " << (*it).GetField (DTITubePointType::GA) << std::endl;

std::cout << "Lambdal: " << (*it).GetField("Lambdal") << std::endl;
std::cout << "Lambda2: " << (*it).GetField("Lambda2") << std::endl;
std::cout << "Lambda3: " << (*it).GetField("Lambda3") << std::endl;

std::cout << "TensorMatrix: " << (*it).GetTensorMatrix()[0] << " : ";

144 Chapter 5. Spatial Objects

std::cout << (*it).GetTensorMatrix()[1] << " : ";
std::cout << (*it).GetTensorMatrix()[2] << " : ";
std::cout << (*it).GetTensorMatrix()[3] << " : ";
std::cout << (*it).GetTensorMatrix()[4] << " : ";
std::cout << (*it).GetTensorMatrix () [5] << std::endl;
std::cout << "Color = " << (*it).GetColor() << std::endl;
++it;

++1;

5.6 SceneSpatialObject

The source code for this section can be found in the file
SceneSpatialObject.cxx.

This example describes how to use the itk::SceneSpatialObject. A SceneSpatialObject con-
tains a collection of SpatialObjects. This example begins by including the appropriate header file.

#include "itkSceneSpatialObject.h"

An SceneSpatialObject is templated over the dimension of the space which requires all the objects
referenced by the SceneSpatialObject to have the same dimension.

First we define some type definitions and we create the SceneSpatialObject.

using SceneSpatialObjectType = itk::SceneSpatialObject<3>;
SceneSpatialObjectType: :Pointer scene = SceneSpatialObjectType: :New();

Then we create two itk::EllipseSpatialObjects.

using EllipseType = itk::EllipseSpatialObject<3>;
EllipseType: :Pointer ellipsel = EllipseType::New();
ellipsel->SetRadius (1) ;

ellipsel->SetId(1);

EllipseType::Pointer ellipse2 = EllipseType::New();
ellipse2->SetId(2);

ellipse2->SetRadius (2);

Then we add the two ellipses into the SceneSpatialObject.

scene->AddSpatialObject (ellipsel);
scene->AddSpatialObject (ellipse2);

Administrator
下划线

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

5.6. SceneSpatialObject 145

We can query the number of object in the SceneSpatialObject with the GetNumberOfObjects ()
function. This function takes two optional arguments: the depth at which we should count the
number of objects (default is set to infinity) and the name of the object to count (default is set to
ITK_NULLPTR). This allows the user to count, for example, only ellipses.

std::cout << "Number of objects in the SceneSpatialObject = ";

std::cout << scene->GetNumberOfObjects() << std::endl;

The GetObjectById () returns the first object in the SceneSpatialObject that has the specified iden-
tification number.

std::cout << "Object in the SceneSpatialObject with an ID == 2: "
<< std::endl;
scene->GetObjectById(2) ->Print (std::cout);

Objects can also be removed from the SceneSpatialObject using the RemoveSpatialObject ()
function.

scene->RemoveSpatialObject (ellipsel);

The list of current objects in the SceneSpatialObject can be retrieved using the GetObjects ()
method. Like the GetNumberOfObjects () method, GetObjects () can take two arguments: a
search depth and a matching name.

SceneSpatialObjectType: :ObjectListType * myObjectList = scene->GetObjects();

std::cout << "Number of objects in the SceneSpatialObject = ";
std::cout << myObjectList->size() << std::endl;

In some cases, it is useful to define the hierarchy by using ParentId () and the current identification
number. This results in having a flat list of SpatialObjects in the SceneSpatialObject. Therefore,
the SceneSpatialObject provides the FixHierarchy () method which reorganizes the Parent-Child
hierarchy based on identification numbers.

scene->FixHierarchy () ;

The scene can also be cleared by using the Clear () function.

scene->Clear();

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
下划线

146 Chapter 5. Spatial Objects

5.7 Read/Write SpatialObjects

The source code for this section can be found in the file
ReadWriteSpatialObject.cxx.

Reading and writing SpatialObjects is a fairly simple task. The classes
itk::SpatialObjectReader and itk::SpatialObjectWriter are used to read and write
these objects, respectively. (Note these classes make use of the MetalO auxiliary I/O routines and
therefore have a .meta file suffix.)

We begin this example by including the appropriate header files.

#include "itkSpatialObjectReader.h"
#include "itkSpatialObjectWriter.h"
#include "itkEllipseSpatialObject.h"

Next, we create a SpatialObjectWriter that is templated over the dimension of the object(s) we want
to write.

using WriterType = itk::SpatialObjectWriter<3>;
WriterType::Pointer writer = WriterType: :New();

For this example, we create an itk::EllipseSpatialObject.

using EllipseType = itk::EllipseSpatialObject<3>;
EllipseType::Pointer ellipse = EllipseType::New();
ellipse->SetRadius (3);

Finally, we set to the writer the object to write using the Set Input () method and we set the name
of the file with SetFileName () and call the Update () method to actually write the information.

writer->SetInput (ellipse);
writer->SetFileName ("ellipse.meta");
writer->Update () ;

Now we are ready to open the freshly created object. We first create a SpatialObjectReader which
is also templated over the dimension of the object in the file. This means that the file should contain

only objects with the same dimension. objects
reader objects

using ReaderType = itk::SpatialObjectReader<3>;
ReaderType: :Pointer reader = ReaderType: :New();

Next we set the name of the file to read using SetFileName () and we call the Update () method to
read the file.

Administrator
高亮

Administrator
下划线

Administrator
注释框
注意：读取文件中的objects维度与定义的reader中的objects维度应一致

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

5.8. Statistics Computation via SpatialObjects

147

reader->SetFileName ("ellipse.meta");
reader->Update () ;

To get the objects in the file you can call the GetScene () method or the GetGroup () method.

GetScene () returns an pointer to a itk::SceneSpatialObject.

ReaderType: :SceneType * scene = reader->GetScene();
std::cout << "Number of objects in the scene: ";
std::cout << scene->GetNumberOfObjects() << std::endl;
ReaderType: :GroupType * group = reader->GetGroup();

std::cout << "Number of objects in the group: ";

std::cout << group->GetNumberOfChildren() << std::endl;

5.8 Statistics Computation via SpatialObjects

The source code for this section can be found in the file
SpatialObjectToImageStatisticsCalculator.cxx.

This example describes how to use the itk::SpatialObjectToImageStatisticsCalculator to
compute statistics of an itk::Image only in aregion defined inside a given itk::SpatialObject.

#include "itkSpatialObjectToImageStatisticsCalculator.h"

We first create a test image using the itk::RandomImageSource

using ImageType = itk::Image< unsigned char, 2 >;
using RandomImageSourceType = itk::RandomImageSource< ImageType >;
RandomImageSourceType: :Pointer randomImageSource
= RandomImageSourceType: :New () ;
ImageType::SizeValueType size([2];
size[0] = 10;
size[l] = 10;
randomImageSource->SetSize (size);
randomImageSource->Update () ;
ImageType: :Pointer image = randomImageSource->GetOutput () ;

Next we create an itk::EllipseSpatialObject with a radius of 2. We also move the ellipse to

the center of the image by increasing the offset of the IndexToObjectTransform.

using EllipseType = itk::EllipseSpatialObject<2>;
EllipseType: :Pointer ellipse = EllipseType::New();
ellipse->SetRadius (2);

https://www.itk.org/Doxygen/html/classitk_1_1SceneSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

148 Chapter 5

. Spatial Objects

EllipseType: :VectorType offset;

offset.Fill(5);
ellipse->GetIndexToObjectTransform()->SetOffset (offset);
ellipse->ComputeObjectToParentTransform();

Then we can create the itk::SpatialObjectToImageStatisticsCalculator.
using CalculatorType = itk::SpatialObjectToImageStatisticsCalculator<
ImageIype, EllipseType >;
CalculatorType::Pointer calculator = CalculatorType: :New();

We pass a pointer to the image to the calculator.

calculator->SetImage (image) ;

We also pass the SpatialObject. The statistics will be computed inside the SpatialObject (Internally

the calculator is using the IsInside () function).

calculator->SetSpatialObject (ellipse);

At the end we trigger the computation via the Update () function and we can retrieve the mean and
the covariance matrix using GetMean () and GetCovarianceMatrix () respectively.

calculator->Update () ;
std::cout << "Sample mean = " << calculator->GetMean () << std::endl;
std::cout << "Sample covariance = " << calculator->GetCovarianceMatrix();

Administrator
下划线

Administrator
注释框
注意：统计图像处于空间对象区域内的图像信息（交集？？）

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html

CHAPTER

SIX

ITERATORS

This chapter introduces the image iterator, an important generic programming construct for image
processing in ITK. An iterator is a generalization of the familiar C programming language pointer
used to reference data in memory. ITK has a wide variety of image iterators, some of which are
highly specialized to simplify common image processing tasks.

The next section is a brief introduction that defines iterators in the context of ITK. Section 6.2 de-
scribes the programming interface common to most ITK image iterators. Sections 6.3—-6.4 document
specific ITK iterator types and provide examples of how they are used.

6.1 Introduction

Generic programming models define functionally independent components called containers and al-
gorithms. Container objects store data and algorithms operate on data. To access data in containers,
algorithms use a third class of objects called iferators. An iterator is an abstraction of a memory
pointer. Every container type must define its own iterator type, but all iterators are written to pro-
vide a common interface so that algorithm code can reference data in a generic way and maintain
functional independence from containers.

The iterator is so named because it is used for iterative, sequential access of container values. It-
erators appear in for and while loop constructs, visiting each data point in turn. A C pointer, for
example, is a type of iterator. It can be moved forward (incremented) and backward (decremented)
through memory to sequentially reference elements of an array. Many iterator implementations have
an interface similar to a C pointer.

In ITK we use iterators to write generic image processing code for images instantiated with different
combinations of pixel type, pixel container type, and dimensionality. Because ITK image iterators
are specifically designed to work with image containers, their interface and implementation is opti-
mized for image processing tasks. Using the ITK iterators instead of accessing data directly through
the itk::Image interface has many advantages. Code is more compact and often generalizes au-
tomatically to higher dimensions, algorithms run much faster, and iterators simplify tasks such as

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

150 Chapter 6. lterators

multithreading and neighborhood-based image processing.

6.2 Programming Interface

This section describes the standard ITK image iterator programming interface. Some specialized
image iterators may deviate from this standard or provide additional methods.

6.2.1 Creating lterators

All image iterators have at least one template parameter that is the image type over which they
iterate. There is no restriction on the dimensionality of the image i ype of the image.

An iterator constructor requires at least two arguments, a smagt pointer to the image to iterate across,
and an image region. The image region, called the iteration rdgion, is a rectilinear area in which iter-
ation is constrained. The iteration region must be wholly contained within the image. More specif-
ically, a valid iteration region is any subregion of the image within the current BufferedRegion.
See Section 4.1 for more information on image regions.

There is a const and a non-const version of most ITK image iterators. A non-const iterator cannot be
instantiated on a non-const image pointer. Const versions of iterators may read, but may not write
pixel values.

Here is a simple example that defines and constructs a simple image iterator for an itk::Image.

using ImageType = itk::Image<float, 3>;
using ConstIteratorType = itk::ImageRegionConstIterator< ImageType >;
using IteratorType = itk::ImageRegionIterator< ImageType >;

ImageType: :Pointer image = SomeFilter->GetOutput ();

ConstIteratorType constlterator(image, image->GetRequestedRegion());
IteratorType iterator(image, image->GetRequestedRegion());

6.2.2 Moving lterators

An iterator is described as walking its iteration region. At any time, the iterator will reference, or
“point to”, one pixel location in the N-dimensional (ND) image. Forward iteration goes from the
beginning of the iteration region to the end of the iteration region. Reverse iteration, goes from just
past the end of the region back to the beginning. There are two corresponding starting positions for
iterators, the begin position and the end position. An iterator can be moved directly to either of these
two positions using the following methods.

* GoToBegin () Points the iterator to the first valid data element in the region.

Administrator
下划线

Administrator
注释框
注意：限定遍历的范围

Administrator
下划线

Administrator
高亮

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

6.2. Programming Interface 151

[I I
|_itk::Image

I
| BEGIN Position

—_ — > — > — > — > —

Ly — —> —> — > —> —

N

» —» Iteration regiop+» —

A AVAR RV A

N

- — — - — — — —

fe>

Figure 6.1: Normal path of an iterator through a 2D image. The iteration region is shown in a darker shade. An
arrow denotes a single iterator step, the result of one ++ operation.

* GoToEnd () Points the iterator to one position past the last valid element in the region.

Note that the end position is not actually located within the iteration region. This is important
to remember because attempting to dereference an iterator at its end position will have undefined
results.

ITK iterators are moved back and forth across their iterations using the decrement and increment
operators.

* operator++ () Increments the iterator one position in the positive direction. Only the
prefix increment operator is defined for ITK image iterators.

* operator—- () Decrements the iterator one position in the negative direction. Only the
prefix decrement operator is defined for ITK image iterators.

Figure 6.1 illustrates typical iteration over an image region. Most iterators increment and decrement
in the direction of the fastest increasing image dimension, wrapping to the first position in the next
higher dimension at region boundaries. In other words, an iterator first moves across columns. then

down rows, then from slice to slice, and so on. E'_‘

In addition to sequential iteration through the image, some iterators may define random access oper-
ators. Unlike the increment operators, random access operators may not be optimized for speed and
require some knowledge of the dimensionality of the image and the extent of the iteration region to
use properly.

* operator+=(OffsetType) Moves the iterator to the pixel position at the current in-
dex plus specified itk::0ffset.

Administrator
下划线

Administrator
注释框
注意：最后一个有效元素位置的后一个位置

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：迭代器遍历图像区域时的顺序

Administrator
高亮

https://www.itk.org/Doxygen/html/classitk_1_1Offset.html

152 Chapter 6. lterators

* operator—=(OffsetType) Moves the iterator to the pixel position at the current in-
dex minus specified Offset.

* SetPosition(IndexType) Moves the iterator to the given itk::Index position.

The SetPositio}é () method may be extremely slow for more complicated iterator types. In general,
it should only be used for setting a starting iteration position, like you would use GoToBegin () or
GoToEnd().

Some iterators do not follow a predictable path through their iteration regions and have no fixed be-
ginning or ending pixel locations. A conditional iterator, for example, visits pixels only if they have
certain values or connectivities. Random iterators, increment and decrement to random locations
and may even visit a given pixel location more than once.

An iterator can be queried to determine if it is at the end or the beginning of its iteration region.
* bool IsAtEnd() True if the iterator points to one position past the end of the iteration
region.
* bool IsAtBegin () True if the iterator points to the first position in the iteration region.
The method is typically used to test for the end of reverse iteration.

An iterator can also report its current image index position.

* IndexType GetIndex () Returns the Index of the image pixel that the iterator currently
points to.

For efficiency, most ITK image iterators do not perform bounds checking. It is possible to move an
iterator outside of its valid iteration region. Dereferencing an out-of-bounds iterator will produce
undefined results.

6.2.3 Accessing Data
ITK image iterators define two basic methods for reading and writing pixel values.

* PixelType Get () Returns the value of the pixel at the iterator position.

* void Set (PixelType) Sets the value of the pixel at the iterator position. Not defined
for const versions of iterators.

The Get () and Set () methods are inlined and optimized for speed so that their use is equivalent
to dereferencing the image buffer directly. There are a few common cases, however, where using
Get () and Set () do incur a penalty. Consider the following code, which fetches, modifies, and then
writes a value back to the same pixel location.

Administrator
下划线

Administrator
注释框
注意：通常慢

Administrator
下划线

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

6.2. Programming Interface 153

it.Set(it.Get() + 1);

As written, this code requires one more memory dereference than is necessary. Some iterators define
a third data access method that avoids this penalty. _'

* PixelType &Value () Returns a reference to the pixel at the iterator position.

The Value () method can be used as either an Ival or an rval in an expression. It has all the properties
of operator*. The Value () method makes it possible to rewrite our example code more efficiently.

it.Value () ++;

Consider using the Value () method instead of Get () or Set () when a call to operator= on a
pixel is non-trivial, such as when working with vector pixels, and operations are done in-place in the
image. The disadvantage of using Value is that it cannot support image adapters (see Section 7 on
page 191 for more information about image adaptors).

6.2.4 Iteration Loops

Using the methods described in the previous sections, we can now write a simple example to do
pixel-wise operations on an image. The following code calculates the squares of all values in an
input image and writes them to an output image.

ConstIteratorType in(inputImage, inputImage->GetRequestedRegion());
IteratorType out (outputImage, inputImage->GetRequestedRegion());

for (in.GoToBegin(), out.GoToBegin(); !in.IsAtEnd(); ++in, ++out)

{
out.Set (in.Get () * in.Get());

}

Notice that both the input and output iterators are initialized over the same region, the
RequestedRegion of inputImage. This is good practice because it ensures that the output iter-
ator walks exactly the same set of pixel indices as the input iterator, but does not require that the
output and input be the same size. The only requirement is that the input image must contain a
region (a starting index and size) that matches the RequestedRegion of the output image.

Equivalent code can be written by iterating through the image in reverse. The syntax is slightly more
awkward because the end of the iteration region is not a valid position and we can only test whether
the iterator is strictly equal to its beginning position. It is often more convenient to write reverse
iteration in a while loop.

Administrator
注释框
注意：一下函数可以避免出现两次解引用

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

154 Chapter 6. lterators

in.GoToEnd();
out.GoToEnd() ;
while (! in.IsAtBegin())
{
==dmp
--out;
out.Set (in.Get () * in.Get ());
}

6.3 Image lterators

This section describes iterators that walk rectilinear image regions and reference a single pixel at a
time. The itk::ImageRegionIterator isthe mostbasic ITK image iterator and the first choice for
most applications. The rest of the iterators in this section are specializations of ImageRegionlterator
that are designed make common image processing tasks more efficient or easier to implement.

6.3.1 ImageRegionlterator

The source code for this section can be found in the file
ImageRegionIterator.cxx.

The itk::ImageRegionIterator is optimized for iteration speed and is the first choice for itera-
tive, pixel-wise operations when location in the image is not important. ImageRegionlterator is the
least specialized of the ITK image iterator classes. It implements all of the methods described in the
preceding section.

The following example illustrates the use of itk::ImageRegionConstIterator and ImageRe-
gionlterator. Most of the code constructs introduced apply to other ITK iterators as well. This
simple application crops a subregion from an image by copying its pixel values into to a second,
smaller image.

We begin by including the appropriate header files.

#include "itkImageRegionIterator.h"

Next we define a pixel type and corresponding image type. ITK iterator classes expect the image
type as their template parameter.

constexpr unsigned int Dimension = 2;

using PixelType = unsigned char;
using ImageType = itk::Image< PixelType, Dimension >;

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionConstIterator.html

6.3. Image lterators 155

using ConstIteratorIype = itk::ImageRegionConstIterator< ImageType >;
using IteratorType = itk::ImageRegionIterator< ImageType>;

Information about the subregion to copy is read from the command line. The subregion is defined
by an itk::ImageRegion object, with a starting grid index and a size (Section 4.1).

ImageType: :RegionType inputRegion;

ImageType: :RegionType: : IndexType inputStart;
ImageType: :RegionType: :SizeType size;

inputStart[0] = ::std::stoi(argv[3]);
inputStart[1l] = ::std::stoi(argv[4]);
size[0] = ::std::stoi(argv[5]);
size[l] = ::std::stoi(argv[6]);

inputRegion.SetSize(size);
inputRegion.SetIndex (inputStart);

The destination region in the output image is defined using the input region size, but a different start
index. The starting index for the destination region is the corner of the newly generated image.

ImageType: :RegionType outputRegion;

ImageType: :RegionType: : IndexType outputStart;

outputStart[0] = 0;
outputStart[l] = 0;

outputRegion.SetSize(size);
outputRegion.SetIndex (outputStart);

After reading the input image and checking that the desired subregion is, in fact, contained in the
input, we allocate an output image. It is fundamental to set valid values to some of the basic image
information during the copying process. In particular, the starting index of the output region is now
filled up with zero values and the coordinates of the physical origin are computed as a shift from the
origin of the input image. This is quite important since it will allow us to later register the extracted
region against the original image.

ImageType: :Pointer outputImage = ImageType: :New();
outputImage->SetRegions (outputRegion);
const ImageType::SpacingType& spacing = reader->GetOutput () ->GetSpacing();
const Imagelype::PointType& inputOrigin = reader->GetOutput () ->GetOrigin();
double outputOrigin[Dimension];

for (unsigned int i=0; i< Dimension; i++t)

{

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

156 Chapter 6. lterators

outputOrigin[i] = inputOrigin([i] + spacing[i] * inputStart[i];

}

output Image->SetSpacing(spacing);
outputImage->SetOrigin(outputOrigin);
outputImage->Allocate();

The necessary images and region definitions are now in place. All that is left to do is to create the
iterators and perform the copy. Note that image iterators are not accessed via smart pointers so they
are light-weight objects that are instantiated on the stack. Also notice how the input and output
iterators are defined over the same corresponding region. Though the images are different sizes,
they both contain the same target subregion.

ConstIteratorType inputIt (reader—->GetOutput (), inputRegion);
IteratorType outputIt(outputlmage, outputRegion) ;

inputIt.GoToBegin () ;
outputIt.GoToBegin();

while(!inputIt.IsAtEnd())
{
outputIt.Set(inputIt.Get());
++inputIt;
++outputlt;
}

The while loop above is a common construct in ITK. The beauty of these four lines of code is that
they are equally valid for one, two, three, or even ten dimensional data, and no knowledge of the
size of the image is necessary. Consider the ugly alternative of ten nested for loops for traversing
an image.

Let’s run this example on the image FatMRISlice.png found in Examples/Data. The command
line arguments specify the input and output file names, then the x, y origin and the x, y size of the
cropped subregion.

ImageRegionIterator FatMRISlice.png ImageRegionIteratorOutput.png 20 70 210 140

The output is the cropped subregion shown in Figure 6.2.

6.3.2 ImageRegionlteratorWithindex

The source code for this section can be found in the file
ImageRegionIteratorWithIndex.cxx.

The “WithIndex” family of iterators was designed for algorithms that use both the value and the
location of image pixels in calculations. Unlike itk::ImageRegionIterator, which calculates an

Administrator
下划线

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html

6.3. Image lterators 157

Figure 6.2: Cropping a region from an image. The original image is shown at left. The image on the right is the
result of applying the ImageRegionlterator example code.

index only when asked for, itk::ImageRegionIteratorWithIndex maintains its index location
as a member variable that is updated during the increment or decrement process. Iteration speed is

penalized, but the index queries are more efficient. N_:]

The following example illustrates the use of ImageRegionlIteratorWithIndex. The algorithm mirrors
a 2D image across its x-axis (see itk::FlipImageFilter for an ND version). The algorithm
makes extensive use of the Get Index () method.

We start by including the proper header file.

#include "itkImageRegionIteratorWithIndex.h"

For this example, we will use an RGB pixel type so that we can process color images. Like most
other ITK image iterator, ImageRegionlteratorWithIndex class expects the image type as its single
template parameter.

constexpr unsigned int Dimension = 2;

using RGBPixelType = itk::RGBPixel< unsigned char >;
using ImageType = itk::Image< RGBPixelType, Dimension >;

using IteratorType = itk::ImageRegionlIteratorWithIndex< ImageType >;

An ImageType smart pointer called inputImage points to the output of the image reader. After
updating the image reader, we can allocate an output image of the same size, spacing, and origin as
the input image.

Administrator
下划线

Administrator
下划线

Administrator
注释框
注意：存在性能影响

Administrator
下划线

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIteratorWithIndex.html
https://www.itk.org/Doxygen/html/classitk_1_1FlipImageFilter.html

158 Chapter 6. lterators

ImageType: :Pointer outputImage = ImageType::New();
outputImage->SetRegions (inputImage->GetRequestedRegion());
outputImage->CopyInformation(inputImage);
outputImage->Allocate();

Next we create the iterator that walks the output image. This algorithm requires no iterator for the
input image.

IteratorType outputlt (outputImage, outputImage->GetRequestedRegion());

This axis flipping algorithm works by iterating through the output image, querying the iterator for
its index, and copying the value from the input at an index mirrored across the x-axis.

ImageType: : IndexType requestedIndex =
outputImage->GetRequestedRegion () .GetIndex () ;

ImageType: :SizeType requestedSize =
outputImage->GetRequestedRegion () .GetSize();

for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt)

{
ImageType: :IndexType idx = outputIt.GetIndex();
idx[0] = requestedIndex[0] + requestedSize[0] - 1 - idx[0];

outputIt.Set (inputImage->GetPixel (idx)); M:l

}

Let’s run this example on the image VisibleWomanEyeSlice.png found in the Examples/Data
directory. Figure 6.3 shows how the original image has been mirrored across its x-axis in the output.

6.3.3 ImageLinearlteratorWithindex

The source code for this section can be found in the file

ImagelinearIteratorWithIndex.cxx.

The itk::ImageLinearIteratorWithIndex is designed for line-by-line processing of an image.
It walks a linear path along a selected image direction parallel to one of the coordinate axes of the
image. This iterator conceptually breaks an